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A method is proposed for constructing the separation phase diagram of3He–4He solid solutions
on the basis of precision measurement of the pressure jump due to phase separation at
constant volume. The technique is implemented on high-quantity samples of the solid solutions,
making it possible to obtain reliable and reproducible experimental data with no appreciable
manifestation of hysteresis effects. The line of phase separation constructed from the experimental
data is compared with the results of various theoretical approaches describing phase
separation in solid solutions of helium isotopic mixtures. It is found that good agreement with
experiment is observed only for the Edwards–Balibar model, which is an extension of
the theory of regular solutions to take into account the differences of the crystal structures~hcp
and bcc! of the phases existing in the system. ©2000 American Institute of Physics.
@S1063-777X~00!00112-2#
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1. INTRODUCTION

The first information about the line of phase separat
of 3He–4He solid solutions was obtained back in 1962,
multaneously with the observation of this first-order pha
transition in measurements of the specific heat.1 The phase
separation temperatureTps was determined from the
anomaly in the temperature dependence of the specific
during a rapid first cooling of the samples, and it was sho
that the values obtained can described in the model of re
lar solutions, according to which

Tps5
2Tc~122x!

ln~1/x21!
, ~1!

where x is the concentration of the mixture, andTc is the
critical temperature, which corresponds to the maximum
the separation curve and depends on the pressureP; a pro-
cessing of the data of Ref. 1 gave the value 0.38 K aP
534.1 bar. As compared with the theory of ideal solutio
the model of regular solutions additionally takes into acco
the excess thermodynamic functions; in particular, the exc
free energy has a simple quadratic dependence on the
centration:

ge5A~P!x~12x!, ~2!

where the coefficientA is independent of temperature and
a function of the pressure in the crystal. In this approxim
tion the line of phase separation is symmetric about the c
centrationx50.5.

Another approach to the theoretical description of
line of phase separation was proposed by Mullin.2 It is based
on the application of the Nosanov variational quantu
theory,3 which was developed for pure isotopes of solid h
8691063-777X/2000/26(12)/5/$20.00
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lium, to their isotopic mixture. In that approach the exce
free energy of a mixture is a more complicated function
concentration than in~2!:

ge5A~P!x~12x!~11«x!. ~3!

The eccentricity« appears in expression~3! on account
of the peculiarities of helium quantum crystals: the lar
difference of the molar volumes of3He and4He, which is
due to the appreciable difference of the amplitudes of
zero-point motion. This circumstance gives rise to an asy
metry of the line of phase separation. No analytical expr
sion describing the phase diagram was given in Ref. 2.

The asymmetry of the phase diagram predicted in Re
was confirmed experimentally in Ref. 4 in the concentrat
regionx,0.3, for which no data was given in Ref. 1. He
the values ofTps were determined as the inflection point o
the temperature dependence of the change in pressure i
crystal due to phase separation as the sample was co
The asymmetry of the line of phase separation was su
quently confirmed for other concentrations as well, in Ref
from measurements of the thermal conductivity of the crys
and in Ref. 6 from pressure measurements.

However, it was later established by careful x-r
studies7,8 that the eccentricity in~3! is extremely small, hav-
ing a value«'060.01, and the asymmetry observed pre
ously in the experiments of Refs. 4–6 was attributed to
presence of hysteresis in the determination ofTps , the non-
equilibrium nature of the samples, and the influence of
bcc–hcp transition.

This last circumstance was investigated in detail
Edwards and Balibar,9 who did a numerical calculation o
the separation phase diagram on the assumption that«50
but with allowance for the different crystallographic stru
© 2000 American Institute of Physics
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tures of pure3He and4He ~bcc and hcp, respectively! at low
pressures. The results of the calculation explained the
served asymmetry of the phase diagram, agreed well with
existing experimental data, and have been subsequently
firmed by new experiments in the left-hand part of the ph
diagram.10,11

In the present paper we again address the questio
the equilibrium phase diagram for the phase separation
3He–4He solid solutions, for the following reasons:

1. Considerable progress has been achieved recent
the growth of high-quality crystals of two-phase3He–4He
solid solutions, making for reliable and reproducible resu
in the study of the kinetics of the phase transition.12 There-
fore it is advisable to study the thermodynamic properties
the system on the same samples.

2. Here we propose a new method of constructing
phase diagram, based on precision measurement of the
sure in the crystal.

3. The pressure and concentration of the mixture stud
were chosen such that the initial sample had a hcp struc
while the phases formed after separation had different st
tures — a concentrated bcc phase and a dilute hcp ph
This circumstance makes it possible to elucidate the in
ence of the different crystal structures of the separa
phases on the phase diagram and to compare the results
those obtained in the framework of the Edwards–Bali
approach and the Mullin model.

2. SALIENT FEATURES OF THE EXPERIMENT

We investigated a mixture with an initial3He concentra-
tion in the gas phasex052.05%, from which a crystalline
sample was grown by the capillary-blocking method, so t
all of the experiments were done at constant volume. T
sample was a disk 9 mm in diameter and 1.5 mm thick,
the pressure in the crystal prior to the start of phase sep
tion was 35.98 bar. The thermal relaxation time of t
sample under the conditions of this experiment w
estimated12 to be short, several tens of seconds, so it was
necessary to use a sinter heat exchanger in the measure
cell.

Phase separation was registered by measuring the
sure in the crystal by means of a capacitive sensor, wh
provided a resolution in the pressure measurements of68
Pa.12,13 The excess pressure due to the phase transition
pends on the concentration of the initial mixture2 and is
given by

DP5
0.4x~12x!

Vx
, ~4!

whereV andx are the molar volume and compressibility
the solid solution. Unlike Refs. 4 and 6, where the pha
diagram was also constructed on the basis of pressure
surements, in the present study the phase separation tem
ture was determined not from the kink on the temperat
dependence of the pressure but from the pressure jumpDP
~see the next Section!, a procedure that improved the acc
racy and reliability of the measurements and made it p
sible, using a single sample, to obtain information about
separation phase diagram over the whole range of conce
tions less thanx0.
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To prepare high-quality samples, the grown crystal w
annealed near the melting temperature and then subjecte
repeated temperature cycling below the phase separa
temperature~this process is described in detail in Ref. 12!.
Analysis of the experimental data showed that after sev
cycles of growth and dissolution of the bcc inclusions in t
hcp matrix, the quality of the crystal improved substantial
as is evidenced by the practically total absence of hyster
effects ~the values of the phase separation temperature
the initial sample on cooling and heating agreed to within
mK!, the decrease of the pressure in the sample, the s
and reproducible values obtained for the time constants
the growth and dissolution of the inclusions, and the prop
tionality of DP to the corresponding change in the conce
tration of the solution in accordance with Eq.~4!. The DP
measurements were made under stepped cooling and he
of the crystal, during which, as was shown in Ref. 12, t
time dependence ofDP within each step can be approx
mated by an exponential function. The primary experimen
data pertaining to the characteristic values ofDP are pre-
sented in Fig. 19 of Ref. 12.

3. METHOD OF CONSTRUCTING THE PHASE DIAGRAM

A relation between the experimentally measurable pr
sure jumpDP upon phase separation and the correspond
concentration of the solution~at some fixed temperature! can
be obtained from the conservation laws. If the solid solut
under study occupied a volumev0 prior to the phase transi
tion, and after phase separation formed a concentrated p
of volume vc and a dilute phase of volumevd , then the
volume conservation law gives

v05vc1vd . ~5!

The law of conservation of the amounts of3He and4He can
be written in the form of a lever rule:

nc

nd
5

x02xd

xc2x0
, ~6!

nc1nd5n0 , ~7!

wherex0 , xd , and xc are the concentrations of the initia
dilute, and concentrated phases, respectively, and where
numbers of moles of the the substance contained in eac
these phases,n0 , nd , andnc , are expressed in terms of th
corresponding molar volumesV0 , Vd , andVc as

n05
v0

V0
, nd5

vd

Vd
, nc5

vc

Vc
. ~8!

If the pressure in the solution isP and becomesP1DP after
phase separation, then to a first approximation we can w

V0~P1DP!'V0~P!1
]V0

]P
DP5V0~12xDP!, ~9!

where x52(1/V0)(]V0 /]P) is the compressibility of the
crystal. After substituting expression~9! into ~5! with ~6!–~8!
taken into account, we obtain

DP5
1

x
2

x0~Vc2Vd!1~xcVd2xdVc!

xV0~xc2xd!
. ~10!
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We now use the known relation between the molar v
umes of a solution and the pure components,2

V05x0V31~12x0!V42ax0~12x0!;

Vc5xcV31~12xc!V42axc~12xc!; ~11!

Vd5xdV31~12xd!V42axd~12xd!,

where the parametera50.4 cm3/mole. Then, substituting
~11! into ~10! and taking into account that at a fixed tempe
ture xc1xd51, we get

DP5
a~x02xc!~x02xd!

xV0
. ~12!

The maximum pressure jumpDPmax will be observed, ac-
cording to~12!, as the solid solution is cooled from the pha
separation temperatureTps to T50. In this casexc51 and
xd50, and

DPmax5
a

xV0
~x021!x0 . ~13!

If we denote the pressure jump corresponding to a temp
ture T in the phase separation region asDP(T), then the
relative change of the pressure has the form

DP

DPmax
5

~x02xc!

~x021!

~x02xd!

x0
'

x02xd

x0
, ~14!

i.e., in deriving ~14! we have made use of the assumpti
that xc'1 at sufficiently low temperatures. Thus formu
~14! can be used to describe the left branch of the line
phase separation in terms of the experimentally obser
pressure jumps:

xd~T!5x0

DPmax2DP~T!

DPmax
. ~15!

The values ofDP(T) were measured as the sample w
cooled in the two-phase region in small temperature st
~10–15 mK! down to the lowest temperature used, at wh
the formation and growth of the new phase was practic
complete. An analysis showed that the pressure jump co
sponding to the change in temperature from the onse
phase separation to;80–90 mK can be taken as equal
DPmax.

Analogous measurements ofDP were also done during a
stepped heating of the two-phase crystal, making it poss
to compare the corresponding points on the phase diag
obtained during cooling and heating of the sample. Figur
shows the typical variation of the pressure during one s
as the inclusions grow and dissolve. Although the time c
stants characterizing the two processes are very differe12

the pressure changeDP of the two-phase crystal, as can b
seen in Fig. 1, turns out to be practically identical on cool
and heating.

This means that the quality of the crystals was such
hysteresis effects are essentially absent. Since the wor
formula~15! for constructing the phase diagram has only o
temperature-dependent parameter,DP(T), the points ob-
tained during heating and cooling have turned out to be c
to each other. According to estimates, the absolute erro
-
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the determination of the concentration was not more th
6103% at low 3He concentrations, and61022% at high
concentrations.

4. LINE OF PHASE SEPARATION. COMPARISON WITH
THEORY

The values obtained for the equilibrium concentratio
of the dilute phase on the line of phase separation are
sented as a function of the temperature of the crystal in F
2 and Table I. It is seen from Fig. 2 that the experimen
data obtained on cooling and heating agree with each o
within the experimental error limits at temperatures bel
'150 mK, which, as we have said, attests to the absenc
hysteresis effects.

At temperatures above'150 mK the difference betwee
the data obtained on cooling and heating is greater than
errors in the determination of the concentration and meas
ment of the temperature. As is seen in Fig. 2, the poi
obtained on cooling lie systematically lower than the poi

FIG. 1. Typical kinetics of the change in pressure in the sample over
course of a single temperature step. The two-phase crystal is initially he
from 81 mK (3He concentrationx50.001%) to 108 mK (x50.02% 3He!
and then cooled from 108 to 81 mK.

FIG. 2. Left branch of the line of phase separation of3He–4He solid solu-
tions ~molar volume 20.27 cm3/mole!. Experimental points: on cooling o
the crystal (h), on heating (s), on overheating of the crystal in the single
phase region~* !. The solid curves are calculated according to:1 — the
standard theory of regular solutions~Eq. ~1!!; 2 — the Edwards–Balibar
theory9 ~Eq. ~19!; 3 — the Mullin theory.2
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obtained on heating. This circumstance is a consequenc
the growing role of hysteresis effects as the tempera
approaches the phase transition.

The absence of hysteresis effects at low temperat
can apparently be attributed to an increase in the rate
relaxation to equilibrium as the temperature~concentration!
is lowered, on account of the increase in the diffusion co
ficient of the3He quasiparticles, the value of which in dilu
solid solutions of3He in 4He is governed by impurity–
impurity scattering and is inversely proportional to t
concentration.14

We also note that our results agree with the analog
data obtained in a previous study10 of the line of phase sepa
ration by the NMR method, within the experimental err
limits stated in Ref. 10.

The experimental data presented can be compared
various models describing the phase diagrams of soluti
Curve1 in Fig. 2 shows the phase separation temperatureTps

calculated in the theory of regular solutions, according
formula ~1!. As we mentioned in the Introduction, in such a
approach the phase diagram should be symmetric a
x50.5 and, as follows from Fig. 2, is in poor agreement w
the experimental results.

The use of the model of regular solutions to descr
solid solutions of helium isotopes, as was proposed
Edwards and Balibar,9 requires the introduction of correc
tions to take into account the difference of the crystal str
tures of the phases~here hcp and bcc!. Then the excess fre
energyge as given by expression~2! should be supplemente
with another term to take into account the differences in
structure of the crystal: for solid solutions having the h
structure

TABLE I. Concentration and phase separation temperature of dilute s
solutions of3He in 4He at a molar volume of 20.27 cm3/mole.

Temperature, mK Concentration, %3He

Cooling

187.0 1.66
180.3 1.42
165.4 0.66
158.5 0.45
147.8 0.31
136.1 0.21
145.8 0.324
137.9 0.208
128.8 0.119
107.7 0.018
81.1 0.001

Heating

108.4 0.028
126.2 0.125
141.8 0.224
145.8 0.29
156.3 0.40
167.7 0.57
182.9 0.96
201.9 1.69
218.9 1.88
247.8 2.05
of
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ge
h5Ahx~12x!1xD3 , ~16!

and for solid solutions with the bcc structure

ge
b5Abx~12x!1~12x!D4 . ~17!

The parametersD3 andD4 in ~16! and~17! describe the
difference between the free energies of the metastable
stable pure phases:

D3~P,T!5g3
h~P,T!2g3

b~P,T!,
~18!

D4~P,T!5g4
b~P,T!2g4

h~P,T!.

As was shown in Ref. 9, taking into account the diffe
ences of the crystal structures of the phases formed in
phase separation of3He–4He solid solutions leads to an in
crease ofTps as compared to the value given by~1!. In
particular, at smallx the expression for the phase separat
temperature now becomes

Tps5
Ah~122x!1D3

ln~1/x21!
. ~19!

The parametersD3 andD4 in Ref. 9 are expressed in term
of the corresponding molar volumes and pressures. In
ticular, if the phonons and nuclear spins are neglected,
obtain the following expression forD3:

]D3

]P
5V3

h2V3
b5dV3 , ~20!

which gives

D35E
P3

0

P

dV3dP85~P2P3
0!FdV3

01
1

2
b~P2P3

0!G , ~21!

whereb51.2431023 cm3/~mole•atm!, and the parameter
P3

0 anddV3
0 were obtained from the experimental data15 for

pure 3He by extrapolation toT50: dV3
0520.09 cm3/mole

at P3
05102.9 bar. The values obtained forD3 are plotted as a

function of pressure in Fig. 3.
The other parameter of the theory appearing in Eq.~19!,

Ah, was determined in Ref. 9:Ah50.76 K. Then the phase
separation line constructed in the framework of the theory
regular solutions with allowance for the difference in crys
structures is shown by the curve2 in Fig. 2. It is seen that
this approach gives a good description of the experime
data both for cooling and for heating at temperatures be
150 mK, where there are no hysteresis effects.

id

FIG. 3. Difference between the free energies of the metastable hcp
stable bcc phases of3He as a function of pressure.
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At temperatures above 150 mK, however, the points
tained on heating are in better agreement with the calcul
curve, apparently because of the more rapid establishme
equilibrium in that case. In this regard we note that the l
experimental point, corresponding to the maximum conc
tration ~represented by an asterisk in Fig. 2!, is known to be
elevated in temperature because an appreciable rate of d
lution of the3He inclusions in the immediate vicinity of th
phase separation temperature of the initial solution could
obtained only with a comparatively large overheating of
sample.

The comparison of the experimental results with the d
ferent theories would not be complete without consider
the asymmetric model of Mullin.2 Reference 2 shows onl
the result of a numerical calculation, according to which t
line is asymmetric and has a maximum shifted below
concentrationx50.5. The left branch of this line, corre
sponding to dilute solutions of3He in 4He, is shown in Fig.
2 by curve3, which lies substantially above the experimen
planes.

5. CONCLUSION

We have shown that the method of measuring the p
sure jump due to phase separation of3He–4He solid solu-
tions at constant volume is very convenient for construct
the phase diagram of the process. This method has an ad
tage over the existing method based on detection of the
on the temperature dependence of the pressure in that
sides being more accurate, it enables one to construct the
of phase separation in the whole regionx,x0. The technique
of obtaining uniform high-quality samples of solid solutio
of helium isotopes through the use of several cycles of co
ing and heating in the phase separation region makes it
sible to achieve highly reproducible experimental data w
out appreciable hysteresis effects.

We have found that the experimental phase separa
-
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t
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curve differs considerably from the curve calculated in t
usual theory of regular solutions, with only the excess th
modynamic functions taken into account.

The asymmetric model of Mullin, which takes into a
count only the difference in the molar volumes of the pu
components also gives poor agreement with the experime
data. We have shown that the experimental results are
scribed well only in the Edwards–Balibar approach, in whi
the theory of regular solutions is supplemented by allowa
for the fact that the phases arising on separation have di
ent crystal structures.
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Structure genesis and magnetic orderings in compounds of the ThCr 2Si2 type
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It is shown in a phenomenological approach that the symmetry space groupI4/mmmof the
paramagnetic phase in compounds of the ThCr2Si2 type arises as a result of a structural phase
transition from a close-packed paraphase with space groupIm3m. It is found that the real
magnetic orderings in compounds of the ThCr2Si2 type is described by transition parameters
belonging to a single direction, along the line joining the points of maximum symmetry
in the Brillouin zone of theI4/mmmgroup. It is shown that the variations of the modulus of the
wave vector are a consequence of a change in the dopant concentration. The spatial
dependence of the order parameter in the incommensurate phases is obtained for the corresponding
universality classes. ©2000 American Institute of Physics.@S1063-777X~00!00212-7#
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INTRODUCTION

Neutron-diffraction studies of the structures of com
pounds with variable composition have shown that, in sp
of the fact that the symmetry space group of the crystal
mains unchanged over a rather wide temperature interval
magnetic ordering in the crystals undergoes a sequenc
phase transitions of the paramagnetic–incommensur
commensurate type.1–4 The neutron-diffraction results
show3,4 that in crystals with variable composition, the wa
vector of the magnetic structure varies as the dopant con
tration x is varied over the interval 0<x<1. As a rule, the
wave vector of the magnetic structure varies along a defi
direction in the Brillouin zone corresponding to the spa
group of the structure, and a change in the magnitude of
wave vector occurs between the highest-symmetry point
the Brillouin zone. This circumstance indicates that the sy
metry group of the wave vector is lowered.3,4

These isostructural compounds are treated in term
the concept of a paraphase, according to which the phase
exists in reality is represented as being the result of a sl
distortion of a hypothetical high-symmetry structure~the
paraphase!.5,6 neutron-diffraction studies of the structures
the compounds UPd2Si2, UPd2Ge2, URh2Si2, and URh2Ge2

show that these crystals have a structure that is commo
intermetallic compounds of the ThCr2Si2 type.1 In the para-
magnetic phase these structures have space groupI4/mmm.
It is known that the magnetic ordering in these isostructu
compounds is due to the uranium atoms, and in UPd2Si2 and
UPd2Ge2 crystals an incommensurate phase appears. It
been shown experimentally that UPd2Si2, UPd2Ge2, and
URb2Si2 have antiferromagnetic ordering below tempe
tures of 150, 140, and 137 K, respectively, with the wa
vectors of the magnetization lying along thec axis of the
tetragonal body-centered lattice. The wave vectors of
modulation in the compounds UPd2Si2 and UPd2Ge2 are
q5(0, 0, 0.66260.010)c* and q5(0, 0, 0.74860.010)c* ,
8741063-777X/2000/26(12)/7/$20.00
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and atT540 K the former compound~UPd2Si2) undergoes a
magnetic phase transition to a commensurate phase
wave vectorq5(0,0,1)c* . In these structures the modula
tion is one-dimensional~of the longitudinal spin wave
~LSW! type!.1 Later neutron-dislocation studies revealed
sequence of modulated magnetically ordered phases
UPd2Ge2 at temperatures belowTN'135 K, and at 80 K the
wave vector of the modulation has the commensurate va
q5(0, 0,ks53/4).2,3 It has been shown3,4 that the substitu-
tion of Fe for only 2% of the Pd radically alters the magne
structure of UPd2Ge2 without altering its space group. Thu
while the magnetic structure of the undoped compound
T,50 K is a phase with quadratic modulation, the co
pound U~Pd0.98Fe0.02)2Ge2 has a ‘‘simple’’ antiferromagnetic
phase below 65 K. The concentration dependence of the t
peratures of the phase transitions from the paramagnet
the incommensurate phase (TN) and from the incommensu
rate to the commensurate phase (TC) was studied in Ref. 7.
It was shown that increasing the dopant concentration
practically no effect onTN(x), whereasTC5TC(x) in-
creases, reaching;110 K. In addition, asx increases, the
magnitude of the modulation wave vector changes,
change inq occurring along a definite direction of the Bri
louin zone.

In a theoretical description of the magnetic phase tran
tions in crystals with variable composition one can use
analogy with the Landau theory of phase transitions
ferroelectric semiconductors.8 In that case, essentially, th
coefficients of the thermodynamic potential acquire a dep
dence on the dopant concentration. Analysis shows4,9 that the
magnitude of the modulation wave vector and the tempe
ture existence region of the incommensurate phase bec
functions of the dopant concentration. For example, asx in-
creases, the temperature interval in which the incommen
rate phase exists becomes narrower and ultimately vanis
In addition,q goes to zero with increasing concentrationx.
© 2000 American Institute of Physics
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This means that an order–order transition should be
served on thex–T diagram, viz., a ferromagnetic–antiferro
magnetic transition.

The analysis given above makes it possible to und
stand the genesis of the structures and magnetic phase
sitions in crystals with variable composition. This paper
devoted to a concrete analysis of the sequence of mag
phase transitions of the paramagnetic–incommensur
commensurate type and of the possible changes of the p
diagram of the structure as the dopant concentration is
creased.

SEQUENCE OF MAGNETIC PHASE TRANSITIONS
IN TETRAGONAL STRUCTURES

In the theory of phase transitions the necessity of rep
senting some structures as being derived from high
symmetry structures is due, as a rule, to the following t
circumstances.6 First, if a reversible transition betwee
phases with degenerate and derivative structures is act
observed, then it is necessary to establish the order param
in order to determine the free energy functional, with whi
one can calculate the anomalies of the thermodynamic fu
tions. Second, in those cases when only one phase, w
structure can be represented as being derived from a de
erate structure, is actually observed, a study of the symm
properties of the order parameter relating the degenerate
derivative structures enables one to understand a numb
physical properties which would otherwise seem acciden

From the standpoint of the genesis of the structures
crystals with variable composition, it should be noted tha
the general case the symmetry of complex compounds wh
structure is derived from a close-packed structure having
of the space groupsD6h

4 , Oh
5 , or Oh

9 for the paraphase, is in
reality lower than the symmetry of the analogous structu
made up of identical spheres.6 In a theoretical treatment on
can always introduce a purely geometric characteristic —
order parameter — that describes some particular lowe
of the symmetry. We stress that by definition the order
rameter is a purely crystallographic concept that enables
to describe the symmetry difference between the probab
density of the charge or current distribution in the degene
and derivative structures.

As we know,8 it is assumed in a symmetry analysis
magnetic structures that any magnetic structure can be
garded as being the result of a magnetic phase trans
from some initial phase. Consequently, the Landau theor
phase transitions4,8 can be used in a symmetry analysis
magnetic structures. In particular, the Landau theory ena
one to predict the general features of the phase diagram
the concentration–temperature plane for structures with v
able composition.

Let the pointsG and H of the Brillouin zone have the
highest structural symmetryG0. This means that the group o
wave vectorsG and H is the space groupG0. Let the wave
vector q define the line joining theG and H points. In this
case the symmetry groupGq of the wave vectorq is lower
than the symmetry of theG andH points and is a subgrou
of G0. It is clear that the points of the directionq are internal
points of the Brillouin zone. Thus the dimension of the irr
ducible representation of the symmetry space groupG0 cor-
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responding to the points ofq is greater than or equal to th
dimension of the irreducible representations of the groupG0

corresponding to theG andH points. The irreducible repre
sentations of the groupG0 corresponding to the interna
points of the Brillouin zone do not satisfy the Lifshit
condition.10 Since a Landau analysis is based on knowled
of the free energy functional, which is made up of a compl
rational basis of invariants and determines the universa
class, the change of the wave vectorq due to the change in
dopant concentration causes a change in the univers
class. As applied to real structures with variable compo
tion, this last statement means that for different values of
dopant concentration the magnetic orderings in the struc
can be substantially different.4

Thus a study of the symmetry properties of the ord
parameter relating the degenerate and derivative struct
makes it possible to understand a number of physical pr
erties that would otherwise seem accidental.

The phases of symmetryI4/mmmand P4/mmmcorre-
sponding to real tetragonal structures can arise as a resu
a phase transition from a paraphase with symmetry sp
group Im3m.5 Here the transition from the paraphase to t
corresponding superstructure is described by an order pa
eter that transforms according to the irreducible represe
tion of the groupIm3m belonging to the pointk8 5 ~0, 0, 2
p/na) (a is the lattice parameter of the cubic cell of th
paraphase, andn is the ratio of the volumes of the unit cell
of the tetragonal structure and paraphase!. The star of the
vectork8 contains six rays, and the corresponding order
rameter transforms according to a six-dimensional irred
ible representationt1(k8) induced by a totally symmetric
small representation of the group of the wave vectorGk8

54mm. The phases of symmetryI4/mmm and P4/mmm
arise for odd and even valuesn>3, when only two rays of
k8 are active~e.g.,k8

(1) and2k8
(1)), i.e., only two, conjugate

components of the order parameter are nonzero.
We stress that the vectork8 characterizes a lineD which

begins at the Brillouin zone centerG and ends at the verte
H.11 The groups of the wave vectors corresponding to theG
andH points are the same,Im3m. Thus theG andH points
have the highest structural symmetry,Im3m, and on the line
D the symmetry is lowered to 4mm. Since the lineD is
internal to the Brillouin zone, a six-dimensional irreducib
representation of the groupIm3m corresponding to the line
D is passive, and consequently the phase transitionIm3m
→I4/mmm in the general case takes place through
incommensurate phase.

Let us consider the structure with space groupI4/mmm
in the paramagnetic phase. In the Brillouin zone the l
characterized by a vectork105(0,0,2mp/tz), begins at the
center k145(0,0,0) and ends at the pointk15 5 ~0,0,
p/tz).

4,12 The groups of the wave vectorsk14 andk15 are the
same and have the total symmetry of the structure,Gk

5I4/mmm. The groupGk10
of the wave vectork10 is I4mm.

The irreducible representations of the small groupI4mm of
the vectork5(0, 0,ks) is presented below:
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Consequently, the space groupI4/mmm has four two-
dimensional and one four-dimensional irreducible repres
tations corresponding to the wave vectork105(0,0,2mp/
tz). The space groupI4/mmm has eight one-dimensiona
and two two-dimensional irreducible representationsA1g ,
A2g , B1g , B2g , Eg , A1u , A2u , B1u , B2u , andEu , which
correspond to the Brillouin zone center.13 Since the group
I4/mmm is a symmorphic group, the irreducible represen
tions I4/mmm corresponding to the pointk155(0,0,p/tz)
are given by14

Dk15 ,i~$bub%!5exp~2 ik15b!G i ,

where b is a reciprocal lattice vector, andG i

P@A1g ,A2g ,B1g ,B2g ,Eg ,A1u ,A2u ,B1u ,B2u ,Eu#.
It can be shown by a direct calculation that the tw

dimensionalt4(k15) and four-dimensionalt5(k15) irreduc-
ible representations of the space groupI4/mmm induced by
the representationsA2 andE are also contained in the mag
netic representation. The decomposition of the pseudove
representationtpv in the irreducible representations of th
group I4/mmmhas the form

tpv5A2g% Eg .

Below we discuss the sequence of magnetic phase t
sitions from the incommensurate phase which are assoc
with the one-dimensionalDk15,2

and two-dimensiona
t4(k15) irreducible representations of the groupI4/mmmand
which correspond to the vectorsq5(0,0,p/tz) and q
5(0,0,2pm/tz) contained in the magnetic representatio
The L group in the case of the one-dimensional irreduci
representationDk15,2

consists of two matrices, namely~1!

and (21). In accordance with the condition of invarianc
the thermodynamic potential functional is expressed as

F05
1

d E0

d

F̃0~z!dz,

where

F̃0~z!5
a0

2
h2~z!1

b0

4
h4~z!1

g0

6
h6~z!1

d0

2
~h8!2

1
l0

2
~h9!21

x0

2
h2~h8!2, ~1!

d is the period ofF̃0(z), and a prime denotes a derivativ
with respect toz.15

We supplement the thermodynamic potential with an
ditional term characterizing the energyEg of the electron
subsystem of the dopant atoms incorporated in the struc
Then the termmEg (m is the dopant concentration! incorpo-
n-

-

-

tor

n-
ed

.
e

-

re.

rates the change in the thermodynamic potential of the e
tron subsystem due to the interaction of the matrix and d
ant atoms. Assuming thatE(h) is invariant with respect to
the same symmetry transformations, we can write

Eg~h!5E01
a

2
h2~z!1

b

4
h4~z!1

g8

6
h6~z!

1
d8

2
~h8!21

l8

2
~h9!21

x8

2
h2~h8!2. ~2!

Consequently, the thermodynamic potential functional is r
resented by the expression

F5
1

d E0

d

F̄~z!dz,

where

F̄~z!5
a

2
h21

b

4
h41

g

6
h61

d

2
~h8!2

1
l

2
~h9!21

x

2
h2~h8!2, ~3!

with a5a01ma, b5b01mb, g5g01mg8, d5d0

1md8, l5l01ml8, andx5x01mx8.
The equilibrium phases of the system are determin

from the condition of minimum thermodynamic potentia
Thus we obtain for the initial paramagnetic phase

h50, F50. ~4!

In the commensurate antiferromagnetic phaseh850 and,
hence,

F5
a

2
h21

b

4
h41

g

6
h6, ~5!

and from the minimization condition we find that

hc56S 2b1~b224ag!1/2

2g D 1/2

,

which implies that

Fc52
6abg2b21~b224ag!1/2

24g2
. ~6!

In the incommensurate phase we obtain from Eule
equation an equation forh(z) and find the minimum ofF:

lh~ IV !2dh92x@h2h91h~h8!2#1ah1bh31gh550.
~7!

This last equation can have periodic solutions with d
ferent periodsd. The equilibrium periodd is determined by
the conditiondF/dd50, which takes the form

lh-h82
l

2
~h9!22

d

2
~h8!22

x

2
h2~h8!2

1
a

2
h21

b

4
h41

l

6
h650. ~8!

Condition~8! can take a different form if it is integrated ove
z from zero tod and substitute the expression forF:
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E
0

d

@2l~h9!21d~h8!21x~h8!2h2#dz50. ~9!

In the sinusoidal regime of the incommensurate phase, w
h→0, we obtain the following in a first approximation, u
ing the standard expansions:

h5r0 cos~qx!, r0
25

4~a02a!

3b12xq0
2

,

q5q0S 11
r0

2x

8d D , a05
d2

4l
,

q0
252

d

2l
, F52

~a02a!2

2~3b12xq0
2!

. ~10!

Consequently, the modulation wave vector is a function
temperature and dopant concentration.

By making the substitutionZ5(h8)2, we obtain an ex-
act solution of equation~8!:

l

8 F4Z
d2Z

dh2
2S dZ

dh D 2G2
d

2
Z2

x

2
h2Z

1
a

2
h21

b

4
h41

g

6
h65F. ~11!

If the solution of this equation is known, the functio
h5n(z) can be found from the relation

E @Z~h!#21/2dh5z2z0 . ~12!

We seek the solution in the form

Z5
x

8l
ch41

b

x
g1h21

b2lg0

x3
, ~13!

where the unknown constantsc, g0, andg1 are dimension-
less.

To determinec, g0, andg1 we substitute~13! into ~11!
and obtain the following equations:

3c~c21!18g50,

2g1~5c24!5dc24,
~14!

g0~223c!52~g1
22dg11a!,

F5
b2l2g0~2g12d!

2x4
.

Equation ~12! has a real solution only forZ.0. The
interval of values for whichZ.0 must be bounded, sinc
otherwiseh would reach infinite values. As a result, depen
ing on the sign ofx and the number of real roots of th
equationZ(h)50, there are three possible cases of inter

I. For x.0 andbg1,0 the polynomialZ(h) has four
real roots. From Eq.~12! we find
re

f

-

t.

h5rsn~pz, k!, r2528
blk2g1

x2c~11k2!
,

~15!

p252
bg1

x~11k2!
, k25

12A12cg0/2g1
2

11A12cg0/2g1
2

,

where sn(pz, k) is a Jacobi elliptic function with modulusk,
andp is the wave vector.

II. For x,0, if g0,0 the polynomialZ(h) has only two
real roots. There is a single region in whichZ.0, and after
some manipulations, Eq.~12! gives

h5rcn~pz, k!, r25
8blk2ḡ1

x2c
,

~16!

p252
bḡ1

x
, k25

1

2 F16S 12
cg0

2g1
2D 21/2G ,

whereḡ15g1 /(122k2) and, hence,bḡ1.0. Here cn(pz,k)
is a Jacobi elliptic function. It should be emphasized that
phases corresponding to solutions I and II are separated
line of Lifshitz points determined by the equationx50.

III. For x,0, bg1,0 the polynomialZ(h) has four real
roots. In this case we find from Eq.~12! that

h5rdn~pz,k!, r2528
lbg1

x2c~22k2!
,

~17!

p25
bg1

x~22k2!
, k25

2A12cg0 /zg1
2

11A12cg0/2g1
2

.

Since the elliptic function dn(pz,k).0, this incommensurate
phase in magnets has a nonzero average magnetization

The temperature dependence of the parameterk (0<k
<1) in phases I, II, and III is determined by direct substit
tion of solutions~15!–~17!, respectively, into Eq.~9!. The
value k50 corresponds to the temperature of the transit
from the paramagnetic phase to the incommensurate p
(TN), and k51 corresponds to the transition temperatu
from the incommensurate to the commensurate phase (TC).
In addition, Eq.~9! determines the temperature interval
which the incommensurate phase exists. Because of the
centration dependence of the coefficients of the thermo
namic potential, the temperature intervalTN2TC depends on
m, becoming narrower asm increases. It follows from the
explicit form of the solution~15! and~16! that the magnetic
moments in phases I and II are ordered antiferromagn
cally. In phase III the ordering is ferromagnetic.

It should be emphasized that because the coefficient
the thermodynamic potential are functions of the dopant c
centration, there can be a succession of phases I, II, an
on thex–T diagram. Moreover, the commensurate phase
termined by functional~3! is antiferromagnetically ordered
In this case the magnetic cell is doubled in the commensu
phase.

Let us consider the two-dimensional irreducible rep
sentation of the space groupI4/mmmwhich corresponds to
the vectorq5(0, 0,ks), specifying an internal point of the
Brillouin zone.16,17 This irreducible representation clear
does not satisfy the Lifshitz condition, and the phase tran
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tion in the system is therefore described by a two-compon
order parameter, and the thermodynamic potential functio
contains a Lifshitz invariant.

Let us assume that the structure is uniform in the dir
tionsx andy; then the thermodynamic potential functional
a one-dimensional integral along thez direction.

From symmetry considerations we express the ther
dynamic potential functional as

F5
1

d E0

d

f̃ ~z!dz

where

f̃ ~z!5
a0

2
r21

b0

4
r41g0r8 cos 8w2d0r2w8

1
k0

2
r2~w8!21

l0

2
r2~w9!2, ~18!

andr andw are the amplitude and phase of the order para
eter.

When ~18! is taken into account, the expression for t
thermodynamic potential becomes

Eg5E01
a

2
r21

b

4
r41Gr8 cos 8w2Dr2w8

1
k8

2
r2~w8!21

l8

2
r2~w9!2. ~19!

Now the thermodynamic potential functional can be writt
as

F5
1

d E0

d

f ~z!dz,

f ~z!5
a

2
r21

b

4
r41gr8 cos 8w2dr2w8

1
k

2
r2~w8!21

l

2
r2~w9!2, ~20!

where a5a01am, b5b01bm, g5g01Gm, d5d0

1mD, l5l01ml8, andk5k01mk8.
The harmonic solution representing the incommensu

phase isw5kx, and from the equilibrium condition on th
thermodynamic potential we obtain

k05
d

k
, r25

1

b
~a02a!, a05

d2

k
. ~21!

Minimization of the thermodynamic potential function
~20! with respect to the phase leads to an Euler equatio
the form

lw
~ IV !2kw9216gr6 sin 4w cos 4w50. ~22!

Before solving Eq.~22!, let us remark that on the phas
diagram of the system described by the functional~20!, the
line of Lifshitz points is determined by the equatio
k(P,T,m)50, whereP is the pressure. Consequently, t
line of Lifshitz points separates phases withk(P,T,m),0
and k(P,T,m).0. Let us first determine the solution o
equation~22! that describes the incommensurate phase
which k(P,T,m),0.

The first integral of equation~22! has the form
nt
al

-

o-

-

te

of

r

lFw8w-2
1

2
~w9!2G2

k

2
~w8!212gr6 cos2 4w5j, ~23!

wherej is a constant of integration.
After the substitution

S~w!5~w8!2, cos 4w5t ~24!

Eq. ~23! can be written in the form

l@8~12t2!S~ t !S9~ t !28tS~ t !S8~ t !22~12t2!~S8~ t !!2#

2
k

2
S~ t !12gr6t25j. ~25!

We seek the solution of equation~25! in the form

S~ t !5A1Bt. ~26!

By direct substitution we find

~w8!25A1B cos 4w, ~27!

where A52k/16l, B5(w/6l)1/2, v52gr6. The solution
of equation~20! has the form

z5E
0

w dt

~A1B cos 4t !1/2
. ~28!

The intersoliton distance is determined by the expression

z05
2

p
K~k!d0 , ~29!

where the soliton width is given by the expression

d05
p

8~A1B!1/2
. ~30!

HereK(k) is the elliptic integral of the first kind.
The incommensurate phase described by solution~28!

with k(P,T,m),0 will be called incommensurate phase I
Let us determine the solution of equation~22! for

k(P,T,m).0; to a first approximation, we shall assume th
l/k is small. Then the phase of the order parameter is de
mined as the solution of the one-dimensional sine-Gord
equation

kw9116gr6 sin 4w cos 4w50. ~31!

The first integral of this equation has the form

k

2
~w8!212gr6 sin 4w5m, ~32!

wherem is a constant of integration. After making the su
stitution g(u)5wsin2u, whereu54w, we write the solution
of equation~32! as

z5
1

4 S k

2D 1/2E
0

4w du

@m2g~u!#1/2
. ~33!

The incommensurate phase described by solution~33! will
be called incommensurate phase I.

In the commensurate phase the expression for the m
netic moment in thenth unit cell of the crystal in terms of the
magnetic moment in the first cell is

Mn5M1 exp~ ik"tn!1M1 exp~2 ik"tn!.
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It follows from this expression that in the caseM1

5M /2(m11 ipm2), (m1•m2)50, m1
25m2

2, with an elliptic-
ity parameterpÞ0, the magnetic moment

Mn5M @m1 cos~k"tn!2pm2 sin~k"tn!#

describes an elliptical helix in space.
If we set p50, then we have a structure of the spi

wave type, for which

Mn5Mm1 cos~k"t!n .

For m1ik this last expression describes an LSW structu
and for m1'k it describes a TSW structure. The change
volume of the magnetic cell in the commensurate phas
determined by a commensurate value of the wave vecto

The temperature width of the existence region of
incommensurate phase is determined by the relation

E~k!

k
5

1

a Fc1
1

11b~12T/TN!G
21

~12T/TN!23/2,

whereE(k) is the elliptic integral of the second kind; 0<k
<1, anda, b, andc are certain parameters of the thermod
namic potential. It is clear that as the dopant concentra
increases, the temperature region in which the incomme
rate phase exists becomes narrower.

CONCLUSIONS

The tetragonal structure with space groupI4/mmm,
which is the magnetic symmetry group of the paramagn
phase, arises as a result of a structural phase transition
the close-packed paraphase with space groupIm3m. The
transformation properties of the order parameter describ
the structural phase transitionIm3m→I4/mmm are deter-
mined by the six-dimensional irreducible representation
the group Im3m corresponding to the wave vectork
5(0, 0, 2p/na), while the I4/mmm phase arises for odd
valuesn>3, when only two rays ofk8 are active, i.e., only
two, conjugate components of the order parameter are n
zero. The lineD is characterized by the vectork8, the group
of the wave vector of which isI4mm, and it begins at the
center and ends at the vertexH of the Brillouin zone. The
symmetry groups of theG andH points are maximal in the
sense that the structure has its highest symmetry. Since
line D is internal to the Brillouin zone, the six-dimension
irreducible representation is passive, and the Lifshitz con
tion is not satisfied. Therefore, in principle, the structu
phase transitionIm3m→I4/mmmtakes place through an in
termediate incommensurate phase, andI4/mmm is the sym-
metry of the commensurate phase.

In the Brillouin zone of the tetragonal paramagne
phase with symmetryI4/mmm the points with the highes
symmetry are the centerk145(0,0,0) and the surface poin
k155(0,0,p/tz). The line connecting these points is co
tained by a vectork105(0,0,2mp/tz), the wave vector of
which has the group 4mm. The one-dimensional irreducibl
representationDk15,2

of the group I4/mmm which corre-
sponds to the vectork15, contained in the magnetic repre
sentation, determines a thermodynamic potential functio
without a Lifshitz invariant. This functional describe
a structure of the LSW type. The equilibrium conditio
of the functional determines an ordering of the ty
,
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h5rsn(pz, k) and h5\ cn(pz,k) and a phase with ferro
magnetic ordering of the typeh5rdn(pz, k). The commen-
surate phase that corresponds to these phases is anti
magnetically ordered, and the magnetic cell is doubled.

The thermodynamic potential functional made up of
variants of the irreducible representation of the gro
I4/mmmcorresponding to the wave vectork105(0,0,2mp/
tz), which is contained in the magnetic representation, c
tains a Lifshitz invariant. Minimizing this functional leads t
two different solutions, which correspond to different incom
mensurate phases. On the phase diagram these phase
separated by a line of Lifshitz points.

We note that in magnets the physical reason
the appearance of Lifshitz invariants is the relativis
Dzyaloshinskii–Moriya interaction.8 For a functional with a
Lifshitz invariant a solution of the LSW type arises in th
case when the ellipticity parameter is equal to zero and
magnetic moments are directed along the modulation w
vector.

Furthermore, the size of the temperature interval
which the incommensurate phase exists in these compo
depends on the dopant concentration. The magnetic orde
depends on the magnitude of the modulation wave vec
and as this magnitude changes so do the magnetic symm
groups in the commensurate phases. For example, a dou
of the magnetic cell of the commensurate phase is obse
in crystals of U~Pd0.98Fe0.02)2Ge2. In the compounds
U~Pd12xFex)2Ge2 the volume of the magnetic cell in th
commensurate phase is quadrupled. For a detailed com
son of the results it will be necessary to carry out precis
experiments to refine the interrelationship between the m
netic ordering and the magnitude of the modulation wa
vector as a function of the dopant concentration in th
families of compounds.
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Nature of critical current and coherent phenomena in granular MoN x thin films
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Investigations of the critical current versus temperature and applied magnetic field are carried out
for granular MoNx films. All samples display a two-stage superconducting transition and
can be treated as a percolating network of SNS contacts with a Josephson coupling between grains.
The temperature behavior of the critical current for the films studies is the same as the
I c(T) dependence for a SNS junction in the diffusive limit. The value of critical current in a
magnetic field is governed by the pinning of Josephson vortices. ©2000 American Institute of
Physics.@S1063-777X~00!00312-1#
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1. INTRODUCTION

The study of superconducting properties of nonunifo
high-resistance films has attracted a great deal of atten
recently due to the discovery of the superconductor-insul
transitional in two-dimensional~2D! systems.1–3 However,
another remarkable feature of these materials is conne
with the possibility of forming a regular granular structur
The interplay between microstructural disorder and spa
modulation of the superconducting order parameter allow
to treat these materials as a network of Josephson junc
that are very similar in Bi- and Tl-based anisotropic high-Tc

superconductors.4 The granular nature of these objec
clearly plays a major role in their superconductivity, and
understanding of the behavior of spatially nonuniform co
ventional superconductors is essential for establishing wh
properties of the cuprates might follow simply from the
geometry and microstructural inhomogeneity. Even thou
the superconducting properties of granular films have b
studied for a long time, the physical nature of this effe
continues to be a matter of controversy.

In this paper we propose a new method for the prepa
tion of granular MoNx films, which can be treated as a pe
colating network of superconductor-normal metal-sup
conductor ~SNS! contacts with a Josephson coupling b
tween grains. The main peculiarity of the studied films is
occurrence of a two-stage transition from the normal to
long-range superconducting~coherent! state. It is shown tha
the observed linear dependence of the transition tempera
to the phase-coherent state on the residual resistance c
explained in the framework of the proximity-effect model f
the superconductor-normal metal~SN! system. The tempera
ture behavior of the critical currentI c for the films studied is
very similar to theI c(T) dependence obtained for a SN
8811063-777X/2000/26(12)/5/$20.00
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junction in the diffusive limit. The microscopic supercon
ducting parameters estimated from fitting the experimen
I c(T) curves coincide with ones obtained by independ
methods. In contrast withI c(T), the magnetic field depen
dence of the critical current cannot be described on the b
of the theoretical models developed for single or multip
SNS junctions. We suggest that the transition of the Mox

granular films to the resistive state under the action of c
rent in an applied magnetic field results from the start of
flux lines’ motion rather than from the switching of the J
sephson junctions. Therefore the value of the critical curr
is determined by the pinning force of the Josephson vorti
owing to the magnetic interaction with the grains.

2. EXPERIMENTAL PROCEDURE

The MoNx films were prepared on Al2O3 substrates by
thermal evaporation in a vacuum chamber with a base p
sure of 6.731024 Pa. A Mo strip ~0.2532385 mm! was
used for the evaporation. The deposition of the films w
carried out with the following technological parameters. T
current was about 50 A, the output power was;50 W, the
nitrogen pressure was around 1023 Pa, and the substrate tem
perature during the deposition was;350 K.

The deposited films have a thicknessd'200 nm. An
x-ray diffraction analysis showed that a hexagonal Mo
phase5 (a5b.(0.57260.001) nm,c.(0.56060.005) nm!
is formed in about 90% of the film volume. On the oth
hand, the low value of the critical temperatureTc of 5.0–6.5
K shows that the prepared films have a nonstoichiome
concentration of nitrogen and their composition is rep
sented as MoNx . The average grain size estimated by hig
resolution electron microscopy turned out to be^D&'100
nm. The geometric dimensions of the samples were set
© 2000 American Institute of Physics
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photolithographic model to have a width of 0.325 mm an
length between voltage contacts of 3.65 mm. The resista
was measured by the conventional dc four-probe techniq
A voltage drop of 1mV/cm served as the criterion for choo
ing the critical current. The applied magnetic field was
ways maintained perpendicular to the film surface and to
direction of the transport current.

3. RESULTS AND DISCUSSION

Figure 1 shows the resistance curves of the superc
ducting transition for MoNx films with different values of the
residual resistivityr0 measured at 10 K. It can be seen th
all the films with r0.6.2 mV•m have a two-stepped shap
of R(T)/R0 , whereR0 is the resistance before the superco
ducting transition. Therefore, the transition of the films to t
superconducting state is carried out in two stages. The
superconducting state occurs inside the grains at a high
perature,Tc0 , and a long-range phase-coherent superc
ducting state is formed at a lower temperature,Tc . Unfortu-
nately, we have not observed any relation between the v
of the residual resistance~or sheet resistance,R)5r0 /d) and
the temperature positions of the two superconducting tra
tions, such as is very often found in disordered thin films6,7

However, the difference between the first and second re
tance steps (Tc0 andTc) depends directly on the total resi
tivity of the film.

The disorder-induced depression ofTc0 is in good quali-
tative agreement with the percolation description of a wea
coupled random 2D network of Josephson junctions. Us
the theoretical results for a percolating network
Josephson-coupled grains, together with the temperat
dependent BCS energy gap, one can write7

Tc

Tc0

512
0.3e2r0

p\L
, ~1!

whereTc0 is the superconducting transition temperature
the grain andTc is the depressed transition temperature
the grain boundary as mentioned above;L is the characteris-
tic length of the microstructure morphology~proportional to
the grain size!, and p\/4e256.45 kV is the quantum of

FIG. 1. Superconducting transition curves for MoNx films with different
values of the residual resistivityr0 @mV•m#: 6.2 ~1!; 30.2~2!; 19.8~3!; 62.4
~4!; 27.5 ~5!; 86.1 ~6!. The inset shows the dependence of the ratioTc /Tc0

on r0 . The solid and dashed lines are theoretical curves obtained by u
Eqs.~1! and ~3!, respectively.
a
ce
s.

-
e

n-

t

-

st
m-
n-

ue

i-

is-

y
g
f
re-

f
f

resistance. A better agreement between the experimenta
theoretical data is observed by fitting withL.25 nm, as is
seen in the inset of Fig. 1. If it is assumed, according to R
7, thatL.0.3̂ D&, where^D& is the average grain size in th
film, ^D& turns out to be about 83 nm, which is of the sam
order of magnitude as the data obtained by electr
microscopic analysis. The observed linear dependence o
ratio Tc /Tc0 on the residual resistance suggests that
samples are very similar to a composite In–InOx film with an
island microstructure.7

On the other hand, one can obtain a similar linear-l
behavior ofTc /Tc0 versus resistivity from Kresin’s theoret
ical model8 of the proximity effect for strongly coupled su
perconductors. Let us consider the film as a SNS proxim
sandwich system, where the grains areS and the grain
boundariesN. If the thickness of the normal metal~the width
of the grain boundaries! is smaller than the coherence leng
for the boundaries, the superconducting critical tempera
for the whole SNS system can be described by9

Tc5Tc0~pTc0/2gu!a, ~2!

wherea5nNLN /nSLS , nN andnS are the electron density o
states of the normal and superconducting layers, andLN and
LS are the layer thicknesses, respectively. For a granular
LN corresponds to the widthw of the grain boundary, as
mentioned, andLS to the average grin sizêD&. In case of a
nearly ideal SN contact,u.vc , where vc is the average
phonon frequency~equal to the Debye frequency in th
model!. g50.577 is Euler’s constant. Taking into accou
that the resistivity is inversely proportional to the electr
density of states,r51/(eDn) whereD5vF

2t/3 is the elec-
tron diffusion coefficient (vF is the Fermi velocity andt is
the mean free time between collisions of electrons!, Eq. ~2!
can be simplified to

Tc

Tc0

'11
r0S

r0N

w

^D&
lnS 2.72Tc0

wc
D , ~3!

wherer0S is the resistivity of the grains, andr0N is that of
the grain boundaries.

This equation is formally equivalent to Eq.~1!, since the
logarithmic term in Eq.~3! is negative in sign. The value o
the electron diffusion coefficient is little different betwee
grain and grain boundary in a covalent compound of the t
considered, and lnx'x21 whenx!1. If we also assume
that the minimum metallic conductivity of the grain boun
ary is realized assmin.0.03e2/\a according to Mott and
Koveh,10 we can estimate the value ofr0N5smin

21.156
mV•m, where a is the crystal lattice constant. Withvc

'350 K andTc0.5 K for our films,11 the ratio of the grain
boundary width to the average grain size,w/^D&, is esti-
mated to be about 0.1. Therefore, the average width of
grain boundaries turns out to be 10 nm in our case. This is
absolutely reasonable value for the films deposited at a
temperature. Consequently, the prepared MoNx thin films
can be treated as a percolating network of SNS contacts
a Josephson coupling between grains.

3.1. Temperature dependence of the critical current

Figure 2 shows the temperature dependence of the c
cal current for the MoNx film with r0530.2mV•m at differ-

ng
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ent values of applied magnetic field. TheI c(T) behavior dis-
plays a fundamental deviation from the Ambegaoka
Baratoff ~AB! expression developed for the case of the id
superconductor–insulator–superconductor~SIS! Josephson
junction, I c(T)RN5pD(T)/2 tanh(D(T)/2T).12 RN is the
normal resistance of the junction, andD(T) is the supercon-
ducting energy gap. A better agreement between the exp
mental data and the AB model can be obtained by usin
severely depressed value of the superconducting energy
as a fitting parameter. The dashed line in the inset of Fig.
plotted with a value ofD(0).1.76kBTc , while the solid line
requiresD(0).0.12kBTc . It is worthy of note that the de
crease in the energy gap of the Josephson junctions ha
ready been observed experimentally. For example, the
ergy gap obtained for high-Tc layered superconductors from
measurements of the intrinsic Josephson effect13 is about a
factor of two smaller than that determined from tunneling14

or spectroscopy15 measurements. However, even thou
such an energy gap suppression is predicted in the theore
works,16,17 this problem is far from being totally understoo
On the other hand, the small value of the energy gap s
gests that the transition temperature for the phase-cohe
superconducting state~the second step on the resistan
curves in Fig. 1! is lower thanTc0 , an effect which has no
been observed experimentally. We are proposing that
strong deviation of the experimental data from the AB e
pression in our case results from another physical cause

Taking into account the good agreement between

FIG. 2. Temperature dependence of the critical current for a MoNx film with
r0530.2mV•m at different values of applied magnetic field@T#: 0 ~1!; 0.1
~2!; 0.2 ~3!; 0.3 ~4!. The inset shows the logarithmic dependence
I c(T)/I c(0) on the reduced temperaturet5T/Tc . The dashed line corre
sponds to the Ambegaokar–Baratoff expression, the solid line is calcu
for the model of a SIS junction with a suppressed superconducting en
gap, and the dotted line corresponds to the model of a SNS junction in
diffusive limit.
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experimental dependence ofTc /Tc0 on r0 and Kresin’s
model9 for the SN proximity sandwich, we expect that th
temperature behavior of the critical current of the films c
be described in the framework of the approaches for SN
type Josephson junctions.18–20 The critical current is written
as

I c~T!5AIc~0!expS 2
LN

jN
D , ~4!

where I c(0) is the critical current at zero temperature, a
A'12/p for T!Tc andA'12T/Tc at T→Tc . For the nor-
mal layer in a SNS system,j0 is replaced by the norma
metal coherence length,jN5\vF/2pkBT ~in the ballistic
limit LN! l , where l is the impurity scattering length! or
A\D /2pkBT ~in the diffusive limit LN@ l ). Because the re-
sistance of the grain boundary is larger than that of the g
itself, it is reasonable to assume the diffusive limit for o
case. Using the well-known expression for the superc
ductor coherence length,j(0)5(j0l )1/2, where j0

50.18\vF /kBTc , one can write Eq.~4! in a form that is
more convenient for fitting the experimental data:

I c~T!

I c~0!
.S 12

T

Tc
D expS 2

0.57LN

j~0!
S T

Tc
D 1/2D . ~5!

It is seen in the inset of Fig. 2 that better agreement w
the experimental data is provided withLN /j(0).2.5. In our
caseLN5w, the width of grain boundary. Therefore, th
value of the coherence length estimated from the tempera
dependence of the critical current is equal toj(0).4 nm.
This is in the same order of magnitude as the value ca
lated from the expression for upper critical magnetic fie
Hc2(0)5f0/2pj2(0).0.69(dHc2 /dTuTc

)Tc , where f0 is
the magnetic flux quantum (2.07310215 T•m2). The mea-
sured value ofdHc2 /dTuTc

for our films was.3 – 3.5 T/K,
leading toj(0).6 – 7 nm.

3.2. Magnetic-field dependence of the critical current

It is well known that in a SIS system, the Josephs
current as a function of magnetic field shows a Fraunho
pattern.21 However, in the case of a Josephson medium c
sisting of SNS junctions in whichN is a 2D normal metal on
the mesoscopic scale, the dependence of the Josephson
rent on magnetic field is expected to be not so simple. T
Fraunhofer oscillations of the critical current have not be
observed even in the stacked intrinsic Josephson junction
Bi2Sr2CaCu2O81d layered high-Tc single crystals.4,22 Figure
3 shows theI c(B) difference for the MoNx film measured at
different temperatures, which does not display any manif
tation of oscillatory behavior.

Two theoretical approaches have been used for expla
tion of the magnetic-field dependence of the critical curr
in spatially nonuniform superconductors connected in a s
tem of Josephson junctions. The first of them is based on
solution of a Hamiltonian that is formally the same as for
XY disordered ferromagnet in 3D.23,24 The second one sug
gests the pinning of the Josephson vortices by microst
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tural inhomogeneities, and the value of the critical curren
determined by the driving force necessary for flux li
motion.25,26

For the system of a Josephson junction network,
magnetic field dependence of the critical current can be
scribed by23

I c~B!/I c~0!.0.82~12gS
21 singS!1/2B0 /B, ~6!

gS52.7~L/lc!~B/B0!,

whereB0 is the first critical magnetic field, andL andlc can
be treated as a correlation length for the phase-coupled j
tions and a penetration depth, respectively. Unfortunat
Eq. ~6! is not able to describe well the experimentalI c(B),
especially in the low magnetic field range, as seen in Fig
Moreover, the fitting parameter obtained,B0.0.25 T, is too
large for our films.

Because of the growth mechanism and the tendenc
form the so-called columnar texture of the grains, the gr
boundaries of the prepared MoNx films are arranged perpen
dicularly to the plane of the substrate. Consequently, a
network of Josephson junctions~grain boundaries! with a 2D
array of Josephson vortices can be formed. The rather s
size of the grains (̂D&!lJ), where lJ5(f0/2pm0 j ct)

1/2

.10 mm in our case is the Josephson penetration de
allows us to assume that the interaction between Josep
vortices leads to the formation of a flux-line lattice. The d
namics of such a system can be described by the pin
theory. Since the Josephson vortices do not have nor
cores, in contrast to the Abrikosov vortices, the mechan
of the flux-line pinning is governed by the magnetic intera
tion, and the grains play the role of the pinning centers.
this case the critical current is expressed byI c(B)

FIG. 3. Dependence of the critical current on applied magnetic field fo
MoNx film with r0530.2mV•m at different temperatures.
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52cMf0
1/2/lB1/2, where the magnetization ofM.(Hc2

2B)/@4p(2k221)#; l is the London penetration depth, an
k is the Ginzburg–Landau parameter.27 Taking into account
that the elementary pinning force has to decrease proport
ally to the drop in the order parameter according to the r
of the field,27 the final expression forI c(B) is simplified to

I c~B!

I c~0!
.

4p

kd S f0

B
D 1/2S 12

B

Hc2
D 2

. ~7!

Figure 4 shows that the theoretical curve is in go
agreement with the experimental data practically in
whole range of magnetic fields. A fitting to the experime
allows us to estimate the values of the Ginzburg–Land
parameter,k.70, and the upper critical field,Hc2.10 T,
which coincide with those obtained from an analysis of t
(dHc2 /dTuTc

) data for these films.
For comparison, we also show in Fig. 4 the experimen

results for the stacked intrinsic Josephson junctions o
Bi2Sr2CaCu2O81d single crystal.22 It is seen that the mag
netic field behavior of the critical current is described by
power law (I c;1/B1.5), as well. However, the pinning
mechanism has a more exotic nature and is connected
the collective pinning phenomenon.26

SUMMARY

We have developed a new method for the preparation
granular MoNx films that can be treated as a 2D network
SNS Josephson junctions. It was shown that the tempera
dependence of the critical current can be described in
framework of the SNS junction model in the diffusive limi
For an explanation of the superconducting transport prop

a

FIG. 4. Dependence ofI c(B)/I c(0) on applied magnetic field for a MoNx
film with r0530.2 mV•m. The solid line is the theoretical curve based
the Josephson vortex pinning model, the dotted line corresponds to thXY
model, and the dashed line indicates the dependenceI c;1/B1.5. The cross
symbols represent the experimental data for the intrinsic Josephson
tions of Bi4Sr2CaCu2O82d from Ref. 4.
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ties in an applied magnetic field, a simple model for t
magnetic pinning of the Josephson vortices is sugges
where the grains play the role of the pinning centers.
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Two different approaches~presented in the literature as alternative approximations! to the
problem of carrier-induced ferromagnetism in the system of disordered magnetic ions of a diluted
magnetic semiconductor are analyzed. They are based on a self-consistent procedure for the
mean exchange fields and the RKKY interaction. Calculations in the framework of an exactly
solvable model are carried out, and it is shown that these approaches stem from two
different contributions to the magnetic susceptibility. One stems from the diagonal part of the
carrier-ion exchange interaction and corresponds to the mean field approximation. The
other one stems from the off-diagonal part of the same interaction and describes the indirect
interaction between localized spins via free carriers. These two contributions can give rise to
different magnetic properties. Thus the aforementioned contributions are complementary
and not alternative to each other. A general approach is proposed and compared with different
approximations to the problem under consideration. ©2000 American Institute of
Physics.@S1063-777X~00!00412-6#
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INTRODUCTION

In recent years there has been a substantial increas
interest in studies of carrier-induced ferromagnetism in
luted magnetic semiconductors~DMSs!. A number of works
~see Ref. 1 and references therein! present proof of the
existence of a ferromagnetic transition in the DM
Pb12x2ySnyMnxTe, induced by the strong exchange intera
tion of the Mn ions with band holes. A ferromagnetic pha
transition has also been found inp-doped DMS quantum
wells.2 Carrier-induced ferromagnetism was observed in
DMS (Ga12xMnx)As with x of a few percent, where hole
are associated with the Mn ions in these structures.3

To describe the transition to a ferromagnetic~FM! phase
induced by free carriers, all of the authors of the aforem
tioned works used similar approaches: the role of band
riers was reduced to the induction of indirect interaction
tween localized spins through electrons~holes! ~LeL
interaction!, known in the physics of metals as the RKK
~Ruderman–Kittel–Kasuya–Yosida! interaction.4 The mag-
netic ions were considered as a subsystem separated from
electrons~holes! because of a small free-carrier contributio
to the total magnetization of the system. A consideration
magnetic ions with the RKKY interaction in terms of th
Curie–Weiss field permits one to incorporate in it the spi
spin interactions caused by other mechanisms~LL interac-
tion!. The latter mechanisms are assumed to result in a t
perature shift QLL in the Curie law for the magnetic
susceptibility without free carriers,x21}T2QLL . Thus, the
electrons~holes! change this dependence by the additio
shift QLeL ~Ref. 1!:

x21}T2QLL2QLeL . ~1!
8861063-777X/2000/26(12)/4/$20.00
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Since for Mn-based DMSsQLL,0 while QLeL.0, the FM
phase transition can take place ifQLeL.uQLLu.

Another approach to the problem under considerat
was developed in Refs. 5 and 6, where the carrier-ion
change interaction was treated in terms of a self-consis
mean field approximation~MFA!. The indirect LeL interac-
tion does not appear in this approach, but the free-car
contribution to the thermodynamic potentials was taken i
account in the MFA. As a result, this theory predicts a te
perature shiftQMF in the Curie law:

x21}T2QLL2QMF . ~2!

Now we would like to emphasize that the values calc
lated for the temperature shiftsQLeL and QMF under some
additional~but common enough! assumptions coincide with
each other for 3D, 2D, and 1D electron gases.2 This coinci-
dence can lead to the spurious conclusion that the MFA
LeL ~or RKKY! interaction considered in the Curie–Wei
field approximation are of an identical nature. This pap
draws attention to the fact that free carriers still cause a
nificant contribution to the thermodynamic potentials ev
after the LeL interaction is taken into account. This cont
bution treated in the MFA is not identical to the LeL~or
RKKY ! interaction. This last statement becomes clear if
take into account that the LeL~RKKY ! interaction appears
after partial diagonalization of the interaction Hamiltonia
with respect to space quantum numbers~the electron wave
vectorsk in the case of the RKKY interaction!, while the
MFA approach5,6 uses only the diagonal part of the intera
tion and therefore does not depend on the spatial config
tion of the magnetic ions. It is therefore possible to imag
a physical situation in which the MFA contribution excee
© 2000 American Institute of Physics
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the RKKY contribution to the magnetic susceptibility. Thu
the main result we want to prove below can be reduced to
statement that, generally speaking, the static magnetic
ceptibility depends significantly on bothQMF andQLeL .

The structure of the paper is following. First we illustra
our approach with a model allowing exact statistical calcu
tions. Then we consider a more realistic system that is
lated to the experimental situation in Refs. 1–3. We concl
with a discussion of the general approach to the FM ph
transitions in DMSs and compare our approach with
works devoted to this problem.

MAGNETIC SUSCEPTIBILITY IN EXACTLY SOLVABLE
MODEL

The Hamiltonian of our model is similar to that applie
in the aforementioned works and comprises a sum of lo
ized spin moments~LSMs!, electrons, and their interactio
Hamiltonians:

H5Hm1He1Hem, ~3!

where

Hm5gmmBB( jSZ
j [vmML ;

He5(b,k,s~«b1ves!ab,k,s
1 ab,k,s ;

Hem52~J/N0!(b,b8,k,sAb,b8~sM !ab,k,s
1 ab8,k,s .

HereSZ
i is theZ component of thejth LSM spin, while

ML5( jSZ
i , j 51, . . . ,Nm ; Nm is the number of LSMs in

the system;gm andvm5gmmBB are, respectively, the LSM
g factor and Zeeman splitting in the fieldB; ve is band
electron Zeeman splitting in the fieldB. Three quantum num
bers can be assigned to the electrons: band numberb, intra-
band quantum numberk, and spin projections561/2;
ab,k,s

1 andab,k,s are the creation and annihilation operato
J is the carrier–ion exchange interaction constant; the n
malization factorN0 equals one-half of the number of ele
tronic states in each of bandsb, and Ab,b8 is an interband
transition matrix element.

The structure of Hamiltonian~3! is similar to that in
Refs. 1–3 and 6. The differences lie both in the dispersion
the band carriers,«b,k5«b8,k , which corresponds to fla
bands, and in the lack of intraband exchange scattering.
exchange scattering between bandsb and b8 is taken into
account by the matrix elementAb,b8.

If we restrict ourselves to only two electronic bandsb
51,2, the diagonalization of the Hamiltonian becom
trivial. The eigenenergiesE are determined by the repopula
ing of electrons within bandsb51 and 2 as well as by the
normalized values of the ion spin projectionsm5ML /Nm .
For simplicity we assumeAb,b851. Thus the energy per un
volume reads:

Eb5nb~«11«2!/21~GL1ve!~nb12nb2!6~nbDE/2!

3F11S GL

DE
D 2G 1/2

1vmnmm. ~4!

The minus and plus signs correspond tob51 andb52; DE
is the energy interval between these bands;nb1 andnb2 are
the concentrations of electrons with spin projections5
11/2 and21/2 in the bandb, the total electron concentra
e
s-

-
e-
e
e

e

l-

;
r-

f

he

s

tion is nb5nb11nb2 ; GL5Jxm is the effective exchange
field of magnetic ions acting on electrons,x5Nm /N0 is the
fraction of magnetic cations in the crystal,nm and Nm are
their concentration and total number, andN0 is the total
number of cations in the crystal.

Since value ofGL is infinitesimal atT.Tc (Tc is the
FM phase transition temperature! andB→0, the square root
in Eq. ~4! can be expanded in the small parameter (GL /DE)2

up to the first nonvanishing term. We will also assume t
only the lowest energy bandb51 is filled, i.e., DE@kT.
Then the energy spectrum assumes the following form:

E5ne«11neGLse1vmnmm2neGL
2/~4DE!. ~5!

For brevity, we introduce the total concentration of electro
ne5nb51 and the average projection of electronic spinsse

5(n12n2)/2(n11n2); the electronicg factor is assumed
to be equal to zero.

There are two possible courses of further action. T
first one~following Refs. 1–3! is to restrict consideration to
the magnetic ions only. This restriction means considera
of only the last two terms in Eq.~5!. The second way5,6 is to
consider only the first three terms. Note that last term in
~5! is just the contribution to the energy from the LeL spin
spin interaction induced by the band electrons, becauseGL

2

}( j j 8SZ
j SZ

j 8, while all the rest of the terms are due to th
electron and LSM energies with the diagonal part of th
interaction. We consider a third approach that takes into
count the full energy of the system~5!.

For magnetic susceptibility calculations we need the p
tition function. This function has the form

Z5E E UNm
~ML!UNe

~MB!e2E/kTdMBdML , ~6!

and can be immediately calculated with the help of Eq.~5!.
The projections of the total LSM spinsML5Nmm and the
band electronsMB5Nese are introduced in Eq.~6!. Beyond
magnetic saturation, the statistical weightUN(M ) is given
by a Gaussian distribution in the thermodynamic lim
Nm→}, Ne→` ~Ref. 7!:

UN~M !5
~2S11!N

~pDS!1/2
e~M2/DS!, ~7!

whereDS52/3S(S11)N. Equation~7! is also applicable for
band electrons withS51/2 if the electrons obey Boltzman
statistics. Such an approach is evidently realized in the li
Ne!N0 . Thus, the partition functionZ is calculated by
straightforward integration in Eq.~6! with the aforemen-
tioned assumptions. After some algebra we arrive at the
lowing final result:

x0
215x0,L

21S 12
QLeL

T
2

QMF
2

T2 D
with

QLeL5
1

6
S~S11!

J2x2

DE

Ne

Nm

;

~8!

QMF5F 1

12
S~S11!J2V0

2nmneG1/2

,
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where x0,L52/3S(S11)(gmB)2nm /T is the paramagnetic
susceptibility of noninteracting LSMs, andV0 is the volume
of the unit cell.

Calculations in the framework of the approach of Re
1–3 reproduce the result~8! but without the last term
(QMF /T)2. This term appears as a contribution of free c
riers to the thermodynamic potential due to the diagonal p
of the carrier–ion exchange interactionHem ~3!. One can see
that the diagonalization procedure does not remove this te
and therefore the LeL interaction can never take it into
count.

Another approach5,6 treats the interactionHem in the first
order of perturbation theory only. As a result, the last term
Eq. ~5! does not appear, and thereforeQLeL50 in Eq.~8! for
our model. It is interesting to note that, in spite of the e
treme simplicity of the model under consideration, the e
pression forQMF in Eq. ~8! reproduces the result of Ref.
obtained in terms of self-consistent exchange fields fo
more realistic situation.

One can see that expression~8! for QMF is neither quan-
titatively nor qualitatively similar toQLeL . It permits one to
make the following general statement. For problems of m
netic phase transitions, magnetic susceptibility, magnet
tion, etc., it is important to simultaneously take into accou
the contributions of both the magnetic ions and electron s
systems to the thermodynamic potentials despite the ne
gible magnetization of the free carriers. In doing so, it is a
important to take into account both the diagonal and o
diagonal parts of the carrier–ion exchange interaction. T
omission of any of the aforementioned terms in the Ham
tonian leads, generally speaking, to significant inaccurac
even to qualitative changes.

GENERAL APPROACH TO CALCULATION OF CRITICAL
TEMPERATURE

We now present a correct consideration of the probl
of spontaneous magnetic transitions induced by band car
in DMSs. We choose the Hamiltonian in a form similar
~3! but incorporate the LL spin–spin interactionHLL be-
tween the LSM in the magnetic partHm and the intraband
exchange scattering between Bloch electron states in th
teractionHem ~Ref. 8!. In such a case the intraband exchan
scattering generates the LeL interaction. To calculate
magnetic susceptibility with the help of the modified Ham
tonian ~3!, we shall carry out the approximate diagonaliz
tion of Eq. ~3! by elimination of its off-diagonal~in k and
k8) components by the canonical transformation method9 in
the second order of perturbation theory. As a result, the
fective LeL spin–spin interaction operator assumes the fo

HLeL5(
j , j 8

Jeff~Rj , j 8!S
j
•Sj 8, ~9!

whereRj , j 8 is the radius vector joining the pairs of magne
ions at the crystal lattice sitesj and j 8. The structure of the
indirect interaction~9! is similar to the HamiltonianHLL , so
they can be combined. The specific form ofJeff(Rj , j 8) in Eq.
~9! depends on the degeneracy of the electron gas,10 the in-
fluence of magnetic field,11 the effect of casual anisotropy,12

the structure of the energy band of the semiconductor,1 and
the dimensionality of the system.2
.
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Then the diagonal part of the operatorHem should be
written in the form of the Zeeman energy of the LSMs in t
effective fieldBe5JV0se /gmmB and added to the Zeema
term of the magnetic HamiltonianHm . We should empha-
size here thatBe is similar to the Knight field in nuclear
magnetism. The LSMg-factor shift induced by the fieldBe

has recently been observed in DMSs.13

One more standard step is the transformation of
spin–spin interactions inHm to the energy in the Curie–
Weiss fields. It is well known that such an approach redu
the thermodynamical treatment of interacting spins to c
sideration of isolated spins with an effective temperat
Teff5T2Q. The parameterQ5QLL1QLeL is determined
by both the LL and the LeL interactions@Eq. ~9!#.

As a result, the free energy can be presented in term
the electronic and ionic parts only:14

F5Fe~se!1Fm~B1JV0se /gmmB ,T2Q!, ~10!

whereFm(B1Be ,T2Q) is the contribution of noninteract
ing ~isolated! spins subjected to the uniform magnetic fie
B1Be at the temperatureT2Q. Note that Eq.~10! takes
into account both diagonal~the termBe5JV0se /gmmB) and
off-diagonal ~the term QLeL) parts of the carrier–ion ex
change interaction. The electronic spin polarizationse is
found by minimization of the functional~10!. Then, substi-
tution of the expression forse obtained in this manner into
Eq. ~10! completely determines the thermodynamic char
teristics of the system: the magnetizationMa52]F/]Ba ;
magnetic susceptibilityxa,a52]2F/]Ba

2, a5x,y,z; and
the temperature of the magnetic phase transitionTc .

The specific form of the free energy functional~10! de-
pends on the aforementioned and many other peculiaritie
our system. As an illustration, we consider now the m
popular case of a degenerate electron gas in a simple is
pic and of a semiconductor. We consider the magnetic tr
sition temperatureTc on the basis of the previous results.1–3,6

Equation~10! permits one to obtain the following equatio
for the critical temperature point:

~Teff!c2QMF50. ~11!

Here QMF is given by the corresponding formulas o
Refs. 2 and 6 and (Teff)c5Tc2QLL2QRKKY , whereQLeL

5QRKKY for the specific case considered. The parame
QRKKY coincides withQMF only under the assumptions men
tioned in the introduction to this paper. The parameterQLL

should be taken from experiment,QLL52T0 , where T0

.0 corresponds to the antiferromagnetic LL exchange in
action realized in the majority of experimental situations
DMSs ~see Ref. 15 and references therein!. We can thus
obtain Tc52QMF2T0 . If one takes into account only self
consistent exchange mean fields or RKKY interactions,
value of Tc is determined by a different expression:Tc

5QMF2T0 . This difference can be important in the predi
tion of conditions for the realization of carrier-induced fe
romagnetism in different experimental situations.

CONCLUSION

We have shown that neglecting the electronic contrib
tion to the free energy~10! leads to a substantial lowering o
the predictedTc value despite the consideration of the ind
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rect interaction via free carriers. Moreover, the example c
sidered shows that such neglect can lead to qualitatively
ferent results in some cases. The present work also sh
that different parts of the interaction operator are respons
for different mechanisms of FM ordering in DMS. Ther
fore, both diagonal and off-diagonal~in k! parts of the
carrier–ion exchange interaction are important. Neverthel
the main conclusion of previous works remains val
carrier-induced FM transition in DMS is possible at hig
enough carrier concentrations, and reduction of the dim
sionality of the system enhances this effect.

This paper was partially supported by Ukrainian Fund
mental Research Foundation Grant No. 4/871.
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Si/Si0.64Ge0.36 heterojunctions withp-type conductivity exhibit an electron overheating effect.
An analysis of the damping of the amplitudes of the Shubnikov–de Haas oscillations upon a
change in temperature and applied electric field yields the temperature dependence of the
electron–phonon relaxation time: teph51028T22 s. © 2000 American Institute of Physics.
@S1063-777X~00!00512-0#
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Two-dimensional electron systems~inversion layers,
delta layers, heterojunctions, and quantum wells! have
unique properties in that, on the one hand, the charge car
in them have a two-dimensional character of their mot
and, on the other hand, this two-dimensional state is real
in the bulk of the semiconductor, i.e., the phonons interac
with the carriers are three-dimensional. Information ab
the electron–phonon interaction in inversion layers, de
layers, and heterojunctions at low temperatures (;1 K! can-
not be obtained from the behavior of the quantum correcti
to the conductivity due to the weak localization and elect
interaction effects~see, e.g., Refs. 1–7!, since at such tem
peratures the dominant inelastic relaxation process
electron–electron scattering.

The electron–phonon interaction timeteph can be deter-
mined by studying the electron overheating effect.8 In the
electron overheating effect the electron temperatureTe ex-
ceeds the phonon temperatureTph under the influence of a
high electric field~current! or of other, ‘‘heating’’ factors.
The transfer of excess energy from the electron to the p
non system, even under conditions of strong elastic sca
ing, is governed by the timeteph. Therefore the problem o
determiningteph experimentally reduces to finding the valu
of the overheating of the electron gasDTe5(Te2Tph) under
conditions of high current flow. To realize the electron ov
heating effect it is necessary to ensure the free escap
phonons from the conducting layer into the surround
crystal ~i.e., to provide good acoustical coupling of the co
ducting layer and the crystal!. This requirement is manifestly
satisfied for inversion layers, delta layers, and heterost
tures.

The electron overheating effect has been analyzed pr
ously with the use of Shubnikov–de Haas~SdH! oscillations
for inversion layers on silicon9,10 and for Si/Si0.7Ge0.3 hetero-
structures withn-type conductivity.11 In the cited papers the
falloff of the amplitude of the oscillations with increasin
applied electric field was used to find a relation between
electron temperature and the rate of loss of the excess en
by the electrons; in Ref. 11 the dependence of the ene
8901063-777X/2000/26(12)/4/$20.00
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loss time on the overheating temperature was found, an
was concluded that the main channel of electron energy
is the emission of acoustical phonons.

In this study we have realized the electron overheat
effect in Si/Si0.64Ge0.36 heterojunctions containing implante
boron, which led to ap-type conductivity. The samples wer
obtained by molecular beam epitaxy~MBE!.1 The conduct-
ing region had a width of 0.55 mm, and the distance betw
the potential contacts was 2.25 mm. The mobile charge
rier concentrationn was 231011 cm22, and the Hall mobility
of the carriers was;12000 cm2V21s1.

At low temperatures~0.35–2 K! the heterojunctions ex
hibited pronounced SdH oscillations~Fig. 1!. Naturally, as
the temperature was raised, and also as the current flow
through the heterojunctions increased, the amplitude of
SdH oscillations fell off. The electron temperatureTe under
conditions of high current flow can be determined from
comparison of the change in the amplitude of the SdH os
lations under the influence of current and under the influe
of temperature. We carried out such an analysis for th
extrema in the magnetic field interval 8–14 kOe. Figure
shows the change in the amplitude of the SdH oscillatio
with quantum numbersn55,6,7 as the temperature and cu
rent are varied. From a comparison of the curves one can
Te at each specified value of the current.

The value ofteph can be calculated from the data for th
electron overheating effect with the use of the heat bala
equation, which assumes that the electrical powerP5E2s
released in a unit volume is equal to the amount of ene
transferred by the electrons to the lattice per unit time:

E2s5E
Tph

Te Ce~T!dT

teph~T!
. ~1!

If it is assumed thatteph
215aTp and that the electronic

heat capacityCe(T)5gT, then it follows from~1! that12

E2s5
ag

p12
~Te

p122Tph
p12!. ~2!
© 2000 American Institute of Physics
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Under the conditionTe@Tph one should observe a depe
denceTe}E2/(p12). Figure 3 shows the experimental depe
dence ofTe on the applied electric fieldE ~points! together
with the relationTe}E1/2 ~continuous curve!, which approxi-
mates the experimental data quite well~except for the points
at smallE, for which the conditionTe@Tph is not satisfied!.
Thus we arrive at the preliminary finding that the exponenp
in the relationteph

215aTp is equal to 2.
We attempted to find the temperature depende

teph(T) directly from the experimental data presented abo
Let us assume that in the steady stateteph in ~1! corresponds
to a certain temperatureTeph that characterizes the electron
phonon interaction under conditions of electron overheat
Then from~1! we have

E2s5~Te2Tph!
Te1Tph

2

g

teph~Teph!
. ~3!

For Teph5(Te1Tph)/2 Eq.~3! implies the following relation,
which was first given in Ref. 13:

Te2Tph5
E2s

gTeph
teph~Teph!. ~4!

Since the value ofg is unknown for our objects of study, w
must turn to the relation14

FIG. 1. Shubnikov–de Haas oscillations at various temperaturesT @K#:
0.334~1!, 0.619~2!, 0.834~3!, 0.984~4!, 1.281~5!, and 1.514~6! ~a! and at
various currents@nA#: 100 ~1!, 1000~2!, 1790~3!, and 3000~4! ~b!.
-

e
.

g.

~kTe!
25~kTph!

21
6

p2
~eE!2Dteph, ~5!

where D is the electron diffusion coefficient, andE is the
electric field that leads to heating of the electrons. This re
tion is obtained from Eq.~4! with the electronic heat capacit
and conductivity expressed in terms of the density of sta
nds : Ce5(p2/3)k2ndsT and s5e2ndsD. For two-dimen-
sional electronsnds5m* /(p\2), D5(1/2)vF

2t, and the
Fermi velocityvF5(\/m* )(2pn)1/2. The elastic scattering
time can be determined from the formulaRh

215ne2t/m* .
For the effective mass we take the valuem* 50.242m0 (m0

is the free electron mass!, obtained from an analysis of th
SdH oscillations. The electric field in a conducting chann
of lengthL and widtha can be found from the values of th
current I and the resistance per squareRh : E5IR/L
5IRh /a ~since R5RhL/a). For Tph one should take the
temperature of the crystal~in our caseTph50.37 K!.

From calculations based on Eq.~5! we obtained the tem-
perature dependence ofteph ~Fig. 4!. We assumed, as in
Refs. 15 and 16, thatTeph51/2(Tph1Te). The temperature

FIG. 2. Change in the amplitude of the SdH oscillations with quant
numbersn55 ~1!, 6 ~2!, 7 ~3! upon changes in temperature~a! and current
~b!.
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dependenceteph(T) presented in Fig. 4 can be approximat
at temperatures above;0.4 K by a power law: teph

51028T2p, wherep'2.
Let us discuss the possible causes of a temperature

pendenceteph
21}T2. For three-dimensional conductors in th

‘‘clean’’ limit one should haveteph
21}T3 ~Refs. 17 and 18!,

while for strong disordering, in the ‘‘dirty’’ limit, the theory
predicts a weakening of the electron–phonon interaction
the appearance of a temperature dependence of the
teph

21} lT4, where l is the mean free path of the ele
trons17,19,20~the transition from the ‘‘clean’’ to the ‘‘dirty’’
limit corresponds to a transition from the inequalityqphl
.1 to the inequalityqphl ,1, so that in the latter case th
mean free path of the electrons is shorter than the wavele
of a thermal phonon,lph52p/qph52p\s/kT, whereqph is
the phonon wave vector ands is the phonon velocity!.

Our experimental dependenceteph
21}T2 is very often ob-

served for thin films in an analysis of the behavior of t
quantum corrections to the conductivity due to weak loc
ization and electron interaction effects~see, e.g., Refs. 16
and 21–25! or in the analysis of experiments on electr
overheating~see, e.g., Refs. 15 and 26–29!. The appearance
of a temperature dependence of this kind for films can
attributed to modification of the phonon spectrum in th
films. Let us clarify this statement. The timeteph is deter-
mined by the E´ liashberg functiona2(v)F(v) in the fre-
quency region corresponding to the energy of therm
phonons:30

teph
2154pE dv

a2~v!F~v!

sh~\v/kT!
. ~6!

For a quantized phonon spectrum the density of states
linear function ofv, i.e.,F(v)}v. In that case~with allow-
ance for the weak dependence ofa on v) it turns out that
teph

21}T2. An analogous result was observed in an analysis
the possibility that shear waves~waves of the Love type!
with an unusual dispersion relationv}q1/2 can exist in a
film–substrate system.31 We might also point out Refs. 12
and 32, in which a dependenceteph

21} lT3 was obtained in the
‘‘dirty’’ limit for the case of a two-dimensional phonon spec
trum. Accordingly, in the ‘‘clean’’ limit one would expect a
dependence of the formteph

21}T2. However, these variant ex
planations of the behaviorteph

21}T2 cannot be directly ap-

FIG. 3. Electron temperatureTe versus the applied electric fieldE ~points!
and the approximating functionTe}E1/2 ~continuous curve!.
e-

d
rm

th

l-

e

l

a

f

plied to the heterostructures studied here, since in them
two-dimensionality is inherent to the electron system, wh
the phonons remain three-dimensional.

In our view, the temperature dependenceteph
21}T2 ob-

tained in this study is due to the two-dimensional nature
the electron system. In heterojunctions, as a result of
discontinuity of the bands at the heterointerface and the
pearance of internal electric fields, a potential well~which to
a first approximation is triangular in shape! is formed in
which the motion of the electrons~or holes! in the direction
transverse to the well~along thez axis! is quantized, while in
the plane of the interface (xy) the motion remains free. The
electrons occupy size-quantization levels~subbands! and are
described by the dispersion relation

«5
px

21py
2

2m
1« i . ~7!

At low temperatures the absorption or emission
phonons is accompanied by a change in the electron mom
tum componentspx ,py . At high temperatures, intersubban
transitions can occur. According to Ref. 33, forkT.kT2

5A8ms2W ~whereW5p2\2/(2md2) is, in order of magni-
tude, the ground-state energy of the size quantization,s is the
speed of sound, andd is the characteristic width of the well!
the electron–phonon scattering processes are quasie
and are characterized by a temperature dependenceteph

21}T.
An estimate ofT2 for our objects~for s593105 cm/s,34 d
;100 Å! gives a value;40 K. At low temperatures (T
,T2) a situation can arise in which the wave momentum
a thermal phonon,qT5kT/(\s), is sufficient to change the
electron wave vector by the maximum value 2kF , since at
lower temperatures one hasqT,2kF , and only small-angle
scattering of the electrons is possible. The temperatureT1

separating these regions corresponds to the conditionqT

52kF . In the region of partial inelasticity (T.T1) an elec-

FIG. 4. Temperature dependence of the electron–phonon relaxation
teph found from the decrease in amplitude of the SdH oscillations w
quantum numbersn55 (n), 6 (,), and 7 (s) under the influence of a
current.
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tron upon interacting completely changes its momentum
absorbs~emits! a phonon with a wave vector predominant
perpendicular to the interface. Conservation of total mom
tum and energy for the two-dimensional electron system
plies a dependenceteph

21}T2 ~Ref. 33!. In the small-angle
scattering region (T,T1) the wave vector of the phono
participating in the interaction is arbitrary in direction an
limited in magnitude by the temperature. In this case
scattering is similar to small-angle scattering in a thr
dimensional metal and is described by a temperature de
denceteph

21}T5 ~Refs. 33 and 35!.
The temperature dependenceteph

21}T2 found in the
present study corresponds to the region of partial inelasti
T.T1. In Fig. 4 one can discern a tendency forteph(T) to
become steeper forT,0.4 K. For purposes of illustration
the dashed line in Fig. 4 shows the dependenceteph

21}T5.
Thus the experimental results are described rather succ
fully in terms of the concept developed for electron–phon
relaxation of two-dimensional charge carriers.33 At the same
time, numerical estimates of the characteristic tempera
T1 for the transition from a dependence of the formteph

21

}T2 to teph
21}T5 did not give a unique value. For exampl

the valuekF50.043106 cm21 found from the condition
qT52kF for T1;0.4 K turned out to be substantially small
than the value of the wave vector determined from the w
known relation for a two-dimensional electron system:kF

5(2pn)1/2. In the latter case the valuekF51.123106 cm21

was obtained. This discrepancy is possibly due to the
that the total concentration of charge carriers is distribu
between the size-quantization subbands, and at low temp
tures the subband with the low occupation becomes imp
tant in electron–phonon relaxation processes. Our value
teph (1027–1028 s at Teph in the interval 0.37–1 K! are
entirely reasonable.

The authors thank C. P. Parry, P. J. Phillips, and T
Grasby for the MBE preparation of the samples, and
Mironov for taking part in the measurements.
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Selective spectroscopy of Pr 3¿ impurity ions in Y 2SiO5, Gd2SiO5, and Lu 2SiO5 crystals
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Based on a study of the low-temperature optical spectra of Pr31 activator ions in Y2SiO5,
Gd2SiO5, and Lu2SiO5 crystals, it is shown that the parameters and character of the crystal-field
splitting of the1D2 and3H4 terms of the impurity ions are substantially different in
crystals belonging to different crystallographic types. In Y2SiO5 and Lu2SiO5 crystals a
pseudosymmetry effect is observed in the splitting of the1D2 term for ions localized in
inequivalent cation sites. The activator ions nonuniformly occupy the inequivalent cation
sites as their concentration is increased. At high concentrations of activator ions (;1 at. %! the
optical absorption spectra exhibit spectral lines belonging to dimers of activator ions.
© 2000 American Institute of Physics.@S1063-777X~00!00612-5#
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1. INTRODUCTION

Y2SiO5 ~YSO!, Gd2SiO5 ~GSO!, and Lu2SiO5 ~LSO!
are crystals of the oxyorthosilicate class.1,2 A rather large
number of rare-earth impurity ions~up to 10 at. %! can be
introduced into the cation sites of YSO, LSO, and GSO wi
out degrading the structural and optical quality.3 This prop-
erty of oxyorthosilicates gives them an advantage over o
crystalline matrices.4 For example, problems with optica
quality are well known for the laser crystal Al2O3:Ti31 start-
ing at only 0.1 at. % activator ions.4,5 The high isomorphic
capacity of YSO, LSO, and GSO crystals is extremely attr
tive for developing new laser and scintillator materials.
this regard the activator ions Ce31 and Pr31 are of particular
interest.4,6–9 Oxyorthosilicates activated by Ce31 ions are
efficient scintillators which have been recently be
developed.6,7,10 The Pr31 ion provides multifrequency lase
generation under IR pumping.8,9

The YSO, LSO, and GSO crystals are of different stru
tural types.1,2 This is reflected, in particular, in differences
their unit cell parameters: YSO (a514.43 Å, b510.41 Å,
c56.733 Å,b5122.13°,V5856.1 Å3), LSO (a514.33 Å,
b510.32 Å, c56.671 Å, b5122.3°, V5833.8 Å3), GSO
(a59.16 Å, b57.09 Å, c56.83 Å, b5107.58°,V5422.9
Å3). It is also known that the unit cell of these crystals h
two inequivalent cation sites.1,2

For example, in the YSO crystal one of the sites is
distorted octahedron in which the Y–O distance varies in
range 2.21–2.33 Å.1,2 The second site has a coordinatio
sphere with an additional, seventh oxygen ion drawn i
it.1,2 For the second type of cation site the Y–O distan
varies in the range 2.15–2.39 Å.1,2 thus the inequivalence o
the cation sites is due to different coordination numbers w
respect to oxygen and different distances from the rare-e
ion to the ligand.1,2
8941063-777X/2000/26(12)/5/$20.00
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In connection with the aforementioned features of t
lattice structure of oxyorthosilicates, it is of considerable i
portance to elucidate the relations governing the splitting
the terms of the Pr31 impurity ion under the influence of the
crystalline field in crystals having different structural typ
and also to determine the essentials of how the optical s
tra transform as the concentration of activator ions is
creased.

In this paper we show that two Pr31 optical centers form
in YSO, LSO, and GSO crystals, corresponding to the s
stitution of the activator ions into the two inequivalent cati
sites. In YSO and LSO crystals a pseudosymmetry effec
observed in the splitting of the1D2 term into Stark levels for
the Pr31 ions localized in different cation sites. It is foun
that as the activator concentration increases, a nonunif
occupation of the inequivalent cation sites of the YSO latt
occurs.

2. EXPERIMENTAL TECHNIQUE

The optical absorption and luminescence spectra of
crystals were recorded on an automated spectrofluorim
constructed on the basis of an MDR-23 grating monoch
mator. The luminescence spectra were excited by a
quency-tunable organic dye laser. The luminescence que
ing kinetics in the samples was recorded by a technique
time-correlated counting of single photons.

The YSO, LSO, and GSO crystals were grown by t
Czochralski method. In the LSO and GSO samples the a
vator ion concentration was 0.3 at. %. In the YSO crystal
activator ion concentration was varied~0.3, 0.6, and 1.8
at. %!.

Low temperatures were attained by means of a heli
optical cryostat. The crystals were immersed in heliu
vapor.
© 2000 American Institute of Physics
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3. EXPERIMENTAL RESULTS AND DISCUSSION

We investigated a spectral region containing opti
transitions involving the Stark components of the1D2 and
3H4 terms of the Pr31 ion.11–13 This choice was made be
cause of the relative simplicity of interpretation of the spe
tral lines. For example, the spectral lines due to optical tr
sitions between the Stark components of the terms1I 6 , 1P3,
and 3H4 are strongly mixed, making their correction inte
pretation difficult.11,12

Figure 1 shows fragments of the absorption spectra
YSO, LSO, and GSO crystals containing Pr31 ions. The
spectral region corresponds to the interval in which the
tical spectra of Pr31 impurity ions are observed.11–14 For
YSO and LSO crystals one can distinguish two groups
spectral lines with considerably different widths. The sp
tral lines of one of these groups are labeled by just a num
and the other by a number with an asterisk. Each group c
sists of five spectral lines. The spectral lines broaden mo
tonically as their number in the sequence increases. S
behavior is ordinarily observed in rare-earth ions for spec
lines belonging to the same multiplet.14

The indicated groups of spectral lines belong to t
Pr31 optical centers. The different optical centers are form
as a result of the substitution of Pr31 ions in two inequiva-
lent cation sites.1,2 Each of the five spectral lines is due to a
optical transition between the lower Stark component of
3H4 term and the five Stark components of the1D2 term. In
YSO, LSO, and GSO crystals the degeneracy of the1D2 and
2H4 terms of the Pr31 ion is completely lifted by the crys
talline field, since the point symmetry of the two cation sit
is extremely low.1,2

FIG. 1. Fragments of the absorption spectra of LSO, YSO, and GSO c
tals in the region of the optical transitions3H4↔1D2 of Pr31 impurity ions
at T577 K.
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The dividing of the spectral lines into groups and t
identification of each spectral line were based on a study
the luminescence spectra under selective excitation an
the temperature dependence of certain lines in the absorp
spectrum~Fig. 1!. For example, the spectral linesa and b
vanished when the crystals were cooled to 5 K. Selec
excitation of each of the spectral lines belonging to a sin
group gave rise to identical luminescence spectra~Fig. 2!.
Excitation into spectral lines belonging to different grou
~Fig. 1! gave rise to two types of luminescence spectra~Fig.
2!. The highest-frequency spectral line in the luminesce
spectra of both types were resonantly coincident with sp
tral line 1 or 1* ~Fig. 1!. The frequency intervals separatin
spectral linesa and b from line 1 ~Fig. 1! was precisely
coincident with the frequency intervals between the t
spectral lines lying below line 1 in energy in the lumine
cence spectrum~Fig. 2!. Consequently, the spectral linesa
and b are due to absorption from the two lower, therma
populated Stark components of the term3H4.

It has previously been proposed13 that the spectral line
due to the second Stark component of the1D2 term is hidden
inside spectral line 1~Fig. 1!. Selective spectroscopy of th
optical spectra in the YSO crystal has made it possible
give a complete interpretation of the line in the absorpt
spectrum of the second type~Fig. 1!.

In the luminescence spectra of the YSO, LSO, and G
crystals also contain spectral lines with temperatu
dependent intensities. For example, for LSO at 77 K
luminescence spectrum of the first type contains a spec
line g ~Fig. 2! that vanishes at a temperature of 5 K. This li
is due to the luminescence from the second, thermally po
lated Stark component of the1D2 term. The frequency inter-
vals separating the spectral lines 1 andg in the luminescence

s-

FIG. 2. Fragments of the luminescence spectra upon the selective excit
of the two types of Pr31 optical centers in the LSO crystal.



b-

ov
tu
tru

e
lt
th

In
y
of

of
tr
s

ub

O
ll-
3
l
g
o

d
e
in
m

ra
2-

e
o
ar
ts
et
s,
th

for
son

he
nder
r-
e
ing

nes-
s in
dy-
aw
i-

mi-

896 Low Temp. Phys. 26 (12), December 2000 Malyukin et al.
spectrum~Fig. 2! and the spectral lines 1 and 2 in the a
sorption spectrum~Fig. 1! are the same.

The features of the luminescence spectra noted ab
together with the clear connection between the tempera
dependence of the spectral lines in the absorption spec
~Fig. 1! and in the luminescence spectrum~Fig. 2!, make it
possible to find the values of the splitting of the1D2 and3H4

terms of the Pr31 impurity ions under the influence of th
crystalline field in YSO, LSO, and GSO crystals. The resu
of the analysis are summarized in Table I, which gives
values of the splitting of the1D2 term for the two optical
centers, relative to the spectral lines 1 and 1* ~Fig. 1!. The
character of the splitting of the1D2 term is substantially
different for ions occupying the inequivalent cation sites.
the YSO and LSO crystals, which belong to the same cr
tallographic type,1,2 the energy parameters of the splitting
the 1D2 term and of the Stark components are similar~see
Fig. 1 and Table I!. It is clear that the Stark components
the term are uniquely related to the corresponding spec
lines. For the first type of optical centers the spectral line
and 2 are separated by a minimum energy interval;60
cm21. Spectral line 3 is adjacent to them. Then, after a s
stantially larger interval;290 cm21, come spectral lines 4
and 5~Fig. 1!. For the second type of optical centers in YS
and LSO crystals, lines 4* and 5* are separated by the sma
est energy interval. Lower in energy is the spectral line* .
Then, after an interval of;300 cm21, come the spectra
lines 1* and 2* . In a qualitative sense, without maintainin
the same frequency intervals, a quasi-reverse order is
served for the splitting of the1D2 term in the YSO and LSO
crystals. This effect is similar to the splitting of the2D term
of the impurity ion Tl31 in ligand fields with tetrahedral an
octahedral symmetry.15,16 In the case considered in th
present study one can speak of a quasisymmetry effect, s
the inequivalent cation sites have extremely low point sy
metry.

Unlike the YSO and LSO crystals, in GSO the spect
lines for the two optical centers are grouped by type: 1-
~1* -2* -3* ) and then 4-5~4* -5* ) ~Fig. 1!.

In Ref. 13 a complete interpretation is given for all nin
lines in the luminescence spectrum of the YSO crystal, c
responding to optical transitions between the lower St
component of the1D2 term and the nine Stark componen
of 3H4. For the LSO~Fig. 2! and GSO crystals there is as y
reliable information only for three of the spectral line
which correspond to the analogous optical transitions to
three lowest Stark components of the3H4 term. For the GSO

TABLE I. Parameters of the splitting of the1D2 term in reference to the
spectral lines 1 and 1* ~their frequencies are indicated in parentheses!.

Splitting parameter, cm21

YSO LSO GSO

type I type II type I type II type I type II

0~16529.2! 0~16477.3! 0~16521.7! 0~16466.9! 0~16657.9! 0~16496.7!
59.6 364 66 373.7 42.1 43.8

224.9 667.9 202.2 688.4 248 248.7
501.2 948 498.2 951.7 525.9 940
801.3 1071.5 801.8 1091.4 621.8 1056.7
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crystal an interpretation of the spectral lines is given only
the luminescence spectrum of the first type. For compari
the parameters of the crystal-field splitting of the3H4 term
relative to the spectral lines 1 and 1* are given in Table II.

The kinetics of the quenching of the emission in t
luminescence spectra of both types was investigated u
selective excitation of optical transitions belonging to diffe
ent optical centers~Fig. 1!. The kinetics of the luminescenc
quenching was identical for the spectral lines correspond
to the same type of luminescence. The shape of the lumi
cence quenching curves for the first and second type
YSO, LSO, and GSO crystals containing 0.3 at. % praseo
mium ions is well described by a single-exponent power l
~Fig. 3!. The time constants for the quenching of the lum
nescence of the first and second types atT577 K are as
follows: t15108 ms, t25145 ms for YSO; t1564 ms, t2

TABLE II. Parameters of the splitting of the3H4 term in reference to the
spectral lines 1 and 1* ~their frequencies are indicated in parentheses!.

Splitting parameter, cm21

YSO LSO GSO

type I type II type I type II type I

0~16521! 0~16469.3! 0~16521! 0~16469.3! 0~16652.8!
89.7 174.7 72.5 178.5 27.7

143.6 274.8 135.8 261.3 82.8

FIG. 3. Kinetics of the luminescence quenching in the two types of lu
nescence spectra in an LSO crystal containing 0.3 at. % Pr31 ions.
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582 ms for LSO, andt1539 ms, t2550 ms for GSO. The
ratio of the time constants for the quenching of the lumin
cence of the first and second types was 1.3 for each cry
A comparison of the splitting parameters of the terms1D2

~Table I! and 3H4 ~Table II! shows that the second type o
Pr31 optical centers is subjected to a stronger perturbation
the crystalline field. It is as if the time constant for quenchi
of the luminescence of the second type in this case shoul
smaller, since it is known4,14 that for electric-dipole optica
transitions within thef shell of rare-earth ions the parity
forbiddenness is lifted by the crystalline field. In our ca
however, and important role is played not only by the a
plitude but also by the symmetry of the crystalline field
the region of localization of the impurity center. Apparent
for the second type of optical centers the contribution of
odd harmonics in the expansion of the field of the ligands
smaller than for the first. It is the odd harmonics of the cr
talline field that lift the forbiddenness of the electric-dipo
optical transitions within thef shell.4,14

As expected, increasing the concentration of Pr31 acti-
vator ions in the YSO crystal lead to a broadening of th
optical spectra. The integrated area under the two spe
lines 1 and 1* increases in proportion to the increase in t
total concentration of impurity ions. However, the integrat
area of each of the lines 1 and 1* changes in different ways
the integrated area of the spectral line 1 grows in propor
to 1:2.2:6.5 while for line 1* this ratio is 1:1.6:3.2. Conse
quently, the impurity ions occupy the inequivalent sites
the YSO crystal in a nonuniform way. As the concentrati
of activator ions increases, additional spectral lines wit
concentration-dependent intensity appear in their optical
sorption spectra. In the case of the highest concentratio
activator ions, the spectral linesd1 and d2 appear in the
optical spectrum near the spectral lines 1 and 1* ~Fig. 4!.
Essentially, the spectral lined2 merges with the spectral lin
1 at high temperature. It is clear that the spectral linesd1 and
d2 are of an identical nature. On account of the apprecia
broadening of the spectral line 1, the lined2 is less pro-
nounced~Fig. 4!. Let us therefore analyze the causes of
appearance of the spectral lined1. The frequency interva
separating the high-frequency spectral satellite from line*
is 8.9 cm21. We did not observe any line in the lumine
cence spectrum that would be resonantly coincident withd1

~Fig. 4!.
The concentration dependence and temperature de

dence of the intensityd1 suggest that the spectral lined1 is
due to absorption by dimers of activator ions. Indeed,
activator ion concentration of 1.8 at. % is quite high, a
activator ions can occupy two adjacent equivalent cat
sites.17 As a result of the dipole–dipole interaction (Vdd)
between identical activator ions, two dimeric energy sta
form.18 Depending on the relative orientation of the dipo
moments of the optical transitions of the interacting ions,
optical spectrum of the dimer can manifest both states sim
taneously or only one of them.18 In our case a dimeric energ
state appears above the state of the isolated ion. Co
quently, the dipole moments of the optical transitions of
interacting ions are directed precisely antiparallel.18 As a
rule, the upper state of the dipole is subject to strong non
diative relaxation.18 Therefore, the luminescence spectru
-
al.
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does not contain a spectral line resonantly coincident withd1

~Fig. 4!.
In the general case the dimeric states are described

wave function of the formf5a1(t)w11a2(t)w2 ~wherew1

andw2 are the wave functions of the states of the monome
a1(t) anda2(t) are complex functions of time!. If the rela-
tive phasesa1(t) anda2(t) beat randomly with a frequenc
greater thanVdd /h, then the dimeric states are destroye
Since the scattering of phonons on impurity centers is on
the causes of disruption of the phases ofa1(t) and a2(t),
increasing the temperature of the crystal leads to a decr
in the intensity of the spectral lined1 ~Fig. 4!. For a similar
reason the dimeric states do not form if the initial states
subjected to strong nonradiative relaxation. This applies
the Stark components of the1D2 term, which lie above the
metastable state in energy. Therefore, dimeric states do
form for the Stark components associated with the spec
lines 2* , 3* , 4* , and 5* ~Fig. 1!.

In Ref. 13, in the selective excitation of luminescence
the first type in the region of the optical transition3H4↔3P0

the spectral line 1* ~Fig. 1!, which belongs to the lumines
cence of the second type, was observed. Direct laser ex
tion of the optical centers of the second type was ruled o
Consequently, electronic excitation was transferred from
first type of optical center to the second. The mechan
responsible for the transfer of electronic excitation ene
remains unclear. We therefore made a detailed investiga
of the luminescence spectra in YSO crystals with differe
concentrations of activator ions. AtT55 and 77 K the lumi-
nescence spectra of the first and second types did not co
spectral lines that could belong to the other type of lumin

FIG. 4. Fragments of the absorption spectrum of a YSO crystal contain
the highest concentration of activator ions~1.8 at. %! at different tempera-
tures.
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cence. The fragment of the type-II luminescence spectrum
Fig. 4 shows that it completely lacks a spectral line re
nantly coincident with line 1. Consequently, in the excitati
of the spectra of the first and second types of luminesce
in the region of the optical transitions involving the Sta
components of the1D2 term there is no interaction betwee
different optical centers.

4. CONCLUSION

Based on a study of the optical absorption spectra
the luminescence spectra under selective excitation we h
shown that there are substantial differences in the param
and the character of the crystal-field splitting of the1D2 and
3H4 terms in crystals belonging to different crystallograph
types~Table I!. In YSO and LSO crystals a pseudosymme
effect is observed in the splitting of the1D2 term for Pr31

ions localized in inequivalent cation sites. The different Pr31

optical centers in the YSO crystal do not interact when i
selectively excited in the region of the optical transitio
1D2↔3H4. In the YSO crystal the Pr31 activator ions non-
uniformly occupy the inequivalent cation sites. As the ac
vator ion concentration is increased, their optical spec
broaden considerably, and spectral lines correspondin
dimeric states appear.

*E-mail: malyukin@isc.kharkov.com
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On the structureless shape of the optical absorption bands of the b-oxygen cryocrystal
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An attempt is made to calculate the absorption spectrum of theb phase of solid oxygen with
allowance for the absence of long-range magnetic order in it. It is shown that the
correlational character of the spin ordering inb-O2 leads to a substantial change in the spectral
function describing the electronic spectrum of this cryocrystal and, as a consequence,
results in a loss of the fine structure of the corresponding optical absorption bands, which become
broad and structureless. ©2000 American Institute of Physics.@S1063-777X~00!00712-X#
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INTRODUCTION

As we know ~see Part III of Ref. 1!, the O2 molecule,
owing to its unfilled outer~valence! electron shell~two elec-
trons in a twofold degeneratepg orbital!, has, according to
Hund’s rule, an uncompensated electron spin in the e
tronic ground state. As a result, unlike the majority of oth
extremely simple cryocrystals, the intermolecular interact
in solid oxygen is largely determined by the valence~ex-
change! component, which makes for a collinear orientati
of the O2 molecule and also for spin ordering in its hig
temperature monoclinica and rhombohedralb modifica-
tions (T,Tab523.8 K andTab<T<Tbg543.8 K, where
Tab and Tbg are the temperatures of the magnetostructu
ab andbg transformations, respectively!.

While the crystal structure ofa-, b-, and g-O2 are
known and have been fairly well studied~see, e.g., Refs. 2
and 3!, in regard to the magnetic order this can be said o
abouta-O2, which is a two-sublattice biaxial antiferromag
net ~AFM!,2,4 the easy axis of which lies along the mon
clinic axis of its lattice. The high-temperature cubicg phase
is paramagnetic~PM!; this phase also lacks collinearity o
the axes of the molecules. As to the magnetism of theb
phase, the available information about it for a long time
mained of a contradictory nature. On the one hand, m
experimental~in particular, spectral! results indicate tha
b-oxygen should be classified as a paramagnetic system5–7

On the other hand, the temperature dependence of the s
magnetic susceptibility explicitly attests to the AFM orderi
in b-O2 ~Refs. 8 and 9!, as has been independently co
firmed by the presence of a peak~albeit strongly smeared! in
the neutron-scattering spectrum.10–12

This contradiction was to a certain extent eliminated
one of the present authors, who showed that to a first
proximation in which only the strong AFM exchange b
8991063-777X/2000/26(12)/9/$20.00
c-
r
n

l

y

-
y

tic

y
p-

tween nearest-neighbor molecules aligned along the th
fold symmetry axis is taken into account and in which t
sign of the intramolecular ‘‘spin–axis’’ coupling consta
As2a is specified~as positive!, b-O2 can be treated as a se
of weakly coupled hexagonal planes with three magne
sublattices.13 Here the angles between neighboring spins
different sublattices are62p/3, and the magnetic propertie
of the system as a whole are isomorphic to the well-kno
XY model and can be described in the framework of t
model. Although the three-sublattice magnetic structure
b-oxygen ~sometimes called the Loktev structure! was ac-
knowleged and had been studied in a number of papers~see,
e.g., Refs. 14–18!, the final answer to the question of its tot
magnetocrystalline symmetry was given only relative
recently.19,20

It was shown19,20 that the ground-state energy of th
Loktev structure is degenerate with respect to any unifo
rotations of the spin vectorsSn in the basal plane (n is the
vector of a site of the planar lattice!. It is known that for such
a case the continuous degeneracy in the 2D system ca
destruction of the long-range~dipolar! order in the system
at all TÞ0, which is formally expressed as the fact th
^Sn&50, or

^Sn
j Sm

k &→0, un2mu→`, ~1!

where^ . . . & denotes a mathematical averaging, andj ,k are
the spin projections. Indeed, the absence of an average
corresponds to paramagnetism, but the nonzero spin cor
tion functions~1! at short distances argue in favor of orde
ing, at least of a short-range nature. Moreover, this order
be organized in such a way that the magnetic symmetry
the system on the whole at any finite temperature is low
than the symmetry of the true PM state.21 It is this type of
© 2000 American Institute of Physics
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ordering, which is called correlational ordering and
characterized20 by its own order parameter, that is realized
b-O2.

What we have said is clearly sufficient to warrant a se
rate treatment of those properties of theb phase of solid O2
which are governed by the magnetic subsystem. First am
these should no doubt be the electronic~excitonic! properties
and the optical spectra corresponding to them.

Experimental studies of these spectra, the m
completely of which are those of Prikhot’ko an
co-workers6,22–24and Eremenko and co-workers,5,25,26 dem-
onstrated convincingly that while the absorption bands~of
both the mono- and bimolecular natures! of the a phase are
discrete, with a highly developed fine structure that is p
served practically without visible changes all the way toT
5Tab , this fine structure literally vanishes after theab tran-
sition, these bands becoming very smeared. Comple
structureless contours of the absorption bands are also c
acteristic ofg-O2, which, however, can be explained~at least
in principle! as being due to the characteristic orientatio
disorder of the molecules in this modification. The radic
transformation of the electronic spectra1! at the ab transi-
tion, which is expressed in an abrupt change in the shap
the bands, cannot be attributed to its monoclinic distort
nor to critical broadening of the spectral linewidths, whi
occurs only in the immediate vicinity of the transitio
point.27,28 In our opinion this transformation is a direct co
sequence of a change in the character of the magnetic o
in the system. This is not so much because of the chang
the type or, equivalently, the wave vectorQmag of the planar
magnetic structure@for example, from two sublattices with
Qmag

(2) 5(p/A3,p) to three sublattices withQmag
(3) 5(2p/

A3,2p/3)#29 as it is a result of the loss of long-range ord
and its transformation into correlational order with the pro
erties in~1!. Contributing to this, of course, is the increasin
two-dimensionality of the magnetic subsystem of the oxyg
cryocrystal upon transition from thea to theb phase and the
easy-plane nature~for the structures of these phases! of the
rather strong intrinsic magnetic anisotropy of the O2 mol-
ecule, which, as we have said, holds the spin of the mole
in the basal plane of these phases.

Below, for the example ofb-O2, we attempt to calculate
the optical spectrum in the region of the one-exciton tran
tion of a crystal having correlational magnetic ordering.

2. SPECTRUM OF ELECTRONIC EXCITATIONS OF
b-OXYGEN

In AFM insulators, the excited states corresponding
transitions~one- and two-center! of electrons inside the un
filled shells of PM ions~molecules! are small-radius states
or Frenkel excitons. Complete and detailed studies of
spectra of these excitations have been carried out essen
only for the simplest case, that of crystals with two magne
sublattices possessing long-range order.30–32 The intermedi-
ate phase of solid O2 is an example of a different kind o
magnetic structure, the excitonic spectrum of which, as fa
we are aware, has not been calculated even forT50.

To investigate it, let us limit consideration to a mod
crystal whose molecules, like O2, have a twofold degenerat
outer shell containing two electrons. If, for the sake of si
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plicity, we take into account only one-electron excited sta
of only one type, then the excitonic spectrum of such a m
netic crystal can be described by the Hamiltonian1,32

H5HSM1Hres1Hexch, ~2!

in which

HSM52
D«

2 (
na

Sna

2 ~3!

is the operator of the intramolecular single-particle stat
which corresponds to the model of an oriented gas in
theory of molecular excitons,33

Hres52
t

2 (
na ,rab
~aÞb!

sna
sna1rab

~4!

is the operator representing the resonant interaction betw
electronically excited molecules, and

Hexch5
J

2 (
na ,rab
~aÞb!

Sna
Sna1rab

~5!

is the intermolecular exchange interaction operator.2! In Eqs.
~2!–~5! the following notation was used:D« is the energy of
the excited electronic state of the molecule,t and J are the
resonant and exchange integral for the nearest neigh
from different sublattices, separated by a vectorrab , Sna

is
the spin operator,sna

is a pseudospin operator, which,
distinction to Sna

, specifies transitions between states w
different multiplicities~in this case, between the ground trip
let S51 and the excited singleS50), anda,b (51,2,3) are
the indices of the magnetic sublattices. In Hamiltonian~2!
we have dropped the Hamiltonian of the easy-plane magn
anisotropy, which is given by the ‘‘spin–axis’’ coupling op
eratorAs2a(Sna

Y )2 in the molecule~where the axisY is along

the molecular axis! and does not contribute directly to th
optical properties we are interested in.

The operatorssna
obey the following commutation

relations:

@sna

j ,smb

k #5@Sna

j ,Smb

k #;

~6!
@sna

j ,Smb

k #5 idnamb
« jklsna

l ,

whered jk is the Kronecker delta, and« jkl is the completely
antisymmetric unit tensor.

Hamiltonian ~2! is written in the laboratory referenc
frame, but for the physical system under study, whose m
netic structure by assumption has three spin sublattices
quantization axis of each sublattice being directed at an
of 120° to one another, it is convenient to use proper fram
that take this circumstance into account. We choose an
entation of the coordinate system in the laboratory fra
such that theX and Z axes specify the plane on which th
average magnetization lies, while theY axis explores the
direction perpendicular to it~i.e., along the threefold axis o
the rhombohedron!. The transition to the proper axes o
quantization for the physical situation under study is effec
by the matrix
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S coswna
0 sinwna

0 1 0

2sinwna
0 coswna

D ~7!

of ‘‘plane’’ rotations that takesna
5(sna

X , sna

Y ,sna

Z ) and

Sna
5(Sna

X ,Sna

Y ,Sna

Z ) into sna
5(sna

j ,sna

h ,sna

z ) and Sna

5(Sna

j ,Sna

h ,Sna

z ) while preserving the commutation relation

~6!; it is assumed below that the proper axis for each s
is zna

.
Making the transformation~7! and substituting the cor

responding operators into Hamiltonians~4! and ~5!, we ob-
tain the following expressions for the latter:

Hres52
t

2 (
na ,rab
~aÞb!

@~sna

j sna1rab

j 1sna

z sna1rab

z !

3cos~wna
2wna1rab

!1sna

h sna1rab

h

1~sna

j sna1rab

z 1sna

z sna1rab

j !

3sin~wna
2wna1rab

!#; ~8!

Hexch5
J

2 (
na ,rab
~aÞb!

@~Sna

j Sna1rab

j 1Sna

z Sna1rab

z !

3cos~wna
2wna1rab

!1Sna

h Sna1rab

h

1~Sna

j Sna1rab

z 1Sna

z Sna1rab

j !

3sin~wna
2wna1rab

!#, ~9!

the mean-field structure of which, as one can readily ver
is analogous to the Hamiltonian of theXY model. This is
most clearly seen in the quasiclassical approximation
which it is assumed thatSna

z 5^Sna

z &[s ~cf. Eq. ~1!, where

the average refers to the the laboratory frame! and ^Sna

j,h&
50 ~Ref. 34!, as a result of which the operator~9! takes on
the standard form for this model:

Hexch→Hexch
XY 5

Js2

2 (
na ,rab
~aÞb!

cos~wna
2wna1rab

!. ~10!

As to the pseudospin operators, a similar approximat
for them ~or some sort of nontrivial averages3! cannot be
introduced, since they describe transitions between
ground ~triplet! and excited~singlet! states. One can, how
ever, simplify expression~9! substantially by taking the fol-
lowing circumstance into account: the operatorssna

1

5221/2(sna

j 6 i sna

h ) andsna

z can be represented~see Refs. 1

and 32! by the creationBna

1 (SZ) and annihilationBna
(SZ)

operators for excitations at each sublevelSZ561,0 of the
ground spin multiplet. Among these it is important to co
sider only the lowest~in the proper frame! sublevel, with
SZ51, since the other two (SZ50 and SZ521) are just
spin-excited states, the electronic transitions from which
one way or other involve the participation of spin excitatio
~magnons!, which can be neglected in a calculation of t
excitonic bands. Here the componentsna

z , which contains
n

,

in

n

e

-

n

only the operatorsBna
(0) andBna

1 (0), in afirst approxima-

tion ~a calculation of the energy bands of noninteracting
citons and magnons! do not contribute and can be omitte
the same is also true for the operatorsBna

(21) and Bna

1

(21). The details of the transformations from the pse
dospin operators to the second-quantization operators~i.e.,
the transition operators! are set forth in Ref. 1.

In the stated approximations the Hamiltonian of fr
electronic excitations moving along an AFM insulator who
spin subsystem corresponds to the quasiclassical appr
does indeed take the standard form:

Hres→Hres
XY52

t

2 (
narab
~aÞb!

Bna

1 Bna1rab
cos2

wna
2wna1rab

2
,

~11!

where the operatorsBna

1 and Bna
, corresponding toSZ51,

can now to a good approximation~see Refs. 31–33! be as-
sumed to be Bose operators. In Eq.~11! we have dropped the
nonresonant terms, which in the investigated~exciton! region
of the spectrum give a vanishingly small (;t2/D«; Ref. 33!
contribution to the energy.

Without restricting the generality we assume that t
angles of rotation of the spins of each site,wna

are related to
the rotation anglewn , which characterizes the cell as
whole, in such a way thatwna

5wn12p(a21)/3. This al-
lows us to consider both a system with long-range (T50)
order, for whichwna

2wna1rab
52p(a2b)/3, and a system

without it, when

wna
2wna1rab

52p~a2b!/32¹wna
rab1 . . . .

The first case admits calculation of the excitonic sp
trum in the three-sublattice magnetic structure ofb-O2 by
direct diagonalization of Hamiltonian~11!. Assuming that
wna

2wna1rab
562p/3 and transforming to thek represen-

tation, we obtain the exciton Hamiltonian of a hexagon
plane in the form4!

Hex5HSM1Hex5D«(
k

Bka
1 Bka

2
tz

4 (
k

(
aÞb

@g~k!Bka
1 Bkb1h.c.#, ~12!

g~k!5
1

z S 2eikx~a/2! cos
A3

2
kZa1e2 ikXaD ,

which is brought to diagonal form by the transformation

S B1~k!

B2~k!

B3~k!
D 5

1

31/2S 1 1 1

1 « «2

1 «2 «
D S Bk1

Bk2

Bk3

D ,

«[exp~2p i /3!. ~13!

In Eq. ~12! we have used the notationz53 for the number of
nearest neighbors belonging to another magnetic sublat
anda for the lattice constant of the triangular lattice. Dire
substitution of~13! into ~12! gives
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Hex5 (
k,m51,2,3

«m~k!Bm
1~k!Bm~k!;

«1~k![«A~k!5D«2tz Reg~k!; ~14!

«2,3~k![«E~k!5D«1
tz

2
@Reg~k!1A3 Img~k!#.

Thus the excitonic spectrum of theb phase consists of thre
bands ofA andE symmetry, the last two being degenera
For the region of small wave vectors (k•a!1) we easily find
from ~14! that

«A~k!5D«2tzS 12
1

4
k2a2D5D«A1

k2

2mA*
,

~15!

«E~k!5D«2
tz

2 S 12
1

4
k2a2D5D«E1

k2

2mE*
,

where D«A[D«2tz and D«E[D«2tz/2 are the energies
of the states corresponding tok50, and mA* 5mE* /2
52/tza2 are the effective masses of theA andE excitons.

3. INCLUSION OF THE CORRELATIONAL ORDERING

If there is no long-range~including 2D! order in the
system, it becomes impossible simply to find the energy
the excitonic excitations. One can, however, find the spec
density ~spectral function! describing, in particular, the ab
sorption spectrum in the region of an excitonic transitio
For this it is necessary to calculate~see Ref. 33! the exciton
Green functionGex.

The explicit expression for the Green function is det
mined by the form of the operatorW(t) of the interaction of
b-O2 with an incident electromagnetic wave with frequen
v and wave vectorQ. Since in the O2 molecule all of the
lowest one-electron transitions are dipole-forbidden as a c
sequence of the intercombination forbiddenness, to m
them allowed it is necessary to invoke the spin–orbit int
action. Taking the latter into account leads to the followi
expression forW(t):1

W~ t !5(
na

heff
1 ei ~Q"n2vt !~sna

X 2 isna

Z !1h.c., ~16!

whereheff
1 is the effective amplitude of the magnetic field

the wave with a polarization rotating in the basal plane. Th
using ~7! and the transformation~13!, we easily find from
~16! that

W~ t !5heff
1 e2 ivt(

n
eiQ"neiwn~Bn1

1 1«Bn2
1 1«2Bn3

1 !1h.c.

[heff
1 e2 ivt(

n
eiQ"neiwnB2

1~n!1h.c. . ~17!

It follows from this expression that inb-O2 light excites only
long-wavelength (Q•a!1) degenerate states ofE symmetry,
and each component of the doublet is excited by ‘‘its ow
— right- or left-polarized — wave~this will allow us to drop
the excitonic subband indexm below!.

At T50 the absorption spectrum should then have
narrow ~in the limit, d-function-like! peak corresponding to
the frequencyv5«E(Q)'«E(0). But if TÞ0 and the angles
.

f
al

.

-

n-
ke
-

n

’

a

wn are even slightly different, then expression~17! indicates
that the simplest form of conservation law is violated, and
is no longer the case that only the itinerant states withk
5Q can be excited; consequently, the spectrum should
it d-function-like character. As we know~see, e.g., Ref. 33!,
for calculating the line shape at finiteT it is more convenient
to use the Matsubara Green functions, which, as applica
to ~17!, can be determined by the expression

Gex~n,t!5Gex~n,t1b!

52^B~n,t!eiwn~t!B1~0,0!e2 iw0~0!&

'Gex
~0!~n,t!Dcor~n,t!, ~18!

where

Gex
~0!~n,t!52^B~n,t!B1~0,0!& ~19!

is the purely excitonic Green function for theE states in the
coordinate representation (t is the imaginary time,b51/T),
and

Dcor~n,t!5^eiwn~t!e2 iw0~0!& ~20!

is the spin correlation function, the form of which must b
chosen from physical considerations. The factorization of
total Green function~18! is approximate and corresponds
neglecting the last term in the Hamiltonian~9!; that term
describes the mutual conversion of spin and phase fluc
tions and can be assumed to be unimportant in the lo
wavelength approach used here.

Since the desired Green function~18! is represented by a
product, its frequency–momentum representation is tra
formed into a convolution:

Gex~k,iVn!5T (
m52`

` E d2p

~2p!2
Gex

~0!~p,iVm!Dcor

3~k2p, iVn2 iVm!, ~21!

where

Gex
~0!~k, iVn!5

1

iVn2«~k!
~22!

is the Fourier transform of the function~19!, in which
Vn52pTn is the Matsubara Bose frequency,«(k) is given
in ~15!, and

Dcor~q,iVn!5E
0

b

dt(
n

eiVnt2 iq"nDcor~n,t! ~23!

is the Fourier transform of the function~20!.
While the expression forGex

(0)(n,t) can be reconstructed
from its known Fourier transform~22!, only the asymptotic
behavior is known for the functionDcor(n,t) @e.g., relations
of the type in~1!#. Its space–time behavior is determined
the structure of the spin ground state of the system. In p
ticular, for the quasiclassical 2DXY model~10! the form of
the correlation function~20! is given by the function35

Dcor~r !5S a

r D T/2pJs2

expS 2
r

jmag~T! D , ~24!

which corresponds to static magnetic spatial fluctuatio
with a correlation lengthjmag(T) given by36



h
in

to

vo
rr

o
th
a

y

-

rre

al

–
ave

-
-

s
pin
e-
n for

m-
or-

-
of

at
ex

ruc-
ub-
D

is
n
e

903Low Temp. Phys. 26 (12), December 2000 V. M. Loktev and S. G. Sharapov
jmag~T!5H `, T,TBKT ;

a exp~b/AT2TBKT!, T>TBKT ,
~25!

wherea, as above, corresponds to the lattice parameter,b is
some constant, andTBKT'(p/2)Js2 is the Berezinski�–
Kosterlitz–Thouless transition temperature, which for t
givenXY model is related to the dissociation of vortical sp
excitations. ForT,TBKT these excitations are bound in
pairs, so thatjmag(T,TBKT)5`, and the correlations fall off
algebraically. As the temperature is raised, however, the
tices depair, leading to an exponential damping of the co
lations, and the temperature dependence ofjmag has the very
characteristic form~25!.

Since theab transition is not only magnetic but als
structural, one is apparently unjustified in assuming that
temperatureTBKT ~even under the assumption that such
transition exists in the magnetic system ofb-oxygen itself!
can have anything in common withTab . Most likely the
temperatureTBKT (,Tab) is of a more abstract arbitrar
character, specifying the point at whichjmag(TBKT)5` for
the three-sublattice structure. Of course, the temperatureTab

has a direct physical meaning, and herejmag(Tab), which
may or may not obey relation~25!, is finite, and on further
increase in T this length decreases, so thatjmag(Tbg)
,jmag(Tab).

The Fourier transform~22! for the correction function
~24! gives the expression

Dcor~q,iVn!5dn0

2p

T
aT/2pJs2E

0

`

drr 12T/2pJs2
J0~qr !

3expS 2
r

jmag~T! D
5dn0

2p

T

a2~12a!jmag
2a ~T!

@11q2jmag
2 ~T!#a

G~2a!F

3S a,2a1
1

2
;1;

q2jmag
2 ~T!

11q2jmag
2 ~T!

D , ~26!

in which J0(x) is the Bessel function of order zero,G(x) is
the gamma function,F(a,b;c;z) is the hypergeometric func
tion, and we have introduced the parameter

a512
T

4pJs2
[12

1

8

T

TBKT
. ~27!

SinceF(a,b;c;z) in ~26! is a slowly varying function of the
variable z, we assign that variable the valuez51 ~which
corresponds toq→`). In that case

Dcor~q,iVn!5dn0

D0

T F jmag
2 ~T!

11q2jmag
2 ~T!

Ga

,

~28!

D0[
4pG~a!

G~12a! S 2

aD 2~a21!

.

We emphasize that the use of the argumentz51 in the hy-
pergeometric function ensures a physically important co
spondence: forjmax

21 (T)50 expression~28! is the exact Fou-
rier transform of the correlation function~24!.
e

r-
e-

e

-

Knowing ~28!, we can attempt to write a more gener
phenomenological form than~24! for the correlation function
of the spin fluctuations, starting from its frequency
momentum representation. Indeed, let this correlation h
the form @cf. Eq. ~28!#

Dmag~q,iVn!

5
D0cmag

2a

T@cmag
2 q21cmag

2 jmag
22 ~T!1Vn

212GmaguVnu#a
, ~29!

in which cmag andGmag are the magnon velocity and damp
ing constant~recall that in view of the continuous degen
eracy the spectrum ofb-O2, on the assumption that it ha
long-range magnetic order, contains a Goldstone s
mode37!. Then, taking the inverse Fourier transform with r
spect to frequencies, one can easily obtain an expressio
the retarded Green function corresponding to~29!:

Dcor
R ~q,t→`!

;H ta21e2Gmagt, cmag
2 q2.Gmag

2 2cmag
2 jmag

22 ~T!

ta21e2G̃magt, cmag
2 q2,Gmag

2 2cmag
2 jmag

22 ~T!,
~30!

where

G̃mag[Gmag2AGmag
2 2cmag

2 @q21jmag
22 ~T!#~.0!.

We note that this function, which takes into account the te
poral dynamics of the spin correlations, agrees with the c
relation function proposed in Ref. 38:

Dcor
R ~r ,t !5S a

r D T/2pJs2

expS 2Gmagt2
r

jmag~T! D . ~31!

Expressions~30! and~31!, however, are not physically iden
tical; in particular, the first of them indicates that the rate
decay of magnetic correlations depends onq. It is minimum
for q50 and reaches its maximum valueGmag when
cmag

2 q2.Gmag
2 2cmag

2 jmag
22 (T). This dependence means that

large distances the spin correlations do not ‘‘feel’’ the vort
excitations, and in this sense the form of~29! is phenomeno-
logically the most general, regardless of the concrete st
ture of the ground state of the disordered magnetic s
system~we can mention in this connection that for the 2
XY model one hasGmag(T→TBKT

1 )50).38 We also note that
the greatest contribution to the sum over frequencies in~21!
is from the term withn5m, which directly corresponds to
taking the static correlation function~28! into account.

4. CALCULATION OF THE SPECTRAL DENSITY FOR
EXCITONS

As we know, the excitonic absorption spectrum
directly determined by the excitonic spectral functio
Aex(Q,v), which is proportional to the imaginary part of th
Green function:33

Aex~Q,v!52
1

p
Im Gex~Q,v1 i0!, ~32!

with

Gex~Q,iVn!5E
2`

`

dv
Aex~Q,v!

iVn2v
,

~33!
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Gex
~0!~p,iVn!5E

2`

`

dv
Aex

~0!~p,v!

iVn2v
.

By analogy we can define the corresponding spectral fu
tion

Acor~q,V!52
1

p
Im Dcor~q,V1 i0!, ~34!

with

Dcor~q,iVn!5E
2`

`

dV
Acor~q,V!

iVn2V
. ~35!

It is easy to show that if the correlational ordering is n
taken into account, one has

Aex
~0!~k,v!5d~v2«~k!! ~36!

and, in particular, forGmag50 ~the dynamic case in the ab
sence of damping!

Acor~q,V!52
D0cmag

2a

pT
sin~pa!

3@V22cmag
2 q22cmag

2 jmag
22 ~T!#2a

3u@V22cmag
2 q22cmag

2 jmag
22 ~T!#sgnV,

~37!

whereu(x) is the step function.
Substituting representations~33! and ~35! for the ‘‘par-

tial’’ spectral functions into~21! and summing over frequen
cies, we find that the total spectral density~32! is expressed
by the integral

Aex~Q,v!5E
2`

`

dVF 1

12eV/T
2

1

12e~V2v!/TG
3E d2p

~2p!2
Aex

~0!~p,V!Acor~Q2p,v2V!.

~38!

We note that in the given form, formula~38! takes into ac-
count both the static spin correlations, which can be
scribed using only the correlation function~28!, and the dy-
namic spin corrections, which are contained only in its m
general form~29!. Below we consider the two cases — sta
and dynamic — separately, since each of them is of defi
interest. This is because, e.g., the first of them admits
exact analytical investigation, while the second, being clo
to the real situation, requires the use of numerical integ
tion.

4.1. Static correlations

We have said above that the dynamic correlation fu
tion ~29! goes over to its static counterpart~28! if only the
terms corresponding ton50 are taken into account in~29!
or the terms withn5m are included in the sum~21! for the
Green function. This same result can be arrived at formall
in ~38! after a shift of the the integration variableV→V
1v, the substitutionV→cmagV is made and the limitcmag

→0 is taken.39 Then expression~38! is brought to the form
c-

t

-

e

te
n
r
-

-

if

Aex~Q,v!5
1

p
D0 sinpaE

2`

` dV

V
sgnVE d2p

~2p!2

3d~v2«~p!!
u@V22~Q2p!22jmag

22 ~T!#

@V22~Q2p!22jmag
22 ~T!#a

,

~39!

where we have used expressions~36! and ~37!. After doing
the integration over frequency, we arrive at the expressio

Aex~Q,v!

5D0E d2p

~2p!2
d~v2«~p!!

1

@~Q2p!21jmag
22 ~T!#a

, ~40!

which, after integration over the angle and the variableq2

~the latter removes thed function! and the use of the identity

FS a,12a;1;
12z

2 D5FS a

2
,
12a

2
;1;12z2D , ~41!

can be cast into explicit form:

Aex~Q,v!5
G~a!

G~12a! S 2

m* a2D a21
1

Da/2
FS a

2
,
12a

2
;1;

2
4Q2~v2D«!/2m*

D D u~v2D«!, ~42!

where

D[S D«1
Q2

2m*
2v1

1

2m* jmag
2 ~T!

D 2

1
2~v2D«!

m* jmag
2 ~T!

,

~43!

and we have used the notation~15!.
The spectral density of the form~42! corresponds to a

Green function of the nonpole form;40 in particular, forT
,TBKT , when jmag

21 (T)50 and the magnetic order corre
sponds to algebraic order, we have

Gex~Q,v!;
1

~v2D«2Q2/2m* !2a21
. ~44!

We see from~44! that such behavior@see Eq.~27!# is
wholly determined by the parameteraÞ1. For T50, when
a51, we recover the standard~pole! behavior of the Green
function, which corresponds to the presence of long-ra
order in the system and to ad-function-like @see Eq.~36!#
spectral densityAex(Q,v)5Aex

(0)(Q,v).5!

It is interesting to note that the nonpole character of
Green function of the electrons in the theory of supercond
tivity means that the electrons exhibit non-Fermi-liquid b
havior. For excitons this is manifested, as we shall see
low, in a strong smearing of the spectral line. It is al
possible that the nonpole form~44! can affect the collective
behavior of a gas of excitons of a higher density, but t
question is beyond the scope of this paper. Nevertheless
aforementioned broadening effect due toaÞ1 cannot in it-
self lead to the observed loss of the structure of the opt
bands at theab transition; that can be achieved only b
invoking a finite magnetic correlation length.
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It is appropos here to call attention to the fact that
account of theu function in ~42! the excitonic states in the
frequency regionv,D« have no spectral weight; in thi
caseAex(Q,v) exhibits a jump at the pointv5D«, but this
jump is eliminated in the more realistic dynamic case.

4.2. Dynamic correlations

As we have said, expression~14! also describes dynami
corrections, provided that after introducing the shiftsV
→V1v and p→p1Q we omit taking the limitcmag→0
and use the spectral function~35!, which corresponds to the
most general form~29! of the spin correlation function. As a
result, we obtain

Aex~Q,v!5
D0cmag

2a

pT E
2`

`

dVF 1

12eV/T
2

1

12e~V1v!/TG
3E d2p

~2p!2
dS ~Q1p!2

2m*
1D«2v2V D

3Im
1

@cmag
2 p21cmag

2 jmag
22 ~T!2V212iGmagV#a

.

~45!

Expression~45! can also be simplified if, as above, we r
move thed function ~by integrating over angles! and do the
integration over the ‘‘energy’’ variablep2/2m* . We thereby
arrive at the final result

Aex~Q,v!52
1

2pT

G~a!

G~12a! S 2

m* a2D a21

3E
2`

`

dVF 1

12eV/T
2

1

12e~V1v!/TG
3I ~Q,v,V!u~V1v2D«!, ~46!

where we have used the following notation:

I ~Q,v,V!5ImF ~v22aI2 ibI !
2aF

3S 1

2
,a;1;

v12v2

aI1 ibI2v2
D G ,

v6[F S Q2

2m*
D 1/2

6Av1V1D«G ; ~47!

aI[
1

2m* S V2

cmag
2

2
1

jmag
2 ~T!

D ; bI[
GmagV

m* cmag
2

.

5. ANALYSIS OF THE RESULTS AND CONCLUSION

As we have said, the absorption spectrum for free ex
tons has ad-function-like form, which, when the interactio
of the excitons with the low-frequency Bose-type excitatio
~phonons and magnons! is taken into account acquires
characteristic structure. At sufficiently low temperatures
consists of a main line and accompanying fine-structure li
corresponding to the simultaneous excitation of an exc
and one, two, etc. Bose excitations. The optical absorptio
i-

s

t
s
n
of

the a phase has just such a form throughout its entire e
tence region in temperature~see, e.g., Figs. 17.4–17.6 an
18.5–18.7 of Ref. 1!.

The transition to theb phase from thea phase causes
these lines to become so smeared that they lose all vis
structure, transforming into broad asymmetric bands wit
relatively abrupt long-wavelength wing and an extend
short-wavelength wing~see Fig. 17.6 of Ref. 1!.

A similar qualitative form is exhibited by the spectru
described by expression~42! ~we note that forQ50 this
expression simplifies substantially, since the hypergeome
function goes to 1!, which is shown in Fig. 1. Indeed, eve
algebraic order is sufficient for the short-wavelength wing
the excitonic line to reach 2–3 widths of the excitonic ban
In that case, however, the pronounced spectral feature r
niscent of a broadened asymmetric line is preserved. It v
ishes completely in the case of finitejmag(T), when the spec-
trum acquires the form shown in Fig. 1~curves2 and 3!,
where no structure of any kind appears but the lon
wavelength absorption edge remains abrupt. Approxima
the same shape is observed for the IR spectrum of a cry
containing heavy impurities.41

This edge becomes smeared when the damping of
spin correlations with time is taken into account. Then~see
Fig. 2! the shape of the band shape calculated numeric
according to formula~46! practically coincides with the ob
served shapes of the one- and two-exciton absorption ba
of b-O2, where they all have a similar structure:1 a relatively
abrupt red wing and a rather long violet tail. Thus the d
namic spin fluctuations in a medium with correlational ord
ing indeed lead to the form of the excitonic absorption sp
trum observed in theb phase of oxygen and can b
considered responsible for the radical change in the abs
tion spectrum that occurs in this crystal at theab transition.

Our results pertaining to the method of taking into a
count the absence of long-range spin order and its influe
on the spectrum of quasiparticles might have a more gen
significance. One can in fact give examples for which t
correlational ordering can be important. One such examp
the recently discovered effect wherein behavior of this k

FIG. 1. Transformation of the excitonic spectrumAex(Q50,v2D«) when
only the static magnetic fluctuations are taken into account, for differ
jmag: ` ~1!, 2a ~2!, and a ~3!; a is the lattice constant of the magneti
lattice, and the frequencyv is given in units of the width of the excitonic
band,W51/2m* a2, and is measured from the bottom of this band. T
value of the parametera was assumed constant and equal toa(TBKT)
57/8.
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— the complete vanishing of structure — occurs in the o
tical spectrum ofa-O2 under the influence of externa
pressure.42 Without claiming to have reached a final concl
sion, let us state the following conjecture. If the pressure
even slightly nonuniform and the temperature is finite,
effect of the pressure will not only be an inhomogeneo
broadening of the spectral lines but also to a certain ex
the ‘‘creation’’ of a medium which should be described by
suitable correlation length. In accordance with what we h
said above, its influence should modify the spectrum.

A more convincing example is the dramatic change
the amplitude of themSR signal from electrons injected int
the orientationally ordereda phase of solid N2 in compari-
son with the same signal from electrons injected into
orientationally disordered cryocrystal N2–Ar.42 Obviously
the character~spin or orientational! of the subsystem on
which the kinetic characteristics of the quasiparticle dep
is not of fundamental importance, and a function of the ty
@~24! ~or ~31!!# can describe the correlations of the orien
tions. Here the Anderson localization and, even more so,
self-trapping with the formation of a polaron, which wa
proposed in Ref. 43, do not seem to be necessary condi
for the observation of the change inmSR signal and the
corresponding change in the kinetic properties of the e
tron.

Finally, the same method can be used to calculate
Green function of the magnons~their spectral density! for
systems of this kind in which, for some reason or other,
long-range ordering is suppressed. If the order itself~of a
correlational or other nature! can be described by function
of the type~24! or ~31!, then in a medium corresponding to
one can scarcely talk of quasiparticles — magnons, excit
electrons — in the usual meaning of this word. Quasipa
cles will not exist once the parameter~27! is no longer equal
to unity, and the quasiparticle properties will gradually
recovered as the temperature decreases, whena→1. Inter-
estingly, just such a recovery is observed in superconduc
copper oxides, where the quasiparticle Fermi excitations
gin to be observed only at temperatures substantially be
the critical temperature; near the critical temperature
above it, no quasiparticles could be detected.

Here it is necessary to keep in mind that the correlatio
ordering in high-Tc superconductors pertains, on the o

FIG. 2. Transformation of the excitonic spectrumAex(Q50,v2D«) with
allowance for dynamic magnetic fluctuations;1 — jmag510a, g50.01W;
2 — jmag52a, g50.05W; 3 — jmag5a, g50.1W. Herev anda given in
the same dimensionless units as in Fig. 1.
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hand, to the superconducting 2D condensate,40 and, on the
other hand, to the magnetic subsystem~the spins of the Cu21

ions!, which in the metallic phase do not have long-ran
order. A generalization of the approach developed abov
the aforementioned case of magnetic superconducting
tems with correlation lengths of different natures and,
cordingly, different orderings, which obey conditions of th
type ~1!, will be done separately.
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Project 7UKPJ062150.00/1!.
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1!The same changes also occur in the libron spectrum.1

2!It describes the interaction of O2 molecules only in their ground state
sinceS50 in the lowest electronic excited states1Dg and1Sg of oxygen.

3!This, of course, is not referring to effects such as optical nutation i
strong external electromagnetic field.

4!Staying within the framework of a Bose representation for the excito
states, we do not include the mean-field termHexch

MF

5Jsz(na ,ra b
Sna

z cos(wna
2wna1rab

) that follows from Eq. ~9!, which

leads only to an exchange shift of the one-electron~or, equivalently, the
excitonic! levels.

5!We note that forT→0 expression~42! does not go over to ad function,
since the latter is a generalized function, and obtaining it requires
accurate use of the initial expressions~21! and ~38!.
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22A. F. Prikhot’ko, M. Ruéman, and A. S. Fedoritenko, Zh. E´ksp. Teor. Fiz.
5, 712 ~1935!#.
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Lattice constant and coefficient of linear thermal expansion of the silicon crystal.
Influence of isotopic composition
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The features of the temperature behavior of the lattice constant and the coefficient of thermal
expansion of silicon crystals are analyzed in the bond-charge model. The coefficient of
thermal expansion and the Gru¨neisen factor for the natural isotopic composition are described to
reasonable quantitative accuracy. The influence of the isotopic composition on the value of
the lattice constant is discussed in detail. ©2000 American Institute of Physics.
@S1063-777X~00!00812-4#
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1. INTRODUCTION

Considerable attention is now being devoted to the st
of chemically pure and structurally perfect semiconduc
single crystals with different isotopic compositions. The
have been many papers on the study of such semicondu
as diamond, germanium, and silicon. Highly isotopically e
riched samples of12C, 70Ge, 76Ge, and28Si have been syn
thesized~see, e.g., Refs. 1–5!.

As the isotopic composition of the components of t
compounds is varied, effects which are linear in the m
difference of the isotopes appear, and there are also ef
proportional to the parameter of the mean-square devia
of the atomic masses~in other words, there are effects of fir
and second orders!. The first-order effects can have an a
preciable influence on the static and thermodynamic pro
ties, and the effects of both orders are manifested importa
in the features of the behavior of the kinetic parameters
optical spectra~see, e.g., Refs. 6–8!.

The influence of the isotopic composition on the latti
constanta and coefficient of linear thermal expansiona has
been studied in a number of papers. Experimentally the
pendence of the lattice parametera on the composition was
examined for diamond crystals in Ref. 1. For germanium
temperature behavior of the lattice constanta was studied in
Ref. 9, and the coefficient of thermal expansion was inve
gated in Ref. 10. In the case of silicon the correspond
measurements have not been made. The dependence
parametera on the composition and temperature for C, G
and Si was analyzed in Ref. 11 using the density functio
method, and in Ref. 12 the coefficienta(T) was calculated
for the natural isotopic composition. The agreement with
periment was only qualitative. Previously we have inves
gated the behavior of the linear coefficient of thermal exp
sion of the Ge lattice with the use of the bond-char
model.13

Studies of the influence of the isotopic composition
the thermal conductivity of germanium and silicon have a
been carried out.3–5,14,15
9081063-777X/2000/26(12)/8/$20.00
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In the present paper we discuss the features of
change ina and a over a wide range of temperatures f
crystals of silicon, the base material for modern electron
and examine the role of the isotopic composition.

It should be noted that the temperature dependenc
the lattice parameters in silicon is nonstandard. First,
values of the partial Gru¨neisen factorsg( l ) characterizing
the dependence of the phonon mode frequenciesv( l ) ~the
index l labels the phonon modes! on the volume are percep
tibly different at low and high frequencies, and at high te
peratures the low-frequency values are noticeably differ
from the mean values. Because of the features of the
namic interatomic interaction, the factorg( l ) for transverse
acoustical modes is negative in sign~see, e.g., the
monograph16 and the review17!. Second, the characteristi
frequencies for the transverse acoustical and longitudinal
tical modes are substantially different. On the temperat
scale their units correspond to values close to 200 and 70
We note that the Debye temperatureTD equals 625 K. The
maximum frequency of the spectrum is 743 K~see, e.g., the
experimental papers18,19!.

Analysis of the behavior of the parametersa(T) and
a(T) for Si have been carried out in the quasiharmo
Grüneisen–Mie approximation, in which one considers t
dependence of the lattice parametera on the temperatureT.
Recall that in a harmonic crystal lattice the phonon mo
frequenciesv( l ) are determined for a fixed atomic configu
ration and do not depend on temperature. In reality, beca
of anharmonicity, the interatomic interaction energy and
related dynamic force parameters and frequenciesv( l ) actu-
ally do depend on the volume and onT. In a quasiharmonic
approach the potential energy is expanded to second ord
the dynamic atomic displacements, but some parts of
anharmonic effects are taken into account through assu
tions about the dependence ofa on T and the dependence o
v( l ) on a(T).

Since for silicon the mean masses of systems with
ferent isotopic compositions deviates only slightly from t
© 2000 American Institute of Physics
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mass corresponding to the natural composition, in determ
ing the behavior ofa(T) anda(T) we consider only effects
which are linear in the mass difference of the isotopes. T
theory contains the mean values of the atomic masses,Mc ,
the values of which are varied. In other words, the problem
treated in the virtual crystal approximation.

The case of natural isotopic composition correspond
an effective mean mass of 28.0855. Masses of 28, 29, an
correspond to maximally enriched samples. Here, in rela
to the crystal with natural composition, the samples of28Si
and the samples of29Si and30Si can be regarded as consis
ing of ‘‘light’’ and ‘‘heavy’’ isotopes.

Concrete calculations were carried out using the mic
scopic bond-charge model. This model, which was dev
oped in Refs. 20, is based on the premise that the elec
charge which is concentrated at the center of the chem
bond can be treated as a dynamic quantity influencing
interatomic bond. Essentially, the effective dynamic co
plings that arise between nearest-neighbor charges on
bonds due to the motion of the atoms in the transverse di
tion is stronger than the dynamic coupling between an a
and its neighboring charge on the bonds. The application
this model to silicon~germanium! is motivated by the fact
that it can describe the large flat part of the dispersion cu
for transverse acoustical phonons~and the rest of the spec
trum as well!.

In Ref. 21 the bond-charge model was generalized to
case when the crystal is strained by external stresses. It
found that in the strained quasiharmonic lattice~with dis-
placed atoms! the force parameters appearing in the dynam
matrix are altered. The case of hydrostatic pressure was
sidered. Experimental data on the values of the partial Gr¨n-
eisen factors at the high-symmetry pointsG, X, and L for
transverse and longitudinal acoustical and optical mo
~they were found from optical experiments! were used to
refine the parameters of the model. The values ofg( l ) were
calculated for the symmetric directions.

In the present paper the results obtained in Ref. 21
used to determine the frequenciesv( l ) and the partial factors
g( l ). To the author’ knowledge, this is the first time that t
behavior of the lattice parametera(T) and of the coefficient
of thermal expansiona has been studied for Si crystals wi
different isotopic compositions.

In Sec. 2 the basic relations fora(T) and a(T) are set
forth for crystals whose unit cell contains atoms of a sin
element. In Sec. 3 the universal dependences of the pa
etersa(T) anda(T) on Mc are discussed. In Sec. 4 the ca
of silicon is analyzed in the framework of the bond-char
model. Attention is devoted primarily to a discussion of t
coefficient of thermal expansion and the Gru¨neisen factor,
since for these quantities there are experimental data a
able for the natural isotopic composition.22,23 Then the be-
havior of the lattice parameter is discussed for single crys
of the natural and enriched compositions.

2. UNIT CELL VOLUME, THERMAL EXPANSION, AND
GRÜNEISEN FACTOR IN THE LINEAR APPROXIMATION IN
THE ISOTOPIC MASS DIFFERENCE. BASIC RELATIONS

Let us consider the equation of state relating the s
variables: the temperatureT, volumeV, and pressureP. By
definition, P52(]F/]V)T , whereF is the free energy.
n-
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The free energy of the crystal is the sum of the energyEs

of the static lattice, in which the atoms occupy equilibriu
positions, and the vibrational energyFv of the atoms:

F~V,T!5Es~V,T!1Fv~V,T!. ~1!

The vibrational energyFv in the quasiharmonic approxi
mation is defined as~see, e.g., Refs. 6 and 7!

Fv5(
l

\v~ l !

2
1kBT(

l
lnF12expS 2

\v~ l !

kBT D G
5kBT(

l
lnF2 sinhS \v~ l !

2kBT D G . ~2!

In Eq. ~2! the index l labels the vibrational modes:l 5f, j ,
wheref is the quasimomentum andj is the polarization of the
phonon mode;kB and\ are Boltzmann’s and Planck’s con
stants. The frequenciesv( l ) in Eq. ~2! depend on the vol-
ume, on the temperatureT, and on the masses of the atom
For crystals whose unit cell contains atoms of just one e
ment with any isotopic composition, the following relatio
holds for a specific model in the linear approximation in the
isotopic mass difference:

d ln vc
2~ l !

d ln Mc
521 ~3!

~see Appendix!, whereMc5( iciM i is the value of the mean
mass of an atom, andci and Mi are the concentration an
mass of isotopei.

When the crystal is strained, the atoms occupy new eq
librium positions. This changes the energyEs and frequen-
cies v( l ). In this paper it is assumed that the change
volume as a result of the strain is isotropic. For a crystal w
cubic symmetry, we can write the equation of state, w
allowance for~1! and ~2!, in the form

P1
dEs

dV
5

1

V (
l

g~ l !«~ l !, ~4!

whereg( l ) is the partial Gru¨neisen factor for thel th vibra-
tional mode. This factor takes into account that the frequ
cies of the different modes depend on the volume in differ
ways. The factor«( l ) denotes the contribution of each mod
to the thermal energy. Thus

g~ l !52
]v~ l !/]V

v~ l !/V
, «~ l !5\v~ l !S n~ l !1

1

2D . ~5!

Here n( l ) is the Bose–Einstein factor. We note that t
quantity ( lg( l )«( l ) is the pressure of noninteractin
phononspph.

If it is assumed that the partial Gru¨neisen factors have
nearly the same values for all the modes, then in place of~4!
we can write the Gru¨neisen–Mie equation of state:24

P1
dEs

dV
5g

Ev

V
, Ev5(

l
« l . ~6!

In the case of normal pressure we can setP50.
Let us assume that we know the parameters of the cry

at the temperatureT050. By definition, V(T)5NV(T),
whereV is the volume of the unit cell of the lattice. LetV0

be the volume of the cell at the temperatureT050. We ex-
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pand the terms on the left- and right-hand sides of Eq.~6! in
a series in powers ofV2V0. To a first approximation we
keep the linear term on the left and ignore the volume
pendence ofg( l ) andv( l ) on the right. As a result, we find
that to a first approximation the change in volume of the c
V2V0 as a function of temperature is given by an expr
sion of the form

DV

V0
5

V2V0

V0
5

1

3B0V0
(

l
g~ l !«~ l !, V05V~T0!,

~7!

whereB05V0(]2Es /]V2)V0
is the bulk modulus of com-

pression atT5T0.
The volume differenceDV can be expressed in terms

the differenceDa5a2a0, wherea anda0 are the unit cell
parameters atTÞT0 ~with allowance for the distribution o
the atomic vibrations! andT5T0 ~without allowance for the
zero-point atomic vibrations!. According to Eq.~7!,

ãs5
Da

a0
5

DV

3V0
5

1

3B0V0
(

l
g~ l !«~ l !. ~8!

When the isotopic composition of the lattice is chang
the mean mass, generally speaking, varies in a continu
manner. Therefore we define a differential parameter of
form

f a5S ] ln a

] ln M D
M5Mn

52
1

6V0B0
(

l
g~ l !F«~ l !2T

]«~ l !

]T G , ~9!

where Mn is the mass in the case of the natural isoto
composition. In addition, let

«~ l !2T
]«~ l !

]T
5

1

2
\v~ l !Z~x8~ l !!, ~10!

Z~x8!5Fcoshx82
x8

sinh2 x8
G , x8~ l !5

\v~ l !

2kBT
.

We go over to a description in terms of the coefficient
thermal expansiona(T) for the cubic crystal lattice. Using
Eq. ~8!, we obtain~see, e.g., Refs. 6 and 13!

a~T!5
]

]T

Da

a0
5

1

B0

]pph

]T
5

1

3V0B0
( g~ l !Cl~T!,

~11!

whereCl(T) is the contribution to the heat capacity from th
l th vibrational mode:

Cl~T!5
]«~ l !

]T
5kBx2~ l !n~ l !@n~ l !11#,

x~ l !5
\v~ l !

kBT
. ~12!

Expressions~7!–~11! are given in the first approximatio
of the theory. We note that in the next approximation it
necessary to take into account the change in volume and
modulus due to the thermal expansion and also the an
monic contributions to the phonon pressure and the co
sponding renormalization of the bulk modulus. It is usua
-

ll
-

,
us
e

c

f

lk
r-

e-

assumed that the renormalization of the bulk modulus du
the dependence ofV on T can be substantial. The question
the anharmonicity of the phonon modes requires a spe
analysis.

Together witha(T), we consider the integral Gru¨neisen
factor g(T). By definition it is given by16

g~T!5
VaBs

Cp
5

VaBT

Cv
5

V

Cv
S ]pph

]T D
V

. ~13!

To a first approximation we get

g~T!5(
l

g~ l !Cl~T!/(
l

Cl~T!. ~14!

We note that the functiong(T) is the weighted mean of the
corresponding contributions of the individual modes.

Let us consider two crystals with mean massesMc and
Mc15Mc1DM . The relative change in the coefficient o
thermal expansion,Dac(T)5a(Mc1)2a(Mc), in the case
uDM u!Mc , can be written, according to Eqs.~11! and~14!,
as

Dac'a~1!~Mc!1a~2!~Mc!, ~15!

where

a~1!~Mc!5a~Mc!S Dgc

g~Mc!
1

DCc

CL~Mc!
D , ~16!

Dgc~T!5g~Mc1!2g~Mc!,

DCc~T!5CL~Mc1!2CL~Mc!,

and

a~2!~Mc!5a~Mc!S R~Mc!

R~Mc1!
21D , R5V0B0 . ~17!

Here

a~2!~Mc!;2a~Mc!r
DM

Mc
, r5S (

l
g~ l !v~ l !

2B0V0

D
M5Mc

.

~18!

Let us briefly discuss relations~15!–~18!. First, the char-
acter of the dependence ofDac

(1) on T is governed by the
difference of the phonon spectra of the crystals with mas
Mc and Mc1. If the partial Grüneisen factorsg( l ) on the
whole do not differ appreciably from some average valu
then the first term in parentheses in Eq.~16! can be ne-
glected. In the general case both terms,Dgc and DCc , are
important. Second, for silicon the factorr'231023, and
the parameterDM /Mc can amount to a few percent. Thus
relative units the change in the volume of the unit cell atT
50 due to variation of the isotopic composition amounts
;1025. Concrete estimates show that in the case of silic
the terma (2) can be neglected in comparison witha (1).

We note that in the case of high temperaturesT,TD/2
(TD is the Debye temperature!

«~ l !'kBTF11
1

12
x2~ l !2

1

7200
x4~ l !G , ~19!
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Z~x8~ l !!'
1

3
x~ l !F12

1

30
x2~ l !1

1

840
x4~ l !G , ~20!

Cl~T!'kBF12
1

12
x2~ l !1

1

240
x4~ l !G . ~21!

We substitute~19!–~21! into the expressions forãs ~8!,
f a ~9!, anda ~11!. As a result, we find that forT.TD/2 the
lattice parametersa and f a and the parametersa and g
should be extremely weakly dependent on the isotopic c
position.

We call attention to the fact that in the classical limit f
T.TD the sum partition function can be replaced by an
tegral,

Z5E expS 2
H~V,p1 , . . . ,uN!

kBT Ddp1 . . . duN , ~22!

where the Hamiltonian functionH of the system depends o
the atomic momenta and displacements. The factorZ can be
written in the form of a product of two integralsI 1 and I 2.
The first of them is due solely to the distribution over t
atomic momentum components~the expression for which
contains the kinetic energies of the isotopes and th
masses! and is easily evaluated:I 15(2pMckBT)N/2. Impor-
tantly, I 1 is independent of the volume. The second integ
I 2, is determined by the form of the potential energy of t
dynamic interatomic interaction, i.e., the force paramete
Since the force parameters depend on the values of
atomic coordinates~and interatomic distances!, the integral
I 2 varies with the volume. HoweverI 2 does not depend on
Mc . By definition

Fv52T ln Z52T~ ln I 11 ln I 2!. ~23!

Consequently, the derivative (]Fv /]V)V0
is also indepen-

dent ofMc . Thus in the case of classical statistics the valu
of the lattice constant and coefficient of thermal expans
are insensitive to the isotopic composition. It can theref
be asserted that the change ina(T) anda(T) on variation of
the isotopic composition is a macroscopic quantum effec

3. UNIVERSAL RELATIONS FOR THE ISOTOPIC
DEPENDENCE OF THE LATTICE PARAMETERS

Let us establish how the characteristics of the lattice o
virtual crystal whose unit cell contains atoms of only o
element depend on the isotopic composition.

We label the parameters for a particular isotopic com
sition by the subscriptc0. For an arbitrary isotopic compos
tion we use the subscriptc. We consider the expression~7!
for the change in volume as a function ofT. Differentiating
g(T) with respect toMc and using~3!, we can see thatg( l )
is independent ofMc . The following quantity forT,TD

does depend on the mass of the crystal, through the de
dence ofv( l ):

Ec~ l ,T!5vc~ l !FnS \vc~ l !

kBT D1
1

2G . ~24!

According to Eq.~3!, vc( l );Mc
21/2. Hence

Ec~ l ,T!5AMc0
/McEc0

~ l ,T8!, T85TAMc /Mc0.
~25!
-

-

ir

l,

s.
he

s
n
e

a

-

n-

By virtue of ~25! we obtain for the change in volume~7! a
universal relation of the form

DVc~T!5AMc0
/McDVc0

~T8!. ~26!

Similarly,

ac~T!5ac0
~T8!. ~27!

We note that a relation analogous to~26! holds for the lattice
parameterãs ~8!.

Relations of a universal type are conveniently used in
analysis of the isotopic composition. Specifically, if the da
for the natural composition are known, then one can sim
determine theoretically the values of the parameters for
riched compositions and compare the values obtained w
the corresponding experimental results.

4. COEFFICIENT OF THERMAL EXPANSION, GRÜ NEISEN
FACTOR, AND LATTICE PARAMETER FOR SINGLE-
CRYSTAL SILICON. THE RESULTS OF NUMERICAL
CALCULATIONS FOR THE NATURAL AND MAXIMALLY
ENRICHED COMPOSITIONS

Using the results obtained in the previous Section,
now investigate the behavior of the lattice characteris
ãs(T) ~8! and f a ~9! and of the coefficientsa(T) ~11! and
g(T) ~14! for silicon single crystals. We consider the case
natural composition, with three types of isotopes with
mean massMn528.0855, and the maximally enriched com
positions with masses of 28, 29, and 30.

Specific calculations were carried out in the framewo
of the microscopic theory — the bond-charge model.21 We
note that the values of the frequenciesv( l ) calculated in the
framework of the bond-charge model21 and the Born–
Karman theory25,26 are practically coincident over the entir
Brillouin zone. The following values were used for the p
rameters appearing in the theory: elastic constanta0

55.4310 Å, and bulk modulusB050.99831012 dyn/cm2.
The results of the calculations are presented in F

1–5.
Let us consider the theoretical curves and experime

data for the temperature dependence of the integral G¨n-
eisen parameterg(T) ~14! and coefficient of linear therma
expansiona(T) ~11! for silicon single crystals of natura
composition. They are presented in Figs. 1 and 2, resp
tively. A comparison of the calculated and experimental22,23

data forg(T) anda(T) shows that the microscopic theory
in reasonable quantitative agreement with experiment ov
wide range of temperatures.

We note that the dynamic properties of silicon and g
manium are very similar. An analysis ofg(T) for Ge is
given in Ref. 13. We call attention to the fact that the dep
dence of the coefficient of thermal expansiona on T is in
many cases dictated by the temperature behavior of the
tice heat capacityCL . This is explained by the fact that th
partial Grüneisen factorsg( l ) characterizing the volume de
pendence ofv( l ), as a rule, differ only slightly from some
average values. For silicon~and germanium! crystals, how-
ever, the values ofg( l ) at low and high frequencies ar
substantially different. As a result, the behavior ofa(T) for
Si is largely determined by the integral Gru¨neisen factor
g(T) and not by the heat capacityCL .
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For germanium,13 unlike the case of silicon, the agree
ment with experiment forg anda is only qualitative. It may
be that the experimental values of the partial factorsg( l ) that
were used in Ref. 21 are in need of refinement.

Figure 3 shows the results of calculations of the para
eter ãs(T) ~8! in the case of the natural composition. Als
plotted are the quantities

ã j~T!5
4

3B0a0
3 (f

g~ f, j !«~ f, j !. ~28!

The partial factorsã j (T) ~28! were determined for the trans
verse (t) and longitudinal (l ) acoustical and the optical (o)
branches. For the longitudinal acoustical and for the opt
branches the factorsã j are positive in sign. For the trans
verse acousticalt branches the sign ofãt is negative~the
negative sign ofãt is explained by the fact that as the di
tance between atoms decreases, the forces of attraction
erning the corresponding transverse modes increase m
rapidly than the forces of repulsion!. In absolute valueão is
larger thanãl . The contribution of the partial factorã0 for
the optical branches is the determining factor. We empha
that because the partial Gru¨neisen factors alternate in sig
and because of the features of the phonon spectrum in
temperature intervalT54.2–300 K, the lattice constant de

FIG. 1. Temperature dependence of the integral Gru¨neisen factorg for
silicon in the case of the natural isotopic composition:d — experimental
results obtained in Ref. 22;3 — data of Ref. 23.
-

al

ov-
re

ze
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pends weakly on temperature. AtT5140 K ãs passes
through a minimum. ForT.TD/2 the factorãs(T) varies
linearly with temperature.

Let us give the values ofãs at four temperatures,T
54.2, 140, 300, and 800 K, where the respective values
ãs310250.1721, 0.1695, 0.1894, and 0.3649. Consequen
ãs is larger at 800 K than at 4.2 K by approximately 0.00

The results of the calculations for the differential fact
f a5(] ln a(T)/] ln M)Mn

~9! are presented in Fig. 4. In th
entire interval interval this quantity is mainly determined
the contribution for the optical modes. The correspond
contributions from the longitudinal and transverse acoust
modes are an order of magnitude smaller and to a consi
able degree cancel each other out. The presence of a co
bution from the transverse modes leads to a nonmonot
variation of f a with T. At T'80 K the factor f a passes
through a minimum, and then in the classical temperat
limit, as we have said,f a→0. According to the calculations
f a falls off in absolute value by approximately a factor
four as the temperature increases in the interval 0–800
The finite values at highT are due to the existence of high
frequency modes in the phonon spectrum of silicon. FoT
.TD/2 the factorf a varies asT21.

Let us give the values off a at four temperatures,T
54.2, 80, 300, and 800 K; the respective values aref a

3103520.8703,20.8877,20.5834, and20.2554.

FIG. 2. Temperature dependence of the coefficient of linear thermal ex
sion a for Mn528.0855;m — results taken from Ref. 22;s — data of
Ref. 23.
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FIG. 3. Plots ofãs(T) and ã j (T) for the natural composition; the latte
describes the partial contributions corresponding to the transverse~1! and
longitudinal~2! acoustical modes and the optical modes~3!. Curve4 is the

total factorãs .

FIG. 4. Temperature dependence off a .
The variations of the lattice constant with isotopic com
position are described by the relation

ac~T!2an~T!5
Mc2Mn

Mn
f a~T!an~T!. ~29!

From this relation we find that atT5300 K, in going from
the natural composition to the maximally enriched28Si the
lattice constant increases by'231026a0. At the same time,
in going from 28Si to 30Si the lattice constant decreases
3.831025a0. If the temperature is comparatively low,T
'0 –100 K, then the corresponding changes in the lat
parameter are one-and-a-half times larger.

We note that, according to Ref. 11, for silicon at T5298
K the factor f a520.53331023. This value is close to tha
obtained by us. For diamond the experimental value1 is f a

521.82631023, i.e., it is of the same order of magnitude
for Si. However, in the case of diamond the phonon sp
trum does not contain anomalous transverse acous
modes, and, furthermore,TD51860 K. For this reason the
factor f a for C also turns out to be considerably larger th
for Si at the same temperature 298 K.

Figure 5 shows curves characterizing the scale of
isotope effects fora(T) in absolute units over a wide tem
perature interval. First, relation~11! was used to calculate th
values ofa(T) for crystals with the natural isotopic compo
sition. Then the universal relation~27! was used to calculate
the corresponding values for the maximally enriched cr
tals. The curves represent plots of the quantityDac

5a(Mc)2a(Mn) versusT, where Mn528.0855 andMc

FIG. 5. Temperature dependence ofa(Mc)2a(Mn) for the cases of heavy
and light isotopes:Mc530 ~1!, 29 ~2!, 28 ~3!. For the light isotopes the
values ofDac are enlarged by a factor of 10 in comparison with those
the heavy isotopes.
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528, 29, and 30. We recall that in relation to the crystal w
the natural isotopic composition, the28Si and the29,30Si
samples can be regarded as consisting of ‘‘light’’ a
‘‘heavy’’ isotopes.

The values corresponding to the light and heavy isoto
have different signs. The curves are nonmonotonic and h
two extrema atTm1'58 K and Tm2'190 K. In the high-
temperature region under consideration the isotope effec
mains finite because the optical modes are still not co
pletely ‘‘frozen out.’’

The behavior of the curves is described by formula~16!.
We note that the values ofDCc /CL(Mc) have the same sign
throughout this temperature interval: negative for the lig
isotope and positive for the heavy. The second te
Dgc /g(Mc) changes sign at temperaturesT1'65 K and
T2'120 K. ForT<T1 and forT.T2 the two terms have the
same sign and nearly the same order of magnitude. In
intervalT1,T,T2, on the contrary, the terms in~16! are of
different signs.

In view of what we have said, let us consider the e
trema on theDac(T) curves. At a temperatureTm2'190 K
the main contribution toDac is from optical modes. In this
case there is a mutual enhancement of the renormaliza
due to to the changes in the mean mass in the integral G¨n-
eisen parameter~here the contributions of the longitudina
and transverse optical modes are of the same sign! and in the
lattice heat capacity.

At a temperatureTm1'58 K the main contribution to
Da is due to the acoustical modes. The contributions tog
from the longitudinal and transverse acoustical modes
tially compensate each other. NearTm1 the termsDCc /
CL(Mc) andDgc /g(Mc) are again of the same sign. How
ever, in comparison with the previous case, the role of
term Dgc /g(Mc) is less important~because of the partia
compensation of the contributions of the longitudinal a
transverse acoustical branches!.

We note that the values of the extrema differ strong
sinceDac is proportional toac . The value ofac increases
with increasing temperature, and the ratioac(Tm2)/ac(Tm1)
is close to three.

For semiconductor crystals with two chemically diffe
ent atoms in the unit cell and with anomalous behavior of
Grüneisen parameter~i.e., like that in silicon! one can in
principle determine experimentally the partial contributio
to Dac of the acoustical and optical modes. For this it
necessary that the masses of the atoms of the componen
substantially different. Then as the isotopic composition
the atoms of the compound within each sublattice is varie
the given situation there will be an appreciable change
either the acoustical or optical part of the phonon spectr
For example, for the CsCl crystal, which has the zinc blen
structure and anomalous behavior of the thermal expans
it is predominantly the cesium atoms that vibrate in t
acoustical part of the spectrum. As a result, changing
isotopic composition of the cesium will primarily affect th
low-temperature part of theDac(T) curve.

5. CONCLUSION

We have analyzed the features of the temperature de
dence of the lattice constanta, coefficient of linear therma
s
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expansiona, and integral Gru¨neisen parameterg for single
crystals of silicon in the quasiharmonic approximation on
basis of the microscopic bond-charge model.20,21 We have
shown that the experimental data fora(T) andg(T) can be
described to reasonable accuracy in the framework of
bond-charge model.21 We have determined concrete valu
for a(T). In the linear approximation in the isotopic ma
difference we have considered the influence of the isoto
composition on the lattice constanta(T). We have found
values of the parameter (] ln a(T)/] ln M)Mn

. We have studied
the changes in the factora(T) upon variation of the isotopic
composition. We have compared the corresponding va
for crystals of the highly enriched and natural isotopic co
positions.

The author is grateful to S. M. Stishov for helpful advic
and to D. A. Zhernov and A. V. Inyushkin for assistance
this study. Valuable and constructive comments from the
eree are also gratefully acknowledged.

6. APPENDIX

Consider two crystals having different isotopic compo
tions. We denote these asc andc1. Let

uMc2Mc1u/Mc5uDM u/Mc!1. ~A1!

We shall assume that the eigenfrequenciesvc( l ) and the
orthonormalized polarization vectorsec(ku l ) (k labels the at-
oms in the unit cell! are known for a virtual monatomic
crystal of massMc . We are to determine the isotope shift
the frequencies on going over to the compositionc1.

We note that in an approximation linear in the ma
difference of the isotopes, generally speaking, the local s
metry properties are not altered and the degeneracy is
lifted. In reality, even in the linear approximation inDM a
static displacement field arises around the isotopes,27,28but in
standard crystals~in distinction to quantum crystals! these
displacements are proportional to an additional small par
eter ^u2&/a2 (^u2& is the mean square value of the dynam
atomic displacements! and can be neglected in the proble
under consideration. Thus in the framework of perturbat
theory one is actually considering a nondegenerate case

It is known that calculation of the eigenvalues to a de
nite order of smallness relative to the perturbation requ
knowledge of the eigenfunctions to the next lower order. T
change in the eigenvalues~square of the frequency! upon a
variation of the isotopic composition is to a first approxim
tion equal to the corresponding diagonal element of the
ergy of the perturbation with respect to the unperturb
states:

S Dv2~ l !

DM D
c

5(
k,a

(
k8,a8

ea
c* ~ku l !

3FDFaa8~kk8uf!
DM G

c

ea8
c

~k8u l !. ~A2!

HereFaa8
c (kk8uf) is the dynamic matrix of the crystal, anda

and a8 are Cartesian indices. The matrixF is given by a
relation of the form
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Faa8
c

~kk8uf!5
1

NMc
(
mm8

waa8~mk,m8k8!

3exp@ i f•~Rm
~0!2Rm8

~0!
!#, ~A3!

wherewaa8(mk,m8k8) is the matrix of second-order forc
parameters,N is the number of unit cells,Rm

0 is the vector of
the equilibrium position of themth unit cell.

According to~A3!,

FDFaa8~kk8uf!
DM G

c

52
1

2Mc
Faa8

c
~kk8uf!. ~A4!

We substitute~A4! into ~A2!, and take into account tha

vc
2~ l !ea

c ~ku l !5 (
k8,a8

Faa8
c

~kk8uf!ea8
c

~k8u l !. ~A5!

We also take into account the orthogonality condition for
eigenvectors. We note that the value of the mean mass v
in a continuous manner, so that theD ’s can be replaced by
differentials. As a result we obtain

d ln vc
2~ l !

d ln Mc
5211OF S uDM u

Mc
D 2

,
DM

Mc

^u2&
a2 G . ~A6!
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Anomalous low-temperature field evaporation and atomic relaxation of the tungsten
surface
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The anomalous low-temperature field evaporation of atomic complexes on the~211! face of single-
crystal tungsten is investigated by the methods of field ion microscopy. It is shown that as
the size of the close-packed atomic islands decreases, the tangential rate of evaporation at 21 K
increases by 2–3 orders of magnitude. The experimental results can be used to reveal and
investigate atomic relaxation effects at steps on faces with low Miller indices. A method is
proposed for determining the subatomic displacements of atoms on the steps as the size
of the islands decreases. The observed relaxation effects can be described in a consistent manner
in a model of linearly distributed surface forces. The observed size relaxation effect is
treated as a response to an increase in the energy of the elastic stresses as the diameter of the
atomic islands decreases. ©2000 American Institute of Physics.@S1063-777X~00!00912-9#
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INTRODUCTION

The low-temperature evaporation of metals in high el
tric fields underlies the high-resolution methods of field i
microscopy, mass spectroscopy, and a number of promi
trends in modern nanotechnology.1–4 Measurements of the
threshold electric field and rate of evaporation at tempe
tures far below the Debye temperature can reveal the co
bution of quantum effects in the vibrations of atoms
atomic steps.1,5 In the present paper we show that the pre
ously observed anomalous low-temperature field evapora
of atomic complexes6,7 can be used to reveal and investiga
atomic relaxation effects on the steps of faces with l
Miller indices. Steps are a little-studied but important e
ments of surface morphology, having a substantial influe
on the occurrence of chemical reactions,8 surface dif-
fusivity,9 desorption kinetics,10 the formation of technically
interesting surface nanostructures,11 and so on.

EXPERIMENTAL TECHNIQUES

We investigated the kinetics of field evaporation of t
~211! surface of tungsten in the temperature interval 21–
K. Needle-shaped samples having a radius of curvature a
tip in the range of 6–50 nm were prepared by the elec
chemical etching of 99.98% pure tungsten wires. The stu
were carried out in the two-chamber field ion microscope
Kharkov Physics and Engineering Institute, with the samp
cooled by liquid hydrogen and nitrogen. In the case of h
drogen cooling the residual gas pressure was 1027 Pa. Ex-
periments at intermediate temperatures were done on
ultrahigh-vacuum atom probe field ion microscope at
Hahn-Meitner-Institut in Berlin at a pressure of the acti
gases below 10210 Pa. Helium at a pressure of (1 –2
31023 Pa was used as an imaging gas. The rate of eva
9161063-777X/2000/26(12)/4/$20.00
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ration was determined on the basis of a comparison of
successively obtained images of the evaporating surfac
the needle-shaped tungsten single crystals.

During the evaporation the electric field was maintain
constant at a level of (5.6–5.7)3108 V/cm. During the ex-
posure of the images the electric field was reduced to
level of the best-image field (4.53108 V/cm!. At such fields
an ionization barrier is created near the surface,2 preventing
the residual gas atoms, which are characterized by relati
low ionization potentials, from reaching the investigated p
of the sample. Thus the ultrahigh-vacuum conditions and
presence of a field ionization barrier prevented the resid
gas atoms from striking the surface under study. The mig
tion of residual gases adsorbed on the surface of the shan
the sample, which was not shielded by the ionization barr
was insignificant, at least at 21 K, and likewise did not le
to contamination of the investigated part of the sample.

RESULTS AND DISCUSSION

Figure 1a–1e shows a series of ion-microscope ima
of the ~211! face, obtained at 21 K during field evaporatio
of a single atomic layer of a sample with a radius of curv
ture near the tipR525 nm. The maximum radius of th
two-dimensional atomic complexes~islands! was 2.1 nm~a!,
and the minimum was 1.7 nm~d!. The experimental depen
dence of the evaporation ratedr/dt on the mean radius o
curvature ^r & of the atomic complex is shown in Fig.
~curve 1!. When in the course of the field evaporation
island reaches a certain minimum~critical! radius r c , the
tangential evaporation rate increases anomalously by 2–3
ders of magnitude. As in the case of the anomalous lo
temperature field evaporation of atomic complexes on
~110! face,6 the evaporation of complexes atr ,r c occurred
© 2000 American Institute of Physics
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over a time equal in order of magnitude to the mean lifeti
of a single atom on the~211! step forr .r c . For this reason
the evaporation of two-dimensional islands atr ,r c in the
investigated temperature interval 21–78 K can be regar

FIG. 1. Ion microscope images of an atomic island at the center of the~211!
face of tungsten, obtained in the course of field evaporation at 21 K im
diately after removal of the previous atomic layer~a! and after various times
@min#: 6 ~b!, 12 ~c!, 18 ~d!, and 24~d!. The arrows indicate the centers of th
atomic complexes of maximum~a! and minimum~d! sizes.
e

d

as a collective process. Unlike the field evaporation of
~110! face, however, the anomalous increase in the rate
evaporation of the islands was observed over the entire
vestigated range of values of the radius of curvature of
samples, 6–50 nm.

Despite the absence of a consistent model of the ther
activation and quantum-mechanical processes governing
evaporation of metals in high electric fields, for a quanti
tive analysis of the formation of the atomic topography o
surface in the course of field evaporation the problem is c
tomarily treated geometrically, in particular, by the ‘‘she
model.’’1,3 It is assumed that the atoms to be imaged by
ion microscope are located within a hemispherical sh
0.05–0.1 lattice parameters thick on the surface of
sample. The evaporation process is modeled as an inw
displacement of the shell along an axis into the sample.
oms are evaporated when they are displaced outward f
the shell. The geometric model not only gives a satisfact
description of the atomic topography of the surface of id
crystals but also permits one to analyze subatomic displa
ments on the ion-microscope images of dislocations, gr
boundaries, twins, and other lattice defects. The accurac
determination of the local subatomic displacements
means of one of the modifications of the geometric model
the method of indirect magnification — reaches 0.006 nm
the direction normal to the surface.12 Curve2 in Fig. 2 shows
the dependence of the tangential evaporation rate on the
dius r of the atomic step, according to a calculation by t
indirect magnification method. According to that method,
the approximation of a rigid unrelaxed lattice for atomic
lands withr !R the tangential evaporation rate is given b

dr/dt5dhklKe~R/2r !1/2, ~1!

wheredhkl is the interplanar distance, andKe is the normal
rate of evaporation. In accordance with the experimen
data, curve2 in Fig. 2 was calculated forR525 nm, Ke

55.531024 atomic layers ~211! per second, anddhkl

50.129 nm. It follows from Fig. 2 that the increase in th
tangential evaporation rate with decreasing size of the ato
islands according to the geometric model without relaxat
is substantially more gradual than the experimentally

e-

FIG. 2. Dependence of the evaporation rate on the mean radius o
atomic island:1 — experimental curve,2 — calculated curve obtained in
the approximation of a rigid, unrelaxed lattice.
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918 Low Temp. Phys. 26 (12), December 2000 Mazilova et al.
served effect and becomes appreciable only at island r
much smaller thanr c .

Quantitative agreement with the experimental data
be achieved in the framework of the geometric model fo
relaxed lattice, on the assumption that the value of the ato
displacementUz on steps in the@211# direction is a function
of the radiusr. In this approximation, for atomic islands wit
r !R the change of the relaxation displacement of the ato
on the steps in the direction normal to the surface in
course of the evaporation process is expressed by the rel

DUz~r !5dhkl~12Ket !2r 2~ t !/~2R!, ~2!

where t is the evaporation time counted from the instant
evaporation of the previous complex. That instant cor
sponds to the maximum value of the radius of the atom
complex,r 5r 0 ~Fig. 1a!, and the size-dependent part of th
component of the displacements normal to the surface is
fined asDUz(r )5Uz(r )2Uz(r 0).

A calculation of the size dependence of the compon
of the atomic displacements normal to the surface on~211!
steps according to formula~2! shows that a decrease in th
radius of the atomic islands is accompanied by an outw
displacement of the atoms of the steps. The value of
displacement corresponding to the critical radius of the
land, r c51.9 nm, is equal to 0.021 nm, or 16% of the inte
planar distanced211. Thus an analysis of the kinetics of th
low-temperature evaporation of the~211! face of tungsten
shows that the decrease in the radius of the islands in
course of the evaporation is accompanied by an increas
the height of the atomic steps. Within the limits of accura
of the method of indirect magnification12 these values are
independent of temperature in the investigated inter
21–78 K. The observed size relaxation effects on the ato
steps of the islands are characterized by a high reproduc
ity. An anomalous growth in the rate of low-temperatu
field evaporation on reaching the critical radius was obser
in all of the experiments done~more than 103). In control
experiments done in the ultrahigh-vacuum atom probe fi
ion microscope, no features attributable to a change in
vacuum conditions were observed in the kinetics of the lo
temperature evaporation of tungsten. This confirms the c
clusion that the field ionization barrier is effective in preve
ing residual gas atoms from reaching the investigated pa
the sample. The authors could not find any published data
the measurement of the relaxation of atoms at steps on
faces of metal surfaces. At present there are only data on
displacement of the atoms on the faces~terraces! with low
Miller indices.13 It should be noted that the value of th
size-dependent part of the component of the atomic displ
ments normal to the surface on the steps,DUz(r ), observed
in this paper, is close in modulus to the values of the ato
relaxation determined previously by the methods of lo
energy electron diffraction and computer simulation13 for at-
oms on terraces of the~211! face, but the displacements ha
the opposite sign.

Thus the anomalous growth of the rate of low
temperature field evaporation can be described quantitati
with allowance for the size dependence of the relaxatio
dii
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displacements of surface atoms. We know of no publish
data on the experimental study of size-dependent relaxa
effects on the surface of metals. Meanwhile, they have b
analyzed with the use of a surface relaxation model propo
by Marchenko and Parshin,14 which satisfactorily describes
number of fine morphological effects on the surface o
wide class of solids — from cryocrystals15 to refractory
metals.16 The authors of Ref. 14 showed that relaxation c
be treated as a response of the subsurface layers to the a
of rows of linearly distributed forces oriented along th
atomic steps. The interaction of the steps on the surface is
result of a superposition of the elastic stress fields and, c
sequently, is of a long-range character. It is easy to show
in the framework of this model the energy of a circular st
of radiusr, treated as the interaction energy between all
the elements of the step, can be represented in the form

Wi~r !5~12n2!b~ f s
22 f t

2!/~2rE !, ~3!

where E is Young’s modulus,n is Poisson’s ratio,b is a
coefficient of the order of unity,f s and f t are linearly dis-
tributed surface forces of local tension and normal press
It is difficult to determine the values ofWi(r ) because of the
lack of data on the surface forcesf s . However a recent
analysis of the interaction of steps on the surface
platinum16 showed that the modulus of the ratiof s / f t is
greater than unity, and thus, according to formula~3!, one
would expect a mutual repulsion of the steps, independe
of their signs.

In addition to the force interaction of the steps the
should also be an entropic repulsion due to the restriction
the number of possible configurations of the steps. The c
figurational repulsion should lead to an increase in the f
energy of the stepped surface. However the entropic re
sion of surface steps usually becomes noticeable only
comparatively high temperatures. The displacement of
atoms on the steps as the size of the island decreases s
be treated, in the framework of the model of Ref. 14, a
response to an increase in the energy of elastic stresses
deed, the nature of the atomic relaxation and the configu
tion of the elastic strain fields are determined almost entir
by the atomic displacements of the first surface layer.17 Thus
the size relaxation effect observed in the present study le
to a decrease of the displacement of the first atomic pl
into the crystal, lowering the density of surface forces a
thereby compensating the growth of the energy of the st
as the size of the atomic islands decreases. This effect
play an important role in the nucleation and growth of cry
tals from the gas phase, heterogeneous catalysis, and
processes on nanostructured surfaces.

CONCLUSIONS

The application of the indirect magnification method
field ion microscopy, which makes it possible to achie
subatomic resolution, for analysis of the atomic morpholo
of the surface and the kinetics of low-temperature fie
evaporation has made it possible for the first time to obt
information about the relaxation processes occurring
atomic steps of close-packed faces.
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1. We have observed experimentally the anomalous l
temperature evaporation of two-dimensional atomic isla
on the~211! face of tungsten.

2. We have shown in the framework of the geomet
model of the formation of atomic topography of a surfa
during field evaporation that the anomalous growth of
evaporation rate is due to a change in the state of relaxa
of the surface layer.

3. We have shown that the decrease in the size of
two-dimensional islands on a metal surface is accompa
by an outward displacement of the atoms on the steps an
an increase in the height of the atomic steps.

4. In the framework of a model of linearly distribute
surface forces, the displacement of the atoms on the step
the size of the island decreases can be regarded as th
sponse to an increase in the elastic stress energy.

The observed relaxation effects can have a substa
influence on surface chemical reactions, the kinetics
nucleation and growth of crystals from the vapor phase, s
face diffusion, and other processes that are governed by
interaction of atoms with the steps of close-packed faces

In closing the authors thank C. Abromeit, A. S. Bakay
M-P. Macht, and V. Naundorf for a discussion of the resu
and for helpful advice.
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Fine structure of coherent twin boundaries in metals
T. I. Mazilova, I. M. Mikhailovskij,* and E. I. Lygovskaja

Kharkov Institute of Physics and Technology, National Science Center, ul. Akademicheskaya 1,
61108 Kharkov, Ukraine
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The oscillatory features of the atomic relaxation on coherent twin boundary in tungsten are
studied by the methods of molecular dynamics. A nonmonotonic character of the variation of the
atomic density in the near-boundary region is established. It is shown that the relaxation
near twin boundaries can be described satisfactorily in the framework of a continuum model of
linearly distributed surface forces. ©2000 American Institute of Physics.
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Mechanical twinning is an important form of low
temperature plastic deformation of metals with the bcc
tice. The development of high-resolution methods of fie
ion and transmission electron microscopy and compu
simulation has yielded substantial progress in our und
standing of the features of the atomic structure of cohe
twin boundaries.1,2 Particular attention is being paid to th
study of the structure of twin boundaries, since such bou
aries can be regarded as the simplest example of sp
large-angle grain boundaries.2 The introduction of the con-
cept of a twinning dislocation by Vladimirski�3 has served as
a starting point for the development of a dislocation mo
for twinning. Twinning dislocations compensate the dev
tion of the twin boundary from the symmetric orientatio
which localizes the disruption of coherence at monatom
steps. These steps in a long-wavelength treatment are c
plete grain-boundary dislocations with Burgers vectors eq
to the translation vector of the displacement shift compl
lattice of superpositions2 of the misoriented lattices of th
matrix and twin. The objects of study in the continuu
theory of twins were macroscopic pileups of twinning dis
cations, found in equilibrium in an crystal stress field a
with the drag forces of the crystal lattice. The Peierls relief
the lattice forces governing the mobility of the twinning di
locations was determined as a result of a microscopic tr
ment by the methods of molecular dynamics. A theoreti
analysis of the structure of the twin boundaries on the b
of the continuum theory of dislocations made it possible
describe the basic features of the mechanical twinn
processes.1

Meanwhile, the theoretical treatment of the phenomen
of superconductivity localized near symmetric~dislocation-
free! twin boundaries is largely based on the assumption
there exists a rather extended near-boundary region cha
terized by increased values of the electron–phonon inte
tion constant.4,5 The presence of elastic stresses of a non
locational origin is also evidenced by the results of
analysis of the near-boundary strain field of the twins. In
microscopic determination of the elastic stress fields in
neighborhood of twins and symmetric grain boundarie1,6

one observes some features which cannot be describe
terms of the continuum theory of dislocations. For this re
9201063-777X/2000/26(12)/3/$20.00
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son, in the present study we use the methods of molec
dynamics to study the atomic structure and displacem
field of atoms in the core of a coherent twin boundary
metals with the bcc lattice. A near-boundary atomic rela
ation of the oscillatory type was observed, and it was sho
that this sort of relaxation can be described in the framew
of the continuum theory of elasticity.

The model crystallite had a bcc lattice containing 13
atoms interacting with one another and with 5540 image
oms. As the interatomic potential we used the Johnson c
tral pair potential determined for tungsten in Ref. 7. T
influence of the medium was modeled by the boundary c
ditions at the external surface. For this, elastic forces prop
tional to the displacement and viscous forces proportiona
the velocity of the surface atoms were specified. Cyc
boundary conditions were imposed at the faces normal to
plane of the boundary. As the initial structure we took
unrelaxed mirror-symmetric structure for the twin.

We found that the ‘‘energy’’ width of the twin boundar
is substantially greater than the structural width. The ato
lying a distancer greater than one lattice constanta away
from the central atomic plane$211% have an energy that is 5
orders of magnitude above the 1026 eV/atom background
that arises on account of the approximate character of
potential and the presence of small atomic displacements
to the insufficiently complete relaxation of the structure. F
a,r ,2a the energy of the atoms exceeds the backgro
by 2–3 order of magnitude, and forr .3.5a the atoms have
essentially the background energy. The character of the
cline in energy is described satisfactorily by a depende
W5W0exp(2r/r0), wherer 0 is the decay parameter for th
energy, equal to 0.85 Å. In accordance with the results gi
in Ref. 6, the average values of the normal stress1/3(sxx

1syy1szz) increased with decreasingr, reaching a value of
0.1m wherem is the shear modulus. The maximum values
the stress corresponded to positions of the mutually repel
atoms in the planes closest to the plane of the boundary

As a result of relaxation a displacement of the~211!
atomic planes normal to the boundary occurred. There
no rigid shift in the direction normal to the axis of misorie
tation, and so the mirror-symmetric configuration was p
served. It follows from Fig. 1 that the near-boundary rela
© 2000 American Institute of Physics



Th
p
c
o

tr

e
m
m
a
f
e
o

in
si

e
es
to
ys
g

ed
k-

a
-
la
-

xi

f
tr

as
se

the
l zero
ent
is-

-

s.

ber
m
ted

r-

of

the
best
m
ter-
cu-
ing
rge

ing
ap-

y in
-

921Low Temp. Phys. 26 (12), December 2000 Mazilova et al.
ation of the atomic planes has an oscillatory character.
oscillatory displacements of the atomic planes decays ex
nentially into the interior of the metal. An analogous chara
ter of the displacements of the atomic planes has been
served in the neighborhood of certain special symme
boundaries in metals with the bcc and fcc lattices.2,8

The origin of the oscillations of the interplanar distanc
in the neighborhood of special grain boundaries in so
cases is due to the features of the local bending of the ato
planes in the neighborhoods of the cores of grain-bound
dislocations.2 In the framework of the dislocation model o
relaxation one can obtain a qualitative description of the d
sity oscillations and the grain-boundary coalescence
atomic planes. However, there are no structural gra
boundary dislocations present at the twin boundary con
ered in the present paper,S3 $112% 70.32°@110# nor at other
symmetric commensurate grain boundaries with a high d
sity of coincident sites. Analysis of the features of the str
field in the neighborhood of a twin boundary allows one
replace the complex pattern of interaction of adjacent cr
tallites by periodic rows of parallel line forces for describin
the strain field. Linearly distributed forces are localiz
along the^111& directions, which have the maximum pac
ing density at the twin boundary and are characterized by
increased stress level~up to 0.1m). Here the adjacent crys
tallites are treated as elastic continua bounded by the p
of the surface. The distanceL between the lines of applica
tion of the forces along thex axis for this type of boundary is
equal to the lattice period in the direction normal to the a
of misorientation. The forcesPz , uniformly distributed
along the misorientation axisy, are directed along thez axis,
normal to the boundary.

The linearly distributed forcePz acting on the plane o
the surface bounding the elastic half space generates a s
field9

exx5
2Pz~11s!

pE

z

x21z2 S s2
x2

x21z2D ;

ezz5
2Pz~11s!

pE

z

x21z2 S s2
z2

x21z2D ; ~1!

eyy50,

FIG. 1. Relaxation of the atomic planes near a coherent twin boundar
tungsten.
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wherePz is the value of the force per unit length,s is Pois-
son’s ratio, andE is Young’s modulus.

The rows of linearly distributed forces forz@L cause a
uniform compression of the crystal. At the same time,
follows from the results of a computer simulation, at the
distances from the twin boundary all components of
stress tensor go to zero. To ensure that the stresses equa
at largez it is necessary to subtract from the displacem
field created by the system of parallel line forces those d
placements that give rise to a long-range stress field:10

Uz5
Pz~11s!

2pE H ZF sinh~Z!

cosh~Z!2cos~X!
22s11G

22~12s!ln@cosh~Z!2cos~X!#J , ~2!

whereX52px/L andZ52pz/L.
At the boundary under consideration,x3 $112% the dis-

placements of the atoms of thei th ~112! plane can be repre
sented in the form

xi2x5 ia/2@110#. ~3!

The local values of the interplanar distances between thei th
and the (i 11)-th atomic layers was determined from Eq
~2! and ~3! asdi5d1(Ui 112Ui). Curve1 in Fig. 2 shows
the dependence of the interplane distances~112! on the dis-
tance away from the twin boundary, expressed as a num
of atomic layers, according to a calculation in the continuu
model. Also shown for comparison are the results calcula
by the method of molecular dynamics~curve2!. The model
of linearly distributed forces is of a semi-microscopic cha
acter, since it contains the phenomenological parameterPz ,
the value of which cannot be determined in the framework
the theory of elasticity. For this reason the value ofPz ,
which is needed for calculating the absolute values of
distances between atomic layers, was determined from a
fit of the calculated and experimental curves. It follows fro
Fig. 2 that the periods and phases of the oscillations de
mined in the computer simulations agree with those cal
lated in the continuum model. The character of the damp
in both cases is close to exponential. At comparatively la
distances from the boundary,Uz falls off as zexp(2z/z0),
wherez0 is the damping parameter. However, the damp
rate of the oscillations in the computer simulations was

inFIG. 2. Oscillations of the~112! interplanar distances near a symmetric tw
boundary:1 — continuum model,2 — calculation by the molecular dynam
ics method.
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proximately 20% lower than the rate calculated in the c
tinuum model. The damping parameterz0 determined by the
molecular dynamics method is 0.92 Å. In the continuu
model of linearly distributed surface forces one hasz0

5a@110#/2p50.71 Å. On the whole it can be conclude
that the continuum model of linearly distributed forces c
give a satisfactory quantitative description of the oscillato
character of the atomic relaxation at a twin boundary.
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Low-temperature strain aging in In–Pb alloys under conditions of stress relaxation
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In the stress-relaxation regime the dynamic strain aging~DSA! in single crystals of the
substitutional solid solutions of substitution In–Pb with 6 and 8 at. % Pb is investigated at
temperatures of 77–205 K. It is determined how the DSA-related post-relaxation hardening
depends on the duration of the stress relaxation, the rate of change of the stress at the end
of the relaxation, the temperature, the concentration of the alloy, the flow stress, and the degree
of deformation. It is shown that the DSA kinetics is described by an equation of the
Harper type with an exponent of 1/3 and a low value of the activation energy for the process
~0.3–0.34 eV!, which makes for a low temperature for the onset of DSA (;0.17Tm ,
whereTm is the melting temperature! and is indicative of a pipe character of the diffusion. It is
assumed that the obstacles to the motion of dislocations in these crystals are impurity
complexes, the strength of which increases during DSA as a result of the pipe diffusion of
impurity atoms along dislocations. ©2000 American Institute of Physics.
@S1063-777X~00!01112-9#
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INTRODUCTION

At sufficiently low temperatures the diffusion of impur
ties in a solid solution is difficult, and individual impurit
atoms create local static potential barriers for the motion
dislocations.1,2 As the temperature increases, an import
role in the development of plastic deformation comes to
played by processes related to the diffusion mobility of
impurities.1–4 The diffusion of dissolved atoms toward mo
ing dislocations increases the effective resistance to t
slip. This effect, which has been given the name ‘‘dynam
strain aging’’~DSA!,5–8 leads to such specific features in th
kinetics of plastic flow of alloys in the active deformatio
regime as the Portevin–Le Chatelier effect~unstable or in-
termittent plastic flow!.2

One of the macroscopic manifestations of DSA is t
post-relaxation effect, which will be the subject of this pap
This effect consists in the elevation of the flow stress up
repeated loading of a sample after stress relaxation an
detected as the presence of a ‘‘yield point.’’7,9–13

It should be noted that DSA, which is directly related
diffusion processes in the alloy, can be observed at ra
low temperaturesT'(0.1–0.2)Tm (Tm is the melting tem-
perature of the alloy!,9,13 whereas the bulk diffusion is acti
vated only atT*(0.4–0.5)Tm . The causes of the low
temperature onset of DSA are discussed below.

To elucidate the concrete mechanism of DSA and
understanding the nature of plastic deformation in alloys
is important to study the kinetics and to determine the
rameters of the process. In this paper we study the D
kinetics under conditions of stress relaxation in single cr
tals of In–Pb solid solutions and investigate the influence
the flow stress, the degree of deformation, the temperat
9231063-777X/2000/26(12)/9/$20.00
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and the impurity concentration on the parameters of
DSA. The DSA kinetics in In–Pb alloys has substantia
different behavior from that predicted by a theory in whi
individual impurity atoms diffusing from the bulk of the
crystal are assumed to segregate on individual dislocation1,2

The results argue in favor of a pipe mechanism of diffus
of the impurity atoms.

1. EXPERIMENTAL PROCEDURE

We studied single crystals of In–Pb substitutional so
solutions with 6 and 8 at. % Pb~the solubility limit of Pb in
In is ;12 at. %!. The techniques of crystal growth an
sample preparation are described in detail in Ref. 14. Sin
crystals having a@001# axis after growth1! were transformed
by twinning to an orientation with an axis close to@100# ~the
twinning occurred at a stress which is a factor of 20 sma
than the yield stress for slip!.

Samples with dimensions of 535315 mm were de-
formed by compression along the@100# direction at a rate of
;1024 s21 in the interval 77–205 K~in this temperature
interval the post-relaxation effect was especially p
nounced!. The plastic flow was realized through slip, a
twinning was geometrically forbidden. The aging expe
ments were done at a fixed temperature in the stress re
ation regime~a static strain aging scheme7!. Under these
conditions the dislocations execute only small displaceme
with a decaying velocity and so provide only an insignifica
deformation of the sample,;0.1%. After the sample is held
in the stress relaxation regime for a specified time inter
the straining machine was again engaged and the strainin
the sample continued at the previous rate. Starting at a
formation of;1 –2%, upon repeated loading of the samp
© 2000 American Institute of Physics
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following relaxation a yield platform or yield point appeare
after which the deformation continued with the initial har
ening coefficient, as can be seen in Fig. 1. The obser
effect was characterized by the value of the post-relaxa
hardeningDs. This quantity is equal to the difference b
tween the stress corresponding to the tip of the yield poin
yield platform and the stress at the start of the relaxati
The post-relaxation hardening increases with increasing h
time of the sample in the stress relaxation regime~the dura-
tion of the stress relaxation!: Ds2.Ds1 if t2.t1 ~see the
diagram in Fig. 1a!. In this study we have obtained the d
pendence ofDs on the durationt of the stress relaxation, th
rate of change of the stress at the end of the stress relax
(2ṡ r), the temperatureT, the value of the flow stresss, and
the degree of plastic deformation« of the sample.

To avoid scatter due to the specific defect structure
the different samples, the entireDs(t) curve was obtained
on the same sample. No fewer than 15–20 experiments
stress relaxation of different durations were carried out. O
ing to the strain hardening, the value of the flow stress
not remain constant. To minimize the distortions of t
Ds(t) curve from these circumstances, the measurem
were made in a deformation interval in which the flow stre

FIG. 1. Schematic illustration of the parts of the deformation curves~the

regime of active deformation with a constant rate«̇.0) and the relaxation

curves («̇50) in the coordinates of stresss versus the timet ~a! and stress
s versus total deformation« tot of the sample–machine system~b!. Ds1 ,
Ds2 , Ds1

i 21, Ds1
i 11, Ds2

i are the values of the post-relaxation hardeni
~the subscript indicates the duration of the stress relaxation,t1 or t2, and the
superscript is the number of the stress relaxation episode!.
d
n

r
.
ld

ion

f

ith
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d

ts
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~degree of deformation! had only an insignificant effect on
the post-relaxation hardening. This interval amounted to
proximately 5% and began at the deformation correspond
to where the deformation curve goes out to the minim
hardening coefficient~see Sec. 2.4 for details!.

To determine the dependence of the DSA parameters
the value of the flow stress~degree of deformation! we used
the following procedure. Along the whole deformation cur
we measured the value of the post-relaxation hardenin
two alternating fixed relaxation durationst1 and t2 ~see Fig.
1b!. The durationst1 and t2 were chosen so thatt2 corre-
sponded to the transition to the saturation region of the
fect, andt1 was a factor of 8 shorter thant2. Each flow stress
s i ~degree of deformation« i) at which thei th stress relax-
ation was carried out was placed in correspondence with
values of the post-relaxation hardening. One of these val
the parameterDs1

i ~the superscript indicates the number
the stress relaxation episode, and the subscript corresp
to the relaxation durationt1 or t2), actually corresponded to
a given stress~degree of deformation!, while the other value
Ds2

i was taken as the arithmetic mean between the prece
(Ds2

i 21) and succeeding (Ds2
i 11) values. Then for each

chosen flow stresss i ~degree of deformation« i) there are
two pairs of points: (Ds1

i ,t1) and (Ds2
i ,t2). Solving the

system of two equations of the type in~1! ~see below!, we
find the parametersDsmax andtc corresponding to the given
flow stresss i ~degree of deformation« i).

2. EXPERIMENTAL RESULTS

2.1. Influence of the duration of the stress relaxation

The data obtained on the dependence of the p
relaxation hardeningDs on the durationt of the stress re-
laxation are well described by the equation

Ds5Dsmax$12exp@2~ t/tc!
1/3#%, ~1!

and in the early stages of the process, fort!tc , by the
power-law function

Ds5At1/3, ~2!

where Dsmax is the value of the hardening att→`, A
5Dsmax/tc

1/3, and tc is the characteristic time. Figure
shows theDs(t) data obtained for the In–6 at. % Pb alloy
T5120 K in comparison with the curves calculated acco
ing to Eqs.~1! and ~2!. Each point on theDs(t) plot corre-
sponds to an individual experiment on stress relaxation w
a durationt and a final depthDs r(t)5s r(0)2s r(t), where
s r(0) ands r(t) are the values of the stress at the beginn
and end of the relaxation. From theDs r(t) plot shown in
Fig. 2 it is seen that the relaxation depth remains practic
constant (Ds r&0.4 MPa! for t*30 s. This indicates that the
observed post-relaxation effect cannot be explained by st
hardening in the course of the stress relaxation.15 Indeed,
when the relaxation curves go to saturation the dislocati
in the crystal are practically immobile, and strain harden
does not occur. At the same time, the value of the po
relaxation hardening continues to grow by the law in Eq.~1!,
in agreement with the hypothesis that the observed effec
due to a DSA process.
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2.2. Influence of the rate of change of the stress at the end
of the relaxation

According to commonly accepted ideas, the aging o
dislocation occurs at the time when it is stopped in front
an obstacle. The aging time is equal to the waiting timetw

for thermal activation of the dislocation for overcoming
the barrier.3–8 The waiting time increases with decreasi
rate of stress relaxation according to the law9

tw5N/~2ṡ r !, ~3!

whereN is proportional to the density of mobile dislocation
If the density of mobile dislocations remains constant o
the course of the relaxation, then it would be more correc
analyze the dependence of the post-relaxation hardening
on the duration of the stress relaxation but rather on the
of change of the flow stress at the end of the relaxati
(2ṡ r).

9 The rates (2ṡ r) measured in our experiments co
responded, as a rule, to short timest!tc , so that the equa
tion describing the beginning state of DSA was valid:

Ds5B~2ṡ r !
21/3, ~4!

whereB is a quantity that depends on the temperature,
impurity concentration, and the flow stress~degree of defor-
mation!.

Obtaining the dependenceDs(2ṡ r) over a wide inter-
val of rates of change of the stress is complicated by the
that it is difficult to measure (2ṡ r) values lower than 1024

MPa/s. Only forT*150 K do theDs(2ṡ r) curves show a
deviation of the experimental data from relation~4! in the
region of small (2ṡ r) ~see Fig. 3!. It follows from a com-
parison of Eqs.~2! and ~4! with allowance for Eq.~3! that
under the particular conditions of the experiment on In–
alloys that the waiting timetw for dislocations stopped a
obstacles is proportional to the durationt of the stress relax-
ation, specifically:tw'(A/B)3Nt. From here an analysis o
the dependence of the post-relaxation hardening on the
ration of the stress relaxation seems within reach. It m

FIG. 2. Influence of the durationt of the stress relaxation on the value of th
post-relaxation hardeningDs (d) and on the relaxation depthDs r (s). A
crystal of In–6 at. % Pb,T5120 K. The straight line1 corresponds to the
equationDs5At1/3, curve2 to Ds5Dsmax$12exp@2(t/tc)

1/3#% for the fol-
lowing parameter values:Dsmax51.02 MPa,tc5864 s,A50.1 MPa•s1/3.
a
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only be kept in mind that the characteristic time determin
from these relations is larger than the actual time by a fac
of (B/A)3/N.

2.3. Influence of temperature

Starting from theDs(t) curves obtained for differen
temperatures, we determined the temperature dependen
the DSA parameters, namelytc(T), Dsmax(T), and A(T),
using Eqs.~1! and ~2!.

The characteristic timetc and the maximum hardenin
Dsmax increased as the temperature was lowered~Figs. 4 and
5!. The parameterA found from the initial slope of the
Ds(t) curves varies nonmonotonically with temperatu
exhibiting a maximum atT'130–140 K~Fig. 6!.

FIG. 3. Dependence of the post-relaxation hardeningDs on the rate of

change of the flow stress at the end of the relaxation (2ṡ r). Crystal of the
alloy In–6 at. % Pb,T5150 K (d) and 170 K (s). The slope of the
straight lines~representing a least-squares fit to the data! corresponds to an

exponentn in the power lawDs5B(2ṡ r)
n equal to 0.31 (d) and 0.33

(s).

FIG. 4. Temperature dependence of the characteristic timetc in crystals of
In–6 at. % Pb (d) and In–8 at. % Pb (s). In region 1 the deformation
curves are smooth, while in region2 they are intermittent.
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In the temperature interval 115–130 K~region1 in Fig.
4! the tc(T) curves for both alloys can be described appro
mately by a single expression:

tc5tc0 exp~DH/kT!, ~5!

where the activation energyDH'0.3 eV. At temperatures
T*140 K ~region2 in Fig. 4! one observes a marked wea
ening of the temperature dependence of the character
time and a large error in the determination oftc . For this
same interval~150–205 K! the deformation curves begi
to have a are jumplike character~the Portevin–
Le Chatelier effect!.

Unlike the characteristic time, the maximum hardeni
is proportional to the impurity concentration, so that a u
fied temperature dependence of the maximum hardening
unit impurity concentration,Dsmax/c, was obtained for the

FIG. 5. Temperature dependence of the maximum hardeningDsmax divided
by the impurity concentrationc, in crystals of In–6 at. % Pb (d) and In–8
at. % Pb (s).

FIG. 6. Temperature dependence of the coefficientA in Eq. ~2! divided by
the lead concentrationc, in crystals of In–6 at. % Pb (d) and In–8 at. % Pb
(s).
-

tic

-
er

two alloys ~Fig. 5!. It is seen in the figure that when th
temperature is reduced from 205 to 115 K the maxim
hardening increases by more than an order of magnitu
The plot ofDsmax(T)/c is well described by an exponentia
function with an activation energyW50.057 eV. This value
can be interpreted as the binding energy of a dislocation
an impurity atom~see below!.

2.4. Influence of the flow stress „degree of deformation …

The value of the post-relaxation hardening correspo
ing to the same relaxation time varies considerably along
deformation curve. We therefore obtained and analyzed
dependence ofDs on the flow stresss and deformation«
for two temperatures, 115 and 125 K. The following valu
of the duration of the stress relaxation were chosen:t1

5180 s,t251440 s atT5115 K, andt1560 s,t25480 s at
T5125 K. Figure 7 shows a plot ofDs(s) obtained atT
5125 K for the alloy In–6 at. % Pb. Also shown here is t
corresponding deformation curve. There is typically a sh
increase inDs in the initial stage of deformation~up until
the start of the steady plastic flow with a nearly const
strain hardening coefficient!, which as the deformation de
velops gives way to a falloff ofDs to roughly the initial
level. A similar plot ofDs(s) was obtained atT5115 K for
the alloy with 6 at. % Pb. For the alloy with 8 at. % Pb th
decrease ofDs is not as strong, so that the maximum val
reached falls off by 20–25% instead of the 40–45% in
alloy with 6 at. % Pb.

The values estimated for the strain aging parametertc

andDsmax by the procedure described above also vary s
stantially along the deformation curve. The behavior
Dsmax qualitatively repeats the behavior ofDs: growth on
the part of thes(«) curve up to the start of the steady plas
flow, and a falloff with further deformation of the samp
~Fig. 8!. In the interval of deformations from 5 to 15% pra

FIG. 7. Influence of the flow stresss on the value of the post-relaxation
hardeningDs for relaxation durationst1560 s (d) andt25480 s (s) and
on the maximum hardeningDsmax (j); crystal of In–6 at. % Pb;1 — the
deformation curves(«); T5125 K.
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tically independent of the deformation~see Fig. 8c!. The
characteristic time behaves in a complicated way on the
tial part of the deformation curve and at large degrees
deformation~Fig. 9!. However, one can discern a conside
able interval of deformations~from 5% to 15% at 115 K and
from 5% to 23% at 125 K! in which tc remains practically
constant. In that region of deformations the characteri
time does not depend on the concentration of the alloy
varies substantially with temperature. The activation ene
calculated according to formula~5! for the region in which
the characteristic time is independent of the degree of de
mation is approximately equal to 0.34 eV, which is close
the value given previously.

3. DISCUSSION

The measured dependence of the value of the p
relaxation hardening on the duration of the stress relaxa
and temperature@Eqs.~1!, ~2!, ~4!, and~5!# indicates that the
process is of a diffusional nature. The post-relaxation eff
is not observed in pure indium, and its value increases w
increasing impurity concentration, so that there is every r

FIG. 8. Maximum hardeningDsmax divided by the lead concentrationc,
versus the flow stresss divided by the lead concentrationc ~a,b! and versus
the deformation« ~c!. The unfilled symbols are for the In–6 at. % Pb cry
tal, the filled symbols are for In–8 at. % Pb.
i-
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son to assume that it is due to a DSA process. This is a
indicated by the Portevin–Le Chatelier effect, which is ma
fested in the temperature interval 150–205 K in the act
deformation regime. The results will be analyzed in terms
the known models for DSA.

The first quantitative model of DSA, the impurity dra
model proposed by Cottrell,1 considers the interaction of mo
bile impurities with continuously moving dislocations. In th
framework of this model: 1! it was shown that dislocation
with velocities not exceeding a critical velocity are su
rounded by impurity atmospheres that are dragged by
dislocations; 2! the drag force exerted on a dislocation by t
impurity atmosphere was analyzed as a function of temp
ture and the dislocation velocity; 3! the interval of velocities
corresponding to a negative velocity sensitivity of the dr
force ~because of a decrease in the size of the impurity
mosphere as the dislocation velocity increases! was deter-
mined. The unstable motion of dislocations in this veloc
interval might be the cause of the instability of the plas
flow of the crystal~the Portevin–Le Chatelier effect!. The
Cottrell model was able to explain qualitatively the expe
mental temperature and velocity dependence of the crit
deformation«c , beginning with which the plastic flow be
comes intermittent. However, the model does not predict
influence of the alloy concentration on«c or on DSA in
general, and the calculated values of«c are many orders of
magnitude greater than the values observed experimenta4

In for this reason, a number of other models have be
proposed to explain the effects due to DSA and which oc
in a region of temperatures that is low in comparison w
the characteristic temperatures for bulk diffusion process
These models have nevertheless used some ideas deve
by Cottrell, primarily that of taking into account the role o
nonequilibrium vacancies formed as a result of the pla
deformation of the crystal and which correspond to grow
of the bulk diffusion coefficientD:

D}Cv exp~2Qm /kT!, ~6!

FIG. 9. Influence of the degree of deformation« on the value of the char-
acteristic timetc in alloys with 6 at. % Pb (h,j) and 8 at. % Pb (s,d) at
temperatures of 115 K (h,s) and 125 K (j,d). The straight lines repre-
sent a linear approximation of the experimental points for the correspon
deformation intervals.
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whereCv is the concentration of nonequilibrium vacancie
andQm is the activation energy for migration of the impuri
atoms. In addition, Cottrell and Bilby solved the problem
the segregation of point defects on a rectilinear edge di
cation and obtained an expression for the increment of
linear density of impurity atoms on a dislocation over t
course of the aging timeta :1

DC}c~Dta!2/3. ~7!

In solving this problem, Cottrell and Bilby took into accou
only the drift flux of the impurity atoms. Because the flu
due to concentration gradients was neglected and boun
conditions treating a dislocation as an ideal sink for impur
atoms were used, Eq.~7! describes only the early stages
the segregation of dissolved atoms on dislocations. The l
stages of the process are well described by the semiemp
Harper equation:16

DC5DCmax$12exp@2~ ta /tc!
2/3#%, ~8!

which at aging timesta!tc goes over to the Cottrell–Bilby
equation. We note that Cottrell and Bilby’s expression~7! is
still widely used today.

The modern DSA models3–9,17–21 ~these are listed in
Table I for convenience! proceed from the idea of intermit
tent ~jumplike! motion of the dislocations during the defo
mation process, as is characteristic for thermally activa
plastic deformation. Here it is assumed that the DSA occ
not at the time of the actual motion of the dislocations b
during the waiting timetw for thermal activation at loca
obstacles. For this reason these models are often called s
models4 in distinction to the dynamic model of Cottrell. Ac
cording to the static models, the aging process consist
either a decrease in the distance between obstacles~along the
dislocation line! at a constant dislocation strength~models
1.1 and 1.2; see Table I!,4,5,8,17 or of an increase in the
strength of the obstacles in front of which the dislocatio
are stopped, at a constant distance between them~models
1.3, 1.4, 2.1, and 2.2!.3,6–9,18–21As obstacles for the motion
of dislocations, single impurity atoms or their complex
~models 1.1–1.4!4,5,8,9,17,18 and also ‘‘forest’’ dislocations
~models 2.1 and 2.2!.3,6,7,19–21

It follows from an analysis of column 6 of Table I tha
the experimental dependence of the DSA parameters on
value of the flow stress~degree of deformation! can serve as
the deciding factor in the choice of a specific DSA mod
~more precisely, of a specific type of obstacle!. Indeed, ac-
cording to Refs. 6 and 7~models 2.1 and 2.2!, Ds ~and also
Dsmax when the Harper equation holds! increases linearly
with increasing flow stress if the main obstacles that cha
their strength during DSA are forest dislocations. Such
dependence is a consequence of a deformation-indu
growth in the number of obstacles, i.e., forest dislocations
on the other hand, the obstacles are impurity atoms, wh
concentration remains constant during the deformation, t
Dsmax should not depend on the value of the flow stre
~degree of deformation!. In that case, however, the influenc
of the degree of deformation can be manifested throug
dependence of the characteristic timetc on the diffusion co-
,
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efficient, which is proportional to the nonequilibrium con
centration of vacancies formed in the plastic deformat
process@see Eq.~6!#.5,8 Hence it is important in principle in
choosing a specific DSA model to obtain and analyze
experimental dependence on the flow stress~degree of defor-
mation! for each parameterDsmax and tc individually, and
not for the total quantityDs. We note that such separa
dependences have been obtained before only for In–Sn
loys, in a previous paper by the author.13

In In–Pb alloys the maximum value of the pos
relaxation hardening increases in the initial stage of de
mation ~up to ;3 –5%),upon a transition from the elasti
part to the stage of steady flow. At such deformations
post-relaxation yield point is not very clearly expressed, a
the strong change of the hardening coefficient is indicative
a sharp change in the rate of plastic deformation, wh
makes it hard to interpret the results. At deformations of 5
and higher,Dsmax either changes slowly or decreases~Fig.
8c!, which is at odds with the model concepts.6–8 Such be-
havior ofDsmax allows one to rule out forest dislocations a
a possible type of obstacle whose strength changes du
DSA and suggests impurity atoms instead. This is also s
gested by an estimate, based on the value of the activa
volumeg, of the density of obstacles that must be overco
by the dislocations in a thermally activated manner. For
ample, for the alloy with 8 at. % Pb atT5115 K one has
g'10220 cm3, from which we find that the density of ob
stacles is approximately equal to 1010 cm22, which is too
large for the density of forest dislocations at the yield stre
The given value of the activation volume also suggests
the obstacles that change their characteristics during DSA
not individual impurity atoms but their complexes, as
characteristic for highly concentrated alloys. If the main o
stacles were individual impurity atoms, then the value of
activation volume at the given concentrations of lead wo
be several orders of magnitude smaller.

The value of the characteristic time remains const
over a wide range of deformations, from 5% to 15%, as c
be seen in Fig. 9; this indicates that nonequilibrium vac
cies do not play an important role in the DSA process at s
deformations.

Analysis of column 5 of Table I shows that the DS
kinetics is governed by the kinetics of the migration of im
purity atoms toward the dislocations~dependence ofDC on
the aging time!. The kinetics of the DSA process in In–P
alloys is described by an equation of the Harper type@Eq.
~1!#, which at short times goes over to an equation of
Cottrell–Bilby type@Eq. ~2!#. A feature of the results is tha
the power-law exponent in Eqs.~1! and ~2! is not equal to
2/3, as would follow from the solution of the Cottrell–Bilb
problem of the segregation of impurity atoms from the bu
of the crystal@see Eq.~7!#, but is a smaller by a factor o
two. The same feature was observed earlier by the autho
In–Sn alloys13 and by other investigators in copper19–21 and
aluminum22,23 alloys in experiments on the study of the d
pendence of the rate sensitivity of the flow stress on
value of that stress. The two-dimensional Cottrell–Bil
problem reduces to a one-dimensional problem if the dif
sion of impurity atoms is of a pipe rather than a bu
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TABLE I. Models of dynamic strain aging.

Model No. Authors Type of obstacles Model of DSA Kinetic lawDs(t) Ds(«) or Ds(s)

1.1 McCormick
~1972! 4;
Beukel
~1975! 5, ~1982! 8

Impurity atoms Decrease of the mean distance
between impurity atoms along
the dislocation line at a fixed
strength of the obstacles

Initial assumptions:
1. Ds[Ds f}DC,
2. DC}c(Dtw)2/3

~Cottrell–Bilby equation!.
Result:Ds}c(Dtw)2/3

Determined by the
dependence
of the bulk diffusion
coefficient on«, D}«m.
Result:Ds}«2m/3

1.2 Malygin
~1982! 17

Impurity atoms See model 1.1
~the kinetics of the
process is considered
for long aging times!

Initial assumptions:
1. Ds[Ds f}DC,
2. DC5DCmax$12exp@2(tw /tc)

2/3#%
~Harper’s equation!
DCmax5c exp(W/kT),
tc}(DCmax/c)3/2/D.
Result:
Ds5Dsmax$12exp@2(tw /tc)

2/3#%,
whereDsmax'DCmaxW/b3

Determined by the
dependence of the
bulk diffusion
coefficient
on «, D}«m.
Result:tc}«2m,
Dsmax is
independent of«

1.3 Neuha¨user,
Flor ~1978! 9

Clusters of several
(;10) impurity atoms

Effective strength of
the obstacles increases
on account of a
rearrangement of their
atomic structure near
the dislocation core

Initial assumptions:
1. dDG0}DCa,
2. Ds}dDG0r2dDG0a ,
3. DC}c(Ddtw)b.
Result:
Ds}cDd

g@(ṡdyn /ṡ)g21#

Determined by the
dependence of the
pipe diffusion
coefficient on«

1.4 Schwarz
~1982! 18

Isolated impurity atoms
or groups of them

Strength of the obstacles
increases at a fixed
distance between them

Empirical expression
inferred from measurements
of the internal friction:
Ds5Dsmax@12exp(2tw /tc)#,
wheretc5vS exp(2DH/kT)

tc is independent of«
~in the case of pipe
diffusion!, Dsmax is
independent of«

2.1 Sleeswyk
~1958! 3;
Mulford, Kocks
~1979! 6;
Wycliffe,
Kocks, Embury
~1980! 7

Forest dislocations Strength of the obstacles
increases owing to a
redistribution
~by pipe diffusion!
of impurities near the
points of intersection of
mobile dislocations
with forest dislocations

Initial assumptions:
1. D ln Kd}DC,
2. Ds[Dsd}sdDC,
3. DC}c(Ddtw)2/3

~Cottrell–Bilby equation!.
Result:Ds}sdc(Ddtw)2/3

Ds}sd}s
The relation is a
consequence of the
dependence of the
dislocation flow stress
sd on the density
of the forest dislocations:
sd}r1/2

2.2 Springer,
Schwink ~1991!
19; Kalk,
Schwink ~1995!
20; Schwink,
Nortmann
~1997! 21

Forest dislocations See model 2.1
~the one-dimensionality
of the pipe diffusion is
taken into account!

Initial assumptions:
1. D ln Kd}DC,
2. Ds[Dsd}sdDC,
3. DC}c(Dd tw)1/3

~equation for
two-dimensional
diffusion!.
Result:Ds}sdc(Ddtw)1/3

Ds}sd}s
The relation is a
consequence of the
dependence of the
dislocation flow
stresssd on the
density of the
forest dislocations:
sd}r1/2

Notes: s is the flow stress;Ds is the DSA contribution to the flow stress;s f is the frictional stress~the contribution to the frictional stress due to th
interaction of the dislocations with impurity atoms!; Ds f is the DSA contribution to the frictional stress;sd is the dislocation flow stress~the contribution to
the flow stress due to the interaction of mobile and forest dislocations!; Dsd is the DSA contribution to the dislocation flow stress;tw is the waiting time of
a dislocation for thermal activation at an obstacle;DC is the change in concentration of the impurity atoms along the dislocation line;c is the atomic
concentration of the solution;D is the bulk diffusion coefficient;Dd is the pipe diffusion coefficient;« is the deformation;W is the binding energy of a
dislocation and an impurity atom;dDG0 is the DSA-related change in the free enthalpy of activation;dDG0r anddDG0a are the DSA-related changes in th

free enthalpy of activation in the stress relaxation regime and in the regime of active deformation, respectively; (2ṡdyn) and (2ṡ r) are the rates of change
of the flow stress at the beginning and end of the stress relaxation;a, b, andg are constants, withg5ab'0.5, according to the data of Ref. 9;DH is the
activation energy for pipe diffusion;nS is the attempt frequency;Kd is the effective strength of an obstacle.
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nature.13 In that case the kinetics of the process can be
scribed by Eqs.~1! and~2! with n51/3. The kinetic behavior
of the value of the post-relaxation hardening found in t
study may be an indication that pipe diffusion of impuri
atoms is realized in In–Pb alloys.

The main parameter that determines the temperature
gion in which the DSA effect is manifested and the rate
which it occurs is the activation energy of the process.
-
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t
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the alloys studied here the experimentally determined act
tion energy~0.3–0.34 eV! turned out to be a factor of 2
lower than the activation energy for the diffusion of Pb im
purity atoms in In (;0.59 eV!,24 apparently because of th
occurrence of DSA in the region of the dislocation core. T
conjecture agrees with the established kinetics of po
relaxation hardening. The twofold decrease of the activat
energy and the twofold lowering of the exponent in t
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power law~1! as a result of the pipe diffusion make for a lo
temperature for the onset of DSA in In–Pb alloys
(;0.17Tm).

Analysis of the regularities of the DSA effect on th
basis of the modern models presented in Table I shows
the most probable mechanism for the DSA in In–Pb alloy
a local rearrangement of the structure of the obstacles in
stress field of the dislocations stopped in front of them. T
obstacles for the moving dislocations are apparently co
plexes of impurity atoms. A rearrangement of the struct
of the impurity complexes leading to an increase in th
strength is facilitated by pipe diffusion along the the dis
cations. These ideas correspond to models 1.3 and 1.
Table I. However, there are important disagreements
tween our results and these models. For example, the kin
of the DSA in In–Pb alloys differs from the first-order kine
ics used in model 1.4. It also differs from the DSA kineti
observed in crystals of brasses,9 for which the exponent in
the power law~2! is close to 0.5; the kinetics in the region o
long relaxation times was not investigated in Ref. 9.

The temperature dependence of the maximum harde
obtained in the present study cannot be explained in
framework of the existing theoretical ideas. TheDsmax(T)
curve is only qualitatively described by the equations17

Dsmax5~W/b3!DCmax, ~9!

DCmax5c exp~W/kT!, ~10!

whereW is the binding energy of the dislocation to an im
purity atom, andDCmax is the maximum concentration o
impurities on a dislocation. The quantitative discrepancy
in the fact that when the value of the lead concentration
the alloy under consideration~e.g.,c50.08) and the experi-
mentally determined value of the binding energy of a dis
cation with an impurity atom (W50.057 eV! are substituted
into ~10!, one obtainsDCmax@1, which is absurd. If the one
solves the inverse problem, i.e., that of determining the c
centration of impurity atoms by starting from the experime
tal dependenceDsmax(T) and Eqs.~8! and~9!, then it comes
out to be equal to 2.631025, which is about three orders o
magnitude lower than the impurity concentration in the
loys studied.

The behavior of the characteristic time in the region
small and large degrees of deformation and at temperat
above 140 K remains unclear~Fig. 4!. It is possible that the
deviation of the experimental data from relation~5! is due to
an intensification of DSA already in the stage of consta
rate deformation. There may be an effect due to annealin
nonequilibrium vacancies, as a result of which their conc
tration is lower than it should be at the degree of deformat
achieved.11 As the temperature is raised there is an incre
ing contribution to the DSA from bulk diffusion, which as
result of the higher activation energy occurs at a mu
slower rate than the pipe diffusion. On the whole, under c
ditions of a superposition of two DSA mechanisms, one
which is governed by pipe diffusion and the other by bu
diffusion5,18 ~see also models 1.1 and 1.4 in Table I!, the
kinetics of the DSA will be governed by the slower proce
if the two processes give an additive contribution to the ha
ening of the crystal18 and the fast process is relatively rapid
exhausted.
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Finally, the question of the physical meaning that can
attached to the activation energyDH determined from the
tc(T) curve @see Eq.~5!#. According to model 1.4 and the
ideas set forth above and in the the author’s previous pap13

the characteristic time is uniquely determined by the dif
sion coefficient, so thatDH has the meaning of the activatio
energy for pipe diffusion. At the same time, according
other models~see model 1.2!, the characteristic time depend
not only on the diffusion coefficient but also on the max
mum concentration of impurities on the dislocation. In th
case, for calculating the activation energy for diffusion, o
must use the relationA(T). For In–Pb alloys the activation
energy determined in this way is approximately equal to
eV in the temperature interval 115–130 K, which is to
small for the energy of migration of the impurity atoms.
final clarification of all the questions touched on here w
require further investigation. Apparently, both the curre
theoretical ideas and the DSA model are in need of furt
development.

CONCLUSIONS

1. The dependence of the post-relaxation hardening
the duration of the stress relaxation, rate of change of
stress at the end of the relaxation, temperature, impurity c
centration, degree of deformation, and the value of the fl
stress has been obtained for In–Pb alloys with 6 and 8 a
Pb in the temperature interval 77–205 K.

2. It has been shown that the dependence of the p
relaxation hardening on the duration of the stress relaxa
is described by an equation of the Harper type, which
short relaxation times goes over to an equation of
Cottrell–Bilby type. The exponent in the power law in the
equations is equal to 1/3, which indicates that the diffus
of impurity atoms along the dislocations is of a pipe char
ter.

3. For T5115–125 K and deformations in the interv
5–15% the characteristic time is independent of the deg
of deformation and lead concentration. The activation ene
of the DSA process is estimated to be 0.34 eV. This quan
can be interpreted as the activation energy for pipe diffusi

4. The maximum post-relaxation hardening is prop
tional to the lead concentration and reaches approximatel
order of magnitude as the temperature is lowered from
to 115 K.

5. A comparison with the modern theories of the DS
suggests that in In–Pb alloys the main obstacles to the
tion of dislocations with an interaction that varies in th
course of the DSA are complexes of impurity atoms, and
DSA process itself reduces to a local rearrangement of
structure of the obstacles in the stress field of the dislocat
stopped in front of them.

The author is grateful to S. V. Lubenets, V. D. Nats
S. N. Smirnov, and L. V. Skibina for a discussion of th
results of this study and for constructive criticism. This stu
was supported in part by the Swiss National Science Fo
dation.

*E-mail: fomenko@ilt.kharkov.ua
1!Single crystals of highly concentrated In–Pb alloys with an axis along

@100# direction cannot be grown by the Bridgman method in knock-do
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graphite forms. As a result of twinning of the alloy at the neck between
seed and sample a reorientation of the@100# axis of the seed to the@001#
axis of the sample occurs.

1A. H. Cottrell, Dislocations and Plastic Flow in Crystals@Clarendon
Press, Oxford~1953!; Metallurgizdat, Moscow~1958!#.

2J. Friedel,Dislocations@Pergamon Press, Oxford~1964!; Mir, Moscow
~1967!#.

3A. W. Sleeswyk, Acta Metall.6, 598 ~1958!.
4P. G. McCormick, Acta Metall.20, 351 ~1972!.
5A. van den Beukel, Phys. Status Solidi30, 197 ~1975!.
6R. A. Mulford and U. F. Kocks, Acta Metall.27, 1125~1979!.
7P. Wycliffe, U. F. Kocks, and J. D. Embury, Scr. Metall.14, 1349~1980!.
8A. van den Beukel and U. F. Kocks, Acta Metall.30, 1027~1982!.
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On the features of the polarization of the bielectronic absorption spectra
of the cryocrystal d-O2
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The possible form of the absorption spectrum of thed phase of oxygen in polarized light is
analyzed by proceeding from the known crystal structure of this phase. ©2000 American
Institute of Physics.@S1063-777X~00!01212-3#
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1. The optical spectra of the equilibrium low
temperaturea, b, andg phases of solid oxygen have bee
studied long and presumably well both experimentally1–3

and theoretically4,5 ~see also the collective monograph
Ref. 6!. The most unusual and interesting of these have b
the bimolecular electronic spectra of the antiferromagnetia
phase~having a monoclinic structureC2/m and existing be-
low Tab523.8 K!, which have revealed a rich polarized fin
structure. This fine structure has been described qualitati
and quantitatively by proceeding from the concepts of Fr
kel biexcitons — bound states of two molecular excitons
small-radius excitons. Ina-O2 the optical absorption lines
corresponding to biexcitons are doublets and are polarize
its basal~i.e., ab) plane. Further development of the theo
has shown that the characteristic doublet splitting also
companies exciton–magnon absorption ina-O2, even
though it does not contain bound states of excitons and m
nons.

In recent years spectroscopic technique has come t
used intensively~see Refs. 7–9! for studying the compara
tively recently discovered high-pressure phases denotedd
and «, a description of which can be found in the revie
article by Fre�man.10 It is therefore of interest to examine th
distinctive features of their optical spectrum. In this comm
nication we examine the polarized properties of thed phase,
the structure of which has been reliably established.1!

2. As was shown in Ref. 11~see also Refs. 8 and 10!, the
application of pressure toa-O2 affects mainly the intermo-
lecular distances in theab planes and causes an interplan
shear deformation. The growth of the latter as the pressu
increased leads to a structural transition from the monocl
to the orthorhombic systemFmmm, which is a natural struc-
ture that is just thed phase. Since thea phase is a two-
sublattice collinear antiferromagnetic insulator with a fin
interplane interaction of exchange origin, and this interact
is small because of the weakness of the monoclinic distor
in this phase,2! it would seem that this interaction could on
increase as thed phase is approached. In such a case ther
no need to assumea priori that the magnetic properties o
the orthorhombicd phase are quasi-two-dimensional, a
though the actual exchange parameters@in the basal planes
9321063-777X/2000/26(12)/3/$20.00
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— for the nearest and next-nearest neighbors, and betw
the planes — for the nearest neighbors~see Fig. 1!# should
undoubtedly reflect the existing spatial anisotropy of the
tice in this phase. Here, however, one can see no reaso
the a-phase magnetic structure to change,3! and it should be
conserved, as is confirmed by experiment.8 In other words,
we shall assume that the spins of the molecules are dire
along the ‘‘former’’ monoclinic axis~without loss of gener-
ality, we denote this as theb axis in d-O2, by analogy with
the a phase!.

3. Since the lowest1Dg and 1Sg
1 states of the O2 mol-

ecule are dipole and intercombination forbidden~and the first
of these is also forbidden in the magnetic dipole approxim
tion!, the intensity of the absorption of all the condens
phases of oxygen is governed by bimolecular transitions,
effective dipole moment of which is given by th
expression6,14

Peff
f g5

1

2 (
na ,mb

pnamb

f g Bna

1 ~ f !Bmb

1 ~g!~12dab!, ~1!

where pnamb

f g is the effective dipole moment of the two

particle transition of molecules located at sitesn and
m and belonging to magnetic sublatticesa and b, Bna

1 ( f )

is the creation operator for an electronic excitationf
(51Dg ,1Sg

1) on moleculena ~if f 5g, then the dipole mo-
ment of the pair is nonzero only when the intramolecu
vibration is taken into account6!. The presence of the Kro
necker delta in Eq.~1! provides for the lifting~at T50) of
the intercombination forbiddenness for pairs of molecu
from different magnetic sublattices.

In calculating the absorption spectra ofa-O2, in the sum
~1! we previously took into account only the nearest neig
bors from oneab plane, since for a light wave with polar
ization Ei@a3b# the spectrum did not possess any polariz
tion properties and was therefore insufficiently informativ
The properties of the orthorhombicd phase specifically re-
quire taking interplane pairs of molecules~including from
different magnetic sublattices! into account in~1! in addition
to the intraplane pairs. This, in turn, entails the appearanc
two types of interacting molecules and, consequently,
© 2000 American Institute of Physics
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possibility of the appearance of two bimolecular bou
states, differing by the binding energy in the pair. The ex
tonic character of the ‘‘partial’’ single-particle excitation
leads to an additional — biexcitonic4,15 — splitting of the
two-particle absorption lines, which become polarized alo
the principal axes of the lattice. The value of the splitting
both bound and dissociated~e.g., exciton–magnon! states is
determined completely by the widths of the exciton ban
~and by the anisotropy of the magnon bands!; see Ref. 6. We
recall that in magnetic antiferrodielectrics the electronic
citation moves in such a way that it does not leave the s
lattice in which it arose.6,14

4. Because there are three principal axes (a, b, andc8) in
the d phase, it would seem that there should also be th
absorption lines, as is observed in body-centered lattice15

However,d-O2 is a face-centered structure, and therefore
is clear even without a calculation that the number of bi
citonic lines should in principle equal four — two each f
theab andac8 planes~see Fig. 1!. In fact, one can easily se
that in the polarizationEia there will be one~intraplane!
biexciton excited, with wave vectorQ'0, in the polarization
Eic8 there will be a different one~interplane!, and in the
polarizationEib there will be both of these~see Fig. 2!. The
total energy of each of the doublets will, of course, be d
ferent, for it is determined by the relative values of the ve
tors pnamb

f g for the neighbors from the same and differe

planes, while the component in each doublet will be de
mined by the ratios (a1b)2/(a2b)2 and (b1c8)2/(b2c8)2,
if uc8u is understood to mean the interplane distance~see Fig.
1!. As to the biexcitonic splitting, it should, generally spea
ing, be the same, since for both biexcitonic doublets it
determined by the widths of the one-exciton bands. T
does not apply to the dissociated states, the doublet spli
of the polarized bands of which, as we have said, inclu
anisotropy of the magnon bands and, hence, can be so
what different in the doublets. A systematic examination

FIG. 1. Unit cells: the monoclinic cell with two molecules and the orth
rhombic with four molecules — the magnetically orderedd-O2. The num-
bers label the neighbors from the same~1 and 2! and nearest~3! basal
planes; the arrows indicate the direction of the spins of the O2 molecules.
Neighbors of the types1 and3, as representatives of the dipole active pa
~including the nearest molecules from different magnetic sublattices! are
connected by heavy lines. In the monoclinic cell ofd-O2 ~unlike a-O2) the
relation uc8u5(c22a2/4)1/2 holds.
-

g
r

s

-
b-

e
.
it
-

-
-
t

r-

-
s
is
ng
s
e-

f

the form of the single- and bielectronic absorption spectra
d-O2 will be done in a separate paper. We note only that
experimental study of single crystals of thed phase of oxy-
gen in polarized light would make it possible not only
check the concepts stated above but, more importantly
determine the parameters of the exchange and resonant
actions for this phase and to refine the spectrum of thea
phase in the polarizationEi@a3b#.

The author expresses his sincere gratitude to H-J. J
for calling his attention to this problem and to A. P
Brodyanski�, L. Ulivi, M. Santoro, and Yu. A. Fre�man for a
helpful discussion of the structure of the crystalline phase
oxygen and the transformation of its optical absorption sp
tra under external pressure. The author would also like
thank Prof. A. Jezowski for the financial support that enab
him to participate in the CC-2000 Conference, where
spectra of thed phase in unpolarized light were presented

*E-mail: vloktev@bitp.kiev.ua
1!For «-O2 the situation is not yet completely clear. Its structure is cons

ered to be monoclinic (A2/m), but the point symmetry and orientation o
the molecules has not yet been established. In this regard it can be n
that there has as yet been no investigation of the possibility that the ro
the quadrupole component of the intermolecular interaction;Q2/r 5 (Q is
the wave vector, anda is the interatomic distance! in solid O2 increases on
compression. At small distancesr it can be comparable to or even great
than the exchange interaction;Jexp(r/a)/r, and that would inevitably
cause rotations of the molecules. Of course, we are talking only abo
tendency, since the approach of the molecules due to the external pre
degrades the applicability of the multipole expansion for describing
intermolecular interaction. Even when this is taken into account, howe
the very old hypothesis of Ellis and Kneser~see Ref. 6; this hypothesis ha
been newly resurrected in Ref. 8! that stable O4 complexes are formed
does not yet seem convincing and sufficiently well founded. Moreover
a crystal one should speak of a spin–Peierls transition.

2!Here it is appropos to note that as one follows the line of transitio
b→a→d, the rhombohedralb phase is actually quasi-two-dimensiona
but not so much because of the relative smallness of the interplane
change between O2 molecules as because of the crystalline and magn
structure ofb-O2, which is such that the main contributions to the inte
plane interaction~i.e., the exchange field! from different molecules com-
pletely compensate one another. Thus on average the planes are exc
‘‘free,’’ or frustrated.12 The frustration is lifted only by weak
interactions.13 In the a phases a two-sublattice structure arises on acco
of the decompensation of the exchanges from different neighbors, whic

FIG. 2. Qualitative form of the biecitonic absorption spectrum of thed
phase in the fieldE of a light wave of frequencyv.
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the monoclinic structure become inequivalent. The formation of three s
lattices inb-O2 is in essence a trivial solution of the ‘‘frustration prob
lem’’ for each of theab planes. However, for the Ising model on a plan
triangular lattice, for example, this can no longer happen.

3!At the same time, because of the higher symmetry of the lattice in
orthorhombic phase as compared to the monoclinic phase, one of the
invariants becomes forbidden (SXSY for the choice of axesXia, Zib); in
thea phase this can easily be taken into account by a simple rotation o
coordinate system or, equivalently, a renormalization of the one-mole
~and intermolecule! anisotropy constants.
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