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Commensurability effect and lock-in transition in Mo ÕSi superconducting superlattices
O. I. Yuzephovich,* Yu. V. Bomze, M. Yu. Mikhailov, I. M. Dmitrenko, and N. Ya. Fogel

B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., 310164, Kharkov,
Ukraine
~Received June 9, 1999!
Fiz. Nizk. Temp.26, 142–147~February 2000!

We report the first observation of the lock-in transition in artificial superconducting superlattices,
which takes place in tilted magnetic fields. The measurements were carried out on the Mo/
Si layered system. The temperature dependence of the critical angle for the trapping of the vortices
in the orientation parallel to the layer planes is determined by the previously known
resistive method and by a new method based on the effect of commensurability between the
intervortex distance and the superlattice wavelength. The temperature dependences of the critical
angle obtained by the two methods practically coincide. The experimental results are
consistent with the theoretical predictions of Feinberg and Villard. ©2000 American Institute
of Physics.@S1063-777X~00!00402-3#
de
pa
e
a

lin

e
ll
A
ld
th
rs

et

th
n
o

lit
re
t,

O
re
g
a

rio
d
he
ul

. I

ed
ce
e-
e–
se-
rtex

ct
/Ta

il-

ce
ity
the
be

–
a
es of

ved,
s
an
ct-
low

s.
-

on.
n-
es

or-
lds
INTRODUCTION

Many layered superconductors~high-Tc oxides, artificial
superlattices consisting of high-temperature compounds
conventional superconductors, intercalated dichalcogeni
etc.! have an inherently large anisotropy of the physical
rameters. It is known that such an anisotropy plays a v
important role, giving rise to many new phenomena, such
the dimensional crossover, fluctuation-induced decoup
and melting of the vortex lattice~VL !, intrinsic pinning,
lock-in transition, and so on. The static and dynamic prop
ties of the vortex matter in the solid phase differ essentia
from those in the homogeneous type II superconductors.
cording to the results of Ref. 1, the unit cell of the VL shou
be strongly distorted compared to the equilateral triangle
is characteristic for the Abrikosov VL. The VL paramete
should depend intrinsically on the anisotropy coefficientg
5(M /m)1/2 and on the angle between the applied magn
field H and the anisotropy axis. HereM is an effective mass
along the normal to the layer planes, andm is the in-plane
mass. The influence of the anisotropy on the properties of
layered superconductor is revealed most dramatically i
parallel field and in a range of angles which are close tu
50° ~u50° for H parallel to the layers!. In particular, for
parallel magnetic fields the effect of the commensurabi
between the intervortex distance in the VL and the laye
structure periods leads to oscillations of the critical curren
resistivity, and magnetization.2–6 The theory of the matching
effects for this situation was developed in Refs. 7–11.
special interest is the situation of strong layering conside
in Ref. 10. It was shown that when the intrinsic pinnin
energyEp exceeds the elastic energy of VL shear deform
tion Eel , the vortices cannot cross the layers, and the pe
Z0 of the VL in the direction orthogonal to the layers is fixe
and is determined by the initial conditions under which t
vortex lattice was formed. This means that the VL sho
always be commensurable with the periodss of the underly-
ing pinning potential connected with the layered structure
1031063-777X/2000/26(2)/5/$20.00
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this case only the valuesZ05Ns ~N is an integer! are al-
lowed; Z0 remains constant over a wide range of appli
field intensities, while the unit cell area of the vortex latti
varies with the field only on account of flux line displac
ments along the layers. In the framework of the Lawrenc
Doniach approach, for relatively high magnetic fields a
quence of first-order phase transitions between the vo
lattices with different orders of commensurabilityN is
predicted.11

Oscillatory dependence of the critical currentI c on the
parallel magnetic field owing to the commensurability effe
has been observed on several kinds of multilayers: Nb
~Ref. 3!, Nb/Pd ~Ref. 4!, and Mo/Si~Ref. 5!. It was shown
that theI c oscillations are accompanied by resistivity osc
lations, and all features of theR vs. H and I c vs. H curves
correlate.5 However, at low temperatures the zero-resistan
regions that manifest the reentrance of superconductiv5

appear instead of the resistance minima. The majority of
features of the nonmonotonic and reentrant behavior may
explained quantitatively in terms of the Ivlev–Kopnin
Pokrovskii theory.10 The positions of the resistance minim
and zero-resistance regions correspond to the stable stat
the commensurate vortex lattices.5

At temperatures close to the transition temperatureTc

not all of the above-mentioned effects have been obser
because the intrinsic pinning,12 which creates large barrier
for the transverse motion of the flux lines and gives rise to
effective locking of the vortices between the supercondu
ing layers, becomes strong at temperatures sufficiently
that the conditionj'(T)<s holds.12,13 Herej' is the coher-
ence length in the direction orthogonal to the layer plane

It has been shown14 that the intrinsic pinning causes an
other interesting phenomenon, namely a lock-in transiti
Due to the anisotropy, at relatively small tilt angles the co
finement of the vortices parallel to the layer planes becom
energetically more favorable than the creation of tilted v
tices. The manner of the flux penetration in the oblique fie
© 2000 American Institute of Physics
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is modified at angles which are close tou50°. Experimen-
tally the lock-in transition is observed by several differe
methods. Among them are the measurements of the mi
wave dissipation at different orientations ofH;15 the lock-in
transition is identified by the change in the dissipati
mechanisms, which are controlled by the parallel and p
pendicular components of the dc magnetic field, respectiv
Evidence about the lock-in transition may be obtained fr
torque experiments16–18 and from ac magnetic susceptibilit
measurements,19 from magnetization,20,21 and from resistive
measurements.22 A comparative analysis of all the method
used for determination of the lock-in transition is presen
in Ref. 21. All these investigations have been performed
single crystals of high-temperature oxides and organic
ered superconductors.

It is known that artificial superconducting superlattic
consisting of conventional superconductor films and so
insulating interlayers may perfectly imitate the properties
high-Tc compounds.23–26 The cited works concern the flu
line creep and theH-T phase diagram. Obviously, observ
tion of the lock-in transition may be also expected in art
cial superconducting multilayers. Here we report on find
the lock-in transition in Mo/Si superlattices~with a tempera-
ture of the superconducting phase transition of about 4 K!.27

For the study of this phenomenon we have used the resis
method described by Kwoket al.,22 as well as a new metho
based on the effect of commensurability between intervo
distance and the superlattice wavelength. We believe tha
latter method provides the clearest evidence of vortex lo
ing between the layers in tilted fields as compared with
other methods mentioned above. The explicit tempera
dependence of the critical angle for the lock-in transition
obtained for the first time.

SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURE

The measurements were carried out on a Mo/Si mu
layered sample with Mo layer thickness of 22 Å and Si lay
thickness of 34 Å. The sample consists of 50 bilayers. T
Mo/Si multilayer was prepared by two-magnetron sputter
onto a glass substrate atT5100 °C in argon. The working
pressure of argon in the deposition chamber was
31023 torr. The initial vacuum was no worse tha
1026 torr.

Small-angle x-ray diffractometry was used for the det
mination of the superlattice period and for checking the
gree of sample perfection. The number of satellite lines
the diffractograms for the samples investigated is 4, wh
for multilayers prepared in the same way with waveleng
equal to or exceeding 100 Å this number is about 10 or mo
These data attest to the high regularity of the layering. T
same conclusion follows from an electron microscopy inv
tigation of the sample cross section. The latter also sh
that the roughness of the interfaces does not exceed 7–
The multilayer period was determined with an accuracy
0.1 Å.

The x-ray diffraction data showed that the silicon laye
are amorphous and the molybdenum layers are microcry
line, with a crystallite size of several nanometers. More
t
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tails about the sample preparation and characterization
be found in Refs. 27–29.

The transport measurements were performed in a s
dard helium crystal equipped with a 5 T super-conducting
coil. The geometry of the experiments is shown in Fig.
The orientation of the sample holder in the magnetic fi
was changed with the help of special rotation mechani
The accuracy of the determination of the angle between
applied magnetic fieldH and the layer planes was no wors
than 0.1°. During the rotation of the sample the transp
current was always perpendicular to the applied magn
field. The parallel orientation was identified by finding th
minimum in the resistance. The stabilization of the tempe
ture at a given point was about 1023 K. The critical magnetic
fields were defined in the resistive transitions with the use
the criterionR50.5Rn . The resistance measurements we
carried out using the standard four-probe technique wit
transport current of 1 mA.

EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 2a the typical dependences of the resistance
the parallel magnetic field at different temperatures
shown for a case of strong intrinsic pinning. At temperatu
close to the transition temperatureTc all the resistive curves
are smooth~they are outside the scope of this figure!. Begin-
ning from the temperature 3.5 K~the Tc for this sample is
3.67 K!, minima appear on theR vs. H i curves, and at still
lower temperatures these minima are transformed to z
resistance regions~Fig. 2b!. These dependences closely co
relate with the dependence of the critical currentI c on H i , as
Fig. 2c shows. As was proved recently,5 such nonmonotonic
behavior of the critical current and resistivity and also t
reentrance of superconductivity may be explained in term
the commensurability effect that should be observed un
the condition of strong intrinsic pinning. The locations of th
R vs. H i minima ~and theI c maxima, respectively! corre-
spond to the stable states of the commensurate vortex
tices. For the parallel field the positions of the minima do n
shift with temperature, as would be expected for the mat
ing effect. The manifestations of the commensurability
fects appear below some temperatureT0 , where the condi-

FIG. 1. Geometry of the experiment.
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tion j',s/& is met.5 This temperature, as was mention
above, is equal to 3.5 K. The data presented in Fig. 1 co
spond to the stable states of commensurate VL config
tions with N51 andN53. Other vortex arrangements wit

FIG. 2. Resistance as a function of the parallel magnetic field at diffe
temperaturesT, K: 3.504 ~1!; 3.478 ~2!; 3.467 ~3!; 3.462 ~4!; 3.459 ~5!;
3.453~6!; 3.447~7! ~a!; at T53.44 K ~b! Critical current as a function of the
parallel magnetic field~c!.
e-
a-

essentially differentR vs. H i curve patterns can be observe
on the same sample, as was shown in Ref. 5. Obtaining
or another vortex arrangement depends on the magnetic
tory. In this paper we shall deal with only one of the possib
kinds of R vs. H i curve presented in Fig. 2.

If the lock-in transition exists in the system investigate
one should expect the appearance of resistivity minima
small tilt anglesu, as well~the angleu50° for the magnetic
field parallel to the layer planes!. In the range of angles
where the vortex lines are trapped between the supercond
ing layers, the position of the resistance minima is bound
remain constant because the VL structure stays unchan
As Fig. 3a shows, this is indeed the case at sufficiently l
temperatures. At larger angles the minimum disappears.
critical angleuc dividing theR vs.H curves with and without
a minimum depends on temperature, as follows from Fig

nt

FIG. 3. Magnetic field dependences of the resistance at different orie
tions of the applied magnetic field atT53.44 K ~a!, and 3.503 K~b!.
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At high temperatures there are no features on theR vs. H i

curves foru50° or for the tilted fields either. The first sligh
kinklike hints appear atT53.5 K ~Fig. 3b!, and for this tem-
peratureuc is equal to zero with an accuracy of 0.1°.

In the paper of Kwoket al.22 the lock-in transition was
also observed on YBa2Cu3Ox single crystals by the resistiv
method. A sharp drop of the resistance was found on thR
vs. u curves in the range of small angles and was convi
ingly interpreted by the authors as evidence of the lock
transition. The critical angleuc in these experiments wa
about 0.3°, and it was practically independent of tempe
ture. However, the latter statement cannot be considere
very reliable because the investigations were carried out
very limited temperature range (T/Tc50.99321). Probably
the too-high slopedHci /dTuTc

of the parallel critical fields
has prevented those authors from going to lower temp
tures.

A similar sharp drop in the resistance is observed in
experiments in the vicinity of the parallel orientation~Fig. 5;
compare it with Fig. 2 in Ref. 22!. It corresponds to the fas
increase of the critical magnetic field in the same range
angles~see Fig. 6, curve 4!. As Figs. 5 and 6 show, theHc2

vs. u curves allow one to determineuc as well as theR vs. u
curves do. Curves ofHc2(u) for different temperatures ar
presented in Fig. 6. The values ofuc obtained from these
plots are displayed in Fig. 4 along with those obtained fr
the plots similar to Fig. 3a. It is seen that theuc values
determined by the two methods differ insignificantly.

According to the theoretical results of Feinberg a
Villard,14 for Hc1!H!Hc2 the region of field orientations
for which the flux lines are trapped parallel to the layers~i.e.,
the critical angleuc! should depend on the barrier heig
associated with the intrinsic pinning, on the anisotropy
rameterg, and on the magnetic field intensity. The value
the critical angle is determined by the expression14

cos~90°2uc!5
1

p F2a1

H*

H S 11g2
H*

H D G1/2

. ~1!

FIG. 4. The critical angle as a function of reduced temperature: obta
from the plots similar to Fig. 3a~d!; determined in the way shown in Figs
5 and 6~m!. The arrow shows the cross-over temperature.
-
n

-
as
a

a-

r

f

-
f

Here the fieldH* is of the order of the first critical fieldHc1 ;
the value a1 characterizes the barrier height (a1(T)
5exp(2cj(T)/s); c is some numerical constant!,

g5~M /m!1/25~dHci /dT!uTc
/~dHc' /dT!uTc

.

As the above formula shows, the value of the critical an
uc separating the two ranges of angles, the one in which
vortices are parallel to the layers and the one in which
direction of the induction vectorB is tilted with respect to the
layers, is mainly determined by the barrier height. The va
of a1(T) grows with decreasing temperature. If the critic
angle is determined from theHc2 vs. u curves, like those in
Fig. 6, the variation ofH with the change of the temperatur
according to formula~T!, may influence theuc value, too.
This may lead to a decrease ofuc at low temperatures. How
ever, the characteristic magnetic fieldH* 'Hc1(T) also in-

d

FIG. 5. Angular dependences of the resistance at different magnetic fi
H, T: 0.2 ~1!; 0.3 ~2!; 0.4 ~3!; 0.5 ~4!.

FIG. 6. Angular dependences of the parallel upper critical field at differ
temperaturesT, K: 3.441 ~1!; 3.362~2!; 3.318~3!; 3.252~4!.
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creases at lowT. Thus, at first glance, the influence of th
H* /H factor is not so essential as that ofa1(T).

The lock-in transition may be observed in the quasi-tw
dimensional state, where substantial modulation of the v
tex core energy in the direction orthogonal to the lay
exists.12 This means that one can observe this transition o
at temperatures which are less than the crossover temper

Tcr5Tc~122j'
2 ~0!/s2!.

Indeed, the critical angle goes to zero at a tempera
lower thanTc ~Fig. 4!. The crossover temperature for th
sample is shown by an arrow. The onset of the lock-in tr
sition is observed just below this temperature. As Fig
shows, the critical angle increases asT is lowered, and only
at the lowest temperature of the measurements is the
dency for diminishinguc observed. This latter tendency ma
be associated with the competing effect of the barrier he
a1(T) and magnetic field. At sufficiently low temperature
the variation of the coherence lengthj(T) slows down, and
magnetic field enhancement may begin to play the domin
role.

The authors are now investigating the lock-in effect
superlattices with different anisotropy parameters. The
sults of this study will be published elsewhere.

In summary, the lock-in transition has been observed
the first time on artificial periodic layered systems~Mo/Si!
including a conventional superconductor as one of the c
ponents. Previously it was shown that the new method
investigation of the VL structure in layered superconducto
which is based on the commensurability effect, works fai
well in the case when the magnetic field is parallel to
layers. Here we have shown that this method is also valid
tilted fields at relatively small misalignment betweenH and
the layers. We believe that the data about the locking
vortices obtained from theR vs. H curves are direct, in dis
tinction to all the other, indirect methods mentioned in t
Introduction. For the first time we have obtained the expl
temperature dependence of the critical angle for the loc
transition. An additional important conclusion which follow
from our experiments is that, due to the lock-in effect, so
deviation from a precisely parallel orientation does not le
to errors in the determination of the characteristic fields c
responding to the stable states of the commensurate vo
lattices.

We are grateful to S. A. Yulin for help with the samp
preparation and characterization.
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Swihart waves and surface plasmons in a parallel-plate superconducting transmission
line

G. A. Melkov* and Yu. V. Egorov

T. Shevchenko Kiev National University, ul. Vladimirskaya 64, 01033 Kiev, Ukraine
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The electromagnetic waves propagating inside a parallel-plate transmission line are investigated.
In the case of a finite penetration depth of the electromagnetic field into the metal, a
longitudinal electricE wave propagates in the the line instead of a transverse electromagnetic
wave. At small thicknesses of the dielectric this wave goes over to a Swihart wave, and
at large thicknesses of the dielectric it is converted into a surface wave~plasmon!. It is shown
that there exists an optimum thickness of the superconducting film coating the parallel-
plate transmission line, for which the electromagnetic wave experiences the maximum slowing
down. Using waveguides for surface waves, one can construct surface-wave microwave
resonators. These resonators have a highly uniform microwave current distribution and, have a
high concentration of microwave current in the superconducting film, and they are simple
to fabricate. ©2000 American Institute of Physics.@S1063-777X~00!00502-8#
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INTRODUCTION

A parallel-plate line~Fig. 1! is a convenient single-mod
model for real microstrip transmission lines, as it admits
analytical investigation of the waves in such lines. It was
a parallel-plate line that Swihart waves were observed
stead of transverse electromagnetic waves in the case
finite penetration depthl of the electromagnetic field into th
metal.1

For example, for identical superconducting films1 and
2, b15b25b, the propagation constant for Swihart wav
was given in the classical monograph of Van Duzer a
Turner2 as

bs
25k2«S 11

2lL

d
coth

b

lL
D , ~1!

wherek5v/c, d is the thickness of the dielectric,v is the
frequency of the electromagnetic field,c is the speed of light
in vacuum, andlL is the London penetration depth; formu
~1! is valid for kdA«!1. It is seen from~1! that because o
the penetration of the field into the superconductor,

FIG. 1. Parallel-plate transmission line: metal films~1,2!; dielectric with
dielectric constant« ~3!; free space~4,5!.
1081063-777X/2000/26(2)/7/$20.00
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propagation constant for a Swihart wave is larger than
propagation constantkA« for an electromagnetic wave in th
dielectric, and that the difference becomes greater as the
thicknessb is reduced. Forb!lL , however, formula~1!
becomes invalid, since forb50 the constantbs→`, but this
is just the simple case of an open planar two-dimensio
dielectric waveguide, which has a finite propagation const
bd,kA«.3 According to Ref. 3, forb15b250 and kdA«
!1 we have

bd
25k2F11

k2d2

4 S 12
1

« D 2G . ~2!

We see that under no circumstances does formula~1! reduce
to ~2!, and it must therefore be refined forb→0. The case of
thin superconducting films is extremely interesting for pra
tical application, since a decrease in the thickness of
films is accompanied by an increase in their kinetic indu
tance, which is fundamental to the working principles
superconductor-based parametric and nonlinear devic4

However, this inductance does not increase to infinity, a
implied by~1!, but to some maximum value, which would b
useful to find for many technical applications.

Besides Swihart waves, a finite penetration depthl leads
to the onset of surface electromagnetic waves, i.e., sur
plasmons propagating along metallic surfaces, which h
been well studied from the microwave to the optic
regions.5,6 At the other extreme from the Swihart cas
kdA«@1, the propagation constant for plasmons can be w
ten as5

bp
25k2«~11k2«l2!, ~3!

wherel is the complex penetration depth of the electroma
netic field into the metal.

In this paper we show that Swihart modes and surf
plasmons are different limiting cases~kdA«!1 andkdA«
@1! of a unified Swihart–plasmon wave that propagates
© 2000 American Institute of Physics
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the general case in waveguides with a finite conductivity
the walls. Figure 2 shows a schematic illustration of the el
tric field lines corresponding to these limiting cases. F
kdA«!1 @Fig. 2b# there exists a Swihart wave which forl
50 ~ideally conducting metal! goes over to an ordinary
transverse electromagnetic wave@Fig. 2a#. For kdA«@1
@Fig. 2c# surface plasmons propagate above the metal
face; they have no analog at zero penetration depth of
field into the metal, i.e., they do not exist in the case
infinite conductivity. Finally, the general case of Swihar
plasmon modes, which is realized for arbitrarykdA«, is il-
lustrated in Fig. 2d. Asd increases, so does the number
electric field lines that are closed on the same metal sur
from which they originate. The Swihart wave goes ov
smoothly to a surface plasmon, the electric field of which
completely concentrated around either of the two metal s
faces, whereas for the Swihart wave the electric field is d
tributed symmetrically around both surfaces. At zero p
etration depth of the field into the metal, the Swihar
plasmon wave, like the purely Swihart wave, goes over t
transverse electromagnetic wave.

Thus our task in this paper is to investigate waves i
parallel-plate waveguide for arbitrary relationships among
parametersb1 , b2 , d, «, andl.

GENERAL DISPERSION RELATION

In the general case, the parallel-plate line shown in F
1 admits the existence of longitudinal electric and longitu
nal magnetic waves, theE andH modes, respectively.5,6 We
restrict analysis to only theE modes, since both the Swiha
waves and surface plasmons areE modes which, in the cas
of infinite conductivity of the metal, go over to transver
electromagnetic waves. Furthermore, theH mode, unlike the
lower E mode, has a critical wavelengthlcr;2d and cannot
exist in microelectronic structures forkdA«!1.

FIG. 2. Patterns of electric field lines in a parallel-plate transmission lin
different limiting cases: transverse electromagnetic wave,l50 ~ideally
conducting metal! ~a!; Swihart wave,lÞ0, kdA«!1 ~b!; surface electro-
magnetic wave~plasmon!, lÞ0, kdA«@1 ~c!; Swihart–plasmon wave
lÞ0 ~d!.
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We shall seek the solution in the form of harmon
waves propagating along thez axis, i.e., the electric and
magnetic fieldsE, H;exp(jvt2jbz). Assuming, in addition,
that the fields are uniform along the transverse axisy, we
obtain the following system of equations describing t
waves in the parallel-plate line shown in Fig. 1:

S ]2

]x2
1ki

2D Ez
i 50; i 51,...,5, ~4!

whereki is the transverse propagation constant in the co
sponding mediumi . In free spacek4

25k5
252a25k22b2,

and in a dielectrick3
25k2«2b2. In superconducting media1

and 2 the transverse propagation constant is ordinarily
pressed in terms of the complex pentration de
l i

2521/ki
2 ~Ref. 7!. In the case of type-II superconducto

such as HTSCs,l i is determined not only by the Londo
penetration depthlL but also by the presence of normal ele
trons, by the magnetic fieldB, by thermodynamic fluctua-
tions, etc. Here we shall use an expression forl i obtained by
Coffey and Clem7 with allowance for the normal electron
and magnetic flux vortices:

l i
25

lLi
2 2~ j /2!dn i

2

112 j lLi
2 /dni

2 , ~5!

wherelLi is the london penetration depth in thei th medium
and in general depends on the temperature and mag
field, lL5lL(t,B) ~Ref. 7!; t5T/Tc , whereTc is the critical
temperature;

dn
25

2BF0@z1~vt!21 j ~12z!vt#

m0vh@11~vt!2#
;

m0 is the magnetic permeability of the vacuum;h is the
viscosity of the magnetic flux;F0 is the magnetic flux quan
tum; z5I 0

22(n), where I k(x) is the kth-order modified
Bessel function of the first kind;n5U/2kBT; U is the height
of the potential barrier for magnetic flux vortices;kB is
Boltzmann’s constant;

t5
h

kp

I 0
2~n!21

I 0~n!I 1~n!
;

and, kp is the elastic constant of the vortex lattice~the
Labusch parameter!. In the absence of magnetic flux vort
ces,dn50, ignoring the magnetic flux creep (n@1) leads to
z50 andt5h/kp .

The normal conductivity in~5! is represented by the
term containingdn

252rn /m0v, wherern is the resistivity of
the normal electron liquid, which, likelL , depends onT and
B: rn5rn(t,B), as is discussed in detail in Ref. 7.

Formula~5! for the penetration depth is both for an o
dinary, nonsuperconducting metal and for a supercondu
at a temperatureT above the transition temperatureTc . In
the latter case on can just setlLi5`.7

The solution of system~4! in the different regions
i 51,2,...5 has the form

n
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i 51,
d

2
<x<

d

2
1b1 , Eza1ex/l11c1e2x/l1,

i 52, 2b22
d

2
<x<2

d

2
, Ez5a2ex/l21c2e2x/l2

i 53, 2
d

2
<x<

d

2
, Ez5a3 sin~k3x!1c3 cos~k3x!,

~6!

i 54, x>
d

2
1b1 , Ez5a4e2ax,

i 55, 2b12
d

2
<x, Ez5a5eax.

From the continuity condition for the tangential comp
nents of the electric and magnetic fields at all the boundar
x5(2d/2)2b2 , 2d/2, d/2, (d/2)1b1 , one can obtain the
following dispersion relation for the parallel-plate line show
in Fig. 1:

tank3d5
Q11Q2

Q1Q221
, ~7!

where

Q1,25
k2«l1,2

k3

coth~b1,2/l1,2!2~k2l1,2/a!

12~k2l1,2/a!coth~b1,2/l1,2!
. ~8!

In the symmetric case~b15b25b; l15l25l; Q15Q2

5Q!, Eq. ~7! simplifies to

tan
k3d

2
52Q, ~9!

Q5
k2«l

k3

coth~b/l!2~k2l/a!

12~k2l/a!coth~b/l!
. ~10!

Equations similar to~7!–~10! have been considered repea
edly in the literature, but they have been investigated o
for kdA«!1, i.e., for the case of Swihart waves, and, b
sides, they, like Eq.~1!, were not set up to be valid in th
limit b→0 ~see, e.g., Ref. 9!.

Equations~7!–~10! describe a Swihart–plasmon electr
magnetic wave existing between two conducting planes.
pattern of electric field lines obtained from these equation
shown in Fig. 2d. We shall show below that in differe
limiting cases these equations describe both a Swihart w
and a wave of surface plasmons~for kdA«!1 and kdA«
@1, respectively!. It is only in these simple cases that th
propagation constant has the simple form~1!–~3!; in arbi-
trary cases either an approximate solution or a numer
analysis of the dispersion relations must be used.

LIMITING CASES

1. Swihart waves, kd A«™1

We have the following equation for determining th
propagation constantb:

b25k2«F11
l1

d
f ~b1 ,l1!1

l2

d
f ~b2 ,l2!G , ~11!
s,

ly
-

e
is

ve

al

where f (b,l) is a function describing the influence of th
finite thickness of the superconducting film:

f ~b,l!5
coth~b/l!2~k2l/Ab22k2!

12coth~b/l!~k2l/Ab22k2!
. ~12!

For b/l@1 the functionf (b,l)51; in the case

k2l coth~b/l!!Ab22k2 ~13!

the functionf (b,l)5coth(b/l), and expression~11! reduces
to the form

b25k2«F11
l1

d
cothS b1

l1
D1

l2

d
cothS b2

l2
D G , ~14!

which is analogous to expression~1! for the propagation con-
stantbs of a Swihart wave if the London penetration dep
lL in that expression is replaced by the complex penetra
depthl from Eq. ~5!, which takes into account the influenc
of the normal electrons and magnetic flux vortices. Then
~14!, unlike Eq.~1!, leads to a complex value for the prop
gation constant, which reflects the fact that active losses a
in the transmission line.

Condition~13!, and, with it, formula~14! are valid down
to film thicknessesb>1022 l, i.e., practically always. It is
only nearTc ~for (Tc2T)!Tc! that Eq.~11! must be used
instead of~14!. This is plainly seen from Fig. 3, which show
the results of a calculation of the propagation constantsb for
Swihart waves as functions of the superconducting fi
thicknessb for two temperatures,Tc andTc21 K. In all the
calculations here and below we have taken the follow
values for the parameters of the HTSC films:Tc591 K,
lL(0,0)52.531027 m, rn(0,0)5131026 V•m. According
to Fig. 3, at a temperature only 1 K belowTc one may use
formula ~14! to film thicknesses down to a few nanomete
As the frequency increases, the region ofT and b values
in which formula ~14! is valid becomes smaller: fo
f 5100 GHz in the region of liquid-nitrogen temperatur
this formula is valid only forb>0.1mm. We see from Fig. 3
that there exists an optimum thicknessbopt of the HTSC

FIG. 3. Dependence of the propagation onb of a Swihart wave on the
superconducting film thickness for different temperatures:T5Tc591 K ~1!;
T590 K ~2!. The dashed and solid curves were calculated according
formulas ~13! and ~11!, respectively;d51 mm, «59.8; see text for the
parameters of the superconducting film.
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films for which the propagation constant of the Swihart wa
reaches its maximum valuebmax; for b,bopt the propaga-
tion constant falls off rapidly to the value for a planar diele
tric waveguide,bd @Eq. ~2!#.

The presence of superconducting films causesbs to de-
pend on various kinds of external influences.9 By a suitable
choice of the parameters of the transmission line one
optimize the line from the standpoint of creating parame
devices, controllable phase shifters, and highly sensitive
perconducting temperature and magnetic field sensors.
tems with very thin superconducting films have been a
lyzed previously. For example, it was shown in Ref. 8 th
the controllability of a microwave system containing a th
superconducting film also has a maximum as the film thi
ness is decreased, but this maximum arose not becau
accurate allowance for the influence of the film thickness
rather was due to allowance for the finite width of the film
At a film width of 25 mm, as in our case, one ha
b;1022 l.

Figure 4 shows the temperature dependence of the
of change]b/]T of the phase constant for several differe
frequencies~f 51, 10, and 100 GHz!. We see that nearTc

the value of ]b/]T can reach very high value
@106(m•K) 21#, which correspond to phase shif
;108 deg/K.

Figure 5 shows the rate of change of the phase cons
near Tc upon changes in the magnetic field,]b/]B, as a
function of the HTSC film thickness. According to this fig
ure, ]b/]B has a resonance dependence on the film th
ness, with the maximum occurring precisely atb5bopt. The
temperature rate of change of the propagation const
]b/]T ~see Fig. 4! also has a maximum nearb5bopt, i.e.,
both here and for determining]b/]B, one must use formula
~11! to obtain correct results.

2. Surface plasmons, kd A«š1

The propagation constant has the form

b25k2«~11k2«l2f 2b/l!. ~15!

As in the case of Swihart waves, when condition~13! is
satisfied, one hasf (b/l)5coth(b/l) and

FIG. 4. Temperature dependence of the change]b/]T of the propagation
constant of a Swihart wave for various frequenciesf , GHz: 1 ~1!, 10 ~2!,
100 ~3!; d51 mm, «59.8, b50.1mm.
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b25k2«@11k2«l2 coth2~b/l!#. ~16!

As one would expect, Eqs.~15! and ~16! go over to Eq.~3!
for b@l.

Equations~15! and~16!, like ~11! and~14!, are valid for
both normal metals and superconducting films. In actua
the waves in these two cases do not have any fundame
differences: the penetration depthl and, with it, the propa-
gation constantb are complex quantitiesl5l81 j l9,
b5b82 j b9. It is only for an ideal superconductor havin
no normal electrons, i.e., atT50, thatl5lL and the damp-
ing coefficientb950. In the general case one can therefo
state that the existence of surface plasmons~like that of Swi-
hart waves! requires not the damping of waves in the met
as is correctly asserted in the study of normal metals,5 but
rather the presence of a finite penetration depthl of electro-
magnetic waves into the metal: the larger the value ofl, the
greater the slowing of the wave, and the more strongly i
‘‘squeezed’’ toward the metal. While for a normal metal th
penetration depth and the damping are uniquely related,
superconductors there is no such connection.

Figure 6 shows the frequency dependence of the Q
tor Q5b8/2b9 for surface electromagnetic waves~plas-

FIG. 5. Change]b/]B of the phase constant with magnetic field as a fun
tion of the thicknessb15b25b of the superconducting films;d51 mm,
f 510 GHz, T590.9 K, «59.8.

FIG. 6. Frequency dependence of the Q factor for surface plasmons pr
gating above a HTSC film~1! and above a copper film~2!; b510mm,
T577 K, «51.
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mons! propagating above a HTSC film and above a cop
film. We see that the Q factor is larger all the way to t
region of infrared wavelengths, and this is conducive to
successful application of surface plasmons in nonlin
optics.6 Superconducting films, because of the stronger
quency dependence of the damping, have advantages
films of normal metals only in the microwave region, for th
parameters we have chosen and forf ,90 GHz ~see Fig. 6!.
However, even at higher frequencies, all the way up
1012Hz, their Q factor is much greater than that for micro
trip lines and hollow waveguides. It is therefore extreme
promising to use surface plasmons for making Joseph
devices for the terahertz frequency range. There one
have low losses combined with a high amplitude of the m
crowave current flowing along the surface of the superc
ducting film through the Josephson contacts, in which
effect of nonlinear phenomena is proportional to the curr
amplitude.

The propagation constant of surface plasmons, like
of Swihart waves, can be altered by the application of a st
magnetic field, but the change in this constant is mu
smaller for surface plasmons on account of their mu
smaller slowing in comparison with Swihart waves. In fact
follows from a comparison of~11! and ~15! that the addi-
tional contribution to the propagation constant in the case
Swihart waves is proportional tol/d, whereas for surface
plasmons it is;k2l2!l/d. Therefore, for the sake of brev
ity, we shall therefore omit consideration of this effect.

3. Swihart–plasmon waves

The expressions obtained above for Swihart waves~11!
and surface plasmons~15! are valid in the limiting cases
kdA«!1 and kdA«@1, respectively. In general one mu
use the dispersion relation~7!, which is a transcendenta
equation and admits exact analysis only by numerical m
ods. With some loss of accuracy, however, one can ma
simplification of relation~7! for arbitrarykd as well. For this
one must make use of the fact that the transverse propag
constant in the dielectric layer~see Fig. 1!, k35(k2«
2b2)1/2, becomes an imaginary quantity when the elect
magnetic field penetrates into the metallic walls. Then
tangent on the left-hand side of~7! goes over to the hyper
bolic tangent, which for arbitrary values of the argument c
be represented in the form tanhx'x/(11x). This relation is
exact forx→0 andx→`, and the maximum error atx;1 is
not more than 35%. As a result, we have the following a
proximate expression for the propagation constant
Swihart–plasmon waves, which is valid for arbitrary thic
nessesd of the dielectric:

b25k2«H 11
2l

d
f ~b,l!1k2«l2f 2~b,l!

3F1

2
1S 1

4
1

2

k2«dl
f 21~b/l! D 1/2G J .

As it should, this expression reduces to Eqs.~11! and~15! in
the limiting caseskdA«!1 andkdA«@1, respectively.
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4. Dielectric image waveguide

Image waveguides are widely used in integrated optic6

and there have been attempts to use them in the microw
range as well.10 The simplest image waveguide is
waveguiding dielectric layer on a metal surface. Of cour
any HTSC film grown on a dielectric substrate is a natu
image waveguide. Here the wave propagates mainly in
substrate, periodically reflecting off the superconducting fi
and the dielectric–air boundary.

To go from a parallel-plate transmission line~see Fig. 1!
to an image waveguide, we can just setb150. We then
obtain a waveguide consisting of a dielectric layer of thic
nessd on a metal slab of thicknessb2.

The propagation constant of a dielectric image wa
guide can be obtained from Eqs.~7! and ~8! with b150. In
the most interesting case, whenkdA«!1 and condition~13!
is satisfied, one has

b25k2H 11k2FdS 12
1

« D1l cothS b

l D G2J . ~17!

Of course, in the absence of the dielectric substrate~«51 or
d50! expression~17! goes over to the propagation consta
for surface plasmons~16! in vacuum above a metal surfac
When a substrate is present the wave properties for an im
waveguide are determined by both the parameters of the
electric and the parameters of the metal film@respectively the
first and second terms in the square brackets in form
~17!#. In the majority of real cases the contribution of th
dielectric is substantially greater than the influence of
penetration depth of the electromagnetic field into the me
and the properties of the surface electromagnetic waves i
image waveguide with a HTSC are practically no differe
from those for a dielectric waveguide. The only exception
at temperatures close toTc , when the role of the second term
in square brackets in~17! can grow strongly. We note that in
comparing formulas~2! and ~17! for l50 it is necessary to
double the heightd of the waveguide in Eq.~2!, since there
an isolated dielectric waveguide was being considered, w
in Eq. ~17! it was a waveguide on a metal substrate, whi
because of reflection effects, doubles the height of the wa
guide, and its properties will be the same as for an isola
waveguide with twice the height.3

SURFACE WAVE RESONATORS

A piece of waveguide bounded in the direction of wa
propagation is a resonator whose resonance frequency is
termined by the lengthl of the piece. This statement als
applies in full measure to surface waves — surface p
mons, waves in an image waveguide, etc. Thus a reson
can be a separate metal slab~or film! on a dielectric sub-
strate, a film on a substrate with an external dielectric
tached to it~a sandwich!, etc.11 Let us discuss some of th
features of such resonators.

1. The resonant lengthl res of the resonator will differ
substantially from the values required by the conditionl res

5np/b because the field goes beyond the confines of
resonator out its ends. Effects of this kind will be extreme
strong on account of the small differences of the propaga
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constantsb of the surface waves from the propagation co
stant of electromagnetic waves in free space~see Eq.~16!,
for example!. In addition, a real resonator has a finite widt
and, as a result, the fields penetrate to the opposite side o
metal film not only on account of penetration of the field in
the metal but also as a result of the bending of the magn
field lines around the metal surface. For this reason the r
nant length of a half-wave resonator can be almost o
fourth less than would be required by formula~15! or ~17!.11

An exact calculation of the resonant frequencies of a reso
tor must be done in the many-wave approximation11 and not
the single-wave approximation, as in the present paper.

Up till now we have been talking about half-wave res
nators in which both ends of the resonator are bordered
free space. If one end of the resonator is in contact wit
metal surface, such as a wall of the waveguide in which
resonator is placed, then the specular reflection of the fi
at the metal can bring about the formation of a quarter-w
resonator. Its resonant length is close to a quarter wavele
or to a multiple of this:l res5(2n21)p/2b. In a quarter-
wave resonator the same effects tending to shorten the r
nant length are present as in a half-wave resonator.

2. The Q factorQ of the resonator should be substa
tially higher than that of microstrip resonators but consid
ably less than for cavity resonators. The maximum Q fac
for present-day HTSC films in the three-centimeter rang
Q<105 ~Ref. 11!. Because the surface character of the wa
the electromagnetic field is concentrated near the super
ducting film, and that makes for a large surface current in
as the loss is proportional to the square of the surface cur
The situation is made even more complicated by the circu
stance that the surface-wave resonator is open, and the
although damped exponentially, can reach nearby metal
faces such as the walls of the waveguide. This can lead
further decrease in the Q factor to 104 or less. The meta
surfaces have a particularly large effect on the Q factor fo
quarter-wave resonator: these surfaces are necessary
operation and the main source of losses. Therefore th
factor of a quarter-wave resonator for surface waves in
three-centimeter range isQ<103.

However, in spite of the low Q factor, surface-wa
resonators for the microwave region also have a numbe
advantages. Foremost among them is the high value of
surface current, which is the cause of the low Q factor. B
cause there are no nearby metal surfaces, this curre
highly uniform over the whole surface of the film: the no
uniformity from the middle of the film to the edges is only
fraction of a percent.11 This makes surface-wave resonato
promising for the excitation of arrays of Josephson conta
e.g., for creating Josephson generators.

Another important advantage is the simplicity of co
struction and the strong coupling of a surface-wave reson
with transmission lines. The resonator is simply a HTSC fi
of the necessary dimensions on a dielectric substrate.
couple this resonator with transmission lines does not req
any special transitions, as is necessary, e.g., for the excita
of a rectangular waveguide by a microstrip line. The patt
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of field lines in a surface-wave resonator is extremely clo
to that for the fundamental mode of a rectangular wavegu
The resonator can be excited by simply placing it in a wa
guide in such a way that thez axis of the resonator~see Fig.
1! lies along the electric field lines of the waveguide.11 At the
upper edge of the millimeter and submillimeter waveleng
ranges the relatively high Q factor and simplicity of co
struction make surface-wave resonators the best choice
integrated applications.

CONCLUSION

We have investigated the electromagnetic waves pro
gating in a parallel-plate transmission line consisting o
dielectric layer of thicknessd covered top and bottom with
films of a normal or superconducting metal. In the case o
finite penetration depth of the electromagnetic field into
metal, a longitudinal electricE mode rather than a transvers
electromagnetic mode propagates in such a line. ForkdA«
!1 this mode goes over to a Swihart wave, and in the
posite limiting casekdA«@1 it goes over to a surface wav
— a surface plasmon propagating along one of the m
surfaces. Herek5v/c is the wave number of the electro
magnetic wave. The surface plasmon is squeezed toward
metal surface as a result of the slowing of the wave when
field penetrates into the metal. The slowing and, hence,
concentration of the waves near the metal surface can
enhanced by coating the metal with a thin dielectric lay
(kdA«!1). In that case one will have a surface-wave ima
waveguide. The surface waves both above an isolated m
and above a metal coated with a dielectric layer have
losses and can be used successfully at frequencies all the
up to the optical range. The electromagnetic waves abov
superconductor are not fundamentally different from tho
above a normal metal. It should be noted only that in the c
of a normal metal there is a unique relation between
damping, slowing, and penetration depth of the electrom
netic field into the metal. In the case of a superconduc
there is only a relation between the penetration depth and
slowing, while the losses are determined by the presenc
normal electrons, and here it is in principle possible~for an
ideal superconductor at zero temperature! to have a situation
in which there are no losses whatsoever but there is sig
cant slowing, as happens in Swihart waves@see Eq.~1!#.

There is an optimum thickness of the superconduct
films covering a parallel-plate transmission line such that
slowing of the electromagnetic wave is maximum. In th
case one also observes a maximum reaction of the prop
tion constant to external influences — changes in temp
ture, static magnetic fields, etc. This reaction can reach h
values, and this makes superconducting transmission l
promising for constructing efficient parametric devices, co
trollable phase shifters, and highly sensitive temperature
magnetic field sensors.

Surface-wave waveguides can be used to make surf
wave microwave resonators, which are pieces of th
waveguides with certain lengths. These resonators hav
high uniformity and a high concentration of the microwa
current in the superconducting film. Furthermore, they
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simple to make and have a field distribution in them which
close to that in a rectangular waveguide, which makes fo
large coupling coefficient with such waveguides.

All of this makes superconducting surface-wave reso
tors very promising for use in microwave devices~Josephson
generators, filters! at wavelengths all the way down to th
submillimeter range.
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Spin polarization of quasiparticle states in SÕF structures with a finite transparency
of the SF interface
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The proximity effect between a massive superconductor (S) and a mesoscopic layer of a normal
ferromagnetic metal (F) is investigated for arbitrary transparency of theSF interface and
arbitrary value of the proximity effect. For the case of high transparency of theSF interface and
a low value of the proximity effect, the spatial distribution of the order parameter in theS
layer and the densities of quasiparticle states at the interface for theS and F layers are found
analytically as functions of the exchange field. It is shown that in mesoscopicS/F
structures the single-particle excitations are polarized in both theF andS metals. © 2000
American Institute of Physics.@S1063-777X~00!00602-2#
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Recent studies1–5 have convincingly demonstrated th
superlattice structures of a ferromagnet (F) with a supercon-
ductor (S) have qualitatively different behavior, dependin
on the relative values of such parameters as the transpar
of the SF interface, the strength of the proximity effect, th
value of the exchange field, the relative degree of kinetic
diffusional character of the motion of quasiparticles, e
When these properties of the system are correctly taken
account, one can explain qualitatively~and in a number of
case predict! such novel effects as oscillations of the critic
temperature of the superconducting transition inS/F multi-
layers, the periodically reentrant superconductivity ofSF su-
perlattices, etc.2–5 Bimetal S/F structures also have a dive
sity of physical properties. For example, rece
experiments6,7 with S/F contacts~with the ferromagnetic
metals Ni, Co, Fe, NiMnSb, Ni0.8Fe0.2, and La0.7Sr0.3MnO3!
have shown that Andreev reflection is strongly suppresse
the spin polarization of the electrons on the Fermi surf
increases. At the same time, it has been found8 that inS/F/S
contacts with a finite transparency of the interface and a
perparamagnetic state of theF layer ~Gd!, the Andreev re-
flection can be substantially enhanced by applying an ex
nal magnetic field~i.e., by increasing the spin order of theF
layer!. A strong mutual influence of magnetism and sup
conductivity is also observed inS/F nanostructures.9

The theory of tunnel junctions of theSNINSor SNIS
types~N is a normal nonmagnetic metal, andI is an insula-
tor! with arbitrary transparency of theSN interface has now
attained a significant level of development~see, e.g., Refs
10 and 11!; nevertheless, a general theory of tunnel conta
in the case when the normal metal is ferromagnetic does
exist. The fundamental difference between nonmagnetic
ferromagnetic normal metals lies in the spin polarization
the conduction electrons in theF layer. As inS/F structures,
because of the proximity effect with theS layer, supercon-
ducting correlations are also induced in theF layer, but the
exchange polarization of the electrons on the Fermi surf
1151063-777X/2000/26(2)/6/$20.00
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alters the pairing conditions. Two groups~subbands! of elec-
trons arise in theF layer: Cooper pairs form quasiparticle
consisting of the states$p↑,(2p1Dp)↓% and of the states
$p↓,(2p2Dp)↑%, where Dp;Hexc/vF , Hexc is the ex-
change field in energy units, andvF is the Fermi velocity. If
the spin–orbit scattering of the electrons is small enough,
pairs from different spin subbands essentially do not mix.11,12

In this paper we develop a theory of the proximity effe
for layeredS/F systems with a massiveS layer and a thin
~mesoscopic! F layer, and with an arbitrary transparency
the SF interface. General relations are given by which o
can reduce the problem of the proximity effect to one
solving the Usadel equations for theS layer with appropriate
boundary conditions. Using the general expressions
tained, we investigate analytically the proximity effect in a
S/F bilayer with a high transparency of the interfaces b
tween layers. We find the density of states and the spa
distribution of the order parameter in theS andF metals, and
we discuss effects connected with the exchange polariza
of conduction electrons on the Fermi surface in theF metal.
In particular, we show that for a finite transparency of t
interface between theS and F layers a spin splitting of the
density of quasiparticle states is observed in theS layer as
well.

1. Let us consider the proximity effect in a bilayer co
sisting of a massive superconductor of thicknessdS and a
thin ferromagnet of thicknessdF . The boundary of theF and
S metals will be assumed flat; its transparency can be a
trary. Suppose that the conditions of the ‘‘dirty’’ limit ar
satisfied for theS andF metals, and that the critical tempera
ture TC of the superconducting transition for theF metal is
zero. We shall assume that the regionx>0 is occupied by
theS metal, a layer2dF<x,0 is occupied by theF metal,
and that all quantities depend only on thex coordinate,
which is along the normal to the interfacial surface. Belo
we shall consider a case of greater theoretical interest, v

dS@jS ,dF!min~jF ,j!; ~1!
© 2000 American Institute of Physics
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jS5S DS

2pTC
D 1/2

and jF5S DF

2Hexc
D 1/2

, j5S DF

2pTC
D 1/2

are the effective coherence lengths of theS andF metals~for
the ferromagnetic metal the choice of a ‘‘convenient’’ coh
ence length depends on the relative values of the crit
temperatureTC of theS metal and the parameterHexc!, DS,F

are the diffusion coefficients of theF and S metals, and
\5kB51. The first condition in~1! allows us to neglect the
decrease in the critical temperature of theS/F bilayer in
comparison with the critical temperature of the massiveS
metal, and the second condition allows us to treat all
quantities as spatially independent within theF layer.

As we know, the superconductivity of ‘‘dirty’’ metals is
conveniently described by the quasiclassical Usadel eq
tions. For the case when all quantities depend on a sin
coordinatex and the spin–orbit scattering can be neglect
the general form of the Usadel equations for a single s
band of a superconducting ferromagnetic metal is as follo
~see, e.g., Ref. 13!:

2
DF

2

d

dx S GF↑↑
d

dx
F̃F↑↓2F̃F↑↓

d

dx
G̃F↓↓D

52ṽF̃F↑↓1
DF

2
~GF↑↑1G̃F↓↓!, ~2!

2
DF

2

d

dx S G̃F↓↓
d

dx
FF↑↓2FF↓↑

d

dx
GF↑↑D

52ṽFF↓↑1
DF*

2
~GF↑↑1G̃F↓↓!, ~3!

GF↑↑G̃F↓↓1FF↓↑F̃F↑↓
1 51. ~4!

Here Gss8(x,v), Fss8(x,v) and G̃ss8(x,v), F̃ss8(x,v)
are the Green functions integrated over energy and aver
over the Fermi surface; they are defined in the standard
~see, e.g., Ref. 14!:

G↑↑~1,2!52^T̂tC↑~1!C↑
1~2!&,

F↓↑~1,2!5^T̂tC↓
1~1!C↑

1~2!&,

G̃↓↓~1,2!52^T̂tC↓
1~1!C↓~2!&,

F̃↑↓~1,2!5^T̂tC↑~1!C↑~2!&, etc;

ṽ5v1 iH exc, v5pT(2n11), n50,61,62... are the Mat-
subara frequencies,D(x) is the order parameter;Cs(1),
Cs

1(1) are the Heisenberg operators. We note that in
general case the exchange field breaks the symmetry o
system with respect to rotation in spin space both in theF
layer and, on account of the proximity effect, in theS layer.
It can be shown, however,13,15 that for singlet pairing and in
the absence of spin–orbit scattering and external magn
fields, the whole system of Usadel equations decompo
into two equivalent subgroups, which go over to each ot
under interchange of the indices↑↔↓ and reversal of the
sign of the exchange field,Hexc↔2Hexc. Assuming that the
indicated conditions are met, we shall henceforth drop
spin indices in Eqs.~2!–~4!.
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For theS layer the Usadel equations have the stand
form ~see, e.g., Ref. 14!. We shall assume below that for
nonsuperconductingF metal the bare value of the order p
rameterDF

050, but thatFFÞ0 on account of the proximity
effect with the superconductor. It is convenient to take in
account the normalization of the Green function explici
and to introduce~in analogy with Ref. 16! modified Usadel
functions FS,F defined by the relationsG5v/(v2

1FF̃)1/2, F5GF/v, etc. The system of Usadel equatio
now becomes:

for the S metal

FS5DS1jS
2 pTC

vGS
@GS

2FS8#8,

GS5
v

~v21FSF̃S!1/2
, ~5!

DS ln~T/TC!12pT (
v.0

@~DS2FSGS!/v#50; ~6!

for the F metal

FF5j2
pTC

ṽGF

@GF
2FF8 #8, GF5

ṽ

~ṽ21FFF̃F!1/2
. ~7!

The equations for the functionsF̃ have a form analogous to
~5!–~7!. In Eq. ~7! we have used the effective coheren
length j of a normal nonmagnetic metal with a diffusio
coefficient DF ; this effective coherence length, which w
have defined in Eq.~1!, is convenient to use instead ofjF for
analysis of the limitHexc→0. In these equations we hav
used a prime to denote differentiation with respect to
coordinate x. We note that for HexcÞ0 the functions
FS,F(v) lose symmetry with respect to a change in the s
of the energy variablev. This is one of the ways in which an
S/F bilayer differs from aS/N bilayer.

Equations~5!–~7! must be supplemented by the boun
ary conditions for the functionsFS andFF . It follows from
Eq. ~5! that in the interior of theS layer

FS~`!5DS~`!5D0~T!, ~8!

whereD0(T) is the order parameter of a spatially homog
neous superconductor at temperatureT in the BCS theory. At
the outer boundary of the ferromagnet the boundary con
tion is FF8 (2dF)50. The boundary conditions at the inte
face between the ferromagnet and superconductor need
discussed in some detail; ordinarily such boundary con
tions are imposed for the functionsG andF and for the case
T→TC without discussion~see, e.g., Refs. 11 and 12!.
Meanwhile, the conventional way of writing the bounda
conditions presupposes that a number of physical condit
are met which may not hold for all realS/F contacts.

2. We obtain the boundary conditions on the Usad
equations for theSF interface at arbitrary temperature
T<TC by the same approach as was used in Ref. 17 to
the boundary conditions at an interface between two su
conductors. The first condition on the Usadel equations
sures continuity of the supercurrent flowing through theSF
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boundary at any value of the interfacial transparency~see,
e.g., Eq.~15! of Ref. 17!. It is easy to see that, when th
normalization~4! is taken into account, the matrix expressi
~15! in Ref. 17 only needs to be written for the nonze
off-diagonal components:

pF
2 l FS FF

dGF

dx
2GF

dFF

dx D U
x50

5pS
2l SS FS

dGS

dx
2GS

dFS

dx D U
x50

,

where pF,S are the momenta of the electrons at the Fe
surface, andl F,S are the electron mean free paths for theF
andS layers, respectively. Going over to the modified Usa
functionsFS5vFS /GS and FF5ṽFF /GF , we obtain the
following form for the first boundary condition on thes
functions at theSF interface:

1

ṽ
gjGF

2FF8U
x50

5
1

v
jSGS

2FS8U
x50

. ~9!

Hereg5rSjS /rFj is the proximity effect parameter, whic
characterizes the intensity of the superconducting corr
tions induced in theF layer on account of its proximity to
theS layer;rS,F are the resistivities of theS andF metals in
the normal state.

The second boundary condition takes into account
effects of a finite transparency of theSF interface~see, e.g.,
Eq. ~22! of Ref. 17!. As in the case of the first boundar
condition, the matrix equation~22! of Ref. 17 needs to be
written only for the nonzero off-diagonal components:

l FS FF

dGF

dx
2GF

dFF

dx D U
x50

5
3

4 K xFd

R L ~FFGS2FSGF!U
x50

,

whered is the transparency of theSF interface;R515d is
the coefficient of reflection of electrons from the interfac
and xF5pF /pF

x . For modified Usadel functions the secon
boundary condition at theSF interface becomes

jgBFGFFF8 ux505ṽGS~FS /v2FF /ṽ !ux50 , ~10!

wheregBF5 2
3^xFd/R&21l F /j is a parameter that takes int

account the effects of a finite transparency of the interfa
For gBF50, i.e., for a totally transparent boundary (d51),
condition ~10! goes over toFS /v5FF /ṽ.

Relations ~9! and ~10! generalize the problem of th
proximity effect for arbitrary transparency of theNS
interface10,16 to the case when the normal metal is a fer
magnet. An additional physical condition for the validity
relations~9! and ~10! in comparison with anN metal is the
assumption that the exchange splitting of the subbands,pF

6

5A2mAEF6Hexc is substantially smaller than the Fermi e
ergy EF , i.e., Hexc!EF ~m is the effective mass of an elec
tron!. In this case the difference in the densities of states
transparencies of theSF interface for electrons with opposit
spin orientations can be neglected. In such ferromagn
metals as Ni, Gd, etc. the polarization of the electrons at
i

l

a-

e

,

e.

-

d

tic
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temperatures is not more than 10%, and the experime
results on the induced superconductivity in films of the
ferromagnets mesh quite well with the ‘‘conventional’’ ide
about the proximity effect.18,19 In the ferromagnetic phase o
perovskite lanthanum manganates the spin polarization of
charge carriers has already reached nearly 100% at liq
nitrogen temperatures~see, e.g., Ref. 20!, and the value of
the spin splitting of the Fermi surface is not small. Curious
experimental studies of proximity structures between a
perconductor and a material exhibiting colossal magneto
sistance have revealed some unusual properties~see, e.g.,
Refs. 21 and 22!.

3. Let us show that the study of the induced superc
ductivity in S/F structures with a thinF metal @dF satisfies
condition~1!# can be reduced to consideration of a bounda
value problem for theS layer. Indeed, the differential equa
tion ~7! can be solved by iteration with respect to the para
eter dF /j. To a first approximation one can neglect th
nongradient term and, taking into account thatFF8 (2d)
50, we obtainFF5const. In the next approximation in
dF /j we find, after linearizing Eq.~7!,

FF8 ~x!5
ṽFF~0!~x1d!

j2pTCGF
. ~11!

Here in the integration we have again taken into account
condition that FF8 (2d)50. Determining FF8 (x50) from
Eq. ~11! and substituting it into boundary conditions~9! and
~10!, we obtain the boundary condition for the functionFS :

jSGSFS8ux50

5gMṽFSY FpTCS 11
2GSgBṽ

pTC
1

ṽ2gB
2

~pTC!2D 1/2GU
x50

~12!

and an equation determining the unknown value of the fu
tion FF at x50:

FF~0!5GSFSY FvS gB

pTC
1

GS

ṽ D GU
x50

. ~13!

Here gM5gdF /j, gB5gBFdF /j. In the particular casegB

50 ~complete transparency!, Eqs. ~12! and ~13! take the
form jSGSFS8ux505gMṽFS /(pTC)ux50 and vFF(0)
5ṽFS(0), respectively. The spatial dependence of the fu
tions in the F layer, which is of mesoscopic thicknes
dF!j, can of course be neglected. As a result, the prob
of the proximity effect for a massive superconductor with
thin layer of a ferromagnet reduces to solving equations~5!
and~6! for the S layer with the boundary conditions~8! and
~12! and to Eq.~13!. The latter determines the modifie
Usadel functionFF characterizing the superconductivity in
duced in theF layer on account of the proximity.

The degree to which theS andF layers influence each
other depends on the parametersgM andgB and the value of
the exchange interactionHexc. In the general case the prob
lem can be solved only by numerical methods, but in a nu
ber of particular limiting cases it admits analytical solutio
Below we present the results of an analytical investigation
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a bilayer with a small proximity effect parameter and a hi
transparency of theSF interface:gM!1, gB!1.

4. In the limit gM!1, gB!1, it follows from condition
~12! in the zeroth approximation ingM that jSFS8(0)50 for
v!Vg'pTC /gM . Since the self-consistency equation~6!
converges forv!VC'pTC (VC!Vg), one can assume
that in this approximation the functionsFS andDS are spa-
tially homogeneous:FS(x)5DS(x)5D0 , v!Vg . In this
same approximation, by substituting the explicit form of t
function GS into Eq. ~13! we obtain for the functionFF

FF~0!5D0ṽ/~gBṽb21v!,

whereb5@(v21D0
2)1/2/(pTC)#1/2.

Thus in the zeroth approximation ingM the functionFF

falls off asgB increases~as the transparency decreases!; the
jump in the order parameter at the interface,FS(0)
2FF(0), increases.

In the next approximation ingM , by linearizing the Us-
adel equation~5! for FS(x) and making use of the fact tha
FS(`)5D0 , we obtain the general solution of equation~5!
in the form FS(x)5D01C exp(2bx/jS), where C5const.
Substituting this solution into the boundary condition~12!,
we obtain a solution forFS(v,x) in the form

FS~v,x!5D0F12
gMbṽ exp~2bx/jS!

gMbṽ1vA G , ~14!

where

A[A~v!5F11
gBṽ

~pTC!2 S 2v

b2 1gBṽ D G1/2

.

Using Eq.~14! for x50 and relation~13!, we find an expres-
sion for FF(v,0):

FF~v,0!

5
D0pTCA

pTCAv/ṽ1gMbpTC1gB@~vA1gMbṽ!21D0
2A2#1/2.

~15!

It follows from this relation that as eithergB or the suppres-
sion parametergM increases, the functionFF falls off, just
as in the case of anS/N bilayer16 or anS/S8 bilayer.10 For
Hexc→0 the quantityṽ→v, and the solution~14! repro-
duces all the results obtained in Refs. 10 and 16 for anS/N
bilayer withgM!1, gB!1. In the case of a completely tran
parent interface (gB50) the solution of the Usadel equation
becomes

FS~v,x!5D0S 12
gMbṽ exp~2bx/jS!

gMbṽ1v D .

Then the superconductivity induced in theF layer is charac-
terized by a functionFF(0)5D0ṽ/(gMṽb1v), which
falls off as the parametergM increases.

Knowing the functionFS(v,x), we can use Eq.~6! to
calculate the spatial behavior of the parameterDS(x) that
determines the energy gap in theS layer:

DS~x!5
2pT(v.0FS~v,x!GS~v,x!/v

ln~T/TC!12pT(v.01/v
. ~16!
The summation over frequencies in Eq.~16! is cut off by the
Debye frequencyvD . Figure 1 shows the curves of the sp
tial dependence ofDS(x) for gM50.1, gB50.1 at low tem-
peratures for various values of the exchange interaction
rameterHexc. As in the case ofS/N andS/S8 bilayers, the
BCS value of the order parameter is reached at a dista
into theS layer of the order of severaljS . We see from Fig.
1 that the value of the order parameter near theSF interface,
DS(0), decreases with increasing exchange interaction
accordance with Eq.~14!, one can speak of ‘‘induced’’ ex-
change correlations in theS layer, which destroy Coope
pairs. At equal values of the exchange interaction param
Hexc the order parameterDS(0) at theSF interface decrease
with increasing transparency of the boundary, which lead
a decrease in the jump of the amplitude of the Cooper p
in going from theS to the F layer. The behavior here is
completely analogous to the situation in anSN system~see
Refs. 10 and 16!. At small values of the parametergM a
decrease in the transparency of the boundary~i.e., an in-
crease in the parametergB! will lead to a sharp increase in
the jump of the order parameter of the system at the bou
ary.

5. Let us use the expressions obtained above to inve
gate the influence of the exchange field on the density
states in theS andF layers. The densities of states for qu
siparticles in theS andF layer, by definition, are given by

NS,F~«,x50!5Re$GS,F↑↑~«,0!1GS,F↓↓~«,0!%

5NS,F↑~«,0!1NS,F↓~«,0!. ~17!

For our case, that of finite transparency, the densities
states at theSF interface are different in theF andS layers.
Using Eq.~14! for x50 and Eq.~15!, we obtain the follow-
ing expressions for the Green functions of a specified s
subband in theS andF layers at theSF interface:

GS↑↑~v,0!5~vA1gMbṽ!R21~v!,

GF↑↑~v,0!5
vA1ṽ@gMb1gBR~v!#

$D0
2A21@vA1ṽ~gMb1gBR~v!!#2%1/2,

FIG. 1. Spatial dependence of the order parameter in theS layerDS(x) near
the SF interface forgM50.1, gB50.1 and for different values of the ex
change fieldHexc/pTC50, 3, 5, and 10~curves1, 2, 3, and4, respectively!,
T/TC!1. The order parameter in theF layer,DF(x), in this approximation
is constant and equal to the value at the interface,DS(0).
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whereR(v)5$D0
2A21(vA1ṽgMb)2%1/2, andA[A(v) is

defined according to~14!. By performing an analytical con
tinuation of the functionsGS↑↑(v,0) andGF↑↑(v,0) onto the
complex plane by means of the substitutionv→2 i«, we
can obtain the explicit form of the expressions for the d
sities of states at the interface for each of the spin subba
NS↑(«,0), NS↓(«,0) andNF↑(«,0), NF↓(«,0). The resulting
expressions, which are too awkward to present here, im
that for HexcÞ0, gMÞ0, andgBÞ0 the density of quasipar
ticle states is spin-split in both theS and F layers:
ReGS,F↑↑ÞReGS,F↓↓ . This is because of the initial exchang
splitting of the Fermi surface in theF metal, which is mani-
fested in the characteristics of the united system—theF/S
bilayer. The symmetry of the density of states with respec
the energy variable is also lost: ReGS,F↑↑(«.0)
ÞReGS,F↓↓(«,0), although the total densityNS,F(«) in ~17!,
as is readily seen, is symmetric.

Figure 2 shows the curves of the densities of states
one of the subbands in theF layer andS layer,NF↑(«,0) and
NS↑(«,0), as functions of the energy forT!TC , gM50.1,
gB50.1 and for different values of the exchange energyHexc

~the values ofHexc and« are normalized topTC!. As we see
from Fig. 2, the exchange interaction leads to spin-splitt
of the density of quasiparticle states not only in theF layer
but also in theS layer; as we have said, this is due to t
exchange splitting of the Fermi surface in theF metal. For

FIG. 2. Densities of quasiparticle states with a specified spin orientatio
the S ~a! andF ~b! layers of anS/F sandwich forgM50.1, gB50.1, and
various values of the exchange fieldHexc/(pTC)50, 1, 2, 3, and 4~curves
1, 2, 3, 4, and5, respectively!; T/TC!1.
-
s:

ly

o

r

g

HexcÞ0 there are three features in the density of sta
NF↑(«,0) in the energy region«,0. One of them corre-
sponds to the BCS valueu«u5D0(T) and is less pronounce
than in the nonmagnetic case~cf. with curve1 for Hexc50!.
The second is due to the presence of the true gapu«u
5DS(T) in the spectrum of single-particle excitations a
reflects the renormalization of the gap in theS layer on ac-
count of the proximity effect. As the exchange interaction
increased in strength, the gapDS(T) decreases in absolut
value, and the height of the spikes atu«u5D0(T) falls off.
Finally, the feature at the lowest values ofu«u corresponds to
DF(T), i.e., to the induced value of the gap in theF layer. In
the region of positive energies«.0 we observe one BCS
singularity which is smeared out as the exchange is
creased.

6. We have investigated the superconducting proxim
effect in S/F structures having arbitrary transparency of t
SF interface and arbitrary value of the proximity effect b
tween a massive superconductor and a ferromagnet of m
scopic thickness. Both metals correspond to the ‘‘dirt
limit. Analytical solutions were obtained for the case of hig
transparency of the interface and a low proximity effect. T
density of single-particle states and the spatial dependenc
the order parameter in theS andF metals are calculated a
functions of the strength of the exchange field, the transp
ency of the interface, and the value of the proximity effe
We showed that in mesoscopicS/F structures the density o
single-particle states is spin-polarized in both theF and S
metals. We assume that it is particularly important to take
spin polarization of the density of states into account wh
interpreting the properties ofF/S/F tunnel contacts with a
thin layer of theS metal. This type of tunnel contacts is no
considered promising for use as the functional elements
new type of magnetoresistive devices whose magnetore
tive and superconducting properties can be controlled by
applied voltage.23
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Surface polaritons in a finite superlattice with a displaced layer in a quantizing
magnetic field

N. N. Beletski  and Yu. V. Bludov*
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12, 61085 Kharkov, Ukraine
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A theoretical study is made of surface polaritons~SPs! in a weakly disordered superlattice
consisting of a finite number of infinitely extended two-dimensional electron layers~2DELs!
placed in an external static quantizing magnetic field directed perpendicular to the 2DELs.
The filling factor of the Landau levels is assumed to be the same in all the 2DELs. The disorder
in the superlattice consists in having one of the interior 2DELs displaced from the position
of periodicity by a certain distanceD. The dispersion and energy characteristics of SPs are
investigated in the case when a finite superlattice is embedded in a uniform dielectric
medium. It is shown that under conditions of the integer quantum Hall effect, all the characteristics
of the SPs are represented by quantized values. It is found that in a finite, weakly disordered
superlattice there exists a local SP mode whose properties differ substantially from those
of the usual SP modes in a finite ordered superlattice. The conditions under which the phase and
group velocities of the SPs in a finite, weakly disordered superlattice can be substantially
lower than in an isolated 2DEL are determined. It is found that when dissipation is taken into
account, a new SP mode arises in a weakly disordered superlattice–an additional SP
whose properties depend strongly on the electron momentum relaxation frequencyn and on the
displacementD. © 2000 American Institute of Physics.@S1063-777X~00!00702-7#
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1. INTRODUCTION

Surface polaritons~SPs! in semiconductors with a supe
lattice ~SL! have some interesting properties. These h
been investigated previously in ordered~periodic! SLs:
infinite,1–4 semi-infinite,5–7 and finite.8–12 There has also
been research interest in weakly disordered superlatt
~WDSLs!, which have only a small disruption of the perio
icity. This disruption may be due to the presence of one
several layers which either have a different concentration
charge carriers~a ‘‘defect’’ layer! or have been displace
from the position of periodicity by a certain distanceD.

Surface polaritons have been investigated in infinite,13–16

semi-infinite,17,18and finite16,19–21WDSLs. The systems con
sidered include WDSLs with a single ‘‘defect’’ layer,13,15–20

finite WDSLs with two outermost ‘‘defect’’ layers,21 and
also an infinite WDSL with a single layer displaced from t
position of periodicity.14,15 It was shown in those papers th
the spectrum of SPs in an WDSL differ substantially fro
the spectrum of SPs in ordered superlattices~OSLs!. For
example, in these systems there exists a local mode of
the electromagnetic field of which is localized in the regi
where the periodicity of the SL is disrupted. This local mo
can be higher or lower in frequency than the other SP mo
in the WDSL, depending on whether the ‘‘defect’’ layer h
a higher~enrichment layer! or lower ~depletion layer! elec-
tron concentration than the other layers. In addition, it h
1211063-777X/2000/26(2)/7/$20.00
e

es

r
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s

been shown14,15 that in an infinite WDSL containing a singl
displaced layer there can exist local SP modes whose dis
sion curves lie outside the existence region of SPs in
infinite OSL.

In this paper we investigate SPs in a WDSL consist
of a finite number of two-dimensional electron laye
~2DELs!, one of which is displaced from its position of pe
riodicity by a distanceD. We show that under conditions o
the integer quantum Hall effect~IQHE! all the characteristics
of the SPs in a finite WDSL are represented by quanti
values. We find that the SP spectrum in a WDSL has a lo
SP mode whose electromagnetic field is localized in the
gion of the displaced 2DEL. We find that near the cyclotr
resonance,v;V ~V5eB/m* c is the electron cyclotron fre-
quency,B is the magnetic field,e andm* are the charge and
effective mass of the electron, andc is the speed of light!,
the group velocity of the SPs undergoes jumps as the ex
nal magnetic field is varied, the value of the jumps bei
determined by the fine structure constanta5e2/\c, the in-
terlayer distanced, the displacementD, and the dielectric
constants of the media making up and surrounding
WDSL. We also show in this paper that when the dissipat
in the WDSL is taken into account, a new SP mo
appears—an additional SP—whose properties are largely
termined by the electron momentum relaxation frequencn
in the 2DEL and by the value ofD.
© 2000 American Institute of Physics
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2. DISPERSION RELATION

Let us consider the SL in Fig. 1, which consists of
finite numberM of infinitely extended 2DELs with Landau
level filling factorsNm ~Nm52p l 2nm , l 5(c\/eB)1/2 is the
magnetic length, andnm is the electron density in themth
2DEL m50,1,...M21!, which lies in the planez5zm . The
static quantizing magnetic fieldB is directed perpendicula
to the 2DEL along thez axis. We shall assume that th
region of space 0,z,zM21 is filled with a dielectric with a
dielectric constant«, while the semi-infinite media atz,0
andz.zM21 are dielectrics with dielectric constants«1 and
«2 , respectively~an «1–« –«2 geometry!.

The solutions of Maxwell’s equations for the TM an
TE modes have the following form:

TM modes:

0,z,zM21

Hy~k,v,z!5B1
mep~z2zm!1B2

me2p~z2zm!,

Ex~k,v,z!52 i
cp

v«
@B1

mep~z2zm!2B2
me2p~z2zm!#,

z,0

Hy~k,v,z!5A1ep1z, Ex~k,v,z!52 i
cp1

v«1
A1ep1z,

z.zM21

Hy~k,v,z!5A2e2p2~z2zM21!,

FIG. 1. Superlattice consisting of a finite numberM of two-dimensional
electron layers embedded in a dielectric medium with dielectric constan«
~for 0,z,zM21!, «1 ~for z,0!, and«2 ~for z.zM21!.
Ex~k,v,z!5 i
cp2

v«2
A2e2p2~z2zM21!;

TE modes:

0,z,zM21

Ey~k,v,z!5D1
mep~z2zm!1D2

me2p~z2zm!,

Hx~k,v,z!5 i
cp

v
@D1

mep~z2zm!1D2
me2p~z2zm!#,

z,0

Ey~k,v,z!5C1eP1z, Hx~k,v,z!5 i
cp1

v
C1ep1z,

z.zM21 Ey~k,v,z!5C2e2p2~z2zM21!,

Hx~k,v,z!52 i
cp2

v
C2e2p2~z2zM21!,

where

p5Ak22v2«/c2, pi5Ak22v2« i /c2,

i 51,2; m50,1,...,M22.

As the boundary conditions we use the continuity of t
tangential component of the total electric field of the TE a
TM modes at the boundariesz5zm (m50,...,M21). In ad-
dition, we shall assume that at these boundaries the tan
tial components of their total magnetic field undergo jum
due to the presence of currents in the 2DEL.

The use of the above-indicated boundary conditions
the interior boundariesz5zm (m51,...,M22) gives the fol-
lowing equations for the unknownsD1

m , D2
m , B1

m , B2
m , A1 ,

A2 , C1 , andC2 ;

B1
m2B2

m2~B1
m21epdm2B2

m21e2pdm!50, ~1!

D1
m1D2

m2~D1
m21epdm1D2

m21e2pdm!50, ~2!

D1
m2D2

m2~D1
m21epdm2D2

m21e2pdm!

52 i
4pv

c2p
syy

~m!~D1
m1D2

m!2
4p

«c
syx

~m!~B1
m2B2

m!,

~3!

B1
m1B2

m2~B1
m21epdm1B2

m21e2pdm!

5 i
4pp

v«
sxx

~m!~B1
m2B2

m!2
4p

c
sxy

~m!~D1
m1D2

m!. ~4!

At the z50 boundary we have the following system of equ
tions:

A15
«1p

p1«
~B1

0 2B2
0 !, C15D1

0 1D2
0 , ~5!

D1
0 2D2

0 2
p1

p
C152 i

4pv

c2p
syy

~0!~D1
0 1D2

0 !

2
4p

«c
syx

~0!~B1
0 2B2

0 !, ~6!
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B1
0 1B2

0 2A15 i
4pp

v«
sxx

~0!~B1
0 2B2

0 !

2
4p

c
sxy

~0!~D1
0 1D2

0 !. ~7!

Finally, at the boundaryz5zM21 we find

A252
«2p

p2«
~B1

M22epdM212B2
M22e2pdM21!,

C25D1
M22epdM211D2

M22e2pdM21, ~8!

D1
M22epdM212D2

M22e2pdM211
p2

p
C2

5 i
4pv

c2p
syy

~M21!~D1
M22epdM211D2

M22e2pdM21!

1
4p

«c
syx

~M21!~B1
M22epdM212B2

M22e2pdM21!, ~9!

B1
M22epdM211B2

M22e2pdM212A2

52 i
4pp

v«
sxx

~M21!~B1
M22epdM212B2

M22e2pdM21!

1
4p

c xy
~M21!~D1

M22epdM211D2
M22e2pdM21!, ~10!
wheredm5zm2zm21 .
In Eqs. ~3!, ~4!, ~6!, ~7!, ~9!, and ~10! sab

(m)(v) are the
components of the conductivity tensor of the 2DEL (a,b
5x,y), for which we shall use the expressions obtained
Refs. 22 and 23 in the absence of spatial dispersionkl
!1):

sxx
~m!~v!5syy

~m!~v!5
e2

h

Nmg

11g2 ,

sxy
~m!~v!52syx

~m!5
e2

h

Nm

11g2 . ~11!

Hereg5(n2 iv)/V, andn is the electron momentum relax
ation frequency in the 2DEL.

As we know, the linear homogeneous system of eq
tions ~1!–~10! has a solution only if its determinant is equ
to zero. Thus the dispersion relation that we seek, wh
describes the propagation of SPs in a finite SL, can be w
ten in the form
U G1 G2 G3 G4

P1 P2 P3 P4

epdM21~11w! e2pdM21~12w! 22«bM21epdM21 22«bM21e2pdM21

2bM21epdM21 22bM21e2pdM21 epdM21~11c! 2e2pdM21~12c!

U50. ~12!
m

Here

w5u212aM21 , c5m222sM21 ,

Gi5~12u122a0!F1i1~11u112a0!F2i

12«b0~F3i1F4i !,

Fi52b0~F2i2F1i !1~12m112s0!F3i2~11m122s0!F4i ,
u15
«1p

p1«
, u25

«2p

p2«
, m15

p1

p
, m25

p2

p
,

am5 i
2pp

v«
sxx

~m! , sm5 i
2pv

c2p
sxx

~m! , bm5
2p

«c
sxy

~m! .

The general transfer matrix of a SL has the for
F̂5)m21

M22T̂m , where
T̂m5S e2pdm~12am! ame2pdm «bme2pdm «bme2pdm

2amepdm epdm~11am! «bmepdm «bmepdm

2bme2pdm bme2pdm e2pdm~11sm! sme2pdm

bmepdm 2bmepdm 2smepdm epdm~12sm!

D .
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In the case when the SL consists of two 2DELs (M
52) embedded in a homogeneous dielectric medium~«1

5«25«, the« –« –« geometry!, the dispersion relation~12!
agrees with the dispersion relation~3.11! obtained in Ref. 23.

3. NUMERICAL RESULTS

Let us consider a finite WDSL in which all of the 2DEL
have the same Landau-level filling factors (N05N15...
5NM215N), and one of the interior 2DELs (m51,...,M
22) is displaced relative to the position of periodicity by
distanceD. We write the expression for the distancedm be-
tween 2DELs in a WDSL in the following way:dm

5D(dm,q2dm,q11)1d. Heredm,q is the Kronecker delta,d
is the distance between 2DELs in the OSL,q51,...,M22 is
the number of the displaced 2DEL. As a model for the 2D
we take a GaAs/AlxGa12xAs heterostructure with an effec
tive carrier massm* 50.068m0 ~m0 is the free electron
mass! and a dielectric constant«512.

Figure 2 shows the SP spectrum~heavy solid curves! in
a finite WDSL withM55, G50 ~G5n/V is the dimension-
less electron momentum relaxation frequency!, d50.1 ~d
5Vd/c is the dimensionless distance between neighbo
2DELs in the ordered periodic SL!, D̃50.05 ~D̃5VD/c is
the dimensionless displacement!, andN510 for the« –« –«
geometry in the case whenq51. Plotted along the ordinat
is the dimensionless frequencyv/V, and along the absciss
is the dimensionless wave numberck/V. For comparison,
the thin solid curves18–58 are the dispersion curves descri
ing the propagation of SPs in an OSL withd50.1 and the
same parameters as for the WDSL under study. Also sh
in Fig. 2 is the dispersion curve6 for SPs in an isolated
2DEL with N510, while the dashed line7 is the light line
v5kvd ~vd5c/A« is the speed of light in the dielectric fill
ing the WDSL!.

As we see in Fig. 2, in the long-wavelength region t
SP spectrum in the WDSL is almost no different from the
spectrum in the OSL. This is due to the fact that at la
wavelengths the electromagnetic field of the SPs is wea
‘‘pinned’’ to the 2DEL, and the position of the 2DEL in th
WDSL does not materially affect the SP spectrum. At t

FIG. 2. Spectrum of SPs in a finite WDSL for«15«25«512, N510,

d50.1, D̃50.05, n50, M55, andq51.
g

n

e
ly

e

same time, in the short-wavelength region the difference
the specific spectra in the weakly disordered and orde
superlattices becomes more noticeable. Here the disper
curves5 and58, corresponding to SPs with an in-phase o
cillation of the electromagnetic field in all the 2DELs, in th
long-wavelength limit (k(M21)d!1) approach the disper
sion curve for SPs in an isolated 2DEL with an effecti
Landau-level filling factorNeff5MN. In the low-frequency
region (v!V) the phase velocity of the SPs correspondi
to dispersion curves5 and 58 is practically equal tovd . In
the vicinity of the cyclotron resonance, however, the ph
and group velocities of the SPs decrease sharply, and at
quencies in the regionv.V they become slow waves. W
note that in the case under study the dispersion curve5 lies at
higher frequencies than dispersion curve58. We see from
Fig. 2 that the SPs corresponding to dispersion curves1–4
and 18–48 have the following characteristic features. Fir
they all exist only in the vicinity of the cyclotron resonanc
and have an end point of termination of the spectrump
50, lying on the light line 7. Second, their group velocity
substantially lower than the group velocity of the SPs cor
sponding to dispersion curves5 and58. In addition, the dis-
persion curve1 ~we shall show below that it corresponds
a local SP mode! lies at lower frequencies than dispersio
curve18. We note that in the limitdp→`, when the neigh-
boring 2DELs do not influence one another, all of the d
persion curves asymptotically approach the dispersion cu
for SPs in an isolated 2DEL withN510 ~curve6!.

Let us examine in more detail the dependence of the
spectrum on the value of the displacement of the 2DEL
the WDSL. This dependence is shown in Fig. 3 forM55,
N510, d50.1, G50, ck/V510, «512 in the case of the
« –« –« geometry for three different choices of the displac
2DEL, at positionsq51 ~a!, q52 ~b!, and q53 ~c!. The
dimensionless frequencyv/V is plotted along the ordinate

and the dimensionless displacementD̃5VD/c along the ab-
scissa. We see that the frequency of the SPs correspondi

dispersion curve1 decreases with increasinguD̃u. We note
that the behavior of dispersion curve1 does not depend on
the number of the displaced 2DEL~on the value ofq!. At the
same time the properties of the SPs corresponding to dis
sion curve5 depend strongly onq. For example, forq52
the SP frequency increases monotonically with increas

uDu. For q51, however, the SP frequency as a function ofD̃

has a minimum atD̃'20.03. Forq53 this minimum oc-

curs at D̃'0.03. At the same time, forq52 the SP fre-

quency ~dispersion curves2–4! depends weakly onD̃.

Analogous behavior is found for the dispersion curves2 (D̃

.0) and3 (D̃,0) for q51. Forq53 the dispersion curves

2 (D̃,0) and3 (D̃.0) also depend weakly onD̃. We note
that the frequency of SPs corresponding to dispersion cu
4 can increase~for q51! or increase~for q53! with increas-

ing D̃.
Let us now consider the distribution of the average e

ergy flux of the electromagnetic field of SPs in a fini
WDSL. Figure 4 shows the distribution of thex component
of the Poynting vectorSx(z)5(c2/8p)(E3H* )x for several
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FIG. 3. Dependence of the SP frequency on the displacementD in a finite WDSL forck/V510, «15«25«512, N510, d50.1, n50, andM55 for three
different choices of the displaced 2DEL, at positionsq51 ~a!, 2 ~b!, and 3~c!.
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SP modes with ck/V510.0, D̃50.05: q51, v/V
51.00846 ~a!, q52, v/V51.01438 ~b!, and q53, v/V
51.01976~c!. Plotted along the abscissa is the dimensio
less distancex5zc/V, and along the ordinate is the dime
sionless x component of the Poynting vectorSx(x)/Sx

3(10). The vertical dot-and-dash lines indicate the po
tions of the 2DELs in the WDSL. The dashed curve in F
4c shows the distribution ofSx(x)/Sx(10) in the OSL.

It is seen in Fig. 4a that practically all of the flux o
electromagnetic energy for the SP mode corresponding
dispersion curve1 ~the local SP mode in the WDSL! is con-
centrated in the smallest gap between 2DELs in the WD
This circumstance explains the weak dependence of the
quency of the local SP mode on the number of the displa
2DEL in the WDSL. Figure 3b and 3c shows the distributi
of the energy flux for dispersion curves2 (q52) and3 (q
53), which coincide with the corresponding dispersi
curves for SPs in the OSL. Forq52 ~Fig. 4b! the main part
of the flux of electromagnetic field energy of the SPs is
calized in the region 0,z,d ~far from the displaced 2DEL!.
For this reason the value of the displacementD does not have
a substantial influence on the spectrum of the SP mode
responding to dispersion curve2. For q53 ~Fig. 4c! the
distribution of the energy flux in the WDSL in the regio
z,3d practically coincides with the energy flux distributio
in the OSL. We note that in the regionz.3d the value of
Sx /Sx(10) in the OSL exceeds the value ofSx /Sx(10) in
the WDSL. Here, however, the main part of the flux of ele
-

i-
.

to

L.
e-
d

-

r-

-

tromagnetic field energy of the SPs in the WDSL is conc
trated in the regionz,3d, and the value of the displaceme
D has almost no influence on the spectrum of the given
mode.

Let us now examine the influence of dissipation in t
2DEL on the dispersion properties of the SPs. We shall
sume that the wave numberk is real-valued, while the fre-
quency is complex (v5v81 iv9). In this case the variable
p5p81 ip9 also becomes a complex quantity, and the ex
tence condition for SPs, Rep5p8.0, holds for any values of
k ~includingk50!. Figure 5 shows the curves of the dime
sionless frequencyv8(k)/V ~solid curves! and dimension-
less dampingv9(k)/V ~dashed curves! of SPs as functions
of the dimensionless wave numberck/V in a finite WDSL
with M55, N510, d50.1, D̃50.05, and«512 in the
« –« –« geometry forq51 and two values of the dimension
less electron momentum relaxation frequencyG: G50.1 ~a!
andG50.2 ~b!.

We see from Fig. 5a that in the presence of dissipation
the 2DEL the SP spectrum contains, along with the ordin
modes~dispersion curves1–5! that exist in the WDSL even
in the absence of dissipation, an additional surface polar
~ASP! that corresponds to the dispersion curve6. The exis-
tence of the ASP when dissipation in the 2DEL is taken in
account can be explained by the following circumstance
the G50 case two types of polaritons can exist in t
WDSL: surface polaritons~discussed above!, which exist un-
der the conditionp2.0, and bulk polaritons, which exis
FIG. 4. Distribution of thex component of the Poynting vectorSx(x5Vz/c) for ck/V510.0, D̃50.05, and several SP modes:q51, v/V51.00846~a!,
q52, v/V51.01438~b!, andq53, v/V51.01976~c!.
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under the conditionp2,0. When dissipation is taken int
account (GÞ0), the variablep becomes a complex quantity
and the polaritons existing in the WDSL are therefore neit
purely surface nor purely bulk. The additional SP is a ‘‘qu
sisurface’’ polariton, which is ‘‘pinned’’ to the 2DEL owing
to the presence of dissipation. Its electromagnetic field
weakly ‘‘pinned’’ to the 2DEL, and in the absence of diss
pation it would be a bulk polariton.

It should be noted that the ASP exists only to the left
the light line v85ck/A« ~dashed line7!. The ASP has an
end point of termination of the spectrum which is determin
by the conditionp850. We note that in the entire existenc
region of the ASP its electromagnetic field is weakly ‘‘tied
to the 2DEL, sincep8!p9. At the end point of the spectrum
p850, the electromagnetic field of the ASP becomes de
calized. At the same time, the electromagnetic field of
ordinarily SP is strongly ‘‘tied’’ to the 2DEL, since for them
p8@p9. To the left of the light line, however, the electro
magnetic field of ordinary SPs also becomes wea
‘‘pinned’’ to the 2DEL.

Let us discuss the damping of ordinary SPs in more
tail ~curves 18–58!. First, in the vicinity of the cyclotron
resonance the damping of mode1 ~curve 18! increases
sharply and reaches a value of the order ofG. Second, the
damping corresponding to dispersion curves2–5, is practi-
cally constant and approximately equal toG for all values of
the wave numbers. At the same time, the damping of

FIG. 5. Spectrum of SPs in a finite WDSL for«15«25«512, N510,

d50.1, D̃50.05, M55, andq51 for the casesG50.1 ~a! andG50.2 ~b!.
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ASP ~dispersion curve68! gradually decreases with increa
ing k, going to zero and at the end pointp850 of the ASP
spectrum.

As G increases, the SP spectrum in the WDSL is su
stantially restructured~Fig. 5b!. For example, the fastest S
mode splits into two branches. One of them~dispersion
curve1! practically coincides with the light line and has a
end point of the spectrump850. The second branch of SP
in the vicinity of the cyclotron resonance merges with t
ASP, forming a continuous dispersion curve6. This disper-
sion curve has a minimum near the light line. Here the dam
ing of the fastest SP mode increases sharply in the vicinity
the cyclotron resonance~curve18 is transformed into curve
68! and becomes approximately equal toG. As G increases
further, the end point of the spectrum termination pointp8
50 for dispersion curve1 is shifted to lower frequencies
and the minimum on the dispersion curve6, formed by the
merging of the ASP and the slow part of the fastest mo
becomes smoother.

Let us discuss in more detail how the spectrum a
damping of the ASP change as the value of the displacem
of the 2DEL is varied~at a constant wave numberk!. Figure
6 gives the corresponding dependence for the case w
ck/V51.0, N510, d50.1, «512, G50.1, and three values
of q: 1 ~curves1 and18!, 2 ~curves2 and28!, and 3~curves
3 and38!. Forq51 the frequency of the ASP~solid curve1!
decreases monotonically asD increases, while the dampin
~the dashed curve18! has a minimum atD̃'0.875. At the
same time, forq53 the frequency of the ASP~curve 3!
increases with increasingD, and the minimum of the damp
ing curve3 occurs atD̃520.875. We note that forq52 the
curves of the frequency and damping of the ASP hav
qualitatively different character: with increasinguDu the fre-
quency of the ASP decreases, while the damping increa

We emphasize that all of the above-described charac
istics of SPs in a finite WDSL are quantized quantities, sin
the functionN(B) under conditions of the IQHE is a steplik
function of magnetic field. For this reason the group veloc
of the SPs undergoes jumps whose value is determined
the fine structure constanta, the dielectric constants«, «1 ,
and«2 , and the interlayer distanced and the displacementD.

FIG. 6. Frequency of the additional surface polariton~ASP! versus the
displacementD in a finite WDSL forck/V51.0, «15«25«512, N510,
d50.1, G50.1, andM55.
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4. CONCLUSION

In summary, the properties of SPs in a finite WDS
under conditions of the integer quantum Hall effect have
following characteristic features. First, all of the dispersi
and energy characteristics of the SPs are quantized qu
ties. Second, in the vicinity of the cyclotron resonance
phase velocity of the SPs decreases sharply, while the g
velocity of the SPs undergoes jumplike changes as the m
netic field is changed. The value of the jumps in the
group velocity is determined by the fine structure constana,
the dielectric constants of the weakly disordered superlatt
the interlayer distanced, and the displacementD. Third, the
SP spectrum contains a local mode whose electromagn
field is localized in the gap between the displaced 2DEL a
the 2DEL nearest to it. Here the larger the displacemen
the 2DEL, the lower the values of the phase and group
locities of the local SP mode in the weakly disordered sup
lattice.

When the dissipation in the WDSL is taken into accou
a new, ‘‘additional’’ SP~ASP! arises. The properties of th
ASP depend strongly on the value ofG and the displacemen
D. The dispersion curves of the ASP lie to the left of the lig
line and have an end point of the spectrum, at which th
field becomes delocalized. With increasingG the dispersion
curve of the ASP merges with the fastest mode of the o
nary SPs. Furthermore, the properties of the ASP dep
strongly on the position of the displaced 2DEL in the WDS
The shorter the distance between one of the outerm
2DELs in the WDSL and the 2DEL adjacent to it, the high
the frequency of the ASP and the greater its damping.

In conclusion, we note that the SPs in finite WDS
have low phase and group velocities at frequencies of
order of the cyclotron resonance and higher, and for
reason they can be used to make various devices of mo
nanoelectronics. For example, the fact that the phase velo
of a SP is small~especially for the local SP mode! can be
exploited for the amplification of electromagnetic waves
e
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semiconductor structures by transferring to it the energy o
beam of charged particles~by the principle of the traveling
wave tube!. Furthermore, the size of the damping and t
spectral features of the ASP might be used for the exp
mental determination of the electron momentum relaxat
frequency in 2DELs and the value of the filling factor of th
Landau levels.
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Weak localization of low-frequency sound in a quasi-one-dimensional crystal
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A study is made of the damping coefficient for sound in a dielectric chain crystal containing
isotopic impurities at low temperaturesT<0.1QD ~QD is the Debye temperature!. It is shown that
in the case of strong disorder, effects due to weak localization of the phonon modes have a
substantial influence on the propagation of sound. ©2000 American Institute of Physics.
@S1063-777X~00!00802-1#
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1. It was pointed out in Refs. 1–3 that quasilocal lev
do not appear in the vibrational spectrum of low-dimensio
crystal lattices with diagonal disorder~i.e., with heavy isoto-
pic impurities!, unlike the case for weakly anisotropic cry
tals. Consequently, for the phonon modes in lo
dimensional lattices an important role can be played
coherent backscattering processes in the weak localiza
regime.4,5 In a recent paper6 we analyzed the influence o
such processes on the frequency and temperature behav
the damping coefficient of low-frequency sound in layer
compounds.

In the present paper we report the results of a study
chainlike compounds. We note that chain crystals can s
port the existence of specific acoustical modes with displa
ment vectors oriented parallel and perpendicular to
weakly coupled chains. The vibrational modes of the fi
type are longitudinally polarized excitations~l modes!. The
modes of the second type are the so-called bending ex
tions ~b modes!.7,8 Over a rather wide interval of low fre
quencies a strongly anisotropy chain crystal can exh
quasi-one-dimensional dynamical properties. Such mo
have been observed, e.g., in experiments on the elastic
tering of neutrons and the low-temperature specific hea
the quasi-one-dimensional compounds (TaSe4!2I and
(Ta12xNbxSe4)2I ~Refs. 9 and 10!.

For the sake of definiteness we shall assume that
lattice of the quasi-one-dimensional crystal is tetragon
with unit cell parametersa andb. The interaction efficiency
between atoms in the basal planexy(i) is assumed to be
weaker than that along the axes of the chain,z('). For sim-
plicity we also assume that the matrices of the force par
eters are diagonal with respect to the Cartesian indices
this situation there are three characteristic force parame
which satisfy the inequalities

uFzz
0siu!uFxx

0siu!uFxx
0s'u. ~1!

These force parameters correspond to three characteristic
quencies:v1

2!v2
2!v3

2. Here the dispersion relations for th
acoustical longitudinal and bending vibrational modes ar
1281063-777X/2000/26(2)/2/$20.00
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v l
2~k!5

v'
2 b2k'

2

2
1v i

2S sin2
akx

2
1sin2

aky

2 D , ~2!

vb
2~k!5v1

2a2k'
2 1

v3
2b4k'

4

p
1v2

2S sin2
akx

2
1sin2

aky

2 D ,

~3!

wherev3'v' andv1'v i .
2. Let us immediately turn to the question of the abso

tion of low-frequency sound in chainlike compounds wi
diagonal disorder. We consider the situation in which wh
determining the ‘‘bare’’ single-particle lattice Green fun
tions constructed for the operators of the dynamic atom
displacements for phonon modes, one can neglect the s
dard anharmonic interaction of the phonons in compari
with their elastic scattering on defects. For the spatial Fou
components of the Green function we have8

Ḡk
18 j~v!'S v22v2~k!2 i

v

t i
j~v! D

21

,

1

t i
j~v!

5
p

2
c«2v2gj~v!. ~4!

In Eq. ~4! c is the concentration of isotopic defects (c!1),
«5(Md2M0)/M0 , whereMd andM0 are the masses of th
defect and host atoms~here Md@M0!, and gj (v) is the
spectral partial density-of-phonon-states function.

According to what we have said, the conditio
tN

j @t i
j (vT), wheretN

j is the relaxation time associated wit
normal anharmonic processes. Here we have set the ch
teristic phonon energyvT'kT/\5b21.

The above inequality is equivalent to the condition

c«2@kT/M0v25~102521024!T, ~5!

wherev is the mean sound velocity.
To determine the temperature-dependent part of

damping coefficient for low-frequency sound~such that
vt i

j (vT)!1!, we must find the imaginary part of the pola
ization operatorP j of the single-particle lattice Green func
© 2000 American Institute of Physics
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tion with allowance for the anharmonic interaction
phonons. It can be shown that in the approximation of cu
anharmonicity~see Ref. 6!

Im P j5Im P I
j1Im P2

j . ~6!

The first term describes the correction to the phonon da
ing on account of the standard anharmonic interaction
tween acoustical phonons. The second term is due to
interaction of the acoustical mode with the two-phonon
herent states that arise in the weak localization regime.11,12

Here we have

Im P1
j ~k,v!'

2g̃3
2vv j

2~k!

T (
k1

v j
2~k1!n~v j~k1!!

3~n~v j~k1!!11!t i
j~v j~k1!!, ~7!

Im P2
j ~k,v!'

g̃3
2bvv j

2~k!

2pT E
v j

0

v j* dv

2p
n~v!~n~v!11!

3
v2t i

j~v!

@D i
0 j~v!D'

0 j~v!#1/2, ~8!

g̃3 is the effective anharmonicity of the force constant, a
n(v) is the equilibrium Planckian distribution function o
the phonons. In addition,D i(')

0 j are the tensor components
the bare diffusion coefficient for phonons of thej th polariza-
tion:

$D i
0 j ,D'

0 j%5
1

4pgj~v! (k
H ]v j

2~k!

]ki
,
]v j

2~k!

]k'
J

3Ḡk
~ j !1~v!Ḡk

~ j !2~v!

~Ḡ1,2 are the retarded and advanced Green functions,
spectively!. Finally, the frequencyv j

05&v i(2) appearing in
Eq. ~8! separates the regions of quasi-three-dimensiona~a
small region of frequencies near zero! and quasi-one-
dimensional behavior of the acoustical vibrational spectru
The frequencyv j* determines the threshold of mobility o
phonons and is found by setting the true static diffusion
efficient to zero.

It should be emphasized that in the limit of smallk the
sum in ~7! diverges. It becomes finite if the anharmonic i
teraction of thermal phonons is taken into account. T
mechanism of sound absorption described by expression~7!
is important in the intermediate temperature region, wh
the scattering of thermal phonons is sensitive to defects
to the expression for ImP2

j in the form~8!, it is valid in the
frequency interval 2v i(2)

2 !v2,v'(3)
2 in which the disper-

sion relations~2! and ~3! display quasi-one-dimensional be
havior. In the derivation of Eq.~8! it was also assumed tha
the ‘‘coupling’’ parameter of the chains,v i(2) , satisfies the
conditionv i(2)t i

l (b)(v),1.
3. The temperature-dependent part of the damping c

ficient for sound with thej th polarization can be written a
follows with the use of Eqs.~6!–~8!:
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G j5G1
j 1G2

j 'Im P1
j ~v j~k!!1

Im P2
j ~v j~k!

2v j~k!
,

where it is understood thatv'v j (k).
To compare the relative contribution of the weak loc

ization effect to the sound damping, let us examine the ra
of G1

j andG2
j . From ~7! and ~8! we have

G2
l

G1
l 'c«2

T

Q l
S T

v i
D 2

,
G2

b

G1
b 'c«2

T

Qb
S T

v2
D 3/2

, ~9!

where Q j is the Debye temperature of thej th vibrational
mode.

Let us now examine expression~9!. If the measure of the
defect density in the crystal has a valuec«2<1 and if v i(2)

and v2 , which characterize the intensity of the interactio
of the chains, are less thanT, then in the low-temperature
region T<0.1Q j it is possible to have a situation wher
G2

j >G1
j . In other words, the temperature behavior of t

sound damping coefficient is determined by processes of
herent backscattering of thermal phonons.

We note in conclusion that we only know of experime
tal data on the absorption of sound for the relatively regu
quasi-one-dimensional compound (TaSe4!2I and the lightly
doped system~Ta12xNbxSe4)2I ~Ref. 13!. For comparison of
the qualitative results of the theory with experiment, da
will be needed for substantially disordered chain crystals
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Influence of intrinsic point defects on the electrophysical properties of NbSe 3
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The temperature dependence of the electrical resistivity of quasi-one-dimensional NbSe3 is
investigated in the interval 78–550 K in the thermodynamic equilibrium and nonequilibrium states.
At temperatures of 300–550 K one observes an exponential deviation from the linear
dependence on account of the formation of thermodynamic equilibrium Se vacancies. The
influence of intrinsic defects~vacancies! on the properties of NbSe3 at 78–300 K is investigated
by the quenching method. For samples with excess vacancies an anomalously large
deviation from the Matthiessen rule~up to 150%! is observed. ©2000 American Institute of
Physics.@S1063-777X~00!00902-6#
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INTRODUCTION

Thermodynamic equilibrium vacancies in crystals are
traditional subject for experimental and theoretic
research.1–4 Despite the large number of papers on this s
ject, however, some of the ideas about the behavior of
cancies under different conditions and the influence of
cancies on the various properties of crystals still remain
dispute.

The formation of vacancies in a state of thermodynam
equilibrium in a highly perfect lattice most often occurs
the Schottky mechanism,5 when an atom hops from a sub
surface lattice site onto the surface by a thermodynamic
active process, followed by migration of the vacant site~va-
cancy! in the bulk of the crystal. Besides the surface, vario
structural macrodefects~dislocations, pores, grain bound
aries! can also serve as sources and sinks for vacanc
Since the relaxation of the lattice consists in the dilatation
the nearest-neighbor atoms toward the vacancy~the ‘‘inho-
mogeneous’’ part of the relaxation! and the extension of the
entire lattice~the ‘‘homogeneous’’ part!, the net change in
the volume of the metallic crystal depends importantly on
nature of the sources and sinks. However, this extrem
important issue is addressed in only a comparatively sm
fraction of the experimental papers on vacancies in crys
~see, e.g., Refs. 6 and 7!.

In the case of metals the introduction of vacancies
equivalent to the introduction of an electropositive subst
tional impurity with an effective valence that takes into a
count the volume changes. The presence of vacancies l
to corresponding changes in the number of carriers per la
site and in the Fermi energy, which is reflected in the kine
thermodynamic, and superconductive properties. T
changes in the vibrational spectrum of a crystal in the pr
ence of vacancies apparently reduce to a ‘‘softening’’ of
spectrum, i.e., to an increase in the low-frequency densit
states on account of the decrease in density; this agrees q
tatively with the observed values of the entropy of vacan
formation and with experiments on the influence of vac
cies onTc in metals.7–9
1301063-777X/2000/26(2)/4/$20.00
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For crystals with a marked anisotropy of the bindin
energy, i.e., in crystals of low-dimensional systems, the
laxation of a lattice containing vacancies must also be an
tropic. For quasi-one-dimensional crystals the relaxation
the lattice might be equivalent to a uniaxial extension, wh
can lead to destruction of the stability of the lattice. Unfo
tunately, we know of no studies on the behavior of vacanc
in low-dimensional systems, even though interest in t
topic has risen sharply in connection with the discovery
high-temperature superconductivity.

In this paper we report the first experimental study of t
temperature dependence of the electrical resistivity of
well-known quasi-one-dimensional system10 of NbSe3 single
crystals in the temperature range 78–550 K in both the e
librium and nonequilibrium~after rapid quenching from high
temperatures! states.

EXPERIMENTAL PROCEDURES

Quasi-one-dimensional NbSe3 ~Ref. 10! consists of
chains of trigonal prisms of selenium atoms with a niobiu
atom at the center of each prism. The weakness of the c
pling between chains makes this a quasi-one-dimensio
compound. The single-crystal samples of niobium triselen
NbSe3 were grown by the method of chemical gas-transp
reactions.11

For the measurements the single-crystal samples
NbSe3 (0.02– 0.0530.01– 0.005310 mm) were placed on a
Sitall devitrified glass substrate on which current and pot
tial leads had been deposited. Electrical contacts w
formed by applying a conducting silver paste.

For the experiments in the low-temperature region~78–
300 K! we used the measurement cell described in Ref.
and a standard platinum resistance thermometer. The
peratures were stabilized to within6231022 K or better. At
temperatures of 300–550 K the substrate and sample w
placed, together with a Chromel–Alumel thermocouple, in
quartz ampoule which, as necessary, could be filled with
inert gas~helium! or evacuated. The quartz ampoule conta
© 2000 American Institute of Physics
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ing the sample and thermocouple was placed in an ov
During the measurements in the interval 300–550 K the te
perature was stabilized to within65 K.

We obtained the temperature dependence of the resi
ity of the quasi-one-dimensional single crystal NbSe3 in the
interval 78–550 K in thermodynamic equilibrium and no
equilibrium states. The resistance was measured in d
current along theb axis, i.e., along the NbSe3 chains, by a
null scheme using the standard four-probe technique.
value of the transport currentI was chosen so as to avo
cutoff of the charge density waves and ranged from 10mA to
2.6 mA.

The samples were quenched both by rapid immersio
alcohol at 293 K and also in air. The base~initial! annealed
state was attained by a slow cooling from high temperat
at a rate ofdT/dt,1022 K/s. The procedure of annealin
after quenching was carried out in isothermal and isoch
nous modes with holds of the quenched sample at 3
400 K.

EXPERIMENTAL RESULTS AND DISCUSSION

To shed light on the question of whether it is possible
form a thermodynamic equilibrium concentration of vaca
cies in low-dimensional systems, we did a series of exp
ments on NbSe3 samples to study the temperature dep
dence of the electrical resistivity on heating at temperatu
from 300 to 550 K. The typical temperature dependence
the resistivity during heating in air is shown in Fig. 1a. In t
region 300–420 K a linear temperature dependence of t
resistivity is observed, while aboveT0 (T05420 K) there is
a substantial exponential deviation from the linear dep
dence.

It should be noted that in a number of cases the size
character of the deviations from the linear dependence w
noticeably altered. This was ordinarily observed at a sam
temperatureT1>500 K and was manifested in an extreme
strong scatter of the resistivity values. Varying the compo
tion of the heating medium~vacuum, air, gaseous helium!
had only a slight effect on the size of the deviation and
value of the temperature at which the deviation beganT0

5420610 K). The temperatureT1 above which the scatte
was observed was also practically constant. The presenc
the scatter is apparently due to local melting of the crysta
to the fluctuational formation of large coagulates of defec
It cannot be ruled out that nonstoichiometric selenium vac
cies are formed as a result of the emergence of Se atom
the surface and their subsequent evaporation. In princ
there could also be a contribution due to intercalation of
gas from the heating medium, but holding the samples
several hours in the media used did not produce any sys
atic changes in theR(T) curves. We note that when th
sample was heated to temperaturesT.T1 the behavior of the
temperature dependence of the resistivity was ordinarily
reversible on heating and cooling. In the regionT0,T,T1

the change of the resistivity with temperature was reversi
It is known that for three-dimensional metallic system

at pre-melting temperatures an exponential deviation of
properties from a linear temperature dependence is obse
n.
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on account of the formation of thermodynamic equilibriu
vacancies.1–4 It is natural to suppose that the deviation fro
a linear temperature dependence of the resistivity of Nb3

in the present study is due to the formation of thermod
namic equilibrium vacancies.

Figure 1b shows a semilogarithmic plot, ln(Dr/r)
5f(1/T), of the dependence of the resistivity obtained in t
present study. It is clear that the deviation from a line
temperature dependence has an exponential character,
typical for thermally activated processes. The activation
ergy is Ev5160.2 eV. The error was determined by th
scatter of the data of different experiments.

An estimate of the energy of vacancy formationEv in a
simple approximation of the binding energy shows that
exponential deviation from linearity in the temperature d
pendence of the resistivity of quasi-one-dimensional Nb3

is predominantly due to the formation of thermodynam
equilibrium selenium vacancies.

To investigate the influence of intrinsic point defec
~vacancies! on the properties of the NbSe3 crystal at com-
paratively low temperatures we performed quenching as
lows. A sample was held in the oven for 1 hour atTq

5323, 373, and 463 K, and then taken out into the air
immersed in alcohol. The rate of cooling was<102 K/s.

In experiments on the quenching of high-temperat
thermodynamic equilibrium lattice defects it is essential

FIG. 1. Temperature dependence of the resistance~a! and the relative incre-
ment in resistance in semilogarithmic coordinates~b! for samples of single-
crystal NbSe3 in the region 300–550 K.
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follow correct cooling procedures. The rate of quench
must not exceed a maximum rate set by the onset of ap
ciable thermal stresses. Ordinarily in correctly performed
periments, after the fixing of the high-temperature concen
tion and distribution of vacancies in the sample~see below!
and the subsequent restoration of the sample~by annealing at
higher temperaturesT'TD! the physical properties being in
vestigated undergo reversible changes. In this study
rarely observed a reversible recovery of the resistivity of
NbSe3 samples. The residual resistivity after restoration
the sample was as high as 10% of the quenching-rel
increase. In the case of quenching fromTq.T1 the revers-
ible part of the resistivity was not more than 60%, which
consistent with the conjecture that stable macrodefects~co-
agulates! are formed in this temperature region or, possib
that a local melting of the lattice occurs, which correspon
to the results in Ref. 13.

Figure 2 shows the temperature dependence of the r
tivity of samples in the quenched and annealed states in
interval 78–300 K. On all of the curves obtained in the te
perature region 78–145 K there is a characteristic phase
sition of the charge-density wave type. For the annea
samples the charge-density wave is realized atTCDW

5145 K, which agrees with the known values (TCDW

5145 K).10

Curve1 in Fig. 2 was obtained for an annealed sample
NbSe3 (s) and for samples quenched from 323 and 373
These temperatures were chosen lower than the temper
at which the defect-induced deviation from a linear tempe
ture dependence of the resistivity begins~Fig. 1!. We see that
the results are in good agreement, which attests to the
rectness of the quenching~since there is practically no con
tribution from quenching stresses!. Curve2 was obtained for
quenching fromTq5463 K. It is characterized by a large
value of the resistivity atT578 K, a larger slope of the
rectilinear part than on curve1, an appreciable lowering o
the value ofTCDW (DT522 K), and a larger value of the

FIG. 2. Temperature dependence of the resistance of NbSe3 samples in the
thermodynamic equilibrium~2! and nonequilibrium~1! states in the interval
78–300 K: annealed (s); quenched from temperaturesTq , K: 327 ~1!,
373 (h), 463 (d).
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‘‘amplitude’’ of the change in resistivity at the charge
density wave.

Analysis of the contribution of vacancies to the tempe
ture dependence of the resistivityr(C,T) is conveniently
done in terms of the deviation from the Matthiessen r
~see, e.g., Ref. 14!:

r~C,T!5r id~T!1r0~C!1D~C,T!, ~1!

wherer id(T) is the resistivity of an ideal sample,r0(C) is
the residual resistivity of the sample, andD(C,T) is a func-
tion describing the temperature and concentration dep
dence of the deviation from the Matthiessen rule.

When measurements are made on the same sample
following relation can be used to good accuracy~less than
1% error!:

D~C,T!

Dr78
5

DRT2DR78

DR78
, ~2!

where DRT is the difference of the resistances of th
quenched and annealed sample at temperatureT, andDR78

is that at 78 K. The accuracy of this relation is limited by t
fact that it neglects the influence of the change in the dim
sions of the sample containing vacancies in comparison w
the sample without vacancies.

Figure 3 shows the temperature dependence of the fu
tion D(C,T)/Dr78 for the NbSe3 sample after quenching
from 463 K. One notices the positive value ofD(C,T) in the
entire temperature region and the presence of a maximu
130 K ~the maximum is shifted relative to the maximum o
curves1 and2 ~Fig. 2!. For T.140 K the deviation from the
Matthiessen rule~DMR! increases practically linearly with
temperature. The DMR is anomalously large in comparis
with the deviations ordinarily observed in three-dimensio
metals and reaches 150% atT5293 K.

Since the electronic spectrum of quasi-one-dimensio
single-crystal NbSe3 is anisotropic, one can assume that t
deviation from the Matthiessen rule is predominantly due
a lifting of the anisotropy of the electron distribution fun
tion in the scattering of conduction electrons on vacanc

FIG. 3. Deviation from the Matthiessen rule in quenched (Tq5463 K)
samples of NbSe3.
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and to the valence effect arising as a result of the differe
in the valence of the ‘‘impurity’’ and host atoms, as w
shown in Refs. 3 and 4.

CONCLUSION

We have investigated experimentally the temperature
pendence~at 78–550 K! of the resistivity of the quasi-one
dimensional single crystal NbSe3 along the chains for ther
modynamic equilibrium and nonequilibrium vacan
concentrations. In the temperature region 300–550 K an
ponential deviation from the linear temperature depende
is observed atT.T0 (T05420610 K), which is due to the
formation of thermodynamic equilibrium Se vacancies. T
activation energy of Se vacancies was 160.2 eV.

We found that the fixing of the high-temperature conce
tration of vacancies leads to a substantial change in the
perature dependence of the resistivity of NbSe3, and this is
manifested in large values of the deviation from the Mat
iessen rule~up to 150%!. For quenching fromTq,T0 the
heat treatment had no influence on the temperature de
dence of the resistivity.
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Commensurate–incommensurate phase transitions for multichain quantum spin
models: exact results

A. A. Zvyagin*

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine, 47 Lenin Ave. Kharkov, 61164, Ukraine
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The behavior in an external magnetic field is studied exactly for a wide class of multichain
quantum spin models. It is shown that the magnetic field together with the interchain couplings
cause commensurate–incommensurate phase transitions between the gapless phases in the
ground state. The conformal limit of these models is studied and it is shown that the low-lying
excitations for the incommensurate phases are not independent, because they are governed
by the same magnetic field~chemical potential for excitations!. A scenario for the transition from
one to two space dimensions for the exactly integrable multichain quantum spin models is
proposed, and it is shown that the incommensurate phases in an external magnetic field disappear
in the limit of an infinite number of coupled spin chains. The similarities in the external
field behavior for the quantum multichain spin models and a wide class of quantum field theories
are discussed. The scaling exponents for the appearance of the gap in the spectrum of low-
lying excitations of the quantum multichain models due to the relevant perturbations of the
integrable theories are calculated. ©2000 American Institute of Physics.
@S1063-777X~00!01002-1#
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1. INTRODUCTION

There has recently been considerable interest in l
dimensional quantum-correlated spin and electron syste
These systems, especially one-dimensional~1D!, manifest
the specific features of, e.g., magnetic behavior at low te
peratures, which are absent for the standard, conventiona
magnetic systems. Spin systems usually manifest 1D be
ior at temperatures higher than the temperature of the
magnetic ordering but lower than the maximum characte
tic energy of the interaction between spins, i.e., in our c
the intrachain spin–spin coupling. The origin of such spec
features is the enhancement of the quantum fluctuation
the 1D systems due to the peculiarities of the 1D density
states together with the quantum nature of spins.

Moreover, during the last decade a large number of n
quasi-1D spin compounds have been created and studie
perimentally. These compounds manifest at low tempe
tures the properties of a single quantum spin chain or sev
quantum spin chains weakly coupled to each other.1,2 It is
strongly believed that this class of compounds will provi
new information on the transition from 1D to 2D in quantu
many-body physics. This is very important, because the
quantum many-body physics has been a challenge for
theorists and experimentalists since the beginning of
study of low-dimensional quantum systems. On the ot
hand, the advantage of the 1D theoretical studies is the
sibility of obtaining exact solutions by using nonperturbati
methods, which are difficult to apply for the highe
dimensional quantum many-body models. The results of
exact calculations of the 1D models can serve as tes
1341063-777X/2000/26(2)/13/$20.00
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grounds for the use of perturbative and numerical method
more realistic situations.

Recently several exactly solvable models3–5 have been
introduced, in which the zigzag-like interaction between tw
quantum spin chains was studied exactly using the Be
ansatz technique.6 This method is widely known by now
see, e.g., the recent monograph7 and references therein. Th
Bethe ansatz method permits exact calculation of the st
characteristics of quantum many-body systems, such as
ground state behavior, the influence of an external magn
field, and the thermodynamic features of the temperature
pendence of the specific heat, magnetic susceptibility,
These results should apply to more-realistic systems, but
not obvious how the interactions between the chains mo
the answers. The mean-field-like approximations for the
terchain couplings are not sufficient, because the mean
approach in any version already implies the existence o
~sometimes hidden! order parameter. It is, unfortunately, als
unclear whether the numerical calculations, which can
directly applied for quantum many-body systems of ve
small sizes, by now~using at most, several tens of site!
describe well the properties of real systems, in which, e
in quasi-1D ones, the number of sites is at least of order 18.
On the other hand, it must be admitted that some feature
the exactly solvable 1D models are far from what is obser
experimentally, but these unrealistic features of the 1D m
els are known and simple to recognize.

The behavior of multichain spin systems in an exter
magnetic field is especially interesting~see, e.g., Refs. 5
8–10! because of~i! the possibility of experimental observa
tions due to recent progress in high-magnetic-field meas
ments, and~ii ! very interesting theoretically predictable e
© 2000 American Institute of Physics
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fects which are possible to recognize in experiments, suc
phase transitions in the external magnetic field. Howev
several important issues are far from being resolved in
quantum two-chain spin models. For example, there are t
questions that need to be answered:~1! Are the properties of
those exactly solvable two-chain spin models unique or i
possible to say something about the more general clas
two-chain quantum spin models?~2! How are the multichain
quantum models connected to the 2D many-body syste
i.e., what is the scenario of the transition from 1D to 2
when one increases the number of coupled chains w
keeping the conditions of integrability?~3! What will happen
with the behavior of the nonintegrable multichain spin mo
els if one goes beyond the frame-work of integrability, i.
by adding some perturbations to the exactly solvable mod
~For example, Ref. 10 implies that it is namely the sp
chirality, which separately breaks the time-reversal and p
ity symmetries in the two-chain integrable model,11 that is
the reason for the emergence of the additional phase tra
tions in an external magnetic field for the two-chain spin-1
model as compared to the single-chain system.!

The goal of this paper is to answer these questions. F
we revisit the exactly integrable two-chain spin-1/2 mod
and show that the inclusion of magnetic anisotropy of
‘‘easy-plane’’ type, for which the system stays in the qua
tum critical region, will not drastically change the behavi
in an external magnetic field but will shift the critical value
of the magnetic fields and intrachain couplings at which
phase transitions occur and will affect the critical exponen
We will show that these two-chain spin models share
most important features of the behavior in an external fi
with the wide class of (111) quantum field theories. Nex
we will introduce the higher-spin versions of the two-cha
spin models, e.g., investigating the important class of
two-chain quantum ferrimagnets with different spin values
the sites of each chain. We will also investigate the beha
of the exactly solvable multichain spin models in an exter
magnetic field and show how the additional phase transiti
arising due to the increasing number of chains vanish in
quasi-2D limit. Finally, we will show how the relevant de
viations from integrability, e.g., the absence of terms in
Hamiltonian which separately break the parity and tim
reversal symmetries, give rise to gaps in the spectra of l
lying excitations of multichain quantum spin systems, a
we will calculate the scaling exponents for the gaps.

The paper is organized as follows. In Sec. 2 we rev
the exactly solvable two-chain uniaxial spin model4 to re-
mind the reader of the main steps of the Bethe ansatz.
investigations9,10 of isotropic spin-1/2 two-chain models ar
generalized in this section for the case of uniaxial magn
anisotropy. The calculations in this section are rather sim
but we will write them in detail because they provide t
basis for the more nontrivial generalizations of this class
models, and will be used in the following sections. In Se
tion 3 we point out the similarities between the behavior
the uniaxial two-chain quantum spin models and a class
quantum field theories~QFT! in an external magnetic field
predicting new phases for the QFT. In Sec. 4 we introd
the SU(2) generalization of the integrable two-chain mod
as
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for higher values of the site spins~possibly different! in each
chain, i.e., a quantum ferrimagnet. We point out the simila
ties of the quantum ferrimagnet with QFT in the case o
nonzero Wess–Zumino term and predict new phases for
latter in an external magnetic field. We derive integral eq
tions for the critical exponents. In Sec. 5 we consider
multichain quantum spin model and discuss how the exte
field behavior of the integrable multichain models is chang
when the number of chains is increased while preserving
exact solvability. In Sec. 6 we briefly sketch how the dev
tions from integrability change the magnetic and lo
temperature properties of this class of multichain quant
spin systems. We close with a discussion of the main res
and some conclusions.

2. TWO-CHAIN UNIAXIAL QUANTUM SPIN MODEL

A common property of some of the Bethe ansatz so
tions is the presence of shiftsu j of the spectral parameterl
for the associated transfer matrix of an algebraic version
the Bethe ansatz~the quantum inverse scattering meth
~QISM7!. Those shifts also appear in the Bethe ansatz eq
tions ~BAE! for the quantum numbers called rapiditie
which parametrize the eigenfunctions and eigenvalues of
Hamiltonians. Hence, the distributions of the rapidities a
also affected by the shifts. An interesting property is co
nected with those shifts: depending on their values and
external magnetic field, even for~quasi!particles of the same
type, additional minima may appear in distributions of t
rapidities. These additional minima also result in nonmon
tonic behavior of the dispersion relations of the low-lyin
excitations. Also, they provide additional Dirac seas for lo
lying excitations, changing the structures of the physi
ground states of the models. These additional minima de
mine the special behavior of the models in an external m
netic field.3,5,9,10In particular, the appearance of new phas
and new phase transitions is due to the emergence of t
new minima in the distributions of the quantum numbers

To set the stage, let us first remind the reader about
main steps of the QISM. The common feature of the Bet
ansatz-solvable models is the factorization of the mo
dromy matrix ~the ordered product of all two-particle sca
tering matrices, which depend on some spectral paramet!.7

Exact~Bethe ansatz! integrability requires exclusively elasti
scattering between~quasi!particles. For such theories th
two-particle scattering matrices andL operators satisfy the
Yang–Baxter relation.7,12 In turn, the factorization of the
monodromy matrices guarantees that they satisfy the Ya
Baxter equations, too. The transfer matrices of the associ
statistical problem are traces over some additional, auxili
subspace of monodromy matrices.7 The most important fea-
ture of transfer matrices with different spectral parameter
their commutativity. A necessary and sufficient condition f
this is the validity of the Yang–Baxter equations for th
two-particle scattering matrices and hence for the mo
dromy matrices. The commutativity of the transfer matric
implies that one can construct an infinite number of integr
of motion, which commute with one another and with t
transfer matrix. Therefore the exact integrability is prove
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Usually the structure of these integrals of motion is det
mined by their locality. For instance, the best-known of
ries of integrals of motion is the series of derivatives w
respect to the spectral parameter of the logarithm of a tra
fer matrix taken at some special value of the former.7 Local-
ity means that for the first derivative of the logarithm of t
transfer matrix~usually called the Hamiltonian of the lattic
system! only short-range particle–particle interactions co
tribute.

In this paper we will see that namely the aforemention
shifts of the spectral parameters yield new phases in
ground state behavior in an external magnetic field fo
wide class of exactly solvable models, quantum spin mu
chain models, and QFT. We will show that in the conform
limit these phases of the lattice models correspond to
Wess–Zumino–Witten~WZW! model or to several of them
with dressed charges~proportional to the compactificatio
radii! of scalar or matrix types for each of the phases, resp
tively.

Let us start with the form of the Bethe ansatz equatio
~BAE! for the set of rapidities$ua%a51

M . In this paper we will
concentrate only on the critical, easy-plane type of magn
anisotropy for the antiferromagnetic spin multichain mode
0<g<p/2 ~g5p/q, whereq is an integer parametrizing th
magnetic anisotropy!, and the repulsive interactions in QFT
This corresponds to hyperbolic or rational solutions of
Yang–Baxter equations for the two-particle scattering ma
ces, or toU(1) and SU(2) symmetries of the scatterin
processes, respectively. For the simplest case of one shu,
which pertains to the two-chain quantum spin models and
most QFT, the BAE have the form~here we use the mor
general hyperbolic parametrization first; for the rational lim
see below!4

) e1
N6~ua6u!5eipM )

b51,bÞa

M

e2~ua2ub!, ~1!

whereN6 are the numbers of sites in each of the spin cha
en(x)5sinh(x1ign/2)sinh(x2ign/2)21; and M is the num-
ber of down spins. The shiftu determines the interchain cou
pling constant for two-chain quantum spin-1/2 models.4,11,13

Please note that the Bethe ansatz equations are just the
tization conditions for the rapidities, which parametrize t
eigenwaves and eigenvalues of the many-body quan
model. The Hamiltonian is the first derivative of the log
rithm of the transfer matrix~note that the transfer matrix o
the two coupled spin chains in this integrable model is
product of the two standard transfer matrices of each ch
with the spectral parametersl6u:11

Ĥ1/25
1

sinh2 u1sin2 g
(

n
~cosg sinh2 u~Sn,1•Sn11,1

1Sn,2•Sn11,2! 2 sin2 g ÎSn,1•~Sn,21Sn11,2!

32 sing sinhu~ ĴSn11,22 ĴSn,1!•@Sn11,13Sn,2# !,

~2!
-
-

s-

-

d
e

a
i-
l
e

c-

s

ic
,

e
i-

to

t

s;

an-

m

e
in

where

Î 5diag~coshu,coshu,cosg!

and Ĵ5diag (cosg,cosg,coshu),diag(a,b,c) is a 333 diago-
nal matrix, and@3# denotes the vector product. Please no
that the sum runs overn to N1 for the chain with spinsSn,1

and toN2 for the chain with spinsSn,2 . The parameteru
determines the intrachain coupling in our two-chain sp
model. Foru50 the Hamiltonian and BAE coincide with th
ones for the single easy-plane antiferromagnetic spin-
chain of lengthN11N2 with only nearest-neighbor interac
tions in it. The eigenvalue of the Hamiltonian~energy! is
parametrized as a function of the rapidities as follows:

E5sing(
6

(
a51

M

N6@e1~ua6u!1e1
21~ua6u!#1E0 ,

~3!

whereE0 is the energy of the vacuum~ferromagnetic! state
~with M50!. The isotropicSU-symmetric antiferromagnetic
quantum spin two-chain model9,10,11,13can be obtained from
the uniaxial ~U(1)-symmetric! one in Eqs.~1!–~3! by the
simple change of variables in the limit:ua→gua ,
l→gl,u→gu,g→0. ~The last limit corresponds to the ra
tional, SU(2)-symmetric solution of the Yang–Baxter equ
tions for the two-particle scattering matrices.! The two-chain
isotropic (SU(2)-symmetric! spin-1/2 Hamiltonian obtained
in this limit from Eq. ~2! takes the form4,9,10,11,13

Ĥ is5S 1
11u2D(

n
~u2~Sn,1•Sn11,11Sn,2•Sn11,2!12Sn,1

•~Sn,21Sn11,2!12u~Sn11,22Sn,1!•@Sn11,1Sn,2# !.

~4!

The summations overn run to N6 for each kind of spin,
respectively. Note that foru→` Eq. ~4! and the BAE re-
cover the Hamiltonian and BAE of two decoupled spin-1
chains of lengthsN6 with the only nearest-neighbor interac
tions in each of the chains.

The solution to the BAE~1! is usually obtained in the
thermodynamic limit~N6 ,M→`, with the ratio M /(N1

1N2) fixed!. Here instead of the discrete set of rapiditi
one introduces the distribution of a continuous density
rapidities. The ground state corresponds to the solution
the BAE with negative energies, i.e., it is connected with
filling up of the Dirac sea~s! for the model. For the easy
plane antiferromagnetic two-chain spin-1/2 model t
ground state corresponds to the filling of the Dirac sea
real rapidities, i.e., no spin bound states have negative e
gies. In the thermodynamic limit the real roots of Eq.~1! are
distributed continuously over some intervals, which det
mine the Dirac seas of the model. The set of integral eq
tions for the dressed densities of the rapiditiesua(r(u)) and
dressed energies of the low-lying quasiparticles («(u)) are
~see, e.g., Ref. 7 for the standard procedure of deriving th
integral equations from the BAE and Refs. 11 and 13 for
isotropic two-chain spin-1/2 model!
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r~u!1E
~Q!

dvK~u2v !r~v !5(
6

N6

N
r6

0 ~5!

and

«~u!1E
~Q!

dvK~u2v !«~v !5h2(
6

N6

N
«6

0 , ~6!

where the kernels of the integral equations are

K~u!5
] ln e2~u!

]u
5

sin~2g!

2p@cosh~u!2cos~2g!#
, ~7!

andh is an external magnetic field. The values

r6
0 ~u!5

] ln e1~u6u!

]u
[

]p6
0 ~u!

]u

5
sing

2p@cosh~u6u!2cosg#
~8!

are bare densities of the rapidities, and

«6
0 ~u!5h2

sin2 g

cosh~u6u!2cosg
~9!

are bare energies~here ‘‘bare’’ corresponds to non
interacting particles, and the interaction ‘‘dresses’’ them
usual7!. The integrations are performed over the dom
(Q), determined in such a way that the dressed ener
inside these intervals are negative. The limits of integrat
are determined by the zeros of the dressed energies an
the Fermi points for each sea. Analysis of the integral eq
tions ~5! and ~6! in an external magnetic field shows that
general, for some values ofu andh, there can be one Dira
sea~it corresponds to one minimum of the bare densities
the rapidities and, hence, to one minimum of the bare
ergy!. On the other hand, for higher values ofu and for some
domain ofh, two Dirac seas of the same type~gapless, see
below! of excitations are possible~for two minima of the
bare energies of the rapidities and thus two minima of
bare density!. Note that foru→` at fixedN6 all the roots of
the integral BAE separate into two sets of ‘‘right-’’ an
‘‘left-moving’’ seas, centered at6u, respectively.

Here we briefly revisit the analysis of Refs. 9 and 10, b
for the case of the uniaxial two-chain model. Analytical s
lutions to Eqs.~5! and ~6! can be easily obtained in close
form in the limit of zero field and equal lengths of the chai
N15N2 . The simplest nontrivial exited quasipartic
~spinon! is a hole in the Dirac sea for real rapidities, with th
quasimomentum

p~u0!52 arctanS sinh~pu0 /g!

cosh~pu/g! D , ~10!

whereu0 is the spinon’s rapidity. Note that for topologica
reasons such particles have to exist in pairs for
SU(2)-symmetric case, etc.14,15 The energy of this spinon is
given by

«~u0!52sing
]p~u0!

]u0
. ~11!
s
n
es
n
are
a-

f
-

e

t
-

e

It can be rewritten as a function of the quasimomentum, i
in the form of the commonly used dispersion relation

«~p!5
p

g
sing tanh

pu

g
sin

p

2 Fcos2
p

2
1sinh22

pu

g G1/2

.

~12!

A spinon corresponds in the usual Bethe ans
classification7 of BAE solutions to a string of length 1. Natu
rally Eq. ~1! have string solutions of higher lengths to
Other spin excitations can be obtained as combinations
spinon quasiparticles and higher-length strings with differ
rapidities. However, spinons here are picked out beca
only their dressed energies may be negative, i.e., o
spinons may form Dirac seas of the ground state of
model.

One can see that the dispersion relation~12! of the low-
lying excitation of the easy-plane two-chain spin-1/2 antif
romagnetic model is factorized into two parts: a gapless p
at p50, p and a gapped one atp5p/2 ~cf. Refs. 9 and 10!.
The former corresponds to the oscillations of the magnet
tion, while the latter is connected with the oscillations of t
staggered magnetization.9 An analysis similar to the analysi
of the solutions of Eqs.~5! and ~6! for nonzero magnetic
field hÞ0 ~here we point out that according to the ve
accurate analysis in Ref. 16 the solution of the integral B
in the first-order approximation reproduces correctly both
low- and high-coupling asymptotic behavior! shows that:~i!
the dressed energy of a spinon as a function of the dre
quasimomentum has only one extremum, a maximum ap
5p/2 for u,uc , and ~ii ! for u.uc there are two maxima
and one minimum~situated atp5p/2!. At the ~tri!critical
point uc , the minimum disappears and the two maxim
merge into a flatter one~at p5p/2!. In the limit u→` the
minimum is transformed into a cusp. It reveals that the g
of the staggered magnetization vanishes in this limit of t
independent spin chains. This simple picture helps us to
derstand what happens if one switches on an external m
netic fieldh. Besides the usual phase transition to the fer
magnetic~spin-polarized! phase at

hs5(
6

N6

N
«6

0 ~0!, ~13!

there is an additional transition between two phases. On
these corresponds to one Dirac sea of spinons~at smallu!,
while the other one is connected with two Dirac seas for
same kind of spinons~at largeu!. It can also be seen from th
right-hand side of Eqs.~5! and ~6! for the densities and
dressed energies that the bare density and bare energy~cor-
responding to terms which do not depend onr(u) and«(u)!
have either one or two minima, respectively. Hence, th
reproduce the same property in the dressed characteris
the interaction simply ‘‘dresses’’ the~quasi!particles, as
usual, but the ‘‘dressing’’ does not affect the picture qua
tatively. The new critical field value can be approximated
hc5(p/g)sing cosh21(pu/g) in the first-order
approximation.9 In this approximation the tricritical point is
the root of the equation 15sinh(puc /g). At this point two
second-order phase transition lineshs andhc join. Hence, the
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easy-plane magnetic anisotropy in the antiferromagn
two-chain model does not change qualitatively the grou
state behavior in the external magnetic field~cf. Refs. 9 and
10!. However it changes the critical values of the magne
field and the intrachain coupling. The difference between
two ~gapless! phases is obvious: the first phase correspo
to a Néel-like antiferromagnetic ground state for spins
both chains~along the zigzag line!, while the second phase i
connected with Ne´el-like antiferromagnetic ground states
each of the chains, i.e., effectively to two magnetic sub
tices in the two-chain model.

That is why our simple model explains in which d
mains of parameters the two-chain spin system behaves
a one-sublattice quantum easy-plane antiferromagnet,
where it behaves like a two-sublattice one. Note also that
phase transitions studied here are manifestations of
commensurate–incommensurate phase transitions for
systems. One can obviously see this, because the intrac
coupling for two spin chains can be interpreted as the n
nearest-neighbor spin interactions for a single spin chain
higher lengthN11N2 . Here the magnetic couplings ar
spin-frustrated, and so the emergence of the incommensu
magnetic states is understandable.

As a consequence of the conformal invariance of
11)-dimensional quantum systems, the classification of u
versality classes is simple in terms of the central charge~con-
formal anomalyC! of the underlying Virasoro algebra.17 The
critical exponents in a conformally invariant theory are t
scaling dimensions of the operators within the quant
model. They can be calculated by considering the finite-s
~mesoscopic! corrections for the energies and quasimome
of the ground state and low-lying excited states. Conform
invariance formally requires all gapless excitations to ha
the same velocity~Lorentz invariance!. The complete critical
theory for systems with several gapless excitations with
ferent Fermi velocities is usually given as a semidirect pr
uct of these independent Virasoro algebras.18 Here we briefly
sketch the procedure and write the results for the finite-s
corrections to the energy, following the standard proced
~see, e.g., Ref. 18!. One can see that foru,uc and for
u.uc , h,hc , the conformal limit of our uniaxial two chain
spin-1/2 model corresponds to one level-1 Kac–Moody al
bra ~one WZW model of level 1 with the conformal anoma
C51!. The finite-size correction to the energy is rather st
dard ~cf. Ref. 18!:

Ef s~N11N2!52
p

6
vF12pVF~D l1D r !, ~14!

wherevF is the Fermi velocity of the spinon, and the co
formal dimensions of the primary operators are~please note
that the lower indices denote the conformal dimensions
right- and left-moving quasiparticles, at the right and l
Fermi point, respectively!

2D l ,r5S DM

2z
6zDD D 2

12nl ,r , ~15!

whereDM is an integer denoting the change of the num
of particles induced by the primary operator;DD is an inte-
ic
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ger ~half-integer! denoting the number of transferred pa
ticles from the right to the left Fermi point~backscattering
processes!; andnl ,r are the numbers of particle–hole excit
tions of right- and left-movers. The values of the quantu
numbers are restricted byDD5DM /2 ~mod 1!. The dressed
chargez5j(Q) is the solution of the~standard! integral
equation18

j~u!1E
~Q!

dvK~u2v !j~v !51 ~16!

taken at the limits of integration~these are the Fermi points
symmetric with respect to zero!. In this phase there is only
one region of integration overv. The dressed charge is
scalar. The behavior of our class of models in this phase
the conformal limit is rather standard18. The correlation func-
tions decay asymptotically}(x2vFt)2D l(x1vFt)2Dr. The
choice of the appropriate quantum numbers of excitati
DM , DD, andnl ,r is determined for the leading asymptot
terms of the correlators by taking the possible numbers w
the smallest exponents.

For u.uc ,h.hc , however, the conformal limit of the
easy-plane two-chain spin-1/2 model corresponds to the
midirect product of two level-1 Kac–Moody algebras, bo
with conformal anomaliesC51, i.e., to two WZW models
both of level 1.9,10 The Dirac seas~i.e., the possible spinon
with negative energies! are in the intervals@2Q1,2Q2#
and @Q2,Q1# ~minima in the distributions of rapidities a
7 u!. This can be interpreted as symmetrically distribut
~around zero! Dirac seas of ‘‘particles’’ for@2Q1,Q1# and
the Dirac sea of ‘‘holes’’ for@2Q2,Q2#. In fact the valley
in the density distribution for ‘‘particles’’ and the maximum
for ‘‘holes’’ are in one-to-one correspondence with th
maxima and minimum of the dispersion relation for spino
The second critical fieldhc in this language correspond
to the van Hove singularity of the empty band
‘‘holes.’’ Naturally, the Fermi velocities of ‘‘particles,’’ are
positive, vF

15(2pr(Q1))21«8(u)uu5Q1, while the Fermi
velocities of ‘‘holes’’ are negative,
vF

252(2pr(Q)2))21«8(u)uu5Q2. The finite-size correc-
tions to the energy for this case are

Ef s~N11N2!52
p

6
~vF

11vF
2!12p~vF

1~D l
11D r

1!

1vF
2~D l

21D r
2!!, ~17!

where the dispersion relations for ‘‘particles’’ and ‘‘holes
are linearized about the Fermi points for each Dirac sea.
conformal dimensions of the primary operators are~the up-
per indices denote Dirac seas; the lower indices denote r
and left Fermi points of each of these two Dirac seas; cf. R
10 for the isotropic spin-1/2 two-chain model!:

2D l ,r
7 5F ~x26DM 12x16DM 2!

2 detx̂

7
~z26DD12z16DD2!

2 detẑ G2

12nl ,r
7 , ~18!

where the minus sign between the terms in square brac
corresponds to the right-movers and the plus sign to the
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movers. HereDM 6 denote the differences between the nu
bers of particles excited in the Dirac seas of ‘‘particles’’ a
‘‘holes’’ labeled by the upper indices.DD6 denote the num-
bers of backward scattering excitations, andnl ,r

6 are the num-
bers of particle–hole excitations for right-and left-movers
each of the Dirac seas~for ‘‘particles’’ and ‘‘holes’’!. Please
note thatDM 6 andDD6 are not independent. Their value
are restricted by the following relations:DM 12DM 2

5DM and DD12DD25DD, whereDM and DD deter-
mine in a standard way the changes of the total magne
tion and the total momentum of the system, respectively,
to excitations. Please note that in Refs. 10 and 19 these
strictions were missing; this resulted in, for example,
invalid statement that four independent low-lying bac
scattering excitations are possible. However one can see
only two of them are really independent. The same is true
excitations that change the total magnetization of the syst
there are only two independent of four possible such exc
tions. This is a direct consequence of the fact that only
magnetic field determines the filling of the two Dirac seas
‘‘particles’’ and ‘‘holes’’ or, in other words, two the two
Dirac seas for spinons at6u.

The dressed chargesxik(Qk) and zik(Qk)( i ,k51,2)
are matrices in this phase. They can be expressed by u
the solution of the integral equation18,20

f ~uuQ6!5S E
2Q1

Q1

2E
2Q2

Q2 DK~u2v ! f ~vuQ6!

5K~u2Q6! ~19!

with18

zik~Qk!5d i ,k1~2 !k
1

2 S E
Qi

`

2E
2`

2Qi D dv f ~vuQk!,

xik~Qk!5d i ,k2~2 !kE
2Qi

Qi

dv f ~vuQk!. ~20!

Note that the dressed charges depend on the value o
magnetic anisotropyg via the kernels, while they depen
indirectly on the value of the intrachain coupling constantu,
only via the limits of integration. In the first-order approx
mation one can write the solutions as

xik~Qk!'d i ,k2~2 !kE
2Qi

Qi

dvK~v2Qk!1...

and

zik~Qk!'d i ,k1~2 !k~1/2!S E
Qi

`

2E
2`

2Qi D dvK~u2Qk!1...

The Dirac sea for ‘‘holes’’ disappears, naturally fo
h→hc ,u→uc . The slopes of the dressed energies of ‘‘p
ticles’’ and ‘‘holes’’ at the Fermi points of the Dirac sea
~Fermi velocities! differ in general from each other. There
fore we have a semidirect product of two algebras. Hence
this region the dressed charges are 232 matrices. This
means that the conformal limit of the easy-plane two-ch
spin-1/2 model corresponds to one or two WZW theori
depending on the values of the intrachain coupling, magn
anisotropy, and magnetic field. At the critical linehc the
-
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Dirac sea of ‘‘holes’’ disappears as well as the compone
of the dressed charge matrixx̂ ~with square-root singularities
of the critical exponents for the correlation functions!. Note
that the dressed chargez becomesz5(2x)21 at the phase
transition linehc . This corresponds to the disappearance
one of the WZW CFT. Unfortunately, it is impossible t
obtain an analytical solution to Eq.~19! in closed form for a
finite interchain couplingu. Naturally, in the limiting cases
of two independent chains of lengthsN6 , u→` and a single
chain of lengthN11N2 , u50, the solutions of Eqs.~16!,
~19!, and ~20! coincide with the well-known solutions~see
Ref. 18!. The correlation functions of the uniaxia
two-chain spin-1/2 model decay algebraically

this phase `(x2vF
1t)2D l

1

(x2vF
2t)2D l

2

(x1vF
1t)2Dr

1

(x

1vF
2t)2Dr

2

with the minimal exponents of the possib
quantum numbers of excitationsDM 6, DD6, andnl ,r

6 . We
point out once more that the same magnetic field plays
role of a chemical potential for the ‘‘particles’’ and ‘‘holes,’
or for the spinons of both Dirac seas in the second phase,
hence this choice of minimal quantum numbers is co
strained.

We must point out here that there is a crucial differen
between our situation and the case of dressed charge m
ces appearing for systems with the internal structure of b
particles18. There the two Dirac seas of the ground states
connected with different kinds of excitations, e.g., holo
and spinons for the repulsive Hubbard model, or Cooper-
singlet pairs and spinons for the supersymmetric t-J mo
They correspond to two different kinds of Lagrange mu
pliers, chemical potentials, and magnetic fields. Thus
lowlying excitations of the conformal theories in the spin a
charge sectors of these correlated electron models are p
tically independent of each other~spin-charge separation!.
Note that the spin and charge sectors are connected via
off-diagonal elements of the dressed charge matrix, thou
This is a consequence of the fact that, say, holons or
bound electrons carry both charge and spin. On the o
hand, two Dirac seas appear for the same kinds of parti
for the models studied in this paper, which are also c
nected with the same magnetic field governing the filling
both Dirac seas. These seas appear due to two minima in
bare energy distribution and correspond to nonzero shiftu in
the Bethe ansatz equations. In other words, the two D
seas are determined by the interchain coupling and appe
the values of the coupling and external magnetic field
higher than the threshold valuesuc andhc , respectively. We
believe that such a threshold behavior does not depend
the integrability of the model and is a generic feature for a
multi-chain quantum spin models.

The low-temperature Sommerfeld approximation sho
that, as usual, the low-temperature specific heat off the c
cal lines is proportional toT. On the critical lines the van
Hove singularities produceAT low-temperature behavior o
the specific heat, while at the tricritical point we haveT1/4

behavior.
What are the changes due to the different lengths of

chainsN1ÞN2? One can see obviously that the values
the spinon momentum, energy, and velocity~which wasv
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5(p/g)sing tanh(pu/g)) become functions ofN12N2 . For
example, the velocity renormalizes asv→v@11(N1

2N2)2 tanh2 (pu/2g)/N2#21. This introduces dependence
of the critical valuesuc andhc ~as well as of the saturatio
field hs! on the differenceN12N2 . Also, the Fermi veloci-
ties and Fermi points for finite-size corrections become
pendent on this difference. One can in principle consi
different coupling constantsJ6 for each of the chains~over-
all multipliers21!. This produces renormalizations similar
the effect ofN1ÞN2 , i.e., the velocity, for example, renor
malizes asv→J1v@11(J2 /J1)2 tanh2 (pu/2g)#21.

3. CONNECTIONS TO THE QUANTUM FIELD THEORIES

The studies presented in the previous section, be
rather standard~note, though, some important new featur
which were absent in the previous studies,4,9,10,11,13,19such as
the dependence of the critical values of the interchain c
pling and external magnetic field on the magnetic anisotr
parameter and on the difference in the lengths of the cha
also the important restrictions on the quantum numbers
low-lying conformal excitations!. However, we will use the
results of that Section for novel studies for a wider class
exactly solvable models in Secs. 3–5. For instance, in
Section we point out the important similarities in the beha
iors of the two-chain quantum spin model considered in
previous section and several models of QFT.

Really, when examinating Eq.~1!, one can see that thes
Bethe ansatz equations coincide with the equations wh
describe the behavior of the spin~color! sector of some QFT
N6 corresponds to the numbers of~bare! particles with posi-
tive and negative chiralities. For example, for the chir
invariant Gross–Neveu~CIGN! model14,22 we have to put
g→0 ~i.e., the SU(2)-symmetric case, equivalent to th
SU(2)-symmetric Thirring model!, and u5(12g2)/2g,
where g is the coupling constant of the chiral invaria
Gross-Neveu QFT.14 As to the Lagrange multiplierh, it can
play the roles of either an external magnetic field or
chemical potential, or an external topological field dual
the topological Noether current in QFT. Here we point o
that in fact in QFT the theorists are interested in physi
particles, which have a finite mass~gap!. In the chiral-
invariant Gross-Neveu model the gap of the staggered o
lations of the two-chain quantum spin model plays the r
of the physical mass of the particle~spinor!.13,14 As to the
~gapless! oscillations of the magnetization of the two-cha
spin model, we point out that they are consequences of
lattice and play the role of the massless fermion doubler
the lattice QFT.23 The results of the previous section me
that the behavior of the chiral-invariant Gross-Neveu mo
~or SU(2)-symmetric Thirring model! in an external mag-
netic field depends strongly on the coupling constantu ~or
equivalently ong!. Foru,uc the conformal limit of the QFT
corresponds to one level-1 WZW model with the conform
dimensionC51. However, foru.uc(2uc2Auc

214,2g

.2uc1Auc
214) the conformal limit of this QFT in an ex

ternal magnetic field corresponds to the semidirect prod
of two level-1 WZW models with the conformal dimension
C51. Two kinds of conformal points for this QFT have be
-
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mentioned already24 in a slightly different context. They
were connected with one WZW theory or two WZW the
ries, coupled via a current–current interaction. This is rela
to right–left symmetry of the chiral invariant Gross–Nev
QFT ~see also Refs. 32 and 33 for the case of the QFT for
principal chiral field!.

Note that the conditionh.hc in the QFT means that the
magnetic field is larger than the mass of the physical part
~color spinor!. In this sense, in the region of magnetic fie
valuesh,hc the results of the QFT~see, e.g., Ref. 22! pre-
dict zero magnetization; however, a different lattice regul
ization, similar to the lattice scheme used in the previo
Section, predicts a nonzero magnetization of the chi
invariant Gross–Neveu model in this region. This is an in
rect effect of the fermion doublers. In other words, it is co
nected with the well-known mapping of the lattice~e.g.,
Thirring! model under regularization onto two continuu
QFT either both bosonic~the free bosonic and sine-Gordo
QFT25!, or both fermionic~a free one and the continuum
massive Thirring model!. There are necessarily two suc
theories because of the Nielsen–Ninomiya fermion doubl
remember that we have started from a lattice.23

For other models of QFT the lattice regularizatio
procedure26–28 has been used. Hereu plays the role of the
cutoff for keeping the mass of the physical particle finite. F
example, for theU(1)-symmetric Thirring QFT23,29 one can
use the results of the previous section with the limitu→`
taken after the thermodynamic limit~L, N6 , M→` with
their ratios fixed,L is the size of the box!. In this case one
can obviously obtain the conformal limit of the theory wi
nonzero physical masses of the particles. Naturally, in
limit u→` one is always, in the presence of an extern
magnetic field, in the phase with two Dirac seas. Here
latters correspond to the right- and left- moving partic
~with positive and negative chiralities!. Actually here our
point of view coincides with that of the field theorists. R
cently it was shown30 that for the (111)-dimensional sine-
Gordon model the lattice regularization scheme in
‘‘light-cone’’ approach gives results similar to ours for th
conformal limit of the model. It was shown there that at t
UV fixed point the conformal dimensions of the sine-Gord
model are determined by twoU(1) charges of excitations
~the usual one and the chiral charge!. The chiral charge cor-
responds to the number of excitations transferred from
Dirac sea to the other, similar to our results~note that the
above-mentioned lattice-regularized sine-Gordon case co
sponds in our notation tou→`, where the integral equation
for the particles with the positive and negative chiralities a
totally decoupled!. We point out here, that such behavior
not unexpected, because the sine-Gordon QFT belongs t
same class of models studied in our paper, i.e., its Be
ansatz description features a shift of rapidities in the Be
ansatz equations in the lattice-regularized theory.30

4. HIGHER SPIN „CHIRALITY … GENERALIZATIONS

For the higher spin generalizations of the Bethe ans
theory presented in Sec. 2 we can write the BAE in the fo
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)
6

en6

N6~ua6u!5eipM )
b51,bÞa

M

e2~ua2ub!, ~21!

wheren652S6 are the values of the spins in each chain
the colors of the bare particles in QFT. The eigenvalue of
transfer matrix can be written as

L~l!5 )
a51

M
sinh~l2ua1 ig/2!

sinh~ua2l1 ig/2!

1eipM)
6

S sinh~l6u!

sinh~ ign6/22l7u! D
N2

3 )
a51

M
sinh~ua2l13ig/2!

sinh~l2ua2 ig/2!
. ~22!

Similar new phases with one or two kinds of Dirac se
for similar kinds of low-lying excitations also exist for
number of models in whichn6Þ1, e.g., for the higher-spin
(S.1/2) two-chain models with equal spins in each cha
SU(n11) CIGN QFT.31 theren15n25nÞ1; for the prin-
cipal chiral field models ~nonlinear s model! for
CP-symmetric32 ~there n15n2→`! and CP-asymmetric
cases33 ~theren1Þn2 , (n11n2)→`,(n12n2) fixed, i.e.,
the symmetry SU(2)3SU(2)}O(4); and for the
O(3)-symmetric nonlinears model34 as well as for spin-
(S1[2n1) –spin-(S2[2n2) two-chain models~quantum
two-chain ferrimagnet!. Note that for spinsSÞ1/2 the pro-
cedure of the construction of the Hamiltonian is more co
plicated, because it corresponds to the two-chain unia
generalization of the Takhtajan–Babujian model; see, e
Ref. 35. For the simplest case of isotropic exchange inte
tions between the spins and between the chains the Ha
tonian has the form

H5(
n

$u2~HS1 ,S1 ,n1 ,n1111HS2 ,S2 ,n2 ,n211!

12~HS1 ,S2 ,n1 ,n2
1HS2 ,S1 ,n1 ,n211!

1@~HS1 ,S1 ,n1 ,n111

1HS2 ,S2 ,n2 ,n211!,~HS1 ,S2 ,n1 ,n2

1HS2 ,S1 ,n1 ,n211!#12iu@~HS1 ,S1 ,n1 ,n111

1HS2 ,S2 ,n2 ,n211!,~HS1 ,S2 ,n1 ,n2

1HS2 ,S1 ,n1 ,n211!#%, ~23!

where@...#$@...#% denote the~anti!commutator,

HS1 ,S2 ,n,n115 (
j 5uS12S2u11

S11S2

(
k5uS12S2u11

j

3
k

k21u2 )
l 5uS12S2u

S11S2 x2xl

xj2xl
, ~24!

x5S1,nS2,n11 and 2xj5 j ( j 11)2S1(S111)2S2(S211).
The summation overn runs toN6 in each chain. One can
obviously see that forS651/2 the Hamiltonian~23! recovers
the isotropic antiferromagnetic spin-1/2 Hamiltonian~4! in-
r
e

s

,

-
al
.,
c-
il-

vestigated in Sec. 2. For a single spin chain,u50, N1

5N2 the Hamiltonian coincides with the known Hami
tonian of alternating spin chains.36–38The Bethe-ansatz stud
ies of the model forn6 can be performed in complete ana
ogy with the above-mentioned casen651, keeping in mind,
of course, the main difference: for theSU(2)-symmetric or
uniaxial higher-spin models the ground state correspond
the filling up of the Dirac seas for spin strings of lengt
n6

35. The well-known fusion scheme can be used for t
case of a flavor-degenerate situation of the chiral invari
Gross–Neveu CIGN QFT, in the absence of flavor fields39

Note that, except for theO(3)-symmetric case,g50 every-
where in the above-mentioned models of QFT. This cor
sponds to rational solutions of the Yang–Baxter equation
the two-particle scattering matrices. For the two spin cha
the two-chain quantum ferrimagnet model corresponds
two Takhtajian–Babujian chains with different values of t
site spins, coupled due to nonzerou. The total quasimomen
tum and the energy of the system in the framework of
lattice ~local! regularization scheme for some QFT can
written as23

22atE5(
6

(
a51

M
]

]ua
N6 ln en6

~ua6u!,

iaP5(
6

(
a51

M

N6 ln en6
~ua6u!, ~25!

wherea and at denote the space and time lattice constan
respectively, and their ratio fixes the velocity of ligh
~‘‘light-cone’’ approach!. The CP-symmetric~chiral invari-
ant! case corresponds to the situation in whichn15n2

5n. The Dirac seas are related to the dressed~quasi!parti-
cles with negative energies~strings of lengthn6!. The be-
havior of the dispersion relation for excited particles in t
CP-symmetric case~n15n25n andN15N2! is similar to
Eq. ~12!: for instance, for the chiral-invariant Gross-Neve
QFT and principal chiral field model the right-hand side
Eq. ~12! must be simply multiplied by sin(pr/n11)/sin(p/n
11), and the parameteru in Eq. ~12! has to be replaced by
(n11)u/2, wherer 51,...,n is the rank of a fundamental rep
resentation of theSU(n11) algebra. All the previously
mentioned characteristic features from the casen651 per-
sist. The differences are in the levels of the Kac-Moody
gebras in the conformal limit: the conformal anomalies a
C53n/(n12). Now the conformal field theory is a semid
rect product of a Gaussian (C51)40 and aZ(n) parafermion
models:41 the operators identified from the scaling behav
of states consisting only of Dirac sea strings~found from
finite-size corrections! are found to be composite operato
formed by the product of a Gaussian-type operator and
operator in the parafermionic sector. To find the nonz
contributions from parafermions~constant shifts! one can
consider the states with strings of other lengths than
Dirac sea present.42 For the scaling dimensions these shi
are (2r 2r 2)/(2n14), r 51,2,...

From now on we concentrate on then1Þn2 situation.
For the two-chain spin system the situation corresponds
the quantum ferrimagnet. Here we point out that due to
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zigzag-like interactions in the system and spin frustration
ferrimagnets of this class are in the singlet ground s
~compensated phase! for h50, unlike the standard classica
ferrimagnets in uncompensated phases. The integral e
tions that determine the physical vacuum of the systems
similar to Eqs. ~5! and ~6!. They reveal one or severa
minima of the corresponding distributions of dressed en
gies and densities with possible negative energy states,
one or several Dirac seas:

«t~u!1E dvKtt8~u2v !«t8~v !5h
Nt

N
nt1(

6

N6

N
«t,6

0 .

~26!

rt~u!1E dvKtt8~u2v !rt8~v !5(
6

N6

N
rt,6

0 .

The indext enumerates two possible Dirac seas and app
becausen1Þn2 , and the6 enumerate two possible minim
due to the nonzero shiftu. The indext was naturally absen
for the CP-symmetric casen15n2 . Note that for quantum
two-chain ferrimagnets the investigated gapless phases in
ground state in an external magnetic field are similar to
spin-compensated and uncompensated phases. Thus
phase transition between those phases is similar in natu
the well-known spin-flop phase transition in the classi
theory of magnetism. Note, though, that the spin-flop tran
tion is of the first order~easy-axis magnetic anisotropy!,
while the transition under study is a second-order one~easy-
plane anisotropy!. The Fourier transform of the kernel i
given by

2 coth~v/2!@diag~e2n1uv/2u cosh~n1v/2!,e2n2uv/2u

3cosh~n2v/2!!2ŝx~e2~n12n2!uv/2u2e2~n11n2!uv/2u!#,

~27!

where diag(a,b) is 232 diagonal matrix andŝx is the usual
Pauli matrix. Note that after taking the limit (n11n2)
→`, which is the case of theCP-asymmetric case of the
QFT for the principal chiral field, i.e., with the Wess-Zumin
term,33 the inverse kernel coincides formally~up to a con-
stant multiplier! with the one for the casen15n251. This
indicates a globalO(4)(O(3)) symmetry of the principal
chiral field.33 There may also be two different behavior
corresponding to one or several Dirac seas forn1Þ1 or
n2Þ1. Naturally, in the conformal limit the associate
WZW CFT have different conformal anomalies determin
by n6 :C653n6 /(n612). For the determination of the
Gaussian parts of the conformal dimensions of primary
erators, Eqs.~18! can be used. One has to add the input fro
the parafermionic sectors, too.41,42 The elements of the
dressed charge matrices are the solutions of the follow
system of integral equations:

jt,t8~u!1(
6

E dvKt8~u2v !jt,6~v !5dt,t8 , ~28!

in which the summation over6 is due to the two possible
Dirac seas~two minima in the distribution of rapidities! at
6u. For different values of the spins,n1Þn2 , a transition
between two different phases is induced by increasing
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external magnetic field to some critical value, even in t
absence of the shiftu.37,38 This differs from the CP-
symmetric casen15n2 , where the phase transition is on
connected with the nonzero value of the intrachain coupl
parameteru. For theCP-symmetric case, one or two Dira
seas of the same type of excitations exist due to the non
u. But in theCP-asymmetric case the existence of two Dir
seas can be related to two different kinds of low-lying ex
tations ~particles!. They are strings of lengthsn1 and n2 ,
respectively. In this situation the dispersion relations may
independent~not only factorized as for the previousCP-
symmetric cases!. The ~new! phase transition athc reveals
the van Hove singularity of the empty Dirac sea for t
longer strings. The spin saturation fieldhs is connected with
the empty Dirac sea of strings of the smaller length.

5. MULTICHAIN QUANTUM SPIN MODELS

It is worthwhile to mention that phase transitions in
external magnetic field, similar to the ones studied in t
paper for uniaxial spin chains and QFT, have been alre
studied in 1D quantum alternating single spin chains,37,38

spin-1/2 isotropic two-chain models,9,10 and correlated elec
tron models with the finite concentration of magne
impurities.43 The Bethe ansatz equations for those mod
are similar to the ones studied in the present paper, Eqs~1!
and ~21!. Note that the energies for spin models are defin
~as usual for the lattice models! as the first logarithmic de-
rivatives of the transfer matrices. The factorization of t
dispersion relation for the lowest excitations~spinon! reveals
essentially two kinds of magnetic oscillations: excitations
the magnetization, and oscillations of the staggered mag
tization, i.e., the manifestation of essentially two magne
sublattices. Naturally, the existence of the latters persist
the continuum limit of such systems, too~cf., for instance,
the standard theory of antiferromagnetism!. Two nonferro-
magnetic phases also reveal themselves in finite-size co
tions to the energies of these quantum spin models. Th
instead of a scalar dressed charge for the phase with
Dirac sea for spinons, 232 dressed charge matrices appe
in the second phase, with two Dirac seas for spin strings
different lengths in an alternating spin chain37,38 or for
spinons of the same kind in zigzag-like coupled spin cha
~see Refs. 9 and 10 for the isotropic two-chain spin-1
model!.

The symmetry-breaking terms@the difference (n1

2n2)52(S12S2), or nonzerou# in BAE are actually the
reason for the emergence of several gapless phases~or two
Dirac seas! in the ground state in an external magnetic fie
It is also interesting to note that a homogeneous shift
rapidities can be removed for one Dirac sea in the case
periodic boundary conditions by an appropriate unita
~gauge! transformation~shift of variables!, e.g., ua→ua

6u. But in the case of open boundary conditions, the BA
take the form~for reasons of simplicity we write the fre
boundary situation only, without the external boundary p
tential!:
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)
6

en6

2N~ua6u!5)
6

)
b

e2~ua6ub!. ~29!

It is clear that for the open chain one cannot remove the s
u of the rapiditiesua from one Dirac sea by a special choic
of the gauge. From this point of view the latter case is clo
to theCP-symmetric situation in QFT.

One can see from the structure of the Hamiltonians t
for the two-chain spin models the parameteru characterizes
the intrachain coupling for each chain~or the next-nearest
neighbor interaction in a single spin chain picture!. It is ob-
vious to introduce the series of$u j% j 51

J ~for each chain! and
to construct the Hamiltonian of the exactly integrable mu
chain ~J is the number of chains! spin model. For the sim-
plest case with allS51/2 isotropic antiferromagnetic chain
the Hamiltonian reads:4

ĤJ5A(
n

H F)
i ,k

~u i2uk!G P̂Sn,rSn11,r

1 (
p,q

P i ,k~u i2uk!

~up2uq!
@ P̂Sn,qSn11,p

,P̂Sn,qSn11,q

1 P̂Sn,pSn11,p
#1¯1S (

j 51

J

P̂Sn jSn j11
2 P̂Sn,JSn,J11

1 P̂SnJSn11,1D J , ~30!

where A is the normalization constant~which depends on
u j !; P̂SaSb

}(1/2)Î ^ Î 12Sa^ Sb is the permutation operator
and @.,.# denotes a commutator. Note that in the case
JÞ2 the integrable model corresponds to the pair coupli
not only between the nearest-neighbor spins but also to
next-nearest three-spin, etc., couplings. All those terms
only essential in quantum mechanics, because in clas
physics they are total time derivatives11 and do not change
the equations of motion. The Bethe ansatz equations hav
form

)
j 51

J

e1
Nj ~um1u j2u1!5eipM)

k

M

e2~um2uk!, ~31!

where M is the total number of down spins andNj is the
number of sites in thej th chain. The previously studied situ
ation J52 corresponds to the shift of the variablesum

→um1u with u22u1522u. Now u j2u1 determines the
values of the intrachain couplings in chainj.

The analysis of the low-temperature thermodynamics
the multichain spin system is analogous to theJ52 case
studied in Secs. 2–4. From the structure of the Bethe an
equations in the thermodynamic limitNj , M→`, with their
ratios fixed, one can see that for theJ-chain model~for dif-
ferentu j ! there can exist, generally speaking,J phase transi-
tions of the second order in the ground state in an exte
magnetic field. These are none other than the commensu
incommensurate phase transitions for the quantum m
chain spin model with different couplings between t
chains. The values of the critical fieldshc1

,...,hcJ21
and the
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value of the magnetic field of the transition to the ferroma
netic statehs depend on the set ofu j , i.e., on the intrachain
couplings~and also on the values of the magnetic anisotro
constants, which can be taken different for each chain;
does not destroy the integrability!. The ferromagnetic state i
gapped, while all other phases are gapless in the integr
multichain spin quantum model. There are alsoJ21 tricriti-
cal points at which the lines of the phase transitionshcj

join
the line of the spin saturation phase transition. Naturally,
phase that corresponds to the lowest value of the magn
field, sayh,hc1

for special values ofu j ~the condition is
similar to u,uc for J52!, has in the conformal limit one
scalar dressed charge. Hence, in the conformal limit our m
tichain spin model behaves as the level-1 WZW CFT. In
next phase the multichain quantum spin model behave
the semidirect product of two WZW CFT, hence the
dressed charges are 232 matrices, and so on, until the la
gapless phase, which corresponds to the semidirect pro
of J WZW CFT with J3J dressed charge matrices. Note th
J in this approach also denotes the number of possible D
seas~each of them is connected with the same magn
field, so the excitations in each of them are not independe!,
and thus, with one-half of the number of Fermi points. In t
limit J→` ~i.e., quasi-2D spin system! one obtains the~2D!
Fermi surface instead of the set of 1D Fermi points~the latter
become distributed more closely to each other with
growth ofJ!. In this limit the differences betweenu j tend to
zero, and that is why the differences betweenucj

, hcj
, and

also betweenhcj
and hs disappear, too. Therefore in thi

limit only hs survives. This means that for the quasi-2D lim
of such an integrable model ofJ coupled quantum spin
chains withJ→` we expect only two phases in the groun
state in an external magnetic field: the ferromagnetic gap
one and the gapless phase, which in the conformal limit c
responds to one WZW CFT~with a single scalar dresse
charge!. The phase transition between these two phase
the ground state in an external magnetic field is of the sec
order.

6. BEHAVIOR OF THE NONINTEGRABLE MULTICHAIN SPIN
SYSTEMS

So far we have studied only integrable multichain qua
tum spin models. We have shown that the commensur
incommensurate phase transitions of the second order
to reveal themselves in an external magnetic on accoun
the intrachain interactions~or the next-nearest interactions
a single quantum spin chain picture!. We have shown tha
the emergence of these phase transitions does not depen
the value of the site spins; they emerge in the presenc
easy-plane magnetic anisotropy, which keeps the system
the critical ~gapless! region. It is not clear, however, which
features of the behavior of the integrable models with
‘‘fine-tuned’’ parameters have to exist for more realistic mu
tichain models, and what are the qualitative differences t
are expected to exist between the integrable multichain m
els and real multichain spin systems.

We have to add one more thing to clarify the situatio
we study ~quasi!-1D spin quantum models, for which on
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can use the Lieb-Schultz-Mattis theorem~and its
generalizations!.8,44 However, it is obvious that due to th
frustration of the interactions between neighboring spins
the presence of additional terms in the Hamiltonians wh
violate the time-reversal and parity symmetries in the s
tems ~spin chiralities or spin currents!, for all of the spin
models studied in this paper one cannot satisfy the condit
of the theorem. Hence it cannot be applied~at least not di-
rectly!. That is why for all the models studied there are
spin gaps~except for the trivial one for the spin-polarize
ground state!. ~Here we are not talking about the gaps co
nected with the magnetic anisotropy but rather about
Haldane-like spin gaps45 which appear even for the isotrop
spin-spin interaction, and about fractional magnetizat
plateaus8!. As we argued before,11 it is the presence of the
chiral spin terms~or the operators of the nonzero spin cu
rents! in the Hamiltonian~which are total time derivatives
and do not change the classical equations of motion
rather affect the topological properties, like the choice of
u-vacuum in Haldane’s approach! is the reason why the low
lying spin excitations~and particles for lattice QFT! for our
class of models are gapless and our low-energy theories
conformal. It has to be mentioned that recent results of
perturbative RG analysis of the zigzag spin-1/2 chain w
out three-spin terms shows the tendency of the RG curr
to flow to the state with the parity and time-revers
violation.46 By the way, one can obviously see that theXY
limit of the two-chain spin model does not correspond to
free fermion point of the exactly solvable model, and th
agrees with the results of Ref. 46. Note, though, that in
latter it was erroneously concluded that the time-reversal
parity symmetries were violated by the two-chain zigz
spin Hamiltonian with only two-spin couplings~i.e., the
nearest- and next-nearest-neighbor interactions in the si
chain picture!, without spin current terms in the Hamiltonia
Hence the symmetry of the state considered was lower
the symmetry of the Hamiltonian there.

Naturally, the relevant perturbations to our integrab
models will immediately produce spin gaps. As usual,
algebraic~power-law! decay of the correlation functions i
the ground state of the models considered in this paper
termines the quantum criticality. This means that, start
from the ~conformal! exact solutions obtained in this pape
one can argue that the response of the more realistic
systems to perturbations can be evaluated by using pertu
tive methods, e.g., in a renormalization group framewo
For example, let us study the effect of relevant perturbati

to the Hamiltonians considered,Ĥr5Ĥ1dĤ1 , where one

can choose asĤr , e.g., the standard Heisenberg or uniax
Hamiltonians for several coupled quantum spin chains,

as Ĥ the hamiltonians of spin chains considered exactly
this paper for some values ofu, where the three-spin term
are relevant. The correction to the ground state energy
the excitation gap~mass of the particle in QFT! for the quan-
tum critical system areDE}2d (d1z)/y andm}d1/y, respec-
tively, whered is the dimension of the system, andz is the
dynamical critical exponent. For the conformally invaria
systems studied here one hasd5z51. The application of the
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standard scaling relations yieldsy1x52(5z1d), wherex
is the scaling dimension, i.e.,x52D l12D r , found in the
previous sections~for the phases with the dressed char
matrices the summation over upper indices is meant!. Hence
the gap for the low-lying excitations~the mass of the physi
cal particles in QFT! for the perturbed systems will bem
}d1/2(12D l2Dr ). Note that because of scaling, the behavior
the critical exponents~which are related to the exponents w
introduced for the integrable multichain spin models! in the
vicinities of the lines of phase transitions has to be univer
and this can be checked experimentally. We expect that
spin gap has to exist for values of the isotropic zigzag int
chain coupling higher than or of the order of 0.5 for th
two-chain spin-1/2 system,9 where the three-spin coupling
are relevant and the emergence of the spin gap is kn
exactly.47

Very recently, density matrix renormalization group n
merical studies of the two-chain zigzag spin-1/2 mod
~without chiral three-spin terms in the Hamiltonian! were
performed in Ref. 48. These numerical studies strongly s
port the picture proposed here~see also Ref. 9!: the magne-
tization as a function of the magnetic field in the ground st
reveals~i! one second-order phase transition~to the spin-
saturation phase! for weak intrachain coupling,~ii ! one more
second-order phase transition between the magnetic~gapless!
phases in the intermediate region of intrachain coupling,
~iii ! in addition to those second-order phase transitions,
to the gapped phase with zero magnetization~plateau! at an
intrachain coupling value of 0.5.

We should also mention that it is not the chiral sp
terms~as implied in Ref. 10! but the intrachain coupling tha
is responsible for the commensurate–incommensurate p
transitions between the gapless phases in this class of m
els. As to the aforementioned spin currents, their ‘‘fin
tuned’’ values produce the cancellation of the spin gap
zero magnetic field9. We should also note that to our min
some features of the phase diagram obtained in Ref. 19
artifacts of the small number of sites involved in the nume
cal calculations. In Fig. 5 of Ref. 19 in the regions 0.52,k
,0.6 ~corresponding to intrachain couplings, normalized
the value of the interchain interaction, in the range@0.54
–0.75#! we can obviously see that when increasing the va
of the magnetic field one goes from the gapped phase w
zero magnetization into the gapless one with two Dirac s
of low-lying excitations, then reaches the gapless phase w
one Dirac sea, then returns to the gapless phase with
Dirac seas, and finally reaches the spin-saturated phase
our mind this return to the already passed phase is nonph
cal. One can clearly see that the region of values of
intrachain couplings in which these strange returns happe
reduced in size when going from 16 sites in the numeri
calculations to 20 sites. This confirms that the presen
achieved sizes of the quantum systems for numerical ca
lations can produce even qualitatively invalid results, a
therefore analytical calculations are necessary, too.

We point out that despite the fact that the relevant p
turbations in general produce a gap for the low-lying exci
tions, one can apply the results of this paper to real gap
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multichain spin systems, too. For example, it was recen
observed that even for the two-leg ladder syst
SrCa12Cu24O41 the spin gap collapses under pressure.49

7. CONCLUDING REMARKS

In this paper, motivated by recent progress in the exp
mental measurements for multichain spin systems, we h
theoretically studied the behavior in an external field o
wide class of multichain quantum spin models and quan
field theories. First, we have investigated the external fi
behavior of the exactly integrable two-chain spin-1/2 mo
and have shown that the inclusion of the magnetic anisotr
of the easy-plane type, for which the system stays in
quantum critical region, does not qualitatively change
behavior in an external magnetic field. However, we ha
shown that the magnetic anisotropy alters the critical val
of the magnetic fields and intrachain couplings at which
phase transitions occur and affects the critical exponents.
have shown that the external-field-induced phase transit
we discussed are the commensurate–incommensurate p
transitions due to the next-nearest-neighbor two-spin inte
tions, which are present in these multichain models w
zigzag-like couplings. We have pointed out that the lo
lying excitations of the conformal limit of our class of mu
tichain spin models are not independent in the incommen
rate phase, because they are governed by the same mag
field. We have shown that these two-chain quantum s
models share the most important features of the behavio
an external field with the wide class of (111) quantum field
theories.

We have introduced higher-spin versions of the tw
chain exactly solvable spin models, e.g., we have inve
gated the important class of 1D two-chain quantum ferrim
nets with different spin values at the sites of each chain. H
we have shown that the phase transitions in an external m
netic field in this exactly solvable two-chain quantum fer
magnet are similar in nature to the phase transitions betw
the spin-compensated and uncompensated phases in ord
classical 3D ferrimagnets.

We have also studied the behavior of the multichain
actly solvable spin models in an external magnetic field a
shown how the additional phase transitions arising due to
increasing number of chains vanish in the quasi-2D lim
Hence, to the best of our knowledge, we have proposed
first exact scenario of the transition from 1D to 2D quantu
spin models in the presence of an external magnetic fi
We have argued that the commensurate–incommensu
phase transitions in the multichain quantum spin mod
have to disappear in the limit of an infinite number of chai

Finally, we have shown how the relevant deviatio
from integrability, i.e., the presence of three-spin~spin chi-
ral! terms in the Hamiltonians which separately break
parity and time-reversal symmetries, give rise to gaps
spectra of the low-lying excitations of the multichain qua
tum spin systems, and we have calculated the critical sca
exponents for these gaps. We pointed out the qualita
agreement of our exact analytical calculations with rec
numerical simulations for zigzag spin models.
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NMR study of the low-temperature phase of vanadium dioxide
L. A. Boyarski , S. P. Gabuda, and S. G. Kozlova
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The magnetic shielding and quadrupole interaction constants of51V nuclei in the low-
temperature~nonconducting! phase of vanadium dioxide are determined by magnetic resonance
on the51V nuclei. It is shown that the metal–insulator transition in VO2 is accompanied
by a change in the sign of the magnetic shielding constant and by an electronic transition
2V41→V311V51, which is accompanied by a charge ordering in the cation sublattice. ©2000
American Institute of Physics.@S1063-777X~00!01102-6#
a
he

su
tie
di
le

es
th
in
a

ts
in

try
sy
,

ur
th
ns
th

-
–V

ie
6
m
re

ob
tie

the
n
t

w-
g-

ible
r,

y be
by

al-
of
it

sly
an
the

c
ron

the

e of
the

ng
een

t

ds,
In
INTRODUCTION

Transition metal oxides have been attracting research
tention for a long time now. Of particular interest are t
oxides of titanium and vanadium, whose 3d and 4s shells
are strongly hybridized. These substances exhibit unu
electrical, optical, magnetic, and thermodynamic proper
and undergo phase transitions. The most thoroughly stu
are oxides of vanadium doped with alkali or transition e
ments~e.g., NaV2O5 @Refs. 1 and 2# or V12xNbxO2 @Ref. 3#,
respectively!. In the low-temperature, nonmetallic phas
these compounds exhibit exotic properties due mainly to
nonuniform distribution of charge density and spin density
them. In particular, unusual antiferromagnetic structures
present in~VO!2P2O7 ~Ref. 4!, and the properties of LiV2O4

are described in the framework of heavy-fermion concep5

However, there is a simpler structure that is also of
terest: pure vanadium dioxide. It is known that belowTc

5340 K, VO2 undergoes a first-order metal–insulator~or,
according to other data, metal–semiconductor! phase transi-
tion. At the transition there is a change in lattice symme
The high-temperature, metallic phase of the tetragonal
tem has the rutile (TiO2) structure. The low-temperature
nonconducting phase is monoclinic, with a crystal struct
that is a slightly deformed version of the initial lattice, wi
distorted octahedral coordination of the vanadium io
There is a doubling of the period and a modulation of
chains of vanadium ions along thec axis of the initial lattice,
which corresponds to thea axis in the structure of the low
temperature phase. This results in the formation of V
pairs with a somewhat shortened distanced(V–V) 52.62Å
within the pairs and a lengthened distance~3.17 Å! between
the nearest vanadium ions of the neighboring pairs.

The available information about the magnetic propert
of vanadium dioxide is inconsistent. It follows from Ref.
that the low-temperature phase is paramagnetic, with a s
susceptibility that is practically independent of temperatu
The growth in the susceptibility at helium temperatures
served in Ref. 6 was attributed to the presence of impuri
1471063-777X/2000/26(2)/5/$20.00
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in the sample. In Ref. 7, however, it is asserted that
susceptibility of the dioxide obeys the Curie law with a
effective moment of 2mB , which corresponds to the trivalen
vanadium ion. At the same time, in Ref. 8 a diamagnetic
low-temperature phase of VO2 is reported.

On account of the 3d electronic configuration of the V41

ion, it would be natural to have spin paramagnetism. Ho
ever, the mutually contradictory data obtained in reality su
gest both the presence of impurity effects and a poss
nonuniform distribution of the charge density. In particula
it seems likely that a pairing of the 3d1 electrons of the V41

ions occurs. One of the possible pairing mechanisms ma
based on the small-radius bipolaron concept proposed
Anderson.9 In the polaron model, two electrons can be loc
ized in the immediate proximity of each other on account
a strong local distortion of the crystal lattice. In particular,
has been shown10 that in the mixed oxide (TixV12x)O2 the
ground state of the electron system evolves continuou
with x from a superconducting state of the BCS type to
insulator state in which the Cooper pairs are localized in
form massive bipolarons.9 It is entirely realistic to suppose
that for pure binary VO2 the insulator and weakly magneti
states are brought about by an analogous type of bipola
mechanism of electron pairing. However, in that case
transition from the conducting to the insulating~semicon-
ducting! state should be accompanied by the appearanc
structurally inequivalent vanadium ions, a change in
charge distribution, and charge ordering in the system.

The NMR method holds great promise for investigati
nonuniform charge-density distributions. Results have b
published11,12 for studies of the51V nuclei in VO2 in rela-
tively weak~up to 1.8 T! magnetic fields. It was shown tha
in the metallic phase, VO2 exhibits an anomalous~diamag-
netic! Knight shift of the NMR signal~i.e., in the direction of
higher magnetic fields relative to the NMR signal of free51V
nuclei!. At the transition to the nonconducting phase of VO2

the NMR signal undergoes a jump to lower magnetic fiel
i.e., corresponding to paramagnetic shifts of the NMR.
© 2000 American Institute of Physics
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addition, it was found that the spectral band of the NMR
the nonconducting phase is split into two asymmetric lin
this was explained as being due to a sharp increase in
electric field gradient at the sites of localization of the van
dium ions. However, because of the insufficiently high ma
netic fields used, it was not possible to investigate the c
tribution of a possible structural inequivalency of th
vanadium ions.

EXPERIMENT

We undertook a study of the charge distribution and
electron–nuclear interactions in the nonconducting lo
temperature phase of vanadium dioxide by the method
NMR on 51V nuclei in both low and high~up to 9.4 T!
magnetic fields. Since the phase transition entails a jum
the volume of the unit cell~by 8%!, it is problematic to
obtain single-crystal samples from the melt and prese
them in that state through the transition to normal conditio
We therefore limited the study to the characteristics of po
crystalline VO2. The powder samples were synthesized b
technique based on the solid-phase react
V2O31V2O5→4VO2 ~Ref. 13!. According to the data of an
x-ray phase analysis, the impurity content in the sample
not more than 1%. From an analysis of the stoichiometry
the samples in respect to the oxygen content, we obtained
formula VO2.0160.01.

For the measurements in fields from 1.4 to 1.8 T we u
a wide-line spectrometer equipped with a cryostat for lo
temperature studies, including at helium temperatures.
measurements in high magnetic fields (B059.4 T) were
done on a production-model Bruker MSL-400 multinucle
spectrometer, which comes equipped with a superconduc
solenoid. To increase the signal/noise ratio the MAS te
nique was used~rapid spinning of the sample~up to 10 thou-
sand rpm! at the ‘‘magic’’ angle 54°448 relative to the mag-
netic field direction!. A study of the low-field NMR spectra
in the temperature interval from 77 to 300 K did not reve
any substantial changes in the position and shape of the l
At the same time, making low-temperature measureme
with the use of the MAS technique is extremely difficult. W
therefore used room-temperature data for our analysis
should be noted once again that the point of the met
insulator transition in vanadium dioxide lies considerab
lower.

The number of integrations was;1000 at a pulse dura
tion of 0.7 ms and a delay between pulses of 0.5 s; the
ration of an integration was 80 h. Liquid VOCl3 was used as
an external reference standard for the measurements o
NMR shifts.

MEASUREMENTS IN A HIGH MAGNETIC FIELD

In a magnetic field of 9.4 T we obtained a multicomp
nent, asymmetric NMR spectrum of51V, with a width of up
to 0.1 T ~Fig. 1!. The very large broadening of the spectru
is due to first-order quadrupole effects, which also com
cate the analysis of the magnetic shielding effects~Appendi-
ces 1 and 2!. Since the first-order effects lead to a symmet
broadening of the spectral bands, it is clear that the as
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metric spectrum observed in the experiment is the result
superposition of two symmetric bands of different width
shifted with respect to each other. A computer modeling
the spectrum confirmed this hypothesis and enabled u
separate the initial experimental spectrum into two lines
approximately equal intensity, shifted relative to each ot
by 0.2560.01% ~Fig. 1!. The results of this separation sho
that there are two structurally and chemically different po
tions of the vanadium ions, V~1! and V~2!, in the low-
temperature phase of VO2. The parameters of the electri
quadrupole interactions inferred from the analysis are p
sented in Table I and Fig. 2, together with the isotropic me
of the magnetic shielding of the vanadium nuclei.

From a comparison with the known spectroscopic d
for vanadium compounds we can assign the NMR signa

FIG. 1. Theoretical NMR spectra due to first-order quadrupole effects
nuclear spin 7/2 with different asymmetry parameters:h50 ~a! and 0.5~b!;
the experimental NMR spectrum of51V in VO2 in a fieldB059.4 T ~c!. R is
the marker from VOCl3.

TABLE I. Quadrupole interaction and magnetic shielding parameters
51V~1! nuclei in the metallic and nonconducting phases of VO2.

Quadropole Nuclear shielding
coupling Asymmetry constant

Phase of VO2 constant, MHz parameterh ^s&5(B2B0)/B0 , %

Metallic
@Refs. 11 and 12# 4.90 0.9 10.380
Nonconducting
V~V!* 4.64 0.35 10.002
V~V!** 4.31 0.35 10.019
V~III !* 5.95 0.8 20.249
V~III !** 5.75 0.5 20.232

Note: The results of an analysis of the NMR spectra of51V in fields of 1.5
and 9.4 T are indicated by* and** , respectively.
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V~1! to V51 ions, and the V~2! signal to V31, with the re-
spective electronic configurations 3d2 and 3d0, the first of
which should be spin-paired~low-spin!.

MEASUREMENTS IN LOW MAGNETIC FIELDS

To verify that we are justified in attributing the splittin
of the NMR spectra of51V to the influence of second-orde
quadrupole effects, we measured the dependence of the
blet splitting on the magnitude of the magnetic field. It w
expected, in the framework of the interpretation given
Refs. 12 and 14, that the value of the doublet splitting wo
be inversely proportional to the external magnetic field.
the experiment we obtained the following values of the sp
ting: DB534.7 G atB0514.94 kG, andDB546.5 G atB0

517.91 kG. Thus the field dependence ofDB observed in
the experiment does not support that interpretation of
nature of the spectral splitting. Moreover, the slight grow
of DB with increasingB0 suggests an essentially magne
nature of the splitting of the NMR spectrum of51V, due to
the magnetic inequivalence of the vanadium ions in the n
conducting phase of VO2.

Proceeding from the data of the high-temperature m
surements, we analyzed the shape of the low-field NM
spectra~see Fig. 3 and Appendix 3!. We assumed that th
observed spectrum is a superposition of two lines descr
by the different shielding constants found above and w
different parameters of the second-order quadrupole inte
tion ~see Table I!. We ignored the contributions due to e
fects of anisotropy of the magnetic shielding and to fir
order quadrupole effects. The calculated spectra~Fig. 3! are
in good agreement with those obtained in the experim
The mean-square deviation of the experimental points fr
the calculated spectrum does not exceed 5%. It can als
noted that the proposed model, with two inequivalent va
dium ions, agrees with the experimental dependence of
doublet splitting on the magnitude of the external magne
field.

FIG. 2. Temperature dependence of the shielding constants of vana
nearTc . In the low-temperature phase there are two constants, corresp
ing to two valence states of the vanadium ions,V31 (s) and V51 (d); in
the high-temperature phase there is one constant, corresponding to41
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To estimate the error due to neglect of the anisotropy
the magnetic shielding, we determined the characteri
width ~of the order of 0.1%! of the central transition 1/2↔
21/2 in the high-field NMR spectrum of51V. For this tran-
sition there are no first-order quadrupole effects, and
second-order effects are negligible. It can therefore be
sumed that its width is entirely due to the anisotropy of t
magnetic shielding. From this we found that the error due
neglecting the anisotropy of the magnetic shielding in
low-field NMR spectra of51V can reach 3%. The results of
comparison of the data~see Table I! demonstrate good agree
ment of the parameters calculated for the two values of
magnetic field.

CONCLUSIONS

1. According to our data, the metal–insulator transiti
in vanadium dioxide is due to the electronic transiti
2V41→V311V5, with the onset of two structurally and
chemically different positions of the vanadium ions, V~III !
and V~V!. Essentially, the position V~III ! is characterized by
significant antishielding, amounting to20.24%, and by an
increased quadrupole interaction, both in comparison w

m
d-

FIG. 3. Experimental~points! and calculated~continuous curve! NMR spec-
tra of 51V in VO2 in a fieldB051.4 T atT.Tc ~a: data of Refs. 11 and 12!
and forT,Tc ~b: our data!. The calculated spectrum forT,Tc corresponds
to two structurally inequivalent states of the vanadium ions, with the qu
rupole and chemical interaction parameters listed in Table 1.R is the marker
from VOCl3.
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the conducting phase and in comparison with the posi
V~V! of the nonconducting phase. On a qualitative lev
both of these facts can be explained by the expected effe
the onset of a bipolaron, as a strong local distortion of
lattice by the electrons. This conclusion is supported by
large values of the quadrupole coupling and magnetic shi
ing constants of the vanadium nuclei.

2. The anomalous~diamagnetic! Knight shift in the me-
tallic phase of VO2 is indicative of the predominance of th
s–d exchange polarization, for which the Hamiltonian of t
interaction should have a negative sign, corresponding to
antiferromagnetic interaction. It can be assumed that
electron pairing mechanism in the low-temperature phas
VO2 is genetically related to the electron exchange in
high-temperature metallic phase. It is extremely unusual t
in spite of the antiferromagnetic character of the electro
electron interaction, the low-temperature phase of VO2 in
low fields is apparently diamagnetic, and when the field
increased it goes over to an excited weakly paramagn
state. It should be noted that a stable antiferromagnetic s
arises in vanadium oxides in the presence of alkali-m
dopant ions.

3. The observed experimental facts can be more or
adequately interpreted in the framework of a polaron mod
However, this approach cannot be considered as ultima
correct. One need only compare the development of the c
cepts of the transition in NaV2O5 crystals and in high-
temperature superconductors. In the first case the custom
ideas of a spin-Peierls transition have been called into q
tion by Khomski�,2 who considers this transition to b
charge-related. In the second case the theory has bee
vanced by intimately tying together the spin and charge s
systems. Mainly we have in mind the SO~5! theory devel-
oped by Zhang and Demler~see, e.g., Refs. 15 and 16!. At
the same time, we believe that the polaron models that h
been proposed for high-temperature superconductors ar
out on the fringe.

We do not rule out the likelihood that vanadium oxide
serving as a kind of model systems for far more comp
cuprates, will also in time find a more realistic descriptio
Today, however, we cannot say anything more definite t
to propose that a complete study of both the spin and ch
degrees of freedom is necessary.

This study was supported by the Federal Target Prog
‘‘Integratsiya’’ ~Grant No. 274! and the Russian Fund fo
Fundamental Research~Grant No. 99-03-32477! and was
presented at the 31st Congress on Low Temperature Ph
~Moscow, December 1998!.

APPENDIX 1

Quadrupole interaction and magnetic shielding
of 51V in VO2

The effective Hamiltonian of the interaction of th
nuclear spin51V ( I 57/2) can be represented as the sum
three Hamiltonians:

H5HZ1HQ1Hsh,
n
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whereHZ52mB0 is the Hamiltonian of the Zeeman inte
action of the magnetic momentm5g l̂h/2p of the vanadium
nucleus in an external magnetic fieldB0 , andg is the gyro-
magnetic ratio. In a system described by this Hamiltoni
the resonance frequency is determined by the condition

hn05mB0 /I or n05g/2pB0 ;

HQ5@e2qQ/4I ~2I 21!#@3 l̂Z
22 l̂211/2h~ l̂1

2 1 l̂2
2 !#

is the Hamiltonian of the interaction of the nuclear quad
pole momentQ with the electric field gradient~EFG! eq
5Vzz, h5uVxx2Vyyu/Vzz is the asymmetry parameter of th
EFG, whereVxx<Vyy<Vzz, 0<h<1, l̂65 l̂x6 l̂y are com-
ponents of the nuclear spin operator, ande is the charge of
an electron. If the external magnetic field is high enou
HZ@HQ , then in the first order of perturbation theory th
quadrupole interaction leads to splitting of the NMR spe
trum of 51V into 2I 57 components positioned symmetr
cally aboutn0 :

nm5n02
3/4e2qQ@3m22I ~ I 11!#

h@2I ~2I 21!#

3~3 cos2 u211h sin2 u cos 2w!

The anglesu andw characterize the direction of the fieldB0

in the principal axes of the EFG tensor;m is the magnetic
quantum number (m5I ,I 21,...,1). For a powder sampl
the spectrum is a family of broad lines.Hsh5msB0 is the
interaction Hamiltonian of the magnetic momentm with the
electrons of an ion in an external magnetic fieldB0 ; s is the
magnetic shielding~chemical shift! tensor. In generals can
be separated into two parts: an isotropic parts is , and an
anisotropic partsanis. The isotropic parts is leads to a shift
of the NMR spectrum with respect ton0 , whereas the aniso
tropic partsanis leads to a broadening of the spectrum:

n5n0@12s is2sanis~3 cos2 u211h sin2 u cos 2w!#

Ordinarily for vanadium nuclei the broadening of the spec
due to magnetic shielding is much less than the quadrup
broadening.

APPENDIX 2

Calculation of the high-field NMR spectra of 51V in VO2

Figure 1 shows the calculated NMR spectra of51V re-
sulting from first-order effects with asymmetry paramete
h50 and 0.5. In both cases the spectra are broad and s
metric. In order to obtain agreement between the calcula
and observed spectra, we have proposed the existence o
different structural positions of the vanadium nuclei, whi
are characterized by different EFG tensorsqzz(1) andqzz(2)
and magnetic shielding tensorss(1) and s(2). To a first
approximation we have neglected the anisotropic parts of
magnetic shieldingsanis, since n0sanis(1,2)!e2qzzQ, and
we have included onlys is(1) ands is(2). In other words, we
have modeled the real spectrum by a superposition of
different symmetric bands, shifted relative to each other. T
computational procedure was based on a numerical mode
of the convolution integral of the two components with t
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use of a Gaussian broadening function with two broaden
parametersb i for the two positions of the51V nuclei:
b i5b(1) andb(2):

F~n!5F1~n!1F2~n!,

where

Fi~n!5~b iAp!21(
m

E E exp [2~n2n im!2/

b i
2]sinu du dw,

n im5~12s i i s!n021/4n iQ~2m21!

3~3 cos2 u211h i sin2 u cos 2w!,

n iQ53e2qizzQ/[2I ~2I 21!h] 21.

The optimum fitting parameters of the experimental sp
trum to the calculated spectrum,s(1), s(2), e2qzz(1)Q/h,
ande2qzz(2)Q/h, are presented in Table I.

APPENDIX 3

Calculation of the low-field NMR spectra of 51V in VO2

For HZ*HQ the description of the NMR spectra of51V
by first-order quadrupole effects becomes inefficient, a
one must include the second order of perturbation theory
this case, taking the quadrupole interaction into account
each position of the nuclei leads to the following shift of t
central component of the spectrum:

n i ~1/2↔1/2!5~12s i i s!n02~Ri /6n0!

3[Ai~w!cos4~u!1Bi~w!cos2~u!1Ci~w!],

where

Ri5~3e2qzziQ/@2I ~2I 21!h# !2@ I ~ I 11!23/4#,

Ai~w!5227/819/4h i cos 2w23/8h i
2 cos2 2w,

Bi~w!530/821/2h i
222h i cos 2w13/4h i

2 cos2 2w,
g

-

d
In
r

Ci~w!523/811/3h i
22h i /4 cos 2w23/8h i

2 cos2 2w.

The experimental low-field NMR spectrum of51V was mod-
eled by the convolution integral of the two components w
the use of a Gaussian broadening function:

F~n!5F1~n!1F2~n!,

Fi~n!5~b iAp!21E E exp [2~n2n i !
2/b i

2]sinu du dw.

The optimum parameters of the quadrupole interact
were determined from the condition of minimization of th
function

(
i

[Fexp~n i !1F~n i !]
25min.
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Stimulation of argon desorption by an oxygen impurity
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The influence of an oxygen impurity on the efficiency of desorption of excited atoms and
molecules from the surface of crystalline argon is investigated. A significant increase in the yield
of desorbed particles is observed at an O2 concentration of 1 at. % in the argon host matrix.
It is shown that a xenon impurity does not have a similar effect. Possible mechanisms are proposed
for the stimulation of argon desorption by impurity oxygen. One of them may involve the
formation of argon microclusters around O2 ions near the surface of the crystal. Another
mechanism may be due to an increase in the probability of recombination of Ar2

1 with an
electron on account of the hopping of the negative charge between the O2

2 and Ar2
1 ions. © 2000
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INTRODUCTION

The desorption of atoms and molecules from solid s
faces has become a topic of much wider research intere
recent years on account of the new desorption mechan
involving the electronic excitation of crystals and the pos
bility of selectively studying these processes by means
synchrotron radiation.1–12 Modern technology makes it pos
sibility to measure the absolute efficiency of desorption,
which crystals of inert gases are model objects.13,14 Of par-
ticular interest is the desorption of excited particles.

The luminescence spectra of desorbed Ar* atoms in the
states1P1 and3P1 and also ‘‘hot’’ unrelaxed Ar2

~v! molecules
in high vibrational states near the surface of crystalline ar
have been recorded for various means of excitation: he
ions,3,9,15 electrons,2,5,9,10,16 and photons of synchrotro
radiation.4,7,12,17 By now several processes responsible
the desorption of rare gas atoms~R! from a crystal have been
identified. One of them is due to the localization of fr
excitons near the surface, with the release of a consider
energyELR to the lattice. The subsequent ejection of an e
cited atom Ar* occurs as a result of the deformation of t
lattice due to the self-trapping~autolocalization! process. A
second process involves the dissociative decay of argon
ecules in highly excited vibrational states Ar2*

(v) near the
surface of the crystal. Measurements made in Ref. 6 s
that in the excitation of electrons with energyEe5200 eV
the first process is almost an order of magnitude more e
cient than the second.

Yet another ‘‘stimulator’’ of desorption is dissociativ
recombination of a self-trapped hole and an electron at
surface of the crystal.3,17 The excess kinetic energy releas
in this process can cause ejection of an excited atom from
confines of the sample. Together with the desorption of n
tral particles R found in the ground and excited states,
1521063-777X/2000/26(2)/8/$20.00
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desorption of positively charged ions R1 is also observed,
and this suggests that charged excitations are participatin
the process.6

The presence of impurity centers in crystals can app
ciably alter the kinetics of electronic excitations, since th
are efficient traps for both charged and excitonic excitatio
which govern the desorption process. Research on the in
ence of impurities on the argon desorption efficiency h
been reported in Refs. 15 and 16. In both cases high-en
particles were used for excitation of the crystals: He1 ions15

and electrons.16 In measurement of the desorption efficien
the total yield of neutral particles (Ar1Ar* ) was recorded,
without discriminating the individual components. In Ref. 1
the luminescent intensity of the whole sample was a
monitored, but it corresponded mainly to the strongest f
damental emission of Ar2* from the bulk, and not from the
desorbed components. Although the overall result of b
studies shows a decrease in the desorption efficiency w
impurities are added to crystalline Ar, there were certain
culiarities observed when the impurity was oxygen. In p
ticular, in Ref. 15 it was reported that the signal from de
orbed argon dimers became stronger in the presence o
admixture of 5 at. % O2, while a nitrogen impurity had no
such effect. In Ref. 15 it was mentioned that the desorpt
yield in crystals coated with a film of oxygen sometimes g
stronger before decreasing to the normal value for the s
tering of the film. Neither paper discusses the causes of th
effects. We also note that studies18 have shown that the nega
tively charged atomic ions O2 are present in the flux o
particles desorbed from argon crystals containing an oxy
impurity.

In the present study we have observed a significant
hancement of the desorption of excited atoms and molec
of argon in the presence of impurity oxygen. A xenon imp
rity causes no such effect and even tends to decrease
© 2000 American Institute of Physics
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desorption in the ternary mixtures Ar1O21Xe. Several ex-
planations for the observed effect have been proposed, b
on the conjecture that negative oxygen ions are formed in
argon matrix.

EXPERIMENTAL PROCEDURES

Studies of the bulk and desorbed components of
emission from pure Ar crystals and Ar crystals containi
oxygen and xenon were carried out by the method of lu
nescence analysis under the excitation of the samples
monochromatic electrons with energyEe'2 keV. The cur-
rent density wasj 50.04 mA/cm2. Under these conditions
the sample did not suffer appreciable erosion over the co
of several hours. The electron stream was directed along
normal to the surface of the sample. The optical emiss
was recorded at an angle of 45°. The crystals were grown
the gas-phase deposition at a condensation temperaturTc

530 K and then were slowly cooled toT55 K. The poly-
crystals obtained were optically transparent. The gaseou
gon was purified beforehand in a special apparatus utiliz
liquid lithium at a temperatureT5200 °C. The oxygen con
centration in the pure crystals did not exceed 1024 at. %. The
limiting oxygen concentration was 1 at. %. The xenon co
centration was varied from 1023 to 1 at. %. Optical studies
were done in a flow-through helium cryostat with a substr
temperature that could be regulated over the interval 2.5
K. The emitted radiation was recorded in the vacuum ult
violet region of the spectrum by means of a VMR-2 norm
incidence monochromator in the photon-counting mode. T
spectral resolution was 0.05 nm. The working vacuum in
cryostat was maintained at a level of 10210bar.

RESULTS

Figure 1a shows the luminescence spectra in the re
of the fundamental emission of Ar2* for a pure argon crysta
and a crystal containing a 1 at. % oxygen impurity. The spec
trum consists of molecular and atomic emission bands
excited centers found in the bulk of the sample and on
surface, and also in the gas phase near the sample. Th
minescence of these centers located in the deep layers o
argon crystal corresponds to the well-known transit
Ar2* (M ) 1,3Su

121Sg
2 , with a maximum at an energyEM

near 9.8 eV. The narrow band of atomic luminescence (c) is
energetically closer to the forbidden transition3P1–1S0

(Ec511.52 eV) and is probably due to defect sites of t
lattice.10 The inset shows an enlargement of the emiss
from the desorbed components,a, b, andW. The desorbed
components of atomic origin, Ar* ~a andb!, correspond to
the transitions1P1–1S0 and 3P1–1S0 , with emission ener-
gies Ea511.83 eV andEb511.62 eV. The emission from
the desorbed molecules Ar2

~v!(W) is due to transitions from
the high vibrational states1,3Su

1(v) with energy EW

511.52 eV. The spectra correspond to the same excita
conditions. The main difference between them is in the re
tive intensity between the bulk and desorbed compone
~Fig. 1b!. The effect of an oxygen impurity on the lumine
cence of the argon host is manifested in the quenching of
bulk molecular emission Ar2* (M ) and in the enhancement o
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the intensity of the desorbed componentsa, b, andW. In the
region of low oxygen impurity concentrations our data ag
well with the results obtained by other authors.1,10,12 At an
oxygen concentrationC51 at. % the ratiosrb5I (b)/I (M )
andrW5I (W)/I (M ) increase significantly. Changing the O2

impurity concentration led to changes in the intensities of
desorbed and bulk components of Ar2* as follows: xb

5rb(1%)/rb(1024%)'30 andxW5rW(1%)/rW(1024%)
'80. For the componentsc the relative intensityI (c)/I (M )
did not change appreciably.

In the next series of experiments we investigated
same ratios when a Xe impurity was added to the arg
matrix. In the pure Ar crystal the ratiorb did not change
appreciably as the Xe concentration was increased, in s
of the fact that theM band is also quenched by impurity X
~even more efficiently than in the case of an O2 impurity!.
Figure 2a shows the spectra of pure argon and of argon
taining a 0.1 at. % Xe impurity. The distortion of the sha
of the Ar2* band is apparently due to the superposition of
1P1–1S0 emission of the xenon atom in the matrix. High
concentrations of Xe lead to the practically complete vani
ing of the Ar1* emission. In Ar crystals containing 1 at. % O2,
even at a low concentration of impurity Xe, one observe
pronounced decrease of the relative intensities of the d
orbed and bulk components. As an illustration of what
have said, Fig. 2b shows the normalized spectra of ar
with an oxygen impurity and argon with impurities of oxy
gen and xenon in equal proportions.

Figure 3 shows the change in the relative intensities
the desorbed componentb and the componentc as the xenon

FIG. 1. a: Luminescence spectra of a pure argon crystal~1! and a crystal of
argon containing 1 at. % O2 ~2!. The inset shows an enlargement of th
emission region of the desorbed components. b: The same spectra, no
ized at the maximum to the intensity of the bandM (Ar2* ).
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concentration increases. At first the ratioI (b)/I (M ) de-
creases rapidly as Xe is added, and then it goes to satura
while still remaining higher than in the pure crystal. Th
ratio I (c)/I (M ) remains practically unchanged.

Figure 4 shows the relative intensity of the desorbedW
and bulkM molecular luminescenceI (W)/I (M ) as a func-
tion of the Xe concentration. There is an obvious similar
to the behavior of the desorbed components of atomic
molecular origin. The dashed line is the value ofI (W)/I (M )
in pure argon, which remains considerably lower than in
crystals containing impurity oxygen.

Certain differences in the energy positions of t
maxima of the Ar2* emission in crystals with different impu
rity concentrations were also observed. ForC51 at. % O2

the maximum is shifted to higher energy by an amo
DEO'0.04 eV relative to the pure crystal. For an admixtu
of Xe, on the other hand, one observes a shift of the m
mum of Ar2* to lower energies, by an amountDEXe

'0.07 eV.
To complete the picture we note that the spectrum

crystalline argon containing oxygen has bands due to
emission of the excimers ArO* and Ar1O2 ~2.2 and 6.25
eV, respectively!, and also the series of molecular emissi
bands O2* (C3Du

1→X3Sg) in the region from 1.8 to 3 eV
The admixture of xenon effectively quenches this emiss
and gives rise to characteristic XeO* bands, the intensity o
which increases with increasing Xe concentration a
reaches a maximum atC'1 at. % Xe. A more detailed de
scription of these spectra was published in Ref. 19.

FIG. 2. Luminescence of structures: a—pure argon~1! and Ar10.1 at. % Xe
~2!; b—Ar11 at. % O2 ~3! and Ar11 at. % O211 at. % Xe~4!. The vertical
lines mark the positions of the emission bands of Xe in argon in the re
of the1P1–1S0 transition.21 The spectra in b are normalized at the maximu
to the intensity of the bandM (Ar2* ).
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The change in the relative intensitiesI (b)/I (M ) of the
desorbed and bulk components of Ar2* as the O2 concentra-
tion is changed is comparable to the corresponding cha
teristics for the relative intensity of the excimer lumine
cence of Ar2

1O2 (H) and Ar2* ~see Fig. 5a!. As the oxygen
concentration is increased, the ratioI (H)/I (M ), like
I (b)/I (M ), increases significantly. We note, however, th
for the atomic componentsc one does not observe any su

FIG. 3. Relative intensitiesI /I (M ) of the desorbed atomic luminescenceb
and the emission of an atomic defect centerc versus the xenon concentra
tion in a solution Ar11 at. % O21Xe.

FIG. 4. Relative intensity of the desorbed molecular luminesce
I (W)/I (M ) versus the Xe concentration in a solution Ar11 at. % O21Xe.
The dashed line indicates the value ofI (W)/I (M ) in pure argon.

n
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FIG. 5. a: Change in the relative intensitiesI /I (M ) of the emission from the desorbed atomsb (j), the atomic defect componentc (m), and excimers
Ar2

1O2 (H) (h) as the oxygen concentration is increased. b: The relative intensitiesI (b)/I (M ) (j), I (H)/I (M ) (h), andI (O2* )/I (M ) ~* ! ~the transition
C3Du

1→X3Sg! as functions of the xenon concentration in crystals of Ar11 at. % O2.
a
-

o
n
tw
tr

he

t
su
f
ti
t

f

e
e
la

tio

m
ss
an

the
-
tain

trix

ect
he
stantial changes in the relative intensityI (c)/I (M ). On the
other hand, the decrease inI (H)/I (M ) as Xe is added, al-
though it correlates withI (b)/I (M ), nevertheless has
much flatter dependence~see Fig. 5b!. The concentration de
pendence ofI (O2* )/I (M ) is closer toI (b)/I (M ).

In addition to an enhancement of the desorption of arg
we also observed enhancement of the desorption of xe
impurity centers as oxygen is added. Figure 6 shows
luminescence spectra of the Xe atom in a pure Ar host ma
and in a matrix containing 1 at. % O2. The narrow peak0 at
E58.44 eV corresponds to the3P1–1S0 transition of the
free Xe atom, while the wider bands1, 2, andd correspond
to centers with varying degrees of deformation of t
environment.20

DISCUSSION OF THE RESULTS

The set of experimental data indicate the enhancemen
the desorption of excited atoms and molecules from the
face of crystalline argon at an oxygen concentration in it o
at. %. This enhancement is of both an absolute and a rela
character, as is manifested in the significant increase of
ratios I (b)/I (M ) and I (W)/I (M ). The same is not true o
the change in the atomic componentc, the relative intensity
of which, I (c)/I (M ), remains practically unchanged. Th
admixture of xenon into an argon crystal containing oxyg
leads not only to an absolute quenching of the molecu
emission but also to a relative decrease in the desorp
I (b)/I (M ) and I (W)/I (M ).

The observed effects do not have analogs in the fra
work of the desorption mechanisms that have been discu
up till now. Thermal stimulation processes in this case c
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not give a large contribution to the desorption yield, since
experiment was done atT55 K. The desorption due to in
elastic scattering of high-energy electrons can give a cer

FIG. 6. Luminescence spectra of a Xe impurity atom in a pure Ar ma
~dashed curve! and in a matrix containing 1 at. % O2 ~solid curve!. The peak
0 is the emission from the desorbed atom in the state3P1 , while the wider
bands1, 2, and d correspond to centers with plastic, elastic, and def
deformations of the environment of the Xe atom in the Ar crystal. T
spectra are normalized to the maximum intensity.
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contribution to the observed emission, but it should be c
stant for any impurity concentration, since the energy of
exciting electrons does not change in the whole series
experiments. One can thus conclude that in the given ca
fundamental role in the process of ejection of excited p
ticles from the surface of the sample is played by the e
tronic excitations of the crystal.

Several channels for this desorption have now been
tablished: 1! excitation of surface excitons; 2! migration of
bulk excitons toward the surface of the sample; 3! recombi-
nation processes of the charged centers Ar2

1 with electrons
on the surface of the sample.2,3,12

When the surface excitons ArFE
S are localized at the sur

face, a cavity forms around the localized exciton ArSTE
S as a

result of the repulsive interaction, and an excess ene
DESTE

S is released. The subsequent desorption of the exc
molecule~or atom! gives a large contribution to the emissio
from thin samples:12

~1!

Even at the smallest sample thicknesses used in the
periment (d'5 nm) the ratioI (b)/I (M )50.3, i.e., it is 3
times as large as for a massive sample withd>100 nm.12 As
we see in Fig. 1, the relative enhancement of the desorp
in the presence of oxygen is much higher:I (b)/I (M )'1,
i.e., it is approximately 20 times as large as for a pure crys
Under the conditions of our experiment, at an energy of
exciting electrons Ee52 keV and d'5 mm, the ratio
I (b)/K(M )50.05 for pure crystals. This is somewhat belo
the valueI (b)/I (M )50.1 obtained in other studies with th
excitation of massive samples by lower-energy electrons
synchrotron radiation.1,10,12 It should thus be concluded tha
the excitation of surface excitons does not play an app
ciable role under the given experimental conditions, and
shall not consider it further.

The excitation of bulk excitons leads to desorption of t
excited atoms only in the case when they reach the surfac
the sample in the course of their migration. The excitat
spectra of theW band show that the greatest contribution
given by excitons withn51,18 ~Ref. 12!. The calculation
done in that paper corresponds to a diffusion len
l 0520 nm for the excitations responsible for the emiss
band of desorbed molecules,W. Furthermore, in the subsur
face layers~at energiesEe;0.5 keV! an additional contribu-
tion is given by mobile excitations with a small diffusio
length l 052 nm. This value is comparable to the diffusion
range of an excitonG(3/2, 1/2)n51 for its emergence on
the surface of the crystal (l 55 – 10 nm).12 The mean free
path l 0520 nm is characteristic for ‘‘hot’’ excitons with ki-
netic energy greater than the height of the barrier to s
trapping ofG excitonsn51,18 or for excitonsn>2.

Let us now consider in more detail the processes of
mation of the excitations responsible for desorption. T
mean free path of a high-energy exciting electron with
-
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ergy Ee52 keV is l'5.5 nm,21 and the total depth of its
penetration into the crystal isL'50 nm.22 From a compari-
son of l 0 , l , and L one can conclude that the first excite
centers formed in the electron irradiation of a crystal will,
average, be formed in the interior of the sample, at a dista
of approximately 5 nm from the surface. Apparently the e
citons withn51,18 from just this region of the crystal hav
the highest probability of emerging on the surface of t
sample and subsequently leading to its desorption. The e
tations formed at large depths can emerge on the surfac
they have a sufficient store of kinetic energy. The probabi
of formation of such high-energy excitons in irradiation b
electrons is quite large, since the energy-loss spectrum o
electron in argon has a maximum at 17.3 eV, i.e., at
energy 3 eV higher than the bottom of the conduction ba
of the crystal.23 Unlike the case of photoexcitation, when
crystal is excited by high-energy electrons, the creation
electron–hole pairs is a much more probable process than
direct formation of an exciton. On the other hand, an ene
of 17 eV is insufficient for the formation of a genetical
unrelated electron–hole pair, which requires 24–27 eV21

Consequently, the fast recombination processes of gen
cally related pairs will lead to the formation of high-energ
excitons. It can be concluded from what we have said t
both low-energy excitons near the surface and high-ene
excitons formed far in the interior of the sample can parti
pate in the formation of desorbed excited particles.

The emergence of an exciton onto the surface is g
erned by its lifetime with respect to self-trapping and t
probability of its trapping by structural disruptions or imp
rity centers. In general form for steady-state excitation c
ditions, this process can be represented in the framewor
the kinetic equation for the diffusion of a free exciton:

dnFE

dt
5I FE2nFES 1

tSTE
1

1

bONO
D

2~kONO1kSNS1kdNd!50, ~2!

wherenFE is the concentration of free excitons~FE! in the
bulk of the sample;I FE is the number of FEs generated p
unit volume per unit time;tSTE is the lifetime of a FE with
respect to self-trapping; 1/bONO is a parameter determinin
the lifetime of a FE with respect to the oxygen-impurit
stimulated formation of Ar2* ; NO, NS , andNd are the con-
centrations of oxygen impurity centers, surface atoms,
defects, andkO, kS , and kd are the rate constants for th
trapping of a free exciton by these centers, respectively.

Calculating these processes is, generally speaking
complicated problem. However, in the limiting case of a hi
oxygen concentration the trapping of an exciton and
transfer of its energy to an impurity are the predomina
processes. At 1 at. % O2 the intensity of the emission from
self-trapped Ar2* (M ) centers decreases by more than an
der of magnitude. Here the intensity of the impurity lumine
cence increases significantly.19 The probability that an exci-
ton will emerge to the surface, grain boundaries, and de
sites of the lattice should decrease accordingly. Thec band,
which is possibly due to the emission from atoms in t
immediate proximity of defects, grain boundaries, or the s
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face of the sample behaves in just this way, in correlat
with the change in the intensity of theM band. Conse-
quently, the introduction of an oxygen impurity turns o
some additional mechanisms which stimulate desorpt
Since a xenon impurity in the Ar host does not cause rad
changes in the relative intensityI (b)/I (M ), one can presume
that oxygen has a specific effect on the desorption efficien

In our view, this may be due to the positive electr
affinity of oxygen. We recall that for an oxygen atom th
electron affinityEa51.465 eV, while for oxygen molecule
Ea50.44 eV. The argon crystal, in contrast, has a nega
electron affinity, defined asV0[Eg2Eth50.3 eV. ~HereEg

and Eth are the width of the energy gap and the thresh
energy for the production of photoelectrons, respective!
Therefore the question of whether the negatively char
ions O2 or O2

2 can be stabilized inside the bulk of the samp
requires careful analysis and additional experimental
search. We note that in xenon the formation of stable co
plexes Xe11F2 can occur,24 but for argon the their existenc
is improbable. This is because the electron affinity of flu
rine (Ea53.4 eV) is considerably higher than that of oxyge
and V0 for crystalline xenon has the opposite sig
V0520.4 eV. On the other hand, in argon there exists
rather efficient way of binding negative ions, by the form
tion of triatomic charge-transfer complexes of the ty
Ar2

1O2 ~Ref. 19!. After emission to the ground state, th
Ar2

1O2 complex decomposes into neutral components.
In the subsurface layer the properties of the Ar mat

are altered. Studies have shown25 that in this region of the
crystal the sign of the electron affinity of Ar is changed
positive, and this may promote the formation of a sta
ionic complex ArnO2. Recent studies have demonstrated
possibility that stable clusters ArnO2 can exist.26 The forma-
tion of clusters withn512 was found to be the most prob
able. The total energy of stabilization of O2 in such a cluster
is 0.63 eV. Ar12O

2 clusters have an elevated temperature
the vibrational subsystemTi . The calculation of Ref. 26
shows thatTi'20 K for n512, whileTi'4 K for n>15. If
such a complex is formed on the surface of the crystal, it
be a zone of weakened internal binding of the atoms. T
excitation of such a complex by an exciton that has emer
onto the surface can lead to an increased probability of
sorption in this region. Ar12O

2 clusters are icosohedra, wit
the oxygen atom at the center.26 On the surface of a macro
scopic crystal this shape may be altered somewhat. In
case, however, it differs from the fcc structure, possibly
ing closer to hcp, which is preferable when an oxygen im
rity is introduced.27

We should also mention that computer modeling of
displacements caused by a neutral oxygen impurity in
argon matrix indicates the possibility of such
restructuring.28 A calculation shows that the oxygen atom
the ground state at a substitutional position distorts the
rounding lattice very little. The disruptions of the structu
around an O atom found in an interstitial position has sy
metry D4h and form a tetrahedron in which the closest
atoms are displaced approximately 0.4 Å along a vert
axis passing through the oxygen atom and only 0.08 Å in
perpendicular direction. Since the O2 ion has close to a2P
n
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configuration, and the additional electron enhances the in
action, the deformation may be greater.

Figure 7 shows the near environment of a neutral oxyg
atom in the fcc argon matrix in the perturbed and unp
turbed states and also an O2 ion in a cluster. Such a struc
tural rearrangement tends to weaken the binding and ma
it easier to remove an Ar surface atom upon its excitati
The fact that the oxygen can remain in a lower-lying lay
can account for the absence of luminescence of free O ato
The proposed model finds agreement with the results of R
18 on the observation of desorption of negatively charg
O2 atoms from argon crystals containing an oxyg
impurity.

At oxygen concentrations of less than 1 at. % in the
gon matrix we did not observe the luminescence of the o
gen molecule O2, because of its efficient dissociation in in
teractions with the high-energy excitons of the arg
matrix.29 Similarly, emission from individual O atoms wa
not observed, only from their compounds with argon: ArO*
and Ar2

1O2. This attests to a sufficient degree of stabilizati
of the O atoms in interstitial positions of the lattice and to t
high efficiency of their interaction with the neighboring a
gon atoms. The maximum intensity of the emission fro
oxides of argon is reached at an oxygen concentra
C'0.1 at. %. AtC51 at. % O2 a quenching of the emissio
from ArO* and Ar2

1O2 occurs on account of the rise of th
molecular luminescence of O2* , i.e., the appearance o
‘‘free’’ oxygen centers. As we see from Fig. 5b, even sm
doses of xenon rapidly quench the desorption activity.
addition, the luminescence of ‘‘free’’ oxygen molecule
which can trap an electron, also decreases rapidly. At
same time, there is an increase in the intensity of the neu
‘‘bound’’ excimers of oxygen with xenon: XeO* and
Xe1O2. All these changes can be brought about by the

FIG. 7. Structure of the near environment of a neutral oxygen atom in
argon host matrix with an fcc structure, in the perturbed~a! and unperturbed
~b! states, and of the O2 atom in the fcc lattice~c! and in an Ar12O

2 cluster
~d! ~Ref. 26!.
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calization of excess oxygen centers near Xe impurity ato
which have a higher chemical activity than Ar. In turn, t
oxygen enhances the desorption of the nearby Xe at
which lies on the surface~see Fig. 6!.

The photoexcitation spectrum obtained in Ref. 12 for
W band coincides in its basic outlines with the photoexc
tion of the bulk luminescence of Ar2* , but with a pronounced
redistribution of the intensity in favor of surface excitons a
the lowest bulk excitons withn51.17 These states apparent
give the main contribution to the formation of the states
sponsible for theW-band emission. In addition, the max
mum near 2Eg is evidence that positive ions play an impo
tant role in the population of the excited molecular sta
Ar2*

(v)(W). As was shown in Ref. 12, it is due to dissociati
recombination of a self-trapped hole with an electron n
the surface of the sample. We note that the same maxim
corresponding to the formation of hole states, is also pre
in the excitation spectrum of Ar2* molecules in the bulk of
the sample.

As compared to the case of photoexcitation, excitation
argon crystals by high-energy electrons has a higher
ciency in the energy region between the maxima just
scribed, which lies approximately 3 eV aboveEg and corre-
sponds to the most probable creation of electron–h
pairs.23 Since the self-trapping time of a hole is very sho
(t;10212s),21 the transfer of energy toward the surface o
curs via self-trapped molecular ions Ar2

1 . Let us therefore
examine the influence of an oxygen impurity on the reco
bination mechanism of desorption:

Ar2
11e2→Ar1Ar* 1DEd rec→\v~a,b!12Ar; ~3!

or

Ar2
11e2→Ar2*

~v!1DErec→\v~W!12Ar. ~4!

The mobility of self-trapped holes is low in compariso
with that of free excitons, and the probability of their emer
ing onto the surface is governed by the lifetimet rec of Ar2

1

with respect to recombination with an electron. In turn,t rec

depends on two factors: the initial concentration of charg
states and the probability of their trapping by an impuri
The initial concentration of positive ions and electrons in
crystal is essentially determined by the conditions of exc
tion of the sample, which are kept the same for both the p
crystals and the crystals containing impurities. On the ot
hand, the trapping of Ar2

1 at an impurity in the bulk of the
sample should lead to a simultaneous decrease in the in
sity of both theM andW bands. This clearly follows from
the photoexcitation spectra of these bands, since the co
bution of the ion part, which lies aboveEg , to the total
intensity of the spectrum for them is practically the same.
analogous conclusion was reached in Ref. 15 on the bas
a kinetic model of the trapping of holes at impurity cente
Thus neither of these factors could lead to enhancemen
the desorption from the surface of the sample. A third fac
that can increase the probability of emergence of posi
Ar2

1 ions onto the surface may be the accumulation o
nonequilibrium concentration of negative charges near
surface in the form of O2 or O2

2 ions. The onset of a loca
electric field between the oppositely charged ions can ap
s,
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ciably increase the mobility of Ar2
1 in the direction toward

the surface. The subsequent recombination via the forma
of intermediate unstable charge-transfer exciplex compou
can lead to the formation of excited Ar2

~v! molecules near the
surface of the crystal:

Ar2
11O2

2→$Ar2
1O2

2%* 1DErec→Ar2*
~v!

1O2→\v~W!12Ar1O2. ~5!

The energyDErec released in the process of recombin
tion promotes the escape of excited atoms and molec
from the surface of the crystal. This mechanism of stimu
tion can give an additional contribution to the enhancem
of the desorption of the excimers Ar2

~v! . We note that the
recombination of Ar2

1 with an electron can also come abo
without the direct participation of oxygen in the process—
a result of the long-distance hopping of an electron betw
two ions of unlike charge. As was shown in Ref. 30, such
process can occur even at distancesr'1.5 nm, which is
three times the lattice parameter of Ar. In this case oxyg
serves only as a temporary trap for stabilization of the el
tron. Clearly the most important role here will be played
negatively charged molecules, since the binding energy o
electron with O2

2 is 1 eV smaller than with O2.
Additional studies will be needed to check the propos

hypothesis, including simultaneous measurements of the
tical and electrical characteristics of the crystal. There is a
a need for more-detailed theoretical studies of the desorp
efficiency on the basis of the kinetics of neutral and ion
excitations.

CONCLUSION

We have investigated the desorption of excited ato
and molecules from the surface of crystalline argon under
influence of electron irradiation. In crystals containing
oxygen impurity of around 1 at. % there is significant e
hancement of the desorption of excited argon atoms and m
ecules in comparison with crystals of pure argon. The pr
ence of a xenon impurity in the argon matrix does not ca
a similar effect, although an enhancement of the desorp
of Xe impurity atoms is observed in the presence of an o
gen impurity. We discussed some possible reasons for
increase in desorption yield stimulated by an O2 impurity.
We proposed two possible mechanisms involving the tr
ping of electrons at oxygen impurity centers and the form
tion of O2 and O2

2 ions. One of them would involve the
structural rearrangement of the argon lattice near an O2 ion
and the resulting decrease in the binding energy of the
surface atoms. The other would be due to an increase in
probability of recombination of Ar2

1 with an electron on ac-
count of the transfer of negative charge between O2

2 and Ar2
1

ions stabilized near the surface of the crystal.

*E-mail: belov@ilt.kharkov.ua
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Low-temperature softening of b-tin single crystals on doping with substitutional
impurities

V. P. Soldatov, V. D. Natsik,* A. N. Diulin, and G. I. Kirichenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine
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The yield stresses of single crystals of solid solutions ofb-tin with substitutional impurities of
indium, cadmium, and zinc are measured over a wide interval of low temperatures
~1.6–150 K!. The low-temperature impurity softening effect is observed, which is manifested in
a decrease in the yield stresses of the alloys in comparison with that of pure tin. The
temperature and concentration boundaries of the existence region of this effect are established,
and the dependence on the combined size and modulus misfit parameter between the
atoms of tin and the impurities, which characterizes the strength of the impurity barriers for the
motion of dislocations in the alloy, is determined. Analysis of the data obtained indicates
a qualitative agreement of the observed regularities of the impurity softening effect and the
behavior that follows from the model of Sato and Meshii, which takes into account the
role of impurity atoms both as centers of nucleation of kinks on screw dislocations and as centers
of opposition to the lateral dispersal of the kinks along the dislocation line. ©2000
American Institute of Physics.@S1063-777X~00!01302-5#
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INTRODUCTION

Impurity doping is one of the simplest ways of harde
ing metallic materials. As the concentration of the impur
atoms in a pure metal matrix is increased, their harden
influence is clearly manifested in the growth of one of t
basic mechanical characteristics of a material–the y
stress. This tendency, which is the most important featur
the solid-solution hardening effect, is typical for a wide cla
of metallic materials and doping admixtures. Neverthele
there is convincing experimental evidence that it bre
down; this is manifested in specific effects of impurity so
ening: for certain alloys based on metals with the bcc str
ture and under certain conditions, increasing the impu
concentration leads to a decrease in the yield stress inste
an increase. This phenomenon, which was first observe
iron–chromium alloys,1 has subsequently been observed
several other bcc alloys, predominantly alloys of iron.2–21

From the experimental data obtained to date one can sk
the broad outlines of the phenomenology of the effect:

—Impurity softening is inherent to solid solutions bas
on bcc metals, which are typified by high values of the yie
stress and a high sensitivity of the latter to temperature;

—Impurity softening is observed in a bounded interv
DT of moderately low temperatures, lying in the regio
T,T0 , whereT0 is the temperature of the transition fro
the athermal to the activational branch of the yield stress

—The effect is caused by both interstitial and substi
tional impurities, at concentrationsc<1 – 2 at. %.

Since the discovery of impurity softening there ha
1601063-777X/2000/26(2)/9/$20.00
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been several hypotheses proposed to explain the natur
this effect. We shall discuss them in detail in the analysis
the results of the present study. Right now we will menti
only the two circumstances that stimulated our present
search. First, in spite of the active discussion of the proble
of impurity softening, at present there is no unified opini
as to the physical nature of this effect. Second, the phys
basis on which a number of the explanatory hypotheses
is the idea that the impurities stimulate the nucleation
pairs of dislocation kinks, which govern the mobility o
screw dislocations in the Peierls relief.22–26According to this
idea, the impurity softening effect is the exclusive ‘‘priv
lege’’ of crystals in which the mobility of dislocations i
governed by the restraining effect of the Peierls relief~so-
called Peierls crystals!. Experimental data on impurity soft
ening have been obtained primarily for alloys of iron—
typical Peierls crystals. Of course, to confirm the idea
question it will be necessary to make observations and
tailed investigations of the impurity softening effect on
wider class of crystals of the Peierls type.

We have shown previously that the low-temperatu
plasticity of high-purity~99.9995%! single crystals ofb-tin
oriented for predominant slip in the~100!^010& system is
governed by the motion of screw dislocations through Pei
barriers.27,28 Pure and lightly doped single crystals ofb-Sn
maintain an appreciable reserve of plasticity and a smo
character of the flow on cooling to helium temperatur
These properties makeb-Sn single crystals distinctly prom
ising objects for the observation of impurity softening e
fects. In this paper we investigate in detail the influence
© 2000 American Institute of Physics
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small concentrations of In, Cd, and Zn impurities on t
temperature dependence of the yield stress ofb-Sn single
crystals oriented for slip along the~100!^010& system. In
choosing In, Cd, and Zn as the doping admixtures we w
guided by the following considerations: first, at low conce
trationsc,20.5 at. % these impurities form disordered so
solutions of substitution with tin; second, they are subst
tially different from one another in the values of the size a
modulus misfit in relation to tin.

In the following analysis of the temperature
concentration dependences obtained for the yield st
t0(T,c) of alloys based onb-Sn in the low-temperature re
gion, we identify the anomalies that are characteristic for
impurity softening effect. We discuss how the value of th
effect depends on the impurity concentrations and on
strengths of the impurity barriers that oppose the motion
dislocations. We discuss the agreement of the experimen
observed features of impurity softening with the hypothe
that have been proposed to explain it.

1. EXPERIMENTAL TECHNIQUE

1.1. Preparation and straining of the samples

Single crystals of tin alloys containing impurities of C
Zn, and In were grown by a modified Bridgman method
batches of 10 from one seed.29 The initial components use
to prepare the alloys contained not more than 1025 at. %
uncontrolled impurities. The solubility of Cd and Zn in sol
tin is approximately 1 at. %, and that of indium, according
various published sources, fluctuates in the range 3
at. %.30 The impurity concentration in the alloys studied va
ied in the interval 0.005–0.53 at. %, and two of the lev
~0.01 and 0.53 at. %! were the same for all three types
alloys. In accordance with the phase equilibrium diagra
the grown single crystals were solid solutions of substituti

The samples were double-bladed in shape, with a wo
ing part 253531.5 mm. They were strained by uniaxial e
tension in the creep mode using a weight method of load
The longitudinal axis of the samples was in the^110& direc-
tion, so that a maximal shear stress would act in
~100!^010& slip system. A diagram of the loading of th
samples is shown in Fig. 1~inset!: the load on the sample
was changed in steps, which corresponded to stress in
mentsdt of the order of 0.2–0.4 MPa. The strain incremen
corresponding to each stress increment were measured w
precision inductive sensor and were automatically recor
on an electronic chart recorder to an accuracy of 531025.
This loading regime gave an average rate of strain of
order of 531025 s21. From the stress incrementsdt and the
corresponding strain incrementsd« we constructed harden
ing curves corresponding to the given average strain r
These curves were used to determine the des
characteristic—the yield stress~the critical shear stress!.

1.2. Determination of the yield stress

We took the value of the yield stresst0 to be the stress
at which the initial segment of the strain curvest(«) begins
to deviate from its linear trend~Fig. 1!. This value is close to
re
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the stress at which irreversible creep begins, which is de
mined from the change in the character of thed«(t) curves
~Fig. 1, inset!: for t,t0 the curves of the strain incremen
have aG-shaped form, while fort.t0 ~the time t0! a pro-
nounced nonsteady stage appears on these curves, c
sponding to developed plastic flow. These methods com
ment each other and enable one to correct the va
obtained fort0 so as to determine them with the least err

Another important circumstance in the recording of t
yield stress is to take into account the scatter in the value
t0 due to the structural nonuniformity and small random d
viations of the orientation of the axis of extension of t
samples. The method used to grow the crystals made it
sible to obtain more than 10 identical crystals of a specifi
shape and crystallographic orientation from a single se
these crystals could be used as working samples without
additional mechanical treatment~cutting, grinding, and pol-
ishing!. This method of obtaining the samples reduces t
minimum the influence of random factors on the value of
yield stress. To further reduce the role of these factors,
measuredt0 at different temperatures on the same samp
The first measurement was done at the highest temperatu
the interval of interest, and the sample was then unloaded
temperature was lowered a relatively small amount, an
was again loaded tot0 . This method made it possible t
obtain thet0(T) curve on several samples of the same ba
with a step of 1 K in the region below 4.2 K and with a step
of 5–10 K above 4.2 K. In this way we obtained the tem
perature dependence of the yield stresst0(T) in the interval
1.6–150 K.

FIG. 1. Schematic illustration of a fragment of the strain curvet(«) ~t0 is
the yield point!. The inset shows the strain diagram of the sample fo
stepped loading of the crystal by stress incrementsdt ~t0 is the time corre-
sponding to the attainment of the yield stress!.
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2. EXPERIMENTAL RESULTS AND DISCUSSION

2.1. Temperature–concentration dependence of the yield
stress of alloys and the softening effect

The yield stress of crystalline materials is customar
represented as a sum of the thermal~activational! component
ta and an athermal compoenentt i , each of which also de
pends on the impurity concentrationc:

t0~T,c!5ta~T,c!1t i~c!. ~1!

This division reflects the existence of two types of b
riers to the slip of dislocations in the strained crystal: sho
ranged, which are overcome by the dislocations with the h
of thermal fluctuations, and long-ranged, forming an ath
mal ~to an accuracy up to the temperature dependence o
elastic modulus! background of internal stresses.31 Accord-
ing to a reliably established experimental fact, impurity so
ening is a feature of the activational componentta alone,11,19

while the value of the internal stressest i , as a rule, increase
monotonically with increasing concentration of the dopi
impurities.

Our experimental temperature curves of the yield str
of pure b-tin and three alloys based on it, with differe
concentrations of the dopants, are in agreement with
ideas set forth above. The absolute values oft0(T,c) in the
temperature interval 4.2–150 K for these alloys are given
a previously published paper,32 where it was shown tha
above 80–90 K the yield stresst0 , both for pure tin and for
all the alloys investigated, has a rather wide interval of ath
mal behavior. The results of the present study confirm
observation. If the values of the yield stresses atT.100 K
are identified with the internal stressest i(c), then one ob-
tains for the concentration dependence of this quantity
curves shown in Fig. 2.

Against the background of the rising~on account of the
doping! athermal component of the yield stresst i(c), the
impurity softening effects are manifested in pure form in
analysis of the temperature–concentration curves of the
ferenceta(T,c)5t0(T,c)2t i(c). These curves are show
in Figs. 3–5 for the alloys studied. The curves in these
ures were obtained by subtracting from the yield stress

FIG. 2. Concentration dependence of the athermal component of the
stresst i(c) at T.100 K for alloys based onb-Sn: Sn–In (j); Sn–Zn (.);
Sn–Cd (m).
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athermal component forT.100 K. Along with the curves of
ta(T,c), each of the figures shows the curve for the activ
tional component of the yield stress for pureb-tin, ta(T,0).
So as not to obliterate the fine details of the curves, we h
left off the experimental data points through which the
curves were drawn; the scatter of the experimental point
approximately the same as in Ref. 32. In Figs. 3–5 one
clearly see the temperature intervalsDTs within which
ta(T,c),ta(T,0). The value of the softening effect,Dts

5ta(T,0)2ta(T,c).0, and also the width and position o
the intervalDTs on the temperature axis depend substantia
on the type and concentration of the impurities~Fig. 6!.

The above-described lowering of the activational co
ponent of the yield stress as a result of doping can be ter
a relative softening effect. Meanwhile, there also exists
absolute softening effect: at sufficiently low values of t
impurity concentration one can identify temperature interv
on which the total yield stress of the alloy lies below that
pure tin, i.e.,t0(T,c),t0(T,0). An idea of the size of the
absolute softening can be gotten from Fig. 7, which sho
the concentration dependence of the athermal compo
t i(c) and the maximum values of the relative softening
the intervalsDTs : hs(c)5maxT(Dts(T,c)) ~see Fig. 6!: ab-
solute softening corresponds to the inequalityhs(c).t i(c)
2t i(0). It is seen in Fig. 7 that for the alloys Sn–In an

ld

FIG. 3. Temperature dependence of the activational component of the
stress for pureb-tin ~1! and for alloys ofb-tin with an indium impurity~2!.
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Sn–Cd there exists an appreciable interval of impurity c
centrations in which impurity softening of the activatio
component more than compensates the increase of the a
mal component.

Thus the temperature–concentration curve of the y
stress ofb-tin-based alloys in the low-temperature regi
qualitatively repeats the basic features observed in the s
of bcc alloys, including the impurity softening effect of in
terest here.

Further discussion of the nature of the the physi
mechanisms of the impurity softening effect will require e
perimental data on the temperature–concentration curve
one more important characteristic of the plasticity—the r
sensitivity of the deforming stress near the yield poi
dt/d ln «̇. In our experiments this quantity was investigat
in detail for the alloy Sn–Cd~Fig. 8!.

FIG. 4. Temperature dependence of the activational component of the
stress for pureb-tin ~1! and for alloys ofb-tin with a cadmium impurity~2!.
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2.2. Temperature–concentration curve of the softening effect

Figure 6 shows the temperature dependence of the
rameterDts for the investigated alloys. It is seen from the
figures that the qualitative character of the softening effec
the same for all the alloys: the softening reaches a maxim
in the temperature region 65–70 K and falls off smoothly
zero on both sides of the maximum, i.e., it exists in a fin
temperature intervalDTs . The position of the maxima o
Dts on the temperature axis is nearly insensitive to the ty
of impurity, but it fluctuates by several degrees as the im
rity concentration is varied. A more important effect is th
influence of the type and concentration of the impurity on
width of the temperature intervalDTs in which the effect is
manifested and on the height of the maxima ofhs , as is seen
from Table I.

TABLE I. Influence of the type and concentration of the impurity on t
parameters of the softening effect.

Alloy
DTs ,

K
hs ,
MPa Alloy

DTs ,
K

hs ,
MPa

Sn10.01 at.% In 50 0.6 Sn10.53 at.% In 35 1.1
Sn10.01 at.% Cd 33 1.1 Sn10.53 at.% Cd 28 0.44
Sn10.01 at.% Zn 30 1.3 Sn10.53 at.% Zn 0 0

ld

FIG. 5. Temperature dependence of the activational component of the
stress for pureb-tin ~1! and for alloys ofb-tin with a zinc impurity~2!.
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The width of the intervalDTs decreases in the serie
from In to Zn, and this decrease is increasingly significan
their concentration in the alloy increases. Admixtures of c
mium occupy an intermediate position between indium a
zinc in terms of their effects.

The curves ofhs(c)5maxT(Dts(T,c)) ~Fig. 7! are evi-
dence of the nonmonotonic dependence of the size of
softening effect on the impurity concentration for all the
loys. However, the finer details of the dependencehs(c),
e.g., the position of the maximum on thehs(c) curve, are
sensitive to the type of dopant. In spite of the qualitat
differences in the details, the concentration dependenc
the value of the effect has a common trait for all thr
alloys—the presence of a maximum which is reached at
ferent concentrations of the impurities, with a subsequ
decrease of the effect at a different rate, depending on
impurity type. It can be supposed that for each type of i
purity there exists a critical concentrationccr above which
the softening effect vanishes. For example, for the al
Sn–Zn the vanishing of the effect is observed atccr

'0.53 at. % Zn, while a somewhat greater value ofccr can
be expected for the Sn–Cd alloys, and for Sn–In it can
around 1 at. %.

It is of interest to compare the values of the impur
softening effect at the same dopant concentrations in e
alloy. As can be seen from Table I, at a low concentration
greatest softening effect is obtained for a Zn impurity, wh
at high concentrations it is obtained for In.

FIG. 6. Temperature dependence of the of the parameterDts in alloys of
b-tin with impurities of indium, cadmium, and zinc, at. %: 0.005 (j); 0.01
(s); 0.04 (,); 0.1 (n); 0.21 (m); 0.53 (d).
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3. DISCUSSION OF THE RESULTS

From the time of discovery of impurity softening the
have been two main approaches to explaining the phys
nature of this effect. According to the first approach, t
effect can arise because of the interaction between disso
atoms and residual impurities that are difficult to elimina
from the material by any methods of purification. In th

FIG. 7. Concentration dependence of the maximum values of the softe
hs (j) in comparison with the behavior of the athermal component of
yield stresst i (h).

FIG. 8. Temperature dependence of the rate sensitivity of the yield stres
Sn–Cd alloys with cadmium concentrations of 0.01~1!, 0.21 ~2!, and 0.53
at. % ~3!.
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mechanism the dissolved atoms act as a kind of adsorb
purifying the surrounding region of the crystal from ‘‘harm
ful’’ ~tending to harden the matrix of the original substan!
impurities. Purification is achieved either on account of
chemical activity of the foreign atoms, which interact wi
the residual impurities and cause them to coagulate
larger particles, or on account of their regrouping by t
elastic stress fields localized around the dissolv
atoms.1,2,9,12,15In a number of papers the impurity softenin
effect is attributed to the influence of interstitial impuritie
on the density of mobile dislocations8,9 or to the activation of
cross slip by such impurities.11

The second mechanism is based on the idea that
softening effect is an inherent property of Peierls crystals
arises from the specifics of the influence of impurity ato
on the motion of screw dislocations through the barriers
the Peierls potential relief.5,7,18,19,23–26,33–35The most impor-
tant feature of this influence is a decrease~first predicted in
Refs. 22 and 23! of the activation energy for nucleation o
kink pairs on screw dislocations in the presence of a m
defect. Kubin and co-workers,25,35 working from data pro-
vided by in situ electron microscopy and ordinary tensi
experiments, analyzed the softening effect in the Fe–C
tem and established that the presence of carbon atoms in
leads to a discontinuous character of the motion of sc
dislocations, lowering the activation energy by 1/3 from
value in pure iron. They proposed a model in which t
mobility of screw dislocations in dilute bcc alloys is go
erned by a competition between two processes that occu
parallel—nucleation of normal~in the pure metal! and ‘‘soft-
ened’’ ~when there are impurity atoms near the dislocatio!
kink pairs on the gliding screw dislocations. The first proce
dominates at low values of the impurity concentration, wh
the second dominates at higher concentrations. Accordin
this model, the value of the softening effect is described
the corresponding concentration regions by the relations

Dts5ac
kT

v
for c,c0 ,

Dts1
3

2

kT

v d ln~c!1b e for c.c0 , ~2!

wherea andb are constants, andc0;1024.
It follows from expressions~2! that the temperature de

pendence of the softening effectDts(T) is determined by the
temperature dependence of the rate sensitivity of the y
stress~the rate sensitivity is governed by the factorkT/v
5dt/d ln «̇, and the character of the concentration curv
Dts(c) changes from a linear dependence at low concen
tions to a weak logarithmic dependence at high concen
tions.

We note that this model does not consider the influe
of impurity atoms on the lateral~along the dislocation line!
movement of the nucleated kinks. It was assumed that
lateral motion of kinks is completely free and for this reas
do not bring any additional features into the mobility of d
locations on the whole. However, this assumption, which
indisputable for a pure material, is not obvious in the case
alloys. A study of this question by Sato and Meshii24 showed
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that the centers of dilatation that promote the nucleation
kinks at the same time oppose their dispersal along the
location. Therefore, in the analysis of the mobility of disl
cations in alloys of the Peierls type it is, generally speaki
necessary to take into account both modes of kink dynam
It becomes particularly important to take the lateral moti
of kinks into account when the height of the barriers th
must be overcome by the kinks becomes comparable to
energy of nucleation of kink pairs. Subsequently, in a se
of papers by Petukhovet al.,36–38 it was attempted to obtain
a unified description of the influence of impurity atoms
both the nucleation and the dispersal of kink pairs.

One of the important conclusions of Ref. 24 is that the
exists a certain critical value~strength! of the impurity bar-
riers. This is illustrated in Fig. 9,24 which shows the calcu-
lated results on the stress dependence of the activation
ergy necessary for the motion of a screw dislocation throu
the combined field of the Peierls potential and a misfit cen
for various values of the strength of the center. The calcu
tion was done for spherical centers, and the strength par
eter used was the maximum misfit strain around the cente
is seen that the activation energy~and with it, the macro-
scopic yield stress! is lowered in the presence of a misfi
center and that the lowering effect is sensitive to the stren
of the center. At a certain~critical! value of the strength the
activation energy again begins to increase, and this co
sponds to the decrease in the softening effect. The chang
the concentration of misfit centers can give rise to a redis
bution of the role of the processes of nucleation and dispe
of the kinks and can have a substantial influence on the
havior of the effect.

Thus, together with the temperature and impurity co
centration, the behavior of the softening effect should also
governed by a factor such as the strength of the impu
barriers.

FIG. 9. Stress dependence of the activation energy for the motion of a s
dislocation in the combined field of the Peierls potential and of misfit
fects.G0 is the energy per unit length of the dislocation, andtP is the Peierls
stress. The curves are labeled by the values of the maximum strain aro
misfit center, a measure of its strength.24
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Let us now compare the results of our experiments w
the conclusions obtained in an analysis of the models
scribed above. In the framework of these models we h
discussed only the influence of impurities on the activatio
component of the deforming stress; in the next Subsec
we shall discuss only the parameters of the relative soften
effect.

3.1. Temperature dependence of the effect

As can be seen from Fig. 6 and Table I, the soften
effect is observed in a bounded interval of moderately l
temperatures, outside of which the activational componen
the yield stress of the alloy is higher than that of pure t
This behavior of the effect is predicted by both the mode
Sato and Meshii and the model of Kubinet al. One of the
consequences of the Kubin model that is subject to exp
mental verification is the prediction that the temperature
pendence of the softening effect should be the same as
of the rate sensitivity of the yield stress. We have chec
whether this prediction holds for the case of the Sn–Cd
loy. It can be seen from a comparison of Fig. 6 and 8 that
positions of the maxima of these parameters on the temp
ture axis are strongly different, and that the difference
creases as the impurity concentration increases, reachin
K for the alloy Sn10.53 at. % Cd, for example.

It is possible that one of the causes of the disagreem
of the experimental data and formula~2! is that the Kubin
model does not take into account the role of impurity ato
as centers of opposition to the kinks in their lateral mot
along the dislocation lines.

3.2. Concentration dependence of the effect

Figure 10 shows the types of concentration curves
tained from calculations in the models of Sato and Mesh24

and Kubinet al.25 We note for the sake of definiteness th
the curve in Fig. 10b reflects the behavior of the relat
value of the impurity softening effect,hs /tP , obtained from
the data of Fig. 11 of Ref. 24. Thet0(T,c) curves in that

FIG. 10. Dependence of the parameterDts(v/kT) on the impurity concen-
tration in the alloy: the solid curves are for the model of Kubinet al.;25 the
squaresj show the experimental data obtained for Sn–Cd alloys~a!. The
concentration dependence of the maximum value of the softening, nor
ized to the Peiersl stress in the model of Sato and Meshii, constru
according to the data of Fig. 11a in Ref. 24~b!.
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figure were calculated in Ref. 24 for a hypothetical all
with a fixed value of the strength of the impurity barrier. Th
values ofhs /tP were found at the crossing points of th
t0(T) curves with the straight lineT5const'70 K.

Let us compare the curves in Figs. 10 and 7. The m
mum impurity concentration in our alloys corresponded
the lower boundary of the concentration region in the Kub
model (c0;1024) above which the effect practically ceas
to depend on the impurity concentration. This tendency,
we see from a comparison of Fig. 10a and Fig. 7, is
observed. All of thehs(c) curves for our alloys pass throug
a maximum and then undergo a more or less steep drop
the same time, there is a satisfactory qualitative simila
between our experimental curves and the curve calculated
the Sato and Meshii model~see Fig. 10b!.

3.3. Influence of the strength of the impurity barriers

The experimental data on the influence of this parame
on the softening effect are few and inconsistent. Some s
ies have found no connection between the size of the ef
and the difference of the geometric and elastic parameter
the host and impurity atoms, which accords with the abse
of a connection between the size of the effect and
strength parameter in Refs. 4 and 6, while in other studies
effect was found to be insensitive to the size of the misfit
its dependence on the modulus misfit was emphatic
affirmed.14 To elucidate the influence of this parameter
the softening effect in the alloys investigated in the pres
study, we adopted as a quantitative measure of the stre
of the impurity barriers the quantityq introduced by
Fleisher:39

q5udG2adRu,

dG5
2~GSn2Gi !

2GSn1uGSn2Gi u
; dR5

RSn2Ri

RSn
. ~3!

The symbolq denotes the combined misfit paramet
~barrier strength!, which takes into account the contributio
to the strength of the interaction of the dislocation with im
purity atoms from both the size and modulus misfits;GSn and

al-
ed

FIG. 11. Dependence of the maximum value of the impurity softeninghs on
the combined misfit parameterq ~the strength of the impurity barrier! in
alloys with impurity concentrationsc, at. %: 0.01~1!, 0.53 ~2!.
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Gi are the shear moduli of tin and of the dopant material;RSn

and Gi are the atomic radii of tin and of the dopant ato
and, the coefficienta516 for screw anda53 for edge dis-
locations.

In the analysis of the low-temperature plastic flow
pure b-Sn along the slip system~100!^010& we established
that it is brought about by the motion of screw dislocatio
through Peierls barriers.27,28 This conclusion also applies t
the low-temperature plasticity of the dilute alloys of tin wi
indium, cadmium, and zinc.32 On the basis of these resul
we can calculate the values of the strength of the impu
barriers opposing the motion of the dislocations~see Table
II !.

Table II also give information about the atomic radii a
shear moduli of the alloy components. It is seen that indiu
cadmium, and zinc impurities in tin give rise to dislocatio
barriers of different strengths: the strongest are barr
formed by zinc atoms, and the weakest are formed by
dium.

Figure 11 shows the maximum value of the impur
softeninghs(c) in the intervalDTs as a function of the pa
rameterq for two fixed impurity concentrations in the alloys
c50.01 and 0.53 at. %. These curves clearly indicate
presence of a link between the value of the effect and
strength of the impurity barriers, and the character of
relationship displays a strong dependence on the impu
concentration. Indeed, at a low concentration of impurity
oms the effect increases with increasing strength param
whereas at a high concentration it decreases withq. A
simple analysis shows that the quantitative interrelations
between the parameter of the effecths and the strength pa
rameterq is well approximated by a power law:

hs~c,q!5A~c!qn, ~4!

in which the parametersA andn have different values at low
and high impurity concentrations in the alloys. For examp
A51.3, n50.12 for c50.01 at. % andA50.2 andn521
for c50.53 at. %.

Thus, depending on the concentration, the same impu
can act to soften or harden the host crystal. In the se
impurities investigated here, such a role is most characte
tic for zinc atoms. It remains to be said that the observ
feature in the behavior of the effect is predicted in the mo
of Sato and Meshii on the basis of a consistent incorpora
of the dual role of the impurity atoms in the potential reli
of a Peierls crystal—as centers of nucleation of paired ki
on screw dislocation, and as centers of opposition to th
dispersal along the dislocation line. In particular, it follow

TABLE II. Values of the strength of the impurity barriers and the para
eters used for calculating them.

R, Å
Element ~Refs. 40, 41! dR G5G44 , GPa dG q

Sn ~host! 1.62 0 28.2~Refs. 41, 42! 0 0
In 1.66 0.024 8~Ref. 41! 0.53 0.146
Cd 1.57 0.031 24.5~Refs. 41, 43! 0.122 0.38
Zn 1.37 0.154 46~Ref. 41! 20.48 2.94
;
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from this model that impurity atoms in high concentratio
can lead to a softening effect only under the condition t
the strength of the barriers created by them is rather low

Thus we see from the above discussion that our exp
mental results are in qualitative agreement with the mo
developed in the paper by Sato and Meshii.24

CONCLUSION

1. Single-crystal samples of alloys ofb-tin with impuri-
ties of indium, cadmium, and zinc exhibit a low-temperatu
impurity softening effect which is manifested in a decrea
in the yield stress in the alloys as compared to pure tin. T
effect is observed in bounded intervals of moderately l
temperatures and concentrations.

2. We measured the temperature and concentration
pendences of the impurity softening effect and compa
them to those predicted in different theoretical models of
effect.

3. We established how the value of the effect depends
the combined size and modulus misfit parameter of the at
of the host matrix and the substance dissolved in it~the
strength of the impurity barriers!. We showed that the inter
relationship of these quantities is described by a power
with an exponent that depends on the impurity concentra
in the alloy.

4. An analysis of the data obtained in this study show
that the interrelationships found are in good agreement w
the behavior of the effect implied by the model of Sato a
Meshii,24 which takes into account the role of impurity atom
both as centers of nucleation of paired kinks on screw dis
cations and as centers of opposition to their lateral mot
along the dislocation line.
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High-frequency impedance of layered conductors in a high magnetic field
V. G. Peschanski *

Kharkov State University, pl. Svobody 4, 61007 Kharkov, Ukraine; B. Verkin Institute for Low Temperature
Physics and Engineering, National Academy of Sciences of Ukraine, pr. Lenina 47, 61164 Kharkov,
Ukraine

I. V. Kozlov and K. Jiasemides**

Kharkov State University, pl. Svobody 4, 61007 Kharkov, Ukraine
~Submitted July 19, 1999!
Fiz. Nizk. Temp.26, 225–227~February 2000!

The propagation of electromagnetic waves in layered conductors is investigated theoretically for
low temperatures, where it is extremely important to take into account the energy
quantization of the charge carriers by the magnetic field. The quantum kinetic equation for the
statistical operator is used to calculate the quantum oscillations of the surface impedance
over a wide range of frequenciesv. © 2000 American Institute of Physics.
@S1063-777X~00!01402-X#
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In recent years there has been a rising interest in rese
on the physical phenomena occurring in conductors of
ganic origin, having a layered structure with a pronounc
anisotropy of their metallic conductivity. These include
large family of charge-transfer complexes based on
ethylenedithio-tetrathiafulvalene~BEDT-TTF!2X, where X
is a set of various anions. The electrical conductivity alo
the layers in these complexes is 3–4 orders of magnit
higher than that along the normaln to the layers; this is
clearly due to the sharp anisotropy of the velocity distrib
tion of the charge carriers,v5]«(p)/]p, on the Fermi sur-
face«(p)5«F , i.e., their energy

«~p!5 (
n50

`

«n~px ,py!cos~anpz /\! ~1!

depends only weakly on the momentum projecti
pz5p•n.

The quasi-two-dimensional character of the electron
ergy spectrum of layered conductors makes for an extrem
clear manifestation of the quantum oscillations of t
Shubnikov–De Haas and de Haas–Van Alfen effects. T
Shubnikov–de Haas oscillations of the magnetoresista
have been observed in many organic layered conductors
ready there have been quite a few reports of experime
studies of the propagation of electromagnetic waves in io
radical layers with a low-dimensional electron ener
spectrum.1–6 In this connection it is of interest to do a the
retical analysis of the quantum oscillation effects in altern
ing fields, since high-frequency phenomena are extrem
informative and can be used successfully for a detailed st
of the electronic structure of layered conductors and, in p
ticular, the dispersion relation and the relaxation proper
of the charge carriers.
1691063-777X/2000/26(2)/2/$20.00
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Let us consider the propagation of electromagne
waves along the normal to the layers in organic layered c
ductors with a quasi-two-dimensional electron energy sp
trum, placed in a rather high magnetic fieldH such that the
mean free pathl of the charge carriers is much greater th
the radius of curvaturer of their trajectories. If the penetra
tion depth of the electromagnetic wave into the conducto
less than the linear dimensions of the conductor, then
problem of the distribution of the electric fieldE(z) of the
wave in the sample is similar to that of the propagation of
electromagnetic field in a half spacez>0 occupied by the
layered conductor.

To find the current density

j 5Tr~ev̂r̂ ! ~2!

it is necessary to solve the quantum kinetic equation for
statistical operatorr̂5 r̂ (0)1 r̂ (1), which in the case of a
monochromatic wave of extremely low intensity has t
form

F2 iv1
1

t
1

i

\
~«n2«n8!Grnn8

~1!
1vz

]rnn8
~1!

]z

52
rn

~0!2rn8
~0!

«n2«n8
~eE"v!nn8 . ~3!

Here r̂ (0) is the statistical operator describing the eq
librium unperturbed state of the charge carriers; only
diagonal components of this operator are nonzero, and
are the Fermi distribution functionsr0(«n(rH)), where
pH5p•H/H.

In Eq. ~3! we have kept only the terms linear in the sm
perturbation of the charge carriers by the electromagn
wave. Solely for the sake of brevity in the calculations w
have taken the quantum analog of the collision integral i
© 2000 American Institute of Physics
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account in the relaxation-time approximation for the cond
tion electrons, i.e., as an operator multiplying the noneq
librium part of the statistical operatorr̂ (1) by the collision
frequency 1/t.

The constitutive relation~2! together with Mawell’s
equations

curlH54p j /c2 ivE/c, curlE5 iv~H14pM !, ~4!

whereM is the magnetization, form a complete system
equations for the problem of finding the electromagne
field distribution in the conductor.

A more substantial simplification of the calculations
the impedanceZ and electromagnetic field distribution in
conductor can be achieved if it is assumed that the quant
energy levels in the magnetic fieldH5(0,0,H) have the
form

«n~pz!5~n11/2!\V2h«F cos~apz /\!, ~5!

whereV5eH/mc, c is the speed of light in vacuum,e is the
charge of the electron, and the cyclotron effective massm of
the electron is independent ofpz ; this takes place when th
energy spectrum in the plane of the layers is isotropic.

The quasi-two-dimensionality parameterh of the con-
ductor will be assumed not too small, so that

\V

«F
!h!1, ~6!

and a quasi-classical description of the electronic phenom
is valid.

By virtue of the symmetry of the problem, the electr
field Ez is equal to zero, and the coupling of the curre
density with the electric field in the plane of the layers
easily found using the solution of the kinetic equation~3!.
We perform an even continuation of the electric field into t
region of negativez and do a Fourier transform. If the su
face of the sample (z50) on which the wave is inciden
reflects the charge carriers in a specular manner, then
Fourier transforms of the current densityj a(k) and of the
electric fieldEb(k) are connected by a local relation:

j a~k!5sab~k!Eb~k!; ~a,b!5~x,y!. ~7!

In this case it is easy to findEa(k) by some straightfor-
ward calculations and then, by doing the inverse Fou
transformation

Ea~z!5
1

p E
0

`

dkEa~k!coskz, ~8!

to find the distribution of the electric field of the wave in th
conductor.

Quantum oscillation effects are due to the presence
features on the density of states of the charge carriers w
their energy spectrum is quantized. Upon the summatio
the collision integral over the states of the scattered e
trons, these features inevitably manifest themselves,7–10 lead-
ing to an oscillatory dependence oft on 1/H, viz.,

1

t
5

1

t0
F11CS 2p2 T

\V D I 0S 2p«F

\V
h D cosS «F

\V D G , ~9!
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wheret0 is the nonoscillatory part of the relaxation time,T
is the temperature in energy units,C(j)5j/sinhj, andI 0(j)
is the Bessel function.

When the surface impedanceZ is calculated in the re-
gion of high frequenciesv of the electromagnetic wave
whenvt@1, the form of the collision integral in Eq.~3! is
not so important, since the main approximation in the para
eter 1/vt corresponds to the collisionless limit. In the low
frequency region (vt<1), however, it is extremely impor
tant to take into account the quantum oscillations of
collision integral.

For T!\V in a high magnetic field \V
@vte2h«F /(mc2a), the quantum oscillations of the low
frequency (vt!1) impedanceZosc are determined mainly
by oscillations of the collision integral, andZosc

>Z@\V/(«Fh)#1/2.
As the frequencyv is increased, the contribution toZosc

from oscillations of the collision integral compete with th
magnetization oscillations, which in the collisionless lim
completely determineZosc.

No fundamental difficulties arise in solving the proble
for an arbitrary form of the quasi-two-dimensional electr
energy spectrum. The competition of the various mec
nisms of formation of quantum oscillation effects in a hig
frequency field and the fine details of the dispersion relat
for the charge carriers can be taken into account by mean
an analysis of the phase relations in the presence of bea
the oscillations at smallh.

*E-mail: vpeschansky@ilt.kharkov.ua
** Present address: Predikari 5, GR-111 41 Athens, Greece

1J. Singleton, F. L. Pratt, M. Doporto, T. J. B. M. Janssen, M. Kurmo
J. A. A. J. Perenboom, W. Hayes, and P. Day, Phys. Rev. Lett.68, 2500
~1992!.

2S. Hill, A. Ardavan, J. M. Schrawa, and J. Singleton, ‘‘Fermi surfa
spectroscopy: a magnetic resonance approach,’’Reports of the XXII Inter-
national Conference on Low Temperature Physics, Espoo–Helsinki, Fin-
land ~1999!, Abstracts LT22, p. 399.

3S. V. Demishev, H. E. Sluchanko, A. V. Semeno, and N. A. Sama
JETP Lett.61, 313 ~1995!.

4S. V. Demishev, A. V. Semeno, N. E. Sluchanko, N. A. Samarin, I.
Voskoboinikov, V. V. Glushkov, J. Singleton, S. J. Blundell, S. O. Hi
W. Hayes, M. V. Kartsovnik, A. E. Kovalev, M. Kurmoo, P. Day, an
N. D. Kushch, Phys. Rev. B53, 12794~1996!.

5A. Polisski, J. Singleton, and N. D. Kushch, Czech. J. Phys.46, Suppl. S5
~1996! ~Proc. XXI Intern. Conf. on Low Temp. Phys.~LT 21!, Prague,
Aug. 8–14, 1996!.

6S. V. Demishev, A. V. Semeno, N. E. Sluchanko, N. A. Samarin, I.
Voskobo�nikov, M. V. Kartsovnik, A. E. Kovalev, and N. D. Kushch, Zh
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10Yu. A. Bychkov, Zh. Éksp. Teor. Fiz.39, 1401~1960! @Sov. Phys. JETP
12, 971 ~1961!#.

Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 26, NUMBER 2 FEBRUARY 2000
QUANTUM LIQUIDS AND QUANTUM CRYSTALS

Motion of vortices in an annular region
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The vortex solutions of the nonlinear Schro¨dinger equation in a bounded region are analyzed.
The asymptotic limit in which the dimensions of the vortex cores are much smaller than
the distance between vortices is investigated. A system of equations describing the dynamics of
vortices in the annular region~ring! between two coaxial cylinders is derived. It is shown
that as the inner radius of the ring decreases, the system of equations reduces to the corresponding
system on a disk, and as the gap decreases, the motion obtained is analogous to that in a
rectilinear channel. An analytical solution of the equation is given for the case when there is only
one vortex in the ring, and a numerical simulation of the motion of two vortices with
arbitrary signs of the vortex strength is carried out for different initial positions of the vortices.
© 2000 American Institute of Physics.@S1063-777X~00!00102-X#
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INTRODUCTION

Consider the functional

f ~u!5
\2

2m
u¹uu21auuu21

b

2
uuu4. ~1!

This functional represents the free energy density o
superfluid1,2 ~u is the wave function,\ is Planck’s constant
m is the mass of a helium atom,a, b are parameters tha
depend only on temperatureT, and a,0!. Minimizing f
with respect toū, we obtain the Euler–Lagrange equation
the form

\2

2m
Du2auS 11uuu2

b

a D50,

whereD is the Laplacian operator.
Changing to dimensionless variables (u8,x8) by setting

x5jx8, u5u0u8, u0
252a/b, where

j2~T!5
\2

2m
uau ~2!

is the coherence length for He II, which determines the m
mum length over which appreciable changes occur inuuu ~or
rS!, i.e., j is equal to the radiusa0 of the vortex core.

D8u81u8~12uu8u2!50. ~3!

Equation ~3! is the so-called stationary Ginzburg
Landau equation. Two forms of stationary Ginzburg–Land
equations are treated in mathematical physics:

Du1u~12uuu2!52 iut , ~4!

Du1u~12uuu2!5ut . ~5!

Equation~4! is the nonlinear Schro¨dinger equation, and
Eq. ~5! is the nonlinear heat flow equation.
851063-777X/2000/26(2)/7/$20.00
a
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u

An important feature of these equations is the existe
of asymptotic solutions of the vortex type. The concept
vortices introduced in hydrodynamics can be applied for
description of features in various media. The motion of v
tices is widely considered in the literature on magnets,
perconductors, in charged fluids, and in superfluids.

In Refs. 3 and 4 it was shown that in the nonstationa
case~5! ~the nonlinear heat flow equations! the vortices be-
have like charged particles~vortices having the same sign o
the vorticity repel one another, while vortices of unlike sig
attract!, whereas the vortex solutions of the nonlinear Sch¨-
dinger equation are similar to hydrodynamic vortices.

In this paper we use the procedure proposed in Ref.
derive equations describing the motion of a vortex syste
This procedure yields an asymptotic expression for the ph
F of the wave function to arbitrary accuracy and reduces
problem of solving the Ginzburg–Landau equation to one
solving a boundary-value problem forF in a specified re-
gion. The choice of suitable boundary conditions~Dirichlet,
Neumann, or mixed conditions! can significantly broaden the
spectrum of problems that can be treated. In particular,
Neumann condition at a solid boundary is analogous to
condition of impermeability in hydrodynamics or to the co
dition that there be no currents flowing into or out of a s
perconductor. Dirichlet boundary conditions describe a c
tact between a superconductor and normal metal, w
mixed boundary conditions are imposed in problems desc
ing the behavior of a superconducting layer in a norm
metal ~see, for example, Ref. 5!.

We consider the motion of vortices in superfluids~quan-
tum fluids! in the absence of magnetic field in bound
regions—in particular, in the annular region between t
coaxial cylinders, a region containingN vortices of vortex
strength nj , located at the positionsj j .5(z j ,h j ),
© 2000 American Institute of Physics
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j 51,2,...,N. We consider the asymptotic limit when the d
mensions of the vortex cores are much smaller than the
tance between vortices.

The equations of motion for quantum vortices obtain
in this paper are of the form

j̇ j52K ~ j !, j 51,2,...,N, ~6!

K ( j )5K ( j )(j j ;j1 ,j2 ,...,jN) is expressed in terms of the de
rivative of a complex potentialW(z) of the flow of an ideal
fluid in the ring,10 evaluated at the point where thej th vortex
is located:

K ~ j !5~ReW8~zj !, 2Im W8~zj !!,

where zj5z j1 ih j are the complex coordinates of thej th
vortex.

This form of the equations is the same as that of
equations found in the literature for the description of ma
netic vortices and vortices in other systems~see, for ex-
ample, Refs. 6 and 7, even though they were obtained b
completely different method.

Analysis of these equations shows that the Schro¨dinger
equation~4! actually does admit a solution in the form o
vortices which behave like hydrodynamic vortices. In th
paper we write explicit expressions for these equations in
annular region so that they can be solved numerically o
the initial positions of the vortices are specified. We sh
that as the inner radius of the ring decreases, this solu
reduces to the solution of the corresponding system o
disk, and as the gap decreases~i.e., for R22R1!R1! we
obtain motion analogous to that in a rectilinear channel.
find an analytical solution to equations~6! when there is only
one vortex in the ring, and we carry out a numerical simu
tion of the motion of two vortices for various initial position
of the vortices and arbitrary signs of their vortex strength

EQUATION OF MOTION OF A VORTEX

Let us consider the stationary Ginzburg–Landau eq
tion

Du1u~12uuu2!50, ~7!

and its solutions of the form

u~x!5U~r !exp~ i ~nu1u0!!, ~8!

which are calledvortex solutions. Here (r ,u) are the polar
coordinates ofx: x5(r cosu,r sinu). For r .0 the function
U(r ) satisfies the equation

Urr 1
1

r
Ur2

n2

r 2 U1~12U2!U50. ~9!

Let us now consider the nonlinear Schro¨dinger equation
~4!. We change to the new variablesx̃5«x8, t̃ 5«2t8. As the
small parameter« we take the quantityj from Eq. ~2!, i.e.,
«5j. In the new variables Eq.~4! becomes

Du1
1

«2
u~12uuu2!5 iut . ~10!
is-

d

e
-

a

n
e

n
a

e

-

.

-

The positions of the vortex is of orderO(«), and the
distance between vortices is of orderO(1), as in theoriginal
physical statement of the problem.

To obtain a system of equations describing the dynam
of the vortices, we follow the procedure proposed in Ref.

Let us first consider the region outside of the vort
cores and construct an asymptotic solution of equation~10!,
treating the vortices as point singularities located at
points x5j t(t). We call this the ‘‘exterior’’ solution and
seek it in the form

u«~x,t !5u0~x,t !1«u1~x,t !. ~11!

It can be shown~see Appendix! that uu0u51, so we can
write u05eF0(x,t). The phaseF0(x,t) of the wave function
within the volume of the superfluid, except in the neighbo
hoods of the vortex cores, is a solution of the followin
boundary-value problem:

H DF050,

F0~x,t !→u01nju, x→j j ,

]F

]n
50 at the solid boundary

~12!

and can be determined for a wide spectrum of regions. Fo
annular regionR1<r<R2 the solutionF0 was found as10

F0~z!5ReW~z!5ReH i (
k51

N

nkF ln sS i ln
z

zk
D

2 ln sS i ln
zzk

Z2,k
2 D 2

2ih

v1
ln

r k

R2
ln zG J 1const.

~13!

Here W(z) is a complex potential,s(z) is the Weier-
strass sigma function with half-periodsv15p, v2

5 i ln(R2 /R1), h5z(v1), z(z) is the Weierstrass zeta func
tion with the same half-periods,11 Z2,k5R2 expi(ũk); the
complex variablez5r exp(iũ) is measured from the center o
the ring, so that the azimuthal angleũ5tan21(y/x), and ũk

5tan21(hk /zk).
ExpandingF0 in a Taylor series around thej th vortex,

we obtain an approximate expression for the phase of
wave function and, hence, for the wave functionu0 itself.
This solution is

u05eiF0'ein j u1 iu0@11 iK ~ j !
•r1O~r 2!#, ~14!

where

K ~ j !5¹F05~ReW8~zj !,2Im W8~zj !!;

W8~zj !5
1

zj
(
k51
kÞ j

N

nkFzS i ln
zjzk

Z2,k
2 D 2zS i ln

zj

zk
D G

1
nj

zj
zS 2i ln

r j

R2
D2

2ih

v1zj
(
k51

N

nk ln
r k

R2
. ~15!

r 5~x2z j~ t !, y2h j~ t !!,

We now construct another solution of equation~10!, set-
ting
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U«~x,t !5U0S x2j j~ t !

« D1«U1S x2j j~ t !

« D1...

and seeking an approximate solution for largeX5(x
2j j (t))/«. This solution, which is possibly independent
the presence of boundaries of the region, can be found
manner analogous to the solution of the problem for the n
linear heat flow equation in an unbounded region4 ~see Ap-
pendix!:

U~X,t !5ein j u1 iu0F11
i«

2
~ j̇ jX!1OS 1

R2
D

3S 11«S j̇ j•
X

RD D G . ~16!

In order for solutions~14! and ~16! to be mutually con-
sistent, it is necessary that the leading terms of the expan
be equal forr5«X, i.e.,

K ~ j !
•«X5

1

2
~ j̇ j•«X!,

which gives

j̇ j52K ~ j !. ~17!

This is the desired equation of motion for thej th vortex.
By varying j from 1 toN, we obtain the equations of motio
of all the vortices.

Knowing the particular form of the complex potenti
W(z) in ~13!, one can obtain all the necessary informati
about the motion of vortices in rings of any dimensions.

Motion of vortices in cylinders and narrow rings

We shall show that forR1→0 one obtains the motion o
vortices in a cylinder. Indeed, since the half-perioduv2u
5 ln(R2 /R1) is large in this case, the denominator of thez and
s functions q5exp(ipv2 /v1)5R1 /R2 is small, the elliptic
functions degenerate into the elementary functions:11

z~u!5
hu

v1
1

p

2v1
cot

pu

2v1

and the cotangents are easily evaluated:

cotS i

2
ln

zjzk

Z2,k
2 D 52

zj1Z2,k
2 /zk

zj2Z2,k
2 /zk

,

cotS i

2
ln

zj

zk
D52

zj1zk

zj2zk
.

Then from expression~15! we get

W8~zj !'(
k51

N

nkF 1

zj2zk
2

1

zj2Z2,k
2 /zk

G .

This is just the complex conjugate velocity of a flu
with N vortices in a cylinder.8

Another limiting case of interest is that of a narrow rin
R22R1!R2 . Here uv1u@uv2u, and q is large. Using the
homogeneity relation for thez functions11

z~zuv1 ,v2!5 i z~ izu iv1 ,v2!5 i z̃~ iz!,
a
-

on

we arrive at the half-periodsṽ15 ln(R2 /R1), ṽ15 ip, and the
denominatorq becomes small, so that thez functions again
degenerate to cotangents:

zS i ln
zj

zk
D52 i z̃S ln

zj

zk
D'2

i h̃

ṽ1
ln

zj

zk

2
ip

2ṽ1
cot

p

2ṽ1
ln

zj

zk
;

zS i ln
zjzk

Z2,k
2 D 52 i z̃S ln

zjzk

Z2,k
2 D'2

i h̃

ṽ1
ln

zjzk

Z2,k
2

2
ip

2ṽ1
cot

p

2ṽ1
ln

zjzk

Z2,k
2 .

The tildes over the symbols mean that all quantities
evaluated at the new half-periods. In addition,

h5z~v1!5 i z̃~ ip!5 i h̃8.

After elementary calculations we obtain

W8~z!5
1

z (
k51

N
ipnk

2ṽ1
Fcot

p

2ṽ1
ln

zj

zk
2cot

p

2ṽ1
ln

zjzk

Zk
2 G

1
i

zṽ1
(
k51

N

nk ln
R2

zk
.

This is the complex conjugate velocity of a fluid in
narrow ring. To obtain the motion in a narrow rectangu
channel, we conformally map the~cut! ring to a segment of a
strip by means of the functionu5 i ln(z/R2).

The ring maps into a horizontal strip between t
straight linesu50 andu52 ln(R2 /R1). The velocity of fluid
in the strip~channel! has the form

W8~u!5
W8~z!

u8~z!
5

p

2ṽ1
(
k51

N

nkFcot
p

2ṽ1
~u2uk!

2cot
p

2ṽ1
~u2uk* !G1C,

where

uk5 i ln
r k exp~ iuk!

R2
; uk* 5 i ln

R2 exp~ iuk!

r k
;

C is a constant flow.
Each term in the sum is the velocity of a fluid generat

by an infinite Kármán vortex street,14 where 2ṽ1

52 ln(R2 /R1) is the distance between vortices. The narro
ness of the channel means that these streets have pract
no effect on one another, i.e., the distance between the st
is much greater than the distance between vortices with
street~this is ensured by the conditionuṽ1u!uṽ2u!.

Example 1. Let us investigate Eq.~17! in more detail for
the particular case when there is one vortex moving in
ring.

Let there be a single vortex, located at the po
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z15r 1 exp(iu1), in a ringR1<r<R2 .
For N51 we obtain from expressions~15! and ~17!

W8~z1!5
n1

z1
zS 2i ln

r 1

R2
D2

2ihn1

v1z1
ln

r 1

R2
.

Since, according to Ref. 11,

z~z!5
hz

v1
1

p

2v1
Fcot

pz

2v1
14(

n51

`
q2n

12q2n sin
pnz

v1
G ,

for v15p, z152i ln(r1 /R2) we obtain

z0~z1![z~z1!2
hz1

v1
5

1

2
cotF i lnS r 1

R2
D G

12(
n51

`
q2n

12q2n sinS 2ni ln
r 1

R2
D .

This gives

W8~z1!5
n1

z1
z0~z1!.

We note thatz0(z1) is an imaginary-valued quantity.
ThusW8(z1)5( in1 /z1)F(r 1), whereF(r 1) is a real-valued
function of the vortex positionr 1 . Then

K ~1!5~ReW8~z1!,2Im W8~z1!!5
n1

r 1
F~r 1!êu ,

whereêu5(sinu1,2cosu1).
The equation of motion of the vortex takes the form

j̇ j~ t !5
2n1

r 1
F~r i !êu .

The velocity of the vortex is directed along a tangent
the circle on which the vortex is located. This is in agre
ment with the hydrodynamic theory of vortices: a vortex in
ring moves along a circle.13

Example 2. Let us analyze the motion of two vortices
a ring. We obtain the equations of motion of the two vortic
from Eqs.~15! and ~17! with N52.

These equations can be solved approximately by sp
fying the dimensions of the ring and the initial positions
the vortices, with the vortex strengths~n1 andn2! set equal
to 11 or 21.

The solutions for a ring with an inner radiu
R150.5 cm and outer radiusR251.5 cm were obtained by
the Runge–Kutta method for various vortex strengths
various initial positionsx1 and x2 of the vortices; they are
illustrated in Figs. 1–5~parts a, b, and c correspond to tim
t1,t2,t3!.

A ‘‘vortex–vortex’’ pair moves independently with a
constant velocity along the same circle if at the initial tim
the vortices are located on the same circle and a suffic
distance apart~Fig. 1!. If the vortices are initially located on
different circles, then the vortex lying closer to the outer w
will move faster and will overtake the second vortex. At t
time of overtaking the ‘‘inner’’ vortex describes a loop
while the ‘‘outer’’ vortex deviates slightly toward the cent
of the ring ~Fig. 2!.
-

s

i-

d

nt

l

A ‘‘vortex–antivortex’’ pair moves mainly in opposite
directions, but this is not simple motion along a circle. T
vortex lying closer to the outer wall~the ‘‘outer’’ vortex!
moves faster. If initially the vortices lie on different circle
on different sides of the center, then as they approach e
other the outer vortex slows down and the inner vor
changes its direction of motion, accelerates, and describ
complete revolution~Fig. 3!. As it again approaches th
outer vortex, it again slows down and changes directi
while the outer vortex accelerates and describes a revolu
Thus the inner vortex moves along a rather complex tra
tory containing loops, while the outer vortex moves along
nearly circular trajectory, the motion of both vortices bei
very nonuniform in time.

If both vortices of a ‘‘vortex–antivortex’’ pair are ini-
tially located along one radius, then the vortices move
opposite directions, with the outer vortex having the high
velocity, but it slows down as it passes the other vortex. T
inner vortex is deflected toward the center of the ring, d
scribing a ‘‘lobed’’ trajectory~Fig. 4!.

No less interesting is the motion of vortices of differe
sign initially located an appreciable distance apart on
same circle@Fig. 5a#. The vortices start to move toward eac
other, but after they have approached closely enough,
turn around@Fig. 5b# and move in the opposite direction
each along its own closed trajectory!@Fig. 5c#.

CONCLUSION

We have implemented the method proposed in Ref. 4
solving the Ginzburg–Landau equation in the nonstation
case@the Schro¨dinger equation~4!# for bounded regions. We
have obtained a dynamical system of equations~17!—a sys-
tem of ordinary differential equations—describing the m
tion of vortices. The right-hand sides of these equations
the gradients of the phase of the wave function of the c

FIG. 1. Motion of a ‘‘vortex–vortex’’ pair (n15n251). The initial posi-
tions of the vortices arex15(1,0), x25(21,0) ~on the same circle!. The
vortices move along the circle independently of each other and at a con
velocity.
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FIG. 2. Motion of a ‘‘vortex–vortex’’ pair (n15n251). The initial positions of the vortices arex15(0.8,0), x25(0,1.3). The vortices move in the sam
direction, and the second vortex~that closer to the outer wall! is moving faster. At the time of overtaking, the first vortex describes a loop, and then the m
along the circle continues.
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densate, and for a superfluid can be expressed in terms o
derivative of a vector potentialW(z) of a fluid containing
vortices; this vector potential depends on the shape of
region. We have given the explicit form of the complex p
tential for an annular region.

We have obtained an analytical solution of equat
~17!, which describes the motion of a single vortex in a rin
and we have investigated numerically the motion of a pai
vortices for various initial positions and strengths~signs! of
the vortices. The trajectories of the vortices are shown in
figures.

APPENDIX

Derivation of the equations of motion of the vortices

The substitution of expansion~11! into Eq. ~10! gives
the following sequence of equations~the coefficients of
equal powers of«!:
the

e
-

,
f

e

«22: u0~12uu̇0u2!50, ~A1!

«21: u1ū01u0ū150, ~A2!

«0: 2 iu0t5Du02uu1u2u0 . ~A3!

From the first equation we immediate getuu0u51, which
givesu05eiF0(x,t).

From Eq.~A2! we get an equation relating the phase
the wave functionu0 with the modulus of the wave function
u1 :

F0t5 iDF02~¹F0!22uu1u2.

SinceF0 and uu1u are real-valued, this equation yield
the following two equations:

DF050, ~A4!

F0t52~¹F0!22uu1u2. ~A5!
nd
peat
w

FIG. 3. Motion of a ‘‘vortex–antivortex’’ pair (n152n251). The initial positions of the vortices arex15(0.8,0),x25(0,1.3). The vortices start moving in
opposite directions, but the second vortex moves faster~the initial positions of the vortices are indicated by triangles!. As they approach each other, the seco
vortex slows down and the first changes direction and accelerates, describing a complete revolution. On the subsequent approach the pattern is reed. Thus
the inner vortex describes a complicated trajectory with loops, while the outer vortex moves nearly along the circumference, deviating slightly toard the
center of the ring as it approaches the inner vortex.
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FIG. 4. Motion of a ‘‘vortex–antivortex’’ pair (n152n251). The initial positions of the vortices arex15(0.7,0), x25(1.3,0) ~on the same radius!. The
vortices move in opposite directions, the second vortex moving faster. Upon overtaking the first vortex, the second vortex slows down, while the fiortex
deviates toward the center of the ring. One ‘‘lobe’’ of the trajectory of the first vortex corresponds to one revolution of the second vortex.
s

on

d
ar

-

fo

od
u-

t

The first of these allows us to calculateF0 ~if suitable
boundary conditions are specified!, and the second enable
us to finduu1u if F0 is known.

Let us now find a solution of equation~A4! in the region
outside the vortex cores, with the asymptotic boundary c
ditions at the cores

F0~x,t !→nju1u0 , x→j j~ t !, ~A6!

wherej j (t)5(z j ,h j ) are the coordinates of thej th vortex,
u5tan21@(y2hj)/(x2zj)# is the azimuthal angle of thej th
vortex,u0 is the phase shift, andu05u0(j1 ,...,jN).

Besides the conditions~A6! at the vortices, in a bounde
region it is necessary to impose a condition at the bound
Since the phase of the condensate wave functionF(x,t) is
related to the hydrodynamic velocity potentialw(x,t) by the
relation9

w5
\

m
F,

one hasv5¹w5(\/m)¹F, and the hydrodynamic condi
tion of impermeability at a solid boundary,v•n50, gives a
Neumann boundary condition forF: ]F/]n50 at the
boundary.

We thus have the following boundary-value problem
F0 :
-

y.

r

H DF050 in the region outside the vortex cores

F0~x,t !→nju1u0 , x→j j ,

]F0

]n
50 at the boundary.

~A7!

The solution of this problem can be found by the meth
of ‘‘reflected vortices’’ or by some other method. In partic
lar, for an annular regionR1<r<R2 the velocity potentialw
of an ideal fluid containingN vortices with vortex strengths
nk , located at the pointszk5r k exp(iũk), can be written in
complex form.10

To obtain an approximate expression forF0 in the
neighborhood of thej th vortex, we note that forz→zj , only
one term in the sum overk in ~13! has a singularity, and tha
is the term corresponding to the vortex potential:

F0~z,t !ux→j j
5nj tan21

y2h j

x2z j
5nju.

Consequently, in the neighborhood of thej th vortex,
F0(z,t) can be written in the form

F0~z,t !5nju1F0
1~z,t !
FIG. 5. Motion of a ‘‘vortex–antivortex’’ pair (n152n251). The initial positions of the vortices arex15(1,0), x25(21,0) ~on the same circle!. The
vortices move in opposite directions, each on its own closed trajectory, and never approach each other.
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whereF0
1(z,t) is nonsingular at the pointz5zj and can be

expanded in a Taylor series about that point:

F0
1~z,t !5F0

1~zj !1~¹F0
1!uz5zj

•~x2j j !1O~x2j j !
2.

The first term is the phase shift at the pointj j (t): F0
1(zj )

5u0 .
Taking into account that

¹F05~ReW8~z!,2Im W8~z!!,

and evaluatingW8(zj ) with the singular term excluded, w
obtain expression~15!. The wave functionu0 takes the form
~14!.

This is the ‘‘exterior’’ solution of the Schro¨dinger equa-
tion equation in the neighborhood of thej th vortex. The
influence of the boundaries of the region is included in
term K ( j ), which is calculated specifically for each region

Let us find another solution to equation~4!: we seek it in
the form of a series,

U~x,t !5U0~X!1«U1~X!1...,

where we have introduced the notation

x2j j~ t !

«
5X,

or, in polar coordinates,X5(R cosu, Rsinu).
SubstitutingU(x,t) into Eq. ~4! gives the sequence o

equations

DU01U0~12uU0u2!50, ~A8!

DU11~122uU0u2!U12U0
2Ū15 i j̇ j~ t !U0 . ~A9!

The solution of the first equation,

U0~R,u,t !5 f 0~R!ein j u~ t !1 iu0, ~A10!

in which u(t) andu0 are thesameas in the exterior solution
must be found subject to the conditions

H f 0~0!50,
f 0~`!51. ~A11!

The direct substitution ofU0 from Eq. ~A10! into Eq.
~A8! gives an equation forf 0 :

f 091
1

R
f 082

nj
2

R2 f 01~12 f 0
2! f 050. ~A12!

It can be shown that there exists a single solution
equation ~A12! with boundary conditions~A11! which at
large R satisfies the relation:

12 f 0
22~nj

2/R2!5O~1/R4!, ~A13!

from which we find

f 0'12
nj

2

2R2
2 1OS 1

R4D .

We seekU1 in the form4

U1~R,u,t !5 f 1~R,u,t !ein j u1 iu05@~Ar~R!

1 iAi~R!!cosu1~Br~R!

1 iBi~R!!sinu#ein j u1 iu0.
e

f

SubstitutingU0 and U1 into Eq. ~A9! gives four equa-
tions for Ar , Ai , Br , andBi ~see Ref. 4!, and the solution
U1(R,u,t) at large R takes the form

U1~R,u,t !5ein j u1 iu0FnjC21

R S j̇ j
'
•

X

RD1
iR

2 S j̇ j•
X

RD
1

iA21

R S j̇ j•
X

RD1OS 1

R3D S j̇ j•
X

RD G ,
wherej̇ j5( ż j ,ḣ j ), j̇ j

'5(2ḣ j ,ż j ).
We then obtain thecomplete solution U5U01«U1 for

largeR:

U~X,t !5ein j u1 iu0F11
i

2
~ j̇ jX!1OS 1

R2D
3S 11«S j̇ j•

X

RD D G ,
which approximates the solution in the region near
boundary of a vortex, where the quantityR5uXu5u(x
2j j (t))/«u is large.
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Lower critical fields of textured high-temperature superconductors. III. Experimental
study of the anisotropy of the fields Hc1 of the HTSC YBa 2Cu3O7Àd

V. A. Finkel’* and V. V. Derevyanko

National Science Center, Kharkov Institute of Physics and Technology, ul. Akademicheskaya 1,
61108 Kharkov, Ukraine
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The dependence of the critical currentsI c of textured samples of the HTSC YBa2Cu3O72d (T
577.3 K) on the value of an external magnetic fieldHext applied beforehand is
investigated for various angles between the field direction and the sample. By a technique
developed in the present study the measured angular dependence ofI c(H) is used to determine
the values of the lower critical fieldsHc1 of the HTSC YBa2Cu3O72d in two directions:
the direction of the principal axis of the orthorhombic lattice,Hc1

ab589 Oe, and in the perpendicular
direction,Hc1

c 5383 Oe; the ratio of the effective masses of the electron in the two directions
is mc/mab518.5. © 2000 American Institute of Physics.@S1063-777X~00!00202-4#
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INTRODUCTION

The idea that the anisotropy of the lower critical fiel
Hc1 of high-temperature superconductors~HTSCs! in tex-
tured samples can be investigated by making a series of m
surements of the critical fields for several values of the an
of rotationw of the sample about an axis perpendicular to
direction of an external magnetic fieldHext was conceptual-
ized in an earlier paper1 ~the anglew is measured from theZ
axis of the laboratory coordinate system, which is the dir
tion of the fieldHext!. It was assumed that the angular depe
dence of the lower critical fields of a HTSC can be describ
theoretically by models of the magnetic properties
uniaxial type-II superconductors; these models, which h
been developed in the framework of the anisotro
Ginzburg–Landau theory long before the discovery of hig
temperature superconductivity,2–4 have subsequently bee
applied successfully to HTSCs.5,6 For example, according to
Ref. 2, under conditions where the external magnetic fi
Hext is at an angleg to the magnetic anisotropy axisn, which
for all known HTSCs is the crystallographic direction^001&
(c) of the the tetragonal or orthorhombic lattices of HTSC
the angular dependence of the lower critical fieldHc1 is de-
scribed by the equation

Hc15
Hc1

c

@cos2 g1~mc/mab!sin2 g#1/2
, ~1!

whereHc1
c is the value ofHc1 in the direction of the mag-

netic anisotropy axisc, mc andmab are components of the
‘‘effective mass tensor’’ of the electron in the anisotrop
Ginzburg–Landau theory along the principal axis (mc) and
in the direction perpendicular to it (mab).

As was shown in Refs. 1 and 7, a real textured HT
sample can be placed in correspondence with a single cr
which is oriented in the laboratory coordinate systemXYZ
921063-777X/2000/26(2)/5/$20.00
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~the Z axis is in the direction of the external magnetic fie
Hext; see above! in such a way that the angular dependen
of its lower critical fieldHc1(w) in the XZ plane is analo-
gous to that for the textured polycrystal. For the simpl
case of a conical texture~which is nevertheless quite realist
for HTSC ceramics!, where the magnetic anisotropy axisn
precesses around a certain direction in the laboratory coo
nate system~the ‘‘limiting’’ case of such a texture is the
planar texture, for which, e.g., the basal planeab is parallel
to the surface of the sample!, the value of the lower critical
field of Eq. ~1! has the following behavior1 as the sample is
rotated around theY axis, from theZ axis toward theX axis,
by an anglew:

Hc1~g!

5
Hc1

c

F mc

mab 1S 12
mc

mabD S 2
sing sinw

&
1cosg cosw D 2G 1/2.

~2!

To determine the values of the lower critical fieldsHc1
c

andHc1
ab ~we recall thatHc1

ab5Hc1
c (mc/mab)21/2; Ref. 8!, the

effective-mass ratiomc/mab, and the angleg between the
magnetic fieldHext and the averaged position of the magne
anisotropy axisn in a particular sample, one must solve
system of equations of the type~2! for three different angles
of rotation of the sample (w i50,w1 , w2). As was shown in
Ref. 1, everything ultimately reduces to the solution of
rather simple equation:

A cos2 g1B5C sing cosg, ~3!
© 2000 American Institute of Physics
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in which the coefficientsA, B, andC are explicit functions
of only the experimentally measured values of the criti
fields determined in the directions corresponding to angle
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rotationw i of the sample in theXZ plane of the laboratory
coordinate system. Then the values of interest to us are e
found:
mc

mab 5
~2sing sinw i /&1cosg cosw i !

22@Hc1~w i !/Hc1~0!#cos2 g

@Hc1~w i !/Hc1~0!#sin2 g211~2sing sinw i /&1cosg cosw i !
2

, ~4!
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Hc1
c 5Hc1~0!@mc/mab2~12mc/mab!cos2 g#1/2, ~5!

Hc1
ab5Hc1

c ~mc/mab!21/2. ~6!

The goal of the present paper is to lay an experime
foundation for the possibility of studying the anisotropy
the lower critical fields in textured polycrystalline object
taking as an example the HTSC YBa2Cu3O72d .1!

The optimum way of implementing this ide
experimentally7 is to measure the critical currents of textur
~in particular, ceramic! HTSC samples after imposing a ma
netic field directed at various angles to the axes of the sam
at temperaturesT,Tc . As a rule, it is assumed that the valu
of the lower critical fieldsHc1 in experiments of this kind
corresponds to the onset of a dependence of the critical
rent in zero magnetic field,j c(0), on thestrength of the
magnetic fieldHext applied beforehand~see, e.g., Refs. 7, 9
and 10!.2! The relatively low current-carrying capacity of ce
ramic samples~j c;102– 103 A/cm2 at T577.3 K! does not
preclude making measurements ofHc1 ; moreover, because
of the low transport currents and, consequently, low m
netic fieldsH tr generated by these currents, these fields
not lead to appreciable distortions of the picture as to
effect of external magnetic fields of different orientations
the I c(Hext) curves, from which the lower critical fieldsHc1

of the HTSC are determined.

EXPERIMENTAL TECHNIQUE

The object of study was a sample of the HTS
YBa2Cu3O;6.95 synthesized by the ‘‘standard’’ ceramic tec
nology ~see, e.g., Ref. 11!. The x-ray diffraction patterns
reveal that a relatively weak texture, close to the texture
the basal plane~001! of the orthorhombic lattice,12,13 was
formed in the stage of uniaxial pressing of the powders p
to the final operation in the synthesis — baking in an oxid
ing atmosphere. The dimensions of the sample were 1
33.232.0 mm. The low-resistance current and poten
contacts were formed by the vacuum deposition of sil
from the vapor phase at a temperature of;200 °C.

The current–voltage~I–V! characteristics were recorde
on an IBM PC/AT 386 computer with a special attachmen14

consisting of control units for the current of the magne
field source~solenoid! and the source of the transport curre
flowing through the sample. All the measurements w
made in an automated mode.

The experiments essentially consisted of precision ze
field measurements of the critical currents in YBa2Cu3O;6.95

at T577.3 K as functions of the magnitude and direction
al
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an external magnetic fieldHext (0<Hext<500 Oe) applied
beforehand at the same temperature, i.e., in essence,
surements of the value and orientation of the the trap
magnetic flux.7 To do this, a Dewar containing a rotatin
device, the sample holder, was placed in a solenoid.
rotating device was used to set the anglew between the axes
of the sample and solenoid to an accuracy ofdw;2°. The
measurements were made for anglesw from 0 to 90° with a
step ofDw510°.

A current I sol, producing a fieldHext, was sent through
the solenoid by the the control unit for the magnetic fie
source with the sample at a temperatureT577.3 K. Then the
currentI sol was turned off, and the control unit for the tran
port current sent a transport current through the sample.
transport current was increased smoothly until a volta
U51 mV appeared across the sample, which was arbitra
taken as the criterion for the onset of the transition of
superconductor to a mixed state, and the corresponding v
of I c(0) was stored in the computer. Then the cycle of m
surements was repeated at the next~higher! value of I sol.

EXPERIMENTAL RESULTS

Figure 1a shows a typical curve of the critical current
zero field,I c(0), atT577.3 K (w550°) as a function of the
magnitude of the magnetic fieldHext applied beforehand a
the same temperature. There are three pronounced regio
the curve:

1! 0,Hext&60 Oe, where the critical current does n
depend on the field;

2! 60&Hext&150 Oe, where the critical current de
creases severalfold as the magnetic field strength increa

3! Hext*150 Oe, where the critical current is practical
independent ofHext.

The initial ~practically horizontal! part of the curve ap-
parently corresponds to Meissner behavior of t
YBa2Cu3O;6.95 sample,3! i.e., to the situationHext,Hc1.
The region of the steep drop is where the trapping of m
netic flux by variously oriented granules begins. The fin
part of the curve corresponds to the onset of penetration
the external magnetic field into the interior of the granule7

It must be kept in mind, however, that the positions of t
boundaries of the different regions on the field depende
of the critical current cannot be determined very strictly. In
study of the anisotropy of the lower critical fieldsHc1 of a
HTSC one must very carefully take into account the dem
netizing factorD, i.e., to correct the value of the magnitud
Hext of the external magnetic fieldsHext. In other words,
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these field values must be converted into the magnitude
‘‘effective’’ fields Heff applied to the sample. As we know
for a superconductor in the absence of a magnetic-field p
etration effect one has

Heff5Hext/~12Di !, ~7!

whereDi are the components of the tensor of demagnetiz
coefficients of the sample.16

For a triaxial ellipsoid with ‘‘long’’ axis in thez direc-
tion ~an object with a shape similar to the sample un
study! the values of the tensor componentsDi are17

DX5
y

x1y
2

3

2

xy

z2
lnS 4z

x1yD1
xy~3x1y!

4z2~x1y!
,

DY5
x

x1y
2

3

2

xy

z2
lnS 4z

x1yD1
xy~3y1x!

4z2~x1y!
, ~8!

DZ5
xy

z2 F lnS 4z

~x1y! D21G .
For a HTSC sample rotated by an anglew about theY

axis away from theZ direction ~which in our experimenta
geometry corresponds to the direction of the vectorHext!
toward theX axis of the laboratory coordinate system, t
value ofDw , as was shown in Ref. 18, is

FIG. 1. Field dependence of the critical current in a sample of the HT
superconductor YBa2Cu3O;6.95 (w550°) atT577.3 K. a:I c(0)5 f (Hext);
b: I c(0)5 f (Heff).
of

n-

g

r

Dw5DX cos2 w1DZ sin2 w. ~9!

Figure 1b shows the results of the measurements of
current-carrying capacity of a YBa2Cu3O;6.95 sample at
w550°, after correction for the demagnetizing factor, a
Fig. 2 shows the entire set of data collected in this study

DISCUSSION OF THE RESULTS

The results of the measurements ofI c(Heff ,w) shown in
Fig. 2 clearly enable one to perform the main task of t
study — to establish the orientation dependence of the lo
critical field Hc1 of the HTSC YBa2Cu3O;6.95 at T
577.3 K. For this it is necessary to recover the characte
the functionHc1(w) from the experimental data.

One can assume that for any textured ceramic sampl
a HTSC the probability density for the distribution of gra
ules over orientations has a normal~Gaussian! character. The
probability density of the lower critical fields should clear
have the same character:

C~Hc1!5
1

A2pDHc1

expF2
~Heff2Hc1!2

2DHc1
2 G , ~10!

whereDHc1 is the error in the determination of the lowe
critical field Hc1

The same probability distribution for the values of th
lower critical fieldsF(Hc1) in the intervalHc1

ab<Hc1<Hc1
c

is of the form19

F~Hc1!5
1

A2pDHc1
E

Hc1
ab

Hc1
c

expF2
~Heff2Hc1!2

2DHc1
2 GdHeff .

~11!

C

FIG. 2. Field dependence of the zero-field critical currentI c(0) in
YBa2Cu3O;6.95 at 0<w<90°: d — the values ofHc1 at the different
anglesw.
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It is clear that in experiments measuring the depende
of the critical current on the magnetic field, an analog~mea-
sure! of the probability is the value of the critical current
zero magnetic field@F(Hc1)5I c(0)# in the interval Hc1

ab

<Hc1<Hc1
c , and the @ I c(0)#(Heff) curve should be de

scribed by the same equation~11!. It would seem that any
@ I c(0)#(Heff) curve obtained at an arbitrary value of th
sample rotation anglew should carry exhaustive informatio
about the anisotropy of the lower critical fieldsHc1 : the
beginning4! and end of the region of the sharp drop shou
correspond to the minimum and maximum values of
lower critical field, Hc1

ab and Hc1
c , respectively, and the in

flection point on the curve should correspond to the m
probable value ofHc1 for the given orientation of the HTSC
sample with respect to the external magnetic field. Unfor
nately, only a very rough estimate ofHc1

ab and Hc1
c can be

obtained in this way. In real experiments on textured HT
samples the beginning and end of the various regions on
@ I c(0)#(Heff) curves are too indistinct@see Fig. 1b#. How-
ever, the@ I c(0)#(Heff) curves obtained for different values o
the anglesw make it possible to determine the most proba
value of the fieldsHc1 to rather good accuracy@by process-
ing these curves according to Eq.~11!#. For example, the
inflection point of the continuous curve in Fig. 1b corr
sponds to a valueHc15109.060.7 Oe.

The angular dependence of the lower critical fieldsHc1

obtained in this way for the HTSC YBa2Cu3O;6.95 at T
577.3 K is shown in Fig. 3. When the algorithm describ
above was used to process the experimental data~the values
obtained for the fieldsHc1 for angles of rotationw equal to
0°, 50°, and 90°! were ‘‘summed’’ in the computationa
formulas!, we obtained the following parameter values: f
the angle between the magnetic anisotropy axis and the
ternal field, g594.5°, for the lower critical fields,Hc1

ab

589 Oe andHc1
c 5383 Oe, and for the effective-mass rat

of the electron,mc/mab518.5. The continuous curve in Fig
3, which was constructed according to Eq.~2! for these val-
ues ofg, mc/mab, andHc1

c , satisfactorily describes the entir
set of experimental data.

One notices that there is a clear correlation between
values of the lower critical fieldHc1(w) and the trapped
magnetic fluxDM (w)5! — asHc1 increases,DM decreases

FIG. 3. Dependence of the lower critical fieldHc1 of the HTSC
YBa2Cu3O;6.95 on the angle of rotation of the sample (0<w<90°).
ce

e

t
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in a practically linear manner~Fig. 4!. This effect is appar-
ently somehow related to the anisotropy of the fundame
quantities — the coherence lengthj and the magnetic-field
penetration depthl for the type-II superconductor,6! but at
the present time it is not possible to make any quantita
estimates.

CONCLUSION

The results of our study of the anisotropy of the low
critical fields of the HTSC YBa2Cu3O;6.95 at T577.3 K are
internally consistent~the best evidence of this is that all th
experimental points conform fairly well to the calculate
curve; see Fig. 3!, a fact which is a weighty argument i
favor of the correctness of the approach developed here~and
in our previous papers!1,7 for measuring the fieldsHc1

ab and
Hc1

c in textured HTSC samples. The values obtained in t
paper for the fieldsHc1

ab andHc1
c and for the anisotropy pa

rametermc/mab for YBa2Cu3O;6.95 at T577.3 K differ very
little, within the scatter of the available data~see, e.g., Refs
20–24!, from the results of direct measurements on sin
crystals.

The present study is largely of a methodological char
ter, having the goal of confirming the feasibility of a ne
way of investigating the anisotropy of the lower critic
fields of HTSCs without requiring the use of oriented sing
crystal samples. The next step in these investigations sh
be a broad study of the anisotropy of the lower critical fie
of a number of high-temperature superconductors, includ
those for which it is very difficult or altogether impossible
obtain single crystals~we are thinking of HTSCs with a sub
stitution of elements in different positions of their cryst
lattices!.

This study was supported by the International Scien
Foundation~‘‘MNOP’’ Grant No. QSU082209!.

*E-mail: vasil@kipt.kharkov.ua~to:finkel!
1!A texture analysis, i.e., a study of the texture by diffraction methods,

example, is not part of the program.
2!It will be shown below that this way of determiningHc1 is not entirely

correct.

FIG. 4. Value of the magnetic fluxDM trapped at the transition of a sampl
of the HTSC YBa2Cu3O;6.95 to a mixed state, as a function of the lowe
critical field Hc1 .
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3!Of course, since complete penetration of the magnetic field into the in
granular medium occurs forH@Hc2J , andHc2J is not more than a few
oersteds~see, e.g., Refs. 10 and 15!, such a state of the HTSC is far from
one of ideal diamagnetism.

4!Recall that the field at which this region begins is the value ordina
adopted asHc1 for a given orientation of a HTSC sample.7,9,10

5!DM was determined as the difference of the ordinates of the first and
parts of theI c(Hext) curve ~see Fig. 1!.

6!Recall thatHc1
c /Hc1

ab5Hc2
ab/Hc2

c 5jab/jc5lc/lab5(mc/mab)1/2 ~Ref. 8!.
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Green function of fermions in 2 D superconducting Fro ¨ hlich model with inhomogeneous
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The fermion Green function and spectral characteristics for the 2D Fröhlich model of
superconductivity at static fluctuations in the phase of the order parameter are calculated. The
results demonstrate strongly non-Fermi-liquid properties of the system at finite
temperatures and relate with the pseudogap behavior of high-Tc superconductors at relatively
small charge carrier densities. ©2000 American Institute of Physics.
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1. INTRODUCTION

The theoretical description of cuprates with high critic
superconducting temperatures remains one of the most
ing and intriguing questions of modern solid-state phys
Because of the electronic and structural complexity of th
metaloxide compounds there is a lack of theoretical tools
describing their normal and superconducting propert
which are evidently different from those of low-temperatu
superconductors.

One of the most interesting pecularities of cuprates is
presence of a pseudogap in the normal state of samples
lowered carrier densitiesnf and temperaturesT above the
critical valueTc . Many theoretical explanations of this ph
nomenon have been proposed. Among them are explana
based on the model of the nearly antiferromagnetic Fe
liquid,1 consideration of spin/charge-density waves,2 and
pre-superconducting fluctuations~see, for example, Refs
3–17!. The last characteristic has been studied by many
proaches. For example, aT-matrix approximation was use
in Refs. 3–9. But this approach does not permit a descrip
of ordered states in 2D models ~for example, the
Berezinskii-Kosterlitz-Thouless~BKT! transition!, which are
the most suitable for description of cuprates.

It is possible to investigate such states by separating
order parameter~or, for low-dimensional degenerate sy
tems, the so-called complex ordering field! into its modulus
r(x) and phaseu(x):F(x)5r(x)exp@iu(x)#. Although states
with ^F(x)&Þ0 are forbidden in 2D systems at finite
temperatures~the Coleman–Mermin–Wagner–Hohenbe
~CMWH! theorem,19! states with r[^r(x)&Þ0 and
F5r^exp@iu(x)#&50 can exist.

This approach has been used previously for studying
phase diagram in the 4F model14,15 and in the more realistic
Fröhlich model of superconductivity.16,18 It was shown that
in both cases the phase diagram consists of three region!
971063-777X/2000/26(2)/6/$20.00
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T.Tr , wherer vanishes, i.e., the normal state, 2! Tr.T

.TBKT ~TBKT is the BKT transition temperature!, where
rÞ0 and for ^F* F& the correlations decay exponentiall
and 3! TBKT.T, where these fluctuations have a power-la
decay.

This method was also used in Ref. 17 for the on
fermion Green function calculation in the two-dimension
4F model in order to study the fermionic spectral function.
characterises the density of states and allows one to chec
the presence of quasiparticle excitations in a system.~For a
description of recent experiments on the angle-resolved p
toemission spectra~ARPES! of high-Tc superconductors
which contain information about these properties, see R
20. It was shown that right above the critical temperature
width of the quasiparticle peaks noticeably broadens,
though the gap in quasiparticle spectrum still remains; t
can be connected with the pseudogap properties of the
derdoped high-Tc superconductors.

However, the 4F model does not take into account man
of the properties of real systems, in particular, the retar
nature of the attractive interparticle interaction. As w
shown in Refs. 16, and 18, including this property chang
the behavior of a system drastically in comparison with
4F case. For example, the width of the region withTr.T
.TBKT now goes to zero rather quickly at large charge c
rier densities~optimal and overdoped regions!.

The aim of this paper is to generalize the results obtai
in Ref. 17 to the case of the more realistic Fro¨hlich model
with the retarded interaction. For simplicity we consider t
dispersionless ‘‘optical’’ phonon modev(k)5v05const.
Nevertheless, the parameterv0 should be considered as th
effective weighted value of the frequency of bosons w
arbitrary dispersion lawv(k). This allows us to apply the
given approach for an efficient study of any fermion–bos
system with fluctuating order parameter.
© 2000 American Institute of Physics
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2. THE MODEL

Let us start with the Fro¨hlich model Hamiltonian density
in the standard form:

H5Cs
1~x!S 2

¹2

2m
2m DCs~x!

1gw~x!Cs
1~x!Cs~x!1Hph, ~1!

where x5r ,t denotes the space and imaginary time va
ables;Cs(x) is a fermion field with spins5↑,↓; m is the
effective fermion mass;m is the chemical potential;w(x) is
the phonon field operator, andg is the fermion–phonon cou
pling constant; we put\5kB51. Below we shall use also
the Pauli matricest1 ,t2 ,t3 in the standard form.

In ~1! Hph is the Hamiltonian of free phonons with th
simplest propagator~in the Matsubara formalism!

D~ iVn!52
v0

2

Vn
21v0

2
, Vn52npT, ~2!

wherev0 , as was pointed out, is the phonon frequency a
n is an integer. It was also mentioned in the Introduction t
in general this value is the weighted effective frequency
bosons with a momentum-dependent dispersion lawv(k).

Let us introduce in the Nambu representationC1(x)
5(C↑

1(x)C↓(x)) the complex superconducting order p
rameter F(x)5C1(x)tC(x)5C↓C↑ , where t5(t1

2 i t2)/2.
Then in order to study the order-parameter-fluctuat

dependences of the Green function

G~x!5^C~x!C1~0!&, ~3!

it is convenient to use the parametrization

F~x!5r~x!exp@ iu~x!#1) ~4!

with the simultaneous spinor substitution1!

C~x!5exp@ i t3u~x!/2#y~x!,

C1~x!5Y1~x!exp@2 i t3u~x!/2#. ~5!

As we have said, we shall consider the situation whenr is a
spatially homogeneous, or constant, quantity and the ph
u(x) is a random quantity. In fact, the spinorsY(x) and
Y1(x) are none other than the neutral fermion operators
this case the Green function can be naturally separated
the charge and spin parts~see also, Ref. 17!. Namely, in the
momentum representation:

G~ ivn ,k!5T (
m52`

` E d2p

~2p!2

3 (
a,b56

PaG~ ivm ,p!pbDab

3~ ivn2 ivm ,k2p!. ~6!

Here G( ivm ,p) is the Green function of neutral fermion
~see, for example, Ref. 16!,
-

d
t
f

n

se

n
to

G~ ivn ,k!52
ivnÎ 1t3j~k!2t1r

vn
21j2~k!1r2 ~7!

with j(k)5k2/2m2m; Dab is the correlation function of the
phase fluctuations

Dab~ iVn ,q!5E
0

1/T

dtE d2r exp@ iVnt2 iqr #

3^exp@ iau~t,r !/2#exp@2 ibu~0!/2#&

~8!

and P651/2(Î 6t3) are the projectors. The Green functio
~7! of the neutral fermions coincides identically with th
obtained in the 4F model, and the electron–phonon~boson!
interaction enters this expression throughr, which goes to
zero if the coupling constantg ~see~1! vanishes.

It is important to stress once again that in~7! r5const,
i.e., homogeneous. But, of course, the neutralr does not play
the role of a genuine order parameter in a system, so the
not any contradiction with the CMWH theorem.

3. THE GREEN FUNCTION

According to the previous section, for calculation of th
Green function~6! it is necessary to know the phase fluctu
tion correlatorDab ~8!. This quantity can be calculated usin
a functional integral17

Dab5E Du(x)expH 2E
0

1/T

dt1E d2r 1

3F1

2
u(x1)Du

21(x1)u(x1)1I (x1)u(x1)G J
5expF1

2 E0

1/T

dt1E
0

1/T

dt2E d2r 1

3E d2r 2I (t1 ,r1Du(t12t2 ,r12r2)I (t2 ,r2)G ,
~9!

with the corresponding Green function

Du~x!5^u~x!u~0!& ~10!

of the phase fluctuations and the source of theu field

I ~x1!52 i
a

2
d~t12t!d~r12r !1 i

b

2
d~t1!d~r1!.

a,b56. ~11!

In the second-derivative order the Green function~10! has
the form:

Du
21~x!52J~m,T,r!¹ r

22K~m,T,r!~]t!
2. ~12!

The coefficientsJ(m,T,r) and K(m,T,r) have the
physical sense of the superfluid stiffness and compressibi
respectively. One can readily obtain the following expre
sions for them~see, for example, Refs. 16 and 18!:



e
so

n

de
r

t

on

the
ich

99Low Temp. Phys. 26 (2), February 2000 V. M. Loktev, V. M. Turkowski
J~m,T,r!5
1

8p
$Am21r21m

12T ln@11exp~2Am21r2/T!#%

2
T

4p F12
r2

4T2

]

]~r2/4T2!
G

3E
2m/2T

`

dx
x1~m/2T!

cosh2Ax21r2/4T2
,

and

K~m,T,r!5
m

8p S 11
m

Am21r2
tanh

Am21r2

2T

2
1

8

r2

4T2

]

]~r2/4T2!

3E
2m/2T

`

dx
tanhAx21r2/4T2

Ax21r2/4T2 D .

Note that in comparison with the 4F case the functionsJ and
K contain new terms with the derivative. But formally th
general expressions forDu(x) in both cases are the same,
let us use below the formulas obtained for the 4F model in.17

Thus, in the static caset50 at T,TBKT and when the
coherence length is larger than the lattice spacing~as is jus-
tified for cuprates! the correlator has the usual~i.e., power
law! form

D~r !5S r

r 0
D 2T/8pJ

~13!

~this is the expression for the only nonzero compone
D11(r ,0) andD22(r ,0)!. In ~13! the quantityr 0 is

r 05
2

T S J

K D 1/2

. ~14!

Note that in Ref. 17 it was assumed thatJ;«F ~the Fermi
energy! andK;const. Under these assumptionsr 0 is equal
to 2A«F /m/T and has the meaning of the single-particle
Broglie wavelength. Whereas these approximations foK
and J are justified for the physical regions in 4F model, in
the boson-exchange case at large carrier densities
asymptotic behavior ofJ is different (J;const, so in this
regionr 0 does not have such a simple physical interpretati

At T.TBKT it was proposed to use forD(r ) the expres-
sion from the theory of the BKT transition.21,22

D~r !5S r

r 0
D 2T/8pJ

expS 2
r

j1~T! D , ~15!

where

j1~T!5C expS Tr2T

T2TBKT
D 1/2

. ~16!

This expression could be considered as a general form
D(r ) at any temperature if one putsj1(T)5` for
ts

he

.

of

T,TBKT . The constantC can be estimated asr 0/4, the value
obtained from the assumption thatj1 cannot be much less
than the only natural cutoffr 0 in the theory.

Then substitution of expression~7! for G and the Fourier
transform of expression~15! for D(r ) into formula ~6! re-
sults in the next representation for the Green function:

G~ ivn ,k!52
Amj1

2a

2pa

3F A1

~u1u2!a F1S a,a,a;a11;
u121

u1
,
u221

u2
D

1~Avn
21r2→2Avn

21r2!G , ~17!

where

A5
4pG~a!

G~12a! S 2

r 0
D 2~a21!

, a512
T

16pJ
,

A15
1

2 S t32
vn

Avn
21r2D , ~18!

andF1 is the Appell function.23 The quantitiesu1 andu2 are
defined by

u15mj1
2 S k2j1

2 11

2mj1
2

2m1 iAvn
21r21AD D ,

u25mj1
2 S k2j1

2 11

2mj1
2

2m1 iAvn
21r22AD D ~19!

with

D[S k2j1
2 11

2mj1
2

2m1 iAvn
21r2D 2

1
2

mj1
2 ~m2 iAvn

21r2!. ~20!

For studying the spectral properties of the system in
next Section we’ll need the retarded Green’s function, wh
can be obtained from~17! after the analytical continuation
ivn→v1 i0.

For now let us just say that forT,TBKT this function has
the structure

G~v,k!;G2~a!S 2

mr0
2D a21

A1@2~m1Av22r2!#2a

3FG~122a!

G2~12a!
1

G~2a21!

G2~12a!

3
1

~12z1!2a21G , z151.
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Thus the Green function is of the non-Fermi-liqu
theory type; it has a non-pole character and contains a bra
cut. So the Fermi-liquid behavior of the system is broken
strong phase fluctuations of the complex ordering field.

4. THE SPECTRAL DENSITY AND DENSITY OF STATES

The spectral density contains information about ma
properties of systems, for examples, such features as the
sity of states and the presence of a gap. For cuprates
quantity was measured in the ARPES experiments~see Ref.
20!. Below we obtain the expressions for the spectral den
and density of states which follow from the retarded Gre
function ~recall that it is defined by~17! with the analytical
continuationivn→v1 i0!.

Let us first calculate the spectral density19 using the ex-
pression

A~v,k!52
1

k
Im G11~v1 i0,k!. ~21!

After substitution of the analytically continued expressi
~17! in ~21! one can directly come to:17

A~v,k!5
G~a!

G~12a! S 2

mr0
2D a21

sgnvu~v22r2!

3F ~A1!11

D2
a/2 F1

S a

2
,
12a

2
;1;

24

k2

2m
~m1Av22r2!

D
D u~m1Av22r2!

2~Av22r2→2Av22r2!G . ~22!

The chemical potentialm is determined by the equation th
fixes the carrier density.16 However, in the case of large ca
rier densities the equalitym5«F is almost exactly fulfilled.
Note that the expression~22! for A(v,k) is not the BCS sum
of two parts with d- function peaks atv56E(k) which
correspond to the addition and removal of an electron,
the sum of two ‘‘mixed’’ terms.

It is possible to check analytically the sum rule for t
spectral density. Namely, as in the 4F model, we have

E
2`

`

dvA~v,k!5
G~a!

G~22a!
. ~23!

Let us estimate the quantity on the right side in the
gion T;TBKT . For the stiffness atT5TBKT we have
J52/pTBKT , which gives @see ~18!# a5121/32.1 at
T;TBKT . Therefore the formula~22! for the spectral density
is quite good in the temperature region-nearTBKT at large
carrier densities. Since we are studying the region of la
carrier densities, at temperatures in the pseudogap phas
condition T;TBKT is always true, because at largenf the
pseudogap region is narrow and shrinks asnf→` ~again, see
ch
y

y
en-
his

ty
n

ut

-

e
the

Ref. 16!. This is evidently different from the 4F case, where
the corresponding region decreases much more slowly.

The v dependences of the spectral density forT,TBKT

andT.TBKT in the casek,kF are presented in Fig. 1~the
behavior in the casek.kF is analogous!. There are two qua-
siparticle peaks at the pointsv56E(k) and another two at
v56r. The presence of the last two is caused by the n
pole structure of the Green function. Atk5kF these two
kinds of peaks coincide, because at this point one
E(kF)5r. The peaks at the frequenciesv56E(k) decrease
with increasing temperature, and whenT.TBKT ~where
these peaks are finite! quickly go to zero. This is in qualita-
tive agreement with the ARPES experiments,20 which show
that the spectral function broadens on passing to the nor
phase.

For v,uru we haveA(v,k)50, and therefore the gap
exists at anyT. The same conclusion is also correct for t
4F model. Note again that our results are obtained by us
the static approximation. The empty region must disapp
~as well as the quasipeaks atv56r! if dynamical fluctua-
tions are taken into account. Evidently, the filling of th
empty region should be different forT,TBKT and
T.TBKT .

As is seen in Fig. 1, a smooth crossover takes place
the temperature changes fromT,TBKT to T.TBKT . This is
in agreement with experiments~for instance, onr!20 and
differs from the BCS theory. Let us also note that our resu
are obtained for not very smallr. Whenr→0 ~low carrier
densities! its ~i.e., modulus! fluctuations must be taken int
account.

FIG. 1. The spectral density as a function ofv is presented for the case
k.kF at different values oft5T/TBKT .



th
in

e

f
th
te
.

d
th

2D
in
he
t.
b

ie
nt

n
ro

on
of
ac
irs
on
th

tu
m
rip
o

ve

the
een
on-

the
on-
lso

ase.

rt
the
-
ed

of.

d
r-

n
and
d.

101Low Temp. Phys. 26 (2), February 2000 V. M. Loktev, V. M. Turkowski
The end of this Section is devoted to a calculation of
density of states. The desired expression can be obta
from the formula

N~v!5N0E
0

W

d
k2

2m
A~v,k!, ~24!

whereN0[m/2p is the density of states in the normal phas
andW is the bandwidth.

This expression together with~22! results in the repre-
sentation

N~v!5N0

G~a!

G~22a! S 2

mr0
2D a21

sgnvu~v22r2!

3H ~A1!11F S 1

2mj1
2

1W2m2Av22r2D 12a

2S 1

2mj1
2 D 12aGu~m1Av22r2!

2~Av22r2→2Av22r2!J , ~25!

which formally also coincides with formulas obtained in Re
17, although there is different behavior on account of
different carrier dependences of the neutral order paramer
in these~4F and boson-exchange! superconducting models

At zero temperature and large carrier densities (m@r)
the formula~25! reproduces the BCS result

N~v!5N0

uvu

Av22r2
. ~26!

The density of states for different cases are presente
Fig. 2. As in the case of the spectral densities, the gap in
density of states exists at temperatures near and aboveTBKT ,
which plays the role of the critical temperature in a pure
metal. The form of the density of states qualitatively co
cides with the BCS one. The crucial difference is in t
smooth change of the curves at the phase transition poin

Let us repeat again that dynamical fluctuations can
responsible for the filling of gap and that at small carr
densities ther fluctuations must also be taken into accou

5. CONCLUSION

In this paper the analytical calculation of the fermio
Green function has been generalized to the case of the F¨h-
lich model of superconductivity, although some expressi
have proved to be similar to those obtained for the case
2D metal with a nonretarded inter-fermion attractive inter
tion. This result could be important for several reasons: F
as a general result for the theory of fluctuations in bos
exchange quantum solid state systems. Second, because
is as yet no generally accepted theory of high-tempera
superconductivity, and it now appears possible that so
boson-exchange model will be appropriate for the desc
tion of this phenomenon. Thus an analytical investigation
the Green function in the boson-exchange case could be
e
ed
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important, because it gives much more information than
numerical studies often employed. For example, it has b
shown that the transverse phase fluctuations result in n
Fermi-liquid behavior of the system below~but for TÞ0!
and aboveTBKT .

Along with this there are many open questions about
problem studied above. For example, the role of superc
ducting fluctuations in the pseudogap phase formation. A
it is very important to take into account ther fluctuations and
to generalize the approach to the dynamical fluctuation c
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