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The absorption spectra of single-crystal ¥%BasOg_ , films with various doping levels in the
range fromx~0.35 tox~0.9 are measured in the energy region 0.3—3 eV. An analysis

of the spectral composition of the absorption is made with allowance for intraband and interband
transitions and the locald transitions in the C&i ion. It is concluded that thdd band

(the transitiond,,—d,2_,2 at 1.5 eV reflects the enhancement of the covalent bonding (
hybridization upon metallization and that the spectral feature~dt8 eV carries

information about the contribution of electronic correlations, since it is sensitive to the opening
of a spin gap in the insulator and to antiferromagnetic fluctuations in the metal. Although

the covalent £1.5 eV) and correlation £1.8 eV) absorption peaks compete with each other, the
coexistence of these bands in the metal supports the validity of a model based on the
correlation polarn — a charge carrier which creates a region of covalent bonding in a Hubbard
matrix of antiferromagnetic fluctuations. ®000 American Institute of Physics.
[S1063-777X00)00108-0

1. INTRODUCTION exchange integral is; 13, ~10* and in the metallic phase

c ide hiatT q TsC the ratio of the conductivities isrj/o, ~10°~10". Pro-
opper oxide highF, superconductorgH 9 are sys- nounced metallic behavior of the resistance alongctgis

tems with strong electroni(Hubbard correlations. In these and dominance of the Drude component of the optical con-

materials the Wilson parameter, which characterizes the re; .. . LT
; . ductivity for the transverse direction in the Y and La com-
sponse of a system to the turning on of correlations, has a

sl =T Gy 1017 2. whrongandy are”” [T e e e e oL o
the magnetic susceptibility and the coefficient in front of the P 9 P 9

iad4
electronic part of the specific he@h the absence of corre- propTer:tle_é ; f two-di ioné2D) electroni
lationsRy=1). A number of other materials with high val- € Importance of two-cimension electronic cor-

uesRy~2 are known, but they are either nonsuperconduct-relations for high-temperature superconductivity is not in

ing or have low superconducting transition temperaturequUbt' They must be taken into account in constructing the

These include varioupd compounds ofd metals andp phase diagrams ar}d for explaining thg transitiop to an AFM
ligands, heavy-fermion compounds based on rare-efrth msglgtor state ha_vmg strong glectronlc correlations, for de-
metals, and the layered materiabBu0,, which is isostruc-  SCribing the density of states in the AFM phase and the ex-
tural with La,_,Sr,CuQ, (Refs. 1-3. Some specific ex- IStence of an msulat.or gap with charge transfer.m that phase,
amples are the nonsuperconducting metallic phase dind for understanding the role of the magnetic degrees of
NiSe,_,S,, with Ry~2, and the superconducting phasesfreedom with highly developed AFM fluctuations of the
UPt (T,~0.5 K) and SsRuO, (T,~1 K), with Ryy=1.7— sr]ort-range order at temperatures considerably above the
1.9. Therefore the Coulomb correlations in themselves ardleel pointTy. In the metallic 2D phase the contribution of
insufficient for the onset of high-temperature superconducthe Coulomb interactions, even if they are weak, has been
tivity. considered as the cause responsible for the persistence of
For HTSCs an important factor, besides the electronignagnetic fluctuationgwhich are possible vehicles for the
correlations, is the dimensionality of the system. As a rulepairing of carriers and for the spin pseudogap and Hubbard
low-temperature superconducting materials with strong elecgap with charge transfer from the oxygen to the copper.
tronic correlations are three-dimensional metals at room temFhese features of the metallic 2D phase give rise to a number
perature or rapidly become three-dimensional as the tendf unusual electrical, optical, and magnetic properties,
perature is lowerede.g., SsRuQ,).2 HTSCs with a Cu@  which, taken together, have caused the metallic phase of
active plane remain quasi-two-dimensional over a wideHTSCs to be called a “strange metal” or an “almost anti-
range of temperature and doping: in the antiferromagnetiéerromagnetic Fermi liquid.>~" The majority of the theoret-
(AFM) phase the ratio of the longitudinal to the transverseical approaches to the study of this state are based on-the
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J model, and various aspects of these studies from the stand- A d. .
point of providing an adequate description of the experimen- oy
tal data are discussed in Refs. 5-9, for example. €51 d

The covalent contribution to the electronic properties is i
of the opposite nature, with the electrons tending toward col- t | d,
lectivization. Superconductors based on covalent bonding in- 2 ‘
clude the quasi-2D(layered transition-metal dichalco- d,.. dyz

genides withT <10 K, for which the electronic correlations
are unimportant’® With intercalation of organic molecules
the distance between the metallic layers with covalent bond-
ing can be increased to 50 A with hardly any affectn UHB
The pyridine-containing compound T#&By), 5 even under-
goes a transition to a regime of “quasi-2D superconductiv- >
ity” with a classical phonon pairing mechanisth. cT /f\
In the formation of the spectrum of carriers in HTSCs ‘ 74 h;
the pd covalence factor is also extremely important and, E ®
generally speaking, coexists with the Coulomb correlation
factor. The situation is best demonstrated by the correlation N
polaron model proposed in Ref. 11. A correlation polaron is
a charge carrier that creates around itself a region of covalent
bonding with weak electronic correlations, while outside this
region the matrix of strong Hubbard interactions is pre-
served. Upon magnetic ordering the correlation polaron is
dressed by a “fur coat” of antiferromagnetic fluctuatiohs.
It is now clear that the mutual competition and coexistence
of pd mixing and Hubbard interactions must be taken into c
account in any model of cuprate HTSCs. '
In view of all we have said, it is an important experi-
mental problem to investigate the balance between the cor- . N —»
relation (AFM-fluctuation and covalent contributions as the Th ho

doping level and temperature of a HTSC are varied, includ-
ing at the Superconducting transition. FIG. 1. Schematic illustration of the splitting of tidkorbitals of Cd* and

In thi t t to find tical * kers” f the spectral dependence of the density of states for different doping levels:
) n !S paper we set out 10 1nd optica _mar EI.’S or underdoping(a), optimal doping(b), and overdopindc). The arrows indi-
diagnostics of the balance between these interactions. Dgate the possible optical transitions; LHB and UHB are the lower and upper

tailed measurements of the absorption spectra oFfiubbard bands, respectively.

YBa,Cu;0g,  Single-crystal films of various compositions

were made in the near-IR and visible regions of the spectrum o . - _
(0.3-3 eV. The data suggest that the correlation contribu-nvestigating the covalent bonding the transitions in the
tion (the influence of AFM fluctuationsis reflected in the CW™ ion are of particular interest, since this ion is located in
absorption band around 1.8 eV and the covalent contributiofh€ field of the oxygen ligands. In YB&U;Og.. the Ci#*

in the twodd bands around 1.5 and 2.3 eV. Upon doping!'on of the CuQ plane is found in a fivefold-coordination
these spectral features, in competition with each other, coesgnvironment, with the apical oxygen(d at the apex of the
ist in the metal withT .= 73.5 K. We interpret this picture as Pyramid. In a field of cubic symmetry th®, orbitals of

additional evidence for the existence of the correlation poCU "~ (3d°) are split, as we know, into a twofold degenerate
laron. stateey and a threefold degenerate stgig(see Fig. 1 The

axial elongation of the pyramid lifts the degeneracy, and the
following dd transitions occurs to the unoccupiétble) or-
bital dy,2_y2 (see Fig. L de—dye_y2 (ag—byg), dyy

The frequency range of interest for studying the elec-——d,2 2 (byq—big), and dy,,,—dy2 2 (eg—byg). Al-
tronic system of HTSCs as a function of doping and tem-though the transition energies vary, depending on the type of
perature extends all the way from the far-infrared to the uldigand atom and the degree of tetragonBl,f) distortion,
traviolet. One need only point out that optical sensitivity tothey lie, on the whole, in the region 0.5-2.5 &/For
superconductivity has been detected at photon energies mueiTSCs the experimental data and theoretical estimates for
greater than the width of the superconducting gap irthe lowest transitiord,2—d,2_,2 give a value~0.5 eve1
HTSCs?3 This effect has no analog in classical superconor our present purposes the transitiogy—d,2_,2 is of
ductors. interest. Like all of the other even—evel transitions, it is

In the high-frequency regiohw>10"* eV the optical forbidden in absorption, but it has been obseRé@dabsorp-
spectrum of cuprate HTSCs is of a multicomponent naturetion in the form of a weak spectral feature around 1.5 eV
containing intrabandMIR) transitions fw<1 eV), inter- in the insulator phase of the cuprates,Ca0O, and
band charge-transfefCT) transitions w>1.7 eV), and SrLCuO,Cl,. The absorption coefficient is smalk ¢ 10°
transitions to C&" and Cu local centers0.5-4 e\J. For cm 1).

D4h

/

’

(axial extension)

A

2. DESIGN OF OPTICAL EXPERIMENTS
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Meanwhile, by virtue of theld forbiddenness, this tran- redistribution of the absorption spectra between the interband
sition is well expressed in the Raman scatteiR®) spectra and intraband transition@nd also the optical conductivity
of the insulator phase of YBE&wOg.,, With X<<0.4 at 1.5  spectrareflect the evolution of the correlation contribution.
eV® and 1.56 e\A” When the doping is increased abave Another approach to studying the correlation effects that
~0.4 this transition in the RS spectra is strongly are the focus of our attention in this paper is based on sepa-
attenuated® This behavior of the RS spectra indicates thatrating out from the absorption spectra those spectral features
the lifting of thedd forbiddenness is due to enhancement ofthat carry information about the coherent peak of the density
the pd mixing on doping. Therefore, the degree to which thisof states. For the coherent peak the character of the disper-
transition is manifested in the absorption spectra can serve &gon for charge carriers depends on the direction of the qua-
a measure of thed covalence. We note that the covalence simomentum. For example, along the-M direction of the
enhances the absorption most strongly fordlaetransitions,  Brillouin zone the carriers interact intensely with AFM fluc-
increasing the absorption coefficient to values typical for theuations and, as a consequence, have a large (hassjua-
allowed charge-transfer transitions~10° cm™* (Ref. 14.  gjparticles, but for other directions of the 2D Brillouin zone
The importance opd hybridization for the enhancement of the interaction is strongly attenuatédold quasiparticles
spin-alloweddd transitions in copper oxides is given a the- see Ref. 22 and the references cited therein. We note that,
oretical justification in Ref. 18. according to the common belief, for interband optical transi-

Let us now tum to the possibility of using the absorptiontions the absorption involving transitions from the heavy-
spectra to study the correlation contribution. The electronig,gje pand is dominant over the absorption involving transi-

correlations in Hubbard systems generally give rise to a peays from the light-hole band. For heavy enough holes an
in the density of states for quasiparticles near the top of thegyitonlike” absorption peak can form at the long-

lower Hubbard ban@HB), which is separated from the upper \y4yelength edge of the interband transitions, even in a
HB by the Hubbard gagsee Fig. 1 This feature arises o523 | this connection we mention the well-known phe-
independently of the approach chosen for obtaining the Spe‘ﬁomenological model of HirscH, according to which the

tral dependence of the Qensity of §tatbtgw): the single- spectra of a HTSC should contain a narrow band due to
band Hubbar_d model wittf and without® allowance for transitions from strongly correlatdtbcalized states against
AFM fluc_tuatlo_ns, the polaron model of COPPEr—oxygen , background of a broader band due to transitions from
Zlhang—.Rlce. s;nglet@, _and th.e mo‘?',e' of m.f",q,'te spatial unlocalized(itinerany states. We note that the heavy carriers
dlmen5|onal|tyz. In particular, in the “magnetic” approach can be regarded as copper holes, for which the correlation

thueeﬁggeoir;nec?n?;:‘;issag; I:h?rez)ci:zg::r\?vilti if:?\;lsffu-c contribution is appreciable on account of the possibility of
q g formation of C3", and the light carriers as due to the motion

tuations, which develop intensively at temperatures below .
- : . of oxygen holes O. It is clear that the spectral feature for
the characteristic energy of the exchange interactibn,

~4t2/U~10® K, wheret~0.2-0.3 eV is the amplitude of the heavy holes must lie near the charge-transfer §gap

the intersite transfer, and~2-3 eV is the effective Hub- ~15-2 eV or is contained in the “excitonlike” edge

bard energy in cuprate oxides. For a model with an infinite o In the experimental paper of Ref. 25, following the

spatial dimensionality the onset of a peak in the density 0fheoretical conclusions of Ref. 20, the absorption band with

states is considered to be a manifestation of a collectiyd@XImMum athw~2 eV at the edge of the charge-transfer
Kondo resonanc®: In any case the peak is is a consequencéPtical gap in SICUQ,Cl, was attributed to the density of
of the formation of coherent states for quasiparticles. Th&tates peak of Zhang—Rice singlets. _

width of this coherent peak is determined by the creation and  With allowance for the magnetic ordering, proof of the
disappearance of magnons in the motion of current carrierscorrelation” nature of the narrow spectral feature should be
and is approximately equal taJ3n the metallic phas&The provided by its interrelationship with th(_e magnetic de_grees
peak appears against the background of a broad continuuﬁf freedom tha_t form the coherent maX|mum._ Of patrticular
of incoherent hole states of the upper and lower HBs. Théhterest in this regard are studies of lightly doped
width of the lower HB is approximatelyt8-2 eV. As the  YBaClsOs. films with x=0.3-0.4 at the boundary of the
doping is increased and the system approaches an ordinar,r)ansition to a well-conducting metal, where the correlation
metal with Fermi degeneracy, the spectral weight of the coeffects for the heavy itinerant charge carriers are most
herent component increases on account of a decrease in thgongly expressed. In this boundary state the long-range
weight of the incoherent componefpirimarily owing to a AFM order is already quite strongly disrupted and Tat
redistribution of the states of the upper HB in the near-Ferm~300 K a spin liquid is formed, with AFM correlation
and optical-gap regiofsA decrease in the states of the up- lengthsé~100-150 A.(In layered cuprate3\~J, (¢/a)?

per HB should lead to a substantial lowering of the intensity(Ref. 1), whereJ, ~0.2 K is the value of the exchange in-
of interband CT transitions across the optical ggpupon teraction between Cufbilayers, anda~4 Ais the distance
metallization(see Fig. 1 Simultaneously there should be an between copper centers. In YE2;Og,  With x=0.3-0.4
increase in the intraband transitions from the lower HB to thewve have Ty<250 K). According to Ref. 7, in the spin-
region of coherent hole states, which expands with dopingfluctuation model for the formation of the coherent peak the
These transitions mainly lie &tw<Eg in the near- and mid- quasiparticle density of states at the Fermi level is close to
infrared regiongfor brevity, mid-IR. This redistribution of maximum(for T—0) in a metal far from the boundary of the
the states has been considered in different models incorpanetal—insulator transition. For YB&u;Og..« this situation
rating electronic correlation's’'%2! Therefore, the integral corresponds to the ortho-Il phase witk:0.6 (T, <60 K).
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3. EXPERIMENT error (<5%) and to measure very small variations of the
absorptionA (al) upon changes in temperature in the visible
~ Measurements of the absorption spectra of single-crystdkgion of the spectrum. The point is that the temperature-
thin films of YBgCu;Os. Of variable composition were rejated variations of the reflectance in the visible region upon
made in two spectral regions: in the mid-IR, from 0.4 t0 1ne heating and cooling of YBEU;Og,  are small AR/R
eV, and in the visible, from 1.25 to 3 eV. Unpolarized light <104)29 pyt the changes in the transmittance are much
was used, with an orientation of the electric field parallel toj5rger28 At/t>AR/R. As a result, the change in the absorp-
the active Cu@ layer (ELc axis of the crystal The fre-  tion relative to some initial temperaturg,, i.e., A(al)
quency dependence of the absolute absorption coefficient ,|(T,)— al(T), is related to the signal measured in the
a(w) was determined from the transmission and reflectioneference-level mode by the simple relation(«l)
spectra of the HTSC films relative to those of the clean— yyT)/t(T,)]. The reference-signal technique made it pos-
SITiO; substrates on which the films were grown. The thick-gjple to measure values(al)=0.01.
nesses of the films weide=2000 and 2300 A. The function A study was made of c-oriented single-crystal

a(w)l was found from the relation between the transmission,(BaCbbo6+X films of the series YSIE2000 A and BH
spectrumt(w) of the film and the transmission spectrum (1=2300 A), grown at the Physics Institute of the University
to(w) of the clean substratet(w)=to(w)(1-R)e"*(1  of Erlangen, Germany in the department of Prof. G.
—R?%24)71, whereR(w) is the reflection coefficient of = zaimann—Ishchenko. The films were prepared by the method
the film. . of laser and dc sputtering of targets. Certification data on the
For YBg,Cu;Og.  the absolute values dk(w) in the  magnetic and x-ray structural parameters were provided for
visible region, where the interband transitions are concenasch film. Some of the metallized films belonged to the
trated, is a weak function of frequency and remains at lowgytno-|| phase, WithT,< 60 K, and the others to the ortho-I
“insulator” levels (<15%) even in the metallic phad&In phase, withT.>60 K. Included in the set of films were in-
view of this circumstance and the appreciable values of thgyators, with doping index<0.4. The BH films, with lat-
exponental ~2 for YBa,CusOg. (as for the other copper tice parametec=11.820 A, were subjected to rather detailed
oxideg, the transmission of the films in the visible region is (see belowoptical studies. According to the calibration data
almost completely governed by absorption. Therefore, in theyf Ref. 30, for a YBaCu;0g., , film with this value of the
visible region the reflection was assumed to be frequen%arameterc the doping indexx~0.35, i.e., it lies at the
independent. boundary of the antiferromagnetic insulator—metal transition
Substantial variations oR(w) with frequency are ob- (judging from the data of Ref. 30, the YBau;Og. , film
served in the mid-IR region, which lies below the plasmayith x~0.4 can already have a critical temperatiige< 10
minimum. In this region, where the intraband transi.tions are). The temperature measurements of the absorption spectra
concentrated, the values B{w) reach 70%. To provide for  of this film greatly clarified the picture of the onset ofl

reliable extraction of the absorption contou(w) in the  transitions and the influence of the magnetic degrees of free-
mid-IR region we measured the reflection spectra as well agom on the optical spectrum.

the transmission spectra. In the reflection measurements the
film was illuminated by a Globar sourdgvhich was also
used in the transmission measurements in the mid-IR re4. EXPERIMENTAL RESULTS AND DISCUSSION
gion), and a low-noise superconducting bolometer was used _
as the signal detector. To achieve the maximum reflectiont General character of the absorption spectra
the film was illuminated at an angle of 10° to the normal. By  Let us first consider the most general characteristics of
means of an electromagnet placed directly in the cryostat anithe absorption spectra of YB@u;Og ., films as a function
controlled by a set program, the sample was periodidédly ~ of doping at 300 K. Figure 2 shows the absolute absorption
atime~1 s covered by a standard silver mirror. During this spectra in the visible and mid-IR regions of the spectrum for
time the reference reflectan&g,s was measured for tens of x=~0.35 and for two states of the metal in the orthorhombic
counts. With the mirror removed the average sigRédb) phasell (T,=<60 K) andOI (T.>60 K). We recall that in
from the film was measured. With automatic scanning of thehe Oll phase the CuQchains form an alternating sequence:
frequency(or of the temperature at a constant frequentbg  filled—vacant—filled, while in theOl phase the ‘“vacant”
ratio R/Rs was determinedthe reflectance of the silver was chains are filled with oxygen. The scale of the measured
taken asR,=97.5%). This technique was used previously absolute values of the absorption are~1.5-3, which for
to study the trend of the reflection coefficient in the film thicknesses used in the experiment gives an absorp-
YBa,Cu;Og., at individual frequencies in the mid-IR tion coefficienta~10° cm™ 1.
region?"28 As follows from Fig. 2, in the lightly doped phase the
The transmission spectra of the films were also measureabsorption in the mid-IR region is very small, but above 1.4
in the reference-signal mode. Here a portion of the light fluxeV, which is in the visible region, the absorption begins to
incident on the film was diverted to a second detector, whiclgrow sharply, and this growth becomes stronger as one goes
set a reference levél.(w). The average ratio of the inten- to still shorter wavelengths. A distinctive feature of the ab-
sity | (w) of the transmitted light to the reference intensity, sorption spectra fox~0.35 is the presence of a strong band
[(w)/lect(w) (or, in the case of the clean substrate,at the long-wavelength edge, with a maximum at 1.77 eV; as
lo(w)/1ercto(w)), was measured at each step of the fre-we shall show, this band is described well at 300 K by a
guency scan. This technique enabled us to determine the b&aussian contour with an rms deviatior0.14 eV. We call
havior oft(w) at a specified doping level to within a small this the A band. Extending from thé band into the short-
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FIG. 2. Spectral dependence of the absorptidnfor single-crystal films of YBaCu;Og. , With different degrees of doping: the ortho-1 phase with
=88 K (4), the ortho-Il phasésamplel with T.=59 K (O), sample2 with T.=51 K (@®)), and a film withx~0.35 @) at the boundary of the transition
to the metal. The measurements were made at 300 K and, fod filith T.=59 K, at 5 K.

wavelength region is a continuum component, against theomes flatter and its peak is red-shifted, and its red boundary
background of which one can discern another weak maxiis less sharp than in the ortho-Il phase. This transformation
mum around 2.1 eV, which we shall denotefasJ. On the of the MIR band in the optimal doping phase is a conse-
whole the entire absorption spectrum for0.35, in which  quence of the gradual formation of a broad quasi-Drude ab-
case the Fermi level just barely enters the valence band, sorption by free carriers, for which the absorption coefficient
due to interband CT transitions across the optical fag, has a dependence closedo 2.
which separates the lightly hole-doped valence band and the Let us now turn our attention to the fact that the metal-
upper bandsee Fig. 1a We note that the data on the pho- lization occurring upon transition to the ortho-Il phase
toconductivity of the insulator YB&u;Og 5 displays the ex- causes a decrease in the integral absorption throughout the
istence of an optical gap as a threshold of photoconductivityisible region, at energies all the way to 3 eV, with a simul-
athwg=1.7 eV3lie., somewhat lower in energy than the taneous growth of the integral absorption in the mid-IR re-
maximum of theA band. gion. This picture is fundamentally different from the behav-

Upon metallization and the transition to the ortho-Il ior of the interband absorption upon doping in classical
phase, as is seen in Fig. 2, one observes a decrease in themiconductors. Upon hole doping pftype semiconduc-
integral intensity of CT absorption in the entire visible re- tors, when the Fermi level enters the valence band, the stron-
gion. The absorption in the mid-IR region behaves in thegest spectral changes occur near the fundamental absorption
opposite way: an asymmetric MIR band with a maximum atthreshold1: g . Here the absorption coefficient changes in a
~5500 cn ! (0.7 eV) is formed. Its short-wavelength edge, narrow region of energies with a width of several tenths of
according to Fig. 1a, should lie at an energy of the order ofn electron-volt. At the same time, as is seen in Fig. 2, there
the width of the coherent peakJ3:0.3 eV, as is observed in is a strong(by tens of percentdecrease in the interband
experiment. The slowly decaying long-wavelength wing isabsorption(and in the interband optical conductivityin the
due to transitions from the incoherefwtith a width of ~2 entire visible region. These broadband changes occur at a
eV) part of N(w) to the coherent peak. For La, Y, and Bi very low filling of the valence band by holes — only a few
samples a similar form of the MIR absorption band was obpercent(the degree of filling can be estimated from the rela-
tained previously by the method of spectroscopy of smaltion Er /W, whereEg~0.1 eV is the width of the unfilled
HTSC granules embedded in a KBr matfix. (hole) region of the valence band in the metal, alfe-2 eV

A detailed analysis of the spectra of the metallic phaseis the total width of the valence bandrhis effect is a con-
including a decomposition into components, will be pre-sequence of the strong electronic correlations in the system.
sented below for several films. However, let us first discusA\s we have said, in Hubbard systems, including two-
those features of the measured spectra which will enable wsublattice systems with allowance for oxygen—coppehy-
to draw important preliminary conclusions. bridization, doping decreases the weight of the incoherent

We see that thé\ band, although strongly attenuated, component of the density of states, redistributing those states
remains present in the ortho-1l phase. Upon further metalliinto the near-Fermi region of the coherent peak and partly
zation and the transition to the ortho-l phdsethe optimal into the region of the optical gap. As a result, the intensity of
doping region the absorption in the mid-IR and visible re- the CT transitions into the upper band decreases over a
gions increases, and in the visible region it even becomelroadband energy interval. At the same time the possibility
somewhat higher than in the insulator. At the red edge of thef MIR transitions to hole states opens up. Thus the observed
visible region a new banBé, with a maximum at 1.5 eV, is redistribution of the integral absorption upon metallization is
dominant. In the optimal doping phase the MIR band be-n itself proof of the existence of strong electronic correla-
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-0.20 ] Ao do not concern thé band, and, second, appear in the form
By x~0.35 £ of two absorption band8} and Bj. These bands are well
-0.15 o described by Gaussian contours of the form
[
0.10 = ol = 22 exp[ (E-Eo”
- (¢] = - y
. 5 O'\/; 20_2
o
-0.05 é which are shown by the solid curves in Fig. 3. The relative
— o spectral changed o/« are ~12% for the low-energy con-
= G tour B} and~2% for the high-energy contou3 .
= 0 -3 Let us first point out that th8} band is enhanced upon
Qo
c

heating. It is centered &3°=1.59 eV with an rms deviation
Ll : ! : e (i.e., square root of the variance;5=0.08 eV and a coef-

' ' ' ficient ug°=0.02 eV. An estimate of the absolute absorption
for B} gives a valueal~0.1 (a~10* cm !, which is an

FIG. 3. Difference spectrum of absorptiom(al)=al(300K)  order of magnitude less than the value for the allowed CT
—al(390 K) for a film with x~0.35, measured on heating from 300 to transition3. According to its position and half-width tlfﬁ(lj

390 K. band must be attributed to thid transition d,,—dy2_ 2,
which was observed at 1.5-1.56 eV in the Raman scattering
spectra of YBaCu;Og, in the insulator phase for the

tions in the system. The intensity of MIR absorption in the . e
. : : CuO, plane(see Sec. 2 In our case the intensification of the
metallic phase also becomes stronger upon codbeg Fig. " )
P ger up dbeg Fig transitiond,,—d,2_,2 is due to the enhancement of the

2), while the absorption becomes weaker throughout the en- . . N
tire visible regior?® so that one can speak of the manifesta-COVaIence on he_atlng of the sample. At first glance th!s might
tion of electronic correlations not only on doping but also >¢€M strange, since enhancement of the covalence is accom-

upon a change in temperatiffe panied by a shortening of the Cu—O bond, which might be

Studies of the influence of the polarization of the light in expected on cooling more than on heating. However, the

YBa,C1:Og.:, have shown that at the transition from the structure of the Cu@has an important feature that can ex-

insulator to the ortho-Il phase the weakening of the absorppla'n the increase in the degree of covalence with increasing

tion spectra in the visible region occurs mainly for the temt)feriture. lane throuah th F atom in.CuO
polarization?® i.e., for the direction perpendicular to the one passes a plane through the copper atom inLCu

CuQ, chains. Since-polarized light is diagnostic of the ac- fe]lea':i)\)/(ggt%n tﬁ}g”;‘fa‘r’]‘"e" ti“;” Og;é%:: g's‘g'iz(f:g?p;fmf\c
tive CuG; plane only, these spectral changes should be aétructure, and the ©-O—Cubond angle is different from

tributed to electronic correlations in the CuPlane specifi- S . :
20 P 180°. As the temperature is increased, the zig-zagging de-

cally. As can be seen in Fig. 2, upon transition to the Ortho-lcreases and at a bond angle-180° the overlap of the
phase, when the "vacant” chains are filled by oxygen, the“Iobes” of the p orbitals of oxygen and of the orbitals

absorption again begins to increase in the entire visible re-

gion. Incidentally, the absorption per hole at CT transitionsmc copper becomes maximum, i.e., the degrephybrid-

(hw>E.) for the optimal doping with~0.9, is neverthe- ization is maximum. As the zig-zagging decreases and the
less Iovfer than for the ortho-Il phase wixlas(') 6 Cu—O-Cubond approaches a 180° configuration, there is an

increase in the so-called tolerance factor, which is propor-
o . ) tional to the degree opd hybridization:tpd~t3dcos(w/2

4.2. SpecFra of a film with x*~*0.3%3. (in the neighborhood _ 0/2). This effect is well known, e.q., for O—Ti—O bonds
of the antiferromagnet-metal transition ) and for the O—Fe—0 bonds in perovskite compounds of the

We shall show that thed band contains information type CdFeQ (see, e.g., Ref.)l For cuprate HTSCs the
about the coherent peak formed on account of the interactioimcrease in the tolerance factor with increasing temperature
of the carriers with AFM fluctuations. Temperature studiesand doping has been reliably establistisele the discussion
of the absorption spectrum of a YBaL,Og, , film with in- in Ref. 11.
dex x~0.35 have not only demonstrated that théand is Thus our data taken on the heating of ¥BagOg.
sensitive to the magnetic degrees of freedom but also reshow that the phase witk=0.35 contains an experimental
vealed the onset of forbiddeid transitions as a result of the optical “marker” for investigating the degree of covalence:
enhancement of thpd covalence. the B} band.

Temperature measurements were made at temperatures At the same time, the difference spectrum has a pro-
above and below 300 K for a YB&u;Og., , film with index  nounced shorter-wavelength and broader tﬁﬁldround 2.3
x~0.35. Since the temperature-related changes in the spectey/ (see Fig. 3. The parameters of the Gaussian contour for
were expected to be small, we did a careful analysis of th¢his band are as followsE3®=2.32 eV,0,5=0.2 eV, u3?
difference spectra of the absorption relative to the initial tem-—=0.018 eV. Since it appears simultaneously with B
peratureTy: A(al)=al(Ty)—al(T). Figure 3 shows the band, one can assume that it is also duédddransitions, but
measured difference spectrum when a film is heated fronhigher-energy onedsd,,,d,,—d,2_,2 (see Fig. 1 With in-
To=300 toT=390 K. In the figure one can see two notable creasing electron—vibron interactions this transition can be
features that will be important in what follows and have notmanifested for light polarization in both they plane and in
been obtained before: the temperature-related changes, firtie z direction*

0.0

-
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FIG. 5. Temperature-related change in the absorpfi¢al)= «l (195 K)
—al(T) (where al (195 K)=1.5) of a lightly doped film at a frequency
hw=0.162 eV. The solid curve was constructed using expresdipwith
Ag=4 meV,T*=Ty =160 K.

FIG. 4. Difference spectrum of absorptid(al) = al(195 K)— al (80 K)
for x~0.35, measured on cooling from 195 to 80 K. The solid curve is the
Gaussian contour for the barij;.

Let us now consider the difference spectra of the absorpsamples with a low doping index=0.1-0.2. Foix<0.2 the
tion when the film is cooled from 195 to 80 §ee Fig. 4  absorption(reflection spectra of YBaCu;Og, 4 Samples at
These measurements demonstrate that the temperatu@0 K also exhibit a pronounced maximum around 1.7 eV,
related changes in th& band are concentrated in the low- which can be called a “gap” peak, since it is located at the
temperature region, which is a fundamental difference in itdoundary of the optical gaf}:> Its amplitude is intensified
behavior from the standard model with an electron—phonoiby the exciton effect under conditions of quasi-two-
interaction. Positive valued\(al)>0 correspond to the dimensionality of the system. The Gaussian rms deviation of
spectral region of decreased absorption on cooling, and neg#ie “gap” peak,~0.2 eV forx~0.2, is 1.5 times larger than
tive valuesA(al)<0 to increased absorption. In Fig. 4 it is in our case withx~0.35.
clearly seen how strongly the red wing of tieband is The temperature variations of the ‘“gap” absorption
bleached, while in the neighborhood of the maximum aroundand (the maximum of the imaginary part of the dielectric
1.8 eV the absorption increases. The inflection point of theconstank at low doping indices has been studied more than
curve near 1.65 eV corresponds to the energy for half intenence, and the results show convincingly that the main con-
sity of the band, where the absorption is most strongly attribution to the formation of the band is from the electron—
tenuated. A temperature asymmetry is observed in the meghonon interactions with phonon frequencies of 30-40
surements of the contour: the red wing is more stronglymeV333* For example, the Gaussian rms deviation of the
attenuated than the short-wavelength wing. This deformatiotigap” band and, as a consequence, the absorption intensity
is due to the onset of asymmetry of the contour itself and talepend strongly on temperatureTat 100 K (the half-width
temperature-related changes in the interband component Ipf the “gap” maximum increases by a factor of 1.5 when the
ing atAw>1.8 eV. One can clearly see the maximumAof temperature increases from 100 to 400, Kut at lower
+J at 2.15 eV, which develops on cooling on the same sidéemperatures the temperature dependence practically
as the maximum of th& band. We note that on heating from vanishes>3
300 K these two bands also behave in the same way, not Meanwhile, it is well known that the different kinds of
exhibiting temperature dependence. Near 1.55 eV the aforeptical characteristics of antiferromagnéabsorption, lumi-
mentioned covalent-bonding baﬂi can be discerned. It is nescence, Raman scattefindepend relatively weakly on
not hard to see that its intensity decreases with decreasirtgmperature in the region aboV¥g and exhibit a strong tem-
temperature, i.e., its temperature trend is in the same dire@erature dependence far<Ty (Ref. 35. For example, in
tion as in the case of cooling from 390 to 300 K. the classical AFM crystal Mnf the half-widths of the

For a more detailed study of the evolution of héand  electric-dipole absorption bands depend weakly on tempera-
with temperature we made measurements at its red wing atire during cooling from 300 K td =67 K, but belowT)
an energy of 1.62 eV. At this frequency the temperaturethey begin to decrease sharpiWe note that in the three-
related changes in the baif} are insignificant. These data dimensionaMnF,, KNiF, etc) and two-dimensionale.g.,
are presented in Fig. 5 fak(al)=al (195 K)—al(T) as a K,NiF,) antiferromagnets, two-magnon scattering, which is
function of T, where a1 (195 K)=1.5. We see that in the sensitive to the contribution of spin fluctuations of the short-
regionT>T* =160—-170 K the intensity of theA-band ab- range order, has been observed experimentally in the Raman
sorption is practically constant, as is observed on heatingcattering spectra even at temperatures two or three times
from 300 K. On cooling belowl* , however, the intensity of greater thanTy in these compound®. It is these short-
the A-band absorption begins to fall off sharpljf(«l)>0. wavelength fluctuations that are responsible for the weak

Figures 4 and 5 clearly demonstrate that the deformatiotemperature dependence of the optical characteristics for
of the A contour is enhanced on cooling. This sort of tem-T>T,.
perature behavior is fundamentally different from that of the It can be assumed that in our case the unusual tempera-
absorption in the frequency region 1.5-2 eV for insulatorture trend of theéA band is due specifically to the behavior of
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the magnetic degrees of freedom, and the influence dband. In the context of the given spin-wave picture, the
phonons is appreciably weakened in comparison with théemperature-related narrowing of thecontour is due prima-
doping regionx=0.2, whereTy~450 K. Forx=0.35-0.37, rily to a decrease in the number of long-wavelength magnetic
according to the neutron-diffraction data of the Rossakxcitations, which are weakly damped in cuprate HTSCs.
Mignod group, Ty=250-150 K for YBaCu;Og., Single On the basis of what we have said, it can be asserted that
crystals(see the plots in Ref. 36In Ref. 37, forx=0.3, a the A band of absorption is sensitive to the magnetic degrees
value Ty=260 K was obtained. The precise correspondencef freedom and is thus due to the coherent peak in the den-
betweenT, andx is difficult to establish becausk(x) isa sity of states. In such a case the change in the spectrum of the
sharply falling function in the regior=0.3-0.4. In Ref. 38, AFM fluctuations(the correlation lengtl§ andA¢<1/¢) has
for YBa,CwOg., films with x=0.3-0.39, appreciable the strongest effect on the width of theband. The area of
growth of the magnetic susceptibility was observed belowthe A band, which reflects the oscillator strength of the tran-
T=150-200 K; this is due to the formation of ferromagneticsition, can be conserved in the process if there is a change in
clusters in the AFM matrix. We note that for La compoundsthe number of heavy carriers, which are dressed in a “fur
in the doping region where the AFM order is rapidly de- coat” of AFM fluctuations(in accordance with the general
stroyed, the phase separation temperature is clobg tRef.  rules for optical transitions, it is the heavy carriers that give
19). the largest contribution to the absorption nE@D.23 These

In our case the lowering of the absorption intensity be-concepts can be used for diagnostics of the evolution of
low T* is logically attributed specifically to a transition of AFM functions, of the temperature at which the spin
the sample to the AFM state. For a description of the tempseudogap opens in a metal, and of the redistribution of the
perature dependence of teabsorption band one can use densities between the heavy carriénst quasiparticlesand
the results of Ref. 39, in which a theoretical and experimentight carriers(cold quasiparticlesas the doping and tempera-
tal justification is given for an expression for the temperatureure are varied.
narrowing of the excitonic absorption band in the AFM Let us conclude this Section with a discussion of the
phase:o(T)=a(T=0)+ 6(T), where §(T) is the magnon nature of theA+J band. The optical spectra of cuprate ox-
correction to the rms deviation of the absorption band. Whendes (CaCuQ;, S,L,CuQ;, etc) exhibit a weak spectral fea-
the Bose—Einstein factor for the magnon population of aure, analogous to th&+J band, at a distance of several
two-dimensional AFM system is taken into account, one hasenths of an electron-volt to the short-wavelength side of the
8(T)=Texp{—As/ksT}, whereA is the spin gap® Then the  CT peak. This feature has its origin in the fact that the tran-
difference temperature spectrum can be written in the formsition through the CT optical gap is accompanied by excita-

tion of the magnetic subsystem of the coppéndeed, the

Alal) = a(To)l — a(T) = o p{ 3 (E—Eo)z} maximum of the two-magnon scatteringemag=3J, in cu-
= (T, - = 9

U(To)\/;ex 202(T,) prate HTSCs lies in the region of several tenths of an
electron-volt. In the AFM phase of YBE€uOg. , the two-
Mo magnon peak falls at an energy of 0.37 eV and is observed in
N [a(T=0)+5(T)]\/; experiments all the way up to doping levets=0.5 (it is
strongly attenuated upon the subsequent metallizatfon
(E—Ep)? Then the maximum of th&+J band should have an energy
xexp{ N 2[o(T=0)+ 5(1')]2]' @) hiop+hown,g~2.17 eV, which agrees well with its position

) on the spectra in Figs. 2 and 4. We note that near the CT

Let us assume that,=const, i.e., that the area of the gptical gap the excitation efficiency is resonantly enhanced
absorption band is conserved on cooling. Hege=195 Kis  for hoth the two-magnon excitations with energy &nd the
the initial temperature relative to which the measurementgo-magnon excitations with energyJ4* Therefore, the
are madg(see Fig. 3. Introducing the normalizing factoy,  |ow-temperature intensification of the CT transitions in the A
we have 5(T) = yTexp{—As/kT}, where y is to be found  pand quickly leads to enhancement of the magnon band
from the condition o(T=0)+6(T=Ty)=0(Ty). Since a4].
there are no temperature-related changes when the tempera- Thus it follows from all we have said that already at
ture is increased abovel~160 K, we have o(Tn)  x~0.35, while still in the insulating phase, the spectra dis-
=0(300 K). Thus we have two adjustable parametetS,  play the presence, to a greater or lesser degree, of those
=0) and A, which allow us to construct a model curve components of the optical absorption which must be taken
for describing the experimental dataee Fig. 5 which into account in a treatment of the metallic state from the

were obtained forE=_1.62 eV. For the dielectric phase of standpoint of the balance of the correlationagneti¢ and
YBa,Cu;0q,.« the spin gap has values,=3-5 meV(see gyalent contributions.

Ref. 40 and references cited theneifihe valuesEy=1.77

eV, u=0.64 eV, andr=0.14 eV were taken for thA band

from the model decomposition of the absorption spectrum _ _ _

for 300 K (see below. The solid curve in Fig. 5 gives a good 4.3. Analysis of the absorption spectra of the metallic

description of the experimental data for the chosen valueBhase

o(T=0)=0.073 eV,A;=4 meV, andTy=160 K. As a re- For a clearer understanding of what we will be doing, let
sult, one can say that the temperature dependence of thes list the main components of the decomposition of the
absorption in the wings of thA band arises beloWw* =Ty absorption spectrum in the visible region from 1.25 to 2.8 eV
and is dictated by the temperature-related narrowing of thist 300 K.
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FIG. 6. Decomposition of the absorption spectrum of a film with0.35in  FIG. 7. Absorption spectra of metallized YB2u;04 ., . films with different
the visible region. The inset shows the relative difference of the modeMalues of the critical temperatufig, . For better understanding, the spectra
spectrum &l )y, from the experimental spectruna).x,. The points in the  are shifted relative to one anothi@ee text The solid curve is the Gaussian
inset correspond to the frequencies at which the measurements were mad@ntour for the 3 band.

1. Two Gaussian contoursa(),g and (al),g, corre-
sponding to the covalent absorption bamjsand B . —(al)s)/(al)exp. Here the parameters of the Gaussian for
2. The Gaussian contour() , for the correlation peak. the correlation contouh of the absorption ar&g=1.77 eV,
3. The continuous component of the interband CT tranoa=0.14 eV,u5=0.64 eV. For the Gaussian contour of the
sitions. A subsequent analysis showed that this component #§+J band: E§**)=2.12 eV, 04,,=0.17 eV, u{**)
the spectrum conforms best to a frequency dependence0.47 eV. For the interband CT transitiofig=1.85, ug "
(al)or= MST(E—EQ)ZIE, which is characteristic for indi- =18 eV 1. Thus the spectrum is determined by the strong
rect allowed transitions in the absence of excitonic effectsgorrelation peakA, the peakA+J due to excitation of the
and also for the direct allowed transitions in the case whernagnetic subsystem, and the interband charge-transfer tran-
“tails” of the densities of states appear near the opticalsitions. The intensity of the absorption of the covalent peak
gap?3 near 1.5 eV is not more than 5% of the level of the absorp-
4. The absorption at the short-wavelength edge of théion of the remaining componentsee Fig. .
MIR band, (al)yr. We assumed that the level of this ab- Let us consider the spectra of three metallic films having
sorption in the visible region is constant but depends on thd =51, 73.5, and 88 Ksee Fig. J, where the curves for the
doping(see Fig. 2 The choice of a frequency dependence offilms with T.=51 and 88 K have been shifted by the level of
this component in the formal)yr~ 1l/w, for example, the absorption at 2.7 eV for the film with,=73.5 K. We
would have a small effect on the quantitative characteristicéecall that in the ortho-Il phase the holes are distributed ap-
of the other spectral components. proximately uniformly between the three substructures of the
5. In the insulating and weakly metallized phases ( YBa;CusOg.  unit cell: the two CuQ planes and the CuO
<0.5) there is also a Gaussian componenh) g, ;. As the  chain structure. In the ortho-I phase the distribution of holes
metallization becomes stronger as a result of chemical ois somewhat different~25% of the holes are on each
photodoping, this component of the absorption and also th€uQ, plane and~50% are on the CuQstructure. Inciden-
two-magnon peak in the Raman scattering spectra are sufally, the intense formation gb, holes already begins at the
stantially diminished?*3 optimal doping, and in the overdoping regime the system
The above decomposition of the spectra of all the filmsbecomes three-dimensional. From Fig. 7 one can see, in a
made it possible to achieve agreement with the experimentdirst approximation, the main features of the evolution of the
data to an accuracy of 5% or better. spectrum with doping. For example, near 2.3 eV one can
We note that the subsequent analysis was done fdirace the influence of the Bband for all three films. The
300 K, i.e., above the temperature of formation of thecorrelation peak in the underdoped film wilh =51 K is
spin pseudogapT*~150 K, in the metallic phase of preserved, although itis broadened and lowered in height. In
YBa,CuyOg , , With x>0.5° Therefore the parameters of the the film with T;=73.5 K, which lies at the boundary of the
A contour must be determined by the contribution of thetransition to optimal doping, the red wing is deformed on
high-frequency AFM fluctuation&ms deviation of the con- account of the growth of the absorption in the 1.5 eV region,
toun and by the transition strengtthe area of the contour ~ where the covalent peaRj is located. Finally, in the film
The absorption spectrum of a film witk~0.35, for ~ with T,=88 K theB} band at 1.5 eV becomes dominant, and
which (al)yr=0 (see Fig. 2in the region 1.3—2.6 eV can the correlation peak is greatly suppressed.
be described well by a sum of the following components, These general conclusions follow from a qualitative

plotted in Fig. 6: treatment of the spectra. For a clearer delineation of the bal-
B ance of the absorption bands on doping, let us give the spec-
(aD)f=(al)a+(al)asst(al)cr. tral decomposition for these three films.

The inset in Fig. 6 shows the relative difference of this Figure 8 shows the decomposition of the spectrum for
model decomposition from the experimental curMetl)ex,  the film with T.=51 K, and the inset shows the relative
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FIG. 8. Decomposition of the absorption spectrum of a film Witk 51 K 40

in the visible region. The inset shows the relative difference of the model
spectrum @l)g; from the experimental spectrunaek) ey, -

3.5

difference of the total model spectrunal(; from the ex- 3.0
perimental @l)c,,. The spectrum of this film consists of a g <
sum of the following components:

(as=(al)a+(al)ze+ (al)ort (al)vr 25
The parameters of the Gaussian contour &g=1.8 eV,

= A: - ZB: 2.0 1 H 1 1 1 1 1
op=0.2 eV, uy=0.12 eV for theA band; Eg"=2.3 eV, 12 14 16 18 20 22 24 26 28

028=0.2 eV, u§?=0.15 eV forBj; andEy=1.9 eV, ug"
=6 eV ! for the CT absorption. The level of absorption of
the MIR band in the visible region isae{)yr=1.3. It fol-  FIG. 9. Measured ®) and model( ) absorption spectra of a
lows from the inset in Fig. 8 that this film also has an YBaCuOg. film with T,=73.5 K: a — decomposition of the spectrum
A+J component near 2.15 eV, but its contribution is nota}nd the relat_ive differenc_e of the model dependencg from the measured
. . . (insed; b — direct comparison of the model and experimental spectra.
more than 5%. Thus the correlation peak is preserved in the
metallized film in the underdoping regime, but, as compared
to the film with x=0.35, its rms deviation is larger by a
factor of 1.5 and the area of the contour is substantiallyactive CuQ plane and the apical oxygen(4) decreases
smaller. The continued presence of this peak means that Agharply, by approximately 0.1 A, at the insulator—metal tran-
fluctuations remain present in the metal. Consequently, thsition in YBaCu;Og ., ,, Which makes it possible for elec-
broadening of theA band, following the conclusions of the trons to leak into the chain substructure, leading to the hole
previous part of this paper, must be attributed to enhancemetallization of the plane.
ment of the high-frequency AFM fluctuations, which in- Furthermore, it follows from an analysis of Fig. 8 that in
crease the mass of the charge carriers. This can happen if thige ortho-1I phase the value of() ot decreases substantially
correlation length of the AFM fluctuations decreases in theand, at the same timeq() g increases. This behavior is a
metal. For cuprate HTSCs in the underdoped regime théirect consequence of the correlational redistribution of the
characteristic values of are ~10 A, which is an order of densities of states, discussed above.
magnitude smaller than at the boundary of the AFM—metal Let us consider the next doping level — the film with
transition. The decrease in the area of nband absorption T.=73.5 K. Figure 9a shows the decomposition of the spec-
is a sign that the number of heavy charge carriers due ttrum into components and, in the inset, the relative deviation
AFM fluctuations is decreasing. Nevertheless, the cohererdf the model decomposition from the experimental depen-
peak of the density of states remains quite pronouncedence, and Fig. 9b shows a direct comparison of the model
against the background of states in the lower t$Be Fig. spectrum with the measured one. The spectral decomposition
1a), and the chemical potential apparently lies near the maxiis described by the sum
m”ﬂﬁfﬁgesgi'}imég zfa;grs'the film witlT,=51 K a sig- (al)=(al)at(al)ipt(al)opt(al)ert(alur-
nificant contribution to the spectrum is given by the covalent ~ The spectrum for this film clearly manifests all of the
peakBﬁ. Thij band, however, is not present in the decom-spectral components on which the spectra measured in the
position. This behavior can, generally speaking, be attributestisible region are based. The parameters of the Gaussian
to the fact that the strong mixing of the oxygen and coppercontour areEg=1.8 eV,0,=0.2 eV, uy=0.045 eV for the
orbitals occurs mainly for the statek, andd,,, i.e., the Aband;Es°=15 eV,015=0.36 eV, us°=0.09 eV for the
covalent bonding is strengthened primarily in the directionB} contour;E3®=2.3 eV, 0,5=0.2 eV, u22=0.15 eV for
perpendicular to the CuOplanes. This conclusion corre- BS. The parameters for the CT component Bgg=1.95 eV
sponds to the well-known fact that the distance between thand ,uOCT=6 eV, and the MIR absorption level is

ho ,eV
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(al)mr=2.3. The decomposition permits modeling of the 4.5
experimental curve with an accuracy of 3% or better across
the entire range 1.3-2.7 eV. 4.0
One notes the following features as compared to the film
with T.=51 K: g the appearance of thB} peak, which
attests to the enhancement of the covalence even directly in ;
the CuQ plane on account of hybridization of the Cw(,3) 3.0
and O(2) orbitals; b the parameters of the covalent peak
B3 are practically conserved, i.e., the degree of covalence in
the direction perpendicular to the Cu@lane is unchanged;
c) the width of the correlation peak remains as before, al- 0
though the area of the contour decreases. There are two most 12 14 16 18 20 22 24 28
important conclusions: o eV
First, the weak broadening of the band indicates that
the density of magnetic states for highirequency AFM fluc- G, 0, B con o e moce
tuanoqs varies insignificantlithe correlation Iengtl@ stops spectrum )y ff’om the experimimal S
changing, although the number of heavy carriers continues
to decrease against the background of an enhanced degree of
planar covalence. tribution of the Btlj band increased significantly, which is
Second, one notices the coexistence of the correl&ion indicative of an enhancement of the covalenpel Mixing)
band and the covalerﬁié band in the metallic phase. Since in the CuQ plane. Consequently, as compared to the film
spatial regions in the CuQplane in which covalent bonding with x~0.35 (T.<10 K), where the covalent peaks were
is established appear during doping, one must acknowledggbsent and the correlation peak dominated, here the opposite
the existence of regions with weakened correlations aroungicture is observed. In the film with the optimal dopingd
mobile holes embedded in a matrix of strong Hubbard cornetwork of covalent current bondeegions with an elevated
relations. Such a picture completely corresponds to the corhole concentrationis created in the CuQplane. At the same
cept of a correlation polarofsee the Introduction In the  time, the CT optical gajgquasigap, the value of which ex-
framework of the magnetic picture, the correlation polaronceeds by 0.1 eV the value of the gap for the lightly doped
moves in a matrix of AFM fluctuations. If one goes to an state, is preserved, apparently as a consequence of the shift
ionic model, then the formation of the correlation polaronof the Fermi level on doping. It can be assumed that the
corresponds to a shift from ioni€Cu®* +0%") to covalent behavior of the density of states for the optimal doping phase
(C*+07) bonding on doping! i.e., a transition from corresponds to that shown in Fig. 1b. The noticeably broad-
more localized states with strong Hubbard correlations in the&ned coherent peak merges with the lower Hubbard band,
hole subsystem of the copper Ty to a state with covalent but the preservation of the CT optical géfor CT transi-
bonding with mobile O holes. It can therefore be assumedions) means that the Hubbard correlations are preserved
that the correlation polaron is a hole formation around whicheven in a system of comparatively light carriers. With further
covalent bonds are concentrated, while outside this region metallization and the transition to the overdoped regime this
matrix of ionic bonds is preserved. We stress that the treatgap should completely fill with states, and the system will
ment of the correlation polaron can be manifested in thébecome an ordinary metal, for which the difference in the
conceptual framework of Hubbard correlations, AFM fluc- nature of the absorption in the mid-IR and visible regions
tuations, and the percent ionic character of the bonds, but allanishegsee Fig. 1 This, in particular, is indicated by the
of these concepts are in essence equivalent. The simultfact that the absorption has the same temperature dependence
neous observation of the optical “markers” of theandB  in the mid-IR and visible regions during the cooling of
character in our experiments is apparently direct evidence 0fBa,Cu;Oq. . in the overdoped regim@.
the existence of a correlation polaron.
Let us now turn to the metallized film, with.=88 K.  coNCLUSION
The decomposition of the spectrum, to an accuracy of 2% or

better, is shown in Fig. 10. The model spectrum has the Let us state the most important results and conclusions
following components: o obtained in the course of this study.

1. The absorption spectra of YBau;Og ., enable one
(a)g=(al)1g+ (al)og+ (al)crt (al ) yir - to trace the effect of doping on the absorption band at 1.5
eV, which is undoubtedly due to thed transition, d,,
The parameters of th&} contour areEj®=1.5 eV, —d,2_,2. The enhancement of this band upon metallization
015=0.36 eV, uiP=0.55 eV. For theB3 contour E3® s evidence that thed covalence pd hybridization in the
=2.25 eV,0,5=0.2 eV, MSB=O.15 eV; for the interband CuGO, plane is enhanced. Another absorption band at 2.3 eV
absorptionEg=1.95 eV and,u,gT=7.5 eV 1. The level of can be attributed to the transitioa, ,, ,—dy2_y2 and can
MIR absorption remains the same as in the film with  therefore be used to study the degree of interplanar cova-
=73.5 K: (al)mir=2.3. One immediately notices the exis- lence.
tence of strong covalent bands with absorption coefficients 2. The change in the level of metallization of a
of the order of those for the interband transitions and therBa,Cu;Og . film also affects the absorption band near 1.8
absence of a contribution of the correlatidband. The con- eV, which is located near the boundary of the optical gap.
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The destruction of superconductivity by the transport current is investigated for the case of a
wide film in a perpendicular magnetic field. The destruction of superconductivity occurs

by two competing mechanisms: growth of a normal don{aib), and instability of the viscous
flow of the magnetic flux. Under conditions in which the first mechanism is dominant,

analysis of the stationary domain states permits one to systematize all of the different types of
current—voltagdlV) characteristics of a film with a local inhomogeneity and to find the
dependence of the SN junction current from the values of the magnetidBfatdl the temperature
To of the medium. It is shown that additional heating of a film with a ND on account of the
dissipative motion of vortices in the S region can lead to vanishing of the hysteresis of the IV
characteristic a8 or T is increased. The known results on the current at which the

magnetic flux flow becomes unstable are used to obtain the field dependence of the crossover
temperature of these two mechanisms for the destruction of superconductivity. The main
theoretical results are compared with experiment. 2@0 American Institute of Physics.
[S1063-777X%00/00208-5

1. INTRODUCTION normal phase. The value df is the current density at

The mechanism of destruction of the resistive state of avhich indifferent equilibrium of an isolated nonisothermal
wide superconducting film by a large transport current deNS Poundary is established in a homogeneous film. Refer-
to papers on the ND can be found in the revfeand

pends on whether the film contains regions with weakene§NC€S

superconducting properties, i.e., macroscopic inhomogené'i- detailed analysis of the statics and dynamics of the ND in

ities. If there are no such regions, then, according to thdms with different types of inhomogeneities &=0 is

Larkin—Ovchinnikov (LO) theory! the destruction of the 9iven in Ref. 11. N
magnetic flux flow regime for temperatures closdtds due In the present paper we analyze the competition between

to the descending dependence of the viscosity coefficjent the above-described mechanisms for the destruction of su-
on the velocityu of the vortices. At high enough currents perconductivity in an inhomogeneous current-carrying film

this dependence;(v) leads to positive curvature of the &t B#0. For this purpose in Sec. 2 the theory of the ND
lower branch of the current—voltagéV) characteristic, elaborated in Ref. 11 is extended to the case of finite mag-

which terminates in a voltage jump at a characteristic currenf€tic fields. As a result, we establish the dependenck,pf
densityJ* (see, e.g., the experimental paﬁé}sThe quasi- on B, and we analyze all of the types of IV characteristics of

particle heating in the superconductor due to the dissipativi’® films and elucidate the conditions for hysteresis of the
motion of the vortices was taken into account in Ref. 4 critical currents for the destruction and recovery of supercon-
making it possible to explain the obserddaiependence of ductivity. In Sec. 3 we find the field dependence of the tem-
J* on the applied magnetic fieB. This made the LO theory perature at which the crossover occurs from one of the
agree with a rather large number of experim&htscarried above-described mechanisms for the destruction of super-

out under not very good conditions of heat removal from theconductivity to the other. We also discuss the results ob-
film to the substrate. tained and establish their agreement with recent experiments

In a macroscopically inhomogeneous film there is an-With YBa;CusO;7_ films.” Thus the present study confirms

other mechanism for the destruction of superconductivity b)}he conclusions of the authors of Ref. 7 that in their experi-

current, which involves the onset of the normal phase in dnents the mechanism for the destruction of superconductiv-
region of the film with a relatively low critical currerite., 'Y changed from one of growth of the ND to instability of

the formation of a normal domainin this case the destruc- "€ magnetic flux flow as the temperature of the medium

tion of superconductivity is caused by the growth of the nor_mcreased. In Sec. 4 we state the main results of this study.
mal domain(ND) on account of the Joule heat release in the
normal phase. Therefore, far<J., the ND is localized 2. STATIONARY STATES OF THE NORMAL DOMAIN IN A

. . : ESISTIVE FILM WITH A LOCAL INHOMOGENEITY
around an inhomogeneity, and the complete destruction o
the superconductivity of the film occurs at current densities A superconducting film with macroscopic inhomogene-
J>Jeq, When the state of the superconductivity is unstablety will be modeled by an SNS system in which the normal
with respect to the unbounded growth of a nucleus of thepart (N), of length 2, is in contact on both sides with a

1063-777X/2000/26(8)/5/$20.00 553 © 2000 American Institute of Physics
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superconducto(S). The Joule heat released in the N regionsame time, the comparison with experiment in Sec. 4 below

when current flows can heat the NS boundary to the criticakhows that our adopted model gives an adequate description

temperaturd . and transfer part of the superconductor to theof the experimental data.

normal state. This N-phase region will be called a normal  The solution of the heat conduction equatidn under

domain(ND). conditions of continuity of the temperature and heat flux at
The temperature distribution along the film at a fixedthe boundariegs= *| andx= *xg does not present any dif-

current densityJ can be obtained from the solution of the ficulties. Substituting the solution obtained into E4). gives

steady-state heat conduction equation: the following equation foxg:
O e (0(T=To) = p(0)3? 1 Ly 1ok Ay ot 6
k(%) gz + @) (T=To)=p(x) I, &Y 3| LHb(A=b) =y o=ty =1, ©

The form of Eq.(1) presupposes that heat propagates alongvhere we have introduced the notatigr=exd —(xg—1)/

the systenti.e., along thex axis) only by heat conductionin s,]. In Eg. (6) the dimensionless parameters

the film, while the temperature of the insulator substrate, b}fi:piJZ/ai(TC_To) (i=1,2) and = u coth(/»,), where

virtue of its high thermal conductivity, is equal to the tem- , — [, /s a,. The thermal lengthsy = i /«a; repre-

peratureT, of the surrounding medium. The second term Onsent the characteristic spatial scales for changes in the tem-

the left-hand side of Eq(1) describes the heat removal at a perature in the homogeneous part of the filim- () and in

small temperature difference of the film and substrate, whegne region of inhomogeneityi € 2).

the heat flux is linear in this temperature difference. Let us now consider inhomogeneities of short length,
As in Ref. 11, in Eq(1) the thermal conductivitk and <7, (corresponding to the experiment of Ref), Which

the heat-removal coefficient are assumed to be tem- \ere called local in Ref. 1XThe case of an extended inho-

perature-independent, piecewise-constant functions: mogeneity) > 7,, can be treated in an analogous wasor a
K1, [X[>1, , local inhomogeneity Eq6) simplifies to
K(x)= Ko, |X|<I, @ (f1/2)[1+b—(1—b)y?]+Afy=1, (7)
ay, |x|>1, where Af=(f,—f)l/(nwn,). The parameteAf character-
a(X =[ x| < (2a) izes the difference in heating of the inhomogeneity and the
@2 ' homogeneous part of the film. We further assume thiats
We further assume that the resistivity of the film has thea positive quantity that can be of the order of unity even
form: thoughl/ 7, is small, possibly on account of large values of
po, for example. The conditiodf>0 means that in the N
p2, X<l state the inhomogeneity is heated more strongly by the cur-
p(x)=1 p1, 1<|x[<xg, ®) rent than is the homogeneous part of the film.

Two important relations follow from Eq(7). If we set
y=0 (i.e.,xg=<) in Eq. (7), we will arrive at the equilib-
whereb=B/H.,(T,) is the reduced magnetic field. The last rium condition for a nonisothermal NS boundary in a homo-
row in (3) takes into account the heating of the S region duegeneous resistive film:
to the dissipative flow of vortices under the influence of the
transport current. f1=2/(1+Db). ®

The equation for the coordinatgs of the boundary of  Fqory—1 Eq.(7) yields the condition for nucleation of a ND:
the ND is determined from the condition

T(xg)=Tc, (4)

bpl! |X|>X51

bf,+Af=1. (9)

- . ) Equation(7) has two solutions:
where T, satisfies the relatiotd .»(T.) =B. Using the for-

mula Hep(T)=[dHc,/dTlr_(Teo—T), we obtain the fol- _ 1 [Af [[Af 2 (2 5 ) vz
lowing expression for the critical temperature: Y121 oV f) E_l_ (1-b) '
(10)
TC:TCO_B/|dHCZ/dT|TC01 (5)

Of these solutionsy; corresponds to unstable states of the
in which T is the critical temperature of the superconduc-ND andy, to stable stategA stable ND grows with increas-
tivity in zero magnetic field. ing heating of the inhomogeneity, i.ey,/d(Af)<0.)

We note that the possibility of analytical treatment of the  For analysis of the quasistatic dynamics of a ND upon
statics of the ND in a resistive film is largely a consequencechanges in current it is convenient to use the parameter plane
of the the model character of the temperature dependence shown in Fig. 1f,—Af, where the straight line& andB are,
the resistivity adopted above. For example, B).neglects  respectively, the line of nucleation of the ND and the line of
the self-consistent change in the upper critical fidlg due  equilibrium of an isolated nonisothermal NS boundary. The
to heating of the resistive regidr|>xg . Here the real, con- third line is the semiellipseC, which is determined by the
tinuous change in the resistivity with temperature, describe@quation
by the Bardeen—Stephen formtfligo=p,;B/H(T), is re-
placed by a jump irp at the boundary of the ND. At the (AF)2+[(1+b)fi—2f1](1-b)=0 (11)
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and is the curve on which the stable and unstable domain 0 Iop 1.2 Te '11.3
solutions coincide. The straight linédsand B are tangent to
the semiellipseC at points with coordinateél;1—b) and
(2_/(1+ b);0). T_hedOUble |nequz_ill_ty Gy=<1 taken tOQe_ther FIG. 2. The IV characteristics in the constant-current regimebfer0.2,
with the condition of nonnegativity of the left-hand side of =0.85(a) ands=0.45(b); V,, is the voltage across the normal domain;

Eq. (11) defines the existence region of the domain states iithe IV characteristics are calculated according to form@@. The direc-

the f,—Af plane (see Fig. 1 For 1< fi< 2/(1+ b) the re- tions_ of_ traversal of the parts of the IV characteristics with changing current
. . . L are indicated by arrows.
gion of stable solutions lies above the semiellipse, and for

0=<f,;=<1 it lies above the line of nucleation of the ND. The
points on thef ;—Af plane which correspond to the unstable
solutions belong to the region bounded by the semiellipsepn the IV characteristic(The dynamics of the transition
the line of nucleation of the ND, and the abscissa. from the unstable to the stable domain state is considered in
To systematize the IV characteristics it is convenient toRef. 11 forB=0.) The length of the ND in the stable state is
use the following parameter that characterizes the inhomogeg — | = 74In[ (1—Db)/(2e —1+b)]. With increasing current the
neity: ND grows quasistatically in a manner analogous to the case
Af o 1 e>1—Db. A quasistatic decrease in the length of the ND
= _:(Pz ! _1)_, (12 occurs down to a current,, at which the domain length is
fi \pray ®12 n1In[(1—b)/e]. Upon further decrease in the current the ND
We note that upon variation of the currdnthe parameters Vvanishes, and the voltage jumps back. The pdigtandl ¢,
f, andAf vary in such a way that their ratio remains con- are sometimes called the critical currents for the destruction
stant. In other words, the poinf{(1);Af(l)) moves along and recovery of superconductivity. Their ratio, i.e., the
the straight lineAf=¢f,. This point crosses the lines B, ~ amount of hysteresis, is given by
andC at the currents$;,, |4, andl¢,. The sequence of these
crossings with increasinglecreasingcurrent determines the lea_ 2(1-Db)(e+b) 13
form of the IV characteristic. It is easily seen that the straight 1.,  g241-p2 (13
lines Af=(1—b)f; andAf=3(1—b)f, (see Fig. 1 sepa-
rate different types of IV characteristics.df>1—b, then a In particular, formula(13) has the important consequence
ND is nucleated at a curreht; and increases monotonically that the 1V characteristic depends on both the parameters of
with increasing current; this corresponds to the nonlineathe film and on the reduced magnetic field. For inhomogene-
part of the characteristic. At a currehf, the entire film ities withe <1 the transition between the hysteretic and non-
passes into the normal state. The IV characteristiceforl hysteretic characteristics occurskat 1—«.
—b is shown in Fig. 2a. Fore<(1—b)/2 the IV characteristi¢not shown in Fig.
The case (+b)/2<e<1-Db differs from the case con- 2) differs in thatl ;>1.4, and therefore the ND that arises
sidered above in that the IV characteristic exhibits hysteresisnmediately spreads over the entire film. In analogy with the
(see Fig. 2h Now the domain nucleated at the currépt  case (1 b)/2<e<1-b the diminishing of the ND begins
corresponds to an unstable solution. Since there is also @ the current ., and ends at,, where the voltage across
stable solution at the currehy;, the system passes into that the ND jumps down to zero. The IV characteristic possesses
state through growth of the ND, and a voltage jump appearfysteresis with a ratid.; /1., given by formula(13).

I, norm. units
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FIG. 3. The dependence of the equilibrium current of the NS boundary on

the applied magnetic field at different temperatufgf the medium. The
lines are calculated according to formyled) for a value of the adjustable

FIG. 4. Dependence of the equilibrium current of the NS boundary on the
temperature of the medium for various values of the applied magnetic field.

parameter equal falHc, /dT|r_=2.4 T/K. The experimental data are taken The experimental data are taken from Ref. 7. The solid curves are calculated

from Ref. 7.

3. DISCUSSION OF THE RESULTS AND COMPARISON WITH
EXPERIMENT

according to formuld14) and the dashed curves according18).

|dH2/dT|y_=2.4 T/K. This value is rather close to the
value 1.9 T/K obtained from measurements of the tempera-

According to Ref. 11, the form of the IV characteristics ture dependence of the magnetization of a YB&O;_ 5
of inhomogeneous films in zero magnetic field is determinedingle crystal® and is in good agreement with the value
solely by the film parameters and is independent of the tem(2.2+0.3) T/K established in Ref. 14 from measurements of
peratureT, of the medium. The situation changes consider-the flux-flow resistivity in a YBaCusO;_ 5 epitaxial film.

ably if B#0. Indeed, it follows from the analysis in Sec. 2

It is seen in Fig. 4 that formulél4) contains the experi-

that the type of the IV characteristic depends on which ofmental data at comparatively low temperatufgsAt higher

three adjacent intervals that the parameterfalls into:
[0;(1-Db)/2], [(1—b)/2;1—Db], or [1—Db;]. As B or T,

temperatures the main mechanism for the destruction of su-
perconductivity becomes the instability of the magnetic flux

increases, the common boundaries of these intervals shift fgow. Confirmation of this is provided by the agreement with

lower values. Here the parameter whose value is deter-

mined solely by the characteristics of the film, can, in par-
ticular, pass from the second interval to the third, leading to

experiment of the relation

1*(To,B)=15(1—To/To)¥(1+B/B)%4 (15)

a change in the type of the IV characteristic from one withHere for1*(Ty,B) we use the rather simple approximate

hysteresigFig. 2b) to a single-valued curvé-ig. 2g. Such a
transformation of the 1V characteristic with increasifghas
been observed experimentally.

formula from Ref. 15 rather than extremely awkward exact
expression obtained in Ref. 4. The dashed curves in Fig. 4
were calculated on the basis @5 with the adjustable pa-

It is of interest to compare the results obtained in Sec. Zameterslg =170 mA andB;=6.3 T. We note that the

for the currentl .o with the observefifield and temperature

agreement of experiment with formulab) gets worse as the

dependences of the current of the transition to the normanterval of temperature$, increases, apparently because of

state for a YBaCu;O;_ 5 film. (We note that the authors of

the temperature dependence of the inelastic relaxation time

Ref. 7 compared their results with the theory of the ND for 7, of the quasiparticlesa quantity which appears in the LO

B=0.) From formulas(8) and (5) we obtain the explicit
dependence of the currehf, on the magnetic field and the
temperature of the medium:

TO 1/2
|eq(B,T0):IO< 1- T_CO>

1/2

1-B/|dHe, /dTlr_(Teo— To)
, (14

| T¥BI[dHe /dTlr_(Teo— To)

where the constant quantity=(2a;T¢o/p1) Y?dw (w is the

width of the film andd is its thickness The curves calcu-
lated according to formulé&l4) are shown in Figs. 3 and 4.
Here the parametép=77.3 mA is obtained from a compari-
son of thel 0,To) curve with experimenfthe critical tem-

peratureT.,=87.6 K).” The linesl¢(B) corresponding to
three temperaturek, (see Fig. 3 agree with the experimen-

theory). The situation considered in Refs. 4 and 15 is typical
for ordinary (low-temperaturg superconductors, when the

instability of the magnetic flux flow arises near the critical
temperature T,— To<<T.) and the temperature dependence
of 7. can be neglected.

In the case of “strong” inhomogeneity, for which,;
<l¢q, the temperature of the crossover between the different
mechanisms for destruction of the superconductivity consid-
ered above follows from the equality(B,To)=1*(B,T,)
and has the form

4(1+blbq)®

i
15)  (1+b)2
wherebr=B1/H(Ty). It follows from Eq.(16) (in agree-

ment with experimerij that for by<1 the crossover tem-
perature decreases with increasing magnetic field. We note

Ter=Te 1- ) (16)

tal data when a single adjustable parameter is used, vizalso that formulg16) contains only the characteristics of the
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homogeneous part of the film, i.e., it is valid for all inhomo- in comparison with the casB=0.! In particular, an in-
geneities that induce nucleation of a ND at currents less thacrease in the magnetic fieRlor in the temperatur&, of the
leg- In the case of a “weak” inhomogeneity with,;>1,,  medium can cause a transition from an S-shaped IV charac-
the crossover temperature is determined from the equalitieristic, i.e., one with hysteresis of the critical currents for the
l.1(B,Tp)=1*(B,Ty), which gives the expression destruction and recovery of superconductiViigee formula

4 3 (13)], to a nonhysteretic characteristic. A comparison with

lo\*(1+b/by)
-\
o) 4(e+Db)

(17) experiment§on YBaCu,O,_ 5 films shows that agreement
of the observed dependence of the current for the destruction
This expression contains the parametemwhich character-
izes the inhomogeneity. If the equations Ty, do not have

of superconductivity onB and T, with formula (14) is
achieved forldHc, /dT|r =2.4 T/K.

solutions, then the main mechanism for the NS transition is

instability of the magnetic flux flow. This conclusion can be

reached by noting that a temperature region in which thela. |. Larkin and Yu. N. Ovchinnikov, Zh. Esp. Teor. Fiz.68, 1915

Te=Te

current I* (B, Ty) is smaller in value tharl(B,T,) (or 2(1973 [Sov. Phys. JETR1, 960(1975].
|c1(B'T0)) always exists near.. Igé;f.(ll\ggglenko, I. M. Dmitrenko, and V. G. Volotskaya, JETP L&,
3W. Klein, R. P. Huebener, S. Gauss, and J. Parisi, J. Low Temp. Bhys.

_ . . o
We have analyzed the destruction of the superconductiv, A - Bezuglyj and V. A. Shklovskij, Physica €02 234 (1992.

ity of a fil taini | linh ity i V. G. Volotskaya, |. M. Dmitrenko, O. A. Koretskaya, and L. E.
Ity or a nim containing a local Inhomogeneity In a Perpen-  \,sienko, Fiz. Nizk. Templ8, 973(1992 [Sov. J. Low Temp. Phy48,

dicular magnetic field as the transport current is increased. 683 (1992].
We have shown that in the region of relatively low tempera- jZ- L. Xiao and P. Ziemann, Phys. Rev.38, 15265(1996.
W1eSTy<T, (he funcionT(B) for“Srong” and “weald 2 X0 &Y, At nd P Ziema. Py et iastonn,
inhomogeneities is given by formul&$6) and(17), respec- R.73.6(199’8.. T ' ' P '
tively) the superconductivity of the film is destroyed through °z. L. Xiao, P. Voss-de Haan, G. Jakob, Th. Kluge, P. Haibach, H. Adrian,
the nucleation and subsequent growth of a normal-phasleoint\i/ IE-G Tj-r:\zg;e;nzhéS-GRe&/i-n?g éigl,(vllgg%hﬁg 041 (1987
domain at the inhomogeneity. For temperatufgs>T S . o s i \ ;
the destruction of sup?erconscljuctivity isp caus-ead&b)jr theiﬁ' ga?ﬁégﬁ'i‘ni”ﬁ,l,vf\s'jg'ﬁfnv, S,';':{yjs'l LF%VQTKT&; (r13é§67é)?27(1984.
Larkin—Ovchinnikov instability of the uniform magnetic 3U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu,
flux flow. (In this context the role of the phase-slip resistivity Phys. Rev. Lett62, 1908(1989. N
mechanism, which involves the onset of slip lines of the M. N. Kunchur, D. K. Cristen, and J. M. Phillips, Phys. Rev. L&Q, 998
phase of the order paramelfein wide films, requires special 155 |, Bezuglyt and V. A. Shklovski, Preprint KhFTI 91-3in Russiad
study) Kharkov (1997).

For To<T, the heating of the resistivdhomogeneous 16, M. Dmitrenko, Fiz. Nizk. Temp22, 849(1996 [Low Temp. Phys22,
part of the film due to the dissipative motion of vortices leads 648 (1999
to a number of qualitatively new features of the NS transitionTranslated by Steve Torstveit
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Change of the magnetic properties of CoSiF  4-6(H,0) at structural transformations under
pressure. Determination of the g factor
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The interrelationships between structural phase transformations and the magnetic characteristics
of cobalt fluorosilicate hexahydrate are determined in the temperature interval 400-15 K

under hydrostatic pressure up to 220 MPa. It is shown that the values of the magnetization and

magnetic susceptibility in the different structural phases realizgel-Hm space are

practically independent of the amount of compression but undergo jumps when the symmetry of
the crystal lattice changes. The results obtained are used to determine the valueg of the

factors along two crystallographic directions for the phases studied20@ American Institute

of Physics[S1063-777X00)00308-X

It is known"? that a number of fluorosilicate hexahy- magnetic transformations are due to a change in the lattice
drates of divalent metals with the general formulasymmetry. Elucidation of this interrelationship is the subject
MSiFg-6(H,0) (where M stands for Fe, Co, Mn, or Mg of the present paper. For this purpose we have studied the
have two crystallographic modifications at atmospheric presinfluence of hydrostatic pressure on the magnetizaildn a
sure in different intervals of temperattfe One of these is a pulsed magnetic fieltH of up to 30 T and on the magnetic

trigona| modification(symmetry space group@i R3m' Susceptlblllty)( in a fieldH~0.01 T over a wide interval of
P§m1) and the other monoclini¢space groupP2,/c). temperatures and pressures for a sample found in different
Howevér only in cobalt fluorosilicate hexahydra@-}:SH structural modifications. The measurements were made along
is the first-order structural phase transiti®8«< P2, /c the trigonal axisC, of the single crystali¥t(H), x;(T) and

. . - in the plane perpendicular to this axigl( (H), x,(T)). The
_(temperature hysteresis 246259 aCcompanleq by a UMD orientation of the sample relative to the crystallographic axes
in the temperature dependence of the magnetic susceptibili

. . - Was determined at room temperature on a DRON-3 diffrac-
x(T).2 In addition, magnetic phase transitions have been ob: P

tometer.
served in the CoSi~6(H,0) single crystals at ultralow tem- o : Qo
) The magnetization and magnetic susceptibility were de-
peratures <1 K).*® It has been established that the para- 9 9 PHDILY

tic stat i q i ition t termined by a standard induction technidua. miniature
magnetic state on cooling undergoes a transition 1o ar%olenoid, the measuring system, and the sample were placed
antiferromagnetic state in the pressure interval 0 MPa

<40 MP hile at high i ¢ ; in a high-pressure vessel. The main feature of all the tech-
- a, while at igher pressures It goes 1o a frromaghiques used by us was that the pressure was conveyed to the
netic state. It is also known that tilgefactor of the C8" ion

. . " . o sample along a steel capillary by gaseous helium forced into
in a zinc fluorosilicate matriXat a substitution of 0.1% of P 9 priary by 9

the Zn iong exhibits a nonlinear dependence on the

compressiofi. 300

In studying Co-FSH under pressureve found that this AN \ B\
compound has a nontrividP—T structural phase diagram i\\\\\ \R_
(Fig. 1). Here the arrows indicate the direction of change of W
P or T during observation of the phase transition. The exis- oqq %o (,\

tence regions of_ the various phase modifications are dist_in- « _—f\jb\_o N
guished by the different types of shading. The cross-hatching < [ZP21/c3=4 4%@
denotes the region of metastable states. It is seen from thet jZ;‘

A
i i 5 og,//
P-T diagram that foilT <90 K structural transformations are 100 F — 1?7 / p /
not observed in the investigated pressure and temperature Co LSNP I SIS |

interval, but, depending on the prehistory of the sample, ei- D C

ther the monoclinic or the trigonal state can be observed in

Co-FSH at the same values of the thermodynamic param- ; e ‘

etersT andP. Consequently, one can determine whether the 0 Ry 100 P MPa 200

magnetic characteristics of a sample found in a single crys-
talline modification change under pressure or whether th&IG. 1. TheP-T phase diagram of the crystalline states of CgS#H,0).

1063-777X/2000/26(8)/3/$20.00 558 © 2000 American Institute of Physics
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FIG. 3. Field dependence of the magnetization of Cg3fH,0) at
T=20 K. A — P=10 MPa,0 — P=190 MPa.M: structural ordering
P2, /c (1), structural ordering3 (2); M, : structural ordering3 (3), struc-
tural orderingP2, /c (4).

| . 0 graphic transformations are realized on heating of the
0 100 200 300 sample. To determing(T) in the region of the phase tran-
) sition B— P2, /c the sample must be brought beforehand to

FIG. 2. Temperature dependence of the magnetic susceptibility of goSiFthe statefs b_elow the ImebC_ on the P-T dlagram (e'g"
-6(H,0) at different first-order structural phase transitioR8:— P2,/c at along the traJeCtor)A‘BCD)' Flgure 2b Sh(_)WS the functions
P=20 MPa (a); B—P2,/c; the sample is heated #=10 MPa (b);  X|(T) andyx, (T) for the case when the single crystal under
P2, /c— B; the sample is heated B=85 MPa(c). study is found in the initia]3 phase aff =50 K andP=10

MPa. It is seen that on increasing the value ofy(T)
jumps upward at the boundary of the phase transition
—P2,/c (line bc in Fig. 1), andy, (T) jumps downward.

e e ahon et ncrease i tempratrd T anl. (1) con
P : 9 P y 9 MBhue to decrease monotonically all the way to the phase
experiment at practically any temperatures and thus to move ‘ ) / — he linedf. wh h ;
along any thermodynamic trajectory on tRe-T plane. transformationP2, /c—R3 on the linedf, where they suf-
Let us consider the behavior of the temperature deper{_ered the anomalous changes described above. For determin-

ing x(T) in the region of the reverse phase transition it is
necessary to bring the Co-FSH beforehand to an initial
monoclinic state below the linkel on theP-T diagram, e.g.,
along the trajecton ADC. Upon further isobaric heating of
the sample in th€2, /c phase P=85 MPa,T=50 K) there
occurs a jumplike decrease f(T) and a jumplike increase

dence of the magnetic susceptibility of Co-FSH in the differ-
ent phase states realized T space. If the cross section
used is found in the trigondR3 state in the interval &P
<P, then up to the boundary at which the monoclinic
phaseP2, /c arises(line ab in Fig. 1) one observes a smooth
increase of botty(T) andxi(T). At the temperature of the of y, (T) (Fig. 20.

first-order phase transitioR3— P2, /c the value of the sus- In a study of the magnetization of Co$if(H,0) in a

ceptibility undergoes a jumplike change, wji(T) increas- 5 ised magnetic field of up to 30 T it was found that the
ing andy, (T) decreasing, while at the same time they retaingpjication of pressure within the limits of stable existence
their tendency to increase r_nonotomcally in the monoclinicys the phase under study does not lead to a change in the
phase as the temperature is lowered further to 15 K. Thepqolute value ofM(H). Figure 3 shows the isothermal
typlcal behavior of the |sobar|c_ curves gf(T) and x, (T) (T=20 K) dependence dfl;(H) andM, (H) measured for
with allowance for tﬁe hysteresis effects at the reverse phas[ﬁe monoclinic(curvesd, 4) and trigonal(curves2, 3) crys-
transitionP2;/c—R3 (line df in Fig. 1) is shown in Fig. 2a  talline phases @ =10 MPa and®=190 MPa. The symme-

for P=20 MPa. ForP> P, the magnetic susceptibility var- try of the phase under study, as before, is determined by the
ies monotonically throughout the entire temperature intervapreliminary choice of the thermodynamic trajectory. It is
investigated, exhibiting no anomalies of any kind at theseen that the absolute values of the longitudinal magnetiza-
boundary of the second-order phase transiR®— 3 (line  tion in theP2,/c phase is always larger than in tgephase,

bfe in Fig. 1). It should be noted that the designatiBnis  whereas for the transverse component the opposite relation-
provisional, since technical difficulties have prevented usship is observed. At the same time, the values of the isother-
from identifying the crystal structure of this phase, althoughmal functions M|(H) and M, (H) measured at different
the results of our x-ray diffraction studiemdicate that the pressures remained practically unchanged within the limits
threefold symmetry axis is preserved in this state. of stability of a single structural modification.

The results of a study of the susceptibility near the two By extrapolating the field dependences of the magneti-
first-order structural phase transition8—P2,/c and zation to infinite magnetic field, we were able to determine
P2,/c—pB (linesbc andkl, respectively, in Fig. lare of  the value of the saturation magnetizatidn and to calculate
interest because both the forward and reverse crystalldhe values of the factors for two crystallographic directions
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in the investigated structural states. In the caHeC; we In the investigated range of thermodynamic parameters

found My =3.4ug for the P2,/c state andVig=2.8ug in T andP the magnetization and magnetic susceptibility mea-

the B state. For H C3, we obtainedMg, =1.3ug for the  sured in the existence region of a single structural modifica-

monoclinic phase antg, =1.7ug in the B phase. For the tion do not depend on the value of the hydrostatic pressure.

monoclinic phase thg factor determined along th€; axis The presence of a critical pressuPg, suggests that the

of the single crystal is equal to 6.8, while for the trigonal ultralow-temperature antiferromagnetic ordering is inherent

phase it is 6.27. In the basal plane these values are 2.6 ama the monoclinic state, while the ferromagnetic ordering is

3.0, respectively. Within a single structural modification, inherent to the trigonal state.

pressure has practically no effect on this characteristic of In the transition from the trigonal to the monoclinic

CoSiF-6(H,0). modification the value of thg factor determined along the
The observed dependence of the magnetization on th€; axis increases from 6.27 to 6.8, while the value deter-

type of crystal structure suggests that behavior of an analanined in the basal plane decreases from 3.0 to 2.6, respec-

gous sort is also observed upon a change in the magnetiwely.

ordering in the ultralow-temperature region. Indeed, from a

comparison of the magneti@and structural(Fig. 1) P—T  “E-mail: asadov@host.dipt.donetsk.ua

diagrams it is seen that the change of the type of ultralow

temperature ordering from antiferromagnetic, when theig yogera, A. Tovii, K. Osaki, and T. Watanabe, J. Phys. Soc. 3gn.

sample is cooled foP<P,, to ferromagnetic, when the 863(1972.

cooling is done aP>P,, is in good agreement with the 2S. Ray, A. Zalkin, and D. Nempleton, Acta Crystallogr., Sect. B: Struct.

: : Crystallogr. Cryst. Chen9, 2741(1973.
behavior of the crystal structure under pressure, being a eng. Magumdar and K. Datte. J. Chem. Phyg, 418 (1965,

fect which is sgcondary to thg structural changes. “A. Ohtsubo, J. Phys. Soc. Ji0, 82 (1965.
On the basis of our experimental results we can draw the’v. pP. Dyakonov, E E. Zubov, and I. M. FitaAbstracts of the XXV
following conclusions. All-Union Conference on Low Temperature PhydicsRussian, Lenin-

. . 2 grad (1988, Part 2, p. 110. B
The anomalous changes in the magnetic suscepubllltyes N. Lukin and G. A. Tsintsadze, Zhk&p. Teor Fiz.69, 250 (1975

under pressure at the boundaries of the structural phase transoy. phys. JETR2, 128(1975)].

sitions are found to be in good correspondence with the res. K. Asadov, E A. Zavadski, V. I. Kamenev, and B. M. Todris, Fiz.
sults of the x-ray diffraction and differential thermal studiies, Nizk. Temp.23, 891(1997 [Low Temp. Phys23, 670 (1997}
thereby confirming the nontrivial nature of tie-T phase A. F. Vul'and B. M. Todris, Prib. Tekh. Esp. No. 5, 2081989).
diagram of the crystalline states of cobalt fluorosilicate.  Translated by Steve Torstveit
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The energy of the ordered state of the rare-earth subsystem of(KsDy),, with a unit cell
containing two magnetically inequivalent rare-earth ions, is calculated in the dipole
approximation. The magnetic configuration of the rare-earth ions corresponding to the ground
state of the magnetically ordered phase is determined. The field dependence of the
magnetizationV ,, My, andM_. at T=0 K is calculated. The phase transitions caused by an
external magnetic field are analyzed. The values of the equiv@dattors obtained

from the calculated magnetization curves agree satisfactorily with the values determined from the
experimental data on the heat capacity and magnetic susceptibility200® American

Institute of Physicg.S1063-777X00)00408-4

INTRODUCTION the cell is illustrated schematically in Fig. 1. The two RE
sites, which lie on the edge of the cell at a distancd/@f

In Ref. 1 we investigated the magnetic properties of . : .
. . . ~apart, are linked by a center of inversion and are therefore
CsDy(MoQ,), under the assumption that the dominant spin— . .
magnetically equivalent.

spin interaction in the system is the magnetic dipole—dipole As the temperature is lowered, the crystal undergoes a

) . i : by i
interaction of the rare-earttRE) ions Dy*". There we pro ?eries of structural phase transitions, the best-studied of

ceeded from the assumption that the two RE ions in the UNthich is the first-order transition at the temperatiiye= 40

cell of this crystal are magnetically equivalent. However, the .
: . : K. As a result, at helium temperatures one observes at least a
results of an electron spin resonan&SR experiment in . . .
doubling of the volume of the unit cell, accompanied by a

CsDy(MoO,), show that below the point of the structural lowering of its symmetry and the formation of inequivalent
phase transitionT= 40 K), which is accompanied by a low- g y y g

ering of the symmetry of the structure and multiplication of
the unit cell, these RE sites become magnetically inequiva-
lent. Therefore, it is of interest to describe the magnetic prop-
erties of CsDyM0Q,), in the dipole approximation with al-
lowance for this inequivalence of the sites.

The goal of the present study is to determine the mag-

netic structure of the ground state of the RE subsystem in the 3
magnetically ordered phase of the C$MipO,), crystal. We
shall calculate the field dependence of the magnetization at /

1
T=0 K for field directions along the axes of the orthorhom- :
bic phase, analyze the phase transitions caused by an external I
field, and compare the components of the equiva&ific- I
tors obtained from the calculated magnetization curves with : a
the values determined from measurements of the magnetic I
heat capacityof CsDYMo00Q,), at low temperatures in mag- i
netic fields up ¢ 3 T and from a study of the magnetic I
susceptibility* !

CRYSTAL STRUCTURE AND EFFECTIVE g FACTOR OF
RARE-EARTH IONS IN THE CsDy (MoO,4), CRYSTAL

CsDy(MoQ,), belongs to the isostructural series of
cesium—rare-earth molybdatesyith space groupD3, (at
room t;mperatun)eandAL.mlt Ce". parameter_a=9.51 A’ b FIG. 1. Diagram of the arrangement of theDyions in the CsDYMo00O,),
= 7_-97 , ‘?ndc: 5.05 A; the unit cell contains two form_ma _unit cell. The arrows indicate the directions of the axes ofgftensors of
units of this compound. The arrangement of the RE sites ifthe magnetic centers.

1063-777X/2000/26(8)/8/$20.00 561 © 2000 American Institute of Physics
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centersl and 2 for the RE ion& in the a direction. In the

ESR spectrufhof CsDy(MoQ,), this inequivalence is ex- we can write Hamiltoniari1) in the form

pressed in symmetri@bout the orthorhombic axesotations

of the tensors of the effectivg factor, which characterizes
the resonance absorption at the lower Kramers doublet of the
ground term of the DY ion ®H,g/,, which is split by the
intracrystalline field. The extremal values of théactors for

the two centers are equajy,=3.7+0.2, g,,=1+0.5, and
g.-=13.4+0.5, and the values of the angles of rotation of
the principal axesa’, b’, andc’ of the tensors are small,
+10° and*=5° in theab andbc planes of the orthorhombic
phase, respectively.

MAGNETIC STRUCTURE OF THE GROUND STATE OF
CSDy(MOO4)2

The question of the applicability of the Luttinger—Tisza
method for determining the magnetic structure of the
ground state of a dipole system in the case of several (
magnetic ions in the unit cell has been analyzed by a number
of authors. It was shown that the method can be used only
for n=1 (Ref. 8 andn=2 (Refs. 9 and 1)) and in the latter
case the two ions must be magnetically equivalent.

In Ref. 1 we calculated the parameters of the ground
state of CsD¥Mo0Q,), without taking into account the mul-
tiplication of the unit cell forT<T., the rotation of the
principal axes of the effectivg-factor tensors, and the in-
equivalence of the RE ions in this structure, thereby reducing
the problem to then=1 version, since the above-indicated
differences of the parameters of these sites are small. In the
present paper we treat two inequivalent RE centexsd?2 in
two stages. In the first stage these centers will be assumed
equivalent, as before, making it possible to use the solution
of Refs. 9 and 10 fon=2 to determine the ground state
configuration, and in the second stage we shall take into
account the inequivalence of the centers.

It should be noted that in the low-temperature phase of
the crystal(for T<40 K) the center of inversion linking the
sites on theb edge is preserved, and therefore the G
and 2,3 remain pairwise equivalent. Therefore, in the struc-
ture analyzed we shall treat a unit cell with the parambter
reduced to half and the parametedoubled in comparison
with their initial values.

The method we shall use for determining the ground
state of a magnetic dipole system is set forth in sufficient
detail in Refs. 7—10. The Hamiltonian of the dipole—dipole
interaction of the magnetic moments located at diteadj
of the crystal lattice is written in the form

Hd:;j (i) 5= 3(mir i) (mrip) Vs, (1)

wherer; is the radius vector connecting siteandj. Taking
into account the relation between the components of the
magnetic moment and the spin,
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where ug is the Bohr magneton an8lis the effective spin,
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/u“|y225 MBgiV&SI&, Y 5:X1y121 (2)

FIG. 2. Magnetic configurations of the dipole system in the case of a cell
containing two magnetic ionfsThe magnetic moments at sites of the same
color are parallel. The moments labeled andc,d belong to the first and
second subsystems, respectively, and are antiparallel.
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where The calculated energy values for the 16 structures stud-

2 TR ied are presented in Table I. It is seen that the minimum

pr— S B g gr =32 9 it | (4)  energy values belong to the configuration 3AF-6, with an
L g\ ﬁ energy per ion ofEg=—1.31263 K. There are three more

Th . fth q in th onfigurations with energies close g, viz., 3AF-5, 8AF-
'he ”?agne“c ;tructure ofthe ground state in the CaS€ Of5 and 8AF-16, which can also lay claim to the role of the
two ions in the unit cell must correspond to one of sixteen

ibl : ™ ¢ i qi round state. At the base of these configurations Isca
possible variants. These types of structure are illustrate t'jalane consisting of ferromagnetic chains of RE ions lying a

Fig. 2; Th?y .are“char’?ctedri%‘edhby”the prisepcehp];two SUlistancec apart. The magnetic moments of the RE ions of
sy_stems of site¢ own™ an OJ.[ er ), each of which con- neighboring chains in thbk direction are oriented antiparal-
tains sites of the first kinéto which ion1 belong$ and of the lel. The configurations 3AF-5, 3AF-6, 8AF-15, and 8AF-16

second kind(to which ion2_belong$. For egch of the S_Ub' differ from one another only in the character of the ordering
systems there are, according to Ref. 8, eight magnetic CO% the basal planes in thee direction

f!guratlons, n Wh.'Ch the magnetic mome_nts are arranged col- The next group of configurations in terms of energy con-
linearly. These include a ferromagnetic structure, aINe sist

" . 4 si fl 4 antif s of 4AF-7, 4AF-8, 1FM-2, and 1FM-1, with energies
antiferromagnetic structure, and six types of layered antifery, <o ng— — .77 K. At the base of these configurations is

romagnetic structures. In turn, the moments in the respectivg bc plane with ferromagnetically ordered moments of the

sites of these two subsystems are oriented either parallel ¥E ions. The remaining configurations have considerably
antiparallel, which in the final analysis gives the 16 afore-higher energies

mentioned magnetic structures, which in general are of the In calculating the energies of the ferromagnetic structure

four-sublattice type. 1FM we took into account the correction due to the demag-

.Determ|nat|on of the v_alue§ of the energy for t-hese mag'netizing factor. Its value for a macroscopic sample of spheri-
netic structures and the directions of the magnetic moments

£ th blati q lculating the ei | dal shape, in accordance with the expressidE
o the sublattices reduces to caicu ating the eigenvalues an=271-u28g282n0/3, is —0.0222 K if the moments are oriented
eigenvectors of third-rank matrices of the form

in the direction of thea axis, —0.0016 K if they are oriented
> in the direction of theb axis, and—0.2916 K if they are
Ak:;j q;(KPJ°,  k=1,...,16, (5) oriented in the direction of the axis, where we have used
the valueny=4.98x 10?* cm™3 for the density of D}" ions
whereX;_; denotes summation of the matrix elements ovelin CsDy(MoO,).,.
the lattice, and the factay;; (k) = =1, the sign depending on Analysis of the results of the calculation show that the
the mutual orientation of the moments at sutemdj in each matrix e|ement56\1/lf , which describe the interaction of a
particular configuration. 9
When the presence of two subsystems of magnetic ion
is taken into account, expressidh) can be written as a sum
of terms Ak, and Ak, whose matrix elements are deter-
mined by the magnetic dipole interaction of the ions of the
given type with the RE ions of their “own” and the “other”
subsystems, respectively:

iven ion with the RE ions of its own subsystem, are much
greater than the matrix elemen@q,fo, which describe the

interaction of a given ion with ions of the other subsystem,
since the latter lie farther away in the unit cell. For all the
configurations except 1FM the maximum of the ratio
AJq /AL is not more than a few percent.

Therefore the interaction of a given ion with the ions of
A=A, A%, ko=1,....8 (6)  the second subsystem can be treated as a small perturbation

(the upper sign is used for parallel and the lower for antipar:[hat does not substantially alter the initial state of the system

. determined by the intrasubsystem interaction. We shall make
allel moments of the subsystemand the ions have the fol- A . o . .
. . ) use of this circumstance in taking into account the inequiva-
lowing coordinates:

lence of ionsl and?2 in the unit cell, assuming that the types

ri={xy,y1,21}={2la,mb/2,nc}, of ground-state configurations remain unchanged in such a
_ _ (7) treatment, while the energies of these configurations change
r,={x5,¥5,2,}={(21+1)a,mb/2,nc}, only slightly.
wherel,m,n=0,+1,+2,... . As we have said, the angles of rotation of the principal
Since the RE ions have effective siBr 1/2, the energy  axes of the effectivg-factor tensors of the inequivalent ions
eigenvalues for HamiltoniafB) are in sites1 and?2 illustrated in Fig. 1 arex;=10° in theab

5. 2.5 plane andB;=5° in thebc plane for the first ion, andy,
Ei=ugeil4, ® = _10° andB,=—5° in these same planes for the second

wheres are the eigenvalues of the matAy . Evaluation of  ion. The parameteb in the unit cell under study is 3.985 A,

the matrix elements was done by direct summation of th@s before. The elements of the matAx were calculated in

matrix element$6) over a sphere of radius 475 A. The error the lattice coordinate system, in which the matrix of the

in the calculation of the energy values was not over 0.1% fotensor for the magnetic centetsand 2 have an analogous

moderate expenditures of machine time. In the calculationfrm, but their corresponding matrix elements and square of

we used the lattice parameters of the high-temperature pha#iee g factor are given by

of CsDy(M00O,),, since, judging from the results of dilato-

metric studies? the differences in the lattice parameters at

4.2 and 300 K are not more than 0.1%. 97=gar cOS(a,) + gy Sin(a,);
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TABLE |. Energy eigenvalues and the resultant angles of rotation of the magnetic moments of the configurations of the ordered statel@®sDy

Predominant

M;’:lgnetic direction a=p= g a=110°, B==5%
configuration of the sublattice | sites 1 and 2 . . .
moments equivalent sites 1 and 2 inequivalent
Ek/kB , K Ek/kB , K 8, . deg 9, , deg 8, . deg 9, , deg
ulla 0.08145 0.07555 85.025 —61.432 85.025 61.432
1FM-1 ull b ~0.01150 ~0.00648 -10.825 -67.216 10.825 | -+ 67.216
wll e —0.74310 —0.76634 —0.565 9.184 —0.565 -9.184
P-” a 0.21921 0.20897 84,162 ~86.038 84.162 86.038
1FM-2 ““ b -0.01171 -0.01357 -2.367 ~87.928 2.367 — 1+ 87.928
p.” c -0.77252 —0.77435 -0,189 5.413 -0.189 -5.413
H” a -0.06920 —0.06502 85.865 ~104.362 85.865 104.362
2AF-3 M” b 0.00668 0.00739 -3.948 -87.015 3.948 -1+ 87.015
ll” c -0.29233 ~0.28154 1.229 2,900 1.229 —2.900
ulla -0.06920 —0.06502 85.865 —104.362 85.865 104.362
2AF-4 H” b 0.00668 0.00739 -3.948 -87.015 3.948 -1+ 87.015
HH c -0.29233 -0.28154 1.229 2.900 1.229 -2.900
P-” a -0.05331 —0.04860 89.047 —-114.624 89.047 114.624
3AF-5 p,” b 0.01120 0.01258 -0.480 -86.023 0.480 -1+ 86.023
u” ¢ -1.31255 —1.28790 0.458 3.982 0.458 -3.982
H” a -0.05098 -0.04632 89.316 -128.329 89,316 128.329
3AF-6 Mllb 0.01103 0.01231 -0.876 86.011 0.876 -1+ 86.011
M” c -1.31263 —1.28794 0.458 3.974 0.458 -3.974
H” a 0.21911 0.20949 84.530 ~82.066 84.530 82.066
4AF-7 H” b -0.01171 -0.01212 -5.465 —84.337 5.465 — 1t + 84.337
H” c -0.77160 —0.78453 -0.215 5.684 ~0.215 -5.684
ulla 0.21911 0.20949 84.530 ~82.066 84.530 82.066
4AF-8 H” b -0.01171 -0.01212 —5.465 -84.337 5.465 — 1+ 84.337
P-” c -0.77160 —0.78453 -0.215 5.684 -0.215 -5.684
P-” a 0.00727 0.00546 =75.122 ~74.756 =75.122 n— 74.756
SAF-9 ull & -0.01195 -0.01510 11.942 ~86.165 -11.942 | _ ;4 86.165
ull ¢ 2.04974 2.01751 0.353 4172 0.353 —4.172
H” a 0.01621 0.01365 -81.952 —73.081 -81.952 n—73.081
SAF-10 ull o -0.01195 ~0.01476 10.515 -85.644 ~10.515 | — ;4 85.644
ul e 1.93253 1.90267 0.370 4.146 0.370 4146
H” a 0.01177 0.00961 —78.930 ~73.993 —78,930 n—73.993
6AF-11 wll ~0.01195 ~0.01491 11.063 -85.911 ~11,063 4 85.911
ull ¢ 1.99073 1.95943 0.361 4.159 0.361 ~4.159
H” a 0.01177 0.00961 —78.930 —73.993 -78.930 n—73.993
6AF-12 ull b -0.01195 ~0.01491 11.063 -85.911 ~11.063 ot 85.911
ull ¢ 1.99073 1.95943 0.361 4159 0.361 ~4.159
M” a —-0.06958 -0.06539 85.842 -104.352 85.842 104.352
7AF-13 p,|| b 0.00670 0.00741 -3.889 -86.971 3.889 -1+ 86.971
u|| c -0,29050 —0.27940 1.242 2.890 1.242 —2.890
M” a -0.06882 —0.06469 85.886 -104.397 85.886 104.397
7AF-14 !»l” b 0.00667 0.00737 ~4.,009 -87.061 4.009 — 1+ 87.061
“” c —0.29426 —0.28317 1.219 2.907 1.219 -2.907
H” a -0.05214 —0.04746 89.184 -120.191 89.184 120.191
8AF-15 11” b 0.01112 0.01245 -0.675 -86.017 0.675 -7+ 86.017
H” ¢ -1.31259 —-1.28792 0.458 3.978 0.458 —-3.978
H” a -0.05214 —0.04746 89.184 -120.191 89.184 —120.191
8AF-16 p|| b 0.01112 0.01245 -0.675 -86.017 0.675 -7+ 86.017
“” c -1.31259 -1.28792 0.458 3.978 0.458 -3.978
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XY=g¥*=(ga — dpr)SiN( @) cog a,) COL B,);
g%=g%*= (ga — Gy )SIN @) COS @) SiN( B,); )
9¥’=ga Sin’(@,)coS(B,) + gy cOS(a,)coS(B,)
+ge SIFF(B,);
g¥*=g¥=(g. sirf(a,)+gy co(a,)—dc')
X sin(B,)cos B,);
92=g2, sif(a—a,)+g;, cof(a—a,)sirt(B—B,)

+9% cof(a—a,)cod(B—B,);

if one neglects the deviation of the plane formed by the prin-
cipal axes of they tensorsg,: andg., from theac plane of
the unit cell. Herer=1,2.

Since the unit cell of the crystal contains two magneti-
cally inequivalent RE ions, the procedure for determining the
eigenvalues and eigenvectors of the matkixwas applied
twice. In the first case RE iofh was placed at the center of
the sphere, and in the second case REZoiThis made it
possible to determine the direction of the magnetic moments
of the two subsystems associated with the inequivalent cen-
ters1 and2 for all the configurations.

The results of a calculation dg, in this case are also
presented in Table I. It follows from these results that the
energies of the ground configurations actually do change ex-
tremely little from the case of two equivalent ions. The mini-
mum energy, as before, belongs to the 3AF-6 ConﬁgurationﬁlG. 3. Magnetic structure of CsY00,), in the ordered state faF=0 K
and the hierarchy of configurations on the energy scale is thia the absence of an external magnetic fieldthe 3AF-6 configuration(a)
same as in the case when ichand?2 are equivalent. and forH>H,: Hllc (b); Hlb (c); Hlla (d).

It should be noted that because in the version with
equivalent centers we neglected the rotation of the principal ) )
axes of the tensor of the effectigegfactor with respect to the  Structure of the RE ions in CsDYyloO,), should correspond
orthorhombic axes of the lattice, the matri¢6sturn outto {0 the 3AF-6 configuration. For it the angles of rotation
be diagonal for all types of configurations. Therefore, theOf the magnetic moments of the RE ions for their “own”
orientation of the magnetic moments of the RE sites, whictfd the “other” subsystems aref,,=0.458° and

is determined by the eigenvector of the matrices for the cor®1.2= *3.974°, respectivelyFig. 38. Thus the structure un-
responding eigenvaluea‘f coincides with the direction of der consideration is a four-sublattice structure, made up of
the orthorhombic axes. sets of ferromagnetic chains of RE ions lying along the

At the same time, in the version with inequivalent cen-direction of the crystal, and the orientation of the magnetic

ters1 and2 matrices(6) become nondiagonal. In this case a MOMents in the chains of ions of typésand2 is also close
calculation of the eigenvectors will enable us to determind® this direction. . _ _

the resultant angles of rotation of the magnetic moments with 10 Study the evolution of the magnetic structure in an
respect to the orthorhombic axes. Their values are given ifXtérnal magnetic field directed along the orthorhombic axes
Table I. Hereg is the angle between the magnetic moment of& P andc, we must determine the configuration that will
the sublattices and tHec plane, andy is the angle between have the minimum energy at the given value of the magnetic
the projection of the magnetic moment on the plane and field. This r.mght.be the initial conflguratlop 3AF-6 or a
thec axis. For all the low-energy configurations these angle§anted configuration with a resultant magnetic moment in the
are small, and the deviations of the moments from the orthodirection of the field. Here one expects that a symmetric
rhombic axes are slight. Since the magnetic moments of th_gant.ed phase will be realized, since the field will be appligd
sublattices are oriented either approximately parallel or alln directions of symmetry. The magnetic structure of this

most antiparallel, one can speak of a predominant directiog"gular configuration can be determined by finding the mini-
of the moments. mum angular dependence of its energy§(6,¢) in the

external magnetic field:

CALCULATION OF THE MAGNETIZATION OF THE EZ(0,¢)=ESy(0,0) +ES(6,0) +EX(6,0)+ES(6,9),
CsDy(MoO,); CRYSTAL AT T=0 K. PHASE TRANSITIONS
CAUSED BY AN EXTERNAL MAGNETIC FIELD a=a,b,c, (10)

The results of the previous Section imply that in thewhere Egd(e,go):EKj[(MiMj)rizj—S(Mirij)(ﬂjrij)]/rf’j is
absence of an external magnetic field'at0 K the magnetic the energy of the dipole—dipole interaction of the RE ions of
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FIG. 4. Calculated curves of the magnetization of C8ly0O,), versus the magnetic field far=0 K ( ), and experimental curvEsfor T=0.6 K and
Hllc (= — — 9 for a spherdga) and for a two-dimensiondin the bc plane slab with a 1:100 ratio of side).

the canted Configuratiofgm(e,go):Na,ui(e,go)nOIZ is the netic configuration 3AF-6 to a canted configuration with a
energy of the demagnetizing fields for a Samp|e of macrorgsultant mqgnetic moment in the d.irection of the magnetic
scopic dimensionsN,, is the demagnetizing factor in the field (see Fig. 3b Here the magnetic moments of the RE
directiona; EX(6,¢)=—2mu2(0,9)Nny/3 is the Lorentz en- ions of different sublattices will be rotated in a symmetric
ergy; andE{j(6,¢)=—pu.(0,¢)H, is the energy of the Way for a spherical sample and a slab, #y,=—0.3° and
magnetic moment in the external field. ¢1,=*+5.8°, and the projection of the magnetic moment of
Here the function&a(glgo) have the form: the ions on the coordinate axes will have the fOIIOWing val-

. ) ues:
Mx( 07, 0.)=ugSgy sin(6,) + g7’ cod 0,)sin(¢,)
+g*%coq 0,)cod ¢,); py=—0.02ug; M§=i0.6MB; uy;=6.67ug.
pryo(0,,0,)=psSIgY*sin(0,) + g cos 6,)sin(¢,) ~ Since for a spherical sample the demagnetizing factor in
this direction is nonzero, the magnetic structure of the
+gY*coq 6,)cod ¢,)]; (11)  sample after the phase transition will be of the domain type.
The interval of field values in which the domain structure
— ZX o zy ;
M 0:,0,) = ngS[Q7 siN(0,) + 07" cogd 0)sin(¢,) will exist is determined by the demagnetizing fiehf,,
+g%%cog 0,)cog ¢,)], =1.3 kOe. At a value of the external magnetic figttf

=Hg,=H¢, +Hg,=2.5 kOe, the domain structure vanishes.
wherer=1,2. _ Further increase in the magnetic field will lead to additional

The minimum of the energfg as a function of the rotation of the magnetic moments of the RE ions and, hence,
angles¢ and ¢ that specify the direction of the magnetic 5 5 small increase in the longitudinal component of the re-
moments of the RE ions in the sites in an applied externajtant moment. In the limit®— o0, the magnetic moments
field was found by a numerical calculation. Here it was as-f the RE ions will be directed in such a way that the value
sumed that if the conditiofg>Es is holds, then the mini- o ;¢ will be maximum. In this case the magnetic moments
mum energy of the magnetic system will correspond to they the RE ions of the two sublattices will be rotated @y,
3AF-6 configuration, and ifEG<Es then it would corre- - 1° andg, ,= +4.6°, respectively, and the comporients
spond to a canted configuration. By determining the directioryf the magneﬁc moments of the ions are
of the magnetic moments of the RE sites in this way and,

px=0.01ug; p;=6.68ug.

hence, their projectionk, on the field direction, one can
The critical field parameters calculated above for

construct the magnetization as a function of the external
magnetic field applied in the corresponding direction.

Figure 4 shows the results of a calculation of the func-samples of different shapes and the values of the magnetic
tions M¢(H), My(H), and M4(H) for a spherical sample moment projections and the anglésand ¢, characterizing
and a two-dimensiondin the bc plane slab with a ratio of the behavior of the CsOifoQ,), system for a field orien-
sides equal to 1:100n the experiments whose results will tation H|/c, are presented in Table II.
be used for comparison, the samples were generally in the The system behaves in an analogous way when the ex-
form of slabs. ternal magnetic field is along the and b axes, since the

When the external magnetic field is directed alongdhe plane in which the magnetic moments lie for the four-
axis (Fig. 4 andH°<H¢,, whereHg;=1.2 kOe, the mag- sublattice structure under study does not coincide with the
netic structure of the RE ions in CsDyoO,), will corre-  basal planes of the orthorhombic unit cell. The behavior of
spond to the 3AF-6 configuration. At the field vali€  the system is also characterized by the presence of critical
=H¢, there occurs a phase transition from the antiferromagfieldsH.;, andH.,, the values of which are given in Table II

py=*0.6ug;
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TABLE II. Parameters characterizing the behavior of C80y0O,), in an external magnetic fieldThe values of the critical fields are given in kOe, the
magnetic moment components in Bohr magnetons, and the angles in degrees.

Parameter
ux uu Mz e1 ([)1 e2 (pZ

c
2
E a _ o~ o o o [5\] o™ o
5 T | g 5 1 k3 e k3 © R 3 S 3 2 3 3
g < = s us s jas sl T s jast s} = as) T i) jas)
@) 3| - Il A 1 ﬁ I Q I Q I ﬁ I ﬁ I k

1 ~ )

o I R e N - Rl - s Tz | Flom

H|la|11.3|11.6 |12.1| 1.82 | 1.83 |+ 0.32|+£ 0.30} 0.10 | 0.02 | 82.0| 82.8 | 87.2 95.0 82.0 | 82.8 | -87.2|1-95.0

H|b|11.1[11.2|11.1 [£ 0.17|+£ 0.65| 0.70 | 0.83 |+ 6.50|+ 4.65|-3.8 |-16.2|16.6 - n|47.6 -~ | 3.8 16.2 | ~16.6 | —47.6

Hile| 1.2 | 2.5 | 1.2 |-0.02| 0.01 [+ 0.60|+ 0.60| 6.67 | 6.68 |-0.3| 0.1 5.8 4.6 -03 | 0.1 | -5.8 | -4.6

along with the other magnetic parameters. The magnetibeat-capacity and magnetic-susceptibility experiments in
structure of the RE ions foH>H_, is shown in Fig. 3c  CsDy(MoQ,),.
(H||b) and 3d {]a). A magnetic field in theH||b orientation gives rise to a

It is of interest to compare the results obtained in thismagnetic moment in the magnetically ordered state of this
calculation and in experimental studies of the magnetic properystal, the value of which is approximately an order of mag-
erties of CsDYMoQy,),, which have been done by a number njtude smaller than for the orientatidt|c.*? This also cor-

of authors. Here it should be kept in mind that the resultantesponds to the relationship that we found between the pa-
magnetization of the crystal, examined above for differentameterss, andG,,.

orientations of the external magnetic field, can also be char- gq¢ the orientationH||a one observes an appreciable
acterized by the value of the equivaleBtfactor in accor-  geatter of the experimental values of the effectivéactor:
dance with the expressidd; =G;ugS for an effective spin  hq yajues obtained in Refs. 3 and 4 were=14.2 andg,

of the Dy*" ion S=1/2. In this case the values of the equiva- =8.9, respectively. In any case, however, they are quite a bit

lent G factor depend on the value of the external field, and innigher than the value that we obtain@j;= 3.65. The reason
high fields H>Hc, one has the value$.=13.36, Gy ¢, yhis gifference is still not clear to us.

=1.66, andG,=3.66. It is this parameter that should be
compared with the effectivg factor obtained experimen-
tally.

In studying the magnetic susceptibility of Cs®oO,),
in the paramagnetic state, for a field orientatidfc a value
of g.=12.4 was obtainédfor the effectiveg factor of the
Dy** ions. The magnetic component of the heat capacity of
this crystal in a magnetic field with this same orientation is
described by an effectivg factor g.=12.8° These values
are close to that calculated by U5;=13.36.

As can be seen in Fig. 4, the magnetization of
CsDy(MoQ,), in the magnetically ordered state as a func-
tion of the magnetic field in the orientatidri||c (Ref. 12 . . _
also has much in common with our predictions. In addition,by 01,,=0.458 gnd<p12= i$.974 , respectively. .
in Ref. 3, in a study of thermograms of the heat capacity of 2. A calculation of the field dependence of the magneti-

this crystal in the magnetically ordered statelfthc, anoma-  22tions Ma, My, and M. shows that phase transitions
lies were noted ab~1.7 kOe and 5 kOe. These fields can Should be observed in an external magnetic field as a result

be compared with the calculated valugg, andHZ,. Be- of a change of the magnetic structure of the RE ions from the
sides the natural causes due to growth inhomogeneities of tH@itial 3AF-6 configuration to a canted configuration with a

crystals and scatter in the parameters of the internal intera¢esultant magnetic moment in the direction of the external
tions, the numerical differences between the results of théeld.

calculations and experiments done at finite temperatures may 3. A comparison of the calculated values@f with the

be due both to computational errors related to the accurac§ffective g factors obtained from the experimental data on
with which the angles of rotation of the principal axes of the heat capacity and susceptibility of CSDWO,), in an

the effectiveg-factor tensors of the RE ions are determinedexternal magnetic field shows that they are in satisfactory
and also to errors in the orientation of the samples in thegreement.

CONCLUSIONS

1. According to the calculations done in the dipole ap-
proximation for the CsD§MoO,), unit cell containing two
magnetically inequivalent RE ions, the configuration that
should be realized in the ordered state is 3AF-6. The energy
per ion of the dipole—dipole interaction ig= —1.28794 K,

and the magnetic moments of the two sublattices are rotated
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A transfer-matrix approach is developed for studies of the collective electromagnetic modes in a
semi-infinite layered conductor subjected to a quantizing external magnetic field
perpendicular to the layers. The dispersion relations for the surface and bulk modes are derived.
It is shown that the surface mode has a gap in the long-wavelength limit and exists only if

the absolute value of the in-plane wave vedjaxceeds the threshold valgg = — 1/(a In|A]).
Depending on the sign of the parameter (¢ —g4)/(ep+ ), the frequency of the

surface modevg(q,A) goes either abovéor A>0) or below(for A<0) the bulk-mode
frequencyw(q,k) = w(q,k+ 27/a) for any value ofk. At nonzero magnetic fielti the bulk mode

has a singular poirgo(H) at which the bulk band twists in such a way that its top and

bottom bounds swap. Small variationsghear this point change dramatically the shape of the
dispersion functionw(q,k) in the variablek. The surface mode has no dispersion across

the layers, since its amplitude decays exponentially into the bulk of the sample. Both bulk and
surface modes have in the regiga>1 a similar asymptotic behaviasq'?, but

ws(q,A) lies above or below(q,k), respectively, foA>0 andA <0 (a is the interlayer
separationg ande stand for the dielectric constants of the media outside the sample and between
the layers;g andk are the components of the wave vector in the plane and perpendicular to

the layers, respectively © 2000 American Institute of PhysidsS$1063-777X00)00508-9

1. INTRODUCTION sition metals, good layered conductors in the sense formu-
lated above. It is evident that layered conductors can also be

) The d_iscove_ry of th_e quantum H_aII eff(_act in 1988s fabricated artificially in the form of highly anisotropic SLs.
triggered intensive studies of a two-dimensional electron 98% | these materials are well described by the model of con-
(2DEGQ in an external quantizing magnetic field. These stud-

ies have since been extended to different types of artificiall)fC:UCting planes embedded in a dielectric matrix. This model
fabricated semiconducting and metallic superlatti¢eks), as proved to be useful in studies of different types of

; . plasm&~1° and electromagnefit?° waves in layered con-
organic conductors, and high: layered superconductors. . .
: . . ductors, superconductors, and superlattices. A quasi-two-
Numerous studies, in particular, have been devoted to th

. . . dimensional nature of the conductivity in layered conductors
problem of collective plasma and electromagnetic waves in

2DEG and layered conductors as well as in SLs in a higrprings some specific featureg into calculatio_ns of the collec-
magnetic field. Generally, a three different physical case%'ve electromagnetic modes'm 'them, especially in the pres-
should be distinguished in this problem: the case of classicdince Of an external magnetic field. Some new types of col-
SLs, the case of quantum SLs, and the case of layered COHa_ctlve . elect_romagnetlc exutgﬂops have peeﬁ predicted
ductors. In the first case constituent slabs of the SL are adheoretically in a purely 2DEG in high magnetic fields under
sumed to be so thick that one can neglect the electron eneré e conditions of the quantum and- convzgnnonal Hall effects.
quantization. The electromagnetic wave propagation in suchMong thegn are surface p°|a”2t??‘132' magnetoplasma
SLs is determined completely by Maxwell’s equations andoscillations;® and quantum wave¥:* The variety of waves
the appropriate boundary conditions. Quantum SLs hav@ecomes richer in layered conductors. It is known that a
small separations between conducting layers, and the ele@lantizing magnetic field applied perpendicular to the layers
tron dispersion across the layers in this case is due to th@akes possible the propagation of the helicons across the
tunneling between neighboring layers. By layered conductoriyers in both the conventiorfar™® and quanturif-*-2%

we shall understand a stack of 2D conducting planes sepddall-effect regimes.

rated by dielectric layers which prevent electrons from hop- ~ Real layered crystals and superlattices contain different
ping between the neighboring planes. Layered conductortypes of defects within the layers as well as imperfections in
are realized in nature in the form of layered crystals such atheir stacking which may give rise to new collective electro-
dichalcogenides of transition metals, organic superconductnagnetic modes such as, for example, magnetoimpurity
ors, and highF, cuprates. The high anisotropy of TI- and waves? or various local mode$%® The infinite crystal is
Bi-based highF, cuprates organic salts of TMTSF),X,®  yet another idealization of the theoretical treatment of the
and ET familie§ makes them, like dichalcogenides of tran- problem, since any sample in experiments has a surface

1063-777X/2000/26(8)/8/$20.00 569 © 2000 American Institute of Physics
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which is known to be a “structural defect” that generateswhereq?=q°— s w?/c? and k2=q%— gqw?/c?.
surface modes decreasing into the bulk of the sample. Sur- The Green'’s functiorGéw(z,z’) can be found with the
face plasma modes have been studied extensively in theelp of the known general expression
model of a semi-infinite layered electron ddsSurface elec- 1
tromagnetic waves have also been described in layered Gé (z,2)= 10(z—=2")x(2)p(2')
superconductors, © WX, ¢)

The. purpose qf this paper is to study t.he surface elgctro- +6(z' —2)x(2) e(2)}, ®)
magnetic waves in layered conductors in a perpendicular
quantizing magnetic field. The basic equations describing thhere x(z) and ¢(z) are two independent solutions of the
electric field components on the layerg,(z,)=E,(n), differential operator in the left-hand side of E®), and
were derived in our previous publicatifrand can be written W(x,#)=¢x’ — x¢’ is the Wronskian determinant.

as follows(see Appendix for details Choosing x(z)=exp(-q,2, ¢(z)=coshf,2)+(x,/
d.)sinh@,2 for z>0, we have

EM)= TS G (1, ) E(n) + o), L aetly 5 e
2 < T yey N Géw(z’zl):_ﬁ(e QWlz=2'l 4 5 e dulztZ]y
Ey(n)=—47:)qi2 G (") oy, Ey(n') 2,2'>0, ©
n where
oy Ex(n’)]e () 8= (0~ ) (Ao + o). (10
;z)?lsl)s a discrete coordinate of a conducting plane alongzthe The Green's functiorGﬁw(z,z’)Eé(z,z') in our model

The Green’s functionsgw(n,n’)EGgw(zn,z,’1) in Eq. satisfies the following equation:

(1) satisfy the following equations: 92 ) . J .
P —q,(2) G(Z,Z')+Aw5(Z)EG(Z,Z')=5(2—2').
z

52
(E—qzm G (22)=8(z-2'), 2 (1D)
) The quantityA , is defined by the relation
J 1%
. N2 y 1 — - 2 .
&22+U(q,w,z) 7 qw(z)>qu(z,z )=0(z—12'), A=2 _i € 80, (12
(3) do] eote
where where the following notations are adoptedy,=q?
) —(w?/c?)e, ande=1/2(¢o+ €). The solution of Eq(11) is
U(q,e z)=( q ) e 1L de(2) (4) trivially expressed in terms of the Green'’s functiGiiz,z’)
n d.(2) iz’ that satisfies the very same equation but wtj=0:
Here £(z) is the dielectric constant of the matter be- . N ,
tween the layersy ;=0 ,5(d,»,H) is the two-dimensional G(z=2)=G(zZ) -1 v G oo G’ (0.0 G(z,0G'(02"),
high-frequency conductivity tensor in an external magnetic ¢ ' (13

field H; q stands for the wave vector, ang(z) is defined by

the equation where we have used the notationG'(0z")

=lim dG(x,z")/dx.
w2 Xx—0
qi(z):qz— —&(2). (5) Taking into account thaG(z,z’)EGém(z,z’) for 2,7/
¢ >0, we obtain from Eqs(9) and(13) an exact formula for

the Green'’s functiorGé (z,2") in the positive half space:
2. THE MODEL AND THE BASIC EQUATIONS ©

Consider a regular semi-infinite layered crystal in which G (z,2')=— Zi(e*qu*Z"+Awe*qw|”2"),
conducting planes occupy positions at a discrete periodic set ¢ @
of pointsz,=na (n=0,1,2...) along the axis of the half 2,2/ >0, (14)
spacez>0. We assume that the dielectric constants are dif- . .
ferent in the half spaces;, atz<0 ands between the layers. W& have introduced the notation

The functione(z) can be written analytically with the help R A, (1- 53})
of the Heaviside step function: Av=0ut S5 (15
e(2)=e0(2) T e00(~2). ©) Substituting Eqs(9) and (14) into Eq. (1), we have
It then follows from Eq(5) that the quantity?(z) takes o
two different values in the half spaces: E (n)= > a.aﬁ(e—qwa\n—n/\+Age—qwa\n+nf‘)Eﬁ(n/)’
2 7>0 £in’=0
(-1 %) (16
Ko, z<0, where
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Before turning to the surface-mode calculations it is instruc-

Oop="— 27T—IC:o-,w(q,w,H)VC,B, (17)  tive to address first the simpler case of an infinite layered
wC conductor. In this case one can find the solution of the matrix
andV,g is a matrix with the componené;;=V,,=1,V,,  €quation(23) in the form
=V,,=—c?g%/w?s. The quantityA® takes two values: A, (n)=C,ekan B (n)=D ekan 27)

AX=5, andAY=A . o o
After substitution of these relations into E@3), we have

3. THE TRANSFER-MATRIX APPROACH Det( 8,41 — T,46™?) =0. (28)
To solve Egs.(16) it is convenient to introduce new The symbol Det here stands for the determinant of the (4
guantities X 4) matrix, whilel is the (2x2) unit matrix.
Taking into account the condition given by E&5), one
A (n)=2, (}aﬁ( > e WAnTIE(n) can rewrite Eq(28) in the form
B n’'<n
1 .
. ) de( OapCOska— 5 TrT,z/=0 (29
+A¢ ,E e doalntn )Eﬁ(n’)) (18) 2
n=0 which, after the substitution of the transfer-matrix compo-
and nents, yields the dispersion relation
Bu(n)=2 &aﬁ( > eqwa<“”’>E5(n')). (19 def dup+ apS(a.k, )] =0, (30
# n’>n where the structural form factor is given by
The sum ofA (n) andB,(n) is exactly the electric field at .
the nth layer: Kow)= sinh(q,,a) a1
' S(a.kw)= coshq,a—cogka) (31)
Ea(n)=A,(n)+B,(n). (20)

i i _ Different types of electromagnetic waves in infinite lay-
Usmg Egs.(18)—(20), one can easily obtain the recurrence geq conductors have been studied on the basis of .
relations under the conditions of the conventional and quantum Hall

effects, in particular, magnetoimpurity wavéand helicons
Aa(n—’_l):eiqwaAa(n)_i_% 045l Ag(N+1)+Bg(n+1)],  and helicons—plasmor4. The surface breaks the transla-
(21  tional invariance of Eq(16) due to the term containin@fj,.
Because of that, the surface mode has no dispersion across
B,(n+1)=e%B (n)— 2 FaplAg(N+1)+Bg(n+1)]. the layers, and its field components damp into the bulk of the
layered conductor. We assume this damping to be exponen-
(220 tial with a decrementy and will find it below,

These equations may be recast in the matrix form: Es(n+1)=e E4(n)=...=e ""E40). (32)
A,(n+1) ~ [Ag(n) . .
@ = This equation means that
B.(n+ 1>) > T“B( By(n)" @3 |
. Au(n)=A,(0)e" 7" B,(n)=B,(0)e 7" (33
where the transfer matriX ,; has been introduced by the
definition The above relations have the very same exponential
. Cqa A e form as those in Eq27), so that we can find the dispersion
§ o (BaptOap)e o T 4g€t0 (24 relation for the surface mode immediately from E80) by
WP\ —G e G0? (Sup— 0 op)€%?)” the substitutiork—iy. This yields
The transfer matrix satisfies the relation de( 51 Sup—Fap) =0, (34)
& _f11522 512321 _ R
detTop=TopTap™ TapTap™ Sup- 29 where the form factoB(q, y,»)=S(q,i y,w) is given by
As compared to the case of a one-component plasma oscil- sin a)
lations in layered structures, which were discussed in Refs. 8 §(q 1, w)= inh(q, ] (35)
and 9 in terms of the transfer matrix of dimensiox 2, the coshq,a)—cosh ya)
matrix T,z given by Eq.(24) has a higher dimensionality To obtain an equation for the function= y(q,, , ), we
(4% 4) because of the two-component nature of the electroproceed as follows. First, writing the conditidg,(n+ 1)
magnetic waves in the system under study. =e "E_(n) with the help of the transfer matrix and then

Puttlng n=0 in Eqs (18) and (19), we arrive at the puttmg n=0, we arrive at the equation
surface condition

11 21 22 12
AU0)=B18,(0)+ 3 1+ ADA(0) +BH(O)) 2 [Tat TapAs(0) + (Tt TofBy(0)]

(26) =(A,(0)+B,(0))e" . (36)
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Now using Eq.(24) for the transfer-matrix components, plest case of a two-dimensional electron gas in a perpendicu-
we obtain from Eq(36) a relation for the ratid\,/B, at the  lar magnetic field. The conductivity tensor in this case has

surface: been calculated elsewheisee Ref. 29 for a reviemand has
A,(0) . B edud_ g 72 , the following components:
Ba(o) - (q'wy')’)_ e—ya_e—qwa' ( 7) Uxx:U'yy:O'OX(1+X2)7lv
Combining this equation with the surface condition given by o,y=— 0= — 09+ x0xx, @4
Eq. (26), we arrive at a pair of linear equations for the quan- h
tities B,(0) andB,(0), which have a nonzero solution if where
de{ P,.5,5— 541 =0, (39 _Net o _voie
0o mQ’ X qQ (45)
where
Q=eH/mc stands for the cyclotron frequency=17"1 is
P.(qyw,7)= 1 1 g (39) the Landau level broadening due to the finite lifetimend
o 1+Ae 1+ %% N is the two-dimensional electron density. Substituting the

conductivity tensor of Eq944) and (45) into the dispersion
Equations(34) and (38) form a closed system of equa- rejations(41) and(34), we arrive at explicit equations for the
tions for the surface mode. This system can, however, baispersion relations of the surfaces(q), and bulk,w(q),
recast into a simpler pair of equations. Indeed, comparingnodes, which are nonetheless still intractable analytically
Egs. (38) and (34), we see thaP,=S*. This condition  jithout further approximations. The problem of the bulk
gives an equation foy=y(q,,»): electromagnetic modes within the approach taken here has
(1+A%)er= A%t} g~ 0ud, (40) been _discussed in.detail in Ref. 14 both n'umerically and
@ @ analytically. In particular, the analytical solution was found
Using this equation, we can eliminajefrom the form factor  for the dispersion relation of the bulk helicon—plasmon mode
S4q,y=v(q,,0),w]=S(g,w) in Eq.(35), which yields the in the caseqa> \/Ew*(w/wp). The dimensionless quantity

dispersion relation for the surface modg= w4(q) o, =wpalc is extremely small over a wide range of values
R — of the constituent parameters typical for semiconducting su-
del a5~ 0ap(q,0)S(q,0)) =0, (41)  perlattices, organic conductors, intercalated dichalcogenides
where of transition metals, and high; superconductors. For ex-
ample, fora=10""-10"°cm andw,=10"s™!, w, is of
_ 1+A%) A%+ g 902 the order of 104102 (w, is the plasma frequency of the
S(q,w)= 233, sinh(q,2) (42) 2D conducting layer, given by>‘2)=477N e’/ma, andc is the

speed of light In this approximationq,a~ k,a~qga, SO
The amplitudes of this surface mode decrease exponentialipat, according to Eq(10), 6,=0, and Eqgs(12) and (15
into the bulk of the layered conductor,E,(n) yield 32: 8,~0, AizAw/Z:A, where
=e ""E_(0), with a decrementy= y(q,ws(q)) given by

E—E&p
1 ( A%gdo?+ e‘qwa) A= eteq’ (46)

yi(@)=—In (43

a 1+A

w

Under these conditions both of the form factors given by
Egs. (35 and(42) (for the bulk and surface mode, respec-
tively) become frequency independent, and the inequalities

2— (w%Ic?)ey>0 and q?—(w?/c?)e>0 hold automati-
lly. Now setting the Landau level broadening-0, we
find (see Ref. 14 for more detajls

wherew= wy(q).

Being a collective excitation of the finite layered con-
ductor, the surface mode also decreases exponentially in
the left half space<0 with a decremenk?>0. This means
that the conditiorg®— (w?/c?)eo>0 should hold, as well as
the inequalityg®— (w?/c?)e>0, which has been tacitly as- ,
sumed in the course of all the above discussion. Therefore, ®(s~208
these two constraints together with E¢$1)—(43) comprise
a complete set of equations describing the surface electravhere the factoR takes two different forms for the bulk and
magnetic mode in a layered conductor in an external magsurface modes:
netic field within our approach. It is worthy of note that these )
dispersion relations are still rather general, since the 2D con- R_ sinh(qa) (48)
ductivity tensor that appears in them is as yet an arbitrary coshqa) —cogka)
quantity. In the next section we will consider a Drude-like
model for the conductivity of the 2DEG, leaving more com-
plex models of the conductivity for further studies.

2 2
e illad R (47)
2qa+Rgws 4 € |

in case of a bulk mode, and
1+A)\ Aete+e 98
2A sinh(qa)

in case of a surface mode. Note that the fad®m the

For further calculations a specific form for the in-plane formula for the bulk mode depends on the two projections of
conductivity tensor is required. Here we consider the simthe wave vector, i.eR=R(q,k), whereq is in the in-plane

(49

S:

4. THE SURFACE MODE
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FIG. 1. The dispersion relation of the surface mode given by &3, (49 and taken ato, = wpa/c:0.001,\5: 10 for different values of the parameters
A andQ)/w, (a—9 (the darkened area denotes the bulk mode band determined b{4#and(48), andqg, marks the singular point of the bulk mod&@he
same at\ = 0.99 for three different values of the paramegiw, (d—f) and at()/w,=0.1 for three different values of the parametefg—i). w,, is the plasma
frequency;() stands for the cyclotron frequency;is determined by Eq46).

wave vector and describes the dispersion of the bulk mode relation gq*a=—In|A|. This relation follows immediately
across the layers. The surface mode has no dispersion acrgssm Eq. (43) for g,~q, which implies that the inequality
the layers, and that is whigs=Rs(q,A) depends only o |Ae%%+e 9% >1+A should hold. Whem\>0 the surface
and the parameteA determined by Eq(46), so thatws  mode goes above the bulk wave band, whereas for negative
=wy(q,A). In case of the bulk mode, E¢47) describes a A the function wg(q,A) continues below the bulk wave
wave which is a combination of the helicdfirst term and  pand.

plasmon(second term The amplitude of the surface mode  Therefore, we see that two conditions are required for
ws=w¢(q,A) given by Eqs(47) and(49) decreases into the the surface mode propagatidii; the dielectric constant out-

bulk of a layered conductor according to the law side the layered conductary, should differ from the corre-
1+A n sponding quantity between the layerdji) the wave vector
Ey(an)=Ey(0) W) (500 g should exceed the threshold valge. Figs. 1d—1f display

the deformations of the surface wave dispersion with increas-
We see from this equation that the field decays into theng external magnetic field. The dependencevgfq,A) on
bulk of the sample in such a way tht(an) becomes ex- the parameted is shown in Figs. la—1i. As one can see in

ponentially small forgqa>1: Figs. 1la—1c, the width of the bulk mode band decreases with
14A increasingga, so that the upperw,(q), and the lower,
E,(an)=E,(0) T) e—gan (51) -(q), bounds merge in the limiga—c. For finite but

large ga>1 the dispersion across the layers is negligible,
In this limit the factorRs becomes a constarR,~1+A,  sinceR~1, and in this case(q,k) takes, according to Egs.
and the dispersion relation of the surface wave becomes vefg#7) and(48), the simple form

simple: 1/2
12 w(qg,k)=

(52

1+A 0+ ol | 5-|qa (53)

2¢

2¢

ws(Q,4)= qa

Qz-i-wg

Comparing this result with Ed52), we arrive at the conclu-
Such a square-root dispersion relation is typical for films, asion that in the regiorga>1 the surface mode frequency
is clear, since the electromagnetic field of the surface wave iexceeds the corresponding value of the bulk wayég,A)
nonzero only at the interface layer in the lingjg>1. The  >w(q,k) for A>0 and goes below(q,k) for negativeA.
dispersion of the surface modes(q,A) for arbitrarygais  The dependence @(q,k) onk for different values ofja is
given by Egs.(47) and (49 and is shown in Fig. 1la—1i for shown in Figs. 2a—2f. In the case of zero magnetic field
different values of the parameteksand(). The gray area in =0 the collective excitation of the system in question is a
Figs. la—1c marks the bulk wave band, which lies betweembulk plasmon whose uppekw  (q), and lower, »_(Q),

its upper . (q)=w(q,ka=0)) and lower @_(q) boundarieggiven by Eq.(47) with R=R, =coth @a/2) and
=w(q,ka=m)) boundaries. The surface mode exists onlyR=R_=tanh Qa/2), respectively approach each other but
for g>q*, where the threshold valug* is given by the never cross, as one can see in Figs. 1la—1c. The evolution of
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FIG. 2. The dispersion relation of the bulk mode given by E4%) and(48) and taken atv, = wpa/c=0.001, Je=10 andA =0.3 in zero magnetic field for
different values of the parametegja and )/, (a—09 and atQ)/w,=0.1 for three different values of the paramegernear the singular poird, of the bulk
mode(d—f). Notation as in Fig. 1.

the quantityw(q,k)? in this case is shown in Figs. 2a—2c. In 5. SUMMARY AND CONCLUSIONS
the casd)=0, ga=5 (see Fig. 2athe bulk mode is narrow,
and w(q,k)? displays a sinelike behavior as a functionkof We have given a transfer-matrix theory for the collective
The band becomes one order of magnitude widegat electromagnetic modes of a semi-infinite layered conductor
=0.4, and the shape of the dispersion in Fig. 2b becomesubjected to a quantizing external magnetic field. We started
strongly nonsinusoidal. At nonzero magnetic field the func-from Eqgs.(1)—(3), describing the electromagnetic field in a
tion w(q,k)?, shown in Fig. 2c, differs in shape from that in stack of conducting layers embedded in a dielectric matrix
Fig. 2a taken af) = 0. The physical reason for this difference within a model which ignores the interlayer electron hopping
is illustrated by Figs. 1a and 1c, from which we see that atnd assumes neither periodicity of the layer stacking nor uni-
Q#0 the decrease imga results in a change of the bulk formity of the dielectric constant across the layers. To apply
transverse dispersion below some singular point, marked agese equations to the case of a uniform layered conductor
fo in Fig. 1c. At this pointw,(do)=w_(do), and below placed in the half spacg>0 we first calculated Green’s
do=0do(H) the upper and lower boundaries swap;(d)  functions in this half space which, in a model where the
<w_(q). The equation fory(H) in explicit form is dielectric constants(z)=¢6(z) +eo6(—2z), are given by
Egs.(9) and (14). Putting these Green’s functions into Egs.
© (1), we reformulated the eigenvalue problem in the matrix
wi92=(—p> [(29, a)2+4q0 awi coth(qq a)+wi]_ form of Eqg. (23) and introduced the transfer matrix by Eq.
2 (24). This transfer matrix has a higher dimensionality (4
X 4) than the analogous transfer matrix{2) used before
in Refs. 8 and 9 for studies of the plasma collective modes in
Analysis of this equation shows that it has a solutign  a layered electron gas. Within the transfer-matrix approach
under the conditiom>wp/2J§. The functionw(q,k)? ex-  we then found dispersion relations for the b(#q. (30)) and
periences the most dramatic changes with respect to the vagurface(Egs. (34) and (35) modes, valid for an arbitrary
ablek in a narrow vicinity of the singular poirng=qy(H). form of the 2D conductivity tensor of a layer placed in an
These changes are illustrated by Figs. 2a—2f. external magnetic field. Since Ed4) are written in terms of

(54
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the field components at the layers it may create the wrongaken as small as 0.001. A numerical analysis shows a neg-
impression that our approach does not take into account tHegible deformation of the curve in Fig. 1d for smaller values
field dynamics between the conducting planes. To rule oubf the parametef)/w,, down to zero.
this suspicion, in Appendix B we give an alternative deriva-  The bulk modew(q,k) with respect to the variableis a
tion of the transfer matrix which is based on Maxwell’'s periodic function with period Z/a which has a different
equations between the layers and boundary conditions at trehape depending on the valuegat as shown in Figs. 2a—2f.
conducting planes. The width of the bulk mode grows wider with decreasiay

The bulk modes have dispersion both within and acros$n an external magnetic field under the conditidn
the layers and have been discussed earlier in Refs. 13 and mmplzﬁ the bulk mode twists at some wave vecigy
The surface mode exponentially damps into the bulk of the=qy(H), so that its upper bound, (q)=w(q,ka=0) be-
layered conductor and has no dispersion across the layers. iemes greater than the lower bourd (q) = w(q,ka= )
dispersion relation along the layers is determined by twdor q<qy(H). This transmutation of the bulk mode band in
equations(41) and (42), while the damping decrement is an external magnetic field is seen especially clearly in Fig.
given by Eq.(43). Generally, these equations are rather com-1c. The shape of the bulk dispersion across the layégsk)
plicated to be solved analytically, but for a Drude-like con-experiences dramatic changes in the vicinity of the pqint
ductivity tensor of the form given by Eq$44) and(45) for =(qo(H), as is displayed in Figs. 2d—2f. The dependence of
v=0 and under the conditiogpa> \/Ew*(w/wp) the surface the bulk and surface modes frequencies on the distance be-
mode frequencyw= w¢(q,A) is given analytically by Egs. tween the layers is in fact given(for fixed values ofg and
(47) and (49). The quantityw, is extremely small for real k) by Figs. 1 and 2, since these plots show the dependences
layered conductoréof the order of 104—102), so thatthe of the above modes oga and ka. The surface mode fre-
above inequality does not place severe restrictions on thguency in the limita—c is given by Eq.(52), where one
magnitude of the wave vectaga. The corresponding calcu- should take into account the dependence of the plasma fre-
lations for the bulk,w(q,k), and surfacewg(q,A), modes quency 0na:w§=477N e’/ma (N is the electron density per
are plotted in Figs. 1 and 2 for different values of the param-unit area of a 2D conducting sheet andstands for the
eter A [see Eq.(46)] and cyclotron frequency). At zero  effective mass of the electrbnThe decrease of the plasma
magnetic field the bulk mode(q,k) given by Eqs(47) and  frequency in this limit also favors the appearance of the
(48) becomes a well-known plasmon of a layered conductortwisting point qo(H), since the inequalit)()>wp/2\/§ is
the bandwidth of which in respect togrows narrower with  satisfied at loweH. In the opposite limita—0 the surface
increasingqa, as Fig. 1a illustrates. The surface plasmonmode disappears because its wave vector threshold value
mode shown in Figs. 1a-1i lies below or above the bulkg* «1/a—ce.
plasmon band, depending on the signAgfand starts at the )
threshold value of the wave vectqt = — (1/a)In|A|, as was The author is grateful to A. M. Ermolaev and I. D.
first found in Ref. 7. In the case of nonzero magnetic field avagner for valuable discussions and to A. M. Kosevich for
bulk collective mode in a layered conductor becomes a mix'€ading the manuscript and useful comments.
ture of the helicon and plasmon, with a dispersion relation
given by Egs.(47) and (48). The corresponding surface
mode w¢(q,A) is determined by Eq947) and (49). It has  ApPPENDIX A
the very same thresholg* in q and continues below the
bulk mode band foA <0 and above it for>0 (see Figs. In this Section we derive the wave equatidt$ within
la—19. The dependence of the shape of the surface modée framework of a model of conducting planes embedded in
dispersionwg(qg,A) on the magnetic fiel@) and parameteh a dielectric background. To this end we direct thexis
is shown in Figs. 1d—1i. It is seen in these figures, as well aperpendicular to the layers and assume that a constant exter-
in Figs. 1a—1c, thai(q,k)? becomes a linear function of  nal magnetic fieldH is also directed along this axis. We
at large values of the quantitga The appropriate Suppose that the permeability of the substance between the
asymptotic expressions for the surface and bulk waves in thiayers is equal to unity =1, and that its dielectric constant,
limit ga>1 are given by Eqs(52) and (53). From these &=&(2), is a function ofz
equations it is clear thai(q,k)>w4(q,A) for A<0 and Under these assumptions, Maxwell's equations, written
o(q,k)<w(q,A) for A>0. According to Eq(46), g*—0  in terms of the electric field,
if e—egq, i.€., in the case when the optical densities of the 5
left and*rlght half spaces are close in magnitude. For ex- v(div E)—AE=—iE—4—TFE, (AD)
ample,g*a~0.10005 forA =0.99, andg*a~0.1053 forA c
=0.9. In the limit w, <qa<1 (which holds if A close to
unity) we have from Eqs(47) and(49) the simple formula  after the substitution of a wave of the form

) , wg A E,=E|(q,z,w)exdi(gp—wt)], 1=X,y,z (A2)
wi(q,A)=Q +4— N [(1+A)+ga(A—-1)].
& become
(59
< i [ 92 Admiw
Thus the surface mode has a gamat_<1 even if the —q(qE,)+igl —E, | + Qi_ —|Ei=——-3,,
cyclotron frequency(the external magnetic fieldgoes to Jz 9z C

zero. This is also seen in Fig. 1d, where the r&litw, is (A3)
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EZ:_q_zﬁ(lqEL)v (A4)
2

qf,(z>=q2—%s<z>. (A5)

Herep, q, andw are the in-plane coordinate, the wave vec-

tor, and the frequency of the collective modg; andJ, are
the in-plane field and current, respectively.

Choosingg to be parallel to the axis, we arrive at the
following set of equations:

&2 5 Amiw
o2 o Ex:?Jx, (A6)
9? 5 d 47Tiqi
E_qw Ey+U(q,w,Z)EEy——mJy, (A7)
iq JE,
EZ:_q_ZE’ (A8)
2
q _,,_ 9e(2)
U(a.w.2)=|5 (Z)) e H(2)— (A9)

V. M. Gvozdikov

and using the boundary conditions at the layer
Ea(za+0)=E4(2,—0) (B4)

and

d d B
G2 BTt 0= Eolza=0)=2, TugEp(zn).  (BY)

we have
Co(n+1)) < = (Cp(n)
(Da(n+1)>_2g Taﬁ(Dﬁ<n>)’ (B6)
= (5aﬁ+&aﬁ)equa a'aﬁeq“’a )
Tag—( _a_aﬁe_qwa (5aﬁ_&aﬁ)eq“’a . (B7)

Note that the transfer matri'iaﬁ in Eq. (B7) differs from
'T'aﬁ of Eq. (24) (because of the difference in definition of the
coefficientsA,(n),B,(n) in Egs.(18) and(19) from C,(n)
and D ,(n) in Eq. (B3)). Nonetheless, TTrC,B:Tﬁ'aB, and
the dispersion relatiori29) remains the same in both ap-
proaches.
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Q

V.p is @ matrix with the component¥;;=V,=1, Vy;
=V,,=—c?q3/w?e. Writing the solution of Eq.B1) be-
tween thenth and the neighboring layer in the form

This article was published in English in the original Russian journal. Repro-
Eo(N)=C,(n)e %z 24D (n)edul 2

duced here with stylistic changes by the Translation Consultant.

(B3)



LOW TEMPERATURE PHYSICS VOLUME 26, NUMBER 8 AUGUST 2000

Magnetic exciton in a two-layer system
E. D. Vol and S. I. Shevchenko*

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine

(Submitted February 18, 2000; revised April 7, 2D00

Fiz. Nizk. Temp.26, 787—791(August 2000

The bound state of a light electron of mans and a heavy hole of mass,, (my,>m,) is
considered for a two-layer system in a magnetic field. The field is assumed strong only for the
electron @§> 1o, whereag=7%2%/(m.e?) is the Bohr radius, anth= \/c#/(eB) is the

magnetic length A new method of calculation is proposed by which one can find the ground-
state energy of a magnetic exciton and the spectrum of its excited states without assuming
that the Coulomb interaction is small. The effective ma®sis found, and the dependence of the
energy of the exciton on its momentufis obtained. The behavior of the exciton in

crossed electric and magnetic fields is investigated. The results can be used for analysis of
experiments in real magnetic fields10*~1° Oe for such semiconductors as InSb, InAs, GaAs,
etc., where the ration,/m,=<0.1. © 2000 American Institute of Physics.
[S1063-777X00)00608-3

The theory of the Wannier—Mott exciton in a high mag- the light particles(electrong and in layer2 the heavy par-
netic field was first constructed by Elliott and Loudand ticles (holes. The Hamiltonian of an electron—hole pair can
by Hasegawa and Howarchore than thirty years ago. Later be written in the standard form
came the important studies of Refs. 3-5, in which the behav-
ior of the magnetic excitotME) with arbitrary momentum Hex=Het Hn+ Ve, @)
P was investigated in the three-dimensicnabnd \yhere
two-dimensiond!t® cases. In all of the papers mentioned it
was assumed that the Coulomb interaction is small compared " (p;’ereBye/ZC)2 N (pi—eB&/Zc)2

to the distance between the Landau levels of both the elec- e” 2m, 2m, '
tron and hole. This assumption is equivalent to the two con-

ditions aS>1, and afy>I,. Meanwhile, in real systems, (py—eBy/2c)?  (pl+eBx/2c)?
where the masses of the electron and hole forming the exci- h= 2m;, + 2m, '
ton are often very differentnf,>m,), the simultaneous sat-

isfaction of both of these conditions is an extraordinarily e2 e2

stringent restriction, requiring ultrahigh magnetic fields Ve=— == .
: - : ot [re=rl V(Xe=Xn) 2+ (Ye—Yp) 2+ d?
~10° Oe for its fulfillment. In particular, the situatiom,, e ~h e JYh

>me is met for a wide class of semiconductors which arétne charge of the electron is taken to-be, and the dielec-
actively studied experimentally, such as InSb, InAs, GaAsysic constant of the medium between the layers is assumed
etc. Because the standard methods for calculating the Chaéqual to unity. For the vector potential of the uniform mag-
acteristics of MEs in such systems for the magnetic fields,etic field B we use the symmetric gaugé = (By/2,
~10*~10 Oe that are actually used can lead to unreliable_ Bx/2) (we note that for the chosen gauge the figlds

results, we propose a new method of calculation which esantiparallel to thez axis).

Sentia”y ConSiStS in the fO”OWing. ASSUming that for the We project Ham”tonlar(l) onto a Subspace of states in
light particle (electron the condition ag>l, holds, we which the electron is found at a given level which, for
project the Hamiltonian of the system onto a subspace ofimplicity, we assume is the lowest Landau level. The result
states in which the electron is frozen at a fixed Landau levebf the projection on this subspace will be denoted by a bar
n. We go over to a representation in which the momenRim e the operator. Clearly we haVT%=Hh,
of the exciton is a specified quantity. In this representation
the dynamics of the ME is determined gesidesP) the (H§)2+(H§)2
relative coordinate =(X.—Xp,,Ye—Yn) (Where X, and Y, Hezz—me:ﬁ“’e
are the coordinates of the center of the electron orbit,xqnd -
andyy, are the coordinates of the hgl@nd one can find the and, consequentiyt{.=7% w./2, i.e., it reduces to a constant,
important characteristics of the ME without invoking any which we shall henceforth omit. In ER) we have used the
additional assumptions. following notation: w,=eB/(m.c) is the cyclotron fre-
Let us consider two semiconductor layers separated by quency, ITg=pg+y.eB/(2c) and IT1y=pj—x.eB/(2c) are
distanced and found in a uniform magnetic fiel applied the components of the kinematic momentum of the electron,
perpendicular to the layers. In laygthe current carriers are and a+=IO(H§—iH§)/(\/ﬁ) and a=IO(H§+iH§)/(\/ﬁ)

1
+ —
a a+ 5 (2)

1063-777X/2000/26(8)/4/$20.00 577 © 2000 American Institute of Physics
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are the_ (_:reation and annihilation operators for an electr(_)n at (Pt ﬁy/|(2))2 (Py—hxllg)z
a specified Landau level. From the commutation relations  Hex= >m >m
[II5 I15]=i#2/13 it follows that[a,a*]=1.
The projection of the Coullomb energy operady is e? , exp(—[k|d) [k|213
most' conveniently done, following Ref. 6, by transforming to T o I Xp — 4
Fourier space:
X explikX+ik,y). 10
Ve=—5- | dk K] XL ikx(Xe = Xn) We note thatP, and P, in (10) are components of the total
) momentum of the exciton, which is a conserved quantity.
+iky(Ye=Yn)], (3 They commute with each other and wih, and, hence, can
where|k|= m be treated ag-numbers. The dynamical variables of the
The coordinates of the electron in a magnetic field carProblem are the relative coordinates of the pairX.—
be written in the form andy=Y.—y,. They satisfy the simple commutation rela—
) ) tions [ X, y]— —il2. Expression(10) is the starting point for
_ o e v 0o studying the main characteristics of the ME.
Xe=Xet Il ye=Ye— 1L, 4) Let us first setP,=P,=0 and find the spectrum of the

exciton at rest. For this we introduce a second pair of cre-

where X, and Y, are the coordinates of the center of the ation and annihilation operatobs’ andb as follows:

orbit. They satisfy the commutation relatiorfs<e,Ye]
= —il§ and commute withI§ andII; . In the representation

I il
(3), with allowance for(4), the projection ofV, reduces to X= —O(b+ b*), y= —O(b—b+); [b,b*]=1.
the projection of the operator V2 V2
|2 |2 | o For P=0 the Hamiltonian(10) is expressed solely in terms
exp{ iKy X He+ kyh He]— xp{ \/_(ka —ka)] of b™ andb:

2 _
onto the lowest Landau level. Heke=k,+ik, . The projec- Hozﬁw2<b+b+ E) — e_f dszk“dd)
tion can be done in an elementary way: 2m K|

|0)=ex;{—|k|:lg], (5) Xexp(—@)e p(il\/—o_kb ) p( I—\/%kb),

11

(Olexp{ \/z(ka ka)

after which we obtain fol/,

2 212 In view of the isotropicity of the Coulomb potential, the
i e exp(—[k|d) |K[*I5 DS s .
Ve=— pye dszex 7 second term irf11) is diagonal inb™b=N. It can be written
g [k in the form of a series,
Xexqikx(xe_xh)+iky(Ye_yh)]- (6) ez d (_1)m
The problem simplifies further if we consider the fact that V.=— N E fm(l_) — 2(b+)mbm, (12
the total momentum of the electron—hole pair, 0 m=0 o/2%(m!)
. Jd e 9 e where
P:[_IﬁﬂTe+EA(re) + _Iﬁa_l'h_EA(rh)} d B XZ q
fml — =J x2Mexpg — = — —x|dx.
e Io 0 2 |0
_E[Bx(re_rh)]: (7)

Using the relation §*)™b™=N(N—1) ... (N—m+1) and
is conserved in a uniform magnetic field. The existence ofjoing the summation ovem in (12), we obtain an exact

this integral of the motion allows one to reduce the numbelexpression for the spectrum of excited states of the ME in a
of independent variables of the problem by expressing thgompact form:

kinematic momentunil,, of the hole in terms of the total

momentum?P and the relative coordinate$,—xy, and Y, X2
_ ; ; ; En= ﬁw ex ——x—— —|dx,
Y- With the aid of(7) and(4) we obtain 2
i 5 (13
= + — —
=P |(2)(Ye Yn), ® whereLy(x)=3=N_ (—1)™(y™/m!)C—N is the Laguerre
polynomial.
Mmh=p — E(X —x) 9) For d=0 the integral in(13) can be evaluated analyti-
youy g n cally and the spectrum of the ME written explicitly:
Substituting expression§), (8), and(9) into Eq.(1), we find 1 e T(N+1/2)
the desired representation for the Hamiltonian of the EN:ﬁwg( N+=-]— — ——— (14)
electron—hole pair: 2] 2, T(N+1)



Low Temp. Phys. 26 (8), August 2000

If d#0, then the integral in13) cannot be evaluated

E. D. Vol and S. I. Shevchenko 579

H="Hex+ AHg, (19

explicitly. Nevertheless, it can be shown that the spectrum is

not qualitatively altered. If we introduce the notation

% x? x?
VN(y)EjO exr{ — yX— 7)LN )dx,

2
then the following two statements hold fovy(vy): a)
Vn(y)>0, and B V() >V 1(y). It follows that for alld

where H,, is given by expressiofil), andAHg= —€E-(r,
—rp). In the representation with a specifigdt can be writ-
ten in the form

H=Ho+ 5—+V1(P,E),

the energy of the ME increases monotonically with increaswhere

ing N. Knowing Ey, we can easily evaluate the function
E(P) for small’P and determine the effective effective mass

m* of the exciton. ForP#0 we can writeH,, in the form
P2
Hex(P)=Ho+ =— +V(P), (15
2my,

where V(P) =i#i(bP—b*P)/(y2lom,), P=P,+iP,, and
H, is given by expressiofill). Evaluating the correction to

the energ\E, at smallP to the second order of perturbation

theory inV(P), we find

e Pl P HOvIDP
( )_Zm*_th Eo—E;
P2 h2P2I(2mil3
_ B (2mj, o)' 16
2mj, E,—Eo
from which we obtain the desired expression ffif:
m* = M =m,+m 17
1-(hop)/(E;—Eg) " 7%
where
2loh
Mg =My gro ot (19

Mhe?f (di) -

In the deriving (17) we used formula(13) for Ey at
N=0 andN=1. We recall that
d _fm 5 F< X2 d
i)~ s X< ex 5 ex IOx

fq dx.

Expression(17) for the effective mass differs consider-
ably from the analogous expression in the standard theory

In the standard theory it turns out that =mg, which in-

creases monotonically with increasing magnetic field and, a
we see from(18), is independent of the mass of the holes.
The discrepancy is explained by the fact that the assumptio

afh/l,>1 in the standard theory implies thatg/m,>1. In

the present study there is no such assumption, and therefore
result(17) is valid for a much wider range of magnetic fields
than is the expressian* =mg . Since in fields which are not

too high, the two terms irf17) are of the same order, the

difference in the numerical values ai* between the two

theories can be extremely significant. In addition, taking into

account the termmy, in (17) is important for studying the
behavior of a ME in an electric field.

Let us now turn to a brief discussion of this question.

Suppose that in addition to the magnetic fiBlgherpendicu-
lar to the layers we apply a uniform electric fiefdparallel

N ihP
V2 mplgy2
Evaluating the correction t&, to the second order of

perturbation theory iV, we find the desired expression for
AHE:

— elyE
V,=Zb+Zbt, z=-—

Apy o CWIE” | enlPxE],
® 2(Ey—Ey)  mp(Eo—Ey)

mg 1 mg
Z(l—W)U"P—E<1—W)th2.

(21)

In deriving (21) we have used the relationEg—E;) !
=(1-m,/m*)/(fwy) and have introduced the standard no-
tation u=c[ Ex B]/B? for the drift velocity of a particle in
crossed electric and magnetic fields.

There is an important circumstance that should be noted
in connection with expressiof2l). If AHg is calculated by
using standard perturbation theory, one obtains an expression
analogous to(21) but with the factor m,/m*=1
—m,/(m,+mg) replaced(for m,>m,) by

mh \/2’77 Io

__"n -
4 ag

m
1- =1

e 22

me
For simplicity in (22) we have setd=0.

The condition for applicability of perturbation theory
means thaty/ag<1. On the other hand, fan,/m.>1 this
quantity in(22) is multiplied by the large quantityn,/m;,
and it can happen thah,/mg becomes greater than unity.
As a result, in the standard theory expressi@®) changes
5ign, whereas in our proposed method one always has
1—mp/m*=1-—my,/(m,+mg)>0. Thus in the given case
Berturbation theory can yield even qualitatively incorrect re-
sults. The reason is that fom, /m.—« the energy spectrum
Bf the electron—hole pair becomes highly degenerate and one
must therefore use secular perturbation theory.

We note that one can drop the restriction to the lowest
Landau level for the electron, which we have been employ-
ing up till now to simplify the writing of the formulas. Let
the electron be “frozen” at an arbitrary Landau levelFor
projecting Hamiltoniar(1) onto leveln, relation(5) must be
replaced by

o, , — B |k|2|§> (Iklzlé)
(n|exp{5(ka —ka)]|n>—exp<—T Lol —5— |,

wherelL,, is the Laguerre polynomial of degree Formulas

to the plane of the layers. Let us evaluate the energy incrg-13) and(17) are now generalized in the obvious way. Let us
mentAHg due to the electric field. The Hamiltonian of the give the result for the spectrum of excited states of a ME at
system in the initial representation has the form P=0:
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A piezoelectric mechanism for the orientation of stripes in two-dimensional electron systems in
GaAs—AlGaAs heterostructures is considered. It is shown that when the anisotropy of the

elastic constants and the influence of the boundary of the sample are taken into account, the theory
gives an orientation of the stripes alofigL0] direction, in agreement with the experimental

data. For a two-layer system an effect is found wherein a reorientation of the stripe structure along
the[100] direction occurs when the period of the structure exceeds the distance between

layers. © 2000 American Institute of Physid$$1063-777X00)00708-§

INTRODUCTION For example, in measurements of the anisotropy of the

4 . . .
It is known that the homogeneous state of a tWO_conductanc% a maximum is Qbserved along th&10] axis
e., the wave vector of the

dimensional electron gas at low concentrations and temperfi‘-n_d a minimum aI_oanlO], I
tures is unstable. Under such conditions the system undeplripe structure is directed along one of the twofold axes. The

goes a transition to the Wigner crystal phase. For a classicAnisotropic interaction that'assigns theiorientation must be
Wigner crystal the minimum of the energy corresponds to Jveak en_oug_h to_ allow rotation of _the stripe structure upon a
triangular lattice: Recently much attention has been devotedch@nge in direction of the tangential component of the exter-
to the study of inhomogeneous electronic states in quantui@ magnetic field(an effect observed experimentally in
Hall systems. For these objects one expects a greater diveRefs: 7 and 8 _ _ _ _
sity of phases with spatial modulation of the electron density. N GaAs a natural candidate for this role is the piezoelec-
For example, in a quantum Hall ferromagnet, lattice strucdric interaction, which remains anisotropic even in a cubic
tures can form from skyrmion excitatichén this case the System. The question of the anisotropy of the electron—
skyrmions carry electric as well as topological char@nce electron interaction in piezoelectrics was considered in Ref.
the skyrmions are spatially extended structures, at a suffi where the influence of the piezoelectric interaction on the
ciently high skyrmion concentration the skyrmion lattice will Symmetry of the lattice of a Wigner crystal was discussed. In
be square instead of triangular. Among the recent intriguind?ef. 9 an isotropic model was used to describe the elastic
experimental results is the observation of a strong anisotrop§ubsystem. Such a model gives a poor description of the
of the conductance at a filling factor=N+1/2 (N is an  Situation in GaAs, in which the anisotropy of the elastic con-
integer, N=4) 3# The physical nature of this effect can be stants is rather large. In the present paper the piezoelectric
linked with the formation of a stripe structure at the uppermechanism for the orientation of modulated electronic struc-
partially filled Landau levet:® tures in GaAs is considered with allowance for the anisot-
For phases with spatial modulation of the electron denfopy of the elastic constants and for the influence of the
sity in the two-dimensional systems realized in GaAs—surface of the sample. The majority of the results pertain to
AlGaAs heterostructures, an interesting question is the nghe case of a stripe structure. The main conclusion is that in
ture of the physical mechanisms that determine thdhe orientation of a two-dimensional electron layer in the
orientation of the electron crystal relative to the crystallo-(001) plane, the energy of the stripe phase is minimum when
graphic axes of the surrounding matrix. This question is parthe angle¢ between the wave vector of the stripe structure
ticularly topical for a stripe structure, since in that case theand the[100] axis lies in the interval 30—60(in which case
influence of the external factors on the orientation can bdhe potential relief forms a practically flat platgaWihus the
observed experimentallithe necessary information can be average direction of the wave vector corresponds to the ex-
extracted from measurements of the anisotropy of the conperimentally observed orientation.
ductance In this paper we also consider a two-layer stripe struc-
The formation of phases with spatial modulation of theture. The reorientation arises if the period of the structure
electron density is the result of a competition between thexceeds the distance between layers. In that case the wave
Coulomb and exchange interactiofend also the Zeeman vector of the structure changes its direction and becomes
interaction in the case of skyrmionsn systems possessing oriented along the[100] axis. The effect can easily be
cubic symmetry these mechanisms are isotropic, i.e., theghecked experimentally, since the period of the stripe struc-
cannot determine the orientation of the electronic structuréure, which is determined by the magnetic length, should
relative to the crystallographic axes. Nevertheless, mechancrease with decreasing external magnetic fighdreasing
nisms that assign this orientation are present in the systerfilling factor).

1063-777X/2000/26(8)/5/$20.00 581 © 2000 American Institute of Physics
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ONE-LAYER SYSTEM (dpi is the projection of the on the(001) plang. Doing the

' . N inverse Fourier transformation and substituting the result into
Let us first consider the situation when a two- 6), we find

dimensional electron layer is placed in an infinite piezoelec-
tric medium having cubic symmetry. The properties of the
medium are described by three elastic constanis ¢,
andc,,, a dielectric constang, and one piezoelectric con-

stante;,. Here and below we shall restrict discussion to (s is the area of the laykrUsing the fact that the piezoelec-

2
poS (= -
E= gfﬁwdqz'\/lml(b,qz) (11

two-dimensional electron system lying in tki@01) plane.

tric interaction constant is small, we write the energy in the

The inhomogeneity of the electronic structure will be de-f5rm of a sum:

scribed as a charge-density wave with wave vebtdirected
at an anglep to the[100] axis:

p(r)=poSin(ber ) 8(2), &Y

wherer , is the projection of the radius vector on tf@01)
plane, and the axis is chosen alonf01]. The energy den-
sity of the system can be written as

F=%+Uikzuik’ @
where

Di=eEi—4mBi Ui 3
is the electric displacement vector,

Tik=NikimUim T BiikE 4

is the stress tensou,, is the strain tensoif: is the electric
field, Njxm is the tensor of elastic constang,, is the tensor

of piezoelectric constantin crystals of cubic symmetry one

hasB=e42 for i#k#| and =0 otherwisg¢. The gquanti-

E=Ec+EJ.+Eae, (12
where
2
TPHS
Be= 20 (13

is the Coulomb energy, ar‘Eﬁe andEg’; are the isotropic and

anisotropic parts of the energy of the piezoelectric interaction
between electrons. We write the anisotropic part as

Epe=xXEcF(¢),

where y=e?,/ecy; is the small parameter in which the ex-
pansion was done. The functidghhas an amplitude of the
order of unity and depends on the relationships among the
values of the elastic constants.

For an isotropic mediumdj,=Cq1—2C44) We have

(14)

ties D and oy satisfy the equations of electrostatics and ofwhere

the theory of elasticity, respectively:

9%k _ g, 5)

divD=4mp, r”
k

A calculation of the total energy with allowance f(5) and
for the boundary condition fowr;, (o =0 at the free
boundary gives

E=fd%F=%Jd%mm¢uy (6)

whereg is the scalar potentiaH= —V ¢). The value ofp is
found from the solution of systei®). Transforming in(5) to
the Fourier components qf and of the displacement field
we obtain

MikVi=Q;, (7
where

. A T

M= —T eq¥4m ®

With Ajk=Nigim@iAm, Ti= = Biki Ak »

Ugq =123 0 i=1,23
Vsl a0 Q| iea (©)
(pq is the Fourier component of the electron density
From (7) we have
¢q=M a3 (Gp1,0) g (10

F(¢)=Acos4p, (15)
_ 97T Cll
A‘@(l_ﬁ . (16)

Formula(15) was obtained in Ref. 9 in a somewhat different
way. Substitution of the values @f; andc,, for GaAs into

Eqg. (16) gives A~0.3 and a minimum energy ab= /4.
However, if instead ofc;; and ¢y, One uses the averaged
values of the squares of the velocities of longitudinal and
transverse sound, respectively, then the amplitiideacti-
cally vanishes, i.e., even the sign of the anisotropy remains
indeterminate. It is therefore fundamentally important to take
the anisotropy of the elastic constants into account in the
given case.

For the anisotropic case the integration1i) was done
numerically with the use of the known values of the elastic
constants for GaAsdj;=12.3, c1,=5.7, C44=6.0, all in
units of 13* dyn/cnt). The results of the calculation for the
function F(¢) are given in Fig. lcurvel). It follows from
the curves obtained that the absolute minimum of energy
corresponds to a direction of the wave vector at an aggle
~30° to the[100] axis. The variation of the energyE_,; in
the interval 30X ¢<60° is smaller by a factor of around 30
than the total energy variatiohE, over the entire range of
angles¢. At temperaturedE, ; <kgT<AE, all of the con-
figurations in the interval 302 ¢<60° are practically equi-
probable. The averaged direction of the wave vector of the
stripe structure lies along tH&10] axis. The observation of
the orientation of the stripes along a low-symmetry direction
is possible only at very low temperaturksT<AE,;. The
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0 appropriate form factor in formuléll). However, since the
F \\ period of the electronic structure is actually much larger than
-0.1F N 3 veee the layer thickness, taking this correction into account will
LN e not lead to qualitative changes.
_02k \ . Since the two-dimensional layers in heterostructures are
' \\ ta ordinarily created near the surface of the sanighe char-
\ N P acteristic distance between the surface and the electron layer
-0.3f \\ 1 is d~5x10° A), the influence of the surface on the piezo-
N electric mechanism of orientation is a question of fundamen-
-0.4- AN tal importance. In this case, in order to find the scalar poten-
\\\ 4 tial one must solve the system of equatiai®s with the
-0.5 T ——— boundary conditions taken into account. The modulation of
L L the electron density in the charge density wave has a single-
0 15 @, deg 30 45 mode structure, and the solution of systé&ncan be sought
in the form
FIG. 1. Dependence of the functih=E}Y (xEc) on the orientation of the :
stripes. ¢ is the angle between the wave vector of the stripe structure and ui=u;(2) e' b.rp|+ c.c.,
the [100] axis. Curvel is for an infinite system, curve for d/a=0, curve _ iber (17)
3 for d/a=0.15, and curvat for d/a=0.5. p=¢(2)e”"y+c.c.,

whereu;(z) and ¢(z) satisfy the following system of differ-
ential equations:
absolute value of the anisotropy energy is determined by th 5 9 2 ~ . . _
parametery, which for GaAs €,,=0.15 C/nt, £¢=12.5) is ?C““(‘?Z_by)_Cllbx)uX_CbX(byuy_"9ZUZ)_ €14y d2¢=0,
of the order of 210 %,

. o o (Cas( 32— Db2)—c14b2)u,—CTby (b, Uy, —id,u,) —ieb,d,e=0,
An important question is, how sensitive is the result ob- 2 %/ Ay EEVAEXE T2l T

tained to small changes of the elastic constants? Calculatiomsll&i— Ca4b?) U, +iCa,(byu,+ byuy) +eb,bye=0, (18
for different values of the elastic constany, give the fol- 2 o ]
lowing results. Where,, is decreased, the local maximum at €(9z —b%) ¢ +4meyy(id(buy+byu,) —bbyu,) =0
=/4 goes over to a global minimurtat c;,~5x10"*  ~_ , L
:Jﬁyn/cmz)? When this elast?c constant is increélzsed, the mini-(c_c12+ Caq) With the boundary conditions
mum in the region neap=30° becomes narrower. In GaAs Tizl2=4-0=0, @|2=d-0=¢|2=d+0>
a borderline situation is realized in which the potential relief D _ _ _
in the interval 30X $<60° is very flat. l2-a-0=(0x@)|2=a+0,  Oiolz-—0=Tizlo-+o, 19

The behavior found for the dependence of the interaction  o|,__=¢|,_ .,
energy on the angleb is preserved when a more realistic
expression is used for the distribution of the electron density  Dzlz=+0—Dalz= 0= —27i .
instead of(1). Replacing(1) by a sum of harmonic multiples |, formulas(19)
with wave vectorgy,=nb will lead to a decrease @& and
Epe by the same factor, i.e., the functidf(¢) does not
change. For a square lattice this is generally not the case. For
a square lattice the solution can be written in the form of a .
sum over reciprocal lattice vectofwith suitable weighting 02z= C119,Uz+1C44( DU, Dyuy), (20)
factors, and each term of the sum depends on the direction p — —ed,p—i2mey (b, +byu,).
of the corresponding reciprocal lattice vector. Finding the
answer to the minimum energy question requires knowledge ~ Solving system(18) reduces to finding the roots of the
of the actual form of the electron density distribution. In the characteristic equation and determining the values of the co-
simplest case, whep(r) can be written in the form of a sum efficients of the general solution with allowance for the
of two density waves with perpendicular wave vectors, thes@oundary conditions. This procedure was implemented nu-
vectors will be oriented along theL10] and[lTO] direc- me_ncall_y for fixed values_of the parameters. The energy was
tions. For a triangular latticéwhich can be described as a written in the form(12), with the Coulomb energy given by

sum of three charge density waves with wave vectors di- ﬂ-pgs< e—1

ui|z:—O:ui|z:+0!

. . €14
Ox(y)z— Cas azux(y) + |bx(y)uz) —I 5 by(x)‘P,

rected at angles of 2/3 to one anothgr taking the anisot- Ec= 2¢b

ropy of the elastic constants into account will lead to anisot-

ropy of the energy of the piezoelectric interact[oiis effect ~ and the anisotropic contribution to the energy

is absent in the isotropic model, as one can see fbB)]. an_ 1

The minimum energy is realized when one of the wave vec- Epe=XEcF(¢). (22

tors is directed at an angle=k/6 to the[100] axis (kisan  The functionF(¢) is given in Fig. 1 for various values of

integey. The value of the anisotropy for a triangular lattice is the parameted/a (a=2/b is the period of the stripe struc-

two orders of magnitude smaller than for a stripe strugture ture). For d/a=0 (the electron layer lies on the surface of
In the approach used here it is easy to take into accourthe samplg the calculation gives the function shown by

the finite thickness of the electron layer by including thecurve2, which is close to the case of an infinite medium. As

+ 7 e2bd>, (21)
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d/a increases, the minimum neap~30° first becomes A
sharper(curve 3) and then again flattens out, and fdfa 0.5
~0.5 the slight double-well structure near= /4 vanishes
completely(curve4). In this last case the value of the anisot-
ropy is maximum. Agd/a increases further the function ap-
proaches curvé. Thus the boundary of the sample has prac-
tically no effect on the orientation of the stripéexcept
when the ratiod/a falls in a rather narrow range of values
~0.1-0.2). These results support the view that the anisot- -0.5
ropy mechanism under study gives a qualitatively correct
description of the experimental situation.

TWO-LAYER SYSTEM s/a

. . . . . FIG. 2. Amplitude of the anisotropy energy[see Eq(25)] in a two-layer
ThIS. Section is d?VOteq to a StUdy_ of the p|ezoefle0tr|csystem in an isotropic elastic medium as a function of the distance between
mechanism for the orientation of the stripe structures in two+ayers.
layer systems. There are two reasons for considering this
guestion. The first is that two-layer systems are often used in
experimental studies. It is therefore of interest to generalize 9w C11
the results of the previous Section to the case of two closely A= 16 |~ 3cu
spaced electron layers which each have a stripe structure
formed in them. The other reason, which in our view is more
: ; : . (27
important, involves the search for effects that might be used 3C4s 3
for experlmental prpof that t_he p|gzoelectr|c mte_racnon plays]_he dependence oA on the parametes/a for G1y/Cas
the governing role in the orientation of electronic structures. . S .
) " =12.3/6 is shown in Fig. 2, from which we see that for
In a two-layer system there is an additional parameter — the . . o
. . . . 8/la<<l the anisotropic contribution to the energy changes
ratio of the distance between layers to the period of the stripe. . . . )
. . : ) sign, and a reorientation of the stripes along [ib#&0] direc-
structure. Since the period of the stripe structure is related t? : .
. : : . S lon takes place. An analogous effect occurs in the aniso-
the magnetic length, this parameter is easily varied in an

experiment by changing the strength of the external magneti%:ropIC model as well. Figure 3 shows the dependence of the

field. If the anisotropy of the piezoelectric interaction is sen-cnergy on the anglé for different values of the parameter

sitive to the variation of this parameter, then such an effecfla' Figure 4 shows the position of the minimum and the

. : . depth of the minimum relative to the energy valuesdat
can be detected experimentally in a study of the anisotropy - .
: =0 and¢= /4 as functions of the parametsta. We see
of the conductance as a function of the external magneti

. . ) "Ufrom the curves that fos/a>1.5 the interaction between
field. As the subsequent calculation shows, just such a sity- . : ;

S . ) ayers has essentially no effect on the orientation of the
ation is realized in two-layer systems. : ; . .

: stripes. In the interval 0:8s/a< 1.5 this interaction leads to
Since the presence of a boundary does not lead to quali-,_, ... .. : . )
. ; : . . stabilization of stripe structures having wave vectors lying
tative changes, in this Section we consider the case of an

. - ; along the low-symmetry direction. F&/a<0.8 the mini-

infinite medium. In a two-layer system the Coulomb interac- : . : .

. : . . mum of the energy is realized when the stripes are oriented

tion leads to a relative shift of the charge density wave by a
o . .. 2 "along one of the fourfold axes.

half period in adjacent layers. The electron density distribu-

tion has the form
p(r)=posin(b-ry)[8(z—s/2)— 8(z+s/2)] (23 0

(s is the distance between laygr€alculating the scalar po-
tential and substituting it int¢6), we obtain

—e P (1+sh)

1— Cll)

3Ca4
+(sh)? ZL“_ ia( — C_ll)

Caa

2g (o -0.5
Po -1
E=7- | daMs(b.a,)(1-c0gq,s)). (24
For illustration let us evaluate the quantig, for the
case of an isotropic elastic medium. Substitutmg=c44 -1
—2Cyy into (24), we find
Epe=AxEc cos 44, (25)
-15 L L
where 0 EE 45
» 1l-cogzsb|cy; [ _Cu » deg
A= ZJ_OCdZ (1+ 22)4 C_44_ z\8 C_44+ 9 (26) FIG. 3. Calculated dependence of the functioon the stripe orientation in

) ) ) a two-level system in GaAs for different values of the paramstar 0.75
Evaluating the integral ii26), we get 0, 1(2), 3(3).
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in GaAs. It has been found that in the case when the two-
dimensional electron layer is located on the surfgagysi-
cally this corresponds to a depth of the electron layer much
smaller than the period of the electronic struciuhe behav-
ior of the anisotropic contribution to the energy is practically
constant in comparison with the case of an infinite medium.
For finite ratios of the deptll of the electron layer to the
period a of the stripe structure some small qualitative
changes take place. When this ratio~i€).5 the local maxi-
mum at ¢= /4 goes over to a global minimum. At/a
~0.15, on the other hand, the orientation along the low-
symmetry directiong~30°, is stabilized.
2 The results obtained here explain the experimentally ob-
served stripe orientation along th&10] direction in a quan-
FIG. 4. Positiong and depthE of the minimum of the energy versus the tum Hal.l system. Since the gbsolute value of the anlsotr_opy
distf;mc-e between layers. The solid curve is the position of the minimum, th&NErgy 1 rather smallapproximately four orders 9f magni-
dashed curve is the depth of the minimum relative to the energy value fofude smaller than the Coulomb eneyggn external influence
¢=0, and the dotted curve is the depth of the minimum relative to the(e.g., an external magnetic field containing a component par-
energy for¢=m/4. allel to the electron laygrcan lead to reorientation of stripe
structures, as has been observed experimentally.
As we have said, the result obtained here is important for We have considered the piezoelectric mechanism of

setting up experiments. The period of the stripe structure isStrlloe orientation in two-layer electron systefmsth layers

determined by the magnetic length, and for N+ 1/2 the parallel to the(001) plane. In such systems the model pre-

. . . : dicts an effect wherein the stripes are reoriented along the
stripe phase has different periods for different valuedNof . .
- ) . [100] axis as the distance between layers decreases or the
The prediction of the theory is that in a two-level system for

a suitable choice of distance between layers, the stripe pha\%)eerIOd of the stripe structure increaséise ratio of these two

will be oriented differently for different filling factor&long engths must become smaller than uhityhe observation of

[110] for small N and along{100] for large N). This effect such an effect would provide experimental proof that the

: . . iezoelectric mechanism plays the main role in the orienta-
could easily be observed experimentally by measuring th% . . . .
ion of the electronic structures in two-dimensional electron

angular dependence of the conductance, which would be saystems realized at AlGaAs—GaAs heterojunctions.

convincing experimental check on the proposed model. If the This study was supported in part by INTAS Grant No.

effect is observed experimentally, then another applicatiorb7_0972 and the Ukrainian Government Foundation for Ba-
might be to employ it as an indirect method of determining”. .
sic Research, Project No. 2.4/337.

the period of the stripe structure.

¢, deg
E, arb. units
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The localization of nonlinear waves propagating in an anharmonic medium along a system of
two identical plane-parallel defectevaveguidesis investigated in a simple model

describing the nonlinear dynamics of layered mddiagnetically ordered, elastic, and optical

A method of analytical investigation of this problem is proposed which reduces to a

model of coupled anharmonic oscillators whose parameters are all determined on microscopic
considerations. The results yield an adequate description of the nonlinear dynamics of

layered media in the framework of well-studied discrete models of nonlinear mechanics. It is
shown that when the total energy of the wave exceeds a threshold value, the state with

equal energy fluxes localized near the waveguides becomes unstable, and an inhomogeneous
regime is realized in which the wave flux propagates mainly along one of the plane layers.
© 2000 American Institute of Physid$1063-777X00)00808-2

INTRODUCTION become possible to have a resultant localization of the wave

) , flux in a region containing a large number of plane layers
Research on the structure and dynamic properties of Iay(the formation of a “supersoliton). This effect has been

ered media of various types is now of great interest fro.mobserved experimentally in planar nonlinear optical

o ) _ _ Yaveguides with a periodically modulated cross secfion.
primarily about magnetic multilayer systems, which are

- . (]'he theoretical description of the nonlinear properties of lay-
promising for the creation of elements for data storage an . : . .
. rg{ed structures is typically done using discrete models for the

readout based on magnetooptical properties and the giagt, amplitudes in the individual waveguid@318which
magnetoresistance efféétand of layered optical media used . . . .
are described phenomenologically by difference equations

in fiber optics and optical delay linés® We might also men- ith arbit X Und ber of simplifvi
tion high-T. superconducting compounds and their isostrucV'T arbitrary parameters. nder a numboer ot simp ifying

tural analogs, which contain layers with substantially diﬁer_assumptlon§ a con_S|stent derivation of these equat|o_n§ hf"‘S
ent conducting and elastic properties,and quasi-two- been (_jone in the S|mplt_ast case, when the anharmor_wlcny is
dimensional magnets with organic intercalatiorin a  t@ken into account 9”'3; n Ig'n layers separated by wide re-
number of cases these layered systems exhibit pronounc&Pns of linear mediunt!1>**We have considered the situ-
nonlinear propertie®~*3The simultaneous effect of the lay- &tion in which all of the layered medium is substantially
ered nature of the medium, which substantially alters théonlinear and it is a nontrivial problem to find the effective
spectrum of its linear waves and their dispersion, and th&onlinearity of the individual waveguides and their effective
nonlinearity of the medium can give rise to new physicalinteraction. This statement of the problem corresponds to a
effects such as dependence of the transparency of the mBumber —of ~physical experimenfs® and  computer
dium on the power of the wave being transmittédspatial ~ Simulations’*
localization of nonlinear waves in periodic structut&a One considers a nonlinear medidmagnet, elastic crys-
and the existence of so-called gap solitbh¥’ tal, or optically transparent dielectyicontaining narrow lay-
The goal of the present study was to investigate theers in which the properties are different and which are sepa-
structure and character of the localization of nonlinear statated by much wider regions. In the first part we give
tionary waves propagating in an anharmonic medium conexamples of a layered easy-axis ferromagnet with different
taining thin plane-parallel layers having different linear prop-values of the single-ion anisotropy constéhis corresponds
erties from the characteristics of the medium itdgllanar ~ to the discussion in Ref. 20an anharmonic elastic crystal
defect$. We consider the case in which the difference of thecontaining layergplanar defectsof a higher-density mate-
properties of the main volume and the distinctive layers igial, an anharmonic optical medium with layers having a
such that a wave can be localized near the layers even in tHarger value of the linear refractive indexoptical
linear limit, in which case the layers play the role of waveguides, as in Refs. 3 and, 4nd, finally, an optical
waveguides. Owing to the simultaneous appearance of lineavaveguide of variable cross sectisee Refs. 10 and 11in
localization at the defect layers and nonlinear localizatiorall the cases listed, the propagation along the layered struc-
due to the anharmonicity of the medium around the layers, iture (along thex axis) of a nonlinear monochromatic wave
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with an envelope that is slowly varying in space and time can  Let us consider a layered structure consisting of thin
be described by the following nonlinear ScHimger equa- (thicknessbh) layers of a magnet with magnetic anisotropy

tion (NSE), which is standard in soliton theory: (Bo— B1), separated by thick layerghickness 2—Db) of
5 another magnet with anisotrogBp. It is convenient to intro-

i‘?_qu a_u+20|u|2u: _2 \(z—2an)u, (1) duce the uniform ferromagne?ic resonance frequengy

ot 972 n =2uoMoB, /% and the magnetic lengthy= \a/ B, for the

L . thick layers of the second magne¥l( is the nominal mag-
where thez axis is directed perpendicular to the defect lay- "~ . .
) ; T - o o netization of the unit cell In the case of weak modulation of
ers; the sign functiowr= £ 1 for “focusing” and “defocus- : . .
&he magnetic properties ggb<<Bya) and in the long-

ing” media, respectively; the planar defect is characterize S _ :
by N>0 in the case when the narrow layers have Waveguidgvavelength approximatiorl {v<1) for spin waves of small

properties(they “attract” linear waveg 2a is the distance amplitude {4|*<Mp), Eq.(2) simplifies to

between the planar defect layers. Thus the problem is equiva-

lent to the study of nonlinear excitations in a one- )

dimensional system containing point defegtsnlinear local o (9—"0—|§A Y+ - B1(2) _ i|¢|zlﬂ=0 3)
Bo 2M2 '

oscillations. For a single isolated defect this problem has wq dt
been investigated in Refs. 21—-23 for arbitrary signs @hnd
\. In the case of several defects interacting through a non-
linear field, the solution of the problem becomes more awkHere the weak modulation of the magnetic anisotropy is
ward, and it becomes necessary to develop efficient methodaken into account only in the linear term. In the case of a
of studying such systems. A basic step in this direction is tacoherent spin wave with a fixed wave numkgpropagating
study the nonlinear dynamics of a system of two parallelalong the x axis of a magnetic layered structure which
defect layergtwo point defects In the theory of nonlinear is uniform in this direction, the solution is conveniently writ-
waves it is well knowf" that the basic features of soliton ten in the form ¢=2Mou(z,t)exd—i(kx—wt)], where
dynamics are contained in the problem of two coupled anw= wy(1+k?13) is the frequency of a linear spin wave in a
harmonic oscillators, in particular, the breaking of the sym-homogeneous magnet with anisotrgpsz 3, andu(z,t) is a
metry of the excitation when a threshold value of its totalslowly varying function of the coordinateand time. In the
power is reached. In nonlinear optics this circumstance wastationary case the functian(t) takes into account the fre-
pointed out in Ref. 25 for a system of two coupled quency shift due to the nonlinearity of the wave, its possible
waveguides. In Refs. 26 and 27, in a study of the propagatiofpcalization in thez direction, and the differences of the av-
of nonlinear optical pulses along two plane-paralleleraged anisotropy in the layered medium from the vaye
waveguides, it was assumed that the waveguides and thend may also incorporate slow nonstationary effects. If time
surrounding medium have different values of the nonlineais measured in units of af, and the coordinate in units &f,
refractive index.(The profile of the nonlinear refractive in- then Eq.(3) for u(z,t) becomes
dex in the direction perpendicular to the plane of the
waveguides was modeled by rectangtflaor smoothed
bell-shaped functions) However, in all of the studies listed, 9 2, B1(2)
the propagation of nonlinear waves was investigated using —i—+ — +2|ul?u=—
numerical simulation methods. 9z
For the proposed simple modgl) we have shown ana-
lytically that in the case of two plane layeitsvo defects the

wave flux undergoes a transition at a critical value of its Fina}ll);, for a large hdiff(_erﬁn(r:le in the thifcknesses of the
energy to a spatially nonuniform state with different total M2gnetic layersg>b) the right-hand side of Ed4) can be
fluxes in adjacent layers. replaced by a system df functions for the planar magnetic

4

defects:
1. PROPAGATION OF COHERENT WAVES IN NONLINEAR
LAYERED STRUCTURES
—Bl—(z)u~—2 \&(z—2an)u (5)
Let us give some examples of nonlinear layered media Bo m

whose dynamics is described by Ed).

la. An easy-axis ferromagnet (easy axis along z) consisting
of parallel layers differing in the single-ion anisotropy con- With A=bp1 /8.

stant. Such a magnet is described by the Landau-Lifshitzip. A nonlinear elastic medium containing plane-parallel de-

equatior® for the magnetization vectdv = (M, M, ,M,):  fects perpendicular to the z axi€Eor simplicity below we
o assume that the defect layers differ from the main matrix
iﬂﬁ—aMzAz/ﬁ ayAM,+ B(z) yM ,=0, (2) only in the mass of the atomsFor purely shear waves
0

propagating in a cubic crystal along the layéatong thex
whereA is the Laplacian operatoy, is the Bohr magneton, axis) and uniform in the direction of thg axis, through a
y=M,+iM, a is the exchange interaction constant, ghd suitable choice of scales for the time, coordinate, and wave
is the single-ion anisotropy constariThe alternating mag- amplitude the equation of the dynamics for the displace-
netic layers lie perpendicular to ttzeaxis) mentsu(x,z,t) can be put in dimensionless forf:
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J2u  d2u 2 ou\ 2 92u au\ 2 92u medium (u=1) along the layergin thex direction, with no
P(Z)_z__z__z o 3(5) ) (E) Y dependence on the coordinateand with its electric field
Jz X Jz ) . . ,
vector E directed along the axis (E[i,), Maxwell's equa-
o T{au\2au 9T/ ou\2au tions take the form
TR e P A
a9z (dx Jz x|\ dz) ox 2E
2 2AE_
n<(z,E) — —c“AE=0, (10
Pu fu P (a2u . © at?
k| —F — 4y —| —]|=0,
gt a2\ axd

where the refractive indem depends on the coordinazeand
whereo is the sign function, equal to 1 for “focusing” and the electric field:n=ny+n;(z) +n,(E), with ny(z)=n, in
to —1 for “defocusing” media,» and x are dimensionless the waveguides and,=0 outside them. We shall assume
parameters which are of the order of unity and depend on théhat the modulation of the parameters of the medium and the
ratios of the nonlinear and linear elastic constants, respe@nergy density in the wave are small, ire,,n,<n,, and the
tively, and the functionp(z)=1 for the main matrix and dependence afi on z needs to be taken into account only in
p(2)=M/m in the defect layersNI andm are the masses of the linear refractive index. We limit discussion to solutions
the defect and host atoms, respectiyely in the form of nearly monochromatic waves with fixed wave
In a focusing medium ¢=1) with normal dispersion vectorsk=ik, which are conveniently written
(k>0) the nonlinear waves are modulationally stable in ) )
their direction of propagatioff, and it is therefore natural to E=i,[E1(z,t)cogkx—wot) — E5(z,1)sin(kx—wot)],
consider stationary waves propagating along the layers and (12)
having an amplitude which depends weakly on time and ORjyhereE; varies slowly withz andt and we have chosen a
the coordinate in the direction perpendicular to the layers. Ing|ation wo=ck/no, which corresponds to the dispersion re-
the resonance approximation such a solution in the case of|gtion of linear waves in the medium separating the
fixed wave vectol of the carrier wave can be written in the waveguides(We recall that here the slow dependefiét)
form takes into account the difference of the true frequencl)
u~A(z,t)cogkx— wt) — B(z,t)sin(kx— wt), 7) at a givenk from wq(k) on account of nonlinear effects and
. ) _ modulation of the parameters of the medium.
where A gdeB are4slow|_y varying functions of the_|r argu- We introduce the complex functioE=E,+iE,, in
ments, ”=k"— k", which corresponds to the diSpersion (grms of which the nonlinear contribution to the refractive
relation for linear waves in the ideal lattiden the chosen index takes the forA? n,(E) = oa(w)|E|2, where we have
variables the sound velocity is equal to unitubstituting introducedo= + 1 and— 1 for focusing and defocusing me-
expression7) into Eq. (6) and retaining in it only the first dia, respectively. Substituting expressigii) into Eq. (10)

deriv?‘tivesazA/(?t, J B/ at With. Lespect o theh“s‘l‘o \lN t,i,me and keeping only the first derivatives of the functigrwith
and the second derivatives with respect to the “slow coor—reSpect to the slow time, we obtain

dinate z and introducing the complex functiod=A+iB,

we can easily write Eq(6) in the approximate form 2

2U 5 2in§w07+czg+2non1(z)ng
2in+(1—wk2)—2+ Zak4|U|2U
9z +2ngawio|E[’E=0, (12

= (M — 1) waz S(z—2an)u, (8)  Where in the first ternm? has been replaced h)yé in view of
m n the inequalitien; ,n,<ny, JE/dt<wyE. If the thicknessh
whereb is the thickness of the defect layers and @ the  ©f the optical waveguides is much smaller than the distance
distance between them. In the derivation of EB).we have 2@ between them, then, measuring the time in units of
taken into account the relatio@U/dt<wU and have 2No/a@wo and the coordinate in units of (/)%™ we
dropped the termsi2o(M/m—1)(9U/at) 8(z). Measuring ~¢an reduce Eq(12) to the form(9) with A =2b(n;/no):

the time in units of 2b and the coordinate in units of 5

V1—kuk?/k, and introo_lucing th_e new displacemenité iE+E+20|E|2E=—E \S(z—2an)E. (13
=kU 3/(2\/5), we rewrite Eq(8) in an manner analogous a5 n

to (4) and(5):

In real optical experiments the statement of the problem
may be somewhat differeff:'* a nonlinear electromagnetic
wave propagating in a planar waveguide of variable cross
section. A nonlinear optical medium with refractive index
where\ =[(M/m)—1]b. n=ny+n,(E) occupies the region Qy<h(z)=ho+A(2),
1c. A nonlinear optical medium containing plane-parallel whereA>0, and the wave is plane polarized and it propa-
waveguides, i.e., layers characterized by a larger refractivegates along the axis. If the waveguide is bounded by an
index than the optical medium between théAs above, we optically nontransparent medium, then, in the case of weak
assume that the layers lie perpendicular toZleis) In the  modulation of the layer thickness, solutions close to a mono-
case of a plane-polarized wave propagating in a nonmagnetchromatic wave can be written in the form

2

IW AW
i — 4+ —— +20|W|2W=— >, \8(z—2an)W, (9
ot (922 n
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E=i,[E1(z,t)cogkx— wqt) decay for z—=o it follows that c=0 outside the
waveguides, and, hen¢om the condition of continuity of
: LTy de/dz at z= Fa), between them as well.
—Ey(z,t)sin(kx— wot) ]sin—-, 14 ¢ o .
2(zy)sin(kx= wot) Jsi h(z) (149 We shall consider separately the cases of focusing (

where it is convenient to chooseq~ \'c?k?/n3+ 7?/h3. =+1) an(.j defocu§|ngd=—1) med|(":1.
Then, after integration of equatidfi0) over the thickness of 2a. Focusing mediumde seto=+1 in Eq.(17) and take
the waveguide, Eq.12) is modified as follows: into account the real-valuedness of the functiga). Then

four types of localized stationary states are possible. For low
power of the total flux in the nonlinear wave there exist two
solutions with equal and opposite phases of the wavgs (
(15) =¢, and ¢;= ¢, + ) and with equal amplitudes near the
two distinctive layers(the planar defecjs These states are
analogous to the leading nonlinear modes in the nonlinear
mechanics of finite-dimension systems. When the power of
the wave exceeds a threshold value, two additional solutions

JE 52 appear, having the same phases but different amplitudes of
i+ 20|E|?E=—\(2)E, (16)  the waves localized near the two planes.

oz If the phases of the waves near the two planes are equal
where)\(z)~3noA(z)/(Wak2h8). Thus the thicker regions (gn anglog of in-phase oscillatiqns of two defects in the one-
of the optically transparent material play the role of effectivedimensional casethen the solutions of equations?) in the
waveguides in the two-dimensional nonlinear optical systenj€9ionsz<-—a (1), z>a (2), and —a<z<a (3) have the
under consideration. following form:

Ui Az)=e seclhe(z—z; )],

_ JE PE c3(h?-hd) _ 4
2|n§w0W+c2322 e E+§n0awgo|E|2E=o.

If time is measured in units ofr§/awy and the coordinate
in units of (3ny/2a) Y% 1, then Eq.(15) reduces to the stan-
dard equation

(19
!
2. LOCALIZATION OF NONLINEAR WAVES IN AN Us(2) = q'¢
ANHARMONIC MEDIUM CONTAINING TWO PLANE- dnié(z—z3),q]’

PARALLEL “ATTRACTIVE” DEFECTS ) )
where the parametes characterizes the amplitude of the

As a first step in the study of localization of nonlinear wave and is related to the value f(i.e., to the deviation of
waves in a layered medium, let us consider the simple casée frequency of the nonlinear wave in the layered medium
of an anharmonic medium containing two plane-parallel layfrom the frequency in a homogeneous linear medium with
ers differing in their linear properties from the surroundingthe same wave vectore=+—w, dn(p,k) is the Jacobi
matrix and separated by a distance much greater than thedfliptic function with modulus g (q’'=y1-q?), and
thickness. In this case E¢l) becomes é=¢l\2—q?. Solution (19) is one-parameter and is com-

_— pletely characterized by the value of the parametefrhe
. 2. _ other four parametergandz; are expressed in terms ofvia
Pt EJFZ(T'U' u=—ASzra)toz-alu, (A7 boundary conditions far= 7 a.

_ B . Since the wave flux is localized mainly near the two
where we assume that>0, i.e., the defect layers “attract” «auractive” planes, a convenient characteristic of the local-
the linear waves and play the role of waveguides. ;04 wave is provided by the field amplitudes at these planes,

The problem reduces to one of solving the ”0n|lnean1:u(Z:_a) andU,=u(z=a). From the boundary con-

Schr"cding.er equation ?n the region outsi_d_e the distinctive §itions we obtain six relations between the parameters,
Laye_rz,)ywth the following boundary conditions at théat 2., andU, (wherei=1,2,3 anch=1,2):
=+a).

q'é
Ulza-0=U|x 18 = —+ -
|za-0=Ulza+0 (189 Uy ,—eseclie(axz; 5] TECEAIL (20)

and

au au Un(2e?—U2— M) +[JU2-q'2¢2\¢2— U2

— - =—\U|z,, 18b

9zl ..o 92|, , < (18 —UpVe?—U2]=0. (22)
and with zero asymptotes at infinitg- = o) for stationary Using relationg20), we can eliminate the parameters

localized states of the form(z,t) = u(z)exp(—iwt). (For the andq’ and write the boundary conditiort®1) in the form of
case of a single defect layer this problem was considered ia closed system of two algebraic equations for the ampli-
detail in Ref. 23. tudesU,, containing as parameters only the frequency-shift
It is easy to show that the functiar(z) must be chosen characteristice and the interplane distancea2This proce-
real for spatially localized states. Indeed, for a complex funcdure is easily carried out in the limit of weak dynamic cou-
tion u(z) =a(z)exple(2) it follows from Eq. (17) and the pling between planes.
boundary condition§18) thatde/dz=c/a?, and the phase In the limit of a linear medium the shift in the frequency
and its derivativedp/dz are continuous at=+*a. From the of a wave localized near an isolated defect plane is
equation for the functiom(z) and the condition that it must w,=—\?/4 (¢ =\/2), and the shift of the frequencies of the
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in-phase and antiphase localized waves in the presence tife equations acquire anharmonic terms of the order of
two planes and in the case of weak coupling between themaexp(—\a)U3<U3, which are substantially smaller than the
can be written in the form main nonlinear terms. Therefore, in what follows we can set
2 V=1q.
w1 ,= 0 F Vg, v(,:?exp(—)\a), As we have pointed out, besides solutit@®) with a
fixed value of the phase there can also be localized sta-
where the parameter,, which characterizes the effective tionary states in whiclp has the form of a step function and
interaction of the waves at the defect planes, is small foehanges in value by at the point where the amplitude goes
Na>1 (a large distance between waveguides or a strong loto zero between the defect planes. For this antiphase wave
calization of the waves at these planes flux the solution has the form
In a focusing me.dium, in. which the frequency o_f the Uy A2)=* ¢ sechis(z—2, )],
wave decreases as its amplitude grows, the conditian ’ ’
>1 implies the inequalitiga>1 (the dynamic coupling of sn(5z,q)
the waveguides decreases with increasing ampljitu@ibe dn(5z,q)’
period of the elliptical function if19) exceeds the distance ) )
between planes,k(q)>2a, and at a large distance between Where 7=&/y2q*—1 andz;= —z,. For this case relations
planes 6>1) we haveq’'<1. If one uses the inequalities (20) @nd(21) are rewritten in the form
g’'<1 and exp{-\a)<1 (i.e.,, A\a>1) and the condition of sn(na,q)

(22

(29
usz(2)=—-9q’'»n

small-amplitude waved),<e, then Eq.(20) yields the de- Ui.=*e seclis(a+z;)]=*qq’ T A na,g) (30)
sired relationq’ =q’ (¢,U): ’
2 Un(2Ve?=UZ =M +IN(UZ-a"297)(@P 9~ U)
'~— U U,exp(—ea). 23
a =7 V¥l n( ) (23 ~u, /eZ—Uﬁ]ZO, (31)

We note that forxoc1 in the limit of weak coupling of  hjle (23) remains valid(after the replacementt ,—|U.,|),
the waveguides\a>1, there is a wide range of frequencies, and when the inequalities discussed above hold, expressions
(24) (25)—(_28) retain their form. Thus_equatior(s‘ZS) _and (27
. ) ) N ~ describe all types of localized stationary states in a system of
in which all of the above inequalities hold. In that case, inyyq planar defects.
the interval expt-2\a)<1l-w/w<w the function U, Eliminating the shift of the frequency from (25), we
=U(w) is substantially transformed, and nonlinear proper+inq the relation between the wave amplitudésand U ,:

ties appear in the system.
Using relation(23) we obtain from(21) the basic system (Up=U2)(U3+U2)(U Uz~ vg)=0. (32)
This is the standard equation that arises in the analysis of

of equations for determining the frequency dependence of
the amplitudedJ,, of the in-phase waves localized near thepe dynamics of coupled anharmonic oscillatérits solu-
defect planes: tions U;=U,, U;=—U, and U;=r,/U, correspond to
(w— ,,_w)Un_UﬁJr »(U,—U,,)=0, j[hree types of s_tationary localized waves — with identical
in-phase fluxes in the two planéSS), with antiphase fluxes

0—0< w,zoc 1,

n,m=12, n#m, @9 of equal power(A), and with in-phase fluxes of different
where intensity (SN).
In the antiphase solution the frequency dependence of
v=2g% % (26)  the wave amplitudeJ), has the form

is a para_lmeter chayacteri;ing _the int(_aractio_n (.)f.the localized U;=—U,= \/MTo—w,

waves via the nonlinear field; in the linear limit it goes over

to v. Since we are investigating only stationary states with &2nd its solution, as was shown in Ref. 24, is stable for all
time dependence-exp(—iwt), the system25) corresponds Values of the intensity of the total flux.

to the dynamical equations In the in-phase symmetric mode

U1:U2: VW|— Vo~ W, (34)

but this solution is stable only at frequencies below w,
=w,—2vy, Where a bifurcation of the solution occurs and
the stable in-phase nonuniform SN state rises, with unequal
amplitudes

Ui=[(0— 0) = (w0 — w)2—41Z]. (35)

An analogous bifurcation of the solutions and the onset

(33

n

ot

+(w—v)Uy— U3+ (U~ U, =0,

(27)

nm=12, n#m

for two linearly coupled anharmonic oscillatofsotators
with a potential energy

1 1 v
W= 2, |5(@=»)Ui-7Up |+ 5(Ui=Up)%  (29)
n=12

where U, are the oscillation amplitudes of the oscillators.
The situation is unusual in that the parametexppearing in
the energy(28) depends weakly on the frequency of the

of nonuniform states have been treated previdigiiby nu-
merical methods for rectangular and bell-shaped refractive
index profiles in a system of optical waveguides.

We note that in a focusing medium there also exists a

wave. However, when this dependence is taken into accounstate described by the function dz(q), with a wave flux
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® o
I N=J lu|?dz (38)

and, in the case of quasiclassical quantization, specifies the

total number of quanta of the fielgve setzi=1). The total

energy of the system, as follows frof@7), is given by
+(|gul?

E=J [ —olul*=\[8(z+a)+ 8(z—a)]|ul?{dz

(39

Substituting solution§19) and(29) into expression38),
we easily calculate the exact number of quanta of the field in
regions 1 and 2:

Nio=e(l-V1-U3/&?). (40)

For weak coupling of the waveguidesg>1) the num-
ber of elementary excitations in them is equal td,2and
2N,, respectively, and the total number of field quanta is

) _ _ approximatelyN=~2(N;+N,). In this weak coupling case
FIG. 1. The functionw(l) for the in-phase symmetricSS mode (1), the . . e . -
in-phase asymmetricSN) mode(2), and the antiphased) mode(3) in the expreSS|or(40) S|mpl|f|es in the frequency region of interest
case of a focusing medium, and for the in-phéS& mode (1), the an- 10 US(24), which includes the bifurcation point, and the re-

tiphase(A) mode(3'), and the nonunifornfAN) state(2') in the case of a  lationship betweem and| becomes particularly simple:
defocusing medium.
N=~Il/¢e (41)

a9z

®=Vvp

or N=2I/\ in the small-amplitude limit, whem~N/2.

localized between the planar defects. It is clear, however, Substituting the solutions for the nonlinear local modes

that this solution is unstable with respect to a transfer of thdNt0 expression(39) for the energy, in the same basic ap-
wave into one of the attractive layers. proximation it is easy to obtain the trivial resli= w|N.

The level of excitation of the systefiotal wave flug is ~ However, we can find the functidg=E(N) to higher accu-
conveniently characterized by the paramétetsU2, which ~ 'acy by using formulag36) and(41) and the known relation
is related to the total number of elementary excitations in thdOf nonlinear single-frequency excitations=JE/JN (see
system. For the types of localized waves considered, thif€f- 24- In that case it is easy to obtain the following rela-
parameter can have the following kinds of frequency depent-'ons for the integrals of the motion for all the types of local

dence: modes
_ N2
Ia=2(w+vg—w), lgs=2(w—vy—w), Ea= (w1 +vo)N=ANB,
(36) Ess= (w;— vo)N—AN?/8, (42)

| SN™ W] — W.
_ _ _ Esn=oN—\N%/4.

We see that at the bifurcation poiat,= w,—2vg, |,
=2, there occurs a sharp change in the frequency depen- Thus when the density density exceeds a threshold value
dence of the wave amplitudes, and the nonlinearity of thép at a fixed value o, the minimum energy will belong to
medium is manifested in a substantial way. According tothe SN state, in which the wave propagates predominantly
formulas (23) and (33)—(35), all of the inequalities used along one of the planes.
above @'<1, U,<e) hold at the bifurcation point, even in 2b. Defocusing mediunt.et us turn to a study of the local-
the substantially nonlinear regioriX1,), when condition jzation of the wave flux in a system of two “attractive”
(24) is satisfied, in which case|—w>w— w,. Relations  planes in a defocusing nonlinear medium, which corresponds
(36) are shown by curve$-3 in Fig. 1. to o=—1 in Eq.(17). In this case the problem also reduces

To relate the newly introduced integral characteristic in the limit A\a>1 to the dynamics of an effective system of
for the effective system of oscillators under stu@y) to the  two coupled anharmonic oscillators, but now with a “hard”
total number of elementary excitatioNsin the initial system  nonlinearity, the frequency of which increases with the am-
(17), we consider the Lagrangian density corresponding tglitude. As was shown in Ref. 23, in the case of a single

Eq. (17): defect plane in a defocusing medium the frequency of a wave
. « 2 propagating along it increases as its amplitude increases, and
L= '_( u*ﬂ ~u &L) _|eu +o|ul* at a minimum frequency shitb=¢ =0, corresponding to the
2\ ot ot 9z edge of the band of linear bulk waves, the total quantity of
+N[8(z+a)+ 8(z—a)]u. @37  Wave flux reaches a maximum valde= [dZzlu[>=Ng=\.

Here the profile of the wave near the waveguide has the form
It is easy to see that the adiabatic invariant constructedf an algebraic soliton with power-law asymptotic behavior
for the investigated single-frequency solutions with the aidat large distances. A flux with a power greater tihgncan-
of the Lagrangiar{37) has the form not be localized in a defocusing medium.
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As in the previous case, in a system with two plane-harmonic oscillators no longer holds. However, it can be
parallel layers, three types of stationary states can exist: witthown that at values of the wave flix\?/4 andl~\?/2
equal phases and amplitudes of the wave in the two plandgbe functionsw= w(l) for the nonuniform AN mode and for
(SS9, with equal amplitudes and opposite pha$ds, and the uniform SS and A modes terminate at the boundary of
with different amplitudes of localized waves. Now, however,the spectrum of linear bulk wavdsee Fig. L In this case
this nonuniform stat€éAN) branches from the antisymmetric the profiles of the field distribution in all the modes take the
solution, and the phases in the planes differshy form of algebraic solitons.

The solution for the in-phase mod8S in regions 1, 2,
and 3 has the form

q'7 3. LOCALIZATION OF THE COHERENT WAVE IN A
—_— NONLINEAR LAYERED MEDIUM
cn(7z,q)

(43) Let us turn to an analysis of a nonlinear layered medium
with z;>—a and z,=—z,, and the solution for the an- containing a period structure of widely spaced parallel planes

u; Az)=+ecoseche(z—z,,)], us(z)=

tiphase mode§A) and (AN) is written as follows: with properties different from those of the surrounding me-
dium, i.e., Eq.(1) with an infinite number o® functions on
Uy Az)=—e coseclie[z2—2; )], the right-hand side. In the case of weak dynamic coupling
sr{ £(2—22) between defect planes we can use the results of Sec. 2 to
)=—q’ sié&(z=zs).a] (44)  reduce the problem to an effective system for an infinite
US(Z q g _ 1 . . . . .
cnié(z—23),9] chain of coupled anharmonic oscillators, which in the case of

a coherent stationary wave are described by the following

wherez;=0 for the A mode andz;# 0 for the AN mode. ; _
system of difference equations:

In the case of weakly coupled waveguides all of the
inequalities discussed above are satisfigde note that now
the effective coupling between waveguides increases weakly d—t“+(w, —2vg)U,— Uﬁ+ vo(2U,—U; 41— U,_1)=0.
with increasing amplitude of the propagating wavenalyz- (48)
ing the solutiong43) and (44) as in the previous case, we
easily obtain effective equations of the for(®5) and (27) Such equations are ordinarily used for interpreting the
but with the opposite sign in front of the nonlinear term results of experiments on the localization of optical fluxes in
(coupled “hard” anharmonic oscillatorsThen Eq.(32) is  |ayered nonlinear medi&;***®but for this the parameters of
changed to the effective chain of oscillators are not specified. The math-

. _ ematical problem of the localization of excitations in discrete

(U1 U2)(Us#U2)(UaUz+10) =0. 49 nonlinear systems of the typd8) and of the existence of

The state with the asymmetric distribution of the wavediscrete envelope solitons in them is now the subject of a
near the two planesU,= — »,/U,) branches off at the bi- large number of paper3:>? We restrict discussion to the
furcation pointw,= w,+ 2y, from the antisymmetric mode simplest case, when the localization region of the nonlinear
with U;=—U,. Let us write expressions for the amplitudes wave in the layered medium is much larger than the period
of the wave fluxes as functions of the frequency shift for theof this structure. This condition imposes an additional re-

different modes: striction on the wave amplitude: instead of the previous in-
equality U,<\? (U,<g), we now haveU,<exp(—\a/2).
Ui=Uz=Vo—w+1(SS, Here the domain of admissible wave frequencies narrows,
and inequality(24) goes over tas,— w<\%exp(—\a). With
Ui==Up= o1 (A), 49 oo <o ' Vo

the indicated stipulations, Eq48) can be replaced by the
nonlinear Schidinger differential energy for the function

1
Uf =5 (0= o) = (0—w)2—4r3] (AN). U=U(Z1):

. . 2
The frequency is related to the integrated power of the flux . dU 97U B i
as i P da Voazz +(w;—2vy)U—-U>=0 (49
lss=2(0—wi+vo), 1a=2(0—w— ), A with the well-known soliton solution
IAN:O)_(I)|. \/5 /(1)|_2V0_(1) o
These functions are illustrated by curvEs 2’, and3'. Un= costi (@, — 2vo— )/ von] ¢ (50

It is seen that there is a certain symmetry in the functions

I (w) for the focusing and defocusing media. After the bifur- This solution describes analytically a nonlinear wave lo-

cation point (>1,=2v,) the A mode becomes unstable, calized in the transverse direction and propagating along a

and the AN and SS modes are stable at all admissible valudayered structure, as was observed, in particular, in the ex-

of the wave energy. The relation betwekrand the total periments of Refs. 10,11, and 18.

number of field quant&l retains the form41). This study was supported by the project INTAS-99
Far from the bifurcation pointl&>1,, €e—0) the analy- (Grant No. 167 and the program MNOP (Grant

sis in the framework of the simplified model of coupled an-USU082087.
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The quantum magnetic size oscillatiof@MSO9 of the thermodynamic quantities in layered
organic conductors with a quasi-two-dimensional electron energy spectrum of arbitrary

form are investigated theoretically. It is shown that the modulation of the QMSOs contains detailed
information about the dispersion relation of the charge carriers2080 American Institute

of Physics[S1063-777X00)00908-7

The Shubnikov—-de Haas and de Haas—van Alfen quanS(e py,py) on the momentum projectiop, in these materi-
tum oscillation effects are manifested most clearly in con- als (the x axis is directed along the normal to the layeis
ductors of organic origin. This is due to the low-dimensionalquasi-one-dimensional conductors one expects that the quan-
character of the energy spectrum of the charge carriers itum magnetosize effect will be still more clearly manifested,
organic conductors, which, as a rule, have a layered or filasince for them the areas of the sections of the Fermi surface
mentary structure with sharp anisotropy of the electrical conwhich are cut off by specular reflections depend weakly on
ductivity. The electron energy spectrum of layered conduc, as well? As a result, averaging over these variables does
tors is quasi-two-dimensional, and the dispersion relatiomot lead to a substantial decrease in the amplitude of the
e(p) for the charge carriers in filamentary conductors withoscillations in comparison with the case of quasi-isotropic
high conductivity only along the filament obviously has ametals.
quasi-one-dimensional character. The high conduction of or- ~ Let us consider the oscillatory quantum magnetosize ef-
ganic conductors, if only in one directigie.g., along they ~ fects in organic conductors with an arbitrary form of the
axis), attests to the large number of charge carriers in therrlectron energy spectrum

and these conductors have a metallic type of conductivity, at % anp,
least in that one direction. e(p)=2, enlpy ,pZ)COE{TJran(py,pz) : (1)
The Fermi surfaces(p) =¢g of quasi-one-dimensional n=0

conductors can be written in the form of slightly corrugated  The coefficients of the cosines i), as a rule, fall off
planes in momentum space. In layered conductors placed ipidly with increasing number, and the maximum value of
a magnetic fieldH=(0,0,H) applied along the layers, a the functione,(p,,y,) on the Fermi surface is equal to
large fraction of the charge carriers moves along open trajecps <, where 7 is the quasi-two-dimensionality param-
tories in momentum space and, of course, do not take part igter of the electron energy spectrum of the layered conduc-
the formation of quantum oscillation effects in massivetor; a is the distance between layers, ang(py ,P,)
samples having thicknessesnuch larger than the mean free = —q,(—p,,—p,). In quasi-one-dimensional conductors
path| of the charge carriefsHowever, in thin conductors the  functions en(Py.P)=en(—Py,—P,), including
(L=I) with surfaces smooth enough to reflection the con-sy(p,,p,), depend weakly om, .
duction electrons in a nearly specular manner, the areas In a magnetic field parallel to the surface of a thin slab
S(e,px,py) of the open(cut off by specular reflections of the with sufficiently smooth faceg=0,L, the quantization of the
charge carriers on the boundary of the samplections of areas takes the form
the isoenergy surface(p)=eg by a planep,=const can

X g . . pyx+eHLU/c
take on only discrete values which differ by a multiple of S(savapz):f 2py(&,Px,P,)dPx
2mheH/c, where e is the charge of the electrorf; is Px
Planck’s constant, andis the speed of light in vacuum. As

. . eH
a result, the conduction electrons on the open sections of the =27h —(n+vy), (2
Fermi surface create a sort of oscillatory effeétwherein ¢
the magnetosize quantum oscillations of the magnetizatiowhere —1<vy=<0, andn=1,2,3 ... ,i.e., nis a positive

and magnetoresistance are showed by modulation of the arinteger. We assume, solely for the sake of brevity in the
plitude. In layered organic conductors a considerably largeanalysis of oscillatory effects, that the open sections of the
number of charge carriers is involved in the formation of theFermi surface are symmetrip,(py,p,) = — Py(— Px.P,)-
guantum magnetosize oscillations than in ordinary quasi- In magnetic fields that are not too high, so that not
isotropic metals on account of the weak dependence abnly much smaller tharh but also much smaller than the

1063-777X/2000/26(8)/4/$20.00 594 © 2000 American Institute of Physics
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characteristic quantum radiys=(c#/eH)*?, one can find For determining the quantum magnetosize oscillations of

the quantized energy spectrum of the conduction electronthe magnetization and the other thermodynamic quantities it
from relation(2) with the use of their quasiclassical trajec- is sufficient to calculate the thermodynamic potenfabf a
tories in the magnetic field. Solving the equatiefp)=¢, sample enclosed in a volumé

wheree(p) is given by(1), for p,, we obtain the following "
expression for the average value of the momentum projec- 0= _@2 E 2V
tion py: > N=0 L(277h)7
_ C [PxteHuc wh —&et+{,
py(syvapz):mfpx py(s,px,pz)dpx=Tn. Xf dpr dp,In| 1+exp , 9
()

where® is the temperature multiplied by Boltzmann’s con-
If the quantum radiug is comparable to the distanee stant,{,={* uH, { is the chemical potential, and is the
between layers, as is the case for nanostructures and sup&ehr magneton. Using Poisson’s formula, we write the os-
lattices, then the energy spectrum of the conduction electrorgllatory part of the potential as
can be determined by solving the Scatlirger equation o
H(P—eAlc)y=cy. @ Q=Re2, 2 Ik, (10

=1 o

The vector potentiah=(Hy, 0, 0). In the Landau gauge the where

vector potential of the HamiltonianA(P,— (eH/c)y, o\ .

E)y,pz) is independent ok, z, and the generalized momen- |k:—®mf dnf dpr dp, exp(2mikn)
tum componenP, ; the p, are good quantum numbers. For Y
7n<<1 the Hamiltonian depends weakly on the kinematic mo-
mentump,=(P,—eHy/c) and, consequently, on In the XIn
limit »=0 the componenp, will also be a good quantum

number characterizing the state of a conduction electron, and Making a change of the variable of integration frono
the action of the operatqs, on the wave functiony in the  the more conveniert, we obtain

case of nonzero but smalfl is written as

1+exp_8 g"). (11)

2V ®
ﬁy‘ﬂ:pglﬂ"’ 5E)y¢a (5) Ik:_G)L(ZWﬁ)ZJ'SOdSJ dpr dp,
where 5E)y goes to zero together with. {,—¢&)\an )
For smally the solution of equatiofd) can be written as XIn| 1+exp—g—|——exp2mikn). (12)

It should be noted that fd® < the main contribution to
I, comes from the neighborhood of the pout{,. The
_ o limits of integration overp,, generally speaking, are deter-
In the linear approximation in the small parameiethe  mined from the conditionS>0. However, the oscillatory

. (6)

i
w(x,y,z)=u(y)exr{g(xpﬁypﬁﬂpz)

equation for the functiomi(y) has the form part of the magnetization of the conductor is formed by
charge carriers with extremal values®fFor any dispersion
0 0 ap, eHa 0 ; .
go(py,pz)—}—gl(py'pz)co ———y+ al(py-Pz) relation of the conduction electrorshas an extremum on
h ch the central section of the Fermi surface by plgne 0, and
au(y) there can also be several more extrema if the spectrum of the
Xu(y)—iﬁvS 3y =eu(y), (7) charge carriers has a sufficiently complicated form.
Let us consider the simplest model for the dispersion
Wherev3=(9so(p§,p2)/&p3. relation of a quasi-two-dimensional conductor, wHghas
The solution of equatiori7) must satisfy the boundary one extremum aP,=0, viz.
condition u(0)=u(L)=0, which is what determines the 2, 2
ized levels of the ch iers. This bound Py + P2 apx
quan.tllze energy levels o the ¢ arge carriers. T lis boundary o= =Y_—% 4 ;A cos——, (13)
condition can be satisfied by a standing wave with nodes at 2m h

y=0 andL. After constructing the standing wave using so-\,nere the constam has the same value as .
lutions of equation(7), one can easily obtain the quantized A gispersion relation of this form allows one to obtain
energy spectrum of the charge carrier. In the leading approxizot only the quasiclassical but also the exact solution of

mation in the parametey it is equation(4). In calculating the oscillations of the magnetiza-
=hn tion it is sufficient to take into account only a small neigh-
gﬂ(pz):go(T,pz), (8)  borhood of the poinp,=0 within which

) p§<p3<2ms.
and the dependence of the energy levels on the magnetic

field appears in small corrections to this quantity in the pa-  Then, after determining from the quantization condi-
rameterz. tion (2), one can write it in the form of two terms, viz., a
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main term which is independent bf, and a small correction
which is proportional ton and depends on the magnetic
field:

Lv2m Ar
=_ [ .2 _
NTTYT R Ve pz/zm[l 7 2L (e~ pZi2m)
L ap, L
><3|n5cos< z +§) , (14
wherer =ch/eHa Let us assume that
R

Changing the order of integration in E@L2), we first inte-
grate by parts ovet; keeping only the rapidly oscillating
terms, we obtain
mhla
[
—mhla

V 1
g(,) exp(2mikn),

fpo q
pX 7p0 p227T|k

W=~ L 2mh) 2k

xfwd f(s_
&
el

wheref(x) = (1+exm) ! is the Fermi distribution function.
Then we substitute expressioid) for n into (16):

| V 2 ik i
KT L2m2ha O TemRYT
e—{, ikLy2me — p3
[t 2] [* ] KM
Po

nkrA2m L
o\ %(2me—p2)2>"2r |

(16)

17

whereJ, is the Bessel function.
In integrating overmp, we use the method of stationary
phase. Taking inequalityl5) into account, it is easy to see

that the most rapidly varying function in the integrand is

exp(kLy2me — pzzlﬁ), which has a ?7?stationary point gy
=0.

As a result of straightforward calculations we arrive at

the expression

21/4\/ﬁ 1/253/4

\If(kl“)exp< —2miky—i

he=— 73022152 512 1/4 4
_kLvy2m¢, nkrAy2m
+i 7 Jo |n2— (18
N,
where WV(z)=z/sinhz, A=(wOL/2A{)y2m{. In the

smoothly varying functions one can replagg by ¢, since
nH<<Z.

Using formulas(10) and(18), we can write the oscilla-
tory part of the thermodynamic potential in the form

L
Qozk: 2 co V2mé,

o

W (kT) T K

KrAY
3o ZKA 2msini), (19
ﬁ\/é‘_a 2r

Azbel’ et al.
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A

FIG. 1. Dependence &fl/H on R=LeHa/2c# in relative units)h =100(a)
and 30(b).

~10k

where ) = 2547, Y2734 (7329 L5?)

From here the calculation of the quantum oscillations of
the thermodynamic quantities is done by elementary differ-
entiation of expressiofil9). Let us determine the oscillatory

part M of the magnetic momentum in the direction of the
magnetic field,

)

M= BT (20)
Keeping only the leading terms in the parameiéi/,

we obtain

~ 20, P (kA) T kL A

M= H Ek:kT 05<_27Tk7—z+7\/2m§)§
. N

><(—st+RcosR)J1<k§st), (21

whereR=L/2r, A= nALM/ (% 2m{).

The argument of the Bessel functidiy in expression
(21) goes to zero when the thickneksof the sample is a
multiple of the period of the open electron trajectoryr2
As the magnetic field is varied, the condition tHatis a
multiple of 2#7r is periodically broken and reestablished.
This leads to modulation of the magnetosize oscillations
(Fig. ).

It is easy to obtain the oscillatory dependence of the
magnetization in the case of a quasi,two-dimensional elec-
tron energy spectrum of arbitrary form. Keeping only the
first two terms in relatiorf{l), we obtain an expression fout
that is analogous t¢21) but with Am/\2m¢ replaced by
g1/vo, Wherevy=de(py,0)/dp, .
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The behavior of the conductance upon changes in temper@tutiee interval 1.5-40 Kand
magnetic field(up to 20 kOg is investigated for a series of samples witlH@) layer

in Si, with hole concentrations in the conductiAdayer of 2.5< 101°-2.2x 10'* cm™2. It is

shown that the temperature and field dependences obtained can be explained successfully as a
manifestation of the weak localization effect and the interaction of mobile charge carriers
(holes in a two-dimensional electron system under conditions of strong spin—orbit interaction.
An analysis of the behavior of the quantum corrections yields the temperature dependence
of the phase relaxation time of the carrierg=AT %, with A~(1.4+0.3)x 10 *2K-s, where

this temperature dependence is treated as a manifestation of hole—hole scattering processes,
and the values of the interaction constants are also obtained @.64—0.73). ©2000 American
Institute of Physicq.S1063-777X00)01008-2

INTRODUCTION the terminology we shall by convention refer to them below
) ) ) as electrons. The obtaining @ B) layers in Si was first
Among the various c!asses ,Of two-dimensional elecm)r}eported in Refs. 4 and 5, and the manifestation of WL and
systems are delta layers in semiconductoFaese are struc- £ effects in these objects was first demonstrated in Refs. 6
tures in which the impurity atoms are located in a singleang 7. |t is of interest to study quantum interference effects

monolayer inside a pure single crystal of a semiconductorgy 4 series of samples with different concentrations of 2D
The preparation of structures is usually done by moleculargactrons

beam epitaxy.

The charge of the impurity atoms lying in a single crys-
tallographic plane of the semiconductor creates a potentia
well for mobile charge carriers. This well is manifested as a  We investigated the behavior of the resistance and its
two-dimensional electron gas: in the plane of the layer thelependence on the magnetic field at various temperatures for
electrons behave as free electrons, while in the perpendicul#our sample¥ whose characteristics are listed in Table I. The
direction there are discrete quantum lev@abbands The  carrier concentration in them varied by an order of magni-
depth of the potential well, the number of the quantum lev-tude (from sample A to sample JCwhile samples B-I and
els, and the occupation of these levels are determined by tH&-1l had concentrations of around<7L0"3 cm™? but differ-
“sheet” concentration of impurity atoms, i.e., the density of ent elastic scattering times. According to Ref. 6, these carrier
two-dimensional2D) electrons. concentrations correspond to the region of “metallic” be-

The subject ofs layers is of both purely scientific and havior of the electronic properties @ B) layers, since the
applied interest, since a very wide range of concentrations ahetal—insulator transition in such systems occurs at a con-
2D electrons can be obtained in them, including extremelycentration<1x 10" cm™ 2. The arrangement of the sub-
high values ¢ 10*-10" cm™2). However, the mobility in  bands in the potential well for the corresponding carrier con-
the & layers is relatively low(inferior to heterojunctionson  centrations can be obtained from the calculated curves
account of the contribution of elastic scattering of carriers ore(N,) given in Ref. 6, or from estimates that can be made
the impurity atoms that create the potential well. Moreoveraccording to the theory of Ref. 8 with the use of the param-
this circumstance creates conditions for the manifestation ofter v:NAaé, where N, is the concentration of acceptor
quantum interference effects if layers (weak localization impurities in thed layer, ag= k#/mée is the effective Bohr
of electrons and the electron—electron interadtfohThe  radius, andk is the dielectric constant of the latticex (
study of these effects, as we know, can yield information=11.4 for silicon.® The values ofe thus obtained agree
about the parameters of the relaxation and interaction of theoughly with the calculated functions in Ref. 6.
electrons. Quantum interference leads to quantum corrections to

In this paper we investigate the effects of weak localiza-the conductance of the object under study. The conductance
tion of the electron§WL) and of the electron—electron in- of the § layer is made up of the conductance of the occupied
teraction(EEI) in & layers of boron §(B)) in silicon. The quantum subbands. As the number of the subband increases,
mobile charge carriers in this case are holes, but to simplifithe partial concentration of carriers in the subbands falls off,

BJECTS OF STUDY
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TABLE |. Physical characteristics of the samples.

0.020r 1.7K
n, Ro, T D,
Sample 10%cm 2 Q (Trin) 10%s  cnf/ls A F 25
A 2.53 7691(13K) 4.4 81 064 048 0.015
B-I 7.00 2497(18 K) 4.9 25 073 036 A IOr 3.5
B-Il 7.15 1824(7 K) 6.6 33.8 0.64 048 E 1o
C 22.30 46820 K) 84 133 - - o .
< 5.9
0.0101 6.0
7.0
while the partial mobility increasgsee Refs. 1 and 10-12 | 8.0
On balance the conductances of the subbands are approxi-
mately the same. If one takes into account the appreciable 0.005r 1
intersubband scattering inherent ddayers; then in the de- 14
scription of such integral characteristics as the total conduc-
tance of thed layer and the quantum corrections to it, one

can use a certain effective diffusion coefficiéhtand other 0 - 5 ' 1'0 ' 1'5 o0
averaged characteristics in accordance with the formulas for H, kOe

a two-dimensional electron system. The contributions of the

heavy and light holes to the conductance are indistinguishFIG. 2. Resistance of sample B-Il versus the magnetic field at different
able. We have used the averaged valobthe “Ohmic” ~ emperatures.

effective mass typesm=0.24m,, which is obtained in an
analysis of the temperature and magnetic-field dependence of
the amplitude of the Shubnikov—de Haas oscillations for the

KOV—0€ Haas | The temperature dependence of the quantum corrections
conductance of hole heterojunctions in siliddn.

to the conductance is described by the relgti§r®

EXPERIMENTAL RESULTS e?

. . Aor=———a7InTr; 1
The quantum corrections determine the features of the T 22 T 7 @

temperature and magnetic-field dependence of the resistance
of the investigateds(B) layers in Si: as the temperature is
lowered, the resistance passes through a minimum and then
increases below 10-5 Knset to Fig. 1, while the positive ar= 1 <

magnetoresistance effect has the typical functional form for _EpH\T’ Ts0™ T

the WL effect and it decreases appreciably in amplitude as

the temperature is raiseig. 2). We have done an analysis where 7 is the elastic relaxation time of the electrons, is
of the relations obtained in accordance with the formulas fothe dephasing time of the electron wave functiog, is the

the WL and EEI effects. spin—orbit interaction time during elastic scattering of elec-

trons,\t is the interaction constant, apds the exponent in
the relation T;]'O(Tp. The conversion from the change in

p+)\T, TSO> Tes

1950 510 resistance to the conductance corrections is done by the for-
5 - mula —Ao(T) =[R(T) = R(Trn) VR(DR(Trin), where
506 Rp is the resistance per square of the the two-dimensional
1930 conductor.
4 a The experimental curves for samples A, B-I, and B-II
v S 502 are well straightened out on a plot efA o versus InT (Fig.
S & 910l 1), and this is true both for =0 and for a rather high mag-
$ 3 netic field (Fig. 3). With increasing field the slope of the
2 498 straight lines— Ao (InT) increases as a result of suppression
o 1890l of the WL contribution. The increase in the slope of the lines
< 2} 4404 with increasing field in Fig. 3 is evidence that the signs of the
! 0 10 20 30 40 corrections from the WL and EEI effects are different, as
T.K is observed in the case of a strong spin—orbit interaction,
1} Tso< T,
3 In a two-dimensional system in a perpendicular mag-
Ly, netic field the change in conductance due to the WL effect is
o m 20 aoonsne given by
T,K
FIG. 1. Plots of—Aa(T) andR(T) in zero magnetic field for samples A Aot = e [3 <4EHD *) 1f 4eHD ) (2)
(cur've.sl) and B-I (curves2). ? P 7H 2212 2 fic ¢ 277 ke Tel |
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FIG. 3. Plots of—Ao¢(T) for sample B-ll in various magnetic fieldd,

kOe: 5 (¥), 10 (O), 15 (A), 20 (®). FIG. 5. Plots ofD 7,(T) for samples A @), B-1 (V¥), B-ll (O); C (A).

where (%) 1= 7, 413755 and f5(X) = Inx+(1/2+1/x),
where i/ is the logarithmic derivative of th€& function. In
the case of a strong spin—orbit interaction,d<,) this
relation takes the form

rate description of the experimental data on the magnetore-
sistance by Eq(3), the formula for the WL effect, indicates
that there is practically no contribution to the magnetoresis-
tance from the quantum corrections due to the BEI
In a magnetic field parallel to thé layer the magnetore-
(3)  sistance curves have the form of a quadratic function in al-
most the entire interval of magnetic fields investigate.
Formula (3) pertains to a positive magnetoresistance, as i§). This agrees with the WL concept? the transition from a
observed for the objects investigated hétlee conversion quadratic to a logarithmic dependence in a perpendicular
from the change in resistance in a magnetic field to the confield occurs at a characteristic fieldigzhcmeDr(p, where
ductance corrections was done according to the formul®7,=L2 (L, is the localization length while in a parallel
—Aco(H)=[R(H)—R(0)]/R(H)R5(0). field the latter quantity is replaced by the producfL,
Relation(3) was able to give a very good description of whereL is the thickness of the conducting region &L ).
the experimental curves for all the samples studked. 4). Figure 7 shows the curves efAo(H) in perpendicular and
The parameters extracted from the fit are the valuds of. parallel fields for sample C. It is seen that these curves ap-
The results are presented in Fig. 5. One notices the neg@roach one another as the magnetic field increases, i.e., the
coincidence of the curves for samples B-1 and B-II, which
have nearly the same carrier concentration. The very accu-

1 €

L—fi
Aow= 2 27%h

2

4eHD
e Tl

0.012
_5 1.7K
10 F
- 0.008F
-6
~ 10 ¢ s
| F E
S i b
b
< -7 0.004+
10
_8- s I L
10 , 0 5 10 15 20
— 10 H, kOe
H, kOe

FIG. 4. Plots of-Ag(H) for sample B-Il at different temperatures.

FIG. 6. Resistance versus magnetic field at various temperatures for sample

B-Il in a magnetic field parallel to the plane of tiéelayer.
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DISCUSSION

The dependence of the formocT*l should be regarded

1t as a manifestation of electron—electron scattering processes
i in a disordered electron systéfiThe 7,(T) curves obtained

for the samples turned out to be close to one another, and

they clearly did not exhibit the theoretically predictétf

dependence of.. on the resistance of the samples. Accord-

ing to Ref. 18, the electron—electron scattering time for small

energy and momentum transfers between electrons can be

written as

“Ac, 107507
o

2 e ull In 7% v4D 4
Toa =———INThV ,
¢ 2mh2uyD @
0.01¢ 3 wherevgs is the electron density of states. For a 2D electron
' systemvgs=m/ 42, In calculations ofr,.=A* T~ ! accord-
- ing to Eq.(4) one obtains the following values for the coef-
o1 % - ““1LO ' ficielnltsA* in samples A, B-l, B-ll, and C, respectiveljn _
H, kOe 100+ K-9): 4.8, 4.8, 5.5, and 12.6. It turns out that the in-
fluence of the diffusion coefficief® on these calculated val-
FIG. 7. Plot of ~Ac(H) for sample C in a magnetic field perpendicular a5 js not important, and that is justification for the absence
%’??Qf 5"’1?";(%3)23?;?5.”6‘% of th& layer at various temperaturds ¢ o licit dependence of the position of the(T) curves in
Fig. 8 on the resistance of the samples. The calculated values
of 7.¢, On the other hand, are more than an order of magni-

degree of anisotropy of the magnetoresistance decreases.tude larger than the experimental formulas. For the experi-
similar effect is also observed on increasing temperature. Mental data presented in F1Izg 8 the coefficigiit varies in

In order to calculate the times, we have to determine the interval (1.1-1.7x10 *° K-s. Such a disagreement
the diffusion coefficienD. For a two-dimensional electron from the use of formula4) has been observed previously in
systemD = (1/2)v2 7, andvg=%(2mn)Y¥m. The elastic re-  Several analyses of layers and heterojunctionsee Refs.
laxation time can be found from the formuRg,'=ne?s/m. 7,13, and 189 _
The values obtained farandD are given in Table |, and the L€t us return again to the temperature dependence of the
temperature dependence of is plotted in Fig. 8. In the resistancesee Figs. 1 and)3which manifest both the WL
temperature interval 4-20 K theoretical data are well apcontrlbut[op and the interaction in the d!ffu5|on channel. In
proximated by a function-;loc'rp, with p=1. At lower tem- the.coefflmentsaT: —(1/2)n+ A1 determined from the. ex-
peratures one observes a deviation in the direction of smalldterimental curves of- Ag(InT) one can take =1 and find
n (down to 0.85. Possibly this deviation occurs under the the interaction constanty. The values obtained fory are
influence of spin scattering on magnetic impurities, whichdiven in Table I. The interaction constants characterizing the

could be present in trace amounts in the samples studied. duantum corrections to the temperature dependence and
magnetic-field dependence of the resistance are usually writ-

ten in terms of the universal constat— the interaction
-12 averaged over angles. For example, for a strong spin—orbit
10 interaction,\ has the following form in the case of zero or
low magnetic field*!’

e

‘ Ar=1 3F 5
. =1-7F. )

L g Using formula(5), we obtain the values df given in
0 Table I, which, like the values of;, are completely realis-

J tic. The relatively small range of variation of the carrier con-
L centrations in the group of samples A, B-1, and B-Il does not
N permit one to reach a definitive conclusion as to the exis-
tence of correlation between the constkrand the concen-
tration n. We note that for5(Sb) layers in Si such a corre-
lation was found?® the constanf increases somewhat with
o decreasinqn.

Te, S
»

-13

—
(=]
T
»
o
8

CONCLUSION

1 T K 10 From an analysis of the temperature and magnetic-field
’ dependences of the conductance of a series of samples with a
FIG. 8. Plots ofr,(T) for samples A @), B-I (¥), B-11 (O), and C A). &(B) layer in Si in accordance with the concepts of weak
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For an easy-plane antiferromagnet having anisotropy in the easy plane and containing an edge
dislocation, a two-dimensional model is formulated which generalizes the Peierls model

to the case of coupled fields of magnetization and elastic displacements. The proposed model is
used to obtain a system of one-dimensional nonlinear integrodifferential equations for the

two coupled fields. In the case of ideal crystal structure of the antiferromagnet this system of
equations has a solution for a domain wall containing a Bloch line, the structure into

which the magnetic vortex is transformed when the single-ion anisotropy is taken into account.
In the presence of a dislocation a complex magnetostructural topological defect arises in

the form of a 180° domain wall terminating on the dislocation. 2@00 American Institute of
Physics[S1063-777X00)01108-1

INTRODUCTION but in view of its one-dimensional character it led to incor-

. . . . rect asymptotic behavior of the fields at large distances from
The synthesis of new quasi-two-dimensional and two-
. . the center of the defect. In Ref. 12 a 2D model was proposed
dimensional2D) layered magnets has aroused both theoret- " . .
) : . ; . which generalized the well-known Peierls model to the case
ical and experimental interest in the study of the dynamics

. o . . of coupled fields and which is also a generalization of the
and structure of topological excitatiorfsnagnetic vortices . ; L
T . . 3 model used in Ref. 11. Without taking into account the an-
and disclinations in magnetically ordered medfa® The

low-temperature phase transition to a magnetically orderebf’mrOpy in the easy plane, this model described an isolated

: . ; -~ ~Mmagnetic vortex and al mplex magn r ral -
state in 2D easy-plane magnetic systems is accompanied l? agnetic vortex and also a complex magnetostructural topo

the formation of a large number of magnetic vortices. Whenggical defect, constituting a magnetic disclination coupled

the anisotropy in the easy plane is taken into account, thes\’gIth a dislocation. In the present paper we upgrade the

vortices are transformed into domain walls containing BIochmOdeI proposed in Ref. 12 by incorporating additional easy-

. . : o . axis anisotropy in the easy plane of an AFM. The model
lines. It is also known that in 2D systems it is easier to form . : .-
) . . developed here describes both a domain wall containing a
structural topological defects — the two-dimensional ana- L . . L
) ) ) . Bloch line in an ideal AFM and a domain wall terminating
logs of dislocations. These circumstances point to the neces- ) C
. : : . on an edge dislocation in an AFM.
sity of studying the influence of magnetic and structural to-
pological excitations on one another. The situation is
. . S . CONSTRUCTION OF THE MODEL
particularly interesting in the case of an antiferromagnet
(AFM). First, the majority of 2D magnets are Heisenberg  Consider the case of an edge dislocation in a two-
AFMs with single-ion easy-plane anisotropy and weak an-sublattice easy-plane AFM with strong easy-plane anisotropy
isotropy in the easy planfeSecond, unlike ferromagnets, and an additional weak anisotropy in the easy plane with a
AFMs have, in addition to the usual weak magnetoelasticheckerboard ordering of the spins. The ideal ordering of the
interaction, a strong magnetoelastic interaction of a topologispins in such a system cannot be realized, since there will
cal nature which requires an essentially nonlinear treatmenalways be a line that terminates on the dislocation and along
As was first shown qualitatively in Refs. 9 and 10, this to-which the orientation of neighboring spins is ferromagnetic,
pological interaction in AFMs leads to coupling of disloca- i.e., unfavorable. In the case of an easy-plane AFM with an
tions and magnetic disclinations or domain walls. When thdsotropic easy plane this frustration is overcome by the for-
uniaxial anisotropy in the easy plane is taken into accountmation of a magnetic disclination associated with the dislo-
the domain wall should terminate on a dislocation, and thigation, in which the total rotation of the antiferromagnetism
can lead to a change in the density of dislocations at thed Ne vector on a turn around the center of the dislocation is equal
phase transition point and, consequently, exert an influenc® 7.2 When even a weak easy-axis anisotropy in the easy
on the elastic and plastic properties of 2D AFMs. plane is taken into account, the magnetic disclination is
The problem of constructing an analytical description oftransformed into a 180° domain wall, which compensates the
a complex 2D topological magnetoelastic defect is compli+otation of the spins by the angte. The distribution of the
cated even in the framework of a 1D model. A generalizationmagnetization in an easy plane £) containing a dislocation
of the 1D Frenkel-Kontorova model to the case of twoat the pointx=z=0 and possessing easy-axis anisotropy
coupled fields in such a defect was proposed in Ref. 11. Thalong thex axis in the easy plane is shown in Fig.(the
model of Ref. 11 permitted investigation of such a defectdomain wall lies along the line=0, x>0). We note that in

1063-777X/2000/26(8)/6/$20.00 603 © 2000 American Institute of Physics
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-« > “ > displacements at the core of the dislocation, which are com-
“ parable to the lattice parameters. The density of the magnetic
™ Bt nih < i i i B subsystem has the form
Z Ty
! Emagn: ;n J; cog Pn,m— (Pn—l,m) +J, COS( Onm— ‘Pn,m—l)
— ar "y
B ~ T -7 — 7 I ><Cosg(un,m_un,m—l)_ §C0§ Pn,m]- (2
N - > The presence of an extra atomic chésee Fig. 1in the

X half space above the slip line of the dislocati@+(Q) leads
FIG. 1. Distribution of the magnetization in an easy-plane AFM with a to the situation that, for a fixed ideal spin orientation, the
chepkerboard ordering of the spins in the presence of a domain wall termispins of neighboring chains adjacent to the slip line are fer-
nating on an edge dislocation. . .
romagnetically(unfavorably ordered. The second term in
expression2) takes this circumstance into account and thus
Ref. 9 a somewhat different situation was considered, wherf€scribes the topological interaction of the magnetic and
the AFM had fourfold symmetry in the easy plane. In that€lastic subsysterm. To take into account the checkerboard

case two 90° domain walls terminated on the dislocationAFM ordering it is convenient to change from the functions
to the new functionsy, m= ¢, m for n+m=2s and

Unfortunately, the analytical solution of the problem of the ¥nm ! i
distribution of the magnetization around a topological defect/nm=¢nm* 7 for n+m=2s+1 (s is an integer. In terms
(Bloch line), even in an ideal AFM without a dislocation, is Of the new variableg, r, expressiongl) and(2) imply the
a complicated mathematical probléfnand it is impossible following form of the static equations for the atomic dis-
to write an exact solution in analytical form. The situation is Placémentsi, , and the spin deviationgy '

even more complicated in an AFM containing structural de-

fects (2D dislocations In order to have the possibility of 4(2u,
constructing an analytical description of topological defects

in this case we limit the description to a model AFM with
strong anisotropy of the elastic and magnetic properties in  +sin
different directions.e> B (« and 8 are the constants of the

elastic interaction along theandz directions, respectively Cm(Upm—Unm—1)

J;>J, (J; and J, are the exchange interaction constants XS'”%_COQ%,mH_%,m)
along these directions Since the domain wall energy is

given by the expressioBp,=\/yJ, wherey is the param- _ (Unm+1~ Unm)
eter of the weak anisotropy in the easy plane dand the xsin a =0,

exchange integral in the direction perpendicular to the plane 3
of the domain wall, in the case of the indicated spatial anJ;[sin( ¢, m— ¥n—1m) + SINYnm— ¥n+1m)]

isotropy of the magnetic properties the minimum-energy
configuration corresponds to a domain wall oriented along +J,
the x direction?

Let us label the atoms of the lattice by two indices: _— Uy )
(the x coordinat¢ and m (the z coordinatg. For describing +SiN( ¢ m— Yo+ 1)COSM
the elastic subsystem we restrict consideration to a scalar
model and denote bw, , the displacement of them-th y
atom relative to the equilibrium position and ly, ,, the + 58I 24 m=0.
deviation of the spin of th@m-th atom from the easyx{

axis in the §,z) plane. Numerical calculations have shown Taking the topological magnetoelastic interaction into ac-
that when the easy-plane anisotropy exceeds a certain criticghnt has led to coupling of the equations for the elastic and

plane and can be characterized by a single scalar quantitys,al weak magnetoelastic interaction of the foxu,, ,
¢n.m (Ref. 14. The energy of the elastic subsystem is written _ Un' ) COSE@nm—@rr ) ’

277'(un,m_ un,m+l)
a

sin

m un—l,m_ un+1,m) + E

27T(un,m_ un,mfl)

COS{ wn,m_ ’pn,mfl)

7TJ
+—
a“?

. 71'(un,m_un,m—l)
Sm(wn,m_ wn,m—l)cos a -

in the form The slip line of the dislocatiorithe line z=0) divides
o the (X,z) plane into two half spaces, in which the relative
Eo= 2>, [E(umm—unl’m)2 displacements of neighboring atoms and the relative devia-
nm tions of neighboring spins are small, and therefore in these
2 half spaces one can use a long-wavelength description in the
+ a 1 2 1 framework of equations fou(x,z) and (x,z):
Bﬁ _COS?(Un,m_un,mfl) ) ( ) ! !
- - N U ~ 3%
wherea is the lattice parameter along ttxedirection. The aa2—2+,8b2—=0, (49)

nonlinearity of the second term lets one take into account the X Fria
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92 . ~ | !

J,a? —w+J bz—w— %sm 2¢=0, (4b) T
X2 972 — e —ores .*_HH_:_.,:
whereb is the lattice constant in the direction, and,~8=,8 1 A et e — s —— —a “‘*\l '
+m2),/a2~ f is the elastic coupling constant renormalized —Sy— — — — — — — — . —— — — — _ T

with allowance for the magnetoelastic interaction. This / / / 3&%\\ \ \ \;

renormalization leads to a small change in the size of the YA i\

dislocation cordwith an order of smallness equal to the ratio \ \ \&

of the magnetic interaction to the elagtic
It is seen from equation$4) that inside the two half | |

spaces £>0 and z<0) the fields of the elastic displace- et —8r — | o]

mentsu(x,z) and spin deviations/(x,z) are independent, Lo

and the coupling of these two fields occurs only in the dis-

location core and in the domain wait>0, z=0. In the re- 2

gion of the dislocation core the relative atomic displacements

in the atomic rows adjacent to the boundary of the halfFIG. 2. Distribution of the magnetization in an AFM in the presencelpf:

spacesu. =u(z=+b/2) andu_=u(z=—Db/2), can differ a_domain wall i_n thex direction, pontaining a v0rte(<t_he shaded region

by a quantity of the order of interatomic distaraeand the ~Wth @ Bloch point, and) a domain wall along the axis.

relative spin deviationg, — ¢ near the domain wall can be

of the order ofwr. Therefore the interaction across the bound-

ary must be taken into account exactly: line, the functiong .| are strictly less thamr/2. Indeed, it is

seen in Figs. 1 and 2 that in the first case we have

a? 2
Es=8— 1-cos— (U, —u_) —m2+e<i, <0,
4 a
and in the second case
v
—chos(:,m—z/r_)cosg(qu—u_). (5) —ml2+e<ip,<ml2—e.

. The value ofe is easily found from the solution of equation
Here the solution of the bulk problefda), (4b) (e.g., for the (4b) for a uniform domain wall:

upper half space>0) is supplemented at the boundary be-

. s z 1/2
tyvee.n the two half spaces by the following boundary condi =2 arctan exp— — v _ )
tions: b\J,
Ba  2m(u,—u_.) 2w, (U —u_) Taking this solution atz=b/2 and using the inequality
- sin a 2 COS{!M—I,/L)SIHT y<J,, we find thate=3\y/J,. For the piecewise-linear
approximation of equatiofdb) we have
~ d(uy—u_)
b2————, 6 92 92
p Iz (63 Jlaz—erszz—l'/j—wp:O, z>0, (8)
ax? Fria
23, SN, — (/,7)00377(“+—_l"*): _\]ZbZ&(w;—_"b), and the solution for the uniform domain wél) simplifies to
a z

- . 112

(6b) (/l(Z>0)= EGXL{— B(Jl) . (9)

Since the elastic interaction is much greater than the mag- 2

netic, the second term on the left-hand side(@d) can be Inthe proposed approach for the linear equatidias and(8)

dropped, and the constaEtcan be replaced bg. we can use the well-known Green functions and express the
In the absence of anisotropy in the easy playe=0) solutionsu(x,z) and ¢(x,z) in terms of the effective forces

equations4), which then become linear, can be solved, andacting on the boundaries= = b of the half spaces:

one can easily find the relation between the derivatives Ba 2m(u,—u.)

du. 19z and 9y 19z in (6@ and (6b) with the quantities fo=— 2—s'n

du. /dx and dir. 9x at the boundary. Then the boundary m

conditions (6) are converted to a closed system of one- a )

dimensional integrodifferential equations for the functions —EJz C05(¢+—¢—)SIHT,

u-(x) and ¢ (x).*? 10
In our case this approach is impossible because of the ~ ) m(Uy—Uu_) (10

nonlinearity of Eq.(4b). Therefore, for a qualitative solution fi==Jpsin(y. —y_)cos———

we use a piecewise-linear approximation for the single-ion
anisotropy energy in the easy plane, replacing the term (It should be kept in mind that the bulk forces which were

_(1/2)7co52%mm (2) by 790 2. This replacement is jus- used in finding the solutions for and ¢ in the half spaces
tified by the fact that in the case of a domain wall terminat-have  the  form f(x,z)=bé(z)2f.(x) and T(x,2)
ing on a dislocation or a domain wall containing a Bloch =bé&(z)2f.(x).)
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Introducing the relative displacements of the atoms at  dy 2 [x—x'|
the boundaries of the half spacess w(u, —u_)/a, and the f 1( N
relative rotations of the spins at these boundarjes,i

—¢_, and using the Green functions for the Laplace andwhich is close to the Peierls equation describing the structure
Klein—Gordon equations, we obtain integral expressions foof a dislocation in a two-dimensional modelHowever, in

ax= T )sgr(x—x’)sinxdx’, (14b)

the fields in the half spaces: our case the Cauchy kernel(x—x") of the Peierls integral
L e o , 112 equation is replaced by the kerndl;(|x—x'|/\)sgnx
u(x,220)=1—2f In (x=x") N _}_1 —x"). Since Kl(p)~1/p _""t small values of the argument,
27l ) aa’ Bb? these two kernels coincide fgk—x’|<\. Because of the
) exponential decay of the functidf, with distance, the ker-
xsinw(x")dx’, (1D nel has a local character, and the figigk) is localized and
1 [+ (x=x')? 22 1/2 exponentially approaches its asymptotic forms at large dis-
¢(x,220)=1—~J KO( (—4— —) ) tances.
alJ - \? o? We shall solve equatio(il4g by successive approxima-

(12) tions. As a first approximation, in view of the local nature of
the distribution of the fieldy(x) and its nonzero asymptotic

whereK, (k) is the Macdonald function and we have intro- expression at infinity, we approximate the functionyson

duced the parametets-aa/B, T=a\J,/3,, o=b\J,/y,  the right-hand side of Eq143 as follows:

and A=a\J;/vy. These last two parameters describe the

X cosw siny dx’.

. . RS . ) a y\Y? d [x
magnetic lengths” in thez andx directions, respectively. siny(x)— > (J_z) sgr(x)—2m\ ax 5( X) ) (15
1 (e 02 2\ 12
DOMAIN WALL CONTAINING A BLOCH POINT IN AN AFM ly=~— XJ: Ko( (F + E) sgr(x—u)du
WITH IDEAL STRUCTURE
_ _ _ b 2 p2 1/4
In Ref. 12 it was shown for an isotropic easy-plane AFM ~— wexp( - —) +2)\[ —+ —)
that in the absence of dislocations the system of coupled 20 A2 402
equations for the fields of atomic displacements and spin ) , | 12
deviations which is obtained in the proposed generalization xex;{ _(X_+ b_) ]xl (16)
of the Peierls model admits a magnetic vortex solution. The A2 402 '

system of equation€ll) and(12), which takes into account ) . . )

the anisotropy in the easy plane, should describe a domaiffnere the functiory(k) is replaced by its asymptotic ex-
wall containing a so-called Bloch point, in one turn aroundPr€SSIon jt large values of the argumenko(k)
which the direction of the antiferromagnetism vector changes™ V7/2k e %, k>1. In an analogous way we obtain the
by 27 (Fig. 2. The corresponding solution in the limit valug ofl, for x<<0. The contribution of the second term in
—.0 must go over to the solution for a magnetic vortex. In an(19 i calculated exactly:

ideal AFM with no dislocation we havev=0 and u=0. 4 2 p2\Y\ [x2 p2\?
Then Eq.(12) reduces to |2:—»er0 F+E) )(F+E> . (17
1 [+ (x—x")2 22\
P(x,z=0)= 1_Tf Ko TJr - siny dx’. Finally, for the second approximation fgrwe obtain
ar —®© ag
(13 x(Xx20)=7m=xl,+1,, (18

At distancesx>\ the domain wall is almost uniform along wherel; andl, are given by expressiori6) and(17). From
the x direction, and the functiory describing the relative formulas(14)—(18) we obtain the asymptotic expressions for
deviations at the boundary of the half spaces can be assumgdx) at x— *: x|, _,—27—7/2Jy/J, and x|, ;-
approximately constant. In this approximation one can easily- w/2\/v/J,, which agree with the resu(®) for a uniform
obtain from Eq. (13) expressions for y.,,= y(x— ) domain wall.

=7/2\ylJ,= we and for the distribution of the magnetiza- The behavior of the functioty(x) at the center of the
tion in the domain wall along the direction at large values vortex is found by differentiating Eq14a with respect tox

of x [see formula9)]. and approximating the kern&l, (k) in the resulting expres-
Assuming in Eq.(13) thatz= +b/2 and taking into ac- sion by the function 1/sink}, which leads to the equation

count thatyy_=—m— 4, in the given configurationsee 1

Fig. 2), we arrive at a one-dimensional equation for the rela- d_X _ i e

siny dx’. (19

o [x=x'
sinf| —

2 (x—=x")2 b2 \" , Equation (19) has an exact soliton solutidfi, and its
X=T— ;Tf Ko N2 2 siny dx’. asymptotic behavior of interest to us is linearximt smallx
(143 and has a value ofr at the center of the vortex:

tive spin deviations at the boundary of the half spaces: dx m\T)-=

4o

Differentiating (148 with respect tax and settingo=0, we X

obtain the equation X=m—2 (20)

)\ l
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and the gradient of the relative spin deviations is maximurrequation, analogous td44a, for the relative spin deviations

in the core region of the magnetic vortex. at the boundary of the half spaces in the presence of a point
Applying the approximationl5) to expression§l3), we  dislocation:
obtain the distribution of the magnetization over the entire 2 ( e 12
. X—X
volume of the AFM: X= _gf Ko +— sgn(x’)sinx(x")dx'.
12 [ram 7l \? 40°
T z m\ Y2 \Jre " 2 xKop(r)
4//(x,2<0)_t2ex + 5 N _—
v I A good approximation for the function sinis the substitu-
2D tion
wherer =(x?/\%2+ 7%/ 0?)*?, the signs+ corresponding to [ 5|2
the upper and lower half spaces, respectively. It follows from  siny—P(x)— E(J_) S(x), (25
2

(21) that the nonuniformity in the ordering of the spins de-

cays exponentially in the direction, perpendicular to the where P(x)=—1 in the interval|x|<\ and P=0 outside

orientation of the domain wall, and the ordering becomeshis interval, and the Heaviside step functi®fx) is equal to

ideal asz— * . /(X,2)|,- +»—0, ¥(X,2)|,, —0o— — 7. 0 for x<0 and to 1 forx>0. In this approximation the
Thus the distribution of the magnetizati¢@l) can be  solution of equatior(24) for x>\ has the form

written in the form b 122 p2 |
W(X,z)=1,(2)+f5(r,cose)+f4(r,cose), (22) X(X>0)E—779XF<_%)+ —) ( ) Ax

2] \32" 202
where the functiorf; describes the distribution af in the 12
. . . X2 b2 A X2 b2
domain wall at large values of where the wall is practically sexd —| =+ —_ AN R
uniform with respect t; f4 [the contribution of the second N2 402 al N2 402)
term in (15)] is due to the contribution of the vortex to the (26)

magnetization field at small values xiff, is a correction to

f5 and describes the influence of the vortex far from its lo-
calization region X>\). The characteristic dimension of the
vortex along thez direction isA,=o=Db+J,/y and its di-

For x<<0 the first term in(26) is equal to zero. An estimate
of the gradient of the relative deviations of the spins near the
core of a point dislocation gives

mension along the axis is A,=\=aJ;/y. Thus in our dx (x=0) ~
: . . . ———~=~In(o)+In(l). (27)
anisotropic model\, /A,=a+/J;/J,/b>1, and the vortex is dx

strongly flattened out along theaxis. When the finite size of the core of the dislocation is

taken into account, an additional termI)néppears in the

sum(27) (see Ref. 1 wherel is the “elastic length” intro-
MAGNETIC CONFIGURATION IN THE PRESENCE duced above. We have used the assumption that the elastic
OF A DISLOCATION and magnetic properties are spatially anisotropic, i.e., the

Let us return to the general case of an AFM containing aconditionI,T>a,b. Actually, however, the really large pa-

dislocation. Assuming in Eq11) thatz= *+b/2, we arrive at rameter is the magnetic .Iengtfh%b, _and the mequa_llty
a one-dimensional equation for the relative atomic displace?> ! holds. Then the main contribution thy(x=0)/dx is
mentsw at the boundary of the half spacgsin the limit ~ 9iven by the parameter, and the approximation of a point

of a small ratio of the magnetic interaction to the elastic,dislocation is physically reasonable. _
which is usually the case in real physical situations, this  USing the approximatiori25), we find the solution of

equation goes over to the Peierls equation, with the solutiofduation(23) in the limit of a point dislocation:

w= —arctangrl/x) for a dislocation, where we have intro- T z[y\¥?
duced the “elastic length’l =a+/a/ 3. When the Peierls so- Pp(xz=0)=—Sexg — 3,
lution is substituted into Eq(12), the latter becomesfor
z>0): AN T Y
T212) S gl
>0)= lf o [0, 2 . " 28
w(x!z )_:TT e 0 )\2 ; <O ~1 T 1/2\/Fefl’ A\ K ( )
Pp(xz2<0)=5|5 N 20 1(r).
XTsinX dx’. (23 For x— + Eq. (28) yields the domain wall solutior9):
VXS ¥(X,2)— — (mw/2)exp(2Zo). For x——~ and z— * the

Since, as a rule, the “magnetic length” is much greater tharinagnetization tends to zero, and the ordering of the spins
an atomic dimension and the size of the dislocation, we shaffécomes ideal.

investigate EQ.(23) in the limit of a point dislocation:

I/)\—>O..We shall show belpw that the finite size of 'the.cor.eco,\lCLUSlO,\l

of the dislocation has little influence on the magnetization in

comparison with other factors. Noting that in this configura-  Let us start with the matter of the chosen orientation of

tion ¢, =—¢_ (see Fig. 1, we obtain a one-dimensional the domain wall. We assume that the plastic deformation
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creating the dislocation involved a shift along thexis, and The authors thank A. M. Kosevich for interest in this
this shift gave rise to the domain wall. Since the latter isstudy and for valuable comments.
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of the domain wall is proportional to its length. Conse-
quently, it will be favorable for the system to terminate the
domain wall on another dislocation in the same glide plane at———
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main wall that is inclined to the axis if the cost in anisot-  *H. Pomerantz, Surf. Scl42, 556 (1984).
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The temperature and magnetic-field dependences of the resistance of Si/SiGe heterojunctions
with hole-type conductivity are investigated. It is shown that the features of these dependences are
due to a manifestation of quantum interference effects — weak localization of the mobile

charge carriers, and the hole—hole interaction in the two-dimensional electron system. On the basis
of an analysis of the quantum interference effects, the temperature dependence of the

dephasing time of the wave function of the charge carrier is determined6.6x 10 2171 s,

This dependence@ocT‘l must be regarded as a manifestation of hole—hole scattering

processes in the two-dimensional electron system. The contribution to the magnetoresistance
from the hole—hole interaction in the Cooper channel is extracted, and the corresponding
interaction constant$~0.5 is found. ©2000 American Institute of Physics.
[S1063-777X00)01208-1

INTRODUCTION tum well.” As we know, for the manifestation of quantum
. . . . interference effects a high degree of disorder is required, i.e.,
The most important research area in solid state physicg,e presence of perceptible elastic scattering of electrons.
for the past two decades has been the physics of low- i iq of interest to ascertain whether both magnetogquan-
dimensional electron systerhsProgress in semiconductor 1 ang quantum interference effects can be investigated in a
technology, in particular, the development of molecular-gingje object. Let us consider in more detail the conditions

beam epitaxy, has made it possible to create various seMjecessary for observation of these effects. The WL and EEI

conductor structures with a two-dimensional electron gaSggfects are manifested in a region of magnetic field values
These include metal—insulator—semicondudtdiS) struc-

) ) , comparable in scale with the values of the characteristic
tures and inversion layers, delta layers, ard—p—i—n su-

fields for these effects, and at the same time such that the

perlattices, single heterojunctions, and quantum  well§,,gnetic length_,, at these fields remains larger than the
(double heterojunctionsin all cases the mobile charge car- electron mean free pati. The magnetic lengthL

riers (ele_ctrons or _holesoccupy quz_intum levels in the cor- = (fic/2eH) Y2, which characterizes the electron wave func-
responding potential well. The motion of the electrons alongq, i 4 magnetic field, is determined only by the magnetic
a certain directior{along thez axis) is restricted, while the field and does not depend on the kinetic properties of the

motion in thexy plane remains free. electrons. The length,, corresponds to the field value at

Heterojunctions are contacts between two semiconduq,—vhich an area %Lﬁ is threaded by one magnetic flux quan-
tors with slightly different band structures, a situation Whichtum ®,=hc/2e. Manifestation of quantum interference ef-

is achieved by introducing a small amount of isovalent S“bTects is possible under the conditian,>1. If the opposite

stitutional impurity atoms into the lattice. The discontinuity inequality holds,L,<I, then magnetoquantum effects such
of the bands at the boundary and the internal field that arisesq gy oscillations can come into play. Consequently, these

cause bending of the bands near the boundary, and this giv%o types of quantum effects can be manifested at different

rise to a potential W?” with dlscret_e energy states. The diy 5 65 of the magnetic fields. This assertion is clearly illus-
verse phenomena in the two-dimensional

, V0-O electron 9agaieq by the experimental data presented below for the two
(Shubnikov—de Haa$SdH) oscillations, the quantum Hall Si/SiGe heterojunctions.

effect, electronic phase transitionsave become objects of
intensive study in recent times. The observation of SdH OS] GENERAL CHARACTERISTICS OF THE SAMPLES
cillations in heterojunctionge.g., in GaAs/AlGaAgRef. 2 '

or Si/SiGe[(Ref. 3] and the quantum Hall effect can occur The samples studied were grotviby molecular-beam
only in modern structures with high values of the electronepitaxy (MBE) from solid Si and Ge sources by means of
mobility. In addition, heterojunctions not exhibiting magne- electron-beam evaporation and are dislocation-free, fully
toquantum effects have displayed quantum interference ektrained heterostructures with modulated doping. Samples A
fects — weak localization of electrof8VL) and electron— and B differ by the percent Ge in the;SiGe, channels X
electron interactiofEEI). These effects have been observed,=0.36 and 0.13, respectivglgnd by their thicknessd8 nm

e.g., in GaAs/AlGaAs heterojunctichd and a SiGe quan- and 30 nm and also by the optimal temperatures of the

1063-777X/2000/26(8)/6/$20.00 609 © 2000 American Institute of Physics



610 Low Temp. Phys. 26 (8), August 2000 Komnik et al.

TABLE I. Characteristics of the samples. 30
a
Sample 8 :
a =
Parameter A B 6 20,
mO - (=]
Ry, kQ (at 2 K) 45 2.7 4 A
nyx 1071, cm 2 6.0 1.9 == z
NegX 1071, cm 2 6.7 2.0 < 10 &
wy, o Vlst ~2300 ~12 000 2F
m*/mq 0.243 0.242 -
D, cn? st 14 25 ' L 0
0 10 20 60
8
5 b o
: . . s k. 16 <
pseudomorphic growth of the Si,Ge, channels(450°C I o™
and 875°Q. First a silicon buffer layer 300 nm thick was 2 4L _4 =
grown on then-Si (001 surface of the substrates. This was *x L ' >><,
followed by the growth of a $i ,Ge, channel, an undoped o 2 1
Si spacer layer 20 nm thick, and an upper, boron-doped B 2
(2.5x 10'® cm™3%) Si epitaxial layer 50 nm thick. The con- - s
ducting region at the Si/SiGe boundary had a “double 1 ! L L L 0
cross” configuration in the form of a narrow strip0.5 mm 0 10 20 30 40 50 60
wide, ~4.5 mm long, and with a distance between the two H, kOe

pairs of narrow potent|al Iead81f5._2'2 mm. FIG. 1. Magnetic-field dependence of the diagonal compoRgpand off-
Table | shows the characteristics of two of the Sa-mple%iagonal(HalI) componenR,, of the resistancéper squargfor samples B

studied (A and B) as obtained from measurements of the(a) and A(b) at a temperature of 0.33 K.
conductance, magnetoresistance oscillations, and the Hall
coefficient at temperatures of 0.335-2.2 K.
The mobile charge carriers in these samples are hole$igher electron mobility, and the quantum-Hall-effect steps
but to simplify the terminology we shall by convention refer are more pronounced for it.
to them below as electrons. The value of the resistance per
Squard?g is given in the table for 2 K, since the minimum of 2. ANALYSIS OF THE SHUBNIKOV—-DE HAAS
the resistance for sample A is observed near that tempergsciLLATIONS
ture. The character of the temperature dependence of the
resistance of the samples below 4.2 K turns out to be differ-
ent. The resistancR for sample A as the temperature is Apyy V) Ta
lowered passes through a minimumear 2 K and then in- 0 = Sinhw ex;{ -
creases somewhétom 4.5 K) to 4.93 K) at 0.337 K. This XX
clearly indicates a manifestation of quantum interference efwhereW =2w%kT/(fiw.); w.=eH/m* is the cyclotron fre-
fects and the appearance of quantum corrections to the cofUency, w.7~uH, w is the mobility, a=7/7y, 7 is the
ductance. The resistané®; for sample B decreases in this transport time,r, is the quantum scattering time is the
temperature intervalfrom 2.7 k) to 2.5 K2), i.e., it does Fermi energy, reckoned from the bottom of the first quanti-
not exhibit pronounced quantum interference effects. Apparzation band, an@ is the phase. For a two-dimensional gas
ently the quantum corrections arise against the backgrounie Fermi energy is related to the electron concentration as
of a temperature-related change in the resistance due to other wh2n
factors. In such a situation the quantum corrections to the ep=—p—. (2
temperature dependence of the resistance cannot be reliably
extracted. Therefore, for analysis of quantum interference we In relation (1) [upon substitution 0f2)] the unknown
predominantly use the corrections to the magnetic-field deparameters are the effective mas$, the concentratiom,
pendence of the resistantgee Sec. B and«a, wheren appears in the last factor and the temperature
Figure 1 shows the dependence of the diagonal and offappears only in the first factor, which governs the
diagonal(Hall) components of the resistance as a function oftemperature-related damping of the SdH amplit(eig. 2).
the magnetic field for samples B and A at a temperature of he desired quantityn* can be found by methods which are
~0.33 K. The curves exhibit SdH oscillations and stepswell known in the literature. For example, if we take into
which appear on account of the quantum Hall effect. Theaccount thatv.7~ uH and treat the mobility as known from
guantum numbers of the steps and the oscillatory extrema the kinetic characteristics, then after representing the experi-
can be determined from the quantum Hall effect data, sincapental data in the form of Iip,/p°) versus InW/
as is well knownR,=h/e?» "1 for a two-dimensional elec- sinh(¥))—ma/uH, one can find the value ah* by fitting
tron gas in the quantum-Hall-effect regime, iR, = 25813 the data for the entire interval of magnets and temperatures
v~ Q. The values oRy, found experimentally are in satis- studied to a single straight line. Another methadn also be
factory agreement. Sample B is more perfect and has ased. By approximating sinti) as exp{)/2, one can repre-

The SdH oscillations are described by the relation

{2778,:
co +od

hwe
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FIG. 2. Magnetic-field dependence of the diagonal compofgntof the 450+ '-_. ',_o-.-'mm '
resistancéper squargfor sample A at different temperatures. L '«.,W,,w‘
A% 4 & 8 10
sent the experimental data for the amplitudes of the SdH H, kOe

oscillations in the form of linear relations W|T)xC . . o .
. . FIG. 3. Magnetoresistance of sample A in low magnetic fields at various
—27%kni* T/(ehH), where C is a temperature-independent temperatures.

constant. The slope of the straight lines at a fixed magnetic
field is determined the quantity* that we seek. If the ef-
fective mass has been determined, then an analysis of the. heavy holes with an effective massn* =(0.24
magnetic-field dependence of the amplitude of the SdH 0s+0.01)m,. It is this value of the effective mass which we
cillations can yield the value af. The value of the charge shall use below in an analysis of the quantum corrections to
carrier concentration found from analysis of the period of thethe investigated hole-type Si/SiGe heterojunctions.
SdH oscillations in high fields under the assumption of a
quadratic dispersion relation has turned out to be ex'Fremelg_ QUANTUM INTERFERENCE EFFECTS
close to the value found from Hall measurements in low
fields (see Table)l The initial parts of the curves of the resistance of the
In the band structure of bulk samples of undeformedsamples versus magnetic demonstrate a negative magnetore-
silicon the two degenerate maxima in the valence band at theistance effectFig. 3), which falls off noticeably in ampli-
point k=0 correspond to hole valleys with effective massestude as the temperature is raised. This is just how the quan-
m* =0.5m, (heavy holes and m* =0.15m, (light holes.®  tum correction to the resistance from the WL effect behaves
The concentration of light holes is very small compared toin the case of weak spin—orbit scattering. The manifestation
that of the heavy holes, but they have a substantially higheof the WL effect in small fields and the SdH quantum-
mobility than do the heavy holes. From the SdH oscillationsoscillation effect in strong fields in the same sample is pos-
we have found for the first time the values of the effectivesible, as we have said, if there exists a region of magnetic
masses of holes in fully strained pseudomorphic Si/SiGe heffields for which the magnetic length, remains larger than
erostructuregsee Table)l We see that, because of the com-the electron mean free pathAn estimate of the mean free
plete lifting of the degeneracy, only one type of hole appeargathl and the characteristic transport elastic time timean
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be made by using the expressioRlil:neZT/m* edge of the electron diffusion coefficieBt which is deter-
=né’l/vgm* and the valueg=(27n)Y%4/m* for a two-  mined from the formula for a two-dimensional electron gas:
dimensional electron gas. For samples A and B we hav®=(1/2)v2r.
obtained the following formulast—Q 78x10° cmis, T Analysis of the experimental curves for the magnetore-
=2.86x10 1% s, andl~2.8x10 ¢ cm for sample A, and sistance, replotted in the form of thes: n(H) curves in ac-
ve=5.37x10° cm/s, 7=1.7x10 ¥ s, andl~9x 10 ® cm  cordance with(3) showed that the quantum correction due to
for sample B. It follows that quantum interference effects carthe WL effect gives a good description of only the initial part
be observed in sample A in magnetic fields up to 4.5 kOeof ther-h(H) curves(here the results of the fitting to rela-
and in sample B up to 0.5 kOe. We devote most of ourtions (3) and (4) are no different, since these objects have
attention in the analysis of the quantum interference contriweak spin—orbit scatteringAs the magnetic field increases,
bution to the magnetoresistance for sample A. atH~0.2 kOe a magnetoresistance component of the oppo-
In the manifestation of quantum interference effects —site sign appears, its amplitude falling off with increasing
the weak localization of electrotfs®® and the electron— temperature in the interval 0.335—-2 K. The assumption that
electron interactiolf141%1’_ analysis of the behavior of this component is due to the ordinary magnetoresistance of
the quantum corrections to the conductance in a magnetithe form Ap/p=H? does not hold up, since the change in
field yields information about the most important character-mobility in this temperature interval is insignificant. We have
istics of the relaxation and interaction of electrons in thearrived at the conclusion that this component is a quantum
investigated two-dimensional electron system: the dephasingprrection due to the electron—electron interaction. Several
time 7, of the electron wave function, its change with tem-forms of this correction are known. Manifestation of the
perature, and the electron—electron interaction parameters quantum correction due to the EEI in the diffusion channel is
unlikely, since it is due to disruption of the interaction in the
® spin subbands as a result of Zeeman splitting and becomes
In a two-dimensional electron system in a perpendiculasubstantial at rather high magnetic fieldsi:éHO wkT/
magnetic field the change in conductance due to the Wigug), whereg is the Landefactor andug is the Bohr
effect is described in the general case by the expreSsidn  magneton The Maki—Thompson correction, which is due to
a fluctuation process, has the same functional form as the
localization correction and cannot alter the shape of the mag-
, 3 netoresistance curvésee Fig. 3. The most likely candidate
is the quantum correction due to the EEI in the Cooper
channel. The latter correction is described by the
where f5(x) =Inx+W(1/2+ 1/x), ¥ is the logarithmic de- eypressiort31417
rivative of thel” function, Tr= T r2rst, () =T
+(4/3)744 1y (2/3)7-S , To0 being the phase relaxation time c_ e? c ' _ 2eDH
due to inelastic scattering processeg, the spin—orbit scat- Aog=— ﬁ)‘H‘PZ(O‘)' A= oKT ®)
tering time, andrg the spin—spin scattering time for scatter-
ing on magnetic impuritieéin the absence of which this time The functione, is similar to the functiorf,, but the charac-
can be left oyt andD is the electron diffusion coefficient. teristic field HS=wckT/(2eD) is con3|derably higher than
The first term in(3) corresponds to the interference of the Hg, as a rule In low magnetic fieldsH<Hg) we have
wave functions of electrons found in the triplet spin state,@2(a)~0.3a%, so that one may use this approximation in
and the second to those in the singlet spin state. In the cagglr case.
of strong spin—orbit scatteringr(>rs;) by virtue of the As we see from Eq(5), the Cooper quantum correction
inequality 7,> 7} the change in conductance is determinedvaries with temperature & °, which agrees well with the
by the second term which corresponds to a positive magneriation of the positive component of the magnetoresis-
toresistance. For, <, the magnetore3|stance is negative, tance. The sign of the quantum correctibary; (and, accord-
and the field dependencﬁe(rH(H) is described by the ex- ingly, the sign of the magnetoresistands determined by

3.1. Determination of the temperature dependence of T

e2

Aop(H)=
op(H) P

3 (4eHDT;
e

2 fic

1 (4eHDT¢,)
e

2 fic

pression the sign of the interaction consta)nﬁ. in the case of repul-
sion of the quasiparticles one h&§>0, giving a positive
o2 4eHDr magnetoresistance. The interaction cons&‘ﬁﬁs the param-
Aog(H)= S 2 fz( " ‘”) (4)  eter to be extracted from a fitting of the experimental curves
a

to expressiorn5). Here, depending on the form of the curves,

expression(3) or (4) is used, withr, as the adjustable pa-
The functionf,(x) has the formkx? at smallx, i.e., in  rameter.

low magnetic fields, and I®(7.12) in high fields. The char- As a result of the calculations, in which a good descrip-

acteristic field corresponding to the region of strong variationtion of the experiment was achieved, we obtained the tem-

of this function H5=%c/(4e Dr,)) is usually of the order perature dependence of the electron dephasing timghe

of ~0.1 kOe. unfilled symbols in Fig. % It is approximated by a power-
At small values of the magnetoresistance one can use tHaw function 7,=6.6x 10" tor-1,
relation —AoH(H) [R(H)— R(O)]/(R(H)RD(O)) and For sampda B a negative magnetoresistance is also ob-

here the field dependence eanH(H) reflects the trend of served in low fields, but it is very weakly expressed, and,
the magnetoresistance. To fit tberh(H) curves to relation furthermore, as we have mentioned, it can be analyzed in
(3) and thus to obtain the desired valuergfrequires knowl-  terms of the concepts of quantum interference only in fields
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T K ever, as was shown in Ref. 19, even in the case of repulsion
’ of the electrons at small distanc@sﬁ(>0) for the EEI ef-

FIG. 4. Dephasing time versus temperature; the data were obtained from tH€Cts, formula(7) remains valid at low magnetic fields, but

weak localization and electron interaction effects for sample©A énd B the tempera’[uré’C takes on a formal meaning:

(D).
1
KT.=¢f exp( F) . (9)

0

n Fig. 5 it is easy to determine this characteristic tempera-
ure T, (it is equal to 3.2 K and then to find the bare value
of the interaction constan,5=0.5.

The interaction constant found from the quantum correc-
tions is usually written in terms of the universal constant
— the angle-averaged interaction amplitude of the electrons
than for sample A )

. 1 at small momentum transfers. In the presence of screening of

A dependence of the form obtained hergxT ™", de-

. . . the Coulomb type the constaRttakes on values from zero
scribes electron—electron scattering processes in twa-

dimensional system<.The electron—electron scattering time n the absence of screenifire "bare” interaction to unity

. - . . in the case of complete screening. The functional fornk of
was calculated in Ref. 18 for the case of collisions involving. = . . .
small changes in the energies and momenta of the electronléc':d'ﬁerent for the mtgrag:uon constants found from the tem-
pérature and magnetic-field dependence of the quantum cor-
. kT rections, in the regions of weak and strong magnetic fields,
Tee :mln(ﬂwdsm, (6)  and for weak and strong spin—orbit interaction. In the case
ds considered, that of weak spin—orbit interaction, one should
where vy, is the electron density of states. Using(B) for  take )\OC=1—F for the interaction constant found from the
the case of sample A the value found @rand the calcu- magnetic-field dependence of the quantum correction. Thus
lated valuevys=m*/(7#?) (for a 2D electron systemwe  F=0.5, which is a completely reasonable vafte.
obtain the resultr,e=7.39x10 T~ 1. The values ofree The value we have found fd¥ is confirmed by an analy-
calculated from(6) differ from the experimental values af, sis of the change in resistance of sample A at temperatures
by an order of magnitude, but such a disagreement is conbelow the resistance minimum. For example, in the region
pletely acceptable in view of the estimates usedifgy, D, 0.3-0.8 K the temperature dependence of the resistance is
etc. described well by a straight line in the coordinates,
—In(T) (Fig. 6 and can be represented by the temperature
dependence predicted by the theory of WL and EEf

less than 0.5 kOe. The EEI contribution is not manifested i
such fields. On the basis of an analysis of the initial parts ort
the magnetoresistance curves with the use of relddprwe
found thatr, has the same dependence for samplér
triangles in Fig. 4 as for sample Aof course, the error with
which 7, is determined is substantially larger for sample B

3.2. Interaction constant A §

eZ
The temperature dependence\gf (Fig. 5) for sample A Ao=——arIn(T), (10
agrees well with the theoretical predictibh’ 2mh
T wherea;=p+ A\t in the case of weak spin—orbit interaction
()\ﬁ)—lz _|n<_|7)_ (7) (17,<7s) andar=—1/2p+\y in the case of strong spin—
C

orbit interaction ¢,> 75,), with p being the exponent of the
In relation (7) for superconductoréin the case of attraction power-law dependence, =T P.

)\(H?<o)7 T. has the well-known form For sample A we obtained a value;=1.2(=0.01).
Since in our casa;=p+ At andp=1, we obtain\;=0.2.
kT.=k6p exp( i) (8) For weak spin.—orbit interactionl;he constait in zero or

No low magnetic field has the forlfy
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481 2We note that in Ref. 7 for @-Si,gd5& 1, System(quantum well the

deviation of the magnetoresistance curves from the calculated form of the

F localization correction was interpreted as being due to the contribution of

the interaction in the diffusion channel due to Zeeman splitting, and as a

result, the unrealistic valuE=2.45 was obtained, which the authors of

Ref. 7 were at a loss to explain.
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The spectrum of rotational states is calculated for a three-dimensional rotator in a three-
parameter potential having the symmetry gr&@p(sixfold mirror—rotational axis This potential
models the crystalline field produced at a diatomic homonuclear impurity molecule by a two-
dimensional monatomic matrigwith coordination numbez=6) on a substrate having the form of

a close-packed crystalline plane. The main computational algorithm is the Ritz variational
procedure with trial functions classified according to the symmetry of the ground and excited states
of the rotator. The partition function is constructed and the impurity heat capacity is

calculated for two-dimensional cryomatricesf the Ar and Kr typescontaining a subsystem of
noninteracting impurities of different spin modificatioff the *N, or *N, type). It is

shown that for different relationships among the parameters of the crystalline potential for the
two types of impurities indicated the heat capacity exhibits characteristic low-

temperature anomalies in the form of peaks whose height, width, and position on the temperature
axis are determined by the parameters of the intermolecular interaction in the system. The
effects predicted by the theory should be completely accessible to experimental observation.
© 2000 American Institute of Physid$51063-777X00)01308-4

1. INTRODUCTION mentioned the spectra of the rotational states of the impurity
will be different and, hence, so will be the temperature de-
Low-dimensional molecular cryocrystalline systemspendence of the impurity heat capacity.
have been the subject of intensive experimental research over The effective crystalline field is a complicated function
the last forty year§.‘9 This research includes a wide range of of the angu|ar coordinatesand ¢ specifying the orientation
problems concerning the structural, thermodynamic, angf the impurity rotator:®> The results of Ref. 13 were ob-
magnetic properties of two-dimensior@D) monolayers of  tained under extremely strong simplifying assumptions, in
N2, Op, Ha, Dy, CH,, etc. deposited on various substratesparticular, in neglect of the dependence of the potential on
(graphite, BN, Cu, Pt, etg. The published results pertain the anglep, which made it possible to obtain the qualitative
mainly to impurity-free 2D crystals, except, perhaps, for thefeatures of the phenomenon of interest to us. Meanwhile, it is
hydrogen films, which are a mixture of ortho and para com—f interest to construct an exact solution of the quantum-
ponents in different concentrations. Together with the exmechanical problem of the rotational spectrum of a rotator in
perimental results there is also a rather detailed theoretical 2D atomic cryomatrix on a substrate and to obtain the
description based on the model of classical rotatdrsad-  thermodynamic characteristics of the system on the basis of
dition, there are papefs**dealing with the rotational states this solution. Obviously such a problem can be solved only
of diatomic molecules in a crystalline field corresponding towith the use of numerical methods. The key factor in this
the potential for an isolated molecule adsorbed on the surfaggroblem is the symmetry of the crystalline field, which, if the
of a crystal. interaction between impurities is neglected, is determined by
At the same time, there is reason to think that a numbethe symmetry of both the environment and the substrate. For
of interesting thermodynamic properties can be observed byhis reason the corresponding numerical procedure, regard-
studying the low-temperature heat capacity of 2D atomigess of its specific implementation, should be largely based
cryomatrices in which diatomic molecules are present as agn a symmetry analysis, which will permit one to obtain
impurity subsystem. In Ref. 13 it was predicted that the low-priori a correct classification of the states. The goal of this
temperature heat capacity of the subsystem of impurity rotastudy is to implement such a program.
tors would have anomalies in such a system and it was
sh_own that the chqracter of these anomalies is Ia}rgely deteE—_ STATEMENT OF THE PROBLEM
mined by the relationship between the contributions of the
atoms of the matrix and substrate to the crystalline field of The system to be investigated is a monatomic layer of
the impurity. In equilibrium the rotator can be oriented eitherinert-gas atoms containing molecules of a homonuclear di-
perpendicular to the substrate or along one of the symmetrgtomic substitutional impuritysymmetric rotator The im-
directions in the plane of the layer. It is clear that in the casegurities are assumed to be nonmagnetic, so molecules of the

1063-777X/2000/26(8)/7/$20.00 615 © 2000 American Institute of Physics
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O, type are not considered. The atoms in the layer form arguments. First, the model potential should contain the
close-packed structure in which each atom of the matrix isninimum possible number of parameters while retaining all
surrounded by six neighbors, and they also have three neahe basic features of the initial potentid). This means that
est neighbors in the substrate. In the case of sufficiently weak should contain three terms whose symmetry completely
solutions, when the interaction between impurities can beorresponds to the three terms of different symmetrilin
neglected, the impurities can be treated as independent. @hd the three amplitudes of these terms will be adjustable
course, a long-range interaction between impurities can sulparameters. Second, we restrict consideration to some lim-
stantially affect the thermodynamics of the systérie ne-  ited domain of variation of the potential parametéasd,
glect all possible indirect interactions, in spite of the fact thathence, we restrict the possible relationships among their val-
these interactions are knowrtto have an appreciable long- ues on the basis of estimates for some realistic models. For
range effect in three-dimensional crystals. As justification forthese we choose two systems; Mhpurities in an Ar(Kr)
our model we might mention that, first, because of the influimatrix on a substrate of AiKr) atoms. For the Ar—Msys-
ence of the substrate the interatomic distances in the 2D maem:
trix is considerably greater than in a bulk crystal, and, sec-
ond, the mechanisms based on the exchange of virtual P1~ —6:6464; po=—1.0766; p;=0.2095;
phpnon.s are inefficignt in 2D systems, since the 2D matrix is p,=0.1306; ps=0.0861; pg=—0.0124.
rigidly fixed by the field of the substrate, so that the transla-
tional excitations of the atoms of the matrix are negligibly For the Kr—N system:
small.

The crystalline potential for an isolated impurity was P1=~6.1604; p,=—1.0547 ps=0.0653;
obtained in Ref. 13. Here we rewrite it in a somewhat dif-  p,=0.2391; ps=0.0269; ps=—0.0039.
ferent form, rotating the coordinate system by an angle of
7/6 in the plane of the layer and regrouping the terms of the ~ The dominant term in the potentiedl) in the two cases is

potential in accordance with their symmetry. The result is the term~sir’6, while the terms~cos3 and ~cosép can
be regarded as small corrections. We note that this circum-

U(o,¢) stance justifies the approximations made previously in Ref
_ i O+ it 9+ 6 J pp p y In Ret.
B P i -, sinf 0+ ps sirf ¢ 13. The values of the parameteps are related approxi-
+pg4 Sin® 6 cosé cos 3p mately as
P2=pP1/6; P3=—P2/5; Ps=2p4/3, ©)

+ ps Si 6 cosé cos 3p+ pg Sin’ 6 cos 6p,

1) which allows us to represent the model potential to good

accuracy in the form
whereB=7%72/2l is the rotational constanitjis the moment of

inertia of the impurity molecule, the angle is reckoned Uld.¢) _ Sir? o4 P1ia o P16 0
from the direction of the normal to the surface, and the co- B P1 6 30
efficientsp are determined by the geometry of the system 5
(the equilibrium distances between atoms in the layer, be- +p, Sin® 6 cosé cos 3p+ <Pa
tween the layer and substrate, gtnd by the parameters of 3

the intermolecular interaction potential. The valuegpaire
expressed in terms of the paramet€rs), andw introduced
in Ref. 13 as follows: On the basis of the given data we choose the boundaries of
the domain of variation of the parameters for which we shall

X sir @ cosé cos 3p+ pg Sin® 6 cos 6.  (4)

plzw; pzzm; investigate the spectrum and thermodynamics of the system
B B in the present study as followp; from — 10 to 10,p, from
KW, Kvp+ Kawy -1 to 1, anQp6 from —0.05 to 9.05. We note that the
Ps=—pg—: Pa=—— g (20  numerical estimates of the potential parameters must be re-
garded only as the results of a comparison of the absolute
K oW, Kaws values ofp; . I.ndeed,.the goefficierml has a negative sign
ps= B 7 Pe=— B because the interaction with the atoms of the substrate was

chosen the same as the interaction with the atoms of the

Since the crystalline potentiél) is multiparameter, itis  matrix, and in equilibrium the rotator lies in the plane of the
a rather complicated matter to obtain detailed results thagyer, since it is attracted by a larger number of neighbors
would apply to the case of arbitrary relationships among thehan in the case of its orientation perpendicular to the layer.
coefficientsp; . In the case when the results of the theory arelf the substrate material is different from the material in the
employed for interpreting specific experimental data, theséayer, however, the system could be designed in such a way
parameters are, as a rule, treated as adjustable, their valugsit the attraction by the substrate is large, and the equilib-
having been estimated beforehand from the publishedium position of the rotator will be perpendicular to the layer.
data®!’ The goal of the present study is to discuss the funFor this reason we consider positive as well as negative val-
damental qualitative features of the thermodynamic of 2Dues of the potential parameters.
cryosolutions. We shall therefore specialize to the case of a Thus we shall seek the rotational states of the impurity
model potential constructed in accordance with the followingmolecule as solutions of the Sckiinger equation
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1
_A0,¢+§U(01§D) ¢(01¢):8l/j(01¢) (5)

with the potential(4), whereA , , is the angular part of the
Laplaciane =E/B, andE is the energy of the rotational state
of the impurity.

3. SPECTRUM OF ROTATIONAL STATES OF THE IMPURITY

The first part of the problem consists in calculating the
spectrum of rotational states of the impurity. This spectrum
is determined by the eigenvalues of Ef), which will be
found by an approximate method equivalent to the Ritz
variational procedure. This method was used in the classical
paper of Devonshifé and was later generalized by Sader
for describing the states of a diatomic impurity in a crystal-
line field of cubic symmetry. In accordance with this method
we seek the wave function of the impurity rotator in the form
of an expansion in a finite basis of spherical harmonics and
thus reduce the problem of finding the spectrum to an ordi-
nary algebraic eigenvalue problem.

For correct implementation of this procedure it is neces-
sary to carry out a symmetry analysis by the well-knownF!G- 1 Spectrum of rotational states of a diatomic molecule in the potential
methods of group theoR?. Specifically, each wave function @ With Pa=Ps=0.
is written in the form of a linear combination of spherical
harmonics, which transform in the same way upon inversion
and belong to a definite irreducible representation of the inwhere[ ...] denotes the integer part. Here the states de-
variant subgrouj; of the symmetry grouf$s of the Hamil-  scribed by functions belonging to the representati®hsand
tonian. We divide the spherical harmonics into two sets, thé&e~ are twofold degeneratel(; and ¥,, with the same co-
first of which includes functions invariant with respect to efficients of the corresponding harmonics, belong the the
inversion,Y,; ,, and the second of which includes the har-same energy levelWe note that the expansio®)—(9) are
monics which are antisymmetric with respect to inversion,exact expressions for the wave functions; the corresponding
Yji+1m- In each of the two sets one must determine thetrial functions will be obtained from them by keepirg
particular irreducible representations according to which theerms of each series, whekéis chosen on considerations of
individual functions transform. The group; has only three  the required accuracy of the calculations.
two-dimensional irreducible representations, two of which  The rest of the computational scheme is as follows. We
are complex conjugates. write the Hamiltonian of the system in each of the four rep-

Let us consider the first set of functions. The harmonicsesentations corresponding to the subsp@8eg9). In order
Yoiam (i=0,1,2,... ,m=0, =1, +2,...) transform ac- that the matrices implementing the corresponding represen-

F-10

cording to the representatioh”™. The harmonicsYy; 3m—1

and their complex conjugates transform accordingEto.

The plus (minus sign on the symbol of a representation elements is extremely awkward, and we shall therefore give
indicates that the corresponding functions are ey@afd)

with respect to inversion. In the second ¥gt . ; 3, trans-
forms according toA™ and Yy, 1 ay—1 and their complex

conjugates transform according o .

tations will be symmetric, one must use normalized spherical
harmonics in the serie®)—(9). A calculation of the matrix

only the procedure for obtaining thefsee the Appendix

The results of the calculation of the spectrum with the
model potential4) for the casep,=pg=0 are presented in
Fig. 1. The calculations were done using trial functions cor-

Thus we can obtain six types of wave functions belong-responding to a basis ®= 25 spherical harmonics in each

ing to the different representations:

of the subspaces corresponding to representati6ng9).

©  [2i/3] Here we shall not give the spectra corresponding to the case
At W= a" Yo am; (6)  of nonzerop, andpg, since, as our calculations have shown,
i=0 m="T[2i/3] ’ the inclusion of the corresponding terms of the potential
o [(1+20)3] leads only to a slight splittingnot more than 1% in the
E*: W= 2 & Yoam1; W= myesngated interval opi)_ of that part of the level that per-
i=1 m=[(1=2i)/3] ' tains to the representatiods” and A~, the degeneracy of
(7)  which in the casep,=pg=0 is due to the absence of
o [(2i+1)/3] ¢o-dependent terms in the potentid). This result is some-
A U= aYaii1an (8y  What unexpected, but it agrees completely with the data of
=0 m=—[(2i+1)/3] ’ Ref. 10, for example.
o [2(i+1)/3] The spectrum of the system investigated here has one
E- \1,1:2 e Yoirran1: Wo=U* (9 feature that merits special mention. The levels constituting

i=0 m="T2i/3]

the spectrumFig. 1) can be divided into two groups. The
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FIG. 2. Ground-state wave functions fpr=—6.5 (@) and 6.5(b). The values of the remaining parameters are the same for both qgsep;/6,
P3=—P2/5, P4=0.1, ps=2p4/3, ps=—0.01.

first gr+oup consists of twofold Ieve[sienpted by the sym- Z=04Zq+9uZy, (10)

bols A=(2)] whose degeneracy can be lifted by the addition _ o

of ¢-dependent terms in the potential. The second group/nereZy andZ, are, respectively, the contributions from
consists of the level&*, which cannot be split by a field States which are symmetric and antisymmetric with respect

having the symmetry of the grou@s (or, of course, higher 0 inversion(e.g., for the'“N, molecule gq=2/3 andg,
symmetry. =1/3, while for*>N, one hagyy= 1/4, g, = 3/4). As we shall

Finally, for illustration of the structure of rotational S€€ below, the difference in the degrees of degeneracy for the
states of the impurity rotator, Fig. 2 shows an illustration ofmolecules'N, and**N, has a substantial influence on the
the wave functions of the ground state for negatipkanar tempera?ure dependence of the hea_t capacity of the s_ystem.
rotato) and positive(two-dimensional oscillatorvalues of ~ Theinternal energy of the impurity subsystem per impu-
the parametep,. As expected, fop,;>0 the impurity mol- ity molecule is given by
ecule is oriented predominantly in the direction perpendicu-

lar to the substrate, whereas foy<<O0 it is localized in the E=Tziln Z.
plane of the layer. In that case the ground-state wave vectors 4l
are practically independent of the angle(the relative con- Accordingly, the impurity heat capacity per molecule is
tribution of the terms that depend on that variable is not over
5x104). (05)
v\aT)

4. HEAT CAPACITY OF THE IMPURITY SUBSYSTEM o .
(here and below we use a system of units in which Boltz-

The partition function of a diatomic impurity can be mann’s constankz=1).

written in the fornft Figures 3 and 4 show the temperature dependence of the
Cy 1.2F b -10
1.2 Cv i
p =1
0.8}
0.8
04 0.4
0 2 3 | L ! 1
0 1 2 3 4 5
T/B T/B

FIG. 3. Heat capacity per impurity molecule as a function of temperature for a subsystéy, afpurities at parameter valugg >0 (a) andp,;<0 (b).



Low Temp. Phys. 26 (8), August 2000 M. I. Poltavskaya and K. A. Chishko 619

2
T/B 0 1 T/B 2 3

FIG. 4. Heat capacity per impurity molecule as a function of temperature for a subsystéNy, aipurities at parameter valugg >0 (a) andp;<0 (b).

heat capacity for different values of the crystalline field con-each other strongly, and the levels andE; move apart.
stantsp; for the molecules’N, and*®N,, respectively. This makes for a pronounced peak, whose position is deter-
Let us first turn to thé*N, impurity. Forp,>0 (Fig. 3@  mined by the distance between the levafs andA; , while
the heat capacity has a low-temperature peak that becomés amplitude decreases somewhat with increagincas a
more pronounced and shifts to lower temperaturepais  result of the increase in the distance betwdgnandE; .
decreasedat smallp the heat-capacity curve remains mono- The heat capacity of the impurity subsystem at negative
tonic in the low-temperature region and is close to the heavalues of the constamt; is shown in Fig. 4b. At all values
capacity of a free rotatrFor negativep; the heat-capacity p;<0 the heat capacity has a single peak, which is the trans-
curves have an inflection point instead of a péhlg. 3.  formed peak ofC,(T) for a free rotator, and no additional
These results can be explained completely in a qualitativéow-temperature peaks arise in this case. The decrease in the
way by the character of the rotational spectr(fig. 1). As  amplitude of the peak with increasing,| is due to the in-
p; increases in the positive direction the lowest lexgl creasing separation of the levéts andA; (Fig. 1), while
approaches the first excited stéte , and this gives rise to a its shift to lower temperatures is due to the decrease in the
local peak in the heat capacity. When increases in the level separatior:(E;)—&(A]).
negative direction the ground statg approaches another In the limit T— all of the curves in Figs. 3 and 4
excited statel; , and although this approach is weaker thanapproach the equipartition lawC(— 1), as they should.
in the first case, thés; level is twofold degenerate, and
therefore the featur@nflection) on the heat-capacity curves
. CONCLUSION
appears at approximately the same temperatures and same
values of|p;| as does the peak in the case>0. As we see from the above discussion, our results have
In the case of®N, molecule, at positive values of the sufficient generality for describing the thermodynamics of
crystalline field constanp,; we observe a transformation of diatomic impurity molecules for various relationships among
the heat-capacity peak of the free rotafioearT~B) into a  the lattice parameters of the two-dimensional crystal and the
low-temperature feature in the form of a local maximum,substrate. The software developed here can in principle be
which shifts to lower temperatures pg increasegFig. 43. used to analyze any two-dimensional molecular system cor-
In comparison witht*N, the relative populations of the low- responding to configurations in which an impurity molecule
est levels in'®N, is substantially highefin relation to the is surrounded by six atoms of the matrix in the layer and has
population of the lowest leved; the relative population of three nearest neighbors in the substrate which are arranged in
the levelA; is equal tog,/gq=3, while the relative popu- such a way that the crystalline field for the impurity has the
lation of the levelE, is 2g,/gy=6). This is the reason for symmetry groufss. In particular, the scheme described here
the sharper changes in the structure of the heat capacity wittan be applied without any modifications for a diatomic im-
changing p; and the larger amplitudes of the low- purity molecule in a monolayer with the structug@x 3
temperature peaks itPN, in comparison with!®N,. In the  (Refs. 1, 7, and 8 In our model the formulation of such a
case of'*N, there are three levels involved in the formation problem reduces simply to choosing the necessary inter-
of the low-temperature heat capacity. At certain not-too-largeatomic distances in the coefficients of the potential
values ofp; these levels are approximately equidistant, andJ(6,¢).* We have done the corresponding calculations for
in that region the low-temperature peak is weakly expressed system with such a structure, choosing the parameters of
Then with increasingp, the levelsA;] and A] approach the atom—atom potentials corresponding to theniblecule
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in a Kr matrix on a Kr substrate. It turns out that in this caseln order to obtain relatioA3), for example, we use the
the leading terms of potentiakl) are p,sir*f¢ and  well-known formula for the Legendre polynomiés
p4sirdcosdcos 3p, where p,~=0.12 andp,=0.09 (the re-

maining coefficientsp; are at least an order of magnitude = 1 (dp'“_ dp'l) (A5)
smalle). Moreover, sincep, and p, themselves are small 21+11 dx dx

compared to unity, the crystalline field in this case is insig-and write the relation

nificant, and the molecule moves almost as a free rotator. On

the other hand, this case is close to the situation correspond- 5 1 d®P, 3

ing to a molecule adsorbed on the surface of a crystal. The 1=

problem of the spectrum and heat capacity of such a mol- @FDEI+3EIFD) - dx
ecule was considered in Refs. 10 and 11, where the authors 3 43P,
proceeded from a model potentldl=\ co6 with A>0. As —

our results show, a potentialsind might be more realistis- =D dx
tic for this system.

3
As to the heat capacity of diatomic impurities in a close- + 3 d*Pi
packed 2D atomic matrix, it is clear from Figs. 3 and 4 that (21=-3)(21+1)(21+3)  dx®
diverse low-temperature features can arise here, the character 3
of which is directly related to the parameters of the intermo- _ 1 d°P 3 (A6)
lecular interaction. These features are quite obviously of in- (21=-3)(21=1)(2k+1) dx3

terest from the standpoint of experimental observation. ) L _
Then, using(A6) and the definition of the associated Leg-

APPENDIX endre polynomials,

In calculating the matrix elements of Hamiltoni&), it m
is necessary to express products of the type plmz(l_xz)mlzd_m P,
U(6,¢0)Y| m(0,¢) interms of suitable linear combinations of dx
spherical harmonics. We write the indicated expression ifye obtain

the form "
U— _ _ (1—x2)32PM=(1—x2)(M+3)2__p
5 Y1m=[P2(1=x*)PI"(x)+ po(1=x*)*P{'(x) | X!
— 1
_ yw2\3pm im _ m+3
+p3(1=x) P(x)]e™¢ 2 21+ 1)(2113) (21 15) 1+3
+ pa(1—x2)%% P"(x) cos 3p e™¢/ 3 -
\/ﬁ_{_ p5(l_X2)5/2XE|m(X)COS&Pelm‘p/ (2' _1)(2| +l)(2| +5) =1
V2m+ p6(1—x2)35|m(x)cos6zpe‘m“’/\/zm + 3 pm+3
AL (21-3)(21+1)(21+3) '
where x=cos, and we use the definition of the spherical _ 1 P2 (A7)
harmonicsY, ,=P["(x)e'™¢/\/27, whereP["(x) is the nor- (21=3)(21=1)(2I+1)

malized associated Legendre polynomial.
In the first term in(Al) one need only apply the recur-
sion relation

We multiply the last equality bk and use formulaA2),
which leads to a change in only the lower indices(AY).
Then, using the normalizing coefficients, we arrive at the
1 desired formula for the normalized polynomials. We shall
Xplmzm[('+m)P|m—1"'(|+1—m)Pml] (A2)  not write out the final expression here, as it has a rather

_ _ . awkward form.
the required number of times and take into account the nor- | et us now turn to expressio@4). It turns out that the

malizing coefficients, whereupon the expression takes thggefficientsb, are related to the coefficients by an ex-
form of a linear combination of normalized spherical har-tremely simple relation that can be obtained as follows. Re-

monics. S o write Egs.(A3) and(A4) in the form
One cannot proceed in this way for the remaining three .

terms on account of the presence opalependent factor in — —

2\3/2 _ +3
the potential. Let us consider the second term, for example. (1=x%) XPIm_JZ4 a;(l,m) P, (A8)
Since cos 3Me=(dM3e+d(M3¢)12  we need two rela-
tions: 4

B B (1—x2)3’2XPm3=k_2_4 be(1+j, m+3)PL ., (A9)
(1-x2)3%PM=> a,P™3, (A3) .
wherej andk are even numbers. Multipl§A8) by {TJ-?’ and

(1-x2)3¥%PM=3 b,PP*. (Ad) (159) by P[" and integrate both equations ovefrom —1 to
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1 _
J dx(1-x3)¥%P"P 2 =a;(1,m), (A10)
-1

1 _
f dx(1-x3)¥%P"P[V*=b_j(I+]j,m+3). (A1l
-1

Now equate the right-hand sides @10) and (A11) to get
bj(l,m)y=a_;(I+j, m—3). (A.12)
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Dynamic characteristics of helium adsorbents. The influence of palladiation
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The equilibrium helium pressure is measured under static and dynamic conditions for a series of
new adsorbents with various degrees of palladiation. It is confirmed that the helium

pressure above the adsorbent in the region where it is independent of the degree of filling of the
adsorbent is a universal function of the rate of helium admission. It is shown that the

admixture of several percent Pd has practically no influence on the adsorption properties of the
adsorbents studied. @000 American Institute of Physid$$1063-777X00)01408-0

In this paper we continue the research on new heliuntorr at 4.2 K. The results for several adsorbents are presented
adsorbents under conditions that simulate the operation of Fig. 1. As in Ref. 1, the dependence of the volume of the
adsorption pumps in dilution refrigerators. This research waadsorbed helium on the pressiRevas described, to within
begun in Ref. 1, where it was shown that at the outpumpinghe limits of experimental error, by the relation
rates of 10°-10"* mole/s typical for most dilution refrig- B

) : . V,=A+BlogP.
erators, the pressure in the adsorption pump remains constant
until the filling of the adsorbent exceet®5-0.9V,, where The values of the coefficients andB corresponding to
V, is the gas volume corresponding to the the adsorptioithe measurements &f, in cm®/g and of the pressure in torr
isotherm. It was also established that the pressure in thare given in Table I.
“plateau” region for the adsorbents studied is a universal  The data suggest that at low degrees of palladia(ien
function of the gas admission rate per unit mass of adsorbentow 3%) the adsorption isotherms remain practically un-

The goal of this study was to check this universality for changed, while higher degrees of palladiation degrade the
other adsorbents and also to investigate the influence of pa#dsorption capacity somewhat, at least at low pressures.
ladiation on the properties of the adsorbents. Palladiated Figure 2 shows the dependence of the pressure in the
silica gel has been used on more than one occdsies e.g., pump on the amount of adsorbed helium in the dynamic
Refs. 2 and Bfor the outpumping of helium vapor, and,
moreover, it has been statédh particular, that palladiated
silica gel is considerably better coolédt least in compari- 800
son with activated carbonSince the cooling efficiency is an
important characteristic of an adsorbent, this circumstance
provided an additional stimulus for the present study. 00

We had at our disposal several samples with different
degrees of palladiation. Their characteristics are listed in

L v
Table I. 0 600 b4
The study of the adsorbents was done using the tech- >~ +
niques and apparatus described in Ref. 1. In the first stage we g
measured théHe isotherms in the pressure interval 1=%0 : 500 /

TABLE |. Characteristics of the samples studied.

400
Adsorbent p, glen? A cnlg B, cnt/g
SKF-2 0.35 719 77.2 300
SKF-2+1.3% Pd 0.35 717 99.5 e PPUT Ea—
SKF-2+3.4% Pd 0.36 757 135.1 10 10 10
SKF-2+5.8% Pd 0.40 538 66.3 P, torr
SKT-3 0.39 644 75.1
SKT-3+5.8% Pd 0.53 407 35.3 FIG. 1. Isotherms of the adsorption of helium-4Tat 4.2 K by synthetic
SKNP-4 0.34 790 97.2 activated carbons: SKF-2\{), SKF-2 + 1.3%Pd(+), SKF-2 + 5.8%Pd
SKNP-4+5.8% Pd 0.37 673 73.0 (O), SKT (d), SKT + 5.8%Pd @), SKNP-4 (¢), SKNP-4 + 5.8%Pd

(#).

1063-777X/2000/26(8)/3/$20.00 622 © 2000 American Institute of Physics
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regime for different constant rates of gas admission for

R. I. Shcherbachenko and V. N. Grigor'ev 623

SKF-2 without palladiation and with a content of 3.4% Pd. It
is seen that, as in Ref. 1, there is a rather large “plateau”
region in which the pressure is independent of the amount of
the adsorbed substance. This property of adsorption pumps
makes it possible to achieve a constant rate of circulation in 10—1
dilution refrigerators over quite a long period of time without i
taking special measures for its stabilization. Figure 3 shows a
plot of the pressure in the plateau region as a function of the &
gas admission rate per unit mass of adsorbent. The data L

points obtained in the present study are compared with the o -2[

curves obtained in Ref. 1 for other adsorbents. The compari-
son confirms the universal character of this dependence for
both pure and palladiated samples.

A processing of all the experimental data obtained to

date yields the following universal dependence of the pres- 10‘3

sureP (torr) above the adsorbent in the plateau region on the

1078 10~

Vv, mole/(s-g)

FIG. 3. Pressure in the pump on the plateau versus the helium admission

rate: the line is for the carbons SKNP-4, KAU, and SKN; the points are for
. a SKF-2 (V), SKF-2 + 3.4%Pd @).
10
F vV .
- v V_Va#_'_ helium admission ratéd/ per unit mass of the adsorbent
i “w m +_,~_F (mole/s g):
++ .
L e+ T logP=2.11+0.66 logV.
= _ol These results show that palladiation does not have a sub-
2 10 naa s 208 stantial effect on the properties of helium adsorbents, includ-
a r ing their dynamic characteristics. Apparently, the degrada-
[ tion of the cooling of palladiated silica gel observed in Ref. 4
L was due to a slight increase in the thermal conductivity of the
| adsorbent, which does not play an important role under dy-
namic conditions.
10‘3 | , , , Figure 4 shows additional data on the decrease in pres-
0 0.2 0.4 06 0.8 1.0 sure above the adsorbent in the initial stage of the helium
V/V admission, an effect observed in Ref. 1. The behavior of SKF
100 8 + 3.4%Pd and the Dnepr activated carbon cloth does not
C b
I 0.04
(o] |
P 0 0.03
=g m] %o 031
- o . .
[ 00D00pgoo a . -
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r ©0000000° o o
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FIG. 2. Pressure in the pump versus the degree of filling at various admis-

sion ratesV, umole/s: a — SKF-2 adsorbent: 3.47\], 22.8 (+), 55.8
(M), 78.8 (V); b — SKF-2+ 3.4%Pd: 20.2@), 25.2 (), 50.6 (O), 60.0

(©), 80.0 ).

FIG. 4. Pressure in the pump versus the degree of filling in the initial stage
of the experiment: silica gell), SKF-2 + 3.4%Pd @), Dnepr AUVM
activated carbon cloth<¢).
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differ qualitatively from that of palladiated silica gel. How- have found that the admixture of Pd at the level of a few
ever the decrease in pressure observed in that study, whichpercent has practically no effect on the static or dynamic
apparently due to the the circumstance that the adsorbed heharacteristics of helium adsorbents.

lium improves the cooling of the adsorbent somewhat, oc-

curs in a narrower interval of degrees of filling, a finding

which correlates with the better adsorption capacity of SKF1r | sncherbachenko and V. N. Grigor'ev, Fiz. Nizk. Ten2d, 1105
and the carbon cloth. (1998 [Low Temp. Phys24, 831(1998].

In summary, this Study has confirmed the universa”ty of Zy. P. Babiichuk, A. A. Golub, B. N. Esel’'son, and I. A. Serbin, Cryogen-
the depend.ence of the pressure 'ab'ove the adsorpent in thérsEl.S’Sizvsoii)lr??\S/: V. Dotsenko, A. L. Pogorelov, and V. I. Sobolev, Fiz.
plateau region on the helium admission rate per unit mass of Nizk. Temp.19, 444 (1993 [Low Temp. Phys19, 312 (1993].
the adsorbent. The data obtained support the conjecture thdv. P. Babichuk, L. S. Dikina, B. N. Esel'son, and I. A. Serbin, Tr. Fiz.-
a universal dependence should hold for all adsorbents underTekh- Inst. Nizk. Temp. Akad. Nauk SSSfharkov, No. 1, p. 223
conditions such that the main role in the cooling of the ad-
sorbent is played by heat conduction through the gas. Weranslated by Steve Torstveit
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COMMENTS

“Phase transitions in antiferromagnetic cobalt fluoride” [Low Temp. Phys. 26, 81
(2000)]

V. M. Loktev*

N. N. Bogolyubov Institute of Theoretical Physics, National Academy of Sciences of Ukraine,
ul. Metrologicheskaya 14-b, 03143 Kiev, Ukraine

(Submitted March 13, 2000

Fiz. Nizk. Temp.26, 849-850(August 2000

[S1063-777X00)01508-5

In a recently published Brief Communicatfothe prob-  describing the dynamics of the field-induced rotation of the
lem of investigating theoretically the order of the phase tranguantum magnetization, wherein the orientation of the latter
sition in the easy-axis antiferromagri@&-M) CoF, in alon-  depends self-consistently on its modulie., its quantum-
gitudinal magnetic fieldH|C, was addressed. Having mechanical averag@and vice versa. The quasiclassical equa-
carried out an investigation in the quasiclassical approackions and the corrections to it for the spin configurations can
and having formulated a criterion for determining the orderbe obtained only for the case when the single-ion anisotropy
of the collinear—noncollinear phase transition, the authors o small compared to the exchange, and in the approximation
that paper mentioned the lack of a consistent theory for thisadopted in Ref. 1and also in Ref. 8, on which it was baged
crystal with its manifestly “nonclassical” magnetic sub- this anisotropy is indistinguishable from the inter-ion anisot-
system. One cannot agree completely with that statement né@pPy, Which does not have any influence on the form of the
with the results obtained in that studly. equations mentioned.

First, such a theory does exist, or in any case, the begin- T0 sum up, the results obtained in Ref. 1 cannot be con-
nings of oné™° (see also the more detailed exposition in thesidered adequate to the description of phase transitions in the
reviewf. CoF, crystal, even if they do capture certain qualitative fea-

Second, the inconsistency noted by the authors of Ref. ures of its magnetic subsystem. Besides, transition-metal
is caused precisely by the use of a multiparameter phenonfllorides are piezomagnetic, and in Gake corresponding
enological theory, which has a severely limited applicability'att_'ce deformation in the_gxternal field is particularly Iqrge:
to CoR. In particular, and this is important, it does not allow Which makes for a transition to the canted phase which is
one to accurately take into account the lengths of the averaddSt-order, close to second-order. Unless the magnetostric-
spins (or, equivalently, the magnetizations,(H) of the tion is tak_gn into account, any_conclu§|0n_ gbout the orde_r of
sublatticese=1,2 in the external field, which is appreciable the tran§|t|on cannot pe considered justified or conclusive,
in CoF, and is due to the loworthorhombi¢ symmetryD.,, and | fail to see how it could be. However, this does not
of the local crystalline field. Moreover, the Dzyaloshinski detract from the fact that the study of the phase state and
interaction constant is sign-varying over the magnetic sublat?Nase transformations of Cot an external field remains an

tices and in this sense the problem of its sign does not exidpteresting topic in the physics of magnetic phenomena.

(of course, under the assumption of a single-domain mag-
netic state of the sample, which, generally speaking, does Nekt.mail: vioktev@bitp.kiev.ua
correspond to realify. In a magnetic field, one of the spins,
s.(H), which is directed parallel to the field, is lengthened,
While— the- Other&(H), antiparallel to the field, is shortened, 1G. K. Chepurnykh, O. G. Medvedovskaya, and O. A. Nikitina, Fiz. Nizk
and in thls “ferr|n‘!agnet|c’.’ statéand atT:O).the plane of Témb_ZB, ﬁos(yzog,o fLoW Temp. physzye,'sl (2060]'. C '
rotation is determined mainly by the easy axis of the “long” 2y m. Loktev and V. S. Ostrovski Fiz. Tverd. Tela(Leningrad 20, 3257
spin. Here, by virtue of the anisotropic character of the basal (1978 [Sov. Phys. Solid Stat20, 1878(1978].
plane, the spin-flop transition does not occur, and the rotation M- A- Ivanov, V. M. Loktev, and Yu. G. Pogorelov, Fiz. Nizk. Tenip.
: ; 1401(1989 [Sov. J. Low Temp. Phys/, 679(1989].

actually resembles the behavior of a ferrimagnsi(ifl) 4V. M. Loktev and V. S. Ostrovskii, Phys. Lett. 89, 58 (1983.
—s,(H) #0) in an external longitudinal magnetic field. 5V. M. Loktev and V. S. Ostrovski Physics of Many-Particle Systerfia

The quantum(and the phenomenologigapproach not 6Russiaﬂ, No. 13, Naukova Dumka, Kiet1988, p. 52.
only permits a quantitative description of the AFM state of \T/émbLgﬁgz%m;yé (Sl'ggzt]ro"sh Fiz. Nizk. Temp20, 983(1994) [Low
CoF, with a small number of adjustable parameténglud- 7y 'v. Eremenko and N. F. Kharchenko, Sov. Sci. Rev., Sect, Al
ing the Dzyaloshinskiinteraction) but also shows that the  (1984. ]
order of the transition and the character of the canted phaséX: G- Gurtovd, A. S. Lagutin, and V. |. Ozhogin, Zh.kp. Teor Fiz83,
depend on the initial value of (S=1,3/2,...), with 1941 (1982 [Sov. Phys. JETIB6, 1122(1982)].

s,(H)<S. The value ofS specifies the order of the matrix Translated by Steve Torstveit
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Reply to V. M. Loktev’s comment on “Phase transitions in antiferromagnetic cobalt
fluoride”

G. K. Chepurnykh*

Institute of Applied Physics, National Academy of Sciences of Ukraine, ul. Petropavloskaya 58,
40030 Sumy, Ukraine
(Submitted May 17, 2000

Fiz. Nizk. Temp.26, 851-852(August 2000
[S1063-777%00)01608-X]

The main point of the comment is that our analysis of  For CoR the ratio of the anisotropy fielti, to the ex-
the quantum subsystem in Ref. 1 was done using a phenorshange fieldH, satisfies the conditionH,/H¢)?<1, and
enological modelsee Refs. 2 and)3It should be kept in this circumstance, with allowance for the difference in the
mind that the magnetic subsystems of magnetically orderedublattice magnetizations in the phenomenological mbdel,
crystals are quantum subsysteftise very existence of fer- allows one to assume that the phenomenological model will
romagnetic and antiferromagnetic ordering is a quantum efbe productive. Our computer calculations of the total mag-
fect). Nevertheless, a phenomenological model is used toetization as a function of the longitudinal magnetic field
describe their physical properties, as is molecular fieldyave better agreement with experinfethian the dependence
theory*® Moreover, to this day there are many physical re-presented in Ref. 9.
sults that have been obtained in the phenomenological model The magnetostriction in CgFcould influence the char-
which have not been successfully captured in the frameworkcter of the phase transition to the canted phase if the change
of the quantum theory. in the orientation of the antiferromagnetism vector at this

We had undertaken a modest problem — to obtain additransition were substantidbs in the case of the ordinary
tional information about the behavior of the magnetic sub-spin-flop transitiof). Since in the given case the change in
system of Cok in a longitudinal magnetic field with allow- the orientation of the antiferromagnetism vector at the first-
ance for the results of previous studi@shich we cited in  order transition is extremely smadthe first-order phase tran-

Ref. 1), in particular, the results of Ref. 6. sition is close to second-ordean influence of the magneto-
The criterion of a first-order phase transition was formu-striction on the character of the transition is unlikely.
lated in Ref. 7 on pp. 536-537. In closing, | would like to point out that the use of the

We did point out in our paper that some authors considephenomenological model does not interfere in any way with
that there is a problem of the sign of the Dzyaloshinski the development of a quantum theory.
interaction(DI), while others do not. And this is by no means
an idle question. If the direction of rotation of the antiferro- .

. . *E-mail: iapuas@gluk.apc.org

magnetism vector under the influence of a transverse mag-
netic field is not related to the sign of the DI, then the exis-
tence of a new type of domain structure is possible. If it is so
related, then this new domain structure does not exist. 'G. K. Chepurnykh, O. G. Medvedovhskaya, and O. A. Nikitina, Fiz. Nizk.

The paper of Rel. L was a continuation of our earer o725 1080000 Loy Temp Pszg sicooo) |
papef in which it was shown consistently and accurately in JETPS5, 159(1957)].
the framework of the phenomenological theory that in easy-3E. A. Turov, Physical Properties of Magnetically Ordered Crystdis
axis tetragonal antiferromagnets under the influence of a lon- Russian, Izd. Akad. Nauk SSSR, Mosco963.

L Lo .. 4P. Weiss, J. Phys. Et. Radiu#iy 661 (1907).
gitudinal magnetic field the transition to the canted phase ot |, Vonsovski, Magnetism{in Russia, Nauka, Moscow1973.

to the ordinary spin-flop pha3és due to a competition be- 6K. G. Gurtova, A. S. Lagutin, and V. I. Ozhogin, Zh K8p. Teor Fiz83,
tween two anisotropies in the basal plane: the anisotropy due1941 (1982 [Sov. Phys. JETB6, 1122(1982].

to the DI, and the exchange-enhanced fourth-order anisot L. D. Landau and E. M. LifshitzStatistical Physics2 vols., 3rd ed.,
ropy (fIZ17). We determined the conditions influencing the 8Z?r?("’.‘m&?eEafﬁikﬁxy(dgs?\;az?‘gagogzzvfjjgi’kzﬁz 1énpd ‘rg’.G'A.
character of the transition between the antiferromagnetic andyikitina, Fiz. Tverd. Tela(St. Petersbungdl, 2044 (1999 [Phys. Solid
canted phases. We also showed that if a first-order transitionState41, 1877(1999].

exists, then it is close to second-order. Thus there is no jus V- M- Loktevand V. S. Ostrovski Fiz. Nizk. Temp20, 983(1994 [Low
tification for invoking the hypothesis of ferrimagnetic behay- ' P- Phys20. 7751994

ior in this case. Translated by Steve Torstveit
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OBITUARY

Aleksandr II'ich Akhiezer (1911-2000)
Fiz. Nizk. Temp.26, 853—-854(August 2000
[S1063-777X00)01708-4

On May 4, 2000, the world of Ukrainian and interna-
tional science suffered a heavy loss in the death of Aleksand
II'ich Akhiezer, an outstanding physicist and thinker and a
wonderful human being.

Akhiezer made some first-rate contributions in the field
of physics — plasma physics, solid-state and low-
temperature physics, nuclear physics, quantum field theory
and physical kinetics. His personal scientific results are uni-
versally acknowledged and widely cited: the Akhiezer
mechanism for the absorption of wave energy, the Akhiezer—
Fainberg beam instability, the Akhiezer relaxation mecha-
nism, Akhiezer diffractive scattering of nucleons — these
and many other effects that bear his name are known to al
physicists today.

His famous books have nurtured several generations of
scientists in the former USSR and the countries of Easter
Europe.

The monograptQuantum Electrodynamicswhich he
co-authored with B. B. Berestet$kivas for a long time the
only one in this field, and it helped educate theoretical physi-
cists all over the world. Akhiezer's books on the electrody-
namics of plasmas and spin waves are among the most cite
works in world literature.

Akhiezer was a born teacher and scientific group leader.

He taught his students not only physics but also moral prin-

ciples and standards of conduct. He held the honorary title of

Great Worker and Man of Noble Deportment. When facing

problems in life, people knew they could always turn to him-re physicists of Kharkov rightfully consider him our
for sound and kind-hearted advice. Akhiezer was the CONgaacher. Some of us heard him lecture, others consulted with
science of the Kharkov Physicotechnical Institute, with him, and some were lucky enough to be his students of the
which he was associated all his life. first, second, or third generation.

Thanks to his great erudition, fine intuition, a generous  pacause of Akhiezer, Kharkov became a kind of Mecca
impulse to share his ideas with co-workers and students, hig, hhysicists from other cities and countries. His students
steadfast desire to do everything in the correct way, and, if,ow are working all over the world, and particularly in
you like, his saintliness, something that might be called thEUkraine, where they carry on the work of their teacher.
“Akhiezer phenomenon” arose. The heart of this phenom- 114 hame Akhiezer in Hebrew meafisothers) helper.
enon was the enormous attraction he exerted on physicists @f,q indeed he helped others his whole life, without regard to
different generations. Everyone who had dealings with himy,q;. nationality or creed.
knows very well how he raised us to his level, making us ¢ memory of this wonderful man will always remain
more intelligent and high-minded. Akhiezer liked to say thatbright in our hearts.
he felt privileged to be working with his co-workers, that he

was learning new things from them and getting ideas for V. G. Bar'yakhtar, V. V. Eremenko, V. G. Manzheli

future studies. He loved his Institute with a passion. This was S. V. PeletminskiA. G. Sitenko, V. P. Seminozhenko,

another aspect of the Akhiezer phenomenon. K. N. Stepanov, Ya. B. Fainberg, P. I. Fomin,
Akhiezer lived in Kharkov all his life, spending time at V. 1. Lapshin, and N. F. Shul'ga

the Kharkov Physics and Engineering Institute, Kharkov
University, and at the Military Radio Engineering Academy. Translated by Steve Torstveit
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