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The temperature and size dependences of critical current in three Bi-based ceramic HTSC
samples with a circular cross section and in a sample with a right triangular cross section in zero
magnetic field are studied by a contactless technique. It is shown that the critical current of
ceramic HTSC can be presented as the product of the temperature- and size-dependent factors. The
temperature-dependent factor describes individual properties of the Josephson net of each
sample, while the size-dependent factor is a homogeneous function whose exponent does not
depend on the shape of the sample cross section. An analysis of experimental data is
used to find the radial distribution of critical current density in round samples and to determine
its dependence on the magnetic induction in granular HTSC. ©1999 American Institute
of Physics.@S1063-777X~99!00112-7#
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INTRODUCTION

The magnitude of critical current in high-temperature c
ramic superconductors is determined by the properties of
random three-dimensional Josephson net formed by the
of weak links between superconducting grains of
material.1,2 Considerable difficulties appear when the me
surements of transport current are made in the range of m
netic fields smaller than the lower critical field of grain
since the role of the field induced by the transport curr
itself becomes significant. The only way to control such
field under these conditions is to vary the cross-sectional
of the sample. This leads to the so-called size effect, viz.,
dependence of the critical currentI c and its average densit
^ j c& of the size of the sample cross section.2–12 It was found
in our earlier experiments with samples having a rectang
cross section11,12 that the critical current as the function o
temperatureT and the size of the cross section~width X and
heightY) in zero magnetic field has the form

I c~X,Y,T!5G~X,Y! f ~T!. ~1!

Here the functionf (T) is determined only by the propertie
of the material of a given sample. It was found12,13 that the
critical current~namely, the functionG(X,Y)) is a homoge-
neous function of the size of the cross section, i.e., is a fu
tion of the form14,15

I c~kX,kY!5kpI c~X,Y!. ~2!

For samples with a rectangular cross section,p51.39
60.02.12 It is reasonable to assume that the dependenc
type~1! is preserved for other shapes of cross section, but
value of the exponentp in this case has to be determined
each case. This is due to the fact that individual intergr
links in the Josephson net of the sample are in the field
varying magnetic induction since these fields are the res
9291063-777X/99/25(12)/7/$15.00
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ant field of the currents flowing through other regions of t
sample. The current in this case is distributed over
sample cross section as is dictated by the dependence o
local critical current densityj c on the magnitude of the mag
netic fieldH. Under these conditions, the shape of the cr
section can play a certain role.

The dependence ofj c on the fieldH ~or the magnetic
inductionB5m0mH, wherem0 is the magnetic constant an
m the permeability of the material! is one of the central ques
tions in the theory of critical state. In his pioneering work
Bean16,17proposed thatj c5const in weak fields. Many mod
els were recommended in order to take into account the
fect of magnetic induction. Some of these models are ge
alized in the Xu–Shi–Fox three-parametric model:18

j c~B!5A/~B01B!b. ~3!

For b51, we obtain the Kim–Anderson model.19 However,
alternative expressions forj c were also proposed3,7,20:

j c~B!5A/~B0
21B2!. ~4!

In expressions~3! and ~4!, A, B0 , andb are the model pa-
rameters~usually,b51/2 or 1!. These and some other rela
tions are widely used in an analysis of the properties
HTSC systems.2,3,7,21–24 The number of publications in
which the j c(B) dependence was determined experimenta
is small. For example, Johansenet al.25 found on the basis of
the magneto-optical method that the current distribution p
file in thin strips and films corresponds to Bean’s model
should be noted that the Josephson net in such system
rather two-dimensional, and the obtained results can ha
be used for describing the properties of 3D ceramic HTSC.
Ginzburget al.20 proved~by measuring magnetic susceptib
ity! that model~4! is applicable in the limiting case of a
‘‘thin sample.’’
© 1999 American Institute of Physics



d
c-
o

m
ha
os
si
e
th

ra
ts
ed
tin
e

a
u-
an

u
th

ce
n
is
b

rn
a
s
ra

, t
is
t i
n
ea
e

ur

ld
no
en
s
t
e
tu
tw

. T
ur
lu
ew
T
el

ra-
d

tical
ach
fter

ing.
the

led
de-
b-

t the
d as

ting
10

2.2
m

era-
the
ple

d a
the
eri-
om
nder

in
ly. It
ra-

tions
he
0 K
ran-
ture
med
nt

the
his
um
w-
port

he
iti-
m-
dif-
n

er
ect-
e
of

930 Low Temp. Phys. 25 (12), December 1999 N. A. Bogolyubov
In order to verify the validity of expressions~1! and~2!
for samples with cross sections other than rectangular an
determine the exponentsp corresponding to such cross se
tions, we analyze here the critical current as a function
temperature and size of the cross sections of four cera
HTSC samples in zero magnetic field. Three samples
circular cross section, while the fourth sample had a cr
section of the shape of a right triangle. The current den
and magnetic induction for samples with a round cross s
tion depend only on the radius, which allows us to derive
relation j c5 j c(B) from experimental data.

OBJECTS AND METHODS OF INVESTIGATION

The samples under investigation differed in the prepa
tion technology as well as in the ratio of initial componen
The methods of sample synthesis and testing are describ
Refs. 26 and 27. Sample 1 contained two superconduc
phases~Bi-2212 and Bi-2223! and was characterized by th
superconducting transition temperatureTc5105.75 K and
density 3.79 g/cm3. Bismuth-based samples 2, 3, and 4 h
only one phase~Bi-2223! and were characterized by the s
perconducting transition temperatures 104.8, 107.8,
106.2 K and densities 4.91, 4.92, and 5.18 g/cm3 respec-
tively.

The critical current in ring-shaped samples with a circ
lar or right-triangular cross section was measured with
help of the contactless transformer technique.5,11,12,28 The
sample with the primary and measuring windings was pla
in a ferrite core of the armor type. If an alternating curre
flows in the primary, a current of the opposite direction
induced in the ring-shape sample. Its magnitude must
such that the magnetic flux accumulated in the central ke
of the core and passing through the gap between the ring
the winding remained unchanged and equal to zero. A
result, the magnetic induction in the central kernel, late
and end faces of the core is equal to zero. In other words
sample was placed in a ‘‘jacket’’ the field in whose walls
equal to zero. At the instant when the amplitude of curren
the ring attained or exceeded the critical current, the sig
induced in the measuring coil had the shape of a sharp p
The amplitudeI 1 of the primary current was recorded at th
instant of the emergence of the signal, while the critical c
rent was calculated by the formulaI c5n1I 1 , wheren1 is the
number of turns in the primary winding. The electric fie
induced in the sample at the instant of recording did
exceed 10 nV/cm. Measurements were made at a frequ
of 14.3 Hz. The critical current of the initial sample wa
measured at a number of fixed temperatures. Then
sample was polished, and the critical current for the n
cross sectional area was measured at the same tempera
Such a procedure was repeated many times. As a result,
dimensional arrays of values ofI c were obtained for various
values of the cross-section diameter and the temperature
values ofI c were measured 10–20 times at each temperat
The obtained values were averaged. The spread in the va
obtained in individual measurements was usually of a f
tenths of percent and exceeded 1% only in rare cases.
diameterD of the cross section was measured with the h
to
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of a clock-type indicator immediately after sample prepa
tion as well as after completion ofI c measurements an
sample heating. The temperatureTc was determined during
sample cooling after each meachanical treatment. The cri
current was measured at liquid nitrogen temperature for e
value of the diameter of the cross section immediately a
cooling, during the measurement of theI c(T) dependence,
and after the completion of measurements before heat
Control measurements were made for some values of
diameter: the sample with an invariable size was coo
again after heating, and all the measuring procedures
scribed above were repeated. The invariability of the o
tained parameters was regarded as a proof of the fact tha
superconducting properties of the sample had not change
a result of mechanical processing and cooling–hea
cycles. The critical current in sample 1 was measured for
values of the diameter of the cross section varying from
to 0.5 mm and for 14 values of temperature varying fro
101 to 62.5 K. Sample 2 was investigated at eleven temp
ture points from the same interval and for 8 values of
diameter from 2.7 to 0.865 mm. In experiments with sam
3, the diameter varied from 1.23 to 0.7 mm~4 values!, while
the temperature varied from 90 to 66.25 K~6 values!.
Sample 4 whose critical current was studied at 77.33 K ha
cross section in the form of a right triangle. The sizes of
sides of the triangle were varied in the course of the exp
ment in the same proportion from 1.43 to 1.08 mm and fr
0.54 to 0.44 mm, and hence all the nine cross sections u
investigation were similar.

DISCUSSION OF RESULTS

The results of measurements of critical current
samples 1 and 2 are shown in Figs. 1a and 1b respective
order to make experimental points distinguishable, tempe
ture dependences are presented for 9 from 10 cross sec
studied for sample 1 and for 7 from 8 for sample 2. T
I c(T) curves for sample 1 in the temperature range 70–8
have a typical bent associated with a superconducting t
sition of the Bi-2212 phase upon a decrease in tempera
and with the emergence of a new Josephson net now for
by two phases Bi-2223 and Bi-2212. The critical curre
through the third sample had higher values thanI c in
samples 1 and 2, but its temperature dependence was
same as for sample 2. At 66.25 K, the critical current in t
sample attained values 14.3 and 6.75 A for the maxim
and minimum diameters of the sample respectively. Ho
ever, the magnetic field created in this case by the trans
current even at the sample surface (H5I c /pD) did not ex-
ceed the values of the first critical current for grains of t
Bi-2223 phase.29,30 Figure 2 shows the dependences of cr
cal current for samples 1 and 2 as a function of their dia
eters. In spite of the fact that the curves correspond to
ferent samples~Figs. 2a and 2b! and to different Josephso
nets in the case of sample 1, they are of the same type.

If the expression for critical current in the samples und
investigation has the same form as for samples with a r
angular cross section~i.e., ~1!!, the dependence on th
sample diameter can be eliminated. Dividing the values
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critical current I c(D,T) for one of experimental curves i
Fig. 1 by I c(D,T0) for the same curve (T0 is one of experi-
mentally studied values ofT), we must obtain the relative
critical currentI T which is a function of temperature only:

I T~T!5 f ~T!/ f ~T0!. ~5!

All the remaining experimental curves transformed in t
way must be described by the same dependence. Indeed
values ofI T calculated for cross sections with different d
ameters are close and differ from mean values by not m
than 1%. For this reason, dashed curves in Fig. 1 for wh
T0577.33 K are the smoothed curves drawn through m
values. It should be noted that these dashed curves hav
same shape as the temperature dependences of critica
rents for individual samples, i.e., each curve reflects the
dividual behavior ofI c(T) of a given sample. In order to

FIG. 1. Temperature dependences of critical current of the first~a! and
second~b! samples. Cross section diameters, mm: 2.2~curve1!, 2.02~curve
2!, 1.8 ~curve3!, 1.44 ~curve4!, 1.26 ~curve5!, 1.1 ~curve6!, 0.85 ~curve
7!, 0.7 ~curve8!, and 0.5~curve9! ~a! and 2.7~curve1!, 2.32 ~curve2!, 2
~curve3!, 1.78~curve4!, 1.54~curve5!, 1.14~curve6!, and 0.865~curve7!
~b! Dashed curves correspond toI T5I c(D,T)/I c(D,77.33K).
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eliminate the dependence on temperature, we introduce
relative currentI G by dividing the critical currents for each
isotherm by the values of current determined at the sa
temperature for an intermediate value of the diameterD0 of
the sample cross section:

I G~D !5I c~D,T!/I c~D0 ,T!. ~6!

The ratios calculated for different isotherms are quite clo
Their deviation from mean values for eachD are random.
The scale of the figure does not allow us to demonstrate t
and Fig. 2 presents only the dashed curve drawn thro
mean values. Thus, the value ofI G is independent of tem-
perature and the type of the Josephson net and is determ
only by the diameter~or radiusR) of the sample cross sec
tion. The critical current through sample 3 exhibits the sa

FIG. 2. Critical currents in samples 1~a! and 2~b! as functions of diameters
of cross sections at various temperatures, K: 62~curve1!, 68.05~curve2!,
71.55 ~curve 3!, 77.33 ~curve 4!, 82.55 ~curve 5!, 87.55 ~curve 6!, 92.45
~curve7!, 97.11~curve8!, and 101~curve9! ~a! and 62.5~curve1!, 66.25
~curve2!, 69.85~curve3!, 73.3~curve4!, 77.33~curve5!, 82.55~curve6!,
87.55 ~curve 7!, 92.45 ~curve 8!, and 97.1~curve 9! ~b! Dashed curves
correspond toI G5I c(D,T)/I c(D4 ,T).
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dependence onT andD. Since the critical current in round
samples can be presented as~5! or ~6!, it has the form

I c~R,T!5G~R!/~T!, ~7!

i.e., the expression for critical current, as in the case
samples with a rectangular cross section, is the produc
two functions one of which depends only on the size of
cross section, and the other only on temperature and mat
properties of an individual sample. Moreover, the analogy
much deeper. Let us consider the dependence ofI G

5I c(kR)/I c(R) on the relative sizek (k5Rj /Ri , i and j
being the numbers of sample cross sections!. Statistical pro-
cessing of the results of measurements shows that

I c~kR,T!5kpI c~R,T!,

for any sample, any isotherm, and any choice ofRi . Conse-
quently, the critical current~to be more precise, the facto
G(R) depending on the sample radius! is a homogeneous
function of R.14,15 The dependence of lnIG5ln@Ic(kR)/Ic(R)#
on lnk for samples 1–3 is shown by circles in Fig. 3.
order to minimize the overlapping of points corresponding
different samples, the normalizing quantities are chosen
that they correspond to the largest cross sections for sam
and to the smallest cross sections for samples 2 and 3. It
easily be seen that the dependence under investigation
each sample can be approximated by a straight line. S
the preceding equality is valid for anyk, we find ~putting
k51/R) that G(R) is a power function and

I c~R,T!5Crpf ~T!. ~8!

The averaged value of the exponentp determined for sample
1 is 1.3660.05. Here and below, the fractiles inverted S
dent distribution31 with the confidence probability 0.95 i

FIG. 3. Similitude law for critical current in ceramic samples with differe
shapes of cross section. Round samples:s, d, and s correspond to
samples 1~77.33 K!, 2 ~62.5 K!, and 3~90 K!; n correspond to sample 4
with a triangular cross section~77.33 K!, h correspond to sample 1 from
Ref. 12~rectangular cross section, 77.33 K!.
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used for determining confidence intervals. The deviations
the value of exponentp determined for different isotherms o
this sample from the average value are of random nature,
the exponent is independent of temperature as well as
type of random Josephson medium existing in the sampl
a certain temperature. The latter statement means that it m
be independent of the properties of a specific sample a
Indeed, the lnIG vs. lnk dependences plotted for sampl
1–3 on the same graph coincide~see Fig 3!. The exponent
p51.3460.03 for the second sample andp51.3760.08 for
sample 3. These values coincide within confidence interv
Taking into account the facts mentioned above, we find
average value ofp51.3660.02. Thus, the functionG(R)
5CRp for round ceramic HTSC samples is a homogene
function of its argument, which is characterized by a univ
sal exponent. In other words, we observe the same patte
for samples with a rectangular cross section.

Experiments with sample 4 with a cross section in t
form of a right triangle proved that its critical current is
homogeneous function of the dimensions of cross sec
~cathetsX andY), i.e., is described by expression~2!. Since
the conditionk5Xj /Xi5Yj /Yi cannot be fulfilled rigorously
when the dimensions of this sample are varied, the quantik
was defined as in Ref. 12:k50.5(Xj /Xi1Yj /Yi). In the
case of a triangular sample, the exponentp51.3460.04~tri-
angles in Fig. 3!. On the other hand, in Ref. 12 we invest
gated four samples with rectangular cross sections and
tained the following values for the exponentp: 1.4060.04,
1.3660.05, 1.3660.07, and 1.4260.04, which coincide
with the values ofp determined in this research to withi
confidence intervals. Figure 4 shows the exponents and t
confidence intervals determined by us here and in previ
investigations.12 Sample numbers are laid along the absci
axis; samples 1–4 from Ref. 12 are labeled now by 5
respectively. The diagram displays no dependence of ex
nent p on the shape of the sample cross section. Con
quently, we can introduce the universal average value op.
This has a physical meaning if the law of similitude in th
dependence of the critical current of ceramic HTSC samp

FIG. 4. Values of exponent of the homogeneous function and their co
dence intervals obtained for samples with different shapes of cross sect
s, n, andh correspond to samples with circular, triangular, and rect
gular cross sections~see text!. The dashed line corresponds to the avera
value.
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on the relative size of cross section12 is observed irrespective
of the shape of cross section. In other words, the value oI G

must be a universal function ofk for samples with any shap
of the cross section~at least, for the shapes studied by u!.
Figure 3 shows the dependences of lnIG on lnk obtained for
round samples~1–3!, as well as samples with triangular~4!
and rectangular~sample 1 from Ref. 12! cross sections a
various temperatures. It can easily be seen that all the po
can be approximated by a single straight line, i.e., the sim
tude law is observed indeed. As an additional argument,
note that the statistical processing confirms the validity
zero-point hypothesis concerning the equality of gene
mean values~for a confidence probability 0.95!.31 Thus, for
the weight-average value of the exponent of the homo
neous function, we obtainp51.3660.01. It was proposed
by us earlier12,13 that the exponentp might depend on the
shape of the sample cross section. However, subsequen
periments did not confirm this proposition. It should be no
that the cross sections of the samples under investigation
convex simply connected regions. Generalizing the res
obtained by us, we can state that if samples cross section
such regions, the critical current of ceramic samples in z
external field is a homogeneous function of the sample
with a universal exponent irrespective the shape of a c
section.

Let us return to an analysis of a round sample carry
current of the critical value. Obviously, the critical curre
density in this case has the critical value everywhere over
entire cross section. Consequently, we can write

I c~R,T!5CRpf ~T!5E j crd rdw. ~9!

The integration is carried out here over the entire cro
sectional area of the sample, andr and w are polar coordi-
nates. Since the integration concerns only spatial variab
the factor f (T) appearing in the expression forI c(R,T) is
also contained inj c . In the case of a round sample, th
current density does not depend on the azimuthal angle,
hence

j c~r ,T!5c f~T!r p22, ~10!

wherec is a constant. Using relations~9! and~10!, we obtain
C52pc/p. Since p51.36, we havej c}r 20.64. It follows
from formula ~10! that the value ofj c in the central part of
the sample increases unlimitedly. It should be noted in
connection that this expression was derived by interpre
the results of macroscopic measurements in which a 3D Jo-
sephson net in the sample behaves as a continuous med
If the radius of the region in the central part of the sample~or
in any other its part! becomes smaller thanr 0 which is equal
to tens and even hundreds of diameters of individual su
conducting granules, we go over to a discrete Josephson
dium, and expression~10! is not applicable any longer. Th
critical current density itself remains finite everywhere. T
average critical current density

^ j c&5I c /pR25C/~T!/pR22p ~11!
ts
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is a homogeneous function ofR with the exponentp22 and
increases upon a decrease in the sample cross sec
Samokhvalov32 who studied the emergence of vortices in
cylindrical sample came to the same conclusion. When
decreasing value ofR approachesr 0 , the form of the depen-
dence^ j c& changes for the above reasons. If we write^ j c&
as a function of the cross-sectional areaS, we have
^ j c&;Sp/221;S20.3260.01. The authors of Refs. 7, 2, 33, an
3 presented the results of their analysis of^ j c& in the form of
a power function ofS and obtained exponents21, 21/2,
and 21/3 respectively. It can be seen that our result is
very god agreement with that obtained by Zakharchen
et al.3

The magnetic field created in the sample by transp
current, and hence the magnetic induction have only a
muthal components depending onr . Using the integral Max-
well equation for the circulation of magnetic field, we obta

B~r !5m0mH~r !5
c

p
m0urp21f ~T!. ~12!

The values ofB andH are equal to zero at the center of th
sample and increase towards the periphery in proportion
r 0.36. Besides, the values ofB andH as well aŝ j c& depend
on f (T), i.e., on individual properties of the sample. At th
sample surface, we have

H~R!5CRp21f ~T!.

Thus, H(R) is also a homogeneous function of the sam
radius with the exponentp21. Eliminatingr from ~10! and
~12!, we obtain the following equation connecting the critic
current density and magnetic induction:

j c~B!5S pc1/~p22!

m0m D ~p22!/~p21!

B~p22!/~p21! f ~T!1/~p21!.

~13!

Thus, j c}B21.7860.08. The behavior of the critical curren
density in the vicinity of the sample center, where the ma
netic field and induction tend to zero, has been conside
earlier.

Expression~13! obtained for thej c(B) dependence dif-
fers from~3! or ~4! primarily in the value of exponent. If we
assume thatB050, we arrive at~3! for b5(p22)/(p21).
If we round off the exponent ofB to 22, expression~13! is
transformed to formula~4! ~for B050). The presence o
terms withB0 in ~3! and ~4! allows us to eliminate diver-
gence of j c at the center of the sample. Using the resu
obtained by us as well as quite natural assumptions, we
derive expressions forj c(r ) and j c(B) which give a finite
value of j c at the sample center. In this work, however, w
confine our analysis only to corollaries following direct
from experiments. Equation~13! connecting the critical cur-
rent density with the magnetic induction was obtained by
for a round sample. However, it is a characteristic of a r
dom Josephson medium realized in granular HTSC mat
als. Consequently, it is valid for any sample and does
depend on whether the magnetic field is applied or is indu
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934 Low Temp. Phys. 25 (12), December 1999 N. A. Bogolyubov
by transport current, and the properties of a specific mate
medium are taken into account in~13! due to the presence o
the functionf (T).

We shall use Eq.~13! for analyzing the state emerging i
the sample having the shape of a tube carrying the crit
transport currentI c1 . The radii of inner and outer surface o
the tube areR1 and R respectively. In this case,j c and B
depend only onr . Maxwell’s equation for the case unde
investigation has the form

d~rB !

dr
5m0mr j c .

Taking into account the fact that magnetic induction on
inner surface of the tube is equal to zero, we obtain

B~r !5~m0mc/p!r p21g~r ! f ~T!, ~14!

j c~r !5crp22@g~r !G#21f ~T!.

g~r !5@12~R1 /r !p/~p21!#p21. ~15!

When r 2R1;r 0 , we can make the same remark on t
applicability of expression~15! as while discussing formula
~10!. The expressions for critical current, its average dens
and magnetic field on the surface of such a sample have
form

I c15CRpg~R! f ~T!, ~16!

^ j c&5
I c1

pR2~12R1
2/R2!, ~17!

H~R!5
C

2p
Rp21@g~R!#p21f ~T!. ~18!

This means that as in the case of a continuous round sam
these three quantities are homogeneous function of degrep,
p22, andp21 respectively, but now of two argumentsR1

and R. In the example under consideration, the sample
the cross section in the form of a doubly-connected reg
possessing a central symmetry. Consequently, the gene
zation made by us earlier remains unchanged~see the end of
discussion Fig. 3!.

Let a round continuous sample carry a transport curr
I 1 smaller than critical. Following the hypothesis of critic
state,16,17 we assume that this current is distributed over
sample cross section starting from the surface region so
the current density is equal to its critical value everywhe
Consequently, the current flows over the part of the sam
having the shape of a tube with inner radiusR1 and outer
radiusR. The current in the central part is equal to zero.
the inner surface of this tube,H50, whileH5I 1/2pR on the
outer surface. In this case, formulas~14! and ~15! describe
the radial distribution of magnetic induction and critical cu
rent density. The currentI 1 is critical for the tube under
investigation. Comparing it with the critical current~8! for
the entire sample, we obtain
al
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he
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.
le

R15R@12~ I 1 /I c!
1/~p21!#~p21!/p.

Thus, the internal boundary of the region carrying curren
displaced towards the center with increasing currentI 1 ac-
cording to the power law.

CONCLUSION

An analysis of experimental results shows that the
pression for critical current in ceramic HTSC in zero ma
netic field can be written as the product of two function
One of the functions reflects individual properties of t
sample material and is a function of temperature only. T
other is a homogeneous function of the sigl of sample cr
section with a universal value of exponentp for all samples
irrespective of the shape of cross section (p51.3660.01).
Using experimental results, we have established the fo
of field dependence of critical current densit
j c;B(p22)/(p21).
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A mechanism which relates the upturn of the perpendicular upper critical magnetic fieldHc2
' (T)

in layered superconductors and thin films with the structural inhomogeneity in the bulk of
the sample, provided that the local critical temperatureTc* inside the inhomogeneity is higher than
in the rest of the sample (Tc) is proposed. Within the Ginzburg–Landau approach an
equation which describes two types of experimentally observed nonlinearities inHc2

' (T) nearTc

for ISN ~insulator-superconductor-normal metal! and NSN layer configurations, is found.
In the NSN case a crossover from the linear branchHc2

' (T)}(Tc2T), for fieldsH<Hm , to the
nonlinear branch with the upturn, ifH.Hm , takes place. The crossover fieldHm is
inversely proportional to the local enhancement of the critical temperature (Tc* 2Tc) and the
distanceR to the surface~the nearest surface, in case of a thin film!. In the ISN case the upturn
holds forH,Hm , whereas for higher fieldsHc2

' (T) crosses over to the linear branch. In the
ISI case theHc2

' (T) is a linear function. ©1999 American Institute of Physics.
@S1063-777X~99!00212-1#
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1. INTRODUCTION

The nonlinear behavior of the upper critical fieldHc2 has
been observed first in the layered dichalcogenides of t
sient metals in the beginning of the 1970s1 and was given
then much attention as a possible signal of non-BCS pai
in these materials. In the 1980s, artificially prepared sup
conducting superlattices~SL! have been an object of inten
sive studies which revealed a number of nonlinearity type
the temperature behavior of theHc2(T): the positive curva-
ture @an upturn of theHc2(T) near the critical temperatur
Tc#, square-root and linear crossovers, the Takahas
Tachiki crossover~in S/S8 superlattices!, and the power law
Hc2

i ;@12(T/Tc)#g with 1/2,g,1 in quasiperiodic2 and
fractal3,4 superlattices. The control over the width of laye
their number and content, as well as the deposition sequ
order made it possible to clear up in detail the relations
between the structure of the artificial superlattices and
form of theHc2(T). A review of the temperature behavior o
the upper critical fieldHc2(T) in superlattices is given in
Ref. 5. The nonlinearities of theHc2(T) have been observe
in different types of high-Tc layered cuprates and superla
tices made from novel materials such as YBaCuO/PrBaC
superlattices.6

Theoretically, the problem of calculation ofHc(T) re-
duces to the eigenvalue problem for a fictitious particle in
external magnetic field. In the case of parallel fields t
problem has been solved both numerically7 and
analytically8–10 for different types of periodic SI and SN su
perlattices. A theory of the temperature dependence of
Hc2

i (T) for quasi-periodic SL was developed in Refs. 10 a
11. In contrast with the parallel fieldHc2

i (T), where the non-
linearities are due to the lifting of degeneracy of the low
Landau level on the orbit center position, the perpendicu
9361063-777X/99/25(12)/7/$15.00
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field Hc2
' (T) in all existing theories is a linear function ofT,

because the lowest Landau level in this geometry equal
standard value\V/2 (V5eH/mc is the cyclotron fre-
quency!. Setting this value equal to the coefficienta(T) of
the Ginzburg–Landau expansion, we obtain the linear dep
denceHc2

' ;12(T/Tc). The exceptions are twinned crysta
of the YBaCuO type and the artificial superlattices PbTe/P
~Ref. 12! where the mismatch dislocations make a qua
square two-dimensional lattice at the boundaries between
neighboring layers. A theory for the positive curvature of t
Hc2

i in PbTe/PbS superlattices was given in Ref. 10. On
other hand, the positive curvature of theHc2

' (T) has been
observed in a periodic SL,13–16 fractal SL, superconducting
SL with magnetic interlayers,17 and intercalated layered
crystals,18,19 including high-Tc cuprates.20 ~In the latter a
positive curvature close to zero temperature also has b
observed.21 We do not consider it here.! In contrast with the
specific case of PbTe/PbS superlattice, in other artificia
fabricated SL this nonlinearity cannot be related to so
superstructure in the plane perpendicular to the external fi
so that the above-mentioned mechanisms of the Landau l
broadening cannot explain an upturn in theHc2

' (T). The
positive curvature of theHc2

' (T) is a property inherent to al
types of SL, regardless of the layer stacking sequence or
On the other hand, it seems rather sensitive to the qualit
layers in SL, because an upturn in theHc2

' (T) was observed
only in a small portion of the samples studied so far. T
physical reason behind this phenomenon is not unders
yet. The relationship between the quality of a layered crys
and the positive curvature of theHc2

' (T) has been clearly
demonstrated in Refs. 18 and 19, where a positive curva
was observed after the intercalation of layered single crys
of 2H-NbSe2 by molecules of TCNQ and Sn atoms.
© 1999 American Institute of Physics



er

n
e
s

ies

tiv
-
s
e

em
d
fo
-
th

ri-

n
a

ld
em
g

on
u-
e
te

pe
he
-
u
o

tc

th
in

ttic

el,

eo-
dic
tro-
w

nt,
or

hin

in
ure

xy-
tent

e a
ted

a

e,

le
n

n,
-

937Low Temp. Phys. 25 (12), December 1999 V. M. Gvozdikov
Very instructive observations were made in some exp
mental studies.4,17 An upturn in theHc2

' (T) of a single Nb
layer deposited on a dielectric substrate was not found
those studies,4,17 whereas it has appeared in triple layers a
SLs Nb/Gd and Nb/Cu fabricated in the same series of
periments. These results show that boundary condition
interfaces between superconducting and metal~or insulator!
layers play a crucial role in physics driving the nonlinearit
in the Hc2

' (T).
In this paper we propose a mechanism of the posi

curvature of theHc2
' (T) nearTc due to the structural inho

mogeneities in the bulk of a layer. This mechanism give
qualitative description of all types of nonlinearities in th
Hc2

' (T) observed nearTc in artificially fabricated SLs.
Our paper is organized as follows. In Sec. 2 the probl

of calculations of the perpendicular critical field is reduce
in the adiabatic approximation, to the eigenvalue problem
a ‘‘particle’’ in a one-dimensional potential well which ex
periences an additional action from the surface. In Sec. 3
equations forHc2

' (T) are derived. They describe nonlinea
ties in theHc2

' (T) of a thin film and SLs nearTc with a
decrease in temperature. The discussion and compariso
the results with experiments on layered superconductors
given in Sec. 4.

2. FORMULATION OF THE PROBLEM AND THE MODEL

The problem of calculations of the upper critical fie
Hc2

' (T), as is well known, reduces to the eigenvalue probl
for the lowest Landau level. In the case of the Ginzbur
Landau approach an appropriate Schro¨dinger equation for a
‘‘particle’’ is

ĤC52a~T!C, ~1!

where C is the order parameter, anda(T) stands for the
coefficient in front of the termuCu2 in the Ginzburg–Landau
expansion. The physics of nonlinearities of the functi
Hc2

' (T) in different types of regular and quasi-periodic s
perlattices is based on the fact that in these structures, du
the lift of the Landau level degeneracy on the orbit cen
position, the lowest edge of the energy spectrumemin(H) is
below \V/2. Nonlinearity of the functionemin(H) results
then in the nonlinearity of the functionHc2

' (T), which is a
solution of the equationemin(Hc2)52a(T). This approach
proved to be very useful for studies of theHc2

i (T), as was
discussed in the previous section. In the case of a per
dicular orientation of the magnetic field, the problem of t
positive curvature of theHc2

' (T) in thin layers and superlat
tices remains unsolved. The explanation of the positive c
vature of the perpendicular critical fields in superlattices
the type PbTe/PbS, given in Ref. 10, is essentially based
the same idea that holds for calculations of theHc2

i (T) in
superlattices, because the upturn in theHc2

' (T) in these ma-
terials is attributable to the two-dimensional net of misma
dislocations.

The situation with theHc2
' (T) is absolutely different be-

cause artificial SLs are assumed to be uniform along
layers and, hence, cannot broaden the Landau levels
bands. On the other hand, among the numerous superla
i-
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fabricated so far5 only a few4,13–19have displayed a positive
curvature in theHc2

' (T), while the great majority of them
yield a linear temperature behavior nearTc . This linearity in
T is in agreement with theory, since the lowest energy lev
emin , in this case is\V/2 and, hence,Hc2

' ;Tc2T. Of
course, perfectly uniform SL is no more than a mere th
retical model and real SLs are far from being ideal perio
structures because of uncontrollable inhomogeneities in
duced during the process of their fabrication. We will sho
in what follows that a structural inhomogeneity of conte
which locally enhances the superconductivity of a layer
thin film, gives rise to the positive curvature ofHc2

' (T).
Let us assume that an inhomogeneity exists in a t

superconducting film at a distancea from its surface, where
local conditions for superconductivity are better than those
the rest of the sample, so that the local critical temperat
Tc* is higher than the temperatureTc . In high-Tc cuprates,
for example, such an inhomogeneity may be due to the o
gen concentration fluctuations since the local oxygen con
is a factor which mainly determines the localTc . Nonuni-
form distribution of intercalating molecules can also caus
local enhancement of the superconductivity in intercala
layered superconductors. For simplicity we assume
cylindrical-shape inhomogeneity, so that the Schro¨dinger
equation can be written in the symmetric gaug
A51/2@Hr #, in the form

ĤCE~r,z!5ECE~r,z!, ~2!

where

Ĥ5Ĥ1~r!1Ĥ2~z!1U~r,z!. ~3!

HereĤ2(z) is a Hamiltonian which is related to the partic
motion along the field,r5(r,w) are the polar coordinates i
the plane perpendicular to the external fieldH; z is the coor-
dinate along the fieldH, and U(r,z),0 is a ‘‘potential
well’’ associated with the inhomogeneity. The Hamiltonia
relevant to the motion of a ‘‘particle’’ in an external mag
netic field in the plane, is

Ĥ1~r,w!52
\2

2m F1

r

]

]r
r

]

]r
1

1

r2

]2

]w2 1
eH

\c
l̂ zG

1
e2H2

8mc2 r2. ~4!

The eigenfunctions of the Hamiltonian~4! can be written in
the form

CEm~r,w!5
eimw

A2p
Ar f ~r!, ~5!

where f (r) satisfies the equation

f 91
2

r
f 81F2mE

\2 1
eHm

c\
2

m221/4

r2 2
r2

4L2G f 50. ~6!

The solution of Eq.~6! is given by

Ar f ~r!5C expS 2r2

4L2 D S r

L D umu

FS 2nr , umu11,
r2

2L2D .

~7!
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The energy spectrum is determined by the condition t
the hypergeometric functionF(a,b,c) reduces to a polyno
mial, which yields

Em5\VS n1
1

2D , ~8!

n5nr1(umu1m)/2 and m52`...,21,0,...n. Here n and
nr are integers;V5eH/mc is the cyclotron frequency, an
L5(\/mV)1/2 stands for the magnetic length.

The normalization constantC in Eq. ~7! is

C5F ~ umu1nr!!

nr! G1/2

~ umu!L !21. ~9!

Since Tc* is only slightly greater thanTc , we can assume
that influence of the potentialU(r,z) is weak compared to
the action that the external field exerts on a particle. T
means that an adiabatic approximation can be applied to
eigenvalue equation~2!. Since we are interested in the lowe
energy leveln50, the adiabatic approximation in this ca
means that the energy and the wave function should be ta
in the following approximate form:22

CEme~r !'C0m~r,w!Cem~z!, ~10!

E5
\V

2
1e ~11!

where

C0m~r,w!5S r

&L
D umu

expS imw2
r2

4L2D /A2pum!L.

~12!

Substituting~10! into Eq.~2! and eliminatingC0m(r,w), we
obtain the Schro¨dinger equation for the wave functio
Cem(z)

Ĥ2~z!Cem~z!1@Ueff
m ~z!2e#Cem50, ~13!

where Ĥ252(\2/2m)(d2/dz2), and the effective potentia
energy is introduced

Ueff
m ~z!5E U~r,z!uC0m~r!u2d2r. ~14!

Since ~13! is a one-dimensional Schro¨dinger equation,
and Ueff

m (z) is negative, there should be at least one bou
state in the potential well made byUeff

m (z). In the case of
boundless sample the eignevaluee in Eq. ~13! is negative
and strongly depends on the magnitude of the external fi
H, so that the minimal energy in the eigenvalue problem~2!
in adiabatic approximation is given by

Emin5
\V

2
2e0~H !. ~15!

Thus, Emin(H) is lower than\V/2 and, in general, is a
nonlinear function ofH, becausee0(H) is a nonlinear func-
tion of H, as one can see from Eqs.~12! and ~14!, which
yield the following expression for the potential well in th
case:
t

is
he

en

d

ld

Ueff
m ~z!5

2

umu! E0

`

U~r,z!r̃2umu11 exp~2 r̃2!dr̃, ~16!

wherer̃5r/A2L.
For small ~compared to\V! potentialU(r,z) the one-

dimensional potential well, given by Eq.~16!, is shallow and
e0(H) can be evaluated as22

e0~H !.
mU0

2

2\2 , ~17!

U05E
2`

`

Ueff
0 ~z!dz. ~18!

The presence of a boundary, as is well known, can d
matically change the situation with the bound state beca
the value whichC takes at the boundaries of a film strong
affects the possibility of a potential well to create a bou
state. Two different types of the boundary conditions ta
place at the interfaces:C50 for insulator-superconducto
~IS! boundary anddC/dx50 for the NS boundary of the
normal metal with the superconductor.23 Thus, we have three
different cases for the superconductor layer~S! sandwiched
between the insulating~I! or the normal metal~N!, which we
denote as ISI, ISN, and NSN. The analysis given in the n
section shows that conditions for the creation of a bou
state of the particle in the potential well are different f
these three cases.

Since the depth of a well,Ueff
0 (z), grows with the en-

hancement of an external fieldH, we can expect a crossove
from the regime Emin(H)5\V/2 to the regime where
Emin(H)5\V/22e0(H), when H crosses over some valu
H* . The crossover fieldH* corresponds to such a depth
the potential well which permits to create a bound state in
well for a given value of distance between the boundary a
the well. In the context of our analysis, this crossover cor
sponds to the transition from the linear branch,Hc2

' }Tc

2T, to the nonlinear branch which goes above the lin
branch as the fieldH increases to a value larger thanH* .
The temperature dependence of the upper critical fie
Hc2

' (T), can then be determined from the equati
Emin(Hc2

')52a(T). To simplify further calculations, we will
make some additional assumptions which do not change
physics beyond the above crossover. We first assume tha
radius of the inhomogeneity,R, is less than the magneti
length,L5(\c/eHc2)1/2, which nearTc is of the order of the
coherence lengthj(T)5j0 /(12T/Tc)

1/2 because Hc2

5F0/2pj2(T). Therefore, the conditionR!L reduces to
the inequalityR!j(T), which is easy to satisfy nearTc even
for sufficiently large~in the lattice constant scale! R. The
quantity F0 stands for the flux quantum. Under this cond
tion assumingU(r,z)52uU(z)u if r<R and U(r,z)50
otherwise, we have from Eq.~16!

Ueff
0 52uU~z!uI ~H !, ~19!

where

I ~H !'
2pR2H

F0
. ~20!
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Thus, the effective potential well depth is proportional
the flux,F52pR2H,

Ueff
0 52uU~z!u

F

F0
. ~21!

Since the precise form of the potential well is unknow
we will simulate it, as is generally accepted, with thed-well:

Ueff
0 52V

F

F0
d~z!, ~22!

where

V5E
2`

`

dzuU~z!u .

In the particular case of a layered superconductor s
as NbSe2 or the one from the family of high-Tc cuprates, the
approximation given by Eq.~22! is quite acceptable becaus
the inhomogeneity that belongs to a certain layer has a f
of a ‘‘pancake.’’ Such ‘‘pancakes’’ may be due to the no
uniform distribution of intercalating molecules in dichalc
genides of transient metals or oxygen~in the case of cu-
prates! since local concentration of these eleme
determines the local value of the critical temperatureTc .

3. ANALYTIC CONSIDERATION OF THE POSITIVE
CURVATURE AND CROSSOVER OF THE UPPER CRITICAL
FIELD Hc2

'
„T…

Consider a thin superconducting film of thicknessd,
which amounts to a fewj or less and which contains a
inhomogeneity with the effective potential~22! located at a
distancea from the surface. The problem of calculation
the Hc2

' (T) then reduces to finding the lowest eigenvalue
the Schro¨dinger equation~13! with

Ueff
0 52V

F

F0
d~z2a! ~23!

and appropriate boundary conditions. We first consider
case of NSN sandwich, for which the boundary conditio
are C(0)5C(d)50. To satisfy these conditions, we writ
the solution in the form

C1~x!5A sinhkx, for 0<x<a,

C2~x!5B sinhk~x2d!, for a<x<d. ~24!

Here k252mueu/\2. The constantsA and B can be found
from the corresponding boundary conditions at thed-well

C28~a!2C18~a!52
2mVF

\F0
C1~a!,

C1~a!5C2~a!. ~25!

It follows immediately from Eqs.~24! and ~25! that the en-
ergy of the bound statee0 is determined by the only root o
the equation

H

Hm
5YF~Y!, ~26!

where
,

h

m

s

f

e
s

F~Y!5cothY1coth~Yb/a!. ~27!

The energy of the bound state is then given by

e052
\2Y2

2ma2 . ~28!

We have assumed here for certainty thatb5d2a.a. In the
opposite casea should be replaced byb. It is easy to see tha
the eigenvalue equation~26! has a solution only ifH.H* ,
where

H* 5HmS 11
a

bD , ~29!

andHm is a threshold field given by

Hm5
F0\2

pR2maV
. ~30!

A sample which occupies a half-space corresponds to
limit b→` in Eqs.~27!–~29!. We thus obtain the following
picture. If H<Hm , the lowest eigenvalue of the problem
under study isEmin5\V/2. For fieldsH.Hm the minimal
energy isEmin5\V/22e0(H). Equating thenEmin to the
Ginzburg–Landau coefficienta, we have

Hc2
' 5H~0!S 12

T

Tc
D , if H<H* , ~31!

Hc2
' 5H~0!S 12

T

Tc
D1Y2H~0!S j

aD 2

, if H.H* ,

~32!

whereH(0)5F0 /(2pa2), andY(H/Hm) is determined by
Eq. ~26!. We see that forH<Hm the perpendicular critica
field, given by Eq.~31!, is a linear function of temperatureT
and atH5Hm it crosses over to the nonlinear branch of E
~32!, which goes higher than~31! and has an upturn or a
so-called ‘‘positive curvature.’’ The dependence of the
duced critical field,Bc25Hc2

' /Hm , on the reduced tempera
ture T/Tc for different values of the parameter
G5H(0)/Hm andW5(j/a)2 is shown in Fig. 1.

Since Eq.~13! is valid for

ue0u!
\V

2
, ~33!

the second term on the right-hand side of Eq.~32! should be
small compared to the first term. This condition determin
the formal validity of Eq.~32!. It follows then from Eq.~32!
that the smallness of the parameterW}a22 is favorable for
the applicability condition~33!. On the other hand,Hm

}a21, so values ofW and Hm decrease with increasing o
the separation between the surface and the inhomogene

In the case of a film sandwiched between an insulat
and a normal-metal~or ferromagnet! layer, i.e., in the ISN
case, the boundary conditions aredC(0)/dx50 andC(L)
50. The appropriate functionF(Y) in Eq. ~26! is

F~Y!5cothY2tanhS Y
b

aD . ~34!
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The solution of Eq.~26!, with the F(Y) given by Eq.
~34!, yields a nonzero root only forH,Hm . This means that
a crossover inHc2

' (T) for the ISN case is somewhat differe
from that we have described above for the NSN sandwich
upward-like branch~32! for H,H* crosses over to the lin
ear branch~31! when the field exceeds the valueH* . The
results of a numerical analysis for theHc2

' (T) in the ISN
case are shown in Fig. 1~b!.

In the ISI case the functionF(Y) is determined by the
Schrödinger equation~13! and by the boundary condition
dC(0)/dx5dC(L)/dx50, which yield

F~Y!5tanhY2tanhS Y
b

aD . ~35!

Substitution of Eq.~35! into Eq. ~26! gives an equation
which has no solution for positiveY. This means that
e050 andHc2

' (T) for the ISI sandwich is given by the linea
function ~31! in accordance with the experiments.4,17 In the
next section we will discuss the physical meaning of
results obtained in the context of a current experimental s
ation in the field.

FIG. 1. The dependence of the reduced perpendicular critical magnetic
Bc2 on the temperatureT/Tc for the NSN~a! and ISN~b! cases calculated
from Eq. ~26! with: ~a! F(Y) given by Eq. ~27!, W5(j/a)250.1 and
G510;20;30 ~curves1, 2, 3!; ~b! F(Y) given by Eq.~34!, W50.1 and
G51;2;3 ~curves 1, 2, 3!. The parameterG5H(0)/Hm and the ratio
b/a51.5 for both cases.
n

e
-

4. DISCUSSION AND CONCLUSIONS

Let us summarize the results obtained in the previo
sections from the viewpoint of their relevance to experime
done so far. We see that at least two major preconditions
necessary for deviation of theHc2

' (T) from the linear behav-
ior ~31!: a! structural inhomogeneities with local enhanc
ment of the critical temperature and b! an appropriate bound
ary condition of the NSN or ISN type. Therefore, structura
perfect films and multilayers should not display nonlinea
ties of theHc2

' (T) nearTc . This assertion is in agreemen
with the fact that an upturn inHc2

' (T) has been observe
only in a limited number of experiments on different supe
conducting SLs, whereas the rest of them show linear beh
ior of the perpendicular critical field.5 But even the prereq-
uisite a! is satisfied in a single film; it does not display
nonlinearity inHc2

' (T) when sandwiched between the ins
lators, i.e., in the ISI case. This conclusion of our theory
confirmed by experiments reported elsewhere.4,17 Those ex-
periments showed that theHc2

' (T) of a single Nb film depos-
ited on a dielectric substrate in vacuum is a linear function
T near the phase transition, but it becomes upturned in tr
layers and multilayers Nb/Gd~Ref. 17! and Nb/Cu~Ref. 4!
fabricated from the Nb films. The latter, as was found
Nb/Gd and Nb/Cu superlattices, have a grained struc
necessary for our approach. Thus, we can explain the ab
experimental observations as follows. A single layer dep
ited on an insulating sapphire substrate in vacuum belong
the ISI case in our classification and, hence, has no non
earities in theHc2

' (T) behavior. The situation changes in th
case of triple layers Nb/Cu/Nb and Nb/Gd/Nb, because t
are of the ISN type~since each of the two Nb layers in th
triple layer makes contact with one insulator and one norm
metal layer! and should display a crossover of the kin
shown in Fig. 1~b!. The multilayers Nb/Cu and Nb/Gd are o
the NSN type in the bulk of the sample and of the ISN ty
for the marginal layers at the top and the bottom of a
~where the superconductor layer contacts either with
vacuum or with an insulating substrate!. Therefore, the non-
linearity ~see Fig. 1! which displays a specific SL depends o
which of its layers~marginal or the one in the bulk of a SL!
yields the largestHc2

' (T).
The intercalation of a layered crystal NbSe2, as was

shown in Refs. 18 and 19, also gives rise to the upturn in
Hc2

' (T). Let us consider in more detail the case reported
Ref. 18, where the temperature behavior of theHc2

' (T) of
layered single crystals 2H-NbSe2, intercalated by molecules
of TCNQ, has been studied. Before the intercalation,
Hc2

' (T) was found to be a linear function of the temperatu
After the intercalation, theHc2

' (T) became a nonlinear func
tion, whose shape nearTc reported in Ref. 18 is as follows
a linear branch up toHm'0.8 T and then a smooth uptur
with further decrease in temperature. The critical tempera
of intercalated 2H-NbSe2, Tc* 56.5 K, is lower than that of a
nonintercalated crystal, whereTc57.2 K. The physical rea-
son behind the lowering ofTc after the intercalation is tha
molecules of the TCNQ, when placed between the superc
ducting sheets, diminish the concentration of electrons
them since the TCNQ is a very active acceptor. On the ot

ld
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hand, the intercalation procedure cannot provide a perfe
uniform distribution of the TCNQ molecules across t
sample. The latter means that after the intercalation so
inhomogeneities must inevitably appear with the lower lo
concentrations of the TCNQ molecules. The correspond
local critical temperatures in them are higher than in the
of the sample. The above data allow us to estimate the l
enhancement asDTc5Tc2Tc* '0.7 K!Tc . Therefore, the
value ofV in Eq. ~30! can be taken asV5DTc d, whered is
of the order of the distance between the superconduc
sheets in the intercalated 2H-NbSe2. Assumingd'10 Å,
a'102100 Å, andHm'1 T, we can estimateR from Eq.
~28! as R'1032104 Å, which seems plausible for th
reported18 concentrations of the TCNQ molecules in the i
tercalated 2H-NbSe2. One can check the above theoretic
model by measurements of theHc2

' (T) and by concurrent
control of the spatial distribution of the TCNQ molecules
different stages of the intercalation.

It is rather tempting to apply our model to another y
unresolved problem—nonlinearity of theHc2

' (T) nearTc in
layered high-Tc cuprates. In these materials the oxygen is
agent which controls the local values of the critical tempe
ture. Thus, spatial fluctuations of the oxygen in the pla
would result in ‘‘pancakes’’ where the localTc is higher than
in the rest of a sample. According to the previous consid
ation, such a type of inhomogeneity is a prerequisite for
positive curvature of theHc2

' (T). Although an upturn in the
Hc2

' (T) near Tc in layered high-Tc cuprates has been re
ported in many publications, it is well known that to measu
this quantity in detail is very difficult in these materials b
cause of the resistive transition broadening in an exte
magnetic field.20 In contrast, the melting lineBm(t) is a
much better measurable quantity in high-Tc cuprates. Its
shape via the elastic moduli,ci , j5ci , j (b), depends on the
Hc2(T), whereb5H/Hc2(T). Therefore, a crossover in th
line Hc2(T) inevitably should manifest itself in the form o
the functionBm(T). This rather evident fact, as was show
in Ref. 24, must be taken into account in calculating
shape of the melting lineBm(T).

Consider now briefly a defect which extends through
bulk of a layered crystal. In this case the potentialUeff

0 (z) in
the eigenvalue problem of Eq.~13! is given by the infinite set
of periodic potential wells of the form

Ueff
0 ~z!52

F

F0
V(

n
d~z2an!, ~36!

wherea is the interlayer spacing. The eigenvalue problem
Eq. ~13! is now exactly the well-known Kronig–Penn
model, whose lowest energy levelEmin52(\2Y2)/(2ma2) is
given by the solution of the equation

coshY2
H

HmY
sinhY51. ~37!

The critical field is determined by Eq.~32! which describes
the curve that gradually upturns with a decrease in temp
ture from the point ofTc . The analytic solutions can b
ly
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easily found for two cases. Near the critical temperature,
for H!Hm the Hc2

' (T) is a linear function of the tempera
ture:

Hc2
' ~T!'H~0!F112

H~0!

Hm
S j

aD 2G S 12
T

Tc
D .

When H@Hm , which corresponds to lower tempera
tures, and if the additional conditionj!a is satisfied, which
implies that@Hj/(Hma)#2!1 ~the latter is the case, for ex
ample, in some highly anisotropic high-Tc cuprates!, the up-
per critical field is given by

Hc2
' ~T!'S H~T!j

Hma D 2

H~0!~122e2H~T!/Hm!1H~T!.

HereH(T) equals the right-hand side of Eq.~31!, which is a
linear function of the temperature and, hence, theHc2

' (T)
experiences an upturn known also in the literature as
positive curvature.

In summary, we conclude that the presence of a part
lar type of inhomogeneity in thin films and layered superco
ductors, which enhances the local value of the critical te
perature, is one of the physical reasons beyond the pos
curvature in the temperature behavior of theHc2

' (T) ob-
served in some multilayers nearTc .
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Relaxation of the electric resistance of YBaCuO single crystals due to hydrostatic
pressure and jumpwise temperature variation

M. A. Obolenski , D. D. Balla, A. V. Bondarenko, R. V. Vovk, A. A. Prodan,
and T. F. Ivanova

Kharkov State University, 310077 Kharkov, Ukraine*
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Fiz. Nizk. Temp.25, 1259–1264~December 1999!

The effect of hydrostatic pressure on pressure, temperature, and time dependences of the
conductivity in theab-planeof YBa2Cu3O72x single crystals with different oxygen concentrations
(0.1,x,0.5) is studied. It is shown that in oxygen-deficient samples withx.0.2,
temperature and pressure variations may induce a nonequilibrium state in which effects associated
with the variation of unit cell volume and redistribution of oxygen in Cu–O planes must be
distinguished. Characteristic conductivity relaxation times under the effect of pressure and during
annealing at room temperature are determined. It is concluded that these processes have the
same origin. ©1999 American Institute of Physics.@S1063-777X~99!00312-6#
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High-temperature superconductors~HTSC! are charac-
terized by the presence of a labile element, viz., oxyg
Under the effect of external agencies like temperature
pressure, the lattice parameters may change and the l
component may be redistributed. In turn, these changes
fect the critical parameters of the superconductor. In orde
determine the origin of superconductivity in HTSC com
pounds, it is important to separate processes associated
the variation of lattice parameters and redistribution of lab
oxygen. However, very few authors1–4 have studied the ef
fect of pressure onTc in nonequilibrium state, and only ce
ramic samples were investigated. In the present work,
consider the results of investigations of pressure, tempera
and time dependences of the resistivity of YBa2Cu3O72x

single crystals with different levels of oxygen deficien
(0.1,x,0.5) in a wide range of temperatures~30–350 K!
and pressures~0–11 kbar!.

The hydrostatic pressure was created in an indepen
piston–cylinder type chamber by using the technique
scribed in Ref. 4. The pressure was determined by a ma
nine pressure gauge, and the temperature by a cop
constantan thermocouple mounted on the outer surface o
chamber. The resistance in theab-plane was measured b
the standard four-probe technique in a constant current 1
mA.

Single crystals were grown by the solution–melti
technique in a gold crucible by the method described in
tail in Ref. 5. The single crystals had a characteristic siz
3430.03 mm. Oxygen-deficient samples were obtained
annealing in air at 600– 650° for a period ranging from t
hours to two days. Table I shows the parameters of se
single crystals with different superconducting transition te
peratures.

According to the data available in the literature, thr
types of processes~depending on oxygen concentration! may
lead to the superconducting transition in the YBaCuO co
pounds:~1! a narrow transition occurring atTc590 K for x
,0.1 expands in the interval from 90 to 60 K upon an
9431063-777X/99/25(12)/5/$15.00
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crease inx, and then narrows down atT560 K; ~Refs. 6 and
7! ~2! for x.0, the transition is of two-step type withTc1

590 K andTc2560 K ~Ref. 8! and~3! a transition can occur
for any Tc,90 K, the transition width depending insignifi
cantly on the value ofTc ~Refs. 9 and 10!. The experimental
results presented in Table I speak rather in favor of the fi
two versions, which is also confirmed indirectly by the st
form of the resistive transitions to the superconducting s
observed in a majority of the investigated objects. The
sence of steps on the resistive transitions of the crystals
and K7 does not rule out the possibility of coexistence of t
or more phases with difference values ofTc since the pres-
ence of percolation paths of current flow in a phase with h
Tc means that a transition to the superconducting state of
very phase will be observed at the resistive transition.

The conductivity increases with pressure, and the pr
sure derivatives of samples with different oxygen concen
tions may differ by a factor of several units. By way of a
example, Fig. 1 shows theR(T) dependences for differen
values ofP in the K4 single crystal. The insetsa andb show
the dependencesR300(P) and@dTc /dP#(x) for samples K2,
K4 and K7. It can be seen that an increase in the oxy
deficiency leads to an increase indTc /dP and dR/dP,
which is in accord with the available data~see, for example,
Ref. 11!. The figure also shows that nonstoichiomet
samples (x;0.5) show a considerable increase in the ba
derivativesdTc /dP and dR/dP, the quantitydTc /dP at-
taining values~0.63–0.85! K•kbar21, which are much higher
than the values for perfect samples. The nonmonotonic
ture of the dependenceTc(x) creates additional difficulties in
the interpretation of the obtained results. One possible ex
nation for the singularities observed in theTc(P) depen-
dence for the system 123 was proposed by Saiko
Gusakov12 in their theoretical model which connects th
variation of the superconducting transition temperature w
the peculiarities of the dynamics of apical O~4! atoms form-
ing a bistable sublattice which can be controlled by apply
© 1999 American Institute of Physics
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an external pressure and by varying the oxygen nonstoi
ometry. Indeed, it can be seen from Fig. 2 that an expl
correlation exists between theTc variation and the separatio
dCu(2)-O(4) ~Ref 13!. According to Saiko and Gusakov,12 the
formation of the 90°-phase under the action of a press
applied on a 60°-phase sample, or an alternation of th
phases upon a variation of oxygen nonstoichiometry is a
ciated with the ‘‘switching’’ of the mode frequencyV which
dominates in BCS pairing due to a transformation of
bistable potential of apical oxygen atoms. The value of
pressure required for transforming the system into
90°-phase also decreases withx. Thus, a considerable in
crease inTc under pressure is interpreted as an extension
the transition from the 60°-phase to the 90°-phase. Indee
can be seen from Fig. 3 showing theTc–d ln Tc /d ln V dia-
gram for K2, K4, and K7 crystals calculated taking into a
count bulk moduli~100 GPa forx,0.1 and 115 GPa forx
.0.1!14 that @d ln Tc /d ln V#(Tc) curves have a kink tha
might be an indication of a transition from the 60°-phase
the 90°-phase which is characterized by a different value
dTc /dP. However, the anomalous increase indTc /dP from
1.5 to 2.5 K•kbar21 observed by us for low pressure
up to 1.2 kbar for an insignificant difference in oxyge
concentration in the samples withTc545 and 50 K as well
as the sign reversal ofdTc /dP under an axial pressure ap

TABLE I. Parameters of single crystals with different superconducting tr
sition temperature.

Single crystal Tc , K DTc , K
r300,

mV•cm x

K1 42 14 8200 0.52
K2 45 10 7500 0.50
K3 48 8 5200 0.48
K4 50 2.4 750 0.46
K5 68 10 620 0.15
K6 82 5 450 0.10
K7 90 0.3 200 ,0.1

FIG. 1. DependenceR(T) for sample K4 under pressures 0, 4.5, 7.8, a
10.45 kbar. The inset~a! shows theR300(T) dependence under differen
pressures for samples K2, K4, and K7~curves1, 2 and3, respectively!. The
inset ~b! shows the dependence@dTc /dP#(x); dark circles correspond to
the results obtained in Ref. 11 for ceramic samples.
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plied along different crystallographic directions15 apparently
do not allow us to explain unambiguously the peculiarities
the behavior ofTc(P,x) dependences on the basis of t
above theoretical model only.

In all probability, peculiarities in the behavior o
Tc(P,x) dependences are due to several mechanisms on
which is associated with a change of the band structure un
bulk compression. The observed linear relation between
d ln Tc /d ln V and d ln Tc can be obtained using the Labbe
Bok theoretical model16 taking into account the contribution
of logarithmic singularity to the density of states of the ha
filled band. In this model,Tc is defined as

-

FIG. 2. DependenceTco(t) ~of the temperature corresponding to the ons
of the superconducting transition! for sample K2~curve1! at P56.3 kbar,
for sample K3~curve 2! during annealing at room temperature, and tim
dependence of the separationdCu22O4

obtained in Ref. 13~curve 3!. Solid
curves are calculated by formula~3!.

FIG. 3. DiagramTc–d ln Tc /d ln V for crystals K2, K4, and K7~curves1, 2,
and3, respectively! calculated taking into account bulk moduli~100 GPa for
x,0.1 and 115 GPa forx.0.1!.14
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Tc5D exp~21/l0.5!, ~1!

where D is the singularity ‘‘width.’’ In this case, for the
volume dependence ofTc we have

d ln Tc

d ln V
5

d ln D

d ln V
1

1

2l0.5

d ln l

d ln V
.

This gives

d ln Tc /d ln V5a1 ln Tc1a2 ,
~2!

a152
1

2

d ln l

d ln V
; a25

d ln D

d ln V
2a2 ln D.

The kinks on the (d ln Tc /d ln V)(Tc) curves can be due to th
cluster structure of the sample, which is confirmed by
presence of steps on resistive transitions to the supercon
ing state. It was proved by us earlier17 hat the observed ste
form of resistive transitions indicates the nonstoichiome
ratio of oxygen and vacancies concentrations leading to
formation of a mixture of phases, viz., clusters characteri
by different concentrations of oxygen and its ordering a
naturally have different critical temperatures and the val
of dTc /dP. It is interesting to note that similar peculiaritie
in the behavior of pressure derivativesdTc /dP as functions
of composition were observed by us for NbSe2 single crys-
tals that also belong to systems of two-dimensional latti
and are characterized by close values of anisotr
parameter.18,19 For example, intercalation with deuterium u
to 2 at.% and the introduction of tin impurities into NbS2

lead to an increase in the value ofdTc /dP by a factor of 2–3
as compared to a pure sample. In this case, the valu
dTc /dP increases with the tin impurity concentration.
should also be noted that the pressure dependencesTc(P) for
NbSe2 and YBaCuO single crystals display a qualitative
similar behavior. The above peculiarities ofTc(P) depen-
dences were interpreted as a consequence of a displace
of the Fermi level relative to the root singularities of th
density of states.

Taking into account the above analogies as well as
results obtained in Refs. 16 and 20 where the model pres
ing the presence of a singularity in the electron spectrum
2D lattices with a strong coupling was considered, we c
suggest that a change in the composition of such compou
may lead to a displacement of the Fermi level relative
singularities of the density of states. Indeed, according to
results of x-ray diffraction studies,21 the saturation with oxy-
gen changes the crystal lattice parameters froma
53.872 Å, b53.879 Å, c511.809 Å to a53.833 Å, b
53.898 Å, c511.700 Å i.e., increases the orthorhomb
distortion. This in turn leads to splitting of the Van Hov
critical point. It is well known that the Fermi level for crys
tals with Tc'90 K lies in the valley between two peaks
the density of states, and the density of statesN(EF) at the
Fermi level depends considerably on the ratio (a2b)/a.20

An increase in this ratio leads to an increase in the separa
between the peaks of the density of states and according
a decrease inN(EF) andTc . On the contrary, a decrease
the ratio (a2b)/a reduces the separation between the pe
of the density of states, which leads to an increase inN(EF)
e
ct-
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and Tc . A similar regularity in the variation ofTc was ob-
served during an analysis of the effect of axial compress
along the axesa and b on the superconducting transitio
temperature of single crystals withTc'90 K.15 The super-
conducting transition temperature increased when the p
sure was applied along the axisa and decreased when th
load was applied along the axisb. The application of hydro-
static pressure affects the ratio (a2b)/a insignificantly since
the value of the ratio is determined only by the difference
compression moduli along the axesa andb. For this reason,
the change in critical temperature under hydrostatic pres
is relatively small.

For crystals withTc'60 K, the Fermi level is shifted
from the middle of the band and lies at a distance form
Van Hove singularity. Consequently, if the superconduct
transition temperature is determined primarily by the dens
of electron states, the Fermi level must be displaced und
hydrostatic pressure towards the peak of the density of sta

It should be noted in this connection that Fig. 1 sho
the dependences associated with the ‘‘true’’ effect of pr
sure caused by a direct compression of the sample. Sin
was proved in Refs. 2 and 3 that two effects connected w
a decrease in the unit cell volume and with a redistribution
oxygen must be taken into consideration while determin
dTc /dP, we used an approach permitting the separation
these effects. In order to reduce the effect of redistribution
oxygen to the maximum possible extent, we rapidly~during
15–20 min! cooled the bomb with the sample immediate
after the application of pressure to temperatures at wh
relaxation effects are absent. Then the values ofR(T) were
measured during heating to room temperature. This was
lowed by the measurement of time dependencesR(t), which
are described in detail in Ref. 4.

After this, theR(T) dependence was measured repe
edly during a cooling–heating cycle. The results of measu
ments ofTc(P) andDTc(P) are presented in Table II. Th
value ofTc was determined from the middle of the resisti
transition to the superconducting state at the levelR
5RN/2, whereRN is the residual electrical resistance in th
normal state. The superconducting transition widthDTc was
determined as the difference between the temperaturesTco

and Tc f ~the onset and end of the superconducting tran
tion!, corresponding to the resistance 0.95RN and 0.05RN .

TABLE II. Results of measurements ofTc(P) andDTc(P).

Tc , K DTc , K Tc , K DTc , K

P, kbar
before holding

at 300 K
after holding

at 300 K

0 50.6 2.4 50.6 2.4
1.26 52.4 2.4 52.5 2.7
2.53 53.0 2.8 53.0 2.9
3.90 54.0 2.9 54.1 3.2
5.00 54.8 3.2 54.8 3.4
8.00 56.6 3.5 56.7 4.1

After pressure removal 50.6 3.5 50.6 2.8
Three days

after pressure removal 50.6 3.5 50.5 2.4



m
tin
ng

b
ti
ac
e
ap
is
en
f

-

m

s

de
n

in
th

th

n
ing

tis

d
an
o

xy

b

re
nt
th
re
p

ve
e

n
th
g
th
he
a
a

and
m-
e a
e-

b-
nce
la-
ird

. It
d

e

k.

-

of

946 Low Temp. Phys. 25 (12), December 1999 Obolenski  et al.
The results described above show that the critical te
perature determined from the middle of the superconduc
transition is practically independent of the time of holdi
the sample at room temperature and is determined only
the applied pressure. On the contrary, the superconduc
transition width increases under similar conditions and pr
tically does not change during measurements made imm
ately after the application–removal of pressure, which is
parently due to the effect of oxygen redistribution. Th
assumption is also confirmed by the results of measurem
~see Fig. 2! of time dependencesTco(t) ~the temperature o
the onset of superconducting transition! for sample K2
~curve 1! obtained forP56.3 kbar as well as the depen
dencesTco(t) for K3 crystal ~curve 2! obtained during an-
nealing at room temperature following rapid cooling fro
temperatures;650 °C.

Solid curves1 and 2 show the results of calculation
based on the method proposed by Jorgensenet al.13 We as-
sume that the process of oxygen redistribution can be divi
conditionally into the main rapid process with the time co
stant t1 , which is responsible for oxygen ordering with
fragments of Cu–O chains, and a slower process with
characteristic timet2 determining the formation of a 2D
ordered structure. In this case, the dependenceTc(t) for P
5const can be described by a two-exponential law of
form

Tc~ t,a,t1 ,t2!5Tc~`!2@Tc~`!2Tc~0!#

3@a exp~2t/t1!0.51~12a!

3exp~2t/t2!0.5#, ~3!

wherea is the weight factor for two relaxation processes a
Tc(0) and Tc(`) are the temperatures of superconduct
transitions before and after relaxation respectively.

The valuest1'50– 90 min andt2'(2 – 4)•103 min ob-
tained from calculations based on this formula are in sa
factory agreement with the dependences1 and 2 as well as
with the results obtained in Refs. 3 and 13. This is an in
cation of the fact that the evolution of superconducting tr
sitions under pressure as well as during annealing at ro
temperature is determined by the redistribution of labile o
gen within Cu–O planes.

Let us consider briefly the difference in the results o
tained by us here and by Baran and Gladchuk.3 In Ref. 3, the
superconducting transition temperature relaxes under p
sure during holding at room temperature. In our experime
the critical temperature determined from the middle of
superconducting transition depends only on the applied p
sure and does not depend on the time of holding the sam
at room temperature. It can be seen from Fig. 4, howe
that hysteresis phenomena are observed on the pressur
pendencesTc(P) for crystals K2 and K4 atTco andTc f . The
temperatureTco corresponding to the onset of the superco
ducting transition is shifted to higher temperatures in
case of holding atT300, while the end of the superconductin
transition is displaced towards lower temperatures,
middle of the transition remaining unchanged. On the ot
hand, such a variation can be due to the fact that Baran
Gladchuk3 studied ceramic samples in which hydrostatic n
-
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ture of pressure can be disturbed due to possible porosity
disorientation of crystallites. On the other hand, the co
pounds with admixtures of Sr and Gd used in Ref. 3 hav
qualitatively differentTc(x) dependence, although they b
long to the 123 system. In contrast to theTc(x) dependence
for YBaCuO with two plateaus at 60 and 90 K, partial su
stitution Sr for Ba leads to a nonmonotonic depende
Tc(x), while the plateau at 90 K disappears and a new p
teau is formed at 40 K for a system with Sr and Gd. The th
important difference lies in the method of determiningTc by
a linear extrapolation of magnetization to its zero value
remains unclear whetherTc corresponds to the onset or en
of the transition.
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Upper critical fields in superconductor–normal metal type superlattices in the
Ginzburg–Landau approximation
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The application of the Ginzburg–Landau theory to the superconductor–normal
metal–superconductor~SNS! superlattices is considered in the case when normal and
superconducting layers have the same thickness. The temperature dependences of the transverse
and longitudinal upper critical fields are considered. The theoretical curves are compared
with the available experimental results on SNS superlattices@C. Coccoreseet al., Phys. Rev.B57,
7922 ~1998!#. It is shown that the theoretical model can provide a correct interpretation of
the experimental results with the minimum number of fitting parameters. The peculiarities of the
order parameter behavior at the dimensional crossover in a parallel magnetic field as a
function of the sample symmetry axis are discussed, and practical recommendations are given for
an experimental verification of the role of symmetry of SNS-type structures. ©1999
American Institute of Physics.@S1063-777X~99!00412-0#
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INTRODUCTION

The properties of multilayer structures of the ty
superconductor–normal metal–superconductor~SNS! in the
vicinity of the superconducting transition temperatureTc

were described in the framework of the microscopic the
at the beginning of the seventies.1,2 An exhaustive interpre-
tation of the temperature dependence of the upper crit
fields was also given by Takahashi and Tachiki3 using the
microscopic theory. However, it is technically quite difficu
to use this theory for describing the properties of SNS aw
from the critical temperature region. Hence it seems qu
natural to use the Ginzburg–Landau~GL! theory for study-
ing the transport properties, vortex lattice dynamics, pinn
forces, etc.. The conditions of applicability of the GL theo
~see, for example, Ref. 4! make it possible to use it for study
ing SNS in which action of normal layer serves as a per
bation of the superconducting state. This requirement
taken into consideration for studying the properties of sup
conducting superlattices by various researchers.5–8 But the
most interesting effects~like the peak effect9,10! are observed
in SNS in which the effect of normal layers cannot be trea
as a perturbation~the normal layer thickness is of the ord
of the superconducting layer thickness and is of the orde
the correlation lengthj'(0) in a direction normal to the
surface of the layers!. In this case, the inadequacy of the G

FIG. 1. Geometry of an infinite multilayer SNS structure with the center
symmetry in theS-layer
9481063-777X/99/25(12)/5/$15.00
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theory becomes obvious. It can be asked whether the
theory can describe such phenomena qualitatively. T
question was answered partially by using the GL theory
determine the temperature dependence of the peak-e
field in an SNS, which coincide with the experimental d
pendence for reasonable values of fitting parameter11

Hence it is expedient to construct a GL model which can
used not only in the vicinity ofTc . Dediuet al.12 proposed a
version of such amodel restoring the temperature dep
dences of the upper critical fields, which were obtained in
microscopic theory and are in accord with the experimen
curves. In the present work, we present another version
the GL model and compare th results with the experimen
temperature dependences of the upper critical fields obta
for Nb/Pd superlattices.13

f

FIG. 2. Experimental temperature dependences of the upper critical fie
a multilayer Nb/Pd structure (dNb5170 Å,dPd5187 Å) for parallel~curve
1! and perpendicular~curve2! orientation of the the external magnetic fiel
relative to the surface layers,13 and the theoretical dependencesHc2i(T) and
Hc2'(T) ~solid curves!.
© 1999 American Institute of Physics
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MODEL

We define the coordinate system as follows: thez-axis is
directed at right angles to the surface of the layers, thexy
plane coincides with the middle of the superconducting la
and is one of the symmetry planes of the infinite superlat
~see Fig. 1!. According to Jin and Ketterson,2 the GL
in
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equations for the wave function in the vicinity of critica
fields can be written in the form

S ¹2 i
2p

F0
A~r ! D 2

C~r !1h~z!C~z!50. ~1!

Here, the step function has the form
h~z!55
1

jS
2~T!

,2
dS

2
1md.z<

dS

2
1md, m50,6162,...

2
1

jN
2 ~T!

,
dS

2
1md,z<

dS

2
1dN1md, m50,61,62,...,

~2!
-
-

nal
of

q.

per
wheredS anddN are the thicknesses of the superconduct
and normal layers,d5dS1dN is the superlattice period,

jS~T!5jS0S 12
T

TcS
D 21/2

, jN~T!5jNcS T

Tc
D 21/2

~3!

are the correlation lengths in the superconducting and nor
layers, jS0 is the coherence length in the superconduct
layer at zero temperature,jNc the coherence length in th
normal layer at the critical temperatureTc of the multilayer
structure,TcS the transition temperature for the superco
ducting material, andF052.07310215Wb the magnetic
flux quantum. The functionh(z) in the normal layers~sec-
ond row in formula~2!! was defined on the basis of th
simple consideration that the normal layer in conventio
experiments is chosen from metals withTcN→0. It should be
noted, however, that the GL model used for describing
perlattices uses ‘‘renormalized’’ correlation lengthsjS(T)
andjN(T) as well as the parameter functionh(z). Hence the
sign of the functionh(z) in the normal layer is determine
from the experiment. For example, the temperature dep
dences of the upper critical fields were calculated by De
et al.12 using the model~1!–~2! with the functionh(z) that is
positive in theN-layer. Obviously, our choice of the sign o
this function in theN-layer indicates a weak proximity ef
fect.

The GL equation~1! must be supplemented with th
boundary conditions at the superconductor–normal meta
terfaces:

1

C S ]C

]z
2 i

2p

F0
AzD U

b

5P
1

C S ]C

]z
2 i

2p

F0
AzD U

b

, ~4!

wherePP(0,1) is a parameter which is defined in the ma
roscopic theory1–3 and is a phenomenological parame
here.

TRANSVERSE UPPER CRITICAL FIELD Hc2'„T…

Let us consider the behavior of the system in the vicin
of the upper critical fieldHc2'(T) ~at right angles to the
layer surface!. Taking into account the expression for th
vector potentialA5(0,Hx,0) in this case, we can write Eq
~1! in the form
g

al
g

-

l

-

n-
u

n-

-
r

H ]2

]x2 1
]2

]z22
x2

zH
4 1h~z!J C~x,z!50, ~5!

wherejH
2 (T)[F0/2pH.

Separation of variablesC(x,z)5w(x)c(z) in Eq. ~5!
gives a solution forw(x) corresponding to the minimum ei
genvalue~maximum fieldH! in the form of a Gaussian func
tion. In this case, we obtain forc(z) the following equation:

H ]2

]z22
1

zH
2 1h~z!J c~z!50. ~6!

The boundary conditions~4! for the wave functionC(x,z) is
transformed into the de Gennes boundary conditions1 for
c(z):

1

c~z!

]c~z!

]z U
b

5P
1

c~z!

]c~z!

]z U
b

. ~7!

In the problem under consideration, the fieldHc2'(T) is de-
fined as the boundary of the region of values of the exter
magnetic fieldH corresponding to steady-state solutions
an equation with periodic coefficients~in other words,Hc2'

is determined from the condition that the multipliers in E
~6! with the boundary condition~7! become equal to unity!.14

The corresponding solution is even andd-periodic. This
leads to the following equation defining the transverse up
critical field as a function of temperature:

kS tanS dSkS

2 D5pkN tanhS dNkN

2 D . ~8!

Here

kS5
1

dS
S HS~T!2H

Hds
D 1/2

; ~9!

kN5
1

dN
S H1HN~T!

Hdn
D 1/2

, ~10!
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and the following notation has been used for the sake
convenience:

Hds5
F0

2pdS
2 ; HS~T!5

F0

2pjs
2~T!

; ~11!

Hdn5
F0

2pdN
2 ; HN~T!5

F0

2pjN
2 ~T!

.

Note that Eqs. ~6!–~11! essentially coincide with the
Takahashi–Tachiki equations3 for finding the transverse up
per critical field, with the exception of one important facto
the parametersHS(0) andHN(0) in the microscopic theory3

are presented in terms of material constants, and the temp
ture dependence ofHc2' is obtained from the secular equ
tion defining the kernel of the integral equation for the ord
parameter~see formulas~20!, ~30!, ~35!, ~38!, and ~46! in
Ref 3!. In the model constructed on the basis of t
Ginzburg–Landau theory, the temperature dependenc
Hc2' is defined by the quantitiesjS(T) andjS(T) ~or HS(T)
and HN(T)! as the phenomenological parameters-functio
~although their functional form~3! is quite obvious!.

FIG. 3. Dependence of the coherence lengths in superconducting~curve1!
and normal~curve 2! layers on the parameterP of the wave function dis-
continuity at the metal–superconductor boundary.

FIG. 4. The dependenceHc2i(T) (dS5170 Å,dN5187 Å) with coherence
lengthsjS05135 Å andjNc537 Å, and the parameterz050 corresponding
to the solution symmetric relative to the middle of the superconduc
layer.
f

ra-

r

of

s

PARALLEL UPPER CRITICAL FIELD Hc2i„T…

We shall use the following standard procedure for det
mining the parallel upper critical field.2,4 Let the external
magnetic fieldH be directed along the plane of the layer
i.e., along they-axis. We present the vector potential in th
form A5(Hz,0,0) and separate the variables in Eq.~1!:

c~r !5exp~ ikx!c~z!. ~12!

In this case, we obtain instead of Eq.~1!

H ]2

]z2 1h~z!2H0
2~z2z0!2J c~z!50, ~13!

where z0[k/H0 , and the notationH0[2pH/F0 is intro-
duced for the sake of convenience.

Equation~13! is supplemented by the conditions~7! at
the superconductor/normal metal boundary, as well as by
conditions at infinity

c~z→6`!→0. ~14!

The maximum value of the external magnetic field parame
for which condition~14! is satisfied is the upper critical field

It should be reiterated that the procedure of determin
the upper critical field is formally the same as the proced
based on the microscopic theory3 with the only exception
mentioned in the preceding section.

DISCUSSION OF RESULTS

Computations ofHc2'(T) andHc2i(T) were made by us
for the Nb/Pd superlattices investigated in Ref. 13.

It was found that the experimental dependenceHc2'(T)
can be described by formulas~3!, ~8!–~11! using the fitting
parametersjS0 andjNc for any fixed value of the paramete
P ~see Fig. 2!. Figure 3 shows by way of an example th
dependence of the correlation lengthsjS0 andjNc on param-
eter P calculated for an Nb/Pd sample withdS5187 Å and
dN5170 Å.

The obtained values of the parametersjS0 andjNc were
used to study numerically the solutions of the problem~7!,
~13!, ~14! for any fixed value of the parameterz0 . ~It should
be recalled that solutions of Eq.~13! are obtained by joining
successively linear combinations of the functions of a pa
bolic cylinder with the help of boundary conditions~7!.! As
expected, the highest among the maximum values of the
ternal magnetic fieldH(z0) corresponds to the values of th
parameterz05 ld ( l 50,61,62,...) as well as the wave
functions that are symmetric with respect to the middle
the l th S-layer. The temperature dependenceHc2i(T;z0

5 ld) is of ‘ ‘2 D-type’’2 ~see Fig. 4!, and hence does no
match with the experimental curve~see Fig. 2!. Note that the
values of the parameterz0 are obtained form the variationa
principle for the GL-functional and, as can be seen easily,
determined from the equation

z05
*zc2~z;z0!dz

*c2~z;z0!dz
. ~15!

It follows from this equation that the values of the parame
z0 corresponding to the ‘‘2D-type’’ temperature dependenc
of Hc2i are solutions of Eq.~15! ~after substitution of wave

g
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functions symmetric with respect to the middle of thel th
S-layer! only for an infinite superlattice. The ‘‘2D-type’’
temperature dependence ofHc2i is also realized for a finite
superlattice with an even number ofS-layers and an odd
number ofN-layers since the presence of a symmetry pla
in the middle of the centralS-layer means that Eq.~15! has
an exact zero as a solution corresponding to an even w
function c(z).

In the experimental situation of Nb/Pd~11 layers of Pd
and 10 layers of Nb! considered by Coccoreseet al.,13 the
symmetry is exact relative to the middleN-layer. In this
case, the integrals in Eq.~15! are taken over nonsymmetri
limits, and hence substitution of the even wave function i
~15! gives a nonzero value of the parameterz0 which, in
turn, contradicts the condition of parity ofc(z). However,
the wave function is localized within a singleS-layer for
large values of the external magnetic fields~or for T!Tc!.
Consequently, the sample is practically equivalent to an
finite superlattice, and a ‘‘2D-type’’ behavior of the depen
denceHc2i(T) is observed at low temperatures again. W
increasing temperature, the ‘‘blurring’’ of the wave functio
over layers increases so that the parameterz0 becomes per-
ceptibly nonzero, and hence odd modes of the wave func
also start competing. As a result, the curveHc2i(T) will
deviate noticeably downwards from the corresponding cu
for an infinite superlattice. As the temperature attains a c
tain valueT* , the parameterz0 becomes equal tod/2, which
corresponds to a wave function symmetric relative to
middle of the N-layer. A comparison of the values o
Hc2i(T* ) obtained from~13! and~14! with experimental re-
sults shows that the temperatureT* is the point of 2D – 3D
transition. At temperatures quite close to the transition te
perature~or for small values of the external magnetic field!,
the solution of the system~13!, ~14! must be nearly identica
~for not too largez! with the d-periodic solution of the GL
equations for zero external magnetic field. The solution c
responding to zero applied magnetic field is independen
the variablex. This imposes certain constraints on the wa
numberk, viz., k(H→0)→0. Due to symmetry consider
ations, we choosek}AH0 or z0}1/AH0. ~Note that such a
functional form ofz0(H) also follows indirectly from~15!
since the solution of Eq.~13! depends effectively on the
dimensionless argument ofH0z2.! In this case, asH→0, we
can present Eq.~13! for finite z ~i.e., for z!z0! in the fol-
lowing approximate form:

H ]2

]z2 1h~z!2H0Z0
2J c~z!50,

where Z0[z0AH0. The condition for the existence of
d-periodic solution of this equation together with the boun
ary condition~7! leads to equations forHc2i(T→Tc) that are
analogous to Eqs.~8!–~11! for Hc2'(T) and give a linear
dependenceHc2i(T2Tc).

It follows from what has been stated above that in or
to determine the dependenceHc2i(T) for a superlattice with
an even number ofS layers and an odd number ofN layers,
we can use the following reasonable approximation for
parameterz0 :
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z0~H !5~Z0 /AH0!2Z1 , ~16!

whereZ0 and Zl are obtained from the conditionsz0(H(T
50))'0, z0(H(T5T* ))5d/2. Such an approximation
makes it possible to avoid complex technical problems in
solution of the self-consistent problem~13!–~15!. Using Eq.
~16! and solving Eqs.~13! and ~14! numerically, we calcu-
lated the dependenceHc2i(T) for the superlattice Nb/Pd. The
parameterP was chosen from the condition of equality of th
calculated value ofHc2i(0) and the experimental value o
the upper critical field extrapolated to zero temperature
can be seen from Fig. 2 that the theoretical depende
Hc2i(T) describes the experimental results quite satisfac
rily.

CONCLUSION

The main results obtained in this work can be formula
as follows.

The Ginzburg–Landau theory is used to calculate
temperature dependences of the upper critical magnetic fi
Hc2' and Hc2i of a multilayered system of the
superconductor– normal metal–superconductor type. I
shown that the theoretical curvesHc2'(T) andHc2i(T) can
be used to reconstruct quite satisfactorily the experime
dependences of the upper critical fields for reasonable va
of the Ginzburg–Landau model parameters.

It was proposed that the transition from 2D to 3D be-
havior in a multilayer superconducting structure with co
parable thicknesses of the superconducting and normal la
can be attributed to a change in the symmetry of
Ginzburg–Landau order parameter from the infinite super
tice symmetry for large values of the applied parallel ma
netic field to the symmetry of a real structure for small v
ues of the field.

Note that the existence of such a ‘‘symmetry effect’’ c
be easily verified experimentally in samples with an o
number of superconducting~Nb! and an even number of nor
mal ~Pd! layers. The rigorous mathematical problem on t
form of the wave function corresponding to the parallel u
per critical field can be solved, for example, with the help
the mathematical analysis used by Hastings and Troy15 for
investigating the symmetry properties of the solutions
one-dimensional Ginzburg–Landau equations for a sup
conducting film. However, the scope and style of the pres
communication do not allow us a detailed analysis of suc
problem. It would be more expedient to study a more gene
form of the functionh(z) in the normal layer, viz.,h(z)
}(TcN2T). However, the introduction an ‘‘extra’’ fitting
parameterTcN does not appear to be justified from the m
thodical point of view.
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Description of critical behavior of Ising ferromagnet in the r6 model approximation
taking into account the confluent correction. II. Region below the phase transition point
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A scheme for calculating the thermodynamic characteristics of a 3D one-component spin system
in the temperature range below the critical temperature is described on the basis of the
sextic measure density (r6 model! taking into account the first confluent correction. A microscopic
analog of the Landau free energy is calculated. The coefficients of average spin moment,
leading critical amplitudes, and the amplitudes of the confluent correction to specific heat and
susceptibility of the system are calculated for different values of effective radius of the
exponentially decreasing interaction potential. Plots of temperature dependence of entropy and
other thermodynamic characteristics in the vicinity ofTc are given for various values of
effective radius. The variation of the free energy of the system at the phase transition point,
average spin moment, and specific heat with increasing ratio of the potential effective
radius to the constant of a simple cubic lattice is traced. The results of calculations and their
comparison with the data obtained by other authors show that ther6 model provides a better
quantitative description of the critical behavior of a 3D Ising ferromagnet than ther4

model. © 1999 American Institute of Physics.@S1063-777X~99!00512-5#
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INTRODUCTION

This research is devoted to the theory of phase tra
tions and critical phenomena which remain the subject
intense studies~see, for example, Refs. 1–4!. The approach
to description of second-order phase transitions based on
method of collective variables~CV!5 has been developed fur
ther. The object of investigation is the 3D Ising model on a
simple cubic lattice with an exponentially decreasing int
action potential~see, for example, Ref. 6!. The Ising model,
which is simple and convenient for mathematical analysis
widely used in the theory of phase transitions for an analy
of properties of various magnetic and nonmagnetic syst
~ferromagnets, antiferromagnets, ferroelectrics, binary m
tures, lattice model of liquids, etc.!.

The behavior of a 3D Ising ferromagnet will be studied
here at temperaturesT,Tc ~low-temperature region! in the
approximation of the non-Gaussian sextic distribution of s
density oscillation modes~the r6 model!.5 A method of tak-
ing into account the first confluent correction is developed
the course of calculation of thermodynamic characterist
The dependences of these characteristics on temperatur
microscopic parameters of the system are plotted. The
of T.Tc was considered in Ref. 7. The present publicat
supplements the cycle of works8–16 in which the CV method
is used for calculating the thermodynamic functions of a 3D
Ising system in the low-temperature region. The calculati
on the basis of ther4 model without taking into accoun
confluent corrections were made in Ref. 8, taking into
9531063-777X/99/25(12)/9/$15.00
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count the first and second confluent corrections in Re
9–14, and in ther6 model approximation without confluen
corrections, in Refs. 15 and 16.

The method of calculation of thermodynamic charact
istics of a one-component spin system can be extended to
n-component model applied for spin dimensionsn52 as a
lattice model of transition of a Bose liquid to the superflu
state. The main points of such a generalization to
n-component case are given in Ref. 5.

1. ALGORITHM OF CALCULATION OF FREE ENERGY OF
THE SYSTEM AT T<TC

As in the case ofT.Tc ,7 we shall calculate the free
energy of the system by separating the contributions fr
short- and long-wave modes of spin density oscillations.
T,Tc , we have

F5F01FCR1FIGR , ~1!

whereF052kTN ln 2 corresponds to the free energy ofN
noninteracting spins, andFCR to the contribution of short-
wave modes of spin moment density oscillations to the f
energy of the system~critical regime~CR! region!, andFIGR

to the contribution of long-wave oscillation modes~the re-
gion of inverse Gaussian regime~IGR!!.

While calculating the free energy of the system, we sh
use extensively the solutions of recurrence relations~RR!
between the coefficients of effective sextic distributions~see,
for example, Ref. 17!. In the CR region, the solutions of RR
© 1999 American Institute of Physics



t

o

s
re
th
tr
n

e
r
th

s
e
V

-
ll

ns

th
in

te
lay

th

r

r pa-
ially

s-
nti-

int

py

d

954 Low Temp. Phys. 25 (12), December 1999 I. V. Pylyuk
of the renormalization group~RG! type are valid. In contras
to the limiting Gaussian regime~LGR! observed forT
.Tc , the IGR is described by a non-Gaussian density
measure. It should be emphasized that atT,Tc , the system
acquires a nonzero order parameter. It is not introduced a
independent quantity, but is determined as a result of di
calculation. This is possible since the set of CV contains
variabler0 associated with the order parameter. The dis
bution acquires a Gaussian form as a result of separatio
free energy of ordering.

Calculating the partition function of the Ising model, w
divide the CV space into layers with the division parametes
and use the average value of the Fourier transform of
interaction potential~arithmetic mean in the given case! cor-
responding to the given layer.5 Short- and long-wave mode
of spin density oscillations atT,Tc are separated by th
layer numbermt . The CR takes place for layers of the C
phase space withn<mt , while IGR is observed for
n.mt . The condition for determiningmt is the equality6,18

r mt112r ~0!

r ~0! 5d. ~2!

Here d is a constant quantity (d<1), r mt11 is determined
from the solutions of RR, andr (0) corresponds to a coordi
nate of the fixed point.17 In numerical calculations, we sha
put d51, which is in accord with the same condition ford
used by us forT.Tc .7 In analogy with the caseT.Tc ,7 we
obtain the following expression formt :

mt5mt
~0!2mD1

utuD1,

mt
~0!52

lnutu
ln E1

1m021, m05mc . ~3!

The values ofmD1
, D1 , and mc coincide with the corre-

sponding values forT.Tc ~see Ref. 7!, t5(T2Tc)/Tc , and
E1 is the largest eigenvalue of the matrix of RG linear tra
formation.

The expression for the layermt determining the point of
exit of the system from the CR region atT,Tc makes it
possible to determineFCR as well asFIGR . We shall con-
sider these calculations schematically. It should be noted
the thermodynamic characteristics are calculated taking
account the term proportional toutuD1 and determining the
first confluent correction.

2. THERMODYNAMIC FUNCTIONS OF THE SYSTEM
CORRESPONDING TO THE CRITICAL REGIME REGION

As in the case ofT.Tc , the contributionFCR to the free
energy of the system from the CR region is calcula
through the summation of partial free energies over the
ers of the CV phase space. Using formulas~3! and singling
out temperature explicitly in the calculations, we arrive at
following expression:

FCR52kTN8@g0
~CR!2g1utu1g2utu22g3

~CR!~0!2utu3n

2g3
~CR!~1!2utu3n1D1#, ~4!
f

an
ct
e

i-
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e

-
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to

d
-

e

where n5 ln s/ln E1 is the critical exponent of correlation
length, N8 and g0

(CR) , g1 , and g2 ~which are functions of
microscopic parameters of the system! are the same as fo
T.Tc .7,17 We present the coefficientsg3

(CR)( l )2 in the form
in which the universal factorḡ3

(CR)( l )2 independent of micro-
scopic parameters of the system is separated. The latte
rameters in our case include the parameters of exponent
decreasing interaction potential~the effective radiusb of the
potential and its Fourier transformF̃(0) for zero value of
wave vector! as well as the constantc of the simple cubic
lattice. We have

g3
~CR!~ l !25cn

3cD1

l ḡ3
~CR!~ l !2 , l 50,1,

ḡ3
~CR!~0!25g2, ḡ3

~CR!~1!25gD1

2 2F0~g11
2 13ng2!.

~5!

Here

g25
f CR

~0!

12s232
f CR

~1!w0
21/2f 0d

12E1s23 1
f CR

~7!w0
21~ f 0d!2

12E1
2s23 ,

gD1

2 5
f CR

~2!w0
21

12E2s232
f CR

~4!w0
23/2f 0d

12E1E2s23 1
f CR

~8!w0
22~ f 0d!2

12E1
2E2s23 , ~6!

g11
2 5

f CR
~1!w21/2f 0d

12E1s23 2
2 f CR

~7!w0
21~ f 0d!2

12E1
2s23 .

The nonuniversal factorscn ,cD1
, the factorF0 , the eigen-

valuesEl of the matrix of RG transformation, the expre
sions for three coordinates of the fixed point and the qua
ties characterizing them~including f 0 andw0! as well as for
f CR

( i ) depending on the values of variables at the fixed po
are presented in Ref. 17.

Differentiating expression~4! for FCR with respect to
temperature, we obtain the following expressions for entro
SCR , internal energyUCR , and specific heatCCR in the CR
region:

SCR5kN8@s~CR!~0!2c0utu1u3
~CR!~0!2utu12a

1u3
~CR!~1!2utu12a1D1#,

UCR5kTN8@g12u1utu1u3
~CR!~0!2utu12a

1u3
~CR!~1!2utu12a1D1#, ~7!

CCR5kN8@c02c3
~CR!~0!2utu2a2c3

~CR!~1!2utuD12a#,

wherea5223n is the critical exponent of specific heat, an

u3
~CR!~ l !25cn

3cD1

l ū3
~CR!~ l !2 , l 50,1;

ū3
~CR!~0!253nḡ3

~CR!~0!2 ;

ū3
~CR!~1!25~3n1D1!ḡ3

~CR!~1!2 ;

c3
~CR!~ l !25cn

3cD1

l c̄3
~CR!~ l !2 ; ~8!

c̄3
~CR!~0!253n~3n21!ḡ3

~CR!~0!2 ;

c̄3
~CR!~1!25~3n1D1!~3n1D121!ḡ3

~CR!~1!2 .
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The remaining coefficients are defined by corresponding
pressions obtained from an analysis of temperatures ab
Tc .7,17

3. THERMODYNAMIC FUNCTIONS OF THE SYSTEM
CORRESPONDING TO THE REGION OF INVERSE GAUSSIAN
REGIME

We shall write the final result for the contribution of th
IGR region
e
se

s

-

on
x-
ve

FIGR52kTN8s23~mt11! ln@&Q~Pmt
!#2kT ln Zmt11

~9!

to the free energy of the system. The calculations of the fi
and second terms in~9!, associated with the calculations o

&Q~Pmt
!5S 4s3umt

s24mt

p4C~hmt
,amt

!D 1/4

I 0~hmt
,jmt

! ~10!

and
Zmt115E expF2
1

2 (
k<Bmt11

dmt11~k!rkr2k2(
l 52

3 a2l
~mt11!

~2l !!Nmt11
l 21 (

k1 ...,k2<Bmt11

rk1
...rk2l

dk11...1k2lG ~dr!Nmt11, ~11!
R.
r-

im-

der
is

of

o

are described in detail in Ref. 18~see Ref. 13 for ther4

model!. We obtain

FIGR52kTN8@g IGR
~0! utu3n1g IGR

~1! utu3n1D1#,

g IGR
~ l ! 5g3

~ l !~mt!
1g3

~ l !~s! , l 50,1. ~12!

The termg3
( l )(mt) defines free energy after the exit from th

CR, andg3
( l )^s& defines the free energy of ordering. The

terms can be calculated by the formulas

g3
~ l !~mt!

5gg
~ l !1gr

~ l ! , gg
~ l !5cn

3cD l

l ḡg
~ l ! ,

gr
~ l !5cn

3cD l

l ḡr
~ l ! , g3

~ l !^s&5cn
3cD l

l ḡ3
~ l !^s& . ~13!

The expressions for the quantitiesḡg
( l ) ,ḡr

( l ) ,ḡ3
( l )^s& indepen-

dent of microscopic parameters are given in Ref. 18.
The entropySIGR , internal energyUIGR , and specific

heatCIGR corresponding to IGR can be written in the form

SIGR5Smt
1S^s& , UIGR5Umt

1U ^s& ,

CIGR5Cmt
1C^s& . ~14!

The components of these thermodynamic characteristics
isfy the following relations:

Sh52kN8@u3
~0!^h&utu12a1u3

~1!^h&utu12a1D1#,

Uh52kTN8@u3
~0!~h!utu12a1u3

~1!~h!utu12a1D1#,

Ch5kN8@c3
~0!~h!utu2a1c3

~1!~h!utuD12a#,

u3
~ l !~h!5cn

3cD1

l ū3
~ l !~h! , l 50,1,

ū3
~0!~h!53nḡ3

~0!~h! , ū3
~ l !~h!5~3n1D1!ḡ3

~1!~h! ,

c3
~ l !~h!5cn

3cD1

l c̄3
~ l !~h! , c̄3

~0!~h!53n~3n21!ḡ3
~0!~h! ,

c̄3
~1!~h!5~3n1D1!~3n1D121!ḡ3

~1!~h! . ~15!

The exponenth can assume two values:mt and ^s&. Here
ḡ3

( l )(mc)
5ḡg

( l ) ( l 50,1), andḡ3
( l )^s& are universal factors ap

pearing ing3
( l )^s& ~see~13!!.

Thus, we have calculated free energy in the IGR regi
Proceeding from the expression~12! for FIGR , we have ob-
at-

.

tained other thermodynamic functions corresponding to IG
Expression~12! contains the free energy of ordering dete
mined by integration with respect to CVr0 , whose average
value is proportional to the order parameter which is an
portant characteristic of the phase transition.

4. ORDER PARAMETER OF A 3 D ISING SYSTEM

The role of the order parameter for the system un
investigation is played by the average spin moment. It
associated with the existence of a nonzero valuer̄0 below
the phase transition temperature, for which the integrand
the expression

Zmt115exp~2bFmt118 !

3E expFbANr0h1B̃r0
22

G

N
r0

42
D

N2 r0
6Gdr0 ,

~16!

attains its extremum value. Hereb51/(kT) is the inverse
thermodynamic temperature andh is determined by the
value of the constant external fieldH introduced in our
analysis (h5mBH,mB being the Bohr magneton!. The ex-
pression for2bFmt118 corresponding to the contribution t

the free energy of the system fromrk with the values of
wave vectorsk→0 ~but not equal to zero! as well as the
coefficients

B̃5B̃~0!utunbF̃~0!~11B̄~1!utuD1!,

G5G~0!utun~bF̃~0!!2~11G~1!utuD1!, ~17!

D5D ~0!~bF̃~0!!3~11D ~1!utuD1!

are given in Ref. 18. Carrying out in~16! the substitution of
the variable

r05ANr, ~18!

we obtain

Zmt115exp~2bFmt118 !ANE exp~2NE0~r!!dr, ~19!
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and the evaluation of the order parameter is reduced to
termining the extremum pointr̄ of the expression

E0~r!5Dr61Gr42B̃r22bhr. ~20!

The value ofr̄ coincides with the average value ofr corre-
sponding to the equilibrium value of the ord
parameter.5,15,16 The expression forE0(r) defines the frac-
tion of free energy associated with the order paramete
corresponds to the microscopic analog of the Landau
energy. The quantityZmt11 will be expressed in terms o
E0( r̄) ~coinciding in form with the expansion of free energ
into a power series in the order parameter! by using the
steepest descent method for evaluating the integral~19! ~see
Ref. 18!.

Expression~20! was derived by successive eliminatio
of ‘‘insignificant’’ variablesrk with kÞ0, which allowed us
to calculate the coefficients ofE0(r) ~see Table I!.

Numerical values in Table I are given for some values
effective radiusb of the potential and the RG parameters.
As in the case ofT.Tc ,7,17 the parabolic approximation o
the Fourier transform of the exponentially decreasing pot
tial of interaction in the region of small values of wave ve
tors forb5bI5c/(2)) corresponds to a similar approxima
tion of the Fourier transform for the potential of interactio
between nearest neighbors, nearest and next nearest n
bors forb5bII 50.3379c, and first, second, and third neigh
bors forb5bIII 50.3584c. The value ofs5s* 52.7349 cor-
responds to the average value of the coefficient of the sec
power of the variable in the expression for density of m
sure of thenth layer, which is equal to zero at a fixed poi
~in the r4 model, this corresponds tos* 53.5862!. Thus,
there is no need to postulate a temperature dependence o
coefficients in formula~20! ~as in the case of the Landa
expansion! since the analytic form of their dependence
temperature and microscopic parameters of the system

TABLE I. Values of quantities determining the coefficients in express
for a microscopic analog of the Landau free energy.

b B̃(0) B̃(1) G(0) G(1) D(0) D(1)

s52.0000
bI 1.0106 20.2733 0.0550 20.8919 0.0009 20.6952
bII 0.9530 20.3959 0.0857 21.2918 0.0023 20.9377
bIII 0.9305 20.4420 0.1010 21.4423 0.0033 21.0470
c 0.7258 20.8188 1.9382 22.6720 1.5614 21.9396
2c 0.7149 20.8375 15.3880 22.7330 99.9318 21.9839

s52.7349
bI 0.9417 20.4451 0.0690 21.1718 0.0012 20.8853
bII 0.8888 20.5124 0.1074 21.3491 0.0031 21.0193
bIII 0.8683 20.5377 0.1267 21.4157 0.0044 21.0696
c 0.6865 20.7445 2.4478 21.9601 2.0825 21.4809
2c 0.6768 20.7550 19.4434 21.9876 133.281 21.5017

s53000
bI 0.9115 20.4755 0.0732 21.1967 0.0013 20.9113
bII 0.8610 20.5321 0.1141 21.3392 0.0033 21.0199
bIII 0.8415 20.5533 0.1346 21.3926 0.0047 21.0606
c 0.6697 20.7261 2.6087 21.8275 2.2185 21.3918
2c 0.6605 20.7348 20.7264 21.8495 141.986 21.4085
e-
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e
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-

igh-

nd
-

the
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been obtained as a result of direct calculations. In contras
the Landau theory, the temperature dependence of these
efficients is nonanalytic~see~17!!.

Let us go over to direct calculation of the average s
moment. The pointr̄ can be determined from the conditio
of extremum]E0(r)/]r50 or

6D r̄514Gr̄322B̃r̄2
h

kT
50. ~21!

For h50, we obtain the biquadratic equation

6D r̄414Gr̄222B̃50, ~22!

in which the substitution of the variable

r̄25y ~23!

leads to the equation

6Dy214Gy22B̃50. ~24!

Solving this equation and separating temperature explic
we arrive at the following formula for the average spin m
ment ^s&5 r̄5Ay:

^w&5^s&~0!utub~11^s&~1!utuD1!. ~25!

Hereb5n/2 is the critical exponent of the average spin m
ment, and the coefficients of^s& ( l ) are given in Table II.18

The curves describing the dependence of^s& on t for
various values ofb are shown in Fig. 1. Here and below, th
curves are plotted for the RG parameters53.

5. THERMODYNAMIC CHARACTERISTICS OF ISING MODEL
AS FUNCTIONS OF TEMPERATURE AND MICROSCOPIC
PARAMETERS OF THE SYSTEM

Let us now find complete expressions for thermod
namic functions of an Ising system atT,Tc in the approxi-
mation of ther6 model taking into account the first conflue
correction~the caseH50!.

TABLE II. Coefficients of the average spin moment^s& in ~25! for some
values of the effective radiusb of potential and RG parameters.

b ^s& (0) ^s& (1)

s52.0000
bI 2.7329 0.2499
bII 2.0684 0.3619
bIII 1.8700 0.4040
c 0.3747 0.7485

2c 0.1321 0.7656
s52.7349

bI 2.3854 0.3034
bII 1.8027 0.3493
bIII 1.6288 0.3666
c 0.3248 0.5076

2c 0.1145 0.5147
s53.0000

bI 2.2861 0.3046
bII 1.7269 0.3409
bIII 1.5600 0.3545
c 0.3107 0.4651

2c 0.1095 0.4707
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FIG. 1. Temperature dependence of avera
spin moment of the system in ther6 model
approximation for various values of the ef
fective radius b of the potential: bI

5c/(2)); bII 50,3379c; bIII 50,3584c;
and 2c.
ee
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The contributions from the CR and IGR regions to fr
energy of a 3D Ising model nearTc obtained above allow us
to write its total free energy~1! in the form

F52kTN8@g02g1utu1g2utu21g3
~0!2utu3n

1g3
~1!2utu3n1D1#. ~26!

All the coefficients in expression~26! are functions of mi-
croscopic parameters of the system, i.e., the effective ra
b of the potential, the Fourier transformF̃(0) of the poten-
tial, and the lattice constantc. The coefficientsg0 , g1 , and
g2 can be determined from expressions for correspond
quantities in the high-temperature region~see Refs. 7 and
17!. In contrast tog3

( l )2 ( l 50,1), their values are indepen
dent of whether calculations are made for a tempera
above or below the phase transition point. The coefficie
g3

( l )2 have the form of the product of the quantityḡ3
( l )2 ,

which is universal relative to microscopic parameters, a
the nonuniversal factorcn

3cD1

l , which is a function of these

parameters:

g3
~ l !25cn

3cD1

l ḡ3
~ l !2 , l 50,1,

ḡ3
~ l !252ḡ3

~CR!~ l !21ḡ IGR
~ l ! ḡ IGR

~ l ! 5ḡg
~ l !1ḡr

~ l !1ḡ3
~ l !^s& .

~27!

Numerical values of the coefficientsḡ3
( l )2 are given in Table

III.

TABLE III. Values of ḡ3
(1)2 for some values ofs.

s ḡ3
(0)2 ḡ3

(1)2

2.0000 1.7599 26.7968
2.7349 2.7650 23.6743
3.0000 3.1073 23.0714
us

g

re
ts

d

Proceeding from the expression~26! for free energyF,
we can find other thermodynamic functions forT,Tc . For
example, the following expressions are valid for entropyS,
internal energyU, and specific heatC:

S5kN8@s~0!2c0utu2u3
~0!2utu12a2u3

~1!2utu12a1D1#,

U5kTN8@g12u1utu2u3
~0!2utu12a2u3

~1!2utu12a1D1#,
~28!

C5kN8@c01c3
~0!2utu2a1c3

~1!2utuD12a#,

where s(0), c0 , and u1 coincide with the corresponding
quantities forT.Tc ,7,17 while the structure of the remainin
coefficients in terms of universality is determined by the
lations

TABLE IV. Numerical values of amplitudesA2, ac
2 , G2, andax

2 .

b A2 ac
2 G2 ax

2

s52.0000
bI 1.9734 7.2567 0.2133 0.1872
bII 1.8071 10.5104 0.2262 0.2711
bIII 1.7436 11.7347 0.2317 0.3027
c 1.2012 21.7395 0.2970 0.5608
2c 1.1741 22.2353 0.3015 0.5736

s52.7349
bI 1.2026 8.1288 0.2341 0.3536
bII 1.1027 9.3588 0.2480 0.4071
bIII 1.0648 9.8206 0.2539 0.4272
c 0.7486 13.5975 0.3211 0.5915
2c 0.7328 13.7882 0.3257 0.5998

s53.0000
bI 1.0331 7.9599 0.2437 0.3884
bII 0.9484 8.9081 0.2580 0.4346
bIII 0.9164 9.2633 0.2640 0.4519
c 0.6506 12.1558 0.3318 0.5931
2c 0.6373 12.3022 0.3364 0.6002



f

958 Low Temp. Phys. 25 (12), December 1999 I. V. Pylyuk
FIG. 2. Dependence of the entropy o
the system ont. Notation is the same as
in Fig. 1.
-
he
ove

p-
u3
~ l !25cn

3cD1

l ū3
~ l !2 , l 50,1,

ū3
~0!253nḡ3

~0!2 , ū3
~1!25~3n1D1!ḡ3

~1!2 , ~29!

c̄3
~ l !25cn

3cD1

l c̄3
~ l !2 , c̄3

~0!253n~3n21!ḡ3
~0!2 ,

c̄3
~1!25~3n1D1!~3n1D121!ḡ3

~1!2 .

Presenting the specific heat from~28! by the dependence

C

kN8
5

A2

a
utu2a~11aac

2utuD1!1B2,

A25cn
3a c̄3

~0!2 , ac
25

cD1

a

c̄3
~1!2

c̄3
~0!2 , B25c0 , ~30!
similar to the caseT.Tc , we obtain the following expres
sions for ratios of the leading critical amplitudes and t
amplitudes of corrections to scaling at temperatures ab
and below the phase transition temperature:

A1

A2 5
c̄3

~0!1

c̄3
~0!2 ,

ac
1

ac
2 5

c̄3
~1!1

c̄3
~1!2

c̄3
~0!2

c̄3
~0!1 . ~31!

It should be noted thatB2 is equal toB1 calculated forT
.Tc . The amplitudesA2 andac

2 are given in Table IV.
Equation~21! makes it possible to calculate the susce

tibility of the system per particle, i.e.,x5mB(]^s&/]H):
FIG. 3. Specific heat of the spin system
for various values of b. Notation is the
same as in Fig. 1.
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FIG. 4. Temperature dependence of th
susceptibility of the system for various
values of b. Notation is the same as
Fig. 1.
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x5G2utu2g~11ax
2utuD1!

mB
2

F̃~0!
. ~32!

Here g52n is the critical exponent of susceptibility. Th
values of amplitudesG2 andax

2 are given in Table IV.18

Using the results of calculations forT.Tc
7 as well as

the results obtained here, we can plot the graphs of temp
ture dependences of entropyS/kN, specific heatC/kN, and
the susceptibility x ~in the units of mB

2/A, A

5F̃(0)/@8p(b/c)3# being the interaction potential constan!
nearTc for various values of the effective radiusb of the
potential~see Figs. 2, 3, and 4!. The method of calculation
developed here allows us to trace the evolution of thermo
namic characteristics with increasing ratio of the effect
radiusb of the potential to the lattice constantc. Such an
evolution of the free energyF/N of the system~in the units
of A! at the phase transition point (t50) as well as of the

FIG. 5. Dependence of the free energy of the system at the phase tran
point (t50) on the ratio of the effective radius b of exponentially decre
ing interaction potential to the simple cubic lattice constant c.
ra-

y-

average spin moment̂s& for t521023 and the specific
heatC/kN of the system forutu51023 is presented in Figs
5, 6, and 7.

Thus, the critical behavior of the one-component sp
system is described on the basis of sextic density of mea
~r6 model!. As compared with the quartic approximation~r4

model!, the r6 model ensures a more correct quantitati
pattern of this description. This follows from the results
our previous calculations~see, for example, Refs. 5 and 6! as
well as from the temperature dependences of the ave
spin moment̂ s& ~Fig. 8! and specific heatC/kN of the 3D
Ising model ~Fig. 9!. The calculations were made for
simple cubic lattice in zero external field with the interacti
between nearest neighbors. In our calculations, we pub
5bI5c/(2)). The r6 model approximation includes th
first confluent correction, while the approximation on the b
sis of ther4 model takes into account the first and seco
confluent corrections~see Refs. 11–14!. The straight line1

ion
-FIG. 6. Behavior of the average spin moment fort521023 with increasing
ratio b/c.
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in Fig. 8 for the average spin moment corresponds to ther4

model, line2 to ther6 model, and line3 to the results obtain
by Liu and Fisher19 for t5uT2Tcu/Tc . The high-
temperature region in Fig. 9 is presented by the curves1, 2
and3, while the low-temperature region by the curves18, 28
and 38. The curves1 and 18 were obtained on the basis o
the r4 model, curves2 and 28 in the r6 model approxima-
tion, and curves3 and38 correspond to the results obtaine
by Liu and Fisher.19 It should be noted that the latter carrie
out a new numerical analysis of leading critical amplitud
of susceptibility, correlation length, specific heat, and sp
taneous magnetization of a 3D Ising system, as well as uni
versal relations between these amplitudes.

The CV method makes it possible to carry out the a
proximate calculation of the partition function of the syste
and to obtain universal~critical exponents! and nonuniversa
quantities~expressions for leading critical amplitudes and t
amplitudes of confluent corrections to thermodynamic ch
acteristics! by using a unified approach. The results of calc
lations for a 3D Ising system on the basis of ther4 andr6

models are in accord with the results obtained by other
thors. For example,16 the critical exponents of the correlatio
length n50.637, specific heata50.088, the average spi

FIG. 7. Evolution of the specific heat of the system forutu51023 with
increasing ratio b/c.

FIG. 8. Temperature dependence of the order parameter of the 3D Ising
model for a simple cubic lattice. Straight line1 corresponds to ther4 model,
line 2 to ther6 model, and line3 to the results obtained in Ref. 19.
s
-

-

r-
-

u-

momentb50.319, the susceptibilityg51.275, and the ex-
ponent of the first correction to scalingD150.525 ~r6

model,s5s* !, as well as universal ratios of critical ampl
tudes of specific heatA1/A250.435, susceptibilityG1/G2

56.967 and their combination

P5@12A1/A2#/a53,054,

Rc
15A1T1/@s0

3~^s&~0!!2#50,098~model r4,s5s* !,

wheres05p&b/c,^s& (0) is the critical amplitude of the av
erage spin moment~see~25!!, are in accord with the value
n50.630, a50.110, b50.325, g51.241, D150.498,
A1/A250.465, G1/G255.12, P53.90, Rc

150.052, ob-
tained by using the field-theory approach20–22as well as with
the valuesn50.638, a50.125, b50.312, g51.250, D1

50.50,A1/A250.51,G1/G255.07,Rc
150.059, calculated

with the help of high-temperature expansions.23–27 The
methods existing at present make it possible to calculate
versal quantities to a quite high degree of accuracy. T
advantage of the method under investigation lies in the p
sibility to obtain and analyze expressions for thermodynam
characteristics as functions of microscopic parameters of
system.

This research was carried out under partial financial s
port of the State Foundation of Fundamental Studies at
Ukrainian Ministry of Science~Project No. 2.4/173!.
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Double-peaked character of the temperature dependence of resistance of perovskite
manganites for a broadened ferromagnetic transition

A. I. Tovstolytkin,* ) A. N. Pogorilyi, and S. M. Kovtun
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The behavior of a system consisting of a mixture of paramagnetic semiconducting and
ferromagnetic metallic phases is examined in the framework of the percolation model. As the
temperature decreases below the Curie point, the paramagnetic phase fraction is assumed
to decreases according to an exponential law. The evolution of the temperature variation of the
resulting resistance is considered as a function of the magnetic transition broadening. An
explanation is offered for the low-temperature resistance anomaly observed experimentally in a
number of perovskite manganites. ©1999 American Institute of Physics.
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The interest towards the substituted manganites of
system R12xAxMnO3 ~where R is a rare-earth element a
A5Ba, Sr, Ca, etc.! is aroused by the prospects of the
practical application as magnetoresistive materials, as we
by their unique electrical and magnetic properties.1,2 Com-
pounds withx50 and 1 are antiferromagnetic insulators, b
compounds with intermediate composition are ferromagn
with a metallic behavior at temperatures below the Cu
point TC .3,4 The common features of such materials are
existence of a resistivity peak nearTC and a colossal mag
netoresistance~CMR! associated with the suppression of th
peak by a magnetic field. Zener5 explained the ferromag
netism of substituted manganites by introducing the conc
of double exchange interaction between Mn31 and Mn41

ions. Later, this concept was generalized and given a m
ematical formulation by Anderson and Hasegawa6 and de
Gennes.7 However, attempts to use this model for explaini
a number of effects including CMR were not qui
successful.8,9 The properties of perovskite manganites we
explained in Refs. 8, 10, and 11 on the basis of stro
electron–phonon and ferromagnetic interactions leading
dynamic phase separation in the form of magnetic polaro
The idea of electron–impurity phase separation and magn
impurity scattering of charge carriers in degenerate fe
magnetic semiconductors was used in Refs. 9, 12, and 1
explain CMR, but a complete understanding of the proper
of substituted manganites has not been attained so far.

Recently, an extra low-temperature peak was obser
~in addition to the peak near the Curie point! on the tempera-
ture dependence ofR of the electrical resistance in a numb
of samples belonging to the systems~La, Ce!MnO3 and
~La, Sr!MnO32d .14–16 Even before that, Tanget al.17 had
observed similarR(T) curves in polycrystalline samples o
~La, A!~Mn, Cu!O32d (A5Sr, Ba). Zhanget al.18 attributed
the lowtemperature resistivity peak formed as a res
of a decrease in the granule size in the perovs
La0.85Sr0.15MnO3 to the tunneling between granules occu
9621063-777X/99/25(12)/4/$15.00
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ring due to different values of the Curie temperature at
granule surface and inside the granules. Steenbecket al.15

studied films with one grain boundary~on a bicrystalline
substrate! and associated the two-peakR(T) dependence
with a reducedTC value in the boundary region. Howeve
such mechanisms cannot explain the behavior of epita
films investigated, among others, by Izumiet al.19 However,
any explanation was not offered in Ref. 19 for the emerge
of the second peak upon a decrease in the film thicknes
should be emphasized in particular that in all the cases
scribed in Refs. 14–19, no magnetic or structural peculi
ties which could lead to anomalies in electrical propert
were observed below the Curie point. We have used a sim
phenomenological model to show that the emergence o
low-temperature anomaly on theR(T) dependence in perov
skite manganites may be due to a strong temperature br
ening of the ferromagnetic transition.

Recent investigations have shown that paramagnetic
ferromagnetic phases can coexist over a wide tempera
range below the Curie point in substituted mang
nites.11,14,20,21 Checherskyet al.21 and Simopouloset al.22

have described the temperature dependence of the fractio
the paramagnetic phase (T<TC) obtained for some Ca
based manganites experimentally as a result of Mo¨ssbauer
spectral studies. An analysis of the data presented in th
works shows that the magnetic transition may be stretc
down to the lowest temperatures~in the samples studied b
Checherskyet al.,21 the fraction of the nonmagnetic phase
about 20% even forT/TC50.4), and a part of the sampl
may remain paramagnetic even at absolute zero.17–19 A dis-
tinguishing feature of CMR manganites is a strong dep
dence of their electric properties on the magnetic state:
ferromagnetic phase has the metallic-type conductiv
(dR/dT.0), while the paramagnetic phase displays t
semiconductor-type conductivity.10,11,21,23 Considering that
the dependencesR(T) are of opposite sign in the two phase
© 1999 American Institute of Physics
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the resulting resistance may be quite complex in the reg
of coexistence of the two phases, as is indeed observe
some experiments.14–19

Let us consider the behavior of a two-phase system c
sisting of a mixture of paramagnetic and ferromagne
phases which have different types of conductivity. We d
note the resistivity of the material in the two phases byRp

and Rf respectively. We assume that the concentration
each phase (wp andw f) is a function of temperature, and th
both phases coexist in a certain temperature interval be
TC(wp1w f51). Having defined the specific form of th
curvesRp(T) and Rf(T), we analyze the evolution of th
temperature dependence of the resulting resistance of
system upon a variation of the parameterwp(T) or w f(T).

An analysis of extensive experimental material3,17,24,25

shows that the temperature variation of the resistance of
ferromagnetic phase in each specific case can be desc
by different functions~from a power function to an exponen
tial function!, and it would seem that a universal form of th
function Rf(T) does not exist. However, investigations ca
ried out by Snyderet al.23 in samples of bulk poly- and
single crystals, as well as in well-annealed polycrystall
thin films of substituted manganites, show that in all t
cases, the resistanceRf of the ferromagnetic phase can b
presented with a fairly high degree of accuracy in the for

Rf5B1Ct2, ~1!

which apparently reflects a strong electron correlation
these materials (t is the temperature normalized toTC , while
B and C are constants!. A similar expression was obtaine
by Urushibara et al.3 for single crystals of the system
La12xSrxMnO3.

A thorough experimental investigation of the elect
properties of films and bulk samples of La0.67A0.33MnO3

(A5Ca, Sr) was carried out by Snyderet al.23,26 above the
Curie point over a wide temperature range~up to 1200 K!.
The authors examined the range of applicability of vario
models, viz., variable range hopping conductivity, sem
conductor-type conductivity, and small polaron hopping co
ductivity, in adiabatic and nonadiabatic approximations
describing the resistance of the paramagnetic phase of t
materials. It was shown that the temperature dependenc
Rp can be best described by the formula

Rp5At exp~E/t !, ~2!

corresponding to the small polaron hopping conductivity
the adiabatic approximation (E is the activation energy of a
polaron andA is a constant!.

Checherskyet al.21 and Simopouloset al.22 used the
Mössbauer spectroscopy technique for measuring the
perature dependence of the volume fraction of the param
netic phasewp for samples of La12xCaxMnO3 (x50.2,0.3).
Some indirect data, e.g., for samples investigated by C
and de Lozanne,27 can be obtained by comparing the tem
perature dependence of the magnetization of epitaxial
polycrystalline films having the same composition and p
pared under identical conditions but on different substra
Assuming that the fraction of the ferromagnetic phase be
TC is 100% in an epitaxial film, the ratio of magnetization
e
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the investigated samples can be used to estimate the rat
wp and w f in the polycrystalline film. A similar procedure
can be adopted for samples studied by Izumiet al.19 An
analysis carried out by us forwp(T) curves obtained in Refs
17–19, 21, 22, and 27 shows that a single formula canno
found for describing the temperature dependence of ratio
paramagnetic and ferromagnetic phase concentrations. H
ever, we found that the probability of the emergence of lo
temperature peak on theR(T) curve increases with an exten
sion of the temperature interval of coexistence of the t
phases. The simplest function enabling a variation of
width of such a temperature interval with the help of a sin
variable is an exponential function. For computations of
fraction wp of the paramagnetic phase, we shall assume

wp51, ~ t.1!,

wp5exp@~ t21!/d#, ~ t&1!, ~3!

where the parameterd characterizes the transition width.
should be remarked that the values ofwp obtained in Refs.
17, 18, 21, and 27 do not vanish even at the lowest temp
tures. Hence the theoretical analysis must cover the cad
,1 as well asd>1.

The total resistanceR of the system was calculated from
the formula which was derived by McLachlan28 for a two-
phase system and which can be transformed as follows:

wp~R1/g2Rp
1/g!

~R1/g1KRp
1/g!

1
~12wp!~R1/g2Rf

1/g!

~R1/g1KR1/g!
50, ~4!

where

K5
wp

c

~12wp
c!

.

In this case, the following condition must be satisfied:

Rf!Rp . ~5!

By wp
c we mean the critical volume fraction of the high

resistivity ~paramagnetic in the present case! phase. The
value of g is determined by the morphology of the syste
and is a function ofwp

c and the effective demagnetizatio
coefficientL:28

g5
wp

c

~12L !
.

We carried out all the computations by considering t
spherically symmetric case and puttingL51/3. The critical
volume fractionw f

c of the metallic phase at which percola
tion takes place was assumed to be 0.16, which is in acc
with the experimental results and the theoretical analysis
the behavior of CMR manganites.29 The corresponding criti-
cal value for the paramagnetic~high-resistivity! phase in this
case is equal towp

c512w f
c50.84. Such a choice ofw f

c and
L givesg51.26 andK55.25 in Eq.~4!.

Figure 1 shows the temperature dependence of
amount of the paramagnetic phasewp and the resulting re-
sistanceR of a two-phase system calculated by using form
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las ~1!–~4! for different values of the parameterd. Calcula-
tions were made for the following values of the coefficien
appearing in Eqs.~1! and ~2!:

B5C51024, A51, E53.

Such a choice of the coefficients was made, on the one h
from an analysis carried out in Refs. 14, 23, and 26 and
the other hand, in view of the constraint imposed by
inequality ~5! on functionsRp andRf .

It can be seen clearly from Fig. 1~b! that an initial in-
crease ind causes a broadening of the resistive transiti
However, beginning fromd>3.2, a second peak is forme
on theR(t) dependence at low temperatures. A further
crease in the value ofd is accompanied by a sharp rise in th
low-temperature peak, and only an insignificant singular
which may be hard to detect experimentally, emerges
d>4.2 in the vicinity of the Curie point (t51). Great care
should be exercised in such cases while interpreting the
perimental results and comparing the resistive data with
magnetic data.

It should be noted that the strong temperature broad
ing of the magnetic transition is a phenomenon encounte
quite frequently in substituted manganites. Apparently, t
is due to a competition between different types of interact
characterizing these materials,3,10,11 as well as to a strong
dependence of the magnetic properties on the microstruc
mechanical stresses, degree of disorder, and chem
inhomogeneities.23 It is also worthwhile to note that it may
not be quite easy to determine the Curie point correctly
der such conditions as was mentioned, for example,
Mitchell et al.30 Strongly broadened transitions were o

FIG. 1. Temperature dependence of the amount of paramagnetic phawp

~a! and electric resistivityR ~b! in a two-phase system for different values
the parameterd: 0.5 ~L!, 2.0 ~¹!, 3.0 ~D!, 3.2 ~s!, 3.45 ~* !, and 4.2~j!.
d,
n

e

.

-

,
r

x-
e

n-
d

s
n

re,
al

-
y

served experimentally by different methods.11,14,17,21,30Re-
garding the topic of our investigations, the most illustrati
results were obtained in Refs. 17, 19, and 27 where a co
lation between the magnetic transition broadening and
emergence of the low-temperature resistive anomaly can
traced clearly.

Thus, we have analyzed the electrical properties o
system consisting of paramagnetic and ferromagnetic ph
which have different types of conductivity and coexist ove
wide temperature interval. It is shown that in spite of t
monotonic variation of the magnetic and electric propert
of each phase, the resulting resistance may exhibit a num
of anomalies in the region of coexistence of phases. T
presented data point towards the possibility of realizing s
a situation in substituted manganites.

The authors are indebted to A. Ya. Vovk for fruitfu
discussions on the subject of investigations.

This research was partially supported by the US Civili
Research and Development Foundation~CRDF!, Project No.
UP1-370.

* !E-mail: atov@imag.kiev.ua

1R. von Helmolt, J. Wecker, B. Holzapfelet al., Phys. Rev. Lett.71, 2331
~1993!.

2S. Jin, T. H. Tiefel, M. McCormacket al., Science264, 413 ~1994!.
3A. Urushibara, Y. Moritomo, T. Arimaet al., Phys. Rev. B51, 14103
~1995!.

4A. A. Mukhin, V. Yu. Ivanov, V. D. Travkinet al., JETP Lett.68, 356
~1998!.

5C. Zener, Phys. Rev.81, 440 ~1951!.
6P. W. Anderson and H. Hasegawa, Phys. Rev.100, 675 ~1955!.
7P.-G. de Gennes, Phys. Rev.118, 141 ~1960!.
8A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett.74,
5144 ~1995!.

9E. L. Nagaev, Usp. Fiz. Nauk166, 833 ~1996!.
10M. R. Ibarra and J. M. De Teresa, J. Magn. Magn. Mater.177–181, 846

~1998!.
11W. Archibald, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B53, 14445

~1996!.
12E. L. Nagaev, Usp. Fiz. Nauk168, 917 ~1998!.
13V. N. Krivoruchko, Fiz. Nizk. Temp.22, 1047~1996! @Low Temp. Phys.

22, 798 ~1996!#.
14P. Mandal and S. Das, Phys. Rev. B56, 15073~1997!.
15K. Steenbeck, T. Eick, K. Kirschet al., Appl. Phys. Lett.73, 2506~1998!.
16A. N. Pogorilyi, N. A. Belous, A. I. Tovstolytkinet al., Fiz. Nizk. Temp.

25, 97 ~1999! @Low Temp. Phys.25, 74 ~1999!#.
17Yi Tang, I. Shaltout, R. Braunsteinet al., Phys. Status Solidi B182, 509

~1994!.
18N. Zhang, W. Ding, W. Zhonget al., Phys. Rev. B56, 8138~1997!.
19M. Izumi, Y. Konishi, T. Nishiharaet al., Appl. Phys. Lett.73, 2497

~1998!.
20M. K. Gubkin, A. V. Zalesskii, V. G. Krivenkoet al., JETP Lett.60, 57

~1994!.
21V. Chechersky, A. Nath, H. Ju, and R. L. Greene, Fiz. Nizk. Temp.23,

727 ~1997! @Low Temp. Phys.23, 536 ~1997!#.
22A. Simopoulos, G. Kallias, E. Devlinet al., J. Magn. Magn. Mater.177–

181, 860 ~1998!.
23G. J. Snyder, R. Hiskes, S. DiCaroliset al., Phys. Rev. B53, 14434

~1996!.
24M. Rubinstein, D. J. Gillespie, J. E. Snyder, and T. M. Tritt, Phys. Rev

56, 5412~1997!.
25S. I. Khartsev, V. N. Krivoruchko, and V. P. Pashchenko, Fiz. Niz

Temp.23, 841 ~1997! @Low Temp. Phys.23, 631 ~1997!#.



965Low Temp. Phys. 25 (12), December 1999 Tovstolytkin et al.
26D. C. Worledge, G. J. Snyder, M. R. Beasleyet al., J. Appl. Phys.80,

5158 ~1996!.
27C. C. Chen and A. de Lozanne, Appl. Phys. Lett.73, 3950~1998!.
28D. S. McLachlan, J. Phys. C20, 865 ~1987!.
29L. P. Gor’kov, Usp. Fiz. Nauk168, 665 ~1998!.
30J. F. Mitchell, D. N. Argyriou, C. D. Potteret al., Phys. Rev. B54, 6172

~1996!.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 12 DECEMBER 1999
Exact instanton solution for quantum tunneling in an uncompensated antiferromagnet
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An exact instanton solution describing macroscopic quantum tunneling for a small
antiferromagnetic particle with uncompensated spin and biaxial quadratic anisotropy is constructed.
The solution is valid for any relation between anisotropy parameters and relative value of
uncompensated spin. The obtained solution is used for calculating the tunneling amplitude taking
into account the pre-exponential factor. The amplitude is characterized by a nonanalytic
dependence on the ratio of small parameters of the problem, viz., anisotropy in the basal plane
and the value of uncompensated spin. ©1999 American Institute of Physics.
@S1063-777X~99!00712-4#
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INTRODUCTION

During the last decade, the macroscopic quantum tun
ing in magnetic systems has been studied intensely both
perimentally and theoretically.1 Special attention is paid to
coherent macroscopic quantum tunneling~CMQT! between
states in systems with a discrete degeneracy of the gro
state, which are equivalent from the energy point of vie
but different physically. This effect can be observed expe
mentally from the resonant absorption of electromagn
waves at energy levels split due to tunneling. The interes
this phenomenon is due to the following two factors. Fir
fine and elegant effects of interference of instanton traje
ries emerging in such problems lead to suppression of
neling for a half-integral spin of the system2,3 and to oscilla-
tory dependences of tunnel splitting of energy levels
extrinsic parameters.4,5 Second, the manifestation of CMQ
effects is not masked by thermal fluctuations in contras
the effects of quantum ‘‘escape’’ from a metastable to
stable state.

First investigations6,7 were carried out for small ferro
magnetic particles under the assumption that all spins
particle are parallel~the large spin model!. It was found later
that antiferromagnets~AFM! are more convenient objects fo
CMQT studies. According to calculations,8,9 the energy level
splitting in AFM is stronger than in FM, and the effects c
be observed at a higher temperature. It is not surprising
CMQT effects were first observed for ferritin particles po
sessing the antiferromagnetic structure.10

It was noted11–13 that pure AFM, i.e., antiferromagnet
with complete compensation of spin, do not exist on
mesoscopic level. At present, ‘‘high-spin’’ complexes ch
acterized by the antiferromagnetic interaction in the prese
of an uncompensated spin are being considered by m
authors. Chiolero and Loss13 studied tunneling in an uncom
pensated AFM on the basis of thes model ~which is nor-
mally used for pure AFM! generalized to the case of incom
plete compensation. These equations are a combinatio
the Lorentz-invariants model and the Landau–Lifshit
equations.13–15 A peculiar feature of their solutions is that
9661063-777X/99/25(12)/6/$15.00
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transition form the antiferromagnetic behavior to ferroma
netic one occurs for a small decompensation~the ratio of the
difference in the spins of the sublattices to their sum!, which
is manifested in the dynamics of nonlinear waves14 as well as
for CMQT.13 However, Chiolero and Loss13 analyzed only
one limiting case of a strong easy-plane anisotropy. In t
case, the equations for FM as well as AFM can be reduce
Lorentz-invariant models for a scalar variable. However,
relation between the anisotropy parameters for high-s
complexes Mn12Ac16 or Fe8

17 is different, namely, easy-axi
anisotropy takes place, and such a simplification is incorr

In the present communication, we construct an exact
stanton solution for a small antiferromagnetic particle w
an uncompensated spin and biaxial quadratic anisotropy.
solution is valid for any relation between anisotropy para
eters and the relative value of uncompensated spin. The
tained solution is used for calculating the WKB expone
and the pre-exponential factor~which is determined by the
fluctuation determinant! for the tunneling amplitude. It was
found that in contrast to Ref. 13, the CMQT amplitude
characterized by a nonanalytic dependence on the param
of the problem, namely, the relation between anisotropy
the basal plane and the magnitude of the uncompens
spin.

1. MODEL

Let us consider a system of spins in which nearest ne
bors are coupled through antiferromagnetic interaction
belong to two magnetic sublattices. In the ground state,
total spinsS1 andS2 of the sublattices are antiparallel. Th
total spinS5S11S2 differs from zero due to decompens
tion of the sublattices,S1ÞS2 . Since we are interested in th
caseuS12S2u!S1,2, the dynamics of the system is describ
in terms of the antiferromagnetism unit vectorl, where l
5(S12S2)/uS12S2u, and the total spin is a subordinate va
able and is determined byl and l̇ .14,15

In order to describe the dynamics of the vectorl, we
shall proceed from the effective Lagrangian obtained in Re
© 1999 American Institute of Physics
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13 and 15. The Euclidean version of the Lagrangian can
presented in the form

L5
\Stot

gHe
F1

2
~ u̇21ẇ2 sin2 u!2 ivnẇ~12cosu!G1wa~u,w!.

~1!

Here the dot denotes the derivative with respect to the im
nary time t, u and w are the polar coordinates of the un
vectorl, Stot5S11S2 is the maximum value of the spin of th
system,He the exchange field,g52mB /\ the gyromagnetic
ratio, vn5gHeSex/Stot the parameter having the dimensio
of frequency and describing decompensation,Sex5uS1

2S2u, and wa(u,w) is the magnetic anisotropy energ
whose form is not specified so far.

Lagrangian~1! consists of three terms. They include th
kinetic term proportional tol̇2, which is typical of pure AFM
with S15S2 , the gyroscopic term proportional to the fir
derivative of thel vector components with respect tot and
typical of ferromagnets, and anisotropy playing the role
potential energy.

Let us consider possible limiting cases. IfS15S2 , i.e.,
vn50, we naturally obtain the Lagrangian of thes model
for a pure AFM. A transition to the Lagrangian for a ferr
magnet is not a trivial operation. The dynamics of the vec
l approximately corresponds to the dynamics of ferromagn
with increasingvn to values of the order ofg(He /Ha)1/2,
where Ha is the anisotropy field. Formally, we can obta
from ~1! the Lagrangian of a ferromagnet by eliminating t
term quadratic in the derivatives, for example, with the h
of the substitution\Stot /gHe→C\Stot /gHe, vn→vnC21 and
the limiting transitionC→0. To match the constants, w
must putvn5gHe . However, such a procedure is not qu
correct since it should be borne in mind that the omission
the term proportional tol̇2 changes the structure of the sy
tem Hamiltonian, namely, the dimensionality of the pha
space diminishes by a factor of two. In the case of AFM,
can treat the anglesu andw parmetrizingl as canonic vari-
ables, and the corresponding momenta containu̇ and ẇ,
while the Hamiltonian variables for a ferromagnet can
expressed only in terms ofl. For example, we can choosew
and cosu as a canonic pair. In other words, an uncomp
sated AFM~as well as pure AFM! is equivalent to a system
with two degrees of freedom, while an FM corresponds t
system with one degree of freedom.

In a popular model of strong easy-plane anisotro
equations of motion give the approximate relationu
.constẇ. In this case, the Lagrangian acquires the stand
form in mechanics, i.e.,Meff(w)ẇ2/21W(w), whereMeff(w)
andW(w) are the effective mass and potential determined
the parameters of the system. This approximation was es
tially used by Chiolero and Loss13 for an analysis of instan
tons in a ferromagnet. In other words, the problem was
duced to a mechanical system with one degree of freedom
will be proved later that the inclusion of the actual Ham
tonian structure of the equations of motion equivalent t
mechanical system with two degrees of freedom leads
considerable singularities of instanton solutions and imp
tant physical effects in CMQT.
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An instanton solution is a separatrix trajectory of t
dynamic system, connecting a pair of equivalent minimal6

(0)

of the potentialwa , i.e., the boundary conditions have th
form l→ l6

(0) for t→6`. It follows that l̇→0 for t→6`. In
order to construct an arbitrary solution of the equations
motion for a system with two degrees of freedom, we m
know two independent integrals of motion for this syste
One of them is an Euclidean analog of the total energy:

E5
\Stot

gHe

u̇21ẇ2 sin2 u

2
2va~u,w!. ~2!

However, the second integral of motion cannot be indica
easily. It can be constructed in a trivial manner only in t
case when anisotropy is purely uniaxial, andwa depends
only of the projection ofl on a certain crystallographic axi
n, wa5wa(n• l). In particular, forl6

(0)in, a purely easy-axis
case takes place.

Unfortunately, none of the Noether integrals of motio
~the integral of motion associated with the symmetry ofwa

in our case! can be used for constructing instanton solutio
of the complete system of equations describing the dynam
of the vectorl. The situation in our case is actually the sam
as in an analysis of domain walls in ferromagnets. They
also described by separatrix solutions of the forml5 l(j),
wherej5x2vt, x being the coordinate of the wall andv its
velocity ~see Ref. 18!. The only integral of motion connecte
with the symmetry of anisotropy energy is the projection ol
on the easy axisn, but the motion of the wall is impossible
whenn• l is conserved.

An analysis of dynamic systems with more than one
gree of freedom, in particular, the construction of integra
systems, is a classical problem in analytic dynamics. T
problem is being studied intensely even now, and a num
of important results were obtained in recent years.19 Among
integrable systems, the models of unit vector dynamics
also encountered. By way of an example, we can cons
the Neumann classical problem20 on the motion of a materia
point over a sphere in the field of a potential which is
quadratic function of Cartesian coordinates. A number
generalizations of this problem have been obtained recen
e.g., a more general form of integrable potentials w
constructed,19 and the effect of gyrotropic terms was als
discussed.21

In our case, it is important that the system withwa

5b ikl i l k and a gyrotropic term of the type of the field of
monopole~1! is integrable. Integrable systems of such ty
with another form of the potential and other gyrotropic term
do not exist to our knowledge. Various forms of the seco
integral of motion are given in Refs. 21 and 22. The integ
bility of model ~1! also follows from the exact integrability
of the Landau–Lifshitz equations for the magnetization o
one-dimensional ferromagnet, which was established
Sklyanin.23 Indeed, the Lagrangian for a ferromagnet can
reduced to~1! by the wave ansatzj5x2vt after a certain
change in notation.
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2. STRUCTURE OF INSTANTON SOLUTION

We shall consider the case of second-order rhombic
isotropy, which is integrable~see above!. We choosewa in
the form

wa5
\Stot

2gHe
~vz

2 cos2 u1vy
2 sin2 u sin2 w! ~3!

and assume that 0,vy<vz . The frequenciesvy andvz are
proportional to the roots of widely used anisotropy fieldsHaz

and Hay , i.e., wz,y5g(HeHax,y)
1/2. With such a choice of

the form ofwa and the relation between the constant,Ox is
an easy axis,Oy an intermediate axis, andOz a difficult
axis. The potentialwa has two symmetric minima foru
5p/2 (w50 andw5p) between which tunneling can tak
place.

Since the system of equations is integrable, we can a
lyze any of its solutions, for example, by separating variab
in the corresponding Hamilton–Jacobi equation. In parti
lar, we can construct in this way the instantons periodic int,
which are required for describing tunneling at a fin
temperature.24,25Moreover, the possibility of separating var
ables in the Hamilton–Jacobi equation indicates that v
ables can also be separated in the Schro¨dinger equation ob-
tained by canonic quantization of the variablesu andw. This
approach was used for system with one degree of f
dom.26,27

However, in order to construct a simple instanton so
tion, it is sufficient to use a property of the correspondi
solution of the problem in real time. It is known that in th
solution the motion takes place in a planar cross section
the unit sphere. It was found that the generalization of t
property can be carried out for imaginary time also.

For this purpose, we rotatel about the easy axisOx
through an anglea:

cosu→cosu cosa1sinu sinw sina,

sinu cosw→2cosu sina1sinu sinw cosa ~4!

and transform the Lagrangian. Rotation~4! leaves the kinetic
term invariant, while the gyroscopic term acquires a corr
tion in the form of the total derivative with respect tot,
which is insignificant for equations of motion, but is impo
tant for calculating action from the obtained trajectories. A
ter the transformation~4!, the equations of motion acquir
the form

2 ü1ẇ2 sinu cosu2 ivnẇ sinu1sinu cosu@~vz
2 sin2 a

1vy
2 cos2 a!sinw2~vz

2 cos2 a1vy
2 sin2 a!#

1~cos2 u2sin2 u!~vz
22vy

2!cosa sina sinw50,
~5!

2ẅ sin2 u22u̇ẇ sinu cosu1 ivnu̇ sinu

1~vz
2 sin2 a1vy

2 cos2 a!sin2 u sinw cosw

1~vz
22vy

2!sina cosa sinu cosu cosw50.

We choose the boundary conditions in the forml25ex and
l152ex , i.e., u(6`)5p/2; w(2`)50, w(1`)5p. We
put u5p/2 in this system, which does not contradict t
n-

a-
s
-

i-

e-

-

of
is

-

-

boundary conditions, and obtain the following redefined s
tem of two equations in the dynamic variablew:

ivnẇ52~vz
22vy

2!sina cosa sinw,

ẅ5~vz
2 sin2 a1vy

2 cos2 a!sinw cosw. ~6!

It can easily be seen that these equations can be made
patible by an appropriate choice of the parametera.

Let us first consider a degenerate case, For a pure A
with vn50 and vzÞvy , the first equation is transforme
into an identity ifa5pk/2, wherek is an integer. The sec
ond equation gives an instanton solution of the standard f
sinw56 cosh21 v(t2t0) with v5vy or vz depending on
whether the value ofk is even or odd respectively. Th
former case corresponds to instantons withl rotated through
the intermediate axis, and the latter to rotation through
difficult axis. It can easily be verified that a pair of instanto
with p multiple to a has a smaller value of the real comp
nent ReAEu52vy\Stot /gHe, of the Euclidean action than
pair of instantons of the second type.

In the case under investigation withvnÞ0, solutions
exist only forvzÞvy , i.e., in the presence of anisotropy
the basal plane. We obtain the compatibility equation for
redefined system~6! in the form

i ~vz
22vy

2!sina cosa5~vz
2 sin2 a1vy

2 cos2 a!1/2, ~7!

which shows thata is a complex number, i.e.,

a5
pk

2
1

i

2
arccosh

@~vz
21vy

21vn
2!224vy

2vz
2#1/22vn

2

vz
22vy

2 ,

~8!

and transformation~4! is a composition of ordinary and hy
perbolic rotations. As in the casevnÞ0, four instantons exist
in this case. Evenk correspond to a pair of instantons fo
which the plane of rotation ofl contains the intermediate
axis, while oddk correspond to rotations through the difficu
axis. Instanton solutions have the form

w562 arctan eV~t2t0!, ~9!

wheret0 is an arbitrary constant and

V5
1

2
@Avn

21~vz1vz!
26Avn

21~vz2vy!2#. ~10!

The minus sign corresponds to an instanton with the rota
of l through the intermediate axis and the plus sign, throu
the difficult axis. Direct calculations show that instanto
passing through the intermediate axis have a smaller
component of action than the instantons passing through
difficult axis for any relation betweenvn , vy , andvz . The
latter instantons do not give even a local minimum
ReAEu. It will be proved below in Sec. 4 that the operator
second variation of action for instantons with the rotation
l through he difficult axis has a negative eigenvalue. Th
we must consider only two instantons with rotation in t
plane passing through the intermediate axis. Hence we s
assume that formula~10! has the minus sign on the righ
hand side.

The real component of Euclidean action for these inst
tons has the form of the sum of two terms
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ReAEu52
\Stot

gHe
V1\Sex ln

Avz
22V21Avy

22V2

Avz
22vy

2
.

~11!

The first term is proportional to the number of spins a
coincides with the corresponding expression for a pure AF
The second term emerges from the gyroscopic term in
Lagrangian. It is proportional to the excess spin and can
associated with ferromagnetic properties of the system.
logarithm appearing in this term is just the imaginary co
ponent of the angle of rotationa from ~8!.

Naturally, the familiar results can be obtained from t
general formula~11! as limiting cases. For example, forS2

→0, Sex5S, vn5gHe , V!vy ,vz we obtain the well-
known expression for ferromagnets:7

ReAEu5\S ln
vz1vy

vz2vy
, ~12!

or

exp~2ReAEu/\!5Uvz1vy

vz2vy
US

,

for vy5vz , tunneling is naturally impossible. The limitin
case of a strong easy-plane anisotropy considered by
olero and Loss13 for uncompensated AFM can be obtain
from ~11! in the limit vn ,vy!vz . In this case, we have

ReAEu52
\Stot

gHe
vyS 11

1

2

vn
2

vz
2D , ~13!

which is a typical result for a system with one degree
freedom, in which the effective mass contains a contribut
from the terms of ferromagnetic and antiferromagne
origin.13

Peculiarities of an uncompensated AFM as a sys
with two degrees of freedom is manifested most clearly
magnets with nearly easy-axis or rhombic anisotropy, wh
vy;vz . We introduceDv5vz2vy as a characteristic o
anisotropy in the basal plane. It will be shown that in th
case the tunneling characteristics are determined by rela
between the parametersvn , Dv, andv̄5(vy1vz)/2. In the
general case, formula~11! is quite cumbersome, and we sha
consider it for the most typical caseDv!Dv,vn , when

ReAEu5
\Stot

gHe
FA4v̄21vn

22vn

1vn ln
vnA4v̄21vn

22vn
2

v̄Dv
G . ~14!

It can easily be seen that the ferromagnetic behavior~diver-
gence of ReAEu for vy→vz) can be manifested for quit
small values ofvn also if onlyvn@Dv. Forvn!v̄, expres-
sion ~14! is simplified and assumes the form

ReAEu5
\Stot

gHe
S 2v̄1vn ln

vn

Dv D . ~15!

This expression is nonanalytic in the parametervn /Dv,
which can be significant for an analysis of high-spin m
ecules of the Mn12Ac type. It will be proved in the next
.
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section that even more significant peculiarities appear in
analysis of the pre-exponential factor in the amplitude
tunneling.

3. CALCULATION OF TUNNELING PROBABILITY

It was proved in the previous section that there exist t
pairs of solutions of the equations of motion~5!, but only
one of them corresponds to the minimum of the real com
nent of Euclidean action. Following the method of steep
descent, we must use only this pair for calculating the a
plitude of the tunneling transition. In the approximation
low instanton density and in the main approximation in t
parameter exp(2ReAEu/\), we can write the following ex-
pression for the physically observable quantity, viz., t
splitting of the ground state:28

D052ucospStotuD exp~2AEu/\!. ~16!

The factorucospStotu emerges due to interference of a pair
instantons for which the values of action are comp
conjugate.2,3 It describes the suppression of tunneling for
half-integral spin and does not affectD0 for an integralStot .
The quantity exp(2ReAEu/\) is the transparency of a bar
rier in the semiclassical approximation. The factorD is a
pre-exponential factor associated with small fluctuatio
about the instanton solution:

D5E D@q#D@m#expS 2
1

2

d2AEu

\ D , ~17!

where

d2AEu5
\Stot

gHe
VE dx~q,m!A~2!S q

m D ~18!

and

A~2!5S 2]x
2111«22 cosh22 x 2 in~]x1tanhx!

in~]x2tanhx! 2]x
21122 cosh22 x

D .

~19!

In formula ~18!, we have introduced the dimensionless va
ablex5Vt. Hereq5u2u0 andm5(w2w0)sinu0 are the
transverse and longitudinal deviations from the instanton
jectory u0(t),w0(t). It is more convenient to introduce th
variablem than to usew2w0 since it allows us to write the
measure for functional integration in the form which do
not contain sinu(D@q#D@m#) and to obtain the Schro¨dinger
operators inA(2); d2AEu is the second variation of actio
calculated for the instanton solution. The action can be c
culated in the easiest form by linearizing the equations
motion ~5!. The nondiagonal structure ofA(2) corresponds to
two interacting field degrees of freedom, which complica
the calculation ofD considerably as compared to the sta
dard case.

The operatorA(2) contains two dimensionless param
etersn5vn /V and«5@(vz

21vy
2)/V2#22. For«, we obtain

the following expression:

«52
6@~vz

21vy
21vn

2!224vz
2vy

2#1/22vn
2

vz
21vy

21vn
27@~vz

21vy
22vn

2!224vz
2vy

2#1/2.

~20!
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The plus and minus signs correspond to instantons with
tation of l through the intermediate and difficult axes resp
tively. In the former case,«>0, while in the latter case«
<0; the equality«50 is possible only forvn50 andvy

5vz . It should be noted that for a pure AFM,«5vy
2/vz

2

21, i.e., is determined only by anisotropy in the basal pla
and«→0 for vy→vz ~easy-axis limit!. The presence of dec
ompensation transforms the limiting value of« for vy→vz

into

«05
vn

2

vy
2 1

vn

vy
A41vn

2/vy
2, ~21!

i.e., this parameter remains finite forvy→vz . In the easy-
axis ~or rhombic! case under investigation (vy;vz) with a
weak decompensation (vn!vy ,vz), the quantities n
.vn /vy and« are small parameters.

In order to calculateD, we must carry out functiona
integration with respect toD@q# and D@m#. This can
be done by transformingA(2) to the diagonal form
A25(nlnhn

2 through a unitary transformation, i.e., findin
in fact the eigenvaluesln of the operator~19!. Further, we
can writeD@q#D@m#5Pndhn and carry out Gaussian inte
gration with respect tohn . This gives D5(Pn8ln)21/2,
whereP8 indicates that the product is formed over all eige
values except zero values. It is well known that the z
mode l50 leads to the emergence of the fact
V(ReAEu/2p\)1/2 in D. It should be noted that it is propor
tional to the square root of the number of spins, whilePn8
does not contain such an extensive quantity. The spectru
A(2) can contain discrete modes with eigenvaluesl1 . These
modes are responsible for the factorsl1

21/2 in D.
Let us now determine the eigenvalues. It can easily

verified that~19! has a zero eigenvalue corresponding to
eigenvectorm5cosh21 x, q50. It can easily be seen tha
another zero mode does not exist except the nonphysical
n50, «50 ~pure AFM with an isotropic easy plane!. How-
ever, for vn50, there exists another discrete energy le
with l15«, i.e., the problem has one more small eigenval
For vnÞ0 andn!1, an exact solution does not exist, a
hence we shall findl1 with the help of the theory of pertur
bation in the small parametern. Choosing the zeroth ap
proximation in the formm (0)50, q (0)5cosh21 x, l1

(0)5«,
we can easily writel15«1n2 in the main approximation in
l andn.

The continuous spectrum has two branches each
which is degenerate in the sign ofk with the dispersion re-
lation

l~k!511k21
«

2
6A~«/2!22n2~11k2!. ~22!

For k2.(«/2n)221, these branches are complex conjug
to l. The complex nature ofl does not give an imaginar
contribution toD since complex conjugate tol can be com-
bined into real-valued pairsPk8@l(k)l* (k)#21/2 while
evaluatingD.

Details of calculations of the contribution from the co
tinuous spectrum to the pre-exponential factorD can be
o-
-

,

-
o

of

e
e

se

l
.

of

e

found in the review by Vainshteinet al.28 We shall give only
the final form of the dispersion relation of type~22!:

Dcont5expH 1

4p E
2`

1`

dk
dd~k!

dk
ln@l~k!l* ~k!#J . ~23!

Here d(k) is the phase shift of eigenfunctionshkn
of the

operatorA(2), which can be determined from the asympto
expressionshk}exp(ikx6id(k)/2) for x→6`. Its derivative
dd(k)/dk gives the change in the density of states of t
continuous spectrum as compared to the homogeneous
sity of states. We shall use the value ofd(k) obtained in the
main approximation inn2, namely,d(k)52 arctank, which
gives

Dcont54~11A11«1n2!2. ~24!

For the easy-axis case under investigation,«;n
;vn /vy , and we can neglectn2 as compared to« in the
pre-exponential factor. However, we must retain in ReAEu

the term containingvn /vy due to the large value of the
logarithm in it. Finally, the splitting of the energy level in th
ground state can be presented in the form

D058vy

~11A11«!2

A«
S ReAEu

2p\ D 1/2

ucospStotue2ReAEu. ~25!

Thus, the above-mentioned peculiarity of the proble
namely, the fact that we are dealing with a mechanical s
tem with two degrees of freedom, is manifested noticeably
the pre-exponential factor also and leads to the emergenc
the factor«21/2 in the tunneling probability.

CONCLUSION

The above analysis has proved that peculiar propertie
model ~1! as an analog of a mechanical system with tw
degrees of freedom are important for uniaxial or rhom
anisotropy with a weak anisotropy in the basal plane. As
anisotropy parameter« decreases, the exponential factor su
presses tunneling, but the emergence of factor«21/2 in the
tunneling probability increases anisotropy as compared to
standard case. Obviously, tunnel splitting for«→0 tends to
zero, but these factors must be taken into account for sm
but finite values of« andn.

In first publications on macroscopic tunneling, the lim
of strong easy-plane anisotropy for aniferromagnets w
weak decompensation was considered as a typical exam
of systems in which tunneling effects are observed for p
ticles containing as many as possible spins. This condi
corresponds, for example, to ferritin which is a classical o
ject in the physics of macroscopic tunneling. However,
main attention in recent years is paid to new objects, v
high-spin complexes containing tens~and not thousands as i
the case of ferritin! of spins and characterized by a wid
spectrum of the values of parameters~in fact, any preset
spectrum!. In such objects, tunneling can be realized und
nonoptimal conditions also, e.g., in the presence of unia
anisotropy. In this case the conventional approach reduc
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the problem~in a certain approximation! to a system with
one degree of freedom is inapplicable, and theory of the t
of that developed by us here should be used.

The authors are grateful to V. G. Bar’yakhtar and A.
Kolezhuk for fruitful discussions.
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Dynamics of domain walls and solitons in easy-plane magnets with weak
exchange interaction
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Internal spin dynamics of collinear domain walls and collinear soliton-like localized states in
easy plane magnets is investigated. The dependence of internal mode frequencies of
these excitations on the exchange interaction is determined using the essentially discrete
Takeno–Homma model for low values of this interaction. ©1999 American Institute of Physics.
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INTRODUCTION

Theoretical investigations of nonlinear excitations
magnets are confined, as a rule, to the simplest case of m
nets with an isotropic exchange interaction exceeding c
siderably the single-ion magnetic anisotropy.1,2 In the 1D
case, this sometimes leads to completely integrable mo
for which all soliton and many-soliton solutions are we
known. However, the exchange interaction in the direct
perpendicular to the layers in layered compounds syn
sized recently3–6 can be anomalously weak~of the order of
or even much smaller than the magnetic anisotropy ene!
in view of a large separation between magnetic layers in
calated by organic layers. Moreover, this exchange inte
tion in compounds like ~CH2!n~NH3!2MnCl4,
(CnH2u11NH3)2MnCl4

3,4 and ~NH3!2~CH2!nCuCl4
5,6 can be

varied purposefully by changing the numbern of organic
groups in intercalants. The remaining characteristics of co
pounds~strong interaction within a layer and one-ion anis
ropy! remain unchanged. This makes it possible to study
changes in the structure and dynamics of magnets as a f
tion of the parameters of the substance and not of param
of excitations. Even the first experimental results of inve
gations of quasi-two-dimensional magnets proved that
resonance properties of such compounds change signific
in the range of anomalously weak exchange interaction,
example, additional absorption peaks appear in the gap o
spectrum of linear waves.4,7 To explain this phenomenon
Goncharuk et al.8 investigated theoretically the interna
modes in collinear domain walls~DW! and specific localized
collinear spin configurations. The collinear structure of D
in a ferromagnet with a strong single-ion anisotropy w
considered for the first time by Van den Broek and Zijlstr9

in the classical approximation and by Ostrovskii a
Loktev10,11 in the quantum approximation. Ostrovskii an
Loktev10,11 were the first to pay attention to the importan
of inclusion of single-ion anisotropy in the dynamics of l
calized excitations in magnets~see also Ref. 12!. Later, this
9721063-777X/99/25(12)/7/$15.00
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problem as well as the transformation of collinear phases
DW and localized spin configurations into canted pha
were discussed by us earlier in detail from the position
‘‘soliton science.’’13,14 Theoretical analysis of the DW an
soliton dynamics in compounds with a weak exchan
interaction8–10 was carried out for magnets with easy-ax
single-ion anisotropy. The obtained results can be applie
easy-axis layers antiferromagnets.3,4

On the other hand, copper-based layered compou
studied experimentally5,6 possess one-ion anisotropy of th
easy-plane type with a weak additional anisotropy in the e
plane, and the theoretical results8,13,14 cannot be applied to
these compounds directly. In contrast to easy-plane one
anisotropy for which ferro- and antiferromagnets are d
scribed by essentially different dynamic equations, ferro- a
antiferromagnets in the easy-plane case are described in
main approximation by identical second-order equations
time with a single angular variable.1,2

Stepanovet al.5,6 studied resonance properties of met
organic compounds~NH3!2~CH2!nCuCl4 with the index
n52,3,4, which are easy-plane antiferromagnets with
easy-plane one-ion anisotropybz;2 kOe and a weak anisot
ropy bx;0.14 kOe in the easy plane. These parameters
independent of the numbern. However, the energy of ex
change interaction between planes depends on this param
strongly: J;500, 40, and 4 kOe forn52,3, and 4 respec
tively. ~The energy of exchange interaction in magne
planes has the value;1000 kOe and is independent of the
separation, viz., the numbern!. As the numbern increases
by unity, the exchange interaction between the layers
creases by an order of magnitude, and the system beco
more and more discrete in the direction perpendicular to
layers. It is convenient to characterize this discreteness
the parameterl05J/bz;250,20, and 2 forn52,3, and 4
respectively. We shall use below the simplified Taken
Homma model valid forJ!bz. This model becomes essen
tially discrete only forJ;bx. For this reason, another dis
cretness parameterl5J/bx associated with weak anisotrop
© 1999 American Institute of Physics
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in the easy plane is more important. For experimentally st
ied compounds, this parameter is equal to 3600, 280, an
for n52,3, and 4 respectively. In order to satisfy the inequ
ity l&1, experiments with compounds characterized by
indexn55(l.3) andn56(l.0.3) are required. Thus, th
results obtained below are of predictive nature. We sh
study internal modes of DW and soliton-like configuration~
360° DW! in a magnet with an easy-plane single-ion anis
ropy and a weak exchange interaction in the Taken
Homma model.

MODEL

We proceed from the one-dimensional Heisenb
Hamiltonian with an isotropic~in magnetic respect! ex-
change interaction and biaxial single-ion anisotropy~below,
n labels magnetic layers, and all static and dynamic states
regarded as homogeneous in the planes of these layers!:

H52(
n

JSnSn111
1

2 (
n

@bz~Sn
z!22bx~Sn

x!2#, ~1!

whereSn is the spin at a lattice site, andbz,bx.0, which
corresponds to the easy-plane anisotropy along thez-axis
and additional easy-axis anisotropy along thex-axis in the
xy plane. In a magnet with an ‘‘easy plane’’ in the groun
state, spins are oriented in thexy plane ~although such a
relation between the sign ofb and the type of the ground
state can change when anisotropy of the exchange intera
is taken into consideration!.

In order to describe magnetization dynamics in the cl
sical model for a biaxial magnet with a strong easy-pla
anisotropy and a weak anisotropy in the easy plane, we s
use the Landau–Lifshitz equations for a nondissipat
medium,1,2 which have the following form for Hamiltonian
~1!:

\
d

dt
Sn5@Sn3 Ĵ~Sn111Sn21!#2bz@Sn3ez#~Snez!

1bx@Sn3ez#~Snez!, ~2!

where Ĵ is the diagonal matrix of the formJ5diag(J,J,J),
andez andex are unit vectors along the corresponding ax
This equation must be supplemented by the condition of c
servation of the classical spin magnitude~length of magne-
tization vector!. Consequently, the vector equation~2! can be
reduced to two scalar first-order equations or a single eq
tion in the case of a complex field. Introducing the comp
variableCn5Sn

x1 iSn
y ~Cn andCn* are classical analogs o

the creation and annihilation operators for magnons!, we can
write the Landau–Lifshitz equations~2! in the form

i\
d

dt
Cn5JCn~Sn11

z 1Sn21
z !2JSn

z~Cn111Cn21!

2bzCnSn
z2

bx

2
Sn

z~Cn1Cn* !, ~3!

where the third spin component isSn
z5AS0

22uCnu2.
-
30
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The dynamics of a magnet has a more visual form
terms of the angular variablesun ,wn in a polar system of
coordinates associated with the prefered axisz, in which

S5S0~sinun coswn ,sinun sinwn ,cosun!:\
d

dt
un

52S0J@sinun11 sin~wn112wn!1sinun21 sin~wn21

2wn!#1bxS0 sinun sinwn coswn , ~4!

\ sinun

d

dt
wn5S0J cosun@sinun11 cos~wn112wn!

1sinun21 cos~wn212wn!#

2S0Jz sinun~cosun111cosun21!

1S0bz cosun sinun

1S0bx cosun sinun cos2 un . ~5!

For magnets with an anomalously weak exchange in
action (J!bz) and a strong one-ion easy-plane anisotro
(bz@bx), almost all spins lie in the easy plane:xn5p/2
2un!1, and it follows from~5! thatx'\(S0bz)dwn /dt. In
this case, Eq.~4! can be reduced to a scalar equation desc
ing the Takeno–Homma model:15,16

@HM #2

S0
2bz

d2

dt2
wn1J@sin~wn2wn21!1sin~wn2wn11!#

1bx sinwn coswn50. ~6!

In the case of antiferromagnets, the equation for
quantitiescn will obviously coincide with Eq.~6! upon the
simultaneous substitutionJ→2J and wn5(p/2)(12
(21)n)1cn , and all the results of the Takeno–Homm
model for ferromagnets can be extended without any cha
to antiferromagnets.

In the long-wave limit, when the inequalitiesbx!J
!bz ~and naturallybx!bz!J! are satisfied simultaneously
the Takeno–Homma model is reduced to the well-kno
sine-Gordon equation~SGE!:17

1

v0
2

]2w

]t2 2 l 2
]2w

]x2 1sinw cosw50, ~7!

where the homogeneous resonance frequency isv0

5S0Abz/bx/\, and the so-called magnetic length isl
5AJ/bx. Henceforth, time will be measured in the units
1/v0 , and we shall use the discreteness parameterl5 l 2 in-
stead of magnetic lengthl . The solutionsw0 and ws of the
SGE for domain walls and solitons respectively are w
known:17

w052 arctan~exp~x/ l !!, ~8!

ws52 arctanF A12v2 sinvt

v cosh~A12v2x/ l !
G . ~9!

In this approximation, the DW~8! does not possess intrinsi
dynamics~internal modes are absent!. Soliton ~9! is a dy-
namic object, and its localization is accompanied by inter
oscillations with frequencyv which can vary in the interva
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0,v,1 for a fixed value of the discreteness parame
~magnetic lengthl !. Different values of frequency corre
spond to different values of soliton energyE54S0

3AJ/bxA12v2 and different number N54S0

3AJ/bz arccosv of elementary excitations coupled in it~see
Ref. 13!.

COLLINEAR STRUCTURE OF DOMAIN WALL AND ITS
INTERNAL MODE

Returning to the discrete description of an easy-pla
ferromagnet with a weak intraplanar anisotropy in t
Takeno–Homma model, we write Eqs.~6! in the dimension-
less form, measuring time in the units of 1/v0 and using the
parameterl5J/bx to characterize the extent of discretene
of the system:

d2wn

dt2
1l@sin~wn2wn11!1sin~wn2wn21!#

1sinwn coswn50. ~10!

This equation was studied in detail both analytically a
numerically.15,16,18 However, the authors of these public
tions chose larger values of the parameterl for numerical
calculations and failed to observe qualitative changes in
structure and dynamics of localized nonlinear excitations
curring forl.1 and upon a transition of localized excitatio
to a collinear structure.

First of all, we consider a stationary domain wall and t
possibility of the existence of internal mode for such a wa
It was pointed out by us earlier13 that this mode is absent i
an easy-axis ferromagnet in the long-wave limit, but it a
pears when the discreteness of exchange interaction is t
into account.

In the framework of long-wave SGE, an internal mo
of the DW type~8! is not observed either, but it is prese
when the discreteness of interactions between particle
taken into account in the linear approximation,19 i.e., when
exchange terms in Eq.~10! are linearized. In this case, th
detachment of the internal mode from the frequen
V5v/v051 of homogeneous ferromagnetic resonance
quite small and attains its maximum value of only;0.05 for
l;1, then decreasing to zero again forl→0 ~curve2 in Fig.
1!. However, the inclusion of nonlinearity of exchange inte
action in the discrete case leads to a considerable chan
the results. It was shown numerically by Fei Zhang18 that the

FIG. 1. Schematic dependence of internal mode frequency on discrete
parameterl for a collinear domain wall~kink! in an easy-plane ferromagne
in the Takeno-Homma model~curve 1!. Curve 3 was obtained by Fei
Zhang18 in the Takeno–Homma model for a noncollinear kink with lar
values ofl. Curve 2 was obtained by Braunet al.19 for the discrete SG
model.
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frequency of DW internal mode decreases significantly e
for l54 and attains the valueV>0.8 ~see curve3 in Fig. 1!.
Unfortunately, Fei Zhang18 did not continue numerical cal
culations to the critical valuel050.75 at which the DW
goes over to a collinear form.

We take into account the fact that the Heisenberg
change interaction in the discrete case which is essent
nonlinear and periodic in the angle between the nea
spins.

For small values of exchange interaction (l,0.75), the
domain wall is in the collinear state, and the ground state
the spin configuration with the domain wall ...↑↑↑↓↓↓...
corresponds to the following values of angles:

wn50, n<0,

wn5p, n.0, ~11!

We linearize the system of equations~10! in the vicinity
of the ground state~11! by introducing the small correction
cn!1:

wn5cn , n<0,

wn5p1cn , n.0, ~12!

The system of linear equations for the quantitiescn assumes
the form

d2cn

dt2
1l@2cn2cn112cn21#1cn50, n<21,

d2

dt2
1l@c12c21#1c050, ~13!

d2c1

dt2
1l@c02c2#1c150,

d2cn

dt2
1l@2cn2cn112cn21#1cn50, n>2.

We seek the solution for small corrections in the formcn

5vn exp(iVt) and obtain the following system of algebra
equations for the amplitudesvn :

~2l112V2!vn2l~vn111vn21!50, n<21,

~12V2!v01l~v12v21!50, ~14!

~12V2!v12l~v02v2!50,

~2l112V2!vn2l~vn111vn21!50, n>2.

The solutions of this system, which decrease at infinity a
describe possible internal modes, can be sought in the f

vn5A exp~2kn!,n.0,

vn5B exp~kn!, n<0. ~15!

From Equations.~15! for n<21 andn>2, we can find the
relation between the parametersk,V, andl:

@12V2#1l@222 cosh~k!#50. ~16!

Equations~14! for n50,1 lead to an additional relation
betweenk,V, andl:

12V22l@exp~2k!61#50 ~17!
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as well as the relation between the amplitudesA andB:

A5B@12~12V2!~1/l!exp~k!#. ~18!

The minus sign in expression~17! corresponds to a sym
metric solution withV51,k50, andA5B, i.e., a homoge-
neous noncollinear oscillation with the frequency cor
sponding to the edge of the spectrum of linear spin wave
a spin chain without a DW. Thus, a homogeneous oscilla
of the spin system in the Takeno-Homma model does
‘‘feel’’ the presence of a DW in it. A symmetric solution
usually corresponds to the oscillation of the center of
DW in the Peierls relief, but no such excitations are obser
in a collinear DW.

The plus sign in expression~17! corresponds to an anti
symmetric solution for the internal mode of the DW with th
following dependence of the frequency of this mode on
discreteness parameter and the following form of a decre
of the internal mode field:

V25124l/3, k5 ln 3. ~19!

The distribution of amplitudes of spin oscillations near t
center of the DW in the internal mode has the form

...,
v0

27
,
v0

9
,
v0

3
,v0 ,2v0 ,2

v0

3
,2

v0

9
,2

v0

27
,... . ~20!

Thus, the domain wall has an antisymmetric intern
mode corresponding to a periodic variation of the DW wid
with time. The dependenceV(l) is shown in Fig. 1~curve
1!. The internal mode emerges as a result of bifurcation
the critical valuel050.75 of exchange interaction and exis
for l,l0 . This critical value of the discreteness parame
coincides with the value of critical parameter obtained
Goncharuket al.8 for an easy-axis ferromagnet. Howeve
the internal mode for an easy-plane ferromagnet is spat
antisymmetric, while in the easy-axis case such a symm
was absent in view of different time dependences of the c
responding dynamic equations.

For l.l0 , the domain wall goes over from the colline
to a canted structure withwÞ0,p and with its own depen-
dence of internal mode on the exchange interaction cons
~discreteness parameter!, which is transformed in the long
wave limit into the dependence obtained Fei Zhang18 ~curve
3 in Fig. 1!. This question requires an additional analysis
was proved by us earlier13,14 that the dynamics of localized
excitations in essentially discrete nonlinear systems is c
qualitatively to that of corresponding finite-dimensional d
namic models describing spin chains of finite length in
DW or soliton configuration.

Let us consider a chain of four spins in the DW config
ration ↑↑↓↓, for which c15c25c05c2150 in the collin-
ear phase in the static configuration, and boundary spins
free, i.e., equation for a boundary spin has the form

d2c

dt2
1l sin~c22c1!1sinc2 cosc250. ~21!

The collinear structure of the spin complex under inv
tigation exists only for the valuesl,l051/& of discrete-
ness parameter. It should be noted that the critical valu
the parameterl in the four-spin complex is quite close t
-
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that for an infinite spin chain (l050.75). The eigenfre-
quency spectrum for a finite-length chain contains fo
modes. In the collinear phase, the system of dynamic eq
tions linearized incn has solutions of the formcn;sinVt
with the following dependences of frequencies on the d
creteness parameter for the above-mentioned four mo
(a,b,c,d):

~a!:c2152c052c15c2 , V25112l,

~b!:2~&21!c215c052c15~&21!c2 ,

V2511&l, ~22!

~c!:c215c05c15c2 , V251,

~d!:~&11!c215c052c152~&11!c2 ,

V2512&l.

The obtained dependencesV(l) are presented as curve
a,b,c andd in Fig. 2. The symmetric modec and the anti-
symmetric moded are most interesting. As in the case of a
infinite chain, thec-mode has a homogeneous resonance
quency in a system without a domain wall (V51). The
antisymmetricd-mode is an analog of the internal mode of
collinear kink considered above: the spins adjoining the ‘‘d
main wall’’ oscillate in it with a considerably larger ampl
tude than for spins at the periphery~c2 /c1'0.4, while in an
infinite chain we havec2 /c1'0.33!.

It is interesting to compare the spectrum of intern
modes~22! of a spin complex with a DW with the spectrum
of internal modes of such a complex in the ground state w
parallel spins↑↑↑↑. It can easily be proved that the symme
ric modesa andc have identical forms and can be describ
by formulas~22! for cases~a! and ~c!. The antisymmetric
modesb andd change significantly in the ground state of th
four-spin complex:

~ b̃!:2~&11!c215c052c15~&11!c2 ,

FIG. 2. Eigenfrequency spectrum for a finite-length chain in the Taken
Homma model~4 spins!: a andc are symmetric andb andd are antisym-
metric modes of the collinear structure;a8 andc8 are symmetric andb8 and
d8 are antisymmetric modes of a canted phase of the domain wall.
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V2511l~21& !,

~ d̃!:~&-1!c215c052c152~&21!c2 ,

V2511l~22& !. ~23!

Thus, the first antisymmetric mode of the spectrum
the spin complex in the ground state is transformed into
antisymmetric internal mode of the DW.

The advantage of the analysis of a finite-dimensio
spin chain is that the problem for four spins can be solv
analytically in explicit form for a canted DW withl.l0

also. In the static case, we can easily find the following
pendence of internal structure of a canted DW on the
creteness parameter from Eqs.~13! and ~21!:

2c215c2

5
1

2
arcsinH 2lF ~122l2!~124l12l2!

~122l!~122l24l2! G1/2J ,

~24!

2c05c15c21arcsinS 1

2l
sin 2c2D . ~25!

Expression~24! shows that the solution for the canted pha
exists only in the rangel0,l,l1511& of the order pa-
rameter. However, the model system under investigation
rectly describes the initial infinite spin chain only for sma
deviations of discreteness parameter from its critical va
l0 .

Linearizing the dynamic equations~10! and~21! in small
spin deviations from the static configuration~24! and ~25!,
we can easily find the transformation of frequency dep
dences of all modes of a finite-dimensional system in
region of a canted DW:

Va,c
2 5

1

2
@2l cos~c22c1!1cos 2c11cos 2c2

6A4l2 cos2~c22c1!1~cos 2c12cos 2c2!2#,

~26!

Vb,d
2 5

1

2
@2l cos~c22c1!1cos 2c22~2l21!cos 2c1

6A4l2 cos2~c22c1!1~cos 2c21~2l21!cos 2c1!2#,

~27!

wherec1(l) and c2(l) are defined by~24! and ~25!. The
plots of the corresponding dependences are shown in F
~curvesa8,b8,c8 and d8! for values ofl in the vicinity of
l0 .

It can be seen from Fig. 2 that the antisymmetric mo
d8 exists in the canted phase also, where its frequency
creases according to the root lawV2}2&(l2l0) as for an
easy-axis ferromagnet.13 We can propose that a similar mod
also exists in an infinite spin chain. Its frequency depende
must begin at the pointV50,l5l0 ~0.75! in Fig. 1 and
attains dependence3 obtained by Fei Zhang18 in the long-
wave limit for large values ofl. Besides, it can be seen from
Fig. 2 that the nontrivial localized symmetric modec8 ap-
f
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pears in the canted phase of the DW. In the vicinity of t
critical point l5l0 , its frequency decreases linearly fro
the valueV51: V'12(423&)(l2l0). In an infinite
chain, the frequency of this mode describing the oscillatio
of the center of the DW in the limitl@l0 tends to zero, and
the dependenceV(l) for this oscillatory mode must coin
cide with that obtained by Bogdanet al.20

SOLITON-LIKE COLLINEAR SPIN STRUCTURE

Let us consider a more complicated spin configuration
the type ...↑↑↑↓↑↑↑... with one inverted spin. In the long
wave description, such a state could exist only in the
namic case and corresponded to a magnetic soliton. W
discrete exchange interaction is taken into account, the s
state of this type corresponding to a 360° collinear dom
wall ~referred to as ‘‘soliton’’ for brevity! can also exist.

For small values of exchange interaction, the grou
state of the system corresponds to the following distribut
of spin orientation angles in the easy plane:

wn50, n<21,

w05p, ~28!

wn52p, n>1.

We introduce small correctionscn!1 to the ground state
and obtain from~10! the following system of linear algebrai
equations for solutions of the formcn5vn exp(iVt):

~2l112V2!vn2l~vn111vn21!50, unu>2,

~12V2!v11l~v02v2!50, ~29!

~22l112V2!v01l~v11v21!50,

~12V2!v211l~v02v22!50.

As in the previous case, it is natural to seek localized so
tions for internal modes of the spin configuration under
vestigation in the form

vn5A exp~2kn!,n>1,

v05C, ~30!

vn5B exp~kn!, n<21.

From equations~29! for n<22 andn>2, we obtain relation
~16! between the parametersk,V,l, while the equations for
v21 ,v0 , and v1 leads to the relation betweenA,B, and C
and the additional relation betweenk,V,l:

C

A
5

C

B
5exp~2k!Fexp~2k!2

12V2

l G ; ~31!

Fexp~2k!2
12V2

l G
3H Fexp~2k!2

12V2

l G S 22
12V2

l D22J 50. ~32!

In expression~32!, one solution for which 12V25l exp
(2k) splits immediately. This solution corresponds to an a
tisymmetric mode withA5B, C50, whose amplitude at-
tenuates with increasing distance from the center of a ‘‘s
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tion’’ with the spatial damping decrementk5 ln 2. The
dependence of the frequency of this mode on the magni
of exchange interaction~discreteness parameterl! has the
form

V2512l/2, ~33!

and the mode emerges as a result of bifurcation and exist
l<2 ~curve1 in Fig. 3!. The distribution of spin oscillation
amplitudes in this mode has the form ...↑0↓..., where dots
denote spins oscillating with small amplitudes, and the sy
bol 0 corresponds to a stationary central inverted spin.

Using relation~16!, eliminating the parameterk from
~32!, and introducing the quantityZ512V2, we can easily
write the expression in the braces in~32! in the form

Z~2Z227lZ14l2!50. ~34!

Thus, three additional solutions of the system under
vestigation also exist. The first solutionZ50 corresponds to
the edge of the spectrum of spin waves withV51, k50,
A5B5C. As in the case of a 180° domain wall, a solito
(360° domain wall! in this model does not interact with ho
mogeneous oscillations of the edge of the continuous s
trum. The second solution with the dependenceV251
2l(72A17)/4 does not satisfy our assumption on the loc
ization of the oscillation. In this solution,k5 ln@(5
2A17)/2#,0, and its amplitude increases with the distan
from the soliton center. Finally, a solution for localized sym
metric oscillations with the following dependence of the fr
quency of this internal mode on the discreteness parame

V2512l~71A17!/4, ~35!

and the following relation between the amplitudes of s
oscillations in the localized state

A5B,C52A
A1723

2
. ~36!

also exists.
The amplitudes of oscillations in this solution exhib

rapid spatial attenuation with increasing distance from
soliton center (k5 ln@(52A17)/2#), and three central spin
oscillate in actual practice. The dependence~35! shown in
Fig. 3 by curve2 terminates for the valuel5(72A17)/8
'0.13. Curve3 in this figure shows the dependenceV(l)

FIG. 3. Frequency dependence of internal modes of a localized colli
structure with an inverted spin in a layer of an easy-plane ferromag
curve1 is the antisymmetric mode and curve2 is the symmetric mode. The
dependenceV(l) for the internal mode of a collinear DW~curve 3! is
shown for comparison.
de
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-
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for a collinear 180° domain wall in Fig. 1. For a fixed valu
of exchange interaction in the range of small parameterl,
the frequency of the symmetric internal mode lies below
frequency of the antisymmetric mode. Since the solution
a 360° domain wall can be interpreted as the state of
adjacent 180° domain walls, symmetric and antisymme
internal modes having a configuration with an inverted s
emerge as a result of detachment of the internal mode
quency of a 180° domain wall in the system of two su
walls.

The interpretation of nonlinear dynamic states in t
case of an easy-plane ferromagnet is more complicated
in the case of an easy-axis ferromagnet considered earli14

and it remains unclear how the dependence for a soliton
lution in the case of a strong exchange interact
‘‘matches’’ to the frequency dependence for internal mod
of soliton-like states for small values ofl in the region of
transient values of exchange integral.

Nevertheless, we can give a number of arguments sh
ing that the internal modes emerging for small values
exchange interaction in this case differ qualitatively in orig
from soliton solutions for large values of exchange. It
known from the theory of dynamic solitons17 that soliton
solutions for finite-dimensional systems ‘‘split’’ from spa
tially homogeneous excitations of the system and have
same symmetry, i.e., the phases of oscillations of partic
~or spins as in our case! in a soliton are the same along th
entire chain.

Let us consider the phases of spin oscillations in
internal modes studied above. We shall comment the si
tion with a 360° domain wall for a simple finite-dimension
system consisting of three spins with numbersn521,0,1 for
which deviations from the ground state are permitted. T
spectrum of intrinsic linear excitations of the formwn

5vn exp(iVt) for the ground state of this system with para
lel spins consists of three modes withV251(n05n1

5n21), V2511l(n050,n152n21) and V25113l(n0

522n1522n21).
On the other hand, in a configuration of the type of t

360° domain wall considered above, i.e., for the ground s
w05p,w15w2150, the spectrum of small oscillations rela
tive to this state is formed by the following internal mode
V251(n05n15n21), V2512l(n050,n152n21) and
V25123l(n0522n1522n21). The last two modes are
equivalent to the antisymmetric and symmetric modes of
infinite spin chain with an inverted spin considered above

These two ‘‘internal’’ modes coincide in symmetry wit
the modes from the spectrum of linear excitations of
ground state. In the case of an inhomogeneous ground s
these modes are transformed from two lower-lying mod
following the homogeneous mode and having different sy
metries. Since the soliton mode must split from the homo
neous mode and possess a different symmetry, this is a
type of localized excitations emerging for small values
exchange interaction. It should be noted that in the case o
easy-plane ferromagnet, a soliton excitation in the long-w
limit corresponds to the oscillation of the central spin abo
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the positionw050, while oscillations of the central spin i
the obtained internal modes occur about the value ofw0

5p.
Thus, we have analyzed the dynamics of localized n

linear excitations of the type of collinear 180° and 36
domain walls for ferro- and antiferromagnets with a stro
easy-plane single-ion anisotropy and a weak additional
isotropy in this plane on the basis of the classical Taken
Homma discrete model. Internal modes of these states
determined as well as their frequency dependence on
magnitude of exchange interaction~discreteness parameter!.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Phenomenological model for Casimir attraction of a metal film
V. N. Dubrava and V. A. Yampol’ski 

Institute for Radiophysics and Electronics, National Academy of Sciences of the Ukraine, 310085 Kharkov,
Ukraine* !

~Submitted May 26, 1999; revised July 9, 1999!
Fiz. Nizk. Temp.25, 1304–1312~December 1999!

The force of surface interaction~Casimir effect! between a bulk conductor and a metal film
deposited on a dielectric substrate is studied by the method of quantum field theory. The film
thickness is assumed to be much smaller than the skin depth at characteristic frequencies
of fluctuation fields. The equations for one-particle Green’s function of the electromagnetic field
in the metal film are solved on the basis of a simple phenomenological model. Namely,
complex macroscopic electrodynamic properties of the film are described by introducing the
surface permittivity determined by the conductivity^s& averaged over sample thickness. The
dependence of the Casimir attractive force on the specularity parameterr characterizing the
interaction of conduction electrons with the film surface is predicted. The results of investigations
demonstrate that the electronic and surface properties of metal films can in principle be
studied experimentally by measuring the force of their Casimir attraction. ©1999 American
Institute of Physics.@S1063-777X~99!00912-3#
ro
c

s

a

ls
is

D
he
m

th

at

a-

at

in-
ive

ua-

of
th
-

tic
r
f
ma

he
tu-
1. INTRODUCTION

According to the definition given by its author,1 the Ca-
simir effect is an ‘‘observable nonclassical force of elect
magnetic attraction between two parallel perfectly condu
ing plates.’’ This force per unit area is defined as

F052
]E
]a

52
p2

240

\c

a4 . ~1!

HereE is the energy of interaction,\ Planck’s constant,c the
velocity of light, anda the separation between the plate
Casimir interpreted the emergence of the forceF0 as the
result of a peculiar liberation of energyE of electromagnetic
vacuum during its partial filling with a material medium.

The Casimir force also emerges in a more general c
of interaction between plane-parallel dielectric media2 and
can be interpreted in the sense of the Van der Waals~mo-
lecular! attraction. This specific type of the Van der Waa
interaction is of fluctuational electromagnetic origin and
associated with spontaneous polarization of dielectrics.
pending on temperature, either quantum-mechanical or t
mal mechanisms of polarization dominate in the mediu
The criterion is the ratio of the characteristic frequencyvc of
‘‘radiation’’ to the parameterkT/\. For

kT!\vc ~2!

the interaction between two media occurs through
vacuum electromagnetic field. The Casimir result~1! can be
obtained under the low-temperature condition~2! if the per-
mittivity e of bodies tends to infinity.

For real conductors, we have
9791063-777X/99/25(12)/7/$15.00
-
t-

.

se

e-
r-
.

e

e511
is~v!

v
, ~3!

wheres(v) is the conductivity. Simple analysis shows th
for

vc!vp ~4!

~vp is the plasma frequency!, the frequency dispersion in
conductivity is manifested only in corrections to force~1! in
view of the large electrical conductivity of metals. The rel
tive value of these corrections has the scale3

DF/F0;Z!1, ~5!

whereZ51/Ae( ivc) is the surface impedance of the metal
the characteristic frequencyvc;c/a!vp .1! It should be
noted that under the conditions~2! and~4!, the Casimir force
is described by formula~1! in the main approximation irre-
spective of the type of the conductor. For example, it is
sensitive to the electron spectrum anisotropy. The decis
circumstance in this case is that expression~1! is the conse-
quence of vanishing of the electric component of the fluct
tional field at the boundaries of conductors.

If we consider the interaction between thin films
thicknessd much smaller than the characteristic skin dep
d, inequality ~5! is violated even for a large electrical con
ductivity s. In this case, we go over from the asympto
form ~1! obtained in the limitd@d to a new expression fo
the Casimir force which4 is a function of not only the size o
the film, but also its electronic characteristics, viz., plas
frequencyvp and electron relaxation frequencyn.

It should be emphasized that the sensitivity of t
Casimir force to collective peculiarities of the metal is na
© 1999 American Institute of Physics
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rally not exhausted by the above-mentioned functional
pendence on plasma frequency and electron relaxation
quency, which should be referred to as bulk characteristic
the electron subsystem. Another important peculiarity of a
conducting medium is the type of electron–surface scatte
playing a fundamental role in the electrodynamics of co
ductors for d! l ~l 5vF /(n2 iv) is the effective electron
mean free path andvF the Fermi velocity!.

This research is mainly devoted to an analysis of the r
of surface properties of a metal film in the formation of t
Casimir force. The results of this analysis demonstrate th
is possible in principle to study experimentally the ‘‘roug
ness’’ parameter of the metal film boundary through pre
sion measurements of the force of its Casimir attraction.

In Sec. 2, the technique for calculating the Casimir fo
proposed by Lifshitz and Pitaevskii1 is developed and a sim
plified expression for the free energy of two interacti
plane-parallel macroscopic bodies with arbitrary dielec
permittivities is derived.

In the next sections, the attractive force exerted b
bulk conductor on a thin metal film deposited on a dielec
substrate with a low optical density is investigated. In Sec
the problem is formulated and basic inequalities under wh
the effect of temperature in the Casimir force can be
glected and individual peculiarities of conducting med
should be taken into account. Section 4 is devoted to
solution of electrodynamic equations for Green’s function
the electromagnetic field. The response of vacuum to a
metal film is described by introducing into the field equatio
of the surface permittivity associated with the conductiv
of the metal film averaged over the sample thickness. In S
5, several asymptotics are obtained for the energy of inte
tion of a bulk conductor with a thin metal film for specul
and diffuse boundaries under the frequency conditions of
normal and ‘‘infrared’’ skin effects. Besides, we analyze t
role of dielectric properties of the substrate which also p
ticipate in the Casimir interaction and find the conditio
under which the resultant Casimir force in the main appro
mation is determined by the electron parameters of the m

2. FREE ENERGY IN THE CASIMIR EFFECT

The Van der Waals contribution to the free energy of
inhomogeneous condensed medium with a local comp
permittivity e(r uv) is given by the formula2

dF52kT (
n50

`

8vn
2E drDi i ~r ,r uvn!de~r u ivn!, ~6!

whereDik(r ,r 8uvn) is the temperature Green’s function
electromagnetic field,vn52pnkT, and the prime on the
sum symbol indicates that the term withn50 is taken with
half the weight; here and below,\5c51.

Formula~6! can be presented in compact form:

dF52kT (
n50

`

8vn
2Tr~r !D~vn!de~vn!. ~7!
-
e-
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le
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Here D(vn) is Green’s operator with the matrix elemen
Dik(r ,r 8uvn);e(vn) is the diagonal operator of permittivity
and the operation Tr is interpreted in the functional sen
i.e.,

Tr~r !F5E dr tr@F~r ,r !# ~8!

~tr@ ...# is the ordinary trace!.
The explicit form of the GreenianD in the ‘‘radiation’’

gauge is determined by the solution of the linear equatio

KD521, ~9!

in which the differential operatorK has the kernel

Kil ~r ,r 8uvn!5@e~r u ivn!vn
2d i l 1rotimrotml#d~r2r 8!.

Using ~9!, we can easily see that the total change in the f
energyF upon a change in permittivitye is

F5kT (
n50

`

8vn
2Tr~r !@ logK~vn!#. ~10!

For two independente- and m-polarizations of the electro
magnetic field,5 we have

Ke5vn
2e2¹2;

Km5vn
22S ¹,

1

e
¹ D . ~11!

Disregarding the infinitely large additive constant, w
can write

logK52E
0

`

dm2
1

m21K
,

where the auxiliary variablem has the meaning of effective
mass. Thus, according to~10!, we have

F52kT (
n50

`

(
n50

`

8dm2Tr~r !G~vn!. ~12!

HereG5(m21K)21 is Green’s function with the matrix el
ementsG(r ,r 8uvn) satisfying the equation

~m21K !G~r ,r 8uvn!5d~r2r 8!. ~13!

In order to simplify the general formula~12!, we use
symmetry considerations. For this purpose, we choose
system of coordinates so that thex-axis is perpendicular to
the plane of interacting plates. Then it follows from isotro
and translation invariance of the system in they, x plane that

G5G~ ur2r8u!,

where r5(y,z) is the two-dimensional radius vector. Ex
pandingG into a two-dimensional Fourier integral, we obta
on the basis of formula~8!

Tr~r !G5TrxE dpdq

~2p!2 g~x,x8uq2,vn!.

Ultimately, expression~12! for the Van der Waals contribu
tion to the free energy of the system of two plane-para
media can be written in the form
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F52
kT

~2p!2 S (
n50

`

8E
0

`

dm2E
2`

`

dq~Trxg!, ~14!

whereS is the area of the plates.
Under the low-temperature conditions~2!, the sum in

Eq. ~14! can be replaced by the integral. The obtained
pression defines the energyE of the vacuum electromagneti
field in the presence of a stationary system of bodies, i.e

E~e,m!

S
52

1

8p2 E
0

`

dm2dq2dzE
2`

`

dxg~e,m!~x,x!, ~15!

where Green’s functionsg(e,m)(x,x8) for two independente-
and m-polarizations of electromagnetic field, which a
known in electrodynamics asE- andH-waves, can be deter
mined as solutions of the differential equations

S m21q21z2e~x!2
]2

]x2Dge~x,x8!5d~x2x8!,

S m21
q2

e~x!
1z22

]

]x

1

e~x!

]

]xDgm~x,x8!5d~x2x8!,

~16!

wheree(x) is the permittivity of the system of bodies und
investigation as a function of the coordinatex.

3. GEOMETRY OF THE PROBLEM AND BASIC
INEQUALITIES

Let us consider a static system comprising a bulk c
ductorM and a thin metal filmf ~region III! of thicknessd
on a dielectric substrates ~region II! having the permittivity
e`5const. The size of the gap~region I! between the filmf
and the bulk metalM is denoted bya ~see Fig. 1!. Under the
condition of optical transparency of the film–substrate s
tem, we can separate in the asymptotics for the Casimir
ergyE two additive contributionEM2 f andEM2s attributed to
the interaction of the bulk conductor with the metal film a
with the dielectric substrate:

E5EM2 f1EM2s . ~17!

FIG. 1. Geometry of the problem: bulk metal (M ), metal film (f ), and
dielectric substrate (s).
-

-

-
n-

This actually means that the presence of the metal film d
not affect the Casimir interaction between the conductor
the dielectric substrate in the main order, and the introd
tion of the dielectric in turn does not affect the interacti
between the conductor and the metal film. Thus, while de
mining EM2 f , we can neglect the effect of the substrate, i.
assume thate`51, and while calculatingEM2s , we can dis-
regard the effect of the film, i.e., putd50. The differences
that can emerge in this case as compared to the exact
tion of the problem have a higher order of smallness than
terms in~17!.

Apart from optical transparency, we shall also assu
that the conditions of the low–temperature approximation~2!
are satisfied, which means that we can neglect thermal fl
tuations of electromagnetic field, as well as inequality~4!
equivalent to the condition of vanishing of displacement c
rent in Maxwell’s equations.

4. DETERMINATION OF GREEN’S FUNCTION OF
ELECTROMAGNETIC FIELD

While analyzing the contribution to the Casimir ener
from the e- and m-polarized fluctuational electromagnet
field, we must solve Eqs.~16! together with the boundary
conditions of continuity forg and its normal derivative~for
E-waves! and the quantityg8/e ~for H-waves! at the points
of discontinuity ofe(x). It is well known that Green’s func-
tion g in each of the regions I–III can be expressed in ter
of two linearly independent fundamental solutionsu2 and
u1 satisfying a homogeneous equations and defined on
left and right boundaries of the region under investigation

g~x,x8!5
1

W H u2~x!u1~x8!, x,x8,

u2~x8!u1~x!, x8,x,

whereW5u2(x)u18 (x)2u28 (x)u1(x) is the Wronskian.
An analysis shows that in the case of optical transp

ency of the metal film, a decisive contribution to the Casim
energy comes from fluctuations of them-polarized electro-
magnetic field. For this reason, we write only the fundam
tal solutions of the second equation from system~16!, i.e. we
are interested in:

Hu25coshk~x2d!2ekd sinhka coshk~x2a2d!,
u15coshk~x2D !.

~18!

Here D is an infinitely large distance at which a perfect
reflecting mirror is arranged~its introduction is necessary i
we assume that the system is closed!, the surface dielectric
permittivity e is defined as

e511
^s~ i z!&

z
,

^s& is the conductivity of the metal film averaged over
thickness, andk5(z21q21m2)1/2. Besides, we assume tha
the inequalityde1/2/z!1 is satisfied.

The system of fundamental solutions in region I can
obtained from Eq.~18! by replacing ‘‘right’’ by ‘‘left’’ rela-
tive to the film f , i.e.,

u2↔u1 , D2x→x, a→D2a2d.
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We do not write fundamental solutions in region I
since the value of the integral over the intervala,x,a
1d in Eq. ~15! is much smaller than the value of integra
over the vacuum regions I and II.

We can now easily find, on the basis of Eq.~18!, an
expression for Green’s function of them-component of the
fluctuational electromagnetic field. The result of its integ
tion for coinciding arguments can be written in the form

E
0

D

dxgm~x,x!5
]

]m2 ln Wm , ~19!

where

Wm5k@sinhk~D2d!1ekd sinhka sinhk~D2d2a!#
~20!

is the Wronskian having the meaning of the dispersion eq
tion for eigenmodes of the system under investigation a
imaginary frequency.

5. CALCULATION OF CASIMIR ENERGY

Substitutingb Eq.~19! into ~15! and carrying out elemen
tary integration with respect to the variablem2, we obtain

E

S
5

1

8p2 E
0

`

dq2dz ln k@sinhk~D2d!

1ekd sinh~ka!sinhk~D2d2a!#. ~21!

Direct evaluation of integral~21! leads to an infinitely
large value ofE. The divergence of the energyE of vacuum
in Eq. ~21! is primarily due to the high intensity of vacuum
fluctuations for small wavelengths. But since the observa
value in the Casimir effect is the attractive forceF and not
the energyE, the energy of interactionE is defined to within
an arbitrary termE0 independent ofa, which vanishes after
differentiation:

E~a!5E~a!1E0 .

It was found that the divergence in Eq.~21! is just due to
the nonobservable energy componentE0 . An analysis of for-
mula ~21! shows that its origin is associated with the in
nitely large energy of zero-point oscillations, which is pr
portional to the volumeDS occupied by the electromagnet
system as well as to the ‘‘surface’’ energy~proportional toS!
emerging due to transparency of the film boundaries. T
subtraction of infinitely large contributions toE(a) corre-
sponding to them is equivalent to the choice ofE05E(a
→`). Consequently, the finite componentE(a) in the en-
ergy of electromagnetic vacuum we are interested in is
fined as

E~a!5E~a!2E~a→`!, ~22!

where the quantityE(a→`) denotes the asymptotic form o
E for a→`. On the basis of Eq.~22!, we can conclude tha
the quantum-electrodynamic meaning of the Casimir ene
lies in partial liberation of the energy of vacuum as a res
of introduction of material bodies into it.

Using Eqs.~21! and ~22!, we obtain the final result for
the energy of Casimir interaction between a bulk conduc
and a thin metal film:
-

a-
n

le

e

e-

y
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r

EM2 f5
1

8p2 E
0

`

dq2E dz lnF12
ekd

21ekd
exp~22ka!G .

~23!

While evaluating the double integral in Eq.~23!, we
must specify the dependence of^s& on the surface and vol
ume (vp ,n) characteristics of the electron subsystem. In
framework of the classical approach, electron scattering
the metal surface is described by the boundary condition
the electron distribution function. In the simplest model,6 the
surface properties are characterized by the specular pa
eter r which is equal to the relative number of electro
reflected specularly at the sample boundary. In the isotro
case, the electrical conductivity^s& of a thin metal film with
a specularly reflecting (r51) and diffuse (r50) boundary
is defined by the following asymptotic expressions:6

^s&5H sL , r51

sF5~3dsL/4l !ln~ l /d!, r50,
~24!

in which sL5vp
2/(n2 iv) is the conductivity of the bulk

sample andsF the Fuchs conductivity.
Formula ~24! is valid in the so-called Knudsen limi

d! l . In this case, the conductivity of a film with diffus
boundaries is due to a small group of transient electr
moving almost parallel to the plate surface and experienc
no collisions with the boundaries during the mean free tim
The relative number of transient electrons is equal tod/ l in
the order of magnitude.

For d@ l , when the effects connected with surface sc
tering of electrons are masked by bulk collisions, the co
ductivity in the main approximation is insensitive to the ty
of the electron–surface interaction, i.e.,

^s&5sL .

Using Eq. ~24!, we obtain analytic expressions for th
Casimir energy~23!.

1. Specular boundary(r51). In this simple case, we
reproduce the results obtained earlier in Ref. 7:

EM2 f
~r51!520.70\vp

Aad

p~4a!3 ,

v!vpAd/a!vp , c/a, ~25!

EM2 f
~r51!52

\s0

2p2

d

~2a!3 lnS n

vp
Aa/dD ,

vpAd/a!n!vp , c/a. ~26!

Pay attention to the fact that for samples with specu
boundaries, the conditions corresponding to the normalv0

!n) and infrared (n!v0) skin effects can be realized in th
Casimir effect depending on the relation between the re
ation frequencyn and v05vpAd/a. For n!v0 , the quan-
tity EM2 f has the same functional dependence on the par
eters of the problem as for the Casimir energy in a system
two thin metal films of the same thickness.4 This is due to the
fact that the main contribution to the Casimir interaction
both cases comes from the frequencyvc;v0 . In the fre-
quency range corresponding to the normal skin effect,
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decisive contribution comes from the frequency inter
(v0 ,n). Consequently, the value ofEM2 f turns out to be
larger than the corresponding asymptotic forms from Re
by a factor equal to the logarithm of the parame
(n/vp)Aa/d@1.

2. Diffuse boundary(r50). In the case of diffuse re
flection of electrons at the metal film boundary, the Casim
energy cannot be calculated with an asymptotic accura
This is mainly due to the emergence of the Fuchs logarit
ln(l/d) in Eq. ~24! for the average conductivitŷs&. It should
be noted, however, that the Knudsen limitl @d is violated
for relatively large characteristic frequencies. This restri
considerably the range of applicability of formula~23! for
the Casimir energy as a function of the Fuchs conductiv
sF ~24!. We can avoid artificial restriction imposed on cha
acteristic frequencies by dividing the integral with respect
z in Eq. ~23! into two parts:

E
0

`

dz5E
0

vK
dz~s5sF!1E

vK

`

dz~s5sL!, ~27!

wherevK is the characteristic frequency for which the Knu
sen approximation is formally violated. Such a mathemat
approach is valid rigorously only if the integration domain
the neighborhood of the pointvK makes a small contribution
to the values of both integrals. This condition can be viola
in the frequency range corresponding to the normal skin
fect since the characteristic frequencies in the low-freque
limit assume values from a finite interval. Consequently,
application of formula~27! in the general case requires a
ditional mathematic substantiation.

In order to avoid difficulties associated with the applic
tion of the Fuchs conductivitysF , we use the general ex
pression for the average conductivity of a metal film of
bitrary thickness with a diffuse boundary,

^s&5
3

2
s0E

0

1

dn~12n2!F12
1

d S 12expS 2
d

lnD D G ~28!

and the approximate formula for the energy of Casimir int
action:

EM2 f
~r50!52

1

8p2~2a!3

3E
0

`

dx x2 exp~2x!E
pc

1 dp

p
^s~p, x!&d1...,

~29!

which is valid~to within an insignificant numerical factor o
the order of unity! for pc!1. In this formula, the lower in-
tegration limitpc can be determined from the condition

p;^s~p!&d.

Formula~29! is fundamental for taking into account colle
tive properties of the electron subsystem in the Casimir fo
and can be obtained from Eq.~23! after the substitution of
variables

q5vA1/p221, z5
x

2a
p

l

4
r

ir
y.

s

y

o

l

d
f-
y

e

-

-

-

e

and the expansion of the logarithm into a power series.
Under the conditions of the infrared skin effect, when

na!pc ,

we assume thatd/ l 5Dxp/2, whereD5d/vFa is an arbitrary
parameter. Substituting Eqs.~28! into ~29! and integrating
with respect to the variablex, we obtain the following sim-
plified expression for the Casimir energy:

EM2 f
~r50!52

3A2

8p2~2a!3 E
pc

1 dp

p2 E
0

1

dn~12n2!
1

112n/Dp
,

~30!

whereA25davp
2 .

For comparatively small distances~or large characteris-
tic frequencies!, whenD@1, the ‘‘infrared’’ Casimir effect
acquires two characteristic frequency regions depending
the value of the dimensionless parameterpcD. For pcD@1,
we havepc;A!1, and the leading term in the asymptot
form of the Casimir energy assumes, in accordance with
~30!, the form

EM2 f
~r50!.2\vp

Aad

p~4a!3 ,

v
l 0

d
!vpAd/a!c/a, vp , ~31!

where l 05vF /n is the electron mean free path. ForpcD
!1, we havepc;A2D!1, and

EM2 f
~r50!52

3\vp

~8pa!2

d2vp

avF
ln2S dvp

vF
Ad/aD ,

vAl 0 /d!vpAd/a!n
l 0

d
!

c

a
, vp. ~32!

Finally, under the conditions of normal skin effect, whe

vpAd/a!nAl 0 /d!n
l 0

d
!

c

a
, vp ,

the asymptotics of the Casimir energy can be estimated
the basis of formula~26! if we substitute the static Fuch
conductivity sF5(3ds0/4l 0)ln(l0 /d) for the Lorentz con-
ductivity s0 :

EM2 f
~r50!'

\sF

2p2

d

~2a!3 lnS dsF

an D . ~33!

An analysis shows that for a film with a diffuse boun
ary and thickness

d0

vF

c
!d!d0AvF /c ~34!

~d05c/vp is the field penetration depth in the infrared sk
effect! for

d!a!d
c

UF
, ~35!

Eqs. ~31!–~33! realize sequentially the functional depe
dence of the Casimir interaction energy on the distance
tween the bulk metal and the film. Under the conditions~34!
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and ~35!, the film thicknessd can be varied from 1025 to
1026 cm. In this case, the admissible values of distanca
belong to the interval 1022– 1026 cm.

If d!d0vF /c, the asymptotic formula~31! becomes in-
valid since the inequalityvc!vp is violated. In this case
while determining electromagnetic Green’s functions,
must assume

e5e02
vp

2

v2 ,

and the contribution from the permittivitye0 of the ion core
‘‘suppresses’’ possible electron effects in the Casimir for
i.e., the situation is similar to the interaction between t
bulk conductors. The same applies to the asymptotic form
las ~32! and ~33! for d@d0AvF /c.

Concluding the section, we note that radical transit
from one asymptotic form to another is observed in the ra
of distances

a;a05d3vp
2/vF

2 , ~36!

for which the type of the functional dependence of the C
simir energyE(a) changes.

In view of the absence of frequency dependence ine` ,
the energyEM2s of the Casimir interaction of the conducto
with the dielectric substrate must have the same functio
dependence on the distance as for the energy of interac
between bulk metals~see expression~1! for force!. In the
case of a low optical transparency of the dielectric, i.e., f

e`21!1 ~37!

we obtain

EM2s52
e`21

~2p!2

\c

~2a!3 . ~38!

According to Eq.~17!, the contribution of theM2s in-
teraction to the total energyE is smaller than the energy o
the M2 f interaction if the optical density parameter of th
dielectric substrate satisfies the inequality

c~e`21!/a!vc . ~39!

In this case, dispersion properties of the filmf play a leading
role in the Casimir force.

6. CONCLUSION

We have obtained the most general asymptotic exp
sions for the Casimir energy in the case of interaction o
bulk conductors with a thin film of isotropic metal, in whic
collective properties of the electron subsystem are taken
account in the main approximation. The role of the effects
surface electron relaxation in the formation of the Casim
force is demonstrated in the model of specularity parame
It is found that the Casimir force becomes sensitive to
electron characteristics of the metal film with a diffu
boundary for a film thicknessd!d0AvF /c. For films with a
specular boundary, the critical values ofd are much smaller:4

d!d0n/vp .
The calculation of the Casimir energy for a film with

diffuse boundary proved that when the inequality~34! is sat-
e

,

u-

n
e

-

al
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s-
a

to
f
r
r.
e

isfied, the influence of the size effect in the conductivity
the metal film on the magnitude of the Casimir force is s
nificant only in the range of intermediate~Eqs.~32! and~33!!
distances, namely, in the frequency range correspondin
the normal skin effect. For smaller distances~or higher char-
acteristic frequencies!, surface effects in the electron condu
tivity are suppressed by bulk effects connected directly w
the high frequency of the fluctuational electromagnetic fie
Under these conditions, the asymptotic form~31! of the Ca-
simir energy coincides with expression~25! obtained for a
film with a specularly reflecting boundary.

Under the conditions of normal skin effect, the appro
mate formula for the Casimir energy can be written in t
form

EM2 f
~r50!}\sF

d

a3 .

In this situation, it is possible to neglect frequency dispers
in conductivity, and hence the functional dependence
EM2 f

(r50) on distancea remains the same as for a system
interacting perfect conductors.

Thus, the surface effects in the electrical conductivity
a metal film in the model of specular parameter affect o
the magnitude of the Casimir interaction~1!. Besides, the
bulk properties of the electron subsystem also affect
functional dependence of the force of Casimir attraction
distance~Eq. ~31!!. In this case, the pointâ of transition
from one region of the asymptotic form to another is clos
related to the nature of electron–surface scattering. In
model of specular parameter,â;a0 ~36! if r50 and
â;( l 0 /d)2a0 for r51. This means that for films with the
known electron parametersvp , n, and vF , we can judge
about the roughness of a metal surface from the experim
tally observed value ofâ.

All the results are obtained here for isotropic conducto
Casimir interaction for films of anisotropic metals requires
special analysis and discussion. First of all, in real exp
ments we must take into account the fact that apart from
Casimir attraction in the anisotropic case, a torque rotat
the film emerges in the system. The direction of this torq
depends on mutual orientation of the normal to the surf
and crystallographic axes. Besides, all asymptotic formu
for the Casimir force change. It can be stated, however,
even in the anisotropic situation the Casimir force~as well as
the conductivity of films! is sensitive to the type of electron
surface scattering.

In several recent publications~see, for example, Refs. 8
and 9!, the Casimir attraction is studied experimentally.
spite of incredible complexity of such experiments, we s
hope that the results of our research will find their pla
among studies of this interesting macroscopic phenome
in near future.

The authors express their gratitude to Prof. V. D. Nat
for fruitful discussions.
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Characteristic energy losses of electrons in a two-dimensional electron gas in a
magnetic field

A. M. Ermolaev and Babak Haghighi

Kharkov State University, 310077 Kharkov, Ukraine
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The electron energy loss function is calculated in the random phase approximation for a two-
dimensional electron gas in a quantizing magnetic field. Local states of electrons at
impurity atoms are taken into consideration. The energy losses due to one-particle and collective
excitations of two-dimensional electrons are determined. The activation of electrons
localized at impurities leads to the emergence of steps on the dependence of loss function on the
energy of an incident electron. Cerenkov losses associated with emission of
magnetoplasmons appear starting from a threshold velocity of the electron. When the velocity
exceeds the threshold value significantly, the losses are due only to spontaneous emission
of magnetoplasmons. The corresponding loss function decreases in inverse proportion to the
electron velocity. ©1999 American Institute of Physics.@S1063-777X~99!01012-9#
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INTRODUCTION

It was proved by us earlier1 that electron trapping a
isolated impurity atoms affects significantly the properties
magnetoplasma waves in a two-dimensional electron
Local energy levels of 2D electrons2–5 alternating with Lan-
dau levels are manifested in two ways. On the one hand,
resonances of electromagnetic radiation absorption in a t
dimensional conductor, which are associated with elect
transitions between Landau levels and local levels, are g
erated. They are accompanied by the emergence of
branches in the magnetoplasma wave spectrum. On the o
hand, the interaction of cyclotron motion with the motion
electrons localized at impurities leads to the cross bifurca
of the dispersion curve of magnetoplasmons, which is sim
to that observed in the spectrum of a crystal lattice w
quasilocal vibrations of impurity atoms.6 Such a bifurcation
was observed experimentally7 during measurements of th
magnetic field dependence of absorption of radiation tra
mitted through the inversion layer at the interface betwe
silicon and silicon dioxide. Ando8 explained the bifurcation
by the inclusion of a nonlocal correction to the conductiv
of 2D electrons, which has a resonance at the double cy
tron frequency. However, more detailed analysis of this p
nomenon by using other methods of probing magnetopla
waves in a 2D electron gas is required to explain the bifu
cation comprehensively.

The bifurcation of the dispersion curve for magnetopl
mons can be observed during measurements of characte
electron energy losses in a 2D electron gas in a magneti
field. This method is being used successfully for study
elementary excitations in plasmas,9,10 solids, and quantum
liquids.11,12

We shall prove here that local states affect the spect
9861063-777X/99/25(12)/6/$15.00
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of electron energy losses in a 2D electron gas in a magneti
field. In zero magnetic field and in the absence of elect
trapping, this problem was solved by Bret and Deutsch13

while local states in zero magnetic field were taken into
count by us earlier.14

1. ELECTRON ENERGY LOSS FUNCTION IN A 2 D
ELECTRON GAS IN A QUANTIZING MAGNETIC FIELD

Let us suppose that an electron gas is in the planez50
at the boundary between two half-spaces with permittivit
«1 and «2 . The magnetic fieldH is perpendicular to this
plane. We denote byua& the stationary state of the 2D elec-
tron gas and byuxs& the state of an incident electron in
magnetic field. Herex5(n,py) are orbital quantum number
of the electron ands is the spin quantum number. The m
trix elements of the HamiltonianV of the Coulomb interac-
tion of a test electron moving in the planez50 with the 2D
electron gas are given by10,14

^a8x8s8uVuaxs&5ē2ds8sE d2q

2pq
I x8x~q!^a8un~q!ua&,

~1!

where ē5e@2/(«11«2)#1/2, e is the electron charge an
I x8x(q)5^x8ueiqr ux& are the matrix elements of a plan
wave in the Landau basis, andn(q) is the Fourier componen
of the 2D electron density operator. The probability of th
transitionuaxs&→→ua8x8s8& per unit time, averaged ove
a,py , ands and summed overa8, py8 , ands8 is given by

Wn8n52pē4neE d2qq22Cn8nS q2l 2

2 DS~q,v!, ~2!

where ne is the electron number density,l the magnetic
length,
© 1999 American Institute of Physics
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Cn8n~x!5
n1!

n2!
xn22n1e2x@Ln1

n22n1~x!#2, ~3!

n15min(n,n8); n25max(n,n8); Ln2

n1 are generalized Laguerr

polynomials,

S~q,v!5
1

ne
(
aa8

wau^a8un~2q!ua&u2d~v1Ea2Ea8!

is the dynamic structural factor of a 2D electron gas in a
magnetic field,v5«x2«x8 the energy loss during the sca
tering of an incident electron,Ea the energy of an electron
gas in theua& state, andwa the Gibbs distribution function
Here and below, the quantum-mechanical constant and
area occupied by the electron gas are assumed to be eq
unity. The difference between the cyclotron frequency a
the frequency corresponding to spin splitting of electron
ergy levels is disregarded.

The transition probability~2! is connected with the
imaginary component of the polarization operatorP of a 2D
electron gas. We shall use the expression for this oper
obtained in the random phase approximation.10,14 It contains
the polarization operatorP of a 2D electron gas in the field
of impurity atoms in the presence of a magnetic field. In
linear approximation in the number densityni of impurity
atoms, it is defined asP5P01dP, whereP0 is the polar-
ization operator of 2D electrons in a magnetic field and

dP~q,v!5
mvcni

2p (
nn8ks

Cn8nS q2l 2

2 D r ks

~«n82«k
l !2

3@ f ~«ks
l !2 f ~«ns!#@~«k

l 2«n1v1 i0!21

1~«k
l 2«n2v2 i0!21# ~4!

is the contribution of local levels. Herem is the electron
effective mass,vc the cyclotron frequency,«ns and«ks

l are
the positions of thenth Landau level and thekth local level,
r ks is the residue of the amplitude of electron scattering
an impurity atom at the pole«ks

l ,1 and f the Fermi function.
If the velocity of an incident electron exceed

(vc /m)1/2, we can neglect the influence of the magnetic fie
on its motion. In this case, the transition probability~2! and
the energy lost by an electron per unit time are defined a

Wp8p58p2ē4q22~nv11!F2Im ) ~q,v!G , ~5!

Q5E d2p8

~2p!2 ~«p2«p8!Wp8p , ~6!

where q5p2p8 and v5«p2«p8 are the momentum an
energy losses for the incident electron during scattering,
nv is Planck’s function. Magnetic field appears in the expr
sions~5! and ~6! for scattering probability and loss functio
only in the polarization operator.

In the absence of impurity atoms, the energy loss fu
tion for a test particle in a 2D electron gas is given by
he
l to
d
-

or

e

y

d
-

-

Q05pmē4vc(
n8

v~nv11! (
n1n2

@F~«n1
!2F~«n2

!#

3d~v1«n1
2«n2

!E
0

` dx

x
Cn8n~x!Cn2n1

~x!. ~7!

Herev5vc(n2n8); F(«n)5(s f («ns). If we disregard the
effect of ‘‘twisting,’’ 9,10 i.e., the influence of the magneti
field on the incident electron, formulas~5!–~7! give

Q05m2ē4vc(
nn8

u~«1v!v~n2v11!@F~«n8!2F~«n!#

3E
0

2p

dwq22Cn8nS q2l 2

2 D , ~8!

where« is the energy of the incident electron,

q254mH «1
v

2
2@«~«1v!#1/2coswJ ;

w is the scattering angle in the planez50, andu the Heavi-
side function. For small electron momentum lossesql
!1), we can use the representation of the function~3! in the
form of a series. In this case, the main contribution to
loss function~8! is

Q05H 2p2ē4ne , «.vc,

2p2ē4nenvc
, «,vc . ~9!

When«.vc , the electron energy losses~9! are due to tran-
sitions n→n11 of 2D electrons between adjacent Land
levels. If, however,«,vc , the energy of an incident particl
increases due to transitionsn→n21. Such transitions are
absent in a degenerate electron gas.

Electron energy losses are associated with one-par
as well as collective excitations of a 2D electron gas. Let us
consider them separately.

2. ONE-PARTICLE EXCITATIONS

Analyzing the contribution of one-particle excitations
the loss function, we shall disregard the Coulomb excitat
in a 2D electron gas. In this case,P5P, and the loss func-
tion contains the contributiondQ due to activation of elec-
trons trapped at impurities. This contribution is given by

dQ5mē4vcni(
n8

v~nv11!E d2

q2 Cn8nS q2l 2

2 D
3 (

n1n2ks
Cn1n2S q2l 2

2 D r ks

~«n2
2«k

l !2 $@ f ~«ks
l !

2 f ~«ks
l 1v!#d~«k

l 2«n1
1v!1@ f ~«ks

l 2v!

2 f ~«ks
l !#d~«k

l 2«n1
2v!%. ~10!

The first term in this formula is connected with trans
tions of trapped electrons to Landau levels, while the sec
is associated with transitions from Landau levels to lo
levels. In the approximation under investigation, the tran
tion probability ~2! has d-shaped peaks at frequenciesu«n
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2«k
l u. The inclusion of a finite width of the levels participa

ing in transitions leads to blurring of these peaks.
If we disregard the effect of ‘‘twisting,’’ the energy los

~10! becomes

dQ5pē4l 22rni (
s50

`

u~«2vs!vs
22~nvs

11!

3(
ks

@ f ~«ks
l !2 f ~«~k1s!s!#1pē4l 22rni

3 (
p51

`

u~«2vp!vp
22~nvp

11!

3(
ks

@ f ~«~k2p!s!2 f ~«ks
l !#, ~11!

wherevs5svc1«0 are frequencies of transitions of trappe
electrons to Landau levels,vp5pvc2«0 the frequencies of
electron transitions from Landau levels to local levels, a
«0 the separation between a Landau level an a local le
split from it. In this expression, we disregard the depende
of «0 and the residuer on the number of a Landau level.
«0!vc , the residue is1 r 52p( l«0)2. The symbolSk in
formula ~11! indicates summation over the numbers of loc
levels participating in transitions at a given frequency. T
difference between Fermi functions takes into account
Pauli exclusion principle. At low temperatures, the ener
loss ~11! as a function of energy of an incident electron is
step curve shown schematically in Fig. 1. The step bou
aries are resonant frequenciesvs andvp . The height of the
first step between«0 andv15vc2«0 at zero temperature i
pe24rni /( l«0)2. The ratio of this quantity to~9! is ni /ne .

3. COLLECTIVE EXCITATIONS

Characteristic electron energy losses in a 2D electron
gas are due to the excitation of magnetoplasma waves
Ref. 1, the dispersion equation for magnetoplasmons
solved numerically. The inclusion of contribution~4! to the
polarization operator associated with electron trapping co
plicates the dispersion equation and leads to the emerg

FIG. 1. Schematic dependence of the loss functiondQ ~11! due to one-
particle excitations of localized electrons on the electron energy«.
d
el
e

l
e
e

-

In
as

-
ce

of new roots. They correspond to new branches in the sp
trum of magnetoplasma waves attenuating weakly in tra
mission bands close to the resonant frequenciesvs andvp .1

Let us consider a neighborhood of the frequencyv r

5vc1«0 of transitions of trapped electrons to a Land
level. Retaining in~4! only the resonant term in the vicinity
of this frequency, we obtain

dP5
nia

ml2v r

1

v2v r1 in0
, ~12!

wherea is the oscillator force of the resonant transition a
n0 the width of the local level. Ifql!1, we have

a5
m

2pv r
(
ks

r ks@ f ~«ks
l !2 f ~«~k11!s!#. ~13!

If the chemical potential of electrons lies between the lev
«N2 and« (N11)2

l ~the subscripts ‘‘1’’ and ‘‘ 2’’ indicate the
electron spin orientation!, the sum~13! is left with only one
term with k5N, whereN is the number of the local leve
participating in transitions. Taking into account contributio
~12! in the dispersion equation, we obtain the following c
bic equation for the magnetoplasmon spectrum:

x32~11b!x22S vq

v r
D 2

x1S vq

v r
D 2

1bS vc

v r
D 2

50, ~14!

where

x5
v

v r
, b5a

ni

ne
S vq0

qlv r
D 2

, vq5~vc
21vq0

2 !1/2,

andvq0 is the frequency of a 2D plasmon in the absence o
localization in zero magnetic field.15 Positive roots of Eq.
~14! are given by

x65y61
1

3
~11b!, ~15!

where

y1522R cos
w

3
, y2522R cos

p1w

3
,

R52
1

3 F ~11b!213S vq

v r
D 2G1/2

, cosw5
g

2R3 ,

g52
2

27
~11b!31bF S vc

v r
D 2

2
1

3 S vq

v r
D 2G1

2

3 S vq

v r
D 2

.

The dispersion curvevq of a magnetoplasmon is intersecte
by the straight linev5v r at the point

q05
m

2pē2ne
~v r

22vc
2!.

Electron trapping leads to cross bifurcation of the dispers
curve into two branchesv65v rx6 . The branchv1 lies
abovevq , while v2 is below vq . As a→0, the rootv1

approachesv r andv2 tends tovq . The damping decremen
for these branches is

g65nF11bS v r

vq0
D 2 ~v6

2 2vc
2!2

v rv6

n0 /n

~v62v r !
2n0

2G , ~16!
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wheren is the frequency of electron collisions due to pote
tial scattering by impurity atoms only. The decrement ha
Lorentzian peak at the resonant frequency. The width of
peak coincides with the width of the local level.

For numerical estimates, we shall use the values of
rameters typical of a weakly doped inversion layer
the interface between silicon and silicon dioxide15

m510228g, ne51012cm22, «11«2515, ni /ne51023,
«0 /vc50,1. Then in a magnetic field of induction 1 T we
obtainv r51.8•1012s2, q052.83102 cm21, and the separa
tion between the branchesv6 at the pointq0 is v12v2

58.8•1013s21.
The energy lost by an electron per unit time due to Ch

enkov radiation of magnetoplasmons is given by

Qe5
1

2p (
n8

v~nv11!E d2qCn8nS q2l 2

2 D
3UF ]

]v
ReP~q,v!G

v5vq

U21

d~v2vq!, ~17!

wherevq is the magnetoplasma wave spectrum andv5«n

2«n8 . If we neglect the ‘‘twisting’’ effect, formula~17! as-
sumes the form

Qe5
1

2p E d2p8v~nv11!

3UF ]

]v
ReP~q,v!G

v5vq

U21

d~v2vq!, ~18!

whereq5p2p8 andv5«p2«p8 . Confining our analysis to
the leading contributionP0 in the denominator of formula
~18!, we obtain

Qe5
m

4pne
E

0

`

dvv~nv11!E
0

` dq

qvq
~vq

22vc
2!2

3d~v2vq!E
0

2p

dwd~V12qv cosw!. ~19!

Here V65v6«q ; «q5q2/2m; v is the velocity of an
incident electron. In the absence of impurity atoms, this f
mula leads to

Qe5
2ē2

v E
vc

`

dvv~nv11!uS 12
V1

qv D F12S V1

qv D 2G21/2

,

~20!

whereq5
m

2pē2ne
(v22vc

2).

The increment of the electron energy due to absorp
of magnetoplasmons is

Qa5
2ē2

v E
vc

`

dvvnvuS 12UV2

qv U D F12S V2

qv D 2G21/2

.

~21!

This contribution is absent at zero temperature.
If
-
a
is

a-
t

r-

-

n

v.v05
vc

2

2pē2ne
F 3

vc
2 ~pē2nem

21/2!4/321G , ~22!

the inequalityV1,qv is satisfied in the interval (v2 ,v1),
wherev6 are the largest roots of the fourth-degree algebr
equationV15qv. The cyclotron frequency should not ex
ceedv1 . In this case, formula~20! leads to

Qe58pē4neu~v2v0!E
vm

v1

dvv~v22vc
2!~nv11!

3F2)
k51

8

~v2vk!G21/2

, ~23!

wherevk are the roots of the equationsV156qv, andvm

is the larger of the frequenciesvc andv2 .
In the limiting casev@v0 , formula ~23! assumes the

form

Qe54pē4neE
0

1

dx
nx11

~12x2!1/2, ~24!

where

nx5$exp@bvc~11~v0
2/vc

2!x!1/2#21%21;

v05(4pē2nev)1/2 andb is the inverse temperature. The fir
term in ~24! is associated with induced emission and t
second with spontaneous emission of 2D magnetoplasmons
by fast electrons. IfH→0 andb→`, formula ~24! leads to
the expressionQe52p2ē4ne derived earlier.13 It follows
hence that the electron energy loss per unit path lengt
proportional to the electron velocity.

In zero magnetic field, the threshold velocity~22! is v0

5(3/2)(pē2ne)
1/3m-2/3. In this case, one of the roots of th

equationV156qv is equal to zero. The remaining roo
satisfy a cubic equation and are given by

v152
2v0

)
cos

w1

3
, v252

2v0

)
cosS w1

3
1

2p

3 D ,

v352
2v0

)
cosS w1

3
1

4p

3 D , v452
2v0

)
sinh

w2

3
,

~25!

v55
v0

)
S sinh

w2

3
1 i) cosh

w2

3 D ,

v65
v0

)
S sinh

w2

3
2 i) cosh

w2

3 D ,

where

cosw15sinhw25
33/2ē~pne!

1/2

2mv3/2 .

In the limit v@v0 , the values ofw1 and w2 are small, and
the roots ~25! are approximately equal to 0,0,6v0 , and
6 iv0 . Substituting these values of the roots into~23!, we
obtain the familiar expression for the loss function.13

For any velocityv of an incident electron, the inequalit
uV2u,qv is satisfied in the interval (v2 ,v1), wherev6
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are positive roots of the equationuV2u5qv. The increment
of the electron energy~21! due to absorption of magnetopla
mons is given by

Qa58pē4neE
xm

x1

dxx~x221!nxF2)
k51

8

~x2xk!G21/2

,

~26!

where x5v/vc , x65v6 /vc , xm5vm /vc , vm is the
larger frequency fromv2 andvc , andxk are the roots of the
equations

~x221!26
q0

v

V0
~x221!2

vc

V0
x50,

q05
mvc

2

2pē2ne
, V05

q0
2

2m
, nx5@exp~bvcx!21#21.

For a high velocity of the incident electron, the rootsxk are
equal to61, 6(11q0v/V0)1/2, 61, 6 i (q0v/V021)1/2. In
this limit, expression~26! coincides with the first term in
~24!. This means that energy losses for fast electrons are
only to spontaneous emission of magnetoplasmons.

In zero magnetic field, formula~26! gives

Qa58pē4neE
y2

y1

dyy~y221!nyF2)
k51

6

~y2yk!G21/2

,

were

y5
v

v0
, ny5@exp~bv0y!21#21,

y25
2

)
sinhw, y155

2

)
cosh

w1

3
, v,v0

2

)
cos

w2

3
, v.v0

,

sinhw5coshw15cosw25
33/2v0

4mv2 ,

andyk are the roots of the cubic equations

y36y2
v0

2mv2 50.

If v@v0 , the last term in these equations can be omitt
This gives

Qa5
8pē4ne

~bv0!2 E
0

bv0
dx

x

ex21 F12S x

bv0
D 4G21/2

. ~27!

At low temperatures (bv0@1), this expression is trans
formed to

Qa5
4p3ē4ne

3~bv0!2 .

If, however,bv0!1, formula~27! leads to

Qa5
A2pē4ne

bv0
FGS 1

4D G2

.

ue

.

As the temperature increases, expression~27! increases
monotonically.

CONCLUSIONS

The problem on energy losses for charged particles
plasmas in a magnetic field was solved by Akhiezer.10 Bert
and Deutsch13 applied the method developed in Ref. 10 f
calculating the energy loss function for particles in a 2D
electron gas. In our previous publication,14 we considered the
effect of electron trapping in the field of impurity atoms o
the loss function in two-dimensional conductors in zero m
netic field. The calculation of the loss function taking in
account electron trapping and a quantizing magnetic field
natural continuation of these publications.

Local energy levels of electrons in a 2D electron gas in
a magnetic field affect the spectrum and attenuation of m
netoplasma waves considerably. They are responsible fo
existence of two branches in the wave spectrum and lea
the cross bifurcation of the dispersion curve of magnetop
mons into two branches. These peculiarities of the spect
of magnetoplasma waves in a 2D electron gas can be ob
served in experiments on the measurement of character
losses of electron energy.

The electron energy losses are mainly due to two fact
viz., the one-particle excitations of electrons and the Cher
kov radiation of magnetoplasmons. We have proved that
loss function contains the terms associated with activation
electrons trapped at impurities by the field of an incide
electron. This leads to the emergence of steps on the c
describing the dependence of loss function on the energ
the incident electron. The boundaries of steps are frequen
of electron transitions between Landau levels and local l
els. The height of the steps depends on temperature, con
tration of impurity atoms, and magnetic field strength.

Energy losses for Cherenkov radiation of magnetopl
mons appear starting from a certain threshold velocity
electrons depending on the density of electron gas and m
netic field strength. The absorption of magnetoplasmons
no threshold. When the velocity of an incident electron e
ceeds the threshold velocity, the losses for induced emis
and absorption of magnetoplasmons are compensated,
only the contribution from spontaneous emission is left. T
energy loss per unit electron path length decreases in inv
proportion to the electron velocity. The observation of t
peculiarities of loss functions makes it possible to obt
information on the spectrum of electron impurity states in
2D electron gas in a magnetic field as well as the spectr
and attenuation of magnetoplasma waves.
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Peculiarities of low-frequency excitation spectrum of CsDy 12xBi x„MoO4…2

V. I. Kut’ko, S. S. Gerashchenko, and N. Yu. Nedbailo

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted December 29, 1998; revised May 26, 1999!
Fiz. Nizk. Temp.25, 1320–1324~December 1999!

Low-frequency IR transmission spectra for a series of isostructural single crystals of
CsDy12xBix(MoO4)2 (x50, 0.05, 0.1, 0.2, 0.3, 0.5, and 0.7! are measured at low temperatures (T
.6 K). It is found experimentally that absorption band broadening takes place in the Bi
concentration range 0.2<x<0.6. The mechanism which may result in absorption spectrum
blurring are considered. ©1999 American Institute of Physics.@S1063-777X~99!01112-3#
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Double alkali-earth molybdates are compounds with
layered structure displaying structural phase transitions
the type of cooperative Jahn–Teller effect~CJTE! at low
temperatures.1,2

Weak interaction between the layers in these compou
in the presence of Davydov splitting at acoustic vibratio
branches leads to the formation of low-frequency opti
phonon modes.3 Several electron–phonon modes in the
compounds are active in structural phase transitions of
CJTE type. For this reason, an analysis of the low-freque
spectrum is a complicated experimental problem. It is int
esting to measure low-frequency spectra in systems of s
mixtures in which Jahn–Teller ions are replaced by th
diamagnetic analog. According to modern theoretical c
cepts, a structural disorder of the type of Jahn–Teller g
can emerge in such systems.4,5 Besides, both components o
the CsDy12xBix(MoO4)2 mixture undergo structural phas
transformations of various origin, which may also lead to
formation of a structural disorder of the glass type in t
intermediate concentration region.6,7

This research aims at an analysis of the behav
of the low-frequency spectrum of the compou
CsDy12xBix(MoO4)2 in which Jahn–Teller Dy31 ions are
replaced by their diamagnetic analog Bi31.

EXPERIMENTAL

Measurements were made by using a vacuum diffrac
spectrometer with a cooled InSb photodetector in the spe
range of measurements extends from 15 to 40 cm21 at a
sample temperature;6 K. Single crystals of the system o
solid mixtures CsDy12xBix(MoO4)2 were grown by sponta
neous crystallization from solution in melt. The sample s
was 103103(0.2– 1) mm. Single crystals of CsBi(MoO4)2

and CsDy(MoO4)2 belong to the rhombic system~the space
groupD2h

3 with two structural units in a unit cell!. The crys-
tal lattice parameters area59.45,b58.21,c55.14 anda
59.51,b57.97,c55.05 respectively.8 Since the crystal lat-
tice parameters for both components of the solid mixt
9921063-777X/99/25(12)/4/$15.00
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differ insignificantly, we assume that isotopic substitution
Bi31 ions for Dy31 ions takes place in the mixture. The rat
of the components was determined from their concentra
in the initial charge.

Figure 1 shows the transmission spectra in the ra
15– 40 cm21 at a temperature;6 K for various concentra-
tion of the mixture components. It can be seen that the
sorption bandn.27 cm21 ~for x50) is smoothly displaced
along the frequency scale without a noticeable change in
half-width when Dy31 ions are replaced by the diamagne
impurity Bi31 for low concentrationsx<0.1. For the Bi31

concentrationx50.05, the spectrum acquires the absorpt
bandn.22 cm21, whose intensity is slightly higher than th
intensity of the bandn.27 cm21. As the Bi31 concentration
increases, the bandn.22 cm21 remains practically unshifted
on the frequency scale.

For higher concentrations of Bi31 (x>0.15), the absorp-
tion bands merge into one, and the resultant absorption b
is broadened anomalously for a Bi31 concentrationx>0.2.
For x50.7, the transmission spectrum also acquires an
sorption bandn.33 cm21.

We processed spectra and determined half-widths of
sorption bands for various concentrations of the compone
Figure 2 shows the values of absorption band half-widths
the system of solid mixtures CsDy12xBix(MoO4)2 for vari-
ous values of concentrations of the components. It can
seen that the half-widths of the bandsn.27 and 22 cm21

increase abnormally in the concentration range 0.2<x
<0.6.

DISCUSSION OF EXPERIMENTAL RESULTS

Earlier investigations of the low-frequency vibration
spectrum of CsDy(MoO4)2 have proved that the
main mechanism of its formation is associated with vib
tions of @Dy(MoO4)2#`` and Cs̀ ` layers as well as
@Dy(MoO4)2#`` and @Dy(MoO4)2#``12Cs̀ ` layers rela-
tive to each other along the relevant directions in the crys
This vibrational spectrum is successfully described by
© 1999 American Institute of Physics
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one-dimensional model.9 The model used earlier for the v
brational spectrum of the CsDy(MoO4)2 crystal makes it
possible to explain the behavior of the low-frequency vib
tional spectrum of the compound CsDy12xBix(MoO4)2 for
various concentrations of its components. The vibratio
spectrum of the mixture is formed by vibrations
@Dy12xBix(MoO4)2#`` and @Dy12xBix(MoO4)2#``12Cs1

layers relative to each other. The corresponding frequen
vary with the reduced mass of the two laye
@Dy12xBix(MoO4)2#`` and @Dy12xBix(MoO4)2#``

FIG. 1. Transmission spectrum of CsDy12xBix(MoO4)2 single crystals at
low temperature (T.6 K). Curves1–8 correspond tox50, 0.05, 0.1, 0.15,
0.2, 0.3, 10.5, and 0.7, respectively. The arrow indicates the absorption
due to electron excitation of Dy31 ions.

FIG. 2. Dependence of absorption band half-widths on the concentratio
components of the CsDy12xBix(MoO4)2 mixture.
-

l

es
:

12Cs̀ `
1 . The Bi31 and Dy31 ions have a uniform statistica

distribution within a layer, and hence the reduced mass of
two layers is

m5
^m13m2&

^m1&1^m2&
,

were^m1& and^m2& are the masses of the layers statistica
averaged over impurities. In view of the uniform distributio
of the impurity over various layer packets, the reduced m
does not change upon a transition form layer to layer.
this reason, a CsDy12xBix(MoO4)2 crystal is a packet of
layers of the same mass with the corresponding weight c
ponents of Dy31 and Bi31 ions, which are proportional to the
concentrations of the relevant ions. The masses of la
packets, and accordingly the reduced mass, vary smoo
with the concentrations of the mixture components.

According to our estimates, the change in the redu
mass upon a transition from CsDy(MoO4)2 to CsBi(MoO4)2

amounts toDm/m.0.07. Provided that the force constant
interaction between@Dy12xBix(MoO4)2#`` layer packets,
which is associated with the interaction between Cs1 and
O22 ions, does not change significantly, the isotopic shift
low-frequency optical modes must beDn/n.0.03. For the
vibrational moden.27 cm21 measured by us, this shift i
Dn.1 cm21. The isotopic shift is smaller than the dispe
sion of a branch in the Brillouin zone (G.5 cm21), and
hence the n.27 cm21 band in the solid mixture
CsDy12xBix(MoO4)2 must display a one-mode behavior a
cording to general considerations. Such a one-mode beha
was also observed by us for a system of solid mixtu
KDyxY12x(MoO4)2 and KEr12xYx(MoO4)2 with a similar
crystalline structure.10,11 Figure 3 shows absorption
spectrum for various values of concentrationx in a
KDy12xYx(MoO4)2 crystal in the region of low-frequency
vibrational mode (n.28 cm21). It can be seen from the fig
ure that the absorption band is shifted smoothly along
frequency scale upon a change in the reduced mass of
layers from one extreme position to the other without a n
ticeable change in the half-width. Such a behavior of vib
tional modes was also observed in the spectrum
KEr12xYx(MoO4)2 and can be explained on the basis
general concepts concerning the formation of the spectrum

nd

of

FIG. 3. Transmission spectrum of KDy12xYx(MoO4)2 single crystals at low
temperature (T.6 K). Curves1–6 correspond tox50, 0.05, 0.1, 0.3, 0.4,
and 0.6, respectively. The inset shows the concentration dependence of
width of the vibrational absorption band.
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these compounds. In the case under investigation, the
frequency vibrational mode obviously also displays on
mode behavior, but in the intermediate concentration ra
we cannot unambiguously state this in view of superposit
of spectra.

The absorption spectra of mixed CsDy12xBix(MoO4)2

crystals withx;0 display an absorption bandn.22 cm21

~see Fig. 1!. According to experimental data obtaine
earlier,12 this band is associated with an electron transition
the first Stark energy level of the fundamental multip
6H15/2 of the Dy31 ion, split by the crystal field. Since thi
band must be observed in the spectrum of the hi
temperature phase of CsDy(MoO4)2 (T.Tc),

12 while the
vibrational moden.27 cm21 must be manifested below th
phase transition point (T,Tc),

9 we assume that phase sep
ration takes place in mixed CsDy12xBix(MoO4)2 crystals at
low temperatures (T.6 K). This is also confirmed by ex
perimental observations of phase separation in a p
CsDy(MoO4)2 crystal below the phase transition point (T
,Tc) as a result of application of an external pressure al
the normal to the layers.13 According to the prevailing theo
retical concepts, such a separation is possible in tricrit
systems.14,15 The intrusion of Bi31 ions into CsDy(MoO4)2

is similar to the creation of a normal pressure since the c
tal lattice parameter corresponding to the separation betw
layers in CsBi(MoO4)2 is smaller than in CsDy(MoO4)2 .
Thus, in the range of intermediate concentration, we obse
an overlapped spectrum from two phases of the crystal:
absorption band corresponding to the vibrational mode of
low-temperature phase and the electron absorption bann
.22 cm21 of the high-temperature phase.

We observe the threshold blurring of the spectrum up
a change in concentration upon a change in the concentra
range 0.2<x<0.6 ~see Fig. 2!. Such a behavior does not fi
to the generally accepted mode of variation of the elect
band half-width in the case of replacement of paramagn
ions by diamagnetic impurities. In the systems of solid m
tures KDy12xYx(MoO4)2 and KEr12xYx(MoO4)2 investi-
gated earlier and having a similar structure, the replacem
of the paramagnetic Dy31 and Er31 ions by the diamagnetic
impurity Y31 caused a smooth decrease in half-widths
well as intensities of electron absorption bands correspo
ing to transitions to the lowermost electron state of param
netic ions upon an increase in the concentration of the
magnetic impurity.10,11 Hence we assume that interactio
appearing in the strongly nonequilibrium high-temperat
phase of the CsDy12xBix(MoO4)2 system in the intermedi
ate concentration range (0.2<x<0.6) lead to absorption
spectrum blurring. We propose several mechanism that
lead to spectrum blurring.

First, an electron excitation can be regarded as
impurity-induced excitation in view of its insignificant delo
calization in the crystal. Two cases can be realized here
the first case, the impurity excitation interacts weakly w
the crystal lattice and is of a quasi-local nature. In the sec
case, the excitation interacts with the vibrational spectr
and is responsible for its resonant excitation. This is ma
fested in a change in the density of states in the spectrum
a perfect crystal, viz., a change in its width and frequency
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certain wave vectors, i.e., a spectrum rearrangement t
place. The rearrangement can be normal or abnormal by
ture. Normal rearrangement leads to the splitting of the c
tinuous spectrum into two branches by the electron mode
to the formation of a gap between them. However, the sp
trum rearrangement can be abnormal when the impu
mode gets into the region of quasi-one-dimensio
oscillations.16,17

In the case under investigation, the first electron exc
tion of Dy31 ions (n.22 cm21) gets into the region of con
tinuous spectrum of acoustic vibrational mode with the li
iting frequency at the boundary of the Brillouin zonen
.27 cm21. For a low concentration of Bi31 ions, the elec-
tron mode intersects the acoustic mode within the Brillou
zone in which the density of states of the vibrational sp
trum is relatively low. Consequently, we observe in the sp
trum a narrow electron absorption band. As the Bi31 concen-
tration increases, the acoustic branch is shifted to the l
frequency region. The spectral position of the electr
energy level in this case is displaced towards the Brillo
zone boundary. Since the specrta of layered crystals ha
sharp peak in the low-frequency range due to a weak in
action between the layers, the maximum density of vib
tional states corresponding to the zone boundary,18 this may
lead to an anomalous rearrangement of the crystal spec
due to the interaction of the electron mode with the acou
vibrational mode, leading to delocalization of the electr
excitation, i.e., the broadening of the electron absorpt
band.

Second, the compound CsDy(MoO4)2 displays a first-
order structural phase transition of the CJTE type (Tc

.40 K), while CsBi(MoO4)2 displays a first-order structura
phase transition associated with anharmonism at interla
vibrations (Tc.135 K). Apparently, a competition of distor
tions emerging below phase transition points may take pl
in a solid mixture of these compounds. Since the phase t
sition in CsDy(MoO4)2 is accompanied by multiplication o
the unit cell, while no multiplication takes place i
CsBi(MoO4)2 , such a competition observed at low tempe
tures in a strongly nonequilibrium state normally leads to
disordered crystal lattice of the spin glass type.
CsDy12xBix(MoO4)2 , the interlayer vibrational mode is ac
tive during the phase transition, and hence we can ass
that disorder appears at interlayer links. In this case, the fl
tuation of the distanceDa between layer packets is smalle
than the distance in the initial phase (a5a01Da and Da
!a0 , wherea0 is the separation between layer packets in
initial structure!. Hence the structural disorder in our syste
in this model resembles one-dimensional glass or o
dimensional liquid rather than one-dimensional alloy.

In our analysis of the dynamics of crystal lattice
CsDy12xBix(MoO4)2 in the intermediate concentratio
range, we assume that elastic constants of interlayer inte
tion vary with the distance between layer packets. The vib
tional mode corresponding to these elastic constants m
change frequency also, which must lead to blurring of
vibrational mode in the region of intermediate concent
tions. The electron mode must display a similar behavior
view of its strong coupling with these phonon mode.
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We believe that the contribution of the mechanism
dynamic interaction between the electron and phonon s
tral branches to the absorption spectrum blurring is decis
in the intermediate concentration region, but the sec
mechanism can also make a contribution. It should be no
in conclusion that the sample withx50.7 had a relatively
poor quality, i.e., contained inclusions of the solvent, a
hence we assume that the bandn.33 cm21 can be due to the
spectrum of the solvent.

The authors are grateful to A. B. Beznosov for fruitf
discussions of the results of this research.
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On the theory of phase separation in systems metallized as a result of doping
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The mechanism of formation of an inhomogeneous ground state of weakly doped systems,
consisting of the domains of metallic and insulating phases, is proposed. According to this
mechanism, the formation of the charge-neutral metallic regions with the highest possible
concentration of free charge carriers~and hence of the dopants generating them! is shown to be
thermodynamically advantageous. ©1999 American Institute of Physics.
@S1063-777X~99!01212-8#
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1. The ground state of the cuprate planes of wea
doped high-temperature superconductors~HTSC! has been
the subject of lively discussion during recent years~see, for
example, Ref. 1!. As a matter of fact, the host oxides a
known2–4 to be AFM insulators whose conductivity resul
from heterovalent doping or is due to a change in their o
gen content. In either case, metallization is caused by a M
transition which leads to the emergence of free carriers in
system and to the formation of a Fermi level.5,6

Nevertheless, the origin of dopant/ions~let alone the
way in which they are introduced! affects their distribution in
the obtained samples. For example, while Sr21 ions remain
practically immobile in La22xSrxCuO4 even at rather high
temperaturesT&1400 K, the subsystem of O22 ions in
La2CuO41d or (YBa2Cu3O61d) may diffuse quite easily
over the lattice at temperatures right up toT'200 K.7 Con-
sequently, the doped system tends towards equilibrium in
second version and becomes inhomogeneous and
phased, the metallic phase consisting of oxygen-enriched
gions~domains! and the insulating region deplete in oxyge
There is no long-range magnetic ordering in domains of
first type,2,8 while all characteristic features of an AFM in
sulator are preserved in domains of the second type.

For example, neutron diffraction studies of the HTS
La2CuO41d show7 that samples with excess oxygen in t
range 0.01&d&0.055 are separated into metallic~with d
'0.055, the superconducting transition temperatureTc

'32 K, and hence the Neel temperatureTN50 K) and insu-
lating domains~with d&0.01 andTN5250 K). The domains
in both the phases, separated by domain walls, are quite l
in size (;1023 Å) in all directions.

Measurements in La22xSrxCuO4
9 and manganites10

show that in the case of a weak diffusion of dopants,
compounds also display a tendency towards the formatio
9961063-777X/99/25(12)/3/$15.00
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domains, albeit of much smaller size, and the doping lead
to such a state is called topological doping.11 Among other
things, the weakly doped La22xSrxCuO4 system displays a
striped structure of CuO2 planes, consisting of extended m
tallic and insulating domains whose cross-sectional size d
not exceed a few lattice constants. The description of
reasons and mechanisms of emergence of such
organizing structures is one of the most important proble
in the HTSC theory at present.

2. Several models have been proposed for explaining
emergence of such domains in cuprates. One such model~see
Ref. 12!, which owes its origin to Nagaoka13 ~see Ref. 14
also!, attributes the origin of conducting domains to a co
siderable decrease in the kinetic energy of a carrier~hole in
HTSC! moving in a paramagnetic~as well as ferromagnetic
~FM!! medium as compared to an AFM medium in whic
each jump of the carrier from one ion to another is inevita
accompanied by a violation of the initial spin ordering. How
ever, a free oxygen hole in an HTS is frustrated and is
cated in the zero exchange field of localized spin of io
Cu21, thus being free from the above-mentioned co
straints.2,15

Another version of stratification, or the Emery
Kivelson11,16 charge fluctuation model~see also Ref. 17!,
associates the formation of metallic strips with competiti
between long- and short-range interaction of dopants.
analysis is based on the model of effective spins close to
Ising model in which the role of the former is played by th
AFM exchange between distant neighbors and of the la
by the FM exchange between long-range spins in a squ
lattice. Assuming that one component of the effective s
corresponds to the presence and the other to the absen
the dopant, we can choose the suitable parameters for d
ing a structure in which FM strips of width 3–5 lattice co
© 1999 American Institute of Physics
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stants alternate with similar strips with opposite spins,
structure being identical to the sequence of metallic and
sulating domains in HTSC, although the correctness of
model in the latter case is not obvious. If, however, the d
ants do not diffuse and constitute a uniform background~on
the average!, it is assumed that, being comparatively ligh
the carriers are expelled from the AFM domains and fo
striped AFM disordered metallic domains which are found
be charged. It was proved convincingly by Phillips~see Ref.
11! that such an ordering must be unfavorable from the
ergy point of view because of a large Coulomb interact
that is not compensated within domains. The neutraliza
of this interaction is not discussed under the Emer
Kivelson approach.16

3. However, we believe that splitting into domains is
inevitable property of doped metals. Indeed, the energy
the initial insulator assumed as the starting point chan
upon the introduction of dopants following the creation
free carriers as well as slow-moving ions in the system.
us calculate the binding energy« per carrier. It is determined
~see, for example, Ref. 18! by two main contributions com
ing from the Hartree-Fock energy« free of the free Fermi gas
and the Coulomb interaction«Coul which in turn consists of
two parts, viz., the energy«Coul

hh of repulsion between uni
formly distributed carriers, and the energy«Coul

hi of attraction
between the carriers and the negatively charged do
ions.1!

The first contribution is positive and is determined
the average kinetic energy of carriers. Taking into consid
ation the two-dimensional nature of motion of holes
HTSC, we can present this contribution in the form

« free5
1

2
^«F&; «F5

\2kF
2

2mh
, ~1!

where«F andkF are the Fermi energy and wave vector r
spectively, andmh is the effective hole mass. Assuming th
the number density of holes in a layer isnh and that each
hole occupies an areapr h

2 , i.e., pr h
25nh

21 , we arrive at the
relationkF5&r h

21 , i.e., ^«F&5(\2p/2mh)nh .
Let us now estimate«Coul. For this purpose, we brea

the crystal18 into Wigner–Seitz cells and obtain in the fir
approximation the Coulomb energy of the 2D system within
one such cell. As a result of simple computations, we ge2!

«Coul5«Coul
hh 1«Coul

hi 52
4

3
Ape2nh

1/2, ~2!

where«Coul
hh 52e2/3r h , and«Coul

hi 522e2/r h . It can be seen
from Eq. ~2! that this energy is negative. In other word
there exists a metallic bond in the system when the force
Coulomb attraction dominate over repulsive forces. It c
also be verified that if the cells are neutral as a whole,
interaction between them is much weaker than that defi
by Eq. ~2!.

It was mentioned above that other contributions also
ist for real systems, but they do not affect the estimates
qualitative conclusions. It follows from Eqs.~1! and~2! that
the Coulomb term dominates for quite smallnh . The
total energy minimum corresponds to the concentrat
e
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ñ̄h5(16/9p)aB
22'1016cm22(aB is the Bohr radius!, which

is much larger3! than real densities of free holes in CuO2

layers (&1014cm22).
Thus, for a given concentration of dopants in the samp

their redistribution leading to the emergence of regions w
maximum possible carrier concentration~though not exceed-
ing ñh) and regions with zero~or few! carriers is more ad-
vantageous from the energy point of view. Each region h
ing an area;pr h

2 must remain electrically neutral since th
energy gain is not realized otherwise.

Apparently, the entropy of mixing is a factor obstructin
such a redistribution. However, it can be seen easily t
even for large values ofT, the contribution to the free energ
per dopant is of the order ofT, which is considerably smalle
than ~2!.

4. Under real conditions, doping is carried out at hi
temperatures~heterovalent substitution! or under high pres-
sures~addition of oxygen!. In any case, the system mu
disintegrate due to energy considerations into two types
electrically neutral regions, viz., metallic regions with a hig
concentration of dopants~and carriers! and insulating re-
gions. Although such a tendency does exist, it is realiz
under conditions of a finite~and generally weak! diffusion of
dopants which thus controls the disintegration proce
Hence the nature of the prevailing structural state in the
vestigated HTSC systems depends significantly on ther
dynamics as well as kinetics of their preparation.

The highest possible concentration of fermions in me
lic domains is defined as the limiting solubility of dopants
a given material. For example, the surplus oxygen
La2CuO41d is confined todmax'0.1.7

The established instability of the homogeneous state
doped metal still does not reveal the form of the structure
its inhomogeneous state. It was mentioned above that
instability is the result of the kinetics of the heavy su
system, and the domain size is determined by the rate
sample preparation: the higher the rate, the smaller the
of the structure formed. Such regularities are observed
HTSC7 in which small as well as coarse domains can
formed depending on the conditions of growth and the ty
of dopant. As regards their shape, it is well known that d
composition processes occurring in alloys~see Ref. 19! often
lead to stripe- or lamellar-type structures formed by altern
ing domains of different phases. The advantage of s
structures can be ensured, for example, by the minim
value of ther total surface energy of domain walls. On t
other hand, the type of domains can be ‘‘dictated’’ by ord
ing dopants also. For example, it is advantageous from
symmetry and energy points of view that their structure
cuprate layers of HTSC be of a transverse-homogene
chain type.20 In our opinion, it cannot be ruled out that th
latter circumstance is an additional factor in the formation
the stripe~i.e., transverse-inhomogeneous! ordering of dop-
ants interacting with free charge carriers.

5. Thus, we propose that the domain~including stripe!
structure of samples in the metal state observed for HTS
due ~to a considerable extent! to decomposition processe
occurring during sample preparation, in which each dom



f d
d
n
r

e
f
i-
ve
ad
th
r-

pe
t

an

m

tio

en
ch

.

tt.

998 Low Temp. Phys. 25 (12), December 1999 M. A. Ivanov and V. M. Loktev
remains charge-compensated. In the proposed model o
main formation, the antiferromagnetism of initial compoun
as well as the mobility of holes as a lighter subsystem do
play a signifiant role, and long-range AFM correlations a
suppressed even at the insulating stage due to exchang
elastic perturbations.8 However, a theoretical description o
the formed 3D structure involves the introduction of add
tional concepts concerning the kinetics of dopants at a gi
T, taking into account the fact that small domains are dis
vantageous due to the developed interface, and the grow
large-scale structure is limited by the ionic mobility of the
mal activation origin and also depends on the elastic pro
ties of the medium. Hence it should be quite interesting
carry out experimental studies of the variation in shape
size of domains depending on the conditions~e.g., cooling
rate! of HTSC sample preparations with various doping i
purities.

*E-mail: ivanov@imp.kiev.ua
** E-mail: vloktev@bitp.kiev.ua
1!For the sake of simplicity, we neglect the terms associated with correla

and free energies.
2!We omit static permittivity (;30– 50) for HTSC! which can be taken into

account in a trivial manner.
3!It should be noted that such concentrations, which are unattainable ev

ordinary metals, in HTSC are also due to impossibility of dilution of su
an amount of dopants (;1 per unit cell! in these materials.
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The superconducting energy gap and the parameterh determining the intensity of electron
scattering at two-level systems in amorphous ZrTiCuNiBe are determined from the results of
measurements of sound attenuation. The mechanism of adiabatic renormalization of the
amplitude of coherent tunneling is used for a quantitative description of the peculiarities of sound
absorption in the vicinity ofTc . © 1999 American Institute of Physics.
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Preliminary measurements of the velocityv and
absorption G of sound in the amorphous allo
Zr1.2Ti13.8Cu12.5Ni10Be22.5 have revealed1 an interesting pe-
culiarity in its behavior in the vicinity of the superconductin
transition temperatureTc . It was found that the value o
Tcm'0.9 K determined from magnetic measurements
ceeds the transition temperatureTc'0.83 K at which a non-
zero difference is observed in the velocities of sound in
perconducting (s) and normal (n) phases. It was propose
that such a behavior may be due to magnetic depairing le
ing to the gaplesss-phase in the temperature interv
Tcm–Tc . Since our earlier measurements1 were made in a
temperature interval limited from below (T*0.4 K), it
should be interesting to study the behavior ofG at lower
temperatures. In view of a close analogy in the behavio
electron acoustic absorption coefficient in superconduc
and the relaxation absorption of sound in two-level syste
~TLS! in the s-phase, one could expect a nonexponen
drop inGs(T) in the low-temperature ‘‘tail,’’ or an exponen
tial decrease but with a much smaller gap if the magn
depairing effects are significant. It is shown in the pres
work that theGs(T) dependence at low temperatures can
described quite correctly by the tunnel model~TM!2 in the
framework of the standard BCS approximation, which ru
out the gapless phase hypothesis. The refined value o
transition temperature for the bulk of the sample was fou
to be close toTc , while the value ofTcm determined from
magnetic measurements is apparently associated with
surface phase. However, the behavior ofG in the vicinity of
Tc does not conform to the standard TM: the drop inGs(T)
below Tc begins much later than what is predicted by TM
Besides, in a certain temperature interval belowTc , the ab-
sorption is slightly higher thanGn(T). Such effects were
observed earlier in the amorphous alloy Pd30Zr70 and were
explained qualitatively by the electron renormalization of t
9991063-777X/99/25(12)/4/$15.00
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parameter of TLS interaction with an elastic wave.3 How-
ever, possible mechanisms of such a renormalization w
not discussed and quantitative estimates of its magnit
were not obtained in Ref. 3. We shall use the mechanism
adiabatic renormalization of the amplitude of cohere
tunneling4 to explain the peculiarities of sound absorption
the vicinity of Tc . This approach gives an acceptable qua
titative description of the dependenceGs(T).

The basic postulate of TM, which was confirmed irrefu
ably in experiments~see the review by Hunklinger an
Raychaudhuri2!, is the assumption that glasses have doub
well potentials with a tunneling link between the wel
whose density of statesp̄ is constant in the space of th
parametersj and lnD0 ~j is the asymmetry of a double-we
potential andD0 the amplitude of coherent tunneling!. The
response of the TLS system to an external perturbatio
determined by the average over the TLS ensemble. For
sake of convenience, averaging is usually carried out by
ing new variablesE5Aj21D0

2 and u5D0 /E in which the
density of states of TLS is independent ofE:

g~E,U !5
p̄

uA12u2
[g~u!. ~1!

Under the conditions of the experiment (v!T, v being
the frequency of acoustic vibrations!, the attenuation of
sound associated with the TLS is determined by the re
ation mechanism and is described by the following stand
expression:2

S Gv
v D

rel

5E
0

Eg /T d«

cosh2~«/2!
E

0

1

Cg~u!~12u2!
vn

v21n2 du.

~2!

Here«5E/T, Eg@T is the limiting energy, andn the relax-
ation frequency. In Eq.~2! and below, we have used th
© 1999 American Institute of Physics
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system of energy units (\5k51). The order of magnitude
of the TLS contribution to the velocity and attenuation
sound is determined by the parameterC. In the standard
TM,2 this quantity is a constant:C5C05 p̄g2/(rv2)(g
51/2(]j/]e) is the deformation potential,e the deforma-
tion, andr the density!, although a number of experiment
facts can be explained only by assuming thatC depends on
E, u or T.

The TLS relaxation is due to their interaction with ele
trons as well as phonons, although the contribution of
latter can be disregarded forT&1 K. The intensity of inter-
action of TLS with electrons is determined by the dimensio
less parameterh52n0(Vkk8

2 )1/2, wheren0 is the density of

electron states at the Fermi level andVkk8
2 is the square of the

matrix element of electron scattering at TLS from the statk
to the statek8, averaged over the Fermi surface.

In the standard TM, the interaction of TLS with ele
trons is considered in the framework of the perturbat
theory in parameterh2, which does not change the system
energy levels.5 The entire distinction between a metall
glass and an amorphous insulator is reflected just in
emergence of a new relaxation channel with a character
rate

n5
ph2

2
Tu2J~«!. ~3!

In the n-phase, J(«)5Jn(«)5(«/2)coth(«/2) and
n'h2Tu2. As long asv!T, there always exist TLS with
nopt;v, and the absorption~2! is practically independent o
temperature~‘‘plateau’’ region!.

In thes-state, we must use instead ofJn(«) the function
Js(«,D)(D5Ds /T,Ds) is the superconducting energy gap6

Js~«,D!5
1

2 ED

`

d«8
f ~2«8!

A«822D2 H «8~«82«!2D2

A~«82«!22D2

3
f ~«82«!

f ~2«!
Q@~«82«!22D2#sgn~«82«!

1~«→2«!J , ~4!

where f (x) is the Fermi function andQ(x) is the step
Q-function. The functionJs(«,D) is frequently encountered
in the theory of kinetic properties of superconductors. It h
a discontinuity at «52D, while aJs(«,D)→2 f (D) for
«!2D. As a result of a rapid drop in the value ofJs below
Tc , the maximum relaxation rate (u51) becomes less tha
v starting from a certain temperature whileGs(T)
‘‘freezes.’’

A nonperturbative analysis4,7 revealed a more compli
cated pattern. Even atT50, the initial coherent tunneling
amplitudeD0 in then-phase is renormalized as the adiaba
part of the interaction of TLS with electrons is taken in
consideration:

D0* 'D0S D0

v0
D h2/42h2

, ~5!
e

-

n
f

e
tic

s

wherev0 is the energy of the order of Debye energy.
For TÞ0, the TLS ensemble can be divided arbitrar

into three intervals according their position on theE-scale in
the n-state.

~1! The coherent tunneling regionE* Aj21D0*
2.T

~2! The region E* ,T,4Ẽ/(ph2) of coherent tunneling
with an amplitudeD̃5D03(2pT/v0)h2/4 and the en-

ergy splittingẼ5Aj21D̃2. Going over to renormalized
variablesE* and Ẽ as well as tou* and ũ during aver-
aging in each of the regions 1 and 2, relations~2! and~3!
remain valid.

~3! The low-energy TLST.4Ẽ/(ph2). In this region also,
the tunneling is incoherent and has an amplitudeD̃.
However, the vanishing of the factor (12ũ2) from Eq.
~2! is a reflection of the fact that the incoherent tran
tions between broadened levels occur with a variation
energy even in the symmetric case. The relaxation
quency

n3'
2

ph2 Tũ2«̃2
1

j ~ «̃ !
~6!

also changes in region 3.
It would appear that as a result of a decrease inn3 for

small «̃ @Eq. ~6!#, the contribution toG from the part of TLS
with Ẽ,AvT must decrease. However, this decrease is co
pensated by an increase in the contribution from symme
TLS, and the partial contribution from region 3 toG remains
practically the same as that calculated in the standard T
The contribution from region 2 also remains unchang
Only the contribution from coherently tunneling TLS~region
1! undergoes significant variation. Upon a transition to t
variablesE* andu* , the density of statesg(u* ) ~1! is renor-
malized as a result of a nonlinear relation~5! betweenD0*
and D0 , and acquires an additional factor (12h2/4). The
parameterC is also renormalized accordingly. If the boun
ary between regions 1 and 2 is located atE* ;T, the result-
ing value ofG in the n-phase decreases in spite of the fa
that the denominator in~2! decreases the contribution from
the high-energy TLS. BelowTc , the nonlinear relation~5! is
rapidly transformed into a linear relation:4 D0*

'D0(Ds /v0)h2/4, renormalization ofC vanishes, andGs(T)
below Tc may increase before ‘‘freezing out.’’

Let us now discuss the experimental results. Figure
shows the dependenceGs(T)/Gn(Tc) for transverse sound
The normalization factorGn(Tc)

21 used for presenting the
results can be easily determined from the variation of
amplitude of the acoustic signal betweenTc and the deep
superconducting state.

In the region of the low-temperature ‘‘tail,’’ the renor
malizationg(u) can be disregarded. The following estima
is obtained from~1!, ~2! and ~4!:

Gs~T!

Gn~Tc!
5

2ph2

3v
Te2Ds /T, ~T/Tc,0.3!. ~7!

According to this equation, the low-temperature regi
Gs(T) must become linear in coordinates ln(Gs(T)T21),T21.
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as can be seen from the inset to Fig. 1. The slope of
approximating straight line is determined by the superc
ducting energy gap which is in good accord with the BC
value: Ds(0)/Tc51.760.1(Tc50.9 K) or Ds(0)Tc51.8
60.1(Tc50.83 K). Intersection of the approximatin
straight line with the ordinate axis leads to the estimateh
50.6560.05. These data can also be used to refine the v
of Tc for the bulk of the sample. The slope of the appro
mating straight line and its interaction with the ordinate a
~see inset to Fig. 1! are by no means connected with th
choice ofTc . For a complete evaluation ofGs(T), we must
use the specific value ofTc . It can be seen from Fig. 1 tha
the theoretical curve forTc50.83 K is in much better accord
with the experimental data.

The closeness ofDs(0)/Tc to the BCS value indicate
that peculiarities in the behavior ofG(T) in the vicinity of Tc

are not connected with the magnetic depairing effects. Le
now discuss the applicability of the hypothesis of the el
tron renormalization ofC to the description of the behavio
of Gs(T).

Figure 2 shows the data on variation ofGs(T) andGn(T)
in the vicinity of Tc , measured with a higher resolution tha
in Fig. 1. The results are normalized to the valueC052.85
•1025 obtained from the slope ofvs(ln T) in the deep super
conducting state (T&0.3 K).1! The normalized value o
G(Tc) in the standard TM must be close to 0.5 forv!T.
Renormalization~decrease! of C naturally shiftsG towards
lower values. However, it has not been possible to mea
the value of attenuation with an accuracy better than 1
which would allow an analysis of the shift of the experime
tal dependence relative to the theoretical one. Hence we
sider only relative position of the linesGs(T) andGn(T) ~the
latter value is obtained in a magnetic fieldH'2T) which
could be measured with a much higher degree of accu
~Fig. 2!.

The meaning of the ‘‘anomaly’’ inG discussed above
can be seen clearly from a comparison of the experime
dependences with the theoretical ones obtained in the s

FIG. 1. Temperature dependence of attenuation inn (d) ands (s) states.
The solid curves correspond to calculations forh50.65 andTc50.83 K and
the dotted ones toTc50.9 K. The inset illustrates the evaluation ofDs(0)
andh. The solid line corresponds to the linear approximation.
e
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dard TM ~curve 1 in Fig. 2!. According to calculations, a
decrease in absorption begins atTc and continues as the
steepness increases upon a decrease in temperature. Th
perimental dependence clearly displays a different behav
Gs(T) does not display any variation atTc within the limits
of resolution, and a tendency towards an increase inGs(T)
over Gn(T) is observed at lower temperatures. In any ca
Gs(T) remains practically unchanged over a wide tempe
ture rangeT,Tc . More clearly manifested effects of thi
kind were detected earlier in the alloy Pd30Zr70.3 It was also
suggested in Ref. 3 that these anomalies can be assoc
with the electron renormalization of the parameterC.

The renormalization ofC indeed takes place in the allo
investigated by us. An irrefutable proof of this is the inte
section the dependencesvs(T) and vn(T) at a quite low
temperatureTcr ~its value for 62 MHz isTcr50.055 K). The
scale of renormalization is quite significant (dC/C0;0.25)
and is about double the quantityh2/4;0.09– 0.12, which
allows us to assume the existence of several mechanism
renormalization.2! Moreover, incompatibility of the scale o
dC/C0 with the anomalies inGs(T) indicates that these
mechanisms affect only insignificantly the TLS forming th
relaxation attenuation forT;Tc . It should be recalled tha
the main contribution toG(T) comes from asymmetric TLS
with uopt;Av/T!1. One possible mechanism of renorma
ization, which takes into account the fluctuational rearran
ment of the barrier in a double-well potential, is associa
only with the symmetric TLS8 and apparently makes no con
tribution to G(T).

The adiabatic renormalization does not impose any c
straints on the possible values ofu.7 In spite of the fact that
the condition«.1 moves the coherently tunneling TLS t
the region of action of the truncating factor in~2!, their par-
tial contribution to G(T) may be quite significant on the
scale of Fig. 2.

For the purpose of numerical computations, we used
model energy dependence of the renormalization param

FIG. 2. Behavior of attenuation in the vicinity ofTc in n (d) ands (s)
states. The experimental recordings are averaged, and the noise le
indicated by the bold vertical line. Curves1 and2 are obtained without and
with renormalization respectively;h50.65,d51.2.
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C

C0
512Q~«2d!@11~2 f ~D!21!Q~2D2«!#

h2

4
, ~8!

whered is a free fitting parameter. The first cofactor in th
term describing renormalization in Eq.~8! defines the bound
ary between the regions 1 and 2. Since the coherent am
tudeD0* decreases exponentially for«,1,4 such an approxi-
mation seems to be quite reasonable. The second cofact
~8! takes into account the fact that only normal excitatio
can contribute to renormalization for«,2D.

The results of calculations are also presented in Fig
~curves2!. The interval of approximate ‘‘independence’’ o
Gs(T) can be matched with that observed for a given va
h50.65 for a quite reasonable value ofd51.260.1. It can
be seen that the calculated dependenceGs(T) varies initially
below Tc in the same manner as in the standard TM. Sub
quently,Gs(T) displays a kink with a reversal of the sign o
dG/dT at T52Ds /d. The emergence of the kink is a cons
quence of the use of a step approximation in~8!. As long as
2Ds does not exceed the value ofE5Td, superconductivity
does not have any effect on renormalization. Apparently,
restriction on the renormalization ofC imposed from below
by a smooth function of energy decreases the variation
Gs(T) in the vicinity of Tc and eliminates the kink. The sam
result is also arrived at by the broadening of the superc
ducting transition which is quite natural for an amorpho
sample. Hence it can be really expected thatGs(T) will not
change atTc , as is indeed observed in the experiments.

Thus, the evolution ofGs(T) nearTc is determined by
two factors, viz., a drop inGs(T) due to a decrease in th
relaxation raten, and an increase inGs(T) as a result of
‘‘freezing out’’ of the renormalization ofC. In contrast to
the latter factor, the former is frequency-dependent,
hence the resulting variation ofGs will also depend on fre-
quency. Upon a decrease inv, the temperature interval in
which Gs(T).Gn(T) must expand, and vice versa. In pa
ticular, calculations show that an increase in frequency by
order of magnitude~measurements were made just at the
frequencies by Esquinaziet al.3! completely masks the effec
of the second factor for the same values ofh,Tc , and d.
However, Esquinaziet al.3 carried out measurements o
glass withTc.2.5 K. In this region,n is determined mainly
by phonons and depends weakly on the state of the elec
subsystem. Under these conditions, the ‘‘freezing out’’
renormalization must give an even more pronounced ef
than in our experiments, as was apparently observed by
quinaziet al.3
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In conclusion, let us formulate the main results. The e
perimental dependence of the absorption of sound in
amorphous superconducting alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5

was used to determine the superconducting energy
~which is found to be practically identical to the gap obtain
in the BCS theory! and the parameterh characterizing the
intensity of interaction of TLS with electrons. The departur
from the predictions of the standard tunneling model o
served in the vicinity ofTc can be explained qualitatively
and quantitatively by the adiabatic renormalization of t
coherent tunneling amplitude.
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1!This value ofC0 is double the analogous value presented in Ref. 1. T

departure is due to the fact that the value ofC0 was estimated in Ref. 1 by
using the linear dependencevn(ln T) whose slope depends significantly o
the renormalization ofC. The latter was not taken into consideration
Ref. 1. The value ofh presented in Ref. 1 is also found to be exaggera
for the same reason.

2!The effect of renormalization ofC on the velocity of sound will be con-
sidered in a separate publication.
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