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The role of normal processes in the thermal conductivity of solid deuterium
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The thermal conductivity of orthodeuterium crystals containing a neon impurity is investigated in
the temperature interval 1.8–17 K. The results of the measurements are described in the
framework of the relaxation-time model with allowance for phonon–phonon scattering processes.
The intensity of the normal scattering processes for deuterium are determined. The existing
theoretical models are used to estimate the intensity of the phonon scattering processes for a
number of cryocrystals. The calculated intensity of the normal processes is compared to
the experimental result. ©2000 American Institute of Physics.@S1063-777X~00!00104-3#
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INTRODUCTION

It is known that phonon–phonon scattering proces
which conserve quasimomentum~normal orN processes! do
not contribute to the thermal resistance of a crystal.1 At the
same time, in certain cases they can play a significant rol
the formation of the thermal resistance. The pioneer
works in the field of research on the influence ofN processes
on the thermal conductivity in the relaxation-time appro
mation were the studies by Guyer and Krumhansl2 and
Callaway.3 The Callaway model has proved to be more co
venient to use and is now widely employed. Although it w
originally proposed in a rather crude approximation, mo
recent studies~in particular, Refs. 4 and 5! have shown that
the model is also applicable to a more accurate analysi
this question.

In redistributing the energy of the phonon subsystemN
processes, depending on their intensity, give rise to unu
effects in the thermal conductivity of crystals, especia
when their intensity is comparable to that of the resist
processes. Then the influence ofN processes on the valu
and behavior of the thermal conductivity becomes more
preciable, so that one can determine their intensity quite
liably from data on the thermal conductivity5 and from ex-
periments on second sound.

Up until now the determination of the intensity ofN
processes from heat conduction experiments has been
only for the cryocrystals3He, 4He ~Refs. 6–8!, p-H2 ~Refs. 5
and 9!, and Ne~Ref. 10!.

In this paper we investigate the influence of norm
phonon–phonon processes on the thermal conductivity
solid orthodeuterium containing a neon impurity.

EXPERIMENT

We measured the thermal conductivity of pureo-D2 and
two samples of o-D2 containing a Ne impurity ofc
50.05% in the temperature interval 1.8–17 K by a stea
2351063-777X/2000/26(4)/5/$20.00
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state two-dimensional method. The crystals were grown
stainless steel ampoule with an inner diameter of 4.6 mm
a length of 38 mm.11

In the experiment we used gaseous deuterium wit
99.59% isotopic impurity. The concentration of chemical im
purities in the dry gas was less than 0.01%. Prior to pre
ration of the sample an ortho-to-para conversion of the d
terium was carried out by contact with an Fe~OH!3 catalyst at
a temperature close to 20 K. As a result, thep-D2 concen-
tration reachedc52%. The chemical purity of the Ne~of
natural isotopic composition! was 99.99%. The gaseous mix
ture of orthodeuterium and neon was prepared in a g
vessel at room temperature. The relative error in the de
mination of the neon concentration in the mixture was n
over 5%.

To ensure a uniform distribution of the neon impurity
the sample the latter was crystallized from the gas pha
with the gas pressure held constant at a value correspon
to the vapor pressure of deuterium near the triple point~17
kPa!.

The pure sample 1 and the doped sample 3 were gr
at a rate of 0.13 mm/min, annealed for 3 h, and then coo
to the temperature of the measurements. The rate of coo
was chosen so that the gradient over the sample did not
ceed 0.3 K. The procedure used to prepare samples 1 a
made it possible to obtain reproducible results on the te
perature dependence and values of the thermal conducti
The other doped sample 2 was grown at a rate of 0.26 m
min.

The curves of the temperature dependence of the the
conductivities of the samples studied are shown in Fig.
After the measurements, sample 3 was remelted, and it
found that its thermal conductivity was completely the sa
before and after the melting.

NORMAL PROCESSES AND THERMAL CONDUCTIVITY

Let us consider the physical model that will be used
analyze the experimental data.
© 2000 American Institute of Physics
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Normal phonon–phonon interaction processes have b
examined most thoroughly by Herring,12 according to whom
the relaxation rate ofN processes for acoustical phonons
the low-temperature region can be represented in the fo

tN
21}vnT52n,

wheren52 for crystals of high symmetry~cubic and hcp!.
In the most recent papers~e.g., Ref. 4! the relaxation

times for phonons with longitudinal and transverse polari
tion in various types of scattering processes~l↔ l 1t, l↔t
1t, etc.! have been refined, and their frequency depende
and temperature dependence have been obtained.

Since the thermal conductivity experiments have o
been able to establish the value oftN averaged over the
phonon polarizations, in the study of normal processes
difference between the longitudinal and transverse phon
is usually neglected. In what follows we shall use the st
dard expression for the relaxation rate ofN processes:

tN
215BNv2T3. ~1!

In Ref. 5, in an analysis of the results on the thermal c
ductivity of neon in parahydrogen, the term corresponding
the scattering of phonons with transverse polarization (tN

21

;vT4) was taken into account, but it was shown in Ref
that for hydrogen with a neon and argon impurity the con
bution of this term is several orders of magnitude smalle

The Callaway model3 takes into account the influence o
normal phonon–phonon scattering processes in the app
mation of a Debye phonon spectrum, and the thermal c
ductivity of the crystal was written in the form of two term

K~T!5GT3~ I 11I 2
2/I 3!, ~2!

where

FIG. 1. Temperature dependence of the thermal conductivity of sample
o-D2 without a Ne impurity~1!, of o-D210.0502% Ne~2!, and of o-D2

10.048% Ne~3!. Samples 1 and 3~curves1,3! were grown at a rate of 0.13
mm/min and annealed, sample 2~curve 2! was grown at 0.26 mm/min
without annealing. The solid curves correspond to a calculation by the
laway formula.3
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Q/T tC

tNtR
f ~x!dx; G5k4/~2/p2s\3!;

f ~x!5x4ex/~ex21!2; x5\v/kT;

Q is the Debye temperature,k is Boltzmann’s constant,s is
the speed of sound,tR , tN , and tC are, respectively, the
relaxation times of resistive scattering processes and oN
processes and the combined relaxation time

tC
215tR

211tN
21.

For normal processes we obtain, after introducing the v
ablex defined above,

tN
215ANx2T5. ~3!

In the analysis of the experimental data we took into acco
the following resistive processes: umklapp (U) processes,
and the scattering of phonons on grain boundaries and im
rities:

tR
215tU

211tB
211t I

21. ~4!

The U processes are determined by the properties of
deuterium crystal and at low concentrations are practic
independent of the presence of impurity molecules:1

tU
215AUx2T3 exp~2E/T!,

whereE is the phonon threshold energy above which u
klapp processes can arise.

Scattering on grain boundaries is determined by
characteristic mean free pathL of the phonons and the soun
velocity s:1

tB
215s/L.

The inverse relaxation time for the scattering of phono
by a heavy isotopic impurity has a resonant character an
given by the expression5

t I
215

1.5pc«2v~v/vD!3

~12v2/v0
2!212.25p2«2~v/vD!6

,

wherec is the impurity concentration,«5DM /M ~the mass
defect!, DM is the mass difference of the impurity and ho
molecules,vD is the Debye frequency,v0 is the quasilocal
frequency, which in the Debye approximation isv0

5vD /(3«)1/2.
Besides the purely mass-related effect, the incorpora

of an impurity in a crystal also alters the interaction for
and causes a distortion of the lattice around the impu
center. In addition to the mass defect, Clemens13 introduced
an effective parameter taking into account the local cha
in the force constantsDw/w and the local lattice distortion
Dd/d, which has the following form:

G5«212~Dw/w26.4gDd/d!2, ~5!

whereg is the Grüneisen constant.
For the case of neon in deuterium the lattice distort

can be estimated asDd/d'(VD2
2VNe)/3VD2

'0.098, since
the molar volumes of deuterium and neon areVD2

of

l-
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519.91 cm3/mole and VNe514.07 cm3/mole, respectively.
The first term in parentheses in Eq.~5! is small compared to
the second and will be neglected. We emphasize that this
crude model approximation. However, there is reason
think that this approximation is valid at low temperatures
one takesg'2,14 the correction to«2 due to local variation
of the force constants and the lattice distortion will be a
proximately equal to 3.1, if it is assumed that the interact
potentials of the neon and deuterium are practically eq
Thus the correction under discussion is smaller than the m
defect«2516. In our analysis of the results we shall negle
the contribution due to the lattice distortion.

DISCUSSION

The results for pureo-D2 agree with the data of Ref. 15
There is complete agreement as to the temperature pos
of the maximum of the thermal conductivity, although t
value of the thermal conductivity obtained in the pres
study is somewhat lower. This is probably due to the f
that the crystals in Ref. 15 were grown in a glass cell hav
a larger diameter, which made for a higher quality of t
crystals. This is also indicated by the size of the crystall
grains~1 mm! in Ref. 15.

The low-temperature thermal conductivities of cryst
containing a neon impurity differ significantly~Fig. 1!. For
T,6 K the thermal conductivity of the sample grown at t
lower rate~curve3! is lower than that of the sample grown
the faster rate~curve 2!. In the regionT*10 K the curves
have different slopes, and they intersect. These features
clearly related to the defect structure of the crystals gro
under different conditions. The influence of the sam
preparation procedures on the defect structure will not
discussed in this paper.

The experimental temperature dependences of the t
mal conductivity were described by the Callaway formula.
value of 111.5 K16 was used for the Debye temperature
deuterium in the calculations. The agreement between
theory and experiment, both for pure orthodeuterium and
a deuterium–neon mixture, can be improved somewha
taking into account the contribution of relaxation on isotop
impurities contained in the initial deuterium gas~t21

5Dx4T4 with D5299.5 s21K24!. This is not surprising,
since the concentration of isotopic impurities in the init
gas was 0.041% and, in addition, around 2% of the m
ecules in the crystal had nonzero angular momentum.
argument of the exponential function for phonon–phononU
processes (E537.1 K) was also obtained from the data f

TABLE I. Parameters of the phonon scattering processes as obtained fr
fitting of the Callaway formula to the experimental temperature depende
of the thermal conductivity for the different samples:U processes (AU ,E),
N processes (AN), and scattering on grain boundaries~LB is the phonon
mean free path!. In the calculations a values51202.8 m/s~Ref. 17! was
used for the speed of sound in deuterium.

Sample cNe , LB , AU , E, AN ,
No. 1024 1025 m 107 s21 K23 K 104 s21 K2-5

1 0 3.76 4.56 37.1 5.060.5
2 5.02 1.88 6.89 37.1 5.060.5
3 4.8 0.66 5.73 37.1 5.060.5
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pure orthodeuterium. The intensity of normal processes (AN)
was determined by fitting the data for crystals contain
impurities, which yielded a value (5.060.5)3104 s21K25.

The values obtained for the parameters of the scatte
processes are listed in Table I. The results of the fitting
shown by the solid curves in Fig. 1. The mean free path
the scattering of phonons by grain boundaries was about
times larger for crystal 2, which was grown at the high
rate, than for the other doped crystal 3. As we see from F
1, the experimental points for curve3 are systematically
higher than for curve2 in the regionT.10 K, where one
would expect the results to agree. The difference is app
ently due to the defect structure of the crystals and, a
result, the different predominant orientation of the crys
with respect to the heat flux.11

Figure 2 shows the calculated change in the behavio
the thermal conductivity as a function of the intensity of t
normal processes. The middle curve is the result of a fitt
for sample 2. For the other two curves the intensity of t
normal processes was changed by 3 orders of magnitude~de-
creased for curve1 and increased for curve3!. The contri-
butions to the thermal conductivity from the terms in t
Callaway formula~1! vary as a function of the intensity. Fo
example, for curve1 the thermal conductivity is determine
exclusively by the first term, while for curve3 it is deter-
mined by the second~the so-called ‘‘Ziman limit’’!.

The data accumulated in recent years permits one
compare the intensities ofN processes in quantum crysta
and neon as inferred from measurements of the thermal
ductivity. For a numerical estimate we used the ideas
forth in Refs. 4 and 5. In the general case the relaxation
of N processes can be written as

FIG. 2. Calculated temperature dependence of the thermal conductivi
orthodeuterium at various intensities of the normal processes,AN , s21K25:
50 ~1!, 53104 ~2!, 53107 ~3! ~the parameters of the other scattering pr
cesses remained unchanged; see Table I!. The calculation was done usin
the Callaway formula.
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tN
215bS v

vD
D nS T

u D 52n

, ~6!

b>
16p3

735)

g2a3\

M S kQ

\st
D 5

,

wherea is the distance between nearest neighbors, andst is
the transverse velocity of sound. After substituting expr
sion ~6! for the intensity of normal processes into express
~3! and expressing the coefficient in terms of the charac
istic parameters of the crystal, we obtain

AN'991.6\NA
5/3 g2

mV2/3Q5
, ~7!

wherem is the molar mass,V is the molar volume, andNA is
Avogadro’s number. It is seen from formula~7! that the in-
tensity of normal processes depends on the physical pa
eters characterizing the specific substance. Table II show
comparison of the intensitiesAN of the normal processe
obtained for different crystals from thermal conductivi
experiments6–10,18and the values calculated using the abo
formula.

Let us now separate out the dependence on the De
temperature in formula~7!, eliminating the dependence o
the molar weight, molar volume, and Gru¨neisen constan
(ANmV2/3/g2), and compare the results with the analogo
quantities obtained from experiments on the thermal cond
tivity of different crystals.6–10,18 Figure 3 shows a logarith
mic plot of this dependence. We see that the intensities of
N processes in different experiments, except for the res
on HD,18 agree with the calculated formulatN

21}Q25. The
intensity of theN processes for HD is significantly lowe
than the value suggested by the estimating formula. The
son is that in Ref. 18 this parameter was determined from
low-temperature part~below the maximum! of the thermal
conductivity curve, making it difficult to interpret the resul
reliably enough. For Ne the intensity of theN processes10 is
somewhat too high; this may be due to the different rep
sentation of theN processes in that paper (tN

21[BNx2T4).
Making use of the fact that the calculated intensities

the N processes agree with those obtained from experim
we calculated the parameters of theN processes for severa
-
n
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very simple molecular crystals. The results of the calcu
tions are presented in Table III. The calculated values
classical rare-gas crystals~see Table III! are only slightly
different from the intensity of theN processes for isotopes o
hydrogen~see Table II!. It should be kept in mind that the
influence of normal processes on the thermal conducti
depends on the relative intensities of the normal and resis
processes. The contribution ofN processes is unimportan
when the relaxation time of theN processes is significantly
shorter than that of the resistive processes.

CONCLUSION

Because the parameters of the Lennard-Jones pote
for neon are close to those for deuterium, one can trea
neon impurity in orthodeuterium as quasi-isotopic. Since,
a result of the large mass ratio (MNe/MD2

55) the scattering
of phonons by the heavy isotopic impurity is predomina
over the other scattering processes, the role of the nor
processes is manifested quite clearly.

Let us state the main results:

FIG. 3. Intensity of theN processes for various substances, normalized
the molecular weight, molar volume, and Gru¨neisen constant (ANmV2/3/g2),
as a function of the Debye temperature. The symbols are the experim
results of Refs. 6–10, 18, and the present study~Table II!; the line was
calculated according to formula~7!.
rmal
TABLE II. Comparison of the calculated and experimentally obtained values of the intensity of no
phonon–phonon processes (tN

215ANx2T5). The Debye temperatureQ and molar volumeV for the isotopes of
H2 and Ne are taken from Refs. 16 and 14, respectively, and the Gru¨neisen parametersg for He, the hydrogens,
and Ne were calculated using the data of Refs. 19, 16, and 20, respectively.

AN , s21 K25

ANmV2/3/g2

Substance g V, cm3/ Q, K Calculation Experiment
J•s

mole5/3 K5 Source

3He 2.70 19.5 37.3 2.093107 1.373107 4.080 Ref. 6
3He 2.52 17.6 48.2 5.403106 2.403106 0.767 Ref. 6
3He 2.03 12.6 104 9.363104 5.103104 0.0201 Ref. 6
4He 2.79 20.4 28 6.803107 3.813107 14.6 Ref. 8
4He 2.49 17.3 43 7.083106 4.23106 1.81 Ref. 8
4He 1.94 11.65 104 6.763104 3.493104 0.0190 Ref. 8
H2 2.00 23.16 118.5 4.733104 6.73104 0.0272 Ref. 9
HD 2.00 20.95 115 3.923104 586 3.343104 Ref. 18
D2 2.00 19.91 111.5 3.553104 5.03104 0.0367 Present study
Ne 2.60 13.53 74.6 1.163105 4.53105(s21 K24) 0.756 Ref. 10
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— We have analyzed the influence ofN processes on the
thermal conductivity of the investigated crystals and have
the first time determined the intensity ofN processes in solid
D2.

— We have compared the published data on the int
sity of N processes, obtained from the results of therm
conductivity measurements, for isotopes of helium, hyd
gen, and neon.

— On the basis of the theory set forth in Refs. 4 and
we have calculated the intensities ofN processes for crystal
in which the corresponding values are known fro
experiments,6–10,18and we have made a comparison.

— We have used the formulas given here to estimate
intensities ofN processes for several of the simplest cryo
rystals.

We have shown that for all of the substances conside
including quantum crystals, the intensity of normal phono
phonon processes at low temperatures can be described
unified way in terms of the characteristic parameters of
crystals. The proposed approach creates the impression
the zero-point vibrations do not affect the intensity of t
normal processes. It must be kept in mind, however, tha
of the parameters appearing in the formula for the inten
of normal processes depend to some degree on the ener
the zero-point vibrations of the particles, and for this reas
the dependence of theN processes on the quantum
mechanical characteristics of the crystal is not clear-cut.

TABLE III. IntensitiesAN of normal phonon–phonon interaction process
~calculation! for several substances (tN

215ANx2T5). The values of the De-
bye temperature and molar volume were taken from Ref. 16 for the isot
of H2, from Ref. 21 for CH4, and from Ref. 14 for Ar, Kr, and Xe, and th
Grüneisen parameter was taken from Ref. 14 for H2, from Ref. 22 for CH4,
and from Ref. 20 for Ar, Kr, and Xe.

V, AN ,
Substance g cm3/mole Q, K s21 K25

HT 2 20.48 107 4.283104

DT 2 19.34 106.8 3.593104

T2 2 18.82 102.2 3.83104

CH4 2 32.75 144 1.773103

Ar 2.2 22.57 93.3 9.623103
Kr 2.6 27.13 71.7 2.113104

Xe 2.3 34.55 64 1.593104
r
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the intensity of normal processes and for helpful consu
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Properties and structure of fluid hydrogen near the line of crystallization
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~Submitted November 10, 1999!
Fiz. Nizk. Temp.26, 330–339~April 2000!

The thermodynamic properties and distribution functions of highly compressed molecular
hydrogen are investigated in a nonempirical atom–atom approximation. Quantum corrections are
introduced on the basis of the Feynman variational approach. The pressure, energy,
compressibility, thermal expansion, heat capacity, and sound velocity are calculated by the
Monte Carlo method at temperatures of 200–500 K and pressures up to 5 GPa. The results are
compared with the available experimental data. It is shown that effects due to
incompressibility of the molecules and quantum effects must be taken into account in calculating
the contributions to the thermodynamic functions from inter- and intramolecular forces. The
behavior of the properties of fluid hydrogen near the line of crystallization outside the investigated
region is predicted, and an estimate is made for the jump in volume upon crystallization of
hydrogen atT5300 K. © 2000 American Institute of Physics.@S1063-777X~00!00204-8#
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INTRODUCTION

The thermodynamic, transport, and structural proper
of isotopes of hydrogen in the condensed phase have
under intensive investigation for many years. A rich body
experimental material in the cryogenic region has be
accumulated.1 At high pressures the most important expe
mental results have been obtained in the solid phase by
diamond anvil method.2 In recent years there has also be
substantial progress in the study of highly compressed fl
hydrogen in the high-temperature region, where a transi
to a metallic state has been observed in dyna
experiments.3 Fluid hydrogen at low temperatures remai
much less investigated. The existing published data
yielded the equation of state for the fluid phase of norm
hydrogen at temperatures up to 500 K and pressures up
GPa.4 As we see in Fig. 1, there is a significant gap betwe
the region investigated experimentally by static methods
the region studied in dynamic experiments. At high pressu
and moderate temperatures the fluid-phase region adjace
the line of crystallization remains practically uninvestigate
Since it is quite difficult to do an experiment here, it is
particular urgency to undertake a theoretical prediction of
properties of highly compressed fluid hydrogen.5 However,
there is an extremely restricted choice of nonempirical me
ods of predicting the properties of such dense systems. M
ods based on the direct quantum-mechanical computer s
lation, e.g., the path-integral Monte Carlo~PIMC! method,6

are very demanding of computational resources and have
yet attained the necessary accuracy. A simpler appro
based on the atom–atom approximation7 essentially uses
classical mechanics and is not directly applicable to li
molecules at relatively low temperatures.

The difficulties facing the theoretical prediction of th
properties of highly compressed hydrogen are not due so
to the appreciable quantum effects.5 Molecular hydrogen has
a number of distinctive features of the intermolecular int
action that make it different from all other homonuclear
atomic systems. The exceptionally soft repulsion of its m
2401063-777X/2000/26(4)/7/$20.00
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ecules at short distances due to the absence of in
electronic shells accounts for the unique ability of hydrog
to be compressed in volume by more than a factor of ten
the condensed state without substantial changes to its
lecular structure.2 This peculiarity leads to certain difficultie
in applying to hydrogen the well-developed methods of
theory of fluids, which make use of the model of rigid, im
permeable molecules.

At the same time, the interaction laws for atoms a

FIG. 1. P–T relation for fluid hydrogen on the line of crystallization, ac
cording to Ross19 ~solid line!, and a linear extrapolation in logarithmic co
ordinates~dashed line!. The various shadings indicate the regions of t
experimental studies of Michelset al.,15 1959~1!; Tsiklis et al.,16 1975~2!;
and Mills et al.,17 1977~3!; and the domains of applicability of the equatio
of state of She�nina et al.,4 1993 ~4!; the classical atom–atom
approximation7 ~5!; the atom–atom approximation with quantum corre
tions ~present study! ~6!. The letters C.P. label the liquid–vapor critica
point (s). Data obtained under various types of compression: shock18,20

(j,1); double shock ~behind the reflected shock wave!20 (m);
quasi-isentropic3 (!); static ~diamond anvil!2 (d). Data on the line of
crystallization1,2 ~l!.
© 2000 American Institute of Physics
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molecules of hydrogen are now well known.5 There are some
theoretical models capable of describing a noncentral in
action of hydrogen isotopes.2,5 There have also been a num
ber of successful attempts to explain on the basis of th
models the phase transitions observed in condensed hy
gen at high pressures5 and low temperatures, where the qua
tum properties of the crystal are domimant. In the hig
temperature region, on the contrary, it has turned out that
results of dynamic experiments can be described correctl
the basis of purely classical models.7 Here the atom–atom
approximation gives a simple and reliable basis for pred
ing the properties of fluid hydrogen at high pressures.9 In the
atom–atom approach it is relatively simple to describe
effects associated with the nonrigidity of the hydrogen m
ecules and which are manifested in changes in the lengt
the chemical bond and the frequency of intramolecular vib
tions.

Nonrigidity effects, which play an important role i
highly compressed fluid hydrogen at high temperature7,9

remain substantial at intermediate temperatures as well
pecially near the line of crystallization, where the density
the fluid is high. In this region, however, one cannot negl
quantum effects, particularly for the light isotopes of hydr
gen. The goal of the present study is to investigate the p
sibility of using the atom–atom approximation in conjun
tion with quantum corrections in order to predict th
behavior of dense hydrogen near the line of crystallizatio

ATOM–ATOM APPROXIMATION

In the atom–atom approximation7,9 the energy of inter-
action of hydrogen molecules is expressed in terms of
interaction energy of individual pairs of atoms. Two hydr
gen atoms, as we know, interact differently depending
their total spin.10 In the singlet ground state1S the atoms
form an H2 molecule — a bound state with a well depth
4.75 eV and a bond length of about 0.74 Å. In the trip
excited state3S the curve of the interaction energy does n
have a minimum~except for a small dispersion well at
distance greater than 3 Å!.

In the atom–atom approximation the intermolecular
teraction energy can be expressed relatively simply in te
of the interaction energy of the atoms within the molecu
This approximation is based on the Bohm–Alrichs theore
which was proved by those authors in Ref. 8 in the Hartre
Fock approximation, in which the molecular orbitals are re
resented by a linear combination of atomic orbitals~LCAO
MO!. According to the theorem, the energy of the nonval
interaction of two atoms~i.e., the interaction energy of two
atoms belonging to different molecules with closed el
tronic shells! is equal to the weighted average~i.e., with
allowance for the degeneracy with respect to projections
the spin and orbital angular momenta! of the interaction en-
ergy of two free atoms calculated in this same approxim
tion.

According to the theorem, the nonvalent interaction p
tential w(r ) of hydrogen atoms can be calculated as a lin
combination of the singlet and triplet potentials, with weigh
proportional to the multiplicities of these states:
r-
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w~r !5
1

4
U~1Sur !1

3

4
U~3Sur !. ~1!

HereU(1Sur ) is the interaction energy of two atoms i
the 1S ground state~with antiparallel spins!; U(3Sur ) is the
interaction energy of atoms in the3S excited state~with
parallel spins!.

The total energy of two H2 molecules found in the elec
tronic ground state1S in the atom–atom approximation con
sists of intra- and intermolecular contributions:

U25U~1SuR12!1U~1SuR34!w~r 13!

1w~r 14!1w~r 23!1w~r 24!. ~2!

The indices 1 and 2 refer to the atoms bound togethe
the first molecule, while 3 and 4 refer to the atoms bound
the second molecule. Here and belowRi j 5R12,R34,... are
the intramolecular interatomic distances~the instantaneous
lengths of the chemical bonds in the molecules!, while r i j

5r 13,r 14,... denote the instantaneous distances between
oms of different molecules~intermolecular distances!.

For N molecules the generalization of Eq.~2! is written

UN5(
intra

U~1SuRi j !1(
inter

w~r i j !. ~3!

The first sum in~3! is over the intramolecular interac
tions of all N molecules, and the second sum is over all t
2N(N21) pairs of atoms belonging to different molecule

For describing the intramolecular potential energy in t
1S state in the region of relatively low temperatures in th
paper we use the Morse function:

U~1SuR!5De$exp@22b~R/Re21!#

22 exp@2b~R/Re21!#%. ~4!

The potential~4! contains three parameters which are det
mined from the results of quantum-mechanical calculation10

and which are practically equal to those found from the sp
troscopic measurements:Re50.74126 Å is the length of the
chemical bond in the molecule,De54.788 eV is the binding
energy of the atoms in the molecule, and the param
b51.4403.

The nonvalent interaction potentialw(r ) was repre-
sented in the approximation proposed by Saumon
Chabrier:13

w~r !5«$g exp@22s1~r 2r * !#

2~11g!exp@2s2~r 2r * !#%. ~5!

The parameters appearing in Eq.~5!, r * 53.2809 Å, «
51.7431023 eV, g50.4615, s151.6367 Å21, and s2

51.2041 Å21, were obtained in Ref. 13 on the basis of t
well-known variational calculations of Kolos and Wolnie
witz for the H2 molecule.10 Formula~5! gives a very accurate
description of potential~1! over a wide interval of distance
~from 0.5 to 3.5 Å!, including the region of strong repulsio
at short distances and the region of weak dispersional att
tion at large distances.

Thus the atom–atom approximation~1!–~3! with the po-
tentials ~4! and ~5! permits a quite simple determination o
the potential surface of the ground state of a system con
ing of an arbitrary number of hydrogen molecules. We n
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that this approximation does not contain any adjusta
parameters found from the experimental data but uses
the pair potentialsU(1SuR) and U(1SuR) obtained from
ab initio calculations.10

A comparison of the predictions of the atom–atom a
proximation with the results of direct quantum-mechani
calculations of the H2–H2 interaction energy and with th
results of experiments on the scattering of molecular be
has shown7 that this approximation gives an entirely satisfa
tory description of the short-range repulsion of the molecu
but that the molecular attraction at large distances is ove
timated somewhat. This is seen in Fig. 2, which shows
interaction potentials of two hydrogen molecules, avera
over all orientations. Moreover, the atom–atom approxim
tion at large distances does not recover the asymptotic
havior of the orientational part of the intermolecular pote
tial, in particular, that of its quadrupole–quadrupo
component. This shortcoming, which is important at re
tively low densities, can also be important in the descript
of phase transitions in solid hydrogen.5 At the same time, at
high pressure in the isotropic phase, where the main rol
played by the short-range repulsive forces, this aspect of
atom–atom approximation plays a secondary role. The t
modynamic properties of shock-compressed hydrogen
deuterium predicted on the basis of this approximation ar
good agreement with the experimental data at high temp
tures and at pressures up to hundreds of kilobar~tens of
GPa!.7,9

Calculations have shown9 that at ultrahigh~megabar!
pressures the atom–atom approximation begins to over

FIG. 2. Isotropic part of the interaction potential of two hydrogen m
ecules: the potential of the atom–atom approximation, averaged ove
orientations for a fixed bond lengthRe50.74 Å~1!; the empirical Lennard-
Jones potential ~s52.95 Å, «/k532 K! ~2!; the Silvera–Goldman
potential12 ~3!.
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mate the intermolecular attraction considerably. This is
parently because it completely ignores the electronic exc
tion, which ultimately leads to metallization of fluid
hydrogen at high temperatures and pressures. Thus the
main of applicability of the atom–atom approximation~see
Fig. 1! is bounded at both high and low densities~pressures!.

QUANTUM CORRECTIONS

For predicting the thermodynamic behavior of den
deuterium and especially hydrogen at lower temperatures
the basis of the atom–atom approximation, one must mo
this approach to incorporate quantum-mechanical effe
which play a governing role in the behavior of these lig
molecules at low temperatures. In this paper we use the
proach proposed by Feynman, which is based on his va
tional procedure for the free energy.11

In this approach the free energy of a quantu
mechanical particle in an external field can be calcula
approximately by a classical method if its potential ener
V(r ) is replaced by a certain effective potentialŨ(r ,T)
given by11

Ũ~r ,T!5
1

Ap
E

2`

1`

V~r 1lt !exp~2t2!dt. ~6!

The parameter

l5\/A6mkT ~7!

plays the role of the quantum-mechanical wavelength as
ciated with the given particle;k is Boltzmann’s constant.

In the simplest cases the quantum corrections to the
tential in approximation~6! are easily calculated explicitly
For example, for the harmonic oscillatorV(R)
5(1/2)mv2(R2Re)

2 with frequency v and equilibrium
distanceRe , formula ~6! gives a distance-independent co
rection that is inversely proportional to the temperature a
similar in meaning to the contribution from the energy
zero-point vibrations:

Ũ~R,T!5
mv2

2
~R2Re!

21
~\v!2

24kT
. ~8!

For the exponential repulsive potentialV(r )5A exp
(2br), formula ~6! leads simply to a renormalization of th
pre-exponential factor, which becomes temperatu
dependent:

A→A exp$l2b2/4%. ~9!

As we see, taking quantum effects into account in
framework of the Feynman approach here reduces simpl
some increase in the effective interatomic repulsion. A rou
estimate of the possible influence of these effects on the
pulsion of the atoms is easily made by taking into acco
that the parameterb is close to 2~a.u.!21 for many atoms.7

For example, for deuterium atT5500 K the increase in the
repulsion is only around 2.5%, but for hydrogen atT
5200 K it is already about 20%.

Thus one can assume that in the investigated tempera
interval, taking quantum effects into account in theintermo-
lecular interaction can be done at the level of a correction

all
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TABLE I. Calculated and experimental thermodynamic properties of fluid hydrogen (N5256) atT5200 K ~V511.17 cm3/mole, l50.20 Å!, 300 K ~V
511.63 cm3/mole, l50.16 Å!, and 500 K~V512.53 cm3/mole, l50.13 Å! on theP52 GPa isobar.

T, K Method P, GPa CV /R CP /R aT , 1023 K21 bT , GPa21 a, km/s

Without quantum correction 1.56 4.99 5.57 0.62 0.17 5.98
200 With quantum correction 1.81 2.84 3.26 0.48 0.15 6.59

Experiment~Ref. 4! 2.00 2.98 3.62 0.42 0.15 6.40

Without quantum correction 1.62 4.63 5.29 0.54 0.18 6.02
300 With quantum correction 1.75 3.22 3.62 0.37 0.15 6.59

Experiment~Ref. 4! 2.00 3.24 3.64 0.39 0.16 6.38

Without quantum correction 1.70 4.40 4.90 0.35 0.18 6.18
500 With quantum correction 1.72 3.12 3.56 0.32 0.18 6.34

Experiment~Ref. 4! 2.00 3.14 3.68 0.36 0.18 6.37

Dcalc 0.01 0.03 0.05 0.02 0.02 0.05

Note: Dcalc is the absolute error of the calculation.
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the intermolecular potential, and the Feynman variatio
approach11 can be completely applicable to highly com
pressed hydrogen isotopes.

While the quantum corrections to the intermolecular
teraction will be extremely insignificant at temperatur
above 500 K, at temperatures below 200 K the influence
quantum effects will be too great to be treated like the c
rections mentioned above. Fortunately, in this region
properties of fluid hydrogen have been investigated exp
mentally almost right up to the line of crystallization.1,4

As to theintramolecularvibrations, their quantum char
acter is manifested at much higher temperatures, so th
correction of the type~8! is inadequate in the investigate
temperature interval. The quantity in Eq.~8! becomes
comparable to the heat capacity itself at temperatures ab
1000 K.

In view of this and also of the fact that the correction~8!
gives only the first term, linear in the inverse temperature
the expansion of the exact expression for the contribution
the heat capacity of the harmonic oscillator to the free
ergy, one can@while remaining formally within the frame
work of the Feynman approach~6!# replace (\v)2/24kT in
~8! by

kT lnS sinhz

z D , ~10!

where z5\v/kT. At high temperatures the function~10!
goes over to (\v)2/24kT, and at low temperatures it give
the exact expression for the harmonic-oscillator contribut
to the free energy and the other thermodynamic proper
Although this modification of the Feynman approach can
claim to be rigorous, it does permit one to advance into
region of lower temperatures, as may be judged only from
direct comparison with experiment. Below we present
results of such a comparison.

MONTE CARLO CALCULATIONS

To predict the properties of fluid hydrogen on the ba
of the atom–atom approximation with the quantum corr
tions introduced above, we chose the method of Monte C
simulation. This approach can be used to eliminate the w
known inaccuracies in the solution of the statistical probl
l
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which are inherent to the present-day theoretical metho
such as the method of integral equations or the method
thermodynamic perturbation theory. The errors inherent
the Monte Carlo method are easily monitored by mod
computational techniques and can be reduced to an acc
able level.

The calculation was done in anNVT ensemble, withN
hydrogen atoms placed in a rectangular cell with perio
boundary conditions. The size of the cell was determined
the specified density, and the initial configuration cor
sponded to a random distribution of molecules with bo
lengths close to the equilibrium bond lengthRe . Each step of
the experiment included a random choice of an individ
atom, for which an attempt was made to move it to a n
position within a specified distanceD. Discrimination of the
steps was carried out by the standard Metropolis metho14

The value ofD was chosen such that around 40% of the st
were successful. After equilibrium was established, wh
took about 1000 successful steps/atom,1 the computer began
to store the total values of the total energy and pressure
their squares and products for calculation of the neces
properties of the fluid. The accumulation of statistics w
repeated after each atom had been displaced to a new
tion an average of three times and was continued for ab
40 thousand successful steps per atom, until all the aver
had stabilized and acceptable values had been obtaine
the probable errors, which were estimated by standard st
tical methods for a confidence level of 0.95.

The following averages were calculated:2 the pressure

P5
NkT

V
1

1

3N K (
intra

Ri j

]Ũ~Ri j !

]Ri j
1 (

initer
r i j

]w̃~r i j !

]r i j
L ;

~11!

the total energy

E5
3

2
kT1

1

2N K (
intra

H Ũ~Ri j ,T!2T
]Ũ~Ri j ,T!

]T J
1H (

inter
w̃~r i j ,T!2T

]w̃~r i j ,T!

]T J L ; ~12!

and the isothermal compressibilitybT52(1/V)(]V/]P)T ,
the thermal pressurePT5T(]P/]T)V , and the isochoric
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TABLE II. Thermodynamic properties of fluid hydrogen on theT5300 K isotherm.

Reduced density
V0 /V

V,
cm3/mole

P,
GPa

Pin ,
GPa

E,
eV

Ein ,
eV Cv /R CP /R

aT ,
1023

•K21
bT ,

GPa21
a,

km/s

2.12 11.63 1.76 0.16 24.483 24.568 3.12 3.64 0.44 0.158 6.53
2.82 10.00 2.97 0.25 24.457 24.568 3.18 3.58 0.32 0.094 7.69
3.13 9.00 4.31 0.36 24.429 24.568 3.15 3.51 0.27 0.067 8.63
3.31 8.50* 5.25 0.44 24.409 24.568 3.07 3.40 0.25 0.056 9.15

Note: V0528.16 cm3/mole is the volume of liquid hydrogen at atmospheric pressure; the asterisk * indicates a state near equilibrium with the solid
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heat capacityCV . The expressions for these thermodynam
functions in terms of the potentials are more awkward, a
we will not give them here.

The energy of the intramolecular interaction of atom
U(1SuR) was calculated according to Eq.~4!, and the corre-
sponding frequencyv in Eq. ~13! was expressed in terms o
the parameters of the Morse potential~4! and the massm of
an atom:

v5b~Re!
21~2De!

1/2m21/2.

The effective intramolecular interaction potentialŨ(R,T)
was calculated on the basis of~4! with the correction~10!,
both for the harmonic oscillator,

Ũ~R,T!5U~1SuR!1kTF lnS sinhS \v

kT D D2 lnS \v

kT D G ,
~13!

and for an effective intermolecular interaction potent
w̃(r ,T) of the atoms according to~5! and ~9!, i.e.,

w̃~r ,T!5«$gc1~T!exp@22s1~r 2r * !#

2~11g!c2~T!exp@2s2~r 2r * !#%. ~14!

Here the coefficientsck(T)5exp$2l2sk
2%, k51,2.

The isobaric heat capacityCP , the volume coefficient of
thermal expansionaT52(1/V)(]V/]T)P , and the sound
velocity a were calculated from the known thermodynam
relations. The characteristic intramolecular contributions
the pressurePintra and internal energyEintra for the model of
nonrigid molecules were calculated separately; as was sh
previously,9 they are appreciable at high densities. We a
calculated the probability density for finding bound and u
bound atoms at various distances~the intra- and intermolecu
lar proton–proton distribution functions!.

In every case the calculations were done forN5256
atoms in the cell, and some~at T5300 K! were also done for
N5500 atoms~128 and 250 H2 molecules in the cell, respec
tively!. The interatomic interaction potential was ‘‘cut off
at a distancer max57 Å; this did not introduce any new error
of practical consequence. For estimating the contribution
quantum effects the calculations were also done with
without the quantum corrections. In Table I the results
different temperatures along the 2 GPa isobar are comp
with the experimental data.4

RESULTS AND DISCUSSION

A comparison of the results of a Monte Carlo compu
simulation and the data obtained in Ref. 4 show good ag
ment, on the whole.
c
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The only disagreement is that the calculated pressur
the fluid hydrogen is somewhat~about 0.2 GPa! lower than
experiment, even when the quantum corrections are ta
into account. The same disagreement is also observed
the data obtained in shock compression,18,19 which agree in
the temperature interval under consideration~see Fig. 1!.
This is apparently due to the aforementioned character
overestimate of the attraction of the molecules at large
tances in the atom–atom approximation9 ~see Fig. 2!.

As expected, the isochoric heat capacity is particula
influenced by quantum effects over the entire investiga
temperature interval. The corrections to the thermal exp
sion coefficients and sound velocity are less important,
even for them the agreement with experiment is improv
when these corrections are taken into account. As the t
perature increases, this agreement becomes better and b
although even forT5200 K the predictions can be consid
ered completely satisfactory for an approach that does
contain even one adjustable parameter. It is seen that
quantum corrections in the given temperature interval g

FIG. 3. The crystal–fluid transition at 300 K in normal hydrogen~along the
P(V) curve!: the data of a static experiment in the solid phase, by Mao
Hemley2 (m); the atom–atom approximation with quantum correctio
~present study! (d); the equation of state of She�nina et al.4 for the fluid
(h); The horizontal lines are the linear extrapolation of lnPs–ln T ~solid
line! and the calculation ofPs(T) by Ross19 ~dashed line!.
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FIG. 4. Binary atom–atom distribution function atP52 GPa for various temperatures~a,c! and atT5300 K for various pressures~b,d! ~a and b show the
intramolecular part; c and d the intermolecular part!.
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approximately the same contribution to the pressure~of the
order of 10%! as the typical value of the intramolecula
contribution9 due to the nonrigidity of the hydrogen mo
ecule. Taking the quantum corrections into account is ab
lutely necessary not only in calculating the heat capacity
also the thermal expansion, and it substantially improves
agreement with experiment, especially at low temperatur

Table II presents the predicted properties of fluid hyd
gen at high densities on theT5300 K isotherm. The secon
and lower rows of the table pertain to the region near
o-
t
e
.

-

e

crystallization curve (P@2 GPa), for which we do not know
of any experimental data.

The estimated error of the Monte Carlo calculation a
eraged over all the simulations is given in Table I. The d
ference between the results of the calculation forN5256 and
500 can be seen by comparing the second row in Tabl
with the data in Table I for the same state~T5300 K, V
511.63 cm3/mole!. The changes in the values of most of th
characteristics when the number of atoms is increased
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within the range of the statistical error. The pressure a
internal energy can be reliably estimated usingN5256. The
second derivatives of the free energy, especially the co
cients of thermal expansion and isothermal compressib
~and the sound velocity related to it!, are more sensitive to
the number of atoms in the cell.

Calculations done within the experimentally investigat
region have predicted the behavior of highly compres
fluid hydrogen near the line of crystallization. Figure
shows a comparison of theP(V) curves of the fluid and
crystalline phases on theT5300 K isotherm. We see tha
there is a jump of about 0.5 cm3/mole in the volume of the
fluid and crystal at the independently established value of
pressure of crystallization~5.6–5.9 GPa, according to th
estimates of different authors!; this value of the pressur
jump is in good agreement with the available experimen
data at lower temperatures.1,4 It should be emphasized tha
satisfactory agreement with experiment is achieved o
when both the nonrigidity of the molecules~in particular, the
intramolecular contribution to the pressure! and the quantum
corrections are taken into account.

Figure 4 shows the temperature–density dependenc
the the intra- and intermolecular components of the ato
atom distribution functions. As it turns out, even very slig
changes in the intramolecular distribution function with pre
sure can lead to an appreciable contribution of the nonrig
ity to the thermodynamic properties~see Table II!.

CONCLUSION

The atom–atom approximation is a relatively simp
nonempirical approach that is nevertheless suitable for qu
titative prediction of the behavior of simple molecular flui
under pressure. All that is required for using this approac
the value of the interaction potential of two isolated atoms
different electronic states of the diatomic quasimolec
formed by them. These potentials~determined to high accu
racy! are now available not only for hydrogen but also f
nitrogen, fluorine, and other simple homonuclear syste
The predictions of the atom–atom approximation are in r
sonable agreement with the existing experimental data b
at high temperatures7,9 and at moderate temperatures, in sp
of the fact that the atom–atom potentials do not explic
contain contributions from the short-range multiparticle a
long-range electrostatic intermolecular forces and that
electronic excitation of the molecules is not fully taken in
account.

In this paper we have introduced quantum correction
the atom–atom approximation and have shown that this
proach can be extended to the region of relatively low te
peratures. We have calculated the thermodynamic prope
and structure parameters of fluid hydrogen at high pressu
beyond the limits of the experimentally investigated reg
near the line of crystallization.

Even though the atom–atom approximation does su
from the list of shortcomings mentioned above, as a non
pirical approach this approximation has its indisputable
vantages and its own sphere of application. Expressions
the thermodynamic functions in the framework of t
atom–atom approximation are simple,9 and the individual
contributions to them have clear physical meaning. T
d

fi-
y

d

e

l

ly

of
–
t
-
-

n-

is
n
e

s.
-
th

d
e

o
p-
-

ies
s,

r
-
-
or

s

approach requires a minimum of initial information for pr
dicting the properties, makes it possible to describe the
fects of molecular nonrigidity, and can be useful for predi
ing the behavior of molecular fluids at high pressures
only in the Monte Carlo approach or in the theory of integ
equations7,9 but also in a molecular-dynamics calculation
the diffusion, viscosity, and other transport properties
compressed fluids.

In the region of relatively low temperatures, where t
efficacy of theab initio methods6 is most problematic, the
atom–atom approximation, which is not so demanding
computer resources, enjoys an advantage. Its application
also be useful in the study of the structure and propertie
solid hydrogen and other diatomic homonuclear system
high pressures.21

*E-mail: unive@paco.net
1!In states close to the line of crystallization the establishment of equilibr

is a much slower process, and the number of successful steps nece
increased sometimes to several thousand per atom.

2!The angle brackets denote averaging over the Markov chain~per atom!
generated by the Monte Carlo method.
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Studies of the low-field electrodynamics of YBaCuO ceramic superconductors are described. An
analytical treatment and a numerical simulation are carried out in the model of pinning and
viscous flow of hypervortices in high-Tc superconductors~HTSCs! to find the dependence of the
real and imaginary components of the surface impedance on the modulus of a static
magnetic field and on the amplitude and frequency of an alternating field. Experimental results
are presented on the magnetic-field dependence of the impedance components. The studies
were carried out in the frequency range from 30 Hz to 1 kHz and at amplitudes of the alternating
component of the field from 0.1 to 10 Oe. It is shown that the critical-state model is
applicable to HTSCs in the region of low frequencies and small amplitudes of the alternating
component of the field. The model of viscous flow of hypervortices gives a good
description of the low-field electrodynamics of HTSCs over a wide range of frequencies and, in
particular, predicts the experimentally observed hysteresis of the magnetic-field dependence
of the surface impedance. ©2000 American Institute of Physics.@S1063-777X~00!00304-2#
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INTRODUCTION

Ceramic superconductors are now regarded as nonli
materials whose electromagnetic properties are determ
by the presence of three different phases in them: super
ducting granules, an intergranule contact phase, and a no
phase in the intergranule space.1 The presence of Josephso
junctions in a ceramic superconductor gives rise to featu
in the flow of transport currents through the granular m
dium; the domain of applicability of the Bean model in the
superconducting materials is therefore limited. For this r
son the construction of a consistent phenomenological m
of the critical and resistive states in ceramics is a top
problem.

The appreciable nonuniformity of the magnetic field d
tribution inside ceramic superconductors and the nonlinea
of the characteristics of the intergranule Josephson con
in external magnetic fields up to 100 Oe makes the desc
tion of the low-field electrodynamics of HTSC ceramics w
the use of effective values~of the magnetic permeability, fo
example! is incorrect. The value of the magnetic field at t
observation point inside a sample is determined by both
distribution of the magnetic induction in a wide neighbo
hood of this point and by the magnetic prehistory of t
sample; therefore the effective values of the magnetic p
meability will depend on the character of the magnetic fie
on its amplitude, frequency, and direction of sweep. Thus
magnetic permeability in this case is not a parameter of
medium but will depend on the external field applied. The
fore, it is more correct to speak of the surface impedanc
the sample, the first harmonic of which is given as the ra
of the amplitude of the first harmonic of the electric field
the amplitude of the sinusoidal magnetic field at the surf
of the sample. Using a mutual-inductance method2 one can
2471063-777X/2000/26(4)/8/$20.00
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measure directly the electric field length surface of t
sample at a rigidly fixed value of the magnetic field. For th
reason the systematic error in the measurements due to
model representation of the electrodynamics of the sam
can in practice be completely neglected.

Numerous studies have established that the electro
namics of HTSCs in the low-frequency limit are describ
well by the critical-state model. From the results of surfa
impedance measurements on HTSCs in this frequency ra
one can recover completely the magnetic-field dependenc
the critical current. Therefore, studying the surface imp
ance of a HTSC is a tried-and-true method of construct
the phenomenological electrodynamics of ceramic superc
ductors. The high-frequency electrodynamics of HTSCs,
the other hand, has a number of features that are not
scribed by the Bean model, and the limits of applicability
this model to ceramic superconductors have not been cle
established.

In the this paper we attempt to describe the electro
namics of of HTSCs over a wide frequency range in t
model of pinning and viscous flow of hypervortices.3 The
main problem here is to find the parameters of the mediu
or, more precisely, the phenomenological constants of
model, from experimental measurements of the surface
pedance. This problem can be split up into several sta
First, in the framework of the model under study we mu
obtain analytical expressions for the family of integral ch
acteristics of the medium in certain limiting cases and a
measure these characteristics. Their agreement with
known expressions obtained in the critical-state model w
serve to confirm the adequacy of both the model and
chosen method of investigation.

After an experimental study of the magnetic-field a
© 2000 American Institute of Physics
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frequency dependences of the surface impedance over a
frequency range, a comparison of the experimentally
theoretically obtained families of integral characteristics w
yield the parameters of the model and, hence, a predictio
to the reaction of the medium to an arbitrary external infl
ence. Of course, since the system is nonlinear, the famil
integral characteristics can be constructed in the general
only with the aid of a numerical simulation in the framewo
of the proposed model.

MODEL OF PINNING AND VISCOUS FLOW OF
HYPERVORTICES

The penetration of a magnetic field into a superco
ductor found in the critical state can be described as a m
netic flux transport phenomenon. In the model of pinni
and viscous flow of hypervortices3 the magnetic field pen
etrates into the superconductor in the form of so-cal
hypervortices,4 unlike the case of metallic superconductor,
which the magnetic field is transported by Abrikosov vor
ces. The dynamics of the motion of hypervortices in
sample, in analogy with the classical Kim–Andersen mod5

is governed by the balance equation~1! for the three forces
acting on it: the Lorentz forcef L ~2!, which is exerted by the
external transport current, the viscous friction forcef fr ~3!,
and the pinning forcef p , which has the meaning of a forc
of static friction:6

fL1ffr1fp50, ~1!

fL5@ jT3eB#F, ~2!

ffr52hV, ~3!

whereF is the flux trapped by a hypervortex, andh is the
coefficient of electrodynamic viscosity. However, the coe
cient of viscosity and the pinning force which appear in the
relations are functions of the magnetic induction at the
servation point.

Analysis of the magnetic flux transport in the framewo
of Eq. ~1! shows that one can distinguish two characteris
regimes. These are the flux-creep regime, in which the fo
of viscous friction is substantially smaller than the pinni
force, and the regime of viscous flow of hypervortices,
which the force of viscous friction is significantly great
than the pinning force. Let us consider the dependence o
magnetic field penetration depth in a cylindrical sample
these two cases in the presence of an external field of
form H(t)5H01Hm cos(vt), where the constant compone
H0 is slowly varied over the range from2H1 to H1 .

In the first case there is practically no flux flow, and t
viscous friction forcef fr ~3!, which is therefore proportiona
to the velocity of the vortices, is negligible or absent al
gether. Then the Lorentz force counterbalances the pinn
force f p , and, in view of the definition of the critical curren
density,6 we obtain a relation for the maximum pinning forc
f p

m for a given material:

uBu j c5 f p
m . ~4!

Here, if the critical current density does not depend on
magnetic inductionB, the density of vortices decreases li
early with depth in the superconductor, reaching zero~for
H050! at a distancel5Hm / j c . When the dependence o
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the critical current density on the alternating magnetic field
neglected, the penetration depth is independent of the
quency but proportional to the amplitude of the alternat
component.

Equation~4! is the equation of the critical state in th
strict Bean model. An estimate of the velocityV;v l of the
vortices, wherel is the characteristic scale of variations, su
gests that this model is most clearly realized in the region
low frequencies and small amplitudes. At low frequenc
the force of viscous friction does not yet play a role in t
redistribution of vortices inside the superconductor, and
view of the small amplitude one can say that the dimensi
of the regions in which this redistribution occurs are sm
and, hence, that the displacements occur over short distan
Therefore, by studying the magnetic-field dependence of
surface impedance of a HTSC in the low-frequency reg
one can recover the equation of the critical state, i.e.,
field dependence of the critical current, but not the coe
cient of viscous friction of the vortices.

Analogous arguments suggest that a predominant in
ence of the force of viscous friction is more characteristic
a high-frequency alternating field with a large amplitude. F
steady-state motion of the vortices, when the pinning fo
can be neglected becausef fr@ f p

m , formula ~1! has the form

F j T5hV. ~5!

Neglecting the vanishing of the vortices in the bulk
the superconductor, we can take6

E5@V3B#, ~6!

and, with allowance for relation~5!, we obtain

j 5
h

FB
E. ~7!

As a result, Eq.~1! takes the form of the differentia
Ohm’s law j 5s(B)E and describes the penetration of a
alternating magnetic field to a depthl;As(B)/v. Thus in
the high-frequency limit, which is characteristic for the give
regime, the penetration depth of the magnetic field is in
pendent of the amplitude of the alternating component
decreases with increasing frequency according to a squ
root law ~as in the normal skin effect!. By studying the sur-
face impedance of HTSCs in this frequency range one
recover the field dependence of the coefficient of visco
friction of the vortices.

The flow of transport current along a superconductor
accompanied by the motion of hypervortices between po
tial wells, the role of which is played by pinning centers~a is
the distance between pinning centers!. In a weak external
field ~the flux-creep regime! the hypervortices execute hop
between potential wells owing to thermal fluctuations in t
system. The viscous flow regime corresponds to the proc
of continuous motion of the hypervortices. The depende
of their average velocity on the transport current density
these regime is described by the following relations~see the
model of Ref. 3!:
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V~ u j Tu, j c!5
kt

ah S expH 2
Fa

kT
~ j c2u j Tu!J

2expH 2
Fa

kT
~ j c1u j Tu!J D , ~8!

V~ u j Tu. j c!5S kT

ah
2

kT

ah
expS 2

Fa

kT
~ u j Tu1 j c! D

1
F

h
~ u j Tu2 j c! D , ~9!

where the velocity direction is determined by the direction
the vector product of the current density and magnetic ind
tion at the observation point. The dependence of the mod
of the velocity V of the vortices on the transport curre
density is shown graphically in Fig. 1.

The depth of the potential well is determined by t
dependence of the critical current on the local magnetic
duction. In the model of pinning and viscous flow of hype
vortices a superconductor is characterized by two functio
relations:3

j c~B!5
j c0

~11B2/B0
2!1/2

, ~10!

h~B!5h001h0FB, ~11!

where j c0 , B0 , h00, andh0 are parameters of the superco
ductor.

ANALYTICAL ESTIMATES OF THE INTEGRAL
CHARACTERISTICS OF A HTSC

Let us use the ideas set forth above to construct ana
cally the magnetic-field dependence of the impedance c
ponents in the following limiting cases: the flux-creep r
gime, corresponding to the critical state for the strict Be
model, and the regime of viscous flow of vortices. For si
plicity we shall consider single-quantum vortices, i.e.,F
5F0 . We shall also assume that the second term in
expression~11! for the coefficient of viscosity is much
greater than the coefficienth00; this assumption correspond
to appreciable nonlinearity of the medium.

FIG. 1. Velocity of hypervortices~normalized tokT/ah! versus the current
density~see Eq.~8!!.
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Since HTSC ceramics are media with strong dissipat
and nonlinearity, the standard methods of analysis of
propagation of electromagnetic oscillations~the harmonic
balance method, the method of slowly varying amplitud!
are inapplicable for them. For studying media of this ki
one can use the power balance method,7 in which one ana-
lyzes the energy balance in the system. For a sample
uniform magnetic fieldH the power flux density, i.e., the
Poynting vector, through the outer surfaceS0 of the sample
is equal to the change in its internal energy and the heat
in it:

R
S0
) dS5P1

dW

dt
, ) 5@E3H#, ~12!

whereP is the loss power in the sample andW is its internal
energy.

Let us show that in a cylindrical sample of radiusR in
the case of a longitudinal harmonic external magnetic fi
the real component of the surface impedance is directly p
portional to the average power loss in the system ove
period:

P̃5
1

T E
0

T

Pdt. ~13!

Here we calculate the period-averaged value of
Poynting vector~12! through the lateral surface of a cylin
drical sample of lengthL, taking into account that the aver
age change in the internal energy of the system over a pe
is zero:

2pRLHm
2 1/2 ReZ5 P̃, ~14!

where the real component is defined as

ReZ5
2

Hm
E

0

2p

E~ t !cos~vt !d~vt !.

In the regime of viscous flow of hypervortices, under t
assumptions made above as to the field dependence o
coefficient of electrodynamic viscosity, relation~7! takes the
form of the differential Ohm’s law describing the flow o
current through a medium with conductivityh0 .

For the flux-creep regime one can use relation~14! to
obtain analytically the dependence of the real componen
the surface impedance on the static magnetic field. Let
consider in more detail the distribution of the magnetic fie
in the sample in a nonzero static magnetic fieldH0 @Fig. 2a#.

On the left in Fig. 2a we show the instantaneous dis
bution of the magnetic flux when the static component of
field falls from its maximum value ofH1 to an instantaneous
valueH0 , and on the right is the corresponding distributio
when the field increases from its minimum value2H1 to
H0 .

Over the course of a period of the alternating compon
of the field the magnetic induction varies only in a sm
region of the order of the penetration depthl of the alternat-
ing field. Then the losses in the sample over a period
caused by the motion of vortices in this region:

1

T E
0

T

Pdt54E
0

l

SxxNxf Ldx, ~15!
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whereSx52pRL is the volume of a sector~along the radius
R of the sample!, Nx5@(l2x)/l#(Hm /F0) is the number
of vortices at the pointx, and f L is the Lorentz force, which
according to Eq.~1!, is equal to the sum of the pinning an
viscous frictional forces:f L5 j cF01 f fr . Evaluating the in-
tegral in relation~15!, we obtain

1

T E
0

T

Pdt5
4

3
pRHm

2 l, ~16!

and expression~14! can be used to obtain the relations b
tween ReZ and the penetration depthl and critical current
density:

ReZ5
2

3
l

1

2pv
, ~17!

j c5
1

3p

1

v

Hm

ReZ
, ~18!

wherev is the frequency of the alternating component of t
magnetic field.

We note that at distancesx<l from the surface of the
superconductor, where the vortices move, the magnetic
distributions for increasing and decreasing static compon
of the field coincide, while in the regionl<x<R, where the
distributions of the magnetic field are different, the vortic
are immobile and the Lorentz force for them is equal to ze
Therefore, in the framework of the strict Bean model t

FIG. 2. Magnetic field distribution in the Bean model~a! and in the general
case of the model of pinning and viscous flow of vortices~b!
-
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dependence of the components of the surface impedanc
the external static magnetic field does not exhibit hystere

Let us elucidate the character of the magnetic-field
pendences of the impedance components in the regim
rigid pinning. For this we substitute into relation~18! a field
dependence of the critical current density in the form~10!:

ReZ~B!5
1

3p

1

v

Hm

j c
5

1

3p

1

v

Hm

j c0
A11B2/B0

2.

At values of the magnetic field which are small in com
parison with the characteristic fieldB0 of the medium, the
field dependence of the impedance is close to parabo
ReZ(B!B0);(1/3p j c0)(Hm /v)@11B2/2B0

2#. At fields of
the order ofB0 the real component of the impedance is
practically linear function of the static field~Fig. 3!.

NUMERICAL SIMULATION

The complicated nature of the field dependence of e
of the terms in relation~1! does not permit the constructio
of all the field dependences of the impedance compon
analytically. We therefore carried out a numerical simulati
of the motion of the vortices in the sample. In the simulati
we varied the field dependence of the critical current den
j c(B) in the form~10! and the field dependence of the coe
ficient of viscosityh(B) in the form~11! and calculated the
magnetic-field dependences of the imaginary and real c
ponents of the surface impedance of the sample. In the
of large values of the critical current density the magne
field dependence of the imaginary and real components
monotonic and nonhysteretic@Fig. 4a#, behavior which cor-
responds to the critical-state model.

As the critical current density decreases, hysteresis
nonmonotonicity arise in the dependence of the real com
nent of the impedance on the modulus of the static magn
field ~Fig. 4b and 4c!. As the critical current density de
creases further@Fig. 4d# the nonmonotonicity vanishes, bu
the dependence exhibits significant hysteresis. It should
noted that the change in the shape of the dependence o
impedance components on the critical current density
equivalent to a change in the coefficient of viscosity. Ho
ever, the trend here is opposite—the hysteresis beco
larger as the coefficient of viscosity increases.

FIG. 3. Behavior of the real component of the impedance in the mode
pinning and viscous flow of hypervortices.
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FIG. 4. Magnetic-field dependence of the real and imaginary components of the surface impedance for different values of the parameters of th
j c05103 A/cm2, H j510 Oe, h051025 ~a!; j c05103 A/cm2, H j55 Oe, h051024 ~b!; j c0523102 A/cm2, H j55 Oe, h051024 ~c!; j c05102 A/cm2, H j

55 Oe, h051024 ~d!.
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The appearance of hysteresis in the magnetic-field
pendence of the components of the surface impedance
effect which is not described in the strict Bean model, can
explained by proceeding from the concept of the pinning a
viscous flow of hypervortices. As can be seen in Fig. 1, e
at a current densityj smaller than the critical valuej c , the
hypervortices will move with a nonzero velocity and will b
acted upon by the Lorentz force. Consequently, there wil
contributions to the loss not only from the vortices located
a subsurface layer of thicknessl but from practically all the
vortices in the interior of the superconductor. And, since
the case of a decreasing static component of the exte
magnetic field the concentration of hypervortices in the in
rior of the superconductor at a distancel<x<R from the
surface is greater than in the case of an increasing s
component@Fig. 2a#, the real part of the surface impedan
should also be larger in the case of a decreasing field than
an increasing field, and this is seen in Fig. 5.

We note that as the critical current density decrea
with increasing static magnetic field, the force of visco
friction begins to play a more appreciable role in comparis
with the pinning force. As a result, the distribution of th
magnetic field in the interior of the superconductor loses
triangular profile that is characteristic for the strict Be
e-
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e
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e

model @Fig. 2a#, and that leads to a more complicated ch
acter of the magnetic-field dependence of the surface imp
ance.

EXPERIMENTAL INVESTIGATIONS

The inverse problem of finding the parameters of t
medium~which in this case are constants of the model! from
measurements of some integral quantity is in general
posed. A special measuring procedure is therefore requ
Measurements in the low-frequency region~at frequencies of
around 10–20 Hz! at small values of the alternating fiel
require a meter with a threshold sensitivity better than
nV and with a precisely determined systematic error an
negligibly small random error. At large values of the alte
nating magnetic field the value of the imaginary compon
of the impedance is quite large, and its relative change a
function of the static field is less than 5%; this imposes
limitation on the resolution of the measuring apparat
Since in the low-field limit the nonlinear response of ceram
superconductors is small, the demands imposed on the
earity of the measuring scheme are high and cannot be
by contact methods. A wide-band contactless measuring
vice with a low level of intrinsic noise and nonlinear disto
e
FIG. 5. Real component of the surface impedance of a YBaCuO ceramic versus the static magnetic fieldH for amplitudes of the alternating component of th
field equal to 1 Oe~a! and 10 Oe~b! at a frequency of 663 Hz and at an amplitude of 200 mOe at a frequency of 30 Hz~c!.
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tions is required for these studies. In order to obtain inf
mation not only about the energy of the magnetic fie
~which is characterized by the value of the imaginary co
ponent of the impedance! but also about the losses in th
sample, both the imaginary and real components of the
pedance must be measured simultaneously.

Figure 6 shows a block diagram of the progra
controlled measuring unit developed here, which permits
vestigation of the magnetic-field dependence of the ima
nary and real components of the surface impedance
cylindrical samples at constant values of the amplitude
frequency of the alternating field. The unit consists of a s
sor containing the sample and a modulating coilL1 and sig-
nal coil L2 , an analog surface impedance transducer, wh
includes a generator, a current source, a preamplifier, a
detector unit, and a computer-controlled registration unit t
includes two analog-to-digital converters.

We note that the analog surface-impedance transduc2

in the measuring unit can measure the dependence o
impedance components on both the modulus of the s
magnetic field and on the frequency and amplitude of
alternating magnetic field. The results of a calibration
samples of an insulator, copper, and aluminum showed
the transducer error was 1% or better over the entire rang
working frequencies and amplitudes of the current. T
minimum measurable surface impedance, as estimated
the noise level of the preamplifier, is 5310212 V in a 1 Hz
frequency band. The measurable ratio of the real to
imaginary part ranges from 0.01 to 100.

This measuring unit was used to investigate the beha
of the real and imaginary components of the surface imp
ance of samples as functions of the static component of
magnetic field at frequencies of the alternating compon
from 10 Hz to 1 kHz and at amplitudes of 0.1–10 Oe
liquid-nitrogen temperature. The most typical experimen
magnetic-field dependences of the real and imaginary c
ponents of the impedance for different values of the f
quency and amplitude of the alternating field are presente
Figs. 5 and 7. For small amplitudes of the alternating fi
we see that at low frequencies the magnetic-field depend
of the impedance has a monotonic, nonhysteretic chara
which in the region of small values of the static field is clo
to parabolic, in agreement with the analytical estimates in
critical-state model. In fields of larger amplitude in th
higher frequency range a nonmonotonic dependence of
real component of the impedance appears@Fig. 5a#. In the
case of large amplitudes and high frequencies one again
serves a monotonic dependence of both impedance com

FIG. 6. Block diagram of the measurement unit.
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nents~Figs. 5 and 7!. For relatively high frequencies of th
alternating field the impedance components exhibit sign
cant hysteresis~see Figs. 5a, 5b, and 7!.

RESULTS AND CONCLUSIONS

To systematize the results of the measurements of
real and imaginary components of the surface impedanc
HTSC ceramics, we selected certain characteristic points
the curves obtained and plotted the frequency dependenc
these points on separate graphs. For both components
analyzed the values of the impedance at the extreme va
of the static field~around 100 Oe! and in the neighborhood
of zero.

Let us examine the behavior of the real component of
impedance divided by the frequency; the values of this n
malized quantity at the selected points are plotted in Fig
The extrema of the ReZ curve in the neighborhood of zer
static field increase linearly with frequency@Fig. 8b#. In a
static field of aroud 100 Oe the increase of ReZ with increas-
ing frequency is faster than linear@Fig. 8a#. The form of the
curves does not change as the frequency increases, bu
amplitude of the change in the real component becom
smaller. Substantial changes in the shape of the curves o
when the amplitude of the alternating component of the fi
is changed~Fig. 9!. As the amplitude is increased, the e
trema in the neighborhood of zero static field converge
ward a central extremum, so that these three extrema de
erate into one~see Fig. 5a and 5b!.

The frequency dependence of the imaginary compon
of the impedance is linear in the investigated range for d
ferent amplitudes of the alternating field~Fig. 10! and, as a
result, there are no changes in the shape of the curves. A

FIG. 7. Imaginary component of the surface impedance of a YBaCuO
ramic as a function of the static magnetic fieldH for amplitudes of the
alternating component of the field equal to 4 Oe~a! and 10 Oe~b! at a
frequency of the alternating field of 663 Hz.

FIG. 8. Frequency dependence of the values of the real component o
surface impedance divided by the frequency, in a static field of 100 Oe~a!
and in zero field~b! for various amplitudes of the alternating component
the field, Oe: 1~1!, 4 ~2!, and 10~3!.
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amplitude of the alternating component of the field
changed, a change in the form of the curve occurrence
large amplitudes of the alternating field@Fig. 7b#. As the
amplitude increases, the central extremum degenerates,
as a result, two more extrema appear in the neighborhoo
zero.

As the static magnetic field is increased, both the ima
nary and real components of the impedance go to satura
This is most likely due to the growth of the penetration de
l. Saturation corresponds to the complete penetration of
field into the sample, i.e., to the situation when the lattice
hypervortices completely fills the volume of the superco
ductor. In this case, as was shown in Ref. 8, the real com
nent should grow faster thanf and the imaginary part mor
slowly than f . And indeed, at large values of the static fie
the real component grows faster thanf @Fig. 8a#. In the
neighborhood of zero static field, when the vortices have
yet completely filled the volume of the sample, the frequen
dependence is of a linear character@Fig. 8b#.

At large amplitudes of the alternating field@Fig. 7b# cer-
tain features appear in the neighborhood of zero static fi
These may be due to the fact that the measured quanti
not the impedance itself but rather

FIG. 9. Amplitude dependence of the real component of the surface im
ance divided by the frequency, in zero static field and at a frequency o
alternating field of 63 Hz.

FIG. 10. Frequency dependence of the values of the imaginary compo
of the surface impedance divided by the frequency, in the neighborhoo
zero field and for various amplitudes of the alternating field, Oe: 1~1!, 4 ~2!,
and 10~3!.
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Z̃~H !5
1

2Hm
E

H2Hm

H1Hm
Z~H̃ !dH̃.

Thus it is clear that the measured dependenceZ̃(H) is closer
to the impedance at small~compared toH! amplitudesHm of
the alternating field. The features can arise at large am
tudes of the alternating field because of the hysteresis in
function Z(H). The hysteresis itself most likely arises o
account of the specifics of the mechanism by which the fi
penetrates into the sample. When the field is increasing,
whole lattice of hypervortices is shifted into the interior
the sample, whereas when the field is decreasing,
changes occur in the subsurface region of the sample~Fig.
2!.

An analytical examination and a numerical simulation
the dynamics of hypervortices in HTSCs in the framework
the pinning and viscous flow model predict a hysteretic ch
acter of the magnetic-field dependence of the surface imp
ance, in which the real component should be larger when
static component is decreasing in modulus than when i
increasing, and this is confirmed by experiment~Fig. 5!. Re-
lations ~17! and ~18! can be used to develop a technique
determining the parameters of the model from the exp
mental curves of the impedance. The experimental res
show that the field dependence of the critical current den
is well described by the model~10! @see Figs. 3 and 5a#.

Analysis of the experimental data can reveal the bou
aries of the domain of applicability of the critical-state mod
of ceramic superconductors. This model typifies the rig
pinning regime and does not permit a description of hys
esis in the magnetic-field dependence of the impedance c
ponents~even when the hysteresis ofB(H) is taken into
account!. For a YBaCuO ceramic sample prepared accord
to the standard technology, this regime is observed at
quencies up to 35 Hz at amplitudes of the alternating fi
less than 0.3 Oe. On the basis of an analysis of the resul
a numerical simulation in the model of pinning and visco
flow of hypervortices, one can infer the existence of an i
portant nonhysteretic regime at higher frequencies and s
amplitudes of the alternating field, as are typical for practi
applications in radio electronics. The presence of this reg
for ceramic superconductors at working temperatures
around 77 K would significantly broaden the domain of a
plication of ceramic superconductors.

A comparative analysis of the results of the numeri
and analytical modeling with the experimentally obtain
frequency and magnetic-field dependences of the impeda
components shows that the model of pinning and visc
flow of hypervortices provides an adequate description of
low-field electrodynamics of ceramic superconductors o
the entire frequency range. In the low-frequency range
proposed model is the same as the critical-state model
predicts a nonhysteretic, close to parabolic, character of
magnetic-field dependence of the surface impedance
agreement with the experiments of a number of authors
the high-frequency range the model correctly describes
features of the magnetic-field curves, including hysteresi
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The formation of superstructures is considered with allowance for the biquadratic exchange
interaction. It is shown that in this case the simultaneous coexistence of several long-period
structures is possible, which can arise as a result of a first- or second-order phase transition.
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Since the time when Villain,1 Kaplan,2 and Yoshimori3

called attention to the possibility of a new type of magne
ordering~different from ferro-, antiferro-, and ferrimagnetic!,
viz., modulated magnetic structures~MMS!, whose spatial
period is incommensurate with the spatial period of the cr
tal lattice, questions pertaining to the conditions for th
onset and stability have been the subject of a rather la
number of theoretical and experimental papers. Since
subject here will be matters pertaining to the phenome
logical theory of MMS~magnetic structures of this kind ar
often called long-period or incommensurate magne
phases!, we must first mention the fundamental paper
Dzyaloshinski�,4 which is devoted to the phenomenologic
theory of the so-called exchange long-period magnetic st
tures ~see also the reviews5,6 and the monograph7!. This
theory, for example, provides an explanation for the occ
rence of an incommensurate magnetic phase in the c
pound b-MnO2. The Dzyaloshinski� theory was
subsequently8 extended to MMS of exchange–relativist
origin and is reflected in the explanation of the occurrence
long-period magnetic structures in the systems MnSi, Fe
and CsCuCl3 ~Refs. 9 and 10!. Somewhat later11–16~see also
Ref. 6! a phenomenological theory of the origin of the e
change and exchange–relativistic modulated magnetic s
tures was constructed, differing from the Dzyaloshins�
theory and explaining the magnetic structures of a signific
number of magnetically ordered crystals, such as Cr2BeO4,
TbAsO4, MnOOH, MnP, Mn3B4, etc. The onset of this kind
of magnetic structures is due to a competition of magn
interactions of various origins. For example, the coexiste
of the so-called exchange MMS is due to the competition
the exchange interactions~see, e.g., Refs. 4, 13, and 14!,
while that of exchange–relativistic MMS is due to a comp
tition of the exchange and exchange–relativistic interactio
respectively~see, e.g., Refs. 6, 15, and 16!. We will be in-
terested in the so-called ‘‘symmetry-dependent’’ MMS~see
Refs. 4–8 and 10–16!. From the standpoint of the phenom
2551063-777X/2000/26(4)/4/$20.00
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enological theory of magnetism the origin of this kind
MMS is due to the presence in the nonequilibrium therm
dynamic potential~NTDP! of invariants linear in the first
spatial derivatives of the irreproducible magnetic vect
~IMV ! ~the moments of the spin density!, which describe the
magnetic system, and their competition with the invaria
which are quadratic in these derivatives~the symmetry con-
ditions for the existence of such invariants are explained
the papers by Dzyaloshinski�

4!.
The authors of the papers cited above, in discussing

conditions for the onset and stability of MMS of this kind
limited consideration to invariants of no higher than seco
degree in the IMV and the NTDP. However, the inclusion
invariants of higher degrees in the IMV can substantia
disrupt the picture of phase transitions in the system, i.e.,
alter the conditions for the onset of MMS. Therefore, gen
ally speaking, one is justified in raising the question of t
influence of the higher invariants on the conditions for t
onset of MMS. In this paper we limit consideration to takin
into account additional spatially homogeneous invariants
the fourth degree in systems with a triangular distribution
magnetic moments of the ions in the magnetic unit cell, e
in Fe2P.

Thus we consider a ‘‘symmetry-dependent’’ MMS o
exchange origin in the Fe2P system.17 As was shown in Ref.
18, in this case the following expression for the density
the NTDP in the exchange approximation:

F5d1F21d2~L1
21L2

2!1DS F
]L1

]x
2L1

]F

]x
1F

]L2

]y

2L2

]F

]y D1a1S ]F

]x D 2

1a2S ]L1

]x D 2

1bF2~L1
21L2

2!

1a3F41a4~L1
41L2

4!1a5S ]F

]y D 2

1a6S ]L2

]y D 2

, ~1!

where
© 2000 American Institute of Physics
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F5S11S21S3 , L15621/2~2S12S22S3!,

L2521/2~S22S3!

are the irreducible ferro- and antiferromagnetic vectors,
spectively, Si ( i 51,2,3) is the spin vecto
of the i th ion, d15b1(T2TC); d25b2(T2TN), D, a i

( i 51,2,3,4,5,6),b, b1 , andb2 are phenomenological coe
ficients, with a3.0, a4.0; TC and TN are the Curie and
Néel temperatures, respectively. We emphasize that the
ducible magnetic vectorsF and (L1 ,L2) ~see Ref. 18! trans-
form according to different irreducible representations of
symmetry space group of the Fe2P system, i.e., the onset o
MMS in this case is due to the phenomenological mechan
proposed in Refs. 11–16~see also Ref. 6!. We are interested
only in spatially homogeneous equilibrium magnetic state

Minimizing the functional corresponding to~1! gives in-
commensurate structures with propagation vectors along
0X and 0Y axes, respectively. In the first of these there i
rotation of the irreducible vectorsF andL1 , and in the sec-
ond, of F andL2 . For simplicity we consider a superstru
ture with a propagation vector directed along the 0X axis.
We then have the following system of Euler’s equations i
Cartesian coordinate system (L15L):

H a1Fz92DLz82~d112a3F21bL2!Fz50

a2Lz91DFz82~d212a4L21bF2!Lz

a1Fy92DLy82~d112a3F21bL2!Fy50

a2Ly91DFy82~d212a4L21bF2!Ly50

, ~2!

whereFi85]Fi /]x; Fi95]2Fi /]x2 ( i 5y,z). It follows from
~2! that for b50 the system decomposes into two indepe
dent subsystems for theZ andY components of the irreduc
ible vectors. In a theory making use of the approximation
constant moduli of the irreducible vectors,3–6 these two sub-
systems are coupled by means of a decrease in the numb
independent variables from two to one. Taking this appro
mation, we obtain

Fz5F cos~kx! Lz5L cos~kx2g!

Fy5F sin~kx! Ly5L sin~kx2g!. ~3!

As was shown in Ref. 13, in the casesD,0 andD.0 we
have g5p/2 and g52p/2, respectively. For the sake o
definiteness we assume below thatD,0. Substituting~3!
into ~2!, we obtain

H k2a1F2uDukL1~d112a3F21bL2!F50
k2a2L2uDukF1~d212a4L21bF2!L50. ~4!

Let us consider the solution of this system under
condition thatTN,TC , d2.0, and T'TC . Then theF4

term in the thermodynamic potential will be large. Makin
use of this circumstance, we can seta450 in ~4!. Eliminat-
ing the variableL from the system, we obtain

2a3b2F61b@4a3~a2k21d2!1b~a1k21d1!#F4

12~a2k21d2!@a3~a2k21d2!1b~a1k21d1!#F2

1@~a2k21d2!2~a1k21d1!2D2k2~a2k21d2!#50.

~5!

Let us make a qualitative analysis of this bicubic equ
tion, using the fact, known from the theory of algebra
-
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e
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equations, that the number of positive solutions is equa
the number of sign changes in the sequence of coefficien
the equation.

1. d1.0, b.0.
Then, if
a! (a2k21d2)(a1k21d1)2D2K2.0, there will be no

change of sign in the sequence of coefficients in Eq.~5!, and,
consequently, no positive solutions forF2;

b! (a2k21d2)(a1k21d1)2D2k2,0, there is one sign
change in the sequence of coefficients and, accordingly,
solution~one MMS structure!. It follows that an incommen-
surate structure can arise both above and below the C
temperature.

2. d1,0, b.0. Then, ifa1k21d1.0, the result will be
the same as for condition 1. Ifa1k21d1,0 there are two
possible cases:

a! a3(a2k21d2)1b(a1k21d1).0; there is one solu-
tion, and

b! a3(a2k21d2)1b(a1k21d1),0; regardless of the
sign of the expression multiplyingF4 there is only one sign
change, and one solution.

3. d1.0, b,0. The following situations are possible:
a! (a1k21d1)(a2k21d2)2D2k2.0; for any sign of

the expressiona3(a2k21d2)1b(a1k21d1) there are two
sign changes, and this will possibly give two superstructu
if the stability conditions hold;

b! (a1k21d1)(a2k21d2)2D2k2,0; in this case for
a3(a2k21d2)1b(a1k21d1).0 three solutions are pos
sible. If a3(a2k21d2)1b(a1k21d1),0, then regardless o
the sign of the expression multiplyingF4 there is only one
solution.

4. d1,0, b,0.
a! a1k21d1.0; the result is the same as in case 3.
b! a1k21d1,0; in this case there are three sig

changes and three positive solutions forF2.
It should be emphasized that some of the predicted st

may not appear, if the stability condition does not hold f
them. It follows from what we have said that additional s
lutions arise only on account of the presence of the invar
F2(L1

21L2
2), and they all have the same value of the wa

vector but different values ofF andL. However, structures
with different values ofk can arise. As an illustration, let u
consider the limiting casea35a450.

The solution of system~4! can be written in the form

F252
1

b
S k2a21d2

k2a11d1
D 1/2

3$A~k2a11d1!~k2a21d2!6ukDu%,

L252
1

b
S k2a11d1

k2a21d2
D 1/2

3$A~k2a11d1!~k2a21d2!6ukDu%. ~6!

To find the wave vector we must minimize the potential w
respect tok. We then have the third equation of the syste

DFL1k~a1F21a2L2!50. ~7!
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From the two solutions~6! for b.0 we must keep only the
one with the negative sign in front ofukDu. It is obvious that
in order for a superstructure to exist, the following conditi
must be satisfied:

0<~k2a11d1!~k2a21d2!,k2D2. ~8!

In a theory that does not take into account the presence o
invariant F2L2, the wave vectork is determined from the
relation6

~k2a11d1!~k2a21d2!5k2D2. ~9!

Then in our case the conditionF25L250 holds, and there is
no superstructure. To find the modulus of the propaga
vector we have the equation

4a1
2a2

2k61a1a2@4a1d214d2d12D2#k41@~a1d2

1a2d1!22D2~a1d21a2d1!#k22D2d1d250,

~10!

which is cubic with respect tok2.
For the sake of definiteness we consider the caseTN

,T,TC . Thend1,0, d2.0. Consequently, nontrivial so
lutions arise in two cases:

1)
d1

a1
1

d2

a2
,

D2

4a1a2
, ~11!

2) ~a1d21a2d1!22D2~a1d21a2d1!,0. ~12!

The latter relation can hold only when the temperatureT
lies in the interval@TC ,TN# and the following double in-
equality holds:

0,
d1

a1
1

d2

a2
,

D2

a1a2
. ~13!

The right-hand condition in~13! is less stringent than
~11!; it is analogous to the requirement imposed on the te
peraturesTC andTN in the theory withb50, viz., that these
temperatures not be too far apart.6

It follows from what we have said that forTN,T,TC a
superstructure can exist only in the temperature inte
specified by the relations

~a1b2TN1a2b1TC!,~a1b21a2b1!T

,~a1b2TN1a2b1TC!1D2. ~14!

It should be noted that ford150 there is always a solution
with k50, and there is one solution withk2.0 when con-
dition ~13! holds. This means that forT5TC there can be
both a first-order phase transition with a jump ink2 and a
second-order phase transition. When the stability conditi
hold, this can make for the existence of two superstructu
with different wave vectors. Consequently, taking the biq
dratic exchange interaction into account leads to the po
bility of formation of an incommensurate structure as a res
of a second-order phase transition.

Upon reaching the lower temperature boundary de
mined by condition~13!, the spiral vanishes, and it appea
anew at a temperatureT,TN,TC , since then the quantity
(d1d2) will be positive, and there are three sign changes
he

n
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al

s
s
-
i-

lt

r-

n

the sequence of coefficients in Eq.~10!. This means that
three superstructures with different values of the wave ve
can arise, with the sole restriction~8!.

In the caseb,0 one solution of system~4! always ex-
ists, and a second exists under the condition

k2D2,~k2a11d1!~k2a21d2!, ~15!

which can hold if both factors on the right-hand side of~15!
have the same sign. This implies the two systems of relati

HT.TC2k2a1 /b1

T.TN2k2a2 /b2
, HT,TC2k2a1 /b1

T,TN2k2a2 /b2
, ~16!

which show that the formation of a second superstructure
TN,TC is possible in a narrow temperature band belowTC

and everywhere belowTN2k2a2 /b2 . The value of the wave
vector in this case is also determined by relation~10!.

If T'TN andd1,0, then one can seta350 in the ther-
modynamic potential. Then for determining the value ofk
we have the equation

2a4b2L61b@4a4~a1k21d1!1b~a2k21d2!#L4

12~a1k21d1!~a4~a1k21d1!1b~a2k21d2!!L2

1@~a1k21d1!2~a2k21d2!2D2k2~a1k21d1!#50.

~17!

Let us consider the following cases:
1. b.0, a1k21d1.0, d2.0.
a! (a1k21d1)22D2k2.0; there are no solutions;
b! (a1k21d1)22D2k2,0; there is one solution.
2. b.0, a1k21d1,0, d2.0.
a! (a1k21d1)22D2k2.0; there are two solutions, pro

vided that at least one of the expressions forL2 or L4 in Eq.
~17! is negative;

b! (a1k21d1)22D2k2,0; there is only one solution.
3. b.0, a1k21d1,0, d2,0, a2k21d2,0.
a! (a1k21d1)22D2k2.0; there are two solutions unde

the condition 4a4(a1k21d1)1b(a2k21d2),0;
b! (a1k21d1)22D2k2,0; there are three solutions

4a4(a1k21d1)1b(a2k21d2),0.
4. b,0, a1k21d1.0, d2.0.
a! (a1k21d1)22D2k2.0; there are two solutions;
b! (a1k21d1)22D2k2,0; there are either two solu

tions or one solution, depending on the signs of the quanti
multiplying L2 andL4.

5. b,0, a1k21d1,0, d2.0.
a! (a1k21d1)22D2k2.0; there are no solutions;
b! (a1k21d1)22D2k2,0; there is one solution.
6. b,0, a1k21d1,0, d2,0, a2k21d2,0.
a! (a1k21d1)22D2k2.0; at relatively small values o

b, such that the coefficients ofL2 andL4 are positive, there
are no solutions. Asb increases, one or both of these expre
sions changes sign, and two solutions exist.

b! (a1k21d1)22D2k2,0; there is one solution at an
value ofb.

It is clear from what we have said that forT'TN the
appearance of additional aperiodic structures is also du
the presence of a mixed invariantF2L2. Consequently, in
crystals with biquadratic exchange there can be several
perstructures.
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NMR of 57Fe in RFe1ÀxMnxO3 orthoferrites

A. S. Karnachev,* Yu. I. Klechin, A. A. Prokhorov, and E. E. Solov’ev
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The spin echo method is used to investigate the NMR spectrum of the57Fe nuclei in manganese-
substituted Tm and Er orthoferrites. It is shown that the Jahn–Teller effect for the Mn31

impurity ion is manifested in a proportional enhancement of theE-type deformation of the
Fe31 – 6O22 octahedron. In the region of the spin-reorientation transition a magnetic
inequivalence of the sublattices is observed both for the Fe31 ions and for the Mn31 impurity
ions. © 2000 American Institute of Physics.@S1063-777X~00!00504-1#
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INTRODUCTION

The orthoferrites RFe12xMnxO3 with a variable Mn con-
centration are interesting objects in which to study the in
ence of the Jahn–Teller ions Mn31 on the magnetic proper
ties and spin-reorientation transitions. These compou
have a slightly distorted perovskite structure~space group
D2h

162Pbnm; Refs. 1 and 2!. The magnetic ordering of thed
sublattice is characterized by the possible magnetic confi
rations of three types:3 G1(Az ,Gy ,Cz), G2(Fx ,Cy ,Gz), and
G4(Gx ,Ay ,Fz) with basis vectorsF ~ferromagnetism! and
G, C, A ~antiferromagnetism!, with F,C,A!G ~Ref. 4!,
which indicates aG-type structure.

Studying the NMR spectra of57Fe in rare-earth
orthoferrites5,6 yields information not only about the value
of the local fields, their temperature dependence, and
anisotropy of the hyperfine~HF! interactions,7 but also about
the magnetic state of the Fe sublattice and the s
reorientation~SR! transitions. For example, it was the NM
method that first clearly revealed evidence of the magn
inequivalence of the sublattices of the Fe31 ions in the re-
gion of the SR transition.5,6

Of particular interest is the study of the NMR of57Fe in
substituted orthoferrites, where it become possible to st
the magnetic and hyperfine interactions of the impurity a
host, and also the influence of the impurity on the ph
transitions.

Substitution of the Jahn–Teller ions Mn31 for Fe31 in
orthoferrites leads to a substantial change in the main c
acteristics — the magnetization, magnetic anisotropy,
exchange interactions, to some modification of the exist
SR transitions, and to new transitions, in particular, tran
tions of the Morin type in YFe12xMnxO3 ~Ref. 3!.

JAHN–TELLER EFFECT AND THE GROUND STATE OF THE
Mn3¿ ION

In this paper we investigate the influence of the Jah
Teller ions Mn31 on the NMR spectrum of57Fe in Er
and Tm orthoferrites. The difference between the transfe
~indirect! HF interactions in the57Fe–O22 –Fe31 and
57Fe– O22 –Mn31 chains causes the NMR spectrum to b
come more complicated — in addition to the main line
2591063-777X/2000/26(4)/6/$20.00
-

ds

u-

e

-

ic

y
d
e

r-
d
g
i-

–

d

-
,

corresponding to an impurity-free nearest-neighbor envir
ment of the57Fe nucleus, three satellites appear, in acc
dance with the three inequivalent positions of the Mn31 im-
purity ion in the nearest-neighbor environment of57Fe ~Fig.
1!. The position of these satellites relative to the main li
depends substantially on the ground state of the Mn31 ion in
RFeO3.

The Jahn–Teller ion Mn31 with electronic configuration
of unfilled shellst2g

3 eg
1 in the octahedral field has a twofol

orbitally degenerate ground state5E. The orbital degeneracy
can be lifted either by the Jahn–Teller effect or on accoun
the pre-existing noncubic distortions in complexes of t
Mn31 – 6O22 type. Here the ground state wave function c
be represented as a linear combination of theE-type func-
tions uE0& anduE2&, which, with allowance for the coupling
of the quasimoments of thet2g and eg shells in the Mn31

ion, correspond to thedx22y2 and dz2 states of theeg

electron:

Cbase5cosauE0&1sinauE2&, ~1!

where a is some angle; the5E state of the Mn31 ion is
obtained as a result of the coupling of the4A2 term of the

FIG. 1. Geometry of the Fe31 – O22 –Fe31 – O22 bonds in the orthoferrites
RFeO3. The orientation of the local axes is shown for each complex.
© 2000 American Institute of Physics
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TABLE I. Theoretically predicted values of the parametera for the Mn31 ion in RFeO3.
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of
configurationt2g
3 and the2E term of the configurationeg

1 .
Thus in the stateu5E0& the electron is found in thedx22y2

orbital, while in the stateu5E2& it is found in thedz2 orbital.
The value of the anglea and, hence, the form of the wav
functionCbascan be related in the linear approximation wi
deformations of the Mn31 – 6O22 complex. For this it is con-
venient to go from the strain tensor« i j to its irreducible
components of theE andT2 types:

«0
E5

1

A6
~2«zz2«xx2«yy!; «2

E5
1

A2
~«xx2«yy!

~2!
«

21
T2 522«xz, «

11
T2 52«yz; «2

T252A2 «xy.

Naturally, the form ofCbase will be determined solely by
deformations of theE type, and it is easy to show that

cos 2a5
«0

E

«̃
, sin 2a52

«2
E

«̃
, ~3!

where

«̃5A~«0
E!21~«2

E!2.

The value of the splitting of the5E ground state of the Mn31

ion is given by

D5ubu«̃,

whereb is a coefficient relating the parameters of the no
cubic field for the5E term with the deformations of the oc
tahedron.

The splitting of the5E term due to the Jahn–Teller effe
is accompanied by a specific degeneracy: the form of
ground state wave function is not fixed, since the value oa
remains arbitrary. In fact, a given value ofD and, hence, of
«̃, can be obtained for different«0

E and«2
E , which are con-

nected by the single condition

~«0
E!21~«2

E!25S D

b D 2

5const.

This specific Jahn–Teller degeneracy will be lifted in t
presence of at least a small external or initial deformation
the E type. In reality the Jahn–Teller effect reduces to
proportional enhancement of these deformations,«v

E→k«v
E ,

with the ratio«0
E/«2

E conserved.
This conclusion is of fundamental importance, since

enables one to find the ground state of a Jahn–Teller im
rity ion of the Mn31 type substituting for an ion with a
known distortion of the nearest-neighbor environment.
should be noted that for a unique determination of the
rametera and, hence,Cbase, it is important to know the sign
of the electron–lattice coupling parameterb. We will choose
it to be negative, going on the reasonable assumption tha
-

e

f

t
u-

t
-

he

energy of thedz2 electron is lowered relative to the energy
the dx22y2 electron when the M–6O octahedron is stretch
along thez axis («2

E50, «0
E.0), i.e., that the ground stat

uE2& is thereby stabilized for ions with the configuration
3d4 and 3d9 ~Refs. 8 and 9!.

Thus for findingCbas of the Mn31 ion in RFeO3 it is
sufficient to calculate theE-type deformation of the
Fe31 – 6O22 complex from the known crystallographic data1

and, from the value of the ratio

tan 2a52«2
E/«0

E ,

which is conserved when the Mn31 ion is substituted for
Fe31, to find a and Cbase. Table I gives the theoretically
predicted values of the parametera that determines the
ground state of a Mn31 impurity ion in RFeO3. ~The error in
the determination of the angle is due to the uncertainties
the crystal parameters1 and on average is not more tha
65°.)

Interestingly, for the Pr and Nd orthomanganites w
known crystallographic parameters2 the corresponding
angles are equal to225° (PrMnO3) and228° (NdMnO3),
i.e., rather close to the value ofa for the analogous orthof-
errites@211° (PrFeO3) and 216° (NdFeO3)]. The differ-
ences can be explained by the effects of the coopera
Jahn–Teller distortion in orthomanganites. We note that
ratio of the values of«̃ characterizing the degree ofE-type
distortion of the Mn31 – 6O22 octahedra in PrMnO3 and
Fe31 – 6O22 in PrFeO3 is approximately equal to 15, which
suggests the possibility of vibronic enhancement, by roug
an order of magnitude or more, of the deformations of
Fe31 – 6O22 octahedra in orthoferrites when Mn31 is substi-
tuted for Fe31.

Figure 2 shows a qualitative picture of the orientation

FIG. 2. Orientation of theeg orbital of thedy2 ion Mn31 in six positions
around a central Fe31 ion.
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the filledeg orbitals of a 3d4 impurity ion. For simplicity we
take the casea5230°, which is close to the real situatio
for 3d4 ions in Y, Ho, Er, and Tm orthoferrites. The wav
functionCbase5A3/2uE0&21/2uE2& corresponds to thedy2

orbital for an isolatedeg electron for the choice of local axe
corresponding to Fig. 1. To simplify the picture the existi
distortions of the perovskite structure in orthoferrites are
shown in Fig. 2.

We note that the method we have used to find theE-type
ground state of Jahn–Teller ions in orthoferrites represe
a further development of the concepts set forth mainly
Ref. 10.

For the purpose of studying the features of the manif
tation of the Jahn–Teller effect of Mn31 ions in RFeO3, their
ground state, and the confirmation of the conclusions of
theory, we have carried out an analysis of the satellite st
ture, which is mainly due to the transferred HF interactio
of the NMR spectrum of the57Fe nuclei in manganese
substituted Er and Tm orthoferrites.

In the unit cell of RFeO3 there are four inequivalen
positions of the Fe31 ion. Each Fe31 ion is coupled to six
neighboring Fe31 ions through the intermediate O22 anions.
Here one can distinguish three types of geometrically
equivalent57Fe– O22 –Fe31 bonds. When one of the neigh
boring Fe31 ions is replaced by an ion with an orbitall
nondegenerate ground state~a nonmagnetic ion such as Al31

or Sc31 or a magnetic ion such as Cr31 or Mn21) this geo-
metric inequivalence has practically no effect on the value
the HF field induced at the nucleus of the central Fe31

ion. In that case the NMR spectrum of a system of
RFe12xAl xO3 type will contain, in addition to the main line
corresponding to the impurity-free (6Fe31) environment of
the57Fe nucleus, isolated satellites corresponding to57Fe nu-
clei with one, two, etc. impurity ions in the nearest-neighb
environment. We have observed such a spectrum in the
tem NdFe0.9Al0.1O3 ~Fig. 3!. When the Fe31 ions are re-
placed by the magnetic ions Mn31, with an orbitally degen-
erate ground state, all three types of57Fe–O22 –Fe31 bonds
will in general give different contributions to the HF field
the nucleus of the central Fe31 ion. The NMR spectrum
becomes more complicated: in addition to the main lin
corresponding to an impurity-free nearest-neighbor envir
ment of 57Fe, one will observe, in the general case, th

FIG. 3. Form of the NMR spectrum of57Fe in the orthoferrite
NdFe0.9Al0.1O3 at T5112 K.
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satellites corresponding to the three inequivalent57Fe–
O22Mn31 bonds of one Mn31 impurity ion in the nearest-
neighbor environment, etc.

The value of the HF field induced at the nucleus of t
Fe31 ion in the 57Fe–O22 –M chain, where M is a Jahn–
Teller ion with orbital degeneracy of the ground sta
(Mn31, Co21, Fe21, . . . ), will be essentially determined by
the factors that lead to lifting of the orbital degeneracy of t
M ion, on the one hand, and by the orbitally anisotrop
contributions to the transferred HF interaction, on the oth
Let us consider these effects in manganese-substituted o
ferrites, in which the Mn31 ion can occupy six positions in
the nearest-neighbor environment of a57Fe nucleus in
RFeO3, and, as we have said, only three of these are g
metrically inequivalent~see Fig. 1!.

The value of the HF fieldHTHFI induced at the57Fe
nucleus for each of the57Fe–O22 –Mn31 chains can be re-
lated to the parametera characterizing the ground state o
any of the Mn31 ions in the local coordinate system:

HTHFI
~1! 5Heg

~1! sin2 a1Ht2g

~1! ,

HTHFI
~2! 5Heg

~2! sin2~a160°!1Ht2g

~2! , ~4!

HTHFI
~3! 5Heg

~3! sin2~a260°!1Ht2g

~3! ,

whereHTHFI is the Hamiltonian of the transferred hyperfin
interactions,Heg

(Ht2g
) is the value corresponding to the H

field induced by a half-filledeg (t2g) shell. The superscript 1
refers to a57Fe–O22 –Mn31 chain lying along thec axis, and
the superscripts 2 and 3 refer to chains in theab plane~Figs.
1 and 2!. Formulas~4! were obtained directly on the basis o
the HamiltonianHTHFI ~see formula~24! of Ref. 11! with
allowance for the fact that̂ V0

E(E)&52(1/2)cos 2a for
chains along thec axis, and ^V0

E(E)&52(1/2cos 2(a
660°) for chains in theab plane.

In general the contributions toHTHFI from different
chains cannot be assumed equal, for several reasons.
the vibronic enhancement of deformations when the Ja
Teller ion Mn31 is substituted for Fe31 is accompanied by a
change in the Mn31 –O22 distances in the chains, and th
change is different for chains 1, 2, and 3. The relative cha
in the bond lengths in the case of vibronic enhancemen
easily related to the parametera characterizing the ground
state of the Mn31 ion:

DRMn2O

RMn2O
5S 2

3D 1/2

«̃ cos 2a ~5!

~for chains along thec axis),

DRMn2O

RMn2O
5S 2

3D 1/2

«̃ cos 2~a660°!

~for chains in theab plane!,

where «̃ is the averageE-type deformation of the MnO6
octahedron. Thus in the approximation linear inDRMn-O we
have

Heg ,t2g

~ i ! 5H̃eg ,t2g

~ i ! 1DHeg ,t2g
cos 2a, i 51,

Heg ,t2g

~ i ! 5H̃eg ,t2g

~ i ! 1DHeg ,t2g
cos~2a160°!, i 52, ~6!
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Heg ,t2g

~ i ! 5H̃eg ,t2g

~ i ! 1DHeg ,t2g
cos~2a260°!, i 53,

and this complicates the analysis of the experiment con
erably.

Second, a relation of the typeHeg

( i )5Heg
does not take

into account the important role that the emptyeg states of the
Mn31 ion play in a certain modification of the operator stru
ture of HTHFI in the chains under consideration~concerning
the features of the superexchange interaction involving
participation of emptyeg states, see, e.g., Refs. 12 and 1!.

Ultimately, the expression forHTHFI
(1,2,3) can nevertheless

be parametrized:

HTHFI
~1! 5HE0

cos2 a1HE2
sin2 a1DH sin2 a cos2 a,

HTHFI
~2! 5HE0

cos2~a160°!1HE2
sin2~a160°!

1DH sin2~a160°!cos2~a160°!, ~7!

HTHFI
~3! 5HE0

cos2~a260°!1HE2
sin2~a260°!

1DH sin2~a260°!cos2~a260°!,

whereHE0
and HE2

are the values ofHTHFI for a50 and
a5p/2, i.e., for theeg electron in thedx22y2 anddz2 states
of the Mn31 ion, respectively.

Thus the NMR spectrum of57Fe in RFe12xMnxO3 con-
tains, in addition to lines corresponding to an impurity-fr
environment of the iron nucleus, three satellite lines cor
sponding to an environment consisting of 5Fe3111Mn31

and shifted with respect to the main line in the direction
lower local fields by an amount

DH ~ i !5HTHFI2HTHFI
~ i ! , ~8!

whereHTHFI is the contribution of the57Fe–O22Fe31 bond
to the local field at the57Fe nucleus. Fora5230°, which is
close to the calculated value of this parameter for the Mn31

ion in Y, Ho, Er, and Tm orthoferrites, we have

DH ~1!5HTHFI2
3

4
HE0

2
3

16
DH5DH ~2!,

~9!
DH ~3!5HTHFI2HE2

.

An explanation of the experimental data can be obtai
under the rather unusual condition

HE2
!HTHFI

which can be satisfied if, for example, allowance for theeg

states of the Mn31 ion leads to a sharp change in the valu
of the constantsa1 in the HamiltonianHTHFI of Ref. 11 from
a value of11 to valuesa1,21. In this case the contribu
tion of thedz2 electron of the Mn31 ion in a chain of type 1
should practically compensate the contribution of thet2g

shell. On the other hand, the experimental data indicate
the value ofHE0

~or DH) should be significant:

S HE0
1

1

4
DH D'HTHFI

Figure 4a shows the theoretical NMR spectrum of57Fe
in the orthoferrite ErFe12xMnxO3 for x50.1. The value ofD
was chosen equal to 1.02 MHz and the half-width of t
d-

e

-

f

d

s

at

e
lines to 0.36 MHz~the line shape was assumed Lorentzia!.
Calculations were done in the approximation of a statistica

FIG. 4. NMR spectra of57Fe in the manganese-substituted orthoferr
ErFe0.9Mn0.1O3 outside the spin-reorientation region, as predicted theor
cally ~a! and as measured experimentally atT594 K ~b! and 7 K ~c!.
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uniform distribution of the manganese ions in the lattice. I
easy to see that if the lines are wide enough, only one of
three satellites, the one farthest from the central line, is
solved. The theoretical spectrum in Fig. 4a is in good agr
ment with the experimental NMR spectrum of57Fe in
ErFe0.9Mn0.1O3 at T594 K @Fig. 4b#. The NMR spectrum of
57Fe in manganese-substituted Tm orthoferrite has a sim
form. When the temperature is lowered to 7 K, one m
satellite is resolved@Fig. 4c#.

SPIN-REORIENTATION TRANSITIONS AND THE
ANISOTROPIC HYPERFINE INTERACTION

We note that in the analysis of the HF interaction
orthoferrites containing Mn ions we have temporarily n
glected the anisotropy of the HF interaction, an effect tha
particularly important in the interpretation of the NMR spe
tra in the region of the SR transitions. In other words,
have assumed that at sufficiently low concentrations
Mn31 ions the presence of a Mn31 ion in the nearest-
neighbor environment of the Fe31 ion does not alter its ‘‘in-
trinsic’’ anisotropic HF interactions resulting from the no
cubic crystalline field of the lattice. This means that the va
of the field for an impurity-free nearest-neighbor enviro
ment is assumed to be unaffected by the insertion of an
purity ion in the nearest-neighbor environment of57Fe and to
remain equal to the corresponding value for pure RFe3.
Certain arguments in support of this approximation are gi
by the conclusions in Ref. 7, according to which the larg
contribution to the anisotropy of the ‘‘intrinsic’’ HF interac
tions in RFeO3 comes from the noncubic field of the poin
lattice, and this field changes only slightly upon the sub
tution of Mn31 for Fe31.

Let us consider the features of the anisotropic HF int
actions in the substituted compounds. The anisotropic pa
the HF field at the57Fe nucleus with a ‘‘magnetic’’ neares
neighbor environment of the type 5Fe31 –1Mn31 in
RFe12xMnxO3 is represented in the form

h5h~0!2h~Fei !1h~Mni !, ~10!

whereh(0) is the field for the impurity-free nearest-neighb
environment, andh(Rei) ~or h(Mni) is the field induced by
the Fe31 ~or Mn31) ion found at thei th lattice site.

Assuming that at low enough concentrations of t
Mn31 ion the basic antiferromagnetic structure of the orth
ferrites is preserved, and neglecting the noncollinearity of
spins, we writeh in the form7

h5â•G, ~11!

whereG is the antiferromagnetism vector, and the comp
nents of the tensorâ are determined by the parameters
different anisotropic interactions, and, in analogy with~10!,

alm5alm~0!2alm~Fei !1alm~Mni !. ~12!

Thus we shall consider below only the contributions toh
~or alm) resulting from the differences of the fieldsh(Fei)
and h(Mni), which is due to the change in the magnet
dipole interaction (57Fe–Fe31 and 57Fe–Mn31) and the
anisotropic transferred HF interaction ~ATHFI!
(57Fe– O22 – Fe31 and57Fe–O22Mn31).
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The change in the magnetic dipole contribution toalm

can be straightforwardly calculated, and for the analysis
the ATHFI we use the technique proposed in Ref. 7, wher
was shown that the following relation can be used to e
mate the contribution of the ATHFI to the irreducible com
ponents of the tensorâ(Fei):

aq
2~Fei !5B~Fe!Cq

2~u i ,w i !, ~13!

with u i and w i being the polar and azimuthal angles of t
vector of the O22 –Fei bond in the system of crystallograph
axesabc. The parameterB can in general be represented
the form of a sum,B5Bs1Bp , whereBs and Bp are the
contributions from thes andp bonds, respectively~actually,
the contributions of theeg and t2g electrons of the Fe31

ions!.
Summing the contributions of the magnetic-dipole inte

action and ATHFI, we find all of the components of intere
to us@alm(Mni)2alm(Fei)#. It turns out that the shifts of the
positions of the satellites relative to the predictions of t
‘‘isotropic’’ model are not large, and on the whole the
hardly stand out above the standard error of the experim
(625 kHz!. Interestingly, the small value of the shifts com
about as a result of a partial compensation of the contri
tions of the ATHFI and the magnetic-dipole interaction.

The most clear-cut effects of the anisotropic HF intera
tion are manifested in the NMR spectrum in the region of
SR transitions. As in the pure orthoferrites,5–7 the substituted
compounds also exhibit a shift and splitting of the NMR lin
and not only of the main line but also of the satellites. T
change in the position of the satellites relative to the m
line at the transition from theG2 to theG4 configuration, i.e.,
the difference of the corresponding parameters of the an
tropic interactions, does not stand out above the limits
experimental error. The difference in the value of the sp
tings of the main line and satellites in the region of the S
transitionG4↔G2 in the approximation used here is insig
nificant. Indeed, the magnetic-dipole interaction does
contribute to the quantity 2@azx(Mn)2axz(Fe)# that deter-
mines the difference in the splitting,7 and our calculated
value of the ATHFI contribution is only 0.03, 0.01, and 0.0
MHz for the satellites associated with the Mn31 ion in posi-
tions 1, 2, and 3, respectively~Fig. 1!.

Thus in the region of the SR transitionG4↔G2 the val-
ues of the shift and splitting of the satellites and main NM
line of 57Fe in manganese-substituted Er orthoferrite
practically the same within our adopted model. As an illu
tration, Fig. 5a shows the theoretical NMR spectrum of57Fe
in ErFe0.9Mn0.1O3 at the center of the temperature region
the SR transitionG4↔G2; as a starting point, the initial po
sitions of the lines and their half-widths were taken the sa
as for the spectrum in Fig. 4a. The splitting of the thr
satellites and the main line~these were all taken equal t
0.47 MHz, as in pure ErFeO3) makes the picture of the NMR
spectrum of57Fe considerably more complicated than that
the pure orthoferrites.5–7 For comparison, Fig. 5b shows th
experimental NMR spectrum of57Fe in ErFe0.9Mn0.1O3 at
T590.6 K, which is approximately the temperature center
the SR transition. A comparison with the theoretical mod
spectrum shows good qualitative agreement.
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Thus the simple model we have adopted to describe
modification of the HF interactions in manganese-substitu
orthoferrites correctly conveys all the characteristic featu
of the rather complicated NMR spectrum of57Fe in these
compounds.

As in the pure orthoferrites, the NMR method can qu
reliably establish the temperature interval of the reorienta
in RFe12xMnxO3; in particular, in ErFe0.9Mn0.1O3 the SR
transition G4↔G2 occurs in the temperature interv
86.5–93 K.

CONCLUSION

We have used the spin-echo method to study the N
spectrum of57Fe nuclei in manganese-substituted Er and
orthoferrites. The experimentally observed satellite struct
of the spectra finds good agreement with the conclusions
theoretical analysis, according to which the Jahn–Teller
fect for the Mn31 impurity ion is manifested in a physica
enhancement of theE-type deformation of the Fe31 –6O22

octahedron. This feature of the Jahn–Teller effect is a
observed in a comparative analysis of the deformations
the complexes Fe31 –6O22 in RFeO3 and Mn31 –6O22 in
RMnO3.

The ground state of the Mn31 impurity ion in Tm and Er
orthoferrites, as predicted theoretically and confirmed by
perimental investigations of the satellite structure of
NMR spectrum, is described by a functionCbasefor a close
to 30° ~see Table I!. The same situation apparently exists f
a number of other orthoferrites. This result is in good agr

FIG. 5. NMR spectra of57Fe in ErFe0.9Mn0.1O3 inside the temperature re
gion of the SR transition, as predicted theoretically~a! and as measured
experimentally atT590.6 K ~b!.
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ment with the published data on the influence of mangan
ions on the magnetic properties of orthoferrites.3 Indeed, for
the ground state of the manganese ions corresponding to
value of the parametera in Table I, the single-ion crystallo-
graphic magnetic anisotropy of the Mn31 ions in all the
orthoferrites is such that theb axis is the easy axis for the
spins of the Mn31 ions. This, in turn, agrees with the exper
mentally observed onset of SR transitions of the Morin ty
Gx–Gy in manganese-substituted orthoferrites.3

The splitting of both the main and satellite lines of th
57Fe NMR spectrum in manganese-substituted Er and
orthoferrites in the region of the SR transition is clear e
dence that a magnetic inequivalence of both the sublatt
of the Fe31 ions and the sublattices of the Mn31 impurity
ions arises in this region.

We have presented a theoretical interpretation of
NMR spectra of57Fe in RFe12xMnxO3 in the framework of
the assumption that the Mn31 ions are uniformly distributed
over the four inequivalent positions in the orthoferrite lattic
The good agreement with the experimental data confirms
validity of this model.
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Temperature-induced change in the ESR spectrum of the Fe 3¿ ion in polyaniline
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Research on polyaniline doped with K3@Fe~CN!6] has revealed an effect which is manifested in
an unusual temperature-induced change in the ESR spectrum of the Fe31 ion. At low
temperature (T54.2 K) one observes the first resonance line (g154.2260.03), and at high
temperature (T5295 K) the second line (g252.1360.05). The transition from the low-to the
high-temperature spectrum occurs gradually and is accompanied by a redistribution of the
absorption intensity. The observed properties of the temperature dependence of the ESR spectrum
are typical of systems with a multiple-minimum potential. ©2000 American Institute of
Physics.@S1063-777X~00!00604-6#
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1. INTRODUCTION

In Ref. 1 an unusual temperature dependence of the E
spectrum of the Fe31 ion was observed in the metalorgan
substance nitroso-b-naphthol, the ESR spectrum of which
a superposition of low-temperature and high-tempera
spectra. A change in temperature leads to a redistributio
the absorption intensities between the low-temperature
high-temperature spectra. This behavior of the ESR spect
is evidence of unusual dynamics of the molecules surrou
ing the Fe31 ion. The presence of this dynamics can hav
substantial influence on the various properties of the s
stance.

In addition, research on these dynamic transitions is
independent interest, since the systems exhibiting these p
erties are, as a rule, systems with multiple-minimum pot
tials. These have not been adequately investigated ex
mentally. Systems with multiple-minimum potentials can
of various physical natures, but their common property is
presence of several potential wells separated by pote
barriers. The best-studied is the Jahn–Teller system of a
valent copper ion in an octahedral environment.2 In that
study three energetically equivalent potential wells are de
mined by the Jahn–Teller interaction of the twofold dege
erate orbital state with the tetragonal deformations of
octahedral environment.

An example of a physically different kind of system wi
a multiple-minimum potential is crystalline methane.3 The
energy of the couplings inside the molecule is much hig
than the energy of the couplings between these molecu
Therefore, in their thermal motion the CH4 molecules can be
treated as separate anisotropic particles. At low temperat
the orientation of the molecules is fixed and correspond
the minima of the interaction energy of these molecules
the crystal. The directions of the four equivalent threefo
2651063-777X/2000/26(4)/5/$20.00
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axes of the methane molecule dictate the orientations co
sponding to the four minima of the interaction energy. I
creasing the temperature leads to oscillations of the orie
tion of the molecules about the minima of the potential we
The amplitudes of these oscillations increase as the temp
ture is raised. This increases the probability that a three
axis of the methane molecule will rotate from one minimu
position to another. As a result, the orientation of the m
ecules is averaged out, and the anisotropy of the propertie
the methane molecules is decreased.3

A system with a multiple-minimum potential of an un
known nature was observed in Ref. 1. It did not manifes
Jahn–Teller effect for the Fe31 ion, and the cause of its
unusual dynamics was tentatively attributed to features of
molecules surrounding the magnetic ion. Nitroso-b-naphthol
contains aromatic hydrocarbon elements. The tempera
dependence of the ESR spectrum may be due to either
motion of the aromatic elements relative to their equilibriu
position or to the properties of the benzene rings themsel
In this paper we attempt to clarify this question by inves
gating the temperature dependence of the ESR spectru
the @Fe~CN!6#

32 complex in polyaniline, the composition o
which is substantially different from that of nitroso-b-
naphthol. The base of the polyaniline structure is emerald
~Fig. 1!, which, like nitroso-b-naphthol, contains benzen
rings.

To answer the question posed above we used the me
of ESR spectroscopy.

2. EXPERIMENTAL RESULTS

We investigated the ESR spectrum on samples of
doped and doped polyaniline~PAN!. The first sample, a
PAN powder in the emeraldine base form, was obtained
T5293 K by oxidative polymerization of aniline in
© 2000 American Institute of Physics



xo
en
dl

a
er

on
sy
m

.
t

fir
in

N

nd

wi

e

ith
ra

ture
nce
ex-

be-

re.

un-

he
s

ese
gy
r a
a-
atio
r
for

atio

of

em-

rdi-

266 Low Temp. Phys. 26 (4), April 2000 Vasyukov et al.
the presence of an equimolar quantity of ammonium pero
disulfate in a 0.5 M aqueous solution of sulfuric acid, th
neutralized with a 5% solution of ammonia, repeate
washed with water and acetone until a colorless filtrate w
obtained, and then dried in a dynamic vacuum at a temp
ture of 100– 120 °C.

The second sample of PAN was obtained by the i
exchange doping of an emeraldine base by holding the
thesized PAN powder in a 0.02 M solution of potassiu
hexacyanoferrate~III ! in 0.05 M sulfuric acid for 24 hours
This sample was washed and dried in the same way as
first. Both samples were sealed in quartz ampoules. The
sample was a pure PAN powder, while the second conta
0.3% K3@Fe~CN!6#.

The ESR spectrum described in this article for PA
doped with potassium hexacyanoferrate~III ! is a superposi-
tion of the ESR spectra of the free radicals of PAN a
Fe~III ! ions.

The spectrum was studied on an ESR spectrometer
a frequency of the microwave fieldn59.24160.001 GHz in
the temperature intervalT54.2– 295 K. The ESR spectrum
of pure PAN in the temperature intervalT54.2– 295 K con-
sists of one resonance line with ag factor g352.000
60.001. This line has the feature than its widthDHpp de-
creases with increasing temperature~Fig. 2!. The value of the
g factor is independent of temperature. The resonance lin
pure PAN is due to the existence of free radicals.

The ESR spectrum of the sample doped w
K3@Fe~CN!6# consists of three resonance lines. The ove

FIG. 1. Structural formula of emeraldine.

FIG. 2. Temperature dependence of the resonance linewidthDHpp of pure
polyaniline.
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appearance of the spectrum at an intermediate tempera
T5109 K is shown in Fig. 3. The first and second resona
lines result from the doping of the sample and can be
plained by the presence of the Fe31 ion. The third resonance
line, as judged from the value of theg factor and the char-
acter of its behavior when the temperature is changed,
longs to free radicals in the PAN.

The value of theg factor of line 1 at T54.2 K is g1

54.2260.03 and is practically independent of temperatu
The g factor of line 2 at T5295 K has the valueg252.13
60.05.

When the temperature is changed, one observes an
usual change in the resonance lines1 and 2 of the ESR
spectrum~see Fig. 4!. When the temperature is increased, t
intensity of the resonance line1 decreases until it vanishe
completely atT5295 K. Here the linewidthDH1 increases
by no more than 30%~Fig. 5!.

The increase in the intensity of line1 when the tempera-
ture is lowered is due to two mechanisms. The first of th
involves the ‘‘usual’’ change in the population of the ener
levels between which the ESR transition occurs, and fo
frequencyn59.24 GHz of the microwave field the temper
ture dependence of the intensity is governed by the r
J(T)/J05hn/kT. This mechanism is more or less typical fo
all the resonance lines, but it is manifested most clearly
line 3 of pure PAN.

Figure 6 shows the temperature dependence of the r
of the peak-to-peak intensitiesJ1pp /J3pp of lines 1 and 3,
which attests to the presence of an additional mechanism
temperature dependence of the intensity of line1, and that is
the mechanism discussed in this paper. This atypical t
perature dependence for the ESR spectrum of the Fe31 ion
indicates that the change in the intensity is not due to o
nary relaxation broadening of the resonance lines.

At T5295 K the width of line2 has the valueDHpp

FIG. 3. Form of the ESR spectrum of the Fe31 ion in polyaniline at
T5109 K.
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50.75 kOe. Its width increases as the temperature is l
ered, and the resonance line is not detected atT,50 K. The
broadening of line2 is accompanied by a decrease of t
peak intensity until it vanishes completely. It should be no
that the usual mechanism for broadening of the resona

FIG. 4. Temperature-induced changes in the original absorption of the
spectrum of the Fe31 ion in polyaniline.

FIG. 5. Temperature dependence of the widthDH1 of the first resonance
line.
-

d
ce

line of the ESR spectrum, that due to spin–lattice relaxat
processes, leads to an increase of the linewidth with incre
ing temperature. The experimental observation of the op
site temperature dependence of the linewidth is evidence
the presence of an additional, more effective mechanism
governs the width of the ESR line.

The unusual behavior of the intensity of resonance lin1
and of the width of resonance line2 of the ESR spectrum
suggests that lines1 and2 are interrelated.

Since line2 has an appreciable width that increases
the temperature is lowered, for illustration of the behavior
the ESR spectrum it is more convenient to represent it in
form of the absorption curve rather than its derivative, wh
is usually recorded when a synchronous detector is u
Figure 4 shows the form of the such an ESR spectrum
nine values of the temperature.

According to Fig. 4, theg factors of resonance lines1
and3 are independent of temperature. The position of lin2
in the interval interval 100–295 K corresponds to ag factor
g2'2.13. As the temperature is lowered further, a grad
shift of line 2 to lower fields occurs along with a broadenin
of its width.

Resonance line1 is the low-temperature ESR spectru
of the Fe31 ions, and line2 is the high-temperature spectrum
A change in temperature leads to a redistribution of the
sorption intensity between the low-temperature and hi
temperature spectra.

3. DISCUSSION OF THE RESULTS

The above-described ESR spectrum of the Fe31 ion in
PAN has a number of features that must be examined s
rately.

1. Let us start with a discussion of the values obtain
for theg factors of resonance lines1 and2, which belong to
the iron impurity ion. The Fe31 ion has the configurationd5.

R

FIG. 6. Temperature dependence of the peak–peak intensity
J1pp /J3pp of lines 1 and3.
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The spin of the ground state isS55/2. For the most fre-
quently encountered ESR spectra of the Fe31 ion theg factor
typically has a value close to 2.

On the other hand, the resonance line withg'4.3 has
been investigated in a number of studies4–6 of the ESR spec-
trum of the iron ion in silicate glasses, which, like our PA
sample, lack long-range order. A spectrum withg'4.3 is
also observed in several polycrystalline biologic
systems.7–9 A detailed analysis of the results on the ES
spectrum of iron ions in amorphous substances is given
Ref. 10. It was shown in that paper that the spectrum, wh
consists of two resonance lines withg'2 andg'4.3, be-
longs to different inequivalent magnetic centers of the F31

ion, which differ in the amount of the low-symmetry com
ponent of the crystalline field acting on the magnetic io
The line with g'2 corresponds to a center at which t
low-symmetry component of the crystalline field is mu
less than the Zeeman energy, while the line withg'4.3 cor-
responds to a center for which the low-symmetry compon
of the crystalline field is much larger than the Zeem
energy.

In this paper we understand the term ‘‘crystalline field
to mean the local electric field created at an Fe31 magnetic
impurity ion by the surrounding molecules.

2. The intensity of the ESR line is proportional to th
number of magnetic ions participating in a given transitio
The redistribution of the intensities of lines1 and2 attests to
a change in the number of magnetic ions correspondin
these centers.

The authors think it improbable that the temperatu
induced changes lead to a real displacement of the Fe31 ions
from one of the inequivalent positions to another. In th
case, according to the results of Ref. 10 and the tempera
dependence of the ESR spectrum from the present study
low-symmetry component of the crystalline field acting
an Fe31 ion in PAN would be much less than the Zeem
energy at low temperatures and much greater than the
man energy at high temperatures.

3. If the electric field of the nearest-neighbor enviro
ment of the magnetic ion Fe31 has cubic symmetry or a
low-symmetry component that is much less than the Zeem
energy, then the Hamiltonian of the zeroth approximat
will be of the form

H05g0bH•S, ~1!

whereb is the Bohr magneton andg0 is theg factor of the
ground state multipletS55/2. The numerical value ofg0 is
close to 2.0. The Hamiltonian of the fine-structure splitti
should be treated as a perturbation. The ESR spectrum o
magnetic center in this case consists of five lines. The cen
resonance line, as a rule, is independent of the direc
of the magnetic field and corresponds to a transit
11/2↔21/2. The other four resonance lines of the fi
structure of the spectrum depend on the magnetic field di
tion. In a ‘‘polycrystalline’’ sample one will observe a sing
resonance line with an effectiveg factor equal to theg factor
of the resonance transition11/2↔21/2 and having a value
g'2. The resonance lines of the other transitions of the
structure of Fe31 are averaged as a result of the orientatio
disordering and will contribute to the linewidth.
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According the usual relaxation properties of the tran
tion 11/2↔21/2 for the S ion Fe31, one would expect tha
the spectral line withg'2 should be observed experime
tally throughout the entire temperature interval from heliu
to room temperatures. Raising the temperature should lea
the usual relaxation broadening of the line. However,
experiments done in the present study demonstrate the o
site temperature dependence of the width of the resona
line with g'2: the width of this line decreases as the te
perature is raised. This unusual behavior requires additio
explanation.

4. If the low-symmetry component of the electric field
the nearest-neighbor environment of the magnetic ion Fe31 is
much greater than the Zeeman energy, then, accordin
Ref. 10, the Hamiltonian of the zeroth approximation sho
be expressed in the form

H05D~Sz
22S~S11!/3!1D~Sx

22Sy
2!/3. ~2!

The Zeeman Hamiltonian~1! and the Hamiltonian of the
fine-structure splitting

H15~E2D/3!~Sx
22Sy

2! ~3!

should be treated as a perturbation. HereSx , Sy , andSz are
components of the spin operator, andD and E are param-
eters of the initial splitting, which characterize the field
axial symmetry and the rhombic component of the field,
spectively. The action of Hamiltonian~2! splits the spin mul-
tiplet S55/2 into three Kramers doublets with energi
«150, «254A7D/3, and«3524A7D/3. According to the
estimate of Ref. 10, the lower and upper doublets h
highly anisotropicg factors, while theg factor of the middle
doublet is isotropic and approximately equal to 4.3. The a
of symmetry of the different magnetic centers in ‘‘polycry
talline’’ sample are oriented randomly in different directio
with respect to the magnetic field. As a result, the ESR sp
trum of the doublets with anisotropicg factors are
‘‘smeared’’ over a wide range of magnetic fields and a
therefore not observed in experiments. Only resonance lin1
~Fig. 4!, with g154.22, is observed experimentally. The di
ference between the estimateg154.3 in Ref. 10 and the
experimental value 4.2260.03 for theS ion is within accept-
able error and is apparently due to the fact that we have
taken into account all the mechanisms that contribute to
g factor.

On account of the characteristic relaxation properties
theS ion Fe31, line 1 with g1'4.22 should be observed ove
the entire range of temperatures investigated.

The results of the present study do not confirm suc
character of the temperature dependence. According to
experimental data, at liquid-helium temperature one obse
an intense line of widthDHpp596 Oe with an effectiveg
factor g154.2260.03. As the temperature is raised the i
tensity of the line decreases to where it vanishes comple
~Fig. 4!. Since the broadening of the line is insignificant, t
fall of the peak intensity is not due to the usual relaxati
processes.

5. The transition from the low-temperature spectrum
the high-temperature spectrum occurs gradually rather t
in a jump ~Fig. 4!. Therefore, structural phase transitio
cannot be the cause of the temperature-induced change o
intensity of the lines of the ESR spectrum.
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Let us list the observed properties: 1! the existence of a
low-temperature, low-symmetry state and a hig
temperature, high-symmetry state; 2! the presence of a tem
perature region in which these states coexist; 3! a decrease o
the intensity of the low-temperature spectrum and an
crease in the intensity of the high-temperature spectrum
the temperature is raised. These properties are typical of
tems with multiple-minimum potentials. The best-studied
these is the Jahn–Teller system of a divalent copper ion in
octahedral crystalline environment. The temperature-indu
changes of the intensities of the spectra corresponding to
low-symmetry and high-symmetry states for such syste
are due to a change in the population of vibronic states.2 The
fact that the temperature-induced changes of the ESR s
trum of the Fe31 ion in PAN are the same as the analogo
temperature-induced changes of other well-studied syst
with multiple-minimum potentials2,11,12 suggests that the
sample under study can be regarded as a system wi
multiple-minimum potential.

It should be noted here that Fe31 is an S ion, and the
appearance of the Jahn–Teller effect for this ion is impr
able. In the case under study the Fe31 ion plays the role of a
paramagnetic probe which permits one to observe the
usual dynamics of the molecular environment.

4. CONCLUSION

In the framework of the proposed model we have be
able to explain the unusual temperature dependence o
intensity of the resonance line1 of the ESR spectrum, the
width of the resonance line2, and other features of the ES
spectrum.

At helium temperature the molecules of the environm
are ‘‘frozen’’ in positions corresponding to the largest val
of the low-symmetry component of the crystalline field at t
bottom of the potential wells. Then the anisotropy of t
electric field is maximum, and therefore only the first res
nance line is observed. As the temperature is raised, som
the magnetic centers undergo a transition to excited vibro
states. The excited states of systems with multiple-minim
potentials, as a rule, are less anisotropic than the ground
~the deformations are averaged as a result of fast ‘‘ho
from one potential well to another!. The suprabarrier state
~the states whose energies are greater than the height o
barrier separating the potential wells2! are the least aniso
tropic. The occupation of the suprabarrier states gives ris
resonance line2 of the ESR spectrum~Fig. 4!. Increasing the
number of magnetic centers found in excited states will le
to a decrease in the number of magnetic centers in
ground state. This circumstance is the cause of the decr
of the intensity of resonance line2 as the temperature i
raised.
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The unusual temperature dependence of the width of
resonance line2 ~Fig. 4! is due to the distribution of mag
netic centers over excited states. As a rule, for systems
multiple-minimum potentials, the higher the energy of t
excited state, the lower the distortion corresponding to t
vibronic state. If the energy of excitation is greater than
height of the barrier between potential wells~suprabarrier
states!, then the distortion becomes minimal or equal to ze

At high temperatures more of the magnetic centers
found in suprabarrier states. The ESR spectrum of th
centers is determined by theg factor of the transition
11/2↔21/2.

At low temperatures an appreciable fraction of the ma
netic centers will be found in subbarrier excited states. T
lower the excitation energy, the larger the low-symme
component of the electric field and the farther the resona
lines of the transitions65/2↔63/2 will be from the line of
the transition11/2↔21/2. As a result of the orientationa
averaging over the directions of the symmetry axes, the c
tribution of the transitions65/2↔63/2 and63/2↔61/2 at
low temperatures will lead to broadening of resonance line2.

The temperature-induced change in the ESR spectrum
the complex@Fe~CN!6#

32 in polyaniline is practically the
same as the temperature-induced change of the ESR s
trum of the Fe31 ion in nitroso-b-naphthol.1 This coinci-
dence of the properties of the ESR spectra of these two m
netic centers despite the substantially different molecu
environments of the Fe3 ion attests to the presence of a
effect which is common to these substances.

a!E-mail: shapoval@host.dipt.donetsk.ua
b!E-mail: aksiment@org.lviv.net
c!E-mail: szymh@gammal.ifpan.edu.pl
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ESR spectrum of KTm „MoO4…2
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The angular and frequency dependences of the ESR spectrum of single-crystal KTm(MoO4)2 are
investigated at helium temperature. It is shown that this compound belongs to the class of
highly anisotropic paramagnets. Theg factors of the ground state (gx50.360.2; gy50.360.2;
gz513.960.1) and the angle of rotation of the local axes in theac plane~u56~7.661!°!
are determined for two Tm31 paramagnetic centers. ©2000 American Institute of Physics.
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INTRODUCTION

Potassium–thulium molybdate KTm(MoO4)2 is a typi-
cal member of the KR(MoO4)2 family ~where R5Dy, Ho,
Er, Tm, Yb, Lu, Y!.1 Many members of this series are Jahn
Teller systems. These compounds belong to the orthorh
bic symmetry class, with space groupD2h

14(Pbcn). They
have four formula units per unit cell. The lattice constants
KTm~MoO4)2 are as follows: a55.05 Å, b518.28 Å,
c57.89 Å.2,3 In the present study we have investigated
resonance behavior of the Tm31 ions in the KTm~MoO4)2

lattice by the ESR method for the purpose of obtaining i
portant information about the ground state of the param
net, the values of theg factors, and the interactions that for
the energy spectrum.

EXPERIMENTAL RESULTS

The high-frequency properties of single-crystal KT
(MoO4)2 were investigated at helium temperature in the f
quency range 36–190 GHz. The measurements were m
on a complex of radio spectrometers with a resonator c
The sample was mounted in the cylindrical resonator o
dielectric device which permitted rotating the sample; it w
placed near an antinode of the rf magnetic field, where b
parallel and perpendicular polarizations of the microwa
field relative to the external static magnetic field we
present. The magnetic field source in the experiment wa
superconducting solenoid with a maximum field of 8 T. W
studied the angular dependence of the ESR spectrum o
Tm31 ions in the crystallographic planesac and bc of the
crystal and the frequency–field dependence of the ESR
sorption line for an orientation of the external magnetic fie
along thec axis.

Figures 1 and 2 show the angular dependence of the
spectrum of KTm~MoO4)2 for different directions of the ex-
ternal magnetic field in theac and bc planes, respectively
The measurements were made at a frequency of 104.3
at helium temperature. For the orientation with the magn
field in the ac plane ~Fig. 1! we observed the absorptio
lines of two geometrically inequivalent centers. The loc
axesz andx of these centers are symmetrically rotated in
ac plane in both directions relative to the crystallograph
2701063-777X/2000/26(4)/3/$20.00
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axesc anda. The angle of rotation is (7.661)°. Thepres-
ence of two centers is typical for the majority of the mem
bers of this family.4,5 In thebc plane one sees a single stru
ture of the ESR absorption line at any angles. The half-wi
of the resonance absorption line is found to depend stron
on the direction of the external magnetic field relative to t
local magnetic axes. The minimum half width at half max
mum ~HWHM! of the ESR line of the Tm31 ions, DH
5150 Oe, corresponds to a direction of the applied fi
along the localz axis, and as the direction deviates from th
axis toward either of the crystallographic axesa or b the
absorption line gradually broadens to 4000 Oe. The nar
absorption line (DH5450 Oe! is unusual for the magneti
cally concentrated paramagnets of this family. The sign
cant broadening of the resonance absorption line, espec
in the neighborhood of the local axesx and y of the Tm31

magnetic centers, and the small values of the splitting of
g factorsgx andgy do not allow an accurate determination
the extremal positions of the resonance absorption line al
these axes. Since the capabilities of our experimental ap
ratus do not allow us to reach the magnetic field values
which the absorption line is observed, we could only es
mate an upper bound on the spectroscopic splitting fac

FIG. 1. Angular dependence of the position of the ESR line of single-cry
KTm~MoO4)2 for an orientation with the external magnetic fieldH in theac
plane. The continuous curves are the theoretical calculation; the points
experimental data.
© 2000 American Institute of Physics
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For these directions theg factor does not exceed 0.4.
We note that the width and intensity of the ESR line

the Tm31 ion in the crystal KTm~MoO4)2 depend strongly
on the mechanical stresses and pressure.

Figure 3 shows the frequency–field dependence of
ESR spectrum of KTm~MoO4)2 for the orientation with the
external magnetic fieldH along the localz axis of the crystal
(T54.2 K!. The frequency–field curve of the ESR absor
tion line has a nonlinear character and conforms well t
quadratic law with a gap of~69.960.5) GHz at zero mag-
netic field. This quadratic dependence is shown in the in
to Fig. 3. From the slope of the straight line we determin
the value of the effectiveg factor for this axis of the crystal
gz513.960.1. At frequencies less than the value of the g
the ESR spectrum is not observed in single-crystal K
(MoO4)2.

DISCUSSION OF THE RESULTS

Angular dependence of the ESR

It is known that, depending on the type of rare-earth
and the symmetry of the crystalline environment, the mult
lets of the ion should be split by the crystalline field in
energy levels with different degrees of degeneracy — s
glets, doublets, and triplets. In real crystals these levels
be close in energy. As a result, quasidegenerate level
accidental doublets, triplets, etc. — appear in the spectrum
the ion. In low-temperature studies one ordinarily examin
only the lowest energy levels, since only they are popula
at these temperatures. If the ground-state quasidoublet o
rare-earth ion is separated from the excited levels by a la
interval DE, then at temperaturesT,DE the interaction of
the rare-earth ion with the external magnetic field can
described by a Hamiltonian of the formH5E01DSx

1mB(g•H)Sz , where E05(1/2)(E011E02) is the energy
corresponding to the centroid of the quasidoublet,D5E02

2E01 is the initial ‘‘splitting’’ of the quasidoublet in the
crystalline field,g is the vector determining the magnitud
and direction of the~only! nonzerog factor, andSx and Sz

are the standard matrices of the spin-1/2 operators.6

A magnetic field applied in any direction perpendicu
to thez axis will not cause additional splitting of the quas

FIG. 2. Angular dependence of the position of the ESR lines of sin
crystal KTm~MoO4)2 for an orientation with the external magnetic fieldH
in the bc plane. The continuous curves are the theoretical calculation;
points are experimental data.
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doublet; theg tensor of the quasidoublet is axially symmetr
and has only one nonzero componentg ~along thez axis!
regardless of the symmetry of the crystalline environmen
the ion, if one does not take into account the terms quadr
in the magnetic field.7

Experimental investigations of the angular depende
of the ESR spectrum of the Tm31 ion in the KTm~MoO4)2

lattice indicate that this rare-earth ion can be regarded a
typical non-Kramers ion~ground state 4f 12, 3H6) with an
initial splitting of the ground state. The strong anisotropy
theg tensor (gz@gx ,gy) allows one to use the above Hami
tonian without taking the interactions into account. T
quasidoublet of the non-Kramers ion Tm31 in the KTm
(MoO4)2 crystal consists of two close-lying singlet leve
that are separated from the higher levelsEi by a rather large
energy interval~200 cm21).8 In this case, as we have show
above, only the lowest quasidoublet plays a major role in
formation of the ESR spectrum at low temperaturesT
!Ei). In the case of a strict orientation of the magnetic fie
the principal values of theg tensor aregz513.960.1, gx

<0.4, andgy<0.4.
Ions with an extremely anisotropicg factor are called

Ising ions to point up the fact that their behavior in a ma
netic field is analogous to that of the spins in the Ising mod

Since theg-tensor ellipsoid has a pronounced Ising-lik
form, an important role in the description of the angular d
pendence of the spectrum will be played by the orientation
the axis of the maximum value of theg tensor relative to the
direction of the external magnetic field or, in other word
the value of the projection made by the componentgz of the
g-tensor ellipsoid on the plane of rotation of the extern
magnetic field. Using only simple geometric arguments, o
can obtain the following expressions for the maximum v
ues of these projections of theg factors on the coordinate
planes:

ac plane:g25gz
2(cos2u1sin2u cos2w);

bc plane:g25gz
2(cos2u1sin2u sin2w);

ab plane:g25gz
2sin2u.

The best fit of the experimental data presented in Fig
and 2 is obtained for the following values of the paramet
of the Tm31 paramagnetic center:gx50.360.2, gy50.3
60.2, gz513.960.1, w50, andu5(7.661)°, whereu is
the angle between the crystallographic axisc and the local

FIG. 3. Frequency–field curve of the ESR spectrum of KTm~MoO4)2 for
Hiz.
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magnetic axisz of the paramagnetic center, which is rotat
in the ac plane. The functions calculated according to t
given formulas are shown by the continuous curves in
figures and demonstrate good agreement with experime

The value obtained forgz can be compared with th
maximum value attainable for the Tm31 ion. For this esti-
mate we use the total angular momentumJ56 for the
ground-state multiplet of the Tm31 ion, which is character-
ized by a Lande´ factorgJ57/6. The maximum possible mag
netic momentp of a rare-earth ion isgJmB@J(J11)#1/2

57.56mB , which, for an effective spin of the quasidoubl
S51/2, corresponds to a valuegmax'14 and is therefore
consistent with the value we obtained forgz .

According to Ref. 9, the presence of lower singlet lev
of the Tm31 ion in the crystalline electric field leads to
substantial decrease of the resonance linewidth create
the magnetic dipole interactions with the electron spins,
pecially at very low temperatures and for highly anisotro
g factors, when the population of the lower level is cons
erably larger than that of the upper levels. For this reas
the broadening due to the dipole–dipole interactions of
electron magnetic moments practically vanishes. It is no
worthy that in one of the early papers10 on the ESR of the
rare-earth ion Tb31 in PbMoO4, for which the lowest state is
a quasidoublet, it was noted that the ESR line was very n
row, but no theoretical explanation of the experiment w
given.

Frequency–field dependence of the ESR spectrum
of KTm „MoO4…2 for Hiz

The frequency–field curve of the ESR spectrum forHiz
~Fig. 3! shows that the lowest ground state is a quasidou
with a projection of the angular momentumJ close to
mJ566. The observed ESR spectrum may be due solel
transitions between components of the ground-state qua
oublet66. This would correspond to ag factor gz513.95.

The crystalline field of the KTm~MoO4)2 crystal forms a
doublet and a singlet structure of energy levels. The m
contribution to the formation of the state is given by t
high-symmetry components of the field, and their signs
such that the ground state is a quasidoublet with spin pro
tions 66. The low-symmetry components will cause a m
ing of different states, which will lead, in particular, to a
initial splitting of the ground state. A magnetic field chang
e
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this splitting according to the lawn25n0
21(gzH/2)2, where

n0569.95 GHz. The functions corresponding to these
rameters are shown by the continuous curves in Fig. 3.

CONCLUSIONS

To summarize, our investigation of the ESR spectra
Tm31 ions in single-crystal KTm~MoO4)2 has yielded the
following results.

1. We detected two magnetically inequivalent Tm31

paramagnetic centers in the KTm~MoO4)2 crystal lattice. We
determined the angle of rotation of the local magnetic a
of these centers (2u515.2°).

2. We determined theg factors of the ground-state quas
doublet in the crystal. The strong anisotropy of theg factors
allows us to classify the Tm31 ion in the compound KTm
(MoO4)2 as an Ising ion, and the spin–spin interaction w
also be purely Ising-like.

3. We have determined the value of the initial splittin
of the ground-state quasidoublet in the crystal (DE52.3
cm21).

The authors thank A. A. Loginov for helpful discussion
of the results of this study.
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Influence of a biquadratic interaction on the magnetic ordering in two-dimensional
ferromagnets
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The question of whether the long-range magnetic order in a two-dimensional ferromagnet can be
stabilized by the inclusion of a biquadratic interaction is investigated. It is shown that the
stabilization of the long-range magnetic order results from the presence of a magnetoelastic
interaction. Certain types of spin configurations in the system under study are investigated
for different relative sizes of the Heisenberg and biquadratic exchange constants. ©2000
American Institute of Physics.@S1063-777X~00!00804-5#
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INTRODUCTION

For many years the Heisenberg model has served as
foundation on which the theory of magnetism has been
veloped. Since the state of an atom in a magnet with lo
ized spins is determined by the direction of its spin, in
isotropic space the energy of interaction of two atoms
depend only on the scalar product of the spins of these
oms. In the Heisenberg Hamiltonian this dependence is
sumed linear.

Of course, the Heisenberg Hamiltonian, being bilinear
the spins and, hence, two-centered, is by no means the
general form of Hamiltonian for a magnet with localize
spins. The Heisenberg Hamiltonian can be generalized
different ways. First, while remaining in the framework of
structure which is bilinear in the spins, one can include va
ous types of relativistic interactions~anisotropy, magneto
elastic interaction, etc.!. However, it is also possible to g
beyond the confines of a bilinear exchange interaction. S
a generalization of the Heisenberg model is possible, e.g
taking into account the higher invariants in the spin va
ables. The simplest model of such a magnet incorporat
biquadratic interaction in the exchange Hamiltonian.1

The most interesting property of such a magnet is
magnetic polymorphism. The largest number of phases~14!
has been observed in CeBi. Previously ‘‘order–order’’ pha
transitions have ordinarily been explained as being due
Kittel exchange inversion~a change in sign of the exchang
integral on account of thermal expansion of the lattice!.2

However, this theory is clearly unsuited to low-temperatu
transitions and is completely unable to explain the wh
cascade of such transitions that can be brought about by
change interactions of higher orders in the spin. An argum
in favor of this mechanism is the fact that ‘‘order–orde
transitions are most often observed in materials with n
Heisenberg structures.

The influence of non-Heisenberg exchange has been
vestigated quite actively in three-dimensional~3D!
magnets.3–5 However, we are unaware of any papers th
have explored the influence of an exchange interaction
higher order in the spin on the stabilization of the long-ran
2731063-777X/2000/26(4)/5/$20.00
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magnetic order in two-dimensional~2D! magnets or that
have investigated ways that magnetic phases could be
ized in them. Analysis of this question is the subject of t
present paper. We explore the possibility of stabilization
the long-range magnetic order for different relationsh
among the values of the material constants. Incorporatin
large biquadratic interaction~exceeding the Heisenberg inte
action! gives rise to the appearance of a nonzero order
rameter, but which is tensor rather than vector.

DISPERSION RELATION OF COUPLED MAGNETOELASTIC
WAVES IN A TWO-DIMENSIONAL FERROMAGNET
WITH BIQUADRATIC EXCHANGE

Let us consider a 2D ferromagnet with biquadratic e
change and ‘‘easy plane’’ anisotropy. It has been sho
previously6,7 that the long-range magnetic order in a 2D fe
romagnet is stabilized by a magnetoelastic interaction. Inc
porating a magnetoelastic interaction will lead to the ex
tence, in the ferromagnetic phase, of a nonzero magn
moment^Sz& in the plane of the ferromagnet; thus one c
investigate the contribution of a biquadratic interaction bo
to the spectra of quasiparticles and to the process of sta
zation of the long-range magnetic order.

We write the Hamiltonian of the system in the form

H52
1

2 (
n,n8

@Jnn8SnSn81Knn8~SnSn8!
2#1

b

2 (
n

~Sn
y!2

1l(
n

@uxx~Sn
x!21uzz~Sn

z!21uxz~Sn
zSn

x1Sn
x1Sn

z!#

1
E

2~12s2!
E dr@uxx

2 1uzz
2 12suxxuzz12~12s!uxz

2 #,

~1!

where Jnn8 and Knn8 are the bilinear and biquadratic ex
change constants,b.0 is the single-ion anisotropy~SA!
constant,l is the magnetoelastic constant,ui j are the sym-
metric parts of the components of the strain tensor,E is
© 2000 American Institute of Physics
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Young’s modulus, ands is Poisson’s ratio. We shall hence
forth assume that the magnetic ion has spinS51.

Separating out the mean field̂Sz& and the additional
fields q2

p (p50,2) determined by the quadrupole mome
we obtain the one-site HamiltonianH0(n):

H0~n!52H̄Sn
z2B2

0Q2n
0 2B2

2Q2n
2 1

b

2
~Sn

y!21luxx~Sn
x!2

1luzz~Sn
z!21luxz~Sn

xSn
z1Sn

zSn
x!, ~2!

where

H̄5^Sz&S J02
K0

2 D ; B2
05

1

6
K0q2

0;

B2
25

1

2
K0q2

2; q2
p5^Q2

p&;

Q2n
0 53~Sn

z!222; Q2n
2 5

1

2
@~Sn

1!21~Sn
2!2#.

Solving the single-ion problem using Hamiltonian~2!, we
obtain the energy levels of the magnetic ion:

E15
b

4
1

l

2
~uxx

~0!12uzz
~0!!2B2

02x,

E05
b

2
1luxx

~0!12B2
0,

E215
b

4
1

l

2
~uxx

~0!12uzz
~0!!2B2

01x,

x25H̄21S l

2
uxx

~0!2
b

4
2B2

2D 2

. ~3!

The spontaneous strains are determined from the cond
that the free energy density be minimum; they have
values

uxx
~0!52

l

E

122s

2
, uzz

~0!52
l

E

22s

2
, uxz

~0!50.

In the basis of eigenfunctions of the HamiltonianH0(n)
we construct the Hubbard operators XM8M

[uC(M 8)&^C(M )u, which describe the transition of th
magnetic ion from the stateM 8 to the stateM .8,9 In terms of
the Hubbard operators, Hamiltonian~2! is diagonal, and the
spin operators are related to the Hubbard operators by
expressions

Sn
15& cosd~Xn

101Xn
021!1& sind~Xn

012Xn
210!,

Sn
25~Sn

1!1, ~4!

Sn
z5cos~2d!~Hn

12Hn
21!2sin~2d!~Xn

1211Xn
211!,

cosd5
B2

22luxx
~0!/21b/4

A~x2H̄ !21~B2
22luxx

~0!/21b/4!2
.

After quantizing the dynamic part of the strain tensor in t
standard way10 and separating out in the one-site Ham
tonian ~2! the terms proportional to the dynamic part of t
strain tensor, we obtain a Hamiltonian describing proces
of transformation of magnons into phonons and vice ver
,

on
e

he

es
:

H tr5(
n

S (
M

PMHn
M1(

a
PaXn

aD ,

PM ~a!5
1

AN
(
q,l

~bq,l1b2q,l
1 !Tn

M ~a!~q,l!,

whereN is the number of lattice sites,bq,l andbq,l
1 are the

creation and annihilation operators for phonons with pol
ization l and wave vectorq, andTn

M (a)(q,l) are the ampli-
tudes of the transformations:

Tn
01~q,l!5Tn

10~q,l!5
l

2&
Tn

0~q,l!~el
zqx1el

xqz!

3~cosd2sind!,

Tn
021~q,l!5Tn

210~q,l!52
l

2&
Tn

0~q,l!~el
zqx1el

xqz!

3~cosd1sind!,

Tn
0~q,l!5 i

exp~ iqn!

A2mvl~q!
,

wherem is the mass of the magnetic ion,vl(q) is the dis-
persion relation forl-polarized sound,vl(q)5clq, andcl

is the sound velocity. The calculations below will be done
the mean-field approximation, and we shall therefore n
only the ‘‘transverse’’ part of the exchange Hamiltonia
which has the form

Hint
' 52

1

2 (
n,n8
a,b

$C~a!,Ânn8C~b!%Xn
aXn

b ,

whereC(a) is an eight-dimensional vector having the fo
lowing components:

C~a!5@g1
i
~a!;g1

'~a!;g1*
'~2a!;g2

i
~a!;g2

'~a!g2*
'

~2a!;g3
'~a!;g3*

'~2a!#,

and the 838 matrix Ânn8 decomposes into the direct sum
two matrices:

Ânn85Ânn8
~3!

^ Ânn8
~5! ,

Ânn8
~3!

5H Jnn82
1

2
Knn8J S 1 0 0

0 0 1/2

0 1/2 0
D ,

Ânn8
~5!

5
1

2
Knn8S 1 0 0 0 0

0 0 1/2 0 0

0 1/2 0 0 0

0 0 0 0 1/2

0 0 0 1/2 0

D .

The functionsg i'(a) are determined from the relatio
between the spin operators and Hubbard operators~4!, and
the following functionsg turn out to have nonzero values:

g1
i
~121!5g1

i
~211!52sin 2d,

g1
'~10!5g1

'~021!5& cosd,
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g1
'~01!52g1

'~210!5& sind,

g3
'~10!52g3

'~021!5& cosd,

g3
'~01!5g3

'~210!52& sind,

g2
'~121!52 cos2 d, g2

1~211!522 sin2 d. ~5!

The dispersion relation of coupled magnetoelastic wa
can be obtained from an equation of the Larkin type for
Green function:5

detid i j 1G0
ab~a!aik~a!Ak j

1B0~q;l,l8!Tq,l
2aG0

ab~a!T2q,l8
b ,

3G0
Bb~b!aik~a,b!Ak ji50, ~6!

whereDl(q,v)5 2vl(q)/v22vl
2(q) is the Green function

of a l-polarized phonon;

B0~q;l,l8!5
Dl~q,v!

12Qll8Dl~q,v!
;

Qll85T2q,l8
a ,G0

ab~a!Tq,l
2a ;

aik~a,b!5Cir ~a!Crk~2b!;aik~a!5aik~a,a!;

b(a)5^a•H&0 are terminal multipliers, and

H5~X11,X00,X2121!.

The solutions of equation~6! determine the spectra o
hybridized elementary excitations for arbitrary values of
single-ion anisotropy constants and biquadratic excha
and for arbitrary temperatures.

SPECTRA OF COUPLED MAGNETOELASTIC WAVES AND
THE SPIN CONFIGURATIONS OF A TWO-DIMENSIONAL
FERROMAGNET WITH BIQUADRATIC EXCHANGE
FOR VARIOUS RELATIONSHIPS AMONG THE MATERIAL
CONSTANTS

Let us restrict discussion to the case of low temperatu
~T!TC , whereTC is the Curie temperature!, for which we
can most simply and clearly describe the behavior of
system. In this situation the spectrum of quasimagnons
the form

v25@E101Jq2sin~2d!~Jq2Kq!#

3@E101Jq1sin~2d!~Jq2Kq!#, ~7!

whereE105E12E0 , and the values of the mean spin a
quadrupole moments are determined from the equations

^Sz&'cos~2d!, q2
0'1, q2

2'sin~2d!. ~8!

From the last expression in~8! we can obtain an exact equa
tion for x[q2

2:

x6S K0
4

4 D 2x5~2K0
3D!1x4S K0

2H̄216K0
2D22

K0
4

4 D
1x3~2K0

3D28K0D324K0H̄2D!1x2~4D4

26K0
2D2!14H̄2D2)1x~8K0D3!24D450,

whereD[2b/42l2(122s)/4E.
s
e

e
e

s

e
as

It is easy to see that one of the solutions for arbitra
values of the parameter of the system isq2

251, which corre-
sponds to the realization of a quadrupolar phase (^Sz&50).

Here we define the quadrupolar phase as follows:11

^Sz&50, q2
051, q2

251, ~9!

and we shall denote it below as the QP1 phase, while the
quadrupolar phase characterized by the following parame
~see, e.g., Ref. 12!

^Sz&50, q2
0522, q2

250 ~10!

will be called the QP2 phase.
The possibility that long-range magnetic order exists

determined by the smallness of the fluctuations of the m
netic moment, i.e., the convergence of the fluctuat
integral.5 For calculation of the fluctuations of the magne
moment we go over to a Bose description, using the met
of bosonization of the Hubbard operators.13 We associate
with the operatorsXn

a the pseudo-Hubbard operatorsX̃n
a ,

which are related to the Bose creation and annihilation
erators for quasiparticles as follows:

X̃n
105~12an

1an2bn
1bn!an ,X̃n

015an
1 ,

X̃n
1215~12an

1an2bn
1bn!bn ,X̃n

2115bn
1 ,

X̄n
0215an

1bn ,X̃n
2105bn

1an ,X̃n
005an

1an ,

X̃n
21215bn

1bn ,X̄n
11512an

1an2bn
1bn , ~11!

where an and bn are the Bose operators corresponding
the transitions u1&→u0&, u0&→u1&, and u1&→u21&,
u21&→u1&.

It is easy to show that the fluctuation integral will no
have the form

^~Sx!2&}
1

N (
n

^an
1an&

}
1

~2p!d E
0

` qd21dq

vq@exp~vq /T!21#
. ~12!

Let us consider some different cases corresponding
possible relationships among the parameters of the sys
under study.

1. Suppose thatl5b50. Then, depending on the rela
tive sizes ofJ0 andK0 , there are two situations:

a! J0.K0 . In this case the magnon spectrum has
form

v5aq2, ~13!

where a5J0R0
2 ~R0 is the interaction radius!. Expression

~12! for the fluctuation integral simplifies to

^~Sx!2&}
1

N (
n

^an
1an&}

1

~2p!d E
0

` qd21dq

exp~vq /T!21
.

~14!

For this relationship among the material constants th
is no long-range magnetic order in a 2D ferromagnet~on
account of the divergence of~14! at the lower limit!, while in
a 3D ferromagnet a ferromagnetic phase is realized in
system.
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b! J0,K0 .

Here v252~K02J0!pq2, ~15!

wherer5K0R0
2. Although the magnon spectrum is linear

q, the presence of the multiplicative factor 1/vq ~which is
due to theu–v transformation! in the fluctuation integral
causes this integral, as before, to diverge for a 2D ferrom
net, and a quadrupolar phase does not exist in the sys
whereas for a 3D ferromagnet the quadrupolar order is
bilized.

2. Now suppose thatlÞ0, b!J0 . We again consider
two cases:

a! J0.K0 . In this case the solution of equation~8! can
be found approximately, and it has the formq2

2'b/4J0 . A
ferromagnetic phasêSz&51, q2

2!1 is realized in a 2D fer-
romagnet, and a magnetoelastic gap appears in the quasi
non spectrum:

v25~b01aq2!~b01b/21aq2!. ~16!

Here b053l2/4E. As a result, the fluctuation integral con
verges, and long-range magnetic order is stabilized in the
system by virtue of the existence of a magnetoelastic ga
the quasimagnon spectrum.

b! J0,K0 . In this case the QP1 phase is realized in the
system, and the quasimagnon spectrum is modified, wi
gap appearing in it on account of the single-ion anisotro
and the magnetoelastic interaction:

v25~c01rq2!~c012K022J0!,

c05
l2

2E
~22s!1

b

2
. ~17!

As a result, even in the absence of a magnetoelastic inte
tion the quadrupolar order is stabilized in a 2D ferromag
for J0,K0 .

The QP1 phase can be brought about by single-ion a
isotropy in addition to biquadratic exchange, and the ex
tence region of the QP1 phase is determined from the in
equality

c012K022J0.0.

The spectrum of quasiphonons~the wave vectorq is
parallel to theOY axis, t polarization! is determined by
equation~6! and has the form

v25v t
2H 11

a0

E101J01sin~2d!~J02K0!J ,

a05
l2~11s!

2E
@12sin~2d!#. ~18!

In the ferromagnetic phase (sin(2d)'0) we have

v25v t
2H 12a0Fb01b/41S l2~122s!

4E
1

b

4
1

K0

2 D
3S J02

K0

2 D 21G21J .
g-
m,
a-

ag-

D
in

a
y

c-
t

-
-

In the QP1 phase sin(2d)51, and renormalization of the
sound velocity does not take place:

v5v t .

We note that an inversion of the energy levels can oc
in the system under study. It follows from~3! that for

K02
1

2
b2

l2

2E
~22s!.0

the lowest energy level isE0 . Calculations show that in this
case spin waves do not arise in the system, and the 2D
romagnet is found in a paramagnetic state.

CONCLUSION

In summary, if in a 2D ferromagnet one ignores t
single-ion anisotropy and the magnetoelastic interacti
long-range magnetic order does not exist in the system
any relationship between the Heisenberg and biquadratic
change constants. When the magnetoelastic interactio
taken into account a stabilization of the long-range magn
order occurs in the system under study. However, the typ
magnetic ordering depends on the relative sizes of the m
rial constants. ForK0!J0 a ferromagnetic phase is realize
in the system. In the opposite case (K0.J0) a phase with a
tensor order parameter, a quadrupolar~QP! phase, is realized
in a two-dimensional ferromagnet. It should be noted that
such a relationship between the material constants the
phase exists even in the absence of magnetoelastic coup
This is a consequence of including both single-ion anis
ropy and a biquadratic interaction.

Since the two-dimensionality of the system is taken in
account explicitly only in the magnetoelastic interaction a
in the calculation of the fluctuation integrals, the results o
tained here can easily be generalized to the case of a
ferromagnet with a biquadratic interaction. In particular,
can be shown that in 2D and 3D ferromagnets in the abse
of an external magnetic field, if the biquadratic exchan
constant is larger than the Heisenberg exchange constan
QP1 phase, which is characterized by ordering of the antif
romagnetic type,1 is realized. This is because the wave fun
tion corresponding to the energetically most favorable s
of the magnetic ion has the form

C~1!5
1

&
u&1

1

&
u21&,

and thus the probabilities of finding the spin in one of t
statesu1& or u21& are equal. The mechanism for realizatio
of the QP2 phase is different. It is due to inversion of th
energy levels, as a result of which the lowest energy le
becomesE0 and the ground state is described by a wa
function

C~0!5u0&.

In this case the ordering of the system reduces to on
which the the spins r ‘‘laid’’ in the basal plane, where the
are oriented in an arbitrary way. Although such a phase
be realized in 3D systems~see, e.g., Ref. 11!, it cannot exist
in a 2D system.
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Heat transfer in the orientationally disordered phase of SF 6
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The isobaric thermal conductivity of solid SF6 is investigated in the high-temperature phase. The
experimental results are rescaled to a constant density. The isochoric thermal conductivity
initially decreases with increasing temperature, then passes through a smooth minimum and begins
to grow. A modified version of the reduced coordinate method is used to calculate the
phonon–phonon and phonon–rotational contributions to the total thermal resistance. The growth
of the isochoric thermal conductivity is explained by a weakening of the scattering of
phonons on collective rotational excitations of the molecules as the correlations of the rotation
weaken. ©2000 American Institute of Physics.@S1063-777X~00!00904-X#
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Sulfur hexafluoride is often classified as a material h
ing a plastic crystalline phase. However, the nature of
orientational disorder in the high-temperature phase of SF6 is
somewhat different than in the plastic phases of other m
lecular crystals, where the symmetries of the molecule
environment do not match. Ordinarily for crystals who
molecules have orientational freedom, there are a numbe
orientations available to a molecule, and it can go from o
orientation to another. In individual cases the limit of th
reorientational motion can be continuous rotation. Quite
ten an increase in the orientational mobility comes ab
because of a phase change or transition. The presenc
absence of a transition is determined, as a rule, by whethe
not the possible orientations are distinguishable, i.e., it
pends on the interrelationship of the symmetry of the m
ecule and the symmetry of its position in the lattice.

The SF6 molecule has octahedral symmetry. In the hig
temperatureb phase the molecules occupy sites of the b
lattice of space symmetry 1m3m ~Ref. 1–5!. The existence
region of theb phase is extraordinarily large: the crystal
zation of SF6 occurs at 222.4 K, and the phase transiti
lowering the symmetry of the translational and orientatio
subsystems of the crystal does not occur until 94.3 K. T
interaction between the nearest neighbors in the bcc p
tends to order the molecules so that their S–F bonds lie a
the $100% direction, and in the interaction with the nex
nearest neighbors a repulsion predominates between the
rine atoms. The data from recent structural studies3 indicate a
strict orientational order in SF6 above the phase transitio
temperature. This makes SF6 different from such plastic
crystals as CH4, CCl4, adamantane, etc., in which the d
struction of the long-range order occurs immediately a
the phase transition. The intensive growth of processe
orientational disordering begins in SF6 only at temperatures
above 150 K and is of a dynamic nature. The increase of
degree of orientational disorder as the temperature is ra
is not a consequence of a simple increase in the amplitud
2781063-777X/2000/26(4)/4/$20.00
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librations but is due to dynamic reorientations, which a
facilitated by the frustration of the intermolecula
interaction.3–5 In view of what we have said, SF6 is a con-
venient object for studying in a monophase, one-compon
system the influence of a broad spectrum of rotational st
of the molecule on the thermal conductivity at the transiti
from practically complete orientational ordering to nea
free rotational motion.

To make the comparison of the experimental results w
the theoretical predictions as correct as possible, the c
parison must be done at constant volume in order to eli
nate the influence of thermal expansion. Up till now the th
mal conductivity of the solid phase of SF6 has been studied
only for several isochores in a narrow temperature inter
near the melting point.6 A growth of the isochoric therma
conductivity is observed as the temperature is rais
whereas the isobaric thermal conductivity decreases. The
served effect has been attributed to a weakening of the s
tering of phonons on excitations of the rotational motion
the molecules as the correlations of their rotation becom
weaker. It is unquestionably of interest to expand the te
perature interval of the thermal conductivity measureme
all the way down to the phase transition at 94.3 K in order
span as wide as possible a spectrum of rotational excitat
in SF6. The thermal conductivity measured at the satura
vapor pressure can be rescaled to its isochoric counter
with the use of the data on the thermal expansion3 and the
volume dependence of the thermal conductivity.6

In this paper we present the results of a study of
thermal conductivity of solid SF6 by a steady-state plana
method in the interval from the phase transition temperat
94.3 K to the melting point. The measurement ampoule
which the sample was grown, was a tube of Kh18N9T sta
less steel with a length of 70 mm and an inner diameter
7.2 mm. The temperature sensors were germanium resist
thermometers and a copper–Constantan thermocou
which were mounted on copper rings attached to the c
© 2000 American Institute of Physics
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The measurements were made by a modified thermal po
tiometer method,7 which made it possible to minimize th
error of determination of the thermal conductivity. Unco
trolled heat fluxes due to thermal radiation were reduced s
stantially with the aid of a radiation shield, on which a sy
tem of thermocouples and a precision temperature regu
reproduced the temperature field of the measuring cell.
sample was grown from the gas phase at a pressure of ar
1.4 bar, with the temperature of the bottom of the measu
ampoule maintained close to the temperature of liquid ni
gen. The growth procedure took around 2 hours. Stud
were done on two samples~the purity of the initial SF6 was
99.98% or better!. The overall error of the thermal conduc
tivity measurement did not exceed 15%, the main part~10%!
of which was systematic error and depended on the e
with which the geometric dimensions of the ampoule w
determined. The thermal conductivity of the two samp
agreed within experimental error.

The results of the measurements are presented in F
and Table I. The solid curve1 shows the thermal conductiv
ity rescaled to a molar volume of 58.25 cm3/mole, which is
the value for SF6 above the phase transition temperatu
~94.3 K!.3 The calculation was done according to t
formula8

FIG. 1. Isochoric and isobaric thermal conductivities of solid SF6 in the
high-temperature phase. The symbolsj and d correspond to the two
samples. Curve1 is the thermal conductivity rescaled to a molar volume
58.25 cm3/mole. Line 2 is the data of Ref. 6 for a sample with a mola
volume of 62.2 cm3/mole. Also shown are the lower limitLmin of the ther-
mal conductivity of solid SF6, calculated for the isobaric case according
Cahill and Pohl, in the framework of the Einstein model of diffusional h
transfer directly from atom to atom.9

TABLE I. Temperature dependence of the isobaric thermal conductivity
two samples of solid SF6.

Sample No. 1 Sample No. 2

T, K l, mW/cm•K T, K l, mW/cm•K

94 3.81 93 3.46
99 3.75 97 3.38
111 3.68 126 2.69
112 3.17 148 2.07
119 2.53 152 1.70
132 2.80 183 1.47
143 1.83 191 1.48
168 1.68 215 1.40
n-

b-
-
or
e
nd
g
-
s

or
e
s

. 1

lV5lP~V~T!/Vm!g, ~1!

wherelV andlP are the isochoric and isobaric thermal co
ductivities, respectively,V(T) is the instantaneous value o
the molar volume of a free sample,Vm is the molar volume
to which the rescaling is done, and the Bridgman coeffici
g52(] ln l/] ln V)T ~according to the data of Ref. 6, it i
equal to 5.2!. The solid curve2 shows the data of Ref. 6 fo
a sample with a molar volume of 62.2 cm3/mole. The curve
in the lower part of the figure is the lower limit of the the
mal conductivity of solid SF6, calculated for the isobaric
case, according to Cahill and Pohl in the framework of t
Einstein model for the diffusive transfer of heat directly fro
atom to atom:9

Lmin5S p

6
D 1/3

kBn2/3(
i

v i H S T

Q i
D 2E

0

Q iT x3ex

~ex21!2 dxJ .

~2!

The summation is over the three vibrational modes~two
transverse and one longitudinal! with the sound velocities
v i ; Q i is the limiting Debye frequency for each polarizatio
expressed in kelvins;Q i5v i(\/kB)(6p2n)1/3, wheren is the
number of atoms per unit volume, andkB is Boltzmann’s
constant. The necessary data on the density and sound v
ity for the calculation were taken from Ref. 3.

The isochoric thermal conductivity of solid SF6 in the
high-temperatureb phase initially decreases with increasin
temperature, then passes through a smooth minimum
starts to increase. Its behavior above 200 K is in good ag
ment with the data of Ref. 6 if the different density of th
samples is taken into account. Interestingly, the characte
the temperature dependence of the thermal conductivity
solid SF6 is contrary to that of the plastic phase of sol
methane.10 In CH4 ~I! the isochoric thermal conductivity ini
tially increases as the temperature is raised, and the
passes through a smooth maximum and decreases there
all the way to the melting point. It can also be seen from F
1 that above 150 K the thermal conductivity of solid S6

approaches its lower limit, being no more than twice th
value.

This circumstance has at least two important con
quences. First, the proximity of the absolute value of
thermal conductivity to its lower limit gives us reason
expect that its temperature dependence is mainly determ
by acoustical vibrations with small wave vectors. Expe
ments on the inelastic scattering of neutrons4 and the data
from molecular dynamics~MD! calculations5 indicate the ex-
istence of well-defined acoustical phonons, which a
strongly damped as one moves away from the center of
Brillouin zone. Second, one expects substantial deviati
from the law l}1/T. This circumstance cannot, howeve
account for the growth of the thermal conductivity in theb
phase of SF6 at premelting temperatures.

To elucidate the reasons for such different behavior
the thermal conductivity in the high-temperature phases
methane and SF6, in the present study we have undertaken
separate the phonon–phonon and phonon–rotational co
butions to the total thermal conductivity of solid SF6, much
as this was done in the case of solid methane.10 Here it was
assumed that the heat is transferred mainly by translatio
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vibrations, independent of the degree of orientational ord
ing. As we have mentioned earlier,11 in orientationally or-
dered phases the role of librations in the heat transfer tu
out to be insignificant on account of the small dispersion
the librational branches. In orientationally disordered pha
the translational vibrations are the only well-defined exc
tions. The data were processed using a modified versio
the method of reduced coordinates~see below!. It is impor-
tant to note that in this case there is no need to resort to s
approximate model or other.

As a rule, the reducing parameters used are the value
Tmol5«/kB , lmol5kB /s2A«/m, and Vmol5Ns3, where s
and« are the parameters of the Lennard-Jones potential,
m is the molar weight. In this paper as the reducing para
etersTmol and Vmol we used the values of the temperatur
and molar volumes of SF6 and of solidified rare gases~kryp-
ton and xenon! at the critical pointsTcr andVcr ~Table II!.

The choice of the given parameters is explained as
lows. For simple molecular substances,Tcr andVcr are pro-
portional to« and s3, respectively. However, the accurac
of determination is much higher for the critical paramet
than for the parameters of the binomial potential. We n
that the quantitiess and« depend substantially on the choic
of binomial potential and the method used to determine
Assuming that the total thermal resistanceW51/l of solid
SF6 is the sum of the phonon–phononWpp and phonon–
rotationalWpr contributions and that in the reduced coord
nates~W* 5W/Wmol , T* 5T/Tmol! the component due to th
phonon–phonon scattering,Wpp , is the same as in solidified
rare gases at equal values of the reduced molar volumeV*
5V/Vmol , one can isolate the phonon–phonon and phono
rotational components of the thermal resistance.

The results of the calculation are presented in Fig. 2. T
phonon–phonon componentWpp of the thermal resistance i
practically ~to within 2–3%! independent of the choice o
rare gas used for comparison. Unlike the case of solid m
ane, in which the thermal resistance due to the presenc
the rotational degrees of freedom of the molecules,Wpr ,
begins to decrease sharply immediately after the transitio
the orientationally disordered phase and becomes practic
equal to zero above 100 K~Ref. 10!, for solid SF6 the ther-
mal resistance due to the presence of rotational degree
freedom of the molecules initially increases as the temp
ture is raised, similarly to what occurs in the orientationa
ordered phases of a number of simple molecular crysta9

This behavior can be attributed to additional scattering
phonons on collective rotational excitations, the density
which increases as the temperature is raised. This is in g
agreement with the data of Ref. 3 indicating a rather st
orientational order in solid SF6 immediately after the phas
transition at 93.4 K, but it is at odds with the results

TABLE II. Reduced parameters and the molar weights for Kr, Xe, and S6.

Substance
Tmol ,

K
Vmol ,

cm3/mole
lmol,

W/m•K m

Kr 209.4 92.01 0.124 83.8
Xe 289.7 119.5 0.100 131.3
SF6 318.7 201.45 0.074 146.05
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inelastic neutron scattering studies and with calculations
the molecular dynamics method.4,5 In Ref. 5 the well-defined
collective excitations due to the presence of rotational
grees of freedom of the molecules were not detected at a
solid SF6 in any of the high-symmetry directions. At a tem
perature of around 170 K the phonon–rotational compon
of the thermal resistance passes through a maximum
begins to decrease. This again is in good agreement with
data of Ref. 3, according to which there is an intense gro
of the processes of orientational disordering in the so
phase of SF6 at temperatures above 150 K. The observ
effect, as in the case of solid methane, can be attributed
weakening of the scattering of phonons on collective ro
tional excitations of the SF6 molecules as the correlations o
their rotation becomes weaker. The additional contribution
the thermal resistance from the rotational degrees of freed
amounts to around 30% of the phonon–phon
component—much less than in solid methane immedia
after the transition to the orientationally disordered phas10

or in crystals of the nitrogen type.12 The Brillouin scattering
data13 also attest to a weaker translational–rotational inter
tion in the solid phase of SF6 in comparison with methane
and other cubic crystals.
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Instability of a strongly correlated quasi-one-dimensional electron system in a real three-
dimensional crystal is predicted, with the onset of anisotropy of the electron–electron interaction.
The influence of an external magnetic field, the occupation of the electron band, and a
small nonzero temperature on the predicted instability are investigated. ©2000 American
Institute of Physics.@S1063-777X~00!01004-5#
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Low-dimensional electronic and magnetic systems h
been attracting a heightened research interest, both theo
cal and experimental, in recent years. In particular, crys
have been synthesized in which the electron bandwidth~and,
hence, the Fermi velocity! and the interaction between ele
trons are tens of times larger along one of the crysta
graphic directions than along the others.1 In these quasi-one
dimensional electron systems, owing to the presence
one-dimensional feature in the density of states, quan
fluctuations are enhanced in comparison with the stand
three-dimensional electron systems. Therefore, perturba
theoretical methods, such as perturbation theory or me
field theory in their various modifications, are inapplicab
since they can lead to qualitatively incorrect results. T
term ‘‘strongly correlated electron system’’ is ordinarily a
plied to systems for which the energy of the collectiviz
electrons~kinetic! is comparable in size to the energy of th
electron–electron interaction~usually Coulomb!. The latter
can exist in strongly correlated electron systems both in
form of a scalar interaction between the charges of the e
trons and in the form of an exchange interaction betw
their spins, and therefore both the charge~current! and mag-
netic characteristics are very important in these systems.
dinarily the electron–electron correlations in on
dimensional systems of this kind are taken into acco
strictly by the use of rigorous methods such as the Be
ansatz ~or its algebraic version—the quantum invers
scattering method!.2

In this paper we investigate the stability of a strong
correlated quasi-one-dimensional electron system agains
spontaneous onset of anisotropy in the electron–electron
teractions. We shall show that the effect of the crystall
field of the ligands~the three-dimensional environment of
selected one-dimensional interacting electron chain in
crystal! makes the isotropic~Coulomb! interaction between
electrons of the chain unstable with respect to the onse
2821063-777X/2000/26(4)/7/$20.00
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anisotropy~both magnetic and charge!, and we analyze how
this instability is influenced by the value of the electron
lattice coupling, applied external voltage, the number
electrons in the chain, low temperatures, and an exte
magnetic field.

It has recently become clear that the orbital degrees
freedom play a fundamental role in the behavior of a num
of strongly correlated electron systems. In the standard
proach it is the orbital degrees of freedom of the electro
that react to the crystalline electric field of the ions formi
the crystal lattice. The symmetry of this crystalline field
determined by the symmetry of the crystal lattice. Even if t
ions surrounding a magnetic ion~the ligands! are nonmag-
netic themselves, the electric field of the ligands will infl
ence the spin behavior of the magnetic ions through
spin–orbit interaction~which is usually weak!. Taking the
crystalline electric field into account in the lowest appro
mation gives rise to magnetic anisotropy: the spin–spin
teraction between electrons turns out to be different depe
ing on its orientation with respect to the crystalline axes. T
scalar interaction between the charges of the electrons
also be anisotropic as a result of the electric field of the io
of the crystal. The magnetic anisotropy can be both sing
ion and inter-ion. For electrons with spin 1/2, of course, th
is no single-ion anisotropy, and in this paper we shall the
fore investigate only the effects of the inter-ion magne
anisotropy.

The instabilities of dielectric magnetic chains with r
spect to the onset of magnetic anisotropy have been con
ered previously.3,4 For example, the spontaneous onset
biaxial magnetic anisotropy in a highly anisotropicXY spin
chain was predicted in Ref. 3~the advantage of such a sy
tem from the standpoint of a theoretical description of
properties is that its Hamiltonian can be reduced to
Hamiltonian of a noninteracting lattice gas of spinless ferm
ons by means of a nonlocal Jordan–Wigner transformatio5
© 2000 American Institute of Physics
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making it possible to obtain a number of exact results for
static thermodynamic characteristics of the system!. This in-
stability is analogous to the instability of anXY spin chain
with respect to the spin–Peierls period doubling,6 which has
been observed for several inorganic compounds in re
years.7 In the case of spin–Peierls period doubling this ins
bility arises as a result of the interaction with a longitudin
phonon~a longitudinal displacement of the spins along t
one-dimensional chain!, whereas the onset of spontaneo
magnetic anisotropy is due to the interaction~indirect! of the
spins of the chain with a transverse phonon~transverse dis-
placement of the ions! of the three-dimensional crystal la
tice. In Ref. 4 it was predicted that a magnetic anisotropy
the easy plane type will arise in a dielectric crystal with
quasi-one-dimensional isotropic Heisenberg antiferrom
netic interaction between localized spins 1/2. In this case
one-dimensional system of spins is appreciably interact
and therefore the problem of finding the energy levels
such a system~which are substantially nonequidistant! is
considerably more complicated than for the case of anXY
chain. In this paper we shall solve the more complica
problem in which the electrons in the chain have both s
and charge degrees of freedom, i.e., the sites of the chain
be occupied or empty~hole!, and the number of electron
depends on the applied external voltage. This case, unlike
previous one,4 corresponds to a conducting electron su
system. Of course, when the~one-dimensional! band is half-
filled by electrons, i.e., when one electron is found at e
site, the problem reduces to the previous one. The ch
~scalar! and exchange interactions between electrons fo
at neighboring sites of the chain~the preferred crystalline
direction! leads to a substantially nonequidistant spectru
Here, even in the low-temperature behavior of the electro
substantial role is played by bound electron states, which
absent in a system with no electron–electron interaction,
this substantially complicates the problem.

Let us assume that the symmetry of the lattice of a thr
dimensional crystal~one with quasi-one-dimensional ele
tronic properties, i.e., the characteristic energies of the e
tron hops and interactions in one direction are la
compared to the other directions! is altered as a result of
small displacement of the ions. Then, of course, the ene
of its elastic subsystem will have increased. We shall t
into account only uniform deformations of the lattice, whi
create an anisotropy of its electronic properties which is u
form along the entire quasi-one-dimensional system of e
trons. In other words, the phonon that lifts the degenerac
the energy of the one-dimensional electron subsystem
respect to the orbital degrees of freedom has a commens
wave vector~quasimomentum!, and the instability of the
strongly correlated electron chain is determined by the
interaction with this phonon.

However, the ligands surrounding the quasi-on
dimensional electron system are also altered in the crys
line field. As a result, the interaction between the electron
the chain become substantially anisotropic. Therefore,
energy of the quasi-one-dimensional strongly correla
electrons can be decreased, and the minimum of the
energy of the lattice and the one-dimensional electrons
correspond to a nonzero displacement of the ions of the
e
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tice ~its symmetry position! and, consequently, to nonzer
anisotropy of the scalar and magnetic interactions of
electrons along the preferred direction. Thus a quasi-o
dimensional chain of strongly correlated electrons turns
to be unstable with respect to the onset of a substantial
isotropy of the electron–electron interaction.

Let us examine the influence of magnetic anisotropy
the stability of quasi-one-dimensional systems of stron
correlated electrons for a specific example, viz., the o
dimensional supersymmetrict –J model, which is one of the
most fundamental models of strongly correlated electron s
tems and has become widely used in recent years, main
connection with the problem of high-temperatu
superconductivity.8 This model describes the behavior
electrons with an exchange interaction between the spin
electrons on nearest-neighbor sites, and there can be only
electron at any site of the lattice, i.e., at each site of
one-dimensional lattice there are three allowed electro
configurations: an electron with spin projections up a
down, and a hole~a state without an electron!. It has been
shown previously that the one-dimensional isotropict –J
model has a solution at the supersymmetric point~at which
the constant for the hopping of electrons between neighb
ing sites, which is related to the free-electron bandwidth
equal to one-half of the antiferromagnetic exchange cons
between the spins of electrons found on neighboring sit!,
which was obtained through the use of the Bethe ansatz9–11

It has been proved~see, e.g., Ref. 12! that the symmetry of
the t –J model is characterized by the presence of four f
mion and five boson modes~generalized currents!, which
correspond to the generators of the corresponding symm
group SU(1u2). The supersymmetric model explains wh
the characteristic velocities of these fermionic and boso
generalized currents are the same at the supersymm
(SU(1u2)) point.12

In the present paper we investigate the properties of
one-dimensional supersymmetrict –J model with anisotropy
of the magnetic and scalar~charge! interactions between
electrons on neighboring sites, the Hamiltonian of which
the fermionic representation has the form13

H5(
s, j

P~cj ,s
1 ,cj 11,s1cj 11,s

1 ,cj ,s!P

1(
j

~cj ,↓
1 cj ,↑cj 11,↑

1 cj 11,↓1cj ,↑
1 cj ,↓cj 11,↓

1 cj 11,↑!

2(
j

~e0nj ,↑nj 11,↓1e2hnj ,↓nj 11,↑!

2
1

2
H(

j
~cj ,↑

1 cj ,↑2cj ,↓
1 ,cj ,↓!1

1

2
Cd2, ~1!

wherecj ,s and cj ,s
1 are the Fermi annihilation and creatio

operators for electrons at sitej with spin projections: nj ,s

5cj ,s
1 cj ,s is the operator for the number of particles at sitej

with spin projections, P5(12nj ,2s)(12nj 11,2s) is the
projection operator, which does not allow the presence
two electrons at the same site;h[xd is the anisotropy pa-
rameter of the electron–electron interaction~we note that in
the spin sector it corresponds to inter-ion magnetic anis
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ropy of the easy axis type, andh50 corresponds to an iso
tropic SU(1u2)-symmetric supersymmetrict –J model!, x is
the electron–lattice interaction constant~we shall assume be
low that x51!; H is the external magnetic field,(1/2) Cd2

is the change in the energy of the elastic subsystem of
ligands~nonmagnetic ions surrounding the one-dimensio
chain of electrons! in the lowest approximation in the dis
placementd, andC is the elastic constant. Thus the para
eter d determines the distortion of the symmetry configu
tion of the nonmagnetic ions for a given symmetry of t
~three-dimensional! crystal lattice.

With periodic boundary conditions the problem of d
agonalizing the Hamiltonian, i.e., of finding its eigenfun
tions and eigenvalues, reduces to one of solving the sys
of Bethe equations13

Fsin~v j1 i ~h/2!!

sin~v j2 i ~h/2!!G
Na

5 )
ba51

M
sin~v j2La1 i ~h/2!!

sin~v j2la2 i ~h/2!!

j 51,...,N, ~2!

)
j 51

N
sin~La2v j1 i ~h/2!!

sin~La2v j2 i ~h/2!!
52 )

b51

M
sin~La2Lb1 ih!

sin~La2Lb2 ih!
,

a51,...,M ,

whereM is the number of electrons with spin down,Na is
the number of sites of the~one-dimensional! lattice,N is the
total number of electrons in this lattice,v j , j 51,...,N are
the electron~charge! rapidities, andLa , a51,...,M are the
rapidities characterizing the spin degrees of freedom of
electrons in the chain. The rapidities in problems of this k
is the term given to the sets of quantum numbers~param-
eters! parametrizing the wave functions and eigenvalues
the Hamiltonian~1!. The energy of the system is express
as follows in terms of the rapidities:

E5mN2
1

2
H~N22M !2(

j 51

N Fsin~v j1 i ~h/2!!

sin~v j2 i ~h/2!!

1
sin~v j2 i ~h/2!!

sin~v j1 i ~h/2!!G1
1

2
Cd2, ~3!

wherem is a Lagrange multiplier which is equivalent to th
chemical potential of the electron subsystem. This multip
can also take into account the external electrostatic volt
~scalar potential! applied to the system.

The ground state of the one-dimensional system of c
related electrons is characterized by the presence oN
22M unbound electronic excitations~the charge rapidities
v j are real! and 2M singlet excitations similar to Coope
pairs~bound states of pairs of electrons with zero total sp
the charge rapidities of such pairs are complex!.13 As follows
from the Bethe equations~2!, there exists aLb for which the
following equation holds up to a factor of exp(2Na):

va
65Lb6 i

h

2
. ~4!

Then the equation of the Bethe ansatz is rewritten for
charge rapiditiesv j characterizing the unbound electro
states and for the spin rapiditiesLa characterizing the state
of electrons in singlet pairs. We note that now the cha
e
l

-
-

m

e
d

f

r
e

r-

;

e

e

rapidities characterize the behavior of the quasiparticles
rying spin 1/2, whereas the spin rapidities characterize
behavior of the singlet pairs of electrons, i.e., they have
changed their functions, as it were. Going over to a desc
tion in terms of the rapidities of the pairs, we obtain in pla
of ~2! the following system of equations:

F sin~v j1 i ~h/2!!

sin~v j2 i ~h/2!!G
Na

5 )
a51

M
sin~v j2La1 i ~h/2!!

sin~v j2La2 i ~h/2!!
,

j 51,...,N22M ,
~5!

Fsin~La1 ih!

sin~La2 ih!G
Na

52 )
j 51

N22M
sin~La2v j1 i ~h/2!!

sin~La2v j2 i ~h/2!!

3 )
b51

M
sin~La2Lb1 ih!

sin~La2Lb2 ih!
,

a51,...,M .

The energy is now expressed in terms of the energie
the unbound electrons and singlet pairs:

E5mN2 (
j 51

N22M Fsin~v j1 i ~h/2!!

sin~v j2 i ~h/2!!
1

sin~v j2 i ~h/2!!

sin~v j1 i ~h/2!!G
2 (

a51

M

2 coshhS 11
sin2 La

sin2 La1sinh2 h
D

2
1

2
~N22M !H1

1

2
Cd2. ~6!

Taking the logarithm of the system of Bethe equatio
~5! yields

Q~v j ,h/2!5
1

N (
a51

M

Q~v j2La ,h/2!1
2p

Na
I j ,

j 51,...,N22M ,
~7!

Q~La ,h!5
1

N (
j 51

N22M

Q~La2v j ,h/2!

1
1

Na
(
b51

M

Q~La2Lb,h!1
2p

Na
Ja ,

a51,...,M ,

where Q(v,h)52 tan21(tanv cothh), and the quantum
numbersI j ,Ja parametrizing the solution of the system ari
as a result of the multivaluedness of the arguments of
logarithms.

In the thermodynamic limit~in which the numbers of
sites, electrons, and electrons with definite spin projecti
Na , N, andM , respectively, go to infinity while the dens
ties N/Na and M /Na remain finite! the Bethe equations fo
the densities of the charge and spin rapidities become

Q8~v,h/2!5E dLQ8~v2L,h/2!s~L!

12p@r~v !1rh~v !#,
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Q8~L,h!5E dvQ8~L2v,h/2!r~v !1E dzQ8~L

2z,h!s~z!12p@s~L!1sh~L!#, ~8!

wherer(v) andrh(v) are the distribution functions~densi-
ties! of the charge rapidities for ‘‘quasiparticles’’ an
‘‘quasiholes,’’ respectively, ands(L) and sh(L) are the
distribution functions of the spin rapidities; the prime,
usual, denotes a partial derivative. The internal energy of
system in the thermodynamic limit is written

E5mN2E r~v !Fsin~v1 i ~h/2!!

sin~v2 i ~h/2!!
1

sin~v2 i ~h/2!!

sin~v1 i ~h/2!!Gdv

22E s~L!coshhS 11
sin2 L

sin2 L1sinh2 h DdL

2
1

2
~N22M !H1

1

2
Cd2. ~9!

The ground state of the one-dimensional correlated e
trons corresponds to eigenstates of the system in which
negative-energy states of the unbound electronic excitat
and of the electrons bound into local pairs are all occup
~i.e., the corresponding Fermi seas are filled! and the positive
energy states are all empty. We consider the case of
external magnetic field (H50). Then the ground state wil
be made up only of singlet pairs of electrons (2M5N),13

and the system of Bethe equations will therefore be sim
fied substantially:

Q~La ,h!5
1

Na
(
b51

M

Q~La2Lb,h!1
2p

Na
Ja ,

a51,...M , ~10!

where theJb are integers~half-integers! for M11 odd
~even! and are bounded byJmax ~Ref. 14!:

uJau<
Na2M21

2
5Jmax. ~11!

The ground state corresponds to a set of quantum num
Ja such that the interval@2Jmax,Jmax# is populated starting
from the boundaries of the interval. After taking the therm
dynamic limit, we obtain

Q8~L,h!5F E
2p

2L0
1E

L0

p GdzQ8~L2z,h!s~z!

12p@s~L!1sh~L!#. ~12!

The quantitiesL0 have the meaning of the Fermi points~the
Fermi surface for a one-dimensional system!, since in the
ground state only electron states withLP@2p,
2L0#U@L0 ,p# are observed. We note that, as usual
problems which are exactly solvable with the Bethe ans
the wave function of the electron pairs is symmetric~this is
natural, since the noninteracting pairs are bosons!, but these
bosons are impermeable~they have a ‘‘hard core’’!, and that
corresponds to the behavior of a system of fermions. Beca
of this, the electron pairs have a Fermi sea. We also note
electron pairs interacting with one another in this system
e

c-
he
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i-
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z,
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characterized by anyon statistics. The parameterL0 should
correspond to the lowest value of the total energy of
electron subsystem:

E

Na
5F E

2p

2L0
1E

L0

p GF2m22 coshh

3S 11
sin2 L

sin2 L1sinh2 h
D Gs~L!dL1

1

2
Cd2, ~13!

with

F E
2p

L0
1E

L0

p Gs~L!dL5
M

Na
. ~14!

The ground state energy can be expressed in terms o
so-called ‘‘dressed’’ energies of the elementary low-lyi
excitations~in this case, singlet Cooper pairs!:

E5E s~L!«0~L!dL[E s0~L!«~L!dL

5
Na

2p F E
2p

2L0
1E

L0

p G«~L!Q8~L,h!dL1
1

2
Cd2, ~15!

wheres0 is the so-called ‘‘bare’’ density of electron pairs
which is determined by the left-hand side of the integ
equation~12!.

The ‘‘dressed’’ energies of the pairs are determined fr
the integral equation

«~L!52m22 coshhS 11
sin2 L

sin2 L1sinh2 h D
2

1

2p F E
2p

2L0
1E

L0

p GQ8~L2z,h!«~z!dz, ~16!

where the first two terms of the right-hand side of the in
gral equation determine the quantity«0 from ~15!; this is
usually called the ‘‘bare’’ energy of the excitations, and t
interaction, as usual, ‘‘dresses’’ it and the density of exci
tions ~the distribution function!.2

The decrease in energy of the subsystem of o
dimensional correlated electrons due to the influence of
anisotropy of the electron–electron scalar and magnetic
teractions is accompanied by an increase in the energy o
elastic ~three-dimensional! subsystem. The ground state
the total system~one-dimensional electrons and thre
dimensional elastic environment! will correspond to a mini-
mum value of the total energy.

Figure 1 shows the ground state energy of the o
dimensional subsystem of strongly correlated electrons
the elastic subsystem of the ligands~in a three-dimensiona
crystal lattice! as a function of the filling of the band (N/Na)
and the displacementd, which determines the magnetic an
scalar anisotropy parameter of the electron–electron inte
tion in the one-dimensional electron subsystem. We see
at all the reduced occupations of the electron band~we are
actually talking about the occupation of the Fermi sea of
pairs, since in zero magnetic field there is no Fermi sea of
unbound electronic excitations! there is a minimum of the
total energy of the ground state as a function of the distort
of the ligands~in other words, as a function of the anisotrop
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parameter of the electron–electron interaction!. The value of
the parameterd corresponding to the minimum energy tur
out to be nonzero. This means that in the ground state
one-dimensional system of correlated electrons it is ene
favorable for anisotropy of the electron–electron interact
to arise. We note that this anisotropy is manifested in b
the magnetic and scalar~charge! interactions of the electron
found at neighboring sites of the one-dimensional lattice

As an equivalent to the dependence of the energy of
system on the occupation of the band of low-lying electro
excitations, it is convenient to consider the dependence
the effect under discussion on the parameterm, which can
play the role of the chemical potential, or on the volta
~scalar potential! applied to the electron subsystem. Figure
shows the ground state energy of the system as a functio
the displacementd of the nonmagnetic ligand lattice for sev
eral values ofC and m. We see that at large values of th
elastic constant~C>0.48 for m51.2! the ground state en
ergy of the system has a minimum at a nonzero distortion
the lattice of nonmagnetic ions. The extremal value od
corresponding to the minimum of the ground state energy
the total system decreases as the elastic constantC increases,
and at smallC the minimum is not observed~it is shifted to
larger values ofd!. This is natural, since in order to detect th
influence of the anisotropy of the interaction in the electr
subsystems~this anisotropy is often very small!, it is neces-
sary that the elastic displacements be sufficiently large: a
all, the effect is governed by the relativistically small spin
orbit interaction.

Will the stability of the strongly correlated electron su
system against the onset of anisotropy in the electro
electron interaction be affected by an external magn
field? Let us consider the system of integral equations~8! for
the densities of the distributions of the quantum numbers
singlet pairs and the unbound electronic excitations or of
‘‘dual’’ to this system, viz., the system of integral equatio
for the ‘‘dressed’’ energies of these same low-lying exci

FIG. 1. Total energyE of the ground state of the electron~one-dimensional!
and elastic subsystems as a function of the displacementd of the positions of
the ligand ions in the~three-dimensional! crystal lattice and the occupatio
of the electron band.
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tions of the electron subsystem, which have Fermi seas,
states with negative energies:

m1
1

2
H2Q8~v,h/2!

5
1

2p E dLQ8~v2L,h/2!«~L!1e~v !,

2m2Q8~L,h!5
1

2p E dvQ8~L2v,h/2!e~v !

1
1

2p E dzQ8~L2z,h!«~z!1e~L!,

~17!

where e(v) is the ‘‘dressed’’ energy of the unbound ele
tronic excitations~we note that the filling of this Fermi se
also starts from the ends of the interval@2p,p#). It is clear
that in an external magnetic fieldH lower than the critical
field Hc , which is given by

Hc522m12Q8~p,h/2!

1
1

p E dLQ8~p2L,h/2!«~L!, ~18!

FIG. 2. Total energyE of the ground state of the electron and elastic su
systems as a function of the displacementd of the position of the ligand ions
in the ~three-dimensional! crystal lattice. The electron chemical potenti
m51.1 ~a! and 1.2~b!.
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the energies of the unbound electronic excitations have a
in the spectrum~in other words,Hc is the minimum externa
magnetic field that must be applied to the system in orde
‘‘break’’ a singlet pair!. This means that at values of th
external magnetic fieldH<Hc the spontaneous onset of a
isotropy of the electron–electron interaction will be the sa
as in the absence of field. Figure 3 shows the dependenc
the critical field Hc on the chemical potentialm and the
anisotropy parameterd of the electron–electron interaction

If the external magnetic field exceeds a valueHs , which
is given by the equation

Hs522m12Q8~p,h/2!, ~19!

then the magnetization of the system of electrons will ta
on its maximum value~the saturation field, the field of th
transition to a ferromagnetic, ‘‘spin-polarized’’ state
which there are no pairs, while the ‘‘dressed’’ energy spec
of the unbound electronic excitations become activation
i.e., a gap appears!. At this value of the magnetic field, as a
Hc , a second-order phase transition to the ground state
curs in the system. Thus the electron subsystem behaves
a type-II superconductor in an external field: forH,Hc only
singlet pairs exist in the system, while forHc,H,Hs there
are both pairs and unbound electronic excitations
reminiscent of the Meissner effect. We note that in a o
dimensional system, of course, there is no real supercond
ing ordering ~nondiagonal long-range order!, but in the
ground state the correlation functions of the singlet pa
and/or unbound electronic excitations decay most slowly
a power-law manner, in the first/second phase. We note
for H.Hs one can easily find the ground state energy
depends~trivially ! on the anisotropy parameterd of the
electron–electron interaction:E5Cd2/2. This means that in
external magnetic fields higher than the critical field of t
transition to the ‘‘spin-polarized’’ phase, there is no spon
neous onset of anisotropy of the electron–electron inte
tion. In the intermediate phaseHc,H,Hs the ground state
energy of the anisotropic supersymmetrict –J chain of elec-
trons is determined by the occupations of the two Fe

FIG. 3. Dependence of the critical magnetic fieldHc on the chemical
potentialm and anisotropy parameterd.
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seas—for the singlet pairs and for the unbound electro
excitations. The spontaneous onset of anisotropy of
electron–electron interaction does occur, but for a quant
tive calculation it is necessary to find a joint solution of t
system of two integral equations~17!.

One can estimate the influence of a small nonzero te
perature on the effect under study~for this we shall assume
that the temperature is so low that the elastic subsystem
found in the ground state, i.e., we will not take into accou
the thermal motion of the three-dimensional lattice!. At low
temperatures one can use the well-known Sommerfeld
pansion~for simplicity we shall study only the caseH,Hc!.
Then for the free energy we have the expression

F5E2Na

pT2

6vF
, ~20!

wherevF is the Fermi velocity of the singlet pairs, which
given by

vF5
«8~L!

2ps~L!
U

L5L0

, ~21!

and the ‘‘dressed’’ energy and the density of singlet pairs
found from Eqs.~16! and~12!, respectively. Figure 4 show
the dependence of the total free energy of the electronic
elastic subsystems on the temperatureT and the parameterd
that determines the anisotropy of the electron–electron in
action. We see that the inclusion of a small nonzero temp
ture ~in comparison with the characteristic Fermi energy
the low-lying electronic excitations—pairs! does not cause
the effect to vanish, i.e., even at nonzero~but quite low!
temperatures an anisotropy of the electron–electron inte
tion will spontaneously arise in the system. As the tempe
ture is raised, however, the value ofd at the minimum of the
energy is shifted to lower values.

FIG. 4. Total free energyF of the one-dimensional electron and elast
subsystems as a function of the displacementd of the position of the ligand
ions and temperature, at an electron chemical potentialm51.34.
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CONCLUSION

We have investigated the influence of uniform displa
ments of the lattice of a three-dimensional crystal in wh
the motion and interaction of the electrons along one dir
tion are much larger than along the other crystallograp
directions. We have shown that distortion alters the crys
line electric fields of the ligands. This, in turn, leads to
change in the influence of the crystalline fields on the orb
moments of the correlated electrons in the selected ch
which gives rise to spontaneous anisotropy of the sc
~charge! electron–electron interaction and~owing to the
presence of spin–orbit coupling! to magnetic anisotropy in
the presence of an interaction of the electron spins. Thus
have predicted an effect wherein charge and magnetic an
ropy arises spontaneously in one-dimensional chains
strongly correlated electrons in three-dimensional crys
with a quasi-one-dimensional character of the electro
properties. We have investigated the influence of variation
the external magnetic field and also the inclusion of a sm
~in comparison with the characteristic energies of the o
dimensional electrons! nonzero temperature on the change
occupation of the electron bands~depending on the applie
electrostatic voltage!. We note that this effect has an inte
esting feature in comparison with the previously studied
set of spontaneous magnetic anisotropy in a quasi-o
dimensional Heisenberg antiferromagnetic insulator~in
which all the electrons are localized!. Specifically, a sponta
neous magnetic anisotropy of the easy plane type arise
the spin chain, whereas in a strongly correlated elect
chain a magnetic anisotropy also arises in addition to
charge anisotropy, but here it is of the easy axis type.
reason for this difference is the existence of Fermi seas
~gapless! singlet pairs in the correlated electron chain, i.
for purely charge excitations that do not affect the total s
of the system. In a spin chain, on the other hand, where
the electrons are localized, there is no such charge mode
therefore magnetic anisotropy of the easy axis type lead
the onset of a gap in the spectrum of spin excitations. T
existence of such a gap prevents the weak influence of
crystalline field of the ligands from causing instability of th
-
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type discussed here. We note that the effect investigate
this paper is similar in nature to the well-known cooperat
Jahn–Teller effect.
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Phys.~France! 35, 371 ~1974!; Y. Lépine and A. Caille´, J. Chem. Phys.
67, 5598~1977!; C. Tannous and A. Caille´, Can. J. Phys.57, 508 ~1979!;
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Thermodynamics of an atomic monolayer with diatomic substitutional impurities
M. I. Poltavskaya and K. A. Chishko*
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of Ukraine, Lenin prospect, 47, 61164 Kharkov, Ukraine
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The low-temperature thermodynamics of a two-dimensional monatomic crystalline matrix
containing a diatomic molecular impurity is investigated theoretically. Typical examples of this
type of system are monatomic layers of rare gases~Ne, Ar, Kr, Xe! with included molecules
of the type N2 and O2. Another example is a hydrogen film, which is a mixture of ortho and para
components. Expressions are obtained which describe the crystalline field for a diatomic
impurity with allowance for both the contribution of the atoms of the 2D matrix and the field
created by the atoms of the substrate. Thus the effective crystalline field is a complicated
function of the orientation of the diatomic rotator. In particular, the equilibrium orientation of the
rotator depends substantially on the relative amplitudes of the crystalline fields of the matrix
and substrate. For example, if the attraction exerted by the substrate is dominant, then the rotator in
the equilibrium state will be oriented perpendicular to the layer, and in the opposite case the
equilibrium orientation of the rotator will correspond to one of its positions in the plane of the
layer. In these two cases the spectra of rotational states of the diatomic impurities and,
hence, the thermodynamic characteristics of the system are substantially different. The temperature
dependence of the impurity specific heat of the system exhibits a low-temperature peak, the
position of which corresponds to temperaturesT;B/2 ~B is the rotational constant of the impurity!
for rotators lying in the plane of the layer, andT;AKB ~K is the amplitude of the
crystalline field! for rotators perpendicular to the layer. Such behavior of the system is in
principle amenable to experimental observation. ©2000 American Institute of Physics.
@S1063-777X~00!01104-X#
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1. INTRODUCTION

Research on molecular cryocrystals and solid soluti
based on them is an extremely vast area of present-day s
state physics. These systems are of interest first because
properties are in most cases reflect manifestations of var
quantum effects which are not amenable to observation
classical crystals at high temperatures. In particular, the t
modynamics of molecular cryocrystals~solidified rare gases
O2, N2, CH4, etc. and their solutions! are entirely determined
by the character of the short-range van der Waals force
intermolecular coupling. Thus analysis of the features in
thermodynamic functions of these systems will make it p
sible to draw definite conclusions as to the nature of
intermolecular interaction in them.

The thermodynamic properties of three-dimensional c
ocrystals are at present the most thoroughly investigate1,2

The thermodynamics of two-dimensional~2D! systems of
this kind remain little studied as yet. The reason for this l
in the difficulties of doing suitable experiments on 2
samples. What has been well studied for 2D crystals are
structural characteristics, the phase diagrams, and certai
tails of the melting and crystallization processes.3–6 In the
last few years some new experimental capabilities for stu
ing 2D films at ultralow temperatures have appeared,
they have been applied almost exclusively to3He layers on
2891063-777X/2000/26(4)/7/$20.00
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graphite7–11 and to combined systems consisting of seve
layers of hydrogen and helium.12 The study of the thermo-
dynamics of two-dimensional layers based on other r
gases~in particular, in the presence of molecular impuriti
in them! is clearly of interest also.

In this paper we wish to call attention to certain intere
ing features in the low-temperature specific heat of 2D m
atomic matrices containing diatomic impurities. We obta
expressions describing the crystalline field for a diatom
impurity with allowance for both the contribution of the a
oms of the 2D matrix and the field produced by atoms of
substrate. The effective crystalline field is a complicat
function of the orientation of the diatomic rotator. We calc
late the spectra of rotational states of diatomic impurities a
find the specific heat of the system for various relationsh
between the contributions of the substrate and matrix to
total crystalline potential that determines the spectrum of
purity excitations.

2. CRYSTALLINE POTENTIAL FOR A DIATOMIC IMPURITY
IN A MONATOMIC LAYER

Let us consider a monatomic layer of rare gas ato
with molecules of a homonuclear diatomic substitutional i
purity ~symmetric rotator!. The atoms in the layer form a
close-packed planar structure in which each atom of the
© 2000 American Institute of Physics
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trix is surrounded by six neighbors, located a distancea from
one another. We restrict discussion to the case of rather w
solutions, when the impurities in the layer are surround
only by host atoms of the matrix and the inter-impurity i
teraction can be neglected. Here, however, it is necessa
take into account the interaction of the impurity with th
substrate, which we take to be a close-packed system o
oms also lying a distancea apart, but the potential energy o
their interaction with the impurity is different from that fo
the interaction of the impurity with the atoms of the matr
The distance between layer and substrate we take to
c/25ba, where the parameterb is equal toA2/3 in the case
of an ideal hcp structure, but here we will not impose a
special limitations onb. We choose the coordinate syste
in such a way that the layer of rare gas atoms lies in
z50 plane, and the rotator lies at the origin of th
coordinate system. In this case the nearest neighbor of
diatomic rotator has the coordinates6a(1,0,0),
6a(6(1/2), (A3/2,0) ~neighbors in the layer! and
a(6(1/2), (1/2A3) ,2b), a(0,2 (1/A3) ,2b) ~neighbors
in the substrate!. We note that thez axis is a threefold sym-
metry axis in the system.

The scheme of the calculation must include a determ
tion of the crystalline potential for a substitutional impuri
and a solution of the Schro¨dinger equation with this potentia
for finding the spectrum of rotational states of the defect. T
total crystalline field produced by the atoms surrounding
impurity is written in the form

U~r !5 (
a51,2

Ua , ~1!

whereU1 is the field of the neighboring atoms in the laye
andU2 is the field of the substrate atoms. In what follows w
shall use the subscripts 1 and 2 to denote quantities per
ing to the atoms of the layer and substrate, respectively.

Since our analysis pertains to molecular systems,
limit consideration to power-law potentials~specifically, the
Lennard-Jones potential!. This restriction is not of funda-
mental importance, and the calculations below could also
done for exponential potentials of the Buckingham type.
the nearest-neighbor approximation the crystalline poten
for an impurity can be obtained by expanding the sum of
atom–atom potentials of the environment in powers of
parameterj5r /a, wherer is the radius vector of an atom o
the matrix~or of the substrate!, drawn from the site at which
the impurity is located,

Ua54«a@sa
12u12

~a!~r !2sa
6u6

~a!~r !#,

where«a and sa are the parameters of the Lennard-Jon
potential,13 and theu2n

(a)(r ) (2n56,12) have the form

u2n
~a!~r !5(

i 51

za

ur2Ri u22n5(
i 51

za

Ri
22n~11j i

222j i cosx i !
2n,

~2!

z1 and z2 are the numbers of neighbors in the layer a
substrate, respectively, the summation in~2! is over the co-
ordinatesRi of the neighbors,x i is the angle between th
radius vectorsr andRi . Expression~2! can be transformed
to14
ak
d

to

at-

be

y

e
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-
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n

in-
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~11j i
222j i cosx i !

2n5 (
m50

`

Fm
~n!~j i !cosm~x i !, ~3!

where

Fm
~n!~j!5

~2j!m~n1m21!!

m! ~n21!! ~11j2!n1m
.

A calculation of the functionFm
(n)(j) is given in the Appen-

dix.
Using expressions~1! and ~3! and doing the summation

over impurity atoms, we obtain the crystalline potential fo
homonuclear diatomic impurity, in a spherical coordina
system in which the angleu is measured from the axis pe
pendicular to the layer and the anglew from the center of one
of the atoms of the layer:

U5
1

a2n
(

m50

`

Fm
~n!~j1!Fm

~1!~u,w!

1S b

aD ~2n!

(
m50

`

Fm
~n!~j2!Fm

~2!~u,w!, ~4!

where

j15d/a, j25bd/a, b5~1/31b2!21/2;

2d is the internuclear distance in the molecule, and

Fm
~a!~u,w!5(

i 51

za

cosm~x i !.

Let us write out the first few functionsFm
(1) , Fm

(2) :

F0
~1!56; F2

~1!53 sin2 u; F4
~1!5

9

4
sin4 u;

F6
~1!5

3

16
@101cos 6w#sin4 u.

All the functionsFm
(1) with odd m are equal to zero. Con

tinuing, we have

F0
~2!53; F1

~2!523bb cosu;

F2
~2!5b2F3b2 cos2 u1

1

2
sin2 uG ;

F3
~2!523b3Fb3 cos3 u1

1

2
b cosu sin2 u

2
1

12)
sin3 u sin 3wG ;

F4
~2!5b4F3b4 cos4 u13b2 sin2 u cos2 u

2
b

)
cosu sin3 u sinbw1

1

8
sin4 uG ;
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F5
~2!525b5F3

5
b5 cos5 u1b3 cos3 u sin2 u

2
1

2)
b2 cos2 u sin3 u sin 3w1

1

8
b cosu sin4 u

2
1

48)
sin5 u sin 3wG ;

F6
~2!5b6F3b6 cos6 u1

15

2
b4 cos4 u sin2 u

2
5

)
b3 cos3 u sin3 u sin 3w1

15

8
b2 cos2 u sin4 u

2
5

8)
b sin5 u cosu sin 3w

1sin6 uS 1

144
sin2 3w1

1

32D G .

Up to terms of order (d/a)6 the desired potential has th
form

U~u,w!5K1 sin2 u1K2 sin2 u~11v1 sin2 u

1v2 sinu cosu sin 3w!

1K3 sin2 u@11v3 sin2 u1~w1

1w2 sin2 u!sinu cosu sin 3w!

1~w3 cos 6w1w4!sin4 u]. ~5!

Here we have introduced the following notation:

K156V2
~1!2b2~6b221!V2

~2! ;

K2526b4~2b42b2!V4
~2! ;

K3526b6S 3b62
5

2
b4DV6

~2! ;

v15
1

K2
F9

2
V4

~1!1b4S 6b426b21
1

4DV4
~2!G ;

v252
2b4b

&K2

V4
~2! ;

v35
6b6

K3
S 3b625b41

5

8
b2DV6

~2! ;

w152
10b6b3

)K3

V6
~2! ;

w25
5b6

)K3

~2b32b/4!V6
~2! ;

w35
1

K3
S 3

8
V6

~1!2
b6

144
V6

~2!D ;

w45
1

K3
F15

4
V6

~1!2b6S 6b6215b41
15

4
b22

5

72DV6
~2!G ,
where

Vi
~1!54«1F S s1

a D 12

Fi
~6!~j1!2S s1

a D 6

Fi
~3!~j1!G ; ~6!

Vi
~2!54«2F S s2b

a D 12

Fi
~6!~j2!2S s2b

a D 6

Fi
~3!~j2!G ,

~7!

and the indexi is the order of the corresponding term in th
expansion in powers ofd/a.

Expression~5! is an expansion of the crystalline pote
tial in powers of the parameterd/a. The first term in~5! is of
order (d/a)2 and gives the main contribution to the potentia
the second and third terms are of order (d/a)4 and (d/a)6,
respectively. The absence of odd-power terms in the exp
sion is due to the fact that we are considering only hom
nuclear impurities, for which the crystalline field has a cen
of inversion and, consequently, an interchange of the ato
in the molecular rotator~replacingd by 2d! must not alter
the form of the expression for the potential. Dependence
the anglew arises in the second and third terms in~5!; the
terms containing sin 3w are due to the influence of the sub
strate, while the presence of terms containing cos 6w is due
to both the substrate and the contribution of neighbors in
layer. We note that in writing the potential for an impurity
a three-dimensional crystal,14 where there are identical atom
situated symmetrically in the upper and lower layers,
terms of fourth and sixth orders of smallness, which are p
portional to sin 3w, vanish, and dependence onw remains
only in the sixth-order term, which contains a cofact
cos 6w.

The signs of the individual terms in the potential~5! are
determined by the relative modulus and sign of the para
eters~6! and~7! in terms of which the coefficientsK, v, and
w are expressed. The parameters~6! and ~7! depend in a
complicated way on both the parameterss and « of the
Lennard-Jones potential and on the lattice parametersa and
b. These last, in turn, depend on the distribution of the p
tential minima on the substrate, so that ultimately their v
ues can differ appreciably from those for a massive crys
Thus the amplitude and sign of the crystalline fields in wh
the diatomic rotator moves can be different depending on
particular structure of the system.

Finally, we make note of the fact that the potential in th
Section has been written out to terms of order (d/a)6. This
was done for a reason. Even though our main task in the n
Section will be to calculate the rotational spectrum of t
impurity to leading order ind/a, the terms}(d/a)6 in the
potential~5! will be needed for making estimates pertainin
to the two-dimensional plane rotator regime~see Sec. 3!. In
addition, the given representation will enable us to illustr
all the symmetry-related features of the potential structur

3. SPECTRUM OF ROTATIONAL STATES OF AN IMPURITY
MOLECULE

The rotational states of an impurity molecule are fou
as the solutions of the Schro¨dinger equation with the poten
tial ~5!:
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F2Du,w1
1

B
U~u,w!Gc lm~u,w!5« lmc lm~u,w!, ~8!

whereDu,w is the angular part of the Laplacian operator,B
5\2/2I is the rotational constant,I is the moment of inertia
of the molecule,« lm5Elm /B, Elm is the energy of the rota
tional state, which is classified by the quantum numberl
andm ~in the case of a free rotator these numbers corresp
to the values of the square andz projection of the total an-
gular momentum of the impurity molecule!. Since the poten-
tial ~5! has a rather complicated form, a solution of equat
~8! can be obtained in the general case only by numer
methods.

Let us begin by discussing the construction of cert
approximate solutions which will enable us to describe
properties of the system of interest analytically and to elu
date its main behavioral features. We will thereby ge
qualitative physical picture of the phenomenon, the detail
which can be filled in later as necessary.

For constructing approximate solutions of Eq.~8! it is
natural to limit the number of terms in the crystalline pote
tial ~5!. As the main approximation let us consider the so
tion obtained with the first term of potential~5!:

U~u!5K sin2 u, ~9!

whereK.K1 is the crystalline-field constant. In accordan
with the remarks made at the end of the previous Section
cannot draw any preliminary conclusions as to the sign oK
from general arguments. For this reason we need to cons
both casesK.0 andK,0. It is perfectly obvious that thes
cases correspond to two physically different situations.
K.0 the rotator in its equilibrium position is oriented pe
pendicular to the layer. In this case the weakly excited sta
of the impurity are oscillations in an isotropic two
dimensional parabolic well~librational motion!. For K,0
the impurity in its equilibrium position lies in the plane o
the layer, and its behavior at low temperatures should
analogous to the motion of a plane rotator whose ang
momentum precesses around thez axis. Thus we can expec
that the thermodynamic characteristics of the impurity s
system in the low-temperature limit will be substantially d
ferent in the two cases.

However, there is an important circumstance that m
be considered. Whereas in the caseK.0 ~oscillator! the
properties of the system are determined solely by the c
acter of the dependence of the potential on the angleu, while
the dependence on the anglew is unimportant, in the case
K,0 ~plane rotator! the situation is extremely nontrivial an
requires a special allowance for the dependence of the
tential onw. The problems arising in this connection will b
discussed separately at the end of this Section.

Thus we shall solve the Schro¨dinger equation

F2Du,w1
K

B
sin2 uGC lm~u,w!5« lmC lm~u,w!. ~10!

Since the potential in Eq.~10! does not depend onw, we
shall seek the solution in the form

C lm5C lm~u!eimw,
nd

n
al

n
e
i-
a
f

-
-

e

er

r

es

e
ar

-

st

r-

o-

wherem is a quantum number having the usual meaning
the projection of the angular momentum on thez axis. The
function C lm(u) satisfies the equation

2
d

dx
~12x2!

dC lm

dx
1

m2

12x2

3C lm6p2~12x2!C lm5« lmC lm , ~11!

wherex5cosu, p5AuKu/B, and the sign in front ofp2 in
~11! is the same as the sign ofK. The eigenfunctions of
equation~11! with the plus or minus sign are oblate or pr
late spheroidal harmonics, respectively.15,16 Since the poten-
tial ~9! is an even function, the solutions of equation~11! are
classified according to parity, i.e., even and odd states co
spond to even and odd values of the parameterl 2m.15 The
ground state«00 is nondegenerate, as are all states withm
50, while all the remaining states withl>1 are twofold
degenerate (m< l ).

In the general case the solutions of equation~11! are
represented in the form of expansions in associated Lege
polynomials.15 In many physically interesting cases, how
ever, the properties of the systems are such that the rotati
constantB of the impurity is rather small and the crystallin
field is appreciable, so that the parameteruKu/B@1 ~as an
example we cite solutions of the type Ar–N2, for which a
typical value isK/B;20!.2 In such a case the spectrum ca
be obtained analytically with the use of asympto
methods.15 Since, as we shall see, the correspond
asymptotic expressions provide a rather accurate reflectio
the position of the lowest levels in the system, there is rea
to assume that they can be used to obtain an entirely
equate description of the thermodynamics of the impu
subsystem at low temperatures. For this reason we shal
strict our investigation in this paper to systems for whi
p2@1.

The subsequent analysis must be done separately fo
cases of positive and negative values of the crystalline-fi
constantK.

Let us start with the caseK.0, for which we use the
known asymptotic representation of the spectrum:15

« lm52ps2
1

2
~s2112m2!, ~12!

wheres52n1m11, and

n5H ~ l 2m!/2 l 2m even,

~ l 2m21!/2 l 2m odd.
~13!

In writing Eq. ~12! we have kept only the two leadin
terms of the expansion, dropping terms;1/p and higher. In
addition, we have neglected the exponentially small term
@;p211 exp(22p)# of the asymptotic series. It should b
stressed that the expansion parameter here is actually
ratio s/p ~Refs. 15 and 16!, so that representation~12! is
valid, essentially, for the low-lying levels withl<3. Since
we are interested primarily in the low-temperature behav
of the system, only these levels will be taken into acco
below. In the analysis below the classification of states
cording to parity will also be important, since, depending
the isotopic modification, the impurity molecule can ha
even or odd total spin, and this, in turn, will affect the for
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of the partition function of the system.17 An example of the
different thermodynamic behavior of cryosolutions for d
ferent isotopes of an impurity is provided by the syste
14N2–Ar~Kr! and 15N2–Ar~Kr!.18 Thus we separate the sy
tems of even levels

«00
g 52p21; «11

g 54p22,

«20
g 56p25; «22

g 56p23 ~14!

and odd levels

«10
u 52p21; «21

u 54p22,

«30
u 56p25; «32

u 56p23 ~15!

which have different relative values of the degeneracygg

andgu . As we see from Eq.~12!, for p→` the impurity will
behave as a harmonic oscillator, as we have said.

In the caseK,0 the asymptotic spectrum~here we
again drop terms of order 1/p and higher! has the form15

« lm52p21p2
3

4
1S 2p2

1

2D ~ l 2m!2
1

2
~ l 2m!21m2.

~16!

Here the small parameter of the expansion is actually
ratio @2(l 2m)11#/p, so that in this case the analysis
restricted to levels withl<3. Thus we have the even leve

«00
g 52p21p23/4; «11

g 52p21p11/4;

«22
g 52p21p113/4 ~17!

and odd levels

«10
u 52p213p27/4; «21

u 52p213p23/4. ~18!

As expected, forp→` the spectrum~16! agrees, to within a
constant, with the spectrum of the free plane rotator.19

Notice that the caseK,0 requires the more-detaile
analysis. This case corresponds to the motion of the rot
about the equatorial planeu5p/2 through the potential relie
formed by terms and cofactors that depend onu ~these form
the ‘‘groove’’ in which the ‘‘dumbbell,’’ rotating with re-
spect tow, executes librations with respect tou!. On the
other hand, in its displacement along the ‘‘groove’’ the im
purity moves in a field that depends onw. This dependence is
determined by the terms which were previously dropp
from the expansion of the potential~5!. These terms can turn
out to be important in the case when they give rise to lev
in the system that fall within the energy interval correspon
ing to the lower levels for the motion with respect tou @see
Eqs.~16!–~18!# and thereby~together with the spectrum~16!
given above! determine the low-temperature thermodyna
ics of the system.

Let us now give a few estimates relevant to the analy
of the situation. We shall assume that the motion occurs
narrow enough interval of anglesu5p/21g (g!1) that
one can use only the terms of zero order ing for its descrip-
tion. Thus the motion is governed by the Schro¨dinger equa-
tion

F2
]2

]g2
2

]2

]w2
1s0 cos 6wGC~g,w!5«C~g,w!, ~19!

in which
s

e

or

d

ls
-

-

is
a

s05K3w3 /B, ~20!

and the potential depends only on the single variablew. Here
the variable g formally belongs to the interval
@2p/2;p/2#. The variables in Eq.~19! separate; after the
g-dependent part is separated off in the obvious way,
obtain a Mathieu equation for determining the motion alo
w:

2
]2C~w!

]w2
1~n22«1s0 cos 6w!c~w!50,

wheren is a separation constant (n50,1,...). Thefirst five
levels have the values

~«0
g2n2!/952q2/2;~«1

g2n2!/9511q2q2/8;

~«2
g2n2!/95415q2/12 ~21!

~even levels! and

~«1
u2n2!/9512q2q2/8;

~«2
u2n2!/9542q2/12 ~22!

~odd levels!, whereq5s0/18. All the levels withnÞ0 are
twofold degenerate.

We call attention to the fact thatq!1, as numerical es-
timates for specific systems show~e.g., for an N2 impurity in
argon one hasq;1023!. Thus the terms in~21! and~22! that
depend onq can be omitted for making estimates. With th
accuracy we obtain a spectrum in which the lowest-lyi
levels have the form«;n2. This result is due specifically to
the bounded motion with respect to the angleu and agrees
with ~17! and~18! to good enough accuracy. For this reas
it is clear that forK,0 the position of the lowest levels in
the spectrum and, hence, the low-temperature thermodyn
ics will be determined primarily by the dependence of t
potential on the variableu. This, in particular, means that, t
the asymptotic accuracy adopted here, we can use the s
trum described by expressions~17! and ~18!.

4. SPECIFIC HEAT OF THE IMPURITY SUBSYSTEM

The partition function and thermodynamic potentials
the system can be obtained in the standard way with the
of the excitation spectra given in the previous Section. T
partition function of a diatomic impurity can be written17

Z5ggZg1guZu , ~23!

whereZg and Zu are the contributions of the even and od
states, respectively. Since we are primarily interested her
a qualitative picture of the phenomena, we limit discuss
to the case when the spin of the nuclei of the rotator is eq
to unity. In this casegg52/3 andgu51/3.

The internal energy of the impurity subsystem per m
ecule is given by

E5T2
] ln Z

]T
.

Accordingly, the impurity specific heat per molecule i

Cv5S ]E

]TD
v

.
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Let us first discuss the analytical asymptotic expressio
For the caseK.0 we get

Cv5Q22F2~2p21!2 expS 2
2p21

Q D
1~4p24!2 expS 2

4p24

Q D G , ~24!

where Q5T/B is the dimensionless temperature. Formu
~24! represents the first two terms in the expansion of
specific heat in powers of the small parameter exp(22p/Q)
!1. In the caseK,0 the specific heat has the form

Cv5Z̃21Q22H 2ggFexpS 2
1

Q D116 expS 2
4

Q D G
1guF ~2p21!2 expS 2

2p21

Q D
18p2 expS 2

2p

Q D G J 2S E

BQ D 2

, ~25!

where

Z̃5ggH 112FexpS 2
1

Q D1expS 2
4

Q D G J
1guFexpS 2

2p21

Q D12 expS 2
2p

Q D G ;
E

B
5Z̃21H 2ggFexpS 2

1

Q D14 expS 2
4

Q D G
1guF ~2p21!expS 2

2p21

Q D14p expS 2
2p

Q D G J .

Figure 1a shows the temperature dependence of the
purity specific heat for the caseK.0 ~librational regime! for
three values of the crystalline-field amplitude,p2510, 20,
30. The maximum of the specific heat is found at a tempe
ture T;B(AK/B21/2). As the intensity of the crystalline
field is increased~with increasingK! the maximum of the
specific heat is shifted to higher temperatures and decre
slightly in amplitude. AsT→` the purely oscillator specific
heat should approach the equipartition law (Cv→2), but at
high temperatures the distribution from the second term
~12! comes into play, and the specific heat curve turns do
ward, approaching the dependence it would have in the c
of a hindered three-dimensional rotator~the energy become
comparable to the well depth!. However, since we are inter
ested in the low-temperature features of the specific heat
shall not discuss the high-temperature part of the calcula
function.

Figure 1b shows the temperature dependence of the
purity specific heat for the caseK,0 ~hindered plane rota
tor!, which has a pronounced low-temperature peak aT
;B/2, the position of which does not depend on the am
tude of the crystalline field. We should point out that t
calculation, which is based on taking only the lowest seve
levels into account, is valid for temperatures that are not
high. Nevertheless, in the region of greatest interest to
s.

e

-

a-

es

n
-
se

e
d

-

i-

al
o
s,

i.e., around the low-temperature peak of the specific heat,
results obtained with the use of the analytical asympto
expressions give a qualitatively correct physical picture
the phenomenon under discussion.

The foregoing analysis shows that the subsystem of
atomic molecular rotators in a two-dimensional monatom
cryomatrix exhibits pronounced anomalies of the spec
heat in the low-temperature region. The position of the lo
temperature peak of the specific heat and the dependen
this peak on the value of the crystalline-field constant
different for different relationships between the interacti
parameters of the impurity with the substrate and with h
atoms of the film. Thus one expects that the experime
observation and study of the effects described above
yield useful information about the details of this interactio

APPENDIX 1

The expression (11j222j cosx)2n is the generating
function for the ultraspherical polynomials@the Gegenbaue
polynomialsCn

(n)(x)]: 16

~11j222j cosx!2n5 (
n50

`

Cn
~n!~cosx!jn, ~A1!

FIG. 1. Temperature dependence of the impurity specific heat for the c
K.0 ~a! andK,0 ~b! for various values of the crystalline-field amplitud
p2: 10 ~1!, 20 ~2!, and 30~3!. The dimensionless specific heat is express
per impurity molecule.
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where

Cn
~n!~x!5

1

G~n! (
m50

@n/2#

~21!m
G~n1n2m!

m! ~n22m!!
~2x!n22m.

~A2!

The square brackets in the upper limit of the summat
represent the operation of taking the integer part of the n
ber. For convenience in the calculations we shall hencef
assume thatn is an integer.

If n52N, we transform the polynomialCn
(n)(x) to

C2N
~n!~x!5

1

G~n! (
m50

N

~21!m
G~n12N2m!

m! ~2~N2m!!!
~2x!2~N2m!,

and make the change of variablep5N2m:

C2N
~n!5

~21!N

G~n! (
p50

N

~21!p
G~n1N1p!

~N2p!! ~2p!!
~2x!2p. ~A3!

Similarly, for n52N11 we obtain

C2N11
~n! 5

~21!N

G~n! (
p50

N

~21!p
G~n1N1p11!

~N2p!! ~2p11!!
~2x!2p11.

~A4!

We substitute expressions~A3! and ~A4! into ~A1!:

~11j222j cosx!2n

5 (
n50

`

@C2n
~n!~cosx!j2n1C2n11

~n! ~cosx!j2n11#

5 (
n50

` F j2n
~21!n

G~n! (
p50

n

~21!p
G~n1n1p!

~n2p!! ~2p!!
~2 cosx!2p

1j2n11
~21!n

G~n! (
p50

n

~21!p
G~n1n1p11!

~n2p!! ~2p11!!

3~2 cosx!2p11G .

In the last expression we interchange the order of
summation and make the change of variablem5n2p. As a
result, we obtain

~11j222j cosx!2n5 (
p50

`

Fp
~n!~j!~cosx!p, ~A5!

where

Fp
~n!~j!5

~2j!p

G~n!p! (
m50

`

~21!m
G~n1m1p!

m!
j2m. ~A6!

In order to obtain a simpler expression for the functionFp
n ,

we consider the following sum:

(
m50

`

~21!m
G~K1m!

m!
zm

5S ]

]zD
K21

zK21 (
m50

`

~21!mzm5S ]

]zD
K21 zK21

z11

5 (
j 50

K21 S K21
j D S ]

]zD
j 1

z11 S ]

]zD
K212 j

zK21
n
-

th

e

5
~K21!!

~z11!K (
j 50

K21 S K21
j D ~21! j~z11!K212 j zj

5
G~K !

~z11!K .

Thus

(
m50

`

~21!m
G~K1m!

m!
zm5

G~K !

~z11!K
, ~A7!

where ( j
i ) is the binomial coefficient andG(n) is the gamma

function. We now substitute~A7! into formula ~A6! and fi-
nally obtain

Fp
~n!~j!5

G~n1p!

G~n!G~p11!

~2j!p

~11j2!n1p

5
~n1p21!!

~n21!! p!

~2j!p

~11j2!n1p . ~A8!
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Powder x-ray and neutron diffraction studies of the crystalline structure, lattice parameters, and
thermal expansion coefficients of sulfur hexafluoride SF6 are performed in the temperature
range 1.64–110 K. It is shown that the low-temperature phase~at T,94.3 K! is monoclinic, space
groupC2/m(C2k

3 ), with Z56, in which 1/3 of the SF6 molecules occupy the positions of
higher symmetry (2/m) and 2/3 of the molecules the lower one~m!. As follows from the analysis
of the structural results obtained, the availability of two types of molecular local symmetry
positions is responsible for the anisotropic character of molecular rotation and the presence of
features on the temperature dependences of the structural and thermodynamic properties of
SF6 crystals in the low-temperature phase, especially nearTc of the orientational phase transition.
A detailed comparison the present results with the known data in the literature is carried
out. © 2000 American Institute of Physics.@S1063-777X~00!01204-4#
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INTRODUCTION

Sulfur hexafluoride SF6 crystallizes into a cubic bcc lat
tice of space symmetryIm3m(Oh

9) at 222.4 K. As the tem-
perature is decreased, there occurs a polymorphic tran
mation at 94.5 K which results in further orientation
ordering of the molecules and a decrease of the crystal s
metry. The orientational structure of the high-temperat
phase ~b phase! has been studied by x-ray,1,2 neutron
diffraction,3 and electron diffraction4–6 techniques. It is
found that in the vicinity of the phase transition the molec
lar S-F bonds are mainly oriented along the$100% direction
of the bcc lattice. But the orientational motion of the mo
ecules in this phase is characterized, particularly at high t
peratures, by high librations~the deviation of the S-F bond
from the direction along the lattice axes may be as much
20°! and fast reorientations, resulting in a high degree
dynamic disorder. As follows from Refs. 7 and 8, the dis
der results from the fundamental difference in the interact
with the first- and second-nearest neighbors, producin
frustration of the orientational structure of the hig
temperature phase of SF6.

9

The data on crystal structure of the low-temperat
phase of SF6 are quite contradictory. The results given
Refs. 3, 4, 6, 10, and 11 even suggest that the orientati
ordering in SF6 occurs by stages and is followed by the fo
mation of an intermediate, partially ordered phase. Acco
ing to the electron diffraction data4,5 obtained on the films,
this phase is a hexagonal one of rhombohedral symm
P3m1(D3d

3 ) at temperatures from 50 to 94 K. AtT,50 K a
slight phase distortion to a base-centered monoclinic lat
was also observed. The intermediate rhombohedral ph
was also obtained by molecular-dynamics~MD!
simulations;10,11 in this structure only 2/3 of the molecule
are orientationally ordered. At the same time, neutron po
2961063-777X/2000/26(4)/9/$20.00
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der experiments7,8,12have demonstrated the existence of on
one low-temperature phase, with a triclinic latticeP1̄(Z
53). The neutron diffraction studies by Cockcroft an
Fitch13 ~1988! favor the view that there is no second pha
transition at T'50 K. According to their data, the low
temperature phase of SF6 has a monoclinic lattice of spac
groupC2/m(C2h

3 ), with six molecules per unit cell.
In that context, we reasoned that a reexamination of

low-temperature experiments using combined hig
resolution neutron and x-ray diffraction studies of SF6 should
be performed to elucidate conclusively the structure of
low-temperature phase and to obtain the data still unav
able, on vibrational anharmonicity and the dynamics of m
lecular rotational motion. The solution of the latter problem
has been made possible by our x-ray dilatometric meas
ments of the linear and volume expansion coefficients wit
the 4.2–94 K temperature range and analysis of the ther
dynamic characteristics.

EXPERIMENTAL PROCEDURE

The neutron powder studies were carried out at
Laboratory Leon Brillouin~LLB !, Saclay~France!, on a G42
high-resolution spectrometer using radiation at waveleng
of 1.979 Å and 2.596 Å~from the ~115! and ~004! planes,
respectively, of the Ge monochromator! at several tempera
tures in the range 1.64–110 K. The angular resolution of
spectrometer was discussed in detail in Ref. 14. The sam
were prepared by condensing 99.99% pure SF6 gas in a
closed vessel at liquid-nitrogen temperature. In this proce
snowlike mass was formed which was then used to fill
cylindrical specimen chamber. Thereafter the chamber
quickly placed into a helium cryostat vessel, which w
mounted on the spectrometer and preliminarily cooled do
to 1.5 K. The minimum temperature of the neutron powd
© 2000 American Institute of Physics
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FIG. 1. Observed, calculated, and difference profiles fora-SF6 neutron powder diffraction pattern at 1.64 K (l52.59 Å). Vertical bars indicate the calculate
reflection positions.
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measurements was 1.64 K. The sample temperature at
point was stabilized with an accuracy of60.01 K. The ex-
periments made it possible to collect and analyze the neu
diffraction data in the reflection angle range from 2Q to 158
(Qmax56.3 Å21) with a 0.02° step size scan.

The x-ray measurements were made at the Institute
Low Temperature Physics and Engineering~Kharkov! on a
special helium cryostat mounted on a standard DRO
x-ray powder diffractometer using Co radiation of a wav
length of 1.79021 Å. The cryostat used enabled variation
the temperature of the samples in the interval 4.2–300 K
stabilization of the temperature values to within60.05 K.
The samples were obtained by condensation of SF6 gas of
purity 99.98% on a flat copper substrate cooled to 125 K
the cryostat. The samples were then annealed at 140
eliminate stresses and to reduce the number of defects. It
found that the condensation of SF6 gas onto a lower-
temperature substrate produces severely stressed sam
the annealing of which is followed by intense recrystalliz
tion and generation of coarse-grained samples, resulting
lower reliability of the polycrystal x-ray data. The reflection
of the analytically pure copper covering the specimen cha
ber substrate were a modified intrinsic reference for precis
estimation of the lattice parameters. The lattice parame
were estimated by the mean-square method at separate
peratures~4.5, 60, and 78 K! with an error of no more than
0.02%. To estimate the parameters, the whole set of exp
mental x-ray reflections~about 40 reflections! observed in
the angular range 2Q520– 91° was used. The temperatu
ch
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dependence of the lattice parameters in the interval betw
the above reference points was investigated by measuring
angular positions of the ten most intense reflections. T
regions of a possible low-temperature phase transi
(40 K,T,60 K) and the well-known high-temperature on
~at 94.3 K! were studied with a temperature step of 1–2
and the intermediate region with a step of 5 K.

RESULTS

Structure. Our neutron and x-ray diffraction data on th
low-temperature phase demonstrate that in the whole t
perature range of 1.64 to 94 K the crystal structure of S6

undergoes no essential modifications which might be att
uted to the second phase transition that, as speculate
Refs. 4 and 5, may occur at;50 K. To obtain more-
convincing evidence, we analyzed the temperature dep
dences of the half-width and intensity of the most pr
nounced x-ray reflections. If a phase transition did occur,
might expect visible anomalies in the temperature dep
dences of the x-ray reflection widths or intensities, but
experiments revealed no anomalies. The additional hi
symmetry phases observed in Refs. 4 and 5 are most li
nonequilibrium and resulted from either the specific featu
of the technique of sample preparation or from size effect
the thin films. The authors of Ref. 9 also consider that m
sive equilibrium samples have no intermediate phase of h
agonal symmetry, and the two stages of orientational ord
ing of molecules observed in Ref. 4 owe their origin to t
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FIG. 2. X-ray powder diffraction pattern ofa-SF6 at 5 and 65 K (l51.79021 Å). Asterisks mark the reference~pure Cu! reflections.
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effect of the surface on the kinetics of phase transitions in
thin films of SF6. Thus our experiments provide support f
the neutron-diffraction13 and calorimetric15 results on the
unique solid-solid phase transition which occurs atT
594.3 K.

Of all the experimental data on the structure of the lo
temperature phase, we consider the results given in Ref
to be the most comprehensive and reliables. The diffrac
pattern observed in our neutron-diffraction experiments
qualitatively similar to that shown in Ref. 13. For purpos
of comparison, Figs. 1 and 2 show a neutron (T51.64 K)
diffraction pattern and x-ray diffraction patterns for two tem
peratures~5 and 65 K!. Since the natures of neutron an
x-ray diffraction scattering by crystals are dissimilar, the l
ter method gives a poorer diffraction pattern. We manage
take only the most pronounced reflections, and a numbe
doublets and multiplets remained unseparated. Therefor
index correctly the x-ray reflections, we invoked a visu
similarity of the diffraction patterns shown in Figs. 1 and
The set of reflections taken is adequately indexed with
assumption of the monoclinic cell proposed in Ref. 13. Us
the neutron-diffraction data for 1.64 K, we obtained the f
lowing lattice parameters:a513.803 Å, b58.139 Å, c
54.749 Å, b8595.586°, which are in good agreeme
within the limits of experimental error with the data of Re
13 for T55 K and our x-ray data forT54.5 K. Recall that
the x-ray lattice parameters were found by averaging o
the whole set of reflections in a diffraction angle range up
2Q591° by the method of least squares and by refining
true reflection angles as compared to the reference. The x
lattice parameters at 4.5 K were as follows:a513.813 Å,
b58.144 Å, c54.752 Å, b8595.59°.
e
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The Rietveld analysis of the collected neutron data p
formed with the use of the FULLPROF code14 substantiated
the suppositions made in Ref. 13, according to which
low-temperature monoclinic phase structure of SF6 belongs
to the symmetry space groupC2m(C2h

3 ) with Z56. At the
first stage of the structural model refinement, isotropic th
mal factors with the coefficientsB equal to 0.94 and 2.21 Å2

for the S and F atoms, respectively, were applied. Th
values were obtained by using the data on the Debye t
perature and on the mean-square displacements of mole
in the high-temperature phase.2 The ultimate Rietveld refine-
ment of the structure at 1.64 K was also made with the
clusion of an absorption correction and anisotropic therm
factors.

Unlike the authors of Ref. 13, we were already with
isotropic approach and obtained successful good agreem
between the calculated and measured neutron scatte
spectra~see Fig. 1! with a reliability structure factor ofR
53.94% at 1.64 K and, besides, with the intramolecu
bonds of the SF6 octahedrons remaining undistorted. Th
molecules held the shape of a regular octahedron with an
bond length of 1.56 Å. Besides, the peak-width parame
U, V, W ~0.1872,20.3105, 0.4807~deg!2, respectively! re-
sulted in no broadening of the calculated reflection profi
compared to the experimental ones. Table I lists the
proved parameters of the SF6 structural model for refined
isotropic thermal factors at temperatures 1.64 and 75 K
3D image of the structure obtained is shown schematicall
Fig. 3. It should be noted that according to the structure d
~Table I! the SF6 molecules occupy two types of positions
the monoclinic lattice, with dramatically different point sym
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metry. As the projection of the structure on the monoclin
plane~a, c! shows~Fig. 4!, one-third of the molecules, with
the S atoms in the~0,0,0! position, have the highest loca
symmetry 2/m possible in the space group under consid
ation. Hence, with increase in temperature the intensity
amplitudes of rotational motion of these molecules is like
to be higher than that for the remaining 2/3 of the molecu
in the position~x,0,z! with a lower local symmetrym. It will
be shown below that the presence of these two types of m
ecules in the structure has the determining influence on
thermodynamic properties of the low-temperature phase
sulfur hexafluoride.

The structural model and the thermal factorsB were re-
fined in the isotropic approximation using neutron diffracti
data for each temperature studied. As a result, informa
was derived which describes the temperature variation of
effective isotropic thermal factorB of the molecules occupy
ing the two different positions. These results are shown
Fig. 5. At low temperatures (T,40 K) the values of the
coefficientsB are very low and practically similar for mol
ecules having different local symmetries. Above 40 K t
one-third of the molecules which are at the sites of the hig

TABLE I. The refined structural parameters from neutron scattering d
for a powder sample of SF6 at 1.64 and 75 K. Space groupC2/m(C2k

3 ),
Z56. x, y, zare the relative coordinates of the atoms.
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point symmetry 2/m have largerB values, and we observe
more intensive growth of these values with temperature
compared to the molecules at the sites of symmetrym. This
behavior ofB(T) indicates that rising temperature leads
considerable enhancement of the rotational motion of
molecules at the 2/m positions. It is possible that the rota
tional motion becomes nearly free in the vicinity ofTc . This
assumption is supported by our analysis of the thermo
namic characteristics of the low-temperature phase.
presence of two types of such molecules in thea-SF6 crys-
tals may be one of the reasons for the appearance of
intermediate metastable phase in specially prepared sam
For example, this may cause the formation of a rhombo
dral symmetry phase in thin SF6 films in the range 50 K-Tc

~Refs. 4 and 5!. Using the data of Ref. 13, we have calculat
the effective values of the isotropicB factor at 5 and 60 K.
Along with the data directly measured at 115 K,13 our calcu-
lated results are systematically higher both in the low- a
high-temperature phases~see Fig. 5!. Also of interest is the
fact that when using the data of Ref. 13, anomalously higB
factors appear even at helium temperatures. These va
correspond to our present results at 40 K. The probable
son for the observed systematic discrepancy ofB(T) may be
the difference in the purity and structural perfection of t
samples used in these two studies.

Lattice parameters. For the purpose of obtaining data o
the thermal expansion ofa-SF6, we measured in detail the
variations with temperature of the angular positions of

FIG. 3. Monoclinic structure~space groupC2/m, Z56! of the low-
temperature phase of SF6.

FIG. 4. Unit cell projection ofa-SF6 on the monoclinic plane~a, c!.
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most intense reflections in the x-ray diffraction experimen
That made it possible to determine reliably the tempera
dependences of the lattice parameters and to estimate
thermal expansion coefficients from them. We found that
x-ray and neutron diffraction data on the lattice parame
agree satisfactorily with each other over the whole tempe
ture existence region of the low-temperature phase and
they also allow us to estimate their consistency with the
sults given in Ref. 13. The temperature variations of
lattice parameters and the monoclinic angle are shown

FIG. 5. Temperature change of the isotropic thermal coefficientB: s, d-the
data for molecules at local symmetry positions 2/m and m in the low-
temperature phase, respectively;n, m-the same data calculated with the u
of the experimental data of Ref. 13;h andj-our previous data from Refs
2 and 13 for the high-temperature phase.Tc is the temperature of the solid
solid phase transition.
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Fig. 6, and those of the molar volume and its jump at
phase transition are illustrated in Fig. 7 together with t
available data from the literature. The observed slight d
agreement of the lattice parameters with the data given
Ref. 13 may be attributed to two reasons. The authors of R
13 employed a SF6 gas of insufficiently high purity299.9%
~we used 99.99% pure gas!, resulting, as a rule, in consider
able ~and in some cases gigantic! anomalies of the physica
properties at low temperatures and producing an appreci
effect on the dynamics of the crystal lattices.23 On the other
hand, contrary to the present x-ray and neutron diffract
measurements, the experiments in Ref. 13 were perfor
on a sample that was not free~the sample was grown in a
glass ampoule at high temperatures, cooled to 77 K, and
quenched quickly down to liquid-helium temperature!, and
hence, the sample might have had high stresses of the
kind.

Extrapolation of the temperature dependence of the
tice volume to the phase transition temperature~94.3 K! re-
sults in the valueVm555.68 cm3/mol, which nearly agrees
with the valueVm556.0 cm3/mol obtained by substracting
the volume change at the transition~DVm52.1 cm3/mol by
the estimates in Ref. 24! from the high-temperature phas
volume.2 The value of the jump in volume measured within
narrow temperature range of 94 to 94.5 K in the vicinity
the phase transition turns out to be somewhat higher t
that expected from the estimation by the Clausius-Claype
equation in Ref. 24 and amounts to 2.57 cm3/mol ~approxi-
mately 4.4%!, but this value is lower than the change
density at the transition~6%! obtained in the pycnometric
y
FIG. 6. Temperature dependences ofa ~a!, b ~b!, c ~c!, b8 ~d!, the lattice parameters of monoclinic phase of SF6: s, d-the data obtained in present work b
x-ray and neutron methods, respectively;D corresponds to the results obtained in Ref. 13.Tc is the temperature of the solid-solid phase transition.
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FIG. 7. Temperature dependences of the molar volume of SF6 in the low- and high-temperature phases: 1 andh show the data obtained in present work;
was obtained in Ref. 2,d in Ref. 1,n in Refs. 3, 16,, in Ref. 13,1 in Ref. 17,j in Ref. 18,m in Ref. 19,s in Ref. 20,, in Ref. 21,f in Ref. 22.Tc

andTm correspond to the temperatures of phase transition and melting point, respectively.
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measurements reported in Ref. 17. As is evident from Fig
our temperature dependence of the molar volume is in g
agreement with all of the experimental and theoretical e
mates except for the data of Ref. 19, which appear to
much lower. The last fact seems to be responsible for
increased value of the change in density at the transitio
Ref. 19.

Thermodynamic properties. The temperature depen
dences of the linear expansion coefficients, illustrating
character of expansion anisotropy ina-SF6, are shown in
Fig. 8. Our attention is engaged by the fact that, beginn
just with 50 K, the temperature dependences of the lin
aa , ac and volumeb expansion coefficients become mo
pronounced. As will be shown below, this behavior is main

FIG. 8. Linear thermal expansion coefficients versus temperature.Tc is the
temperature of the solid-solid phase transition.
7,
d
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e
e
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e
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ar

dictated by the variations in the dynamics of molecular ro
tional motion in the monoclinic lattice at this temperatur
The numerical values of the lattice parameters and m
volume, together with the thermal expansion coefficients,
listed in Table II.

The solid-solid phase transition and the peculiarities
physical properties of SF6 crystals, as of other molecula
cryocrystals, are a consequence of variations in the rotatio
subsystem. Observation and identification of these variati
can be done by the method of separating the contribution
the phonon and rotational subsystems to the lat
dynamics.26 The data on the thermal expansion coefficie
enabled us to apply this method, along with published da15

on the heat capacity at constant pressureCP , to recognize
and to analyze the rotational component of the heat capa
at constant volumeCrot .

With allowance made for all type of vibrations in th
lattice and their mutual independence being assumed,
heat capacity of a molecular crystal can be given as a sum
contributions from the translational and rotational su
systems and a contribution due to the intramolecular vib
tions of the atoms:

CV5Ctr1Crot1Cin . ~1!

The heat capacity at constant volume,CV , is difficult to
measure. In practice, it is calculated, when data on the t
mal expansion and compressibility are available, from
values of the heat capacity at constant pressure,CP , by us-
ing the known thermodynamic relation

CP2CV5b2VT/xT . ~2!
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TABLE II. Experimental x-ray~a! and neutron~b! values of the lattice parameters (a,b,c,b8), molar volume
(Vm), density~r!, linear (aa ,ab ,ac), and volume~b! thermal expansion coefficients.

T, K a, Å b, Å c, Å b8, deg
Vm ,

cm3/mol
r,

g/cm3

aa ab ac b

1024 K21

a!
4.5 13.813 8.144 4.752 95.59 53.40 2.735 ¯ ¯ ¯ ¯

10 13.814 8.144 4.752 95.58 53.41 2.735 0.08 0.06 0.05 0.1
15 13.815 8.145 4.752 95.56 53.42 2.734 0.18 0.13 0.11 0.4
20 13.818 8.146 4.753 95.54 53.44 2.733 0.32 0.22 0.21 0.7
25 13.820 8.147 4.754 95.53 53.47 2.732 0.47 0.32 0.42 1.2
30 13.824 8.149 4.755 95.51 53.52 2.729 0.54 0.45 0.66 1.6
35 13.830 8.151 4.758 95.49 53.58 2.726 0.85 0.59 0.89 2.3
40 13.837 8.154 4.760 95.46 53.66 2.722 1.06 0.74 1.16 3.0
45 13.846 8.158 4.764 95.43 53.76 2.717 1.28 0.90 1.43 3.7
50 13.856 8.162 4.768 95.40 53.88 2.711 1.51 1.06 1.68 4.4
55 13.868 8.167 4.772 95.36 54.01 2.704 1.72 1.21 1.92 5.0
60 13.882 8.173 4.777 95.32 54.16 2.697 1.94 1.35 2.16 5.6
65 13.897 8.179 4.783 95.26 54.34 2.688 2.16 1.48 2.40 6.2
70 13.913 8.185 4.790 95.20 54.52 2.679 2.40 1.63 2.68 6.8
75 13.932 8.192 4.797 95.15 54.73 2.669 2.65 1.76 2.95 7.5
80 13.952 8.200 4.804 95.08 54.95 2.658 2.91 1.89 3.23 8.1
83 13.965 8.205 4.809 95.04 55.09 2.651 3.09 1.98 3.41 8.6
85 13.974 8.208 4.813 95.01 55.19 2.649 3.21 2.05 3.53 8.9
88 13.988 8.213 4.818 94.97 55.34 2.639 3.38 2.16 3.75 9.3
90 13.998 8.217 4.821 94.94 5.45 2.634 3.50 2.24 3.91 9.6
92 14.008 8.220 4.825 94.91 55.56 2.629 3.64 2.34 4.06 10.
94 14.017 8.224 4.829 94.88 55.67 2.623 ¯ ¯ ¯ ¯

b!
1.64 13.8028 8.1392 4.7494 95.586 53.301 2.7401
15 13.8053 8.1399 4.7500 95.560 53.323 2.7390
25 13.8165 8.1446 4.7539 95.530 53.438 2.7331
40 13.8463 8.1561 4.7633 95.475 53.748 2.7173
60 13.8976 8.1772 4.7805 95.330 54.294 2.6900
75 13.9410 8.1946 4.7969 95.172 54.780 2.6662
90 14.0024 8.2174 4.8210 94.952 55.468 2.6330
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The calculations ofCV for the low-temperature phase o
SF6 were made difficult by the lack of data on the compre
ibility xT . The compressibility of SF6 was studied in Ref. 24
by the piston displacement method in the 81–190 K temp
ture and 0–20 kbar pressure ranges. But in the above p
primary attention was given to theP-T diagram and the
phase transition characteristics. A numerical value of the
thermal compressibility was cited only for the hig
temperature phase atT5182 K (xT52.93•105 cm2/kg). In a
previous paper,2 in order to estimate compressibility ever
where over the existence region of the high-tempera
phase~95–220 K! we used the data on the elastic const
obtained from an investigation of the Brillouin light scatte
ing in SF6 single crystals.20 In the present paper these resul
with allowance for their variations at the phase transition d
to the large change in volume, were extrapolated to the
istence region of the low-temperature phase. Moreove
was assumed that at low temperatures the linear, tho
rather weak, dependence of the compressibility still pers
The temperature dependences of the heat capacityCV thus
calculated are shown in Fig. 9. The numerical values of
other thermodynamic characteristics of the low-tempera
phase of SF6 are also listed in Table III.

The heat capacityCin was calculated from the characte
istic temperaturesQ i5hv i /k in the Einstein model approxi
mation with the use of the intramolecular vibrational fr
quenciesv i cited in Ref. 27. The contribution of translation
-

a-
er

o-

re
t

,
e
x-
it
gh
s.

e
re

vibrations to the heat capacity was calculated in the De
approximation with a characteristic temperatureQD565 K
obtained from an analysis of the low-temperature part of
heat capacity.15 As is evident from Fig. 9, the temperatur
dependence ofCtr decreases distinctly even atT.30 K, and
in the vicinity of the phase transition temperature the h

FIG. 9. Temperature dependence of the heat capacity contribution
a-SF6: s show the data14 on the heat capacity at constant pressure,CP ,
while CV , Cin , Ctr , and Crot correspond to the calculated curves for th
heat capacity at constant volume and for the intramolecular, translatio
and rotational components of the heat capacity, respectively.
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TABLE III. Adiabatic compressibility (xS), Grüneisen constant~g!, heat capacity at constant pressure (CP)
and constant volume (CV), and the intramolecular (Cin), lattice (Ctr) and librational (Crot) components of the
heat capacity of sulfur hexafluoride in the low-temperature phase.

T, K
xS , 10211

cm2/dyn g

CP ~Ref. 14! CV Cin Ctr Crot

cal/~mol•K!

13 0.676 2.39 2.68 2.68 1027 1.05 1.66
20 0.685 2.58 5.41 5.39 1026 2.69 2.75
30 0.698 3.59 8.41 8.26 1024 4.09 4.18
40 0.712 5.25 10.26 9.65 1023 4.83 4.82
50 0.730 6.77 11.52 10.02 0.032 5.19 4.80
60 0.748 7.84 12.51 9.88 0.109 5.41 4.36
70 0.769 8.71 13.39 9.44 0.271 5.55 3.61
80 0.788 9.40 14.49 8.97 0.530 5.64 2.80
90 0.812 9.78 16.15 8.78 0.894 5.71 2.18
94 0.822 9.81 17.14 8.75 1.067 5.73 1.95
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s of
capacity values almost approach the high-temperature l
3R55.97 cal/~mol•K!.

The heat capacity of a librational subsystemCrot5CV

2Ctr2Cin exhibits an extraordinary temperature depende
~Fig. 9!. Considering that the low-temperature phase of S6

is completely orientationally ordered, for a system of thre
dimensional rotators~librators! one may expect that the he
capacityCrot will increase monotonically with temperatur
and, within the limit of free spherical rotation of molecule
may be close to 3R like the phonon heat capacity. Instea
one observes a reduction in the rotational component aT
.50 K. Such behavior is usually observed only at rath
high ~pre-melting! temperatures for cryocrystals and may
a result of our not taking into account the anharmonicity
the angular and translational vibrations of the molecules.26 A
noticeable anharmonicity of the translational vibrations
unlikely at such low temperatures~T,0.5Ttr , whereTtr is
the triple-point temperature!. Therefore, the reduction in th
heat capacity is most likely due to the unhindering of t
molecular rotational motion of one-third of the molecules
the a-SF6 lattice to an almost free rotation, as is also co
firmed by the data given in Ref. 28. For the above molecu
the heat capacity value may not exceed (3/2)R/3. Then for
the vibrational subsystem in which two-thirds of the mo
ecules execute librational motion and one-third rotate fre
the total heat capacity in the vicinity of the phase transit
can’t exceed 2.5R, in agreement with the results of our ca
culations~Fig. 9!. Thus, the reduction inCrot observed atT
.50 K may be accounted for as being due to two sourc
First, the heat capacity of the rotational subsystem decre
appreciably because of the unhindering of the molecular
tation from the strongly correlated motion to an almost fr
one. Secondly, the rotational anharmonicities are stron
enhanced as the phase transition point is approached. A s
lar behavior of the rotational heat capacity has also b
observed2 in the high-temperature phase of SF6 ~see Fig. 9!.
The numerical values of the thermodynamic characteris
are listed in Table III.

The Grüneisen constants, which are a measure of
lattice vibrational anharmonicity and its change with increa
in temperature, presuppose, in the quasi-harmonic appr
mation, a homogeneous distortion of the spectrum w
variation in volume and are given by the relation
it
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xi-
h

g i52d ln v i /d ln V, ~3!

wherev i are the lattice vibration frequencies andV is the
crystal volume. From the Gru¨neisen law there follows a
simple thermodynamic relation for calculation of the Gru¨n-
eisen constants~parameters!, which relates the fundamenta
thermodynamic characteristics of the material:

g5bV/xTCV . ~4!

For most cryocrystals at low temperatures, where the ef
of the librational subsystem is insignificant, the values og
are within the range 2.2–2.9~Ref. 26!. Also within this range
are the values of the Gru¨neisen parameters for the high
temperature phase of SF6 obtained in Ref. 2. The librationa
component ofg which defines the anharmonicities in th
librational subsystem is usually somewhat lower and equ
1.6–1.8~Ref. 26!. In our work we did not separate the lattic
and librational contributions to the Gru¨neisen parameters be
cause there are no experimental data on the temperature
volume dependences of the librational vibration spectrum

The Grüneisen parameters calculated by Eq.~4! are
shown in Fig. 10 along with the data for the high
temperature phase. Mention should be made of the unexp
edly considerable change ing at the phase transition and th
high values of the constantsg for the low-temperature phas
as compared to the data for the cryocrystals known to

FIG. 10. Grüneisen parameters for the low- and high-temperature phase
SF6: s show the data of the present work,n were obtained in Ref. 2.
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The rapid increase ing as the phase transition temperatu
Tc is approached may be responsible for the fact that
anharmonicity of the librations and the orientational dis
dering of the SF6 molecules have a more distinct influen
on the thermal expansion coefficients of the crystal than
its heat capacity, as follows from Eq.~4! and the experimen
tal dependence of the volume expansion coefficientb ~see
Table II!.

Attention should be paid to the fact that the analysis
the low-temperature heat capacity atT,20 K resulted in
comparable phonon and librational contributions~within the
limits of error!. This result is physically unwarranted an
may be a consequence of too-high experimental values15 of
CP at the lowest temperatures of their estimation and a
due to the lack of measurements of the heat capacity at
peratures below 13 K. The too-high values of the lo
temperature heat capacity may have resulted from impur
in the samples. As mentioned above, even insignific
amounts of impurities~less than 0.01%! have an appreciable
effect on the absolute values and behavior of the heat ca
ity of simple molecular crystals, particularly at low temper
tures 23. The lack of data on the heat capacity atT,13 K
makes it difficult to estimate a low-temperature value of
zero Debye temperatureQ0 . We believe, however, that n
fundamental error has been made because the calcula
were performed withQ0565 K, somewhat higher, as
should be, than the reliable value of the high-temperat
Debye temperature, equal toQ`562 K.2 If the calculations
of Ctr were performed with higher values ofQ0 , we would
obtain entirely unreasonable results—atT,20 K the libra-
tional contribution to the heat capacity would be mu
higher than the translational one.

In conclusion, the results of a thermodynamic analysis
heat capacity are consistent with the data on the crystal s
ture of a-SF6 given in Ref. 13 and in the present paper
well as with the theoretical deductions in Refs. 10 and
These results also support the assumption28 that the pecu-
liarities in the temperature dependences of the NMR li
width and second moment observed in the 45–50 K temp
ture range are due not to the two-phase state of the sam
used but to the fact that the SF6 molecules occupy two type
of positions in the lattice of the low-temperature phase a
that these positions differ considerably in symmetry, wh
determines their rotational mobility. According to the da
given in Ref. 28 the molecular orientation barriers in the t
lattice positions differ by a factor of 1.5 and are equal to 1
and 2.8 kcal/mol for the high-and low-symmetry states,
spectively. Gaining more-comprehensive information on
e
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dynamics of rotational molecular motion ina-SF6 will re-
quire supplementary investigation of the vibrational spec
by Raman and infrared spectroscopy techniques, sound
locity measurements, and careful study of the heat capa
particularly at the lowest temperatures and on high pu
samples.
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