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The absorption spectra of single-crystal YBa2Cu3O61x films with various doping levels in the
range fromx'0.35 tox'0.9 are measured in the energy region 0.3–3 eV. An analysis
of the spectral composition of the absorption is made with allowance for intraband and interband
transitions and the localdd transitions in the Cu21 ion. It is concluded that thedd band
~the transitiondxy→dx22y2 at 1.5 eV! reflects the enhancement of the covalent bonding (pd
hybridization! upon metallization and that the spectral feature at'1.8 eV carries
information about the contribution of electronic correlations, since it is sensitive to the opening
of a spin gap in the insulator and to antiferromagnetic fluctuations in the metal. Although
the covalent ('1.5 eV! and correlation ('1.8 eV! absorption peaks compete with each other, the
coexistence of these bands in the metal supports the validity of a model based on the
correlation polaron — a charge carrier which creates a region of covalent bonding in a Hubbard
matrix of antiferromagnetic fluctuations. ©2000 American Institute of Physics.
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1. INTRODUCTION

Copper oxide high-Tc superconductors~HTSCs! are sys-
tems with strong electronic~Hubbard! correlations. In these
materials the Wilson parameter, which characterizes the
sponse of a system to the turning on of correlations, ha
value RW5@p2kB

2/(3mB
2)#(x0 /g)'2, wherex0 and g are

the magnetic susceptibility and the coefficient in front of t
electronic part of the specific heat~in the absence of corre
lationsRW51). A number of other materials with high va
uesRW'2 are known, but they are either nonsupercondu
ing or have low superconducting transition temperatur
These include variouspd compounds ofd metals andp
ligands, heavy-fermion compounds based on rare-earf
metals, and the layered material Sr2RuO4, which is isostruc-
tural with La22xSrxCuO4 ~Refs. 1–3!. Some specific ex-
amples are the nonsuperconducting metallic phase
NiSe12xSx , with RW'2, and the superconducting phas
UPt3 (Tc'0.5 K! and Sr2RuO4 (Tc'1 K!, with RW51.7–
1.9. Therefore the Coulomb correlations in themselves
insufficient for the onset of high-temperature supercond
tivity.

For HTSCs an important factor, besides the electro
correlations, is the dimensionality of the system. As a ru
low-temperature superconducting materials with strong e
tronic correlations are three-dimensional metals at room t
perature or rapidly become three-dimensional as the t
perature is lowered~e.g., Sr2RuO4).3 HTSCs with a CuO2
active plane remain quasi-two-dimensional over a w
range of temperature and doping: in the antiferromagn
~AFM! phase the ratio of the longitudinal to the transve
5411063-777X/2000/26(8)/12/$20.00
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exchange integral isJi /J''104, and in the metallic phase
the ratio of the conductivities iss i /s''103–104. Pro-
nounced metallic behavior of the resistance along thec axis
and dominance of the Drude component of the optical c
ductivity for the transverse direction in the Y and La com
pounds are observed in the region above the optimal dop
where the samples begin to lose their superconduc
properties.1,4

The importance of two-dimensional~2D! electronic cor-
relations for high-temperature superconductivity is not
doubt. They must be taken into account in constructing
phase diagrams and for explaining the transition to an A
insulator state having strong electronic correlations, for
scribing the density of states in the AFM phase and the
istence of an insulator gap with charge transfer in that pha
and for understanding the role of the magnetic degrees
freedom with highly developed AFM fluctuations of th
short-range order at temperatures considerably above
Néel point TN . In the metallic 2D phase the contribution o
the Coulomb interactions, even if they are weak, has b
considered as the cause responsible for the persistenc
magnetic fluctuations~which are possible vehicles for th
pairing of carriers! and for the spin pseudogap and Hubba
gap with charge transfer from the oxygen to the copp
These features of the metallic 2D phase give rise to a num
of unusual electrical, optical, and magnetic properti
which, taken together, have caused the metallic phase
HTSCs to be called a ‘‘strange metal’’ or an ‘‘almost an
ferromagnetic Fermi liquid.’’5–7 The majority of the theoret-
ical approaches to the study of this state are based on tht –
© 2000 American Institute of Physics
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J model, and various aspects of these studies from the st
point of providing an adequate description of the experim
tal data are discussed in Refs. 5–9, for example.

The covalent contribution to the electronic properties
of the opposite nature, with the electrons tending toward c
lectivization. Superconductors based on covalent bonding
clude the quasi-2D~layered! transition-metal dichalco-
genides withTc<10 K, for which the electronic correlation
are unimportant.10 With intercalation of organic molecule
the distance between the metallic layers with covalent bo
ing can be increased to 50 Å with hardly any affect onTc .
The pyridine-containing compound TaS2~Py!0.5 even under-
goes a transition to a regime of ‘‘quasi-2D superconduc
ity’’ with a classical phonon pairing mechanism.10

In the formation of the spectrum of carriers in HTSC
the pd covalence factor is also extremely important an
generally speaking, coexists with the Coulomb correlat
factor. The situation is best demonstrated by the correla
polaron model proposed in Ref. 11. A correlation polaron
a charge carrier that creates around itself a region of cova
bonding with weak electronic correlations, while outside t
region the matrix of strong Hubbard interactions is p
served. Upon magnetic ordering the correlation polaron
dressed by a ‘‘fur coat’’ of antiferromagnetic fluctuations11

It is now clear that the mutual competition and coexisten
of pd mixing and Hubbard interactions must be taken in
account in any model of cuprate HTSCs.

In view of all we have said, it is an important exper
mental problem to investigate the balance between the
relation~AFM-fluctuation! and covalent contributions as th
doping level and temperature of a HTSC are varied, incl
ing at the superconducting transition.

In this paper we set out to find optical ‘‘markers’’ fo
diagnostics of the balance between these interactions.
tailed measurements of the absorption spectra
YBa2Cu3O61x single-crystal films of various composition
were made in the near-IR and visible regions of the spect
~0.3–3 eV!. The data suggest that the correlation contrib
tion ~the influence of AFM fluctuations! is reflected in the
absorption band around 1.8 eV and the covalent contribu
in the two dd bands around 1.5 and 2.3 eV. Upon dopi
these spectral features, in competition with each other, co
ist in the metal withTc573.5 K. We interpret this picture a
additional evidence for the existence of the correlation
laron.

2. DESIGN OF OPTICAL EXPERIMENTS

The frequency range of interest for studying the el
tronic system of HTSCs as a function of doping and te
perature extends all the way from the far-infrared to the
traviolet. One need only point out that optical sensitivity
superconductivity has been detected at photon energies m
greater than the width of the superconducting gap
HTSCs.12,13 This effect has no analog in classical superco
ductors.

In the high-frequency region\v.1021 eV the optical
spectrum of cuprate HTSCs is of a multicomponent natu
containing intraband~MIR! transitions (\v,1 eV!, inter-
band charge-transfer~CT! transitions (\v.1.7 eV!, and
transitions to Cu21 and Cu1 local centers~0.5–4 eV!. For
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investigating the covalent bonding the transitions in t
Cu21 ion are of particular interest, since this ion is located
the field of the oxygen ligands. In YBa2Cu3O61x the Cu21

ion of the CuO2 plane is found in a fivefold-coordination
environment, with the apical oxygen O~4! at the apex of the
pyramid. In a field of cubic symmetry theOh orbitals of
Cu21 (3d9) are split, as we know, into a twofold degenera
stateeg and a threefold degenerate statet2g ~see Fig. 1!. The
axial elongation of the pyramid lifts the degeneracy, and
following dd transitions occurs to the unoccupied~hole! or-
bital dx22y2 ~see Fig. 1!: dz2→dx22y2 (a1g→b1g), dxy

→dx22y2 (b2g→b1g), and dxz,yz→dx22y2 (eg→b1g). Al-
though the transition energies vary, depending on the typ
ligand atom and the degree of tetragonal (D4h) distortion,
they lie, on the whole, in the region 0.5–2.5 eV.14 For
HTSCs the experimental data and theoretical estimates
the lowest transitiondz2→dx22y2 give a value'0.5 eV.8,15

For our present purposes the transitiondxy→dx22y2 is of
interest. Like all of the other even–evendd transitions, it is
forbidden in absorption, but it has been observed15 in absorp-
tion in the form of a weak spectral feature around 1.5
in the insulator phase of the cuprates La2CuO4 and
Sr2CuO2Cl2. The absorption coefficient is small (a'103

cm21).

FIG. 1. Schematic illustration of the splitting of thed orbitals of Cu21 and
the spectral dependence of the density of states for different doping le
underdoping~a!, optimal doping~b!, and overdoping~c!. The arrows indi-
cate the possible optical transitions; LHB and UHB are the lower and up
Hubbard bands, respectively.
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Meanwhile, by virtue of thedd forbiddenness, this tran
sition is well expressed in the Raman scattering~RS! spectra
of the insulator phase of YBa2Cu3O61x with x,0.4 at 1.5
eV16 and 1.56 eV.17 When the doping is increased abovex
'0.4 this transition in the RS spectra is strong
attenuated.16 This behavior of the RS spectra indicates th
the lifting of thedd forbiddenness is due to enhancement
thepd mixing on doping. Therefore, the degree to which th
transition is manifested in the absorption spectra can serv
a measure of thepd covalence. We note that the covalen
enhances the absorption most strongly for thedd transitions,
increasing the absorption coefficient to values typical for
allowed charge-transfer transitions,a'105 cm21 ~Ref. 14!.
The importance ofpd hybridization for the enhancement o
spin-alloweddd transitions in copper oxides is given a th
oretical justification in Ref. 18.

Let us now turn to the possibility of using the absorpti
spectra to study the correlation contribution. The electro
correlations in Hubbard systems generally give rise to a p
in the density of states for quasiparticles near the top of
lower Hubbard band~HB!, which is separated from the uppe
HB by the Hubbard gap~see Fig. 1!. This feature arises
independently of the approach chosen for obtaining the s
tral dependence of the density of states,N(v): the single-
band Hubbard model with1,7 and without19 allowance for
AFM fluctuations, the polaron model of copper–oxyg
Zhang–Rice singlets,20 and the model of infinite spatia
dimensionality.21 In particular, in the ‘‘magnetic’’ approach
the appearance of the peak in theN(v) structure is a conse
quence of the interaction of charge carriers with AFM flu
tuations, which develop intensively at temperatures be
the characteristic energy of the exchange interactionJ
'4t2/U'103 K, where t'0.2–0.3 eV is the amplitude o
the intersite transfer, andU'2 –3 eV is the effective Hub-
bard energy in cuprate oxides. For a model with an infin
spatial dimensionality the onset of a peak in the density
states is considered to be a manifestation of a collec
Kondo resonance.21 In any case the peak is is a consequen
of the formation of coherent states for quasiparticles. T
width of this coherent peak is determined by the creation
disappearance of magnons in the motion of current carr
and is approximately equal to 3J in the metallic phase.9 The
peak appears against the background of a broad contin
of incoherent hole states of the upper and lower HBs. T
width of the lower HB is approximately 8t'2 eV. As the
doping is increased and the system approaches an ord
metal with Fermi degeneracy, the spectral weight of the
herent component increases on account of a decrease i
weight of the incoherent component~primarily owing to a
redistribution of the states of the upper HB in the near-Fe
and optical-gap regions!. A decrease in the states of the u
per HB should lead to a substantial lowering of the intens
of interband CT transitions across the optical gapEg upon
metallization~see Fig. 1!. Simultaneously there should be a
increase in the intraband transitions from the lower HB to
region of coherent hole states, which expands with dop
These transitions mainly lie at\v,Eg in the near- and mid-
infrared regions~for brevity, mid-IR!. This redistribution of
the states has been considered in different models inco
rating electronic correlations.1,7,19,21 Therefore, the integra
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redistribution of the absorption spectra between the interb
and intraband transitions~and also the optical conductivity
spectra! reflect the evolution of the correlation contribution

Another approach to studying the correlation effects t
are the focus of our attention in this paper is based on se
rating out from the absorption spectra those spectral feat
that carry information about the coherent peak of the den
of states. For the coherent peak the character of the dis
sion for charge carriers depends on the direction of the q
simomentum. For example, along theG –M direction of the
Brillouin zone the carriers interact intensely with AFM fluc
tuations and, as a consequence, have a large mass~hot qua-
siparticles!, but for other directions of the 2D Brillouin zon
the interaction is strongly attenuated~cold quasiparticles!;
see Ref. 22 and the references cited therein. We note
according to the common belief, for interband optical tran
tions the absorption involving transitions from the heav
hole band is dominant over the absorption involving tran
tions from the light-hole band. For heavy enough holes
‘‘excitonlike’’ absorption peak can form at the long
wavelength edge of the interband transitions, even in
metal.23 In this connection we mention the well-known ph
nomenological model of Hirsch,24 according to which the
spectra of a HTSC should contain a narrow band due
transitions from strongly correlated~localized! states agains
the background of a broader band due to transitions fr
unlocalized~itinerant! states. We note that the heavy carrie
can be regarded as copper holes, for which the correla
contribution is appreciable on account of the possibility
formation of Cu31, and the light carriers as due to the motio
of oxygen holes O2. It is clear that the spectral feature fo
the heavy holes must lie near the charge-transfer gapEg

'1.5–2 eV or is contained in the ‘‘excitonlike’’ edg
maxima. In the experimental paper of Ref. 25, following t
theoretical conclusions of Ref. 20, the absorption band w
maximum at\v'2 eV at the edge of the charge-transf
optical gap in Sr2CuO2Cl2 was attributed to the density o
states peak of Zhang–Rice singlets.

With allowance for the magnetic ordering, proof of th
‘‘correlation’’ nature of the narrow spectral feature should
provided by its interrelationship with the magnetic degre
of freedom that form the coherent maximum. Of particu
interest in this regard are studies of lightly dop
YBa2Cu3O61x films with x50.3–0.4 at the boundary of th
transition to a well-conducting metal, where the correlati
effects for the heavy itinerant charge carriers are m
strongly expressed. In this boundary state the long-ra
AFM order is already quite strongly disrupted and atT
'300 K a spin liquid is formed, with AFM correlation
lengthsj'100–150 Å.~In layered cupratesTN'J'(j/a)2

~Ref. 1!, whereJ''0.2 K is the value of the exchange in
teraction between CuO2 bilayers, anda'4 Å is the distance
between copper centers. In YBa2Cu3O61x with x50.3–0.4
we haveTN,250 K!. According to Ref. 7, in the spin-
fluctuation model for the formation of the coherent peak
quasiparticle density of states at the Fermi level is close
maximum~for T→0) in a metal far from the boundary of th
metal–insulator transition. For YBa2Cu3O61x this situation
corresponds to the ortho-II phase withx,0.6 (Tc,60 K!.
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3. EXPERIMENT

Measurements of the absorption spectra of single-cry
thin films of YBa2Cu3O61x of variable composition were
made in two spectral regions: in the mid-IR, from 0.4 to
eV, and in the visible, from 1.25 to 3 eV. Unpolarized lig
was used, with an orientation of the electric field parallel
the active CuO2 layer (E'c axis of the crystal!. The fre-
quency dependence of the absolute absorption coeffic
a(v) was determined from the transmission and reflect
spectra of the HTSC films relative to those of the cle
SrTiO3 substrates on which the films were grown. The thic
nesses of the films werel 52000 and 2300 Å. The function
a(v) l was found from the relation between the transmiss
spectrumt(v) of the film and the transmission spectru
t0(v) of the clean substrate:t(v)5t0(v)(12R)e2a l(1
2R2e22a l)21, where R(v) is the reflection coefficient o
the film.

For YBa2Cu3O61x the absolute values ofR(v) in the
visible region, where the interband transitions are conc
trated, is a weak function of frequency and remains at lo
‘‘insulator’’ levels (,15%) even in the metallic phase.26 In
view of this circumstance and the appreciable values of
exponenta l'2 for YBa2Cu3O61x ~as for the other coppe
oxides!, the transmission of the films in the visible region
almost completely governed by absorption. Therefore, in
visible region the reflection was assumed to be freque
independent.

Substantial variations ofR(v) with frequency are ob-
served in the mid-IR region, which lies below the plasm
minimum. In this region, where the intraband transitions
concentrated, the values ofR(v) reach 70%. To provide for
reliable extraction of the absorption contoura(v) in the
mid-IR region we measured the reflection spectra as we
the transmission spectra. In the reflection measurements
film was illuminated by a Globar source~which was also
used in the transmission measurements in the mid-IR
gion!, and a low-noise superconducting bolometer was u
as the signal detector. To achieve the maximum reflec
the film was illuminated at an angle of 10° to the normal.
means of an electromagnet placed directly in the cryostat
controlled by a set program, the sample was periodically~for
a time'1 s! covered by a standard silver mirror. During th
time the reference reflectanceRref was measured for tens o
counts. With the mirror removed the average signalR(v)
from the film was measured. With automatic scanning of
frequency~or of the temperature at a constant frequency! the
ratio R/Rref was determined~the reflectance of the silver wa
taken asRref597.5%). This technique was used previous
to study the trend of the reflection coefficient
YBa2Cu3O61x at individual frequencies in the mid-IR
region.27,28

The transmission spectra of the films were also measu
in the reference-signal mode. Here a portion of the light fl
incident on the film was diverted to a second detector, wh
set a reference levelI ref(v). The average ratio of the inten
sity I (v) of the transmitted light to the reference intensi
I (v)/I ref}t(v) ~or, in the case of the clean substra
I 0(v)/I ref}t0(v)), was measured at each step of the f
quency scan. This technique enabled us to determine the
havior of t(v) at a specified doping level to within a sma
al
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error (,5%) and to measure very small variations of t
absorptionD(a l ) upon changes in temperature in the visib
region of the spectrum. The point is that the temperatu
related variations of the reflectance in the visible region up
the heating and cooling of YBa2Cu3O61x are small (DR/R
<1%),29 but the changes in the transmittance are mu
larger:28 Dt/t@DR/R. As a result, the change in the absor
tion relative to some initial temperatureT0, i.e., D(a l )
5a l (T0)2a l (T), is related to the signal measured in th
reference-level mode by the simple relationD(a l )
5 ln@t(T)/t(T0)#. The reference-signal technique made it po
sible to measure valuesD(a l )50.01.

A study was made of c-oriented single-crysta
YBaCu3O61x films of the series YS (l 52000 Å! and BH
( l 52300 Å!, grown at the Physics Institute of the Universi
of Erlangen, Germany in the department of Prof.
Zaimann–Ishchenko. The films were prepared by the met
of laser and dc sputtering of targets. Certification data on
magnetic and x-ray structural parameters were provided
each film. Some of the metallized films belonged to t
ortho-II phase, withTc,60 K, and the others to the ortho-
phase, withTc.60 K. Included in the set of films were in
sulators, with doping indexx,0.4. The BH films, with lat-
tice parameterc511.820 Å, were subjected to rather detail
~see below! optical studies. According to the calibration da
of Ref. 30, for a YBa2Cu3O61x film with this value of the
parameterc the doping indexx'0.35, i.e., it lies at the
boundary of the antiferromagnetic insulator–metal transit
~judging from the data of Ref. 30, the YBa2Cu3O61x film
with x'0.4 can already have a critical temperatureTc,10
K!. The temperature measurements of the absorption spe
of this film greatly clarified the picture of the onset ofdd
transitions and the influence of the magnetic degrees of f
dom on the optical spectrum.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. General character of the absorption spectra

Let us first consider the most general characteristics
the absorption spectra of YBa2Cu3O61x films as a function
of doping at 300 K. Figure 2 shows the absolute absorpt
spectra in the visible and mid-IR regions of the spectrum
x'0.35 and for two states of the metal in the orthorhom
phasesOII ( Tc<60 K! andOI (Tc.60 K!. We recall that in
theOII phase the CuOx chains form an alternating sequenc
filled–vacant–filled, while in theOI phase the ‘‘vacant’’
chains are filled with oxygen. The scale of the measu
absolute values of the absorption area l'1.5–3, which for
the film thicknesses used in the experiment gives an abs
tion coefficienta'105 cm21.

As follows from Fig. 2, in the lightly doped phase th
absorption in the mid-IR region is very small, but above 1
eV, which is in the visible region, the absorption begins
grow sharply, and this growth becomes stronger as one g
to still shorter wavelengths. A distinctive feature of the a
sorption spectra forx'0.35 is the presence of a strong ba
at the long-wavelength edge, with a maximum at 1.77 eV
we shall show, this band is described well at 300 K by
Gaussian contour with an rms deviations50.14 eV. We call
this theA band. Extending from theA band into the short-



545Low Temp. Phys. 26 (8), August 2000 Eremenko et al.
FIG. 2. Spectral dependence of the absorptiona l for single-crystal films of YBa2Cu3O61x with different degrees of doping: the ortho-I phase withTc

588 K (n), the ortho-II phase~sample1 with Tc559 K (s), sample2 with Tc551 K (d)), and a film withx'0.35 (h) at the boundary of the transition
to the metal. The measurements were made at 300 K and, for film1 with Tc559 K, at 5 K.
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wavelength region is a continuum component, against
background of which one can discern another weak m
mum around 2.1 eV, which we shall denote asA1J. On the
whole the entire absorption spectrum forx'0.35, in which
case the Fermi level just barely enters the valence ban
due to interband CT transitions across the optical gap\vg ,
which separates the lightly hole-doped valence band and
upper band~see Fig. 1a!. We note that the data on the ph
toconductivity of the insulator YBa2Cu3O6.3 displays the ex-
istence of an optical gap as a threshold of photoconducti
at \vg51.7 eV,31 i.e., somewhat lower in energy than th
maximum of theA band.

Upon metallization and the transition to the ortho
phase, as is seen in Fig. 2, one observes a decrease i
integral intensity of CT absorption in the entire visible r
gion. The absorption in the mid-IR region behaves in
opposite way: an asymmetric MIR band with a maximum
'5500 cm21 ~0.7 eV! is formed. Its short-wavelength edg
according to Fig. 1a, should lie at an energy of the orde
the width of the coherent peak, 3J'0.3 eV, as is observed in
experiment. The slowly decaying long-wavelength wing
due to transitions from the incoherent~with a width of '2
eV! part of N(v) to the coherent peak. For La, Y, and B
samples a similar form of the MIR absorption band was
tained previously by the method of spectroscopy of sm
HTSC granules embedded in a KBr matrix.32

A detailed analysis of the spectra of the metallic pha
including a decomposition into components, will be pr
sented below for several films. However, let us first disc
those features of the measured spectra which will enabl
to draw important preliminary conclusions.

We see that theA band, although strongly attenuate
remains present in the ortho-II phase. Upon further meta
zation and the transition to the ortho-I phase~in the optimal
doping region! the absorption in the mid-IR and visible re
gions increases, and in the visible region it even becom
somewhat higher than in the insulator. At the red edge of
visible region a new bandBd

1 , with a maximum at 1.5 eV, is
dominant. In the optimal doping phase the MIR band b
e
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comes flatter and its peak is red-shifted, and its red bound
is less sharp than in the ortho-II phase. This transforma
of the MIR band in the optimal doping phase is a con
quence of the gradual formation of a broad quasi-Drude
sorption by free carriers, for which the absorption coefficie
has a dependence close toa}v22.

Let us now turn our attention to the fact that the met
lization occurring upon transition to the ortho-II pha
causes a decrease in the integral absorption throughou
visible region, at energies all the way to 3 eV, with a sim
taneous growth of the integral absorption in the mid-IR
gion. This picture is fundamentally different from the beha
ior of the interband absorption upon doping in classi
semiconductors. Upon hole doping ofp-type semiconduc-
tors, when the Fermi level enters the valence band, the st
gest spectral changes occur near the fundamental absor
threshold1\vg . Here the absorption coefficient changes in
narrow region of energies with a width of several tenths
an electron-volt. At the same time, as is seen in Fig. 2, th
is a strong~by tens of percent! decrease in the interban
absorption~and in the interband optical conductivity!1 in the
entire visible region. These broadband changes occur
very low filling of the valence band by holes — only a fe
percent~the degree of filling can be estimated from the re
tion EF /W, whereEF'0.1 eV is the width of the unfilled
~hole! region of the valence band in the metal, andW'2 eV
is the total width of the valence band!. This effect is a con-
sequence of the strong electronic correlations in the syst
As we have said, in Hubbard systems, including tw
sublattice systems with allowance for oxygen–copperpd hy-
bridization, doping decreases the weight of the incoher
component of the density of states, redistributing those st
into the near-Fermi region of the coherent peak and pa
into the region of the optical gap. As a result, the intensity
the CT transitions into the upper band decreases ove
broadband energy interval. At the same time the possib
of MIR transitions to hole states opens up. Thus the obser
redistribution of the integral absorption upon metallization
in itself proof of the existence of strong electronic corre
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tions in the system. The intensity of MIR absorption in t
metallic phase also becomes stronger upon cooling~see Fig.
2!, while the absorption becomes weaker throughout the
tire visible region,28 so that one can speak of the manifes
tion of electronic correlations not only on doping but al
upon a change in temperature.28

Studies of the influence of the polarization of the light
YBa2Cu3O61x have shown that at the transition from th
insulator to the ortho-II phase the weakening of the abso
tion spectra in the visible region occurs mainly for thea
polarization,26 i.e., for the direction perpendicular to th
CuOx chains. Sincea-polarized light is diagnostic of the ac
tive CuO2 plane only, these spectral changes should be
tributed to electronic correlations in the CuO2 plane specifi-
cally. As can be seen in Fig. 2, upon transition to the orth
phase, when the ‘‘vacant’’ chains are filled by oxygen, t
absorption again begins to increase in the entire visible
gion. Incidentally, the absorption per hole at CT transitio
(\v.Eg) for the optimal doping withx'0.9, is neverthe-
less lower than for the ortho-II phase withx'0.6.

4.2. Spectra of a film with xÉ0.35 „in the neighborhood
of the antiferromagnet–metal transition …

We shall show that theA band contains information
about the coherent peak formed on account of the interac
of the carriers with AFM fluctuations. Temperature stud
of the absorption spectrum of a YBa2Cu3O61x film with in-
dex x'0.35 have not only demonstrated that theA band is
sensitive to the magnetic degrees of freedom but also
vealed the onset of forbiddendd transitions as a result of th
enhancement of thepd covalence.

Temperature measurements were made at tempera
above and below 300 K for a YBa2Cu3O61x film with index
x'0.35. Since the temperature-related changes in the sp
were expected to be small, we did a careful analysis of
difference spectra of the absorption relative to the initial te
peratureT0 : D(a l )5a l (T0)2a l (T). Figure 3 shows the
measured difference spectrum when a film is heated f
T05300 toT5390 K. In the figure one can see two notab
features that will be important in what follows and have n
been obtained before: the temperature-related changes,

FIG. 3. Difference spectrum of absorptionD(a l )5a l (300 K)
2a l (390 K) for a film with x'0.35, measured on heating from 300
390 K.
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rst,

do not concern theA band, and, second, appear in the for
of two absorption bandsBd

1 and Bd
2 . These bands are we

described by Gaussian contours of the form

a l 5
m0

sAp
expF2

~E2E0!2

2s2 G ,
which are shown by the solid curves in Fig. 3. The relat
spectral changesDa/a are '12% for the low-energy con-
tour Bd

1 and'2% for the high-energy contourBd
2 .

Let us first point out that theBd
1 band is enhanced upo

heating. It is centered atE0
1B51.59 eV with an rms deviation

~i.e., square root of the variance! s1B50.08 eV and a coef-
ficient m0

1B50.02 eV. An estimate of the absolute absorpti
for Bd

1 gives a valuea l'0.1 (a'104 cm21, which is an
order of magnitude less than the value for the allowed
transitions!. According to its position and half-width theBd

1

band must be attributed to thedd transition dxy→dx22y2,
which was observed at 1.5–1.56 eV in the Raman scatte
spectra of YBa2Cu3O61x in the insulator phase for the
CuO2 plane~see Sec. 2!. In our case the intensification of th
transitiondxy→dx22y2 is due to the enhancement of thepd
covalence on heating of the sample. At first glance this mi
seem strange, since enhancement of the covalence is ac
panied by a shortening of the Cu–O bond, which might
expected on cooling more than on heating. However,
structure of the CuO2 has an important feature that can e
plain the increase in the degree of covalence with increas
temperature.

If one passes a plane through the copper atom in Cu2,
the oxygen atoms will turn out to be displaced by'0.25 Å
relative to this plane, i.e., CuO2 has a ‘‘zig-zag’’ atomic
structure, and the Cu–O–Cubond angle is different from
180°. As the temperature is increased, the zig-zagging
creases, and at a bond angleu5180° the overlap of the
‘‘lobes’’ of the p orbitals of oxygen and of thed orbitals
of copper becomes maximum, i.e., the degree ofpd hybrid-
ization is maximum. As the zig-zagging decreases and
Cu–O–Cubond approaches a 180° configuration, there is
increase in the so-called tolerance factor, which is prop
tional to the degree ofpd hybridization: tpd;tpd

0 cos(p/2
2u/2). This effect is well known, e.g., for O–Ti–O bond
and for the O–Fe–O bonds in perovskite compounds of
type CdFeO3 ~see, e.g., Ref. 1!. For cuprate HTSCs the
increase in the tolerance factor with increasing tempera
and doping has been reliably established~see the discussion
in Ref. 11!.

Thus our data taken on the heating of YBa2Cu3O61x

show that the phase withx'0.35 contains an experimenta
optical ‘‘marker’’ for investigating the degree of covalenc
the Bd

1 band.
At the same time, the difference spectrum has a p

nounced shorter-wavelength and broader bandBd
2 around 2.3

eV ~see Fig. 3!. The parameters of the Gaussian contour
this band are as follows:E0

2B[2.32 eV,s2B50.2 eV, m0
2B

50.018 eV. Since it appears simultaneously with theBd
1

band, one can assume that it is also due todd transitions, but
higher-energy ones:dyz ,dxz→dx22y2 ~see Fig. 1!. With in-
creasing electron–vibron interactions this transition can
manifested for light polarization in both thexy plane and in
the z direction.14
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Let us now consider the difference spectra of the abso
tion when the film is cooled from 195 to 80 K~see Fig. 4!.
These measurements demonstrate that the tempera
related changes in theA band are concentrated in the low
temperature region, which is a fundamental difference in
behavior from the standard model with an electron–pho
interaction. Positive valuesD(a l ).0 correspond to the
spectral region of decreased absorption on cooling, and n
tive valuesD(a l ),0 to increased absorption. In Fig. 4 it
clearly seen how strongly the red wing of theA band is
bleached, while in the neighborhood of the maximum arou
1.8 eV the absorption increases. The inflection point of
curve near 1.65 eV corresponds to the energy for half int
sity of the band, where the absorption is most strongly
tenuated. A temperature asymmetry is observed in the m
surements of the contour: the red wing is more stron
attenuated than the short-wavelength wing. This deforma
is due to the onset of asymmetry of the contour itself and
temperature-related changes in the interband componen
ing at \v.1.8 eV. One can clearly see the maximum ofA
1J at 2.15 eV, which develops on cooling on the same s
as the maximum of theA band. We note that on heating from
300 K these two bands also behave in the same way,
exhibiting temperature dependence. Near 1.55 eV the af
mentioned covalent-bonding bandBd

1 can be discerned. It is
not hard to see that its intensity decreases with decrea
temperature, i.e., its temperature trend is in the same d
tion as in the case of cooling from 390 to 300 K.

For a more detailed study of the evolution of theA band
with temperature we made measurements at its red win
an energy of 1.62 eV. At this frequency the temperatu
related changes in the bandBd

1 are insignificant. These dat
are presented in Fig. 5 forD(a l )5a l (195 K)2a l (T) as a
function of T, where a l (195 K)51.5. We see that in the
regionT.T* 51602170 K the intensity of theA-band ab-
sorption is practically constant, as is observed on hea
from 300 K. On cooling belowT* , however, the intensity o
the A-band absorption begins to fall off sharply,D(a l ).0.

Figures 4 and 5 clearly demonstrate that the deforma
of the A contour is enhanced on cooling. This sort of te
perature behavior is fundamentally different from that of t
absorption in the frequency region 1.5–2 eV for insula

FIG. 4. Difference spectrum of absorptionD(a l )5a l (195 K)2a l (80 K)
for x'0.35, measured on cooling from 195 to 80 K. The solid curve is
Gaussian contour for the bandBd
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samples with a low doping indexx50.1–0.2. Forx<0.2 the
absorption~reflection! spectra of YBa2Cu3O61x samples at
300 K also exhibit a pronounced maximum around 1.7 e
which can be called a ‘‘gap’’ peak, since it is located at t
boundary of the optical gap.31,33 Its amplitude is intensified
by the exciton effect under conditions of quasi-tw
dimensionality of the system. The Gaussian rms deviation
the ‘‘gap’’ peak,'0.2 eV forx'0.2, is 1.5 times larger than
in our case withx'0.35.

The temperature variations of the ‘‘gap’’ absorptio
band ~the maximum of the imaginary part of the dielectr
constant! at low doping indices has been studied more th
once, and the results show convincingly that the main c
tribution to the formation of the band is from the electron
phonon interactions with phonon frequencies of 30–
meV.33,34 For example, the Gaussian rms deviation of t
‘‘gap’’ band and, as a consequence, the absorption inten
depend strongly on temperature atT>100 K ~the half-width
of the ‘‘gap’’ maximum increases by a factor of 1.5 when t
temperature increases from 100 to 400 K!, but at lower
temperatures the temperature dependence practic
vanishes.33,34

Meanwhile, it is well known that the different kinds o
optical characteristics of antiferromagnets~absorption, lumi-
nescence, Raman scattering! depend relatively weakly on
temperature in the region aboveTN and exhibit a strong tem
perature dependence forT,TN ~Ref. 35!. For example, in
the classical AFM crystal MnF2 the half-widths of the
electric-dipole absorption bands depend weakly on temp
ture during cooling from 300 K toTN567 K, but belowTN

they begin to decrease sharply.35 We note that in the three
dimensional~MnF2, KNiF3, etc.! and two-dimensional~e.g.,
K2NiF4) antiferromagnets, two-magnon scattering, which
sensitive to the contribution of spin fluctuations of the sho
range order, has been observed experimentally in the Ra
scattering spectra even at temperatures two or three ti
greater thanTN in these compounds.35 It is these short-
wavelength fluctuations that are responsible for the w
temperature dependence of the optical characteristics
T.TN .

It can be assumed that in our case the unusual temp
ture trend of theA band is due specifically to the behavior

e

FIG. 5. Temperature-related change in the absorptionD(a l )5a l (195 K)
2a l (T) ~where a l (195 K)51.5) of a lightly doped film at a frequency
\v50.162 eV. The solid curve was constructed using expression~1! with
Ds54 meV,T* [TN5160 K.
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the magnetic degrees of freedom, and the influence
phonons is appreciably weakened in comparison with
doping regionx<0.2, whereTN'450 K. Forx50.35–0.37,
according to the neutron-diffraction data of the Ros
Mignod group,TN5250–150 K for YBa2Cu3O61x single
crystals~see the plots in Ref. 36!. In Ref. 37, forx50.3, a
valueTN5260 K was obtained. The precise corresponde
betweenTN andx is difficult to establish becauseTN(x) is a
sharply falling function in the regionx50.3–0.4. In Ref. 38,
for YBa2Cu3O61x films with x50.3–0.39, appreciable
growth of the magnetic susceptibility was observed bel
T5150–200 K; this is due to the formation of ferromagne
clusters in the AFM matrix. We note that for La compoun
in the doping region where the AFM order is rapidly d
stroyed, the phase separation temperature is close toTN ~Ref.
19!.

In our case the lowering of the absorption intensity b
low T* is logically attributed specifically to a transition o
the sample to the AFM state. For a description of the te
perature dependence of theA absorption band one can us
the results of Ref. 39, in which a theoretical and experim
tal justification is given for an expression for the temperat
narrowing of the excitonic absorption band in the AF
phase:s(T)5s(T50)1d(T), whered(T) is the magnon
correction to the rms deviation of the absorption band. Wh
the Bose–Einstein factor for the magnon population o
two-dimensional AFM system is taken into account, one
d(T)}Texp$2Ds/kBT%, whereDs is the spin gap.39 Then the
difference temperature spectrum can be written in the fo

D~a l !5a~T0!l 2a~T!l 5
m0

s~T0!Ap
expH 2

~E2E0!2

2s2~T0!
J

2
m0

@s~T50!1d~T!#Ap

3expH 2
~E2E0!2

2@s~T50!1d~T!#2J . ~1!

Let us assume thatm05const, i.e., that the area of th
absorption band is conserved on cooling. HereT05195 K is
the initial temperature relative to which the measureme
are made~see Fig. 5!. Introducing the normalizing factorg,
we haved(T)5gTexp$2Ds/kT%, where g is to be found
from the condition s(T50)1d(T5TN)5s(TN). Since
there are no temperature-related changes when the tem
ture is increased aboveT'160 K, we have s(TN)
5s(300 K). Thus we have two adjustable parameters,s(T
50) and Ds , which allow us to construct a model curv
for describing the experimental data~see Fig. 5!, which
were obtained forE51.62 eV. For the dielectric phase o
YBa2Cu3O61x the spin gap has valuesDs53 –5 meV ~see
Ref. 40 and references cited therein!. The valuesE051.77
eV, m50.64 eV, ands50.14 eV were taken for theA band
from the model decomposition of the absorption spectr
for 300 K ~see below!. The solid curve in Fig. 5 gives a goo
description of the experimental data for the chosen val
s(T50)50.073 eV,Ds54 meV, andTN5160 K. As a re-
sult, one can say that the temperature dependence o
absorption in the wings of theA band arises belowT* 5TN

and is dictated by the temperature-related narrowing of
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band. In the context of the given spin-wave picture, t
temperature-related narrowing of theA contour is due prima-
rily to a decrease in the number of long-wavelength magn
excitations, which are weakly damped in cuprate HTSCs9

On the basis of what we have said, it can be asserted
theA band of absorption is sensitive to the magnetic degr
of freedom and is thus due to the coherent peak in the d
sity of states. In such a case the change in the spectrum o
AFM fluctuations~the correlation lengthj andDs}1/j) has
the strongest effect on the width of theA band. The area of
the A band, which reflects the oscillator strength of the tra
sition, can be conserved in the process if there is a chang
the number of heavy carriers, which are dressed in a ‘‘
coat’’ of AFM fluctuations~in accordance with the genera
rules for optical transitions, it is the heavy carriers that g
the largest contribution to the absorption nearEg).23 These
concepts can be used for diagnostics of the evolution
AFM functions, of the temperature at which the sp
pseudogap opens in a metal, and of the redistribution of
densities between the heavy carriers~hot quasiparticles! and
light carriers~cold quasiparticles! as the doping and tempera
ture are varied.

Let us conclude this Section with a discussion of t
nature of theA1J band. The optical spectra of cuprate o
ides ~Ca2CuO3, Sr2CuO3, etc.! exhibit a weak spectral fea
ture, analogous to theA1J band, at a distance of sever
tenths of an electron-volt to the short-wavelength side of
CT peak. This feature has its origin in the fact that the tra
sition through the CT optical gap is accompanied by exc
tion of the magnetic subsystem of the copper.1 Indeed, the
maximum of the two-magnon scattering,\vmag.3J, in cu-
prate HTSCs lies in the region of several tenths of
electron-volt. In the AFM phase of YBa2Cu3O61x the two-
magnon peak falls at an energy of 0.37 eV and is observe
experiments all the way up to doping levelsx50.5 ~it is
strongly attenuated upon the subsequent metallization!.26

Then the maximum of theA1J band should have an energ
\vA1\vmag'2.17 eV, which agrees well with its positio
on the spectra in Figs. 2 and 4. We note that near the
optical gap the excitation efficiency is resonantly enhan
for both the two-magnon excitations with energy 3J and the
four-magnon excitations with energy 4J.41 Therefore, the
low-temperature intensification of the CT transitions in the
band quickly leads to enhancement of the magnon b
A1J.

Thus it follows from all we have said that already
x'0.35, while still in the insulating phase, the spectra d
play the presence, to a greater or lesser degree, of t
components of the optical absorption which must be ta
into account in a treatment of the metallic state from t
standpoint of the balance of the correlation~magnetic! and
covalent contributions.

4.3. Analysis of the absorption spectra of the metallic
phase

For a clearer understanding of what we will be doing,
us list the main components of the decomposition of
absorption spectrum in the visible region from 1.25 to 2.8
at 300 K.
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1. Two Gaussian contours (a l )1B and (a l )2B , corre-
sponding to the covalent absorption bandsBd

1 andBd
2 .

2. The Gaussian contour (a l )A for the correlation peak
3. The continuous component of the interband CT tr

sitions. A subsequent analysis showed that this compone
the spectrum conforms best to a frequency depende
(a l )CT5m0

CT(E2Eg)2/E, which is characteristic for indi-
rect allowed transitions in the absence of excitonic effe
and also for the direct allowed transitions in the case w
‘‘tails’’ of the densities of states appear near the opti
gap.23

4. The absorption at the short-wavelength edge of
MIR band, (a l )MIR . We assumed that the level of this a
sorption in the visible region is constant but depends on
doping~see Fig. 2!. The choice of a frequency dependence
this component in the form (a l )MIR;1/v, for example,
would have a small effect on the quantitative characteris
of the other spectral components.

5. In the insulating and weakly metallized phasesx
,0.5) there is also a Gaussian component (a l )A1J . As the
metallization becomes stronger as a result of chemica
photodoping, this component of the absorption and also
two-magnon peak in the Raman scattering spectra are
stantially diminished.42,43

The above decomposition of the spectra of all the fil
made it possible to achieve agreement with the experime
data to an accuracy of 5% or better.

We note that the subsequent analysis was done
300 K, i.e., above the temperature of formation of t
spin pseudogap,T* '150 K, in the metallic phase o
YBa2Cu3O61x with x.0.5.6 Therefore the parameters of th
A contour must be determined by the contribution of t
high-frequency AFM fluctuations~rms deviation of the con-
tour! and by the transition strength~the area of the contour!.

The absorption spectrum of a film withx'0.35, for
which (a l )MIR50 ~see Fig. 2! in the region 1.3–2.6 eV can
be described well by a sum of the following componen
plotted in Fig. 6:

~a l !fit5~a l !A1~a l !A1J1~a l !CT .

The inset in Fig. 6 shows the relative difference of th
model decomposition from the experimental curve:@(a l )exp

FIG. 6. Decomposition of the absorption spectrum of a film withx.0.35 in
the visible region. The inset shows the relative difference of the mo
spectrum (a l )fit from the experimental spectrum (a l )exp. The points in the
inset correspond to the frequencies at which the measurements were
-
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2(a l )fit]/(a l )exp. Here the parameters of the Gaussian
the correlation contourA of the absorption areE0

A51.77 eV,
sA50.14 eV,m0

A50.64 eV. For the Gaussian contour of th
A1J band: E0

(A1J)52.12 eV, sA1J50.17 eV, m0
(A1J)

50.47 eV. For the interband CT transitionsEg51.85, m0
CT

518 eV21. Thus the spectrum is determined by the stro
correlation peakA, the peakA1J due to excitation of the
magnetic subsystem, and the interband charge-transfer
sitions. The intensity of the absorption of the covalent pe
near 1.5 eV is not more than 5% of the level of the abso
tion of the remaining components~see Fig. 6!.

Let us consider the spectra of three metallic films hav
Tc551, 73.5, and 88 K~see Fig. 7!, where the curves for the
films with Tc551 and 88 K have been shifted by the level
the absorption at 2.7 eV for the film withTc573.5 K. We
recall that in the ortho-II phase the holes are distributed
proximately uniformly between the three substructures of
YBa2Cu3O61x unit cell: the two CuO2 planes and the CuOx
chain structure. In the ortho-I phase the distribution of ho
is somewhat different:'25% of the holes are on eac
CuO2 plane and'50% are on the CuOx structure. Inciden-
tally, the intense formation ofpz holes already begins at th
optimal doping, and in the overdoping regime the syst
becomes three-dimensional. From Fig. 7 one can see,
first approximation, the main features of the evolution of t
spectrum with doping. For example, near 2.3 eV one c
trace the influence of the Bd

2 band for all three films. The
correlation peak in the underdoped film withTc551 K is
preserved, although it is broadened and lowered in heigh
the film with Tc573.5 K, which lies at the boundary of th
transition to optimal doping, the red wing is deformed
account of the growth of the absorption in the 1.5 eV regi
where the covalent peakBd

1 is located. Finally, in the film
with Tc588 K theBd

1 band at 1.5 eV becomes dominant, a
the correlation peak is greatly suppressed.

These general conclusions follow from a qualitati
treatment of the spectra. For a clearer delineation of the
ance of the absorption bands on doping, let us give the s
tral decomposition for these three films.

Figure 8 shows the decomposition of the spectrum
the film with Tc551 K, and the inset shows the relativ

l

de.

FIG. 7. Absorption spectra of metallized YBa2Cu3O61x films with different
values of the critical temperatureTc . For better understanding, the spect
are shifted relative to one another~see text!. The solid curve is the Gaussia
contour for the Bd

2 band.
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difference of the total model spectrum (a l )fit from the ex-
perimental (a l )exp. The spectrum of this film consists of
sum of the following components:

~a l !fit5~a l !A1~a l !2B1~a l !CT1~a l !MIR .

The parameters of the Gaussian contour are:E0
A51.8 eV,

sA50.2 eV, m0
A50.12 eV for theA band; E0

2B52.3 eV,
s2B50.2 eV, m0

2B50.15 eV forBd
2 ; and Eg51.9 eV, m0

CT

56 eV21 for the CT absorption. The level of absorption
the MIR band in the visible region is (a l )MIR51.3. It fol-
lows from the inset in Fig. 8 that this film also has a
A1J component near 2.15 eV, but its contribution is n
more than 5%. Thus the correlation peak is preserved in
metallized film in the underdoping regime, but, as compa
to the film with x50.35, its rms deviation is larger by
factor of 1.5 and the area of the contour is substantia
smaller. The continued presence of this peak means tha
fluctuations remain present in the metal. Consequently,
broadening of theA band, following the conclusions of th
previous part of this paper, must be attributed to enhan
ment of the high-frequency AFM fluctuations, which in
crease the mass of the charge carriers. This can happen
correlation length of the AFM fluctuations decreases in
metal. For cuprate HTSCs in the underdoped regime
characteristic values ofj are '10 Å, which is an order of
magnitude smaller than at the boundary of the AFM–me
transition. The decrease in the area of theA band absorption
is a sign that the number of heavy charge carriers due
AFM fluctuations is decreasing. Nevertheless, the cohe
peak of the density of states remains quite pronoun
against the background of states in the lower HB~see Fig.
1a!, and the chemical potential apparently lies near the m
mum of the density of states.

As we see in Fig. 8, for the film withTc551 K a sig-
nificant contribution to the spectrum is given by the coval
peakBd

2 . TheBd
1 band, however, is not present in the deco

position. This behavior can, generally speaking, be attribu
to the fact that the strong mixing of the oxygen and cop
orbitals occurs mainly for the statesdxz and dyz , i.e., the
covalent bonding is strengthened primarily in the direct
perpendicular to the CuO2 planes. This conclusion corre
sponds to the well-known fact that the distance between

FIG. 8. Decomposition of the absorption spectrum of a film withTc551 K
in the visible region. The inset shows the relative difference of the mo
spectrum (a l )fit from the experimental spectrum (a l )exp.
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active CuO2 plane and the apical oxygen O~4! decreases
sharply, by approximately 0.1 Å, at the insulator–metal tra
sition in YBa2Cu3O61x , which makes it possible for elec
trons to leak into the chain substructure, leading to the h
metallization of the plane.

Furthermore, it follows from an analysis of Fig. 8 that
the ortho-II phase the value of (a l )CT decreases substantiall
and, at the same time, (a l )MIR increases. This behavior is
direct consequence of the correlational redistribution of
densities of states, discussed above.

Let us consider the next doping level — the film wi
Tc573.5 K. Figure 9a shows the decomposition of the sp
trum into components and, in the inset, the relative deviat
of the model decomposition from the experimental dep
dence, and Fig. 9b shows a direct comparison of the mo
spectrum with the measured one. The spectral decompos
is described by the sum

~a l !fit5~a l !A1~a l !1B1~a l !2B1~a l !CT1~a l !MIR .

The spectrum for this film clearly manifests all of th
spectral components on which the spectra measured in
visible region are based. The parameters of the Gaus
contour areE0

A51.8 eV,sA50.2 eV,m0
A50.045 eV for the

A band;E0
1B51.5 eV,s1B50.36 eV,m0

1B50.09 eV for the
Bd

1 contour;E0
2B52.3 eV, s2B50.2 eV, m0

2B50.15 eV for
Bd

2 . The parameters for the CT component areEg51.95 eV
and m0

CT56 eV21, and the MIR absorption level is

l

FIG. 9. Measured (d) and model ~———! absorption spectra of a
YBa2Cu3O61x film with Tc573.5 K: a — decomposition of the spectrum
and the relative difference of the model dependence from the meas
~inset!; b — direct comparison of the model and experimental spectra.
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(a l )MIR52.3. The decomposition permits modeling of t
experimental curve with an accuracy of 3% or better acr
the entire range 1.3–2.7 eV.

One notes the following features as compared to the
with Tc551 K: a! the appearance of theBd

1 peak, which
attests to the enhancement of the covalence even direct
the CuO2 plane on account of hybridization of the Cu(3dxy)
and O(2p) orbitals; b! the parameters of the covalent pe
Bd

2 are practically conserved, i.e., the degree of covalenc
the direction perpendicular to the CuO2 plane is unchanged
c! the width of the correlation peak remains as before,
though the area of the contour decreases. There are two
important conclusions:

First, the weak broadening of theA band indicates tha
the density of magnetic states for high-frequency AFM flu
tuations varies insignificantly~the correlation lengthj stops
changing!, although the number of heavy carriers continu
to decrease against the background of an enhanced degr
planar covalence.

Second, one notices the coexistence of the correlatioA
band and the covalentBd

1 band in the metallic phase. Sinc
spatial regions in the CuO2 plane in which covalent bonding
is established appear during doping, one must acknowle
the existence of regions with weakened correlations aro
mobile holes embedded in a matrix of strong Hubbard c
relations. Such a picture completely corresponds to the c
cept of a correlation polaron~see the Introduction!. In the
framework of the magnetic picture, the correlation polar
moves in a matrix of AFM fluctuations. If one goes to a
ionic model, then the formation of the correlation polar
corresponds to a shift from ionic~Cu311O22) to covalent
~Cu211O2) bonding on doping,11 i.e., a transition from
more localized states with strong Hubbard correlations in
hole subsystem of the copper Cu31, to a state with covalen
bonding with mobile O holes. It can therefore be assum
that the correlation polaron is a hole formation around wh
covalent bonds are concentrated, while outside this regio
matrix of ionic bonds is preserved. We stress that the tr
ment of the correlation polaron can be manifested in
conceptual framework of Hubbard correlations, AFM flu
tuations, and the percent ionic character of the bonds, bu
of these concepts are in essence equivalent. The sim
neous observation of the optical ‘‘markers’’ of theA andB
character in our experiments is apparently direct evidenc
the existence of a correlation polaron.

Let us now turn to the metallized film, withTc588 K.
The decomposition of the spectrum, to an accuracy of 2%
better, is shown in Fig. 10. The model spectrum has
following components:

~a l !fit5~a l !1B1~a l !2B1~a l !CT1~a l !MIR .

The parameters of theBd
1 contour areE0

1B51.5 eV,
s1B50.36 eV, m0

1B50.55 eV. For theBd
2 contour E0

2B

52.25 eV, s2B50.2 eV, m0
2B50.15 eV; for the interband

absorptionEg51.95 eV andm0
CT57.5 eV21. The level of

MIR absorption remains the same as in the film withTc

573.5 K: (a l )MIR52.3. One immediately notices the exi
tence of strong covalent bands with absorption coefficie
of the order of those for the interband transitions and
absence of a contribution of the correlationA band. The con-
s
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tribution of the Bd
1 band increased significantly, which i

indicative of an enhancement of the covalence (pd mixing!
in the CuO2 plane. Consequently, as compared to the fi
with x'0.35 (Tc,10 K!, where the covalent peaks wer
absent and the correlation peak dominated, here the opp
picture is observed. In the film with the optimal doping apd
network of covalent current bonds~regions with an elevated
hole concentration! is created in the CuO2 plane. At the same
time, the CT optical gap~quasigap!, the value of which ex-
ceeds by 0.1 eV the value of the gap for the lightly dop
state, is preserved, apparently as a consequence of the
of the Fermi level on doping. It can be assumed that
behavior of the density of states for the optimal doping ph
corresponds to that shown in Fig. 1b. The noticeably bro
ened coherent peak merges with the lower Hubbard ba
but the preservation of the CT optical gap~for CT transi-
tions! means that the Hubbard correlations are preser
even in a system of comparatively light carriers. With furth
metallization and the transition to the overdoped regime
gap should completely fill with states, and the system w
become an ordinary metal, for which the difference in t
nature of the absorption in the mid-IR and visible regio
vanishes~see Fig. 1c!. This, in particular, is indicated by the
fact that the absorption has the same temperature depend
in the mid-IR and visible regions during the cooling
YBa2Cu3O61x in the overdoped regime.28

CONCLUSION

Let us state the most important results and conclusi
obtained in the course of this study.

1. The absorption spectra of YBa2Cu3O61x enable one
to trace the effect of doping on the absorption band at
eV, which is undoubtedly due to thedd transition, dxy

→dx22y2. The enhancement of this band upon metallizat
is evidence that thepd covalence (pd hybridization! in the
CuO2 plane is enhanced. Another absorption band at 2.3
can be attributed to the transitiondxzyz→dx22y2 and can
therefore be used to study the degree of interplanar co
lence.

2. The change in the level of metallization of
YBa2Cu3O61x film also affects the absorption band near 1
eV, which is located near the boundary of the optical g

FIG. 10. Decomposition of the absorption spectrum of a film withTc588 K
in the visible region. The inset gives the relative difference of the mo
spectrum (a l )fit from the experimental spectrum (a l )exp.
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Analysis of its behavior as a function of temperature a
doping provides grounds for asserting that the band car
information about the contribution of electronic correlatio
to the formation of the coherent peak of the near-Fermi d
sity of states. A consequence of this interrelation is that
correlation band is sensitive to the magnetic degrees of f
dom and, primarily, to the opening of a spin gap and
existence of AFM fluctuations in the metallic phase.

3. The covalent~at 1.5 eV! and correlation~at 1.8 eV!
absorption bands are diagnostic of the competition~coexist-
ence! of covalent bonding and Hubbard correlations in t
CuO2 plane. The experiments done on YBa2Cu3O61x films
of different compositions show that upon metallization t
covalent contribution is enhanced and the correlation~AFM
fluctuation! contribution is weakened. At the same tim
these two contribution~two absorption bands! coexist in the
metal withTc570 K. This result is evidence in favor of th
correlation polaron model: carriers creating around the
selves a region of covalent bonding and moving in a ma
of AFM fluctuations.

We note in conclusion that the study of the temperat
dependence of the absorption spectra in the metallic ph
including passage through the superconducting transition
unquestionably of interest. The absorption bands at 1.5
1.8 eV behave in opposite manners on doping, but this d
not mean that the same holds true on cooling. Several dif
ent versions of the evolution of these absorption bands aa
priori possible, and a microscopic picture of the formation
the superconducting state is needed for each of th
Our temperature measurements made during the coolin
YBa2Cu3O61x films show that, first, the correlation band
1.8 eV~and also the band at 2.1 eV! is sensitive to the open
ing of the spin gap in the metallic phase, and, second,
the bands at 1.5, 1.8, and 2.1 eV have the same depend
on temperature. These results will be the subject of a se
rate paper.
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invaluable support and scientific help. We are grateful
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The destruction of superconductivity by the transport current is investigated for the case of a
wide film in a perpendicular magnetic field. The destruction of superconductivity occurs
by two competing mechanisms: growth of a normal domain~ND!, and instability of the viscous
flow of the magnetic flux. Under conditions in which the first mechanism is dominant,
analysis of the stationary domain states permits one to systematize all of the different types of
current–voltage~IV ! characteristics of a film with a local inhomogeneity and to find the
dependence of the SN junction current from the values of the magnetic fieldB and the temperature
T0 of the medium. It is shown that additional heating of a film with a ND on account of the
dissipative motion of vortices in the S region can lead to vanishing of the hysteresis of the IV
characteristic asB or T0 is increased. The known results on the current at which the
magnetic flux flow becomes unstable are used to obtain the field dependence of the crossover
temperature of these two mechanisms for the destruction of superconductivity. The main
theoretical results are compared with experiment. ©2000 American Institute of Physics.
@S1063-777X~00!00208-5#
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1. INTRODUCTION

The mechanism of destruction of the resistive state o
wide superconducting film by a large transport current
pends on whether the film contains regions with weake
superconducting properties, i.e., macroscopic inhomoge
ities. If there are no such regions, then, according to
Larkin–Ovchinnikov ~LO! theory,1 the destruction of the
magnetic flux flow regime for temperatures close toTc is due
to the descending dependence of the viscosity coefficienh
on the velocityv of the vortices. At high enough curren
this dependenceh(v) leads to positive curvature of th
lower branch of the current–voltage~IV ! characteristic,
which terminates in a voltage jump at a characteristic curr
densityJ* ~see, e.g., the experimental papers2,3!. The quasi-
particle heating in the superconductor due to the dissipa
motion of the vortices was taken into account in Ref.
making it possible to explain the observed2,3 dependence o
J* on the applied magnetic fieldB. This made the LO theory
agree with a rather large number of experiments2,3,5–9carried
out under not very good conditions of heat removal from
film to the substrate.

In a macroscopically inhomogeneous film there is a
other mechanism for the destruction of superconductivity
current, which involves the onset of the normal phase i
region of the film with a relatively low critical current~i.e.,
the formation of a normal domain!. In this case the destruc
tion of superconductivity is caused by the growth of the n
mal domain~ND! on account of the Joule heat release in
normal phase. Therefore, forJ,Jeq the ND is localized
around an inhomogeneity, and the complete destruction
the superconductivity of the film occurs at current densit
J.Jeq, when the state of the superconductivity is unsta
with respect to the unbounded growth of a nucleus of
5531063-777X/2000/26(8)/5/$20.00
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normal phase. The value ofJeq is the current density a
which indifferent equilibrium of an isolated nonisotherm
NS boundary is established in a homogeneous film. Re
ences to papers on the ND can be found in the review,10 and
a detailed analysis of the statics and dynamics of the ND
films with different types of inhomogeneities atB50 is
given in Ref. 11.

In the present paper we analyze the competition betw
the above-described mechanisms for the destruction of
perconductivity in an inhomogeneous current-carrying fi
at BÞ0. For this purpose in Sec. 2 the theory of the N
elaborated in Ref. 11 is extended to the case of finite m
netic fields. As a result, we establish the dependence ofJeq

on B, and we analyze all of the types of IV characteristics
the films and elucidate the conditions for hysteresis of
critical currents for the destruction and recovery of superc
ductivity. In Sec. 3 we find the field dependence of the te
perature at which the crossover occurs from one of
above-described mechanisms for the destruction of su
conductivity to the other. We also discuss the results
tained and establish their agreement with recent experim
with YBa2Cu3O72d films.7 Thus the present study confirm
the conclusions of the authors of Ref. 7 that in their expe
ments the mechanism for the destruction of superconduc
ity changed from one of growth of the ND to instability o
the magnetic flux flow as the temperature of the medi
increased. In Sec. 4 we state the main results of this stu

2. STATIONARY STATES OF THE NORMAL DOMAIN IN A
RESISTIVE FILM WITH A LOCAL INHOMOGENEITY

A superconducting film with macroscopic inhomogen
ity will be modeled by an SNS system in which the norm
part ~N!, of length 2l , is in contact on both sides with
© 2000 American Institute of Physics
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superconductor~S!. The Joule heat released in the N regi
when current flows can heat the NS boundary to the crit
temperatureTc and transfer part of the superconductor to t
normal state. This N-phase region will be called a norm
domain~ND!.

The temperature distribution along the film at a fix
current densityJ can be obtained from the solution of th
steady-state heat conduction equation:

2k~x!
d2T

dx2 1a~x!~T2T0!5r~x!J2. ~1!

The form of Eq.~1! presupposes that heat propagates al
the system~i.e., along thex axis! only by heat conduction in
the film, while the temperature of the insulator substrate,
virtue of its high thermal conductivity, is equal to the tem
peratureT0 of the surrounding medium. The second term
the left-hand side of Eq.~1! describes the heat removal at
small temperature difference of the film and substrate, w
the heat flux is linear in this temperature difference.

As in Ref. 11, in Eq.~1! the thermal conductivityk and
the heat-removal coefficienta are assumed to be tem
perature-independent, piecewise-constant functions:

k~x!5H k1 , uxu. l,

k2 , uxu, l,
~2!

a~x!5H a1 , uxu. l,

a2 , uxu, l.
~2a!

We further assume that the resistivity of the film has
form:

r~x!5H r2 , uxu, l,

r1 , l ,uxu,xB ,

br1 , uxu.xB ,

~3!

whereb5B/Hc2(T0) is the reduced magnetic field. The la
row in ~3! takes into account the heating of the S region d
to the dissipative flow of vortices under the influence of t
transport current.

The equation for the coordinatexB of the boundary of
the ND is determined from the condition

T~xB!5Tc , ~4!

whereTc satisfies the relationHc2(Tc)5B. Using the for-
mula Hc2(T)5udHc2 /dTuTc0

(Tc02T), we obtain the fol-
lowing expression for the critical temperature:

Tc5Tc02B/udHc2 /dTuTc0
, ~5!

in which Tc0 is the critical temperature of the supercondu
tivity in zero magnetic field.

We note that the possibility of analytical treatment of t
statics of the ND in a resistive film is largely a consequen
of the the model character of the temperature dependenc
the resistivity adopted above. For example, Eq.~3! neglects
the self-consistent change in the upper critical fieldHc2 due
to heating of the resistive regionuxu.xB . Here the real, con-
tinuous change in the resistivity with temperature, descri
by the Bardeen–Stephen formula12 r5r1B/Hc2(T), is re-
placed by a jump inr at the boundary of the ND. At the
l
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same time, the comparison with experiment in Sec. 4 be
shows that our adopted model gives an adequate descrip
of the experimental data.

The solution of the heat conduction equation~1! under
conditions of continuity of the temperature and heat flux
the boundariesx56 l andx56xB does not present any dif
ficulties. Substituting the solution obtained into Eq.~4! gives
the following equation forxB :

f 1

2 F11b1~12b!
12m̃

11m̃
y2G1

f 22 f 1

11m̃
y51, ~6!

where we have introduced the notationy5exp@2(xB2l)/
h1#. In Eq. ~6! the dimensionless paramete
f i5r iJ

2/a i(Tc2T0) ( i 51,2) and m̃5m coth(l/h2), where
m5Ak1a1 /k2a2. The thermal lengthsh i5Ak i /a i repre-
sent the characteristic spatial scales for changes in the
perature in the homogeneous part of the film (i 51) and in
the region of inhomogeneity (i 52).

Let us now consider inhomogeneities of short lengthl
!h2 ~corresponding to the experiment of Ref. 7!, which
were called local in Ref. 11.~The case of an extended inho
mogeneity,l @h2, can be treated in an analogous way.! For a
local inhomogeneity Eq.~6! simplifies to

~ f 1/2!@11b2~12b!y2#1D f y51, ~7!

whereD f 5( f 22 f 1) l /(mh2). The parameterD f character-
izes the difference in heating of the inhomogeneity and
homogeneous part of the film. We further assume thatD f is
a positive quantity that can be of the order of unity ev
thoughl /h2 is small, possibly on account of large values
r2, for example. The conditionD f .0 means that in the N
state the inhomogeneity is heated more strongly by the
rent than is the homogeneous part of the film.

Two important relations follow from Eq.~7!. If we set
y50 ~i.e., xB5`) in Eq. ~7!, we will arrive at the equilib-
rium condition for a nonisothermal NS boundary in a hom
geneous resistive film:

f 152/~11b!. ~8!

For y51 Eq.~7! yields the condition for nucleation of a ND

b f11D f 51. ~9!

Equation~7! has two solutions:

y1,25
1

12b H D f

f 1
6F S D f

f 1
D 2

2S 2

f 1
212bD ~12b!G1/2J .

~10!

Of these solutions,y1 corresponds to unstable states of t
ND andy2 to stable states.~A stable ND grows with increas
ing heating of the inhomogeneity, i.e.,dy2 /d(D f ),0.!

For analysis of the quasistatic dynamics of a ND up
changes in current it is convenient to use the parameter p
shown in Fig. 1,f 1–D f , where the straight linesA andB are,
respectively, the line of nucleation of the ND and the line
equilibrium of an isolated nonisothermal NS boundary. T
third line is the semiellipseC, which is determined by the
equation

~D f !21@~11b! f 1
222 f 1#~12b!50 ~11!
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and is the curve on which the stable and unstable dom
solutions coincide. The straight linesA andB are tangent to
the semiellipseC at points with coordinates(1;12b) and
(2/(11b);0). Thedouble inequality 0<y<1 taken together
with the condition of nonnegativity of the left-hand side
Eq. ~11! defines the existence region of the domain state
the f 1–D f plane ~see Fig. 1!. For 1< f 1<2/(11b) the re-
gion of stable solutions lies above the semiellipse, and
0< f 1<1 it lies above the line of nucleation of the ND. Th
points on thef 1–D f plane which correspond to the unstab
solutions belong to the region bounded by the semiellip
the line of nucleation of the ND, and the abscissa.

To systematize the IV characteristics it is convenient
use the following parameter that characterizes the inhomo
neity:

«5
D f

f 1
5S r2a1

r1a2
21D 1

mh2
. ~12!

We note that upon variation of the currentI the parameters
f 1 and D f vary in such a way that their ratio remains co
stant. In other words, the point (f 1(I );D f (I )) moves along
the straight lineD f 5« f 1. This point crosses the linesA, B,
andC at the currentsI c1 , I eq, andI c2. The sequence of thes
crossings with increasing~decreasing! current determines the
form of the IV characteristic. It is easily seen that the strai
lines D f 5(12b) f 1 and D f 5 1

2(12b) f 1 ~see Fig. 1! sepa-
rate different types of IV characteristics. If«.12b, then a
ND is nucleated at a currentI c1 and increases monotonicall
with increasing current; this corresponds to the nonlin
part of the characteristic. At a currentI eq the entire film
passes into the normal state. The IV characteristic for«.1
2b is shown in Fig. 2a.

The case (12b)/2,«,12b differs from the case con
sidered above in that the IV characteristic exhibits hyster
~see Fig. 2b!. Now the domain nucleated at the currentI c1

corresponds to an unstable solution. Since there is als
stable solution at the currentI c1, the system passes into th
state through growth of the ND, and a voltage jump appe

FIG. 1. Existence regions of stationary states of a normal domain
superconducting film with a local inhomogeneity in a reduced magnetic fi
b50.5. A — the line of nucleation of the normal domain;B — the line of
equilibrium of the nonisothermal NS boundary in a homogeneous film;C —
the line of coincidence of the stable and unstable domain states. Reg
between linesA andB corresponds to stable and region II to unstable sta
domain solutions. In region III both stable and unstable solutions are r
ized. The dashed lines have angular coefficients«512b and «5(1
2b)/2, which separate different types of IV characteristics~see the main
text!.
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on the IV characteristic.~The dynamics of the transition
from the unstable to the stable domain state is considere
Ref. 11 forB50.! The length of the ND in the stable state
xB2 l 5h1ln@(12b)/(2«211b)#. With increasing current the
ND grows quasistatically in a manner analogous to the c
«.12b. A quasistatic decrease in the length of the N
occurs down to a currentI c2, at which the domain length is
h1ln@(12b)/«#. Upon further decrease in the current the N
vanishes, and the voltage jumps back. The pointsI c1 andI c2

are sometimes called the critical currents for the destruc
and recovery of superconductivity. Their ratio, i.e., t
amount of hysteresis, is given by

I c1

I c2
5

2~12b!~«1b!

«2112b2
. ~13!

In particular, formula~13! has the important consequenc
that the IV characteristic depends on both the parameter
the film and on the reduced magnetic field. For inhomoge
ities with «,1 the transition between the hysteretic and no
hysteretic characteristics occurs atb512«.

For «,(12b)/2 the IV characteristic~not shown in Fig.
2! differs in that I c1.I eq, and therefore the ND that arise
immediately spreads over the entire film. In analogy with t
case (12b)/2,«,12b the diminishing of the ND begins
at the currentI eq and ends atI c2, where the voltage acros
the ND jumps down to zero. The IV characteristic posses
hysteresis with a ratioI c1 /I c2 given by formula~13!.

a
ld

n I
e
l-

FIG. 2. The IV characteristics in the constant-current regime forb50.2,
«50.85 ~a! and«50.45 ~b!; VND is the voltage across the normal domai
the IV characteristics are calculated according to formula~10!. The direc-
tions of traversal of the parts of the IV characteristics with changing curr
are indicated by arrows.
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3. DISCUSSION OF THE RESULTS AND COMPARISON WITH
EXPERIMENT

According to Ref. 11, the form of the IV characteristi
of inhomogeneous films in zero magnetic field is determin
solely by the film parameters and is independent of the t
peratureT0 of the medium. The situation changes consid
ably if BÞ0. Indeed, it follows from the analysis in Sec.
that the type of the IV characteristic depends on which
three adjacent intervals that the parameter« falls into:
@0;(12b)/2#, @(12b)/2;12b#, or @12b;`#. As B or T0

increases, the common boundaries of these intervals sh
lower values. Here the parameter«, whose value is deter
mined solely by the characteristics of the film, can, in p
ticular, pass from the second interval to the third, leading
a change in the type of the IV characteristic from one w
hysteresis~Fig. 2b! to a single-valued curve~Fig. 2a!. Such a
transformation of the IV characteristic with increasingT0 has
been observed experimentally.7

It is of interest to compare the results obtained in Sec
for the currentI eq with the observed7 field and temperature
dependences of the current of the transition to the nor
state for a YBa2Cu3O72d film. ~We note that the authors o
Ref. 7 compared their results with the theory of the ND
B50.! From formulas~8! and ~5! we obtain the explicit
dependence of the currentI eq on the magnetic field and th
temperature of the medium:

I eq~B,T0!5I 0S 12
T0

Tc0
D 1/2

3F12B/udHc2 /dTuTc0
~Tc02T0!

11B/udHc2 /dTuTc0
~Tc02T0!G 1/2

, ~14!

where the constant quantityI 05(2a1Tc0 /r1)1/2dw (w is the
width of the film andd is its thickness!. The curves calcu-
lated according to formula~14! are shown in Figs. 3 and 4
Here the parameterI 0577.3 mA is obtained from a compar
son of theI eq(0,T0) curve with experiment~the critical tem-
peratureTc0587.6 K!.7 The lines I eq(B) corresponding to
three temperaturesT0 ~see Fig. 3! agree with the experimen
tal data when a single adjustable parameter is used,

FIG. 3. The dependence of the equilibrium current of the NS boundary
the applied magnetic field at different temperaturesT0 of the medium. The
lines are calculated according to formula~14! for a value of the adjustable
parameter equal toudHc2 /dTuTc0

52.4 T/K. The experimental data are take
from Ref. 7.
d
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udHc2 /dTuTc0
52.4 T/K. This value is rather close to th

value 1.9 T/K obtained from measurements of the tempe
ture dependence of the magnetization of a YBa2Cu3O72d

single crystal13 and is in good agreement with the valu
(2.260.3) T/K established in Ref. 14 from measurements
the flux-flow resistivity in a YBa2Cu3O72d epitaxial film.

It is seen in Fig. 4 that formula~14! contains the experi-
mental data at comparatively low temperaturesT0. At higher
temperatures the main mechanism for the destruction of
perconductivity becomes the instability of the magnetic fl
flow. Confirmation of this is provided by the agreement w
experiment of the relation

I * ~T0 ,B!5I 0* ~12T0 /Tc!
3/4/~11B/BT!3/4. ~15!

Here for I * (T0 ,B) we use the rather simple approxima
formula from Ref. 15 rather than extremely awkward exa
expression obtained in Ref. 4. The dashed curves in Fig
were calculated on the basis of~15! with the adjustable pa-
rametersI 0* 5170 mA and BT56.3 T. We note that the
agreement of experiment with formula~15! gets worse as the
interval of temperaturesT0 increases, apparently because
the temperature dependence of the inelastic relaxation
t« of the quasiparticles~a quantity which appears in the LO
theory!. The situation considered in Refs. 4 and 15 is typi
for ordinary ~low-temperature! superconductors, when th
instability of the magnetic flux flow arises near the critic
temperature (Tc2T0!Tc) and the temperature dependen
of t« can be neglected.

In the case of ‘‘strong’’ inhomogeneity, for whichI c1

,I eq, the temperature of the crossover between the differ
mechanisms for destruction of the superconductivity cons
ered above follows from the equalityI eq(B,T0)5I * (B,T0)
and has the form

Tcr5TcF12S I 0

I 0*
D 4 ~11b/bT!3

~11b!2 G , ~16!

wherebT5BT /Hc2(T0). It follows from Eq. ~16! ~in agree-
ment with experiment7! that for bT!1 the crossover tem
perature decreases with increasing magnetic field. We n
also that formula~16! contains only the characteristics of th

n

FIG. 4. Dependence of the equilibrium current of the NS boundary on
temperature of the medium for various values of the applied magnetic fi
The experimental data are taken from Ref. 7. The solid curves are calcu
according to formula~14! and the dashed curves according to~15!.
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homogeneous part of the film, i.e., it is valid for all inhom
geneities that induce nucleation of a ND at currents less t
I eq. In the case of a ‘‘weak’’ inhomogeneity withI c1.I eq

the crossover temperature is determined from the equ
I c1(B,T0)5I * (B,T0), which gives the expression

Tcr5TcF12S I 0

I 0*
D 4 ~11b/bT!3

4~«1b!2 G . ~17!

This expression contains the parameter«, which character-
izes the inhomogeneity. If the equations forTcr do not have
solutions, then the main mechanism for the NS transition
instability of the magnetic flux flow. This conclusion can b
reached by noting that a temperature region in which
current I * (B,T0) is smaller in value thanI eq(B,T0) ~or
I c1(B,T0)) always exists nearTc .

4. CONCLUSION

We have analyzed the destruction of the superconduc
ity of a film containing a local inhomogeneity in a perpe
dicular magnetic fieldB as the transport current is increase
We have shown that in the region of relatively low tempe
turesT0,Tcr ~the functionTcr(B) for ‘‘strong’’ and ‘‘weak’’
inhomogeneities is given by formulas~16! and ~17!, respec-
tively! the superconductivity of the film is destroyed throu
the nucleation and subsequent growth of a normal-ph
domain at the inhomogeneity. For temperaturesT0.Tcr

the destruction of superconductivity is caused by
Larkin–Ovchinnikov1 instability of the uniform magnetic
flux flow. ~In this context the role of the phase-slip resistiv
mechanism, which involves the onset of slip lines of t
phase of the order parameter16 in wide films, requires specia
study.!

For T0,Tcr the heating of the resistive~homogeneous!
part of the film due to the dissipative motion of vortices lea
to a number of qualitatively new features of the NS transit
n

ty

is

e

v-

.
-

se

e

s
n

in comparison with the caseB50.11 In particular, an in-
crease in the magnetic fieldB or in the temperatureT0 of the
medium can cause a transition from an S-shaped IV cha
teristic, i.e., one with hysteresis of the critical currents for t
destruction and recovery of superconductivity@see formula
~13!#, to a nonhysteretic characteristic. A comparison w
experiments7 on YBa2Cu3O72d films shows that agreemen
of the observed dependence of the current for the destruc
of superconductivity onB and T0 with formula ~14! is
achieved forudHc2 /dTuTc0

52.4 T/K.
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Change of the magnetic properties of CoSiF 6"6„H2O… at structural transformations under
pressure. Determination of the g factor

S. K. Asadov,* É. A. Zavadski , V. I. Kamenev, and B. M. Todris
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The interrelationships between structural phase transformations and the magnetic characteristics
of cobalt fluorosilicate hexahydrate are determined in the temperature interval 400–15 K
under hydrostatic pressure up to 220 MPa. It is shown that the values of the magnetization and
magnetic susceptibility in the different structural phases realized inP–T space are
practically independent of the amount of compression but undergo jumps when the symmetry of
the crystal lattice changes. The results obtained are used to determine the values of theg
factors along two crystallographic directions for the phases studied. ©2000 American Institute
of Physics.@S1063-777X~00!00308-X#
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It is known1,2 that a number of fluorosilicate hexahy
drates of divalent metals with the general formu
MSiF6•6~H2O! ~where M stands for Fe, Co, Mn, or Mg!
have two crystallographic modifications at atmospheric pr
sure in different intervals of temperatureT. One of these is a

trigonal modification~symmetry space groupsR3̄, R3̄m,

P3̄m1), and the other monoclinic~space groupP21 /c).
However, only in cobalt fluorosilicate hexahydrate~Co-FSH!

is the first-order structural phase transitionR3̄↔P21 /c
~temperature hysteresis 246–259 K! accompanied by a jump
in the temperature dependence of the magnetic susceptib
x(T).3 In addition, magnetic phase transitions have been
served in the CoSiF6•6~H2O! single crystals at ultralow tem
peratures (T,1 K!.4,5 It has been established that the pa
magnetic state on cooling undergoes a transition to
antiferromagnetic state in the pressure interval 0 MPa<P
<40 MPa, while at higher pressures it goes to a ferrom
netic state. It is also known that theg factor of the Co21 ion
in a zinc fluorosilicate matrix~at a substitution of 0.1% o
the Zn ions! exhibits a nonlinear dependence on t
compression.6

In studying Co-FSH under pressure,7 we found that this
compound has a nontrivialP–T structural phase diagram
~Fig. 1!. Here the arrows indicate the direction of change
P or T during observation of the phase transition. The ex
tence regions of the various phase modifications are dis
guished by the different types of shading. The cross-hatch
denotes the region of metastable states. It is seen from
P–T diagram that forT,90 K structural transformations ar
not observed in the investigated pressure and tempera
interval, but, depending on the prehistory of the sample,
ther the monoclinic or the trigonal state can be observed
Co-FSH at the same values of the thermodynamic par
etersT andP. Consequently, one can determine whether
magnetic characteristics of a sample found in a single c
talline modification change under pressure or whether
5581063-777X/2000/26(8)/3/$20.00
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magnetic transformations are due to a change in the la
symmetry. Elucidation of this interrelationship is the subje
of the present paper. For this purpose we have studied
influence of hydrostatic pressure on the magnetizationM in a
pulsed magnetic fieldH of up to 30 T and on the magneti
susceptibilityx in a field H;0.01 T over a wide interval of
temperatures and pressures for a sample found in diffe
structural modifications. The measurements were made a
the trigonal axisC3 of the single crystal (M i(H), x i(T) and
in the plane perpendicular to this axis (M'(H), x'(T)). The
orientation of the sample relative to the crystallographic a
was determined at room temperature on a DRON-3 diffr
tometer.

The magnetization and magnetic susceptibility were
termined by a standard induction technique.8 A miniature
solenoid, the measuring system, and the sample were pl
in a high-pressure vessel. The main feature of all the te
niques used by us was that the pressure was conveyed t
sample along a steel capillary by gaseous helium forced

FIG. 1. TheP–T phase diagram of the crystalline states of CoSiF6•6~H2O!.
© 2000 American Institute of Physics
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559Low Temp. Phys. 26 (8), August 2000 Asadov et al.
the high-pressure chamber by a membrane compressor.
made it possible to change the pressure directly during
experiment at practically any temperatures and thus to m
along any thermodynamic trajectory on theP–T plane.

Let us consider the behavior of the temperature dep
dence of the magnetic susceptibility of Co-FSH in the diff
ent phase states realized inP–T space. If the cross sectio
used is found in the trigonalR3̄ state in the interval 0<P
<Pcr , then up to the boundary at which the monoclin
phaseP21 /c arises~line ab in Fig. 1! one observes a smoot
increase of bothx i(T) andx'(T). At the temperature of the
first-order phase transitionR3̄→P21 /c the value of the sus
ceptibility undergoes a jumplike change, withx i(T) increas-
ing andx'(T) decreasing, while at the same time they ret
their tendency to increase monotonically in the monocli
phase as the temperature is lowered further to 15 K.
typical behavior of the isobaric curves ofx i(T) andx'(T)
with allowance for the hysteresis effects at the reverse ph
transitionP21 /c→R3̄ ~line d f in Fig. 1! is shown in Fig. 2a
for P520 MPa. ForP.Pcr the magnetic susceptibility var
ies monotonically throughout the entire temperature inter
investigated, exhibiting no anomalies of any kind at t
boundary of the second-order phase transitionR3̄↔b ~line
b f e in Fig. 1!. It should be noted that the designationb is
provisional, since technical difficulties have prevented
from identifying the crystal structure of this phase, althou
the results of our x-ray diffraction studies7 indicate that the
threefold symmetry axis is preserved in this state.

The results of a study of the susceptibility near the t
first-order structural phase transitionsb→P21 /c and
P21 /c→b ~lines bc and kl, respectively, in Fig. 1! are of
interest because both the forward and reverse crysta

FIG. 2. Temperature dependence of the magnetic susceptibility of Co6

•6~H2O! at different first-order structural phase transitions:R3̄↔P21 /c at
P520 MPa ~a!; b→P21 /c; the sample is heated atP510 MPa ~b!;
P21 /c→b; the sample is heated atP585 MPa~c!.
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graphic transformations are realized on heating of
sample. To determinex(T) in the region of the phase tran
sition b→P21 /c the sample must be brought beforehand
the stateb below the linebc on the P–T diagram ~e.g.,
along the trajectoryABCD). Figure 2b shows the function
x i(T) andx'(T) for the case when the single crystal und
study is found in the initialb phase atT550 K andP510
MPa. It is seen that on increasingT, the value ofx i(T)
jumps upward at the boundary of the phase transit
b→P21 /c ~line bc in Fig. 1!, andx'(T) jumps downward.
Upon further increase in temperaturex i(T) andx'(T) con-
tinue to decrease monotonically all the way to the ph
transformationP21 /c→R3̄ on the lined f , where they suf-
fered the anomalous changes described above. For deter
ing x(T) in the region of the reverse phase transition it
necessary to bring the Co-FSH beforehand to an ini
monoclinic state below the linekl on theP–T diagram, e.g.,
along the trajectoryADC. Upon further isobaric heating o
the sample in theP21 /c phase (P585 MPa,T550 K! there
occurs a jumplike decrease ofx i(T) and a jumplike increase
of x'(T) ~Fig. 2c!.

In a study of the magnetization of CoSiF6•6~H2O! in a
pulsed magnetic field of up to 30 T it was found that t
application of pressure within the limits of stable existen
of the phase under study does not lead to a change in
absolute value ofM (H). Figure 3 shows the isotherma
(T520 K! dependence ofM i(H) andM'(H) measured for
the monoclinic~curves1, 4! and trigonal~curves2, 3! crys-
talline phases atP510 MPa andP5190 MPa. The symme-
try of the phase under study, as before, is determined by
preliminary choice of the thermodynamic trajectory. It
seen that the absolute values of the longitudinal magnet
tion in theP21 /c phase is always larger than in theb phase,
whereas for the transverse component the opposite rela
ship is observed. At the same time, the values of the isot
mal functions M i(H) and M'(H) measured at differen
pressures remained practically unchanged within the lim
of stability of a single structural modification.

By extrapolating the field dependences of the magn
zation to infinite magnetic field, we were able to determi
the value of the saturation magnetizationMs and to calculate
the values of theg factors for two crystallographic direction

F

FIG. 3. Field dependence of the magnetization of CoSiF6•6~H2O! at
T520 K. n — P510 MPa,s — P5190 MPa.M i : structural ordering
P21 /c ~1!, structural orderingb ~2!; M' : structural orderingb ~3!, struc-
tural orderingP21 /c ~4!.
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in the investigated structural states. In the caseHiC3 we
found Msi53.4mB for the P21 /c state andMsi52.8mB in
the b state. For H'C3, we obtainedMs'51.3mB for the
monoclinic phase andMs'51.7mB in the b phase. For the
monoclinic phase theg factor determined along theC3 axis
of the single crystal is equal to 6.8, while for the trigon
phase it is 6.27. In the basal plane these values are 2.6
3.0, respectively. Within a single structural modificatio
pressure has practically no effect on this characteristic
CoSiF6•6~H2O!.

The observed dependence of the magnetization on
type of crystal structure suggests that behavior of an an
gous sort is also observed upon a change in the magn
ordering in the ultralow-temperature region. Indeed, from
comparison of the magnetic5 and structural~Fig. 1! P–T
diagrams it is seen that the change of the type of ultralo
temperature ordering from antiferromagnetic, when
sample is cooled forP,Pcr , to ferromagnetic, when the
cooling is done atP.Pcr , is in good agreement with th
behavior of the crystal structure under pressure, being a
fect which is secondary to the structural changes.

On the basis of our experimental results we can draw
following conclusions.

The anomalous changes in the magnetic susceptib
under pressure at the boundaries of the structural phase
sitions are found to be in good correspondence with the
sults of the x-ray diffraction and differential thermal studie7

thereby confirming the nontrivial nature of theP–T phase
diagram of the crystalline states of cobalt fluorosilicate.
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In the investigated range of thermodynamic parame
T andP the magnetization and magnetic susceptibility me
sured in the existence region of a single structural modifi
tion do not depend on the value of the hydrostatic press

The presence of a critical pressurePcr suggests that the
ultralow-temperature antiferromagnetic ordering is inher
to the monoclinic state, while the ferromagnetic ordering
inherent to the trigonal state.

In the transition from the trigonal to the monoclin
modification the value of theg factor determined along the
C3 axis increases from 6.27 to 6.8, while the value det
mined in the basal plane decreases from 3.0 to 2.6, res
tively.
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Magnetic structure of the crystal CsDy „MoO4…2
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The energy of the ordered state of the rare-earth subsystem of CsDy~MoO4)2 , with a unit cell
containing two magnetically inequivalent rare-earth ions, is calculated in the dipole
approximation. The magnetic configuration of the rare-earth ions corresponding to the ground
state of the magnetically ordered phase is determined. The field dependence of the
magnetizationsMa , Mb , andMc at T50 K is calculated. The phase transitions caused by an
external magnetic field are analyzed. The values of the equivalentG factors obtained
from the calculated magnetization curves agree satisfactorily with the values determined from the
experimental data on the heat capacity and magnetic susceptibility. ©2000 American
Institute of Physics.@S1063-777X~00!00408-4#
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INTRODUCTION

In Ref. 1 we investigated the magnetic properties
CsDy~MoO4)2 under the assumption that the dominant spi
spin interaction in the system is the magnetic dipole–dip
interaction of the rare-earth~RE! ions Dy31. There we pro-
ceeded from the assumption that the two RE ions in the
cell of this crystal are magnetically equivalent. However,
results of an electron spin resonance~ESR! experiment2 in
CsDy~MoO4)2 show that below the point of the structur
phase transition (T540 K!, which is accompanied by a low
ering of the symmetry of the structure and multiplication
the unit cell, these RE sites become magnetically inequ
lent. Therefore, it is of interest to describe the magnetic pr
erties of CsDy~MoO4)2 in the dipole approximation with al
lowance for this inequivalence of the sites.

The goal of the present study is to determine the m
netic structure of the ground state of the RE subsystem in
magnetically ordered phase of the CsDy~MoO4)2 crystal. We
shall calculate the field dependence of the magnetizatio
T50 K for field directions along the axes of the orthorhom
bic phase, analyze the phase transitions caused by an ext
field, and compare the components of the equivalentG fac-
tors obtained from the calculated magnetization curves w
the values determined from measurements of the magn
heat capacity3 of CsDy~MoO4)2 at low temperatures in mag
netic fields up to 3 T and from a study of the magnet
susceptibility.4

CRYSTAL STRUCTURE AND EFFECTIVE g FACTOR OF
RARE-EARTH IONS IN THE CsDy „MoO4…2 CRYSTAL

CsDy~MoO4)2 belongs to the isostructural series
cesium–rare-earth molybdates,5 with space groupD2h

3 ~at
room temperature! and unit cell parametersa59.51 Å, b
57.97 Å, andc55.05 Å; the unit cell contains two formula
units of this compound. The arrangement of the RE site
5611063-777X/2000/26(8)/8/$20.00
f

e

it
e

f
a-
-

-
e

at

rnal

h
tic

in

the cell is illustrated schematically in Fig. 1. The two R
sites, which lie on the edge of the cell at a distance ofb/2
apart, are linked by a center of inversion and are theref
magnetically equivalent.

As the temperature is lowered, the crystal undergoe
series of structural phase transitions, the best-studied
which is the first-order transition at the temperatureTc540
K. As a result, at helium temperatures one observes at lea
doubling of the volume of the unit cell, accompanied by
lowering of its symmetry and the formation of inequivale

FIG. 1. Diagram of the arrangement of the Dy31 ions in the CsDy~MoO4)2

unit cell. The arrows indicate the directions of the axes of theg tensors of
the magnetic centers.
© 2000 American Institute of Physics
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centers1 and 2 for the RE ions6 in the a direction. In the
ESR spectrum2 of CsDy~MoO4)2 this inequivalence is ex
pressed in symmetric~about the orthorhombic axes! rotations
of the tensors of the effectiveg factor, which characterize
the resonance absorption at the lower Kramers doublet o
ground term of the Dy31 ion 6H15/2, which is split by the
intracrystalline field. The extremal values of theg factors for
the two centers are equal:ga853.760.2, gb85160.5, and
gc8513.460.5, and the values of the angles of rotation
the principal axesa8, b8, and c8 of the tensors are smal
610° and65° in theab andbc planes of the orthorhombic
phase, respectively.

MAGNETIC STRUCTURE OF THE GROUND STATE OF
CsDy „MoO4…2

The question of the applicability of the Luttinger–Tisz
method7 for determining the magnetic structure of th
ground state of a dipole system in the case of severaln)
magnetic ions in the unit cell has been analyzed by a num
of authors. It was shown that the method can be used o
for n51 ~Ref. 8! andn52 ~Refs. 9 and 10!, and in the latter
case the two ions must be magnetically equivalent.

In Ref. 1 we calculated the parameters of the grou
state of CsDy~MoO4)2 without taking into account the mul
tiplication of the unit cell forT,Tc , the rotation of the
principal axes of the effectiveg-factor tensors, and the in
equivalence of the RE ions in this structure, thereby reduc
the problem to then51 version, since the above-indicate
differences of the parameters of these sites are small. In
present paper we treat two inequivalent RE centers1 and2 in
two stages. In the first stage these centers will be assu
equivalent, as before, making it possible to use the solu
of Refs. 9 and 10 forn52 to determine the ground sta
configuration, and in the second stage we shall take
account the inequivalence of the centers.

It should be noted that in the low-temperature phase
the crystal~for T,40 K! the center of inversion linking the
sites on theb edge is preserved, and therefore the ions1,4
and2,3 remain pairwise equivalent. Therefore, in the stru
ture analyzed we shall treat a unit cell with the parameteb
reduced to half and the parametera doubled in comparison
with their initial values.

The method we shall use for determining the grou
state of a magnetic dipole system is set forth in suffici
detail in Refs. 7–10. The Hamiltonian of the dipole–dipo
interaction of the magnetic moments located at sitesi and j
of the crystal lattice is written in the form

Hd5(
i , j

†~m im j !r i j
2 23~m i r i j !~m j r i j !‡/r i j

5 , ~1!

wherer i j is the radius vector connecting sitesi andj. Taking
into account the relation between the components of
magnetic moment and the spin,

m i
g5(

d
mBgi

gdSi
d , g, d5x,y,z, ~2!
he
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wheremB is the Bohr magneton andS is the effective spin,
we can write Hamiltonian~1! in the form

Hd5((
i , j g,d

Pi j
gdSi

gSj
d , ~3!

FIG. 2. Magnetic configurations of the dipole system in the case of a
containing two magnetic ions.9 The magnetic moments at sites of the sam
color are parallel. The moments labeleda,b andc,d belong to the first and
second subsystems, respectively, and are antiparallel.
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where

Pi j
gd5 (

«,l,n

mB
2

r i j
3 S gi

«ggj
«d23

gi
glgj

dnr i j
l r i j

n

r i j
2 D . ~4!

The magnetic structure of the ground state in the cas
two ions in the unit cell must correspond to one of sixte
possible variants. These types of structure are illustrate
Fig. 2; They are characterized by the presence of two s
systems of sites~‘‘own’’ and ‘‘other’’ !, each of which con-
tains sites of the first kind~to which ion1 belongs! and of the
second kind~to which ion 2 belongs!. For each of the sub
systems there are, according to Ref. 8, eight magnetic c
figurations, in which the magnetic moments are arranged
linearly. These include a ferromagnetic structure, a N´el
antiferromagnetic structure, and six types of layered anti
romagnetic structures. In turn, the moments in the respec
sites of these two subsystems are oriented either paralle
antiparallel, which in the final analysis gives the 16 afo
mentioned magnetic structures, which in general are of
four-sublattice type.

Determination of the values of the energy for these m
netic structures and the directions of the magnetic mom
of the sublattices reduces to calculating the eigenvalues
eigenvectors of third-rank matrices of the form

Ak5(
i , j

qi j ~k!Pi j
gd , k51, . . .,16, ~5!

where( i , j denotes summation of the matrix elements o
the lattice, and the factorqi j (k)561, the sign depending on
the mutual orientation of the moments at sitesi andj in each
particular configuration.

When the presence of two subsystems of magnetic
is taken into account, expression~5! can be written as a sum
of terms A1k0

and A2k0
, whose matrix elements are dete

mined by the magnetic dipole interaction of the ions of t
given type with the RE ions of their ‘‘own’’ and the ‘‘other’
subsystems, respectively:

Ak5A1k0
6A2k0

, k051, . . . ,8 ~6!

~the upper sign is used for parallel and the lower for antip
allel moments of the subsystems!, and the ions have the fol
lowing coordinates:

r 15$x1 ,y1 ,z1%5$2la,mb/2,nc%,
~7!

r 25$x2 ,y2 ,z2%5$~2l 11!a,mb/2,nc%,

wherel ,m,n50,61,62, . . . .
Since the RE ions have effective spinS51/2, the energy

eigenvalues for Hamiltonian~3! are

Ek
d5mB

2«k
d/4, ~8!

where«k
d are the eigenvalues of the matrixAk . Evaluation of

the matrix elements was done by direct summation of
matrix elements~6! over a sphere of radius 475 Å. The err
in the calculation of the energy values was not over 0.1%
moderate expenditures of machine time. In the calculati
we used the lattice parameters of the high-temperature p
of CsDy~MoO4)2, since, judging from the results of dilato
metric studies,11 the differences in the lattice parameters
4.2 and 300 K are not more than 0.1%.
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The calculated energy values for the 16 structures s
ied are presented in Table I. It is seen that the minim
energy values belong to the configuration 3AF-6, with
energy per ion ofE6521.31263 K. There are three mor
configurations with energies close toE6, viz., 3AF-5, 8AF-
15, and 8AF-16, which can also lay claim to the role of t
ground state. At the base of these configurations is abc
plane consisting of ferromagnetic chains of RE ions lying
distancec apart. The magnetic moments of the RE ions
neighboring chains in theb direction are oriented antipara
lel. The configurations 3AF-5, 3AF-6, 8AF-15, and 8AF-1
differ from one another only in the character of the orderi
of the basal planes in thea direction.

The next group of configurations in terms of energy co
sists of 4AF-7, 4AF-8, 1FM-2, and 1FM-1, with energie
close toE520.77 K. At the base of these configurations
a bc plane with ferromagnetically ordered moments of t
RE ions. The remaining configurations have considera
higher energies.

In calculating the energies of the ferromagnetic struct
1FM we took into account the correction due to the dem
netizing factor. Its value for a macroscopic sample of sph
cal shape, in accordance with the expressionDE
52pmB

2g2S2n0/3, is20.0222 K if the moments are oriente
in the direction of thea axis,20.0016 K if they are oriented
in the direction of theb axis, and20.2916 K if they are
oriented in the direction of thec axis, where we have use
the valuen054.9831021 cm23 for the density of Dy31 ions
in CsDy~MoO4)2.

Analysis of the results of the calculation show that t
matrix elementsA1k0

gd , which describe the interaction of

given ion with the RE ions of its own subsystem, are mu
greater than the matrix elementsA2k0

gd , which describe the

interaction of a given ion with ions of the other subsyste
since the latter lie farther away in the unit cell. For all th
configurations except 1FM the maximum of the ra
A2k0

gd /A1k0

gd is not more than a few percent.

Therefore the interaction of a given ion with the ions
the second subsystem can be treated as a small perturb
that does not substantially alter the initial state of the sys
determined by the intrasubsystem interaction. We shall m
use of this circumstance in taking into account the inequi
lence of ions1 and2 in the unit cell, assuming that the type
of ground-state configurations remain unchanged in suc
treatment, while the energies of these configurations cha
only slightly.

As we have said, the angles of rotation of the princip
axes of the effectiveg-factor tensors of the inequivalent ion
in sites1 and 2 illustrated in Fig. 1 area1510° in theab
plane andb155° in the bc plane for the first ion, anda2

5210° andb2525° in these same planes for the seco
ion. The parameterb in the unit cell under study is 3.985 Å
as before. The elements of the matrixAk were calculated in
the lattice coordinate system, in which the matrix of theg
tensor for the magnetic centers1 and 2 have an analogous
form, but their corresponding matrix elements and square
the g factor are given by

gt
xx5ga8 cos2~at!1gb8 sin2~at!;
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TABLE I. Energy eigenvalues and the resultant angles of rotation of the magnetic moments of the configurations of the ordered state of CsDy~MoO4)2 .
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gt
xy5gt

yx5~ga82gb8!sin~at!cos~at!cos~bt!;

gt
xz5gt

zx5~ga82gb8!sin~at!cos~at!sin~bt!; ~9!

gt
yy5ga8 sin2~at!cos2~bt!1gb8 cos2~at!cos2~bt!

1gc8 sin2~bt!;

gt
yz5gt

zy5~ga8 sin2~at!1gb8 cos2~at!2gc8!

3sin~bt!cos~bt!;

gt
25ga8

2 sin2~a2at!1gb8
2 cos2~a2at!sin2~b2bt!

1gc8
2 cos2~a2at!cos2~b2bt!;

if one neglects the deviation of the plane formed by the p
cipal axes of theg tensorsga8 andgc8 from theac plane of
the unit cell. Heret51,2.

Since the unit cell of the crystal contains two magne
cally inequivalent RE ions, the procedure for determining
eigenvalues and eigenvectors of the matrixAk was applied
twice. In the first case RE ion1 was placed at the center o
the sphere, and in the second case RE ion2. This made it
possible to determine the direction of the magnetic mome
of the two subsystems associated with the inequivalent c
ters1 and2 for all the configurations.

The results of a calculation ofEk in this case are also
presented in Table I. It follows from these results that
energies of the ground configurations actually do change
tremely little from the case of two equivalent ions. The min
mum energy, as before, belongs to the 3AF-6 configurat
and the hierarchy of configurations on the energy scale is
same as in the case when ions1 and2 are equivalent.

It should be noted that because in the version w
equivalent centers we neglected the rotation of the princ
axes of the tensor of the effectiveg factor with respect to the
orthorhombic axes of the lattice, the matrices~6! turn out to
be diagonal for all types of configurations. Therefore,
orientation of the magnetic moments of the RE sites, wh
is determined by the eigenvector of the matrices for the c
responding eigenvalues«k

d , coincides with the direction o
the orthorhombic axes.

At the same time, in the version with inequivalent ce
ters1 and2 matrices~6! become nondiagonal. In this case
calculation of the eigenvectors will enable us to determ
the resultant angles of rotation of the magnetic moments w
respect to the orthorhombic axes. Their values are give
Table I. Hereu is the angle between the magnetic moment
the sublattices and thebc plane, andw is the angle between
the projection of the magnetic moment on thebc plane and
thec axis. For all the low-energy configurations these ang
are small, and the deviations of the moments from the ort
rhombic axes are slight. Since the magnetic moments of
sublattices are oriented either approximately parallel or
most antiparallel, one can speak of a predominant direc
of the moments.

CALCULATION OF THE MAGNETIZATION OF THE
CsDy „MoO4…2 CRYSTAL AT TÄ0 K. PHASE TRANSITIONS
CAUSED BY AN EXTERNAL MAGNETIC FIELD

The results of the previous Section imply that in t
absence of an external magnetic field atT50 K the magnetic
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structure of the RE ions in CsDy~MoO4)2 should correspond
to the 3AF-6 configuration. For it the angles of rotatio
of the magnetic moments of the RE ions for their ‘‘own
and the ‘‘other’’ subsystems areu1,250.458° and
w1,2563.974°, respectively~Fig. 3a!. Thus the structure un
der consideration is a four-sublattice structure, made up
sets of ferromagnetic chains of RE ions lying along thec
direction of the crystal, and the orientation of the magne
moments in the chains of ions of types1 and2 is also close
to this direction.

To study the evolution of the magnetic structure in
external magnetic field directed along the orthorhombic a
a, b, and c, we must determine the configuration that w
have the minimum energy at the given value of the magn
field. This might be the initial configuration 3AF-6 or
canted configuration with a resultant magnetic moment in
direction of the fieldH. Here one expects that a symmetr
canted phase will be realized, since the field will be appl
in directions of symmetry. The magnetic structure of th
angular configuration can be determined by finding the m
mum angular dependence of its energyE0

a(u,w) in the
external magnetic field:

E0
a~u,w!5Edd

a ~u,w!1Edm
a ~u,w!1EL

a~u,w!1EH
a ~u,w!,

a5a,b,c, ~10!

where Edd
a (u,w)5( i , j@(m im j )r i j

2 23(m i r i j )(m j r i j )#/r i j
5 is

the energy of the dipole–dipole interaction of the RE ions

FIG. 3. Magnetic structure of CsDy~MoO4)2 in the ordered state forT50 K
in the absence of an external magnetic fieldH ~the 3AF-6 configuration! ~a!
and forH.Hc2 : Hic ~b!; Hib ~c!; Hia ~d!.
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FIG. 4. Calculated curves of the magnetization of CsDy~MoO4)2 versus the magnetic field forT50 K ~———!, and experimental curves12 for T50.6 K and
Hic ~– – – –! for a sphere~a! and for a two-dimensional~in the bc plane! slab with a 1:100 ratio of sides~b!.
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the canted configuration;Edm
a (u,w)5Nama

2(u,w)n0/2 is the
energy of the demagnetizing fields for a sample of mac
scopic dimensions,Na is the demagnetizing factor in th
directiona; EL

a(u,w)522pma
2(u,w)n0/3 is the Lorentz en-

ergy; and EH
a (u,w)52ma(u,w)Ha is the energy of the

magnetic moment in the external field.
Here the functionsma(u,w) have the form:

mxt~ut ,wt!5mBS†gt
xx sin~ut!1gt

xy cos~ut!sin~wt!

1gt
xz cos~ut!cos~wt!‡;

myt~ut ,wt!5mBS†gt
yx sin~ut!1gt

yy cos~ut!sin~wt!

1gt
yz cos~ut!cos~wt!‡; ~11!

mzt~ut ,wt!5mBS†gt
zx sin~ut!1gt

zy cos~ut!sin~wt!

1gt
zzcos~ut!cos~wt!‡,

wheret51,2.
The minimum of the energyE0

a as a function of the
anglesu and w that specify the direction of the magnet
moments of the RE ions in the sites in an applied exter
field was found by a numerical calculation. Here it was
sumed that if the conditionE0

a.E6 is holds, then the mini-
mum energy of the magnetic system will correspond to
3AF-6 configuration, and ifE0

a,E6 then it would corre-
spond to a canted configuration. By determining the direct
of the magnetic moments of the RE sites in this way a
hence, their projectionma on the field direction, one can
construct the magnetization as a function of the exter
magnetic field applied in the corresponding direction.

Figure 4 shows the results of a calculation of the fun
tions Mc(H), Mb(H), and Ma(H) for a spherical sample
and a two-dimensional~in the bc plane! slab with a ratio of
sides equal to 1:100~in the experiments whose results w
be used for comparison, the samples were generally in
form of slabs!.

When the external magnetic field is directed along thc
axis ~Fig. 4! and Hc,Hc1

c , whereHc1
c 51.2 kOe, the mag-

netic structure of the RE ions in CsDy~MoO4)2 will corre-
spond to the 3AF-6 configuration. At the field valueHc

5Hc1
c there occurs a phase transition from the antiferrom
-
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e
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netic configuration 3AF-6 to a canted configuration with
resultant magnetic moment in the direction of the magne
field ~see Fig. 3b!. Here the magnetic moments of the R
ions of different sublattices will be rotated in a symmet
way for a spherical sample and a slab, byu1,2520.3° and
w1,2565.8°, and the projection of the magnetic moment
the ions on the coordinate axes will have the following v
ues:

mx
c520.02mB ; my

c560.6mB ; mz
c56.67mB .

Since for a spherical sample the demagnetizing facto
this direction is nonzero, the magnetic structure of t
sample after the phase transition will be of the domain ty
The interval of field values in which the domain structu
will exist is determined by the demagnetizing fieldHdm

c

51.3 kOe. At a value of the external magnetic fieldHc

5Hc2
c 5Hc1

c 1Hdm
c 52.5 kOe, the domain structure vanishe

Further increase in the magnetic field will lead to addition
rotation of the magnetic moments of the RE ions and, hen
to a small increase in the longitudinal component of the
sultant moment. In the limitHc→`, the magnetic moments
of the RE ions will be directed in such a way that the val
of mz

c will be maximum. In this case the magnetic momen
of the RE ions of the two sublattices will be rotated byu1,2

50.1° andw1,2564.6°, respectively, and the componen
of the magnetic moments of the ions are

mx
c50.01mB ; my

c560.6mB ; mz
c56.68mB .

The critical field parameters calculated above
samples of different shapes and the values of the magn
moment projections and the anglesu and w, characterizing
the behavior of the CsDy~MoO4)2 system for a field orien-
tation Hic, are presented in Table II.

The system behaves in an analogous way when the
ternal magnetic field is along thea and b axes, since the
plane in which the magnetic moments lie for the fou
sublattice structure under study does not coincide with
basal planes of the orthorhombic unit cell. The behavior
the system is also characterized by the presence of cri
fieldsHc1 andHc2, the values of which are given in Table
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TABLE II. Parameters characterizing the behavior of CsDy~MoO4)2 in an external magnetic field.~The values of the critical fields are given in kOe, th
magnetic moment components in Bohr magnetons, and the angles in degrees.!
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along with the other magnetic parameters. The magn
structure of the RE ions forH.Hc2 is shown in Fig. 3c
(Hib) and 3d (Hia).

It is of interest to compare the results obtained in t
calculation and in experimental studies of the magnetic pr
erties of CsDy~MoO4)2, which have been done by a numb
of authors. Here it should be kept in mind that the result
magnetization of the crystal, examined above for differ
orientations of the external magnetic field, can also be ch
acterized by the value of the equivalentG factor in accor-
dance with the expressionMi5GimBS for an effective spin
of the Dy31 ion S51/2. In this case the values of the equiv
lent G factor depend on the value of the external field, and
high fields H.Hc2 one has the valuesGc513.36, Gb

51.66, andGa53.66. It is this parameter that should b
compared with the effectiveg factor obtained experimen
tally.

In studying the magnetic susceptibility of CsDy~MoO4)2

in the paramagnetic state, for a field orientationHic a value
of gc512.4 was obtained4 for the effectiveg factor of the
Dy31 ions. The magnetic component of the heat capacity
this crystal in a magnetic field with this same orientation
described by an effectiveg factor gc512.8.3 These values
are close to that calculated by us:Gc513.36.

As can be seen in Fig. 4, the magnetization
CsDy~MoO4)2 in the magnetically ordered state as a fun
tion of the magnetic field in the orientationHic ~Ref. 12!
also has much in common with our predictions. In additio
in Ref. 3, in a study of thermograms of the heat capacity
this crystal in the magnetically ordered state forHic, anoma-
lies were noted atH'1.7 kOe and 5 kOe. These fields ca
be compared with the calculated valuesHc1

a and Hc2
a . Be-

sides the natural causes due to growth inhomogeneities o
crystals and scatter in the parameters of the internal inte
tions, the numerical differences between the results of
calculations and experiments done at finite temperatures
be due both to computational errors related to the accu
with which the angles of rotation of the principal axes
the effectiveg-factor tensors of the RE ions are determin
and also to errors in the orientation of the samples in
ic
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heat-capacity and magnetic-susceptibility experiments
CsDy~MoO4)2.

A magnetic field in theHib orientation gives rise to a
magnetic moment in the magnetically ordered state of
crystal, the value of which is approximately an order of ma
nitude smaller than for the orientationHic.12 This also cor-
responds to the relationship that we found between the
rametersGc andGb .

For the orientationHia one observes an appreciab
scatter of the experimental values of the effectiveg factor:
the values obtained in Refs. 3 and 4 werega514.2 andga

58.9, respectively. In any case, however, they are quite a
higher than the value that we obtained:Ga53.65. The reason
for this difference is still not clear to us.

CONCLUSIONS

1. According to the calculations done in the dipole a
proximation for the CsDy~MoO4)2 unit cell containing two
magnetically inequivalent RE ions, the configuration th
should be realized in the ordered state is 3AF-6. The ene
per ion of the dipole–dipole interaction isE6521.28794 K,
and the magnetic moments of the two sublattices are rot
by u1,250.458° andw1,2563.974°, respectively.

2. A calculation of the field dependence of the magne
zations Ma , Mb , and Mc shows that phase transition
should be observed in an external magnetic field as a re
of a change of the magnetic structure of the RE ions from
initial 3AF-6 configuration to a canted configuration with
resultant magnetic moment in the direction of the exter
field.

3. A comparison of the calculated values ofGi with the
effective g factors obtained from the experimental data
the heat capacity and susceptibility of CsDy~MoO4)2 in an
external magnetic field shows that they are in satisfact
agreement.
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Surface electromagnetic modes in layered conductors in a magnetic field
V. M. Gvozdikov
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A transfer-matrix approach is developed for studies of the collective electromagnetic modes in a
semi-infinite layered conductor subjected to a quantizing external magnetic field
perpendicular to the layers. The dispersion relations for the surface and bulk modes are derived.
It is shown that the surface mode has a gap in the long-wavelength limit and exists only if
the absolute value of the in-plane wave vectorq exceeds the threshold valueq* 521/(a lnuDu).
Depending on the sign of the parameterD5(«2«0)/(«01«), the frequency of the
surface modevs(q,D) goes either above~for D.0! or below ~for D,0! the bulk-mode
frequencyv(q,k)5v(q,k12p/a) for any value ofk. At nonzero magnetic fieldH the bulk mode
has a singular pointq0(H) at which the bulk band twists in such a way that its top and
bottom bounds swap. Small variations ofq near this point change dramatically the shape of the
dispersion functionv(q,k) in the variablek. The surface mode has no dispersion across
the layers, since its amplitude decays exponentially into the bulk of the sample. Both bulk and
surface modes have in the regionqa@1 a similar asymptotic behaviorv}q1/2, but
vs(q,D) lies above or belowv(q,k), respectively, forD.0 andD,0 ~a is the interlayer
separation;«0 and« stand for the dielectric constants of the media outside the sample and between
the layers;q andk are the components of the wave vector in the plane and perpendicular to
the layers, respectively!. © 2000 American Institute of Physics.@S1063-777X~00!00508-9#
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1. INTRODUCTION

The discovery of the quantum Hall effect in 19801 has
triggered intensive studies of a two-dimensional electron
~2DEG! in an external quantizing magnetic field. These stu
ies have since been extended to different types of artifici
fabricated semiconducting and metallic superlattices~SLs!,
organic conductors, and high-Tc layered superconductors
Numerous studies, in particular, have been devoted to
problem of collective plasma and electromagnetic waves
2DEG and layered conductors as well as in SLs in a h
magnetic field. Generally, a three different physical ca
should be distinguished in this problem: the case of class
SLs, the case of quantum SLs, and the case of layered
ductors. In the first case constituent slabs of the SL are
sumed to be so thick that one can neglect the electron en
quantization. The electromagnetic wave propagation in s
SLs is determined completely by Maxwell’s equations a
the appropriate boundary conditions. Quantum SLs h
small separations between conducting layers, and the e
tron dispersion across the layers in this case is due to
tunneling between neighboring layers. By layered conduc
we shall understand a stack of 2D conducting planes s
rated by dielectric layers which prevent electrons from h
ping between the neighboring planes. Layered conduc
are realized in nature in the form of layered crystals such
dichalcogenides of transition metals, organic supercond
ors, and high-Tc cuprates. The high anisotropy of Tl- an
Bi-based high-Tc cuprates,2 organic salts of~TMTSF!2X,3

and ET families4 makes them, like dichalcogenides of tra
5691063-777X/2000/26(8)/8/$20.00
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sition metals,5 good layered conductors in the sense form
lated above. It is evident that layered conductors can also
fabricated artificially in the form of highly anisotropic SLs
All these materials are well described by the model of co
ducting planes embedded in a dielectric matrix. This mo
has proved to be useful in studies of different types
plasma6–10 and electromagnetic11–20 waves in layered con-
ductors, superconductors, and superlattices. A quasi-t
dimensional nature of the conductivity in layered conduct
brings some specific features into calculations of the coll
tive electromagnetic modes in them, especially in the pr
ence of an external magnetic field. Some new types of c
lective electromagnetic excitations have been predic
theoretically in a purely 2DEG in high magnetic fields und
the conditions of the quantum and conventional Hall effec
Among them are surface polaritons,21,22 magnetoplasma
oscillations,23 and quantum waves.24,25 The variety of waves
becomes richer in layered conductors. It is known tha
quantizing magnetic field applied perpendicular to the lay
makes possible the propagation of the helicons across
layers in both the conventional11–14 and quantum14,26–28

Hall-effect regimes.
Real layered crystals and superlattices contain differ

types of defects within the layers as well as imperfections
their stacking which may give rise to new collective electr
magnetic modes such as, for example, magnetoimpu
waves13 or various local modes.9,10,16 The infinite crystal is
yet another idealization of the theoretical treatment of
problem, since any sample in experiments has a sur
© 2000 American Institute of Physics
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which is known to be a ‘‘structural defect’’ that generat
surface modes decreasing into the bulk of the sample.
face plasma modes have been studied extensively in
model of a semi-infinite layered electron gas.7,8 Surface elec-
tromagnetic waves have also been described in laye
superconductors.15

The purpose of this paper is to study the surface elec
magnetic waves in layered conductors in a perpendic
quantizing magnetic field. The basic equations describing
electric field components on the layers,Ea(zn)[Ea(n),
were derived in our previous publication14 and can be written
as follows~see Appendix for details!:

Ex~n!5
4p iv

c2 (
n8

Gqv

x ~n,n8!@sxxEx~n8!1sxyEy~n8!#,

~1!

Ey~n!52
4p iqv

2

v (
n8

Gqv

y ~n,n8!@syyEy~n8!

1syxEx~n8!#«21~n!

~zn is a discrete coordinate of a conducting plane along thz
axis!.

The Green’s functionsGqv

a (n,n8)[Gqv

a (zn ,zn8) in Eq.

~1! satisfy the following equations:

S ]2

]z2
2qv

2 ~z!D Gqv

2 ~z,z8!5d~z2z8!, ~2!

S ]2

]z2 1U~q,v,z!
]

]z
2qv

2 ~z! DGqv

y ~z,z8!5d~z2z8!,

~3!

where

U~q,v,z!5S q

qv~z! D
2

«21~z!
]«~z!

]z
, ~4!

Here «(z) is the dielectric constant of the matter b
tween the layers,sab[sab(q,v,H) is the two-dimensiona
high-frequency conductivity tensor in an external magne
field H; q stands for the wave vector, andqv(z) is defined by
the equation

qv
2 ~z!5q22

v2

c2
«~z!. ~5!

2. THE MODEL AND THE BASIC EQUATIONS

Consider a regular semi-infinite layered crystal in whi
conducting planes occupy positions at a discrete periodic
of points zn5na (n50,1,2...) along thez axis of the half
spacez.0. We assume that the dielectric constants are
ferent in the half spaces:«0 at z,0 and« between the layers
The function«(z) can be written analytically with the hel
of the Heaviside step function:

«~z!5«u~z!1«0u~2z!. ~6!

It then follows from Eq.~5! that the quantityqv
2 (z) takes

two different values in the half spaces:

qv
2 ~z!5H qv

2 , z.0

kv
2 , z,0,

~7!
r-
he

ed

o-
ar
e

c

et

f-

whereqv
2 5q22«v2/c2 andkv

2 5q22«0v2/c2.
The Green’s functionGqv

x (z,z8) can be found with the
help of the known general expression

Gqv

x ~z,z8!5
1

W~x,w!
$u~z2z8!x~z!w~z8!

1u~z82z!x~z8!w~z!%, ~8!

wherex(z) and w(z) are two independent solutions of th
differential operator in the left-hand side of Eq.~2!, and
W(x,w)5wx82xw8 is the Wronskian determinant.

Choosing x(z)5exp(2qv z), w(z)5cosh(qvz)1(kv /
qv)sinh(qvz) for z.0, we have

Gqv

x ~z,z8!52
1

2qv
~e2qvuz2z8u1dve2qvuz1z8u!,

~9!
z,z8.0,

where

dv5~qv2kv!/~qv1kv!. ~10!

The Green’s functionGqv

y (z,z8)[Ĝ(z,z8) in our model

satisfies the following equation:

S ]2

]z2
2qv

2 ~z!D Ĝ~z,z8!1Dvd~z!
]

]z
Ĝ~z,z8!5d~z2z8!.

~11!

The quantityDv is defined by the relation

Dv52F q

q̄v
G2 «2«0

«01«
, ~12!

where the following notations are adopted:q̄v5q2

2(v2/c2) «̄, and«̄51/2(«01«). The solution of Eq.~11! is
trivially expressed in terms of the Green’s functionG(z,z8)
that satisfies the very same equation but withDv50:

Ĝ~z2z8!5G~z,z8!2
Dv

11DvG8~0,0!
G~z,0!G8~0,z8!,

~13!

where we have used the notationG8(0,z8)
5 lim

x→0
]G(x,z8)/]x.

Taking into account thatG(z,z8)[Gqv

x (z,z8) for z,z8

.0, we obtain from Eqs.~9! and ~13! an exact formula for
the Green’s functionGqv

y (z,z8) in the positive half space:

Gqv

y ~z,z8!52
1

2qv
~e2qvuz2z8u1D̂ve2qvuz1z8u!,

z,z8.0, ~14!

We have introduced the notation

D̂v5dv1
Dv~12dv

2 !

21dvDv
. ~15!

Substituting Eqs.~9! and ~14! into Eq. ~1!, we have

Ea~n!5 (
b,n850

`

ŝab~e2qvaun2n8u1D̂v
ae2qvaun1n8u!Eb~n8!,

~16!

where
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ŝab52
2p iv

qvc2
sab~q,v,H !Vab , ~17!

andVab is a matrix with the componentsV115V1251, V21

5V2252c2qv
2 /v2«. The quantity D̂v

a takes two values:
D̂v

x 5dv and D̂v
y 5D̂v .

3. THE TRANSFER-MATRIX APPROACH

To solve Eqs.~16! it is convenient to introduce new
quantities

Aa~n!5(
b

ŝabS (
n8<n

e2qva~n2n8!Eb~n8!

1D̂v
a (

n850

e2qva~n1n8!Eb~n8!D ~18!

and

Ba~n!5(
b

ŝabS (
n8.n

e2qva~n2n8!Eb~n8!D . ~19!

The sum ofAa(n) andBa(n) is exactly the electric field a
the nth layer:

Ea~n!5Aa~n!1Ba~n!. ~20!

Using Eqs.~18!–~20!, one can easily obtain the recurren
relations

Aa~n11!5e2qvaAa~n!1(
b

ŝab@Ab~n11!1Bb~n11!#,

~21!

Ba~n11!5eqvaBa~n!2(
b

ŝab@Ab~n11!1Bb~n11!#.

~22!

These equations may be recast in the matrix form:

S Aa~n11!

Ba~n11! D5(
b

T̂abS Ab~n!

Bb~n! D , ~23!

where the transfer matrixT̂ab has been introduced by th
definition

T̂ab5S ~dab1ŝab!e2qva ŝabeqva

2ŝabe2qva ~dab2ŝab!eqvaD . ~24!

The transfer matrix satisfies the relation

detT̂ab5T̂ab
11 T̂ab

22 2T̂ab
12 T̂ab

21 5dab . ~25!

As compared to the case of a one-component plasma o
lations in layered structures, which were discussed in Ref
and 9 in terms of the transfer matrix of dimension 232, the
matrix T̂ab given by Eq.~24! has a higher dimensionalit
(434) because of the two-component nature of the elec
magnetic waves in the system under study.

Putting n50 in Eqs. ~18! and ~19!, we arrive at the
surface condition

Aa~0!5D̂v
aBa~0!1(

b
ŝab~11D̂v

a !@Ab~0!1Bb~0!#.

~26!
il-
8

-

Before turning to the surface-mode calculations it is instr
tive to address first the simpler case of an infinite laye
conductor. In this case one can find the solution of the ma
equation~23! in the form

Aa~n!5Caeikan, Ba~n!5Daeikan. ~27!

After substitution of these relations into Eq.~23!, we have

Det~dab Î 2T̂abeika!50. ~28!

The symbol Det here stands for the determinant of the
34) matrix, while Î is the (232) unit matrix.

Taking into account the condition given by Eq.~25!, one
can rewrite Eq.~28! in the form

detS dab coska2
1

2
Tr T̂abD50 ~29!

which, after the substitution of the transfer-matrix comp
nents, yields the dispersion relation

det@dab1ŝabS~q,k,v!#50, ~30!

where the structural form factor is given by

S~q,k,v!5
sinh~qva!

cosh~qva2cos~ka!
. ~31!

Different types of electromagnetic waves in infinite la
ered conductors have been studied on the basis of Eq.~30!
under the conditions of the conventional and quantum H
effects, in particular, magnetoimpurity waves13 and helicons
and helicons–plasmons.14 The surface breaks the transl
tional invariance of Eq.~16! due to the term containingD̂v

a .
Because of that, the surface mode has no dispersion ac
the layers, and its field components damp into the bulk of
layered conductor. We assume this damping to be expon
tial with a decrementg and will find it below,

Eb~n11!5e2gaEb~n!5...5e2ganEb~0!. ~32!

This equation means that

Aa~n!5Aa~0!e2gan, Ba~n!5Ba~0!e2gan. ~33!

The above relations have the very same exponen
form as those in Eq.~27!, so that we can find the dispersio
relation for the surface mode immediately from Eq.~30! by
the substitutionk→ ig. This yields

det~Ŝ21dab2ŝab!50, ~34!

where the form factorŜ(q,g,v)5S(q,ig,v) is given by

Ŝ~q,g,v!5
sinh~qva!

cosh~qva!2cosh~ga!
. ~35!

To obtain an equation for the functiong5g(qv ,v), we
proceed as follows. First, writing the conditionEa(n11)
5e2gaEa(n) with the help of the transfer matrix and the
putting n50, we arrive at the equation

(
b

@Tab
11 1Tab

21 !Ab~0!1~Tab
22 1Tab

12 !Bb~0!]

5~Aa~0!1Ba~0!!e2ga. ~36!
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Now using Eq.~24! for the transfer-matrix components
we obtain from Eq.~36! a relation for the ratioAa /Ba at the
surface:

Aa~0!

Ba~0!
5G~q,v,g!5

eqva2e2ga

e2ga2e2qva . ~37!

Combining this equation with the surface condition given
Eq. ~26!, we arrive at a pair of linear equations for the qua
tities Bx(0) andBy(0), which have a nonzero solution if

det@Padab2ŝab#50, ~38!

where

Pa~q,v,g!5
1

11D̂v
a

2
1

11G
2ŝaa . ~39!

Equations~34! and ~38! form a closed system of equa
tions for the surface mode. This system can, however,
recast into a simpler pair of equations. Indeed, compa
Eqs. ~38! and ~34!, we see thatPa5S21. This condition
gives an equation forg5g(qv ,v):

~11D̂v
a !ega5D̂v

aeqva1e2qva. ~40!

Using this equation, we can eliminateg from the form factor
Ŝ@q,g5g(qv ,v),v#[S̄(q,v) in Eq. ~35!, which yields the
dispersion relation for the surface modevs5vs(q)

det~dab2ŝab~q,v!S̄~q,v!!50, ~41!

where

S̄~q,v!5S 11D̂v
a

2D̂v
a D D̂v

aeqva1e2qva

sinh~qva!
. ~42!

The amplitudes of this surface mode decrease exponent
into the bulk of the layered conductor,Ea(n)
5e2ganEa(0), with a decrementg5g(q,vs(q)) given by

ga~q!5
1

a
lnS D̂v

aeqva1e2qva

11D̂v
a D , ~43!

wherev5vs(q).
Being a collective excitation of the finite layered co

ductor, the surface mode also decreases exponentially
the left half spacez,0 with a decrementkv

2 .0. This means
that the conditionq22(v2/c2)«0.0 should hold, as well as
the inequalityq22(v2/c2)«.0, which has been tacitly as
sumed in the course of all the above discussion. Theref
these two constraints together with Eqs.~41!–~43! comprise
a complete set of equations describing the surface elec
magnetic mode in a layered conductor in an external m
netic field within our approach. It is worthy of note that the
dispersion relations are still rather general, since the 2D c
ductivity tensor that appears in them is as yet an arbitr
quantity. In the next section we will consider a Drude-li
model for the conductivity of the 2DEG, leaving more com
plex models of the conductivity for further studies.

4. THE SURFACE MODE

For further calculations a specific form for the in-pla
conductivity tensor is required. Here we consider the s
-

e
g

lly

to

e,

o-
g-

n-
y

-

plest case of a two-dimensional electron gas in a perpend
lar magnetic field. The conductivity tensor in this case h
been calculated elsewhere~see Ref. 29 for a review! and has
the following components:

sxx5syy5s0x~11x2!21,
~44!

sxy52syx52s01xsxx ,

where

s05
Ne2

mV
, x5

n2 iv

V
, ~45!

V5eH/mc stands for the cyclotron frequency;n5t21 is
the Landau level broadening due to the finite lifetimet; and
N is the two-dimensional electron density. Substituting t
conductivity tensor of Eqs.~44! and~45! into the dispersion
relations~41! and~34!, we arrive at explicit equations for th
dispersion relations of the surface,vs(q), and bulk,v(q),
modes, which are nonetheless still intractable analytica
without further approximations. The problem of the bu
electromagnetic modes within the approach taken here
been discussed in detail in Ref. 14 both numerically a
analytically. In particular, the analytical solution was foun
for the dispersion relation of the bulk helicon–plasmon mo
in the caseqa@A«v* (v/vp). The dimensionless quantit
v* 5vpa/c is extremely small over a wide range of valu
of the constituent parameters typical for semiconducting
perlattices, organic conductors, intercalated dichalcogen
of transition metals, and high-Tc superconductors. For ex
ample, fora.102721025 cm andvp.1013s21, v* is of
the order of 102421022 ~vp is the plasma frequency of th
2D conducting layer, given byvp

254pNe2/ma, andc is the
speed of light!. In this approximationqva'kva'qa, so
that, according to Eq.~10!, dv50, and Eqs.~12! and ~15!

yield D̂v
x 5dv'0, D̂v

y 5Dv/2.D, where

D5
«2«0

«1«0
. ~46!

Under these conditions both of the form factors given
Eqs. ~35! and ~42! ~for the bulk and surface mode, respe
tively! become frequency independent, and the inequali
q22(v2/c2)«0.0 and q22(v2/c2)«.0 hold automati-
cally. Now setting the Landau level broadeningn50, we
find ~see Ref. 14 for more details!

v~s!
2 '2qaF V2

2qa1R~s!v*
2

1
vp

2

4

R~s!

« G , ~47!

where the factorR takes two different forms for the bulk an
surface modes:

R5
sinh~qa!

cosh~qa!2cos~ka!
~48!

in case of a bulk mode, and

Rs5S 11D

2D D Deqa1e2qa

sinh~qa!
~49!

in case of a surface mode. Note that the factorR in the
formula for the bulk mode depends on the two projections
the wave vector, i.e.,R5R(q,k), whereq is in the in-plane
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FIG. 1. The dispersion relation of the surface mode given by Eqs.~47!, ~49! and taken atv* 5vpa/c50.001,A«510 for different values of the parameter
D andV/vp ~a–c! ~the darkened area denotes the bulk mode band determined by Eqs.~47! and~48!, andq0 marks the singular point of the bulk mode!. The
same atD50.99 for three different values of the parameterV/vp ~d–f! and atV/vp50.1 for three different values of the parameterD ~g–i!. vp is the plasma
frequency;V stands for the cyclotron frequency;D is determined by Eq.~46!.
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wave vector andk describes the dispersion of the bulk mo
across the layers. The surface mode has no dispersion a
the layers, and that is whyRs5Rs(q,D) depends only onq
and the parameterD determined by Eq.~46!, so that vs

5vs(q,D). In case of the bulk mode, Eq.~47! describes a
wave which is a combination of the helicon~first term! and
plasmon~second term!. The amplitude of the surface mod
vs5vs(q,D) given by Eqs.~47! and~49! decreases into the
bulk of a layered conductor according to the law

Ey~an!5Ey~0!S 11D

Deqa1e2qaD n

. ~50!

We see from this equation that the field decays into
bulk of the sample in such a way thatEy(an) becomes ex-
ponentially small forqa@1:

Ey~an!5Ey~0!S 11D

D De2qan. ~51!

In this limit the factorRs becomes a constant.Rs.11D,
and the dispersion relation of the surface wave becomes
simple:

vs~q,D!.FV21vp
2 S 11D

2« DqaG1/2

. ~52!

Such a square-root dispersion relation is typical for films,
is clear, since the electromagnetic field of the surface wav
nonzero only at the interface layer in the limitqa@1. The
dispersion of the surface modevs(q,D) for arbitrary qa is
given by Eqs.~47! and ~49! and is shown in Fig. 1a–1i fo
different values of the parametersD andV. The gray area in
Figs. 1a–1c marks the bulk wave band, which lies betw
its upper (v1(q)5v(q,ka50)) and lower (v2(q)
5v(q,ka5p)) boundaries. The surface mode exists on
for q.q* , where the threshold valueq* is given by the
oss

e

ry

s
is

n

relation q* a52 ln uDu. This relation follows immediately
from Eq. ~43! for qv'q, which implies that the inequality
uDeqa1e2qau.11D should hold. WhenD.0 the surface
mode goes above the bulk wave band, whereas for nega
D the function vs(q,D) continues below the bulk wave
band.

Therefore, we see that two conditions are required
the surface mode propagation:~i! the dielectric constant out
side the layered conductor,«0 , should differ from the corre-
sponding quantity« between the layers;~ii ! the wave vector
q should exceed the threshold valueq* . Figs. 1d–1f display
the deformations of the surface wave dispersion with incre
ing external magnetic field. The dependence ofvs(q,D) on
the parameterD is shown in Figs. 1a–1i. As one can see
Figs. 1a–1c, the width of the bulk mode band decreases
increasingqa, so that the upper,v1(q), and the lower,
v2(q), bounds merge in the limitqa→`. For finite but
large qa.1 the dispersion across the layers is negligib
sinceR'1, and in this casev(q,k) takes, according to Eqs
~47! and ~48!, the simple form

v~q,k!.FV21vp
2 S 1

2« DqaG1/2

. ~53!

Comparing this result with Eq.~52!, we arrive at the conclu-
sion that in the regionqa@1 the surface mode frequenc
exceeds the corresponding value of the bulk wavevs(q,D)
.v(q,k) for D.0 and goes belowv(q,k) for negativeD.
The dependence ofv(q,k) on k for different values ofqa is
shown in Figs. 2a–2f. In the case of zero magnetic fieldV
50 the collective excitation of the system in question is
bulk plasmon whose upper,v1(q), and lower, v2(q),
boundaries~given by Eq.~47! with R[R15coth (qa/2) and
R[R25tanh (qa/2), respectively! approach each other bu
never cross, as one can see in Figs. 1a–1c. The evolutio
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FIG. 2. The dispersion relation of the bulk mode given by Eqs.~47! and~48! and taken atv* 5vpa/c50.001,A«510 andD50.3 in zero magnetic field for
different values of the parametersqa andV/vp ~a–c! and atV/vp50.1 for three different values of the parameterqa near the singular pointq0 of the bulk
mode~d–f!. Notation as in Fig. 1.
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the quantityv(q,k)2 in this case is shown in Figs. 2a–2c.
the caseV50, qa55 ~see Fig. 2a! the bulk mode is narrow
andv(q,k)2 displays a sinelike behavior as a function ofk.
The band becomes one order of magnitude wider atqa
50.4, and the shape of the dispersion in Fig. 2b becom
strongly nonsinusoidal. At nonzero magnetic field the fun
tion v(q,k)2, shown in Fig. 2c, differs in shape from that
Fig. 2a taken atV50. The physical reason for this differenc
is illustrated by Figs. 1a and 1c, from which we see tha
VÞ0 the decrease inqa results in a change of the bul
transverse dispersion below some singular point, marke
q0 in Fig. 1c. At this pointv1(q0)5v2(q0), and below
q05q0(H) the upper and lower boundaries swap:v1(q)
,v2(q). The equation forq0(H) in explicit form is

v
*
2 V25S vp

2A«
D @~2q0 a!214q0 av

*
2 coth~q0 a!1v

*
4 #.

~54!

Analysis of this equation shows that it has a solutionq0

under the conditionV.vp/2A«. The functionv(q,k)2 ex-
periences the most dramatic changes with respect to the
ablek in a narrow vicinity of the singular pointq5q0(H).
These changes are illustrated by Figs. 2a–2f.
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5. SUMMARY AND CONCLUSIONS

We have given a transfer-matrix theory for the collecti
electromagnetic modes of a semi-infinite layered conduc
subjected to a quantizing external magnetic field. We sta
from Eqs.~1!–~3!, describing the electromagnetic field in
stack of conducting layers embedded in a dielectric ma
within a model which ignores the interlayer electron hoppi
and assumes neither periodicity of the layer stacking nor u
formity of the dielectric constant across the layers. To ap
these equations to the case of a uniform layered condu
placed in the half spaceZ.0 we first calculated Green’s
functions in this half space which, in a model where t
dielectric constant«(z)5«u(z)1«0u(2z), are given by
Eqs. ~9! and ~14!. Putting these Green’s functions into Eq
~1!, we reformulated the eigenvalue problem in the mat
form of Eq. ~23! and introduced the transfer matrix by E
~24!. This transfer matrix has a higher dimensionality
34) than the analogous transfer matrix (232) used before
in Refs. 8 and 9 for studies of the plasma collective mode
a layered electron gas. Within the transfer-matrix appro
we then found dispersion relations for the bulk~Eq. ~30!! and
surface~Eqs. ~34! and ~35!! modes, valid for an arbitrary
form of the 2D conductivity tensor of a layer placed in a
external magnetic field. Since Eqs.~1! are written in terms of
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the field components at the layers it may create the wr
impression that our approach does not take into accoun
field dynamics between the conducting planes. To rule
this suspicion, in Appendix B we give an alternative deriv
tion of the transfer matrix which is based on Maxwel
equations between the layers and boundary conditions a
conducting planes.

The bulk modes have dispersion both within and acr
the layers and have been discussed earlier in Refs. 13 an
The surface mode exponentially damps into the bulk of
layered conductor and has no dispersion across the layer
dispersion relation along the layers is determined by t
equations~41! and ~42!, while the damping decrement i
given by Eq.~43!. Generally, these equations are rather co
plicated to be solved analytically, but for a Drude-like co
ductivity tensor of the form given by Eqs.~44! and ~45! for
n50 and under the conditionqa@A«v* (v/vp) the surface
mode frequencyvs5vs(q,D) is given analytically by Eqs.
~47! and ~49!. The quantityv* is extremely small for rea
layered conductors~of the order of 102421022!, so that the
above inequality does not place severe restrictions on
magnitude of the wave vectorqa. The corresponding calcu
lations for the bulk,v(q,k), and surface,vs(q,D), modes
are plotted in Figs. 1 and 2 for different values of the para
eter D @see Eq.~46!# and cyclotron frequencyV. At zero
magnetic field the bulk modev(q,k) given by Eqs.~47! and
~48! becomes a well-known plasmon of a layered conduc
the bandwidth of which in respect tok grows narrower with
increasingqa, as Fig. 1a illustrates. The surface plasm
mode shown in Figs. 1a–1i lies below or above the b
plasmon band, depending on the sign ofD, and starts at the
threshold value of the wave vectorq* 52(1/a)lnuDu, as was
first found in Ref. 7. In the case of nonzero magnetic fiel
bulk collective mode in a layered conductor becomes a m
ture of the helicon and plasmon, with a dispersion relat
given by Eqs.~47! and ~48!. The corresponding surfac
modevs(q,D) is determined by Eqs.~47! and ~49!. It has
the very same thresholdq* in q and continues below the
bulk mode band forD,0 and above it forD.0 ~see Figs.
1a–1c!. The dependence of the shape of the surface m
dispersionvs(q,D) on the magnetic fieldV and parameterD
is shown in Figs. 1d–1i. It is seen in these figures, as wel
in Figs. 1a–1c, thatv(q,k)2 becomes a linear function ofq
at large values of the quantityqa. The appropriate
asymptotic expressions for the surface and bulk waves in
limit qa@1 are given by Eqs.~52! and ~53!. From these
equations it is clear thatv(q,k).vs(q,D) for D,0 and
v(q,k),vs(q,D) for D.0. According to Eq.~46!, q* →0
if «→«0 , i.e., in the case when the optical densities of
left and right half spaces are close in magnitude. For
ample,q* a'0.10005 forD50.99, andq* a'0.1053 forD
50.9. In the limit v* !qa!1 ~which holds if D close to
unity! we have from Eqs.~47! and ~49! the simple formula

vs
2~q,D!'V21

vp
2

4« S 11D

D D @~11D!1qa~D21!#.

~55!

Thus the surface mode has a gap atqa!1 even if the
cyclotron frequency~the external magnetic field! goes to
zero. This is also seen in Fig. 1d, where the ratioV/vp is
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taken as small as 0.001. A numerical analysis shows a n
ligible deformation of the curve in Fig. 1d for smaller value
of the parameterV/vp , down to zero.

The bulk modev(q,k) with respect to the variablek is a
periodic function with period 2p/a which has a different
shape depending on the value ofqa, as shown in Figs. 2a–2f
The width of the bulk mode grows wider with decreasingqa.
In an external magnetic field under the conditionV
.vp/2A« the bulk mode twists at some wave vectorq0

5q0(H), so that its upper boundv1(q)5v(q,ka50) be-
comes greater than the lower boundv2(q)5v(q,ka5p)
for q,q0(H). This transmutation of the bulk mode band
an external magnetic field is seen especially clearly in F
1c. The shape of the bulk dispersion across the layersv(q,k)
experiences dramatic changes in the vicinity of the poinq
5q0(H), as is displayed in Figs. 2d–2f. The dependence
the bulk and surface modes frequencies on the distance
tween the layersa is in fact given~for fixed values ofq and
k! by Figs. 1 and 2, since these plots show the depende
of the above modes onqa and ka. The surface mode fre
quency in the limita→` is given by Eq.~52!, where one
should take into account the dependence of the plasma
quency ona:vp

254pNe2/ma ~N is the electron density pe
unit area of a 2D conducting sheet andm stands for the
effective mass of the electron!. The decrease of the plasm
frequency in this limit also favors the appearance of
twisting point q0(H), since the inequalityV.vp/2A« is
satisfied at lowerH. In the opposite limita→0 the surface
mode disappears because its wave vector threshold v
q* }1/a→`.

The author is grateful to A. M. Ermolaev and I. D
Vagner for valuable discussions and to A. M. Kosevich
reading the manuscript and useful comments.

APPENDIX A

In this Section we derive the wave equations~1! within
the framework of a model of conducting planes embedde
a dielectric background. To this end we direct thez axis
perpendicular to the layers and assume that a constant e
nal magnetic fieldH is also directed along this axis. W
suppose that the permeability of the substance between
layers is equal to unity,m51, and that its dielectric constan
«5«(z), is a function ofz.

Under these assumptions, Maxwell’s equations, writ
in terms of the electric fieldE,

¹~div E!2DE52
«

c2

]2E

]t2
2

4p

c2

]J

]t
, ~A1!

after the substitution of a wave of the form

El5El~q,z,v!exp@ i ~qr2vt !#, l 5x,y,z ~A2!

become

2q~qE'!1 iqS ]

]z
EzD1S qv

2 2
]2

]z2D E'52
4p iv

c2
J' ,

~A3!
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Ez52
1

qv
2

]

]z
~ iqE'!, ~A4!

qv
2 ~z!5q22

v2

c2
«~z!. ~A5!

Herer, q, andv are the in-plane coordinate, the wave ve
tor, and the frequency of the collective mode;E' andJ' are
the in-plane field and current, respectively.

Choosingq to be parallel to they axis, we arrive at the
following set of equations:

S ]2

]z2
2qv

2 D Ex5
4p iv

c2
Jx , ~A6!

S ]2

]z2
2qv

2 D Ey1U~q,v,z!
]

]z
Ey52

4p iqv
2

v«~z!
Jy , ~A7!

Ez52
iq

qv
2

]Ey

]z
, ~A8!

U~q,v,z!5S q

qv~z! D
2

«21~z!
]«~z!

]z
. ~A9!

Thus we see that all three components of the electric field
determined by the two equations~A7! and ~A6!, which can
be rewritten in the form of Eqs.~1! with the help of the
constitutive equation relating the in-plane current with t
field components:

Ja5(
b,n

sab~q,v,H !d~z2zn!Eb~q,v,z!. ~A10!

The d functions in Eq.~A10! take into account that cur
rents flow only within the conducting planesz5zn , and
sab(q,v,H) stands for the conductivity tensor of a 2D lay
in a perpendicular magnetic field. In this connection, n
that only derivatives of the background dielectric const
enter Eq.~A9!.

APPENDIX B

In this Appendix an alternative derivation for the trans
matrix and the dispersion relation~30! for the bulk mode is
given. The method is based directly on the calculation of
electromagnetic field between the conducting layers
matching them with the appropriate boundary conditions
the layers. Equations~A6!–~A9! in the bulk of the layered
conductor may be rewritten in the form

S ]2

]z22qv
2 DEa5(

b,n
d~z2zn!s̃abEb , ~B1!

where

s̃ab52
4p iv

c2
sab~q,v,H !Vab , ~B2!

Vab is a matrix with the componentsV115V1251, V21

5V2252c2qv
2 /v2«. Writing the solution of Eq.~B1! be-

tween thenth and the neighboring layer in the form

Ea~n!5Ca~n!e2qv~z2zn!1Da~n!eqv~z2zn! ~B3!
-

re

e
t

r

e
d
t

and using the boundary conditions at the layer

Ea~zn10!5Ea~zn20! ~B4!

and

]

]z
Ea~zn10!2

]

]z
Ea~zn20!5(

b
s̃abEb~zn!, ~B5!

we have

S Ca~n11!

Da~n11! D5(
b

T̃abS Cb~n!

Db~n! D , ~B6!

T̃ab5S ~dab1ŝab!e2qva ŝabeqva

2ŝabe2qva ~dab2ŝab!eqvaD . ~B7!

Note that the transfer matrixT̃ab in Eq. ~B7! differs from
T̂ab of Eq. ~24! ~because of the difference in definition of th
coefficientsAa(n),Ba(n) in Eqs.~18! and ~19! from Ca(n)
and Da(n) in Eq. ~B3!!. Nonetheless, TrT̃ab5TrT̂ab , and
the dispersion relation~29! remains the same in both ap
proaches.
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The bound state of a light electron of massme and a heavy hole of massmh (mh@me) is
considered for a two-layer system in a magnetic field. The field is assumed strong only for the
electron (aB

e@ l 0, whereaB
e5\2/(mee

2) is the Bohr radius, andl 05Ac\/(eB) is the
magnetic length!. A new method of calculation is proposed by which one can find the ground-
state energy of a magnetic exciton and the spectrum of its excited states without assuming
that the Coulomb interaction is small. The effective massm* is found, and the dependence of the
energy of the exciton on its momentumP is obtained. The behavior of the exciton in
crossed electric and magnetic fields is investigated. The results can be used for analysis of
experiments in real magnetic fields;104–105 Oe for such semiconductors as InSb, InAs, GaAs,
etc., where the ratiome /mh&0.1. © 2000 American Institute of Physics.
@S1063-777X~00!00608-3#
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The theory of the Wannier–Mott exciton in a high ma
netic field was first constructed by Elliott and Loudon1 and
by Hasegawa and Howard2 more than thirty years ago. Late
came the important studies of Refs. 3–5, in which the beh
ior of the magnetic exciton~ME! with arbitrary momentum
P was investigated in the three-dimensional3 and
two-dimensional4,5 cases. In all of the papers mentioned
was assumed that the Coulomb interaction is small comp
to the distance between the Landau levels of both the e
tron and hole. This assumption is equivalent to the two c
ditions aB

e@ l 0 and aB
h@ l 0. Meanwhile, in real systems

where the masses of the electron and hole forming the e
ton are often very different (mh@me), the simultaneous sat
isfaction of both of these conditions is an extraordinar
stringent restriction, requiring ultrahigh magnetic fiel
;106 Oe for its fulfillment. In particular, the situationmh

@me is met for a wide class of semiconductors which a
actively studied experimentally, such as InSb, InAs, Ga
etc. Because the standard methods for calculating the c
acteristics of MEs in such systems for the magnetic fie
;104–105 Oe that are actually used can lead to unrelia
results, we propose a new method of calculation which
sentially consists in the following. Assuming that for th
light particle ~electron! the condition aB

e@ l 0 holds, we
project the Hamiltonian of the system onto a subspace
states in which the electron is frozen at a fixed Landau le
n. We go over to a representation in which the momentumP
of the exciton is a specified quantity. In this representat
the dynamics of the ME is determined by~besidesP) the
relative coordinater5(Xe2xh ,Ye2yh) ~where Xe and Ye

are the coordinates of the center of the electron orbit, andxh

andyh are the coordinates of the hole!, and one can find the
important characteristics of the ME without invoking an
additional assumptions.

Let us consider two semiconductor layers separated
distanced and found in a uniform magnetic fieldB applied
perpendicular to the layers. In layer1 the current carriers are
5771063-777X/2000/26(8)/4/$20.00
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the light particles~electrons! and in layer2 the heavy par-
ticles ~holes!. The Hamiltonian of an electron–hole pair ca
be written in the standard form

Hex5He1Hh1Vc , ~1!

where

He5
~px

e1eBye/2c!2

2me
1

~py
e2eBxe/2c!2

2me
,

Hh5
~px

h2eByh/2c!2

2mh
1

~py
h1eBxh/2c!2

2mh
,

Vc52
e2

ure2rhu
52

e2

A~xe2xh!21~ye2yh!21d2
.

The charge of the electron is taken to be2e, and the dielec-
tric constant of the medium between the layers is assum
equal to unity. For the vector potential of the uniform ma
netic field B we use the symmetric gaugeA5(By/2,
2Bx/2) ~we note that for the chosen gauge the fieldB is
antiparallel to thez axis!.

We project Hamiltonian~1! onto a subspace of states
which the electron is found at a given leveln, which, for
simplicity, we assume is the lowest Landau level. The res
of the projection on this subspace will be denoted by a
over the operator. Clearly we haveH̄h5Hh ,

He5
~Px

e!21~Py
e!2

2me
5\veS a1a1

1

2D ~2!

and, consequently,H̄e5\ve/2, i.e., it reduces to a constan
which we shall henceforth omit. In Eq.~2! we have used the
following notation: ve5eB/(mec) is the cyclotron fre-
quency,Px

e5px
e1yeeB/(2c) and Py

e5py
e2xeeB/(2c) are

the components of the kinematic momentum of the electr
and a15 l 0(Px

e2 iPy
e)/(A2\) and a5 l 0(Px

e1 iPy
e)/(A2\)
© 2000 American Institute of Physics
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are the creation and annihilation operators for an electro
a specified Landau level. From the commutation relatio
@Px

e ,Py
e#5 i\2/ l 0

2 it follows that @a,a1#51.
The projection of the Coulomb energy operatorVc is

most conveniently done, following Ref. 6, by transforming
Fourier space:

Vc52
e2

2p E d2k
exp~2ukud!

uku
exp@ ikx~xe2xh!

1 iky~ye2yh!#, ~3!

whereuku[Akx
21ky

2.
The coordinates of the electron in a magnetic field c

be written in the form

xe5Xe1
l 0
2

\
Py

e , ye5Ye2
l 0
2

\
Px

e , ~4!

where Xe and Ye are the coordinates of the center of t
orbit. They satisfy the commutation relations@Xe ,Ye#
52 i l 0

2 and commute withPx
e andPy

e . In the representation
~3!, with allowance for~4!, the projection ofVc reduces to
the projection of the operator

expH 2 ikx

l 0
2

\
Py

e1 iky

l 0
2

\
Px

eJ 5expH l 0

A2
~ka12 k̄a!J

onto the lowest Landau level. Herek[kx1 iky . The projec-
tion can be done in an elementary way:

^0uexpH l 0

A2
~ka12 k̄a!J u0&5expH 2

uku2l 0
2

4 J , ~5!

after which we obtain forV̄c

V̄c52
e2

2p E d2k
exp~2ukud!

uku
expS 2

uku2l 0
2

4 D
3exp@ ikx~Xe2xh!1 iky~Ye2yh!#. ~6!

The problem simplifies further if we consider the fact th
the total momentum of the electron–hole pair,

P5F2 i\
]

]re
1

e

c
A~re!G1F2 i\

]

]rh
2

e

c
A~rh!G

2
e

c
@B3~re2rh!#, ~7!

is conserved in a uniform magnetic field. The existence
this integral of the motion allows one to reduce the num
of independent variables of the problem by expressing
kinematic momentumPh of the hole in terms of the tota
momentumP and the relative coordinatesXe2xh and Ye

2yh . With the aid of~7! and ~4! we obtain

Px
h5Px1

\

l 0
2 ~Ye2yh!, ~8!

Py
h5Py2

\

l 0
2 ~Xe2xh!. ~9!

Substituting expressions~6!, ~8!, and~9! into Eq.~1!, we find
the desired representation for the Hamiltonian of
electron–hole pair:
at
s

n

t

f
r
e

e

Hex5
~Px1\y/ l 0

2!2

2m
1

~Py2\x/ l 0
2!2

2m

2
e2

2p E d2k
exp~2ukud!

uku
expS 2

uku2l 0
2

4 D
3exp~ ikxx1 ikyy!. ~10!

We note thatPx andPy in ~10! are components of the tota
momentum of the exciton, which is a conserved quant
They commute with each other and withHex and, hence, can
be treated asc-numbers. The dynamical variables of th
problem are the relative coordinates of the pair:x[Xe2xh

and y[Ye2yh . They satisfy the simple commutation rela
tions @x,y#52 i l 0

2. Expression~10! is the starting point for
studying the main characteristics of the ME.

Let us first setPx5Py50 and find the spectrum of th
exciton at rest. For this we introduce a second pair of c
ation and annihilation operatorsb1 andb as follows:

x[
l 0

A2
~b1b1!; y5

i l 0

A2
~b2b1!; @b,b1#51.

ForP50 the Hamiltonian~10! is expressed solely in term
of b1 andb:

H05\ve
hS b1b1

1

2D2
e2

2p E d2k
exp~2ukud!

uku

3expS 2
uku2l 0

2

2 DexpS i
l 0

A2
k̄b1D expS i

l 0

A2
kbD .

~11!

In view of the isotropicity of the Coulomb potential, th
second term in~11! is diagonal inb1b[N̂. It can be written
in the form of a series,

Vc52
e2

l 0
(

m50

`

f mS d

l 0
D ~21!m

2m~m! !2
~b1!mbm, ~12!

where

f mS d

l 0
D5E

0

`

x2m expS 2
x2

2
2

d

l 0
xDdx.

Using the relation (b1)mbm5N̂(N̂21) . . . (N̂2m11) and
doing the summation overm in ~12!, we obtain an exact
expression for the spectrum of excited states of the ME i
compact form:

EN5\ve
hS N1

1

2D2
e2

l 0
E

0

`

expS 2
d

l 0
x2

x2

2 DLNS x2

2 Ddx,

~13!

whereLN(x)5(m50
N (21)m(ym/m!)CN

m2N is the Laguerre
polynomial.

For d50 the integral in~13! can be evaluated analyti
cally and the spectrum of the ME written explicitly:

EN5\ve
hS N1

1

2D2
e2

A2l 0

G~N11/2!

G~N11!
. ~14!
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If dÞ0, then the integral in~13! cannot be evaluated
explicitly. Nevertheless, it can be shown that the spectrum
not qualitatively altered. If we introduce the notation

VN~g![E
0

`

expS 2gx2
x2

2 DLNS x2

2 Ddx,

then the following two statements hold forVN(g): a!
VN(g).0, and b! VN(g).VN11(g). It follows that for alld
the energy of the ME increases monotonically with incre
ing N. Knowing EN , we can easily evaluate the functio
E(P) for smallP and determine the effective effective ma
m* of the exciton. ForPÞ0 we can writeHex in the form

Hex~P!5H01
P2

2mh
1V~P!, ~15!

where V(P)5 i\(bP2b1P̄)/(A2l 0mh), P5Px1 iPy , and
H0 is given by expression~11!. Evaluating the correction to
the energyE0 at smallP to the second order of perturbatio
theory inV(P), we find

DE~P![
P2

2m*
5

P2

2mh
1

u^0uVu1&u2

E02E1

5
P2

2mh
2

\2P2/~2mh
2l 0

2!

E12E0
, ~16!

from which we obtain the desired expression form* :

m* 5
mh

12~\vh!/~E12E0!
5mh1mB , ~17!

where

mB5mh

2l 0\vh

e2f 1~d/ l !
. ~18!

In the deriving ~17! we used formula~13! for EN at
N50 andN51. We recall that

f 1S d

l 0
D5E

0

`

x2 expS 2
x2

2 DexpS 2
d

l 0
xDdx.

Expression~17! for the effective mass differs conside
ably from the analogous expression in the standard theo7

In the standard theory it turns out thatm* 5mB , which in-
creases monotonically with increasing magnetic field and
we see from~18!, is independent of the mass of the hole
The discrepancy is explained by the fact that the assump
aB

h / l 0@1 in the standard theory implies thatmB /mh@1. In
the present study there is no such assumption, and there
result~17! is valid for a much wider range of magnetic field
than is the expressionm* 5mB . Since in fields which are no
too high, the two terms in~17! are of the same order, th
difference in the numerical values ofm* between the two
theories can be extremely significant. In addition, taking i
account the termmh in ~17! is important for studying the
behavior of a ME in an electric field.

Let us now turn to a brief discussion of this questio
Suppose that in addition to the magnetic fieldB perpendicu-
lar to the layers we apply a uniform electric fieldE parallel
to the plane of the layers. Let us evaluate the energy in
mentDHE due to the electric field. The Hamiltonian of th
system in the initial representation has the form
is

-

.

s
.
n

ore

o

.

e-

H5Hex1DHE , ~19!

whereHex is given by expression~1!, andDHE52eE•(re

2rh). In the representation with a specifiedP it can be writ-
ten in the form

H5H01
P2

2mh
1V1~P,E!, ~20!

where

V1[Zb1Z̄b1, Z5
el0E

A2
1

i\P
mhl 0A2

.

Evaluating the correction toE0 to the second order o
perturbation theory inV1, we find the desired expression fo
DHE :

DHE5
e2l 0

2uEu2

2~E02E1!
1

e\@P3E#z

mh~E02E1!

5S 12
mh

m* Du•P2
1

2 S 12
mh

m* Dmhu2. ~21!

In deriving ~21! we have used the relation (E02E1)21

5(12mh /m* )/(\vh) and have introduced the standard n
tation u5c@E3B#/B2 for the drift velocity of a particle in
crossed electric and magnetic fields.

There is an important circumstance that should be no
in connection with expression~21!. If DHE is calculated by
using standard perturbation theory, one obtains an expres
analogous to ~21! but with the factor 12mh /m* 51
2mh /(mh1mB) replaced~for mh@me) by

12
mh

mB
512

mh

me

A2p

4

l 0

aB
e . ~22!

For simplicity in ~22! we have setd50.
The condition for applicability of perturbation theor

means thatl 0 /aB
e!1. On the other hand, formh /me@1 this

quantity in ~22! is multiplied by the large quantitymh /me ,
and it can happen thatmh /mB becomes greater than unity
As a result, in the standard theory expression~22! changes
sign, whereas in our proposed method one always
12mh /m* 512mh /(mh1mB).0. Thus in the given case
perturbation theory can yield even qualitatively incorrect
sults. The reason is that formh /me→` the energy spectrum
of the electron–hole pair becomes highly degenerate and
must therefore use secular perturbation theory.

We note that one can drop the restriction to the low
Landau level for the electron, which we have been empl
ing up till now to simplify the writing of the formulas. Le
the electron be ‘‘frozen’’ at an arbitrary Landau leveln. For
projecting Hamiltonian~1! onto leveln, relation~5! must be
replaced by

^nuexpH l 0

2
~ka12 k̄a!J un&5expS 2

uku2l 0
2

4 DLnS uku2l 0
2

2 D ,

whereLn is the Laguerre polynomial of degreen. Formulas
~13! and~17! are now generalized in the obvious way. Let
give the result for the spectrum of excited states of a ME
P50:
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En,N5\veS n1
1

2D1\vhS N1
1

2D
2

e2

l 0
E

0

`

expS 2
d

l 0
x2

x2

2 DLNS x2

2 DLnS x2

2 Ddx.

~23!

The quantum numbern in ~23! determines the coarse stru
ture of the spectrum, sinceve@vh , and the numberN de-
termines its fine structure~the second and third terms in~23!
can be of the same order!.

In closing we emphasize that the results reported h
can be checked experimentally in all two-layer systems
which carriers of different sign differ strongly in mass.
re
n
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Piezoelectric mechanism for the orientation of stripe structures in two-dimensional
electron systems
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A piezoelectric mechanism for the orientation of stripes in two-dimensional electron systems in
GaAs–AlGaAs heterostructures is considered. It is shown that when the anisotropy of the
elastic constants and the influence of the boundary of the sample are taken into account, the theory
gives an orientation of the stripes along@110# direction, in agreement with the experimental
data. For a two-layer system an effect is found wherein a reorientation of the stripe structure along
the @100# direction occurs when the period of the structure exceeds the distance between
layers. © 2000 American Institute of Physics.@S1063-777X~00!00708-8#
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INTRODUCTION

It is known that the homogeneous state of a tw
dimensional electron gas at low concentrations and temp
tures is unstable. Under such conditions the system un
goes a transition to the Wigner crystal phase. For a class
Wigner crystal the minimum of the energy corresponds t
triangular lattice.1 Recently much attention has been devo
to the study of inhomogeneous electronic states in quan
Hall systems. For these objects one expects a greater d
sity of phases with spatial modulation of the electron dens
For example, in a quantum Hall ferromagnet, lattice str
tures can form from skyrmion excitations2 ~in this case the
skyrmions carry electric as well as topological charge!. Since
the skyrmions are spatially extended structures, at a s
ciently high skyrmion concentration the skyrmion lattice w
be square instead of triangular. Among the recent intrigu
experimental results is the observation of a strong anisotr
of the conductance at a filling factorn5N11/2 (N is an
integer,N>4).3,4 The physical nature of this effect can b
linked with the formation of a stripe structure at the upp
partially filled Landau level.5,6

For phases with spatial modulation of the electron d
sity in the two-dimensional systems realized in GaA
AlGaAs heterostructures, an interesting question is the
ture of the physical mechanisms that determine
orientation of the electron crystal relative to the crystal
graphic axes of the surrounding matrix. This question is p
ticularly topical for a stripe structure, since in that case
influence of the external factors on the orientation can
observed experimentally~the necessary information can b
extracted from measurements of the anisotropy of the c
ductance!.

The formation of phases with spatial modulation of t
electron density is the result of a competition between
Coulomb and exchange interactions~and also the Zeema
interaction in the case of skyrmions!. In systems possessin
cubic symmetry these mechanisms are isotropic, i.e., t
cannot determine the orientation of the electronic struct
relative to the crystallographic axes. Nevertheless, mec
nisms that assign this orientation are present in the sys
5811063-777X/2000/26(8)/5/$20.00
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For example, in measurements of the anisotropy of
conductance3,4 a maximum is observed along the@110# axis
and a minimum along@11̄0#, i.e., the wave vector of the
stripe structure is directed along one of the twofold axes. T
anisotropic interaction that assigns the orientation must
weak enough to allow rotation of the stripe structure upo
change in direction of the tangential component of the ex
nal magnetic field~an effect observed experimentally i
Refs. 7 and 8!.

In GaAs a natural candidate for this role is the piezoel
tric interaction, which remains anisotropic even in a cub
system. The question of the anisotropy of the electro
electron interaction in piezoelectrics was considered in R
9, where the influence of the piezoelectric interaction on
symmetry of the lattice of a Wigner crystal was discussed
Ref. 9 an isotropic model was used to describe the ela
subsystem. Such a model gives a poor description of
situation in GaAs, in which the anisotropy of the elastic co
stants is rather large. In the present paper the piezoele
mechanism for the orientation of modulated electronic str
tures in GaAs is considered with allowance for the anis
ropy of the elastic constants and for the influence of
surface of the sample. The majority of the results pertain
the case of a stripe structure. The main conclusion is tha
the orientation of a two-dimensional electron layer in t
~001! plane, the energy of the stripe phase is minimum wh
the anglef between the wave vector of the stripe structu
and the@100# axis lies in the interval 30–60°~in which case
the potential relief forms a practically flat plateau!. Thus the
average direction of the wave vector corresponds to the
perimentally observed orientation.

In this paper we also consider a two-layer stripe str
ture. The reorientation arises if the period of the struct
exceeds the distance between layers. In that case the w
vector of the structure changes its direction and becom
oriented along the@100# axis. The effect can easily b
checked experimentally, since the period of the stripe str
ture, which is determined by the magnetic length, sho
increase with decreasing external magnetic field~increasing
filling factor!.
© 2000 American Institute of Physics
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ONE-LAYER SYSTEM

Let us first consider the situation when a tw
dimensional electron layer is placed in an infinite piezoel
tric medium having cubic symmetry. The properties of t
medium are described by three elastic constantsc11, c12,
and c44, a dielectric constant«, and one piezoelectric con
stante14. Here and below we shall restrict discussion to
two-dimensional electron system lying in the~001! plane.
The inhomogeneity of the electronic structure will be d
scribed as a charge-density wave with wave vectorb directed
at an anglef to the @100# axis:

r~r !5r0 sin~b"r pl!d~z!, ~1!

whererpl is the projection of the radius vector on the~001!
plane, and thez axis is chosen along@001#. The energy den-
sity of the system can be written as

F5
E"D

8p
1

s ikuik

2
, ~2!

where

Di5«Ei24pb iklukl ~3!

is the electric displacement vector,

s ik5l iklmulm1b l ikEl ~4!

is the stress tensor,uik is the strain tensor,E is the electric
field, l iklm is the tensor of elastic constants,b ikl is the tensor
of piezoelectric constants~in crystals of cubic symmetry on
hasb5e14/2 for iÞkÞ l and b50 otherwise!. The quanti-
ties D and s ik satisfy the equations of electrostatics and
the theory of elasticity, respectively:

div D54pr,
]s ik

]xk
50. ~5!

A calculation of the total energy with allowance for~5! and
for the boundary condition fors ik (s iknk50 at the free
boundary! gives

E5E d3rF 5
1

2 E d3rr~r !w~r !, ~6!

wherew is the scalar potential (E52¹w). The value ofw is
found from the solution of system~5!. Transforming in~5! to
the Fourier components ofw and of the displacement fieldu,
we obtain

MikVk5Qi , ~7!

where

M̂5S L̂ T̂

2T̂1 «q2/4p
D ~8!

with L ik5l iklmqlqm , Ti52b iklqkql ,

Vi5H uiq i 51,2,3

wq i 54
, Qi5H 0 i 51,2,3

rq i 54
~9!

(rq is the Fourier component of the electron density!.
From ~7! we have

wq5M44
21~qpl ,qz!rq ~10!
-

-

f

(qpl is the projection of theq on the~001! plane!. Doing the
inverse Fourier transformation and substituting the result i
~6!, we find

E5
r0

2S

8p E
2`

`

dqzM44
21~b,qz! ~11!

(S is the area of the layer!. Using the fact that the piezoelec
tric interaction constant is small, we write the energy in t
form of a sum:

E5EC1Epe
0 1Epe

an , ~12!

where

EC5
pr0

2S

2«b
~13!

is the Coulomb energy, andEpe
0 andEpe

an are the isotropic and
anisotropic parts of the energy of the piezoelectric interact
between electrons. We write the anisotropic part as

Epe
an5xECF~f!, ~14!

wherex5e14
2 /«c11 is the small parameter in which the ex

pansion was done. The functionF has an amplitude of the
order of unity and depends on the relationships among
values of the elastic constants.

For an isotropic medium (c125c1122c44) we have

F~f!5A cos 4f, ~15!

where

A5
9p

32 S 12
c11

3c44
D . ~16!

Formula~15! was obtained in Ref. 9 in a somewhat differe
way. Substitution of the values ofc11 andc44 for GaAs into
Eq. ~16! gives A'0.3 and a minimum energy atf5p/4.
However, if instead ofc11 and c44 one uses the average
values of the squares of the velocities of longitudinal a
transverse sound, respectively, then the amplitudeA practi-
cally vanishes, i.e., even the sign of the anisotropy rema
indeterminate. It is therefore fundamentally important to ta
the anisotropy of the elastic constants into account in
given case.

For the anisotropic case the integration in~11! was done
numerically with the use of the known values of the elas
constants for GaAs (c11512.3, c1255.7, c4456.0, all in
units of 1011 dyn/cm2). The results of the calculation for th
function F(f) are given in Fig. 1~curve1!. It follows from
the curves obtained that the absolute minimum of ene
corresponds to a direction of the wave vector at an anglf
'30° to the@100# axis. The variation of the energyDEa1 in
the interval 30°,f,60° is smaller by a factor of around 3
than the total energy variationDEa over the entire range o
anglesf. At temperaturesDEa1,kBT,DEa all of the con-
figurations in the interval 30°,f,60° are practically equi-
probable. The averaged direction of the wave vector of
stripe structure lies along the@110# axis. The observation o
the orientation of the stripes along a low-symmetry direct
is possible only at very low temperatureskBT,DEa1. The
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absolute value of the anisotropy energy is determined by
parameterx, which for GaAs (e1450.15 C/m2, «512.5) is
of the order of 231024.

An important question is, how sensitive is the result o
tained to small changes of the elastic constants? Calcula
for different values of the elastic constantc12 give the fol-
lowing results. Whenc12 is decreased, the local maximum
f5p/4 goes over to a global minimum~at c12'531011

dyn/cm2). When this elastic constant is increased, the m
mum in the region nearf530° becomes narrower. In GaA
a borderline situation is realized in which the potential rel
in the interval 30°,f,60° is very flat.

The behavior found for the dependence of the interac
energy on the anglef is preserved when a more realist
expression is used for the distribution of the electron den
instead of~1!. Replacing~1! by a sum of harmonic multiples
with wave vectorsqn5nb will lead to a decrease ofEC and
Epe

an by the same factor, i.e., the functionF(f) does not
change. For a square lattice this is generally not the case
a square lattice the solution can be written in the form o
sum over reciprocal lattice vectors~with suitable weighting
factors!, and each term of the sum depends on the direc
of the corresponding reciprocal lattice vector. Finding t
answer to the minimum energy question requires knowle
of the actual form of the electron density distribution. In t
simplest case, whenr(r ) can be written in the form of a sum
of two density waves with perpendicular wave vectors, th
vectors will be oriented along the@110# and @11̄0# direc-
tions. For a triangular lattice~which can be described as
sum of three charge density waves with wave vectors
rected at angles of 2p/3 to one another!, taking the anisot-
ropy of the elastic constants into account will lead to anis
ropy of the energy of the piezoelectric interaction@this effect
is absent in the isotropic model, as one can see from~15!#.
The minimum energy is realized when one of the wave v
tors is directed at an anglef5kp/6 to the@100# axis (k is an
integer!. The value of the anisotropy for a triangular lattice
two orders of magnitude smaller than for a stripe structu!.

In the approach used here it is easy to take into acco
the finite thickness of the electron layer by including t

FIG. 1. Dependence of the functionF5Epe
an/(xEC) on the orientation of the

stripes.f is the angle between the wave vector of the stripe structure
the @100# axis. Curve1 is for an infinite system, curve2 for d/a50, curve
3 for d/a50.15, and curve4 for d/a50.5.
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appropriate form factor in formula~11!. However, since the
period of the electronic structure is actually much larger th
the layer thickness, taking this correction into account w
not lead to qualitative changes.

Since the two-dimensional layers in heterostructures
ordinarily created near the surface of the sample~the char-
acteristic distance between the surface and the electron l
is d;53103 Å!, the influence of the surface on the piez
electric mechanism of orientation is a question of fundam
tal importance. In this case, in order to find the scalar pot
tial one must solve the system of equations~5! with the
boundary conditions taken into account. The modulation
the electron density in the charge density wave has a sin
mode structure, and the solution of system~5! can be sought
in the form

ui5ui~z!eib"r
pl1c.c.,

~17!
w5w~z!eib"r

pl1c.c.,

whereui(z) andw(z) satisfy the following system of differ-
ential equations:

~c44~]z
22by

2!2c11bx
2!ux2 c̃bx~byuy2 i ]zuz!2 ie14by]zw50,

~c44~]z
22bx

2!2c11by
2!uy2 c̃by~bxux2 i ]zuz!2 ie14bx]zw50,

~18!
~c11]z

22c44b
2!uz1 i c̃]z~bxux1byuy!1e14bxbyw50,

«~]z
22b2!w14pe14~ i ]z~bxuy1byux!2bxbyuz!50

( c̃5c121c44) with the boundary conditions

s izuz5d2050, wuz5d205wuz5d10 ,

2Dzuz5d205~]xw!uz5d10 , s izuz5205s izuz510 ,
~19!

wuz5205wuz510 , ui uz5205ui uz510 ,

Dzuz5102Dzuz520522p ir0 .

In formulas~19!

sx~y!z5c44~]zux~y!1 ibx~y!uz!2 i
e14

2
by~x!w,

szz5c11]zuz1 ic44~bxux1byuy!, ~20!

Dz52«]zw2 i2pe14~bxuy1byux!.

Solving system~18! reduces to finding the roots of th
characteristic equation and determining the values of the
efficients of the general solution with allowance for th
boundary conditions. This procedure was implemented
merically for fixed values of the parameters. The energy w
written in the form~12!, with the Coulomb energy given by

EC8 5
pr0

2S

2«b S 11
«21

«11
e22bdD , ~21!

and the anisotropic contribution to the energy

Epe
an5xEC8 F~f!. ~22!

The functionF(f) is given in Fig. 1 for various values o
the parameterd/a (a52p/b is the period of the stripe struc
ture!. For d/a50 ~the electron layer lies on the surface
the sample! the calculation gives the function shown b
curve2, which is close to the case of an infinite medium. A

d
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d/a increases, the minimum nearf'30° first becomes
sharper~curve 3! and then again flattens out, and ford/a
'0.5 the slight double-well structure nearf5p/4 vanishes
completely~curve4!. In this last case the value of the aniso
ropy is maximum. Asd/a increases further the function ap
proaches curve1. Thus the boundary of the sample has pra
tically no effect on the orientation of the stripes~except
when the ratiod/a falls in a rather narrow range of value
'0.1–0.2). These results support the view that the ani
ropy mechanism under study gives a qualitatively corr
description of the experimental situation.

TWO-LAYER SYSTEM

This Section is devoted to a study of the piezoelec
mechanism for the orientation of the stripe structures in tw
layer systems. There are two reasons for considering
question. The first is that two-layer systems are often use
experimental studies. It is therefore of interest to genera
the results of the previous Section to the case of two clos
spaced electron layers which each have a stripe struc
formed in them. The other reason, which in our view is mo
important, involves the search for effects that might be u
for experimental proof that the piezoelectric interaction pla
the governing role in the orientation of electronic structur
In a two-layer system there is an additional parameter —
ratio of the distance between layers to the period of the st
structure. Since the period of the stripe structure is relate
the magnetic length, this parameter is easily varied in
experiment by changing the strength of the external magn
field. If the anisotropy of the piezoelectric interaction is se
sitive to the variation of this parameter, then such an eff
can be detected experimentally in a study of the anisotr
of the conductance as a function of the external magn
field. As the subsequent calculation shows, just such a s
ation is realized in two-layer systems.

Since the presence of a boundary does not lead to q
tative changes, in this Section we consider the case o
infinite medium. In a two-layer system the Coulomb intera
tion leads to a relative shift of the charge density wave b
half period in adjacent layers. The electron density distri
tion has the form

r~r !5r0 sin~b"r pl!@d~z2s/2!2d~z1s/2!# ~23!

(s is the distance between layers!. Calculating the scalar po
tential and substituting it into~6!, we obtain

E5
r0

2S

4p E
2`

`

dqzM44
21~b,qz!~12cos~qzs!!. ~24!

For illustration let us evaluate the quantityEpe
an for the

case of an isotropic elastic medium. Substitutingc125c11

22c44 into ~24!, we find

Epe
an5AxEC cos 4f, ~25!

where

A52E
2`

`

dz
12cos~zsb!

~11z2!4 Fc11

c44
2z2S 8

c11

c44
19D G . ~26!

Evaluating the integral in~26!, we get
-

t-
t

c
-
is
in
e
ly
re

e
d
s
.
e
e
to
n
tic
-
ct
y
ic
u-

li-
an
-
a
-

A5
9p

16 H 12
c11

3c44
2e2sbF ~11sb!S 12

c11

3c44
D

1~sb!2F2c11

3c44
2

sb

3 S 12
c11

c44
D G G J . ~27!

The dependence ofA on the parameters/a for c11/c44

512.3/6 is shown in Fig. 2, from which we see that f
s/a,1 the anisotropic contribution to the energy chang
sign, and a reorientation of the stripes along the@010# direc-
tion takes place. An analogous effect occurs in the an
tropic model as well. Figure 3 shows the dependence of
energy on the anglef for different values of the paramete
s/a. Figure 4 shows the position of the minimum and t
depth of the minimum relative to the energy values atf
50 andf5p/4 as functions of the parameters/a. We see
from the curves that fors/a.1.5 the interaction between
layers has essentially no effect on the orientation of
stripes. In the interval 0.8,s/a,1.5 this interaction leads to
stabilization of stripe structures having wave vectors lyi
along the low-symmetry direction. Fors/a,0.8 the mini-
mum of the energy is realized when the stripes are orien
along one of the fourfold axes.

FIG. 2. Amplitude of the anisotropy energyA @see Eq.~25!# in a two-layer
system in an isotropic elastic medium as a function of the distance betw
layers.

FIG. 3. Calculated dependence of the functionF on the stripe orientation in
a two-level system in GaAs for different values of the parameters/a: 0.75
~1!, 1 ~2!, 3 ~3!.
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As we have said, the result obtained here is important
setting up experiments. The period of the stripe structur
determined by the magnetic length, and forn5N11/2 the
stripe phase has different periods for different values ofN.
The prediction of the theory is that in a two-level system
a suitable choice of distance between layers, the stripe p
will be oriented differently for different filling factors~along
@110# for small N and along@100# for largeN). This effect
could easily be observed experimentally by measuring
angular dependence of the conductance, which would b
convincing experimental check on the proposed model. If
effect is observed experimentally, then another applica
might be to employ it as an indirect method of determini
the period of the stripe structure.

CONCLUSION

In this study we have shown that the piezoelectric int
action in GaAs heterostructures can play an important rol
the orientation of inhomogeneous two-dimensional el
tronic structures relative to the crystallographic axes of
surrounding matrix. Using the actual form of the anisotro
of the elastic constants in GaAs, we have found the an
tropic contribution to the energy of the stripe structure re
ized on the~001! plane.

For a single-layer system in an infinite medium the mi
mum of the energy corresponds to orientation of the w
vector of the stripe structure at an anglef'30° to the@100#
axis. However the local maximum atf5p/4 is so flat that
all directions in the interval 30°,f,60° are actually equi-
probable, i.e., on average the wave vector is directed a
the @110# axis.

Let us analyze the influence of the surface of the sam
on the piezoelectric mechanism for orientation of the stri

FIG. 4. Positionf and depthE of the minimum of the energy versus th
distance between layers. The solid curve is the position of the minimum
dashed curve is the depth of the minimum relative to the energy value
f50, and the dotted curve is the depth of the minimum relative to
energy forf5p/4.
r
is

r
se

e
a

e
n

-
in
-
e
y
o-
l-

-
e

g

le
s

in GaAs. It has been found that in the case when the tw
dimensional electron layer is located on the surface~physi-
cally this corresponds to a depth of the electron layer m
smaller than the period of the electronic structure! the behav-
ior of the anisotropic contribution to the energy is practica
constant in comparison with the case of an infinite mediu
For finite ratios of the depthd of the electron layer to the
period a of the stripe structure some small qualitativ
changes take place. When this ratio is'0.5 the local maxi-
mum at f5p/4 goes over to a global minimum. Atd/a
'0.15, on the other hand, the orientation along the lo
symmetry direction,f'30°, is stabilized.

The results obtained here explain the experimentally
served stripe orientation along the@110# direction in a quan-
tum Hall system. Since the absolute value of the anisotr
energy is rather small~approximately four orders of magni
tude smaller than the Coulomb energy!, an external influence
~e.g., an external magnetic field containing a component p
allel to the electron layer! can lead to reorientation of strip
structures, as has been observed experimentally.

We have considered the piezoelectric mechanism
stripe orientation in two-layer electron systems~with layers
parallel to the~001! plane!. In such systems the model pre
dicts an effect wherein the stripes are reoriented along
@100# axis as the distance between layers decreases o
period of the stripe structure increases~the ratio of these two
lengths must become smaller than unity!. The observation of
such an effect would provide experimental proof that t
piezoelectric mechanism plays the main role in the orien
tion of the electronic structures in two-dimensional electr
systems realized at AlGaAs–GaAs heterojunctions.

This study was supported in part by INTAS Grant N
97-0972 and the Ukrainian Government Foundation for B
sic Research, Project No. 2.4/337.
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Localization of nonlinear waves in layered media
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The localization of nonlinear waves propagating in an anharmonic medium along a system of
two identical plane-parallel defects~waveguides! is investigated in a simple model
describing the nonlinear dynamics of layered media~magnetically ordered, elastic, and optical!.
A method of analytical investigation of this problem is proposed which reduces to a
model of coupled anharmonic oscillators whose parameters are all determined on microscopic
considerations. The results yield an adequate description of the nonlinear dynamics of
layered media in the framework of well-studied discrete models of nonlinear mechanics. It is
shown that when the total energy of the wave exceeds a threshold value, the state with
equal energy fluxes localized near the waveguides becomes unstable, and an inhomogeneous
regime is realized in which the wave flux propagates mainly along one of the plane layers.
© 2000 American Institute of Physics.@S1063-777X~00!00808-2#
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INTRODUCTION

Research on the structure and dynamic properties of
ered media of various types is now of great interest fr
both the theoretical and applied standpoints. We are talk
primarily about magnetic multilayer systems, which a
promising for the creation of elements for data storage
readout based on magnetooptical properties and the g
magnetoresistance effect1,2 and of layered optical media use
in fiber optics and optical delay lines.3–6 We might also men-
tion high-Tc superconducting compounds and their isostr
tural analogs, which contain layers with substantially diffe
ent conducting and elastic properties,7,8 and quasi-two-
dimensional magnets with organic intercalation.9 In a
number of cases these layered systems exhibit pronou
nonlinear properties.10–13The simultaneous effect of the lay
ered nature of the medium, which substantially alters
spectrum of its linear waves and their dispersion, and
nonlinearity of the medium can give rise to new physic
effects such as dependence of the transparency of the
dium on the power of the wave being transmitted,14,15spatial
localization of nonlinear waves in periodic structures,10,11

and the existence of so-called gap solitons.16,17

The goal of the present study was to investigate
structure and character of the localization of nonlinear s
tionary waves propagating in an anharmonic medium c
taining thin plane-parallel layers having different linear pro
erties from the characteristics of the medium itself~planar
defects!. We consider the case in which the difference of t
properties of the main volume and the distinctive layers
such that a wave can be localized near the layers even in
linear limit, in which case the layers play the role
waveguides. Owing to the simultaneous appearance of lin
localization at the defect layers and nonlinear localizat
due to the anharmonicity of the medium around the layer
5861063-777X/2000/26(8)/8/$20.00
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become possible to have a resultant localization of the w
flux in a region containing a large number of plane laye
~the formation of a ‘‘supersoliton’’!. This effect has been
observed experimentally in planar nonlinear optic
waveguides with a periodically modulated cross section.10,11

The theoretical description of the nonlinear properties of l
ered structures is typically done using discrete models for
wave amplitudes in the individual waveguides,10,11,18which
are described phenomenologically by difference equati
with arbitrary parameters. Under a number of simplifyin
assumptions a consistent derivation of these equations
been done in the simplest case, when the anharmonicit
taken into account only in thin layers separated by wide
gions of linear medium.14,15,19We have considered the situ
ation in which all of the layered medium is substantia
nonlinear and it is a nontrivial problem to find the effectiv
nonlinearity of the individual waveguides and their effecti
interaction. This statement of the problem corresponds t
number of physical experiments10,11 and computer
simulations.3,4

One considers a nonlinear medium~magnet, elastic crys-
tal, or optically transparent dielectric! containing narrow lay-
ers in which the properties are different and which are se
rated by much wider regions. In the first part we gi
examples of a layered easy-axis ferromagnet with differ
values of the single-ion anisotropy constant~this corresponds
to the discussion in Ref. 20!, an anharmonic elastic crysta
containing layers~planar defects! of a higher-density mate
rial, an anharmonic optical medium with layers having
larger value of the linear refractive index~optical
waveguides, as in Refs. 3 and 4!, and, finally, an optical
waveguide of variable cross section~see Refs. 10 and 11!. In
all the cases listed, the propagation along the layered st
ture ~along thex axis! of a nonlinear monochromatic wav
© 2000 American Institute of Physics
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with an envelope that is slowly varying in space and time c
be described by the following nonlinear Schro¨dinger equa-
tion ~NSE!, which is standard in soliton theory:

i
]u

]t
1

]2u

]z2
12suuu2u52(

n
ld~z22an!u, ~1!

where thez axis is directed perpendicular to the defect la
ers; the sign functions561 for ‘‘focusing’’ and ‘‘defocus-
ing’’ media, respectively; the planar defect is characteriz
by l.0 in the case when the narrow layers have wavegu
properties~they ‘‘attract’’ linear waves!; 2a is the distance
between the planar defect layers. Thus the problem is equ
lent to the study of nonlinear excitations in a on
dimensional system containing point defects~nonlinear local
oscillations!. For a single isolated defect this problem h
been investigated in Refs. 21–23 for arbitrary signs ofs and
l. In the case of several defects interacting through a n
linear field, the solution of the problem becomes more aw
ward, and it becomes necessary to develop efficient meth
of studying such systems. A basic step in this direction is
study the nonlinear dynamics of a system of two para
defect layers~two point defects!. In the theory of nonlinear
waves it is well known24 that the basic features of solito
dynamics are contained in the problem of two coupled
harmonic oscillators, in particular, the breaking of the sy
metry of the excitation when a threshold value of its to
power is reached. In nonlinear optics this circumstance
pointed out in Ref. 25 for a system of two couple
waveguides. In Refs. 26 and 27, in a study of the propaga
of nonlinear optical pulses along two plane-paral
waveguides, it was assumed that the waveguides and
surrounding medium have different values of the nonlin
refractive index.~The profile of the nonlinear refractive in
dex in the direction perpendicular to the plane of t
waveguides was modeled by rectangular26 or smoothed
bell-shaped27 functions.! However, in all of the studies listed
the propagation of nonlinear waves was investigated us
numerical simulation methods.

For the proposed simple model~1! we have shown ana
lytically that in the case of two plane layers~two defects! the
wave flux undergoes a transition at a critical value of
energy to a spatially nonuniform state with different to
fluxes in adjacent layers.

1. PROPAGATION OF COHERENT WAVES IN NONLINEAR
LAYERED STRUCTURES

Let us give some examples of nonlinear layered me
whose dynamics is described by Eq.~1!.

1a. An easy-axis ferromagnet (easy axis along z) consis
of parallel layers differing in the single-ion anisotropy co
stant. Such a magnet is described by the Landau–Lifsh
equation28 for the magnetization vectorM5(Mx ,M y ,Mz):

i
\

2m0

]c

]t
2aMzDc1acDMz1b~z!cMz50, ~2!

whereD is the Laplacian operator,m0 is the Bohr magneton
c5Mx1 iM y , a is the exchange interaction constant, andb
is the single-ion anisotropy constant.~The alternating mag-
netic layers lie perpendicular to thez axis.!
n
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Let us consider a layered structure consisting of t
~thicknessb) layers of a magnet with magnetic anisotrop
(b02b1), separated by thick layers~thickness 2a2b) of
another magnet with anisotropyb0. It is convenient to intro-
duce the uniform ferromagnetic resonance frequencyv0

52m0M0b0 /\ and the magnetic lengthl 05Aa/b0 for the
thick layers of the second magnet (M0 is the nominal mag-
netization of the unit cell!. In the case of weak modulation o
the magnetic properties (b1b!b0a) and in the long-
wavelength approximation (l 0¹!1) for spin waves of small
amplitude (ucu2!M0

2), Eq. ~2! simplifies to

i

v0

]c

]t
2 l 0

2Dc1c2
b1~z!

b0
c2

1

2M0
2

ucu2c50. ~3!

Here the weak modulation of the magnetic anisotropy
taken into account only in the linear term. In the case o
coherent spin wave with a fixed wave numberk, propagating
along the x axis of a magnetic layered structure whic
is uniform in this direction, the solution is conveniently wri
ten in the form c52M0u(z,t)exp@2i(kx2vt)#, where
v5v0(11k2l 0

2) is the frequency of a linear spin wave in
homogeneous magnet with anisotropyb[b0, andu(z,t) is a
slowly varying function of the coordinatez and time. In the
stationary case the functionu(t) takes into account the fre
quency shift due to the nonlinearity of the wave, its possi
localization in thez direction, and the differences of the av
eraged anisotropy in the layered medium from the valueb0

and may also incorporate slow nonstationary effects. If ti
is measured in units of 1/v0 and the coordinate in units ofl 0,
then Eq.~3! for u(z,t) becomes

2 i
]u

]t
1

]2u

]z2
12uuu2u52

b1~z!

b0
u. ~4!

Finally, for a large difference in the thicknesses of t
magnetic layers (a@b) the right-hand side of Eq.~4! can be
replaced by a system ofd functions for the planar magneti
defects:

2
b1~z!

b0
u'2(

n
ld~z22an!u ~5!

with l5bb1 /b0.

1b. A nonlinear elastic medium containing plane-parallel d
fects perpendicular to the z axis.~For simplicity below we
assume that the defect layers differ from the main ma
only in the mass of the atoms.! For purely shear waves
propagating in a cubic crystal along the layers~along thex
axis! and uniform in the direction of they axis, through a
suitable choice of scales for the time, coordinate, and w
amplitude the equation of the dynamics for the displa
mentsu(x,z,t) can be put in dimensionless form:29
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r~z!
]2u

]t2
2

]2u

]x2
2

]2u

]z2
1sH 3S ]u

]xD 2 ]2u

]x2
13 S ]u

]zD 2 ]2u

]z2

1n
]

]z F S ]u

dxD
2 ]u

]z G1n
]

]x F S ]u

]zD 2 ]u

]x G J
2kF ]4u

]x4
1

]4u

]z4
1m

]2

]z2 S ]2u

]x2D G50, ~6!

wheres is the sign function, equal to 1 for ‘‘focusing’’ and
to 21 for ‘‘defocusing’’ media,n andk are dimensionless
parameters which are of the order of unity and depend on
ratios of the nonlinear and linear elastic constants, resp
tively, and the functionr(z)51 for the main matrix and
r(z)5M /m in the defect layers (M andm are the masses o
the defect and host atoms, respectively!.

In a focusing medium (s51) with normal dispersion
(k.0) the nonlinear waves are modulationally stable
their direction of propagation,29 and it is therefore natural to
consider stationary waves propagating along the layers
having an amplitude which depends weakly on time and
the coordinate in the direction perpendicular to the layers
the resonance approximation such a solution in the case
fixed wave vectork of the carrier wave can be written in th
form

u'A~z,t !cos~kx2vt !2B~z,t !sin~kx2vt !, ~7!

whereA and B are slowly varying functions of their argu
ments,v25k22kk4, which corresponds to the dispersio
relation for linear waves in the ideal lattice~in the chosen
variables the sound velocity is equal to unity!. Substituting
expression~7! into Eq. ~6! and retaining in it only the first
derivatives]5A/]t, ]B/]t with respect to the ‘‘slow’’ time
and the second derivatives with respect to the ‘‘slow’’ co
dinate z and introducing the complex functionU5A1 iB,
we can easily write Eq.~6! in the approximate form

2iv
]U

]t
1~12kmk2!

]2U

]z2
1

3

4
sk4uUu2U

52S M

m
21Dv2b(

n
d~z22an!U, ~8!

whereb is the thickness of the defect layers and 2a is the
distance between them. In the derivation of Eq.~8! we have
taken into account the relation]U/]t!vU and have
dropped the terms 2iv(M /m21)(]U/]t)d(z). Measuring
the time in units of 2/v and the coordinatez in units of
A12kmk2/k, and introducing the new displacementsW
5kUA3/(2A2), we rewrite Eq.~8! in an manner analogou
to ~4! and ~5!:

i
]W

]t
1

]2W

]z2
12suWu2W52(

n
ld~z22an!W, ~9!

wherel5@(M /m)21#b.

1c. A nonlinear optical medium containing plane-parall
waveguides, i.e., layers characterized by a larger refract
index than the optical medium between them.~As above, we
assume that the layers lie perpendicular to thez axis.! In the
case of a plane-polarized wave propagating in a nonmagn
e
c-

nd
n
n
f a

-

e

tic

medium (m51) along the layers~in thex direction!, with no
dependence on the coordinatey and with its electric field
vector E directed along they axis (Ei iy), Maxwell’s equa-
tions take the form

n2~z,E!
]2E

]t2
2c2DE50, ~10!

where the refractive indexn depends on the coordinatez and
the electric field:n5n01n1(z)1n2(E), with n1(z)5n1 in
the waveguides andn150 outside them. We shall assum
that the modulation of the parameters of the medium and
energy density in the wave are small, i.e.,n1 ,n2!n0, and the
dependence ofn on z needs to be taken into account only
the linear refractive index. We limit discussion to solutio
in the form of nearly monochromatic waves with fixed wa
vectorsk5 ixk, which are conveniently written

E5 iy@E1~z,t !cos~kx2v0t !2E2~z,t !sin~kx2v0t !#,
~11!

whereEi varies slowly withz and t and we have chosen
relationv05ck/n0, which corresponds to the dispersion r
lation of linear waves in the medium separating t
waveguides.~We recall that here the slow dependenceEi(t)
takes into account the difference of the true frequencyv(k)
at a givenk from v0(k) on account of nonlinear effects an
modulation of the parameters of the medium.!

We introduce the complex functionE5E11 iE2, in
terms of which the nonlinear contribution to the refracti
index takes the form30 n2(E)5sa(v)uEu2, where we have
introduceds511 and21 for focusing and defocusing me
dia, respectively. Substituting expression~11! into Eq. ~10!
and keeping only the first derivatives of the functionE with
respect to the slow time, we obtain

2in0
2v0

dE

]t
1c2

]2E

]z2
12n0n1~z!v0

2E

12n0av0
2suEu2E50, ~12!

where in the first termn2 has been replaced byn0
2, in view of

the inequalitiesn1 ,n2!n0 , ]E/]t!v0E. If the thicknessb
of the optical waveguides is much smaller than the dista
2a between them, then, measuring the time in units
2n0 /av0 and the coordinatez in units of (n0 /a)1/2k21, we
can reduce Eq.~12! to the form~9! with l52b(n1 /n0):

i
]E

]t
1

]2E

]z2
12suEu2E52(

n
ld~z22an!E. ~13!

In real optical experiments the statement of the probl
may be somewhat different:10,11 a nonlinear electromagneti
wave propagating in a planar waveguide of variable cr
section. A nonlinear optical medium with refractive inde
n5n01n2(E) occupies the region 0,y,h(z)5h01D(z),
whereD.0, and the wave is plane polarized and it prop
gates along thex axis. If the waveguide is bounded by a
optically nontransparent medium, then, in the case of w
modulation of the layer thickness, solutions close to a mo
chromatic wave can be written in the form
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E5 iy@E1~z,t !cos~kx2v0t !

2E2~z,t !sin~kx2v0t !#sin
py

h~z!
, ~14!

where it is convenient to choosev0'Ac2k2/n0
21p2/h0

2.
Then, after integration of equation~10! over the thickness o
the waveguide, Eq.~12! is modified as follows:

2in0
2v0

]E

]t
1c2

]2E

]z2
1

c2~h22h0
2!

h2h0
2

E1
4

3
n0av0

2suEu2E50.

~15!

If time is measured in units of 3n0 /av0 and the coordinate
in units of (3n0/2a)1/2k21, then Eq.~15! reduces to the stan
dard equation

i
]E

]t
1

]2E

]z2
12suEu2E52l~z!E, ~16!

wherel(z)'3n0D(z)/(wak2h0
3). Thus the thicker regions

of the optically transparent material play the role of effect
waveguides in the two-dimensional nonlinear optical syst
under consideration.

2. LOCALIZATION OF NONLINEAR WAVES IN AN
ANHARMONIC MEDIUM CONTAINING TWO PLANE-
PARALLEL ‘‘ATTRACTIVE’’ DEFECTS

As a first step in the study of localization of nonline
waves in a layered medium, let us consider the simple c
of an anharmonic medium containing two plane-parallel l
ers differing in their linear properties from the surroundi
matrix and separated by a distance much greater than
thickness. In this case Eq.~1! becomes

i
]u

]t
1

]2u

]z2
12suuu2u52l@d~z1a!1d~z2a!#u, ~17!

where we assume thatl.0, i.e., the defect layers ‘‘attract’
the linear waves and play the role of waveguides.

The problem reduces to one of solving the nonline
Schrödinger equation in the region outside the distincti
layers, with the following boundary conditions at them~at
z57a):

uu7a205uu7a10 ~18a!

and

]u

]zU
7a10

2
]u

]zU
7a20

52luu7a , ~18b!

and with zero asymptotes at infinity (z→7`) for stationary
localized states of the formu(z,t)5u(z)exp(2ivt). ~For the
case of a single defect layer this problem was considere
detail in Ref. 23.!

It is easy to show that the functionu(z) must be chosen
real for spatially localized states. Indeed, for a complex fu
tion u(z)5a(z)exp(iw(z)) it follows from Eq. ~17! and the
boundary conditions~18! thatdw/dz5c/a2, and the phasew
and its derivativedw/dz are continuous atz57a. From the
equation for the functiona(z) and the condition that it mus
se
-

eir

r

in

-

decay for z→7` it follows that c50 outside the
waveguides, and, hence~from the condition of continuity of
dw/dz at z57a), between them as well.

We shall consider separately the cases of focusings
511) and defocusing (s521) media.

2a. Focusing medium.We sets511 in Eq. ~17! and take
into account the real-valuedness of the functionu(z). Then
four types of localized stationary states are possible. For
power of the total flux in the nonlinear wave there exist tw
solutions with equal and opposite phases of the wavesw1

5w2 and w15w21p) and with equal amplitudes near th
two distinctive layers~the planar defects!. These states are
analogous to the leading nonlinear modes in the nonlin
mechanics of finite-dimension systems. When the powe
the wave exceeds a threshold value, two additional soluti
appear, having the same phases but different amplitude
the waves localized near the two planes.

If the phases of the waves near the two planes are e
~an analog of in-phase oscillations of two defects in the o
dimensional case!, then the solutions of equations~17! in the
regionsz,2a ~1!, z.a ~2!, and 2a,z,a ~3! have the
following form:

u1,2~z!5« sech@«~z2z1,2!#,
~19!

u3~z!5
q8j

dn@j~z2z3!,q#
,

where the parameter« characterizes the amplitude of th
wave and is related to the value ofv ~i.e., to the deviation of
the frequency of the nonlinear wave in the layered medi
from the frequency in a homogeneous linear medium w
the same wave vector!: «5A2v, dn(p,k) is the Jacobi
elliptic function with modulus q (q85A12q2), and
j5«/A22q2. Solution ~19! is one-parameter and is com
pletely characterized by the value of the parameter«. The
other four parametersq andzi are expressed in terms of« via
the boundary conditions forz57a.

Since the wave flux is localized mainly near the tw
‘‘attractive’’ planes, a convenient characteristic of the loc
ized wave is provided by the field amplitudes at these plan
U15u(z52a) andU25u(z5a). From the boundary con
ditions we obtain six relations between the parameters«, q,
zi , andUn ~wherei 51,2,3 andn51,2):

U1,25« sech@«~a6z1,2!#5
q8j

dn@j~a6z3!,q#
, ~20!

Un~2A«22Un
22l!1@AUn

22q82j2Aj22Un
2

2UnA«22Un
2#50. ~21!

Using relations~20!, we can eliminate the parameterszi

andq8 and write the boundary conditions~21! in the form of
a closed system of two algebraic equations for the am
tudesUn , containing as parameters only the frequency-s
characteristic« and the interplane distance 2a. This proce-
dure is easily carried out in the limit of weak dynamic co
pling between planes.

In the limit of a linear medium the shift in the frequenc
of a wave localized near an isolated defect plane
v l52l2/4 («5l/2), and the shift of the frequencies of th
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in-phase and antiphase localized waves in the presenc
two planes and in the case of weak coupling between th
can be written in the form

v1,25v l7n0 , n05
l2

2
exp~2la!, ~22!

where the parametern0, which characterizes the effectiv
interaction of the waves at the defect planes, is small
la@1 ~a large distance between waveguides or a strong
calization of the waves at these planes!.

In a focusing medium, in which the frequency of th
wave decreases as its amplitude grows, the conditionla
@1 implies the inequality«a@1 ~the dynamic coupling of
the waveguides decreases with increasing amplitude!. The
period of the elliptical function in~19! exceeds the distanc
between planes, 2K(q).2a, and at a large distance betwee
planes (a@1) we haveq8!1. If one uses the inequalitie
q8!1 and exp(2la)!1 ~i.e., la@1) and the condition of
small-amplitude waves,Un!«, then Eq.~20! yields the de-
sired relationq85q8(«,U):

q8'
2

«
AU1U2 exp~2«a!. ~23!

We note that forl}1 in the limit of weak coupling of
the waveguides,la@1, there is a wide range of frequencie

v l2v!v l
2}1, ~24!

in which all of the above inequalities hold. In that case,
the interval exp(22la)!12v/vl!vl the function Un

5Un(v) is substantially transformed, and nonlinear prop
ties appear in the system.

Using relation~23! we obtain from~21! the basic system
of equations for determining the frequency dependence
the amplitudesUn of the in-phase waves localized near t
defect planes:

~v l2n2v!Un2Un
31n~Un2Um!50,

~25!
n,m51,2, nÞm,

where

n52«2e22«a ~26!

is a parameter characterizing the interaction of the locali
waves via the nonlinear field; in the linear limit it goes ov
to n0. Since we are investigating only stationary states wit
time dependence}exp(2ivt), the system~25! corresponds
to the dynamical equations

2 i
]Un

]t
1~v l2n!Un2Un

31n~Un2Um!50,

~27!
n,m51,2, nÞm

for two linearly coupled anharmonic oscillators~rotators!
with a potential energy

W5 (
n51,2

F1

2
~v l2n!Un

22
1

4
Un

4G1
n

2
~U12U2!2, ~28!

where Un are the oscillation amplitudes of the oscillator
The situation is unusual in that the parametern appearing in
the energy~28! depends weakly on the frequency of th
wave. However, when this dependence is taken into acco
of
m

r
o-

-

of

d

a

.

nt,

the equations acquire anharmonic terms of the order
laexp(2la)U3!U3, which are substantially smaller than th
main nonlinear terms. Therefore, in what follows we can
n'n0.

As we have pointed out, besides solution~19! with a
fixed value of the phasew there can also be localized sta
tionary states in whichw has the form of a step function an
changes in value byp at the point where the amplitude goe
to zero between the defect planes. For this antiphase w
flux the solution has the form

u1,2~z!56« sech@«~z2z1,2!#,
~29!

u3~z!52qq8h
sn~hz,q!

dn~hz,q!
,

whereh5«/A2q221 and z152z2. For this case relations
~20! and ~21! are rewritten in the form

U1,256« sech@«~a6z1,2!#56qq8h
sn~ha,q!

dn~ha,q!
, ~30!

Un~2A«22Un
22l!1@A~Un

22q82h2!~q2h22Un
2!

2UnA«22Un
2#50, ~31!

while ~23! remains valid~after the replacementU2→uU2u),
and when the inequalities discussed above hold, express
~25!–~28! retain their form. Thus equations~25! and ~27!
describe all types of localized stationary states in a system
two planar defects.

Eliminating the shift of the frequencyv from ~25!, we
find the relation between the wave amplitudesU1 andU2:

~U12U2!~U11U2!~U1U22n0!50. ~32!

This is the standard equation that arises in the analysi
the dynamics of coupled anharmonic oscillators.24 Its solu-
tions U15U2 , U152U2 and U15n0 /U0 correspond to
three types of stationary localized waves — with identic
in-phase fluxes in the two planes~SS!, with antiphase fluxes
of equal power~A!, and with in-phase fluxes of differen
intensity ~SN!.

In the antiphase solution the frequency dependence
the wave amplitudeUn has the form

U152U25Av l1n02v, ~33!

and its solution, as was shown in Ref. 24, is stable for
values of the intensity of the total flux.

In the in-phase symmetric mode

U15U25Av l2n02v, ~34!

but this solution is stable only at frequencies belowv5vb

5v l22n0, where a bifurcation of the solution occurs an
the stable in-phase nonuniform SN state rises, with uneq
amplitudes

U1,2
2 5@~v l2v!6A~v l2v!224n0

2#. ~35!

An analogous bifurcation of the solutions and the on
of nonuniform states have been treated previously26,27by nu-
merical methods for rectangular and bell-shaped refrac
index profiles in a system of optical waveguides.

We note that in a focusing medium there also exist
state described by the function dn(jz,q), with a wave flux
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localized between the planar defects. It is clear, howe
that this solution is unstable with respect to a transfer of
wave into one of the attractive layers.

The level of excitation of the system~total wave flux! is
conveniently characterized by the parameterI 5(Un

2 , which
is related to the total number of elementary excitations in
system. For the types of localized waves considered,
parameter can have the following kinds of frequency dep
dence:

I A52~v l1n02v!, I SS52~v l2n02v!,
~36!

I SN5v l2v.

We see that at the bifurcation pointvb5v l22n0 , I b

52n0 there occurs a sharp change in the frequency dep
dence of the wave amplitudes, and the nonlinearity of
medium is manifested in a substantial way. According
formulas ~23! and ~33!–~35!, all of the inequalities used
above (q8!1, Un!«) hold at the bifurcation point, even in
the substantially nonlinear region (I .I b), when condition
~24! is satisfied, in which casev l2v@v l2vb . Relations
~36! are shown by curves1–3 in Fig. 1.

To relate the newly introduced integral characteristiI
for the effective system of oscillators under study~27! to the
total number of elementary excitationsN in the initial system
~17!, we consider the Lagrangian density corresponding
Eq. ~17!:

L5
i

2 S u*
]u

]t
2u

]u*

]t D2U]u

]zU
2

1suuu4

1l@d~z1a!1d~z2a!#u2. ~37!

It is easy to see that the adiabatic invariant construc
for the investigated single-frequency solutions with the
of the Lagrangian~37! has the form

FIG. 1. The functionv(I ) for the in-phase symmetric~SS! mode~1!, the
in-phase asymmetric~SN! mode~2!, and the antiphase~A! mode~3! in the
case of a focusing medium, and for the in-phase~SS! mode ~18), the an-
tiphase~A! mode~38), and the nonuniform~AN! state~28) in the case of a
defocusing medium.
r,
e

e
is
-

n-
e
o

o

d
d

N5E
2`

1`

uuu2dz ~38!

and, in the case of quasiclassical quantization, specifies
total number of quanta of the field~we set\51!. The total
energy of the system, as follows from~37!, is given by

E5E
2`

1` H U]u

]zU
2

2suuu42l@d~z1a!1d~z2a!#uuu2J dz.

~39!

Substituting solutions~19! and~29! into expression~38!,
we easily calculate the exact number of quanta of the field
regions 1 and 2:

N1,25«~12A12U1,2
2 /«2!. ~40!

For weak coupling of the waveguides (la@1) the num-
ber of elementary excitations in them is equal to 2N1 and
2N2, respectively, and the total number of field quanta
approximatelyN'2(N11N2). In this weak coupling case
expression~40! simplifies in the frequency region of intere
to us ~24!, which includes the bifurcation point, and the r
lationship betweenN and I becomes particularly simple:

N'I /« ~41!

or N52I /l in the small-amplitude limit, when«'l/2.
Substituting the solutions for the nonlinear local mod

into expression~39! for the energy, in the same basic a
proximation it is easy to obtain the trivial resultE5v lN.
However, we can find the functionE5E(N) to higher accu-
racy by using formulas~36! and~41! and the known relation
for nonlinear single-frequency excitationsv5]E/]N ~see
Ref. 24!. In that case it is easy to obtain the following rel
tions for the integrals of the motion for all the types of loc
modes:

EA5~v l1n0!N2lN2/8,

ESS5~v l2n0!N2lN2/8, ~42!

ESN5v tN2lN2/4.

Thus when the density density exceeds a threshold v
Eb at a fixed value ofN, the minimum energy will belong to
the SN state, in which the wave propagates predomina
along one of the planes.

2b. Defocusing medium.Let us turn to a study of the local
ization of the wave flux in a system of two ‘‘attractive
planes in a defocusing nonlinear medium, which correspo
to s521 in Eq. ~17!. In this case the problem also reduc
in the limit la@1 to the dynamics of an effective system
two coupled anharmonic oscillators, but now with a ‘‘hard
nonlinearity, the frequency of which increases with the a
plitude. As was shown in Ref. 23, in the case of a sin
defect plane in a defocusing medium the frequency of a w
propagating along it increases as its amplitude increases,
at a minimum frequency shiftv5«50, corresponding to the
edge of the band of linear bulk waves, the total quantity
wave flux reaches a maximum valueN5*dzuuu25N05l.
Here the profile of the wave near the waveguide has the f
of an algebraic soliton with power-law asymptotic behav
at large distances. A flux with a power greater thanN0 can-
not be localized in a defocusing medium.
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As in the previous case, in a system with two plan
parallel layers, three types of stationary states can exist:
equal phases and amplitudes of the wave in the two pla
~SS!, with equal amplitudes and opposite phases~A!, and
with different amplitudes of localized waves. Now, howev
this nonuniform state~AN! branches from the antisymmetr
solution, and the phases in the planes differ byp.

The solution for the in-phase mode~SS! in regions 1, 2,
and 3 has the form

u1,2~z!57« cosech@«~z2z1,2!#, u3~z!5
q8h

cn~hz,q!
~43!

with z1.2a and z252z1, and the solution for the an
tiphase modes~A! and ~AN! is written as follows:

u1,2~z!52« cosech~«@z2z1,2!#,

u3~z!52q8j
sn@j~z2z3!,q#

cn@j~z2z3!,q#
, ~44!

wherez350 for theA mode andz3Þ0 for the AN mode.
In the case of weakly coupled waveguides all of t

inequalities discussed above are satisfied.~We note that now
the effective coupling between waveguides increases we
with increasing amplitude of the propagating wave.! Analyz-
ing the solutions~43! and ~44! as in the previous case, w
easily obtain effective equations of the form~25! and ~27!
but with the opposite sign in front of the nonlinear ter
~coupled ‘‘hard’’ anharmonic oscillators!. Then Eq.~32! is
changed to

~U12U2!~U11U2!~U1U21n0!50. ~45!

The state with the asymmetric distribution of the wa
near the two planes (U252n0 /U1) branches off at the bi-
furcation pointvb5v l12n0 from the antisymmetric mode
with U152U2. Let us write expressions for the amplitud
of the wave fluxes as functions of the frequency shift for
different modes:

U15U25Av2v l1n0 ~SS!,

U152U25Av2v l2n0 ~A!, ~46!

U1,2
2 5

1

2
@~v2v l !6A~v2v l !

224n0
2# ~AN!.

The frequency is related to the integrated power of the fl
as

I SS52~v2v l1n0!, I A52~v2v l2n0!,
~47!

I AN5v2v l .

These functions are illustrated by curves18, 28, and38.
It is seen that there is a certain symmetry in the functio
I (v) for the focusing and defocusing media. After the bifu
cation point (I .I b52n0) the A mode becomes unstabl
and the AN and SS modes are stable at all admissible va
of the wave energy. The relation betweenI and the total
number of field quantaN retains the form~41!.

Far from the bifurcation point (I @I b , «→0) the analy-
sis in the framework of the simplified model of coupled a
-
th
es

,

ly

e

x

s

es

-

harmonic oscillators no longer holds. However, it can
shown that at values of the wave fluxI'l2/4 and I'l2/2
the functionsv5v(I ) for the nonuniform AN mode and fo
the uniform SS and A modes terminate at the boundary
the spectrum of linear bulk waves~see Fig. 1!. In this case
the profiles of the field distribution in all the modes take t
form of algebraic solitons.

3. LOCALIZATION OF THE COHERENT WAVE IN A
NONLINEAR LAYERED MEDIUM

Let us turn to an analysis of a nonlinear layered medi
containing a period structure of widely spaced parallel pla
with properties different from those of the surrounding m
dium, i.e., Eq.~1! with an infinite number ofd functions on
the right-hand side. In the case of weak dynamic coupl
between defect planes we can use the results of Sec.
reduce the problem to an effective system for an infin
chain of coupled anharmonic oscillators, which in the case
a coherent stationary wave are described by the follow
system of difference equations:

2 i
dUn

dt
1~v l22n0!Un2Un

31n0~2Un2Un112Un21!50.

~48!

Such equations are ordinarily used for interpreting
results of experiments on the localization of optical fluxes
layered nonlinear media,10,11,18but for this the parameters o
the effective chain of oscillators are not specified. The ma
ematical problem of the localization of excitations in discre
nonlinear systems of the type~48! and of the existence o
discrete envelope solitons in them is now the subject o
large number of papers.31,32 We restrict discussion to the
simplest case, when the localization region of the nonlin
wave in the layered medium is much larger than the per
of this structure. This condition imposes an additional
striction on the wave amplitude: instead of the previous
equality Un!l2 (Un!«), we now haveUn!exp(2la/2).
Here the domain of admissible wave frequencies narro
and inequality~24! goes over tov l2v!l2exp(2la). With
the indicated stipulations, Eq.~48! can be replaced by the
nonlinear Schro¨dinger differential energy for the function
U5U(Z,t):

2 i
]U

]t
24a2n0

]2U

]Z2
1~v l22n0!U2U350 ~49!

with the well-known soliton solution

Un'
A2Av l22n02v

cosh@A~v l22n02v!/n0n#
e2 ivt. ~50!

This solution describes analytically a nonlinear wave
calized in the transverse direction and propagating alon
layered structure, as was observed, in particular, in the
periments of Refs. 10,11, and 18.

This study was supported by the project INTAS-9
~Grant No. 167! and the program MNOP ~Grant
USU082087!.
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The quantum magnetic size oscillations~QMSOs! of the thermodynamic quantities in layered
organic conductors with a quasi-two-dimensional electron energy spectrum of arbitrary
form are investigated theoretically. It is shown that the modulation of the QMSOs contains detailed
information about the dispersion relation of the charge carriers. ©2000 American Institute
of Physics.@S1063-777X~00!00908-7#
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The Shubnikov–de Haas and de Haas–van Alfen qu
tum oscillation effects1–3 are manifested most clearly in con
ductors of organic origin. This is due to the low-dimension
character of the energy spectrum of the charge carrier
organic conductors, which, as a rule, have a layered or
mentary structure with sharp anisotropy of the electrical c
ductivity. The electron energy spectrum of layered cond
tors is quasi-two-dimensional, and the dispersion relat
«(p) for the charge carriers in filamentary conductors w
high conductivity only along the filament obviously has
quasi-one-dimensional character. The high conduction of
ganic conductors, if only in one direction~e.g., along they
axis!, attests to the large number of charge carriers in th
and these conductors have a metallic type of conductivity
least in that one direction.

The Fermi surface«(p)5«F of quasi-one-dimensiona
conductors can be written in the form of slightly corrugat
planes in momentum space. In layered conductors place
a magnetic fieldH5(0, 0,H) applied along the layers,
large fraction of the charge carriers moves along open tra
tories in momentum space and, of course, do not take pa
the formation of quantum oscillation effects in massi
samples having thicknessesL much larger than the mean fre
path l of the charge carriers.4 However, in thin conductors
(L< l ) with surfaces smooth enough to reflection the co
duction electrons in a nearly specular manner, the a
S(«,px ,py) of the open~cut off by specular reflections of th
charge carriers on the boundary of the sample! sections of
the isoenergy surface«(p)5«F by a planepz5const can
take on only discrete values which differ by a multiple
2p\eH/c, where e is the charge of the electron,\ is
Planck’s constant, andc is the speed of light in vacuum. A
a result, the conduction electrons on the open sections o
Fermi surface create a sort of oscillatory effect5–7 wherein
the magnetosize quantum oscillations of the magnetiza
and magnetoresistance are showed by modulation of the
plitude. In layered organic conductors a considerably lar
number of charge carriers is involved in the formation of t
quantum magnetosize oscillations than in ordinary qu
isotropic metals on account of the weak dependence
5941063-777X/2000/26(8)/4/$20.00
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S(« px ,py) on the momentum projectionpx in these materi-
als ~the x axis is directed along the normal to the layers!. In
quasi-one-dimensional conductors one expects that the q
tum magnetosize effect will be still more clearly manifeste
since for them the areas of the sections of the Fermi sur
which are cut off by specular reflections depend weakly
pz as well.8 As a result, averaging over these variables do
not lead to a substantial decrease in the amplitude of
oscillations in comparison with the case of quasi-isotro
metals.

Let us consider the oscillatory quantum magnetosize
fects in organic conductors with an arbitrary form of th
electron energy spectrum

«~p!5 (
n50

`

«n~py ,pz!cosFanpx

\
1an~py ,pz!G . ~1!

The coefficients of the cosines in~1!, as a rule, fall off
rapidly with increasing numbern, and the maximum value o
the function «1(py ,yz) on the Fermi surface is equal t
h«F!«F , whereh is the quasi-two-dimensionality param
eter of the electron energy spectrum of the layered cond
tor; a is the distance between layers, andan(py ,pz)
52an(2py ,2pz). In quasi-one-dimensional conducto
the functions «n(py ,pz)5«n(2py ,2pz), including
«0(py ,pz), depend weakly onpz .

In a magnetic field parallel to the surface of a thin sl
with sufficiently smooth facesy50,L, the quantization of the
areas takes the form

S~«,px ,pz!5E
px

px1eHL/c

2py~«,px ,pz!dpx

52p\
eH

c
~n1g!, ~2!

where 21,g<0, andn51,2,3, . . . , i.e., n is a positive
integer. We assume, solely for the sake of brevity in
analysis of oscillatory effects, that the open sections of
Fermi surface are symmetric,py(px ,pz)52py(2px ,pz).

In magnetic fields that are not too high, so thata is not
only much smaller thanL but also much smaller than th
© 2000 American Institute of Physics
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characteristic quantum radiusr5(c\/eH)1/2, one can find
the quantized energy spectrum of the conduction electr
from relation~2! with the use of their quasiclassical traje
tories in the magnetic field. Solving the equation«(p)5«,
where«(p) is given by~1!, for py , we obtain the following
expression for the average value of the momentum pro
tion py :

p̄y~«,px ,pz!5
c

eHLEpx

px1eHL/c

py~«,px ,pz!dpx5
p\

L
n.

~3!

If the quantum radiusr is comparable to the distancea
between layers, as is the case for nanostructures and s
lattices, then the energy spectrum of the conduction elect
can be determined by solving the Schro¨dinger equation

Ĥ~P̂2eA/c!c5«c. ~4!

The vector potentialA5(Hy, 0, 0). In the Landau gauge th
vector potential of the HamiltonianĤ(Px2(eH/c)y,
p̂y ,pz) is independent ofx, z, and the generalized momen
tum componentPx ; the pz are good quantum numbers. F
h!1 the Hamiltonian depends weakly on the kinematic m
mentumpx5(Px2eHy/c) and, consequently, ony. In the
limit h50 the componentpy will also be a good quantum
number characterizing the state of a conduction electron,
the action of the operatorp̂y on the wave functionc in the
case of nonzero but smallh is written as

p̂yc5py
0c1d p̂yc, ~5!

whered p̂y goes to zero together withh.
For smallh the solution of equation~4! can be written as

c~x,y,z!5u~y!expF i

\
~xpx1ypy

01zpz!G . ~6!

In the linear approximation in the small parameterh the
equation for the functionu(y) has the form

F«0~py
0,pz!1«1~py

0,pz!cosS apx

h
2

eHa

c\
y1a1~py

0,pz! D G
3u~y!2 i\vy

0 ]u~y!

]y
5«u~y!, ~7!

wherevy
05]«0(py

0 ,pz)/]py
0 .

The solution of equation~7! must satisfy the boundar
condition u(0)5u(L)50, which is what determines th
quantized energy levels of the charge carriers. This bound
condition can be satisfied by a standing wave with node
y50 andL. After constructing the standing wave using s
lutions of equation~7!, one can easily obtain the quantize
energy spectrum of the charge carrier. In the leading appr
mation in the parameterh it is

«n
0~pz!5«0S p\n

L
,pzD , ~8!

and the dependence of the energy levels on the magn
field appears in small corrections to this quantity in the
rameterh.
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For determining the quantum magnetosize oscillations
the magnetization and the other thermodynamic quantitie
is sufficient to calculate the thermodynamic potentialV of a
sample enclosed in a volumeV:

V52Q(
s

(
n50

`
2V

L~2p\!2

3E dpxE dpz lnS 11exp
2«1zs

Q D , ~9!

whereQ is the temperature multiplied by Boltzmann’s co
stant,zs5z6mH, z is the chemical potential, andm is the
Bohr magneton. Using Poisson’s formula, we write the
cillatory part of the potential as

Ṽ5Re(
k51

`

(
s

I k , ~10!

where

I k52Q
2V

L~2p\!2E
2g

`

dnE dpxE dpz exp~2p ikn!

3 lnS 11exp
2«1zs

Q D . ~11!

Making a change of the variable of integration fromn to
the more convenient«, we obtain

I k52Q
2V

L~2p\!2E«0

`

d«E dpxE dpz

3 lnS 11exp
zs2«

Q D ]n

]«
exp~2p ikn!. ~12!

It should be noted that forQ!z the main contribution to
I k comes from the neighborhood of the point«5zs . The
limits of integration overpz , generally speaking, are dete
mined from the conditionS.0. However, the oscillatory
part of the magnetization of the conductor is formed
charge carriers with extremal values ofS. For any dispersion
relation of the conduction electronsS has an extremum on
the central section of the Fermi surface by planepz50, and
there can also be several more extrema if the spectrum o
charge carriers has a sufficiently complicated form.

Let us consider the simplest model for the dispers
relation of a quasi-two-dimensional conductor, whenS has
one extremum atPz50, viz.

«5
py

21pz
2

2m
1hA cos

apx

\
, ~13!

where the constantA has the same value as«F .
A dispersion relation of this form allows one to obta

not only the quasiclassical but also the exact solution
equation~4!. In calculating the oscillations of the magnetiz
tion it is sufficient to take into account only a small neig
borhood of the pointpz50 within which

pz
2<p0

2!2m«.

Then, after determiningn from the quantization condi-
tion ~2!, one can write it in the form of two terms, viz.,
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main term which is independent ofH, and a small correction
which is proportional toh and depends on the magnet
field:

n52g1
LA2m

2p\
A«2pz

2/2mF12h
Ar

2L~«2pz
2/2m!

3sin
L

2r
cosS apx

\
1

L

2r D G , ~14!

wherer 5c\/eHa. Let us assume that

R

L
h!1. ~15!

Changing the order of integration in Eq.~12!, we first inte-
grate by parts over«; keeping only the rapidly oscillating
terms, we obtain

I k52
V

L~2p\!2p ikE2p\/a

p\/a

dpxE
2p0

p0
dpz

1

2p ik

3E
«0

`

d« f S «2zs

Q Dexp~2p ikn!, ~16!

where f (x)5(11expx)21 is the Fermi distribution function
Then we substitute expression~14! for n into ~16!:

I k5
V

L2p2\a
expS 22p ikg2

ip

2 D
3E

0

`

d« f S «2zs

Q D E
2p0

p0
dpz expS ikLA2m«2pz

2

\
D

3J0S hkrA2m

\~2m«2pz
2!1/2sin

L

2r D , ~17!

whereJ0 is the Bessel function.
In integrating overpz we use the method of stationar

phase. Taking inequality~15! into account, it is easy to se
that the most rapidly varying function in the integrand
exp(ikLA2m«2pz

2/\), which has a ??stationary point atpz

50.
As a result of straightforward calculations we arrive

the expression

I k52
21/4V\1/2z3/4

p3/2ak5/2L5/2m1/4
C~kG!expS 22p ikg2 i

p

4

1 i
kLA2mzs

\ D J0S hkrAA2m

\Azs

sin
L

2r D , ~18!

where C(z)5z/sinhz, L5(pQL/2\z)A2mz. In the
smoothly varying functions one can replacezs by z, since
mH!z.

Using formulas~10! and ~18!, we can write the oscilla-
tory part of the thermodynamic potential in the form

Ṽ5V0(
k

C~kG!

k5/2 (
s

cosS 22pkg2
p

4
1

kL

\
A2mzsD

3J0S hkrAA2m

\Azs

sin
L

2r D , ~19!
t

whereV525/4V\1/2z3/4/(p3/2aL5/2).
From here the calculation of the quantum oscillations

the thermodynamic quantities is done by elementary diff
entiation of expression~19!. Let us determine the oscillator
part M̃ of the magnetic momentum in the direction of th
magnetic field,

M̃52
]Ṽ

]H
. ~20!

Keeping only the leading terms in the parametermH/z,
we obtain

M̃5
2V0

H (
k

C~kL!

k5/2
cosS 22pkg2

p

4
1

kL

\
A2mz D l

R

3~2sinR1R cosR!J1S k
l

R
sinRD , ~21!

whereR5L/2r , l5hALm/(\A2mz).
The argument of the Bessel functionJ0 in expression

~21! goes to zero when the thicknessL of the sample is a
multiple of the period of the open electron trajectory 2pr .
As the magnetic field is varied, the condition thatL is a
multiple of 2pr is periodically broken and reestablishe
This leads to modulation of the magnetosize oscillatio
~Fig. 1!.

It is easy to obtain the oscillatory dependence of
magnetization in the case of a quasi,two-dimensional e
tron energy spectrum of arbitrary form. Keeping only t
first two terms in relation~1!, we obtain an expression forM̃
that is analogous to~21! but with hAm/A2mz replaced by
«1 /v0, wherev05]«(py,0)/]py .

FIG. 1. Dependence ofM /H on R5LeHa/2c\ in relative units;l5100~a!
and 30~b!.
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The behavior of the conductance upon changes in temperature~in the interval 1.5–40 K! and
magnetic field~up to 20 kOe! is investigated for a series of samples with ad^B& layer
in Si, with hole concentrations in the conductingd layer of 2.531013–2.231014 cm22. It is
shown that the temperature and field dependences obtained can be explained successfully as a
manifestation of the weak localization effect and the interaction of mobile charge carriers
~holes! in a two-dimensional electron system under conditions of strong spin–orbit interaction.
An analysis of the behavior of the quantum corrections yields the temperature dependence
of the phase relaxation time of the carriers,tw5AT21, with A'(1.460.3)310212 K•s, where
this temperature dependence is treated as a manifestation of hole–hole scattering processes,
and the values of the interaction constants are also obtained (lT'0.64–0.73). ©2000 American
Institute of Physics.@S1063-777X~00!01008-2#
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INTRODUCTION

Among the various classes of two-dimensional elect
systems are delta layers in semiconductors.1 These are struc
tures in which the impurity atoms are located in a sin
monolayer inside a pure single crystal of a semiconduc
The preparation of structures is usually done by molecu
beam epitaxy.

The charge of the impurity atoms lying in a single cry
tallographic plane of the semiconductor creates a poten
well for mobile charge carriers. This well is manifested a
two-dimensional electron gas: in the plane of the layer
electrons behave as free electrons, while in the perpendic
direction there are discrete quantum levels~subbands!. The
depth of the potential well, the number of the quantum le
els, and the occupation of these levels are determined by
‘‘sheet’’ concentration of impurity atoms, i.e., the density
two-dimensional~2D! electrons.

The subject ofd layers is of both purely scientific an
applied interest, since a very wide range of concentration
2D electrons can be obtained in them, including extrem
high values (;1014–1015 cm22). However, the mobility in
the d layers is relatively low~inferior to heterojunctions! on
account of the contribution of elastic scattering of carriers
the impurity atoms that create the potential well. Moreov
this circumstance creates conditions for the manifestatio
quantum interference effects ind layers ~weak localization
of electrons and the electron–electron interaction!.2,3 The
study of these effects, as we know, can yield informat
about the parameters of the relaxation and interaction of
electrons.

In this paper we investigate the effects of weak locali
tion of the electrons~WL! and of the electron–electron in
teraction~EEI! in d layers of boron (d^B&) in silicon. The
mobile charge carriers in this case are holes, but to simp
5981063-777X/2000/26(8)/5/$20.00
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the terminology we shall by convention refer to them belo
as electrons. The obtaining ofd^B& layers in Si was first
reported in Refs. 4 and 5, and the manifestation of WL a
EEI effects in these objects was first demonstrated in Ref
and 7. It is of interest to study quantum interference effe
for a series of samples with different concentrations of
electrons.

OBJECTS OF STUDY

We investigated the behavior of the resistance and
dependence on the magnetic field at various temperature
four samples1! whose characteristics are listed in Table I. T
carrier concentrationn in them varied by an order of magn
tude ~from sample A to sample C!, while samples B-I and
B-II had concentrations of around 731013 cm22 but differ-
ent elastic scattering times. According to Ref. 6, these car
concentrations correspond to the region of ‘‘metallic’’ b
havior of the electronic properties ofd^B& layers, since the
metal–insulator transition in such systems occurs at a c
centration<131013 cm22. The arrangement of the sub
bands in the potential well for the corresponding carrier c
centrations can be obtained from the calculated cur
«(NA) given in Ref. 6, or from estimates that can be ma
according to the theory of Ref. 8 with the use of the para
eter n5NAaB

2 , where NA is the concentration of accepto
impurities in thed layer,aB5k\/me2 is the effective Bohr
radius, andk is the dielectric constant of the lattice (k
511.4 for silicon!.9 The values of« thus obtained agree
roughly with the calculated functions in Ref. 6.

Quantum interference leads to quantum corrections
the conductance of the object under study. The conducta
of thed layer is made up of the conductance of the occup
quantum subbands. As the number of the subband increa
the partial concentration of carriers in the subbands falls
© 2000 American Institute of Physics
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while the partial mobility increases~see Refs. 1 and 10–12!.
On balance the conductances of the subbands are app
mately the same. If one takes into account the appreci
intersubband scattering inherent tod layers; then in the de
scription of such integral characteristics as the total cond
tance of thed layer and the quantum corrections to it, o
can use a certain effective diffusion coefficientD and other
averaged characteristics in accordance with the formulas
a two-dimensional electron system. The contributions of
heavy and light holes to the conductance are indistingu
able. We have used the averaged value~of the ‘‘Ohmic’’
effective mass types! m50.24m0, which is obtained in an
analysis of the temperature and magnetic-field dependenc
the amplitude of the Shubnikov–de Haas oscillations for
conductance of hole heterojunctions in silicon.13

EXPERIMENTAL RESULTS

The quantum corrections determine the features of
temperature and magnetic-field dependence of the resist
of the investigatedd^B& layers in Si: as the temperature
lowered, the resistance passes through a minimum and
increases below 10–5 K~inset to Fig. 1!, while the positive
magnetoresistance effect has the typical functional form
the WL effect and it decreases appreciably in amplitude
the temperature is raised~Fig. 2!. We have done an analys
of the relations obtained in accordance with the formulas
the WL and EEI effects.

TABLE I. Physical characteristics of the samples.

Sample
n,

1013 cm22
Rh ,

V (Tmin)
t,

1015 s
D,

cm2/s l F

A 2.53 7691~13 K! 4.4 8.1 0.64 0.48
B-I 7.00 2497~18 K! 4.9 25 0.73 0.36
B-II 7.15 1824~7 K! 6.6 33.8 0.64 0.48
C 22.30 468~20 K! 8.4 133 – –

FIG. 1. Plots of2Ds(T) andR(T) in zero magnetic field for samples A
~curves1! and B-I ~curves2!.
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The temperature dependence of the quantum correct
to the conductance is described by the relation3,14,15

DsT5
e2

2p2\
aT ln Tt; ~1!

aT5H p1lT, tso.tw,

2
1

2
p1lT, tso,tw,

wheret is the elastic relaxation time of the electrons,tw is
the dephasing time of the electron wave function,tso is the
spin–orbit interaction time during elastic scattering of ele
trons,lT is the interaction constant, andp is the exponent in
the relationtw

21}Tp. The conversion from the change i
resistance to the conductance corrections is done by the
mula 2Ds(T)5@R(T)2R(Tmin)#/R(T)Rh(Tmin), where
Rh is the resistance per square of the the two-dimensio
conductor.

The experimental curves for samples A, B-I, and B-I2!

are well straightened out on a plot of2Ds versus lnT ~Fig.
1!, and this is true both forH50 and for a rather high mag
netic field ~Fig. 3!. With increasing field the slope of th
straight lines2Ds(lnT) increases as a result of suppressi
of the WL contribution. The increase in the slope of the lin
with increasing field in Fig. 3 is evidence that the signs of t
corrections from the WL and EEI effects are different,
is observed in the case of a strong spin–orbit interacti
tso,tw .

In a two-dimensional system in a perpendicular ma
netic field the change in conductance due to the WL effec
given by16

DsH
L 5

e2

2p2\
F3

2
f 2S 4eHD

\c
tw* D2

1

2
f 2S 4eHD

\c
twD G , ~2!

FIG. 2. Resistance of sample B-II versus the magnetic field at differ
temperatures.
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where (tw* )215tw
2114/3tso

21 and f 2(x)5 ln x1c(1/211/x),
wherec is the logarithmic derivative of theG function. In
the case of a strong spin–orbit interaction (tso!tw) this
relation takes the form

DsH
L 52

1

2

e2

2p2\
f 2S 4eHD

\c
twD . ~3!

Formula ~3! pertains to a positive magnetoresistance, a
observed for the objects investigated here~the conversion
from the change in resistance in a magnetic field to the c
ductance corrections was done according to the form
2Ds(H)5@R(H)2R(0)#/R(H)Rh(0).

Relation~3! was able to give a very good description
the experimental curves for all the samples studied~Fig. 4!.
The parameters extracted from the fit are the values ofDtw .
The results are presented in Fig. 5. One notices the
coincidence of the curves for samples B-I and B-II, whi
have nearly the same carrier concentration. The very a

FIG. 3. Plots of2Ds(T) for sample B-II in various magnetic fieldsH,
kOe: 5 (.), 10 (s), 15 (m), 20 (d).

FIG. 4. Plots of2Ds(H) for sample B-II at different temperatures.
is

n-
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ar
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rate description of the experimental data on the magnet
sistance by Eq.~3!, the formula for the WL effect, indicate
that there is practically no contribution to the magnetores
tance from the quantum corrections due to the EEI.3!

In a magnetic field parallel to thed layer the magnetore
sistance curves have the form of a quadratic function in
most the entire interval of magnetic fields investigated~Fig.
6!. This agrees with the WL concept:3,16 the transition from a
quadratic to a logarithmic dependence in a perpendic
field occurs at a characteristic fieldH0

L5\c/4eDtw , where
Dtw5Lw

2 (Lw is the localization length!, while in a parallel
field the latter quantity is replaced by the productLwL,
whereL is the thickness of the conducting region (Lw@L).
Figure 7 shows the curves of2Ds(H) in perpendicular and
parallel fields for sample C. It is seen that these curves
proach one another as the magnetic field increases, i.e.

FIG. 5. Plots ofDtw(T) for samples A (d), B-I (.), B-II ( s); C (m).

FIG. 6. Resistance versus magnetic field at various temperatures for sa
B-II in a magnetic field parallel to the plane of thed layer.
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degree of anisotropy of the magnetoresistance decrease
similar effect is also observed on increasing temperature

In order to calculate the timestw we have to determine
the diffusion coefficientD. For a two-dimensional electro
systemD5(1/2)vF

2t, andvF5\(2pn)1/2/m. The elastic re-
laxation time can be found from the formulaRh

215ne2t/m.
The values obtained fort andD are given in Table I, and the
temperature dependence oftw is plotted in Fig. 8. In the
temperature interval 4–20 K theoretical data are well
proximated by a functiontw

21}Tp, with p51. At lower tem-
peratures one observes a deviation in the direction of sm
n ~down to 0.85!. Possibly this deviation occurs under th
influence of spin scattering on magnetic impurities, wh
could be present in trace amounts in the samples studie

FIG. 7. Plot of2Ds(H) for sample C in a magnetic field perpendicul
~1,4! and parallel~2,3! to the plane of thed layer at various temperaturesT,
K: 1.7 ~1,2!, 4.2 ~3!, 20.4 ~4!.

FIG. 8. Plots oftw(T) for samples A (d), B-I (.), B-II ( s), and C (m).
. A

-

er

DISCUSSION

The dependence of the formtw}T21 should be regarded
as a manifestation of electron–electron scattering proce
in a disordered electron system.17 Thetw(T) curves obtained
for the samples turned out to be close to one another,
they clearly did not exhibit the theoretically predicted17,18

dependence oftee on the resistance of the samples. Accor
ing to Ref. 18, the electron–electron scattering time for sm
energy and momentum transfers between electrons ca
written as

tee
215

kT

2p\2ndsD
ln p\ndsD, ~4!

wherends is the electron density of states. For a 2D electr
systemnds5m/p\2. In calculations oftee5A* T21 accord-
ing to Eq.~4! one obtains the following values for the coe
ficients A* in samples A, B-I, B-II, and C, respectively~in
10211 K•s!: 4.8, 4.8, 5.5, and 12.6. It turns out that the i
fluence of the diffusion coefficientD on these calculated val
ues is not important, and that is justification for the abse
of explicit dependence of the position of thetw(T) curves in
Fig. 8 on the resistance of the samples. The calculated va
of tee, on the other hand, are more than an order of mag
tude larger than the experimental formulas. For the exp
mental data presented in Fig. 8 the coefficientA* varies in
the interval (1.1–1.7)310212 K•s. Such a disagreemen
from the use of formula~4! has been observed previously
several analyses ofd layers and heterojunctions~see Refs.
7,13, and 19!.

Let us return again to the temperature dependence o
resistance~see Figs. 1 and 3!, which manifest both the WL
contribution and the interaction in the diffusion channel.
the coefficientsaT52(1/2)n1lT determined from the ex-
perimental curves of2Ds(lnT) one can taken51 and find
the interaction constantlT . The values obtained forlT are
given in Table I. The interaction constants characterizing
quantum corrections to the temperature dependence
magnetic-field dependence of the resistance are usually w
ten in terms of the universal constantF — the interaction
averaged over angles. For example, for a strong spin–o
interaction,lT has the following form in the case of zero o
low magnetic field:2,17

lT512
3

4
F. ~5!

Using formula~5!, we obtain the values ofF given in
Table I, which, like the values oflT , are completely realis-
tic. The relatively small range of variation of the carrier co
centrations in the group of samples A, B-I, and B-II does n
permit one to reach a definitive conclusion as to the ex
tence of correlation between the constantF and the concen-
tration n. We note that ford^Sb& layers in Si such a corre
lation was found:19 the constantF increases somewhat wit
decreasingn.

CONCLUSION

From an analysis of the temperature and magnetic-fi
dependences of the conductance of a series of samples w
d^B& layer in Si in accordance with the concepts of we
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localization and the interaction of electrons in a disorde
2D electron system, we have obtained information about
temperature dependence of the inelastic relaxation time
of the parameters of the interaction of the carriers~holes! in
these objects.

The authors thank O. A. Mironov for providing th
samples.

*E-mail: krasovitsky@ilt.kharkov.ua
1!The samples were prepared at the Advanced Semiconductor Group,

versity of Warwick, Coventry, England.
2!Sample C was prepared in a different technological cycle than the o

samples investigated. The change in the resistance of samples C with
perature under the influence of some additional factor was extrem
strong, and it was not possible to distinguish the contribution of the qu
tum corrections. However, this factor was not reflected in the change o
resistance with magnetic field, and the magnetoresistance curves were
cessfully described by the WL formulas.

3!Indeed, the characteristic fields for the effects of interaction in the di
sion (H0

D5pkT/gmB , whereg is the Lande´ factor andmB is the Bohr
magneton! and Cooper channel (H0

C5pckT/2eD), as a rule, are substan
tially greater than the characteristic field for the weak localization eff
(H0

L5\c/4eDtw).
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Influence of dislocations on the magnetic structure of two-dimensional anisotropic
antiferromagnets
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For an easy-plane antiferromagnet having anisotropy in the easy plane and containing an edge
dislocation, a two-dimensional model is formulated which generalizes the Peierls model
to the case of coupled fields of magnetization and elastic displacements. The proposed model is
used to obtain a system of one-dimensional nonlinear integrodifferential equations for the
two coupled fields. In the case of ideal crystal structure of the antiferromagnet this system of
equations has a solution for a domain wall containing a Bloch line, the structure into
which the magnetic vortex is transformed when the single-ion anisotropy is taken into account.
In the presence of a dislocation a complex magnetostructural topological defect arises in
the form of a 180° domain wall terminating on the dislocation. ©2000 American Institute of
Physics.@S1063-777X~00!01108-7#
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INTRODUCTION

The synthesis of new quasi-two-dimensional and tw
dimensional~2D! layered magnets has aroused both theo
ical and experimental interest in the study of the dynam
and structure of topological excitations~magnetic vortices
and disclinations! in magnetically ordered media.1–8 The
low-temperature phase transition to a magnetically orde
state in 2D easy-plane magnetic systems is accompanie
the formation of a large number of magnetic vortices. Wh
the anisotropy in the easy plane is taken into account, th
vortices are transformed into domain walls containing Blo
lines. It is also known that in 2D systems it is easier to fo
structural topological defects — the two-dimensional a
logs of dislocations. These circumstances point to the ne
sity of studying the influence of magnetic and structural
pological excitations on one another. The situation
particularly interesting in the case of an antiferromag
~AFM!. First, the majority of 2D magnets are Heisenbe
AFMs with single-ion easy-plane anisotropy and weak
isotropy in the easy plane.7 Second, unlike ferromagnets
AFMs have, in addition to the usual weak magnetoela
interaction, a strong magnetoelastic interaction of a topolo
cal nature which requires an essentially nonlinear treatm
As was first shown qualitatively in Refs. 9 and 10, this
pological interaction in AFMs leads to coupling of disloc
tions and magnetic disclinations or domain walls. When
uniaxial anisotropy in the easy plane is taken into accou
the domain wall should terminate on a dislocation, and t
can lead to a change in the density of dislocations at the N´el
phase transition point and, consequently, exert an influe
on the elastic and plastic properties of 2D AFMs.

The problem of constructing an analytical description
a complex 2D topological magnetoelastic defect is com
cated even in the framework of a 1D model. A generalizat
of the 1D Frenkel–Kontorova model to the case of tw
coupled fields in such a defect was proposed in Ref. 11.
model of Ref. 11 permitted investigation of such a defe
6031063-777X/2000/26(8)/6/$20.00
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but in view of its one-dimensional character it led to inco
rect asymptotic behavior of the fields at large distances fr
the center of the defect. In Ref. 12 a 2D model was propo
which generalized the well-known Peierls model to the c
of coupled fields and which is also a generalization of
model used in Ref. 11. Without taking into account the a
isotropy in the easy plane, this model described an isola
magnetic vortex and also a complex magnetostructural to
logical defect, constituting a magnetic disclination coupl
with a dislocation. In the present paper we upgrade
model proposed in Ref. 12 by incorporating additional ea
axis anisotropy in the easy plane of an AFM. The mod
developed here describes both a domain wall containin
Bloch line in an ideal AFM and a domain wall terminatin
on an edge dislocation in an AFM.

CONSTRUCTION OF THE MODEL

Consider the case of an edge dislocation in a tw
sublattice easy-plane AFM with strong easy-plane anisotr
and an additional weak anisotropy in the easy plane wit
checkerboard ordering of the spins. The ideal ordering of
spins in such a system cannot be realized, since there
always be a line that terminates on the dislocation and al
which the orientation of neighboring spins is ferromagne
i.e., unfavorable. In the case of an easy-plane AFM with
isotropic easy plane this frustration is overcome by the f
mation of a magnetic disclination associated with the dis
cation, in which the total rotation of the antiferromagnetis
vector on a turn around the center of the dislocation is eq
to p.12 When even a weak easy-axis anisotropy in the e
plane is taken into account, the magnetic disclination
transformed into a 180° domain wall, which compensates
rotation of the spins by the anglep. The distribution of the
magnetization in an easy plane (x,z) containing a dislocation
at the pointx5z50 and possessing easy-axis anisotro
along thex axis in the easy plane is shown in Fig. 1~the
domain wall lies along the linez50, x.0). We note that in
© 2000 American Institute of Physics
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Ref. 9 a somewhat different situation was considered, wh
the AFM had fourfold symmetry in the easy plane. In th
case two 90° domain walls terminated on the dislocati
Unfortunately, the analytical solution of the problem of t
distribution of the magnetization around a topological def
~Bloch line!, even in an ideal AFM without a dislocation,
a complicated mathematical problem,13 and it is impossible
to write an exact solution in analytical form. The situation
even more complicated in an AFM containing structural d
fects ~2D dislocations!. In order to have the possibility o
constructing an analytical description of topological defe
in this case we limit the description to a model AFM wi
strong anisotropy of the elastic and magnetic properties
different directions:a@b (a andb are the constants of th
elastic interaction along thex andz directions, respectively!,
J1@J2 (J1 and J2 are the exchange interaction consta
along these directions!. Since the domain wall energy i
given by the expressionEDW5AgJ, whereg is the param-
eter of the weak anisotropy in the easy plane andJ is the
exchange integral in the direction perpendicular to the pl
of the domain wall, in the case of the indicated spatial
isotropy of the magnetic properties the minimum-ene
configuration corresponds to a domain wall oriented alo
the x direction.1!

Let us label the atoms of the lattice by two indices:n
~the x coordinate! and m ~the z coordinate!. For describing
the elastic subsystem we restrict consideration to a sc
model and denote byun,m the displacement of thenm-th
atom relative to the equilibrium position and bywn,m the
deviation of the spin of thenm-th atom from the easy (x)
axis in the (x,z) plane. Numerical calculations have show
that when the easy-plane anisotropy exceeds a certain cr
value, all the spins in the nonuniform states lie in the e
plane and can be characterized by a single scalar qua
wn,m ~Ref. 14!. The energy of the elastic subsystem is writt
in the form

Eel5(
nm

H a

2
~un,m2un21,m!2

1b
a2

4p2 F12cos
2p

a
~un,m2un,m21!G J , ~1!

wherea is the lattice parameter along thex direction. The
nonlinearity of the second term lets one take into account

FIG. 1. Distribution of the magnetization in an easy-plane AFM with
checkerboard ordering of the spins in the presence of a domain wall te
nating on an edge dislocation.
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displacements at the core of the dislocation, which are co
parable to the lattice parameters. The density of the magn
subsystem has the form

Emagn5(
nm

FJ1 cos~wn,m2wn21,m!1J2 cos~wn,m2wn,m21!

3cos
p

a
~un,m2un,m21!2

g

2
cos2 wn,mG . ~2!

The presence of an extra atomic chain~see Fig. 1! in the
half space above the slip line of the dislocation (z50) leads
to the situation that, for a fixed ideal spin orientation, t
spins of neighboring chains adjacent to the slip line are
romagnetically~unfavorably! ordered. The second term i
expression~2! takes this circumstance into account and th
describes the topological interaction of the magnetic a
elastic subsystems.11 To take into account the checkerboa
AFM ordering it is convenient to change from the functio
wn,m to the new functionscn,m5wn,m for n1m52s and
cn,m5wn,m1p for n1m52s11 (s is an integer!. In terms
of the new variablescn,m expressions~1! and ~2! imply the
following form of the static equations for the atomic di
placementsun,m and the spin deviationscn,m :

a~2un,m2un21,m2un11,m!1
ba

2p Fsin
2p~un,m2un,m11!

a

1sin
2p~un,m2un,m21!

a G1
p

a
J2Fcos~cn,m2cn,m21!

3sin
p~un,m2un,m21!

a
2cos~cn,m112cn,m!

3sin
p~un,m112un,m!

a G50,

~3!
J1@sin~cn,m2cn21,m!1sin~cn,m2cn11m!#

1J2Fsin~cn,m2cn,m21!cos
p~un,m2un,m21!

a

1sin~cn,m2cn,m11!cos
p~un,m112un,m!

a G
1

g

2
sin 2cn,m50.

Taking the topological magnetoelastic interaction into a
count has led to coupling of the equations for the elastic
magnetic subsystems~we have not taken into account th
usual weak magnetoelastic interaction of the forml(un,m

2un8,m8)cos(wn,m2wn8,m8)).
The slip line of the dislocation~the line z50) divides

the (x,z) plane into two half spaces, in which the relativ
displacements of neighboring atoms and the relative de
tions of neighboring spins are small, and therefore in th
half spaces one can use a long-wavelength description in
framework of equations foru(x,z) andc(x,z):

aa2
]2u

]x2
1b̃b2

]2u

]z2
50, ~4a!

i-



ed
is
th

tio

-
,
is

n
a

e
d

e
d

a

n
ve

ry
e
ns

th
n
io
rm
-
at
ch

n

r

the

re

605Low Temp. Phys. 26 (8), August 2000 O. K. Dudko and A. S. Kovalev
J1a2
]2c

]x2
1J2b2

]2c

]z2
2

g

2
sin 2c50, ~4b!

whereb is the lattice constant in thez direction, andb̃5b
1p2J2 /a2'b is the elastic coupling constant renormaliz
with allowance for the magnetoelastic interaction. Th
renormalization leads to a small change in the size of
dislocation core~with an order of smallness equal to the ra
of the magnetic interaction to the elastic!.

It is seen from equations~4! that inside the two half
spaces (z.0 and z,0) the fields of the elastic displace
mentsu(x,z) and spin deviationsc(x,z) are independent
and the coupling of these two fields occurs only in the d
location core and in the domain wallx.0, z50. In the re-
gion of the dislocation core the relative atomic displaceme
in the atomic rows adjacent to the boundary of the h
spaces,u15u(z51b/2) andu25u(z52b/2), can differ
by a quantity of the order of interatomic distancea, and the
relative spin deviationsc12c2 near the domain wall can b
of the order ofp. Therefore the interaction across the boun
ary must be taken into account exactly:

Es5b
a2

4p2 F12cos
2p

a
~u12u2!G

2J2 cos~c12c2!cos
p

a
~u12u2!. ~5!

Here the solution of the bulk problem~4a!, ~4b! ~e.g., for the
upper half spacez.0) is supplemented at the boundary b
tween the two half spaces by the following boundary con
tions:

ba

p
sin

2p~u12u2!

a
1

2pJ2

a
cos~c12c2!sin

p~u12u2!

a

52b̃b2
]~u12u2!

]z
, ~6a!

2J2 sin~c12c2!cos
p~u12u2!

a
52J2b2

]~c12c!

]z
.

~6b!

Since the elastic interaction is much greater than the m
netic, the second term on the left-hand side of~6a! can be
dropped, and the constantb̃ can be replaced byb.

In the absence of anisotropy in the easy plane (g50)
equations~4!, which then become linear, can be solved, a
one can easily find the relation between the derivati
]u6 /]z and ]c6 /]z in ~6a! and ~6b! with the quantities
]u6 /]x and ]c6 /]x at the boundary. Then the bounda
conditions ~6! are converted to a closed system of on
dimensional integrodifferential equations for the functio
u6(x) andc6(x).12

In our case this approach is impossible because of
nonlinearity of Eq.~4b!. Therefore, for a qualitative solutio
we use a piecewise-linear approximation for the single-
anisotropy energy in the easy plane, replacing the te
2(1/2)gcos2wn,m in ~2! by gwn,m

2 /2. This replacement is jus
tified by the fact that in the case of a domain wall termin
ing on a dislocation or a domain wall containing a Blo
e

-

ts
lf

-

-
i-

g-

d
s

-

e

n

-

line, the functionsuc6u are strictly less thanp/2. Indeed, it is
seen in Figs. 1 and 2 that in the first case we have

2p/21«,c1,0,

and in the second case

2p/21«,c1,p/22«.

The value of« is easily found from the solution of equatio
~4b! for a uniform domain wall:

c52 arctan expF2
z

b S g

J2
D 1/2G . ~7!

Taking this solution atz5b/2 and using the inequality
g!J2, we find that «5 1

2Ag/J2. For the piecewise-linea
approximation of equation~4b! we have

J1a2
]2c

]x2
1J2b2

]2c

]z2
2gc50, z.0, ~8!

and the solution for the uniform domain wall~7! simplifies to

c~z.0!5
p

2
expF2

z

b S g

J2
D 1/2G . ~9!

In the proposed approach for the linear equations~4a! and~8!
we can use the well-known Green functions and express
solutionsu(x,z) andc(x,z) in terms of the effective forces
acting on the boundariesz56b of the half spaces:

f 152
ba

2p
sin

2p~u12u2!

a

2
p

a
J2 cos~c12c2!sin

p~u12u!

a
,

~10!

f̃ 152J2 sin~c12c2!cos
p~u12u2!

a
.

~It should be kept in mind that the bulk forces which we
used in finding the solutions fory and c in the half spaces
have the form f (x,z)5bd(z)2 f 6(x) and f̃ (x,z)
5bd(z)2 f̃ 6(x).!

FIG. 2. Distribution of the magnetization in an AFM in the presence of:1!
a domain wall in thex direction, containing a vortex~the shaded region!
with a Bloch point, and2! a domain wall along thez axis.
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Introducing the relative displacements of the atoms
the boundaries of the half spaces,w5p(u12u2)/a, and the
relative rotations of the spins at these boundaries,x5c1

2c2 , and using the Green functions for the Laplace a
Klein–Gordon equations, we obtain integral expressions
the fields in the half spaces:

u~x,z:0!57
1

2p2l E2`

1`

lnF ~x2x8!2

aa2
1

z2

b̃b2G 1/2

3sinw~x8!dx8, ~11!

c~x,z:0!57
1

p l̃
E

2`

1`

K0S S ~x2x8!2

l2
1

z2

s2D 1/2D
3cosw sinx dx8. ~12!

whereK0(k) is the Macdonald function and we have intr
duced the parametersl 5aAa/b, l̃ 5aAJ1 /J2, s5bAJ2 /g,
and l5aAJ1 /g. These last two parameters describe
‘‘magnetic lengths’’ in thez andx directions, respectively.

DOMAIN WALL CONTAINING A BLOCH POINT IN AN AFM
WITH IDEAL STRUCTURE

In Ref. 12 it was shown for an isotropic easy-plane AF
that in the absence of dislocations the system of coup
equations for the fields of atomic displacements and s
deviations which is obtained in the proposed generaliza
of the Peierls model admits a magnetic vortex solution. T
system of equations~11! and ~12!, which takes into accoun
the anisotropy in the easy plane, should describe a dom
wall containing a so-called Bloch point, in one turn arou
which the direction of the antiferromagnetism vector chan
by 2p ~Fig. 2!. The corresponding solution in the limitg
→0 must go over to the solution for a magnetic vortex. In
ideal AFM with no dislocation we havew50 and u[0.
Then Eq.~12! reduces to

c~x,z:0!57
1

p l̃
E

2`

1`

K0S S ~x2x8!2

l2
1

z2

s2D 1/2D sinx dx8.

~13!

At distancesx@l the domain wall is almost uniform alon
the x direction, and the functionx describing the relative
deviations at the boundary of the half spaces can be assu
approximately constant. In this approximation one can ea
obtain from Eq. ~13! expressions for x`5x(x→`)
5p/2Ag/J25p« and for the distribution of the magnetiza
tion in the domain wall along thez direction at large values
of x @see formula~9!#.

Assuming in Eq.~13! that z51b/2 and taking into ac-
count thatc252p2c1 in the given configuration~see
Fig. 2!, we arrive at a one-dimensional equation for the re
tive spin deviations at the boundary of the half spaces:

x5p2
2

p l̃
E K0S S ~x2x8!2

l2
1

b2

4s2D 1/2D sinx dx8.

~14a!

Differentiating ~14a! with respect tox and settingb50, we
obtain the equation
t

d
r

e

d
in
n
e

in

s

n

ed
ly

-

dx

dx
5

2

p l̃l
E K1S ux2x8u

l D sgn~x2x8!sinx dx8, ~14b!

which is close to the Peierls equation describing the struc
of a dislocation in a two-dimensional model.15 However, in
our case the Cauchy kernell/(x2x8) of the Peierls integral
equation is replaced by the kernelK1(ux2x8u/l)sgn(x
2x8). SinceK1(p)'1/p at small values of the argumen
these two kernels coincide forux2x8u!l. Because of the
exponential decay of the functionK1 with distance, the ker-
nel has a local character, and the fieldx(x) is localized and
exponentially approaches its asymptotic forms at large
tances.

We shall solve equation~14a! by successive approxima
tions. As a first approximation, in view of the local nature
the distribution of the fieldx(x) and its nonzero asymptoti
expression at infinity, we approximate the function sinx on
the right-hand side of Eq.~14a! as follows:

sinx~x!→ p

2 S g

J2
D 1/2

sgn~x!22pl
d

dx
dS x

l D . ~15!

I 152
1

lE2`

1`

K0S S u2

l2
1

b2

4s2D 1/2D sgn~x2u!du

'2p expS 2
b

2s D12lH S x2

l2
1

b2

4s2D 1/4

3expF2S x2

l2
1

b2

4s2D 1/2G J x21, ~16!

where the functionK0(k) is replaced by its asymptotic ex
pression at large values of the argument:K0(k)
'Ap/2k e2k, k@1. In an analogous way we obtain th
value of I 1 for x,0. The contribution of the second term i
~15! is calculated exactly:

I 252
4

l̃
xK0S S x2

l2
1

b2

4s2D 1/2D S x2

l2
1

b2

4s2D 21/2

. ~17!

Finally, for the second approximation forx we obtain

x~x:0!>p6I 11I 2 , ~18!

whereI 1 andI 2 are given by expressions~16! and~17!. From
formulas~14!–~18! we obtain the asymptotic expressions f
x(x) at x→6`: xux→2`→2p2p/2Ag/J2 and xux→1`

→p/2Ag/J2, which agree with the result~9! for a uniform
domain wall.

The behavior of the functionx(x) at the center of the
vortex is found by differentiating Eq.~14a! with respect tox
and approximating the kernelK1(k) in the resulting expres-
sion by the function 1/sinh(k), which leads to the equation

dx

dx
5

2

pl l̃
E

2`

1`FsinhS x2x8

l D G21

sinx dx8. ~19!

Equation ~19! has an exact soliton solution,16 and its
asymptotic behavior of interest to us is linear inx at smallx
and has a value ofp at the center of the vortex:

x>p22
x

l
, ~20!
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and the gradient of the relative spin deviations is maxim
in the core region of the magnetic vortex.

Applying the approximation~15! to expressions~13!, we
obtain the distribution of the magnetization over the en
volume of the AFM:

c~x,z:0!>6
p

2
expS 2

z

s D1S p

2 D 1/2Are2r

x/l
2

2

l̃

xK0~r !

r
,

~21!

where r 5(x2/l21z2/s2)1/2, the signs7 corresponding to
the upper and lower half spaces, respectively. It follows fr
~21! that the nonuniformity in the ordering of the spins d
cays exponentially in thez direction, perpendicular to the
orientation of the domain wall, and the ordering becom
ideal asz→6`: c(x,z)uz→1`→0, c(x,z)uz→2`→2p.

Thus the distribution of the magnetization~21! can be
written in the form

c~x,z!5 f 1~z!1 f 2~r ,cosw!1 f 3~r ,cosw!, ~22!

where the functionf 1 describes the distribution ofc in the
domain wall at large values ofx, where the wall is practically
uniform with respect tox; f 3 @the contribution of the secon
term in ~15!# is due to the contribution of the vortex to th
magnetization field at small values ofx; f 2 is a correction to
f 3 and describes the influence of the vortex far from its
calization region (x@l). The characteristic dimension of th
vortex along thez direction isDz5s5bAJ2 /g and its di-
mension along thex axis is Dx5l5aAJ1 /g. Thus in our
anisotropic modelDx /Dz5aAJ1 /J2/b@1, and the vortex is
strongly flattened out along thex axis.

MAGNETIC CONFIGURATION IN THE PRESENCE
OF A DISLOCATION

Let us return to the general case of an AFM containin
dislocation. Assuming in Eq.~11! thatz56b/2, we arrive at
a one-dimensional equation for the relative atomic displa
mentsw at the boundary of the half spaces.12 In the limit
of a small ratio of the magnetic interaction to the elas
which is usually the case in real physical situations, t
equation goes over to the Peierls equation, with the solu
w52arctan(p l /x) for a dislocation, where we have intro
duced the ‘‘elastic length’’l 5aAa/b. When the Peierls so
lution is substituted into Eq.~12!, the latter becomes~for
z.0):

c~x,z.0!5
1

p l̃
E

2`
K0S S ~x2x8!2

l2
1

z2

s2D 1/2D
3

x8

Ax821 l 2
sinx dx8. ~23!

Since, as a rule, the ‘‘magnetic length’’ is much greater th
an atomic dimension and the size of the dislocation, we s
investigate Eq.~23! in the limit of a point dislocation:
l /l→0. We shall show below that the finite size of the co
of the dislocation has little influence on the magnetization
comparison with other factors. Noting that in this configu
tion c152c2 ~see Fig. 1!, we obtain a one-dimensiona
e

s

-

a

-

,
s
n

n
ll

n
-

equation, analogous to~14a!, for the relative spin deviations
at the boundary of the half spaces in the presence of a p
dislocation:

x5
2

p l̃
E K0S S ~x2x8!2

l2
1

b2

4s2D 1/2D sgn~x8!sinx~x8!dx8.

~24!

A good approximation for the function sinx is the substitu-
tion

sinx→P~x!2
p

2 S g

J2
D 1/2

S~x!, ~25!

where P(x)521 in the intervaluxu<l and P50 outside
this interval, and the Heaviside step functionS(x) is equal to
0 for x,0 and to 1 forx.0. In this approximation the
solution of equation~24! for x@l has the form

x~x.0!>2p expS 2
b

2s D1S p

2 D 1/2S x2

l2
1

b2

4s2D 21/4

l/x

3expF2S x2

l2
1

b2

4s2D 1/2G2
l

p l̃
K1S x2

l2
1

b2

4s2D .

~26!

For x,0 the first term in~26! is equal to zero. An estimate
of the gradient of the relative deviations of the spins near
core of a point dislocation gives

dx ~x50!

dx
' ln~s!1 ln~ l̃ !. ~27!

When the finite size of the core of the dislocation
taken into account, an additional term ln(l) appears in the
sum~27! ~see Ref. 12!, wherel is the ‘‘elastic length’’ intro-
duced above. We have used the assumption that the el
and magnetic properties are spatially anisotropic, i.e.,
condition l , l̃ @a,b. Actually, however, the really large pa
rameter is the magnetic lengths@b, and the inequality
s@ l , l̃ holds. Then the main contribution todx(x50)/dx is
given by the parameters, and the approximation of a poin
dislocation is physically reasonable.

Using the approximation~25!, we find the solution of
equation~23! in the limit of a point dislocation:

c~x,z.0!>2
p

2
expF2

z

b S g

J2
D 1/2G

1
1

2 S p

2 D 1/2Are2r

x/l
2

l

2p l̃
K1~r !,

~28!

c~x,z,0!>
1

2 S p

2 D 1/2 Are2r

x/l
2

l

2p l̃
K1~r !.

For x→1` Eq. ~28! yields the domain wall solution~9!:
c(x,z)→2(p/2)exp(2z/s). For x→2` and z→6` the
magnetization tends to zero, and the ordering of the sp
becomes ideal.

CONCLUSION

Let us start with the matter of the chosen orientation
the domain wall. We assume that the plastic deformat
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creating the dislocation involved a shift along thex axis, and
this shift gave rise to the domain wall. Since the latter
associated with an excess surface energy density, the en
of the domain wall is proportional to its length. Cons
quently, it will be favorable for the system to terminate t
domain wall on another dislocation in the same glide plan
a distanceR1 from the first ~analogous to the situation de
scribed in Ref. 11 for a 1D system!. It can happen, however
that a dislocation in another glide plane is located nea
Then these two dislocations will be ‘‘connected’’ by a d
main wall that is inclined to thex axis if the cost in anisot-
ropy energy is compensated by a decrease in the distancR2

between these two dislocations

~R2~AJ2cos2u1AJ1sin2u!,R1AJ2!.

This means that the position of the domain walls along a
other axis is also worthy of study.

In the present paper we have used the proposed mod
investigate the distribution of the magnetization:

a! in an easy-plane anisotropic AFM with ideal cryst
structure and containing a domain wall with a Bloch line; w
have found the characteristic sizesl ands of this topologi-
cal feature along thex andz axes;

b! in an easy-plane anisotropic AFM containing an ed
dislocation. We have shown that the dislocation necessa
involves termination of the domain wall lying along the sl
line of the dislocation fora@b. We have estimated the con
tribution of the elastic and magnetic parameters to the gr
ent of the relative rotations of the spins.
s
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1!Domain wall with other orientations will be discussed in the Conclusio
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D. A. Yablonski�, Zh. Éksp. Teor Fiz.92, 311 ~1987! @Sov. Phys. JETP
65, 177 ~1987!#.

7A. A. Stepanov, M. I. Kobets, and V. A. Pashchenko, Fiz. Nizk. Temp.20,
267 ~1994! @Low Temp. Phys.20, 211 ~1994!#.

8H. Yamazaki and V. Mino, Suppl. Prog. Theor. Phys.94, 400 ~1989!.
9A. S. Kovalev and A. M. Kosevich, Fiz. Nizk. Temp.3, 259~1977! @Sov.
J. Low Temp. Phys.3, 125 ~1977!#.

10I. E. Dzyaloshinski�, JETP Lett.25, 98 ~1977!.
11A. S. Kovalev, Fiz. Nizk. Temp.20, 1034~1994! @Low Temp. Phys.20,

815 ~1994!#.
12O. K. Dudko and A. S. Kovalev, Fiz. Nizk. Temp.24, 559 ~1998! @Low

Temp. Phys.24, 422 ~1998!#.
13A. B. Borisov and V. V. Kiselev, Physica D111, 96 ~1998!.
14M. E. Gouvea, G. M. Wysin, A. R. Bishop, and F. G. Mertens, Phys. R

B 39, 11840~1989!.
15A. M. Kosevich, Theory of the Crystal Lattice@in Russian#, Vishcha

Shkola, Kharkov~1988!.
16A. B. Borisov and V. V. Kiselev, Fiz. Met. Metalloved.3, 20 ~1991!.

Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 26, NUMBER 8 AUGUST 2000
Quantum effects in hole-type Si ÕSiGe heterojunctions
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The temperature and magnetic-field dependences of the resistance of Si/SiGe heterojunctions
with hole-type conductivity are investigated. It is shown that the features of these dependences are
due to a manifestation of quantum interference effects — weak localization of the mobile
charge carriers, and the hole–hole interaction in the two-dimensional electron system. On the basis
of an analysis of the quantum interference effects, the temperature dependence of the
dephasing time of the wave function of the charge carrier is determined:tw56.6310212T21 s.
This dependencetw}T21 must be regarded as a manifestation of hole–hole scattering
processes in the two-dimensional electron system. The contribution to the magnetoresistance
from the hole–hole interaction in the Cooper channel is extracted, and the corresponding
interaction constantl0

C'0.5 is found. ©2000 American Institute of Physics.
@S1063-777X~00!01208-1#
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INTRODUCTION

The most important research area in solid state phy
for the past two decades has been the physics of l
dimensional electron systems.1 Progress in semiconducto
technology, in particular, the development of molecul
beam epitaxy, has made it possible to create various s
conductor structures with a two-dimensional electron g
These include metal–insulator–semiconductor~MIS! struc-
tures and inversion layers, delta layers, andn–i –p–i –n su-
perlattices, single heterojunctions, and quantum w
~double heterojunctions!. In all cases the mobile charge ca
riers ~electrons or holes! occupy quantum levels in the co
responding potential well. The motion of the electrons alo
a certain direction~along thez axis! is restricted, while the
motion in thexy plane remains free.

Heterojunctions are contacts between two semicond
tors with slightly different band structures, a situation whi
is achieved by introducing a small amount of isovalent s
stitutional impurity atoms into the lattice. The discontinui
of the bands at the boundary and the internal field that ar
cause bending of the bands near the boundary, and this g
rise to a potential well with discrete energy states. The
verse phenomena in the two-dimensional electron
~Shubnikov–de Haas~SdH! oscillations, the quantum Hal
effect, electronic phase transitions! have become objects o
intensive study in recent times. The observation of SdH
cillations in heterojunctions~e.g., in GaAs/AlGaAs~Ref. 2!
or Si/SiGe@~Ref. 3!# and the quantum Hall effect can occ
only in modern structures with high values of the electr
mobility. In addition, heterojunctions not exhibiting magn
toquantum effects have displayed quantum interference
fects — weak localization of electrons~WL! and electron–
electron interaction~EEI!. These effects have been observe
e.g., in GaAs/AlGaAs heterojunctions4–6 and a SiGe quan
6091063-777X/2000/26(8)/6/$20.00
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tum well.7 As we know, for the manifestation of quantum
interference effects a high degree of disorder is required,
the presence of perceptible elastic scattering of electrons

It is of interest to ascertain whether both magnetoqu
tum and quantum interference effects can be investigated
single object. Let us consider in more detail the conditio
necessary for observation of these effects. The WL and
effects are manifested in a region of magnetic field valu
comparable in scale with the values of the characteri
fields for these effects, and at the same time such that
magnetic lengthLH at these fields remains larger than t
electron mean free pathl. The magnetic lengthLH

5(\c/2eH)1/2, which characterizes the electron wave fun
tion in a magnetic field, is determined only by the magne
field and does not depend on the kinetic properties of
electrons. The lengthLH corresponds to the field value a
which an area 2pLH

2 is threaded by one magnetic flux qua
tum F05hc/2e. Manifestation of quantum interference e
fects is possible under the conditionLH. l . If the opposite
inequality holds,LH, l , then magnetoquantum effects su
as SdH oscillations can come into play. Consequently, th
two types of quantum effects can be manifested at differ
values of the magnetic fields. This assertion is clearly illu
trated by the experimental data presented below for the
Si/SiGe heterojunctions.

1. GENERAL CHARACTERISTICS OF THE SAMPLES

The samples studied were grown1! by molecular-beam
epitaxy ~MBE! from solid Si and Ge sources by means
electron-beam evaporation and are dislocation-free, fu
strained heterostructures with modulated doping. Sample
and B differ by the percent Ge in the Si12xGex channels (x
50.36 and 0.13, respectively! and by their thicknesses~8 nm
and 30 nm! and also by the optimal temperatures of t
© 2000 American Institute of Physics
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pseudomorphic growth of the Si12xGex channels~450 °C
and 875 °C!. First a silicon buffer layer 300 nm thick wa
grown on then-Si ~001! surface of the substrates. This w
followed by the growth of a Si12xGex channel, an undoped
Si spacer layer 20 nm thick, and an upper, boron-do
(2.531018 cm23) Si epitaxial layer 50 nm thick. The con
ducting region at the Si/SiGe boundary had a ‘‘doub
cross’’ configuration in the form of a narrow strip;0.5 mm
wide, ;4.5 mm long, and with a distance between the t
pairs of narrow potential leads;1.5–2.2 mm.

Table I shows the characteristics of two of the samp
studied ~A and B! as obtained from measurements of t
conductance, magnetoresistance oscillations, and the
coefficient at temperatures of 0.335–2.2 K.

The mobile charge carriers in these samples are ho
but to simplify the terminology we shall by convention ref
to them below as electrons. The value of the resistance
squareRh is given in the table for 2 K, since the minimum o
the resistance for sample A is observed near that temp
ture. The character of the temperature dependence of
resistance of the samples below 4.2 K turns out to be dif
ent. The resistanceRh for sample A as the temperature
lowered passes through a minimum~near 2 K! and then in-
creases somewhat~from 4.5 kV to 4.93 kV at 0.337 K!. This
clearly indicates a manifestation of quantum interference
fects and the appearance of quantum corrections to the
ductance. The resistanceRh for sample B decreases in th
temperature interval~from 2.7 kV to 2.5 kV), i.e., it does
not exhibit pronounced quantum interference effects. App
ently the quantum corrections arise against the backgro
of a temperature-related change in the resistance due to
factors. In such a situation the quantum corrections to
temperature dependence of the resistance cannot be re
extracted. Therefore, for analysis of quantum interference
predominantly use the corrections to the magnetic-field
pendence of the resistance~see Sec. 3!.

Figure 1 shows the dependence of the diagonal and
diagonal~Hall! components of the resistance as a function
the magnetic field for samples B and A at a temperature
;0.33 K. The curves exhibit SdH oscillations and ste
which appear on account of the quantum Hall effect. T
quantum numbersn of the steps and the oscillatory extrem
can be determined from the quantum Hall effect data, sin
as is well known,RH5h/e2n21 for a two-dimensional elec
tron gas in the quantum-Hall-effect regime, i.e.,RH 5 25813
n21 V. The values ofRH found experimentally are in satis
factory agreement. Sample B is more perfect and ha

TABLE I. Characteristics of the samples.

Parameter

Sample

A B

Rh , kV ~at 2 K! 4.5 2.7
nH310211, cm22 6.0 1.9
nSdH310211, cm22 6.7 2.0
mH , cm2 V21 s21 ;2 300 ;12 000
m* /m0 0.243 0.242
D, cm2 s21 14 25
d
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higher electron mobility, and the quantum-Hall-effect ste
are more pronounced for it.

2. ANALYSIS OF THE SHUBNIKOV–DE HAAS
OSCILLATIONS

The SdH oscillations are described by the relation

Drxx

rxx
0 5

C

sinhC
expS 2

pa

vct
D cosS 2p«F

\vc
1F D , ~1!

whereC52p2kT/(\vc); vc5eH/m* is the cyclotron fre-
quency,vct'mH, m is the mobility, a5t/tq , t is the
transport time,tq is the quantum scattering time,«F is the
Fermi energy, reckoned from the bottom of the first quan
zation band, andF is the phase. For a two-dimensional g
the Fermi energy is related to the electron concentration

«F5
p\2n

m*
. ~2!

In relation ~1! @upon substitution of~2!# the unknown
parameters are the effective massm* , the concentrationn,
anda, wheren appears in the last factor and the temperat
appears only in the first factor, which governs t
temperature-related damping of the SdH amplitude~Fig. 2!.
The desired quantitym* can be found by methods which ar
well known in the literature. For example, if we take in
account thatvct'mH and treat the mobility as known from
the kinetic characteristics, then after representing the exp
mental data in the form of ln(Drxx/r0) versus ln(C/
sinh(C))2pa/mH, one can find the value ofm* by fitting
the data for the entire interval of magnets and temperatu
studied to a single straight line. Another method8 can also be
used. By approximating sinh(C) as exp(C)/2, one can repre-

FIG. 1. Magnetic-field dependence of the diagonal componentRxx and off-
diagonal~Hall! componentRxy of the resistance~per square! for samples B
~a! and A ~b! at a temperature of 0.33 K.
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sent the experimental data for the amplitudes of the S
oscillations in the form of linear relations ln(A/T)}C
22p2km*T/(e\H), where C is a temperature-independe
constant. The slope of the straight lines at a fixed magn
field is determined the quantitym* that we seek. If the ef-
fective mass has been determined, then an analysis o
magnetic-field dependence of the amplitude of the SdH
cillations can yield the value ofn. The value of the charge
carrier concentration found from analysis of the period of
SdH oscillations in high fields under the assumption o
quadratic dispersion relation has turned out to be extrem
close to the value found from Hall measurements in l
fields ~see Table I!.

In the band structure of bulk samples of undeform
silicon the two degenerate maxima in the valence band a
point k50 correspond to hole valleys with effective mass
m* 50.5m0 ~heavy holes! and m* 50.15m0 ~light holes!.9

The concentration of light holes is very small compared
that of the heavy holes, but they have a substantially hig
mobility than do the heavy holes. From the SdH oscillatio
we have found for the first time the values of the effect
masses of holes in fully strained pseudomorphic Si/SiGe
erostructures~see Table I!. We see that, because of the com
plete lifting of the degeneracy, only one type of hole appe

FIG. 2. Magnetic-field dependence of the diagonal componentRxx of the
resistance~per square! for sample A at different temperatures.
H

ic

he
s-

e
a
ly

d
he
s

o
er
s

t-

rs

— heavy holes with an effective massm* 5(0.24
60.01)m0. It is this value of the effective mass which w
shall use below in an analysis of the quantum correction
the investigated hole-type Si/SiGe heterojunctions.

3. QUANTUM INTERFERENCE EFFECTS

The initial parts of the curves of the resistance of t
samples versus magnetic demonstrate a negative magne
sistance effect~Fig. 3!, which falls off noticeably in ampli-
tude as the temperature is raised. This is just how the qu
tum correction to the resistance from the WL effect beha
in the case of weak spin–orbit scattering. The manifesta
of the WL effect in small fields and the SdH quantum
oscillation effect in strong fields in the same sample is p
sible, as we have said, if there exists a region of magn
fields for which the magnetic lengthLH remains larger than
the electron mean free pathl. An estimate of the mean fre
path l and the characteristic transport elastic time timet can

FIG. 3. Magnetoresistance of sample A in low magnetic fields at vari
temperatures.
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be made by using the expressionRh
215ne2t/m*

5ne2l /vFm* and the valuevF5(2pn)1/2\/m* for a two-
dimensional electron gas. For samples A and B we h
obtained the following formulas:vF59.783106 cm/s, t
52.86310213 s, and l'2.831026 cm for sample A, and
vF55.373106 cm/s, t51.7310213 s, andl'931026 cm
for sample B. It follows that quantum interference effects c
be observed in sample A in magnetic fields up to 4.5 k
and in sample B up to 0.5 kOe. We devote most of o
attention in the analysis of the quantum interference con
bution to the magnetoresistance for sample A.

In the manifestation of quantum interference effects
the weak localization of electrons10–15 and the electron–
electron interaction12–14,16,17— analysis of the behavior o
the quantum corrections to the conductance in a magn
field yields information about the most important charact
istics of the relaxation and interaction of electrons in t
investigated two-dimensional electron system: the depha
time tw of the electron wave function, its change with tem
perature, and the electron–electron interaction parametel.

3.1. Determination of the temperature dependence of tw

In a two-dimensional electron system in a perpendicu
magnetic field the change in conductance due to the
effect is described in the general case by the expression13,14

DsH
L ~H !5

e2

2p2\
F3

2
f 2S 4eHDtw*

\c D 2
1

2
f 2S 4eHDtw

\c D G , ~3!

where f 2(x)5 ln x1C(1/211/x), C is the logarithmic de-
rivative of theG function, tw

215tw0
2112ts

21 , (tw* )215tw0
21

1(4/3)tso
211(2/3)ts

21 , tw0 being the phase relaxation tim
due to inelastic scattering processes,tso the spin–orbit scat-
tering time, andts the spin–spin scattering time for scatte
ing on magnetic impurities~in the absence of which this tim
can be left out!, andD is the electron diffusion coefficient
The first term in~3! corresponds to the interference of th
wave functions of electrons found in the triplet spin sta
and the second to those in the singlet spin state. In the
of strong spin–orbit scattering (tw@tso) by virtue of the
inequality tw@tw* the change in conductance is determin
by the second term, which corresponds to a positive mag
toresistance. Fortw!tso the magnetoresistance is negativ
and the field dependenceDsH

L (H) is described by the ex
pression

DsH
L ~H !5

e2

2p2\
f 2S 4eHDtw

\c D . ~4!

The functionf 2(x) has the form1
24x

2 at smallx, i.e., in
low magnetic fields, and ln(x/7.12) in high fields. The char
acteristic field corresponding to the region of strong variat
of this function (H0

L5\c/(4eDtw)) is usually of the order
of ;0.1 kOe.

At small values of the magnetoresistance one can use
relation 2DsH

L (H)5@R(H)2R(0)#/(R(H)Rh(0)), and
here the field dependence of2DsH

L (H) reflects the trend of
the magnetoresistance. To fit theDsH

L (H) curves to relation
~3! and thus to obtain the desired value oftw requires knowl-
e
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edge of the electron diffusion coefficientD, which is deter-
mined from the formula for a two-dimensional electron ga
D5(1/2)vF

2t.
Analysis of the experimental curves for the magneto

sistance, replotted in the form of theDsH
L (H) curves in ac-

cordance with~3! showed that the quantum correction due
the WL effect gives a good description of only the initial pa
of theDsH

L (H) curves~here the results of the fitting to rela
tions ~3! and ~4! are no different, since these objects ha
weak spin–orbit scattering!. As the magnetic field increase
at H;0.2 kOe a magnetoresistance component of the op
site sign appears, its amplitude falling off with increasi
temperature in the interval 0.335–2 K. The assumption t
this component is due to the ordinary magnetoresistanc
the form Dr/r}H2 does not hold up, since the change
mobility in this temperature interval is insignificant. We ha
arrived at the conclusion that this component is a quan
correction due to the electron–electron interaction. Sev
forms of this correction are known. Manifestation of th
quantum correction due to the EEI in the diffusion channe
unlikely, since it is due to disruption of the interaction in th
spin subbands as a result of Zeeman splitting and beco
substantial at rather high magnetic fields (H.H0

D5pkT/
(gmB), where g is the Lande´ factor andmB is the Bohr
magneton!. The Maki–Thompson correction, which is due
a fluctuation process, has the same functional form as
localization correction and cannot alter the shape of the m
netoresistance curves~see Fig. 3!. The most likely candidate
is the quantum correction due to the EEI in the Coop
channel. The latter correction is described by t
expression:13,14,17

DsH
C52

e2

2p2\
lH

Cw2~a!; a5
2eDH

pckT
. ~5!

The functionw2 is similar to the functionf 2, but the charac-
teristic field H0

C5pckT/(2eD) is considerably higher than
H0

L , as a rule. In low magnetic fields (H,H0
C) we have

w2(a)'0.3a2, so that one may use this approximation
our case.

As we see from Eq.~5!, the Cooper quantum correctio
varies with temperature asT22, which agrees well with the
variation of the positive component of the magnetores
tance. The sign of the quantum correctionDsH

C ~and, accord-
ingly, the sign of the magnetoresistance! is determined by
the sign of the interaction constantlH

C : in the case of repul-
sion of the quasiparticles one haslH

C.0, giving a positive
magnetoresistance. The interaction constantlH

C is the param-
eter to be extracted from a fitting of the experimental curv
to expression~5!. Here, depending on the form of the curve
expression~3! or ~4! is used, withtw as the adjustable pa
rameter.

As a result of the calculations, in which a good descr
tion of the experiment was achieved, we obtained the te
perature dependence of the electron dephasing timetw ~the
unfilled symbols in Fig. 4!. It is approximated by a power
law functiontw56.6310212T21.

For sample B a negative magnetoresistance is also
served in low fields, but it is very weakly expressed, an
furthermore, as we have mentioned, it can be analyzed
terms of the concepts of quantum interference only in fie
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less than 0.5 kOe. The EEI contribution is not manifested
such fields. On the basis of an analysis of the initial parts
the magnetoresistance curves with the use of relation~4!, we
found thattw has the same dependence for sample B~the
triangles in Fig. 4! as for sample A~of course, the error with
which tw is determined is substantially larger for sample
than for sample A!.

A dependence of the form obtained here,tw}T21, de-
scribes electron–electron scattering processes in t
dimensional systems.17 The electron–electron scattering tim
was calculated in Ref. 18 for the case of collisions involvi
small changes in the energies and momenta of the electr

tee
215

kT

2p\2ndsD
ln~p\ndsD !, ~6!

wherends is the electron density of states. Using in~6! for
the case of sample A the value found forD and the calcu-
lated valuends5m* /(p\2) ~for a 2D electron system!, we
obtain the resulttee57.39310211T21. The values oftee

calculated from~6! differ from the experimental values oftw

by an order of magnitude, but such a disagreement is c
pletely acceptable in view of the estimates used fornds , D,
etc.

3.2. Interaction constant lH
C

The temperature dependence oflH
C ~Fig. 5! for sample A

agrees well with the theoretical prediction:14,17

~lH
C!2152 lnS T

Tc
D . ~7!

In relation ~7! for superconductors~in the case of attraction
lH

C,0), Tc has the well-known form

kTc5kuD expS 1

l0
D , ~8!

FIG. 4. Dephasing time versus temperature; the data were obtained from
weak localization and electron interaction effects for samples A (s) and B
(n).
n
f
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-

wherel0 is the interaction constant in the BCS theory. Ho
ever, as was shown in Ref. 19, even in the case of repul
of the electrons at small distances (lH

C.0) for the EEI ef-
fects, formula~7! remains valid at low magnetic fields, bu
the temperatureTc takes on a formal meaning:

kTc5«F expS 1

l0
CD . ~9!

In Fig. 5 it is easy to determine this characteristic tempe
ture Tc ~it is equal to 3.2 K! and then to find the bare valu
of the interaction constant,l0

C50.5.
The interaction constant found from the quantum corr

tions is usually written in terms of the universal constantF
— the angle-averaged interaction amplitude of the electr
at small momentum transfers. In the presence of screenin
the Coulomb type the constantF takes on values from zero
in the absence of screening~the ‘‘bare’’ interaction! to unity
in the case of complete screening. The functional form oF
is different for the interaction constants found from the te
perature and magnetic-field dependence of the quantum
rections, in the regions of weak and strong magnetic fie
and for weak and strong spin–orbit interaction. In the ca
considered, that of weak spin–orbit interaction, one sho
take l0

C512F for the interaction constant found from th
magnetic-field dependence of the quantum correction. T
F50.5, which is a completely reasonable value.2!

The value we have found forF is confirmed by an analy-
sis of the change in resistance of sample A at temperat
below the resistance minimum. For example, in the reg
0.3–0.8 K the temperature dependence of the resistanc
described well by a straight line in the coordinatesRh

2 ln(T) ~Fig. 6! and can be represented by the temperat
dependence predicted by the theory of WL and EEI:10,12

Ds5
e2

2p2\
aT ln~T!, ~10!

whereaT5p1lT in the case of weak spin–orbit interactio
(tw,ts0) andaT521/2p1lT in the case of strong spin–
orbit interaction (tw.tso), with p being the exponent of the
power-law dependencetw}T2p.

For sample A we obtained a valueaT51.2(60.01).
Since in our caseaT5p1lT andp51, we obtainlT.0.2.
For weak spin–orbit interaction the constantlT in zero or
low magnetic field has the form14,17

the

FIG. 5. Temperature dependence of the interaction parameter obtained
the weak localization and electron interaction effects for sample A.
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lT512
3

2
F. ~11!

From Eq.~11! for lT.0.2 we getF50.53.

CONCLUSION

In summary, systems containing a two-dimensional
of holes and having a certain relationship between the ela
and inelastic relaxation times can manifest effects of w
localization and interaction of holes~in the magnetoresis
tance and in the temperature dependence of the resista!
in low magnetic fields, and magnetoquantum effe
~Shubnikov–de Haas oscillations and the quantum Hall
fect! in high fields. Analysis of the quantum interferen
effects has yielded the value and temperature dependen
the dephasing timetw of the wave function of the mobile
charge carriers in the Si/SiGe heterojunctions studied her
was found that this temperature dependence has the
tw}T21 and describes hole–hole scattering processes
two-dimensional conducting system. Information was a
obtained on the temperature-dependent interaction con
lT

C in the Cooper channel.
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FIG. 6. Temperature dependence of the resistanceRxx of sample A.
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

Spectrum of rotational states of a diatomic impurity in an atomic 2D cryocrystal
M. I. Poltavskaya* and K. A. Chishko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine
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Fiz. Nizk. Temp.26, 837–845~August 2000!

The spectrum of rotational states is calculated for a three-dimensional rotator in a three-
parameter potential having the symmetry groupS6 ~sixfold mirror–rotational axis!. This potential
models the crystalline field produced at a diatomic homonuclear impurity molecule by a two-
dimensional monatomic matrix~with coordination numberz56) on a substrate having the form of
a close-packed crystalline plane. The main computational algorithm is the Ritz variational
procedure with trial functions classified according to the symmetry of the ground and excited states
of the rotator. The partition function is constructed and the impurity heat capacity is
calculated for two-dimensional cryomatrices~of the Ar and Kr types! containing a subsystem of
noninteracting impurities of different spin modifications~of the 14N2 or 15N2 type!. It is
shown that for different relationships among the parameters of the crystalline potential for the
two types of impurities indicated the heat capacity exhibits characteristic low-
temperature anomalies in the form of peaks whose height, width, and position on the temperature
axis are determined by the parameters of the intermolecular interaction in the system. The
effects predicted by the theory should be completely accessible to experimental observation.
© 2000 American Institute of Physics.@S1063-777X~00!01308-6#
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1. INTRODUCTION

Low-dimensional molecular cryocrystalline system
have been the subject of intensive experimental research
the last forty years.1–9 This research includes a wide range
problems concerning the structural, thermodynamic,
magnetic properties of two-dimensional~2D! monolayers of
N2, O2, H2, D2, CH4, etc. deposited on various substrat
~graphite, BN, Cu, Pt, etc.!. The published results pertai
mainly to impurity-free 2D crystals, except, perhaps, for t
hydrogen films, which are a mixture of ortho and para co
ponents in different concentrations. Together with the
perimental results there is also a rather detailed theore
description based on the model of classical rotators.7 In ad-
dition, there are papers10–12dealing with the rotational state
of diatomic molecules in a crystalline field corresponding
the potential for an isolated molecule adsorbed on the sur
of a crystal.

At the same time, there is reason to think that a num
of interesting thermodynamic properties can be observed
studying the low-temperature heat capacity of 2D atom
cryomatrices in which diatomic molecules are present as
impurity subsystem. In Ref. 13 it was predicted that the lo
temperature heat capacity of the subsystem of impurity r
tors would have anomalies in such a system and it w
shown that the character of these anomalies is largely de
mined by the relationship between the contributions of
atoms of the matrix and substrate to the crystalline field
the impurity. In equilibrium the rotator can be oriented eith
perpendicular to the substrate or along one of the symm
directions in the plane of the layer. It is clear that in the ca
6151063-777X/2000/26(8)/7/$20.00
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mentioned the spectra of the rotational states of the impu
will be different and, hence, so will be the temperature d
pendence of the impurity heat capacity.

The effective crystalline field is a complicated functio
of the angular coordinatesu andw specifying the orientation
of the impurity rotator.13 The results of Ref. 13 were ob
tained under extremely strong simplifying assumptions,
particular, in neglect of the dependence of the potential
the anglew, which made it possible to obtain the qualitativ
features of the phenomenon of interest to us. Meanwhile,
of interest to construct an exact solution of the quantu
mechanical problem of the rotational spectrum of a rotato
a 2D atomic cryomatrix on a substrate and to obtain
thermodynamic characteristics of the system on the basi
this solution. Obviously such a problem can be solved o
with the use of numerical methods. The key factor in th
problem is the symmetry of the crystalline field, which, if th
interaction between impurities is neglected, is determined
the symmetry of both the environment and the substrate.
this reason the corresponding numerical procedure, reg
less of its specific implementation, should be largely ba
on a symmetry analysis, which will permit one to obtaina
priori a correct classification of the states. The goal of t
study is to implement such a program.

2. STATEMENT OF THE PROBLEM

The system to be investigated is a monatomic layer
inert-gas atoms containing molecules of a homonuclear
atomic substitutional impurity~symmetric rotator!. The im-
purities are assumed to be nonmagnetic, so molecules o
© 2000 American Institute of Physics



e
e
b

t.
u

a
-
fo
flu
m
ec
tu
x
la
ly

s
if
o

th
s

co
em
b
f

th
th
r

es
al
he
un
2D
of
in

the
all

ely

ble
lim-

val-
For

um-
ef.

od

s of
all
tem

e
re-

lute

was
the
e

ors
er.

he
way
ilib-
r.

val-

rity

616 Low Temp. Phys. 26 (8), August 2000 M. I. Poltavskaya and K. A. Chishko
O2 type are not considered. The atoms in the layer form
close-packed structure in which each atom of the matrix
surrounded by six neighbors, and they also have three n
est neighbors in the substrate. In the case of sufficiently w
solutions, when the interaction between impurities can
neglected, the impurities can be treated as independen
course, a long-range interaction between impurities can s
stantially affect the thermodynamics of the system.14 We ne-
glect all possible indirect interactions, in spite of the fact th
these interactions are known15,16to have an appreciable long
range effect in three-dimensional crystals. As justification
our model we might mention that, first, because of the in
ence of the substrate the interatomic distances in the 2D
trix is considerably greater than in a bulk crystal, and, s
ond, the mechanisms based on the exchange of vir
phonons are inefficient in 2D systems, since the 2D matri
rigidly fixed by the field of the substrate, so that the trans
tional excitations of the atoms of the matrix are negligib
small.

The crystalline potential for an isolated impurity wa
obtained in Ref. 13. Here we rewrite it in a somewhat d
ferent form, rotating the coordinate system by an angle
p/6 in the plane of the layer and regrouping the terms of
potential in accordance with their symmetry. The result i

U~u,w!

B
5p1 sin2 u1p2 sin4 u1p3 sin6 u

1p4 sin3 u cosu cos 3w

1p5 sin5 u cosu cos 3w1p6 sin6 u cos 6w,

~1!

whereB5\2/2I is the rotational constant,I is the moment of
inertia of the impurity molecule, the angleu is reckoned
from the direction of the normal to the surface, and the
efficients p are determined by the geometry of the syst
~the equilibrium distances between atoms in the layer,
tween the layer and substrate, etc.! and by the parameters o
the intermolecular interaction potential. The values ofp are
expressed in terms of the parametersK, v, andw introduced
in Ref. 13 as follows:

p15
K11K21K3

B
; p25

K2v11K3v3

B
;

p35
K3w4

B
; p45

K2v21K3w1

B
; ~2!

p55
K3w2

B
; p652

K3w3

B
.

Since the crystalline potential~1! is multiparameter, it is
a rather complicated matter to obtain detailed results
would apply to the case of arbitrary relationships among
coefficientspi . In the case when the results of the theory a
employed for interpreting specific experimental data, th
parameters are, as a rule, treated as adjustable, their v
having been estimated beforehand from the publis
data.9,17 The goal of the present study is to discuss the f
damental qualitative features of the thermodynamic of
cryosolutions. We shall therefore specialize to the case
model potential constructed in accordance with the follow
a
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ar-
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e
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arguments. First, the model potential should contain
minimum possible number of parameters while retaining
the basic features of the initial potential~1!. This means that
it should contain three terms whose symmetry complet
corresponds to the three terms of different symmetry in~1!,
and the three amplitudes of these terms will be adjusta
parameters. Second, we restrict consideration to some
ited domain of variation of the potential parameters~and,
hence, we restrict the possible relationships among their
ues! on the basis of estimates for some realistic models.
these we choose two systems: N2 impurities in an Ar~Kr!
matrix on a substrate of Ar~Kr! atoms. For the Ar–N2 sys-
tem:

p1526.6464; p2521.0766; p350.2095;

p450.1306; p550.0861; p6520.0124.

For the Kr–N2 system:

p1526.1604; p2521.0547; p350.0653;

p450.2391; p550.0269; p6520.0039.

The dominant term in the potential~1! in the two cases is
the term;sin2u, while the terms;cos3w and;cos6w can
be regarded as small corrections. We note that this circ
stance justifies the approximations made previously in R
13. The values of the parameterspi are related approxi-
mately as

p25p1/6; p352p2/5; p552p4/3, ~3!

which allows us to represent the model potential to go
accuracy in the form

U~u,w!

B
5p1 sin2 u1

p1

6
sin4 u2

p1

30
sin6 u

1p4 sin3 u cosu cos 3w1
2p4

3

3sin5 u cosu cos 3w1p6 sin6 u cos 6w. ~4!

On the basis of the given data we choose the boundarie
the domain of variation of the parameters for which we sh
investigate the spectrum and thermodynamics of the sys
in the present study as follows:p1 from 210 to 10,p4 from
21 to 1, andp6 from 20.05 to 0.05. We note that th
numerical estimates of the potential parameters must be
garded only as the results of a comparison of the abso
values ofpi . Indeed, the coefficientp1 has a negative sign
because the interaction with the atoms of the substrate
chosen the same as the interaction with the atoms of
matrix, and in equilibrium the rotator lies in the plane of th
layer, since it is attracted by a larger number of neighb
than in the case of its orientation perpendicular to the lay
If the substrate material is different from the material in t
layer, however, the system could be designed in such a
that the attraction by the substrate is large, and the equ
rium position of the rotator will be perpendicular to the laye
For this reason we consider positive as well as negative
ues of the potential parameters.

Thus we shall seek the rotational states of the impu
molecule as solutions of the Schro¨dinger equation
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F2Du,w1
1

B
U~u,w!Gc~u,w!5«c~u,w! ~5!

with the potential~4!, whereDu,w is the angular part of the
Laplacian,«5E/B, andE is the energy of the rotational sta
of the impurity.

3. SPECTRUM OF ROTATIONAL STATES OF THE IMPURITY

The first part of the problem consists in calculating t
spectrum of rotational states of the impurity. This spectr
is determined by the eigenvalues of Eq.~5!, which will be
found by an approximate method equivalent to the R
variational procedure. This method was used in the class
paper of Devonshire18 and was later generalized by Saue19

for describing the states of a diatomic impurity in a cryst
line field of cubic symmetry. In accordance with this meth
we seek the wave function of the impurity rotator in the fo
of an expansion in a finite basis of spherical harmonics
thus reduce the problem of finding the spectrum to an o
nary algebraic eigenvalue problem.

For correct implementation of this procedure it is nec
sary to carry out a symmetry analysis by the well-kno
methods of group theory.20 Specifically, each wave function
is written in the form of a linear combination of spheric
harmonics, which transform in the same way upon invers
and belong to a definite irreducible representation of the
variant subgroupC3 of the symmetry groupS6 of the Hamil-
tonian. We divide the spherical harmonics into two sets,
first of which includes functions invariant with respect
inversion,Y2i ,m , and the second of which includes the ha
monics which are antisymmetric with respect to inversio
Y2i 11,m . In each of the two sets one must determine
particular irreducible representations according to which
individual functions transform. The groupC3 has only three
two-dimensional irreducible representations, two of wh
are complex conjugates.

Let us consider the first set of functions. The harmon
Y2i ,3m ( i 50, 1, 2, . . . ,m50, 61, 62, . . . ) transform ac-
cording to the representationA1. The harmonicsY2i ,3m21

and their complex conjugates transform according toE1.
The plus ~minus! sign on the symbol of a representatio
indicates that the corresponding functions are even~odd!
with respect to inversion. In the second setY2i 11,3m trans-
forms according toA2 and Y2i 11,3m21 and their complex
conjugates transform according toE2.

Thus we can obtain six types of wave functions belon
ing to the different representations:

A1: C5(
i 50

`

(
m52@2i /3#

@2i /3#

aim
1 Y2i ,3m ; ~6!

E1: C15(
i 51

`

(
m5@~122i !/3#

@~112i !/3#

eim
1 Y2i ,3m21 ; C25C1* ;

~7!

A2: C5(
i 50

`

(
m52@~2i 11!/3#

@~2i 11!/3#

aim
2 Y2i 11,3m ; ~8!

E2: C15(
i 50

`

(
m52@2i /3#

@2~ i 11!/3#

eim
2 Y2i 11,3m21 ; C25C1* ~9!
z
al

-

d
i-

-

n
-

e

-
,
e
e

s

-

where @ . . . # denotes the integer part. Here the states
scribed by functions belonging to the representationsE1 and
E2 are twofold degenerate (C1 andC2, with the same co-
efficients of the corresponding harmonics, belong the
same energy level!. We note that the expansions~6!–~9! are
exact expressions for the wave functions; the correspond
trial functions will be obtained from them by keepingN
terms of each series, whereN is chosen on considerations o
the required accuracy of the calculations.

The rest of the computational scheme is as follows. W
write the Hamiltonian of the system in each of the four re
resentations corresponding to the subspaces~6!–~9!. In order
that the matrices implementing the corresponding repres
tations will be symmetric, one must use normalized spher
harmonics in the series~6!–~9!. A calculation of the matrix
elements is extremely awkward, and we shall therefore g
only the procedure for obtaining them~see the Appendix!.

The results of the calculation of the spectrum with t
model potential~4! for the casep45p650 are presented in
Fig. 1. The calculations were done using trial functions c
responding to a basis ofN525 spherical harmonics in eac
of the subspaces corresponding to representations~6!–~9!.
Here we shall not give the spectra corresponding to the c
of nonzerop4 andp6, since, as our calculations have show
the inclusion of the corresponding terms of the poten
leads only to a slight splitting~not more than 1% in the
investigated interval ofpi) of that part of the level that per
tains to the representationsA1 and A2, the degeneracy o
which in the casep45p650 is due to the absence o
w-dependent terms in the potential~4!. This result is some-
what unexpected, but it agrees completely with the data
Ref. 10, for example.

The spectrum of the system investigated here has
feature that merits special mention. The levels constitut
the spectrum~Fig. 1! can be divided into two groups. Th

FIG. 1. Spectrum of rotational states of a diatomic molecule in the poten
~4! with p45p650.
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FIG. 2. Ground-state wave functions forp1526.5 ~a! and 6.5 ~b!. The values of the remaining parameters are the same for both cases:p25p1/6,
p352p2/5, p450.1, p552p4/3, p6520.01.
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first group consists of twofold levels@denoted by the sym
bolsA6(2)] whose degeneracy can be lifted by the addit
of w-dependent terms in the potential. The second gr
consists of the levelsE6, which cannot be split by a field
having the symmetry of the groupS6 ~or, of course, higher
symmetry!.

Finally, for illustration of the structure of rotationa
states of the impurity rotator, Fig. 2 shows an illustration
the wave functions of the ground state for negative~planar
rotator! and positive~two-dimensional oscillator! values of
the parameterp1. As expected, forp1.0 the impurity mol-
ecule is oriented predominantly in the direction perpendi
lar to the substrate, whereas forp1,0 it is localized in the
plane of the layer. In that case the ground-state wave vec
are practically independent of the anglew ~the relative con-
tribution of the terms that depend on that variable is not o
531024).

4. HEAT CAPACITY OF THE IMPURITY SUBSYSTEM

The partition function of a diatomic impurity can b
written in the form21
p

f

-

rs

r

Z5ggZg1guZu , ~10!

where Zg and Zu are, respectively, the contributions from
states which are symmetric and antisymmetric with resp
to inversion ~e.g., for the14N2 molecule gg52/3 and gu

51/3, while for15N2 one hasgg51/4, gu53/4). As we shall
see below, the difference in the degrees of degeneracy fo
molecules14N2 and 15N2 has a substantial influence on th
temperature dependence of the heat capacity of the syst

The internal energy of the impurity subsystem per imp
rity molecule is given by

E5T2
]

]T
ln Z.

Accordingly, the impurity heat capacity per molecule

Cv5S ]E

]TD
v

~here and below we use a system of units in which Bo
mann’s constantkB51).

Figures 3 and 4 show the temperature dependence o
FIG. 3. Heat capacity per impurity molecule as a function of temperature for a subsystem of14N2 impurities at parameter valuesp1.0 ~a! andp1,0 ~b!.
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FIG. 4. Heat capacity per impurity molecule as a function of temperature for a subsystem of15N2 impurities at parameter valuesp1.0 ~a! andp1,0 ~b!.
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heat capacity for different values of the crystalline field co
stantspi for the molecules14N2 and15N2, respectively.

Let us first turn to the14N2 impurity. Forp1.0 ~Fig. 3a!
the heat capacity has a low-temperature peak that beco
more pronounced and shifts to lower temperatures asp1 is
decreased~at smallp the heat-capacity curve remains mon
tonic in the low-temperature region and is close to the h
capacity of a free rotator!. For negativep1 the heat-capacity
curves have an inflection point instead of a peak~Fig. 3b!.
These results can be explained completely in a qualita
way by the character of the rotational spectrum~Fig. 1!. As
p1 increases in the positive direction the lowest levelA1

1

approaches the first excited stateA1
2 , and this gives rise to a

local peak in the heat capacity. Whenp1 increases in the
negative direction the ground stateA1

1 approaches anothe
excited state,E1

2 , and although this approach is weaker th
in the first case, theE1

2 level is twofold degenerate, an
therefore the feature~inflection! on the heat-capacity curve
appears at approximately the same temperatures and
values ofup1u as does the peak in the casep1.0.

In the case of15N2 molecule, at positive values of th
crystalline field constantp1 we observe a transformation o
the heat-capacity peak of the free rotator~nearT;B) into a
low-temperature feature in the form of a local maximu
which shifts to lower temperatures asp1 increases~Fig. 4a!.
In comparison with14N2 the relative populations of the low
est levels in15N2 is substantially higher~in relation to the
population of the lowest levelA1

1 the relative population of
the levelA1

2 is equal togu /gg53, while the relative popu-
lation of the levelE1

2 is 2gu /gg56). This is the reason fo
the sharper changes in the structure of the heat capacity
changing p1 and the larger amplitudes of the low
temperature peaks in15N2 in comparison with14N2. In the
case of15N2 there are three levels involved in the formatio
of the low-temperature heat capacity. At certain not-too-la
values ofp1 these levels are approximately equidistant, a
in that region the low-temperature peak is weakly express
Then with increasingp1 the levelsA1

1 and A1
2 approach
-

es

at

e

me

,

ith

e
d
d.

each other strongly, and the levelsA1
2 andE1

2 move apart.
This makes for a pronounced peak, whose position is de
mined by the distance between the levelsA1

1 andA1
2 , while

its amplitude decreases somewhat with increasingp1 as a
result of the increase in the distance betweenA1

2 andE1
2 .

The heat capacity of the impurity subsystem at nega
values of the constantp1 is shown in Fig. 4b. At all values
p1,0 the heat capacity has a single peak, which is the tra
formed peak ofCv(T) for a free rotator, and no additiona
low-temperature peaks arise in this case. The decrease i
amplitude of the peak with increasingup1u is due to the in-
creasing separation of the levelsE1

2 andA1
2 ~Fig. 1!, while

its shift to lower temperatures is due to the decrease in
level separation«(E1

2)2«(A1
1).

In the limit T→` all of the curves in Figs. 3 and 4
approach the equipartition law (Cv→1), as they should.

CONCLUSION

As we see from the above discussion, our results h
sufficient generality for describing the thermodynamics
diatomic impurity molecules for various relationships amo
the lattice parameters of the two-dimensional crystal and
substrate. The software developed here can in principle
used to analyze any two-dimensional molecular system
responding to configurations in which an impurity molecu
is surrounded by six atoms of the matrix in the layer and
three nearest neighbors in the substrate which are arrang
such a way that the crystalline field for the impurity has t
symmetry groupS6. In particular, the scheme described he
can be applied without any modifications for a diatomic im
purity molecule in a monolayer with the structureA33A3
~Refs. 1, 7, and 8!. In our model the formulation of such
problem reduces simply to choosing the necessary in
atomic distances in the coefficients of the potent
U(u,w).13 We have done the corresponding calculations
a system with such a structure, choosing the parameter
the atom–atom potentials corresponding to the N2 molecule
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in a Kr matrix on a Kr substrate. It turns out that in this ca
the leading terms of potential~1! are p2sin4u and
p4sin3u cosu cos 3w, where p2.0.12 andp4.0.09 ~the re-
maining coefficientspi are at least an order of magnitud
smaller!. Moreover, sincep2 and p4 themselves are sma
compared to unity, the crystalline field in this case is ins
nificant, and the molecule moves almost as a free rotator
the other hand, this case is close to the situation corresp
ing to a molecule adsorbed on the surface of a crystal.
problem of the spectrum and heat capacity of such a m
ecule was considered in Refs. 10 and 11, where the aut
proceeded from a model potentialU5lcos2u with l.0. As
our results show, a potential;sin4u might be more realistis-
tic for this system.

As to the heat capacity of diatomic impurities in a clos
packed 2D atomic matrix, it is clear from Figs. 3 and 4 th
diverse low-temperature features can arise here, the char
of which is directly related to the parameters of the interm
lecular interaction. These features are quite obviously of
terest from the standpoint of experimental observation.

APPENDIX

In calculating the matrix elements of Hamiltonian~5!, it
is necessary to express products of the ty
U(u,w)Ȳl ,m(u,w) in terms of suitable linear combinations o
spherical harmonics. We write the indicated expression
the form

U

B
Ȳl ,m5@p1~12x2!P̄l

m~x!1p2~12x2!2P̄l
m~x!

1p3~12x2!3P̄l
m~x!#eimw/A2p

1p4~12x2!3/2xP̄l
m~x!cos 3w eimw/

A2p1p5~12x2!5/2xP̄l
m~x!cos 3w eimw/

A2p1p6~12x2!3P̄l
m~x!cos 6w eimw/A2p,

~A1!

where x5cosu, and we use the definition of the spheric
harmonicsȲl ,m5 P̄l

m(x)eimw/A2p, whereP̄l
m(x) is the nor-

malized associated Legendre polynomial.
In the first term in~A1! one need only apply the recu

sion relation

xPl
m5

1

2l 11
@~ l 1m!Pl 21

m 1~ l 112m!Pl 11
m # ~A2!

the required number of times and take into account the n
malizing coefficients, whereupon the expression takes
form of a linear combination of normalized spherical ha
monics.

One cannot proceed in this way for the remaining th
terms on account of the presence of aw-dependent factor in
the potential. Let us consider the second term, for exam
Since cos 3weimw5(ei(m13)w1ei(m23)w)/2, we need two rela-
tions:

~12x2!3/2xP̄l
m5(

~ j !
aj P̄j

m13, ~A3!

~12x2!3/2xP̄l
m5(

~k!
bkP̄k

m23. ~A4!
e
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In order to obtain relation~A3!, for example, we use the
well-known formula for the Legendre polynomials22

Pl5
1

2l 11 S dPl 11

dx
2

dPl 21

dx D ~A5!

and write the relation

Pl5
1

~2l 11!~2l 13!~2l 15!

d3Pl 13

dx3

2
3

~2l 21!~2l 11!~2l 1 !

d3Pl 11

dx3

1
3

~2l 23!~2l 11!~2l 13!

d3Pl 21

dx3

2
1

~2l 23!~2l 21!~2k11!

d3Pl 23

dx3
. ~A6!

Then, using~A6! and the definition of the associated Le
endre polynomials,

Pl
m5~12x2!m/2

dm

dxm Pl ,

we obtain

~12x2!3/2Pl
m5~12x2!~m13!/2

dm

dxm Pl

5
1

~2l 11!~2l 13!~2l 15!
Pl 13

m13

2
3

~2l 21!~2l 11!~2l 15!
Pl 51

m13

1
3

~2l 23!~2l 11!~2l 13!
Pl 21

m13

2
1

~2l 23!~2l 21!~2l 11!
Pl 23

m13. ~A7!

We multiply the last equality byx and use formula~A2!,
which leads to a change in only the lower indices in~A7!.
Then, using the normalizing coefficients, we arrive at t
desired formula for the normalized polynomials. We sh
not write out the final expression here, as it has a rat
awkward form.

Let us now turn to expression~A4!. It turns out that the
coefficientsbk are related to the coefficientsaj by an ex-
tremely simple relation that can be obtained as follows. R
write Eqs.~A3! and ~A4! in the form

~12x2!3/2xP̄l
m5(

j 54

4

aj~ l ,m!P̄l 1 j
m13, ~A8!

~12x2!3/2xP̄l 1 j
m135 (

k524

4

bk~ l 1 j , m13!P̄l 1 j 1k
m , ~A9!

wherej andk are even numbers. Multiply~A8! by P̄l 1 j
m13 and

~A9! by P̄l
m and integrate both equations overx from 21 to

1:
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E
21

1

dx~12x2!3/2xP̄l
mP̄l 1 j

m135aj~ l ,m!, ~A10!

E
21

1

dx~12x2!3/2xP̄l
mP̄l 1 j

m135b2 j~ l 1 j , m13!. ~A11!

Now equate the right-hand sides of~A10! and ~A11! to get

bj~ l ,m!5a2 j~ l 1 j , m23!. ~A.12!

We note that an analogous formula was obtained in Ref
for a basis of unnormalized Legendre polynomials.

Following the same procedure, one can expand the t
and fourth terms in~A1! and obtain a representation fo
UȲl ,m /B in the form of a sum of normalized spherical ha
monics.
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Dynamic characteristics of helium adsorbents. The influence of palladiation
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The equilibrium helium pressure is measured under static and dynamic conditions for a series of
new adsorbents with various degrees of palladiation. It is confirmed that the helium
pressure above the adsorbent in the region where it is independent of the degree of filling of the
adsorbent is a universal function of the rate of helium admission. It is shown that the
admixture of several percent Pd has practically no influence on the adsorption properties of the
adsorbents studied. ©2000 American Institute of Physics.@S1063-777X~00!01408-0#
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In this paper we continue the research on new heli
adsorbents under conditions that simulate the operatio
adsorption pumps in dilution refrigerators. This research w
begun in Ref. 1, where it was shown that at the outpump
rates of 1026–1024 mole/s typical for most dilution refrig-
erators, the pressure in the adsorption pump remains con
until the filling of the adsorbent exceeds~0.5–0.9!Va , where
Va is the gas volume corresponding to the the adsorp
isotherm. It was also established that the pressure in
‘‘plateau’’ region for the adsorbents studied is a univer
function of the gas admission rate per unit mass of adsorb

The goal of this study was to check this universality f
other adsorbents and also to investigate the influence of
ladiation on the properties of the adsorbents. Palladia
silica gel has been used on more than one occasion~see, e.g.,
Refs. 2 and 3! for the outpumping of helium vapor, and
moreover, it has been stated,4 in particular, that palladiated
silica gel is considerably better cooled~at least in compari-
son with activated carbon!. Since the cooling efficiency is a
important characteristic of an adsorbent, this circumsta
provided an additional stimulus for the present study.

We had at our disposal several samples with differ
degrees of palladiation. Their characteristics are listed
Table I.

The study of the adsorbents was done using the te
niques and apparatus described in Ref. 1. In the first stag
measured the4He isotherms in the pressure interval 1 –1022

TABLE I. Characteristics of the samples studied.

Adsorbent r, g/cm3 A, cm3/g B, cm3/g

SKF-2 0.35 719 77.2
SKF-211.3% Pd 0.35 717 99.5
SKF-213.4% Pd 0.36 757 135.1
SKF-215.8% Pd 0.40 538 66.3
SKT-3 0.39 644 75.1
SKT-315.8% Pd 0.53 407 35.3
SKNP-4 0.34 790 97.2
SKNP-415.8% Pd 0.37 673 73.0
6221063-777X/2000/26(8)/3/$20.00
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torr at 4.2 K. The results for several adsorbents are prese
in Fig. 1. As in Ref. 1, the dependence of the volume of
adsorbed helium on the pressureP was described, to within
the limits of experimental error, by the relation

Va5A1B log P.

The values of the coefficientsA andB corresponding to
the measurements ofVa in cm3/g and of the pressure in tor
are given in Table I.

The data suggest that at low degrees of palladiation~be-
low 3%! the adsorption isotherms remain practically u
changed, while higher degrees of palladiation degrade
adsorption capacity somewhat, at least at low pressures

Figure 2 shows the dependence of the pressure in
pump on the amount of adsorbed helium in the dynam

FIG. 1. Isotherms of the adsorption of helium-4 atT54.2 K by synthetic
activated carbons: SKF-2 (,), SKF-2 1 1.3%Pd~1!, SKF-2 1 5.8%Pd
(s), SKT (h), SKT 1 5.8%Pd (j), SKNP-4 (L), SKNP-41 5.8%Pd
(l).
© 2000 American Institute of Physics
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regime for different constant rates of gas admission
SKF-2 without palladiation and with a content of 3.4% Pd
is seen that, as in Ref. 1, there is a rather large ‘‘platea
region in which the pressure is independent of the amoun
the adsorbed substance. This property of adsorption pu
makes it possible to achieve a constant rate of circulatio
dilution refrigerators over quite a long period of time witho
taking special measures for its stabilization. Figure 3 show
plot of the pressure in the plateau region as a function of
gas admission rate per unit mass of adsorbent. The
points obtained in the present study are compared with
curves obtained in Ref. 1 for other adsorbents. The comp
son confirms the universal character of this dependence
both pure and palladiated samples.

A processing of all the experimental data obtained
date yields the following universal dependence of the pr
sureP ~torr! above the adsorbent in the plateau region on

FIG. 2. Pressure in the pump versus the degree of filling at various ad

sion ratesV̇, mmole/s: a — SKF-2 adsorbent: 3.47 (n), 22.8 ~1!, 55.8
(j), 78.8 (,); b — SKF-21 3.4%Pd: 20.2 (d), 25.2 (n), 50.6 (s), 60.0
(L), 80.0 (h).
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helium admission rateV̇ per unit mass of the adsorben
~mole/s•g!:

log P52.1110.66 logV̇.

These results show that palladiation does not have a
stantial effect on the properties of helium adsorbents, incl
ing their dynamic characteristics. Apparently, the degra
tion of the cooling of palladiated silica gel observed in Ref
was due to a slight increase in the thermal conductivity of
adsorbent, which does not play an important role under
namic conditions.

Figure 4 shows additional data on the decrease in p
sure above the adsorbent in the initial stage of the hel
admission, an effect observed in Ref. 1. The behavior of S
1 3.4%Pd and the Dnepr activated carbon cloth does

is-

FIG. 3. Pressure in the pump on the plateau versus the helium admis
rate: the line is for the carbons SKNP-4, KAU, and SKN; the points are
SKF-2 (,), SKF-2 1 3.4%Pd (d).

FIG. 4. Pressure in the pump versus the degree of filling in the initial st
of the experiment: silica gel (j), SKF-2 1 3.4%Pd (d), Dnepr AUVM
activated carbon cloth (L).
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differ qualitatively from that of palladiated silica gel. How
ever the decrease in pressure observed in that study, whi
apparently due to the the circumstance that the adsorbed
lium improves the cooling of the adsorbent somewhat,
curs in a narrower interval of degrees of filling, a findin
which correlates with the better adsorption capacity of S
and the carbon cloth.

In summary, this study has confirmed the universality
the dependence of the pressure above the adsorbent i
plateau region on the helium admission rate per unit mas
the adsorbent. The data obtained support the conjecture
a universal dependence should hold for all adsorbents u
conditions such that the main role in the cooling of the a
sorbent is played by heat conduction through the gas.
is
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-
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have found that the admixture of Pd at the level of a f
percent has practically no effect on the static or dynam
characteristics of helium adsorbents.
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ics 15, 254 ~1975!.

3V. E. Sivokon’, V. V. Dotsenko, A. L. Pogorelov, and V. I. Sobolev, Fi
Nizk. Temp.19, 444 ~1993! @Low Temp. Phys.19, 312 ~1993!#.

4V. P. Babi�chuk, L. S. Dikina, B. N. Esel’son, and I. A. Serbin, Tr. Fiz
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~1968!.
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In a recently published Brief Communication1 the prob-
lem of investigating theoretically the order of the phase tr
sition in the easy-axis antiferromagnet~AFM! CoF2 in a lon-
gitudinal magnetic fieldH iC4 was addressed. Havin
carried out an investigation in the quasiclassical appro
and having formulated a criterion for determining the ord
of the collinear–noncollinear phase transition, the author
that paper1 mentioned the lack of a consistent theory for th
crystal with its manifestly ‘‘nonclassical’’ magnetic sub
system. One cannot agree completely with that statemen
with the results obtained in that study.1

First, such a theory does exist, or in any case, the be
nings of one2–5 ~see also the more detailed exposition in t
review6.

Second, the inconsistency noted by the authors of Re
is caused precisely by the use of a multiparameter phen
enological theory, which has a severely limited applicabil
to CoF2. In particular, and this is important, it does not allo
one to accurately take into account the lengths of the ave
spins ~or, equivalently, the magnetizations! sa(H) of the
sublatticesa51,2 in the external field, which is appreciab
in CoF2 and is due to the low~orthorhombic! symmetryD2h

of the local crystalline field. Moreover, the Dzyaloshinsk�

interaction constant is sign-varying over the magnetic sub
tices and in this sense the problem of its sign does not e
~of course, under the assumption of a single-domain m
netic state of the sample, which, generally speaking, does
correspond to reality7!. In a magnetic field, one of the spin
s1(H), which is directed parallel to the field, is lengthene
while the other,s2(H), antiparallel to the field, is shortened
and in this ‘‘ferrimagnetic’’ state~and atT50) the plane of
rotation is determined mainly by the easy axis of the ‘‘long
spin. Here, by virtue of the anisotropic character of the ba
plane, the spin-flop transition does not occur, and the rota
actually resembles the behavior of a ferrimagnet (s1(H)
2s2(H)Þ0) in an external longitudinal magnetic field.

The quantum~and the phenomenological! approach not
only permits a quantitative description of the AFM state
CoF2 with a small number of adjustable parameters~includ-
ing the Dzyaloshinski� interaction! but also shows that the
order of the transition and the character of the canted ph
depend on the initial value ofS (S51, 3/2, . . . ), with
sa(H),S. The value ofS specifies the order of the matri
6251063-777X/2000/26(8)/1/$20.00
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describing the dynamics of the field-induced rotation of t
quantum magnetization, wherein the orientation of the la
depends self-consistently on its modulus~i.e., its quantum-
mechanical average! and vice versa. The quasiclassical equ
tions and the corrections to it for the spin configurations c
be obtained only for the case when the single-ion anisotr
is small compared to the exchange, and in the approxima
adopted in Ref. 1~and also in Ref. 8, on which it was base!
this anisotropy is indistinguishable from the inter-ion anis
ropy, which does not have any influence on the form of
equations mentioned.

To sum up, the results obtained in Ref. 1 cannot be c
sidered adequate to the description of phase transitions in
CoF2 crystal, even if they do capture certain qualitative fe
tures of its magnetic subsystem. Besides, transition-m
fluorides are piezomagnetic, and in CoF2 the corresponding
lattice deformation in the external field is particularly larg
which makes for a transition to the canted phase which
first-order, close to second-order. Unless the magnetos
tion is taken into account, any conclusion about the orde
the transition cannot be considered justified or conclus
and I fail to see how it could be. However, this does n
detract from the fact that the study of the phase state
phase transformations of CoF2 in an external field remains a
interesting topic in the physics of magnetic phenomena.

*E-mail: vloktev@bitp.kiev.ua
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The main point of the comment is that our analysis
the quantum subsystem in Ref. 1 was done using a phen
enological model~see Refs. 2 and 3!. It should be kept in
mind that the magnetic subsystems of magnetically orde
crystals are quantum subsystems~the very existence of fer
romagnetic and antiferromagnetic ordering is a quantum
fect!. Nevertheless, a phenomenological model is used
describe their physical properties, as is molecular fi
theory.4,5 Moreover, to this day there are many physical
sults that have been obtained in the phenomenological m
which have not been successfully captured in the framew
of the quantum theory.

We had undertaken a modest problem — to obtain ad
tional information about the behavior of the magnetic su
system of CoF2 in a longitudinal magnetic field with allow
ance for the results of previous studies~which we cited in
Ref. 1!, in particular, the results of Ref. 6.

The criterion of a first-order phase transition was form
lated in Ref. 7 on pp. 536–537.

We did point out in our paper that some authors consi
that there is a problem of the sign of the Dzyaloshins�
interaction~DI!, while others do not. And this is by no mean
an idle question. If the direction of rotation of the antiferr
magnetism vector under the influence of a transverse m
netic field is not related to the sign of the DI, then the ex
tence of a new type of domain structure is possible. If it is
related, then this new domain structure does not exist.

The paper of Ref. 1 was a continuation of our earl
paper8 in which it was shown consistently and accurately
the framework of the phenomenological theory that in ea
axis tetragonal antiferromagnets under the influence of a
gitudinal magnetic field the transition to the canted phase
to the ordinary spin-flop phase3 is due to a competition be
tween two anisotropies in the basal plane: the anisotropy
to the DI, and the exchange-enhanced fourth-order ani
ropy (f l x

2l y
2). We determined the conditions influencing th

character of the transition between the antiferromagnetic
canted phases. We also showed that if a first-order trans
exists, then it is close to second-order. Thus there is no
tification for invoking the hypothesis of ferrimagnetic beha
ior in this case.
6261063-777X/2000/26(8)/1/$20.00
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For CoF2 the ratio of the anisotropy fieldHa to the ex-
change fieldHe satisfies the condition (Ha /He)

2!1, and
this circumstance, with allowance for the difference in t
sublattice magnetizations in the phenomenological mod2

allows one to assume that the phenomenological model
be productive. Our computer calculations of the total ma
netization as a function of the longitudinal magnetic fie
gave better agreement with experiment6 than the dependenc
presented in Ref. 9.

The magnetostriction in CoF2 could influence the char
acter of the phase transition to the canted phase if the cha
in the orientation of the antiferromagnetism vector at t
transition were substantial~as in the case of the ordinar
spin-flop transition3!. Since in the given case the change
the orientation of the antiferromagnetism vector at the fir
order transition is extremely small~the first-order phase tran
sition is close to second-order!, an influence of the magneto
striction on the character of the transition is unlikely.

In closing, I would like to point out that the use of th
phenomenological model does not interfere in any way w
the development of a quantum theory.

*E-mail: iapuas@gluk.apc.org
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On May 4, 2000, the world of Ukrainian and intern
tional science suffered a heavy loss in the death of Aleksa
Il’ich Akhiezer, an outstanding physicist and thinker and
wonderful human being.

Akhiezer made some first-rate contributions in the fie
of physics — plasma physics, solid-state and lo
temperature physics, nuclear physics, quantum field the
and physical kinetics. His personal scientific results are u
versally acknowledged and widely cited: the Akhiez
mechanism for the absorption of wave energy, the Akhiez
Fa�nberg beam instability, the Akhiezer relaxation mech
nism, Akhiezer diffractive scattering of nucleons — the
and many other effects that bear his name are known to
physicists today.

His famous books have nurtured several generation
scientists in the former USSR and the countries of Eas
Europe.

The monographQuantum Electrodynamics, which he
co-authored with B. B. Berestetski�, was for a long time the
only one in this field, and it helped educate theoretical phy
cists all over the world. Akhiezer’s books on the electrod
namics of plasmas and spin waves are among the most
works in world literature.

Akhiezer was a born teacher and scientific group lead
He taught his students not only physics but also moral p
ciples and standards of conduct. He held the honorary titl
Great Worker and Man of Noble Deportment. When faci
problems in life, people knew they could always turn to hi
for sound and kind-hearted advice. Akhiezer was the c
science of the Kharkov Physicotechnical Institute, w
which he was associated all his life.

Thanks to his great erudition, fine intuition, a genero
impulse to share his ideas with co-workers and students
steadfast desire to do everything in the correct way, and
you like, his saintliness, something that might be called
‘‘Akhiezer phenomenon’’ arose. The heart of this pheno
enon was the enormous attraction he exerted on physicis
different generations. Everyone who had dealings with h
knows very well how he raised us to his level, making
more intelligent and high-minded. Akhiezer liked to say th
he felt privileged to be working with his co-workers, that h
was learning new things from them and getting ideas
future studies. He loved his Institute with a passion. This w
another aspect of the Akhiezer phenomenon.

Akhiezer lived in Kharkov all his life, spending time a
the Kharkov Physics and Engineering Institute, Khark
University, and at the Military Radio Engineering Academ
6271063-777X/2000/26(8)/1/$20.00
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The physicists of Kharkov rightfully consider him ou
teacher. Some of us heard him lecture, others consulted
him, and some were lucky enough to be his students of
first, second, or third generation.

Because of Akhiezer, Kharkov became a kind of Mec
for physicists from other cities and countries. His stude
now are working all over the world, and particularly i
Ukraine, where they carry on the work of their teacher.

The name Akhiezer in Hebrew means~brothers’! helper.
And indeed he helped others his whole life, without regard
their nationality or creed.

The memory of this wonderful man will always rema
bright in our hearts.

V. G. Bar’yakhtar, V. V. Eremenko, V. G. Manzhel�,
S. V. Peletminski�, A. G. Sitenko, V. P. Seminozhenk

K. N. Stepanov, Ya. B. Fainberg, P. I. Fomi
V. I. Lapshin, and N. F. Shul’ga

Translated by Steve Torstveit
© 2000 American Institute of Physics


	541_1.pdf
	553_1.pdf
	558_1.pdf
	561_1.pdf
	569_1.pdf
	577_1.pdf
	581_1.pdf
	586_1.pdf
	594_1.pdf
	598_1.pdf
	603_1.pdf
	609_1.pdf
	615_1.pdf
	622_1.pdf
	625_1.pdf
	626_1.pdf
	627_1.pdf

