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We report the first observation of the lock-in transition in artificial superconducting superlattices,
which takes place in tilted magnetic fields. The measurements were carried out on the Mo/

Si layered system. The temperature dependence of the critical angle for the trapping of the vortices
in the orientation parallel to the layer planes is determined by the previously known

resistive method and by a new method based on the effect of commensurability between the
intervortex distance and the superlattice wavelength. The temperature dependences of the critical
angle obtained by the two methods practically coincide. The experimental results are

consistent with the theoretical predictions of Feinberg and Villard.2@0 American Institute

of Physics[S1063-777X00)00402-3

INTRODUCTION this case only the value&,=N; (N is an integer are al-
| q q isiah id ificial lowed; Z, remains constant over a wide range of applied
'V'a”y. ayered supercon l_JCtO( gh-T oxides, artificial field intensities, while the unit cell area of the vortex lattice
superlattices consisting of high-temperature compounds Raries with the field only on account of flux line displace-

conventional superconductors, intercalated dichalcogenide§nents along the layers. In the framework of the Lawrence—

etc) have an inherently large anisotropy of the physical Pahoniach approach, for relatively high magnetic fields a se-

rameters. It is kpgwn .that such an anisotropy plays a ver uence of first-order phase transitions between the vortex
important role, giving rise to many new phenomena, such Pttices with different orders of commensurabilityl is
the dimensional crossover, fluctuation-induced deCOUp”n%redicted“

and melting of the vortex latticéVL), intrinsic pinning,

. - . . Oscillatory dependence of the critical currdgton the
lock-in transition, and so on. The static and dynamic proper- o . .
; >para||el magnetic field owing to the commensurability effect

from those in the homogeneous type Il superconductors. adlas been observed on several kinds of multilayers: Nb/Ta

cording to the results of Ref. 1, the unit cell of the VL should(Ref' 3. Nb’PF' (Ref. 4, and Mo/Si(R_ef. 9. It was ghown .
be strongly distorted compared to the equilateral triangle thdfat thel; oscillations are accompanied by resistivity oscil-

is characteristic for the Abrikosov VL. The VL parameters ations, and all features of thig vs. H and | vs. H curves
should depend intrinsically on the anisotropy coefficient correlate’> However, at low temperatures the zero-resistance

=(M/m)Y2 and on the angle between the applied magneti(gegions.that manifest thg reentrancg of supercanucrtivity
field H and the anisotropy axis. HeM is an effective mass 2aPPear instead of the resistance minima. The majority of the
along the normal to the layer planes, amds the in-plane ~féatures of the nonmonotonic and reentrant behavior may be
mass. The influence of the anisotropy on the properties of thgxPlained quantitatively in terms of the Iviev—Kopnin—
layered superconductor is revealed most dramatically in &0krovskii theory’” The positions of the resistance minima
parallel field and in a range of angles which are clos# to and zero-resistance regions correspond to the stable states of
—0° (A=0° for H parallel to the layes In particular, for ~the commensurate vortex lattices.

parallel magnetic fields the effect of the commensurability At temperatures close to the transition temperafliye
between the intervortex distance in the VL and the layerednot all of the above-mentioned effects have been observed,
structure period leads to oscillations of the critical current, because the intrinsic pinnirig,which creates large barriers
resistivity, and magnetizationn® The theory of the matching for the transverse motion of the flux lines and gives rise to an
effects for this situation was developed in Refs. 7-11. Ofeffective locking of the vortices between the superconduct-
special interest is the situation of strong layering considereng layers, becomes strong at temperatures sufficiently low
in Ref. 10. It was shown that when the intrinsic pinning that the conditioré, (T)<s holds'***Here¢, is the coher-
energyE, exceeds the elastic energy of VL shear deforma€nce length in the direction orthogonal to the layer planes.
tion Eg, the vortices cannot cross the layers, and the period It has been showfi that the intrinsic pinning causes an-
Z, of the VL in the direction orthogonal to the layers is fixed other interesting phenomenon, namely a lock-in transition.
and is determined by the initial conditions under which theDue to the anisotropy, at relatively small tilt angles the con-
vortex lattice was formed. This means that the VL shouldfinement of the vortices parallel to the layer planes becomes
always be commensurable with the periedsf the underly-  energetically more favorable than the creation of tilted vor-
ing pinning potential connected with the layered structure. Irtices. The manner of the flux penetration in the oblique fields
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is modified at angles which are close e 0°. Experimen-
tally the lock-in transition is observed by several different
methods. Among them are the measurements of the micro- Z
wave dissipation at different orientations l8f'° the lock-in
transition is identified by the change in the dissipation H
mechanisms, which are controlled by the parallel and per- 0
pendicular components of the dc magnetic field, respectively. A
Evidence about the lock-in transition may be obtained from
torque experiment§~*®and from ac magnetic susceptibility Y
measurementS, from magnetizatiod®?! and from resistive
measurement€. A comparative analysis of all the methods X
used for determination of the lock-in transition is presented
in Ref. 21. All these investigations have been performed on
single crystals of high-temperature oxides and organic lay-
ered superconductors. FIG. 1. Geometry of the experiment.

It is known that artificial superconducting superlattices
consisting of conventional superconductor films and some
insulating interlayers may perfectly imitate the properties oftails about the sample preparation and characterization may
high-T, compound$3-2° The cited works concern the flux pe found in Refs. 27—29.
line creep and thél-T phase diagram. Obviously, observa-  The transport measurements were performed in a stan-
tion of the lock-in transition may be also expected in artifi- dard helium crystal equipped wita 5 T super-conducting
cial superconducting multilayers. Here we report on findingcoil. The geometry of the experiments is shown in Fig. 1.
the lock-in transition in Mo/Si superlatticé®ith a tempera-  The orientation of the sample holder in the magnetic field
ture of the superconducting phase transition of aboud 4K was changed with the help of special rotation mechanism.
For the study of this phenomenon we have used the resistivehe accuracy of the determination of the angle between the
method described by Kwodkt al,** as well as a new method applied magnetic fieltd and the layer planes was no worse
based on the effect of commensurability between intervortexhan 0.1°. During the rotation of the sample the transport
distance and the superlattice wavelength. We believe that thgurrent was always perpendicular to the applied magnetic
latter method provides the clearest evidence of vortex lockfield. The parallel orientation was identified by finding the
ing between the layers in tilted fields as compared with allminimum in the resistance. The stabilization of the tempera-
other methods mentioned above. The explicit temperaturgyre at a given point was about 19K. The critical magnetic
dependence of the critical angle for the lock-in transition isfields were defined in the resistive transitions with the use of
obtained for the first time. the criterionR=0.5R,. The resistance measurements were
carried out using the standard four-probe technique with a
transport current of 1 mA.

SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURE

The measurements were carried out on a Mo/Si multi-
layered sample with Mo layer thickness of 22 A and Si IayerEXPERIMENTAL RESULTS AND DISCUSSION
thickness of 34 A. The sample consists of 50 bilayers. The In Fig. 2a the typical dependences of the resistance on
Mo/Si multilayer was prepared by two-magnetron sputteringthe parallel magnetic field at different temperatures are
onto a glass substrate &t=100°C in argon. The working shown for a case of strong intrinsic pinning. At temperatures
pressure of argon in the deposition chamber was 3lose to the transition temperatufe all the resistive curves
X 10 3torr. The initial vacuum was no worse than are smooththey are outside the scope of this figuBegin-

10 8 torr. ning from the temperature 3.5 Khe T, for this sample is
Small-angle x-ray diffractometry was used for the deter-3.67 K), minima appear on thR vs. H; curves, and at still
mination of the superlattice period and for checking the delower temperatures these minima are transformed to zero-
gree of sample perfection. The number of satellite lines omesistance regiond-ig. 2b). These dependences closely cor-

the diffractograms for the samples investigated is 4, whileelate with the dependence of the critical currenmdnH,, as
for multilayers prepared in the same way with wavelengthsFig. 2c shows. As was proved recentiguch honmonotonic
equal to or exceeding 100 A this number is about 10 or morebehavior of the critical current and resistivity and also the
These data attest to the high regularity of the layering. Theeentrance of superconductivity may be explained in terms of
same conclusion follows from an electron microscopy investhe commensurability effect that should be observed under
tigation of the sample cross section. The latter also showthe condition of strong intrinsic pinning. The locations of the
that the roughness of the interfaces does not exceed 7-8 R vs. H, minima (and thel ., maxima, respective}ycorre-
The multilayer period was determined with an accuracy ofspond to the stable states of the commensurate vortex lat-
0.1 A tices. For the parallel field the positions of the minima do not
The x-ray diffraction data showed that the silicon layersshift with temperature, as would be expected for the match-
are amorphous and the molybdenum layers are microcrystaing effect. The manifestations of the commensurability ef-
line, with a crystallite size of several nanometers. More defects appear below some temperatlicge where the condi-
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FIG. 3. Magnetic field dependences of the resistance at different orienta-
tions of the applied magnetic field @t=3.44 K (a), and 3.503 K(b).

essentially differenR vs. H, curve patterns can be observed
on the same sample, as was shown in Ref. 5. Obtaining one
or another vortex arrangement depends on the magnetic his-
tory. In this paper we shall deal with only one of the possible

kinds of R vs. H, curve presented in Fig. 2.
If the lock-in transition exists in the system investigated,

one should expect the appearance of resistivity minima at
Small tilt anglesd, as well(the angle#=0° for the magnetic

FIG. 2. Resistance as a function of the parallel magnetic field at differen
field parallel to the layer plangsin the range of angles

temperaturesT, K: 3.504 (1); 3.478 (2); 3.467 (3); 3.462(4); 3.459 (5);
3.453(6); 3.447(7) (a); at T=3.44 K(b) Critical current as a function of the

parallel magnetic fieldc).

where the vortex lines are trapped between the superconduct-
ing layers, the position of the resistance minima is bound to
remain constant because the VL structure stays unchanged.

tion £, <s/v2 is met® This temperature, as was mentioned As Fig. 3a shows, this is indeed the case at sufficiently low
above, is equal to 3.5 K. The data presented in Fig. 1 correeemperatures. At larger angles the minimum disappears. The
spond to the stable states of commensurate VL configuraeritical angleé, dividing theR vs. H curves with and without
tions withN=1 andN= 3. Other vortex arrangements with a minimum depends on temperature, as follows from Fig. 4.
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FIG. 4. The critical angle as a function of reduced temperature: obtained 0, deg

from the plots similar to Fig. 3é@); determined in the way shown in Figs.

5 and 6(A). The arrow shows the cross-over temperature. FIG. 5. Angular dependences of the resistance at different magnetic fields
H, T: 0.2(1); 0.3 (2); 0.4 (3); 0.5 (4).

At high temperatures there are no features onRhes. H;
curves ford=0° or for the tilted fields either. The first slight
kinklike hints appear af = 3.5 K (Fig. 3b), and for this tem-
peratured, is equal to zero with an accuracy of 0.1°.

In the paper of Kwoket al?? the lock-in transition was y=(M/m)l’zz(dHC“/dT)|Tc/(dHcl/dT)|TC.
also observed on YBEwWO, single crystals by the resistive .
method. A sharp drop of the resistance was found orRhe As the abqve formula shows, the value of the crltlcal .angle
vs. 0 curves in the range of small angles and was convincfc Separating the two ranges of angles, the one in which the
ingly interpreted by the authors as evidence of the lock-irvortices are parallel to the layers and the one in which the
transition. The critical angle, in these experiments was direction of the induction vectd is tilted with respect to the

. c . ; . . .
about 0.3°, and it was practically independent of temperaI_ayers, is mainly determined by the barrier height. The value

ture. However, the latter statement cannot be considered A al(T) grows _W'th decreasing temperature._ If the Cm.'cal
very reliable because the investigations were carried out in gngle is determined from thid; vs. 6 curves, like those in

very limited temperature rangd@{T.=0.993-1). Probably Fig. 6, Fhe variation o with thg change of the temperature,
the too-high slopeiH,, /dT|;_of the parallel critical fields 2ccording to formulaT), may influence thef, value, too.
c This may lead to a decrease &f at low temperatures. How-

thuarsesg.)revented those authors from going to lower temperae—ven the characteristic magnetic ittt ~H_,(T) also in-
A similar sharp drop in the resistance is observed in our
experiments in the vicinity of the parallel orientatidfig. 5; 6
compare it with Fig. 2 in Ref. 221t corresponds to the fast
increase of the critical magnetic field in the same range of
angles(see Fig. 6, curve 4 As Figs. 5 and 6 show, thd,
vs. 6 curves allow one to determing, as well as thR vs. #
curves do. Curves ofl.,(6) for different temperatures are
presented in Fig. 6. The values éf obtained from these
plots are displayed in Fig. 4 along with those obtained from
the plots similar to Fig. 3a. It is seen that tlée values
determined by the two methods differ insignificantly.
According to the theoretical results of Feinberg and
Villard,'* for H,;<H<Hy, the region of field orientations
for which the flux lines are trapped parallel to the lay@ies.,
the critical anglef.) should depend on the barrier height
associated with the intrinsic pinning, on the anisotropy pa-

Here the fieldH* is of the order of the first critical fielt . ;
the value a; characterizes the barrier heighta;(T)
=exp(—cé(T)/s); c is some numerical constant

rametery, and on the magnetic field intensity. The value of 0 2 4
the critical angle is determined by the expressfon 0, deg
1 * H* 1/2
cog90°—4,)= —|2a;—| 1+ ,},2_ ) FIG. 6. Angular dependences of the parallel upper critical field at different
¢ TH H temperatured, K: 3.441(1); 3.362(2); 3.318(3); 3.252(4).
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The electromagnetic waves propagating inside a parallel-plate transmission line are investigated.
In the case of a finite penetration depth of the electromagnetic field into the metal, a
longitudinal electricE wave propagates in the the line instead of a transverse electromagnetic
wave. At small thicknesses of the dielectric this wave goes over to a Swihart wave, and

at large thicknesses of the dielectric it is converted into a surface gmasmon. It is shown

that there exists an optimum thickness of the superconducting film coating the parallel-

plate transmission line, for which the electromagnetic wave experiences the maximum slowing
down. Using waveguides for surface waves, one can construct surface-wave microwave
resonators. These resonators have a highly uniform microwave current distribution and, have a
high concentration of microwave current in the superconducting film, and they are simple

to fabricate. ©2000 American Institute of Physid$s1063-777X00)00502-3

INTRODUCTION propagation constant for a Swihart wave is larger than the
. . . . . propagation constatit/= for an electromagnetic wave in the
A parallel-plate line(Fig. 1) is a convenient single-mode dielectric, and that the difference becomes greater as the film

model for real microstrip transmission lines, as it admits ANpicknessb is reduced. Fob<\, . however formula(1)
analytical investigation of the waves in such lines. It was forbecomes invalid since.fd\I:O theL é:onstan,B ’_)oo but this
a parallel-plate line that Swihart waves were observed in- ' N '

. . is just the simple case of an open planar two-dimensional
stead of transverse electromagnetic waves in the case of X . . - .
L . e ielectric waveguide, which has a finite propagation constant
finite penetration depth of the electromagnetic field into the

metal® Ba<kye.® According to Ref. 3, forb;=b,=0 andkde

For example, for identical superconducting filhsand <1 we have
2, b;=b,=b, the propagation constant for Swihart waves

k2d? 1\2
2_ 1,2 _
was given in the classical monograph of Van Duzer and Ba=k1+ 4 (1 8) ' )
Turnef as We see that under no circumstances does forri)laeduce
L to (2), and it must therefore be refined for~0. The case of
B2=k?%| 1+ ——coth— (1) ; o ; ; ;
s d A thin superconducting films is extremely interesting for prac-

tical application, since a decrease in the thickness of the

> X films is accompanied by an increase in their kinetic induc-
frequency of the electromagnetic fieldis the speed of light  (5nce which is fundamental to the working principles of

in vacuum, and\_is the London penetration depth; formula g serconductor-based parametric and nonlinear detices.
(1) is valid for kd\e<1. It is seen from(1) that because of o yever, this inductance does not increase to infinity, as is
the penetration of the field into the superconductor, th‘?mplied by (1), but to some maximum value, which would be
useful to find for many technical applications.
Besides Swihart waves, a finite penetration depliads

4 to the onset of surface electromagnetic waves, i.e., surface
b AN N NN\ 1 x plasmons propagating along metallic surfaces, which have
T been well studied from the microwave to the optical
regions>® At the other extreme from the Swihart case,
kd\/E§> 1, the propagation constant for plasmons can be writ-
y ten a

Ba=k?e(1+k%e\?), (3)

b, ////// 2 where\ is the complex penetration depth of the electromag-
} 5

wherek=w/c, d is the thickness of the dielectria is the

netic field into the metal.
In this paper we show that Swihart modes and surface

FIG. 1. Parallel-plate transmission line: metal filfis2); dielectric with ~ Plasmons are differ?nt limiting casékdye<1 andkdye .
dielectric constant (3); free space4,5). >1) of a unified Swihart—plasmon wave that propagates in

1063-777X/2000/26(2)/7/$20.00 108 © 2000 American Institute of Physics
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the general case in waveguides with a finite conductivity of ~ We shall seek the solution in the form of harmonic
the walls. Figure 2 shows a schematic illustration of the elecwaves propagating along the axis, i.e., the electric and
tric field lines corresponding to these limiting cases. Formagnetic field€, H~ exp(jot—]B2). Assuming, in addition,
kd\e<1 [Fig. 2b] there exists a Swihart wave which far  that the fields are uniform along the transverse gxisve
=0 (ideally conducting metalgoes over to an ordinary obtain the following system of equations describing the
transverse electromagnetic wayBig. 2d. For kdye>1  waves in the parallel-plate line shown in Fig. 1:

[Fig. 2¢| surface plasmons propagate above the metal sur-

face; they have no analog at zero penetration depth of the 92 .
field into the metal, i.e., they do not exist in the case of (_2+ki2 E,=0; i=1,..5 4
infinite conductivity. Finally, the general case of Swihart—

Iolatsrrlor(; mol(zj_es,zv(\j/hl'zg IS realized for z:\jrbltra:ﬁﬁ, IS I;I- fwhereki is the transverse propagation constant in the corre-
ustrated in Fig. 2d. increases, so does the number o znponding mediuni. In free space=k2=—a?=k?— g2,

?Iectrlc;!elr:j :L?es that ar(te cI(_)rshed gn .tr?etsame metal surfacg i, dielectri&3=k?s — B2. In superconducting media
rom zlr\:l 'Ct ey fongln? €. eth WII art .W?Vﬁj g]?esh.o;]/grand 2 the transverse propagation constant is ordinarily ex-
completely concentrated around either of the two metal su’€55€d 1 terms of the complex pentration depth
) o TR STIN 2= — 1/k? (Ref. 7. In the case of type-Il superconductors
faces, whereas for the Swihart wave the electric field is dis- ' i 7 yp P

. . such as HTSCs); is determined not only by the London
tributed symmetrically around both surfaces. At zero pen- " i ! : y by

. . . ) enetration depth, but also by the presence of normal elec-
etration depth of the field into the metal, the SWlhart—p PR y P

lasmon wave, like the purely Swihart wave, goes over to trons, by the magnetic field, by thermodynamic fluctua-
P ' purely 9 ?ions, etc. Here we shall use an expressionfoobtained by
transverse electromagnetic wave.

) ) ) . . . Coffey and Cler with allowance for the normal electrons
Thus our task in this paper is to investigate waves in

. . ; . ..and magnetic flux vortices:
parallel-plate waveguide for arbitrary relationships among its 9
parameter®,, b,, d, &, andA.

, M= (128
R EIINSES

®

GENERAL DISPERSION RELATION _ _ _ _
wherel ; is the london penetration depth in théd medium

In the general case, the parallel-plate line shown in Figand in general depends on the temperature and magnetic

1 admits the existence of longitudinal electric and longitudi-field, \, =\ (t,B) (Ref. 7; t=T/T., whereT, is the critical

nal magnetic waves, tHe andH modes, respectiveR® We temperature;

restrict analysis to only thE modes, since both the Swihart

waves and surface plasmons &enodes which, in the case , 2B®g[{+ (0n)?+j(1-wr]

of infinite conductivity of the metal, go over to transverse v o[ 1+ (@) ;

electromagnetic waves. Furthermore, Bhenode, unlike the

lower E mode, has a critical wavelengih,~2d and cannot ;' is the magnetic permeability of the vacuum;is the

exist in microelectronic structures féudys<1. viscosity of the magnetic fluxp, is the magnetic flux quan-
tum; gzlgz(v), where 1, (x) is the kth-order modified
Bessel function of the first kind;=U/2kgT; U is the height

/% a /K b of the potential barrier for magnetic flux vorticekg is
e \— prmmm——— Boltzmann’s constant;
12(v)—1
d d -1
Kp lo(»)11(v)’

—_— _— and, k, is the elastic constant of the vortex latti¢the
z . .
c d Labusch parameterin the absence of magnetic flux vorti-
n/x T/ K ces,8,=0, ignoring the magnetic flux creep#$ 1) leads to
U (=0 and7r=n/k,.
The normal conductivity in(5) is represented by the
d=oco d term containing&ﬁz 2p, ! now, Wherep,, is the resistivity of
the normal electron liquid, which, like, , depends off and
A m B: p,=pn(t,B), as is discussed in detail in Ref. 7.
I —— 7 Formula(5) for the penetration depth is both for an or-

S ~dinary, nonsuperconducting metal and for a superconductor
FIG. 2. Patterns of electric field lines in a parallel-plate transmission line in

different limiting cases: transverse electromagnetic wave,0 (ideally at a temperaturd aboye the tranS|t7|on temperatufg.. In
conducting metal(a); Swihart wave \ #0, kd\e<1 (b); surface electro- the latter Casg on can just sef; :_Oo' . .
magnetic wave(plasmon, A#0, kdye>1 (c); Swihart—plasmon wave, The solution of system(4) in the different regions
N#0 (d). i=1,2,...5 has the form
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i=1, Esx<§+bl, E,a,e/*1+c e MM,
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i=3, —Esxs > E,=az sin(kgX) + c3 cog k3x),
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FIG. 3. Dependence of the propagation @rmof a Swihart wave on the
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From the continuity condition for the tangential compo- superconducting film thickness for different temperatufesT.=91 K (1);
nents of the electric and magnetic fields at all the boundarieér =90K (2). The dashed and solid curves were calculated according to

x=(—d/2)—b,, —d/2, d/2, (d/2)+b,, one can obtain the
following dispersion relation for the parallel-plate line shown

in Fig. 1:
tankyd= , (7
0,0,-1
where

_kzs)\llz coth(by o/\1 ») — (K?\ g o/ @)
127 k3 1—(K®\yo/a)cothbyo/Ngo)
In the symmetric cas€b,;=b,=b; A\;=\,=\; 0,=0,
=0), Eq. (7) simplifies to
k,d

tanT =-0, (9)

k%N coth(b/\)—(k?\ a)
ks 1—(k°\a)cothb/\)”

8

(10

ormulas (13) and (11), respectively;d=1 um, £=9.8; see text for the
parameters of the superconducting film.

where f(b,\) is a function describing the influence of the
finite thickness of the superconducting film:

coth(b/\) — (k®\/\/ 2 —K?)

o = oty (B 1) 12
For b/A>1 the functionf(b,\)=1; in the case

k?\ coth(b/\)< /82— k2 (13
the functionf (b,\) =coth®/\), and expressiofill) reduces
to the form

B?=k%e| 1+ %cotr(:—i + %cotr( i—z) } (14)

which is analogous to expressi@l) for the propagation con-

Equations similar tq7)—(10) have been considered repeat- stant 3 of a Swihart wave if the London penetration depth
edly in the literature, but they have been investigated only, in that expression is replaced by the complex penetration
for kd\e<1, i.e., for the case of Swihart waves, and, be-depth\ from Eq. (5), which takes into account the influence
sides, they, like Eq(1), were not set up to be valid in the of the normal electrons and magnetic flux vortices. Then Eq.

limit b—0 (see, e.g., Ref.)9

(14), unlike Eq.(1), leads to a complex value for the propa-

Equations(7)—(10) describe a Swihart—plasmon electro- gation constant, which reflects the fact that active losses arise
magnetic wave existing between two conducting planes. Th# the transmission line.

pattern of electric field lines obtained from these equations is

Condition(13), and, with it, formula(14) are valid down

shown in Fig. 2d. We shall show below that in different to film thicknesse©=10"2\, i.e., practically always. It is
limiting cases these equations describe both a Swihart wavwenly nearT, (for (T,—T)<T,) that Eq.(11) must be used

and a wave of surface plasmoffer kd\s<1 andkdys

instead of(14). This is plainly seen from Fig. 3, which shows

>1, respectively. It is only in these simple cases that the the results of a calculation of the propagation constgrftsr

propagation constant has the simple fofi—(3); in arbi-

Swihart waves as functions of the superconducting film

trary cases either an approximate solution or a numericahicknessb for two temperaturesT, andT,— 1 K. In all the

analysis of the dispersion relations must be used.

LIMITING CASES
1. Swihart waves, kd\s<1

calculations here and below we have taken the following
values for the parameters of the HTSC filmg;=91K,
A.(0,0)=2.5x10""m, p,(0,0=1x10 5Q-m. According

to Fig. 3, at a temperature only 1 K beloliy one may use
formula (14) to film thicknesses down to a few nanometers.

We have the following equation for determining the As the frequency increases, the regionTofand b values

propagation constarg:

B?=k%e| 1+ Ef(b N+ Ef(b \o) (11)
d 1M1 d 2:11\2) 1y

in which formula (14) is valid becomes smaller: for
f=100GHz in the region of liquid-nitrogen temperatures
this formula is valid only fob=0.1um. We see from Fig. 3
that there exists an optimum thicknebsg,; of the HTSC
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FIG. 4. Temperature dependence of the cha®g&T of the propagation
constant of a Swihart wave for various frequendiesGHz: 1(1), 10 (2),
100(3); d=1 um, £=9.8,b=0.1um.

FIG. 5. Change)/dB of the phase constant with magnetic field as a func-
tion of the thicknes,=b,=b of the superconducting filmgj=1 um,
f=10GHz,T=90.9K, £¢=9.8.

films for which the propagation constant of the Swihart wave

reaches its maximum valug,; for b<b,, the propaga- B?=Kk?e[1+k?eN? cott?(b/M)]. (16)
tion constant falls off rapidly to the value for a planar dielec- As one would expect, Eq$15) and (16) go over to Eq.(3)
tric waveguide B4 [Eq. (2)]. for b>\.

The presence of superconducting films caySgso de- Equations(15) and(16), like (11) and(14), are valid for

pend on various kinds of external influenCeBy a suitable  poth normal metals and superconducting films. In actuality
choice of the parameters of the transmission line one cathe waves in these two cases do not have any fundamental
optimize the line from the standpoint of creating parametricdifferences: the penetration depthand, with it, the propa-
devices, controllable phase shifters, and highly sensitive slyation constant are complex quantities\=\'+j\”,
perconducting temperature and magnetic field sensors. Syg—= g’ —jg". It is only for an ideal superconductor having
tems with very thin superconducting films have been anano normal electrons, i.e., @=0, that\ =\, and the damp-
lyzed previously. For example, it was shown in Ref. 8 thating coefficientg”=0. In the general case one can therefore
the controllability of a microwave system containing a thinstate that the existence of surface plasmitike that of Swi-
superconducting film also has a maximum as the film thick-hart wave requires not the damping of waves in the metal,
ness is decreased, but this maximum arose not because & is correctly asserted in the study of normal metddst
accurate allowance for the influence of the film thickness butather the presence of a finite penetration deptf electro-
rather was due to allowance for the finite width of the film. magnetic waves into the metal: the larger the valug,dhe
At a fgm width of 25 um, as in our case, one has greater the slowing of the wave, and the more strongly it is
b~197 A “squeezed” toward the metal. While for a normal metal the
Figure 4 shows the temperature dependence of the rajgenetration depth and the damping are uniquely related, for
of changedB/dT of the phase constant for several different superconductors there is no such connection.
frequencies(f=1, 10, and 100 GHz We see that nedr. Figure 6 shows the frequency dependence of the Q fac-

the value of 9B/dT can reach very high values tor Q=p'/2B" for surface electromagnetic waveplas-
[10°(m-K) "!], which correspond to phase shifts

~10° deg/K.
Figure 5 shows the rate of change of the phase constant 116~
near T. upon changes in the magnetic field3/9B, as a 10
function of the HTSC film thickness. According to this fig-
ure, 9B/dB has a resonance dependence on the film thick-
ness, with the maximum occurring preciselybat b,,;. The =
temperature rate of change of the propagation constant, &
dBIJT (see Fig. 4 also has a maximum neér=b,y, i.e., T :
both here and for determiningB/dB, one must use formula T 10%
(11) to obtain correct results. :

YT

2. Surface plasmons, kd\e>1

100E s '
The propagation constant has the form 10° 10"

B2=k%e(1+k2e\f?b/N). (15)

. X . . FIG. 6. Frequency dependence of the Q factor for surface plasmons propa-
As in the case of Swihart waves, when conditi8) iS  gating above a HTSC filni1) and above a copper filrt2); b=10um,
satisfied, one hag(b/\)=coth{/\) and T=77K, e=1.

10" 10'°

, Hz
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mon9 propagating above a HTSC film and above a coppe#. Dielectric image waveguide

f||m.. we see that the Q factor is Iarg(_ar _aII the way to the Image waveguides are widely used in integrated oftics,
region of infrared wavelengths, and this is conducive to the

ful licati ¢ ’ | . i and there have been attempts to use them in the microwave
successful application of surface plasmons in nonlneaFange as well® The simplest image waveguide is a

optics” Superconducting films, because of the stronger frei/vaveguiding dielectric layer on a metal surface. Of course,

quency dependence of the damping, have advantages ngﬁy HTSC film grown on a dielectric substrate is a natural

films of normal metals only in the microwave region, for the image waveguide. Here the wave propagates mainly in the
parameters we have chosen and ffer90 GHz (see Fig. & substrate, periodically reflecting off the superconducting film

BZ=K? 1+K?2

Hm;vever, even at hlgher frequencies, all the way up 10,1d the dielectric—air boundary.
10*2Hz, their Q factor is much greater than that for micros- To go from a parallel-plate transmission liteee Fig. 1
trip Imgs a{wd hollow \;vavegllﬂdes. It |? therefque (?]xtremr:elyt0 an image waveguide, we can just $gt=0. We then
s:a?/rirc];in?orothf?ers:r:;fze f?e?qi@r?gj rg;grga %ﬂgreoc?r?g stﬁfbtain a waveguide consisting of a dielectric layer of thick-
. . ) " . nessd on a metal slab of thickneds,.
have low losses combined with a high amplitude of the mi- The propagation constant 02 dielectric image wave-
crowave current flowing along the surface of the supercon- uide can be obtained from Eqd) and (8) with b;=0. In
ducting film through the Josephson contacts, in which th§ghe most interesting case thd£<1 and condiltior(iB)
Zf;epciittlj)ggonllnear phenomena is proportional to the curren}S satisfied, one has
The propagation constant of surface plasmons, like that dl1- 1 N b\]? 1
of Swihart waves, can be altered by the application of a static e A cot N ' (17)
magnetic field, but the change in this constant is much . . .
smaller for surface plasmons on account of their muchOf course, in the absence of the dielectric subs't(rzatvel or
smaller slowing in comparison with Swihart waves. In fact, itdzo) expressior(17) goes over to the propagation constant
follows from a comparison of1l) and (15) that the addi- for surface plasmo_nél6) in vacuum above a "_‘Eta' surfa_ce.
tional contribution to the propagation constant in the case oWhen a_substrate IS pr_esent the wave properties for an image
Swihart waves is proportional th/d, whereas for surface wavegmde are determined by both the parameters of the di-
plasmons it is~k?\2<\/d. Therefore, for the sake of brev- electric and the parameters of the metal fikespectively the
ity, we shall therefore omit consideration of this effect. first and second terms in the square brackets in formula
' (17]. In the majority of real cases the contribution of the
dielectric is substantially greater than the influence of the
penetration depth of the electromagnetic field into the metal,
3. Swihart—plasmon waves and the properties of the surface electromagnetic waves in an
The expressions obtained above for Swihart wailds image waveguide with a HTSC are practically no different
and surface plasmond5) are valid in the limiting cases from those for a dielectric waveguide. The only exception is
kdye<1 andkdys>1, respectively. In general one must at temperatures close 1q , when the role of the second term
use the dispersion relatioff), which is a transcendental N Square brackets ifL7) can grow strgngl.y..We note that in
equation and admits exact analysis only by numerical meth€@mparing formulag2) and(17) for A =0 it is necessary to
ods. With some loss of accuracy, however, one can make douPle the heighd of the waveguide in Eq(2), since there
simplification of relation(7) for arbitrarykd as well. For this 2 isolated dielectric waveguide was belnlg conS|dered,r\1/yhr|1Ie
one must make use of the fact that the transverse propagatidh Ed- (17) it was a waveguide on a metal substrate, which,
constant in the dielectric layefsee Fig. 1 k= (k% because of reflection effects, doubles the height of the wave-
— B%)Y2, becomes an imaginary quantity when the electro-gmde’ and its properties will be the same as for an isolated
magnetic field penetrates into the metallic walls. Then thewavegwde with twice the heigfit.
tangent on the left-hand side ¢f) goes over to the hyper-
bolic tangent, which for arbitrary values of the argument can>URFACE WAVE RESONATORS
be represented in the form tamhx/(lJ_rx). This relation_is A piece of waveguide bounded in the direction of wave
exact forx—0 andx— o, and the maximum error at~11is  propagation is a resonator whose resonance frequency is de-
not more than 35%. As a result, we have the following aptermined by the lengtt of the piece. This statement also
proximate expression for the propagation constant ofpplies in full measure to surface waves — surface plas-
Swihart—plasmon waves, which is valid for arbitrary thick- mons, waves in an image waveguide, etc. Thus a resonator

nessesl of the dielectric: can be a separate metal slédr film) on a dielectric sub-
2\ strate, a film on a substrate with an external dielectric at-
B?=k%e{ 1+ Ff(b,)\)-i-kzs)\zfz(b,)\) tached to it(a sandwich, etc!! Let us discuss some of the
features of such resonators.

1 2 1z 1. The resonant lengthes Of the resonator will differ
il mfl(b/?\)) “ substantially from the values required by the conditign
=n/B because the field goes beyond the confines of the
As it should, this expression reduces to Edd) and(15) in resonator out its ends. Effects of this kind will be extremely
the limiting casekd\e<1 andkd\e>1, respectively. strong on account of the small differences of the propagation

|2+
2
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constantsB of the surface waves from the propagation con-of field lines in a surface-wave resonator is extremely close
stant of electromagnetic waves in free spésee Eq.(16), to that for the fundamental mode of a rectangular waveguide.
for example. In addition, a real resonator has a finite width, The resonator can be excited by simply placing it in a wave-
and, as a result, the fields penetrate to the opposite side of tigglide in such a way that theaxis of the resonatdisee Fig.
metal film not only on account of penetration of the field into 1) lies along the electric field lines of the waveguideit the
the metal but also as a result of the bending of the magnetigPper edge of the millimeter and submillimeter wavelength
field lines around the metal surface. For this reason the resdanges the relatively high Q factor and simplicity of con-
nant length of a half-wave resonator can be almost cme_struction make_sur_face-wave resonators the best choice for
fourth less than would be required by forml) or (17).2t  integrated applications.
An exact calculation of the resonant frequencies of a resona-
tor must be done in the many-wave approximatfeand not  coONCLUSION
the single-wave approximation, as in the present paper.

Up till now we have been talking about half-wave reso-
nators in which both ends of the resonator are bordered bg

free space. If one end of the resonator is in contact with &ms of a normal or su ducti tal. In th ¢
metal surface, such as a wall of the waveguide in which th(—f. . . perconducting metal. n the case of a
. . . _finite penetration depth of the electromagnetic field into the
resonator Is placeq, then the specular reflectlon of the erIdrshetal, a longitudinal electrie mode rather than a transverse
at the metal can bring about the formation of a quarter'wav%lectromagnetic mode propagates in such a line.keafe
resonator. It§ resonanF length is close to a quarterwavelengtg1 this mode goes over to a Swihart wave, and in the op-
or to a multiple of thisiles=(2n—1)7/26. In a quarter- e jimiting casédy=>1 it goes over to a surface wave
wave resonator the same effects tending to shorten the reso- 5 ¢\ rface plasmon propagating along one of the metal
nant length are present as in a half-wave resonator. surfaces. Her&=w/c is the wave number of the electro-

2. The Q factorQ of the resonator should be substan- magnetic wave. The surface plasmon is squeezed toward the
tially higher than that of microstrip resonators but considermetal surface as a result of the slowing of the wave when its
ably less than for cavity resonators. The maximum Q factofield penetrates into the metal. The slowing and, hence, the
for present-day HTSC films in the three-centimeter range igoncentration of the waves near the metal surface can be
Q=10° (Ref. 11). Because the surface character of the waveenhanced by coating the metal with a thin dielectric layer
the electromagnetic field is concentrated near the supercoitkd\<1). In that case one will have a surface-wave image
ducting film, and that makes for a large surface current in itwaveguide. The surface waves both above an isolated metal
as the loss is proportional to the square of the surface currerand above a metal coated with a dielectric layer have low
The situation is made even more complicated by the circumlosses and can be used successfully at frequencies all the way
stance that the surface-wave resonator is open, and the fieldp to the optical range. The electromagnetic waves above a
although damped exponentially, can reach nearby metal suguperconductor are not fundamentally different from those
faces such as the walls of the waveguide. This can lead to @0ve a normal metal. It should be noted only that in the case
further decrease in the Q factor to*10r less. The metal Of @ normal metal there is a unique relation between the
surfaces have a particularly large effect on the Q factor for #amping, slowing, and penetration depth of the electromag-
quarter-wave resonator: these surfaces are necessary to feliC field into the metal. In the case of a superconductor
operation and the main source of losses. Therefore the @ere is only a relation between the penetration depth and the

factor of a quarter-wave resonator for surface waves in thélow'n?' :Nh'tle the lozsﬁs art.at Qef[erm!ne_d lby the _pr;sence of
iee conimeter ange =10 e Sl o s P te & v

However, in spite of the low Q factor, surface-wave . sup b S

in which there are no losses whatsoever but there is signifi-

resonators for the microwave region also have a number ocant slowing, as happens in Swihart waysse Eq(1)].

advantages. Foremost among them is the high value of the There is an optimum thickness of the superconducting

surface current, which is the cause of the low Q factor. Be_films covering a parallel-plate transmission line such that the

cause there are no nearby metal surfaces, this current §owing of the electromagnetic wave is maximum. In that

highly uniform over the whole surface of the film: the non- e gne also observes a maximum reaction of the propaga-
uniformity from the middle of the film to the edges is only a {jon constant to external influences — changes in tempera-

fraction of a percent: This makes surface-wave resonatorsyre static magnetic fields, etc. This reaction can reach high
promising for the excitation of arrays of Josephson contacts,ajyes, and this makes superconducting transmission lines
e.g., for creating Josephson generators. promising for constructing efficient parametric devices, con-
Another important advantage is the simplicity of con- trollable phase shifters, and highly sensitive temperature and
struction and the strong coupling of a surface-wave resonatghagnetic field sensors.
with transmission lines. The resonator is simply a HTSC film  Surface-wave waveguides can be used to make surface-
of the necessary dimensions on a dielectric substrate. T@ave microwave resonators, which are pieces of these
couple this resonator with transmission lines does not requirgraveguides with certain lengths. These resonators have a
any special transitions, as is necessary, e.g., for the excitatidrigh uniformity and a high concentration of the microwave
of a rectangular waveguide by a microstrip line. The patterrcurrent in the superconducting film. Furthermore, they are

We have investigated the electromagnetic waves propa-
ating in a parallel-plate transmission line consisting of a
ielectric layer of thicknesd covered top and bottom with
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The proximity effect between a massive superconduc®rand a mesoscopic layer of a normal
ferromagnetic metalR) is investigated for arbitrary transparency of 8€ interface and
arbitrary value of the proximity effect. For the case of high transparency o6 thmterface and
a low value of the proximity effect, the spatial distribution of the order parameter i the
layer and the densities of quasiparticle states at the interface f& #rel F layers are found
analytically as functions of the exchange field. It is shown that in mesos&bpic

structures the single-particle excitations are polarized in both-thed S metals. ©2000
American Institute of Physic§S1063-777X00)00602-2

Recent studiés® have convincingly demonstrated that alters the pairing conditions. Two groufsibbandsof elec-
superlattice structures of a ferromagni) (vith a supercon- trons arise in thé= layer: Cooper pairs form quasiparticles
ductor (S) have qualitatively different behavior, depending consisting of the statef1,(—p+Ap)|} and of the states
on the relative values of such parameters as the transparenfy!,(—p—Ap) T}, where Ap~Hg,/vg, Hey is the ex-
of the SF interface, the strength of the proximity effect, the change field in energy units, amg is the Fermi velocity. If
value of the exchange field, the relative degree of kinetic anéhe spin—orbit scattering of the electrons is small enough, the
diffusional character of the motion of quasiparticles, etc.pairs from different spin subbands essentially do not hhi.
When these properties of the system are correctly taken into  In this paper we develop a theory of the proximity effect
account, one can explain qualitativelgnd in a number of for layeredS/F systems with a massiv® layer and a thin
case predigtsuch novel effects as oscillations of the critical (MesoscopicF layer, and with an arbitrary transparency of
temperature of the superconducting transitiorSIF multi- the SF interface. General relations are given by which one
layers, the periodically reentrant superconductivitgéfsu- ~ can reduce the problem of the proximity effect to one of
perlattices, eté5 Bimetal S/F structures also have a diver- S0lving the Usadel equations for tlsdayer with appropriate
sity of physical properties. For example, recentbo'undary gondlt!ons. Usmg' the general' expressions ob-
experiment@7 with S/F contacts(with the ferromagnetic tained, we investigate analytically the proximity effect in an

metals Ni, Co, Fe, NiMnSb, NiFe,,, and Lg S, MnO,) S/F bilayer with a high transparency of the interfaces be-

have shown that Andreev reflection is strongly suppressedé een '?yers- We find the density_ of states and the spatial
Istribution of the order parameter in tBeandF metals, and

the spin polarization of the electrons on the Fermi surfac . ) o
increases. At the same time. it has been f&uhdt inS/E/S W€ discuss effects connected with the exchange polarization
' ' of conduction electrons on the Fermi surface in Ehenetal.

contacts with a.finite transparency of the interface and a su- particular, we show that for a finite transparency of the
perparamagnetic state of tiielayer (Gd), the Andreev re- interface between th& andF layers a spin splitting of the

flection can be substantially enhanced by applying an exter; " . - . ;
nal magnetic fieldi.e., by increasing the spin order of the density of quasiparticle states is observed in $niayer as

: . well.
layen. A §trqng mutual lnﬂuer_lce of magnetism and super- 1. Let us consider the proximity effect in a bilayer con-
condl;]ctw;]ty IS alio obselryed 'SIF nafn?gructure%. sisting of a massive superconductor of thickndgsand a
The t eory of tunne ]unctlo_ns oft NII_\ISor_SNIS thin ferromagnet of thickness- . The boundary of th& and
types(N is a normal nonmagnetic metal, ahds an insula- g metals will be assumed flat; its transparency can be arbi-
tor) ywth arbl_tra.ry transparency of th&N interface has now trary. Suppose that the conditions of the “dirty” limit are
attained a significant level of developmeisee, e.g., Refs. gaisfied for thes andF metals, and that the critical tempera-
10 and 1}; nevertheless, a general theory of tunnel contact$yre T of the superconducting transition for temetal is
in the case when the normal metal is ferromagnetic does nGlerg. \We shall assume that the regior 0 is occupied by
exist. The fundamental difference between nonmagnetic anghe S metal, a layer- d.<x<0 is occupied by th& metal,
ferromagnetic normal metals lies in the spin polarization ofand that all quantities depend only on tiecoordinate,
the conduction electrons in tifelayer. As inS/F structures,  which is along the normal to the interfacial surface. Below

because of the proximity effect with tt# layer, supercon- e shall consider a case of greater theoretical interest, viz.,
ducting correlations are also induced in thdayer, but the

exchange polarization of the electrons on the Fermi surface dg>é&g,de<<min(ég,§); @

1063-777X/2000/26(2)/6/$20.00 115 © 2000 American Institute of Physics
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1/2 DF

12 D \¥? For the S layer the Usadel equations have the standard
o Tl

D
§s:<ﬁ form (see, e.g., Ref. 24We shall assume below that for a
C .
nonsuperconducting metal the bare value of the order pa-

are the effective coherence lengths of $handF metals(for rameterA2=0, but thatF-#0 on account of the proximity
the ferromagnetic metal the choice of a “convenient” coher-effect with the superconductor. It is convenient to take into
ence length depends on the relative values of the criticaccount the normalization of the Green function explicitly
temperaturdl ¢ of the S metal and the parametefe,), Dsr  and to introducein analogy with Ref. 1pmodified Usadel
are the diffusion coefficients of thE and S metals, and fynctions ®gr defined by the relationsG=w/(w?
fhi=kg=1. The first condition in1) allows us to neglect the +®d)Y2 F=Gd/w, etc. The system of Usadel equations
decrease in the critical temperature of t88 bilayer in now becomes:
comparison with the critical temperature of the masssve for the S metal
metal, and the second condition allows us to treat all the
guantities as spatially independent within thdayer. > Tle o,

As we know, the superconductivity of “dirty” metals is Ps=Ast&s w_GS[GSq)S] '
conveniently described by the quasiclassical Usadel equa-
tions. For the case when all quantities depend on a single 1)
coordinatex and the spin—orbit scattering can be neglected, GS:2—~1,2'
the general form of the Usadel equations for a single sub- (0™+DsPy)
band of a superconducting ferromagnetic metal is as follows

®)

(see, e.g., Ref. 13 AgIn(T/Te)+27T ZO [(Ag—DGs)/ w]=0; (6)
De d d. . d.
T ©®
~ = AF = = 277 c 2 ay e ——————
=—0Fg T 5 (Grp+Geyy), 2 Pe=¢ Z)GF[GFCDF] + Cr (D24 D)2 @)
De d & d . F d G The equations for the functiorB have a form analogous to
T2 dx| CFLgy R PRIy ORI (5)—(7). In Eq. (7) we have used the effective coherence
. length £ of a normal nonmagnetic metal with a diffusion
—  BFe 4 A_F(G +G0 ) 3) coefficient D¢ ; this effective coherence length, which we
FITT o VORTT D 2RI have defined in Eq.), is convenient to use instead &f for

- - analysis of the limitH.—0. In these equations we have
Gr11Gry +Fe i Fep =1 (4 used a prime to denote differentiation with respect to the
=~ = coordinate x. We note that forH.#0 the functions
Here Gy (X,@), Foyr(X,0) and Gyyr(x,0), Foyr(X0) s r(w) lose symmetry with respect to a change in the sign

are the Green functions integrated over energy and averag% the energy variable, This is one of the ways in which an

over the Fermi surface; they are defined in the standard WaglF bilayer differs from aS/N bilayer
(see, e.g., Ref. 14 Equations(5)—(7) must be supplemented by the bound-

G(1,2= _<-A|-T\pT(1)qr;r(2)>, ary conditions for the function®s and® . It follows from
A Eq. (5) that in the interior of theS layer
F i (1L,2=(T, ¥ (1)¥;(2)),
A=A ) Do) =Ag() = Ao(T), ®)
G (1,2= _<TT\P1+(1)\P1(2)>= whereAy(T) is the order parameter of a spatially homoge-

~ - ] neous superconductor at temperaftiia the BCS theory. At
P12 =(T¥(1)¥(2), etc; the outer boundary of the ferromagnet the boundary condi-
W=w+iHge, o=7T(2n+1),n=0,£1,£2... are the Mat- tion is ®-(—dg)=0. The boundary conditions at the inter-
subara frequencies\(x) is the order paramete®y (1), face between the ferromagnet and superconductor need to be
‘lf;(l) are the Heisenberg operators. We note that in théliscussed in some detail; ordinarily such boundary condi-
general case the exchange field breaks the symmetry of thi@ns are imposed for the functio® andF and for the case
system with respect to rotation in spin space both inkhe T—T without discussion(see, e.g., Refs. 11 and )12
layer and, on account of the proximity effect, in tBdayer.  Meanwhile, the conventional way of writing the boundary
It can be shown, howevé?;*®that for singlet pairing and in  conditions presupposes that a number of physical conditions
the absence of spin—orbit scattering and external magnetare met which may not hold for all re&/F contacts.
fields, the whole system of Usadel equations decomposes 2. We obtain the boundary conditions on the Usadel
into two equivalent subgroups, which go over to each otheequations for theSF interface at arbitrary temperatures
under interchange of the indicgs— | and reversal of the T=<T; by the same approach as was used in Ref. 17 to find
sign of the exchange fieldH .,«— — Heyc- ASSuming that the the boundary conditions at an interface between two super-
indicated conditions are met, we shall henceforth drop the&onductors. The first condition on the Usadel equations en-
spin indices in Eqs(2)—(4). sures continuity of the supercurrent flowing through &t



Low Temp. Phys. 26 (2), February 2000 E. A. Koshina and V. N. Krivoruchko 117

boundary at any value of the interfacial transparefsse, temperatures is not more than 10%, and the experimental
e.g., Eq.(15 of Ref. 17. It is easy to see that, when the results on the induced superconductivity in films of these
normalization(4) is taken into account, the matrix expression ferromagnets mesh quite well with the “conventional” ideas
(15) in Ref. 17 only needs to be written for the nonzeroabout the proximity effect®°In the ferromagnetic phase of
off-diagonal components: perovskite lanthanum manganates the spin polarization of the
4G dE charge carriers has already reached nearly 100% at liquid-
2 F F H
pFIF( FF__GF_) nitrogen temperaturesee, e.g., Ref. 20and the value of
dx dx x=0 the spin splitting of the Fermi surface is not small. Curiously,
experimental studies of proximity structures between a su-
, perconductor and a material exhibiting colossal magnetore-
x=0 sistance have revealed some unusual prope(tes, e.g.,
Refs. 21 and 22
3. Let us show that the study of the induced supercon-
ductivity in S/F structures with a thirF metal [de satisfies
condition(1)] can be reduced to consideration of a boundary-
value problem for thes layer. Indeed, the differential equa-
tion (7) can be solved by iteration with respect to the param-
eter d/¢. To a first approximation one can neglect the
nongradient term and, taking into account thBf(—d)
=0, we obtain®-=const. In the next approximation in

. o ~dp/& we find, after linearizing Eq(7),
Here y=psés/peé is the proximity effect parameter, which

dGs _ dFs
=pd s( Fsax — GSW)

where pg g are the momenta of the electrons at the Fermi
surface, andg g are the electron mean free paths for the
andsS layers, respectively. Going over to the modified Usade
functions® = wF5/Gg and ®=oF/Gg, we obtain the
following form for the first boundary condition on these
functions at theSF interface:

9

1 2.5/
= £sG5Ps
x=0

1 2.5/
= vEGrPk
x=0

characterizes the intensity of the superconducting correla- , w®(0)(x+d)

tions induced in theé= layer on account of its proximity to F(X)=  EaT G (1)
the S layer; ps ¢ are the resistivities of th8 andF metals in

the normal state. Here in the integration we have again taken into account the

The second boundary condition takes into account thgondition that®g(—d)=0. Determining®(x=0) from
effects of a finite transparency of tiF interface(see, e.g., Ed.(11) and substituting it into boundary conditio® and
Eq. (22) of Ref. 17. As in the case of the first boundary (10), we obtain the boundary condition for the functidr:
condition, the matrix equatiof22) of Ref. 17 needs to be

written only for the nonzero off-diagonal components: £sGsPlx=o
~ ~2 2 1/2
dGe dFe ~ / 2Gsygw  07yp ) }
G- = yyod mTc| 1+ +
'F(FF dx ~ CFdx ) . M S PR PSEI | M

3 /%6 (12)
:Z<?> (FEGs—FsGe)

o and an equation determining the unknown value of the func-

tion & atx=0:
VB Gs
w(w_'l'chf)

where§ is the transparency of theF interface;R=1=4is
the coefficient of reflection of electrons from the interface,
andxg=pg/pf . For modified Usadel functions the second Pr(0)=CsPs

boundary condition at th&8 F interface becomes
, o~ ~ Here yy=yde /€, vg=vgede /€. In the particular caseg

£78rGr Pelx-0=BGs(Ps/ 0= Pr/B)|x-o, (10 =0 (complete transparengyEgs. (12) and (13) take the
where ygr=5(xg8/R) /¢ is a parameter that takes into form  £sGe®&,—o=ym@Ps/(7Tc)|xeo and w®g(0)
account the effects of a finite transparency of the interface=w®<(0), respectively. The spatial dependence of the func-
For yge=0, i.e., for a totally transparent boundary§=1), tions in the F layer, which is of mesoscopic thickness
condition (10) goes over tabg/w= P /. de<<¢, can of course be neglected. As a result, the problem

Relations (9) and (10) generalize the problem of the of the proximity effect for a massive superconductor with a
proximity effect for arbitrary transparency of th&lS  thin layer of a ferromagnet reduces to solving equati@s
interfacé®'® to the case when the normal metal is a ferro-and(6) for the S layer with the boundary conditior(8) and
magnet. An additional physical condition for the validity of (12) and to Eq.(13). The latter determines the modified
relations(9) and(10) in comparison with arN metal is the  Usadel functiond characterizing the superconductivity in-
assumption that the exchange splitting of the subbapgs, duced in theF layer on account of the proximity.
= 2MVEg * H oy is substantially smaller than the Fermi en- The degree to which th8 andF layers influence each
ergy Eg, i.e.,Hq,<Eg (m is the effective mass of an elec- other depends on the parametgfs and yg and the value of
tron). In this case the difference in the densities of states anthe exchange interactidd.,.. In the general case the prob-
transparencies of theF interface for electrons with opposite lem can be solved only by numerical methods, but in a num-
spin orientations can be neglected. In such ferromagnetiber of particular limiting cases it admits analytical solution.
metals as Ni, Gd, etc. the polarization of the electrons at lonBelow we present the results of an analytical investigation of

(13

x=0
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a bilayer with a small proximity effect parameter and a high
transparency of th&F interface:yy <1, yg<1.

4. In the limit vy, <1, yg<<1, it follows from condition
(12) in the zeroth approximation ifyy that £s®g(0)=0 for
w<Q,~mTc/yy. Since the self-consistency equati@)
converges foro<Qc~nTc (c<(),), one can assume
that in this approximation the functionBg and A g are spa-
tially homogeneous®g(x) =Ag(X) =4y, ©<Q,. In this
same approximation, by substituting the explicit form of the
function Gg into Eq. (13) we obtain for the functiorb

De(0) =A@/ (yg@ B2+ w),

whereB=[(w?+ A2)Y? (7 Tc)]¥2

Thus in the zeroth approximation ip, the functiond
falls off as yg increasegas the transparency decregséise
jump in the order parameter at the interfac®g(0)
—®,(0), increases.

In the next approximation iry,, , by linearizing the Us-
adel equatior(5) for ®¢(x) and making use of the fact that
dg(0)=A,, we obtain the general solution of equati@)
in the form ®g(x)=A,+ C exp(—Bx/&s), where C=const.
Substituting this solution into the boundary conditi¢i®),
we obtain a solution fo g(w,x) in the form

_ ymBwexp— Bx/¢s)
YuBO+ wA

(Ds(w,x):Ao[l

(14

where

20w 1/2

YB®
Y aTo? (F
Using Eq.(14) for x=0 and relation(13), we find an expres-
sion for ®(w,0):

Pp(w,0)

A=A(0)= + 'yB'(I)>

A07TT(:A

7TcAwl D+ yuBm T+ val (wA+ vy B®) 2+ AZAZ1Y?
(15

It follows from this relation that as eitheyg or the suppres-
sion parametety,, increases, the functiod falls off, just
as in the case of aB/N bilayer® or anS/S’ bilayer® For
Hexe— 0 the quantityo— w, and the solution(14) repro-
duces all the results obtained in Refs. 10 and 16 foS/dh
bilayer with yy,<1, yg<<1. In the case of a completely trans-
parent interface yg=0) the solution of the Usadel equations
becomes

YmBw exp— Bx/&s)
YMBw+ w )

(Ds((x),x):AO 1—

Then the superconductivity induced in tRdayer is charac-
terized by a function®(0)=Ay0/(yy®B+ w), which
falls off as the parametey,, increases.

Knowing the function®g(w,x), we can use Eq6) to
calculate the spatial behavior of the parameigfx) that
determines the energy gap in tBdayer:

A _27TE 2 oPs(w,X)Cs(w,X)/ @
0= T T+ 27 TS, ol

(16)
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FIG. 1. Spatial dependence of the order parameter istlager Ag(x) near
the SF interface foryy,=0.1, yg=0.1 and for different values of the ex-
change fielH,./7Tc=0, 3, 5, and 1Qcurvesl, 2, 3, and4, respectively,
T/Tc<1. The order parameter in thelayer, A(x), in this approximation
is constant and equal to the value at the interfacgp).

The summation over frequencies in Ef6) is cut off by the
Debye frequencyp, . Figure 1 shows the curves of the spa-
tial dependence ok (x) for yy,=0.1, yg=0.1 at low tem-
peratures for various values of the exchange interaction pa-
rameterH¢,.. As in the case o68/N andS/S’ bilayers, the
BCS value of the order parameter is reached at a distance
into the S layer of the order of severdl. We see from Fig.

1 that the value of the order parameter nearSlenterface,
A4(0), decreases with increasing exchange interaction: in
accordance with Eq14), one can speak of “induced” ex-
change correlations in th& layer, which destroy Cooper
pairs. At equal values of the exchange interaction parameter
H . the order parametexg(0) at theSF interface decreases
with increasing transparency of the boundary, which leads to
a decrease in the jump of the amplitude of the Cooper pairs
in going from theS to the F layer. The behavior here is
completely analogous to the situation in 8N system(see
Refs. 10 and 16 At small values of the parameter, a
decrease in the transparency of the boundag:, an in-
crease in the parameteg) will lead to a sharp increase in
the jump of the order parameter of the system at the bound-
ary.

5. Let us use the expressions obtained above to investi-
gate the influence of the exchange field on the density of
states in thes andF layers. The densities of states for qua-
siparticles in theS andF layer, by definition, are given by

Nsr(e,x=0)=Re[Ggr;1(£,00+CGgp (£,0)}

=Nsri(e,00+Ngg (€,0). 17

For our case, that of finite transparency, the densities of
states at th&F interface are different in thE andS layers.
Using Eq.(14) for x=0 and Eq.(15), we obtain the follow-

ing expressions for the Green functions of a specified spin
subband in thes andF layers at theSF interface:

Gsi1(@,0)=(wA+ yuBD) R Hw),

oA+ @[ yuB+ ysR(w)]
{A2AZ+ [wA+ D (ywB+ y5R(w)) 1572

Gei(w,0)=
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Ns Hex#0 there are three features in the density of states
45 Ng;(&,0) in the energy regiors<0. One of them corre-
sponds to the BCS valye|=Ay(T) and is less pronounced
than in the nonmagnetic caggf. with curvel for Hg,.=0).
The second is due to the presence of the true gdp
=Ag(T) in the spectrum of single-particle excitations and
reflects the renormalization of the gap in tBdayer on ac-
count of the proximity effect. As the exchange interaction is
increased in strength, the gapy(T) decreases in absolute
value, and the height of the spikes|at=Ay(T) falls off.
Finally, the feature at the lowest values|ef corresponds to
oL ! T T Ag(T), i.e., to the induced value of the gap in thdayer. In
-09 -06 -0.3 0 03 06 09 the region of positive energies>0 we observe one BCS
g/nTe singularity which is smeared out as the exchange is in-
creased.
6. We have investigated the superconducting proximity
3 b effect in S/F structures having arbitrary transparency of the
2 SF interface and arbitrary value of the proximity effect be-
tween a massive superconductor and a ferromagnet of meso-
1 scopic thickness. Both metals correspond to the “dirty”
4 limit. Analytical solutions were obtained for the case of high
transparency of the interface and a low proximity effect. The
density of single-particle states and the spatial dependence of
the order parameter in th& andF metals are calculated as
T M ¥ - functions of the strength of the exchange field, the transpar-
-09 -06 -03 0 03 06 09 ency of the interface, and the value of the proximity effect.
e/mTe We showed that in mesosco@F structures the density of
FIG. 2. Densities of quasiparticle states with a specified spin orientation irsingle-particle states is spin-polarized in both theand S
the S (a) andF (b) layers of anS/F sandwich foryy=0.1, y5=0.1, and  metals. We assume that it is particularly important to take the
various values of the exchange figttl,./(7T¢c)=0, 1, 2, 3, and 4curves  gpin polarization of the density of states into account when
1,2, 3, 4, ands, respectively, T/Tc<1. interpreting the properties &f/S/F tunnel contacts with a
thin layer of theS metal. This type of tunnel contacts is now
considered promising for use as the functional elements of a
whereR(w) ={A3A’+ (wA+DyyB)?1Y2 andA=A(w) is  new type of magnetoresistive devices whose magnetoresis-
defined according tg14). By performing an analytical con- tive and superconducting properties can be controlled by an
tinuation of the function§;(w,0) andGg;(w,0) onto the  applied voltagé?
complex plane by means of the substitutien-—ie, we )
can obtain the explicit form of the expressions for the den-_| The authors thank M. A. Belog(_)lo_vﬁkl A. ) . _
sities of states at the interface for each of the spin subbandk'yachenko, and V. YF" Targnkov for their interest in this
Ns;(,0), Ng, (¢,0) andNg;(e,0), Ng (e,0). The resulting study and for helpful discussions.
expressions, which are too awkward to present here, imply
that forHq,# 0, yu#0, andyg# 0 the density of quasipar-
ticle states is spin-split in both th& and F layers:
ReGgg 1 #ReGgg | . This is because of the initial exchange
splitting of the Fermi surface in theé metal, which is mani-
fe_sted in the characteristics of th_e united systgm—l-‘:hﬁ 18, Y. Jin and J. B. Ketterson, Adv. Phy@8, 189 (1989,
bilayer. The symmetry of the density of states with respect to2z, Radovic, M. Ledvij, L. Dobrosaljevic-Grudiic, A. I. Buzdin, and J. R.
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A theoretical study is made of surface polaritd8®9 in a weakly disordered superlattice

consisting of a finite number of infinitely extended two-dimensional electron IaDELS)

placed in an external static quantizing magnetic field directed perpendicular to the 2DELSs.

The filling factor of the Landau levels is assumed to be the same in all the 2DELs. The disorder
in the superlattice consists in having one of the interior 2DELs displaced from the position

of periodicity by a certain distancA. The dispersion and energy characteristics of SPs are
investigated in the case when a finite superlattice is embedded in a uniform dielectric

medium. It is shown that under conditions of the integer quantum Hall effect, all the characteristics
of the SPs are represented by quantized values. It is found that in a finite, weakly disordered
superlattice there exists a local SP mode whose properties differ substantially from those

of the usual SP modes in a finite ordered superlattice. The conditions under which the phase and
group velocities of the SPs in a finite, weakly disordered superlattice can be substantially

lower than in an isolated 2DEL are determined. It is found that when dissipation is taken into
account, a new SP mode arises in a weakly disordered superlattice—an additional SP

whose properties depend strongly on the electron momentum relaxation frequandyon the
displacemeniA. © 2000 American Institute of Physids$$1063-777X00)00702-7

1. INTRODUCTION been showH-that in an infinite WDSL containing a single
_ . . . displaced layer there can exist local SP modes whose disper-
Surface polariton§SP$ in semiconductors with a super- sion curves lie outside the existence region of SPs in an
lattice (SL) have some interesting properties. These havénfinite OSL.
infinite,'"* semi-infinite?™” and finite~** There has also of a finite number of two-dimensional electron layers
been researt_:h interest in weakly _disorglered superlf_:\tticq%DELs), one of which is displaced from its position of pe-
(WDSLs), which have only a small disruption of the period- iy gicity by a distance. We show that under conditions of
icity. This dlsruptlpn may be due to .the presence of o_ne Othe integer quantum Hall effe@@QHE) all the characteristics
several layers which either have a different concentration oBf the SPs in a finite WDSL are represented by quantized
charge carrie_zr_s{a “defet_:t” _Ia_\yer) or have_ be_en displaced values. We find that the SP spectrum in a WDSL has a local
fromst;hr(:aggsﬂ?gri?c:npseﬁg\(/j:ggeayir?vz(:;fa;eﬁﬁ;aﬁi?ﬁfée SP mode whose electromagnetic field is localized in the re-
P 1p718 . 16.19-21 9 ' gion of the displaced 2DEL. We find that near the cyclotron
semi-infinite!"*8and finité® WDSLs. The systems con- .
resonancep~ () (=eB/m*c is the electron cyclotron fre-

sidered include WDSLs with a single “defect” lay&t15-2° : D .
finite WDSLs with two outermost “defect” layerd: and guency B is the magnetic fielde andm* are the charge and
’ effective mass of the electron, amdis the speed of light

also an infinite WDSL with a single layer displaced from the ) )

position of periodicity!45 It was shown in those papers that (€ group velocity of the SPs undergoes jumps as the exter-
the spectrum of SPs in an WDSL differ substantially fromn@l magnetic field is varied, the value of the jumps being
the spectrum of SPs in ordered superlatti¢@SLs. For determined by the fine structure constante?/%c, the in-
example, in these systems there exists a local mode of SP§rlayer distancel, the displacemena, and the dielectric

the electromagnetic field of which is localized in the regionconstants of the media making up and surrounding the
where the periodicity of the SL is disrupted. This local modeWDSL. We also show in this paper that when the dissipation
can be higher or lower in frequency than the other SP modek® the WDSL is taken into account, a new SP mode
in the WDSL, depending on whether the “defect” layer has appears—an additional SP—whose properties are largely de-
a higher(enrichment layeror lower (depletion layer elec-  termined by the electron momentum relaxation frequency
tron concentration than the other layers. In addition, it hasn the 2DEL and by the value af.

1063-777X/2000/26(2)/7/$20.00 121 © 2000 American Institute of Physics



122

Low Temp. Phys. 26 (2), February 2000

FIG. 1. Superlattice consisting of a finite numbdr of two-dimensional
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. Cp
E.(k,w,z)=i —ZAZe_pZ(Z_ZM—l);
wEes

TE modes:

O<Z<ZM_1

Ey(k,w,z)=DTe’* 2m 4 DM~ Pz~ 2m),

. Cp mp(z—2zy) m—p(z—z.)
Hx(k,w,z)=|;[D+ep m+DMe m],
z<0

Cc
Ey(k,0,2)=C1€"% H,(k,w,2)=i %cleplz,

z>2zy-1 Ey(k,w,2)=Cpe P2l# 2m-1),

c
Hy(k,w,2)=—i %Cze‘pz(z‘zmm,
where
p= Vk?— w?e/c?, pi= \/kz—wzsi/CZ,

i=1,2; m=0,1,..M—2.

As the boundary conditions we use the continuity of the

electron layers embedded in a dielectric medium with dielectric constants tangential component of the total electric field of the TE and

(for 0<z<zy_4), &, (for z<0), ande, (for z>zy,_,).

2. DISPERSION RELATION

TM modes at the boundarigs-z,, (m=0,... M—1). In ad-
dition, we shall assume that at these boundaries the tangen-
tial components of their total magnetic field undergo jumps
due to the presence of currents in the 2DEL.

The use of the above-indicated boundary conditions on

Let us consider the SL in Fig. 1, which consists of athe interior boundariesz=z, (m=1,... M —2) gives the fol-

finite numberM of infinitely extended 2DELs with Landau
level filling factorsN,, (N, =271%n,,, | =(ch/eB)*?is the
magnetic length, and,, is the electron density in theth
2DEL m=0,1,.. M — 1), which lies in the plang=z,. The
static quantizing magnetic fielB is directed perpendicular
to the 2DEL along thez axis. We shall assume that the
region of space €z<z,,_, is filled with a dielectric with a
dielectric constant, while the semi-infinite media a<0
andz>zy, _, are dielectrics with dielectric constants and
£, respectively(an e;—e—g, geometry.

The solutions of Maxwell's equations for the TM and
TE modes have the following form:

TM modes:

0<z<zpy_ 1
Hy(K,,2) = BT 2n) + BMe Pz —2m),

. Cp m_p(z—2zy) m o~ p(z—2p)
Exk,w,2)=—i—[Ble"* *m—BTe m1,

z<0

. CPg
Hy(k,0,2)=A,eM?, Ex(k,w,z)z—lw—SlAleplz,

Hy(kyw,z):AzeipZ(Zsz—ﬂ,

lowing equations for the unknowrsT , D™, BT, B™, A,
A,, Cq, andC,;

BT—B™— (BT e?dm—BM e Pdm)=0, (1)
DT+D™— (D™ lePdm+ DM e Pdm) =, 2)
DT -DT— (DT tePdm—DT e Pim)
Amw A
== oy (DT+DT)— — o (BT -BD),
3
BT+BM— (BT lePdmt BM 1g~Pdm)
Amp 4
:|—Eoy;‘)(BT—BT)—70;@‘)(0%02“). (%)

At the z=0 boundary we have the following system of equa-
tions:

&
A1=Lp(53—89), c,=D%+D?,

5
Do (5
0 o P1 . 47w (0),~0 0
D -D2—1Cy= i~ 0i})(D% +D2)
4ar
- —o2(BS-BY), (6)

gc Y%
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whered,,=zn—Zn-1-

In Egs. (3), (4), (6), (7), (9), and (10) ¢'[2(w) are the
components of the conductivity tensor of the 2DEk, 8

_ 4_7"0 (D° +D%). @ =X,Y), for which we shall use the expressions obtained in
c Refs. 22 and 23 in the absence of spatial dispersidn (
Finally, at the boundarg=2z,,_, we find <1):
A :__(BM72ede_1_BM72efde_l)
poe " B ’ 5
M-—2 M-2 (M )= oM ()= & NmY
C,=DT g’dm-14pM efpd’\"*l, (8) Oyx (w)_o-yy (w)= me!
M—2_pdy_ M—2pdy_, . P2
DY “ePm-1—DY " g Pim 1+FC2
2
e N
4w _ alm =—gM=— m 11
—i e oM =1(DM2ePdu- 14 DM~ 2gPdu-1) xy (@) X TR 112 (13)
Am (M—=1) M -2 pd M-2_.—pd
+—oy (BY e@PM-1—BT e Pm-1) (9) ) )
ec Herey=(v—iw)/Q, andvis the electron momentum relax-
BT’Zede-H BM -2 Pdu-1_A, ation frequency in the 2DEL.
As we know, the linear homogeneous system of equa-
__ 4mp U M “(BM 2pt-1_ gM~2gPdy-1) tions (1)—(10) has a solution only if its determinant is equal
to zero. Thus the dispersion relation that we seek, which
. describes the propagation of SPs in a finite SL, can be writ-
TP M=-1), M —2_pdy, _ M—2—pdy_ ;
+ o Xy (DY “eP™m-1+ DY “g Piv-1),  (10) ten in the form
P, P, Ps P,
=0. 12
PM-1(1+¢) e PIu-1(1—¢p) —2sby_,M-1 —2gby_,e Piu-1 (12
2by_1€PM-1  —2by, e PIM-1 Pd-1(1+y) —e PIM-i(1—y)
|
Here P L S
Ypee pe’ "t op’ T p?
o=0>+2ay_1, = Uo—2S\_1,
2 M—1, Y=p2—2Sv-1 2 2me i o
Gi=(1—60,—2ay)Fqi+(1+ 6,+2ay)F; am=I WE Oxx »  Sm=| CZp Oxx m= e Ixy
+2ebo(FaiTFai), The general transfer matrix of a SL has the form
Fi=2bo(Foi—Fy) + (1~ p1+250)F g~ (1+ w1~ 280)F,  F=IIR" Ty, where
|
e Pim(1-a,) a,e Pin gbye Pim  gh e Pim
2 —a,ePm ePim(1+a,,) eb,,ePdm gb,ePm
™l —bye Pdm b,e Pdm e PIm(1+s,)  spe Pim
b yePdm —b,,edm —5,ePdm  ePdm(1-s,)
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In the case when the SL consists of two 2DELM (
=2) embedded in a homogeneous dielectric medigm
=g,=¢, thee—e—c geometry, the dispersion relatiofil2)
agrees with the dispersion relatih11) obtained in Ref. 23.

same time, in the short-wavelength region the difference in
the specific spectra in the weakly disordered and ordered
superlattices becomes more noticeable. Here the dispersion
curves5 and5’, corresponding to SPs with an in-phase os-
cillation of the electromagnetic field in all the 2DELSs, in the
long-wavelength limit k(M —1)d<1) approach the disper-
sion curve for SPs in an isolated 2DEL with an effective
Let us consider a finite WDSL in which all of the 2DELs Landau-level filling factorN.z=MN. In the low-frequency
have the same Landau-level filing factordlg=N;=...  region (w<()) the phase velocity of the SPs corresponding
=Ny-1=N), and one of the interior 2DELsn{=1,...M  to dispersion curve§ and5’ is practically equal ta4. In
—2) is displaced relative to the position of periodicity by athe vicinity of the cyclotron resonance, however, the phase
distanceA. We write the expression for the distangg be-  and group velocities of the SPs decrease sharply, and at fre-
tween 2DELs in a WDSL in the following wayd,  quencies in the regiom>Q they become slow waves. We
=A(Sm,q~ Om,q+1) +d. Heredy, o is the Kronecker deltad  note that in the case under study the dispersion chilies at
is the distance between 2DELs in the O8§51,... M—21is  higher frequencies than dispersion cui¥e We see from
the number of the diSpIaced 2DEL. As a model for the 2DELF|g 2 that the SPs Corresponding to dispersion cufives
we take a GaAs/AlGa _xAs heterostructure with an effec- and1'—4’ have the following characteristic features. First,
tive carrier massm*=0.068n, (m, is the free electron they all exist only in the vicinity of the cyclotron resonance
mas$ and a dielectric constat=12. _ _ and have an end point of termination of the spectrym,
_Figure 2 shows the SP spectrufreavy solid curvesin - — o lying on the light line 7. Second, their group velocity is
a finite WDSL withM =5, T'=0 (I'=»/() is the dimension- gy hstantially lower than the group velocity of the SPs corre-
less electron momentum relaxation frequenc§=0.1 (6  gponding to dispersion curvéand5'. In addition, the dis-
=Qd/c is the dimensionless distance between neighboringersion curvel (we shall show below that it corresponds to
2DELs in the ordered periodic $LA=0.05(A=QA/cis  a local SP modelies at lower frequencies than dispersion
the dimensionless displacemgrandN= 10 for thee—e—¢ curvel’. We note that in the limitlp—, when the neigh-
geometry in the case wheqr1. Plotted along the ordinate horing 2DELs do not influence one another, all of the dis-
is the dimensionless frequenay(}, and along the abscissa persion curves asymptotically approach the dispersion curve
is the dimensionless wave numbek/(). For comparison, for SPs in an isolated 2DEL withl= 10 (curves6).
the thin solid curved’ -5 are the dispersion curves describ- Let us examine in more detail the dependence of the SP
ing the propagation of SPs in an OSL with=0.1 and the  spectrum on the value of the displacement of the 2DEL in
same parameters as for the WDSL under study. Also showthe WDSL. This dependence is shown in Fig. 3 for=5,
in Fig. 2 is the dispersion curvé for SPs in an isolated N=10, §=0.1, T=0, ck/QQ=10, e=12 in the case of the
2DEL with N=10, while the dashed ling is the light line o _z_¢ geometry for three different choices of the displaced
w= kUd (Ud:C/\/g is the SDEEd of I|ght in the dielectric fill- 2DEL, at positionsq:l (a), q:z (b), andq:3 (C) The
ing the WDSD. dimensionless frequenay/() is plotted along the ordinate,

As we see in Fig. 2, in the long-wavelength region the g ihe gimensionless displacem@nt QA/c along the ab-

SP spectrum in the WDSL is almost no different from the SPscissa. We see that the frequency of the SPs corresponding to

spectrum in the OSL. This is due to the fact that at large

wavelengths the electromagnetic field of the SPs is weaklf(jrzsfet}rzs'og ﬁuryel dfegreaseg with |agcrjeasnjg|t. dWe ngte
“pinned” to the 2DEL, and the position of the 2DEL in the at the benavior ot diSpersion cuniedoes not depend on

WDSL does not materially affect the SP spectrum. At thethe number of the disp_laced 2DEpn the value ofq)_. At the_
same time the properties of the SPs corresponding to disper-

sion curve5 depend strongly omj. For example, forg=2

1.08 the SP frequency increases monotonically with incrgasing

5 |A]. Forq=1, however, the SP frequency as a functiomof

has a minimum afA~ —0.03. Forq=3 this minimum oc-

3. NUMERICAL RESULTS

104l 7 o 2 = = : curs atA~0.03. At the same time, fog=2 the SP fre-
c \ 6 = 5 ! quency (dispersion curves2—4) depends weakly orKN.
E E 7 1 Analogous Eehavior is found for the dispersion cur@gs\

100l >0) and3 (A<0) for g=1. Forq=3 the dispersion curves

0.96

FIG. 2. Spectrum of SPs in a finite WDSL fer,=e,=&¢=12, N=10,

1 |

12
ck/Q

5=0.1,A=0.05, v=0, M=5, andq=1.

16 20

2 (A<0) and3 (A>0) also depend weakly ofd. We note
that the frequency of SPs corresponding to dispersion curve
4 can increaséfor q=1) or increasdfor q=3) with increas-

ing A.

Let us now consider the distribution of the average en-
ergy flux of the electromagnetic field of SPs in a finite
WDSL. Figure 4 shows the distribution of thkecomponent
of the Poynting vectoB,(z) = (c?/8) (EX H*), for several
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FIG. 3. Dependence of the SP frequency on the displacetment finite WDSL forck/(0=10, e,=e,=¢=12, N=10, §=0.1, v=0, andM =5 for three
different choices of the displaced 2DEL, at positiaps 1 (a), 2 (b), and 3(c).

SP modes with ck/Q2=10.0, A=0.05: q=1, w/Q tromagnetic field energy of the SPs in the WDSL is concen-
=1.00846 (a), q=2, w/Q=1.01438(b), and q=3, w/Q trated in the regioz<<3d, and the value of the displacement
=1.01976(c). Plotted along the abscissa is the dimension-A has almost no influence on the spectrum of the given SP
less distance=zc/(), and along the ordinate is the dimen- mode.
sionless x component of the Poynting vectoB,(x)/S, Let us now examine the influence of dissipation in the
X (+0). The vertical dot-and-dash lines indicate the posi-2DEL on the dispersion properties of the SPs. We shall as-
tions of the 2DELs in the WDSL. The dashed curve in Fig.sume that the wave numberis real-valued, while the fre-
4c shows the distribution d,(x)/S,(+0) in the OSL. quency is complex¢=w’+iw"). In this case the variable

It is seen in Fig. 4a that practically all of the flux of P=p’+ip” also becomes a complex quantity, and the exis-
electromagnetic energy for the SP mode corresponding ttence condition for SPs, Re=p’>0, holds for any values of
dispersion curvd (the local SP mode in the WD$lis con- K (includingk=0). Figure 5 shows the curves of the dimen-
centrated in the smallest gap between 2DELs in the WDSLSionless frequency’(k)/€) (solid curve$ and dimension-
This circumstance explains the weak dependence of the frédess dampingo”(k)/{) (dashed curvesof SPs as functions
quency of the local SP mode on the number of the displace@f the dimensionless wave numbek/() in a finite WDSL
2DEL in the WDSL. Figure 3b and 3c shows the distributionwith M=5, N=10, §=0.1, A=0.05, ande=12 in the
of the energy flux for dispersion curv@s(q=2) and3 (q e—e—¢ geometry forg=1 and two values of the dimension-
=3), which coincide with the corresponding dispersionless electron momentum relaxation frequeiicyl’=0.1 (a)
curves for SPs in the OSL. For=2 (Fig. 4b the main part andI'=0.2 (b).
of the flux of electromagnetic field energy of the SPs is lo-  We see from Fig. 5a that in the presence of dissipation in
calized in the region €& z<d (far from the displaced 2DEL  the 2DEL the SP spectrum contains, along with the ordinary
For this reason the value of the displacem&mtoes not have modes(dispersion curveg-5) that exist in the WDSL even
a substantial influence on the spectrum of the SP mode coin the absence of dissipation, an additional surface polariton
responding to dispersion cun2 For q=3 (Fig. 40 the  (ASP) that corresponds to the dispersion cubelhe exis-
distribution of the energy flux in the WDSL in the region tence of the ASP when dissipation in the 2DEL is taken into
z<3d practically coincides with the energy flux distribution account can be explained by the following circumstance. In
in the OSL. We note that in the regia>3d the value of the I'=0 case two types of polaritons can exist in the
S, /S, (+0) in the OSL exceeds the value 8f/S,(+0) in  WDSL: surface polariton&iscussed aboyewhich exist un-
the WDSL. Here, however, the main part of the flux of elec-der the conditionp?>0, and bulk polaritons, which exist

a b c

50— e 12— —— 1.1
- N i i roo ! P i -
. N R T T e S N A B R
P AR R I B LY SO T I P
= b AT R 06F i i P -
Y I S i ol 0.5r
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) [ i i B : i i ! ! 0.3r
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FIG. 4. Distribution of thex component of the Poynting vect&(x={z/c) for ck/Q2=10.0, A=0.05, and several SP modep= 1, /) =1.00846(a),
g=2, /Q2=1.01438(b), andq=3, w/Q2=1.01976(c).



126 Low Temp. Phys. 26 (2), February 2000 N. N. Beletski and Yu V. Bludov
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FIG. 6. Frequency of the additional surface polarit@xSP) versus the
displacementA in a finite WDSL forck/Q=1.0, e;=¢g,=¢=12, N=10,
b 6=0.1,T=0.1, andM =5.
1,065 p 0
i J’7 ASP (dispersion curvés’) gradually decreases with increas-
c 1 0ol { 2 7 ing k, going to zero and at the end poipt=0 of the ASP
P i 1045 spectrum.
L b 3 As T increases, the SP spectrum in the WDSL is sub-
’ stantially restructuredFig. 5b. For example, the fastest SP
0.98 L feE | mode splits into two branches. One of theispersion
37" ‘1".‘ S .. cosooo curve 1) practically coincides with the light line and has an
0 953 YW iEriTEEEEErEERE 102 end point of the spectrum’=0. The second branch of SPs
) 4 8 12 15 in the vicinity of the cyclotron resonance merges with the
ck/Q ASP, forming a continuous dispersion cureThis disper-

sion curve has a minimum near the light line. Here the damp-
ing of the fastest SP mode increases sharply in the vicinity of
the cyclotron resonandgurve 1’ is transformed into curve
6’) and becomes approximately equallioAs I' increases

under the conditiorp?<0. When dissipation is taken into further, the end point of the spectrum termination pght
account ' #0), the variablep becomes a complex quantity, =0 for dls_p_ersmn curvel is shlft_ed to lower frequencies,
and the polaritons existing in the WDSL are therefore neithefnd the minimum on the dispersion curggeformed by the
purely surface nor purely bulk. The additional SP is a “qua-Merging of the ASP and the slow part of the fastest mode,
sisurface” polariton, which is “pinned” to the 2DEL owing Pecomes smoother.

to the presence of dissipation. Its electromagnetic field is L€t us discuss in more detail how the spectrum and
weakly “pinned” to the 2DEL, and in the absence of dissi- damping of the ASP change as the value of the displacement
pation it would be a bulk polariton. of the 2DEL is variedat a constant wave numbky. Figure

It should be noted that the ASP exists only to the left of6 gives the corresponding dependence for the case when

the light line w’=ck/\& (dashed line7). The ASP has an €K=1.0,N=10,5=0.1,s=12,I'=0.1, and three values

end point of termination of the spectrum which is determined® d: 1,(‘3”“’951 andl’), 2 (curves2 and2'), and 3(curves
by the conditionp’ =0. We note that in the entire existence 3 and3’). Forq=1 the frequency of the ASolid curvel)

region of the ASP its electromagnetic field is weakly “tied” decreases monotonically dsincreases, while the damping
to the 2DEL, sincep’ <p”. At the end point of the spectrum, (the dashed curvé’) has a minimum at\~0.875. At the
p’ =0, the electromagnetic field of the ASP becomes delosame time, forq=3 the frequency of the ASRcurve 3)
calized. At the same time, the electromagnetic field of arincreases with increasing, and the minimum of the damp-
ordinarily SP is strongly “tied” to the 2DEL, since for them ing curve3 occurs afA = —0.875. We note that fog=2 the
p’'>p”. To the left of the light line, however, the electro- curves of the frequency and damping of the ASP have a
magnetic field of ordinary SPs also becomes weaklyqualitatively different character: with increasihy| the fre-
“pinned” to the 2DEL. quency of the ASP decreases, while the damping increases.
Let us discuss the damping of ordinary SPs in more de- We emphasize that all of the above-described character-
tail (curves1’'-5'). First, in the vicinity of the cyclotron istics of SPs in a finite WDSL are quantized quantities, since
resonance the damping of mode (curve 1') increases the functionN(B) under conditions of the IQHE is a steplike
sharply and reaches a value of the orded’ofSecond, the function of magnetic field. For this reason the group velocity
damping corresponding to dispersion cunZs, is practi-  of the SPs undergoes jumps whose value is determined by
cally constant and approximately equalltdor all values of  the fine structure constamt the dielectric constants, ¢,
the wave numbers. At the same time, the damping of th@nde,, and the interlayer distanckand the displacemenit.

FIG. 5. Spectrum of SPs in a finite WDSL fer,=e,=¢=12, N=10,
5=0.1,A=0.05,M=5, andq=1 for the case$ =0.1(a) andT'=0.2 (b).
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4. CONCLUSION semiconductor structures by transferring to it the energy of a
In summary, the properties of SPs in a finite WDSL beam of charged particlgby the principle of the traveling

under conditions of the integer quantum Hall effect have the/ave uljt?' Further;T](;re,Atgg sgehofbthe de&n}pmgh and thg
following characteristic features. First, all of the dispersionSpeCtra eatures of the might be used for the experi-

and energy characteristics of the SPs are quantized quan lental det.ermination of the electron mor_ngntum relaxation
ties. Second, in the vicinity of the cyclotron resonance th requency in 2DELs and the value of the filling factor of the
phase velocity of the SPs decreases sharply, while the gr0|.]'|0andau levels.

velocity of the SPs undergoes jumplike changes as the mag-

netic field is changed. The value of the jumps in the Sp E-mail: bludov@ire kharkov.ua

group velocity is determined by the fine structure constant
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A study is made of the damping coefficient for sound in a dielectric chain crystal containing
isotopic impurities at low temperaturds<0.10 (0 is the Debye temperatyrdt is shown that

in the case of strong disorder, effects due to weak localization of the phonon modes have a
substantial influence on the propagation of sound. 2@0 American Institute of Physics.

[S1063-777X00/00802-1

1. It was pointed out in Refs. 1-3 that quasilocal levels w2b2k? ak ak
. . . . . 2 1 L 20 . X . y
do not appear in the vibrational spectrum of low-dimensional ~ w;(k)= > T ( S|n27+sm27 : 2
crystal lattices with diagonal disordére., with heavy isoto-
pic impuritieg, unlike the case for weakly anisotropic crys- ) b s w% 4ki o . ,ake ak,
tals. Consequently, for the phonon modes in low- wp(k)=wia’k? + +w3| sin? 2 +S|n27 '
dimensional lattices an important role can be played by 3)

coherent backscattering processes in the weak localization

regime*® In a recent papfrwe analyzed the influence of Wherewz~w, andw;~wj.

such processes on the frequency and temperature behavior of 2- Let us immediately turn to the question of the absorp-
the damping coefficient of low-frequency sound in layeredtion of low-frequency sound in chainlike compounds with
compounds. diagonal disorder. We consider the situation in which when

In the present paper we report the results of a study ofletermining the “bare” single-particle lattice Green func-
chainlike compounds. We note that chain crystals can sugions constructed for the operators of the dynamic atomic
port the existence of specific acoustical modes with displacedisplacements for phonon modes, one can neglect the stan-
ment vectors oriented parallel and perpendicular to thélard anharmonic interaction of the phonons in comparison
weakly coupled chains. The vibrational modes of the firstwith their elastic scattering on defects. For the spatial Fourier
type are longitudinally polarized excitatiois modes. The ~ components of the Green function we have
modes of the second type are the so-called bending excita- w |1
tions (b modes.”® Over a rather wide interval of low fre- G l(w)~| 02— w¥(k)—i -
guencies a strongly anisotropy chain crystal can exhibit 7i(w)
guasi-one-dimensional dynamical properties. Such modes 1 -
have been observed, e.g., in experiments on the elastic scat- ———~= ECSszgj(w). 4
tering of neutrons and the low-temperature specific heat in (o)
the quasi-one-dimensional compounds (Tasde and |n Eq. (4) c is the concentration of isotopic defects<1),
(Tay_4Nb,Se),l (Refs. 9 and 1D e=(My—Mg)/Mg, whereMy andM, are the masses of the

For the sake of definiteness we shall assume that theefect and host atomghere My>M,), and gj(w) is the
lattice of the quasi-one-dimensional crystal is tetragonalspectral partial density-of-phonon-states function.
with unit cell parametera andb. The interaction efficiency According to what we have said, the condition
between atoms in the basal plarg(|) is assumed to be 7> 7l(w7), whererl, is the relaxation time associated with
weaker than that along the axes of the cha(n,). For sim-  normal anharmonic processes. Here we have set the charac-
plicity we also assume that the matrices of the force paramteristic phonon energwr~kT/Z=8"1.
eters are diagonal with respect to the Cartesian indices. In  The above inequality is equivalent to the condition
this situation there are three characteristic force parameters,
which satisfy the inequalities

08/ [ e 051 < | b 05t wherev is the mean sound velocity.

[ 1< 1Py < @) To determine the temperature-dependent part of the
These force parameters correspond to three characteristic frdamping coefficient for low-frequency soun@uch that
quenciesmi« w§< w%. Here the dispersion relations for the w7!(wy)<1), we must find the imaginary part of the polar-
acoustical longitudinal and bending vibrational modes are: ization operatoil’ of the single-particle lattice Green func-

ce2>KT/Mgu?=(10"5-10"%)T, 5
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tion with allowance for the anharmonic interaction of o _ , Im sz(wj(k)
phonons. It can be shown that in the approximation of cubic ~ I''=T"}+Th~ImII}(w;(k))+ e (k)
anharmonicity(see Ref. § J
‘ . : where it is understood thai~ w;(K).
ImIT =ImIT}+ImTI. (6) To compare the relative contribution of the weak local-
ization effect to the sound damping, let us examine the ratios
The first term describes the correction to the phonon dampef I'} andT'},. From (7) and(8) we have
ing on account of the standard anharmonic interaction be-

tween acoustical phonons. The second term is due to the I (T 2 T3 LT 3
interaction of the acoustical mode with the two-phonon co- F‘;NCS 0, \w) FE%CS Op\ wy) ©
herent states that arise in the weak localization redimé.
Here we have where 0; is the Debye temperature of th¢h vibrational
mode.
_ Zigwwf(k) ) Let us now examine expressi@®). If the measure of the
ImIT}(k, 0)~ fE wj(ki)n(w;j(ky)) defect density in the crystal has a valee?<1 and if o)
k1 and w,, which characterize the intensity of the interaction
x(n(wj(kl))+1)7{(wj(k1)), 7) of the chains, are less than then in the low-temperature

region T<0.10; it is possible to have a situation where

_ Y2bww(K) (o do I's=T1. In other words, the temperature behavior of the
ImIT5(k, w)~ 2—T] f N 2—n(w)(n(w)+ 1) sound damping coefficient is determined by processes of co-
™ oj €T herent backscattering of thermal phonons.

w?7(o) We note in conclusion that we only know of experimen-

X5 0 ol (8)  tal data on the absorption of sound for the relatively regular
[Dy (@)D ()] quasi-one-dimensional compound (TaSleand the lightly

o _ o doped systeniTa, ,Nb,Se)),l (Ref. 13. For comparison of

73 is the effective anharmonicity of the force constant, andhe qualitative results of the theory with experiment, data

n(w) is the equilibrium Planckian distribution function of \yijl he needed for substantially disordered chain crystals.
the phonons. In additiorDﬁ(JL) are the tensor components of

the bare diffusion coefficient for phonons of tjt@ polariza-
tion:

. 1 dw?(k) dw?(k) S .
{D‘?J ,DE'}= [ j j E-mail: zhernov@kurm.polyn.kiae.su

47791((1)) Kk (9k|| ! (9kJ_
X G ()G (w)

(6*" are the retarded and advanced Green functions, re-
spectively. Finally, the frequency,)?:‘/jw”(z) appearing in ID. M. Bercha, M. N. Botvinko, L. Yu. Germanskaya, and M. A. lvanov,

Eq. (8) separates the regions of quasi-three-dimensi¢mal '(:ligég‘]iz"' Temp.12, 282 (1986 [Sov. J. Low Temp. Physl2 162

small region of frequencies near zgrand quasi-one- 2\ A ivanov and Yu. V. Skripnik, Fiz. Tverd. Teld eningrad 32, 2965
dimensional behavior of the acoustical vibrational spectrum. (1990 [Sov. Phys. Solid Stata2, 1722(1990].
The frequencyw? determines the threshold of mobility of 3'\"'-( A Wanov, A . Kosevich, £, S. Syrkin, 1. . Gospodarey, Yu. V.
phonons and is found by setting the true static diffusion co- ?e;l’]ppn.ll:;h?/r;iQ,Sé()BS- (zgggcf ev, Fiz. Nizk. Temps, 434 (1993 [Low
efficient to zero. 4A. P. Zhernov and E. P. Chulkin, Fiz. Tverd. TéBt. Petersbuigd0, 132

It should be emphasized that in the limit of smialthe (1998 [Phys. Solid State0, 118 (1998].

sum in(7) diverges. It becomes finite if the anharmonic in- [AJ'E?P%??OO?\I(?QS&IJE' P. Chulkin, Zh.kEp. Teor. Fiz.113 930 (1998
teraction of thermal phonons is taken into account. Thesg Chulkin, A. P. Zhernov, and T. N. Kulagina, Fiz. Nizk. Ter@,

mechanism of sound absorption described by expresgion  1218(1999 [Low Temp. Phys25, 912 (1999].
is important in the intermediate temperature region, where;I- M. Lifshits, Zh. Eksp. Teor. Fiz22, 475(1952. _ _
the scattering of thermal phonons is sensitive to defects. Asﬁéuhﬁbvﬁosmig ':(?é’\i'lcg‘é I)Mecr‘a”'cs of Real Crystafén Russian,
to the EXpr_eSS'on f0r2|rﬂ2 in the Zorm.(8), 't. is valid 'n the %J. E. Lorenzo, R. Currat, A. J. Dianoux, P. Monceau, and F. Levy, Phys.
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haw‘(‘)r. In t.he”denvatlon of Eq8) it was also assymed that 11y 5 o oy and E. P Chulkin, Zh kEp. Teor. Fiz109, 602 (1996
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The temperature dependence of the electrical resistivity of quasi-one-dimensionalislbSe
investigated in the interval 78—550 K in the thermodynamic equilibrium and nonequilibrium states.
At temperatures of 300—550 K one observes an exponential deviation from the linear
dependence on account of the formation of thermodynamic equilibrium Se vacancies. The
influence of intrinsic defectévacancieson the properties of Nbget 78—300 K is investigated

by the quenching method. For samples with excess vacancies an anomalously large

deviation from the Matthiessen rulap to 150% is observed. ©2000 American Institute of
Physics[S1063-777X00)00902-9

INTRODUCTION For crystals with a marked anisotropy of the binding
energy, i.e., in crystals of low-dimensional systems, the re-
Thermodynamic equilibrium vacancies in crystals are daxation of a lattice containing vacancies must also be aniso-
traditional subject for experimental and theoreticaltropic. For quasi-one-dimensional crystals the relaxation of
researcH* Despite the large number of papers on this subthe lattice might be equivalent to a uniaxial extension, which
ject, however, some of the ideas about the behavior of vaean lead to destruction of the stability of the lattice. Unfor-
cancies under different conditions and the influence of vatunately, we know of no studies on the behavior of vacancies
cancies on the various properties of crystals still remain irin low-dimensional systems, even though interest in this
dispute. topic has risen sharply in connection with the discovery of
The formation of vacancies in a state of thermodynamichigh-temperature superconductivity.
equilibrium in a highly perfect lattice most often occurs by In this paper we report the first experimental study of the
the Schottky mechanismwhen an atom hops from a sub- temperature dependence of the electrical resistivity of the
surface lattice site onto the surface by a thermodynamicallyvell-known quasi-one-dimensional syst€rof NbSe, single
active process, followed by migration of the vacant itg&-  crystals in the temperature range 78—550 K in both the equi-
cancy in the bulk of the crystal. Besides the surface, varioudibrium and nonequilibriunfafter rapid quenching from high
structural macrodefectgdislocations, pores, grain bound- temperaturesstates.
arieg can also serve as sources and sinks for vacancies.
Since the relaxation of the lattice consists in the dilatation of
the nearest-neighbor atoms toward the vacaftiey “inho-  £ypERIMENTAL PROCEDURES
mogeneous” part of the relaxatipand the extension of the
entire lattice(the “homogeneous” pajf the net change in Quasi-one-dimensional Nb$e(Ref. 10 consists of
the volume of the metallic crystal depends importantly on thechains of trigonal prisms of selenium atoms with a niobium
nature of the sources and sinks. However, this extremelatom at the center of each prism. The weakness of the cou-
important issue is addressed in only a comparatively smalpling between chains makes this a quasi-one-dimensional
fraction of the experimental papers on vacancies in crystalsompound. The single-crystal samples of niobium triselenide
(see, e.g., Refs. 6 and.7 NbSe were grown by the method of chemical gas-transport
In the case of metals the introduction of vacancies iseactions:!
equivalent to the introduction of an electropositive substitu- For the measurements the single-crystal samples of
tional impurity with an effective valence that takes into ac-NbSe (0.02—0.05<0.01-0.00% 10 mm) were placed on a
count the volume changes. The presence of vacancies lea8#all devitrified glass substrate on which current and poten-
to corresponding changes in the number of carriers per latticgal leads had been deposited. Electrical contacts were
site and in the Fermi energy, which is reflected in the kineticformed by applying a conducting silver paste.
thermodynamic, and superconductive properties. The For the experiments in the low-temperature regio8—
changes in the vibrational spectrum of a crystal in the pres300 K) we used the measurement cell described in Ref. 12
ence of vacancies apparently reduce to a “softening” of theand a standard platinum resistance thermometer. The tem-
spectrum, i.e., to an increase in the low-frequency density operatures were stabilized to within2x 10”2 K or better. At
states on account of the decrease in density; this agrees quakmperatures of 300-550 K the substrate and sample were
tatively with the observed values of the entropy of vacancyplaced, together with a Chromel—-Alumel thermocouple, in a
formation and with experiments on the influence of vacan-quartz ampoule which, as necessary, could be filled with an
cies onT, in metals’® inert gas(helium) or evacuated. The quartz ampoule contain-
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ing the sample and thermocouple was placed in an oven.
During the measurements in the interval 300-550 K the tem-
perature was stabilized to within 5 K. 2.2 .

We obtained the temperature dependence of the resistiv- Ap/p=Aexp(-E, /KT)
ity of the quasi-one-dimensional single crystal Np8ethe 18k $
interval 78—550 K in thermodynamic equilibrium and non- ' 4
equilibrium states. The resistance was measured in direct
current along thé axis, i.e., along the Nb3echains, by a
null scheme using the standard four-probe technique. The ot
value of the transport curreitwas chosen so as to avoid ~* |
gl,gO:] :f the charge density waves and ranged fronu®&Qo 300 200 500

The samples were quenched both by rapid immersion in T.K
alcohol at 293 K and also in air. The bageitial) annealed
state was attained by a slow cooling from high temperature
at a rate ofdT/dt<10 2K/s. The procedure of annealing
after quenching was carried out in isothermal and isochro-
nous modes with holds of the quenched sample at 320—
400 K.

EXPERIMENTAL RESULTS AND DISCUSSION

To shed light on the question of whether it is possible to
form a thermodynamic equilibrium concentration of vacan- -4
cies in low-dimensional systems, we did a series of experi- | |

{

I
ments on NbSgsamples to study the temperature depen- 1.9 2.1 2.3
dence of the electrical resistivity on heating at temperatures 17T 103 K—1
from 300 to 550 K. The typical temperature dependence of '
the resistivity during heating in air is shown in Fig. 1a. In the FIG. 1. Temperature dependence of the resistéacand the relative incre-
region 300—-4@ K a linear temperature dependence of thement in resistance in semilogarithmic coordinafi@sfor samples of single-

resistivity is observed, while abov, (T,=420K) there is ~ Cystal NbSgin the region 300-550 K.

a substantial exponential deviation from the linear depen-
dence.

It should be noted that in a number of cases the size andn account of the formation of thermodynamic equilibrium
character of the deviations from the linear dependence weneacancies:* It is natural to suppose that the deviation from
noticeably altered. This was ordinarily observed at a sampla linear temperature dependence of the resistivity of NbSe
temperaturel ;=500 K and was manifested in an extremely in the present study is due to the formation of thermody-
strong scatter of the resistivity values. Varying the composinamic equilibrium vacancies.
tion of the heating mediunfvacuum, air, gaseous heligm Figure 1b shows a semilogarithmic plot, A(p)
had only a slight effect on the size of the deviation and the=f(1/T), of the dependence of the resistivity obtained in the
value of the temperature at which the deviation begds ( present study. It is clear that the deviation from a linear
=420+ 10K). The temperatur@, above which the scatter temperature dependence has an exponential character, as
was observed was also practically constant. The presence tyfpical for thermally activated processes. The activation en-
the scatter is apparently due to local melting of the crystal oergy is E,=1*x0.2eV. The error was determined by the
to the fluctuational formation of large coagulates of defectsscatter of the data of different experiments.

It cannot be ruled out that nonstoichiometric selenium vacan-  An estimate of the energy of vacancy formatigp in a
cies are formed as a result of the emergence of Se atoms simple approximation of the binding energy shows that the
the surface and their subsequent evaporation. In principlexponential deviation from linearity in the temperature de-
there could also be a contribution due to intercalation of thgpendence of the resistivity of quasi-one-dimensional NbSe
gas from the heating medium, but holding the samples fors predominantly due to the formation of thermodynamic
several hours in the media used did not produce any systenequilibrium selenium vacancies.

atic changes in thdR(T) curves. We note that when the To investigate the influence of intrinsic point defects
sample was heated to temperatufesT; the behavior of the (vacancies on the properties of the NbSerystal at com-
temperature dependence of the resistivity was ordinarily irparatively low temperatures we performed quenching as fol-
reversible on heating and cooling. In the regibp<T<T; lows. A sample was held in the oven for 1 hour B}
the change of the resistivity with temperature was reversible= 323, 373, and 463 K, and then taken out into the air or

It is known that for three-dimensional metallic systemsimmersed in alcohol. The rate of cooling wasl(? K/s.
at pre-melting temperatures an exponential deviation of the In experiments on the quenching of high-temperature
properties from a linear temperature dependence is observéidermodynamic equilibrium lattice defects it is essential to

S
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C LN “amplitude” of the change in resistivity at the charge-
density wave.
2 Analysis of the contribution of vacancies to the tempera-
3r ture dependence of the resistivip(C,T) is conveniently
.o‘ done in terms of the deviation from the Matthiessen rule
s L o® (see, e.g., Ref. 24
© @
~ ’“. ... v
g ) o® ' p(C,T)=pi(T)+po(C)+A(C,T), (1)
® 2+ ® [ o
[ang ® .' .p""u . e . .
~ o #° where pig(T) is the resistivity of an ideal samplpy(C) is
o« | ,‘ s ® the residual resistivity of the sample, andC,T) is a func-
tion describing the temperature and concentration depen-
dence of the deviation from the Matthiessen rule.
1t | 1 | | When measurements are made on the same sample, the
100 200 300 following relation can be used to good accurdsss than
T, K 1% errop:
FIG. 2. Temperature dependence of the resistance of NixBeples in the .
thermodynamic equilibriuni2) and nonequilibriun(1) states in the interval AC,T) _ ARr—ARyg )
78-300 K: annealed®); quenched from temperaturdg, K: 327 (+), Ap78 AR78 ’

373 (), 463 (@).
where AR is the difference of the resistances of the
guenched and annealed sample at temperatu@nd AR;g

follow correct Coo“ng procedures‘ The rate of quenchingis that at 78 K. The accuracy of this relation is limited by the
must not exceed a maximum rate set by the onset of appréact that it negleCtS the influence of the Change in the dimen-
ciable thermal stresses. Ordinarily in correctly performed exsions of the sample containing vacancies in comparison with
periments, after the fixing of the high-temperature concentrathe sample without vacancies.
tion and distribution of vacancies in the samfséee below Figure 3 shows the temperature dependence of the func-
and the subsequent restoration of the sarfipfeannealing at  tion A(C,T)/Apsg for the NbSg sample after quenching
higher temperatureB~ Tp) the physical properties being in- from 463 K. One notices the positive value®fC,T) in the
vestigated undergo reversible changes. In this study weéntire temperature region and the presence of a maximum at
rarely observed a reversible recovery of the resistivity of thel30 K (the maximum is shifted relative to the maximum on
NbSe samples. The residual resistivity after restoration ofcurvesl and2 (Fig. 2). For T>140K the deviation from the
the Samp|e was as h|gh as 10% of the quenching_re|ateMatthiessen rUldDMR) increases praCtica“y ”nearly with
increase. In the case of quenching frd>T, the revers- ~teémperature. The DMR is anomalously large in comparison
ible part of the resistivity was not more than 60%, which iswith the deviations ordinarily observed in three-dimensional
consistent with the conjecture that stable macrodef@ds Metals and reaches 150% Tt 293 K.
agulatey are formed in this temperature region or, possibly, ~ Since the electronic spectrum of quasi-one-dimensional
that a local melting of the lattice occurs, which correspondssingle-crystal NbSgis anisotropic, one can assume that the
to the results in Ref. 13. deviation from the Matthiessen rule is predominantly due to
Figure 2 shows the temperature dependence of the resig-lifting of the anisotropy of the electron distribution func-
tivity of samples in the quenched and annealed states in tHéon in the scattering of conduction electrons on vacancies
interval 78—300 K. On all of the curves obtained in the tem-
perature region 78—145 K there is a characteristic phase tran-
sition of the charge-density wave type. For the annealed

samples the charge-density wave is realized Taty 1.6}
=145K, which agrees with the known values {Hw L
=145K).%° ® 1.2t
Curvelin Fig. 2 was obtained for an annealed sample of cc'\ '
NbSg (O) and for samples quenched from 323 and 373 K. < | R T

These temperatures were chosen lower than the temperature ',_ % 0.8r
at which the defect-induced deviation from a linear tempera- L
ture dependence of the resistivity begifgy. 1). We see that < 0.4
the results are in good agreement, which attests to the cor- '
rectness of the quenchir(gince there is practically no con-

tribution from quenching stresge€urve2 was obtained for 0 ;

quenching fromT,=463K. It is characterized by a larger T K200 300
value of the resistivity aff=78K, a larger slope of the ’

rectilinear part than on curvé, an appreciable lowering of . 3. peviation from the Matthiessen rule in quenchdd, % 463 K)
the value ofTcpw (AT=—2K), and a larger value of the samples of NbSe

100
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The behavior in an external magnetic field is studied exactly for a wide class of multichain
quantum spin models. It is shown that the magnetic field together with the interchain couplings
cause commensurate—incommensurate phase transitions between the gapless phases in the
ground state. The conformal limit of these models is studied and it is shown that the low-lying
excitations for the incommensurate phases are not independent, because they are governed

by the same magnetic fiel@hemical potential for excitationsA scenario for the transition from

one to two space dimensions for the exactly integrable multichain quantum spin models is
proposed, and it is shown that the incommensurate phases in an external magnetic field disappear
in the limit of an infinite number of coupled spin chains. The similarities in the external

field behavior for the quantum multichain spin models and a wide class of quantum field theories
are discussed. The scaling exponents for the appearance of the gap in the spectrum of low-
lying excitations of the quantum multichain models due to the relevant perturbations of the
integrable theories are calculated. ZD00 American Institute of Physics.

[S1063-777X00)01002-1

1. INTRODUCTION grounds for the use of perturbative and numerical methods in
more realistic situations.

There has recently been considerable interest in low- Recently several exactly solvable modefshave been
dimensional quantum-correlated spin and electron systemtroduced, in which the zigzag-like interaction between two
These systems, especially one-dimensiofid)), manifest quantum spin chains was studied exactly using the Bethe
the specific features of, e.g., magnetic behavior at low temansatz techniqu®.This method is widely known by now,
peratures, which are absent for the standard, conventional 3gee, e.g., the recent monograpimd references therein. The
magnetic systems. Spin systems usually manifest 1D behaBethe ansatz method permits exact calculation of the static
jor at temperatures higher than the temperature of the 3Bharacteristics of quantum many-body systems, such as the
magnetic ordering but lower than the maximum characterisground state behavior, the influence of an external magnetic
tic energy of the interaction between spins, i.e., in our casé€ld, and the thermodynamic features of the temperature de-
the intrachain spin—spin coupling. The origin of such specifid?@ndence of the specific heat, magnetic susceptibility, etc.
features is the enhancement of the quantum fluctuations df"€se results should apply to more-realistic systems, but it is

the 1D systems due to the peculiarities of the 1D density offOt ©Pvious how the interactions between the chains modify
states together with the quantum nature of spins. the answers. The mean-field-like approximations for the in-

Moreover, during the last decade a large number of neV\t]erchain couplings are not sufficient, because the mean field

quasi-1D spin compounds have been created and studied € _proaph in any version already |mp!|es the existence of a
. : sometimes hidderorder parameter. It is, unfortunately, also

perimentally. These compounds manifest at low tempera: . . .

. ; . . unclear whether the numerical calculations, which can be

tures the properties of a single quantum spin chain or sever%l.

: . ) irectly applied for quantum many-body systems of very
guantum spm chains wgakly coupled to each olﬁelrt. IS ., small sizes, by nowusing at most, several tens of sijtes
strongly believed that this class of compounds will prowdedescribe well the properties of real systems, in which, even

new information on the transition from 1D to 2D in quantum i, 451D ones, the number of sites is at least of ordér 10
many-body physics. This IS very important, because the 2@y the other hand, it must be admitted that some features of
quantum many-body physics has been a challenge for boike exactly solvable 1D models are far from what is observed

theorists and experimentalists since the beginning of th@xperimentally, but these unrealistic features of the 1D mod-
study of low-dimensional quantum systems. On the othegls are known and simple to recognize.

hand, the advantage of the 1D theoretical studies is the pos- The behavior of multichain spin systems in an external
sibility of obtaining exact solutions by using nonperturbativemagnetic field is especially interestirigee, e.g., Refs. 5,
methods, which are difficult to apply for the higher- 8—10 because ofi) the possibility of experimental observa-
dimensional quantum many-body models. The results of théons due to recent progress in high-magnetic-field measure-
exact calculations of the 1D models can serve as testingnents, andii) very interesting theoretically predictable ef-

1063-777X/2000/26(2)/13/$20.00 134 © 2000 American Institute of Physics
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fects which are possible to recognize in experiments, such dsr higher values of the site spirigossibly differentin each
phase transitions in the external magnetic field. Howeverchain, i.e., a quantum ferrimagnet. We point out the similari-
several important issues are far from being resolved in théies of the quantum ferrimagnet with QFT in the case of a
guantum two-chain spin models. For example, there are thregonzero Wess—Zumino term and predict new phases for the
questions that need to be answergld:Are the properties of latter in an external magnetic field. We derive integral equa-
those exactly solvable two-chain spin models unique or is itions for the critical exponents. In Sec. 5 we consider the
possible to say something about the more general class ofiultichain quantum spin model and discuss how the external
two-chain quantum spin model$2) How are the multichain field behavior of the integrable multichain models is changed
guantum models connected to the 2D many-body systemsyhen the number of chains is increased while preserving the
i.e., what is the scenario of the transition from 1D to 2D exact solvability. In Sec. 6 we briefly sketch how the devia-
when one increases the number of coupled chains whil§ons from integrability change the magnetic and low-
keeping the conditions of integrability3) What will happen temperature properties of this class of multichain quantum
with the behavior of the nonintegrable multichain spin mod-spin systems. We close with a discussion of the main results
els if one goes beyond the frame-work of integrability, i.e.,and some conclusions.
by adding some perturbations to the exactly solvable model?
(Fgr gxamp]e, Ref. 10 implies that 't. is namely the SPIN, TWo-CHAIN UNIAXIAL QUANTUM SPIN MODEL
chirality, which separately breaks the time-reversal and par-
ity symmetries in the two-chain integrable modkkhat is A common property of some of the Bethe ansatz solu-
the reason for the emergence of the additional phase trangiens is the presence of shiftg of the spectral parametar
tions in an external magnetic field for the two-chain spin-1/2for the associated transfer matrix of an algebraic version of
model as compared to the single-chain system. the Bethe ansatfZthe quantum inverse scattering method
The goal of this paper is to answer these questions. FirstQISM’). Those shifts also appear in the Bethe ansatz equa-
we revisit the exactly integrable two-chain spin-1/2 modeltions (BAE) for the quantum numbers called rapidities,
and show that the inclusion of magnetic anisotropy of thewhich parametrize the eigenfunctions and eigenvalues of the
“easy-plane” type, for which the system stays in the quan-Hamiltonians. Hence, the distributions of the rapidities are
tum critical region, will not drastically change the behavior also affected by the shifts. An interesting property is con-
in an external magnetic field but will shift the critical values nected with those shifts: depending on their values and the
of the magnetic fields and intrachain couplings at which theexternal magnetic field, even féguasjparticles of the same
phase transitions occur and will affect the critical exponentstype, additional minima may appear in distributions of the
We will show that these two-chain spin models share theapidities. These additional minima also result in nonmono-
most important features of the behavior in an external fieldonic behavior of the dispersion relations of the low-lying
with the wide class of (#1) quantum field theories. Next, excitations. Also, they provide additional Dirac seas for low-
we will introduce the higher-spin versions of the two-chainlying excitations, changing the structures of the physical
spin models, e.g., investigating the important class of 1Dground states of the models. These additional minima deter-
two-chain quantum ferrimagnets with different spin values amine the special behavior of the models in an external mag-
the sites of each chain. We will also investigate the behavionetic field>*®°In particular, the appearance of new phases
of the exactly solvable multichain spin models in an externabnd new phase transitions is due to the emergence of these
magnetic field and show how the additional phase transitioneew minima in the distributions of the quantum numbers.
arising due to the increasing number of chains vanish in the To set the stage, let us first remind the reader about the
quasi-2D limit. Finally, we will show how the relevant de- main steps of the QISM. The common feature of the Bethe-
viations from integrability, e.g., the absence of terms in theansatz-solvable models is the factorization of the mono-
Hamiltonian which separately break the parity and time-dromy matrix (the ordered product of all two-particle scat-
reversal symmetries, give rise to gaps in the spectra of lowtering matrices, which depend on some spectral parairfeter
lying excitations of multichain quantum spin systems, andExact(Bethe ansadzintegrability requires exclusively elastic
we will calculate the scaling exponents for the gaps. scattering betweeriquas)jparticles. For such theories the
The paper is organized as follows. In Sec. 2 we revisittwo-particle scattering matrices atdoperators satisfy the
the exactly solvable two-chain uniaxial spin mdd@ re-  Yang—Baxter relatiod!? In turn, the factorization of the
mind the reader of the main steps of the Bethe ansatz. Thmonodromy matrices guarantees that they satisfy the Yang—
investigation$'° of isotropic spin-1/2 two-chain models are Baxter equations, too. The transfer matrices of the associated
generalized in this section for the case of uniaxial magnetistatistical problem are traces over some additional, auxiliary
anisotropy. The calculations in this section are rather simplesubspace of monodromy matrice¥he most important fea-
but we will write them in detail because they provide theture of transfer matrices with different spectral parameters is
basis for the more nontrivial generalizations of this class otheir commutativity. A necessary and sufficient condition for
models, and will be used in the following sections. In Sec-this is the validity of the Yang—Baxter equations for the
tion 3 we point out the similarities between the behavior oftwo-particle scattering matrices and hence for the mono-
the uniaxial two-chain quantum spin models and a class ofiromy matrices. The commutativity of the transfer matrices
quantum field theorie§QFT) in an external magnetic field, implies that one can construct an infinite number of integrals
predicting new phases for the QFT. In Sec. 4 we introducef motion, which commute with one another and with the
the SU(2) generalization of the integrable two-chain modeltransfer matrix. Therefore the exact integrability is proved.
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Usually the structure of these integrals of motion is deterwhere

mined by their locality. For instance, the best-known of se-

ries of integrals of motion is the series of derivatives with 1= diag coshé,coshé,cosy)

respect to the spectral parameter of the logarithm of a trans-

fer matrix taken at some special value of the fortheacal-  and J=diag (cosy,cosy,coshé),diag@,b,c) is a 3x 3 diago-

ity means that for the first derivative of the logarithm of the nal matrix, and x] denotes the vector product. Please note
transfer matrixusually called the Hamiltonian of the lattice that the sum runs overto N for the chain with spins, 4
system only short-range particle—particle interactions con-and toN_ for the chain with spinsS, ,. The parametep
tribute. determines the intrachain coupling in our two-chain spin

In this paper we will see that namely the aforementionednodel. For=0 the Hamiltonian and BAE coincide with the
shifts of the spectral parameters yield new phases in thenes for the single easy-plane antiferromagnetic spin-1/2
ground state behavior in an external magnetic field for ahain of lengthN, + N_ with only nearest-neighbor interac-
wide class of exactly solvable models, quantum spin multitions in it. The eigenvalue of the Hamiltonidienergy is
chain models, and QFT. We will show that in the conformalparametrized as a function of the rapidities as follows:
limit these phases of the lattice models correspond to one
Wess—Zumino—-WittefWZW) model or to several of them M
with dressed charge@roportional to the compactification EZS"WZ Z N-[ey(u,* 0)+e; *(u,* 6)]+E,
radii) of scalar or matrix types for each of the phases, respec- st &)
tively.

Let us start with the form of the Bethe ansatz equations,\,hereE0 is the energy of the vacuufffierromagnetit state
(BAE) for the set of rapiditie$u,}i,, . In this paper we will  (with M =0). The isotropicS U-symmetric antiferromagnetic
concentrate only on the critical, easy-plane type of magnetiguantum spin two-chain modef®***3can be obtained from
anisotropy for the antiferromagnetic spin multichain modelsthe uniaxial (U(1)-symmetri¢ one in Egs.(1)—(3) by the
Os<ys=m/2(y=mlq, whereqis an integer parametrizing the simple change of variables in the limitu,— yu,,
magnetic anisotropy and the repulsive interactions in QFT. A— ¥\, 60— y8,y—0. (The last limit corresponds to the ra-
This corresponds to hyperbolic or rational solutions of thetional,SU(Z)—symmetric solution of the Yang—Baxter equa-
Yang—Baxter equations for the two-particle scattering matritjons for the two-particle scattering matricehe two-chain
ces, or toU(1) and SU(2) symmetries of the scattering isotropic (SU(2)-symmetri¢ spin-1/2 Hamiltonian obtained
processes, respectively. For the simplest case of oneshift in this limit from Eq. (2) takes the fory®10:11:13
which pertains to the two-chain quantum spin models and to
most QFT, the BAE have the forithere we use the more . 1 )
general hyperbolic parametrization first; for the rational limit His= ( 1+ 92) ; (07(Sh 1 She1at Sz S 250,
see beloy/

(Sh2tShi+12 T20(Sh412~ Sh D) [Shv 1,150 2D)-

M (4)
N .
e, “(u,*h)=e™ e,(U,—Upg), 1 _ . .
11 1 (Uex0) 3:11_,/Is¢a 2(Ua™ Up) @ The summations oven run to N.. for each kind of spin,

o ) _ respectively. Note that fop—« Eq. (4) and the BAE re-
whereN.. are the numbers of sites in each of the spin chainsgoyer the Hamiltonian and BAE of two decoupled spin-1/2
€y(x) =sinhf+iy/2)sinhk—iy/2) "~ andM is the num-  chains of length\... with the only nearest-neighbor interac-
ber of down spins. The shift determines the interchain cou- tions in each of the chains.
pling constant for two-chain quantum spin-1/2 models:* The solution to the BAE1) is usually obtained in the
Please note that the Bethe ansatz equations are just the qugRermodynamic limit(N. ,M—, with the ratio M/(N,
tization conditions for the rapidities, which parametrize the . _) fixed). Here instead of the discrete set of rapidities
eigenwaves and eigenvalues of the many-body quantu@ne introduces the distribution of a continuous density of
model. The Hamiltonian is the first derivative of the loga- rapidities. The ground state corresponds to the solutions of
rithm of the transfer matrixnote that the transfer matrix of e BAE with negative energies, i.e., it is connected with the
the two coupled spin chains in this integrable model is the;jling up of the Dirac set) for the model. For the easy-
product of the two standard transfer matrices of each chaigjane antiferromagnetic two-chain spin-1/2 model the

; J11
with the spectral parametekst 6: ground state corresponds to the filling of the Dirac sea for
real rapidities, i.e., no spin bound states have negative ener-
gies. In the thermodynamic limit the real roots of Eb). are

N 1 o . ) X
A= cosv sint? 6 . distributed continuously over some intervals, which deter-
Y2 sSint? 6+ sir? y; (cosy (Sha 52 mine the Dirac seas of the model. The set of integral equa-
o tions for the dressed densities of the rapiditie$p(u)) and
+S52-She12) 2 SIF YIS, 1+ (Sh o+ She12) dressed energies of the low-lying quasiparticlegu)) are
. . A - (see, e.g., Ref. 7 for the standard procedure of deriving these
X2 siny sinho(ISy+ 12~ IS0 [Sh+ 12X Sh2)), integral equations from the BAE and Refs. 11 and 13 for the

(2 isotropic two-chain spin-1/2 model
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N. It can be rewritten as a function of the quasimomentum, i.e.,
p(u)+ f(Q)dv K(U—v)p(v)ZZ W_Pg (5 in the form of the commonly used dispersion relation
1/2
and g(p)= zsinytanhw—asinB cos?£+sinh‘27T—(9
N Y y 2 2 Y
s(u)-l—f de(u—v)s(v)Zh—z Wisg_,, (6) (12)
@ - A spinon corresponds in the wusual Bethe ansatz
where the kernels of the integral equations are classificatior of BAE solutions to a string of length 1. Natu-
) rally Eg. (1) have string solutions of higher lengths too.
K(u)= diney(u) sin(2y) (77  Other spin excitations can be obtained as combinations of
au 27 cosiu)—cog2y)]’ spinon quasiparticles and higher-length strings with different

rapidities. However, spinons here are picked out because

andh is an external magnetic field. The values only their dressed energies may be negative, i.e., only

o dlne(uxo) ap(u) spinons may form Dirac seas of the ground state of the
px(u)= 70 == model.
One can see that the dispersion relatip8) of the low-
siny lying excitation of the easy-plane two-chain spin-1/2 antifer-
~ 2@[cosHu= 6)—cosy] (8 romagnetic model is factorized into two parts: a gapless part
N o atp=0, 7 and a gapped one at=7/2 (cf. Refs. 9 and 10
are bare densities of the rapidities, and The former corresponds to the oscillations of the magnetiza-
Sir? tion, while the latter is connected with the oscillations of the
2 (u)=h-— Y 9 staggered magnetizatidAn analysis similar to the analysis
2(u) - ) _ ,
cosiu= #)—cosy of the solutions of Eqs(5) and (6) for nonzero magnetic

are bare energieshere “bare” corresponds to non- field h#0 (herg we point out that gccording to the very
interacting particles, and the interaction “dresses” them agiccurate analysis in Ref. 16 the solution of the integral BAE
usual). The integrations are performed over the domaini the f|rst-(_)rder approximation re_produceg correctly bqth the
(Q), determined in such a way that the dressed energig§W- and high-coupling asymptotic behavi@hows thati(i)
inside these intervals are negative. The limits of integratiorin® dressed energy of a spinon as a function of the dressed
are determined by the zeros of the dressed energies and fdasimomentum has only one extremum, a maximurp at
the Fermi points for each sea. Analysis of the integral equa= /2 for 6<6c, and(ii) for 6> 6. there are two maxima
tions (5) and(6) in an external magnetic field shows that in @d one minimum(situated atp=/2). At the (tri)critical
general, for some values @fandh, there can be one Dirac POiINt 6, the minimum disappears and the two maxima
sea(it corresponds to one minimum of the bare densities of"€rge into a flatter oneat p=/2). In the limit 6— the
the rapidities and, hence, to one minimum of the bare enMinimum is transformed into a cusp. It reveals that the gap
ergy). On the other hand, for higher valuesé@#nd for some _of the staggereq mag_netlzan_on _vanlshe_s in this limit of two
domain ofh, two Dirac seas of the same tyggapless, see independent spin chams._ This 5|m_ple picture helps us to un-
below) of excitations are possibléor two minima of the der_sta_nd what h_appens if one switches on an external mag-
bare energies of the rapidities and thus two minima of thdetic fle_ld h. .BeS|de§ the usual phase transition to the ferro-
bare density Note that ford— = at fixedN-. all the roots of ~Magnetic(spin-polarizedl phase at
the integral BAE separate into two sets of “right-" and N
“left-moving” seas, centered at 6, respectively. he=> —£2(0), (13

Here we briefly revisit the analysis of Refs. 9 and 10, but = N7
for the case of the uniaxial two-chain model. Analytical so-
lutions to Egs.(5) and (6) can be easily obtained in closed
form in the limit of zero field and equal lengths of the chains
N,=N_. The simplest nontrivial exited quasiparticle
(spinon is a hole in the Dirac sea for real rapidities, with the
guasimomentum

there is an additional transition between two phases. One of
these corresponds to one Dirac sea of spin@tsmall 6),
while the other one is connected with two Dirac seas for the
same kind of spinongt large#). It can also be seen from the
right-hand side of Eqgs(5) and (6) for the densities and
dressed energies that the bare density and bare efeogy
sinh(7rug/y) responding to terms which do not dependeqn) ande(u))

>, (10 have either one or two minima, respectively. Hence, they

reproduce the same property in the dressed characteristics:

whereu, is the spinon’s rapidity. Note that for topological the interaction simply “dresses” thdquasjparticles, as
reasons such particles have to exist in pairs for theusual, but the “dressing” does not affect the picture quali-
SU(2)-symmetric case, eté:® The energy of this spinon is tatively. The new critical field value can be approximated by

p(ug)=2 arctar& —cosr( 700)

given by he= (7! y)sinycosh Y(76ly) in the first-order
approximatior?. In this approximation the tricritical point is
e(Ug) = _Sinyap(UO) (12) the root of the equation £ sinh(w6./v). At this point two

ug second-order phase transition lifesandh, join. Hence, the
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easy-plane magnetic anisotropy in the antiferromagnetiger (half-integej denoting the number of transferred par-
two-chain model does not change qualitatively the groundicles from the right to the left Fermi poirtbackscattering
state behavior in the external magnetic figdfl Refs. 9 and processegs andn, , are the numbers of particle—hole excita-
10). However it changes the critical values of the magnetictions of right- and left-movers. The values of the quantum
field and the intrachain coupling. The difference between thewumbers are restricted lyD=AM/2 (mod J1). The dressed
two (gapless phases is obvious: the first phase correspondshargez= £(Q) is the solution of the(standargl integral

to a Neel-like antiferromagnetic ground state for spins in equatior®

both chaingalong the zigzag ling while the second phase is

connected with Nel-like antiferromagnetic ground states in g(u)+f dvK(u—v)é(v)=1 (16)
each of the chains, i.e., effectively to two magnetic sublat- Q
tices in the two-chain model. taken at the limits of integratiofthese are the Fermi points,

That is why our simple model explains in which do- symmetric with respect to zeroln this phase there is only
mains of parameters the two-chain spin system behaves likgne region of integration over. The dressed charge is a
a one-sublattice quantum easy-plane antiferromagnet, angtalar. The behavior of our class of models in this phase in
where it behaves like a two-sublattice one. Note also that thehe conformal limit is rather standafd The correlation func-
phase transitions studied here are manifestations of thgons decay asymptotically (x—vgt) “2I(x+vgt) “2r. The
commensurate—incommensurate phase transitions for spihoice of the appropriate quantum numbers of excitations
systems. One can obviously see this, because the intrachainv, AD, andn, , is determined for the leading asymptotic
coupling for two spin chains can be interpreted as the nextterms of the correlators by taking the possible numbers with
nearest-neighbor spin interactions for a single spin chain ofhe smallest exponents.
higher lengthN, +N_. Here the magnetic couplings are  For §>6¢.,h>h., however, the conformal limit of the
spin-frustrated, and so the emergence of the incommensuraggsy-plane two-chain spin-1/2 model corresponds to the se-
magnetic states is understandable. midirect product of two level-1 Kac—Moody algebras, both

As a consequence of the conformal invariance of (1lwith conformal anomalie€=1, i.e., to two WZW models
+1)-dimensional quantum systems, the classification of unipoth of level 1%° The Dirac seasi.e., the possible spinons
versality classes is simple in terms of the central ché&ega-  with negative energigsare in the interval§ —Q*,— Q]
formal anomalyC) of the underlying Virasoro algebfdThe  and[Q~,Q*] (minima in the distributions of rapidities at
critical exponents in a conformally invariant theory are thex ¢). This can be interpreted as symmetrically distributed
scaling dimensions of the operators within the quantumaround zerpDirac seas of “particles” fof —Q",Q"] and
model. They can be calculated by considering the finite-sizéhe Dirac sea of “holes” fof —Q~,Q]. In fact the valley
(mesoscopiccorrections for the energies and quasimomentan the density distribution for “particles” and the maximum
of the ground state and low-lying excited states. Conformator “holes” are in one-to-one correspondence with the
invariance formally requires all gapless excitations to havenaxima and minimum of the dispersion relation for spinons.
the same Velocit}(Lorentz invariancg The Complete critical The second critical ‘f|e|d’]C in this |anguage Corresponds
theory for systems with several gapless excitations with difto the van Hove singularity of the empty band of
ferent Fermi velocities is usually given as a semidirect prod«holes.” Naturally, the Fermi velocities of “particles,” are
uct of these independent Virasoro algebéidere we briefly  positive, vi=(27p(Q")) e’ (U)|u—g+, While the Fermi
sketch the procedure and write the results for the finite-sizge|ocities of “holes” are negative,
corrections to the energy, following the standard procedurg = —(2mp(Q)7)) &' (u)|y=q-- The finite-size correc-
(see, e.g., Ref. 1)8 One can see that fof< 0. and for tions to the energy for this case are
0> 0., h<h., the conformal limit of our uniaxial two chain
spin-1/2 model corresponds to one level-1 Kac—Moody alge- oo+, - FoAT AT
b?a(one WZW model gf level 1 with the conformal ano¥nag/ Eis(Ny #N) == gue top) +2m(ue(Af+47)

=1). The finite-siz rrection to the energy is rather stan- - _
dCard()cf_ Reef.lg:s e correction to the energy is rather sta For(ATHAT)), (17
where the dispersion relations for “particles” and “holes”

Er(N,+N_)=— ZUF+ 27Ve(A +A,), (14 are Iinearize_d abogt the Fermi p_oints for each Dirac sea. The

6 conformal dimensions of the primary operators éhe up-
per indices denote Dirac seas; the lower indices denote right

x?gaelv dﬁr%se;r;?orfsrg;Itxgloﬁlrtr):acr)f ?eef;?énﬁggséhﬁoctgn_ and left Fermi points of each of these two Dirac seas; cf. Ref.
P y op 10 for the isotropic spin-1/2 two-chain modgtel

that the lower indices denote the conformal dimensions for
right- and left-moving quasiparticles, at the right and left oA (X_2AMT =X, s AM )

Fermi point, respectively L 2 detx
AM 2 (z..AD*~z,.AD)]? _ _
2A|Yr=(EiZAD) +2n;,, (15 T E +2n/,, (18)

whereAM is an integer denoting the change of the numbemwhere the minus sign between the terms in square brackets
of particles induced by the primary operat& is an inte-  corresponds to the right-movers and the plus sign to the left-
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movers. HereAM * denote the differences between the num-Dirac sea of “holes” disappears as well as the components
bers of particles excited in the Dirac seas of “particles” andof the dressed charge matsixwith square-root singularities
“holes” labeled by the upper indiced D~ denote the num-  of the critical exponents for the correlation functipnsote
bers of backward scattering excitations, aﬁpare the num- that the dressed chargebecomesz=(2x) ! at the phase
bers of particle—hole excitations for right-and left-movers oftransition lineh.. This corresponds to the disappearance of
each of the Dirac sedfor “particles” and “holes”). Please one of the WZW CFT. Unfortunately, it is impossible to
note thatAM = andAD™ are not independent. Their values obtain an analytical solution to EL9) in closed form for a
are restricted by the following relationsAM™—AM™ finite interchain couplings. Naturally, in the limiting cases
=AM andAD"—AD =AD, whereAM and AD deter-  of two independent chains of lengths., 6— and a single
mine in a standard way the changes of the total magnetizahain of lengthN, +N_, #=0, the solutions of Eqg16),

tion and the total momentum of the system, respectively, dug19), and (20) coincide with the well-known solutioné&ee

to excitations. Please note that in Refs. 10 and 19 these rRef. 18. The correlation functions of the uniaxial
strictions were missing; this resulted in, for example, thetwo-chain  spin-1/2 model decay algebraically in
|nvaI|d_ statem_en_t that four |r_1dependent low-lying back-this phase w(x—v;’t)‘Ar(x—v;t)‘Af(x+v,§t)‘Ar+(x
scattering excitations are possible. However one can see that _ " - . ,
only two of them are really independent. The same is true for” VFt) ° Wwith the minimal exponents of the possible
excitations that change the total magnetization of the systenflu@ntum numbers of excitatiodsM =, AD~, andn; . We
there are only two independent of four possible such excitaP0int out once more that the same magnetic field plays the
tions. This is a direct consequence of the fact that only onél€ of a chemical potential for the “particles” and “holes,”

magnetic field determines the filling of the two Dirac seas forOr for the spinons of both Dirac seas in the second phase, and
“particles” and “holes” or, in other words, two the two hence this choice of minimal quantum numbers is con-

Dirac seas for spinons at 6. strained.

The dressed charges,(Q) and z,(Q¥)(i,k=+,—) We must point out here that there is a crucial difference
are matrices in this phase. They can be expressed by usifg¢tween our situation and the case of dressed charge matri-
the solution of the integral equatibi?® ces appearing for systems with the internal structure of bare

) B particles®. There the two Dirac seas of the ground states are

f(u|Qi)=< fQ _|° )K(u—v)f(v|Qi) connected with different kinds of excitations, e.g., holons
-Q* J-q~ and spinons for the repulsive Hubbard model, or Cooper-like
—K(u-0Q%) (19 singlet pairs and spinons for the supersymmetric t-J model.

They correspond to two different kinds of Lagrange multi-
with*® pliers, chemical potentials, and magnetic fields. Thus the
1/ (= g lowlying excitations of the conformal theories in the spin and

Z (Q¥) = 5i,k+(_)k_(f _—f )dvf(v|Qk), charge sectors of these correlated electron models are prac-

2\Jq )= tically independent of each othéspin-charge separatinn

o Note that the spin and charge sectors are connected via the
xik(Qk)zéi,k—(—)"J' idvf(v|Q"). (200 off-diagonal elements of the dressed charge matrix, though.

-Q This is a consequence of the fact that, say, holons or un-

Note that the dressed charges depend on the value of thgund electrons carry both charge and spin. On the other

magnetic anisotropyy via the kernels, while they depend hand, two Dirac seas appear for the same kinds of particles
indirectly on the value of the intrachain coupling constént for the models studied in this paper, which are also con-
only via the limits of integration. In the first-order approxi- nected with the same magnetic field governing the filling of

mation one can write the solutions as both Dirac seas. These seas appear due to two minima in the
o bare energy distribution and correspond to nonzero ghift
Xik(Qk)*tsi,k—(—)kJ idUK(U_Qk)+--- the Bethe ansatz equations. In other words, the two Dirac
—Q seas are determined by the interchain coupling and appear if
and the values of the coupling and external magnetic field are
o o higher than the threshold valués andh,, respectively. We
zik(Qk)w(Si,kvL(—)"(l/Z)(f i—f doK(u—Q"%)+... believe that such a threshold behavior does not depend on
Q _°° the integrability of the model and is a generic feature for any

The Dirac sea for “holes” disappears, naturally for multi-chain quantum spin models.

h—h.,6— 6.. The slopes of the dressed energies of “par-  The low-temperature Sommerfeld approximation shows
ticles” and “holes” at the Fermi points of the Dirac seas that, as usual, the low-temperature specific heat off the criti-
(Fermi velocitieg differ in general from each other. There- cal lines is proportional td. On the critical lines the van
fore we have a semidirect product of two algebras. Hence, itlove singularities produceT low-temperature behavior of
this region the dressed charges ar& 2 matrices. This the specific heat, while at the tricritical point we ha&*
means that the conformal limit of the easy-plane two-chairbehavior.

spin-1/2 model corresponds to one or two WZW theories, What are the changes due to the different lengths of the
depending on the values of the intrachain coupling, magnetichainsN, #N_? One can see obviously that the values of
anisotropy, and magnetic field. At the critical line the  the spinon momentum, energy, and velodiwvhich wasov
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=(mly)sin ytanh@ré/y)) become functions o, —N_. For  mentioned already in a slightly different context. They
example, the velocity renormalizes as—uv[1+ (N, were connected with one WZW theory or two WZW theo-
—N_)?tant? (76/2y)/N?]~ 1. This introduces dependences ries, coupled via a current—current interaction. This is related
of the critical valuesd, andh. (as well as of the saturation to right—left symmetry of the chiral invariant Gross—Neveu
field h) on the differencéN . —N_ . Also, the Fermi veloci- QFT (see also Refs. 32 and 33 for the case of the QFT for the
ties and Fermi points for finite-size corrections become deprincipal chiral field.

pendent on this difference. One can in principle consider Note that the conditiol>h. in the QFT means that the
different coupling constants. for each of the chainver-  magnetic field is larger than the mass of the physical particle
all multipliers’). This produces renormalizations similar to (color spinoj. In this sense, in the region of magnetic field
the effect ofN, #N_, i.e., the velocity, for example, renor- valuesh<h, the results of the QFTsee, e.g., Ref. 2%re-

malizes av —J,v[1+(J_/J,)*tanif (76/2y)] L. dict zero magnetization; however, a different lattice regular-
ization, similar to the lattice scheme used in the previous
3. CONNECTIONS TO THE QUANTUM FIELD THEORIES Section, predicts a nonzero magnetization of the chiral-

invariant Gross—Neveu model in this region. This is an indi-

The studies presented in the previous section, beingect effect of the fermion doublers. In other words, it is con-
rather standardnote, though, some important new featuresnected with the well-known mapping of the lattice.g.,
which were absent in the previous studiés>*****$uch as  Thirring) model under regularization onto two continuum
the dependence of the critical values of the interchain couQFT either both bosonitthe free bosonic and sine-Gordon
pllng and external magnetic field on the magnetic aniSOtrOpXDFTZS)' or both fermionic(a free one and the continuum
parameter and on the difference in the lengths of the chaingnassive Thirring modgl There are necessarily two such
also the important restrictions on the quantum numbers ofheories because of the Nielsen—Ninomiya fermion doublers:
IOW-Iying conformal eXCitationb However, we will use the remember that we have started from a |atﬁ%e_
results of that Section for novel studies for a wider class of  For other models of QFT the lattice regularization
exactly solvable models in Secs. 3-5. For instance, in thi%rocedurée‘zg has been used. Hemplays the role of the
Section we point out the important similarities in the behav-cytoff for keeping the mass of the physical particle finite. For
iors of the two-chain quantum spin model considered in th&xample, for theJ(1)-symmetric Thirring QF$*?°one can
previous section and several models of QFT. use the results of the previous section with the lighit«

Really, when examinating E¢l), one can see that these taken after the thermodynamic limit, N., M—c with
Bethe ansatz equations coincide with the equations whickheir ratios fixedL is the size of the box In this case one
describe the behavior of the syficolor) sector of some QFT.  can obviously obtain the conformal limit of the theory with
N.. corresponds to the numbers(bfre particles with posi-  nonzero physical masses of the particles. Naturally, in the
tive and negative chiralities. For example, for the chiral-limit §—o one is always, in the presence of an external
invariant Gross—NevedCIGN) modet*?? we have to put magnetic field, in the phase with two Dirac seas. Here the
y—0 (i.e., the SU(2)-symmetric case, equivalent to the |atters correspond to the right- and left- moving particles
SU(2)-symmetric Thirring mod¢l and 6=(1—g°)/29,  (with positive and negative chiralitigsActually here our
where g is the coupling constant of the chiral invariant point of view coincides with that of the field theorists. Re-
Gross-Neveu QFt! As to the Lagrange multiplien, it can  cently it was show# that for the (1 1)-dimensional sine-
play the roles of either an external magnetic field or theGordon model the lattice regularization scheme in the
chemical potential, or an external topological field dual to“|ight-cone” approach gives results similar to ours for the
the topological Noether current in QFT. Here we point outconformal limit of the model. It was shown there that at the
that in fact in QFT the theorists are interested in physicalyy fixed point the conformal dimensions of the sine-Gordon
particles, which have a finite maggap. In the chiral-  model are determined by two (1) charges of excitations
invariant Gross-Neveu model the gap of the staggered oscilthe usual one and the chiral charg&he chiral charge cor-
lations of the two-chain quantum spin model plays the roleresponds to the number of excitations transferred from one
of the physical mass of the particiepinoy.’>** As to the  pirac sea to the other, similar to our resuitete that the
(gapless oscillations of the magnetization of the two-chain gpove-mentioned lattice-regularized sine-Gordon case corre-
spin model, we point out that they are consequences of thgyonds in our notation té— c, where the integral equations
lattice and play the role of the massless fermion doublers ofgr the particles with the positive and negative chiralities are
the lattice QFT® The results of the previous section meanotally decouplell We point out here, that such behavior is
that the behavior of the chiral-invariant Gross-Neveu mOdehot unexpected, because the sine-Gordon QFT be|ongs to the
(or SU(2)-symmetric Thirring modglin an external mag- same class of models studied in our paper, i.e., its Bethe
netic field depends strongly on the coupling const@ribr  ansatz description features a shift of rapidities in the Bethe
equivalently org). For §< 6, the conformal limit of the QFT  ansatz equations in the lattice-regularized théBry.
corresponds to one level-1 WZW model with the conformal
dimensionC=1. However, for§>0,(— 6.~ \/¢?+4<29
>~ b+ 65+ 4) the conformal limit of this QFT inan ex- e spiN (CHIRALITY) GENERALIZATIONS
ternal magnetic field corresponds to the semidirect product
of two level-1 WZW models with the conformal dimensions For the higher spin generalizations of the Bethe ansatz
C=1. Two kinds of conformal points for this QFT have beentheory presented in Sec. 2 we can write the BAE in the form
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. M vestigated in Sec. 2. For a single spin chaék=0, N,
IT e u,z0=e™ I eyu,—up), (21) =N_ the Hamiltonian coincides with the known Hamil-
w Me B=1p+a

tonian of alternating spin chaif&-3The Bethe-ansatz stud-
wheren., =2S. are the values of the spins in each chain ories of the model fon.. can be performed in complete anal-
the colors of the bare particles in QFT. The eigenvalue of th@gy with the above-mentioned case =1, keeping in mind,

transfer matrix can be written as of course, the main difference: for tt&U(2)-symmetric or
v _ uniaxial higher-spin models the ground state corresponds to
Am=11 S_'m'(k_uaf' v/2) the filling up of the Dirac seas for spin strings of lengths
a=1 Sinhlu,— N +iy/2) n.%. The well-known fusion scheme can be used for the
) N N, case of a flavor-degenerate situation of the chiral invariant

+e™]] | = §|nm\_9) Gross—Neveu CIGN QFT, in the absence of flavor fiéfds.

+ \sinh(iyn./2—=\¥0) Note that, except for th®(3)-symmetric casey=0 every-
M. ) where in the above-mentioned models of QFT. This corre-
11 sinh(u,—\+3iy/2) 22) sponds to rational solutions of the Yang—Baxter equation for

a=1 SINA(A—u,—iy/2) the two-particle scattering matrices. For the two spin chains
the two-chain quantum ferrimagnet model corresponds to
Stwo Takhtajian—Babujian chains with different values of the
site spins, coupled due to nonzefoThe total quasimomen-
tum and the energy of the system in the framework of the

lattice (local) regularization scheme for some QFT can be

Similar new phases with one or two kinds of Dirac sea
for similar kinds of low-lying excitations also exist for a
number of models in whiclh. # 1, e.g., for the higher-spin
(S>1/2) two-chain models with equal spins in each chain

SU(n+1) CIGN QFT3! theren, =n_=n=1; for the prin- ; 3

. : . ) written ag

cipal chiral field models (nonlinear ¢ mode) for

CP-symmetri¢? (there n,=n_—) and CP-asymmetric Moy

case? (theren, #n_, (n.+n_)—w,(n,—n_) fixed, i.e., —2aE=Y, > S N=Ine, (U, 6),

the symmetry SU(2)XSU(2)xO(4); and for the = a=10Uq B

O(3)-symmetric nonlineaw modef* as well as for spin- M

(Sy=2n,)-spin-(6_=2n_) two-chain models(quantum iaP=E 2 N, Ine, (u,*6), (25)
two-chain ferrimagnet Note that for spinsS# 1/2 the pro- * a=1 *

cedure of the construction of the Hamiltonian is more com- h da denote th d time latt tant
plicated, because it corresponds to the two-chain uniaxiaf '€r€@ anda, denote the space and ime fatlice constants,
generalization of the Takhtajan—Babujian model: see, e_grespectwely, and their ratio fixes the velocity of light

Ref. 35. For the simplest case of isotropic exchange interaé: light-cone™ approach). The CP—s_ymmetn(_:(chlra_ll nvar-
ny case corresponds to the situation in whioch=n_

tions between the spins and between the chains the Hamif* . .
: P =n. The Dirac seas are related to the dresgpdhsjparti-

tonian has the form . . . .

cles with negative energigstrings of lengthn..). The be-

havior of the dispersion relation for excited particles in the

CP-symmetric casén,=n_=n andN, =N_) is similar to

Eq. (12): for instance, for the chiral-invariant Gross-Neveu

H= 2 {0*(Hs, s, nyom+1tHs s n,nye1)

+2(Hs, s n,n,THs s, nyny+1) QFT and principal chiral field model the right-hand side of
Eqg. (12) must be simply multiplied by sinfr/n+1)/sin(@/n
+[(Hs, s, Npng+1 +1), and the parametetin Eq. (12) has to be replaced by

(n+1)6/2, wherer=1,...n is the rank of a fundamental rep-

+H J(H : .
5.8 mnpr1):(Ms, sy resentation of theSU(n+1) algebra. All the previously

+Hs s, ,nl,n2+1)]+2i g[(HS+ S, gl mentioned'characteristic features from the case=1 per-
sist. The differences are in the levels of the Kac-Moody al-

tHs s nyn,+1):(Hs, s n.n, gebras in the conformal limit: the conformal anomalies are
C=3n/(n+2). Now the conformal field theory is a semidi-

+Hs s, im0 1 (23)  rect product of a Gaussia©E& 1)* and az(n) parafermion

models®! the operators identified from the scaling behavior
of states consisting only of Dirac sea strindeund from
S1tS, J finite-size correctionsare found to be composite operators
formed by the product of a Gaussian-type operator and the
operator in the parafermionic sector. To find the nonzero
Kk St S, X=X contributions from parafermiongconstant shifts one can
X T (24  consider the states with strings of other lengths than the
Dirac sea presefit. For the scaling dimensions these shifts
X=S1pSn1 and X=j(j+1)—=S(S;+1)-S,(S,+1). are (X—r?)/(2n+4),r=1.2,...
The summation oven runs toN.. in each chain. One can From now on we concentrate on the #n_ situation.
obviously see that foB.. = 1/2 the Hamiltoniar{23) recovers  For the two-chain spin system the situation corresponds to
the isotropic antiferromagnetic spin-1/2 Hamiltonigh in-  the quantum ferrimagnet. Here we point out that due to the

where[...[{[...]} denote thgantijcommutator,

HS nn+1=
L2 15556 41 kelsi TS 41

1=[S[=S,| Xj—X|
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zigzag-like interactions in the system and spin frustration thexternal magnetic field to some critical value, even in the
ferrimagnets of this class are in the singlet ground stat@bsence of the shift).3”®® This differs from the CP-
(compensated phaséor h=0, unlike the standard classical symmetric cas@, =n_, where the phase transition is only
ferrimagnets in uncompensated phases. The integral equeennected with the nonzero value of the intrachain coupling
tions that determine the physical vacuum of the systems angarameterd. For the CP-symmetric case, one or two Dirac
similar to Egs.(5) and (6). They reveal one or several seas of the same type of excitations exist due to the nonzero
minima of the corresponding distributions of dressed enerd. But in the CP-asymmetric case the existence of two Dirac
gies and densities with possible negative energy states, i.eseas can be related to two different kinds of low-lying exci-

one or several Dirac seas: tations (particleg. They are strings of lengths, andn_,
N N respectively. In this situation the dispersion relations may be
8T(U)+J dUKTTr(U—v)srr(thﬁfnﬁE Wiggi_ independent(not only factorized as for the previousP-

symmetric casgs The (new) phase transition &b, reveals
(260 the van Hove singularity of the empty Dirac sea for the
N. longer strings. The spin saturation fiddd is connected with
p,.(u)-l—f dv KTT,(u—v)pTr(v)=Z W_pg,i. the empty Dirac sea of strings of the smaller length.

The indexr enumerates two possible Dirac seas and appears

becausa, #n_, and thex enumerate two possible minima

due to the nonzero shift. The indexr was naturally absent ¢ vuULTICHAIN QUANTUM SPIN MODELS

for the CP-symmetric cas@& . =n_. Note that for quantum

two-chain ferrimagnets the investigated gapless phases in the |t is worthwhile to mention that phase transitions in an
ground state in an external magnetic field are similar to thexxternal magnetic field, similar to the ones studied in this
spin-compensated and uncompensated phases. Thus thgper for uniaxial spin chains and QFT, have been already
phase transition between those phases is similar in nature fudied in 1D quantum alternating single spin chaiig
the well-known spin-flop phase transition in the classicalspin-1/2 isotropic two-chain modeis® and correlated elec-
theory of magnetism. Note, though, that the spin-flop transitron models with the finite concentration of magnetic
tion is of the first order(easy-axis magnetic anisotropy impurities®® The Bethe ansatz equations for those models
while the transition under study is a second-order @#sy-  are similar to the ones studied in the present paper, @s.
plane anisotropy The Fourier transform of the kernel is and(21). Note that the energies for spin models are defined

given by (as usual for the lattice modelas the first logarithmic de-
2 coth{ w/2)[diag e "+ coshn , w/2),e "1 rivatives of the transfer matrices. The factorization of the
dispersion relation for the lowest excitatiofspinor reveals
X coshn_ w/2)) = &,(e~ (M 7Pl —gm(netnlef2) ], essentially two kinds of magnetic oscillations: excitations of

(27) the magnetization, and oscillations of the staggered magne-
tization, i.e., the manifestation of essentially two magnetic
where diagg,b) is 2x 2 diagonal matrix andr is the usual  gyplattices. Naturally, the existence of the latters persists in
Pauli matrix. Note that after taking the limitn(+n_)  the continuum limit of such systems, tdof., for instance,
—, which is the case of th€P-asymmetric case of the tne standard theory of antiferromagnetjsiiwo nonferro-
QFT for the principal chiral field, i.e., with the Wess-Zumino magnetic phases also reveal themselves in finite-size correc-
term* the inverse kernel coincides formallyp to a con-  tions to the energies of these quantum spin models. There,
stant multipliey with the one for the case. =n_=1. This  jnstead of a scalar dressed charge for the phase with one
indicates a globalD(4)(O(3)) symmetry of the principal pijrac sea for spinons, 22 dressed charge matrices appear
chiral field** There may also be two different behaviors, in the second phase, with two Dirac seas for spin strings of
corresponding to one or several Dirac seasHgr#1 or  gifferent lengths in an alternating spin ch¥if® or for

n_#1. Naturally, in the conformal limit the associated spinons of the same kind in zigzag-like coupled spin chains
WZW CFT have different conformal anomalies determined(see Refs. 9 and 10 for the isotropic two-chain spin-1/2

by n.:C.=3n./(n.+2). For the determination of the mode).

Gaussian parts of the conformal dimensions of primary op-  The symmetry-breaking termsthe difference 1,
erators, Eqs(18) can be used. One has to add the input from_p_)=2(sS,—S,), or nonzerod] in BAE are actually the
the parafermionic sectors, t8b™ The elements of the reason for the emergence of several gapless phaséwo
dressed charge matrices are the solutions of the followingjrac seasin the ground state in an external magnetic field.

system of integral equations: It is also interesting to note that a homogeneous shift of
rapidities can be removed for one Dirac sea in the case of
fmr(UHZ fdeTr(U—U)fr,i(v):&,Tu (28 periodic boundary conditions by an appropriate unitary

(gauge transformation(shift of variable, e.g., u,—u,
in which the summation ovet- is due to the two possible = 4. But in the case of open boundary conditions, the BAE
Dirac seag‘two minima in the distribution of rapiditigsat  take the form(for reasons of simplicity we write the free
+ 6. For different values of the sping,, #n_, a transition boundary situation only, without the external boundary po-
between two different phases is induced by increasing atential:
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N value of the magnetic field of the transition to the ferromag-

1:[ en (U™ 9)=H IT ex(u,xup). (29 netic statens depend on the set df: , i.e., on the intrachain

B = F couplings(and also on the values of the magnetic anisotropy
It is clear that for the open chain one cannot remove the shifgonstants, which can be taken different for each chain; this
¢ of the rapiditiesu,, from one Dirac sea by a special choice does not destroy the integrabilityrhe ferromagnetic state is
of the gauge. From this point of view the latter case is closgapped, while all other phases are gapless in the integrable
to the CP-symmetric situation in QFT. multichain spin qguantum model. There are alsol tricriti-

One can see from the structure of the Hamiltonians thaeal points at which the lines of the phase transitibgsjoin
for the two-chain spin models the parametecharacterizes the line of the spin saturation phase transition. Naturally, the
the intrachain coupling for each chafor the next-nearest- phase that corresponds to the lowest value of the magnetic
neighbor interaction in a single spin chain picfurié is ob-  field, sayh<hCl for special values o®; (the condition is
vious to introduce the series ¢8;};_; (for each chainand  similar to 9< 6, for J=2), has in the conformal limit one
to construct the Hamiltonian of the exactly integrable multi-scalar dressed charge. Hence, in the conformal limit our mul-
chain (J is the number of chainsspin model. For the sim-  tichain spin model behaves as the level-1 WZW CFT. In the
pleSt case with als=1/2 iSOtrOpiC antiferromagnetic ChainS, next phase the multichain quantum Spin model behaves as
the Hamiltonian reads: the semidirect product of two WZW CFT, hence their
dressed charges arex2 matrices, and so on, until the last

HJ:AE H (6,— 6,) ,ss < gapless phase, which corresponds to the semidirect product
n ik e+l of JWZW CFT with JX J dressed charge matrices. Note that
I (6— 6 Jin this approach also denotes the number of possible Dirac
+ > e rp Ps o seas(each of them is connected with the same magnetic
p=q (Op=0q) haSheip’’ Snadnrig field, so the excitations in each of them are not independent
J and thus, with one-half of the number of Fermi points. In the
Hss o e+t E Iss P Iss < limit J— (i.e., quasi-2D spin systenone obtains thé2D)
n.p=n+1p j=1 Thitniet n.JTh I+l Fermi surface instead of the set of 1D Fermi pofitite latter
become distributed more closely to each other with the
5. )] ’ (30) growth ofJ). In this limit the differences betweefy tend to
nI=n+1,1 zero, and that is why the differences betweﬂgjn hcj, and

where A is the normalization constaritvhich depends on a_lls_o betweerhcj_and hs _dlsappear, too. Thereforg n t_hls_
limit only hg survives. This means that for the quasi-2D limit

0); Ps.5,* (12) @1 +25,0S, is the permutation operator; ¢ " integrable model af coupled quantum spin

and [.,] denotes a commutator. Note that in the case Ofnaing withJ— oo we expect only two phases in the ground
J#2 the integrable model corresponds to the pair couplindgate in an external magnetic field: the ferromagnetic gapped
not only between the nearest-neighbor spins but also to thgne and the gapless phase, which in the conformal limit cor-
next-nearest three-spin, etc., couplings. All those terms aRsponds to one WZW CFTwith a single scalar dressed
only essential in quantum mechanics, because in CIaSSiC@harge}. The phase transition between these two phases in

physics they are total time derivativésand do not change e ground state in an external magnetic field is of the second
the equations of motion. The Bethe ansatz equations have thg e,

form

J M 6. BEHAVIOR OF THE NONINTEGRABLE MULTICHAIN SPIN
\'H _ i7M
Hl ej(unt6;—6,)=¢e'" |k| €5(Upm—Uy), (31  SYSTEMS
j=

So far we have studied only integrable multichain quan-
whereM is the total number of down spins amy is the  tum spin models. We have shown that the commensurate-
number of sites in th¢th chain. The previously studied situ- incommensurate phase transitions of the second order have
ation J=2 corresponds to the shift of the variableg,  to reveal themselves in an external magnetic on account of
—Up+ 0 with 6,—6,=—26. Now 6;— 6, determines the the intrachain interaction®r the next-nearest interactions in
values of the intrachain couplings in chain a single quantum spin chain pictiréaVe have shown that

The analysis of the low-temperature thermodynamics othe emergence of these phase transitions does not depend on
the multichain spin system is analogous to the2 case the value of the site spins; they emerge in the presence of
studied in Secs. 2—4. From the structure of the Bethe ansatasy-plane magnetic anisotropy, which keeps the system in
equations in the thermodynamic limh;, M—, with their  the critical (gaples$ region. It is not clear, however, which
ratios fixed, one can see that for thehain model(for dif- features of the behavior of the integrable models with the
ferent#);) there can exist, generally speakidgphase transi-  “fine-tuned” parameters have to exist for more realistic mul-
tions of the second order in the ground state in an externdlchain models, and what are the qualitative differences that
magnetic field. These are none other than the commensuratare expected to exist between the integrable multichain mod-
incommensurate phase transitions for the quantum multiels and real multichain spin systems.
chain spin model with different couplings between the  We have to add one more thing to clarify the situation:
chains. The values of the critical fieldrgl,...,hcjfl and the  we study(quas)-1D spin quantum models, for which one
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can use the Lieb-Schultz-Mattis theorenfand its  standard scaling relations yielgsr x=2(=z+d), wherex
generalizations™** However, it is obvious that due to the is the scaling dimension, i.ex=2A,+2A,, found in the
frustration of the interactions between neighboring spins a”%revious sectiongfor the phases with the dressed charge
the presence of additional terms in the Hamiltonians whichyatrices the summation over upper indices is meatgnce
violate the time-reversal and parity symmetries in the sysihe gap for the low-lying excitationdéhe mass of the physi-
tems (spin chiralities or spin currentsfor all of the spin g particles in QFT for the perturbed systems will be
models studied in this paper one cannot satisfy the conditiong s1/2(1-4,-4,) Note that because of scaling, the behavior of
of the theorem. Hence it cannot be appligd least not di-  the critical exponentéwhich are related to the exponents we
rectly). That is why for all the models studied there are nojntroduced for the integrable multichain spin modlets the

spin gaps(except for the trivial one for the spin-polarized yjcinities of the lines of phase transitions has to be universal,
ground state (Here we are not talking about the gaps con-anq this can be checked experimentally. We expect that the
nected with the magnetic anisotropy but rather about thepin gap has to exist for values of the isotropic zigzag inter-
Haldane-like spin gaf3which appear even for the isotropic chain coupling higher than or of the order of 0.5 for the
spin-spin interaction, and about fractional magnetization,g-chain spin-1/2 systethwhere the three-spin couplings
plateau’). As we argued befor€, it is the presence of the are relevant and the emergence of the spin gap is known
chiral spin termg(or the operators of the nonzero spin cur- gyactly4’

rentg in the Hamiltonian(which are total time derivatives Very recently, density matrix renormalization group nu-
and do not change the classical equations of motion buferical studies of the two-chain zigzag spin-1/2 model
rather affect the topological properties, like the choice of thetwithout chiral three-spin terms in the Hamiltonjawere
¢-vacuum in Haldane’s approacis the reason why the low- performed in Ref. 48. These numerical studies strongly sup-
lying spin excitationgand particles for lattice QFTfor our port the picture proposed he(see also Ref.)® the magne-
class of models are gapless and our low-energy theories afgation as a function of the magnetic field in the ground state
conformal. It has to be mentioned that recent results of th‘?eveals(i) one second-order phase transititin the spin-
perturbative RG analysis of the zigzag spin-1/2 chain with-ggtyration phagdor weak intrachain couplingji) one more

out three-spin terms shows the tendency of the RG current§acond-order phase transition between the mag(usitess

to flow to the state with the parity and time-reversal phases in the intermediate region of intrachain coupling, and
violation*® By the way, one can obviously see that t¥ i) in addition to those second-order phase transitions, one

limit of the two-chain spin model does not correspond to they the gapped phase with zero magnetizatjolateay at an
free fermion point of the exactly solvable model, and thisjnirachain coupling value of 0.5.

agrees with the results of Ref. 46. Note, though, that in the e should also mention that it is not the chiral spin

latter it was erroneously concluded that the time-reversal angerms(as implied in Ref. 1pbut the intrachain coupling that
parity symmetries were violated by the two-chain zigzagjs responsible for the commensurate—incommensurate phase

spin Hamiltonian with only two-spin coupling§.e., the  yansitions between the gapless phases in this class of mod-
nearest- and next-nearest-neighbor interactions in the singlgs As to the aforementioned spin currents, their “fine-

chain picturg, without spin current terms in the Hamiltonian. ;ned” values produce the cancellation of the spin gap for
Hence the symmetry of the state considered was lower thaflar magnetic fiefi We should also note that to our mind
the symmetry of the Hamiltonian there. some features of the phase diagram obtained in Ref. 19 are

Natura}lly, the r.elevant perturbat?ons to our integrableg itacts of the small number of sites involved in the numeri-
models will immediately produce spin gaps. As usual, the.5| calculations. In Fig. 5 of Ref. 19 in the regions 0<52

algebraic(power-law decay of the correlation functions in g (corresponding to intrachain couplings, normalized to
the ground state of the models considered in this paper dgpe yajue of the interchain interaction, in the rariges4
termines the quantum criticality. This means that, startlng_o_m) we can obviously see that when increasing the value

from the (conforma) exact solutions obtained in this Paper, ¢ ihe magnetic field one goes from the gapped phase with
one can argue that the response of the more realistic SPYhro magnetization into the gapless one with two Dirac seas

systems to perturbations can be evaluated by using perturbg.r low-lying excitations, then reaches the gapless phase with
tive methods, e.g., in a renormalization group framework.

~ one Dirac sea, then returns to the gapless phase with two
For example, let us study the effect of relevant perturbatlonf)irac seas, and finally reaches the spin-saturated phase. To

to the Hamiltonians considereéi, =H+ 6H,, where one oy mind this return to the already passed phase is nonphysi-
can choose abl,, e.g., the standard Heisenberg or uniaxialcal. One can clearly see that the region of values of the
Hamiltonians for several coupled quantum spin chains, anghtrachain couplings in which these strange returns happen is
asH the hamiltonians of spin chains considered exactly inreduced in size when going from 16 sites in the numerical

this paper for some values @ where the three-spin terms calculations to 20 sites. This confirms that the presently

are relevant. The correction to the ground state energy anachieved sizes of the quantum systems for numerical calcu-
the excitation gagmass of the particle in QFTor the quan- lations can produce even qualitatively invalid results, and

tum critical system ard Ex — §(4*2"Y andmoc ', respec-  therefore analytical calculations are necessary, too.

tively, whered is the dimension of the system, amds the We point out that despite the fact that the relevant per-

dynamical critical exponent. For the conformally invariant turbations in general produce a gap for the low-lying excita-

systems studied here one hths z= 1. The application of the tions, one can apply the results of this paper to real gapless
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multichain spin systems, too. For example, it was recently | am grateful to A. G. Izergin, S. V. Ketov, A. Kiaper,

observed that even for the two-leg ladder systemV. E. Korepin, G. |. Japaridze, A. Luther, and A. A. Ners-

SrCa,Cu,40,; the spin gap collapses under presstire. esyan for helpful discussions. | thank J. Gruneberg for his
kind help. The financial support of the Deutsche Forschungs-

gemeinschaft and Swedish Institute is acknowledged.
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The magnetic shielding and quadrupole interaction constam®/afiuclei in the low-
temperaturgnonconducting phase of vanadium dioxide are determined by magnetic resonance
on the®Y nuclei. It is shown that the metal—insulator transition in M® accompanied

by a change in the sign of the magnetic shielding constant and by an electronic transition
2V4T V3t +v5*  which is accompanied by a charge ordering in the cation sublattice20@
American Institute of Physic§S1063-777X00)01102-9

INTRODUCTION in the sample. In Ref. 7, however, it is asserted that the

Transition metal oxides have been attracting research atuSCePtibility of the dioxide obeys the Curie law with an
tention for a long time now. Of particular interest are the€feCtive moment of 2, which corresponds to the trivalent
oxides of titanium and vanadium, whosel &nd 4 shells ~ Vanadium ion. At the same time, in Re§ a diamagnetic
are strongly hybridized. These substances exhibit unusudfW-temperature phase of \iGs reported.
electrical, optical, magnetic, and thermodynamic properties On account of the 8 electronic configuration of'the‘\?
and undergo phase transitions. The most thoroughly studig@n: it would be natural to have spin paramagnetism. How-
are oxides of vanadium doped with alkali or transition ele-€ver, the mutually contradictory data obtained in reality sug-
ments(e.g., NaVjOs [Refs. 1 and Por V;_,Nb,O, [Ref. 3,  9est both the presence of impurity effects and a possible
respectively. In the low-temperature, nonmetallic phasesnonuniform distribution of the charge density. In particular,
these compounds exhibit exotic properties due mainly to théd Seems likely that a pairing of thed3 electrons of the ¥*
nonuniform distribution of charge density and spin density inions occurs. One of the possible pairing mechanisms may be
them. In particular, unusual antiferromagnetic structures arfased on the small-radius bipolaron concept proposed by
present in(VO),P,0-, (Ref. 4, and the properties of Li\O, Andersor? In the polaron model, two electrons can be local-
are described in the framework of heavy-fermion concpts.ized in the immediate proximity of each other on account of

However, there is a simpler structure that is also of in-a strong local distortion of the crystal lattice. In particular, it
terest: pure vanadium dioxide. It is known that beldw has been showfithat in the mixed oxide (TV;-,)O, the
=340K, VO, undergoes a first-order metal—insulator, ~ ground state of the electron system evolves continuously
according to other data, metal—semiconducpitase transi- With x from a superconducting state of the BCS type to an
tion. At the transition there is a change in lattice symmetry.insulator state in which the Cooper pairs are localized in the
The high-temperature, metallic phase of the tetragonal sy§orm massive bipolaron$lt is entirely realistic to suppose
tem has the rutile (TiQ) structure. The low-temperature, that for pure binary V@the insulator and weakly magnetic
nonconducting phase is monoclinic, with a crystal structurestates are brought about by an analogous type of bipolaron
that is a slightly deformed version of the initial lattice, with mechanism of electron pairing. However, in that case the
distorted octahedral coordination of the vanadium ionstransition from the conducting to the insulatirigemicon-
There is a doubling of the period and a modulation of theducting state should be accompanied by the appearance of
chains of vanadium ions along tleeaxis of the initial lattice, ~ structurally inequivalent vanadium ions, a change in the
which corresponds to tha axis in the structure of the low- charge distribution, and charge ordering in the system.
temperature phase. This results in the formation of V-V  The NMR method holds great promise for investigating
pairs with a somewhat shortened distani{®—V) =2.62A  nonuniform charge-density distributions. Results have been
within the pairs and a lengthened distari8el7 A) between  published™*? for studies of the’’V nuclei in VO, in rela-
the nearest vanadium ions of the neighboring pairs. tively weak (up to 1.8 ) magnetic fields. It was shown that

The available information about the magnetic propertiesn the metallic phase, VQexhibits an anomalou&liamag-
of vanadium dioxide is inconsistent. It follows from Ref. 6 netic) Knight shift of the NMR signali.e., in the direction of
that the low-temperature phase is paramagnetic, with a smatigher magnetic fields relative to the NMR signal of fréé
susceptibility that is practically independent of temperaturenucle). At the transition to the nonconducting phase of VO
The growth in the susceptibility at helium temperatures obthe NMR signal undergoes a jump to lower magnetic fields,
served in Ref. 6 was attributed to the presence of impuritiege., corresponding to paramagnetic shifts of the NMR. In

1063-777X/2000/26(2)/5/$20.00 147 © 2000 American Institute of Physics
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addition, it was found that the spectral band of the NMR in a
the nonconducting phase is split into two asymmetric lines; \

this was explained as being due to a sharp increase in the \\

electric field gradient at the sites of localization of the vana-
dium ions. However, because of the insufficiently high mag- _———— 1 1
netic fields used, it was not possible to investigate the con-  3vy  2v,  1vqg v, Tvg  2v4 3y
tribution of a possible structural inequivalency of the

vanadium ions. b

i
\

EXPERIMENT

We undertook a study of the charge distribution and the —fF—F—
electron—nuclear interactions in the nonconducting low-  3v 2v 1v vV iv 2v 3v
temperature phase of vanadium dioxide by the method of
NMR on ®%V nuclei in both low and high(up to 9.4 T
magnetic fields. Since the phase transition entails a jump in
the volume of the unit cellby 8%), it is problematic to
obtain single-crystal samples from the melt and preserve
them in that state through the transition to normal conditions.

We therefore limited the study to the characteristics of poly-
crystalline VQ. The powder samples were synthesizedbya _g's  _04 -02 0 02 04 06
technique  based on the solid-phase reaction 6 =(B-B.)/B. , %
V,03+V,0s—4V0, (Ref. 13. According to the data of an 07770 »

2UsT VU5 2
x-ray phase analysis, the impurity content in the sample wag|G. 1. Theoretical NMR spectra due to first-order quadrupole effects for
not more than 1%. From an analysis of the stoichiometry ohuclear spin 7/2 with different asymmetry parameters:0 (a) and 0.5(b);
the samples in respect to the oxygen content, we obtained tliee experimental NMR spectrum 8 in VO, in a fieldBo=9.4 T (c). Ris
formula VO, 1.0,01- the marker from VOG!

For the measurements in fields from 1.4 to 1.8 T we used

a wide-line spectrometer equipped with a cryostat for low- ) ) ) )
temperature studies, including at helium temperatures. Thetric spectrum observed in the experiment is the result of a

measurements in high magnetic fieldBy,E9.4T) were su_perpos_ition of two symmetric bands of different wi_dths,
done on a production-model Bruker MSL-400 multinuclearShifted with respect to each other. A computer modeling of
spectrometer, which comes equipped with a superconductin§f® Spectrum confirmed this hypothesis and enabled us to
solenoid. To increase the signal/noise ratio the MAS techSeparate the initial experimental spectrum into two lines of
nique was usedrapid spinning of the sampleip to 10 thou- approximately qual intensity, shifted rglatlve to gach other
sand rpm at the “magic” angle 54°44 relative to the mag- by 0.25+0.01% (Fig. 1). The results of thI.S separatlon show
netic field directiop. A study of the low-field NMR spectra that there are two sFructgraIIy and chemlcally different posi-
in the temperature interval from 77 to 300 K did not revealtions of the vanadium ions, (f) and M2), in the low-
any substantial changes in the position and shape of the line$§mperature phase of JOThe parameters of the electric
At the same time, making low-temperature measurementguadm?o'e |nteract|on§ inferred from fche angly3|s are pre-
with the use of the MAS technique is extremely difficult. We Sented in Table I and Fig. 2, together with the isotropic mean
therefore used room-temperature data for our analysis. Rf the magnetic shielding of the vanadium nuclei.
should be noted once again that the point of the metal— From a comparison with the known spectroscopic data
insulator transition in vanadium dioxide lies considerablyfor vanadium compounds we can assign the NMR signal of
lower.

The number of integrations was1000 at a pulse dura-
tion of 0.7 us and a delay between pulses of 0.5 s; the du
ration of an integration was 80 h. Liquid VOQVas used as

TABLE |. Quadrupole interaction and magnetic shielding parameters for
51V/(1) nuclei in the metallic and nonconducting phases of, VO

an external reference standard for the measurements of the Quadropole Nuclear shielding
NMR shifts. coupling Asymmetry constant
Phase of VQ constant, MHz parametej (o)=(B—By)/By, %
MEASUREMENTS IN A HIGH MAGNETIC FIELD Metallic
. . . Refs. 11 and 1 4.90 0.9 +0.380
In a magnetic field of 9.4 T we obtained a multicompo- E\lonconductingp
nent, asymmetric NMR spectrum o%V, with a width of up V(V)* 4.64 0.35 +0.002
to 0.1 T(Fig. 1). The very large broadening of the spectrum v(v)** 431 0.35 +0.019
is due to first-order quadrupole effects, which also compli-V(ID* 5.95 0.8 —0.249

cate the analysis of the magnetic shielding efféaispendi- vam= 575 0.5 —0.232

cesl an_d 2 Since the first-order eﬁ?CFS lead to a symmetriCnote The results of an analysis of the NMR spectr&bf in fields of 1.5
broadening of the spectral bands, it is clear that the asymend 9.4 T are indicated yandk* , respectively.
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FIG. 2. Temperature dependence of the shielding constants of vanadium
nearT,. In the low-temperature phase there are two constants, correspond-
ing to two valence states of the vanadium iow& (O) and \** (@); in

the high-temperature phase there is one constant, corresponding"to V
(m).

V(1) to V" ions, and the ¥2) signal to \?*, with the re-
spective electronic configurationsi3and 31°, the first of
which should be spin-pairedow-spin).

m

MEASUREMENTS IN LOW MAGNETIC FIELDS

| o 04 -02 0 02
To verify that we are justified in attributing the splitting .

of the NMR spectra ofV to the influence of second-order c=(B-By)/By . %
gllJadrulpqle eﬁec:]s’ we mgazure? tEe dEpend.en]Eelgf lthe dOIHEB. 3. Experimentalpoints and calculatedcontinuous curveNMR spec-

et splitting on the magnitude of the magnetic field. It was,, ,¢sw in vo, in a fieldBy=1.4 T atT>T, (a: data of Refs. 11 and 12
expected, in the framework of the interpretation given iNand forT<T, (b: our data The calculated spectrum far<T, corresponds
Refs. 12 and 14, that the value of the doublet splitting wouldo two structurally inequivalent states of the vanadium ions, with the quad-
be inversely proportional to the external magnetic field. Inrupole and chemical interaction parameters listed in Tabeig the marker
the experiment we obtained the following values of the split-To™ VOCk:
ting: AB=34.7G atBy=14.94kG, andAB=46.5G atB,

=17.91kG. Thus the field dependence B observed in To estimate the error due to neglect of the anisotropy of

the experiment does not support that interpretation of thgne magnetic shielding, we determined the characteristic
nature of the spectral splitting. Moreover, the slight growth,;iqin (of the order of 0.1%of the central transition 1/2

of AB with increg§ingBo suggests an essentially magnetic _ 12 in the high-field NMR spectrum &£V. For this tran-
nature of the splitting of the NMR spectrum &%, due t0  gjtion there are no first-order quadrupole effects, and the
the magnetic inequivalence of the vanadium ions in the nongecond-order effects are negligible. It can therefore be as-
conducting phase of VO , sumed that its width is entirely due to the anisotropy of the
Proceeding from the data of the high-temperature meamagnetic shielding. From this we found that the error due to
surements, we analyzed the shape of the low-field NMR,egiecting the anisotropy of the magnetic shielding in the
spectra(see Fig. 3 and Appendix)3We assumed that the |5,y.field NMR spectra of®V can reach 3%. The results of a
observed spectrum is a superposition of two lines descr'begomparison of the dat@ee Table)ldemonstrate good agree-

by the different shielding constants found above and withyent of the parameters calculated for the two values of the
different parameters of the second-order quadrupole '”tera?ﬁagnetic field.

tion (see Table). We ignored the contributions due to ef-
fects of anisotropy of the magnetic shielding and to first-
order quadrupole effects. The calculated spe@ig. J) are

in good agreement with those obtained in the experiment. 1. According to our data, the metal—insulator transition
The mean-square deviation of the experimental points fronin vanadium dioxide is due to the electronic transition
the calculated spectrum does not exceed 5%. It can also /4" —V3"+V® with the onset of two structurally and
noted that the proposed model, with two inequivalent vanaehemically different positions of the vanadium ions(lIV)
dium ions, agrees with the experimental dependence of thand (V). Essentially, the position M) is characterized by
doublet splitting on the magnitude of the external magneticsignificant antishielding, amounting t6 0.24%, and by an
field. increased quadrupole interaction, both in comparison with

CONCLUSIONS
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the conducting phase and in comparison with the positiowhereH,= — 1B, is the Hamiltonian of the Zeeman inter-
V(V) of the nonconducting phase. On a qualitative level,action of the magnetic momept= yih/27 of the vanadium
both of these facts can be explained by the expected effect @fucleus in an external magnetic fielg, and y is the gyro-
the onset of a bipolaron, as a strong local distortion of thenagnetic ratio. In a system described by this Hamiltonian,
lattice by the electrons. This conclusion is supported by thehe resonance frequency is determined by the condition
large values of the quadrupole coupling and magnetic shield-
ing constants of the vanadium nuclei.

2. The anomalougdiamagnetit Knight shift in the me- a2 _ 12_172 12 72
tallic phase of VQ is indicative of the predominance of the Ho=[e"qQal (21 = 1)J3lz~ 1"+ /2n(l +15)]
s—d exchange polarization, for which the Hamiltonian of theis the Hamiltonian of the interaction of the nuclear quadru-
interaction should have a negative sign, corresponding to apole momentQ with the electric field gradientEFG) eq
antiferromagnetic interaction. It can be assumed that the=V;, 7=|Vy— Vy,|/V,,is the asymmetry parameter of the
electron pairing mechanism in the low-temperature phase dtFG, whereV,, <V, ,<V,,, 0<p=<1, thfxify are com-
VO, is genetically related to the electron exchange in thgonents of the nuclear spin operator, ani the charge of
high-temperature metallic phase. It is extremely unusual thatin electron. If the external magnetic field is high enough,
in spite of the antiferromagnetic character of the electron-H,>Hq, then in the first order of perturbation theory the
electron interaction, the low-temperature phase of,\l® quadrupole interaction leads to splitting of the NMR spec-
low fields is apparently diamagnetic, and when the field istrum of 53V into 21=7 components positioned symmetri-
increased it goes over to an excited weakly paramagnetically abouty,:
stgte. It. should t_)e noteq that_ a stable antlferromagnepc state 3/462qQ[3m2— (1 +1)]
arises in vanadium oxides in the presence of alkali-metal ; —; —
dopant ions. h{21(21-1)]

=5
3. The qbserved ex.perimental facts can be more or less X (3 cog€ 09— 1+ 7 sir? 0 cos 2¢)
adequately interpreted in the framework of a polaron model. . o _
However, this approach cannot be considered as ultimatelyn€ angles) and ¢ characterize the direction of the fiefh
correct. One need only compare the development of the corl the principal axes of the EFG tensam is the magnetic
cepts of the transition in Na)Ds crystals and in high- dquantum numberrg=1,I—1,...,1). For a powder sample
temperature superconductors. In the first case the customal§e spectrum is a family of broad linelgy= 0B, is the
ideas of a spin-Peierls transition have been called into queddteraction Hamiltonian of the magnetic momentwith the
tion by Khomski,> who considers this transition to be electrons of an ion in an external magnetic fiBlgl o is the
charge-related. In the second case the theory has been d@agnetic shieldingchemical shift tensor. In genera can
vanced by intimately tying together the spin and charge subP€ separated into two parts: an isotropic pag, and an
systems. Mainly we have in mind the 88 theory devel- anisotropic parbra,s. The isotropic partris leads to a shift
oped by Zhang and Demlésee, e.g., Refs. 15 and )16t of the NMR spectrum with respect tg,, whereas the aniso-
the same time, we believe that the polaron models that haOPIC partoans leads to a broadening of the spectrum:
been proposed for high-temperature superconductors are far ,,— vo[1— 0is— 0 anid 3 COZ O— 1+ 5 Sir? 6 cos 2p)]

out on the fringe. o ) . _
We do not rule out the likelihood that vanadium oxides Ordinarily for vanadium nuclei the broadening of the spectra

serving as a kind of model systems for far more complexdue to magnetic shielding is much less than the quadrupole
cuprates, will also in time find a more realistic description.Proadening.

Today, however, we cannot say anything more definite than

to propose that a complete study of both the spin and charggspenpix 2

degrees of freedom is necessary.

This study was supported by the Federal Target Prograrfia/culation of the high-field NMR spectra of ~ *!V in VO,
“Integratsiya” (Grant No. 274 and the Russian Fund for Figure 1 shows the calculated NMR spectra®®f re-
Fundamental ReseardiGrant No. 99-03-32477and was  sulting from first-order effects with asymmetry parameters
presented at the 31st Congress on Low Temperature Physigs=0 and 0.5. In both cases the spectra are broad and sym-
(Moscow, December 1998 metric. In order to obtain agreement between the calculated

and observed spectra, we have proposed the existence of two
different structural positions of the vanadium nuclei, which

hVO:/.LBo/I or Vo= '}//27780,

APPENDIX 1 are characterized by different EFG tensqyg(1) andq,/2)

_ ) S and magnetic shielding tensoeg1) and ¢(2). To afirst
Quadrupole interaction and magnetic shielding approximation we have neglected the anisotropic parts of the
of 5V in VO PP J pie b

2

magnetic shieldingr s, SiNce vooanid 1,2)<e’q,,Q, and
The effective Hamiltonian of the interaction of the we have included only (1) andoig(2). Inother words, we
nuclear spirr®v (I=7/2) can be represented as the sum ofhave modeled the real spectrum by a superposition of two
three Hamiltonians: different symmetric bands, shifted relative to each other. The
computational procedure was based on a numerical modeling
H=Hz+Hg+Hgp, of the convolution integral of the two components with the
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use of a Gaussian broadening function with two broadening  ¢C,(¢)=—3/8+ 1/3,7i2_ 714 cos 2p— 3/87Ii2 cod 2¢.
parametersB; for the two positions of the®®V nuclei:
Bi=pB(1) andB(2): The experimental low-field NMR spectrum o was mod-
_ eled by the convolution integral of the two components with
F(v)=F1(»)+Fa(v), the use of a Gaussian broadening function:

where

F(v)=Fi(v)+Fy(v),

Fi(V):(:Bi\/;)_:L% f J exp[—(v—wvim)?
Fi(v)z(ﬁi\/;)’lj f exp[— (v—;)?IBZsin0dode.

BZsin6dode,
(1 _ _ _ The optimum parameters of the quadrupole interaction
im=(1=7iig vo= 1idvig(2m—1) were determined from the condition of minimization of the
X (3 cog 60— 1+ 7; Sir? 6cos 2p), function

vio=3e%q;,,Q/[21(21-1)h] 1.

The optimum fitting parameters of the experimental spec-
trum to the calculated spectrum(1), o(2), €2q,41)Q/h,
ande’q,,2)Q/h, are presented in Table I.

Ei [Fex;{ vj)+ F(vi)]2=min.
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The influence of an oxygen impurity on the efficiency of desorption of excited atoms and
molecules from the surface of crystalline argon is investigated. A significant increase in the yield
of desorbed particles is observed at apndOncentration of 1 at. % in the argon host matrix.

It is shown that a xenon impurity does not have a similar effect. Possible mechanisms are proposed
for the stimulation of argon desorption by impurity oxygen. One of them may involve the
formation of argon microclusters around Qons near the surface of the crystal. Another
mechanism may be due to an increase in the probability of recombination, o an

electron on account of the hopping of the negative charge between,t@®Ar; ions. © 2000
American Institute of Physic§S1063-777X00)01202-7

INTRODUCTION desorption of positively charged ions"Rs also observed,

) and this suggests that charged excitations are participating in
The desorption of atoms and molecules from solid surthe process.

faces has become a tOpiC of much wider research interest in The presence of |mpur|ty centers in Crysta|s can appre-

recent years on account of the new desorption mechanismgaply alter the kinetics of electronic excitations, since they
involving the electronic excitation of crystals and the possi-gre efficient traps for both charged and excitonic excitations,
bility of selectively studying these processes by means ofyhich govern the desorption process. Research on the influ-
synchrotron radiatiofi-** Modern technology makes it pos- ence of impurities on the argon desorption efficiency has
sibility to measure the absolute efficiency of desorption, foreen reported in Refs. 15 and 16. In both cases high-energy
which crystals of inert gases are model objé¢t§. Of par-  particles were used for excitation of the crystals: Hens®
ticular interest is the desorption of excited particles. and electrons® In measurement of the desorption efficiency
The luminescence spectra of desorbed Atoms in the  the total yield of neutral particles (ArAr*) was recorded,
states'P; and>P; and also “hot” unrelaxed A}’ molecules  without discriminating the individual components. In Ref. 15
in high vibrational states near the surface of crystalline argoithe |luminescent intensity of the whole sample was also
have been recorded for various means of excitation: heavghonitored, but it corresponded mainly to the strongest fun-
ions>*° electrons;>>'%1® and photons of synchrotron damental emission of Arfrom the bulk, and not from the
radiation®”*#!" By now several processes responsible fordesorbed components. Although the overall result of both
the desorption of rare gas atorf® from a crystal have been studies shows a decrease in the desorption efficiency when
identified. One of them is due to the localization of freeimpurities are added to crystalline Ar, there were certain pe-
excitons near the surface, with the release of a considerabtgiliarities observed when the impurity was oxygen. In par-
energyE,  to the lattice. The subsequent ejection of an ex-ticular, in Ref. 15 it was reported that the signal from des-
cited atom AF occurs as a result of the deformation of the orbed argon dimers became stronger in the presence of an
lattice due to the self-trappin@utolocalization process. A admixture of 5 at. % @ while a nitrogen impurity had no
second process involves the dissociative decay of argon mosuch effect. In Ref. 15 it was mentioned that the desorption
ecules in highly excited vibrational states3A near the yield in crystals coated with a film of oxygen sometimes gets
surface of the crystal. Measurements made in Ref. 6 showstronger before decreasing to the normal value for the sput-
that in the excitation of electrons with ener§yx=200eV tering of the film. Neither paper discusses the causes of these
the first process is almost an order of magnitude more effieffects. We also note that studi®save shown that the nega-
cient than the second. tively charged atomic ions O are present in the flux of
Yet another “stimulator” of desorption is dissociative particles desorbed from argon crystals containing an oxygen
recombination of a self-trapped hole and an electron at thempurity.
surface of the crystat!’ The excess kinetic energy released In the present study we have observed a significant en-
in this process can cause ejection of an excited atom from thieancement of the desorption of excited atoms and molecules
confines of the sample. Together with the desorption of neuef argon in the presence of impurity oxygen. A xenon impu-
tral particles R found in the ground and excited states, theity causes no such effect and even tends to decrease the

1063-777X/2000/26(2)/8/$20.00 152 © 2000 American Institute of Physics
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desorption in the ternary mixtures A,+Xe. Several ex- a
planations for the observed effect have been proposed, based 100
on the conjecture that negative oxygen ions are formed in the
argon matrix.

EXPERIMENTAL PROCEDURES

I, arb. units
o
S
T

Studies of the bulk and desorbed components of the
emission from pure Ar crystals and Ar crystals containing
oxygen and xenon were carried out by the method of lumi- 0
nescence analysis under the excitation of the samples by 9
monochromatic electrons with ener@s~2 keV. The cur-
rent density was =0.04 mA/cnf. Under these conditions b
the sample did not suffer appreciable erosion over the course
of several hours. The electron stream was directed along the
normal to the surface of the sample. The optical emission
was recorded at an angle of 45°. The crystals were grown by
the gas-phase deposition at a condensation temperature
=30K and then were slowly cooled t6=5 K. The poly-
crystals obtained were optically transparent. The gaseous ar-
gon was purified beforehand in a special apparatus utilizing
liquid lithium at a temperaturé =200 °C. The oxygen con- 0
centration in the pure crystals did not exceed4at. %. The 9
limiting oxygen concentration was 1 at. %. The xenon con- E, eV
centration was varied from 10 t_O L at.%. Opt_lcal studies FIG. 1. a: Luminescence spectra of a pure argon cry$jaind a crystal of
were done in a flow-through helium cryostat with a Subs'trateolrgon containing 1 at. % £(2). The inset shows an enlargement of the
temperature that could be regulated over the interval 2.5—78mission region of the desorbed components. b: The same spectra, normal-
K. The emitted radiation was recorded in the vacuum ultraized at the maximum to the intensity of the baid(Ar3).
violet region of the spectrum by means of a VMR-2 normal-
incidence monochromator in the photon-counting mode. Th?h

. . . e intensity of the desorbed componeatsd, andW. In the
spectral resolution was 0.05 nm. The working vacuum in there ion of low oxvaen impurity concentrations our data agree
cryostat was maintained at a level of T8bar. g Y9 punty g

well with the results obtained by other authdr8:2 At an
oxygen concentratio@=1 at. % the ratiop,=1(b)/1(M)
andpy=1(W)/1(M) increase significantly. Changing the O
Figure la shows the luminescence spectra in the regioimpurity concentration led to changes in the intensities of the
of the fundamental emission of Arfor a pure argon crystal desorbed and bulk components of jAms follows: x,
and a crystal containga 1 at. % oxygen impurity. The spec- = p,(1%)/p,(10 %%)~30 and xyw= pw(1%)/pw (10 %%)
trum consists of molecular and atomic emission bands of80. For the componentsthe relative intensity(c)/I (M)
excited centers found in the bulk of the sample and on itglid not change appreciably.
surface, and also in the gas phase near the sample. The lu- In the next series of experiments we investigated the
minescence of these centers located in the deep layers of tsame ratios when a Xe impurity was added to the argon
argon crystal corresponds to the well-known transitionmatrix. In the pure Ar crystal the ratip,, did not change
Ars (M) 1'323—125, with a maximum at an energiy appreciably as the Xe concentration was increased, in spite
near 9.8 eV. The narrow band of atomic luminescermeg  of the fact that thévl band is also quenched by impurity Xe
energetically closer to the forbidden transitiGi®;—'S, (even more efficiently than in the case of an iBpurity).
(Ec=11.52eV) and is probably due to defect sites of theFigure 2a shows the spectra of pure argon and of argon con-
latticel° The inset shows an enlargement of the emissiortaining a 0.1 at. % Xe impurity. The distortion of the shape
from the desorbed components, b, andW. The desorbed of the A5 band is apparently due to the superposition of the
components of atomic origin, Ar(a andb), correspond to !P,-1S; emission of the xenon atom in the matrix. Higher
the transitions'P,—'S, and®P,-1S,, with emission ener- concentrations of Xe lead to the practically complete vanish-
gies E,=11.83eV andE,=11.62eV. The emission from ing of the Af{ emission. In Ar crystals containing 1 at. %,0
the desorbed molecules QQ(W) is due to transitions from even at a low concentration of impurity Xe, one observes a
the high vibrational statesmij(") with energy E,y,  pronounced decrease of the relative intensities of the des-
=11.52eV. The spectra correspond to the same excitatioarbed and bulk components. As an illustration of what we
conditions. The main difference between them is in the relahave said, Fig. 2b shows the normalized spectra of argon
tive intensity between the bulk and desorbed componentwith an oxygen impurity and argon with impurities of oxy-
(Fig. 1b. The effect of an oxygen impurity on the lumines- gen and xenon in equal proportions.
cence of the argon host is manifested in the quenching of the Figure 3 shows the change in the relative intensities of
bulk molecular emission A(M) and in the enhancement of the desorbed componemtand the component as the xenon
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E oV FIG. 3. Relative intensitie/| (M) of the desorbed atomic luminescerize
' € and the emission of an atomic defect certarersus the xenon concentra-

. tion in a solution Ar-1 at. % Q+Xe.
FIG. 2. Luminescence of structures: a—pure argorand Ar+0.1 at. % Xe 9

(2); b—Ar+1 at. % Q (3) and Ar+1 at. % Q+1 at. % Xe(4). The vertical
lines mark the positions of the emission bands of Xe in argon in the region

of the'P;—1S, transition?* The spectra in b are normalized at the maximum The change in the relative intensitie)/I (M) of the
. . "
to the intensity of the bantt (Ar2). desorbed and bulk components of;Aas the @ concentra-
tion is changed is comparable to the corresponding charac-

concentration increases. At first the rati¢h)/I(M) de- teristics for the relative intensity of the excimer lumines-

creases rapidly as Xe is added, and then it goes to saturatiof€Nce of AEO*'(H). and AY; (see Fig. 5a As the oxygen
while still remaining higher than in the pure crystal. The cOncentration is increased, the rati(H)/I(M), like
ratio I (c)/I (M) remains practically unchanged. I (b)/1(M), increases significantly. We note, however, that
Figure 4 shows the relative intensity of the desorkéd for the atomic components one does not observe any sub-
and bulkM molecular luminescencgW)/I(M) as a func-
tion of the Xe concentration. There is an obvious similarity
to the behavior of the desorbed components of atomic and 03
molecular origin. The dashed line is the valud @)/ (M)
in pure argon, which remains considerably lower than in the
crystals containing impurity oxygen.
Certain differences in the energy positions of the
maxima of the A} emission in crystals with different impu-

0.2

rity concentrations were also observed. kb1 at. % Q b=
the maximum is shifted to higher energy by an amount —
AEo~0.04 eV relative to the pure crystal. For an admixture =
of Xe, on the other hand, one observes a shift of the maxi- E—
mum of Af; to lower energies, by an amoumiEy, 0.1

~0.07 eV.

To complete the picture we note that the spectrum of
crystalline argon containing oxygen has bands due to the
emission of the excimers AfOand ArfO~ (2.2 and 6.25
eV, respectively, and also the series of molecular emission
bands G (C®A; —X33) in the region from 1.8 to 3 eV. 0 ;1' = "3" === "2' == : == '6
The admixture of xenon effectively quenches this emission - - - -
and gives rise to characteristic Xé®ands, the intensity of log C(Xe)
which mcreasgs with - increasing  Xe Concentra_‘tlon ancLIG. 4. Relative intensity of the desorbed molecular luminescence
reaches a maximum &~1 at. % Xe. A more detailed de- |(w)/i(m) versus the Xe concentration in a solution+Ar at. % Q-+Xe.
scription of these spectra was published in Ref. 19. The dashed line indicates the valuel¢%V)/I (M) in pure argon.
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FIG. 5. a: Change in the relative intensitig$(M) of the emission from the desorbed atomgM), the atomic defect component(A), and excimers
Ar;O™ (H) (O) as the oxygen concentration is increased. b: The relative intenkitigd (M) (H), 1(H)/1(M) (O0), andl(O%)/1(M) (*) (the transition
C3Ajﬁx329) as functions of the xenon concentration in crystals of-Arat. % Q.

stantial changes in the relative intensityc)/1(M). On the not give a large contribution to the desorption yield, since the
other hand, the decrease li(H)/I(M) as Xe is added, al- experiment was done at=5 K. The desorption due to in-
though it correlates withl(b)/I(M), nevertheless has a elastic scattering of high-energy electrons can give a certain
much flatter dependendsee Fig. 5h The concentration de-
pendence of (O%)/1(M) is closer tol (b)/I(M).

In addition to an enhancement of the desorption of argon Ar+1%Xe
we also observed enhancement of the desorption of xenon
impurity centers as oxygen is added. Figure 6 shows two
luminescence spectra of the Xe atom in a pure Ar host matrix
and in a matrix containing 1 at. %,0The narrow peak at
E=8.44 eV corresponds to theP;—-1S, transition of the
free Xe atom, while the wider bands 2, andd correspond
to centers with varying degrees of deformation of the
environment®

DISCUSSION OF THE RESULTS

The set of experimental data indicate the enhancement of
the desorption of excited atoms and molecules from the sur-
face of crystalline argon at an oxygen concentration in it of 1
at. %. This enhancement is of both an absolute and a relative
character, as is manifested in the significant increase of the
ratios | (b)/I1 (M) and I (W)/I(M). The same is not true of
the change in the atomic componentthe relative intensity
of which, 1(c)/I(M), remains practically unchanged. The
admixture of xenon into an argon crystal containing oxygen E oV
leads not only to an absolute quenching of the molecular '
emission but also to a relative decrease in the desorptioIfJG. 6. Luminescence spectra of a Xe impurity atom in a pure Ar matrix
I(b)/I(M) andl(W)/I(M). (dashed curveand in a matrix containing 1 at. %,@solid curvg. The peak

The observed effects do not have analogs in the fram 0 is the emission from the desorbed atom in the s’t?ge Whllg the wider
nds1, 2, andd correspond to centers with plastic, elastic, and defect

WO"'.( of the desorption .meChfinismS that ha\(e be.'en discuss%aformations of the environment of the Xe atom in the Ar crystal. The
up till now. Thermal stimulation processes in this case canspectra are normalized to the maximum intensity.

I, arb. units
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contribution to the observed emission, but it should be conergy E,=2 keV is |~5.5nm?! and the total depth of its
stant for any impurity concentration, since the energy of theyenetration into the crystal is~50 nm?2 From a compari-
exciting electrons does not change in the whole series ofon ofl,, |, andL one can conclude that the first excited
experiments. One can thus conclude that in the given casegenters formed in the electron irradiation of a crystal will, on
fundamental role in the process of ejection of excited paraverage, be formed in the interior of the sample, at a distance
ticles from the surface of the sample is played by the elecof approximately 5 nm from the surface. Apparently the ex-
tronic excitations of the crystal. citons withn=1,1" from just this region of the crystal have
Several channels for this desorption have now been eshe highest probability of emerging on the surface of the
tablished: ] excitation of surface excitons;) 2nigration of  sample and subsequently leading to its desorption. The exci-
bulk excitons toward the surface of the sampleretombi-  tations formed at large depths can emerge on the surface if
nation processes of the charged centers With electrons  they have a sufficient store of kinetic energy. The probability
on the surface of the samplé:*? of formation of such high-energy excitons in irradiation by
When the surface excitons &y are localized at the sur- electrons is quite large, since the energy-loss spectrum of an
face, a cavity forms around the localized excitorﬁﬁras a electron in argon has a maximum at 17.3 eV, i.e., at an
result of the repulsive interaction, and an excess energgnergy 3 eV higher than the bottom of the conduction band
AEZ ¢ is released. The subsequent desorption of the excitedf the crystaP® Unlike the case of photoexcitation, when a
molecule(or atom) gives a large contribution to the emission crystal is excited by high-energy electrons, the creation of

from thin samples? electron—hole pairs is a much more probable process than the
Ar;E:>Ar§TE+AE§TE direct formation of an exciton. On the other hand, an energy
of 17 eV is insufficient for the formation of a genetically
/ﬁV(W)+2Ar unrelated electron—hole pair, which requires 24—27%&V.
— Arj @ Consequently, the fast recombination processes of geneti-
Ar*+Ar—fiv(a,b)+2Ar cally related pairs will lead to the formation of high-energy

o) excitons. It can be concluded from what we have said that
both low-energy excitons near the surface and high-energy
Even at the smallest sample thicknesses used in the eexcitons formed far in the interior of the sample can partici-
periment @=~5 nm) the ratiol(b)/1(M)=0.3, i.e., it is 3  pate in the formation of desorbed excited particles.
times as large as for a massive sample wiith100 nm?*? As The emergence of an exciton onto the surface is gov-
we see in Fig. 1, the relative enhancement of the desorptioarned by its lifetime with respect to self-trapping and the
in the presence of oxygen is much highé¢b)/I(M)~1,  probability of its trapping by structural disruptions or impu-
i.e., it is approximately 20 times as large as for a pure crystality centers. In general form for steady-state excitation con-
Under the conditions of our experiment, at an energy of thalitions, this process can be represented in the framework of
exciting electronsE,=2 keV and d~5um, the ratio the kinetic equation for the diffusion of a free exciton:

[ (b)/K(M)=0.05 for pure crystals. This is somewhat below
dngg 1 1 )

dat =lre—Nge

the valuel (b)/I(M)=0.1 obtained in other studies with the 4
excitation of massive samples by lower-energy electrons or 7ste  BoNo
synchrotron radiatiofr'®*21t should thus be concluded that — (kNo+keNe+ kgNg) =0, @)
the excitation of surface excitons does not play an appre-
ciable role under the given experimental conditions, and wevherengg is the concentration of free excitofBE) in the
shall not consider it further. bulk of the sample| g is the number of FEs generated per
The excitation of bulk excitons leads to desorption of theunit volume per unit timergtg is the lifetime of a FE with
excited atoms only in the case when they reach the surface oéspect to self-trapping; B6No is a parameter determining
the sample in the course of their migration. The excitatiorthe lifetime of a FE with respect to the oxygen-impurity-
spectra of theWV band show that the greatest contribution is stimulated formation of Ar; No, Ng, andNy are the con-
given by excitons withn=1,1" (Ref. 12. The calculation centrations of oxygen impurity centers, surface atoms, and
done in that paper corresponds to a diffusion lengthdefects, andkg, kg, andky are the rate constants for the
l,=20nm for the excitations responsible for the emissiontrapping of a free exciton by these centers, respectively.
band of desorbed moleculed/. Furthermore, in the subsur- Calculating these processes is, generally speaking, a
face layerqat energie€.~0.5 keV) an additional contribu- complicated problem. However, in the limiting case of a high
tion is given by mobile excitations with a small diffusion oxygen concentration the trapping of an exciton and the
lengthl,=2 nm. This value is comparable to the diffusional transfer of its energy to an impurity are the predominant
range of an excitod'(3/2, 1/2n=1 for its emergence on processes. At 1 at. % Qhe intensity of the emission from
the surface of the crystal £5-10nm)!? The mean free self-trapped A} (M) centers decreases by more than an or-
pathly=20nm is characteristic for “hot” excitons with ki- der of magnitude. Here the intensity of the impurity lumines-
netic energy greater than the height of the barrier to selfeence increases significanifyThe probability that an exci-
trapping ofI" excitonsn=1,1' or for excitonsn=2. ton will emerge to the surface, grain boundaries, and defect
Let us now consider in more detail the processes of forsites of the lattice should decrease accordingly. @teand,
mation of the excitations responsible for desorption. Thewhich is possibly due to the emission from atoms in the
mean free path of a high-energy exciting electron with enimmediate proximity of defects, grain boundaries, or the sur-
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face of the sample behaves in just this way, in correlation
with the change in the intensity of th® band. Conse-
quently, the introduction of an oxygen impurity turns on
some additional mechanisms which stimulate desorption.
Since a xenon impurity in the Ar host does not cause radical
changes in the relative intensitgb)/I (M), one can presume
that oxygen has a specific effect on the desorption efficiency.
In our view, this may be due to the positive electron
affinity of oxygen. We recall that for an oxygen atom the
electron affinityE,=1.465 eV, while for oxygen molecules
E,=0.44eV. The argon crystal, in contrast, has a negative
electron affinity, defined a¥,=E4—E;=0.3eV. (HereE,
and Ey, are the width of the energy gap and the threshold
energy for the production of photoelectrons, respectiyely.
Therefore the question of whether the negatively charged
ions O or O, can be stabilized inside the bulk of the sample

requires careful analysis and additional experimental re- @ — oxygen atom; "‘.\ — 0"ion;
search. We note that in xenon the formation of stable com- =
plexes Xé& +F~ can occur? but for argon the their existence @) — desorbed atoms

is improbable. This is because the electron affinity of fluo-

rine (E,=3.4eV) is considerably higher than that of oxygen,FIG. 7. Structure of the near environment of a neutral oxygen atom in an
and V, for crystaline xenon has the opposite sign: argon host matrix with an fcc_structure, in _the pertur@dand un?erturbed
Vo: —0.4eV. On the other hand, in argon there exists 38; ?lt;\;?ség.nd of the Oatom in the fcc latticéc) and in an A;,O™ cluster
rather efficient way of binding negative ions, by the forma-

tion of triatomic charge-transfer complexes of the type

Ar;O (Ref. 19. After emission to the ground state, the configuration, and the additional electron enhances the inter-
Ar; O~ complex decomposes into neutral components. action, the deformation may be greater.

In the subsurface layer the properties of the Ar matrix  Figure 7 shows the near environment of a neutral oxygen
are altered. Studies have shdwithat in this region of the atom in the fcc argon matrix in the perturbed and unper-
crystal the sign of the electron affinity of Ar is changed toturbed states and also an Gon in a cluster. Such a struc-
positive, and this may promote the formation of a stabletural rearrangement tends to weaken the binding and makes
ionic complex Af,O~. Recent studies have demonstrated thdt easier to remove an Ar surface atom upon its excitation.
possibility that stable clusters XD~ can exist® The forma-  The fact that the oxygen can remain in a lower-lying layer
tion of clusters withn=12 was found to be the most prob- can account for the absence of luminescence of free O atoms.
able. The total energy of stabilization of Gn such a cluster The proposed model finds agreement with the results of Ref.
is 0.63 eV. Aj,O™ clusters have an elevated temperature ofl8 on the observation of desorption of negatively charged
the vibrational subsystert;. The calculation of Ref. 26 O~ atoms from argon crystals containing an oxygen
shows thafl;=~20K for n=12, whileT;~4 K for n=15. If  impurity.
such a complex is formed on the surface of the crystal, itcan At oxygen concentrations of less than 1 at. % in the ar-
be a zone of weakened internal binding of the atoms. Thgon matrix we did not observe the luminescence of the oxy-
excitation of such a complex by an exciton that has emergeden molecule @ because of its efficient dissociation in in-
onto the surface can lead to an increased probability of deteractions with the high-energy excitons of the argon
sorption in this region. ALO™ clusters are icosohedra, with matrix?® Similarly, emission from individual O atoms was
the oxygen atom at the cent&On the surface of a macro- not observed, only from their compounds with argon: ArO
scopic crystal this shape may be altered somewhat. In angnd Ai; O~. This attests to a sufficient degree of stabilization
case, however, it differs from the fcc structure, possibly be-of the O atoms in interstitial positions of the lattice and to the
ing closer to hcp, which is preferable when an oxygen impu-high efficiency of their interaction with the neighboring ar-
rity is introduced?’ gon atoms. The maximum intensity of the emission from

We should also mention that computer modeling of theoxides of argon is reached at an oxygen concentration
displacements caused by a neutral oxygen impurity in th€€~0.1 at. %. AtC=1 at. % Q a quenching of the emission
argon matrix indicates the possibility of such afrom ArO* and A, O~ occurs on account of the rise of the
restructuring’® A calculation shows that the oxygen atom in molecular luminescence of ’Q i.e., the appearance of
the ground state at a substitutional position distorts the sur‘free” oxygen centers. As we see from Fig. 5b, even small
rounding lattice very little. The disruptions of the structure doses of xenon rapidly quench the desorption activity. In
around an O atom found in an interstitial position has sym-addition, the luminescence of “free” oxygen molecules,
metry Dy, and form a tetrahedron in which the closest Arwhich can trap an electron, also decreases rapidly. At the
atoms are displaced approximately 0.4 A along a verticabame time, there is an increase in the intensity of the neutral
axis passing through the oxygen atom and only 0.08 A in th¢bound” excimers of oxygen with xenon: Xe© and
perpendicular direction. Since the Gon has close to 4P Xe*O™. All these changes can be brought about by the lo-
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calization of excess oxygen centers near Xe impurity atomssiaply increase the mobility of Arin the direction toward
which have a higher chemical activity than Ar. In turn, the the surface. The subsequent recombination via the formation
oxygen enhances the desorption of the nearby Xe atonyf intermediate unstable charge-transfer exciplex compounds

which lies on the surfacésee Fig. 6. can lead to the formation of excited Yrmolecules near the
The photoexcitation spectrum obtained in Ref. 12 for thesyrface of the crystal:

W band coincides in its basic outlines with the photoexcita- . N <)
tion of the bulk luminescence of Ar, but with a pronounced Ary +0; =1Ar, Oy 1* + AE e Al
redistribution of the_intensi.ty in fal\;or of surface excitons and + O, V(W) + 2Ar+0,. (5)
the lowest bulk excitons with=1."" These states apparently
give the main contribution to the formation of the states re- ~ The energyAE released in the process of recombina-
sponsible for thew-band emission. In addition, the maxi- tion promotes the escape of excited atoms and molecules
mum near E, is evidence that positive ions play an impor- from the surface of the crystal. This mechanism of stimula-
tant role in the population of the excited molecular statedion can give an additional contribution to the enhancement
ArsW(W). As was shown in Ref. 12, it is due to dissociative Of the desorption of the excimers A We note that the
recombination of a self-trapped hole with an electron neafécombination of Af with an electron can also come about
the surface of the sample. We note that the same maximuriithout the direct participation of oxygen in the process—as
corresponding to the formation of hole states, is also preser@ result of the long-distance hopping of an electron between
in the excitation spectrum of Armolecules in the bulk of two ions of unlike charge. As was shown in Ref. 30, such a
the sample. process can occur even at distanecesl.5nm, which is

As compared to the case of photoexcitation, excitation ofhree times the lattice parameter of Ar. In this case oxygen
argon crystals by high-energy electrons has a higher effiserves only as a temporary trap for stabilization of the elec-
ciency in the energy region between the maxima just detron. Clearly the most important role here will be played by
scribed, which lies approximately 3 eV abokig and corre-  negatively charged molecules, since the binding energy of an
sponds to the most probable creation of electron—holé€lectron with Q is 1 eV smaller than with O.
pairs?3 Since the Se|f-trapping time of a hole is very short Additional studies will be needed to check the proposed
(7~10"12s) 2 the transfer of energy toward the surface oc-hypothesis, including simultaneous measurements of the op-

curs via Se|f-trapped molecular ions %r Let us therefore tical and electrical characteristics of the CryStal. There is also
examine the influence of an oxygen |mpur|ty on the recom.a need for more-detailed theoretical studies of the desorption

bination mechanism of desorption: efficiency on the basis of the kinetics of neutral and ionic
. excitations.
Ar;+e —Ar+Ar* +AEy —hv(a,b)+2Ar; (3)
or CONCLUSION
Ary +e‘—>Ar§<")+AE,ec—>ﬁv(W)+2Ar. 4 We have investigated the desorption of excited atoms

and molecules from the surface of crystalline argon under the
influence of electron irradiation. In crystals containing an
oxygen impurity of around 1 at.% there is significant en-
with respect to recombination with an electron. In turp. hancement of the.desorptlon of excited argon atoms and mol-
gcules in comparison with crystals of pure argon. The pres-

depends on two factors: the initial concentration of charge Lnce of a xenon impurity in the argon mairix does not cause
states and the probability of their trapping by an impurity. = 7~ . .
P y bping by purtty a similar effect, although an enhancement of the desorption

The initial concentration of positive ions and electrons in a

crystal is essentially determined by the conditions of excita—Of Xe impurity atoms is observed in the presence of an oxy-

tion of the sample, which are kept the same for both the purgen |mpu_r|ty. We d_|scus_sed some possible reasons for the
crease in desorption yield stimulated by an i@purity.

crystals and the crystals containing impurities. On the othe{';:/ ) : " )
y y g1mp e proposed two possible mechanisms involving the trap-

hand, the trapping of 4 at an impurity in the bulk of the ing of electrons at oxygen impurity centers and the forma-
sample should lead to a simultaneous decrease in the inteﬁ— 9 Y9 purtty

sity of both theM andW bands. This clearly follows from on of O~ and G ions. One of them would involve the

the photoexcitation spectra of these bands, since the contr?—trUCturaI rearrangement of the argon lattice near ariaD

bution of the ion part, which lies abovi,, to the total and the resulting decrease in the binding energy of the Ar

intensity of the spectrum for them is practically the same. Ansurface_ _atoms. The O_thef wou|d+be _due to an increase in the
obability of recombination of Ar with an electron on ac-

analogous conclusion was reached in Ref. 15 on the basis Bf tof the t fer of i h betwearadd Ar
a kinetic model of the trapping of holes at impurity centers.COUNt OF (e transter ot hegative charge betweg g
ns stabilized near the surface of the crystal.

Thus neither of these factors could lead to enhancement ¢f
the desorption from the surface of the sample. A third factor
that can increase the probability of emergence of positivéE-mail: belov@ilt.kharkov.ua

Arj ions onto the surface may be the accumulation of a

nonequilibrium concentration of negative charges near the
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electric field between the oppositely charged ions can appre-Phys. C.17, 945(1984.

The mobility of self-trapped holes is low in comparison
with that of free excitons, and the probability of their emerg-
ing onto the surface is governed by the lifetimg, of Ar,
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The vyield stresses of single crystals of solid solutiongin with substitutional impurities of
indium, cadmium, and zinc are measured over a wide interval of low temperatures

(1.6—150 K. The low-temperature impurity softening effect is observed, which is manifested in
a decrease in the yield stresses of the alloys in comparison with that of pure tin. The
temperature and concentration boundaries of the existence region of this effect are established,
and the dependence on the combined size and modulus misfit parameter between the

atoms of tin and the impurities, which characterizes the strength of the impurity barriers for the
motion of dislocations in the alloy, is determined. Analysis of the data obtained indicates

a qualitative agreement of the observed regularities of the impurity softening effect and the
behavior that follows from the model of Sato and Meshii, which takes into account the

role of impurity atoms both as centers of nucleation of kinks on screw dislocations and as centers
of opposition to the lateral dispersal of the kinks along the dislocation line20@0

American Institute of Physic§S1063-777X00)01302-5

INTRODUCTION been several hypotheses proposed to explain the nature of
this effect. We shall discuss them in detail in the analysis of

Impurity doping is one of the simplest ways of harden-the results of the present study. Right now we will mention
ing metallic materials. As the concentration of the impurity only the two circumstances that stimulated our present re-
atoms in a pure metal matrix is increased, their hardeningearch. First, in spite of the active discussion of the problems
influence is clearly manifested in the growth of one of theof impurity softening, at present there is no unified opinion
basic mechanical characteristics of a material-the yielchs to the physical nature of this effect. Second, the physical
stress. This tendency, which is the most important feature dfasis on which a number of the explanatory hypotheses rest
the solid-solution hardening effect, is typical for a wide classis the idea that the impurities stimulate the nucleation of
of metallic materials and doping admixtures. Neverthelesspairs of dislocation kinks, which govern the mobility of
there is convincing experimental evidence that it breakscrew dislocations in the Peierls relféf2® According to this
down; this is manifested in specific effects of impurity soft- idea, the impurity softening effect is the exclusive “privi-
ening: for certain alloys based on metals with the bcc struclege” of crystals in which the mobility of dislocations is
ture and under certain conditions, increasing the impuritygoverned by the restraining effect of the Peierls re{md-
concentration leads to a decrease in the yield stress instead adlled Peierls crystalsExperimental data on impurity soft-
an increase. This phenomenon, which was first observed ianing have been obtained primarily for alloys of iron—
iron—chromium alloyg, has subsequently been observed intypical Peierls crystals. Of course, to confirm the idea in
several other bee alloys, predominantly alloys of ifoft  question it will be necessary to make observations and de-
From the experimental data obtained to date one can sketdhiled investigations of the impurity softening effect on a
the broad outlines of the phenomenology of the effect: wider class of crystals of the Peierls type.

—Impurity softening is inherent to solid solutions based =~ We have shown previously that the low-temperature
on bcc metals, which are typified by high values of the yieldplasticity of high-purity(99.9995% single crystals of3-tin
stress and a high sensitivity of the latter to temperature; oriented for predominant slip in th€l00(010 system is

—Impurity softening is observed in a bounded intervalgoverned by the motion of screw dislocations through Peierls
AT of moderately low temperatures, lying in the region barriers>’?¢ Pure and lightly doped single crystals 8fSn
T<T,, whereT, is the temperature of the transition from maintain an appreciable reserve of plasticity and a smooth
the athermal to the activational branch of the yield stress; character of the flow on cooling to helium temperatures.

—The effect is caused by both interstitial and substitu-These properties makg-Sn single crystals distinctly prom-
tional impurities, at concentratiorts<1 -2 at. %. ising objects for the observation of impurity softening ef-

Since the discovery of impurity softening there havefects. In this paper we investigate in detail the influence of

1063-777X/2000/26(2)/9/$20.00 160 © 2000 American Institute of Physics
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small concentrations of In, Cd, and Zn impurities on the T
temperature dependence of the yield stresg3-&n single
crystals oriented for slip along thel00(010 system. In
choosing In, Cd, and Zn as the doping admixtures we were
guided by the following considerations: first, at low concen-
trationsc< — 0.5 at. % these impurities form disordered solid
solutions of substitution with tin; second, they are substan-
tially different from one another in the values of the size and
modulus misfit in relation to tin. g
In the following analysis of the temperature— /

concentration dependences obtained for the yield stress
70(T,c) of alloys based oB-Sn in the low-temperature re-
gion, we identify the anomalies that are characteristic for the
impurity softening effect. We discuss how the value of this
effect depends on the impurity concentrations and on the
strengths of the impurity barriers that oppose the motion of ty t
dislocations. We discuss the agreement of the experimentally
observed features of impurity softening with the hypotheses
that have been proposed to explain it.

1. EXPERIMENTAL TECHNIQUE 0 €

1.1. Preparation and straining of the samples FIG. 1. Schematic illustration of a fragment of the strain cur¢e) (r, is

. . . . . the yield poinj. The inset shows the strain diagram of the sample for a
Single crystals of tin alloys con_talnlng impurities of Cd_a stepped loading of the crystal by stress incrementst, is the time corre-
Zn, and In were grown by a modified Bridgman method insponding to the attainment of the yield stiess

batches of 10 from one se@dThe initial components used
to prepare the alloys contained not more than °l4. %
uncontrolled impurities. The solubility of Cd and Zn in solid
tin is approximately 1 at. %, and that of indium, according to
various published sources, fluctuates in the range 3-7 . .
at. %30 Tﬁe impurity concentration in the alloys studigd var- mllned frpm the change in the character of %:-.(t). curves
ied in the interval 0.005-0.53 at. %, and two of the levelsF19- 1. Insek for 7<17o the curves of the strain increment

(0.01 and 0.53 at. yowere the same for all three types of have al-shaped form, while for> 7, (the timet,) a pro-
alloys. In accordance with the phase equilibrium diagramsnUnced nonsteady stage appears on these curves, corre-

the grown single crystals were solid solutions of substitution SPonding to developed plastic flow. These methods comple-

The samples were double-bladed in shape, with a workment each other and enable one to correct the values
ing part 25¢<5x 1.5 mm. They were strained by uniaxial ex- obtained fOTTo SO as to Qeterm|ne them with the Igast error.
tension in the creep mode using a weight method of loading.  Another important circumstance in the recording of the
The longitudinal axis of the samples was in {140 direc- yield stress is to take into account the scatter in the values of
tion, so that a maximal shear stress would act in theTo due to the structural nonuniformity and small random de-
(100(010) slip system. A diagram of the loading of the viations of the orientation of the axis of extension Of. the
samples is shown in Fig. (insey: the load on the sample Sa@mples. The method used to grow the crystals made it pos-
was changed in steps, which corresponded to stress incrélble to obtain more than 10 identical crystals of a specified
mentsé7 of the order of 0.2—0.4 MPa. The strain incrementsShape and crystallographic orientation from a single seed;
corresponding to each stress increment were measured witH2Se crystals could be used as working samples without any
precision inductive sensor and were automatically recorde@dditional mechanical treatme(tutting, grinding, and pol-
on an electronic chart recorder to an accuracy Bf15 . ishing. This method of obtaining the samples reduces to a
This loading regime gave an average rate of strain of théninimum the influence of random factors on the value of the
order of 5 10" ° s 1. From the stress incremends and the  Yield stress. To further reduce the role of these factors, we
corresponding strain incremense we constructed harden- measuredr, at different temperatures on the same sample.
ing curves corresponding to the given average strain ratel he first measurement was done at the highest temperature in
These curves were used to determine the desirethe interval of interest, and the sample was then unloaded, its
characteristic—the yield stregthe critical shear streks temperature was lowered a relatively small amount, and it
was again loaded te,. This method made it possible to
obtain thery(T) curve on several samples of the same batch
with a step 1 K in the region below 4.2 K and with a step

We took the value of the yield stresg to be the stress of 5-10 K above 4.2 K. In this way we obtained the tem-
at which the initial segment of the strain curvgg) begins  perature dependence of the yield stregsT) in the interval
to deviate from its linear trengFig. 1). This value is close to 1.6—150 K.

e stress at which irreversible creep begins, which is deter-

1.2. Determination of the yield stress
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2. EXPERIMENTAL RESULTS AND DISCUSSION T,K
2.1. Temperature—concentration dependence of the yield 101 1 - Sn (99.999)
stress of alloys and the softening effect 2-5n+053at.%In
The vyield stress of crystalline materials is customarily g
represented as a sum of the theri@aitivationa] component St
T4 and an athermal compoenent, each of which also de- -
pends on the impurity concentratian e
To(T,C)=74(T,Cc)+ 7(C). 1 ot . .
o(T,€)=74(T,C) + 7i(C) (1) 0 = 100
This division reflects the existence of two types of bar- T,K

riers to the slip of dislocations in the strained crystal: short- o i
. . . . FIG. 3. Temperature dependence of the activational component of the yield

ranged, which are Pvercome by the d|S|0catlons_ with the helgtress for purgs-tin (1) and for alloys ofg-tin with an indium impurity(2).
of thermal fluctuations, and long-ranged, forming an ather-
mal (to an accuracy up to the temperature dependence of the
elastic modulusbackground of internal stress&sAccord-
ing to a reliably established experimental fact, impurity soft-athermal component far> 100 K. Along with the curves of
ening is a feature of the activational componenalone!'®  7,(T,c), each of the figures shows the curve for the activa-
while the value of the internal stresses as a rule, increase tional component of the yield stress for pysdin, 7,(T,0).
monotonically with increasing concentration of the dopingSo as not to obliterate the fine details of the curves, we have
impurities. left off the experimental data points through which these

Our experimental temperature curves of the yield stressurves were drawn; the scatter of the experimental points is
of pure B-tin and three alloys based on it, with different approximately the same as in Ref. 32. In Figs. 3—5 one can
concentrations of the dopants, are in agreement with thelearly see the temperature intervalsTg within which
ideas set forth above. The absolute valuesfl,c) in the  7,(T,c)<7,(T,0). The value of the softening effech g
temperature interval 4.2—150 K for these alloys are given in=7,(T,0)— 7,(T,c)>0, and also the width and position of
a previously published pap&f,where it was shown that the intervalA T on the temperature axis depend substantially
above 80-90 K the yield stresg, both for pure tin and for on the type and concentration of the impuriti€sg. 6).
all the alloys investigated, has a rather wide interval of ather-  The above-described lowering of the activational com-
mal behavior. The results of the present study confirm thigponent of the yield stress as a result of doping can be termed
observation. If the values of the yield stresse§at100K  a relative softening effect. Meanwhile, there also exists an
are identified with the internal stressegc), then one ob- absolute softening effect: at sufficiently low values of the
tains for the concentration dependence of this quantity th@npurity concentration one can identify temperature intervals
curves shown in Fig. 2. on which the total yield stress of the alloy lies below that of

Against the background of the risiign account of the pure tin, i.e.,7o(T,c)<7o(T,0). An idea of the size of the
doping athermal component of the yield stresgc), the  absolute softening can be gotten from Fig. 7, which shows
impurity softening effects are manifested in pure form in anthe concentration dependence of the athermal component
analysis of the temperature—concentration curves of the difr;(c) and the maximum values of the relative softening on
ferencer,(T,c)=19(T,c)— 7i(c). These curves are shown the intervalsATg: 7¢(c)=max(A7(T,c)) (see Fig. & ab-
in Figs. 3-5 for the alloys studied. The curves in these figsolute softening corresponds to the inequaljyc) > 7;(c)
ures were obtained by subtracting from the yield stress its- ;(0). It is seen in Fig. 7 that for the alloys Sn—In and
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FIG. 4. Temperature dependence of the activational component of the yiel
stress for purgg-tin (1) and for alloys ofg-tin with a cadmium impurity(2).

Sn—Cd there exists an appreciable interval of impurity con
centrations in which impurity softening of the activation
component more than compensates the increase of the ath
mal component.

Thus the temperature—concentration curve of the yiel
stress of3-tin-based alloys in the low-temperature region

e
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FIG. 5. Temperature dependence of the activational component of the yield
stress for pures-tin (1) and for alloys ofg-tin with a zinc impurity (2).

2.2. Temperature—concentration curve of the softening effect

Figure 6 shows the temperature dependence of the pa-
rameterA 7 for the investigated alloys. It is seen from these
figures that the qualitative character of the softening effect is
'Epe same for all the alloys: the softening reaches a maximum
In the temperature region 65—70 K and falls off smoothly to
zero on both sides of the maximum, i.e., it exists in a finite
temperature intervaAT,. The position of the maxima of
A 74 on the temperature axis is nearly insensitive to the type
of impurity, but it fluctuates by several degrees as the impu-

rity concentration is varied. A more important effect is the

ir}[Iuence of the type and concentration of the impurity on the

width of the temperature interval T4 in which the effect is
anifested and on the height of the maximaygf as is seen

rom Table I.

qualitatively repeats the basic features observed in the study

of bcc alloys, including the impurity softening effect of in-
terest here.

TABLE I. Influence of the type and concentration of the impurity on the

Further discussion of the nature of the the physicaParameters of the softening effect.

mechanisms of the impurity softening effect will require ex-

perimental data on the temperature—concentration curves @fioy
one more important characteristic of the plasticity—the rate

sensitivity of the deforming stress near the yield point,
d7r/dIne. In our experiments this quantity was investigated
in detail for the alloy Sn—CdFig. 8).

AT, s AT, s
K MPa Alloy K MPa
Sn+0.01 at.% In 50 0.6 Sh0.53 at.% In 35 11
Sn+0.01 at.% Cd 33 1.1 Sh0.53 at.% Cd 28 0.44
Sn+0.01 at.% Zn 30 1.3 Sh0.53 at.% Zn 0 0
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FIG. 7. Concentration dependence of the maximum values of the softening
ns (H) in comparison with the behavior of the athermal component of the
. . . . yield stressr; (O).
The width of the intervalATg decreases in the series

from In to Zn, and this decrease is increasingly significant as
their concentration in the alloy increases. Admixtures of cad» nscUSSION OF THE RESULTS
mium occupy an intermediate position between indium and
zinc in terms of their effects. From the time of discovery of impurity softening there
The curves ofpy(c) =max(A7(T,c)) (Fig. 7) are evi- have been two main approaches to explaining the physical
dence of the nonmonotonic dependence of the size of theature of this effect. According to the first approach, the
softening effect on the impurity concentration for all the al- éffect can arise because of the interaction between dissolved
loys. However, the finer details of the dependengéc), atoms and residual impurities that are difficult to eliminate
e.g., the position of the maximum on thg(c) curve, are from the material by any methods of purification. In this
sensitive to the type of dopant. In spite of the qualitative
differences in the details, the concentration dependence of
the value of the effect has a common trait for all three
alloys—the presence of a maximum which is reached at dif- 0.30+
ferent concentrations of the impurities, with a subsequent
decrease of the effect at a different rate, depending on the %
impurity type. It can be supposed that for each type of im-
purity there exists a critical concentratiag, above which
the softening effect vanishes. For example, for the alloy
Sn-Zn the vanishing of the effect is observed &t
~0.53at. % Zn, while a somewhat greater valuecgfcan
be expected for the Sn—Cd alloys, and for Sn—In it can be
around 1 at. %.

It is of interest to compare the values of the impurity 0 20 40 60 80 100 120
softening effect at the same dopant concentrations in each T,K
alloy. As can be seen from Table I, at a low concentration th

greatest softening effect is obtained for a Zn impurity, whilesn_cqg alloys with cadmium concentrations of 0L 0.21(2), and 0.53
at high concentrations it is obtained for In. at. %(3).

IG. 8. Temperature dependence of the rate sensitivity of the yield stress for



Low Temp. Phys. 26 (2), February 2000 Soldatov et al. 165

mechanism the dissolved atoms act as a kind of adsorbent, \
purifying the surrounding region of the crystal from “harm- 0.15 .
ful” (tending to harden the matrix of the original substance -
impurities. Purification is achieved either on account of the \
chemical activity of the foreign atoms, which interact with \
the residual impurities and cause them to coagulate into £ 0.35 ‘\0_50
larger particles, or on account of their regrouping by the 30_10_ \
elastic stress fields localized around the dissolved ‘\
atoms>29121%n a number of papers the impurity softening . 0
effect is attributed to the influence of interstitial impurities N \.
on the density of mobile dislocatich$or to the activation of 0.05— R
cross slip by such impuritie's. ' 0_252:1:,‘\“3\

The second mechanism is based on the idea that the 0.15 0N N
softening effect is an inherent property of Peierls crystals and 0.05 \\ X
arises from the specifics of the influence of impurity atoms | | | R e
on the motion of screw dislocations through the barriers of 0 0.1 0.3 0.5 0.7 091.0
the Peierls potential religf’18:1923-26:33-3The most impor- /7
tant feature of this influence is a decredBest predicted in
Refs. 22 and 2Bof the activation energy for nucleation of FIG. 9. Stress dependepce ofthe activation'energy for'the motion qfa_screw
kink pairs on screw dislocations in the presence of a misﬁflslocatlc_)n in the combined 'fleld of the Pel_erls pqtentlal and of m.|sf|t de-

. ) ects.I'y is the energy per unit length of the dislocation, aRds the Peierls

defect. Kubin and CO'WOerI?éJSS working from data pro- stress. The curves are labeled by the values of the maximum strain around a
vided by in situ electron microscopy and ordinary tensile misfit center, a measure of its strength.
experiments, analyzed the softening effect in the Fe—C sys-
tem and established that the presence of carbon atoms in iron
leads to a discontinuous character of the motion of screwhat the centers of dilatation that promote the nucleation of
dislocations, lowering the activation energy by 1/3 from itskinks at the same time oppose their dispersal along the dis-
value in pure iron. They proposed a model in which thejocation. Therefore, in the analysis of the mobility of dislo-
mobility of screw dislocations in dilute bcc alloys is gov- cations in alloys of the Peierls type it is, generally speaking,
erned by a competition between two processes that occur ifecessary to take into account both modes of kink dynamics.
parallel—nucleation of normdin the pure metaland “soft- |t becomes particularly important to take the lateral motion
ened” (when there are impurity atoms near the dislocation of kinks into account when the height of the barriers that
kink pairs on the glldlng screw dislocations. The first processnust be overcome by the kinks becomes Comparab|e to the
dominates at low values of the Impurlty concentration, Whileenergy of nucleation of kink pairs_ Subsequenﬂy, in a series
the second dominates at higher concentrations. According §f papers by Petukhogt al.**~38it was attempted to obtain
this model, the value of the softening effect is described ima unified description of the influence of impurity atoms on
the corresponding concentration regions by the relations  both the nucleation and the dispersal of kink pairs.

KT One of the important conclusions of Ref. 24 is that there
Ars=aC— for c<cy, exists a certain critical valuéstrength of the impurity bar-
v riers. This is illustrated in Fig. & which shows the calcu-
3 KT lated results on the stress dependence of the activation en-
A7+ > T[In(c) +B] for c>cy, 2 ergy necessary for the motion of a screw dislocation through
the combined field of the Peierls potential and a misfit center
where« and 8 are constants, anch~10"%. for various values of the strength of the center. The calcula-

It follows from expression$2) that the temperature de- tion was done for spherical centers, and the strength param-
pendence of the softening effekt-(T) is determined by the eter used was the maximum misfit strain around the center. It
temperature dependence of the rate sensitivity of the yielis seen that the activation energgnd with it, the macro-
stress(the rate sensitivity is governed by the factof/v scopic yield stregsis lowered in the presence of a misfit
=d7/dIng, and the character of the concentration curvescenter and that the lowering effect is sensitive to the strength
A1¢(c) changes from a linear dependence at low concentrasf the center. At a certaiftritical) value of the strength the
tions to a weak logarithmic dependence at high concentraactivation energy again begins to increase, and this corre-
tions. sponds to the decrease in the softening effect. The change in

We note that this model does not consider the influencéhe concentration of misfit centers can give rise to a redistri-
of impurity atoms on the laterdhlong the dislocation line  bution of the role of the processes of nucleation and dispersal
movement of the nucleated kinks. It was assumed that thef the kinks and can have a substantial influence on the be-
lateral motion of kinks is completely free and for this reasonhavior of the effect.
do not bring any additional features into the mobility of dis- Thus, together with the temperature and impurity con-
locations on the whole. However, this assumption, which iscentration, the behavior of the softening effect should also be
indisputable for a pure material, is not obvious in the case ofjoverned by a factor such as the strength of the impurity
alloys. A study of this question by Sato and Me&hshowed  barriers.
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FIG. 10. Dependence of the parametery(v/kT) on the impurity concen-

tration in the alloy: the solid curves are for the model of Kubtrel;**the  {he combined misfit parameter (the strength of the impurity barriein
squaredll show the experimental data obtained for Sn—Cd all@ysThe alloys with impurity concentratione, at. %: 0.01(1), 0.53(2).
concentration dependence of the maximum value of the softening, normal-

ized to the Peiersl stress in the model of Sato and Meshii, constructed

according to the data of Fig. 11a in Ref. &3).

FIG. 11. Dependence of the maximum value of the impurity softeringn

figure were calculated in Ref. 24 for a hypothetical alloy
with a fixed value of the strength of the impurity barrier. The

Let us now compare the results of our experiments withalues of 7;/7, were found at the crossing points of the
the conclusions obtained in an analysis of the models defo(-r) curves with the straight lin& = const=70 K.

scribed above. In the framework of these models we have | et us compare the curves in Figs. 10 and 7. The mini-
discussed Only the influence of impurities on the aCtiVationah']um |mpur|ty concentration in our a”oys Corresponded to

component of the deforming stress; in the next Subsectioghe lower boundary of the concentration region in the Kubin
we shall discuss only the parameters of the relative softeninghodel (c,~10—4) above which the effect practically ceases

effect. to depend on the impurity concentration. This tendency, as
we see from a comparison of Fig. 10a and Fig. 7, is not
3.1. Temperature dependence of the effect observed. All of thep4(c) curves for our alloys pass through

As can be seen from Fig. 6 and Table I, the softening? Maximum and then undergo a more or less steep drop. At
effect is observed in a bounded interval of moderately lowthe same time, there is a satisfactory qualitative similarity
temperatures, outside of which the activational component dpetween our experimental curves and the curve calculated for
the yield stress of the alloy is higher than that of pure tin.the Sato and Meshii modesee Fig. 10p
This behavior of the effect is predicted by both the model of
Sato and Meshii and the model of Kubét al. One of the 33 |fiuence of the strength of the impurity barriers
consequences of the Kubin model that is subject to experi- ) ) )
mental verification is the prediction that the temperature de- ~ 1h€ experimental data on the influence of this parameter
pendence of the softening effect should be the same as thaf the softening effect are .few and |ncon5|stgnt. Some stud-
of the rate sensitivity of the yield stress. We have checked€S have found no connection between the size of the effect
whether this prediction holds for the case of the Sn—Cd al@nd the difference of the geometric and elastic parameters of
loy. It can be seen from a comparison of Fig. 6 and 8 that thd1® host and impurity atoms, which accords with the absence
positions of the maxima of these parameters on the temper®f & connection between the size of the effect and the
ture axis are strongly different, and that the difference in-Strength parameter in Refs. 4_gnd 6, Whlle_ln other stu_dl_es the
creases as the impurity concentration increases, reaching @éfect was found to be insensitive to th_e size of the mlsf|_t but
K for the alloy Sn+0.53at. % Cd, for example. |ts_ depelrldence on the mo_dulus misfit was emphatically

It is possible that one of the causes of the disagreemerﬁff'rmed- _To elumdgte the mflue_nce qf this parameter on
of the experimental data and formul@) is that the Kubin the softening effect in the alloys !nvestlgated in the present
model does not take into account the role of impurity atomsStudy, we adopted as a quantitative measure of the strength
as centers of opposition to the kinks in their lateral motion®f the impurity barriers the quantityy introduced by

; 9
along the dislocation lines. Fleisher?
q=|8c—adgl,
3.2. Concentration dependence of the effect
2(Ggy— G Rsi—R;
Figure 10 shows the types of concentration curves ob- 5‘3:2G(+G—|)G|; 5;;%. 3
tained from calculations in the models of Sato and Mé&8hii sntI2sn i sn

and Kubinet al?®> We note for the sake of definiteness that The symbolg denotes the combined misfit parameter
the curve in Fig. 10b reflects the behavior of the relative(barrier strength which takes into account the contribution
value of the impurity softening effecys/ 75, obtained from  to the strength of the interaction of the dislocation with im-
the data of Fig. 11 of Ref. 24. They(T,c) curves in that purity atoms from both the size and modulus misfés; and
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TABLE II. Values of the strength of the impurity barriers and the param- from this model that impurity atoms in high concentrations

eters used for calculating them. can lead to a softening effect only under the condition that
R A the strength of the barriers created by them is rather low.
Element (Refs. 40, 41 &g G=G,,, GPa s q Thus we see from the above discussion that our experi-

mental results are in qualitative agreement with the model

Sn (hosh 1.62 0  28.2Refs. 41,42 0O 0 : N
n 166 0.024 aRef. 41 053  0.146 developed in the paper by Sato and Meéhii.
Cd 157 0.031 24.%Refs. 41,43 0.122 0.38
Zn 1.37 0.154 48Ref. 41) —-0.48 294  CONCLUSION

1. Single-crystal samples of alloys gftin with impuri-
ties of indium, cadmium, and zinc exhibit a low-temperature
impurity softening effect which is manifested in a decrease
in the yield stress in the alloys as compared to pure tin. This
effect is observed in bounded intervals of moderately low
temperatures and concentrations.

2. We measured the temperature and concentration de-

In the analysis of 'the low-temperature plastic .flow of pendences of the impurity softening effect and compared
pure 5-Sn along the slip systerfl00(010 we established o 1o those predicted in different theoretical models of the
that it is brought about by the motion of screw dislocationsg¢tact.

through Peierls barriefs:?8 This conclusion also applies to 3. We established how the value of the effect depends on
the low-temperature plasticity of the dilute alloys of tin with o combined size and modulus misfit parameter of the atoms
indium, cadmium, and zin® On the basis of these results of the host matrix and the substance dissolved irtlie

we can calculate the values of the strength of the iImpuritysyength of the impurity barriersWe showed that the inter-
barriers opposing the motion of the dislocatidsse Table g|ationship of these quantities is described by a power law

). L , ) . with an exponent that depends on the impurity concentration
Table 11 also give information about the atomic radii and , the alloy.

shear moduli of the alloy components. It is seen that indium, 4 Ap analysis of the data obtained in this study showed

cadmium, and zinc impurities in tin give rise to dislocation ¢ the interrelationships found are in good agreement with
barriers of (_Jllfferent strengths: the strongest are barn_erﬁ,]e behavior of the effect implied by the model of Sato and
formed by zinc atoms, and the weakest are formed by inpeqhii24 which takes into account the role of impurity atoms

dium. both as centers of nucleation of paired kinks on screw dislo-

Figure 11 shows the maximum value of the impurity caiions and as centers of opposition to their lateral motion
softeningns(c) in the intervalAT, as a function of the pa- along the dislocation line.

rameterq for two fixed impurity concentrations in the alloys:
c=0.01 and 0.53 at.%. These curves clearly indicate the
presence of a link between the value of the effect and the
strength of the impurity barriers, and the character of the——
relationship displays a strong dependence on the impurity,
concentration. I_ndeed, at a_IOV\_/ conce_ntration of impurity at-2,,, 5 Ress, B. E. Hopkins, and H. R. Tilper, J. Iron Steel Inst., London
oms the effect increases with increasing strength parameter,g9, 157 (1951.

whereas at a high concentration it decreases wjithA 3G. T. Horne, B. B. Roy, and H. W. Paxton, J. Iron Steel Inst., Lor2idh
simple analysis shows that the quantitative interrelationship, 161 (1963

H. H. Kranzlein, M. S. Burton, and G. V. Smith, Trans. AIME33 64
between the parameter of the effegt and the strength pa- (1965.

G; are the shear moduli of tin and of the dopant mateRag);

and G; are the atomic radii of tin and of the dopant atom
and, the coefficientv= 16 for screw andv=3 for edge dis-
locations.

E-mail: natsik@ilt.kharkov.ua

G. E. Lacy and M. Gensamer, Trans. AINE, 88 (1944).

rameterq is well approximated by a power law: 5R. J. Arsenault, Acta Metalll4, 831 (1966.
5F. Bolling and R. H. Richman, Can. J. Phyi&, 541 (1967).
7s(C,q)=A(c)q", (4) 7T, E. Mitchel and P. L. Raffo, Trans. AIMB42, 907 (1968.

. . . 8B. Harris, Phys. Status Soli®9, 383 (1969.
in which the parameter& andn have different values at low 9B W. Christ and G. V. Smith, Mem. Sci. Rev. Mé5, 208 (1968.

and high impurity concentrations in the alloys. For example oy, Nakada and A. S. Khe, Acta Metall6, 903 (1968.

A=1.3,n=0.12 forc=0.01at. % andA=0.2 andn=—-1 1B, W. Christ, R. P. Gamble, and G. V. Smith, Scr. Met&]1521 (1969.
for c=0.53at. %. 12K, V. Ravi and R. Gibala, Scr. MetalB, 547 (1969.

: , . . BP. L. Raffo, J. Less-Common Met7, 133(1969.
Thus, depending on the concentration, the same impurity:g” ram Roy, Scr. Metall3, 531 (1969,

can act to soften or harden the host crystal. In the set ofk. v. Ravi and R. Gibala, Acta MetallL8, 623 (1970.

impurities investigated here, such a role is most characterigtT. E. Mitchell and R. L. Smialek, ifProceedings of the 2nd International

: ; ; ; Conference on Strength of Metals and Allogsilomar (1970, p. 73.

;'C for zllnchatoms ' I.t rerpak:ns ]Efo be. said t'hat the r? bservec%R_ Gibala and T. E. l\aitchell, Scr. Metal, 1?23(1973. P

eature in the be ?\VIOI’ of the e ectis pre(jlcted _'n the mode 8D. J. Quesnel, A. Sato, and M. Meshii, Mater. Sci. Eh§. 199 (1975.

of Sato and Meshii on the basis of a consistent incorporatio#J. p. Cottu, J. P. Peyarade, P. Chomel, and P. Groh, Acta M2all 179

of the dual role of the impurity atoms in the potential relief 0(1978)- _ _

of a Peierls crystal—as centers of nucleation of paired kinks *: - Peyarade, P. Groh, and J. P. CottPriaceedings of the Sth Inter-
. . N . national Conference on Strength of Metals and Allafachen (1979,

on screw dislocation, and as centers of opposition to their p. 959.

dispersal along the dislocation line. In particular, it follows 2P. Chomel and J. P. Cottu, Proceedings of the 5th International Con-



168 Low Temp. Phys. 26 (2), February 2000 Soldatov et al.

ference on Strength of Metals and Allpysachen(1979, p. 1013. 32A. N. Diulin, G. I. Kirichenko, V. D. Natsik, and V. P. Soldatov, Fiz.
22A. Urakami and M. E. Fine, irProceedings of the First International Nizk. Temp.24, 595 (1998 [Low Temp. Phys24, 452 (1998)].
Conference on the Mechanical Behavior of Materjaléyoto, Japan 3R, J. Arsenault and Cadman, Defects and Defect Clusters in BCC Met-

23(197])- ' _ als and their AlloysNuclear Metallurgy, 1, p. 411973.
B. V. Petukhov, Fiz. Tverd. Teld.eningrad 13, 1445(1971) [Sov. Phys. 343 pjehl, M. Schreiner, S. Staiger, and S. Zwiesele, Scr. Met@)l949
Solid Statel3, 1204(1971]. (1976.

2*A. Sato and M. Meshii, Acta MetalR1, 753 (1973. 35|, P. Kubin and F. Louchet, Acta Metal27, 337 (1979.

25 H
L. P. Kubin, F. Louchet, J. P. Peyrade, P. Groh, and P. Cottu, Acta MetallaeB. V. Petukhov, Fiz. Met. Metalloveds6, 1177 (1983.

27, 343(1979. 37 . )
A . . . . . B. V. Petukhov and Yu. I. Polyakov, Kristallografiy28(6), 4 (1993
%Y, ki, inDisl Metallurgy(Vol. 4 of Disl I-
Suzuki, inDislocations in Metallurgy(Vo of Dislocations in So [Crystallogr. Rep38, 715 (19931,

ids), North-Holland, Amsterdani1979, p. 191. 18 - -
27G. I. Kirichenko, V. D. Natsik, and V. P. Soldatov, Fiz. Met. Metalloved. ~ B: V- Petukhov, Kristallografiya1(2), 197 (1996 [Crystallogr. Rep4L,
63, 386 (1987). ) 39393 (199@].
2y D. Natsik, G. I. Kirichenko, V. V. Pustovalov, V. P. Soldatov, and S. E 40R- L. Fleisher, Acta Metall9, 996 (1961). .
Shumilin, Fiz. Nizk. Temp22, 925 (1996 [Low Temp. Phys22, 740 W. B. PearsonThe Crystal Chemistry and Physics of Metals and Alloys

(1996)]. [Wiley—Interscience, New York1972; Part 1, Mir, Moscom1977].
2yy. G. Kazarov, inCondensed Matter Physidén Russiai, Kharkov ~ “'G. V. Samson(ed), Properties of the Elementéart 3 [in Russiad,
(1973, issue 11, p. 100. Metallurgiya, Moscow(1976.
30M. Hansen and K. AnderkoConstitution of Bindary Alloys2nd ed.  “2A. A. Hendrickson and E. Fine, Trans. AIME1, 103(1970.
[McGraw-Hill, New York (1958; Mir, Moscow (1962]. “W. P. Mason(ed), Physics Acoustics: Principles and Method#ca-

31A. Seeger, “The mechanism of glide and work-hardening in face-centered demic Press, New Yorkl968; Mir, Moscow (1972)].
cubic and hexagonal close-packed metals,Dislocations and Mechani-
cal Properties of CrystalsNew York (1957, p. 275. Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 26, NUMBER 2 FEBRUARY 2000

BRIEF COMMUNICATIONS

High-frequency impedance of layered conductors in a high magnetic field
V. G. Peschanski *

Kharkov State University, pl. Svobody 4, 61007 Kharkov, Ukraine; B. Verkin Institute for Low Temperature
Physics and Engineering, National Academy of Sciences of Ukraine, pr. Lenina 47, 61164 Kharkov,
Ukraine

I. V. Kozlov and K. Jiasemides**

Kharkov State University, pl. Svobody 4, 61007 Kharkov, Ukraine
(Submitted July 19, 1999
Fiz. Nizk. Temp.26, 225-227(February 200D

The propagation of electromagnetic waves in layered conductors is investigated theoretically for
low temperatures, where it is extremely important to take into account the energy

quantization of the charge carriers by the magnetic field. The quantum kinetic equation for the
statistical operator is used to calculate the quantum oscillations of the surface impedance

over a wide range of frequencies. © 2000 American Institute of Physics.
[S1063-777X00)01402-X]

In recent years there has been arising interest in research Let us consider the propagation of electromagnetic
on the physical phenomena occurring in conductors of orwaves along the normal to the layers in organic layered con-
ganic origin, having a layered structure with a pronouncedluctors with a quasi-two-dimensional electron energy spec-
anisotropy of their metallic conductivity. These include atrum, placed in a rather high magnetic fidldsuch that the
large family of charge-transfer complexes based on bismean free path of the charge carriers is much greater than
ethylenedithio-tetrathiafulvalenBEDT-TTF),X, where X the radius of curvature of their trajectories. If the penetra-
is a set of various anions. The electrical conductivity alongtion depth of the electromagnetic wave into the conductor is
the layers in these complexes is 3—4 orders of magnitudkess than the linear dimensions of the conductor, then the
higher than that along the normal to the layers; this is problem of the distribution of the electric field(z) of the
clearly due to the sharp anisotropy of the velocity distribu-wave in the sample is similar to that of the propagation of the
tion of the charge carriers,=de(p)/dp, on the Fermi sur- electromagnetic field in a half spaze=0 occupied by the
facee(p)=¢€g, i.e., their energy layered conductor.

To find the current density
e(p)= 2 eq(Px.Py)coganp,/h) ) J=Tr(evp) @
n=0 o . . .
it is necessary to solve the quantum kinetic equation for the
statistical operatop=p®+p®), which in the case of a

depends only weakly on the momentum proJeCtIonmonochromatic wave of extremely low intensity has the

Pz=P-N. . . . form

The quasi-two-dimensional character of the electron en-
ergy spectrum of layered conductors makes for an extremely 1 i L (9p<1>
clear manifestation of the quantum oscillations of the —lw+ ;+ g(sn—sn/) pEm),-i-U —
Shubnikov—De Haas and de Haas—Van Alfen effects. The
Shubnikov—de Haas oscillations of the magnetoresistance p0—p®

. . n n

have been observed in many organic layered conductors. Al- =————(eEv). 3
ready there have been quite a few reports of experimental En= Ent
studies of the propagation of electromagnetic waves in ion— Here p(® is the statistical operator describing the equi-
radical layers with a low-dimensional electron energylibrium unperturbed state of the charge carriers; only the
spectrunt.~® In this connection it is of interest to do a theo- diagonal components of this operator are nonzero, and they
retical analysis of the quantum oscillation effects in alternatare the Fermi distribution functiongy(e,(py)), where
ing fields, since high-frequency phenomena are extremelp,=p-H/H.
informative and can be used successfully for a detailed study In Eq.(3) we have kept only the terms linear in the small
of the electronic structure of layered conductors and, in parperturbation of the charge carriers by the electromagnetic
ticular, the dispersion relation and the relaxation propertiesvave. Solely for the sake of brevity in the calculations we
of the charge carriers. have taken the quantum analog of the collision integral into

1063-777X/2000/26(2)/2/$20.00 169 © 2000 American Institute of Physics
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account in the relaxation-time approximation for the conducwhere 7, is the nonoscillatory part of the relaxation tine,
tion electrons, i.e., as an operator multiplying the nonequiis the temperature in energy unitg( ¢) = &/sinhé&, andl o(€)
librium part of the statistical operat@®) by the collision is the Bessel function.

frequency 1f. When the surface impedaneeis calculated in the re-
The constitutive relation(2) together with Mawell's gion of high frequencieso of the electromagnetic wave,
equations whenw7r>1, the form of the collision integral in E43) is

. . . not so important, since the main approximation in the param-
culH=4zj/c-iwk/c, curlE=io(H+47M), (4) eter 1lurF::orresponds to the colliggnless limit. In theplow-
whereM is the magnetization, form a complete system offrequency region ¢7<1), however, it is extremely impor-
equations for the problem of finding the electromagnetictant to take into account the quantum oscillations of the
field distribution in the conductor. collision integral.
A more substantial simplification of the calculations of ~ For T<#AQ in a high magnetic field 20
the impedance and electromagnetic field distribution in a > w7e*nes/(mca), the quantum oscillations of the low-
conductor can be achieved if it is assumed that the quantizeilequency 7<1) impedanceZ,g. are determined mainly
energy levels in the magnetic field=(0,0H) have the by oscillations of the collision integral, andZ,s

form =7[hQ/(ex5)]"2
As the frequencyw is increased, the contribution .
en(Pz)=(n+1/2)h Q= nep cosap,/h), () from oscillations of the collision integral compete with the

whereQ =eH/mc, c is the speed of light in vacuura,is the magnetization oscillations, which in the collisionless limit
charge of the electron, and the cyclotron effective mags ~ completely determin .

the electron is independent pf; this takes place when the No fundamental difficulties arise in solving the problem

energy spectrum in the plane of the layers is isotropic. for an arbitrary form of the quasi-two-dimensional electron
The quasi-two-dimensionality parameterof the con- ~ €nergy spectrum. The competition of the various mecha-

ductor will be assumed not too small, so that nisms of formation of quantum oscillation effects in a high-

frequency field and the fine details of the dispersion relation
for the charge carriers can be taken into account by means of
: (6) - e
rs an analysis of the phase relations in the presence of beats of

. . - . the oscillations at smal.
and a quasi-classical description of the electronic phenomena

is valid.
By virtue of the symmetry of the problem, the electric
field E, is equal to zero, and the coupling of the current _ _
. . L . . *E-mail: vpeschansky@ilt.kharkov.ua
density with the electric field in the plane of the layers iS. p ecent address: Predikari 5. GR-111 41 Athens. Greece
easily found using the solution of the kinetic equati@).
We perform an even continuation of the electric field into the
region of negativez and do a Fourier transform. If the sur-
face of the samplez=0) on which the wave is incident
reflects the charge carriers in a specular manner, then the; Singleton, F. L. Pratt, M. Doporto, T. J. B. M. Janssen, M. Kurmoo,
Fourier transforms of the current density(k) and of the J. A. A. J. Perenboom, W. Hayes, and P. Day, Phys. Rev. 6812500
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23, Hill, A. Ardavan, J. M. Schrawa, and J. Singleton, “Fermi surface
Jo(K)=0,5(K)Eg(K);  (a,B)=(X,y). (7) spectroscopy: a magnetic resonance approaRlegorts of the XXII Inter-
national Conference on Low Temperature PhyskEspoo—Helsinki, Fin-
In this case it is easy to finH (k) by some straightfor-  land (1999, Abstracts LT22, p. 399.
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formation JETP Lett.61, 313(1995.
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The vortex solutions of the nonlinear ScHiloger equation in a bounded region are analyzed.

The asymptotic limit in which the dimensions of the vortex cores are much smaller than

the distance between vortices is investigated. A system of equations describing the dynamics of
vortices in the annular regiofing) between two coaxial cylinders is derived. It is shown

that as the inner radius of the ring decreases, the system of equations reduces to the corresponding
system on a disk, and as the gap decreases, the motion obtained is analogous to that in a
rectilinear channel. An analytical solution of the equation is given for the case when there is only
one vortex in the ring, and a numerical simulation of the motion of two vortices with

arbitrary signs of the vortex strength is carried out for different initial positions of the vortices.

© 2000 American Institute of Physids$S1063-777X00)00102-X]

INTRODUCTION An important feature of these equations is the existence
of asymptotic solutions of the vortex type. The concept of
vortices introduced in hydrodynamics can be applied for the
description of features in various media. The motion of vor-
tices is widely considered in the literature on magnets, su-
conductors, in charged fluids, and in superfluids.

In Refs. 3 and 4 it was shown that in the nonstationary
case(5) (the nonlinear heat flow equationthe vortices be-
have like charged particlgsortices having the same sign of
the vorticity repel one another, while vortices of unlike sign
attrac}, whereas the vortex solutions of the nonlinear Sehro

Consider the functional

h? B
f(u)=ﬁ|Vu|2+a|u|2+§|u|4. )

. . . er
This functional represents the free energy density of aP
superfluid-? (u is the wave function is Planck’s constant,
m is the mass of a helium atona, B are parameters that
depend only on temperatufg, and «<0). Minimizing f
with respect tai, we obtain the Euler—Lagrange equation in

the form . . - . .
dinger equation are similar to hydrodynamic vortices.
2 , By In this paper we use the procedure proposed in Ref. 4 to
o Au—aul 1+[ul* —)=0, derive equations describing the motion of a vortex system.

This procedure yields an asymptotic expression for the phase
@ of the wave function to arbitrary accuracy and reduces the
problem of solving the Ginzburg—Landau equation to one of
solving a boundary-value problem fdp in a specified re-
) h? gion. The choice of suitable boundary conditiqisrichlet,
(M= °m |al 2 Neumann, or mixed conditionsan significantly broaden the
) ) ) .~ .spectrum of problems that can be treated. In particular, the
is the coherence Iength for He I_I, which determines the MiNi\eumann condition at a solid boundary is analogous to the
mum length over which appreciable changes occyulror  ¢onition of impermeability in hydrodynamics or to the con-
ps), i.e., £ is equal to the radiua, of the vortex core. dition that there be no currents flowing into or out of a su-
A'u"+u’(1- |u’|2)=0. (3) perconductor. Dirichlet boundary conditions describe a con-
tact between a superconductor and normal metal, while

Langg&’?'ﬂ;ﬁgi} [?’W(t)hf%r:]c;'g?i?gﬂOsr:Z:'onGai‘rr]};qur'nfﬁ;rng d_aumixed boundary conditions are imposed in problems describ-
i eq ' . . yol ) 9 Ing the behavior of a superconducting layer in a normal
equations are treated in mathematical physics:

metal (see, for example, Ref.)5
Au+u(l—|ul?)=—iuy, 4 We consider the motion of vortices in superfluidsian-
o tum fluids in the absence of magnetic field in bounded
Autu(d-[uf)=u;. ®) regions—in particular, in the annular region between two
Equation(4) is the nonlinear Schrdinger equation, and coaxial cylinders, a region containirlg vortices of vortex
Eq. (5) is the nonlinear heat flow equation. strength n;, located at the positions¢;.=({j,n;),

whereA is the Laplacian operator.
Changing to dimensionless variablas (x') by setting
X=¢x', u=UpU’, u3=—alB, where

1063-777X/2000/26(2)/7/$20.00 85 © 2000 American Institute of Physics
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j=1,2...,N. We consider the asymptotic limit when the di- The positions of the vortex is of ordéd(e), and the
mensions of the vortex cores are much smaller than the diglistance between vortices is of orde¢l), as in theoriginal
tance between vortices. physical statement of the problem.
The equations of motion for quantum vortices obtained  To obtain a system of equations describing the dynamics
in this paper are of the form of the vortices, we follow the procedure proposed in Ref. 4.
) . ) Let us first consider the region outside of the vortex
ijZK(J)’ j=12,.N, (6) cores and construct an asymptotic solution of equatid,

K(J)=K(j)(§j 1€1,E0,...,£\) is expressed in terms of the de- tre_ating the vortices as p_oint si‘r‘lgular_itie’:s Ioca_ted at the
rivative of a complex potentialV(z) of the flow of an ideal ~ POINts x=¢&(t). We call this the “exterior” solution and
fluid in the ring™ evaluated at the point where tjigh vortex ~ Seek it in the form

is located: Us(X,t)=Uug(X,t) +euy(Xx,t). (11)

K=(ReW'(zj), —ImW'(z)), It can be showr(see Appendixthat|uy|=1, so we can

wherezj=¢,+i7; are the complex coordinates of theh ~ Wite up=e®o*". The phasabo(x,t) of the wave function
vortex. - within the volume of the superfluid, except in the neighbor-

This form of the equations is the same as that of théﬁoods of the vortex cores, is a solution of the following

equations found in the literature for the description of mag-oundary-value problem:

netic vortices and vortices in other systerfsge, for ex- AD,=0,
ample, Refs. 6 and 7, even though they were obtained by a

. +n; ;
completely different method. o )= 6ot N0, X,

Analysis of these equations shows that the Sdimger @_ .

equation(4) actually does admit a solution in the form of an =0 at the solid boundary
vortices which behave like hydrodynamic vortices. In this . : .

: - . . . ~and can be determined for a wide spectrum of regions. For an
paper we write explicit expressions for these equations in an

; ; annular regiorR;<r <R, the solutiond®, was found a¥
annular region so that they can be solved numerically once
Lz
Inoliln—
Zy

(12

the initial positions of the vortices are specified. We show N

that as the inner radius of the ring decreases, this solution q’o(Z)ZReW(Z):Re{ikzl Nk
reduces to the solution of the corresponding system on a

disk, and as the gap decreades., for R,—R;<R;) we Czz\ 2ip 1y
obtain motion analogous to that in a rectilinear channel. We —Inaliln Z | o In R, Inz| +const.
2k

find an analytical solution to equatiof® when there is only
one vortex in the ring, and we carry out a numerical simula- (13
tion of the motion of two vortices for various initial positions Here W(2) is a complex potentialg(z) is the Weier-
of the vortices and arbitrary signs of their vortex strengths. gtrass sigma function with half-periodse,=m, w,

=i In(R,/Ry), n={(w1), {(2) is the Weierstrass zeta func-
tion with the same half-periods, Z,, =R, exf(4); the
EQUATION OF MOTION OF A VORTEX complex variable=r exp(#) is measured from the center of

. . -~ —1 ~
Let us consider the stationary Ginzburg—Landau equat—he ring, so that the azimuthal angle=tan~(y/x), and

tion =tan (m/&9-
Expanding®, in a Taylor series around thgh vortex,
Au+u(1-|ul?>)=0, (7)  we obtain an approximate expression for the phase of the
wave function and, hence, for the wave functiog itself.

and its solutions of the form . L
This solution is

u(x)=U(r)exp(i(nf+6p)), 8 Up=€®0~&"] #1014 iKD.r +0(r2)], (14)
which are calledvortex solutionsHere {,6) are the polar where
coordinates oi: x=(r cosé,r sinf). Forr>0 the function _
U(r) satisfies the equation KD =Vd,=(ReW'(z)),~ ImW'(z));
1 n? N .
Uy = U= 5 U+ (1-UHU=0. 9 w'(zj)=£2 N g(ilnz‘—f")—g(im—'”
Z it Zok Z

Let us now consider the nonlinear Sctirger equation
(4). We change to the new variables ex’, t=¢%t’. As the n;
small parametee we take the quantity from Eq. (2), i.e., z;
e=¢. In the new variables Eq4) becomes
r=(x=¢t), y—nt),

Au+ iz u(l—[ul?)=iu,. (10) ; We now construct another solution of equatidg), set-
€ ing
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Us(x,t)=U,

denominatorg becomes small, so that tlefunctions again

X—&(t) X—&(t) we arrive at the half-periods; =In(R,/R;), @, =i, and the
JreuE0),
degenerate to cotangents:

& &

and seeking an approximate solution for large=(x
—§&;(t))/e. This solution, which is possibly independent of
the presence of boundaries of the region, can be found in a
manner analogous to the solution of the problem for the non-

z; ~[  z iz

. j . j j
iln—|=—illIn—|~—=—In—
¢ Zk) g“( Zk) w1 Zy

linear heat flow equation in an unbounded refitsee Ap- i ™ 7,
. — = cot-=—In —;
pendix: 20, 20, Z
: . ie . i
Ux=en 7 1+ 2 (50 & A T AR
; " R M 2 N T 23
. X .
X|1+e gj.—)) : (16) I T Gk
R 2,5)1 COtZ,E,Ol |nz§

In order for solutiong14) and(16) to be mutually con- _ -
sistent, it is necessary that the leading terms of the expansiothe tildes over the symbols mean that all quantities are

be equal for =¢X, i.e., evaluated at the new half-periods. In addition,
_ 1. _ PN
K(J)'szz(gj'ﬁ‘x), n={(wy)=i{(im)=i7".
, ) After elementary calculations we obtain
which gives
N .
= —ow (] 1 iTn T Z; T Ziz
&=2KY. (17 W (z)=~ — | cot == In 2 —cot == In L
Lo ) ) ) Z k=1 2w1 2(1)1 Zk 2(1)1 Zk
This is the desired equation of motion for thé vortex.
By varyingj from 1 toN, we obtain the equations of motion i N )
of all the vortices. +— > ngln —.
Zw1 k=1 Z

Knowing the particular form of the complex potential
W(z) in (13), one can obtain all the necessary information  Thjs js the complex conjugate velocity of a fluid in a
about the motion of vortices in rings of any dimensions.  5rrow ring. To obtain the motion in a narrow rectangular
Motion of vortices in cylinders and narrow rings channel, we conformally map tfeut) ring to a segment of a
strip by means of the function=i In(ZR,).

The ring maps into a horizontal strip between the
straight linesu=0 andu= —In(R,/R,;). The velocity of fluid
in the strip(channel has the form

We shall show that foR;— 0 one obtains the motion of
vortices in a cylinder. Indeed, since the half-periaal,|
=In(R,/Ry) is large in this case, the denominator of thend
o functions q=explmw,/w)=R;/R, is small, the elliptic
functions degenerate into the elementary functidns: W' (2) N

T
W " g &

t o
co 22‘01('”' Uy)

i (2 -t
u)=—+ —cot-—
g( ) 1 2(1)1 2(1)1 -
and the cotangents are easily evaluated: —cot 2o, (u—u)|+C,
H 2
i Zzg Zj+ 25, /7 where
cof 5N |=——"—%
2 Lok zj—Z5, ]z . .
L= In M exp(i o) U —iln Rz exp(i 6y)
iz Zit+z k™ ' k™ '
cot(—ln—’)=— Bl Re Mk
2z Zj—z

) C is a constant flow.
Then from expressiofl5) we get Each term in the sum is the velocity of a fluid generated
1 by an infinite Kaman vortex street’ where
— = > . =2In(R,/Ry) is the distance between vortices. The narrow-
T zj=Z5 0z ness of the channel means that these streets have practically
This is just the complex conjugate velocity of a fluid MO effect on one another, i.g., the distance betwe.en the.st.reets
with N vortices in a cylindef. is much greater than the distance between vortices within a

Another limiting case of interest is that of a narrow ring, Stréet(this is ensured by the conditid,|<[@,|).
R,—R;<R,. Here |w|>|w,|, andq is large. Using the Example 1 Let us investigate Eq17) in more detail for
homogeneity relation for thé functions® the particular case when there is one vortex moving in the

B ring.
{Zlwg,wy)=1¢(iZ]iwy,wy)=1(i2), Let there be a single vortex, located at the point

N
W’(zj)~2 Ny
=]
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z,=riexp(fy), in aringR;<r=R,. 2
For N=1 we obtain from expressioni45) and(17) y
I’l 2| 77n1 I’l
W' (z)=—=2¢| 2i In In —.
( 1) g( R2 wlzl R2 1 "~
Since, according to Ref. 11,
2n
nz TNz
= — —_— 4+ -
{(2)= o 2w cotzw1 421 g sin o } 0
for w,=m, z,=2i In(r;/R,) we obtain
_ nz; 1 r -1r
Lo(z1)={(z1) w2 cor{l In Rg”
2n rq
+22 sm( 2nin R_) o . . .
2 -2 -1 0 1 2
This gives X
n FIG. 1. Motion of a “vortex—vortex” pair i, =n,=1). The initial posi-
W' (z,)= 1 Lo(zZy). tions of the vortices are;=(1,0), x,=(—1,0) (on the same circje The
z vortices move along the circle independently of each other and at a constant
velocity.
We note that{y(z;) is animaginaryvalued gquantity. Y
ThusW’(z;) =(iny/z,)F(ry), whereF(r,) is a real-valued
function of the vortex positiom;. Then A “vortex—antivortex” pair moves mainly in opposite
n directions, but this is not simple motion along a circle. The
K®M=(ReW'(z;),— ImW'(z;))= — F(rqy)é,, vortex lying closer to the outer walthe “outer” vortex)
' moves faster. If initially the vortices lie on different circles
where@,= (sin f,,—cosé,). on different sides of the center, then as they approach each

The equation of motion of the vortex takes the form ~ Other the outer vortex slows down and the inner vortex
changes its direction of motion, accelerates, and describes a
complete revolution(Fig. 3). As it again approaches the
outer vortex, it again slows down and changes direction,
while the outer vortex accelerates and describes a revolution.
Thus the inner vortex moves along a rather complex trajec-
tory containing loops, while the outer vortex moves along a
nearly circular trajectory, the motion of both vortices being
very nonuniform in time.

If both vortices of a “vortex—antivortex” pair are ini-
tially located along one radius, then the vortices move in
ppposite directions, with the outer vortex having the higher
{/elomty, but it slows down as it passes the other vortex. The
inner vortex is deflected toward the center of the ring, de-
scribing a “lobed” trajectory(Fig. 4).

No less interesting is the motion of vortices of different
sign initially located an appreciable distance apart on the
ame circlgFig. 5a. The vortices start to move toward each
ther, but after they have approached closely enough, they

turn around[Fig. 5b] and move in the opposite directions,
each along its own closed trajectofy#ig. 5¢.

éj(t)— F(r )&.

The velocity of the vortex is directed along a tangent to
the circle on which the vortex is located. This is in agree-
ment with the hydrodynamic theory of vortices: a vortex in a
ring moves along a circl&

Example 2 Let us analyze the motion of two vortices in
a ring. We obtain the equations of motion of the two vortices,
from Eqgs.(15) and (17) with N=2.

These equations can be solved approximately by spec
fying the dimensions of the ring and the initial positions of ;
the vortices, with the vortex strengtkis; andn,) set equal
to+1 or —1.

The solutions for a ring with an inner radius
R;=0.5cm and outer radiuR,=1.5cm were obtained by
the Runge—Kutta method for various vortex strengths an
various initial positionsx; and x, of the vortices; they are
illustrated in Figs. 1-%parts a, b, and ¢ correspond to times
t<t,<tj).

A “vortex—vortex” pair moves independently with a
constant velocity along the same circle if at the initial time
the vortices are located on the same circle and a sufficient We have implemented the method proposed in Ref. 4 for
distance apartFig. 1). If the vortices are initially located on solving the Ginzburg—Landau equation in the nonstationary
different circles, then the vortex lying closer to the outer wallcase[the Schrdinger equatiori4)] for bounded regions. We
will move faster and will overtake the second vortex. At thehave obtained a dynamical system of equatid8—a sys-
time of overtaking the “inner” vortex describes a loop, tem of ordinary differential equations—describing the mo-
while the “outer” vortex deviates slightly toward the center tion of vortices. The right-hand sides of these equations are
of the ring (Fig. 2. the gradients of the phase of the wave function of the con-

CONCLUSION
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FIG. 2. Motion of a “vortex—vortex” pair i;=n,=1). The initial positions of the vortices arg=(0.8,0),X,=(0,1.3). The vortices move in the same
direction, and the second vortékat closer to the outer walis moving faster. At the time of overtaking, the first vortex describes a loop, and then the motion
along the circle continues.

densate, and for a superfluid can be expressed in terms of the ¢=2:  y,(1— |Uo|2):0, (A1)
derivative of a vector potentialV(z) of a fluid containing o o
vortices; this vector potential depends on the shape of the & i UjUg+Ugu;=0, (A2)
region. We have given the explicit form of the complex po-

g g p p p 80' _iUOt:AUO_|U1|2UO. (A3)

tential for an annular region.

We have obtained an analytical solution of equation  From the first equation we immediate dag|= 1, which
(17), which describes the motion of a single vortex in a ring, gives u, = e o9,
and we have investigated numerically the motion of a pair of  From Eq.(A2) we get an equation relating the phase of

vortices for various initial positions and strengtlségns of  the wave functioru, with the modulus of the wave function
the vortices. The trajectories of the vortices are shown in the, .

figures.
Do =i1AD— (V@)% —|uy|?.
APPENDIX Since®, and |u,| are real-valued, this equation yields
Derivation of the equations of motion of the vortices the following two equations:
The substitution of expansiofll) into Eq. (10) gives AD,=0, (A4)
the following sequence of equatiori¢the coefficients of
equal powers of): Do=—(VDg)2—|uy|? (A5)
a b c
2 2 2
1 17 i
0 0 0
-1 =17 -1
-2 -2 : ; : ) . . .
—2 —1 0 X 1 2 —2 —1 0 X 1 2 _2 _1 0 X 1 2

FIG. 3. Motion of a “vortex—antivortex” pair §;= —n,=1). The initial positions of the vortices arg=(0.8,0),x,=(0,1.3). The vortices start moving in
opposite directions, but the second vortex moves fgtierinitial positions of the vortices are indicated by trianglés they approach each other, the second
vortex slows down and the first changes direction and accelerates, describing a complete revolution. On the subsequent approach the pattermlissepeat
the inner vortex describes a complicated trajectory with loops, while the outer vortex moves nearly along the circumference, deviating sightlyetow
center of the ring as it approaches the inner vortex.
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2 2 2
a b
1 1t 1
0 Of 0
-1 -1} —1
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FIG. 4. Motion of a “vortex—antivortex” pair i,=—n,=1). The initial positions of the vortices asg=(0.7,0), x,=(1.3,0) (on the same radijisThe
vortices move in opposite directions, the second vortex moving faster. Upon overtaking the first vortex, the second vortex slows down, whilerte first v
deviates toward the center of the ring. One “lobe” of the trajectory of the first vortex corresponds to one revolution of the second vortex.

The first of these allows us to calculalg, (if suitable A®y,=0 in the region outside the vortex cores
boundary conditions are specifijeénd the second enables
us to find|uy| if @ is known. Po(x)=n; 0+ 6o, x—§j,

Let us now find a solution of equatidA4) in the region 9P _0 at the boundar

outside the vortex cores, with the asymptotic boundary con- on Y

ditions at the cores (AT)
Po(x,1)=n;0+ 6o, x—§(1), (A6) The solution of this problem can be found by the method

where &(t)=(¢;,n;) are the coordinates of thh vortex, of “reflected vortices”.or by some other met.hod. In pgrticu—
o=tan '[(y— n)/(x—¢)] is the azimuthal angle of thgth lar, for an ann_ular reg!oﬁzlsrsR_z the \_/elocny potentialp
vortex, 6, is the phase shift, anfly= 6(£1.,....£n)- of an ideal fluid containingN vortices with vortex strengths

Besides the condition@\6) at the vortices, in a bounded ny, located at the pointzkzrkexp@k), can be written in
region it is necessary to impose a condition at the boundarycomplex form:°

Since the phase of the condensate wave funcigr,t) is To obtain an approximate expression fdr, in the
related to the hydrodynamic velocity potentig(x,t) by the  neighborhood of th¢th vortex, we note that faz—z;, only
relatior? one term in the sum ovéein (13) has a singularity, and that
is the term corresponding to the vortex potential:
tom Do(z,t)]ye=n tan ! y_mzn-e
one hasv=Ve=(#/m)V®, and the hydrodynamic condi- OV Ix= 6T =&
tion of impermeability at a solid boundary; n=0, gives a _ _ _
Neumann boundary condition fo: 9®/on=0 at the Consequently, in the neighborhood of tith vortex,
boundary. dy(z,t) can be written in the form
We thus have the following boundary-value problem for
Dy Do(z,)=n 0+ DY(z,t)
2 2 2
a b c
1 1t 1
0 Or 0
-1 -1 -1
-2 -2 : : : -2
-2 - 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

FIG. 5. Motion of a “vortex—antivortex” pair §;=—n,=1). The initial positions of the vortices asg=(1,0), x,=(—1,0) (on the same circje The
vortices move in opposite directions, each on its own closed trajectory, and never approach each other.
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where®}(z,t) is nonsingular at the poirt= z;j and can be SubstitutingU, and U, into Eq. (A9) gives four equa-
expanded in a Taylor series about that point: tions for A,, A;, B,, andB; (see Ref. 4 and the solution

U;(R,0,t) atlarge R takes the form
DYz =0Y(Z)) + (VB - (x— &)+ O(x— )2 (R.0.0) atlarg

The first term is the phase shift at the po#(t): db(l)(zj)

= bo- niovig MC-1 [ X} IR [, X
Taking into account that Ui(R,0,t)=€"j’" % §J 5 §j'§
Vd,=(ReW'(2),—ImW'(z)), iA 1\ X

and evaluatingV’(z;) with the singular term excluded, we TR f, R +O § R/’

obtain expressiofil5). The wave functionu, takes the form

(14).

This is the “exterior” solution of the Schitinger equa-
tion equation in the neighborhood of thjéh vortex. The
influence of the boundaries of the region is included in th
term K1), which is calculated specifically for each region.

Let us find another solution to equatiof): we seek it in
the form of a series,

U(x,t)=Uo(X)+eUy(X)+..., U(X,t)=€nj?*i%

Whereg; (é’] 7]]) EJ =(= -7]j ij)-
We then obtain theomplete solution B Uy+eU; for
QargeR:

R =

1+i§('§jX)+o(
. X
fj'ﬁ)) ,

which approximates the solution in the region near the
boundary of a vortex, where the quantifg=|X|=|(x

where we have introduced the notation

Xx—§(1) _

X|1+e

&€

or, in polar coordinatesX= (R cosé, Rsin 6).
SubstitutingU (x,t) into Eq. (4) gives the sequence of

.
equations —&(1))/¢| is large.
AUy+Uq(1—|Ug?) =0, (A8)
AU+ (1-2|Ug|?)U;—U3U, =i () U,. (A9)

The solution of the first equation,
Uo(R, 8,t)=fo(R)€"j V170, (A10)
in which 6(t) and 6§, are thesameas in the exterior solution,
must be found subject to the conditions
fo(0)=0,
o(0) s (A1) )
fO(OO)_ 1 V. L. Ginzburg and L. D. Landau, Zh.k8p. Teor. Fiz20, 1064 (1950.

The direct substitution otJ, from Eq. (A10) into Eq. Bévs 'YZ'rILe(yl;;g.fv'mT 'kggggﬁggf;}?’ and Superconductivifyviley,
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Lower critical fields of textured high-temperature superconductors. Ill. Experimental
study of the anisotropy of the fields H., of the HTSC YBa ,Cu;0,_;
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The dependence of the critical currehgsof textured samples of the HTSC YR2u,0,_ 5 (T
=77.3K) on the value of an external magnetic fi¢id,; applied beforehand is

investigated for various angles between the field direction and the sample. By a technique
developed in the present study the measured angular dependeng¢kl pis used to determine
the values of the lower critical fieldd; of the HTSC YBaCuO;_ 5 in two directions:

the direction of the principal axis of the orthorhombic lattie&P=89 Oe, and in the perpendicular
direction,HZ, =383 Oe; the ratio of the effective masses of the electron in the two directions
is m/m3P=18.5. © 2000 American Institute of Physid$$1063-777X00)00202-4

INTRODUCTION (the Z axis is in the direction of the external magnetic field
Hey; See abovein such a way that the angular dependence
of its lower critical fieldH;1(¢) in the XZ plane is analo-

tured | be i tiaated b Ki . f gous to that for the textured polycrystal. For the simplest
ured samples can be investigated by maxing a Semnes ol Mega o of 5 conical textur@vhich is nevertheless quite realistic

surements of the critical fields for several values of the angk?or HTSC ceramics where the magnetic anisotropy ais

O.f ““"?‘“0”‘»" of the sample about. an axis perpendicular to theprecesses around a certain direction in the laboratory coordi-
direction of an external magnetic field,,; was conceptual-

) . ; . nate systemthe “limiting” case of such a texture is the
ized in an earlier papérthe anglep is measured from thg ystent g

. : L .__planar texture, for which, e.g., the basal plateis parallel
axis of the laboratory coordinate system, which is the dlrec;[0 the surface of the samplahe value of the lower critical

gon of ﬂﬁ;'elldHex')' IFtyvalsf.asljumfed IT'?;?G an%ulzr depgn;feld of Eq. (1) has the following behavidras the sample is
ence ot the fower critical fields ot a can be deschbeq iated around th¥ axis, from theZ axis toward theX axis,

theoretically by models of the magnetic properties of )
uniaxial type-ll superconductors; these models, which ha(?y an angley:

been developed in the framework of the anisotropic

Ginzburg—Landau theory long before the discovery of high-Hc1(7v)

temperature superconductivity? have subsequently been

applied successfully to HTSCE.For example, according to c

Ref. 2, under conditions where the external magnetic field _ cl
Heyi IS at an angley to the magnetic anisotropy axis which me ( me ) ( sinysine

The idea that the anisotropy of the lower critical fields
H., of high-temperature superconductdtdTSC9 in tex-

211/2°
for all known HTSCs is the crystallographic directig®0l) +cosy cos<p)

(c) of the the tetragonal or orthorhombic lattices of HTSCs, me® me®
the angular dependence of the lower critical fielg, is de- )
scribed by the equation
c To determine the values of the lower critical field§,
= c1 , (1)  andHZ; (we recall thaHZ?=HE,(m*/m*") ~ V2 Ref. 8, the
[cog y+ (mS/maP)sir? y]1/? effective-mass ratian®/m?°, and the angley between the

magnetic fieldH,,; and the averaged position of the magnetic
anisotropy axisw in a particular sample, one must solve a
system of equations of the typg2) for three different angles
of rotation of the sample¢;=0, ¢4, ¢,). As was shown in
Ref. 1, everything ultimately reduces to the solution of a
Crather simple equation:

whereH¢, is the value ofH; in the direction of the mag-
netic anisotropy axig, m® andm?® are components of the
“effective mass tensor” of the electron in the anisotropic
Ginzburg—Landau theory along the principal axis®| and
in the direction perpendicular to in®).

As was shown in Refs. 1 and 7, a real textured HTS
sample can be placed in correspondence with a single crystal
which is oriented in the laboratory coordinate syst&mZ A cog y+B=Csinycosy, 3

1063-777X/2000/26(2)/5/$20.00 92 © 2000 American Institute of Physics
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in which the coefficient®\, B, andC are explicit functions rotation ¢; of the sample in theXZ plane of the laboratory

of only the experimentally measured values of the criticalcoordinate system. Then the values of interest to us are easily
fields determined in the directions corresponding to angles dound:

(—sinysing; /[vV2+cosy cose;)?>—[Hq(@)/H1(0)]cos y

mC
= , 4
m?® [Hcl(cpi)/Hcl(O)]sin2 y—1+(—sinysin<pi/ﬁ+005ycos<pi)2 @

HS, =H1(0)[m/m3P— (1—m®/m3P)co ]2, (5)  an external magnetic fielth,, (0=<H,,~<5000Oe) applied
b L1C ¢ csaby—1f2 beforehand at the same temperature, i.e., in essence, mea-
Her=Hei(m/m™) =% surements of the value and orientation of the the trapped
The goa| of the present paper is to |ay an experimentalmagnetic ﬂUX7. To do thiS, a Dewar Containing a rOtating
foundation for the possibility of studying the anisotropy of device, the sample holder, was placed in a solenoid. The
the lower critical fields in textured polycrystalline objects, fotating device was used to set the anglbetween the axes
taking as an example the HTSC Ymo775-1) of the sample and solenoid to an accuracysgf~2°. The
The optimum way of implementing this idea Measurements were made for anglesom 0 to 90° with a
experimentally is to measure the critical currents of textured Step ofA¢=10°.
(in particular, ceramicHTSC samples after imposing a mag- A currentl g, producing a fieltHe,, was sent through
netic field directed at various angles to the axes of the sampl&€ solenoid by the the control unit for the magnetic field
at temperature§<T,. As a rule, it is assumed that the value source with the sample at a temperatlire77.3 K. Then the
of the lower critical fieldsH; in experiments of this kind currentl s, was turned off, and the control unit for the trans-
corresponds to the onset of a dependence of the critical cuROrt current sent a transport current through the sample. The
rent in zero magnetic fieldj,(0), on thestrength of the transport current was increased smoothly until a voltage
magnetic fieldH ., applied beforehantsee, e.g., Refs. 7, 9, U=1uV appeared across the sample, which was arbitrarily
and 10.2 The relatively low current-carrying capacity of ce- taken as the criterion for the onset of the transition of the
ramic samplesj.~10°—10® A/cm? at T=77.3K) does not superconductor to a mixed state, and the corresponding value
preclude making measurementstof,; moreover, because ©f Ic(0) was stored in the computer. Then the cycle of mea-
of the low transport currents and, consequently, low magsurements was repeated at the nigsghen value ofl .
netic fieldsH,, generated by these currents, these fields do
not lead to appreciable distortions of the picture as to th&EXPERIMENTAL RESULTS
effect of external magnetic fields of different orientations on
thel(Hey curves, from which the lower critical fieldd .,
of the HTSC are determined.

Figure 1a shows a typical curve of the critical current in
zero field,1;(0), atT=77.3K (¢=50°) as a function of the
magnitude of the magnetic field.,; applied beforehand at
the same temperature. There are three pronounced regions on
the curve:

The object of study was a sample of the HTSC 1) 0<H.=600e, where the critical current does not
YBa,CuwO_g g5 Synthesized by the “standard” ceramic tech- depend on the field;

EXPERIMENTAL TECHNIQUE

nology (see, e.g., Ref. 21 The x-ray diffraction patterns 2) 60<H.=1500e, where the critical current de-
reveal that a relatively weak texture, close to the texture otreases severalfold as the magnetic field strength increases;
the basal plang001) of the orthorhombic latticé?*® was 3) He,=150 Oe, where the critical current is practically

formed in the stage of uniaxial pressing of the powders prioindependent ofH ;.
to the final operation in the synthesis — baking in an oxidiz-  The initial (practically horizontal part of the curve ap-
ing atmosphere. The dimensions of the sample were 19.parently corresponds to Meissner behavior of the
x3.2x2.0mm. The low-resistance current and potentialYBa,CuO_g g5 sample® i.e., to the situationH o<H;.
contacts were formed by the vacuum deposition of silverThe region of the steep drop is where the trapping of mag-
from the vapor phase at a temperature~d200 °C. netic flux by variously oriented granules begins. The final

The current—voltagél—V) characteristics were recorded part of the curve corresponds to the onset of penetration of
on an IBM PC/AT 386 computer with a special attachni&nt the external magnetic field into the interior of the grandles.
consisting of control units for the current of the magneticlt must be kept in mind, however, that the positions of the
field source(solenoid and the source of the transport current boundaries of the different regions on the field dependence
flowing through the sample. All the measurements wereof the critical current cannot be determined very strictly. In a
made in an automated mode. study of the anisotropy of the lower critical fieldis,; of a

The experiments essentially consisted of precision zeroHTSC one must very carefully take into account the demag-
field measurements of the critical currents in ¥8e;0_g95  nNetizing factorD, i.e., to correct the value of the magnitude
at T=77.3K as functions of the magnitude and direction ofH, of the external magnetic fieldsl.,. In other words,
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3% D,=Dyxcos ¢+Dzsir’ ¢. 9)

Figure 1b shows the results of the measurements of the
I % current-carrying capacity of a YB@u;O_gg95 Sample at
15 ¢=>50°, after correction for the demagnetizing factor, and
8 Fig. 2 shows the entire set of data collected in this study.

DISCUSSION OF THE RESULTS

i occo0o o O The results of the measurementsl gfH . ,¢) shown in

: . . s Fig. 2 clearly enable one to perform the main task of this
0 100 200 300 400 500 study — to establish the orientation dependence of the lower
Hext » O€ critical field H.; of the HTSC YBaCuO._gg9s at T
=77.3K. For this it is necessary to recover the character of
the functionH;,(¢) from the experimental data.

One can assume that for any textured ceramic sample of
a HTSC the probability density for the distribution of gran-
ules over orientations has a nornt@aussiahcharacter. The
probability density of the lower critical fields should clearly
have the same character:

1 (Heﬁ_Hcl)2
= exg — 5
V2mAH, 2AHg
where AH, is the error in the determination of the lower

critical field H,
The same probability distribution for the values of the

W(Hc)

; (10

0 100 200 300 400 500

lower critical fieldsF(H¢,) in the intervaIH‘g‘fs HasHg
Hett » O is of the fornt®
FIG. 1. Field dependence of the critical current in a sample of the HTSC He (Heg—H )2
superconductor YB&EU;0 g 95 (¢=50°) atT=77.3K. a:l(0)=f(Hey; F(Hcl) e f lexp — Lleff Tl off -
b 1(0)=f(Her). V27AH g JHP 2AHZ,

(11

these field values must be converted into the magnitudes of
“effective” fields Hqi applied to the sample. As we know,
for a superconductor in the absence of a magnetic-field pen-
etration effect one has

Het=Hex/(1—Dj), (7)

whereD; are the components of the tensor of demagnetizing
coefficients of the sampf.

For a triaxial ellipsoid with “long” axis in thez direc-
tion (an object with a shape similar to the sample under
study the values of the tensor componefsare'’

y 3Xxy 4z XY(3x+y)
XTx+y 22 \x+y 4Z2(x+y)
X 3 xy 4z Xy(3y+Xx)
Yoxry 22 \xty " az(xty)’ @®
X 4z
DZ:z_z/ ieeviin
For a HTSC sample rotated by an anglebout theY

axis away from theZ direction (which in our experimental
geometry corre_sponds to the direction O_f the Vedﬁ&') FIG. 2. Field dependence of the zero-field critical currépf0) in
toward theX axis of the laboratory coordinate system, theypacy0 44 at 0<¢=<90°: ® — the values ofH,, at the different
value of D, as was shown in Ref. 18, is anglese.
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FIG. 3. Dependence of the lower critical fieltll,; of the HTSC

YBa,CuO_g o5 0N the angle of rotation of the samplet@<90°). FIG. 4. Value of the magnetic fluXM trapped at the transition of a sample
of the HTSC YBaCu;0_g o5 to @ mixed state, as a function of the lower
critical field H, .

It is clear that in experiments measuring the dependence
of the critical current on the magnetic field, an anafpga- in a practically linear manneliFig. 4). This effect is appar-
sure of the probability is the value of the critical current in ently somehow related to the anisotropy of the fundamental
zero magnetic field F(Hq)=1,(0)] in the intervalH2®  quantities — the coherence lengthand the magnetic-field
<Hg,<HS,, and the[l,(0)](Hex) curve should be de- Ppenetration deptis for the type-Il superconductdt,but at
scribed by the same equati¢hl). It would seem that any the present time it is not possible to make any quantitative
[1:(0)](Hef) curve obtained at an arbitrary value of the estimates.
sample rotation angle should carry exhaustive information
about the anisotropy of the lower critical fields$;;: the  concLusioN
beginning’ and end of the region of the sharp drop should )
correspond to the minimum and maximum values of the __The_results of our study of the anisotropy of the lower
lower critical field, H2Y and HS, , respectively, and the in- Critical fields of the HTSC YBgCu;0 g 95 at T=77.3K are
flection point on the curve should correspond to the mosinternally consistentthe best evidence of this is that all the
probable value oH,, for the given orientation of the HTSC experimentall points conform fa_irly weII. to the calculat.ed
sample with respect to the external magnetic field. UnfortuCurve; see Fig. B a fact which is a weighty argument in
nately, only a very rough estimate bf2> and HS, can be favor of the_ correctness7 of the apprqach dev_elopeg)(rmné
obtained in this way. In real experiments on textured HTSC" OUr previous papey’ for measuring the fieldsic; and
samples the beginning and end of the various regions on thdc1 I textured_ HTSCb samples. The values o_btamed in this
[1.(0)](Hen) curves are too indistindisee Fig. 1k How-  Paper for the field$i¢y andHg; and for the anisotropy pa-
ever, the 1,(0)](H) curves obtained for different values of r.amete_rmlclmab for YBa,CuO g5 at T=77.3K differ very
the anglesy make it possible to determine the most probablélittle, within the scatter of the available datsee, e.g., Refs.
value of the fieldH; to rather good accuradypy process- 20-24, from the results of direct measurements on single
ing these curves according to E(L1)]. For example, the crystals.
inflection point of the continuous curve in Fig. 1b corre-  The present study is largely of a methodological charac-
sponds to a valuél ;= 109.0+0.7 Oe. ter, having the goal of confirming the feasibility of a new

The angular dependence of the lower critical fiettlg ~ W&y Of investigating the anisotropy of the lower critical
obtained in this way for the HTSC YB@&WO_gos at T fields of HTSCs without requiring the use of oriented single-
=77.3K is shown in Fig. 3. When the algorithm describedcrystal samples. The next step in these investigations should
above was used to process the experimental daéavalues be a broad study of the anisotropy of the lower critical fields
obtained for the field$i, for angles of rotationy equal to of a number of high-temperature superconductors, including
0°, 50°, and 90F were “summed” in the computational those for which it is very difficult or altogether impossible to
formulag, we obtained the following parameter values: for Obtain single crystaléwe are thinking of HTSCs with a sub-
the angle between the magnetic anisotropy axis and the e)@litgtion of elements in different positions of their crystal
ternal field, y=94.5°, for the lower critical fieldsH2? lattices.

— c _ . .
- 83 Oel andHch/ 38;399{3 and JOI‘ the effective-mass ratio 15 gtydy was supported by the International Science
of the electronm®*/m@°=18.5. The continuous curve in Fig. Foundation(“MNOP” Grant No. QSU082209,

3, which was constructed according to E8). for these val-

ues ofy, m“/m?®, andH¢, , satisfactorily describes the entire

set of experimental data *E-mail: vasil@kipt.kharkov.udto:finkel)
. Lo . DA texture analysis, i.e., a study of the texture by diffraction methods, for
One notices that there is a clear correlation between theexampley is not part of the program.

values of the lower critical fieldH.,(¢) and the trapped 2jt will be shown below that this way of determinirig, is not entirely
magnetic fluxAM (¢)® — asH,; increasesAM decreases  correct.
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90f course, since complete penetration of the magnetic field into the inter!?A. S. Kapcherin, 1. I. Papirov, P. I. Stoev, V. V. Toryanik, V. A. Finkel’,

granular medium occurs fdd>H_,;, andH,; is not more than a few
oerstedgsee, e.g., Refs. 10 and)15uch a state of the HTSC is far from
one of ideal diamagnetism.
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The fermion Green function and spectral characteristics for the=gbhlich model of
superconductivity at static fluctuations in the phase of the order parameter are calculated. The
results demonstrate strongly non-Fermi-liquid properties of the system at finite
temperatures and relate with the pseudogap behavior of higluperconductors at relatively
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1. INTRODUCTION T>T,, wherep vanishes, i.e., the normal state), 2>T
>Tekr (Tekr IS the BKT transition temperaturewhere

#0 and for(d*d) the correlations decay exponentially,

superconducting temperatures remains one of the most exits g 3 Tgkr>T, where these fluctuations have a power-law
ing and intriguing questions of modern solid-state phySiCSdecay ’

Because of the electronic and structural complexity of these This method was also used in Ref. 17 for the one-
metaloxide compounds there is a lack of theoretical tools fo* . ) S ' . .

o . . ._fermion Green function calculation in the two-dimensional
describing their normal and superconducting properties

. . . 4F model in order to study the fermionic spectral function. It
which are evidently different from those of low-temperature . .
characterises the density of states and allows one to check for
superconductors.

One of the most interesting pecularities of cuprates is théhe presence of quasiparticle excitations in a sys¢x a

presence of a pseudogap in the normal state of samples Wi%escriptjon of recent experiments. on the angle-resolved pho-
lowered carrier densities; and temperature$ above the toemission spectrdARPES of high-T. superconductors,

critical valueT.. Many theoretical explanations of this phe- which contain information about these properties, see Ref.

nomenon have been proposed. Among them are epranatiol%Q' It was shown that right above the critical temperature the

based on the model of the nearly antiferromagnetic Ferm{!dth of the quasiparticle peaks noticeably broadens, al-
liquid,® consideration of spin/charge-density wageand though the gap in quasiparticle spectrum still remains; this

pre-superconducting fluctuatiorisee, for example, Refs. can be connected with the pseudogap properties of the un-

3-17). The last characteristic has been studied by many agi€rdoped highr. superconductors. _

proaches. For example, ematrix approximation was used However, the & model does not take into account many

in Refs. 3—9. But this approach does not permit a descriptio' the properties of real systems, in particular, the retarded
of ordered states in models (for example, the nature of the attractive interparticle interaction. As was

Berezinskii-Kosterlitz-ThouleséBKT) transition), which are ~ Shown in Refs. 16, and 18, including this property changes
the most suitable for description of cuprates. the behavior of a system drastically in comparison with the
It is possible to investigate such states by separating th&F case. For example, the width of the region with>T
order parametefor, for low-dimensional degenerate sys- = Text NOW goes to zero rather quickly at large charge car-

tems, the so-called complex ordering fieldto its modulus ~ fier densitiesioptimal and overdoped regions

p(x) and phas@(x): P (x) = p(x)exdié(x)]. Although states The aim of this paper is to generalize thg results obtained

with (®(x))#0 are forbidden in B systems at finite in Ref. 17 to the case of the more realistic Rich model

temperatures(the Coleman—Mermin—Wagner—HohenbergWith the retarded interaction. For simplicity we consider the

(CMWH) theorem:®) states with p=(p(x))#0 and dispersionless “optical” phonon mode(k)= wy=const.

d = p(exdifx)])=0 can exist. Nevertheless, the parametep should be considered as the
This approach has been used previously for studying theffective weighted value of the frequency of bosons with

phase diagram in themodef**°and in the more realistic arbitrary dispersion laww(k). This allows us to apply the

Frohlich model of superconductiviti8 It was shown that given approach for an efficient study of any fermion—boson

in both cases the phase diagram consists of three regipns: dystem with fluctuating order parameter.

The theoretical description of cuprates with high critical

1063-777X/2000/26(2)/6/$20.00 97 © 2000 American Institute of Physics
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2. THE MODEL iwni+ 36(K)— 11p

wp+ E(K) +p°

Giwg k)=~ (7

Let us start with the Fitdich model Hamiltonian density

in the standard form: with £(k) =k?/2m— u; D,z is the correlation function of the

2 phase fluctuations

N
H=Y,(X)| — 5 W ()

T
Daﬁ(iQn,q)=J er d’rexdiQ,7—iqr]
+gQD(X)\I};(X)\PU(X)+th, (1) 0

where x=r,7 denotes the space and imaginary time vari- X(exfiab(r.r)/2]exd —i86(0)/2])
ables; V¥ ,(x) is a fermion field with spirc=1,|; mis the (8)
effective fermion massy is the chemical potentialp(x) is
the phonon field operator, amgs the fermion—phonon cou-
pling constant; we put =kg=1. Below we shall use also
the Pauli matrices;, 75,75 in the standard form.

In (1) Hyp is the Hamiltonian of free phonons with the
simplest propagatafin the Matsubara formalism

andP. =1/2(i + r5) are the projectors. The Green function
(7) of the neutral fermions coincides identically with that
obtained in the & model, and the electron—phon@oson)
interaction enters this expression throughwhich goes to
zero if the coupling constang (see(1) vanishes.

It is important to stress once again that(i) p=const,

wg i.e., homogeneous. But, of course, the neyirdbes not play
D(iQp)=————, Q,=2n7T, (2)  the role of a genuine order parameter in a system, so there is
Qpt+wp not any contradiction with the CMWH theorem.

wherewq, as was pointed out, is the phonon frequency and

nis an integer. It was also mentioned in the Introduction that

in general this value is the weighted effective frequency of3. THE GREEN FUNCTION
bosons with a momentum-dependent dispersion dgW).

Let us introduce in the Nambu representatin (x) Accordir_lg to t_hg previous section, for calculation of the
= (V] (x)¥(x)) the complex superconducting order pa- Green function(6) it is necessary to know the phase fluctua-
rameter ®(x)=W¥"(x)7¥(x)=¥ ¥,, where r=(r, ton cor_relato_rDaﬁ (87). This quantity can be calculated using
Y3 a functional integrat

Then in order to study the order-parameter-fluctuation uT
Daﬁzf De(x)exp{—j drlf d’ry

dependences of the Green function
0

G(x)=(¥(x)¥*(0)), 3 1
-1
it is convenient to use the parametrization X2 0(x1)D ™ (x2) 0(x1) +1(x2) 6(x1) ]
D(x)= io(x)]Y 4
(x)=p(x)exif(x)] 4 :exr{%flﬁdﬁjdezf d?r,
with the simultaneous spinor substitutton 0 0
W (x)=exirs6(x)/2]y(x), Xf erZI(Tl’rlDo(Tl_TZ’rl_rZ)I(TerZ)}v
PH(x)=YT(x)exd —im30(x)/2]. (5

9
As we have said, we shall consider the situation wheés a with the corresponding Green function
spatially homogeneous, or constant, quantity and the phase
6(x) is a random quantity. In fact, the spino¥qx) and Dy(x)=(6(x) 6(0)) (10
Y *(x) are none other than the neutral fermion operators. I the phase fluctuations and the source of tfeeld
this case the Green function can be naturally separated into
the charge and spin partsee also, Ref. J7Namely, in the

a B
momentum representation: [(x1)=—158(1,=7)8(ry=r1)+i5 8(m1) 8(ry).

. d’p @,f==. (1D)
Gliwy k)=T X o
m=c= J (2m)? In the second-derivative order the Green functi@) has
the form:
X, 2. PadlionpIPDas D, (0=~ J(u,T,p) V2 K(,T,p)(3,)°. (12
X (iw,—iwm,k—p). 6 The coefficientsJ(u,T,p) and K(u,T,p) have the

physical sense of the superfluid stiffness and compressibility,
Here G(iwy,,p) is the Green function of neutral fermions respectively. One can readily obtain the following expres-
(see, for example, Ref. 16 sions for them(see, for example, Refs. 16 and)18
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1 — T<Tgkr. The constan€ can be estimated ag/4, the value
I(p,T,p)= g{w tpitu obtained from the assumption th&t cannot be much less
than the only natural cutoff, in the theory.
+2TIn[1+exp( — Ju?+p?T)]} Then substitution of expressid) for G and the Fourier
- 2 P transform of expressiofl5) for D(r) into formula (6) re-
g sults in the next representation for the Green function:
Am|T AT? 9(p?I4T?)
. Améi
fw X+ (ul2T) Gliw,,k)=—
X dx , 2T
—ul2T costf\x?+ p?/4T? . .
1 up—1 Uux—
w1
and (uluz)aFl(a,a,a,a b up ' U )
m © Vu?+ p?
K(p,T,p)=5=| 1+ tanh + (N2t pP—— i+ pd)|, (17)
87 (2 + p? 2T nTP nTP
1 p? 9 where
8 4T2 0(p2/4T2) A 4’7TF(C() ( 2)2(&1) L T
= | — , o= -,
» foo dxtanh /X2+p2/4T2 F(l—a) o 167J
—wizr X2+ p2/aT2 | 1 N
. . . . A== 13— ==, (18)
Note that in comparison with theFcase the functiond and 17213 1/w§+p2

K contain new terms with the derivative. But formally the
general expressions f@,(x) in both cases are the same, soandF; is the Appell functior?® The quantitiesi; andu, are
let us use below the formulas obtained for tHedhodel in?”  defined by

Thus, in the static case=0 at T<Tgkt and when the

coherence length is larger than the lattice spacawyis jus- ) k2§i+ 1 _
tified for cupratesthe correlator has the usuéle., power up=mé7i 2—2—M+I\/wﬁ+p2+ \/5 ,
law) form mes
r —T/8mJ k2§2 1
D(r)=(r—> (13 Up=mé2 | ———— — u+i w2+ p2— D (19
0 2més
(this is the expression for the only nonzero components
D, .(r,0) andD__(r,0)). In (13) the quantityr, is with
2/J 1/2 kzgz +1 2
ro=7 R) . (14 Dz(ﬁ_ﬁ“_i [02+ p?
+

Note that in Ref. 17 it was assumed thlat e (the Fermi 5
energy and K~ const. Under these assumptiangsis equal +——(u—iJwl+ o2

: . : m—iwi+p?). (20
to 2\Jeg/m/T and has the meaning of the single-particle de m 2+ P
Broglie wavelength. Whereas these approximations Kor _ . .
andJ are justified for the physical regions ifF4model, in For studying the spectral properties of the system in the
the boson-exchange case at large carrier densities thext Section we'll need the retarded Green’s function, which
asymptotic behavior ofl is different (J~const, so in this can be obtained fronil7) after the analytical continuation
regionr, does not have such a simple physical interpretationi w,— @ +i0.

At T>Tpgyr it was proposed to use f@(r) the expres- For now let us just say that far< Ty this function has
sion from the theory of the BKT transitici:?? the structure
r —T/87J r 2 a—1
Dm:(%) eXp(_m ! (9 G(w,k>~r2<a>(ﬁ AL~ (ut o= pD)] ™
0
where
1-2a) TI'(2a—1)
T-T 1/2 5 + 5
§+(T)=CeXp(p—) . (16) I%(1-a) T¥1-a)
T_TBKT
. . . 1
This expression could be considered as a general form of xﬁl, z,=1.
D(r) at any temperature if one putg,(T)=c for (1-2)°"
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Thus the Green function is of the non-Fermi-liquid 20
theory type; it has a non-pole character and contains a branch —~ 1.6 ©=0.99
cut. So the Fermi-liquid behavior of the system is broken by g 1.2+
strong phase fluctuations of the complex ordering field. < 0.8

0.4
1 1 1 1 ]

4. THE SPECTRAL DENSITY AND DENSITY OF STATES 0 02 04 06 08 1.0 1.2 14 1.6

The spectral density contains information about many ®/og
properties of systems, for examples, such features as the den- ?g T=11
sity of states and the presence of a gap. For cuprates this g "> -
quantity was measured in the ARPES experimésee Ref. = 1.2
20). Below we obtain the expressions for the spectral density 0.8f
and density of states which follow from the retarded Green 0.4r

function (recall that it is defined by17) with the analytical

! | 1 1 t t |
continuationi w,— w+i0). 0 02 04 06 08 10 12 14 16

Let us first calculate the spectral den&itysing the ex- ®/0g

pression ?g_ 1212
1 | S 12} '
After substitution of the analytically continued expression 0.4r . . . L/I .
(17) in (22) one can directly come tbf 0 02 04 06 08 1.0 1.2 1.4 1.6
T(a) [ 2 \o1 o/og
Alw,K)= =~ —5|  sgnwf(w’-p?)
Fl-a) mrg FIG. 1. The spectral density as a function ofis presented for the case

k>kg at different values ofr=T/Tgkr .

(A1) 11 o .
Dy 2z

Ref. 16. This is evidently different from theH case, where

I the corresponding region decreases much more slowly.

I + 2_ 2 ;
m MV =p%) — The » dependences of the spectral density Tot Tyt
—4 D O(pnt Vo'—p?) and T>Tgkr in the casek<<kg are presented in Fig. (the

behavior in the cask> kg is analogous There are two qua-

siparticle peaks at the points= = E(k) and another two at

w=*p. The presence of the last two is caused by the non-
~(Vo?—p*=—Vo?—p? |. (22 pole structure of the Green function. At=kg these two

) o ) ) kinds of peaks coincide, because at this point one has
The chemical potentigk is determined by the equation that g(k_)=p. The peaks at the frequencies- = E(k) decrease

fixes the carrier densiti. However, in the case of large car- \ith increasing temperature, and Whé>Tger (Where

rier densities the equality = e is almost exactly fulfilled. hese peaks are finjtguickly go to zero. This is in qualita-
Note that the expressid@2) for A(w,k) is not the BCS sum  tjye agreement with the ARPES experimefftsyhich show
of two parts with & function peaks atw==*E(k) which  {hat the spectral function broadens on passing to the normal
correspond to the addition and removal of an electron, bubhase.
the sum of two “mixed” terms. For w<|p| we haveA(w,k)=0, and therefore the gap
It is possible to check analytically the sum rule for the eyists at anyT. The same conclusion is also correct for the
spectral density. Namely, as in th& 4nodel, we have 4F model. Note again that our results are obtained by using
o (@) the static approximation. The empty region must disappear
f doA(w,k)= T2=a) (23)  (as well as the quasipeaks @t= =+ p) if dynamical fluctua-
* tions are taken into account. Evidently, the filling of the
Let us estimate the quantity on the right side in the re-empty region should be different forT<Tgky and
gion T~Tgkr. For the stiffness atT=Tgxr we have T>Tgkr.
J=2/mTgkr, which gives[see (18)] a=1—-1/32=1 at As is seen in Fig. 1, a smooth crossover takes place as
T~Tgkr . Therefore the formulé22) for the spectral density the temperature changes frof< Tggr to T>Tgkr. This is
is quite good in the temperature region-nd@ak at large  in agreement with experimeni$or instance, onp)?° and
carrier densities. Since we are studying the region of largeliffers from the BCS theory. Let us also note that our results
carrier densities, at temperatures in the pseudogap phase the obtained for not very smail. Whenp—0 (low carrier
condition T~ Tgky is always true, because at large the  densities its (i.e., modulu$ fluctuations must be taken into
pseudogap region is narrow and shrinksas o (again, see account.
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The end of this Section is devoted to a calculation of the 16F
density of states. The desired expression can be obtained _ 4o
from the formula 8 sl
wo k2 = 4
N(a))—NofO d%A(a),k), (24) | | | \ ' |
whereNy=m/27 is the density of states in the normal phase, 0 02 04 06 0/'8 1.0 12 1.4 186
andW is the bandwidth. 0709
This expression together witf22) results in the repre- 6
sentation
a—1 ’8\ 4r
N(w)=N M i sgnw (w2 — p?) =
@0 (2=a) mr3 gnwite=p 2r
1—w 1 1 ] | 1 1
0 02 04 06 08 10 1.2 14 16
= = J 2 2
X[(Al)ll 2m§2++W K=No“—p ) o/og
1-a 6
Bt \a?—?) 1=12
— w _— — f—
2mé? r s 4
z oL
_(\/wz_P2H - \/wz_Pz)] ) (29 ] ] ) ] ] 1 ]
0 02 04 06 08 10 1.2 14 16

which formally also coincides with formulas obtained in Ref.
17, although there is different behavior on account of the
different carrier dependences of the neutral order pararpeterFIG. 2. The density of state@n N, units) is plotted versus» for different
in these(4F and boson-exchangsuperconducting models. values ofr=T/Tgr .

At zero temperature and large carrier densitigs>(p)
the formula(25) reproduces the BCS result

o/og

important, because it gives much more information than the

| o]

N(w)=Ng (26)

numerical studies often employed. For example, it has been
shown that the transverse phase fluctuations result in non-
Fermi-liquid behavior of the system belothut for T+#0)

The density of states for different cases are presented iind aboveT gy .
Fig. 2. As in the case of the spectral densities, the gap in the Along with this there are many open questions about the
density of states exists at temperatures near and dbhgye ~ Problem studied above. For example, the role of supercon-
which plays the role of the critical temperature in a pure 2Dducting fluctuations in the pseudogap phase formation. Also
metal. The form of the density of states qualitatively coin-itis very important to take into account tpeluctuations and
cides with the BCS one. The crucial difference is in theto generalize the approach to the dynamical fluctuation case.

smooth change of the curves at the phase transition point. , .
Let us repeat again that dynamical fluctuations can be One of us(V. M. T.) acknowledges the financial support

responsible for the filling of gap and that at small carrierOf. the_WorId La_lbor_atory ar_ld_ alsouthankS the r_nem”bers_ of the
densities the fluctuations must also be taken into account. D_|part!mento di Scienze F'S'Che. E.R. Cz_;uamello Univer-
sita’ di Salerno and the International Institute for Advanced
Scientific Studies “E. R. Caianiello,” Vietri sul MaréSA),
Italy, especially The President Prof. M. Marinaro and Prof.

. . _ . F. Mancini, for hospitality.
In this paper the analytical calculation of the fermion

Green function has been generalized to the case of the Fro, I Vioktev@bito ki

lich model of supergoqductivity, although some eXpressiOnS)E_gr]slénvdob;?gv(?vJ;pét;ﬁ:iggr(x) andY(x) as Grassmann operators and
have proved to be similar to those obtained for the case of @) as ordinary variables in functional integrals. In the Hamiltonian for-
2D metal with a nonretarded inter-fermion attractive interac- malism the former obey Fermi statistics, whi¢x) preserves ordinary
tion. This result could be important for several reasons: First, (commutational algebra.

as a general result for the theory of fluctuations in boson-

exchange quantum solid state systems. Second, because there

is as yet no generally accepted theory of high-temperaturép. Pines, Turkish J. Phy<0, 535 (1996; A. V. Chubukov and A. J.
superconductivity, and it now appears possible that some Schmalian, Phys. Rev. B7, R11085(1998. _
boson-exchange model will be appropriate for the descrip- R. A Klemm, in P_roceed_lngs of the Fl_rst I_nternatlonal Conference on
. . . . . . New Theories, Discoveries, and Applications of Superconductors and
tion of this phenomenon. Thus an analytical investigation of Re|ated Materials Baton Rouge, 1998, to be published in Int. J. Mod.
the Green function in the boson-exchange case could be veryphys. B.

5. CONCLUSION



102 Low Temp. Phys. 26 (2), February 2000 V. M. Loktev, V. M. Turkowski

3G. Baym, Phys. Revl127, 1391(1962. By, P. Gusynin, V. M. Loktev, and S. G. Sharapov, preprint
4R. Haussmann, Z. Phys. ®1, 291 (1993. cond-mat/9709034; JETP15 1243(1999.
50. Tchernyshyov, Phys. Rev. B, 3372(1997). 16y, M. Loktev, S. G. Sharapov, and V. M. Turkowski, Physic2@5, 84
6J. Serene, Phys. Rev. &, 10873(1989; J. J. Deisz, D. W. Hess, and (1998.

J. W. Serene, Phys. Rev. Le80, 373(1998. 17y, P. Gusynin, V. M. Loktev, and S. G. Sharapov, JETP L€, 126
"R. Miénas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J." Roe (1999; preprint cond-mat/9811207. ,

Nunez, and H. Beck, Phys. Rev. B, 16223(1995. 18y, M. Loktev and V. M. Turkowski, Zh. Esp. Teor. Phys114, 605
8R. Haussmann, Phys. Rev.4®, 12975(1994). (1998 [JETP87, 329(1998].

9M. Letz and R. J. Gooding, J. Phys.: Condens. Mat&r6931(1998. N. D. Mermin and H. Wagner, Phys. Rev. Lelf7, 1113(1966); P. C.
10B, Janko, J. Mali, and K. Levin, Phys. Rev. 8, R11407(1997, pre- Hohenberg, Phys. Rew58 383 (1967); S. Coleman, Comum. Math.

prints cond-mat/9710187, cond-mat/9805018; I. Kostin, Q. Chen, B. Phys.31, 259(1973.
Janko, and K. Levin, Phys. Rev. B8 R5936 (1998, preprint 20For a recent review see M. Randeria and J. C. Campuzamwpieedings

cond-mat/9807414. of the International School of Physics “Enrico FermiVarenna, 1997
113, R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, Phys. Rev, |OS Press, Amsterdaiti998; cond-mat/9709107.
B 57, 13406(1998. 2IM. Plischke and B. Bergerseiquilibrium Statistical PhysigsPrentice-

2M. Randeria, inProceedings of the International School of Physics “En- 22Ha||, Englewood Cliffs, New Jersef1989, p. 167.

rico Fermir,” Varenna, 1997 I0S Press, Amsterdd998; preprint S. W. Pierson, Philos. Mad376, 715 (1997.

cond-mat/9710223. 23H. Bateman and A. Erdg, Higher Transcendental FunctionslcGraw-
133, M. Singer, M. H. Pedersen, T. Schneider, H. Beck, and H.-G. Mattutis, Hill. New York (1953.

Phys. Rev. B54, 1286(1996.
14y, P. Gusynin, V. M. Loktev, and S. G. Sharapov, JETP L8, 182 Published in English in the origianl Russian journal. Reproduced here with
(1997. stylistic changes by the Translation Consultant.



	103_1.pdf
	108_1.pdf
	115_1.pdf
	121_1.pdf
	128_1.pdf
	130_1.pdf
	134_1.pdf
	147_1.pdf
	152_1.pdf
	160_1.pdf
	169_1.pdf
	85_1.pdf
	92_1.pdf
	97_1.pdf

