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The review is devoted to theoretical investigations of propagation of electromagnetic and
acoustic waves in layered conductors of organic origin. Attention is focussed on spectroscopic
possibilities for studying the electron structure of organic quasi-two-dimensional

conductors, which is of great importance for understanding physical processes in these materials.
High-frequency and magnetoacoustic effects considered in this review are typical of quasi-
two-dimensional conductors and quite informative. The analysis of these effects makes it possible
to study in detail the electron energy spectrum and relaxation properties of charge carriers

in layered conductors. €999 American Institute of PhysidS1063-777X99)00111-5

1. INTRODUCTION states of these compounds and the possibility of changing the
ground state with external agencies.

The search for new materials in the sixties attracted the  Shubnikov—de Haas magnetoresistance oscillations ob-
attention of researchers to conductors of organic origin withserved in tetraselenetetracene halides and a large family of
a layered or filamentary structure. Intense experimental intetrathiafulvalene-based ion-radical salts with a charge trans-
vestigations of physical properties of organic conductorgort in magnetic fields of the order of several tens tesla in-
were stimulated in the hope of obtaining superconductorslicate that these compounds possess the metal-type conduc-
with high critical parameters just among quasi-one-tivity. This allows us to describe the electron processes in
dimensional filamentary conductors in which a superconsuch conductors on the basis of the concept of quasiparticles
ducting transition can theoretically occur at high temperacarrying an electric charge, which are similar to conduc-
tures. Many years of efforts made by physicists and chemistdon electrons in metals. Strong anisotropy of the electrical
to obtain a large number of new organic conductors culmi£onductivity of a layered conductor is apparently associated
nated in the synthesis of organic quasi-one-dimensional coWith strong anisotropy of the velocity of charge carriers
ductors with a superconducting transition temperafiyef ~ —¢¢(P)/Jp on the Fermi surface(p)=eg, i.e., their en-
the order of several kelvins as well as layered organic supef'9Y €(P) weakly depends on the momentum component

conductors with a record-high superconducting transitiorPz= PN a@long the normah to the layers.
temperatureT,=13K. Although these values of, are The Fermi surface of quasi-two-dimensional conductors

lower than for some intermetallic compounds, the interest> PN and weakly corrugated along ieaxis. The corru-

towards the electronic properties of organic conductors regate(.j planes can be rolled into a cylinder whose ba;e lies in
mains unabated a unit cell of the momentum space so that the Fermi surface

: - . f layer n r can resen m of weakl
Layered conductors of organic origin are attractive for' 1Y€ ed conductor can be presented as a system of weakly

. . . . corrugated cylinders or a system of planes corrugated weakl
experimenters to a considerable extent due to their peculiar, 9 y y P 9 y

behavior in st tic field d b M along thep,-axis. Small closed cavities belonging to anoma-
ehavior ih strong magnetic Tields and a number ot p as_?ously small groups of charge carriers can also be present.
transitions under comparatively low pressures. Their electri- The mean free pathof charge carriers in experimentally

C‘_”ll conductivity al_ong layers |_s_several orders of magnltUdE?nvestigated layered conductors attains values of several mi-
higher than electrical conductivity along the normao the .o meters, and the radius of curvaturef conduction elec-

layers, and the critical magnetic field at which superconducy;qng in strong magnetic fields that may be induced in actual
tivity is violated depends considerably on its orientation rela‘practice can be much smaller thanUnder these conditions,
tive to the layers. Under the action of applied pressure, th is appropriate to formulate the inverse problem of recon-
superconducting transition temperature of famodification  giryction of the electron energy spectrum with the help of
of tetrathiafulvalene saltBEDT-TTF),JBr, increases ap- experimental investigation of kinetic phenomena in a mag-
proximately by a factor of threeSuch a sensitive reaction of netic field.
the system of charge carriers to crystal deformation indicates ~ Galvanomagnetic phenomena and quantum oscillation
that acoustoelectronic phenomena in layered conductors witéffects in low-dimensional conductors of organic origin have
a quasi-two- dimensional electron energy spectrum appaleen investigated experimentally by many authors. In recent
ently possess peculiar properties. years, several publications appeafetlin which the results
The interest in investigations of organic conductors withof experimental studies of high-frequency phenomena were
a layered structure is also due to the variety of various phaseeported(including the discovery of cyclotron resonance in
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the layered conductag-(BEDT—TTF),KHg(SCN). P ]

High-frequency parameters of layered and filamentary i ' “H
conductors are undoubtedly quite informative, and their / ; 3
analysis will make it possible to determine in fine details the W
electron energy spectrum and relaxation properties of charge HH
carriers. Here we shall consider the propagation of electro- HE i
magnetic and acoustic oscillations in organic quasi-two- Y
dimensional conductors, choosing these oscillations from the
variety of waves that can propagate in current-carrying me-
dia.

®H

e(p)=sg
2. ENERGY SPECTRUM OF LAYERED CONDUCTORS

A unit cell of a crystal in layered organic conductors
contains a large number of atoms, and the separatibe-
tween layers is much larger than atomic spacing in a layer.
As a result, the overlapping of wave functions for electrons )
belonging to different layers is quite small, and we can use
the strong-coupling approximation for dispersion relationsriG. 1. Various types of electron trajectories in momentum space in a

for charge carriers: magnetic field parallel to the layers: open trajectoriesrves 1), closed
electron orbits(curve 2), and a self-intersecting orbit containing a saddle
- anp, point p, (curve 3). The cross section of the Fermi surface by the plape
s(p) = 2 sn(pX ,py)CO< h) . (2.1) =p. separates the regions of open and closed electron traject@jiemd
n=0 (b) show different projections of the Fermi surface.

Hereh is Planck’s constant anel,(py,p,) are assumed to be

arbitrary functions of their arguments. However, the maxi-

mum valuess™ at the Fermi surface decrease significantIyCharge carrier group can change significantly the dependence

with increasingn so thate ™= yep<er, and s ™ <gM, of electromagnetic and acoustic impedances on the magni-
the tude of a strong magnetic field.

where 7 is the quasi-two-dimensionality parameter of 51 T )
Yamagjf! used a rather simplified model of the Fermi

spectrum. . X ; :
P Shubnikov—de Haas quantum oscillations are observea”rface in theoretical calculations of the magnetoresistance

virtually for all organic conductors of the family of tetrathi- anisotropy of layered conductors, while Zimbovskyana-
afulvalene salt&1° This points to the presence of closed Yzed the rf properties by using the energy spectrum of

sections of the Fermi surface by the plgmg=p-H/H for

such conductors, and the large value of the oscillation am-
plitude suggests the presence of a group of charge carriers
for which the states with the Fermi energy are located on

weakly corrugated cylinder in the momentum space, such a

group of conduction electrons dominating over the remaining

charge carriers with the Fermi energy.

The model of a Fermi surface of a quasi-two-
dimensional conductor in the form of a weakly corrugated \
cylinder (Figs. 1 and 2is in good agreement with the ex- n
perimental investigations of galvanomagnetic phenomena
and Shubnikov—de Haas oscillations in many layered com-
plexes of organic origin with charge transport. Among other
things, the results of theoretical calculations based on this
model are in complete accord with the experimentally ob-
served quantum oscillations of magnetoresistance of tetrathi-
afulvalene saltdBEDT—TTF),JBr, and (BEDT—TTF),J.
However, the substitution of the complex MEREN), for
halogens in these salts, where M is a metal of the gi@up
Rb, TI), leads to a more complex dependence of resistance
on magnetic field. According to band analysis of the electron

energy spectrur’ the Fermi surface of
(BEDT-TTF),MHg(SCN),, salts contains, apart from a
weakly corrugated cylinder, two quasi-one-dimensional (a) (b)

sheets. Although the presence of a magnetic field affect thl(—EIG. 2. Electron trajectories in momentum space in a magnetic(fakithe

dynamip properties of charge carriers V‘{ith a quasi-0Nezngle formed by the magnetic field vector with the normal to the layés
dimensional spectrum only slightly, the existence of such and(b) show different projections of the Fermi surface.
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charge carriers of an exotic form with kinks on the Fermi The magnetizatioiM induced by an external magnetic
surface. Under such assumptions, spectroscopic potentialitiéigld in conductors without a spontaneous magnetic moment
of studying electron processes in organic conductors in & usually small, and there is no need to distinguish between
magnetic field were underestimated or even disregarded atlhe magnetic inductiorB and the magnetic fieldH=B
together. We shall consider here the high-frequency and-47M(B) except at ultra-low temperatures. At quite low
magnetoacoustic effects in organic conductors under theemperatures, when the inclusion of charge carrier energy
most general assumptions concerning the form of quasi-twoguantization in a magnetic field is significant, the amplitude
dimensional electron energy spectrnl). of quantum oscillations of magnetization as a function & 1/
The quasi-one-dimensional energy spectrum of chargean become comparable witB, and the differenceB
carriers will not be specified either. We shall only assume—47M(B) can become an infinitely small quantity. In this
that the coefficient®\qoo and A1qg in the expression for the case, the wave process is essentially nonlinear even for small
dependence of energy on quasimomentum wave amplitudé®2*
If M(B)<B, Egs.(3.2) can be reduced to a high degree

e(p)=> Anmi cos( al:: Px Cog( azr: pS’) COS( alhpz of accuracy to the equation
|
. (2.2) w? 7w
' curl curl E— —E=—%—]j. (3.9
are much larger than all the remaining coefficieis, . The ¢ ¢
dimensionsa; anda, of a unit cell of the crystal lattice in In the case of a small wave amplitude, it is sufficient to

thexy plane of the layers can also differ considerably. In theconfine the analysis to the linear approximation in weak per-
case when these planes are not the symmetry planes of thgrbation of the electron system, and the wave process can be
crystal, we must take into account additional phase in th@egarded as monochromatic with frequeneyso that the
arguments of the cosines in formulgs1) and(2.2), which  differentiation with respect to time is equivalent to multipli-
changes sign upon the substitution-op for p. This willnot  cation by (~iw), which is taken into account in EG3.4).
alter the wave spectrum in layered conductors considerably;his assumption does not violate in any way the generality
and so there is no need to complicate the solution of thef the problem since in view of the linearity of equations
given problem. Thus, we shall use below the dispersion rereative to the displacement of ions, the electric figld,t),
lation for charge carriers in the fori2.1) and(2.2), assum-  and the magnetic field of the wave, the generalization to the
ing that the coefficient®\,,,; and the functions:n(px.Py)  case of an arbitrary time dependence of the fields is trivial
are arbitrary. and can be reduced to the summation of various harmonics
of the solution of the system of equatio(&1)—(3.3).
The perturbation of the electron system by crystal defor-

3. COMPLETE SET OF EQUATIONS mation leads to a renormalization of the conduction electron
energy? i.e.,
An acoustic wave in a conductor always generates a
varying electromagnetic field accompanying it. However, the e = \ij(P)uijj 3.5

perturbation of the electron subsystem of a conductor by agnq to the emergence of the force
electromagnetic wave incident on its surface can also excite

elastic oscillations in it. Consequently, the system of equa- E 1 H m. ¢ 36
tions describing the propagation of waves in a conductor i_E[JX ]i+€'“’“+ i (3.6
contains the equation of the theory of elasticity for ionic )
displacements, i.e., exerted by electrons on the crystal lattice.
The electric current density
Ju; Ajm
Pz = Mim - T Fi 3.9 . 2 o o
] ]i__mfevidf%d p=(evi) (3.7

as well as Maxwell's equations

Cgldm  LE 1B
curl H=—j+ oo oul E=—C o divB=o0. L
(3.2 fi __0—,Xk<Aik‘//>r (3.9

Here p and A\, are the density and elastic tensor of the
crystal, uj, = (1/2) (du, / X+ duy, 1 9x;) is the strain tensor,
andc the velocity of light.

and the deforming force densffy?’

characterizing the response of the electron system to pertur-

bation are functionals of the charge carrier distribution func-

In view of a quite high number density of charge carri- t|qn f:fO{s(p)Jr”‘.)P'l.J}_ wfol.as’ \'/vhe're fole(p)
lep-u} is the equilibrium Fermi function in a reference

ers, Poisson’s equation can be reduced to the electroneutrz%r:ame moving with the vibrating lattice at a velocityi eu
ity condition of the conductor, and hence the continuity con-. g 9 :

dition for charge flux in the asymptotic approximation in The nonequilibrium correction to this velocity should be de-

) . . termined by solving the kinetic equation closing the com-
reciprocal density of conduction electrons assumes the form : .
plete system of equations of the problem and having the

divj=0. (3.3 form
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1 Let us suppose that a wave propagates along the normal
;—lw)lﬂ:g- (3.9 to the surface of a conductor occupying the half-space

~ =0. Using the Fourier method, we continue even{x) and
Here the functiong=—wA;j(p)u;;+eE-v takes into ac- E(x) to the region of negative values wfand obtain for the
count the perturbation of the system of charge carriers by thgpurier component
electric field

g o
— 4+ —
Voar T ot

U2 ui(k)=2J’wdx U (x)coskx (3.16
(3.10 0

~ i
E=E- ?[ux H]+
_ of ion displacement and for the electric field
and by crystal deformation.

The components;;(p) of the deformation potential ten-
sor in the kinetic equatio3.9) and in expressioit3.8) for
the deforming force density are given in the form taking into
account the conservation of the number of charge carrierghe following system of algebraic equations:
ie.,

Ei(k)=2J:deEi(x)coskx (3.17)

Amiw ) = 2E" CE (K w\? K
Aik(P) =Nik(P) = (Ni(p))/(1). (3.11 1K) =2E"(0)+KEa(k)—| =] Eal(k), (3.18
The collision operator in the equation fgris taken in a=y.z
the approximation of the relaxation timefor charge carri- "
ers, and the timeis a coordinate in momentum space, which  j (k)=0 (3.19
indicates the position of a charge on its trajectory in a mag-
netic field in accordance with the equation of motion — w?pu;(K) = — N[ 2u/(0) + k2u, ]+ (imw/e)j;(K)
p e + (k)X H]+ik(A ). 3.2
Py, (312 (X HL+ik(Apy).  (3.20

The fluxes characterizing the response of the electron
The kinetic equation must be supplemented with thesystem to a perturbation can be presented with the help of the
boundary condition taking into account the scattering ofsolution of the kinetic equation in the following form:

charge carriers at the conductor surface coinciding, say, with -
the planex=0: Ji(k)=a; (k) Ej(k) +ajj (k) kou;(k), (3.21

w(p+,0):q(p_)¢(p_’0)+f d3pW(p,p+) <Aixw(k)>:bij(k)Ej(k)+Cij(k)kwuj(k)a (322

where the Fourier transforms of electrical conductivity
X{1=0[v.(p)1}#(p,0). (313  gyi(k) and of acoustoelectronic tensoas; (K),b;;(k) and

Here the specular reflection paramedép) is the prob- cij(k) are defined as

ability that a conduction electron incident on the sample sur- a--(k)=<e2v-§v->' a--(k)=<ev-§A- ) (3.23
face with a momenturp_ has after reflection a momentum ! e B '
p. connected witlp_ through the specular reflection condi- bij(k):<eAixﬁvj>' Cij(k)=<Aixﬁ3A,‘x>- (3.24

tion presuming the conservation of the energy of the charge
and of the component of its momentum along the scatterindflere
boundary. The specular reflection parameter is connected

X . N N t
with the scattering indicatrix W(p,p,) through the Rng dt’ g(t")exp{ik[x(t) —x(t) ]+ v(t' —t)},
relatiorf®2° —co

a(p_)=1- f d*pW(p,p ){1-O[v(P)]}, (314 9() =@z (k) +ev(t)- Ek). (3:29
. o . Substituting expression$3.21) and (3.22 into Egs.
where® ({) is the Heaviside function. (3.18—(3.20, we obtain a system of linear algebraic equa-

In a bulk conductor whose size is much larger than the; |« i, ui(k) and E,(k). The problem of distribution of

mean frge patht of charge carmers, mOSt. of them do pot electric field and the field of displacement of ions in a con-
collide with the sample surface during their mean free timey,ctor will be solved completely if we apply the inverse
If we are interested in “bulk” effects that are not a:;sociatedFOurier transformation to its solutions

wiih interaction of a small group of charge carriers with the The condition for the existence of a nontrivial solution

;ample surface, th_ere Is no need 1o use _the boundary Conddf the obtained system of equatiofi®., the equality to zero
tion, and the function)s can be presented in the form of its determinantis a dispersion equation. The imaginary
t components of the roots of the dispersion equation determine
'ﬂ:f dt’g[x+x(t")—x(t) ]exdv(t'~t)],  (3.19  the damping factors of the acoustic and electromagnetic
- waves, while the real components of these roots describe
wherev=1/r—iw, andx(t) = [tv,(t)dt. renormalizations of the velocities of the waves.
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4. PROPAGATION OF ELECTROMAGNETIC WAVES IN ji00= 03 E; (), (4.5

LAYERED CONDUCTORS ) o )
and the component of the electrical conductivity matrix

The equations in the theory of elasticity and Maxwell's = ¢;(0) have the same form as in a uniform electric field.
equations turn out to be coupled weakly when the mutuafrhe electrical conductivityr,,= %0, across the layers is
transformation of electromagnetic and acoustic waves iproportional to the square of the quasi-two-dimensionality
hampered. In this case, the propagation of acoustic waves igarameter of the electron energy spectrum, agchas the
conductors can be investigated without using Maxwell’ssame order of magnitude as the electrical conductivity along
equations, and the problem of propagation of electromagthe layers in a uniform electric field. In this case, the disper-
netic waves can be solved to a sufficiently high degree ofion equation4.3) implies that the attenuation depth of
accuracy without using equations in the theory of elasticity.the electric fieldE,(r) is larger than the attenuation depth

We consider the propagation of electromagnetic wavesf the electric field along the layers by a factor ofyli.e.,
in a layered conductor. Their attenuation length depends con-
siderably on the polarization of the incident wave. A linearly ~ 9.~ %17- (4.6
polarized wave with the electric field directed along the nor-  uUnder the conditions of anomalous skin effect, when the
mal to the layers penetrates into the conductor to a considskin depthsd, is much smaller than the mean free patbf
erably larger depth than a wave with the electric field di-charge carriers, the relation betwe&nand &, has the form
rected along the layers. T

The surface impedance and the penetration depth of the SL=01m" (4.7)
Varying electric field of the wave can eaSily be determined b)éince the tensor Componenmj (k) are inverse|y propor-
solving the system of equatiort8.18), (3.7), and(3.9) with  tjonal to the wave numbek for kI>1.

the boundary Cond|t|0m313) The solution of the kinetic In a magnetic field, the relations betweép and 5” are
equation(3.9) allows us to find the relation between the Fou- more diversified.
rier transforms of current denSity and electric field: Let us consider the propagation of e|ectr0magnetic
waves in a layered conductor in a magnetic figtl
ji(k)=crij(k)Ej(k)+f dk’'Qjj(k,k")Ej(k"), (4.2 = (H sin,H cose sin §,H cose cosd), tilted by the anglep
to the conductor surface;=0.
where The integral term in the boundary conditi¢8.13 en-
a'ij(k)52€3H/C(27Th)3 sures the absence of current through the sample surface, but

in the range of high frequencies the solution of the kinetic

T v, , equation weakly depends on this functioffaDisregarding
x| dpy o dtvi(t,pw) Odt vi(t'.pw) this functional fore=0 and assuming the absence of charge
carrier drift along thex-axis along open electron orbits, we
xXexp{v(t' —t)}cosk{x(t",py) —X(t,pn)} can write the solution of the kinetic equation in the form
=(e?v;Rv}). 4.2 to ,
(eviRvy) (4.2 ‘/’(tvayx)ZJ’ dt’ev(t’,pu) - E[X(t", pu) = X(N, )]
The kernel of the integral operat®;;(k,k’) depends A
conS|dgrany on the state of the sample surface,. i.e., on the xexplv(t' — )+ g\, pu)[1—a(\, pr)
probability of specular reflection of charge carriers at the
surface. T-)

In the cases when the relation between the Fourier trans-
forms of current density and electric field is local, i.e., the
contribution of electrons colliding with the sample boundary xXev(t',pu) - E[X(t",pr) =X(N,pu) ]
to tht_'-z al_ternating current is considerably s_mgller than the Xexp{r(t' —t+27—T)}, 4.9
contribution from “bulk” electrons, the electric field attenu-
ation length is determined by the imaginary component ofvhereT=2m/Q=2mm*c/eH is the period of motion of a
the roots of the dispersion equation charge in the magnetic fieldy* the effective cyclotron mass
of conduction electrons, andis the root of the equation

xexp[v(Z)\—T)}]*lf dt’
A

2 A7iw
det{ ( Kk?— —2> Sap— —2—0up(K) | =0, 4.3 t
¢ ¢ x<t,pH>—x<x,pH>=f Vx(t',pa)dt’ =x. (4.9
where »
which is nearest to.
a,B=(y,z). Conduction electrons for whickx(t,py) — Xmint<<x do
not collide with the sample surface, and we must put
44 N = —oo for such electrons.

Under the conditions of normal skin effect, when the In a magnetic field tilted to the sample surface, conduc-
mean free path of charge carriers is smaller than the skition electrons either penetrate to the bulk of the sample after
depth, the relation between current density and electric fieldeveral collisions with the boundary, or tend to approach this
is local to a high degree of accuracy, i.e., surface. The relative fraction of the latter electrons is not

Tan(K)0p(K)

Faplk) = 0aplk) = = =
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large, and they make a small contribution to the alternating For 6= 6., whenl,(6.) vanishes, he value df,, de-
current. The contribution of the remaining electrons to thecreases abruptly for smat}, y=(Q7) 1, w/Q, andkr.
current foro=1 is naturally determined by the type of their As a result, the penetration depth for the electric fie)d
interaction with the sample surface, but the state of the surincreases considerably fat= 6., and the angular depen-
face affects only insignificant factor of the order of unity in dence of impedance acquires a series of narrow peaks. For
the expression for surface impedance. tan#>1, these peaks are repeated periodically, with a period
determined by the separation between the stationary phase
points on the electron orbit, wheke v=w, which are close

We shall apply the term normal skin effect to penetrationto turning points ¢,=0). Since the phase velocity of the
of an electromagnetic field to the bulk of a sample under theyvavevq):w/kz(wr)‘lfzwc/won is much smaller than the
condition when the current densifyr) is determined to a Fermi velocity ve of conduction electrons, the separation
high degree of accuracy by the value of the electric field  between stationary phase points on the electron orbit can be
at the same point. In a strong magnetic field parallel to the regarded to be equal to the diameter of the orbit to a high
conductor surface, charge carriers with closed orbits drift inrdegree of accuracy.
the momentum space along the sample surface. If the diam- The height of sharp peaks fé= 6. in pure conductors
eter & of their orbits is much smaller than the skin depth, at low temperatures, whdm?> &,, decreases with increas-
the main contribution to rf current comes from carriers sepaing magnetic field, and conversely, fon?< &, it increases
rated from the surface;=0 by a distance greater tham.2  in proportion tol 8y/r 7 if | p<r<&y/7. At not very high
These conduction electrons do not collide with the samplérequencies, when the displacement current is smaller than
surface, and it is expedient to use the approximation of localhe conduction current, the solution of the dispersion equa-
coupling between the current density and the electric field ofion (4.3) for #= 6, can be represented in the form of the
the wave to calculate the surface impedance in thénterpolation formula
asymptotic approximation in the small parametés$ in the
absence of open cross sections of the Fermi surface.

The asymptotic expression for the tensor component
agij(k) for kr<1 has the same form as in a uniform electric
field so that the electric curreri, for kr<1 attenuates at

4.1. Normal skin effect

r2+ 5(2)77—2 12
2+ 1777

(4.149

o=

In the case of extremely low electrical conductivity
along the normal to the layers, whern> oo 7?( 5%+ r?/1?),

distances the skin depths; has the form
~ S — -1/2
d,=6g=C(2Tmwoy) (410) 5“:(50/772){14‘(1'/'77)2+(r(1)/C77)2}71/2
for any relation between the mean free path of charge carri- {1+ (1 5l 89)2}, (4.15

ers and the skin depth.

For <1, each of the components,, anda,, is at least and the electric field attenuation depth along the normal to
proportional to7? so thatd, = o, The asymptotic form of the layers is again equal # /7> in a strong magnetic field
o, (k) for small anglesd is equal tooo7? in order of mag- Whenr<(1?7*+ 83/%°)2 In the range of moderate mag-
nitude, and the attenuation lengthof the electric fieldE,is ~ netic fields in which the relatiob,/7<r< g, holds for §
larger thans, by a factor of 14 as in zero magnetic field if = 0c. the impedance as a function of magnetic field has a
the corrugation of the Fermi surface is nor very small andgminimum since for>17 the skin depth

7= Sgwlc. For o> oy7?, the skin depth 8,=1r 7l 8, (4.16
S— 53‘” 1+ riw?\ 12 4.19) is inversely proportional to the magnetic field, i.e., decreases
"cn? c? : with increasing magnetic fiefef~3°

. ) o S For 6, <r<§,, the attenuation length of the electric
increases with the magnetic field, attaining its limiting valuefjg|q E,(x) depends weakly on the type of reflection of
w53/ cry? 3% charge carriers at the sample surface as before, but the pen-
For significant values of), there exists a sequence of etration depth for the electric fiel,(x) is quite sensitive to
values of 6= 6. for which the asymptotic behavior af,,  the state of the conductor surface if the valuespfis smaller
changes considerably, as well as the behavior of thenan or comparable to the mean free path of charge carriers.

it 33-35~ i iofi i . e .
quantity’>~**a,, which satisfies the expression In this range of magnetic fields, normal skin effect can take
3 place only foré, >1, when the local relation between the
_ ae’7TH cosé 22 _ . P
7,4k, ,0)= Wz n?l 2+ aon?{ n?f1(6) f:urr.ent density and electric field is observed~f0r any polar-
77 n ization of the wave. The asymptotic expressioy (k) for
+92E5(0)+ (Kr)2f5( )}, (4.12 kl<1 coincides witho to within a numerical factor of the

order of unity, and hencé, coincides in order of magnitude
where thef; stand for functions o® of the order of unity, with §,. However, the penetration depth of the electric field
and E,(x) in the sample depends considerably on the magnetic
field orientation.

T A liar depend f the attenuation length of th
|n(0):J dten(t)coganp,(t)tans/h}. 4.13 ‘peculiar dependence of the attenuation length of the
0 electric fieldE,(x) is observed fow= =/2, when, apart from
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the drift of charge carriers along the magnetic field, a fan ofHere (ri(jl)(k) is the contribution to the rf electrical conduc-
various drift directions is possible in they plane for con- tivity from charge carriers with the energy spectr(@m®), in
duction electrons belonging to open cross sections of thevhich we retain only a few terms by putting

Fermi surface. In this case, the dependencergfon the
magnitude of a strong magnetic fieldy,=1/(Qy7)<1,
where(), is the frequency of electron rotation in a magnetic ~ The contribution tdo,z(k) from charge carriers with a
field orthogonal to the layersan be presented by the fol- quasi-one- dimensional energy spectrum is mainly deter-

A1po=U, Agio= mU<U, Agy=nU<U.

lowing interpolation formula: mined by the componenrf(}()(k) which has the following
2 2 2 1 form accurate to small corrections proportional ﬁé and
02z=00Yon (Yot 1) 7% 417 .2

which is valid for any orientation of the magnetic field in the o
. T 0.(1)(k):(7 (k)= (4.22
Xy plane, i.e., for any angle of its inclination to the sample XX 1 ﬁlﬂkll) )
surfacex=0. _ _ o _
Using formulas(4.3 and (4.17, we can easily verify Where l1=ve;m1/(1—i7);0, is the contribution of this
that the value o, increases with the magnetic field in pro- 9"0UP of charge carriers to electrical conductivity along the
portion toHY2 for 7Y2< y,<1, while the attenuation length x-axis in a uniform electric fieldy; the mean free time of

8= 8/ yo1%* of the electric field along the normal to the charge carriers with the energy spectru@2), and v
layers increases linearly with the magnetic field #gr< y, :(Uallh)s'r[(gE_Aooo)/U]- ) _
<2 The magnetic field dependence @f”(k) is manifested
The solution of the dispersion equati¢h3) for ¢ dif- only in the next terms of expansion into a power series in the
fering from zero has the form small parameters; and 7;:
2 2112 2,,2
: asU</4dh=v
Qro)YA(1+i) - - B D)y — 710185 0
I e R [ b oy (=2 1+ (k*+eHa, cos/ch)?lZ’ 4.23
2 2112 2.,2
—(2H cosésing/Necg)?]V2 12, 4.1 ny01a°U/4h%vg

. . . = 1+ (k*=eHasing/ch)??’
whereN is the charge carrier density.

This formula shows that in the extremely strong mag-Whose inclusion does not affect significantly the skin depth
netic field, wheny,< 7?2, helicoidal waves can propagate. of electromagnetic field attenuation.
For ¢=1, one of the roots of the dispersion equation de- The asymptotic behavior of the componentsagfs(k)
scribes attenuation of electric field along the layers at disin strong magnetic fieldsy=1/Q7<1), i.e.,

tances of the order of o1 (K){ 7z oo+ azztar? o+ yz 03

Ozz 12 Uyy(k): Ul(k)+ '}’20'0 , (423
5, =68 1+ —= (4.19
o Ty ) =y = — T2 tang (4.26
o =0 = ——>5—0,,tané, .
It can easily be seen that the penetration depth for the — *° ‘ o1(k)+ %o 7
electric fieldE, increases as the magnetic field increases in 5,4 = 0yt LK), 4.27

proportion toH when yy<#. The electric field directed
along the normal to the layers fop,>7? attenuates at is very sensitive to the emergence of a group of charge car-

distance® riers with a quasi-one-dimensional energy spectrum.
" We have omitted here insignificant numerical factors of
8= do(0ool0;2) ™", (420 the order of unity and small corrections of the order kif)@

. . . . in the expression fow,,, i.e., the contribution of charge
i.e., at distances of the order éf/#» as in zero magnetic : . : . .
carriers with a quasi-two-dimensional spectrum to the cur-

field. . . . L
- . _rent is taken into account, as before, in the approximation
In the presence of an additional group of charge carriers” . .
valid for normal skin effect.

with a quasi-one-dimensional energy spectrum, high- .

) . . If o4 and o are of the same order of magnitude, the
frequency properties of layered conductors are quite sensi- - . S .
. 2 . value ofa, (k) does not attain saturation in strong magnetic
tive not only to the polarization of the incident wave, but

also to the direction of propagation of electromagnetic fieldﬂe'dS as in the case of;=0 and turns out to be much

in the plane of the layerS—3 If the reflection of charge smaller thanoy in a fairly wide range of magnetic fields.

. : This leads to a considerable increase in the conductor trans-
carriers at the conductor surface is close to specular, the

) . .. parency.
relation between the Fourier transforms of current densit . : . .

. . . The dispersion equatio®.3) taking into account rela-
and electric field can be regarded as local to a fairly h|gr}ion

. - s(4.25—(4.27 makes it possible to determine the length
degree of accuracy even for an indefinitely large mean free . o . .
L of attenuation of electromagnetic fields in a strong magnetic
path of charge carriers:

field:
ji(k)={o;(K)+ ol (K)}Ej(k). (4.21 81=801n, 5,=5,17, (4.28
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where 8o={c/l2mw(oo+ oq)} V2

If o, is much smaller tham, but o;=y%0,, the ex-
pression ford, should be supplemented with the small factor
(01/00)Y2 For o;<y?0y, the attenuation lengths for the
electric fieldsE,(x) and E,(x) differ significantly (5= 1
and §, =4,, respectively, by the electric fields along and
across the layers forr;>y?0, contain both components
with considerably different attenuation lengths and &, .
Consequently, in pure conductors for whitky>,, not
only the fieldE,(x), but also the fieldE,(x) attenuate over
distances considerably longer than the mean free path of N
charge carriers in magnetic fields for whicke &, .

When an electromagnetic wave propagates along thEIG. 3. Dependence of surface impedance on the magnitude of a strong
y-axis, the presence of a group of charge carriers with g1_agnetic field .(<_I) pgrallel to the sur_face of th_e conductey=0. The

. . . . width w of the indicatrix of charge carrier scattering at the sample surface
quasi-one-dimensional energy spectrum does not affect Sigz, pe getermined from the position of the minimum.
nificantly the attenuation length of electromagnetic waves.
As in the case of a single group of charge carriers with the

=r wl=r H

dispersion relation2.1), the electric field along the layers 2

attenuates over distances of the ordesgf and the electric Tyy(k)= 1/“2)0 ) (4.29
field along the normal to the layers penetrates a quasi-two- Qkn)"(w+r/l)

dimensional Conductor to the depﬂﬂ] fOI’ Wh|Ch the abOVe Using the dispersion equati(ﬂn_3)' we can eas"y deter-

formulas(4.11), (4.14—(4.16 are valid. The effect of charge mine the attenuation length of electric fields, i.e.,

carriers with spectruni2.2) on the propagation of electro- 5 1 o5

magnetic waves becomes significant when @&320, /a7, 8, =80 T MW 5=250/7. (4.30

where « is the angle between the wave vector and the pre-  |n the range of not very strong magnetic fields, where

dominant direction of the velocity of charge carriers with a 5 <r<|, the impedance has a minimum for=wl, and its

quasi-one-dimensional energy spectrum. position determines uniquely the width of indicatrix of
Thus, analyzing the dependence of surface impedance Qharge carrier scattering at the sample boundiy. 3.

the magnetic field during the propagation of an electromag-  ynder the conditions of extremely anomalous skin ef-

netic wave in two different directions in the plane of the fect, when the depth of electromagnetic wave penetration in

layers, we can determine unambiguously the presence of e conductor is the smallest parameter of the problem hav-

guasi-one-dimensional cavity on the Fermi surface and its;hg the dimensions of lengtfi.e., not onlys, , but alsos, is

contribution of the electrical conductivity of an organic con- mych smaller thanr and 1), the values ofs, and &, are

ductor. connected through a universal relation in a magnetic field

parallel to the sample surface far<r¥?/| §}/2:33

4.2. Anomalous skin effect 8, =6,7*". (4.31

With increasing frequency of an electromagnetic wave,  If w>r%%15Y2 and 8, <r<l, the contribution to the rf
the skin depths decreases, and the relation between currenturrent mainly comes from charge carriers that do not inter-
density and electric field becomes essentially nonlocal foact with the sample surface, and the relation betw&eand
8<2r. In this case, Maxwell's equations are of the integral §, has the form(4.7).
type even in the Fourier representatfSnHartmann and In the intermediate case whed%/|5/2<w<r%?1 512,
Luttinger*® proposed a correct solution of these equations ironly 5, depends considerably am for w=r/I:

a magnetic field for some special cases. If we disregard nu- 65, —

merical factors of the order of unity, we can obtain a reason- =1%ol m)*, 8, :W2/550 r (4.32
able solution of the physical problem, i.e., determine the de- In the absence of open electron orbits, conduction elec-
pendence of surface impedance and other characteristics wbns carry information on the field in the skin layer to the
waves in a conductor on physical parameters, with the helpulk of the conductor in the form of narrow spikes predicted
of a correct estimation of the contribution of the integral by Azbel®! The transport of electromagnetic field to the bulk
term in formula(4.1) to the Fourier transform of the high- of the conductor and the screening of the incident wave at
frequency current. In a magnetic field parallel to the samplehe surfacex;=0 are mainly accomplished by charge carri-
surface, fors, <r, the contribution of charge carriers collid- ers moving in phase with the wave almost parallel to the
ing with the sample surface to the current is significant. Insample surface. Fop=<é/r, almost all of charge carriers
the case of a nearly specular reflection of charge carriers byarticipate in the formation of electromagnetic field spifées.
the sample boundarfthe width of scattering indicatrix for The intensity of the spikes at distances from the sample sur-
charge carriersv<r3’2lléi’2), the contribution of conduction face multiple to the diameter of the electron orbit in the
electrons “sliding” along the sample surface and remainingdirection of thex-axis has the same order of magnitude in the
in the skin layer to the rf current is quite large. In this case,collisionless limit. The inclusion of scattering of conduction
the asymptotic expression for, (k) for largek has the form  electrons in the bulk of the conductor leads to field attenua-
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tion in a spike at distances of the order of the mean free patturing the timeT=2xhc/aeHv,. In this case() appearing

of charge carriers. Thus, there are two scales of electromagn the expression for .. is equal toaeHv/hc.

netic field attenuation length under the conditions of anoma-  The kernel of the integral operat@;;(k,k’) as a func-

lous skin effect. Apart from the skin depth, the electromag-tion of k also possesses a similar singularity.

netic field penetrates into the bulk of the sample to a depth of The electromagnetic field decreases in proportion to

the order of the mean free path of charge carriers. x~%exp(—x/1) over distances from the sample surface which
For »> é6/r, only an insignificant fraction of charge car- exceed considerably either=v/(), or the displacement of

riers of the order of §/r )2 participates in the formation of an electron during the wave periodr2/w. For > w, the

spikes. The spread in the diameters of orbits of such carrieslowly decreasing varying electric field

in the vicinity of the extremal diameter is comparable with B e

the skin depth. As a result, with increasing distance from the Ez2X)=Ez0)7 (el wo)¥¥(vl )P V232

surfacexs=0, the intensity of each next spike acquires an X explix/r — x/I} (4.36

additional small factor §/r ) apart from the exponential

factor exg—x/} taking into account attenuation of waves in oscillates upon variation dfi at large distancez>r.

the spike over the mean free pdth The attenuation of the electric fie (x) over the mean
As the angled approachesr/2, closed electron orbits free path of charge carriers fay<1 has the form

become strongly elongated along tkeaxis, and the spike B a3 203 Yoo —3p2
mechanism of penetration of electromagnetic field in the Ey(x) =Ey(0)(c/ o) ™(v/ @) "H(wIv) X

bulk of the sample is replaced by the electron transport of the Xexp[—x/l +ixw/v},
varying field in the form of Reuter—Sondheimer weakly at-
tenuating quasi-wavés**~*®when the diameter of the orbits vio<x<vliwn (4.37)

in this direction exceeds the mean free phath L o
and is independent of the magnetic field.

The oscillatory dependence & (x) on the magnetic
4.3. WeaKly attenuating Reuter—Sondheimer waves f|(3ld is manifested only in small corrections proportional to
. . 7
The drift of charge carriers along the normal to the  For values ofy that are not small in zero magnetic field,
sample surface facilitates the transport of electromagnetighe functionso,, (k) ando, (k) have a logarithmic singular-
field from the skin layer to the bulk of the conductor over ajty for k;=iv/v, andk,=iv/v,, wherev, is the electron
distance smaller than or of the order of the mean free path velocity at the reference point on the Fermi surface in the
of charge carriers. Fof= /2, the drift of charge carriers x-direction andv, the projection of the velocity, at the
along open trajectories leads to penetration of electromagsaddle point of the Fermi surface, at which connectedness of
netic field over a distance<| even in a magnetic field par- the linev,=const change¥ For indefinitely smally, these
allel to the surface,=0. o branching points of the rf conductivity tensor component be-
In order to determine the electric field in the bulk of the come closer, and the |ogarithmic Singu|arity Changes into a
sample with the help of inverse Fourier transformation root singularity fory=0.4" For small7, we choose the inte-
1 [+o gration contour in thé&-plane along the cut lines drawn from
Ej(x)= 7 f—x dKE;j(k)exp{ —ikx} (4.33  the branching pointk; andk, paralle_l to th_e imaginary axis
so that we can bypass both branching points simultaneously.
we continueE;(k) analytically to the entire complek-plane  In this case, the electric field,(x) away from the skin layer
and close the integration contour in formy#33 with an  assumes the form
arc of infinitely large radius in the half-plane where km ot 2 4o
; : : ; , 11 w Tlw
=0. The skin depth is deFermlned by the pqles of the '”teEZ(x): —2E.(0) f dk[ k2= —— —— 0, 1(K)
grand in formula(4.33, while weakly attenuating waves are ky
associated with integration along the cuts drawn from the

2

branching point of the functiok;(k). It can easily be veri- X explikx) + sz dk[ K2— “’_2
fied that the tensor componemy; (k) for indefinitely smallzn kg +ie c
display a root singularity of the form dmio 1

Uzz(k):(wénZ/V){(ai_1)71/2_’_(“2__1)71/2}; _—Cz O-ZZZ(k) eX[.XikX)J. (4.38

(4.39
We can neglect the integral along lines connecting the
— 2 2 1/2
Aayy(k)=v(wo/kv) T (kv/v)"+ 1}75 (4.39 branching points, andk, and assume that,,; (k) is the

where wg is the frequency of plasma oscillations of chargevalue of the functioruo, (k) at the left bank of the cut drawn
carriers,y=vy¥=vg, anda. =i(kv=Q)/v. For <1, the  from the pointk,, while o, (k) is its value at the right band
time variation of the electron velocity, in the magnetic of the cut drawn from the poink,. For definiteness, we
field H=(0,H,0) does not exceed»*? so that away from assume that, is greater thaw,. If we disregard anisotropy
the saddle points on the Fermi surface, charge carriers mow# the dispersion relatiorf2.1) for charge carriers in the

in the momentum space along the-axis virtually without  plane of the layers, the diagonal components of the rf elec-
acceleration over a distance equal to the period of a unit cetfical conductivity tensor fok;<k=k, assume the form
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wé?? m w2 Sir? ¢ we can easily see that a weakly attenuating wave which
oy (k)= 3 fo dafo de »+ kv CoSe(1+ 7 cosa) 2’ prqpagates with the electron velocity; at the referencg
(4.39 point of the Fermi surface is formed by charge carriers
' whose velocityv, differs from v, by the quantityAv,
Wit (7 <vZ/wx. If vi—v,=vy is smaller thanAv,, ie., x
o, k)= 3 f Sir a da <v/wn, formula(4.37) is valid for E (x), while in the op-
0 posite limiting case, whem\v,<v#, weakly attenuating
w2 1 waves described by formul@.42 are formed by electrons
X - . . i i
jo deo- kv cosg(1+ 7 cosa) 2 (440  from small neighborhoods on the Fermi surface near the

saddle and reference points.

It can easily be seen that the rf electrical conductivity N @ magnetic field, charge carriers belonging to one of
componenta,(k) is proportional to ¢+ikv) Y2 for 4  the “banks” of the central open cross section of the Fermi
<1, while ay(k) is proportional to ¢+ikv)'2 ie., both surface, on which the velocity, varies with time periodi-
component have a root singularity for=i v/v. In the case of ~cally in the interval between, andv;, move most rapidly
a considerable corrugation of the Fermi surface, when to the bulk of the sample. Weakly attenuating waves propa-
=1, the root singularity is replaced by a logarithmic singu-9ate at a velocity equal to the extremal valig and are
larity for k=iv/v(1+ 7)¥2 andk=iv/v(1— 7)Y2 After the  described by formula¢t.36) and(4.37.
integration with respect te, the integrands if4.39 and Weakly attenuating waves in a magnetic field tilted from
(4.40 have a root singularity fok=iv/v(1+ 7 cosa)’? As  the plane of the layers have a similar form. If the magnetic
a result of simple calculations, we arrive at the following field lies in thexy plane, i.e.,f=m/2, a weakly attenuating
expression for the electric field component weakly attenuatwave with ¢ differing noticeably from zero propagates at a

ing at large distances from the skin layer: velocity v, equal to the drift velocity of charge carriers be-
longing to the open cross section of the Fermi surface con-
Ey(X) = Ey(0)(c/wo)*(v/w) >3 viv)*? taining the reference point along tpg-axis. The asymptotic
- X form of the electric fielcE,(x) is described by4.37), and its
XJ da exp[ -t (4.41) oscillatory dependence on the magnetic field orthogonal to
0 v(1+7cosa) the axis of the corrugated cylinder is manifested, as before,

At large distances from the sample surface, the eIec:tri((:-)nIy in small corrections proportional tg”.

field along the normal to the layers can be described by the When electromagnetic waves propagate along the nor-

same formula if we supplement the integrand in the integra]“al to the Iayera(alorjg th_ez-aX|s), _charge carriers can carry
with respect toa with the factor » *3sirfa. For x information on the flel_d in the skin layer to the b_ulk of the
>v/wn, the integrand in formuld4.4) is a rapidly oscil- samdplethonlyk_ovgr ihd'St?n?e of the orolllerlali;ﬁ Wh'?h ex
lating alternating function, and the main contribution to thi €6€UsS the skin depth only for very smail valuesso

integral comes from small neighborhoods of the stationar;l(Iy bzh(;ae\;\(laer;ﬁgezttv(\a/::rl:etlﬂzghillicct)?iéllzlt? dzog]ap?nn\?vr;:igr??( eas-
h ink=(0,7). A It of simpl Iculations, . o )
phase pointy=(0,m). As a result of simple calculations, we should be replaced by. Without a loss in generality of the

obtain given problem, we shall confine our analysis only to the first
E,(X) =Ey(0)(c/ o) (v w)?3x 2y~ 112 two terms in expression(2.1) for e(p), assuming that
£1(px,Py) is a constant quantity equal tpvoh/a, wherev
> exp{ _ VX +exp{ _ VX H coincides in order of magnitude with the characteristic fermi
v(1+ )t v(l-m)™¥ " velocity v of charge carriers along the layers.

If the magnetic field is orthogonal to the layers, the Fou-
x>vlwy. (4.42 rier componentsr;;(k) of the electrical conductivity tensor

In the above formulas, we have omitted insignificant nu-2ssume the form

merical factors of the order of unity. The pre-exponential 22
factor in formula(4.42 is inversely proportional ta? as in aij(k)=

3
normal metals. Such an asymptotic behavior in quasi-two- (27rh)
dimensional conductors is observed only in the range of high vi(_")v}”)
frequencies, where wr=1/7. Essentially different X > jdpzzwm*wrikv sinap,/h) £inQ
asymptotic forms of electric fields at such frequencies can be " F77 P
explained by tracing the phase of the wave carried by con- (4.44

duction electrons with different velocity componemtsfrom
the skin layer. At the instart, electrons carry over a dis-
tance x the information on electromagnetic wave with a
phase lagnAt=wx/v,. Averaging over different values of 7ij(K) =) 2 CP{(kvon)?+ (703 Y2 (4.49
vy by the formula A

After simple calculations, we obtain

where

E(x)~f dv, exp —iot+iwx/v,} (4.43 o= y+in
n 1
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T _ zyflz;fs. If 19=6,, both terms in the braces of formula
viM=(1/T) JO dtvi(t,p)exp —inQt), (4.495 have the same order of magnitude, and the resonance
line is “blurred.”
and C{["” are numerical factors of the order of unity. For The detection of cyclotron resonance at multiple fre-

=j, all these factors are real-valued and positive, while inquencies would make it possible to analyze in detail the en-
Hall’s nondissipative components they are imaginary as &rgy spectrum of charge carriers, but the observation of this
rule and change sign upon inversion iofaind j so that a  effect requires long mean free paths of charge carriers. The
helicoidal wave attenuating over a distarlgg= 5,(Q17)¥2  cyclotron resonance observed by Polissktal® in
is formed in a strong magnetic field féY>kvy7. (BEDT-TTPH,ReQ,(H,0) for only one resonance value of
For moderate magnetic fields in whidr»=1, Hall's  magnetic field cannot be regarded as an evidence of isotropic
nondissipative Fourier components;(k) are of the same spectrum of charge carriers in the plane of the layers. The
order of magnitude as the dissipative diagonal component#formation on the dispersion relation of charge carriers in
and all of them possess a root singularity fork.=(w  this compound can be refined by analyzing the Azbel-Kaner
+Q+il7)/(ve7). In this region of magnetic fields, electro- resonanc® in a magnetic field parallel to the sample surface,
magnetic field penetrates in the bulk of the sample only inat which the cyclotron resonance at multiple frequencies
the form of a Reuter—Sondheimer quasiwave takes place for any shape of the electron energy spectrum.

4/3 1/6
C vrm .
E(z)=E(O)(w—) (?) 7z explik. z},
0 5. PROPAGATION OF ACOUSTIC WAVES

>vylw. (4.49 In an analysis of sound absorption in ordinary metals,

the inclusion of electromagnetic waves accompanying an
4.4. Cyclotron resonance acoustic wave is essential in the range of strong magnetic

In all organic conductors synthesized at present, théields,_ When the radius of curvatureof charge carrier tra-
mean free path of charge carriers is not largé<t10 um) Jectorles_ is much smaller than n(_)t only the mean free path of
so that the frequency of electromagnetic waves in the rf an{1€ carriers, but also the acoustic wave lenigt. If, how-
microwave regions is much lower than the electron collision€Ver, the inequality
frequency 1f, and the time dispersion can be disregarded 1 <kr<Kkl. (5.2
while calculating the skin depth. However, the frequency of o ) ) ) .
electromagnetic wave in the millimeter and submillimeter'S Satisfied, the attenuation of sound in a metal is mainly
regions at low temperatures can be comparable to the collf€términed by the deformation mechanism associated with
sion frequency for charge carriers, and the interaction of conth® renormalization of electron energy in the field of the
duction electrons with electromagnetic field is of resonantV@Vve. In low-dimensional conductors, the role of electro-
type, when the wave frequenayis equal or multiple to the magnetic fields e_XC|'ted b)_/ sound is. S|gn|f|ce}nt in a w@er
frequency( of their rotation in a magnetic field. range of magnetic fields, including fields satisfying the in-

In a magnetic field orthogonal to the sample surfage equality_(5.1). In_this regiqn of magnetic fields, _the sc_>und
—0, cyclotron resonance can take place at multiple frequer2SOrption coefficient’ oscillates upon a change in recipro-
cies w=nQ in the case of essentially anisotropic spectrumC@ magnetic field. If the magnetic field is orthogonal to the
of charge carriers in the plane of the layers. The shape of thé/ave Vectork, and the trajectories of charge carriers in the
resonance curve can be determined easily by using formuf@omentum space are closed, the amplitude of oscillations in

(4.45 for o; (k). Resonance takes place fop< 8y, but it a normal metal is small in comparison with the smoothly
) ij (K). , . . -
is manifested most clearly whem<s,. If I<r in this  Varying component of" since oscillations are formed by a

case, all charge carriers with a quasi-two-dimensional energyMall group of charge carriers with a diameter of orbits close
spectrum participate in the formation of resonance effect. I{C the extremal diameter. This effect predicted by Pippard

the case of an isotropic spectrum of charge carriers in this associated with periodic repetition of the conditions of
plane of the layers, i.e., fato(py,p,)=co(p. ), Wherep, effective interaction of a charge with an acoustic wave, when

=(p2+p?)*2 we have only one resonance value of thethe number of wave lengths corresponding to the diameter of
mag)r(1eticyfielyd satisfying the conditian= 0. the electron orbit changes by unity. If the vectérand H

Diagonalizing the tensar;; (k), we obtain the following are not orthogonal, the average velocity of a charge in the

expression for the diagonal components of surface impeoc_iirection of propagation of the sound differs from zero for
any shape of the Fermi surface, i.e., charge carriers drift in

ance:
the direction of wave propagation. The existence of points at
8iw (= dk which the interaction with the wave is most effective on such

rTT 2 | K= wc 20,k 447 4 trajectory leads to a resonant dependence of the sound ab-

sorption coefficient on reciprocal magnetic field. In ordinary
Under favorable conditions for cyclotron resonance, i.e.metals, periodic variations of with 1/H, which are not
for 1 »<{r,8,}, the resonance value of the impedance isassociated with quantization of the motion of charge carriers
Z2'=87wéd,/c?, and the resonance line width isH( with an amplitude much larger than the minimum valud pf
—H™9/H™®=y. Away from the resonance we haw, are possible only in the presence of drift alongd’
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In contrast to conventional metals, the formation of Pip-whereT is the period of rotation of charges in the magnetic
pard oscillations in low-dimensional conductors involves vir-field. In the range of magnetic fields for which the inequality
tually all charge carriers on the Fermi surface since the di{5.1) is satisfied, the interaction with the acoustic wave is
ameters of their orbits are close in value. As a result, thenost effective for charge carriers moving in phase with the
amplitude of periodic variations of electrical conductivity wave. Such carriers make the main contribution to the com-
and other acoustoelectronic coefficients witld lihcreases ponents of acoustoelectronic tensors which can easily be cal-
abruptly, and absorption is of the resonant tyb&@*In this  culated with the help of the stationary phase method. The
case, we cannot obtain even an order-of-magnitude estimasemplitude of their oscillations with & is large if the quasi-
of the sound absorption coefficient without taking into ac-two-dimensionality parametey satisfies the conditiofr »

count electromagnetic fields correctly.

5.1. Longitudinal wave propagating along the layers

Let us consider a longitudinal acoustic waver (
=(u,0,0)) propagating along the layers in a quasi-two-

dimensional conductor in a magnetic figlld Using formulas
(3.19—(3.21), we can write the system of equatio(&18

after elimination of the fielE, in the form
(Ayké+iH /) wu+(E0yy—1)E, + E5,,E,=0,
(pké—iH,/C)wu+ £5,E, + (é0,,~ 1E,=0,
(?—5%k?) pu+[iKCyxt ¢~ L(ByH,—F,Hy) kou
+[ikbyy+ ¢ (T yyH,— T, Hy) JE, +[iKDy,
+c¢ Yo, H,~F,Hy)]E,=0, (5.2

where

=Nl )2, E=4mi 0l (K°c?— w?),

5 o—g Tax0xp 2 —a AT ax
of op Oxx “ “ Oxx
=~ bixo'xﬁ - bixaxj_
big=bis— o C=Cj— ;
Oxx Oxx
a,B=Y,z.

For w7<1, the root of the dispersion equation describing al

acoustic wave is close to/s, and we can write it in the form

k=w/s+k; . (5.3

n

<1 for which the spread in the diameter of electron orbits
AD=2r»n becomes much smaller than the acoustic wave
length. Let a charge pass through two stationary phase points
at which kv,=w during the period of motio¥. Then the
following expressions hofd for o,y anday, for »—0:

7yy(K)=(G/KD)(1-sinkD);

ayy(k)=—1(GA,,/evkD)coskD, (5.6

whereD=cD,/(eHcos¢), D, being the averaged diameter
of the Fermi surface along thep, axis, G
=4vDe?r/[ac(2mh)?], and A, the value of the quantity
A (p) at the stationary phase points.

It can easily be verified that the value @f, is mainly
determined by ther,, component, and hence the denomina-
tor in formula (5.4) for k,; decreases significantly fdtD
=2m(n+1/4). This leads to the emergence of sharp peaks
of the sound absorption coefficiemt, which are repeated
periodically with the period

A 1 _27recosa 5
H/  keD, .7
The height
wT w
FreSZFZVQT (5.8

of these resonance peaks is proportionaHtéor | <kr?.
Regions of high acoustic transparency in which the ab-
sorption coefficient has the form

2
+(kD7)?

5 . (5.9

In the case of weak corrugation of the Fermi surfaee ( are situated away from the resonang@e regions where

<1), the expression fdk; has the form

k2 1 . i3
kl:gﬁ 1_—%[ §(Byuuy=Caxlyy) + [Cux— 1 (Byx

~ H

S
- bxy)] E toyy W (5.4

k=wls

VectorsH and k are orthogonal In a magnetic fielcH

=(0,H sind,H cosd) orthogonal to the direction of wave

sinkD differs considerably from unity

We can easily obtain explicit expressions fofor arbi-
trary kr. Let us consider by way of an example a layered
quasi-two-dimensional conductor for which the dispersion
relation for charge carriers has the form

2 2
m  7Ta'®

&(p)

h |’ V0:28|:/m,

(5.10

propagation, the solution of the kinetic equation in theand the deformation potential tensor componeqigp) can

Fourier representation can be written in the form

 Jirdt'g(t)explik[x(t) —x(t) ]+ v(t’ —t)}
v= 1—exp(—vT)

(5.9

be represented in the form

P;

_ A0 a
Ai(p)=Aj"(p) + mLix COS{ T) (5.11

where
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. pi—mse PP, O sl
Ai(lg)(p):_a PxPy p)zl—mSF 0 ) 2
c 4+
0 0 0 >
B 4l
the matrix components;, coinciding the Fermi energy in c
the order of magnitude. 2 ol
Let us write the expressions for some components of ‘g
acoustoelectronic tensors obtained in the main approxima- 2 1+
tion in the small parameterg=(Q7) ! and kD) ! for a
magnetic field orthogonal to the laye¥s®3 0

5 10 15 20 25
kD

FIG. 4. Dependence of the absorption coefficient of a longitudinal acoustic
wave on the reciprocal magnetic fieltk< 1/H in relative units.

Uyyzm[l—Jo(Z)SlnkD],

—_ (2)_
Oyy=— 03 =
yx Y mvakD

Jo(¢)coskD,

 Jigdt gt )explik[x(t') —x(t) ]+ v(t' — 1)}
[1+J0(£)sinkD], (5.12 - 1—exd —vT—ikv,T]

. . . . =Rg. 5.1
where N is the number density of charge carriers with a ¢ . . .19
quasi-two-dimensional dispersion relatidly, Bessel's func- It follows from the equation of motior{3.9) for a charge
tion of {Z=kR#, andR=2hc/(eHa). The diameteb of the  With the dispersion relatio(®.1) that its velocity components
electron orbit in the case under investigation has the fornfveraged over the period satisfy the relation

mvo
C
X pakD

For {>1, the corrugation of the Fermi surface is quite  v,=tanev,; Vv,== | v,(ty)dty. (5.1

T Jo

strong, and absorption coefficient behaves as in an ordinary
isotropic metal: The displacement of an electron over the period of motion
along the wave vector is given by

2 1/2 T
Flofhor 1+(W_§) CO{ < Z)Sm(km} _— v, T=—tan i . dets (t,py)sin e
(5.13 " P Th o PRSI,

whereQo=eH/(mc); T'y=Nmov,/(4mps?) is the energy “ an (T [ anpy
absorption coefficient for acoustic waves in zero magnetic =—tang 21 Y fo dtsn(t,PH)Sln[m
field. "

For (<1, specific features of the quasi-two-dimensional 1
conductor are manifested, aiidis given by ~anpdtpytang . (5.17
I'=IeQe7 If we take into account the fact that, and p,, and

. (my)2+ £212+i u[ 1+ sinkD] rlencgsn depends. weakly on.th'e integral .of motiqn.l
1—sinkD+ (my)?/2+ %12+ 9/18kD) *+iu , =p, Sing+p,cose in a magnetic field, the drift velocity of

k=als electrons alongk in the main approximation in the small
(5.14  parametery of quasi-two-dimensionality of the electron en-

where u=7voC?w/25° w30 7), 0, being the frequency of ergy spectrum assumes the form

plasma oscillations. If the latter is comparable with the value “ an ianpy
typical of ordinary metal (15—-10'°s7%), the parameter in Vyx=—tangIm > TGXP[ m] Ih(tang), (5.18
the ultrasonic frequency range is quite small, and periodic nt ¢
variations ofl'(1/H) have the form of giant resonance oscil- where
lations (Fig. 4). Such a behavior dF is typical of any con- 1 (T i
ductor with a quasi-two-dimensional dispersion relation for | (tang)= T f dtsn(t)exp[ i anpx(t)tango].
charge carriers. 0

VectorsH and k are not orthogonal Let us now con- (5.19
sider the case when the magnetic fieldH These relations are valid fd r=(eHrcose/mg>1, i.e.,
=(H sing,0H, cosy) is not orthogonal to the vectde. In when cosp differs from zero considerably.
this case, the value of the velocity componggtalong the It can be easily seen that the main term in form@4.9
direction of the wave vector averaged over the period differgroportional tol ;(tan¢) vanishes for certain values of tan
from zero, and the solution of the kinetic equation has theand there exists a large number of values of the argle
form = ¢, In the vicinity of zeros of the function,(tan¢), for
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which the drift velocity v, of charge carriers along the
acoustic wave vector coincides with the velogtyf propa-
gation of the acoustic wave, and their interaction with the
wave is most effective. As a result, we can expect the pres-
ence of narrow peaks in the dependence of the damping dec-
rement of acoustic waves on the angle

Using the stationary phase method, we can easily calcu-
late the acoustoelectronic tensor components in the presence
of electron drift along also. For example, for the dispersion
relation (5.10 for charge carriers, we obtain the following
expression fowr, for small :

_ 4N€ l—sinkD+(7-ry)2
T~ ZrmukD (1+a?)1? 3

1+1 ink
Esm D

+7T’ySinkD(l—mi)}. (5.20
Here D=2v,/Q, a=klyntanel,(ah imvtane). The com-
ponento, oscillates with reciprocal magnetic field, and its
complex periodic dependence on the anglecan be de-
scribed in terms of the quantity. The remaining acousto-
electronic coefficients behave similarly.

For ay<1, we can easily obtain the following expres-
sion for k;°¢°"

iwNmyv

ka= 47rps?

T/T,

o

~
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FIG. 5. Dependence of the absorption coefficiBAl’'y on h=Hy/H (H,
=2wcmvy/es) for kl=10°, =102, x=tane=1.5x10"2. The upper
and lower figures differ in scale.

close to zero, and the functiofi(H) has a local peak’
=T ,a? for sinkD=—1. This peak increases witl and at-

27 SiPkD[1—(1+ a?) " Y2+ 72y
X T=sinkD+ [(7 1) F2](1+ a2+ my[(1+ ad)—1]

(5.2

If <1, we obtain

i woNmv ma? sifkD+ 72y
Y7 4mps® 1—sinkD+ (7y)22+ wya?l2’

(5.22

For yY?’<a<1, the oscillating terms exceed the

tains the valud’, of the sound absorption coefficient in zero
magnetic field fora=1. At the same time, the main peak
decreases with increasingand approaches the local maxi-
mum. For sirkD=—1, the absorption coefficient oscillates
with a large amplitude exceeding the minimum valué"dfy

a factor of Q7.

Figures 5, 6, and 7 show the dependence of absorption

coefficient on the quantitth=Hy/H (Ho=2wvomdse)

smoothly varying terms not only in the denominator, but also

in the numerator of formulés.21). This leads to giant oscil-
lations of the sound absorption coefficidnt Imk; upon a

variation of the reciprocal magnetic field as well as the angle
¢ betweenH andn. In the case, when the displacement of

charge carriers alonk during their mean free time is much

larger than the acoustic wave length, these oscillations also
take place. Then we can write the following expression for

kq:
_ia)va 27 SiP KD+ 7y
"~ 4mps? 1—sinkD+ mya

. l<a<lly. (5.23

Ky

Thus, the existence of even a small displacement of

charge carriers along affects significantly the sound ab-
sorption I'. For sinkD=1, the functionI'(H) attains its
maximum value

roﬂT
Fmax:mﬁ'

(5.29

A slight deviation of sirkD from unity leads to a strong
decrease ifh" which has the minimum valug,,j,=1"o/Q 7 for
sinkD=—1 if a?< y<1. Fory=<3a?/2<1, the minimum of
I'(H) is shifted towards the values &f for which sinkD is
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FIG. 6. Dependence of the absorption coefficiBAL'y on x=tan¢ for Kl
=10%, »=10"2. The upper and lower figures differ in scale.
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tic waves, we consider a simple model of the energy spec-
trum for a two-band conductor. We assume that the
dispersion relation(5.10 is valid for one group of charge
carriers, while the other group has a quasi-one-dimensional
dispersion relation of the form

anp,

h
Sl(p):ip'NV1+ ﬂlgvlco{T . (525)

Here »;<<1 andv;, is the velocity of an electron with the
Fermi energy on a quasi-one-dimensional sheet of the Fermi
surface. The vectoN=(cospg,sinB,0) is oriented in the
plane of the layers and forms an an@evith the direction of
wave propagation.

In this case, for calculating acoustoelectronic tensors, we
must carry out integration in formuld8.21) over all sheets
of the Fermi surface, and each component is the sum of the
contributions from quasi-two-dimensional and quasi-one-
dimensional ¢,a{" ,b{" ,c{M) groups of charge carriers.

The existence of preferred direction of the velocities of
charge carriers in the quasi-one-dimensional group is mani-
fested in the dependence of their deformation potelzttffﬂ
on the angleg. If crystal deformation does not lead to a
redistribution of charges between electron groups, we can
naturally assumgbearing in mind relatior{3.12] that A"
vanishes in the main approximation in the small parameter
1. Ifwe put A{Y= 7, cosp, the expressions for the con-
tributions to acoustoelectronic coefficients from the electrons
of the quasi-one-dimensional group assume the form

FIG. 7. Dependence of the absorption coefficiEAl'y on h andx=tan¢
for kl=10°, »=10"2. The upper and lower figures differ in scale.

and on tarp. o’=h,
It can easily be seen that the dependencé an 1H
and tany described above remains valid for an arbitrary form
of the quasi-two-dimensional electron energy spectrum. If N,er cod 8
the electron orbit contains only two stationary phase points, cfj()= n%hﬁ E—
the value ofD=cD,/eH is determined by the diametér,
of the Fermi surface in a direction orthogonal to the vectors
k andH. N, ev
Noticeable manifestation of the effect of drift of charge  al=b\)=in;h, ol
carriers on the oscillatory dependencelobn 1H at ultra-
sonic frequencies¢=10°s 1) is determined by certain re-
qguirements. For example, we must use perfect samples with Njev,
a large mean free path of charge carriers and strong magnetic aj;)=b\)=iz;h,
fields of the order of 10 T. In this range of magnetic fields,
the Shubnikov—de Haas effect is manifested clearly in com-
pounds of tgtrath,af_ulvalene, which |nd|caFes that the con_dl— hﬁ=[1+(kl)2 cog g1 (5.26
tion Q7>1 is satisfied, and at the same time the separation
between quantized electron energy levels is much smaller
than not only the Fermi energy, but also the quantjiy . Herel =v,;7 andN; is the number density of charge carriers
Under these conditions, a semiclassical description of norwith the quasi-one- dimensional dispersion relation. The
equilibrium processes is valid. In stronger magnetic fieldscontribution to the acoustoelectronic coefficients from the
the quantization of electron energy levels is significant, buguasi-two-dimensional group of charge carriers have the
the effects described above must also be observed. form of (5.12 and similar relations.
Presence of a quasi-one-dimensional group of charge In the main approximation in the small parameters
carriers. In order to clarify the role of a quasi-one- (Q7) 1, (kD) %, the absorption coefficient for a longitudi-
dimensional group of charge carriers in attenuation of acousaal acoustic wave has the forfn

kl cos B,

kl cog Bsing,
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1-J35(0) +kDgg[ 1+ Jo(£)sinkD]+ 53k D5 cos B[ 1—Jo({) sinkD]‘

I=Tolo7 1-Jo({)sinkD+kDgj lecurs (5.27)
|
The functions of the angleB approachesr/2, the resonant behavior of the
N, (kI)2cod B N, Sir? 8 sound absorption coefficient changes for giant oscillations

- = which assume the following form fg8= #/2:
"=N 1+ (k%02 g 2" 95~ N 15 (kI2cod J ®

do not exceed unity when the number densities of charge
carriers of both electron groups are equal. In expression
(5.4), we have neglected unity in comparison with the quan- 5
tity |éoy,|. This corresponds to the inequality _ g—sinkD
c’w’D/swir<1 which is satisfied in the ultrasonic fre- 4
guency range if the frequency of plasma oscillatiensin a
quasi-two-dimensional conductor is of the same order of g4, sinkD=—1, the absorption coefficiefit assumes its

magnitude as in an ordinary metal. Insignificant numericalyinimum value which is the smaller, the weaker the corru-
factors in formula(5.27) have been omitted. gation of the Fermi surface.

The presence of a group of charge carriers with a quasi- Figures 8 and 9 show the dependence of absorption co-
one-dimensional dispersion relation leads to considerable aRsficient onh and coss.

isotropy in attenuation of an acoustic wave in the plang of  The peaks on the experimentally observed dependence
the layers. If the wave propagates along the preferred direGst 1 on the magnitude and orientation of magnetic field are

tion of velocities of electrons belonging to this group ( considerably less sharp than those in Figs. 5-9 since the
=0), the sound absorption coefficient can be represented ajye ofkl in the layered conductors studied at present con-

F:F0907{1+Jo(g)sinkD}EroﬂoT 1+sinkD

(5.29

k=wls

the form siderably exceeds unity only in the region of hypersonic fre-
1-J3(0) N guencies.
Pty 0gre &) oNier
1-Jp(¢)sinkD N, s K uls
(5.28
For (<1, the corrugation of the quasi-two-dimensional 30 (a)
cavity on the Fermi surface is quite small, and the first term o5l
in formula (5.28 assumes the form of sharp resonance
peaks. The resonant dependencel'obn H™ ! can be ob- 20t
served by measuring the derivative Iofwith respect of re- L ©
ciprocal magnetic field. In this case, charge carriers belong- > 15k
ing to the quasi-one-dimensional group make a contribution
to the “background” component df. 10L
When the angle3 deviates from zero, the resonant na-
ture of the dependendé(H 1) is preserved as long as the 5l
inequality w/2— B> (kD)Y?/kl is satisfied. When the value t )
5 10 15 h 20 25 30
30
(b)
25} ﬂ
o 201
-
~ 151
101
sk
0 U 1 A 1 1
5 10 15 20 25 30

h

FIG. 8. Dependence of the absorption coefficiBnt’y, on h=Hy/H (Hg FIG. 9. Cross sections of the curve in Fig. 8 by the plaxed (a) andx
=2wcmv,/es) andx=cosg for »=7;=10"2, N; /N,=1, andkl=10". =0(b).
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5.2. Transverse wave propagating along the layers

_jyg&zy‘*'jz(l_f&zz):

2
m
o . Kwa,,+ —?rzy) uy
In the case of transverse polarization of an acoustic wave e
u=(0,uy,u,), the magnetic fieldd=(0,H sin 6,H cos6) ori-

2
ented perpendicularly to the wave vector appears in Max- +| kwd,+ _wﬁ;fzz) u,.
well's equations e
- me?® _ (5.3D)
Ea=Tua+ Ela; a=Vy,z (5.30

only in expressions for acoustoelectric coefficients. Using

formulas(3.21), we can write these equations in the form Let us consider the propagation of a transverse acoustic

wave in a conductor with one group of charge carriers pos-

. . wz I ._ - i i -
Iy (1= £y, — | 1£5,,= | Koy, + . Uyy) uy sessing a quasi-two-dimensional energy spectrum. Supple
menting Eqs(5.31) with equationg3.2) from the theory of
5 mo?_ elasticity, we obtain a system of equation whose compatibil-
| kot e Tvz|Uz ity condition
|
1_§5'yy _ga'yz Xyy Xyz
_ga'zy 1-£0,, Xzy Xzz
(iom/e)+ikéby, ikéby, (0’ =Sk p+ ¢y, Pyz -0 (.32
ikéb,, (iom/e)+ikéb,, P2y (0’ =SK*)p+ ¢y,

is the dispersion equation of the problem. Hesg  pression in the braces {#8.34 to zero, we obtain the disper-
=(Nyzyulp)M? and s,= (A ,4,/p)Y? are the velocities of sion equation for the wave polarized along thexis. Its
acoustic waves polarized along tlye and z-axes, respec- solution can be presented in the fokw w/s,+k;,, where

tively, and 5

i ~ Mw
2 kKy=————| ékw(3d,,b,,—T,yo,,) + — (A
Mw 2 2 yyryy yyvyy yy
— ~ ~ 2ps,(1— e
Xaﬁ_ - kwaaﬁ_ To-aﬁ! P y( g&yy)
~ 2(1)3
. B Mw?_ + byy)ka)ny+ Tez—a'yy (5.35
(Paﬂzlk kaa’B-i- Tbaﬁ . (533 k:a)/Sy

The elastic moduli tensor componets,,andX ,y,, vanish The denominator in this expression has the same fo.rm as in

if the xy plane is the symmetry plane of the crySaDth- formula (5.4) for k; . I_t follows henc_e that the abso.rptllon of

erwise, these components must be taken into account, battransverse_acoust!c wave po'larlzed. anng yreexis in a

this does not change the final results significantly. conductor \_N'th a single quaS|-two-d.|menS|onaI group of
In view of strong anisotropy of the energy spectrum forchar'ge carriers is of resonance type like the absorption of a

charge carriers, the absorption of acoustic waves poIarizelamg_:_trl:d'gal wave. f th d f 30 f y

along and across the layers has essentially different forms. |t q e_be\é'?)t'or;]o ft N slecon root of .34 from o/s

can easily be verified that the series expansion in smafl 'S escribed by the formula

acoustoelectronic tensor components with at least one index i [mw2/ = mo\2 s.5
z starts with quadratic or higher-order termss;nRetaining kKs=—— 1= 2 +b,,|+| — 1_Z—ZZ
only quadratic terms i in Eq. (5.31), we obtain 2ps;| @ §022 € §022
2
®m ~ =
: : + — . :
[(wz—s§k2>p+wyy]<1—§c‘ru>xyy(l ?ﬂkgbyy)] 5 e -39
2 2.2 B o cemy It can easily be verified that the last term in the brackets in
XL sk )p+¢1ﬂ(1 §022 Xz e =0 formula (5.36 has the highest order of magnitude. lts con-

tribution to the absorption coefficient is decisive and has the

(5.39
form
The multiplicity of this equation implies that in the approxi- I
mation quadratic iny, acoustic waves polarized along the _ 2 :
. . . = —(1+ . .
andz-axes do not interact with each other. Equating the ex- I=To7 D (1+sinkD) (5.39
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The peculiarity of quasi-two-dimensional energy spec- t
trum of charge carriers for waves with the above polarization ~ Z(1)= j v (t)dt’. (5.40
is manifested in stronger magnetic fields also, whdh ] ) o ]
<1. In this case, the orientation magnetoacoustic effect is We con3|der' the propag'atlt.)n of a Iongl'tudlnal acoustic
manifested in a strong oscillatory dependence of absorptiof@veu=(0,04) in a magnetic fieldd=(0,H sin6,H cosf).
coefficient on the angle formed by the magnetic field with The System of equations for the Fourier components of ion
the normal to the layerg:% displacement and electric field in this case has the form
Electron orbits in the momentum space are cross sec- = . Y= T _
tions of the Fermi surface by the plapg= const, wherep,, (@ke+iHyIe)out (fo— 1Bt 0,4, =0,
is the momentum component along the magnetic field. Con- ayzkgwu+g&yxﬁx+(§o-yy_ 1)’|§y:o,
sequently, integrating over the Fermi surface for calculating

acoustoelectronic tensors by formul&z21), we can conve- (0?—5%k?) pu+[iKT,,+ ¢~ 13, Hy Jkou+[ikb,,
niently use the variables,t, and p, . If we substitutep, i ~ o~ e -
=pn/cosé—p,tand into the integrands containing the ex- ¢ % HyJExt+[ikb,y+c "o, HyJE=0,
pressions (5.41
* here
anp, w
AzAP)= 2, An(Px.py)cos— =,
n=1 -~ _ _ Taz02p A o—a ;047
. Uaﬁ UaB 0,y ’ az az 0,5 ’
a . anp,
VA(p) == 2 en(py,py) p Sin— =, (5.39 E oy by DA
2B~ VzBT 0yy v Cz7=Cpp— o, )

it can easily be verified that the corresponding acoustoelec-

tronic coefficients are complex periodic functions of the s=(\zzzd p) M2

angle ¢ formed by the directions of magnetic field and the acoustoelectronic coefficients are defined by formug1)
normal to the layers. All the orbits in a quasi-two- i, which

dimensional conductor are almost indistinguishable, and

hence the momentum componeptsand p, depend orpy 2 :J'T ' (3 : " "
weakly. This allows us to obtain expliéit dependence of R —xdt g(t)expliklz(t) —z() ]+ v(U' =0}
acoustoelectronic coefficients oftand to make sure that
they vanish for certain values of the angle 6. in the ap-
proximation quadratic in the parameter When tarng>1,
but cos¢>1/Q) 7, the values o, are repeated with a period
A(tang)=2mh/D,. These oscillations are associated with the If the magnetic field is directed along the normal to the

motion of charge carriers in strongly elongated orbits in th?ltayers 6=0), the absarption is mainly determined by renor-

momentum space, which intersect a large number of unit 7 °~ ° ; .
) : . . I ._malization of the charge carrier energy under the action of
cells in the reciprocal lattice, and the period of oscillations is . . L
i A . deformation. In the case when the deformation potential is
connected with a change in this number by unity.

In the case when the dispersion relation for charge car(-jescnbed by formulg5.11), the absorption coefficient satis-

riers has the form5.10, and the deformation potential is fies the following expression:

We shall describe the results of analysis of the disper-
sion equation of the syste®.41), which is carried out for
w7<1 for an acoustic wave propagating, as before, along
the layers.

described by formulg5.11), the absorption coefficient has 1 911/
the form ['=Tg  A[1+ (7kD]7= 1}, (5.42
wTVq which has the form
=7l o——35(). (5.39

I'=To7n2kl. (5.43
where£=(avom/h)tan®. At points where Bessel's function for k| 5<1. Herel = 7v,.
Jo(€) vanishes, we must take into account the next terms in If, however, the angl® differs from zero, but is not very

the expansion in small paramet&® ands/v. close to r/2)(cos#>1/047), the absorption coefficient for
kl»<1 is described by the formula
FO 2 2 S|r]2 0 Qo(l)cz
5.3. Acoustic wave propagating across the layers I'= > nokl1J5(€) + =it (5.44
0

In order to solve the system of equatiof®1)—(3.3) in . . .
the case when a wave pro)p/)agates a(?ross the layers, we vaj\é?'Ch coincides with formuld5.43 for 6=0.
carry out Fourier transformations in the coordinateonsid- The first term in formula5.44) is determined by defor-
ering that the solution of the kinetic equation has the form mation interaction of electrons with the acoustic wave and
describes angular oscillations of absorption coefficient. The
W= Jt dt'g[(z+z(t")—z(t) Jexg v(t' )], second term is associated with the electromagnetic field ex-
— cited by the acoustic wave and differs from zero even for
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The dynamic properties of semiquantdiie are analyzed at two temperatures above the point of
superfluid phase transition. Investigations are carried out in the framework of the dynamic

thermal viscous model for low and intermediate values of the wave vector. The
“momentum—-momentum” and “enthalpy—enthalpy” time correlation functions are evaluated

and the partial contributions of the collective excitations to these functions are separated.

The recurrent relations for memory kernels are used to calculate the time—space dispersion of the
generalized transport coefficients. ©99 American Institute of Physics.

[S1063-777X%99)00211-X]

1. INTRODUCTION construction of a microscopic picture of events, including the

The dynamic properties of various(simplel? separation and description of certain time and space intervals

multicomponen®* polar® and quantuf’) liquids have corresponding to processes of different origin._
drawn the attention of experimental and theoretical scientists ©N€ such model, which proved to be quite useful for

T . . . 4 . .
for a long time. Experiments aimed at studying the nonequi_descrlblng the classical liquiths'*is the thermal model in-

librium characteristics of such objects are mainly connectedUding hydrodynamic densitiesvhich are essentially the
with the scattering of neutroffsin spite of the fact that a MOSt slowly varying quantitigsas well as the kinetic vari-

large body of data has been accumulated, several charact@ples corresponding to the microscopic fluxes of heat and
istic features still await an adequate interpretation. momentum (longitudinal component of the microscopic

One such unanswered question concerns the kinetiglréss tensor This model was used by de Schepp@@l.l4
properties of semiquantum liquids, i.e., liquids whose temdn the theory of generalized collective modes, and is a gen-
perature exceeds the quantum degeneracy value, but is mugFRlization of the hydrodynamic model of liquidist leads to
smaller than the Debye temperatdrim this case, the situa- €Xact expressions in the hydrodynamic litvithen the wave
tion is complicated by the fact that there is no appropriate/ectork and the frequency are small which correctly de-
model for describing equilibrium as well as nonequilibrium scribe the region of intermediate values lofand w. The
properties of liquids except for a small number of simplestmodel becomes especially attractive for constructing
liquids 2% The difficulties arise because of the need to usecomputer-adapted theories to describe the dynamics of lig-
the quantum-mechanical apparatus, and also because the &ffls without using any fitting parameters when the static
harmonicity of the Hamiltonian with respect to the operatorscorrelation function§SCH and correlation relaxation times
of creation and annihilation of particles must be taken intoserve as the initial parameters and all computations boil
account. The situation witfHe below thex-point is simpler ~ down to the eigenvector and eigenvalue problem. Moreover,
because explicit expressions for the susceptibility can be otphysical processes of different duratiofsiow hydrody-
tained in spite of the presence of the Bose condensate and thamic processes and fast kinetic processes separated
need to introduce quasimean values. Moreover, the chain dfom the very beginning in the thermal viscous model.
equations for the Green'’s functions can also be analyzed in This paper is a logical continuation of our earlier
this case(at least in the hydrodynamic approximattéid. publicatior® in which we calculated the spectra of collective

Studies of the dynamics properties of the above-excitations of semiquantuifHe at temperatures 4 and 8 K,
mentioned objects are also interesting for experimenteras well as the symmetrized dynamic structural factor. Data of
since they provide a better understanding of the processésdependent thermodynamic measurements and neutron scat-
of initiation of Bose condensation as a result of violation oftering were used for verification of results and evaluation of
the system symmetry. Thus the problem involves thethe initial parameters of the model. The aim of our investi-

1063-777X/99/25(11)/7/$15.00 857 © 1999 American Institute of Physics
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gations is to use the thermal viscous model for studyinghamic variables, J,, andh, has been subtracted. In this

othgr time correl_atlon functions which are interesting for ©X-senses, andO,, being fast variables, are defined as kinetic
perimental studies as well as for computer S'mwat'onvariables

Among other things, we shall consider partial contributions
to the “momentum-—momentum” and “energy—energy”
correlation functions. The Fourier transform of the first of
these functions may be obtained from experiments on scat-
tering, while the second function is important for interpreta-
tion of the molecular dynamics data.

Another interesting problem concerns the space—tim
dispersion of trgn;port coefficients, and its solution provides 20 (k,2) -1 QK D(k,2)+ Pk, 2)D(k,2)=D(K), (2)
a correct description of the nonlocal processes of momentum
and energy transport. The computation of space—time chawhere the notation
acteristics of the transport coefficients can also be carried out . A o o . _1.
effectively by using the thermal viscous model. 1055k =[ILYi(k), ¥i(=kJolY;(K), Yi(—k)lo™

In this context, we can mention that Crevecoeur ¢ _ya 3 B oA A
et al1®7also used the thermal viscous model, but later sim- Vil ={R Jic e, e, Qud @
plified it to reduce the number of dynamic variables. Theyhas been used for elements of the frequency mafoikk)
used the damped harmonic oscillator model, and many pec@nd
liarities of the dynamic behavior remained outside the range
of this model. Moreover, the justification of some of the i (k,2)=
assumptions raises questions. For example, the initial dy- we
namic matrix used by Crevecoéfit’ does not take into con-
sideration the nondiagonal memory functions that play a sig- A - - 1
nificant role in the range of intermediate valueskodnd . X(1=P)Yj(=k) | (Y;(k),Y;(=K))o (4)

The present paper consists of the following parts. In Sec. 0

2 we shall calculzite_ the “momentum-momentum” and¢, elements of the matrix of memory functio@gk,z). In
enthalpy—enthalpy” time correlation functions taking into formulas(3) and (4), the Liouville operatoii_ is defined in
consideration the contribution from each collective mode. In ’
. . the standard manner
Sec. 3, the recurrent relations for the memory functions are
used to compute the space—time dispersion for the transport . .. i . .
coefficients. The last section will be devoted to a discussion A=ILA= g[A'H] ®

of the obtained results.

The system of equations for Laplace transforms of TCF

D pp(k,2)= J: exp( —zt) P pp(k,t)dt

(z=iw+e, e=+0) can be represented in matrix form as
éollows:l&19

(1-P)Vi(K), -
z—(1-P)iL

through a commutator with the Hamiltonian
2

~ " 1
+35 At & oa
e R J’— R
2. TIME CORRELATION FUNCTIONS OF SEMIQUANTUM H % om 2 &t 5y 2 Ep V(K)8p- aMBp-z:
4He (6)

In our earlier publicatio® we derived a system of equa- Whereé; anda, are the operators of creation and annihila-
tions for time correlation function§TCF) @ ,g(k,t) which  tion of quasiparticles with momentumsatisfying the com-

can be defined as follows mutation relations[&, ,aq]= Spq; [8p.841=[2, ,8,1=0;
A A v(q) =/ explq-r)®(|r|)dr is the Fourier transform of the
® gk ,t)=[A(K,t),B(—K)]o potential®(|r|) of interaction between particle¥, the vol-

L ume of the system and the number of particles, whil@ is
:f drSH poAA(K,t+iBhT)AB(—K)], (1) the Mori projection operator defineAd on the (Eomplete basic
0 set of dynamic variable¥;(k) ={f,J,hy,7,Q}, which
. . . can also be written in the secondary quantization representa-

AA(k,t)=A(K,t) = SH poA(0,0)], tion. Note that the TCR ,,(k,t) constructed on the particle
density operators is connected directly with the symmetrized
dynamic structural factoBgn(k, w).*
The chain of equation®) for TCF is not closed. For the

wherepg is the equilibrium statistical operatg8=1/kgT is
the inverse temperaturkg the Boltzmann constant, and the
time dependence is introduced in terms of the Heisenberlgn o .
. : . emory functionsg;; (k,z), we can also write a system of
representation. We used the 5-variable thermal viscou y pij (k.2) Y

) . . " guations containing higher derivatives of the initial basic
model which contains the hydrodynamic number densities of _ . 0 . . : :
variables?’ The natural requirement is the uncoupling of this

particleshy, the longitudinal component, of momentum,  gystem. Considering that the relaxation times of the memory
and the generalized enthalpy, as well as the variables,  functions (4) constructed on “fast”(kinetic) variables are
and Q,, connected with the longitudinal component of the much smaller than the characteristic time scales of evolution
microscopic viscous stress tensor and the enthalpy flux, resf hydrodynamic quantities, we normally use the Markov
spectively, from which the linear combination of hydrody- approximation forg;;(k,z), assuming that
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~ ~ ” d(k,2)+ T(K)D(k,z)=P(k), 8
3 02)~5,00 = | gt m  PlArTl0Rkz=Rl ®
The system of equation®) can then be presented in the where the generalized hydrodynamic matiigk) has the
form following structure:
r 0 —iQn; 0 0 0 T
_iQJn O _iQJh _iQJﬂ. 0
Tky=| O —iQp; 0 0 —iQne . 9
0 _iQ’)TJ 0 ~()D7777' _iQWQ+~()D7TQ
L 0 0 _IQQh _IQQW+¢QW ?’bQQ J

In the Markov approximation, the solution of the system ofkinetic mode, which becomes a propagating mode for
equations for TCF can be written in an analytic form in termssmaller values of the wave vector, participates in the forma-
of the eigenvalueg, and eigenvectorX,=| X,/ of the tion of the central peak together with the thermal mode.

matrix T(k),**¥i.e., Naturally, it should be interesting to consider the behav-
5 | ior of the other TCF also. In particular, the “momentum-—
B (k=S Ga(k) 1o Mmomentum” TCF is connected with the dynamic structural
it 'Z)_azl z+27,(k)’ (10 factor through the simple relation
where the amplitude€' (k) can be represented in the form ~ m?w?
pltudes.(g P B3(k,0) = 17 Suynf K, ), (12

Gl (K) = Xi o (K)[X(K)]7, Py (k,0), (13)
and can also be obtained from the results of neutron scatter-
ning experiments. The “energy—energy” TCF was not mea-
sured directly in experiments, but can be calculated from

X~1is the matrix inverse t&X=|X;,|.

It should be emphasized that the Markov approximatio
(7) is exact in the limitk— 0. Moreover, it was show that .
the use of 5-variable thermal viscous model leads to exaépolegular dynamics. i
expressions for the frequency moments of the dynamic struc: Figures 1 and 2 shoy’v the results of calcu‘l‘atlon of the
tural factor right up to and including the fourth order. In their momenEum—mome_ntum TCF and _the epthalpy—
most comprehensive form, formulé®)—(11) essentially de- enthalp”y TCF which is gonnected_ with the “energy—
scribe the thermal viscous model of a liquid and can be use§neray TCF through the simple relation
for any fixed value ok. The problem is simplified consid- ~ 5 (k)
erably for small and intermediate values of the wave vector, ®Ppn(K,w)=P, (K w)—

~ D n(k
since most elements of the matfiXk) can be expressed in (k)
terms of thermodynamic quantities and hydrodynamic trans- ~ D, (K) ~
port coefficients. It should also be noted that, according to X| 2P (k@) — o, (k) Dpp(k,0) |, (13

the results of computer calculations for a Lennard—Jones
liquid,2 there is no need for a further extension of the de-where® (k) and®,(k) are static correlation functiorts.
scription level, i.e., an increase in the number of dynamic ~ The same figures also show the contribution of each col-
basic variables, since the results for the thermal viscoutective excitation to the corresponding TCF. Analyzing the
model are close to those obtained for the 7-variable modelpartial contribution of collective modes to the “momentum-—
In our previous pub|icati()|:|ﬁ> we ana|yzed in detail the momentum” TCF, we note that the thermal mode does not
spectrum of collective modes of semiquantdrte in the  make any contribution ta;;(k,) in the limit of smallk
quasi-hydrodynamic region and their contribution to the dy-since the corresponding weight factor is proportionakto
namic structural factor. An interesting feature of the specand the form of the spectral function lines is determined
trum is that the dispersion curve of the kinetic propagatingcompletely by acoustic excitation. This peculiarity observed
excitation atT=4 K intersects the acoustic curve and theat T=4 K is preserved for intermediate values of the wave
phenomenon of “fast sound” is observédnother charac- numbers although the contribution from kinetic excitations is
teristic feature is the disappearance of the certharma) clearly visible fork=2 and 3 nm®. On the other hand, the
peak which may serve as an indication of the onset of symeontribution from the thermal mode is significant in gaseous
metry breaking in the Bose system. At=8 K, the behavior “He at low frequencies fof =8 K andk=2 nm?, while its
of Ssyn(k, @) was more classical and a Rayleigh—Brillouin amplitude decreases sharply for=3 nm 1. However, the
triplet was observed in the entire range of wave vectorkinetic propagating excitation gives a hardly perceptible
k=1-3nm % It was also found that, at this temperature, theresonance at the frequeney=0.7 ps .
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FIG. 1. Time correlation function

[0}
e ®,,(k,») (curvel) for “He atT=4 K
’5 (@ and T=8K (b) for k=1, 2 and
- 3nm L Curve (2) corresponds to the
i‘,__’ thermal mode contribution t® ;(k, ),
e while the contributions from the acoustic
mode and kinetic mode are shown by
curves3 and4, respectively.
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~= v 0.9 FIG. 2. Normalized time correlation
e.: £ 06} function ®p,,(k, )/ (k) (curvel) for
~ (<] 03l “He atT=4 K (a) andT=8 K (b) for k
3 = . =1, 2, and 3 nm*. Curves2, 3 and 4
~ 8 ot correspond to the contribution to
= x (K, )/ Dpy(k) from the thermal,
LS _ £ acoustic, and kinetic mode, respectively.
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As regards the normalized TC®,(k,0)/®,,(k) is  Studied by these authors are determined by a number of fac-
concerned, the thermal mode determines the shape of tHers as mentioned above. Even more astonishing is the state-
central peak for small values & the acoustic mode deter- ment that the generalized thermal wave is transformed into a
mines the form of the side peaks, while the contribution fromnormal acoustic wave in the limk— 0. It is also worthwhile
kinetic excitations can be disregarded since their weight facto note that t"he d|sg§r5|on Of pr.opaga'For' excitations obtained
tor is proportional tck*. The situation is identical to the case by Montfrooij et al** is qualitatively similar to the results
of ssym(k,w)_15 However, in contrast to the result for dy- obtained in Ref. 15 fol =8 K| i.e., the curve for the kinetic
namic structural factor in which the contribution from ther- mode lies below the dispersion curve for generalized acous-

mal excitation disappears d&=4 K in the region ofk  tic excitation. In this context, it should be quite interesting to
=2-3nm?, a decrease in the amplitude of the thermalinvestigate semiquantum helium at other temperatures in the

mode becomes noticeable only f&=3 nm*, when the interval 3—8 K in order to determine unambiguously whether

shape of the line®,(k,w)/®,(k) is determined equally the “fast sound”_ is an indispgnsable feature of th.e low-
by all types of excitations. An interesting fact is a Sharptemperature semiquantutdle or is a result of processing of

decrease of the thermal mode amplitude almost to zero 4f€ €xperimental data only for a certain thermodynamic

T=8K, k=3 nm %, when the shape of the central resonance®®!nt

is completely Qeterr_mned by kmguc excnauo_n. . 3. SPACE_TIME DISPERSION OF TRANSPORT
_ The foIIpwmg cwpumstance is worth noting. The posi- -oerrICIENTS

tion of the side peak is not always related to the frequency of

a certain propagating excitation. In particular, it can be seen Using thelsmethod of th_e nonequilibrium statistical op-
clearly from Fig. 2(T=4K, k=3nm}) that, since the erator (NSO),”® we can obtain a system of transport equa-

weight factor for the acoustic mode is negative, the freions for - Fourier - transforms of ~dynamic - variables

quency of the acoustic excitation determines the position ofA Yi(K))“={(AR)* (AJi)*, (AR (A7) (AQ)“},
the local minimum rather than the peak of the “enthalpy—averaged over NSO:

enthalpy” TCF. Analytically, such a result can be explained Lol AV —i QKA TN+ B (K AY(K)Y*=0
by considering the expressiofi)) and(11). The extrema of LAY () =10 ()(AY ()" + 5k 0){AY(K)) (14')

a TCF on the frequency scale are determined by the modes ] ) o
as well as amplitudes of collective excitations. In this ex- "€ structure of this system is reminiscent of the system of

ample, we can notice the difference between the “intuitive” €duations2) for TCF. Note that the system of 3 equations
definition of the collective excitation in terms of the position constructed on a hydrodynamic basis has an analogous form.
and shape the extremum of a certain TCF and a more rigof!? tiS case, the memory functio@s(k, ), @nn(k,») and
ous definition of collective excitations directly as poles of the®ni(k, @) are no longer equal to zero and define the gener-
appropriate Green’s functions. Note that the Fourier trans/ized coefficients of longitudinal viscosity, thermal conduc-
form of the TCF(1) is directly associated with the retarded tiVity, and thermal viscosity, respectively. Solving E¢&4)
Green’s correlation function$:22 in (A7r)© and({AQ,)“, substituting the obtained results into
Thus, the conclusions drawn by Montfroeif al?® that  the first three equations of the system and grouping the terms
the additional side peak in semiquantfie atT=13.3Kis  containing(AJ,)® and (Ah,)®, we arrive at the following
associated with the thermal wave for intermediates dis-  recurrent relations for the generalized transport
putable since the “energy—energy” TCF resonance peaksoefficients??

nm —i1Q5(k)

for the generalized longitudinal viscosity, whe#é€k, ) is the generalized shear viscosity af{t, w) is the generalized bulk
viscosity;

(413) p(k,w)+ ¢(k,w)=

PR ~iQon(K)
() = e o Boak @) — (100K + Bro(k o) — 1 Qan (K Bon(k o) [0+ Bpm(ko)]

(16)

for the generalized thermal conductivitfk, »), (cy=(1/kgT?) (hh_,), is the generalized specific heat at constant volume
and

IQWJ(k)
—1Qo(K)+ e oK w)+H(iw+e )(iw+q) (—1Qq(K) +Pq(k w))
for the generalized thermal viscosiffk, ).

ko) =17 an
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®, ps~! o, ps-1 FIG. 4. Real(1) and imaginary(2) parts of the generalized thermal conduc-

. . . o tivity N(k,w) for *He at T=4 K (a) and T=8K (b) for k=1, 2, and
FIG. 3. Real(1) and imaginary(2) parts of the generalized longitudinal 3 2.

viscosity coefficient (4/3y(k,w)+ £(k,w) for *He atT=4K (a) and T
=8K (b) for k=1, 2, and 3 nm*.

the coefficient of thermal viscosity has “inverse” parity rela-

In these expressions, we have used the Markov approxfiVe 0 the diagonal transport coefficients: @0, only the
mation(7) for the memory functions. In the denominators of IMaginary part is nonzero, while in the liniit 0 it tends to
Egs. (15—(17), we have confined to terms linear in fre- 280 in complete acc_:ord WIFh. the.Curle pnnmﬁ?el\/lore.-
quency since the higher-order terms can be disregarded I8V€" the value of this cpeffluent is an order.o.f magnitude
putting @ (k, ») = %:5(k,0)+ 0(w?). The spatial dependence Smaller than the generalized thermal conductivity.
is determined completely by nondiagonal elements. Note that
the diagonal memory functions[ ¢, .(k,0)="¢(0,0)

+0(k?)], also give the same order ik However, in this (@ (b)
case we must apalyze _their spatial dispersion in greater Qe— 0.6 T4k 1nm1 %8 T=8K 1nm
tail. From the point of view of the approach used by us, this . 06"
corresponds to the introduction of two additional fitting pa- 0.4r, .
rameters. We took into account such a dependencé on .t 0.4 oo
through nondiagonal memory functions. 0.2, o™ 02 oM,
Analyzing the structure of Eq915—(17), it can be o ."'--.:.' T 0 -..,“::""-----
noted easily that the generalized transport coefficients also _ o.g S— : S—
have the Lorentz fornjcf. Eq. (10)]. In particular, putting g I 2nmiq.21e 2nm-t
—i10,0(K) TP,k 0)=~ikT.o, 100, (K+Baa(kO0)  Tos" 0sf *
=—ikTq, and |QQh(k):k2th for small values of the £ . .
wave vector, we can write for the real part)ofk,w) Eo3t " . 0.6] « )
e * .‘ -..-.I-I- 0.3 - .‘ .-."l--
N XL o _MOO R AU
B O A (T rodr = .
(18) - . 3anm {416 . 3nm
where .. 12p
5 1 0.50 .-l:.... 0.8 .-l:--.
K=z 0.0)+ k T'n’QTQﬂ' - . "-..1. - tag, 1
Thin(K) = <PQQ( o) m ) 0.25}, ....'....-...___ 0.41* ., ..‘..-...___."
TooTon | 22 05 10 15 20 25 557015 12'.6"275
th:(w) y )\(0,0)=nCV(thThh(0). (19) ®, ps ®, ps”

. . FIG. 5. Real(1) and imaginary2) parts of the generalized thermal viscosity
The results of calculations of the generalized transportoefficient£(k, ) for *He atT=4 K (a) and T=8 K (b) for k=1, 2, and

coefficients are shown in Figs. 3, 4 and 5. It can be seen thatnm .
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T4 (a) (b) the description of semiquantum objects can be carried out
3 2': 5 \ successfully by using the computer-adapted theories devel-
L 4r - oped for various classical liquids:3

€ 2.0r 1] 5l

%7 LSF 3| 2} 3l This research was financed partially by the Fonds fur
g 10 i I —_--2------------.»-«"'"-"-':::' Forderung der wissenschaftlichen Forschuf@ustria),
g0 | e Project P12423 TPHI.M.M). One of the authorgV.V.l.)

g o 1 2 30 1 3 wishes to thank the President of Ukraine for granting a sti-
= k, nm-1 k, nm-!

pend for young scientists.

FIG. 6. Generalized coefficients of thermal conductiwtik,0) (curve 1),
longitudinal viscosity (4/3)(k,0)+ ¢(k,0) (curve?2), and thermal viscosity
£(k,0) (curved) for “He atT=4 K (a) andT=8 K (b).

*)E-mail: ignat@icmp.lviv.ua
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On the self-consistent theory of Josephson effect in ballistic superconducting
microconstrictions

M. Zareyan

Institute for Advanced Studies in Basic Sciences, 45195-159, Gave Zang, Zanjan, Iran

Yu. A. Kolesnichenko and A. N. Omelyanchouk

B. Verkin Institute for Low-Temperature Physics and Engineering, National Academy of Sciences of
Ukraine, 47 Lenin Ave., 310164 Kharkov, Ukraine
Fiz. Nizk. Temp.25, 1154—1160November 1999

The microscopic theory of current-carrying states in the ballistic superconducting microchannel is
presented. The effects of the contact lengtbn the Josephson current are investigated. For

the temperatures close to the critical temperatufig, the problem is treated self-consistently, with
allowance for the distribution of the order parameidr) inside the contact. The closed

integral equation foA in strongly inhomogeneous microcontact geometrys€¢,, whereé is

the coherence length at=0) replaces the differential Ginzburg—Landau equation. The

critical currentl (L) is expressed in terms of the solution of this integral equation. The limiting
cases oL < ¢, andL> &, are considered. With increasing lendththe critical current

decreases, although the ballistic Sharvin resistance of the contact remains the same- 8s at
For ultrashort channels witb<ap (ap~ve/wp, Wherewy is the Debye frequengythe
corrections for the value of the critical curreint (L=0) are sensitive to the strong-coupling
effects. © 1999 American Institute of Physid$§1063-777X99)00311-4

1. INTRODUCTION dimensions up to interatomic size. For example, they can be

nanosize microchannels produced by means of a scanning

Weak superconducting I.inks'nclude the tunnel struc-  nneling microscogeor point contacts and microchannels
tures SIS (supgrcqnductor—|nsu.lgtor—supe.rCOHdU)Cta"d obtained by using the mechanical, controllable, break tech-
the contacts with direct conductivitgNS(N is the normal nique®~® The microchannels between two superconductors

layen and ScS(c is a geometrical constrictignSupercon- o 450 arise spontaneously as microshorts in tunnel

ducting constrictions can be modeled as an orifice with di]unctions? with the lengthL determined by the thickness of

ameterd in an impenetrable sheet for electrons between twWa, jnsyjator layer. The value of the critical currépof such
superconducting half spacégoint contact or as a narfow microshorts is of special interest in the case of tunnel struc-
channel with lengti in contact with superconducting banks {res based on high, metal-oxide compounds. Small mi-
(microbridge. Aslamazov and Larkihave shown on the  .roconstrictions with dimensions of the order or smaller than
basis of a solution of the Ginzburg—LandéBL) equations o coherence lengtti,, when the expressiofd) for the
that in the dirty.Iimit and for small sizes of the constricton  ritical currentl «~1/L is not valid, require the microscopic
d<€(T) [£(T) is the GL coherence lenglthe ScScontact  qngjderation even fof nearT,. Such microscopic theory
can be described by a Josephson model with the curreng; giationary Josephson effect in microconstrictions was de-
phase relation veloped in Ref. 8 for the ballistic channel of zero length,
o 2 L=0, in the model of the orifice with diameter<&,. The
I=lcsing, 1c=mAg(T)/(4eRyTe), @ Josephson current in this case is given by

wherel . is the Josephson critical curremty is the absolute

value of the order parameter in the bulk banKs,is the | = mAo(T) i ft n Ao(T)cod ¢/2) @)
critical temperature, anBy, is the normal-state resistance of eRy 2 2T '

the dirty microbridge. The critical current of the microbridge

(1) depends on the bridge length las- 1/L. The expression —mr<e<m,

(1) is valid within the domain of applicability of the GL

approach, i.e., for temperaturésclose toT, and L, d>§&, R(jl:%Se"'—vFN(O), 3
(éo=vg/T. is the coherence length dt=0, andvg is the

Fermi velocity. where S=7d?/4 is the contact cross-sectional area, and

The present level of technology has made it possibleN(0)=mpe/(272) is electron density of states at the Fermi
to study the ultrasmall Josephson weak links with thesurface. At temperaturélg,— T<T, expression2) coincides

1063-777X/99/25(11)/6/$15.00 864 © 1999 American Institute of Physics
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the quasi-classical approximation. In the ballistic case, we
proceed from the quasi-classical Eilenberger equation for the
energy-integrated Green’s functidh:

Fle] .
VE +[wT3+A,G]=0, (4
where
9o fo
G(w,Vg,r)= f: g,

FIG. 1. Model of ScScontact as narrow superconducting channel is in ) ) )
contact with bulk superconductog andS,. is the matrix Green’s function which depends on the

Matsubara frequencw, the electron velocity on the Fermi
surfacevg, and the spatial variable

with the Aslamazov—-Larkin resylEqg. (1)], in which instead . 0o A

of the normal resistanc®y for dirty metal, the ballistic A(f):(A* O)

Sharvin resistanéeR, (3) is substituted.
In this article we present a microscopic theory ofis the superconducting pair potenti&;(i=1,2,3) are Pauli

current-carrying states in the ballistic microbridges of arbi-matrices. Equation for the matrix Green’'s functiof) is

trary lengthL in the scale of the coherence lengif. We  supplemented by the normalization condifibn

have investigated the dependence of the Josephson critical .,

current on the ratid/ &y and analyzed the transition from the G"=1. 5)
case ofi; (L=0) [Eq.(2)] to I .~1/L [Eq.(1)] with increas- The off-diagonal potentialA(r) must be determined
ing lengthL. from the self-consistency equation

In Sec. 2 we formulate the model of a microbridge and
the microscopic equations for Green’s functions with bound- AN =A\27T >, (f), 6)
ary conditions at the bridge edges. In studying the effects on ®>0

the critical current of the length of the microconstriction, the. . . N
; . ) . in which (...) stands for averaging over directions \gf on
crucial point, as always, in the inhomogeneous supercon . : .
. . . he Fermi surface, and is the electron-phonon coupling
ducting state is the self-consistent treatment of the order pa-

rameter distributiom\ (r) inside the weak link. In Sec. 3 the fﬁ;iﬁgf IonntthheeI?rCeSurgr?del thvihsi’;zn i?i??ﬁ;ﬁg???;e
closed integral equation for the order parameiein the quencyo.,

microchannel is derived for temperatures n€ay which in a Debye frequency.
strongly inhomogeneoud (- £;) microcontact geometry re- The equationg4) and (6) are supplemented by the val-

: : : " ues of the Green'’s functions ardin the bulk superconduct-
places the dlﬁ_‘erentlal GL equation. The c_rltl_cal currksft) _orsS, andS, far from the channel ends:
is expressed in terms of the solution of this integral equation.

The limiting cases of. <¢, andL> ¢, are considered. We R Wt Alz

will show that in addition to the characteristic scdlg there GLZZT” 7
is the lengthap=ve / wp (wp is the Debye frequengyn the

case of an ultrasmall channel. The length ap is the length A1’2=A0(005(<p/2)9'1iSin(zp/Z)?'z).

at which the frequency of the ballistic flight of an electron

from one bank to another becomes comparable with the freFhus the phase is the total phase difference at the contact.

quency wp, which characterizes the retardation of the We also must determine the boundary conditions concerning

electron-phonon interaction. In conventional superconductthe reflection of the electrons from the surface of the super-

ors the value of the coherence lengty about 10#cm, is  conductors g. For simplicity we assume that e electrons

much larger tharap~100A. In highT. metal-oxide com- undergo the specular reflection. Then for quasiclassical

pounds, however, we have a situation in whighis compa-  Green’s function we have the boundary conditi&ef. §

rable withap . Thus, in highT. compounds the critical cur- _ ,

rent of the contact with dimensionsap~ &, is sensitive to GVe.rs)=G(Ve o), ®)

the effects of strong coupling. in which vg and vi are the velocities of the incident and
specular reflected electron. These velocities are related by
the conditions, which conserve the componentoparallel

2. MODEL AND BASIC EQUATIONS to the reflecting surfaces and changes the sign of the nor-
mal component.

We consider the model of a contact in the form of a The solutions of Eqs(4) and (6) allow us to calculate
filament (narrow channel that joins two superconducting the current density:

half-spaces(massive banks (Fig. 1). The lengthL and
the d|amete(d of the chapnel are assumed to be large as j(r)=—4ia-reN(0)TE (Veg.). 9)
compared with the Fermi wavelengily, so we can apply >0
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In the case of the microconstriction shown in Fig. 1,

under the conditiond< ¢y andL>d (d is the contact diam-

Zareyan et al.

f(v,,2)= %e—i 7¢12 (20/v,)(z+ 7L12)

etep inside the filament we can solve the one-dimensional

Eilenberger equations witiA=A(z). The banks of the

bridge are equivalent here to certain boundary conditions for

the Green'’s functioré(vz,z) at the pointsz=*L/2. Fol-

lowing the procedure which was described in Ref. 8, we fin

the Green’s functions at the end points=*+L/2) from the

general solutions of Eg4) in superconducting half-spaces

S, andS, with conditions(5). They are given by
G(z=7FLI12)=Gy 1+ Ay J AgTs—[w cog ¢/2)
+i7Q sin(¢/2)] 71 F [ @ Sin(¢/2)
—i7Q cog ¢/2)] 7, (10)
where Q= \Jw?+AZ, and =sign(v,). The arbitrary con-

stantsA; , must be determined by matching these boundary A(2)

conditions with the solution foé(vz,z) inside the channel.
Using the off-diagonal components in Ed), we have

the following first-order differential equations for the anoma-

lous Green’s functions:

d
vzd—zw+2wfw=2A(z)gw,
+
~vrg, 2 +20f!=2A%(2)g,. (11)

L2A(2")

z
+e 2wZ/vZf dz' eZwZ /v
—L/2 v,

(16)

g'he Green's functiorf | (v,,2) is obtained from expression

(14) with the help of relat|0n$15)

Substituting the functionf (v,,z) (16) in the self-
consistency equatiof®), we obtain the integral equation for
the space-dependent order parameter inside the contact

L/2
A(z)zA(z)Jrf dz’A(z')K(|z=Z')), (17)
—L/2
where
A 2wz
=\27T ), —°<e‘“’”“zcosr( +iZ > ,
w>0 W vz 2 UZ>0
(18
1
K(z)=N27T D, <—e—2w”vz> . (19
>0 |z v,>0

z

The averaging...),, -o denotes

(F(v,=ve cos&)}vz>0= fold(cose)F(cosa).

In the case of strongly inhomogeneous microcontact
problem the integral equation for the order paramétee-
places the differential Ginzburg—Landau equation. It con-
tains the needed boundary conditions at the points of contact
between the filament and the bulk superconductors. Some

The normal Green’s functiog,,, as follows from condition
(5), is expressed in terms df, andf :

g,=V1—f,f . (12)

From Eqs.(6), (9), (11), and(12) we obtain the symme-
try relations

folv2,2)=[fu(—v,, 2], A*(2)=A(-2) 13

and the current conservation inside the chamjétiz=0.

3. JOSEPHSON CURRENT AND ORDER PARAMETER
DISTRIBUTION IN SUPERCONDUCTING MICROCHANNEL

In the present paper we consider the case of tempera-

turesT close to the critical temperatufie.. Near the phase-
transition curve the order paramet&p(T) in the banks is

general properties of the solutial(z) of Eq. (17) follow
from the form of the function$18) and (19). Let us write
A(2) in the form

(20)

A(z)= Ao(T)( cosg + iq(z)sing)

and substitute it in Eq.17). For the functiorg(z) we obtain
the equation

L2

a@=b2)+ | dza@)k(z-2), @y

small. In order to find the Josephson current in the lowestith K(z) defined by(19) and the new out-integral function

order in A, we linearize Egs.(11) for A and obtainf,
~Ao(T), g,=1—1/2f fS~1-0(A3), j~A3. The equa-
tion for f, nearT,. takes the form

fo
2 +2wf,=2A(2),

Vg, (14
with linearized boundary conditiond.0)
f (v,>0, z=—L[2)= A—e T2
(15

+I<p/2

Ao
fu(2,<0, 2= +L/2)=—

Its solution for arbitrary functior\(z) is given by

b(2),

b(z)=\27T >,

w>0

1 . [2wz
— (e @Yvzgin . (22
w Yz vZ>O

In obtaining Eq.(21) we have used the relation

“p

1
\N2mT D, —=1,

w>0 W

for T-T,. (23
It follows from (19), (21), and (22) that the function
q(z) has such properties:
i) the functionq(z) is real,
ii) g(z) does not depend on the phase
i) q(=2)=-0q(2), q(0)=0.
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Thus, the value of the order parameteat the center of
the contact always is equal to,(T)cos(/2). Also, the uni-
versal phase dependencez, ¢), which is determined by
(20) and —iii), leads(see belowto the sinusoidal current-

phase dependende=j.sine. It is emphasized that these

general properties of the ballistic microchanfeithin the
considered case of ‘“rigid” boundary conditiond0) and
temperatures close td.] does not dependn the contact
lengthL, in particular, on the ratio of /&, .

Now we are going to obtain the Josephson current in the

system. To calculate the total curreh&Sj that flows
through the channel at the given phase differepacee use
the equation for the current densitg) and the anomalous
Green’s functionf, (16) obtained above. The normal
Green'’s functiong,, (12) in the second order i\y(T) is
0,(v,,2)=1-1/2f (v,,2)[f,(—v,,2)]*. It is convenient
to calculate the current density at the panst 0. Using the
expression foA(z) (20), we obtain the general formula for
the Josephson currehfyp) in terms of the functiorg(z):

I(p)=I;sing, (24)
16T2 1 olle
Ic:|0 v 2 _2<Uze Z>vZ>O
F w>0
2 (L2
+ . dz qz)(e 2°7%), _o|. (29
0 Z

Herel = wAé(T)/(4e RyT.) is the critical current at = 0. It
coincides with the result of Ref. 8 for the orifi®) at T near
T.. Expression25) jointly with Eq. (21) for q(z) describes

the dependence of the critical current on the contact length

I.(L). Itis valid for arbitrary value of the ratih/&,. Note
that in our cas& —T., we have the relatiod,, L<&(T).
Let us introduce the dimensionless quantities

e

x=z/L,

w
T =2n+1, J.= (26)

Vg Tl IO

In reduced unitg26), after taking the averag(e..)vz>0, the
equations forg(x) andJ,; take the form

1/2

a0 =b0o+1 [ dx'aneK(x-x), @7
8 % exd —1(2n+1)][1—1(2n+1)]
=12 2 [ (2n+1)

—12Ei[—1(2n+1)]

172 exd —21(2n+1)x]
+4| . dx q(x) 2n+1)
+2IXEi[—21(2n+1)]x (28)
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where

2exg —1(2n+1)]sinH 21(2n+1)x]
(2n+1)

b(x)= )\2
+1(2n+1)(1—2X)Ei[ —1(2n+1)(1—2x)]

+1(2n+1)(1+2x)Ei[ —1(2n+21)(1+2x)]¢,

(29)
N
K(x)=—2\>, Ei[—2l(2n+1)x]. (30)
n=0
The functionEi(x)=f*_[(expt)/t]dt is the integral expo-
nent. The upper limifN in the sums oven is related to the
cutoff frequencywp in the BCS modelN=wp/T.. The
value of the coupling constaitis related toN by Eq. (23
or, in reduced units,

2>\Z

In the weak-coupling limit o\ <1, we haveN>1.

In the general case of the arbitrary value of the param-
eterl (I=L/&p) Eq.(27) is a convenient starting point for the
numerical calculation of the functiod.(l). We consider
here two limiting cased>1 andl<1.

For a long microbridge with>1 we seek a solution of
Eqg. (27) in the formqg(x) = ax. Substituting thig(x) in Eq.
(27), we find a=2+0O(1/). CalculatingJ, (28) with q(x)
=2x, we find that the order parameter and the critical cur-
rent are

(2n+1)

¢ 2z ¢
A(z)=A0(cos§+|rsm§), L>¢&,, (31
14 fLUF

Expressiong31) and(32) coincide with the solution of GL
equations(with effective boundary conditions for the order
parameterA) for the clean superconducting microbridtfe.
Thus, our microscopic approach with the boundary condi-
tions (10) for the Green’s functiongnot for A) gives the
results of the phenomenological theorylat &, .

For a short microbridge with<1, in zero approximation
onl we find thatq(x)=0 [A(z) =Aqcos/2)], J.=1 or, in
dimension units).(0)=1,, in agreement with formul&2).

The corrections for the zero approximation depend on the
value of the productN. For very smalll<T./wp (i.e., L
<ap=1vg/wp), the productN is small, althoughiN>1. As a
result, whenq(x,l) and J.(l) are calculated in the region
L<ap, the cutoff in the sums oven must be taken into
account. Apparently, when the cutoff frequency appears
explicitly but not through the value of;, the applicability

of the BCS theory becomes questionable. More rigorous
consideration, based on the Eliashberg theory of super-
conductivity!® is needed in this case. Nevertheless, by using
the BCS model with cutoff frequency we assume qualita-
tively to take into account the retardation effects of electron-
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FIG. 3. Dependence of the critical current on the length of the bridge. The
0.75 s asymptotic behavior for short and long bridges is shown. The hatched region
corresponds to the ultrashort microbriddies v / wp -

I
4

1 ] 1

1 1 1 1 i 1
0'700 002 0.04 0.06 008 0.10 For the casé<1 andIN>1, we setN=<x in the equa-
xT L/VF tion for q(x) andJ.(l). The corrections for the critical cur-
¢ rent in this region of lengti. can be estimated as

FIG. 2. Dependence of the critical currdgton the contact length for the L ¢

microbridge(solid line). The coupling const_an§=0.2. For comp.arison, the l~lo| 1—const— |n_0 . ap<L<g,. (37)
dependencd (L) for SNScontact =0 inside the channglis shown & L

(dashed ling

The expression&32), (36), and(37) describe the depen-
dence of the critical current on the contact length in the lim-
iting cases of short and long channels. With increasing
phonon coupling in our problem. In the domain which islength L, the critical current decreases. For ultrasmiall
defined by the following inequalitie$N <1, N>1,1<1,the  <ap the value ofdl ./l o~ (1\)(L/&) directly depends on
functionsb(x) (29) andK(x) (30) have the asymptotic be- the BCS coupling constait and consequently it is sensitive

havior: to the effects of the strong electron-phonon coupling.
b(x)=4>\IN[x IN(IN)+x(C+1In2) 4. CONCLUSION
We have studied the size dependence of the Josephson
1 1+2x 5 critical current in ballistic superconducting microbridges.
+glIn| 755 T2XIn(1=4x%) |1, (33 Near the critical temperaturg,, the Eilenberger equations

have been solved self-consistently. The closed integral equa-
K(|x])=—=2AN[In(2IN|x|)—1], (34) tion for the order parameteX (17) and the formula for the
) critical currentl. (25) are derived. Equationel7) and (25)
whereC=0.577 is the Euler constant. As follows from Egs. ge valid for the arbitrary microbridge lengtthin the scale of
(33) and (34), in this case the integral term in EQR7) iS  the coherence lengthé,~ v /T. In strongly inhomoge-
smgll, and calculating the critical current in the first approxi-nequs microcontact geometry they replace the differential
mation on the small parameti, we setq(x) =b(x). Asa  Ginzburg—Landau equations and can be solved numerically.
result, we have In the limiting cased > &, andL<¢&,, we obtained the ana-
Iytical expressions forA inside the weak link and for the
A(Z)ZAO(T)(Cos§+ib(z/|_)sin%), L<ap, (35 IC.(L). The dependenpe of on L is shown schgmatically in
Fig. 3. For a long microbridgel.>¢&,, the critical current
whereb(x) is defined by expressiof83), ~1/L .is in corr.es.pondenc.e vyith the phenomenological
analysis. The main interest lies in the regios &,, where a
microscopic theory is needed. We have calculated the cor-
, L<ap. (36) rections for the KO theor?,which are connected with the
finite value of the contact size. The expressi@p for the
In the region{l <1 andIN=<1} the integral term in Eq. Josephson current was obtained in Ref. 8 in zeroth approxi-
(27) is numerically small as compared with the out-integralmation on the contact size. For the<¢, we find
term b(x). Using in Eq.(27) the q(x)=b(x) as a rough that 8l /1o~ (—L/&)In(&/L), wherel, is the value of the
approximation, we calculate the functiah(l) shown in  critical current in KO theory. Thus, the corrections for the
Fig. 2. value |, are small wherL<¢;,, but the derivatived|l./dL

8 T.L

|c(L):|0(1_H -




Low Temp. Phys. 25 (11), November 1999 Zareyan et al. 869

has a singularity at. =0. This singularity is smeared if we *E-mail: omelyanchouk@ilt.kharkov.ua
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The dynamics of the Abrikosov vortex lattice and a single vortex in a type Il superconductor
with defects is studied taking into account inertial as well as gyrosdéfad) properties.

The spectrum of normal modes in the absence of defects has two branches. In the limit of small
k, one of the branches is gapless and has a quadratic dispersion relation, while the other
branch has a finite gap. In the limit of largfe the dispersion relations for both modes become
linear (acoustig. It is shown that the interaction with defects in a moving vortex or a

vortex lattice excites oscillations corresponding to these modes. This creates an additional energy
dissipation channel for translation motion of the vortex. In the case of a single vortex, the
corresponding drag force diverges ¥s'?2 for V—0, i.e., prevails over the regular force of
viscous friction for small velocities. €1999 American Institute of Physics.
[S1063-777X99)00411-9

The dynamics of vortices and vortex lattices in super-of translational motion of the vortex. Since the dispersion
conductors, their pinning at defects, and depinning processeslation is gapless, such a dissipation appears at an infinitely
determine basic physical properties of type Il superconductsmall vortex velocityV. It differs from zero even if we dis-
ors, which are important for their applicatiofsee the re- regard the initial dissipation in the equation of motion for the
view by Blatteret all). Vortex dynamics in various ordered vortex. In this case, the vortex is decelerated due to the fact
media (superconductors and superfluid phases'téé and that the energy of its translational motion is transferred irre-
®He) is a complex phenomenon which should be generallyersibly to elementary excitatiorfgormal modes quanta
analyzed taking into account inertial and dissipative proper-  The type of this drag force depends considerably on the
ties of vortices, the presence of a gyroscopic fo(eall ~ spacing between vortices. When the density of vortices is
force in the case of superconductos well as defects. high, they interact strongly and form a lattice. The vortex
Among other things, these properties are manifested in spédattice can be three-dimensional 3 or two-dimensional
cial collective modes existing in the vortex system. Thesg2D), the latter caséof so-called pancake vorticBsbeing
modes were observed in resonance experiments i’ typical of strongly anisotropic superconductors. Our analysis
The interest to these mode as applied to highsupercon- proves that in both cases the contribution of interaction with
ductors(HTSC) has increased considerably in recent years irdefects to the dissipation of a moving vortex lattice is small,
connection with experimentson magnetic absorption in but it increases upon a decrease in the density of the lattice.
Bi,Si,CaCuyOg., , in Which resonance associated with nor- Thus, the effect is the strongest for weakly interacting vorti-
mal vortex modes was observed. However, induced motioges. In the case of a solitary vortex, the additional contribu-
of vortices in the vortex lattices of HTSC is usually de- tion to the drag force diverges &—0. The latter statement
scribed in the purely dissipative approximation without tak-is in qualitative agreement with the conclusion drawn by
ing into account the peculiarities in the response of the syskoshelev and Vinokuf,according to which the amplitude of
tem with local modesgsee the review by Blattest all). forced oscillations of vortices in a vortex lattice moving in

In this communication, we analyze the dynamics of thethe presence of defects increases upon a decrease in the ve-
vortex lattice and a single vortex in a superconductor takindocity of the lattice.
into account inertial as well as gyroscogidall) properties
of the superconductor with defects. In the absence of defects,
the spectrum of normal modes of vortices has two branches,ynamics OF VORTEX LATTICE
For small wave vectorg, one of the branches is gapless and
has a quadratic dispersion relation, while the other has a Let us consider the dynamics of a vortex lattit@med
finite gap. For large values @f, the dispersion relation for by Abrikosov vortices parallel to the-axis) in the absence
both modes becomes line@coustig. of a perturbation. The low-frequency dynamics of a vortex

The interaction with defects in a moving vortex or vor- lattice can be described on the basis of an effective equation
tex lattice induces oscillations corresponding to these modes$or the 2D vectoru=u(x,y,z,t) lying in the (x,y) plane and
This creates an additional dissipation channel for the energglescribing the displacement of the vortex latti¢€ig. 1).

1063-777X/99/25(11)/7/$15.00 870 © 1999 American Institute of Physics
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®(q)

a4 0 qz
FIG. 2. Dispersion relation shown schematically for vortex lattice vibrations
during the propagation of a wave along the vortex &sight branchesand
at right angles to itleft branches

FIG. 1. Undeformed vortexdashed cylinderand deformed vortexsolid
curves; vectoru(z,t) is shown by an arrow. where 8 is the dissipation coefficient per unit volume.
Expressiong1) and(2) are written for a ® vortex lat-
tice. We can easily go over to other interesting cases like a
The nondissipative dynamics ofis determined by the 2D lattice (pancake vorticgsor a solitary vortex. It is suffi-
following Lagrangian: cient to carry out the substitutionfdxdydZ...}
— [dxdy{...} (2D case or [dxdydZ...}—[dZ...} (soli-
—W{u}. tary vortex and omit the terms with the derivatives wivith
respect toz (2D case or with respect tax,y (solitary vor-
oy tex). We must also assume that B, etc. describe typical
Hereu=du/dt; p andH are the mass and Hall constant values per unit area of the latti¢2D cas¢ or per unit length
of vortices in the lattice per unit volumiy{u} is the energy of a solitary vortex. For example, in the important case of a
of the deformed lattice, solitary vortex, we must carry out substitutions of the type
p—paZ, B—Ba2, ci—k, wherex is the energy per unit
aux duy 1 dUy v M 2 .
W(u) = j dx dy d% 011( ) _C66(_ length of the vortex andy, the area of the vortex lattice per
ax Ty | T2y vortex.

o p., H .
L(u)= | dxdyd Su +§(uxuy—uyux)

U2 1 au\ 2 The equations of motion for the variablecan be de-
-+ —c44(—) + Uimp(U), (13 rived by variation of Egs(1) and(2), sL/Su— 5Q/5u=0. In
X 2 0z . . . .
the absence of interaction with defects, the equation of mo-
which is written as in the theory of elasticity, ang;, C44, tion for a vortex lattice can be written in the form
andcgg are elastic moduli of the lattice. The terid,,, de-
fines the energy of interaction of a vortex with defe(ts 2
. : 2 _ , _ J%u d [ duy
structure will be considered lajefThe rate of energy dissi- pl+H(euy—6,U,) +BU—Coym—z — & Crro | —
pation in the system is determined by the dissipative function 0z 9x | dx
i.e., dE/dt=—2Q(U). In the theory of elasticity, this rate is au, 3 [ auy  auy 9 [ auy
equal to zero in the case of translational motion of the lattice +— 3 c%& N Ix - € Cll&— X
as a single entity, and hence the density of dissipative func- y yioy y
tion Q(U) is proportional td d2u/ dx;dt]2. The situation for a au d [duy duy
lattice formed by macroscopic objects of the type of vortices &y C66& W‘ ox 1T ©)

or dislocations is different. Each vortex moving in the me-
dium experiences the action of a drag force, and the rate of
its energy dissipation is proportional t@u/dt)?. For this
reason, we choose the dissipative function in the form

In the nondissipative limit =0), this equation de-
scribes the normal vibrations of the lattice. In the case of
small dissipation, the corresponding dispersion relation
=w(q) is strongly anisotropic¢Fig. 2) and is given by the
following cumbersome formula

Q=§fdxdydz'12, (2
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) , 1 ) H? H2\? velocity of sounds,= \/c44/p. The two branches correspond-
pw =Cy0;+ E(Cll+ Ceo)d| + 5, * 5, ing to the propagation in a direction perpendicular to vortices
p p . S
for cg®>H/p describe longitudinal and transverse waves
2 o, 1 with velocitiess; = \cq1/p ands;= Cgg/p respectively.
+ Z[2C44q2+ (C1aF Cog AL 1+ Z(Cll Let us consider the interaction between the vortex lattice
o and the defects in the crystal. For definiteness, we assume
—Cee)zcﬁ , 4) that the presence of defects leads to a coordinate depgndence
of the local critical temperaturg.. This can be taken into
account by introducing the coordinate-dependent coefficient
[ay+F(r)]|#|? into the Ginzburg—Landau expansibn.
We start from the case of a single vortex located in equi-
um at a certain sité of the vortex lattice. For definite-
ness, we assume that the distribution of the order parameter

2

whereq? =q;+q; and the signs *+" and * —” correspond
to two vibrational branches. In the limit of smaj} andq, ,
the expressions for frequencies of the upper and Ioweﬁbri
branches are simplified considerably:

) 1 ) ) 5 5 in the vortex does not change during the motion of a vortex
o) =gz (Caddz + Ceed ) (Casdlz + Cr101), (58 and is described by a known functidfr ,).** Thus, taking
into account the displacement of the vortex, we can
, H2 2 1, write |y[?=|yof(r.), where r, =[(x—l,—u)>+(y—1,
VT + ;C44qz+ ;qi(cll+ Coo)- (BB —uy)2]Y2 Inthis case, the enerdy;y, associated with crys-

tal inhomogeneities can be written in terms of the function

Expression(5a) corresponds to the low-frequency gap- f(r,) in the form of a functional of the vortex displacement:
less mode. For smati, andq, , the dispersion relation for

this mode is quadratic in the componentsgoédnd indepen- Uimp:f axdydz f(r )F[x+ 1+ uy(r,t),
dent of the vortex mass. For a wave propagating along the
vortex (the limiting caseq, —0) the result coincides with y+Iy,+uy(r,t),z],

that obtained long ago by De Gennes and Matriciam a
solitary vortex, i.e.m(,)—>q§;</Hl, where the Hall constant

H, of the solitary vortex is introduced. form of the Fourier expansion i andy:
Formula(5b) for small g describes the mode with a fi- 1

nite gap, i.e.w(+)—H/p+[2¢492+ (C11+Ces) > 1/2p. The U — f J' dzE .
limiting value of frequency for this mode is determined by mP Sq%y (a.) (G Ay 2)
the Hall constantd and mas, i.e., o)—H/p for g—0. . .
Thus, this mode corresponds to the cyclotron motion of vor- xexp{—iq -1=iq, -u(r, b}, ©6)
tices in the lattice in the homogeneous cage-0). Cyclo- ~ whereq, =(dy,qy,0), S=LyL, is the area of the supercon-
tron motion of a vortex in superfluid systems and superconductor,f(q, ) is the form factor of the vortex, and
ductors has been considered by many authors from the _ _
microscopic point of viewW. It was also observed for F(QX,qy,Z)ZI dédnF (&, 5,2)e%E 17,
ferromagnetsand antiferromagnets in an external magnetic
field® It should be noted that sometimes another cyclotron i X+ i

o s f(x,y)= f gaxTiayy,
frequencyw, is introduced for superconductdtsyhich is (x.y) q%y (@) ’
determined by the cyclotron motion of electrons and has a

finite Val“i gfﬁn when thhe vortex fmass f'S not taken 'Etoequation of motion of the vortices in the presence of defects
account. iflerent mec anism of gap ormation In the;, yhe form (3) with an additional forceF,, on the right-
spectrum of normal modes in the lattice, namely, the Iong}|and side:

range interaction between vortices, was considered by
Sonin!® Naturally, this mechanism does not work for normal - .

e . . Fimp= iq,f F(qgy,9y,z)expliq, -u). 7
modes of oscillations of a solitary vortex in contrast to the imp q%y a.f(a,)F(ax.ay.z)exptiq, - u) "

cyclotron mechanisr_n'. o . ) A general solution of this nonlinear equation with coef-

The above specific featuréguadratic dispersion .relatlon ficients depending om cannot be obtained. However, we can
and the presence of a gare zdue to the gyroscopic force. carry out a complete analysis assuming that deviations from
Only in the limit of largeq, cq™>H/p, gyroscopic force is he rectilinear uniform motion of vortices due to defects are
insignificant, and the dispersion relation for both modes is;4. Puttingu=e,Vt+Ti(r,t) and linearizing3) and(7) in
transformed to a lineafquasi-acousticrelation typical of T, we obtain forti the following linear equation with a right-
lattice systems. The corresponding velocity of sound,gng side:

strongly depends on the direction of wave propagation:

whereX=x—l,—u,(r,t), y=y—Il,—uy(r,t).
It is convenient to write the expression fok,, in the

Taking this expression into account, we can write the

. B .U 1o .
pli+ H[&xUJ+ Bli+k——5 = 5 2 0, f(a.)F(q)

,» _ 1 2 2, L 2
w(t):Z[2C44qz+(C66+C11)qi]iz|C66_Cll|qJ_' a

Xexpiq, -1+iq,z
If the wave propagates along vortices, both branches Hia, dz

naturally correspond to transverse oscillations with the —iqyVi). (8
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whereQ)=L,L L, is the volume of the superconductor. parametefwe assume for simplicity that the value @fs the
This equation describes induced oscillations of a vortexsame for all defecjs Such a model correctly describes any
and its solution can easily be obtained by the method oflefect whose size is smaller than the coherence leagth
Fourier transformation. Substituting the solution of thisthe superconductor. Typical examples of such defects in
equation into the dissipative function, we obtain additionalHTSC are oxygen vacanciés.
contribution to the vortex energy dissipation associated with  In this case, the expressi¢8a) for the forceF,, acting
the fact that the motion of the vortex in the presence of ger unit volume of the lattice can be written in the form
defect is not rectilinear and uniform. Since the valu€tiof 1
averaged over andt vanishes, this contribution is quadratic Fimp=—2 _Z 2 iqLf(ql)eiQLraeiQ'r_iQth_
in the amplitude of forced oscillations of the vortex. a, 0T 9
Clearly, the same expressi¢8) is valid for each of the  golving this equation fofi, we obtain
vortices forming the lattice. In order to describe the force
acting per unit volume of the lattice in the vicinity of a given - _la 2 E f(q, )€

u = —
point r in the macroscopic limit, it is sufficient to carry out W aZ04G
the substitutiorg, - 1+qg,z—q-r in (8) and divide(7) by the
areaa” per vortex. This gives y Axy(dy) +iB(ey[e,Xq]) eiaT-igVe 9
v 2 9
1 AA,—B
(ﬁmp)uaﬁm% 9, f(q,)F(q)expig:-r—ig,Vt). where
\
(8 A= (€117 +Cai?) +1 B0V = p(ahV)?;
_ 2 2y 2.
CALCULATION OF DISSIPATION FOR VORTEX LATTICE Ay=(Ced1 +Casl7) +1B0xV — p(axV)%;

In order to analyze specifically the contribution to the ~ B=0xVH.
drag of a vortex lattice, we shall assume that inhomogeneity |t should be noted that the conditigh A,—B2=0 for

is due to the system of point defects whose size is smalleg_,0 determines the dispersion relatiof) for oscillations
than the radius of the vortex core. In this case, the functiorf the vortex lattice derived above. Fgr~ 0, the denomina-
F(x,y,2) in (5 can be written as the sum of Dirac delta tor in formula(9) does not vanish for any value qf

functions: Substituting expressiof®) into the dissipative function
and carrying out averaging over defects with the help of the
F(N=2 ad(r—r),. relation =, exp(q-r,) =NJ, o, WhereN is the number of
a

defects and, o is the Kronecker symbol, we can easily find
Herer, is the coordinate of thath defect andx character- the dependence of the drag force on the velocity of the vor-
izes the intensity of interaction of the defect with the ordertex:

Clm
Q)= 5 Vias [ dadadaataiiia)

G2V2( B2+ H?) +(Cag2+ C1105 + Cogll; — pAZVZ) 2+ (C11— Cop) 20205
[p2(a,V)* = HZ(0eV)?— pCyq(axV)2+ C14Caq— (BaV)?12+ (BaxV) [ Cq— 2p(a, V) ]2

(10

Here C;p,=N/(1 is the concentration of defects, and the fol- dence of the additional drag foraeF(V)=Q(V)/V [Q(V)
lowing notation has been introduced to simplify the relation:is the dissipative functiort10)] on the velocity of vortices
and on the parameters of the problem.
The factorBV? appearing in10) in front of the integral
can be interpreted so that the quan@yV) ~ 8V2, which in
- turn leads to a linear dependenE¢V)~ BV of the drag
Czqzcse(ﬁ +Caqd;- force on velocity. Clearly, the inclusion of vibrations of vor-
tices associated with interaction with defects gives only a
Direct evaluation of this integral leads to cumbersomesmall correction to the conventional initial drag force. How-
expressions, and we shall confine our further analysis to limever, the integral if10) contains singularities due to which
iting relations between the parameters of the problem such ake additional relaxation channel {&0) can become signifi-
viscosity, Hall constant and vortex mass, and to the case afant and even decisive.
small velocities. Before discussing specific results, however, As a matter of fact, the additional drag does not vanish
we shall make a general statement concerning the depemven in the limiting case of small dissipatig8— 0, while p

2 _a 2 2 2 2
Cq=CiqtCyq, Cig=C1107 +Ca407,
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andH are finite. At first glance, this appears as paradoxical.tion of the integral in(10) that the correction to drag force is
However, such a collisionledéanday damping associated linear inV for small velocities:
with pumping of energy of one vibrational mode to the other AF(V)= — (ABag)V
is encountered in many branches of physics. This is just the 3D/
situation observed in our case the action of defects on vorti- 1 Bra? qz
ces for smallg leads to the excitation of weakly attenuating AB3p==7 Cimp u—zs/zf da,d qy|f(ql)|2_x_
normal vibrations of vortices in the lattice. Let us consider a 4C44Ce6 a
this conclusion in greater detail.

Expression(10) contains 3 in the combinations{3?

Vv

SincecgexBxa, ? andcy,xBxa, * (B is the induction
) > A in the superconductit the quantityA B3pa, as for 3=0
+F [q,(q_x_\/) I} (see(lO)Z) where _the functiorir IS Sl_JCh that and diverges for (]aFV)HO. Consequently, the correction
the condition F[q,(q,V)“]=0 with the substitutiondxV  AF(v) hecomes more significant as the density of vortices
— w defines the frequencies of normal modes of vortex Vi-yecreases. An analysis proved that the corresponding contri-
bratlo_ns in the Ia_lttlce{cf. (4) and (10)_]. For 8—0, the €%~ putions become equalA(8sp~3) only for small values of
pression (19) is transformed into the &function  yensity for which the interaction between vortices can be
6{F[q,(a.V)“]}. After simple transformations, this expres- negjected, and they can be regarded as independent.
sion can be rzeduced to the sum of tafunctions of the type Let us make a transition to the case of a solitary vortex:
al(axV)*— w(-)(a)], wherew(.)(q) are the frequencies of he gependence corresponds to the licgg—0 in the for-
normal modes(4). Since at least one of the equationd/ 4 for A 84, written above. Since the quantityBsp for-
=w((q) or gV=w()(q) has a solution for any value of mqly diverges, the dependence®F (V) for a solitary vor-

velocity, the value oQ(V) can be finite even foB—0. A ey must become stronger than lingarshould be expected
similar result was obtained in an analysis of the drag of do’[hatAF(V)ocV" o<1).

main walls in magnets with microscopic defetts? It can The analysis of a @ lattice proved that such lattices
be explained as follows: the action of defects on vortices‘obey the same regularities as in thB ase. For example
leads to excitation of weakly attenuating natural vibrations of,o corresponding correction to drag force for low velocities
vortices, and hence to irreversible transfer of the energy of g 4 finited is smaller thangV. For this reason, we shall
translational motion of the vortex to the energy of these Vi-ot discuss details and go over to an analysis of a solitary

brations. _ _ _ “vortex for which the contributiol F(V) has the maximum
The physical meaning of this result becomes clearer if 5j,e.

we formulate it in the language of quantum mechanhtdset

us go over to a reference frame moving with the vortices. In
this reference frame, defects move at a velociv

= —Ve, parallel to thex-axis and can transfer the momen- PRAG OF A SOLITARY VORTEX
tum g to the vortex lattice(we putA=1) only simulta-
neously with the energy-V=q,V. This momentum is re- 1
distributed between the lattice as a whole and an elementag

excitation, and the energy is transferred to the elementar . | h b h ;
excitation. In particular, for a single vortex the situation is Energy per unit vortex length. In this case, the dependence o

quite simple: the vortex acquires a momentum in a directiorf"® integrand om is simplified significantly, an@(V) can
perpendicular to its axi&z-axis), and the wave propagating be calc_ulated in detail. I_:or example, if we disregard |n_ert|al
along the vortex acquires a component of the momentur&r()pert'esdOf thz vortexi.e., Iputp=0|)|, V\fe canf defe”.“'”e q
along thez-axis. It can easily be seen that the arguments ofhe Q(V) dependence exactly. For all values of velocity an

the & functions written above determine the corresponding®Y relz_amor} bet\ivle/grhi and 5, the additional drag force is
laws of conservation of energy and momentum during théProportional tov-==

For a solitary vortex, we must assume in the integral
0) that the quantitie$l andp correspond to unit length of

e vortex(see(3)) and putCy,=C,q= kqZ%, wherex is the

generation of a vibrational quantum corresponding to a cer- ol 1
tain normal mode. Dissipation is due to irreversible transfer ~ F(V)= Vv~ 2=C;, A&~ 2
of kinetic energy of the vortex to such excitations. 2V2kV JH?+ g*
The calculation for small velocities leads to the expres- X[(\/ﬁ2+_,BZ+H)1’2+(\/m— H)¥2] (11)

sionAF(V)~V3/C, whereC is a certain combination of the

guantitiesc,; andcgg. Consequently, in contrast to the caseand the coefficieny is finite for 83— 0, H+#0 as well as for

of domain wall$?*3for which AF(V)— const forvV—0, the ~H—0, B#0.

corresponding correction to drag force for small velocitiesis We have introduced here the notatiod¢ Y2

smaller than the standard term of the typ¢. However, this = fdq,dq, X Va,a?|(q,)|?, where ¢ is the coherence

correction contains the quantity~ 1/a\2, in the denominator length. Considering that the vortex form factbiq,) is a

and increases upon a decrease in the density of vortices fanction localized in the regioréq, <1, f(q,)~&? for

the lattice. It follows hence that as we go over to a solitaryq, —0 andf(q,)—0 for (&g, >1 [see(11)], we find thatA

vortex for whichCocl/a\Z,—>0, the exponent of the velocily  is a constant of the order of unity.

in the F(V) dependence must become smaller than three. An analysis of the effect of inertial properties of the
A more standard result appears wheris finite. In this  vortex will be carried out assuming that<H, but without

case, we find as a result of simple but cumbersome evaluaequiring that any inequalities are satisfied for other param-
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eters of the problem. In this case, the integral with respect tan terms of microscopic characteristics of the superconductor
q§ was evaluated exactly usingfunctions and the following (see, for example, Refs. 1 and )11 We write

compact expression was obtained: k=(Dyl4m\)2, where\ is the depth of magnetic field pen-

etration in the superconductor anbl, the magnetic flux
V)= Cimpa” “da [ da a2 guantum. For the quantitye, we put a=(HZ/8m)
Q)= ], 9% oy X(AT,/Tog)a3, where H,,=®/2m\é is the thermody-
namic critical field of the superconductaT./T, the rela-
ayVv Cimpa2 tive suppression of the superconducting transition tempera-
X(qy) JA@V) 1 p(q V)2 2 Jx ture at a defect, and® is the volume corresponding to a
X X

defect (the value ofa is of the order of atomic spacing

o +oo 2 ¢2 The gyroscopic constakht is determined by the number den-
o f(H/pV)dqu'w dayqrf sity n of superconducting electronsH==An, n
=mdc?/4m\%e?, where# is Planck’s constantn ande are
ayV the electron mass and charge, ans the velocity of light.
X (qy.) NI TTIOR (12)  Finally, the viscositys is primarily determined by the metal
P(0V)"—H(ayV) resistivity p, in the normal state, and hence we can write

The first term in this expression is due to excitation of,BZHc2<Doz/CZP;_1. whereH; is the upper critical fieldH .
oscillations of the activationless mode, while the second tern¥ Po/2m¢". This gives
is associated with the activation mode. For small velocities 42 23
. L . . . a’cpp Clmp AT,
V<H¢/p, the integration in the second integral is carried out ~ V* = 645N 2E -
over the regiorg,> 1/¢. In this region, the functiorfi(q, ) is g c0
exponentially small, and hence the contribution from the sec- atc?
ond term is insignificant. However, the first term associated V*= >
. o . o . . 64
with elementary excitations with activationless dispersion re-
lation gives a significant contribution tAF(V)=Q(V)/V. (14
for an indefinitely small velocity. It can easily be seen that  If we take the characteristic values of HTSC of the
this contribution diverges folV—0. In the limiting case YBCO type, i.e.,p,=5-10 *°s,a=108cm, £€=10""cm,
p<HE&IV, we naturally arrive again at the formulal) for ~ \/é=10?, and assume thaT./T.~10 1, the values ok/*
B=0, in whichF(V) does not depend om Inertial proper- do not differ significantly forB<H and S>H and can be
ties of the vortex are manifested only fo>H¢/p. In this  estimated as

2

43
) for p>H,

CimpePn
202652 mi

2/3( ATC

4/3
—_— for B<H.
TcO ) B

case, the divergence &f(V) is stronger than irf11): F(V) * 2B 10-11_ 112
«1/V. However, this case corresponds to too high velocities VE = [Cimp(10 1075 ems,
and will not be considered here. where the value o€, is measured in cir. For a reason-

Thus, for arbitrary relations between dynamic param-able value ofCiy,~10"cm 3, which corresponds, for ex-
etersp, k, and B of the solitary vortex and a small vortex ample, to the equivalent density of dislocatioryg
velocity V<H¢/p, the additional drag force is described by ~10°cm™2, the value ofV* ~10"1-10"2cm/s, which is
formula (1), i.e., AF(V)=V~'2 and diverges fotv—0.  even larger than ordinary values of vortex velocity in super-
Taking into account the ordinary viscous drag force actingconductors.
on the vortex, we can write the resultant force in the form
F(V)=pBV+ 5/V¥2 whereg is the viscosity introduced in
(2), and 7 is defined by formulg11). It follows hence that
for small velocitiesV<V*, the value ofAF is larger than Thus, the correction to the drag force acting on a vortex
BV even if the coefficient oV Y2 is quite small. and associated with collective modes induced during the mo-

Let us estimate the characteristic velocities of the vortextion of the vortex through a system of defects is small for a
i.e., the quantitesHé/p and V* =(7/B)%3. The quantity dense vortex lattice, but has a singularfyV)«=1/\V for
H &/ p turns out to be larger than ordinary velocities of vortexV—0 in the case of a solitary vortex. The dependence of
lattices, whileV* is obviously smaller thakl é/p if only due  drag force on velocity is stronger than that obtained in Ref.
to the fact that it contains small paramet@g,, and . In 4. This is due to the fact that we proceed from the realistic
accordance with formulagll) and (12), the characteristic model of vortex interaction with defects and not from the
velocity V* for small velocities and any relation betwegn model of random force as in Ref. 4.

DISCUSSION OF RESULTS

andH is defined as The nonmonotonic dependence of drag force on velocity
o3 can lead to singularities of the induced motion of vortices.

*_< ACimpa2 ) (13 The drag force acting on a moving vortex if we take into

28 [cEmax B,H} max 8,H} ' account the excitation of natural vibrational mode can be

presented in the form
whereA is a numerical factor of the order of unity agdhe B
coherence length. F=pV+nl\V,
In order to obtain estimates, we choose conventionalhere the first term describes “conventional” viscous drag
expressions for phenomenological parameters of the probleaind the quantity; is defined by formuldl11). This must lead
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to singularities in the velocity of induced motion of a vortex *E-mail: vbaryakhtar@bitp.kiev.ua

under the action of the external forée (transport current

which is defined a&.=F(V). It can be easily seen that this

equation has two solutions, the solution corresponding to the

upper branch existing only for a velocity larger than the

characteristic valueV* = (7/8)?® introduced above[see  'G. Blatter, M. V. Feigelman, V. B. Geshkenbei al, Rev. Mod. Phys.

(11)]' 226‘ ‘]112D50(::e9|‘9- inQuantized Vortices in Helium ,lledited by A. M
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dition dV/dF.>0 is satisfied only for the upper branch of 20. K. C. Tsui, N. P. Ong, Y. Matsudat al, Phys. Rev. Lett73, 724
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The behavior of a B Ising system at temperatures abdlgis studied in the approximation of
sextic distribution for modes of spin moment density oscillatiqgsfsmode). An original

method is developed in this higher non-Gaussian approximation for calculating the thermodynamic
characteristics of the3 Ising model neafl . taking into account the first confluent

correction. The contributions to the thermodynamic functions of an Ising ferroméugeet

energy, entropy, internal energy, and specific h&ram the short-wave and long-wave modes of
spin density oscillations are considered separately. A nonuniversal factor determined by
microscopic characteristics of the system is singled out in the expressions for leading critical
amplitudes and the amplitudes of the confluent correction. Numerical estimates of the

critical region size, phase transition temperature, leading critical amplitudes, and the amplitudes
of the correction to scaling of specific heat and susceptibility of the system are given for
different values of effective radius of the exponentially decreasing interaction potential 99®
American Institute of Physic§S1063-777X99)00511-3

INTRODUCTION dynamic characteristics of spin systems, including ti® 3
Ising model(which is a key model of phase transitjoare

The description of phase transitions and critical phenomealculated. The problem of dependence of critical amplitudes
ena, i.e., the construction of a microscopic theory of phasen the microscopic characteristics of the system required a
transitions is a fundamental problem in physics. It includes &onsistent analysis and could be solved successfully together
wide range of questions associated with the study of physicakith the main problem in the theory of phase transitions, i.e.,
systems such as liquids, ferromagnets and ferroelectrics, biterivation of explicit expressions for thermodynamic charac-
nary alloys, polymers, and liquid crystals. Phase transitionseristics of the system near the phase transition point as func-
are considered in low-temperature physics, solid-state physions of temperature and microscopic characteristics. Consid-
ics, physical chemistry, metal physics, and biology. Theserable progress in the solution of this problem were made by
phenomena are widely used in engineering. Persistent sciensing the method of collective variablé8V) generalized by
tific interest to this problem is stimulated by exceptional sig-Yukhnovskit—to the case of spin systems. The term collec-
nificance of these phenomena for modern technology, thetive variables is applied to a special class of variables spe-
complexity near the phase transition point, the difficulties ofcific for each individual physical system. The set of CV con-
their theoretical description and experimental investigatiortains variables associated with order characteristics. For this
in view of increasing role of large-scale fluctuations andreason, the phase space of CV is most natural for describing
large relaxation times. a phase transition. For magnetic systems, theg¢\are the

Recent comprehensive and intense studies of phase trapariables associated with modes of spin moment density os-
sitions have made it possible to formulate new concepts regillations, while the order parameter is associated with the
vealing the essence of critical phenomena and to develop \aariable p, in which the subscript “0” corresponds to the
powerful mathematical apparatus for their description. Thepeak of the Fourier transform of the interaction potential.
problem mentioned above was considered in a number of This paper is devoted to statistical description of the
monographs and review articles. Most authors studying thenain properties of a B Ising ferromagnet by the CV
theory of phase transitions paid special attention to determinmethod taking into account the microscopic characteristics of
ing the universality class of the systems, an analysis of symthe system. The obtained results can be used for interpreting
metry properties irrespective the characteristics of the initiaexperimental results concerning the behavior of real materi-
Hamiltonian, the types of solutions of recurrence relationsals in the vicinity of the second-order phase transition point,
(RR), and the calculation of critical exponents. Importantand the computational technique proposed here for thermo-
experimental results have been obtained in this field. Univerdynamic characteristics can be used for calculating their ther-
sal ratios and combinations of critical amplitudes of thermo-modynamic functions in the critical region. The original

1063-777X/99/25(11)/12/$15.00 877 © 1999 American Institute of Physics
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technique developed in this work for computing a one-is the Jacobian of transition from the $¢tspin variablesr,
component spin system may be generalized to the case ofta the set of CVpy, anddy .+, is the Kronecker sym-
system with anmn-component order parametésee, for ex-  pol. The variablesw, are conjugate tgp,, and cumulants
ample, Ref. 8 Such am-component model fon=2 can be A1, assume constant valuésee Ref. R The expression for
used advantageously for describing a Bose lig(ptiase  the partition function4) cannot be calculated exactly due to
transition in liquid*He) and a plane rotator. the presence of an infinitely large number of terms in the
exponent(5). For this reason, approximations limiting the
number of terms in the exponent of the integrandShare
1. BASIC RELATIONS used. A certain approximation of the integrand in the expres-
sion for J(p) determines the choice of the model for calcu-
We consider a three-dimensional Ising model on alating the explicit form of the Jacobian of the transition
simple cubic lattice with period. The Hamiltonian of the (modelsp?, p®, etc). Forn=1, we obtain the Gaussian ap-

model has the form proximation. It leads to classical values of critical exponents.
An important condition in describing the critical properties
1 . . . y
H=— > > o([j—1]) g0, (1)  of the Ising model is the use of non-Gaussian densities of
Jul

measures. The simplest approximation permitting an analysis
beyond the classical behavior correspondsnte2 and is
based on quartic density of measug¢ mode). This ap-
proximation is used for calculating basic critical exponents
of thermodynamic characteristics, complete expressions for
these characteristics taking into account confluent correc-
tions, and for analyzing the relation for critical amplitudes
(see, for example, Refs. 5% 1n view of approximate calcu-
lation of partition function confined to the* model, the
obtained resultsécritical exponents, amplitudes, and thermo-
dynamic functions contain a certain dependence on the
renormalization grougRG) parameters. This dependence

where®(|j—1|) is the potential of interaction of particles at
sitesj andl, a; is the operator of the-component of spin at
the jth site, having two eigenvaluesl and— 1. The inter-
action potential is an exponentially decreasing function

)

_ i
(D(r“)—AeX _E .

HereA is a constant;; the separation between particles, and
b the radius of effective interaction. For the Fourier trans-
form of the interaction potential, we use the approximation

B $(0)(1—2b%?), k<B’, becomes much weaker as the form of the non-Gaussian den-
d(k)= k= (3 sity of measure becomes more complicaté@nsition to
0, B'<k=B, more complicate modelg® [n=3, see(5)], p&, and pl9.

whereB is the boundary of Brillouin half-zoneB=x/c),  This is confirmed by an analysis of the behavior of the criti-
B'=(bv2) !, ®(0)=8mA(blc)3. cal exponent of correlation lengthfor the modelsp?™ (m

We shall use here the method of collective variables=3:4:5f"*as well as by a direct comparison of the curves
(CV),® which allows us to calculate approximately the ex- describing t_he temperature dependences of therquynamic
pression for partition function and to obtain, in addition to characteristics calculate?;athe modgfsand® for various
universal quantities(critical exponents complete expres- Vvalues of the parametsr™*™The dependence of the results
sions for thermodynamic functions near the phase transitioRf calculations on the parametsris studied and quite con-

temperatureT, . trollable. For each of thp?™ models, there exists a preferred
In the CV representation for the partition function of the value of the parameter=s* (s*=3.5862 for thep* model,
3D Ising model, we have s* =2.7349 for thep® model,s* =2.6511 for thep® model,

and s* =2.6108 for thep'® mode) nullifying the average
value of the coefficient in the term with the second power of
the effective density of measure at a fixed point. The values
of s close tos* are optimal for the given method of calcu-
lations. The difference form of RR between the coefficients
of effective non-Gaussian densities of measuegansions
for the functions appearing in these relatipoperates suc-
cessfully just in this region df. For such definite methods of
division of the phase space of CV into laydralues ofs
close tos*), we obtain reliable results matching with the
f’k:(\/ﬁ)flEl o exp(—ik-l), experimental data and the results of theoretical
investigations:*>'*In this paper, the results of calculations

1 -
Z=j exl{z > BD(K)prp—k |I(p)(dp)N. (4)
k

Here the summation over the wave vectirss carried out
within the first Brillouin zone,8=1/(kT) is the reciprocal
thermodynamic temperature, and the @y are introduced
with the help of relations of the type of an analytic functional
for operators of spin moment density oscillation modes

_ * _ based on th@® model taking into account the sextic density
J(P)ZZNJ ex 277'% Pkt 21 (2mi)>"Nt" of measure while integrating the partition function are given
" for values ofs equal to 2, 2.7349, and Re., optimal values
Mo for the given method of calculations
(2n)! kl;kzn WOk, O btk | (D)™ In our earlier publicatiort®> we proposed a new method

of calculation of the equation of state of &®3sing system
(5) on microscopic level in the approximation of the above-
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mentionedp® model, which attracts the attention of many TABLE I. Values of coefficientsay for variousb.
scientists even todaisee, for example, Ref. 16 in which the

’ ’ ’ ’

equation of state for systems of universality class of tBe 3 % 82 & %

Ising model is analyzed by using the field-theory approach b —1.0196 0.7023 0.2212 0.4379

with RG techniqug The correctness of the choice of thg by —0.9863 0.7820 0.2163 0.3895

model for investigations is confirmed in Ref. 17 where the bu :gggig g'gggg g'éggg g'gggz

effective potential is studied for the scalar field theory in 5. 09193 0.9986 0.0028 0.0000

three dimensions in symmetric phase. In this case, probabi- 5c —0.9190 0.9999 0.0002 0.0000

listic distributions of average magnetization in thB 3sing 7c —0.9189 1.0000 0.0000 0.0000

model in an external field obtained with the help of the

Monte Carlo method were used. Tsyirproved that the

term with the sixth power of the variable in the effective

potential plays an important role. The values of universal 8v3

four- and six-point coupling constants were calculated. Di- n’zﬂsg’z, "= T2 9)
0

mensionless six- and eight-point effective coupling constants
were calculated by Sokolcet al®in the three-loop approxi- The special functiol©(7’,£') andN(%’,£') have the form
mation.
In this paper, thep® model is used for developing the Cly',¢")==Fa(n' &) +3F3(n'.&),
method of calculation of expressions for thermodynamic  N(»' &' )=F4(7',& )~ 15F4(5' . )Fo(n', &) (10
functions of the ® Ising system taking into account the
terms determining the correction to scaling. The calculations +30F3(7',&'),
are made above the phase transition temperakyréhigh-
temperature rangeThe obtained expressions for basic criti-
cal amplitudes and the amplitudes of the first confluent cor-  Fai(%".&")=la(n".&)/1o(7".&"),
rection make it possible to analyze their dependence on -
microscopic characteristics of the systdthe rangeb of |2,(7;’,§’)=f 2 exp(— p't?—t4— ¢'t%)dt.
potential and the lattice constacit 0
We shall proceed from the expression for partition func-|t can be seen from Table | that— 1 for b>c, a5, —0 for
tion in the approximation of the® model. Puttingn=3 in  |=2 and the integrand in formul®) has a form close to the
(5 and carrying out integration i4) with respect to the Gaussian distribution. In the case when the range of the po-
variablespy andwy with indicesB’ <k<B, followed by the  tential and the lattice constant are commensurate, the coeffi-
integration with respect tdl’ variablesw, we obtain cientsay, differ from zero for all values of=0, and we must
 oNo(N —1)/2.8N take into account in the exponent of the integrandéinthe
=272 efo terms proportional to higher degrees of the variajein

where

11

1 addition to the Gaussian terms. Henceforth, we shall con-
xf exr{—— > d (K)prp_k sider just this case. The value tf=b,=c/(2v3) corre-
2\ e sponds to the interaction between nearest neighlberd,,

=0.3372 to the interaction between the nearest and next-
nearest neighbors, aitd=b,;, =0.3584 to the nearest, next-
nearest, and third neighbats.

The increase in the number of terms in expressi@s

3 ’
ag
_|:zz (2D)H(N")E

N’ and (6) corresponds to a complication of the form of the
Xkly,_élsg Pry: Py Sty | (AP)T © non-Gaussian density of measufeomplication of the
mode). Critical phenomena in al3 Ising ferromagnet in the
HereN’=Ns;°, s,=B/B’=mv2b/c, and CV method can be described quantitatively even in ghe
, .~ model approximation. The confinement to the quartic ap-
d’(k)=a;— e (k). (7 proximation in formulag’5) and(6) allows us to go beyond
The coefficientsa}, are defined as the classical analysis and to describe all qualitative aspects of
the second-order phase transition, while the sextic approxi-
ay=INQ(M), Q(M)=(1283)Yr (7' ,&"), mation ensures a more adequate quantitative description of
, 31 o the critical properties of a spin system. This is confirmed by
a,=(12sp) " Fo(7",¢'), calculations as well as an analysis of the behavior of the

a,=1253C( 7' &) (8 coefficients in the initial expression for partition function and
4 oA 6 ) the critical exponent of the correlation lengthfor the se-
ab=(1253)3N( 5’ &) quence_ofp“, p8, p® anqlplo model$®12as well as by the
calculation and comparison of thermodynamic functions for
and are functions oy, i.e., of the ratidb/c (see Table)l I the model&®**p* andp® and by comparison of the results of
this expressions, the role of the arguments is played by theur calculations with other available datee, for example,
guantities Refs. 13 and 14 The analysis of the above-mentioned
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sequence of the model was necessary for estimating the con-

1
vergence of the procedure for calculating the critical expo- Wg‘“)(p)=exr{ 3 dn1(K)prp —«

nent », for finding its dependence on the RG parameter K<Bn+1

and for establishing whether it is expedient to use higher a<2r|1+1)

densities of measures. It was found that as the form of the -> W
I=2 *Npt1

density of measure becomes more complicated, the depen-
dence of the critical exponenton the RG parametes be-

comes weaker gradually, and starting from the sextic density X Pk, Py Oks + .4 ko |-

of measure, the value of the exponenthaving a tendency kpsokoi<Bnyy a 2

to saturation with increasinm (which characterizes the or- (15)
der of thep®™ model or determines the summation limit in ~

formula (5), m=2,3,4,5 changes insignificantly. It is also Here Bp.;=B's™ ("1, d, ;(k)=al""V—gd(k), afi* ¥

interesting that the numerical values of the coefficieaits
appearing fom= 3, in the partition functior{relations simi-

are renormalized values of the coefficienats after integra-
tion overn+1 layers of the phase space of CV. The inter-

lar to (8) and(6)) vary insignificantly upon an increase in the mediate variables,, &, are functions oh, anda, and are
order of the density of measure, i.e., upon an increase in théefined as

number of terms in5).

An advantage of the CV method in the description of
phase transitions is the presence of a variable associated with

the order parameter among the @Y. Such a variable for

the Ising model ipy. We cannot single out the contribution

from pg alone in expressiofb) since all the variableg, are

Th= (653) l/2|:2(hn yan)[C(h, ,an)]fl/2,
(16)

gn:\]{_g S_B/ZN(hn »ap)[C(hy, ’an)]_3/2l

where the form of the special functionS(h,,«,) and

interconnected. We shall use the method of “layer-by-layer”N(h,, ,«,) is defined in(10). The coefficientsl, (B,,..1,B,),

integration of(6) with respect to variablep, proposed by
Yukhnovskii The integration begins from the variablpg

with a large value ok (of the order of the Brillouin half-
zone boundanyand terminates ap, with k—0. For this
purpose, we divide the phase space of the gg\into layers
with the division parametes. In eachnth layer(correspond-
ing to the region of wave vector8,,;<k=B,, B,

=B,/s, s> 1), the Fourier transform of the potenti@l(k) is

replaced by its average valdarithmetic mean in the given
case. As a result of step-by-step calculation of partition oscillations:
function, the number of integration variables in the expres-

aV

+1th layer through the recurrence relatiolRR
whose solution$?! are used for calculating the free energy
of the system.

The basic idea of the calculation of explicit expressions
for free energy and other thermodynamic functions of the
system neafl, on microscopic leve(r<7*~10 2, r=(T
—T.)/T.) lies in the separate inclusion of contributions from

short-wave and long-wave modes of spin moment density
3,5,22
35,

, andaf” are connected with the coefficients for the
11,20,21

Short-wave modes are characterized by a RG symmetry

sion for this quantity decreases gradually. After the integraand are described by a non-Gaussian density of measure.

tion overn+1 layers of the CV space, we obtain

Z=2N2MNn+17D2Q0Q,...Q[Q(P,) JNn+1

X f W (p)(dp)Nasa, (12)
HereN,,;=N’s 301 and
Qo=[0Q(d) ], Q:=[Q(P)Q(dy)]s,...,
Qn=[Q(Pn_1)Q(d) ",
Q(dn)=2(24/") (N, ap),
Q(Py) =7 Y[s%a{VIC(hy,an) 1 o( 74, &n). (13
The basic arguments
6 \ 12 J6 a
hn:dn(Bn+lan)(@ f anzﬁﬁ))yz (14)

are determined by the mean value of the coeffictgiik) in
thenth layer of the phase space of CV, i.e.,dyB,,.1,Bp)
as well as the quantitiesy” anda{" . The effective sextic
density of measure of then-1)th block structure
W (p) has the form

They correspond to the region of critical reginf@R) ob-
served above as well as beloW.. In this case, the RG
method is usedsee, for example, Ref. 23The calculation

of the expression describing the contribution from short-
wave modes of spin moment density oscillations to free en-
ergy involves the summation of partial free energies over the
layers of the phase space of CV up to the point at which the
system leaves the CR region. In this case, it is important to
obtain an explicit dependence on the number of the layer.
For this purpose the solutions of RR are used. Taking into
account the larger eigenvalu&(>1) of the RG linear
transformation matrix, we can describe the main singularity
for specific heat neaf.. Smaller eigenvalueéE,<1 and
E;<1) are responsible for the emergence of corrections to
scaling. The inclusion of short-wave modes of spin density
oscillations leads to a renormalization of the dispersion of
the distribution describing long-wave modes. ForT,,
these modes correspond to the region of limiting Gaussian
regime(LGR). The way in which the contribution from long-
wave modes of oscillations to free energy of the system is
taken into account differs qualitatively from the method of
calculating the short-wave component of the partition func-
tion. The calculation of this contribution is based on the use
of the Gaussian density of measure as the basis density. We
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TABLE II. Values ofng and 7™ for large values of the interaction potential exit of the system from the CRy,, will be defined later. The
rangeb and the RG parameter=3. factor Z, g contains contributions from long-wave fluctua-
tions withke[0,B,, ] and corresponds to the LGR.

b Ny T
— Let us consider the quanti®cg. It is defined as
4c 7 0.8266< 10
5¢ 8 0.6274<10°° ) 24 14
7c 9 0.4680< 10710 Zer=11 | = | =———
n=0 [ 7\ C(7n-1,6n-1)

er
have developed a direct method of calculations with the re- Xlo(Pn, an)lof 77“—1’5“—1)} : (19

sults obtained by taking into account the short-wave mode

as initial parameters Fn order to calculateZ.g, we must present the right-hand

It should be noted that our calculations are valid in aside of formula(19) in the form of an explicit function of the
: : : layer numbem. It should be noted thayy_;=7' and &_
Il hborh . Th I f RR mak - 1 1
small neighborhood of e solutions o make it pos — %' in (19) for n=0. In the CR region. the basiy, )

sible to calculate the size of this critical region. Indeed, using_ ®, . ; \
these solutions and the conditions for the existence of CF@nd intermediate 4, ,£,) arguments are close to their values

(the exit from this regime fon— 1, described by terms pro- ata f_ixed pointh(®, a® and 4©, £©. Conseq_uently, Fhe .
portional toE”, does not prevail over the entry to this re- functions of these arguments can be approximated in this

gime, which is described by terms proportional ES, and case by power series in deviations of these arguments from
y . . 5 . . _
E1), we can determine the temperature ramger* in which their fixed value$® Intermediate arguments and their func

the CR corresponding to the presence of strongly correlateﬁons can be presepted In terms .Of dEVI?.tIOHS .Of the basic
arguments from their values at a fixed point. Using the rela-

spin blocks takes place. The value &f is equal to the .
rrf)agnitude of the spmallest root of the threeqequations obtons forlo(hn,an), To(7n-1,én-1), C(7n-1,én-1) taking
tained on the basis of solutions of RR. The valuessf M© accgg?;,t the squares of deviations of basic
determined in this way is of the order of a few hundredths forargum_ent > we calculate fron.(lg) the free energy corre-
commensurate andc. For large values db, it is important sponding to thenih phase layer:

to take correctly into account the entry in the CR. In this  F =—KkTN,[fR+ ¢1(hp_1—h @)+ ¢oo(an_1—a'?)
case, the value of* can be obtained by imposing the con-
dition that the entry to CR prevails over the exit from this
regime forn—ng, where the layer number, as a function
of b can be determined from RR??'for example, pro-
ceeding from the relation foa{" (see Table . The data
contained in Table Il show that the critical region is practi-
cally absent for largé. This is not surprising since the con-
dition b>c corresponds to the transition to the model with
long-range interaction, which is based on the Gaussian dis- f3=In
tribution of spin moment density oscillation modese (6)

+@3(hn=h @)+ o4(an—a' @)+ i(h, 1 —h(?)?
+@p(an_1— a2+ o4(h,—h D)2+ ¢} (a,
—a'9)2+ gg(hn_1=h ) (aq-1—a'?) + g(hy,
~h®)(a,—a )],

2( 24) 1/4 (20)

)—(1/4)InP40+InI3+InI3* ,

and Table ] and demonstrates the classical critical behavior. ¢, =b,+ P, /4, k=12,
Calculating separately the contributiofgg andF | gy to . .
free energy from short-wave and long-wave modes of spin  ¥3= —F3, @s=—Fg,

moment density oscillations at>T., we can obtain the
complete expression for the free energy of the system:

F:F0+ FCR+ FLGR' (17)

HereFy,=—kTNIn2 is the free energy dl noninteracting
spins. Let us calculate the contributiofgg andF | gR.

’:b’—lbz—P’ /4+ P3,/8
P =Bk 2 Yk ak 4kl O,

@4=Fil2=F3%2, @,=Fyj2—F}%2,

e5=b3—b1by— P44+ P4 P4 /4,
r_ F* _ F* F*
2. CALCULATION OF CONTRIBUTION FROM SHORT-WAVE P6 8 26 -

MODES OF SPIN MOMENT DENSITY OSCILLATIONS

The quantities appearing %, ¢, and ¢! are ultimatel
TO THERMODYNAMIC FUNCTIONS OF THE SYSTEM a bp g iR, @ ?) y

functions of the basic arguments at a fixed point. They are
It is convenient to write the partition function of the given in the above-mentioned publicatiorig>
model in the form?®1424 The partial free energy of thath layer of the phase
AN space of CV taking into account the explicit dependence on
2=2"ZcrZ10R: (18 1\ can be written in the form

where the first factor corresponds to noninteracting spins.

The quantityZ.r describes the contribution of short-wave
fluctuations ofpy with ke[By, ,B'] (the CR region The

numberm, of the layer in the CV space appearing in the
expressioerTz B's™ ™, and characterizing the point of the

Fo=—KTN's 3 f R+ fERu®) Ve, EN+ F &
X(U%) e R+ fa(u )~ ey ER+ R

X (u®) %, ENES+ FGR(u(®) %%, c3ETES"
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+ T ERU@) 2SS+ FER(U©) T LCZED + £ 4
X(U) 23 ENES + () 3 a
X c2c3E2"ES". (21)
Here a2

fer=Hi(pat @1/E)+Li(@at @2/E), k=123,

feR=Hal st @1 /(E1Ex) 1+ Ll @4+ @2/ (E4E)] 1
+2HHo[ o5+ @1/ (E1E2) 1+ 2L 1L o[ ¢4 1 1 1 } }

0 02 04 06 08 10 12

+ @l (E1Ep) ]+ (HiLa+Hol ) ¢g b/c
+ @é/(ElEz)]: FIG. 1. Dependence of reciprocal phase transition temperature on the ratio

5) 5 ) of the interaction potential range to the lattice constant.
fER=Hslest @1/ (E1ED) ]+ Le[ 04t @2/ (E1ED)]

’ ’ 2
+2(HiHe+tHoHo) o3+ @1/ (E1E2) 1+ 2(LaLe constant appearing in the interaction potent@)] on the

Lol ) [ s+ @bl (E1E2) 1+ (HyLg+Hely ratio of_ the_ potential rang® to the lattice constant is
shown in Fig. 1 fors=3.
+HoL 4+ Halo)[ s+ oil (E4E3) ], Thus, the partial free enerdy, of the nth layer contains
the termf {2} which is independent on the numberof the
fa=He( @3+ @1/E5) +Le(@at @2/E3) +H3( 03 layer and is a universal quantity, and the terms containing the

dependence on. In contrast tof(%, these terms depend on
microscopic characteristics of the Hamiltonian of the system.

fD—H + ol JED) +L + 0, /ED) + H2( 0! Carrying out summations of expressii) for F,, over
cr=Hrleat ea/ED)+Laleat €2/EY) il#s the layers of the phase space of CV, we can calcliaie

+@1/ES) + L5 (@4 + @3 ES) + Holo(@g+ @5/ ES),

+OIED+ LA o4+ @y ED) + HiL (@ + L/ED), A
@1/ET) (et @,/ET) 1L1(ee+ @s/ET) Fer=F4+Flp, (23)

feR=Hel st @1 /(EFE)) 1+ Lel @4+ @2/ (ESE,)] Fo=—KTN'[In Q(M)+In Q(d)],
+2(HiHy+HoH7)[@s+ @1/ (ETE,) 1+ 2(LiL

mT
L, Fle=> F,.
+ L) [ @s+ @bl (EFE) ]+ (HiLa+Hyl CR 21 n

+HyoLs+ HoLo) [ es+ @il (E2E,) ], The layer numbem, determining the point of exit of the
system from the CR region dt>T, can be found from the
feR=Hol @3t @1/ (E1E2)°]+ Lol @at @2/ (E1E)°] conditior>2°
+(2H Hg+ 2H,Hg+ H2+ 2HgH ) @4 Fm 1
— é, (24)

+ @i /(E1E5)?]+ (2L L+ 2L L g+ L3+ 2LgL)
whereésis a constant §<1),r(% is a coordinate of the fixed

’ ’ 2
X[ea+ @2l (E1E)"]+(HiLs+Hsli+Holg point, andr, characterizes the coefficient of the sextic den-

+Hglo+ HaL g+ Hgly+ HoLo)[ 0 sity of measure of thenth block structure of the second
power of the variable and is determined with the help of
+ @l (E1E5)?]. (22 solutions of RR(see, for example, Ref. 26n our numerical

) . ) ) calculations, we shall pué=1. In this casef,, +1=0 or
The expressions for the quantitié and L; are given in 7

— —2(m,+1)_
Refs. 13, 14, and 26 for three coordinates of the fixed poingf“f“(o) fm,+19 _ 0 a.nd the curvesdy(k) are
(including u(®,) and the coefficients of the solutions of RR situated above the abscissa axis forreim_. On the basis

of (24), we obtain the explicit form of equation fon, :
C1=C1BP(0)7, Cr=cod BP(0)]%, cz=c3d BP(0)]°, CrE™ = £y 8- coiY oy VED
where €, =8V +8M 7, cyo=c+cl)r+ci2 72, cyo=c) ©) —1om 1
+cr+c@r?, are given in Refs. 21, 24 and 26. It should ~CaWizpo By 25
be emphasized that a typical feature of the solutions of RR ishe temperature-independent quantitisg) and W(1(:)a) as
a specific temperature dependence of the coeffidgntOn  well as the quantitie$, and ¢, characterizing the coordi-
the basis of the expression for, we obtain an equation for nates of the fixed point®, u® are given in Ref. 26. In the
the quantity3.®(0) determining the phase transition tem- regionr<1, it is convenient to use the method of successive
perature(see Ref. 21 The dependence g8.A [A is the  approximations for solving Eq25), taking into account the
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fact thatEm et andEm “"1<1. In the zeroth approxima- [ Ins
tion, Eq. (25) can be ertten in the form of the equation C,= oo/ L™ E,’
7E] Yt o5 26
CJ_ — 100, ( ) NI:_vaZ_SVCA (I)(), (31)
whose solution is given by
| we obtain
0)_ nr
m =" E +mg—1. (27
n 1 FCR—_kTN [’)/0+ 50 CR(O )+ 3V
Here
— ORI+ 3veay), (32)
In(fo0rE)
Mp=M¢, mC=W (28) where
The first approximation is written taking into account the (0) (1) -2
m,+1 m,+1 _4 fer ferpo "C17E1 f(:R<Po %CooE>
smallness of terms proportional #,” = and E;7 ~ for Y=S V|1 53 1-_E.s 3 1-_E.s 3
which the zeroth approximation is used ie., the right-hand s 18 28
side of Eq.(25) contains terms proportional to o5 %oy F8eg 3% 7Co0ELE,
Emg°>+1:E?OTA1 E" m®+1_ EMo 2 1—E3s 3 1-E;Eps3
2 1 1
5/2% -2.2
i1 m® fCReo "21C5TEIES  fGheo 2CoES
= - (0) —1/2 +1
ClTEl —f o— C20W12 (0 E 1— E E2 -3 1— E2 -3
m© 1
—csw' e, 1E i (29 8%%1 ITE; fCR‘PO “TicarELE,
. . . . . 1-Eis3 1-EZE,s °
It should be noted that in the right-hand side of this equation
m(©) i 9 22
we neglect the term proportional " " since we take fCheo TEIC5TESES
. 2~.—3 ) (33)
into account in these calculations only the first confluent cor- 1 EZE3s
rection(which is determined by the term proportionaly,
A;=—-InE,/InE,;) and disregard the second confluent cor- 5o=INQ(M)+InQ(d),
rection(which is determined by the term proportional#te,
A,=—InEz/InE,). This is due to the fact that the contribu- (CRIN+ — ¢3¢, 7(CR)(I>+ =01
tion from the first confluent correction to thermodynamic ’ ”
functions of the model near. is more significant than the
small contribution from the second correctign<1, A is of YLRO =yt SR ?’Xl_ Do(y11—3vy ™).
the order of 0.5, and,>2, see Refs. 13 and L4Solving
Eq. (29), we obtain Here
=m©@ 4 Ag
m.=m_"+my 7 (30 N O 12t 5+ Do (f46)2
m, Y T1-sP¥ 1-E;s? T 1-Els°
My, = ﬁ' M= _CAl(DO’
o o L fBlest e ¥hes  18es (fod)?
¢y, =cY 1 _ W2 VM T I E,s 3 1-EjE,s 0 1-EZE,s
20\%.5) 0 Joo.
fodVeo
. . . . ) 1/2f S 2fW foo 2
It should be emphasized that in a higher-order approxi- +_Tcr¥o n CReo 1(fod) (34
mation, Eq.(25) leads to a solution of the typ@0), where YUTTITE;s 3 1-Eis3

terms proportional tor?*1, etc., appear additionally; in the

present calculations, we neglect these terms also.

Having obtained expressiof80) for m,, we return to
the calculation of expressiof23) for Fcg. Taking into ac-
count(30) as well as the relations

A =(0)\ A
m+1_ fod(1+my771) (041 g 17_A1
1 ~C]_T 2 fo '

573(m7+1):573(m(70)+1)(1+./\/'1+ TAl)a

_arm(©® _ _
g 3m+1) _g=3mg 3v  g=3m_ 3

Let us single out explicitly the temperatureyi3 and &
in (33). As a result, we can write for the coefficiepg

Yo= %0 v T+ T (35

0 2 0 3 3/2.(0
0 fer  f&Reo 'C By oo Y Es
Yo 1o 1—E,s 3 1—Ess 3

s
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—1/2<(0) 2 1
(1)25 3 f(CI%QDO ( El n f(CI%QDO { )E2
Yo 1—E,s 3 1—E,s 3

f(3)<p73/2C30)E fEZF)Q‘p 3/2~ (0>E =
1-Ezs3 1—E1Ezs s
/2<(0 0 2
fReo 22 (ch ))2E1E2
1-E.E5s™
0 2
f(R(PO C(zo)CzoE
1-E.E3s 3 ’
1 1/2<(1 2 2
21 _ oo Tereo "REs | feaeo "B
Yo 1-E;s 3 1—E,s 3
3) —3/2.(2
f(CF)eﬁoo Céo)Es

+ e —
1-Ezs3

oo O + TV E, E,

1—E;E,s 3
. (6o T2 el + oY () IELE3
1-E,E5s °
feo 2L (chg)?+2c5) ¢y 1ES
1— E2 -3
Do HEP)2E2  8es2(T0) 2 EE,
1 Eis 3 1—E1Ezs‘3

f&g&%3[c<°>>2<c<°>>2EiE%

For 8y, we obtain

60:6(00)+ 6(01)7"" 5(02)7.2, (36)

sV=InQ(M)+InQ(d;T,),

s—— Vo

0 — (a )1/2(1 _>ﬁC¢(O)F2(hC!a)

3 ~
o)== o (1= DLBBOFFEhe ) ~Fyhe )]

_ 1+s7?
(1- _>Bc¢(O)F (he,), 0q= 2 ,

(a )1/2

V6 V6 a

(a4)1’2[a2 B.D(0)(1-q)], a:l_SW'

Thus, for the free energy of the CR we have

c

For=—KTN' [y X + 717+ 7,72 = 500 7%

— Y CRW* v+

YBCR):VE)O)+5(O) V= ygk>+5(k), k=1,2.

The coefficientsy{c™), y,, andy, [see(37)] as well asm,
and NV] [see(30) and (31)] are not universal since they
contain the quantitiesc!?, c%, c{(1=0,1;i=0,1,2),

(37

1. V. Pylyuk

depending on microscopic characteristics of the Hamiltonian.
The coefficientsy ¥ " (1=0,1) are given in33). Here the
quantitles?gCR)('” do not depend on microscopic character-
istics, i.e., are universal relative to these characteristics.
UsingFcr, we can calculate other thermodynamic func-
tions of the system in the CR region 8tT.. For the en-
tropy Scr= — dF cr/dT, internal energW cg=Fcrt+ T SR,
and specific hea€-g=TJScr/JT we obtain

Scr=kN[S(CRO) 4 ¢ 74 yCROF 1-a
+ u(3CR)(1)+ Aaraq,
Ucr=KTN'[y;+uyr+ufRO* z1ima
+uCRD* flmatagy (39)
Cer=kN'[Cot ciCR(OF rmay ((CRIL* (A1 —aq,
where

CR
sORO= Tt y1,  co=2(nt72),

U(30R)(I)+:C§C|A1U(3CR)(|)+ =01,
TERO+ = _ 3,7(CRIO)+

TR = — (34 A7 R+ (39
Up= 71+ 27, CgCR)(I)+:C1?;ClAlEgCR)(I)+ '

TR0 = _ 35,3y~ 1)7CRO* |

CERWY = —(Bu+ A1) (3v+A;— 1) PWT

a=2—3v.

3. CALCULATION OF THE CONTRIBUTION OF LONG-WAVE
MODES OF SPIN DENSITY OSCILLATIONS TO THE
THERMODYNAMIC CHARACTERISTICS OF THE SYSTEM

The contribution of long-wave modes of spin moment
density oscillations to the free energy of thB 3sing model
(k<B’s™ ™M) taking into account the first confluent correc-
tion is calculated according to the scheme proposed in Refs.
3, 13, 14, and 24. After the exit from the CR, the system
goes over to the LGR. In this case, while calculating the
partition function componenZ, ;g from (18), it is conve-
nient to single out two regions of values of wave vectors.
The first is the transition regiofTR) corresponding to values
of k close toBp, while the second is the Gaussian region
corresponding to small values of wave vectkr0). After
the integration of partition function in several layers of the
phase space of CV, which follow the point of exit from the
CR and determine the size of the TR, the system is described
by a Gaussian density of measure. Thus, we can write

Zi6r=Z{ R Zi R - (40
Transition region (TR)

This region corresponds fo, layers of the phase space
of CV. The lower boundary of the TR is determined by the
point of exit of the system from the CR regiom<{m,
+1). The upper boundary corresponds to the layer
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+fy+1. The latter determines the beginning of the Gaussiamhe quantitiesb(m M and pf&‘r*m) depend onpgl(mr*m)
region in which the Gaussian distribution of spin moment_ *(m +m)/| * (M, +m) . Where
density oscillation modes is observed. A transition of the 2

system to the LGR region is accompanied by an increase in = «(m,+m)_ j‘” 21 (0 A (0) o6
the value oth,, as a function of.?* Consequently, the con- 2 “Jo X~ expl hmﬁmx Xt %m,+mX ydx,
dition for obtainingm, is the equality (44)

Ao as well as orF}" (m+m) _ =13 (mf+m)/|’5* (m+m) *\where

[hm, il = T3 (41)
wx (mom)_ |72l 0 2440 6

where Aq is a large number A,=10). The value offn, 2 jo X OXPL— XX € X )dx.
determined from(41) actually determines the numbéi, (45)
(see Ref. 2B

I The coefficients of the expressions
Let us calculate the contributioR(%); to free energy P

from the layers of the phase space of CV immediately be-  hp, ;= h(°)+m(1+ hST})errAl),

yond the point of exit from the CR, which corresponds to the (46)
contributionZ{Y, from the TR to partition function. It has amr+m:agj+m(l+ aﬁ}:+mTA1)
the form
~ appearing in(43) are defined in Ref. 26, and the quantities
" Do 7% and £, . appearing in(45) can be expressed in
—_ —-3m
Fler= ~KTNm 41 mz:O s fier,(M), 42 terms offF 5 (M m A important point in the calculation of
fLGRl(m) is the representation of special functions in the
fLor (M)=Inl = E In 24— E INC(7m +oms€m +1m) form of power series in small deviations of basic arguments
1 Mot me S mm hm +m and ap, . m from their values in the zeroth approxi-

matlon ie., fronh(o) m and aﬁ?)+mfrom (46). It should be

recalled that in the CR region we took into account the de-
+INlo(7m +m ém_+m)- viations of the basic arguments, and «, (n<m,) from
their valuesh(® and a(? at a fixed point. In the summation
overm in F(Yg (42), we must use foff, the integer closest
to My . The final result foiF{{J; assumes the form

+Inlo(Pm +m+1:@m_+m+1)

It follows from Refs. 3, 27—-30 containing the results of nu-
merical calculations of the partition function in the Ising
model as well as the results of analysis of RR that the evo

lution of the coefficients of effective densities of measures ~ F{Yp=—KkTN[f{R7°"+ f{H 7241, (47)
with increasing number of the layer in the TR is successfully 0 L=
described by solutions of the RG type. Consequerfi{y, frg=ciey frg, 1=0,1,

can be calculated by using the solutions of RR. On the basis
of expansions for functions appearing in the expressions for —(0)_ 2 s‘3mf(°) (m) ?(1)
the intermediate argumentsy, . m, &m +m, andf gg (M)
(42) given in Refs. 13 and 25, we can obtain the following o
relatiorf® accurate to withinr®1:
frr,=Ca. Z s 3 {dg, (M).

fLor, (M) =f GR (m)+fLGR (m)7, (43 B

fTR +3VCI) fTR ’

Let us now calculate the contribution of long-wave
modes of oscillations to free energy of the system in the

£(0) _ — (0) (0)
flgr,(M)= +aIn24=2InClrm mém +m) range of wave vectors
+Inl (hm +m+1'a§19)+m+1 k<B’s™™, m.=m_+My+2. (48
+1n 1y (0) f(o) ) .
m +m> +m)s Region of small values of wave vector  (k—0)
FO (m)=g (m M) 1) Introducing an infinitely weak external magnetic fi¢itl
LGRy m,+mim,+m (or h=pugH, ug is the Bohr magnetonwe obtain the fol-
(m+m) () (1) lowing expression for the free energy component corre-
Ter T @ sponding toZ{%, from (40):
(m,+m+1), (0
+ @, hy )+m+1hm +m+1 1 ,
F@e==KT| Ny Inp{™ "
(m+m+1) (0 1 . 2
to, §n)+m+1a£n)+m+l’ 2
oMM =p(MM oy pUTM g k=12, & BANh?
+2 Ind,, (k)— (49)
‘pgm7+m+l):_|:~;2<(m7+m+1)’ qDilmT-%—m-%—l:_F~g(m1,+m+1). m (O)
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Here Flor= —KTN'[f{Qrr + f{der® "41]
'—1) _ 2,_—2v +,_ A
P(zmT =2hm —1Fo(hny -1, a0 1) BNy;h?r 2(1+a, ), (54)
X[ Aoy — 1By, B - 1)1 7%, fldr=cich fldr,  flar=fTr ", 1=0,1.

e -1 ~ - For H=0, the entropy, internal energy, and specific heat
Ay (k) =[P 1724 BB(Byy By 1) — BB (K). of the system corresponding to LGR are defined by the fol-
(500  lowing relations:

. LGR)(0 - LGR)(1 -
For dpy_1(By,Byy—1), we have the following standard Sier=KN'[ug CR @ 71 map - ORM A matdy],
T . 7,6,267-
representationt U gr=KTN/[ufeRO@ zl-ay y(LERIM) f1=ata1] - (55
Aoy 1By By 1)=5 2™ V(i 1@ (5D Cror=kN'[c5 SV 4 cg SR i),
where

The quantityq=qB®(0) determines the average value of
potential 3® (B, 1,B,) = B8P (0)—q/s?" in thenth layer(in
this paper,q=(1+s~2)/2 corresponds to the arithmetic
mean value ok? on the interval (14,1).

ug R =c3cl, wieRM, =01,

UfaLGR)(O): 31/?(0)

Calculatingp(zm,*l) andamr/(k) using the expansion for UtsLGR)(l):(3V+A1)f7LlG)R,
FZ(hmr’B_l,,an’_l) from Ref. 25 and then the sum SULGRID)_ 3ol HLORI) (56)
(1/2)%, ™ Indyy (K) with the help of transition to the spheri- 3 vrALT3 '
cal Brillouin zone and integration with respect ko we ar- EgLGR =3p(3v— ]_)fLGR,

rive at the final formula foF (2, (see Ref. 28
TR =(3p+ A1) (3v+A;—-1)f (g

FiZg=—KTN[ O 7r4 f(L) Sr+a]
Taking into account consistently the short- and long-

— BNy, h?r 2 (1+a; ™), (520 wave modes of spin moment density oscillations, we can
o o _ now write complete expressions for free energy and other
£ =cfc'Alf('), 1=0,1, O =g 3MFTDf(0) thermodynamic functions of the three-dimensional lIsing

model near the phase transition point.
fO' =f,,+30df©", f,=c; 1s—3<mo+1>f
4. THERMODYNAMIC CHARACTERISTICS OF THE MODEL

b2t —+ _ 2/ FOR T>T, TAKING INTO ACCOUNT FIRST CONFLUENT
=C [[BP(0)], =s""M/(29p), c
¥4 =C, Vs [[BP(0)], 7,4 (290) CORRECTION
+
a, =017 2vCy Po, In accordance with{17), the free energy of the system
taking into account(37) and (54), assumes the following
where ’ D
form in zero external field:
_2 ’ v
£00) = l| +g°)+__gé{1 F=—KTN'[yo+ y17+ v, 72+ 95 " 7
2 + 3
JoTq n ,y(1)+T3V+A1],
(57)
— \/g—é arctar( \/i_ (53) Yo=Seln2+y R, P :C?/C'Aﬁglw ,
e]d
| =TT, 1-01,
(1) = 9091 , %11 /90_911 - 691{1 The coefficientsy; and y, are defined in(37). The terms
2gotq (go) "+1 (go) "+1 proportional to integral powers of in (57) appear exclu-

sively due to inclusion of short-wave modes of oscillations.
3 Jal arctar( i)] The terms proportional te®” and 73”**1 (nonanalytic com-
\/g—(’) ponent of free energyare formed as a result of inclusion of
short-wave as well as long-wave modes of oscillations. The
96=5%do, first confluent correction appears due to the smaller eigen-
- value E, of the RG linear transformation matrix taken into
andg, andg; appear indyy (k) and are given in Ref. 26.  account in the solutions of RR.

On the basis 0f47) and(52), we can Write the following The main advantage of the expression Fois the pres-
relation for the general expressién cg= F( GR+ F(LZG)R cor-  ence of relations connecting its coefficients with microscopic
responding to the contribution to free energy from long-wavecharacteristics of the system and the coordinates of a fixed
modes of spin moment density oscillations: point of RR. The coefﬁuents*/(')+ (1=0,1) are presented in
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TABLE Ill. Coefficients yy, v, andy, of free energyF (57). TABLE IV. Universal parts of coefficients of the nonanalytic component of
free energy.
b Yo Y1 Y2
S “{0)+ A+
$=2.0000 s s
b, 1.8758 —0.8032 —4.4816 2.0000 0.9699 0.6508
by, 2.7464 —0.7759 —3.9551 2.7349 1.8654 0.7263
by 3.1962 —0.7651 —3.7548 3.0000 2.1770 0.7162
c 61.1798 —-0.6734 —2.0482
2c 486.699 -0.6701 —1.9599
$=2.7349
b, 1.8776 -0.7063 —4.6948
by, 2.7496 —0.6952 —-4.1735 _ , O+ 1- (14 1-a+A
bu 3.2000 ~0.6913 —3.9764 U=KTN'[y;+ugr+ug” = “+ug’ m “7 5],
c 61.1930 -0.6924 —-2.2672 (58
_ Q)+ _— (L)+ _A,—
2¢ 486.713 ~0.6978 —2.1665 C=kN'[cotcy’ 7 “+eg’ m1 ]
s=3.0000
by 1.8789 —0.6867 45304 Here
by, 2.7516 -0.6795 —4.0342 (0) _ M+ _ 3.1 —h+ _
sY=v0+t7y1, Uy =cCicyuy’, 1=0,1,
by, 3.2023 ~0.6773 —3.8466 Yo 3 veA, 73
c 61.1999 -0.7020 -2.1971 (59
—t0)+ _ o —t0)+ 1)+ _ —1)+
2c 486.720 ~0.7100 —2.0936 ug’ " =3vyy’, Uz =BrtAysTT,
Hh+ _ 3. —=thH+ —t0)+ _ _ a0+
03 _CVCA1C3 , C3 _37/(3]/ 1)')/3 ’
. O+ _ —_ 1\ AL+
the form of the product of the universal compongft* and ¢y =@Br+AY@r+a—Dys .
the nonuniversal factor depending on microscopic charactefrhe coefficients, andu, are given in(39)
.. ~(0 0 . . . "
istics througtic!® and cfy) [see(57)]. Leading critical am- The formula for specific hedisee (58)] for the model

plitudes and the amplitudes of the confluent correction tqnder investigation can be written in the fofri?

specific heat and other thermodynamic characteristics of the .

system can be presented in a similar way. The valueg, of iz A_ 1+ aal A1)+ B (60)
vy, andy, are presented in Table Il for different values of kN’ ¢ ’

the parametes and the effective rangb of the potential,

. . - )+
while the values ofy§’" are given in Table IV. Fors A — Bget0t a*:E C3 B+ —c
=2.7349, the value of the basic variable at a fixed point v e g gl o

satisfies the conditioh(®~0 (see, for example, Ref. 25

The coefficients of entropy, internal energy, and specific
heat can be expressed in terms of the coefficients of fre&
energy. Taking into account the first confluent correction, we 1 ¢*Frer
obtain the following expressions for entropy, internal energy, X~~~ 542 ° (61)
and specific heat of the system far=0:

An important characteristic of the system such as sus-
eptibility per particle

© O+ 1 D)+ 1-ath can be calculated usin@4). For infinitely small values of
— ! —a —a . T .
S=kN'[s™+cor+uz” " m “+uz’ T 1, external fieldH nearT,, it is defined as

TABLE V. Values of coefficients in the expressio(&0) for heat capacityC/kN’ and (62) for susceptibilityx.

b AY a; BY r* ay
$=2.0000
b, 1.0876 —1.2609 —10.5696 1.8711 —0.0691
by 0.9960 —1.8262 —9.4620 1.9842 -0.1001
by 0.9609 —2.0389 —9.0397 2.0321 -0.1118
c 0.6620 —3.7773 —5.4430 2.6052 -0.2071
2c 0.6471 —3.8634 —5.2601 2.6450 -0.2118
$=2.7349
b, 0.8113 —2.3816 —10.8022 2.1659 -0.1177
by 0.7439 —2.7420 —9.7375 2.2948 —0.1355
by 0.7184 —2.8773 —9.3355 2.3488 -0.1422
c 0.5050 —3.9838 -5.9193 2.9709 —0.1969
2c 0.4944 —4.0397 —5.7286 3.0134 —0.1996
$=3.0000
by 0.7238 —2.6494 —10.4343 2.4427 —0.1291
by 0.6644 ~2.9650 —9.4274 2.5860 —0.1445
by 0.6420 —3.0832 —9.0478 2.6459 —0.1502
c 0.4558 —4.0460 —5.7981 3.3248 -0.1971

2c 0.4465 —4.0947 —5.6074 3.3710 —0.1995
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It is found that chemical disorder in the YbIngoompound(especially in the Yb sublatti¢e
considerably affects its magnetic properties due to spatial nonuniformity of the
temperatureTy, of the first-order valence phase transition. The evolution of the magnetic
susceptibility during disordering of the stoichiometric compound YblpiSwdescribed by the
model expression taking into account the dispersion upon the application of pressure
and variation of composition of Ybin,Ag,Cu, solid mixtures. The behavior of the main
parameters of the system masked by blurring of the magnetic susceptibility singularity
for a disordered sample during phase transition. Among other things, the value of the derivative
dT,/dx=203K is determined. The reason behind an abrupt change in the concentration
dependence of dispersion and the paramagnetic Curie temperature is calcubgted 25.
© 1999 American Institute of Physid$1063-777X99)00611-§

1. INTRODUCTION a testing was carried out, its results cannot be regarded as
unambiguous evidence in favor of a definite model since
Unstable valence of some rare-earth elemé@ts, Sm,  either not all aspects in the behavior of phase diagrams were
Eu, and YD is responsible for many peculiar properties of analyzed(e.g., possible effect of a magnetic field on it as in
metallic or semiconducting systems containing these eleRef. 13, or the chosen model parameters did not correspond
ments. Such properties include first-order phase transitiong reliably established factdike the model value\ v=1 of
accompanied by an abrupt change in the valence state of ion@lence jump adopted in Refs. 10 and 15 instead of the ex-
(usually, from almost integral HF phase of heavy fermions toperimentally determined value 0.1 for Ybingu Besides,
intermediate-valence IV phaseThese transitions are iso- the most detailed verification of the models was carried out
morphic even for considerable jumps in volurug to 15%  in Refs. 13 and 15 for different objects for which the mecha-
in pure C¢,' and their phase boundary on tRe-T diagram  nisms of transition can be different. Thus, a more detailed
terminates at the tricritical point as on the liquid—vapor dia-analysis of features of the phase diagrams and quantitative
gram, followed by further continuous transition betweencomparison of various theoretical models on the same object
phaseg,or rather between regimes of interaction between thexre required for determining the driving forces of first-order
f-level and conduction electrons. It should be noted thavalence phase transitions along with a search for new sys-
Eliashberg and Capellmahin their recent publication paid tems with valence transitions.
attention to the fact that the curve of first-order phase tran-  The intermetallic compound YbInGappears as espe-
sitions is continued behind the tricritical point at the second-ially attractive among such objects. This is the only com-
order transition curve, i.e., the crystal structure of phasepound known so far, in which the first-order valence phase
may display differences lying apparently beyond the resolviransition takes place for the stoichiometric composition at
ing power of direct structural investigations. atmospheric pressure and a temperature convenient for ex-
Although the fundamental relation between the jump inperiments T,=40K).1%1%1" Consequently, a part of the
volume and the change in the valence state, and hence tipdase diagram can be obtain@d least, in principlgon an
size of the electron shell of a rare-earth ion is obvious, thebject with a high degree of perfection. Abundant experi-
trigger mechanism of the first-order phase transition, as welnental data with elements of analysis of transition mecha-
as the mechanism limiting the valence jump during the trannism (see Refs. 6, 18, and 19 and the literature cited thgerein
sition, are still disputable and give rise to new theoreticalaccumulated for this compound as well as its structural and
models. If we disregard some modifications, these model caalectronic analogs are still insufficient for drawing final con-
be classified as follows: electron excitation from localizedclusions. Unfortunately, the value df, for the compound
f-level to band state® Mott transition with delocalization YbInCu, decreases under pressure unlike the case in Ce-
of the f-level itself®’ fluctuations between configur- based systems. For this reason, it is still impossible to obtain
ations®~*° volume collapse due to a strong dependence ofhe region on the phase diagram with the tricritical point,
Kondo energy on voluméhe KVC mode),''"*3and essen- which is most important for an unambiguous verification of
tially band transitiort the models, without using solid substitutional mixtures like
It should be noted that not all of these models passethe quasi-binary system Ybin,Ag,Cu,.'® However, conse-
through quantitative testing in real systems. Even when suchuences of

1063-777X/99/25(11)/6/$15.00 889 © 1999 American Institute of Physics
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chemical disorder for properties and structure of the phas@ABLE I. Values of model parameters for magnetic susceptibility @ipd
diagram of this system are unknown distribution function in YbInCy compounds. Sample numbers corresponds
L . . . o Fig. 1.
Our aim is to demonstrate the importance of inclusion oft 9
disordering in compounds of the YbIngtor correct deter- Sample
mination of phase boundaries. It should be noted that, for the

- . . Parameter 1 2 3
existing method of sample preparation, the most important
singularity at the phase-transition point associated with th&€, emuK/mole 2.55 2.55 2.55
effect of disorder was observed for a nonstoichiometric™@: K | 7.2 23 33
sample YR Jny gCu, which was chosen as the preferred ob-ﬁo’ 10" emu/mole 06'0 063'2 08;:3
ject in subsequent investigatios® Recently, Sarrao =+ 40 a1 38
et al’®~*®successfully applied special technique for obtain-r . 0 47 74
ing single crystals of stoichiometric composition with a high sz K <10 1.9 285
degree of ordering and exceptionally sharp jumps in propers,, K 0 4.9 11

ties at the phase transition point and for clarifying the micro
scopic pattern of sample disordering for different methods of

sample preparatioft. . following from the Curie constant is close to the value ex-
It should be noted that essentially structural methods arﬁected for YB" in view of the small deviation of the true

not always used for detecting and identifying the type Ofvalence of the ion from an integer in the heavy-fermion HF
transitions. In many cases, the study of various electroni hase of YbInCu”*z“ Curve 1 in Fig. 1 shows that the

propertles sensitive to _st_ructure varlathns aré moreé CoNV&q s calculated by formulél) for the chosen parameter
nient. However, the efficiency of such investigations is de-

termined by th ist ¢ ¢ d bare in good agreement with experimental d4ta.
ermined Dy the existence of one-lo-one correspondence be- Following Lawrenceet al,?° and in accordance with

tween peculiarities in the behavior of electronic properties .\ + ral data, we shall assume that the main reason of dis-
and the valence and structural states of the system. In co der in the stoichiometric compound Ybingis the disor-
pounds of rare-earth elements, magnetic susceptibjity dered distribution of atoms of the form (Yhbn,)
serves in many cases as a reliably interpreted property due X

| | ; i s, A simpl del of incl (Iny_4Yb,)Cu, in Yb and In sublattices. It is responsible
arge vajues of magnetic moments. A simpie modet ot InClu-,, spatial nonuniformity of the phase-transition temperature
sion of disorder and estimation of its role in the magneto-

volume effectd In x/dInV were considered in Refs. 19 and Ty Taking into account a considerable susceptibility jump

. X ” at the transition point as well as a high sensitivityTof to
21. In the present paper, this model is verifi&kc. 2 for P g yTof

. . . ..various factors (pressure, impurities, and magnetic
available data on the dependence of magnetic suscept|b|lltﬁ'eld) 1520246 can confine our analysis to just this mecha-

\);t?lncthe qut?n; of grderlng "; the st0|ch|omfetr|::hcompo;mdnism of influence of lattice-site or chemical disorder on the
. h.n U4t( ef. 20 (.fc' 3aln ocn preRssfurle O; € noncsj 0- magnetic susceptibility1). In this case, the expressidm)
ichiometric composition YbnoCu, (Ref. 13 (Sec. dand o oing yalid ifw(T) in (1) is a function of distribution of

is used for analyzing a system of continuous solid MIXUreSe values off}, of theith volume elements of sample. It was

Ybin, _,Ag,Cuy (Ref. 17 (Sec. 5. The main results are ¢, 19 that the normal Gaussian distribution
summarized in Sec. 6.

W(T)=W(T,Ty,0)={1+erf[(T-Ty/(V20)]}/2 (3)

2. MODEL DESCRIPTION OF MAGNETIC SUSCEPTIBILITY [erf(x) is the standard error functipean serve as a satisfac-
OF YbInCu, tory distribution function for weakly disordered YbIngu

) o samples. In order to describe susceptibility in the vicinity of
The magnetic susceptibility of a perfect sample of

YbInCu, is correctly described by the following

expressiort® 0.05
X(T)= X0+ [C/(T—=0) — xo]W(T). (1) , 0.04
HereXoocllT',X (Ref. 22 is the temperature-independent sus- g 0.03
ceptibility, T:}’ is the characteristic Kondo temperature in the =
IV state,C and ® are the Curie constant and temperature, ° 0.02
andW(T) is a step function: = L B
W(T<T,)=0; W(T>Ty)=1. (2 0.01
Such a form of the expression for susceptibility corresponds 0o 46 ; 8|0 * 1éO ! 1é0 500
to the conditionACE,:sTV<T:Q’ (Acgris the complete split- T,K

ting of the fundamental multiplet=7/2 of Yb by the crystal
electric field(CEP), which is observed for YbInGU(A cer FIG. 1. Temperature dependence of magnetic susceptibility in different

_ 231V __ 17 : samples of YbInCucompound: for a single crystal with a high degree of
44K, 7Ty =420 K)." The values of the parameters in Eq. perfection(curve 1), for a polycrystalcurve2), and for a highly disordered

. 16 . .
(1) were selected earlier by Sarr&‘_b al™> and are gIven 1IN sample(curve3). Symbols correspond to experimental data of Ref. 20, solid
Table I. The value of the magnetic momemtper Yb ion  curves are the results of model fitting.
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TABLE II. Values of model parameters of distribution function for nonstoi-

0.035 chiometric compound Yhln, {Cu, for different pressureéFig. 2).

£ 0.030
Pressure, kbar

2 0.025
g Parameter 0 2 4 5.9
3 0.020
E n 0.32 0.28 0.38 0.42
. 0.015 Tui, K 40.8 36.7 32 29.2
= 0.010 Tyz, K 52 a7 437 407

0005 [ 1 1 1 1 i 1 i i 1 | 1 E ;-19 ig 274 236

0 20 40 60 80 100 72 : : '

FIG. 2. Temperature dependence of magnetic susceptibility in nonstoichio- .
metric compound Yh.n, {Cu, at different pressures according to experi- Ybl.zlno.gcu4 under dlfferent pressurf{borrowed' from Ref.
mental data of Ref. 15; solid curves are the results of model fitting. 15) and its model description. The corresponding model pa-

rameters are given in Table Il, and pressure dependences of
the temperature3y,; and T, are shown in Fig. 3. In the

pressure range under investigation, these dependences are
linear and have almost the same slope with the average value

phase transition with the help of Eq4) and(3), it is suffi-
cient to select the parameters of the distribution function

viz., a certain mean valug\, and the dispersionr?, for — . . .
: of dTy/dP=—2 K/kbar. This value differs insignificantly
asymptotic values ofo, w, and®. We shall demonstrate the g "g o piaineq by Nowilet al® from an analysis of

applicability and consequences of application of the pro-,. ) o
posed model from an analysis of the behavior of magnetig'Splacemem of singularities on th&T) curve under pres-

susceptibility as a function of ordering, applied pressure ang""® although the shape of the curve is slightly deformed
o - ' " 7 under pressure. This can be seen from the change in the
variation of composition.

parameters of the distribution functigd) in Table Il. The

3. ANALYSIS OF THE ROLE OF DISORDER IN weak but stable variation of the distribution functigV(T)

STOICHIOMETRIC YbInCu , SAMPLES under pressure calr:3 bg due t'o struct_ural defects.. Unfortu-

nately, Nowik et al.” give no information concerning the

Figure 1 shows that the peak on the temperature depefeversibility of susceptibility after the removal of pressure.

dence of the magnetic susceptibility of YbInCcompound  Subsequent measurements of the effect of pressure on the

becomes less sharp as disordering in the sample increasggsceptibility of the compound with the stoichiometric com-

and is then transformed into a two-hump curve also typicaposition give practically the same value of the derivative

of samples with a nonstoichiometric compositifig. 2. (-2 K/kbar) for an imperfect sample for which disorder is

There can be several reasons behind the emergence of thgen into accoun??*as well as a high-quality samptg.
two humps. First, the presence of at least two types of domi-

nating structural defects, which is_quite natural for 'Fhe P'®%5 ROLE OF DISORDER IN Ybin,_ Ag Cu, SOLID

sumed arrangement of Yb atoms in the two sublattidés  \;xTurES

and In sublattice Second, a certain stratification of the

sample in composition within one structural phase for a spe- An analysis of magnetic properties of YhinAg,Cu,

cial form of phase diagrad?. Finally, the separation of the @alloys is of special importance since it is generally accepted
sample into two phases. In any of the versions listed abovdhat the first-order valence phase transition in this system is

the distribution functiotW(T) in (1) must contain two Gaus- transformed into a continuous transition $0#0.25 in view
sians of type(3) with different sets of parameters: of changes in the parameters of electron—electron interaction

_ _ during alloying!’ Monocrystalline samples of solid mixtures
W(T)=Wy(T,Tyy,00)(1—n)+W,(T,Typ,02)n. (4  in Ref. 17 were grown according to the same method under

Figures 1 and 2 show the results of selection of the param-
etersTy;, o, andn in Egs.(1) and(4) for the best descrip-
tion of the x(T) dependences for samples with different de-
grees of disordering. The values of the parameters of the
distribution function(4) and the magnetic parameteys, u,
and® are given in Tables | and IlI.

Naturally, the distribution function4) should also be
used for describing two-hump dependengé$) for nonsto-
ichiometric samples also.

4. ANALYSIS OF THE EFFECT OF PRESSURE ON THE 0 5 6
SUSCEPTIBILITY OF Yb ; 5Ing sCu, P, kbar

.

.Figure 2 ShOWS the temperaturg d?pend_ence of the magrg, 3. pressure dependence of model values of phase transition tempera-
netic susceptibility for nonstoichiometric compound ture for compound Yh,ing ¢Cu,.
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FIG. 4. Temperature dependence of magnetic susceptibility in
Yblnl,X_A:quu4 a_Ions according to experimental data _of Ref. 17 and their 30f
model fitting (solid curveg corresponding to the following values of con-
centrationx: 0.1 (curvel), 0.2 (curve?2), 0.3 (curve 3) and 0.4(curve4). B
X 20t
b -
the InCu flux that was used for obtaining YbInCaom- 10k
pound, which ensured a high degree of sample perfection -
except random distribution of atoms over the sites of In—Ag u———-‘":/. Ly 4 .
sublattice. For this reason, we can confine the approximation 0 0.1 0.2 0.3 0.4
of the x(T) dependences to formulé$) and(3). The results X
of the approximation are shown in Fig. 4, and the obtained 0|_
values of fitting parameters are given in Fig. 5. _l"‘"""\' (©)
The model used by us correctly describes the evolution -20fF
of temperature dependences of susceptibility of alloys for a -
reasonable behavior of the paramet@isleast, to values of x ‘40:
x=0.3). For example, the linear increase in the phase- @ _gol
transition temperature with silver concentrati@ry, /dx -
=203K (see Fig. 5ais in satisfactory agreement with the - 801
data following from the measurements of elastic parameters —1000__ IR DRI |
(dTy/dx=210K).?® A weak initial increase in the quantity 0 0.1 0.2 0.3 0.4
X

o=(1+25x) (see Fig. 5bappears as natural since disorder

takes place in the In—Ag sublattice of the alloy under inves+g. 5. concentration dependence of model parameters calculated by for-
tigation and affects thé-states of Yb only indirectly. mulas(1) and (3) for YbIn;_,Ag,Cu, alloys: Ty (), o (b) and® (c).

The paramagnetic Curie temperat@ealso changes in-
significantly in the concentration range under investigation
(Fig. 59. However, this important parameter characterizingmineq as a result of such an approximation corresponds to
the interaction of thef-level with band e_lectrons strongly the properties of a perfect system. It is remarkable that the
depends on the accuracy of reconstruction of i) de-  gpatial distribution function for Curie temperature recon-
pendences from the available data and on the choice of gy cted experimentally for some compositions of inhomoge-
temperature interval for thg|r qpprommaﬂon. For this reasonpeous Invar alloys Fe—Ni is close to the Gaussian distribu-
the values 0f® presented in Fig. Sc and Table Il are ratherjon, function® Apparently, distributior(3) can indeed serve
qualitative estimates, and only the anomalous increase in the; 5 good initial approximation for taking into account im-
absolute value o® as well aso starting from a certain perfection of various systems.
critical valuex.=0.25-0.3 is worth noting. 2. The results of successful model fitting of temperature
dependences of susceptibility correspond to the assumption
that dispersion of the quantifyy, is mainly responsible for
smoothing of singularities in the physical properties of dis-

1. It should be noted above all that in our model we ordered samples in the phase-transition region. This assump-
assume the simplest structure of the distribution function fotion is confirmed by an anomalous increase in the magneto-
the phase-transition temperatufrg in a spatially inhomoge- volume effect in imperfect samples in the vicinity of the
neous sample. The validity of just this function is not obvi- phase-transition temperatéfesince just in this case the ef-
ous beforehand, but nevertheless the proposed model makfest involves a strong pressure dependencépfnd x(Ty)
it possible to approximate correctly the transformation ofof volumes elements of the sample wilh,~T. A direct
magnetic susceptibility of the compound YbInQunder the  microscopic evidence of dispersionDf is the simultaneous
action of various factors in combination with the disorderobservation of the NMR signal from the IV and HF pha8es
taking place or induced by these interactions. This allows usoexisting in the temperature rangeos in the vicinity of
to assume that the behavior of physical parameters dete, .

6. DISCUSSION OF THE RESULTS OF MODEL ANALYSIS
OF SUSCEPTIBILITY
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The value of the Curie temperatu@ also depends on the low- and high-temperature phases separately. Thus, the
the composition and the degree of perfection of samples, bwgvolution of asymptotic segments of th¢T) curves during
the role of its possible dispersion ifl) is considerably alloying is associated, according Saretal.,'” with a varia-
smaller than the effect oF,, according to estimates. For this tion of the parameters,’ andT". In this case, the transi-
reason, we disregard here the nonuniformityato simplify  tion temperature region, and hence the behaviof\gfx),
the analysis, which does not affect semi-quantitative concluwhich play the leading role in the proposed model of disor-
sions drawn below. dering are not considered.

3. An increase in the extent of disorder in the stoichio-  The exaggerated opposition of the mechanisms of tem-
metric compound, as well as deviation from stoichiometry,perature dependence gfin the approaches discussed here
leads to “splitting” of Ty, into two temperatures. Their iden- demonstrates that the inclusion of disorder is of considerable
tical pressure dependences speak in favor of the concentramportance. In actual practice, both mechanisms must be
tion stratification of the sample within the same structuraltaken into account in the description of experimental results.
phase rather than separation into different phases. It was prén contrast to the model proposed by Sarmioal,'’ the
sumed by Lawrencet al?° that such a stratification can be model(1), (3) allows us to do this easily, but the temperature
due to peritectic nature of the phase diagram for the comeependence of susceptibility alone is obviously insufficient
pound YbInCuy. However, the shape of the phase diagram infor an unambiguous selection of the doubled number of pa-
the region of the stoichiometric composition under investigatameters. According to the results obtained by us edief,
tion has not been established as yet by direct structural metithe magnetovolume effectIn y/dInV in the alloys under
ods, and we cannot rule out in principle the existence of twanvestigation can successfully compensate the missing ex-
isomeric HF phases with close atomic volumes and properperimental information.
ties, whose transition to the IV phase is controlled by the 6. This effect would be especially helpful in the vicinity
same parameters of the system, although it occurs at slightlyf the concentrationx, which is critical indeed for the pa-
different temperatures. In such a case, the very fact and themeters of the proposed model: for x., the concentration
actual origin of phase separation of the sample are immatedependence ofr as well as® becomes considerably stron-
rial, and a distribution function of the forii8), albeit with a  ger. The dispersion of, and the characteristic of the inter-
high dispersiort; remains valid for an adequate description action of magnetic moment with band electrons in the HF
of a number of its properties for a moderate disorder. phasé® (|©|~THF) are not connected directly, and we can-

4. In the presence of stratification in the highest-not establish unambiguously the reason behind such a behav-
temperature phase of the compound under investigation, jgr on the basis of the available data.
detailed comparison of the parameters of Thedistribution A possible reason can be the transformation of an abrupt
function for samples obtained under different conditions inphase transition at. into a continuous transitiot, which
different laboratoriesand the more so, by different methods presumes that the values Bf and T become closer. The
is meaningful only on a qualitative level. A comparison of corresponding increase || in Fig. 5¢ does not contradict
values of dispersion in Table Il and in Fig. 5b shows that thesuch a hypothesis and the asymptotic valu&of 143 K for
disorder associated with imperfection of the method ofx=11" and the increasing role of dispersion of the Kondo
preparation of stoichiometric samples is a much more importemperature can be manifested in a more rapid increase in
tant factor for the magnetism of the compound under invesAlthough the model itself must be modified far>x. in the
tigation than, for example, the disorder in the In-Ag sublat-case of transformation of phase transition, the dependences
tice of the YbIn_,Ag,Cu, solid mixture which cannot be in Fig. 4 following from it appear more natural than the
eliminated in principle(it should be noted for comparison strong and nonmonotonic changesTi§i and Tk in Ref. 17.
that sample 3 in Fig. 1 correspondsxte:0.06 in the equiva-  The latter have no singularities fag, and this concentration
lent formula for the disordered stoichiometric compositionis singled out by Sarraet al’ on the basis of the change in
(Yb;_,In,)(In;_,Yb,)Cu, mentioned above® the behavior ofy(T) only in the transition temperature re-

Thus, the results of analysis of the properties of alloysgion. Naturally, the first-order phase-transition curve in Fig.
based on the compound YbIngwithout an appropriate 5a must terminate at=0.3 for such a scenario, and its con-
control of the state of the Yb—In subsystem should be treatetihuation beyond, is only the result of successful imitation
with care. This remark does not concern the data foiof the y(T) dependence by the initial modél), (3).
YbiIn,_,Ag,Cu, alloys used by us here since these data were However, it cannot be ruled out that the observed behav-
obtained by using the standard method which minimizes théor of the model parameters is due to inclusion of the addi-
disorder in the Yb—In sublatticE. tional interaction of the moments upon attainment of a cer-

5. The behavior of the magnetic susceptibility upon antain level of band filling or coordination of impurity atoms in
increase in the Ag concentration up t&=0.3 in the nearest neighborhood of Ybf the type of percolation
YbIn, _,Ag,Cu, alloys is essentially explained in the model effech. It is also possible that such a behavior is associated
(1), (3) only by an increase in the value ®f and its disper- ~with the beginning of a certain structural randomization in
sion. Such an approach differs in principle from that used bythe alloy involving the Yb sublattice in spite of the applica-
Sarraoet all’ who approximated the experimental depen-tion of unique method of sample preparation. The list of
dencesy(T) by the theoretical curve for a Kondo impurity possible scenarios is much larger, and further investigations
with J=7/2%? by selecting the characteristic temperature forof structural and electronic properties of the YhlpAg,Cu,
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The existence of nonstationary electromagnetic processes in a plate of compensated metal
carrying a strong direct current is established theoretically. The nonstationary effects are due to
the nonlinearity caused by the influence of a inhomogeneous sign-alternating magnetic

field of the current on the dynamics of charge carriers. Such an influence suppresses conductivity
in the entire sample except a narrow region near the zero magnetic field plane. It is found

that the current pinch formed in this region can propagate quasi-statically in the direction
transverse to the current. As a result, an ac electric field compdaedthence, an ac

voltage across the sample across the sanmgppears against the background of the applied dc
electric field. The ac voltage generation can be observed experimentally in a preset current

mode. © 1999 American Institute of Physids$§1063-777X99)00711-2

INTRODUCTION thin plane-parallel plate with diffuse boundaries. It was

Experiments on pure metals at low temperatures reproved that peculiarities of the nonlinear response in the

. : ample are associated with an alternation of the magnetic
vealed a number of electrodynamic effects which could nof. : .
i ; . ield of the current over the sample thickness. It is equal to
be described on the basis of conventional concepts of metals .

. y . .~ Zero at the middle of the plate and assumes equal but oppo-
as exceptionally “linear” elements. Among first communi- site valuesH and — 7 at the opposite faces of the plate:
cations were those on observation of deviation of current—= PP plate:
voltage characteristicdVC) for thin samples from Ohm's H=2mxllc. (2
law towards a decrease in resistahéalependence of sur-
face impedance on the amplitude of incident wiemd hys-
teretic rectification of rf current in a metaP. Nonlinearity

Herel is the current per unit width of the plate awcdthe
velocity of light in vacuum. The alternating magnetic field of

LT the current traps a part of electrons in the potential well. The
was observed for such insignificant values of current or wav

. . . rajectories of such particles are coiled around the zero mag-
amplitude that it could not be due to overheating of charge Ject part . 9
hetic field plane. For this reason, trapped charge carriers in-

carriers or other familiar sources of nonlinearity associateqeract with the electric field over the entire mean free path
with electric field. It was found that the nonlinearity typical As the currentl increases. the number of such carriers in-

of pure samples is connected with their main property, V'Z't%reases due to particles that collided with the metal surface

long mean .free. path for electrons. The mean free paths Y6r smaller values of the current and hence could not partici-
charge carriers in pure conductors at low temperatures can %

as large as a few millimeters. For this reason. the magneti ate effectively in the formation of the plate conductivity.
. g . ' o 9 hus, trapping of electrons increases the conductivity of the
field of the current effectively bends the trajectories of par- e ;
. . o . sample. This is observed for quite small values|ofor
ticles, thus affecting the metal conductivity. Such a nonlin-_ . o .
earity mechanism is known as maanetodvnamic. In the StaltiWhlch the characteristic radius of curvatuRél) of electron

y nag y ' . Lcrajectories in the magnetic field of the current is larger than
case, the most favorable conditions for its observation ar

; . . the plate thickness:
created in thin samples whose thicknes€an be smaller P

than the mean free pathof the carriers: R()=cpe/eH()=I"1, d<R(l), 3
d<l. (1)  where—e andpg are the charge and Fermi momentum of an
electron.

The conductivity is determined in this case by a small group

. The theory constructed by Kanet al® explained the
of electrons moving almost parallel to the metal surface. In . . . .
. results obtained in Refs. 1 and 2 and stimulated new experi-
view of the small number of such electrons, even a compara- : S
. o . mental investigation4.It was found that as the curret
tively weak magnetic field of the current can noticeably af-.

. - ) increases further, the resistance of thin plates attains its mini-
fect the electrical conductivity of the sample and its IVC. .

. . . . mum value(when the radiuk(l) becomes of the order af)
A theoretical analysis of the magnetodynamic nonlinear- . . .
. . . . .. .._and then starts increasing. In the region of strong currents
ity effects in the static case was carried out for the first time

by Kaneret al.® who studied the conductivity and IVC of a d>R(l) 4

1063-777X/99/25(11)/6/$15.00 895 © 1999 American Institute of Physics
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the resistance of a conductor exhibits a tendency to a linear Ats>v 1, (5)

increase. Such a regularity is observed for metals with equal . . .

concentrations of electrons and holesmpensated metals wherev is the frequency of bulk relaxation of particles. We

e.g., tungsten and cadmiufsee Ref. 7 shall assume that reflection of electrons at the plate bound-
Later, Kaneret al® established theoretically that the in- aries is diffusive.

crease in the resistance of thin samples of a compensate .Vr\]/ethmtrodgcg the Carctj(_e&c?n tsyst';]emf of coc;r;jr:nattlest n
metal is due to a peculiar pinch effect. According to KanerVNich thex-axis 1S perpendicular fo the 1aces of the piate,
and the plan=0 is at the middle of the sample. We direct

et al.? in the limit of strong currentg4) all the electrons i< al th t and theaxis al th ¢
intersecting the zero magnetic field plane become trappeﬁ]e y-axis along the current an axis along the vector
A—|(x,t) of the magnetic field of the current:

irrespective of the angle of incidence on the plane. As
result, their conductivity tends to saturation and becomes of H(x,t)={0,0H(x,t)}. (6)
thi same  order of mag.”"“de as the .CondUCtIVItyThe plate is assumed to be infinitely lofthe size along the
o=Neé?l/pg of a bulk plate(N is the charge carrier concen- . ) . .
. ) . -axis) and wide(the size along the-axis).

tration). In this case, in contrast to the case of weak currentd . o

: . In order to emphasize most vividly the role of magneto-
(3), the group of trapped particles occupies not all the

. . . . “dynamic nonlinearity in the phenomena under investigation,
sample, but is concentrated in a narrow central region havm%e assume a simole model of a compensated metal. ie
a width of the order ofR(l). Outside this region, charge P P I

. . o . . assume that the electron and hole Fermi surfaces are identi-
carriers move in a dc magnetic field along trajectories resem-

bling Larmor orbits. Their conductivity turns out to be much cal spheres. The masses and mean free paths of electrons and

L . holes are also regarded to be identical. In this case, electrons
smaller than the conductivity of trapped particleas a re- N ;
. . S and holes make equal contributions to the electrical conduc-
sult, a strongly nonuniform spatial distribution of current tivity tensor. These contributions are mutually compensated
density typical of the pinch effect sets in in the plate. The, y : y P

width of the current pinch formed by trapped electrons de" the nondiagonal tensor components and added in the di-

o . . : .~ agonal components. Thus, the Hall effect does not take place
creases with increasing This in turn leads to an increase in . . S
) in the metal. This means that the electric field vedifx,t)
the sample resistance.

The strong nonlinearity in the distribution of direct cur- Is directed along the current.
rent over the sample cross section can generally lead to ef- E(x,t)={0E(x,t),0}. 7

fects of another type, such as the instability of the static].he electricE(x,t) and magnetiti (x.t) fields can be deter-

currelgt ?tr]l-Jct;re,hand.tto ?tran5|t|on tto a n%nsta(;lonary Si.t"’l([fﬁined from Maxwell's equations, which have the following
(see Ref. 10 Such a situation was not considered as applie orm in our geometry:

to the pinch effect4), although the available experimental
data indicate the evolution of nonstationary processes under ~ JH(x,t) 4w JE(X,t) 1 dH(Xt)
the preset direct current conditioh's. T ¢ W x o a0 ®

The aim of the present publication is to demonstrate herei(x.t) is th t densit
theoretically the possibility of a nonstationary process in ay ergj(x, ) is the current density. .
Since the characteristic siZg(1) of the electron orbit

compensated metal carrying a strong direct current. The dy- " .
namics of charge carriers and their conductivity in theunder the conditiongl) and (4) is much smaller than the

strongly nonuniform magnetic field of the current is analyzedplate thlcknes§ as well as t.h € mean free path, we shall carry
in Sec. 2. It is foundsee Sec. Bthat the static distribution of out the analysis of the distribution of current density and the

current in the casé) is not the only one possible distribu- fields in the main appro>_<|n_1at|on in the parametBi@)/d

tion. An alternative state in which the current pinch propa—<1 and R(I_)/I<f1' The limit (R(1)/d)—0 corres_ponds 0

gates in the direction transverse to the current is possible d Qe approxmat!qn of unbounded, metal. .In this case, the

to essentially nonlinear and nonlocal nature of conductivity. opnda_ry conditions for Maxwell's equation®) can be

In this case, instead of a uniform electric field distribution written in the form

over the plate thickness, a domain structure is formed: the H(—o,t)=—H(+0,t)=H(l). 9)
ropagating current pinch separates two regions with differ..

gnt?/a?ues%f electricpfieIE. Trr)we difference ig these values Since we assume that the total current

is proportional to the velocity of propagation. The direction |= f*w

of motion of the domain wall and the pinch is such that the C dxj(x.t) (10
region of a stronger electric field expels the region with a

smaller value ofE. The observed nonstationary process is!S @ssumed to be constant, the magnetic fieick,t) for
not accompanied by Joulean losses. Xx— =+ is independent of timgsee(9)] and is determined

only by the value of in accordance witli2).
1. FORMULATION OF THE PROBLEM: BASIC EQUATIONS
AND BOUNDARY CONDITIONS 2. DYNAMICS OF CONDUCTION ELECTRONS AND

We shall assume that the required nonstationary state %URRENT DENSITY

quasi-static: the characteristic tindg of variation of elec- Peculiarities of the nonlinear conductivity of a metal are
tromagnetic field is much longer than the mean free time ofletermined by the shape of electron trajectories formed by
charge carriers: the intrinsic magnetic field of the current. Let us analyze the
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FIG. 1. Phase spac@(,x). Regions of existence of trappét) and Larmor
(2) particles.

dynamics of charge carriers in a nonuniform quasi-stati

field H(x,t). Since the motion of electrons and holes in the
adopted model of the metal differs only in the sign of the
radius of curvature of their trajectories, we shall consider

only the dynamics of electrons.

The integrals of motion in a magnetic fiekdi(x,t) are
the total energywhich will be assumed to be equal to the
Fermi energy for definiteneps

gp=p2/2m, (11)

and they- andz-components of the generalized momentum,

ie.,
(12)

Herem is the electron mass and, andv, are the compo-
nents of electron velocity. The vector potentia(x,t) is
calibrated as follows:

py=mv,—eA(x,t)/c, p,=mv,.

A(x,t)={0, A(x,t),0}, A(x,t)=fxdx’H(x’,t).
i (13

C
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FIG. 2. Geometry of the problem. Schematic diagram of trajectories of
trapped(curvesl) and Larmor(curves?) electrons in the intrinsic magnetic
field of current.

toordinatesp, andx. It can be seen that conduction elec-

trons can be divided into two groups according to the type of
motion:

(a) Trapped particles. They exist due to the alternating
spatial distribution of the magnetic field of the current. Their
trajectories are shown in Fig. 2 in the form of cundesoil-

ing around the plang=xy(t). The half-period of motion of

a trapped electron along theaxis is given by

X2 dx’
T(pL.,py)= f (16)

X1 |VX(X, vt)| .

According to Fig. 1, the turning points;<x, are the roots
of the equation

pI(x,t) =py . (17)

In the momentum spacep( ,p,), this group of electrons
corresponds to the region

—eA(x,t)/2c=p, <pE,

Py (D) <py<py™0)=p, . (18)

The symbolx, denotes the point at which the magnetic field It is important to note that trapped particles are present only

of the current vanishes, i.ed4(xy,t)=0. In the static situa-

in the neighborhood of the plane=x(t), occupying the

tion, this point corresponds to the middle of the sample, i.e.spatial region of widthx, —x_. The coordinatex.. of the

Xo=0. In the general case, however, the valugptlepends
on time and hence does not coincide with 0. The value of

A(X,t) is negative and attains its maximum equal to zero for

X=Xo(1).
The velocity component, is defined as
V== (Um)[p? — (py+eA(x,t)/c)?]"2,
p.=(pE—pH)"
The condition that the radicand in the first formula(i¥)

(14

boundaries of the region where trapped carriers exist are the
roots of the equation

e|A(x. ,t)|/2cpe=1. (19

(b) Larmor electrons. These particles move in a
constant-polarity magnetic field of the current in trajectories
2 resembling circular orbit¢see Fig. 2. However, in con-
trast to Larmor circles, their trajectories are open in view of
nonuniformity of the fieldH(x,t). The half- period of
motion of Larmor electrons is given Ky6), and according

must be nonnegative can be used to find the range of admigy Fig. 1, the turning pointx,<x, can be found from the

sible values of the generalized momentpy
. eA(X,t) eA(X,t)
Py = =P o S=pySPL T
=py(x,t). (15)

This range is shown schematically in Fig. 1 in the

equations

pyx.D=py, PY(X,t)=py. (20

The momentum space regiop (,py) occupied by this elec-
tron group in the defined by the inequalities

0=<p, <pg,maxp, ,py"(x,t)}<py=py¥(xt),
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mln mln ! ’ ’
(X, t) [P, —pI"(X, t)| JXz dx'vy(x", ) E(X',t)
min
map. #00) == . w D]
(21
_ _ mc (x2 v (x",t)] E(X',1)
The current density for the corresponding groups of par- =T dx’ o HX D) (26)
ticles can be determined from the solution of Boltzmann’s 1 ’

kinetic equation which must be linearized in the electric fieldWe integrate the right-hand side of this equality by parts.
E(x,t). The nonlinearity in this case is completely deter-Since the velocity component, vanishes at the turning
mined by the magnetic fielti (x,t) in the Lorentz force. If  pointsx; andx,, the nonintegral term vanishes, and the ratio
we choose the generalized momentpi(12), the quantity  (26) assumes the form

p, (14), and the electron energy as independent variables of , , ,

the distribution function, the kinetic equation is transformed f"z dx’vy(x",t)E(x',1)

into an ordinary differential equation. It can be easily inte- X1 V(X" D)

grated for positive and negative values of the veloaity

(14) separately. Integration constants are determined from :—f dx'|vy(x", 1)} —
the conditions of joining of the obtained solutions at the

pointsx; , of electron turning. Omitting simple calculations, |t follows hence that the asymptotic forit25) of current
we write the final resuft: density differs from zero only due to the nonuniformity of
the magnetidH(x,t) and electricE(x,t) fields. It should be

Jd E(X',1)

ax" H(x' t) @7

3 dp,d X, t
jeL(x,t)y= pye UI il pyrl)fz X, noted that the next term in the expansion in the small param-
™ PE OrL (P& =P Avi(x. )] eter (24) is proportional to R/1)?<1. This term describes
x dx'vy (X' ,DE(X 1) the magnetoresistance effect in the intrinsic magnetic field of
J - sinh(v7(x;x")) the current.
X1 |VX(X !t)|

cosiv7(Xq;X))
+ T coshuT) 3. SELF-SIMULATING SOLUTION OF MAXWELL'S
EQUATIONS. ZERO-CURRENT RUNNING WAVE

x2 dX' vy (X' )E(X',t .
X f ’ V|y( ’)t (| ) cosh vr(xz;x’))}. We assume that a nonstationary process has the form of
Xg Vx(X',0) a wave of the type
(22 E(,H)=E(X—V1), H(xt)=H(x—V1), (29)
The symbols®D, and O, denote the.reglon(SLS) and(21) of gropagating along the-axis,V being the phase velocity. For
trapped and Larm_or electrons in the momentum spac solution of the typé28), the second Maxwell equatia)
(Ps.py). The quantity is transformed into an ordinary differential equation. Inte-
< dx’ grating it, we can find the relation between the electric and
7(X;X") f VO] (23 magnetic fields:
X X 1

: . : . . E(x—Vt)=Ey+(V/c)H(x—Vt). 29

is the time of motion of a particle between the poirtand ( )=Eot (VIOH( ) 29

X' In this relation, the first ternk, is the integration con-
The parametepr appearing in22) has the same order Stant. It is equal to the electric field in the static case when

of magnitude as the ratio of the characteristic radius of cur¥Y=0. The second term\/c)H(x— V1) is the varying non-

vatureR of electron trajectories to the mean free patbf ~ uniform field of the wave. It turns out that it does not gen-
charge carriers: erate current. Indeed, the electric fied/¢)H (x—Vt) nul-

lifies the integral(27):

) S X dX'vy(X'=V1) V
In the main approximation in this parameter, the current den- m c H(x'=Vt)
sity of trapped and Larmor charge carriers is independent of X

vr~RII<1. (24)

VT,
=— [ dx'|v(x’ —Vt)| (30)
(xt)= 3 ¢ f dp,dpyp, vy(X,t) f x'
X
It 27 p Jo,. IVolvx.DIT Thus, the current in a metal exists only due to the constant
% dx’ ' OE(x! electric fieldEy. The current density depends on time since
J' 2 dX'vy (X 't,) (x 't)' (25  itis a functional of the varying magnetic field (x—V1).
X1 [v(x",0)] We shall write the expression for current density in terms of

dimensionless variables of the self-simulating variable
magnetic fieldh(&), and the vector potentia (&), which
can be introduced as follows:

We transform the integral with respect to the coordindte
According to formulas(12) and (14), the velocity ratio
vy/|vy| is proportional to the derivative df/,| with respect
to the coordinate: E=(x—=VDIR(l), h(&)=H(XxX=Vt)IH(I),
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a(é)=eAx—Vt)/cpg. (31) It is natural to seek a solution of this equation, which is odd
o in ¢ since such a solution automatically satisfies the bound-
Taking into accoun{18), (21), and(31), for the current den- ary conditions(37). It should be noted that for an odt(£),

sity (25) normalized tooE,, i.e., the turning pointsé; , and £ of trapped electrons are lo-
i (&)=L (x=V)IaE,, (32) cated symmetrically relative t6=0:
we can write the following expressions: §1=— &, =&, (40
i) 1 dk, k, K, dkyBy(&) Equation(39) and expression&33) and (34) for current
(&)= —mf TRk ko density do not contain any parameters. For this reason, the
- 1-k K - o(k, ,k y y p ,
o ( L) ko) IB(&)] 0k, y) IVC (38) of the metal is defined to within a numerical factor
&HAEB(E) by the formula
f ﬁ, §-sés§,, (33
& |Bx Eo()I/oR(1)=2mel?/oc?pg . (41)
(6= todkk, fkra(f) dk,By(£) It follows hence that in the limit of strong currentd), the
LS o (1—kf)1’2 —a(&)2+k, +a(o)/2) |B.(€)]0(k, Ky) electrical resistance of the sample increases linearly lwith

was mentioned in Introduction that such a tendency was ob-
served experimentall{.

The type of the nonlinearity of the IVGi1) implies that
the total current flows mainly through the region having a
size ~R(l) and a high conductivity of the order ef. Un-
Offortunately, it is impossible to solve the magnetostatic equa-

—o < E< 4, (34

ffzdf'ﬂy(é’)
&1 |Bx(§/)| ,

Herek, y, Bxy(§) andé(k, ,ky) are the dimensionless mo-
menta, velocities, and half-period of motion, respectively,

a particle: tion (39) exactly and to find the current density distribution
Py Vyy(X— V1) in view of extremely complicated integral relation between
ki,y:Ev xy(€)= V—F i(¢) and h(§¢). However, a qualitative analysis of the
asymptotic formg33) and(34) of current density shows that
2meH(l) 27 (& d¢ the current pinch is formed by the group of trapped charge
0= ——T=— T (35 i Arc8 ; At ;
3mec 3 Jg |B(€)] carriers? Trapped particles oscillating relative to plane of the

zero magnetic field of the current preserve a considerable
The symbols¢ . = (x. —Vt)/R(I) denote dimensionless co- effective mean free pattof the order ofl). In this case, the
ordinates of the boundaries of the region of existence fogontribution to the current density(0) comes from all elec-
trapped carriers in a reference frame moving with the waveyrons irrespective of their angle of incidence on the plane
and§; »=(x,, 2~ V)/R(l) are the turning points for an elec- ¢=0. It follows from (33) that the value of(0) is of the
tron in the same reference frame. order of unity. The value of,(£) decreases with increasing

Expressions(33) and (34) have completely the same (distance from the plangé=0 and vanishes, by virtue ¢19),

structure as the formulas for static current density. Howeverat the boundaries: £, of the region of existence of trapped
the role of spatial coordinate is played by the self-simulatingcarriers. The width 2, of this region is of the order of
variable £ Thus, the problem of finding the profile of the unity. At the periphery [¢|=£. ), the mobility of particles is
magnetic field of the wave is exactly reduced to the SOlUtionsuppressed by the Strong Constant-po|arity magnetic field of

of the magnetostatic problem: the current. As a result, the dimensionless current density
dh(¢) 20R(1)Eg. iL(£) (34) turns out to be smaller than the valig0) ac-
“dE I i(é, (36)  cording to estimate$.In the limit || —, it decreases to
3 zero over the characteristic scal€l so that the total current
[it(§)+iL(§)v §s&s§&y, through the metal is a finite quantity. The current density
= . distribution can be roughly presented as follds:
iL(8), (<t E2E, awP
1! S 1
h(—2)=—h(+%)=1, 37 i(§)=‘ 4=¢. @2
01 |§|>§+ .

Integrating the left- and right-hand sides of E§6) from

—o to + and taking into account the boundary conditionsHere we assume that the entire current flows in the region
(37), we obtain the following expression for the IVC of the occupied by trapped charge carriers:

metal: +oo
J _déi(g)=2¢.. (43

Eo()=1/ aR(I)fj:dgi(g) . (39)

Equation(39) with the current density42) leads to the fol-
Taking into account this expression, we can write the maglowing expression for the profile of the dimensionless mag-
netostatic equatiofB36) in the form netic fieldh(¢):

dh(¢) e fén, =gy,
T TdE =2l(§)/f_md§l(§)- (39 h(é)z—{sgn& > ¢, . (44)
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We determine the quantity, from Eq.(19) after writing it experiments' devoted to the detailed analysis of IVC for
in terms of the dimensionless variablé3l). Solving this compensated metals in the range of strong currents. How-
equation for the given distributiof#4) of h(¢), we find that  ever, Zakharchenket all! observed self-excited voltage os-
the dimensionless half-width, of the current pinch is equal cillations, while the dependendd5) is a switching signal,
to 4. Accordingly, the numerical factor in the express(i88) i.e., is aperiodic. In our opinion, self-excited oscillations
for IVC is equal to 1/8. emerge as a result of the effect of sample boundaries on the
Thus, the observed nonstationary process is a quas@lynamics of the current pinch under real conditions. This
static propagation of high-conductivity region in a direction effect becomes significant when the high-conductivity region
perpendicular to the current. This motion generates a zerapproaches the metal surface to a distance of the order of
curent variable component of the electric figd#e(29)] ow-  characteristic radius of curvatuf(l) of electron trajecto-
ing to which the distribution of the resultant electric field ries. In the vicinity of the boundary, the current pinch must
acquires the form of a running domain wall of the sik@): stop since the plane=xy(t) of zero magnetic field cannot
sel2 v XVt emerge at the conductor surface by virtue of tr_le conditions
s+ —H(l)h( ) (45) H(—d/2,t)=—H(d/2,t)="H(l). The asymmetric current
4oCpr  C R(1) distribution formed is obviously unstable, and the pinch
The direction of wave propagation corresponds to “switch-starts moving to the opposite face of the plate. As a result,
ing” of the sample from the state with a smaller value of spatial oscillations of current pitch accompanied by low-
electric field to a state with a larger value Bf The wave frequency oscillations of voltage across the sample can ap-
velocity V is bounded by the requiremetfi). Considering pear. The need to take into account the finite thickness of the
that the characteristic time scald of electromagnetic field plate necessitates further theoretical investigations of nonsta-
variation isR(1)/V, we can write conditior{5) in the form  tionary effects in metals. The reason behind the instability of
static distribution of current leading to the generation of self-
V<R(Dv. (46) sustained voltage oscillations deserves special investigation.
Let us calculate Joule losses under nonstationary condi-
tions without resorting to the model expressidd®) and
(44). Using the relation29) between the electric and mag-

E(x—Vt)=
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count the antisymmetry of the boundary conditid@g we _ _
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The voltage across a Bi single crystal in ffiexH] direction (transverse voltagg, ) is

investigated in strong crossed electicand magneticH fields under phonon generation
conditions. Information on electron acousto-e&ff of bismuth, forming segments with

a negative differential conductivity on current—voltage characterigtics E, , is obtained.
Acousto-emf is measured as the absolute value of the difference in transverse voltage before and
after the transition of the sample to the phonon generation mode. It is found that the

dependence of acousto-emf on quantizing magnetic field is nonmonotonic. This is associated
with oscillations in the electron—phonon generation ré& /ot in a magnetic field, i.e., with
oscillations of the phonon—electron collision frequeng)j. © 1999 American Institute of
Physics[S1063-777X99)00811-7

INTRODUCTION field must be accompanied by a decrease in the specific
power W,=E?/p,,. In other words, the increase in trans-
Until recently, electroacoustic effects in verse magnetic field in the phonon generation mode for a

semiconductors” and semimetalérepresented by Bi which given value of the longitudinal electric field and fbr=1

is the only material suitable for such experimefitswere  must lead to a decrease in the acousto-emf. Moreover, the
studied by measuring, as a rule, the potential differenceculiarities of the bismuth electron spectrifow Fermi
along the electric field in the sample. However, a number oknergys: and small cyclotron masses*) lead to the quan-
effects associated with the generation of nonequilibriumtum limit in the magnetic field #Q)~eg) even for H
phonons can be observed while studying the potential differ=10 kOe?!! In the quantum limit, the number of energy lev-
enceU, transverse to currefit. els below the Fermi energy is small, and consequently their

Let us consider a Bi sample in strong crossed ele&ric population density is quite high. Hence the oscillations of the
and magnetidd fields during supersonic drift of charge car- number of electron states at the Fermi level in a magnetic
riers in thel EX H] direction(phonon generation moga.e.,  field are also relatively large. This circumstance must affect
under the conditionsvfzcE/st; j=nedQr; Qr>1. noticeably the fre(;1uenc_\y,;el of phonon—electron collisions,
Here,vf is the drift velocity of charge carrierg,the current  which becomes a considerably nonmonotonic functioi of
density,s the velocity of sound) the cyclotron frequency;  in relatively weak magnetic fields. It follows hence that the
carrier momentum relaxation time, andhe number density acousto-emf
of electrons.

For supersonic drift of charge carriers, the phonon flux
in bismuth is formed mainly by electrons rather than holes.
This conclusion is based on the ratio of the deformation po-
tential constants for electrors and holesh,” and is con- must also vary nonmonotonically in a magnetic fied), is
firmed by the experimental resuftédence the effect of pho- the number of phonons with momentuqin the steady
non generation in bismuth may be describedstate.
phenomenologically with the help of the acousto-2frif The present paper aims at measuring the dependence
Egz(ﬁs/awph/neswhich is associated with the transfer of E3(H) and attempts to discover experimentally the proper-
momentum from the electron subsystem to the phonon suliies of the acousto-emf considered above. The expression for
system. Herg(de/dt),y, is the average energy of phonons the electron acousto-emf can be obtained from the condition
emitted by the electrons per unit time.W, is the specific of vanishing of the transverse current in the samgle (
electric power imparted to the electron subsystem,fatltle ~ =0) under the assumptidi&2|>|E2|.° It is found thatE2 is
coefficient which shows the part of electron power trans-approximately equal to the absolute magnitude of the differ-
formed into sound, we can present the acousto-emf in thence|AE, | in the transverse fields before and after a transi-
form EE~T'W./nes Like the acoustic absorption coeffi- tion of the sample to the phonon generation regime for a
cient, the generation coefficiehtis a function of the elec- given longitudinal fieldE. (It should be recalled that the
tron drift velocity?> transverse fieldE, is parallel to the drift velocity, i.e.,

We shall assume that the applied longitudinal eIectriwa[ExH].) Hence the necessary condition for the measure-
field E is given. In this case, the increase in the bismuthment of acousto-emf is that the timein which the driving
resistivity py upon an increase in the transverse magnetisignal increases must be much smaller than the relaxation

Ede(del at) e 2, (INg/at)=2, (Ng/Tpe)
q q
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time 7, in the phonon generation regime. For bismuth, [I(A) 10T
=105 s in crossed electric and magnetic fietdsConse- uv |
quently, and also with a view to exclude the sample heating, 30 i |
we used the pulsed measuring technique in our investiga: [ I
tions. For characteristic current densitigs 10° A/lcm? for 2 / |
sound generation in bismuth, pulses of duration Zs6and 0 \
a repetition rate~0.1s are found to be optimal. St |

0 3 6

¢, s
EXPERIMENTAL RESULTS e —
Measurements were made on a bismuth single crystal o

purity 99.9999% at helium temperatures in magnetic fields o , . 4 . . .
up to 56 kOe. The sample had the dimensions 11 0 s 10 15 20 25 130

X 8 mm. The longitudinal axis is parallel to the binary direc- uv)
tion C,||x, and the transverse edges coincide with the direc-
tionsC,|ly andC||z (C; andC are the bisector and trigonal FIG. 1. Dynamic current—voltage characteristic in a magnetic fléld
crystallographic axes, respectivelifhe contacts for measur- =22.7 kOe. The inset shows the longitudinal voltage in the sartuplere
ing transverse potential differentk, L I||x were established 1 and the voltage across the standard resisténaee 2).
on opposite end$C,C, plang along the trigonal axi<;
with the help of Wood’s alloy. The longitudinal potential
differenceU||l was measured by using the current leads situ-  Figure 1 shows the dynamic current—voltage-()
ated on the end face3,C5. The magnetic field vectdd is  characteristic in a magnetic field 22.7 kOe, obtained under
parallel to theC;-axis. The quality of the investigated bis- the conditions when the pulse amplitude of the longitudinal
muth single crystal could be estimated from the ratio of re-voltage across the sample is the largest. The upper pulse in
sistances at room temperature and at helium temperatuthe inset to Fig. 1 corresponds to the longitudinal voltelge
R3%YR32=180 in zero magnetic field. across the sample, and the lower one corresponds to the po-
In this work, measurements in the linear regime ( tential difference across the standard resistance, i.e., is the
<nedQ7,E<Hs/c) were made in a direct current oscillogram of the current. The current—voltage characteris-
(Keithley 224 power supply The voltage signal across the tic consists of several segments corresponding to various re-
sample was measured by the Keithley-196 voltmeter congions (leading edge, plateau and the trailing edgé the
nected to a PC-AT where the signal was converted into digivoltage pulse. The build-up time of the longitudinal voltage
tal form which is convenient for data processing. In order tofront is 7;=0.7 s, and the corresponding part of the IVC is
single out the Shubnikov—de Haas oscillations, we subi—U characteristic lineaf—, see Fig. L This is followed by
tracted the monotonic part from the dependempgg(H), an increase in current in the circuit at practically constant
which was approximated as a certain polynomial. In the(plateay longitudinal voltage across the samplg) ( which
magnetic field H=56kOe, the ratioU, (+H)/U, (—H) is associated with the transition of the sample into the pho-
=p,(tH) p,(—H)=—1.4, p,,(+H)=0.4%2-cm, while  non generation mode. The part of the IVC corresponding to
pyx=0.38Q - cm (p;, are components of the magnetoresistiv- the trailing edge of the pulse{) has a characteristic kifk®
ity tensop. which is observed for a drift veIocitwf=cEk/Hso.75
In the phonon generation regime, the properties of thex10°cm/s of carriers close to the velocity of sound
sample were measured in pulsed current. The pulse duratiqy,=13.4V, Fig. 3. The kink determines the transition
was 7,=4.5-5.5us, while the time interval betweem pulses from the phonon generatiofnonlineay mode to the linear
was 7,=0.5x 10 's. The sample, the standard resistancaegime. Another method of constructing theU character-
Ry=1Q, and the current leads with a resistanBg, istics is the comparison of the voltage across the sample and
=0.5Q0 (Ryt+Ry=Ry is the ballast resistangeerved as the the current in it at a fixed instant of time for different values
load for the pulse generator. The maximum output voltage obf the output voltage of the generator. We carried out such a
the generator wa¥ =43 V. comparison 3us after the beginning of the pulse. The results
Under the conditions of our experiments, the valueof almost coincided with the segment of theU characteristic
is optimal in the sense that a relatively small thermal energybtained at the rear front of the pulse mentioned alisee
liberated in the sample during the pulse propagation is dissiFig. 1).
pated into the surroundings before the arrival of the next Thus, the relaxation time, in the phonon generation
pulse. The evolution of the response sighhl associated mode under the experimental conditions varies from 0.7 to
with the accumulation of energy in the sample can be ob3 us. It should be noted that, is generally measured not
served on the oscillograph screen by decreasjigy a fac- from the beginning of the pulse, but from the instant when
tor of 2—3. Forr,=10 2s, the heating of the sample by the voltage across the sample attains the velyeHowever,
about 10 K results in the disappearance of the region witlihe valueU, of voltage in our experiments is attained almost
negative differential conductivity, which is typical of the instantaneouslysee Fig. 1L The current—voltage character-
phonon generation regime at 4.2 K, from the current—voltagéstic shown in Fig. 1 is typical of the magnetic field range
(I vs. U, ) characteristics. used in our experiments.
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FIG. 2. Oscillograms of transverse voltage in magnetic fields, kOe: 22.’2:':} h:lagnt(etrl]cjleld depe?der;ggz Ofothe 23(:":61“3.9 compcl)anezt of linear
(a,d, 29.89(b), and 52.3(c) in the experimental geometry H (a—9 and gnetoresistandg,,, acousto-emgg (O), and electric poweP (A).

+H (d). The scale is Ius/division along the horizontal and 2 V/division
along the vertical.
solute value of the difference between transverse voltages at
these points, i.e., the difference in voltages before and after

In accordance with what has been said earlier, the timé¢he transition of the sample to the phonon generation mode.
of relaxation to the phonon generation mode for Bi samples  The magnetic field dependence of the difference in trans-
of thickness~1 mm is close to Jus for magnetic fields verse voltage$which is approximately equal to the acousto-
=10kOe? The peculiarities of transition of such samples toemf EZ; see below is presented in Fig. 3. Obviously, the
the phonon generation mode observed by many authors, viZ3(H) dependence should be determined at a constant lon-
a decrease in the relaxation time with increasing magnetigitudinal voltage in the conductor. However, the longitudinal
field and quantum oscillations of relaxation time in antiphasevoltage in the sample also change slightly for a fixed voltage
with oscillations of the density of electron states at the Fermat the generator output and a finite ballast resistance as a
surface, have typical features of the phonon—electron damgesult of an increase in the Bi resistance in a magnetic field.
ing. Apparently, we are speaking of samples with a thicknes$n our opinion, these changes do not affect the acousto-emf
exceeding the phonon—electron mean free pdthl(,), and  EZ significantly. Indeed, the longitudinal voltage increases
the possibility of predominant phonon—electron damping isapproximately by 30% as the magnetic field increases from
associated with the propagation of an acoustic wave from th22.7 to 29.9 kOe, and by 40% when it increases to 52.3 kOe.
sample boundary in a direction opposite to the drift of aAt the same time, acousto-emf increases approximately by a
mobile charge(A detailed discussion of mechanisms of re- factor of 1.6 in the former case and decreases virtually in the
laxation to the phonon generation mode in Bi can be found irsame proportion in the latter cageee Fig. 3. For this reason
Ref. 5) we assume that decisive changesEfhupon an increase in

Figure 2 shows signals of transverse voltage obtained ifd, which correlate with changes in magnetoresistafsee
different magnetic fields for the maximum potential differ- below), should be attributed to the effect of magnetic field on
ence at the generator output. We shall assiifme substan- the properties of the sample.
tiation will be given below that the point on the oscillogram Figure 3 also shows the magnetic field dependence of
beyond which the transverse voltage starts decreasing corrtie electric poweP liberated in the sample. The power was
sponds to the beginning of the transition to the phonon gendetermined with the help of the approximate relatiBn
eration(nonlinea) mode, while the realization of theonlin- Elfn[(Ug/I m) — Rg], wherel ,, is the maximum value of the
ear mode corresponds to the peak of the current through theurrent pulse measured simultaneously with the transverse
sample(see Fig. 1 Vertical arrows in Fig. 2 show the ab- voltage U, , and U,=43V. Figure 3 also illustrates
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Shubnikov—de Haas oscillatioipg,(H) measured in the lin-
ear mode Dy, /pxx=0.1).

It can be seen that like power, acousto-emf decreases on
the average upon an increase in magnetic field, depending
nonmonotonically orH in the quantum limit for electrons.
The minimum ofEZ for H=24 kOe corresponds to the maxi-
mum of p,,, while the maximum o2 for H=28 kOe cor-
responds to the minimum gf,.

DISCUSSION OF RESULTS

Let us introduce the electron acousto—dﬁ@f,g'lo assum- o o
G. 4. Schematic diagram of electric signal pulses and current—voltage

ing that the average chang'es.in p'ulses of the electron grf(élaracterisﬁcs.
phonon subsystems per unit time in the phonon generation
mode are equal:
the y-axis (E,=0) and introduce the acousto-emf for elec-

(0PI 3t)e=— (Pl dt)pn=—0q >, 1q(INy/at) trons drifting along thez-axis. Assuming that the acousto-
q emf for holes is smaller than the electron acousto-emf and
— —neE. (1) neglecting diffusive effects, we can determine the transverse

field E, in the phonon generation mode from the condition

It follows hence that that the current along the-axis is equal to zerdsee also
pag Ref. 13:
delat
Egz%‘; <as/at>ph:; fisq(dNglaty, (2

nec
EL(tH)si(?)[An/ntsine(MgH/C)*]
where Ny, is the distribution function for phonons with the
momentumq anda is the unit vector. X E(neeMQJrnheME)*lI EZ. (6)
We present the phonon distribution function as the SUMere Msnzﬂg h/(Mth/C)Z are the average mobilities of

of the equilibrium (\qo) and nonequilibrium Rl °) compo electrons and holes along tlzeaxis, Mg,h the mobilities of

Qg:tj\}elr;]g\]/': case, for the arriving term in the kinetic €034 ectrons and holes in zero magnetic filsh=n,—ny, is the

difference in the electron and hole concentratighthe pos-

E N/ _2 Nt N ; 3 sible small angle of deviation of magnetic field from the
- INg/ot= - ag(NgotNg™) +ag- (3 pisector axi<C,[ly, andn.ext=nyeu’. Let us estimate the

parameters appearing in formul@. From the experimental

Herea, is the increment of phonon accumulation a‘Ldthe relation E, (+H)/E,(—H)=—1.4 obtained in the linear

coefficient describing the interaction of electrons with zero-mqde for H =56 kOe (see above we have|(An/n)(sin6)

point vibrations of the lattice. An analysis shovgee Refs. X (u3H/c)"Y|~10. Putting® u3H/c~10% and 6~1°, we ob-

5, 6, and 12 for detaijsthat the determining contribution t0 gin An/n~10"3-10 4.

the sum(3) comes from nonequilibrium phonons. For this ¢ follows from formula (6) that the electronic acousto-

reason, we can put in relatid@) JNq/dgt=aN{". emf is defined as the absolute value of the difference in
Let us now suppose that a certain coefficigntorre-  ransverse voltages measured before and after transition of

sponds to the fraction of the electric powdf, introduced  the sample to the phonon generation regime for a given value
into the electron system, which is transformed into acoustif the longitudinal fieldE.

flux. In this case, acousto-emf can be defirtdwithin the For a visual comparison with the experimental results,

terms assoc_late(_j Wlth amplification of equilibrium phononsye present graphically the driving voltage sigiaand the

and zero-point vibrationsas response signals for curreptind the transverse voltage .
E2=(y—B)W./nes (4 ~ We shall assume that the relaxation timein the phonon

generation mode is much larger than the build-up timef
where the coefficieni3 is associated with attenuation of he driving signal pulse. To begin with, we shall also disre-
sound,y— g=TI". Taking into account what has been said garq relaxation effects during a transition from nonlinear to
above, we can now write the following relation connecting, inear regime upon a decrease in the driving voltage at the
among other things, the acousto-eEf with the phonon— trajling edge of the pulse. Further, we assume that in accor-

electron collision frequencyy= 7, : dance with formula4), the dependence of acousto-emf on
the longitudinal field is considerably nonlinear.
TWe=2, fiwg(agNy")=nesE. (5) Figure 4 shows the pulses Bfj andE, , as well as the
q

dependenceqE) andj(E,). Let us consider the pulgét)
The method of experimental determination of acousto-n the time interval in which the longitudinal voltage is con-
emf in Bi was proposed by the author in Ref. 6. Following stant, i.e., corresponds to the plateau of driving signal pulse.
Ref. 6, we shall assume that the sample is unbounded alorig the beginning(for t<r,), the current is independent of
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time. Later(for t=7,), the current increases with decreasingtric field whose value initially corresponds to supersonic drift
resistance of the sample during transition to the phonon geref charge carriers, a potential difference associated with elec-
eration regime. After the transition to the nonlinear regimetron drag by previously excited phonons can be detected in
(t>1,), the current again becomes constéfig. 4). Like  the sample. In particular, the phonon—electron drag must in-
current, the transverse voltage is independent of timerfor duce an extra transverse emf which, being added to the volt-
<t<r,. Upon a transition to the phonon generation regimeage peak at the trailing edge of the pulse, can increase its
(t=17,), the electronic acousto-emf comes into play and in-heighf (the initial segment of the possible “resultant” peak
creases, thus leading to a decrease in the valug, ofn is shown by dashed lines in Fig).40bviously, the peak
accordance with formulé). On completion of a transition height, on the one hand, must be the higher, the larger the
to the nonlinear regimet& 7,), the transverse resistance be- concentration of nonequilibrium phonofise., acousto-emf,
comes independent of time agalB3= const). As the driving ~ see(5)]. On the other hand, a high value of acousto-emf can
voltageE begins to decreaggérailing edge of the pulse, Fig. correspond to a high frequency of phonon— electron colli-
4), the acousto-emE2 decreases more rapidly than the termsions, which hampers the formation of the “aftersound”
linear inE in formula(6). As a result, the transverse voltage peak. As a result, the combination of the two factors deter-
E, increases, forming a peak at the trailing edge of the pulsgnines the height of observed experimental peake Fig. 2
After transition from nonlinear to linear regintapon a fur- Let us consider the effect of magnetic field on acousto-
ther decrease in the longitudinal voltagéhe acousto-emf €mf. It should be noted above all that in accordance with
vanishes, and, decreases in proportion ® (see formula formula (4), the relative change in acousto-emf must be of
(6) and Fig. 4. the order of the relative change in the power introduced to

In the schematic diagram of the transverse voltage signghe electron system. An experimental confirmation of this
E, (see Fig. 4 the vertical arrow shows the electronic fact can be seen in Fig. 3 showing the magnetic field depen-
acousto-emE2. The acousto-emf is measured graphically asdences of these quantities. It should be noted, however, that
the difference between two values of the transverse voltagdhe powerP in Fig. 3 was calculated from an empirical for-
The first corresponds to the moment when the transvers@ula(see above Consequently, we must verify that the for-
voltage decreases at the beginning of a transition of th&wula conforms to a correct physical relation. Let us do this.
sample to the phonon generation regime. The second corre- The emergence of the transverse fild in the sample
sponds to the completion of the transition, which is indicateddue to the difference between the electron and hole concen-
by the maximum value of the current passing through thdrations as well as under the influence of the electron
sample. It should be recalled that this technique was used fécousto-emf leads to the following expression for specific
determining the acousto-emf from the experimental oscilloPOWer:
grams. — H Hy 2 22

The current—voltage characteristig§E) and j(E,) W=(neepe + Mnepun) (E7+HEL), 0
were constructed from a comparison of the schematic pulseghere the quantit, is defined by formuld6). Puttingn,
of E,j andE, in Fig. 4. The dependencdE,) contains =N, ul=ul, (ulH/c)"*=An/n, E2<E, we obtain
regions with negative differential conductivity. W=E2/, e

Let us compare the schematic diagrams presented in Fig. — = Py
4 with the experimental data presented in Figs. 1 and 2. Alvherep'H is the linear magnetoresistivity of the sample. The
qualitative agreement of the phenomenological analysis witltalculation of the power with the help of an empirical for-
the experiment is beyond any doulate do not consider here mula and formuld8) using the data presented in Fig. 1 leads
the experimentally observed acoustoelectric vibrafioiihe  to values of the same order of magnitudbey can differ
analogy is closer than a simple illustrative similarity. Indeed,approximately by a factor of 2)7Consequently, we can as-
it follows from Eq. (6) that the sign of transverse voltage sume that the convenient empirical formula used by us above
may be reversed upon a transition to the phonon generatids suitable for obtaining estimates.
regime (dot-and-dash curve in Fig.) 4lt can be seen from It is well known that the density of states in a strong
Eq. (6) that under the conditions considered by us, the probmagnetic field is quantized, and the continuous electron
ability of such an occurrence is higher for the magnetic fieldspectrum splits into subband$andau subbandls Every
direction—H than for the directionH: the term linear irE  time when the bottom of a Landau subband intersects the
in Eq. (6) is relatively small for the direction-H. This is  Fermi level, the electron density of states at the Fermi sur-
exactly in accord with the experimehsee Figs. @) and face attains its maximum value. For this reason, the fre-
2(d)]: the sign of transverse voltage is reversed upon incluguency of electron collisions also has the maximum value,
sion of the acousto-emf for the directienH [Fig. 2@)]. For  and hence the transversél{ E) magnetoresistance has a
the direction+H and a given value of the driving longitudi- minimum?* The maximum density of electron states at the
nal voltage, the sign of transverse voltage remains unFermi surface must also correspond to the maximum fre-
changedFig. 2(d)]. quencyaq= r;el of phonon—electron collisions, and hence to

In the above analysis, we disregarded the possible influthe maximum acousto-eni$ee(5)].
ence of the so-called aftersound effect on the peak value of It was mentioned above that the quantum limit in mag-
transverse voltage corresponding to the trailing edge of theetic field in Bi for H||C; is realized forH=10kOe. This
driving voltage pulsésee Fig. 4. The “aftersound” effectis circumstance is associated with small values of the Fermi
manifested in that upon a sharp decrease in the applied eleenergy er~10"'*erg and small cyclotron masses
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=10"2m, (my is the mass of a free electrprin the quantum tion coefficientI” as a function of magnetic field was calcu-
limit, the number of Landau levels lying below the Fermi lated phenomenologically with the help p¥s. E character-
energy is of the order of unity, and their population density isistics of Bi measured in a transverse magnetic field. As a
relatively high. For this reason, oscillations of the number ofresult, a nonmonotonic depender¢gH) was obtainedsee
electron states at the Fermi surface in a magnetic field aré)]. The peaks of the generation coefficient corresponded to
also relatively strong. Consequently, tB(H) dependence magnetoresistance minima in this case.

must be essentially nonmonotonic. This is illustrated in Fig.

3 in which the maximum and minimum of transverse mag- E-mail: bogod.yu@excite.com

netoresistance are observed simultaneously with the mini-

mum and maximum of acousto-emf. The minimum ggf,
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Charge transport in a conducting medium with a magnetically stimulated inhomogeneity of
kinetic coefficients along the direction of transport is investigated both experimentally and
analytically. Measurements were made on samples in the form of high-purity polycrystalline
aluminum plates whose conductivity inhomogeneity was simulated by the technique of curving of
current lines so that the local normal component of the applied magnetic field varies

according to an exponential or quadratic law. The relations describing the tensor connection
between the electric field and charge flux density are used to calculate spatial dependence of the
potential. The sign reversal of the electric field is described as the result of competition

between the potential contributions from the current along the transverse magnetic field gradient
and the Hall current at right angles to it. €99 American Institute of Physics.
[S1063-777X99)00911-1

INTRODUCTION conductor and their effect on the probability density distri-
bution function, nature and scale of inhomogeneities both
In this communication, we describe the peculiarities ofintrinsic and those caused by external agentiésve shall
dynamics of conduction electrons in metals during statiacconsider charge transport in a polycrystalline medium which
charge transport under conditions of regular spatial inhomois randomly inhomogeneous due to different orientations of
geneity of kinetic coefficients. Earlier, we constructéde  crystallites, and has an additional regular macroscopic inho-
phenomenological model describing the motion of chargenogeneity of kinetic coefficients induced by the applied
carriers for linear dependence of magnetic field in the apmagnetic field. Such a formulation of the problem is justified
proximation of zero charge transport through lateral faces o$ince the development of cryogenic and electrical engineer-
the sample along the inward normal for spherical and closethg is directed towards creating new conducting materials
types of constant energy surface. It was proven that ther@ith complex phase composition and crystal structure. In
exists a nonlocal relation between the current density andpite of the fact that such materials are homogeneous on
magnetic field, and the current density depends considerabiyicroscopic level, their resistive properties may change sig-
on the magnetic field as well as its gradient. Consequentlypificantly because of various types of inhomogeneities exist-
the electric potential is large at one of the lateral faces anthg on the macroscopic scale. For example, inhomogeneity
small at the other. It was fouRd that an inconsistency is in the properties of composite conductors is observed at the
observed for large values and a complexg., exponential  interface between two components having different values of
spatial dependence of the inhomogeneity between the expetitall coefficient®’ Cryoconductors based on polycrystalline
mental results and the theoretical model. For the sample fac’luminum are complex systems, and the spatial dependence
corresponding to a low potential level, the inconsistency if kinetic coefficients induced by natural inhomogeneity of
not only quantitative, but also qualitative and is the result ofthe magnetic field in the bulk of the solenoid winding dete-
disparity between the boundary conditions in the mbeatl  riorates their efficiency.
the actual boundary conditions in the experinfeht.
The present paper aims at studying the kinetic phenomexperIMENT
ena in an inhomogeneous nonlinear magnetic field under ap- _ o _ o
propriate boundary conditions at the lateral surface of the%lmulatlon of regular spatial inhomogeneity of conductivity.
sample. The investigated object was polycrystalline alumi—Sample preparation
num as a typical cryoconductor. The justification for such  The method of curved current trajectories conforming to
investigations is that low-temperature electrodynamics covthe bent profile of the sample, where the local nhormal com-
ers a number of problems which requires not only the evaluponent of the external field is defined by the curvature at a
ation of effective conductivity connecting the volume- given point! was used for simulating conductivity inhomo-
averaged current and field, but also the nature of charge flovgeneities instead of the modification of pole pieces of the
the of current density distribution, and the scale of its local-electromagnet, which usually bends the magnetic lines of
ization. The main factors involved are the conditions offorce and changes their density in the bulk of the sample.
interaction of conduction electrons with the surface of theThe samples were prepared from aluminum ingots in which

1063-777X/99/25(11)/5/$15.00 907 © 1999 American Institute of Physics
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TABLE |. Characteristics of samples and field inhomogeneity parameters.

rvTm

Sample Po» \, k, a, i
Batch No. 107°0-cm T1? T-cm?t T-cm 2 10

2 0.3 0.9 0.1

2 0.4 1.0 0.5 10°
3 0.4 0.7 1

4.5 0.5 0.15 2.6 >

<o e

A WNBE
LERSALLL SRR |
0

M P J booe

L Y

L EERERRALLL |

the ratio of room temperature resistance to resistance at lig- 10‘2
uid helium temperature was 6000-15000. The field depen-
dencep=py(1+A\B) of the magnetoresistance of aluminum
was taken into account during the analysis, wheyés the 10
diagonal component of resistance extrapolated to zero values 01 02 03 04 05 06 07
and\ is a phenomenological parameter describing the degree y,cm

of unsaturation associated with the presence of a narrow

|ayer of extended and open trajectories FIG. 1. Dependence of potential on coordinate along the normal to the
Th l h f ial d. d irection of charge transport for exponential type of inhomogeneity for dif-
e nonlinear character of spatial dependence was re érent values of the relative gradiemt(cm™): 0.1 (1, 5), 0.4(2, 6), 0.6(3,

ized in the experiment for the local normal component of they), 1.1 (4, 8), and local magnetic fiel@ (in T): 6.85(1), 6.50(5), 6.0 (2),
two types of external magnetic fieBl, arbitrarily described 5.35(3), 5.20(6), 4.20(7), 3.95(4), and 2.40(8).

as exponential and quadratic, for which the main contribu-

tion to B comes from the first and second terms in the field

expansion into a series in the direction of charge transport:commutation, the main method used for control was the po-
X2 tentiality technique in which the vortex field through any
B=Boexpdx), B=Botkxta-. (1) closed loop is equal to zero. These circumstances impose
severe constraints on the initial orientation of the sample
HereB, is the magnetic field at the beginning of the working which was carried out in two stages. In the beginning, the
region,d, k and « are its inhomogeneity parameters. The sample was tilted in the magnetic field plane at right angles
direction of transport coincides with theaxis, while the to the transportation direction until the Hall voltage attained
direction perpendicular to the lateral faces coincides with théts maximum value. In the second stage, the sample was
y-axis. The characteristics of the families of samples differtijlted in a plane passing through the transport direction and
from one another and are presented systematically in Table ihe magnetic field vector until the voltage across the Hall
The sample preparation technique, i.e., the process @pposite faces attained its maximum value along the direc-
computing the appropriate shape, preparation of templateion of current flow.
preparation of the initial sample plate (&B.6X3.5cm)
with the required potential areas, formation of profile fol-
lowed by annealing and preparation of potential contacts oy, scussioN OF EXPERIMENTAL RESULTS

the surface and lateral faces of the sample were identical to o S
those used in our earlier wolk Main regularities in the potential distribution along and

across the charge flow direction

\ RS

4
O
W
-«

1 i { | 1

It was mentioned earlier that our experimental investiga-
tions were aimed at the spatial distribution of the potential

The electric field potential was measured by taking intog(x,y). The results of measurements of the potential differ-
account the redistribution of the current density over theence between different points on the sample surface and their
cross section, and hence traditional methods of obtainintpteral faces make it possible to reconstruct the voliage
useful signal through commutation of the magnetic field di-the direction of charge flux and at right angles to it. In Fig. 1,
rection and direction of the current through the sample couldp is plotted as a function of the transverse coordinafer
not be used. In this case, a change in the magnetic fieldeveral values of the local magnetic field in samples with
direction automatically leads to the sign reversal of the fielddifferent inhomogeneity parameters. In this case, the poten-
gradient, and hence to a transformation of the current densitijal is an increasing function of coordinates. At the same
distribution pattern over the cross section, when the laterdime, a qualitative difference is observed fe(x) at the
face of the sample with a high level of the signal is trans-faces corresponding to strong and weak signals. For strong
formed into a face with a low signal level and vice versa. Insignals, the potential across the face increases for all gradient
other words, signals at the lateral faces and in the bulk of thé&evels. The same is true for weak signals if the gradient level
sample change not only in sign, but also in magnitude as & low. For large gradients, the potential for a weak signal at
result of such an operation. Only the integral Hall voltagethe face is a nonmonotonic function of the coordinat&ig.
between lateral faces remains unchanged. This fact was us@y The dependences(x) for both faces are presented below
for measuring and systematizing the data. In addition tdogether with the theoretical results. For a weak signal, the

MEASURING PROCEDURE
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i variations may occur as a result of lateral drift of carriers.
L 4 The magnetic field gradient in the transition region can be
- presented in the form

Kk + 2k 3

=k, + X

L 1 AX ’ ( )

> . . .
© 3 which corresponds to a nonlinear dependence of magnetic
24 . field on the coordinate in the direction of the current realized

o E in the experiment. Assuming that the form jgfmust corre-
L spond to the expression which is transformed i@oupon a
- limiting transition, and using the continuity condition, we

B > o define the two-dimensional pattern of current flow through
- such a medium as follows:
1
005 10 15 20 exp f(x)y]

o
X, cm ]x:ff(x) exd f(x)b]—1"

exd f(x)y] exfd f(x)b]
exifo0bl—1 |7 P exgf(xb]=1|’

FIG. 2. Potentiakp distribution in the direction of the current at the lateral ) |
face of the sample corresponding to a weak signal for different values of the |, = — Ef’(x)
magnetic field gradierd (cm™): 0.1 (1), 0.4(2), 0.6 (3), and 1.1(4).

d (RB d
f(x>=d—(—>, F(x)= g (F0). (@
current flows in a weak local field over the face along the x\p X
potential gradienve/dx, while the sign of the gradient is | this approximation, the integral current through the cross
reversed upon an increase in local field. section is independent of coordinateand is defined by the
generator current. The direction of the transverse current is
determined by the sign of the parameté(x). For a domi-
nating numerator in the componeif(ix), the transverse cur-
Naturally, the above potential difference peculiarities ofrent is collinear with the/-axis, while for a stronger depen-
an electric field can be associated with the complex form otlence of denominator on coordinatehe transverse current
the magnetic field gradient and specific properties of the disis opposite to the/-axis. An analysis shows that the trans-
persion relation for charge carriers. We shall use the résults/erse current density is not constant along haxis and
obtained for the model in which the current density in themust have an extremum whose coordinate is defined by the
direction of transport has the form expression

I Rk expRkyp) 1 exp(fb)—1—fb
— s T T o . s :0 2 = -_—__——
Tt expRkbp)—1' Vv @ Yo=b\ 1= 5 —exptb)=1 | ©

Here, k=dB/dx is the magnetic field gradienR the Hall
constantp the diagonal component of the magnetoresistanc
tensor,| the integral current, whilé andb are the sample
thickness and width. For fixed values kfand p over the

Analysis of the phenomenon and its interpretation

It follows hence that for small values of the paramefter
fhe extremum lies in the middley¢=Db/2), while for fb
>1 the transverse current peak is displaced towards the face

oo corresponding to strong signal level. Using the analytic ex-
samp!e volume, the current densjtyis independent of the pressions(4), we calculated the dependence of the current
coordinatex, and there is no transverse current. The expo

. L -~ density along the field gradieft and in the transverse di-
nentRK/p determines the current localization, so that an In'rectionjy for several values of the inhomogeneity parameters

crease in the value d€ leads to an increase in the current . . .
- of the medium, conforming to the values of integral current,

while the opposite facg=Db corresponds to the high poten-
tial level. R(k+ ax)

. Accprdmg to the model considered here, the curre.nt den- f(x)= po[ 1+ N(Bo+ kx+ a(xX22) 2 (6)
sity is finite at lateral faces of the sample along the inward
normals, and there exists a lateral Hall current which redisit follows from Fig. 3 that the current density is a function
tributes the conduction current. Assuming that there are twof the parametef(x) and decreases with increasing values
regions with constant gradients andk, (k;<k,), the pat- of this parameter. Such a behavior corresponds to a change
tern of current distribution in the intervalx between these in the transverse current from positive to negative values
regions must be transformed. This means that the curremharacteristic of a strong dependence of resistance on field.
density increases gradually in the transition region at the fac&he current density, (Fig. 4) is also nonmonotonic at the
y=Db, and decreases at the face 0 and in its vicinity. Such lateral faces of the sample as well as in the bulk. The oppo-
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FIG. 3. Theoretical dependence of the transverse current dgnsity co-  FIG. 5. Potentialp as a function of coordinate along the current direction at
ordinatey for various values of the inhomogeneity parametés f(x) the lateral facesA is the sample face corresponding to a strong signal, and
(cm™): 15.7(1), 16.0(2), 16.3(3) 16.5(4), 16.6(5) and 16.7(6). B to the weak signailfor various inhomogeneity parametdr$T/cm) and «

(Tlen?): 0.9, 0.1(1, 2), 1.0, 0.5(3, 4), 0.7, 1.0(5, 6), 0.15, 2.6(7): The
symbols correspond to the experiment and the lines to the theory.
site faces display qualitatively different behavior, and a
transformation from one type to the other occurs in the in-
termediate region. I
Starting from formulag4) for the current density, and e(xy=b)=:R
jy and the conditions of tensor coupling between the electric . )
field and current, we can easily reconstruct the dependende?r the lateral face corresponding to a low signal level, we

of the electric field potential(x,y) over the bulk. Among have

ax?
BO+ kx+ T) . (8)

other things, for the nonlinear type of inhomogeneity ana- 1 ax2
lyzed here, the potential can be written in the form e(X,y=0)= TR< Bo+kx+ T) exd —f(x)b], 9
2
o(X,y)= I_R Bo+ kx+ ﬂ) exd f(x)(y—b)]. (7) where two competing factors are responsible for nonmono-
t 2 tonicity. If exg f(xX)b] is larger than unity, we can write with-

This expression was obtained in the approximatfgr)b ~ Outany loss of generality a more symmetrized expression for
>1. Such a form of distribution describes the spatial non-SPatial dependence(x,y), which ensures the fulfillment of
monotonic dependence of potential on coordinaténdeed, the normalization condition for current and is a continuation
for the lateral face of the sample corresponding to the higtef the previous model:

potential level, we can write ax?

exfd f(x
Bo+kX+T F[ ( )y]

exd f(x)b]—1"

Using the expression obtained for potential, we calcu-
lated spatial dependencg(x,y) at the lateral faces of the
sample, as well as at right angles to the transport. Figures 5
and 6 show the most typical experimental and the corre-
sponding analytic dependences of the potengigt,y=0),
- o(x,y=Db) and ¢(x=consty), calculated by using formula

3 (10) when the transverse magnetic field gradient is a linear
function of the coordinate. The results of theoretical and ex-
4 perimental studies reveal that while determining the depen-

\_________ dence of the potential difference along theoordinate, we

5 must take into account the contribution to the electric field
&_’/ from transverse current on the whole, since the Hall compo-
nentp,, of the resistivity is larger than the diagonal compo-
10°L L 1 L 1 nent p,, by a factor ofwr (Where w is the cyclotron fre-
0 05 10 15 20 quency andr the relaxation timg and hence the quantity
X, cm pxyly mMay influence the overall field pattern considerably.

FIG. 4. Analytic distribution of the current densify along field gradient This is espeC|aIIy important for the sample face correspond-

for various values of the transverse coordinateem): 0.6 (1), 0.5(2), 0.4  INg to a low signal_ level, where the current qenSity compo-
(3), 0.3(4), 0.2(5), 0.1(6). nents in the direction of the current and at right angles to it

(10

|
e(Xy)= fR

T
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-
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CONCLUSION

Two factors affecting the charge flow, viz., the spatial
10’ nonlinearity of transverse magnetic field in the direction of
charge transport and the dependence of resistance on mag-
10° - A netic field, are considered in the problem of charge transport
in a plate-shaped cryoconductor made of normal metal-
= crystalline aluminum sample These factors stimulate the
emergence of additional processes of redistribution of cur-
M rent density in the transverse direction, thus leading to the
& _2 reversal of electric field at one of the lateral faces of the
10 sample.
4 The analytic model is constructed in the two-dimen-
102 5 | i \ { { | sional approximation. It is found that the behavior of poten-
0 01 02 03 04 05 06 tial at the sample face corresponding to a strong signal is
y,cm determined to a considerable extent by the coordinate depen-
dence of the magnetic field defining the local value of the
FIG. 6. Dependence of potentigl on transverse coordinate for various nondiagonal Hall component of the resistivity tensor. For the

values of the inhomogeneity paramet&réT/cm) and « (T/cn?): 0.9, 0.1 - .
(1 2), 0.7, 1.0(3), 1.0, 0.5(4), 0.15, 2.6(5) and for various values of the face corresponding to a low potential level, transverse Hall

local magnetic field (T): 6.75(1), 5.8(2), 4.34(3) 4.73(4), and 3.095).  current plays a significant role.
The symbols correspond to the experiment and the lines to the theory. This research was based on a consideration of the spe-

cific features of kinetic phenomena in conductors made of a

] ~_ normal metal in polycrystalline state. The main regularities

may become comparable. Note that in the approximationyt charge transport in a nonuniform magnetic field may be

exp f(x)b]>1, the behavior of the potential at the face corre-54anted to other cryoconductors since the formation of resis-
sponding to a strong signal is analogous to the analyligye properties in a magnetic field is qualitatively similar for

expression obtained earlfefor an exponential type of inho- them, and the prevailing quantitative differences associated

mogeneity, where it was postulated that there is no transyjit the layer thickness of open orbits are taken into consid-
verse current along the inward normal to this face. Such ag,ation in the model.

assumption is valid for high inhomogeneity levels since the

nature of potential under such conditions is determined pre- This research was supported financially by the Belarus

dominantly by the componeny. If the transverse current is Foundation of Fundamental Research.

disregarded for the facg=0, the variation ofe is qualita-

tively identical with the behavior at the fage=b observed

experimentally only in the case when inhomogeneity and

nonlinearity of the magnetic field are small. It can be stated E-mail: sobol@ifttp.bas-net.by

that the reversal of the sign of the electric field component at

the face corresponding to a weak signal is the result of com-

petition between two opposite contributions during redistri-

bution of the current density, on account of a lateral drift of

carriers which leads to the emergence of the curjgnt 10. N. Mazurenko, V. R. Sobol, and A. A. Drozd, Fiz. Nizk. Ter@g, 78
It should be specified that for high inhomogeneity levels, 28935'\5L0W Telr(ﬂp- Pdh)//\Sil, 39 (1392]- 1 PhosiSH. 2549(195
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It is shown that specific interference processes emerging in an anharmonic layered lattice in the
localization regime leads to a considerable renormalization of the reciprocal phonon

lifetime. This mechanism may dominate over the standard anharmonic mechanism. The coefficient
of low-frequency sound attenuation in an insulator with diagonal disorder is discussed.

© 1999 American Institute of Physid$51063-777X99)01011-7

INTRODUCTION BASIC RELATIONS FOR MASS OPERATOR

) ) Sound is connected with the elasticity of crystal lattice.
Itis well known that on account of a strong anisotropy |ts attenuation is determined by the imaginary part of the
of atomic |nteract|0n, the vibrational SpeCtrUm of a Iayeredpo|arization Operator of a One_partic'e Green’s lattice func-

crystal exhibits quasi-two-dimensional properties over th&jon assembled from the operators of dynamic atomic dis-
entire range of frequency spectrum except at singular pointgjacements.

and spectral boundaries. The emergence of heavy defects  |n the momentum representation, we have for the
in such systems does not lead to a noticeable reconstructiagreen’s function of théth polarization mode

of the spectrum at low frequenci&s’ Hence the effects as- (+)-1 -1 ,

sociated with a weak localization of phonon modes may be- Gj (kv“’):Gj (K, 0) =1 (K, o). 1)
come quite significant due to the presence of impuritses, Here, @*)(k,w) is the configurationally averaged delayed
for example, Refs. 6-15In the present work, we shall use Green’s function for a harmonic crystal with impurities, and

the self-consistent theory of phonon localizafidto analyze i is the polarization operator. The former is defined as
the influence of such effects on the frequency dependence of

the low-frequency attenuation coefficient. -1

The dynamic properties of a disordered layered crystal §}+)(k,w)= wz—w]?(k)—i (J)L , 2
are described in the model of a tetragonal lattice with isoto- 7 (o)
pic substitutional impurities. Such a lattice contains twowhere the lifetime for elastic processes is
types of acoustic vibrational modes with the following dis-
tinguishing feature. The displacement vectors for the first _ - -1
type of modeql-modes are oriented along the layers with Ti“)(w)= > Cszwzgj(w) (©)

strongly interacting atoms. The displacement vectors for the
second type of modes are perpendicular to the layers. Sudiere w;(k) is the dispersion relation for thth vibrational
waves are reminiscent of flexural waves in noninteractingnode, andy;(w) is the spectral function of the partial den-
layers and are called “flexural vibrations(b-mode$ (see, sity of states of vibrational modes. Besidess the impurity
for example, Refs. 1, 2, and 13 concentration and=(My—Mg)/My, where My and M

It is assumed the frequencies of sound waves satisfy th@re the masses of the impurity atoms and the regular lattice
inequality 7, (wr) <1, wherer; is the relaxation time asso- aom, respectively. It is assumed tid>M,. As regards
ciated with elastic impurity scattering angy~kT/A=g"1  the polarization op_eratc_iF[', we can write in the cubic an-
is the characteristic phonon frequency. For simplicity, wearmonism approximation
consider the case where the standard anharmonic interaction
of thermal phonons in a nonideal crystal can be disregardet

In other words, the condition *(w7)> " is satisfied, TF=IH+Il}= )
wherer; and ry are respectively the impurity relaxation time

and the relaxation time associated with normal anharmonic _

processes. In this graphic relation]1)} describes the standard anhar-

1063-777X/99/25(11)/5/$15.00 912 © 1999 American Institute of Physics
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monic interaction between acoustic phononsThe quantityF; is defined as
and HJ the interaction between acoustic phonons and
phonon density fluctuations in thécinity of the de 1 2, \<(—) —(+) 2
fects Lines with arrows in Eq (4) correspond to Fi(“’l)_ﬁkEl [@j (k) G} (ky,01)Gj ™ (K, 01) ],
Greens function G*7), while thevertex U, emerges 9)

as a result of summation df fan-shaped plots and
describes processes ofvierse coherent scattering of wheren(w) is Planck’s equilibrium distribution function for
phonons by defectseg for exampleRefs 11-14).The  phonons. While writing this equation, we disregarded the
contributions of  and b-modes to the processes of-an small termsq in the arguments of Green’s functions. In lat-
harmonic interaction and to theertex U, during com tices with strongly anisotropic force of interaction between
putations are assumed to be independent atoms, summation in E¢8) overq has an upper limit really
Let us now consider explicit expressions for the vertéx  set by two small quantitieg{")~ 7/1{) (w,) (it is assumed
under the following conditions: that diffusion takes place over distances larger than the elas-
| i tic mean free path If a~b, the mean free pathia(”
gj(w1) <1, wn<l, =v{) 7)(w,). If, however, the unit cell parameteasandb

wherel;(w;) =v;(wy) T](wl) is the elastic mean free path, ahe quite different, i.ea<b, a situation may arise in which
)~ x/D.

andyv; the group velocity of quasiparticles. It was shown in Y] i
In order to proceed further, we must determine the pho-

Ref. 13 that - _ _ i

non mode frequencies. It was mentioned in the Introduction
that the lattice is assumed to be tetragonal with unit cell
parametera andb. It is assumed that the effective interac-
tion between atoms in the basal plar@y (denoted agl)) is
much stronger than along theaxis (L). The interaction
along thez-axis is be central. In such a situation, we encoun-
ter three characteristic force parameters satisfying the in-
g=k+k’. equality

T r— —
’. _ J +
U;(k,k ,w,wl)—ﬁ[l—ﬁ% G (ky, @)
. -1
XGj_(kl_qvwl_w)} ; 5
This ‘equation contains the quantity T’

—wl[m-(wl)g,(wl)] 1 i.e., the initial vertex descnbmga
single elastic scatterlng of low-frequency phonons withThese force parameters have three effective frequencies cor-

| DXL | <DL |<| D] (10)

guasimoment& and —Kk.

responding to themw? < w3<wf.

In the standard approximation, the anharmonic interac- Taking into consideration the interaction between near-

tion parameter(*) has the form

D2 (K, Ky ,kp) = =i F30)(K) wj(Kkq) j(Ky),

3’3:7’3\/%\ Yi-

Here,y,,v. (7,> v1) andys, are the effective harmonic and

anharmonic force constants.

Taking into consideration Eq$4)—(6), the expressions

for I1} andII) can be presented in the form

dwl

Hjl(k,w)~|73w k)j . 5(a)+a)2

1
x2[n(w) ~n(w)]y

xkEk w?(Ky) 0?(kp) G Ky, w1)
1:82

X G (kg wz) A(K+Ky+ky),

i * dw; (* do
_i~2 2 1 w3
sz(k,w)~|73wj(k)f0 P o o S(w+wy—

X2[n(wy) —n(w1)]Fj(w1)

X 2 Uj(g;0;,0).
q=<dc

est neighbors only, we can write for thenode

kL)

o (k)~v{"?k2+20? smz( 5

(11)

Wherevﬁ')%w”aIZ is the velocity of sound in themode. For
the b-mode, the dispersion relation can be defined as

2\ 2
wp(K)=w?b?k?+| —

k
K+ 203 sinz(bTL) (12)

(see details in Ref. 2 as well as in Ref.)13

We shall consider only theemode in details. The com-
putations for theb-mode can be carried out in an analogous
manner. In the last section of this paper, we shall mention
some differences in the qualitative behavior of the sound
absorption coefficient fol- andb-modes.

In the first place, it can be shown that in the polar ap-
proximation we obtait'*?instead of Eq(9)

T ()3
Fl(w1)~29|(0)1)7'i (w1), (13

whereg, (%) = (mw?) 1 is the partial density of states.
Second, we can write the following approximate expres-

sion for the vertex part of); in the frequency region where

the phonon modes act like quasi-two-dimensional excita-

tions, i.e., where the inequality?>2w? is satisfied®.
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w1
(0 w;wq) Wg\\(wi)TiZ(l)(wl) a(w,0;) leTi(l)(wl) Ti(l)(wl)DE(l)(wl)
" 1 . 1 —2iw |2
—lw+ Dﬁ’(l)(wl)qf-i- ZDE(I) sirf(q, b/2)’ wa)lTi(l)(wl) Dﬂ>(wl)
(14 D) 1 ( —2iw )1/2
= w
where O 7017(w1) | DM (wy)
(20)
vh2:0 (4 ) 0?1 (wy) . : : :
DO ,) = I i 1 DO (g,) = LT 1 Taking all that has been stated above into consideration,
I ! 2 ' + ! 4w§ we can determine the imaginary parts of the mass operator

(15 I1) in the limit of low frequencies. Substitution @) into (7)
leads to the following relation for I} :
are the diffusion coefficient tensor components. It is assumed 1
that o=y (k). Im T (K, )~ 2¥3003(K) = > 0?(ky)n[w;(k
It is well known that the real and initial phonon diffusion 1k@)=2Ys007(K) 7 k21 i (kunle;(ky)]
coefficientsD{!) andDP{" are connected with equations of

the type X[n[wj(k)]+1]7[w;(k)]. (2D

At extremely low temperatures, the sum(221) is diver-
a’b gent like thermal conductivity which also diverges due to the
g (1) same mechanism of phonon scattering. A finite value of
sound absorption can be obtained by taking into account the
XJ' d3q , D, : (16) anharmonic attenuation of thermal phonons and their scatter-
—w+Dqf+2D, sirf(q,b/2)’ ing at the sample boundary. Relati¢®l) is valid at inter-
mediate temperatures, when the mean free path of thermal
a’b phonons is sensitive to defedfsFor the quantity Ini1,, we
use the results obtained by Volfhardt and Wdfit€ who
proposed a self-consistent generalization of a number of
3 D, overlapping diagrams for the irreducible vertelx Taking
X f d*q —iw+Dyg2+2D, sir’(q, b/2) A7) all this into consideration, we replace the initial diffusion
coefficientsD® by the real diffusion coefficient®. Substi-
(similar relations for the phonon gas in an isotropic latticefuting (9) into (8) and using(18), we carry out computations
and electrons in an anisotropic system were considered iA"2/0gous to those in Ref. 13. This gives

Du:Dﬁ)_

_ O _
D.=by 7g(wy)

Refs. _9 and 1)3_ _ _ Tygazwwf(k)

It is convenient to consider the factors Im IT5(k, )~ — 7

0 ()] o(l)
. : : X | 5 nepn(e)+1]
It follows from (16) and (17) that b
wiTi(J)(wl) N 2

q=a, =a. Dﬁj)(w,wl) Ti(J)(wl)DE(J)(wl)

In this casea(" satisfies the relation N e( —2iw )1/2 (22)
gDV (wy)

a’b (7 dq,

The frequencyu? appearing in this expression separates the
9(w1) J-mp 27 regions of quasi-three-dimensior{al small frequency region
L2 near zerp and quasi-two-dimensional behavior of the vibra-
/) dq” . .
xf — J(®,9,,q,), (19  tional spectrum of a layered lattice. As far as the frequency
o 2w wj* (wj* >w?) is concerned, it defines the threshold of pho-
non mobility and is determined from the condition of van-
where ishing of the true diffusion coefficient.
Using Eq.(20), we obtain the following relations faz("
1 near the threshold. If

—iwla+Dqg?+2D% sirf(q,b/2)

a(w,w)=1—

Jw,q;,9,)=
('rrwlri(l)(a)l))_1< a8)<1 (23

It can be shown that or the condition
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af < (mw 7 (w) " 1<1, according to Eq(29), the factorl'o(= Ak) is proportional to
e | wzgj(w). Taking into consideration the explicit form of
w<al DY 707 (01)]?, (24 gj(w) (see Ref. 1§ we find thatl'y~w® for longitudinal

modes and =~ w? for flexural modes. The factdr, does

is satisfied, we can write
not depend on temperature.

() i( 5 ) (25) Let us now consider the case of an anharmonic crystal.
« o) @r T @) The dispersion equation can be written in the form
If inequalities of the type . 2o -
q yP B Wi —i Im [T (w(K)) =0,
ay) <[Toim (0] <1, i@
where
w>[7w17"(01) 73D (wy), (26) S
m IT'=1m +1m .
hold, we get 1) ()
5 r 13 where the subscripts 1 and 2 indicate the contributions from
alV~| —; (:)w S (27)  standard and nonstandard diagrafds This leads to the
Di(w)) [Toi7(w1)] following approximate relation for the reciprocal relaxation

Let us now consider the shear modes briefly. It should pdime:
emphasized that all the main expressi¢d8)—(22) for lon- 1 1 ImIl
gitudinal and flexural modes have the same structure, the ;=:+m-
difference being only in the representations for the initial ' !

diffusion coefficients. In accordance with Ref. 13, we have It follows from this relation that the factor #/in the
anharmonic lattice depends on temperature.

(b) .
1 an (o) Let us consider the temperature dependence of the ultra-
Op(w) dojw; sound absorption coefficient

(08 D2}~

16 (U”(,l)a.z wgbzﬂ- F]:FJ O+ AFJ(T)
X?W2'4; (28 :
for the j-polarization mode. In accordance with the above,
The density of states is described by the formgjfw,)  We can write
=m(8w,w;) 1. Moreover, thel- and b-modes are defined Im T w(K)]
in different frequency intervals: @ <wi<w? and 2w5 AT(T)~ , AT j=ATW+AT?),

<wi<w{. Hence the results obtained above femodes, 2wi(k)

including relationg25) and(27), can be extended to the case Let us analyze this expression for the sound absorption
of b-modes. coefficient in the case of strong localization of phonon
modes. For this purpose, we use the expressiafys (25),
and (27), and (28). It turns out that if the inequalitie&e?
=1,T<0,10;0;) is the Debye temperatyre and

Let us begin with the case of a harmonic lattice. WeD?(w)7{(w)<0,1 are satisfied, the inequalithT"{?
consider the dispersion relation for the effective frequency;Al“J(l) holds for acoustic frequencies in the megahertz
o, and the attenuation of vibrational modg@ke subscripj range. In other words, the temperature dependence of the

LOW-FREQUENCY SOUND ABSORPTION COEFFICIENT

is omitted. This equation has the form sound absorption coefficient is determined by the processes
2% of scattering at phonon density fluctuations in the vicinity of
D2—w2—i———=0. defects.
7i(wi) The following circumstance must be noted. Suppose that
We put the inequality(26) is satisfied. In this case, if the frequenoy

of sound exceeds a certain critical valug=[mwy7)

— = * * — i .
@(k=0)=vy kKT =k+idk. X(w7)]?ay’®*D%(wy), the anharmonic part of the attenua-

It can be shown that tion coefficient forl- andb-modes near the mobility thresh-
1 old depends on frequency ad";~w*3 (If the inequality
Ak=lim —— (29 (24 is satisfied, we obtaiAI'j~w?.) Thus a strong local-

w0 Vi) 7il®) ization may change the frequency dependenceﬁprob-

(v is the phonon group velocity and the Rayleigh-type served in the case of a harmonic lattice.

lifetime). Let us compar@I'{") and AT{?) in the dominating pho-
The absorption coefficient of low-frequency modes isnNONn approximation ¢;~T). It can be shown by using Egs.
defined by the relation (21) and (22) that if the conditionD? <D} is satisfied, we

can write for longitudinal and flexural modes

ro:|m|k*|, i @
wherek* is the complex wave vector of the mode propagat- AT AT, = Ar{

ing through the crystaisee, for example, Ref. 11Note that AT ATV al(w,07)

B 1-a)(w,w7)
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As the dominating phonon frequenay; approaches the the theory developed in this communication could be
threshold frequency)j* , the factorAl" becomes nonanalytic: applied.
AFj~(wJ* —w7) L

Let us estimate the contribution of the weak localization.
of phonon modes to the sound absorption coefficient. For
simplicity, we use the dominating phonon approximation )
again_ Putting the fac}oa in (18)2 approximately equal to 1I: M. Lifshits, Zh. Eksp. Teor. Fiz.22, 475(1952 (before AIP transla-
unity, we Compareﬁrl( ) and AFI( ). Using (21), (22) and ziénl\i).. Kosevich, Theory of Crystal Latticgin Russiaf, Vyssha Shkola,
(28)' we obtain Kharkov (1988.

SE. S. Syrkin and S. B. Feodos'ev, Fiz. Nizk. Ten5p.1069(1979 [Sov.
J. Low Temp. Phys5, 506 (1979].
4M. A. Ivanov and Yu. V. Skripnik, Fiz. Tverd. Teld_eningrad 32, 2965

E-mail: zhernov@kurm.polyn.kiae.su

AT(? T)\2 , (1990 [Sov. Phys. Solid Stat82, 1722(1990)].

—t~ce? —| N 27 [wr)D%(wy)] 7t SM.A. | d A. M. Koseviclet al, Fiz. Nizk. Temp.19, 434(199

AF(l) ce 0. nNzZ(n"’'lo7)D] (w7 , . A. Ivanov and A. M. Koseviclet al, Fiz. Nizk. Temp.19, (1993
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5T. R. Kirkpatrik, Phys. Rev. B1, 5746(1985.
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Low-frequency dynamics of cubic crystals with next-nearest neighbor interaction
E. V. Manzheli and E. S. Syrkin

B. Verkin Institute of Low-Temperature Physics and Engineering, National Academy of Sciences of
Ukraine, 310164 Kharkov, Ukrairié
(Submitted April 28, 1999; revised July 12, 1999

Fiz. Nizk. Temp.25, 1224—-1236November 1999

The influence of next-nearest neighbor interaction on the dispersion characteristics of simple
cubic, bee, and fec lattices is studied. It is shown that the next-nearest neighbor interaction affects
significantly the dynamic characteristics of the above systems. In the scalar model describing
the one-magnon excitations in magnetically ordered Heisenberg systems, the inclusion

of the second coordination sphere can lead to the emergence of a minimum and an additional
peak on the dispersion curves inside the Brillouin zone and to the disappearance of
divergence of the density of states. In some cubic lattice models, the inclusion of next-nearest
neighbor interaction may lead to a significant variation of the “anisotropy parameter:”

in the longwave limit, two transverse branches may coincide or differ sharply from each other,
depending on the relation between the force constants characterizing the interaction

between the nearest and next-nearest neighbors19€9 American Institute of Physics.
[S1063-777X99)01111-1

INTRODUCTION investigations of the vibrational characteristics of sc, bcc and
fcc lattices for an arbitrary ratio of the constants of interac-
In order to study the spectra of quasiparticle excitationstion between the nearest and next-nearest neighbors. The cu-
it is extremely important to estimate the effective range ofbic symmetry is possessed by a wide range of materials like
atomic interaction in the objects under consideration. Even imolecular crystals, metals, superconductors, magnetically or-
the case of short-range forces oiib/g., those described by dered systems, etc. We considered vector as well as scalar
the Lennard—Jones potenjialhe results obtained by taking (one-componentmodels of the cubic lattice. The use of the
into consideration interactions with nearest neighbors onhscalar model is justified for a number of reasons. Upon an
are absolutely unsatisfactory in some cases. For example, tlag@propriate change in the notation, the results obtained for
vector models of a simple cubisc and a body-centered this model can be used for studying spin waves in magneti-
cubic (bco crystals with such an interaction are simply un- cally ordered crystals. Moreover, real semi-infinite crystals
stable in lattice dynamic&see, for example, Ref.)1 may contain one-component surface waves of the SH
The inclusion of the next-nearest neighbors into considtype (Gulyaev—Bleustein waves in piezoelect?it$ and
eration leads to a whole range of qualitatively new results oAlldredge—Gel'fgat waves in conventional crystald?) We
to a much better agreement with the experiment. The desonsidered in detail cases in which the inclusion of interac-
scription of shear waves in highly anisotropic crystals is postion with next-nearest neighbors qualitatively changes the
sible only if the nextnearest neighbors are taken intdnvestigated characteristics. For example, the peak of the dis-
consideratiorf. The next-nearest neighbors also play a sig-persion curve is displaced inward into the Brillouin zone,
nificant part in studies of spin wave in magnetically orderedsplitting of vibrational branches takes place, and the lattice
systems. For example, it has been shown experimentallystability emerges or vanishes. We also analyzed the variation
that the exchange integrals of interaction between the neare@t elastic moduli of cubic lattices on account of interaction
and next-nearest neighbors are nearly identical in magneti¢ith next-nearest neighbors, and the corresponding variation
semiconductors EuO and EusS, while those between third anef the dynamic characteristics of cubic lattices in the long-
subsequent neighbors are negligibly small. Moreover, the exwave limit.
change integrals of interaction between the nearest and next-
nearest neighbors may be of the same or opposite signs. 1t MATRICES OF FORCE CONSTANTS OF CUBIC LATTICES
was shown earlier by Petrova and Syfkirihat for interac- AND THE RELATION BETWEEN THESE CONSTANTS
tion attenuating exponentially with distance, it is importantAND PAIRED POTENTIAL
to take into consideration next-nearest neighbors for studying According to the Born—von Carman lattice dynamics
vibrational excitations as well as spin waves. The role oftheory, the forces of interaction between two atoms in a
distant neighbors was emphasized in numerical computation®onatomic crystal in the harmonic approximation have the
and experimental investigations of the dispersion relationgorm ®;, (n,n")u,(n’), (i.e., the force acting on an atom at
for a number of metals with bee structfifeand solidified  the nth site in theith direction, while the atom at the’th
inert gasegfcc structure.® site is displaced through a distanaén’) in the kth direc-
In this communication, we report on the results oftion. Thus, the X3 matrix®;, is a set of elastic constants of

1063-777X/99/25(11)/11/$15.00 917 © 1999 American Institute of Physics
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interaction between atoms at the siteandn’. Taking into ao=2(a;+2B1)+4(ay+28,) (4
account the interaction between the nearest and next-nearest

: . ' . . for sc lattice;
neighbors, the matrice®j;’ for cubic lattices can be pre-

sented in the form® ag=8a1+2(ay+28,) )
a; 0 0 for bcc lattice; and
Py [0a(1,00]=| O B O ag=4(B1+2a1) +2(azt2p,) (6)
0 0 B for fcc lattice.
o 0 The elements of the force matrik)" may be connected
2 72 . o . .
_ with the derivatives of the paired potential. Lé{|R,
®y[0a(1,1,0]=| v2 a2 O |; @ —R,|) be the potential of paired interaction between atoms,

0O 0 B, which depends only on the separation between thBmig
for a simple cubic lattice with the nearest neighbors at th Lhnee:ad:jj sofv tehcéﬂ;t?rcéhﬁait?r% ?(t)rsml@ The total potential
a(100)-type sites and the next nearest neighbors at thé 9y
a(110)-type sites §-edge of the cube

E f(IRa =R ). 7
a a; B1 B n;&n
q;ik(o,z(l,l,l)) =| By a; PB1 We can preserR, in the formR,=r,+u,, wherer,, is the
B, By ai radius-vector of theith atom in the equilibrium state ang|
is its displacement. In this case,
ay O 0
®,[0a(1,00]=| O B2 O |; ) E F(lra=ra+ Un=Un))
n;ﬁn
0 0 B,
. . . 1
for a bcc lattice with the nearest neighbors at the = EZ > f(|D+d)), 8
(a/2)(111) sites and the next nearest neighbors a&(ie0) r b0
sites; and wherer=r,,; D=r,—r,, d=u,,p— U,
We expandf(|D+d|) into a power series id up to the
a7 0 second-order term:
a 0 :
| 0,5(1,1,0 |= a
'k( 2 )) [ f(D+d)=f(D)+f'(D)(v-d)
0O 0 B
1., /(D) , 1f(D) ,
@, 0 O +§(f(D)_—D )(V'd)+§—D ds,
0 0 B,
_ _ _ whereD =|D| andv=D/D.
for an fcc lattice with the nearest neighbors at &i2(110) Thus the total lattice energy can be presented in the form
sites and the next nearest neighbors ata(i0) sites. _
Analyzing the arrangement and number of nearest and U=Uo+U;+U,. (10
next-nearest neighbors, we observe that the effect of nexHere,
nearest neighbors in an fcc crystal must be weaker than in sc
or bcc crystals. Indeed, although the next-nearest neighbors Up= 2 E f(D)= NZ f(D (12)
(12 atom$ in sc crystals are more distant, their number is
double that of the nearest neighbdgsix atoms. The open is the number of atoms in the crystal,
bcc structure has six next-nearest neighbors at a dlstance
only 15% larger than the distance between eight nearest
neighbors, while the close-packed fcc structure has six next- 2 E (D) (vd) E (D) 2 (v-d)=0;
nearest neighbors which are farther than the 12 nearest (12)
neighbors by 40%. q
Each of the matrice$l), (2) and (3) must be supple- an
mented by the self-action matrie3’ (translational invari- 1 f'(D) f'(D)
ance conditiojt: Upy=7=2> 2 | (D)= ——|(v-d)2+ ——d?| .
45 5 D D
1 00 (13
®,(0,0=agl 0 1 0], (Note thatU, does not depend odi, and the equality of the
00 1 expressiorn(12) to zero does not mean th&t(D)=0).

The elements of the force matri®; rr’ are obtained
where ¢ has the following form for various lattices: from the condition
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" 92U 3?U, , where §; and §, correspond to the first and second coordi-
ik =0 adE  auadf :5”'% f"(D)vivy nation spheres.
o o The condition of periodicity of the crystal lattice leads to
f’(D)( 5 )] o ) the equality
— ——(V:iV,— & __fn r_r/
D ik ik A(n,n")=A(n—n’'), (18
’ ’ f’ r_r’ ’ ’ i i i 1 is-
SV (|_ , ) VTV S, while the invariance of the crystal energy relative to the dis
[r—r’| placement as a whole gives
(14

A(n+6)=0, (i=1,2. 19
Thus, for fcc crystals, we obtain frofi4) the following % ( ) ( ) 19

relations between force constari8 and derivatives of the

paired potential: Considering the periodicity of the lattice, we seek the solu-

tion of EQ.(17) in the form

f'(D
ay=— f"(D)_%), u(nit)y=uexdi(k-r—ot)], (20
where k= (k,k, ,k,) is the wave vector and the radius
f(D) f'(D) vy :
_ — | vector of thenth site. As a result, Eq16) is reduced to the
1 — M1 "+ , ! ;
D 2D linear equation
, f'(2D) mo?u—A(k)u=0, 21
a=—1"(2D), Bp=— 55— (15) @ U=A(k) (21)

Before going over to specific computations, we note thatVNereA(k) =X A(n)exp(k-r).
an analysis of the dynamic properties in the general formis  We can now go over directly to an analysis of the dis-
quite cumbersome in view of the large number of indepenpersion relations for the scalar models of cubic lattices. We
dent parameters. In the present communication, we shadhall consider in detail the high-symmetry directions along
consider only the case of central forces, i.e., we shall assumghich the peak of the dispersion curve is displaced inward
thatf’(D)=f'(2D)=0. In this case, the number of indepen- into the Brillouin zone, since the emergence in the continu-
dent parameters for each structure is reduced to just two. Weus spectrum of a point at whichw/dk=0 is extremely
shall analyze the role of the next-nearest neighbors by comimportant. We shall also consider the cases when the lattice
plicating the model gradually. loses stability as a result of interaction with next-nearest

neighbors.

2. DISPERSION RELATIONS FOR CUBIC LATTICES IN THE

SCALAR MODEL Simple cubic lattice

neighbors on the dispersion relations of cubic lattices in th attice involving first and second coordination spheres has

scalar model. This model describes the vibrations of a c:rysta,1e form
lattice in which all atoms are displaced in the same direction, Mw?
and the displacement of an atom from the equilibrium posi- ~ A= —— =2(3— cosak,—cosak, —cosak,)
tion is described by a scalar quantity. It was mentioned s
above that for an appropriate change in the notation, such a +464(3—cosak, cosak,—cosak, cosak,
model can be used to describe one-magnon states in a mag-
netically ordered mediurt?

The equation of motion of the atoms at théh crystal  whereA; is the force constant of interaction with the nearest
lattice site in the harmonic approximation has the form neighbors, ands=Bg/Ag the ratio of force constarBg of

Let us consider the effect of interaction with next—neares% In the scalar model, the dispersion relation for an sc

—cosak, cosak,), (22

J2u(n,t) interaction with the next-nearest neighbors to the force con-
Mm——s—=— >, A(n,n’)u(n’,t). (16)  stant of interaction with the nearest neighbors.
at n’ Let us study the stability of sc lattice in the scalar model

Here the force constai(n,n’) describes the force acting taking into account the interaction with next-nearest neigh-
on the atom at thenth site if the atom at the sita’ is  bors. It can be seen from the dispersion relat@?) that for
displaced by a unit element of length. Taking the interactios>0, the scalar model of an sc lattice is stablg?t0),
with two coordination Spheres into Consideration, we Canunlike the vector model, even if the interaction with the near-

present Eq(16) in the form est neighbors only is taken into consideration. If the constant
) of interaction with the next-nearest neighbors is negative, the

m g7u(n,t) _ —E A(n,n+d)u(n+ &) natural vibration frequencies for the sc lattice may turn out to

at* 5 ' ! ! be imaginary, i.e., the lattice will be unstable in this case. We

shall show that the sc lattice becomes unstable dgr

— > A(n,n+ S)Hu(n+3,), (179  <—1/4. For this purpose, we shall considgras a param-
5 eter and determine the value of the wave vector for which the
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difference in the contributions from the interaction betweenconsider the dispersion relations for the sc lattice along the
the nearest and next-nearest neighbors to the square of theggh-symmetry directions as functions of the parameter
frequency is maximum. For this purpose, we shall determinéndicating the direction along which the dispersion curve
all stationary points for the function(k,,ky,k,), i.e., the  peak is displaced from the Brillouin zone boundary.

points at which all partial derivatives of the function In the directionk=(k,0,0), the dispersion relation is
A(Kky,ky ,k;) vanish. Next we determine the minimal value of described by the expression

|64 for which the frequency of vibrations at these points is

smaller than zero. Thus, we must solve a system of three A=2(1~cosak)+80(1~cosak). 29
trigonometric equations It can be seen from this equation that the inclusion of inter-
‘o action With next-nea_rest neighborg does not yiolate the
——=2asinak,+46sasinak,(cosak,+cosak,) =0 monotonicity of the dispersion relation. The maximum fre-
Ky Y quency is attained at the zone boundary. For this direction,

Nmk(1,00= 47+ 1665. Here and below) ,  is the maximum

2N ) .
{ - =2asinak,+46sasinak(cosak,+cosak,) =0 value of\ in the direction under consideration.

ok,

I\ For the directiork =k/v2(1,1,0), the dispersion relation
T 2asinak,+ 406 sinak,(cosak,+cosak,) =0 has the form
\ z
(23 A=4(1—cosak)+46043—cos ak—2 cosak).  (26)
together with the inequality In this direction, the peak of the dispersion curve may be
MKy K, ,k,)<O. (24) displaced into the Brillouin zone only for such values of

_ _ ~ 04(65<—1/4) for which the lattice becomes unstalikee
By way of an example, let us find some points satisfyingahove. Thus, for this direction also, the inclusion of interac-
the system of equation@3), and the corresponding values tjon with next-nearest neighbors does not violate the mono-

of 65 for which the inequality(24) is satisfied. tonicity of the dispersion relation. In this case,
1 Let Nmkiva(1,1,0=8+ 166s.
sinak,=0, cosak=1, sinak,=0, For k=(k/v3)(1,1,1), we have
cosak,=—1, sinak,=0, cosak,=—1. A =6(1—cosak)+ 664 1—cos 2ak). (27
In this case §s<—1/2. For 6,>1/4, the peak of the dispersion curve is displaced
2. Let into the Brillouin zone and is attained at the poikg
) ) =(1/a)arccos(-1/465) and
sinak,=0, cosak=1, sinak,=0, 5
3+ 240+ 4862
cosak,=1, sinak,=0, cosak,=—1. Amkiv3(11)="" 15 -
y 40,

In this case ;< —1. For 6,<1/4, the peak of the dispersion curve is situated at
3. For the boundary of the Brillouin zoneky=w/a) and
sinak,=0, cosak,=1, sinak,#0, sinak,#0, Nmvs(aa.0)~ 12

h ¢ ) ) ‘ di Thus, in contrast to the directionk=(k,0,0) and
the system of equation@3) is transformed into k=k/v2(1,1,0), the inclusion of interaction with next-
sinak,+26sinak,(1+cosak,) =0 nearest neighbors in the directiérk/v3(1,1,1) leads to a

sinak,+ 26 sinak,(1+cosak,)=0 ° displacement of the dispersion curve peak into the Brillouin

zone.
The solutions of this system of equations have the form
+
cosaky= cosak,= ! 2:05 Body-centered cubic lattice
S

N ) The dispersion relation for a bcc lattice in the scalar
The conditions coak>—1 and cosk,>—1 lead to the in-  qdel is described by the expression

equality 6;<—1/4. For the above solutions of the system of

equations(23) and for 6,< — 1/4, the function (ky ,k, ,K,) - mo? 8l 1- co2 0 2K
is negative. Ap 2 2 2
Taking into consideration all compatible solutions of the +20,(3— cosak, — cosak, — cosaky), 29

system of equation®3) and the inequality24) in an analo-

gous manner and choosing the smallest valugggf it can  whereA, is the force constant of interaction with the nearest

be shown that the sc lattice becomes unstable dgr neighbors, and),=By/A, the ratio of force constar, of

<-1/4. interaction with the next-nearest neighbors to the force con-
The position of the peak on the dispersion curve and itstant of interaction with the nearest neighbors.

amplitude may depend on the ratio of constants of interaction  Unlike the vector model, the scalar model of the bcc

with the nearest and next-nearest neighbors. We shalattice with interaction between the nearest neighbors only is
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stable. This model may become unstable if interaction with
the next-nearest neighbors is taken into account. Analyzing 20
the stability of the bcc lattice in the same way as the stability
of the sc lattice, it can be shown that the bcc lattice becomes A
unstable for,< —2/3.

It should also be noted that the inclusion of the second
coordination sphere in a bcc crystal results in the disappear-
ance of divergence of the density of vibrations at the middle
of the spectrum. If interaction with nearest neighbors only is
taken into consideration, it follows fron28) that for ak,
= and for arbitrary values ok, andk, (as well as for 10
cyclic permutation of the wave vector compongnis=8
=Amaf2, Where 5, is the maximum value ok (k) when
interaction with the nearest neighbors only is taken into ac-
count. Consequently, the middle of the frequency spectrum
corresponds to an infinite set of states, which leads to the 5
divergence of the density of states for \ ,,/2.221t fol-
lows from the dispersion relatiof28) that this nonphysical
divergence disappears when interaction with next-nearest
neighbors is taken into consideration.

15

Interaction with next-nearest neighbors can also affect 0 1
the form of the dispersion curve significantly. We shall show ak/(2m)
t_his by considering the example of high-symmetry direc-gi_ 1. pispersion curves for a bec lattice obtained in the scalar model
tions. along the[111] direction. Curved—4 corespond t@,=0, —2/3, 0.5 and 1,

In the directionk=(k,0,0), the dispersion relation has respectively.
the form

ak - . .
\A=8 1—cos? +26(1—cosak). (29)  the minimum at the poink,. For ,>1, the functioni (k)

has a peak at the poikf and a minimum at the boundary of
The quantity\ (k) attains its peak in this direction at the the Brillouin zone(see Fig. 1
boundary of the Brillouin zone fow,<1, and A k1,00) Thus, it can be seen that unlike the sc lattice, the bcc
=16. For§,>1, the dispersion curve peak is displaced intolattice may exhibit in the directiok=1/3(1,1,1) an addi-
the Brillouin zone and is attained at the poiky, tional peak as well as an additional minimum inside the Bril-
=(2/a)arccos(-1/6,); and louin zone in the lattice stability region as a result of the
2 inclusion of an indefinitely small interaction with the next-
(1+ 6y) . ) . : g
)\m,k(l,0,0)246—- nearest neighbors. Moreover, the inclusion of an indefinitely
b small interaction with the next-nearest neighbors leads to the
For the directiork= (k/v2)(1,1,0), the dispersion rela- disappearance of the divergence of vibrational density at the
tion has the form middle of the phonon spectrum.

N=4(1-cosak)+46,(1—cosak) (30

and\ nva(1,1,0= 8+ 86, . It can be seen that for this direc- Face-centered cubic lattice
tion, the interaction with the next-nearest neighbors does not

) - . . . The dispersion relation for an fcc lattice has the form
violate the monotonicity of the dispersion relation.

In the directionk=(k/v3)(1,1,1), the dispersion rela- _ mw2_4 3 cos ak, ak, ak,
tion has the form A 0S5 C0S5 mC0SHCos5

A=8(1——cos ak/2) +66,(1—cosak). (31) ak, ak

o . — COS—2 COS—— +260:(3—cosak,— cosak
In this direction, I\/ok=0 at the pointsk;=m/a and 2 2 X Y

cosak,/2= 6, as well as at the Brillouin zone boundaries B K (32)
(ks=0, k,=2m/a). At the pointk,, the functionx (k) as- cosak,),
sumes the form\(k;)=8+126,, while the value of this whereA; is the force constant of interaction with the nearest

function at the poink, is A (k,) =8+ 126,— 46°. neighbors, and;=B;/A; the ratio of force constar; of

At the upper boundary of the Brillouin zone, the function interaction with the next-nearest neighbors to the force con-
N\ (k) assumes the value(k,) = 16. stant of interaction with the nearest neighbors.

It can be seen that in the interval2/3< 6,<0, the dis- The fcc lattice is stable when the interaction with nearest

persion relation31) has a peak at the poikt, and a mini-  neighbors only is taken into consideration. Analyzing the
mum at the pointk;. For 0<#,<1, the dispersion curve stability of the fcc lattice in the same way as the sc lattice, it
peak is situated inside the Brillouin zone at the péintand  can be shown that the fcc lattice is unstable figrk — 1.
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It can also be seen easily that the dispersion curve pedbors in the case of the scalar model removes the divergence
and its position may depend on the ratio of the constants aff the vibrational density for a bcc crystal in the middle of
interaction with the nearest and next-nearest neighbors. Wiae frequency spectrum. The effect of interaction with the
shall analyze the dispersion relatig¢®2) for an fcc lattice  next- nearest neighbors on the dynamic properties of the cu-
along the high-symmetry directions and show that the inclubic lattices is not confined to these facts. Thus, the dispersion
sion of an indefinitely small interaction with the next- nearestrelation for an fcc crystal along the ling+k,=m/a is in-
neighbors may displace the dispersion curve peak into thdependent ok,. This leads to the emergence of a singularity

Brillouin zone. in the density of vibrations at the upper boundary of the
In the directionk=(k,0,0), the dispersion relation has phonon spectrum. If the interaction with the next-nearest
the form neighbors is taken into consideration, this singularity disap-
pears and the density of states vanishes at the upper bound-
ak 5 . .
)\:4(1_(;05_ +26;(1—cosak). (33  ary of the spectrun®® Interaction with the next-nearest
2 neighbors also affects considerably the properties of surface

For 6;>1, the frequency peak is displaced away from thewaves. For example, no surface waves are formed in the
Brillouin zone and is attained at the poikg=(2/a)arccos nearest-neighbor model for an sc lattice with surface plane of

(-1/6;), and the type (1,0,0. Surface waves emerge as the interaction
5 with next-nearest neighbors is taken into consideration in
\ _4(1+6) this geometry. Presenting the displacement ofritte layer
m.k(1.0.0 6> of atoms in the formu,=uyq", we can easily show that

g=1 in the nearest-neighbor model, while the inclusion of

For 6;:<<1, we have\y k1,1,0=86s - interaction with the next-nearest neighbors gives

For the directiork=(k/v2)(1,1,0), the dispersion rela-
tion has the form ~ 1+264(cosak,+cosak,)

B 1+46

ak ak
\=4 3—co§7 -2 cos—- +260;(1—cosak). (34 For fcc and bec lattices, the inclusion of interaction with the
next-nearest neighbors transforms one-partial surface waves

For an indefinitely small value of, the peak of the disper- inig two-partial waves, i.e., the surface waves have the form
sion curve is displaced into the Brillouin zone and is attaineqan u,q"+ u,q". 16

at the pointky= (2/a)arccos(-1/(26;+1). In this case,

N 1601+ 0r)* 3. DISPERSION RELATIONS FOR CUBIC LATTICES IN THE
mkV2(110™ ) 12, VECTOR MODEL
For the directiork=(k/v3)(1,1,1), the dispersion rela- Let us consider models in which the displacemefrt)
tion has the form of an atom at thenth site is a vector quantity. In the har-
_ monic approximation, the equation of motion for an atom in
A =6(1—cosak)+66;(1—cosak). (39 the crystal lattice at the site has the form
In this direction, the inclusion of interaction with the J2ui(n,t)
next-nearest neighbors does not violate the monotonicity of m#z —2 D (n,n")u(n’,t), (36)
(k) and n'k

where ®;,(n,n") is the matrix of force constants, and the
coordinate indices, k=1,2,3. Taking into account the inter-

It should be reiterated that the fcc lattice has a high-action with next-nearest neighbors, we can present the equa-
symmetry directiork=k/v2(1,1,0) along which the disper- tion of motion(36) in the form
sion relation peak is displaced into the Brillouin zone for an

Nmiva(1,1,0 = 12+ 126; .

2
arbitrarily small yalue of the constant of interaction with the mw: = Dy (n,n+ Sy u(n+ 8;)
next-nearest neighbors. at 91k

Thus, it can be seen that the inclusion of interaction with
the next-nearest neighbors for positive force constants may = Di(n,n+ E)up(n+ 5,). (37)
lead to a displacement of the dispersion curve peak of cubic ok

lattices into the Brillouin zone and to the emergence of alHere 5, and 5, correspond to the first and second coordina-
addditional minimum on the dispersion curve in the Brillouin tion spheres. The condition of periodicity of the crystal lat-
zone. Moreover, the inclusion of the second coordinationijce leads to a relation analogous (ts8):

sphere changes the maximum vibrational frequency. In the , ,

case of negative force constants of interaction with next-  Lik(n.n")=®iy(n—n"). (38)
nearest neighbor@xchange integral in magnetically ordered The solution of Eq(36) is sought in the form

systemy it is shown that the sc lattice remains stable for .

6> —1/4, while the bce and fec lattices remain stable for UMD = Ui expli(k-r=ot)), (39
0,>—2/3 and ;> —1, respectively. It was shown above wherek(k,k, k,) is the wave vector andthe radius-vector
that the inclusion of interaction with the next-nearest neigh-of the siten. As a result, we arrive at the system of equations
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[Mw?8,—Li(K)]u,=0, (40) in the case of central interaction with the nearest and next-
nearest neighbors. Denoting by and é; the force constants
of central interaction between the nearest and next-nearest
) neighbors respectively, we can write for the matri¢és
Lic(k)= 2 i(m)explik-r). 4D g =e.. ay=25., B1=0, By=0 anda,=y,.

In this case, the dynamic matrix{*)(k) of interaction
Solution of the system of equatio40) leads to the disper- wjth the nearest neighbors has the form
sion relations. We shall consider below these dispersion re-

lations for lattices with cubic symmetry in the high- 1—cosak, 0 0
symmetry directions.

where the dynamic matrix

LY =2¢4 0 1—cosak, 0

Simple cubic lattice 0 0 1—cosak, 42
The sc lattice structure is possessed by a wide range of
materials, including TIBr, T, NHCI, CuPd, Cuzr(B-bras3  The dynamic matrixL{?)(k) of interaction with the next-

and one of the phases og4 We shall use the matricéd)  nearest neighbors has the form

2—cosak,(cosak,+cosak,) sinak, sinak, sinak, sinak,
L2 (k)=464 sinak, sinak, 2—cosak,(cosak,+ cosak,) sinak, sinak, . (43
sinak, sinak, sinaky sinak, 2—cosak,(cosak,+ cosak,)

Let us analyze the form of the dispersion relations fortransverse modes, and may also lead to a displacement of the

different directions ok. peak of \;(k) from the Brillouin zone boundary. Fogg
In the directionk=(k,0,0), the dispersion relation has >1/16, the peak on the curve (k) is displaced into the
the form Brillouin zone (see Fig. 2, while a similar displacement of

N =(2+8us)(1—cosak),

M=\ 2=4us(1-cosak), 5
where \, corresponds to longitudinal vibrations with fre- A
guencyw,, \¢;(i=1,2) corresponds to transverse vibrations
with frequency w;, a is the lattice constant\ 4+

Emw,z(t)/ss, and us=6;/e5. It can be seen that transverse
vibrations are determined only by the interaction with the
next-nearest neighbors. Thus, the model becomes stable if
the interaction with next-nearest neighbors is taken into con- 3t
sideration.

For the direction k=(k/v2)(1,1,0), the dispersion
curves assume the form

N\ =2(1—cosak)+4uy2— cos 2ak—cosak), 2r
Ni1=2(1—cosak)+4u(1—cosak),
Ni2=8us(1—cosak). 1F
In this case, one of the branches of transverse vibrations is
determined by the interaction with the nearest and next-
nearest neighbors, while the other branch is determined only . 1 1 1
by interaction with the second coordination sphere. 0 02 04 06 08 1.0
For the directiork=(k/v3)(1,1,1), we can write ak/m
)\,=2(1—cosak) +8us(1-cos 2ak), FIG. 2. Dispersion curves for an sc lattice along fti¢1] direction. The
solid curve is a triply degenerate dispersion curve obtained by taking into
A1=Ap=2(1—cosak) +2ug(1—cos 2ak). account the interaction with nearest neighbors only=0). The dashed

. . . . . curve corresponds to the branch of longitudinal vibrations and was obtained
It can be seen Clearly that inclusion of interaction with theby taking into account the interaction with next-nearest neighbers (

second coordinatign sphere .Iea(.:is to a splitting of the triply=o 1y. The dotted curve corresponds to a double degeneracy of the trans-
degenerate mode into a longitudinal and a doubly degeneraterse vibrational branchu(;=0.1).
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the \|(k) peak occurs fojugs>1/4. et 26,

To analyze the elastic stability, we express the elastic 7= 75— (48)
mOdu|i CXXXX: Cll! CXny: ClZ! nyxy: C44. (VOigt’S
notatiort’) in terms of the force constants. For the sc lattice,
we can write

It follows from Eq.(48) that > 1 for a weak interaction
with the next-nearest neighbors, i.e., the sc lattice in the

£+ 405 25, 25, longwave limit corresponds to a highly anisotropic medium.
n=——5  Cw=F, Cu=— (44 For 5,=e42, the sc lattice in the longwave limit will corre-

o ) spond to an isotropic mediunyE&1). Earlier, it was shown
Naturally, the Cauchy conditiofinclusion of central forces py Kosevichet al® that a change in the anisotropy param-

only) is observed for the sc lattice, as also for the other tWaater over such a wide range in the theory of elasticity leads to
cases considered by us: significant variation of the properties of surface waves in

C1,=Cys. (45) crysta}Is of cubic sy'mmetry: the penetration depth and thg
velocity of propagation of the waves changes, and a transi-

Moreover, it follows from the condition of elastic stabilify 0 from the conventional Rayleigh wave to a generalized

C4>0 (46) wave occurs.
that 6> 0.
The anisotropy parameter for a cubic symmetry crystal
has the form Body-centered cubic lattice
Ciy1—Cyy Ct21 The body-centered cubic lattice is possessed by a very

= TM— cZ (47) wide range of materials like Fe, Nb, V, Mo, §Ma, Ta, Nb,

t2 Cr, and one of the solidHe phases. For the case of central
where C;;=\/(C1;— C19)/2p, C;,=+/Cu/p are the trans- interaction in the force matrices of a bcc cry$tbnsidered
verse velocities of sound in a cubic crystal, amds the by us,a;=pB1=¢p, as= 48, B>=0. For such a relation be-
density of the crystal. For the sc lattice, the anisotropy patween the parameters, the dynamic matrix of interaction with

rameteryn has the form the nearest neighbors has the form
|
1 ak, ak, ak, ak, = ak, ak, ak, —ak, ak,
COSTCOSTCOST COSTSIHTSII’IT COSTSIHTSII’IT
ak ak ak ak ak ak ak ak ak
(1) — Zein— sin—Y — cos— cos—2 cos—2 X ain— sin—2z
Lic'=¢p cos—-sin—-sin— 1-cos 5 C0S—~C0S— cos—-sin—=sin— . (49
ak, —ak, ak, ak, = ak, ak, 1 ak, ak, ak,
cos—,~sin—-sin— cos—-sin—=sin— COS—~ COS—~C0S—

The dynamic matrix of interaction with the next-nearestHere,M(t)zmw,z(t)/sb, Mup=0p/ey. It can be seen that the

neighbors can be represented in the form inclusion of interaction with the next-nearest neighbors leads
to a splitting of the triply degenerate mode into a longitudi-
1—cosak, 0 0 nal and a doubly degenerate transverse modes.ugorl,
Lff)=25b 0 1-cosak, 0 _ the peak on the longitudinal vibrations curve is displaced

into the Brillouin zone. The experimentally determined dis-
persion curves for Fe, Nb, V, Mo, and Cr have a peak on the
longitudinal vibrational branch along= (k,0,0) in the Bril-

Let us analyze the dispersion relations for the bcc latticdUin zone, while for Na and Ta, for example, the p%zk on
taking into account the interaction with the nearest and nexttn® longitudinal branch is attained at the edge of the end.

0 0 1-cosak,
(50)

nearest neighbors. For the directiork= (k/v2)(1,1,0), the dispersion rela-
In the directionk = (k,0,0), the dispersion relations have tions have the form
the form

ak
1- 0037 +2u,(1—cosak),

)\|:8

ak
N=8|1—cos=

5 +2up(1—cosak),

Au=4(1—cosak), A\p=2up(1—cosak).

Mor = Nes=8 1—0051( It can be seen that as in the case of an sc lattice, one of the
R 2 ) branches of transverse vibrations is determined by a weak
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FIG. 3. Transverse branches of vibrations of a bcc lattice alond1th@]
direction for u,=0.1 (highly anisotropic medium FIG. 4. Doubly degenerate transverse branch of vibrations of a bcc crystal
along the[110] direction for u,=2 (isotropic medium

interaction with the next-nearest neighbors, while the other is
defined by a strong interaction with the nearest neighbor
(see Fig. 3.

For the directiork=(k/v3)(1,1,1), the dispersion rela-
tions have the form

Wide range, as in the case of an sc lattice, depending on the
ratio of the constants of interaction between the nearest and
next-nearest neighboksee Figs. 3 and)41t was shown by
TysorP and by Gospodarev and Syrkithat for a number of

bcec metals, the constants of interaction with the next-nearest
+2up(1-cosak), neighbors may turn out to be more than twice as large as the
constants of interaction with the nearest neighbors.

=24 ak 3 3ak
1= COS7 COST

ak
1 0032
For this direction, the inclusion of interaction with the next-
nearest neighbors does not lead to a qualitative variation of Like the structures considered above, the fcc structure is
the dispersion relation. It should be observed that ggr quite widespread. Solidified inert gases, Ag, Ni, Cu, and Pa
>1, the peak on the curve of transverse vibrations is disall have the fcc lattice. For a central interaction between the
placed into the Brillouin zone. nearest and next-nearest neighbors in the force matf&es
We shall now analyze the anisotropy parameter for theof an fcc crystal,3,=0, a;=y,=¢¢, 8,=0, anda,=&;.
bcc lattice. The elastic moduli of a bce crystal have the forminteraction with the next-nearest neighbors does not affect
significantly the fcc lattice spectrum. It should only be
cn:m, Cyfﬁ, c44=ﬁ_ (52 remarked that in the directiokk=(k,0,0), the peak of
a a a the longitudinal vibrations curve is displaced from the
The anisotropy parameter for a bcc crystal can be presentdgfillouin zone boundary fordi>e¢. In the direction
in terms of the force constants: k=(k/v2)(1,1,0), the peak of one of the branches of trans-
verse vibrations is displaced into the Brillouin zone ®r
7= Gpl2e, (52 >0.5;. Thus, it can be seen that fék<e the dispersion
If we disregard the role of the next-nearest neighb@sg, relations for an fcc crystal can be described quite accurately
—C4, vanishes(elastic instability, while a variation of the by taking into account interaction with the nearest neighbors
ratio &, /e, may transform(in the longwave limit a highly  only.
anisotropic crystal into an isotropic one. It follows from for- As in the case of sc and bcc lattices, let us analyze the
mula (52) that for §,<e,, a bcc crystal is a highly aniso- condition of elastic stability of an fcc lattiogor an arbitrary
tropic medium @<1) in the longwave limit. Ford, ratio of the constants of interaction between nearest and
=2gy, the anisotropy parametey=1 (the medium is iso- next-nearest neighborsThe elastic moduli for an fcc crystal
tropic). In other words, the parametermay change over a can be represented in the form

Ni1=A2=8 +2up(1—cosak).

Face-centered cubic lattice
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FIG. 5. Transverse branches of vibrations of an fcc lattice alond1the] ak/ (27'5)

direction for u;=0.5 (isotropic medium

FIG. 6. Transverse branches of vibrations of an fcc lattice alond1the]
direction for u;=0.1 (highly anisotropic medium

_4(8f+5f) 28f 28f

=" Cp=—, Cpy=—. 53
11 a 2= “= (53  CONCLUSIONS

The role of the next-nearest neighbors is found to be

It follows from this relation that fore>0, the fcc lattice  extremely important for studying the vibrational spectrum of
remains stable fob;>—e&;. The anisotropy parameter for cubic lattices.

an fcc crystal has the form In scalar models, the inclusion of the second coordina-
tion sphere may be manifested in the displacement of the

e+ 264 peak of dispersion curves into the Brillouin zone, and also
KPR (54 Jeads to the disappearance of “nonphysical” singularities in

the vibration density: at the upper boundary of the continu-

It follows from this expression that in the longwave OUS spectrum in fcc crystals and in the middle of the spec-
limit, the fcc crystal is anisotropic fof;# /2 and isotropic ~ trum for bcc crystals. . . _ _ .
for 8;=¢&¢/2. In vector models of cubic lattices, the inclusion of inter-
By way of an illustration of this fact, let us consider the action with the next-nearest neighbors may lead to a varia-

dispersion relation for the transverse vibrations in the direction of the “anisotropy parameter” over a wide range: in the
tion k=k/v2(1,1,0): longwave limit, the two transverse branches may coincide

(isotropic medium or differ significantly(highly anisotropic
mediun) depending on the ratio of the force constants of
+2u¢(1—cosak), interaction between nearest and next-nearest neighbors.
Among other things, this result makes it possible to deter-
mine the nature of propagation of acoustic surface waves in
cubic crystals in the longwave approximation with the help
of microscopic characteristics like force constants of interac-
tion between the nearest and next-nearest neighbors. An
Here, us= 6;/e;. It can be seen that in the longwave limit analysis carried out within the framework of the theory of
(ak<1), the dispersion relations for transverse branches caelasticity shows that in strongly anisotropic crystals, the pen-
incide for 6;=¢/2 (see Fig. 5, while for ak>1 these rela- etration depth of a Rayleigh wave increases while the veloc-
tions are not identical. If the conditions corresponding to arity of its propagation decreases and its polarization becomes
isotropic medium are satisfied for sc and bcc lattices, th@lmost linear rather than elliptic as in the case of weakly
transverse branches coincide for all valuek déee Fig. 4. anisotropic crystals.
The dispersion relations for an fcc crystal are presented in  Moreover, the next-nearest neighbors can either ensure
Fig. 6 for the case5;=(0.1)e;. Such a relation between the lattice stability or, on the other hand, make the lattice un-
force constants corresponds to solidified inert gaSes. stable. The analysis carried out in this work also shows that

ak
A1=4|1- cos7

ak
Ao=8[1— cos—-
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the interaction of the third and subsequent neighbors cannotyu. V. Gulyaev, Pis'ma zh. Esp. Teor. Fiz9, 63 (1969 [JETP Lett.9,

lead to such radical variations in the phonon spectrum.

The authors are indebted to A. M. Kosevich for fruitful
critical remarks on the initial version of this paper.
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Due to a production error, Fig. 21 was erroneously replaced with a copy of Fig. 23. The correct Fig. 21 is presented below.
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FIG. 21. Thermogram of the cooling of a crystal and the corresponding
pressure change illustrating the layering at 100 mK and the fusicief
cluster formation upon further cooliny,=20.54 cni/mole.
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