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An attempt is made to analyze the most important physical properties of manganites of the
La-Ca-Mn-O type, which exhibit the colossal magnetoresistance effect. The primary focus is on
the peculiarities of these compounds which are reflected in their crystalline, electronic, and
magnetic structures and which determine the possible mechanisms by which an external magnetic
field can exert a substantial influence on the transport characteristics of the current carriers
in manganites. The combined effect of these factors is to create the necessary conditions for a
metal-insulator phase transition that is sensitive to an external magnetic field. Another
major topic in this review is a discussion of the scientific problems confronting the physics of
manganites. ©2000 American Institute of Physics.@S1063-777X~00!00103-1#
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1. INTRODUCTION

It is remarkable and symbolic that the last year of t
20th century is the anniversary of one of the most interest
and, as it has turned out, nontrivial phenomena in solid-s
physics: in 1950 the Dutch experimental physicists Jon
and Van Santen discovered an unexpected and intere
correlation between doping-induced electrical conductiv
and ferromagnetism of the initially insulating mangane
perovskites~manganites! LaMnLO3, in which the rare-earth
metal was replaced by an alkaline-earth substituent.1,2 The
initial three-component composites LaMnO3 and AMnO3,
whereA5Ca, Sr, or Ba, are antiferromagnets~AFMs! with
spins localized at the sites occupied by the manganese
while the compounds of the four-component stoichiome
La12xAxMnO3 with intermediate compositions (0.2<x
<0.5) not only become strong ferromagnets but also ma
fest conductivity of the metallic type, which is observed on
below the Curie temperatureTC . This unusual simultaneou
radical change in their magnetic and electrical~including
transport! properties is, all by itself, sufficient to genera
interest in manganites, in particular, and in transition-me
oxides in general, from the standpoint of both experimen
and theoretical research. Surprising as it may seem, this
terest continues unabated to the present day.

The reasons for this interest are obvious—the interwe
ing, in one type of compound, of the diverse properties
metals and insulators, ionic and covalent crystals, syst
with ferromagnetism, antiferromagnetism, and, as it tu
out, orbital and charge ordering, systems with intermed
valence and disordered media and, finally, systems that
undergo phase separation. The aforementioned features
the phenomena associated with them have been studie
detail, and by the end of the 1980s and beginning of
1990s they had been interpreted one way or another in te
1711063-777X/2000/26(3)/23/$20.00
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of the concepts of a strong electron-electron correlation
herent to transition-metal oxides and the resulting crosso
from localized to delocalized behavior of the electrons
their concentration changes. However, the sudden and u
pected discovery of high-temperature superconductiv
~HTSC!, which is peculiar to the oxides of only one trans
tion metal—copper, was an indication that the overall le
of the theory was inadequate for describing, in a man
consistent with the available experimental information, bo
copper oxides and oxides of other transition metals~includ-
ing manganese!, which, as multicomponent systems, must
classified as complex compounds. Moreover, the obvi
similarity of certain of their properties, viz., the strong inte
action of the carriers with lattice and spin excitations, t
change of the transport properties under the influence of
ternal factor~fields, temperature!, and the ability to undergo
a metal-insulator transition, and, possibly even more imp
tantly, the differences, particularly the fact that the HTS
effect is observed in only one oxide, while a ferromagne
metallic state is observed in the other transition-metal oxid
clearly show that our understanding~even qualitative! of the
processes occurring in these systems cannot be consid
satisfactory. In particular, the Fermi-liquid theory, which
valid for many metals ~and an even more simplified
version—the nearly free fermion theory! turns out to be in-
applicable in practice for metallized transition-metal oxide
and it requires substantial refinement.

The situation became even more serious after the disc
ery of yet another ‘‘supereffect’’3–8—the exceptionally
strong influence of an external magnetic fieldH on the elec-
trical resistivityRH(T) of manganites in the neighborhood o
the Curie point.1! This effect has come to be called theco-
lossal magnetoresistance~CMR!, and its value~see Fig. 1! in
La0.67Ca0.33MnO3 films reaches~in modulus! ;105% at
© 2000 American Institute of Physics
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T;102 K,6,7 which is much larger than the values that h
been obtained in other known systems.2! Of course, such an
unusual sensitivity of the electrical resistance~which, gener-
ally speaking, is small! of manganese perovskites to the tur
ing on of an external magnetic field has generated a boom
interest, as in the case of HTSCs, and, as a result, an e
mous number of publications in the scientific and especi
the engineering journals, a large number of reports and c
ferences devoted to manganites on the whole or eve
some particular properties of them.

The discoveries of high-temperature superconductiv
and colossal magnetoresistance at nearly the same time
brought about a renaissance in the study of vari
transition-metal oxides, bringing into this field of study ne
methods, new approaches, and new ideas. It became r
obvious that none of the physical states peculiar to th
compounds or the phenomena accompanying them coul
considered in isolation, as unrelated to other properties,
that localized and delocalized carriers are not mutually
clusive but coexist in them. The features of the so-cal
exotic properties of the oxides are a direct reflection of
intimate relationship of the orbital, charge, spin, and latt
degrees of freedom in these compounds. However, thei
dividual features~which are manifested, not least impo
tantly, in the aforementioned differences among transitio
metal oxides! cannot be ignored. Therefore the study of ea
specific oxide compound must proceed along the stated l
and take into account the specific physical parameters c
acterizing this compound~the composition, type of lattice
the main interactions, spectrum! and the existing externa
conditions~fields, temperature, etc.!.

At the same time, one can hope that as such disparat~at
first glance! phenomena as high-temperature superconduc
ity and the isotropic negative colossal mangetoresistance
studied further, it will be possible to establish the depth
the analogy between these systems belonging to the s
physical class—transition-metal oxides—and the reasons
their differences. There is no doubt that the study of th
fundamental properties is one of the most important fields
modern solid-state physics and its subfield—the physics
strongly correlated metals.

No less remarkable, in principle, are the potential u

FIG. 1. Temperature dependence of the ratio@RH2R0#/RH ~a! and the
magnetic-field dependence of the resistivityr ~b! in La0.67Ca0.33MnOx films
of thickness;103 Å, annealed in an oxygen atmosphere.7 At the maximum
(T'TC) the ratio 2DRH(T)/RH(T)'127000%, while2DRH(T)/R0(T)
'99.9%.
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~including commercial! of the colossal magnetoresistanc
which make it extremely likely that highly sensitiv
sensors—a new generation of materials for magnetic rec
ing, storage, and readout of information—can be crea
This, in turn, requires new technologies for obtaining hig
quality and reliable samples~single-crystal, ceramic, granu
lar, etc.!, which are also needed for purely scientific pu
poses.

In this review article, which is devoted to the physics
manganites, an attempt is made to describe the current s
and understanding of the topic, and also to discuss the m
important results of the recent period, concentrating on c
tain unsolved problems. Any presentation of limited leng
requires that a selection be made from the body of inform
tion available, and therefore cannot help but depend on
personal tastes and priorities of the authors, who~one would
like to think! nevertheless attempt to be objective. Still, the
are many papers~possibly quite important and interesting!
that will not be mentioned, and therefore the list of refe
ences should not be considered exhaustive. In spite of
obvious incompleteness, we hope that this review will
useful for those who have the opportunity to become
quainted with it.

2. GENERAL INFORMATION ON THE CRYSTAL STRUCTURE
AND MAGNETISM OF MANGANITES

Before turning to a systematic description of these
tremely complex compounds, we must make a few open
remarks: the number of ternary perovskites of the ty
RMO3 ~R is a rare-earth metal, M is a transition metal! is in
itself quite large. But when one takes into account the p
sibility of varying the rare-earth element,R5La, Pr, Nd, etc.
and considers in addition the practically unlimited set of s
lutions R12xAxMnO3, the number of compounds becom
extremely large indeed. Although they are all transitio
metal oxides, or, in other words, members of a group
apparently physically related compounds, they turn out to
different, even in their initial~undoped! states. For example
while LaMnO3 with M5Ti, V, Cr, Mn, Fe, and Co are an
tiferromagnetic insulators, those with M5Ni or Cu are para-
magnetic metals~see Ref. 11!. On the other hand, the com
pletely doped systems SrMnO3 are metals for all transition-
metal elements except Ti and Mn. This ‘‘unpredictability
once again emphasizes beautifully that the ‘‘input’’ data
the chemical formula and especially the number of electr
in the partially filled 3d shell of the transition metal—are
important characteristics determining the ‘‘output’’ prope
ties of the respective oxides.

2.1. Basic lattice parameters

In accordance with the stipulated limitations, here w
concentrate solely on the four-component mangan
La12xAxMnO3, and among these, mainly on the best-stud
system: La–Ca–Mn–O. This is the simplest representa
~corresponding ton5`! of the Ruddlesden-Popper family—
thermodynamically stable layered perovskites with the g
eral formula (R12xAx)n11MnnO3n11 (n>1). As an ex-
ample, Fig. 2 shows the structure of the undoped tern
oxide of this series withn51, i.e., R2MO4. Not surprisingly,
it is identical to the lattice of the first HTSC La2CuO4. As
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follows from the general formula and can be seen from
figure, the oxides of this family consist of ‘‘cuprate’’ layer
MO2 separated by relatively large gaps that are increasin
filled with RO layers asn increases. In copper oxides th
coupling between layers is relatively weak, so that the e
tronic and magnetic properties of the system have a p
nounced 2D character, the role of which in high-temperatu
superconductivity is generally acknowledged and is of
considered to be decisive.12

A successive increase in the number of RO layers, or
other words, synthesis of the compoun
(R12xAx)n11MnnO3n11 , leads to a systematic decrease
the spatial anisotropy of the lattice, and in the limitn5` it
becomes maximally isotropic—cubic.3!

The overall form and fragments of the ideal structure
RMO3 are shown in Fig. 3. The main unit of this structu
~like that for the lattices of HTSCs! is a rather rigid MO6/2

octahedron~this last subscript is meant to emphasize t
each ligand is divided between nearest-neighbor octahe
because of these ‘‘shared’’ bonds it is impossible to ha
isolated or independent deformations or rotations of an o
hedron taken individually!. It is also seen in Fig. 3a how an
to what extent one can lower the cubic crystal class by
placing the ions from their equilibrium positions in the cu
by means of regular rotations and deformations of the o
hedra, which have a transition-metal ion at the center.
actual lowering cannot be established in general form w
out specifying the particular transition-metal ion, since it

FIG. 2. Crystal cell of the first (n51) term of the Ruddlesden-Poppe
series, the compound R2MO4, which has a pronounced layered structure.
this and subsequent figures the radii of the circles and the distances be
them correspond to the relative scale of the ionic radii and inter-ion
tances in the manganite lattices.
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well known13,14 that it is determined entirely by the groun
electronic term~its degeneracy or nondegeneracy! of this ion
in the cubic crystalline field. If this term is degenerate, th
the degeneracy will quickly be lifted by distortion of th
octahedra~the cooperative Jahn–Teller~JT! effect!, the
amount and symmetry of this distortion being dictated by
symmetry of the degenerate states and the strength of
coupling with the collective vibrational modes, and, ul
mately, by the maximum reduction in energy.

It would not be worthwhile to examine all the possib
distortions here, as there have been many papers on this
~e.g., Refs. 15–22!. We will only mention that the initial
cubic system can undergo~depending on the form of the
deformation and the axis of rotation of the octahedra! tetrag-
onal, orthorhombic, or rhombohedral distortion, and all
these can be found among the various mixed transition-m
oxides.

However, in spite of the fact that the form of the lowe
ing of the symmetry of the basic~i.e., undoped! lattice of the
RMO3 perovskites can, in principle, be established on
basis of group theory,13,14,23 it is rather difficult to obtain a
reliable value by means of a calculation. An even more
certain situation exists for the solid solutions R12xAxMnO3,
for which it is hard to obtain reliable information not onl
about the size of the distortions but even about their cha
ter. In such a case one uses a different approach and, o
phenomenological level, characterizes the deformation fi
that arises by the so-called tolerance factorf tol . This factor is
defined variously: either in terms of the ionic radii1,2

f tol5
r A

11r O

&~r R1r O!
, ~2.1!

een
-

FIG. 3. Ideal cubic structure of the perovskite RMO3 ~a! and its basic
elements: cubic cells with central transition-metal ions~b! and rare-earth
ions ~c!.
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or in terms of the distance between atoms in the lattice24,25

f tol5
r A-O

&r M-O

. ~2.2!

In both casesf tol has a simple geometric meaning a
qualitatively describes~for arbitraryx, the volume-averaged!
degree of deviation of the lattice from the ideal cubic stru
ture, for which f tol

~cub!51, while the angle between M–O
bonds in eachM–O–M triple is 180°. Rotations and defor
mations of the octahedra, which cause a lowering of
space group, makef tolÞ f tol

~cub! , and, although actuallyu f tol

2 f tol
~cub!u!1, knowledge off tol in ~2.1! in the case of mixtures

or in ~2.2! for pure but distorted structures enables one
only to assess the type of crystal-averaged deformation
also to estimate its value.

For doped structures, however, it is practically impo
sible to predict the latter, since for a heterovalent substitu
(R31←A21) the lattice distortions are caused by several f
tors. First, there is a different ion radius at some sites~chemi-
cal pressure!, sincer AÞr R, which leads to local distortion
Second, even if these radii are chosen as close as pos
the difference in the charge states of the main and substit
ions gives rise to microscopic Coulomb fields that must
compensated, and this compensation is effected mainly
displacements, rotations, and deformations of the octahe
which are the most labile structural units. Third, the dop
atoms are distributed~at least, for smallx! quite randomly,
and, hence, the distortions are of a statistical character
nally, charge neutrality of the system as a whole requ
changes in the valence of one of the constituent ions of
lattice, and this change is undergone by the transition-m
ion and is accompanied by a change in its electronic rad

The effect of all these sources of deformation and int
nal stress is difficult to control, andf tol becomes a rathe
convenient~and sometimes the only! quantitative paramete
characterizing the elastic state of the perturbed lattice. M
observable quantities can and, as experiment shows, do
pend onf tol . As an example, Fig. 4 shows the dependen
~taken from Ref. 26! of the resistance onf tol in the form~2.1!
for a number of manganites. The tolerance factor beco
even more indispensable in the study of layered mangan
~members of the Ruddlesden–Popper series withn>1!, for

FIG. 4. Resistivity of manganites as a function of the volume-averaged i
radius of the rare-earth element:^r R&5(0.72$x or y%)r La1$x or y%r ProrY

~Ref. 26!.
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which it is hard to find another such informative physic
characteristic that can provide quantitative evidence of
integral change of their lattices under the influence of so
dopant or another~see, e.g., Refs. 27–29!.

Figure 5 shows the lowering of the symmetry of th
cubic structure to orthorhombic, with a doubling of the un
cell, that is observed in La12xCaxMnO3 for x!1, including
x50. It is seen that the JT shift of the ligands brings about
especially strong deformation of the octahedra in the~001!
plane, and, in addition, because of additional rotations of
octahedra in opposite directions, theC4 axis is lost, so that
the basis vectors are nowa1,25a6b, and the cubic manga
nite is transformed into the so-called orthomanganite, w
two transition-metal ions in the unit cell. The orthorhombi
ity of the structure corresponding to the host compou
LaMnO3 is characterized by the ratioc/a1,& ~the so-called
O8 structures!,25 which is preserved in La12xCaxMnO3 up to
x;0.1. In the region 0.1<x<0.4 it is replaced by the O
structure, in whichc/a1.& on account of the fact that th
incorporation of Ca atoms tends to restore the cubic sym
try.

In the concentration region 0.5<x<0.8 these com-
pounds on average have a rhombohedral structure wi
small admixture of monoclinic distortions, which in the lim
x→1 again goes over to an orthorhombic structure. The
tice symmetry observed in manganites is determined
only by their composition but also by the temperature;
particular, Refs. 30 and 31 report that increasingT brings
about a temperature-stimulated disproportionation~redistri-
bution of the charge states! of the transition-metal ions, so
that 2Mn31→Mn411Mn21. This also alters the point sym
metry of the lattice, affects the various bond lengths, and
a result, changes the value off tol .

4! We shall not dwell any
longer on the structural features5! and the character of the
local distortions of manganites; the interested reader is
ferred to a recent collection of papers on these topics.33 We
note only that it is extremely unlikely that the lattice defo
mations, which are described to a greater or lesser degre
a tolerance factor, are among the main causes underlying
CMR effect.

ic

FIG. 5. Direction of the deformational JT displacements of the oxyg
octahedra~a! and the doubled~for simplicity the slight orthorhombicity is
not taken into account! structure of the basal plane~b! for the compound
LaMnO3. The indicated values are those of the long and short axes of
distorted octahedra. The heavy lines are the directions of the most stro
hybridizedp andd orbitals of the oxygen and manganese ions~according to
Ref. 25!.
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2.2. Manganese ion in the crystalline

The states of this variable-valence ion in crystalli
fields of various symmetries have been the subject of m
publications~see the monographs13,14,34!. We shall therefore
briefly mention only the information that will be needed b
low. First, it is readily verified that the charge balance in t
compounds RMnO3 requires that the manganese be found
the valence Mn~III ![Mn31, while in the compounds AMnO3
it must have the valence Mn~IV ![Mn41, the Mn31 state
being somewhat less stable chemically than Mn21 or Mn41.
Since nonisovalent doping, or the substitution A21→La31,
causes charge exchange Mn41→Mn31, positive charges ap
pear in the subsystem of transition-metal ions. This indica
directly that the current carriers in the conducting phase
complex manganites withx<0.5 should be holes. Howeve
since the charge of the carrier depends on both the do
and host elements, when AMnO3 is doped by the substitution
La31→A21, for example, one must speak of electrons~the
transition Mn31→Mn41! and an electronic type of conduc
tivity ~provided, of course, that a conductivity appear!.
These simple and seemingly correct arguments neverthe
sometimes do not find confirmation in experiment. In p
ticular, at high enoughT the Hall effect and the thermopowe
of thin films of manganites withx,0.5 correspond to a
negative sign of the carrier charge. A reasonable explana
for this is the aforementioned disproportionation and the
set of divalent manganese ions in addition to the tri- a
tetravalent forms; these divalent ions correspond ton-type
conductivity, or electrons. The latter have a high mobil
and account for the observed31 charge of the carriers.6!

Returning to the single-ion states, we recall that the n
tral Mn atom has the electronic configuration 3d54s2, and
the free ion Mn31 therefore corresponds to the configurati
3d4 and the Mn41 ion to 3d3. The strongest influence on th
states of the unfilled shells in an ionic crystal is the Coulo
field exerted by the charged ligands O22 nearest to the
transition-metal ion, which form an octahedron around
and the strongest component of this field is the cubic co
ponent. It splits the fivefold degenerate single-particle sta
of the 3d shell into two multiplets: a triplett2g5xy, xz, and
yz, and a doubleteg5x22y2, 3z22r 2[z2, with a splitting
of «eg

2« t2g
>1 eV.13,14 As a result, the electrons occup

first the t2g and then theeg multiplet.
In addition to the crystalline field, the single-ion stat

are shaped by the electron-electron correlation, the Coulo
part of which shifts the correspondingn-electron term 3dn as
a whole, and the exchange~at the same occupation! splits
different terms according to the value of the total electro
spin S of the ion. And if the electron-electron interaction
the ion does not exceed the strength of the crystalline fi
then the sequence of states will obey Hund’s empirical ru
the lowest term is the one with the highest possible spinS
5n/2. This means that the Mn31 has spinS52, while Mn41

hasS53/2. The first corresponds to an electronic configu
tion t2g

3 , which, owing to the twofold degeneracy, cause
static JT deformation of the octahedra.36,37 Here the instabil-
ity is such~see Fig. 5! that the octahedra are stretched co
siderably (r Mn–O

a '2.19 Å) in the basal plane~001!; the in-
terplanar couplings are less strongly affected (r Mn–O

c

'1.96 Å).38 This collective deformation not only causes
y
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doubling of the unit cell, but there is also an additional ro
tion of each octahedron, so that the Mn-O bond angle
comes slightly different from 180°.

According to quantum-chemical calculations34,39 and
spectroscopic data,40,41 the lowest energy belongs to thez2

component of the doubleteg ~the z axis here is chosen
locally—along the long axis of the octahedron!. Interest-
ingly, in HTSC cuprates in the same situation—with o
hole in theeg doublet—the ground state is thex22y2 com-
ponent of this doublet, and the octahedron is stretched a
the c axis. Here both an individual Cu21 ion in the cuprates
and the corresponding Mn31 ion in the manganites, after th
deformation has occurred, become pseudo-JT ions. This
is understood to mean that even the complete removal o
electron from the Mn31 ion in the LaMnO3 crystal, which
has a finite stiffness, does not lead to restoration of the cu
structure of the octahedron surrounding this ion. Thus
energies«x22y2 and«z2 remain nondegenerate, although t
splitting between them is undoubtedly reduced to a pseud
plitting on account of the tendency of the octahedron c
taining the Mn41 ion to assume a higher degree of symmet
Appreciable deformations are attained only in the collect
JT effect.

The situation is different for the compound at the opp
site end of the series, viz. AMnO3, where the transition-
metal ions have the electronic configuration 3d3, and the
states of the doubleteg , because they are not occupied, c
remain degenerate, and the MnO6/2 octahedra preserve the
initial cubic symmetry.7! The introduction of a La31 ion con-
verts one of the Mn41 ions to Mn31, which, under conditions
of a rigid medium, is again unable to manifest fully its J
nature; in other words, the local deformation of the surrou
ings near such an isolated JT ion should be substant
smaller than in LaMnO3, where the deformation is of a co
operative character. However, when the deformations
combine in such a way that the statesx22y2 andz2 in sys-
tems of the type La12xAxMnO3 with x.0.5 are split, the
situation changes so much that even the pseudo-JT effec
cause such interesting effects as orbital ordering~see Para-
graph 4.1!. The qualitative form of the single-ion spectra
Mn31 and Mn41 in the corresponding matrices LaMnO3 and
AMnO3 is shown in Fig. 6.

2.3. Exchange interactions and magnetic structures

Knowing the electronic and spin states of the ion
some particular lattice structure, one can frame the ques

FIG. 6. Single-ion spectra of manganese in compounds containing one
(LaMnO3) and one electron (AMnO3). It is seen that the spectrum of th
Mn41 ion in LaMnO3 is split ~pseudodegenerate! and that the splitting of the
Mn31 spectrum in AMnO3 is smaller than in LaMnO3, where it is due to the
collective JT effect.
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of spin ordering and the spin excitations corresponding t
as the problem of finding the lowest-energy~along with the
vibrational! branches of elementary excitations of the s
tem. Of course, this problem is not a new one either in g
eral or specifically for manganites, and a reliable theoret
foundation for it was laid in the pioneering papers
Anderson,42 Anderson and Haswgawa,43 Dzyaloshinski,44

Moriya,45 and many others~see the monograph34!. In the
simplest situation of two identical neighboring cation sp
Sn and Sn1r ~n and n1r are nearest-neighbor sites!, the
Hamiltonian has the Heisenberg form:

Hex5
1

2 (
n,r

Jn,n1rSn•Sn1r , ~2.3!

in which the exchange constantJn,n1r is determined by the
superexchange interaction via theps and pp states of the
anions~as a rule, these are the ions O22 or F2, which have
the same electronic configuration 1x22s22p6! and most of-
ten have an antiferromagnetic character~in the notion of Eq.
~2.3! this means thatJn,n1r.0!. Such a situation is realize
in AMnO3 compounds, where the ordering of spinsS53/2 in
the undeformed cubic structure is related to the tw
sublattice NaCl type: each spin moment of a given direct
is surrounded by nearest-neighbor spins of only the oppo
direction. On a fundamental level the theory also perm
calculation of the anisotropy of the Dzyaloshinskii-Moriy
exchange interaction in those cases when it is allowed
symmetry.8!

However, the deformation and rotations of the octahe
in the lattice lead to an appreciable change in the interato
distances, especially in the basal plane, to the aforem
tioned bending of the line of ion-ion bonds in the triples
neighboring ions Mn–O–Mn, which affects the superex
change of the Mn–Mn pairs, and also to the splitting~see
Ref. 12! of all the p levels via which the virtual transfers o
electrons take place. All this destroys the simple and un
biguous formation of exchange interactions of only the AF
type between transition-metal ions, and, as a result, the
responding exchange constant for certain neighbors can
quire a FM character while still being of a superexchan
origin, i.e., occurring via the states of the ligands.

Calculations of the exchange interactions between lo
ized spins with the participation of the states of both theeg

and t2g multiplets of the transition metal are extraordinar
laborious and do not always give values close to
observed.47,48 Therefore, for finding the possible magnet
phase states it is simpler and more constructive to desc
the exchange Hamiltonian~2.3! of the system by proceedin
from physical arguments and representing the various m
surable quantities by phenomenological parameters. T
following Goodenough,25,34 we will assume thatJn,n1r

2 2 and
Jn,n1r

3/2 3/2 have AFM signs, whileJn,n1r
2 3/2 has a FM sign~the

superscripts indicate the spinsS52 and 3/2 of the Mn31 and
Mn41 ions, respectively!. This, however, is insufficient, and
as we have said, the lattice distortions can alter the gen
rule.

In particular, in Refs. 46 and 47 where the LDA meth
was used to calculate the possible magnetic structure
LaMnO3, it is shown that the most stable is the so-calledA
structure~see Fig. 7!, in which the spins in the basal plane
it
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~with the doubled unit cell of the crystal! are collinear, i.e.,
have FM order. The global AFM structure of the cryst
however, survives on account of the relatively weak interp
nar exchange, in which the contribution from the non-near
neighbors turns out to be comparable to the nearest-neig
contribution, which favors having oppositely directed ma
netizations on neighboring planes.

Regardless of the predictions, the spin structures and
lattice parameters of the manganites La12xAxMnO3 of a
large number of compositionsx were established experimen
tally back in 1955 by Wollan and Koehler49 using neutron
diffraction. Since that time the observed types of magne
ordering, the main features of which have agreed with
calculations of Goodenough,36 have become generally ac
cepted. The main ones of these are illustrated in Fig. 7.
see that increasing the doping brings about a signific
change of the magnetic order, of the typ
AFM↔FM↔AFM. Here the FM systems on the whole exi
in a relatively narrow~aroundx'0.35! interval of concen-
trations of the divalent metal. Interestingly, in that detail
paper, which was destined to become an extremely impor
work, it was emphasized that the FM order coexists w
AFM regions, and that it is only in the vicinity ofx'0.35
that the AFM Bragg peaks have a vanishingly small inte
sity; this circumstance, which we think is of key importanc
has been overlooked by many investigators. In that pione
ing study they also measured the critical temperatures of
magnetic phase transitions. Although these temperatures
pend onx and have since been corrected slightly, let us g
the values as reported in Ref. 49:TN

A'140 K, TC
B'250 K,

TN
C'140 K, TN

G'130 K.
We conclude this Section with the general and nea

universally accepted form of the phase diagram of the m
netic states of the La–A–Mn–Omanganites. According to
the current ideas~see Refs. 25, 50, and 51!, irrespective of
the type of dopant@e.g., its electronic radius, which dete
mines the value of the tolerance factor~2.1!# this diagram, as
a rule, contains several main regions, which are shown
Fig. 8. These regions correspond more or less accurate
the following crystal structures: 0,x<0.3 to orthorhombic;

FIG. 7. Basic magnetic structures of the manganites La12xAxMnO3. The
type-C structure is shown for the compositionx53/4.



ng

ll
h
n
n
m

e
th
a-
a
, l
ho
no

r
e

d
,
n
th

-

c-
see

t
are

ory
ca-
o-

n-
ac-

in
tate

the
n-

tate,
at

on
ely

aly-

the
one
n
cu-
ill

wi

rie

177Low Temp. Phys. 26 (3), March 2000 V. M. Loktev and Yu. G. Pogorelov
0.3<x<0.7 to tetragonal, withc,a,b;0.75<x<0.9 to te-
tragonal, withc.a,b; and 0.9<x<1 to cubic.52

3. FORMATION OF THE INSULATOR AND METALLIC
PHASES OF MANGANITES

Up till now we have tacitly assumed that the hole~elec-
tron! created at one of the sites~of the 3d ions! remains in
place. Of course, this is not completely true in reality; owi
to the strong overlap of the 3d functions with thep functions
of thez2 hole, if it is not expressly forbidden to do so, it wi
pass to one of the oxygen sites of the surrounding octa
dron, from which it can move to another transition-metal io
In other words, a carrier introduced into the system will te
to become ‘‘smeared out’’ over the crystalline mediu
thereby decreasing its kinetic energy. However, its presum
free motion is limited by at least three circumstances:
AFM order existing in the crystal, the JT barrier to migr
tion, and, finally, the Coulomb potential of the dopant th
has produced the carrier. Before taking these up in order
us discuss the question of the states via which an extra
could move if the aforementioned impediments were
present.

3.1. Hamiltonian of a carrier in a crystal

The initial states for the actual electrons are again thet2g

and eg states, hybridized with theps and pp orbitals; the
latter are thepx , py , and pz states of the O22 ion, the de-
generacy of which is lifted by a crystalline field of lowe
than cubic symmetry. The simplest Hamiltonian, howev
takes into account only thez2 andps states~i.e., only those
2p functions of the ligands whose ‘‘lobes’’ are directe
along the Mn–O bonds!, and we will omit the other states
including all those of the rare-earth and alkaline-earth io
Then the single-ion localized states are described by
second-quantized operator

HSI5(
n

Hn
SI ; ~3.1!

FIG. 8. Generalized phase diagram of the manganites: AFM insulator
a structure of theA type ~regionA!; FM insulator with a structure of theB
type (BI); FM metal (BM); AFM insulator with a structure of theC type
and charge ordering (C1CO); AFM insulator with a structure of theG
type~G!. The vertical dashed lines qualitatively reflect the phase bounda
while the dotted curves outline the region of the CMR effect.
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Hn
SI5(

l,s F«lan,l,s
1 an,l,s

1
1

2 (
l8,s8

~Unan,l,s
1 an,l8,s8

1 an,l8,s8 ,an,l,s ,

1JHan,l,s
1 an,l8,s8

1 an,l8,san,l,s8!G ,

where«l is the energy of the one-electron 3d and 2p levels;
Un([Ud ,Up) is the Coulomb~for l5l8 the Hubbard! re-
pulsion at the site;JH is the Hund exchange, which is im
portant only for the transition-metal ions; the operatoran,l,s

1

creates an electron in the statel with spin s at the siten
~since the role of the lattice doubling is not taken into a
count here, there is no index for the crystal sublattice;
Fig. 5!.

The main inter-ionic process, cation-anionpd hybridiza-
tion, can be represented by an operator of the form

Hhyb5(
n,r

(
l,l8,s

tn,n1r
l,l8 an,l,s

1 an1r,l8s , ~3.2!

in which tn,n¿r
l,l8 is the amplitude of the intersitepd transition

from the statel to the statel8. The Coulomb and direc
exchange interactions of the electrons on different ions
neglected for the sake of simplicity.

The Hamiltonian consisting of operators~3.1! and ~3.2!
is none other than the Hamiltonian of the many-band the
of metals in the tight-binding representation, whose appli
bility to manganites, in particular, derives from the pr
nounced localized character of the 3d functions ~as com-
pared tos functions, for example!. The total operatorH
5Hhyb1HSI is assuredly of the Hubbard type, since it co
sists of two competing terms, the second of which, char
terized by the intra-atomic parametersUn andJH , is larger
than the first.

As we know,53 for Ud.utu[utn,n¿r
l,l u the system has a

tendency to become insulating. This inequality holds
transition-metal oxides, and therefore in the undoped s
they are AFM ~Mott-Hubbard! insulators with a localized
character of the charges, and the neighboring spins of
latter ~we have in mind the unfilled ionic shells of the tra
sition metal! are coupled~see Eq. 2.3! by a superexchange
interactionj n,n¿r;t4/Ud

3 ~Refs. 54 and 55!. In the insulating
phase all of the states are mixed states, and its ground s
owing to the presence of inter-ion covalent bonding, is
minimum a linear combination of the Mn31O22 and
Mn21O2 configurations nearest in energy.

The contribution of each of these depends not only
Ud but also and to an equal degree on one other extrem
important quantity:DCT5«d2«p , which is the energy dif-
ference of the bare levels, or the charge transfer gap. An
sis of the many variants arising here~see, e.g., Refs. 56–58!
implies that in the process of creation and transfer of
carrier, the states of the cation and anion compete with
another, and ifDCT.Ud , then the creation of an oxyge
hole is preferable. This is the situation that exists in the
prates. If the opposite inequality holds, then the carrier w
have a predominantlyd character.

th
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At the present time there is no firm opinion as to the ty
of the carrier in manganites, and one can find experime
evidence in favor of both the first59 and second41 scenarios of
metallization. There are other configurations mixed in:

Mn41O22↔Mn31O2 ~3.3!

in LaMnO3 with an extra hole, or

Mn31O22↔Mn21O2 ~3.4!

in AMnO3 with an extra electron~we note that the mixing
shown in Eq.~3.3! corresponds to the ground state here!. In
other words, it is seen that in both cases the carrier has
tributions from both thed and p states. Nevertheless, th
majority of investigators are inclined toward the view th
the carrier in the metallic phases of manganites of the L
A–Mn–O type are closer to thed type and move mainly via
eg states.

Of course, to separate thed and p subsystems on the
basis of~3.3! and~3.4! in the case of their strong hybridiza
tion is impossible, and to assign the carrier to only one
these is only partially correct—it simply reflects the larg
contribution of the corresponding state to the wave funct
of the delocalized carrier. Judging from Fig. 5, we would s
that the JT deformation of the octahedra leads to a ra
noticeable inequivalence of the ligands with respect to
transition-metal ion, and this cannot help but affect th
quantum states. Therefore, it is not ruled out that the w
function of the carrier is a hybridized orbital consisting
states of the most strongly coupled triple O–Mn–O~accord-
ing to Ref. 25, these are the ions lying along the long axis
the octahedron!. However, to use such functions in a co
crete calculation is complicated by their nonorthogonality
the crystal. Figure 9 shows a simplified and almost univ
sally used energy diagram for the manganites, correspon
to d holes in LaMnO3 and to d electrons in AMnO3. The
change in the type of carrier in LaMnO3 on doping in this
scheme would only mean that thep band comes to lie close
to the Fermi level«F than does thez2 band.

More precisely, the question of the type of carrier
oxides containing Mn most likely does not have a uniq
answer. Unlike the cuprates, for example, where, accord
to numerical calculations that have been confirmed by
periments, one can with a high degree of certainty rega
hole as being an oxygen hole, sinceUd.DCT ~there is no
contribution from the valence state Cu31!, the manganites
belong to an intermediate type. The wave function of
carrier in the manganites, owing to the relatively close val
observed forUd and DCT ~e.g., according to Ref. 63,Ud

'3.5– 5 eV, DCT'3 – 4.5 eV! should contain comparabl
contributions from the states of the cations and anions. T
mainly pertains to theeg states, which are hybridized wit
the p states of thes type. The states of thet2g electrons, on
the contrary, are hybridized more weakly with the latter a
thereby maintain their relatively localized nature. Therefo
the delocalization in La12xAxMnO3 with increasingx occurs
via the bands of theeg orbitals. But whatever the type o
carrier in manganates, it remains indisputable that their m
netic and conducting properties are the result of a comp
tion between the localized and free behavior of the hyb
ized eg electrons.
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3.2. Double exchange

Knowing or assigning the carrier type, it would seem
be extremely simple to transform in the standard way fr
the wave functions in the coordinate representation to
wave functions characterized by the wave vectork, which
describe the motion of a free particle~carrier! in a transla-
tionally invariant medium. As we have said, however, t
theory of the metal-insulator transition in manganites is
yet fully developed, although many details of their meta
zation have been explained~see Refs. 11, 53, 63, and 64!.
The difference between these compounds~and transition-
metal oxides in general! and ordinary metals is primarily tha
many of the actual interaction parameters in them~see Para-
graph 3.1!, including the widths of the bands, belong to th
same energy scale. At the same time, in metals and do
semiconductors the widthW[2tz, wherez is the number of
nearest neighbors, is much greater than all the other inte
tions ~electron-electron, between carriers and other exc
tions, etc.!.

There is one more difference—the proximity of the ele
tronic state of manganites and cuprates to the metal-insu

FIG. 9. Schematic diagram of the electronic density of states of undo
manganites. The shaded regions correspond to electron-filled bands.
seen that the admixture of a divalent dopant to LaMnO3 leads to the emp-
tying of the z2 band and its gradual merging with thex22y2 band in
AMnO3, where these bands are degenerate.
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FIG. 10. Scheme of the two-step transfer on an electronic configuration~carrier! between transition-metal ions having opposite~a! or the same~b! spin
directions. In both cases the inter-ion transition of an electron is allowed and is not limited by the conservation of spin, although in the first case oe of the
ions in the final state is in an excited (Mn31)* state~nonresonant transfer! or else the transition is accompanied by the creation of a spin excitation in
crystal.
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transition, which is the reason for the relatively low dens
of mobile carriers created exclusively by doping~besides the
introduction of divalent ions for trivalent ions, sometim
superstoichiometric oxygen is used!.65

Even taking into account these rather general and w
known circumstances, one must provide an answer to
following question: how can a carrier go from one transitio
metal ion to another if it is located in an AFM medium? T
transition of a carrier, whether an Mn41 hole in LaMnO3 or
an Mn31 electron in AMnO3, always involves the charg
exchange Mn41↔Mn31 ~see Fig. 10!. And if this transition
occurs in an AFM ordered crystal between nearest neigh
with opposite orientations of the spins~Fig. 10a!, then it
inevitably leads to a final state of the other multiplet typ
which, in accordance with Hund’s rule and the large value
JH , is highly excited. Thus in a collinear AFM the hole o
electron is ‘‘trapped’’@unless one assumes: i! motion over its
own magnetic sublattice, or the participation of non-near
neighbors, ii! the contribution of spin excitations, leading
incoherent transfer, iii! the influence of the spin-orbit inter
action, which lifts the spin forbiddenness#, since the transi-
tion to any neighboring transition-metal ion involved a lar
energy cost and therefore is substantially suppressed.

However, as was clearly established way back in Ref
and 2, the conductivity and ferromagnetic moment of
system La12xAxMnO3 appear practically simultaneously o
increasingx. More precisely, there is still a lack of comple
clarity and reliable quantitative data as to whether one
these effects is attendant on the other or whether this is
tually a simultaneous transition in terms of concentration a
temperature. For this reason the temperature lines of the
tallic and magnetic transitions are not distinguished in Fig

The question of the possible mechanism of the meta
zation of manganites was first raised by Zener66 in an attempt
to provide an interpretation for the results of Jonker and V
Santen. Zener considered the two characteristic situation
a moving carrier—for parallel and antiparallel spins of t
ll-
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Mn41 and Mn31 ions. Only the first corresponds to a res
nant ~without energy cost! transition, which occurs in two
stages with the participation of the ligand~see Fig. 10b!.
Zener called this real inter-ion tunneling of a carrierdouble
exchangein order to distinguish it from the superexchan
interaction, where all the transitions of a carrier between io
are virtual. Superexchange can coexist with double
change, at least on account of thet2g electrons, but theeg

electrons can also contribute to it.
Ultimately, on a qualitative level the metallization o

manganites has been interpreted as a self-consistent
carrier-induced rearrangement of the spins from the collin
AFM state to a saturated FM phase; this rearrangement l
ers the energy of the system on account of the appearan
states corresponding to delocalized~free! carriers, or, what is
the same, conduction bands of finite width. This interpre
tion presupposes the conditionJH@W, which leads to a
strictly parallel arrangement of the spins of all thet2g andeg

electrons within each ion.9!

Zener’s arguments as to the stabilization of the meta
state through the establishment of FM order was based
one-electron transfer between a pair of ions; the problem
a crystal was first considered by de Gennes.70 Using the re-
sults of Ref. 43 on the dependence of the double excha
on the angleun2un1r between the spin directions of th
ions involved in the tunneling,tn,n1r5t cos@(un2un1r)/2#,
he wrote an expression in the quasiclassical approxima
for the energy« ~per unit cell! of the homogeneous stat
(un2un1r5u) of a two-sublattice AFM withx carriers:

«52«~0!x cos
u

2
1I AFMzS2 cosu, ~3.5!

where «~0! is the energy of the bottom of the conductio
band, with a dispersion relation«(k)5tzg(k); g(k)
5z21(r exp(ik•r) is the structure factor;z is the number of
nearest neighbors from the other magnetic sublattice;I AFM
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[In,n1r is the interaction constant of the AFM supere
change interaction between the spins of Mn31 ions separated
by a vectorr. We see from~3.5! that the first term decrease
and the second increases the energy, and the minimum
ergy corresponds to the value

cos
u

2
5

tx

4I AFMS2
, ~3.6!

which leads to a FM momentM52Scosu/2;x, whereS
corresponds to the direction of the sublatti
magnetizations.10! A simple estimate shows that the susce
tibility remains the same as in the AFM state, and this agr
with the data of Ref. 49. In addition, the observed behav
of the canting angle as a function ofx is satisfactorily de-
scribed by relation~3.6! in the interval 0.1<x<0.2. As a
physically obvious result, expression~3.6! does not contain
the FM exchange, although the latter sometimes determ
the type of AFM structure that is realized~see Fig. 7!. Here
the slope of the curve of cosu/2(x) depends ont and I AFM ,
but not onI FM , and it therefore cannot be estimated from t
values ofW and TN , since the latter contains contribution
from both exchanges. It is probably unnecessary to rep
that a carrier introduced in the lattice by doping can mo
freely via sites having the same spin direction as the car
This indicates that in the existence region of theA structure,
La12xAxMnO3 should be a metal with a rather anisotrop
~close to 2D! conductivity: the motion along the FM layers
free, while transverse motion is impossible.

It should be noted that in the AFM sublattices the ca
ing angle~3.6! which is due to quasiparticles~i.e., to current
or charge excitations!, does not depend on the structure
the crystal, and the AFM exchange is the only factor res
ing the complete collapse of the spin subsystem. In this se
relation ~3.6! is reminiscent of the canting of the AFM sub
lattices in an external magnetic field, where the role of
latter is played by the producttx, while the critical ~and,
generally speaking,T-dependent! concentration for the
‘‘spin-flip’’ transition, xflip , is determined by the point a
which u50.

There is an important difference, however: while t
double exchange depends only on the first power of cosu/2,
the AFM exchangeI AFM;cos2 u/2. If it were not for this
difference, the energy~3.5! would not contain the competin
terms that lead to the presence of a minimum. Moreov
since the external field, in inducing the FM moment, do
not alter the conductivity of the initial~undoped! AFM sys-
tem, the FM state~saturated or not! in the framework of the
double exchange model can only be metallic. This is one
the factors that make the metal-insulator transition in m
ganites unique.11!

As a result of the onset of an angle not equal top be-
tween the sublattices, the system is no longer a comple
ordinary metal: it is distinguished from the familiar FM me
als ~Fe, Co, Ni, etc.! by the presence of a conduction ba
with carriers of only one spin polarization, since the oppos
one corresponds, as we have said, to the high-lyingd state of
the transition-metal ion and, hence, to another band of
metal. Such conducting systems have been given the n
half metals,12! which are already the subject of a wide liter
ture ~e.g., Refs. 47 and 72–74!. These are members of th
n-

-
s
r

es

at
e
r.

-

f
t-
se

e

r,
s

f
-

ly

e

is
me

‘‘bad’’ metals group~see Paragraph 3.4!, for the description
of which the standard theory has limited possibilities. B
cause of this non-Fermi-liquid behavior, the reasons
which remain essentially unclear, they are often conside
strange objects. As an example, we note the following
would seem that, under conditions of complete spin polari
tion, the carriers in a half metal at low temperatures sho
be described well by the Landau theory of a Fermi liqu
However, the optical conductivity of La12xAxMnO3 systems
contains a large incoherent contribution, which depends
the frequency75–77 and is evidence of the existence of
rather strong spin scattering of the carriers, which, as
stated in the review by Imadaet al.,64 contradicts the double
exchange model.13!

Calculations of the canting angles in the framework
this model have been carried out for many specific situatio
Essentially, however, these studies have not advanced
yond the de Gennes results on the gradual, smooth, and
form variation of this angle. Reports that the double e
change can initiate the formation of a helical magne
structure78,79 have not been confirmed.80

More interesting is the recent paper by Van der Bri
and Khomskii,81 which raises the question of the ‘‘charge
asymmetry of the behavior of manganites with respect
their doping by holes and electrons. Using the de Gen
approach, those authors made use of the degeneracy of teg

orbitals of the manganites AMnO3 ~see Paragraph 2.2! in
explicit form and generalized the double exchange mod
representing its Hamiltonian by the expression@see~3.2!#

HDE5Hex2JH (
n,l,s

Snan,l,s
1 ŝan,l,s

2(
n,r

(
l,l8,s

tn,n1r
l,l8 an,l,s

1 an1r,l8,s , ~3.7!

which hybridizes all theeg states~Hex is defined in~2.2! ŝ is
the Pauli matrix, andSn refers to the low-spin state of th
manganese ionn!. We note that, for the operatorHDE in the
form ~3.7! the states of the ligands are assumed to be
cluded, and this Hamiltonian must therefore be regarded
phenomenological, in which an inter-ion~between transition-
metal ions! hop of electrons corresponds to their tunnelin
while the spin-carrier interaction@the second term in~3.7!#
corresponds to the operator of the Kondo lattice model.

Taking into account the symmetry relations betwe

these effective transfer integralstn,n1r
l,l8 for $l,l8%5$x2

2y2,z2% ~Ref. 82!, the authors of Ref. 81 were able to e
press the latter in terms of a single parametert and then, for
the caseT50, to find the eigenenergies of the system a
the equilibrium angles for AFM structures of typesA andC
~Fig. 7!, which are observed in Nd12xSrxMnO3 and
Pr12xSrxMnO3, respectively, near 12x<1. The main theo-
retical result of Ref. 81 was the phase diagram of
electron-doped manganites in the variablest2x, although
the fact that the JT character of the Mn31 ion was not taken
into account in that study makes it to some extent open
criticism.

We conclude this Section with two remarks. The fir
concerns the assumption, made in the overwhelming ma
ity of papers, that the free carrier moves via the transitio
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metal subsystem. If this assumption is abandoned and
‘‘oxygen’’ ~in general, anion! concept is adopted, then th
AFM order will no longer be an obstacle to the carri
motion,12 and the causes of the ferromagnetism will again
an open question. It must be kept in mind, however, that
strong pd hybridization must necessarily ‘‘switch on’’ th
states of the transition metal, and the double exchange m
actually retains its conceptual basis in application to man
nites.

The second remark pertains to the polarizing effect
the carriers on the AFM spins, which has been re-exami
on more than one occasion after Zener~see Ref. 64! and,
e.g., in the theory of the one-band Hubbard model is
subject of the Nagaoka theorem:83 for Ud5` andT50 even
a single carrier completely polarizes the spin subsys
along which it moves. A rigorous proof of this theorem f
the more realistic case of a finite but small concentration
mobile charges has apparently never been given. Moreo
one can find analytical and numerical~as well as experimen
tal! results which suggest that the FM state of a stron
correlated metal is not the lowest state, and that the A
state cannot be spatially uniform here~see Sec. 4 below!.

On the whole, one can state that the investigation of
phase diagrams of manganites continues, but there is
longer any real hope that the double exchange model in
simplest form~in particular, the role of the JT doubling o
the LaMnO3 lattice ~see Fig. 5! in the metallization proces
has not been sufficiently studied! can serve as a basis fo
even a qualitative, much less a quantitative, description
the observed features of the metallic states of these c
pounds.

3.3. The role of lattice deformations and the Jahn–Teller
effect

Thus the initial AFM order is one of the factors that d
not allow a carrier to move freely along the lattice in light
doped manganites. Another, no less important factor, is
JT character of the Mn31 ion in a cubic crystalline field.
Although this property of the Mn31 ion is well known,36,84

for quite a long time it was not considered to have any r
evance to the CMR effect. The first to invoke the JT effec
the description of the electric and magnetic properties
manganites were Millis, Littlewood, and Shraiman85 ~see
also Ref. 51!, which showed that the use of the double e
change model alone leads to appreciable quantitative
agreement between the calculated and measured quan
~particularly of the resistance in the vicinity ofTC!.

The treatment in Ref. 85 was based on the simplest o
band Hamiltonian of the double exchange model~essentially
corresponding to the Kondo lattice Hamiltonian@see~3.7!#
for l5l85z2!. After calculating the effective FM exchang
those authors estimated the Curie temperature
La12xCaxMnO3; in particular, forx'0.2 andt'0.2 eV the
Curie temperature has the valueTC5tzx'0.25 eV,14! which
is practically an order of magnitude greater than the val
known from experiments,;102 K ~see Fig. 8!. In addition to
the estimates ofTC , that paper also gave a calculation of t
contribution of spin fluctuations~for S53/2 they were con-
sidered in the framework of a classical approach! to the elec-
trical resistance of the system in the double exchange mo
an
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and it was concluded that they are incapable of causing
observed drop in the electrical resistanceRH(T) nearTC in
an external magnetic fieldH. Moreover, in such an approac
the value ofR0(T), even for T somewhat less thanTC ,
continues to grow before starting to fall. And although t
function RH(T) on the whole reflects the experimental pi
ture in a qualitative way, neither the value ofR0(TC) ~the
difference is several orders of magnitude! nor the field de-
pendence ofRH(TC) is reproduced. As a result, it was con
cluded in Ref. 85 that it is necessary to look for fundame
tally new mechanisms for the CMR, and a deformati
mechanism based on the JT effect was proposed as a pos
candidate.

That paper launched a new stage in the study of
CMR of manganites by making use of the concepts of st
and dynamic JT instabilities, JT polarons and bipolaro
virtual phonon exchange between carriers, band insula
~the band insulator model can in principle be used to
scribe the ground state of the undoped compound LaM3
with allowance for the JT doubling of its
lattice!.15–22,75–77,86–99The influence of the vibrational de
grees of freedom on the transport and magnetic propertie
manganites became even more obvious after the discove
the colossal isotope effect, or the shift TC(16O)2TC(18O)
'20 K, in various La–A–Mn–O compounds upon the tota
substitution16O←18O ~Refs. 100 and 101!.

The necessity of taking into account the local restruct
ing of the lattice is already evident in relations~3.3! and
~3.4!. In fact, despite the aforementioned large percent co
lent character of the bond in the ion-ion interaction in ma
ganites, each hop of a carrier between sites occupied
transition-metal ions causes a local change in the vale
~charge fluctuation!, which is ‘‘sensitive’’ to the completely
symmetric~breathing! modeAg ~which is ordinarily ignored
on account of its high frequency!, and also an entangling o
the eg states due to the twofold degenerate quadrup
~shear! mode Eg ~Refs. 13, 14, and 23!. In both cases the
characteristic modes of the octahedra are meant.

The corresponding phenomenological interaction ope
tor of such a carrier, belonging to the subsystem
transition-metal ions, with local deformation-related d
placements of the ligands can be written in the form86–88

HJT5gJT (
n, j 51,2 F (

l,l8,s

an,l,s
1 Qn

l,l8~ j !an,l8,s

1
kJT

2
Qn

2~ j !1
MJT

2
Q̇n

2~ j !G , ~3.8!

wheregJT is the elasticJT interaction constant,Qn( j ) is the
operator of thej th normal mode of theJT vibrations of the
octahedra~in the first term the notation indicates thatQn( j )
is a matrix in the space of the doubleteg! at siten, andkJT

andMJT are their elastic constant and reduced mass.
The Lang–Firsov shift transformation~see Ref. 102! can

eliminate from the operatorHeff5HJT1HDE the trilinear in-
teraction@the first term in Eq.~3.8!#, which in the mean-field
approximation for the lattice renormalizes the doub
exchange integral: t→t exp@2lJT

2 (112nJT)#[tJT!t ~lJT

5gJT /VJT is the dimensionlessJT coupling constant, and
nJT is the average number ofJT phonons with frequency
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VJT5AkJT /MJT!. We see that the width of the band,WJT

52tJTz, depends onT as a result of the polaron narrowin
~even without allowance for the spin degrees of freedo!;
here an inhomogeneous distribution of angles of rotation
the spins near the carrier is also possible.103 Thus, in a crystal
a carrier becomes a chargedmagnetoelastic polaron, or a
phonon- and magnon-dressed carrier, and these dressing
rectly influence the effective mass; the double excha
model is thereby generalized to include both the static
placements of the ions and the rotations of their spins.

The self-consistent calculation of the average magnet
tions of the localized and delocalized subsystems~or one of
these and the angleu! demonstrates86,87that the experimenta
and theoretical data can agree only in the case of a s
ciently large constantlJT(>1), and the dependence of th
latter on the massMJT also permits a consistent interpret
tion of the colossal isotope effect. Analysis of the vario
regimes in those papers showed that for lowT andx>0.2 the
system is always a FM metal. However, its behavior in
region of highT(;TC) now depends onlJT , and only for
lJT.1 is the transition throughTC accompanied by a maxi
mum on theR0(T) curve and its rather rapid drop ifHÞ0.

These and other studies~including experimental ones!
give convincing evidence that an integral part of the CM
effect in manganites is some manifestation of the coupling
the carriers with the lattice. However, the valuegJT of this
coupling, its dependence onx ~which can be very substan
tial!, and even the sign of the charge remain among the
answered questions. Moreover, as we have said, the ap
ance of carriers in the lattice leads to pseudo-JT ions Mn31,
and therefore the expectation of a too-large constantlJT and
largeJT deformations is problematical. True, one can’t he
but notice that in aggregations~or clusters! of JT ions the
corresponding lattice deformations should be collectiviz
In other words, if it is assumed that valence-inhomogene
states can form, then the elastic energy advantage in t
can already be significant.

There is one more difficulty—the thermal stability o
polarons, which is a nearly universal assumption in the t
oretical works~see Refs. 86–88, and 99!, can scarcely be
ensured even in the region nearTC , where the energy
gJT

2 /VJT of the JT coupling is apparently slightly abov
102 K. Moreover, there is experimental evidence that ax
increases, theJT distortions rapidly vanish92 and that the FM
ordering also suppresses them strongly.90

The specifics of manganites are such that not only the
deformations affect the width of the conduction band; ad
tional narrowing occurs on account of the increasing aver
amplitude of the thermal rotations of the octahedra~t
;cosw,25,43 where the differencep2w corresponds to the
angle between the directions of the nearest Mn–O bo
containing a common ligand!, and also expansion of the la
tice ~recall that the Gru¨neisen coefficient in manganites
anomalously large!.18,19 All of this also promote localization
of the carriers with the formation of polarons, the lifetime
which should decrease on account of their thermal decay~the
thermally activated transition to the free band state!.

To summarize, one has to acknowledge that the uni
of theJT deformation and the double exchange has advan
considerably our understanding of transport phenomen
f
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manganites~see, e.g., Refs. 51 and 95!. At the same time, it
can hardly be regarded as conclusively proven that these
formations are critical for the CMR effect. Such a peak
R0(T) accompanies the magnetic phase transition in m
FM semiconductors104 that do not contain any kind of JT
ions. Therefore, we believe that the kinetics of the carriers
a deformable and magnetically fluctuating medium requi
further study.

3.4. Impurity states in manganites

Formally neither the AFM nor the JT effect can impe
the free propagation of a carrier through an ideal crys
provided that one is not interested in the width of the cor
sponding conduction band~or the effective mass of the car
rier!. And if one remains within the conceptual framework
the double exchange model~with or without allowance for
vibrations!, it is impossible to understand why a hole locat
in the magneticA structure of LaMnO3 will not be free, at
least within the FM planes atT→0. The answer is actually
simple: it is localized in the attractive Coulomb field of th
dopant, as was mentioned by de Gennes back in Ref. 70~see
also Ref. 95!. As x increases from zero it is impossible t
pass through a phase of localized electronic states. No
important, however, is the fact that each carrier in dop
oxides has ‘‘its own’’ dopant, and this, in turn, indicates th
oxides ~manganites, HTSCs! are bad metals, for in them
kFr̄ dop;1 ~where r̄ dop;x21/3 is the average distance be
tween dopants, andkF is the Fermi momentum!, whereas
even in ‘‘dirty’’ ordinary metals this quantity is much greate
than unity.

Let us consider an isolated dopant A21 substituting for
R31 in the RMnO2 lattice ~see Fig. 11!. In the simplest ap-
proximation one can assume that the Coulomb potentia
the A21 ion will influence only its nearest neighbors, th
levels of which will be shifted by an amount2D«Coul rela-
tive to the levels of the other ions of the matrix. The hole c
move without impediment over each FM square in the fi
coordination sphere of theA structure, even when the loca
JT distortion at each of the sites is taken into account;15 here
this distortion is ‘‘symmetrized,’’ taking on a collective cha
acter. We note that iftJT@VJT then the lattice will respond
to the motion of the hole only adiabatically, remaining in
practically static deformed state.

The motion of a carrier over the four sites splits its lev
into three: two nondegenerate, with energies2D«Coul

62JT , and a twofold degenerate level with energ
2D«Coul. If it is taken into account thattJT>0.1 eV,39,62

then only the lowest level, with energy2D« imp[D«Coul

22tJT , will actually be occupied. Its twofold~with respect
to the number of squares! degeneracy is lifted by the doubl
exchange, with the result that a local FM momentmimp

52^SZ&cosuimp/2, arises, for which the condition cosuimp/2
5tJT /I AFM will hold, whereI AFM is the only exchange hav
ing AFM sign that exists between the FM ordered planes
the A structure,16! and thez axis is chosen along the initia
AFM vector. It is quite likely that by virtue of the strong
inequalitytJT@TN a saturated~or nearly saturated! FM state
(u imp'0) of the center arises, and the observed canted ph
~see Ref. 25! is only a consequence of the anisotropic e
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change interaction inherent to the orthorhombic structure
LaMnO3.

It is easy to see that each such center~in Nagaev’s ter-
minology, ferron,105 and in the given case,microferron! is
found in a zero mean exchange field produced by the un
turbed spins surrounding it. The subsystem of these
domly distributed centers in a regular lattice, owing to t
indirect ~for x!1! alternating-sign interaction through th
spin excitations of the matrix must necessarily form~against
the background of the long-range AFM order! a spin-glass
phase106 ~see also the review107!, the existence of which in
manganites withx<0.1 at sufficiently low temperatures ha
been reported more than once.27,108,109

If we once again restrict consideration to small values
x and to theA structure corresponding to them, the condu
tion band will be two-dimensional. In this case any ion
level shifted by a finite amount~this also pertains to the
deformation shift! creates in the crystal a local~one-
impurity! electronic state with energy

« imp52WJT
2D exp~2WJT

2D/D« imp!, ~3.9!

FIG. 11. Directions of the perturbed manganese spins nearest to the A21 ion
in R12xAxMnO3(x!1) without ~a! and with ~b! allowance for the double
exchange~for completeness of the picture, in the second case the spin
the nearest-neighbor environment are also indicated!. The orientation of the
impurity magnetic moment formed~microferron spin! is isotropic in the
plane perpendicular to the AFM vector of the matrix.
f

r-
n-

f
-

whereWJT
2D is the width of the this band with allowance fo

the JT renormalization. Thus an electronic state localiz
near a charged dopant has a radius

r el5aAWjT
2D/« imp ~3.10!

~a is the lattice constant!. In the case of manganites, how
ever, there is another impurity radius—the magne
radius—which specifies the inhomogeneous distribut
u(r )51/2(p2u imp)exp(2r/rmag) and is related only to the
exchange interactions.107 The relationship betweenr el and
r mag determines which transition, the metal-insulator or FM
AFM, will occur first as the doping is increased. Clearly, f
r el.r magthis will be the first of these transitions, while in th
opposite case it will be the second. And, since many exp
ments~e.g., Ref. 26; see also Refs. 25 and 35! indicate the
existence of a narrow region of concentrationsx for which a
FM insulator exists~see Fig. 8!, the scale ofr mag is appar-
ently somewhat larger than that ofr el . In practice, however,
it is ordinarily assumed that the two transitions, the magne
and electronic, occur simultaneously, especially when on
talking about a finite temperature at a constant composit
that corresponds to the assumption that these scales are
lar, making the transitions close together.

Following Refs. 106, 107, and 110, it is easy to write t
critical concentration of the transition from the insulating
the metallic state. This transition and the correspond
abrupt change in the electronic resistance of the system o
whenx reaches a valuexMI5(a/r el)

2, where the radiusr el is
given in~3.10!. From the observed value of the concentrati
xMI'0.16 ~Refs. 50, 90, 95, and 111!, we find r el'2.5a, or,
in other words, the electronic impurity states of the man
nites must be classified as ratherdeep stateson the energy
scale, and on the spatial scale, as states ofsmall radius,
which begin to overlap only at relatively high dopa
concentrations.17! Of course, it is rather easy to satisfy th
inequality r mag.r el here, and indeed the magnetic transiti
to the FM insulator phase can slightly precede the me
insulator transition in concentration. This, in turn, means t
the magnetic impurity states already overlap in the FM s
tem, but each hole moves within the confines of its o
cluster.

For x5xMI the overlap of the wave functions of th
electronic impurity states reaches a value such that a m
insulator transition occurs, free carriers arise, and a Fe
level is formed in the metallic phase.110 However, even then
a portion of the carriers occupying the deep levels near
below the bottom of the conduction band continue to rem
in localized states~localized at fluctuational aggregations
dopants104,110!. Most likely this is the reason why an appre
ciable number~up to 20%!98 of localized~i.e., not participat-
ing in transport! carriers are observed in the metallic phas
along with local deformations that are peculiar to the ins
lating phase.92,113,114

Knowing the values ofxMI andr el and using the known
value of the band widthW;1 eV,39,62 we obtain the value
u« impu'0.1 eV, which turns out in fair agreement with th
values obtained for the activation gaps from measurem
of the thermopower;3,94 this is generally consistent with th
assumption of the existence of localized states contribu
to the thermally stimulated transfer of energy and charge

of
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The metal-insulator transition in manganites is a
rather peculiar in that the system as a whole goes from a
AFM insulator to a 3D ferromagnet metal. Its inherent F
properties~magnetic susceptibility, the spectra of spin ex
tations, their relaxation, magnetization processes, etc.! are
important areas of study in the physics of manganites.
example, the spin-wave band is well established,Vsp

FM(q)
5Vgap1Dq2, with Vgap50.35– 0.75 meV,89 2 meV,115–117

andD5130– 188 meV,89 the width of which in the calcula-
tions for the caseT50 is determined by a single parametet
~or tJT!. It determines the intensity of the interaction of sp
excitations with the carriers and is thus a characteristic
one of the sources of electrical resistance in the meta
phase of these compounds.

In regard to the problems of the transition of mangani
from the FM to the paramagnetic~PM! phase, it should be
noted that because of the presumably strong coupling of
electronic and vibrational degrees of freedom in them t
transition may easily be first-order~as was reported in Refs
91 and 118!, and for that, rather trivial, reason.

Actually the same picture of the formation of the imp
rity state should be preserved if one is considering a
concentration of La in AMnO3, or for x→1 in the com-
pounds La12xAxMnO3. The difference lies in the structure o
such a center, which no longer has a layered structure, s
the surrounding ions of the matrix form a simple AFM stru
ture of theG type ~Fig. 7!. In this case a FM moment i
apparently not formed, because, as we have said, it woul
necessary for a single carrier to keep a relatively large A
cluster in the FM state~we recall that the inter-ion hoppin
matrix elementt is also subjected to aJT reduction totJT!,
and it may be that the metal-insulator transition in the reg
of electron-doped manganites cannot be brought about.
tually, it is confirmed by the experiment that the syste
La12xAxMnO3 in the composition interval 0.5<x<1 re-
mains in the nonconducting phase.

Returning to the half metal (0.16<x<0.5), we note that
the quasiparticle excitations at the Fermi level in it are
ways damped on account of the scattering of carriers on
strongly fluctuating regions of short-range order~including
microferrons! nearTC . However, the detailed dependence
this residual~for T→0! damping or ~which is the same!
resistance in manganites on the dopant concentrations, m
netization, and external magnetic field has not been inve
gated, as far as we know.

A somewhat different approach to the problem of t
CMR, but which is also based on the presence of defect
the crystal, was developed by Nagaev,104,119 who finds a
close analogy between manganites and degenerate FM s
conductors in which a portion of the collectivized electron
interacting with static fluctuations of the density of ioniz
donors, can be trapped by localized states. The remai
carriers undergo only scattering. If the system on the wh
is magnetic, then, on the assumption that the free carriers
localized spins of the magnetic ions form different su
systems, it is asserted that the decay of the magnetic ord
the neighborhood of impurities that scatter carriers will
slowed.18! Moreover, increasing the temperature up to a c
tain point even increases the scattering intensity, and co
quently R0(T) increases. IncreasingT further, however,
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eventually leads to the complete destruction of the FM
gions, with the result that the resistance begins to fall o
and a maximum appears on theR0(T) curve in the critical
region. Ultimately, it is concluded that the CMR effect itse
is due entirely to the presence of static disorder caused by
various impurities~not only dopants!. Finally, Gor’kov ~see
Ref. 95! analyzed a percolation mechanism for the meta
zation and CMR of manganites as inhomogeneous solid
lutions and showed that approach also to be consistent
the available experimental data.19!

This result will be confirmed or refuted by further stud
however, one cannot help but notice that the experiment
which record values of the CMR have been observed in m
ganite films have used extremely imperfect films with hi
defect densities. Nevertheless, the almost total neglect of
many peculiar features of manganites in these approa
makes their implication somewhat difficult to check.

3.5. Pseudospin „Hubbard … operators in the description
of manganites

Starting with the paper by de Gennes70 and the later
paper by Kubo and Ohata,69 the electric and magnetic prop
erties of manganites have been described using thesd ex-
change model of Vonsovkii, Shubin, and Kasuya~see Ref.
120!. However, unlike the limiting caset@JH studied in
those papers, which leads to the Kondo effect, mangan
represent an example of real objects for which the oppo
inequality holds. That inequality corresponds to the compl
fine tuning of the spin of the ‘‘free’’ carrier to the spin of th
core,Score, since they always maintain complete mutual fe
romagnetic collinearity (JH,0). In the case of manganite
the free carrier is assumed to be that which moves via theeg

states ~degenerate or otherwise!, while the spin Score is
formed from the spins of the electrons of the half-filledt2g

multiplet or is just the spinS53/2 of the Mn41 ion. Here the
temperature behavior of the spins of the free carriers and
of the carriers united into the core are often treated indep
dently~see, e.g., Refs. 69, 85 and 121–124!, even though the
strong Hund exchange in the framework of the Kondo mo
makes the assumption of their independence somewhat
ficial, since the state Mn31 can be considered to be one of th
basis states in the sequence Mn21, Mn31, Mn41. Therefore,
the so-called free electron should not even adiabatically
low the spins of the core, and it would seem that the state
the ions should determine~in the case of narrow-band meta
such as manganites! the form of the Hamiltonian correspond
ing to the motion through the crystal not of the true carrie
like s electrons, but of ionic states.

Such a Hamiltonian is not difficult to write on the phe
nomenological level in the tight-binding approximation, b
introducing pseudospin operators, which have been used
cessfully in the theory of excitons in magnetic insulators.125

These pseudospin operators can be constructed for any
and number of states, but to avoid being burdened by
details~generalization is awkward but does not present a
fundamental complications!, let us consider an idealized ve
sion.

Let the ion have two nondegenerate levels 1 and
which in the AFM insulator phase are occupied by two ele
trons in such a way that the total spin of the ion isS51
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~projectionsMS561,0!. The appearance of a hole mea
that the higher-lying~by assumption! state 2 is emptied, and
thereforeScore51/2 ~its projectionss561/2!. We introduce
pseudospin operators according to the definitions

Xn
1,1/25u1&n^1/2u, Xn

0,1/25u0&n^21/2u, ~3.11!

which formally couple all of the existing configurations wi
different numbers of electrons and thereby change the m
tiplet type of the ions. Among the pseudospin operators
those which lead to the creation of a singlet two-elect
state, the inclusion of which would expand the basis~3.11!,
meaning only that a ‘‘non-Hund’’ state, i.e., the finiteness
JH in comparison witht, is taken into account. The commu
tation relations for the pseudospin operators belonging to
same site follow directly from their written form@see~3.11!#,
while the commutation relations for those belonging to d
ferent sites, as one would guess, are of the Fermi type. In
sense the pseudospin operators are similar to the Hub
operators, which are also used in a similar model. Their co
mutation relations with the spin operators are easily writ
from the action of operators in the bracket representat
Sn

15&(u1&n^0u1u0&n^21u), etc.
Actually, the simplest effective Hamiltonian of th

double exchange model for electrons realizing transitions
tween ions of different AFM sublattices and, hence, w
different characteristic quantization axes, can be represe
by the expression@see Eq.~3.2!#

HDE52t(
n,r

(
s

S cos
un2un1r

2
an,2,s

1 an1r,2,s

1sin
un2un1r

2
an,2,s

1 an1r,2,s̄D , ~3.12!

where s̄52s. Now writing the eigenfunctions~with HDE

not taken into account! cn
S,Mg in the form cn

1,1

5an1↑
1 an2↑

1 u0&, etc., and cn
Score,s in the form cn

1/2,1/2

5an1↑
1 u0&, etc.~noninteracting ions!, we easily transform the

operator~3.12! to

HDE52t(
n,r

Fcos
un2un1r

2
~Xn

1Xn1r1Yn
1Yn1r!

1sin
un2un1r

2
~Xn

1Yn1r1Yn
1Xn1r!G , ~3.13!

Xn
15Xn

1/2,11Xn
1/2,0/A2,

Yn
15Xn

1/2,11Xn
1/2,0/A2,

which, according to~3.12!, describes transitions of a carrie
between all possible spin sublevels of two ions found
different Hund valence states.

The HamiltonianHDE of the inter-ion hops must be
supplemented by the single-ion energy operator@see~3.1!#,
which in the present case has the form

HSI5~«22«1!(
n,s

Pn~s!, ~3.14!

and the exchange interaction operator~2.3! which, however,
must take into account the two spin states of the ion:
l-
re
n

f

e

-
is
rd
-

n
n:

e-

ed

Hex5
1

2 (
n,r

~Jn,n1r
1,1 Sn•Sn1r1Jn,n1r

1/2,1/2sn•sn1r!. ~3.15!

The operatorHSI in ~3.14! does not contain the Hund ex
change, which in a number of papers has been considere
the source of the interaction of the mobile carrier with t
spin of the core, while the operator in~3.15! does not contain
the static exchange interaction of mobile holes with the s
rounding spins, which is provided by the double exchange20!

On the other hand, the energy difference«22«1 between the
eigenstates of the ion must necessarily include both its H
constant~which was mentioned in Ref. 95! and its Coulomb
~Hubbard! constant, and thus in the pseudospin represe
tion the single-ion HamiltonianHSI has the diagonal form
that is usual even for the multiband Hubbard model.

Indeed, the operatorPn(s) in ~3.14! is the projection
operator onto the doublet state with spin projections. The
operatorsPn(MS) for the spin triplet can be specified in a
analogous way. Together they satisfy the natural ‘‘conser
tion law’’:

(
MS

Pn~MS!1(
s

Pn~s!51, ~3.16!

since~by definition! the ion does not have any other eige
states. Besides condition~3.16!, it would seem very well
justified to assume that there are also ‘‘partial’’ restrictio
making it possible to relate the average of the project
operators with the carrier densityx in the system, specifi-
cally: if, as occurs in the manganites R12xAxMnO3, the car-
rier ~hole! creates an ionic state with a lowered value of t
spin, then it is clear that the following inequalities must
satisfied@see~3.16!#:

K (
s

Pn~s!L 5x,K (
MS

Pn~MS!L 512x, ~3.17!

where^...& denotes configurational and thermodynamic av
aging.

The same relations~3.17! are actually valid for the op-
erator of the longitudinal~in the local coordinate systems!
spin projections:^sn

Z&5x^sZ&T and ^Sn
Z&5(12x)^SZ&T ,

from which we obtain the spin projection averaged over
crystal: Sav

Z 5x^sZ&T1(12x)^SZ&T , which is identical to
the value obtained by another method in Refs. 69 and 85
determines the magnetization of the crystal, the dispers
relation of the two~according to the number of spins; se
also Ref. 127! branches of spin excitations, and also the sh
(;Sav

Z ) of the bottom of the conduction band.
What is important for the carriers, however, is not

much the shift of the edge of the conduction band but
behavior of its widthW ~or WJT!, which also changes at th
Curie point, and this change can be of a critical charac
Indeed, according to the commutation relations of the ps
dospin operators~3.11!, the projection operators and the
averages become factors on which the value ofW depends
~see Ref. 125!. This means that the latter is a function n
only of ^SZ&T as a spin-wave band, but also of^(SZ)2&T ,
^(SZ)3&T , etc. Here the averages of even powers, which
nonzero even in the PM phase, allow the carrier to move
the region of the spin-disordered state, although the valu
W in it will be substantially smaller. At the pointTC and in
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its close proximity the averages of the odd powers of the s
operators, including the first power~the magnetization!, be-
gin to arise in a critical manner. Here the width of the co
duction band increases rather sharply, and it is not ruled
that a tendency of the carriers toward localization at impu
ties or polaron levels specifically in the fluctuation regi
gives way to a tendency toward their free motion, i.e.,
places where the influence of the external magnetic fiel
particularly strong. This is important, since in the interpre
tion of the experimental transport data the temperature
havior of the band width is ordinarily ignored, and it is a
sumed ~see review128! that W can depend only on the
composition of the system and the tolerance factor.

The above-described dynamics of the carrier motion i
magnetic medium has not yet been investigated, and th
fore the foregoing discussions are basically qualitative. Ho
ever, the applicability of the pseudospin operators in
theory of magnetic narrow-band metals, including vario
kinds of statistical models,129 is not in doubt.21! Transitions
between different spin sublevels of the ionic basis in a h
metal are brought about through the participation of s
excitations~magnons!, by introducing into the theory an in
teraction of the latter with the carriers. In this case it is n
small, being determined by the same matrix element@see
~3.13!# as the band width itself. In addition, one can in pri
ciple include JT deformations and local~impurity! Coulomb
fields in the Hamiltonian of the system, although the probl
then becomes extraordinarily difficult, and a completely co
sistent treatment on the whole scale is scarcely feasible a
present time.

4. NONMAGNETIC TYPES OF ORDERING IN MANGANITES

In the paper by Wollan and Koehler,49 which we have
cited in several places previously, in addition to the types
spin ordering in the manganite lattices, it was noted that
diffraction patterns of some La12xCaxMnO3 samples with
relatively largex@0.5 exhibited superstructural peaks unr
lated to the magnetism. Then Goodenough proposed a q
tative explanation based on the mutual ordering of the M31

and Mn41 ions.36 Moreover, it was pointed out that charg
order of this kind is inextricably linked to another type
order—orbital, one example of which is clearly seen in F
5b, where the ordering of thez2 orbitals lying in theab basal
plane of LaMnO3 leads to its doubling. Recently a number
experimental facts have appeared which not only tend to s
port Goodenough’s hypothesis but also contain new
somewhat unexpected information about the behavior
doped manganites and oxides in general.

4.1. Charge and orbital orderings

One of the first sufficiently reliable observations of th
effect was apparently made in Ref. 130, in which the sys
La0.5Ca0.5MnO3 was studied. The composition correspondi
to it ~see Fig. 8! borders between the metallic and insula
regions, and the conductivity has semiconductor tempera
behavior. The spin order observed here belongs to theC type
AFM structure~Fig. 7!. Substitution of the La31 ion for the
Ca21 ion in the cubic lattice of CaMnO3 creates in this crys-
tal a JT ion Mn31, which tends to deform the ideal octah
dron on account of the splitting of the now occupiedeg level
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~see Fig. 6!. In the region of low La31 concentrations, i.e.
12x!1, the JT ions occupy random positions, and the lo
deformation, which, as we have said, is of the pseudo
type, is relatively small. A decrease inx, or an increase in the
number of rare-earth ions, will lead to the interaction
close-lying Mn31 ions, the density of which is progressive
increasing, and their effects~including on one another! are
compelled to be coordinated in such a way that the stre
arising in the lattice are reduced, and the global deforma
due to the JT distortions is optimized. As long as the co
centrationx>0.5 the compound La12xCaxMnO3 remains an
insulator for the reasons discussed above; this means
there are no mobile charges in it, and, hence, the defor
tions created by the different dopants are not averaged
~by the carriers, at least! but largely remain localized and
static.

The interaction between Mn31 ions has two
components—a Coulomb component~in an ionic insulator it
is weakened slightly on account of the dielectric permitt
ity! and a deformation component. The first is isotropic a
most likely should govern the charge ordering. The seco
which is also long-ranged, is anisotropic, and it is the ov
lapping elastic fields from various sources~the JT ions
Mn31! that determine the form of the mutual ordering of t
z2 orbitals in the basal plane. Essentially, we are talk
about the appearance of one more microscopic scale ha
dimensions of length, which specifies the period of the
dering of charged elastic quadrupoles in the cubic med
~or of the analogous quadrupoles on a square lattice!, the
direction of the axes of these multipole moments be
‘‘tied’’ to the axes of the lattice.

The charge ordering of the PM ions of different valenc
which is observed in experiment at an equal number of e
is shown in Fig. 12a; it has a simple AFM form. The spi
S52(Mn31) andS53/2(Mn41) of this subsystem also form
an AFM lattice, although the magnetic correlation length
each of the sublattices is different.130 In addition, FM chains

FIG. 12. Form of the charge ordering~a! and the possible types of orbita
ordering corresponding to it (b–d) in the system R12xAxMnO3 in the case
of half doping (x50.5).
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of spins are observed along thec axis. More interesting
physically, however, is the orbital ordering, which is ord
narily understood to mean the arrangement of the long a
of the octahedra containing Mn31 ions ~or, equivalently, of
the doped holes surrounded by local JT distortions of
quadrupole type! with respect to one another in theab plane
~this is sometimes called ordering of JT polarons; see, e
Ref. 131!.

Figures 12b, 12c, and 12d show three of the poss
configurations of this type, which are difficult to choo
among solely on the basis of general arguments. For
ample, Fig. 12b corresponds to a doubling of the lattice o
ing to the appearance of inequivalent Mn41 ions ~more or
less close spacing of the ligands!. Figure 12c also shows
doubled structure, but the Mn41 ions are in noncentrosym
metric positions and are slightly displaced from their init
positions at the sites of the square lattice. Finally, Fig. 1
shows a structure without doubling, in which the deform
tion created by the different Mn31 ions add together and th
lattice becomes orthorhombic, but the crystal as a wh
should become twinned, separating into domains with de
mation axes perpendicular to each other. The neutr
scattering data indicate that the structure shown in the
12c is realized; this might be further checked by examin
the optical spectra of the Mn41 ion, which should contain
lines that are dipole-forbidden in centrosymmetric lattices

Even more unusual are the results obtained recently
compounds withx.0.5, viz., La0.33Ca0.67MnO3 (x52/3) and
La0.25Ca0.75MnO3 (x53/4), in which stripe structures~or
simply stripes! were observed.132 These stripes, which wer
first discovered in lightly doped perovskite compoun
~nickelates!, which are close in their crystal and electron
structure to HTSCs,133 and then later in HTSC cuprates wit
less than optimal doping~the so-called underdoped regime!,
are now attracting a great deal of attention. Although
experimental information on the stripes is not yet sufficie
for developing a complete and consistent theory, there
indications that the stripes correspond to a separate regio
the phase diagram of copper oxides, and it is not infreque
conjectured and even blithely stated that these stripes are
only connected with the initial AFM order in cuprates b
also with the phenomenon of HTSC itself~see the
reviews134,135!. However, whereas in cuprates the stripes~ac-
cording to the present ideas! are peculiar to their anomalou
~striped! metallic state, in manganites the stripes form, ex
and are observed in the insulating phase, in which the di
bution of the transition-metal ions of different valences alo
one of the crystal axes becomes nonuniform. As
La0.5Ca0.5MnO3, the corresponding charge ordering alo
the 110 direction ~the diagonals of the square lattice in Fi
12a! in La12xCaxMnO3 compounds with so-called commen
surate concentrations remains chainlike. The orbital orde
also retains its form, but the chains formed by quadrupo
with different orientations of the principal axes go in an
regular manner~see Fig. 13!.

The point is that the cell of the doubled structure w
x52/3 should contain two Mn31 and four Mn41 ions. In that
case the following sequences of ions are possible in the b
plane in the direction perpendicular to the chains:i! Mn31

2Mn312Mn412Mn412Mn412Mn41, ii ! Mn312Mn41
es
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2Mn312Mn412Mn412Mn41, and iii ! Mn312Mn41

2Mn412Mn312Mn412Mn41, and at first glance it seem
that the most regular of these, the third, should be obser
However, experiment shows that the second type of
quence is realized. Here the main structural element—
stripe ‘‘sandwich’’ Mn312Mn412Mn31—retains its spe-
cial stability in other commensurate structures as well. T
indicates that between two JT deformed chains of Mn31

there are forces, undoubtedly of an elastic origin, which l
them into a single stable stripe, a necessary unit of whic
another, intermediate chain of isotropic Mn41 ions. Appar-
ently, these already formed stripes of three chains predo
nantly repel one another, and this prevents their furt
‘‘condensation’’ and tends to make the distance betwe
them the maximum possible for each given composition
would seem that the latter is reminiscent of the ‘‘Wign
crystallization’’ of triple chains, which was conjectured
Ref. 130. However, one can scarcely agree with this co
pletely, since the maximum distance of the Mn312Mn41

2Mn31 stripes from one another is observed only in co
mensurate compositions or in compositions that can be
resented as periodically alternating stripes~transverse-stripe
structure!.

Experiment, however, shows132 that in samples of in-
commensurate compositions~e.g., forx55/8! there occurs a
decomposition into domains having the closest stable c
mensurate compositions~in this casex52/3 and x51/2,
which occupy 75% and 25% of the volume, respective

FIG. 13. Orientation and periods of repetition of the Mn31-Mn41-Mn31

stripes and also the orbital ordering corresponding to the latter in the b
plane of different manganites~the undistorted octahedra are not shown!;
—Mn41; d—Mn31.
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since for 0.7532/310.2531/255/8!. In this case no group
ing into stripes containing more than two chains of JT io
was observed. The lengths of the observed stripes ran
from 200 to 500 Å. In addition, measurements with a tunn
ing electron microscope have shown that the period~'4.5
Å! in the Mn312Mn412Mn31 chains is considerably
smaller than the average~'5.5 Å!, while in the stripes of
Mn41 ions it is greater~up to '6.5 Å!. A crude estimate of
the Coulomb energy coste2(4.52125.521! gives around
0.6 eV/Mn31 ion, which is comparable to the gain in the J
energy. Then the correlation length of the stripes in the
rection perpendicular to the chains is;(223)3102 Å ~in
the planes in which they lie! and up to;103 Å ~along the
planes formed by the triple chains!.22! From what we have
said, we conclude that the fluctuations of the stoichiome
of the dopants can and should also influence the formatio
a periodic chain~stripe! ordering in transition-metal oxides

This ‘‘pairing’’ of JT chains with the formation of peri-
odically distributed extended stripes is also observed in o
manganites; as is stated in Ref. 132, this pairing is in nee
a re-examination or at least a refinement of the spin orde
proposed by Wollan and Koehler in R12xAxMnO3 with 0.5
,x<1. The observed collapse of the stripes~including for
x51/3!92 in a magnetic field136 or under external pressure137

is possibly due to the onset of conductivity~to an increase in
the probability of the charge exchange Mn31

2Mn41↔Mn412Mn31 on account of the fine rotations o
the spins! or, what would have the same effect, to a decre
in the JT deformations and the resulting lowering of the
ergy.

For these reasons the Mn312Mn412Mn31 stripes in
manganites cannot be 1D metals, for any charge tran
within a stripe is reflected in the elastic part of its bindi
energy and should lead to the decomposition of the struc
itself. In other words, the appearance or disappearance o
stripes depends on the outcome of the competition betw
the JT deformations, which are created by charge-locali
polarons, and the double exchange, which comes into
when the carriers are free.

The existence of the stripe phases described above o
stripe structures of a different sort having periods of a m
croscopic scale~in both manganites and cuprates! was not
predicted by any of the existing theories. Therefore,
causes of the formation of conducting and nonconduc
stripes, their properties, and the physical effects resul
from these properties are still waiting for a theoretical int
pretation. This problem is of lively interest and topicality f
the development of the theory. It should also be taken i
consideration that the stripes in manganites are insula
and that practically any external influence~whether it be a
static magnetic field or an alternating electromagnetic fie
pressure, temperature, etc.! can relatively easily bring abou
in them a metal-insulator transition,138 the properties of
which for such elastically and electronically anisotropic o
jects are practically unknown~the study of the magnetism
and metallization of ‘‘spin ladders’’ in HTSCs has not in
cluded any specifics as to deformations, including
ones!.139,140

Experimental studies must also answer a number
questions. Is the formation of stripe phases an inherent p
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erty of lightly doped oxides, or are they a side effect of so
external factors? What ordering, if any, arises in theR-A
subsystem?~For example, in the form of the same or near
the same stripe structure, but chiefly, a nonuniform order
corresponding to the charge distribution of the dopants o
the manganite samples, since in the insulating phase~see
Paragraph 3.4! the introduced charge, or the transition-me
ion of a new valence, and the dopant providing the cha
attract each other.! How precisely is the oxygen stoichiom
etry maintained in oxides, and, finally, one of the most i
portant questions: how are the stripes related to such p
nomena as CMR and HTSC? This last problem, of course
not just for experimentalists.

4.2. Phase separation

In the previous Subsection we spoke of a specia
stripe—type of inhomogeneous ordering in the insulat
phase of doped manganites. Before that, in discussing
problem of their metallization, we described the possibil
that it is a metal-insulator transition in a disordered mediu
where the impurity states, which are beginning to overl
cause a delocalization of the carriers, the motion of wh
through the AFM medium is brought about by the turning
of the double exchange. But this again raises the quest
does this transition occur in the entire volume of the sam
or do the metallic regions in manganites coexist with ins
lating regions~something like the case of cuprates!?

The first scenario of metallization was implicitly as
sumed above. However, the structure consisting of insula
~AFM! and metallic stripes~domains!, which are present in
HTSCs, raises the question of when and in what cases is
separation into domains preferable to a homogeneous s
A conclusive answer to this question has not yet been fo
~see Ref. 135!.

As to the manganites, it was long assumed that the
served nonuniformities of the metallic state are largely due
the structural disorder in the samples themselves or to
developed fluctuations of the magnetic order, which
manifested in pronounced FM correlations near and ab
TC , where the CMR effect in itself is manifested in th
highest measure. Nevertheless, we recall that a superpos
of AFM and FM neutron scattering peaks in certain samp
was noted many years ago.49

Therefore, it is not accidental that a rather large re
nance was created by the results of Ref. 141, which conv
ingly demonstrated that the FM and AFM regions in dop
La12x2yPryCaxMnO3 with x53/8 and 0<y<0.25 are in-
deed spatially separate and form metallic and insulating
mains, respectively~see Fig. 14!. In the metallic, unlike the
insulating domains, no charge ordering of any kind w
present, for the reasons discussed above~the holes are delo-
calized!. Both kinds of domain were irregular in shape with
rather large average size ('53103Å), and the magnetiza-
tion vectors of the different FM regions were disordered.
an external magnetic field there was a percolation transi
~in the terminology of the authors! to a metallic phase, ac
companied by the CMR effect. Here the AFM domains a
not ‘‘consumed’’ by the FM domains, and the separation in
domains has a stable character.
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In the analysis of these experiments in Ref. 142,
authors called attention to the relative ease with which
charge ordering is suppressed by external influences~see
Paragraph 4.1!, and it was concluded that the free energies
the insulating AFM and metallic FM domains are close
each other. In this regard, their stable existence over a w
range of manganite compositions~in Ref. 141 the substituen
used was Pr instead of La, in order to create an inte
pressure, which, through the tolerance factor, influenced
transport characteristics but did not eliminate the mac
scopic domain structure! was called unprecedented in Re
142. As an additional reason for this conclusion they nam
the large mismatch between the elastic stresses arising a
metal-insulator boundary. The richness of the self-organiz
structures in lightly doped oxides~classical and quantum! is
too great and unexpected to permit such a rapid recognit
explanation, and description.

At the same time, in continuing the comparison of ma
ganites and cuprates, it should be noted that the phase s
ration in the metallic state of the latter has already be
studied for several years, and it has been shown that ch
separation is in principle possible~see the review143 and the
references cited therein!. Moreover, charge separation is in
voked to explain the process of domain formation in dop
layered HTSC oxides, on the basis of a comparison of
energies of different charge distributions. In manganites
due to the double exchange, which in the presence o
strong intra-ion~Hund! exchange interaction and an inter-io
exchange interaction can make a nonuniform distribution
carrier density preferable to a uniform distribution. Here t
elastic contribution from the JT deformations is thought to
nonneligible. In Ref. 143~see also Ref. 25! a list of around
twenty different experimental results is presented wh
would directly or indirectly support the assumption that t
charges are spatially separated.

However, here it must be kept in mind that if char
separation really is present, it will inevitably lead to regio
with a high density of charges of one sign, and hence t

FIG. 14. Submicron domain structure of the doped manga
La12x2yPryCaxMnO3 (x53/8).141 The dark regions correspond to the AFM
insulator domains, the light regions to the FM metallic domains. The arr
indicate the random directions of the magnetization of FM domains in
absence of an external magnetic field (H50) and their alignment in a field
H54 kOe.
e
e

f

e

al
e
-

d
the
g

n,

-
pa-
n
ge

d
e

is
a

f
e
e

h

a

large repulsive Coulomb potential, and this has been ca
into question in the paper by Ivanov and one of the pres
authors.144 There, in addition to a discussion of some mod
of domain formation in doped oxides, it was shown144 that
the separation into metallic and insulating~including stripe!
domains~even though their shape and magnetic state w
not considered! is a common property of metals with a low
density of delocalized carriers. It is important that the d
mains in the stable inhomogeneous state of the system
neutral. Neutrality can, in particular, be provided by dopa
~as we have said, practically nothing is known of their b
havior!, which are also, generally speaking, capable of be
redistributed over the sample under the influence of C
lomb forces during its growth, or by nonstoichiometric ox
gen, the mobility of which in oxide lattices is generally hig
or by R31 vacancies, which inevitably arise128 in the prepa-
ration of samples.23! The authors of Ref. 141 gave speci
emphasis to the circumstance that no volume segregatio
electric charges was observed in their samples and tha
average the domains were charge neutralized. It can be
posed that the condition of electrical neutrality is critical f
the formation of domains in both the insulator and meta
phases of transition-metal oxides. The shape and size o
domains are the result of the kinetics and thermodynamic
the formation of the structure of the solid solutions. On t
other hand, as was shown by Gor’kov and Sokol,95 if the
lattice ~JT! component is not neglected in the overall ener
balance, then the electrical neutrality of the domains can
principle be dynamically violated. Here, however, the d
mains can exist only in the form of ‘‘droplets,’’ i.e., the
must be very small, governed by the Coulomb energy.

On the whole, the problem of domain formation
transition-metal oxides still requires clarification, and o
can agree that the novelty and unexpectedness of the re
on the stripe structures of manganites, in particular, and
the rate at which information is being revised, make it im
possible to reach reliable conclusions about the results
some particular experiment. It can only be said with certai
that the intensive efforts of investigators should produ
fruit, possibly soon.

5. CONCLUDING REMARKS

It may seem strange that in a review article on the s
ject of the colossal magnetoresistance~CMR! we have not
devoted a special Section to the CMR itself. This was de
erate. First, there are already the review articles, still curr
and valuable, by Ramirez,35 Gor’kov,95 and Nagaev,119 the
first of which deals mainly with the available experimen
results and methods of studying the CMR, and the sec
and third of which set forth the authors’ ideas about t
possible causes of this effect. Second, practically all the
oretical approaches and proposed models of the CMR
we know of in one way or another rest on the concept
double exchange, and there is now a firm consensus that
mechanism is inadequate for describing the CMR. Any n
ideas are apparently not yet fully ripe. Moreover, in light
the experimental facts that have appeared~and continue to
emerge!, there is a justified suspicion that even the found
tions of the theory may need to be revised to take into
count the various defects and inhomogeneities~including
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fluctuations!. The plausible, but still in need of verification
hypothesis that the CMR is a consequence of a me
insulator ~semiconductor! transition under suitable circum
stances~the presence of an external magnetic field and
proximity of the critical temperature of the specific—
AFM↔FM—magnetic transformation!. Therefore, we have
considered it useful to:i! attempt to generalize the accum
lated information about the main physical properties a
phase diagram of the manganites, which as far as we kn
has still not been set forth in a unified form;ii ! present the
most recent experimental results which demonstrate the
standard properties of the manganites, in which the latt
magnetic, and electrical properties are intimately and n
trivially interwoven; iii ! present arguments as to the intera
tions and mechanisms that can~or cannot! have relevance to
the CMR effect. While the experimental data remains inc
sistent in the details~quantitatively and sometimes eve
qualitatively!, they basically confirm the presence of th
aforementioned connection, and chiefly, the unconditio
existence of a very large and jumplike increase in the c
ductivity of the samples in the neighborhood ofTC under the
influence of an external magnetic field.

We wanted to draw certain analogies between mang
ites and cuprates, but we have to report that in the absen
a deep understanding of their properties it is extremely
ficult to do this. It must be mentioned, however, that even
concept of a pseudogap, an attribute so specific to the e
tronic ~and spin! structure of HTSCs, is now bein
invoked147 for the description of the photoemission spec
of a number of manganese oxides,24! and that nanostructure
of successively alternating layers of HTSC cuprates
manganites are being prepared and investigated. Bot
these types of oxide compounds, which are members of
same class of solids and have ‘‘super’’ properties, are pe
skite systems with a strong electronic correlation, and in b
systems the insulator phase has AFM ordering and the ph
cally most important ions Cu21 and Mn31 have a JT nature
In these systems nonisovalent doping brings about a tra
tion to a metallic state, the structure of which, as a rule,
an inhomogeneous—domain—character, and the magne
of the conducting regions is different~albeit in different
ways! from the initial. In both cases the dopants introdu
structural and magnetic disorder to the system, and
ligand is oxygen. However, the consequences of these ph
cally similar processes in transition-metal oxides are
CMR effect ~in manganites! and HTSC~in cuprates!, and
these effects do not have an obvious commonality.

The question of what models will be retained as t
theory is developed further—double exchange, Jahn–Te
Kondo, band or Mott–Hubbard insulator, polaron, bipolaro
statistical, impurity, etc.—is not so important. Each of the
by illuminating some aspect of some oxide or other, make
possible to penetrate more deeply into the properties of th
systems. Thanks to the aforementioned ‘‘overlap’’ of t
HTSC and CMR regions, certain questions of solid-st
physics are seen in a new light. For example, there is the
that bad~including half! metals in certain situations may no
obey the Landau theory of the Fermi liquid, and no oth
approach as general and effective has been developed.
almost beyond doubt~see, e.g., Ref. 150! that the theory
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must include such new factors as:i! the coexistence of struc
tures with several~including nanometer! spatial scales;ii !
the competion of the AFM and FM ordering in the presen
of a strong electron-phonon~JT! interaction; iii ! the influ-
ence of well-developed fluctuations and the tendency of
system to form domains with different characters of the c
ductivity; iv! certain chemical and, possibly, technologic
aspects which are essential for the formation of samples~in
other words, the history of the samples!, etc.

It would not be an overstatement that the CMR, li
HTSC, has issued a challenge to the theorists, and they
not yet been able to answer it. Finding a way out of th
situation~and not waiting around for the next big anniversa
to do this! would not only make it possible to put this re
markable effect to use in a more expeditious and predicta
way but would also stand as an achievement for all of phy
cal science.

One of us~VML. ! thanks Prof. J. Bessa Sousa for kin
attention and hospitality during his stay at the University
Porto, M. A. Ivanov for a discussion and helpful commen
and E. V. Gomonay and S. F. Mingaleev for assistance in
preparation of the manuscript. This review could not ha
been written were it not for the program PRAXIS XXI 2/2.1
FIS/302/94 and support from the grants NATO Fellowship
Portugal CP~UN! 13/C/99/PO and PRAXIS XXI BPD/
14226/97.
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1!This phenomenon was first observed by Searl and Wang,9 but their reports

remained practically unnoticed, and, unfortunately, are seldom mentio
as being among the pioneering papers.

2!Recall that, for example, in metallic films consisting of layers of magne
and nonmagnetic metals, the analogous change, which is called the
magnetoresistance~GMR!, ordinarily does not exceed 102% at T;4.2 K
~see Refs. 7 and 10!.

3!Although at the present time not much can be said about why this sh
be, it is hard to ignore the fact that the perovskites possessing truly un
properties—HTSC and CMR—lie at points of the Ruddlesden–Popper
ries which are infinitely far apart with respect ton. True, a smaller CMR
effect is also observed in layered manganites withn52, and these com-
pounds have been intensively investigated in the last 2–3 years.

4!Indeed,r Mn21'0.85 Å, r Mn31'0.7 Å, andr Mn41'0.5 Å; for comparison,
some other radii arer La31'1.2 Å, r Ca21'1.05 Å, andr O22'1.4 Å. One
can see how strong the doping-induced local distortion can be.

5!We will mention one thing: the measured values of the Gru¨neisen coeffi-
cient in La0.65Ca0.35MnO3 vary from 85(40 K<T<260 K) to 25(T
'600 K),18,19 whereas in most solids~one of the rare exceptions bein
fullerite!32 it has a value of 2–5.

6!Here is an appropriate place to mention that in Ruddlesden-Popper c
pounds withn.1 the ionic composition of the transition metal is not s
simple. In particular, it is easy to see that forn52, for example, or in the
layered system R3Mn3O7, the manganese ion, even in the insulating pha
should exist in states of different valence~Mn21 and Mn31! with equal
concentrations. The substitution of divalent alkaline-earth ions for the r
earth metal in this compound should give rise to mobile holes in
transition-metal subsystem, but it remains unclear which of the cha
exchange processes, Mn21→Mn31 or Mn31→Mn41, is responsible for
them.

7!Actually the octahedra suffer small rotations, which mix the states of
multipletseg andt2g ; these are usually neglected, and the lattices of th
systems are assumed completely isotropic.

8!It should be noted that for many compounds, including pure LaMnO3 and
AMnO3 and also La2CuO4, the anisotropic exchange, owing to the rot
tions of the octahedra, is actually allowed and gives rise to a weak fe
magnetic moment.46 However, as in the case of the magnetic anisotropy
is hard to imagine that its existence is reflected in the basic physical p



f
al
th

o
, t

tio

o
ha
gn
t

a

e i

Fi
he
d a
f t

ic

the

2
of
r
nc
ct
ion
mo

r
-

-
th

ng
us
M

a
he

ng

a

th
-

for

such
e fact
use

uasi-
h is
ng
is

n of

n of
ions
the

ogy
w,

es,

er,

d

nd

d

n-

f

ys.

. J.

d

.

gg,

. D.

d

w

gg,

lli,

191Low Temp. Phys. 26 (3), March 2000 V. M. Loktev and Yu. G. Pogorelov
erties of transition-metal oxides, in particular, CMR or HTSC.
9!Recent optical data indicate thatJH'1.5 eV, while the transfer integralt

'0.1 eV,43 although nowadays it is assumed to be somewhat higher.64,69

Meanwhile, abandoning the conditionJH→` ~more precisely, taking into
account the finiteness ofJH! leads to the formation in the AFM crystal o
a narrow (W;t2/JH) band, which is ordinarily neglected, for under re
conditions it cannot provide coherent transport of fermions through
crystal.

10!A quantum calculation69 of this angle gives the formula cosu/25(Stot

11/2)/(2Slow11), whereStot is the total spin of the pair andSlow is the
spin of the manganese ion in the low-spin state~in this case it is the spin
of Mn41!.

11!Interestingly, the influence of the currentless excitations—excitons—
the magnetic state of the system would be somewhat different. In fact
width of the magnetic exciton band in antiferromagnetic insulators~like
the exchange interaction between localized spins! is proportional to
cos2 u/2 ~Ref. 71!. Consequently, increasing the concentrationxex of such
excitations can only change the sign of the coefficient~or I AFMSz
2Wxex! multiplying the cosine and thereby cause a first-order transi
from the collinear AFM to the FM structure.

12!These should not be confused with semimetals, which are systems
completely different physical nature. In them the conduction band is c
acterized by an anomalously small Fermi surface, irrespective of ma
tism ~which is generally not present!. Another important difference is tha
the conduction band of a semimetal has 2N places for electrons, while a
half metal hasN; this has a general resemblance to the case of Hubb
subbands in strongly correlated metals.

13!It is hard to agree with this, for the large Hund exchange constantJH in
manganites does not allow one to treat the carrier as isolated from th
on which it is found, although this is almost always assumed~see Para-
graph 3.5!.

14!The value given can be assumed to be somewhat overestimated.
calculations39 show thatt is at least a factor of two lower, and second, t
valuez56 corresponds to a cube, which possibly has not yet forme
x'0.2. Nevertheless, the main assertion as to the inadequacy o
double exchange model for explaining the CMR effect remains valid.

15!We are not talking about the local distortions caused by the A21 ion itself,
which are quickly reflected in the tolerance factor, the change of wh
we are neglecting.

16!Its relatively small value may explain why the FM phase in La12xAxMnO3

is shifted into the regionx,0.5. On the AMnO3 side the carriers~elec-
trons! must contend with the AFM exchange from all the neighbors in
cubic lattice at once.

17!The same physical conclusion was reached by the authors of Ref. 11
proceeding from an experimental study of the transport properties
large number~including fluorine-substituted! orthomanganites. Anothe
finding of that study, that there is no direct link between the resista
magnetoresistance, and ferromagnetism in conducting and noncondu
manganites, cannot be regarded as conclusive and requires verificat

18!We note that the spin–spin FM correlations are also suppressed
weakly in the microferrons described above than in the matrix.

19!It is appropriate to note in this regard that the increase in the numbe
microferrons with increasingx and their joining into a single infinite me
tallic cluster are also consistent with a percolation approach.

20!In some papers~e.g., Refs. 119 and 126! it is assumed that a hole occu
pying ap orbital enters into such a strong exchange interaction with
spins of neighboring Mn31 ions that it forms a bound complex with
them—a small-radius magnetic polaron, for which the double excha
model no longer applies. However in such a case it is more logical to
it not for oxygen holes but for the motion of such polarons over the AF
lattice.

21!The phenomenological approach proposed in the paper of Lyuksyutov
Pokrovsky129 for describing the CMR admits correct incorporation of t
thermodynamic relations between the number of delocalized~owing to the
formation of polarons! carriers and localized polarons while conservi
the total number of each. In that approach~see also Ref. 128! the transi-
tion of the PM insulator to a FM metal occurs specifically by the therm
redistribution of carriers between their free and bound~localized! states,
and this, in turn, can depend onH.

22It should be kept in mind that the stripe structure pertains only to theab
planes. Being correlated, the stripes of differentab planes themselves form
ac or bc planes with ordering of the corresponding character.

23!It is pertinent to point out that the CMR depends appreciably on
technology used to obtain the real~including granular and/or defect
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containing! samples. For example, in Refs. 145 and 146 it was shown
the particular case of La12xSrxMnO32d (0.15<x<0.3) that the drop in
the CMR at the transition point depends on technological parameters
as the sintering temperature. These measurements again attest to th
that the macrostructure of manganites, if it is not the direct physical ca
of the CMR effect, undoubtedly influences its value.

24!In that paper the pseudogap is identified with the decrease in the q
particle weight seen in ARPES experiments, the explanation for whic
similar to optical transitions in molecules, where in the case of stro
coupling with vibrations the intensity of the zero-phonon transition
suppressed in comparison with its phonon wing. From a compariso
the frequency of this Franck–Condon transition with«F , the part of the
density of states corresponding to polarons is carried over to the regio
the multiphonon continuum. It is thought, however, that such observat
do not justify the use of the term pseudogap in a situation where
causes of the formation of the gap itself are not apparent~see also Ref.
148!. At the same time, we note that if one proceeds from the anal
between the manganites and doped semiconductors, then, as we kno149

a ‘‘soft’’ Coulomb gap can form in the latter near«F . Incidentally, that
version cannot be considered final either.
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The present-day analysis of the theoretical adaptation status of the experimental curves of the
magnetization and the static magnetic susceptibility as functions of the external
parameters H andT ~H is an applied external magnetic field andT is a temperature! is made for
granulated ferromagnetic systems. Once more it is pointed that the consideration of the
energy of magnetic anisotropy of a ferromagnetic material~as against the methods of the adapt
used everywhere! play an essential role for the understanding of the magnetic behavior of
the systems mentioned above and allow us to investigate the magnetoanisotropic behavior of
granulated magnetic systems@at certain granule distribution functions~by their volume
and orientation! as regards the external magnetic field#. It is shown that the use of the ‘‘blocking’’
concept is not necessary for the investigations of the thermodynamically equilibrium
magnetic properties of the above systems. ©2000 American Institute of Physics.
@S1063-777X~00!00203-6#
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1. INTRODUCTION

Granulated magnetic materials~GMM! have long been
subject of intensive and quite successful research. They
sist of small ferromagnetic~FM! particles~clusters, granules!
in a nonmagnetic~weakly magnetic! matrix. The subject of
research can be dielectric materials of the FM compon
and matrix as well as conducting materials.1–5

The renewed interest in GMM-materials is explained
the recent observation of the so-called effect of giant m
netoresistance~GMR! in such conducting systems.6,7

It is not hard to understand that the GMR-effect is co
nected with an additional channel of current carriers scat
ing on FM granules and is secondarily related to the uni
magnetic properties of GMM materials. Therefore, below,
the first stage of research, we limit ourselves to the anal
of the equilibrium magnetic properties of the systems c
sidered above.

2. OBJECT OF RESEARCH AND ITS MAIN FEATURES

a! The object under investigation is a solid heterog
neous system~an ensemble of FM particles incorporated in
a nonmagnetic solid matrix!. As a rule, these are system
with a small~volume! content of the FM component which i
essential when interactions between particles of the sys
are neglected. In other words, FM particles of the GM
system can neither rotate nor move forward nor change t
volume~the state of thermodynamic equilibrium is meant,
course!.

b! As is known, the dependence of a magnetic mom
or a magnetization~i.e., magnetic moment per unit volume!
of a gas of noninteracting paramagnetic~PM! particles on
external parameters~absolute temperatureT and the value of
external magnetic fieldH! within the framework of Langev-
1941063-777X/2000/26(3)/7/$20.00
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in’s classic theory is described by the function of the sa
name. Thus, the magnetizationm(H,T) of a gas of identical
magnetic momentsm can be expressed as~e.g., see1!

m~H,T!5NumuLS umuH
kT D , L~x!5coth~x!2

1

x
, ~1!

whereN is the number of atomic magnetic momentsm in the
gas unit volume;k is Boltzmann’s constant andL(x) is the
Langevin function. It is necessary to note that the descript
of a magnetic particles system with the help of the Lange
function ~as in the present case! is decisively based on the
fact that magnetic energy of each particle of the ensem
possesses only one minimum~in its orientation dependence!,
which corresponds to the orientation of the particle magn
moment alongside the direction of the applied external m
netic field. It is important that this orientation dependence
described by a function of; cos u, whereu is the angle
between directions of the magnetic moment and the field

c! All real FM materials are magnetically anisotrop
ones. This means that the magnetic moment of each par
of the ensemble in the absence of external magnetic fi
tries to orientate itself alongside the so-called directions
‘‘easy magnetization.’’ For reversing the magnetic mome
of each of the ensemble particles from one of these direct
to another one~under the influence of some external factor!,
it is necessary to overcome an energy barrier. The valu
this barrier is determined by the magnetic anisotropy ene
of the particle~and, consequently, by its volumeV! and ex-
ternal factors.

d! If a GMM system consisted of magnetically isotrop
FM particles, i.e., if a corresponding energy barrier did n
exist, the description of its magnetic properties would
possible with the help of the Langevin function. In so doi
© 2000 American Institute of Physics
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the temperature-field dependence of magnetization@e.g., see
Ref. 1# of a system-ensemble of identical volume particles
this case is written as:

m~H,T!5msLS msVH

kT D , ~2!

wherems is the saturation magnetization of FM substan
msV is the value of the magnetic moment of the particle w
the volumeV. GMM systems whose magnetization is d
scribed by expression~2! ~with the addition of ‘‘blocking’’
concept! are usually calledsuperparamagneticsand these
concepts were first introduced into the physics of magn
phenomena by C. Bean.8

e! Even if, with the help of an external magnetic field
the particles of GMM under investigation the energy barr
connected with the energy of magnetic anisotropy is
stroyed, the orientation dependence of magnetic energ
system particles is not described by the cosu-function ~ex-
cept in the limiting case of ‘‘a very strong external magne
field’’ which will be treated below!.

f! Thus it can be stated that the GMM systems w
granules of real FM material that we consider cannot
generally speaking, described by the classic theory Lange
This circumstance was also noted earlier also by L. Ne´el,9,10

Yu. Reicher, M. Shliomis11

g! Nevertheless, up to now, attempts at describing r
GMM systems with the help of the Langevin function ha
continued to be made~see Refs. 1–5, for example!. How-
ever, it should be noted that, in order to describe peculiari
relating to magnetic anisotropy of the FM component,
concepts of ‘‘blocking volume’’ of particles at a fixed tem
perature and ‘‘blocking temperature’’ of fixed volume of pa
ticles were introduced into the physics of magnetic pheno
ena.

h! In a real GMM system there are FM component p
ticles of different volume, i.e., in the system, there is a c
tain function of their distributionf (V) by volume V. It is
evident therewith that the full volume of FM substance in t
system is

Vmag5E
Vmin

Vmax
V f ~V!dV5(

i
f iVi , ~3!

whereVmin andVmax are the minimum and maximum gran
ule volumes existing in the GMM system,Vi is the volume
of the i-granule, f i is the number of granules with volum
Vi . In Eq. ~3! we gave both continuous and discrete desc
tion of the subsystem of FM substance granules in the GM
system.

3. MAGNETIC ENERGY OF GRANULES, ENERGY BARRIER
AND FREE ENERGY OF THE SYSTEM

The object for investigation is placed in an external ma
netic field, the direction of which coincides with that of ma
netic anisotropy axes. Ne´el was the first to consider such
geometry of the problem.10 At the initial stage of research w
neglect the interaction of FM component granules with e
other. Moreover, all the particles of the GMM system a
supposed to be unidomain, i.e., magnetized homogeneo

It is evident that, when there is no interaction betwe
particles~and only in this case!, the full magnetic energy« i
,

ic

r
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-
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n

of a separatei-particle with the volumeVi and saturation
magnetization of granules of FM substancems represents the
sum of a magnetic anisotropy energy«ai and its Zeeman
energy«Hi in the external magnetic field, i.e.,

« i5«ai1«Hi . ~4!

As is known, the expression

«ai52KeffVi~m i ,ez!
2 ~5!

can be written for magnetic uniaxial particles, where the c
stant Keff represents the density of effective uniaxial ma
netic anisotropy energy,Mi5msVi is the value of magnetic
moment ofi-particle of the ensemble,m i ,ez are unit vectors
along the directions of the magnetic momentM i and Carte-
sian axisi along which the magnetic anisotropy axes of
system particles and external magnetic field are oriented.
Zeeman energy of thei-particle is

«Hi52msViH~m i ,ez!. ~6!

In a spherical system of coordinates with the polar axisez we
have

m i5~cosw i sinu i ,sinw i sinu i ,cosu i !,

H5~0,0,H ! ~7!

and the expression for the full energy of« i particle is written
as

« i52D«ai~cos2 u i12h cosu i !, ~8!

D«ai5KeffVi.0, h5
msH

2Keff
5

H

Ha
.

The value ofD«ai determines the energy barrier in the a
sence of the external magnetic field that is to be overcom
order to change the orientation of magnetic momentM i from
one of the ‘‘easy’’ directionsu i50, p to anotheru i5p,0.

It is not difficult to show that the value of the energ
barrier in the external magnetic field of selected orientat
decreases with the increase ofh value by the law

D« i5D«ai~12h!2. ~9!

At last, when the value of the external magnetic fieldH
reaches the value of the so-called magnetic anisotropy fi
Ha , i.e., h51, the energy barrier disappears@see Eq.~10!#
and in the energy of the particle« i just one minimum is left
at u i50, i.e., the only one equilibrium state. In this extern
magnetic field, the energy of the particle« i is

« i52D«ai@~cosu11!221#. ~10!

While the value of the external magnetic field increases f
ther, there is only additional deepening of the single mi
mum in the particle energy« i at u i50.

Based on the above uncomplicated arguments, the
lowing conclusions~very important ones for further discus
sion! can be drawn:

1. Granules of different volumes have different values
corresponding energy barriers. This makes it possible
needed, to introduce the concepts of ‘‘volume’’ and ‘‘tem
perature’’ of blocking.
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2. Energy barriers in the granules of different volum
disappear in one and the same external magnetic field w
is equal to the field of magnetic anisotropyHa @condition
h51 from Eq.~9!#.

3. Orientational dependence of the energy ofi -particle
« i , even at energy barrier disappearance, is rather far f
being ;cos u @see Eq.~10!#. In other words, even in this
case, generally speaking, the Langevin description of
GMM system does not seem to be correct, although all
particles of the system are ‘‘unblocking,’’ i.e., they behave
a way resembling a superparamagnetic one.

4. Only in cases~which will be demonstrated below! T
@max$D«ai% andH@Ha can one use the Langevin descri
tion of the system without doubt.

Thus, the energy of thei th particle of the GMM system
is described by expression~8!. The granule ensemble con
tains f i particles withVi volume, wheref i is the function of
granules distribution by volume and the full volumeVmag of
the FM component is~3!. The full energy of the GMM sys-
tem ~the energy of noninteracting granules ensemble! can be
written as

E5(
i

f i« i , ~11!

where« i is determined by expression~8!.
At finite temperatures the probability of detecting t

system ~having thermodynamic equilibrium! with energy
E(xi) in the volume element of generalized coordina
P
i
dxi is determined by the Boltzmann exponent

exp@2E~xi !/kT#. ~12!

In our case, it means that the probability for thei-particle
~granule! with volume Vi to have the direction of magneti
moment M i in the element of space angledV i

5sinui dwidu is

dv i5Ai expFD«ai

kT
~cos2 u i12h cosu i !GdV i , ~13!

whereAi is some constant. It is clear that in this case
corresponding statistical sumZ of the system is determine
by an expression

Z5)
i

H AiE
V i

dV i expFD«ai

kT
~cos2 u i12h cosu i !G J f i

~14!

and the free energyF of the system

F52T ln Z ~15!

takes the form:

F~H,T!5(
i

f iFi~H,T!, ~16!

where

Fi~H,T!52T lnH AiE
V i

dV i

3expFD«ai

kT
~cos2 u i12h cosu i !G J .
ch

m

e
e

s

e

It is necessary to emphasize that additivity of free energF
~16! of the system~and the expression for partition functio
Z ~14! as the product! is conditioned by our neglecting of FM
granule interactions with each other. As will be seen belo
the magnetic moment of the system will also possess
additivity property. It is mathematically reflected in the in
dependence of some direction of theith cluster magnetic
moment from the state of other system particles.

4. MAGNETIC MOMENTS OF SYSTEM AND GRANULES, ITS
CONSTITUENTS, MAGNETIZATION AND STATIC
MAGNETIC SUSCEPTIBILITY

As is known, the magnetic moment ofM (H,T) of the
system at temperature differing from absolute zero is
pressed by

M ~H,T!52]F~H,T!/]H, ~17!

or, accounting for the geometry and symmetry of our pro
lem,

M ~H,T!5M ~H,T!ez ,

M ~H,T!52]F~H,T!/]H. ~18!

Taking into account expression~16! for the system free en
ergy, it is easy to obtain from~18!

M ~H,T!5(
i

f iM i~H,T!,

Mi~H,T!5T
]

]H
lnH AiE

V i

dV i

3expFD«ai

kT
~cos2 u i12h cosu i !G J . ~19!

Further on, it will be convenient for us to use the so-call
reduced parameters~as regards the internal parameters of t
system, namely as regards the value of energy barrier in
absence of external magnetic field and the value of magn
anisotropy field!

a1
25D«ai /kT5KeffVi /kT, h5H/Ha ,

Ha52Keff /ms . ~20!

This is convenient because, e.g., for GMM systems w
various FM components~i.e., different values ofKeff and
ms! but with identical functions of particles distribution b
their volume f (V) and identical Vmag and proportion
Keff V0 /kT, whereV0 is the position of function maximum
V f(V), the curves of reduced magnetization

m~ai
2,h!5S (

i
f iM i~H,T! D S ms(

i
f iVi D 21

~21!

as functions of reduced magnetic fieldh just coincide.
It is not difficult to show that, when the variables~20!

are used, the expression for the system magnetic mom
~19! can be written as

M ~H,T!5(
i

f iM i~ai
2,h!,
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Mi~ai
2,h!5

ai
2

2 H E
V i

dV i exp@ai
2~cos2 u i

12h cosu i !#J 21 ]

]h EV i

dV i

3exp@ai
2~cos2 u i12h cosu i !#. ~22!

In the case of continuum description
o

-

e

t
e

g

f

e

et
m~H,T!5S E
Vmin

Vmax
V f~V!F@a2~V!,h#dVD

3S E
Vmin

Vmax
V f~V!dVD 21

~23!

where m(H,T) is the reduced magnetization (um(H,T)
<1u), and
F~ai
2,h!5

exp@ai
2~11h!2#2exp@ai

2~12h!2#

Apai$erfi@ai~11h!#1erfi@ai~12h!#%
2h5

12exp~24ai
2h!

2ai$FD@ai~11h!#1exp~24ai
2h!FD@ai~12h!#%

2h. ~24!
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In expression~24! for the function F(ai
2,h) both special

functions

erfi~x!5
2

Ap
E

0

x

dt exp~ t2! ~25!

and the Dawson integral were used

FD~x!5exp~2x2!E
0

x

dt exp~ t2!. ~26!

Thus, from expressions~23!–~26! it is clear that equilibrium
curves of magnetization of a real GMM system consisting
magnetic anisotropic FM material granules~in this case of
magneto-uniaxial!, and, consequently, all equilibrium mag
netic parameters of such a system in the whole range
external parameters change~H andT! can be described only
by theF(ai

2,h)-function and cannot described by the Lang
vin function L(2ai

2h)5L(msViH/kT).
There are quite substantial reasons for believing tha

real GMM systems the so-called Lifshitz–Slyozov–Wagn
logarithmically normal~log-normal! distribution12,13 of par-
ticles by volume is implemented~see, e.g., Refs. 12–14!, i.e.,

f ~V!5
1

A2pVs

expH 2
ln2~V/V0!

2s2 J . ~27!

In expression~27!: s is dispersion~half-width! of the corre-
sponding distribution whileV0 is the volume correspondin
to the maximum of the functionV f(V). It is necessary to
note that the using of the log-normal distribution function~its
properties! gives us the possibility of extending the limits o
integrations in~23! to the whole interval of volumes$0, `%.

The temperature parameterai
2 can be expressed by th

so-called blocking temperature. As is known,~see, e.g.,1–5!,
the blocking temperature of the particle with volumeVi in
the absence of external magnetic field is determined as

Tbl,i
0 5KeffVi /k lnS t

t0
D , ~28!

wheret0 is relaxation time andt is observation time~as a
rule, in the usual experiment to measure static magn
equilibrium properties ln(t/t0)'25 is used!. Then, it is evi-
dent that we have
f

of

-

in
r

ic

ai
25~Tbl,i

0 /T!lnS t

t0
D . ~29!

However, the following should be noted. The temperat
and volume of blocking are introduced into the physics
GMM systems when their equilibrium properties are d
scribed in order to break the sums or integrals in the num
tors of expression~24! into two parts, the first of which re-
lates to ‘‘blocked’’ particles, the second parts relates
‘‘unblocked’’ particles. In so doing, ‘‘blocked’’ particles are
described as showing ‘‘ferromagnetic’’ behavior, while ‘‘un
blocked’’ ones, with the help of the Langevin function,
showing ‘‘superparamagnetic’’ behavior.

The use of the functionF@ai
2(V),h# instead of Langev-

in’s function eliminates all the noted contradictions and co
plications and we do not think it is necessary to use
concept of blocking~at least when describing thermody
namic equilibrium magnetic properties of the GMM system!.
The argument of exponentai

2(12h)2 and the argument o
functions erfi @ai(12h)# and FD@ai(12h)# completely
takes into account the competition of heat energy with
full magnetic energy of the particle of any volume at a
significant parametersT andH. This moment is thought to be
quite significant and it is connected with the magnetic anis
ropy of granules of the FM material. This more realistic d
scription of magnetic properties of GMM systems was p
posed by F. G. West15 in 1961 ~see also, Ref. 16! and was
forgotten afterward.

Static magnetic susceptibility of a system is determin
as

x~H,T!5]M /]H ~30!

or, taking into account that

]

]H
5

ms

2Keff

]

]h
, ~31!

we obtain from Eq.~30!

x~H,T!5
ms

2

2Keff
(

i
f iViC~ai

2,h!

5
ms

2

2Keff
E

Vmin

Vmax
V f~V!C~a2~V!,h!dV, ~32!
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where

C~ai
2,h!5

2ai

Ap
~11h!

exp@ai
2~11h!2#2exp@ai

2~12h!2#

erfi@ai~11h!#1erfi@ai~12h!#

2
p

8 H exp@ai
2~11h!2#2exp@ai

2~12h!2#

erfi@ai~11h!#1erfi@ai~12h!# J 2

21.

~33!

In conclusion of this section we would like to recall th
when describing the GMM system as a superparamagn
one,

M ~H,T!5ms(
i

f iViL~2ai
2h!

5msE
Vmin

Vmax
V f~V!L~2a2~V!h!dV, ~34!

and the static magnetic susceptibility

x~H,T!5
ms

2

2Keff
(

i
f iViJ~ai

2,h!

5
ms

2

2Keff
E

Vmin

Vmax
f ~V!J~a2~V!,h!dV, ~35!

where

2ai
2h5

msViH

kT
~36!

the argument of the Langevin function corresponding to
Langevin classic theory, while

J~ai
2,h!5

sinh~2ai
2h!24ai

4h2

2ai
2h2 sinh~2ai

2h!
. ~37!

It not difficult to show that, for example, in the case wh
the orientation of the applied external magnetic field is p
pendicular to the magnetic anisotropy axis of granules
F(ai ,h)-function in expression~23! has the form~this case
corresponds toKeff ,0!

F~ai ,h!5
$exp@2ai

2~11h!2#2exp@2ai
2~12h!2#%

Apai@Erf$ai~11h!%1Erf$ai~12h!%#
1h,

~38!

ai
25

uKeffuVi

kT
, h5

msH

2uKeffu
, ~39!

where Erf~x! is the error function.

5. SOME SPECIAL CASES. COMPARISON WITH LANGEVIN
CLASSIC THEORY

a) GMM system with granules of identical sizes

Under these conditions, it is evident that in a discr
description of the GMM system there is only one value off i

different from zero that corresponds to the volume of gr
ulesV0 , and it coincides with the total number of granules
the system. When the GMM system is described in c
tinuum, the distribution function of the system of particles
their volume has the form of the Diracd-function
tic

e

-
e

e

-

-

f ~V!;d~V2V0!. ~40!

Here, the reduced magnetizationm(H,T) of the GMM sys-
tem has the form

m~H,T!5F~a0
2,h!, ~41!

and the static magnetic susceptibility

2Keff

ms
x~H,T!5C~a0

2,h!, ~42!

wherea0
25KeffV0 /kT.

Figures 1–4~as the examples! presents the results o
numerical calculation of curvesm(H,T) vs the Langevin
parameter 2ai

2h5msV0H/kT and curvesx(h) andx(t) for a
GMM system consisting ofreal FM granules of the same
sizeV0 at different correlations of external and internal p
rameters of the system. In general, it is seen clearly that th
results differ essentially from those that were obtained w
the help of the Langevin function. Especially significant
note is a substantial increase in the initial static magn
susceptibility of the GMM system~as compared to the
Langevin one! x(h50) in the range of low temperature

FIG. 1. Dependencies of the magnetizationm5m/ms of GMM system with
identical particles on the Langevin parameterx5msVH/kT for different
volumes of particles and temperatures~ms5103 Gs, Keff5108 erg/cm3!. The
Langevin description of all GMM systems is the same~the different regions
of the lowest curve!.

FIG. 2. The static magnetic susceptibilityx5dM/dH of a GMM system
with identical particles as a function of the reduced applied magnetic fi
h5H/Ha at ‘‘high’’ temperaturest5kT/Keff V510@1.
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Keff V0 /kT@1. This can be essential when GMM objects a
used in devices to record and read out an information.

b! The casef iVi5const(Vf(V)5const) is a specific dis
tribution of the system particles when particles of any s
contribute equally to the magnetic component volume of
GMM system.

It is not difficult to show that, in these cases, the reduc
magnetization of the system can be expressed in the for

m~H,T!5
1

Vmax2Vmin
E

Vmin

Vmax
F@a2~V!,h#dV. ~43!

Using the theorem of integral calculation on the avera

E
Vmin

Vmax
F@a2~V!,h#dV5~Vmax2Vmin!F@a2~V̂!,h# ~44!

we come to the expression

m~H,T!5F@a2~V̂!,h#, ~45!

where V̂ is some value of the volume from the rang

@Vmin ,Vmax#, i.e., Vmin<V̂<Vmax.
In other words, this GMM system with such a distrib

tion function behaves as a GFM system consisting of ide
cal granules with the volumeV. Considered below are som
limit cases for values of the system’s external parameterH
andT.

FIG. 3. The static magnetic susceptibilityx5dM/dH of a GMM system
with identical particles as a function of the reduced applied magnetic fi
h5H/Ha at ‘‘low’’ temperaturest5kT/KeffV50.1!1.

FIG. 4. The static magnetic susceptibilityx5dM/dH of a GMM system
with identical particles as a function of the reduced temperat
t5kT/KeffV at ‘‘weak’’ external magnetic fieldh5H/Ha50.01!1.
e
e

d

e

i-

c! H@Ha(h@1).
In these conditions, taking into account thatu cosuu<1

and neglecting the unity as compared toh in expressions
~13!, ~14!, ~16!, ~19!, and ~22!, we come to the Langevin
classic theory. And this is not surprising as it is under the
conditions that the energy barrier in all the particles of t
GMM system disappears and the orientation dependenc
full magnetic energy of the system@see Eq.~9!# becomes
quite near;cosu.

The same result can be obtained by using asympt
expressions for the above mentioned special functions at
corresponding conditions.

d! h50.
In accordance with the general postulates of equilibri

thermodynamics, in this situation, at any temperatures,
system under investigation must be demagnetized, i.e.m
50. It is this result that comes out of the expression for
functionF(ai

2,h) @see~24!# at h50, as the numerator of the
first term is equal to zero, its denominator is equal to 2Ap
erfi (ai) and the second term is equal to zero.

e! Let us consider now the region of temperatures wh
are so ‘‘high’’ that one can think that, forai parameters of all
the system particles the conditionsai!1, ai

2!1 are fulfilled
and the region of values of the external magnetic field is s
that ai

2h!1 ~this corresponds to the case ofmsViH/kT!1,
KeffVi /kT!1!. Using expansions

exp@ai
2~16h!2#511ai

2~16h!21
1

2
ai

4~16h!41...

~46!

and

erfi@ai~16h!#5ai~16h!1
1

3
ai

3~16h!31...

it is not difficult to obtain

F~ai
2,h!5

1

3
2ai

2h5
1

3

msViH

kt
~47!

which coincides with the expansion of the Langevin functi
when 2ai

2h5msViH/kT!1. Accidentally, it also follows
from this that at any temperature differing fromT50 at
h→0 the magnetization of each FM granule~and therefore
of the whole GMM system! tends to zero.

Thus under these conditions, every granule of the GM
system and the system as a whole can be described by
classic Langevin theory, i.e., the phenomenon of superp
magnetism takes place.

The above expressions show that when the conditi
ai

2!1, 2ai
2h!1 are implemented, the presence of the ene

barrier in the GMM system granules is not essential~it can
use the Langevin description!.

6. CONCLUSIONS

It has been shown that, in a general case, real GM
systems with a magnetic anisotropic FM component can
be described with the help of the Langevin classic theo
i.e., their thermodynamic equilibrium magnetization a
static magnetic susceptibility cannot be described by
Langevin function and its derivatives.
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The function has been found~substituting the Langevin
function! which describes, in a universal way, the compe
tion of full magnetic energy of a GMM system particle
any volume ~without separating them into the so-calle
‘‘blocked’’ and ‘‘unblocked’’! with their heat energy. It has
been ascertained that the use of the concept of ‘‘blocking
not necessary when the thermodynamic equilibrium prop
ties of GMM are described. In addition to it, the use of su
universal description for all the particles of a system an
system as a whole makes it possible to avoid such artifi
and ambiguous models, one of which, for instance is u
in.17

The regions of changing external parametersH and T
have been indicated~relating to internal parameters of an F
component of a GMM system! where classic Langevin de
scription of investigated objects is possible. In GMM sy
tems with a known function of granule distribution by the
volume f (V), magnetization curvesm(h) and curves of
static magnetic susceptibilityx(h), registered at differen
temperatures, may be used both for determining the valu
effective constant of magnetic anisotropyKeff and for clari-
fying the peculiarity of its temperature dependence. A
conversely, the knowledge of the temperature dependenc
the effective magnetic anisotropy constantKeff may allow
one to reconstruct the volume distribution functionf (V) of
the GMM system particles. The corresponding investigati
of both the soft-magnetic and hard-magnetic ferromagn
components of the different GMM systems will be publish
later.
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Phase diagram of a strongly anisotropic biaxial ferromagnet and the spectra of coupled
magnetoelastic waves

Yu. N. Mitsa , Yu. A. Fridman, and O. V. Kozhemyako

V. I. Vernadski� Tavricheski� National University, ul. Yaltinskaya 4, 95035 Simferopol, Ukraine*
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The spectral and thermodynamic properties of a biaxial ferromagnetic crystal are investigated at
different temperatures. It is shown that, depending on the direction of the external magnetic
field, in the case of a large single-ion anisotropy~much greater than the exchange interaction! there
can be both a reorientation phase transition and a transition involving a decrease in the
modulus of the magnetization vector. In the first case the elastic and magnetic subsystems actively
interact, which leads to the softening of a transverse polarized phonon mode at the point of
the orientational phase transition; in the second case the magnon and phonon branches do not
interact, and the phase transition takes place through a magnon mode. The phase diagram
of a highly anisotropic biaxial ferromagnet is constructed for an arbitrary orientation of the external
magnetic field and for arbitrary temperatures. ©2000 American Institute of Physics.
@S1063-777X~00!00303-0#
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1. INTRODUCTION

The most popular theoretical model for studying ma
netic systems is that of a uniaxial magnet. Its popularity
due to the transparency of the results and the relative s
plicity of the mathematical description of this model~see,
e.g., Ref. 1!. However, technological progress has led to
creation of a number of new magnetic materials w
anisotropies more complicated than the uniaxial. These
terials are mainly low-temperature magnets in which
single-ion anisotropy is comparable to or even greater t
the exchange interaction constant~e.g., the singlet magne
Cs3Cr2Br9 ~Refs. 2 and 3! and a number of others!.

Such magnets can exhibit purely quantum effects,4–6 the
presence of which can have a substantial influence on
the dynamics of the system and on its phase states. In
ticular, they can have phases with a tensor order paramet
so-called quadrupole-ordered~QO! phases~see Refs. 1, 7,
and 8!.

The onset of QO phases in these systems is due
change of the ground state and inversion of the energy lev
The latter depends substantially on the orientation of the
ternal magnetic field relative to the crystallographic axes1

In addition, taking the magnetoelastic interaction in
account leads to a number of interesting results, e.g.,
fundamental change of the spectral properties in the ne
borhood of the orientational phase transitions, specifically
a softening of the phonon branch of excitations and the
pearance of a magnetoelastic gap in the magnon spectru4,9

In this paper we construct a microscopic theory
coupled magnetoelastic waves in a biaxial ferromag
~FM!; this theory is able to take into account the large sing
ion anisotropy and the magnetoelastic coupling for an a
trary orientation of the external magnetic field and ove
wide temperature interval. The phase diagram of these m
nets is obtained and investigated for different relationship
the material constants, an arbitrary orientation of the exte
2011063-777X/2000/26(3)/6/$20.00
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magnetic field, and a wide range of temperatures.

2. DISPERSION RELATION OF A BIAXIAL FERROMAGNET

As a model system we consider a biaxial Heisenb
ferromagnet in an external magnetic fieldH directed parallel
to the 0Z axis. The Hamiltonian of the system is written

H52H(
n

Sn
z1

b1

2 (
n

~Sn
z!21

b2

2 (
n

~Sn
y!2

1
b3

2 (
n

~Sn
x!22

1

2 (
n,n8

J~n2n8!SnSn8

1v0(
n

~Sn
i !2uii ~n!1v1(

n
Sn

i Sn
j ui j ~n!

1E drH l

2 (
i

uii
2 1m(

i ,k
uik

2 J , ~1!

whereb i are the single-ion anisotropy constants,J(n2n8)
.0 is the exchange integral,v i are the magnetoelastic cou
pling constants,ui j are the components of the strain tens
andl andm are elastic constants.

The calculations are done in terms of the Hubba
operators.10,11 For simplicity we assume that the spin of th
magnetic ionS51. However, the proposed calculation
scheme is also valid forS.1.

Separating out in the exchange part of~1! the mean field
^Sz& due to the ordering of the magnetic moment, we obt
the one-site HamiltonianH0(n), which in terms of the Hub-
bard operators has the form11

H05(
n

S (
M

AMHn
M1(

a
AaXn

aD . ~2!

Here Xn
a5Xn

M8M5uCn(M 8)&^Cn(M )u are the Hubbard op-
erators describing the transition of a magnetic ion from
stateM 8 to the stateM (M521,0,1); Hn

M[Xn
MM ; a are are
© 2000 American Institute of Physics
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the corresponding root vectors;Cn(M ) are the eigenfunc-
tions of Hamiltonian~2!. For a magnet withS51 the general
form of the functionsCn(M ) was established in Ref. 6
Solving the Schro¨dinger equation with Hamiltonian~2! we
obtain the energy levels of the magnetic ion with allowan
for the magnetoelastic interaction:

E15
2b11b21b3

4
1

v0

2
~uxx

0 1uyy
0 12uzz

0 !2
x

2
,

E05
b21b3

2
1v0~uxx

0 1uyy
0 !, ~3!

E215
2b11b21b3

4
1

v0

2
~uxx

0 1uyy
0 12uzz

0 !1
x

2
,

x25@2x02v0~uxx
0 2uyy

0 !sin 2u#21v0
2~uxx

0 2uyy
0 !2cos2 2u,

x0
25H̄21b̃2, b̃5

b32b2

4
, ~4!

cosu52
b̃

A2x0~x02H̄ !
, H̄5H1J~0!^Sz&.

The spontaneous strainsui j
0 are determined from the cond

tion that the free energy density be minimum.
The spin operators and the Hubbard operators are rel

by

Sb
15& cosũ~Xn

102Xn
021!1& sinũ~Xn

2101Xn
01!,

Sn
25~SSn

1!1, ~5!

Sn
z5cos 2ũ~Hn

12Hn
21!1sin 2ũ~Xn

1211Xn
211!,

ũ5u2d,

cosd5
v0~uxx2uyy!cos 2u

A2x@x22x012~uxx2uyy!sin 2u#
.

Representing the components of the strain tensor in
form ui j 5ui j

0 1ui j
(1) , whereui j

(1) is the dynamic part of the
n

e
n

,

e

ed

e

strain tensor, which describes the vibrations of the crys
lattice, and quantizing the dynamic part in the stand
way,12 we obtain from Hamiltonian~2! a Hamiltonian de-
scribing the processes of transformation of magnons
phonons and back:

Htr5(
n

S (
M

P̃MYn
M1(

a
P̃aYn

aD ,

where

P̃M ~a!5(
k,l

~bk,l1b2k,l
1 !Tn

M ~a!~k,l!/AN;

b2k,l
1 andbk,l are the creation and annihilation operators

phonons with polarizationl, Tn
M (a)(k,l) are the transform

amplitudes, andN is the number of sites in the crystal lattic
The spectrum of elementary excitations is determined

the poles of the Green function, which in our case has
form

Ga,a8~n,t,n8,t8!52^TỸn
a~t!Ỹn8

2a8~t8!&. ~6!

HereT is the Wick operator,Ỹn
a(t) is the Hubbard operato

in the Heisenberg representation, and the averaging is d
using the total HamiltonianH. All the calculations below
will be done in the mean-field approximation.

The equation for the Green function~6! has the form of
Larkin’s equation.13 Solving it, we obtain the dispersion re
lation for coupled magnetoelastic waves:

detid i j 1
J~k!

2
G0

a~vn!b~a!ai j ~a!

1
J~k!

2
B0T2a~k,l!G0

a~vn!b~a!Tb~2k,l8!

3G0
b~vn!b~b!ai j ~a,b!i50. ~7!

In Eq. ~7! we have introduced the following notation:
B05
Dl~k,vn!

12Qll8Dl8~k,vn!
, Qll85Ta~2k,l!G0

a~vn!b~a!T2a~k,l!,

ai j ~a,b!5S 2g i~a!g i~2b! g i~a!g'
* ~b! g i~a!g'~2b!

2g'~a!g i~2b! g'~a!g'
* ~b! g'~a!g'~2b!

2g'
* ~2a!g i~2b! g'

* ~2a!g'
* ~b! g'

* ~2a!g'~2b!
D .
l’’
The functionsg'(i)(a) are determined from the relatio
between the spin operators and Hubbard operators.11

Dispersion relation~7! is valid over a wide temperatur
interval, and also for arbitrary values of the material co
stantsb i andJ0 .

3. SPECTRA OF COUPLED MAGNETOELASTIC WAVES

Let us analyze Eq.~7! for the most interesting case
-

when the wave vectorki0Y. In this geometry the nonzero
components of the phonon polarization unit vector areel

y ,
et

x , andet
z , and dispersion relation~7! decomposes into two

equations, which determine the spectra of the ‘‘longitudina
and ‘‘transverse’’ vibrations, respectively:

~11x11!U11x22 x23

x32 11x33
U50, ~8!
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where

xi j 5
J~k!

2
@G0

ab~a!ai j ~a!1B0G0
aT2a~k!b~a!G0

bTb

3~2k!b~b!ai j ~a,b!#.

This ‘‘decoupling’’ of Eq.~7! is possible because in our ca
g'(a)g i(b)50 for all a, b.

At low temperatures (T→0) we only need to conside
the lowest energy level.

The ferromagnetic~FM! phase in which the system un
der study may be found is stable in two cases: 1! b3.b1

.b2 ; 2! b1.b3.b2 . These cases actually correspond to
rotation of the magnetic field: in the first case the field
perpendicular to the easy axis, and in the second case
perpendicular to the easy plane. This can easily be see
representing the energy of the single-ion anisotro
in Hamiltonian ~1! as (b12b3)(Sz)2/21(b22b3)(Sy)2/2,
using the well-known quantum-mechanical ident
(Sx)21(Sy)21(Sz)25S(S11).

Let us consider these cases in more detail. If the sin
ion anisotropy constants are related asb3.b1.b2 , then the
magnetic fieldH is parallel to the ‘‘medium’’ magnetization
axis. Solving the dispersion relation~8!, we obtain the spec
tra of the ‘‘longitudinal’’ and ‘‘transverse’’ branches of ex
citations, which in our geometry have the form

« i~k!5AE121~E12112J~k!sin2 2ũ !;

v i
2~k!5v l

2~k!
E12112J~k!sin2 2ũ12a0 cos2 2ũ

E12112J~k!sin2 2ũ
; ~9!

«'~k!5A@E101J~k!~11sin 2ũ !#@E101J~k!~12sin 2ũ !#;

v'
2 ~k!5vt

2~k!
E101J~k!~12sin 2ũ !1a1~11sin 2ũ !

E101J~k!~12sin 2ũ !
;

~10!

where Ei j 5Ei2Ej ( i , j 51,0,21); a05v0
2/2m, a15v1

2/2m;
v l(k) andvt(k) are the spectra of longitudinally and tran
versely polarized noninteracting acoustic waves, resp
tively.

In the case when the largest parameter of the sys
under study is the exchange interaction constantJ0

@b i ,aiH), i.e., in the case of small single-ion anisotrop
the system undergoes a reorientation phase transition
the FM to the tilted phase. The soft mode in this case i
transversely polarized quasiphonon branch, and a magn
elastic gap appears in the quasimagnon spectrum. This
responds to the known results for uniaxial magnets4,9 when
the corresponding renormalizations are taken into accou

The most interesting situation is when the single-ion
isotropy constants are comparable to or even greater tha
exchange interaction constant. In that case~see, e.g., Refs. 1
4, and 5! the system can manifest purely quantum effe
such as the ‘‘quantum contraction of the spin.’’

If b̃.J0 ,H, then the mean value of the magnetizatio
as follows from Eq.~5!, is smaller than the maximum pos
a

is
by
y

e-

c-

m

,
m
a
to-
or-

.
-
the

s

,

sible value^Sz&51 and is given by

^Sz&'
H

b̃
.

This decrease is due to the fact that the ground stat
the crystal is a superposition of the statesu1& and u21& of the
operatorSz. The larger the value ofb̃, the larger the contri-
bution from theu21& state, and that leads to a decrease
^Sz&.

As an analysis of the spectra of coupled magnetoela
waves shows, in this case there do not exist values of
magnetic field for which the quasiphonon branch wou
soften. This means that the system does not undergo an
entational phase transition, and^Sz& remains always paralle
to the 0Z axis and decreases in modulus as the magnetic fi
H is decreased.

Let us now consider the second case, when the sin
ion anisotropy constants are related asb1.b3.b2 . Here
the magnetic field is parallel to the ‘‘hard’’ magnetizatio
axis. The case of small single-ion anisotropy leads to res
that are analogous to the caseb3.b1.b2 .

Let us now examine the spectra of coupled magnetoe
tic waves in a highly anisotropic biaxial FM (b i@J0).

As was shown in Refs. 1, 4, and 5, in the case when
single-ion anisotropy energy becomes equal to the excha
energy, besides the FM and quadrupole-ferromagnet~QFM!
phases there can be phases with a tensor order param
~QO phases!.

We assume that at the fieldsHc2 and Hc3 there occur
orientational phase transitions from the QO phase, charac
ized by a tensor order parameter, to the QFM~tilted! phase
and from the QFM phase to the FM phase, in which t
magnetic moment is directed along the field.

Let us study the spectra of the coupled magnetoela
waves in the field intervalsH.Hc3 andH,Hc2 .

For H.Hc3 the mean magnetization is directed alo
the field. The ground state in this case isC̃n(1), and the
lowest energy level isE1 . The mean magnetic momen
^S&'1.

The spectrum of quasiphonons in this phase is

v'
2 ~k!5vt

2~k!
ak21H2Hc3

ak21H2Hc31a1
~11!

and it softens in the low-wavelength limit forH5Hc35b
5(2b12b35b2)/4. A magnetoelastic gap «'(0)

5A2a1J0b̃/b appears in the quasimagnon spectrum~at H
5Hc3!.

Let us consider the spectrum of magnetoelastic wa
for H,Hc2 . In this field interval there occurs an inversion
the energy levels and, as follows from Eq.~4!, the lowest
level of the magnetic ion isE0 , and the ground state i
described by the functionCn(0).

It follows from Eq.~7! that thel- andt-polarized acous-
tic modes do not interact with the magnetic subsystem,
for the spectrum oft-polarized quasiphonons we have

v'
2 ~k!5vt

2~k!
ak21Hc2

2 2H2

ak21Hc2
2 2H21ã1

, ~12!
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where

ã152a1~b2b̃22J0!,

Hc25A~b1b̃22a1!~b2b̃22J0!.

At H5Hc2 a magnetoelastic gap appears in the quasimag
spectrum, with the value

«'~0!5A2a1J0b̃~b2b̃ !/b.

Analogous results have been obtained4,5 for uniaxial fer-
romagnets with large single-ion anisotropy. As we see fr
Eqs.~11! and~12!, at H5Hc3 the system undergoes a pha
transition from the FM to the QFM phase, and atH5Hc2 ,
from the QFM to the QO phase.

Let us examine the behavior of the system at arbitr
temperatures. Suppose we start in the FM phase near the
of the orientational phase transition from the FM to the QF
phase. At first glance it seem that in this phase the chang
behavior of the system will be determined solely by the te
perature dependence of^S&, which leads to a decrease
^Sz& with increasing temperature. However, in addition
this there are purely quantum effects at work. Indeed, i
low temperatures the lowest energy level in the FM phas
E1 , then as the temperature increases, the levelE1 increases,
while E0 decreases. At fields

H inv>S b2
J0

2 DA12~ b̃/b!2 ~13!

the energy levelsE1 and E0 become equal, and the mea
spin atH5H inv has the value

^Sz&H5H inv
>

1

2
A12~ b̃/b!2.

This decrease is due not to the temperature dependen
^Sz& but to the inversion of the energy levels in the FM pha
for H<H inv .

With further decrease in the magnetic field and incre
in temperature the value of^Sz& decreases, and atH5Hcr

andT5Tcr it goes to zero:̂Sz&50. The values of the critica
field and temperature are determined from the spectra o
ementary excitations and the equation for^Sz&:

Hcr5A~b2b̃ !~b1b̃22J0!. ~14!

If we setb25b350, then expression~14! goes over to
the corresponding result of Ref. 14, which was obtained
an easy-plane FM with a large single-ion anisotropy.

From the relation~5! between the spin operators an
Hubbard operators it follows that

^Sz&5cos 2ũ
exp~2E1 /T!2exp~2E21 /T!

exp~2E1 /T!1exp~2E0 /T!1exp~2E21 /T!
.

~15!

From the condition̂ Sz&50 at H5Hcr andT5Tcr and with
allowance for~14!, we obtain an equation for findingTcr :

J̃0 exp
2b2 J̃0

Tcr
2~2b2 J̃0!exp

J̃0

Tcr
54~b2J0!, ~16!

whereJ̃05J0(b1b̃)/b.
on

y
ine

in
-

t
is

of
e

e

l-

r

It is not possible to solve Eq.~16! exactly in the arbitrary
case. However, in the case of large single-ion anisotr
(b@ J̃0)

Tcr5
J̃0

3

A

ln~A25!
; A56

b

J̃0

. ~17!

The phase diagram corresponding to the situation c
sidered above is shown in Fig. 1.

Analogous phase diagrams are obtained for easy-p
FMs with large single-ion anisotropy~see, e.g., Refs. 1, 5
and 14!. However, in those papers there is no inversion
the energy levels in the FM phase.

We note that the lineHc2 separating the QO and QFM
phases depends very weakly on temperature, and it is on
the neighborhood ofTcr that this dependence is noticeabl
This is because of the weak temperature dependence o
quadrupolar order parameterq53^(Sz)2&2S(S11).

4. PHASE DIAGRAM OF A BIAXIAL FERROMAGNET

Let us consider the caseb1.b2.b3 , when the mag-
netic field lies in the planeZ0X at an anglea to the 0Z axis,
and we construct the phase diagram of the investigated
tem. The limiting cases of this geometry are conside
above~a50, a5p/2!. We assume that the single-ion aniso
ropy is large (b̃.J0).

We rotate the coordinate system around the 0Y axis by
an anglea such that the new quantization axis 0Z8(0Z8iH)
is parallel to the magnetization vector. In this local coor
nate system we introduce the new spin operatorsS̃n

x ,S̃n
y ,S̃n

z ,
in terms of which the one-site Hamiltonian~2! without al-
lowance for the magnetoelastic coupling has the form

H0~n!52H̄S̃z1
B1

2
~S̃z!21

b2

2
~S̃y!21

B3

2
~S̃x!2

1
b32b1

4
sin 2a~S̃zS̃x1S̃xS̃z!, ~18!

FIG. 1. Phase diagram of a biaxial ferromagnet forHi0Z.
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where

B15b1 cos2 a1b3 sin2 a;

B35b1 sin2 a1b3 cos2 a. ~19!

Expression ~18! differs formally from the one-site
Hamiltonian without allowance for the magnetoelastic co
pling by the presence of the last term, proportional to sina.
Therefore, if we limit consideration to the casesa→0 and
a→p/2, then we will return to the situation considere
previously ~see Sec. 3! with the replacementsb1→B1 and
b3→B3 . The phase diagram of the system at low tempe
tures (T→0) in this case is presented in Fig. 2.

Line 1, which separates the FM and QFM phases, pas
through the points Hc3 @see Eq. ~11!# and H1x

54/9(Hc3)3/2, and the tangent to this line at the point 0
determined by the equation cos 2a52J0 /b8, where
b85(b12b3)/4.

In the case when cos 2a,2J0 /b8, the system is found in
the FM phase, and only at the point 0 does it underg
transition to the QO phase, and not by a rotation of the m
netization vector but by a decrease of its modulus to zer

Line 2, which separates the QFM and QO phases, pa
through the pointsHc2 @Eq. ~12!# and

H2x5H pFb1~12p!b3p2b2

2
24a1G@b8~122p!2J0#J 1/2

,

FIG. 2. Phase diagram of a biaxial ferromagnet for an arbitrary orienta
of the external magnetic field in the planeZ0X(T→0).
-

-

es

a
g-

es

p5
1

8

b11b322b2

b12b2
,

and the equation of the tangent to line 2 at the point 0 has
form cos 2a5J0 /b8.

If the anglea satisfies the inequality2J0 /b8,cos 2a
,J0 /b8, then the system can be found in the FM or in t
QFM phase, depending on the value of the external magn
field.

If, however, cos 2a.J0 /b8, then the system can be foun
in any of three phases~FM, QFM, and QO!, depending on
the value of the field. It should be noted that on lines 1 an
~Fig. 2! the system undergoes second-order phase transit
with the unstable~‘‘soft’’ ! mode being the transversely po
larized quasiphonon branch, and a magnetoelastic gap
pears in the quasimagnon branch of excitations.

Based on what we have said, in the case of finite te
peratures the result can be presented in the form of a p
diagram in the coordinates (Ha ,T), where Ha5H f (a),
several cross sections of which are shown in Fig. 3. For
a50 cross section the form of the phase diagram was gi
previously in Fig. 1 and corresponds to the situation cons
ered in Sec. 3. Increasing the anglea leads to a change in th
values of the critical fields and temperature. Thus the val
of Hc2 , Hc3 , Hcr , andTcr in this case are functions of th
anglea, which specifies the direction of the external ma
netic field H. Their explicit form is determined by the fol
lowing expressions:

nFIG. 3. Phase diagram of a biaxial ferromagnet for an arbitrary orienta
of the external magnetic field in the planeZ0X and for arbitrary tempera-
tures.
Hc252A@b cos2 a1b̃ sin2 a2a1#@~b2b̃ !cos 2a2J0#; Hc353b cos2 a2b2b̃;

Hcr52A@b cos2 a1b̃ sin2 a1b~a3!a1#@~b2b̃ !cos 2a1b~a3!J0#; Tcr5
2Hc3

ln~A25!
; A5

3Hc3
2

b cos2 a1b̃ sin2 a
. ~20!
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Using these expressions, one can easily trace the ev
tion of the system as the anglea is increased. As we se
from Eq.~20!, as the anglea is increased, the correspondin
expressions forHc2 , Hc3 , Hcr , and Tcr decrease, i.e., the
diagram is shifted downward and is compressed in temp
ture. For a satisfying the equation cosa5$11J0 /@2(b
2b̃)#%/&, the fieldHc250, and the QO phase degenerates
the lineHa50.

5. CONCLUSION

This studies have shown that biaxial FMs have a num
of peculiar features. Of particular interest is the case
highly anisotropic magnets. In that case, as we have sh
above, phases with a tensor order parameter can arise
pending on the relationship between the single-ion ani
ropy constants, this phase can be realized in different w
The phase diagram of such systems does not have any
logs among uniaxial magnets.

The obtained phase diagrams for biaxial ferromagn
can be used to determine the existence regions of the
QFM, and QO phases for different magnitudes and directi
of the external magnetic field and for different values of t
temperature.

By taking the magnetoelastic interaction into accou
one can find out what relationships of the material consta
of the system and what magnitudes and directions of
external magnetic field correspond to phase transitions of
lu-

a-

o

r
f
n
e-

t-
s.
na-

ts
M,
s

t,
ts
e
e

reorientation type or to phase transitions occurring by a
crease in the modulus of the magnetization vector.
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

On the mechanism of transformation of icosahedral rare-gas clusters into fcc
aggregations

S. I. Kovalenko, D. D. Solnyshkin, and É. T. Verkhovtseva

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine*
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Fiz. Nizk. Temp.26, 279–282~March 2000!

The experimental diffraction patterns from Kr cluster beams are compared with the diffraction
functions calculated for rare-gas clusters with dimensions of 33103 and 13104 atoms/
cluster. The experimental results are found to correlate well with the calculation if it is assumed
that the clusters have a face-centered cubic structure with a constant number of intersecting
stacking faults. Additional confirmation is obtained for the decisive role of the kinetic factor in the
formation of the crystalline phase of the clusters. Conjectures are offered concerning the
possible reasons why the densitometer traces presented by M-F. de Feraudy, G. Torchet, and
B. W. van de Wall at the conference ISSPIC~1998! showed no substantial changes
when the cluster size was increased by more than an order of magnitude. ©2000 American
Institute of Physics.@S1063-777X~00!00403-5#
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Theoretical calculations based on the maximization of
particle binding energy indicate that a noncrystalline ph
in rare-gas clusters is stable all the way to sizes
;105 atoms/cluster. This makes it difficult to explain th
mechanism of transition of the non-crystalline phase to
characteristic face-centered cubic~fcc! structure of massive
samples, since in large atomic aggregations such a res
turing would require an expenditure of energy comparable
the heat of fusion of the crystal. Particular attention is paid
the idea that the kinetic factor plays a key role in the form
tion of the crystalline phase of the cluster. According to t
ideas developed in the theoretical papers,1,2 the coalescence
or intergrowth of icosahedral clusters during the growth o
rare-gas cluster creats regions having an fcc lattice w
stacking faults. The presence of intersecting stacking fa
gives rise to atomic steps on the surface of the cluster wh
are not overgrown during the growth, the these steps p
mote the subsequent rapid and defect-free growth of the
phase. As a result, the density of stacking faultsa decreases
as the cluster grows. This hypothesis has been confir
experimentally in Refs. 3 and 4, in which stacking fau
were detected in clusters of heavy rare gases and the de
of these stacking faults was found to decrease during gro
of the aggregation. In a recent report5 the diffraction func-
tions calculated for Ar clusters withN5104 atoms/cluster
were presented. A simulation was carried out for clust
both with stacking faults of various configurations and wi
out stacking faults. Previously a similar calculation was c
ried out for Ar clusters withN'33103 atoms/cluster.1,2

In the present study we compare the different patte
obtained in an electron-diffraction study of krypton clus
beams with the model diffraction functions given in Refs.
2, and 5 in order to further test the theoretical ideas de
oped in Refs. 1 and 2.
2071063-777X/2000/26(3)/3/$20.00
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A study of the structure of Kr clusters which are fre
from a substrate was carried out on an apparatus consis
of an supersonic cluster-beam generator and a high-en
electron diffraction device. A description of the experimen
apparatus, geometry, and procedures is given in Refs. 4
6. Figure 1 shows the diffraction patterns from Kr clust

beams with average cluster sizes ofN̄523103 and 1.5
3104 atoms/cluster. For clarity the curves have been shif
along the vertical. Plotted along the abscissa are values o
diffraction vector s54p sinQ/l, where l is the electron
wavelength andQ is the Bragg diffraction angle, and alon
the ordinate, in arbitrary units, is the diffraction intensi
I (s) multiplied by s3. In the experiment the diffraction in
tensityI (s) was determined. It was then multiplied bys3 for
convenience in comparing the experimental curves with
calculation.

The simulated diffraction functions are presented in F
2. Curves a and c were calculated for defect-free fcc rare-
clusters containing 3281 and 13104 atoms/cluster, respec
tively. Curves b and d were calculated for the same clus
sizes but with two intersecting stacking faults. It follow
from a comparison of Figs. 1 and 2 that the diffraction p
terns observed in the electron-diffraction experiment are s
stantially different from diffraction functions a and c in Fig
2, which were calculated for clusters with a defect-free
structure. Whereas on the model functions the fcc peaks
completely resolved, this is not the case for the experime
diffraction patterns in the interval ofs values investigated
On the diffraction pattern for clusters withN̄;23103

atoms/cluster~curve a in Fig. 1! the close-lying peaks, suc
as 111/200, 311/222, and 331/420, are practically un
solved. When the average cluster size is increased
N̄51.53104 atoms/cluster~curve b in Fig. 1! these peaks
~except for 331/420! are noticeably split, but the degree o
© 2000 American Institute of Physics
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208 Low Temp. Phys. 26 (3), March 2000 Kovalenko et al.
their resolution is much lower than for the curve calcula
for defect-free clusters withN513104 atoms/cluster~curve
c in Fig. 2!. Thus it becomes perfectly obvious that the stru
ture of the clusters formed in a supersonic jet do not hav
defect-free fcc structure. This conclusion is confirmed b
comparison of the experimental diffraction patterns with
model functions b and d in Fig. 2, which were calculat
under the assumption that the clusters had two intersec
stacking faults. It follows from a comparison of the expe
mental and theoretical curves that the degree of splitting
the peaks on the diffraction patterns is similar to that on
corresponding calculated curves. It should be noted, h
ever, that there is some disagreement between the heigh
the individual peaks on the experimental and calcula
curves. For example, on the model curve d in Fig. 2 (N51
3104 atoms/cluster) the 331/420 peak is considerably low
than the 311 peak, and the 422 peak is lower than the 5
333 peak, whereas on diffraction pattern b in Fig. 1N
51.53104 atoms/cluster) the height of the 331/420 peak
greater than that of the 311 peak, and the 422 peak is hi
than the 511/333 peak. This discrepancy is most likely du
the following circumstance. The simulation of the diffractio
function was carried out for a cluster of definite size, witho
allowance for the influence on the diffraction pattern of t
scattering of electrons on monomers, which were alw
present in the supersonic jet in our experiments. It follo
from Ref. 7 that the scattering curve for the electrons
monomers in the coordinatess3I -s is bell-shaped. The posi
tion of the maximum of this curve nearly coincides with t
position of the 331/420 peak. On account of the summa
of the scattering intensities, the height of the 331/420 p

FIG. 1. Diffraction patterns from Kr cluster beams with an average clu

size N̄, atoms/cluster: 23103 ~a!; 1.53104 ~b!.
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on the resultant diffraction pattern is increased substantia
and it becomes higher than the 311 peak. The different c
tribution to the heights of the diffraction peaks from th
monomer component also accounts for the raising of the
peak above the 511/333 peak.

Thus, a comparison of the experimental data with
results of the calculation confirms that Kr clusters withN
523103 and 1.53104 atoms/cluster have an fcc structu
with intersecting stacking faults. The somewhat weaker~as it
appears to us! splitting of the 111 and 200 peaks and the 3
and 222 peaks on the diffraction patterns in comparison w
the simulated functions may be due to the presence of m
than two stacking faults in the clusters. This is confirmed

r

FIG. 2. Simulated diffraction functions calculated for the case of defect-f
fcc clusters withN53281 atoms/clusters1,2 ~a! and 10 000 atoms/cluster5 ~c!
and for fcc clusters containing two intersecting stacking faults, w
N53281 atoms/clusters1,2 ~b! and 10 000 atoms/clusters5 ~d!.



e

e
th

fro

f.
if

2
th

n

nd
th
on

ic

V.

ers

209Low Temp. Phys. 26 (3), March 2000 Kovalenko et al.
the data of Ref. 4, according to which the number of ‘‘d
fect’’ planes in rare-gas clusters is equal to four.

An analysis of the results obtained in this study rais
the question of the reasons for the absence of splitting of
111/200 and 311/222 peaks on the densitometer traces
Ar clusters as the cluster size was increased fromN53
3103 to 83104 atoms/cluster~these traces are shown in Re
5!. It is possible that in that case the resolution of the d
fraction patterns was poor, for a number of reasons: 1! the
short distance from the diffraction zone to the detector;!
those authors did not directly measure the intensity of
diffraction peaks but the blackeningSof a photoemulsion by
the beams. In the case of electrons, however, the relatioS
;I t ~wheret is the exposure time! does not hold in practice
for the majority of photoemulsions, but insteadS5k log It,
where the coefficientk depends on the electron energy a
the type of photoemulsion. In addition, it is possible that
defect structure of the clusters is influenced by the conditi
-

s
e
m

-

e

e
s

of their formation in the jet, which was produced by a son
nozzle in Ref. 5 and by a supersonic nozzle in Ref. 4.
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Crowdion dynamics in a nonuniformly deformed three-dimensional crystal
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The problem of crowdion motion is formulated and analyzed as a dynamical problem of a three-
dimensional crystal lattice formed by atoms of several kinds, which interact with each
other by means of short-range pair potentials. It is explained that in order for the the crowdion
excitations of the close-packed atomic rows to be distinguishable against the background
of small dynamic deformations of the crystal as a whole, the microscopic parameters of the crystal
structure must meet certain stated requirements. The equation of motion of a crowdion in an
arbitrary elastic strain field of the crystal is derived in the Lagrangian formalism. Expressions are
obtained which relate the effective mass and the rest energy of a crowdion with the
geometric and force parameters of the crystal lattice. ©2000 American Institute of Physics.
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INTRODUCTION

Many rather complex crystal structures contain clo
packed atomic rows relatively weakly coupled with their s
rounding environment. An intrinsic interstitial atom in such
row forms a specific configuration—a smeared clump ca
a crowdion, and the vacancy also becomes delocalized, fo
ing a smeared rarefaction region that can be called an a
crowdion. These defects move rather easily along the clo
packed rows; the motion of crowdions is essentially o
cooperative nature and is fundamentally different from
diffusive motion of localized interstitial atoms or vacancie

Crowdions can play an important role in the dynam
and kinetics of radiation defects, in diffusion processes,
in several other inelastic deformation phenomena
crystals.1–7 In the physics of crystals a great deal of impo
tance is placed on the widely discussed and physically
analogy between a crowdion and the elementary carrie
plasticity—the dislocation.3,8,9 In addition, the displacement
of the atoms of a close-packed row during the motion
crowdions is an example of a soliton~nonlinear solitary
wave!, and the mathematical description of crowdions d
namics therefore has a direct relation to the problems
modern nonlinear mechanics and its applications.8–11

For a qualitative description of the basic properties o
crowdion, the Frenkel–Kontorova model of a on
dimensional crystal is widely used in the physics of crysta
This model is a chain of mutually strongly interacting atom
which undergoes one-dimensional motion in a relativ
weak static periodic potential.12 Various aspects of the non
linear dynamics in the Frenkel–Kontorova model are d
cussed in a recent review.13 In comparing this model with a
real crystal, it is assumed that the mobile chain correspo
to a close-packed row of atoms and that the periodic po
2101063-777X/2000/26(3)/8/$20.00
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tial models the interaction of this row with the other atoms
the crystal, which are assumed immobile. The properties
crowdion as a solitary wave of displacements in a thr
dimensional crystal have been analyzed in a series of pa
by Kosevich and Kovalev and their co-workers.14–17 They
proposed and analyzed a model in which a close-pac
atomic row is embedded in a highly anisotropic elastic co
tinuum. One of the main results of those papers is the c
clusion that the strain field of the crowdion in a thre
dimensional elastic medium is substantially delocalized
comparison with the exponentially localized deformatio
created by a soliton in a one-dimensional Frenke
Kontorova crystal. The second interesting result was a
scription of the acoustic emission from a moving crowdi
into the bulk of a crystal.14,15

However, a discussion of the question of the relations
between the properties of a crowdion in a three-dimensio
deformable crystal and the properties of a soliton~disloca-
tion! in the Frenkel–Kontorova model meets with certa
complexities.14,15 It it not at all clear whether it is possible t
distinguish a crowdion excitation from the other excitatio
of the crystal: free harmonic vibrations~phonons! or forced
deformations of the crystal lattice.

A special discussion and analysis is warranted for
problem of deriving the equation of motion of a crowdio
and describing the interaction of a crowdion with dynam
and static deformations created by other defects or exc
tions of the crystal and by external forces. A soliton in
Frenkel–Kontorova crystal behaves like a particle with
fective values of the self-energy and mass, and the motio
its center in the field of forces acting on the mobile chain
atoms is governed by an equation analogous to the o
dimensional equation of motion in the classic
© 2000 American Institute of Physics
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mechanics.9,13,18However, a rigorous derivation of the equ
tion of motion of a crowdion in a three-dimensional d
formed crystal, something similar to Kosevich’s derivati
of the equation of motion of a dislocation,19 has not yet been
given.

In this paper we formulate and analyze the problem
crowdion motion as a dynamical problem of a thre
dimensional crystal lattice. We consider a rather general c
of crystal structure, formed by atoms of several differe
kinds, interacting with one another by means of short-ran
pair potentials. We formulate the requirements on the par
eters of the crystal geometry and interatomic interact
which permit one to distinguish the crowdion excitations
the close-packed atomic rows against the background
small dynamic deformations of the crystal as a whole. W
obtain expressions relating the self-energy and the effec
mass of a crowdion with the microscopic parameters of
crystal. We derive an equation of motion for the center o
crowdion in an arbitrary elastic strain field of the crystal.

1. STATEMENT OF THE MODEL, THE DYNAMICAL
VARIABLES, AND THE LAGRANGIAN FUNCTION

Let us consider a complex multiatomic crystal lattice
which a close-packed row of identical atoms can be ide
fied. The chemically different species of atoms are enum
ated by an indexa, and we assume for the sake of definit
ness that the atoms of the distinguished row have indea
51. The spatial orientation of the distinguished atomic r
and the period of translations within it are specified by
vector b* , while the vector of translations of the crystal
this direction is denoted byb; in complex crystal structure
these vectors can differ in modulus. The equilibrium po
tions of the atoms in the ideal crystal structure are speci
by a set of vectorsR, and we separate it into sets of vecto
of two types:R5$r,R(a)%, wherer and R(a) are, respec-
tively, the equilibrium positions of the atoms of the disti
guished row and of the crystal matrix surrounding it. T
origin of the coordinate system for the vectorsr andR(a) is
conveniently chosen to lie at one of the atoms of the dis
guished row, that for which the energy of coupling with t
lattice is maximum~Fig. 1!.

FIG. 1. Fragment of a crystal structure with a close-packed row of at
~two-dimensional diagram!: b* andb are respectively the elementary ve
tors of translations inside and along the distinguished row;r and R(a) are
the corresponding equilibrium positions of the atoms of the distinguis
row and the crystal matrix surrounding it; 0 is the coordinate origin.
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We assume that the interatomic interaction in the crys
is described by a set of short-ranged pair potentialsUaa8(r
2r 8) ~r and r 8 are the coordinates of two arbitrary atoms!,
and each individual atom with coordinater can also be acted
on by time-varying external forces, which correspond to p
tentialsUa

(e)(r ,t).
We note that all of the main results obtained in an ana

sis of the model described above carry over without subs
tial limitations to the case of ordered rows of impurity atom
inside a crystal or to rows of adsorbed atoms on the surf
of a crystal, and also to the case of two-dimensional crys
or quasi-one-dimensional structures of the double-polym
chain type. In the case of molecular structures the ‘‘atom
of the model will of course be molecules or relative
‘‘rigid’’ monomers of the molecular chains, the internal d
grees of freedom of which can be neglected.

The atomic displacementsh(R,t) from the equilibrium
positions in the ideal crystal are written in the form

h~R,t !5u~R,t !1
bz~r,t !

b* @b* 1u~r,t !2u~r2b* ,t !#dRr .

~1!

Here d ik is the Kronecker delta;u(R,t) are arbitrary small
displacements satisfying the conditionuu(R,t)2u(R8,t)u
!uR2R8u; z stands for additional dimensionless displac
ments describing the propagation of a crowdion excitat
along the distinguished atomic rowR5r. It is important
here that the crowdion displacements described by the
ond term in ~1! are directed at all times along the vect
b* 1r (r,t)2u(r2b* ,t), i.e., along the tangent to the in
stantaneous configuration axis of the distinguished ato
row, which is bent by the elastic displacementsu(R,t) away
from its configuration 0x in the ideal crystal~Fig. 2!. The
nucleation and motion of a crowdion are accompanied
changes in the dimensionless displacementz by an amount
uzu<1.

We believe that the displacement structure specified
relation~1! best reflects the physical meaning of a crowdi
and makes it possible to separate correctly the nonlin
crowdion excitations from the linear natural or forced defo
mations of the crystal.

We denote the mass of the atoms byma and start by
considering the total displacementsh(R,t) and velocities
ḣ(R,t)[]h(R,t)/]t as the dynamical variables. Using th
notation introduced above for the interatomic interaction p
tentialsUaa8(r2r 8) and the potentials of the external field

s

d

FIG. 2. Bending of a close-packed row of atoms as a result of ela
deformations of the crystal:s—equilibrium positions of the atoms in the
undeformed crystal;d—instantaneous positions of the atoms in the d
formed crystal;b* 1u(r,t)2u(r2b* ,t) is the vector specifying the direc
tion of the crowdion displacement at the siter.
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Ua
(e)(r ,t) and taking into account the special role of the d

tinguished row of atoms, we write a general expression
the Lagrangian of the problem in the form

L5
1

2 (
a,R~a!

ma@ u̇~R~a!,t !#21
1

2 (
r

m1@ḣ~r,t !#2

2
1

2 (
a,R~a8!

(
a8,R~a8!

Uaa8@R~a!2R~a8!1u~R~a!,t !

2u~R~a8!,t !#2
1

2 (
r

(
r8

U11@r2r81h~r,t !

2h~r8,t !#2(
r

(
a,R~a!

U1a@r2R~a!1h~r,t !

2u~R~a!,t !#2 (
a,R~a!

Ua
~e!@R~a!1u~R~a!,t !,t#

2(
r

U1
~e!@r1h~r,t !,t#. ~2!

This way of writing the Lagrangian is convenient in th
there are separate expressions for the kinetic and pote
energies of the matrix~the first and third terms! and of the
distinguished atomic row~the second and fourth terms! and
for the interaction energy of the atomic row with the mat
~the fifth term!. In expression~2! it is relatively easy to make
appropriate simplifications for the problem under stud
without which further analysis would not be possible.

2. SIMPLIFIED LAGRANGIAN

Let us begin by discussing the main approximation
crowdion theory, without the use of which it would be alt
gether impossible to introduce correctly the concept o
crowdion excitation: the qualitative assumption that the
ergy of interaction of the atoms within the distinguished ro
@the fourth term in~2!# is large compared to the energy
interaction of this row with the external matrix@the fifth term
in ~2!#. In our model this postulate allows us to assume th
like the elastic strains of the crystal, the crowdion deform
tions are also small, i.e., we have the two simultaneous
equalities:

uu~R,t !2u~R8,t !u!uR2R8u,

b* uz~r,t !2z8~r8,t !u!ur2r8u. ~3!

A quantitative criterion which refines the conditions und
which the second of inequalities~3! holds, will be written
below @see Eq.~20!#. We also note that the satisfaction
equations~3! is reliant on the requirement that the potentia
of the external forces@the last two terms in~2!# be small and
have a sufficiently smooth dependence on space and tim

Satisfaction of inequalities~3!, as we know, allows one
to pass from a discrete~lattice! to a continuum approxima
tion in the description of the dynamical processes or st
deformations in a crystal, by replacing the finite differenc
of the displacements by derivatives:

ui~R,t !2ui~R8,t !5~Rk2Rk8!uik~R,t !,
-
r

tial

,

f

a
-

t,
-
-

r

.

ic
s

uik~R,t !5
]ui~R,t !

]Rk
;

z~r,t !2z~r8,t !5~ri2ri8!v iz8~r,t !,

z8[
]

]x
z, r5vx. ~4!

Hereuik(R,t) is the tensor of elastic distortions of the cry
tal, b* z8 is the local crowdion deformation of the distin
guished atomic row, andn is the unit vector in the direction
of that row; summation over repeated coordinate indice
implied. We note that the use of relations~4! means that we
are neglecting the higher-order spatial derivatives of the
placementsu andz, i.e., we are neglecting spatial dispersio
effects in the equations of motion of the crystal lattic
Clearly equations~3! are equivalent to the inequalities

uuiku!1, b* uz8u!1. ~5!

The above-formulated requirements on the exter
forces allow us to consider the time derivatives as well as
spatial derivatives of the displacements to be small, whic
equivalent to neglecting effects of retardation of the acou
waves in the dynamical processes under consideration:

uu̇u!c, b* użu!c, ~6!

wherec is the characteristic sound velocity.
The short-range character of the interatomic potent

and the smallness of the deformations allow us to repre
the Lagrangian~2! in the form of a Taylor series expansio
in the derivativesuik , z8, u̇i , andż or the finite differences
corresponding to them. The main approximation of the d
namical theory of crystals corresponds, as we know, to t
ing into account the quadratic terms in this expansion. T
accuracy is also acceptable for solving the problem which
are addressing here, although, in doing the expansion,
must take into account that in the presence of a crowd
excitation the difference of the displacements of the atom
the distinguished row and of the crystal matrix surrounding
contain the termbz, which cannot be considered to be
small quantity:

hi~r,t !2ui~R~a!,t !5biz~r,t !1ui~r,t !2ui~R~a!,t !

1
b

b*
z~r,t !@ui~r,t !2ui~r2b* ,t !#

5biz~r,t !1@rk2Rk
~a!

1bkz~r,t !#uik~r,t !. ~7!

The potential of the external forces acting on the ato
of the distinguished row can be simplified by taking in
account thatuzu<1 and assuming thatb* uzu!ur1uu:

U1
~e!@r1h~r,t !,t#'U1

~eZ!@r1u~r,t !,t#

2biFi
~ea!@r1u~r,t !,t#z~r,t !,

F~ea!~r ,t !52
]

]r
Ua

~e!~r ,t !. ~8!

In this expansion we have neglected terms of or
F (e1)uik , since we have stipulated that the external forc
F (e1) are small.
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Expanding expression~2! in the derivativesuik , z8, u̇i ,
and ż to terms of second order, taking into account the c
sequences of the translational symmetry of the crystal,
regrouping the terms for our future convenience, we obta

L5
1

2 (
a,R

ma@ u̇~R,t !#22
1

2 (
a,R

(
a8,R8

Aik
~aa8!

3~R2R8!ui~R,t !uk~R8,t !2(
a,R

Ua
~e!@R1u~R,t !,t#

1
1

2 (
r

$m1b2@ ż~r,t !#22wb2@z8~r,t !#222F@z~r,t !#%

1(
r

$m1biu̇i~r,t !ż~r,t !2bwikuik~r,t !z8~r,t !

2uik~r,t !F ik@z~r,t !#1biFi
~e1!@r1u~R,t !,t#z~r,t !%.

~9!

In writing expression~9! we have used the following nota
tion:

Aik
~aa8!~R!52

]2Uaa8~R!

]Ri]Rk
,

w52
1

2 (
r

Aik
~11!~r!r irk ,

wik52
1

2 (
r

Ani
~11!~r!rnrk ,

F~z!5 (
a,R~a!

@U1a~R~a!1hz!2U1a~R~a!!#,

F ik~z!5 (
a,R~a!

F ]U1a~R~a!1hz!

]~Ri
~a!1biz!

~Rk
~a!1bkz!

2
]U1a~R~a!!

]Ri
~a! Rk

~a!G . ~10!

In expression~9! we have neglected terms of seco
order in the small deformations,

U (
a,R~a!

@Aik
~1a!~R~a!1hz!2Aik

~1a!~R~a!!#uinukmU
!uhwikuikz8u,

assuming the stipulated smallness of the interaction of
distinguished row of atoms with the crystal matrix:

U (
a,R~a!

Aik
~1a!~R~a!!Rn

~a!Rm
~a!U!uwiku.

Turning to a discussion of the expression~9! which we
have obtained forL, we recall that the lattice vectorR
5$R(a),r% runs over all equilibrium positions of the atom

of the complex crystal lattice, and that the quantityAik
(aa8)

3(R) is the force matrix of the crystal. Therefore, the fir
three terms in~9! describe the dynamics of an ideal harmon
crystal with allowance for the effects of external forces on

The fourth term in~9! is analogous to the Lagrangian o
a one-dimensional Frenkel–Kontorova crystal. However,
-
d

e

.

e

dynamical variablez has a more general meaning than t
displacement of the atoms in the Frenkel–Kontorova mod
since in the general casez describes the displacements alo
a bent close-packed atomic row. Furthermore, as comp
with the Frenkel–Kontorova model, the parameterw and the
lattice potentialF(z) also acquire a more general meanin
w is no longer determined only by the interaction of near
neighbors, and the periodic functionF(z) can be very dif-
ferent from the sinusoidal dependenceF(z);sin2 pz used in
Ref. 12. We note that the different features that arise in
nonlinear dynamics of a one-dimensional crystal when
complex form of the potentialF(z) is used are discussed i
the aforementioned review.13

Finally, the last term in Eq.~9! describes effects due t
the interaction of linear and nonlinear~quadrupole! excita-
tions of the crystal and the influence of external forces on
motion of a crowdion. It is clear that the possibility of effe
tively separating these excitations arises in those case w
the last term in~9! can be regarded as a small correction
the other terms.

We conclude this Section with a discussion of the sali
properties of the lattice parameters and the functions~10!
from the standpoint of the analysis below.

1. The most important property of the parameterw char-
acterizing the interatomic interaction within the disti
guished close-packed atomic row is its positive definiten
(w.0), which ensures the stability of the crystal structu
The functionF(z)>0 is also positive definite, as is ensure
by the choice of the reference point for the measuremen
the interaction energy of an individual atom of the disti
guished row with the crystal matrix~see Sec. 1!.

2. A direct consequence of the symmetry properties
the crystal and of formulas~10!, which define these func
tions, is their periodicity, their vanishing at the pointsz5n
50,61,62,..., and their evenness:

F~z1n!5F~z!, F ik~z1n!5F ik~z!;

F~n!50, F ik~n!50;

F~z!5F~2z!, F ik~z!5F ik~2z!. ~11!

3. A consequence of the properties listed above is t
the first derivatives ofF(z) and F ik(z) go to zero at the
pointsz5n, and the validity of the following expansions i
the neighborhoods of these points~for uz2nu!1!:

F~z!5
1

2
k~z2n!21..., k5

]2F~z!

]z2 U
z5n

.0; ~12a!

F ik~z!5
1

2
k ik~z2n!21..., k ik5

]2F ik~z!

]z2 U
z5n

.

~12b!

4. In the particular case of centrosymmetric interatom
potentialsUaa8(r )5Uaa8(r ) the matriceswik and F ik(z)
are symmetric with respect to the coordinate indices:

wik5wki5wn ink , F ik~z!5Fki~z!. ~13!

3. CROWDION IN A RIGID CRYSTAL MATRIX

In the previous Section we saw that in a crystal capa
of undergoing elastic deformations (u(R,t)[0), the field of
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the nonlinear displacementsz(r,t) cannot be rigorously
separated from the linear excitations of the crystal. One
only hope that such a separation can be done using pertu
tion theory,14,15 provided that there exist small paramete
that permit one to treat the last term in~9! as a small pertur-
bation. Therefore, as a zeroth approximation of perturba
theory it is natural to treat the crowdion as a topologi
soliton on the distinguished row of atoms in the absence
external forces (F(ea)(r )[0), assuming that the crystal ma
trix is absolutely rigid (u(R,t)[0). This approximation cor-
responds to the Lagrangian

L05
1

2 (
r

@m1b2~ ż!22wb2~z8!222F~z!# ~14!

and the equation of motion that follows from it:

m1b2z̈2wb2z91
d

dz
F~z!50. ~15!

The topological soliton of interest is a solution of equ
tion ~15! in the form z(nx,t)5zs@n(x2xs)# ~xs5vst, vs

5const!, which satisfies the following boundary condition
at the ends of the atomic row:

zs~2`![0, zs~`!5s, zs8~6`![0. ~16!

The symbols561 denotes the sign of the soliton~crow-
dion!: the values51 corresponds to a delocalized vacanc
and s521 to a delocalized interstitial in the atomic row
The procedure of integrating Eq.~15! is well known and is
described in detail in the literature: if the functionF(z) is
even@F(sz)5F(z)#, positive definite, and satisfies the co
dition F(0)5F(s)50, then the first and second integra
can be written in the form of the following relations~see
Refs. 8 and 13!:

zs85sF c0
2

c0
22vs

2

2F~zs!

b2w
G 1/2

, c0
25

w

m1
; ~17!

E
1/2

szs dz

A2F~z!
5F c0

2

~c0
22vs

2!w
G 1/2

x2xs

b
, xs5vst. ~18!

Relation~18! defines the center of the crowdion as the po
x5xs at which the displacementzs(0)5s/2.

In what follows we will consider only comparativel
slow ~‘‘nonrelativistic’’ ! crowdionsvs!c0 , since, according
to Eq. ~17!, for vs→c0 the basic initial assumptionb* uz8u
!1 is violated, and we can no longer use the simplifi
expression~9! for the Lagranian. Since at large distanc
from the center of the crowdion,x2xs→6`, according to
conditions~16! the value of the potentialF(z) can be re-
placed by the expansion~12a!, from relation~18! we easily
obtain the asymptotic expressions for the displaceme
zs@n(x2xs)# for the slow crowdion:

szs@n~x2xs!#5H 1

2
expS x2xs

ls
D , x,xs2ls ;

12
1

2
expS 2

x2xs

ls
D , x.xs1ls ,

ls5bS w

k D 1/2

. ~19!
n
a-

n
l
f

-

,

t

d

ts

The parameterls has the meaning of the half-width o
the crowdion: the relative local deformation of the atom
row, b* zs8@n(x2xs)# is appreciably different from zero only
near its center, on an intervalxs6ls , and reaches its maxi
mum value at the center of the crowdion:

maxub* zs8u5
b*

ls
5

b*

b S k

wD 1/2

.

This relation, together with~10! and~12!, enables us to write
the basic condition for the existence of crowdions,b* uz8u
!1, in terms of the lattice parameters:

~b* !2k52~b* !2 (
a,R~a!

Aik
~1a!~R~a!!bibk!b2w

52
b2

2 (
r

Aik
~11!~r!r irk . ~20!

The additional energy of the atomic row due to the a
pearance in it of a crowdion wavezs@n(x2xs)#5zs(r
2rs), wherers5nxs5nvst, is given by

E05
1

2 (
r

$m1b2@ żs~r2rs!#
21wb2@zs8~r2rs!#

2

12F@zs~r2rs!#%. ~21!

In performing the summation over the vectorr below,
we will just use the continuum approximation:

(
r

~ ...!5E
2`

` dx

b* ~ ...!.

In this approximation the energyE0 takes the form1!

E05
1

2
ms0vs

21«s0 ;

«s05
b

b* E0

1

@2wF~z!#1/2dz, ms05m1

«s0

w
. ~22!

The parameters«s0 and ms0 have the meaning of the self
energy and the effective mass of the crowdion, and the ce
of the crowdion can be treated as a pseudoparticle endo
with those properties. When inequality~20! holds we have
ls@b* , «s0!w, andms0!m1 .

4. CROWDION AS A SOURCE OF ELASTIC FIELDS

In the last Section we saw that a close-packed ato
row placed in an absolutely rigid~undeformable! crystal ma-
trix can support a crowdion whose center moves with
arbitrary constant velocityvs . We shall assume that the in
teraction of such a crowdion with a deformable crystal m
trix and a system of sufficiently weak external forces p
serves the soliton properties of the crowdion excitation
can lead to changes in the shape of the crowdion and dis
the steady motion of its center, i.e., it can lead to a chang
the velocityvs of the crowdion during its motion. This as
sumption allows us to consider the coordinate of the cen
of the crowdion to be some, in general nonlinear, function
time xs(t) and to consider, in addition to the elastic displac
mentsu(R,t), velocities u̇(R,t), and distortionsuik(R,t),
the functionsxs(t) andvs(t)5 ẋs(t) as dynamical variables
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of the crystal. The formal substitution of the solitonz
5zs@r2rs(t)# described in the previous Section into th
function ~9! converts it to a function of the set of dynamic
variables indicated above:

L5Lcs$u~R,t !,u̇~R,t !,uik~R,t !,xs~ t !,vs~ t !%.

The expression thus obtained will be considered as
Lagrangian of a crystal containing a crowdion and will d
termine the combined space-time evolution of the elastic
placements of the atoms of the crystalu(R,t) and of the
crowdion centerxs(t).

Treating the motion of the center of the crowdion
specified and usingLcs , we can obtain a Lagrangian equ
tion of motion for the crystal:20

d

dt S ]Lcs

]u̇i
D1

]

]Rk
S ]Lcs

]uik
D2

]Lcs

]ui
50. ~23!

The transition from this equation to the equation of moti
for the displacementsu(R,t) in Newtonian form for the
slow-crowdion case under consideration can be done in
approximation linear in the velocityvs , neglecting terms of
order vs

2/c2!1 and effects of retardation of the elast
waves. In this approximation the following relations a
valid:

żs52vszs8 , z̈s52 v̇szs8 . ~24!

Substitutingz5zs@r2rs(t)# into Eq. ~9! and using Eqs.
~23! and ~24!, we obtain

maüi~R,t !1 (
a8,R8

Aik
~aa8!~R2R8!uk~R8,t !

5Fi
~ea!@R1u~R,t !,t#1Fi

~s!~R,t !, ~25!

Fi
~s!5dRrH m1bi v̇szs8~r2rs!1

]

]rk
F ik@zs~r2rs!#

1bwik

]

]rk
zs8~r2rs!J . ~26!

On the right-hand side of Eq.~25! are the external force
F(ea) and also the forceF(s), which determines the additiona
elastic deformation of the crystal under the influence of
crowdion. In writing this force we have neglected the te
zbk]Fk

(e1)/]Ri , which takes into account the abov
stipulated long-wavelength character of the external forc

The long-wavelength character of the forcesF(ea) and
the relatively small values of the phonon and crowdion d
placements allow us to assume thatF(ea)'F(ea)@R1u(e)

3(R,t),t#. In this approximation the general solution o
equation~25! can be written in the form of a superposition
three types of displacements:

u5u~ph!1u~e!1u~s!. ~27!

Here u(ph) are the free vibrations of the crystal~acoustical
and optical phonons!, u(e) are the displacements under th
influence of the external forcesF(ea), and u(s) are the dis-
placements arising as a result of the presence of the crow
in the crystal.

In this Section we are mainly interested in the displa
ment fieldu(s)(R,t). In the quasistatic approximation~i.e.,
e
-
s-

n

e

.

-

on

-

not including the retardation of the elastic waves! these dis-
placements are the decaying~at distances far from the cente
of the crowdion! solution of the equation

(
a8,R8

Aik
~aa8!~R2R8!uk

~s!~R8,t !5Fi
~s!~R,t !.

Assuming the~tensor! Green functionGik
(aa8)(R) is known

for the equation of equilibrium of the crystal, one can wr
the displacement fieldu(s)(R,t) in the form2!

ui
~s!~R,t !5 (

a8,R8
Gik

~aa8!~R2R8!Fk
~s!~R8,t !.

After substituting expression~26! into this formula and
doing some straightforward manipulations, we can write
displacementu(s) in the form

ui
~s!~R,t !5(

r8
H m1v̇szs8~r82rs!bkGik

~a1!~R2r8!

1@bwknzs8~r82rs!1Fkn@zs~r82rs!##

3
]

]Rn
Gik

~a1!~R2r8!J . ~28!

An explicit relation between these displacements and the
ordinate and velocity of the center of the crowdion can
obtained at distancesuR2rsu@ls , taking into account the
exponential localization of the functionszs8(r2rs) and
F ik@zs(r2rs)# on the 0x axis around the center of the crow
dion rs @see the asymptotic expressions~12b! and ~19!# and
the smooth~power-law! character of the coordinate depe
dence of the Green function and its derivative:

ui
~s!~R,t !5qsm1vkGik

~a1!~R2rs!v̇s

1~qswkn1wkn!
]

]Rn
Gik

~a1!~R2rs!, ~29!

uR2rsu@ls ;

qs5
sb

b*
5b(

r
zs8~r!, w ik5

bw1/2

b* E
0

1 F ik~z!

A2F~z!
dz.

In the absence of phonons and external forces, the t
displacements of the atoms of the distinguished row in wh
the crowdion is located are described, according to Eq.~1!,
by the formula

h i
~s!~r,t !5ui

~s!~r,t !1@bi1bkuik
~s!~r,t !#zs~r2rs!. ~30!

From formulas~28!–~30! we obtain a qualitatively new
feature of the deformation fields generated by a crowdion
a three-dimensional crystal in comparison to the crowd
~soliton! deformations in a Frenkel–Kontorova crystal. Th
components of the distortion tensoruik

(s)(R,t) that correspond
to the displacements~29!, both in the bulk of the crysta
(R5R(a)) and inside the distinguished atomic row (R5r)
fall off with distance from the center of the crowdionrs as
the spatial derivatives of the components of the Green fu
tion, i.e., by a power law, whereas in a one-dimensio
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crystal the crowdion creates only exponentially localized
formationszs8(r2rs). We note that the conclusion that th
elastic fields created by the crowdion fall off by a power la
far from the center was first stated in Refs. 14–17.

5. CROWDION EQUATION OF MOTION

Expression~27! uniquely determines the deformation
the crystal if the law of motionrs(t) of the center of the
crowdion is known. However, in order that the description
the dynamics of a crystal containing a crowdion be co
pletely self-consistent and closed, it is also necessary to
the equation determining the functionrs(t) at specified elas-
tic deformations of the crystal, i.e., the equation of moti
for the center of the crowdion.

A crowdion in a three-dimensional crystal, as in
Frenkel–Kontorova model crystal, is a self-trapped coll
tive excitation of the atomic displacement field, and its eq
tion of motion will therefore be of a field origin. The metho
of obtaining field equations of motion was developed
Lorentz in a derivation of the equation of motion of th
electron, and in the physics of crystals it was used effectiv
by Kosevich19 in a derivation of the equation of motion of
dislocation. We will also use a variant of this method for t
solution of the problem of interest to us here.

We consider a crowdion as a particle whose motion
the bulk of the crystal can be described by the dynam
variablesrs5nxs(t) andṙs5nvs . We assume that the crys
tal contains free vibrations~acoustical and optical phonons!
u~ph!(R,t) and driven displacements excited by extern
forces,u(e)(R,t), and we treat these fields as specified fun
tions of the coordinates and time. Substituting the expres
z5zs(r2rs), the general expression for the displacem
fields ~27!, and the expression for the displacement field c
ated by the crowdion~28! into the Lagrangian~9!, we can
separate off from it the last two terms as a separate unitLs ,
which will depend on the dynamical variables of the cro
dion and will include the external fields and forces as para
eters. Some of the terms of this separate unit can be in
preted as the energy of interaction of a crowdion with
external fields, while the terms due to the displacementsu(s)

describe its self-effect. The quantityLs assumes the usua
form of the Lagrangian of a particle in classical mechani
Ls5Ls$xs ,vs ;u~ph!1u(e),F(e1)%, if it is constructed in the
quadratic approximation in the velocitiesvs and the terms
proportional to the accelerationv̇s in ~28! are neglected in
the description of the self-effect.

Taking into account the self-effect of the crowdio
through a crystal having a finite elastic compliance leads
renormalization of the bare values of the effective massms0

and rest energy«s0 :

Ls5
1

2
msvs

22«s2(
r

$m1vsbi@ u̇i
~ph!~r,t !1u̇i

~e!

3~r,t !#zs8~r2rs!1@uik
~ph!~r,t !1uik

~e!~r,t !#

3@bwikzs8~r2rs!1F ik~zs!#1biFi
~e!@r1u~e!

3~r,t !,t#zs~r,t !%. ~31!
-

f
-
ve

-
-

ly

n
l

l
-
n
t
-

-
-
r-

e

,

a

ms5ms012m1b (
r,r8

]2Gik
~11!~r2r8!

]rn]rm
v ivmzs8~r!

3$bwknzs8~r8!1Fkn@zs~r8!#%; ~32!

«s5«s01(
r,r8

]2Gik
~11!~r2r8!

]rn]rm
$bwimzs8~r!

1F im@zs~r!#%$bwknzs8~r8!1Fkn@zs~r8!#%. ~33!

Analysis of these expressions shows that renormalization
to the self-effect is not weak: the additional terms in~32! and
~33!, generally speaking, are quantities of the same orde
ms0 and «s0 . In order for the renormalization effects to b
weak, it is necessary that the properties of the crystal m
certain special requirements in order that the component
the Green function tensorGik

(11) be anomalously small~in the
terminology of Refs. 14 and 15—strong anisotropy!.

Expression~31! is the Lagrangian of a crowdion execu
ing a slow motion in specified external fields. HavingLs and
following the general rules of the Lagrangian formalism, w
can write the equation of motion of a crowdion in the for

d

dt S ]Ls

]vs
D2

]Ls

]xs
50. ~34!

In going from~34! to the Newtonian form of the equation o
motion it is helpful to take into account the exponentia
‘‘sharp’’ character of the functionszs8(r2rs) andF ik@zs8(r
2rs)# against the background of the smooth coordinate
pendences of the external fields, as this was done in
derivation formula~29!. This lets us take the values of th
external fields at the pointr5rs out from under the summa
tion overr. As a result, the equation of motion of the crow
dion takes the final form

msv̇s5qsv iFi
~e1!@rs1u~e!~rs ,t !,t#

1qsm1v i

]2

]t2 @ui
ph~rs ,t !1ui

~e!~rs ,t !#2~qswik

1w ik!
]

]xs
@uik

ph~rs ,t !1uik
~e!~rs ,t !#. ~35!

Expressions for the constants of the lattice-crowdion inter
tion wik andw ik are given in~10! and ~29!.

Now turning to a discussion of the equations obtain
let us mention a few of the important features of the infl
ence exerted on the crowdion by fields and forces externa
it.

1. The main part of the terms on the right-hand side
the equation of motion~35! is proportional to the paramete
qs5bs/b* , which plays the role of an effective ‘‘charge’’ o
the crowdion with respect to the external fields. Thus
directions of the corresponding forces are different for po
tive (s51) and negative (s521) crowdions. In addition,
there is also a force component due to the elastic distort
of the crystal, which does not depend on the sign of
crowdion. It should be noted, however, that this force
comparatively small, since in the model under study the c
stants of the crowdion-deformation interaction satisfy the
equality uw iku!uwiku.
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2. For quasistatic deformations of the crystal a crowd
is acted on by the deformation-related forces only in
presence of gradients of the elastic distortions. If the in
atomic interaction is not centrosymmetric (wikÞwki ,w ik

Þwki), then forces arise under the influence of both nonu
form deformationsuik

(e)1uki
(e) and nonuniform rotationsuik

(e)

2uki
(e) .
3. The deformation of the crystal in an essentially d

namic regime gives rise to specific forces of an inertial o
gin, proportional to]2u(e)/]t2. The appearance of thes
forces is completely natural, since the crowdion excitat
moves within an atomic row, which, in turn, moves under t
influence of the external fields.

4. One should also note an important feature of
coordinate-time dependences of the forceF(e1). Even for
small deformations of the crystaluuik

(e)u!1 the corresponding
displacementsu(e) of individual parts of the crystal can b
rather large. Therefore, in the description of the influence
external fields on the crowdion it is necessary to take i
account the possible large movements of its center in sp
together with the corresponding parts of the crystal.

Let us conclude with a discussion of another import
question that has direct bearing on the dynamical prope
of a crowdion. The equation of motion~35! obtained above
takes into account only forces of elastic origin~so-called
conservative forces!. In real situations various nonconserv
tive ~frictional! forces are present and can play an import
role. These include phonon and electron drag, radia
losses, etc. Taking the frictional forces into account will gi
rise to additional terms in the equation of motion~35!, and
these will be analyzed in separate publications.

In addition, in certain cases an important role in t
crowdion dynamics can be played by a conservative fo
not included in~35!—the Peierls force, which arises whe
the discreteness and translational symmetry of the cry
is taken into account in greater detail~see footnote 1 from
Sec. 3!.

CONCLUSIONS

We have constructed a microscopic theory of the
namical properties of crowdions—specific nonlinear exc
tions of a crystal structure which arise on close-pack
atomic rows that interact relatively weakly with the crys
matrix.

The problem of the crowdion motion is formulated a
analyzed as a dynamical problem of a three-dimensio
crystal lattice formed by atoms of several kinds with a sho
range interatomic pair interaction. We have elucidated
microscopic meaning of the parameters used in the phen
enological models of crowdions.

We have stated the requirements on the force and g
metric parameters of the crystal that must be satisfied in
der for it to be possible to distinguish the crowdion exci
tions against the background of the dynamic elas
deformations of the crystal as a whole.
n
e
r-

i-

-
-

n
e

e

f
o
ce

t
es

t
e

e

al

-
-
d
l

al
-
e
m-

o-
r-
-
c

We have derived the equation of motion of a crowdi
in a nonuniformly deformed crystal in the framework of th
Lagranian formalism and have discussed the physical na
of the forces acting on the crowdion.

We have obtained equations relating the self-energy
effective mass of a crowdion with the microscopic para
eters of the crystal.
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a deeper understanding of the issues touched upon in
paper.
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1!Taking the discreteness into account leads to a correction to the crow

energy which is periodic in the coordinatexs5vst and is analogous to the
Peierls energy for a dislocation.8,13

2!The static Green function of the crystal in the lattice approximation
determined by the equationSa9,R9Ain

(aa9)(R2R9)Gnk
(a9a8)(R92R8)

5daa8dRR8d ik and by the natural condition that its components go to z
at uR2R8u→`.
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Dislocation-related inelastic phenomena at different damping levels
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A numerical investigation is made into the dynamics of steady-state oscillations of an isolated
dislocation loop over a wide interval of forced oscillation frequencies and at different
levels of damping. The dependence of the dislocation-related strain and power dissipation on the
external stress is found for different levels of damping. The amplitude dependences of such
integral characteristics of the dynamics of dislocation motion as the internal friction, the elastic-
modulus defect, and the ratio of the two are investigated. A critical value of the damping
level of the dislocation loop is found at which the dislocation hysteresis begins to lose its static
character and starts to take on dynamic traits. The features of the formation of dislocation
hysteresis under conditions of its transformation from a static to a dynamic type are established.
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The quasiviscous drag on dislocations when a pulse
some kind of elementary excitation is applied is sharply
duced on going to the low-temperature region. This cha
is especially strong for superconductors at theNS transition.
In turn, the quasiviscous drag, which is characterized b
damping coefficientB, has a substantial influence on the pr
cess by which dislocation loops overcome local pinning c
ters and, hence, on the dislocation-related inelastic prope
of crystals~elastic-modulus defect, internal friction!.1–12One
expects that increasing the frequencyv of the external force
will not only lead to quantitative changes but will qualit
tively alter the way in which the inelastic properties a
formed. In this connection it is important to study th
dislocation-related inelastic phenomena over wide range
values ofB andv. In particular, studies of this kind can yiel
information about the influence of the forced oscillation fr
quency on the change in the dislocation-amplitud
dependent internal friction at theNStransition and also abou
the change in the dynamic characteristics of a dislocation
the electronic viscosity coefficient decreases. A theoret
analysis of the influence of viscosity on the dynamics
dislocations and the dislocation-related internal friction1–12

shows that the physical picture of the phenomenon in
general case is complicated. In particular, it is found tha
viscosity-related renormalization of the depinning stress
dislocation segments occurs, that the depinning process
not always have a catastrophic character, that the influenc
the viscosity is a substantially nonlinear effect, and that
dislocation hysteresis loses its static character and begin
take on dynamic traits as the damping level increases.12 The
results of the well-known Granato-Lu¨cke13 and Rogers14

theories, which describe the amplitude-dependent los
turn out to be valid only in the particular limiting case
2181063-777X/2000/26(3)/7/$20.00
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weak damping of the dislocation loop. We note that the
fluence of the level of damping of the dislocation loop on t
internal friction was investigated analytically in Ref. 12, b
the complexity of the equations of motion did not permit
detailed analysis of the phenomenon or a determination o
the characteristics of the internal friction. The influence
the viscosity on the dislocation-amplitude-dependent inter
friction was investigated by numerical methods in Refs.
and 16 for the case of pinning centers distributed over
entire glide plane. In Ref. 15 the results of the simulati
were presented only for one frequency,n5105 Hz, and four
values ofB; consequently, there was no systematic analy
of the influence of the damping level on the internal frictio
We note that in Ref. 15, unlike Ref. 13, the dislocation lo
did not have sites of rigid attachment, and for this reason
linear tension exerted no restoring force. Thus the mode
Ref. 15 does not correctly reflect the connection between
level of damping and the dislocation-related losses in
amplitude-dependent region. In Ref. 16 the decrement
calculated in the quasistatic approximation for a zero eff
tive frequency of the external stress. For this reason, in R
16, as in Refs. 13 and 14, the treatment of the energy lo
in the amplitude-dependent region did not include the ca
of practical importance.

The goal of the present study was to carry out a num
cal analysis of the dynamics of oscillation of a dislocati
loop and of inelastic effects over a wide range of oscillati
frequency and viscosity.

COMPUTATIONAL MODEL AND PROCEDURES

We analyzed the behavior of an isolated dislocation lo
of length LN with rigidly fixed ends and and having wea
pinning centers along its initially rectilinear position. Th
© 2000 American Institute of Physics
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coordinates of these centers along the dislocation line
specified by a pseudo-random number generator, which
to an exponential distribution law for the dislocation se
mentsLc with respect to lengths~Lc is the distance betwee
weak centers!. The analysis was carried out in the we
known linear-tension approximation for an activationless
pinning of the dislocations from the weak centers;LN was
varied over the interval 1026– 1024 m, and the ratioLN /Lc

was varied from 10 to 150. For the computations a sh
modulusG51010Pa was adopted, along with a Burgers ve
tor b53310210m, a linear tension of the dislocationC
51029 N/m, and a linear effective mass density of the d
location A510215kg/m. The viscosity was varied over th
interval 1028 N•s/m2,B,1023 N•s/m2 ~typical values in
most materials range from 1027 to 1024 N•s/m2!.4 The ex-
ternal stress varied ass5s0 sin(vt), wheres0 is the ampli-
tude of the alternating stress, andv52pn was varied over
an interval corresponding to frequencies 103 Hz,n,2
3106 Hz. The flexure of the dislocation loop always r
mained much smaller than its length. The equation of
oscillations of the dislocation loop had the form

A]2u/]t21B]u/]t1C]2u/]x25bs0 sin~vt !

1b(
i 51

n

t i@~x2xi !/x0 ,~u2ui !/u0#, ~1!

wheret i is a term describing the stress arising as a resul
the interaction of the dislocation with the pinning center
the coordinates (xi ,ui) and x0 and u0 are the characteristic
dimensions of the interaction region of a pinning center w
a dislocation in thex and u directions ~they had a value
1029– 1027 m!. For a description of the interaction of a di
location with a pinning center we used the approximation16

t~u!H t0s~12s!n for usu<1,

0 for usu.1 J ~2!

for n52 andn5500, wheres5(u2ui)/u0 . The maximum
interaction force of a dislocation with a pinning center w
always much smaller than the linear tensionC, and the
‘‘angle of attack’’ did not exceedp/10.

In the framework of the above model we calculated
dynamic characteristics of a dislocation loop during its os
lations with various amplitudes and also the integral char
teristics of the loop, such as the hysteretic internal frict
and the elastic-modulus defect. We investigated the follo
ing relationships describing the dynamics of a dislocat
loop:

the dependence of the shapeu(x) of the dislocation loop
on time and on the external stresss;

the dependence of the phase shift of the displacemen
different parts of the dislocation loop~with respect to the
phase of the external stress! on the damping level;

the dependence of the mean dislocation strain« on s;
the dependence ons of the powerP dissipated by the

dislocation loop.
For integration of the equation of motion~1! we used

three numerical methods which gave good agreement: M
so’s method,17 and explicit and implicit finite-difference
methods.18 The main results were obtained by an implic
finite-difference method which permitted working with th
as
ed
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largest time step. Whenever possible, the results obtaine
the numerical methods for steady-state oscillations of
loop were compared with the data from an analytical tre
ment. The calculated characteristics were not affected
changes in the initial conditions in Eq.~1! and remained
constant in any subsequent oscillation period fort.t0 ,
wheret0 is the time required for the transient oscillations
die out. The value oft0 depended on the values ofv andB
and was found by an empirical method. The maximum
locity of the segments of the loop did not exceed 800 m
The energyDW dissipated by the dislocation loop over a
oscillation periodT was estimated as the area of thes~«!
hysteresis loop:

DW5E
t i

t i1T

s~ t !d«~ t !. ~3!

The dislocation-related strain was determined from the a
of the figure under the dislocation loop:

«5ūbLN , ~4!

where

ū5~1/LN!E
0

LN
u~x!dx. ~5!

The following expressions were used for the logarithm
damping decrementd and the modulus defectDG/G:

d5DWG/s0
2, ~6!

DG/G5G/~ps0!E
0

2p

«~s!sin~vt !d~vt !. ~7!

For presenting the results in a compact form it is help
to transform to normalized dimensionless parameters. S
the individual results were to be compared with the data
Refs. 12–14, and also because of the form of Eq.~1! and its
boundary conditions, we chose the following normalized c
ordinatesj andh and normalized timeu:

j5x/LN ;h5u/LN ;u5~ t/LN!~C/A!1/2.

Equation~1! in the normalized coordinates has the form

1

4
]2h/]u21g]h/]u2

1

4
]h2/]j2

5S1(
i 51

n

f@~j2j i !/j0 ,~h2h i !/h0#, ~8!

where g5BLN /@4(AC)1/2# is the normalized viscosity,S
5bsLN /(4C) is the normalized stress,f5(bLN/4C)t@(j
2j i)/j0 ,(h2ni)/h0# is the force law of the interaction be
tween a weak pinning center and the dislocation in the n
malized coordinates, andj0 and h0 are the normalized di-
mensions of the interaction region of a pinning center w
the dislocation in thej andh directions. The expression fo
the normalized frequency has the formV5vLN(A/C)1/2.
With this normalization of the variables the dimensionle
quantitygV determines the level of damping of the disloc
tion loop and matches the analogous parameter used in
12. Although the characteristics of the inelasticity and dis
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cation dynamics are presented as functions of the normal
variables, in the discussion of the results we will also use
real values of these variables.

RESULTS

The oscillations of the dislocation loop and the inelas
phenomena at different damping levels were investigate
the amplitude interval 0,S0,5S0c , whereS0c is the nor-
malized critical stress amplitude above which the activati
less depinning of the dislocation loop begins. The followi
relationships were established. It was found that the de
ning of the dislocation loop always had a catastrophic ch
acter, both in the initial state of the loop along the pinni
centers and in the repinned state during the motion. The
pinning started at the pinning center with the maximum s
of the lengths of the adjacent segments and then propag
along the whole length of the loop. The propagation time
the depinning was always less than a quarter of the osc
tion period except for the case with the largest values of
productgV. The shape of the dislocation looph~j!, the am-
plitude dependence of the internal frictiond(S0), and the
modulus defectDG/G(S0) changed qualitatively asg andV
were varied but remained constant under the conditiongV
5const. This was observed in the entire interval ofS0 , in-
cluding in the amplitude-dependent region, and therefore
data on the influence ofB andv on the investigated charac
teristics are presented as functions of the product ofgV.

As LN /Lc was varied, the functionsd(S0) and
DG/G(S0) did not undergo any qualitative or substant
quantitative changes, and they are therefore presented
fixed value of LN /Lc . Thee quantitative relationships de
scribing the influence ofLN /Lc on the amplitude depen
dences will be given separately. Figure 1 shows the am
tude dependences ofd, DG/G, and of their ratior for
various values ofgV in the interval 2.531023,gV,25 for
LN /Lc520. For LN /Lc.12 in the entire amplitude
independent regiond i increases in proportion togV. The
character of the influence ofgV on the amplitude depen
dences ofd and DG/G attests to the existence of a critic
damping level (gV)c50.025 such that under the conditio
gV,(gV)c the internal friction is independent ofg andV.

The values of the critical amplitudeS0c obtained from
the functionsd(S0) andDG/G(S0) at the same value ofgV
are equal. AsgV increases, the critical amplitudeS0c in-
creases~Fig. 2!. Although for values in the regiongV
,(gV)c the damping levelgV does not affect the function
d(S0) andDG/G(S0), for gV.(gV)c they change substan
tially and behave in qualitatively different ways. ForgV
.(gV)c50.025 the d(S0) curves become more gradu
with increasinggV, and the maxima on these curves a
shifted to largerS0 , and the value ofd at the maximum of
the d(S0) curve increases with increasinggV, reaching its
highest value atgV'2.5. At largergV the maximum on the
d(S0) curve gives way to a plateau region on whichd re-
mains unchanged all the way out to the maximum values
S0 . The plateau begins forS0.(1.5– 2)S0c

0 , whereS0c
0 is the

value ofS0c for gV,(gV)c . The value ofd on the plateau
region decreases with increasinggV.

In contrast tod(S0), the DG/G(S0) curves are mono-
tonic, and they shift to largerS0 and become more gradua
ed
e
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with increasinggV ~Fig. 1b!. For S0.1.5S0c
0 theDG/G(S0)

curves exhibit a plateau. The modulus defect and the de
ment decrease monotonically with increasinggV on this part
of the curves.

The values of the ratior (S0) obtained forgV,(gV)c

do not depend ongV and have a maximum value of 1.8–1.
andr decreases with increasingS0 ~Fig. 1c!. However, asgV
increases, forgV.(gV)c , the maximum value ofr in-
creases, reaching 14.0–16.0, and the position of the m
mum on ther (S0) curve is shifted to larger values ofS0 .

For detailed analysis of the influence of the dampi
level gV on the amplitude-dependent inelastic phenome
we studiedd(gV)S05const

andDG/G(gV)S05const
at fixed val-

ues ofS0 ~Fig. 3!. These curves were obtained for differe
valuesS05const from the whole range of stress amplitud
With increasingS0 the maximum on thed(gV)S05const

curves
initially shifted to larger values ofgV, but above S0

>1.5S0c
0 the position of the maximum along thegV axis

FIG. 1. Amplitude dependence of the damping decrement~a!, modulus de-
fect ~b!, and their ratior 5dh /(DG/G) ~c! for different values of the prod-
uct gV: 0.000031~1!, 0.031~2!, 0.31~3!, 0.53~4!, 0.95~5!, 1.2 ~6!, 2.0 ~7!,
3.1 ~8!, 4.1 ~9!, 6.2 ~10!, 9.3 ~11!, 14 ~12! ~a,b!; ,0.025~1!, 0.25~2!, 1 ~3!,
2.5 ~4!, 3.25~5!, 5 ~6!, 7.5 ~7! ~c!. K15(4LGb2LN

2 )/(p3C), whereL is the
length of the dislocation lines per unit volume.

FIG. 2. Normalized critical amplitude of the external stress correspondin
the onset of depinning versus the damping levelgV.
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remained unchanged. ForS0>1.5S0c
0 the value of the decre

ment in the region of the maximum and in the entire reg
to the right of the maximum was unaffected by changes
the fixed values ofS0 at which the curves ofd(gV)S05const

were obtained. Similarly, increasingS0 in the region S0

.1.5S0c
0 had no effect onDG/G(gV)S05const

in this same
range ofgV values. Figure 3 shows a semilogarithmic p
of the curvesd(gV)S05const

andDG/G(gV)S05const
, obtained

for two values ofS0 , and the curve for the decrement in th
absence of pinning centers on the dislocation loop. This
curve did not change asS0 was increased. At values ofgV
corresponding to the region of the maximum and to the ri
of the maximum it corresponds to thed(gV)S05const

curves
obtained in the presence of pinning centers on the disloca
loop. The curves ofDG/G(gV)S05const

are monotonically de-
creasing, and the region of their most rapid fall always co
cides with the position of the maximum on the analogo
curve of the decrement.

IncreasingLN /Lc from 10 to 150 led to changes i
d(gV)S05const

and DG/G(gV)S05const
only in the region to

the left of the maximum on the curve of the decreme
(gV,2.5), and the greatest changes in the curves were
served forgV,(gV)c , but these changes were not impo
tant. For example, increasingLN /Lc from 10 to 150 causedd
to increase by only a factor of 1.2.

Figure 3 shows the four characteristic regions. In reg
I the decrement is practically independent ofgV, andd(S0),
after reaching a maximum, falls off asS0

22. In regionII the
d(gV)S05const

curve is close to linear, and in regionIII it has
a maximum. RegionIV corresponds to the interval ofgV
values to the right of the maximum, and here the loss
inversely proportional togV.

Figure 4 shows the dislocation-related straine and the
power P dissipated by the dislocation loop as functions
the external stressS. These curves, which were obtained f
different values ofgV but at the same amplitudeS0 , have
the form of hysteresis loops. The character of the hyster
loop changes qualitatively asgV is increased. At values o
gV corresponding to regionI in Fig. 3 the functione(S)
during the unloading part of the oscillation period is prac
cally linear. The dislocation loop, as it returns to its initi
position, approaches the line of pinning centers at zero

FIG. 3. Damping decrement and elastic modulus defect~at fixed values of
the amplitude of the external stress! versus the damping levelgV: h,n—
the decrement forS0 /S0c

0 51.5 and 3, respectively;m,j—the defect modu-
lus for S0 /S0c

0 51.5 and 3, respectively;L—the decrement in the absenc
of pinning centers on the loop; the lines ——and——correspond to the
defect modulus and decrement calculated according to the Granato-L¨cke
theory in the absence of pinning centers on the dislocation loop.
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ues ofS with nearly its linear equilibrium shape. AsS in-
creases further, the dislocation loop, after its complete de
ning, always executes damped oscillations with a freque
close to the natural frequencyv05(2LN)21(C/A)1/2. The
P(S) plot shown in Fig. 4b indicates that the dissipation
energy by the dislocation loop occurs predominantly at
time immediately following its depinning and arrival at th
equilibrium position. Increasing the amplitudeS0 to the
maximum values in the indicated range did not alter
aforementioned features of all the curves for values ofgV
corresponding to regionI.

For values ofgV corresponding to regionII in Fig. 3 the
«(S) curve has a qualitatively different form~Fig. 4a!. The
dislocation loop returns to the pinning centers at nonz
values of the stress. At a fixedS0 the stress at which the
dislocation loop returns to the centers increases with incre
ing gV, and the extent of the region of direct proportionali
on the «(S) curve nearS0c becomes shorter. ForS0 not
much greater thanS0c , this part of the«(S) curve becomes
shorter asgV increases, but it does not vanish complete
even at the largest values ofgV. As S0 increases, however
this part does vanish completely forgV.(gV)c ~Fig. 5a!.
Here the hysteresis loop becomes elliptical, and with incre
ing gV the ellipse rotates in such a way that the angle
tween its semimajor axis and the stress axis decreases.
elliptical hysteresis loops obtained at fixed values ofgV but
for different S0 have parallel orientations of their semiaxe
On going to regionsIII and IV the continuing growth ofgV
at fixedS0 causes further changes in the elliptical hystere
loop: its area and the angle between the semimajor axis
the stress axis decreases~Fig. 4a!. It was found that at allgV
for which the dislocation loop atS'S0c returns to the pin-
ning centers the curves of d(gV)S05const

and
DG/G(gV)S05const

coincide with the analogous curves o

FIG. 4. The dependence of the dislocation-related straine ~a! and the power
P dissipated by a dislocation loop~b! on the normalized external stress, at
fixed amplitudeS0 /S0c

0 52 and various values ofgV: 0.03 ~ !, 0.3
~ !; 3, in the absence of pinning centers on the dislocation lo
~——!, and 15~• • • •!. K25(LbLN), K35(4C3/2)/(LNA1/2).
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tained in the absence of pinning centers on the disloca
~Fig. 3!.

This coincidence of the curves, which started in reg
II , was also observed in regionsIII and IV. With increasing
S0 the value ofgV at which these curves begin to coincid
decreases, but even at the largest values ofS0 the damping
level never shifted farther to the left than the middle of
gion II . For S052S0c

0 the coincidence begins atgV51.25.
As S0 increases further the external stressSat which the loop
returns to the pinning centers continues to increase,
when S exceeds S0c a coincidence of the curve
d(gV)S05const

is observed. However, even though t
d(gV)S05const

curves for different values ofS0 coincide in the
region of the maximum and to the right of it, the behavior
the loop during its passage through the pinning cen
changes asS0 increases. When the amplitudeS0 reaches val-
ues of (3 – 4)S0c

0 , the shape of the dislocation loop deviat
substantially from the equilibrium shape as it returns to
pinning centers. The parts of the loop adjacent to its ed
lead the central part in phase. Now the depinning from
centers begins independently on the two parts adjacent to
ends of the loop and then propagates to the central part o
loop ~Fig. 6!. This behavior of the dislocation loop is man
fested increasingly asgV increases from the right half o
region II to regions III and IV. In these regions, forS0

5(2.5– 3)S0c
0 a situation arises in which the edge regions

the loop have already become depinned while the central
has not yet reached the line of pinning centers~Fig. 6!.

As gV increases from regionI into regionsII , III , and
IV, the relations governing the dissipation of energy by
dislocation loop during the oscillation period change su
stantially ~Figs. 4b and 5b!. Unlike the case in regionI,
where the energy of the loop is dissipated in the oscillati
immediately following its depinning, in regionsIII and IV
the dissipation of energy by the dislocation occurs for pr

FIG. 5. Dependence of the dislocation-related strain« ~a! and the powerP
dissipated by a dislocation loop~b! on the value of the normalized externa
stress; the curves were calculated forgV52.5 and various values o
S0 /S0c

0 : 1.25 ~ !, 1.8 ~——!, 3 ~ !; K35(LbLN), K3

5(4C3/2)/(LNA1/2).
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tically the entire oscillation period. It is absent only at th
times of the greatest deviation of the dislocation loop fro
the equilibrium position and also on the part of the hystere
loop nearS/S0c'1 if the e(S) curve has a rectilinear region
corresponding to the pinned state of the dislocation lo
When such a region is present the depinning of the loop
gV values in regionsII –IV is always accompanied by a jum
plike increase in the power dissipationP, as is characteristic
for region I as well.

DISCUSSION OF THE RESULTS

For gV,(gV)c the form of the amplitude dependenc
of the internal friction and the character of their change ag
with the theoretical ideas developed in Ref. 13 and gene
ized to the case of large amplitudes in Ref. 14. The ma
mum on thed(S0) curve atS05S0c is due to the catastrophi
character of the depinning of the loop. The independenc
dh from gV and its decline with increasingS0 for S0.S0c

are evidence of the absence of amplitude-dependent dyn
losses in this region ofgV values. This is also indicated b
the functiond~gV! calculated in the absence of pinning ce
ters on the dislocation loop, which is in good agreement w
the Granato–Lu¨cke frequency profile~see Fig. 3!. Our nu-
merical values of the decrement forS0'S0c and the charac-
ter of our functiond(S0) for S0.S0c do not agree with the
results of Ref. 14. The reason is that in the calculation od
we considered the contribution of only one dislocation loo
Since in the given situation the depinning has a catastrop
character and occurs over a time much shorter than the
riod of the forced oscillations, while the presence of oscil
tions on the«(S) curve does not have an important effect
the area of the hysteresis loop, the dislocation-related stra«
can be estimated to good accuracy in the quasistatic app
mation. For the case of largerLN /Lc , when the dislocation-
related strain prior to depinning can be neglected,e is de-
scribed by the relation

FIG. 6. Shape of the dislocation loop at the times corresponding to
crossing of the line of pinning centers:gV51.5, S0 /S0c

0 53.5, at the time
t51.6T ~ !; gV515, S0 /S0c

0 53.0 at the timest151.72T ~——! and
t251.73T ~• • • •!.



pl
f
o
In
r
th
e

de
tic
io

its
th
n

on
te
-

ro
f
m

tiv
f
t

e
d

t
e

-

n
la

ith

es

he

e of

ude
f

tatic
ing

es
resis
-
this

op

er a
-
sses
ues

can
nts.
dis-
l-

he
esis
the
um
rgy
in-
as

y-
si-

ng
sis
this
.

ter-

ere

hen
In
mall

dy-
the

223Low Temp. Phys. 26 (3), March 2000 Beloshapka et al.
«5Lb2s0c /~2LN2C!E
0

LN
~xLNx2!dx

5Lb2s0ccLN
2 /~12C!. ~9!

Here the expression for the decrement becomes

dh5Lb2s0c
2 LN

2 G/~12Cs0
2!. ~10!

The values of the numerically calculated decrement forS0

5S0c and the character of its dependence onS0 for S0

.S0c are in good agreement with Eq.~10!. For analysis of
the influence of the degree of damping on the critical am
tude of the depinning stress, we compared the shapes o
dislocation segment prior to depinning under conditions
oscillatory motion and under conditions of static loading.
the latter case the shape of the dislocation segment prio
depinning for the case of pinning centers located at
points x50 andx5Lc was found in analytical form as th
solution of the equation

C~]2u/]x2!1bs50

and had the form

u5
bsxLc2bsx2

2C
.

A comparison of the shapes of the segment prior to
pinning under conditions of oscillatory motion and sta
loading shows that they are practically the same in the reg
of small gV ~region I in Fig. 3!. This fact accounts for the
absence of an influence of the value ofgV on the critical
amplitude of the depinning stress in regionI. Because the
time interval required for a dislocation loop to achieve
maximum flexure after depinning is much shorter than
period of the forced oscillations and therefore the oscillatio
of the dislocation loop around the equilibrium configurati
do not have an appreciable effect on the area of the hys
esis loop«(S), the value ofdh also remains unchanged un
der the conditiongV,(gV)c .

The absence of an influence ofgV on the form of the
hysteresis loop«(S) and ond(S0) andP(S) suggest that for
gV,(gV)c the dislocation-related hysteresis has a p
nounced static character throughout the entire range oS0

values investigated, and there are practically no dyna
amplitude-dependent losses.

Unlike the case of regionI, in regions II –IV the
dislocation-related hysteresis loops undergo qualita
changes asgV increases~Fig. 4a!, and the basic hallmark o
static hysteresis—the frequency and velocity independen
the «(S) loop—is lost. In regionsII –IV the inelastic phe-
nomena are not described by the static hysteresis mod13

The generalization of that theory13 in Ref. 14 cannot be use
for such a description either, since in that paper14 the
dislocation-amplitude-dependent losses were treated for
case when the dislocation-related hysteresis takes plac
the low-frequency asymptotic region of the Granato–Lu¨cke
frequency profile.13 In our case the overcoming of the pin
ning centers by the dislocation loop in regionsIII and IV
cause hysteresis at the frequencies of the high-freque
maximum of the damped resonance, where, in particu
there is no linear dependence of the dynamic losses ongV
~Fig. 3!. The results of Ref. 14 can only be compared w
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the data pertaining to the left half of regionII , where the
d(gV)S05const curve is close to linear. The resultant loss

~Fig. 3! can be represented in the form of a sum of t
hysteresis losses calculated at values ofgV corresponding to
regionI plus the dynamic losses calculated in the absenc
pinning centers on the dislocation loop.

At amplitudes in the regionS0.1.5S0c
0 a comparison of

the d(gV)S05const and DG/G(gV)S05const curves with the

Granato–Lu¨cke frequency profile ford and DG/G, respec-
tively, and also the presence of a plateau on the amplit
dependences ofd andDG/G indicate that the hysteresis is o
a dynamic character. Here the hysteresis loops of the s
type are almost completely absent, since at a high damp
level gV and such large values ofS0 the dislocation loop
approaches the pinning centers at stresses higher thanS0c ,
and the additional phase shift between« and S due to the
interaction of the dislocation with the pinning centers do
not arise. The decrease in the area of the dynamic hyste
loop asgV increases forS0.1.5S0c

0 agrees with the charac
ter of the dependence on the damping level for losses of
type in Ref. 13.

At values ofS0 not much greater thanS0c , the influence
of the pinning centers on the behavior of the dislocation lo
is always substantial~Figs. 1a, 1b, and 5!, and the hysteresis
losses are nonzero. A calculation of the energy losses ov
period using expressions~3! and~4! does not in general per
mit one to separate the contributions of the hysteresis lo
of the static type from the viscous losses. However, at val
of S0 just slightly higher thanS0c the relative sizes of the
dynamic and hysteresis contributions to the resultant loss
be assessed by proceeding from the following argume
The hysteresis contribution to the energy dissipated by a
location at an arbitrary point in time after depinning is a
ways present if the additional phase shiftDw between« and
S due to the previous interaction of the dislocation with t
pinning centers is nonzero. For this reason the hyster
losses occur in the time interval between the start of
depinning and the time when the loop reaches its maxim
flexure. On the other hand, there is absolutely no ene
dissipation by the dislocation immediately prior to the dep
ning and at the time of maximum flexure of the loop,
follows from theP(S) plot ~Fig. 5b!. The energy dissipated
over this time interval, containing both hysteresis and d
namic contributions, is small compared to the energy dis
pated over the whole period, and it falls off with increasi
gV. This is evidence that the contribution of the hystere
losses to the resultant losses is insignificant and that
contribution decreases as the level of damping increases

The absence of a substantial contribution of the hys
esis losses to the resultant losses forS0@S0c is convincingly
demonstrated by a comparison of the«(S) andP(S) curves
with the analogous curves obtained in the case when th
are no pinning centers on the dislocation loop~Figs. 4a and
4b!. We see that the curves coincide except at the time w
the dislocation loop is crossing the line of pinning centers.
this case the presence of the pinning centers has only a s
effect on the energy losses over an oscillation period.

Thus on going into regionsII –IV there is a change in the
character of the dislocation hysteresis, from static to
namic. Further evidence of this change in character of
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dislocation hysteresis as the degree of damping increase
be seen in the behavior of the ratior 5dh /(DG/G) for dif-
ferentgV ~Fig. 1c!. In Ref. 19 the analysis was limited to th
case of static hysteresis and showed that the maximum v
of r is not greater than 2 and falls off as the amplitude of
external stress increases. The curvesr (S0) obtained in the
present study forgV corresponding to regionI likewise do
not depend ongV, the maximum value ofr equals 1.8–1.9,
and r dependences onS0 , decreasing asS0 increases. How-
ever, asgV increases into regionsII –IV, where the disloca-
tion hysteresis begins to take on dynamic traits, the ma
mum value ofr increases sharply, reaching values of 14–
and higher, while the position of the maximum on ther (S0)
curve is shifted to larger values ofS0 asgV increases.

In an experiment the maximumr valuer max and the form
of the r (S0) curve can provide evidence of whether the si
ation realized is one of static, mixed, or dynamic dislocat
hysteresis and can indicate when one type of hysteresis g
way to another. For example, in experiments on the am
tude dependence of the internal friction and elastic-modu
defect under conditions of a sharp change inB ~e.g., a change
of the electronic drag on dislocations at a superconduc
transition! there is indeed a change in character of the dis
cation hysteresis. Proof of this could be a change inr max with
a simultaneous shift of ther (S0) curve along theS0 axis.

The observed influence of the viscosity on the inter
friction over the entire interval of stress amplitudesS0 ~Fig.
1! is in good agreement with the experimentally establish
change in the internal friction of metals at a superconduc
transition.20–22 For example, as the viscosity increases,
internal friction increases in the region of large stress am
tudes, while at stresses slightly greater thans0c it decreases.
The dependence of the critical amplitude of the depinn
stress ongV ~see Fig. 2! shows that an increase ofB by
3–3.5 orders of magnitude at initial valuesB51027

21026 N•s/m2 in the kilohertz and megahertz frequen
ranges leads to only a 10–25% increase ins0c ; this is also
in agreement with the experimental data on the internal f
tion in this frequency range.20–22

The results of this study point to yet another feature
the influence of anNS transition on the dislocation
amplitude-dependent internal friction of superconductors
an
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If

gV,(gV)c in the N state, then theNS transition should
have no such influence; forB51024 N•s/m2 this condition
holds forv,1025(LN)22 Hz.

Let us close by emphasizing that our findings concern
the behavioral regularities of the inelastic properties pert
to the case when the pinning centers are distributed along
initial rectilinear position of the dislocation. The results f
the case of a distribution of pinning centers over the en
glide plane of the dislocation are qualitatively different
many ways and will be published in the future.

We thank V. D. Natsik for his interest in this study an
for valuable comments.
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Dislocation drag in the low-temperature phase of C 60 fullerite due to orientational
relaxation of the molecules
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The interaction of edge dislocations with pentagonal~p! and hexagonal~h! orientation states
of the molecules in the low-temperature simple cubic phase of C60 fullerite is discussed. The
temperature interval considered isTg,T,Tc , whereTc5260 K is the phase transition
temperature andTg590 K is the orientational glass point. The nonuniform distribution of theh
configurations around a sessile dislocation line is described, and the starting forceFs(T)
needed to break the dislocation away from the cloud ofh configurations formed by it is
determined. The dynamic drag forceFD(T,V) arising as a result of thermally activated
transitions between thep and h configurations under the influence of the elastic field of a
dislocation moving at a constant velocityV is calculated and analyzed. ©2000 American
Institute of Physics.@S1063-777X~00!00703-9#
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INTRODUCTION

The study of plastic deformation of single crystals of C60

fullerite by the microindentation method have shown1–5 that
over a wide range of moderately low temperatures 300-8
the carriers of plasticity in them are dislocations belonging
the slip system~111!^110&. In Refs. 1 and 3 the discret
dislocation structure of the slip lines in the vicinity of th
impression made by the indenter was revealed by ther
and chemical etching. Therefore, in constructing a consis
microscopic theory of the plasticity and strength of cryst
line C60, one of the first problems is to analyze the mobil
of dislocations in this material.6

The motion of a dislocation in a crystal is always acco
panied by energy dissipation, which leads to a drag on
dislocation. A portion of the energy loss of the dislocation
due to the discreteness of the crystal structure, and the
scription of this part requires a microscopic approach—e
the drag due to the Peierls potential relief or immovable lo
impurity barriers.7–9 Other loss mechanisms have a mac
scopic origin and can be analyzed in the framework of
continuum theory.8–10 These include various relaxation pro
cesses occurring in the elastic field of a moving dislocati
e.g, the diffusion of impurity atmospheres, relaxation in
gas of quasiparticles, etc.

In the low-temperature simple cubic~sc! phase of C60

fullerite, which exists belowTc5260 K, the most efficient
mechanism of dissipation of mechanical energy is the latt
orientation interaction and the orientational relaxation
molecules—thermally activated transitions of molecules
tween two energetically inequivalent orientations, whi
have come to be called the pentagonal~p! and hexagonal~h!
configurations. The influence of the orientational relaxat
on the thermal and rheological properties of fullerite cryst
has been analyzed in detail in our previous paper.11 There
one can also find a list of references reflecting the history
this problem and containing detailed characteristic of
2251063-777X/2000/26(3)/7/$20.00
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lattice-orientation structure of C60 fullerite.11 Below we de-
scribe as briefly as possible only those individual details
this structure which are needed in order to make a c
statement of the problem addressed.

In the sc phase the threefold symmetry axes of the60

molecules are orientationally ordered, and the molecules
only execute small librations and hindered rotations arou
these axes. In these rotations, two types of minima of
angular dependence of the intermolecular pair interaction
realized: a deeper global minimum~the p configuration! and
a local minimum~h configuration!; the difference in the en-
ergies of these configurations per intermolecular bond isD
.0.01 eV. The pentagonal and hexagonal configurations
separated by an energy barrier of the order of 0.3 eV: if
symbolUp denotes the barrier for thep→h transition, then
the barrier for the inverseh→p transition will have the value
Uh5Up2D. In the classical limit~ignoring quantum ef-
fects! the ideal thermodynamic equilibrium structure of th
fullerite corresponds to thep configuration of all the pair
intermolecular bonds, and theh configuration should be re
garded as local structural defects that can be excited,
example, by the thermal motion of the molecules. In a st
of thermodynamic equilibrium the volume concentrationsNh

and Np of the hexagonal and pentagonal configurations,
spectively, is determined by the Boltzmann distribution a
the balance relation:

n̄h5
N̄h

N0
5S 11exp

D

kTD 21

; n̄p5
N̄p

N0
512n̄h ; ~1!

here a bar over a symbol denotes the equilibrium state,
N05Np1Nh is the volume concentration of double-well or
entational states.

The mean timestp and th for the thermally activated
destruction of thep and h configurations, respectively, ar
determined by an activational formula of the form
© 2000 American Institute of Physics
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tp,h5t0exp
Up,h

kT
, ~2!

where t0 is the characteristic librational period, which
assumed to be the same for both configurations~empirical
estimates lead to valuest0.10213– 10214s!. Accordingly,
the time dependencenh(t) of the nonequilibrium occupation
of the defecth configurations~orientational relaxation! is
described by the simple kinetic equation

t
]

]t
nh1nh5

t

tp
, t5

tpth

tp1th
. ~3!

In the temperature intervalTc.T.Tg.90 K the equi-
librium concentration of the differenth configurations varies
over the range 0.4.n̄h.0.2, and the characteristic time fo
the establishment of orientational equilibrium ist,103 s. At
such temperatures the thermally activated transitions
tween thep and h configurations occur rather rapidly o
laboratory time scales, and the state of the crystal can
regarded as a kind of orientational liquid~OL!. On the other
hand, when the fullerite is cooled belowTg , thermodynamic
equilibrium between thep andh configurations is not estab
lished over standard laboratory time scales. Therefore,
T,Tg the crystal is in an orientational glass state, with
concentration of frozen defect configurationsnhg.0.2, and
the temperature boundaryTg has the meaning of an orienta
tional glass point.

To describe the relation of the rotational degrees of fr
dom of the molecules with the deformations of the fuller
crystal lattice, in Ref. 11 it was proposed to introduce def
mation corrections to the aforementioned intermolecular
teraction parametersUp , Uh , and D. Taking into account
the cubic symmetry of fullerite and working in a linear a
proximation in the components of the strain tensore ik , we
get

Up,h
~«! 5Up,h2vp,h« l l , D~«!5D2vD« l l . ~4!

Here« l l is the sum of the diagonal components of the str
tensor, andvp , vh , andD5vp2vh are the constants of th
deformation potential, for which the following empirical e
timates were obtained in Ref. 11:vp.vh.2.0 eV, vD.2D
.2.431022 eV.

The model of double-well orientational states of the m
ecules, supplemented with relations~4! and the kinetic equa
tion ~3!, fulfills all the prerequisites for analysis of the inte
action of a dislocation with the rotational degrees of freed
of the molecules in the low-temperature phase of C60 fuller-
ite, including a description of the dynamic drag exerted
the dislocations on account of this interaction. A qualitat
picture of this drag was given previously in Ref. 6, in whi
the dislocation-orientation interaction was described us
the linear response approximation which does not take
account the dependence of the orientational relaxation timt
on the local values of the dislocation strains« ik . This ap-
proximation simplifies the analysis of the problem consid
ably, but its applicability breaks down in the neighborho
of the dislocation core~this circumstance was noted in Re
6!. Below we analyze the qualitative and quantitati
changes in the dynamic drag on dislocations in C60 fullerite
e-
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when a more rigorous approach is taken to the descriptio
the lattice-orientation interaction proposed in Ref. 11.

1. A GENERAL CHARACTERISTIC OF THE DISLOCATION-
ORIENTATION INTERACTION

The presence of a dislocation in a C60 fullerite crystal
disrupts the uniform distribution~1! of pentagonal and hex
agonal configurations of the molecules. At a fixed const
temperature a nonuniform equilibrium ‘‘atmosphere’’ of d
fect h configurations, similar to the atmosphere of interstit
impurities surrounding a dislocation line in a bcc metal~the
Snoek atmosphere!,8 forms in the elastic field« ik(r ) of a
sessile dislocation. Let us consider the starting forceFs(T)
that is capable of rather rapidly~at the formal level, instan-
taneously! setting in motion a previously sessile dislocatio
i.e., of tearing it away from the cloud ofh configurations.
The value of this force is determined by the change in
elastic energy of the crystal upon the displacement of a
location line relative to the center of the cloud, which r
mains immobile.

The strain field« ik(rÀVt) of a dislocation moving at a
constant velocityV ~V!s, where s is the characteristic
sound velocity! disrupts the local thermodynamic equilib
rium between thep andh configurations and excites a relax
ation process that restores this equilibrium. On accoun
the energy dissipation accompanying this relaxation proc
the dislocation experiences an equivalent dynamic drag fo
FD(V,T), which depends on its velocity and the temperatu
of the crystal.

A consistent description of the dislocation plasticity
C60 fullerite requires a calculation of both of the indicate
forces, although their relative role is different in differe
temperature intervals. On general arguments one expects
for T,Tg the relaxation drag is practically absent, and t
main role will be played by the starting forceFs(T), whereas
for T.Tg the primary force acting on the dislocation
FD(V,T).

For dislocations in anisotropic crystal structures the
plicit form of the strain field« ik(r ) is unknown, and there-
fore for solving problems like that considered in this pap
one must appeal to the model of an equivalent elastic
isotropic medium. Two elastic moduli of such a medium a
calculated by special methods of averaging of the ela
constants of the crystal. According to the recommendat
stated in Ref. 8, in a calculation of the local characteristics
the elastic field of a dislocation it is advisable to use t
Voigt averaging method. In the case of a cubic crystal w
elastic constantsC11, C12, andC14 the Voigt method leads
to an equivalent elastically isotropic medium with a bu
modulusB and a shear modulusG, which is determined by
the relations8

3B5C1112C12, 5G53C441C112C12. ~5!

The use of the values of the elastic moduli measured
a fullerite single crystal at room temperature by acousti
methods12 lead to the estimatesB.1.131010Pa and
G;0.531010Pa.

In what follows we will be considering a rectilinear edg
dislocation, with Burgers vectorb, either at rest or moving in
its glide plane with a constant velocityV. In a rectilinear
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coordinate system with thex3 axis along the dislocation line
and thex1 axis along the direction of the vectorsb andV, the
dilatation field« l l (r2Vt) of the dislocation in the isotropic
approximation has the form7,8

« l l ~r2Vt ![« l l ~x12Vt,x2!5«0r 0c~x12Vt,x2!, ~6!

«05
3Gb

p~3B14G!r 0
, c~x1 ,x2!52

x2

x1
21x2

2 .

In this formula we have introduced the parameterr 0 , the
radius of the dislocation core, so that later we can remov
nonphysical divergence of~6! on the dislocation line~x1

5Vt, x250!. If we use the standard estimater 0.b and the
above estimates for the elastic moduliB and G, we get an
estimate of«0.0.1 for the value of the deformation in th
core of the dislocation.1

Let us first consider the structure of the atmosphere oh
configurations formed on a sessile dislocation (V50) at
temperaturesTg,T,Tc . The excess equilibrium concentra
tion n̄h

(«)5n̄h
~«!2n̄h of the hexagonal configurations resultin

from the dilatation~6! is easily obtained using formulas~1!
and ~4!. Since the inequalityq5vD«0 /kT!1 holds in the
temperature region under consideration (T.Tg), an expres-
sion for n̄h

(«) can be written in the approximation linear inq,
assuming thatur 0c(x1 ,x2)u<1 after the divergence has bee
removed:

n̄h
~«!~r !5qr0n̄pn̄hc~x1 ,x2!. ~7!

The instantaneous displacement~7! of the dislocation
along thex1 axis by a distancez relative to the center of the
cloud ofh configurations formed by it leads to the followin
change in the lattice-orientation part of the free energy d
sity of the fullerite at a fixed temperature:11

dW~hd!~x1 ,x2 ;z!52gn̄h
~«!~x1 ,x2!

3@« l l ~x1 ,2z,x2!2« l l ~x1 ,x2!#, ~8!

where g is the phenomenological parameter of t
orientation-lattice interaction. Using Eq.~8!, we can evaluate
Fs , the starting force per unit length of the dislocatio
which is the force that must be applied to the dislocation
the glide plane in order to tear it away from the cloud ofh
configurations:

F5gn̄pn̄hq«0r 0
2maxuI ~z!u, ~9!

I ~z!5
]

]z E E
2`

`

dx1dx2c~x1 ,x2!c~x12z,x2!.

Of course, the evaluation of this integral presupposes tha
correct procedure for removing the divergence of the in
grand at the points~x150, x250! and ~x15z, x250! has
been specified.

The glide of a dislocation with a constant velocityV
through the bulk of a crystal with a uniform equilibrium
distribution of hexagonal configurations will disturb the loc
equilibrium:nh(r ,t)5n̄h1nh(r ,t), wherenh is the nonequi-
librium increment induced by the elastic field~6! of the dis-
location. According to Eqs.~2!–~4!, the equation for the non
equilibrium incrementnh(r ,t) has the form
a

-

,
n

he
-

l

t~«!
]

]t
nh1nh5

t~«!

tp
~«!2n̄h . ~10!

Here t («) and tp,h
(«) are, respectively, the local values o

the orientational relaxation time and of the times for t
activated destruction of the pentagonal and hexagonal c
figurations in the elastic field of the moving dislocation:

t~«!5
tp

~«!th
~«!

tp
~«!1th

~«! ,

tp,h
~«! 5t0 expFUp,h2vp,h« l l ~x12Vt,x2!

kT G . ~11!

It is easy to show that in the temperature interval un
consideration,Tg,T,Tc , and outside the core of the dislo
cation, the right-hand side of Eq.~10! admits a linearization
in the dilatation« l l (x12Vt,x2) ~formally, in the small pa-
rameterq5vD«0 /kT!1!. The relaxation timet («), how-
ever, does not admit such a linearization: it contains the la
parameterQ5vp«0 /kT and remains an essentially nonline
~exponential! function of the dilatation« l l (x12Vt,x2).

Equation~10! is a linear differential equation with vari
able coefficients, and its solution that satisfies the natu
initial condition nh(r ,2`)[0 can be written in
quadratures.13 In the approximation linear in the parameterq
we have

nh~x1 ,x2 ,t !5
qr0n̄p

tp
E

0

`

dt8c@x12V~ t2t8!,x2#

3expH Qr0c@x12V~ t2t8!,x2#2
1

n̄htp

3E
0

t8
dt9 exp@Qr0c~x12V~ t2t8!,x2!#J ,

~12!

q5
vD«0

kT
, Q5

vp«0

kT
.

The relaxation process~12! induced in the system o
orientation states by the elastic field of the moving dislo
tion is accompanied by dissipation of the mechanical ene
of the crystal with an equivalent drag forceFD(V,t). The
time derivative of the local energy density of the dislocatio
orientation interaction is given by the equation

]

]t
W~hd!~x1 ,x2 ,t !52gnh~x1 ,x2 ,t !

]

]t
« l l ~x12Vt,x2!.

~13!

The integration of~13! over the coordinatesx1 andx2 gives
the value of the dissipative function of the process per u
length of the dislocation. Equating this to the productFDV,
we obtain the following expression for the drag force p
unit length:
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FD5
qr0

2«0n̄pg

tp
E E

2`

`

dx1dx2

]

]x1
c@x12Vt,x2#

3E
0

`

dt8c@x12V~ t2t8!,x2#

3exp@Qr0c~x12V~ t2t8!,x2!#expH 2
1

n̄htp
E

0

t8
dt9

3exp@Qr0c~x12V~ t2t9!,x2!#J . ~14!

This formula, like Eq.~9!, has physical meaning only afte
the divergence due to the singularity of the functi
c(x1 ,x2) has been removed.

The integrals~9! and ~14! give the solution in quadra
tures for the drag force exerted on a dislocation as a resu
the interaction of its elastic field with the orientational co
figurations of the molecules. The next step of the analysi
to obtain an explicit expression for the dependence of
force on the temperature of the crystal and the velocity of
dislocation and to estimate the characteristic value of
drag force in different temperature-velocity intervals.

2. TEMPERATURE DEPENDENCE OF THE STARTING
FORCE Fs„T…

The simplest way of removing the singularity in th
evaluation of the integralI (z) in Eq. ~9! is to remove a strip
ux2u,r 0 from the integration region, wherer 0 is the radius
of the dislocation core. Then, after making the change
integration variablesjx25x1 andhx25z, we obtain

I ~z!522E
2`

`

dx1E
r 0

`

dx2c~x1 ,x2!
]

]x1
c~x12z,x2!

52
2

z E2`

`

djE
0

z/r 0
dhc~j,1!

]

]j
c~j2h,1!

5
2

z E2`

`

djc~j,1!E
0

z/r 0
dh

]

]h
c~j2h,1!

52E
2`

` dj

~11j2!2 F 2jr 02z

r 0
21~jr 02z!2G .

The remaining integral is easily calculated using the re
due theorem of complex analysis:

I ~z!52
pz

4r 0
21z2

, maxuI ~z!u5
p

4r 0
. ~15!

Substituting~15! into ~9!, we obtain the estimate

Fs.
pr 0«0

2vDgn̄pn̄h

4kT
5

b2vDgn̄pn̄h

4pr 0kT F 3G

3B14GG2

. ~16!

In the framework of the phenomenological thermod
namic theory of orientation states11 the coefficientg is unde-
termined, remaining a phenomenological parameter of
theory. In this connection it is useful to express this coe
cient in terms of fullerite properties that admit experimen
determination, e.g., the specific heat. Using the results
Ref. 11, we arrive at the relation
of

is
is
e
e

f

i-

-

e
-
l
of

g5
vDkT2Cv

~or !~T!

D2n̄pn̄h

, ~17!

whereCv
(or) is the orientation component of the heat capac

per unit volume. In addition, the coefficientg can be given a
microscopic meaning. Recalling that the excitation of an i
lated h configuration is accompanied by an increase in
energy of the crystal by an amountD, we obtain

Cv
~or!5N0DS dn̄h

dT D
V

5
N0D2n̄pn̄h

kT2
. ~18!

A comparison of~17! and ~18! gives the following expres-
sion for the coefficientg:

g5N0vD . ~19!

Substituting~1! and~19! into ~16!, we obtain an explicit
expression for the temperature dependence of the sta
force:

Fs~T!5S 3G

3B14GD 2 b2vD
2 N0

4pr 0kT

exp~D/kT!

@11exp~D/kT!#2 . ~20!

We note that the parametersB and G appearing in the for-
mulas for Fs are the isothermal elastic moduli, althoug
strictly speaking, at the level of accuracy with which the
formulas have been obtained it does not make sense to
tinguish between the isothermal and adiabatic values of
moduli or to take their temperature dependence into acco

3. DYNAMIC DRAG FORCE

The divergence in the integral~14! that determines the
dynamic drag force on a uniformly moving dislocation
removed in the same way as in the evaluation of the star
force, by excluding a stripux2u,r 0 from the integration re-
gion. In addition, it is easy to see that the integral can
simplified somewhat by the substitutionx12Vt→x1 and in-
tegration by parts over the variablet8:

FD5qg«0r 0
2n̄pn̄hE

r 0

`

dx2E
2`

`

dx1F ]

]x1
c~x1 ,x2!G

3E
0

`

dtF ]

]t
c~x11Vt,x2!G

3H expF2
1

n̄htp
E

0

t

dt8 exp@Qr0c~x11Vt8,x2!#G
3expF2

1

n̄htp
E

0

t

dt8 exp@2Qr0c~x11Vt8,x2!#G J .

It will be convenient to change to dimensionless integrat
variablesh, j, n through the substitutionsx15Qr0j, x2

5Qr0h, Vt5Qr0n:

FD5qg«0r 0n̄pn̄hI S Q,
VT

V D ; ~21!
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I S Q,
VT

V D5
1

Q E
1/Q

`

dhE
2`

`

djF ]

]j
c~j,h!G

3E
0

`

dnF ]

]j
c~j1n,h!G

3H expF2
VT

V E
0

v
dn8 exp@c~j1n8,h!#G

1expF2
VT

V E
0

v
dn8 exp@2c~j1n8,h!#G J ,

~22!

VT5
r 0Q

tpn̄h
.

Asymptotic expressions for the integral~22! can be ob-
tained by considering the limiting cases of low and hi
dislocation velocities:V!VT andV@VT .

3.1. Region of low velocities

Turning to an evaluation of the asymptotic behavior
the integralI (Q,VT /V), we note first of all that for the in-
tegrals in the arguments of the exponential functions the
lowing simple asymptotic estimate can be made:

I 1
~6 !5E

0

v
dn8e6c~j1n8,h!.H ne6c~j,h!, n→0;

n6p n→`
. ~23!

In the limiting case of very low dislocation velocitie
V→0 the main contribution to the integral over the variab
n is given by the region of small valuesn→0, which allows
us to set (]/]j)c(j1n,h).(]/]j)c(j,h) in the integrand
and, with exponential accuracy, to neglect the first term
the curly brackets in~22!:

I S Q,
VT

V D5
2V

QVT
E

1/Q

`

dhE
0

`

djF]c~j,h!

]j G2

ec~j,h!,

V→0.

Integrating by parts over the variablej and making one
more change of variables, we bring this integral to the fo

I S Q,
VT

V D.2
2V

VT
E

1

`

dhE
0

`

djF ]2c~j,h!

]2j
GeQc~j,h!.

~24!

The main contribution to the integral~24! for Q@1 is
from a small region around the pointj50, h51. Making the
following substitution in the integrand:

]2c~j,h!

]2j
.S ]2c~j,h!

]2j
D

j50,h51

522,

c~j,h!.22h2j2

and doing the integration, we obtain a final asymptotic
pression for the integral~22! at low velocities:

I S Q,
VT

V D5
2ApeQV

Q3/2
, V→0. ~25!
f

l-

n

-

A more exact analysis shows that the integral~22! in the
low-velocity region conforms rather poorly to the asympto
expression~25!: in the regionV,VT there is a large interva
of velocities in which the difference between~22! and~25! is
extremely significant. This circumstance is due to the ex
tence of extended regions in the space of variables~j, h, n!
in which the upper asymptotic expression in~23! cannot be
used. For this reason the integral~22! was evaluated by nu
merical methods on a computer for sets of values of
parametersV and Q from the intervals 0.1VT<V<VT and
10<Q<25. The results of these computations allowed us
obtain a simple analytical approximation for the integral~22!
having a relative accuracy of the order of 0.1 in the indica
regions of parameter values:

I S Q,
VT

V D.
Q3/5

8 S V

VT
D 2/25

, 0,VT<V<VT . ~26!

Thus the linear dependence of the integralI (Q,VT /V)
on the dislocation velocity in~25! gives way to the very
weak dependence~26! even in the intermediate velocity re
gion V<VT . Comparing~25! and ~26!, we easily obtain an
estimate for the characteristic value of the velocityVT0 that
separates the two regions:

VT0.
VTQ2

30
e2Q. ~27!

3.2. Region of high velocities

Let us first analyze one of the inner integrals in~22!:

I 2~j,h!5E
0

`

dnF ]

]j
c~j1n,h!G

3H expF2
VT

V
I ~1 !~j,h,n!G

1expF2
VT

V
I ~2 !~j,h,n!G J

[E
0

`

dnF ]

]j
c~j1n,h!G H expF2

VT

V
~ I 1

~1 !2n!G
1expF2

VT

V
~ I 1

~2 !2n!G J expS 2
VT

V
n D .

Since the derivative

]

]n
~ I 1

~6 !2n!5e6c~j1n,h!21

does not vanish at finite values ofn, and the asymptotic
expression~23! is valid, the inequalityuI 1

62nu<p holds.
Consequently, forV@pVT we have

I 2~j,h!5E
0

`

dnF ]

]j
c~j1n,h!GexpS 2

VT

V
n D . ~28!

Substituting ~28! into the integral ~22! and doing some
straightforward manipulations, we bring this integral to t
form
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I S Q,
VT

V D5
2

Q E
1/Q

`

dhE
2`

`

djF ]

]j
c~j,h!G

3E
0

`

dnF ]

]j
c~j1n,h!GexpS 2

VT

V
n D

52
2VT

QV E
0

`

dn expS 2
VTn

QV D
3E

t

`

dhE
2`

`

djc~j,h!
]

]j
c~j1n,h!.

The integral over the variables~h, j! is the same as the
previously evaluated integral~15! if we set r 051, z52n.
Consequently, in the limiting case under consideration
have

I S Q,
VT

V D.
pVT

QV E
0

`

dn

n expS 2
VTn

QV D
n214

52
pVT

QV FciS 2VT

QV D cosS 2VT

QV D
1siS 2VT

QV D sinS 2VT

QV D G , ~29!

where si(x) and ci(x) are the sine integral and cosine int
gral, respectively. In the case under consideration,V@pVT

andQ@1, the arguments of the functions in formula~29! are
small, and we can therefore write the following asympto
expression for the integralI (Q,VT /V):

I S Q,
VT

V D.
pVT

QV
lnS QV

2VT
D , V@pVT . ~30!

Expression~30! is a slowly decaying function of velocity
which continues the function~26!. Formulas~25!, ~26!, and
~30! show that in the velocity regionV;VT the function
I (Q,VT /V) has a broad peak with an almost flat top~26!.
The height of this peak depends weakly on temperature:

max~V!I S Q,
VT

V D.
Q3/5

8
5

1

8 S yp«0

kT D 3/5

~31!

For the values of practical interest,Q;10– 20, the value
of maxI;1–0.5. In addition, the position of the peak on t
axis of velocitiesVT and its characteristic widthVT2VT0 are
exponentially sensitive to changes in temperature.

3.3. Temperature-velocity dependence of the dynamic drag
force

The foregoing analysis shows that the dynamic d
force on a dislocation due to the orientation-dislocation
teraction and processes of orientational relaxation has an
tremely complex dependence on the dislocation velocityV
and the crystal temperatureT. This dependence has bee
obtained in certain temperature-velocity regions in the fo
of asymptotic expressions. Before turning to a discussion
these asymptotic expressions, it is useful to compare the
namic drag forceFD with the starting forceFs calculated in
Sec. 2. Using formulas~9!, ~15!, and~21!, we obtain
e

g
-
x-

of
y-

FD~T,V!5
4

p
Fs~T!I FQ~T!,

VT

V G . ~32!

We have shown above that maxI.1, and therefore the
characteristic scale of the force of orientational drag on d
locations is set by the starting forceFs(T). According to Eq.
~20!, this force increases slowly with decreasing temperat
in the interval (Tg ,Tc), reaching a maximum value in th
region of the orientational glass point.

Figure 1 shows schematically the dependence of the
namic component of the drag force on the dislocation vel
ity V. This dependence is nonmonotonic: there is a sh
linear region at low velocitiesV!VT0 , which gives way to a
broad maximum in the velocity regionV;VT , followed by a
slow decline in the region of high velocitiesV@VT . The
character of the velocity dependence of the forceFD(T,V)
does not change qualitatively as the temperature is chan
but there are significant quantitative changes, since the c
acteristic velocitiesVT and VT0 and the slope of the linea
part at low velocities depend exponentially on temperatu

VT5
r 0

t0n̄h
S yp«0

kT DexpS 2
Up

kTD ,

VT05
r 0

3t0n̄h
S yp«0

kT D 3

expS 2
Up1yp«0

kT D . ~33!

We note that the conclusion that the forceFD(T,V) de-
pends nonmonotonically on the velocityV was obtained ear-
lier in an analysis of the dynamic interaction of a dislocati
with the orientation states of the molecules in the line
response approximation.6 This approximation give a qualita
tively correct estimate of the velocityVT and of the characte
of the velocity dependence of the drag force atV@VT . Tak-
ing nonlinear effects into account in the neighborhood of
dislocation core leads to a strong broadening of the peak
the velocity dependence ofFD(T,V) on the side of lower
velocities and to a stronger temperature sensitivity of
slope of the linear part in the region of low velocities.

FIG. 1. Schematic illustration of the dependence of the dynamic compo
of the drag forceFD(T,V) on the velocityV of the dislocation at different
temperaturesT. The temperature dependence of the characteristic value
the velocityVT andVT0 is described by formulas~33!. The solid portions of
the curves show those regions of the functionFD(T,V) for which the ana-
lytical approximations~25!, ~26!, and~30! were obtained.
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CONCLUSION

We have analyzed the quasistatic and dynamic inte
tions of an edge dislocation with pentagonal and hexago
configurations of the molecules in the low-temperature ph
of C60 fullerite.

We have described the nonuniform distribution of he
agonal configurations~which have an excess energy! arising
around a sessile dislocation line forTg,T,Tc , whereTc

5260 K is the temperature of the phase transition betw
the sc and fcc structures, andTg.90 K is the orientational
glass point. We have calculated the starting forceFs(T) nec-
essary to tear a dislocation away from the atmosphereh
configurations formed by it.

We have described the relaxational process of transit
betweenp andh configurations of the molecules in the ela
tic field of a dislocation moving with a constant velocityV.
We have calculated the dynamic component of the d
forced FD(T,V) exerted on a dislocation as a result of t
orientational relaxation.

We have made a detailed analysis of the tempera
dependence of the starting forceFs(T) and the temperature
velocity dependence of the dynamic drag forceFD(T,V). A
characteristic feature of the dynamic component of the d
force is that its dependence on the velocityV has a broad
peak with an almost flat top, and the position of this peak
the velocity axis depends exponentially on the temperatu

*E-mail: natsik@ilt.kharkov.ua
1!The small quantitye0!1 to a certain extent justifies the use of the a

proximation linear ine l l in the expansions~4!.
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The range of topics for physical research to be c
ducted onboard spacecraft in the next few years has br
ened considerably. This has come about, on the one han
a result of the experience gained in the work of cosmona
and the development of the technological expertise neces
for performing fundamental scientific experiments und
weightless conditions and, on the other hand, in respons
the progress that has been made in modern physics an
advent of new scientific fields, for which it may be of fun
damental importance to move the experiments from a ter
trial to a microgravity environment. An example is the las
cooling of metal vapors, which has substantially broade
the range of low-temperature research and has enabled
ing measurements near absolute zero~at 1029210210K!.
Placing such an experiment onboard a spacecraft will
crease the existence time of the cold cloud many-fold; thi
especially important for fundamental research on phase t
sitions and Bose–Einstein condensation phenomena in
lute vapor, for doing wave experiments in atomic physi
etc., and also for the practical implementation of an imp
tant engineering project—to create a working model of
atomic clock with a resolution at the level of 10215

210216s, which is 3–4 order of magnitude higher than th
of the existing clocks. This would open up fundamenta
new opportunities for basic research in the fields of rela
ity, cosmology, and astronomy.

The scientific literature of the last two decades has de
onstrated the intimate connection between condensed-m
physics and phenomena taking place on cosmic scales~e.g.,
between the intersection of vortices in superfluid helium a
2321063-777X/2000/26(3)/3/$20.00
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the intersection and recombination of cosmic strings!. There-
fore, it is important that the research begun earlier on criti
phenomena in condensed matter, particularly on thermo
namic and transport phenomena in superfluid and nor
helium near the critical point, be continued onboard the
ture International Space Station~ISS!, and that new experi-
ments be designed to investigate critical phenomena oc
ring in the bulk and on the surface of quantum fluids a
crystals ~phase transitions in three-dimensional and tw
dimensional systems, the equilibrium faceting of crysta
and the features of liquid helium droplets in a micrograv
environment!.

One of the main goals of the CWS-99 Seminar was
create a forum for the presentation and discussion of re
research results in low-temperature physics and of plans
ideas for new terrestrial experiments to serve as a basis
choosing the most worthwhile and well-thought-out expe
ments onboard the ISS. In accordance with the propo
from members of the Consulting Committee, the main top
chosen for discussion at this seminar were equilibrium a
critical phenomena in liquid helium, levitating droplets, im
purity molecules and clusters in superfluid He II, laser co
ing and Bose–Einstein condensation phenomena at ultra
temperatures, and the engineering possibilities and eq
ment for carrying out low-temperature measurements
board the ISS.

About 150 persons from the various research center
Russia, Ukraine, Kazakhstan, USA, Japan, England,
Germany took part in this seminar, including 25 undergra
ate and postgraduate students doing practicum at the i
© 2000 American Institute of Physics
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tutes of the RCC RAN. A total of 49 reports from 50 org
nizations were given at the oral and poster sessions~see
below for a listing!. A digest of nearly all these reports wa
published in the Book of Abstracts of CWS-99 prior to t
opening of the Seminar. The authors’ final versions of m
of these reports will be published in a special issue of
Journal of Low Temperature Physics in June of 2000.

LISTING OF REPORTS PRESENTED AT CWS-99

1. Common topics, low-temperature facilities

1. Long-term research program for the Russian segm
of International Space Station~RSISS! M. Tsymbaljuk
~TSNIMASH!.

2. Microgravity fundamental physics program for th
new millennium. M. C. Lee~National Aeronautics and Spac
Administration, Washington, USA!.

3. Ukrainian cryogenic facility for ISS and project o
HERUBIM experiment. S. Bondarenko~B. Verkin Institute
for Low Temperature Physics and Engineering, NAS
Kharkov, Ukraine!.

4. Fundamental low temperature researches under s
flight conditions: achievements and perspectives of Uk
nian science. S. Bondarenko~B. Verkin Institute for Low
Temperature Physics and Engineering, NASU, Khark
Ukraine!.

5. NASA roadmap for fundamental physics research
space. U. Israelsson~Jet Propulsion Laboratory, Californi
Institute of Technology, Pasadena, CA, USA!.

6. Optical characterization of C60 single crystals grown
in microgravity conditions. E. Steinmanet al. ~Institute of
Solid State Physics, RAS, Chernogolovka, Russia; R
‘‘Energy;’’ Cosmonaut treating center!.

7. Research opportunities on low temperature mic
gravity physics facility. F.-C. Liu~Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA, USA!.

8. Desirable conditions and narrow restrictions: the c
cept of liquid helium boiling experiment in microgravity
N. Scherbakova~B. Verkin Institute for Low Temperature
Physics and Engineering, NASU, Kharkov, Ukraine!.

2. Heat and mass transfer in helium

9. Some models of heat transfer at film boiling of sup
fluid helium near critical point. A. Kryukov~Moscow Power
Engineering Institute, Department of Low Temperatur
Moscow, Russia!.

10. The vapor film evolution at superfluid helium boilin
in microgravity. A. Kryukov ~Moscow Power Engineering
Institute, Department of Low Temperatures, Moscow, R
sia!.

11. Precision experiment to study cryosorption of H
isotopes in the terrestrial conditions and at low gravi
S. Nesterov~Moscow Power Engineering Institute, Depa
ment of Low Temperatures, Moscow, Russia!.

12. The superfluid3He collective mode study: curren
situation in experiment and theory. P. Brusov~Physical Re-
search Institute, Rostov-on-Don, Russia!.

13. On a theory of multi-gap superfluidity based on t
fermi-liquid approach. A. Isaev~Kharkov Institute of Physics
and Technology, Kharkov, Ukraine!.
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3. Material science and Universe

14. Universe as condensed matter. G. Volovik~Helsinki
University of Technology, Helsinki, Finland; Landau Inst
tute for Theoretical Physics, RAS, Moscow, Russia!.
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