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General expressions are obtained in explicit form for the anomalous and normal distribution
functions of quasiparticles in nonunitary phases of a superfluid paramagnetic Fermi liquid
consisting of electrically neutral fermions with triplet pairing~the pairs have spins51 and
an arbitrary odd value of the orbital angular momentuml ) in a uniform static magnetic field. A
generalized Fermi-liquid approach is used which takes into account the exchange Fermi-
liquid interaction but does not specify the form of the energy functional of the superfluid Fermi
liquid. The results are valid at any temperature in the interval 0<T<Tc , whereTc is the
temperature of the phase transition from the normal to the superfluid state. When an explicit form
of the energy functional is specified, the general formulas for the distribution function can
be used to describe the various nonunitary phases of a superfluid Fermi liquid of the3He type in
a high magnetic field. In particular, for3He-A1 , 3He-A2, and the nonunitary two-
dimensional phase of3He in a high magnetic field at 0<T<Tc , an energy functional quadratic
in the distribution function is used to find a system of coupled equations for the order
parameter and the effective magnetic field and to obtain an expression is obtained for the nonlinear
magnetic susceptibility. ©2000 American Institute of Physics.@S1063-777X~00!00111-0#
u
a

m

th

y
p

I
u
s

p
ag
he
f

ua

w

the
te

tic
m
of

su-
k

an
ory
rs

d

be
he
ri-

of

ac-

ch
ain

in
1. INTRODUCTION

This paper is a continuation and generalization of o
previous paper1 and is devoted to a theoretical study of
superfluid Fermi liquid~SFL! with triplet pairing ~the pairs
have spins51 and arbitrary odd orbital angular momentu
l ) in a uniform static magnetic field at temperatures 0<T
<Tc (Tc is the temperature of the phase transition from
normal to the superfluid state in zero magnetic field!. We
assume~as in Ref. 1! that the SFL consists of electricall
neutral fermions possessing a magnetic moment. Exam
of such a SFL are the superfluid phases of3He and the su-
perfluid state of the neutron liquid inside a neutron star.
Ref. 1 these SFLs are described in a Landau Fermi-liq
approach, which was generalized to superfluid system
Refs. 2–4~see also the references cited therein!.

Let us briefly recall that in Ref. 1, in a generalized a
proach taking into account the effects of an external m
netic fieldH and the exchange Fermi-liquid interaction in t
SFL, the energy of the SFL was introduced in the form o
functional E( f ,g,g1;H), which is a functional not only of
the normal matrix distribution functionf 12[Tr ra2

1a1 but
also of the anomalous matrix distribution functionsg12

[Tr ra2a1 and g12
1 [Tr ra2

1a1
1 of the quasiparticles of the

SFL in a magnetic fieldH (r is the density matrix,a1
1 and

a1 are the creation and annihilation operators for Fermi q
siparticles in the states 1[p1 ,s1, wherep1 is the momentum
ands1 is the spin projection on the quantization axis!. As in
Ref. 1, we assume that the energy functional~EF! is invari-
ant with respect to phase transformations. In addition,
7851063-777X/2000/26(11)/6/$20.00
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shall assume that the interaction energy functional of
SFL is invariant with respect to rotations in both coordina
~orbital! and spin space. Strictly speaking, the relativis
~spin–orbit! interactions should therefore be excluded fro
consideration, since they break this rotational invariance
the energy functional. However, if one specializes to the
perfluid phases of3He, this relativistic interaction is a wea
magnetic-dipole interaction between the nuclei of the3He
atoms, which have a magnetic dipole momentmn . Although
this interaction does play an important role5–8 in 3He, it is six
orders smaller than the main Fermi-liquid interaction and c
therefore be taken into account using perturbation the
~see, e.g., Ch. 6 of Ref. 8!, assuming that the Cooper pai
are characterized, as before, by a definite spins51 and an
orbital angular momentuml ~which here can take on any od
value, in accordance with the Pauli exclusion principle!. If
one is considering the case of high magnetic field (H@30 G
for 3He!,7,8 then the weak magnetic dipole interaction can
neglected. Thus, although the explicit form of the EF for t
SFL will not be used in Sec. 2, the aforementioned inva
ance properties of the EF are assumed.

A study of the effects of superfluidity of a system
nucleons with tripletp pairing in heavy nuclei, where it is
necessary to take the strong spin–orbit interaction into
count, has been done by another method in Ref. 9~see also
Ref. 10, a review of superfluidity in neutron stars, in whi
triplet pairing of the nucleons can also occur in a cert
interval of densities of the star; see the references cited
Refs. 9 and 10!.
© 2000 American Institute of Physics
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We also note that heavy-fermion superconductors~see,
e.g., Ref. 11 and the reviews in Refs. 12–14!, in which triplet
Cooper pairing is apparently realized, bear some similarit
the superfluid phases of3He, although there are also substa
tial differences, chief among which are the presence of
crystal lattice, a rather strong spin–orbit interaction, and
electric change on the fermions. Because of these dif
ences, the results of the present study must not be dire
applied to the consideration of superfluid systems with he
fermions.

In Ref. 1 we developed a method for finding expressio
for the distribution functions~DFs! of quasiparticles of a
SFL with triplet pairing in a magnetic field and establish
the general structure of these expressions~but not their ex-
plicit form in the general case!; see Eqs.~I.31! and~I.32! @by
which we denote Eqs.~31! and ~32! of Ref. 1#. The explicit
form of these DFs was written out in Ref. 1 only for a fe
particular cases~but for arbitrary odd values ofl ), viz., for
the unitary phases of SFLs with a real order parame
Da(p)5Da* (p), such as3He-B and the two-dimensiona
~2D! phase of3He @see Eqs.~I.37! and ~I.40!#, and also for
nonunitary phases of the type3He2A2 , 3He-A1, and the
nonunitary 2D phase of3He ~see Eqs.~I.46!–~I.48!. These
nonunitary phases of3He in a magnetic field have been co
sidered only in the case ofp pairing, e.g., in Refs. 15 and 16
and, furthermore,in Ref. 15 the Fermi-liquid interactio
were not taken into account, while in Ref. 16 the exchan
Fermi-liquid interaction was taken into account on the ba
of formulas~I.46!–~I.48! ~this case is also considered in Se
3 as an illustration of the use of the general theory!.

The main goal of this paper is to obtain an explicit for
for the normal and anomalous DFs of quasiparticles in a
trary nonunitary and unitary phases of a SFL with trip
pairing in a rather high magnetic field of arbitrary orientati
at temperatures 0<T<Tc . For this we shall use for the DF
the general formulas~I.31! and ~I.32! obtained in Ref. 1.

2. GENERALIZED FORMULAS FOR THE DISTRIBUTION
FUNCTIONS OF QUASIPARTICLES OF A SUPERFLUID
FERMI LIQUID WITH TRIPLET PAIRING IN A MAGNETIC
FIELD

Let us write the definitions needed for understanding
final results, and let us make some refinements to som
the formulas from Ref. 1. As in Ref. 1, we introduce in pla
of the matricesf 12 and g12 the corresponding normal DF
f 0(p) and f a(p) and anomalous DFsg0(p) and ga(p) for
the quasiparticles of a SFL in the spatially uniform case:

f 125 f s1s2
~p1!dp1p2

5@ f 0~p1!ds1s2
1 f a~p1!~sa!s1s2

#dp1p2
, ~1!

g125gs1s2
~p1!dp1 ,2p2

5@g0~p1!~s2!s1s2

1ga~p1!i ~sas2!s1s2
#dp1 ,2p2

~2!

(sa are the Pauli matrices;a51,2,3), where, sinceg12

52g21 for fermions, we haveg0(p)5g0(2p) and ga(p)
52ga(2p). We assume that in the thermodynamic equil
rium state the superfluid component of the SFL is at rest,
its velocityvs50 ~see Refs. 2–4 for a more detailed discu
sion of the condition of spatial uniformity in a SFL!.
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According to formulas~I.12!–~I.14!, we have

j12~ f ;H !5«12~ f ;H !2~vnp11m!d12,

where

«12~ f ;H !5
]E~ f ,g,g1;H !

] f 21
5«p1p2

~ f !ds1s2

1~jb~ f ;H !!p1p2
~sb!s1s2

.

In the spatially uniform case it follows from this, in acco
dance with~1!, that

j125js1s2
~p1!dp1p2

5@j0~p1!ds1s2
1jb~p1!~sb!s1s2

#dp1p2
,

where

j0~p!5«~p!2~vnp1m!, ~3!

jb~p!5«b~p!2mnHb[2mn~Heff~p!!b

~as in Eq.~I.17! we assume thatjb(p)5jb(2p)). Herevn is
the velocity of the normal component of the SFL,m is the
chemical potential,mn is the magnetic moment of the fer
mion, «(p)5«(p) is the kinetic energy of a quasiparticle
including the nonexchange normal Fermi-liquid interacti
amplitudes,«b(p) are functions that take into account th
Landau normal exchange interaction amplitudes, andHeff(p)
is the effective magnetic field inside the SFL~in Ref. 17 the
functionsjb(p) were not taken into account!.

We assume that within the SFL there is an interact
that leads to triplet pairing of the fermions~but no interaction
leading to singlet pairing!. Therefore, the matrixD12, which
is the order parameter for the SFL, can be written in
spatially uniform case as

D1252
]E~ f ,g,g1;H !

]g21
1 5 iDa~p1!~sas2!s1s2

dp1 ,2p2
,

Da~2p!52Da~p! ~4!

~the functionDa(p) depends on the particular choice of e
ergy functionalE( f ,g,g1;H)).

Let us now generalize formula~I.25! for the matrixn12.
Formulas~I.25! and ~I.27! are valid for unitary and nonuni
tary phases of SFLs of the3He type in a magnetic field in the
limit when uj•Du is small.

In particular, for a unitary phase of a SFL of the3He-B
type, for which Da(p)5Da* (p), the system of equation
~I.34!, ~I.36! for the functionsDa(p) andja(p), with allow-
ance for formulas~I.37! and~I.40! for the quasiparticle DF in
the linear approximation in the small quantityuj•Du agrees
with the corresponding system of equations from Ref.
where only thep pairing in 3He-B was taken into accoun
and it was assumed thatvn50 andvs50.

For nonunitary phases the quantityuj•Du50 in the par-
ticular case thatja5j l a ~for any values ofj), wherel~p! is
a real unit vector of the form@see~I.22!#

l~p![
i

h~p!
@D~p!3D* ~p!#,

~the quantityh(p)[uD(p)3D* (p)u is nonzero for nonuni-
tary states of a SFL with triplet pairing!. In this case formu-
las ~I.46!–~I.48! are valid for the DFs, which, together wit
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equations~I.34!–~I.36!, allow us to describe the nonunitar
phases of the type3He-A2 and 3He-A1 and the nonunitary
2D phase of3He ~see Ref. 16!.

In the general case, for arbitrarily high magnetic fiel
~but within the limits of applicability of the Fermi-liquid
theory, i.e., forumnuH!m), when no restrictions are place
on the value ofuj•Du, the expression for the matrixn12 @see
the original definition~I.10!# under conditions of spatial uni
formity has the same structure as in~I.25!, i.e.,

n125dp1p2
@Np1

0 ds1s2
1Np1

i ĥn~p1!~sn!s1s2
#, ~5!

where

Np
0[

1

2
@Np

~1 !1Np
~2 !#, Np

i [
1

2
@Np

~1 !2Np
~2 !#. ~6!

However, there is a difference in the definition of the fun
tionsNp

(6) andĥa(p), which now in the general case take th
forms

Np
~6 !~(![H expF1

T S j0~p!2j0~2p!

2

1(~p!6(~p! D G11J 21

, ~7!

ĥa~p![
ha~p!

(~p!
, ~ ĥ2[1!, ~8!

whereha(p) as before has the definition~I.28! in terms of
the functions defined in Ref. 1. That is, formulas~7! and~8!
containS(p)[S2,1(p) in place ofuh1,2(p)u. Formula~7! also
contains the functionsS(p)[S1,2(p), which have the form
@see~I.23!#:

(1,2~p!5
1

2
@E1~p!6E2~p!#. ~9!

Here the functionsE6(p), which are the energies of th
quasiparticles in the SFL~with spin projections parallel and
antiparallel to the magnetic field!, in the general case retai
their previous form~I.24!, i.e.,

E6
2 ~p![a~p!6Ab2~p!1g2~p!, ~10!

where

a~p![uD~p!u21z2~p!1j2~p!,

ba~p![h~p!l a~p!12z~p!ja~p!, ~11!

g~p![2uj~p!•D~p!u,

andz(p)[@j0(p)1j0(2p)#/2[«(p)2m.
We emphasize that for magnetic fields of arbitrary va

(umnuH!m) and direction, the general form of formula
~I.31! and ~I.32! for the DFs of the quasiparticles in a SF
remains unchanged, but one must use for the functionsĥa(p)
the generalized expression~8! obtained above.

After making these observations, let us write out t
general explicit expressions we have obtained for the qu
particle DF of a SFL in a magnetic fieldH which is spatially
uniform and constant in time. ForhÞ0, vnÞ0 ~but with
-

e

si-

vs50) and (j•D)Þ0, ~j•l!Þ0, (j•@ l3D#)Þ0, we obtain
from ~I.31! the following expression for the anomalous DF
0<T<Tc :

ga~p!5
1

2R H F ~12Np
02N2p

0 !
1

(
1~Np

i
1N2p

i
!

1

(G
3S i

2
@b3D#a1ja~j•D! D2Da@~12Np

02N2p
0 !

3(1~Np
i
1N2p

i
!(#J , ~12!

g0~p!5~Np
i
2N2p

i
!

i ~j•D!

2(1(2
. ~13!

For the normal DFsf 0(p) and f a(p) it follows from ~I.32!
that

f 0~p!5
1

2
~11Np

02N2p
0 !1

1

2R H F ~12Np
02N2p

0 !
1

(

1~Np
i
1N2p

i
!

1

(G 1

2
~b•j!2z@~12Np

02N2p
0 !

3(1~Np
i
1N2p

i
!(#J , ~14!

f a~p!5
1

2R H F ~12Mp
02N2p

0 !
1

(
1~Np

i
1N2p

i
!

1

(G
3S z

ba

2
1ReDa~j•D* ! D2ja@~12Np

02N2p
0 !

3(1~Np
i
1N2p

i
!(#J 1~Np

i
2N2p

i
!

ba

4(1(2
. ~15!

Expressions~12!–~15! contain functionsN6p
0 (S1,2) and

N6p
i (S1,2) of the form~6!, ~7!, and the argumentp has been

dropped from the remaining functions for the sake of brev
We have also introduced the functionsR[R1,2(p):

R1,2~p!56E1~p!E2~p!56Aa2~p!2b2~p!2g2~p!, ~16!

from which the subscripts 1,2~as in the case of the function
S(p)[S1,2(p) and S(p)[S2,1(p)) have been dropped in
formulas~12!–~15!.

In deriving Eqs.~12!–~15! from ~I.31! and ~I.32! we
have used the following relations@see Eqs.~9!–~11!#:

(25(22R, (1
21(2

25a, ~(1(2!25
b21g2

4
. ~17!

We also note that expressions~12!–~15! are symmetric with
respect to interchange of the indices 1↔2.

When definitions~11! are taken into account, formula
~12!–~15! imply formulas~I.37! and ~I.40! for the quasipar-
ticle DF @with allowance for the refinement made below E
~8!#. These results from Ref. 1 are valid in the particular ca
of unitary phases of SFLs of the type3He-B and the 2D
phase of3He, for which Da5Da* ~with l an arbitrary odd
integer!. In addition, Eqs.~12!–~15! also immediately imply
expressions for the quasiparticle DF of a unitary phase of
type 3He-A, for which, if only the p pairing is taken into
account,Da(p) has the form~see Ref. 8!:
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Da
~A!~p!5D0d̂aC~ p̂!, d̂5d̂* , d̂251, p̂[

p
p,

where

D05D0~T! and C~ p̂![sinqpe
iwp

5A8p/3Y1,1~qp ,wp!.

That is, it is obvious thatDa
(A)(p)ÞDa

(A)* (p), but h (A)(p)
50.

Equations ~12!–~15! also imply expressions~I.46!–
~I.48! of Ref. 1 for the DFsga(p), f 0(p), and f a(p) for j
5j l (g0(p)50) for nonunitary phases of the type3He-A2 ,
3He-A1, and the nonunitary 2D phase~see also Ref. 16 and
Sec. 3 below!. In addition, formulas~12!–~15! are also valid
for the nonunitaryB phase of a SFL in a magnetic field~in
the case of3He this is theB2 phase, in the terminology o
Ref. 8!, a phase which was not considered in Ref. 1.

Expressions~12!–~15! for the quasiparticle DFs of SFL
can be put in a more explicit form by taking into account th
the definitions~6! and ~7! of the functionsN6p

0 (S) and
N6p

i (S) and Eqs.~9! and~10! for the functionsS1,2(p) and
E6(p) imply the relations

1

2R
@~12Np

0~(!2N2p
0 ~(!!(1~Np

i
~(!1N2p

i
~(!!(#

5
1

2
@F1~p,vn!1F2~p,vn!#, ~18!

where

F6~p,vn![
1

4E6
F tanhS E61p•vn

2T D1tanhS E62p•vn

2T D G ,
1

2R F ~12Np
0~(!2N2p

0 ~(!!
1

(
1~Np

i
~(!1N2p

i
~(!!

1

(G
5

2

~E1
2 2E2!

@F2~p,vn!2F1~p,vn!#. ~19!

These expressions, which do not depend on the choice o
functionS1(p) or S2(p), appear in Eqs.~12!, ~14!, and~15!.
Equation~14! also contains the difference

Np
0~(1!2N2p

0 ~(1!5Np
0~(2!2N2p

0 ~(2!

5C1~p,vn!1C2~p,vn!, ~20!

where

C6~p,vn![
1

4 F tanhS E61p•vn

2T D2tanhS E62p•vn

2T D G .
Finally, Eqs.~13! and ~15! contain the following difference
of functions:

Np
i
~(1!2N2p

i
~(1!5Np

i
~(2!2N2p

i
~(2!

5C1~p,v!2C2~p,vn!. ~21!

Relations~20! and ~21! contain formulas~I.49! ~for vnÞ0,
vs50) to the case of arbitrary nonunitary phases of a S
with triplet pairing in a magnetic field~in the general case
(j•D)Þ0, (j• l)Þ0, (j•@ l3D#)Þ0, unlike the casej5j l,
for which formulas~I.49! were written!.
t

he

L

We note that, according to Eqs.~13! and ~21!, the DF
g0(p)Þ0 for (j•D)Þ0 and (p•vn)Þ0. This can apparently
be interpreted as the induction of correlations of the sing
type in a moving SFL with triplet pairing in a magnetic fie
~recall that we assumed in Eq.~4! that the SFL does no
contain an anomalous interaction amplitude that would le
to singlet pairing of fermions!.

We stress that in the derivation of formulas~12!–~15!
we have specified the structure of the energy functio
E( f ,g,g1;H) but have only assumed that it has certain
variance properties~see Introduction!. Therefore, the expres
sions ~12!–~15! obtained above, when~18!–~21! and the
definitions ~10! and ~11! are taken into account, solve th
stated problem of finding the explicit form of the anomalo
ga(p), g0(p) and normalf 0(p), f a(p) DFs of the quasipar-
ticles in the general case for arbitrary nonunitary (hÞ0)
phases of a SFL~with vnÞ0 but vs50) with triplet pairing
~with s51 andl an arbitrary odd integer! in a static uniform
magnetic field with allowance for the Landau Fermi-liqu
exchange interaction. Here the temperature can take
value in the interval 0<T<Tc .

Knowing the explicit form of the quasiparticle DFs for
specific choice of structure of the energy function
E( f ,g,g1;H), we can obtain a system of coupled equatio
for the order parameterDa(p) ~4!, the effective magnetic
field Heff(p), and the quasiparticle energyj0(p) ~3! for the
different phases of the SFL. In addition, by taking into a
count expression~15! for the DF f a(p) and also formulas
~18!, ~19!, and~21!, we can find the magnetizationMa and
the magnetic susceptibilityxab for these phases of the SF
by using the formula

Ma5
2mn

V (
p

f a~p!5xabHb ~22!

(V is the volume occupied by the SFL!.

3. 3He-A 1 , 3He-A 2, AND THE NONUNITARY TWO-
DIMENSIONAL PHASE OF 3He IN A MAGNETIC FIELD

As an example of the application of the general theo
set forth above, let us consider the nonunitary (hÞ0) phases
of the type3He-A2 , 3He-A1, and the nonunitary 2D phase o
3He. For3He-A2 the order parameter has the form8

Da
~A2!

~p!5~D1d̂a1 iD2êa!C~ p̂!, ~23!

C~ p̂![~m̂j1 i n̂ j ! p̂ j ,

where d̂ and ê are mutually orthogonal real vectors in sp
space,d̂•ê50, d̂25ê251, m̂ and n̂ are real, mutually or-
thogonal real unit vectors in orbital space,m̂•n̂50, m̂2

5n̂251 ~the orbital functionC(p̂) has the same form fo
3He-A2 , 3He-A1, and 3He-A), and D6(T)[(D↑↑(T)
6D↓↓(T))/2. In the nonunitary3He-A1 phaseD↓↓50, while
in the unitary phase3He-A, which exists in the limit of zero
magnetic field,D↑↑5D↓↓[D0. For the nonunitary 2D phas
of 3He the order parameter has the form8

Da
~2D !~p!5

eif

2
@D↑↑~ d̂a1 i êa!C* ~ p̂!

1D↓↓~ d̂a2 i êa!C~ p̂!#, ~24!
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while in the unitary 2D phase one hasD↑↑5D↓↓[D' .
We choose the energy functionalEint( f ,g) of the inter-

action to be quadratic in the quasiparticle DFs of the S
specifically~see Ref. 1!:

E~ f ,g,g1;H !5E0~ f ;H !1Eint~ f ,g!,

Eint~ f ,g!5
1

2V (
p1p2

@ f 0~p1!F1~p1 ,p2! f 0~p2!

1 f a~p1!F2~p1,p2! f a~p2!#

1
1

V (
p1p2

ga* ~p1!Lt~p1 ,p2!ga~p2!, ~25!

where E0( f ;H) is the EF of noninteracting fermions in
magnetic field@see ~I.2!#. In the case of3He the normal
interaction functionsF1 andF2 ~introduced by Landau! de-
pend only on the angleu betweenp1 andp2, and we there-
fore expand them in a series in Legendre polynomials,

F1,2~u!5(
l 50

`

~2l 11!F1,2
~ l !Pl~cosu! ~26!

in which we shall henceforth keep only one of the Land
exchange amplitudes,F2

(0) , assuming for simplicity that
F2

( l )50 for l>2. Further, in the anomalous interaction fun
tion Lt(p1 ,p2) we shall take into account only thep pairing
between3He atoms, i.e.,

Lt~p1 ,p2!523~ p̂1•p̂2!L ~1!, L ~1!.0 ~27!

~the minus sign corresponds to their mutual attraction!.
In the case of a quadratic energy functionalEint( f ,g) in

~25!, Da(p) and Heff(p) are described by Eqs.~I.34! and
~I.36!, which, when Eqs.~12!–~15!, ~23!, ~24!, ~26!, and~27!
are taken into account, acquire the following form16 ~in the
limit V→`) for the nonunitary~and unitary! 3He phases
considered here forj5j l andvn50, vs50:

D↑↑5
3

8
L ~1!J1~j,T!D↑↑ ,

~28!

D↓↓5
3

8
L ~1!J2~j,T!D↓↓ .

The functionsJ6(j,T) are given by the formulas

J6~j,T!5E
0

«c
d« n~«!E

0

1

dx~12x2!
tanh~E6~«,x2!/2T!

E6~«,x2!
,

E65A~D16D2!2~12x2!1~z1j!2, z[«2m ~29!

@see Eqs.~10! and ~11!#, where«c is the ‘‘cutoff’’ energy
~which is introduced on physical considerations to ens
convergence of the integrals,Tc!zc!m),19 andn(«) is the
density of states in the vicinity of the Fermi surface. We n
that in the case of3He-A1 only the first of Eqs.~28! is valid,
sinceD↓↓50. ForHeff(p) we obtain the equation

ja5j l a5
2mnHa

11F2
~0!F~j,T!/4

, ~30!

where
,

u

e

e

F~j,T!5
1

4j E0

1

dxE
0

`

d« n~«!f~«2m,x2;j,T!,

~31!

f~z,x2;j,T![
z1j

E1
tanhS E1

2T D2
z2j

E2
tanhS E2

2T D .

In Eqs.~28! and~30! we have taken into account the explic
form of the functions~18!–~21! for vn50.

From Eqs.~22! and~30! we obtain a unified formula for
the nonlinear magnetic susceptibility of the superfluid pha
3He-A2 , 3He-A1, and the nonunitary 2D phase of3He:

xzz~j,T!5mn
2 F~j,T!

11F2
~0!F~j,T!/4

~32!

~here the axisziH).
The system of equations~28!, ~30! and the formula~32!

for xzz obtained above are valid at temperatures 0<T<Tc

and generalize the results of Ref. 15, where the Fermi-liq
interactions were not taken into account, to the nonunit
phases of3He considered in the present study@see Eqs.~23!
and ~24!#.

In an analogous way one can consider the case of
nonunitaryB2 phase of3He in a high magnetic field, with the
order parameter~see Ref. 8!:

Da
~B2!

~p!5
eif

2
@D↑↑~ d̂a1 i êa!C* ~ p̂!

1D↓↓~ d̂a2 i êa!C~ p̂!1D↑↓@ d̂,ê#a@m̂,n̂# j p̂ j #

~33!

~for the unitary3He-B phase in a high magnetic field one h
D↑↑5D↓↓[D' , D↑↓[D i .

CONCLUSION

The present study can provide a theoretical basis for
scribing specific nonunitary phases of SFLs with triplet pa
ing in a magnetic field and for finding such physical quan
ties for these phases as the magnetic susceptibi
thermodynamic potential, and the thermodynamic functio
which can be found with the use of the general formu
~12!–~15! for the quasiparticle DFs of the SFL. We aga
emphasize that the specific structure of the energy functio
Eint( f ,g) is not restricted to the form~25! but can be chosen
in another form~e.g., substantially nonquadratic in the DFsf
andg) that conforms to the necessary invariance proper
~see Introduction!.

We also note that nearTc (Tc2T!Tc) one can use Eqs
~12!–~15! and ~18!–~21! and equations of the type~I.34!–
~I.36! to obtain the Ginzburg–Landau equations for a S
with triplet pairing forHÞ0, vnÞ0 with allowance for the
terms nonlinear in powers of the order parameterD ~see also
Refs. 19 and 20 and the references cited therein!.

In this connection let us mention several papers of ot
authors. Specifically, the unitary phase3He-B in a suffi-
ciently high magnetic field (D'ÞD i) and at low pressures
~when one can neglect the strong-coupling effects in the3He!
has been investigated theoretically by other approache
the weak-coupling theory in Refs. 18 and 21~for more de-
tails see Ref. 8 and the Introduction to Ref. 1!, where, among
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other things, the nonlinear magnetic susceptibility of3He-B
was found with allowance for the Landau Fermi-liquid e
change amplitudesF0

a and F2
a . A phase transition betwee

the A andB phases of3He in a magnetic field has also bee
investigated in the weak-coupling theory in Refs. 22 and
In an experimental study of the behavior of the3He phases in
high magnetic fields, it was conjectured that new superfl
phases of3He can exist between theA2 andB phases24 and
between theA1 and A2 phases of3He ~see Ref. 25 and the
references cited therein!.

These conjectures as to the existence of new phase
superfluid3He in a magnetic field require further study;
our view, they confirm the necessity of using a general~uni-
fied! approach to the description of the different phases
SFLs ~and not only of3He, see Introduction! with triplet
pairing in a magnetic field. Such an approach has been
subject of this paper.

The author thanks S. V. Peletminski� for interest in this
study and a discussion of the results.
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Flux quantization in stationary and nonstationary states in long Josephson junctions
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Dynamical chaos and the stability of states in long Josephson junctions are investigated from the
standpoint of flux quantization. It is shown that the stationary Meissner and fluxon states
having integer numbers of fluxons are stable. Stationary antifluxon states also having integer
numbers of flux quanta and all other states with half-integer numbers of flux quanta are
unstable. Transitions between all states — Meissner states and states having integer and half-
integer numbers of flux quanta — take place in the nonstationary case, and all these
states are dynamically equivalent, but the number of flux quanta is an irregular time-dependent
function for the chaotic states and a regular one for the regular states. ©2000 American
Institute of Physics.@S1063-777X~00!00211-5#
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INTRODUCTION

Long Josephson junctions~LJJs! are of great interest firs
of all from the standpoint of making SQUIDs based on the
However, LJJs are of interest also as a simple and at
same time deep physical and mathematical model of non
ear phenomena. Dynamical chaos in LJJs is a subject o
tensive research1–19 and may be a source of dynamic nois

It is well known that the number of solutions of th
nonlinear stationary Ferrell–Prange equation for the conv
tional Josephson phase variable~which is just the phase dif
ference of the wave functions of a superconducting cond
sate at the junction! describing stationary states in a LJJ
given boundary conditions depends on the value of the
ternal magnetic fieldH0, bias currentb, and the total length
L of the junction. It is clear that only one solution may b
realized in a concrete junction at given values ofH0 , b, and
L. Clearly this state must be one of the solutions of
Ferrell–Prange equation. Stationary states of a LJJ which
solutions of the Ferrell–Prange equation have been inve
gated, for example, in Ref. 20. The question is, how does
selection of this solution happen? What is the selection
this solution affected by? The problem of the selection of
solutions of the Ferrell–Prange equation is usually treate
the framework of a thermodynamic approach.20 Within such
approach one assumes that only the solution correspon
to the global minimum of the Gibbs thermodynamic pote
tial is realized under the concrete physical conditions. In
previous work21 we have proposed another approach, ba
on the fact that the Ferrell–Prange equation is the station
limit of the time-dependent sine-Gordon equation describ
the dynamics of a LJJ. Thus, we applied the sine-Gor
equation with dissipation to find a dynamical criterion
stability of a state. Using this criterion, we have shown t
not all solutions of the Ferrell–Prange boundary-value pr
lem are stable; some of them are metastable.

We have also shown22 that in a LJJ with dissipation the
selection of the specific asymptotic solution~including a
7911063-777X/2000/26(11)/5/$20.00
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nonstationary one! can be affected by the form of the initia
rapidly damped perturbation, independently of whether
initial state is chaotic or not. In other words, a rapid
damped small perturbation influences the asymptotic st
substantially even if the initial state is chaotic. This chara
teristic of the LJJs we have called a memory effect. T
effect makes dynamical chaos strangely different from sta
tical chaos~in the case of statistical chaos a loss of inform
tion happens during the relaxation time!.

In the presence of both an external magnetic field an
dc bias current, three clusters of states can exist: station
regular, and chaotic. With changing parameters of the ini
perturbation, the system realizes transitions between th
three clusters of asymptotic states.22 In Ref. 23 we showed
that theb –H0 parametric plane of a LJJ is divided by bifu
cation lines into a series of regions with different numbers
solutions of the Ferrell–Prange equation, and a chaos s
arises along the bifurcation line that separates the region
two stationary states from the region with no stationa
states. The number of stationary states decreases in the
ence of a bias current, but even atb50 some of the solu-
tions are stable and others unstable. In this work we will
to investigate these stable and unstable states in detail.
will analyze the problem from the standpoint of flux quan
zation. We will show that the stationary states have o
zero, integer, and half-integer numbers of flux quanta, a
the states with a half-integer number of flux quanta are
ways unstable. The states with an integer number of fl
quanta are the fluxon and antifluxon states; the fluxon st
are stable and the antifluxon, unstable. Among the states
zero flux quanta only the Meissner states are stable, while
others are unstable. We will formulate a criterion by whi
one can determine the stability of the states from the sta
point of flux quantization. We will also show that the numb
of flux quanta is an irregular time-dependent function for t
chaotic states and that in nonstationary – regular and cha
© 2000 American Institute of Physics
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– regimes the allowed states with integer and half-inte
numbers of flux quanta are in a certain sense equivalent

1. FLUX QUANTIZATION FOR STATIONARY STATES

In contradistinction to our previous work,23 here we have
studied the stationary states of a LJJ in detail and devo
attention mainly to flux quantization in these states. We h
solved numerically the boundary Ferrell–Prange problem

wxx~x!5sinw~x!2b, ~1!

wx~x!ux505wx~x!ux5L5H0 . ~2!

Herew(x) is the Josephson phase variable,b is the dc bias
current density normalized to the critical current densityj c of
the junction,x is the distance along the junction normaliz
to the Josephson penetration lengthlJ , H0 is the external
static magnetic field perpendicular to the junction and n
malized to H̃5F0 /(2plJd), F0 is the flux quantum;d
52lL1b, lL is the London penetration length,b is the
thickness of the dielectric barrier, andL is the total length of
the junction normalized tolJ .

Equation ~1! with boundary condition~2! has been
solved numerically for different values ofH0 , b, andL. The
distribution of the magnetic fieldH(x)5wx(x) and the cur-
rent densityj (x)5wxx(x) in the junction have been calcu
lated.

We have also calculated the Gibbs thermodynamic
tential for an each state using the following equation:

G5E
0

LF1

2
wx

2~x!112cosw~x!2bw~x!2H0wx~x!Gdx, ~3!

where G is the Gibbs thermodynamic potential per un
length of the junction, normalized to the valueG̃
5F0

2/(16p3lJd). It should be noted that all solutions of th
Ferrell–Prange equation are extremals of the functiona
Eq. ~3!. Furthermore, it is easy to show~see, for example
Ref. 24! that these extremal values correspond to minima
the thermodynamic potentialG.

As an illustration, the results of the calculations forH0

51.9, L510, andb50.06 and 0.08, respectively, are liste
in Tables I and II.

TABLE I. Stability, transitions, number of flux quanta, and type of sta
H051.9, L510, b50.06.

Number
of state Stability G

Transitions
k→ l

Number
of flux
quanta

Type of
stable states

1 unstable 212.849 1→7 2 2-antifluxon
2 unstable 212.912 2→9 1.5
3 unstable 27.592 3→5 1 1-antifluxon
4 unstable 27.594 4→5 0.5
5 stable 27.829 5→5 0 Meissner
6 unstable 27.828 6→5 0.5
7 stable 213.652 7→7 1 1-fluxon
8 unstable 213.368 8→7 1.5
9 stable 217.556 9→9 2 2-fluxon

10 unstable 217.272 10→9 2.5
r

d
e

-

-

in

f

We now calculate the flux in a LJJ. In the case of
infinitely long junction the following condition holds for the
stationary states:w(x)ux→2`50, w(x)ux→1`52p, and the
total flux is25,26

F5
1

2p E
2`

1`

wx~x!dx5n ~n51,2,3, . . . !. ~4!

Here the fluxF is normalized to the flux quantumF0. In the
case of a junction of finite length the situation changes dr
tically, because the boundary effects must be taken into
count. In this case a shielding current always flows at
edge of the junction, and the total flux must be calculated
another way excluding boundary effects. Because the shi
ing current cannot be associated with flux quantization i
junction, we have to exclude boundary effects from the fl
calculation. Then we can write the required flux as follow

F5
1

2p E
x1

x2
wx~x!dx5

1

2p
@w~x2!2w~x1!#, ~5!

wherex1 and x2 are the nearest points to the left and rig
edges, respectively, at whichj (x)[wxx(x)50. At these
points j x.0 for the fluxon states andj x,0 for the antifluxon
states. Formula~4! is a special case of~5! becausej (x15
2`)5 j (x251`)50.

Using the definition of the pointsx1 andx2, we find that
three types of states exist, in which

1) F50,

2) F5n, n51,2,3, . . . , ~6!

3) F5n/26arcsinb/p, n51,2,3, . . . .

These will be called the allowed states. The valueF50
corresponds to the Meissner and quasi-Meissner stateF
5n (n51,2,3, . . . ) to thefluxon and antifluxon states, an
F5n/26arcsinb/p (n51,2,3, . . . ) to all theother states.

A comparison of the case of zero bias current with t
casebÞ0 makes it possible to say that the dc bias curr
lifts the degeneracy of the states with half-integer number
flux quanta. The splitting value of the flux is equal
2arcsinb/p, and atb50.06 and 0.08~Tables I and II! it is
equal to 0.038 and 0.050, respectively.

We determine the stability of the stationary states as
lows. First we solve numerically the equation for tim
dependent perturbations of the stationary state~this equation
can be easily found from the sine-Gordon equation as a
sult of linearization21!. Then we determine the stability o
instability of the stationary state with respect to small pert
bations by calculating the Lyapunov exponent.22 As we can

.

TABLE II. Stability, transitions, number of flux quanta, and type of sta
H051.9, L510, b50.08.

Number
of state Stability G

Transitions
k→ l

Number
of flux
quanta

Type of
stable states

1 unstable 214.747 1→3 2 2-antifluxon
2 unstable 214.771 2→3 1.5
3 stable 220.328 3→3 2 2-fluxon
4 unstable 220.177 4→3 2.5



wi
ta
s

ge

s
e

ha
at
f t

po

te
s

ll

th
e
x

at

e
a

cal-

num-
er;

ger

on
f

e
e

ll

nd
inte-
s to
y of

793Low Temp. Phys. 26 (11), November 2000 Yugay et al.
see from Tables I and II, the antifluxon states and states
half-integer numbers of flux quanta are unstable. These s
decompose into some stable states~Meissner states or state
with an integer number of flux quanta!. To find the final
stable statel to which the metastable statek passes~the tran-
sition k→ l ), we used the solution of the Ferrell–Pran
equation corresponding to the statek as an initial state for the
nonstationary sine-Gordon equation.

As is seen from the calculated results listed in Table
and II, the transitionk→ l is always accompanied by th
inequality Gk.Gl (kÞ l ), whereGk and Gl are the Gibbs
thermodynamic potentials of statesk and l, respectively. If
the statek is stable, thenk5 l (Gk5Gl). One of the unex-
pected results is that the metastable, i.e., unstable, state
Gibbs thermodynamic potential that is not necessarily gre
than that for some stable states. In Fig. 1 the schemes o
transitions between states are shown atH051.9, L510, and
b50.06 ~Fig. 1a! and 0.08~Fig. 1b!. The horizontal lines
correspond to fixed values of the Gibbs thermodynamic
tential of the states for the given parametersH0 , L, andb. It
is seen from Fig. 1 thatG10,G5 and G10,G7 — states 5
and 7 are stable.

Our calculations show that the number of stable sta
decreases with increasingb. For example, four stable state
exist atH051.9, L510, andb50: the Meissner~M!, one-
fluxon ~1f!, two-fluxon ~2f!, and three-fluxon~3f! states; we
have 3 stable states~M, 1f, and 2f! at b50.06, two states~1f
and 2f! at b50.07, and one state~2f! at b50.08. There are
no stationary states atb50.15. The stable states withGl

.Gl 0
, whereGl 0

corresponds to the global minimum, fa
into the state withGl 0

asb increases.
The character of the stationary states changes toge

with the number of states when the external magnetic fi
H0 is varied with the other parameters held fixed. For e
ample, forb50 and L510 the number of stable states
H051.4 equals three~M, 1f, and 2f!, at H050.6 there are
two stable states~M and 1f!, and atH050.05 only one stable
stationary state~M! exists; atH052.0 there are again thre
stable states~1f, 2f, and 3f!, and there are two stable states

FIG. 1. The schemes of transitions between states atH051.9 andL510 for
b50.06 ~a! andb50.08 ~b!.
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H052.1 ~2f and 3f!, H052.2 ~3f and 4f!, and H052.9 ~4f
and 5f!.

Figure 2 shows the one-fluxon~1f! and one-antifluxon
~1af! states atH051.9, b50, andL510. Tables I and II list
the numbers of flux quanta for the stationary states. The
culations allow one to draw the following conclusions: 1! the
stationary states at a given set of parameters can have a
ber of flux quanta equal to zero, a half integer, or an integ
2! all the fluxon and antifluxon states have a positive inte
number of flux quanta, according to the criterion~5! formu-
lated above. All fluxon states are stable and all antiflux
states are unstable; 3! all states with a half-integer number o
fluxons are always unstable; 4! in the Meissner states on
always hasx15x2 andn50. This state is stable. Besides th
stable Meissner states, unstable states withn50 exist; one of
them is a quasi-Meissner state withx15x2. In Fig. 3 the
Meissner and quasi-Meissner states are shown forH051.2,
b50, andL510. All the quasi-Meissner states in Fig. 4 fa
into some stable states.

All states with half-integer numbers of flux quanta a
the antifluxon states are nonphysical because they dis
grate and therefore cannot be realized in real systems. A
the quasi-Meissner states, all of them arise in the capacit
some intermediate states and ultimately disintegrate.

FIG. 2. Distribution of the current in one-fluxon~1f! and one-antifluxon
~1af! states.H051.9, b50, L510.

FIG. 3. Meissner and quasi-Meissner states atH051.2, b50, L510.
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The number of fluxon and antifluxon states decrease
b.0. For example, there are four fluxon and antiflux
states atH051.9, L510, andb50.06~instead of the five at
b50), and atb50.08 there are only two~one of them is a
two-fluxon state and the other a two-antifluxon state!.

Thus not all states having integer numbers of flux qua
are stable — only the fluxon states are. The criterion~5!
formulated above may also serve as a simple criterion
stability of the solution of the Ferrell–Prange equation.

2. FLUX QUANTIZATION AND CHAOS

As is noted above, the number of stationary states
creases as the dc bias current increases, while at the
time the number of nonstationary states increases. In the
eral case, three clusters of states — stationary, regular,
chaotic — exist in a LJJ.21 In the present Section we wil
consider the nonstationary regular and chaotic states f
the standpoint of flux quantization.

The nonstationary states can be found by numerical
tegration of the nonstationary sine-Gordon equation

w tt~x,t !12gw t~x,t !2wxx~x,t !52sinw~x,t !1b ~7!

with the following boundary conditions:

wx~x,t !ux505wx~x,t !ux5L5H0 , ~8!

wheret is the time normalized to the inverse of the Jose
son plasma frequencyvJ , vJ5(2pc jc /(CF0))1/2, C is the

FIG. 4. Dependence of the fluxF on time in the regular regime atH0

51.9, b50.1, g50.26, L510 ~a! and in the chaotic regime atH051.9,
b50.125,g50.1, L510 ~b!.
at
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junction capacitance per unit area,g is the dissipative coef-
ficient per unit area,g5F0vJ/4pcR jc , andR is the resis-
tance of the junction per unit area. Of course, the solution
the Ferrell–Prange equations~1!, ~2! coincide with the
asymptotic solutions of the sine-Gordon equations~7!, ~8!.
All solutions of the Ferrell–Prange equation, i.e., the stati
ary solutions, appear from any initial state during the evo
tion governed by the sine-Gordon equations~7!, ~8!, but
these solutions are not equivalent: some of them are st
and others unstable~metastable!.

As in the case of the stationary states of junctions
finite length, in the nonstationary case the shielding curre
flowing at the junction edges must be taken into account,
we again define the pointsx1 and x2. In this case:~i! the
locations of these points will depend on time,x15x1(t) and
x25x2(t), and~ii ! we must find these points using the co
ditions of vanishing of the total — superconducting and qu
siparticle — current in the junction, i.e.,j (x1)5 j (x2)50,
where j (x1)5@w tt(x)12gw t(x)2wxx(x)ux5x1

. We have the
same forj (x2). This condition determines the allowed state
in which

1) F50,

2) F5n~ t !, n51,2,3, . . . , ~9!

3) F5n~ t !/26arcsinb/p, n51,2,3, . . . .

Here n is a discrete function of time in the sense that
performs jumps between constant values. Of course, the
F behaves in the same manner. In contrast to the statio
states@see Eq.~6!#, the flux F(t) takes different values for
all the series 1!–3! in Eq. ~9!, spending a certain time in eac
of them. Besides, the pointsx1 andx2 move along the junc-
tion, and the character of this motion is different for regu
and chaotic states.

Figures 4a and 4b show the dependence ofF(t) for the
two regimes — regular atH051.9, b50.1, L510 ~Fig. 4a!
and chaotic atH051.9, b50.125, L510 ~Fig. 4b!. The
character of these regimes was determined by calculatio
the Lyapunov exponentl ~see Ref. 22!: l50 in regular
regimes, andl.0 in chaotic ones. The dependence of t
flux in the regular regime, for example, has a regular ch
acter, and the evolution of the flux consists of regular tra
sitions from one allowed state to another. Of course,
dependences ofx1(t) andx2(t) have the same character. I
contrast, in the chaotic regime,x1(t) andx2(t) are irregular
time-dependent functions. The functionF(t), as is clearly
seen in Fig. 4b, exhibits jumps between allowed states a
did in the regular case, only now the response time in a fi
state changes irregularly. We note also that there is not
explicit preference for the states with integer numbers of fl
quanta in comparison with the states with half-integer nu
bers of flux quanta, in either the regular or the chaotic
gimes.

Thus, whereas in the stationary regime the states w
integer numbers of flux quanta~fluxon states! are preferred
in the sense that they are stable, in the nonstationary reg
— regular and chaotic — the allowed states with integer a
half-integer numbers of flux quanta are in a certain se
equivalent.
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CONCLUSIONS

We have considered the problem of the stability of sta
and the chaotic dynamics in LJJs from the standpoint of fl
quantization. We have shown that only the stationary sta
with integer and half-integer numbers of flux quanta are
alized, and among them only the Meissner and fluxon st
are stable, while the quasi-Meissner and antifluxon states
unstable even though they have also an integer numbe
flux quanta. All the other states with a half-integer number
flux quanta are always unstable. Thus the stable states
states in which the flux is always quantized.

The states with a half-integer number of flux quanta
doubly degenerate. A dc bias current lifts this degenera
Among the stationary states, only those fluxon states with
integer number of flux quanta and the Meissner state h
preference; they are the allowed ones.

All the allowed states with integer and half-integer nu
bers of flux quanta are equivalent in a certain sense in
nonstationary case, and the system passes from one allo
state to another; the response time in the states is chao
the chaotic states and regular in the regular states. In o
words, in nonstationary states — both regular and chaotic
there are half-integer quantum numbers in addition to
integer quantum numbers.
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Josephson properties of transparent tunnel junctions
Yu. V. Shlapak,* A. L. Kasatkin, and É. M. Rudenko
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With allowance for possible deviations of the current–phase relation from the usual sinusoidal
dependence, a modified Ferrell–Prange equation is used to examine the steady-state
electrodynamics of transparent Josephson junctions in an external magnetic field. It is shown that
in this case the penetration of a weak magnetic field into a transparent Josephson junction
is generally nonexponential, and the fieldHc1 at which vortices arise in transparent junctions and
the dependence of the critical current on the magnetic field in them are calculated. ©2000
American Institute of Physics.@S1063-777X~00!00311-X#
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The electrodynamics of superconducting Joseph
junctions is ordinarily based on the well-known Josephs
relation between the superconducting currentj S flowing
through the junction and the phase differencew of the order
parameter on the two sides of the junction,j S(w)5 j c sinw.
This form of j S(w) presupposes the presence of a rat
weak coupling between the massive superconducting~S!
‘‘banks’’ of the junction, e.g., a low transparency of the tu
nel barrier~I! in the case of an S–I–S tunnel junction or
rather wide interlayer of normal metal~N! for junctions of
the S–N–Stype.1–3

Recently, however, the junctions realized at gra
boundaries in high-Tc superconductors~e.g., YBCO and
BiSCCO bicrystals!4 have been attracting a great deal of i
terest from the standpoint of their prospective use as Jos
son elements. In the case of small-angle grain bounda
such junctions are generally characterized by a rather h
transparency to electrons. In that case, as has been sho
a number of theoretical papers,2,6–11 the current–phase rela
tion j S(w) in the Josephson effect can differ substantia
from sinusoidal.

In the present paper we shall assume thatj S(w) has the
form9

j S~w!

j c
5 f ~w!

5
sinw

A12D sin2~w/2!
tanh~A~T!A12D sin2~w/2!!,

~1!

where D is the transparency of the barrier, andA(T)
5D(T)/(2kBT).

We write the Ferrell–Prange equation5

d2w

dx2
5

1

l j
2

f ~w! ~2!

~where f (w)5 j S(w)/ j c) in the form
7961063-777X/2000/26(11)/3/$20.00
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l j
5E

w0

w dw8

AF~w!
; F~w!5E f ~w!dw. ~3!

The derivation of Eq.~2! presupposes that the conditio
l j@l holds (l j andl are the Josephson and London pe
etration depths, respectively!. According to Ref. 12, this con-
dition holds for j c! j d /k, where j c is the critical current
density of the junction,j d is the pairing current density, an
k is the Ginzburg–Landau parameter. Taking into acco
that j c; j dD ~Ref. 12!, we obtain a restriction on the valu
of the transparencyD in order for Eq.~2! to remain valid:
D!k21.

For small values of the transparency, 0,D!k21

F~w! '
D!1

F~w0!12 tanh~A~T!!sin2
w

2

3F12
DA~T!

2 sinh~2A~T!!
sin2

w

2 G . ~4!

For D!1, one can use~4! to find the following solution
for equation~2!:

xAtanh~A~T!!

l j~D !
'

D!1
F lnS tan

w

4 D2
DA~T!

4 sinh~2A~T!!
cos

w

2G
w0

w

,

~5!

which describes the behavior of a Josephson junction in
external magnetic field parallel to the junction and high
than the characteristic transition fieldHc1. The second term
on the right-hand side in~5! shows the change in the distr
bution of the jump in phase of the order parameter upo
small increase in the transparency of the junction.

Equation~5! has the approximate solution

w~x! '
D!1

4 arctanS expS x81
DA~T!

2 sinh~2A~T!!

1

11x82D D 12pn;
© 2000 American Institute of Physics



,
he
th

n
ce

ction

the
is

x-

ncy
e

on-

f-
c-

on-

e
ay

797Low Temp. Phys. 26 (11), November 2000 Shlapak et al.
x85
xAtanh~A~T!!

l j~D !
. ~6!

The behavior of the functionsw(x), dw(x)/dx;H(x),
andd2w(x)/dx2; j S is shown in Fig. 1.

In the case of very weak external fieldsH0!F0 /
(2pl jd), whereF05hc/2e is the magnetic flux quantum
one can use Eq.~5! to find the coordinate dependence of t
field in the junction. In this case the currents through
junction are weak, and so the phase differencew is small,
and we find from~5! that

w '
D!1
w!1

w0 exp~2x8!F12
DA~T!

16 sinh~2A~T!!
w0

2 exp~22x8!G ;
x85

xAtanh~A~T!!

l j~D !
. ~7!

It is seen from this expression that increasing the tra
parency alters the character of the coordinate dependen

FIG. 1. Distribution of the phase difference~a!, supercurrent~b!, and mag-
netic field ~c!. The solid curve corresponds toD50, the dotted curve to
small D.
e

s-
of

the phase, and the penetration depth decreases as a fun
of the transparencyD more slowly thanl j (D); j c

21/2(D)
;D21/2.

To find the critical field of the transitionHc1 it is neces-
sary to examine the total free energy per unit length of
junction along the magnetic field, which for a single vortex
given by a functional of the functionw(x):

W05E
2l

l

~wj1wH!dx, ~8!

where

wj5
F0 j c

2pc E
w0

w

f ~w!dw, wH5
l j

2F0 j c

4pc S dw

dxD 2

.

A vortex can penetrate in the junction starting at an e
ternal field Hc1, at which the quantity*(B•H/4p)dV
5F0Hc1/4p becomes equal toW0, i.e.,

Hc1~D !5
4p

F0
W05Hc1

~0!~D !
1

4l j
E

2l j

l j
dxE f ~w!dw, ~9!

where Hc1
(0)(D) is given by the expressionHc1

52F0 /(p2dl j ).
For D!1 we obtain from~9! with allowance for~4!

Hc1~D ! 5
D!1

Hc1
~0!~D !tanh~A~T!!S 12

DA~T!

2 sinh~2A~T!! D ,

~10!
Hc1~D !;D1/2~12aD !,

wherea5A(T)/(2sinh2A(T)),1/4.
As is seen from the above relation, as the transpare

of the barrier is increased slightly, the critical field for th
entry of the first vortex into the interlayer between superc
ductors increases more slowly thanHc1

(0)(D).
Let us consider the change inj c(H) due to the nonsinu-

soidal dependence ofj (w) ~1!.
Let us assume that the dimensionL of the junction is

small compared tol j , so that we can neglect the sel
magnetic field of the supercurrent flowing through the jun
tion in comparison with the external fieldH0.2 Under these
conditions the field inside the junction can be assumed c
stant and equal toH0. We shall assume that the fieldH0 is
directed along thez axis ~the plane of the junction is 0xz);
then the vector potential isAy5Hz(y)x5H0x.

The average current density through the junction~i.e.,
the quantity measured in an experiment! is given by

j̄ 5
1

L E
2L/2

L/2

j ~w~x!!dx, ~11!

w~x!5u1
2e

\c E Ay dy5u1
2e

\c
H0dHx.

For the current–phase relation~1! we obtain

j̄ 5 j c

1

2

4

DA~T!

1

t
lnS cosh~A~T!A12D sin2~u/22t/2!!

cosh~A~T!A12D sin2~u/21t/2!!
D ,

~12!

wheret5pF/F0, andu is a quantity that is adjusted as th
total current is varied at a fixed magnetic field in such a w
that the currentj (u,H) has the maximum possible value.
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At small D we find, using~4!, that

j̄ '
D!1

j c tanh~A~T!!sinu

3Usint

t US 11
2A~T!

sinh~2A~T!!

D

4
~12cost cosu! D .

~13!

Taking into account thatj u850 for j max at smallD (D
!kBT/D(T)), we obtain

j c~H ![ j̄ max '
D!1

j cUsint

t Utanh~A~T!!

3S 11
DA~T!

sinh~2A~T!!
22S DA~T!

sinh~2A~T!! D
2

3cost~11cost ! D . ~14!

FIG. 2. Dependence of the critical current of the transition on the value
an external magnetic field parallel to the plane of the junction. The so
curve corresponds toD50, the dotted curve to smallD; the dashed curve
near thex axis is a quantity proportional to the change in the curve upon
small increase in the transparency.
Relation~14! is plotted in Fig. 2. The curves are norma
ized to j c(D).

Thus in the present paper we have investigated
changes in the Josephson properties of transparent junc
when the current–phase relation deviates from the us
sinusoidal law. We have obtained the corrections to the va
of the field Hc1 for the entry of a vortex into a transpare
junction, for the the penetration depth of the magnetic fi
into the junction, and for the dependence of the critical c
rent on the magnetic field.
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9A. F. Volkov, Zh. Éksp. Teor. Fiz.66, 758 ~1974! @Sov. Phys. JETP39,
366 ~1974!#.

10W. Habercorn, H. Knauer, and J. Richter, Phys. Status Solidi47, K161
~1978!.

11C. B. Beenaker Jr., Phys. Rev. Lett.66, 3056~1991!.
12A. Gurevich, Phys. Rev. B46, 3187~1992!.
13P. G. de Gennes,Superconductivity of Metals and Alloys@Benjamin, New

York ~1966!; Mir, Moscow ~1968!#.

Translated by Steve Torstveit

f
d

a



LOW TEMPERATURE PHYSICS VOLUME 26, NUMBER 11 NOVEMBER 2000
Effect of a nonmagnetic impurity on the superconducting transition temperature
in layered structures with a non-phonon-mediated pairing mechanism

M. E. Palistrant and F. G. Kochorbé

Institute of Applied Physics, Academy of Sciences of Moldova, ul. Akademicheskaya 5, 2028 Kishinev,
Molodova*
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The effect of nonmagnetic impurities on the superconducting transition temperatureTc in
superconductors with a non-phonon-mediated~nonphononic! mechanism of superconductivity is
investigated. Two features inherent to high-Tc superconductors are taken into account: the
overlap of the energy bands, and the variable density of charge carriers. The cases ofs anddx22y2

symmetry of the order parameter are considered. It is demonstrated that the Anderson
theorem is violated in the case ofs symmetry of the order parameters, both on account of interband
scattering of electrons on impurities and on account of intraband scattering due to the
electron–hole asymmetry in systems with a nonphononic mechanism of superconductivity.
Analytical expressions are obtained for the value ofTc in the regions of small and large impurity
concentrations, and numerical solutions of a self-consistent system of equations are found.
The influences onTc due to various mechanisms~the change in the chemical potential and in the
intraband and interband relaxation times at an impurity! are analyzed for the types of
symmetry indicated above. It is shown that a number of the features inherent to high-Tc

superconductors can be explained, including, in particular, the possibility of complete suppression
of superconductivity by a nonmagnetic impurity and the possibility of attaining high values
of Tc upon doping of an insulator. It is also shown that as the interband scattering on the impurity
potential increases, there is a change in the dependence ofTc on the impurity concentration.
Qualitative agreement is obtained between the proposed theory and the experimental data on the
dependence ofTc on the concentration of Zn, Al, and Ga impurities in yttrium and
lanthanum ceramics. ©2000 American Institute of Physics.@S1063-777X~00!00411-4#
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1. INTRODUCTION

The influence of nonmagnetic impurities~Zn, Al, Ga! on
the superconducting transition temperature is one of the m
important topics in research on high-Tc superconducting ma
terials today. This topic has been the subject of many exp
mental studies1–8 ~see also the review in Ref. 9!.

The solution of this problem can shed light on t
mechanism of high-Tc superconductivity. The point is tha
different nonmagnetic impurities have different effects
the critical temperatureTc of cuprate compounds. The sub
stitution of Al or Ga atoms for Cu has a weakly destructi
effect on the superconductivity.1

When the copper atoms are replaced by zinc, on
other hand, the zinc behaves as a magnetic impurity, s
pressing the superconductivity.2–4 However, experimenta
studies10 show that zinc doping of the compoun
YBa2Cu3O7 does not lead to magnetic breaking of electr
pairs. Consequently, the Abrikosov–Gor’kov theory11 on the
effect of a paramagnetic impurity on superconductivity ca
not be used to explain the suppression of superconduct
in such a system.

According to the Anderson theorem,12 a nonmagnetic
impurity does not affect the superconducting transition te
peratureTc of an isotropic superconductor. However, hig
Tc superconducting materials are anisotropic systems,
their various peculiarities can lead to a dependence ofTc on
the concentration of nonmagnetic impurities. For examp
7991063-777X/2000/26(11)/10/$20.00
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studies13–15 based on a two-band model have been able
explain the rather rapid lowering ofTc with increasing con-
centration of a nonmagnetic impurity owing to the intraba
channel for the scattering of electrons on nonmagnetic im
rities. However, in that model, on the assumption of
phonon-mediated mechanism of superconductivity, ther
no critical concentration of the impurity, i.e., a nonmagne
impurity cannot suppress the superconductivity complete

In Ref. 16 the effect of a nonmagnetic impurity on th
superconductivity was investigated for the case ofs pairing
in a single-band system with an anisotropic electro
electron interaction, and also for a superconductor with
order parameter of symmetrydx22y2. In the case of an aniso
tropic s pairing the value ofTc is lowered as the impurity
concentration increases. However, as in the case of two-b
superconductors,13–15there is no critical concentration of th
impurity (TcÞ0). In the case ofdx22y2 symmetry of the
order parameter,Tc falls as the impurity concentration in
creases, and suppression of the superconductivity is poss
The curve ofTc as a function of the impurity concentratio
has negative curvature~is convex upward!.

In Ref. 17 the effect of a nonmagnetic impurity on
superconducting state withs pairing was investigated on th
basis of the so-called pair tunneling mechanism propose
Ref. 18. It was found that in this case the lowering of t
superconducting transition temperatureTc with increasing
impurity concentration could occur at a faster rate than
© 2000 American Institute of Physics
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the anisotropic model.16 However, the character of the de
pendence ofTc on the impurity concentration was analogo
to that found in Ref. 14 on the basis of the two-ba
model.19,20

The theoretical papers cited above made use of the s
dard Abrikosov–Gor’kov theory when taking into accou
the influence of the randomly distributed impurity in the s
perconductor. There are some papers in which an attemp
been made to go beyond this approach~see, e.g., Refs. 21
and 22!. It was stated in Ref. 21 that a correct description
high-Tc cuprates~with a short coherence length! can be ob-
tained by taking into account the spatial variation of the
der parameter, which is strongly suppressed near an im
rity. In the case ofdx22y2 symmetry of the order parameter
weaker suppression of the superconductivity was obtai
than in the Abrikosov–Gor’kov approach.17,23 In Ref. 22 the
various phase transitions in two-dimensional disordered
tems containing an impurity was investigated on the basi
a one-band model withs symmetry of the order paramete
the density of charge carriers in this model is equal to
concentration of the randomly distributed impurities. It w
shown that the phase states~insulator, metal, supercon
ductor! are determined by the values of the charge car
density and the impurity scattering parameter.

In the case of a nonphononic mechanism of superc
ductivity, the value ofTc and the other characteristics of pu
one-band and multiband superconductors depend on the
sition of the chemical potential~on the density of charge
carriers!.24–29

The present paper is devoted to a study of the super
ducting transition in two-band superconductors containin
nonmagnetic impurity in the case of a nonphononic mec
nism of superconductivity.

The two-band model in different variants is widely us
to describe the properties of high-Tc superconductors
~HTSCs!; see, e.g., the reviews14,30and also Refs. 31 and 32
etc. In the present paper we consider a version of the t
band model with a nonmagnetic impurity, which incorp
rates the main features inherent to high-Tc superconducting
materials, viz., the layered structure and the variable den
of charge carriers. We proceed from the Hamiltonian o
two-band system, making use of the equivalence of trea
multilayer and multiband systems and the possibility of
ducing a multilayer system to a multiband system.33–35 For
this it is sufficient to carry out some canonical transform
tions. As a result, the constants of the intraband and in
band interactions of the electrons are expressed in term
the constants of the intralayer and interlayer interaction35

Thus the model considers a layered structure and takes
account the presence of intralayer and interlayer electr
electron interactions and also the corresponding kinds
scattering of electrons on the impurities. The two-ba
model is applicable to both phonon-mediated and nonp
nonic mechanisms of superconductivity. Even in the m
unfavorable case, when all the constants of the intraband
interband electron–electron interactions are repulsive, i
still possible to have high-Tc superconductivity.25 We note
that the presence of overlap of the energy bands at the F
surface is a reliably established fact and has been confir
by numerous band calculations~see, e.g., Refs. 36 and 37!.
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In the present paper we attempt to construct a theory
impure two-band superconductors with energy gaps, co
sponding tos pairing, and of superconductors having ord
parameters with thedx22y2 symmetry observed in HTSCs
We study the change inTc with increasing impurity concen
tration due to two mechanisms: the change in the chem
potential with increasing impurity concentration, and t
scattering of electrons on impurity atoms~intraband and in-
terband!. The lowering ofTc with increasing impurity con-
centration in the metallic phase is studied to the point
complete suppression of the superconductivity~Tc→0) as
the chemical potential goes beyond the range of the effec
electron–electron interaction in the case ofs symmetry of the
order parameter. We also establish that in the case ofdx22y2

symmetry of the order parameter the superconductivity
rapidly suppressed as the impurity concentration is
creased.

High-Tc superconducting materials are highly anis
tropic and can be treated as quasi-two-dimensional syste

In purely two-dimensional systems an important role
played by fluctuations of the phase of the order paramet
which radically alter the superconductivity scenario.38,39

In quasi-two-dimensional systems, as the three-dim
sionality parameter increases, ordinary superconducti
arises at not-too-low concentrations of the charge carrier40

These circumstances allow us to use the mean field
proximation in studying the superconducting properties
such systems at carrier densities in the region indica
above, where we assume that it will give a qualitative d
scription of the behavior of the thermodynamic characte
tics in a HTSC.

This paper is constructed as follows. In Sec. 2
present the Hamiltonian of the system and the Green fu
tions averaged over the randomly distributed impurities.
Sec. 3 we obtain the basic equations and expressions foTc

for superconductors withs anddx22y2 symmetry of the order
parameters. In Sec. 4 we carry out a numerical calcula
and discuss the results. The results are compared with
experimental data on HTSC materials.

2. MODEL AND BASIC EQUATIONS

The Hamiltonian of a two-band system with impuritie
which are randomly distributed at pointsr j is written

H5(
nks

«n~k!anks
1 anks

2
1

V (
nn8

(
kk8

Vnn8~kk 8!ank↑
1 an2k↓

1 an82k8↓an8k8↑

1
1

V(
nn8

(
kk8s

u~k2k8!r~k2k8!x~nk,n8k8!anks
1 an8k8s ,

~1!

where

«n~k!5jn~k!2m; jn~k!5zn1
kx

21ky
2

2mn
; ~2!



-
l,

to
o
rg

-

o

i
c
re

f

on
m

te

du
a-

r

at

s.

the

can

om
b-
ra-

801Low Temp. Phys. 26 (11), November 2000 M. E. Palistrant and F. G. Kochorbé
x~nk,n8k8!5E
V0

unk* ~r !umk8~r !dr ; r~k!5(
j

ekr ;

~3!

Vmn are the intraband (m5n) and interband (mÞn) inter-
action constants,V is the volume of the system,V0 is the unit
cell volume,unk(r ) is the modeling factor of the Bloch func
tions,u(k) is the Fourier transform of the impurity potentia
m is the chemical potential, andn,m51,2.

Hamiltonian~1! is a generalization of the BCS model
the case of overlap of the energy bands and a nonphon
mechanism of superconductivity. The overlap of the ene
band leads to a summation over the band indexn and gives
rise to an interbandVnn8 (nÞn8) electron–electron interac
tion in addition to the intraband interactionVnn . The mecha-
nism of the superconductivity is determined by the signs
the electron–electron interaction constantsVnn8 and by the
region of energy values in which superconducting pairing
possible (Vnn8Þ0).24–26 In the case of a nonphononi
mechanism of superconductivity in systems with a lowe
charge carrier density, this energy region in whichVnn8Þ0
is determined by the dispersion relation~2!: 2m,«n(k)
,zcn2m (zcn is the cutoff energy, which is of the order o
the electron energy!.

Using perturbation theory41 ~treating the interaction with
impurities in ~1! as a perturbation!, we obtain the following
expressions for the normal and anomalous Green functi
respectively, averaged over the positions of the rando
distributed impurities:

Ḡn~p,v!52
i ṽn1 «̃n

ṽn
21 «̃n

21D̃n
2

; F̄n~p,v!5
D̃n

ṽn
21 «̃n

21D̃n
2

, ~4!

where

ṽn5v1Im Mn~v!

5v1(
l

1

2tnl

1

2p E
0

2p

dw l

ṽ l f l~v!

~ṽ l
21D̃l

2!1/2
; ~5!

D̃n5D̄n1(
l

1

2tnl

1

2p E
0

2p

dw l

D̃l f l~v!

~ṽ l
21D̃l

2!1/2
;

«̃n5«n1ReMn~v!; ~6!

ReMn~v!52(
l

1

4tnl

1

2p E
0

2p

dw l ln
Dcl

2 1ṽ l
21D̃l

2

Dl
21ṽ l

21D̃l
2

.

HereMn is the mass operator;tnm is the relaxation time of
the intraband and interband scattering on the impurity po
tial;

f l~v!5
1

p Farctan
Dcl

~ṽ l
21D̃l

2!1/2
1arctan

Dl

~ṽ l
21D̃l

2!1/2G ; ~7!

Dcl5zcl8 2m; Dl5m2z l8 ; zcl8 5zcl1ReMn~0!,

z l85z l1ReMn~0!. ~8!

We assume a nonphononic mechanism of supercon
tivity. Accordingly, in the formulas given above the integr
nic
y

f

s

d

s,
ly

n-

c-

tion over energy is done using dispersion relation~2!, assum-
ing that the cutoff energyzcl of the integrals is of the orde
of the electron energy.

The system of equations for the order parameterD̄n (n
51,2) can be reduced to the form

D̄n5(
l

VnlNl

1

2p E
0

2p

dw lD̄lE
2Dl

Dcl
d«̃ l

3
tanhb~«̃ l

21D̄l
22!1/2/2

2~ «̃ l
21D̄l

2!1/2
1(

l
VnlNl

1

2p E
0

2p

dw l

2p

b

3 (
v.0

F sgnD̃l f l~v!

~ul
211!1/2

2
D̄l f l

0~v!

~v21D̄l
2!1/2G . ~9!

Here f l
05 f l uṽ5v, D̃5D̄ ; Nn is the energy of electron states

thenth band of the Fermi surface, andul5ṽ l /D̃ l . The order
parameter D̄n is determined self-consistently from Eq
~5!–~9!.

3. SUPERCONDUCTING TRANSITION TEMPERATURE

3.1. The case of s symmetry of the order parameter

Assuming in Eq.~9! that D l5const, we perform the in-
tegration over the angle variables. At temperatures in
critical region (T;Tc , Dn→0) we haveul@1. Using the
calculational technique proposed in Refs. 15 and 42, we
determine theul and obtain a system of equations forD̄n in
the regions of small and large impurity concentrations. Fr
the solvability condition for this system of equations we o
tain an equation for the superconducting transition tempe
ture Tc :

aj̃c1j̃c2g1g22 j̃c1g1@N1V111N̄1aF~rc8!#2 j̃c2g2

3@N2V221N̄1aF~rc8!#111@N̄1~N2V222N2V12!

1N̄2~N1V112N1V21!#F~rc8!50, ~10!

where

a5N1N2~V11V222V12V21!; N̄i5
Ni f 1f 2

N1f 11N2f 2
, ~11!

j̃ l5E
2Dl

Dcl
d«̃ l

tanhb«̃ l /2

2«̃ l
5

2p

b (
v.0

f l
0~v!

v
,

~12!

F~rc8!5CS 1

2
1

rc8

2 D 2CS 1

2D
5H p2

4
rc8 for rc8!1

ln 2grc8 for rc8@1

; rc8[r8U
T5Tc ,

C is the logarithmic derivative of theG function, and

rc85 f 2r11 f 1r2 ; r15
1

2t12pTc
;

~13!

r25
1

2t21pTc
; g l5 f l / f l

0.
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The solutions of equation~10! depend on the values o
the chemical potential~charge carrier density!. In analytical
investigations we will consider certain intervals of th
chemical potential in which the conditionsuDcnu/Tc ,uDnu/
Tc@1 hold, and also the pointsDn50 and Dcn50 (n
51,2).

Then, in the regions of small and large values of t
parametersrn (rn!1 andrn@1, respectively!, the equation
for Tc can be approximated by the expression

ln
Tc

T̄c0

52aH CS 1

2
1

f 2

4t12pTc
1

f 1

4t21pTc
D2CS 1

2D J ,

~14!

or

Tc5T̄c02a
p

8t12
S f 21

t12

t21
f 1D for rn!1, ~15!
hi
i

e
th
-

p
th
te

o
ity

a

e

Tc5T̄c0
1/~12a!F g

pt12
S f 21

t12

t21
f 1D Ga/~a21!

for rn@1,

~16!

T̄c05
2g

p
E expH 2

N1V11g11N2V22g2

2g1g2a

1
~b0

224g1g2ac0!1/2

2g1g2a J , ~17!

where

b05N1V11g11N2V22g22g1g2aQ,

c0512N2V22g2Q,
a5
1

2 H N̄1g11N̄2g2

g1g2
2

b0~N̄1g11N̄2g2!/g1g222N̄1~N2V222N2V12!22N̄2~N1V112N1V21!

~b0
224g1g2ac0!1/2 J . ~18!
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Those quantities appearing in these expressions w
have a substantial dependence on the value of the chem
potential and also on the impurity concentration are giv
below. Let us give analytical expressions for them at
pointsm5z28 , m5zc18 , and in the overlap region of the en
ergy bands,z28,m,zc18 :

1) for m5z28 we have

E5~D1Dc1!1/4Dc2
1/2, Q5 ln

Dc2

~D1Dc1!1/2
, ~19!

2) z28,m,zc18

E5~D1Dc1D2Dc2!1/4, Q5 ln S D2Dc2

D1Dc1
D 1/2

, ~20!

3) m5zc18

E5~D2Dc2!1/4D1
1/2, Q5 ln

D1

~D2Dc2!1/2
. ~21!

In the regionsm,z28 andm.zc18 the expression for the
superconducting transition temperature depends on the im
rity concentration only through this dependence of
chemical potential and its renormalization due to the scat
ing of electrons on impurities. Form.zc28 the temperature
Tc→0. ForD15Dc15D25Dc25vD , the analytical values
~15! and~16! agree with previous results13 and correspond to
values of the superconducting transition temperature for
dinary two-band superconductors with low and high impur
concentrations, respectively. HereTc turns out to depend on
the impurity concentration by a power law~in the region of
high impurity concentrations!, and, consequently, for such
system there cannot be a critical concentration at whichTc

goes to zero.
ch
cal
n
e

u-
e
r-

r-

In the case of a nonphononic mechanism of superc
ductivity the expression~16! for Tc contains both explicit
and implicit dependence on the impurity concentration. T
explicit dependence is contained in the second factor, wh
falls off with increasing concentration by a power law a
cannot lead to a valueTc50. The first factor in ~16!,
T̄c0

1/(12a) , characterizes the implicit dependence on the im
rity concentration through the renormalization of the chem
cal potential. Here a situation can arise in whichT̄c050 on
account of the chemical potential going beyond the range
the effective electron–electron interaction. This leads to v
ishing of the superconductivity (Tc50).

We also note that it follows from Eq.~14! that the
Anderson theorem12 is violated as a consequence of the ov
lap of the energy bands at the Fermi surface and becaus
the electron–hole asymmetry.

3.2. The case of d x 2Ày 2 symmetry of the order parameter

Let us consider a quasi-two-dimensional electron sys
with a cylindrical Fermi surface and an effective electron
electron interaction

Vnm~kk8!5Vnm cos 2wn cos 2wm , ~22!

wherewn is the polar angle in the (x,y) plane for thenth
band of the Fermi surface.

Such a dependence of the pair potential leads to o
parametersDn5Dn

0 cos 2wn , corresponding todx22y2 sym-
metry. In this case the order parameter is determined by
system of equations
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D̄n5(
l

VnlNl cos 2wn

1

2p E
0

2p

dw l cos 2w lE
2Dl

Dcl
d«̃ l

3
tanhb~«̃ l

21D̄l
2!1/2/2

2~ «̃ l
21D̄l

2!1/2
1

2p

b (
l ,v,0

VnlNl cos 2wn

1

2p

3E
0

2p

dw l ucos 2w l uS f l~v!

~ul
211!1/2

2
D̄l f l

0~v!

~v21D̄l
2!1/2D , ~23!

un2(
l

1

2tnlD̄l

1

2p E
0

2p

dw l sgnD̃l

~ul2un! f l~v!

~ul
211!1/2

5
v

D̄n

.

~24!

At temperatures in the region nearTc (um@1), in the
case ofdx22y2 symmetry of the order parameter we obta
after integrating over the angle variables

D̄n
05(

l
VnlNl z̃ lg lD̄l

01
2p

b

3 (
l,v.0

VnlNlH fl~v!F 1

2ul
0

2
3

16ul
03

2
ul

08

2ul
02G2

D̄l
0f l

0~v!

v J ,

~25!

where

un
05

v

D̄n
0

2(
l

1

2tnlD̄l
0

f l , un
0852

1

2p (
l

1

8tnl

1

D̄l
0ul

02
.

On the basis of~24! and ~25! we obtain an equation fo
determining the superconducting transition temperature:
e

te
a~g1z̃12 f 1F1!~g2z̃22 f 2F2!2N1V11~g1z̃12 f 1F1!

2N2V22~g2z̃22 f 2F2!1150, ~26!

where

Fn5CS 1

2
1

f 1

4tn1pTc
1

f 2

4tn2pTc
D2CS 1

2D .

In the region of overlap of the energy bandsz28,m,zc18
(uDcnu/Tc@1, uDnu/Tc@1), Eq. ~26! can be reduced to

ln
Tc0

Tc
5

F11F2

2
1

~b0
224ag1g2c0!1/22~b224ag1g2c!1/2

2ag1g2
.

~27!

The quantitiesb0 and c0 are defined in~18!, and b and c
differ from b0 andc0 by the replacement

Q→Q1F12F2 ,

whereQ is given by formulas~19!–~21!.
For the case of low impurity concentrations (1/tnmTc

!1) we obtain

Tc5Tc02
p

4 F f 1

4t11
1

f 2

4t12
1

f 1

4t21
1

f 2

4t22

1S f 1

4t11
1

f 2

4t12
2

f 1

4t21
2

f 2

4t22
D b022N2V22f 2

~b0
224ag1g2c0!1/2G .

~28!

For the case of high impurity concentrations (1/tnmTc

@1) we have
Tc
25

c02b0 ln l 1AD1Dc11N2V22f 2 ln~ l 1 / l 2!1ag1g2 ln l 1AD1Dc1 ln l 2AD2Dc2

2b0~p2/6!l 1
21@ag1g2 ln~ l 1 / l 2!22N2V22f 2#R21ag1g2R1 ln l 1l 2D1Dc1

, ~29!
e

where

R65
p2

12
~ l 2

26 l 1
2!;

1

l n
5

f 1

2tn1
1

f 2

2tn2
. ~30!

Formulas~28! and ~29! contain explicit dependence on th
impurity concentration~through tnm) and also implicit de-
pendence due to the renormalization of the chemical po
tial.

We see from expression~29! that Tc goes to zero at a
certain critical impurity concentrationni5nic determined
from the condition

c02b0 ln l 1AD1Dc11N2V22f 2 ln
l 1

l 2

1ag1g2 ln l 1AD1Dc1 ln l 2AD2Dc250. ~31!

We write the solution of~31! in the form

nic5
pTc0

2g
Al 18l 28~Al 18/ l 28!d, ~32!

where
n-

Tc05
2g

p
AD1Dc1 expS 2

b0

2ag1g2
1

~b0
224ag1g2c0!1/2

2ag1g2
D ,

d5
N1V11f 12N2V22f 21ag1g2Q

@~N1V11f 12N2V22f 21ag1g2Q!214N2V12N1V21f 1f 2#1/2
,

l n85 l nni . ~33!

Formulas~28! and ~29! for N250 (a5N2V2250) cor-
respond to the one-band case and have the form

Tc5Tc02
p

8

f 1

t11
for

1

t11Tc
!1,

~34!

Tc
25

N1V11f 1 ln~AD1Dc1/ f 1!2t1121

N1V11f 1~p2/6!~4t11
2 / f 1

2!
for

1

t11Tc
@1.

For the critical impurity concentration in this case w
have
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nic5
pTc0

2g

1

l 1
0

, ~35!

where

Tc05
2g

p
AD1Dc1 expS 2

1

N1V11f 1
D , l 1

085 l 18u f 250 .

Formulas ~34! and ~35! agree with the correspondin
expressions in Ref. 16 forD15Dc15vD , f 151, l 1

085a (a
is defined in Ref. 16!. It is easy to see on the basis of~32!
that for a system with overlapping energy bands the valu
Tc0 and the values of the intraband and interband impur
scattering potentials will have a substantial influence on
value ofnic .

4. NUMERICAL CALCULATIONS AND DISCUSSION
OF THE RESULTS

Let us obtain the explicit dependence of the superc
ducting transition temperature on the impurity concentrati
taking into account the influence of the impurity on t
chemical potential and also the electron scattering proces
both intraband and interband.

Equations~10! and ~26! obtained above, which deter
mine the value ofTc , must be supplemented by the equati
determining the chemical potential:

n06ni~zB2zA!5 (
mkv

eiv01
Ḡm~kv!. ~36!

Here n0 is the charge carrier density in the pure substan
and zB2zA is the difference between the valences of t
impurity atom and host substance. The plus and minus s
correspond to electronic and hole conduction, respective

Substituting expression~4! for T5Tc into ~36! and do-
ing the integration over energy and frequency, we reduce
latter equation to the form

n01ni~zB2zA!

5(
m

@zcm1xm2m2~zm1xm2m!2uzcm1xm2mu

1uzm1xm2mu#1
1

p (
m

Hym ln
ym

2 1~zcm1xm2m!2

ym
2 1~zm1xm2m!2

22~zcm1xm2m!Farctan
zcm1xm2m

ym

2
p

2
sgn

zcm1xm2m

ym
G12~zm1xm2m!

3Farctan
zm1xm2m

ym
2

p

2
sgn

zm1xm2m

ym
G J , ~37!

where the quantitiesxm5ReMn(0) and ym5ImM* (0)
satisfy the system of equations (n,m51,2)

xn52
1

4p (
m

1

tnm
ln

ym
2 1~zcm1xm2m!2

ym
2 1~zm1xm2m!2

,

of
-
e

-
,

es,

e,

ns
.

e

yn5(
m

1

2ptnm
Farctan

zcm1xm2m

ym
1arctan

m2~zm1xm!

ym
G .

~38!

We introduce the quantities

ñi5
ni

2N1
, ñ05

n0

2N2
,

and use the definitions

1

2tnm
5ñihnm ;

~39!

hnm5
N1Nm

2 E
0

2p

dwuu~pFn
2pFm

!u2ux~npFn
, mpFm

!u2.

The system of equations~10!, ~37!, and~38! for the case
of s symmetry of the order parameter and the system
equations~26!, ~37!, and ~38! for dx22y2 symmetry are
solved self-consistently with allowance for the definitio
Dcm5zcm1xm2m and Dm5zm1xm2m. Here we choose
the following values of the parameters of the theory:

h225h11

N2

N1
;

N2

N1
50.2; h125h21

N2

N1
;

N1V1150.2; N2V2250.4; N2V1250.018; ~40!

N1V215N2V12

N1

N2
.

Figure 1 shows the dependence ofTc on the impurity
concentration for the case ofdx22y2 symmetry of the order
parameter. For an isovalent impurity (zB5zA) ~see Fig. 1a!
the rapid drop inTc in the absence of interband scatterin
~curve1, h2150) is due to the destruction of electron pai
as a result of intraband scattering on impurities and the p
ence of a critical impurity concentrationnic , above which
superconductivity does not occur (Tc50). As the interband
scattering is increased~curve 2, h2150.05, and curve3,
h2150.1) the superconductivity is suppressed even fas
We note that the suppression of superconductivity occur
the region of overlap of the energy bands.

Figure 1b shows the dependence ofTc on ñi for
zB2zA51: curve18 corresponds to the case of no scatteri
of electrons on the impurity potential, and curve1 corre-
sponds to the absence of interband scattering on impur
(h2150). As the interband scattering increases~curve 2,
h2150.05, and curve3, h2150.1) a change in curvature o
the curves is clearly seen in the region where the ene
bands overlap, and there is a ‘‘plateau’’~or ‘‘step’’ ! on the
curve ofTc versusñi . This behavior is a clear demonstratio
of the role of the filling factor of the energy bands~with
increasing impurity concentration there is growth of t
chemical potential, leading to a decrease inTc) and of the
scattering of electrons on the impurity potential. The form
tion of a ‘‘plateau’’ on theTc versusñi curve is due to a
decrease in the interband scattering near the boundary o
first effective energy band.

The foregoing analysis of the dependence ofTc on the
impurity concentration was done with allowance for pr
cesses of electron scattering~intra- and interband! on the
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impurity potential and in the absence of such scattering p
cesses, in which case the impurity affects only the chem
potential. The onset of these processes in highly anisotr
superconductors is determined by the position of the sub
tutional impurity in the crystal.

Let us use these results to explain the experimental
on the dependence ofTc on the impurity concentration in
HTSCs.

Figure 2 shows the experimental results on the dep
dence ofTc on the concentration of zinc as a substituent

FIG. 1. Superconducting transition temperatureTc versus the impurity con-

centrationñi for zB5zA ~a! andzB2zA51 ~b! for the case ofdx22y2 sym-
metry of the order parameter ath1150.5, h2150 ~curve1!, h1150.5, h21

50.05~curve2!, andh1150.5, h2150.1 ~curve3!. Curve18 corresponds to
h115h2150.
-
al
ic
ti-

ta

n-
r

copper in the CuO2 plane in yttrium and lanthanum
ceramics.9,43 Here the isovalent impurity Zn replaces Cu
the CuO2 plane, which is responsible for the superconduct
ity. In this case processes of intra- and interband scatte
on the impurity arise. A qualitative picture of the suppress
of superconductivity, corresponding to Fig. 2, is given by t
theoretical curves in Fig. 1a. In the case considered, tha
dx22y2 symmetry of the order parameter~Fig. 1a!, the super-
conductivity is completely suppressed by a nonmagnetic
purity, in agreement with the experimental data.

Figure 3 shows the experimental dependence ofTc on
the impurity concentration in YBa2Cu32xMxO72y when the
Cu in the CuO2 plane is replaced by the substitutional imp
rity M 5 Zn ~curve 1! and when the Cu in the chain is re
placed by Al and Ga~curves2 and3!.3,9 Figure 4 shows the
theoretical curves ofTc versus the concentration of an isov
lent impurity, e.g., Zn, for the cases ofdx22y2 ands symme-
try of the order parameter~curves1 and 18, respectively!,
and curves2 and3 are for nonisovalent impurities~e.g., Al
and Ga!. In the first case the substitutional impurity is foun
in the CuO2 plane, and its introduction gives rise to scatte
ing of electrons on an impurity potential, which leads to
rapid decline ofTc with increasing impurity concentration
The introduction of Al or Ga in place of Cu in the chain, o
the other hand, leads only to a change in the effective
lence of the Cu in the CuO2 plane and, hence, to a change
the chemical potential. We have a more rapid suppressio
the superconductivity when the copper is replaced by z
than for the substitution of aluminum or gallium, in qualit
tive agreement with the experimental data of Fig. 3.

Figure 1 shows the dependence ofTc on the impurity
concentration in the metallic phase (n0Þ0). In the case of an
insulator (n050) upon doping withzAÞzB , superconductiv-
ity can arise in the system at rather high values of the su
conducting transition temperature. The dependence ofTc on

FIG. 2. Experimental dependence of the superconducting transition
peratureTc on the impurity concentrationx in YBa2~Cu12xZnx)3O72d ~1!
and La1.8Sr0.2Cu12xZnxO4 ~2! ~Ref. 37!, with substitution for the Cu atoms
in the CuO2 plane.
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the impurity ~charge carrier! concentration is a bell-shape
curve for both the cases ofs and dx22y2 symmetry of the
order parameter, provided that one does not take into acc
the scattering on the impurity potential (1/tnm50); see also

FIG. 3. Experimental dependence of the superconducting transition
peratureTc on the impurity concentrationx in YBa2Cu32xMxO72y in the
orthorhombic phase. Curve1 corresponds to the substitution of zinc fo
copper in the CuO2 plane,2 and curves2 and3 to the substitution of Ga and
Al, respectively, for copper in the chain.

FIG. 4. Theoretical dependence of the superconducting transition tem

ture Tc on the impurity concentrationñi for ñ050.22 eV~metal!: curves1
and18 are for an isovalent impurity in the case ofdx22y2 symmetry of the
order parameter forh1150.5 andh2150.1 and fors symmetry of the order
parameter forh1153.5 andh2150.1, respectively; curves2 and3 are for a
nonisovalent impurity ath115h2150 andzB2zA521.5 and21.0, respec-
tively.
nt

Ref. 21. These results are in qualitative agreement with
dependence ofTc on the carrier concentration in the CuO2

plane for ~La12xSrx)2CuO4 ~Refs. 9 and 44! and certain
copper-oxide superconductors,9,45 when the impurity is intro-
duced outside the CuO2 plane and, hence, there is no sca
tering on the impurity. Taking the scattering processes i
account (1/tnmÞ0) in the doping of an insulator preserve
the bell-shaped dependence ofTc on the carrier concentra
tion in the case ofs symmetry of the order parameter, low
ering it and narrowing the region of impurity concentratio
in which superconductivity can occur. Consequently, the
perconducting phase is determined by the concentration
charge carriers and the parameters of the impurity scatte
(1/tnmÞ0). This result is in qualitative agreement with tho
obtained in Ref. 22, where a single-band model withs pair-
ing and the concept of a disordered localized impurity w
used. In the doping of an insulator in the case ofdx22y2

symmetry of the order parameter it is impossible to achie
high values ofTc because of the rapid destruction of Coop
pairs by the intra- and interband scattering on impuriti
Consequently, the introduction of a substitutional impurity
the CuO2 plane in systems of that kind does not give rise
high-Tc superconductivity.

The theoretical curves in Fig. 5 describe the depende
of Tc on the concentration of a nonisovalent substitutio
impurity in the metallic phase when it is substituted for co
per in the CuO2 plane or in the plane and chain. In this ca
both a mechanism of filling of the energy bands and p
cesses of electron scattering on the impurity potential w
come into play.

5. CONCLUSION

Characteristic features of HTSCs include an overlap
the energy bands at the Fermi surface, which is due to

-

ra-

FIG. 5. Theoretical dependence of the superconducting transition temp

tureTc on the impurity concentrationñi for ñ050.22 eV~metal! with dx22y2

symmetry of the order parameter forh1150.2, h2150.02, zB2zA521
~curve1! andh1150.5, h2150.05, andzB2zA523 ~curve2!.
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layered structure of the substance, and a variable charge
rier density, which is related to the oxygen or impurity co
tent. In this paper these features have been taken into acc
in an attempt to explain the existing experimental data on
dependence of the superconducting transition temperatur
the impurity concentration in these materials.

The particular form of the nonphononic mechanism
superconductivity was not precisely specified, but it was
sumed that it involves some electron–boson interaction
retardation is ignored, the description of the two-band sys
with such an interaction reduces to the BCS model gene
ized to the two-band case with a cutoff of the integrals o
energy in the basic equations in accordance with the dis
sion relation~2!. Starting from the two-band Hamiltonia
~1!, which takes into account the interaction of the electro
with randomly distributed nonmagnetic impurities, we app
perturbation theory41 and perform an averaging over the ra
domly distributed nonmagnetic impurities.

We have investigated systems havings anddx22y2 sym-
metry of the order parameter. To obtain the explicit dep
dence of the superconducting transition temperatureTc on
the impurity concentrationni , it is necessary, for a specifie
ni , to solve self-consistently the system of equations~10!,
~37!, and~38! and also~26!, ~37!, and~38!, which determine
Tc , ReMn(v), ImMn(v), n5(1,2) (Mn is the mass opera
tor corresponding to thenth energy band!.

When a substitutional impurity is introduced, there a
two possible mechanisms by which it can influenceTc :
through a change in the chemical potential on account of
valence effect and the scattering~inter- and intraband! of
electrons on randomly distributed impurities, and by an
plicit dependence on the impurity concentration. The eff
of these mechanisms individually or jointly is determined
the position of the substitutional impurity in the highly a
isotropic systems. In addition, the behavior ofTc depends
radically on the initial state of the system~metal or insula-
tor!. In the case when the valences of the impurity and h
atoms are the same~an isovalent impurityzB5zA), for a
system with a metallic initial state the superconducting tr
sition temperatureTc decreases on doping.

We note that for an isovalent impurity the curvature
the curves in the case ofssymmetry of the order parameter
positive, whereas fordx22y2 symmetry we observe a nega
tive curvature~see curves1 and18 in Fig. 4!. This is one of
the important ways that the symmetry of the order param
is manifested. Because of the characteristic electron–
asymmetry~as a manifestation of anisotropy! in the systems
under study with a nonphononic mechanism of supercond
tivity, only the intraband scattering of electrons on impuriti
makes the value ofTc depend substantially on the impurit
concentrationni . Thus for systems withs symmetry of the
order parameter, the electron–hole asymmetry and also
scattering~inter- and intraband! of electrons on impurities
leads to violation of the Anderson theorem.12 We note that
for systems withdx22y2 symmetry of the order parameter
the two-band case the critical impurity concentrationnic is
proportional toTc0 and inversely proportional to the tota
value of the scattering potentials for impurity scattering a
can turn out larger than in the one-band case because o
higher value ofTc0, in spite of the fact that the intra- an
ar-
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interband scattering is an additional factor that decreaseTc

@see Eqs.~32! and ~35!#.
An important role in the dependence ofTc on the impu-

rity concentrationni is played by the difference of the va
lence of an impurity atom and the atom it replaces (zB

ÞzA). In particular, we have shown that a weak depende
of Tc on ni can arise~a ‘‘plateau’’!. The onset of the ‘‘pla-
teau’’ is due to the interband scattering on impurities and
the decrease of this scattering near the boundary of the
effective energy band (m5zc18 ) ~Fig. 1b!. We note that an
alternative explanation of the steplike dependence mentio
above might be the presence of a so-called extended
Hove singularity arising on account of topological electron
transitions14,28 or the overlap of three bands at the Fer
surface29 In the region where the energy bands overlap,
curvature of the curves will change from negative to po
tive, regardless of the type of symmetry of the order para
eter, as the interband scattering on impurities increases~Fig.
1b!. Such a change in the curvature of the curves ofTc

versusni is inherent only to systems with overlapping ener
bands and is due to interband scattering of electrons on
purities. In the case whenzBÞzA , for a system initially in a
metallic state~see Fig. 1b! the superconducting transitio
temperatureTc decreases on doping, and a ‘‘plateau’’
formed. In the case ofdx22y2 symmetryTc goes to zero at
ni5nic .

It should be noted that the proposed theory of superc
ductivity with a nonphononic mechanism can also be app
to the case of a phonon-mediated mechanism with a lowe
~or small! charge carrier density, where the electron–h
asymmetry is also clearly manifested. In that case one sh
make the substitutionsDcl→vDl , Dl→m2z l ~Ref. 26!.

The two-band model proposed in this paper incorpora
the basic features of HTSC materials~layered structure and
variable carrier density! and can be used to study the beha
ior of Tc as a function of impurity concentration in thes
materials. Here it must be kept firmly in mind that und
these conditions it is necessary to take into account
mechanism of electron scattering on impurities or the cha
in the chemical potential, or both simultaneously. For e
ample, if the isovalent impurity Zn is substituted for Cu
the CuO2 plane of an yttrium ceramic, then the intra- an
interband scattering of electrons on the impurity poten
must be taken into account, since this plane is responsible
the superconductivity and in it the periodicity of the crys
structure is disrupted on account of the random distribut
of the substitutional impurity. We obtain a rapid drop inTc

with increasing impurity concentration~curves1 and 18 in
Fig. 4!. The replacement of Cu by the nonisovalent impur
Al or Ga in the chain in the same ceramic leads only to
change in the effective valence of the Cu in the CuO2 plane9

and, hence, only to a change in the chemical potential an
the dependence ofTc shown by curves2 and3 in Fig. 4. This
approach makes it possible to obtain a strong decline inTc

with increasing Zn concentration and a weak decline w
increasing Al concentration, as is observed in the experim
tal studies.

This model also contains other possibilities for descr
ing the experimental data. For example, if a nonisoval
substitutional impurity is introduced in the CuO2 plane, then
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all of the mechanisms considered above for the influenc
impurities onTc will be manifested~Fig. 5!.

In this paper the influence of impurities was investiga
in a two-band model19,20 in which the transfer of Coope
pairs from one band to the other takes place by whole pa
The case of pure superconductors, with allowance for
various interband processes, was considered by the pre
authors in Ref. 26, where the problem reduces to an effec
three-band model~with order parametersD11, D22, and
D12!, which leads to an increase inTc in comparison with the
case considered in the present paper in the limit of a p
substance. The introduction of an impurity into that ‘‘thre
band’’ model will lead to additional interband scattering
the impurity potential and will promote a more rapid su
pression of the ratioTc /Tc0 with increasing impurity con-
centration. These additional effects can only lead to qua
tative differences from the results obtained above, with
altering the picture as a whole.

As we have said, here we have considered a quasi-t
dimensional system at charge carrier concentrations tha
not too small and have used the mean field approximat
The fluctuation of the phase of the order parameter for
two-dimensional system with impurities was taken into a
count on the basis of a simple one-band model withs pairing
in Ref. 46. It was found that the temperatureTBKT ~the
Berezinski�–Kosterlitz–Thouless temperature! in the dirty
limit differs weakly ~by an amount;1/t tr«F!1) from Tc

MF ,
which, according to the Anderson theorem,12 does not de-
pend on the impurity concentration. We note that in t
model, in the presence of the electron–hole symmetry
exists in systems with a lowered density of charge carri
the Anderson theorem12 is violated, and the value ofTc

MF

does depend on the impurity concentration, through the
pendence ofTc0 on the renormalized chemical potential~14!,
~17!, ~37! for 1/t1251/t2150.

Here we have considered a more complicated model
incorporates such features of HTSC materials as the ove
of the energy bands, the symmetry of the order parame
and the electron–hole asymmetry. In this case the Ande
theorem does not hold, andTc

MF depends substantially on th
impurity concentration~a nonmagnetic impurity can com
pletely suppress the superconductivity!. It is not ruled out
that TBKT for this model ~in the purely two-dimensiona
case! will contain additional impurity dependence~besides
the impurity dependence ofTc

MF).
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Optical evidence for compatibility of antiferromagnetism and superconductivity
in YBa 2Cu3O6¿x

V. V. Eremenko,* V. N. Samovarov, V. L. Vakula, M. Yu. Libin, and S. A. Uyutnov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
pr. Lenina 47, 61164 Kharkov, Ukraine
~Submitted April 18, 2000!
Fiz. Nizk. Temp.26, 1091–1103~November 2000!

The evolution of the spectral composition of the absorption in the 1.25–2.6 eV region for
metallic films of YBa2Cu3O61x with superconducting transition temperatures ofTc551 and
74 K is measured as the films are cooled from 180 to 20 K. Particular attention is paid to the
temperature effects in two absorption bands: theA band (.1.8 eV!, which reflects the
appearance of holes dressed in antiferromagnetic~AFM! fluctuations, and the (A1J) band
(.2.15 eV!, which reflects an additional~magnon! excitation of the short-range AFM order. It is
found that the changes of these bands begin in the normal phase atT,T* in the temperature
region corresponding to the opening of the pseudogap state, and the (A1J) magnon band arises in
the pseudogap state even in the case when it is absent at room temperatures. At the
superconducting transition the parameters of the bands stop changing, and the (A1J) magnon
band is preserved in the superconducting state. The results are interpreted as evidence of
a magnetic nature of the pseudogap state and for the compatibility of AFM short-range order with
superconductivity. ©2000 American Institute of Physics.@S1063-777X~00!00511-9#
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INTRODUCTION

It is now established that as cuprate high-Tc supercon-
ductors ~HTSCs! are cooled, a transition first occurs to
state with a pseudogap in the electronic excitation spect
and then a transition to the superconducting~SC! state. The
pseudogap state, being a precursor to superconductivit
attracting increased attention and is widely studied, for
ample, by the methods of spin echo, nuclear relaxation,
angle-resolved photoemission spectroscopy~see reviews1–3!.
In particular, these experiments show that the maxim
value of the pseudogap corresponds to the neighborhoo
the point (p,0) in the two-dimensional~2D! Brillouin zone.
In the direction of the diagonal of the zone the pseudoga
absent. The influence of the pseudogap is registered at
peratures belowT* , which, depending on the doping level o
the cuprate HTSC, is close to or noticeably higher than
critical temperatureTc . Near the optimal doping level th
maximum values of the SC gapDs and pseudogapD* are
approximately equal,D'40 meV,1 and both of the gap fea
tures apparently have a spatial symmetry of thed type.1–3

Altogether, one can assume that in cuprate HTSCs
formation of the SC phase ‘‘starts’’ atT5T* and that the SC
gap does not vanish at the critical point itself, unlike that
classical superconductors. The theoretical studies of
pseudogap state take two alternative approaches: an
proach based on the formation of Cooper pairs aboveTc ,4

and an approach in which fluctuations of the short-range
tiferromagnetic~AFM! order play a decisive role5 ~a pseu-
dogap in the spectrum of spin excitations!. In any case the
experimental and theoretical study of the problem of highTc

superconductivity in cuprate HTSCs must include a jo
treatment of the pseudogap anomalies atTc,T<T* and the
SC state proper atT<Tc .
8091063-777X/2000/26(11)/10/$20.00
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The goal of the present study is to investigate the beh
ior of the absorption spectra in the visible region at 1.25–
eV for YBa2Cu3O61x films as the temperature pass
through both the pseudogap and SC states. In the gen
scheme of things this experimental goal is extremely
usual, since the photon energy in our working frequency
gion is much greater than either of the gap features (\v
@Ds ,D* ). In classical superconductors the range of opti
absorption~reflection! that is informative for investigating
superconductivity lies, as we know, near the SC gap ene
\v.Ds . If in the electronic spectrum of the normal pha
an energy gap of a different nature, e.g., a quantityDmag for
magnetic excitations, forms as the temperature is lowe
then the optical response to these changes will also be m
fested at frequencies close toDmag. For example, in U2RuSi2
3(Tc.1.5 K! at T,T* .20 K the opening of the magneti
gap leads to a decrease in the values of the optical con
tivity in the low-frequency region of the spectrum,\v
.Dmag.10 meV, while at higher energies the optical co
ductivity ~reflection! does not change.6 This picture of the
‘‘suppression’’ of the optical conductivity is observed in c
prate HTSCs~YBCO, Bi2212, LSCO! in the low-frequency
region \v,2D* '100 meV,1 where a pseudogap arises
these compounds atT,T* .

In designing a spectroscopic study of the pseudogap
SC states in YBa2Cu3O61x with the aid of high-energy pho
tons\v@Ds ,D* , we worked on the basis of two importan
findings of previous optical studies. First, it was shown qu
some time ago that at fixed frequencies in the visible a
infrared regions there are sharp kinks in the absorption sig
at the SC transition on cooling of YBa2Cu3O61x films.7,8

Anomalies in the temperature dependence of the absorp
intensity at\v52 eV in YBa2Cu3O61x films with different
doping have also been noted nearT* .110 K ~for Tc.90 K!
© 2000 American Institute of Physics



s
o

d,
r

0

er
F
-

-
ns
0

m
n
t-

se
o

tu

ta
an
a
f
p

r-
e

n
t

tiv

s
er
th

ul
r

-

ti
an

o
is
he

llic

in

ns.

p
f

ing

n
sity

r a
-
iers

FM

is

-

lic

ng

a-

.
f the
dher-

810 Low Temp. Phys. 26 (11), November 2000 Eremenko et al.
andT* .160 K ~for Tc.50 K!.9 However, detailed studie
of the temperature evolution of the spectral composition
the multicomponent absorption contour of YBa2Cu3O61x at
energies near\v>1.25 eV were not carried out. Secon
we were guided by the results of our previous pape10

on the study and analysis of the absorption spectra
YBa2Cu3O61x films as a function of the doping level at 30
K. We had shown10 that in the region\v51.25–3 eV the
multicomponent absorption spectrum contains features~opti-
cal ‘‘markers’’! which track the degree ofpd hybridization
~covalency! and the interaction of the heavy charge carri
with the magnetic subsystem as the sample is doped.
example, the degree ofpd hybridization affects the param
eters of theBd

1 absorption band (.1.5 eV!, which is due to
the transitiondxy→dx22y2 in the spectrum of the Cu21 ion.
At the same time, the absorption bandsA (.1.8 eV! and
(A1J) (.2.1 eV! are sensitive to the AFM ordering~AFM
fluctuations!. In particular, the (A1J) band reflects the prob
ability of two-magnon excitation upon interband transitio
involving charge transfer. As the doping is increased at 3
K in the metallic phase, the covalent and magnetic~correla-
tion! contributions to the spectrum of charge carriers co
pete with each other: theA and (A1J) bands decrease i
intensity and broaden, but theBd

1 band is enhanced on me
allization.

As the films are cooled from 300 K the behavior of the
bands must necessarily follow the same scenario as it d
during doping. One expects several versions of the mu
changes in theA, (A1J), and Bd

1 absorption bands in
YBa2Cu3O61x as the pseudogap state and then the SC s
are passed. For example, for some of these absorption b
there may be no change with temperature at all. Behind e
of these scenarios are certain mechanisms for the onset o
pseudogap state, and alternative possibilities for the com
tition ~coexistence! of AFM magnetic ordering and supe
conductivity. The experimental data obtained in the pres
study show that the spectral composition of the absorptio
light in YBa2Cu3O61x on cooling evolves in such a way tha
one can assert that antiferromagnetism and superconduc
are mutually compatible in this material. For example, theA
absorption band, due to AFM fluctuations, and the (A1J)
absorption band, which reflects the excitation of magnon
the metal, are enhanced in the pseudogap state and cons
in the superconducting phase. On the whole, analysis of
available data suggests that high-Tc superconductivity is of a
spin-wave nature.

GENERAL APPROACH TO THE ANALYSIS OF THE
SPECTRA. THE EXPERIMENT

Before we present and discuss the experimental res
let us state our approach to the identification of the abso
tion spectra.

In the energy region\v51 –3 eV the absorption spec
trum of YBa2Cu3O61x for light with polarizationEiab is a
multicomponent spectrum. In this spectral interval fall op
cal transitions of different natures: intraband, interband,
local dd transitions in the Cu21 ions. For identification of
the transitions we consider the structure of the density
statesN(E), which is common to copper-oxide HTSCs. It
shown in Fig. 1 together with the scheme of splitting of t
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Cu21 levels in the tetragonal field of the oxygenp ligands.
The arrows denote the possible transitions in the meta
phase.

The picture of the distribution of the density of states
cuprate HTSCs is determined by electronic~Hubbard! corre-
lations and the features of the copper–oxygen interactio
The lower,pd-hybridized Hubbard band~LHB! is separated
from the upper Hubbard band~UHB!, which is formed pre-
dominantly by thed orbitals of copper, by an optical ga
with a value ofEg . The gap owes its origin to the transfer o
charge from the oxygen ions to the copper. For insulat
compounds of YBa2Cu3O61x with x.0.3 this gap has a
valueEg.1.7 eV.11 At the top of the lower Hubbard band i
the metallic phase a quasiparticle peak arises in the den
of states, the chemical potential lying within this peak. Fo
model of the interaction of hole carriers with AFM fluctua
tions the quasiparticle peak characterizes heavy carr
dressed in AFM fluctuations.3,12,13 In the 2D Brillouin zone
the strongest interaction of the charge carriers with the A
fluctuations is realized along theG –M direction, but along
other directions of the quasimomentum this interaction
weaker. The characteristic width of the quasiparticle~coher-
ent! A peak is approximately (3 – 4)J, whereJ.103 K is
the exchange interaction energy in the CuO2 plane for
YBa2Cu3O61x .2 The total width of the lower Hubbard va
lence band is.2 eV.

The next four types of optical transitions in the metal
phase arise naturally in the framework of the proposedN(E).
In the region above the absorption threshold,\v>Eg , a
continuum component of interband transitions involvi
charge transfer, which will be called charge transfer~CT!
transitions, arises. Near the thresholdEg there are two pos-
sible types of electronic transitions, which involve the qu

FIG. 1. Schematic illustration of the splitting of thed levels of the Cu21 ion
in a crystalline field of tetragonal symmetryD4h and the distribution of the
density of statesN(E) in copper oxide HTSCs with a hole type of doping
The arrows indicate the optical transitions considered in the analysis o
measured absorption spectra. The energy levels are indicated without a
ence to a scale.
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siparticleA peak in the density of states~see Fig. 1!. The first
are transitions across the optical gap without excitation of
magnetic degrees of freedom~henceforth called theA tran-
sitions!, and the second are higher-frequency transitions
volving the simultaneous transfer of charge and excitation
the magnetic subsystem~henceforth called (A1J) transi-
tions!. All of these transitions should be manifested in t
spectra in the form of comparatively narrow-band spec
contours with widths on the scale of the energyJ. Finally,
there are intraband transitions from the interior of the
lence band into the hole-state region that opens up with d
ing. Their spectral weight is concentrated mainly in the m
infrared region~MIR transitions!. The red boundary of the
MIR transitions must have a value close to the width of theA
peak, i.e.,.0.3–0.4 eV, but the short-wavelength wing c
extend in energy to the entire width of the valence band
can even span the visible region. In experiments with me
lized YBa2Cu3O61x films (x.0.4) the asymmetric MIR ab
sorption contour has a maximum near 0.6 eV and a slo
falling short-wavelength wing that extends all the way
3 eV.8,10

For thedd transitions in YBa2Cu3O61x in the case of
polarizationEiab the largest contribution to the absorptio
is from the transitionsdxy→dx22y2 and dyz,xz→dx22y2. In
the case of weakpd hybridization~degree of covalency! the
dd transitions, by virtue of the symmetry selection rule, gi
rise to low-intensity bands with absorption coefficients ha
ing a value ofa.104 cm21 in the insulator phase.10,14 In
this case thedd transitions are clearly manifested in the R
man scattering spectra. For example, in the Raman spe
the transitiondxy→dx22y2 is clearly expressed in the insula
tor phase of YBa2Cu3O61x (x<0.4) in the form of a band
centered around 1.5 eV.15 As the pd hybridization is en-
hanced in the metal, the absorption coefficient for thedd
transitions grows to values comparable to the coefficients
the CT transitions,a.105 cm21 ~Ref. 10!, but in the Raman
scattering spectra these transitions are strongly greatly w
ened upon metallization.15

The ideas set forth above had been used previously i
analysis of the evolution of the spectral composition of
absorption of YBa2Cu3O61x thin films (Eiab) as the
samples are doped.10 It was shown that the six transition
indicated~CT, A, (A1J), dxy→dx22y2, dyz,xz→dx22y2, and
MIR! describe the multicomponent absorption spectrum
YBa2Cu3O61x films to an accuracy of 5% or better, both
the insulator phase (x.0.35) and in the metallic phase in th
regionx50.5–0.9.

The simplest spectrum is the absorption spectrum
YBa2Cu3O61x in the insulator phase at 300 K. For examp
at the boundary of the transition to the metal atx.0.35 in
the spectral region 1.25–3 eV the spectrum is dominated
the Gaussian contours from theA transition, the (A1J) tran-
sition, and the CT continuum component. BandA is centered
at .1.8 eV, and the (A1J) band at.2.1 eV is separated
from it by an energy equal to the two-magnon excitati
energy \v2mag. For YBa2Cu3O61x (x<0.6) the two-
magnon maximum in the Raman scattering spectra ha
energy\v2mag.3J.0.33 eV.16 At the temperature of the
transition of the YBa2Cu3O61x insulator film (x.0.35) to
the AFM phase, both theA and (A1J) bands are noticeably
e
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narrowed.10 The narrowing of the bands is due to the fa
that, as the temperature decreases below the Ne´el point (TN

.170 K! a spin gap appears, the value of which is 3–5 m
in the weakly metallized phase of YBCO.17 It has also been
shown10 that the reduction of the absorption in the wings
theA contour arises as a result of the narrowing effect, wh
in turn is dictated by a decrease in the number of magnon
the temperature is lowered in the regionT,TN , in accor-
dance with the Bose–Einstein temperature factor.

Experiment. In this paper the absolute absorption spe
tra and the changes with temperature are measured for
metallized YBa2Cu3O61x films, which will be designated as
VN604 and VN608. They belong to a series of single-crys
VN films grown at the Physics Institute of the University
Erlangen, Germany, in Prof. G. Saemann-Ischenko’s dep
ment. Films of this series have been used previously
studying the absorption spectra at 300 K as a function
doping.10 The films were prepared on SrTiO3 substrates by
the laser sputtering of targets. They arec-oriented and have a
thicknessl 52300 Å. For the VN604 film the parameterc
511.722 Å and the start of the transition isTc

on551 K, and
for the VN608 films,c511.705 Å andTc

on574 K. The total
widths of the SC transitions, according to the results of
magnetic measurements, are around 1.5 K. According to
calibration data18 for YBa2Cu3O61x films, these values of
Tc

on correspond to doping indices ofx.0.45 ~VN604! and
x.0.7 ~VN608!. The measurements were made in unpol
ized light with theE vector of the light wave in the CuO2
plane,Eiab.

The experimental procedure for the measurements of
absorption spectra@the absorption coefficientsa(v)] is set
forth in detail in Ref. 10. Here we mention only the ke
points. For 300 K we represent the absolute absorption s
tra in dimensionless units of optical density,a l . These data
are obtained by comparative measurements of the trans
sion spectra of the films and clean substrates. The data
tained on cooling of the films is represented for each te
perature in the form of a difference spectrumD(a l )
5@a(T)2a(T0)# l as a function of the photon energy, whe
T0 is the upper boundary of the temperature interval of
measurements. The value ofD(a l ) is determined from the
relationD(a l )5 ln@tT0

(\v)/tT(\v)#, wheret(\v) is the mea-
sured transmission spectrum of the film at the given temp
ture. The above relation holds well without allowance f
temperature-related changes of the reflection coeffic
R(v). In the energy region\v>1.25 eV on cooling of the
metallic phase of YBa2Cu3O61x the temperature-relate
changes ofR per degree are small,dR/dT.1024 K21 ~Ref.
19; the absolute level of the reflection is also low,R
.10%). Here the growth of the transmission turns out to
substantially larger~by at least an order of magnitude!,
dt/dT@dR/dT. Therefore, the use of the relation give
above to determineD(a l ) in our working frequency region
is entirely justified.~Taking the temperature dependence oR
into account is necessary for findinga(T) in the energy re-
gion \v.0.5 eV, whereR.60% anddt/dT.dR/dT.20!

EXPERIMENTAL RESULTS AND DISCUSSION

1. Let us consider the data for the VN604 film. wit
Tc

on.51 K. Figure 2a shows the absorption spectrum (a l )exp
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of this film at 300 K in the spectral region 1.25–2.8 eV. He
the solid curve shows the model dependence (a l )fit , which
is the sum of five components into which the measured sp
trum was decomposed. These components are shown
vidually in Fig. 2b. They are described by Gaussian conto
centered atE0 with a standard deviations and an amplitude
coefficientm0:

~a l !n5
m0

sAp
expF2

~E2E0!2

2s2 G ,
and also by continuum frequency dependencesa l (E). In ac-
cordance with the general approach to the analysis of abs
tion spectra which was discussed above, the spectral com
sition is made up of the following components:

1! a Gaussian contour (a l )A for an electronic transition
from the correlation maximum of the density of states —
A band;

FIG. 2. Absorption spectruma l (E) measured at 300 K for the VN604 film
with Tc

on551 K (s), in comparison with the model spectrum~————!
~a!. The inset shows the relative difference of these spe
(aexp2afit)/afit . The decomposition of the model spectrum into comp
nents~b!. A constant MIR absorption level (a l )MIR52.3 was taken as the
zero level for theA, Bd

1 , Bd
2 , and CT components.
c-
di-
rs

rp-
o-

e

2! a Gaussian contour (a l )A1J for a transition from the
correlation maximum with simultaneous excitation of t
magnetic subsystem — the (A1J) band;

3! a Gaussian contour (a l )2B for the transitiondxz,yz

→dx22y2 in the Cu21 ion — the Bd
2 band;

4! a continuum component of interband transitio
(a l )CT involving charge transfer from the oxygen to the co
per — the CT component. This component of the spectru
according to an analysis of the data, is best described b
dependence of the form (a l )CT5m0

CT(E2Eg)2/E. Such a
dependence is typical for direct allowed transitions, wh
there are tails of the densities of states of the lower and up
bands extending into the optical gap,21 and also in the case o
heavy doping, when electron scattering effects
appreciable.22 In the case when there are tails of the densit
of states, this dependence has been verified, for exampl
the optical experiments of Ref. 23 on YBCO;

5! a continuum component of the short-wavelength wi
of the MIR absorption band, (a l )MIR . We have assumed
constant level for this absorption in the region\v.1.2 eV
~the curve labeled MIR in Fig. 2b!. Choosing the frequency
dependence of this component in the form (a l )MIR}1/v, for
example, would have only a weak effect on the parameter
the other components.

Thus the total multicomponent absorption contour is d
scribed in the form

~a l !fit5 (
n51

3
m0n

snAp
expF2

~E2E0n!2

2sn
2 G

1
m0

CT~E2Eg!2

E
1~a l !MIR .

Let us now give the quantitative characteristics of th
decomposition by which the experimental spectrum (a l )exp

can represented with an accuracy of 4% or better over
energy energy interval by the sum (a l )fit5(a l )A1(a l )A1J

1(a l )2B1(a l )CT1(a l )MIR . The relative difference (a l )exp

from the model (a l )fit is shown in the inset in Fig. 2b. Thu
the model parameters are as follows:

GaussianA band:E0
A51.8 eV,sA50.19 eV,m0

A50.11
eV;

Gaussian (A1J) band:E0
A1J52.18 eV,sA1J50.19 eV,

m0
A1J50.02 eV;

GaussianBd
2 band: E0

2B52.3 eV, s2B50.2 eV, m0
2B

50.15 eV;
continuum CT component:Eg51.9 eV,m0

CT56 eV21;
absorption level of the MIR band: (a l )MIR51.3.
If we compare this model decomposition for the met

lized film with the decomposition of the absorption spectru
at 300 K for a YBa2Cu3O61x insulating film (x.0.35),10 we
can draw the following conclusions. Upon metallization t
A and (A1J) absorption bands behave in the same w
demonstrating a broadening of their Gaussian contours a
lowering of their amplitude coefficients. The (A1J) band is
most strongly diminished in the metal: for the VN604 film i
area decreases by more than a factor of 20~and the coeffi-
cient m0

A1J decreases by the same factor!. The substantial
decrease in the contribution of this band indicates that
magnons arising upon the excitation of the (A1J) transition
simultaneously with the creation of a heavy-hole charge c

a
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rier are strongly damped in the metal. As we shall sh
below, in the even more metallized VN608 film the (A1J)
absorption band is completely absent by 300 K, while theA
band, although weakened, nevertheless still exists. Th
changes of theA and (A1J) absorption bands occur at 30
K after a transition to the metallic phase, where the AF
correlations of the short-range order are conserved. For
prate HTSCs the correlation length of the AFM fluctuatio
in the metallic phase isj.10 Å,2 which is approximately an
order of magnitude smaller than in the insulator phase.

In regard to the localdd transitions we must note th
following. In the spectra of the insulator phase atx.0.35
and 300 K the contribution from thedd transitions does no
exceed a few percent.10 At the same time, in the VN604 film
in the spectral region 1.2–2.8 eV only the second of the
possible transitionsdxy→dx22y2 and dxz,yz→dx22y2 is
clearly manifested in the absorption, in the form of theBd

2

band. The appearance of theBd
2 peak in the weakly metal

lized BN604 film can be attributed to the circumstance t
the mixing of the oxygen and copper orbitals occurs mai
for thedxz,yz states, i.e., the covalent bonding is enhanced
the direction transverse to the CuO2 plane. We note that in
YBa2Cu3O61x in the ortho-II phase the distance between
CuO2 plane and the apical oxygen O~4! decreases sharpl
~by about 0.1 Å! at the insulator–metal transition, and th
promotes the leakage of electrons into the CuOx chain plane
and, hence, hole metallization of the CuO2. The appearance
of the Bd

1 band~derived from the transitiondxy→dx22y2) at
1.5 eV, i.e., the advent of covalency enhancement directl
the CuO2 active plane, is clearly seen at 300 K for the high
metallized VN608 film.

Let us now consider the behavior of the absorption sp
tra on cooling for the VN604 film withTc

on551 K. Figure 3
shows the difference spectraD(a l )5a l (T)2a l (T0) mea-
sured in the region 1.2–2.6 eV, relative toT05184 K. As we
see in Fig. 3, for the interval 168–184 K only the continuu
weakening of the absorption is observed (D(a l ),0). For
clarity, the frequency behavior of this background comp
nent is indicated qualitatively by the dashed curves. T
wide-band change in the absorption spectrum is due pri
rily to the temperature-related weakening of the intens
of the short-wavelength wing of the MIR component at v
ible frequencies for temperaturesT>168 K. When the
YBa2Cu3O61x films are cooled, there is an increase in t
absorption coefficient at frequencies\v,1 eV within the
contour of the maximum of the MIR absorption band.8,10,20

Therefore, near\v.1 eV, whereD(a l )exp.0, there is a
change in sign of the temperature dependence of the
tinuum absorption for the MIR component. We will not di
cuss this effect of the temperature-induced redistribution
the intensities within the MIR absorption contour itself24 but
will instead concentrate on the temperature behavior of
narrow-band features due to theA and (A1J) bands. For the
temperature regionT>168 K it can be stated that theA and
(A1J) absorption contours are independent of temperat
At 138 K, however, the spectral features due to the temp
ture transformation of theA and (A1J) bands are already
noticeable against the continuum background. As the t
perature is lowered further from 138 to 59 K these spec
features become more pronounced, taking the form of in
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vidual bands centered at the maxima of theA band~1.8 eV!
and (A1J) band~2.15 eV!. At the superconducting transi
tion with Tc

on551 K and in the superconducting phase its
at 25 K both the continuum and the narrow-band spec
variations practically cease. In this regard we note that,
cording to the data of an earlier-mentioned paper,9 the inten-
sity of the absorption signal at a frequency of 2 eV cease
depend on temperature in the SC phase.

It is straightforward to conclude that the appearance
narrow-band features on the difference spectra of the abs
tion occurs because of a narrowing of theA and (A1J)
bands and growth of their amplitudes. To illustrate what
have said, in Fig. 4 we present the experimental data
D(a l )exp5a l (25 K)2a l (184 K) and the model dependenc
D(a l )fit ~solid curve!, from which one can obtain quantita
tive characteristics of the spectral components at low te
peratures. With allowance for the temperature effects in
MIR component and of theA and (A1J) bands, the mode
dependence has the formD(a l )fit5D(a l )fit(25 K)
2D(a l )fit(184 K)5D(a l )A

fit1D(a l )A1J
fit 1D(a l )MIR

fit . Since
for T.184 K the temperature dependence is insignifica
we took the parameters of the model decomposition of

FIG. 3. Difference spectra of the absorption@a l (T)2a l (T0)# measured
relative to the initial temperatureT05184 K in the VN604 film, withTc

on

551 K, at film temperaturesT @K#: 168 (n), 138 (m), 112 (h), 85 (j),
61 (s), 25 (d). For clarity the data for 112 K have been shifted downwa
along the vertical axis by20.01, the data for 85 K by20.03, and the data
for 61 and 25 K by equal amounts20.06.
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spectrum at 184 K the same as at 300 K: (a l )fit(184 K)
5(a l )fit(300 K) ~see above!. The model curve in Fig. 4
which describes the experiment well, was obtained for
following parameters of the spectrum at low temperature

— for the MIR component D(a l )MIR
fit 520.148

10.13/E4, i.e., in the regionE<1 eV the intensity of the
MIR component increases as the temperature is lowe
(D(a l )MIR

fit .0), as was discussed above, but in our work
frequency region this component suffers temperature-rel
weakening (D(a l )MIR

fit ,0);
— for theA and (A1J) absorption bands the paramete

of the Gaussian contours of (a l )A,A1J change upon cooling
to 25 K: the standard deviation of theA contour decrease
from sA50.19 eV~300 K! to 0.165 eV~25 K!, i.e., by 10%,
while the amplitude coefficients are conserved (m0

A50.11 eV
~300 K!, m0

A50.11 eV~25 K!!; the standard deviation of th
(A1J) contour decreases fromsA1J50.19 eV ~300 K! to
0.13 eV ~25 K!, i.e., by 30%, and the amplitude coefficie
m0

A1J increases by just as large a factor~from 0.02 eV at 300
K to 0.027 eV at 25 K, i.e., by 35%!.

Thus the temperature effects in theA and (A1J) bands
occur between 184 and 168 K. The bands narrow, and t
area increases, mainly for the (A1J) band. At the supercon
ducting transition the spectral composition and parameter
the absorption bands cease to change, and for the supe
ducting phase one can say that the absorption spectru
‘‘frozen.’’

It is straightforward to associate the start of these te
perature effects in the region 138–168 K with the tempe
tureT* at which the pseudogap state is formed. For exam
the temperature dependence of the spin–lattice relaxa
time of the copper nuclei, 1/T1T}Imx(q,v)/vuv→0

(Imx(q,v) is the imaginary part of the magnetic susceptib
ity for wave vectorq), is characterized by pseudogap beha
ior below T* 5150 K in YBa2Cu3O61x with Tc'60 K.2 At
temperatures belowT* the values of 1/T1T decrease rathe

FIG. 4. The difference spectrum of the absorption@a l (25 K)2a l
3(184 K)# of the VN604 film measured in the superconducting state at
K relative to that at the initial temperatureT05184 K (s). The solid curve
is the model difference spectrum including the temperature effects in
MIR, A, and (A1J) components~see text!.
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sharply as the temperature is lowered, demonstrating a l
ering of the spectral weight of the low-frequency magne
excitations. Neutron scattering data for YBa2Cu3O61x with
Tc559 K also attest to the strong decrease of Imx(q,v)
below T* 5150 K in the low-frequency interval\v,16
meV.25 Before discussing the microscopic nature of the b
havior of theA and (A1J) bands upon the formation of th
pseudogap and superconducting states, let us conside
temperature evolution of the spectra for the more highly m
allized film VN608.

2. Figure 5a shows the measured absorption spect
(a l )exp of a VN608 film (Tc

on574 K! at 300 K, the solid
curve representing the total model spectrum (a l )fit , and Fig.
5b shows the model decomposition of this spectrum i
components.

This decomposition allows one to describe the spec
curve (a l )exp to an accuracy of 4% or better throughout t
entire spectral interval 1.2–2.7 eV~inset in Fig. 5a!. The
spectrum contains five components.

5

e

FIG. 5. Absorption spectruma l (E) of the VN608 film, with Tc
on574 K

(s), measured at 300 K, in comparison with the model spectrum~———!
~a!. The inset shows the relative difference of these spectra (aexp

2afit)/afit . The decomposition of the model spectrum into components~b!.
A constant MIR absorption level (a l )MIR52.3 was taken as the zero leve
for the Bd

1 , A, Bd
2 , and CT components.
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1. A Gaussian absorption componentBd
1 for the transi-

tion dxy→dx22y2, with the parametersE0
1B51.5 eV, s1B

50.36 eV, andm0
1B50.09 eV.

2. A Gaussian absorption componentA for transitions
from the correlation maximum of the density of states, w
the parametersE0

A51.8 eV,sA50.2 eV, andm0
A50.045 eV.

3. A Gaussian absorption componentBd
2 for the transi-

tion dxz,yz→dx22y2, with the parametersE0
2B52.3 eV, s2B

50.2 eV, andm0
2B50.15 eV. This absorption band is th

same as in the BN604 film.
4. A component due to interband transitions involvi

charge transfer — the CT component of the spectrum.
frequency dependence did not change~see above!, but the
value of the optical gap increased somewhat, to Eg 5 1.95
eV, because of the shift of the Fermi level upon metalliz
tion; m0

CT56 eV21.
5. A MIR absorption level (a l )MIR52.3. The contribu-

tion of the short-wavelength wing increased on account
the increase of the entire MIR absorption band as the dop
level was raised.

In choosing the decomposition we strove to minimi
the number of parameters to be varied in the spectral dec
position in comparison with the parameters of the VN6
film. It is easily seen that for the VN608 film the bandBd

1

appears in the decomposition of the spectrum, reflecting
enhancement of the covalency in the CuO2 plane, while the
area of theA band decreases, attesting to a decrease in
number of heavy hole carriers, and the ‘‘magnon’’ abso
tion bandA1J vanishes entirely.

The difference spectraD(a l )5a l (T)2a l (T0) of the
absorption for this film relative to the temperatureT05170
K are presented in Fig. 6. We see that for the tempera
region 130–170 K only the weakening of the continuum a
sorption with decreasing temperature is observed, whic
due to the decrease of the intensity of the short-wavelen
wing of the MIR component~the picture is completely analo
gous to the temperature-related changes for the BN604
on cooling in the interval 168–184 K!. The narrow-band
spectral features appear in the temperature interval 84–
K, i.e., at lower temperatures than for the VN604 film.
this connection we point out immediately that as the dop
of the YBa2Cu3O61x increases, the temperature of formati
T* of the pseudogap state decreases, approachingTc

~Ref. 1!.
Even in a qualitative approximation the difference sp

tra have three distinguishable narrow-band features, co
sponding to theBd

1 , A, and (A1J) absorption bands. O
particular interest, of course, is the fact that the absorp
band (A1J), which is absent at room temperatures, appe
on cooling belowT* . As in the case of the VN604 film, ther
are practically no temperature-related changes of the spe
in the superconducting phase between 50 and 19 K~see Fig.
6!. Incidentally, by comparing the data at 50 and 19 K o
can nevertheless conclude that a certain spectral redist
tion occurs in the SC phase, tending to enhance the (A1J)
maximum and narrow theBd

1 component.
For a quantitative description of the difference spectr

of VN608, Fig. 7a presents a comparison of the experime
data at 19 K and the model dependenceD(a l )fit

~solid curve!. The model curve was obtained with allowan
ts
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for the change of the following component
D(a l )fit5(a l )fit(19 K)2(a l )fit(170 K)5D(a l )1B

fit 1D(a l )A
fit

1D(a l )A1J
fit 1a(a l )MIR

fit . The parameters of the model de
composition at 170 K were taken equal to those at 300
since the temperature effects in the absorption spectrum
the interval 170–300 K are insignificant. It should be not
that one can set (a l )A1J

fit (170 K)50 in this model decompo-
sition, since the (A1J) band does not appear in the absolu
spectra. The four components of the model difference sp
trum D(a l ) i

fit ( i[1B, A, A1J, MIR! are shown in Fig. 7b.
It should be noted that theBd

1 , A, and (A1J) components
are constructed in such a way that the zero level for them
the MIR component~the curve labeled MIR in Fig. 7!.

The following quantitative changes characterize the
perimental difference spectrum at 19 K to sufficient acc
racy.

For the MIR component:D(a l )MIR
f i t 520.2810.17/E4

~curve MIR in Fig. 7b! and, hence, a change in direction
the temperature dependence for the component occurs
0.9 eV.

For the covalent bandBd
1 at 1.5 eV the standard devia

tion of the contour decreased froms1B50.36 eV~300 K! to
0.23 eV~19 K!, i.e., by 35%, while the amplitude coefficien
remained nearly unchanged (m0

1B50.09 eV at 300 K and
0.107 eV at 19 K!. The conservation of them0

1B value indi-
cates that the degree ofpd mixing, which reaches the dopin
level at 300 K, is practically unchanged on cooling.

For theA contour centered at 1.8 eV the standard dev
tion decreased fromsA50.2 eV ~300 K! to 0.18 eV~19 K!,

FIG. 6. Difference spectra of the absorption@a l (T)2a l (T0)# measured for
the VN608 film, with Tc

on574 K, relative to the initial temperatureT0

5170 K. The film temperatures wereT5130 K (h), 84 K (j), 50 K (s),
19 K (d). For clarity the data forT584 K have been shifted downward
along the vertical axis by an amount20.03, and the data forT550 K and
T519 K by equal amounts20.20.
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i.e., by 10%, while the amplitude coefficient increased
nearly a factor of two, fromm0

A50.045 eV~300 K! to 0.086
eV ~19 K!. In comparison with the VN604 film the amplitud
coefficient ~the area of the band! increased significantly
while maintaining the same scale of decrease in the stan
deviation.

For the (A1J) contour, since it is absent at 300 K, th
difference spectrumD(a l )A1J

fit at 19 is a pure Gaussian wit
the parameterssA1J50.16 eV andm0

A1J50.07 eV. The
standard deviation of this contour at 19 K has practically
same value as in the insulator phase forx.0.35, where
sA1J50.17 eV.10 Here the amplitude coefficient of the (A
1J) contour in the VN608 film is more than three times
value at low temperatures in the VN604 film, with the low
Tc .

3. Comparing the temperature effects in the spectra
the two superconducting films VN604 and VN608, we s
that they have some basic things in common:

FIG. 7. Difference spectrum of the absorption@a l (19 K)2a l (170 K)#
measured in the superconducting state of the VN608 film atT519 K rela-
tive to the initial temperatureT05170 K (s). The solid curve labeled ‘‘fit’’
shows the model difference spectrum~a!. The spectral composition of the
model difference spectrum~b!. The frequency dependenceD(a l )MIR

5@(a l )MIR(19 K)2(a l )MIR(170 K), labeled in the figure as MIR, wa
taken for the zero level of the spectral components~see text!.
y

rd

e

r
e

— the temperature effects in the parameters of the co
lent bandBd

1 , the correlation bandA, and the ‘‘magnon’’
band (A1J) on cooling of YBa2Cu3O61x from room tem-
peratures begins belowT* in the existence region of the
pseudogap state and takes place in the temperature int
Tc<T<T* ;

— the highest sensitivity to the formation of a pse
dogap state is manifested by the ‘‘magnon’’ band (A1J),
which appears or is enhanced in the spectra of that state
of the absorption bands are narrowed as the films are co
in the region of the pseudogap state;

— in the superconducting phase the rate of the temp
ture evolution of all the spectral parameters of these ba
decreases sharply. We note in particular that the ‘‘magno
absorption band (A1J) is conserved in the existence regio
of the superconducting phase.

In analyzing the microscopic causes of the temperat
evolution of the spectral composition of the absorption
YBa2Cu3O61x , we must first discuss the behavior of th
absorption bandsA and (A1J), which are related to the
magnetic degrees of freedom. It is noteworthy that forT
,T* there occurs a temperature-related narrowing of thA
and (A1J) absorption contours~after an enhancement o
these bands atT5T* ). This picture is completely analogou
to the behavior of these absorption bands in the insula
phase of YBa2Cu3O61x at x.0.35, where they, being
temperature-independent aboveTN , begin to narrow in the
AFM phase atT,TN.170 K.10 The narrowing effect in the
pseudogap state of the films is also observed in theBd

1 band:
the amplitude coefficient of absorption for thisdd transition
remains practically unchanged as the temperature is low
(m0

1B.const), indicating that the level ofpd mixing is con-
served at low temperatures, but theBd

1 contour itself is
strongly narrowed. It is known26,27 that in AFM crystals the
dd absorption bands for ions with an unfilledd orbital, e.g.,
for Mn21 in three-dimensional, two-dimensional, and qua
one-dimensional magnetic structures, exhibit a noticea
narrowing as the temperature is lowered atT<TN . The
temperature-related narrowing of thedd absorption bands a
T,TN is dictated by a decrease in the number of magnon
accordance with the Bose–Einstein factor. In the tempera
regionT,DN /kB the width of thedd absorption bands be
comes weakly dependent on temperature. The sensitivit
thedd bands to the formation of an AFM state is particular
pronounced in the presence of an energy gapDN in the spin-
wave spectrum.27

In developing an analogy between the behavior of th
absorption bands in the AFM insulator phase and in the m
allized phase of YBa2Cu3O61x , we must recognize that th
formation of a quasigap atT<T* occurs specifically in the
spectrum of magnetic excitations. In such a case the na
of the pseudogap state is due to the decisive role of A
fluctuations of the short-range order. The value of the s
gap for the correlation lengthj of the AFM fluctuations is
D* 5c/j ~Refs. 13 and 28!, wherec.0.5 eV•Å ~Ref. 25! is
the characteristic spin-wave velocity in YBa2Cu3O61x .
Then forj.10 Å we get a gap ofD* .50 meV. For wave
vectorsq.j21 the spin waves remain the same as in t
presence of long-range magnetic order and are insensitiv
the absence of AFM correlations at distances greater t
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j.28,29 According to Refs. 28 and 29, spin waves in the m
allized states of HTSCs carry spinS51 and are uncharged

The effect wherein the (A1J) band is preserved in th
superconducting state is worthy of attention, as is the wh
spectral composition of the absorption formed in the ps
dogap state. This experimental result is nontrivial. It is co
pletely possible to realize a situation in which the (A1J)
band would vanish in the SC phase, while the parameter
the Bd

1 and A contours change in the opposite direction
comparison with their values for the AFM pseudogap sta
The conservation of the spectral composition of the abso
tion in the SC phase is, in our opinion, quite convinci
evidence of the compatibility of short-range AFM orderin
and superconductivity in YBa2Cu3O61x .

In discussing this question let us call attention to t
following result. We have seen that the increase inTc in the
VN608 film is accompanied by enhancement of the degre
pd mixing, i.e., the intensity of the covalentBd

1 absorption
band is enhanced by doping. The simultaneous observa
of the Bd

1 band and theA correlation band in the absorptio
spectra of YBa2Cu3O61x was regarded in Ref. 10 as proof o
the existence of a correlation polaron in the metallic phase
correlation polaron is a mobile hole charge carrier arou
which is formed a region of predominantly covalent bondi
and weakened Hubbard correlations~a region of strong met-
allization!, while outside this region the matrix of stron
Hubbard correlations is preserved.30 The simultaneous obser
vation of theA andBd

1 absorption peaks at low temperatur
in our experiments can serve as evidence that region
AFM ordering coexist with more highly metallized region
which, strictly speaking, become superconducting. In ot
words, in the CuO2 plane the compatibility of antiferromag
netism and superconductivity is realized between spati
separate regions~domains! with different concentrations o
doped holes. The possibility of a spatially separate patter
coexistence of AFM ordering and superconductivity
HTSCs has been investigated experimentally in a numbe
studies~see, e.g., Refs. 1,3, and 16!.

It is also of interest to compare directly the temperat
behavior of theA and (A1J) absorption bands and the tem
perature dependence of the homogeneous part of the m
netic susceptibility x0(T). According to the spin-wave
model,28,29 the susceptibilityx0(T) in cuprate HTSCs, being
weakly dependent on temperature forT.T* , begins to de-
crease sharply as the spin gap opens forT,T* , while in the
SC phase atT,Tc it again becomes independent of tempe
ture. It is easy to see that such a trend ofx0(T) corresponds
to the temperature behavior of theA and (A1J) absorption
bands. Therefore, in view of what we have said abo
one can assume that the results obtained in this p
are consistent with a spin-wave mechanism of hig
Tc superconductivity.

CONCLUSION

The main result of this study is the experimental e
dence supporting the view that the pseudogap state is du
AFM ordering of the short-range order, which is conserv
in the SC phase. The many nonstandard properties of cop
oxide HTSCs in the normal and SC phases are apparen
manifestation of a fundamental feature of low-dimensio
-
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systems, in which scalar~charge! correlations and vecto
~magnetic! correlations are well developed.2 In the final
analysis these correlations are what give cuprate HTSCs
unique optical properties properties that are not encounte
in classical metals or doped semiconductors. We ment
e.g., a sensitivity of the absorption of high-energy photons
the superconducting transition, as discussed in the pre
paper, a significant redistribution of the oscillator streng
of the interband transitions in favor of the intraband tran
tions in response to very low doping levels.1% ~Ref. 2!,
and various kinds of nonequilibrium optical phenomena
the normal and SC states.24 Our optical results can be re
garded as a manifestation of the temperature-dependent
tribution of the Hubbard correlations to the electronic sp
trum.

It is also completely logical to assume that the results
the experiments on YBa2Cu3O61x are of an extremely gen
eral character and are valid for other cuprate HTSCs with
active CuO2 plane. The fundamental features of the ele
tronic structure of cuprate HTSCs~the distribution of the
density of states with a correlationA peak, the conservation
of the AFM fluctuations of the short-range order in the m
tallic phase, the formation of a pseudogap state! can be ob-
tained in the framework of a general one-band 2D Hubb
model ~or its modifications! for the CuO2 plane.

The first, key result of this paper, in our opinion, is th
measurement of the temperature evolution of the spec
composition of the absorption in the 1–3 eV region, whe
the optical features of the CuO2 plane are located, is an in
formative diagnostic tool for the normal and SC states. St
ies done in this region have shown the following:

— the cooling of metallized YB2Cu3O61x films from
room temperatures leads not only to quantitative but also
qualitative changes of the spectral composition of the
sorption of the films. Such changes are suffered by thedd
absorption band (dx,y→dx22y2, \v.1.5 eV!, by the corre-
lation band of absorption with charge transfer, which refl
the existence of the correlation maximum of the density
states~the A band,\v>1.8 eV!, and by the ‘‘magnon’’ ab-
sorption band~the (A1J) band,\v.2.1 eV! due to addi-
tional excitation of the magnetic degrees of freedom;

— all of the temperature-related changes of the
narrow-band spectral features occur atT<T* in the exis-
tence region of the pseudogap in the density of electro
excitations in the normal state of YBa2Cu3O61x ;

— in the temperature region of the pseudogap stateTc

<T<T* , the A, (A1J), and dd absorption bands narrow
and the ‘‘magnon’’ band (A1J) arises even when it is ab
sent in the spectral composition of the absorption in the te
perature regionT.T* ;

— the character of the temperature effects in theA, (A
1J), and dd absorption bands in the pseudogap state
analogous to what is seen in an AFM insulator, a fact wh
undoubtedly indicates that the formation of the pseudo
state in a system of AFM fluctuations of the short-range
der is of a magnetic nature;

— in the superconducting phase the quantitative a
qualitative changes in the spectral composition of the abs
tion that have accumulated by the point of the transition
the SC phase practically cease, and in the superconduc
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phase the spectral composition of the absorption, includ
the ‘‘magnon’’ band (A1J), is conserved;

— the data obtained in this study and the analysis p
formed demonstrate the compatibility of superconductiv
with antiferromagnetism of the short-range order and s
gests a spin-wave nature of the high-Tc superconductivity in
cuprate HTSCs.

The authors thank V. I. Fomin for a helpful discussion
the results, and S. V. Shevtseva for assistance in the pr
ration of the manuscript.
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Light-induced reversible optical absorption in single-crystal slabs of yttrium iron
garnets
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An additional increase of the optical absorption is observed when light of intensity greater than
1 W/cm2 acts on single-crystal slabs of yttrium iron garnets. When a sample is subsequently
subjected briefly to illumination by IR light of low intensity (;10 mW/cm2) this effect is partially
diminished or vanishes completely. ©2000 American Institute of Physics.
@S1063-777X~00!00611-3#
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The change of the optical absorption coefficienta in
iron-garnet ferrites under illumination at low temperatur
was investigated in Refs. 1–6. In yttrium iron garnets~YIG!
under illumination the optical absorption can increase or
crease, depending on the type of doping impurity.1 The char-
acter of the change in the optical absorption depends on
spectral composition of the light.5 At relatively low intensi-
ties that do not cause heating of the sample, the change
the optical absorption reach equilibrium values that are p
served after the light is shut off.

Light affects the physical parameters of photomagne
crystals in a complicated way. In addition to the photo
duced changes in the parameters, it is quite likely that th
will also be a thermally induced change in the elastic~mag-
netoelastic! state as a result of the surface heating.7 In turn,
the modified elastic state of the sample can lead to n
manifestations of the photoinduced effect. For example,
presence of elastic stresses in an iron garnet film due to
lattice misfit of the film and substrate leads to a hig
temperature photoinduced effect.8 In the present paper w
investigate the change in the optical absorption under inte
illumination that leads to heating of the sample. Here
time that the light acts is dosed in order to avoid overhea
of the sample above the temperature attained. The sourc
illumination was a KGM-12/250 tungsten lamp~‘‘white
light’’ !. To select irradiation in the infrared region an IKS
light filter was used. The temperature of the sample w
monitored by a copper–Constantan thermocouple with
wire thickness of 0.05 mm, the junction of which was glu
to the surface to be illuminated. The diameter of the focu
light beam on the surface was'2 mm, which made it pos-
sible to obtain a high density of radiation and to illumina
part of the sample without heating the junction of the th
mocouple by the beam. The measurement of the absorp
coefficienta was done at a fixed wavelengthlm51.1 mm at
an intensity of the measuring beam of;50 mW/cm2. The
samples for the study were prepared in the form of disks 0
cm thick and 3.6 mm in diameter, consisting of single-crys
Y3Fe5O12 grown from a BaO–B2O3 solution. In the absence
of illumination the sample, which was glued to the cold fi
ger of the vacuum cryostat, had a temperature of 80 K.
change of the absorption coefficientDa at 1.1mm was cal-
8191063-777X/2000/26(11)/3/$20.00
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culated according to the formulaDa5(1/h)ln(Id /Il) ~Ref. 1!,
whereh is the thickness of the sample~in cm!, I d and I l are
the intensities of the measuring beam before and after
illumination, respectively. The use of this expression pres
poses a uniform distribution of photoinduced changes o
the thickness of the sample.

Figure 1 shows the time dependence of the change in
absorption coefficienta(t) upon illumination of the sample
after cooling in darkness. Curve1 was obtained at an irra
diation intensity ofP'0.5 W/cm2, for which no noticeable
heating of the sample occurred during the illumination. T
illumination brought about an increase ina to a valueaeq,
and this state persisted for a long time. We note that in
single crystals under study the photoinduced changes of
magnetic parameters also persist over time.11 At an intensity
of ;3 W/cm2 the action of the light is accompanied b
heating of the sample and causes an additional increas
the absorption coefficienta to a valuea rel , which is much
higher than the valueaeq ~segmentAB of curve2 in Fig. 1!.
The absorption levela rel attained at 80 K is metastable, an
after the illumination is turned off, it slowly relaxes to th
value aeq ~the dashed curve in Fig. 1!. It is found that the

FIG. 1. Time dependence of the changeDa in the absorption coefficient
under illumination by light of intensity 0.5 W/cm2 ~curve1! and 3 W/cm2

~curve 2!; WL indicates intervals of illumination by ‘‘white light’’~the
continuous spectrum of a tungsten lamp!. At the pointsC, D, and F the
sample was briefly illuminated by infrared~IR! light with an intensity 10
mW/cm2.
© 2000 American Institute of Physics
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relaxation process is sharply accelerated under brief~around
1 s! illumination of the sample by IR light (l IR.0.9 mm! of
low intensity,;10 mW/cm2 ~points C,D, andF on curves2
in Fig. 1!. We see thata rel can vanish completely or underg
a partial or multistage decrease. No effect of the measu
beam (l51.1mm! on the relaxation process was detected
a check done by turning it on briefly at extended (;25–30 s!
time intervals. Aftera has decreased to the levelaeq the IR
illumination did not affect the level of optical absorptio
Repeated illumination by an intense light beam~point E on
curve2 in Fig. 1! increased the absorption coefficient to t
valuea rel . Light in the visible region~0.4–0.8mm! did not
cause a decrease of the additional absorption, a circumst
that attests to the bulk character of the observed effect.

Figure 2 shows the temperature dependence of
changeDa in the absorption coefficient on illuminatio
~curves AB, AC, AD, and AE). The maximum effect is
observed if the surface temperature of the sample under
mination does not exceed 120 K. When the light is turned
~curvesB–E) there is a rapid~taking place over 7–10 s!
decrease of the temperature to the initial value and a re
of the Da values along curves1–4, respectively. The leve
of optical absorption attained corresponds to the numbe
photoinduced centers at the temperature of the sample a
time the illumination is turned off. Curves1–4 were ob-
tained at a constant intensity but for different illuminatio
times, i.e., the thickness of the photoinduced layer rema
constant. A brief illumination~to preclude heating! with light
of the same or higher intensity did not produce any ad
tional discernable effect.

The curves of the temperature dependence in Fig. 2
curve 2 in Fig. 1 were obtained with light of intensityP
'3 W/cm2. For light of lower intensity the value of the

FIG. 2. Temperature dependence of the changeDa of the optical absorption
coefficient under illumination by light with an intensityP'3 W/cm2. The
arrows↑ and ↓ denote the times at which the light is turned on and o
respectively. Curves1–4 show the return of the values ofDa(T) on cooling
after the illumination is turned off at pointsB–E, respectively. The dashed
curve5 shows the changeDa of the optical absorption with temperature o
cooling in darkness.
g
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effect in the initial illumination decreases. Increasing the
tensity toP.3 W/cm2 leads initially to a slight increase an
then to a decrease of the observed photoinduced effec
account of the stronger growth of the thermal effect of t
light as the intensity is increased. We see from the curve
Fig. 2 ~curves 2–4! that heating the sample aboveTmax

'120 K at the time of the illumination leads to a decrease
the value of the effect. When the temperature is increase
;200 K and the illumination is prolonged~curve4 in Fig. 2!
the photoinduced optical effect vanishes completely~seg-
ment GH of curve 2 in Fig. 1!. In this case the sample
undergoes a transition to its initial state, and the entire cy
can repeat. Thus by varying the spectral composition
intensity of the illumination, one can reversibly alter the o
tical absorption in the samples.

The value of the photoinduced optical effect was me
sured at a wavelength of 1.1mm, at which the level of opti-
cal absorption increases as the concentration of Fe41 ions
increases.9,10 It can be assumed that the photoinduced eq
librium growth of a ~to the valueaeq) is due to the forma-
tion of Fe41 ions in octahedral sites. The formation of lon
lived Fe41 ions occurs through the photoexcitation of th
electronic transitions6A1g(6S)→4T1g(4G), 4T2g(4G), as
has been observed experimentally in a discrete scannin
the illumination over the spectrum. The maximum value
the equilibrium effect is determined by the concentration
photoactive centers — that fraction of the iron ions th
change their valence on illumination on account of the tr
sition of an electron to free acceptor levels. The photo
duced changes of the magnetic properties of the gi
samples due to the formation of Fe41 ions provide additional
evidence in support of this conclusion.11

The additional photoinduced absorptiona rel observed
under intense illumination causing photothermal deform
tions can be attributed to the formation of an addition
quantity of nontrivalent iron ions or to an increase in t
optical absorption on the part of the existing photoinduc
nontrivalent iron ions. The features of the onset of additio
optical absorption~the fact that it occurs only in the presenc
of elastic stresses arising in the photothermal heating of
surface of the sample on the cold finger and not when
sample is placed in liquid nitrogen! and its quenching argue
in favor of the second mechanism. We note that quench
of the photoinduced effect is not observed under IR illum
nation~curve1 in Fig. 1!, even when that effect is reversibl
at higher temperatures.

The additional optical absorption in the samples un
study is due to the change in the orbital state of the Fe41 ions
and is determined by the increase in the probability of ex
tation of the electrons. For Fe41 ions the degenerate groun
stateeg is split by the Jahn–Teller effect into levels of th
typedz2 anddx22y2. For elongated octahedra~tetragonal dis-
tortions of the elongation! the orbital ground state is a sta
of the typedz2 ~Ref. 12!. The presence of elastic stress
affects the filling sequence of the levels. In the photoexc
tion of the Fe41 ions in elastically deformed octahedra th
orbital state with the reverse sequence of level positions
comes more favorable (dx22y2 is the ground state anddz2 is
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the upper orbital state!. The capture cross sections of th
wave functions for photons are different in this case. Aft
the illumination is stopped, the state becomes metasta
and, in the absence of elastic strains, photoexcitation by
light is sufficient for the transition of the Fe41 ions to the
initial orbital state~from the ground state of the typedz2).
The important role of nonuniform elastic stresses is also
dicated by the light-induced rearrangement of the doma
structure at room temperature in the samples studied.7

Further studies are needed for justification of the mech
nism for the change in the orbital state of the Fe41 ions
under the combined action of light and elastic stress. Ad
tional confirmation of the proposed mechanism might be o
tained from studying the magnetic and magnetooptic prop
ties of the samples under analogous conditions. The effec
IR quenching of the additional absorption, quantitative es
mates of the rate of this quenching and the spectral char
teristics of the effect merit further study.

This study was carried out with the financial support
the Russian Foundation for Basic Research.
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Phase diagram and the spectra of coupled magnetoelastic waves of a biaxial
ferromagnet with a biquadratic interaction in an external magnetic field

Yu. A. Fridman,* O. A. Kosmachev, and G. É. Ba ramalieva
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The spectra of coupled magnetoelastic waves of a biaxial ferromagnet with a biquadratic
interaction are investigated as a function of the external magnetic field. It is shown that the
dynamic properties of magnetoelastic waves and the phase states of the system are
determined by the relation between the Heisenberg and biquadratic exchange constants. A three-
dimensional phase diagram is constructed for the system. ©2000 American Institute of
Physics.@S1063-777X~00!00711-8#
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1. INTRODUCTION

There is great interest at the present time in the stud
magnets with non-Heisenberg exchange interactions o
more complex nature between the magnetic ions.1–4 From a
practical standpoint it is of interest to study the characte
tics of the spectrum of excitations of these magnets as
external magnetic field is changed. Studies of this kind
important because of the existence of a number of sin
magnets,5,6 which, as we know, can be found in a nonma
netic state forH50 ~in the so-called quadrupolar~QP!
phases!, which undergo a transition to a magnetic pha
upon imposition of a sufficiently strong external magne
field.

This metamagnetic transition can be of various natu
In particular, the singlet ground state of the magnet may
conditional on a large value of the one-ion anisotro
~OA!.3,4,7 Another mechanism leading to a nonmagne
phase atH50 might be the presence of a biquadra
interaction.1,2 In highly anisotropic Heisenberg magne
these two factors can act simultaneously, giving rise to
culiarities of the ground state and features in the spec
properties.

In addition to the indicated factors the spectral char
teristics of magnets~especially in the neighborhood of orien
tational phase transitions the magnetoelastic~ME! interac-
tion has a large influence.8,9

The study of the phase states and spectra of highly
isotropic ferromagnets of both the Heisenberg and n
Heisenberg types has been the subject of many papers~see,
e.g., the review in Ref. 2!. For example, in Ref. 3 the mag
non spectra in a highly anisotropic non-Heisenberg fer
magnet was investigated in the case of zero external m
netic field. In Ref. 4 the same system was investigated
with allowance for the ME interaction. It was shown in the
papers that those systems can have phase transitions
respect to the material constants of the system. These tr
tions occur along the magnon branch of excitations; they
not reorientational but take place through a decrease in
modulus of the magnetization vector.3 Taking the ME inter-
action into account leads to a narrowing of the existe
8221063-777X/2000/26(11)/5/$20.00
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region of the ferromagnetic phases and a widening of
existence region of the quadrupolar phases.4

In Ref. 7 a highly anisotropic biaxial ferromagnet in a
external magnetic field was investigated with allowance
the ME interaction. It was shown that the phase transition
such a system are reorientational, the soft mode bein
quasielastic branch of excitations. However, the biquadr
interaction was not taken into account in the model of Ref

By studying the field dependence of the spectra of m
netic and sound-wave excitations for various regions of
teraction parameters, one can acquire additional informa
about the nature of singlet magnets and metamagnetic t
sitions.

2. DISPERSION RELATION FOR COUPLED
MAGNETOELASTIC WAVES

Let us consider a ferromagnetic crystal having biax
one-atom anisotropy and a biquadratic exchange interac
and located in an external magnetic fieldHi0X. The Hamil-
tonian of such a system can be written in the form

H52H(
n

Sn
x2

1

2 (
n,n8

$J~n2n8!SnSn81K~n2n8!

3~SnSn8!
2%2B2

0(
n

~3~Sn
z!22S~S11!!

2B2
2(

n

1

2
$~Sn

1!21~Sn
2!2%1n(

n
Sn

i Sn
j ui j ~n!

1E drH l1h

2 (
i

uii
2 1h(

i , j
ui j

2 1l(
iÞ j

uii uj j J ,

~1!

whereSn
i is the spin operator at siten, J(n2n8) and K(n

2n8) are the Heisenberg and biquadratic interaction c
stants, respectively,B2

0 andB2
2 are the OA constants,n is the

ME coupling constants,l and h are elastic moduli, and
ui j (n) are components of the elastic strain tensor (i , j
5x,y,z).

The first term in~1! is the Zeeman interaction, the se
ond, third, and fourth terms describe the magnetic s
© 2000 American Institute of Physics
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system, the fifth is the ME interaction, and the last te
describes the elastic subsystem in the continuum approx
tion.

Without loss of generality we can assume thatB2
2.0,

since the half planeB2
2,0 is only a mirror reflection of the

other, with interchanged indicesx and y. For example, if
B2

2,0, after rotating the coordinate system about the 0Z axis
by an angle ofp/2, we would obtain Hamiltonian~1! with
the substitutionB2

2→uB2
2u. Imposing an external field di

rected along the 0X axis breaks the symmetry of the pro
lem, and therefore in the calculations below we shall ma
use of the condition thatB2

2.0.
In the most general case Eq.~1! must be written in a

rotationally invariant form.10 Rotational invariance leads to
number of interesting effects, in particular, to the appeara
of a new mechanism of ME coupling which is directly due
the OA. However, for the spectral characteristics of mass
free samples the rotational invariance leads only to a re
malization of the coefficients in the spectrum of ME waves11

Rotational invariance becomes important in the study
magnetic films, wires, or clamped samples.12 We shall there-
fore ignore the rotational invariance when considering
massive sample in this paper.

To simplify the calculations we shall assume that t
magnetic ion has spinS51.

The OA and ME coupling can be taken into accou
exactly by using the technique of Hubbard operators9,13,14

constructed on a complete basis of one-ion states.
Separating out the mean field̂Sx& and the additional

fields q2
p (p50,2) in the exchange part of~1!, we obtain the

following expression for the one-site HamiltonianH0(n):

H0~n!52H̄Sn
x2B̃2n

0 O2n
0 2B̃2n

2 O2n
2 1nSn

i Sn
j ui j ~n!, ~2!

where

H̄5H1(
n

S J~n2n8!2
1

2
K~n2n8! D ^Sx&;

B̃2n
0 5B2n

0 1
1

6 (
n8

K~n2n8!q2n
0 ;

B̃2n
2 5B2n

2 1
1

2 (
n8

K~n2n8!q2n
2 ;

q2n
0 5^O2n

0 &, q2n
2 5^O2n

2 &;

O2n
0 53~Sn

z!222; O2n
2 5

1

2
$~Sn

1!21~Sn
2!2%.

Solving the one-ion problemH0Cn(M )5EMCn(M )
with the Hamiltonian~2!, we obtain the eigenfunctions of th
one-site Hamiltonian and the energy levels of the magn
ion with allowance for the ME interaction:

E15
B̃2

02B̃2
2

2
1nS uxx

~0!1
uyy

~0!1uzz
~0!

2 D 2
x

2
;

E05
B̃2

02B̃2
2

2
1nS uxx

~0!1
uyy

~0!1uzz
~0!

2 D 1
x

2
;

E25B̃2
22B̃2

01n~uyy
~0!1uzz

~0!!; ~3!
a-

e

ce

e
r-

f

a

t

ic

x254H̄21@3B̃2n
0 1B̃2n

2 1n~uyy
~0!2uzz

~0!!#2;

Cn~1 !5cosuu1&1sinuu0&; ~4!

Cn~0!52sinuu1&1cosuu0&; Cn~2 !5u2&,

where

cos 2u5
3B̃2n

0 1B̃2n
2 1n~uyy

~0!2uzz
~0!!

x
,

sin 2u5
2H̄

x
; u6&5

1

A2
~ u1&6u21&),

u0&, u1&, u21& are the eigenfunctions of the operatorSz, and
the spontaneous strainsui j

(0), which are determined from the
condition that the free energy density be minimum, have
following form at low temperatures:

uxx
~0!52

n~l1h!

h~h13l!
; uyy

~0!52
n~h2l!

h~h13l!
sin2 u ;

uzz
~0!52

n~h2l!

h~h13l!
cos2 u.

We should mention that the eigenfunctions~4! are ob-
tained in general form~for S51) in Ref. 14.

We use the eigenfunctions~4! of the one-site Hamil-
tonian H0 as a basis for constructing the Hubba

operators9,13Xn
M8M[uCn(M 8)&^Cn(M )u describing the tran-

sition of a magnetic ion from the stateM 8 to the stateM. In
terms of the Hubbard operators the Hamiltonian~2! can be
put in the form

H0~n!5(
M

PMHn
M1(

a
PaXn

a ,

whereHn
M[Xn

MM are the diagonal Hubbard operators, anda
are the root vectors.

The coupling of the spin operators with the Hubba
operators is determined in the standard way, and in the c
under discussion it has the form

Sn
15~Hn

12Hn
0!sin 2u1~Xn

101Xn
01!cos 2u

1~Xn
212Xn

12!sinu1~Xn
202Xn

02!cosu;

Sn
25~Sn

1!1; ~5!

Sn
z5~Xn

121Xn
21!cosu2~Xn

021Xn
20!sinu.

The dynamical properties of magnets have a numbe
features in the neighborhood of the phase transition. It is w
known that taking the ME interaction into account leads
hybridization of the elementary excitations, and even thou
the ME coupling is very weak, in the neighborhood of
orientational phase transition this parameter plays an imp
tant role in the dynamics of the system.8,9 To study this ques-
tion we write the strain tensor in the form of two terms: t
spontaneous strainsui j

(0)(n), defined above, and a dynam
termui j

(1)(n), which describes lattice vibrations. This term
related to the phonon annihilation~creation! operatorsbk,l

3(bk,l
1 ) by the well-known relation15
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ui j
~1!5

i

2 (
k,l

exp~ ik"n!

@2mNvl~k!#1/2
~bk,l1b2k,l

1 !~el
i ~k!kj

1el
j ~k!ki !,

where el(k) is the phonon polarization unit vector,l
5 l ,t,t is the polarization index,m is the mass of the mag
netic ion, N is the number of sites in the lattice,vl(k)
5clk is the dispersion relation for free phonons, andcl is
the velocity ofl-polarized sound.

Separating out in the one-site Hamiltonian~2! the part
proportional toui j

(1)(n) and quantizing it in accordance wit
the formula given, we obtain a Hamiltonian describing p
cesses of conversion of magnons into phonons and bac

Htr5(
n

H(
M

PMHn
M1(

a
PaXn

aJ , ~6!

where

PM ~a!5
1

N1/2(k,l
~bk,l1b2k,l

1 !Tn
M ~a!~k,l!,

with Tn
M (a)(k,l) being the transformation amplitudes.

It is well known that the spectrum of elementary exci
tions is determined by the poles of the Green function. T
Green function for the system under study has the form

Gaa8~n,t;n8,t8!52^T̂X̃n
a~t!X̃n8

a8~t8!&.

HereT̂ is the Wick operator,X̃n
a(t) is the Hubbard operato

in the Heisenberg representation, and the average is d
using the total HamiltonianH5Hint1Htr1H0.

From here on we shall do the calculation in the me
field approximation, and we shall therefore need only
‘‘transverse’’ part of the exchange Hamiltonian, which c
be written in the form

Hint52
1

2 (
n,n8
a,b

$c~a!Ânn8c~b!%Xn
aXn8

b ,

where the eight-dimensional vectorc(a) has the following
components:

c~a!5$g1
i
~a!,g1

'~a!,g1
'* ~2a!,g2

i
~a!,g2

'~a!,g2
'*

3~2a!,g3
'~a!,g3

'* ~2a!%,

while the 838 matrix Ânn8 decomposes into a direct sum
two matrices:

Ânn85Ânn8
~3!

% Ânn8
~5! ;

Ânn8
~3!

5H J~n2n8!2
1

2
K~n2n8!J S 1 0 0

0 0 1/2

0 1/2 0
D ,

Ânn8
~5!

5
K~n2n8!

2 S 1 0 0 0 0

0 0 1/2 0 0

0 1/2 0 0 0

0 0 0 0 1/2

0 0 0 1/2 0

D . ~7!
-

-
e

ne

n
e

The functionsg i
i(')(a) are determined from the relation be

tween the spin operators and the Hubbard operators~5!.
Turning on the biquadratic interaction formally has t

effect of increasing the dimension of the vectorsc(a) and
the matrixÂnn8 in comparison with the case when only th
Heisenberg exchange is taken into account. The eig
dimensionality of the vectorsc(a) is due to the fact that for
biquadratic exchange the number of linearly independent
erators is equal to five, while in the case when both
biquadratic and Heisenberg interactions are present~the
structure of the latter is determined by three independent
operatorsSn

i ) it is necessary to use an eight-dimensional b
sis.

The equation for the Green function has the form
Larkin’s equation.16 Solving it, we obtain the dispersion re
lation for the coupled ME waves:

detid i j 1xi j i50; ~8!

where

xi j 5G0
a~vn!b~a!ci j ~a!

1B0~k,l,l8!T2a~k,l!G0
a~vn!b~a!Tb

3~2k,l8!G0
b~vn!b~b!ci j ~a,b!.

Here

B0~k,l,l8!5
Dl~k,vn!

12Qll8Dl8~k,vn!
;

Qll85Ta~2k,l!G0
a~vn!T2a~k,l8!b~a!;

ci j ~a,b!5aik~a,b!Ak j ; aik5ci~a!ck~2b!,

b~a!5^aH&0 ;

Dl(k,vn)5(2vl(k))/(vn
22vl

2(k)) is the Green function of
a free l-polarized phonon, andG0

a(v)5$v1(a•E)%21 is
the zeroth Green function. Equation~8! is valid at arbitrary
temperatures and for arbitrary relationships among the m
rial constants.

3. SPECTRA OF COUPLED MAGNETOELASTIC WAVES
AND THE PHASE DIAGRAMS OF A BIAXIAL FERROMAGNET

Let us analyze Eq.~8! for different relationships betwee
the constants of the Heisenberg and biquadratic excha
(J0.K0 and J0,K0). To simplify the calculations we re
strict discussion to the low-temperature case (T!TC , where
TC is the Curie temperature!.

We consider the most interesting case, when the dir
tion of the wave vector coincides with the direction of th
external field (ki0X). In this geometry the nonzero compo
nents of the polarization unit vector areel

x , et
z , andet

y , and
the nonzero transformation amplitudes have the form

T21~k,t !5T12~k,t !5 i
n

2
T0~k,t !et

zk sinu,

T21~k,t!52T12~k,t!5
n

2
T0~k,t!et

yk cosu, ~9!

T0~k,l!5
exp~ ik"n!

~2mvl~k!!1/2
.
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As was shown in Refs. 3 and 4, in the absence of ex
nal field, four phases can be realized in the system:
magnetic~the FMx phase witĥ S&i0X, and the FMz phase,
with ^S&i0Z), and two quadrupolar.

For HÞ0 (H is large, higher than a certainHc), analysis
of the order parameters of the system

^Sx&5sin 2u; q2
05^O2

0&5
3

2
~11cos 2u!22;

q2
25^O2

2&5
1

2
~11cos 2u!

shows that the quadrupolar phases cannot exist at any va
h
n
m

a

th
i-

t

-
e

e

r-
o

es

of the material constantsB2
0, B2

2.0, K0, andJ0, since turn-
ing on the magnetic field gives rise to a nonzero magn
moment in the system, i.e., the appearance of quadrupo
ferromagnetic QFMx phase (̂Sx&→1 for H→`). For H
<Hc the system undergoes a transition to a canted QFzx

phase, in which botĥSx& and^Sz& components of the mag
netization vector exist simultaneously. The transition fie
Hc is determined from the spectra of coupled ME waves.
determine it, we use the dispersion relation forH>Hc , i.e.,
we assume that the system is found in the QFMx phase, near
the line of the QFMx–QFMzx phase transition.

In this case Eq.~8! ‘‘decouples’’ with respect to polar-
izations, and its solutions have the following form:
v1~k!5v l~k!; v2~k!'vt~k!; «1~k!'x;

«2
2~k!5@E121J~k!#22@J~k!2K~k!#2 cos 2u2

a0@E121J~k!2~J~k!2K~k!!cos 2u#v t
2~k!~12cosu!

~E12J~k!!22~J~k!2K~k!!2 cos2 2u
; ~10!

v3
2~k!5v t

2~k!H 11
@E121J~k!2~J~k!2K~k!!cos 2u#a0~12cos 2u!

~E121J~k!!22~J~k!2K~k!!2 cos2 2u
J ;
on

h
., it
m-
e is
ta-
n
the
een

ted
ase
where

E125E12E25
3

2
~B2

02B2
2!2

K0

2
2a02

x

2
;

a05
n2

2h
.

It follows from the solutions~10! of the dispersion rela-
tion that thel- andt-polarized phonons do not interact wit
the magnetic subsystem; the high-frequency magnon bra
«1(k) likewise does not interact with the elastic subsyste
The low-frequency quasimagnon branch«2(k) and the
t-polarized sound wave~the quasiphonon branchv3(k)) in-
teract with each other, forming a hybridized ME wave.

It should be noted that in the given geometry, a decre
of the magnetic field to the valueHc is accompanied by a
decrease in the modulus of the magnetization vector to
value ^Sx&H5Hc

. For H5Hc the system undergoes a trans
tion to the QFMzx phase, while forH50 the component̂Sx&
goes to zero, and the system undergoes a transition to
FMz phase.3,4 We interpret the fieldHc as the field of a phase
transition; it is determined from the condition of ‘‘soften
ing’’ of the spectrum oft-polarized quasiphonons. Here th
quasiphonon spectrum has the form

v3
2~k!5v t

2~k!
ak21H2Hc

ak21H2Hc1a0

,

where a5J0R0
2, with R0 the interaction radius. The phas

transition field is

Hc5H 3B2
02B2

2

2
@j2B2

223B2
022~J02K02a0!#J 1/2

,

ch
.

se

e

he

z5$@3~B2
22B2

0!12~J02K02a0!#2

116~3B2
02B2

2!~J02K02a0!%1/2.

Thus forH5Hc in the long-wavelength limit (ak2!a0) the
quasiphonon spectrum ‘‘softens,’’ while the quasimagn
spectrum exhibits a ME gap given by

«2~0!

5Aa0~12cos 2uc!@a0~12cos 2uc!12~J02K0!cos 2uc#.

Here

cos 2uc5cos 2uH5Hc
5

3~B2
22B2

0!22~J02K02a0!1j

4~J02K02a0!
.

The modulus of the magnetization vector forH5Hc is equal
to

^Sx&H5Hc
5A12cos2 2uc.

Thus the QFMx–QFMzx phase transition occurs throug
a decrease in the modulus of the magnetization vector, i.e
is not reorientational with respect to the vector order para
eter. However, at the phase transition point the soft mod
a t-polarized quasiphonon mode, as is typical for reorien
tional phase transitions.8 Consequently, the reorientation i
this case reduces to a rotation of the principal axes of
quadrupole moment tensor. Behavior of this kind has b
observed in the system under discussion, forH50 andK0

.J0 ~Ref. 4!.
The phase diagram in the variables

S B2
2

J02K0
,

B2
0

J02K0
,

H

J02K0
,D

corresponds to the situation considered, which is illustra
in Fig. 1. The figure shows a few cross sections of the ph



tio
e

i

a
e

th

a

la

-

n-

-

ra

826 Low Temp. Phys. 26 (11), November 2000 Fridman et al.
diagram forJ0.K0. For example, the regionB2
2,3B2

0, B2
2

,J02K02a0 for H50 corresponds to the FMz phase
(^S&i0Z). Imposing a fieldH along the 0X axis gives rise to
a magnetic moment in theZ0X plane, i.e., to the QFMzx

phase~the shaded regions of the phase diagram!. When the
critical field Hc is reached, the system undergoes a transi
to the QFMx phase through growth of the modulus of th
magnetization vector.

If the biquadratic exchange exceeds the Heisenberg
teraction, then only the two quadrupolar phases, QP1 and
QP2, can be realized in the system in the absence of m
netic field.3,4 Imposing a field will make it impossible for th
QP1 and QP2 phases to exist, sincêSx&Þ0 for HÞ0.
Analysis of the spectra of elementary excitations shows

FIG. 1. Phase diagram of a biaxial ferromagnet with a biquadratic inte
tion in the caseJ0.K0.
n

n-

g-

at

the magnetization component^Sz& does not arise for any
values of the magnetic field. Thus forK0.J0 andHÞ0 the
system is found in the QFMx phase and does not undergo
phase transition.
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Manifestation of the band structure of the semimetal in the tunneling conductance
of a metal–insulator–semimetal junction
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The contribution of the electron band of the semimetal to the differential conductance of a
metal–insulator–semimetal tunnel junction is found. It is established that the tunneling
conductance depends substantially on the barrier parameters. The conductance curve exhibits a
convexity with a maximum that in general does not correspond to the edges of the band
or to a saddle point of the band, as has been proposed previously. It is shown that the band
structure is well resolved in the second derivative of the current with respect to the
voltage,d2I /dV2. © 2000 American Institute of Physics.@S1063-777X~00!00811-2#
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Back in the 1960s it was firmly established experime
tally that the band structure of semiconductors and semim
als are reflected in the tunneling characteristics.1–3 Subse-
quently attempts were made to develop a method
investigating the band structure of solids on the basis
these experiments.3–6 If successful, such a method wou
permit one to study not only the bands directly adjacen
the Fermi level, as is the case for methods based on th
Haas–van Alphen, Shubnikov–de Haas, and cyclotron re
nance methods, but also to obtain information about
bands lying considerable distances away from it. Howev
the results presented by different groups had disagreem
far in excess of the experimental error limits. For this reas
it was not possible to develop reliable rules for relating
features of the tunneling characteristics with the singu
points of the band structure. As a result, research activit
this area fell off substantially, and at present there is har
any attempt to use the tunneling effect to study the b
structure of new materials such as metal-oxide compou
for example. This is largely because of a lack of a suita
theory that would permit calculating the contribution of
individual band to the total tunneling current.7

In the present paper we propose a model approach to
analysis of electron tunneling in metal–insulator–semime
junctions. We assume that the metallic electrode is an o
nary Fermi metal with a quadratic dispersion relation, wh
the counterelectrode is a hypothetical multiband semim
with a cubic crystal lattice. To describe the insulating lay
we use a trapezoidal model, according to which the appl
tion of a voltageV causes the shape of the potential barrier
change according to the law~Fig. 1!

w~z,V!5w11~w22eV2w1!z/d, ~1!
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where w1 and w2 are the barrier heights,d is the barrier
thickness, andz is the coordinate perpendicular to the pla
of the tunnel junction. In the WKB approximation the tran
parency of such a barrier can be determined from
formula8

P5expS 22E
0

d

ukz* ~z!udzD , ~2!

wherekz* is the wave-vector component perpendicular to
plane of the barrier in the insulator. We assume that
tunneling has an elastic and specular characteristic, i.e.,
the total energyE5Ez1Ei of the tunneling electron and th
parallel component of its quasimomentumki are conserved.
The ‘‘parallel’’ Ei and ‘‘normal’’ Ez components of the ki-
netic energy under these conditions will in general not
conserved.

The formula for the tunneling current atT50 K has the
form9

J~V!5
2e

h E dEE E P~Ez ,V!dkx dky , ~3!

where the integration is over the area of overlap of the p
jections of the constant-energy surfaces of the electrons
the plane of the junction. Since in this paper we are prima
interested in band effects in the semimetal, we shall ass
that its constant-energy projection lies completely inside
projection of the metallic electrode.

In that case, for finding the tunneling current it is suf
cient to know only the ‘‘transverse’’ density of statesN(Ei)
of the semimetal:

J~V!5
2e

h E dEE P~E2Ei ,V!N~Ei!dEi . ~4!
© 2000 American Institute of Physics
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In the tight-binding approximation the dispersion of t
nth band is given by the expression

En~k!5En22An@cos~akx!1cos~aky!1cos~akz!#, ~5!

wherea is the lattice constant. The width of such a band
Eb512A, and the distance from the bottom of the band
the saddle point isEs54A. The electronic density of state
was calculated by the following procedure: the areaS en-
compassed by the constant-energy curveEi(kx ,ky)54A
22A@cos(akx)1cos(aky)# was multiplied by 2~to take into
account the spin degeneracy! and differentiated with respec
to Ei :

N~Ei!5
1

2p2

dS

dEi
. ~6!

As we have said, in general the parallel component of
energy is not conserved, and the relation between its v
Ei in the semimetal and its valueEi* in the insulator can be
rather complicated. Here, however, we shall assume for s
plicity that the relationEi* (ki* ) is given by Eq.~5! and,
hence,Ei* 5aEi , which is valid if the insulator layer is a
cubic crystal with the same lattice constanta but a different
parameterA* , so thata5A* /A. This approach is justified
by the fact that we are interested in the manifestation of b
effects for the semimetal and not for the insulator layer. A
suming that the effective mass approximation is valid in
z direction in the insulator, we write the integrand in~2! as

ukz* ~z!u5A~f~z!!2Ez* 5A2m* $f~z!2E1aEi%,

and after integration we obtain

P~V,E2Ei!

5expH 2Ad

f22eV2f1
A~f22eV2f12E1aEi* !3

2A~f22f12E1aEi* !3J , ~7!

FIG. 1. Energy diagram of a metal–insulator–semimetal tunnel junc
with a two-band semimetal.
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e
ue
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where Ad54A2m* d/3\, m* is the effective mass of an
electron in the conduction band of the insulator, andf1 and
f2 are the barrier heights measured from the bottom of
band.

Let us consider the simplest case, when, in addition
the conduction band, the semimetal has a completely fi
electron band that does not cross with it in energy~see Fig.
1!. We assume that the position of the Fermi level is su
that the Fermi surface does not touch the boundaries of
Brillouin zone, i.e.,EF,4A1. As necessary the propose
scheme can easily be generalized to any number of a
trarily located bands. Let a bias voltageV be applied to the
junction, shifting the Fermi level of the semimetal upwa
relative to the Fermi level of the opposite metal electro
The contribution to the tunneling current from the condu
tion band in this case can be found from the formula

J1~V!5
2e

h E
EF2eV

EF
dEE

0

E

P~Ei ,V!dEi , eV,EF ,

~8!

J1~V!5
2e

h E
0

EF
dEE

0

E

P~Ei ,V!dEi , eV.EF .

All of the energies in this formula are measured from t
bottom of the conduction band~and, henceforth, all energie
will be measured from the bottom of the band whose con
bution is being determined at the time!, so that the heights o
the tunnel barrier for the conduction band aref15w1

1EF , f25w21EF ~for a completely filled band the barrie
heights aref15w11Eg1Eb andf25w21Eg1Eb , where
Eg is the distance from the Fermi level to the upper edge
the band!. Differentiating, we obtain an analytical expressio
for the contribution to the tunneling conductance from t
Fermi band:

s1~V!5
2e

h F E
EF2eV

EF
dEE

0

E

N~Ei!P8~E2a1Ei ,V!dEi

1E
0

EF2eV

N~Ei!P~EF2eV2a1Ei ,V!dEiG ,
eV,EF ,

~9!

s1~V!5
2e

h F E
0

EF
dEE

0

E

N~Ei!P8~E2a1Ei!dEiG ,
eV.EF ,

wherea15A* /A1, and the derivative of the penetrability o
the tunnel barrier with respect to the voltage,P8(E
2kEi* ,V), can be calculated analytically:

n



829Low Temp. Phys. 26 (11), November 2000 Khachaturov et al.
P8~Ez* ,V!5
eAd

2

~f223f12eV12Ez* !~f22eV1Ez* !1/212~f12Ez* !3/2

~f22eV2f1!2 P~Ez* ,V!. ~10!

The contribution to the tunneling current from an electron band lying a distance Eg below the Fermi level is given by

J2~V!50, eV,Eg ,

J2~V!5
2e

h S E
3Es1Eg2eV

3Es
dEE

E2Es

2Es
P~E2a2Ei ,V!N~Ei!dEi D , Eg,eV,Es1Eg ,

J2~V!5
2e

h S E
2Es

3Es
dEE

E2Es

2Es
P~E2a2Ei ,V!N~Ei!dEi1E

3Es1Eg2eV

2Es
dEE

E2Es

E

P~E2a2Ei ,V!N~Ei!dEi D ,

Es1Eg,eV,2Es1Eg ,

J2~V!5
2e

h S E
2Es

3Es
dEE

E2Es

2Es
P~E2a2Ei ,V!N~Ei!dEi1E

Es

2Es
dEE

E2Es

E

P~E2a2Ei!N~Ei!dEi

1E
3Es1Eg2eV

Es
dEE

0

E

P~E2a2Ei ,V!N~Ei!dEi D , 2Es1Eg,eV,3Es1Eg ,

J2~V!5
2e

h S E
2Es

3Es
dEE

E2Es

2Es
P~E2a2Ei ,V!N~Ei!dEi1E

Es

2Es
dEE

E2Es

E

P~E2a2Ei!N~Ei!dEi

1E
0

Es
dEE

0

E

P~E2a2Ei ,V!N~Ei!dEi D , 3Es1Eg,eV, ~11!
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Differentiating Eq.~11! with respect toV, we find ana-

lytical expressions for the contribution from the electr
band to the tunneling conductance; they are rather awkw
and will not be given here. The total tunneling current a
the total conductance are equal to the sums of the contr
tions from the individual bands of the semimetal:J(V)
5J1(V)1J2(V) and s(V)5s1(V)1s2(V). In Fig. 2 we
present the results of a calculation of the tunneling cond
tance for a tunnel junction whose semimetal electrode

FIG. 2. Calculated curves of the differential conductances versus voltageV
for a metal–insulator–semimetal tunnel junction with a two-band se
metal, for different thicknesses of the insulator layer,d @Å#: 8 ~1!, 12 ~2!, 14
~3!, 16 ~4!, 20 ~5!. The height of the rectangular potential barrier isw1

5w251.2 eV. The parameters of the hypothetical semimetal were assu
to have the valuesa52.5 Å, A1575 meV,EF 5 0.27 meV,A2512.5 meV,
andEg50.4 meV.
rd
d
u-

c-
d

the following parameters: Fermi energyEF50.27 eV; A1

575 meV; distance between the Fermi level and the up
edge of the electron bandEg50.4 eV; width of the electron
bandEb512A250.15 eV; cubic lattice constanta52.5 Å.
The potential barrier heightsw1 andw2 were assumed equa
to 1.2 eV, and the thicknesses were varied: 8 Å~curve1!, 12
Å ~curve2!, 14 Å ~curve3!, 16 Å ~curve4!, 20 Å ~curve5!.
Up to eV5EF only the electrons of the conduction ban
contribute to the tunneling conductance. As expected,
term s1(V) falls off with increasing voltage as a cons
quence of the small value ofEF in comparison with the
height of the tunnel barrier. A similar result was obtained
a small group of free carriers in Ref. 10. Thus the first mi
mum on the curve of the tunneling conductance correspo
to the value of the Fermi energy. The authors of Ref. 3, fr
a comparison of the tunneling spectra with the optical
sorption and transmission spectra came to the conclusion
the maximum of the differential conductance corresponds
the band edge. In Ref. 5 it was asserted that the maximum
the tunneling conductance corresponds to a saddle p
which in our case is located ateVsaddle5Eg18A2. Calcula-
tions show that, strictly speaking, the maximum of the co
tribution to the tunneling conductance from the electron ba
coincides with neither the edges of the electron band
with the saddle point. As can be seen in Fig. 3, the singu
points of the band structure are well resolved on thed2I /dV2

curve obtained by numerical differentiation ofs(V). The
beginning and end of the band are manifested as step
jumps upward and downward at the voltageseV5Eg and
eV5Eg112A2, respectively. The curve has a sharp ma
mum at eV5Eg14A2 and a sharp minimum ateV5Eg

18A2, which divide the band into three equal parts. As
seen in Fig. 2, the character of the manifestation of the b

i-

ed
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features of the semimetal depends strongly on the prope
of the insulator layer. For example, a doubling of the thic
ness of the insulator layer, which would be entirely feasi
in experiments being done by different research grou
would result in the nearly complete vanishing of these f
tures~curves1–5 in Fig. 2!.

In our opinion, the results presented here confirm t
electron tunneling is completely applicability for studyin
the band structure of semimetals in the case of noncros
bands. The main difficulty lies in the fact that, in addition
the unknown band parameters sought, the problem cont
additional parameters that substantially influence the m

FIG. 3. Second derivative of the current with respect to the volta
d2I /dV2, obtained by numerical differentiation of curve1 in Fig. 2.
es
-
e
s,
-

t

ng

ins
a-

sured tunneling characteristics.7,11 The insulator layer has
been and still remains the least studied and most poorly c
trollable element of a tunnel junction, and it is not surprisi
that it is the main factor hindering the study of the ba
structure. We believe that the proposed model offers hop
circumventing this difficulty. It opens up some factual
grounded possibilities for detailed experimental study of
tunneling characteristics of semimetals and a subsequen
construction of the band structure.
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Impedance of a thin metal film in the regime of strong magnetodynamic nonlinearity
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The nonlinear response of a metallic film to the self-magnetic field of an ac transport current is
investigated theoretically. The nonlinearity is due to a magnetodynamic mechanism which
derives from the influence of the magnetic field of the current on the dynamics of the conduction
electrons and is most typical for pure metals at low temperatures. The nonlinearity leads to
a dependence of the surface impedance on the amplitude of the ac current. It is shown that the real
part of the surface impedance, which is responsible for the Joule losses, has a smooth
maximum as a function of the amplitude. The imaginary part of the surface impedance is also a
nonmonotonic function of the amplitude and has a minimum. ©2000 American Institute
of Physics.@S1063-777X~00!00911-7#
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1. INTRODUCTION

It is known that pure metals at low temperatures hav
number of peculiar nonlinear properties. The nonlinearity
due to the influence of the magnetic component of the w
or the self-magnetic field of the transport current on the
namics of the current carriers in the metal and, conseque
on the conductivity of the sample. This nonlinearity mech
nism is called magnetodynamic. The phenomena deriv
from this mechanism have been the subject of a numbe
publications~see, e.g., the review1,2 and the references cite
therein!. An example of these phenomena is the genera
of the so-called current states — a peculiar hysteretic recti
fication effect for radio-frequency current and the excitat
of the intrinsic magnetic moment of the sample.3 The effects
of magnetodynamic nonlinearity are clearly manifested
thin samples having a thicknessd that is much smaller than
the mean free pathl of the current carriers,d! l .

It was shown in Ref. 4 that the magnetodynamic mec
nism leads to an increase in the static conductivity of a m
film and, hence, to a deviation of the current–voltage~I–V!
characteristic from Ohm’s law to the side of lower resistan
The interaction of an external low-frequency electromagn
wave, with a dc transport current flowing along a metal fil
was analyzed in Ref. 5. It was found that the interact
arising as a result of the magnetodynamic nonlinearity le
to unusual nonanalytic behavior of the electric field on
surface of the metal and to a peculiar sort of amplificat
effect for an electromagnetic signal in comparison with
signal in the absence of current.

In this paper we present a theoretical analysis of
situation in which a low-frequency ac transport currentI (t)
is flowing along a film. As was shown in Ref. 4, the ma
features of the nonlinear response of the film in the prese
of a high transport current are due to the fact that the s
magnetic field of the current is distributed antisymmetrica
over the thickness of the sample. In the center of the film
8311063-777X/2000/26(11)/7/$20.00
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equal to zero, while at the boundaries it takes on val
which are equal in magnitude and opposite in sign. T
sign-varying distribution of the magnetic field gives rise
particles of a new type in terms of the character of th
motion — trapped particles, whose trajectories wind arou
the plane of alternation of the sign of the magnetic field
the current. We assume that the magnitude of the curren
such that the characteristic radius of curvatureR(I ) of the
electron trajectories in the self-fieldH(I ) of the current is
much larger than the thickness of the film:

d!R~ I !, R~ I !5cpF /eH~ I !`I 21 ~1!

(2e and pF are the charge and Fermi momentum of t
electron, andc is the speed of light in vacuum!. Then the
relative number of trapped electrons, which is equal in or
of magnitude to the angle (d/R)1/2 of their approach to this
plane, is small. However, these particles do not suffer co
sions with the boundaries of the sample and interact with
ac field in the metal over the whole length of the mean f
path l. According to the concept of ineffectiveness,1,6,7 their
conductivitys tr can be estimated as follows:

s tr;s0~d/R!1/2`I 1/2, ~2!

where s0 is the conductivity of a massive sample. At th
same time, under conditions of diffuse reflection of electro
from the surface of the sample the so-called ‘‘fly-through
particles, which collide with the boundaries of the film, ha
a conductivity of the order ofs0(d/ l ). From this we see tha
there exists a high-current regime in which the equation

@dR~ I !#1/2,1 ~3!

holds and the principal contribution to the conductivity
given by the trapped group of electrons. This causes a de
tion of the I–V characteristic from Ohm’s law and leads to
square-root dependence of the voltage on the curr
Inequality ~3! means that the characteristic arc length of t
trajectory of a trapped electron is much smaller than
© 2000 American Institute of Physics
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832 Low Temp. Phys. 26 (11), November 2000 Derev’anko et al.
mean free path, and the electron, before scattering, is ab
complete many oscillations about the plane on which
magnetic field changes sign~Fig. 1!.

If an alternating current is flowing along the film, the
the conductivity of the sample can change appreciably o
the period of the current oscillations. This is because ther
a regime of strong nonlinearity at high currents due to
dominant contribution of the trapped particles. In this pa
we investigate theoretically the time dependence of the v
age in a film carrying a transport current consisting of a
component and a low-frequency ac component and satisf
conditions~1! and ~3!. Here the dc component pushes t
system into the nonlinear regime, and the ac component g
erns the dynamic response. We will show that the nonline
ity leads to nonmonotonic dependences of the real
imaginary parts of the surface impedance on the amplitud
the ac component of the current on account of the emerge
of the I–V characteristic onto a nonlinear segment. At la
values of the dc component of the current the real part of
surface impedance, which is responsible for the Joule los
has a smooth maximum as a function of the amplitude of
ac offset, this maximum falling at values of the amplitu
close to the value of the dc component of the current. As
value of the dc component is decreased, the curve beco
more complicated, and a minimum appears on it in addit
to the maximum. The imaginary part of the surface impe
ance has one minimum as a function of the amplitude of
ac current; this minimum varies slightly as the dc compon
is decreased and lies in the same region of amplitude va
as the maximum of the real part. In this paper we also ob
asymptotic expressions describing the different stages of
emergence onto the nonlinear I–V characteristic.

2. STATEMENT OF THE PROBLEM

Let us consider a metal film carrying an ac currentI (t)
which is the sum of a dc component and a harmonica
alternating component:

I ~ t !5I 01I 1 cosvt. ~4!

We introduce a coordinate system whosex axis is di-
rected along the normal to the boundaries of the film. T
planex50 corresponds to the center of the sample~see Fig.

FIG. 1. Geometry of the problem: trajectories of the fly-through~1!, trapped
~2!, and surface~3! electrons.
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1!. They axis is chosen collinear with the current, and thez
axis is chosen parallel to the magnetic field vectorH(x,t).
The dimensions of the film along they andz axes (L andD,
respectively! are assumed to be much larger than the thi
nessd.

In this geometry Maxwell’s equations have the form

2
]H~x,t !

]x
5

4p

c
j ~x,t !,

]E~x,t !

]x
52

1

c

]H~x,t !

]t
. ~5!

Here j (x,t) andE(x,t) are they components of the curren
density and electric field. Equation~5! must be solved jointly
with the boundary conditions

H~6d/2,t !572pI ~ t !/cD[7H~ t !. ~6!

We are interested in the quasistatic case, when the
quencyv of the wave is much less than the relaxation fr
quencyn of the charge carriers,v!n.

In addition, we assume that the characteristic radius
curvature of the electron trajectoriesR(x,t) is much greater
than the film thicknessd:

d!R~x,t !, R~x,t !5cpF /euH~x,t !u. ~7!

3. MAIN GROUPS OF CURRENT CARRIERS. THE I–V
CHARACTERISTIC OF THE FILM

Let us consider the dynamics of electrons in a magn
field H(x,t) that is sign-varying in space. The gauge of t
vector potential is conveniently chosen in the form

A~x,t !5$0,A~x,t !, 0%, A~x,t !5E
0

x

dx8H~x8,t !. ~8!

The integrals of motion of an electron in a nonuniform ma
netic field H(x,t) are the total energy~equal to the Fermi
energy! and the generalized momentapz5mvz and py

5mvy2eA(x,t)/c (m is the mass of the electron!. The elec-
tron trajectory in a plane perpendicular to the magnetic fi
is determined by the velocitiesvx(x,t) and vy(x,t). For a
Fermi sphere of radiuspF5mV we have

uvx~x,t !u5~v'
2 2vy

2!1/2, v'5~v22vz
2!1/2,

~9!
vy~x,t !5@py1eA~x,t !/c#/m.

The classically accessible regions of the electron mot
along thex axis are found from the inequalities

2py2mv'<eA~x,t !/c<2py1mv' ~10!

which ensure that the radicand in the expression foruvx(x,t)u
in ~9! is positive.

Figure 2 shows the domains of motion of electrons in
plane of the variables (x,py). For specificity we have chose
a point in time when the total currentI (t) through the sample
is positive. The upper boundary on the phase plane is
scribed by the curvepy5mv'2eA(x,t)/c, and the lower
boundary by the curvepy52mv'2eA(x,t)/c. It is seen in
Fig. 2 that, according to the character of the motion,
electrons are divided into several groups, depending on
magnitude and sign of the integral of the motionpy .

1! Fly-through electrons.The existence region of thes
electrons is delimited by the inequalities
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py* 52mv'2eA~d/2,t !sgnI ~ t !/c<py sgnI ~ t !<mv' .
~11!

The fly-through electrons undergo collisions with bo
boundaries of the film. By virtue of condition~7!, their tra-
jectories are hardly curved by the magnetic field of the c
rent.

2! Trapped electrons.These exist in the region

2mv'<py sgnI ~ t !<py* . ~12!

Their trajectories are nearly flat oscillatory curves that w
around the planex50 at which the sign of the magnetic fiel
changes. The period of these oscillations is 2T, whereT is
given by the relation

T5E
x1~ t !

x2~ t ! dx

uvx~x,t !u
. ~13!

The boundaries of the integration region are the turn
points of the particle@x1(t),0,x2(t)52x1(t)#, which are
the roots of the equation

eA~x1,2,t !/c52mv'2py . ~14!

3! Surface electrons.The particles of this group underg
collisions with only one of the boundaries of the film. It ca
be shown that for diffuse reflection of electrons by t
boundaries, their contribution to the conductivity of th
metal determines an unimportant constant of the orde
unity in the argument of the logarithm in the asympto
expression for the conductivity of the fly-through electron
These surface electrons will not be taken into acco
further.

The description of the electron groups given here
analogous to that given in Ref. 5. The difference is that
our case the plane at which the magnetic field changes
exists at all times and coincides with the center of
sample. Because of this, the boundaries of the existenc
gions of the electron groups are changed.

To calculate the current density of the fly-through a
trapped particles we employ the standard method using

FIG. 2. Phase plane (py ,x), showing the existence regions of the fly
through~I!, trapped~II !, and surface~III ! particles.
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Boltzmann transport equation. The transport equation is
earized in the electric fieldE(x,t), which is the sum of a
uniform potential componentE0(t) and a nonuniform sole-
noidal componentE(x,t):

E~x,t !5E0~ t !1E~x,t !,

E~x,t !52
1

c S ]A~x,t !

]t
2

]Ā~ t !

]t D . ~15!

The quantityĀ(t) is the vector potential averaged over th
thickness of the sample:

Ā~ t !5
1

d E2d/2

d/2

A~x8,t !dx8. ~16!

The nonlinearity in the problem is due to the nonunifor
of the magnetic field of the current,H(x,t), which appears in
the Lorentz force. We consider a range of low frequenc
for which the first term in~15! is dominant~the correspond-
ing inequality will be given in the Conclusion!. For this case
~i.e., the case of a quasi-uniform electric field! the asymptotic
expressions for the current density under conditions~3! and
~7! can be taken from Ref. 4:

j fl5sflE0~ t !, ~17!

sfl~ t !5
3

8
s0

d

l
ln

R~ t !

d
, R~ t !5

cpF

euH~ t !u
,

j tr5s trE0~ t !, ~18!

s tr~ t !5
36p1/2

5G2~1/4!
s0F e

cpF
uA~x,t !2A~d/2,t !uG1/2

.

These formulas clearly go over to the results of Ref. 4 in
limit v→0. These asymptotic expressions~17! and ~18!
must be substituted into Maxwell’s equations~5!. We intro-
duce a dimensionless coordinate and a dimensionless ve
potential:

j52x/d, a~j, t !5A~x,t !/A~d/2,t !. ~19!

The equation fora(j,t) has the form

]2a~j,t !

]j2
sgnI ~ t !5u$r @12a~j,t !#1/211%. ~20!

The quantityr appearing in~20! is the ratio of the maximum
value of the conductivity of the trapped carriers to the co
ductivity of the fly-through particles:

r 5
s tr~0!

sfl
5

96p1/2

5G2~1/4!

l

d F e

cpF
UA~d/2,t !UG1/2

ln21~R/d!,

~21!

and the parameteru is related to the voltage across th
sample,U5E0L, as

u5
Upsfld

2

cLuA~d/2,t !u
. ~22!

The boundary conditions on Eq.~20! are the dimension-
less forms of relations~6!:
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]a

]jU
j51

52
d

2

H~ t !

A~d/2,t !
,

~23!
]a

]jU
j521

5
d

2

H~ t !

A~d/2,t !
, a~1,t !51.

The last, additional condition in~23! is a consequence of th
normalization~19! of the vector potential.

The boundary-value problem~20!, ~23! is largely analo-
gous to that considered in Ref. 5. The differences are tha
magnetic fieldH01H1cosvt at the surface of the film is du
to the alternating self-field of the current@see Eqs.~4! and
~6!# and not to the harmonic field of the incident wave. T
sign-varying nature of the time dependence of the curren
the film is taken into account in Eq.~20! by the factor
sgnI (t). In addition, as we have said, the plane at which
sign of the magnetic field changes is fixed and at all ti
coincides with the center of the sample.

The solution of the boundary-value problem~20! is an
even function of the dimensionless coordinatej and is given
by the formula

uju5S 3

4ru sgnI ~ t ! D
1/2E

0

a~j,t !
dz@12~12z!3/213z/2r #21/2.

~24!

Although one cannot use Eq.~24! to obtain the explicit form
of the functiona(j,t), one can determine the average val
of the conductivity of the trapped electrons over the thic
ness of the sample:

s̄ tr

sfl
5r E

0

1

dz~12z!1/2@12~12z!3/213z/2r #21/2

3S E
0

1

dz@12~12z!3/213z/2r #21/2D 21

. ~25!

To determine the voltageU, we integrate both sides of Eq
~20! over j from 21 to 1 with allowance for the boundar
conditions ~23!. After using formula~22! and doing some
simple manipulations, we obtain

U~ t !5
cL

2pdsfl~ t !

H~ t !

11s̄ tr /sfl
. ~26!

The ratio of the conductivitiess̄ tr /sfl depends on the param
eter r @see Eq.~25!#. Using Eq.~22! and the relation~21!
betweenA(d/2,t) and r, from the first boundary condition
~23! with the use of~24! we arrive at an algebraic equatio
for r:

r 2~112r /3!5sgnI ~ t !S H~ t !

H̃
D 2

Ũ

U ln3~R/d!
. ~27!

Here we have introduced the notation

H̃5
25G4~5/4!

9p

cpFd

el2
, Ū5

4clLH̃

3ps0d2
. ~28!

The physical meaning of the quantities introduced consist
the fact that at such values of the magnetic field and volt
the characteristic arc length (Rd)1/2 of the trajectories of the
trapped electrons becomes of the same order as the mea
he

in

e
e

-

in
e

free

path l. It is also convenient to introduce a characteristic c
rent Ĩ corresponding to the magnetic fieldH̃. According to
Eq. ~7!,

Ĩ 5
cDH̃

2p
. ~29!

Strictly speaking, relations~26! and ~27! describe the
current–voltage characteristic only in the region of high c
rents, where the conditionH(t)@H̃ @i.e., condition~3!# is
satisfied. However, an analysis shows that the express
obtained are always good interpolating formulas, even w
condition ~3! is not met.

4. SURFACE IMPEDANCE OF A FILM IN THE UNIFORM
APPROXIMATION

As we said in the previous Section, in this paper w
investigate the case of low frequencies, when the poten
termE0(t) is dominant in expression~15!. In this Section we
shall find the surface impedance of a film in the leadi
~homogeneous! approximation, in which the nonuniform so
lenoidal contributionE in ~15! is zero. To calculate the sur
face impedance one must know the time dependence of
electric field at the surface of the film. In the case und
study, the electric field in the film is uniform and contain
only the potential componentE0(t), which is uniquely deter-
mined by the voltageU across the sample. In turn, the tim
dependence of the voltage@for a specified time dependenc
of the total currentI (t)] is given by formulas~26! and~27!.
Thus with the aid of expressions~26! and ~27! one can find
the surface impedance of the film as the ratio of the Fou
harmonic of the electric and magnetic fields at the surface
the metal:

Zv5
4p

c

E0,v

Hv
.

Going over from the fields to the voltage and current with t
use of relation~6!, we obtain

Zv52
D

L

Uv

I v
, ~30!

whereUv and I v are the Fourier harmonics of the voltag
and current:

Uv5
v

2p E
0

2p/v

dt U~ t !eivt, I v5
v

2p E
0

2p/v

dt I~ t !eivt.

~31!

We see from formulas~4!, ~26!, and ~27! that the voltage
depends on time only through cosvt. Therefore the surface
impedance is real-valued:

Zv5Rv5
4v

p

D

L

1

I 1
E

0

p/v

U~ t !cosvt dt. ~32!

Figure 3 gives the result of a numerical calculation of t
dependence of the surface impedance on the dimension
amplitude of the ac component of the current,I 1 / Ĩ . The
impedance is given in units of

R̃5
D

L

Ũ

Ĩ
5

8l

3s0d2
.
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Figure 3a illustrates the case when the dc component of
current is rather large,I 0 / Ĩ 5100@1, and the regime of
strong nonlinearity arises right from the start. The nonmo
tonic dependence of the impedance in this situation can
explained as follows. If the amplitude of the ac componenI 1

of the current is small compared with the dc offsetI 0, then
the total current is not very different fromI 0 at any time in
the oscillation period. Therefore, the system will at all tim
be found in the highly nonlinear regime, when the total c
rent is large and the radius of curvatureR of the electron
trajectories is so small that inequality~3! holds. Under these
conditions the conductivity of the sample is always det
mined by the trapped group of electrons and is character
by a large parameters̄ tr /sfl;r;I / Ĩ ; l /(Rd)1/2@1, for
which reason the surface impedance is small. In the oppo
limiting case, when the relative amplitude of the current
large, I 1@I 0, the contribution of the dc offsetI 0 becomes
unimportant, and we are actually dealing with a larg
amplitude harmonic signal. Because of the large signal
plitude the sample is found in the highly nonlinear regim
during the preponderance of the period, and the impedan
again small. Finally, in the region of intermediate amp
tudes,I 1;I 0, when during much of the period the curre
corresponds to the linear part of the I–V characteristic,
appreciable contribution to the amplitude dependence of
signal comes from the linear region, with its relatively sm
conductivity. Therefore a smooth maximum appears on
Rv(I 1) curve in the vicinity ofI 1;I 0. Because the conduc
tivity of the trapped electrons depends on the current i
weak, square-root manner@see Eq.~2!#, the relative size of
this maximum is not very large (;10–15% in Fig. 3a!.

It is interesting to track the change in the depende
described above as the dc offsetI 0 is decreased. Figure 3
shows a plot of the real part of the surface impedance

FIG. 3. Dependence of the real partRv of the surface impedance on th

amplitudeI 1 of the ac component of the current forI 0 / Ĩ 5100 ~a! and 1~b!.
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I 0 / Ĩ 51. At small values of the amplitudeI 1;I 0; Ĩ one can
discern a slightly nonlinear segment of the I–V characte
tic. The parameters̄ tr /sfl , which determines the relative
contribution to the conductivity from trapped and fly-throug
electrons, turns out to be of the order of unity in this ca
~unlike the situation in Fig. 3a, which corresponds
s̄ tr /sfl@1!. At relatively large values of the amplitude,I 1

@I 0, as in the case of a strong dc offset, the impeda
begins to fall off on account of the emergence on the n
linear part, but for all amplitudes smaller than or of the ord
of I 0, the contribution of the trapped electrons becom
small, and the nonlinearity is weak. In this case, as is see
Fig. 3b, theRv(I 1) curve will have a minimum in addition to
the maximum. As in the caseI 0@ Ĩ , the relative scale of
changes in the impedance is small.

Equations~26! and ~27! can be used to obtain usefu
asymptotic expressions for the voltageU(t), the nonlinearity
parameterr (t), and the impedanceRv(I 1) for the case of
large currentsI (t)@ Ĩ . Expanding the I–V characteristic~26!

in a series in powers ofĨ /I (t) with the use of~25! and~27!,
we get

U~ t !/Ũ5sgn@ I ~ t !#
uI ~ t !/ Ĩ u1/2

~3b1
3/2!1/2

1O~1!, ~33!

r ~ t !5
uI ~ t !/ Ĩ u1/2b1

1/2

ln~R/d!
1O~1!, ~34!

b15
2

Ap

G~7/6!

G~2/3!
'0.77. ~35!

The asymptotic behavior~33!, ~34! is realized, for example
at a large dc offsetI 0@ Ĩ ~see Fig. 3a! under conditions such
that the amplitudeI of the ac component is either very larg
(I 1@ Ĩ 0) or comparatively small (I 1! Ĩ 0). In the first case
the impedance has the asymptotic behavior

Rv

R̃
5

64

~27p3b1
3!1/2

G2~5/4!S Ĩ

I 1
D 1/2

'2.69S Ĩ

I 1
D 1/2

. ~36!

In the second case, in the limitI 1→0, we get

Rv

R̃
U

I 1→0

5S 2

3b1
3D 1/2S Ĩ

I 0
D 1/2

. ~37!

5. NONUNIFORM COMPONENT OF THE ELECTRIC FIELD.
IMAGINARY PART OF THE SURFACE IMPEDANCE

In the previous Section we obtained the behavior of
electric field at the surface of the sample without taking in
account the nonuniform~solenoidal! componentE. In that
approximation the impedance turned out to be real-valu
To obtain a nonzero imaginary part of the impedance it
necessary to take into account terms of higher order in
frequency, and, specifically, the solenoidal component of
electric field in Eq.~15!. Since the fieldE(x,t) is distributed
symmetrically over the thickness of the film, for finding th
surface impedance it is sufficient to calculate the fieldE only
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on the upper boundary of the film,x5d/2. Using formula
~15!, we obtain the following expression for the correctio
DZv to the impedance:

DZv5
4p

c

Ev~d/2!

Hv
52

4p

c

cD

2p

2

I 1

v

2pc

3E
0

2p/v

@Ȧ~d/2,t !2AG ~ t !#eivt dt

5 i
2Dv2

pcI1
E

0

2p/v

@A~d/2,t !2Ā~ t !#eivt dt. ~38!

Just as in the previous Section, we can assume that, bec
the time appears in formula~38! only in the combination
cosvt, the integral on the right-hand side is a purely re
quantity and reduces to the integral over a half period. T
we ultimately get

DZv5 i
4Dv

pcI1
E

0

p

@A~d/2,t!2Ā~t!#cost dt. ~39!

Here we have made the change of variablest5vt. Thus the
first correction to the impedance turns out to be pur
imaginary. It wholly determines the imaginary part of th
impedance.

According to Eq.~39!, in order to calculate the correc
tions to the impedance one must knowA(d/2,t) and Ā(t).
The value ofA(d/2,t) is easily found from Eq.~21!:

A~d/2,t!52sgnI ~t!H̃d ln2~R/d!r 2/4. ~40!

Here r is the solution of the equation obtained from~27! by
substitutingU from the formula for the I–V characteristi
~26!.

To obtain Ā, the average value of the vector potent
over the thickness of the film, we must use the solution~24!
of Maxwell’s equations:

Ā~t!5A~d/2,t!
1

2

3E
21

1

a~j,t!dj5A~d/2,t!S 3

4ru sgnI ~t! D
1/2

3E
0

1 zdz

@12~12z!3/213z/2r #1/2
5A~d/2,t! f ~t!, ~41!

where the functionf (t) is given by the expression

f ~t!5S E
0

1 zdz

@12~12z!3/213z/2r ~t!#1/2D
3S E

0

1 dz

@12~12z!3/213z/2r ~t!#1/2D 21

. ~42!

The final formula for the impedance is found by using~40!
and ~41!. It can be written in the form

Xv52Im DZv5 i
2vd

c2

Ĩ

I 1
E

0

p

sgn@ I ~t!#r 2~t!ln2@R~t!/d#

3@12 f ~t!#cost dt. ~43!
use

l
s

y

l

It is easy to obtain an asymptotic expression forXv at
large values of the current amplitudeI 1@ Ĩ . Using formula
~34!, we obtain the following expression for the imagina
part of the impedance:

Xv5
4p

c
b2

vd

c
, ~44!

b25
1

60p1/2 S G~1/6!G~1/3!

2p D 3

'0.13.

Exactly the same formula is obtained for the caseI 0@ Ĩ , I 1

→0 as well. An interesting consequence of these result
that at large values of the dc componentI 0, the imaginary
part of the surface impedance at large and small amplitu
of the ac componentI 1 turns out to be independent of the d
offset I 0 and is equal to the impedance of the vacuum atte
ated by the parametervd/c. A more exact numerical calcu
lation, the result of which is presented in Fig. 4 for the ca
of strong and weak nonlinearity~large and small values o
I 0) shows that over a wide range of amplitudes the imp
ance agrees with formula~44! in order of magnitude. Fur-
thermore, as can be seen from Fig. 4, the imaginary par
the impedance, like the real part, is a nonmonotonic funct
of the amplitude. We note that the scale of the relative va
tions of the imaginary part of the impedance is even sma
than that for the real part and amounts to only 1–2%.

6. CONCLUSION

We have investigated a new manifestation of the m
netodynamic nonlinearity in a film carrying an alternatin

FIG. 4. Dependence of the imaginary partXv of the surface impedance on

the amplitudeI 1 of the ac component of the current forI 0 / Ĩ 5100 ~a! and 1
~b!. The impedance is normalized to the quantityX0[(4p/c)(vd/c).
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current. We have studied the nonlinear response of a sam
to the self-magnetic field of a transport current of the fo
I 01I 1cosvt. We have shown that the magnetodynamic no
linearity leads to nonmonotonic dependence of both the
and imaginary parts of the impedance on the amplitudeI 1.

The results obtained are valid under the condition t
the nonuniform component of the electric field in~15! is
much less than the potential component. Let us estimate
two components of the electric field for the most interesti
highly nonlinear regime~when the total current in the syste
is much greater thanĨ ). For the potential component w
obtain from formula~33!

E0;
clH̃

s0d2 UIĨU
1/2

;
clH̃

s0d2

l

~Rd!1/2
. ~45!

For an estimate of the solenoidal fieldE we make use of the
fact that in the highly nonlinear regime the quantitiesĀ(t)
andA(d/2,t) differ only by a numerical factor. This follows
from formulas~41! and ~42!. Using ~15! and ~40! and the
asymptotic formula~34!, we arrive at the estimate

E;
vd

c

I 1

Ĩ
H̃. ~46!

Now the condition for applicability of the results obtaine
here can be written in the form the following inequality:

d3

l

I 1

Ĩ

~Rd!1/2

l
!dn

2~v!, dn
2~v!5

c2

4ps0v
, ~47!
ple

-
al

t

he
,

where dn(v) is the penetration depth of the signal und
conditions of the normal skin effect. At a fixed mean fr
path l , inequality ~47! is actually a restriction on the fre
quency of the signal.

Let us estimate the characteristic frequencies for wh
the nonmonotonic amplitude dependence of the impeda
can be observed experimentally. For a sample of thickn
d51022 cm and widthD50.5 cm, with a carrier mean fre
path l 51021 cm, an electron densityN51023 cm23, and a
Fermi momentumpF510219 g•cm/s, the highly nonlinear
regime sets in at currentsI 0;I 1;10 A. It follows from ~47!
that for these parameter values the frequencyv must be
smaller than 103 s21.
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Electron transfer and vibrational modes in a finite molecular chain
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A statistical quantum discrete model for a molecular bridge between metallic electrodes is
proposed. A theory of conduction is developed on the assumption that the main contribution to
the electron transfer is due to nonequilibrium-populated electron-affinity states of the
molecule. It is shown that the field-induced modification of the states of the bridge molecule,
together with the Coulomb blockade effect, leads to suppression of the electron transfer.
Relations are obtained for the electron–vibron interaction, and the contribution of atomic
vibrations to the conductance of the chain is discussed. The current–voltage
characteristics of molecular bridges are calculated for different positions of the spectrum of the
molecule with respect to the levels of the chemical potentials of the electrodes.
Explanations are given for the stepped and asymmetric character of the current–voltage
characteristic observed experimentally and for the fractional charging of the bridge molecule.
© 2000 American Institute of Physics.@S1063-777X~00!01011-2#
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1. INTRODUCTION

Molecular electronics, the physics of systems or devi
whose basic functional units are molecules, has in the
few years been making successful progress toward the de
opment of a technology for fabricating reliable contacts
molecules with metallic and semiconductor electrodes for
creation of molecular analogs of diodes and transistors1–8

Recent measurements3 the conductance of molecular bridge
between metallic electrodes, fabricated by the deposited
crobridge technique of Ref. 9, revealed a number of inter
ing features. In particular, it was found that the curren
voltage ~I–V! curves have a stepped character and, un
certain conditions, an asymmetry with respect to the sign
the applied voltage. Experiments8 have revealed femtosec
ond electron transfer times between molecules adsorbe
the surface of semiconductors under various conditio
Transfer times with a similar order of magnitude have be
observed for the tertiothene3 and benzene-1,4 dithiol4

molecules.
There are two main approaches to the theoretical an

sis of the conductance of molecular bridges. The Landa
wave model10,11treats a molecular bridge between electrod
as a scattering center that reflects electron waves com
from the cathode. The current is proportional to the transm
sion coefficient of the molecule for the electron wave n
the Fermi energy of the electrode or to a certain convolut
of the transmission coefficient in this region.3,11 However,
calculations of the linear conductance in the wave mo
give values that are too high as compared to experiment3,4,6

We shall show below that the discrepancy can be attribu
to the fact that the model did not tak into account the re
rangement of the electronic structure of the molecule in
electric field of the electrodes nor the contribution to t
conductance from electron-affinity states of the molecu
The kinetic model of the conductance of molecu
bridges3,12,13 is based on the phenomenological rateG of a
8381063-777X/2000/26(11)/11/$20.00
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ternary vertex process — the tunneling hop of an elect
from electrodek to the molecule,

G i j
k65

2p

\
uTi j u2rkf ~Ei2Ej !, ~1!

with the participation of a pair of molecular terms, with e
ergiesEi andEj . The tunneling matrix elementTi j is deter-
mined in the quasiclassical approximation, with the heig
and width of the effective tunnel barrier at the contact of t
molecule with electrodek being chosen by a fitting proce
dure and without taking into account the dependence ofTi j

on the indices. The functionf in ~1! is given by the Fermi–
Dirac distribution with the differenceEi2Ej appearing in
place of the usual difference between the energy of the s
and the Fermi energy, andrk is the density of states near th
Fermi level and is assumed constant. Calculation of the c
ductance in the kinetic model for a bisthioltertiophene m
ecule adsorbed on gold electrodes3 gave the correct order o
magnitude and reflected the basic features of the I–V ch
acteristics of molecular bridges, but the theoretical justifi
tion for the model remains unclear on account of the un
fined physical meaning ofG and of the distribution function
f. Another shortcoming is the failure to take into account t
contribution to the conductance from electron-affinity stat
which always lie above the states of excitation of the neu
molecule and, accordingly, are closer to the Fermi surfac
the metallic contacts.

Molecular bridges between macroscopic electrodes
be treated as quantum sections incorporated in an ordi
electrical circuit. The current flowing through the molecule
determined by the energy spectrum of the molecule, the
crete electronic spectrum of which is manifested in a step
character of the I–V characteristic. An important role in th
effect is played by the relationship between the chem
potentials of the electrodes and the electron-affinity spect
of the molecule and also by the field-induced modification
the spectrum of the molecule and of the distribution of t
© 2000 American Institute of Physics
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electron density in its states. As a result of the field bro
ening of the energy band, the the electron-affinity levels s
cessively pass near the chemical potentials of the left
right electrodes. The effect also depends on the densit
states of the left and right electrodes, and this dependen
especially significant in the case of high fields or semic
ductor contacts. The intramolecular phonons~vibrational
modes! have a weak influence on the electron transfer and
the nonequilibrium population of the states that is establis
in the current-carrying system, and the Peltier effect can
neglected on account of the good heat removal. A comp
molecular quantum circuit is presented in Fig. 1a. The role
the source of brief emf can be played by a polar molec
incorporated in the molecular circuit. The polarization of t
quantum source can be controlled by an external reso
electromagnetic field, which switches the molecule into
long-lived triplet excited state. The current pulse flowing
the quantum circuit is due to the difference of the dipo
moments of the molecule in the ground and excited sta
Stabilization of the excited state can be achieved by apply
a suitable bias voltage to the ends of the molecule~Fig. 1b!.
Then the transition to the excited state will rearrange
electron-affinity spectrum of the molecule, thus affecting
electron transfer through the molecule.

In this paper we investigate theoretically the condu
tance of molecular bridges in a model which combines
exact solution of the problem of the electronic and vib
tional states of a finite chain of general form in a static el
tric field, taking into account the quantum interaction of t
electronic subsystem with the metallic or semiconduc
electrodes, which are reservoirs of electrons, and also
the phonon subsystem. The proposed model is based o
assumption that affinity states of the molecular bridge p
an important role in the passage of current along it. T
dispersion relations and the distributions of the electron d
sity and the amplitudes of the characteristic vibratio
modes are obtained here by the transfer matrix method w
out using the approximations of translational invariance a
periodic boundary conditions. The current–voltage char
teristics of a simple molecular chain at different temperatu
are calculated in the nearest-neighbor approximation w

FIG. 1. A molecule as a quantum element of an electrical circuit: a comp
circuit with a quantum emf in the form a photoexcited noncentrosymme
molecule ~a!; a bridge molecule between macroscopic electrodes~b!; a
model of a linear hydrocarbon molecule~c!. The transfer amplitudes areW
for between carbon atoms,V for within the unit cell, andQ for the boundary
cells.
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allowance for the influence of the field on the interatom
barriers. The experimentally observed asymmetry of the I
characteristics is given an explanation, and it is shown t
the field modification of the electron-affinity spectrum pla
a governing role in the conductance of molecular bridg
The nonequilibrium populations of the states and the curr
charging of the chain are calculated.

2. ELECTRONIC STRUCTURE OF A CHAIN IN AN
EXTERNAL FIELD

In the adsorption of a molecule on an electrode,
thermodynamic equilibrium population of the molecul
electron-affinity states is established. The ‘‘extra’’ electro
are drawn from an unlimited reservoir of particles in the l
and right electrodes, while the ‘‘inherent’’ electrons occu
deep-lying states of the unexcited molecule and do not t
part in the transfer processes. For example, according to
data of Ref. 3 for the bisthioltertiophene molecule the e
cited states occupy the energy region from29.5 eV to28
eV, whereas the Fermi energy of the gold electrodes lies
eV below the vacuum level. The intramolecular electro
begin to contribute to the conductance upon excitation
ionization of the molecule, but that situation is not cons
ered here. In the proposed model the spectrum of the elec
affinity of the molecule is formed on the basis of the ‘‘bare
atomic electron-affinity levels with allowance for the res
nance interatomic transfer of electrons. The value of the m
trix element of the resonant hopping is determined from
condition that the bottom of the affinity band coincides t
electron affinity of the whole molecule. We note that for
rather long chain the affinity spectrum approaches the o
electron spectrum of excited states, while the electron af
ity begins to be determined by the bottom of the band
excited states. Justification for this assertion comes from
fact that the effective one-electron potential of a large sys
for an individual valence electron is indistinguishable fro
the effective potential in which an ‘‘extra’’ electron move
after being injected into the system.

Let us write the Hamiltonian of the problem for a
N-period linear chain~Fig. 1c! in the absence of electric field
in the second-quantized representation:

Ĥ05(
l , j

N

« jal j
1al j 1 (

l , j ,m,i
Vlm

i j al j
1ami , ~2!

wherel enumerates the unit cells andj the atoms within the
unit cell, « j specifies the bare atomic levels of the affini
states, and the Hermitian matrixVnm

i j governs the transfer o
an electron between atoms. The Hamiltonian matrix~2! for
an adsorbed molecular chain of the polyacetylene ty
R–~CH!n–R, in the nearest-neighbor approximation is giv
in Table I. In the model adopted, electron transfer betwe
cells can occur only via the carbon atoms;W is the amplitude
of this process, andV is the amplitude of the hops within th
unit cell (Q is that for the end atoms!.

The solution of the eigenvalue problem for a finite cha
in the absence of field leads to a dispersion relation of
form12,13

~l l ,2n l !L̂
mS n r

l r
D 50, L̂5S m n

l 0D , ~3!

te
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wherem5N22; m, n, andl are the minors of the dynami
cal matrix~see Table I!; the subscriptsl andr correspond to
the left and right boundaries, and

m5~«02E!~«12E!2V2; n52l5W~«02E!;

n r5l l5~«02E!@~«02E!~«12E!22Q2#; ~4!

n l5l r52W~«02E!2.

Here«0 and«1 denote the atomic electron-affinity levels o
the cell, andE stands for the energy eigenvalues. In the ta
D15D185DN5DN8 5«12E, D5«02E. A power of the
transfer matrixL̂ is found with the aid of the canonical trans

formationQ̂ that diagonalizes the matrixL̂:

Q̂5
1

D S x22 2x21

x12 x11
D ; Q̂215S x11 x21

x12 x22
D ;

D5det~Q̂!; ~5!

L̂m5
1

D S x11x22l1
m2x12x21l2

m x11x21~l2
m2l1

m!

x22x12~l1
m2l2

m! x11x22l2
m2x12x21l1

mD ,

wherexi j are the elements of the eigenvectors of the ma
L̂,

X̂1
15~x11, x12!; X̂2

15~x12, x22!;

x115x215n; x1252l2 , x2252l1 ,

and the eigenvalues of the transfer matrixL̂ have the form

l j5m/21~21! i~ln!1/2;
~6!

ln5m2/42l2; j 51,2.

The substitution of~4! and~5! into ~3! leads to a gener-
alized dispersion relation for the electronic states of
chain:

TABLE I. Matrix of the eigenvalue problem.
e

x

e

l1
m~n rx222l rx21!~l0x112n0x12!

2l2
m~n rx122l rx11!~l0x212n0x22!50, ~7!

which in the general case describes both itinerant and lo
ized states. In the energy region where the discriminantl1 ,
l2 is negative, the terms on the left-hand side of~7! are
mutually conjugate, making it possible to write the soluti
in explicit form:15

Es j5
1

2 H «01«122Wj cos
ps1w lr

m
1~21! j

3F S «02«112Wj cos
ps1w lr

m D 2

14V2G1/2J , ~8!

wherej 51,2, j5sgn(E2«0), w lr is an additional phase du
to the left and right boundaries of the chain:

w lr 5arccosS ~n rx222l rx21!~l0x112n0x12!

u~n rx222l rx21!~l0x112n0x12!u
D , ~9!

ands takes on integer values such that the argument of
cosine in~8! is found within the interval (0,p). The structure
of ~8! corresponds to two bands of electronic states. T
value j 51 in ~8! corresponds to transfer between main
oms ~carbon! of the chain. The valuej 52 corresponds to
indirect transfer between side atoms~hydrogen!, induced by
a transfer between main atoms. The width of the induc
band forV!W is proportional to the productVW, and its
center is situated near«0. The number of states in the band
is determined by the end radicals and can fluctuate fr
N22 to N, depending on the relative sizes of the trans
parametersQ, V, andW in a particular case. From the dia
grams in Fig. 2 showing the dependence of the spectrum

FIG. 2. Parametric diagram of the spectrum of a complex chain: the de
dence on the amplitudesW ~a! andV ~b!.
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the indirect transfer amplitudeV, one can conclude that th
width of the energy band varies directly with the amplitu
V.

In the regionm214ln.0 the energy states, if they ex
ist, have a localized character with amplitudes that fall
with distance from the ends of the chain.

In the case of a nonzero electric fieldE the diagonal
matrix elements in the first term on the right-hand side of~2!
have the form

« j→« j1Eekd1Eedl , ~10!

and in the dispersion relation~3! the power of the transfe
matrix is replaced by a product:

~l l ,2n l ! )
k52

N21

L̂kS n r8

l r8
D 50, L̂k5S mk nk

lk 0 D , ~11!

mk5~«02E1Eekd1Eedl !~«12E1Eekd1Eedl !2V2;
f

th
th
th
e
t

th
nt
ca
e
he
ro
t
a

-

f

nk52lk5W~«02E1Eekd1Eedl !;

n r85~«02E1U2Eedr !@~«02E1U2Eedr !

3~«12E1U2Eedr !22Q2#;

l r852W~«02E1U2Eedr !
2,

wherek enumerates the cells,d denotes the distance betwee
atoms in the chain,dr anddl are the lengths of the adsorptio
bonds on the right and left ends of the molecule, andU
5E(Nd2d1dr1dl) is the potential difference between th
ends of the chain. Equation~11! is reduced by a canonica
transformation to the form~7!

ef 1~n ry222l ry21!~l0y112n0y12!

2ef 2~n ry122l ry11!~l0y212n0y22!50 ~12!

with the use of the the matrix operations of logarithmific
tion and exponentiation:
lnS )
k52

N21

L̂kD 5(
k

1

Dk S x11
k x22

k ln l1
k2x12

k x21
k ln l2

k x11
k x21

k ln
l2

k

l1
k

x12
k x22

k ln
l1

k

l2
k

x11
k x22

k ln l2
k2x12

k x21
k ln l1

kD , ~13!

)
k52

N21

L̂k5expS (
k S l1

k ln l1
k2l2

k ln l2
k

l1
k2l2

k

1

l2
k2l1

k
ln

l2
k

l1
k

1

l2
k2l1

k
ln

l2
k

l1
k

l1
k ln l1

k2l2
k ln l2

k

l2
k2l1

k

D D , ~14!
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where l i
k5@mk1(mk

214lknk
1/2)#/2 are the eigenvalues o

the transfer matrices that appear in the product,f 1 and f 2

52 f 1 are the eigenvalues of the matrixF̂ in the argument of
the exponential function in~14!. The conditionmk

214lknk

50 determines the boundary between extended~delocalized!
states, which are distributed over the entire length of
chain, and the states localized by the external field. Ano
cause of localization may be structural defects, including
ends of the chain. Calculations show that as the electric fi
increases, the region of extended states narrows from
edges of the band toward the center, while the width of
band increases by an amount equal to the applied pote
differenceU. The last extended states are converted to lo
ized states whenU exceeds the initial width of the band. Th
distribution of the amplitudes of the electron density in t
chain is specified by the eigenvectors of the eigenvalue p
lem solved above. Our model for the chain allows us
obtain analytical expressions for the eigenvectors, which
determined by the coefficientsCk j of the canonical transfor
mation:

as
15(

k, j
Ck j~s!ak j

1 , as5(
k, j

Ck j* ~s!ak j . ~15!

The summation is over all cellsk of the chain and atomsj
within the unit cell. The indexs51,2, . . . ,N enumerates the
e
er
e
ld
he
e
ial
l-

b-
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re

electronic affinity states. The explicit form ofCk j can be
obtained using Cramer’s rule, expanding out the deter
nants corresponding to each of the variables:

Ck15dk21QV )
i 5k11

N

~2«0iW!; Ck25Ck1

V

Es2«0
;

~16!

dk215
1

Qk23
@ef k23~n ry222l ry21!~l0y112n0y12!

2e2 f k23~n ry122l ry11!~l0y212n0y22!#. ~17!

The kth-order determinantsQk are determined by the uppe
left-hand corner of the matrix given in Table I. A calculatio
of the electron densityuCk j(s,i )u2 both with and without
allowance for the field dependence of the resonant-tran
matrix elementV is done in Ref. 15. As the applied voltag
is increased, the standing wavesCk j(s,i ) become more and
more symmetric~or antisymmetric! with respect to the cente
of the linear molecule. Meanwhile, at sufficiently high field
('109 V/m! the interatomic barriers are lowered and t
transfer amplitudes increase, tending to restore the symm
of the electron density distribution.
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3. VIBRATIONAL SPECTRUM AND MODE AMPLITUDES
OF THE ATOMIC CHAIN

Let us consider the problem of small vibrations of t
atoms in a bounded adsorbed chain. If the system has fi
dimensions, it is necessary to take into account the tran
tional invariance of the vibrational modes. While having
weak effect on the eigenfrequencies and densities of itine
states, translational invariance is manifested substantiall
the distribution of the mode amplitudes along the chain a
furthermore, has an appreciable influence on the amplitu
and frequencies of the localized vibrations.17

In the conduction phenomenon, vibrations give rise t
scattering channel of the injected carriers in addition to re
nant transfer. Furthermore, the phonon or vibron mechan
against the background of the resonant interaction, by wh
the current carriers hop between sites of the chain, lead
the onset of a finite width of the electronic states. We sh
assume that the electric field does not act on the elastic
stants of the interatomic bond.
tri
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The classical expression for the vibrational energy of
complex chain whose electronic structure was conside
above,

Ecl5(
l , j

mjU̇ l , j
2

2
1(

l , j

kj~Ul ,02Ul 112 j , j !
2

2

1
kfU1,f

2

2
1

ktUN,t
2

2
~18!

contains a summation over the unit cellsl of the linear chain;
the indexj 50,1 enumerates the atoms within a cell~Fig. 1c!,
and for the end cellsj 50,1,18. The nearest-neighbor ap
proximation is used;kf andkt are the elastic constants of th
adsorption bond of the end atomsf and t of the molecular
bridge with the electrodes. The system of dynamical eq
tions for the vibrations,
5
m1v2U115k8~U112U10!;

m0v2U105k0~U102U20!2k1~U112U10!2k8~U1,182U10!2kfU1,0;

m18v
2U1185k8~U1182U10!;

.......................................................................................................

m1v2UN185k8~UN182UN0!

~19!
n,
lso
two

l-
ing

re

d in
m.
describes a dynamical matrix that coincides with the ma
of the electronic problem considered in the case of a po
acetylene chain~see Table I!, where one must set

D15DN5k82m1v2; D195DN9 5k82m18 ,v2;

D185k01kf12k82m0v2; D5k12m1v2;

D852k01k12m0v2; ~20!

DN8 5k01kt12k82m0v2; Q52k8;

W52k0 ; V52k1 .

Taking into account the formal equivalence of the electro
and vibrational problems, we can use the results obtaine
~3!–~9! for the spectrum, with the following substitution i
~8!:

Es j5vs j
2 ; «0⇒

2k1

m1
; «1⇒

2k01k1

m0
;

~21!

W⇒ k0

m1
; V⇒ k1

~m1m0!1/2
.

Similarly, for the distribution of amplitudes along the cha
Ak j (k51,2, . . . ,N) we have, with allowance for~16! and
~17!,

Ak05dk21kk1 )
i 5k11

N

~D ik0!; Ak152Ak0

k1

D8
, ~22!
x
-

c
in

dk215
1

Qk23
@l1

k23~n rx222l rx21!~l0x112n0x12!

2l2
k23~n rx122l rx11!~l0x212n0x22!#. ~23!

The characteristic features of the amplitude distributio
which were studied for a simple chain in Ref. 17, are a
present in the case of a complex adsorbed chain with
atoms per unit cell: the set of functionsAi j for the different
modesq51, . . . , N form a system of localized and deloca
ized standing waves which satisfy the theorem concern
the zeros of the eigenfunctions.18 In particular, it follows
from ~22! that the vibrations of the atoms in the unit cell a
180° out of phase ifD8.0 and in phase ifD8,0.

4. ELECTRON–PHONON INTERACTION IN A LINEAR
ATOMIC CHAIN

The results obtained in the classical approach are use
making the transition to the quantum vibrational proble
The Hamiltonian of the phonon subsystem

Ĥph5(
q, j

\vq j~bq j
1 bq j11/2! ~24!

is expressed in terms of the creationbq j
1 and annihilationbq j

operators for a phonon of thej th branch of theqth mode,
which are related by a canonical transformationAki ~22! with
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the bare operatorsbk j of the vibrations of thej th atom of the
kth unit cell:

bq j
1 5(

k,i
Aki~q, j !bki

1 , bq j5(
k,i

Aki* ~q, j !bki . ~25!

The creation~annihilation! operators for vibrations at th
sites,bki

1 (bki) are related to the displacementsUki of the
atoms from the equilibrium positions by the relationUki

→J(bki
11bki)/A2. Small displacements modify the res

nant interaction, inducing interatomic electron transf
which gives rise to an additional term in the Hamiltonian~2!:

Vnm
i j ⇒Vnm

i j 1Ṽi j ~Uni2Um j!. ~26!

In the nearest-neighbor approximation the initial electro
phonon interaction~EPI! operator in the site representatio
has the form

Ĥep
~1!5

Ṽ0J0

A2
(

n

N21

~an,0
1 an11,02an11,0

1 an,0!

3~bn,0
1 1bn,02bn11,0

1 2bn11,0!1
Ṽ1J1

A2

3(
n

N

~an,0
1 an,12an,1

1 an,0!~bn,0
1 1bn,02bn,1

1 2bn,1!,

~27!

where Ṽ05]Vnm
00 /]x is the derivative of the amplitude fo

transfer along the chain, taken aboutx5d(n2m)5d. The
first term in ~27! corresponds to processes of hopping b
tween the unit cells, with the absorption or emission of
brational quanta of the site, and the second correspond
vibronic processes within the cells. Only the longitudinal
brations with respect to the direction of electron transfer
taken into account.

In an electric field another electron–phonon scatter
channel appears, due to vibrational modulation of the ato
affinity levels«0 and«1 as a result of the dependence of th
absolute values on the positions of the atom:

Ĥep
~2!5

ed

A2
(
n, j

N

~J jE!an, j
1 an, j~bn j

1 1bn j!. ~28!

The scalar product under the summation sign in~28! ensures
that only the longitudinal vibrations contribute under t
condition that the molecule is oriented along the field.

An electron injected into the chain occupies one of
affinity states. The time of formation of such a state with
energyEs j and an electron density distributionuAki(s, j )u2 is
of the order of 10214–10215 s, which is much shorter tha
the time of transition of an electron across the molecu
bridge, 10212 s, at currents of'102 nA or less. If
the electron–phonon interaction time is also of the order
,

–

-
-
to

e

g
ic

e
n

r

f

10212 s, then the phonon contribution is due to scattering
standing waves of electron density on standing waves of
brational modes. In that case, by taking into account
orthogonality of the transformation matrices from the s
representation to the eigenvector representation, we obta

Ĥep
~1!1Ĥep

~2!5 (
s,s8 j , j 8,q,i

Vs,s8
j , j 8~q,i !as, j

1 as8, j 8~bqi
11bqi!,

~29!

Vs,s8
j , j 8~q,i !

5
1

A2
(
n51

N

$@Ṽ0J0~Cn,0~s, j !Cn11,0* ~s8, j 8!

2Cn0* ~s, j !Cn11,0~s8, j 8!!~12dnN!~An,0~q,i !

2An11,0~q,i !!1Ṽ1J1~Cn,0~s, j !Cn11,0* ~s8, j 8!

2Cn0* ~s, j !Cn11,0~s8, j 8!!~An,0~q,i !2An,1~q,i !!#

1ed« j j 8~J jE!Cn, j~q,i !Cn, j* ~q,i !An, j~q,i !%. ~30!

It follows from ~30! that the interaction of the electron an
phonon subsystems is determined by finding the distributi
of the electron and phonon densities along the chain.

The question of the contribution of the EPI to the co
ductance of linear molecular bridges is not altogether clea
present because of a lack of experimental data on
electron–vibrational coupling constantsṼ in linear mol-
ecules. Owing to the discreteness of the electronic and vi
tional states in a mesoscopic system, an additional fa
influencing the phonon contribution to the conductan
arises: the commensurability of the electron and phon
bands. In particular, if the distance between electronic lev
reaches values of the order of or smaller than the energy
thermal phonon, then the phonons participate in the sca
ing of electrons, while otherwise the phonon mechanism
suppressed. The width of the phonon bands also plays a
particularly the most populated acoustical band. In rigid
nite systems with wide bands the density of states is sm
and this also lowers the probability of absorption or emiss
of a phonon by an electron. Qualitative estimates17–19 give
for the width of the acoustical band of a linear –C5 C–
chain a value of the order of 0.1 eV. In that case, for a ch
of lengthN530 at room temperature only the lowest vibr
tional mode falls in thekT region. As we shall show below
the passage of current in a molecular bridge disrupts
thermodynamic equilibrium in the electronic subsystem, a
that leads to disequilibrium in the phonon subsystem on
count of the electron–phonon coupling. Analysis of expr
sion ~30! for the matrix element of the EPI shows that f
translationally noninvariant phonons of a finite chain the r
of the quasimomentum conservation laws is played by a
strict relation between the quantum numbers of the sta
s, s8, andq. For example, for a simple chain the summati
over the lattice in the matrix elementĤep

2 gives
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Ṽs,s8,q
~2!

5
JEed

2(N11)3/2 5
0, s1s81q52k,

sin
ps

N11
sin

ps8

N11
sin

pq

N11

sin
p(s1s81q)

2(N11)
sin

p(s1s82q)

2(N11)
sin

p(s2s82q)

2(N11)
sin

p(s2s81q)

2(N11)

, s1s81q52k11.
~31!
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Thus we find that scattering processes for which the sum
the mode index of the vibrational mode taking part in t
scattering plus the quantum numbers of the initial and fi
states of the electron has an even value are forbidden. An
their odd combinations that satisfy energy conservation
allowed.

5. STATIC CONDUCTIVITY OF A LINEAR MOLECULE

The coupling between the electronic subsystem of
adsorbed molecule chain and the electrodes is manifeste
a nonzero probability amplitude for the transfer of an el
tron to the molecule. The corresponding addition to
Hamiltonian operator,

Ĥad5Gl~al
1a101a10

1 al !1Gr~ar
1aN,01aN,0

1 ar ! ~32!

contains the hopping amplitude of an electron between
‘‘banks’’ and the end atoms of the chain,Gl ,r . The indicesl
andr refer to the left and right banks, respectively. The el
tronic structure of the metallic electrodes in our model
determined by the density of states:

g~« r ,l !5
4pH

h3
~2m!3/2« r ,l

1/2, ~33!

whereH is the effective electrode volume that participates
the contact with the molecule,m is the effective mass of an
electron, « r ,l5EFrl 2x r ,l1Es j1Ul ,r is the energy of the
stateEs j measured from the start of the Fermi step of t
right or left electrode, with allowance for the applied bi
voltageUl ,r , andEFrl denotes the corresponding Fermi e
ergy. The chemical potentialx r ,l and the energyEs j are mea-
sured from the vacuum level, which is taken as zero~Fig. 3!.
The ‘‘banks’’ play the role of infinite reservoirs of electron
which are found in thermodynamic equilibrium. The equili
rium populations of the electronic states of the thermal r
ervoirs are described by the Fermi distribution

Nl ,r5
1

exp~~« l ,r2EF!/T!11
, ~34!

whereT is the temperature. In the model under considerat
an injected electron occupies one of the electron-affin
statesEs j of the chain or one of the vibrational subleve
The probability of such a process per unit time can be writ
in the second order of perturbation theory in the weak
sorption interaction according to the famous ‘‘golden rule
of

l
of
re

n
in

-
e

e

-

-

n
y

n
-

Wl→s j5
2p

\ E d«gl~«!H NlF ~12Ns j!uGls ju2d~El2Es j!

1 (
q,i ,j

S Nqi1
11~21!j

2 D ~12Ns j,qi!uG̃l ,s j~q,i !u2

3d~El2Es j1~21!j\vq,i !G J . ~35!

The populationsNl and Nr for transfer at the right-hand
boundaryWr→s j are determined according to Eq.~34! by
substitution of the energies« l and« r . As to the populations
of the electronicNs j and vibronicNs j,qi states of the chain
they are governed by conservation of charge and the co
nuity of the flux of charge through the states j.

The first term in~35! describes a resonant zero-phon
mechanism of bank–chain transfer, and the second term
scribes processes of transfer to the vibronic states of the m
ecule Es j,qi5Es j1(21)j\vqi with absorption (j51) and
emission (j50) of phonons of thei th branch of theqth
mode. The probability of the reverse processesWs j→ l and
Ws j→r is written in analogy with~35! with a suitable change
of indices. The matrix elements of the transfer are de
mined from~32! as a result of a canonical transformation
the site operators for creation and annihilation and quant
tion of the displacements:

FIG. 3. Energy diagram of the problem:Es are the electronic levels,EF is
the Fermi energy,x is the chemical potential, andU is the potential differ-
ence. The solid curves show a plot ofg(«).
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uGl ,s ju25Gl
2uCs j~1,0!u2,

uG̃l ,s j~q,i !u25G̃l
2uCs j~1,0!Aqi~s, j !u2,

~36!uGr ,s ju25Gr
2uCs j~N,0!u2,

uG̃r ,s j~q,i !u25G̃r
2uCs j~N,0!Aqi~s, j !u2.

Let us consider the zero-phonon contribution to the c
ductance, which is determined by the first term in~35!. As-
suming that the electron–phonon coupling is weak,
equate the electron flux of thes j state through the left and
right boundaries of the chain,
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I l↔s j5
2pe

\
uGl ,s ju2gl~Es j2x l1EFl1Ul !~Nl2Ns j!,

~37!

I r↔s j5
2pe

\
uGr ,s ju2gr~Es j2x r1EFr1Ur !~Ns j2Nr !,

and we obtain for the steady-state nonequilibrium populat
of the states of the chain
Ns j5
uGl ,s ju2gl~Es j2x l1EFl1Ul !Nl1uGr ,s ju2gr~Es j2x r1EFr1Ur !Nr

uGl ,s ju2gl~Es j2x l1EFl1Ul !1uGr ,s ju2gr~Es j2x r1EFr1Ur !
. ~38!

The total current through the molecule is written as a sum of the electron fluxes through all the states:

I 5
2pe

\ (
s, j

uGl ,s ju2uGr ,s ju2gl~Es j2x l1EFl1Ul !gr~Es j2x r1EFr1Ur !

3
Nl2Nr

uGl ,s ju2gl~Es j2x l1EFl1Ul !1uGr ,s ju2gr~Es j2x r1EFr1Ur !
. ~39!
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The dimensional part of the total currentI 0, which is given
by

I 05
e~2m!3/2HG2

p\4
, ~40!

whereG is the amplitude of the bank–molecule electron
transition, plays the role of the unit of current. The numeri
value ofI 0, if the energies in~39! are measured in eV andH
is in Å3, turns out to be 10.41HG2 mA. The relation ob-
tained for the current allows for differences of the materi
of the left and right banks and for the possibility of the
asymmetric connection in the electrical circuit with resp
to the vacuum level. In the symmetric case one hasUr5
2Ul5U/2; then for the identical metal electrodes the I–
characteristic is antisymmetric with respect to the appl
electrical bias. If, for example, the left electrode is ground
than one must setUl50 andUr5U in Eq. ~39!, and the I–V
characteristic loses symmetry with respect to a change
sign of the applied voltage. Examples of symmetric a
asymmetric molecular bridges are given in the experime
paper of Ref. 3. Calculations show that the value of the c
rent as a function of voltage depends substantially on
electron density distributionuCs j(1,0)u2 and uCs j(N,0)u2 in
the standing wave near the ends of the chain@see Eq.~36!#
and on the difference in the populations of the banks. T
square-root energy dependence of the densities of stategl

andgr have a weaker effect on the value of the current. I
important for understanding the features of the current fl
through a linear mesoscopic system that the character
temperaturesT'0.02–0.03 eV are ordinarily much smalle
than the distances between levels of the electron-affi
band of the molecule. Therefore, as the applied bias volt
l
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U is increased, the affinity levels pass one at a time thro
the region of effective transfer near the Fermi energiesEFl

andEFr . The entry of each new level into the active regio
corresponds to a sharply rising segment of the I–V char
teristic, and the energy gaps, to the plateaus. The total ch
trapped by the molecule behaves in a similar way. Below,
the example of a simple chain, we analyze the nature of
current through a molecular bridge, initially ignoring th
Coulomb blockade effect. In the case of identical electro
there are three possible arrangements of the affinity spec
with respect to the Fermi surfaces of the banks.

1. We consider a system for which the lower edge o
narrow band of affinity states, of width'0.08 eV atU50,
lies above the chemical potential levelx by an amountd.
The corresponding I–V characteristic of a molecular brid
of length N520 between copper electrodes (x524.3 eV,
EF 5 7.0 eV! for d50.01 eV, a transfer amplitude
V50.02 eV, and a temperatureT51.2 K is presented in Fig
4 ~curve1!. The fine-stepped structure of the left half of th
characteristic corresponds to the successive passage o
proximately one-half of the itinerant states through the fix
chemical potential of the left bank, which corresponds to
positive bias ofU'50 mV. Further growth of the potentia
difference weakens the transfer, because the field ‘‘dra
off’’ electron density from the next states from the left ban
For short chains withN'8 –15 the falling part of the char
acteristic has large ‘‘benches’’ which mark the passage
the levels of the upper half of the band near the narrow~at
the given temperature! active region of the left bank. The
benches are smeared out as the temperature is increase
vanish completely atT'58 K. The position of the first bench
asT→0 is close tod. As the length of the chain increase
the characteristic is smoothed out, and the value of the
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rent decreases slightly:I max50.06I 0 for N58 and I max

'0.05I 0 for N550.
In the case of a wide band, with a width of'0.8 eV and

d'0.1 eV, the transfer is considerably more intense, and
I–V curve is shifted to higher voltages. Steps are obser
even at room temperatures. As the temperature is lowe
these steps become sharper~curve2 in Fig. 4!. As in the case
of a narrow band, the current rises when the band ‘‘sink
below the level of the chemical potential of the left ba
down to the center. Curve3 in Fig. 4 shows the calculate
dependence of the charging of the chain,q5eSNs , on the
applied voltage. It is seen that the charging of the chain
the jumplike increase in current are correlated processes.
regions of constant charge on curves3 and constant charg
on curve2 are also correlated. Chaning in jumps, the cha
of a 10-atom chain at a voltage of around 1 V across
the molecule reaches a maximum value somewhat in ex
of 5.4.

2. The center of the band of electron-affinity states in
absence of field coincides with the chemical potential of
banks. Figure 5 gives the calculated I–V characteristic o
24-atom chain with a narrow bandV50.01 eV at a tempera
tureT522 K. For such a configuration the main contributio
to the conductance comes from about one-fourth of all

FIG. 4. The current–voltage~I–V! characteristic with allowance for allow
ance for charging. Configuration I: a narrow electronic band forV50.02 eV,
N520, T51.2 K ~1!, a band of intermediate widthV50.2 eV ~2!, and the
dependence of the charging on the external field~3!. E0523.8 eV, U0

50.3 eV,T522.2 K, andN510.

FIG. 5. I–V characteristic without allowance for charging. Configuration
a band of intermediate widthV50.2 eV,T558 K ~1!, and a narrow elec-
tronic band withV50.01 eV,T522 K ~2!. E0524.3 eV, U050.08 eV,
N524.
e
d
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levels or one-half of the levels initially lying above the valu
of the chemical potential. As the length of the chain is
creased, the benches associated with the gaps between
are smoothed out, and the value ofI max decreases. The curv
behaves in an analogous way as the temperature is ra
The interlevel oscillations vanish byT558 K. In the case of
a wide band ('0.8 eV!, as in the previous case, the I–
curve is shifted to higher voltages, and the value of the c
rent increases. The steps are observed even at room tem
tures. As the temperature is lowered, they become sha
~curve 2 in Fig. 5!. As in the case of a narrow band, th
increases in current occur when the band ‘‘sinks’’ below t
level of the chemical potential of the left bank down to t
center. A comparison of the cases of narrow and wide ba
shows that the curves are similar under a scale transfor
tion, confirming the above picture of successive passag
affinity levels near the Fermi surface of an electrode.

3. If the band of affinity states of the bridge molecule
the absence of field lies below the level of the chemi
potential of the bands, then the conductance is strongly s
pressed. The calculated I–V curves turn out to be structu
less even at very low temperatures. As the temperatur
raised, the maximum of the I–V curve increases and shift
higher voltages. Numerical estimates show that the supp
sion of the conductance of a bridge in this case also i
consequence of the ‘‘draining off’’ of electron density fro
the ends of the chain by the field. However, as the elec
field is increased further, in addition to the field-induced d
formation of the electron density distribution, an opposi
tendency begins to operate: the transfer amplitudeV in-
creases on account of the decrease of the effective thick
of the intersite potential barriers in the external field. T
field-induced stimulation of transfer was taken into acco
in the model by the phenomenological relation

V5V0eU/NU0, ~41!

whereU0 is the effective height of the potential barrier b
tween neighboring atoms in the chain. In the examples c
sidered above it was assumed thatU050.2 eV. The field-
induced stimulation gives rise to a slight slope of t
‘‘shelves’’ on the I–V curve at low applied bias voltage
For U.NU0 the current increases sharply on account of
broadening of the band of electronic states.

The conditions of contact can be such that a molecu
bridge carrying a current is found in a negligibly weak e
ternal field. Such a situation arises if an extended linear m
ecule bridges the tips of thin electrodes. The voltage drop
this case occurs near the ends of the molecule, and the
tric field has practically no influence on the electronic stat
The solid curve in Fig. 6 shows the calculated I–V curve
a chain with four initial affinity states atE0524.25 eV,V
50.23 eV,U050.5 eV, andT50.03 eV for gold electrodes
The dots show the corresponding dependence of the ch
trapped by the molecule. There is a clear tendency to
fractional charge — a consequence of the thermodynam
nonequilibrium population of the states of the curre
carrying chain. The half-integer charge on the molec
through which current is flowing arises at low temperatu
T!V if there is an odd number of affinity states in the regi
(x,x1U) ~Fig. 3!. The states lying above this region are n



y
in

. I

o
qu
m
th
ro
d
ge
In
a
n
In
o-
l

o
g

C
a

. I
si
, t
rg

th
c

-
ith
u

. A
n

he
lied

del
of
e

the
has
by
ron

is
of

ec-
ribe
ris-

s of
fs.
b,
ity
of

the
the
the
ou-
lay

on

tly
rity

ci-
in
at
is

a-

ce

. S.

l-
W.
m.

s in

, M.

ld
,

847Low Temp. Phys. 26 (11), November 2000 E. Ya. Glushko
populated (ns50), while those lying below are completel
occupied (ns51). For the states indicated by an asterisk
Fig. 3 it follows from Eq.~38! thatns'1/2 under conditions
of symmetric contact of the molecule with the dislocations
should be kept in mind that for the small bias voltagesU
considered here, the densities of states of the banks are
proximately equal,gr'gl .

6. CONCLUSION

Molecular bridges carrying a current are examples
multiparticle parametric systems with a steady-state none
librium distribution. The number of electrons trapped fro
outside the affinity states of the molecule is regulated by
external conditions. The discrete chain model of elect
transfer studied in this paper is one of the simplest , an
also can take into account the main features of the passa
current through molecular bridges in a unified formalism.
another, the potential approach, the molecular bridge is
sociated with a system of adjacent potential wells alo
which the electrons pass from the cathode to the anode.
tially there is one electron-affinity level in each atomic p
tential well. In the system of wells the initial affinity leve
generates a band of states whose structure and position
termine the character of the flow of current as a function
the applied voltage until the charge of the molecular brid
exceeds unity. Further increase in the charge creates a
lomb barrier which modifies the affinity spectrum. The fe
tures of the electron spectrum of the neutral molecule M0 are
manifested in the conductance if the molecule is ionized
that case the states are partially filled by an electron pas
over from the electrode. As the applied voltage increases
total population can exceed unity. At that time the cha
state of the molecule changes, and the affinity spectrum
M21 is turned on. In this paper we have not considered
influence of the change in charge on the state of the mole
lar bridge ~Coulomb blockade!. A phenomenological treat
ment of this effect was done in Refs. 3, 11 and 20–22 w
out taking the restructuring of the charge state into acco
and in Refs. 15 and 23 with these transitions included
more rigorous approach requires solving the quantum ma

FIG. 6. Current–voltage characteristic without allowance for the fie
induced modification. The solid curve is a band of intermediate widthT
5348 K; the dots represent the trapped charge.E0524.25 eV,V020.23
eV, U050.08 eV,N524.
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body problem on a discrete chain with allowance for t
dependence of the number of trapped particles on the app
potential difference.

A comparison of the results of the discrete chain mo
with the experimental data is difficult on account of a lack
reliable information about the electron affinity of the bridg
molecules. Evidently, the results of Ref. 3 indicate that
bisthioltertiophene molecule adsorbed on an electrode
several affinity levels lying above the chemical potential
approximately 0.3 eV. The basic scheme of the elect
transfer for the model remains as before if the molecule
bridging two semiconductors. In that case the density
states~33! takes into account the energy gaps of the el
tronic spectra of the banks. The model can also desc
low-temperature electron transfer through atomic chains a
ing in the space between metallic electrodes. Structure
this kind have been investigated experimentally in Re
24–26 for monatomic bridges between Au, Pt, Al, Nb, P
K, and Na electrodes. The mechanism of transfer via affin
states of a monatomic bridge also lead to a stepped form
the conductance, with positive or negative slopes of
plateaus,24 but the conductance can also vanish when
bottom of the conduction band of the chain rises above
chemical potential of the electrodes on account of the C
lomb blockade effect. The quantum parts of the circuit p
an important role in single-electron transistors~SETs! and
devices with a periodic dependence of the conductance
the bias voltage — electronic pawls and ratchets.22 Although
a linear treatment of the two-electrode model is not direc
applicable to such systems, there is a fundamental simila
between molecular bridges and quantum dots~with their dis-
crete spectra! in tunneling contact with several electrodes.

The author thanks Prof. A. M. Kosevich and the parti
pants in seminar of the theoretical division of the B. Verk
Institute for Low Temperature Physics and Engineering
Kharkov, Ukraine for a discussion of the results of th
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Steep nonlinearity of the the forward-biased current–voltage characteristic of a system
with a double-barrier resonant-tunneling structure built into a Schottky barrier
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A contact between a metal and ann-type semiconductor with a double-barrier resonant-tunneling
structure built into the space-charge region is investigated. Besides the well-known effect in
which the current falls sharply, there is an additional possibilty: in this system there can also be a
steep nonlinearity of the current–voltage~I–V! characteristic, specifically, an effect wherein
the current increases precipitously. It is shown that the differential slope of the forward branch of
the I–V characteristic can be considerably greater thane/kT — by more than an order of
magnitude at optimum values of the parameters of the problem. The dependence of the I–V
characteristic on the parameters of the structure is analyzed. ©2000 American Institute
of Physics.@S1063-777X~00!01111-7#
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The intensive development of semiconductor techno
gies has brought particular attention to resonant-tunne
structures~RTSs!. This is because, first, RTSs can serve a
basis for various novel semiconductor devices with speed
the terahertz range.1,2 This speed is based on the speci
properties of the resonant tunneling of electrons through
structure. As we know, the resonant tunneling effect is
sponsible for a sharply nonlinear~resonance! dependence o
the coefficient of tunneling transmittance of a RTS on
energy of the charge carrier, and the width of the resona
level depends on the parameters of the quantum-well sys
and can be adjusted over a rather wide range of value
typical RTS is a double-barrier structure consisting of t
tunnel-transparent potential barriers~thickness;2 nm at a
barrier height;1 eV!, separated by a quantum well (;3 –5
nm wide! containing localized states. Such an RTS make
possible to operate the structure in the ballistic regime,
the lifetime of an electron in the resonance state of the qu
tum well is of the order of 10212 s ~this value is given by a
calculation according to Eq.~11! of this paper, for example!.
These features determine the domain of applicability
RTSs as elements with negative differential resistance of
current–voltage~I–V! characteristic, energy filters, etc.
should be noted that the performance of experimentally f
ricated RTSs and devices based on them is generally infe
to the theoretical predictions. One notices that the discr
ancy between theory and experiment is smallest at
temperatures.1,2

Interesting results have been obtained with the use
RTSs in combination with other semiconductor structures
this paper we consider a combination of two structures —
resonant tunneling structure and a Schottky barrier — tha
known in the literature. Schottky barriers are often used a
8491063-777X/2000/26(11)/4/$20.00
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convenient instrument for studying the characteristics
various physical objects, including different types of RTS
Besides, Schottky barriers can be used for other purpose
well. For example, in Refs. 3 and 4 it was proposed to
place the usual collector of a standard double-barrier re
nant tunneling diode~DBRTD! by a Schottky layer. It was
shown that this could improve the frequency characteris
of RTSs. In the case considered in the present paper, h
ever, the presence of the Schottky barrier plays a fundam
tally more important role in the electronic processes un
study.

We have shown that a Schottky barrier can be a block
barrier for the resonant tunneling current in a system cons
ing of a metal and a semiconductor with a double-barr
RTS placed in the space-charge region; as a result, in s
cases one can observe a very strong~jumplike! increase in
the total current through the structure, while in other case
jumplike decrease is observed. In other words, besides
usual sharp drop in current that is inherent in such
structure,3 here we call attention to the additional possibili
of realizing a steep nonlinearity in its I–V characteristic. It
clear from what follows that, depending on the parameter
the problem, the indicated nonlinearity can be manifested
both the forward and reverse branches of the I–V charac
istic. Thus the Schottky barrier here plays the role of a k
of regulator of the electronic processes in the structure
particular, it influences the observed shape of the I
curves.

In this paper we restrict consideration to the case of f
ward biases (U.0) ~the reverse branch of the I–V curve ha
features of its own and will be treated separately!.

Let us take as our resonant tunneling structure a s
metric double-barrier RTS and place it in the space-cha
© 2000 American Institute of Physics
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region of the Schottky contact~we shall refer to this as
RTSC!. The choice of a double-barrier structure is not fu
damental — it is important only that the following condition
be met: the RTS chosen must have at least one reson
level, which can serve as a channel for current flow;
dimensions of the RTS must be considerably smaller that
width of the Schottky layer. The I–V characteristic of th
system must depend substantially on the initial condition
to the supposed position of the resonance levelEr in relation
to the top of the Schottky barrier at zero biasU; w(x50,
U50)[w0 ~Fig. 1!. If Er2w0.0, U50, then the differ-
ence between the indicated levels increases monotonic
and the I–V characteristic has usual exponentially increas
form. A fundamentally different situation arises whenEr

2w0,0, U50. Now the resonant channel for the curre
flow ~the resonance level of the quantum well! is initially
blocked by the Schottky barrier, and the current is gover
by the nonresonant tunneling of electrons and the abo
barrier component of the current. AsU is increased, the dif-
ference uEr(U)2w(x50,U)u decreases, and at a certa
voltageU5Uc a turning on of the resonant channel of cu
rent passage occurs. This turning on of the channel is acc
panied by an exceedingly sharp rise of the current, and th
reflected in the shape of the I–V characteristic.

Thus there is a substantial difference in the function
of a standard DBRTS and the system considered here. In
standard system, which is an initially~at U50) symmetric
structure, it is fundamentally impossible to have the con
tions for resonant tunneling of the current arise only when
external voltage is applied, as is the case in a RTSC.

Let us call attention to some other differences reflec
on the I–V characteristic between a standard DBRTS and
structure investigated here. First, the collector and em
regions function somewhat differently. For example, in
standard DBRTS the collector plays the role of a reserv
capable of accepting electrons with any energies~which
come from the emitter!. In a RTSC the emitter~under for-
ward bias,U.0) is a bulk semiconductor region, while th
collector is the contact electrode, which can receive only
energy-restricted fraction of the electrons on account of
Schottky barrier.

Let us add that the main electron emission in a stand
DBRTS takes place in the energy interval@0,EF#, whereas

FIG. 1. Potential profile of the structure studied.
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in the RTSC structure electrons of high energies reach
collector, i.e., the ‘‘working’’ energy interval corresponds,
a certain comparative sense, to ‘‘hot’’ electrons.

Ultimately these differences give rise to certain featu
on the I–V characteristics of the structures.

It should be noted that calculating the I–V characteris
for a RTSC is a multiparameter problem. The parameters
the problem are: the thicknessesd1 and d3 of the left and
right barriers, respectively, the widthd25w of the quantum
well, the distancel between the RTS and the metal
semiconductor interface, the Schottky barrier heightw0, the
heightV of the RTS barriers, the Fermi levelEF , the dopant
concentrationn, the temperatureT, and the dielectric con-
stant« ~10 parameters!. This circumstance makes it advis
able to obtain expressions for the I–V characteristic in a
lytical form — otherwise analysis of the I–V characterist
as a function of the many parameters would be extrem
difficult. Furthermore, it turns out that detection of the effe
we are looking for requires extremely precise optization
the parameters. This clearly makes a numerical comp
analysis even more problematical. For these reasons
chose a modified WKB method, which can yield analytic
formulas for the I–V characteristics.

We also note that the the main goal of this paper is
demonstrate the possibility of obtaining extraordinarily ste
I–V characteristics in a modern semiconductor structure,
we have therefore omitted from consideration such factor
the accumulation of charge, roughness of the surface, n
parabolicity of the dispersion relation, etc., which cannot
fluence the effect under study in a qualitative way. W
should also point out that the results obtained in this stu
are valid in cases when the resonant tunneling current
exceed the forward tunneling current and the above-bar
current; our comparison of these currents shows that
stated condition is well satisfied for a wide spectrum of p
rameters of the problem.

The current density in structures such as RTSCs is u
ally calculated using the formula~in atomic units!

j 5 j 0E
0

` dE

kT
D~E!ln

11exp@~EF2E!/kT#

11exp@~EF2U2E!/kT#
, ~1!

j 05m~kT!2/2p2, ~2!

wherek is Boltzmann’s constant,U is the external potential
and D(E) is the transmittance, which depends on the el
tron energyE. In the general case it can be written in th
form of a product,D(E)5DsDr , in which Ds and Dr the
the coefficients of penetration of the electrons through
space-charge-region barrier and the DBRTS, respectively
calculation ofDr by the modified WKB method5 gives

Dr5@cosh2~d11d31 ln 4!cos2~d2!

1cosh2~d12d3!sin2~d2!#21, ~3!

d i5A2mE
xi

xi 11AuE2F~x!udx, ~4!

where the distancesxi are indicated in Fig. 1,xi 115xi

1di , i 51,2,3. Since ordinarily the conditionsd1 ,d3@1
hold, we introduce the quantitiesDi , i 51,3 ~the transmit-
tances of the left and right barriers! as
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Di50.25 exp~22d i !, ~5!

and forDr we can write

Dr5
4D1D3

sin2~d22n!1~D11D3!2 cos2~d22n!
. ~6!

This expression has sharp maxima as a function of energE
at valuesE5En determined by the condition

d2~En!5np1n, n51,2, . . . ~7!

These maxima correspond to the resonant energy lev
The parametern in formula ~6! depends on the shape of th
potential well ~and on the external field! and is determined
by an exact calculation of the position of the resonance le
e.g., by the transfer matrix method,6 with allowance for the
differences in the effective masses of the electrons in
different regions of the structure.

For further analysis the coefficientDr is conveniently
written in the form of two terms, the first of which is a ter
of the Breit–Wigner type and the second is the result of
expansion of the remaining part in powers ofE2Er , i.e., in
the neighborhood of the lowest resonance levelEr[E1:

Dr5Dt1Dv , ~8!

Dt5
D1D3

~D11D3!2

G2

~E2Er !
210.25G2

, ~9!

Dv5
8

3
D1D3Fs2

2~E2Er !
211.5~D11D3!2

s2
2~E2Er !

212~D11D3!2
1 . . . G ,

~10!

G52~D11D3!/s2 , s25~0.5m!1/2E
x2

x3 dx

AEr2F~x!
.

~11!

The quantityG, as we see, plays the role of the half-width
the resonance level. ForE5Er the coefficientDt ~9! has a
sharp maximum and is thus responsible for the resonant
neling current. The termDv ~10! is responsible for the non
resonant tunneling of electrons.~In the formulas given there
is only one value ofm, i.e., generally speaking, they are val
for systems with the same effective mass, e.g., system
silicon with silicon carbide.7 The corresponding expression
with different effective masses taken into account were
tained by the authors using a somewhat awkward met
that had been proposed in Ref. 5; we can say that the re
ment does not qualitatively alter the effect in question.!

In this same approximation5 we can easily obtain the
following expression for the transmittance of the upper b
rier of the space-charge region with allowance for the effe
of the image forces:

Ds5H 11expF1.76~ w̄2E!

g G J 21

, ~12!

w̄5w~0!2~2b2!21, b5F «

4F~0!G
1/4

,

~13!
g50.5«m1/2b23,

whereF(0)52dw/dxux50 is the field of the space-charg
region, andg is the half-width of the derivative of the func
ls.
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tion Ds(E) and is introduced for convenience in compari
the coefficientsDs and Dt . Thus the integrand in~1! in-
cludes the product of two rapidly varying functions: ad-like
functionDt(E2Er) ~9! with a half-widthG ~11! and au-like
function Ds(w̄2E) ~12! with a half-width of its derivative
equal tog ~13!, and also a function related to the electro
energy distribution and which is smooth forG,g!kT.

It is therefore clear that the result of the integration in~1!
is a current with a jumplike dependence on the voltage,
the region of the jumplike change inj (U) corresponds to
values of the voltage at which the quantity (w̄2Er) changes
sign.

To calculate the current it is also necessary to determ
the quantityF(x) that appears in the formulas given; it is
sum of two terms: the potentialw(x) of the space-charge
region, and the potential of the DBRTS. The first potentia
the solution of the equation

¹2w52
4p

«
r~x!,

~14!

r5H n, 0,x,x1 , x4,x,L

0, x1,x,x4 , x.L

with the boundary conditionsw(0,U)5w01U, w(L)50,
whereL is the width of the Schottky layer. This solution ha
the form

w~x!5wL1
1

2
ln~x42x1!~2x2x42x1!,

0,x,x1 , ~15!

w~x!5wL2
1

2
ln~x2x4!2, x1,x,x4 ,

w~x!5wL5
1

2
ln~x2L !2, x4,x,L,

L25
2w~0!

ln
1~x4

22x1
2!, l5

4p

«
. ~16!

The double-barrier resonant tunneling structure is
cated in the intervalx1,x,x4, and the height of its potentia
barriers isV. In this interval the field of the space-charg
region is given by

F52ln~L2x4!. ~17!

Once the potentialF(x) is specified, one can finds2 and,
hence, the half-widthsG andg.

Now all of the expressions needed for calculating t
current density have been determined. Depending on
relative sizes ofG andg, we obtain two formulas for the I–V
characteristic: forG@g

j . j 0 2p
G

kT

D1D3

~D11D3!2
Ds~Er !expS EF2Er

kT D ; ~18!

and forG!g

j . j 02
G

kT

D1D3

~D11D3!2
expS EF2Er

kT D Fp2 2arctan
2~ w̄2Er !

G G .
~19!
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Thus we have obtained simple expressions for the c
rent through the resonant tunneling structure under study
a form convenient for further analysis.

Let us discuss the caseg@G, which is often encountered
in practice. Figure 2 shows the voltage dependence of
current density calculated according to formula~19!; the cur-
rent density is normalized toj 0. The calculation was done fo
the following set of parameters:T5300 K, d15d3520 Å,
v550 Å, m(GaAs)50.067m0 , m(AlGaAs)50.1m0 , w0

50.44 eV, andn51017 cm23. Figure 3 shows the voltag
dependence of the parametera5d ln j/dU, which is often
used to describe the I–V characteristic. The parameter va
for Fig. 3 are the same as in Fig. 2.

The plotted functions completely confirm the assum
tions made in this paper as to the character of the I
curves. At voltages less thanUc the currents in the investi
gated RTSC structure are relatively small. Then, in the
cinity of U5Uc there is a precipitous rise in the current. F
example, for curve5 the current increases by approximate
a factor of 10 in response to a voltage change of 0.01 V. O
is also struck by the large values of the parametera describ-
ing the differential steepness of the I–V characteristic
they are much greater than the valuee/kT typical for
Schottky barriers. The values ofUc anda depend on many
parameters of the structure: the height of the Schottky b
rier, the dopant concentration, the distance from the DBR
to the metal, the geometric parameters of the DBRTS,
For example, as the DBRTS is brought closer to the m
~with the other parameters fixed!, the value ofUc decreases
e.g., the values ofUc for distancesl 5380 Å andl 5200 Å
~Fig. 2! differ by 0.05 V.

To explain the substantial growth of the current as
distancel from the metal to the DBRTS is increased, it
convenient to refer to Fig. 1. We see that at largel the open-
ing of the channel for the resonant tunneling current~reso-
nant energyEr) occurs at a higher voltageU5Uc , which
corresponds to a lower barrier heightw (x50,Uc). Conse-

FIG. 2. Forward branch of the I–V characteristic for different values ol
@Å#: 120 ~1!, 150 ~2!, 200 ~3!, 290 ~4!, and 380~5!; the values of the
remaining parameters are given in the text; the energy position of the r
nant levelEr50.107 eV.3
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quently, the distribution function makes for higher curren
in this case.

Finally, we should say a few words about the possi
advantages of the system investigated here from the st
point of practical applications. We note first that it retains t
advantage that motivated the proposal made in Ref. 3
replace the conventional collector of the standard reson
tunneling diode by a Schottky collector, namely: the pos
bility of reducing the emitter–collector capacitance. Here
creasing the distance between the metal and the DBR
leads not only to a decrease in capacitance but also
simultaneous increase in the steepness of the I–V chara
istic ~see Figs. 2 and 3!.

In addition, it should be noted that devices using the I–
characteristics given above~e.g., switches, rectifiers, ampli
fiers, etc.! can have good characteristics not only at low te
peratures but even at room temperatures~the curves in Figs.
2 and 3 were calculated forT5300 K!.
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FIG. 3. Dependence ofa5d ln j/dU on the voltage; the parameters of th
structure have the same values as for Fig. 2.
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Static dielectric permittivity in gapless solid solutions Hg 1ÀxCdxTe
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Results are presented from a comprehensive study of helicon interferometry, nonresonant
cyclotron absorption, and the Shubnikov–de Haas effect at microwave frequencies in
the compound HgTe and in Hg12xCdxTe solid solutions. Analysis of the experimental results
and the already existing theoretical concepts suggests that in the gapless semiconductor
HgTe and its solid solutions the static dielectric permittivity«s depends on the concentration of
conduction electrons and the band parameters. Anomalous behavior of«s(x) is observed
in the concentration interval 0.155<x<0.2 and is attributed to a change in the structure
of the edges of the conduction and valence bands in Hg12xCdxTe. © 2000 American Institute
of Physics.@S1063-777X~00!01211-1#
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The compound HgTe and its solid solutions with ca
mium telluride, Hg12xCdxTe, at a certain concentrationx
belong to the class of gapless semiconductors, since the
tom of the conduction band in them touches the top of
valence band.1 A zero energy gap between these ban
which belong to the same representationG8, makes for a
dependence of the static dielectric permittivity« on the wave
vectorq of the form2

«~q!5«L1
3p2e2mn

2\2q
, ~1!

wheree is the charge of an electron,mn is the mass of the
electrons at the bottom of the conduction band, and«L is the
contribution to the dielectric permittivity from all the band
other thanG8. The singularity in~1! for q→0 is due to the
anomalously high polarizability of the electron–ho
vacuum. In the absence of conduction electrons this sin
larity leads to effective screening of the charge of the vale
electrons on account of virtual transitions between the os
lating valence and conduction bands. When the electron
on to the conduction band from the donors or from the
lence band, the singularity in~1! is suppressed, and the ele
tron gas becomes degenerate.1 Then, as a consequence of th
Moss–Burstein effect, virtual transitions are possible only
energiesE>EF , whereEF is the Fermi energy. Therefore
in an impure gapless semiconductor the static dielectric
mittivity «s has a finite value and grows with decreasi
electron concentration according to the law:3

«s5«L1
8e2mn

p\2kF

, ~2!

where the wave vectorkF corresponding to the Fermi energ
is related to the electron concentrationN in the usual way:
kF

353p2N. This dependence leads to a weakening of
Coulomb interaction at large distances, and this is ma
fested, in particular, in a decrease in the bound-state ene1

and in the scattering cross section at a Coulomb center4 It
follows that the value of the static dielectric permittivity«s
8531063-777X/2000/26(11)/4/$20.00
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plays a role of some importance in the physics of gapl
semiconductors. However, until now there have been no
rect experimental studies of«s . We have therefore measure
«s at liquid-helium temperature in HgTe samples with diffe
ent concentrationsN of free charge carriers and in samples
the solid solutions Hg12xCdxTe with different mole fractions
x of cadmium telluride. The most careful measureme
of «s were made in the region of the zero-gap state
Hg12xCdxTe.

EXPERIMENT

To establish the relation between«s and N in single-
crystal samples ofn-type Hg12xCdxTe with different values
of x, it is necessary to determineN and the cyclotron effec-
tive massmc experimentally. This can be done by the met
ods of helicon interferometry, nonresonant cyclotron abso
tion ~NCA!,5 and the Shubnikov–de Haas~SdH! effect at
microwave frequencies.6

A study of the derivative of the reflection coefficien
with respect to magnetic field,dR/dH, was done on a radio
spectrometer having a design permitting measurements in
Faraday and Voigt configurations, respectively, with circu
and linear polarizations of the microwave field in the res
nant cavity. The coupling of the cavity with the sample w
effected through an aperture in a diaphragm placed in fr
of the aperture coupling the cavity with the waveguide.
necessary a sample of a certain size could be placed in
cavity at an antinode of the microwave electric or magne
field. Replaceable cylindrical cavities of the absorbing ty
for the TE112 mode, tuned to the frequenciesf 1536.04 GHz
and f 2526.1 GHz, were used. Changing from operation
the radio spectrometer in the Faraday configuration to op
tion in the Voigt configuration was done by rotating the ele
tromagnet by 90°. The fieldH of the electromagnet wa
measured by a nuclear magnetometer and could be varie
the interval 0–16 kOe. The temperature of the sample du
the studies was monitored to an accuracy of60.05 K and
stabilized to a precision of60.02 K by means of a specia
apparatus.7
© 2000 American Institute of Physics
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The samples studied were in the form of disks 5–6 m
in diameter and 0.8–1.5 mm thick; their surfaces were m
chanically polished and then immediately prior to the expe
ment were chemically polished in a 5% solution of bromi
in methanol. The composition and uniformity of the samp
were determined by means of a microanalyzer. The data
the samples studied are presented in Table I.

Measurements on sample No. 3 at 4.2 K in the Fara
configuration showed that for the extraordinary wave1! the
curvedR/dH is an oscillatory function of the magnetic fiel
~Fig. 1!. The extrema of this curve are shifted to lower ma
netic fields as the thickness of the sample is decreased; th
evidence that we are observing Fabry–Perot size resona
in this case. The position of the peak observed in a l
magnetic fieldH1'460 Oe does not depend on the thickne
of the sample. When the direction of the external magn
field is changed to the opposite, the extrema were not
served on thedR/dH curve. In the Voigt configuration the

TABLE I. Physical parameters of the Hg12xCdxTe samples.

Note: The asterisk indicates samples on which the Shubnikov–de H
effect was observed.
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dR/dH curve is also oscillatory~inset in Fig. 1!, and its
extrema in the magnetic fields do not coincide with the e
trema observed on thedR/dH curve in the Faraday configu
ration. The positions of these extrema in the magnetic fi
also remained unchanged as the sample thickness and
working frequency of the radio spectrometer were chang
In addition, analysis of the curve showed that the reflect
coefficient is an oscillatory function of the magnetic fiel
with a period of 1/H.

On the basis of the experimental data and in accorda
with the theoretical ideas about the propagation of magn
plasma waves in cold solid-state plasma,8 we can state un-
equivocally that: 1! the peak observed on thedR/dH curve
at a low magnetic fieldH1 corresponds to the nonresona
cyclotron absorption~NCA!, which is due to conduction
electrons; 2! the oscillations of thedR/dH curve in the Far-
aday configuration are due to the propagation of a heli
wave in the sample and correspond to Fabry–Perot re
nances; 3! the oscillations ofdR/dH in the Voigt configura-

FIG. 2. Dependence of the static dielectric permittivity on the concentra
of conduction electrons in samples of Hg0.89Cd0.11Te ~a! and HgTe~b!. s —
experiment,d — calculation.

as

FIG. 1. Oscillations of the derivative of the reflection coefficient with r
spect to the magnetic field in sample No. 3, recorded in the Faraday
Voigt ~inset! configurations at 4.2 K.
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855Low Temp. Phys. 26 (11), November 2000 Prozorovski  et al.
tion are due to the microwave SdH effect. The observation
quantum oscillations in this experiment is possible when
Fermi level is fixed at an acceptor level for this material.1,6

Thus, using our technique,5 we determine«s , N, andmc

from thedR/dH curve, the oscillations of which correspon
to Fabry–Perot resonances and are due to a change in
effective dielectric permittivity of the sample,«eff5«s

2@vp
2/v(v6vc2 j /t)#, with changing external magneti

field, wherevp54pe2N/mc , vc5eH/mcc, c is the speed
of light, v is the working angular frequency of the rad
spectrometer,j 5A21, andt is the momentum relaxation
time of the conduction electrons.

The reliability of the results obtained was confirmed
the fact that the values ofN determined from the quantum
oscillations observed in the Voigt configuration6 agree within
the experimental error limits with the values obtained
helicon interferometry.

The calculated values of«s were determined from the
expression

«s5«L1
8e2

p F mc

\2~3p2N!1/3
2

~3p2N!1/3

Eg
G , ~3!

which was obtained from relation~2! by substituting into it
the expressions forkF andmn in the form:1

mn5
mc

112E/uEgu
, where E5EF5

\2~3p2N!2/3

2mn
.

HereEg is the width of the band gap, which was not dete
mined experimentally but was calculated according to Re
as follows:

Eg~x,T!520.30211.93x15.3531024T~122x!

20.81x210.832x3 ~4!

~all of the terms in formula~4! are given in electron-volts!. In
addition,«L was calculated by the formula9

«L520.5215.6x15.7x2. ~5!

The parameters of the samples necessary for finding
comparing the experimental and theoretical values of«s at
different values ofN andx were determined on the basis
the existing theoretical ideas and experimental data. The
ues of these parameters are given in Table I.

DISCUSSION AND CONCLUSIONS

The calculated and experimental curves of«s(N) for
HgTe and Hg0.98Cd0.11Te are presented in Fig. 2. It is see
that the function«s(N) is of the same character, i.e.,«s(N)
decreases with increasingN in both cases, but there are qua
titative differences. As we see from Fig. 2, the disagreem
becomes large asN decreases. We attribute the quantitati
difference in the calculated and experimental values
«s(N) to the fact that expression~2! is of an extremely ap-
proximate nature and reflects only the qualitative variat
without any claim to quantitative accuracy.4

Figure 3 shows the dependence of«s on the mole frac-
tion of CdTe in Hg12xCdxTe. The concentration of conduc
tion electrons in the samples in this case varied over
range (5.8–8)31014 cm23. As we see from the figure, th
experimental curve of«s(x) in the interval 0,x,0.158 has
f
e

the

-
1

nd

l-

nt

f

n

e

the same character as the calculated curve. In the inte
0.158<x<0.178 the experimental curve«s(x)5const. Then,
for x.0.178 the experimental value of«s(x) decreases
sharply and approaches the calculated value, which is in
pendent ofN. The calculation of«s(x) in the interval 0<x
<0.16 was done with the use of expressions~3!–~5!, while
for x.0.16 it was done using~5!, since in that case, accord
ing to Refs. 1 and 4,«s is independent ofN asuEgu→0. The
fact that the calculated and experimental values of«s for x
>0.2 are close is evidence that the static dielectric perm
tivity depends on the concentration of conduction electro
only in gapless semiconductors, and it confirms the relia
ity of our experimental data.

We attribute the difference in the character of the var
tion of the calculated and experimental curves of«s(x) in the
interval 0.155<x<0.2 ~corresponding to217.6 meV<Eg

<59.6 meV) to the change in the structure of the edges
the conduction and valence bands which, according to R
10–12, occurs in solid solutions based on HgTe at val
Eg'620 meV. Those papers give evidence that at th
values ofEg an inversion of theG6 and G8 bands occurs.
This means that the equalityEg50 does not hold in these
solid solutions. Then, as a result of anomalous behavio
the structure of the edges of theG6 andG8 band as a function

FIG. 3. Static dielectric permittivity in Hg12xCdxTe as a function of the
CdTe mole fraction at 4.2 K.s — experiment,d — calculation.
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of the value ofEg , an anomalous change of«s(x) occurs at
these values ofEg .

Thus it follows from what we have said that in gaple
solid solutions Hg12xCdxTe the static dielectric permittivity
depends on the band parameters and on the concentrati
free charge carriers, and the character of this depend
agrees with the theoretical predictions except in a region
values of Eg for which the structure of the edges of th
conduction and valence band is disrupted.

*E-mail: prohorov@pr.fti.ac.donetsk.ua
1!The extraordinary wave in the Faraday configuration (kiH) is the wave

whose polarization direction corresponds to the direction of the cyclo
rotation of the free charge carriers.
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Analog of the Gru ¨ neisen parameter for orientational excitations in the low-temperature
phase of fullerite C 60
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A theoretical analysis of the heat capacity and thermal expansion of the low-temperature sc
phase of fullerite C60 is made, based on the concepts of double-well orientational states
of the molecules — the pentagonal and hexagonal configurations. To describe the coupling
of the orientational states of the molecules with macroscopic deformations of the crystal lattice, it
is assumed that the deformations contribute corrections to the energy parameters
of the double-well states, and a parameterg(or) is introduced which is equivalent to the
Grüneisen parameter in the theory of the thermal expansion of harmonic crystals. It is shown
that this model can be used to obtain a qualitative description of the anomalies observed
in the thermal properties of fullerite C60 near the orientational glass temperatureTg.90 K, and
the possibilities for obtaining empirical estimates of the parameterg(or) are discussed.
© 2000 American Institute of Physics.@S1063-777X~00!01311-6#
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INTRODUCTION

It is known1 that the contribution of lattice vibrations t
the thermal properties of crystalline solids in the region
low temperatures and medium homologous temperatures
be described quite well by analyzing the thermal excitatio
of phonons in the harmonic approximation. In the case
molecular crystals a significant role can also be played
collective orientational vibrations~librons! and harmonic in-
tramolecular modes. This approximation is also effective
describing the thermal expansion of crystals, which is
nature anharmonic. In that case, following the ideas of M2

and Grüneisen,3 it is sufficient to assume the existence of
linear dependence of the harmonic oscillation frequencyvs

on the components of the lattice strain tensor« ik . For crys-
tals of the cubic system this dependence is conveniently w
ten in the formvs

(«)5vs
(0)(12gs« i i ), wherevs

(0) and vs
(«)

are the eigenfrequencies of the harmonic oscillations of
undeformed and deformed crystal, respectively,« i i 5«11

1«221«33 is the dilatation component of the strain, andgs is
a constant that has come to be called the Gru¨neisen param-
eter for the vibrational mode of indexs. In those cases whe
the thermal motion of the crystal is determined by the ex
tation of oscillations of a single type with identical valu
gs5g, the Grüneisen parameter is connected by simple th
modynamic relations with the temperature coefficient of v
ume expansionk, the isothermal compressive bulk modul
B(0), and the heat capacity per unit volume measured at c
stant volume,CV :

g5
B~0!k

CV
. ~1!

In solid-state physics the Gru¨neisen parameter is re
garded as be one of the most important characteristic
anharmonicity of crystal lattices. Since for most crystals
values ofCV , B(0), andk can be independently measured
8571063-777X/2000/26(11)/5/$20.00
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direct physical methods, one can use the thermodynamic
lation ~1! as an empirical check on the correctness of
Mie–Grüneisen approach to the description of the therm
expansion of a given crystal in a given temperature interv
The empirical value of the right-hand side of relation~1! is
called the thermodynamic Gru¨neisen parameter of the crys
tal. The simplest criterion of correctness of the Mie
Grüneisen approximation is the absence of temperature
pendence~or a sufficiently weak temperature dependence! of
the thermodynamic Gru¨neisen parameter determined by re
tion ~1!. If the empirical values of the right-hand side of~1!
have pronounced temperature anomalies, that would be
dence that an important role in the thermal motion of t
crystal is being played by several different types of harmo
excitations with different values ofgs or by nonlinear exci-
tations which are strongly coupled to the macroscopic de
mations of the crystal lattice. An example are the anoma
detected near the critical temperatures of lattice phase t
sitions. These anomalies are the result of a loss of mech
cal stability for a certain fraction of the collective vibration
degrees of freedom and the appearance of strong anha
nicity in the motion of the crystal with respect to these d
grees of freedom.

In the experimental study of the thermal properties of
molecular crystal fullerite C60 in the low-temperature region
three pronounced anomalies of the thermodynamic Gr¨n-
eisen parameter have been observed.4–9 The first of these is
observed near the phase transition from the high-tempera
fcc phase to the low-temperature sc phase (Tc5260 K!, at
which a partial orientational ordering of the C60 molecules
occurs. The second anomaly is observed near the orie
tional glass temperatureTg.90 K and is due to the specific
of the thermally activated transitions between two orien
tional states of the molecules — the so-called pentagonalp)
and hexagonal (h) configurations. Finally, another anoma
is observed at liquid-helium temperatures; it is apparen
© 2000 American Institute of Physics
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due to quantum effects in the anharmonic rotational mot
of the molecules, although other mechanisms are possib10

All of these low-temperature anomalies of the thermod
namic Grüneisen parameter of crystalline fullerite C60 are
consequences of two main circumstances:

— the influence of the rotational degrees of freedom
the molecules on the thermodynamic characteristics of
crystal is rather large;

— the anharmonicity of the rotational motion of th
molecules is extremely strong, and this has a substantia
fect on the character of the thermal excitation of the ro
tional degrees of freedom at both moderately low and v
low temperatures.

This means that in the analysis of the thermal expans
of fullerite C60 the Mie–Grüneisen approximation can b
used only for describing the phonon contribution, wh
treating the influence of the lattice deformation on the th
mal excitation of the rotational degrees of freedom will r
quire developing some other approaches.

In this paper we carry out a semimicroscopic analysis
the anomaly observed in the thermal expansion of fulle
C60 near the orientational glass temperatureTg and which is
due to the influence of the lattice deformations on the th
mal excitation of the hexagonal configurations of the m
ecules. General thermodynamic relations linking the therm
dynamic and rheological characteristics of fullerite with t
concentration and parameters of the orientational excitat
have been obtained by the authors in a previous pap11

Here we analyze in more detail the temperature depend
of the coefficient of thermal expansion of fullerite at tem
peratures nearTg and discuss the possibilities for obtainin
empirical estimates of the lattice–orientation interaction
rameter~an analog of the Gru¨neisen parameter!.

1. CONTRIBUTION OF THE ORIENTATIONAL EXCITATIONS
TO THE THERMODYNAMIC CHARACTERISTICS OF
FULLERITE

Let us consider the sc phase of fullerite, which exists
temperaturesT,Tc . In this phase the threefold symmet
axes of the C60 molecule are oriented along the space dia
nals of the unit cube~directions of thê 111& type!, but the
molecules can execute relative rotations about these ax
large angles. These rotations are braked by the comparat
low potential barriers due to the noncentral part of the
tentials of the intramolecular pair interaction. In the rotati
of the molecules, two types of minima of the angle dep
dence of the intermolecular interaction energy are realiz
global ~the p configuration! and local~the h configuration!.
The pentagonal and hexagonal configurations are sepa
by an energy barrier: if the symbolUp denotes the barrier fo
thep→h transition, then the barrier for the reverse transiti
h→p will have a valueUh5Up2D, where the symbolD
denotes the difference of the energies of thep andh configu-
rations.

Thus we single out a set of independent double-w
states from the set of orientational states of the fullerite m
ecules. We denote byNp andNh the volume concentration
of pentagonal and hexagonal configurations, and byN0

5Np1Nh the volume concentration of the double-well co
figurations. Strictly speaking, at the present time there
n
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only phenomenological ideas about the orientational state
the molecules in fullerite. It is clear that both librations of th
molecules and their relative rotations by large angles m
have a cooperative character, but there is no microsco
justification for the possibility of separating out the doub
well states in the description of the collective dynamics
the molecules. For this reason the microscopic meaning
the quantitiesN0 , Up , Uh , andD remain unclear, and they
should be regarded as phenomenological parameters o
theory subject to experimental determination. On gene
grounds one can conclude only that ifa is the length of the
edge of the unit cell, then 4<N0a3<24: the left-hand side of
this inequality corresponds to the number of molecules,
the right-hand side to the number of intermolecular bonds
the unit cell of the fcc structure.

In a state of thermodynamic equilibrium at temperatu
T the concentrations of thep and h configurations are de
scribed by the Boltzmann distribution and the balance re
tion:

n̄h5
N̄h

N0
5S 11exp

D

kTD 21

, n̄p5
N̄p

N0
512n̄h , ~2!

where a bar over a symbol denotes the equilibrium state.
can also introduce average time for the thermally activa
destruction of thep and h configurations,tp,h , which are
given by an activational formula of the form

tp,h5t0 exp
Up,h

kT
, ~3!

wheret0 is the characteristic period of the librations of th
molecules, which should be regarded as yet another phen
enological parameter of the theory. Then time dependenc
the nonequilibrium concentration of defecth configurations
nh(t) ~orientational relaxation! is described by the simple
kinetic equation

t
]

]t
nh1nh5

t

tp
, t5

tpth

tp1th
. ~4!

Here t(T) plays the role of the average time for rela
ation to the thermodynamic equilibrium distribution of thep
and h configurations in the bulk of the fullerite crystal at
given temperature. If a certain laboratory timet lab is speci-
fied, then one can introduce an orientational glass temp
ture Tg by defining it as a solution of the equation

t~T!5t lab. ~5!

For T.Tg the thermally activated transitions between thep
and h configurations occur relatively rapidly on the labor
tory time scale, and the state of the fullerite can be regar
as a sort of orientational liquid; forT,Tg there is insuffi-
cient time for thermodynamic equilibrium to be establish
in the double-well orientational states over standard labo
tory times, and the the fullerite on cooling will enter an o
entational glass state. Experiment shows that fort lab;104 s
the temperatureTg.90 K.12

The influence of orientational relaxation of the mo
ecules on the thermal expansion of fullerite can be descri
in analogy with the Mie–Gru¨neisen approach: for this it is
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necessary to introduce deformation corrections to the par
eters of the double-well orientational statesUp , Uh , and
D:11

Up,h
~«! 5Up,h2vp,h« l l , D~«!5D2vD« l l . ~6!

Herevp , vh andvD5vp2vh are the constants of the defo
mation potential. Using the experimental results on the in
ence of hydrostatic pressure on the orientational glass t
sition of fullerite, one can obtain an empirical estimate
the values of the parametersvp and vh : vp.vh.2.0 eV
~with a relative accuracy of;10%).11

Relations~2! and~6! serve as the basis of a microscop
~or, more precisely, semimicroscopic! description of the con-
tribution of the orientational excitations to the thermal ch
acteristics of fullerite. Let us now turn to a description of th
contribution in the framework of phenomenological therm
dynamics. For this, in an analysis of the thermodynamic
tentials of the crystal, in addition to the temperatureT and
strain « ik one should also consider the concentrationnh of
the hexagonal excitations as a separate thermodynamic
able. Accordingly, the increment of the free energy of fulle
ite due to arbitrarily small increments of temperatureQ,
strain « ik , and concentration of hexagonal excitationsnh

5nh2n̄h can be written in the form of an expansion:11

F̃~T1Q,nh ,« ik!2F0~T!

52
1

2
j~T!Q21

1

2
h~T!nh

21
1

2
l iklm~T!« ik« lm

2b~T!Qnh2a~T!Q« ikd ik2g~T!nh« ikd ik1 . . .

~7!

This expansion takes into account the cubic symmetry of
crystal;d ik is the Kronecker delta,F0(T) is the free energy
of the initial equilibrium state of the crystal at temperatureT,
and the expansion coefficientsa, b, g, j, h, andl iklm are
temperature-dependent parameters of phenomenolo
thermodynamics; a summation over repeated coordinate
dices is understood.

At specified strain« ik and temperatureT1Q, minimiza-
tion of the free energy~7! with respect to the variablenh will
give the equilibrium distribution of hexagonal excitations:11

n̄h5n̄h
~«!~T1Q!2n̄h~T!5

g

h
« l l 1

b

h
Q. ~8!

In the case of reversible thermodynamic processes, the
dition of an extremum of the free energy implies the follo
ing expressions for the heat capacity per unit volumeCV , the
volume coefficient of thermal expansionk, and the bulk
modulus defectB(`)2B(0) (B(`) andB(0) are, respectively,
the adiabatic and isothermal values of the bulk modulus!:

CV5TS j1
b2

h D , k5
a

B~0!
1

gb

B~0!h
,

~9!

B~`!2B~0!5
a2

j
1

g2

h
.

In the phenomenological approach, the thermodyna
Grüneisen parameterg is given by the expression
-

-
n-
r

-

-
-

ri-
-

e

cal
n-

n-

ic

g5
B~0!k

CV
5

ah1gb

T~b21jh!
. ~10!

The explicit form of the temperature dependence ofF0

and the coefficients of the expansion~7! can be obtained
only as the result of an analysis of the thermal motion of
crystal in the framework of statistical mechanics. Here
coefficientsa, j, andl iklm will be determined by harmonic
excitations~phonons, librons, intramolecular modes!, while
h, b, andg will be determined by the double-well orienta
tional states. It is seen from relations~9! that CV , k, and
B(`)2B(0) can be written as sums of additive contributio
from oscillatory excitations and double-well orientation
configurations~the first and second terms in~9!, respec-
tively!, whereas in formula~10! for the thermodynamic
Grüneisen parameter such a separation cannot be done.
can introduce the concepts of oscillatoryg(osc) and orienta-
tional g(or) thermodynamic Gru¨neisen parameters, defined b
the relations

g~osc!5
B~0!k~osc!

CV
~osc!

5
a

Tj
, g~or!5

B~0!k~or!

CV
~or! 5

g

Tb
. ~11!

However, in the generalgÞg(osc)1g(or).
Since the thermal excitation of an isolatedh configura-

tion is accompanied by an increase in the energy of the
lerite by an amountD, one can easily use Eq.~2! to obtain a
microscopic expression describing the contribution of su
excitations to the heat capacity per unit volume CV

(or)(T) for
an infinitely slow change in temperature:

CV
~or!~T!5N0DS dn̄h

dT D
V

5
N0D2n̄p~T!n̄h~T!

kT2
. ~12!

Relations~2! and ~6! can also be used to describe th
microscopic analog of expression~8!, which determines the
equilibrium incremental contribution to the concentration
hexagonal excitations due to specified small increments
strain« i j and temperatureQ. In the linear approximation in
« l l andQ we get

n̄h
~«!~T1Q!2n̄h~T!5n̄p~T!n̄h~T!S vD

kT
« l l 1

D

kT2
Q D .

~13!

Comparing relations~8!, ~9! and ~11!–~13!, we obtain
formulas which give the microscopic meaning of the para
etersg, b, h, andg(or):

g~or!5
vD

D
, g5N0vD , b5

N0D

T
, h5

kTN0

n̄p~T!n̄h~T!
.

~14!

From this we see that the analog of the Gru¨neisen pa-
rameter for orientational excitations is the dimensionle
constant of the deformation potential, which contains the
fluence of the deformation on the difference between
local and global minima of the angle dependence of the
termolecular interaction energy.
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2. ANOMALIES OF THE HEAT CAPACITY AND THERMAL
EXPANSION NEAR THE ORIENTATIONAL GLASS
TEMPERATURE

In the previous Section we showed that the lo
temperature heat capacity of fullerite is given by the sum

CV5CV
~osc!1CV

~or! ,

where CV
(osc)5Tj(T) is the total contribution of the har

monic excitations, andCV
(or)(T) is the contribution of the

double-well orientational states. Using formula~12!, we can
write the temperature dependence of the heat capacity
veniently in the form

CV~T!5CV
~osc!~T!1kN0FS D

kTD ,

~15!

F~x!5
x2ex

~11ex!2
.

The functionF(D/kT) is plotted in Fig. 1 for several differ-
ent values of the parameterD. It should be recalled that thi
function describes the orientational component of the h
capacity if it is measured for a sufficiently slow change
temperature. In any real experiment, however, the temp
ture is changed at a certain finite rate, and so the second
in formula ~15! can be used for interpretation of experime
tal data only in the temperature intervalTg,T,Tc , while at
lower temperatures~in the orientational glass state! one must
assume thatF>0 andCV

(or)(T,Tg)[0.
The analysis done in Ref. 9 showed that the total ro

tional component of the heat capacity, consisting of the s
of CV

(or) and the librational contribution, turns out to be
rather small part of the total heat capacity. Therefore,
earlier conjecture11 that the orientational excitations mak
the governing contribution to the thermodynamic charac
istics of fullerite atT.Tg must be incorrect~at least with
regard to the heat capacity!. However, precision measure
ments of the heat capacity near the orientational glass t
peratureTg>90 K have made it possible to extract th
contribution.13,14 This possibility arises becauseCV

(or)(T) has
a nonmonotonic character in this region~Fig. 1!, whereas the

FIG. 1. Plots of the functionF5CV
(or)(T)/kN0 in Eq. ~15! for several values

of D close to the empirical values of this parameter.13,15–18 The symbols
(j) show schematically the temperature dependence of the heat cap
when the temperature is changed at a finite rate forD/k5140 K.
-

n-

at

a-
rm

-
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remaining components of the heat capacity nearTg are
monotonic and relatively weak functions of temperatu
Owing to the orientational glass effect, this nonmonotonic
is ‘‘sharpened’’ further:CV

(or).0 at temperatures belowTg ,
which gives rise to a smeared jump on the temperature
pendence of the total heat capacity near the orientatio
glass temperature. The value of the temperature at which
anomaly is observed and the size of the jump depend on
rate of change of the temperature during the measureme
the heat capacity, and therefore the valueCV

(or)(Tg) deter-
mined by formulas~15! gives an upper bound on the size
the jump.

The experimental values of the jump in the heat capa
C(or)(Tg)>3.5 J•mole21K21 ~Ref. 13!, molar volume
V(Tg).418 cm3

•mole21 ~Ref. 9!, and parameterD.(11–
13)31023 eV ~Refs. 13 and 15–18! can be used to obtain
rough estimate for the phenomenological parameterN0 in the
theory of double-well orientational states:

N05
CV

~or!~Tg!

kF~D/kTg!
.~1.421.8!31021 cm23. ~16!

This value corresponds to the lower boundN0a3.4 given in
the Introduction.

The temperature dependence of the volume thermal
pansion coefficient, according to formula~9!, ~14!, and~15!,
is described by the relation

k5k~osc!~T!1
g~or!CV

~or!~T!

B~0!

5k~osc!~T!1
kN0vD

B~0!D
FS D

kTD . ~17!

It has been observed experimentally9,13,14that the anomalies
of the coefficient of thermal expansion and of the thermo
namic Grüneisen parameter of fullerite at temperatures n
Tg are considerably stronger than the anomaly of the h
capacity, and the assumption that the the orientational re
ation makes the predominant contribution to these charac
istics does not seem unrealistic. This circumstance is
dence of an anomalously large absolute value of
parameterg(or).

We note that in the process of cooling fullerite atT
→Tg one observes a rather sharp decrease ink followed by
a jumplike increase at the transition to the regionT,Tg .
According to formula~17!, this means that the orientationa
Grüneisen parameter has a negative value. If we use
value measured in Ref. 13 for the jump in the thermal e
pansion coefficient,k (or)(Tg).2431025 K21, and the
valueB.1.131011 dyne•cm22 for the bulk modulus,19 then
we obtain the following empirical estimate forg(or):

g~or!5
vD

D
5

k~or!~Tg!B~0!~Tg!

kN0F~D/k/Tg!
.255. ~18!

We note that the experimental values of the parame
D, B(0), and especiallyk (or)(Tg) have a rather large scatte
and therefore the estimate~18! for g(or) should be regarded
as extremely rough, giving only an idea of the order of ma
nitude of this parameter. The values ofvD obtained here and
in Ref. 11 differ not only in order of absolute magnitude b

ity
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also in sign. This discrepancy is due to the fact that in R
11 we make use of the mistaken assumption mentio
above and also the data on the heat capacity of fullerite g
in Ref. 20, which differ substantially from the data of oth
investigators.

Since the total heat capacity near the orientational g
temperature has a value.80 J•mole21K21 ~Ref. 9!, which
is considerably larger than its orientational compon
C(or)(Tg).3.5 J•mole21K21 ~Ref. 13!, the anomalous tem
perature dependence of the total thermodynamic Gru¨neisen
parameter of fullerite nearTg , noted in Ref. 9, is mainly due
to the orientational component of the thermal expansion
efficient,k (or)(T). According to~10!, ~11!, and~17!, we have

g5g~osc!2
kN0

CV~T!
UvD

D UFS D

kTD . ~19!

This formula describes the jumplike (;2.5-fold! change ing
at the transition through the temperatureTg .

Let us conclude this Section by discussing another p
sibility for obtaining empirical estimates for the paramete
of the double-well model of the orientational states of f
lerite, based on experimental study of the internal frictio
The resonant interaction of elastic vibrations of the crys
with the double-well orientational states of the molecu
leads to the existence of a peak on the temperature de
dence of the internal frictionQ21. The temperatureTm

at which this peak is observed is determined by the equa
vt(Tm)51 @v is the angular frequency of the vibration
and t is the orientational relaxation time~4!#. The height
of the peakQ21(Tm) is proportional to the value of the
orientational component of the bulk modulus defe
@B(`)2B(0)# (or)5g2/h:11

Q21~Tm!5
AN0kTm

B~`! S vD

D D 2

FS D

kTm
D . ~20!

Here A>0.5 is a numerical coefficient whose exact val
depends on the orientation of the wave vector of the vib
tions. In Ref. 20 the peakQ21(Tm) was observed at a tem
peratureTm5215 K and had a height of.131022. Substi-
tuting these values into formula~20!, we obtain the estimate
uvD /Du.21, which is considerably smaller than the value
~18! obtained on the basis of thermal measurements. T
the exact value of the parameterg(or)5vD /D remains an
open question.

CONCLUSION

This study is a continuation of our previous work.11 Here
we have separated out and analyzed in detail the compon
of the heat capacity and thermal expansion of the lo
temperature phase of fullerite C60 due to thermal excitation
of the double-well orientational states of the molecules
the pentagonal (p) and hexagonal (h) configurations. The
relation between the orientation states of the molecules
the macroscopic strains of the crystal lattice is described
terms of renormalizations of the energy parameters of thp
andh configurations in a linear approximation in the dilat
tion. The deformational contribution to the energy differen
of thep andh configurations is characterized by a parame
g(or), which is equivalent to the Gru¨neisen parameter in th
f.
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theory of the thermal excitation of harmonic vibrations of t
crystal. It is shown that the orientational components of
heat capacity and thermal expansion of fullerite are prop
tional to a nonmonotonic function of temperature, and
orientational glass effect ‘‘sharpens’’ this nonmonotonic
and leads to an abrupt~jumplike! change in the thermal prop
erties near the glass temperatureTg.90 K. This conclusion
gives a qualitative explanation for the experimentally o
served anomalies of the heat capacity, thermal expans
and total thermodynamic Gru¨neisen parameter of fullerite a
temperatures nearTg . A comparison of the results of th
theory with the experimental data has yielded empirical
timates for the volume concentration of double-well orien
tional states and for the orientational Gru¨neisen parameter
We have also noted and corrected some inaccuracies in
estimates made in our previous paper.11

The authors are sincerely grateful to V. G. Manzhelii,
M. Loktev, M. A. Strzhemechnyi, and A. I. Prokhvatilov fo
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pects of the problem of the thermal properties of fullerite
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Absorption of electromagnetic field of the millimeter-wave band in perfect dielectric
crystals
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The dielectric losses in high-quality crystals of sapphire, ruby, fluorite, and quartz are measured
at a frequency of 36 GHz in the temperature range 4.2–300 K by the spherical dielectric
resonator method. The absorption coefficient of the electromagnetic field per unit wavelength
G in the crystals is found to agree both in order of magnitude and in its temperature
dependence with the Gurevich theory, which treats the absorption as being the result of an
electrophonon interaction of the field with acoustical phonons as a result of the anharmonicity
of the crystal lattice. It is found that the crystals studied have extremely low absorption
in the millimeter-wave band even at moderately low temperatures~e.g., for sapphireG'1028 at
T'40 K!. Measurements are made of the residual absorption of the electromagnetic field
at low temperatures, which is due to a single-phonon process of field absorption at defects of the
crystal structure. It is found that the temperature dependence of the absorption of an
electromagnetic field in a crystal is correlated with that for the absorption of hypersound.
© 2000 American Institute of Physics.@S1063-777X~00!01411-0#
e
ve
d
v
ns
tr

d
a

m
no

no
r-
o
o
re
s
c
t
t

em
en
d
b
le

ie
n
b

o-
non
lter-
ers
on-
is,
ich,

ter-
s is
ss is
ha-
ys-
in-
s on
ui-

on
lec-

ly
, for
ient

of
d

c-
te.
er

the
syn-
As we know, real nonconducting crystals have rath
large dielectric losses at millimeter and submillimeter wa
lengths. The nature of these losses is usually attribute
various charged defects, which serve as a source of con
sion of the electromagnetic field into acoustical phono
which constitute a heat bath. These charged defects, dis
uted randomly in the crystal, execute4 periodic motion in the
field of the electromagnetic wave. Since the charges are
rectly coupled to the crystal lattice, their motion is accomp
nied by emission of acoustical phonons. The conversion
electromagnetic field into phonons, from a quantu
mechanical point of view, can be treated as a single-pho
process, in which the absorption of a photon of frequencyv
is accompanied by the creation of a single acoustical pho
of the same frequency.1 ~In ideal crystals this process is fo
bidden by the selection rules — energy and momentum c
servation.! It is clear that such a direct conversion does n
directly involve the phonon bath as a whole, and it is the
fore independent of temperature. Multiphonon processe
electromagnetic field absorption on account of lattice defe
are also possible; they are considered in Ref. 2. Since
charges created by these defects are directly coupled to
atoms of the lattice, their motion perturbs the phonon syst
altering the phonon distribution function. The increase in
tropy necessary for restoration of thermal equilibrium lea
to absorption of the electromagnetic field. Multiphonon a
sorption of electromagnetic field, unlike the case of sing
phonon absorption, can have a rather strong temperature
pendence.

The absorption of electromagnetic fields at frequenc
less than the Debye frequency can also occur in crystals
containing defects. As was shown in the papers
8621063-777X/2000/26(11)/3/$20.00
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Gurevich,3,4 the conversion of electromagnetic field into ph
nons can occur on account of the so-called electropho
interaction. This interaction comes about because the a
nating electric field, in polarizing the bound electrons, alt
the interaction constants of the atoms with the lattice in n
polar crystals. In polar crystals the field, in addition to th
also causes a relative displacement of the sublattices, wh
on account of anharmonicity, leads to a change in the in
action between atoms. Here the most efficient proces
three-phonon absorption, since the single-phonon proce
forbidden by the conservation laws. The absorption mec
nism is analogous to Akhiezer absorption of sound in cr
tals. The electric field of the wave in the electrophonon
teraction alters the frequencies of the acoustical phonon
account of the anharmonicity of the lattice. Then a noneq
librium state with a higher entropy is formed in the phon
gas, and the energy required for this is drawn from the e
tromagnetic field.

Gurevich absorption is extremely small and is strong
dependent on frequency and temperature. For example
nonpolar, e.g., hexagonal, crystals, the absorption coeffic
per unit wavelengthG}vT5, whereT is the temperature; for
cubic crystalsG}v2T4. For sapphire, e.g., at a frequency
36 GHz, the absorption is 1025 at room temperature an
10213 at 15 K. For piezoelectric crystals the theory3 predicts
a substantially larger absorption.

In real crystals containing defects of the crystal stru
ture, all of the aforementioned mechanisms contribu
Therefore, the identification of any one of them is a rath
difficult problem in the general case.

The technological progress that has been achieved in
interests of quantum electronics has made it possible to
© 2000 American Institute of Physics
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thesize crystals of sapphire, ruby, and fluorite, as well
quartz, having extremely small numbers of structural defe
This makes it possible to investigate their dielectric losse
the millimeter-wave range and to estimate the relative e
ciency of the absorption mechanisms indicated above. H
we describe the results of measurements of the tempera
dependence of the absorption of an electromagnetic field
frequency of 36 GHz in the temperature range from 4.2
300 K. For these measurements we have used the sphe
dielectric resonator~SDR! method developed previously
which is capable of measuring extremely low dielect
losses in crystals in the millimeter-wave band.5 Briefly, the
essence of this method is as follows. A sphere made of
material to be studied is used as an open spherical diele
microwave resonator. The diameter of the sphere is cho
such that the spherical dielectric microwave resonator
quasioptical system, in which ‘‘whispering gallery’’ mode
with radial index n.30, which have an ultrahigh qualit
factor Q, can be excited. Since the resonator is an o
spherical dielectric microwave resonator, in which the fie
of the electromagnetic ‘‘whispering gallery’’ modes are co
centrated in a thin layer near the spherical surface, the da
ing decrement for these modes is very sensitive to substa
on the surface that absorb field energy. For this reason,
ticular care was taken to remove all foreign substances f
the surface of the sphere. The resonators had a pre
spherical shape~not more than 20mm of ellipsoidal devia-
tion! and an optical surface finish polished to a roughnes
0.1 mm or less.

For excitation of the electromagnetic oscillations in t
SDR we used a dielectric-waveguide antenna, which wa
end-radiating rectangular waveguide completely filled wit
sapphire crystal. The antenna was placed near the surfa
the sphere in such a way that its electromagnetic field
superposed with the ‘‘whispering gallery’’ modes in th
SDR, the coupling coefficient lying in the range 0.3–0.5. T
electric field in the antenna was oriented along the three
crystallographic axis. In this arrangement the antenna exc
H modes, which have the highest Q.

BRIEF DESCRIPTION OF THE SAMPLES

Sapphire.The samples of this crystal, which were flu
grown by a hydrothermal method~the GOI method, named
for the State Optical Institute, St. Petersburg!, contained a
comparatively small number of dislocations (102–103 cm
22), and the angle of misorientation of the threefold cryst
lographic axis in the microtwin blocks of the structure d
not exceed 1°. The diameter of the sapphire SDR was 2
mm.

Ruby.The ruby crystals were synthesized by the V
neuil method and contained a 0.05% chromium impur
Since the Verneuil growth method is a substantially m
nonequilibrium method than the GOI method, these crys
were inferior to the sapphire crystals in respect to the per
tion of the crystal structure both in the number of disloc
tions and in the average angle of misorientation of the o
axis in the microtwin blocks. The diameter of the ruby SD
was 30.5 mm.

Quartz.We used high-quality natural crystals of Braz
ian quartz of the ‘‘extra’’ type, with high transparency and
s
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small number of dislocations. The diameter of the qua
SDR was 45 mm.

Fluorite. The fluorite crystals were synthesized by t
hydrothermal method and had a high degree of uniform
and transparency. They contained a 0.01% europium im
rity. The diameter of the fluorite SDR was 29 mm.

The Q of the SDRs, from which we determined the a
sorption coefficient of the electromagnetic field, was me
sured by a method described in Refs. 6 and 7. The result
the measurements are presented in Figs. 1 and 2. We
first of all that the experimental data are in qualitative agr
ment with the Gurevich theory. It was found~and this is one
of the main results! that the crystals studied have extreme
low absorption for millimeter-wave electromagnetic fiel
even at moderately low temperatures. For example, in s
phire the absorption, which is 1025 at room temperature
reaches 1028 when the crystal is cooled to 40 K.

On the whole, this agrees with the estimating formu
given in Refs. 3 and 4 and also with the data for sapph8

obtained by a less reliable method than that of Refs. 5 an
There is a total lack of existing experimental data on
dielectric losses in the millimeter-wave range in ruby, qua
and fluorite crystals at low temperatures. This circumsta
is due not so much to the low availability of perfect crysta
as it is to the fact that it was only comparatively recently th
an effective method was developed for measuring extrem
low dielectric losses.5,6

The higher level of dielectric losses in quartz and fluor
as compared to sapphire can be explained by the lower

FIG. 1. Temperature dependence of the electromagnetic absorption c
cientg in ruby ~1! and sapphire~2!. Curve3 shows the temperature depen
dence of the hypersound absorption per unit wavelength,a, in sapphire at a
frequency of 3 GHz.9
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bye temperature in these crystals. The higher loss in qu
as compared to fluorite is also in agreement with the con
sions of the theory as to the role of a center of symmetry
the absorption of electromagnetic fields.3 The dielectric
losses fall off sharply as the temperature of the crystal
lowered. The temperature dependence of the absorption
sapphire, ruby, and quartz is close to aT5 law, while that of
fluorite is close toT3.5; these findings agree with the theor
The sharp decrease in the absorption of the electromag
field is observed only down to a certain temperature, wh
is 50–60 K in the case of sapphire and ruby, 40 K for flu

FIG. 2. Temperature dependence of the electromagnetic absorption c
cientG in fluorite ~1! and quartz~2!. Curve3 shows the temperature depen
dence of the hypersound absorptiona in quartz at a frequency of 3 GHz.9
rtz
-

n

is
for

tic
h
-

rite, and 20 K for quartz. When the crystals are cooled be
these temperatures the sharp decline in the absorptio
slowed, and the curve of the temperature dependence
out to a plateau. The temperature-independent absorptio
the plateau region might be called the residual absorption
electromagnetic field. Since the absorption of a hyperso
wave in a dielectric crystal is directly due to a three-phon
process in which the phonons interact on account of an
monicity, the temperature dependence of the absorption o
electromagnetic field due to the anharmonicity of the vib
tions of the crystal lattice ought to be similar to the abso
tion of hypersound. This is demonstrated in Figs. 1 and
which show the corresponding curves for the temperat
dependence of the absorption of longitudinal hypersound9

The measured value of the residual absorption actu
sets a minimum achievable level of electromagnetic loss
curring in perfect dielectric crystals. Since the residual a
sorption does not depend on the temperature, it can be
sumed that it is due to a single-phonon process of absorp
at impurities and other microscopic defects of the crys
This view is supported by the fact that the level of residu
absorption in ruby, which contains chromium impurity ce
ters, is higher than that in sapphire.

*E-mail: ganap@ire.kharkov.ua
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The NATO Advanced Study Institute ‘‘Modern Trend
in Magnetostriction Study and Application’’ was held fro
May 22 to June 2, 2000, in Kiev, Ukraine. The co-directo
and main organizers were V. G. Bar’yakhtar~Ukraine!, V. V.
Eremenko~Ukraine!, M. R. J. Gibbs~UK!, H. Szymczak
~Poland!, and V. A. Sirenko~Ukraine!. The computer ser-
vices were provided by L. D. Demchenko, N. I. Makedo
skaya, and Yu. A. Shabakayeva~Ukraine!; local administra-
tors L. A. Chekal and T. N. Loshitskaya~Ukraine!.

The objectives of the ASI were to determine the state
the art in basic and applied research on magnetostriction
related phenomena, to define and prioritize directions of
vestigation in the future, to consider new materials for co
mon applications of magnetostriction-based devices, an
formulate new perspectives on magnetostriction phenom
and applications, using advances in materials design
technology. The specific topics included a general introd
tion to modern trends in magnetostriction study and appl
tion, the theory of magnetostriction and related phenome
rare-earth magnetostriction study and application, magn
striction of amorphous materials, CMR materials, giant m
netostriction in superconductors, structural study of mag
tostriction, industrial applications, and magnetostriction
nanostructured materials.

The phenomenon of magnetostriction was discove
more than 150 years ago@J. P. Joule, Philos. Mag.30, 76
~1847!#. Since that time there has been study of both ba
science and application in such areas as sound genera
magnetoacoustic transformers, actuators for opto-electr
systems, devices for nondestructive monitoring for qua
control, and devices for remote detection and ranging.
recent development of modern technologies~e.g., microfab-
rication! and materials~e.g., rare-earth-based bulk materia
and magnetic thin films! has created new opportunities fo
the study and application of magnetostriction. For exam
the discovery of giant magnetostriction makes it possible
particular, to generate ultrasound and to extend the app
tion of nondestructive monitoring techniques; the devel
8651063-777X/2000/26(11)/3/$20.00
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ment of cryogenic technologies gives new insight into forc
magnetostriction, namely into its irreversible compone
which is related to the magnetization-reversal and therm
activated processes involved in displacement of the dom
walls and flux lines, i.e., into stability of magnetic and s
perconducting devices, as well as into the giant magne
striction in rare-earth magnets~up to 1022). The new field of
interest in magnetostriction as the strain derivative of
magnetic anisotropy is relevant to the magnetic record
industry, particularly as recorded densities go beyond
Gbits/in2. As the physical dimensions of devices are reduc
the ratio of surface area to volume increases, and sur
anisotropy~magnetostriction! effects may become significan
in terms of ultimate switching speeds or noise floor. Min
turization within the sensor/actuator sector can also lead
such complications, as a result of which magnetostrict
materials may now become competitive with piezoelec
materials. There has been a resurgence of interest in pe
skite materials, particularly for their outstanding magneto
sistive properties. The fundamental mechanisms driving
observed effects are still being elucidated, but lattice dis
tion ~Jahn–Teller! and significant magnetostrictions appe
to play a part. There is an urgent need for coherent studie
this area.

Magnetic-field-induced giant magnetostriction has
cently been discovered in high-temperature superconduc
The magnetoelastic strains may limit the technical appli
tions of this important group of materials.

The spread of novel experimental techniques such
magnetic resonances, neutron scattering, and modern x
facilities into magnetostriction research allows high-reso
tion structural studies of magnetostriction and the differe
tiation of its surface and bulk components. It is timely
review and explore the various possibilities offered here, a
attempt to coordinate the use of large-scale facilities to ma
mize the scientific output.

The goals of the proposed ASI were the delivery of le
tures on new achievements and discussion of the prosp
© 2000 American Institute of Physics



ne
he
s

oo
e
th
a

he
et
th
o
on
t,
s
s
in
u

re
on

er

y

l
n

-
,

ak
d

le

er

l-
-

,

,

o

C.

a
s-

n

f

n-

ng

f
-

y,

nd

re-

te

ko
g,
-

o
ti-

,

ous

a,

.
s-
d
e,

te
-

-
and

o-

-
o-
b-

866 Low Temp. Phys. 26 (11), November 2000 Eremenko et al.
for the study and application of the aforementioned mag
tostriction effects among experts from the different branc
of science and industry and representing the leading team
the West and Eastern Europe. It is hoped that a more c
dinated and focused approach at both the level of fundam
tal science and demonstration applications will advance
subject significantly. Wide dissemination of the meeting m
terials via publications will be an important outcome. T
recent opening up of Eastern Europe makes such a me
practical, whereas previously much expertise lay beyond
reach of Western scientists. This ASI was the first forum
modern trends in magnetostriction study and applicati
Only a meeting of this kind, which, with NATO suppor
brought together the worldwide acknowledged specialist
the related fields, would be capable of meeting the goal
expediting the solution of existing problems and assess
future prospects. Nearly 70 experts from 14 European co
tries and the USA participated in the ASI. Sixteen lectu
were delivered by world-known experts on magnetostricti

• J. I. Arnaudas~Universidad de Zaragoza, Spain!,
‘‘Magnetostriction of rare-earth based thin films and sup
lattices’’;

• V. G. Bar’yakhtar~Institute of Magnetism, Ukraine!,
‘‘Magneto-acoustic resonance’’;

• J. M. Barandiaran~Departamento de Electricidad
Electronica, Universidad del Pais Vasco~UPV/EHU!,
Spain!, ‘‘Magnetoelasticity in amorphous ferromagnets’’;

• H. Chiriac ~National Institute of R&D for Technica
Physics, Romania!, ‘‘Giant magneto-impedance effect i
amorphous wires’’;

• B. Dabrowski, Z. Bukowski, S. Kolesnik, O. Chmais
sem, J. Mais, and C. W. Kimball~Department of Physics
Northern Illinois University, USA!, L. Gladczuk, A.
Wisniewski, A. Szewczyk, M. Gutowska, and H. Szymcz
~Institute of Physics; Polish Academy of Sciences, Polan!,
‘‘Spectacular magneto-related properties of comp
oxides’’;

• V. V. Eremenko and V. A. Sirenko~Institute for Low
Temperature Physics & Engineering, Ukraine!, ‘‘Magneto-
striction and spin-flopping of uniaxially compressed antif
romagnets. Comparison with superconductors’’;

• A. Gerber ~School of Physics and Astronomy, Te
Aviv University, Israel!, ‘‘Magnetostriction in superconduct
ors’’;

• M. R. Gibbs ~Department of Physics & Astronomy
The University of Sheffield, UK!, ‘‘Magnetostriction of
multilayer systems’’;

• M. Hirscher~Max-Planck-Institut fur Metallforschung
Germany! and T. Reininger~Festo AC & Co., Germany!,
‘‘Fundamental investigation and industrial applications
magnetostriction’’;

• M. R. Ibarra, J. M. De Teresa, P. A. Algarabel,
Marquina, and B. Garcia-Landa~Departamento de Fı´sica de
la Materia Condensada and ICMA, University of Zaragoz
CSIC, Spain!, ‘‘Magnetostriction in colossal magnetoresi
tance manganese oxide perovskites’’;

• A. Ludwig and E. Quandt~caesar, center of europea
advanced studies and research, Germany!, ‘‘Rare earth tran-
sition metal thin films and devices’’;

• R. F. Pettifer~Department of Physics, University o
-
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Warwick, UK!, ‘‘Structural study of magnetostriction’’;
• K. V. Rao ~Department of Materials Science and E

gineering~MSE!, Royal Institute of Technology, Sweden!,
‘‘Local magnetostriction determination and mapping usi
atomic force microscopy’’;

• H. Szymczak~Institute of Physics, Polish Academy o
Science, Poland!, ‘‘Magnetostriction in heterogeneous mag
netic systems’’;

• Ruqian Wu ~Department of Physics and Astronom
California State University, USA!, ‘‘First principles determi-
nation of magnetostriction in surfaces, bulks, alloys a
compounds.’’

The following posters and progress reports were p
sented:

– A. I. Abramovich~Physics Department, Moscow Sta
University, Russia!, ‘‘Giant volume magnetostriction in
GMR manganites Re12xSrxMnO3 (Re5 Sm, Nd)’’;

– G. E. Grechnev and A. Baranovskiy~Institute for Low
Temperature Physics & Engineering, Ukraine!, ‘‘Origin of
magnetovolume effect in GdAl2 and GdNi2 compounds’’;

– A. B. Beznosov, E. L. Fertman, and V. V. Eremen
~Institute for Low Temperature Physics & Engineerin
Ukraine!, ‘‘Electronic structure & magnetostrictive sensitiv
ity of metallic glasses Fe–B’’;

– C. Canalias, J. Wittborn, Ni. Polushkin, and K. V. Ra
~Engineering Materials Physics Division, MSE, Royal Ins
tute of Technology, Sweden!, ‘‘Magnetic studies of
nanoscale laser patterned structures’’;

– Chernyavsky Oleksandr~Department of Electron
Structures, Charles University, Czech Republic!, ‘‘Field in-
duced irreversibilities in an itinerant 5f electron UNiAl an-
tiferromagnet’’;

– Fergen Immanuel~Institute for Materials Research I
Forschungszentrum Karlsruhe, Germany!, ‘‘The influence of
stress induced anisotropy on the hf properties of amorph
films’’;

– Franco Victorino~Fı́sica de la Materia Condensad
Universidad de Sevilla!, ‘‘Magnetic anisotropy and devitrifi-
cation of soft magnetic materials’’;

– V. I. Gatalskaya, S. Barilo, G. L. Bychkov, and L. A
Kurochkin ~Institute of Solid State & Semiconductor Phy
ics, NASB, Belarus!, H. Szymczak, R. Szymczak, an
M. Baran~Institute of Physics, Polish Academy of Scienc
Poland!, ‘‘Magnetic properties of La12xLi xMnO3 single
crystals’’;

– L. I. Koroleva ~Physics Department, Moscow Sta
University, Russia!, ‘‘Peculiarities of volume magnetostric
tion in La12xSrxMnO3 at Curie point region’’;

– Kraus Ludek~Institute of Physics ASCR, Czech Re
public!, ‘‘Stress dependence of giant magnetoimpedance
its potential applications’’;

– K. V. Lamonova and A. L. Sukstanskii~DonFTI,
Ukraine!, ‘‘Magnetoelastic interaction and a new type of d
main walls in a magnetic sandwich structure’’;

– Lupu Nicoleta~Magnetic Materials & Devices Labo
ratory, National Institute of R&D for Technical Physics, R
mania!, ‘‘Melt spun amorphous magnetostrictive bimetal ri
bons’’;

– Minguez Pablo~Universidad del Pais Vasco, Spain!,
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‘‘Magnetoelastic properties of Fe73.52xAl xSi13.5B9Cu1Mo3

alloys (x50,2,4,6)’’;
– W. R. McCallum~Center for Rare Earths & Magnets

Iowa State University, USA!, ‘‘Composite magnetostrictive
material for sensors and actuators’’;

– S. Nikitin ~Physics Department, Moscow State Un
versity, Russia!, ‘‘Magnetostriction, magnetocaloric an
magnetoelastic effects in rare-earth compounds’’;

– Yu. G. Pashkevich, V. A. Blinkin, V. P. Gnezdilov, V
S. Kurnosov, V. V. Tsapenko, V. V. Eremenko, P. Lem
mens, M. Fischer, M. Grove, G. Gentherodt, L. Degiorgi,
Wachter, J. M. Tranquada, and D. J. Butrey~DonFTI,
Ukraine!, ‘‘Optical studies of the interaction of charge
magnetic & lattice subsystem in stripe ordered phase
La1.775Sr0.225NiO4’’;

– Oleksandr Prokhnenko~Institute of Physics ASCR
Czech Republic!, ‘‘Magnetovolume anomalies in
Ce2Fe172xMnx compounds’’;

– Sasso Carlo Paolo~Materials Department, IEN G. Fer
raris, Italy!, ‘‘Analysis and optimization of the magnetome
chanical properties of terfenol-D composites at audio f
quencies’’;

– Yu. Shabakayeva, V. V. Eremenko, V. A. Sirenko,
I. Makedonskaya, V. Bruk, and M. Shvedun~Institute for
Low Temperature Physics & Eng., Ukraine!, H. Szymczak
~Institute of Physics, Polish Academy of Science, Polan!,
‘‘About irreversible magnetostriction in perovskite-lik
structures’’;

– I. V. Svechkarev, A. S. Panfilov, M. Kurisu, A. Fus
and G. Nakamoto~Institute for Low Temperature Physics &
Engineering, Ukraine!, ‘‘Effect of pressure on magnetic sus
ceptibility of CeCo2’’;

– Irina Tereshina~Physics Department, Moscow Sta
University, Russia!, ‘‘The effect of hydrogen on magneto
striction of rare-earth compounds R12xRx8Fe2’’;

– I. O. Troyanchuk, K. Baerner, and S. Trukhanov~In-
stitute of Solid State & Semiconductor Physics, NASB, B
larus!, H. Szymczak~Institute of Physics, Polish Academy o
Science, Poland!, ‘‘Effect of oxygen content on magneti
and magnetotransport properties of the manganites’’;

– S. A. Volokhov, P. N. Dobrodeev, A. V. Kildishev
and J. A. Nyenhuis~Department of Magnetism, Institute o
Electrodynamics, NASU, Ukraine!, ‘‘Magnetic methods of
monitoring microstructural changes in ferromagnetic pip
lines’’;

– J. Wittborn, F. Bros, K. V. Rao, J. Noques, A. Ho
man, and Wan H. Sehuller~Engineering Materials Physic
Division, MSE, Royal Institute of Technology, Sweden!,
‘‘Local magnetostrictive response using atomic force m
.
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croscopy measurement and domain imaging of nanos
magnetic dots on Si substrate’’;

– A. A. Zvyagin, G. A. Zvyagina, and D. M. Apalkov
~Institute for Low Temperature Physics & Engineerin
Ukraine!, ‘‘Magnetic anisotropy of quantum low-
dimensional magnets induced by the elastic subsystem
crystal.’’

From the discussions on various classes of materia
number of themes emerged. Amorphous ferromagnets~rib-
bons, wires, or films! are quite well understood, and the r
views presented here demonstrate a mature subject. Thin
and multilayer materials present a number of challenges,
experimental and theoretical effort must still be expended
move the subject from a phenomenological to more mec
nistic and predictive view of the effects of surfaces and
terfaces. Work on manganites and superconductors
clearly benefit from magnetostriction studies, as the trans
and magnetic properties are so intimately connected to la
properties~Jahn–Teller distortions, polarons, etc.!. The com-
plimentarity of magnetostriction studies to more tradition
magnetization measurements was clearly brought out. M
surement of magnetostriction remains somewhat contenti

There remains a paucity of data on systems as comm
as NiFe, where the temperature and stress effects are al
unknown. It was exciting to see the possibilities which m
come from the use of advanced light sources~ESRF! and
diffraction studies, but other methods need further analy
of their accuracy and precision. It may be appropriate
organize a round-robin experiment. Applications of magn
tostriction to sensing and actuation span from the very la
~active vibration control! to the very small~MEMS!. Note
was made of cost and the conservatism of industry in mov
to new materials and technologies, but it was again emp
sized that the remote action possible through inductive d
or sensing can offer significant advantages, and the la
figures of merit predicted for magnetoelastic sensors co
pared with semiconducting equivalents are being realize

The Directors believe that the program served to br
together a geographically widespread community for a
cused meeting. The views are clearly only a snapshot of
subject, but the accompanying book and the special issu
the JournalLow Temperature Physics~ILTPE–AIP! will act
as a reference work in the field. New scientific links ha
been forged, and plans are being developed to maintain
momentum.

This article was published in English in the original Russian journal. Rep
duced here with stylistic changes by the Translation Consultant.
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