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Electromagnetic and acoustic waves in layered organic conductors „a review …
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The review is devoted to theoretical investigations of propagation of electromagnetic and
acoustic waves in layered conductors of organic origin. Attention is focussed on spectroscopic
possibilities for studying the electron structure of organic quasi-two-dimensional
conductors, which is of great importance for understanding physical processes in these materials.
High-frequency and magnetoacoustic effects considered in this review are typical of quasi-
two-dimensional conductors and quite informative. The analysis of these effects makes it possible
to study in detail the electron energy spectrum and relaxation properties of charge carriers
in layered conductors. ©1999 American Institute of Physics.@S1063-777X~99!00111-5#
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1. INTRODUCTION

The search for new materials in the sixties attracted
attention of researchers to conductors of organic origin w
a layered or filamentary structure. Intense experimental
vestigations of physical properties of organic conduct
were stimulated in the hope of obtaining superconduc
with high critical parameters just among quasi-on
dimensional filamentary conductors in which a superc
ducting transition can theoretically occur at high tempe
tures. Many years of efforts made by physicists and chem
to obtain a large number of new organic conductors cul
nated in the synthesis of organic quasi-one-dimensional c
ductors with a superconducting transition temperatureTc of
the order of several kelvins as well as layered organic su
conductors with a record-high superconducting transit
temperatureTc>13 K. Although these values ofTc are
lower than for some intermetallic compounds, the inter
towards the electronic properties of organic conductors
mains unabated.

Layered conductors of organic origin are attractive
experimenters to a considerable extent due to their pec
behavior in strong magnetic fields and a number of ph
transitions under comparatively low pressures. Their elec
cal conductivity along layers is several orders of magnitu
higher than electrical conductivity along the normaln to the
layers, and the critical magnetic field at which supercond
tivity is violated depends considerably on its orientation re
tive to the layers. Under the action of applied pressure,
superconducting transition temperature of theb-modification
of tetrathiafulvalene salt~BEDT–TTF!2JBr2 increases ap-
proximately by a factor of three.1 Such a sensitive reaction o
the system of charge carriers to crystal deformation indica
that acoustoelectronic phenomena in layered conductors
a quasi-two- dimensional electron energy spectrum ap
ently possess peculiar properties.

The interest in investigations of organic conductors w
a layered structure is also due to the variety of various ph
8371063-777X/99/25(11)/20/$15.00
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states of these compounds and the possibility of changing
ground state with external agencies.

Shubnikov–de Haas magnetoresistance oscillations
served in tetraselenetetracene halides and a large fami
tetrathiafulvalene-based ion-radical salts with a charge tra
port in magnetic fields of the order of several tens tesla
dicate that these compounds possess the metal-type con
tivity. This allows us to describe the electron processes
such conductors on the basis of the concept of quasipart
carrying an electric chargee, which are similar to conduc-
tion electrons in metals. Strong anisotropy of the electri
conductivity of a layered conductor is apparently associa
with strong anisotropy of the velocity of charge carriersv
5]«(p)/]p on the Fermi surface«(p)5«F , i.e., their en-
ergy «(p) weakly depends on the momentum compon
pz5p•n along the normaln to the layers.

The Fermi surface of quasi-two-dimensional conduct
is open and weakly corrugated along thepz-axis. The corru-
gated planes can be rolled into a cylinder whose base lie
a unit cell of the momentum space so that the Fermi surf
of layered conductor can be presented as a system of we
corrugated cylinders or a system of planes corrugated we
along thepz-axis. Small closed cavities belonging to anom
lously small groups of charge carriers can also be prese

The mean free pathl of charge carriers in experimentall
investigated layered conductors attains values of several
crometers, and the radius of curvaturer of conduction elec-
trons in strong magnetic fields that may be induced in ac
practice can be much smaller thanl . Under these conditions
it is appropriate to formulate the inverse problem of reco
struction of the electron energy spectrum with the help
experimental investigation of kinetic phenomena in a m
netic field.

Galvanomagnetic phenomena and quantum oscilla
effects in low-dimensional conductors of organic origin ha
been investigated experimentally by many authors. In rec
years, several publications appeared,2–7 in which the results
of experimental studies of high-frequency phenomena w
reported~including the discovery of cyclotron resonance
© 1999 American Institute of Physics
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the layered conductora-(BEDT2TTF!2KHg~SCN!.
High-frequency parameters of layered and filament

conductors are undoubtedly quite informative, and th
analysis will make it possible to determine in fine details
electron energy spectrum and relaxation properties of ch
carriers. Here we shall consider the propagation of elec
magnetic and acoustic oscillations in organic quasi-tw
dimensional conductors, choosing these oscillations from
variety of waves that can propagate in current-carrying m
dia.

2. ENERGY SPECTRUM OF LAYERED CONDUCTORS

A unit cell of a crystal in layered organic conducto
contains a large number of atoms, and the separationa be-
tween layers is much larger than atomic spacing in a la
As a result, the overlapping of wave functions for electro
belonging to different layers is quite small, and we can u
the strong-coupling approximation for dispersion relatio
for charge carriers:

«~p!5 (
n50

`

«n~px ,py!cosS anpz

h D . ~2.1!

Hereh is Planck’s constant and«n(px ,py) are assumed to b
arbitrary functions of their arguments. However, the ma
mum values«n

max at the Fermi surface decrease significan
with increasingn so that«1

max5h«F!«F , and «n11
max !«n

max,
where h is the quasi-two-dimensionality parameter of t
spectrum.

Shubnikov–de Haas quantum oscillations are obser
virtually for all organic conductors of the family of tetrath
afulvalene salts.8–19 This points to the presence of close
sections of the Fermi surface by the planepH5p•H/H for
such conductors, and the large value of the oscillation a
plitude suggests the presence of a group of charge car
for which the states with the Fermi energy are located
weakly corrugated cylinder in the momentum space, suc
group of conduction electrons dominating over the remain
charge carriers with the Fermi energy.

The model of a Fermi surface of a quasi-tw
dimensional conductor in the form of a weakly corrugat
cylinder ~Figs. 1 and 2! is in good agreement with the ex
perimental investigations of galvanomagnetic phenom
and Shubnikov–de Haas oscillations in many layered co
plexes of organic origin with charge transport. Among oth
things, the results of theoretical calculations based on
model are in complete accord with the experimentally o
served quantum oscillations of magnetoresistance of tetra
afulvalene salts~BEDT2TTF!2JBr2 and ~BEDT2TTF!2J3.
However, the substitution of the complex MHg~SCN!4 for
halogens in these salts, where M is a metal of the group~K,
Rb, Tl!, leads to a more complex dependence of resista
on magnetic field. According to band analysis of the elect
energy spectrum,20 the Fermi surface of
~BEDT2TTF!2MHg~SCN!4, salts contains, apart from
weakly corrugated cylinder, two quasi-one-dimensio
sheets. Although the presence of a magnetic field affect
dynamic properties of charge carriers with a quasi-o
dimensional spectrum only slightly, the existence of suc
y
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charge carrier group can change significantly the depende
of electromagnetic and acoustic impedances on the ma
tude of a strong magnetic field.

Yamagji21 used a rather simplified model of the Ferm
surface in theoretical calculations of the magnetoresista
anisotropy of layered conductors, while Zimbovskaya22 ana-
lyzed the rf properties by using the energy spectrum

FIG. 1. Various types of electron trajectories in momentum space i
magnetic field parallel to the layers: open trajectories~curves1!, closed
electron orbits~curve 2!, and a self-intersecting orbit containing a sadd
point pc ~curve3!. The cross section of the Fermi surface by the planepy

5pc separates the regions of open and closed electron trajectories;~a! and
~b! show different projections of the Fermi surface.

FIG. 2. Electron trajectories in momentum space in a magnetic field~u is the
angle formed by the magnetic field vector with the normal to the layers!; ~a!
and ~b! show different projections of the Fermi surface.
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charge carriers of an exotic form with kinks on the Fer
surface. Under such assumptions, spectroscopic potentia
of studying electron processes in organic conductors i
magnetic field were underestimated or even disregarded
together. We shall consider here the high-frequency
magnetoacoustic effects in organic conductors under
most general assumptions concerning the form of quasi-t
dimensional electron energy spectrum~2.1!.

The quasi-one-dimensional energy spectrum of cha
carriers will not be specified either. We shall only assu
that the coefficientsA000 and A100 in the expression for the
dependence of energy on quasimomentum

« l~p!5(
nml

`

Anml cosS a1npx

h D cosS a2mpy

h D cosS alpz

h D
~2.2!

are much larger than all the remaining coefficientsAnml . The
dimensionsa1 and a2 of a unit cell of the crystal lattice in
thexy plane of the layers can also differ considerably. In t
case when these planes are not the symmetry planes o
crystal, we must take into account additional phase in
arguments of the cosines in formulas~2.1! and ~2.2!, which
changes sign upon the substitution of2p for p. This will not
alter the wave spectrum in layered conductors considera
and so there is no need to complicate the solution of
given problem. Thus, we shall use below the dispersion
lation for charge carriers in the form~2.1! and~2.2!, assum-
ing that the coefficientsAnml and the functions«n(px ,py)
are arbitrary.

3. COMPLETE SET OF EQUATIONS

An acoustic wave in a conductor always generate
varying electromagnetic field accompanying it. However,
perturbation of the electron subsystem of a conductor by
electromagnetic wave incident on its surface can also ex
elastic oscillations in it. Consequently, the system of eq
tions describing the propagation of waves in a conduc
contains the equation of the theory of elasticity for ion
displacementu, i.e.,

r
]2ui

]t2 5l i j lm

]ulm

]xj
1Fi , ~3.1!

as well as Maxwell’s equations

curl H5
4p

c
j1

1

c

]E

]t
; curl E52

1

c

]B

]t
; div B50.

~3.2!

Here r and l i j lm are the density and elastic tensor of t
crystal,ulm5(1/2)(]ul /]xm1]um /]xl) is the strain tensor
andc the velocity of light.

In view of a quite high number density of charge car
ers, Poisson’s equation can be reduced to the electroneu
ity condition of the conductor, and hence the continuity co
dition for charge flux in the asymptotic approximation
reciprocal density of conduction electrons assumes the f

div j50. ~3.3!
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The magnetizationM induced by an external magnet
field in conductors without a spontaneous magnetic mom
is usually small, and there is no need to distinguish betw
the magnetic inductionB and the magnetic fieldH5B
24pM (B) except at ultra-low temperatures. At quite lo
temperatures, when the inclusion of charge carrier ene
quantization in a magnetic field is significant, the amplitu
of quantum oscillations of magnetization as a function of 1B
can become comparable withB, and the differenceB
24pM (B) can become an infinitely small quantity. In th
case, the wave process is essentially nonlinear even for s
wave amplitude.23,24

If M (B)!B, Eqs.~3.2! can be reduced to a high degre
of accuracy to the equation

curl curl E2
v2

c2 E5
4p iv

c2 j . ~3.4!

In the case of a small wave amplitude, it is sufficient
confine the analysis to the linear approximation in weak p
turbation of the electron system, and the wave process ca
regarded as monochromatic with frequencyv so that the
differentiation with respect to time is equivalent to multip
cation by (2 iv), which is taken into account in Eq.~3.4!.
This assumption does not violate in any way the genera
of the problem since in view of the linearity of equation
relative to the displacement of ions, the electric fieldE(r ,t),
and the magnetic field of the wave, the generalization to
case of an arbitrary time dependence of the fields is triv
and can be reduced to the summation of various harmo
of the solution of the system of equations~3.1!–~3.3!.

The perturbation of the electron system by crystal def
mation leads to a renormalization of the conduction elect
energy,25 i.e.,

d«5l i j ~p!ui j ~3.5!

and to the emergence of the force

Fi5
1

c
@ j3H# i1

m

e
iv j i1 f i

d , ~3.6!

exerted by electrons on the crystal lattice.
The electric current density

j i52
2

~2ph!3 E ev ic
] f 0

]«
d3p[^ev ic& ~3.7!

and the deforming force density26,27

f i
d5

]

]xk
^L ikc&, ~3.8!

characterizing the response of the electron system to pe
bation are functionals of the charge carrier distribution fun
tion f 5 f 0$«(p)1 ivp–u%2c] f 0 /]«, where f 0$«(p)
1 ivp–u% is the equilibrium Fermi function in a referenc
frame moving with the vibrating lattice at a velocity2 ivu.
The nonequilibrium correction to this velocity should be d
termined by solving the kinetic equation closing the co
plete system of equations of the problem and having
form
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v
]c

]r
1

]c

]t
1S 1

t
2 iv Dc5g. ~3.9!

Here the functiong52vL i j (p)ui j 1eẼ•v takes into ac-
count the perturbation of the system of charge carriers by
electric field

Ẽ5E2
iv

c
@u3H#1

muv2

e
~3.10!

and by crystal deformation.
The componentsl i j (p) of the deformation potential ten

sor in the kinetic equation~3.9! and in expression~3.8! for
the deforming force density are given in the form taking in
account the conservation of the number of charge carri
i.e.,

L ik~p!5l ik~p!2^l ik~p!&/^1&. ~3.11!

The collision operator in the equation forc is taken in
the approximation of the relaxation timet for charge carri-
ers, and the timet is a coordinate in momentum space, whi
indicates the position of a charge on its trajectory in a m
netic field in accordance with the equation of motion

]p

]t
5

e

c
@v3H#. ~3.12!

The kinetic equation must be supplemented with
boundary condition taking into account the scattering
charge carriers at the conductor surface coinciding, say,
the planex50:

c~p1,0!5q~p2!c~p2,0!1E d3pW~p,p1!

3$12Q@vx~p!#%c~p,0!. ~3.13!

Here the specular reflection parameterq(p) is the prob-
ability that a conduction electron incident on the sample s
face with a momentump2 has after reflection a momentum
p1 connected withp2 through the specular reflection cond
tion presuming the conservation of the energy of the cha
and of the component of its momentum along the scatte
boundary. The specular reflection parameter is conne
with the scattering indicatrix W(p,p1) through the
relation28,29

q~p2!512E d3pW~p,p1!$12Q@vx~p!#%, ~3.14!

whereQ(z) is the Heaviside function.
In a bulk conductor whose size is much larger than

mean free pathl of charge carriers, most of them do n
collide with the sample surface during their mean free tim
If we are interested in ‘‘bulk’’ effects that are not associat
with interaction of a small group of charge carriers with t
sample surface, there is no need to use the boundary co
tion, and the functionc can be presented in the form

c5E
2`

t

dt8g@x1x~ t8!2x~ t !#exp@n~ t82t !#, ~3.15!

wheren51/t2 iv, andx(t)5* tvx(t)dt.
e
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Let us suppose that a wave propagates along the no
to the surface of a conductor occupying the half-spacx
>0. Using the Fourier method, we continue evenlyu(x) and
Ẽ(x) to the region of negative values ofx and obtain for the
fourier component

ui~k!52E
0

`

dx ui~x!coskx ~3.16!

of ion displacement and for the electric field

Ẽi~k!52E
0

`

dxẼi~x!coskx ~3.17!

the following system of algebraic equations:

4p iv

c2 j a~k!52E8~0!1k2Ea~k!2S v

c D 2

Ea~k!, ~3.18!

a5y,z,

j x~k!50 ~3.19!

2v2rui~k!52l ixlx@2ua8 ~0!1k2ul #1~ imv/e! j i~k!

1c21@ j ~k!3H# i1 ik^L ixc&. ~3.20!

The fluxes characterizing the response of the elect
system to a perturbation can be presented with the help o
solution of the kinetic equation in the following form:

j i~k!5s i j ~k!Ẽj~k!1ai j ~k!kvuj~k!, ~3.21!

^L ixc~k!&5bi j ~k!Ẽj~k!1ci j ~k!kvuj~k!, ~3.22!

where the Fourier transforms of electrical conductiv
s i j (k) and of acoustoelectronic tensorsai j (k),bi j (k) and
ci j (k) are defined as

s i j ~k!5^e2v i R̂v j&; ai j ~k!5^ev i R̂L jx&, ~3.23!

bi j ~k!5^eL ixR̂v j&; ci j ~k!5^L ixR̂L jx&. ~3.24!

Here

R̂g[E
2`

t

dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%,

g~ t !5vL j i ~ t !kiuj~k!1ev~ t !•Ẽ~k!. ~3.25!

Substituting expressions~3.21! and ~3.22! into Eqs.
~3.18!–~3.20!, we obtain a system of linear algebraic equ
tions in ui(k) and Ẽi(k). The problem of distribution of
electric field and the field of displacement of ions in a co
ductor will be solved completely if we apply the invers
Fourier transformation to its solutions.

The condition for the existence of a nontrivial solutio
of the obtained system of equations~i.e., the equality to zero
of its determinant! is a dispersion equation. The imagina
components of the roots of the dispersion equation determ
the damping factors of the acoustic and electromagn
waves, while the real components of these roots desc
renormalizations of the velocities of the waves.
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4. PROPAGATION OF ELECTROMAGNETIC WAVES IN
LAYERED CONDUCTORS

The equations in the theory of elasticity and Maxwel
equations turn out to be coupled weakly when the mut
transformation of electromagnetic and acoustic waves
hampered. In this case, the propagation of acoustic wave
conductors can be investigated without using Maxwe
equations, and the problem of propagation of electrom
netic waves can be solved to a sufficiently high degree
accuracy without using equations in the theory of elastic

We consider the propagation of electromagnetic wa
in a layered conductor. Their attenuation length depends c
siderably on the polarization of the incident wave. A linea
polarized wave with the electric field directed along the n
mal to the layers penetrates into the conductor to a con
erably larger depth than a wave with the electric field
rected along the layers.

The surface impedance and the penetration depth of
varying electric field of the wave can easily be determined
solving the system of equations~3.18!, ~3.7!, and~3.9! with
the boundary condition~3.13!. The solution of the kinetic
equation~3.9! allows us to find the relation between the Fo
rier transforms of current density and electric field:

j i~k!5s i j ~k!Ej~k!1E dk8Qi j ~k,k8!Ej~k8!, ~4.1!

where

s i j ~k![2e3H/c~2ph!3

3E dpHE
0

T

dt v i~ t,pH!E
0

t

dt8v j~ t8,pH!

3exp$n~ t82t !%cosk$x~ t8,pH!2x~ t,pH!%

[^e2v i R̂v j&. ~4.2!

The kernel of the integral operatorQi j (k,k8) depends
considerably on the state of the sample surface, i.e., on
probability of specular reflection of charge carriers at
surface.

In the cases when the relation between the Fourier tra
forms of current density and electric field is local, i.e., t
contribution of electrons colliding with the sample bounda
to the alternating current is considerably smaller than
contribution from ‘‘bulk’’ electrons, the electric field attenu
ation length is determined by the imaginary component
the roots of the dispersion equation

detH S k22
v2

c2 D dab2
4p iv

c2 s̃ab~k!J 50, ~4.3!

where

s̃ab~k!5sab~k!2
sax~k!sxb~k!

sxx~k!
; a,b5~y,z!.

~4.4!

Under the conditions of normal skin effect, when t
mean free path of charge carriers is smaller than the
depth, the relation between current density and electric fi
is local to a high degree of accuracy, i.e.,
l
is
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j i~x!5s i j Ej~x!, ~4.5!

and the component of the electrical conductivity matrixs i j

5s i j (0) have the same form as in a uniform electric fie
The electrical conductivityszz5h2s0 across the layers is
proportional to the square of the quasi-two-dimensiona
parameter of the electron energy spectrum, ands0 has the
same order of magnitude as the electrical conductivity alo
the layers in a uniform electric field. In this case, the disp
sion equation~4.3! implies that the attenuation depthd i of
the electric fieldEz(r ) is larger than the attenuation depthd'

of the electric field along the layers by a factor of 1/h, i.e.,

d'5d ih. ~4.6!

Under the conditions of anomalous skin effect, when
skin depthd i is much smaller than the mean free pathl of
charge carriers, the relation betweend' andd i has the form

d'5d ih2/3, ~4.7!

since the tensor componentss i j (k) are inversely propor-
tional to the wave numberk for kl@1.

In a magnetic field, the relations betweend' andd i are
more diversified.

Let us consider the propagation of electromagne
waves in a layered conductor in a magnetic fieldH
5(H sinw,H cosw sinu,H cosw cosu), tilted by the anglew
to the conductor surfacexs50.

The integral term in the boundary condition~3.13! en-
sures the absence of current through the sample surface
in the range of high frequenciesv, the solution of the kinetic
equation weakly depends on this functional.30 Disregarding
this functional forw50 and assuming the absence of char
carrier drift along thex-axis along open electron orbits, w
can write the solution of the kinetic equation in the form

c~ t,pH ,x!5E
l

t

dt8ev~ t8,pH!•E@x~ t8,pH!2x~l,pH!#

3exp$n~ t82t !%1q~l,pH!@12q~l,pH!

3exp$n~2l2T!%#21E
l

T2l

dt8

3ev~ t8,pH!•E@x~ t8,pH!2x~l,pH!#

3exp$n~ t82t12l2T!%, ~4.8!

whereT52p/V52pm* c/eH is the period of motion of a
charge in the magnetic field,m* the effective cyclotron mass
of conduction electrons, andl is the root of the equation

x~ t,pH!2x~l,pH!5E
l

t

vx~ t8,pH!dt85x. ~4.9!

which is nearest tot.
Conduction electrons for which$x(t,pH)2xmin%,x do

not collide with the sample surface, and we must p
l52` for such electrons.

In a magnetic field tilted to the sample surface, cond
tion electrons either penetrate to the bulk of the sample a
several collisions with the boundary, or tend to approach
surface. The relative fraction of the latter electrons is n
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large, and they make a small contribution to the alternat
current. The contribution of the remaining electrons to
current forw>1 is naturally determined by the type of the
interaction with the sample surface, but the state of the
face affects only insignificant factor of the order of unity
the expression for surface impedance.

4.1. Normal skin effect

We shall apply the term normal skin effect to penetrat
of an electromagnetic field to the bulk of a sample under
condition when the current densityj „r … is determined to a
high degree of accuracy by the value of the electric fieldE„r …
at the same pointr . In a strong magnetic field parallel to th
conductor surface, charge carriers with closed orbits drif
the momentum space along the sample surface. If the d
eter 2r of their orbits is much smaller than the skin dep
the main contribution to rf current comes from carriers se
rated from the surfacexs50 by a distance greater than 2r .
These conduction electrons do not collide with the sam
surface, and it is expedient to use the approximation of lo
coupling between the current density and the electric field
the wave to calculate the surface impedance in
asymptotic approximation in the small parameterr /d in the
absence of open cross sections of the Fermi surface.

The asymptotic expression for the tensor compon
s i j (k) for kr!1 has the same form as in a uniform elect
field so that the electric currentEy for kr!1 attenuates a
distances

]'>d05c~2pvs0!21/2 ~4.10!

for any relation between the mean free path of charge ca
ers and the skin depth.

For h!1, each of the componentsszx andsxz is at least
proportional toh2 so thats̃zz>szz The asymptotic form of
szz(k) for small anglesu is equal tos0h2 in order of mag-
nitude, and the attenuation lengthd i of the electric fieldEz is
larger thand' by a factor of 1/h as in zero magnetic field i
the corrugation of the Fermi surface is nor very small a
h>d0v/c. For v@s0h2, the skin depth

d i5
d0

2v

ch2 S 11
r 2v2

c2 D 21/2

~4.11!

increases with the magnetic field, attaining its limiting val
vd0

2/ch2.31,32

For significant values ofu, there exists a sequence
values ofu5uc for which the asymptotic behavior ofszz

changes considerably, as well as the behavior of
quantity33–35 s̃zz which satisfies the expression

s̃zz~k,h,u!5
ae3tTH cosu

4p2h4c (
n

n2I n
21s0h2$h2f 1~u!

1g2f 2~u!1~kr !2f 3~u!%, ~4.12!

where thef i stand for functions ofu of the order of unity,
and

I n~u!5E
0

T

dt «n~ t !cos$anpy~ t !tanu/h%. ~4.13!
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For u5uc , when I 1(uc) vanishes, he value ofs̃zz de-
creases abruptly for smallh,g5(Vt)21,v/V, andkr.

As a result, the penetration depth for the electric fieldEz

increases considerably foru5uc , and the angular depen
dence of impedance acquires a series of narrow peaks.
tanu@1, these peaks are repeated periodically, with a pe
determined by the separation between the stationary p
points on the electron orbit, wherek•v5v, which are close
to turning points (vx50). Since the phase velocity of th
wavevw5v/k5(vt)21/2vc/v0h is much smaller than the
Fermi velocity vF of conduction electrons, the separatio
between stationary phase points on the electron orbit ca
regarded to be equal to the diameter of the orbit to a h
degree of accuracy.

The height of sharp peaks foru5uc in pure conductors
at low temperatures, whenlh2.d0 , decreases with increas
ing magnetic field, and conversely, forlh2,d0 , it increases
in proportion told0 /rh if lh,r ,d0 /h. At not very high
frequencies, when the displacement current is smaller t
the conduction current, the solution of the dispersion eq
tion ~4.3! for u5uc can be represented in the form of th
interpolation formula

d i5 l S r 21d0
2h22

r 21 l 2h2 D 1/2

. ~4.14!

In the case of extremely low electrical conductivi
along the normal to the layers, whenv.s0h2(h21r 2/ l 2),
the skin depthd i has the form

d i5~d0 /h2!$11~r / lh!21~rv/ch!2%21/2

3$11~rh/d0!2%, ~4.15!

and the electric field attenuation depth along the norma
the layers is again equal tod0 /h2 in a strong magnetic field
when r ,( l 2h21d0

2/h2)1/2. In the range of moderate mag
netic fields in which the relationd0 /h!r !d i holds for u
5uc , the impedance as a function of magnetic field ha
minimum since forr @ lh the skin depth

d i5 lr h/d0 ~4.16!

is inversely proportional to the magnetic field, i.e., decrea
with increasing magnetic field.32–35

For d'!r !d i , the attenuation length of the electr
field Ez(x) depends weakly on the type of reflection
charge carriers at the sample surface as before, but the
etration depth for the electric fieldEy(x) is quite sensitive to
the state of the conductor surface if the value ofd' is smaller
than or comparable to the mean free path of charge carr
In this range of magnetic fields, normal skin effect can ta
place only ford'@ l , when the local relation between th
current density and electric field is observed for any pol
ization of the wave. The asymptotic expressions̃yy(k) for
kl!1 coincides withs0 to within a numerical factor of the
order of unity, and henced' coincides in order of magnitude
with d0 . However, the penetration depth of the electric fie
Ez(x) in the sample depends considerably on the magn
field orientation.

A peculiar dependence of the attenuation length of
electric fieldEz(x) is observed foru5p/2, when, apart from
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the drift of charge carriers along the magnetic field, a fan
various drift directions is possible in thexy plane for con-
duction electrons belonging to open cross sections of
Fermi surface. In this case, the dependence ofszz on the
magnitude of a strong magnetic field~g051/(V0t)!1,
whereV0 is the frequency of electron rotation in a magne
field orthogonal to the layers! can be presented by the fo
lowing interpolation formula:

szz5s0g0
2h2~g0

21h!21/2, ~4.17!

which is valid for any orientation of the magnetic field in th
xy plane, i.e., for any angle of its inclination to the samp
surfacexs50.

Using formulas~4.3! and ~4.17!, we can easily verify
that the value ofd i increases with the magnetic field in pro
portion toH1/2 for h1/2!g0!1, while the attenuation length
d i>d0 /g0h3/4 of the electric field along the normal to th
layers increases linearly with the magnetic field forh2!g0

<h1/2.
The solution of the dispersion equation~4.3! for w dif-

fering from zero has the form

k5
~2pv!1/2~11 i !

2c
$s0

211szz
216@~szz

212s0
21!2

2~2H cosu sinw/Nec!2#1/2%21/2, ~4.18!

whereN is the charge carrier density.
This formula shows that in the extremely strong ma

netic field, wheng0!h2, helicoidal waves can propagat
For w>1, one of the roots of the dispersion equation d
scribes attenuation of electric field along the layers at d
tances of the order of

d'5d0S 11
szz

s0g0
2D 1/2

. ~4.19!

It can easily be seen that the penetration depth for
electric fieldEy increases as the magnetic field increases
proportion to H when g0!h. The electric field directed
along the normal to the layers forg0@h2 attenuates a
distances35

d i5d0~s0 /szz!
1/2, ~4.20!

i.e., at distances of the order ofd0 /h as in zero magnetic
field.

In the presence of an additional group of charge carr
with a quasi-one-dimensional energy spectrum, hi
frequency properties of layered conductors are quite se
tive not only to the polarization of the incident wave, b
also to the direction of propagation of electromagnetic fi
in the plane of the layers.36–38 If the reflection of charge
carriers at the conductor surface is close to specular,
relation between the Fourier transforms of current den
and electric field can be regarded as local to a fairly h
degree of accuracy even for an indefinitely large mean
path of charge carriers:

j i~k!5$s i j ~k!1s i j
~1!~k!%Ej~k!. ~4.21!
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Here s i j
(1)(k) is the contribution to the rf electrical conduc

tivity from charge carriers with the energy spectrum~2.2!, in
which we retain only a few terms by putting

A1005U, A0105h1U!U, A0015h2U!U.

The contribution tos̃ab(k) from charge carriers with a
quasi-one- dimensional energy spectrum is mainly de
mined by the componentsxx

(1)(k) which has the following
form accurate to small corrections proportional toh1

2 and
h2

2:

sxx
~1!~k!5s1~k!5

s1

11~kl1!2 , ~4.22!

where l 15v01t1 /(12 i t1);s1 is the contribution of this
group of charge carriers to electrical conductivity along t
x-axis in a uniform electric field,t1 the mean free time of
charge carriers with the energy spectrum~2.2!, and v0

5(Ua1 /h)sin@(«F2A000)/U#.
The magnetic field dependence ofs i j

(1)(k) is manifested
only in the next terms of expansion into a power series in
small parametersh1 andh2 :

syy
~1!~k!5(

6

h1
2s1a2

2U2/4h2v0
2

11~k6eHa2 cosu/ch!2l 1
2 , ~4.23!

szz
~1!~k!5(

6

h2
2s1a2U2/4h2v0

2

11~k6eHasinu/ch!2l 1
2 , ~4.24!

whose inclusion does not affect significantly the skin de
of electromagnetic field attenuation.

The asymptotic behavior of the components ofs̃ab(k)
in strong magnetic fields (g51/Vt!1), i.e.,

s̃yy~k!5
s1~k!$g2s01szztan2u%1g2s0

2

s1~k!1g2s0
, ~4.25!

s̃yz~k!5s̃zy~k!5
s1~k!

s1~k!1g2s0
szztanu, ~4.26!

s̃zz~k!5szz1szz
~1!~k!. ~4.27!

is very sensitive to the emergence of a group of charge
riers with a quasi-one-dimensional energy spectrum.

We have omitted here insignificant numerical factors
the order of unity and small corrections of the order of (kr)2

in the expression forszz, i.e., the contribution of charge
carriers with a quasi-two-dimensional spectrum to the c
rent is taken into account, as before, in the approximat
valid for normal skin effect.

If s1 and s0 are of the same order of magnitude, th
value ofs̃yy(k) does not attain saturation in strong magne
fields as in the case ofs150 and turns out to be much
smaller thans0 in a fairly wide range of magnetic fields
This leads to a considerable increase in the conductor tr
parency.

The dispersion equation~4.3! taking into account rela-
tions ~4.25!–~4.27! makes it possible to determine the leng
of attenuation of electromagnetic fields in a strong magn
field:

d1>d0 /h, d2>d0 /g, ~4.28!
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whered05$c/2pv(s01s1)%1/2.
If s1 is much smaller thans0 , but s1>g2s0 , the ex-

pression ford2 should be supplemented with the small fac
(s1 /s0)1/2. For s1!g2s0 , the attenuation lengths for th
electric fieldsEz(x) and Ey(x) differ significantly ~d i5d1

and d'>d0 , respectively!, by the electric fields along an
across the layers fors1@g2s0 contain both component
with considerably different attenuation lengthsd1 and d2 .
Consequently, in pure conductors for whichlh@d0 , not
only the fieldEz(x), but also the fieldEy(x) attenuate over
distances considerably longer than the mean free pat
charge carriers in magnetic fields for whichr !d0 .

When an electromagnetic wave propagates along
y-axis, the presence of a group of charge carriers wit
quasi-one-dimensional energy spectrum does not affect
nificantly the attenuation length of electromagnetic wav
As in the case of a single group of charge carriers with
dispersion relation~2.1!, the electric field along the layer
attenuates over distances of the order ofd0 , and the electric
field along the normal to the layers penetrates a quasi-t
dimensional conductor to the depthd i for which the above
formulas~4.11!, ~4.14!–~4.16! are valid. The effect of charge
carriers with spectrum~2.2! on the propagation of electro
magnetic waves becomes significant when cosa@g2s0 /s1,
wherea is the angle between the wave vector and the p
dominant direction of the velocity of charge carriers with
quasi-one-dimensional energy spectrum.

Thus, analyzing the dependence of surface impedanc
the magnetic field during the propagation of an electrom
netic wave in two different directions in the plane of th
layers, we can determine unambiguously the presence
quasi-one-dimensional cavity on the Fermi surface and
contribution of the electrical conductivity of an organic co
ductor.

4.2. Anomalous skin effect

With increasing frequency of an electromagnetic wa
the skin depthd decreases, and the relation between curr
density and electric field becomes essentially nonlocal
d<2r . In this case, Maxwell’s equations are of the integ
type even in the Fourier representation.39 Hartmann and
Luttinger40 proposed a correct solution of these equations
a magnetic field for some special cases. If we disregard
merical factors of the order of unity, we can obtain a reas
able solution of the physical problem, i.e., determine the
pendence of surface impedance and other characteristic
waves in a conductor on physical parameters, with the h
of a correct estimation of the contribution of the integ
term in formula~4.1! to the Fourier transform of the high
frequency current. In a magnetic field parallel to the sam
surface, ford'<r , the contribution of charge carriers collid
ing with the sample surface to the current is significant.
the case of a nearly specular reflection of charge carrier
the sample boundary~the width of scattering indicatrix for
charge carriersw!r 3/2/ ld'

1/2!, the contribution of conduction
electrons ‘‘sliding’’ along the sample surface and remain
in the skin layer to the rf current is quite large. In this ca
the asymptotic expression fors̃yy(k) for largek has the form
r
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s̃yy~k!5
v0

2

V~kr !1/2~w1r / l !
. ~4.29!

Using the dispersion equation~4.3!, we can easily deter-
mine the attenuation length of electric fields, i.e.,

d'5d0
6/5r 21/5~w1r / l !2/5; d i5d0 /h. ~4.30!

In the range of not very strong magnetic fields, whe
d'!r ! l , the impedance has a minimum forr 5wl, and its
position determines uniquely the width of indicatrix o
charge carrier scattering at the sample boundary~Fig. 3!.

Under the conditions of extremely anomalous skin
fect, when the depth of electromagnetic wave penetration
the conductor is the smallest parameter of the problem h
ing the dimensions of length~i.e., not onlyd' , but alsod i is
much smaller thanr and l !, the values ofd' and d i are
connected through a universal relation in a magnetic fi
parallel to the sample surface forw!r 3/2/ ld i

1/2:33

d'5d ih4/5. ~4.31!

If w@r 3/2/ ld'
1/2 andd'!r ! l , the contribution to the rf

current mainly comes from charge carriers that do not in
act with the sample surface, and the relation betweend' and
d i has the form~4.7!.

In the intermediate case whenr 3/2/ ld i
1/2!w!r 3/2/ ld'

1/2,
only d' depends considerably onw for w>r / l :

d i5r 1/3~d0 /h!2/3, d'5w2/5d0
6/5r 21/5. ~4.32!

In the absence of open electron orbits, conduction e
trons carry information on the field in the skin layer to th
bulk of the conductor in the form of narrow spikes predict
by Azbel.41 The transport of electromagnetic field to the bu
of the conductor and the screening of the incident wave
the surfacexs50 are mainly accomplished by charge car
ers moving in phase with the wave almost parallel to
sample surface. Forh<d/r , almost all of charge carriers
participate in the formation of electromagnetic field spikes42

The intensity of the spikes at distances from the sample
face multiple to the diameter of the electron orbit in t
direction of thex-axis has the same order of magnitude in t
collisionless limit. The inclusion of scattering of conductio
electrons in the bulk of the conductor leads to field atten

FIG. 3. Dependence of surface impedance on the magnitude of a st
magnetic field (r ! l ) parallel to the surface of the conductorxs50. The
width w of the indicatrix of charge carrier scattering at the sample surf
can be determined from the position of the minimum.
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tion in a spike at distances of the order of the mean free p
of charge carriers. Thus, there are two scales of electrom
netic field attenuation length under the conditions of anom
lous skin effect. Apart from the skin depth, the electroma
netic field penetrates into the bulk of the sample to a dept
the order of the mean free path of charge carriers.

For h@d/r , only an insignificant fraction of charge ca
riers of the order of (d/rh)1/2 participates in the formation o
spikes. The spread in the diameters of orbits of such carr
in the vicinity of the extremal diameter is comparable w
the skin depth. As a result, with increasing distance from
surfacexs50, the intensity of each next spike acquires
additional small factor (d/rh)1/2 apart from the exponentia
factor exp$2x/l% taking into account attenuation of waves
the spike over the mean free pathl .

As the angleu approachesp/2, closed electron orbits
become strongly elongated along thex-axis, and the spike
mechanism of penetration of electromagnetic field in
bulk of the sample is replaced by the electron transport of
varying field in the form of Reuter–Sondheimer weakly
tenuating quasi-waves39,43–46when the diameter of the orbit
in this direction exceeds the mean free pathl .

4.3. Weakly attenuating Reuter–Sondheimer waves

The drift of charge carriers along the normal to t
sample surface facilitates the transport of electromagn
field from the skin layer to the bulk of the conductor over
distance smaller than or of the order of the mean free pal
of charge carriers. Foru5p/2, the drift of charge carriers
along open trajectories leads to penetration of electrom
netic field over a distancex< l even in a magnetic field par
allel to the surfacexs50.

In order to determine the electric field in the bulk of th
sample with the help of inverse Fourier transformation

Ej~x!5
1

2p E
2`

1`

dkEj~k!exp$2 ikx% ~4.33!

we continueEj (k) analytically to the entire complexk-plane
and close the integration contour in formula~4.33! with an
arc of infinitely large radius in the half-plane where Imk
>0. The skin depth is determined by the poles of the in
grand in formula~4.33!, while weakly attenuating waves ar
associated with integration along the cuts drawn from
branching point of the functionEj (k). It can easily be veri-
fied that the tensor components i j (k) for indefinitely smallh
display a root singularity of the form

szz~k!5~v0
2h2/n!$~a1

2 21!21/21~a2
2 21!21/2%;

~4.34!

Dsyy~k!5n~v0 /kv !2$~kv/n!211%1/2, ~4.35!

wherev0 is the frequency of plasma oscillations of char
carriers,v5vx

max>vF , anda65 i (kv6V)/n. For h!1, the
time variation of the electron velocityvx in the magnetic
field H5(0,H,0) does not exceedvh1/2 so that away from
the saddle points on the Fermi surface, charge carriers m
in the momentum space along thepz-axis virtually without
acceleration over a distance equal to the period of a unit
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during the timeT52phc/aeHvx . In this case,V appearing
in the expression fora6 is equal toaeHv/hc.

The kernel of the integral operatorQi j (k,k8) as a func-
tion of k also possesses a similar singularity.

The electromagnetic field decreases in proportion
x23/2exp(2x/l) over distances from the sample surface wh
exceed considerably eitherr 5v/V, or the displacement o
an electron during the wave period 2pv/v. For V@v, the
slowly decreasing varying electric field

Ez~x!5Ez~0!h24/3~c/v0!4/3~v/v!2/3r 21/2x23/2

3exp$ ix/r 2x/ l % ~4.36!

oscillates upon variation ofH at large distancesx@r .
The attenuation of the electric fieldEy(x) over the mean

free path of charge carriers forh!1 has the form

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3~n/v !1/2x23/2

3exp$2x/ l 1 ixv/v%,

v/v!x!v/vh ~4.37!

and is independent of the magnetic field.
The oscillatory dependence ofEy(x) on the magnetic

field is manifested only in small corrections proportional
h2.

For values ofh that are not small in zero magnetic field
the functionssyy(k) andszz(k) have a logarithmic singular
ity for k15 in/v1 and k25 in/v2 , wherev1 is the electron
velocity at the reference point on the Fermi surface in
x-direction andv2 the projection of the velocityvx at the
saddle point of the Fermi surface, at which connectednes
the linevx5const changes.44 For indefinitely smallh, these
branching points of the rf conductivity tensor component b
come closer, and the logarithmic singularity changes int
root singularity forh50.47 For smallh, we choose the inte-
gration contour in thek-plane along the cut lines drawn from
the branching pointsk1 andk2 parallel to the imaginary axis
so that we can bypass both branching points simultaneou
In this case, the electric fieldEz(x) away from the skin layer
assumes the form

Ez~x!522Ez8~0!H E
k1

k11 i`

dkFk22
v2

c2 2
4p iv

c2 szz1~k!G21

3exp~ ikx!1E
k21 i`

k2
dkFk22

v2

c2

2
4p iv

c2 szz2~k!G21

exp~ ikx!J . ~4.38!

We can neglect the integral along lines connecting
branching pointsk1 and k2 and assume thatszz1(k) is the
value of the functionszz(k) at the left bank of the cut drawn
from the pointk1 , while szz2(k) is its value at the right band
of the cut drawn from the pointk2 . For definiteness, we
assume thatv1 is greater thanv2 . If we disregard anisotropy
of the dispersion relation~2.1! for charge carriers in the
plane of the layers, the diagonal components of the rf e
trical conductivity tensor fork1<k<k2 assume the form
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syy~k!5
v0

2h

p3 E
0

p

daE
0

p/2

dw
sin2 w

n1 ikv cosw~11h cosa!1/2,

~4.39!

szz~k!5
v0

2h2

p3 E
0

p

sin2 a da

3E
0

p/2

dw
1

n1 ikv cosw~11h cosa!1/2. ~4.40!

It can easily be seen that the rf electrical conductiv
componentszz(k) is proportional to (n1 ikv)21/2, for h
!1, while syy(k) is proportional to (n1 ikv)1/2, i.e., both
component have a root singularity fork5 in/v. In the case of
a considerable corrugation of the Fermi surface, whenh
>1, the root singularity is replaced by a logarithmic sing
larity for k5 in/v(11h)1/2 andk5 in/v(12h)1/2. After the
integration with respect tow, the integrands in~4.39! and
~4.40! have a root singularity fork5 in/v(11h cosa)1/2. As
a result of simple calculations, we arrive at the followin
expression for the electric field component weakly attenu
ing at large distances from the skin layer:

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3x23/2~n/v !1/2

3E
0

p

da expH 2
nx

v~11h cosa!1/2J . ~4.41!

At large distances from the sample surface, the elec
field along the normal to the layers can be described by
same formula if we supplement the integrand in the integ
with respect to a with the factor h24/3sin2 a. For x
@v/vh, the integrand in formula~4.41! is a rapidly oscil-
lating alternating function, and the main contribution to th
integral comes from small neighborhoods of the station
phase pointa5(0,p). As a result of simple calculations, w
obtain

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3x22h21/2

3FexpH 2
nx

v~11h!1/2J 1expH 2
nx

v~12h!1/2J G ,
x@v/vh. ~4.42!

In the above formulas, we have omitted insignificant n
merical factors of the order of unity. The pre-exponent
factor in formula~4.42! is inversely proportional tox2 as in
normal metals. Such an asymptotic behavior in quasi-tw
dimensional conductors is observed only in the range of h
frequencies, where vt>1/h. Essentially different
asymptotic forms of electric fields at such frequencies can
explained by tracing the phase of the wave carried by c
duction electrons with different velocity componentsvx from
the skin layer. At the instantt, electrons carry over a dis
tance x the information on electromagnetic wave with
phase lagvDt5vx/vx . Averaging over different values o
vx by the formula

E~x!;E dvx exp$2 ivt1 ivx/vx% ~4.43!
-
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we can easily see that a weakly attenuating wave wh
propagates with the electron velocityv1 at the reference
point of the Fermi surface is formed by charge carrie
whose velocityvx differs from v1 by the quantityDvx

<v1
2/vx. If v12v2>vh is smaller thanDvx , i.e., x

<v/vh, formula ~4.37! is valid for Ey(x), while in the op-
posite limiting case, whenDvx!vh, weakly attenuating
waves described by formula~4.42! are formed by electrons
from small neighborhoods on the Fermi surface near
saddle and reference points.

In a magnetic field, charge carriers belonging to one
the ‘‘banks’’ of the central open cross section of the Fer
surface, on which the velocityvx varies with time periodi-
cally in the interval betweenv2 andv1 , move most rapidly
to the bulk of the sample. Weakly attenuating waves pro
gate at a velocity equal to the extremal valuev̄x and are
described by formulas~4.36! and ~4.37!.

Weakly attenuating waves in a magnetic field tilted fro
the plane of the layers have a similar form. If the magne
field lies in thexy plane, i.e.,u5p/2, a weakly attenuating
wave withw differing noticeably from zero propagates at
velocity v̄x equal to the drift velocity of charge carriers b
longing to the open cross section of the Fermi surface c
taining the reference point along thepx-axis. The asymptotic
form of the electric fieldEy(x) is described by~4.37!, and its
oscillatory dependence on the magnetic field orthogona
the axis of the corrugated cylinder is manifested, as bef
only in small corrections proportional toh2.

When electromagnetic waves propagate along the n
mal to the layers~along thez-axis!, charge carriers can carr
information on the field in the skin layer to the bulk of th
sample only over a distance of the order oflh, which ex-
ceeds the skin depth only for very small values ofh.

The weakly attenuating electric field component can e
ily be determined with the help of relation~4.33! in which x
should be replaced byz. Without a loss in generality of the
given problem, we shall confine our analysis only to the fi
two terms in expression~2.1! for «(p), assuming that
«1(px ,py) is a constant quantity equal tohv0h/a, wherev0

coincides in order of magnitude with the characteristic fer
velocity vF of charge carriers along the layers.

If the magnetic field is orthogonal to the layers, the Fo
rier componentss i j (k) of the electrical conductivity tenso
assume the form

s i j ~k!5
2e2

~2ph!3

3(
n
E dpz2pm*

v i
~2n!v j

~n!

n1 ikvFh sin~apz /h!1 inV
.

~4.44!

After simple calculations, we obtain

s i j ~k!5v0
2 (

n
Ci j

~n!$~kv0h!21~gnV!2%21/2, ~4.45!

where

gn5g1 in,
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v ~n!5~1/T! E
0

T

dt v i~ t,pz!exp~2 inVt !,

and Ci j
(n) are numerical factors of the order of unity. Fori

5 j , all these factors are real-valued and positive, while
Hall’s nondissipative components they are imaginary a
rule and change sign upon inversion ofi and j so that a
helicoidal wave attenuating over a distancel hel5d0(Vt)3/2

is formed in a strong magnetic field forV@kv0h.
For moderate magnetic fields in whichkrh>1, Hall’s

nondissipative Fourier componentss i j (k) are of the same
order of magnitude as the dissipative diagonal compone
and all of them possess a root singularity fork5k65(v
6V1 i /t)/(vFh). In this region of magnetic fields, electro
magnetic field penetrates in the bulk of the sample only
the form of a Reuter–Sondheimer quasiwave

E~z!5E~0!S c

v0
D 4/3S nh

v D 1/6

z23/2exp$ ik6z%,

z@vh/v. ~4.46!

4.4. Cyclotron resonance

In all organic conductors synthesized at present,
mean free pathl of charge carriers is not large (l<10mm)
so that the frequency of electromagnetic waves in the rf
microwave regions is much lower than the electron collis
frequency 1/t, and the time dispersion can be disregard
while calculating the skin depth. However, the frequency
electromagnetic wave in the millimeter and submillime
regions at low temperatures can be comparable to the c
sion frequency for charge carriers, and the interaction of c
duction electrons with electromagnetic field is of reson
type, when the wave frequencyv is equal or multiple to the
frequencyV of their rotation in a magnetic field.

In a magnetic field orthogonal to the sample surfacezs

50, cyclotron resonance can take place at multiple frequ
cies v5nV in the case of essentially anisotropic spectru
of charge carriers in the plane of the layers. The shape of
resonance curve can be determined easily by using form
~4.45! for s i j (k). Resonance takes place forrh!d0 , but it
is manifested most clearly whenlh<d0 . If lh!r in this
case, all charge carriers with a quasi-two-dimensional ene
spectrum participate in the formation of resonance effect
the case of an isotropic spectrum of charge carriers in
plane of the layers, i.e., for«0(px ,py)5«0(p'), wherep'

5(px
21py

2)1/2, we have only one resonance value of t
magnetic field satisfying the conditionv5V.

Diagonalizing the tensors i j (k), we obtain the following
expression for the diagonal components of surface imp
ance:

Zm52
8iv

c2 E
0

` dk

k224p ivc22sm~k!
. ~4.47!

Under favorable conditions for cyclotron resonance, i
for lh!$r ,d0%, the resonance value of the impedance
Zm

res58pvd0 /c2, and the resonance line width is (H
2H res)/H res>g. Away from the resonance we haveZm
n
a

ts,

n

e

d
n
d
f
r
li-
n-
t

n-

he
la

gy
n
e

d-

.,
s

>g21Zm
res. If lh>d0 , both terms in the braces of formul

~4.45! have the same order of magnitude, and the resona
line is ‘‘blurred.’’

The detection of cyclotron resonance at multiple fr
quencies would make it possible to analyze in detail the
ergy spectrum of charge carriers, but the observation of
effect requires long mean free paths of charge carriers.
cyclotron resonance observed by Polisskiet al.6 in
~BEDT–TTF!2ReO4~H2O! for only one resonance value o
magnetic field cannot be regarded as an evidence of isotr
spectrum of charge carriers in the plane of the layers. T
information on the dispersion relation of charge carriers
this compound can be refined by analyzing the Azbel–Ka
resonance48 in a magnetic field parallel to the sample surfac
at which the cyclotron resonance at multiple frequenc
takes place for any shape of the electron energy spectru

5. PROPAGATION OF ACOUSTIC WAVES

In an analysis of sound absorption in ordinary meta
the inclusion of electromagnetic waves accompanying
acoustic wave is essential in the range of strong magn
fields, when the radius of curvaturer of charge carrier tra-
jectories is much smaller than not only the mean free path
the carriers, but also the acoustic wave lengthk21. If, how-
ever, the inequality

1!kr!kl. ~5.1!

is satisfied, the attenuation of sound in a metal is mai
determined by the deformation mechanism associated
the renormalization of electron energy in the field of t
wave. In low-dimensional conductors, the role of elect
magnetic fields excited by sound is significant in a wid
range of magnetic fields, including fields satisfying the
equality ~5.1!. In this region of magnetic fields, the soun
absorption coefficientG oscillates upon a change in recipro
cal magnetic field. If the magnetic field is orthogonal to t
wave vectork, and the trajectories of charge carriers in t
momentum space are closed, the amplitude of oscillation
a normal metal is small in comparison with the smooth
varying component ofG since oscillations are formed by
small group of charge carriers with a diameter of orbits clo
to the extremal diameter. This effect predicted by Pippar49

is associated with periodic repetition of the conditions
effective interaction of a charge with an acoustic wave, wh
the number of wave lengths corresponding to the diamete
the electron orbit changes by unity. If the vectorsk and H
are not orthogonal, the average velocity of a charge in
direction of propagation of the sound differs from zero f
any shape of the Fermi surface, i.e., charge carriers drif
the direction of wave propagation. The existence of points
which the interaction with the wave is most effective on su
a trajectory leads to a resonant dependence of the sound
sorption coefficient on reciprocal magnetic field. In ordina
metals, periodic variations ofG with 1/H, which are not
associated with quantization of the motion of charge carr
with an amplitude much larger than the minimum value ofG,
are possible only in the presence of drift alongk.50
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In contrast to conventional metals, the formation of P
pard oscillations in low-dimensional conductors involves v
tually all charge carriers on the Fermi surface since the
ameters of their orbits are close in value. As a result,
amplitude of periodic variations of electrical conductivi
and other acoustoelectronic coefficients with 1/H increases
abruptly, and absorption is of the resonant type.51–54 In this
case, we cannot obtain even an order-of-magnitude estim
of the sound absorption coefficient without taking into a
count electromagnetic fields correctly.

5.1. Longitudinal wave propagating along the layers

Let us consider a longitudinal acoustic waveu
5(u,0,0)) propagating along the layers in a quasi-tw
dimensional conductor in a magnetic fieldH. Using formulas
~3.19!–~3.21!, we can write the system of equations~3.18!
after elimination of the fieldẼx in the form

~ ãyxkj1 iH z /c!vu1~jsyy21!Ẽy1js̃yzẼz50,

~ ãzxkj2 iH z /c!vu1js̃zyẼy1~jszz21!Ẽz50,

~v22s2k2!ru1@ ikc̃xx1c21~ ãyxHz2ãzxHy!#kvu

1@ ikb̃xy1c21~ s̃yyHz2s̃zyHy!#Ẽy1@ ikb̃xz

1c21~ s̃yzHz2s̃zzHy!#Ẽz50, ~5.2!

where

s5~lxxxx/r!1/2, j54p iv/~k2c22v2!,

s̃ab5sab2
saxsxb

sxx
, ãa j5aa j2

ax jsax

sxx
,

b̃ib5bib2
bixsxb

sxx
, c̃5ci j 2

bixax j

sxx
;

a,b5y,z.

For vt!1, the root of the dispersion equation describing
acoustic wave is close tov/s, and we can write it in the form

k5v/s1k1 . ~5.3!

In the case of weak corrugation of the Fermi surfaceh
!1), the expression fork1 has the form

k15
ik2

2rs

1

12js̃yy
H j~ ãyxb̃xy2 c̃xxs̃yy!1@ c̃xx2 i ~ ãyx

2b̃xy!#
Hz

kc
1s̃yy

Hz
2

k2c2J U
k5v/s

. ~5.4!

VectorsH and k are orthogonal. In a magnetic fieldH
5(0,H sinu,H cosu) orthogonal to the direction of wav
propagation, the solution of the kinetic equation in t
Fourier representation can be written in the form

c5
* t2T

t dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%

12exp~2nT!

[R̂g, ~5.5!
-
-
i-
e

te
-

-

n

whereT is the period of rotation of charges in the magne
field. In the range of magnetic fields for which the inequal
~5.1! is satisfied, the interaction with the acoustic wave
most effective for charge carriers moving in phase with
wave. Such carriers make the main contribution to the co
ponents of acoustoelectronic tensors which can easily be
culated with the help of the stationary phase method. T
amplitude of their oscillations with 1/H is large if the quasi-
two-dimensionality parameterh satisfies the conditionkrh
!1 for which the spread in the diameter of electron orb
DD>2rh becomes much smaller than the acoustic wa
length. Let a charge pass through two stationary phase po
at which kvx5v during the period of motionT. Then the
following expressions hold55 for syy andayx for h→0:

syy~k!5~G/kD!~12sinkD!;

ayx~k!52 i ~GLxx /evkD!coskD, ~5.6!

whereD5cDp /(eH cosu), Dp being the averaged diamete
of the Fermi surface along the py axis, G
54vDpe2t/@ac(2ph)2#, andLxx the value of the quantity
Lxx(p) at the stationary phase points.

It can easily be verified that the value ofs̃yy is mainly
determined by thesyy component, and hence the denomin
tor in formula ~5.4! for k1 decreases significantly forkD
52p(n11/4). This leads to the emergence of sharp pe
of the sound absorption coefficientG, which are repeated
periodically with the period

DS 1

H D5
2pe cosu

kcDp
. ~5.7!

The height

G res5
vt

D
5

v

v
Vt ~5.8!

of these resonance peaks is proportional toH for l !kr2.
Regions of high acoustic transparency in which the

sorption coefficient has the form

G5
vt

D F S D

l D 2

1~kDh!2G . ~5.9!

are situated away from the resonance~in regions where
sinkD differs considerably from unity!.

We can easily obtain explicit expressions forG for arbi-
trary krh. Let us consider by way of an example a layer
quasi-two-dimensional conductor for which the dispers
relation for charge carriers has the form

«~p!5
px

21py
2

m
1h

h

a
v0 cosS apz

h D , v052«F /m,

~5.10!

and the deformation potential tensor componentsL ik(p) can
be represented in the form

L ik~p!5L ik
~0!~p!1hLik cosS apz

h D , ~5.11!

where
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L ik
~0!~p!52

1

mF px
22m«F pxpy 0

pxpy py
22m«F 0

0 0 0
G ,

the matrix componentsLik coinciding the Fermi energy in
the order of magnitude.

Let us write the expressions for some components
acoustoelectronic tensors obtained in the main approxi
tion in the small parametersg5(Vt)21 and (kD)21 for a
magnetic field orthogonal to the layers:52,53

syy5
4Ne2

mnpkD
@12J0~z!sinkD#,

syx52sxy
~2!5

4Ne2

mnpkD
J0~z!coskD,

cxx5
Nmv0

npkD
@11J0~z!sinkD#, ~5.12!

where N is the number density of charge carriers with
quasi-two-dimensional dispersion relation,J0 Bessel’s func-
tion of z5kRh, andR52hc/(eHa). The diameterD of the
electron orbit in the case under investigation has the fo
D52cv0m/(eH).

For z@1, the corrugation of the Fermi surface is qu
strong, and absorption coefficient behaves as in an ordin
isotropic metal:

G5G0V0tF11S 2

pz D 1/2

cosS z2
p

4 D sin~kD!GU
k5v/s

,

~5.13!

whereV05eH/(mc); G05Nmvv0 /(4prs2) is the energy
absorption coefficient for acoustic waves in zero magn
field.

For z!1, specific features of the quasi-two-dimension
conductor are manifested, andG is given by

G5G0V0t

3ReF ~pg!21z2/21 im@11sinkD#

12sinkD1~pg!2/21z2/219/8~kD!221 imGU
k5v/s

,

~5.14!

where m5pv0c2v/2s3v0
2Vt), v0 being the frequency o

plasma oscillations. If the latter is comparable with the va
typical of ordinary metal (1015– 1016s21), the parameterm in
the ultrasonic frequency range is quite small, and perio
variations ofG(1/H) have the form of giant resonance osc
lations ~Fig. 4!. Such a behavior ofG is typical of any con-
ductor with a quasi-two-dimensional dispersion relation
charge carriers.

VectorsH and k are not orthogonal. Let us now con-
sider the case when the magnetic fieldH
5(H sinw,0H , cosw) is not orthogonal to the vectork. In
this case, the value of the velocity componentv̄x along the
direction of the wave vector averaged over the period diff
from zero, and the solution of the kinetic equation has
form
f
a-

ry

ic

l

e

ic

r

s
e

c5
* t2T

t dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%

12exp@2nT2 ikv̄xT#

[R̂g. ~5.15!

It follows from the equation of motion~3.9! for a charge
with the dispersion relation~2.1! that its velocity components
averaged over the periodT satisfy the relation

v̄x5tanw v̄z ; v̄a5
1

T E
0

T

va~ tH!dtH . ~5.16!

The displacement of an electron over the period of mot
along the wave vector is given by

v̄xT52tanw (
n51

`
an

h E
0

T

dt «n~ t,pH!sin
anpz

h

52tanw (
n51

`
an

h E
0

T

dt «n~ t,pH!sinH anpH

h cosu

2
1

h
anpx~ t,pH!tanwJ . ~5.17!

If we take into account the fact thatpx and py , and
hence «n depends weakly on the integral of motionpH

5px sinw1pzcosw in a magnetic field, the drift velocity of
electrons alongk in the main approximation in the sma
parameterh of quasi-two-dimensionality of the electron en
ergy spectrum assumes the form

v̄x52tanw Im (
n51

`
an

h
expH ianpH

h coswJ I n~ tanw!, ~5.18!

where

I n~ tanw!5
1

T E
0

T

dt «n~ t !expH 2
i

h
anpx~ t !tanwJ .

~5.19!

These relations are valid forVt>(eHt cosw/mc)@1, i.e.,
when cosw differs from zero considerably.

It can be easily seen that the main term in formula~5.18!
proportional toI 1(tanw) vanishes for certain values of tanw,
and there exists a large number of values of the anglew
5wc in the vicinity of zeros of the functionI 1(tanw), for

FIG. 4. Dependence of the absorption coefficient of a longitudinal acou
wave on the reciprocal magnetic fieldD}1/H in relative units.
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which the drift velocity v̄x of charge carriers along th
acoustic wave vector coincides with the velocitys of propa-
gation of the acoustic wave, and their interaction with t
wave is most effective. As a result, we can expect the p
ence of narrow peaks in the dependence of the damping
rement of acoustic waves on the anglew.

Using the stationary phase method, we can easily ca
late the acoustoelectronic tensor components in the pres
of electron drift alongk also. For example, for the dispersio
relation ~5.10! for charge carriers, we obtain the followin
expression forsyy for small h:

syy5
4Ne2

pmnkD H 12sinkD

~11a2!1/21
~pg!2

3 S 11
1

2
sinkDD

1pg sinkDS 12
1

~11a2!1/2D J . ~5.20!

Here D52v0 /V, a5klh tanwJ0(ah21mv tanw). The com-
ponentsyy oscillates with reciprocal magnetic field, and i
complex periodic dependence on the anglew can be de-
scribed in terms of the quantitya. The remaining acousto
electronic coefficients behave similarly.

For ag!1, we can easily obtain the following expre
sion for k1

56,57:

k15
ivNmv
4prs2

3
2p sin2 kD@12~11a2!21/2#1p2g

12sinkD1@~pg!2/2#~11a2!1/21pg@~11a2!1/221#
.

~5.21!

If a!1, we obtain

k15
ivNmv
4prs2

pa2 sin2 kD1p2g

12sinkD1~pg!2/21pga2/2
. ~5.22!

For g1/2!a!1, the oscillating terms exceed th
smoothly varying terms not only in the denominator, but a
in the numerator of formula~5.21!. This leads to giant oscil-
lations of the sound absorption coefficientG5Im k1 upon a
variation of the reciprocal magnetic field as well as the an
w betweenH and n. In the case, when the displacement
charge carriers alongk during their mean free time is muc
larger than the acoustic wave length, these oscillations
take place. Then we can write the following expression
k1 :

k15
ivNmv
4prs2

2p sin2 kD1p2g

12sinkD1pga
, 1!a!1/g. ~5.23!

Thus, the existence of even a small displacement
charge carriers alongk affects significantly the sound ab
sorption G. For sinkD51, the function G(H) attains its
maximum value

Gmax5
G0Vt

~11a2!1/2. ~5.24!

A slight deviation of sinkD from unity leads to a strong
decrease inG which has the minimum valueGmin5G0 /Vt for
sinkD521 if a2!g!1. Forg<3a2/2!1, the minimum of
G(H) is shifted towards the values ofH for which sinkD is
e
s-
c-

u-
ce

o

e
f

so
r

f

close to zero, and the functionG(H) has a local peakG
5G0a2 for sinkD521. This peak increases witha and at-
tains the valueG0 of the sound absorption coefficient in ze
magnetic field fora>1. At the same time, the main pea
decreases with increasinga and approaches the local max
mum. For sinkD521, the absorption coefficient oscillate
with a large amplitude exceeding the minimum value ofG by
a factor ofVt.

Figures 5, 6, and 7 show the dependence of absorp
coefficient on the quantityh5H0 /H (H052vv0mc/se)

FIG. 5. Dependence of the absorption coefficientG/G0 on h5H0 /H (H0

52vcmv0 /es) for kl5103, h51022, x5tanw51.531022. The upper
and lower figures differ in scale.

FIG. 6. Dependence of the absorption coefficientG/G0 on x5tanw for kl
5102, h51022. The upper and lower figures differ in scale.
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and on tanw.
It can easily be seen that the dependence ofG on 1/H

and tanw described above remains valid for an arbitrary fo
of the quasi-two-dimensional electron energy spectrum
the electron orbit contains only two stationary phase poi
the value ofD5cDp /eH is determined by the diameterDp

of the Fermi surface in a direction orthogonal to the vect
k andH.

Noticeable manifestation of the effect of drift of charg
carriers on the oscillatory dependence ofG on 1/H at ultra-
sonic frequencies (v>108 s21) is determined by certain re
quirements. For example, we must use perfect samples
a large mean free path of charge carriers and strong mag
fields of the order of 10 T. In this range of magnetic field
the Shubnikov–de Haas effect is manifested clearly in co
pounds of tetrathiafulvalene, which indicates that the con
tion Vt@1 is satisfied, and at the same time the separa
between quantized electron energy levels is much sma
than not only the Fermi energy, but also the quantityh«F .
Under these conditions, a semiclassical description of n
equilibrium processes is valid. In stronger magnetic fiel
the quantization of electron energy levels is significant,
the effects described above must also be observed.

Presence of a quasi-one-dimensional group of cha
carriers. In order to clarify the role of a quasi-one
dimensional group of charge carriers in attenuation of aco

FIG. 7. Dependence of the absorption coefficientG/G0 on h andx5tanw
for kl5103, h51022. The upper and lower figures differ in scale.
If
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tic waves, we consider a simple model of the energy sp
trum for a two-band conductor. We assume that
dispersion relation~5.10! is valid for one group of charge
carriers, while the other group has a quasi-one-dimensio
dispersion relation of the form

«1~p!56p–Nv11h1

h

a
v1 cosS anpz

h D . ~5.25!

Here h1!1 andv1 is the velocity of an electron with the
Fermi energy on a quasi-one-dimensional sheet of the Fe
surface. The vectorN5(cosb,sinb,0) is oriented in the
plane of the layers and forms an angleb with the direction of
wave propagation.

In this case, for calculating acoustoelectronic tensors,
must carry out integration in formulas~3.21! over all sheets
of the Fermi surface, and each component is the sum of
contributions from quasi-two-dimensional and quasi-on
dimensional (s i j

(1) ,ai j
(1) ,bi j

(1) ,ci j
(1)) groups of charge carriers

The existence of preferred direction of the velocities
charge carriers in the quasi-one-dimensional group is m
fested in the dependence of their deformation potentialL i j

(1)

on the angleb. If crystal deformation does not lead to
redistribution of charges between electron groups, we
naturally assume@bearing in mind relation~3.12!# that L i j

(1)

vanishes in the main approximation in the small parame
h1 . If we putLxx

(1)5h1«F cosb, the expressions for the con
tributions to acoustoelectronic coefficients from the electro
of the quasi-one-dimensional group assume the form

s i j
~1!5hb

N1
2e2v1

2

n«F
NiNj , i , j 5x,y;

cxx
~1!5h1

2hb

N1«F cos2 b

n
,

axx
~1!5bxx

~1!5 ih1hb

N1ev1

n
kl cos3 b,

ayx
~1!5bxy

~1!5 ih1hb

N1ev1

n
kl cos2 b sinb,

hb5@11~kl !2 cos2 b#21. ~5.26!

Here l 5v1t andN1 is the number density of charge carrie
with the quasi-one- dimensional dispersion relation. T
contribution to the acoustoelectronic coefficients from t
quasi-two-dimensional group of charge carriers have
form of ~5.12! and similar relations.

In the main approximation in the small paramete
(Vt)21, (kD)21, the absorption coefficient for a longitud
nal acoustic wave has the form58
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G5G0V0t
12J0

2~z!1kDgb@11J0~z!sinkD#1h1
2kD fb

2 cos2 b@12J0~z! sinkD#

12J0~z!sinkD1kDgb
U

k5v/s

. ~5.27!
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f b5
N1

N

~kl !2cos2 b

11~kl !2cos2 b
and gb5

N1

N

sin2 b

11~kl !2cos2 b

do not exceed unity when the number densities of cha
carriers of both electron groups are equal. In express
~5.4!, we have neglected unity in comparison with the qua
tity ujs̃yyu. This corresponds to the inequalit
c2v2D/s3v0

2t!1 which is satisfied in the ultrasonic fre
quency range if the frequency of plasma oscillationsv0 in a
quasi-two-dimensional conductor is of the same order
magnitude as in an ordinary metal. Insignificant numeri
factors in formula~5.27! have been omitted.

The presence of a group of charge carriers with a qu
one-dimensional dispersion relation leads to considerable
isotropy in attenuation of an acoustic wave in the plane
the layers. If the wave propagates along the preferred di
tion of velocities of electrons belonging to this group (b
50), the sound absorption coefficient can be represente
the form

G5G0S V0t
12J0

2~z!

12J0~z!sinkD
1h1

2 N1

N2

vt

s
v0DU

k5v/s

.

~5.28!

For z!1, the corrugation of the quasi-two-dimension
cavity on the Fermi surface is quite small, and the first te
in formula ~5.28! assumes the form of sharp resonan
peaks. The resonant dependence ofG on H21 can be ob-
served by measuring the derivative ofG with respect of re-
ciprocal magnetic field. In this case, charge carriers belo
ing to the quasi-one-dimensional group make a contribu
to the ‘‘background’’ component ofG.

When the angleb deviates from zero, the resonant n
ture of the dependenceG(H21) is preserved as long as th
inequality p/22b.(kD)1/2/kl is satisfied. When the valu

FIG. 8. Dependence of the absorption coefficientG/G0 on h5H0 /H (H0

52vcmv0 /es) andx5cosb for h5h151022, N1 /N251, andkl5102.
e
n
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f
l
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of the angleb approachesp/2, the resonant behavior of th
sound absorption coefficient changes for giant oscillatio
which assume the following form forb5p/2:

G5G0V0t$11J0~z!sinkD%>G0V0tH 11sinkD

2
z2

4
sinkDJ U

k5v/s

. ~5.29!

For sinkD521, the absorption coefficientG assumes its
minimum value which is the smaller, the weaker the cor
gation of the Fermi surface.

Figures 8 and 9 show the dependence of absorption
efficient onh and cosb.

The peaks on the experimentally observed depende
of G on the magnitude and orientation of magnetic field a
considerably less sharp than those in Figs. 5–9 since
value ofkl in the layered conductors studied at present c
siderably exceeds unity only in the region of hypersonic f
quencies.

FIG. 9. Cross sections of the curve in Fig. 8 by the planesx51(a) andx
50(b).
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5.2. Transverse wave propagating along the layers

In the case of transverse polarization of an acoustic w
u5(0,uy ,uz), the magnetic fieldH5(0,H sinu,H cosu) ori-
ented perpendicularly to the wave vector appears in M
well’s equations

Ẽa5
mv2

e
ua1j j a ; a5y,z ~5.30!

only in expressions for acoustoelectric coefficients. Us
formulas~3.21!, we can write these equations in the form

j y~12js̃yy!2 j zjs̃yz5S kvãyy1
mv2

e
s̃yyDuy

1S kvãyz1
mv2

e
s̃yzDuz ,
b

fo
iz
s.

d

i-

ex
e

-

g

2 j yjs̃zy1 j z~12js̃zz!5S kvãzy1
mv2

e
s̃zyDuy

1S kvãzz1
mv2

e
s̃zzDuz .

~5.31!

Let us consider the propagation of a transverse acou
wave in a conductor with one group of charge carriers p

sessing a quasi-two-dimensional energy spectrum. Sup

menting Eqs.~5.31! with equations~3.2! from the theory of
elasticity, we obtain a system of equation whose compati

ity condition
U 12js̃yy 2js̃yz xyy xyz

2js̃zy 12js̃zz xzy xzz

~ ivm/e!1 ikjb̃yy ikjb̃yz ~v22sy
2k2!r1wyy wyz

ikjb̃zy ~ ivm/e!1 ikjb̃zz wzy ~v22sz
2k2!r1wzz

U50 ~5.32!
-

s in
f

of
of a

in
n-
the
is the dispersion equation of the problem. Heresy

5(lyzyx/r)1/2 and sz5(lzxzx/r)1/2 are the velocities of
acoustic waves polarized along they- and z-axes, respec-
tively, and

xab52kvãab2
mv2

e
s̃ab ,

wab5 ikFkv c̃ab1
mv2

e
b̃abG . ~5.33!

The elastic moduli tensor componentslyxzx andlzxyx vanish
if the xy plane is the symmetry plane of the crystal.59 Oth-
erwise, these components must be taken into account,
this does not change the final results significantly.

In view of strong anisotropy of the energy spectrum
charge carriers, the absorption of acoustic waves polar
along and across the layers has essentially different form
can easily be verified that the series expansion in smallh of
acoustoelectronic tensor components with at least one in
z starts with quadratic or higher-order terms inh. Retaining
only quadratic terms inh in Eq. ~5.31!, we obtain

H @~v22sy
2k2!r1wyy#~12js̃zz!xyyS i

vm

e
1 ikjb̃yyD J

3@~v22sz
2k2!r1wzz#S 12js̃zz2xzzi

vm

e D50.

~5.34!

The multiplicity of this equation implies that in the approx
mation quadratic inh, acoustic waves polarized along they-
andz-axes do not interact with each other. Equating the
ut

r
ed
It

ex

-

pression in the braces in~5.34! to zero, we obtain the disper
sion equation for the wave polarized along they-axis. Its
solution can be presented in the formk5v/sy1k2 , where

k25
i

2rsy
2~12js̃yy!

Fjkv~ ãyyb̃yy2 c̃yys̃yy!1
mv2

e
~ ãyy

1b̃yy!kv c̃yy1
m2v3

ke2 s̃yyG
k5v/sy

. ~5.35!

The denominator in this expression has the same form a
formula ~5.4! for k1 . It follows hence that the absorption o
a transverse acoustic wave polarized along they-axis in a
conductor with a single quasi-two-dimensional group
charge carriers is of resonance type like the absorption
longitudinal wave.

The deviation of the second root of Eq.~5.34! from s/s
is described by the formula

k35
i

2rsz
2 Fmv2

e S ãzz

12js̃zz
1b̃zzD1S mv

e D 2 szs̃zz

12js̃zz

1
v2

sz
c̃zzG

k5v/sz

. ~5.36!

It can easily be verified that the last term in the brackets
formula ~5.36! has the highest order of magnitude. Its co
tribution to the absorption coefficient is decisive and has
form

G>G0h2
l

D
~11sinkD!. ~5.37!
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The peculiarity of quasi-two-dimensional energy spe
trum of charge carriers for waves with the above polarizat
is manifested in stronger magnetic fields also, whenkD
!1. In this case, the orientation magnetoacoustic effec
manifested in a strong oscillatory dependence of absorp
coefficient on the angle formed by the magnetic field w
the normal to the layers.53,60

Electron orbits in the momentum space are cross s
tions of the Fermi surface by the planepH5const, wherepH

is the momentum component along the magnetic field. C
sequently, integrating over the Fermi surface for calculat
acoustoelectronic tensors by formulas~3.21!, we can conve-
niently use the variables«,t, and pH . If we substitutepz

5pH /cosu2py tanu into the integrands containing the e
pressions

Lzz~p!5 (
n51

`

Ln~px ,py!cos
anpz

h
,

vz~p!52 (
n51

`

n«n~px ,py!
a

h
sin

anpz

h
, ~5.38!

it can easily be verified that the corresponding acoustoe
tronic coefficients are complex periodic functions of t
angleu formed by the directions of magnetic field and t
normal to the layers. All the orbits in a quasi-two
dimensional conductor are almost indistinguishable, a
hence the momentum componentspx and py depend onpH

weakly. This allows us to obtain explicit dependence
acoustoelectronic coefficients onu and to make sure tha
they vanish for certain values of the angleu5uc in the ap-
proximation quadratic in the parameterh. When tanu@1,
but cosu@1/Vt, the values ofuc are repeated with a perio
D(tanu)52ph/Dp . These oscillations are associated with t
motion of charge carriers in strongly elongated orbits in
momentum space, which intersect a large number of
cells in the reciprocal lattice, and the period of oscillations
connected with a change in this number by unity.

In the case when the dispersion relation for charge c
riers has the form~5.10!, and the deformation potential i
described by formula~5.11!, the absorption coefficient ha
the form

G5h2G0

vtv0

s
J0

2~j!. ~5.39!

wherej5(av0m/h)tanQ. At points where Bessel’s function
J0(j) vanishes, we must take into account the next term
the expansion in small parameterskD ands/v.

5.3. Acoustic wave propagating across the layers

In order to solve the system of equations~3.1!–~3.3! in
the case when a wave propagates across the layers, we
carry out Fourier transformations in the coordinatez consid-
ering that the solution of the kinetic equation has the for

c5E
2`

t

dt8g@~z1z~ t8!2z~ t !#exp@n~ t82t !#,
-
n

is
n

c-

n-
g

c-

d

f

e
it
s

r-

in

ust

z~ t !5E t

vz~ t8!dt8. ~5.40!

We consider the propagation of a longitudinal acous
waveu5(0,0,u) in a magnetic fieldH5(0,H sinu,H cosu).
The system of equations for the Fourier components of
displacement and electric field in this case has the form

~ ãxzkj1 iH y /c!vu1~jsxx21!Ẽx1js̃xyẼy50,

ãyzkjvu1js̃yxẼx1~jsyy21!Ẽy50,

~v22s2k2!ru1@ ikc̃zz1c21ãxzHy#kvu1@ ikb̃zx

1c21s̃xxHy#Ẽx1@ ikb̃zy1c21s̃xyHy#Ẽ50,

~5.41!

where

s̃ab5sab2
sazszb

szz
, ãaz5aaz2

azzsaz

szz
,

b̃zb5bzb2
bzzszb

szz
, c̃zz5czz2

bzzazz

szz
,

s5~lzzzz/r!1/2.

Acoustoelectronic coefficients are defined by formulas~3.21!
in which

R̂g5E
2`

t

dt8g~ t8!exp$ ik@z~ t8!2z~ t !#1n~ t82t !%.

We shall describe the results of analysis of the disp
sion equation of the system~5.41!, which is carried out for
vt!1 for an acoustic wave propagating, as before, alo
the layers.

If the magnetic field is directed along the normal to t
layers (u50), the absorption is mainly determined by reno
malization of the charge carrier energy under the action
deformation. In the case when the deformation potentia
described by formula~5.11!, the absorption coefficient satis
fies the following expression:

G5G0

1

kl
$@11~hkl !2#1/221%, ~5.42!

which has the form

G5G0h2kl. ~5.43!

for klh!1. Herel 5tv0 .
If, however, the angleu differs from zero, but is not very

close to (p/2)(cosu@1/V0t), the absorption coefficient fo
klh!1 is described by the formula

G5
G0

2 H h0
2klJ0

2~j!1
sin2 u

kl S V0vc2

v0
2s2 D J , ~5.44!

which coincides with formula~5.43! for u50.

The first term in formula~5.44! is determined by defor-
mation interaction of electrons with the acoustic wave a
describes angular oscillations of absorption coefficient. T
second term is associated with the electromagnetic field
cited by the acoustic wave and differs from zero even
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h→0. For values of angles for which Bessel’s functio
J0(j) does not vanish, the dependence ofG on kl has a
minimum for

klh5
sinu

J0~j!

V0vc2

v0
2s2 ,

associated with the competition between the two mec
nisms of absorption.

If the magnetic field is oriented along the plane of t
layers (u5p/2), almost all charge carriers move in ope
orbits, and the attenuation of the acoustic wave forkRh
!1 @R5hc/(aeH)# is described by the formula

G5G0h2kR. ~5.45!

Thus, the dependences ofG on the magnitude and direc
tion of the applied magnetic field are quite diverse and
give rich information for studying the properties of char
carriers in low-dimensional conducting structures.

6. CONCLUSION

Wave processes in layered organic conductors in
strong magnetic field are quite sensitive to the form of
electron energy spectrum, and their experimental study
provide detailed and reliable information on the dispers
relation and relaxation properties of charge carriers.

Organic conductors are also interesting for applicatio
owing to the diversity of high- frequency and magnetoaco
tic phenomena typical of conductors with low-dimension
electron energy spectra. The acoustic transparency st
lated by a magnetic field undoubtedly facilitates the perf
tion of acoustoelectronic devices. Such a strong depend
of the intensity of the wave penetrating in the bulk of t
sample on its polarization makes it possible to use even
plate of layered conductors, whose thickness is consider
larger than the skin depth, but smaller than or of the orde
the mean free path of charge carriers, as filters through w
waves with a definite polarization can pass. We shall c
sider our task to be fulfilled and the publication of this r
view as expedient if the variety of weakly attenuating wav
typical of quasi-two-dimensional conductors considered
us here draws the attention of experimenters.
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The dynamic properties of semiquantum4He are analyzed at two temperatures above the point of
superfluid phase transition. Investigations are carried out in the framework of the dynamic
thermal viscous model for low and intermediate values of the wave vector. The
‘‘momentum–momentum’’ and ‘‘enthalpy–enthalpy’’ time correlation functions are evaluated
and the partial contributions of the collective excitations to these functions are separated.
The recurrent relations for memory kernels are used to calculate the time–space dispersion of the
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1. INTRODUCTION

The dynamic properties of various~simple,1,2

multicomponent,3,4 polar,5 and quantum6,7! liquids have
drawn the attention of experimental and theoretical scien
for a long time. Experiments aimed at studying the noneq
librium characteristics of such objects are mainly connec
with the scattering of neutrons.8 In spite of the fact that a
large body of data has been accumulated, several chara
istic features still await an adequate interpretation.

One such unanswered question concerns the kin
properties of semiquantum liquids, i.e., liquids whose te
perature exceeds the quantum degeneracy value, but is m
smaller than the Debye temperature.9 In this case, the situa
tion is complicated by the fact that there is no appropri
model for describing equilibrium as well as nonequilibriu
properties of liquids except for a small number of simpl
liquids.9,10 The difficulties arise because of the need to u
the quantum-mechanical apparatus, and also because th
harmonicity of the Hamiltonian with respect to the operat
of creation and annihilation of particles must be taken i
account. The situation with4He below thel-point is simpler
because explicit expressions for the susceptibility can be
tained in spite of the presence of the Bose condensate an
need to introduce quasimean values. Moreover, the chai
equations for the Green’s functions can also be analyze
this case~at least in the hydrodynamic approximation11,12!.

Studies of the dynamics properties of the abo
mentioned objects are also interesting for experimen
since they provide a better understanding of the proce
of initiation of Bose condensation as a result of violation
the system symmetry. Thus the problem involves
8571063-777X/99/25(11)/7/$15.00
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construction of a microscopic picture of events, including t
separation and description of certain time and space inter
corresponding to processes of different origin.

One such model, which proved to be quite useful
describing the classical liquids13,14 is the thermal model in-
cluding hydrodynamic densities~which are essentially the
most slowly varying quantities! as well as the kinetic vari-
ables corresponding to the microscopic fluxes of heat
momentum ~longitudinal component of the microscop
stress tensor!. This model was used by de Schepperet al.14

in the theory of generalized collective modes, and is a g
eralization of the hydrodynamic model of liquids.2 It leads to
exact expressions in the hydrodynamic limit~when the wave
vectork and the frequencyv are small! which correctly de-
scribe the region of intermediate values ofk and v. The
model becomes especially attractive for construct
computer-adapted theories to describe the dynamics of
uids without using any fitting parameters when the sta
correlation functions~SCF! and correlation relaxation time
serve as the initial parameters and all computations
down to the eigenvector and eigenvalue problem. Moreo
physical processes of different durations~slow hydrody-
namic processes and fast kinetic processes! are separated
from the very beginning in the thermal viscous model.

This paper is a logical continuation of our earli
publication15 in which we calculated the spectra of collectiv
excitations of semiquantum4He at temperatures 4 and 8 K
as well as the symmetrized dynamic structural factor. Data
independent thermodynamic measurements and neutron
tering were used for verification of results and evaluation
the initial parameters of the model. The aim of our inves
© 1999 American Institute of Physics
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gations is to use the thermal viscous model for study
other time correlation functions which are interesting for e
perimental studies as well as for computer simulati
Among other things, we shall consider partial contributio
to the ‘‘momentum–momentum’’ and ‘‘energy–energy
correlation functions. The Fourier transform of the first
these functions may be obtained from experiments on s
tering, while the second function is important for interpre
tion of the molecular dynamics data.

Another interesting problem concerns the space–t
dispersion of transport coefficients, and its solution provid
a correct description of the nonlocal processes of momen
and energy transport. The computation of space–time c
acteristics of the transport coefficients can also be carried
effectively by using the thermal viscous model.

In this context, we can mention that Crevecoe
et al.16,17 also used the thermal viscous model, but later s
plified it to reduce the number of dynamic variables. Th
used the damped harmonic oscillator model, and many p
liarities of the dynamic behavior remained outside the ra
of this model. Moreover, the justification of some of th
assumptions raises questions. For example, the initial
namic matrix used by Crevecoeur16,17does not take into con
sideration the nondiagonal memory functions that play a
nificant role in the range of intermediate values ofk andv.

The present paper consists of the following parts. In S
2, we shall calculate the ‘‘momentum–momentum’’ a
‘‘enthalpy–enthalpy’’ time correlation functions taking int
consideration the contribution from each collective mode
Sec. 3, the recurrent relations for the memory functions
used to compute the space–time dispersion for the trans
coefficients. The last section will be devoted to a discuss
of the obtained results.

2. TIME CORRELATION FUNCTIONS OF SEMIQUANTUM
4He

In our earlier publication,15 we derived a system of equa
tions for time correlation functions~TCF! FAB(k,t) which
can be defined as follows1!:

FAB~k,t !5@Â~k,t !,B̂~2k!#0

5E
0

1

dtSp@r0DÂ~k,t1 ib\t!DB̂~2k!#, ~1!

DÂ~k,t !5Â~k,t !2Sp@r0Â~0,0!#,

wherer0 is the equilibrium statistical operator,b51/kBT is
the inverse temperature,kB the Boltzmann constant, and th
time dependence is introduced in terms of the Heisenb
representation. We used the 5-variable thermal visc
model which contains the hydrodynamic number densitie
particlesn̂k , the longitudinal componentĴk of momentum,
and the generalized enthalpyĥk , as well as the variablesp̂k

and Q̂k , connected with the longitudinal component of t
microscopic viscous stress tensor and the enthalpy flux
spectively, from which the linear combination of hydrod
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namic variablesn̂k , Ĵk , and ĥk has been subtracted. In th
sense,p̂k andQ̂k , being fast variables, are defined as kine
variables.

The system of equations for Laplace transforms of T

F̃AB~k,z!5E
0

`

exp~2zt!FAB~k,t !dt

~z5 iv1«, «510! can be represented in matrix form a
follows:18,19

zF̃~k,z!2 iV~k!F̃~k,z!1w̃~k,z!F̃~k,z!5F~k!, ~2!

where the notation

iV i j ~k!5@ i L̂ Ỹi~k!, Ŷj~2k!#0@Ŷj~k!, Ŷj~2k!#0
21;

Ŷi~k!5$n̂k ,Ĵk ,ĥk ,p̂k ,Q̂k% ~3!

has been used for elements of the frequency matrixiV(k)
and

w̃ i j ~k,z!5S ~12P!Ẏ̂i~k!,
1

z2~12P!i L̂

3~12P!Ẏ̂j~2k!D
0

~Ŷj~k!,Ŷj~2k!!0
21 ~4!

for elements of the matrix of memory functionsw̃(k,z). In
formulas~3! and ~4!, the Liouville operatori L̂ is defined in
the standard manner

Ȧ̂[ i L̂ Â5
i

\
@Â,Ĥ# ~5!

through a commutator with the Hamiltonian

Ĥ5(
p

p2

2m
âp

1âp1
1

2V (
k

(
p

v~k!âp1k/2
1 n̂kâp2k/2 ,

~6!

whereâp
1 and âp are the operators of creation and annihi

tion of quasiparticles with momentump satisfying the com-
mutation relations@ âp

1 ,âq#5dpq ; @ âp ,âq#5@ âp
1 ,âq

1#50;
v(q)5* exp(iq–r )F(ur u)dr is the Fourier transform of the
potentialF(ur u) of interaction between particles,V the vol-
ume of the system andN the number of particles, whileP is
the Mori projection operator defined on the complete ba
set of dynamic variablesYi(k)5$n̂k ,Ĵk ,ĥk ,p̂k ,Q̂k%, which
can also be written in the secondary quantization represe
tion. Note that the TCFFnn(k,t) constructed on the particle
density operators is connected directly with the symmetri
dynamic structural factorSsym(k,v).15

The chain of equations~2! for TCF is not closed. For the
memory functionsw̃ i j (k,z), we can also write a system o
equations containing higher derivatives of the initial ba
variables.20 The natural requirement is the uncoupling of th
system. Considering that the relaxation times of the mem
functions ~4! constructed on ‘‘fast’’~kinetic! variables are
much smaller than the characteristic time scales of evolu
of hydrodynamic quantities, we normally use the Mark
approximation forw̃ i j (k,z), assuming that
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w̃ i j ~k,z!'w̃ i j ~k,0!5E
0

`

w i j ~k,t !dt. ~7!

The system of equations~2! can then be presented in th
form
o
m
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zF̃~k,z!1T̃~k!F̃~k,z!5F~k!, ~8!

where the generalized hydrodynamic matrixT̃(k) has the
following structure:
T̃~k!5F 0 2 iVnJ 0 0 0

2 iVJn 0 2 iVJh 2 iVJp 0

0 2 iVhJ 0 0 2 iVhQ

0 2 iVpJ 0 w̃pp 2 iVpQ1w̃pQ

0 0 2 iVQh 2 iVQp1w̃Qp w̃QQ

G . ~9!
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In the Markov approximation, the solution of the system
equations for TCF can be written in an analytic form in ter
of the eigenvaluesza and eigenvectorsXa5iXiai of the
matrix T̃(k),13,19 i.e.,

F̃ i l ~k,z!5 (
a51

5 Ga
i l ~k!

z1za~k!
, ~10!

where the amplitudesGa
i l (k) can be represented in the for

Ga
i l ~k!5Xia~k!@X~k!# la

21F l l ~k,0!, ~11!

X21 is the matrix inverse toX5iXiai .
It should be emphasized that the Markov approximat

~7! is exact in the limitk→0. Moreover, it was shown21 that
the use of 5-variable thermal viscous model leads to ex
expressions for the frequency moments of the dynamic st
tural factor right up to and including the fourth order. In the
most comprehensive form, formulas~8!–~11! essentially de-
scribe the thermal viscous model of a liquid and can be u
for any fixed value ofk. The problem is simplified consid
erably for small and intermediate values of the wave vec
since most elements of the matrixT̃(k) can be expressed i
terms of thermodynamic quantities and hydrodynamic tra
port coefficients. It should also be noted that, according
the results of computer calculations for a Lennard–Jo
liquid,13 there is no need for a further extension of the d
scription level, i.e., an increase in the number of dynam
basic variables, since the results for the thermal visc
model are close to those obtained for the 7-variable mod

In our previous publication,15 we analyzed in detail the
spectrum of collective modes of semiquantum4He in the
quasi-hydrodynamic region and their contribution to the d
namic structural factor. An interesting feature of the sp
trum is that the dispersion curve of the kinetic propagat
excitation atT54 K intersects the acoustic curve and t
phenomenon of ‘‘fast sound’’ is observed.3 Another charac-
teristic feature is the disappearance of the central~thermal!
peak which may serve as an indication of the onset of s
metry breaking in the Bose system. AtT58 K, the behavior
of Ssym(k,v) was more classical and a Rayleigh–Brillou
triplet was observed in the entire range of wave vect
k51 – 3 nm21. It was also found that, at this temperature, t
f
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kinetic mode, which becomes a propagating mode
smaller values of the wave vector, participates in the form
tion of the central peak together with the thermal mode.

Naturally, it should be interesting to consider the beha
ior of the other TCF also. In particular, the ‘‘momentum
momentum’’ TCF is connected with the dynamic structu
factor through the simple relation

F̃JJ~k,v!5
m2v2

k2 Ssym~k,v!, ~12!

and can also be obtained from the results of neutron sca
ing experiments. The ‘‘energy–energy’’ TCF was not me
sured directly in experiments, but can be calculated fr
molecular dynamics.

Figures 1 and 2 show the results of calculation of t
‘‘momentum–momentum’’ TCF and the ‘‘enthalpy
enthalpy’’ TCF which is connected with the ‘‘energy
energy’’ TCF through the simple relation

F̃hh~k,v!5F̃««~k,v!2
Fn«~k!

Fnn~k!

3S 2F̃n«~k,v!2
Fn«~k!

Fnn~k!
F̃nn~k,v! D , ~13!

whereFn«(k) andF««(k) are static correlation functions.15

The same figures also show the contribution of each c
lective excitation to the corresponding TCF. Analyzing t
partial contribution of collective modes to the ‘‘momentum
momentum’’ TCF, we note that the thermal mode does
make any contribution toF̃JJ(k,v) in the limit of small k
since the corresponding weight factor is proportional tok2

and the form of the spectral function lines is determin
completely by acoustic excitation. This peculiarity observ
at T54 K is preserved for intermediate values of the wa
numbers although the contribution from kinetic excitations
clearly visible fork52 and 3 nm21. On the other hand, the
contribution from the thermal mode is significant in gaseo
4He at low frequencies forT58 K andk52 nm21, while its
amplitude decreases sharply fork53 nm21. However, the
kinetic propagating excitation gives a hardly perceptib
resonance at the frequencyv50.7 ps21.
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FIG. 1. Time correlation function

F̃JJ(k,v) ~curve 1! for 4He at T54 K
~a! and T58 K ~b! for k51, 2 and
3 nm21. Curve ~2! corresponds to the

thermal mode contribution toF̃JJ(k,v),
while the contributions from the acousti
mode and kinetic mode are shown b
curves3 and4, respectively.

FIG. 2. Normalized time correlation

function F̃hh(k,v)/Fhh(k) ~curve1! for
4He atT54 K ~a! andT58 K ~b! for k
51, 2, and 3 nm21. Curves2, 3 and 4
correspond to the contribution to

F̃hh(k,v)/Fhh(k) from the thermal,
acoustic, and kinetic mode, respectivel
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As regards the normalized TCFF̃hh(k,v)/Fhh(k) is
concerned, the thermal mode determines the shape o
central peak for small values ofk, the acoustic mode deter
mines the form of the side peaks, while the contribution fro
kinetic excitations can be disregarded since their weight
tor is proportional tok4. The situation is identical to the cas
of Ssym(k,v).15 However, in contrast to the result for dy
namic structural factor in which the contribution from the
mal excitation disappears atT54 K in the region of k
52 – 3 nm21, a decrease in the amplitude of the therm
mode becomes noticeable only fork53 nm21, when the
shape of the linesF̃hh(k,v)/Fhh(k) is determined equally
by all types of excitations. An interesting fact is a sha
decrease of the thermal mode amplitude almost to zer
T58 K, k53 nm21, when the shape of the central resonan
is completely determined by kinetic excitation.

The following circumstance is worth noting. The pos
tion of the side peak is not always related to the frequenc
a certain propagating excitation. In particular, it can be s
clearly from Fig. 2 ~T54 K, k53 nm21! that, since the
weight factor for the acoustic mode is negative, the f
quency of the acoustic excitation determines the position
the local minimum rather than the peak of the ‘‘enthalp
enthalpy’’ TCF. Analytically, such a result can be explain
by considering the expressions~10! and~11!. The extrema of
a TCF on the frequency scale are determined by the mo
as well as amplitudes of collective excitations. In this e
ample, we can notice the difference between the ‘‘intuitiv
definition of the collective excitation in terms of the positio
and shape the extremum of a certain TCF and a more ri
ous definition of collective excitations directly as poles of t
appropriate Green’s functions. Note that the Fourier tra
form of the TCF~1! is directly associated with the retarde
Green’s correlation functions.18,22

Thus, the conclusions drawn by Montfrooijet al.23 that
the additional side peak in semiquantum4He atT513.3 K is
associated with the thermal wave for intermediatek is dis-
putable since the ‘‘energy–energy’’ TCF resonance pe
he
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studied by these authors are determined by a number of
tors as mentioned above. Even more astonishing is the s
ment that the generalized thermal wave is transformed in
normal acoustic wave in the limitk→0. It is also worthwhile
to note that the dispersion of propagator excitations obtai
by Montfrooij et al.23 is qualitatively similar to the results
obtained in Ref. 15 forT58 K, i.e., the curve for the kinetic
mode lies below the dispersion curve for generalized aco
tic excitation. In this context, it should be quite interesting
investigate semiquantum helium at other temperatures in
interval 3–8 K in order to determine unambiguously wheth
the ‘‘fast sound’’ is an indispensable feature of the lo
temperature semiquantum4He or is a result of processing o
the experimental data only for a certain thermodynam
point.

3. SPACE–TIME DISPERSION OF TRANSPORT
COEFFICIENTS

Using the method of the nonequilibrium statistical o
erator ~NSO!,18 we can obtain a system of transport equ
tions for Fourier transforms of dynamic variable

^DYi(k)&v5$^Dn̂k&
v,^D Ĵk&

v,^Dĥk&
v,^Dp̂k&

v,^DQ̂k&
v%,

averaged over NSO:

iv^DŶ~k!&v2 iV~k!^DŶ~k!&v1w̃~k,v!^DŶ~k!&v50.
~14!

The structure of this system is reminiscent of the system
equations~2! for TCF. Note that the system of 3 equation
constructed on a hydrodynamic basis has an analogous f
In this case, the memory functionsw̃JJ(k,v), w̃hh(k,v) and
w̃hJ(k,v) are no longer equal to zero and define the gen
alized coefficients of longitudinal viscosity, thermal condu
tivity, and thermal viscosity, respectively. Solving Eqs.~14!

in ^Dp̂k&
v and^DQ̂k&

v, substituting the obtained results int
the first three equations of the system and grouping the te
containing^D Ĵk&

v and ^Dĥk&
v, we arrive at the following

recurrent relations for the generalized transp
coefficients:22
e

~4/3!h~k,v!1z~k,v!5
nm

k2

2 iVpJ~k!

iv1w̃pp~k,v!2@2 iVpQ~k!1w̃pQ~k,v!#@2 iVQp~k!1w̃Qp~k,v!#/@ iv1w̃QQ~k,V!#
~15!

for the generalized longitudinal viscosity, whereh(k,v) is the generalized shear viscosity andz(k,v) is the generalized bulk
viscosity;

l~k,v!5
ncV

k2

2 iVQh~k!

iv1w̃QQ~k,v!2@ iVpQ~k!1w̃pQ~k,v!#@2 iVQp~k!1w̃Qp~k,v!#/@ iv1w̃pp~k,v!#
~16!

for the generalized thermal conductivityl(k,v), ~cV5(1/kBT2)(ĥkĥ2k)0 is the generalized specific heat at constant volum!,
and

j~k,v!5
nm

k2

iVpJ~k!

2 iVpQ~k!1w̃pQ~k,v!1~ iv1w̃pp!~ iv1w̃QQ!/~2 iVQp~k!1w̃Qp~k,v!!
~17!

for the generalized thermal viscosityj(k,v).
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In these expressions, we have used the Markov appr
mation~7! for the memory functions. In the denominators
Eqs. ~15!–~17!, we have confined to terms linear in fre
quency since the higher-order terms can be disregarde
puttingw̃ iJ(k,v)5w̃ iJ(k,0)1o(v2). The spatial dependenc
is determined completely by nondiagonal elements. Note
the diagonal memory functions @w̃pp(k,0)5w̃(0,0)
1o(k2)#, also give the same order ink. However, in this
case we must analyze their spatial dispersion in greater
tail. From the point of view of the approach used by us, t
corresponds to the introduction of two additional fitting p
rameters. We took into account such a dependence ok
through nondiagonal memory functions.

Analyzing the structure of Eqs.~15!–~17!, it can be
noted easily that the generalized transport coefficients
have the Lorentz form@cf. Eq. ~10!#. In particular, putting
2 iVpQ(k)1w̃pQ(k,0)52 ikTpQ , 2 iVQp(k)1w̃Qp(k,0)
52 ikTQp and iVQh(k)5k2vQh for small values of the
wave vector, we can write for the real part ofl(k,v)

Rel~k,v!5
l~k!

@vthh~k!#211
, l~k!5

l~0,0!

~Lhhk!211
,

~18!

where

thh~k!5S w̃QQ~0,0!1
k2TpQTQp

w̃pp~0,0! D 21

,

Lhh5S TpQTQp

w̃pp~0,0! D
1/2

, l~0,0!5ncVvQhthh~0!. ~19!

The results of calculations of the generalized transp
coefficients are shown in Figs. 3, 4 and 5. It can be seen

FIG. 3. Real~1! and imaginary~2! parts of the generalized longitudina
viscosity coefficient (4/3)h(k,v)1z(k,v) for 4He at T54 K ~a! and T
58 K ~b! for k51, 2, and 3 nm21.
i-

by

at

e-
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the coefficient of thermal viscosity has ‘‘inverse’’ parity rela
tive to the diagonal transport coefficients: forv50, only the
imaginary part is nonzero, while in the limitk→0 it tends to
zero in complete accord with the Curie principle.18 More-
over, the value of this coefficient is an order of magnitu
smaller than the generalized thermal conductivity.

FIG. 4. Real~1! and imaginary~2! parts of the generalized thermal condu
tivity l(k,v) for 4He at T54 K ~a! and T58 K ~b! for k51, 2, and
3 nm21.

FIG. 5. Real~1! and imaginary~2! parts of the generalized thermal viscosi
coefficientj(k,v) for 4He at T54 K ~a! and T58 K ~b! for k51, 2, and
3 nm21.
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Figure 6 shows the spatial dispersion of the generali
transport coefficients. The dependence~18! is observed for
the diagonal coefficients, whilej(k,v50) increases in pro-
portion tok in the region of small wave numbers. In the lim
k→0, we can disregard the thermal viscosity coefficie
j(k,v50). However, it increases quite rapidly in the regi
of intermediatek, which leads to an additional dynamic in
teraction between elastic and thermal processes. Con
tional hydrodynamics contains only static interaction prop
tional to the thermal expansion coefficienta.

5. CONCLUSION

In this work, we have used the 5-variable thermal v
cous model to analyze the behavior of the ‘‘momentum
momentum’’ and ‘‘enthalpy–enthalpy’’ TCF for semiquan
tum 4He at T54 and 8 K in thequasihydrodynamic limit
taking into account the partial contributions of all collecti
excitations. The ‘‘momentum–momentum’’ TCF is direct
connected with the dynamic structural factor measured
neutron scattering experiment. The results for
‘‘enthalpy–enthalpy’’ TCF can be obtained from comput
simulation.

An important problem concerns the study of transp
processes. In the general case, the transport equation
nonlocal, hence it becomes necessary to calculate the sp
time dispersion of the transport coefficients. In this work,
(k,v)-dependent coefficients were obtained from the rec
rent relations by successive elimination of fast~kinetic! vari-
ables.

In order to interpret the experimental data for the int
mediate values of the wave vector, we must take into c
sideration the spatial dispersion of collective modes defin
the position and width of the TCF resonances, as well
eigenvectors in the spectral problem characterizing the r
nance amplitudes. Only such a complex analysis make
possible to determine the origin of collective excitations
semiquantum liquids.

The analysis presented here does not claim to be exa
comprehensive since the authors do not have any infor
tion about the spatial dispersion of SCF. This information
usually obtained from molecular dynamic computations13

Such an analysis becomes more complicated in the quan
case24 since computer techniques for calculating higher-or
SCF have not been developed to such an extent. Howe

FIG. 6. Generalized coefficients of thermal conductivityl(k,0) ~curve 1!,
longitudinal viscosity (4/3)h(k,0)1z(k,0) ~curve2!, and thermal viscosity
j(k,0) ~curve3! for 4He atT54 K ~a! andT58 K ~b!.
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the description of semiquantum objects can be carried
successfully by using the computer-adapted theories de
oped for various classical liquids.4,5,13
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1!We shall also use the notation TCF for Fourier and Laplace transform

the corresponding time-correlation functions.
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On the self-consistent theory of Josephson effect in ballistic superconducting
microconstrictions

M. Zareyan
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Ukraine, 47 Lenin Ave., 310164 Kharkov, Ukraine*
Fiz. Nizk. Temp.25, 1154–1160~November 1999!

The microscopic theory of current-carrying states in the ballistic superconducting microchannel is
presented. The effects of the contact lengthL on the Josephson current are investigated. For
the temperaturesT close to the critical temperatureTc the problem is treated self-consistently, with
allowance for the distribution of the order parameterD(r ) inside the contact. The closed
integral equation forD in strongly inhomogeneous microcontact geometry (L&j0 , wherej0 is
the coherence length atT50) replaces the differential Ginzburg–Landau equation. The
critical currentI c(L) is expressed in terms of the solution of this integral equation. The limiting
cases ofL!j0 andL@j0 are considered. With increasing lengthL, the critical current
decreases, although the ballistic Sharvin resistance of the contact remains the same as atL50.
For ultrashort channels withL&aD (aD;yF /vD , wherevD is the Debye frequency! the
corrections for the value of the critical currentI c (L50) are sensitive to the strong-coupling
effects. © 1999 American Institute of Physics.@S1063-777X~99!00311-4#
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1. INTRODUCTION

Weak superconducting links1 include the tunnel struc
tures SIS ~superconductor–insulator–superconductor! and
the contacts with direct conductivity,SNS~N is the normal
layer! and ScS~c is a geometrical constriction!. Supercon-
ducting constrictions can be modeled as an orifice with
ameterd in an impenetrable sheet for electrons between
superconducting half spaces~point contact! or as a narrow
channel with lengthL in contact with superconducting bank
~microbridge!. Aslamazov and Larkin2 have shown on the
basis of a solution of the Ginzburg–Landau~GL! equations
that in the dirty limit and for small sizes of the constrictionL,
d!j(T) @j(T) is the GL coherence length# the ScScontact
can be described by a Josephson model with the curr
phase relation

I 5I c sinw, I c5pD0
2~T!/~4eRNTc!, ~1!

whereI c is the Josephson critical current,D0 is the absolute
value of the order parameter in the bulk banks,Tc is the
critical temperature, andRN is the normal-state resistance
the dirty microbridge. The critical current of the microbridg
~1! depends on the bridge length asI c;1/L. The expression
~1! is valid within the domain of applicability of the GL
approach, i.e., for temperaturesT close toTc and L, d@j0

(j0.yF /Tc is the coherence length atT50, andyF is the
Fermi velocity!.

The present level of technology has made it poss
to study the ultrasmall Josephson weak links with
8641063-777X/99/25(11)/6/$15.00
i-
o

t-

e
e

dimensions up to interatomic size. For example, they can
nanosize microchannels produced by means of a scan
tunneling microscope3 or point contacts and microchanne
obtained by using the mechanical, controllable, break te
nique.4–6 The microchannels between two superconduct
can also arise spontaneously as microshorts in tun
junctions,7 with the lengthL determined by the thickness o
an insulator layer. The value of the critical currentI c of such
microshorts is of special interest in the case of tunnel str
tures based on high-Tc metal-oxide compounds. Small m
croconstrictions with dimensions of the order or smaller th
the coherence lengthj0 , when the expression~1! for the
critical currentI c;1/L is not valid, require the microscopi
consideration even forT nearTc . Such microscopic theory
of stationary Josephson effect in microconstrictions was
veloped in Ref. 8 for the ballistic channel of zero leng
L50, in the model of the orifice with diameterd!j0 . The
Josephson current in this case is given by

I 5
pD0~T!

eR0
sin

w

2
tanh

D0~T!cos~w/2!

2T
, ~2!

2p,w,p,

R0
215 1

2 Se2yFN~0!, ~3!

where S5pd2/4 is the contact cross-sectional area, a
N(0)5mpF /(2p2) is electron density of states at the Ferm
surface. At temperaturesTc2T!Tc expression~2! coincides
© 1999 American Institute of Physics
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with the Aslamazov–Larkin result@Eq. ~1!#, in which instead
of the normal resistanceRN for dirty metal, the ballistic
Sharvin resistance9 R0 ~3! is substituted.

In this article we present a microscopic theory
current-carrying states in the ballistic microbridges of ar
trary lengthL in the scale of the coherence lengthj0 . We
have investigated the dependence of the Josephson cr
current on the ratioL/j0 and analyzed the transition from th
case ofI c (L50) @Eq. ~2!# to I c;1/L @Eq. ~1!# with increas-
ing lengthL.

In Sec. 2 we formulate the model of a microbridge a
the microscopic equations for Green’s functions with bou
ary conditions at the bridge edges. In studying the effects
the critical current of the length of the microconstriction, t
crucial point, as always, in the inhomogeneous superc
ducting state is the self-consistent treatment of the order
rameter distributionD(r ) inside the weak link. In Sec. 3 th
closed integral equation for the order parameterD in the
microchannel is derived for temperatures nearTc , which in a
strongly inhomogeneous (L;j0) microcontact geometry re
places the differential GL equation. The critical currentI c(L)
is expressed in terms of the solution of this integral equat
The limiting cases ofL!j0 and L@j0 are considered. We
will show that in addition to the characteristic scalej0 , there
is the lengthaD.yF /vD (vD is the Debye frequency! in the
case of an ultrasmall channel. The lengthL;aD is the length
at which the frequency of the ballistic flight of an electro
from one bank to another becomes comparable with the
quency vD , which characterizes the retardation of t
electron-phonon interaction. In conventional supercondu
ors the value of the coherence lengthj0 , about 1024 cm, is
much larger thanaD;100 Å. In high-Tc metal-oxide com-
pounds, however, we have a situation in whichj0 is compa-
rable withaD . Thus, in high-Tc compounds the critical cur
rent of the contact with dimensions;aD;j0 is sensitive to
the effects of strong coupling.

2. MODEL AND BASIC EQUATIONS

We consider the model of a contact in the form of
filament ~narrow channel! that joins two superconductin
half-spaces~massive banks! ~Fig. 1!. The length L and
the diameterd of the channel are assumed to be large
compared with the Fermi wavelengthlF , so we can apply

FIG. 1. Model of ScScontact as narrow superconducting channel is
contact with bulk superconductorsS1 andS2 .
-
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the quasi-classical approximation. In the ballistic case,
proceed from the quasi-classical Eilenberger equation for
energy-integrated Green’s function:10

vF

]Ĝ

]r
1@vt̂31D̂,Ĝ#50, ~4!

where

G~v,vF ,r !5S gv f v

f v
1 2gv

D
is the matrix Green’s function which depends on t
Matsubara frequencyv, the electron velocity on the Ferm
surfacevF , and the spatial variabler ;

D̂~r !5S 0 D

D* 0 D
is the superconducting pair potential;t̂ i ( i 51,2,3) are Pauli
matrices. Equation for the matrix Green’s function~4! is
supplemented by the normalization condition11

Ĝ251. ~5!

The off-diagonal potentialD(r ) must be determined
from the self-consistency equation

D~r !5l2pT (
v.0

^ f &, ~6!

in which ^...& stands for averaging over directions ofvF on
the Fermi surface, andl is the electron-phonon couplin
constant. In the BCS model the summation overv contains
the cutoff on the frequencyvD , which is of the order of the
Debye frequency.

The equations~4! and ~6! are supplemented by the va
ues of the Green’s functions andD in the bulk superconduct
ors S1 andS2 far from the channel ends:

Ĝ1,25
vt̂31D̂1,2

V
, ~7!

D̂1,25D0~cos~w/2!t̂16sin~w/2!t̂2!.

Thus the phasew is the total phase difference at the conta
We also must determine the boundary conditions concern
the reflection of the electrons from the surface of the sup
conductorsrS . For simplicity we assume that atrS electrons
undergo the specular reflection. Then for quasiclass
Green’s function we have the boundary condition~Ref. 8!

G~vF ,rS!5G~vF8 ,rS!, ~8!

in which vF and vF8 are the velocities of the incident an
specular reflected electron. These velocities are related
the conditions, which conserve the component ofvF parallel
to the reflecting surfacerS and changes the sign of the no
mal component.

The solutions of Eqs.~4! and ~6! allow us to calculate
the current densityj :

j ~r !524ipeN~0!T (
v.0

^vFgv&. ~9!



1

na

f

n

s

ar

.

a

-

er
-

e

r

act

n-
tact
me

866 Low Temp. Phys. 25 (11), November 1999 Zareyan et al.
In the case of the microconstriction shown in Fig.
under the conditionsd!j0 andL@d ~d is the contact diam-
eter! inside the filament we can solve the one-dimensio
Eilenberger equations withD5D(z). The banks of the
bridge are equivalent here to certain boundary conditions

the Green’s functionĜ(yz ,z) at the pointsz56L/2. Fol-
lowing the procedure which was described in Ref. 8, we fi
the Green’s functions at the end points (z56L/2) from the
general solutions of Eq.~4! in superconducting half-space
S1 andS2 with conditions~5!. They are given by

Ĝ~z57L/2!5Ĝ1,21A1,2@D0t̂32@v cos~w/2!

1 ihV sin~w/2!] t̂17@v sin~w/2!

2 ihV cos~w/2!] t̂2 , ~10!

whereV5Av21D0
2 , and h5sign(yz). The arbitrary con-

stantsA1,2 must be determined by matching these bound

conditions with the solution forĜ(yz ,z) inside the channel
Using the off-diagonal components in Eq.~4!, we have

the following first-order differential equations for the anom
lous Green’s functions:

yz

d fv

dz
12v f v52D~z!gv ,

2yz

d fv
1

dz
12v f v

152D* ~z!gv . ~11!

The normal Green’s functiongv , as follows from condition
~5!, is expressed in terms off v and f v

1 :

gv5A12 f v f v
1 . ~12!

From Eqs.~6!, ~9!, ~11!, and~12! we obtain the symme
try relations

f v
1~yz ,z!5@ f v~2yz ,z!#* , D* ~z!5D~2z! ~13!

and the current conservation inside the channeld j /dz50.

3. JOSEPHSON CURRENT AND ORDER PARAMETER
DISTRIBUTION IN SUPERCONDUCTING MICROCHANNEL

In the present paper we consider the case of temp
turesT close to the critical temperatureTc . Near the phase
transition curve the order parameterD0(T) in the banks is
small. In order to find the Josephson current in the low
order in D0 we linearize Eqs.~11! for D and obtain f v

;D0(T), gv.121/2 f v f v
1;12O(D0

2), j ;D0
2. The equa-

tion for f v nearTc takes the form

yz

d fv

dz
12v f v52D~z!, ~14!

with linearized boundary conditions~10!

f v~yz.0, z52L/2!5
D0

v
e2 iw/2,

~15!

f v~yz,0, z51L/2!5
D0

v
e1 iw/2.

Its solution for arbitrary functionD(z) is given by
,

l

or

d

y

-

a-

st

f v~yz ,z!5
D0

v
e2 ihw/2e2~2v/yz!~z1hL/2!

1e22vz/yzE
2hL/2

z

dz8
2D~z8!

yz
e2vz8/yz. ~16!

The Green’s functionf v
1(yz ,z) is obtained from expression

~14! with the help of relations~15!.
Substituting the functionf v(yz ,z) ~16! in the self-

consistency equation~6!, we obtain the integral equation fo
the space-dependent order parameter inside the contact

D~z!5A~z!1E
2L/2

L/2

dz8D~z8!K~ uz2z8u!, ~17!

where

A~z!5l2pT (
v.0

D0

v K e2vL/yz coshS 2vz

yz
1 i

w

2 D L
yz.0

,

~18!

K~z!5l2pT (
v.0

K 1

yz
e22vz/yzL

yz.0

. ~19!

The averaginĝ ...&yz.0 denotes

^F~yz5yF cosu!&yz.05E
0

1

d~cosu!F~cosu!.

In the case of strongly inhomogeneous microcont
problem the integral equation for the order parameterD re-
places the differential Ginzburg–Landau equation. It co
tains the needed boundary conditions at the points of con
between the filament and the bulk superconductors. So
general properties of the solutionD(z) of Eq. ~17! follow
from the form of the functions~18! and ~19!. Let us write
D(z) in the form

D~z!5D0~T!S cos
w

2
1 iq~z!sin

w

2 D ~20!

and substitute it in Eq.~17!. For the functionq(z) we obtain
the equation

q~z!5b~z!1E
2L/2

L/2

dz8q~z8!K~ uz2z8u!, ~21!

with K(z) defined by~19! and the new out-integral function
b(z),

b~z!5l2pT (
v.0

1

v K e2vL/yz sinhS 2vz

yz
D L

yz.0

. ~22!

In obtaining Eq.~21! we have used the relation

l2pT (
v.0

vD 1

v
51, for T→Tc . ~23!

It follows from ~19!, ~21!, and ~22! that the function
q(z) has such properties:

i! the functionq(z) is real,
ii ! q(z) does not depend on the phasew,
iii ! q(2z)52q(z), q(0)50.
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Thus, the value of the order parameterD at the center of
the contact always is equal toD0(T)cos(w/2). Also, the uni-
versal phase dependence ofD(z,w), which is determined by
~20! and i!–iii !, leads~see below! to the sinusoidal current-
phase dependencej 5 j c sinw. It is emphasized that thes
general properties of the ballistic microchannel@within the
considered case of ‘‘rigid’’ boundary conditions~10! and
temperatures close toTc] does not dependon the contact
lengthL, in particular, on the ratio ofL/j0 .

Now we are going to obtain the Josephson current in
system. To calculate the total currentI 5S j that flows
through the channel at the given phase differencew, we use
the equation for the current density~9! and the anomalous
Green’s function f v ~16! obtained above. The norma
Green’s functionqv ~12! in the second order inD0(T) is
gv(yz ,z)5121/2 f v(yz ,z)@ f v(2yz ,z)#* . It is convenient
to calculate the current density at the pointz50. Using the
expression forD(z) ~20!, we obtain the general formula fo
the Josephson currentI (w) in terms of the functionq(z):

I ~w!5I c sinw, ~24!

I c5I 0

16T2

yF
(
v.0

F 1

v2 ^yze
2vL/yz&yz.0

1
2

v E
0

L/2

dz q~z!^e22vz/yz&yz.0G . ~25!

HereI 05pD0
2(T)/(4eR0Tc) is the critical current atL50. It

coincides with the result of Ref. 8 for the orifice~2! at T near
Tc . Expression~25! jointly with Eq. ~21! for q(z) describes
the dependence of the critical current on the contact len
I c(L). It is valid for arbitrary value of the ratioL/j0 . Note
that in our caseT→Tc , we have the relationj0 , L!j(T).

Let us introduce the dimensionless quantities

x5z/L, l 5
pTcL

yF
,

v

pTc
52n11, Jc5

I c

I 0
. ~26!

In reduced units~26!, after taking the averagê...&yz.0 , the
equations forq(x) andJc take the form

q~x!5b~x!1 l E
21/2

1/2

dx8q~x8!K~ ux2x8u!, ~27!

Jc5
8

p2 (
n50

N H exp@2 l ~2n11!#@12 l ~2n11!#

~2n11!

2 l 2Ei[ 2 l ~2n11!]

14l E
0

1/2

dx q~x!
exp@22l ~2n11!x#

~2n11!

12lxEi[ 22l ~2n11!]xJ , ~28!
e

th

where

b~x!5l (
n50

N H 2 exp@2 l ~2n11!#sinh@2l ~2n11!x#

~2n11!

1 l ~2n11!~122x!Ei@2 l ~2n11!~122x!#

1 l ~2n11!~112x!Ei@2 l ~2n11!~112x!#J ,

~29!

K~x!522l (
n50

N

Ei@22l ~2n11!x#. ~30!

The functionEi(x)5*2`
x @(expt)/t#dt is the integral expo-

nent. The upper limitN in the sums overn is related to the
cutoff frequencyvD in the BCS model,N.vD /Tc . The
value of the coupling constantl is related toN by Eq. ~23!
or, in reduced units,

2l (
n50

N
1

~2n11!
51.

In the weak-coupling limit ofl!1, we haveN@1.
In the general case of the arbitrary value of the para

eterl ( l .L/j0) Eq. ~27! is a convenient starting point for th
numerical calculation of the functionJc( l ). We consider
here two limiting cases,l @1 andl !1.

For a long microbridge withl @1 we seek a solution o
Eq. ~27! in the formq(x)5ax. Substituting thisq(x) in Eq.
~27!, we find a521O(1/l ). CalculatingJc ~28! with q(x)
52x, we find that the order parameter and the critical c
rent are

D~z!5D0S cos
w

2
1 i

2z

L
sin

w

2 D , L@j0 , ~31!

I c~L !5
14

3p2 z~3!I 0

\yF

TcL
, L@j0 . ~32!

Expressions~31! and ~32! coincide with the solution of GL
equations~with effective boundary conditions for the orde
parameterD! for the clean superconducting microbridge12

Thus, our microscopic approach with the boundary con
tions ~10! for the Green’s functions~not for D! gives the
results of the phenomenological theory atL@j0 .

For a short microbridge withl !1, in zero approximation
on l we find thatq(x)50 @D(z)5D0 cos(w/2)#, Jc51 or, in
dimension units,I c(0)5I 0 , in agreement with formula~2!.
The corrections for the zero approximation depend on
value of the productlN. For very smalll !Tc /vD ~i.e., L
!aD.yF /vD), the productlN is small, althoughN@1. As a
result, whenq(x,l ) and Jc( l ) are calculated in the region
L,aD , the cutoff in the sums overn must be taken into
account. Apparently, when the cutoff frequency appe
explicitly but not through the value ofTc , the applicability
of the BCS theory becomes questionable. More rigoro
consideration, based on the Eliashberg theory of sup
conductivity,13 is needed in this case. Nevertheless, by us
the BCS model with cutoff frequency we assume quali
tively to take into account the retardation effects of electro
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phonon coupling in our problem. In the domain which
defined by the following inequalities:lN!1, N@1, l !1, the
functionsb(x) ~29! and K(x) ~30! have the asymptotic be
havior:

b~x!54l lNH x ln~ lN !1x~C1 ln 2!

1
1

4 F lnS 112x

122xD12x ln~124x2!G J , ~33!

K~ uxu!522lN@ ln~2lNuxu!21#, ~34!

whereC.0.577 is the Euler constant. As follows from Eq
~33! and ~34!, in this case the integral term in Eq.~27! is
small, and calculating the critical current in the first appro
mation on the small parameterlN, we setq(x)5b(x). As a
result, we have

D~z!5D0~T!S cos
w

2
1 ib~z/L !sin

w

2 D , L!aD , ~35!

whereb(x) is defined by expression~33!,

I c~L !5I 0S 12
8

pl

TcL

yF
D , L!aD . ~36!

In the region$ l !1 andlN&1% the integral term in Eq.
~27! is numerically small as compared with the out-integ
term b(x). Using in Eq. ~27! the q(x)5b(x) as a rough
approximation, we calculate the functionJc( l ) shown in
Fig. 2.

FIG. 2. Dependence of the critical currentI c on the contact lengthL for the
microbridge~solid line!. The coupling constantl50.2. For comparison, the
dependenceI c(L) for SNScontact (l50 inside the channel! is shown
~dashed line!.
-

l

For the casel !1 andlN@1, we setN5` in the equa-
tion for q(x) andJc( l ). The corrections for the critical cur
rent in this region of lengthL can be estimated as

I c'I 0S 12const
L

j0
ln

j0

L D , aD!L!j0 . ~37!

The expressions~32!, ~36!, and~37! describe the depen
dence of the critical current on the contact length in the li
iting cases of short and long channels. With increas
length L, the critical current decreases. For ultrasmallL
&aD the value ofdI c /I 0;(1/l)(L/j0) directly depends on
the BCS coupling constantl, and consequently it is sensitiv
to the effects of the strong electron-phonon coupling.

4. CONCLUSION

We have studied the size dependence of the Josep
critical current in ballistic superconducting microbridge
Near the critical temperatureTc , the Eilenberger equation
have been solved self-consistently. The closed integral eq
tion for the order parameterD ~17! and the formula for the
critical currentI c ~25! are derived. Equations~17! and ~25!
are valid for the arbitrary microbridge lengthL in the scale of
the coherence length,j0;yF /Tc . In strongly inhomoge-
neous microcontact geometry they replace the differen
Ginzburg–Landau equations and can be solved numeric
In the limiting casesL@j0 andL!j0 , we obtained the ana
lytical expressions forD inside the weak link and for the
I c(L). The dependence ofI c on L is shown schematically in
Fig. 3. For a long microbridge,L@j0 , the critical current
;1/L is in correspondence with the phenomenologi
analysis. The main interest lies in the regionL&j0 , where a
microscopic theory is needed. We have calculated the
rections for the KO theory,8 which are connected with the
finite value of the contact size. The expression~2! for the
Josephson current was obtained in Ref. 8 in zeroth appr
mation on the contact size. For theL!j0 we find
that dI c /I 0;(2L/j0)ln(j0 /L), whereI 0 is the value of the
critical current in KO theory. Thus, the corrections for th
value I 0 are small whenL!j0 , but the derivativedIc /dL

FIG. 3. Dependence of the critical current on the length of the bridge.
asymptotic behavior for short and long bridges is shown. The hatched re
corresponds to the ultrashort microbridge,L&yF /vD .
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has a singularity atL50. This singularity is smeared if we
take into account the finite value of the ratioTc /vD . For an
ultrashort microchannel,L&aD;yF /vD ~the hatched region
in Fig. 3!, the length dependence of the critical current
dI c /I 0;2L/(lj0) ~l is the electron-phonon coupling con
stant!. In the very small microcontacts we have a uniq
situation in which the disturbance of the superconduct
order parameter can be localized on the lengthaD , making
essential the effects of retardation of electron-phonon in
action. The ballistic flight of electrons through the channe
a dynamic process with characteristic frequencyv0;yF /L.
For L smaller thanaD this frequency is comparable with th
Debye frequencyvD .

In summary, the critical currentI c for the finite contact’s
size is smaller thanI 0 . At the same time, the normal-sta
resistanceRN of the ballistic microchannel does not depe
on the lengthL and remains equal to the Sharvin resistan
R0 ~3!. As a result, the value of the productI cRN is not equal
to pD0

2/4eTc and depends on the contact size. We have c
sidered here the quasi-classical caseL@\/pF . In the quan-
tum regime,L;\/pF , the Sharvin resistanceR0 in Eq. ~2! is
substituted by the quantized resistance of the contact, as
first shown by Beenakker and Houten.14 It follows from our
analysis that for such small microcontacts withL&aD the
rigorous calculation of the Josephson current requires ta
into account the retardation effects.
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Dynamics and drag of a vortex in type II superconductor with weak inhomogeneities
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The dynamics of the Abrikosov vortex lattice and a single vortex in a type II superconductor
with defects is studied taking into account inertial as well as gyroscopic~Hall! properties.
The spectrum of normal modes in the absence of defects has two branches. In the limit of small
k, one of the branches is gapless and has a quadratic dispersion relation, while the other
branch has a finite gap. In the limit of largek, the dispersion relations for both modes become
linear ~acoustic!. It is shown that the interaction with defects in a moving vortex or a
vortex lattice excites oscillations corresponding to these modes. This creates an additional energy
dissipation channel for translation motion of the vortex. In the case of a single vortex, the
corresponding drag force diverges asV21/2 for V→0, i.e., prevails over the regular force of
viscous friction for small velocities. ©1999 American Institute of Physics.
@S1063-777X~99!00411-9#
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The dynamics of vortices and vortex lattices in sup
conductors, their pinning at defects, and depinning proce
determine basic physical properties of type II supercond
ors, which are important for their applications~see the re-
view by Blatteret al.1!. Vortex dynamics in various ordere
media ~superconductors and superfluid phases of4He and
3He! is a complex phenomenon which should be gener
analyzed taking into account inertial and dissipative prop
ties of vortices, the presence of a gyroscopic force~Hall
force in the case of superconductors! as well as defects
Among other things, these properties are manifested in
cial collective modes existing in the vortex system. The
modes were observed in resonance experiments with4He.2

The interest to these mode as applied to highTc supercon-
ductors~HTSC! has increased considerably in recent years
connection with experiments3 on magnetic absorption in
Bi2Si2CaCu2O81x , in which resonance associated with no
mal vortex modes was observed. However, induced mo
of vortices in the vortex lattices of HTSC is usually d
scribed in the purely dissipative approximation without ta
ing into account the peculiarities in the response of the s
tem with local modes~see the review by Blatteret al.1!.

In this communication, we analyze the dynamics of t
vortex lattice and a single vortex in a superconductor tak
into account inertial as well as gyroscopic~Hall! properties
of the superconductor with defects. In the absence of defe
the spectrum of normal modes of vortices has two branc
For small wave vectorsq, one of the branches is gapless a
has a quadratic dispersion relation, while the other ha
finite gap. For large values ofq, the dispersion relation fo
both modes becomes linear~acoustic!.

The interaction with defects in a moving vortex or vo
tex lattice induces oscillations corresponding to these mo
This creates an additional dissipation channel for the ene
8701063-777X/99/25(11)/7/$15.00
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of translational motion of the vortex. Since the dispersi
relation is gapless, such a dissipation appears at an infin
small vortex velocityV. It differs from zero even if we dis-
regard the initial dissipation in the equation of motion for t
vortex. In this case, the vortex is decelerated due to the
that the energy of its translational motion is transferred ir
versibly to elementary excitations~normal modes quanta!.

The type of this drag force depends considerably on
spacing between vortices. When the density of vortices
high, they interact strongly and form a lattice. The vort
lattice can be three-dimensional (3D) or two-dimensional
(2D), the latter case~of so-called pancake vortices1! being
typical of strongly anisotropic superconductors. Our analy
proves that in both cases the contribution of interaction w
defects to the dissipation of a moving vortex lattice is sm
but it increases upon a decrease in the density of the lat
Thus, the effect is the strongest for weakly interacting vo
ces. In the case of a solitary vortex, the additional contri
tion to the drag force diverges asV→0. The latter statemen
is in qualitative agreement with the conclusion drawn
Koshelev and Vinokur,4 according to which the amplitude o
forced oscillations of vortices in a vortex lattice moving
the presence of defects increases upon a decrease in th
locity of the lattice.

DYNAMICS OF VORTEX LATTICE

Let us consider the dynamics of a vortex lattice~formed
by Abrikosov vortices parallel to thez-axis! in the absence
of a perturbation. The low-frequency dynamics of a vort
lattice can be described on the basis of an effective equa
for the 2D vectoru5u(x,y,z,t) lying in the (x,y) plane and
describing the displacement of the vortex lattice1 ~Fig. 1!.
© 1999 American Institute of Physics
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The nondissipative dynamics ofu is determined by the
following Lagrangian:

L~ u̇!5E dx dy dzFr2 u̇21
H

2
~uxu̇y2uyu̇x!G2W$u%.

~1!

Here u̇5]u/]t; r andH are the mass and Hall consta
of vortices in the lattice per unit volume,W$u% is the energy
of the deformed lattice,

W~u!5E dx dy dzF1

2
c11S ]ux

]x
1

]uy

]y D 2

1
1

2
c66S ]ux

]y

2
]uy

]x D 2

1
1

2
c44S ]u

]zD
2G1U imp~u!, ~1a!

which is written as in the theory of elasticity, andc11, c44,
and c66 are elastic moduli of the lattice. The termU imp de-
fines the energy of interaction of a vortex with defects~its
structure will be considered later!. The rate of energy dissi
pation in the system is determined by the dissipative func
i.e., dE/dt522Q(u̇). In the theory of elasticity, this rate i
equal to zero in the case of translational motion of the lat
as a single entity, and hence the density of dissipative fu
tion Q(u̇) is proportional to@]2u/]xi]t#2. The situation for a
lattice formed by macroscopic objects of the type of vortic
or dislocations is different. Each vortex moving in the m
dium experiences the action of a drag force, and the rat
its energy dissipation is proportional to (]u/]t)2. For this
reason, we choose the dissipative function in the form

Q5
b

2 E dx dy dzu̇2, ~2!

FIG. 1. Undeformed vortex~dashed cylinder! and deformed vortex~solid
curves!; vectoru(z,t) is shown by an arrow.
n

e
c-

s
-
of

whereb is the dissipation coefficient per unit volume.
Expressions~1! and ~2! are written for a 3D vortex lat-

tice. We can easily go over to other interesting cases lik
2D lattice ~pancake vortices! or a solitary vortex. It is suffi-
cient to carry out the substitution*dxdydz$...%
→*dxdy$...% ~2D case! or *dxdydz$...%→*dz$...% ~soli-
tary vortex! and omit the terms with the derivatives ofu with
respect toz ~2D case! or with respect tox,y ~solitary vor-
tex!. We must also assume thatr, b, etc. describe typica
values per unit area of the lattice~2D case! or per unit length
of a solitary vortex. For example, in the important case o
solitary vortex, we must carry out substitutions of the ty
r→rav

2, b→bav
2, c44→k, wherek is the energy per unit

length of the vortex andav
2 the area of the vortex lattice pe

vortex.
The equations of motion for the variableu can be de-

rived by variation of Eqs.~1! and~2!, dL/du2dQ/du̇50. In
the absence of interaction with defects, the equation of m
tion for a vortex lattice can be written in the form

rü1H~exu̇y2eyu̇x!1bu̇2c44

]2u

]z2 2exFc11

]

]x S ]ux

]x

1
]uy

]y D1c66

]

]y S ]ux

]y
2

]uy

]x D G2eyFc11

]

]y S ]ux

]x

1
]uy

]y D2c66

]

]x S ]ux

]y
2

]uy

]x D G50. ~3!

In the nondissipative limit (b50), this equation de-
scribes the normal vibrations of the lattice. In the case
small dissipation, the corresponding dispersion relationv
5v(q) is strongly anisotropic~Fig. 2! and is given by the
following cumbersome formula

FIG. 2. Dispersion relation shown schematically for vortex lattice vibratio
during the propagation of a wave along the vortex axis~right branches! and
at right angles to it~left branches!.
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rv25c44qz
21

1

2
~c111c66!q'

2 1
H2

2r
6F S H2

2r D 2

1
H2

2r
@2c44qz

21~c111c66!q'
2 #1

1

4
~c11

2c66!
2q'

4 G1/2

, ~4!

whereq'
2 5qx

21qy
2 and the signs ‘‘1’’ and ‘‘ 2’’ correspond

to two vibrational branches. In the limit of smallqz andq' ,
the expressions for frequencies of the upper and lo
branches are simplified considerably:

v~2 !
2 5

1

H2 ~c44qz
21c66q'

2 !~c44qz
21c11q'

2 !, ~5a!

v~1 !
2 5

H2

r2 1
2

r
c44qz

21
1

r
q'

2 ~c111c66!. ~5b!

Expression~5a! corresponds to the low-frequency ga
less mode. For smallqz andq' , the dispersion relation fo
this mode is quadratic in the components ofq and indepen-
dent of the vortex mass. For a wave propagating along
vortex ~the limiting caseq'→0! the result coincides with
that obtained long ago by De Gennes and Matricon5 for a
solitary vortex, i.e.,v (2)→qz

2k/H1 , where the Hall constan
H1 of the solitary vortex is introduced.

Formula~5b! for small q describes the mode with a fi
nite gap, i.e.,v (1)→H/r1@2c44qz

21(c111c66)q'
2 #/2r. The

limiting value of frequency for this mode is determined
the Hall constantH and massr, i.e., v (1)→H/r for q→0.
Thus, this mode corresponds to the cyclotron motion of v
tices in the lattice in the homogeneous case (q50). Cyclo-
tron motion of a vortex in superfluid systems and superc
ductors has been considered by many authors from
microscopic point of view.6 It was also observed fo
ferromagnets7 and antiferromagnets in an external magne
field.8 It should be noted that sometimes another cyclot
frequencyvc is introduced for superconductors,9 which is
determined by the cyclotron motion of electrons and ha
finite value even when the vortex mass is not taken i
account. A different mechanism of gap formation in t
spectrum of normal modes in the lattice, namely, the lo
range interaction between vortices, was considered
Sonin.10 Naturally, this mechanism does not work for norm
modes of oscillations of a solitary vortex in contrast to t
cyclotron mechanism.

The above specific features~quadratic dispersion relatio
and the presence of a gap! are due to the gyroscopic force
Only in the limit of largeq, cq2@H/r, gyroscopic force is
insignificant, and the dispersion relation for both modes
transformed to a linear~quasi-acoustic! relation typical of
lattice systems. The corresponding velocity of sou
strongly depends on the direction of wave propagation:

v~6 !
2 5

1

2r
@2c44qz

21~c661c11!q'
2 #6

1

2r
uc662c11uq'

2 .

If the wave propagates along vortices, both branc
naturally correspond to transverse oscillations with
r

e

r-

-
e
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-
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l

s

d

s
e

velocity of soundsz5Ac44/r. The two branches correspond
ing to the propagation in a direction perpendicular to vortic
for cq2@H/r describe longitudinal and transverse wav
with velocitiessl5Ac11/r andst5Ac66/r respectively.

Let us consider the interaction between the vortex latt
and the defects in the crystal. For definiteness, we ass
that the presence of defects leads to a coordinate depend
of the local critical temperatureTc . This can be taken into
account by introducing the coordinate-dependent coeffic
@a01F(r )#ucu2 into the Ginzburg–Landau expansion.1

We start from the case of a single vortex located in eq
librium at a certain sitel of the vortex lattice. For definite-
ness, we assume that the distribution of the order param
in the vortex does not change during the motion of a vor
and is described by a known functionf (r').11 Thus, taking
into account the displacement of the vortex, we c
write ucu25uc0u2f (r'), where r'5@(x2 l x2ux)

21(y2 l y

2uy)
2#1/2. In this case, the energyU imp associated with crys-

tal inhomogeneities can be written in terms of the functi
f (r') in the form of a functional of the vortex displacemen

U imp5E dx̃dỹdz f~r'!F@x1 l x1ux~r ,t !,

y1 l y1uy~r ,t !,z],

wherex̃5x2 l x2ux(r ,t), ỹ5y2 l y2uy(r ,t).
It is convenient to write the expression forU imp in the

form of the Fourier expansion inx andy:

U imp5
1

S (
qx ,qy

f ~q'!E dzF~qx ,qy ,z!

3exp$2 iq'• l2 iq'•u~r ,t !%, ~6!

whereq'5(qx ,qy,0), S5LxLy is the area of the supercon
ductor, f (q') is the form factor of the vortex, and

F~qx ,qy ,z!5E djdhF~j,h,z!eiqxj1 iqyh,

f ~x,y!5 (
qx ,qy

f ~q'!eiqxx1 iqyy.

Taking this expression into account, we can write t
equation of motion of the vortices in the presence of defe
in the form ~3! with an additional forceFimp on the right-
hand side:

Fimp5 (
qx ,qy

iq' f ~q'!F~qx ,qy ,z!exp~ iq'•u!. ~7!

A general solution of this nonlinear equation with coe
ficients depending onz cannot be obtained. However, we ca
carry out a complete analysis assuming that deviations f
the rectilinear uniform motion of vortices due to defects a
small. Puttingu5exVt1ũ(r ,t) and linearizing~3! and~7! in
ũ, we obtain forũ the following linear equation with a right
hand side:

r ü̃1H@e23 u̇̃#1b u̇̃1k
]2ũ

]z2 5
1

V (
q

iq' f ~q'!F~q!

3exp~ iq'• l1 iqzz

2 iqxVt). ~8!
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whereV5LxLyLz is the volume of the superconductor.
This equation describes induced oscillations of a vort

and its solution can easily be obtained by the method
Fourier transformation. Substituting the solution of th
equation into the dissipative function, we obtain addition
contribution to the vortex energy dissipation associated w
the fact that the motion of the vortex in the presence o
defect is not rectilinear and uniform. Since the value oũ
averaged overz andt vanishes, this contribution is quadrat
in the amplitude of forced oscillations of the vortex.

Clearly, the same expression~8! is valid for each of the
vortices forming the lattice. In order to describe the for
acting per unit volume of the lattice in the vicinity of a give
point r in the macroscopic limit, it is sufficient to carry ou
the substitutionq'• l1qzz→q•r in ~8! and divide~7! by the
areaav

2 per vortex. This gives

~Fimp! lat5
1

av
2V (

q
iq' f ~q'!F~q!exp~ iq•r2 iqxVt!.

~8a!

CALCULATION OF DISSIPATION FOR VORTEX LATTICE

In order to analyze specifically the contribution to t
drag of a vortex lattice, we shall assume that inhomogen
is due to the system of point defects whose size is sma
than the radius of the vortex core. In this case, the func
F(x,y,z) in ~5! can be written as the sum of Dirac del
functions:

F~r !5(
a

ad~r2r !a .

Here ra is the coordinate of theath defect anda character-
izes the intensity of interaction of the defect with the ord
l-
n

m
lim
h
e
ve
pe
,
f

l
h
a

ty
er
n

r

parameter~we assume for simplicity that the value ofa is the
same for all defects!. Such a model correctly describes an
defect whose size is smaller than the coherence lengthj of
the superconductor. Typical examples of such defects
HTSC are oxygen vacancies.1

In this case, the expression~8a! for the forceFimp acting
per unit volume of the lattice can be written in the form

Fimp5
1

av
2

a

V (
a

(
q

iq' f ~q'!eiq'•raeiq•r2 iqxVt.

Solving this equation forũ, we obtain

ũx,y5
1

av
2

a

V (
a

(
q

f ~q'!eiq'ra

3
Ax,y~q'!1 iB~ex,y@ez3q# !

AxAy2B2 e2 iq–r2 iqxVt, ~9!

where

Ax5~c11q'
2 1c44qz

2!1 ibqxV2r~qxV!2;

Ay5~c66q'
2 1c44qz

2!1 ibqxV2r~qxV!2;

B5qxVH.

It should be noted that the conditionAxAy2B250 for
b→0 determines the dispersion relation~4! for oscillations
of the vortex lattice derived above. ForbÞ0, the denomina-
tor in formula ~9! does not vanish for any value ofq.

Substituting expression~9! into the dissipative function
and carrying out averaging over defects with the help of
relation (a exp(iq–ra)5Ndq,0 , where N is the number of
defects anddq,0 is the Kronecker symbol, we can easily fin
the dependence of the drag force on the velocity of the v
tex:
Q~V!5
1

av
4

Cimp

~2p!2
V2a2bE dqxdqydqzq'

2 qx
2f 2~q'!

3
qx

2V2~b21H2!1~c44qz
21c11qy

21c66qx
22rqx

2V2!21~c112c66!
2qx

2qy
2

@r2~qxV!42H2~qxV!22rĈq~qxV!21Ĉ1qĈ2q2~bqxV!2#21~bqxV!2@Ĉq22r~qxV!2#2
. ~10!
r-
a
-

h

ish
HereCimp5N/V is the concentration of defects, and the fo
lowing notation has been introduced to simplify the relatio

Ĉq5Ĉ1q1Ĉ2q , Ĉ1q5c11q'
2 1c44qz

2,

Ĉ2q5c66q'
2 1c44qz

2.

Direct evaluation of this integral leads to cumberso
expressions, and we shall confine our further analysis to
iting relations between the parameters of the problem suc
viscosity, Hall constant and vortex mass, and to the cas
small velocities. Before discussing specific results, howe
we shall make a general statement concerning the de
:

e
-

as
of
r,
n-

dence of the additional drag forceDF(V)5Q(V)/V @Q(V)
is the dissipative function~10!# on the velocity of vortices
and on the parameters of the problem.

The factorbV2 appearing in~10! in front of the integral
can be interpreted so that the quantityQ(V);bV2, which in
turn leads to a linear dependenceF(V);bV of the drag
force on velocity. Clearly, the inclusion of vibrations of vo
tices associated with interaction with defects gives only
small correction to the conventional initial drag force. How
ever, the integral in~10! contains singularities due to whic
the additional relaxation channel in~10! can become signifi-
cant and even decisive.

As a matter of fact, the additional drag does not van
even in the limiting case of small dissipation~b→0, while r
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andH are finite!. At first glance, this appears as paradoxic
However, such a collisionless~Landau! damping associated
with pumping of energy of one vibrational mode to the oth
is encountered in many branches of physics. This is just
situation observed in our case the action of defects on vo
ces for smallb leads to the excitation of weakly attenuatin
normal vibrations of vortices in the lattice. Let us consid
this conclusion in greater detail.

Expression~10! containsb in the combinationb$b2

1F2@q,(qxV)2#% ~see~10!! where the functionF is such that
the condition F@q,(qxV)2#50 with the substitutionqxV
→v defines the frequencies of normal modes of vortex
brations in the lattice@cf. ~4! and ~10!#. For b→0, the ex-
pression ~10! is transformed into the d-function
d$F@q,(qxV)2#%. After simple transformations, this expre
sion can be reduced to the sum of twod-functions of the type
d@(qxV)22v (6)

2 (q)#, wherev (6)(q) are the frequencies o
normal modes~4!. Since at least one of the equationsqxV
5v (2)(q) or qxV5v (1)(q) has a solution for any value o
velocity, the value ofQ(V) can be finite even forb→0. A
similar result was obtained in an analysis of the drag of
main walls in magnets with microscopic defects.12,13 It can
be explained as follows: the action of defects on vortic
leads to excitation of weakly attenuating natural vibrations
vortices, and hence to irreversible transfer of the energy
translational motion of the vortex to the energy of these
brations.

The physical meaning of this result becomes cleare
we formulate it in the language of quantum mechanics.11 Let
us go over to a reference frame moving with the vortices
this reference frame, defects move at a velocity2V
52Vex parallel to thex-axis and can transfer the mome
tum q to the vortex lattice~we put \51! only simulta-
neously with the energyq•V5qxV. This momentum is re-
distributed between the lattice as a whole and an elemen
excitation, and the energy is transferred to the elemen
excitation. In particular, for a single vortex the situation
quite simple: the vortex acquires a momentum in a direct
perpendicular to its axis~z-axis!, and the wave propagatin
along the vortex acquires a component of the momen
along thez-axis. It can easily be seen that the arguments
the d- functions written above determine the correspond
laws of conservation of energy and momentum during
generation of a vibrational quantum corresponding to a c
tain normal mode. Dissipation is due to irreversible trans
of kinetic energy of the vortex to such excitations.

The calculation for small velocities leads to the expr
sionDF(V);V3/C, whereC is a certain combination of the
quantitiesc11 andc66. Consequently, in contrast to the ca
of domain walls12,13 for which DF(V)→const forV→0, the
corresponding correction to drag force for small velocities
smaller than the standard term of the typebV. However, this
correction contains the quantityC;1/av

2 in the denominator
and increases upon a decrease in the density of vortice
the lattice. It follows hence that as we go over to a solita
vortex for whichC}1/av

2→0, the exponent of the velocityV
in the F(V) dependence must become smaller than three

A more standard result appears whenb is finite. In this
case, we find as a result of simple but cumbersome eva
.
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tion of the integral in~10! that the correction to drag force i
linear in V for small velocities:

DF~V!52~DB3D!V,

Db3D5
1

av
4 Cimp

bpa2

4c44
1/2c66

3/2E dqxdqyu f ~q'!u2
qx

2

q'

.

Sincec66}B}av
22 andc44}B}av

24 ~B is the induction
in the superconductor!,1 the quantityDb3D}av as forb50
and diverges for (1/av

2)→0. Consequently, the correctio
DF(V) becomes more significant as the density of vortic
decreases. An analysis proved that the corresponding co
butions become equal (Db3D;b) only for small values of
density for which the interaction between vortices can
neglected, and they can be regarded as independent.

Let us make a transition to the case of a solitary vort
the dependence corresponds to the limitc66→0 in the for-
mula for Db3D written above. Since the quantityDb3D for-
mally diverges, the dependence ofDF(V) for a solitary vor-
tex must become stronger than linear~it should be expected
that DF(V)}Vs, s,1!.

The analysis of a 2D lattice proved that such lattice
obey the same regularities as in the 3D case. For example
the corresponding correction to drag force for low velocit
and a finiteb is smaller thanbV. For this reason, we sha
not discuss details and go over to an analysis of a soli
vortex for which the contributionDF(V) has the maximum
value.

DRAG OF A SOLITARY VORTEX

For a solitary vortex, we must assume in the integ
~10! that the quantitiesH andr correspond to unit length o
the vortex~see~3!! and putĈ1q5Ĉ2q5kqz

2, wherek is the
energy per unit vortex length. In this case, the dependenc
the integrand onq is simplified significantly, andQ(V) can
be calculated in detail. For example, if we disregard iner
properties of the vortex~i.e., put r50), we can determine
theQ(V) dependence exactly. For all values of velocity a
any relation betweenH and b, the additional drag force is
proportional toV21/2:

F~V!5hV21/25Cimp Aj21/2
pa2

2A2kV

1

AH21b2

3@~AH21b21H !1/21~AH21b22H !1/2# ~11!

and the coefficienth is finite for b→0, HÞ0 as well as for
H→0, bÞ0.

We have introduced here the notationAj21/2

5*dqxdqy3Aqxq'
2 u f (q')u2, where j is the coherence

length. Considering that the vortex form factorf (q') is a
function localized in the regionjq'<1, f (q');j2 for
q'→0 and f (q')→0 for jq'@1 @see~11!#, we find thatA
is a constant of the order of unity.

An analysis of the effect of inertial properties of th
vortex will be carried out assuming thatb!H, but without
requiring that any inequalities are satisfied for other para
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eters of the problem. In this case, the integral with respec
qz

2 was evaluated exactly usingd-functions and the following
compact expression was obtained:

Q~V!5
Cimpa

2

Ak
E

0

`

dqxE
2`

`

dqyq'
2 f 2

3~q'!
qxV

AH~qxV!1r~qxV!2
12

Cimpa
2

Ak

3E
~H/rV!

`

dqxE
2`

1`

dqyq'
2 f 2

3~q'!
qxV

Ar~qxV!22H~qxV!
. ~12!

The first term in this expression is due to excitation
oscillations of the activationless mode, while the second te
is associated with the activation mode. For small velocit
V!Hj/r, the integration in the second integral is carried o
over the regionqx.1/j. In this region, the functionf (q') is
exponentially small, and hence the contribution from the s
ond term is insignificant. However, the first term associa
with elementary excitations with activationless dispersion
lation gives a significant contribution toDF(V)5Q(V)/V
for an indefinitely small velocity. It can easily be seen th
this contribution diverges forV→0. In the limiting case
r!Hj/V, we naturally arrive again at the formula~11! for
b50, in whichF(V) does not depend onr. Inertial proper-
ties of the vortex are manifested only forV.Hj/r. In this
case, the divergence ofF(V) is stronger than in~11!: F(V)
}1/V. However, this case corresponds to too high veloci
and will not be considered here.

Thus, for arbitrary relations between dynamic para
etersr, k, and b of the solitary vortex and a small vorte
velocity V!Hj/r, the additional drag force is described b
formula ~11!, i.e., DF(V)}V21/2 and diverges forV→0.
Taking into account the ordinary viscous drag force act
on the vortex, we can write the resultant force in the fo
F(V)5bV1h/V1/2, whereb is the viscosity introduced in
~2!, andh is defined by formula~11!. It follows hence that
for small velocitiesV,V* , the value ofDF is larger than
bV even if the coefficient ofV21/2 is quite small.

Let us estimate the characteristic velocities of the vort
i.e., the quantitiesHj/r and V* 5(h/b)2/3. The quantity
Hj/r turns out to be larger than ordinary velocities of vort
lattices, whileV* is obviously smaller thanHj/r if only due
to the fact that it contains small parametersCimp and a. In
accordance with formulas~11! and ~12!, the characteristic
velocity V* for small velocities and any relation betweenb
andH is defined as

V* 5S ACimpa
2

2bAkj max$b,H%
D 2/3

, ~13!

whereA is a numerical factor of the order of unity andj the
coherence length.

In order to obtain estimates, we choose conventio
expressions for phenomenological parameters of the prob
to
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in terms of microscopic characteristics of the supercondu
~see, for example, Refs. 1 and 11!. We write
k5(F0/4pl)2, wherel is the depth of magnetic field pen
etration in the superconductor andF0 the magnetic flux
quantum. For the quantitya, we put a5(Hcm

2 /8p)
3(DTc /Tc0)a3, where Hcm5F0/2plj is the thermody-
namic critical field of the superconductor,DTc /Tc the rela-
tive suppression of the superconducting transition temp
ture at a defect, anda3 is the volume corresponding to
defect ~the value ofa is of the order of atomic spacing!.
The gyroscopic constantH is determined by the number den
sity n of superconducting electrons,H5p\n, n
5mc2/4pl2e2, where\ is Planck’s constant,m and e are
the electron mass and charge, andc is the velocity of light.
Finally, the viscosityb is primarily determined by the meta
resistivity rn in the normal state, and hence we can wri1

b5Hc2F0 /c2rn , whereHc2 is the upper critical field,Hc2

5F0/2pj2. This gives

V* 5
a4c2rn

64p5/3l2j S Cimp

2 D 2/3S DTc

Tc0
D 4/3

for b@H,

V* 5
a4c2

64p2 S Cimpern

2l2j5/2Am\
D 2/3S DTc

Tc0
D 4/3

for b!H.

~14!

If we take the characteristic values of HTSC of th
YBCO type, i.e.,rn55•10215s, a51028 cm, j51027 cm,
l/j5102, and assume thatDTc /Tc;1021, the values ofV*
do not differ significantly forb,H and b.H and can be
estimated as

V* ;@Cimp
2/3 ~10211– 10212!# cm/s,

where the value ofCimp is measured in cm23. For a reason-
able value ofCimp;1015cm23, which corresponds, for ex
ample, to the equivalent density of dislocationsCdisl

;1010cm22, the value ofV* ;1021– 1022 cm/s, which is
even larger than ordinary values of vortex velocity in sup
conductors.

DISCUSSION OF RESULTS

Thus, the correction to the drag force acting on a vor
and associated with collective modes induced during the
tion of the vortex through a system of defects is small fo
dense vortex lattice, but has a singularityF(V)}1/AV for
V→0 in the case of a solitary vortex. The dependence
drag force on velocity is stronger than that obtained in R
4. This is due to the fact that we proceed from the realis
model of vortex interaction with defects and not from t
model of random force as in Ref. 4.

The nonmonotonic dependence of drag force on velo
can lead to singularities of the induced motion of vortice
The drag force acting on a moving vortex if we take in
account the excitation of natural vibrational mode can
presented in the form

F5bV1h/AV,

where the first term describes ‘‘conventional’’ viscous dr
and the quantityh is defined by formula~11!. This must lead
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to singularities in the velocity of induced motion of a vorte
under the action of the external forceFe ~transport current!,
which is defined asFe5F(V). It can be easily seen that th
equation has two solutions, the solution corresponding to
upper branch existing only for a velocity larger than t
characteristic valueV* 5(h/b)2/3 introduced above@see
~11!#.

The steady-state motion for a negative differential m
bility (1/b)dif5dV/dFe is usually unstable.14 Since the con-
dition dV/dFe.0 is satisfied only for the upper branch
the functionF(V), the steady-state motion of the vortex
possible only forV.V* . Thus, this singularity must be
manifested in the form of an abrupt jump on the depende
V(Fe), which in fact coincides with the current–voltag
characteristic of the superconductor.

It should also be noted that the theory developed ab
is not confined only to vortices in superconductors and
be applied for vortex-like objects in any ordered mediu
The only condition is that a vortex must possess gyrosco
properties. It was mentioned above, however, that gy
scopic dynamics is typical of many models of ordered med
Apart from the examples considered above, we can men
Bloch lines, viz., specific vortex-like objects existing in d
main walls of ferromagnets and characterized by experim
tally established gyroscopic properties, which can be use
carriers of information in memory devices~see Ref. 14!.

The authors are grateful to V. G. Bar’yakhtar, V. M
Pan, and A. L. Kasatkin for fruitful discussions.
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Description of critical behavior of Ising ferromagnet in the r6 model approximation
taking into account confluent correction. I. Region above the phase transition point

I. V. Pylyuk
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The behavior of a 3D Ising system at temperatures aboveTc is studied in the approximation of
sextic distribution for modes of spin moment density oscillations~r6 model!. An original
method is developed in this higher non-Gaussian approximation for calculating the thermodynamic
characteristics of the 3D Ising model nearTc taking into account the first confluent
correction. The contributions to the thermodynamic functions of an Ising ferromagnet~free
energy, entropy, internal energy, and specific heat! from the short-wave and long-wave modes of
spin density oscillations are considered separately. A nonuniversal factor determined by
microscopic characteristics of the system is singled out in the expressions for leading critical
amplitudes and the amplitudes of the confluent correction. Numerical estimates of the
critical region size, phase transition temperature, leading critical amplitudes, and the amplitudes
of the correction to scaling of specific heat and susceptibility of the system are given for
different values of effective radius of the exponentially decreasing interaction potential. ©1999
American Institute of Physics.@S1063-777X~99!00511-3#
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INTRODUCTION

The description of phase transitions and critical pheno
ena, i.e., the construction of a microscopic theory of ph
transitions is a fundamental problem in physics. It include
wide range of questions associated with the study of phys
systems such as liquids, ferromagnets and ferroelectrics
nary alloys, polymers, and liquid crystals. Phase transiti
are considered in low-temperature physics, solid-state p
ics, physical chemistry, metal physics, and biology. Th
phenomena are widely used in engineering. Persistent sc
tific interest to this problem is stimulated by exceptional s
nificance of these phenomena for modern technology, t
complexity near the phase transition point, the difficulties
their theoretical description and experimental investigat
in view of increasing role of large-scale fluctuations a
large relaxation times.

Recent comprehensive and intense studies of phase
sitions have made it possible to formulate new concepts
vealing the essence of critical phenomena and to develo
powerful mathematical apparatus for their description. T
problem mentioned above was considered in a numbe
monographs and review articles. Most authors studying
theory of phase transitions paid special attention to determ
ing the universality class of the systems, an analysis of s
metry properties irrespective the characteristics of the in
Hamiltonian, the types of solutions of recurrence relatio
~RR!, and the calculation of critical exponents. Importa
experimental results have been obtained in this field. Univ
sal ratios and combinations of critical amplitudes of therm
8771063-777X/99/25(11)/12/$15.00
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dynamic characteristics of spin systems, including theD
Ising model~which is a key model of phase transition! are
calculated. The problem of dependence of critical amplitu
on the microscopic characteristics of the system require
consistent analysis and could be solved successfully toge
with the main problem in the theory of phase transitions, i
derivation of explicit expressions for thermodynamic char
teristics of the system near the phase transition point as fu
tions of temperature and microscopic characteristics. Con
erable progress in the solution of this problem were made
using the method of collective variables~CV! generalized by
Yukhnovskii1–4 to the case of spin systems. The term colle
tive variables is applied to a special class of variables s
cific for each individual physical system. The set of CV co
tains variables associated with order characteristics. For
reason, the phase space of CV is most natural for descri
a phase transition. For magnetic systems, the CVrk are the
variables associated with modes of spin moment density
cillations, while the order parameter is associated with
variabler0 in which the subscript ‘‘0’’ corresponds to th
peak of the Fourier transform of the interaction potential.

This paper is devoted to statistical description of t
main properties of a 3D Ising ferromagnet by the CV
method taking into account the microscopic characteristic
the system. The obtained results can be used for interpre
experimental results concerning the behavior of real mat
als in the vicinity of the second-order phase transition po
and the computational technique proposed here for ther
dynamic characteristics can be used for calculating their th
modynamic functions in the critical region. The origin
© 1999 American Institute of Physics
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technique developed in this work for computing a on
component spin system may be generalized to the case
system with ann-component order parameter~see, for ex-
ample, Ref. 3!. Such ann-component model forn52 can be
used advantageously for describing a Bose liquid~phase
transition in liquid4He! and a plane rotator.

1. BASIC RELATIONS

We consider a three-dimensional Ising model on
simple cubic lattice with periodc. The Hamiltonian of the
model has the form

H52
1

2 (
j ,l

F~ u j2 lu!s js l , ~1!

whereF(u j2 lu) is the potential of interaction of particles a
sitesj and l, s j is the operator of thez-component of spin a
the j th site, having two eigenvalues11 and21. The inter-
action potential is an exponentially decreasing function

F~r jl !5A expS 2
r jl

b D . ~2!

HereA is a constant,r jl the separation between particles, a
b the radius of effective interaction. For the Fourier tran
form of the interaction potential, we use the approximatio

F̃~k!5H F̃~0!~122b2k2!, k<B8,

0, B8,k<B,
~3!

whereB is the boundary of Brillouin half-zone (B5p/c),
B85(b&)21, F̃(0)58pA(b/c)3.

We shall use here the method of collective variab
~CV!,3 which allows us to calculate approximately the e
pression for partition function and to obtain, in addition
universal quantities~critical exponents!, complete expres-
sions for thermodynamic functions near the phase transi
temperatureTc .

In the CV representation for the partition function of th
3D Ising model, we have

Z5E expF1

2 (
k

bF̃~k!rkr2kGJ~r!~dr!N. ~4!

Here the summation over the wave vectorsk is carried out
within the first Brillouin zone,b51/(kT) is the reciprocal
thermodynamic temperature, and the CVrk are introduced
with the help of relations of the type of an analytic function
for operators of spin moment density oscillation modes

r̂k5~AN!21(
l

s l exp~2 ik–l!,

J~r!52NE expF2p i(
k

vkrk1 (
n51

`

~2p i !2nN12n

3
M2n

~2n!! (
k1 ,...,k2n

vk1
...vk2n

dk11...1k2nG ~dv!N

~5!
-
f a

a

-

s

n

l

is the Jacobian of transition from the setN spin variabless l
to the set of CVrk , anddk11...1k2n

is the Kronecker sym-
bol. The variablesvk are conjugate tork , and cumulants
M2n assume constant values~see Ref. 3!. The expression for
the partition function~4! cannot be calculated exactly due
the presence of an infinitely large number of terms in
exponent~5!. For this reason, approximations limiting th
number of terms in the exponent of the integrand in~5! are
used. A certain approximation of the integrand in the expr
sion for J(r) determines the choice of the model for calc
lating the explicit form of the Jacobian of the transitio
~modelsr4, r6, etc.!. For n51, we obtain the Gaussian ap
proximation. It leads to classical values of critical exponen
An important condition in describing the critical propertie
of the Ising model is the use of non-Gaussian densities
measures. The simplest approximation permitting an anal
beyond the classical behavior corresponds ton52 and is
based on quartic density of measure~r4 model!. This ap-
proximation is used for calculating basic critical expone
of thermodynamic characteristics, complete expressions
these characteristics taking into account confluent cor
tions, and for analyzing the relation for critical amplitud
~see, for example, Refs. 5–7!. In view of approximate calcu-
lation of partition function confined to ther4 model, the
obtained results~critical exponents, amplitudes, and therm
dynamic functions! contain a certain dependence on t
renormalization group~RG! parameters. This dependence
becomes much weaker as the form of the non-Gaussian
sity of measure becomes more complicated~transition to
more complicate modelsr6 @n53, see~5!#, r8, and r10!.
This is confirmed by an analysis of the behavior of the cr
cal exponent of correlation lengthn for the modelsr2m (m
53,4,5)8–12 as well as by a direct comparison of the curv
describing the temperature dependences of thermodyna
characteristics calculated in the modelsr4 andr6 for various
values of the parameters.13,14 The dependence of the resul
of calculations on the parameters is studied and quite con
trollable. For each of ther2m models, there exists a preferre
value of the parameters5s* ~s* 53.5862 for ther4 model,
s* 52.7349 for ther6 model,s* 52.6511 for ther8 model,
and s* 52.6108 for ther10 model! nullifying the average
value of the coefficient in the term with the second power
the effective density of measure at a fixed point. The val
of s close tos* are optimal for the given method of calcu
lations. The difference form of RR between the coefficie
of effective non-Gaussian densities of measures~expansions
for the functions appearing in these relations! operates suc-
cessfully just in this region ofs. For such definite methods o
division of the phase space of CV into layers~values ofs
close tos* !, we obtain reliable results matching with th
experimental data and the results of theoreti
investigations.3,13,14 In this paper, the results of calculation
based on ther6 model taking into account the sextic densi
of measure while integrating the partition function are giv
for values ofs equal to 2, 2.7349, and 3~i.e., optimal values
for the given method of calculations!.

In our earlier publication,15 we proposed a new metho
of calculation of the equation of state of a 3D Ising system
on microscopic level in the approximation of the abov
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mentionedr6 model, which attracts the attention of man
scientists even today~see, for example, Ref. 16 in which th
equation of state for systems of universality class of theD
Ising model is analyzed by using the field-theory approa
with RG technique!. The correctness of the choice of ther6

model for investigations is confirmed in Ref. 17 where t
effective potential is studied for the scalar field theory
three dimensions in symmetric phase. In this case, prob
listic distributions of average magnetization in the 3D Ising
model in an external field obtained with the help of t
Monte Carlo method were used. Tsypin17 proved that the
term with the sixth power of the variable in the effectiv
potential plays an important role. The values of univer
four- and six-point coupling constants were calculated.
mensionless six- and eight-point effective coupling consta
were calculated by Sokolovet al.18 in the three-loop approxi-
mation.

In this paper, ther6 model is used for developing th
method of calculation of expressions for thermodynam
functions of the 3D Ising system taking into account th
terms determining the correction to scaling. The calculati
are made above the phase transition temperatureTc ~high-
temperature range!. The obtained expressions for basic cri
cal amplitudes and the amplitudes of the first confluent c
rection make it possible to analyze their dependence
microscopic characteristics of the system~the rangeb of
potential and the lattice constantc!.

We shall proceed from the expression for partition fun
tion in the approximation of ther6 model. Puttingn53 in
~5! and carrying out integration in~4! with respect to the
variablesrk andvk with indicesB8,k<B, followed by the
integration with respect toN8 variablesvk , we obtain

Z52N2~N821!/2ea08N8

3E expF2
1

2 (
k<B8

d8~k!rkr2k

2(
l 52

3 a2l8

~2l !! ~N8! l 21

3 (
k1 ,...,k2l<B8

rk1
...rk2l

dk11...1k2lG ~dr!N8. ~6!

HereN85Ns0
23, s05B/B85p&b/c, and

d8~k!5a282bF̃~k!. ~7!

The coefficientsa2l8 are defined as

a085 ln Q~M!, Q~M!5~12s0
3!1/4p21I 0~h8,j8!,

a285~12s0
3!1/2F2~h8,j8!,

~8!
a48512s0

3C~h8,j8!,

a685~12s0
3!3/2N~h8,j8!

and are functions ofs0 , i.e., of the ratiob/c ~see Table I!. In
this expressions, the role of the arguments is played by
quantities
h

i-

l
i-
ts

c

s

r-
n

-

e

h85)s0
3/2, j85

8)

15s0
3/2. ~9!

The special functionC(h8,j8) andN(h8,j8) have the form

C~h8,j8!52F4~h8,j8!13F2
2~h8,j8!,

~10!
N~h8,j8!5F6~h8,j8!215F4~h8,j8!F2~h8,j8!

130F2
3~h8,j8!,

where

F2l~h8,j8!5I 2l~h8,j8!/I 0~h8,j8!,
~11!

I 2l~h8,j8!5E
0

`

t2l exp~2h8t22t42j8t6!dt.

It can be seen from Table I thata28→1 for b@c, a2l8 →0 for
l>2, and the integrand in formula~6! has a form close to the
Gaussian distribution. In the case when the range of the
tential and the lattice constant are commensurate, the co
cientsa2l8 differ from zero for all values ofl>0, and we must
take into account in the exponent of the integrand in~6! the
terms proportional to higher degrees of the variablerk in
addition to the Gaussian terms. Henceforth, we shall c
sider just this case. The value ofb5bI5c/(2)) corre-
sponds to the interaction between nearest neighbors,b5bII

50.3379c to the interaction between the nearest and ne
nearest neighbors, andb5bIII 50.3584c to the nearest, next
nearest, and third neighbors.19

The increase in the number of terms in expressions~5!
and ~6! corresponds to a complication of the form of th
non-Gaussian density of measure~complication of the
model!. Critical phenomena in a 3D Ising ferromagnet in the
CV method can be described quantitatively even in ther6

model approximation. The confinement to the quartic a
proximation in formulas~5! and ~6! allows us to go beyond
the classical analysis and to describe all qualitative aspec
the second-order phase transition, while the sextic appr
mation ensures a more adequate quantitative descriptio
the critical properties of a spin system. This is confirmed
calculations as well as an analysis of the behavior of
coefficients in the initial expression for partition function an
the critical exponent of the correlation lengthn for the se-
quence ofr4, r6, r8, andr10 models3,8–12as well as by the
calculation and comparison of thermodynamic functions
the models13,14r4 andr6 and by comparison of the results o
our calculations with other available data~see, for example,
Refs. 13 and 14!. The analysis of the above-mentione

TABLE I. Values of coefficientsa2l8 for variousb.

b a08 a28 a48 a68

bI 21.0196 0.7023 0.2212 0.4379
bII 20.9863 0.7820 0.2163 0.3895
bIII 20.9764 0.8083 0.2086 0.3547
c 20.9218 0.9887 0.0220 0.0031
2c 20.9193 0.9986 0.0028 0.0000
5c 20.9190 0.9999 0.0002 0.0000
7c 20.9189 1.0000 0.0000 0.0000
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sequence of the model was necessary for estimating the
vergence of the procedure for calculating the critical ex
nent n, for finding its dependence on the RG parameters,
and for establishing whether it is expedient to use hig
densities of measures. It was found that as the form of
density of measure becomes more complicated, the de
dence of the critical exponentn on the RG parameters be-
comes weaker gradually, and starting from the sextic den
of measure, the value of the exponentn, having a tendency
to saturation with increasingm ~which characterizes the or
der of ther2m model or determines the summation limit
formula ~5!, m52,3,4,5! changes insignificantly. It is also
interesting that the numerical values of the coefficientsa2l8
appearing form>3, in the partition function~relations simi-
lar to ~8! and~6!! vary insignificantly upon an increase in th
order of the density of measure, i.e., upon an increase in
number of terms in~5!.

An advantage of the CV method in the description
phase transitions is the presence of a variable associated
the order parameter among the CVrk . Such a variable for
the Ising model isr0 . We cannot single out the contributio
from r0 alone in expression~6! since all the variablesrk are
interconnected. We shall use the method of ‘‘layer-by-laye
integration of~6! with respect to variablesrk proposed by
Yukhnovskii.3 The integration begins from the variablesrk
with a large value ofk ~of the order of the Brillouin half-
zone boundary! and terminates atrk with k→0. For this
purpose, we divide the phase space of the CVrk into layers
with the division parameters. In eachnth layer~correspond-
ing to the region of wave vectorsBn11,k<Bn , Bn11

5Bn /s, s.1!, the Fourier transform of the potentialF̃(k) is
replaced by its average value~arithmetic mean in the given
case!. As a result of step-by-step calculation of partitio
function, the number of integration variables in the expr
sion for this quantity decreases gradually. After the integ
tion overn11 layers of the CV space, we obtain

Z52N2~Nn1121!/2Q0Q1 ...Qn@Q~Pn!#Nn11

3E W 6
~n11!~r!~dr!Nn11. ~12!

HereNn115N8s23(n11), and

Q05@ea08Q~d!#N8, Q15@Q~P!Q~d1!#N1,...,

Qn5@Q~Pn21!Q~dn!#Nn,

Q~dn!52~24/a4
~n!!1/4I 0~hn ,an!,

Q~Pn!5p21@s3a4
~n!/C~hn ,an!#1/4I 0~hn ,jn!. ~13!

The basic arguments

hn5dn~Bn11 ,Bn!S 6

a4
~n!D 1/2

, an5
A6

15

a6
~n!

~a4
~n!!3/2 ~14!

are determined by the mean value of the coefficientdn(k) in
thenth layer of the phase space of CV, i.e., bydn(Bn11 ,Bn)
as well as the quantitiesa4

(n) and a6
(n) . The effective sextic

density of measure of the (n11)th block structure
W 6

(n11)(r) has the form
n-
-

r
e
n-

ty

he

f
ith

’

-
-

W 6
~n11!~r!5expF2

1

2 (
k<Bn11

dn11~k!rkr2k

2(
l 52

3 a2l
~n11!

~2l !!Nn11
l 21

3 (
k1 ,...,k2l<Bn11

rk1
...rk2l

dk11...1k2lG .

~15!

Here Bn115B8s2(n11), dn11(k)5a2
(n11)2bF̃(k), a2l

(n11)

are renormalized values of the coefficientsa2l8 after integra-
tion over n11 layers of the phase space of CV. The inte
mediate variableshn , jn are functions ofhn andan and are
defined as

hn5~6s3!1/2F2~hn ,an!@C~hn ,an!#21/2,
~16!

jn5
A6

15
s23/2N~hn ,an!@C~hn ,an!# -3/2,

where the form of the special functionsC(hn ,an) and
N(hn ,an) is defined in~10!. The coefficientsdn(Bn11 ,Bn),
a4

(n) , anda6
(n) are connected with the coefficients for then

11th layer through the recurrence relations~RR!11,20,21

whose solutions15,21 are used for calculating the free energ
of the system.

The basic idea of the calculation of explicit expressio
for free energy and other thermodynamic functions of
system nearTc on microscopic level~t,t* ;1022, t5(T
2Tc)/Tc! lies in the separate inclusion of contributions fro
short-wave and long-wave modes of spin moment den
oscillations.3,5,22

Short-wave modes are characterized by a RG symm
and are described by a non-Gaussian density of meas
They correspond to the region of critical regime~CR! ob-
served above as well as belowTc . In this case, the RG
method is used~see, for example, Ref. 23!. The calculation
of the expression describing the contribution from sho
wave modes of spin moment density oscillations to free
ergy involves the summation of partial free energies over
layers of the phase space of CV up to the point at which
system leaves the CR region. In this case, it is importan
obtain an explicit dependence on the number of the lay
For this purpose the solutions of RR are used. Taking i
account the larger eigenvalue (E1.1) of the RG linear
transformation matrix, we can describe the main singula
for specific heat nearTc . Smaller eigenvalues~E2,1 and
E3,1! are responsible for the emergence of corrections
scaling. The inclusion of short-wave modes of spin dens
oscillations leads to a renormalization of the dispersion
the distribution describing long-wave modes. ForT.Tc ,
these modes correspond to the region of limiting Gauss
regime~LGR!. The way in which the contribution from long
wave modes of oscillations to free energy of the system
taken into account differs qualitatively from the method
calculating the short-wave component of the partition fun
tion. The calculation of this contribution is based on the u
of the Gaussian density of measure as the basis density
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have developed a direct method of calculations with the
sults obtained by taking into account the short-wave mo
as initial parameters.

It should be noted that our calculations are valid in
small neighborhood ofTc . The solutions of RR make it pos
sible to calculate the size of this critical region. Indeed, us
these solutions and the conditions for the existence of
~the exit from this regime forn→1, described by terms pro
portional toE1

n , does not prevail over the entry to this re
gime, which is described by terms proportional to,E2

n and
E3

n!, we can determine the temperature ranget,t* in which
the CR corresponding to the presence of strongly correla
spin blocks takes place. The value oft* is equal to the
magnitude of the smallest root of the three equations
tained on the basis of solutions of RR. The value oft*
determined in this way is of the order of a few hundredths
commensurateb andc. For large values ofb, it is important
to take correctly into account the entry in the CR. In th
case, the value oft* can be obtained by imposing the con
dition that the entry to CR prevails over the exit from th
regime forn→n0 , where the layer numbern0 as a function
of b can be determined from RR,11,20,21 for example, pro-
ceeding from the relation fora4

(n) ~see Table II!. The data
contained in Table II show that the critical region is prac
cally absent for largeb. This is not surprising since the con
dition b@c corresponds to the transition to the model wi
long-range interaction, which is based on the Gaussian
tribution of spin moment density oscillation modes~see~6!
and Table I! and demonstrates the classical critical behav

Calculating separately the contributionsFCR andFLGR to
free energy from short-wave and long-wave modes of s
moment density oscillations atT.Tc , we can obtain the
complete expression for the free energy of the system:

F5F01FCR1FLGR. ~17!

HereF052kTN ln 2 is the free energy ofN noninteracting
spins. Let us calculate the contributionsFCR andFLGR.

2. CALCULATION OF CONTRIBUTION FROM SHORT-WAVE
MODES OF SPIN MOMENT DENSITY OSCILLATIONS
TO THERMODYNAMIC FUNCTIONS OF THE SYSTEM

It is convenient to write the partition function of th
model in the form13,14,24

Z52NZCRZLGR, ~18!

where the first factor corresponds to noninteracting sp
The quantityZCR describes the contribution of short-wav
fluctuations ofrk with kP@Bmt

,B8# ~the CR region!. The
numbermt of the layer in the CV space appearing in th
expressionBmt

5B8s2mt, and characterizing the point of th

TABLE II. Values of n0 andt* for large values of the interaction potentia
rangeb and the RG parameters53.

b n0 t*

4c 7 0.826631028

5c 8 0.627431029

7c 9 0.4680310210
-
s

g
R

d

-

r

is-

r.

in

s.

exit of the system from the CRmt, will be defined later. The
factor ZLGR contains contributions from long-wave fluctua
tions with kP@0,Bmt

# and corresponds to the LGR.
Let us consider the quantityZCR. It is defined as

ZCR5 )
n50

mt F 2

p S 24

C~hn21 ,jn21! D
1/4

3I 0~hn ,an!I 0~hn21 ,jn21!GNn

. ~19!

In order to calculateZCR, we must present the right-han
side of formula~19! in the form of an explicit function of the
layer numbern. It should be noted thath21[h8 and j21

[j8 in ~19! for n50. In the CR region, the basic (hn ,an)
and intermediate (hn ,jn) arguments are close to their value
at a fixed pointh(0), a (0) andh (0), j (0). Consequently, the
functions of these arguments can be approximated in
case by power series in deviations of these arguments f
their fixed values.25 Intermediate arguments and their fun
tions can be presented in terms of deviations of the ba
arguments from their values at a fixed point. Using the re
tions for I 0(hn ,an), I 0(hn21 ,jn21), C(hn21 ,jn21) taking
into account the squares of deviations of ba
arguments,13,25 we calculate from~19! the free energy corre
sponding to thenth phase layer:

Fn52kTNn@ f CR
~0!1w1~hn212h~0!!1w2~an212a~0!!

1w3~hn2h~0!!1w4~an2a~0!!1w18~hn212h~0!!2

1w28~an212a~0!!21w38~hn2h~0!!21w48~an

2a~0!!21w58~hn212h~0!!~an212a~0!!1w68~hn

2h~0!!~an2a~0!!#,
~20!

f CR
~0!5 lnS 2~24!1/4

p D2~1/4! ln P401 ln I 0* 1 ln I 0** ,

wk5bk1P4k/4, k51,2,

w352F2* , w452F6* ,

wk85bk82
1

2
bk

22P4k8 /41P4k
2 /8,

w385F4* /22F2*
2/2, w485F12* /22F6*

2/2,

w585b382b1b22P438 /41P41P42/4,

w685F8* 2F2* F6* .

The quantities appearing inf CR
(0) , w i , andw j8 are ultimately

functions of the basic arguments at a fixed point. They
given in the above-mentioned publications.13,25

The partial free energy of thenth layer of the phase
space of CV taking into account the explicit dependence
n can be written in the form

Fn52kTN8s23n@ f CR
~0!1 f CR

~1!~u~0!!21/2c1E1
n1 f CR

~2!

3~u~0!!21c2E2
n1 f CR

~3!~u~0!!23/2c3E3
n1 f CR

~4!

3~u~0!!23/2c1c2E1
nE2

n1 f CR
~5!~u~0!!25/2c1c2

2E1
nE2

2n
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1 f CR
~6!~u~0!!22c2

2E2
2n1 f CR

~7!~u~0!!21c1
2E1

2n1 f CR
~8!

3~u~0!!22c1
2c2E1

2nE2
n1 f CR

~9!~u~0!!23

3c1
2c2

2E1
2nE2

2n#. ~21!

Here

f CR
~k!5Hk~w31w1 /Ek!1Lk~w41w2 /Ek!, k51,2,3,

f CR
~4!5H4@w31w1 /~E1E2!#1L4@w41w2 /~E1E2!#

12H1H2@w381w18/~E1E2!#12L1L2@w48

1w28/~E1E2!#1~H1L21H2L1!@w68

1w58/~E1E2!#,

f CR
~5!5H5@w31w1 /~E1E2

2!#1L5@w41w2 /~E1E2
2!#

12~H1H61H2H4!@w381w18/~E1E2
2!#12~L1L6

1L2L4!@w481w28/~E1E2
2!#1~H1L61H6L1

1H2L41H4L2!@w681w58/~E1E2
2!#,

f CR
~6!5H6~w31w1 /E2

2!1L6~w41w2 /E2
2!1H2

2~w38

1w18/E2
2!1L2

2~w481w28/E2
2!1H2L2~w681w58/E2

2!,

f CR
~7!5H7~w31w1 /E1

2!1L7~w41w2 /E1
2!1H1

2~w38

1w18/E1
2!1L1

2~w481w28/E1
2!1H1L1~w681w58/E1

2!,

f CR
~8!5H8@w31w1 /~E1

2E2!#1L8@w41w2 /~E1
2E2!#

12~H1H41H2H7!@w381w18/~E1
2E2!#12~L1L4

1L2L7!@w481w28/~E1
2E2!#1~H1L41H4L1

1H2L71H7L2!@w681w58/~E1
2E2!#,

f CR
~9!5H9@w31w1 /~E1E2!2#1L9@w41w2 /~E1E2!2#

1~2H1H512H2H81H4
212H6H7!@w38

1w18/~E1E2!2#1~2L1L512L2L81L4
212L6L7!

3@w481w28/~E1E2!2#1~H1L51H5L11H2L8

1H8L21H4L41H6L71H7L6!@w68

1w58/~E1E2!2#. ~22!

The expressions for the quantitiesHi and Li are given in
Refs. 13, 14, and 26 for three coordinates of the fixed po
~including u(0),! and the coefficients of the solutions of R

c15 c̃1bF̃~0!t, c25c20@bF̃~0!#2, c35c30@bF̃~0!#3,

where c̃15 c̃1
(0)1 c̃1

(1)t, c205c20
(0)1c20

(1)t1c20
(2)t2, c305c30

(0)

1c30
(1)t1c30

(2)t2, are given in Refs. 21, 24 and 26. It shou
be emphasized that a typical feature of the solutions of R
a specific temperature dependence of the coefficientc1 . On
the basis of the expression forc1 , we obtain an equation fo
the quantitybcF̃(0) determining the phase transition tem
perature~see Ref. 21!. The dependence ofbcA @A is the
t

is

constant appearing in the interaction potential~2!# on the
ratio of the potential rangeb to the lattice constantc is
shown in Fig. 1 fors53.

Thus, the partial free energyFn of thenth layer contains
the term f CR

(0) which is independent on the numbern of the
layer and is a universal quantity, and the terms containing
dependence onn. In contrast tof CR

(0) , these terms depend o
microscopic characteristics of the Hamiltonian of the syste

Carrying out summations of expression~21! for Fn over
the layers of the phase space of CV, we can calculateFCR:

FCR5F081FCR8 , ~23!

F0852kTN8@ ln Q~M!1 ln Q~d!#,

FCR8 5 (
n51

mt

Fn .

The layer numbermt determining the point of exit of the
system from the CR region atT.Tc can be found from the
condition15,26

r mt112r ~0!

r ~0! 52d, ~24!

whered is a constant (d<1),r (0) is a coordinate of the fixed
point, andr n characterizes the coefficient of the sextic de
sity of measure of thenth block structure of the secon
power of the variable and is determined with the help
solutions of RR~see, for example, Ref. 26!. In our numerical
calculations, we shall putd51. In this case,r mt1150 or
dmt11(0)5r mt11s22(mt11)50 and the curvesdn(k) are
situated above the abscissa axis for alln.mt . On the basis
of ~24!, we obtain the explicit form of equation formt :

c̃1tE1
mt11

5 f 0d2c20w12
~0!w0

21/2E2
mt11

2c30w13
~0!w0

21E3
mt11. ~25!

The temperature-independent quantitiesw12
(0) and w13

(0) as
well as the quantitiesf 0 and w0 characterizing the coordi
nates of the fixed pointr (0), u(0) are given in Ref. 26. In the
regiont!1, it is convenient to use the method of success
approximations for solving Eq.~25!, taking into account the

FIG. 1. Dependence of reciprocal phase transition temperature on the
of the interaction potential range to the lattice constant.
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fact thatE2
mt11

!1 andE3
mt11

!1. In the zeroth approxima
tion, Eq. ~25! can be written in the form of the equation

c̃1tE
1
mt

~0!
11

5 f 0d, ~26!

whose solution is given by

mt
~0!52

ln t

ln E1
1m021. ~27!

Here

m05mc , mc5
ln~ f 0d/ c̃1

~0!!

ln E1
. ~28!

The first approximation is written taking into account t
smallness of terms proportional toE2

mt11 and E3
mt11 for

which the zeroth approximation is used, i.e., the right-ha
side of Eq.~25! contains terms proportional to

E
2
mt

~0!
11

5E2
m0tD1, E

3
mt

~0!
11

5E3
m0tD2,

c̃1tE1
mt11

5 f 0d2c20w12
~0!w0

21/2E
2
mt

~0!
11

2c30w13
~0!w0

21E
3
mt

~0!
11

. ~29!

It should be noted that in the right-hand side of this equat

we neglect the term proportional toE
3
mt

(0)
11

since we take
into account in these calculations only the first confluent c
rection~which is determined by the term proportional totD1,
D152 ln E2 /ln E1! and disregard the second confluent c
rection~which is determined by the term proportional totD2,
D252 ln E3 /ln E1!. This is due to the fact that the contribu
tion from the first confluent correction to thermodynam
functions of the model nearTc is more significant than the
small contribution from the second correction~t!1, D1 is of
the order of 0.5, andD2.2, see Refs. 13 and 14!. Solving
Eq. ~29!, we obtain

mt5mt
~0!1mD1

tD1, ~30!

mD1
5

m2

ln E1
, m252cD1

F0 ,

cD1
5c20

~0!S c̃1
~0!

f 0d D D1

, F05
w12

~0!

f 0dAw0

.

It should be emphasized that in a higher-order appro
mation, Eq.~25! leads to a solution of the type~30!, where
terms proportional tot2D1, etc., appear additionally; in th
present calculations, we neglect these terms also.

Having obtained expression~30! for mt , we return to
the calculation of expression~23! for FCR. Taking into ac-
count ~30! as well as the relations

E1
mt11

5
f 0d~11m2tD1!

c̃1t
, E

2
mt

~0!
11

5S c̃1
~0!

f 0d D D1

tD1,

s23~mt11!5s23~mt
~0!

11!~11N1
1tD1!,

s23~mt
~0!

11!5s23m0t3n, s23m05cn
3,
d

n

r-

-

i-

cn5S c̃1
~0!

f 0d D n

, n5
ln s

ln E1
,

N1
1523nm253ncD1

F0 , ~31!

we obtain

FCR52kTN8@g01d02g3
~CR!~0!1t3n

2g3
~CR!~1!1t3n1D1#, ~32!

where

g05s23F f CR
~0!

12s23 1
f CR

~1!w0
21/2c̃1tE1

12E1s23 1
f CR

~2!w0
21/2c20E2

12E2s23

1
f CR

~3!w0
23/2c30E3

12E3s23 1
f CR

~4!w0
23/2c̃1tc20E1E2

12E1E2s23

1
f CR

~5!w0
25/2c̃1c20

2 tE1E2
2

12E1E2
2s23 1

f CR
~6!w0

22c20
2 E2

2

12E2
2s23

1
f CR

~7!w0
21c̃1

2t2E1
2

12E1
2s23 1

f CR
~8!w0

22c̃1
2c20t

2E1
2E2

12E1
2E2s23

1
f CR

~9!w0
23c̃1

2c20
2 t2E1

2E2
2

12E1
2E2

2s23 G , ~33!

d05 ln Q~M!1 ln Q~d!,

g3
~CR!~ l !15cn

3cD1

l ḡ3
~CR!~ l !1 , l 50,1,

ḡ3
~CR!~0!15g1, ḡ3

~CR!~1!15gD1

1 2F0~g11
1 23ng1!.

Here

g15
f CR

~0!

12s23 1
f CR

~1!w0
21/2f 0d

12E1s23 1
f CR

~7!w0
21~ f 0d!2

12E1
2s23 ,

gD1

1 5
f CR

~2!w0
21

12E2s23 1
f CR

~4!w0
23/2f 0d

12E1E2s23 1
f CR

~8!w0
22~ f 0d!2

12E1
2E2s23 ,

g11
1 5

f CR
~1!w0

21/2f 0d

12E1s23 1
2 f CR

~7!w0
21~ f 0d!2

12E1
2s23 . ~34!

Let us single out explicitly the temperature ing0 andd0

in ~33!. As a result, we can write for the coefficientg0

g05g0
~0!1g0

~1!t1g0
~2!t2, ~35!

g0
~0!5s23F f CR

~0!

12s23 1
f CR

~2!w0
21c20

~0!E2

12E2s23 1
f CR

~3!w0
23/2c30

~0!E3

12E3s23

1
f CR

~6!w0
22~c20

~0!!2E2
2

12E2
2s23 G ,
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g0
~1!5s23F f CR

~1!w0
21/2c̃1

~0!E1

12E1s23 1
f CR

~2!w0
21c20

~1!E2

12E2s23

1
f CR

~3!w0
23/2c30

~1!E3

12E3s23 1
f CR

~4!w0
23/2c̃1

~0!c20
~0!E1E2

12E1E2s23

1
f CR

~5!w0
25/2c̃1

~0!~c20
~0!!2E1E2

2

12E1E2
2s23

1
2 f CR

~6!w0
22c20

~0!c20
~1!E2

2

12E1E2
2s23 G ,

g0
~2!5s23F f CR

~1!w0
21/2c̃1

~1!E1

12E1s23 1
f CR

~2!w0
21c20

~2!E2

12E2s23

1
f CR

~3!w0
23/2c30

~2!E3

12E3s23

1
f CR

~4!w0
23/2@ c̃1

~0!c20
~1!1 c̃1

~1!c20
~0!#E1E2

12E1E2s23

1
f CR

~5!w0
25/2@2c̃1

~0!c20
~0!c20

~1!1 c̃1
~1!~c20

~0!!2#E1E2
2

12E1E2
2s23

1
f CR

~6!w0
22@~c20

~1!!212c20
~0!c20

~2!#E2
2

12E2
2s23

1
f CR

~7!w0
21~ c̃1

~0!!2E1
2

12E1
2s23 1

f CR
~8!w0

22~ c̃1
~0!!2c20

~0!E1
2E2

12E1
2E2s23

1
f CR

~9!w0
23@ c̃1

~0!!2~c20
~0!!2E1

2E2
2

12E1
2E2

2s23 G .

For d0 , we obtain

d05d0
~0!1d0

~1!t1d0
~2!t2, ~36!

d0
~0!5 ln Q~M!1 ln Q~d;Tc!,

d0
~1!52

A6

~a48!1/2~12q̄!bcF̃~0!F2~hc ;a!,

d0
~2!52

3

a48
~12q̄!2@bcF̃~0!#2@F2

2~hc ,a!2F4~hc ,a!#

1
A6

~a48!1/2~12q̄!bcF̃~0!F2~hc ,a!, q̄5
11s22

2
,

hc5
A6

~a48!1/2@a282bcF̃~0!~12q̄!#, a5
A6

15

a68

~a48!3/2.

Thus, for the free energy of the CR we have

FCR52kTN8@g0
~CR!1g1t1g2t22g3

~CR!~0!1t3n

2g3
~CR!~1!1t3n1D1#,

~37!

g0
~CR!5g0

~0!1d0
~0! , gk5g0

~k!1d0
~k! , k51,2.

The coefficientsg0
(CR), g1 , andg2 @see~37!# as well asm2

and N 1
1 @see ~30! and ~31!# are not universal since the

contain the quantitiesc̃1
( l ) , c20

( i ) , c30
( i )( l 50,1; i 50,1,2),
depending on microscopic characteristics of the Hamiltoni
The coefficientsg3

(CR)(l )1( l 50,1) are given in~33!. Here the
quantitiesḡ3

(CR)(l )1 do not depend on microscopic characte
istics, i.e., are universal relative to these characteristics.

UsingFCR, we can calculate other thermodynamic fun
tions of the system in the CR region atT.Tc . For the en-
tropy SCR52]FCR/]T, internal energyUCR5FCR1TSCR,
and specific heatCCR5T]SCR/]T we obtain

SCR5kN8@s~CR!~0!1c0t1u3
~CR!~0!1t12a

1u3
~CR!~1!1t12a1D1#,

UCR5kTN8@g11u1t1u3
~CR!~0!1t12a

1u3
~CR!~1!1t12a1D1#, ~38!

CCR5kN8@c01c3
~CR!~0!1t2a1c3

~CR!~1!1tD12a#,

where

s~CR!~0!5g0
~CR!1g1 , c052~g11g2!,

u3
~CR!~ l !15cn

3cD1

l ū3
~CR!~ l !1 , l 50,1,

ū3
~CR!~0!1523nḡ3

~CR!~0!1 ,
~39!

ū3
~CR!~1!152~3n1D1!ḡ3

~CR!~1!1 ,

u15g112g2 , c3
~CR!~ l !15cn

3cD1

l c̄3
~CR!~ l !1 ,

c̄3
~CR!~0!1523n~3n21!ḡ3

~CR!~0!1 ,

c̄3
~CR!~1!152~3n1D1!~3n1D121!ḡ3

~CR!~1!1 ,

a5223n.

3. CALCULATION OF THE CONTRIBUTION OF LONG-WAVE
MODES OF SPIN DENSITY OSCILLATIONS TO THE
THERMODYNAMIC CHARACTERISTICS OF THE SYSTEM

The contribution of long-wave modes of spin mome
density oscillations to the free energy of the 3D Ising model
(k,B8s2mt) taking into account the first confluent corre
tion is calculated according to the scheme proposed in R
3, 13, 14, and 24. After the exit from the CR, the syste
goes over to the LGR. In this case, while calculating t
partition function componentZLGR from ~18!, it is conve-
nient to single out two regions of values of wave vecto
The first is the transition region~TR! corresponding to values
of k close toBmt

, while the second is the Gaussian regi
corresponding to small values of wave vector (k→0). After
the integration of partition function in several layers of t
phase space of CV, which follow the point of exit from th
CR and determine the size of the TR, the system is descr
by a Gaussian density of measure. Thus, we can write

ZLGR5ZLGR
~1! ZLGR

~2! . ~40!

Transition region „TR…

This region corresponds tom̃0 layers of the phase spac
of CV. The lower boundary of the TR is determined by t
point of exit of the system from the CR region (n5mt

11). The upper boundary corresponds to the layermt
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1m̃011. The latter determines the beginning of the Gauss
region in which the Gaussian distribution of spin mome
density oscillation modes is observed. A transition of t
system to the LGR region is accompanied by an increas
the value ofhn as a function ofn.24 Consequently, the con
dition for obtainingm̃0 is the equality

uhmt1m̃
08
u5

A0

12s23 , ~41!

where A0 is a large number (A0>10). The value ofm̃08
determined from~41! actually determines the numberm̃0

~see Ref. 26!.
Let us calculate the contributionFLGR

(1) to free energy
from the layers of the phase space of CV immediately
yond the point of exit from the CR, which corresponds to t
contributionZLGR

(1) from the TR to partition function. It has
the form

FLGR
~1! 52kTNmt11 (

m50

m̃0

s23mf LGR1
~m!, ~42!

f LGR1
~m!5 lnS 2

p D1
1

4
ln 242

1

4
ln C~hmt1m ,jmt1m!

1 ln I 0~hmt1m11 ,amt1m11!

1 ln I 0~hmt1m ,jmt1m!.

It follows from Refs. 3, 27–30 containing the results of n
merical calculations of the partition function in the Isin
model as well as the results of analysis of RR that the e
lution of the coefficients of effective densities of measu
with increasing number of the layer in the TR is successfu
described by solutions of the RG type. Consequently,FLGR

(1)

can be calculated by using the solutions of RR. On the b
of expansions for functions appearing in the expressions
the intermediate argumentshmt1m , jmt1m, and f LGR1

(m)
~42! given in Refs. 13 and 25, we can obtain the followi
relation26 accurate to withintD1:

f LGR1
~m!5 f LGR1

0 ~m!1 f LGR1

~1! ~m!tD1, ~43!

f LGR1

~0! ~m!5 lnS 2

p D1
1

4
ln 242

1

4
ln C~hmt1m

~0! ,jmt1m
~0! !

1 ln I 0~hmt1m11
~0! ,amt1m11

~0! !

1 ln I 0~hmt1m
~0! ,jmt1m

~0! !,

f LGR1

~1! ~m!5w1
~mt1m!hmt1m

~0! hmt1m
~1!

1w2
~mt1m!amt1m

~0! amt1m
~1!

1w3
~mt1m11!hmt1m11

~0! hmt1m11
~1!

1w4
~mt1m11!amt1m11

~0! amt1m11
~1! ,

wk
~mt1m!

5bk
~mt1m!

1P4k
~mt1m!/4, k51,2,

w3
~mt1m11!

52F2
* ~mt1m11! , w4

~mt1m11
52F6

* ~mt1m11! .
n
t
e
in

-
e

-
s
y

is
or

The quantitiesbk
(mt1m) and P4k

(mt1m) depend onF2l
* (mt1m)

5I 2l
* (mt1m)/I 0

* (mt1m) , where

I 2l
* ~mt1m!

5E
0

`

x2l exp~2hmt1m
~0! x22x42amt1m

~0! x6!dx,

~44!

as well as onF2l
** (mt1m)

5I 2l
** (mt1m)/I 0

** (mt1m) , where

I 2l
** ~mt1m!

5E
0

`

x2l exp~2hmt1m
~0! x22x42jmt1m

~0! x6!dx.

~45!

The coefficients of the expressions

hmt1m5hmt1m
~0! ~11hmt1m

~1! tD1!,

~46!
amt1m5amt1m

~0! ~11amt1m
~1! tD1!

appearing in~43! are defined in Ref. 26, and the quantiti
hmt1m

(0) and jmt1m
(0) appearing in~45! can be expressed in

terms ofF2l
* (mt1m) . An important point in the calculation o

f LGR1
(m) is the representation of special functions in t

form of power series in small deviations of basic argume
hmt1m and amt1m from their values in the zeroth approx

mation, i.e., fromhmt1m
(0) andamt1m

(0) from ~46!. It should be

recalled that in the CR region we took into account the
viations of the basic argumentshn and an (n<mt) from
their valuesh(0) anda (0) at a fixed point. In the summation
over m in FLGR

(1) ~42!, we must use form̃0 the integer closes
to m̃08 . The final result forFLGR

(1) assumes the form

FLGR
~1! 52kTN8@ f TR

~0!t3n1 f TR
~1!t3n1D1#, ~47!

f TR
~ l !5cn

3cD1

l f̄ TR
~ l ! , l 50,1,

f̄ TR
~0!5 (

m50

m̃0

s23mf LGR1

~0! ~m!, f̄ TR
~1!5 f̄ TR1

13nF0 f̄ TR
~0! ,

f̄ TR1
5cD1

21 (
m50

m̃0

s23mf LGR1

~1! ~m!.

Let us now calculate the contribution of long-wav
modes of oscillations to free energy of the system in
range of wave vectors

k<B8s2mt8, mt85mt1m̃012. ~48!

Region of small values of wave vector „k˜0…

Introducing an infinitely weak external magnetic fieldH
~or h5mBH, mB is the Bohr magneton!, we obtain the fol-
lowing expression for the free energy component cor
sponding toZLGR

(2) from ~40!:

FLGR
~2! 5

1

2
kTFNm

t8
ln P

2
~mt821!

1 (
k50

Bmt8

ln d̃m
t8
~k!2

b2Nh2

d̃m
t8
~0!

G . ~49!
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Here

P
2
~mt821!

52hm
t821F2~hm

t821 ,am
t821!

3@dm
t821~Bm

t8
,Bm

t821!#21,

d̃m
t8
~k!5@P

2
~mt821!

#211bF̃~Bm
t8
,Bm

t821!2bF̃~k!.

~50!

For dm
t821(Bm

t8
,Bm

t821), we have the following standar

representation:3,6,26

dm
t821~Bm

t8
,Bm

t821!5s22~mt821!~r m
t8211q!. ~51!

The quantityq5q̄bF̃(0) determines the average value
potentialbF(Bn11 ,Bn)5bF̃(0)2q/s2n in thenth layer~in
this paper, q̄5(11s22)/2 corresponds to the arithmet
mean value ofk2 on the interval (1/s,1).

CalculatingP
2
(mr821)

andd̃m
r8
(k) using the expansion fo

F2(hm
r821 ,am

r821) from Ref. 25 and then the sum

(1/2)S
k50

Bmt8 ln d̃m
t8
(k) with the help of transition to the spher

cal Brillouin zone and integration with respect tok, we ar-
rive at the final formula forFLGR

(2) ~see Ref. 26!:

FLGR
~2! 52kTN8@ f ~0!8t3n1 f ~1!8t3n1D1#

2bNg4
1h2t22n~11ax

1tD1!, ~52!

f ~ l !85cn
3cD1

l f̄ ~ l !8, l 50,1, f̄ ~0!85s23~m̃011! f ~0!,

f̄ ~1!85 f̄ 1813nF0 f̄ ~0!8, f̄ 185cD1

21s23~m̃011! f ~1!,

g4
15cn

22ḡ4
1/@bF̃~0!#, ḡ4

15s2m̃0/~2g0!,

ax
152g122ncD1

F0 ,

where

f ~0!52
1

2
lnS s221g0

g01q̄ D1
1

3
2g08F1

2Ag08 arctanS 1

Ag08
D G , ~53!

f ~1!5
1

2 S g0g1

g01q̄
2

g1

~g08!2111
2

g08g1

~g08!2111D 2g08g1F1

2
3

2
Ag08 arctanS 1

Ag08
D G ,

g085s2g0 ,

andg0 andg1 appear ind̃m
t8
(k) and are given in Ref. 26.

On the basis of~47! and~52!, we can write the following
relation for the general expressionFLGR5FLGR

(1) 1FLGR
(2) cor-

responding to the contribution to free energy from long-wa
modes of spin moment density oscillations:
e

FLGR52kTN8@ f LGR
~0! t3n1 f LGR

~1! t3n1D1#

2bNg4
1h2t22n~11ax

1tD1!, ~54!

f LGR
~ l ! 5cn

3cD1

l f̄ LGR
~ l ! , f̄ LGR

~ l ! 5 f̄ TR
~ l !1 f̄ ~ l !8, l 50,1.

For H50, the entropy, internal energy, and specific he
of the system corresponding to LGR are defined by the
lowing relations:

SLGR5kN8@u3
~LGR!~0!t12a1u3

~LGR!~1!t12a1D1#,

ULGR5kTN8@u3
~LGR!~0!t12a1u3

~LGR!~1!t12a1D1#, ~55!

CLGR5kN8@c3
~LGR!~0!t2a1c3

~LGR!~1!tD12a#,

where

u3
~LGR!~ l !5cn

3cD1

l ū3
~LGR!~ l ! , l 50,1,

ū3
~LGR!~0!53n f̄ LGR

~0! ,

ū3
~LGR!~1!5~3n1D1! f̄ LGR

~1! ,
~56!

c3
~LGR!~ l !5cn

3cD1

l c̄3
~LGR!~ l ! ,

c̄3
~LGR!~0!53n~3n21! f̄ LGR

~0! ,

c̄3
~LGR!~1!5~3n1D1!~3n1D121! f̄ LGR

~1! .

Taking into account consistently the short- and lon
wave modes of spin moment density oscillations, we c
now write complete expressions for free energy and ot
thermodynamic functions of the three-dimensional Isi
model near the phase transition point.

4. THERMODYNAMIC CHARACTERISTICS OF THE MODEL
FOR T >Tc TAKING INTO ACCOUNT FIRST CONFLUENT
CORRECTION

In accordance with~17!, the free energy of the system
taking into account~37! and ~54!, assumes the following
form in zero external field:

F52kTN8@g01g1t1g2t21g3
~0!1t3n

1g3
~1!1t3n1D1#,

~57!
g05s0

3 ln 21g0
~CR! , g3

~ l !15cn
3cD1

l ḡ3
~ l !1 ,

ḡ3
~ l !152ḡ3

~CR!~ l !11 f̄ LGR
~ l ! , l 50,1.

The coefficientsg1 and g2 are defined in~37!. The terms
proportional to integral powers oft in ~57! appear exclu-
sively due to inclusion of short-wave modes of oscillation
The terms proportional tot3n andt3n1D1 ~nonanalytic com-
ponent of free energy! are formed as a result of inclusion o
short-wave as well as long-wave modes of oscillations. T
first confluent correction appears due to the smaller eig
value E2 of the RG linear transformation matrix taken in
account in the solutions of RR.

The main advantage of the expression forF is the pres-
ence of relations connecting its coefficients with microsco
characteristics of the system and the coordinates of a fi
point of RR. The coefficientsg3

( l )1 ( l 50,1) are presented in
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the form of the product of the universal componentḡ3
( l )1 and

the nonuniversal factor depending on microscopic charac
istics throughc̃1

(0) and c20
(0) @see~57!#. Leading critical am-

plitudes and the amplitudes of the confluent correction
specific heat and other thermodynamic characteristics of
system can be presented in a similar way. The values ofg0 ,
g1 , andg2 are presented in Table III for different values
the parameters and the effective rangeb of the potential,
while the values ofḡ3

( l )1 are given in Table IV. Fors
52.7349, the value of the basic variable at a fixed po
satisfies the conditionh(0)'0 ~see, for example, Ref. 25!.

The coefficients of entropy, internal energy, and spec
heat can be expressed in terms of the coefficients of
energy. Taking into account the first confluent correction,
obtain the following expressions for entropy, internal ener
and specific heat of the system forH50:

S5kN8@s~0!1c0t1u3
~0!1t12a1u3

~1!1t12a1D1#,

TABLE III. Coefficientsg0 , g1 andg2 of free energyF ~57!.

b g0 g1 g2

s52.0000
bI 1.8758 20.8032 24.4816
bII 2.7464 20.7759 23.9551
bIII 3.1962 20.7651 23.7548
c 61.1798 20.6734 22.0482

2c 486.699 20.6701 21.9599
s52.7349

bI 1.8776 20.7063 24.6948
bII 2.7496 20.6952 24.1735
bIII 3.2000 20.6913 23.9764
c 61.1930 20.6924 22.2672

2c 486.713 20.6978 22.1665
s53.0000

bI 1.8789 20.6867 24.5304
bII 2.7516 20.6795 24.0342
bIII 3.2023 20.6773 23.8466
c 61.1999 20.7020 22.1971

2c 486.720 20.7100 22.0936
r-

o
e

t

c
e

e
,

U5kTN8@g11u1t1u3
~0!1t12a1u3

~1!1t12a1D1#,
~58!

C5kN8@c01c3
~0!1t2a1c3

~1!1tD12a#.

Here

s~0!5g01g1 , u3
~ l !15cn

3cD1

l ū3
~ l !1 , l 50,1,

~59!
ū3

~0!153nḡ3
~0!1 , ū3

~1!15~3n1D1!ḡ3
~1!1 ,

c3
~ l !15cn

3cD1

l c̄3
~ l !1 , c̄3

~0!153n~3n21!ḡ3
~0!1 ,

c̄3
~1!15~3n1D1!~3n1D121!ḡ3

~1!1 .

The coefficientsc0 andu1 are given in~39!.
The formula for specific heat@see~58!# for the model

under investigation can be written in the form31,32

C

kN8
5

A1

a
t2a~11aac

1tD1!1B1, ~60!

A15cn
3a c̄3

~0!1 , ac
15

cD1

a

c̄3
~1!1

c̄3
~0!1 , B15c0 .

An important characteristic of the system such as s
ceptibility per particle

x52
1

N

]2FLGR

]H2 , ~61!

can be calculated using~54!. For infinitely small values of
external fieldH nearTc , it is defined as

TABLE IV. Universal parts of coefficients of the nonanalytic component
free energy.

s ḡ3
(0)1 ḡ3

(1)1

2.0000 0.9699 0.6508
2.7349 1.8654 0.7263
3.0000 2.1770 0.7162
TABLE V. Values of coefficients in the expressions~60! for heat capacityC/kN8 and ~62! for susceptibilityx.

b A1 ac
1 B1 G1 ax

1

s52.0000
bI 1.0876 21.2609 210.5696 1.8711 20.0691
bII 0.9960 21.8262 29.4620 1.9842 20.1001
bIII 0.9609 22.0389 29.0397 2.0321 20.1118
c 0.6620 23.7773 25.4430 2.6052 20.2071

2c 0.6471 23.8634 25.2601 2.6450 20.2118
s52.7349

bI 0.8113 22.3816 210.8022 2.1659 20.1177
bII 0.7439 22.7420 29.7375 2.2948 20.1355
bIII 0.7184 22.8773 29.3355 2.3488 20.1422
c 0.5050 23.9838 25.9193 2.9709 20.1969

2c 0.4944 24.0397 25.7286 3.0134 20.1996
s53.0000

bI 0.7238 22.6494 210.4343 2.4427 20.1291
bII 0.6644 22.9650 29.4274 2.5860 20.1445
bIII 0.6420 23.0832 29.0478 2.6459 20.1502
c 0.4558 24.0460 25.7981 3.3248 20.1971

2c 0.4465 24.0947 25.6074 3.3710 20.1995
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x5G1t2g~11ax
1tD1!

mB
2

F̃~0!
, G152cn

22ḡ4
1 , ~62!

ax
15cD1

āx
1 , āx

152ḡ122nF0 ,

ḡ15
g1

cD1

, g52n.

Here the value ofḡ1 does not depend on microscopic cha
acteristics and can be obtained as a result of elimination
the nonuniversal factorcD1

5c20
(0)@ c̃1

(0)/( f 0d)#D1 from g1 .

The coefficientḡ4
1 is presented in~52!.

The coefficients for specific heatC/kN8 ~60! and sus-
ceptibility x ~62! are given in Table V. It should be empha
sized that the calculated amplitudesac

1 andax
1 of confluent

corrections are in accord with the results obtained by Liu a
Fisher33 who considered leading corrections to scaling a
plitudes for Ising models with the interaction between ne
est neighbors in sc, bcc and fcc lattices. It was proved33 that
the amplitudes of these corrections for susceptibility, cor
lation length, specific heat, and spontaneous magnetiza
have negative sign for all the three lattices. Liu and Fishe33

also noted the agreement between the obtained results
the results of high- temperature expansions and the resul
the field-theory analysis.
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The role of chemical disorder in the magnetism of YbInCu 4 compound

I. V. Svechkarev and S. N. Dolya

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine* )

~Submitted March 10, 1999!
Fiz. Nizk. Temp.25, 1186–1193~November 1999!

It is found that chemical disorder in the YbInCu4 compound~especially in the Yb sublattice!
considerably affects its magnetic properties due to spatial nonuniformity of the
temperatureTV of the first-order valence phase transition. The evolution of the magnetic
susceptibility during disordering of the stoichiometric compound YbInCu4 is described by the
model expression taking into account theTV dispersion upon the application of pressure
and variation of composition of YbIn12xAgxCu4 solid mixtures. The behavior of the main
parameters of the system masked by blurring of the magnetic susceptibility singularity
for a disordered sample during phase transition. Among other things, the value of the derivative
dTV /dx5203 K is determined. The reason behind an abrupt change in the concentration
dependence of dispersion and the paramagnetic Curie temperature is calculated atxc.0.25.
© 1999 American Institute of Physics.@S1063-777X~99!00611-8#
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1. INTRODUCTION

Unstable valence of some rare-earth elements~Ce, Sm,
Eu, and Yb! is responsible for many peculiar properties
metallic or semiconducting systems containing these
ments. Such properties include first-order phase transit
accompanied by an abrupt change in the valence state of
~usually, from almost integral HF phase of heavy fermions
intermediate-valence IV phase!. These transitions are iso
morphic even for considerable jumps in volume~up to 15%
in pure Ce!,1 and their phase boundary on theP–T diagram
terminates at the tricritical point as on the liquid–vapor d
gram, followed by further continuous transition betwe
phases,2 or rather between regimes of interaction between
f -level and conduction electrons. It should be noted t
Eliashberg and Capellmann3 in their recent publication paid
attention to the fact that the curve of first-order phase tr
sitions is continued behind the tricritical point at the seco
order transition curve, i.e., the crystal structure of pha
may display differences lying apparently beyond the reso
ing power of direct structural investigations.

Although the fundamental relation between the jump
volume and the change in the valence state, and hence
size of the electron shell of a rare-earth ion is obvious,
trigger mechanism of the first-order phase transition, as w
as the mechanism limiting the valence jump during the tr
sition, are still disputable and give rise to new theoreti
models. If we disregard some modifications, these model
be classified as follows: electron excitation from localiz
f -level to band states,4,5 Mott transition with delocalization
of the f -level itself,6,7 fluctuations between configur
ations,8–10 volume collapse due to a strong dependence
Kondo energy on volume~the KVC model!,11–13 and essen-
tially band transition.14

It should be noted that not all of these models pas
through quantitative testing in real systems. Even when s
8891063-777X/99/25(11)/6/$15.00
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a testing was carried out, its results cannot be regarde
unambiguous evidence in favor of a definite model sin
either not all aspects in the behavior of phase diagrams w
analyzed~e.g., possible effect of a magnetic field on it as
Ref. 13!, or the chosen model parameters did not corresp
to reliably established facts~like the model valueDn.1 of
valence jump adopted in Refs. 10 and 15 instead of the
perimentally determined value 0.1 for YbInCu4!. Besides,
the most detailed verification of the models was carried
in Refs. 13 and 15 for different objects for which the mech
nisms of transition can be different. Thus, a more detai
analysis of features of the phase diagrams and quantita
comparison of various theoretical models on the same ob
are required for determining the driving forces of first-ord
valence phase transitions along with a search for new
tems with valence transitions.

The intermetallic compound YbInCu4 appears as espe
cially attractive among such objects. This is the only co
pound known so far, in which the first-order valence pha
transition takes place for the stoichiometric composition
atmospheric pressure and a temperature convenient for
periments (TV.40 K).10,16,17 Consequently, a part of the
phase diagram can be obtained~at least, in principle! on an
object with a high degree of perfection. Abundant expe
mental data with elements of analysis of transition mec
nism ~see Refs. 6, 18, and 19 and the literature cited ther!
accumulated for this compound as well as its structural
electronic analogs are still insufficient for drawing final co
clusions. Unfortunately, the value ofTV for the compound
YbInCu4 decreases under pressure unlike the case in
based systems. For this reason, it is still impossible to ob
the region on the phase diagram with the tricritical poi
which is most important for an unambiguous verification
the models, without using solid substitutional mixtures li
the quasi-binary system YbIn12xAgxCu4.

18 However, conse-
quences of
© 1999 American Institute of Physics
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chemical disorder for properties and structure of the ph
diagram of this system are unknown.

Our aim is to demonstrate the importance of inclusion
disordering in compounds of the YbInCu4 for correct deter-
mination of phase boundaries. It should be noted that, for
existing method of sample preparation, the most import
singularity at the phase-transition point associated with
effect of disorder was observed for a nonstoichiome
sample Yb1.2In0.8Cu4 which was chosen as the preferred o
ject in subsequent investigations.10,15 Recently, Sarrao
et al.16–18 successfully applied special technique for obta
ing single crystals of stoichiometric composition with a hi
degree of ordering and exceptionally sharp jumps in prop
ties at the phase transition point and for clarifying the mic
scopic pattern of sample disordering for different methods
sample preparation.20

It should be noted that essentially structural methods
not always used for detecting and identifying the type
transitions. In many cases, the study of various electro
properties sensitive to structure variations are more con
nient. However, the efficiency of such investigations is d
termined by the existence of one-to-one correspondence
tween peculiarities in the behavior of electronic propert
and the valence and structural states of the system. In c
pounds of rare-earth elements, magnetic susceptibilityx
serves in many cases as a reliably interpreted property du
large values of magnetic moments. A simple model of inc
sion of disorder and estimation of its role in the magne
volume effectd ln x/d ln V were considered in Refs. 19 an
21. In the present paper, this model is verified~Sec. 2! for
available data on the dependence of magnetic susceptib
x on the extent of ordering in the stoichiometric compou
YbInCu4 ~Ref. 20! ~Sec. 3! and on pressure for the nonst
ichiometric composition Yb1.2In0.8Cu4 ~Ref. 15! ~Sec. 4! and
is used for analyzing a system of continuous solid mixtu
YbIn12xAgxCu4 ~Ref. 17! ~Sec. 5!. The main results are
summarized in Sec. 6.

2. MODEL DESCRIPTION OF MAGNETIC SUSCEPTIBILITY
OF YbInCu 4

The magnetic susceptibility of a perfect sample
YbInCu4 is correctly described by the following
expression:19

x~T!5x01@C/~T2Q!2x0#W~T!. ~1!

Herex0}1/TK
IV ~Ref. 22! is the temperature-independent su

ceptibility, TK
IV is the characteristic Kondo temperature in t

IV state, C and Q are the Curie constant and temperatu
andW(T) is a step function:

W~T,TV!50; W~T.TV!51. ~2!

Such a form of the expression for susceptibility correspo
to the conditionDCEF<TV,TK

IV ~DCEF is the complete split-
ting of the fundamental multipletJ57/2 of Yb by the crystal
electric field~CEF!!, which is observed for YbInCu4 ~DCEF

544 K,23 TK
IV.420 K!.17 The values of the parameters in E

~1! were selected earlier by Sarraoet al.16 and are given in
Table I. The value of the magnetic momentm per Yb ion
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following from the Curie constant is close to the value e
pected for Yb31 in view of the small deviation of the true
valence of the ion from an integer in the heavy-fermion H
phase of YbInCu4.

17,24 Curve 1 in Fig. 1 shows that the
results calculated by formula~1! for the chosen paramete
are in good agreement with experimental data.16

Following Lawrenceet al.,20 and in accordance with
structural data, we shall assume that the main reason of
order in the stoichiometric compound YbInCu4 is the disor-
dered distribution of atoms of the form (Yb12xInx)
3(In12xYbx)Cu4 in Yb and In sublattices. It is responsibl
for spatial nonuniformity of the phase-transition temperat
TV . Taking into account a considerable susceptibility jum
at the transition point as well as a high sensitivity ofTV to
various factors ~pressure, impurities, and magnet
field!,15,20,24we can confine our analysis to just this mech
nism of influence of lattice-site or chemical disorder on t
magnetic susceptibility~1!. In this case, the expression~1!
remains valid ifW(T) in ~1! is a function of distribution of
the values ofTV

i of the i th volume elements of sample. It wa
found19 that the normal Gaussian distribution

W~T!5W~T,T̄V ,s!5$11erf @~T2T̄V!/~&s!#%/2 ~3!

@erf(x) is the standard error function# can serve as a satisfac
tory distribution function for weakly disordered YbInCu4

samples. In order to describe susceptibility in the vicinity

TABLE I. Values of model parameters for magnetic susceptibility andTV

distribution function in YbInCu4 compounds. Sample numbers correspon
to Fig. 1.

Parameter

Sample

1 2 3

C, emu•K/mole 2.55 2.55 2.55
2Q, K 7.2 23 33
x0 , 1023 emu/mole 6.0 6.0 8.4
n 0 0.35 0.76

T̄V1 , K 40 41 38

T̄V2 , K 0 47 74

s1 , K ,1.0 1.9 2.85
s2 , K 0 4.9 11

FIG. 1. Temperature dependence of magnetic susceptibility in diffe
samples of YbInCu4 compound: for a single crystal with a high degree
perfection~curve1!, for a polycrystal~curve2!, and for a highly disordered
sample~curve3!. Symbols correspond to experimental data of Ref. 20, so
curves are the results of model fitting.
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phase transition with the help of Eqs.~1! and~3!, it is suffi-
cient to select the parameters of the distribution functi
viz., a certain mean valueT̄V and the dispersions2, for
asymptotic values ofx0 , m, andQ. We shall demonstrate th
applicability and consequences of application of the p
posed model from an analysis of the behavior of magn
susceptibility as a function of ordering, applied pressure,
variation of composition.

3. ANALYSIS OF THE ROLE OF DISORDER IN
STOICHIOMETRIC YbInCu 4 SAMPLES

Figure 1 shows that the peak on the temperature de
dence of the magnetic susceptibility of YbInCu4 compound
becomes less sharp as disordering in the sample incre
and is then transformed into a two-hump curve also typ
of samples with a nonstoichiometric composition~Fig. 2!.
There can be several reasons behind the emergence o
two humps. First, the presence of at least two types of do
nating structural defects, which is quite natural for the p
sumed arrangement of Yb atoms in the two sublattices~Yb
and In sublattice!. Second, a certain stratification of th
sample in composition within one structural phase for a s
cial form of phase diagram.20 Finally, the separation of the
sample into two phases. In any of the versions listed abo
the distribution functionW(T) in ~1! must contain two Gaus
sians of type~3! with different sets of parameters:

W~T!5W1~T,T̄V1 ,s1!~12n!1W2~T,T̄V2 ,s2!n. ~4!

Figures 1 and 2 show the results of selection of the par
etersT̄V j , s j , andn in Eqs.~1! and~4! for the best descrip-
tion of thex(T) dependences for samples with different d
grees of disordering. The values of the parameters of
distribution function~4! and the magnetic parametersx0 , m,
andQ are given in Tables I and II.

Naturally, the distribution function~4! should also be
used for describing two-hump dependencesx(T) for nonsto-
ichiometric samples also.

4. ANALYSIS OF THE EFFECT OF PRESSURE ON THE
SUSCEPTIBILITY OF Yb 1.2In0.8Cu4

Figure 2 shows the temperature dependence of the m
netic susceptibility for nonstoichiometric compoun

FIG. 2. Temperature dependence of magnetic susceptibility in nonstoic
metric compound Yb1.2In0.8Cu4 at different pressures according to expe
mental data of Ref. 15; solid curves are the results of model fitting.
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Yb1.2In0.8Cu4 under different pressures~borrowed from Ref.
15! and its model description. The corresponding model
rameters are given in Table II, and pressure dependence
the temperaturesT̄V1 and T̄V2 are shown in Fig. 3. In the
pressure range under investigation, these dependence
linear and have almost the same slope with the average v
of dT̄V /dP522 K/kbar. This value differs insignificantly
from that obtained by Nowiket al.15 from an analysis of
displacement of singularities on thex(T) curve under pres-
sure, although the shape of the curve is slightly deform
under pressure. This can be seen from the change in
parameters of the distribution function~4! in Table II. The
weak but stable variation of the distribution functionW(T)
under pressure can be due to structural defects. Unfo
nately, Nowik et al.15 give no information concerning the
reversibility of susceptibility after the removal of pressur
Subsequent measurements of the effect of pressure on
susceptibility of the compound with the stoichiometric com
position give practically the same value of the derivativ
(22 K/kbar) for an imperfect sample for which disorder
taken into account19,21 as well as a high-quality sample.18

5. ROLE OF DISORDER IN YbIn 12xAgXCu4 SOLID
MIXTURES

An analysis of magnetic properties of YbIn12xAgxCu4

alloys is of special importance since it is generally accep
that the first-order valence phase transition in this system
transformed into a continuous transition forx.0.25 in view
of changes in the parameters of electron–electron interac
during alloying.17 Monocrystalline samples of solid mixture
in Ref. 17 were grown according to the same method un

o-

TABLE II. Values of model parameters of distribution function for nonsto
chiometric compound Yb1.2In0.8Cu4 for different pressures~Fig. 2!.

Parameter

Pressure, kbar

0 2 4 5.9

n 0.32 0.28 0.38 0.42

T̄V1 , K 40.8 36.7 32 29.2

T̄V2 , K 52 47 43.7 40.7

s1 , K 4 3.7 3.74 3.3
s2 , K 1.9 1.6 3 3.26

FIG. 3. Pressure dependence of model values of phase transition tem
ture for compound Yb1.2In0.8Cu4.
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the InCu flux that was used for obtaining YbInCu4 com-
pound, which ensured a high degree of sample perfec
except random distribution of atoms over the sites of In–
sublattice. For this reason, we can confine the approxima
of thex(T) dependences to formulas~1! and~3!. The results
of the approximation are shown in Fig. 4, and the obtain
values of fitting parameters are given in Fig. 5.

The model used by us correctly describes the evolu
of temperature dependences of susceptibility of alloys fo
reasonable behavior of the parameters~at least, to values o
x.0.3!. For example, the linear increase in the pha
transition temperature with silver concentrationdT̄V /dx
5203 K ~see Fig. 5a! is in satisfactory agreement with th
data following from the measurements of elastic parame
(dTV /dx5210 K).25 A weak initial increase in the quantit
s5(1125x) ~see Fig. 5b! appears as natural since disord
takes place in the In–Ag sublattice of the alloy under inv
tigation and affects thef -states of Yb only indirectly.

The paramagnetic Curie temperatureQ also changes in-
significantly in the concentration range under investigat
~Fig. 5c!. However, this important parameter characteriz
the interaction of thef -level with band electrons strongl
depends on the accuracy of reconstruction of thex(T) de-
pendences from the available data and on the choice of
temperature interval for their approximation. For this reas
the values ofQ presented in Fig. 5c and Table II are rath
qualitative estimates, and only the anomalous increase in
absolute value ofQ as well ass starting from a certain
critical valuexc50.25– 0.3 is worth noting.

6. DISCUSSION OF THE RESULTS OF MODEL ANALYSIS
OF SUSCEPTIBILITY

1. It should be noted above all that in our model w
assume the simplest structure of the distribution function
the phase-transition temperatureTV in a spatially inhomoge-
neous sample. The validity of just this function is not ob
ous beforehand, but nevertheless the proposed model m
it possible to approximate correctly the transformation
magnetic susceptibility of the compound YbInCu4 under the
action of various factors in combination with the disord
taking place or induced by these interactions. This allows
to assume that the behavior of physical parameters de

FIG. 4. Temperature dependence of magnetic susceptibility
YbIn12xAgxCu4 alloys according to experimental data of Ref. 17 and th
model fitting ~solid curves! corresponding to the following values of con
centrationx: 0.1 ~curve1!, 0.2 ~curve2!, 0.3 ~curve3! and 0.4~curve4!.
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mined as a result of such an approximation correspond
the properties of a perfect system. It is remarkable that
spatial distribution function for Curie temperature reco
structed experimentally for some compositions of inhomo
neous Invar alloys Fe–Ni is close to the Gaussian distri
tion function.26 Apparently, distribution~3! can indeed serve
as a good initial approximation for taking into account im
perfection of various systems.

2. The results of successful model fitting of temperatu
dependences of susceptibility correspond to the assump
that dispersion of the quantityTV is mainly responsible for
smoothing of singularities in the physical properties of d
ordered samples in the phase-transition region. This assu
tion is confirmed by an anomalous increase in the magn
volume effect in imperfect samples in the vicinity of th
phase-transition temperature27 since just in this case the ef
fect involves a strong pressure dependence ofTV

i andx(TV
i )

of volumes elements of the sample withTV
i 'T. A direct

microscopic evidence of dispersion ofTV is the simultaneous
observation of the NMR signal from the IV and HF phase28

coexisting in the temperature range;s in the vicinity of
TV .

n
r

FIG. 5. Concentration dependence of model parameters calculated by

mulas~1! and ~3! for YbIn12xAgxCu4 alloys: T̄V ~a!, s ~b! andQ ~c!.
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The value of the Curie temperatureQ also depends on
the composition and the degree of perfection of samples,
the role of its possible dispersion in~1! is considerably
smaller than the effect ofTV according to estimates. For th
reason, we disregard here the nonuniformity ofQ to simplify
the analysis, which does not affect semi-quantitative con
sions drawn below.

3. An increase in the extent of disorder in the stoich
metric compound, as well as deviation from stoichiomet
leads to ‘‘splitting’’ of TV into two temperatures. Their iden
tical pressure dependences speak in favor of the conce
tion stratification of the sample within the same structu
phase rather than separation into different phases. It was
sumed by Lawrenceet al.20 that such a stratification can b
due to peritectic nature of the phase diagram for the co
pound YbInCu4. However, the shape of the phase diagram
the region of the stoichiometric composition under investi
tion has not been established as yet by direct structural m
ods, and we cannot rule out in principle the existence of t
isomeric HF phases with close atomic volumes and prop
ties, whose transition to the IV phase is controlled by
same parameters of the system, although it occurs at slig
different temperatures. In such a case, the very fact and
actual origin of phase separation of the sample are imm
rial, and a distribution function of the form~3!, albeit with a
high dispersion,19 remains valid for an adequate descripti
of a number of its properties for a moderate disorder.

4. In the presence of stratification in the highe
temperature phase of the compound under investigatio

detailed comparison of the parameters of theT̄V distribution
function for samples obtained under different conditions
different laboratories~and the more so, by different method!
is meaningful only on a qualitative level. A comparison
values of dispersion in Table II and in Fig. 5b shows that
disorder associated with imperfection of the method
preparation of stoichiometric samples is a much more imp
tant factor for the magnetism of the compound under inv
tigation than, for example, the disorder in the In–Ag subl
tice of the YbIn12xAgxCu4 solid mixture which cannot be
eliminated in principle~it should be noted for compariso
that sample 3 in Fig. 1 corresponds tox.0.06 in the equiva-
lent formula for the disordered stoichiometric compositi
(Yb12xInx)(In12xYbx)Cu4 mentioned above!.20

Thus, the results of analysis of the properties of allo
based on the compound YbInCu4 without an appropriate
control of the state of the Yb–In subsystem should be trea
with care. This remark does not concern the data
YbIn12xAgxCu4 alloys used by us here since these data w
obtained by using the standard method which minimizes
disorder in the Yb–In sublattice.17

5. The behavior of the magnetic susceptibility upon
increase in the Ag concentration up tox.0.3 in
YbIn12xAgxCu4 alloys is essentially explained in the mod

~1!, ~3! only by an increase in the value ofT̄V and its disper-
sion. Such an approach differs in principle from that used
Sarraoet al.17 who approximated the experimental depe
dencesx(T) by the theoretical curve for a Kondo impurit
with J57/222 by selecting the characteristic temperature
ut
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the low- and high-temperature phases separately. Thus
evolution of asymptotic segments of thex(T) curves during
alloying is associated, according Sarraoet al.,17 with a varia-
tion of the parametersTK

IV andTK
HF. In this case, the transi

tion temperature region, and hence the behavior ofTV(x),
which play the leading role in the proposed model of dis
dering are not considered.

The exaggerated opposition of the mechanisms of te
perature dependence ofx in the approaches discussed he
demonstrates that the inclusion of disorder is of considera
importance. In actual practice, both mechanisms must
taken into account in the description of experimental resu
In contrast to the model proposed by Sarraoet al.,17 the
model~1!, ~3! allows us to do this easily, but the temperatu
dependence of susceptibility alone is obviously insufficie
for an unambiguous selection of the doubled number of
rameters. According to the results obtained by us earlier,19,21

the magnetovolume effectd ln x/d ln V in the alloys under
investigation can successfully compensate the missing
perimental information.

6. This effect would be especially helpful in the vicinit
of the concentrationxc which is critical indeed for the pa
rameters of the proposed model: forx.xc , the concentration
dependence ofs as well asQ becomes considerably stron

ger. The dispersion ofT̄V and the characteristic of the inte
action of magnetic moment with band electrons in the
phase29 (uQu'TK

HF) are not connected directly, and we ca
not establish unambiguously the reason behind such a be
ior on the basis of the available data.

A possible reason can be the transformation of an ab
phase transition atxc into a continuous transition,17 which
presumes that the values ofTK

IV andTK
HF become closer. The

corresponding increase inuQu in Fig. 5c does not contradic
such a hypothesis and the asymptotic value ofTK5143 K for
x51,17 and the increasing role of dispersion of the Kon
temperature can be manifested in a more rapid increases.
Although the model itself must be modified forx.xc in the
case of transformation of phase transition, the depende
in Fig. 4 following from it appear more natural than th
strong and nonmonotonic changes inTK

IV andTK
HF in Ref. 17.

The latter have no singularities forxc , and this concentration
is singled out by Sarraoet al.17 on the basis of the change i
the behavior ofx(T) only in the transition temperature re
gion. Naturally, the first-order phase-transition curve in F
5a must terminate atx.0.3 for such a scenario, and its co
tinuation beyondxc is only the result of successful imitatio
of the x(T) dependence by the initial model~1!, ~3!.

However, it cannot be ruled out that the observed beh
ior of the model parameters is due to inclusion of the ad
tional interaction of the moments upon attainment of a c
tain level of band filling or coordination of impurity atoms i
the nearest neighborhood of Yb~of the type of percolation
effect!. It is also possible that such a behavior is associa
with the beginning of a certain structural randomization
the alloy involving the Yb sublattice in spite of the applic
tion of unique method of sample preparation. The list
possible scenarios is much larger, and further investigati
of structural and electronic properties of the YbIn12xAgxCu4
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system must be carried out in the concentration rangx
;xc for selecting the most realistic scenario. The analy
carried out by us here indicates that there are no s
grounds for assuming that the concentrationxc is the point of
termination of the first-order transition curve on theT–x
diagram.

7. CONCLUSIONS

Summarizing the results of analysis of the role of chem
cal disorder in the YbInCu4 compound and in
YbIn12xAgxCu4 alloys, we can formulate the following
statements.

1. Chemical disorder~especially in the Yb sublattice!
can radically change the properties of the systems unde
vestigation due to spatial nonuniformity of the first-order v
lence phase transition temperature.

2. The model proposed by us earlier19 with a normal
Gaussian distribution forTV describes the transformation o
the magnetic susceptibility of YbInCu4 under the influence
of various effects with a plausible behavior of paramete
The dependenceTV(x) obtained for the first time for
YbIn12xAgxCu4 alloys is close to a linear dependence w
the derivativedTV /dx5203 K.

3. The behavior of the parameters of the YbIn12xAgxCu4

system changes significantly for the critical concentrat
xc'0.03, but it is premature to attribute this to a change
the type of phase transition. Additional investigations
structural and electronic properties of the alloys in the reg
of critical composition are required to rule out oth
scenarios.
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Nonstationary effects induced by a strong direct current in a compensated metal
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The existence of nonstationary electromagnetic processes in a plate of compensated metal
carrying a strong direct current is established theoretically. The nonstationary effects are due to
the nonlinearity caused by the influence of a inhomogeneous sign-alternating magnetic
field of the current on the dynamics of charge carriers. Such an influence suppresses conductivity
in the entire sample except a narrow region near the zero magnetic field plane. It is found
that the current pinch formed in this region can propagate quasi-statically in the direction
transverse to the current. As a result, an ac electric field component~and hence, an ac
voltage across the sample across the sample! appears against the background of the applied dc
electric field. The ac voltage generation can be observed experimentally in a preset current
mode. © 1999 American Institute of Physics.@S1063-777X~99!00711-2#
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INTRODUCTION

Experiments on pure metals at low temperatures
vealed a number of electrodynamic effects which could
be described on the basis of conventional concepts of me
as exceptionally ‘‘linear’’ elements. Among first commun
cations were those on observation of deviation of curre
voltage characteristics~IVC! for thin samples from Ohm’s
law towards a decrease in resistance,1,2 dependence of sur
face impedance on the amplitude of incident wave,3 and hys-
teretic rectification of rf current in a metal.4,5 Nonlinearity
was observed for such insignificant values of current or w
amplitude that it could not be due to overheating of cha
carriers or other familiar sources of nonlinearity associa
with electric field. It was found that the nonlinearity typic
of pure samples is connected with their main property, v
long mean free path for electrons. The mean free path
charge carriers in pure conductors at low temperatures ca
as large as a few millimeters. For this reason, the magn
field of the current effectively bends the trajectories of p
ticles, thus affecting the metal conductivity. Such a nonl
earity mechanism is known as magnetodynamic. In the st
case, the most favorable conditions for its observation
created in thin samples whose thicknessd can be smaller
than the mean free pathl of the carriers:

d! l . ~1!

The conductivity is determined in this case by a small gro
of electrons moving almost parallel to the metal surface
view of the small number of such electrons, even a comp
tively weak magnetic field of the current can noticeably
fect the electrical conductivity of the sample and its IVC.

A theoretical analysis of the magnetodynamic nonline
ity effects in the static case was carried out for the first ti
by Kaneret al.,6 who studied the conductivity and IVC of
8951063-777X/99/25(11)/6/$15.00
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thin plane-parallel plate with diffuse boundaries. It w
proved that peculiarities of the nonlinear response in
sample are associated with an alternation of the magn
field of the current over the sample thickness. It is equa
zero at the middle of the plate and assumes equal but o
site valuesH and2H at the opposite faces of the plate:

H52pI /c. ~2!

Here I is the current per unit width of the plate andc the
velocity of light in vacuum. The alternating magnetic field
the current traps a part of electrons in the potential well. T
trajectories of such particles are coiled around the zero m
netic field plane. For this reason, trapped charge carriers
teract with the electric field over the entire mean free pathl .
As the currentI increases, the number of such carriers
creases due to particles that collided with the metal surf
for smaller values of the current and hence could not part
pate effectively in the formation of the plate conductivit
Thus, trapping of electrons increases the conductivity of
sample. This is observed for quite small values ofI for
which the characteristic radius of curvatureR(I ) of electron
trajectories in the magnetic field of the current is larger th
the plate thickness:

R~ I !5cpF /eH~ I !}I 21, d,R~ I !, ~3!

where2e andpF are the charge and Fermi momentum of
electron.

The theory constructed by Kaneret al.6 explained the
results obtained in Refs. 1 and 2 and stimulated new exp
mental investigations.7 It was found that as the currentI
increases further, the resistance of thin plates attains its m
mum value~when the radiusR(I ) becomes of the order ofd!
and then starts increasing. In the region of strong curren

d@R~ I ! ~4!
© 1999 American Institute of Physics
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the resistance of a conductor exhibits a tendency to a lin
increase. Such a regularity is observed for metals with eq
concentrations of electrons and holes~compensated metals!,
e.g., tungsten and cadmium~see Ref. 7!.

Later, Kaneret al.8 established theoretically that the in
crease in the resistance of thin samples of a compens
metal is due to a peculiar pinch effect. According to Kan
et al.,8 in the limit of strong currents~4! all the electrons
intersecting the zero magnetic field plane become trap
irrespective of the angle of incidence on the plane. A
result, their conductivity tends to saturation and become
the same order of magnitude as the conductiv
s5Ne2l /pF of a bulk plate~N is the charge carrier concen
tration!. In this case, in contrast to the case of weak curre
~3!, the group of trapped particles occupies not all t
sample, but is concentrated in a narrow central region hav
a width of the order ofR(I ). Outside this region, charg
carriers move in a dc magnetic field along trajectories res
bling Larmor orbits. Their conductivity turns out to be muc
smaller than the conductivity of trapped particles.9 As a re-
sult, a strongly nonuniform spatial distribution of curre
density typical of the pinch effect sets in in the plate. T
width of the current pinch formed by trapped electrons
creases with increasingI . This in turn leads to an increase
the sample resistance.

The strong nonlinearity in the distribution of direct cu
rent over the sample cross section can generally lead to
fects of another type, such as the instability of the sta
current structure, and to a transition to a nonstationary s
~see Ref. 10!. Such a situation was not considered as app
to the pinch effect~4!, although the available experiment
data indicate the evolution of nonstationary processes u
the preset direct current conditions.11

The aim of the present publication is to demonstr
theoretically the possibility of a nonstationary process in
compensated metal carrying a strong direct current. The
namics of charge carriers and their conductivity in t
strongly nonuniform magnetic field of the current is analyz
in Sec. 2. It is found~see Sec. 3! that the static distribution o
current in the case~4! is not the only one possible distribu
tion. An alternative state in which the current pinch prop
gates in the direction transverse to the current is possible
to essentially nonlinear and nonlocal nature of conductiv
In this case, instead of a uniform electric field distributi
over the plate thickness, a domain structure is formed:
propagating current pinch separates two regions with dif
ent values of electric fieldE. The difference in these value
is proportional to the velocity of propagation. The directi
of motion of the domain wall and the pinch is such that t
region of a stronger electric field expels the region with
smaller value ofE. The observed nonstationary process
not accompanied by Joulean losses.

1. FORMULATION OF THE PROBLEM: BASIC EQUATIONS
AND BOUNDARY CONDITIONS

We shall assume that the required nonstationary sta
quasi-static: the characteristic timeDt of variation of elec-
tromagnetic field is much longer than the mean free time
charge carriers:
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Dt@v21, ~5!

wheren is the frequency of bulk relaxation of particles. W
shall assume that reflection of electrons at the plate bou
aries is diffusive.

We introduce the Cartesian system of coordinates
which thex-axis is perpendicular to the faces of the pla
and the planex50 is at the middle of the sample. We dire
the y-axis along the current and thez-axis along the vector
H(x,t) of the magnetic field of the current:

H~x,t !5$0,0,H~x,t !%. ~6!

The plate is assumed to be infinitely long~the size along the
y-axis! and wide~the size along thez-axis!.

In order to emphasize most vividly the role of magne
dynamic nonlinearity in the phenomena under investigati
we assume a simple model of a compensated metal,
assume that the electron and hole Fermi surfaces are id
cal spheres. The masses and mean free paths of electron
holes are also regarded to be identical. In this case, elect
and holes make equal contributions to the electrical cond
tivity tensor. These contributions are mutually compensa
in the nondiagonal tensor components and added in the
agonal components. Thus, the Hall effect does not take p
in the metal. This means that the electric field vectorE(x,t)
is directed along the current:

E~x,t !5$0,E~x,t !,0%. ~7!

The electricE(x,t) and magneticH(x,t) fields can be deter-
mined from Maxwell’s equations, which have the followin
form in our geometry:

2
]H~x,t !

]x
5

4p

c
j ~x,t !,

]E~x,t !

]x
52

1

c

]H~x,t !

]t
, ~8!

where j (x,t) is the current density.
Since the characteristic sizeR(I ) of the electron orbit

under the conditions~1! and ~4! is much smaller than the
plate thickness as well as the mean free path, we shall c
out the analysis of the distribution of current density and
fields in the main approximation in the parametersR(I )/d
!1 and R(I )/ l !1. The limit (R(I )/d)→0 corresponds to
the approximation of unbounded metal. In this case,
boundary conditions for Maxwell’s equations~8! can be
written in the form

H~2`,t !52H~1`,t !5H~ I !. ~9!

Since we assume that the total current

I 5E
2`

1`

dx j~x,t ! ~10!

is assumed to be constant, the magnetic fieldH(x,t) for
x→6` is independent of time@see~9!# and is determined
only by the value ofI in accordance with~2!.

2. DYNAMICS OF CONDUCTION ELECTRONS AND
CURRENT DENSITY

Peculiarities of the nonlinear conductivity of a metal a
determined by the shape of electron trajectories formed
the intrinsic magnetic field of the current. Let us analyze
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dynamics of charge carriers in a nonuniform quasi-sta
field H(x,t). Since the motion of electrons and holes in t
adopted model of the metal differs only in the sign of t
radius of curvature of their trajectories, we shall consid
only the dynamics of electrons.

The integrals of motion in a magnetic fieldH(x,t) are
the total energy~which will be assumed to be equal to th
Fermi energy for definiteness!

«F5pF
2/2m, ~11!

and they- andz-components of the generalized momentu
i.e.,

py5mvy2eA~x,t !/c, pz5mvz . ~12!

Here m is the electron mass andvy and vz are the compo-
nents of electron velocity. The vector potentialA(x,t) is
calibrated as follows:

A~x,t !5$0, A~x,t !,0%, A~x,t !5E
x0

x

dx8H~x8,t !.

~13!

The symbolx0 denotes the point at which the magnetic fie
of the current vanishes, i.e.,H(x0 ,t)50. In the static situa-
tion, this point corresponds to the middle of the sample, i
x050. In the general case, however, the value ofx0 depends
on time and hence does not coincide withx50. The value of
A(x,t) is negative and attains its maximum equal to zero
x5x0(t).

The velocity componentvx is defined as

vx56~1/m!@p'
2 2~py1eA~x,t !/c!2#1/2,

p'5~pF
22pz

2!1/2. ~14!

The condition that the radicand in the first formula in~14!
must be nonnegative can be used to find the range of ad
sible values of the generalized momentumpy :

py
min~x,t ![2p'2

eA~x,t !

c
<py<p'2

eA~x,t !

c

[py
max~x,t !. ~15!

This range is shown schematically in Fig. 1 in th

FIG. 1. Phase space (py ,x). Regions of existence of trapped~1! and Larmor
~2! particles.
c

r

,

.,

r

is-

coordinatespy and x. It can be seen that conduction ele
trons can be divided into two groups according to the type
motion:

~a! Trapped particles. They exist due to the alternat
spatial distribution of the magnetic field of the current. Th
trajectories are shown in Fig. 2 in the form of curves1 coil-
ing around the planex5x0(t). The half-period of motion of
a trapped electron along thex-axis is given by

T~p' ,py!5E
x1

x2 dx8

uvx~x8,t !u
. ~16!

According to Fig. 1, the turning pointsx1,x2 are the roots
of the equation

py
min~x,t !5py . ~17!

In the momentum space (p' ,py), this group of electrons
corresponds to the region

2eA~x,t !/2c<p'<pF ,

py
min~x,t !<py<py

max~0!5p' . ~18!

It is important to note that trapped particles are present o
in the neighborhood of the planex5x0(t), occupying the
spatial region of widthx12x2 . The coordinatesx6 of the
boundaries of the region where trapped carriers exist are
roots of the equation

euA~x6 ,t !u/2cpF51. ~19!

~b! Larmor electrons. These particles move in
constant-polarity magnetic field of the current in trajector
2 resembling circular orbits~see Fig. 2!. However, in con-
trast to Larmor circles, their trajectories are open in view
nonuniformity of the field H(x,t). The half- period of
motion of Larmor electrons is given by~16!, and according
to Fig. 1, the turning pointsx1,x2 can be found from the
equations

py
max~x,t !5py , py

min~x,t !5py . ~20!

The momentum space region (p' ,py) occupied by this elec-
tron group in the defined by the inequalities

0<p'<pF ,max$p' ,py
min~x,t !%<py<py

max~x,t !,

FIG. 2. Geometry of the problem. Schematic diagram of trajectories
trapped~curves1! and Larmor~curves2! electrons in the intrinsic magnetic
field of current.
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max$p' ,py
min~x,t !%5

p'1py
min~x,t !

2
1

up'2py
min~x,t !u
2

.

~21!

The current density for the corresponding groups of p
ticles can be determined from the solution of Boltzman
kinetic equation which must be linearized in the electric fie
E(x,t). The nonlinearity in this case is completely dete
mined by the magnetic fieldH(x,t) in the Lorentz force. If
we choose the generalized momentumpy ~12!, the quantity
p' ~14!, and the electron energy as independent variable
the distribution function, the kinetic equation is transform
into an ordinary differential equation. It can be easily in
grated for positive and negative values of the velocityvx

~14! separately. Integration constants are determined f
the conditions of joining of the obtained solutions at t
pointsx1,2 of electron turning. Omitting simple calculation
we write the final result:8

j t,L~x,t !5
3

2p

s

pF
2 l
E

Ot,L

dp'dpyp'vy~x,t !

~pF
22p'

2 !1/2uvx~x,t !u

3H E
x1

x dx8vy~x8,t !E~x8,t !

uvx~x8,t !u
sinh~vt~x;x8!!

1
cosh~nt~x1 ;x!!

cosh~nT!

3E
x1

x2 dx8ny~x8,t !E~x8,t !

uvx~x8,t !u
cosh~nt~x2 ;x8!!J .

~22!

The symbolsOt andOL denote the regions~18! and~21! of
trapped and Larmor electrons in the momentum sp
(p' ,py). The quantity

t~x;x8!5E
x

x8 dx9

uvx~x9,t !u
. ~23!

is the time of motion of a particle between the pointsx and
x8.

The parameternt appearing in~22! has the same orde
of magnitude as the ratio of the characteristic radius of c
vatureR of electron trajectories to the mean free pathl of
charge carriers:

vt;R/ l !1. ~24!

In the main approximation in this parameter, the current d
sity of trapped and Larmor charge carriers is independen
nt:

j t,L~x,t !5
3

2p

s

pF
3 E

Ot,L

dp'dpyp'vy~x,t !

uvzivx~x,t !uT

3E
x1

x2 dx8vy~x8,t !E~x8,t !

uvx~x8,t !u
. ~25!

We transform the integral with respect to the coordinatex8.
According to formulas~12! and ~14!, the velocity ratio
vy /uvxu is proportional to the derivative ofuvxu with respect
to the coordinate:
r-
s

-

of

-

m

e

r-

-
of

E
x1

x2 dx8vy~x8,t !E~x8,t !

uvx~x8,t !u

52
mc

e E
x1

x2
dx8

]uvx~x8,t !u
]x8

E~x8,t !

H~x8,t !
. ~26!

We integrate the right-hand side of this equality by par
Since the velocity componentvx vanishes at the turning
pointsx1 andx2 , the nonintegral term vanishes, and the ra
~26! assumes the form

E
x1

x2 dx8vy~x8,t !E~x8,t !

uvx~x8,t !u

5
mc

e E
x1

x2
dx8uvx~x8,t !%

]

]x8

E~x8,t !

H~x8,t !
. ~27!

It follows hence that the asymptotic form~25! of current
density differs from zero only due to the nonuniformity
the magneticH(x,t) and electricE(x,t) fields. It should be
noted that the next term in the expansion in the small par
eter ~24! is proportional to (R/ l )2!1. This term describes
the magnetoresistance effect in the intrinsic magnetic field
the current.

3. SELF-SIMULATING SOLUTION OF MAXWELL’S
EQUATIONS. ZERO-CURRENT RUNNING WAVE

We assume that a nonstationary process has the form
a wave of the type

E~x,t !5E~x2Vt!, H~x,t !5H~x2Vt!, ~28!

propagating along thex-axis,V being the phase velocity. Fo
a solution of the type~28!, the second Maxwell equation~8!
is transformed into an ordinary differential equation. Int
grating it, we can find the relation between the electric a
magnetic fields:

E~x2Vt!5E01~V/c!H~x2Vt!. ~29!

In this relation, the first termE0 is the integration con-
stant. It is equal to the electric field in the static case wh
V50. The second term (V/c)H(x2Vt) is the varying non-
uniform field of the wave. It turns out that it does not ge
erate current. Indeed, the electric field (V/c)H(x2Vt) nul-
lifies the integral~27!:

E
x1

x2 dx8vy~x82Vt!

uvx~x82Vt!u
V

c
H~x82Vt!

5
mc

e E
x1

x2
dx8uvx~x82Vt!u

]

]x8

V

c
50. ~30!

Thus, the current in a metal exists only due to the cons
electric fieldE0 . The current density depends on time sin
it is a functional of the varying magnetic fieldH(x2Vt).
We shall write the expression for current density in terms
dimensionless variables of the self-simulating variablej,
magnetic fieldh(j), and the vector potentiala(j), which
can be introduced as follows:

j5~x2Vt!/R~ I !, h~j!5H~x2Vt!/H~ I !,
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a~j!5eA~x2Vt!/cpF . ~31!

Taking into account~18!, ~21!, and~31!, for the current den-
sity ~25! normalized tosE0 , i.e.,

i t,L~j!5 j t,L~x2Vt!/sE0 , ~32!

we can write the following expressions:

i t~j!5E
2a~j!/2

1 dk'k'

~12k'
2 !1/2 E

2k'2a~j!

k' dkyby~j!

ubx~j!uu~k' ,ky!

3E
j1

j2 dj8by~j8!

ubx~j8!u
, j2<j<j1 , ~33!

i L~j!5E
0

1 dk'k'

~12k'
2 !1/2 E

2a~j!/21uk'1a~j!/2u

k'2a~j! dkyby~j!

ubx~j!uu~k' ,ky!

3E
j1

j2 dj8by~j8!

ubx~j8!u
, 2`,j,1`. ~34!

Herek',y , bx,y(j) andu(k' ,ky) are the dimensionless mo
menta, velocities, and half-period of motion, respectively,
a particle:

k',y5
p',y

pF
, bx,y~j!5

vx,y~x2Vt!

vF
,

u5
2peH~ I !

3mc
T5

2p

3 E
j1

j2 dj8

ubx~j8!u
. ~35!

The symbolsj65(x62Vt)/R(I ) denote dimensionless co
ordinates of the boundaries of the region of existence
trapped carriers in a reference frame moving with the wa
andj1,25(x1,22Vt)/R(I ) are the turning points for an elec
tron in the same reference frame.

Expressions~33! and ~34! have completely the sam
structure as the formulas for static current density. Howe
the role of spatial coordinate is played by the self-simulat
variable j. Thus, the problem of finding the profile of th
magnetic field of the wave is exactly reduced to the solut
of the magnetostatic problem:

2
dh~j!

dj
5

2sR~ I !E0

I
i ~j!, ~36!

i ~j!5H i t~j!1 i L~j!, j2<j<j1 ,

i L~j!, j<j2 , j>j1 ,

h~2`!52h~1`!51. ~37!

Integrating the left- and right-hand sides of Eq.~36! from
2` to 1` and taking into account the boundary conditio
~37!, we obtain the following expression for the IVC of th
metal:

E0~ I !5I /FsR~ I !E
2`

1`

dj i ~j!G . ~38!

Taking into account this expression, we can write the m
netostatic equation~36! in the form

2
dh~j!

dj
52i ~j!Y E

2`

1`

dj i ~j!. ~39!
f

r
e,

r,
g

n

-

It is natural to seek a solution of this equation, which is o
in j since such a solution automatically satisfies the bou
ary conditions~37!. It should be noted that for an oddh(j),
the turning pointsj1,2 and j6 of trapped electrons are lo
cated symmetrically relative toj50:

j152j2 , j252j1 . ~40!

Equation~39! and expressions~33! and ~34! for current
density do not contain any parameters. For this reason,
IVC ~38! of the metal is defined to within a numerical fact
by the formula

E0~ I !}I /sR~ I !52peI2/sc2pF . ~41!

It follows hence that in the limit of strong currents~4!, the
electrical resistance of the sample increases linearly withI . It
was mentioned in Introduction that such a tendency was
served experimentally.7

The type of the nonlinearity of the IVC~41! implies that
the total currentI flows mainly through the region having
size ;R(I ) and a high conductivity of the order ofs. Un-
fortunately, it is impossible to solve the magnetostatic eq
tion ~39! exactly and to find the current density distributio
in view of extremely complicated integral relation betwe
i (j) and h(j). However, a qualitative analysis of th
asymptotic forms~33! and~34! of current density shows tha
the current pinch is formed by the group of trapped cha
carriers.8 Trapped particles oscillating relative to plane of t
zero magnetic field of the current preserve a considera
effective mean free path~of the order ofl !. In this case, the
contribution to the current densityi t(0) comes from all elec-
trons irrespective of their angle of incidence on the pla
j50. It follows from ~33! that the value ofi t(0) is of the
order of unity. The value ofi t(j) decreases with increasin
distance from the planej50 and vanishes, by virtue of~19!,
at the boundaries6j1 of the region of existence of trappe
carriers. The width 2j1 of this region is of the order of
unity. At the periphery (uju>j1), the mobility of particles is
suppressed by the strong constant-polarity magnetic fiel
the current. As a result, the dimensionless current den
i L(j) ~34! turns out to be smaller than the valuei t(0) ac-
cording to estimates.9 In the limit uju→`, it decreases to
zero over the characteristic scale;1 so that the total curren
through the metal is a finite quantity. The current dens
distribution can be roughly presented as follows:8

i ~j!5H 1, uju<j1 ,

0, uju.j1 .
~42!

Here we assume that the entire current flows in the reg
occupied by trapped charge carriers:

E
2`

1`

dj i ~j!52j1 . ~43!

Equation~39! with the current density~42! leads to the fol-
lowing expression for the profile of the dimensionless ma
netic fieldh(j):

h~j!52H j/j1 , uju<j1 ,

sgnj, uju.j1 .
~44!
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We determine the quantityj1 from Eq. ~19! after writing it
in terms of the dimensionless variables~31!. Solving this
equation for the given distribution~44! of h(j), we find that
the dimensionless half-widthj1 of the current pinch is equa
to 4. Accordingly, the numerical factor in the expression~38!
for IVC is equal to 1/8.

Thus, the observed nonstationary process is a qu
static propagation of high-conductivity region in a directi
perpendicular to the current. This motion generates a z
curent variable component of the electric field@see~29!# ow-
ing to which the distribution of the resultant electric fie
acquires the form of a running domain wall of the sizeR(I ):

E~x2Vt!5
peI2

4sc2pF
1

V

c
H~1!hS x2Vt

R~ I ! D . ~45!

The direction of wave propagation corresponds to ‘‘switc
ing’’ of the sample from the state with a smaller value
electric field to a state with a larger value ofE. The wave
velocity V is bounded by the requirement~5!. Considering
that the characteristic time scaleDt of electromagnetic field
variation isR(I )/V, we can write condition~5! in the form

V!R~ I !n. ~46!

Let us calculate Joule losses under nonstationary co
tions without resorting to the model expressions~42! and
~44!. Using the relation~29! between the electric and mag
netic fields, first Maxwell’s equation~8!, and taking into ac-
count the antisymmetry of the boundary conditions~9!, we
arrive at the following chain of equalities:

E
2`

1`

dx j~x2Vt!E~x2Vt!

52
cE0

4p E
2`

1`

dx
]H~x2Vt!

]x
2

V

4p E
2`

1`

dx

3H~x2Vt!
]H~x2Vt!

]x
5E0I . ~47!

It follows hence that Joule losses are associated only with
constant electric fieldE0 , i.e., have the same magnitude as
the static case. This means that the motion of the electrom
netic domain wall~45! is nondissipative.

CONCLUSION

According to the above analysis, the voltage across
sample for a given current under the conditions of pin
effect must have a constant as well as a varying compo
~see ~45!!. This conclusion is confirmed by the result
si-
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nt

experiments11 devoted to the detailed analysis of IVC fo
compensated metals in the range of strong currents. H
ever, Zakharchenkoet al.11 observed self-excited voltage os
cillations, while the dependence~45! is a switching signal,
i.e., is aperiodic. In our opinion, self-excited oscillation
emerge as a result of the effect of sample boundaries on
dynamics of the current pinch under real conditions. T
effect becomes significant when the high-conductivity reg
approaches the metal surface to a distance of the orde
characteristic radius of curvatureR(I ) of electron trajecto-
ries. In the vicinity of the boundary, the current pinch mu
stop since the planex5x0(t) of zero magnetic field canno
emerge at the conductor surface by virtue of the conditi
H(2d/2, t)52H(d/2, t)5H(I ). The asymmetric curren
distribution formed is obviously unstable, and the pin
starts moving to the opposite face of the plate. As a res
spatial oscillations of current pitch accompanied by lo
frequency oscillations of voltage across the sample can
pear. The need to take into account the finite thickness of
plate necessitates further theoretical investigations of non
tionary effects in metals. The reason behind the instability
static distribution of current leading to the generation of se
sustained voltage oscillations deserves special investiga

The author is grateful to V. A. Yampol’skii for valuabl
remarks made during the discussion of the results of
research.
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The voltage across a Bi single crystal in the@E3H# direction ~transverse voltageE'! is
investigated in strong crossed electricE and magneticH fields under phonon generation
conditions. Information on electron acousto-emfEe

a of bismuth, forming segments with
a negative differential conductivity on current–voltage characteristicsj vs. E' , is obtained.
Acousto-emf is measured as the absolute value of the difference in transverse voltage before and
after the transition of the sample to the phonon generation mode. It is found that the
dependence of acousto-emf on quantizing magnetic field is nonmonotonic. This is associated
with oscillations in the electron–phonon generation rate]Nq /]t in a magnetic field, i.e., with
oscillations of the phonon–electron collision frequencytpe

21 . © 1999 American Institute of
Physics.@S1063-777X~99!00811-7#
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INTRODUCTION

Until recently, electroacoustic effects i
semiconductors1,2 and semimetals~represented by Bi which
is the only material suitable for such experiments!3–5 were
studied by measuring, as a rule, the potential differe
along the electric field in the sample. However, a numbe
effects associated with the generation of nonequilibri
phonons can be observed while studying the potential dif
enceU' transverse to current.6

Let us consider a Bi sample in strong crossed electriE
and magneticH fields during supersonic drift of charge ca
riers in the@E3H# direction~phonon generation mode!, i.e.,
under the conditionsv'

d 5cE/H>s; j >nes/Vt; Vt@1.
Here,v'

d is the drift velocity of charge carriers,j the current
density,s the velocity of sound,V the cyclotron frequency,t
carrier momentum relaxation time, andn the number density
of electrons.

For supersonic drift of charge carriers, the phonon fl
in bismuth is formed mainly by electrons rather than hol
This conclusion is based on the ratio of the deformation
tential constants for electronse and holesh,7 and is con-
firmed by the experimental results.8 Hence the effect of pho
non generation in bismuth may be describ
phenomenologically with the help of the acousto-emf5,9,10

Ee
a>^]«/]t&ph/nes which is associated with the transfer

momentum from the electron subsystem to the phonon s
system. Herê ]«/]t&ph is the average energy of phonon
emitted by the electrons per unit time. IfWe is the specific
electric power imparted to the electron subsystem, andG the
coefficient which shows the part of electron power tra
formed into sound, we can present the acousto-emf in
form Ee

a'GWe /nes. Like the acoustic absorption coeffi
cient, the generation coefficientG is a function of the elec-
tron drift velocity.5

We shall assume that the applied longitudinal elec
field E is given. In this case, the increase in the bism
resistivity rH upon an increase in the transverse magn
9011063-777X/99/25(11)/6/$15.00
e
f
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field must be accompanied by a decrease in the spe
power We.E2/rH . In other words, the increase in tran
verse magnetic field in the phonon generation mode fo
given value of the longitudinal electric field and forG.1
must lead to a decrease in the acousto-emf. Moreover,
peculiarities of the bismuth electron spectrum~low Fermi
energy«F and small cyclotron massesm* ! lead to the quan-
tum limit in the magnetic field (\V'«F) even for H
.10 kOe.11 In the quantum limit, the number of energy lev
els below the Fermi energy is small, and consequently th
population density is quite high. Hence the oscillations of
number of electron states at the Fermi level in a magn
field are also relatively large. This circumstance must aff
noticeably the frequencytpe

21 of phonon–electron collisions
which becomes a considerably nonmonotonic function ofH
in relatively weak magnetic fields. It follows hence that t
acousto-emf

Ep
a}^]«/]t&ph}(

q
^]Nq /]t&>(

q
^Nq /tpe&

must also vary nonmonotonically in a magnetic field~Nq is
the number of phonons with momentumq in the steady
state!.

The present paper aims at measuring the depend
Ee

a(H) and attempts to discover experimentally the prop
ties of the acousto-emf considered above. The expression
the electron acousto-emf can be obtained from the condi
of vanishing of the transverse current in the sampleI'

50) under the assumptionuEe
au@uEh

au.6 It is found thatEe
a is

approximately equal to the absolute magnitude of the diff
enceuDE'u in the transverse fields before and after a tran
tion of the sample to the phonon generation regime fo
given longitudinal fieldE. ~It should be recalled that the
transverse fieldE' is parallel to the drift velocity, i.e.,
v'

d i@E3H#.! Hence the necessary condition for the measu
ment of acousto-emf is that the timet i in which the driving
signal increases must be much smaller than the relaxa
© 1999 American Institute of Physics
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time t r in the phonon generation regime. For bismuth,t r

.1026 s in crossed electric and magnetic fields.4,5 Conse-
quently, and also with a view to exclude the sample heat
we used the pulsed measuring technique in our invest
tions. For characteristic current densitiesj .103 A/cm2 for
sound generation in bismuth, pulses of duration 5–6ms and
a repetition rate;0.1 s are found to be optimal.

EXPERIMENTAL RESULTS

Measurements were made on a bismuth single crysta
purity 99.9999% at helium temperatures in magnetic fie
up to 56 kOe. The sample had the dimensions 131
38 mm. The longitudinal axis is parallel to the binary dire
tion C2ix, and the transverse edges coincide with the dir
tionsC1iy andC3iz ~C1 andC3 are the bisector and trigona
crystallographic axes, respectively!. The contacts for measur
ing transverse potential differenceU''I ix were established
on opposite ends~C1C2 plane! along the trigonal axisC3

with the help of Wood’s alloy. The longitudinal potentia
differenceUi I was measured by using the current leads s
ated on the end facesC1C3 . The magnetic field vectorH is
parallel to theC1-axis. The quality of the investigated bis
muth single crystal could be estimated from the ratio of
sistances at room temperature and at helium tempera
R0

300/R0
4.25180 in zero magnetic field.

In this work, measurements in the linear regimej
!nes/Vt,E!Hs/c) were made in a direct curren
~Keithley 224 power supply!. The voltage signal across th
sample was measured by the Keithley-196 voltmeter c
nected to a PC-AT where the signal was converted into d
tal form which is convenient for data processing. In order
single out the Shubnikov–de Haas oscillations, we s
tracted the monotonic part from the dependencerxx(H),
which was approximated as a certain polynomial. In
magnetic field H556 kOe, the ratioU'(1H)/U'(2H)
5rzx(1H)/rzx(2H)521.4, rzx(1H)50.43V•cm, while
rxx50.38V•cm ~r ik are components of the magnetoresist
ity tensor!.

In the phonon generation regime, the properties of
sample were measured in pulsed current. The pulse dura
wastp>4.5– 5.5ms, while the time interval betweem pulse
was tb.0.531021 s. The sample, the standard resistan
RN51 V, and the current leads with a resistanceRw

>0.5V ~RN1Rw5Rb is the ballast resistance! served as the
load for the pulse generator. The maximum output voltage
the generator wasVg543 V.

Under the conditions of our experiments, the value oftb

is optimal in the sense that a relatively small thermal ene
liberated in the sample during the pulse propagation is di
pated into the surroundings before the arrival of the n
pulse. The evolution of the response signalU' associated
with the accumulation of energy in the sample can be
served on the oscillograph screen by decreasingtb by a fac-
tor of 2–3. Fortb51022 s, the heating of the sample b
about 10 K results in the disappearance of the region w
negative differential conductivity, which is typical of th
phonon generation regime at 4.2 K, from the current–volt
~I vs. U'! characteristics.
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Figure 1 shows the dynamic current–voltage (I –U)
characteristic in a magnetic field 22.7 kOe, obtained un
the conditions when the pulse amplitude of the longitudi
voltage across the sample is the largest. The upper puls
the inset to Fig. 1 corresponds to the longitudinal voltageU
across the sample, and the lower one corresponds to the
tential difference across the standard resistance, i.e., is
oscillogram of the current. The current–voltage characte
tic consists of several segments corresponding to various
gions ~leading edge, plateau and the trailing edge! of the
voltage pulse. The build-up time of the longitudinal volta
front is t i50.7ms, and the corresponding part of the IVC
I–U characteristic linear~→, see Fig. 1!. This is followed by
an increase in current in the circuit at practically const
~plateau! longitudinal voltage across the sample (↑), which
is associated with the transition of the sample into the p
non generation mode. The part of the IVC corresponding
the trailing edge of the pulse (←) has a characteristic kink3–5

which is observed for a drift velocityv'
d 5cEk/H>0.75

3105 cm/s of carriers close to the velocity of soun
~Uk513.4 V, Fig. 1!. The kink determines the transitio
from the phonon generation~nonlinear! mode to the linear
regime. Another method of constructing theI–U character-
istics is the comparison of the voltage across the sample
the current in it at a fixed instant of time for different valu
of the output voltage of the generator. We carried out suc
comparison 3ms after the beginning of the pulse. The resu
almost coincided with the segment of theI–U characteristic
obtained at the rear front of the pulse mentioned above~see
Fig. 1!.

Thus, the relaxation timet r in the phonon generation
mode under the experimental conditions varies from 0.7
3 ms. It should be noted thatt r is generally measured no
from the beginning of the pulse, but from the instant wh
the voltage across the sample attains the valueUk . However,
the valueUk of voltage in our experiments is attained almo
instantaneously~see Fig. 1!. The current–voltage characte
istic shown in Fig. 1 is typical of the magnetic field rang
used in our experiments.

FIG. 1. Dynamic current–voltage characteristic in a magnetic fieldH
522.7 kOe. The inset shows the longitudinal voltage in the sample~curve
1! and the voltage across the standard resistance~curve2!.
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In accordance with what has been said earlier, the t
of relaxation to the phonon generation mode for Bi samp
of thickness;1 mm is close to 1ms for magnetic fields
>10 kOe.5 The peculiarities of transition of such samples
the phonon generation mode observed by many authors,
a decrease in the relaxation time with increasing magn
field and quantum oscillations of relaxation time in antipha
with oscillations of the density of electron states at the Fe
surface, have typical features of the phonon–electron da
ing. Apparently, we are speaking of samples with a thickn
exceeding the phonon–electron mean free path (d@ l pe), and
the possibility of predominant phonon–electron damping
associated with the propagation of an acoustic wave from
sample boundary in a direction opposite to the drift of
mobile charge.~A detailed discussion of mechanisms of r
laxation to the phonon generation mode in Bi can be found
Ref. 5.!

Figure 2 shows signals of transverse voltage obtaine
different magnetic fields for the maximum potential diffe
ence at the generator output. We shall assume~the substan-
tiation will be given below! that the point on the oscillogram
beyond which the transverse voltage starts decreasing c
sponds to the beginning of the transition to the phonon g
eration~nonlinear! mode, while the realization of thenonlin-
ear mode corresponds to the peak of the current through
sample~see Fig. 1!. Vertical arrows in Fig. 2 show the ab

FIG. 2. Oscillograms of transverse voltage in magnetic fields, kOe: 2
~a,d!, 29.89~b!, and 52.3~c! in the experimental geometry2H ~a–c! and
1H ~d!. The scale is 1ms/division along the horizontal and 2 V/divisio
along the vertical.
e
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solute value of the difference between transverse voltage
these points, i.e., the difference in voltages before and a
the transition of the sample to the phonon generation mo

The magnetic field dependence of the difference in tra
verse voltages~which is approximately equal to the acoust
emf Ee

a ; see below! is presented in Fig. 3. Obviously, th
Ee

a(H) dependence should be determined at a constant
gitudinal voltage in the conductor. However, the longitudin
voltage in the sample also change slightly for a fixed volta
at the generator output and a finite ballast resistance
result of an increase in the Bi resistance in a magnetic fi
In our opinion, these changes do not affect the acousto-
Ee

a significantly. Indeed, the longitudinal voltage increas
approximately by 30% as the magnetic field increases fr
22.7 to 29.9 kOe, and by 40% when it increases to 52.3 k
At the same time, acousto-emf increases approximately b
factor of 1.6 in the former case and decreases virtually in
same proportion in the latter case~see Fig. 3!. For this reason
we assume that decisive changes inEe

a upon an increase in
H, which correlate with changes in magnetoresistance~see
below!, should be attributed to the effect of magnetic field
the properties of the sample.

Figure 3 also shows the magnetic field dependence
the electric powerP liberated in the sample. The power wa
determined with the help of the approximate relationP
>I m

2 @(Ug /I m)2RB#, whereI m is the maximum value of the
current pulse measured simultaneously with the transv
voltage U' , and Ug543 V. Figure 3 also illustrates

.7
FIG. 3. Magnetic field dependences of the oscillating component of lin
magnetoresistancer̃xx , acousto-emfEe

a (s), and electric powerP (n).
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Shubnikov–de Haas oscillationsr̃xx(H) measured in the lin-
ear mode (r̃xx /rxx<0.1).

It can be seen that like power, acousto-emf decrease
the average upon an increase in magnetic field, depen
nonmonotonically onH in the quantum limit for electrons
The minimum ofEe

a for H>24 kOe corresponds to the max
mum of rxx , while the maximum ofEe

a for H>28 kOe cor-
responds to the minimum ofrxx .

DISCUSSION OF RESULTS

Let us introduce the electron acousto-emfEe
a ,9,10 assum-

ing that the average changes in pulses of the electron
phonon subsystems per unit time in the phonon genera
mode are equal:

^]P/]t&e52^]P/]t&ph52qJ(
q

\q^]Nq /]t&

52neEe
a . ~1!

It follows hence that

Ee
a5

qJ^]«/]t&ph

nes
; ^]«/]t&ph5(

q
\sq̂ ]Nq /]t&, ~2!

whereNq is the distribution function for phonons with th
momentumq and qJ is the unit vector.

We present the phonon distribution function as the s
of the equilibrium (Nq0) and nonequilibrium (Nq

(1)) compo-
nents. In this case, for the arriving term in the kinetic eq
tion we have

(
q

]Nq /]t5(
q

aq~Nq01Nq
~1!!1aq

f . ~3!

Hereaq is the increment of phonon accumulation andaq
f the

coefficient describing the interaction of electrons with ze
point vibrations of the lattice. An analysis shows~see Refs.
5, 6, and 12 for details! that the determining contribution t
the sum~3! comes from nonequilibrium phonons. For th
reason, we can put in relation~2! ]Nq /]t>aqNq

(1) .
Let us now suppose that a certain coefficientg corre-

sponds to the fraction of the electric powerWe introduced
into the electron system, which is transformed into acou
flux. In this case, acousto-emf can be defined~to within the
terms associated with amplification of equilibrium phono
and zero-point vibrations! as5

Ee
a>~g2b!We /nes, ~4!

where the coefficientb is associated with attenuation o
sound,g2b5G. Taking into account what has been sa
above, we can now write the following relation connectin
among other things, the acousto-emfEe

a with the phonon–
electron collision frequencyaq5tpe

21 :

GWe>(
q

\vq^aqNq
~1!&>nesEe

a . ~5!

The method of experimental determination of acous
emf in Bi was proposed by the author in Ref. 6. Followi
Ref. 6, we shall assume that the sample is unbounded a
on
ng

nd
n

-

-

ic

s

,

-

ng

the y-axis (Ey50) and introduce the acousto-emf for ele
trons drifting along thez-axis. Assuming that the acousto
emf for holes is smaller than the electron acousto-emf
neglecting diffusive effects, we can determine the transve
field E' in the phonon generation mode from the conditi
that the current along thez-axis is equal to zero~see also
Ref. 13!:

E'~6H!>6S nec

H D @Dn/n6sinu~me
0H/c!21#

3E~neeme
H1nhemh

H!217Ee
a . ~6!

Here me,h
H 5me,h

0 /(me,h
0 H/c)2 are the average mobilities o

electrons and holes along thez-axis, me,h
0 the mobilities of

electrons and holes in zero magnetic field,Dn5ne2nh is the
difference in the electron and hole concentrations,u the pos-
sible small angle of deviation of magnetic field from th
bisector axisC1iy, andneeme

H>nhemh
H . Let us estimate the

parameters appearing in formula~6!. From the experimenta
relation E'(1H)/E'(2H)521.4 obtained in the linear
mode for H556 kOe ~see above!, we haveu(Dn/n)(sinu)
3(me

0H/c)21u'10. Putting11 me
0H/c'103 andu'1°, we ob-

tain Dn/n'1023– 1024.
It follows from formula ~6! that the electronic acousto

emf is defined as the absolute value of the difference
transverse voltages measured before and after transitio
the sample to the phonon generation regime for a given va
of the longitudinal fieldE.

For a visual comparison with the experimental resu
we present graphically the driving voltage signalE and the
response signals for currentj and the transverse voltageE' .
We shall assume that the relaxation timet r in the phonon
generation mode is much larger than the build-up timet i of
the driving signal pulse. To begin with, we shall also dis
gard relaxation effects during a transition from nonlinear
linear regime upon a decrease in the driving voltage at
trailing edge of the pulse. Further, we assume that in ac
dance with formula~4!, the dependence of acousto-emf o
the longitudinal fieldE is considerably nonlinear.

Figure 4 shows the pulses ofE, j andE' , as well as the
dependencesj (E) and j (E'). Let us consider the pulsej (t)
in the time interval in which the longitudinal voltage is co
stant, i.e., corresponds to the plateau of driving signal pu
In the beginning~for t,t r!, the current is independent o

FIG. 4. Schematic diagram of electric signal pulses and current–vol
characteristics.



ng
e

r
m
in

e-

.
rm
e
ls

n
ic
a
g

er
th
r

te
th

f
llo

ls

F
.
i

d
e
ti

ob
el

lu

i-
un

fl
e
th

el

rift
lec-
d in
in-
olt-
its

k

the

an
lli-
’’

ter-

to-
ith
of
to

his
en-
that

r-
r-
is.

cen-
ron
ific

he
r-
ds

-
ove

g
ron

the
ur-

fre-
ue,
a
he
fre-
to

g-

rmi

905Low Temp. Phys. 25 (11), November 1999 Yu. A. Bogod
time. Later~for t.t r!, the current increases with decreasi
resistance of the sample during transition to the phonon g
eration regime. After the transition to the nonlinear regim
(t.t r), the current again becomes constant~Fig. 4!. Like
current, the transverse voltage is independent of time fot i

,t,t r . Upon a transition to the phonon generation regi
(t.t r), the electronic acousto-emf comes into play and
creases, thus leading to a decrease in the value ofE' in
accordance with formula~6!. On completion of a transition
to the nonlinear regime (t.t r), the transverse resistance b
comes independent of time again (Ee

a5const). As the driving
voltageE begins to decrease~trailing edge of the pulse, Fig
4!, the acousto-emfEe

a decreases more rapidly than the te
linear inE in formula ~6!. As a result, the transverse voltag
E' increases, forming a peak at the trailing edge of the pu
After transition from nonlinear to linear regime~upon a fur-
ther decrease in the longitudinal voltage!, the acousto-emf
vanishes, andE' decreases in proportion toE ~see formula
~6! and Fig. 4!.

In the schematic diagram of the transverse voltage sig
E' ~see Fig. 4!, the vertical arrow shows the electron
acousto-emfEe

a . The acousto-emf is measured graphically
the difference between two values of the transverse volta
The first corresponds to the moment when the transv
voltage decreases at the beginning of a transition of
sample to the phonon generation regime. The second co
sponds to the completion of the transition, which is indica
by the maximum value of the current passing through
sample. It should be recalled that this technique was used
determining the acousto-emf from the experimental osci
grams.

The current–voltage characteristicsj (E) and j (E')
were constructed from a comparison of the schematic pu
of E, j and E' in Fig. 4. The dependencej (E') contains
regions with negative differential conductivity.6

Let us compare the schematic diagrams presented in
4 with the experimental data presented in Figs. 1 and 2
qualitative agreement of the phenomenological analysis w
the experiment is beyond any doubt~we do not consider here
the experimentally observed acoustoelectric vibrations5!. The
analogy is closer than a simple illustrative similarity. Indee
it follows from Eq. ~6! that the sign of transverse voltag
may be reversed upon a transition to the phonon genera
regime ~dot-and-dash curve in Fig. 4!. It can be seen from
Eq. ~6! that under the conditions considered by us, the pr
ability of such an occurrence is higher for the magnetic fi
direction2H than for the direction1H: the term linear inE
in Eq. ~6! is relatively small for the direction2H. This is
exactly in accord with the experiment@see Figs. 2~a! and
2~d!#: the sign of transverse voltage is reversed upon inc
sion of the acousto-emf for the direction2H @Fig. 2~a!#. For
the direction1H and a given value of the driving longitud
nal voltage, the sign of transverse voltage remains
changed@Fig. 2~d!#.

In the above analysis, we disregarded the possible in
ence of the so-called aftersound effect on the peak valu
transverse voltage corresponding to the trailing edge of
driving voltage pulse~see Fig. 4!. The ‘‘aftersound’’ effect is
manifested in that upon a sharp decrease in the applied
n-
e
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tric field whose value initially corresponds to supersonic d
of charge carriers, a potential difference associated with e
tron drag by previously excited phonons can be detecte
the sample. In particular, the phonon–electron drag must
duce an extra transverse emf which, being added to the v
age peak at the trailing edge of the pulse, can increase
height6 ~the initial segment of the possible ‘‘resultant’’ pea
is shown by dashed lines in Fig. 4!. Obviously, the peak
height, on the one hand, must be the higher, the larger
concentration of nonequilibrium phonons@i.e., acousto-emf,
see~5!#. On the other hand, a high value of acousto-emf c
correspond to a high frequency of phonon– electron co
sions, which hampers the formation of the ‘‘aftersound
peak. As a result, the combination of the two factors de
mines the height of observed experimental peaks~see Fig. 2!.

Let us consider the effect of magnetic field on acous
emf. It should be noted above all that in accordance w
formula ~4!, the relative change in acousto-emf must be
the order of the relative change in the power introduced
the electron system. An experimental confirmation of t
fact can be seen in Fig. 3 showing the magnetic field dep
dences of these quantities. It should be noted, however,
the powerP in Fig. 3 was calculated from an empirical fo
mula ~see above!. Consequently, we must verify that the fo
mula conforms to a correct physical relation. Let us do th

The emergence of the transverse fieldE' in the sample
due to the difference between the electron and hole con
trations as well as under the influence of the elect
acousto-emf leads to the following expression for spec
power:

W>~neeme
H1nhemh

H!~E21E'
2 !, ~7!

where the quantityE' is defined by formula~6!. Puttingne

.nh , me
H.mh

H , (me
0H/c)21.Dn/n, Ee

a<E, we obtain

W>E2/rH
l , ~8!

whererH
l is the linear magnetoresistivity of the sample. T

calculation of the power with the help of an empirical fo
mula and formula~8! using the data presented in Fig. 1 lea
to values of the same order of magnitude~they can differ
approximately by a factor of 2.7!. Consequently, we can as
sume that the convenient empirical formula used by us ab
is suitable for obtaining estimates.

It is well known that the density of states in a stron
magnetic field is quantized, and the continuous elect
spectrum splits into subbands~Landau subbands!. Every
time when the bottom of a Landau subband intersects
Fermi level, the electron density of states at the Fermi s
face attains its maximum value. For this reason, the
quency of electron collisions also has the maximum val
and hence the transverse (H'E) magnetoresistance has
minimum.14 The maximum density of electron states at t
Fermi surface must also correspond to the maximum
quencyaq5tpe

21 of phonon–electron collisions, and hence
the maximum acousto-emf@see~5!#.

It was mentioned above that the quantum limit in ma
netic field in Bi for HiC1 is realized forH.10 kOe. This
circumstance is associated with small values of the Fe
energy «F'10214erg and small cyclotron massesme*
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.1022m0 ~m0 is the mass of a free electron!. In the quantum
limit, the number of Landau levels lying below the Ferm
energy is of the order of unity, and their population density
relatively high. For this reason, oscillations of the number
electron states at the Fermi surface in a magnetic field
also relatively strong. Consequently, theEe

a(H) dependence
must be essentially nonmonotonic. This is illustrated in F
3 in which the maximum and minimum of transverse ma
netoresistance are observed simultaneously with the m
mum and maximum of acousto-emf. The minimum ofrxx

nearH528.2 kOe is associated with the passage of the L
dau electron subbands 01, 12 through the Fermi level, i.e.
is the last electron minimum. The next two oscillatio
minima of magnetoresistance forH535.3 kOe and H
552.6 kOe are associated with the hole levelsM576 and
M566,11,15 the 1 and 2 signs corresponding to two spi
projections.

Thus, we have observed for the first time the nonmo
tonic magnetic field dependence of acousto-emf associ
with oscillations of the electron–phonon generation r
]Nq /]t;aqNq

(1) as a function ofH. Ideologically, this re-
search is close to the investigations carried out in Refs
and 16. In Ref. 16, quantum oscillations in the magnetic fi
of sound passing though a Bi crystal~H'q, q being the
wave vector of the sound! were inverted after a transition o
the sample to the phonon generation mode (cE/H
.s,E'H): the minimum of the transmission was replac
by maximum, and vice versa. In Ref. 5, the phonon gene
s
f
re

.
-
i-

n-

-
ed
e

5,
d

a-

tion coefficientG as a function of magnetic field was calcu
lated phenomenologically with the help ofj vs. E character-
istics of Bi measured in a transverse magnetic field. A
result, a nonmonotonic dependenceG(H) was obtained@see
~5!#. The peaks of the generation coefficient corresponde
magnetoresistance minima in this case.
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Magnetically stimulated inhomogeneity of conductivity and nonlocal transport
phenomena in metals

V. R. Sobol, O. N. Mazurenko, and A. A. Drozd
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220072 Minsk, Belarus*
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Charge transport in a conducting medium with a magnetically stimulated inhomogeneity of
kinetic coefficients along the direction of transport is investigated both experimentally and
analytically. Measurements were made on samples in the form of high-purity polycrystalline
aluminum plates whose conductivity inhomogeneity was simulated by the technique of curving of
current lines so that the local normal component of the applied magnetic field varies
according to an exponential or quadratic law. The relations describing the tensor connection
between the electric field and charge flux density are used to calculate spatial dependence of the
potential. The sign reversal of the electric field is described as the result of competition
between the potential contributions from the current along the transverse magnetic field gradient
and the Hall current at right angles to it. ©1999 American Institute of Physics.
@S1063-777X~99!00911-1#
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INTRODUCTION

In this communication, we describe the peculiarities
dynamics of conduction electrons in metals during sta
charge transport under conditions of regular spatial inhom
geneity of kinetic coefficients. Earlier, we constructed1 the
phenomenological model describing the motion of cha
carriers for linear dependence of magnetic field in the
proximation of zero charge transport through lateral faces
the sample along the inward normal for spherical and clo
types of constant energy surface. It was proven that th
exists a nonlocal relation between the current density
magnetic field, and the current density depends consider
on the magnetic field as well as its gradient. Consequen
the electric potential is large at one of the lateral faces
small at the other. It was found2,3 that an inconsistency is
observed for large values and a complex~e.g., exponential!
spatial dependence of the inhomogeneity between the ex
mental results and the theoretical model. For the sample
corresponding to a low potential level, the inconsistency
not only quantitative, but also qualitative and is the result
disparity between the boundary conditions in the model1 and
the actual boundary conditions in the experiment.2,3

The present paper aims at studying the kinetic phen
ena in an inhomogeneous nonlinear magnetic field under
propriate boundary conditions at the lateral surface of
sample. The investigated object was polycrystalline alu
num as a typical cryoconductor. The justification for su
investigations is that low-temperature electrodynamics c
ers a number of problems which requires not only the eva
ation of effective conductivity connecting the volum
averaged current and field, but also the nature of charge fl
the of current density distribution, and the scale of its loc
ization. The main factors involved are the conditions
interaction of conduction electrons with the surface of
9071063-777X/99/25(11)/5/$15.00
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conductor and their effect on the probability density dist
bution function, nature and scale of inhomogeneities b
intrinsic and those caused by external agencies.4–6 We shall
consider charge transport in a polycrystalline medium wh
is randomly inhomogeneous due to different orientations
crystallites, and has an additional regular macroscopic in
mogeneity of kinetic coefficients induced by the appli
magnetic field. Such a formulation of the problem is justifi
since the development of cryogenic and electrical engine
ing is directed towards creating new conducting mater
with complex phase composition and crystal structure.
spite of the fact that such materials are homogeneous
microscopic level, their resistive properties may change s
nificantly because of various types of inhomogeneities ex
ing on the macroscopic scale. For example, inhomogen
in the properties of composite conductors is observed at
interface between two components having different value
Hall coefficient.6,7 Cryoconductors based on polycrystallin
aluminum are complex systems, and the spatial depend
of kinetic coefficients induced by natural inhomogeneity
the magnetic field in the bulk of the solenoid winding de
riorates their efficiency.

EXPERIMENT

Simulation of regular spatial inhomogeneity of conductivity.
Sample preparation

The method of curved current trajectories conforming
the bent profile of the sample, where the local normal co
ponent of the external field is defined by the curvature a
given point,1 was used for simulating conductivity inhomo
geneities instead of the modification of pole pieces of
electromagnet, which usually bends the magnetic lines
force and changes their density in the bulk of the samp
The samples were prepared from aluminum ingots in wh
© 1999 American Institute of Physics
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the ratio of room temperature resistance to resistance at
uid helium temperature was 6000–15000. The field dep
dencer5r0(11lB) of the magnetoresistance of aluminu
was taken into account during the analysis, wherer0 is the
diagonal component of resistance extrapolated to zero va
andl is a phenomenological parameter describing the deg
of unsaturation associated with the presence of a nar
layer of extended and open trajectories.

The nonlinear character of spatial dependence was r
ized in the experiment for the local normal component of
two types of external magnetic fieldB, arbitrarily described
as exponential and quadratic, for which the main contri
tion to B comes from the first and second terms in the fi
expansion into a series in the direction of charge transpo

B5B0 exp~dx!, B5B01kx1a
x2

2
. ~1!

HereB0 is the magnetic field at the beginning of the workin
region, d, k and a are its inhomogeneity parameters. T
direction of transport coincides with thex-axis, while the
direction perpendicular to the lateral faces coincides with
y-axis. The characteristics of the families of samples dif
from one another and are presented systematically in Tab

The sample preparation technique, i.e., the proces
computing the appropriate shape, preparation of temp
preparation of the initial sample plate (0.230.633.5 cm)
with the required potential areas, formation of profile fo
lowed by annealing and preparation of potential contacts
the surface and lateral faces of the sample were identica
those used in our earlier work.1

MEASURING PROCEDURE

The electric field potential was measured by taking in
account the redistribution of the current density over
cross section, and hence traditional methods of obtain
useful signal through commutation of the magnetic field
rection and direction of the current through the sample co
not be used. In this case, a change in the magnetic
direction automatically leads to the sign reversal of the fi
gradient, and hence to a transformation of the current den
distribution pattern over the cross section, when the lat
face of the sample with a high level of the signal is tran
formed into a face with a low signal level and vice versa.
other words, signals at the lateral faces and in the bulk of
sample change not only in sign, but also in magnitude a
result of such an operation. Only the integral Hall volta
between lateral faces remains unchanged. This fact was
for measuring and systematizing the data. In addition

TABLE I. Characteristics of samples and field inhomogeneity paramete

Sample
Batch No.

r0 ,
10210 V•cm

l,
T21

k,
T•cm21

a,
T•cm22

1 2 0.3 0.9 0.1
2 2 0.4 1.0 0.5
3 3 0.4 0.7 1
4 4.5 0.5 0.15 2.6
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commutation, the main method used for control was the
tentiality technique in which the vortex field through an
closed loop is equal to zero. These circumstances imp
severe constraints on the initial orientation of the sam
which was carried out in two stages. In the beginning,
sample was tilted in the magnetic field plane at right ang
to the transportation direction until the Hall voltage attain
its maximum value. In the second stage, the sample
tilted in a plane passing through the transport direction a
the magnetic field vector until the voltage across the H
opposite faces attained its maximum value along the dir
tion of current flow.

DISCUSSION OF EXPERIMENTAL RESULTS

Main regularities in the potential distribution along and
across the charge flow direction

It was mentioned earlier that our experimental investig
tions were aimed at the spatial distribution of the poten
w(x,y). The results of measurements of the potential diff
ence between different points on the sample surface and
lateral faces make it possible to reconstruct the voltagew in
the direction of charge flux and at right angles to it. In Fig.
w is plotted as a function of the transverse coordinatey for
several values of the local magnetic field in samples w
different inhomogeneity parameters. In this case, the po
tial is an increasing function of coordinates. At the sam
time, a qualitative difference is observed forw(x) at the
faces corresponding to strong and weak signals. For str
signals, the potential across the face increases for all grad
levels. The same is true for weak signals if the gradient le
is low. For large gradients, the potential for a weak signa
the face is a nonmonotonic function of the coordinatex ~Fig.
2!. The dependencesw(x) for both faces are presented belo
together with the theoretical results. For a weak signal,

.

FIG. 1. Dependence of potential on coordinate along the normal to
direction of charge transport for exponential type of inhomogeneity for d
ferent values of the relative gradientd (cm21): 0.1 ~1, 5!, 0.4 ~2, 6!, 0.6 ~3,
7!, 1.1 ~4, 8!, and local magnetic fieldB ~in T!: 6.85 ~1!, 6.50 ~5!, 6.0 ~2!,
5.35 ~3!, 5.20 ~6!, 4.20 ~7!, 3.95 ~4!, and 2.40~8!.



he

o
o

di
lt

he

nc

po
in
nt
e
th
l,
-

e
ar
is

tw

re
ac

rs.
be

etic
ed

e
gh

ss

t is

-
-
t
s-

the

face
ex-
ent
-
ers
nt,
ndi-
ed

es
nge
es
eld.

po-

al
f th

909Low Temp. Phys. 25 (11), November 1999 Sobol et al.
current flows in a weak local field over the face along t
potential gradient]w/]x, while the sign of the gradient is
reversed upon an increase in local field.

Analysis of the phenomenon and its interpretation

Naturally, the above potential difference peculiarities
an electric field can be associated with the complex form
the magnetic field gradient and specific properties of the
persion relation for charge carriers. We shall use the resu1

obtained for the model in which the current density in t
direction of transport has the form

j x5
I

t

Rk

r

exp~Rky/r!

exp~Rkb/r!21
, j y50. ~2!

Here, k5dB/dx is the magnetic field gradient,R the Hall
constant,r the diagonal component of the magnetoresista
tensor,I the integral current, whilet and b are the sample
thickness and width. For fixed values ofk and r over the
sample volume, the current densityj x is independent of the
coordinatex, and there is no transverse current. The ex
nentRk/r determines the current localization, so that an
crease in the value ofk leads to an increase in the curre
density at the face with a strong signal, while an increas
r decreases this quantity. In the present form of notation,
lateral facey50 corresponds to the low potential leve
while the opposite facey5b corresponds to the high poten
tial level.

According to the model considered here, the current d
sity is finite at lateral faces of the sample along the inw
normals, and there exists a lateral Hall current which red
tributes the conduction current. Assuming that there are
regions with constant gradientsk1 andk2 (k1,k2), the pat-
tern of current distribution in the intervalDx between these
regions must be transformed. This means that the cur
density increases gradually in the transition region at the f
y5b, and decreases at the facey50 and in its vicinity. Such

FIG. 2. Potentialw distribution in the direction of the current at the later
face of the sample corresponding to a weak signal for different values o
magnetic field gradientd (cm21): 0.1 ~1!, 0.4 ~2!, 0.6 ~3!, and 1.1~4!.
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variations may occur as a result of lateral drift of carrie
The magnetic field gradient in the transition region can
presented in the form

k5k11
k22k1

Dx
x, ~3!

which corresponds to a nonlinear dependence of magn
field on the coordinate in the direction of the current realiz
in the experiment. Assuming that the form ofj x must corre-
spond to the expression which is transformed into~2! upon a
limiting transition, and using the continuity condition, w
define the two-dimensional pattern of current flow throu
such a medium as follows:

j x5
I

t
f ~x!

exp@ f ~x!y#

exp@ f ~x!b#21
,

j y52
I

t
f 8~x!

exp@ f ~x!y#

exp@ f ~x!b#21 H y2b
exp@ f ~x!b#

exp@ f ~x!b#21J ,

f ~x!5
d

dx S RB

r D , f 8~x!5
d

dx
~ f ~x!!. ~4!

In this approximation, the integral current through the cro
section is independent of coordinatex and is defined by the
generator current. The direction of the transverse curren
determined by the sign of the parameterf 8(x). For a domi-
nating numerator in the componentf (x), the transverse cur
rent is collinear with they-axis, while for a stronger depen
dence of denominator on coordinatex the transverse curren
is opposite to they-axis. An analysis shows that the tran
verse current density is not constant along they-axis and
must have an extremum whose coordinate is defined by
expression

y05bS 12
1

f b

exp~ f b!212 f b

exp~ f b!21 D . ~5!

It follows hence that for small values of the parameterf b,
the extremum lies in the middle (y05b/2), while for f b
.1 the transverse current peak is displaced towards the
corresponding to strong signal level. Using the analytic
pressions~4!, we calculated the dependence of the curr
density along the field gradientj x and in the transverse di
rection j y for several values of the inhomogeneity paramet
of the medium, conforming to the values of integral curre
sample thickness and width, etc., under experimental co
tions ~Figs. 3, 4!. The analytic characteristics were obtain
by using the expression

f ~x!5
R~k1ax!

r0@11l~B01kx1a~x2/2!!#2 . ~6!

It follows from Fig. 3 that the current densityj y is a function
of the parameterf (x) and decreases with increasing valu
of this parameter. Such a behavior corresponds to a cha
in the transverse current from positive to negative valu
characteristic of a strong dependence of resistance on fi
The current densityj x ~Fig. 4! is also nonmonotonic at the
lateral faces of the sample as well as in the bulk. The op

e
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site faces display qualitatively different behavior, and
transformation from one type to the other occurs in the
termediate region.

Starting from formulas~4! for the current densityj x and
j y and the conditions of tensor coupling between the elec
field and current, we can easily reconstruct the depende
of the electric field potentialw(x,y) over the bulk. Among
other things, for the nonlinear type of inhomogeneity an
lyzed here, the potential can be written in the form

w~x,y!5
I

t
RS B01kx1

ax2

2 Dexp@ f ~x!~y2b!#. ~7!

This expression was obtained in the approximationf (x)b
.1. Such a form of distribution describes the spatial no
monotonic dependence of potential on coordinatex. Indeed,
for the lateral face of the sample corresponding to the h
potential level, we can write

FIG. 3. Theoretical dependence of the transverse current densityj y on co-
ordinate y for various values of the inhomogeneity parameters~6! f (x)
(cm21): 15.7 ~1!, 16.0 ~2!, 16.3 ~3! 16.5 ~4!, 16.6 ~5! and 16.7~6!.

FIG. 4. Analytic distribution of the current densityj x along field gradient
for various values of the transverse coordinatey ~cm!: 0.6 ~1!, 0.5 ~2!, 0.4
~3!, 0.3 ~4!, 0.2 ~5!, 0.1 ~6!.
-

ic
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-

-

h

w~x,y5b!5
I

t
RS B01kx1

ax2

2 D . ~8!

For the lateral face corresponding to a low signal level,
have

w~x,y50!5
1

t
RS B01kx1

ax2

2 Dexp@2 f ~x!b#, ~9!

where two competing factors are responsible for nonmo
tonicity. If exp@f(x)b# is larger than unity, we can write with
out any loss of generality a more symmetrized expression
spatial dependencew(x,y), which ensures the fulfillment o
the normalization condition for current and is a continuati
of the previous model:

w~x,y!5
I

t
RS B01kx1

ax2

2 D exp@ f ~x!y#

exp@ f ~x!b#21
. ~10!

Using the expression obtained for potential, we calc
lated spatial dependencew(x,y) at the lateral faces of the
sample, as well as at right angles to the transport. Figure
and 6 show the most typical experimental and the co
sponding analytic dependences of the potentialw(x,y50),
w(x,y5b) and w(x5const,y), calculated by using formula
~10! when the transverse magnetic field gradient is a lin
function of the coordinate. The results of theoretical and
perimental studies reveal that while determining the dep
dence of the potential difference along thex coordinate, we
must take into account the contribution to the electric fie
from transverse current on the whole, since the Hall com
nentrxy of the resistivity is larger than the diagonal comp
nent rxx by a factor ofvt ~where v is the cyclotron fre-
quency andt the relaxation time!, and hence the quantity
rxyj y may influence the overall field pattern considerab
This is especially important for the sample face correspo
ing to a low signal level, where the current density comp
nents in the direction of the current and at right angles t

FIG. 5. Potentialw as a function of coordinate along the current direction
the lateral faces (A is the sample face corresponding to a strong signal,
B to the weak signal! for various inhomogeneity parametersk ~T/cm! anda
(T/cm2): 0.9, 0.1~1, 2!, 1.0, 0.5~3, 4!, 0.7, 1.0~5, 6!, 0.15, 2.6~7!: The
symbols correspond to the experiment and the lines to the theory.
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may become comparable. Note that in the approxima
exp@f(x)b#@1, the behavior of the potential at the face cor
sponding to a strong signal is analogous to the anal
expression obtained earlier1 for an exponential type of inho
mogeneity, where it was postulated that there is no tra
verse current along the inward normal to this face. Such
assumption is valid for high inhomogeneity levels since
nature of potential under such conditions is determined p
dominantly by the componentj x . If the transverse current i
disregarded for the facey50, the variation ofw is qualita-
tively identical with the behavior at the facey5b observed
experimentally only in the case when inhomogeneity a
nonlinearity of the magnetic field are small. It can be sta
that the reversal of the sign of the electric field componen
the face corresponding to a weak signal is the result of c
petition between two opposite contributions during redis
bution of the current densityj x on account of a lateral drift o
carriers which leads to the emergence of the currentj y .

It should be specified that for high inhomogeneity leve
when the magnetic field varies by several hundred perc
over the sample, the exponential index may become com
rable with unity or even smaller than it. Under such con
tions, the analytic expression for potential has a more co
plicated form. It should be noted that the experimen
pattern may also be affected by the motion of charges in
direction of the magnetic field, which was disregarded in
model approximation. An analysis of this effect is beyo
the scope of the present work and requires independen
vestigations.

FIG. 6. Dependence of potentialw on transverse coordinate for variou
values of the inhomogeneity parametersk ~T/cm! and a (T/cm2): 0.9, 0.1
~1, 2!, 0.7, 1.0~3!, 1.0, 0.5~4!, 0.15, 2.6~5! and for various values of the
local magnetic fieldB ~T!: 6.75 ~1!, 5.8 ~2!, 4.34~3! 4.73 ~4!, and 3.09~5!.
The symbols correspond to the experiment and the lines to the theory.
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CONCLUSION

Two factors affecting the charge flow, viz., the spat
nonlinearity of transverse magnetic field in the direction
charge transport and the dependence of resistance on
netic field, are considered in the problem of charge transp
in a plate-shaped cryoconductor made of normal metal~poly-
crystalline aluminum sample!. These factors stimulate th
emergence of additional processes of redistribution of c
rent density in the transverse direction, thus leading to
reversal of electric field at one of the lateral faces of t
sample.

The analytic model is constructed in the two-dime
sional approximation. It is found that the behavior of pote
tial at the sample face corresponding to a strong signa
determined to a considerable extent by the coordinate de
dence of the magnetic field defining the local value of t
nondiagonal Hall component of the resistivity tensor. For
face corresponding to a low potential level, transverse H
current plays a significant role.

This research was based on a consideration of the
cific features of kinetic phenomena in conductors made o
normal metal in polycrystalline state. The main regularit
of charge transport in a nonuniform magnetic field may
adapted to other cryoconductors since the formation of re
tive properties in a magnetic field is qualitatively similar f
them, and the prevailing quantitative differences associa
with the layer thickness of open orbits are taken into cons
eration in the model.

This research was supported financially by the Bela
Foundation of Fundamental Research.
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Localization of phonons and low-frequency sound attenuation in layered crystals
E. P. Chulkin
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It is shown that specific interference processes emerging in an anharmonic layered lattice in the
localization regime leads to a considerable renormalization of the reciprocal phonon
lifetime. This mechanism may dominate over the standard anharmonic mechanism. The coefficient
of low-frequency sound attenuation in an insulator with diagonal disorder is discussed.
© 1999 American Institute of Physics.@S1063-777X~99!01011-7#
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INTRODUCTION

It is well known that on account of a strong anisotro
of atomic interaction, the vibrational spectrum of a layer
crystal exhibits quasi-two-dimensional properties over
entire range of frequency spectrum except at singular po
and spectral boundaries.1,2 The emergence of heavy defec
in such systems does not lead to a noticeable reconstru
of the spectrum at low frequencies.3–5 Hence the effects as
sociated with a weak localization of phonon modes may
come quite significant due to the presence of impurities~see,
for example, Refs. 6–15!. In the present work, we shall us
the self-consistent theory of phonon localization8,9 to analyze
the influence of such effects on the frequency dependenc
the low-frequency attenuation coefficient.

The dynamic properties of a disordered layered cry
are described in the model of a tetragonal lattice with iso
pic substitutional impurities. Such a lattice contains tw
types of acoustic vibrational modes with the following d
tinguishing feature. The displacement vectors for the fi
type of modes~l -modes! are oriented along the layers wit
strongly interacting atoms. The displacement vectors for
second type of modes are perpendicular to the layers. S
waves are reminiscent of flexural waves in noninteract
layers and are called ‘‘flexural vibrations’’~b-modes! ~see,
for example, Refs. 1, 2, and 13!.

It is assumed the frequencies of sound waves satisfy
inequalityvt i(vT)!1, wheret i is the relaxation time asso
ciated with elastic impurity scattering andvT'kT/\5b21

is the characteristic phonon frequency. For simplicity,
consider the case where the standard anharmonic intera
of thermal phonons in a nonideal crystal can be disregard
In other words, the conditiont i

21(vT)@tN
21 is satisfied,

wheret i andtN are respectively the impurity relaxation tim
and the relaxation time associated with normal anharmo
processes.
9121063-777X/99/25(11)/5/$15.00
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BASIC RELATIONS FOR MASS OPERATOR

Sound is connected with the elasticity of crystal lattic
Its attenuation is determined by the imaginary part of
polarization operator of a one-particle Green’s lattice fun
tion assembled from the operators of dynamic atomic d
placements.

In the momentum representation, we have for t
Green’s function of thej th polarization mode

Gj
~1 !21~k,v!5Ḡj

~1 !21~k,v!2P j~k,v!. ~1!

Here, Ḡj
(1)(k,v) is the configurationally averaged delaye

Green’s function for a harmonic crystal with impurities, an
P j is the polarization operator. The former is defined as

Ḡj
~1 !~k,v!5Fv22v j

2~k!2 i
v

t i
~ j !~v!G

21

, ~2!

where the lifetime for elastic processes is

t i
~ j !~v!5Fp2 c«2v2gj~v!G21

. ~3!

Herev j (k) is the dispersion relation for thej th vibrational
mode, andgj (v) is the spectral function of the partial den
sity of states of vibrational modes. Besides,c is the impurity
concentration and«5(Md2M0)/M0 , where Md and M0

are the masses of the impurity atoms and the regular la
atom, respectively. It is assumed thatMd@M0 . As regards
the polarization operatorP j , we can write in the cubic an
harmonism approximation

~4!

In this graphic relation,P1
j describes the standard anha
© 1999 American Institute of Physics
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monic interaction between acoustic phono
and P2

j the interaction between acoustic phonons a
phonon density fluctuations in thevicinity of the de-
fects. Lines with arrows in Eq. (4) correspond to

Green’s function Ḡ(1,2), while thevertex Uj emerges
as a result of summation of‘‘ fan-shaped’’ plots and
describes processes of inverse coherent scattering o
phonons by defects(see, for example, Refs. 11–14).The
contributions of l- and b-modes to the processes of a-
harmonic interaction and to thevertex Uj during com-
putations are assumed to be independent.

Let us now consider explicit expressions for the vertexU j

under the following conditions:

qj
l ~v1!!1, vt i

j!1,

where l j (v1)5v j (v1)t i
j (v1) is the elastic mean free path

andv j the group velocity of quasiparticles. It was shown
Ref. 13 that

U j~k,k8;v,v1!5
G j

N F12
G j

N(
k1

Ḡj
1~k1,v1!

3Ḡj
2~k12q,v12v!G21

, ~5!

q5k1k8.

This equation contains the quantity G j

5v1@pt i
j (v1)gj (v1

2)#21, i.e., the initial vertex describing a
single elastic scattering of low-frequency phonons w
quasimomentak and2k.

In the standard approximation, the anharmonic inter
tion parameterF j

(3) has the form

Fj
~3!~k,k1 ,k2!52 i g̃3v j~k!v j~k1!v j~k2!,

g̃35g3Ag i
2g'. ~6!

Here,g i ,g'(g i@g1) andg3 , are the effective harmonic an
anharmonic force constants.

Taking into consideration Eqs.~4!–~6!, the expressions
for P1

j andP2
j can be presented in the form

P1
j ~k,v!' i g̃3

2v j
2~k!E

0

` dv1

2p E
0

` dv2

2p
d~v1v22v1!

32@n~v2!2n~v1!#
1

N

3 (
k1 ,k2

v j
2~k1!v j

2~k2!Ḡj
~1 !~k1 ,v1!

3Ḡj
~2 !~k2 ,v2!D~k1k11k2!, ~7!

P2
j ~k,v!' i g̃3

2v j
2~k!E

0

` dv1

2p E
0

` dv2

2p
d~v1v22v1!

32@n~v2!2n~v1!#F j~v1!

3 (
q<qc

U j~q;v1 ,v!. ~8!
-

The quantityF j is defined as

F j~v1!5
1

N (
k1

@v j
2~k1!Ḡj

~2 !~k1 ,v1!Ḡj
~1 !~k1 ,v1!#2,

~9!

wheren(v) is Planck’s equilibrium distribution function fo
phonons. While writing this equation, we disregarded
small termsq in the arguments of Green’s functions. In la
tices with strongly anisotropic force of interaction betwe
atoms, summation in Eq.~8! overq has an upper limit really
set by two small quantitiesql

(i ,')'p/ l i ,'
( j ) (v1) ~it is assumed

that diffusion takes place over distances larger than the e
tic mean free path!. If a'b, the mean free pathsl i ,'

( j )

5v i ,'
( j ) t i

( j )(v1). If, however, the unit cell parametersa andb
are quite different, i.e.,a!b, a situation may arise in which
qj

(')'p/b.
In order to proceed further, we must determine the p

non mode frequencies. It was mentioned in the Introduct
that the lattice is assumed to be tetragonal with unit c
parametersa andb. It is assumed that the effective intera
tion between atoms in the basal planexOy ~denoted as~i!! is
much stronger than along thez-axis ~'!. The interaction
along thez-axis is be central. In such a situation, we encou
ter three characteristic force parameters satisfying the
equality

uFxx
0s'u!uFzz

0s'u!uFzz
0siu. ~10!

These force parameters have three effective frequencies
responding to them:v'

2 !v2
2!v i

2.
Taking into consideration the interaction between ne

est neighbors only, we can write for thel -mode

v l
2~k!'v i

~ l !2ki
212v'

2 sin2S bk'

2 D , ~11!

wherev i
( l )'v ia/2 is the velocity of sound in thel -mode. For

the b-mode, the dispersion relation can be defined as

vb
2~k!5v'

2 b2ki
21S v ia2

p D 2

ki
412v2

2 sin2S bk'

2 D ~12!

~see details in Ref. 2 as well as in Ref. 13!.
We shall consider only thel -mode in details. The com

putations for theb-mode can be carried out in an analogo
manner. In the last section of this paper, we shall ment
some differences in the qualitative behavior of the sou
absorption coefficient forl - andb-modes.

In the first place, it can be shown that in the polar a
proximation we obtain11,12 instead of Eq.~9!

Fl~v1!'
p

4
gl~v1!t i

~ l !3~v1!, ~13!

wheregl(v1
2)5(pv i

2)21 is the partial density of states.
Second, we can write the following approximate expre

sion for the vertex part ofUl in the frequency region where
the phonon modes act like quasi-two-dimensional exc
tions, i.e., where the inequalityv1

2.2v'
2 is satisfied13:
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Ul~q;v;v1!'
v1

pgi~v1
2!t i

2~ l !~v1!

3
1

2 iv1D i
0~ l !~v1!qi

212D'
0~ l ! sin2~q'b/2!

,

~14!

where

D i
0~ l !~v1!5

v i
~ l !2t i

~ l !~v1!

2
, D'

0~ l !~v1!5
v'

4 t i
~ l !~v1!

4v1
2

~15!

are the diffusion coefficient tensor components. It is assum
that v'v1(k).

It is well known that the real and initial phonon diffusio
coefficientsD i ,'

( j ) andD i ,'
0( j ) are connected with equations o

the type

D i5D i
02

a2b

pgi~v1!

3E d3q
D i

2v1D iqi
212D' sin2~q'b/2!

, ~16!

D'5D'
0 2

a2b

pgi~v1!

3E d3q
D'

2 iv1D iqi
212D' sin2~q'b/2!

~17!

~similar relations for the phonon gas in an isotropic latt
and electrons in an anisotropic system were considere
Refs. 9 and 16!.

It is convenient to consider the factors

a i ,'
~ l ! ~v,v1![D i ,'

~ l ! ~v,v1!/D i ,'
0~ l !~v1!. ~18!

It follows from ~16! and ~17! that

a i5a'5a.

In this case,a ( l ) satisfies the relation

a~v,v1!512
a2b

gi~v1!
E

2p/b

p/b dq'

2p

3E
0

p/ l j dqi
2

2p2 J~v,qi ,q'!, ~19!

where

J~v,qi ,q'!5
1

2 iv/a1D i
0~ l !qi

212D'
0~ l ! sin2~q'b/2!

.

It can be shown that
d

in

a~ l !~v,v1!'12
1

pv1t i
~ l !~v1!

ln
2

t i
~ l !~v1!D'

0~ l !~v1!

1
1

pv1t i
~ l !~v1! S 22iv

D'
~ l !~v1! D

1/2

5a0
~ l !~v1!1

1

pv1t i
~ l !~v1! S 22iv

D'
~ l !~v1! D

1/2

.

~20!

Taking all that has been stated above into considerat
we can determine the imaginary parts of the mass oper
P j in the limit of low frequencies. Substitution of~2! into ~7!
leads to the following relation for ImP1

j :

Im P1
j ~k,v!'2g̃3

2vv j
2~k!

1

T (
k1

v j
2~k1!n@v j~k1!#

3@n@v j~k1!#11#t i
~ j !@v j~k1!#. ~21!

At extremely low temperatures, the sum in~21! is diver-
gent like thermal conductivity which also diverges due to t
same mechanism of phonon scattering. A finite value
sound absorption can be obtained by taking into account
anharmonic attenuation of thermal phonons and their sca
ing at the sample boundary. Relation~21! is valid at inter-
mediate temperatures, when the mean free path of the
phonons is sensitive to defects.17 For the quantity ImP2

j , we
use the results obtained by Volfhardt and Wolfle18,19 who
proposed a self-consistent generalization of a number
overlapping diagrams for the irreducible vertexU. Taking
all this into consideration, we replace the initial diffusio
coefficientsD0 by the real diffusion coefficientsD. Substi-
tuting ~9! into ~8! and using~18!, we carry out computations
analogous to those in Ref. 13. This gives

Im P2
j ~k,v!'

g̃3
2a2vv j

2~k!

2T

3E
v j

0

v j* dv1

2p
n~v1!@n~v1!11#

3
v1

2t i
~ j !~v1!

D i
~ j !~v,v1! F ln

2

t i
~ j !~v1!D'

0~ j !~v1!

2ReS 22iv

a0D'
0~ j !~v1! D

1/2G . ~22!

The frequencyv j
0 appearing in this expression separates

regions of quasi-three-dimensional~a small frequency region
near zero! and quasi-two-dimensional behavior of the vibr
tional spectrum of a layered lattice. As far as the frequen
v j* (v j* @v j

0) is concerned, it defines the threshold of ph
non mobility and is determined from the condition of va
ishing of the true diffusion coefficient.

Using Eq.~20!, we obtain the following relations fora ( l )

near the threshold. If

~pv1t i
~ l !~v1!!21!a0

~ l !!1 ~23!

or the condition
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a0
~ l !!~pv1t i

~ l !~v1!!21!1,

v!a0
~ l !3D'

0 j@pv1t i
~ l !~v1!#2, ~24!

is satisfied, we can write

a~ l !'
2

v l*
~v l* 2v1!. ~25!

If inequalities of the type

a0
~ l !!@pv1t i

~ l !~v1!#21!1,

v@@pv1t i
~ l !~v1!#2a0

3D'
0~ l !~v1!, ~26!

hold, we get

a~ l !'F 2

D'
0 ~v j !

2 iv

@pv1t i
~ l !~v1!#2G1/3

. ~27!

Let us now consider the shear modes briefly. It should
emphasized that all the main expressions~20!–~22! for lon-
gitudinal and flexural modes have the same structure,
difference being only in the representations for the init
diffusion coefficients. In accordance with Ref. 13, we hav

$D i
0~b! ,D'

0~b!%'H 1

gb~v!

pt i
~b!~v!

4v iv2

3F16

3

v iva2

p2 ,
v2

2b2p

4 G J ; ~28!

The density of states is described by the formulagb(v1)
5p(8v1v i)21. Moreover, thel - and b-modes are defined
in different frequency intervals: 2v'

2 ,v1
2,v i

2 and 2v2
2

,v1
2,v i

2. Hence the results obtained above forl -modes,
including relations~25! and~27!, can be extended to the cas
of b-modes.

LOW-FREQUENCY SOUND ABSORPTION COEFFICIENT

Let us begin with the case of a harmonic lattice. W
consider the dispersion relation for the effective frequen
ṽk and the attenuation of vibrational modes~the subscriptj
is omitted!. This equation has the form

ṽk
22vk

22 i
2ṽk

t i~vk!
50.

We put

vk~k→0!5v i~' !k* ,k* 5k1 iDk.

It can be shown that

Dk5 lim
v→0

1

v i~' !t i~v!
, ~29!

~v is the phonon group velocity andt i the Rayleigh-type
lifetime!.

The absorption coefficient of low-frequency modes
defined by the relation

G05Imuk* u,

wherek* is the complex wave vector of the mode propag
ing through the crystal~see, for example, Ref. 11!. Note that
e

e
l

y

-

according to Eq.~29!, the factorG0(5Dk) is proportional to
v2gj (v). Taking into consideration the explicit form o
gj (v) ~see Ref. 13!, we find thatG0'v3 for longitudinal
modes andG0'v2 for flexural modes. The factorG0 does
not depend on temperature.

Let us now consider the case of an anharmonic crys
The dispersion equation can be written in the form

ṽk
22vk

22 i
2v

t i~vk!
2 i Im P j~v~k!!50,

where

Im P j5Im P~1!
j 1Im P~2!

j .

where the subscripts 1 and 2 indicate the contributions fr
standard and nonstandard diagrams~4!. This leads to the
following approximate relation for the reciprocal relaxatio
time:

1

t
5

1

t i
1

Im P j

2v j~k!
.

It follows from this relation that the factor 1/t in the
anharmonic lattice depends on temperature.

Let us consider the temperature dependence of the u
sound absorption coefficient

Ḡ j5G j ,01DG j~T!

for the j -polarization mode. In accordance with the abov
we can write

DG j~T!'
Im P j@v~k!#

2v j~k!
, DG j5DG j

~1!1DG j
~2! .

Let us analyze this expression for the sound absorp
coefficient in the case of strong localization of phon
modes. For this purpose, we use the expressions~20!, ~25!,
and ~27!, and ~28!. It turns out that if the inequalities~c«2

>1;T<0,1Q jQ j ) is the Debye temperature! and
D'

0,j (v)t i
( j )(v)<0,1 are satisfied, the inequalityDG j

(2)

>DG j
(1) holds for acoustic frequencies in the megahe

range. In other words, the temperature dependence of
sound absorption coefficient is determined by the proces
of scattering at phonon density fluctuations in the vicinity
defects.

The following circumstance must be noted. Suppose t
the inequality~26! is satisfied. In this case, if the frequencyv
of sound exceeds a certain critical valuevc5@pvTt i

( j )

3(vT)#2a0
( l )3D'

0 j (vT), the anharmonic part of the attenua
tion coefficient forl - andb-modes near the mobility thresh
old depends on frequency asDG j;v5/3. ~If the inequality
~24! is satisfied, we obtainDG j;v2.! Thus a strong local-
ization may change the frequency dependence forḠ j ob-
served in the case of a harmonic lattice.

Let us compareDG j
(1) andDG j

(2) in the dominating pho-
non approximation (v1'T). It can be shown by using Eqs
~21! and ~22! that if the conditionD'

0 !D i
0 is satisfied, we

can write for longitudinal and flexural modes

DG j2DG j
~1!

DG j
~1! 5

DG j
~2!

DG j
~1! 5

12a j~v,vT!

a j~v,vT!
.
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As the dominating phonon frequencyvT approaches the
threshold frequencyv j* , the factorDG becomes nonanalytic
DG j;(v j* 2vT)21.

Let us estimate the contribution of the weak localizati
of phonon modes to the sound absorption coefficient.
simplicity, we use the dominating phonon approximati
again. Putting the factora in ~18! approximately equal to
unity, we compareDG j

(1) and DG j
(2) . Using ~21!, ~22! and

~28!, we obtain

DG j
~2!

DG j
~1! 'c«2S T

Q j
D 2

ln 2~t i
~ j !@vT!D'

0 ~vT!#21,

which means that the contribution is just a few percent
DG j

(1) .
Let us summarize the main conclusions. We have c

sidered the effect of phonon density fluctuations on recip
cal lifetime 1/t in the longwave limit for the case of low
temperaturesT<0.1Q j . To determine the mass operator, w
analyzed processes associated with cubic anharmon
Moreover, the emergence of two-phonon coherent state
the localization regime was also taken into consideration
was shown that specific interference phenomena lead to
ticeable renormalizations. The theory developed by us
used to discuss the peculiarities of temperature and
quency dependence of the reciprocal ultrasound attenua
lengthG.

We are not aware of any experimental works to wh
r

f

-
-

m.
in
It
o-
s

e-
on

the theory developed in this communication could
applied.
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Low-frequency dynamics of cubic crystals with next-nearest neighbor interaction
E. V. Manzheli  and E. S. Syrkin
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The influence of next-nearest neighbor interaction on the dispersion characteristics of simple
cubic, bcc, and fcc lattices is studied. It is shown that the next-nearest neighbor interaction affects
significantly the dynamic characteristics of the above systems. In the scalar model describing
the one-magnon excitations in magnetically ordered Heisenberg systems, the inclusion
of the second coordination sphere can lead to the emergence of a minimum and an additional
peak on the dispersion curves inside the Brillouin zone and to the disappearance of
divergence of the density of states. In some cubic lattice models, the inclusion of next-nearest
neighbor interaction may lead to a significant variation of the ‘‘anisotropy parameter:’’
in the longwave limit, two transverse branches may coincide or differ sharply from each other,
depending on the relation between the force constants characterizing the interaction
between the nearest and next-nearest neighbors. ©1999 American Institute of Physics.
@S1063-777X~99!01111-1#
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INTRODUCTION

In order to study the spectra of quasiparticle excitatio
it is extremely important to estimate the effective range
atomic interaction in the objects under consideration. Eve
the case of short-range forces only~e.g., those described b
the Lennard–Jones potential!, the results obtained by takin
into consideration interactions with nearest neighbors o
are absolutely unsatisfactory in some cases. For example
vector models of a simple cubic~sc! and a body-centered
cubic ~bcc! crystals with such an interaction are simply u
stable in lattice dynamics~see, for example, Ref. 1!.

The inclusion of the next-nearest neighbors into cons
eration leads to a whole range of qualitatively new results
to a much better agreement with the experiment. The
scription of shear waves in highly anisotropic crystals is p
sible only if the nextnearest neighbors are taken i
consideration.2 The next-nearest neighbors also play a s
nificant part in studies of spin wave in magnetically order
systems. For example, it has been shown experiment3

that the exchange integrals of interaction between the nea
and next-nearest neighbors are nearly identical in magn
semiconductors EuO and EuS, while those between third
subsequent neighbors are negligibly small. Moreover, the
change integrals of interaction between the nearest and n
nearest neighbors may be of the same or opposite sign
was shown earlier by Petrova and Syrkin4,5 that for interac-
tion attenuating exponentially with distance, it is importa
to take into consideration next-nearest neighbors for study
vibrational excitations as well as spin waves. The role
distant neighbors was emphasized in numerical computat
and experimental investigations of the dispersion relati
for a number of metals with bcc structure6,7 and solidified
inert gases~fcc structure!.8

In this communication, we report on the results
9171063-777X/99/25(11)/11/$15.00
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investigations of the vibrational characteristics of sc, bcc a
fcc lattices for an arbitrary ratio of the constants of intera
tion between the nearest and next-nearest neighbors. Th
bic symmetry is possessed by a wide range of materials
molecular crystals, metals, superconductors, magnetically
dered systems, etc. We considered vector as well as s
~one-component! models of the cubic lattice. The use of th
scalar model is justified for a number of reasons. Upon
appropriate change in the notation, the results obtained
this model can be used for studying spin waves in magn
cally ordered crystals. Moreover, real semi-infinite cryst
may contain one-component surface waves of the
type ~Gulyaev–Bleustein waves in piezoelectrics9,10 and
Alldredge–Gel’fgat waves in conventional crystals.11,12! We
considered in detail cases in which the inclusion of inter
tion with next-nearest neighbors qualitatively changes
investigated characteristics. For example, the peak of the
persion curve is displaced inward into the Brillouin zon
splitting of vibrational branches takes place, and the latt
stability emerges or vanishes. We also analyzed the varia
of elastic moduli of cubic lattices on account of interacti
with next-nearest neighbors, and the corresponding varia
of the dynamic characteristics of cubic lattices in the lon
wave limit.

1. MATRICES OF FORCE CONSTANTS OF CUBIC LATTICES
AND THE RELATION BETWEEN THESE CONSTANTS
AND PAIRED POTENTIAL

According to the Born–von Carman lattice dynami
theory, the forces of interaction between two atoms in
monatomic crystal in the harmonic approximation have
form F ik(n,n8)uk(n8), ~i.e., the force acting on an atom a
the nth site in thei th direction!, while the atom at then8th
site is displaced through a distanceu(n8) in the kth direc-
tion. Thus, the 333 matrixF ik is a set of elastic constants o
© 1999 American Institute of Physics
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interaction between atoms at the sitesn andn8. Taking into
account the interaction between the nearest and next-ne

neighbors, the matricesF ik
nn8 for cubic lattices can be pre

sented in the form1,6

F ik@0,a~1,0,0!#5S a1 0 0

0 b1 0

0 0 b1

D
F ik@0,a~1,1,0!#5S a2 g2 0

g2 a2 0

0 0 b2

D ; ~1!

for a simple cubic lattice with the nearest neighbors at
a(100)-type sites and the next nearest neighbors at
a(110)-type sites (a-edge of the cube!;

F ikS 0,
a

2
~1,1,1! D5S a1 b1 b1

b1 a1 b1

b1 b1 a1

D
F ik@0,a~1,0,0!#5F a2 0 0

0 b2 0

0 0 b2

G ; ~2!

for a bcc lattice with the nearest neighbors at t
(a/2)(111) sites and the next nearest neighbors at thea(100)
sites; and

F ikS 0,
a

2
~1,1,0! D5S a1 g1 0

g1 a1 0

0 0 b1

D
F ik~0,a~1,0,0!!5S a2 0 0

0 b2 0

0 0 b2

D ~3!

for an fcc lattice with the nearest neighbors at thea/2(110)
sites and the next nearest neighbors at thea(100) sites.

Analyzing the arrangement and number of nearest
next-nearest neighbors, we observe that the effect of n
nearest neighbors in an fcc crystal must be weaker than i
or bcc crystals. Indeed, although the next-nearest neigh
~12 atoms! in sc crystals are more distant, their number
double that of the nearest neighbors~six atoms!. The open
bcc structure has six next-nearest neighbors at a dist
only 15% larger than the distance between eight nea
neighbors, while the close-packed fcc structure has six n
nearest neighbors which are farther than the 12 nea
neighbors by 40%.

Each of the matrices~1!, ~2! and ~3! must be supple-
mented by the self-action matrixF ik

0,0 ~translational invari-
ance condition!1:

F ik~0,0!5a0S 1 0 0

0 1 0

0 0 1
D ,

wherea0 has the following form for various lattices:
est

e
e

d
t-
sc
rs

ce
st
t-
st

a052~a112b1!14~a212b2! ~4!

for sc lattice;

a058a112~a212b2! ~5!

for bcc lattice; and

a054~b112a1!12~a212b2! ~6!

for fcc lattice.

The elements of the force matrixF ik
nn8 may be connected

with the derivatives of the paired potential. Letf (uRn

2Rn8u) be the potential of paired interaction between atom
which depends only on the separation between them (Rn is
the radius vector of the atom at siten). The total potential
energyU of the lattice has the form

U5
1

2 (
nÞn8

f ~ uRn2Rn8u!. ~7!

We can presentRn in the formRn5rn1un , wherern is the
radius-vector of thenth atom in the equilibrium state andun

is its displacement. In this case,

U5
1

2 (
nÞn8

f ~ urn2rn81un2un8u!

5
1

2 (
r

(
DÞ0

f ~ uD1du!, ~8!

wherer[rn8 ; D[rn2rn8 , d[ur1D2ur
We expandf (uD1du) into a power series ind up to the

second-order term:

f ~D1d!5 f ~D!1 f 8~D!~v–d!

1
1

2 S f 9~D!2
f 8~D!

D D ~v–d!21
1

2

f 8~D!

D
d2,

~9!

whereD5uDu andv5D/D.
Thus the total lattice energy can be presented in the fo

U5U01U11U2 . ~10!

Here,

U05
1

2 (
r

(
D

f ~D!5N(
D

f ~D!, ~11!

N is the number of atoms in the crystal,

U15
1

2 (
r

(
D

f 8~D!~vd!5(
D

f 8~D!(
r

~v–d!50;

~12!

and

U25
1

4 (
r

(
D

H F f 9~D!2
f 8~D!

D G~v–d!21
f 8~D!

D
d2J .

~13!

~Note thatU0 does not depend ond, and the equality of the
expression~12! to zero does not mean thatf 8(D)50).

The elements of the force matrixF ikrr 8 are obtained
from the condition
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F ik
rr 85

]2U

]ur
i ]ur8

k 5
]2U2

]ur
i ]ur8

k 5d rr 8(D H f 9~D!v ivk

2
f 8~D!

D
~v ivk2d ik!J 2 f 9~ ur2r 8u!

3v i
r2r8vk

r2r81
f 8~ ur2r 8u!

ur2r 8u
~v i

r2r8vk
r2r82d ik!.

~14!

Thus, for fcc crystals, we obtain from~14! the following
relations between force constants~3! and derivatives of the
paired potential:

a152S f 9~D!2
f 8~D!

2D D ,

b152
f 8~D!

D
, g152S f 91

f 8~D!

2D D ,

a252 f 9~2D!, b252
f 8~2D!

2D
. ~15!

Before going over to specific computations, we note t
an analysis of the dynamic properties in the general form
quite cumbersome in view of the large number of indep
dent parameters. In the present communication, we s
consider only the case of central forces, i.e., we shall ass
that f 8(D)5 f 8(2D)50. In this case, the number of indepe
dent parameters for each structure is reduced to just two.
shall analyze the role of the next-nearest neighbors by c
plicating the model gradually.

2. DISPERSION RELATIONS FOR CUBIC LATTICES IN THE
SCALAR MODEL

Let us consider the effect of interaction with next-near
neighbors on the dispersion relations of cubic lattices in
scalar model. This model describes the vibrations of a cry
lattice in which all atoms are displaced in the same directi
and the displacement of an atom from the equilibrium po
tion is described by a scalar quantity. It was mention
above that for an appropriate change in the notation, su
model can be used to describe one-magnon states in a
netically ordered medium.13

The equation of motion of the atoms at thenth crystal
lattice site in the harmonic approximation has the form

m
]2u~n,t !

]t2 52(
n8

A~n,n8!u~n8,t !. ~16!

Here the force constantA(n,n8) describes the force actin
on the atom at thenth site if the atom at the siten8 is
displaced by a unit element of length. Taking the interact
with two coordination spheres into consideration, we c
present Eq.~16! in the form

m
]2u~n,t !

]t2 52(
d1

A~n,n1d1!u~n1d1!

2(
d2

A~n,n1d2!u~n1d2!, ~17!
t
is
-

all
e

e
-

t
e
al
,

i-
d
a

ag-

n
n

whered1 andd2 correspond to the first and second coor
nation spheres.

The condition of periodicity of the crystal lattice leads
the equality

A~n,n8!5A~n2n8!, ~18!

while the invariance of the crystal energy relative to the d
placement as a whole gives

(
d1

A~n1d i !50, ~ i 51,2!. ~19!

Considering the periodicity of the lattice, we seek the so
tion of Eq. ~17! in the form

u~n,t !5u exp@ i ~k•r2vt !#, ~20!

where k5(kx ,ky ,kz) is the wave vector andr the radius
vector of thenth site. As a result, Eq.~16! is reduced to the
linear equation

mv2u2A~k!u50, ~21!

whereA(k)5( r A(n)exp(ik•r ).

We can now go over directly to an analysis of the d
persion relations for the scalar models of cubic lattices.
shall consider in detail the high-symmetry directions alo
which the peak of the dispersion curve is displaced inw
into the Brillouin zone, since the emergence in the contin
ous spectrum of a point at which]v/]k50 is extremely
important. We shall also consider the cases when the la
loses stability as a result of interaction with next-near
neighbors.

Simple cubic lattice

In the scalar model, the dispersion relation for an
lattice involving first and second coordination spheres
the form

l[
mv2

As
52~32cosakx2cosaky2cosakz!

14us~32cosakx cosaky2cosakx cosakz

2cosaky cosakz!, ~22!

whereAs is the force constant of interaction with the neare
neighbors, andus5Bs /As the ratio of force constantBs of
interaction with the next-nearest neighbors to the force c
stant of interaction with the nearest neighbors.

Let us study the stability of sc lattice in the scalar mod
taking into account the interaction with next-nearest nei
bors. It can be seen from the dispersion relation~22! that for
As.0, the scalar model of an sc lattice is stable (v2.0),
unlike the vector model, even if the interaction with the ne
est neighbors only is taken into consideration. If the const
of interaction with the next-nearest neighbors is negative,
natural vibration frequencies for the sc lattice may turn ou
be imaginary, i.e., the lattice will be unstable in this case. W
shall show that the sc lattice becomes unstable forus

,21/4. For this purpose, we shall considerus as a param-
eter and determine the value of the wave vector for which
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difference in the contributions from the interaction betwe
the nearest and next-nearest neighbors to the square o
frequency is maximum. For this purpose, we shall determ
all stationary points for the functionl(kx ,ky ,kz), i.e., the
points at which all partial derivatives of the functio
l(kx ,ky ,kz) vanish. Next we determine the minimal value
uusu for which the frequency of vibrations at these points
smaller than zero. Thus, we must solve a system of th
trigonometric equations

5
]l

]kx
52a sinakx14usa sinakx~cosaky1cosakz!50

]l

]ky
52a sinaky14usa sinaky~cosakx1cosakz!50

]l

]kz
52a sinakz14us sinakz~cosakx1cosaky!50

~23!

together with the inequality

l~kx ,ky ,kz!,0. ~24!

By way of an example, let us find some points satisfyi
the system of equations~23!, and the corresponding value
of us for which the inequality~24! is satisfied.

1. Let

sinakx50, cosakx51, sinaky50,

cosaky521, sinakz50, cosakz521.

In this case,us,21/2.

2. Let

sinakx50, cosakx51, sinaky50,

cosaky51, sinakz50, cosakz521.

In this case,us,21.

3. For

sinakx50, cosakx51, sinakyÞ0, sinakzÞ0,

the system of equations~23! is transformed into

H sinaky12us sinaky~11cosakz!50
sinakz12us sinakz~11cosaky!50 .

The solutions of this system of equations have the fo

cosaky5cosakz5
112us

2us
.

The conditions cosaky.21 and cosakz.21 lead to the in-
equalityus,21/4. For the above solutions of the system
equations~23! and forus,21/4, the functionl(kx ,ky ,kz)
is negative.

Taking into consideration all compatible solutions of t
system of equations~23! and the inequality~24! in an analo-
gous manner and choosing the smallest value ofuusu, it can
be shown that the sc lattice becomes unstable forus

,21/4.
The position of the peak on the dispersion curve and

amplitude may depend on the ratio of constants of interac
with the nearest and next-nearest neighbors. We s
n
the
e

e

f

s
n

all

consider the dispersion relations for the sc lattice along
high-symmetry directions as functions of the parameterus ,
indicating the direction along which the dispersion cur
peak is displaced from the Brillouin zone boundary.

In the directionk5(k,0,0), the dispersion relation i
described by the expression

l52~12cosak!18us~12cosak!. ~25!

It can be seen from this equation that the inclusion of int
action with next-nearest neighbors does not violate
monotonicity of the dispersion relation. The maximum fr
quency is attained at the zone boundary. For this direct
lm,k(1,0,0)54116us . Here and below,lm,k is the maximum
value ofl in the direction under consideration.

For the directionk5k/&(1,1,0), the dispersion relation
has the form

l54~12cosak!14us~32cos2 ak22 cosak!. ~26!

In this direction, the peak of the dispersion curve may
displaced into the Brillouin zone only for such values
us(us,21/4) for which the lattice becomes unstable~see
above!. Thus, for this direction also, the inclusion of intera
tion with next-nearest neighbors does not violate the mo
tonicity of the dispersion relation. In this case,

lm,k/&~1,1,0!58116us .

For k5(k/))(1,1,1), we have

l56~12cosak!16us~12cos 2ak!. ~27!

For us.1/4, the peak of the dispersion curve is displac
into the Brillouin zone and is attained at the pointk0

5(1/a)arccos(21/4us) and

lm,k/)~1,1,1!5
3124us148us

2

4us
.

For us,1/4, the peak of the dispersion curve is situated
the boundary of the Brillouin zonek05p/a) and
lm,k/)(1,1,1)512.

Thus, in contrast to the directionsk5(k,0,0) and
k5k/&(1,1,0), the inclusion of interaction with next
nearest neighbors in the directionk5k/)(1,1,1) leads to a
displacement of the dispersion curve peak into the Brillo
zone.

Body-centered cubic lattice

The dispersion relation for a bcc lattice in the sca
model is described by the expression

l[
mv2

Ab
58S 12cos

akx

2
cos

aky

2
cos

akz

2 D
12ub~32cosakx2cosaky2cosakz!, ~28!

whereAb is the force constant of interaction with the neare
neighbors, andub5Bb /Ab the ratio of force constantBb of
interaction with the next-nearest neighbors to the force c
stant of interaction with the nearest neighbors.

Unlike the vector model, the scalar model of the b
lattice with interaction between the nearest neighbors onl
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stable. This model may become unstable if interaction w
the next-nearest neighbors is taken into account. Analyz
the stability of the bcc lattice in the same way as the stab
of the sc lattice, it can be shown that the bcc lattice becom
unstable forub,22/3.

It should also be noted that the inclusion of the seco
coordination sphere in a bcc crystal results in the disapp
ance of divergence of the density of vibrations at the mid
of the spectrum. If interaction with nearest neighbors only
taken into consideration, it follows from~28! that for akx

5p and for arbitrary values ofky and kz ~as well as for
cyclic permutation of the wave vector components! l58
5lmax/2, wherelmax is the maximum value ofl(k) when
interaction with the nearest neighbors only is taken into
count. Consequently, the middle of the frequency spect
corresponds to an infinite set of states, which leads to
divergence of the density of states forl5lmax/2.13,14 It fol-
lows from the dispersion relation~28! that this nonphysica
divergence disappears when interaction with next-nea
neighbors is taken into consideration.

Interaction with next-nearest neighbors can also aff
the form of the dispersion curve significantly. We shall sh
this by considering the example of high-symmetry dire
tions.

In the directionk5(k,0,0), the dispersion relation ha
the form

l58S 12cos
ak

2 D12ub~12cosak!. ~29!

The quantityl(k) attains its peak in this direction at th
boundary of the Brillouin zone forub,1, and lm,k(1,0,0)

516. Forub.1, the dispersion curve peak is displaced in
the Brillouin zone and is attained at the pointk0

5(2/a)arccos(21/ub); and

lm,k~1,0,0!54
~11ub!2

ub
.

For the directionk5(k/&)(1,1,0), the dispersion rela
tion has the form

l54~12cosak!14ub~12cosak! ~30!

andlmk/&(1,1,0)5818ub . It can be seen that for this direc
tion, the interaction with the next-nearest neighbors does
violate the monotonicity of the dispersion relation.

In the directionk5(k/))(1,1,1), the dispersion rela
tion has the form

l58~12cos3 ak/2!16ub~12cosak!. ~31!

In this direction, ]l/]k50 at the pointsk15p/a and
cosak2/25ub , as well as at the Brillouin zone boundarie
(k350, k452p/a). At the pointk1 , the functionl(k) as-
sumes the forml(k1)58112ub , while the value of this
function at the pointk2 is l(k2)58112ub24u3.

At the upper boundary of the Brillouin zone, the functio
l(k) assumes the valuel(k4)516.

It can be seen that in the interval22/3,ub,0, the dis-
persion relation~31! has a peak at the pointk2 and a mini-
mum at the pointk1 . For 0,ub,1, the dispersion curve
peak is situated inside the Brillouin zone at the pointk1 , and
h
g
y
es

d
r-
e
s

-
m
e

st

t

-

ot

the minimum at the pointk2 . For ub.1, the functionl(k)
has a peak at the pointk1 and a minimum at the boundary o
the Brillouin zone~see Fig. 1!.

Thus, it can be seen that unlike the sc lattice, the
lattice may exhibit in the directionk51/)(1,1,1) an addi-
tional peak as well as an additional minimum inside the B
louin zone in the lattice stability region as a result of t
inclusion of an indefinitely small interaction with the nex
nearest neighbors. Moreover, the inclusion of an indefinit
small interaction with the next-nearest neighbors leads to
disappearance of the divergence of vibrational density at
middle of the phonon spectrum.

Face-centered cubic lattice

The dispersion relation for an fcc lattice has the form

l[
mv2

Af
54S 32cos

akx

2
cos

aky

2
2cos

akx

2
cos

akz

2

2cos
aky

2
cos

akz

2 D12u f~32cosakx2cosaky

2cosakz!, ~32!

whereAf is the force constant of interaction with the neare
neighbors, andu f5Bf /Af the ratio of force constantBf of
interaction with the next-nearest neighbors to the force c
stant of interaction with the nearest neighbors.

The fcc lattice is stable when the interaction with near
neighbors only is taken into consideration. Analyzing t
stability of the fcc lattice in the same way as the sc lattice
can be shown that the fcc lattice is unstable foru f,21.

FIG. 1. Dispersion curves for a bcc lattice obtained in the scalar mo
along the@111# direction. Curves1–4 corespond toub50, 22/3, 0.5 and 1,
respectively.
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It can also be seen easily that the dispersion curve p
and its position may depend on the ratio of the constant
interaction with the nearest and next-nearest neighbors.
shall analyze the dispersion relation~32! for an fcc lattice
along the high-symmetry directions and show that the inc
sion of an indefinitely small interaction with the next- near
neighbors may displace the dispersion curve peak into
Brillouin zone.

In the directionk5(k,0,0), the dispersion relation ha
the form

l54S 12cos
ak

2 D12u f~12cosak!. ~33!

For u f.1, the frequency peak is displaced away from t
Brillouin zone and is attained at the pointk05(2/a)arccos
(21/u f), and

lm,k~1,0,0!5
4~11u f !

2

u f
2 .

For u f,1, we havelm,k(1,1,0)58u f .
For the directionk5(k/&)(1,1,0), the dispersion rela

tion has the form

l54S 32cos2
ak

2
22 cos

ak

2 D12u f~12cosak!. ~34!

For an indefinitely small value ofu f , the peak of the disper
sion curve is displaced into the Brillouin zone and is attain
at the pointk05(2/a)arccos(21/(2u f11). In this case,

lm,k/&~1,1,0!5
16~11u f !

2

112u f
.

For the directionk5(k/))(1,1,1), the dispersion rela
tion has the form

l56~12cosak!16u f~12cosak!. ~35!

In this direction, the inclusion of interaction with th
next-nearest neighbors does not violate the monotonicity
l(k) and

lm,k/)~1,1,1!512112u f .

It should be reiterated that the fcc lattice has a hig
symmetry directionk5k/&(1,1,0) along which the disper
sion relation peak is displaced into the Brillouin zone for
arbitrarily small value of the constant of interaction with t
next-nearest neighbors.

Thus, it can be seen that the inclusion of interaction w
the next-nearest neighbors for positive force constants
lead to a displacement of the dispersion curve peak of cu
lattices into the Brillouin zone and to the emergence of
addditional minimum on the dispersion curve in the Brillou
zone. Moreover, the inclusion of the second coordinat
sphere changes the maximum vibrational frequency. In
case of negative force constants of interaction with ne
nearest neighbors~exchange integral in magnetically ordere
systems!, it is shown that the sc lattice remains stable
us.21/4, while the bcc and fcc lattices remain stable
ub.22/3 andu f.21, respectively. It was shown abov
that the inclusion of interaction with the next-nearest nei
ak
of
e

-
t
e

e

d

of

-

h
ay
ic
n

n
e

t-

r
r

-

bors in the case of the scalar model removes the diverge
of the vibrational density for a bcc crystal in the middle
the frequency spectrum. The effect of interaction with t
next- nearest neighbors on the dynamic properties of the
bic lattices is not confined to these facts. Thus, the disper
relation for an fcc crystal along the linekx1ky5p/a is in-
dependent ofkz . This leads to the emergence of a singular
in the density of vibrations at the upper boundary of t
phonon spectrum. If the interaction with the next-near
neighbors is taken into consideration, this singularity dis
pears and the density of states vanishes at the upper bo
ary of the spectrum.15 Interaction with the next-neares
neighbors also affects considerably the properties of sur
waves. For example, no surface waves are formed in
nearest-neighbor model for an sc lattice with surface plan
the type ~1,0,0!. Surface waves emerge as the interact
with next-nearest neighbors is taken into consideration
this geometry. Presenting the displacement of thenth layer
of atoms in the formun5u0qn, we can easily show tha
q51 in the nearest-neighbor model, while the inclusion
interaction with the next-nearest neighbors gives

q5
112us~cosakx1cosaky!

114us
,1.

For fcc and bcc lattices, the inclusion of interaction with t
next-nearest neighbors transforms one-partial surface w
into two-partial waves, i.e., the surface waves have the fo
un5u1qn1u2qn.16

3. DISPERSION RELATIONS FOR CUBIC LATTICES IN THE
VECTOR MODEL

Let us consider models in which the displacementu(n)
of an atom at thenth site is a vector quantity. In the har
monic approximation, the equation of motion for an atom
the crystal lattice at the siten has the form

m
]2ui~n,t !

]t2 52(
n8k

F ik~n,n8!uk~n8,t !, ~36!

where F ik(n,n8) is the matrix of force constants, and th
coordinate indicesi ,k51,2,3. Taking into account the inter
action with next-nearest neighbors, we can present the e
tion of motion ~36! in the form

m
]2ui~n,t !

]t2 52(
d1k

F ik~n,n1d1!uk~n1d1!

2(
d2k

F ik~n,n1d2!uk~n1d2!. ~37!

Hered1 andd2 correspond to the first and second coordin
tion spheres. The condition of periodicity of the crystal la
tice leads to a relation analogous to~18!:

F ik~n,n8!5F ik~n2n8!. ~38!

The solution of Eq.~36! is sought in the form

ui~n,t !5ui exp~ i ~k–r2vt !!, ~39!

wherek(kx ,ky ,kz) is the wave vector andr the radius-vector
of the siten. As a result, we arrive at the system of equatio
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@mv2d ik2Lik~k!#uk50, ~40!

where the dynamic matrix

Lik~k!5(
r

F ik~n!exp~ ik–r !. ~41!

Solution of the system of equations~40! leads to the disper
sion relations. We shall consider below these dispersion
lations for lattices with cubic symmetry in the high
symmetry directions.

Simple cubic lattice

The sc lattice structure is possessed by a wide rang
materials, including TlBr, TlI, NH4Cl, CuPd, CuZn~b-brass!
and one of the phases of C60. We shall use the matrices~1!
fo

s

-
ns

e
he
le
on

s
x

on

he
ipl
ra
e-

of

in the case of central interaction with the nearest and n
nearest neighbors. Denoting by«s andds the force constants
of central interaction between the nearest and next-nea
neighbors respectively, we can write for the matrices~1!
a15«s , a25ds , b150, b250 anda25g2 .

In this case, the dynamic matrixLik
(1)(k) of interaction

with the nearest neighbors has the form

Lik
~1!52«sS 12cosakx 0 0

0 12cosaky 0

0 0 12cosakz

D .

~42!

The dynamic matrixLik
(2)(k) of interaction with the next-

nearest neighbors has the form
Lik
~2!~k!54dsS 22cosakx~cosaky1cosakz! sinakx sinaky sinakx sinakz

sinakx sinaky 22cosaky~cosakx1cosakz! sinaky sinakz

sinakx sinakz sinaky sinakz 22cosakz~cosaky1cosakx!
D . ~43!
f the

f

into

ined
(
rans-
Let us analyze the form of the dispersion relations
different directions ofk.

In the directionk5(k,0,0), the dispersion relation ha
the form

l l5~218ms!~12cosak!,

l t15l t254ms~12cosak!,

where l l corresponds to longitudinal vibrations with fre
quencyv l , l t,i( i 51,2) corresponds to transverse vibratio
with frequency v t , a is the lattice constant,l l (t)

[mv l (t)
2 /«s , andms5ds /«s . It can be seen that transvers

vibrations are determined only by the interaction with t
next-nearest neighbors. Thus, the model becomes stab
the interaction with next-nearest neighbors is taken into c
sideration.

For the direction k5(k/&)(1,1,0), the dispersion
curves assume the form

l l52~12cosak!14ms~22cos 2ak2cosak!,

l t152~12cosak!14ms~12cosak!,

l t258ms~12cosak!.

In this case, one of the branches of transverse vibration
determined by the interaction with the nearest and ne
nearest neighbors, while the other branch is determined
by interaction with the second coordination sphere.

For the directionk5(k/))(1,1,1), we can write

l l52~12cosak!18ms~12cos 2ak!,

l t15l t252~12cosak!12ms~12cos 2ak!.

It can be seen clearly that inclusion of interaction with t
second coordination sphere leads to a splitting of the tr
degenerate mode into a longitudinal and a doubly degene
r

if
-

is
t-
ly

y
te

transverse modes, and may also lead to a displacement o
peak of l l(k) from the Brillouin zone boundary. Forms

.1/16, the peak on the curvel l(k) is displaced into the
Brillouin zone ~see Fig. 2!, while a similar displacement o

FIG. 2. Dispersion curves for an sc lattice along the@111# direction. The
solid curve is a triply degenerate dispersion curve obtained by taking
account the interaction with nearest neighbors only (ms50). The dashed
curve corresponds to the branch of longitudinal vibrations and was obta
by taking into account the interaction with next-nearest neighborsms

50.1). The dotted curve corresponds to a double degeneracy of the t
verse vibrational branch (ms50.1).
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the l l(k) peak occurs forms.1/4.
To analyze the elastic stability, we express the ela

moduli Cxxxx5C11, Cxxyy5C12, Cxyxy5C44. ~Voigt’s
notation17! in terms of the force constants. For the sc latti
we can write

C115
«s14ds

a
, C125

2ds

a
, C445

2ds

a
. ~44!

Naturally, the Cauchy condition~inclusion of central forces
only! is observed for the sc lattice, as also for the other t
cases considered by us:

C125C44. ~45!

Moreover, it follows from the condition of elastic stability17

C44.0 ~46!

that ds.0.
The anisotropy parameter for a cubic symmetry crys

has the form

h5
C112C12

2C44
5

Ct1
2

Ct2
2 , ~47!

where Ct15A(C112C12)/2r, Ct25AC44/r are the trans-
verse velocities of sound in a cubic crystal, andr is the
density of the crystal. For the sc lattice, the anisotropy
rameterh has the form
s

ic
x

e

ic

,

o

l

-

h5
«s12ds

4ds
. ~48!

It follows from Eq.~48! thath@1 for a weak interaction
with the next-nearest neighbors, i.e., the sc lattice in
longwave limit corresponds to a highly anisotropic mediu
For ds5«s/2, the sc lattice in the longwave limit will corre
spond to an isotropic medium (h51). Earlier, it was shown
by Kosevichet al.18 that a change in the anisotropy param
eter over such a wide range in the theory of elasticity lead
significant variation of the properties of surface waves
crystals of cubic symmetry: the penetration depth and
velocity of propagation of the waves changes, and a tra
tion from the conventional Rayleigh wave to a generaliz
wave occurs.

Body-centered cubic lattice

The body-centered cubic lattice is possessed by a v
wide range of materials like Fe, Nb, V, Mo, SF6, Na, Ta, Nb,
Cr, and one of the solid3He phases. For the case of centr
interaction in the force matrices of a bcc crystal2 considered
by us,a15b15«b , a25db , b250. For such a relation be
tween the parameters, the dynamic matrix of interaction w
the nearest neighbors has the form
Lik
~1!5«bS 12cos

akx

2
cos

aky

2
cos

akz

2
cos

akz

2
sin

akx

2
sin

aky

2
cos

aky

2
sin

akx

2
sin

akz

2

cos
akz

2
sin

akx

2
sin

aky

2
12cos

akx

2
cos

aky

2
cos

akz

2
cos

akx

2
sin

aky

2
sin

akz

2

cos
aky

2
sin

akx

2
sin

akz

2
cos

akx

2
sin

aky

2
sin

akz

2
12cos

akx

2
cos

aky

2
cos

akz

2

D . ~49!
ads
di-

ed
is-
the

on
d.
-

f the
eak
The dynamic matrix of interaction with the next-neare
neighbors can be represented in the form

Lik
~2!52dbS 12cosakx 0 0

0 12cosaky 0

0 0 12cosakz

D .

~50!

Let us analyze the dispersion relations for the bcc latt
taking into account the interaction with the nearest and ne
nearest neighbors.

In the directionk5(k,0,0), the dispersion relations hav
the form

l l58S 12cos
ak

2 D12mb~12cosak!,

l t15l t258S 12cos
ak

2 D .
t

e
t-

Here,l l (t)[mv l (t)
2 /«b , mb5db /«b . It can be seen that the

inclusion of interaction with the next-nearest neighbors le
to a splitting of the triply degenerate mode into a longitu
nal and a doubly degenerate transverse modes. Formb.1,
the peak on the longitudinal vibrations curve is displac
into the Brillouin zone. The experimentally determined d
persion curves for Fe, Nb, V, Mo, and Cr have a peak on
longitudinal vibrational branch alongk5(k,0,0) in the Bril-
louin zone, while for Na and Ta, for example, the peak
the longitudinal branch is attained at the edge of the ban6,7

For the directionk5(k/&)(1,1,0), the dispersion rela
tions have the form

l l58S 12cos
ak

2 D12mb~12cosak!,

l t154~12cosak!, l t252mb~12cosak!.

It can be seen that as in the case of an sc lattice, one o
branches of transverse vibrations is determined by a w
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interaction with the next-nearest neighbors, while the othe
defined by a strong interaction with the nearest neighb
~see Fig. 3!.

For the directionk5(k/))(1,1,1), the dispersion rela
tions have the form

l l52S 42cos
ak

2
23 cos

3ak

2 D12mb~12cosak!,

l t15l t258S 12cos
ak

2 D12mb~12cosak!.

For this direction, the inclusion of interaction with the nex
nearest neighbors does not lead to a qualitative variatio
the dispersion relation. It should be observed that formb

.1, the peak on the curve of transverse vibrations is d
placed into the Brillouin zone.

We shall now analyze the anisotropy parameter for
bcc lattice. The elastic moduli of a bcc crystal have the fo

C115
2~«b1db!

a
, C125

2«b

a
, C445

2«b

a
. ~51!

The anisotropy parameter for a bcc crystal can be prese
in terms of the force constants:

h5db/2«b . ~52!

If we disregard the role of the next-nearest neighbors,C11

2C12 vanishes~elastic instability!, while a variation of the
ratio db /«b may transform~in the longwave limit! a highly
anisotropic crystal into an isotropic one. It follows from fo
mula ~52! that for db!«b , a bcc crystal is a highly aniso
tropic medium (h!1) in the longwave limit. Fordb

52«b , the anisotropy parameterh51 ~the medium is iso-
tropic!. In other words, the parameterh may change over a

FIG. 3. Transverse branches of vibrations of a bcc lattice along the@110#
direction formb50.1 ~highly anisotropic medium!.
is
rs

of

-

e

ed

wide range, as in the case of an sc lattice, depending on
ratio of the constants of interaction between the nearest
next-nearest neighbors~see Figs. 3 and 4!. It was shown by
Tyson6 and by Gospodarev and Syrkin7 that for a number of
bcc metals, the constants of interaction with the next-nea
neighbors may turn out to be more than twice as large as
constants of interaction with the nearest neighbors.

Face-centered cubic lattice

Like the structures considered above, the fcc structur
quite widespread. Solidified inert gases, Ag, Ni, Cu, and
all have the fcc lattice. For a central interaction between
nearest and next-nearest neighbors in the force matrices~3!
of an fcc crystal,b150, a15g1[« f , b250, anda2[d f .
Interaction with the next-nearest neighbors does not af
significantly the fcc lattice spectrum. It should only b
remarked that in the directionk5(k,0,0), the peak of
the longitudinal vibrations curve is displaced from th
Brillouin zone boundary for d f.« f . In the direction
k5(k/&)(1,1,0), the peak of one of the branches of tran
verse vibrations is displaced into the Brillouin zone ford f

.0.5« f . Thus, it can be seen that ford f!« f the dispersion
relations for an fcc crystal can be described quite accura
by taking into account interaction with the nearest neighb
only.

As in the case of sc and bcc lattices, let us analyze
condition of elastic stability of an fcc lattice~for an arbitrary
ratio of the constants of interaction between nearest
next-nearest neighbors!. The elastic moduli for an fcc crysta
can be represented in the form

FIG. 4. Doubly degenerate transverse branch of vibrations of a bcc cry
along the@110# direction formb52 ~isotropic medium!.
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C115
4~« f1d f !

a
, C125

2« f

a
, C445

2« f

a
. ~53!

It follows from this relation that for« f.0, the fcc lattice
remains stable ford f.2« f . The anisotropy parameter fo
an fcc crystal has the form

h5
« f12d f

2« f
. ~54!

It follows from this expression that in the longwav
limit, the fcc crystal is anisotropic ford fÞ« f /2 and isotropic
for d f5« f /2.

By way of an illustration of this fact, let us consider th
dispersion relation for the transverse vibrations in the dir
tion k5k/&(1,1,0):

l t154S 12cos
ak

2 D12m f~12cosak!,

l t,258S 12cos
ak

2 D .

Here,m f5d f /« f . It can be seen that in the longwave lim
(ak!1), the dispersion relations for transverse branches
incide for d f5« f /2 ~see Fig. 5!, while for ak@1 these rela-
tions are not identical. If the conditions corresponding to
isotropic medium are satisfied for sc and bcc lattices,
transverse branches coincide for all values ofk ~see Fig. 4!.
The dispersion relations for an fcc crystal are presente
Fig. 6 for the cased f5(0.1)« f . Such a relation between th
force constants corresponds to solidified inert gases.19

FIG. 5. Transverse branches of vibrations of an fcc lattice along the@110#
direction form f50.5 ~isotropic medium!.
-

o-

n
e

in

CONCLUSIONS

The role of the next-nearest neighbors is found to
extremely important for studying the vibrational spectrum
cubic lattices.

In scalar models, the inclusion of the second coordi
tion sphere may be manifested in the displacement of
peak of dispersion curves into the Brillouin zone, and a
leads to the disappearance of ‘‘nonphysical’’ singularities
the vibration density: at the upper boundary of the contin
ous spectrum in fcc crystals and in the middle of the sp
trum for bcc crystals.

In vector models of cubic lattices, the inclusion of inte
action with the next-nearest neighbors may lead to a va
tion of the ‘‘anisotropy parameter’’ over a wide range: in th
longwave limit, the two transverse branches may coinc
~isotropic medium! or differ significantly~highly anisotropic
medium! depending on the ratio of the force constants
interaction between nearest and next-nearest neighb
Among other things, this result makes it possible to det
mine the nature of propagation of acoustic surface wave
cubic crystals in the longwave approximation with the he
of microscopic characteristics like force constants of inter
tion between the nearest and next-nearest neighbors.
analysis carried out within the framework of the theory
elasticity shows that in strongly anisotropic crystals, the p
etration depth of a Rayleigh wave increases while the ve
ity of its propagation decreases and its polarization beco
almost linear rather than elliptic as in the case of wea
anisotropic crystals.

Moreover, the next-nearest neighbors can either ens
lattice stability or, on the other hand, make the lattice u
stable. The analysis carried out in this work also shows t

FIG. 6. Transverse branches of vibrations of an fcc lattice along the@110#
direction form f50.1 ~highly anisotropic medium!.
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the interaction of the third and subsequent neighbors ca
lead to such radical variations in the phonon spectrum.

The authors are indebted to A. M. Kosevich for fruitf
critical remarks on the initial version of this paper.
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Due to a production error, Fig. 21 was erroneously replaced with a copy of Fig. 23. The correct Fig. 21 is presented

FIG. 21. Thermogram of the cooling of a crystal and the corresponding
pressure change illustrating the layering at 100 mK and the fusion of3He
cluster formation upon further cooling,V520.54 cm3/mole.
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