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The processes that determine the structure and properties of the resistive state of superconducting
channels having a uniform distribution of the current and order parameter over their

transverse cross section are discussed. Particular attention is devoted to the resistive state arising
when an external alternating electromagnetic field is applied to the superconductor. The

current, temperature, frequency, and power characteristics of the resistive state are examined.
The necessary information about the NS boundary and phase-slip centers is given, and

the known results for high-, superconducting materials are presented.2@1 American

Institute of Physics.[DOI: 10.1063/1.1355514

INTRODUCTION given to experimental results, particularly since in many
. . cases the theory does not completely describe the experimen-
The term “superconducting channels” is commonly ap- ta| results or is lacking altogether. One of the goals of this

plied to superconducting samples whose transverse dimefeview is precisely to get theorists interested in the ac prob-
sions are smaller than the Ginzburg—Landau coherencgm.

length ¢(T) and the magnetic field penetration dept(r).

When these conditions are satisfied, the electric current den- tHeoRY OF THE RESISTIVE CURRENT STATE

sity and order parameter are uniformly distributed over thepr A SUPERCONDUCTING CHANNEL

cross section of the sample. These requirements are satisfied . .

by thin films ~100 nm thick and about one micron wide or 1-1- Charge imbalance and the penetration depth of a

by whiskers~1 um in diameter. The length of the samples longitudinal dc electric field in a superconductor

is ordinarily much larger thag(T) and A(T) and ranges In elucidating the structure and properties of the resistive

from tens to hundreds of microns. These are in essenceurrent state we will require certain concepts that are best

quasi-one-dimensional structures, which are interesting primntroduced by considering the passage of current through the

marily in that magnetic flux vortices cannot form in them, boundary between a normal metal and a supercond(ator

and so they are free of the resistivity due to the motion ofNS boundary. The features of such a boundary were first

vortices in the direction transverse to the sample. This raisggointed out in Refs. 5 and 6 in a study of the resistance of a

the question of the nature of the resistivity that arises in suclsuperconductor in an intermediate state.

samples when directc) or alternating(ac) currents greater The excited states of a superconductor, unlike those of

than the critical values are passed through them. Studies dtiie electronic system of a metal in the normal state, are sepa-

the resistive states due to the passage of dc current havated from the ground stateondensateby an energy gap.

yielded unexpected information about the very nature of suThe energy of a quasiparticle in a state with momentum

perconductivity and have revealed the essence of many phean be writtefy®

nomena of nonequilibrium superconductivity. Good reviews E = (e2+ A2)12 (1.1

are available on some of this reseafsbe, e.g., Refs. 134 k™ L8k ' '
Research on the resistive states arising upon the passagieree,=%2(k?—k2)/2m=[ (%2k?/2m) — E] is the energy

of ac current is no less interesting and has also yielded uref a quasiparticle excitatiofelectron or holgin the normal

expected results. As far as we know, the results obtained imetal, measured from the Fermi lev&t. Since the energy

this area of research have as yet to be systematized in B, for any type of excitation in a superconductor is positive,

published review. The present article was undertaken to filthe spectrum of excitations can be represented in the form an

this gap. electronlike branchli(>kg) and a holelike branchk& k).
Since the exposition of the problems due to the flow ofThe symmetry of the occupation of the branches of the spec-

ac currents along a channel require information about thé&rum (an imbalance of the charge of the branghesn be

effects due to dc current, the necessary information on thairoken by an outside influence that leads to injection of qua-

topic will be included. In this review preference will be siparticles into the superconductor. Let us consider the case
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when a dc current is flowing through an NS boundary. Hereously entering this region, carrying a certain charge which,
the electrons having energies higher tdapenetrate into the on relaxing, passes over into the condensate. This condition
superconductor, disrupting the balance of the occupation d expressed by the simple relation

the branches of the quasiparticle spectrum by overpopulating . .

the electron branch, which leads to an excess quasiparticle divjn=-eQlq, (1.6
chargeQ in the superconductor. By virtue of the overall wherej, is the normal component of the total current den-
electrical neutrality of the metal, this charge is compensatedity, andrq is the relaxation time of the charge imbalance. In
by a decrease of the charge of the condensate, which leadstite case when the temperature is clos@ o one can write

a shift of the chemical potential, of the Cooper pairs rela- Ohm’s law for the quasiparticles in the usual form:

;[:l\r:zr;oe%[he Fermi energy by an amount proportional to this i, =oE, 1.7
whereo is the normal conductivity at low temperatures. For-
Q=2N(0)(Er— us), (1.2 mulas(1.5—(1.7) lead to a closed equation f@y:
whereN(0) is the density of states at the Fermi level. 1
Since the excess quasiparticle cha@és a function of V2Q= Q. (1.8
the spatial coordinatg, it is clear that the chemical potential Ig
us Will also depend orx. It follows that a superconductor Here
can support the existence of an electric fieldhat can be 5 )
written in gradient-invariant form &s° lg=07¢/2°N(0). 1.9
19 Since the conductivitye of the normal metal can be
ps 1 . : 1
-5 _“yop. (1.3  written in the forn
e dt e )
Herep=mv,=1/24V y—eAlc is the momentum of the su- o= §62N(0)|iUF- (1.10

perconducting condensatep=1/2A(dx/dt)+ee is the

gradient-invariant potential, which is the difference of thewherel; is the mean free path of an electron andis the
chemical potential of the quasiparticles=Eg+e¢ and the  Vvelocity of an electron at the Fermi surface, we finally get
pair chemical potentiajus=Egr—(1/2)A(dx/dt); x is the veliTo
phase of the complex superconducting order parameter, and |g= 3

A and ¢ are the usual electromagnetic potentials. The first

term in (1.3) is due to the inertia of the electrons of the Here D=(1/3)vl; is the diffusion coefficient of electrons
condensate and is important in in the case of ac currents avith mean free path; . The depth ¢ to which normal elec-
inductive excitation of the field. When a specified dc currenttrons are drawn into the superconductor by the electric field
is flowing through an NS boundary, one can limit consider-from the normal metal is called the diffusion length or pen-

12
) =(D7)*2 (1.1

ation to the second term if1.3): etration depth of the longitudinal electric field. This gives
rise to an additional resistance which fAr<kgT has the
1 form12-14
E=- s V. (1.9
R=plg/S, (1.12

In the neighborhood of the critical temperaturg, where wherep= o1 is the normal resistivity at low temperatures,

IEE gz\gslis Sarrr':i?:llleiorlfgt:'a?:elslter:ft} fhhea::iz[ﬁnztliz ?r?grgge?:]i_ands is the cross-sectional area of the channel. The quantity
q P 9 g 7o, Which determines the penetration depth was first

cal potential of the quasiparticles in comparison with theestimated theoretically and measured experimentally in Refs.

change in the chemical potential of the superconducting ele(‘g and 15. In Refs. 8 and 16, was measured using a normal
. . Q

trons. Since folT— T, there are few paired electrons and a . : .
X : etal—insulator—superconductor tunnel junction. When cur-
great many normal electrons, removing a certain number o . . :
ent is passed through the junction from the normal metal

pairs from the condensate and transferring them to the col-_ . I - .
) . region, nonequilibrium electrons are injected into the super-
lective of normal electrons will cause a much greater change

: . . . nducting electrode, leading to a difference in the popula-
in the propertles of the condensate than in the properties cﬁgns of the branches of the excitation spectrum. The value of
the collective of normal electrons. Therefore, usia@), we

can write ex iofi.4) for E in the ] 7o Was calculated from the potential difference between a
pressioft.4) for & in the form: point above the tunnel junction and a remote part of the
1 superconducting region.
E:_ZeT(O)VQ' (1.5 The process restoring the balance of populations be-
tween the branches of the quasiparticle spectrum in the ab-
Thus an electric field arises in a superconductor undesence of magnetic impurities is governed by the elastic
nonequilibrium conditions in the presence of a gradient ofimpurities and inelasticlon phonong scattering of excita-
the quasiparticle charge; however, this field will not accelertions. However, not all scattering everfedastic or inelastic
ate the condensate, since it is compensated by the gradientlefd to charge relaxation. The most important events are
the invariant potentia®. The presence of a steady-state non-those for excitations with energi€s;, in the intervalA<E,
equilibrium quasiparticle charge in a certain region of the<2A. This leads to a difference betweeg and 7, by a
superconductor means that a flux of quasiparticles is contindfactor of A/kgT, since the total number of excitations is of
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the order ofkgT. A more precise calculation of the relax- In a study of the influence of thermodynamic fluctua-
ation time of the quasiparticle charge gite¥ tions on the critical current and critical temperature of super-
AT | 7\ 12 conducting tin whiskers in 1968, Webb and Warbuffc
TQ:_B(_S) (1.13 observed a stepped character of the resistive transition.
mA 2% Regular voltage steps on the current—voltélgey) charac-

Here teristics were also observed on uniform tin whiskers in Refs.
22 and 23 and on narrow tin strips in Ref. 24.

Three important features of the stepped 1-V characteris-
tics were noted: the values of the dynamic resistance on the
) ) ) ) ) sloped parts of the 1-V characteristic are multiples; the con-
7, IS the inelastic scattering time for electrons on the Fermyjyations of the sloped parts of the I-V characteristic inter-
surface, 2vs is the superconducting momentum, ands  gect at a single point on the current axis; and, there is no

the spatial variable. _ _ hysteresis, a fact which indicates that the stepped structure of
~ Ifthe relaxation of thfg charge imbalance is governed by |_v/ characteristic is of the nature of a loop. In 1969, a
inelastic scattering, thef new effect was reported: the generation of electromagnetic
akgT oscillations of relatively low frequencies<10" Hz) com-
Q= A Ter (1.19  pared to those for the Josephson oscillatiord.¢'° Hz) by
thin, narrow superconducting tin filmshannels when a dc
and, consequently, at temperatures close to critical, wherglectric current is passed through th&hirhis generation
A~3.1&T(1-T/T)Y2 702 (1-T/T) Y2 An estimate  was observed when the film was in a resistive current state,
of the superfluid velocity in the case when the superconductand there was no current hysteresis at the point of generation
ing current assumes the critical value git/e$ on the 1-V characteristic.
S 12 Thus by 1973 there had been observations of previously
7Qlle) = (4keT/mA)(37.761) ™" (.19 unknown properties of the resistive current state of supercon-
where 75 =%/8kg(T.—T) is the Ginzburg—Landau time, ducting channels which were in need of explanation. In that
which is related to the coherence length (D7 )2 If the  year Galako, Dmitriev, and Churnilof proposed the con-
bias current is set at the critical level for each temperaturegept of dynamic phase separation of a current-carrying su-
then, as we see froifi.15, the relaxation time has the fol- perconducting channel into quasinormal and superconduct-
lowing temperature dependence: ing regions. It was emphasized that this phase separation is
Tro(l_T/Tc)—l_ of a dynamic and nonequilibrium nature. The resistivity ex-
ists over a wide range of currents, between the Ginzburg—
Let us consider the last term ifl.14. If the spatial | andau depairing current and a certain upper critical cur-
dependence of the order parameter has the fArmAq[1  rent| >, at which the sample undergoes a transition to the
—exp(—x/¢)] and the relaxation rate is given b¥; npormal state.
=(276.) *, then Here we should mention the large contributions to sub-
TQ:(4kBT/7TA)(TgTGL)l/2- (1.17) sequent developments which were produced independently

) _ by groups at the B. Verkin Institute for Low Temperature
In this case the temperature dependenceit the same as  ppysics and Engineering in Kharkov, Ukraine and at Harvard

that given by expressiofi.16. The temperature dependence ypjversity, in papers published in 1974—75 which contained

of Ig will be discussed in more detail in Sec. 2.3. the microscopit®?”?® and phenomenologiddl concepts
Thus the passage of electric current through the boundsoncerning the basic features of the resistive state arising in a

ary between a normal metal and a superconductor will givgperconducting channel when a dc current is passed through

rise to an electric field in the superconductor which isj;

damped over a distande . Within a region of lengthg in It was shown that the resistivity is a consequence of the

the superconductor near the NS boundary the normal currefgrmation and development, at currehis<| <l ,, of a sys-

will be converted to supercurrent, and the order parameter tem of superconducting and quasinormal regions alternating

IS restored9 at a depth of the order &T) in the super-  3iong the sample. The latter are specific dynamic formations

conductor: known as phase-slip centefBSC3.

1.2. Models for the phase-slip centers A chargcteristic featu_re of the I-V characteristigs of su-

perconducting channels is the presence of voltage jumps, at

which the resistance of the sample changes by a multiple:

1 D

2:27'84_5

PR Ny (119

am%? 1 aZA)

1.2.1. Phenomenological model of the resistive current
state of a superconducting channel

The resistive state brought on in a superconducting chan-
nel by the passage of a dc current has by now been studied R=Ry;n, (1.18
quite well experimentally and, thanks to the one-dimen-
sionality of the problem, in which all of the quantities de-
pend only on the coordinate along the sample, also theoretiwhereRy; is the dynamic resistance on the linear |-V seg-
cally. ment corresponding to the first PSC, amts the number of
Let us now give a brief chronology of the research topicPSCs in the channel. Figure 1 shows a typical |-V charac-
dealing with the resistive current state of superconductingeristic of a superconducting channel; it is characterized by
channels. the following main parameters: the critical currdnt the
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mal currentl , flowing through a PSC is—1s=1—l.. The
nonequilibrium quasiparticles formed in the core of the PSC
diffuse to a depth, making for a quasiparticle distribution
that is exponentially damped over a distamge In this re-
spect a PSC is analogous to an SNS structtiféThus the
dynamic resistance of the PSC is given by

Ry =dV/dI=2lgp/S. (1.20

The total voltage drop across one PSC, according to Ref. 24,
is

800

600

400+

V=2lgp(l1—-Bl,)/S. (1.21)

Numerous experiments done on narrow aluminum
strips®63 tin channel$?*°~*! a tin—indium alloy*? and
indium® have confirmed the basic ideas of the phenomeno-
logical model of the PSC¥. The value oflg determined
from the dynamic resistance of the PSC has the theoretically
0 100 200 360 E)Igeecfiicjgd dependence on the electron mean free pati;

L, uA In Ref. 44 the spatial distribution of the chemical poten-
FIG. 1. Typical current—voltage characteristic of a homogeneous film sutials of pairsug and quasiparticlea,, in the neighborhood of
perconducting channébn-4 at a temperaturd/T.=0.98. a PSC were measured by means of normal and superconduct-
ing tunnel probes placed close together in a tin superconduct-
ing channel. As expectequs changed abruptlyjumped,
since ¢(T) was smaller than the distance between probes,
i — whereasu, changed over a distantge from the center of the
the PSCj=1,2,3. . .), thecutoff currentl s at zero voltage, pgc py an exponential law. The predicted temperature de-
and the excess currehf,c at high voltages. pendencégx(1—T/T,)~Y*was found, but because of ther-

A phenomenological model of the resistive current statgy,| effects it was not always observed wHenwas deter-
(the SBT modelwas proposed in Ref. 24; this model united \ineq from the dynamic resistance of the PSC. The value of

th.e idea of the_cglfgsipartiqle diffusidand the idea of phase- I was in good agreement with the calculated value.
slip processeS~>!into a picture of the PSCs. According to

this model, a PSC consists of a core, with a size of the order
of the coherence lengt(T), and diffusion tails extending 1-2-2. Microscopic theory of the phase-slip centers
away from it on both sides. In the core of the PSC the order  The first microscopic theory of the resistive state of nar-
paramete\ and superconducting current oscillate, so that row superconducting channels was proposed in Refs. 10, 28,
goes to zero at certain points and the phase simultaneousiind 45-50. The general theoretical concepts from which this
jumps by 27. The period of the oscillations is given by the theory follows were first stated in Ref. 10, even before the
Josephson relatiéh advent of the phenomenological models; these concepts im-
w,=2eVIt, (1.19 ply that, c_iespite t_he absence of vortices_, a resistive region
should exist even in narrow superconducting channels, since,
as was confirmed experimentally in Refs. 24,33, and 34iirst, there exists a maximum uniform supercurrént and
When narrow tin film&* and tin whisker¥ were irradiated  second, decreasing the current below a certain critical value
by an rf electromagnetic field, their |-V characteristics ex-| ., in the normal state of the sample should lead to the Coo-
hibited not only the voltage jumps typical of PSCs but alsoper instability and superconductive pairing of electrons. Be-
current steps at voltages related to the irradiation frequencyause the mechanisms governihgand I, are different,
by the Josephson relatid.19. It should be noted that the these currents in general do not coincide. In Ref. 28 the
size of the main current step decreased as the irradiatiokinetic equations were used to study the structure of the cur-
frequency was increased: while the 1-V characteristic of gent state in a superconducting channel in a model based on
whisker clearly exhibited the main current step during irra-microscopic phase separation with alternating superconduct-
diation at a frequency of 500 MHz, when the irradiationing and quasinormal regions along the channel. The values
frequency was increased to 900 MHz for the same sampleyf the chemical potentialgs of neighboring superconduct-
the step was much small&tAt irradiation frequencies of 10 ing segments differ by the potential differenée between
GHz and higher it became difficult to discern the main cur-these segments. Thus in each superconducting Bart
rent step, and the subharmonic steps had the same size as th§ /e and u=const. The potentiab is limited by com-
main stef™* The presence of the subharmonic current steps ipensation of the potential differena®p by the difference
indicative of anharmonicity in the oscillations of the order hetween the chemical potentials of pairs in neighboring su-
parameter and supercurrent. The time-averaged supercurrgsdrconducting segments. At points where the order param-
flowing through the nonequilibrium region in which the volt- eter equals zero the phase coherence is disrupteduand
age arises is equal to 0.5-0.8 times the local critical currendnd with it ®, undergoes a jump. This picture is illustrated
of the superconducting channel, i.e;= Bl.. Here the nor- schematically in Fig. 2. We see that the superconducting

200

dynamic resistancBy; of the PSCgherei is the number of
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FIG. 2. Behavior of the order paramet&rand potentialgus and® in the \
resistive current state model of Ref. 28. L L X
- ~Xa[X2
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parts have different pair chemical potentigls. This means
that the.t[;]hifse dlg.erencti bettwee.? ne|ghb_or|ntg)g fegmert]:ls WlllillG. 3. Behavior of the order parametar supercurrent densitys, and
grow wi ime. since the ra,nSI lon region between es%otentiakl) in the static(solid curves and dynamiddashed curvégegions.
segments, wher&~0, has a width of the order @, Joseph-  The shaded regions are values that can be assumesl ayd j in the
son oscillations of the order parameter and supercurrent wilirocess of oscillation.
arise.

In the dynamic model of a PSE>*the nonstationary - o o
picture is considered right from the start. In this case thdations of all of the quantities are negligible. In this region a

microscopic theory is based on analysis of the timeFelaxation of the disequilibrium o arising in the core of
dependent microscopic equations of superconductivity. 1ihe PSC occurs. A® falls off, there is a decrease in the
the region of Josephson frequencies lower thdh and the normal current, and increase in the supercurrent, and a de-
energy relaxation rate, these equations were first obtained t§fease im. Figure 3 shows the structure of a PSC, according

Kramer and Watts-Tobif?5¢ They have the form to the dynamic model. Comparing it with Fig. 2, vv_hich il-
lustrates the static model, we see that the behavior of the
. (47 A2+h2)ﬂ—A+ W—hDVZA order parameted and pott_antiaﬂD in the two cases is analo-
8T e at 8T gous almost over the entire span between PSCs except for a
5 3 narrow region in the immediate vicinity of each PSC. The
n W_ﬁD EQ*) A+ TC_TA_ 743) A—=O' process of formation of the voltage across the PSC in the
8T | #Ac T 872 T? ’ static model has the same physical nature as in the dynamic
(1.22 model.
' As we have said, the 1-V characteristics of supercon-
1 D ducting channels exhibit voltage jumps. They are due to the
AP h—diV(AZQ*)=0; (1.23  appearance of new PSCs in the channel as the current in-
eV(4T, A%+ A7) ¢ creases. A qualitative picture of the voltage jumps, based on
A2 the SBT modef! is considered in Paragraph 1.2.1. A more
j=@E+ TCTQ*’ (1.24  consistent approach is based on the microscopic tH€ory.
We note that the numerical value obtained for the dynamic
where resistance due to a single isolated PSC in the microscopic
100Q% 1 theory is equal to 2.06p/S, in surprisingly good agreement
=— - —Vo; (1.25  with the phenomenological result obtained in the SBT model
c o e [see Eq(1.20)].
Q* =(hicl2e)Vx—A. (1.26) Thus it can be surmised that the resistive current state of

superconducting channels has by now been adequately stud-
ied experimentally and that it can be explained by the exist-
ﬂwg theory. However, it is still too early to speak of numeri-

The solution of equation$l.22—(1.26) and their analysis
and subsequent experimental study have led to the followin

; ,34,35,51,53,57, H
con(illgsmnsl. - In the region of a PSC of length 5| 5greement. Since the phase-slip processes are by nature
2617, wherel'=#/27,A, is the depairing factor, the super- g hetantially nonlinear, it is hardly possible to obtain a math-
qurrent and. the order parameter undergo sub;tanual OSC'"%’maticaIly exact analytical solution of the dynamical equa-
tions. At points where goes to zero the phasejumps by iqng (1.2 —(1.24. Nevertheless, the main qualitative char-

2, and®(x=0) goes to infinity. The amplitude of the oS- ,¢reristics of the resistive state are undoubtedly described
cillations of A is of the order ofAyI'*%, whereAy is the correctly by the theory.

equilibrium value of the order parameter. The oscillations of

A are rapidly damped with distance from the PSC, and at

distancesc> x,= Y2 the order parameter is practically in- 2. RESISTIVE STATE OF A SUPERCONDUCTING CHANNEL
dependent of time. For> ¢ the order parameter assumes its EIF;?SGHT ON BY AN ALTERNATING ELECTROMAGNETIC
equilibrium valueAy. The supercurrent oscillates but re-

mains small, so that all of the current is transported by nor- It is natural to suppose that under the influence of some
mal excitations. At distances; = (£lg)Y?><x=<Ig the oscil-  external perturbation the equilibrium distribution function of
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the quasiparticles in a superconductor will acquire a non- 2000
equilibrium admixture. Depending on the parity of this ad-

mixture to the quasiparticle distribution function with respect

to gy, one can divide the nonequilibrium phenomena in su-
perconductors into two types.

The first type of disequilibrium is characterized by a
symmetric change in the distribution function of electronlike
and holelike excitations and generally comes about when a i 1000
superconductor is irradiated by an external electromagnetic _ -
field. In a certain range of frequency and powers this disequi- =
librium leads to an increase in the gap and an increase in the
critical parameters of a superconducting sample, i.e., to
stimulation of superconductivif>® This effect can be ex-
plained in the theory proposed in Ref. 60.

The second type of nonequilibrium effects are those in L
which the admixture to the distribution function is odd, in 0 100
which case the symmetry of the number of quasiparticles Lowv
over the branches of the excitation spectrum is brofen b
balance of the charge of the branchéghis situation is ob- 6 Normal state A~
served when a dc current is passed through an NS boundary, ’
in the injection of nonequilibrium quasiparticles in SIN tun-
nel junctions, and also in a homogeneous superconductor
with a temperature gradient or with~1. (PSCs.

For a long time after the discovery of superconductivity
stimulated by microwave radiation it was assumed that the
electromagnetic field produced only a symmetric change in
the quasiparticle distribution function and, consequently, did
not lead to a population imbalance of the branches of the
quasiparticle spectrum. However, in 1976 it was conjec-
turedf! that microwave irradiation of a superconductor givesFIG. 4. Families of |-V characteristidg) and their derivativegb) for the
rise to a dc electric field, i.e., leads to imbalance of the qua§,uperconducting channel Sn-14 at various irradiation power lefel§,3

- v ' “GHz, T=3.719 K.
siparticle charge. The resulting imbalance of the populations
of the branches of the quasiparticle spectrum was attributed
in that papef,! and also in a later pap€fto the thermoelec- jiradiation at a frequency=6.3 GHz’* For the first -V
tric effect, and its value turned out to be rather small, of thegharacteristic and its derivative the power of the radiation
order ofs*/Eg (s*~A). In Refs. 63 and 64 it was shown \yas zero, and the other curves are labeled in order of increas-
theoretically that the homogeneous state of a superconductg{y power. The parameters of all of the samples discussed in
becomes unstable under the influence of an electromagnetigis review are presented in Table I.
field, and a transition can occur to a spatially inhomogeneous |t js seen from Fig. 4a that as the power of the irradiation
state, the structure of which, however, remained undetefincreases, PSCs caused by the electromagnetic radiaiion
mined. In Ref. 65 it was observed experimentally that undepscg arise in the sample, as distinct from those caused by
electromagnetic irradiation at a power greater than the ¢ current(dc PSCh As the power of the rf field is increased
critical valueP (P is the minimum power of electromag- monotonically, the channel resistanRe (i=1,2,3. . .) de-
netic radiation at which the critical curreht of the channel  termined from the slope of the initial parts of the I-V char-

is equal to zerbthe superconducting channel undergoes NSycteristics changes discretely. Results analogous to those
phase separation, the physical nature of which remained un-

clear for some time. In this connection we should also men-

tion the results of studies in which stepped structures wer&ABLE I. Parameters of the film samples.
observed on the characteristics at superconducting transitio
of narrow films of tif® and aluminurf’ in a microwave

200

dv/dl, rel.units

S
éample Lum —w,um  d,nm Ry, Q0 Rge, @ T, K

radiation field and also at transitions to the resistive state inSn-2 80 1.0 175 6.85 67.74 3.763

wide superconducting films of fiand aluminurf®®under ~ Sn-3 25 1.0 73 .50 5120 3821

the influence of an electromagnetic field Sn-4 30 10 199 1.45 21.50 3.783

9 : Sn-5 21 15 70 4.26 3091  3.860

2.1. Discreteness of the change in resistance of a Sn-6 30 1.0 100 4.33 39.32 3.733

superconducting channel irradiated by electromagnetic Sn-8 33 L0 88 587 51.33 3.821

fields at powers greater than the critical Sn-10 53 15 86 513 60.02 3.842

Sn-12 35 1.0 71 5.48 64.73 3.812

Let us consider the structure of the resistive state arising>n-13 35 1.0 88 4.08 52.08 3.820

: ; e 1Sn-14 75 1.0 117 10.5 95 3.781
in hannel under the influen f an electromagnetic field,

a channel under the influence of an electromagnetic fie dSn 15 20 10 %0 9.32 63.05 3830

Figure 4 shows families of |-V characteristics and their de—_
rivatives for sample Sn-14 at different power levels of theNote I is the lengthw the width, andd the thickness of the sample.
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FIG. 5. Voltage arising across the ends of sample Sn-2 versus the power of
the electromagnetic irradiation &+8.9 GHz,l,=11 uA, andT=3.650 K.
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a 3
shown in Fig. 4a were also obtained in Ref. 72 for aluminum dB

samples irradiated at a frequency of 25 GHz. The value oFIG. 6. Spectral noise densify, of superconducting channel Sn-14 versus
the resistance of an ac PSC can also be determined from Fi@.e power of the electromagnetic irradiationfat6.3 GHz andl' =3.719 K.
4b, sincedV/dl atl,=0 is also the resistance of an ac PSC

measured in alternating curref@t a signal modulation fre-

quenc_yfm~1 _kHZ?' o nel in the resistive state in an electromagnetic field remains
It is seen in Fig. 4a that for irradiation at a frequency of jiscrete in the absence of these currents.

6.3 GHz the resistance of the first ac PSCRg=3.5 () It is known that the thermal motion of the current carri-
(curve 3). With increasing irradiation power the number of ers in a conductor gives rise to thermal or resistance
PSCs arising under the influence of the electromagnetic fielfl ise73.74|n accordance with the Nyquist theorem, the effec-

increases, and the resistance of the sample increases by;a \oltage of the thermal noise as a result of the presence of
multiple: R=R;n, whereR; is the resistance of one ac PSC, 4 (esistanc® is given by®

n=1,2,3...N (N is the largest number of ac PSCs in the
sample for the given irradiation frequencgince the dimen- V= (4kgTRS )2, (2.2
sions of the samples~<(10* m) are small compared with the
wavelength of the electromagnetic fiele {02 m), we can  where 5f is the frequency bandwidth of the circuit for the
assume that a uniform rf currehgoc /P flows through the noise measurements. Since ER.1) is valid for any resis-
sample, although its value was not measured directly. As wéanceR, regardless of its naturé,one expects the appear-
see in Fig. 4, the resistané¢®, of each ac PSC that arises ance of jumps in the noise voltage across the ends of a
remains constant as the irradiation power is increased, i.esample in the resistive state by amounts proportional to the
the heating effect that would exist if the resistaftewere  square root of the resistances of the ac PSCs.
due to a normal domain with a length of the ordet®fs not Figure 6 shows a plot of the spectral density of the noise,
observed. Figure 5 shows how the dc voltage arising beS,=V?/5f=4kgTR, versus the power of the electromag-
tween the ends of the superconducting chanfsample netic irradiationa=10logP/Py) (f=6.3 GH2 for sample
Sn-2 depends on the power of the electromagnetic irradiaSn-14 in the case of conventional methods of st(sihe Fig.
tion a=10logP/Py) at a low measuring currentl{  4).”'We see that increasing the power of the electromagnetic
=11 uA<l.). For 0<P<P, the sample is found in the field results in discrete increases in the voltage between the
superconducting state, and no voltage drop between its en@nds of the channel in the resistive state. It is important to
is observed. As the rf current through the channel increasespte that the values of the noise voltage obtained in Ref. 71
ac PSCs arise in it, and thg «) curves exhibit related volt- are in quite good agreement with the values calculated ac-
age jumps. Results analogous to those shown in Fig. 5 wereording to formula(2.1) on the assumption that the sources
also obtained in Refs. 70 and 72 for aluminum samples irraef this noise are the ac PSCs whose resistances were deter-
diated at a frequency of 25 GHz. mined(see Fig. 4 It can also be assumed that in the experi-
Thus in the case when the irradiation power is above thenents investigating the noise of the Sn-14 superconducting
critical level, the resistance of a superconducting channethannel the PSCs appear as a result of the flow of a parasitic
changes discretely by multiples. dc current arising as a result of rectification of the microwave
It should be noted, however, that the aforementionedsignal. However the rectification effect was not observed in
techniques for determining the resistance of the ac PSCs pr&ef. 71. The presence of segments with a constant noise
suppose the presence of @n the case of the |-V charac- voltage on theS,(a) curve (see Fig. & and the absence of
teristicy or low-frequency(in the case of their derivatives excess noise suggest that the microwave sigirald;3 GH2
measuring currents. There is therefore some doubt as toes not contain a parasitic current having a frequency lying
whether the change in resistance of a superconducting chawithin the frequency bandwidth of the noise measureménts.
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Measurements of the resistance of a channel in ac cur-
rent (f,,~1 kHz) atl,=0 and studies of the noise have thus 100
shown that ac PSCs arise in a narrow channel under irradia-
tion by an electromagnetic field witR> P in the absence
of a dc current. .

A similar picture is observed in studies of high- 0 20 60 100
temperature samples. Figure 7 shows a family of -V char- I, pA
acteristics for a YBgLu;O7_x samp!e(HS—?) for ,Vanous FIG. 8. Families of current—voltage characteristics of channel Sn-5 for vari-
power levels of the external radiatidh.For the first -V s irragiation power levels &t=3.821 K: f=1.5 GHz(a) and f=5.025
characteristic the irradiation power was equal to zero, and theHz (b).
rest are numbered in order of increasing power. We see from
the figure that under microwave irradiation, as in the case of ) )
tin superconducting channels, the resistance of a high2-'2' Nonmongtonlc frequency dependence of the re_slstance
temperature sample changes in a discrete mafses the ]fi’fel‘?j phase-slip center caused by an electromagnetic
initial segments of the |-V characteristics in Fig. First the
sample undergoes an abrupt transition from the supercon- Letus consider the frequency dependence of the penetra-
ducting state to a state with resistaiRe=1.88(), and upon tion depth of a longitudinal electric field into a supercon-
further continuous increase in the power a transition to aluctor. Figure 8 shows families of 1-V characteristics of
state withR,=3.14Q occurs, and only then, as the power is sample Sn-5 at various power levels of irradiation at frequen-
increased further, does the sample go to the normal state witties of 1.5 and 5.025 GHZ.For the first 1-V characteristic
resistanceR,,=4.50 Q). This provides grounds for asserting the irradiation power is equal to zero, and the remaining
that ac PSCs also arise in high-temperature samples undeurves(2—-10) are labeled in order of increasing power. It
the influence of a microwave field, just as in the case of tinfollows from Fig. 8 that in the case whéh>P,, increasing
superconducting channels. The fact that the resistances of titlge power of the electromagnetic field in the sample gives
PSCs deviate slightly from exact multiplésy ~10%) can rise to ac PSCs, the resistance of whiRhis different for
be attributed to nonideality of the channel and the its smaltifferent frequencies. In studying the resistivity arising in
length, which can accomodate only two ac PSCs. Interestingguperconducting channels upon the formation of PSCs in
in this experiment the irradiation frequency was sisee them, one can determine the penetration depth of a longitu-
Sec. 2.2 that the dynamic resistances of the PSCs inducedinal electric field into the superconducieee(1.20] as:
by the dc current are equal to the resistances of the ac PSCs: 0 — _ )
Ri1=Ry, Rez=Ro, With Rys(P=0)=Ryy(P>Py), Rpp(P &~ 0~ IRar(P=ON2Ry;
=0)=Rgy(P>P,) (see Fig. 7. le(w) =Ry (P=P,)/2R,.

(2.2



Low Temp. Phys. 27 (3), March 2001 Dmitriev et al. 173

N

s

16

44

I 2

1 1 1 1 1 1 1 _
0 200 400 600 800
f, MHz 0 10 20 30 40

f, GHz
FIG. 9. Resistance of an rf phase-slip cenk(f)/Ry;(P=0) versus

the frequency of the irradiation for samples Sn@)(and Sn-4 &) at  FIG. 10. ResistancR; /R, and maximum numbeX of rf phase-slip centers
T=3.742 K. as a function of irradiation frequency for sample Sn-Z at3.650 K.

Herel is the length of the channdR, is its normal resistance

at low temperature, and= 2 f is the irradiation frequency. g _
It will be shown in Sec. 3.1 that faP> P, the resistance of <10 ° s(curve2). Itis seen that the curves conform well to

an ac PSC is equal to the resistance of a dc PSC. the descending parts of the experimental curves, andrthat
As was shown in Sec. 1.1, in our understanding of thdS greater for sample Sn-4 than for sample Sn-3. In the
penetration of a longitudinal electric field into a supercon-framework of the model proposed in Ref. 81, this can be

ductor an important role is played by the concepts of imbal€XPlained as follows. According to E(.4), the relaxation
ance of the branches of the quasiparticle spectrum and of tHin€ 7s for relaxation on collective oscillations is propor-
mechanisms equalizing the populations of the electron anfiona! tod andl;, and the mean free path and thickness are
hole subsystems. The simplest mechanism for relaxation gir€ater for sample Sn-4 than for Srisee Table)l Itis also
the charge imbalance nedl, involves inelastic electron— MPortant to note that for samples with larggrandl; the
phonon collision€:7® In that case the frequency dependencefjev'?t'c_’” from the _theorethal predictions begins at higher
|e(w) is given by the expressi6r®8° irradiation frequermeésee E|g. 9 _
Thus for a suitable choice of the value of the quasipar-
le()/1g(0)=[(1-iwT)(1-iwTy)] (2.3 ticle relaxation timer, in real samples, the theory gives a

where 7,= 7, is the inelastic relaxation time for homoge- guantitatively as well as qualitatively correct description of
neous samples;, is the relaxation time of the phase of the the descending part of the(w)/Ig(0) curve. As to the total

formula (2.3 for 7;=5%x10"° s (curve 1) and 7,=6.5

order parameter: experimental dependence bf(w)/Ig(0), it differs funda-
. —_ mentally from the predictions of the theory in that it exhibits
i 72(1=T/T,) “clean” limit nonmonotonicity, which is due to mechanisms that were not
A 2hkgT/wrA?  “dirty” limit; taken into account in the existing theories.

To track the behavior of the ascending branch of of the
R;(f) curve at high frequencies, we chose the longer sample

. . o . Sn-2. Figure 10 shows the frequency dependence of the re-
ered with allowance for the relaxation mechanism 'nVO|VmgsistanceR and the maximum numbeK of ac PSCs in
1

collective oscillations. An expression for the penetranonSample Sn-34 We see that as the irradiation frequency is

depth of a longitudinal electric field in that case has the same . . .
i . increased, the resistance of an ac PSC increases, this behav-
form as for the electron—phonon relaxation mechanism, onl

now , in formula (2.3 equalsz,, the relaxation time on Yor of R, (f) persisting to frequencies comparable to the gap

collective oscillations. In a thin film this relaxation time frequency /7, while N falls off with increasing
: ' : _ frequency?* The behavior of the ascending branch, we be-
can be estimated by the an expression of the f&rm:

lieve, is due to nonlinear processes of relaxation of the popu-
A (&g 12 » lations of the electronlike and holelike branches of the qua-
ST RGT | 79 Ped(peli) ™ (24  siparticle energy spectrum under conditions of electro-
magnetic pumping at irradiation frequencies 751. In this
whered is the thickness of the film; =1,(R300/Rs>—1) is  case the population imbalance of the branches of the quasi-
the mean free path of the electrons in respect to impurityparticle spectrum due to the electromagnetic field does not
scattering’? andl,y is the mean free path of the electrons in have time to relax completely in a time 1. As the fre-
respect to the phonon scattering mechanigms 800 K). quency increases, this process becomes stronger, and an in-
Figure 9 shows the frequency dependence of the raticrease of (w) is observed as a result of spatial diffusion. It
Ri(f)/Ry1(f=0)=Ig(w)/1g(0) for samples Sn-3 and seems to us that the nonmonotonicity of the frequency de-
Sn-4%3 1t is seen that as the frequency is increased, the valupendence is a result of the existence of two mechanisms of
of Ry(f) [and, hencelg(w)] initially decreases and then relaxation of the charge imbalance, one of which leads to a
begins to increase. The solid curves in Fig. 9 represent thdecrease and the other to an increask:0b) as the irradia-
real parts of the ratidg(w)/1g(0) calculated according to tion frequency increases, the mechanism leading to the

7 is the relaxation time in scattering on impurities.
In Ref. 81 the frequency dependencel pfwas consid-
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growth ofl(w) being “turned on” for w> 7-51 and becom- 400
ing dominant as the irradiation frequency increases.
300
2.3. Temperature dependence of the resistance of a phase- >
slip center I
- 200
Studying the temperature dependence of the resistance =
of a PSC is important for understanding the mechanisms of 100
relaxation of the population imbalance of the branches of the
guasiparticle spectrum in a narrow channel. In a number of |
studies of the properties of PSCs in whiskers and long, nar- 0 80
row films deposited on glass substrates, no temperature de- [, pA

pendence of the resistance of a P&@d, hence, of the pen- G 11 © | o iics of b - 'sng
: H H : - . . Current—voltage characteristics of homogeneous film channel Sn-

etration gg?th of the .IongltUdmal eIeCt.nC figldwas in an electromagnetic field with=2.0 GHz afT=3.782 K(1), T=3.657 K

detected”?*In Ref. 24 this fact led to the mistaken conclu- 2, andT=T, (3).

sion that the penetration depth of the longitudinal electric

field in a superconductor is determined by the energy relax-

ation time 7, and not by the relaxation time of the charge omperatyred It is seen thaR,(f) decreases with decreas-
imbalance,7o . However, more-careful studies have showning| temperature. Figure 12 shows the temperature depen-
thatle does depend on temperature. In Ref. 85 the tempergyence of - for several of the samples studied in Ref. 88. The
ture dependence of was investigated in long, thin, narrow ,mners> 3, and4 in this figure label the temperature de-

tin films deposited on crystalli_ng quartz substrates. It Wa%endence of the penetration depth of a longitudinal dc elec-
found that at temperatures sufficiently far frdr, the value ¢ field into the superconductor in the absence of electro-
of | ¢ is determined by collisions of electrons with impurities, magnetic radiation, and the numbeirs5, 6, and7 label the

as was predicted in Refs. 46 and 86. At temperatures close E@mperature dependence kf under irradiation at powers
T, the situation is quite different, since here the characterisp- p and frequencies of 9.2, 4.3, 2.0, and 0.386 GHz, re-
tic times due to elastic relaxation, because of their Stron%pect?vely It is seen from the, figu,re tH;qgtoc(l—T/T )—1/4'

. C

temp.erature dependenb(eL—T/Tc) ", become larger, and for both the dc and ac PSCs. This agrees with the results of

elastic processescattering on phonohdegin to play the Refs. 89-92.

predominant role. In that caggo (1—T/T.) Y4
Measurements dfg in thin and narrow films of tin and

indium were also made in Ref. 44, but by a different method

As we have said, an important role in the study of the
temperature dependence of the resistance of the PSCs is

) X X “played by overheating processes. The increase in the tem-
At a certain place a notch was made in the film, so that it

) ; erature of the film due to Joule heating of the PSCs is given
width at that place was decreased by approximately halb the relatioR?
When a dc current exceeding the cirtical current was passedy
through the film, an electric field arose at the notch. The P
decay length of the field was determined by means of micro-
probes placed near the notch a short distance &p&rjum).
In agreement with the theory, it was found thatTors T, the ~ wheren=(Kd/a{s)¥?is the thermal lengtrK is the thermal
length | decreases according to the lawocA~1?c(1  conductivity of the metale is the coefficient of heat trans-
—TIT) Y4 fer from the film to the substrate, andis the width of the

It was shown in Ref. 79 that near the critical tempera-film.

ture, thermal effects can obscure the temperature dependence
of the resistance of the PSCs; this temperature dependence

= 2.
(2n+1g)ajw’ (29

can nevertheless be extracted after allowing for the heating 10
effect. sk )

It should be noted that in certain theoretical models for 6L 4 2 e
the relaxation of the charge imbalance there is no tempera- 5F %3
ture dependence of the PSC resistance. For example, it was g 4r J

- 3 I

shown in Ref. 87 that taking the scattering of quasiparticles 6

on static inhomogeneities of the order paraméstructure - \‘\
fluctuations into account leads to a temperature-independent 2F 7

penetration depth of the longitudinal electric field. However, -

in the overwhelming majority of experimental studies the NI N e TREY

temperature dependence lgf has still bgen observed if the 0.005 0.01 005 0.1
thermal effects were accurately taken into account. 1-T/T,

For example, in Ref. 88 studies were made of the tem-
perature dependence of the dynamlc reSlstmeP: O) of FIG. 12. Temperature dependence of the penetration depth ofa |0ng|tudlna|

. electric field into samples Sn-54(), Sn-8 @), and Sn-10 M) in the

a PSC due to a dc current a”‘?' Of_ the re_smtdﬁg(e‘) of a absence of electromagnetic irradiatié®,3,4 and at various irradiation
PSC due to an electromagnetic field. Figure 11 shows th@equenciest [GHZ]: 9.2 (1), 4.3 (5), 2.0 (6), and 0.386(7) in the case
I-V characteristics of one of the samples at differentP>p,.
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The thermal conductivity can be calculated from the re-of the |-V characteristigs this attests to the good thermal
sistivity of the sample using the Wiedemann—Franz law: matching of the film and substrate, providing efficient heat
2T removal from the sample into the helium bath.

ar
K=—. (2.6

3e‘p 3. INFLUENCE OF ELECTROMAGNETIC IRRADIATION

I _ _ . . ON THE RESISTIVE STATE OF A SUPERCONDUCTING
F.or tin films K=0.05-0.10 W(/cm K), and the the coeffi CHANNEL BROUGHT ON BY THE PASSAGE OF A
cient of heat transfer from a tin film to a quartz substrate Was) becT CURRENT
calculated in Ref. 93 as 6 \(¢m-K). When a dc current

flows through a PSC in the absence of electromagnetic field-1. Dynamic resistance of a superconducting channel

a powerP~10"° W is released, so that the overheating of A was shown above, the dynamic resistance of a PSC is
the film according ta2.5) will be of the order of 10° K. proportional to the penetration depth of the longitudinal elec-

It is much more complicated to estimate the overheatingyic field into the superconductdisee Eq.(1.20] and is
of the sample when both ac and dc currents are ﬂowing@;iven by

through it simultaneously. The square of the amplitude of the

ac critical current as a function of frequency has the f8rin Ra1=21gR, /1 =4[(D/m)(kgT/A) 7, ]"R, /1. (R
12(1+ Lo, or<l In view of (3.1), one might expect that suppression of
goz c2 72 (2.7  the order parameteA by an electromagnetic field would
2I[1-(4o7")" 7], or'>1. increase the dynamic resistance of a PSC produced by the
Here 7'~1.2r, /(1—T/TJ)2 is the relaxation time of the Passage of a dc current, while stimulation of superconductiv-
gap. ity would decrease #°° However, experimental studies of

It follows from (2.7) that the maximum value of the the effect of electromagnetic field on the resistive current
amplitudel ., of the ac critical current is equal t@2! .. Here state of a su7|%§rc0nducting channel have shown that this is
the power released at an ac PSC having resistices ~ Not the casé”

given by Figure 8 shows families of |-V characteristics for
) ) sample Sn-5 at different power levels of the irradiation at
Pi=lgrR1=1cRy, (2.8 frequencies of 1.5 and 5.025 GHz. The length of sample

Sn-5 is such that only one dc PSC, with a resistance of 2.25
), can be accomodated in the absence of radiation. The
aver frequency boundary for stimulatiofi,,, calculated

om the transcendental equatffn

wherel 4=1.0/12 is the effective value of the current.
Since for tin fiImst=I§R1~ 10" ° W, the overheating
of the film due to the Joule heat released at a PSC on passa
of an ac current is not any bigger than the value obtained i
the case of a dc current, i.e., it is of the order of a millikelvin. fﬁ)W: Al[7.hIn(8A/h )], (3.2
When a dc measuring current is passed through an ac PSC, a _ _ ) o
power P’ =12R; is released. Sincé<I, and P'<P;, the IS equal to 6 GHz. Therefore, increasing the irradiation

overheating of the sample due to the passage of the dc cupower leads to a decrease of the critical current, i.e., suppres-
rent can be neglected in this case. sion of superconductivity, at both 1.5 and 5.025 GHz. Let us

When a superconducting channel is irradiated by an rfirst consider the case when the frequency of the external

electromagnetic field, the so-called Ohmic dissipation andalectromagnetic field is such that the resistance of a PSC,
relaxation dissipation occd?. caused by the passage of an ac current through the channel is

At high frequencies ¢r,>1) the heating of the film smaller than the resistance of a PSC cg_used by the passage of
due to Ohmic absorption can be estimated by the expressidh ¢ current, i.e.Ry(f) <Rqyi(P=0). Initially the dynamic
resistanceRy,(P) of a dc PSC is unaffected by small in-
12R,(3w/4w,)? creases in the irradiation power, but, starting at a certain
=— (2.9 power levelP* <P, (see curve, 3, and4 in Fig. 83, in
complete contradiction to the predictions of the theory, the
wherew, = wA%/2hkgT, andl is the length of the film. dynamic resistancBy,(P) of the dc PSC begins to decrease
For tin samples on quartz substrates the heating of themoothly’ It should be noted that as the irradiation power is
film due to Ohmic dissipation does not exceed a few tenthéncreased, the state of a superconducting channel in which a
of a millikelvin, i.e., it is negligible. An estimate of the heat- dc PSC has formed becomes more stable against an increase
ing of the film due to relaxation absorption givé$r/6T, in the dc currentthe linear parts of the 1-V characteristics,
<10 2, i.e., the contribution from relaxation dissipation is whose resistances are multiplesRyf;(P), become longer
also negligible. It is seen in Fig. 8a that as the irradiation power is increased,
Thus in studying the temperature dependencdf the I-V characteristics show the presence of other dc PSCs
even high estimates of the overheating of tin films depositedindicated by arrowsin addition to the single dc PSC that
on quartz substrates are so small that one can neglect thermedisted atP=0. This is not surprising. If increasing the ir-
effects in determining the penetration depth of the longitudi+adiation power decreases the dynamic resistégéP) of
nal electric field into the superconductor. the PSC, then its sizelg will also decrease as a conse-
The absence of overheating effects is also seen on thguence. Therefore, at a fixed channel length the maximum
|-V characteristicgsee Figs. 4, 8, and 11The passage of a number of dc PSCs that can fit in the channel increases.
dc current of up to several tens of microamperes does not Curve 3 in Fig. 13 shows the dynamic resistance
affect the resistance of an ac P&@e extended linear parts Ryi(P)/Ry1(P=0) as a function of the irradiation powéat

Q /
a'fSW|
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FIG. 13. Dynamic resistance of a phase-slip center caused by the passage of 100 -
a dc currentRy1(P)/Ry1(P=0), versus the irradiation powet;2) sample
Sn-12:f=23.39 GHz(1) and f=15.46 GHz(2); 3) sample Sn-6f =200
MHz.
0
a frequency of 200 MHgfor one of the sample&sn-6. It is
seen that when the power of the electromagnetic field is in-
creased from zero to the critical valig,, the dynamic re- 300
sistance of the current-induced PSC decreases by almost a
factor of four. . 4
At P=P, an ac PSC with a resistanéy equal to the - 200 e ,
dynamic resistanc®y;(P) of a dc PSC aP=P_ arises in SY Ny
the samplgsee curves in Fig. 140. ~ ’
At higher irradiation frequencies, whenR(f) 100 | vt
=Ry1(f,P=0) (see Fig. 8k the dynamic resistance of a dc ‘,.{,'«_" i 6 4
PSC initially remains unchanged as the power increases, as K’fy;v 2 3
in the previous case. Here one observes a decrease of its Y il fEand L L
stability against dc currerithe linear parts of the I-V char- 0 40 80
acteristics, the resistances of which are multipleRgf(P), I, pA
become shortér As the irradiation power is increased fur-
ther, the existing dc PSC vanishes and a hew dc PSC appears
(indicated by an arrow in Fig. 8pthe stability of which d
against a rise in dc current increases with increasing power. 300
Upon further increase in power the dynamic resistance of
this PSC remains unchanged and, as in the case of low irra- 1 200
diation frequencies, wheR(f) <Ry (f,P=0), is equal to >
the resistanc®; of the PSC arising under the influence of an
electromagnetic field aP =P (see curve¥ and 8 in Fig. 100 | 4
8b). Thus on the basis of the experimental data presented [o}
above, one can state that irradiation by an electromagnetic 8 .
field with a frequency below the boundary frequency for 0 120

stimulation can either decrease the dynamic resistéfuce
:f)?flfDP>_Po)tT]eer)es?;tg;](g;as(ePEfsr) F;(:cl;P d;: cl):’)S< CRE)écirr:WdeS FIG. 14. Familigs of current—voltage charz_;lcter_ist_ics of superconducting
—Tec di\t="c channels at various power levels of the irradiation. Sample Sn¥12:

equal to the resistand®, of an ac PSC. This behavior of the =3.774 k;f=15.46 GHz(a), f=23.39 GHz(b); T=3.766 K,f=6.0 GHz
dynamic resistance of a dc PSC under the influence of elede). Sample Sn-13T=3.762 K, f=14.16 GHz(d).
tromagnetic radiation cannot be explained by suppression of
the order parameter in the superconducting channel.

It is of considerable interest to study the transition of afamilies of I-V characteristics for samples Sn-12 and Sn-13
superconducting channel from a state of stimulated supemnder irradiation at different power levels. For the first |-V
conductivity to a resistive current stateFigure 14 shows characteristidcurvel) the irradiation power is zero, and the
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other I-V characteristics are numbered in order of increasingvhen the dynamic resistandey;(P=0) is much greater
power. The frequencies of the electromagnetic irradiatiorthan the ac PSC resistan&g arising in the channel at an
were above the lower boundary frequency for stimulationirradiation powerP=P., one does not observe a decrease in
Therefore, increasing the irradiation power leads to a rise iRy (P) with increasing irradiation power. However, when
the critical current .(P), i.e., to stimulation of superconduc- the power is increased further and superconductivity be-
tivity by the electromagnetic field. Here the resistancecomes suppressed, one observes a decrease in the dynamic
Rg1(P) of a dc PSC initially remains unchanged as the irra-resistance of a dc PSC, i.&4;(P) tends towarcdR;, and at
diation power is increaseturve 2 in Fig. 14a; in Fig. 13 an irradiation power equal to or greater than the critical value
this is not visible on account of the scal@hen, starting ata one hasRy;,(P=P.) =Ry, as in the previous caseee Fig.
certain power leveP*, the resistanc®y;(P) of a dc PSC  140.

begins to increase smoothly with increasiRglt has been Thus the above results indicate that in the case of stimu-
established experimentalffythat there is a tendency fé* lation of superconductivity, as in the case of its suppression,
to decrease with increasing irradiation frequeficffor ex-  starting at a certain power lever* <P, the electromagnetic
ample, P* ~0.25°, for f=200 MHz (see curve3 in Fig. field plays a decisive role in the processes giving rise to the
13), while for f=15.46 GHz one ha®*~0.01P., where dc PSCs and, consequently, to a population imbalance be-

P* is the power level above which the dynamic resistance ofVéen the branches of the quasiparticle energy spectrum.
a dc PSC begins to deviate fromRP = 0). This conclusion was confirmed in Ref. 96, where a charge

It should be noted that in the stimulated-super-imbalance occurring under the influence of a relatively weak

conductivity regime, as in the case of rather low irradiation(P<Pc) microwave field was measured with a super-
frequencies, for which suppression of superconductivity j€onductor—insulator—normal met8IN) junction. The volt-
observed, as the irradiation power is increased, the state @3¢ across the SIN junction at zero bias is proportional to the
the superconducting channel upon the formation of a dc Ps€harge imbalance. In the presence of the microwave field this
in it becomes more stable against an increase in the dc cuf©!tage is the difference between the voltages of the autono-
rent; this is manifested on the |-V characteristics as a lengtf?'0uS and perturbed |-V characteristics at the poinD,

ening of the linear segments, the resistances of which are® thg detector response of the SIN junction to _the micro-
multiples of Ry,(P) (see Fig. 14 wave field. Measurements of the |-V characteristics and the

Upon further increase in the irradiation power in the@fferentlal resistance from the current through the SIN junc-

stimulated-superconductivity regime one observes a shorte jon under irradiation by a microwave field at_ a frequency of
. . . 5 GHz revealed the presence of a charge imbal&hce.
ing of the linear segments of the |-V characteristisse
curves5 and6 in Fig. 14a; curved in Fig. 14b, and curvg®
in Fig. 149 until they vanish completely and a breakoff from 3.2. Time-averaged alternating supercurrent of a phase-slip
the state of stimulated superconductivity to the normal stat&"e"
occurs(see curve? in Fig. 14a and curved and5 in Fig. As we mentioned at the beginning of this review, the
14d. Then, as the irradiation power is increased furtitee  time-averaged alternating supercurrent of a PSC, or the so-
suppression of superconductivity has already set in, and thealled cutoff current, is one of the main parameters charac-
value of the dc current through the channel is much Igwerterizing the 1-V characteristic of a channel.
the dc PSCs again appe@ee curve$-9 in Fig. 149, and In accordance with the above-described microscopic
their stability against a rise of the dc current increases withtheory of the resistive current state">3 the supercurrent
increasing power of the electromagnetic field, just as it did inexhibits Josephson oscillations in a PSC region with a length
the case of superconductivity suppression at low irradiatiorof the order ofx;~(&lg)Y? It was shown in Refs. 34, 35,
frequencies. and 57 that a PSC displays the properties of an SNS struc-
It is important to emphasize that the dynamic resistancéure, wherex,; plays the role of a quasinormal region. It is
Rq1(P) of a dc PSC aP=P,, just as in the case of low also known that sinusoidal Josephson oscillations of the su-
irradiation frequencies, coincides precisely with the resispercurrent can occur for superconducting microcontacts with
tanceR; of an ac PSQsee curve$-9 in Fig. 1409, although  dimensions much smaller than or comparable to the coher-
the value ofR; in this case is much larger than at low irra- ence length/*® Sincex, is manifestly greater thag, one
diation frequencies. would expect appreciable anharmonicity of the oscillations.
Curvesl and2 in Fig. 13 show the dynamic resistance The subharmonic current steps observed in Refs. 24 and 33
Rg1(P)/Ry1(P=0) of a dc PSC as a function of the irradia- on the |-V characteristic of a channel irradiated by an elec-
tion power for sample Sn-1%.We see that in the regime of tromagnetic field confirm this. Here the time-averaged super-
stimulated superconductivity, in the case when the dynamieurrent will be nonzero.
resistanceRy;(P=0) of a dc PSC is much less than the The cutoff current is determined by the intercepts on the
resistanceR, of an ac PSC, the dynamic resistarRg(P)  current axis of the long segments of the I1-V characteristic of
increases with increasing irradiation power, and the rate othe channel, the slopes of which are multiples of the dynamic
growth is higher for higher irradiation frequencies. This isresistancdRy, of a PSC(see Figs. 1, 14, and 15The cutoff
clearly due to the following circumstance. As was showncurrent on the 1-V characteristic at zero voltage is just the
above, with increasing irradiation power the dynamic resistime-averaged supercurrehg flowing through the nonequi-
tanceRy,(P) of a dc PSC tends toward the resistafgeof  librium region in which the Josephson oscillations of the
an ac PSC, an®,(f=23.39 GHz)»R,(f=15.46 GHz). order parameter parameter arféa\e see from Figs. 1, 14,
In the regime of stimulated superconductivity in the caseand 15 that by varying the critical currelptand the dynamic
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FIG. 15. Schematic current—voltage characteristics of a homogeneous su-
perconducting channel.

Fig. 14a, 14b, 14d It should be noted that the dynamic

resistancdRy;(P) also increases here. Curvksand?2 in Fig.
resistanceRy; of a PSC, one can varls. Convenient pa- 16 give I(P)/I((P=0) as a function of the irradiation
rameters of the external influences for this purpose are thpower in the stimulated superconductivity regime for two
temperature and the frequency and power of the externatradiation frequencies. We see that the rate of growth of the
electromagnetic radiation. average supercurrent at an irradiation frequency of 23.39

As we see in Fig. 8a and 14c, in the regime of suppresGHz is higher than af =15.46 GHz, i.e., the faster the dy-
sion of superconductivity by electromagnetic radiation, innamic resistance grows, the faster the average supercurrent
the case when the dynamic resistaigg(P=0) of a dc  of the PSC increases.

PSC is larger than the resistariRgof a PSC produced by an As the power is increased further, after suppression of
electromagnetic field witiP=P., the average supercurrent superconductivity has set in, the average supercurrent also
increases smoothly with increasing power. Here, as we havgecreases, and this decreaséd(P) is faster for lower criti-
said, one observes a smooth decrease of the dynamic resigg| currents ,(P). Therefore, starting at some power level,
tance. Curved in Fig. 16 shows the reduced average superthe cutoff current of a dc PSC become equal to zero, while at
currentl¢(P)/1s(P=0) as a function of power for an irra- the same timé.(P)# 0 (see curve$-9in Fig. 149, i.e., dc
diation frequencyf =200 MHz>° PSCs without a cutoff current appear.

In the regime of stimulated superconductivity, in the It is important to note that the influence of the electro-
case when the dynamic resistariRg (P =0) is less than the magnetic field on the value of the cutoff current, as on the
resistanceR; of an ac PSC, one observes an increase of thelynamic resistance of a PSC, has a threshold character in
average supercurrent with increasing irradiation po@ee both the stimulated- and suppressed-superconductivity re-
gimes(see curved in Fig. 16 and curve in Fig. 14a; in Fig.

16 this is not visible at high frequencies on account of the
scale,” as is characteristic for the influence of external ra-
diation on an inhomogeneous supercondutidr.

Figure 17 shows théy(T) andI?3(T) curves of super-

conducting channel Sn-15. The domain of the functig(i)
corresponds to the temperature region in which voltage

S jumps are observed due to the formation of dc PEOst

[ lower temperatures the |-V characteristics of the channel
E have a broken character, apparently because of overheating.
|:.:" If 14(T) is approximated by a straight line, we obtain the

temperature at which the cutoff current goes to zélrg;
=3.810 K<T.<3.830 K. Indeed, folf>Tg, the |-V char-
acteristics of the superconducting channels do not show evi-
dence of the formation of dc PSCs, i.e., at the critical current
there are no voltage jumps in the resistive region of the 1-V
characteristic® An analogous picture is observed for whis-
kers. Figure 18 shows the temperature dependence of the
cutoff current, critical current, and voltage jumfy(T) of
the first dc PSC for an In—Pb whisker, as constructed from
the family of 1-V characteristics given in Ref. 101. For tin
film channels one has T=T_.— T4,=20-30 mK®° while for
xvhiskersAT is several millikelvin, but the noncoincidence
of T, and T4y is common property for them.

A similar situation has also been observed in the study of

P/P,

FIG. 16. Time-averaged supercurrégtP)/I {(P=0) of a phase-slip center
brought on by the passage of a dc current, as a function of the irradiatio
power: 1,2 — sample Sn-12f=23.39 and 15.46 GHz, respectively,—
sample Sn-6f =200 MHz.
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FIG. 18. Temperature dependence of the cutoff cur?@ntcritical current
122 and voltage jump/, of the first dc PSC of an In—Pb whisker.

sizex, of the nonequilibrium region of the PSC were smaller

ducti h | ¢ hi q than the coherence length, the dependence of the supercur-
fﬁ.?.gégn Fﬁ;ﬂ?g 1; sahnor\]/issthg temlgg;atsuurge(;(;%gnlggscr:z Or{ent on the total phase shitwould be sinusoidal. In the real
the cutoff current of the first, second, and third PSCs in a5|tuat|on, whenx,>¢, the phase dEpeHndence of the supercur-
YBa,Cu;0;_, sample(HS-7.7® In the resistive state this €ntis modified in such a way thag(a) is nonzero, and so

sample has a cutoff current. For the first and second dc PS8 Cutoff current appears. The greater the lengihof the
the value of the cutoff current is the sane, (= Io,), while nonequilibrium region, the larger the average supercurrent

. — = — . ; through the dc PSE (see Fig. 20
for the third dc PSQ g>151=15,. This property is not ex- Thus in the framework of this model the value of the
clusive to the HTSC sample. An analogous picture has bee@u

b di dv of tin whiske?d le. When th toff current depends on the amplitude of the supercurrent
observed in a study of tin whiskefsfor example. When the 4 the gegree of anharmonicity of the Josephson oscilla-

151(T), 1s2(T), and I(T) curves are approximated by tions, and the greater the length of the region where these
straight lines, we obtain the temperature at which the ?UtOstcillations occur, the higher the degree of anharmonicity.
currents go to zeroTg(88 K)<T(93 K). For ceramic It is seen in Fig. 15 that as the critical current increases
samplesAT=T.— T4 is much larger than for channel made (11>1,), so does the cutoff currenti {>1,), but the dy-

of conventional superconductors. However, for Cerami%amic resistance of the dc PSC remains unchanglg (
samples the temperature region in which dc PSCs are ob- Ry;). Thus as the order parametkrand, with it, the am-
served is much larger than for conventional channels, b

L . . u}!)Iitude of the superconducting current increase, so does the
noncoincidence o, and T, is present in both caséS. cutoff curren1%% provided that, in the process, the degree
Several models have now been proposed in which th%f ’ b
X : anharmonicity of the Josephson oscillations, ixg.and,
cutoff current has been estimatéd®31°81%21g explain the y P oA

. hence,Ry; either remain unchanged or change very slowly
hehavior of the average supercurrent of a dc PSC when th(%s is observed for a superconducting channel on decreasing

channel is irradiated by an electromagnetic field, we .hav?emperatur)a An increase in the average superconducting
used to model proposed in Ref. 98. As we have said, if the e . . .
current ( ;>1¢) will also occur with increasing anharmonic-

ity of the oscillations of the supercurrent, i.e., with increasing
0.8 dynamic resistanceR(j; > Rj;), even if the amplitude of the
supercurrent does not change in the prodéiss order pa-
rameter and, hence, the critical current remain constaae
Fig. 15. Experimental studies of superconducting channels

< 06 in a resistive current state have established that at fixed tem-
2 perature T/T.=const) for “dirty” samples the ratid¢/I
— 0.4 ~0.52* while for “clean” channels the ratid ;/I reaches

0.81%3 This behavior of the average supercurrent can be ex-
plained precisely by an increase in the anharmonicity of its
Josephson oscillations. Indeed, with increasing mean free
path the diffusion coefficient and, hence, the region of oscil-
lations of the supercurrent;= (£lg)*?= V4D ro)"* also
increase, leading to an increase in the cutoff current.
0 20 40T KGO 80 100 As the irradiation power is increased in the regime of
’ stimulated superconductivity, the critical current of the chan-
FIG. 19. Temperature dependence of the cutoff currenf the first ©), ~ Nel and, hence, the amplitude of the supercurrent also in-
second @A), and third @) dc PSCs in sample HS-7. crease. If the dynamic resistanBg;(P) and the region of
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supercurrent oscillations decrease in the process, then this-1. the first dc PSC, with a dynamic resistancg,,Rap-
leads to a decrease in the cutoff current. Therefore, for stimupears in the channé?**’ This resistive state of the channel
lation of superconductivity in the case when the dynamicds maintained in the current intervall,=1,,— 1., wherel .,
resistanceRy(P=0) of a dc PSC is greater than the resis-is the current at which the second dc PSC arises in the chan-
tanceR; of an ac PSCRy;(P) andl_S remain unchanged nel. The resistive state of a channel with two dc PSCs is
(curve 2 in Fig. 149. However, as the power increases fur- maintained in the current intervall,=1,—1¢, wherel,

ther, when suppression of superconductivity sets in, the dds the current at Which a third dc PSC arises in the channel.
crease of the cutoff current, occurs for two reasons: first, AS the dc current is increased further, more new dc PSCs

the amplitude of the supercurrent decreases, and, second, M. until the whole channel has gone into the normal state.

resistanceRy;(P) and, hence, the anharmonicity of the Jo- The e>_<perime_ntal dependence of the critical currépts
sephson oscillations decreaSe. as a function of (i=1,2,3...) (see, e.g., Refs. 24 and )88

In the case when the dynamic resistafgg(P =0) of a is qualitatively the same as predicted in Refs. 47 and 104.

dc PSC is less than the resistarRg of an ac PSC, as the We note that the criticism of Ref. 47 brought in Ref. 105 was

irradiation power increases in the regime of stimulated sub@sed on a misunderstanding in connection with the use of

perconductivity the amplitude of the supercurrent and thdh€ asymptotic formuld?ci.=IC[1+e>§p(—I\/K/2i)]. This for-
dynamic resistancRq;(P) increase, and hence, so does theMula is valid for describing,; only in extremely long chan-
degree of anharmonicity of the oscillations of the supercurl'€!S (>4ilg). In the actual situation one must use the re-
rent (Fig. 14a,b, and X Therefore, the average supercurrentSults of a numerical calculation, which are well approxi-

I also increases, and the larger the valueRgf(P) and, mated by the asymptotic expression:

hence, ofx;, the larger the cutoff currerfturvesl and2 in b 2il e

Fig. 16).99 lci Ic[ 2<|_>
As the irradiation power is increased in the regime in

which the superconductivity is suppressed by an electromag-

netic field, the value of the critical current and, hence, thevhere

amplitude of the supercurrent through a dc PSC decrease.

Increasing the region of oscillations of the supercurment _

2ilg\?
~|. 0.841+2.07 L

1odx x2—xZ

~Ry1(P) leads to growth of the cutoff current. Therefore, in 3 xcVA(X) J1—x2'

the case when the dynamic resistaigg(P) of a dc PSC is

less than or of the order of the resistariRgof an ac PSC, 1 dx x?—x2 '
the cutoff current is unchanged in the regime of suppressed °~ Lc A32(x) B(x) J1-x2'

superconductivitysee Fig. 8h%°
When Rdl(P:0)>R1 both the oscillation region and A(X):3(XC,/1_XCZ_X,/1_X2)+arcsinxc_arcsinx;
the amplitude of the supercurrent decrease with increasing
irradiation power. Therefore, the cutoff current also de- 2\1?2
creasegsee Fig. 8a At irradiation powers close to critical §> '
the average supercurrent of the dc PSCs becomes zero, while
the critical current is nonzero. It can be assumed that at sund. for simplicity, the cutoff current is assumed equal to
ficiently high irradiation powersR=P.) the order param- Z€ro. Formula(4.1) gives a value ofl; which is several
eter and supercurrent in the PSC executes harmonic oscillRercent greater than that obtained in Ref. 104:
tions with the frequency of the external electromagnetic costl/2il )—I_/I
field. Here averaging the supercurrent through the PSC over | =], E/l sT ¢ 4.2
time gives a zero value of the cutoff currét. coshl/2ilg) —1
As to the fact that the cutoff current in the temperature | ig known, however, that the current interval; be-

region AT=T.— Ty is equal to zero, here different situa- yyeen voltage steps increases more rapidly with the number
tions, requiring further study, are possible. One possible igf the dc PSC in sequence than is predicted by the theories,
that as the temperature approachgsthe ratiox, /¢ and the i.e., the {+1)-th PSC is formed by a currehy; larger than

degree of anharmonicity of the Josephson oscillations of theye predicted current. The reason for this disagreement may
supercurrent decrease, and at a certain temperayréne  pe that the dc PSCs that have formed affect the remaining

cutoff current goes to zero, i.e., in the temperature intervakherconducting part of the channel, and this possibility was
AT there exist PSCs for which the Josephson oscillations of ot taken into account in Refs. 47 and 104.

the supercurren_t are practically harmonic. Indeed,_for tinfilm |y an experimental study of the nonequilibrium states of
samples the rati@; /£=(1—T/Tc) "%, and forT—T; it goes iy whiskers with multipotential leads, it was shofithat dc
to zero® Granted, there remains an open question as to thescs separated by distances300 xm) much greater than
fluctuations neaiT., which smear out the structure of the {he coherence length and the penetration depth of the
PSC. longitudinal electric field into the superconductor interact
with one another. This is manifested in the fact that a dc PSC
arising at a currenit;; in one part of the channel can increase
or depress the insertion curreny; ;) of the next dc PSC,

At a dc current below the Ginzburg—Landau critical cur- which is located in a different part of the channel at a much
rent ., the channel is in the superconducting state. Atgreater distance away than could be explained by diffusion

6 4
B(x)= §x5—2x§x3+ gxg; Xe=

4. CURRENTS FOR THE ONSET OF PHASE-SLIP CENTERS
IN A SUPERCONDUCTING CHANNEL
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12 which was not done in those papers, will change the values
of the critical currentd; of the superconducting channels.
When a channel is subjected to an electromagnetic field at a
frequency below the boundary frequency for stimulafidff
the superconductivity is suppressed. In that case the critical
currents |, and |.; decrease with increasing irradiation
power, with the depression bf; occurring more slowly than
that of .. ConsequentlyAl,(P/P;) increases, as in the
previous casé’®
The stabilizing of the resistive state, which is manifested
in an increase in\1,(P/P_), decreases with increasing irra-
diation frequency. For tin film samples the increase of
0 0.1 0.2 0.3 Al;(P/P;) under irradiation by an electromagnetic field
P/Pc starts at frequencies of 100 MHz. Interestingly, the influ-
FIG. 21. The difference between the values of the currents at which the first"C€ of an electromagnetic field ar,(P/P), like the in-
and second voltage steps appear on the current—voltage characteristic dlence on the dynamic resistance and the cutoff current of a

sample Sn-12A1,=1¢,— I, versus the power of the external electromag- dc PSC®® has a threshold in terms of the power of the mi-
netic field at frequencieb=23.39 GHz(1) and 15.46 GHZ2), T=3.774 K. crowave field.

The inset shows the critical currentg andl . of sample Sn-12 as functions
of the power of the microwave field &t 15.46 GHz.

T

10

Al , UA

~ D
T

Difficulties also arise in explaining the presence of a
descending branch df1,(P/P.), since even high-side esti-
mates show that the overheating of the film in these experi-
of the quasiparticle current or by quasiparticle injection orments is negligibly small{ 102 K; see Sec. 2)3 The ab-
extraction? This implies that it is a long-range interaction. sence of an overheating effect is also seen on the |-V

As to the nature of the increase in the currbntfor the  characteristicgsee Figs. 8 and 34 Therefore, the descend-
onset of the next dc PSC, the most preferable hypothesi®g branch ofAl;(P/P;) is not due to overheating of the
appears to be that proposed in Ref. 2 and confirmed in Regample but is a consequence of the inherent nature of the
106, viz., that the Josephson electromagnetic field of a diteraction of a dc PSC with an external electromagnetic

PSC affects the superconducting properties of the channel field.
It can thus be stated that in the regime of stimulated

superconductivity, as in the case of rather low irradiation
frequencies, where suppression of superconductivity is ob-
served, the state of a superconducting channel in which
~ Letus consider the influence of external electromagnetigrrent-induced dc PSCs have formed becomes increasingly
iradiation on the currents at which dc PSCs arise in thetaple against a rise in the dc current as the irradiation power
channel. Figure 21 shows the differendé;=Ic;—I; be- s increased. This is manifested in a lengthening of the linear
tween the values of the currents at which the first and secon‘gar»[S of the 1=V characteristics, with resistances that are
voltage steps appear on the |-V characteristics of samplgyytiples of Ry,. It should be noted that in the regime of
Sn-12 as a function of the power of the electromagnetic fieldtimulation of superconductivity by a microwave field, in
for frequencies of 23.39 GHifcurve 1) and 15.46 GHz certain cases tin channels, after the formation of the first
(curve 2).1% At these irradiation frequencies stimulation of current-induced dc PSC in them, withstood a dc current al-
superconductivity is observed, i.e., the value of the criticalost four times as large as in the case of zero irradiation
currentl; increases with increasing irradiation pow@ee power before the second dc PSC formed, i.e., the maximum
the inset in Fig. 2L We see that as the irradiation power Al,(P)/Al,(P=0)~4. Here the value of. increased only
increasesAl,(P/P;) initially increases and then begins to py 5 factor of 1.5°7 This indicates that the microwave field
decrease. This occurs becaus@ndl ., depend on the irra-  sffects the currents, andl, differently.

diation power in different ways: the critical currehy; in- Experimental studié® have confirmed the conjecture
creases with increasing power more rapidly than deedut  {hat the Josephson radiation from the dc PSC has a stabiliz-
then the increase ihy; slows down, and at a certain power jnq influence on the resistive state of a channel. It is impor-
one hasl;;=I.. Here the channel undergoes a transitioniant to note that for tin whiskers the Josephson frequency of
from the superconducting to the normal state. It should bg §c PScC has a valug,~500 MHz?*® which is much
emphasized that as the irradiation frequency decreases, tgajler than the lower frequency boundary for stimulation.
maximum of Al(P/P;) decreases in value and shifts to However, even in this case a strong increase\in with

higher powers™ _ o increasing is observed. There is as yet no theoretical expla-
The Al,(P/P.) curve (see Fig. 2] obtained in the re- nation for this effect.

gime of stimulated superconductivity is qualitatively similar
to the temperature dependenté;(T) given in Ref. 2(see
Fig. 97 of that paper It is seen from the figure that with
decreasing temperature thd (T) curve varies nonmono- As was shown in Sec. 2, when a superconducting chan-
tonically, in fundamental disagreement with the predictionsnel is acted on by an external rf electromagnetic field, ac
of the theories proposed in Refs. 47 and 104. It is possibl®SCs arise in the channel, starting at a certain power level
that taking into account the interaction between dc PSCs.. Figure 22 shows two families of 1-V characteristics of

4.1. Phase-slip centers caused by direct current. The
influence of external irradiation

4.2. Phase-slip centers caused by electromagnetic radiation
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ation time of the gap after which P, remains practically
1 unchanged as the irradiation frequency is increased further.
Consequently, as the irradiation frequency increases, the
100 F 2 value of the ac current giving rise to an ac PSC increases.
However, as we have said, the states of the superconducting
channel in which ac PSCs have formed become more, not
R4 less stable against the passage of dc current through them as
50F L the frequency of the ac current increases.
. Thus it is clear from what we have said that the states of
S superconducting channels with PSCs become more stable
/ | | | against the passage of currents in the presence of an external
0 200 200 600 electromagnetic field than in the absence of such a field. This
VY, effect is observed starting at irradiation frequencies of the
order of the inverse relaxation time of the charge imbalance,
b fo=(2mrg) ! (fo=100 MHz for sample Sn-12 Conse-
quently, this stimulation of superconductivity by an electro-
magnetic field cannot be explained, since that would require
higher irradiation frequencies.

I, uA
w
£

100 —

4 CONCLUSION

50 3 In summary, the onset and formation of phase-slip cen-
ters in an ac electromagnetic field are complex processes that
remain largely unexplained. As the ongoing accumulation of
experimental data continues, one can hope that adequate the-
. . oretical models will soon make their debut.
0 200 V40uOV 600 At present the resistive state of superconducting chan-
’ nels is represented as a set of individual noninteracting
FIG. 22. Families of current—voltage characteristics of channel Sn-3 at variPSCs. To understand the process by which a channel of finite
ous power levels of the external irradiation Bt 3.762 K andf=23.825 length is filled with PSCs and the interaction between PSCs
GHz (a) andf=0.075 GHz(b). For the first I-V characteristicurvel) the || require further experimental and theoretical investiga-
::sg:g%g %%V\‘,'Virrfs zero, and the rest of the curves are numbered in order gf, , '\y/e hope that the present review will facilitate this.
We thank E. V. Bezuglyi, both for many years of scien-
tific collaboration, in general, and for providing the
sample Sn-3”" It is seen that at a high irradiation frequency asymptotic formulag¢4.1) and for helpful discussions of the
(3.825 GH3 the state of the channel in which an ac PSC hagnaterial presented in this review, in particular.
formed is more stable against a rise in the dc curfém
initial parts of the 1-V curves are extendedt a low irra-  *E-mail: dmitriev@ilt.kharkov.ua
diation frequency75 MHz) the state of the channel in which
an ac PSC has formed is extremely unstable with respect to
the passage of a dc current: the |-V characteristics becomeg_|_ yiev and N. B. Kopnin, Usp. Fiz. Nauk42, 435(1984 [Sov. Phys.
nonlinear as the dc current increas®slt should be noted Usp. 27, 206 (1984].
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A self-consistent model is constructed for a superfluid Bose liquid in which the single-particle
Bose—Einstein condensatBEC) is suppressed on account of the strong interaction

between bosons. The ratio of the density of the BEC to the total density of the Bose liquid is
small,ny/n<1, in contrast to the Bogolyubov theory for a nearly ideal Bose gas, in

which the small parameter is the ratio of the number of overcondensate excitations to the number
of particles in the intense BECn{ng)/ng<<1. A closed system of nonlinear integral

equations for the norméll(p,w) and anomalouilz(p,w) self-energy parts is obtained in a
renormalized perturbation theory constructed in the combined hydrodyrinip— 0)

and field(for p#0) variables, the use of which ensures analyticity of the functﬁ;(sp,s)

for p—0 ande—0 and a nonzero value of the superfluid order paran®tgi0,0)+0 at

T=0. It is shown that the structure of the quasiparticle spect{m) and, in particular, the
presence of a roton minimum are determined by the sign-varying and oscillatory behavior

of the Fourier component of the pair interaction between bosons in the “hard spheres” model.
An important role here is played by the renormalizatisoreening of the pair interaction

on account of many-particlecollective) effects, which are described by a polarization operator
of the bosons on the “mass shell” and leads to enhancement of the effective attraction in
certain regions of momentum space. It is shown that the superfluid compenant — 0 in this
model is a superposition of the single-particle BEC and a pair coherent condensate,
analogous to the condensate of Cooper pairs in superconductors. The structure of the superfluid
state forT+0 is also considered, with allowance for the appearance of a nhormal component

pn, and a branch of second sound, the velocity of which goes to zero ak theint. The
applicability of the Landau superfluidity criterion is examined, and the question of the

limiting permissible critical velocity of superfluid flow in the absence of quantum vortices is
discussed. ©€2001 American Institute of Physic§DOI: 10.1063/1.135551]6

1. INTRODUCTION single-particle BEC cannot by itself serve as the microscopic
basis of the superfluid componemi. Therefore, the quan-

. The quantum structure of the superfluid state of liquidy,y structure of the effective superfluid condensate in He I,
He below thex point (He Il) remains in disputésee, e.g., with an “excess” density p— po>po, requires deeper

Refs. 1-3. As was pointed out in Ref. 4, there are a numberinvestigatiorﬂo'”

of contradictions between underlying principles and conclu- The model of a superfluid Bose liquid with pair conden-

sions of the microscopic theory 6He superfluidity~® and : L .
. . . sation of bosons, analogous to the Cooper pairing of fermi-
the experimental data. In particular, according to recent re=

sults on the quantum evaporation e atoms’ the maxi- ons (electrong in superconductors, has been discussed for a
mum densityp, of the single-particle Bose—Ein,stein conden- number of year%_? Two possibili_ties are considered in that
sate (BEC) in by the Bose liquid*He, even at very low model: the coexistence of a pair coherent conden$3@)
temperatureT <T, , does not exceed 10% of the total den- With a BEC;*"*“or the existence of an intense PCC in the
sity p of liquid “He, whereas the density of the superfluid c0mplete absence of a BEE**In the first case, problems
componenips— p at T—0. This low density of the BEC is With the stability of the ground state and with hybridization
due to the strong interaction between fliée atoms and to of the single-particle (gap and collective (acoustical

the large energies of the quantum fluctuatigmero-point  branches of the spectrum of the Bose liquid can arise at low
vibrationg as T—0 and of the thermodynami¢therma) densities of the BEG! In the model of a superfluid state
fluctuations forT>0, and it indicates that this “depleted” with a “Cooper” PCC with no BEC p,=0) these problems

1063-777X/2001/27(3)/11/$20.00 185 © 2001 American Institute of Physics
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automatically disappear, since the phase of the PCC is arbsuppressed BEC, the small parameter of the model being the
trary and can be chosen so as to ensure stability of the soumdtio of the density of the BEC to the total density of the
(hydrodynami¢ branch of collective excitations. Here hy- Bose liquid,pq/ps<1, in contrast to the Bogolyubov theSry
bridization occurs only between those branches of the speder a nearly ideal Bose gas, where the small parameter is the
trum that correspond to the same parity of the number ofatio of the number of overcondensate excitations to the
particles taking part in the excitatiqsee Ref. 1. number of particles in the intense BEQy{ ng)/ng<<1.

However, in this case there arise difficulties in connec-  In this model the superfluid state is described by a “trun-
tion with the fact that the gap single-particle spectrumcated” system of Dyson—-Belyaev equations for the normal
e(p) = VAZ+u2p? violates the Hugenholtz—Pines theordm 3,,(k,») and anomalous;,(k,») self-energy parts in a
and does not conform to the Reatto—Chester powerrenormalized field-theoretic perturbation thedif* con-
law asymptotic behavié? of the correlation function structed in combined variabl@3? which in the long-
((r)g(r"))~|r—r’| "2 but becomes exponential instedd. wavelength limit f—0) reduce to the hydrodynamic vari-

In addition, having a “Cooper” PCC of coupled boson pairs ables of the macroscopic quantuffior T=0) or two-fluid

as the basis of the superfluid component in the absence of(éor T#0) hydrodynamics, while in the short-wavelength
BEC should lead to half-integer values of the circulationregion they correspond to the boson field operators of quasi-
quantumx=#/2m (wherem is the mass of &He atom),  particle creation and annihilation.

which have not been observed in experiménhté® The density of the superfluid compongnt here is de-

Moreover, the finite gap # 0 in the quasiparticle spec- termined by the quantit¥,(0,0), which is a superposition
trum for p— 0 should give rise to exponential features in theof the “depleted” single-particle BEC and the intense
temperature dependence of the heat capdCjfyT) and to  “Cooper” PCC, with coincident phasesigns of the corre-
first-order phase transitions in temperature and pressurgponding order parameters. The pair interaction between
where the BEC vanishes and the PCC apptaamd those bosons is chosen in the form of a regularized repulsive po-
have not been observed experimentally, either. tential in the “hard spheres” modé?:**the Fourier compo-

On the other hand, numerous precision experiments imentV(p) of which is an oscillatory and sign-varying func-
which the dynamic structure fact&(p,¢) in liquid “He has  tion of the momentum transfgras a result of the “excluded
been recovered from inelastic neutron scatteringdata  volume” effect and the quantum diffraction of the particles
show that the elementary excitation spectr&tp) due to  on one another. The negative minima d{p) in certain
collective oscillations of the density of tféle Bose liquid  regions of momentum space correspond to an effective at-
depends very weakly on temperature up to xhpoint (T,  traction, which can be enhanced as a result of renormaliza-
=2.17 K) at all momenta, including the phonon, maxon, andtion (screening of the pair interaction on account of many-
roton regions. This means that the critical velocity deter-particle collective correlations:*¢ It is shown that such an
mined according to the Landau superfluidity criterian,  attraction can be sufficient for the formation of a PCC in
=min[E(p)/p], remains practically unchanged @sncreases momentum spacéut not for the existence of coupled boson
and does not go to zero d—T, . At the same time, we pairs in real spage Self-consistent iterative numerical calcu-
know that the destruction of superfluidity in macroscopiclations of the self-energy of the bosons, the pair order param-
flows of He Il is governed by processes of creation of ex-eter, and the quasiparticle spectrumTat 0 permit finding
tended Onsager—Feynman quantum vortices or of closed fluke conditions under which the theoretical spectip) is
lines (loops, ring$.2 As a result of this, the observed value in good agreement with the experimentally measured spec-
of the threshold velocity? for the destruction of nondissi- trum of elementary excitations. Here it is shown that in the
pative flow in He Il can be two orders of magnitude smaller“hard spheres” model the roton minimum in the quasiparti-
than the critical velocityv.~[A,/p,]=60 m/s due to the cle spectrunE(p) in a Bose liquid with a suppressed BEC is
roton gapA,=8.6 K at the pointp=p,=1.9 A1 in the uniquely related to the first negative minimum of the Fourier
quasiparticle spectruri(p). component of the renormalized potent{ahalogous to the

However, under conditions such that the creation andninimum in the Bogolyubov spectriiof a slightly nonideal
motion of vortices(or vortex rings is hindered, one can dilute Bose ga&®).
achieve much higher values of the threshold velocity. For ~We also consider the structure of the superfluid state at
example, maximum values: =2—3 m/s are observétlin T+ 0 with allowance for the suppression of the normal com-
ultrathin films and capillaries & <1 K, and critical veloci- ~Ponentp, and the branch of second sound, the velocity of
tiesv* =8-10 m/s have been measui&tfin the passage of Which goes to zero at the point. We discuss the questions
He Il through thin obstacles via narrow openings severaPf the applicability of the Landau criterion of superfluidity
microns in diameter. Moreover, threshold velocities aboveand the value of the limiting permissible critical velocity of
50 m/s have been obtainddn experiments on ion accelera- superfluid flow in the absence of quantum vortices.
tion in He Il at pressure®=15-20 bar.

In this paper we discuss problems pertaining to the mi2. GREEN'S FUNCTION AND THE EQUATIONS FOR THE
croscopic quantum structure of the superfluid compopgnt SELF-ENERGY PARTS IN THE MODEL OF A BOSE
in He 1l and to the Landau superfluidity criterion, which LIQUID WITH A SUPPRESSED BEC

determines the maximum permissible critical velocity in the We start from the renormalized field-theortic perturba-

absence of quantum vortices. . . tion theory®!! constructed in the combined variabte¥
Our approach is based on the microscopic model pro-

posed in Ref. 17 for the superfluidity of a Bose liquid with a W(x)=‘1’L(x)+ﬁfsinh(x), D
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1/2
2]

2

which in the long-wavelength regiofk| <k, (wherek is p? 2 .
ﬁ"‘zil(pf(p))_#} _‘Elz(p,E(p))

some characteristic momentiirare just the hydrodynamic E(p)=
variablesW, (x) in the spirit of Landau quantum hydrody-

namics: and which in the short-wavelength regitk| >k, +33,(p.E(p)). 8
coincide with the usual field operato¥g(x): where
~ A — (R ~ 1~ -
WL (x)= V()| 1+ %HZDL ; w(pe)=5[2u(p.e) = 21(—p,~e)],
ng
= _7 the plus sign corresponding to the symmetric (%, and
Vsinh= Ysin ' & Weinn=¢— L, 2 P 9 P 9 y ﬁi

the minus sign to the antisymmetric pi@l. We henceforth
(r)= 1 a, e = [Fye assume thak,; is an even function op ande, so that>$;
L \/VH(EKO K - ' =0 and2i1= 211.

Relation(7) gives an acoustic dispersion relation for the

Here the approximate expression for the Iong'quasiparticles ap—0:

wavelength parﬁfL of the Bose field operatcﬁf includes 5 5 _
only the first-order terms in the expansion in the slowly vary- ~ E(p—0)=¢|p|; T=VZ150,0/m*, 9
ing (hydrodynamig¢ phasep, and in the small deviation of

the densityfi, from its average valuéfi, ). In Refs. 31 and where _ _

32 it was assumed that at loWy owing to the rather weak 1 1|1 0241(0,00  924140,0

interaction kyV(kg)<1), almost all of the particles are ﬁq_*zg m FIE - FIE ; (10
found in the Bose condensate, and therefore the value of the

momentumk, in Ref. 32 was chosen small enough so that  _ &511(0,0) 2 32511(0,0)

the approximate equalit{fi, )=n, would hold, wheren, is B=1-—" —200,0 ———

the density of particles in the BEC. In a Bose liquid with a e

strong interaction, however, where the single-particle BEC is 2 -

strongly suppressedng<n), the quantity (fi_) should + ——2|212(0,0)|2. (11
be normalized to the density of the superfluid component 2 98

Ns=ps/m. For liquid “He the phase velocit§ should be equal to

On the basis of the field variablés$), (2) in the frame-  the velocity of first(hydrodynamig sound,c,~236 m/s, ow-
work of the Green’s function meth8dor T—0 one can ing to hybridization of the single-particle and collective

construct the usual system of Dyson-Belyaev equafionspranches of the spectrum of elementary excitations. Here the
which allow one to express the norm@l; and anomalous long-wavelength asymptotic expression for the Green'’s func-
Gy, renormalized single-particle Green’s functions of thetions has the form

bosgns in terms of the corresponding self-energy p%ﬂs 3 5 512(0,0)

andX,: G11(p—0,e)= =Gy p—0e)=

~ Ble2—c2p?+is]
Gal(—p,—s)—zn(—p,—s)_ (12

Gulp,e)= Z(p,e) ’ ©® It should be emphasized that in the renormalized field
~ ~ theory the self-energy par%i,- are analytic functions op
Gia(p,e)=214p,8)/Z(p,e). (4 ands, so that in the limitp—0 ande—0 we have

Here S.,(0,0#0 andB#0,
Z(p.e)=[Go (—p,—&)—2p(—p.—#)] in contrast to the renormalized perturbation thebftyin

which, as was shown in Refs. 10 and 32, the functions
3ij(p,e) are nonanalytic ap—0 ande—0, andX,(0,0)

=0 andB=0. Here an additional procedure to resolve the
; 6—+0, (6) indeterminacy of the type 0/0 is required in order to obtain
the correct asymptotic expressioh:

X[Gol(p.e)—S1u(p.e)]—[Sip.e)|% (5)
2

p .
8—%+M+|5

Gol(p,e)=

where w is the chemical potential of the quasiparticles,
which satisfies the Hugenholtz—Pines relattdn:

nom(ﬁ

G 0e)=—-G 0g)= ——F———;
11(p—0,¢) 12(pP—0,) n[o?— c2p?+ 5]

Mzill(oyo)_ilz(o,()). (7)
The spectrum of all the elementary excitations with zero he- C%;E d_’“ 13
licity, owing to the strong hybridization of the single-particle m dn

and collective branches in a Bose |IQU|d with a finite BECwheren is the total density of bosons, ama is the density
(no#0) is determined by the poles of the single-particleof particles in the BEC.

Green’s function$;(p,¢), i.e., by the zeros of the function As was shown in Ref. 17, for a Bose liquid with a suf-
Z(p,e): ficiently strong interaction between particles, in which case
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the BEC is strongly suppressed, one can to good accuracy 170 d3 _

keep only the firstlowest-order term of the expansion in  W,(p,E(p))=— Ef 3T (P.E(p);K,E(K)V

the small density of the BEQhg<<n). This approximation is 2m)

in direct opposition to the Bogolyubov approximafidor a X (p—k,E(p)—E(K))

slightly nonideal Bose gas with an intense BEC, in which ~ 5

caseng=n. NoA(K,E(K))V(K,E(K)) +W15(k,E(k))
As a result, with an accuracy to terms of ordey/n X E(K) :

<1, we obtain a truncated system of equations3grin a

Bose liquid(Ref. 17: (21

where

A(p,E(p)) =noA(p,E(p))V(p,E(p)) +n1V(0)
2

S1(p.)=noA(p,e)V(p,e) + N V(0)+ Wiy(p,e); (14)

ElZ(pvs):nOA(p!S)V(p!S)_F\I,lZ(p!S)! (15) +\1,11(p,E(p))+ Zp_m_’u (22)
where Here the nonlinear equatigl) for finding the quasiparticle
P spectrumE(p), according to Egs(14) and(15), becomes
~ X w ~ ~ ~
‘I’ij(P’S):'f (Zw)ssziKk'w)V E(p)={A%(p,E(p)) —[NoA(p,E(P))V(P,E(P))
T 01/2
X(p—k,e=@)(p.e ko), (16 Yl EEDIT 29
and the total quasiparticle density in the Bose liquid is given
V(p,e)=V(p)[1-V(p)II(p,5)] %, (17) by the relation
HereV(p) is the Fourier component of the bare potential + 1f & [A(k’E(k)) 1} (24
n=ng+ = -1
’ P P 2] mpl EW

of the pair interaction of the bosoné(p, ) is the renormal-
ized (screenegFourier component of the retardéubnloca) The Hugenholtz—Pines relatiofY), according to Egs.
interaction, the renormalization being due to many-particlg(14) and (15), can be written in the form

collective effectsII(p,e) is the boson polarization operator

p=n1V(0)+¥14(0,0)— ¥150,0), (25)
] d®k [ de ~ ~ and, as a result, expressi(22) reduces to the form
pe)=i [ = [ SoT(pe k) Bk o) _ _
(2m) m A(P,E(p)) =noA(p,E(p))V(P,E(p)) +[W12(p,E(P))
~ ~ _ )
X(k+p,e+®)+GAK,0)G 1o k+p,e+w)}; —6’11(0,0)]+q’12(0,0)+ p_ 28)
(18) 2m

It follows from Eqgs.(23) and(26) that the quasiparticle spec-

trum, by virtue of the analyticity of the functionk;; (p,e) is
acoustic forp—0, and its structure fop#0 depends sub-
stantially on the character of the pair interaction of the
bosons.

We also note that the expression for the sound velocity
T, according to Egs(9) and(15), can be written in the form

where I'(p,e,k,w) is the vertex part (three-pole
describing many-particle correlationg;(p,s)=1"(p,&,0,0)
=I'(0,0p,¢); andn; is the number of overcondensate par-
ticles (n;>ng), which is determined from the condition of
conservation of the total number of particles:

d*k [ do~

(2m?) 2 Culke): (19 = A(0,0V(0,0R/f";

n=n0+n1=n0+if

~ 2
W15(0,0) @

If one takes into account only the residues at the poles of the Nn=ng+ ———,
A(0,0V(0,0

Green’s functionéij(p,s) and neglects the contribution of
possible poles of the functionE(p,e,k,») and V(p,e), which is analogous to the .expressior.] for the Bogolyubov
then, with allowance for relatior®)—(6), (8), (14), and(17), ~ Velocity of sound for a slightly nonideal Bose gass

equations(16) on the mass sheli=E(k) take the form(at = VV(0)n/m. The conditionc=c;, together with Eq(13),
T=0): imposes severe restrictions on the choice of the parameters

for the model of the boson interactigaee below
B 17 d3 B On the other hand, since far=0 the density of the
W,.(p.E(p)) = EJ ——T(p,E(p);Kk,E(K)V superfluid componenis equals the total mass density of the
(2m) Bose liquidp=mn, if it is assumed thafi=n, when Eq.(20)
A(K,E(K)) } is taken into account we obtain the relations

E(K) e S5l00
20) Pem o P (0.0v(0,0)]

><(|o—k,E(|o)—E(k))[
(29)
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FIG. 1. Dependence of the ratié/V, on p for different values of the
dimensionless parameter=V,|II|: the dashed curvd shows the bare
“hard spheres” potential fore=0; the solid curve2 corresponds to a value
a=2, curve3 to =3, and curved to a=3.5.

V10,0
A(0,0V(0,0)’

wherepy=mny is the density of the single-particle BER,
is the density of the “Cooper” PCC, and the density
=n—n, is determined from relatiori24) and, for *He at
T—0, according to the experimental ddtahould comprise
not less than 90% of the total energy“bfe atoms. Thus the

ps=mn = (29)

superfluid component in this model is a superposition of the
single-particle and pair coherent condensates, and relations
(24) and (28) impose additional relations on the parameters

of the microscopic theory of the superfluid Bose liquid.

3. INFLUENCE OF THE PAIR INTERACTION ON THE
SPECTRUM OF ELEMENTARY EXCITATIONS IN A BOSE
LIQUID WITH A SUPPRESSED BEC
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FIG. 2. a: Bogolyubov spectrur(81) for a dilute, nearly ideal Bose gas,
obtained by substituting the potent{&0) with an independent fitting of the
two parametersr=2.5 andV, /a®= 169 K ata=2.44 A. b: Instability of the
Bogolyubov spectrum obtained by substituting potentsd) into the rela-
tion (31) for the typical*He parametersa=2.17x 107> cm 2 anda=2.44
A. Here and in Figs. 3-5 the momentumis expressed in terms of the
number of divisiond of the integration interval; the number of a division
is related to the momentum @s=2i/al.

As was shown in Refs. 33 and 34, in the case of a spheri-

cally symmetric &-wave scattering of the particles, a calcu-

lation of the Fourier component of the pair interaction poten-

tial between bosons in the “hard spheres” model in thethe interaction(30) is analogous to static Friedel oscillations
ladder approximation gives a result in the form of a sign-Of the screened Coulomb potential with perietke in real
varying and oscillatory function of the momentum transferspace, which arise as a result of the scattering of electrons
on account of the “excluded volume” effect, which can be (fermions on the filled (according to the Pauli principle
regarded as a sort of analog of the Pauli exclusion principléermi sphere of diameterk2, wherekg is the Fermi mo-

in real space. Because of the mutual quantum diffraction ofmentum of the electrons.

particles on an infinite potential jump/(r)—e« asr—a
(wherea is the diameter of a hard spher¢he effective pair
potential in momentum space has the forin=(1)

sinx

V(p)=Vojo(pa); jo(X)=T, (30

If potential (30) is substituted into the Bogolyubov spec-
trum for a dilute, nearly ideal Bose g4s,

p2 { p2 ]1/2

EB(p):[ﬁ >m T2nV(p) (3D
then by independently choosing the two parametgysand

2m

whereV,, is a positive constant that is determined in a self-a, one can achieve entirely satisfactory agreement of the
consistent manner from a nonlinear integral equation for thepectrumEg(p) with the experimental spectrum of elemen-

single-particle Green'’s function at—0 and depends on the
dimensionless densitya® of the Bose liquid(see Refs. 33

and 34, while jy(x) is the zero-order spherical Bessel func-

tion of the first kind.

The potential30) is shown by the dashed curve in Fig.
1 and corresponds to repulsion(p) >0, in those regions of
momentum space in which sp#g)>0 (in particular, forpa
<), or attractive, V(p)<0, in those regions where
sin(pa)<0 (e.g.,m<pa<2). This oscillatory character of

tary excitationsE.,{p) observed by neutron scattering in
liquid “He (Fig. 2a. However, the self-consistent solution
obtained in Refs. 33 and 34 fora®=0.23 differs consider-
ably from Eq(p), and for the typical*He parameters
=2.17x 10?2 cm 3 anda=2.44 A, for whichna®=0.315,
the spectrum(31) with the potential(30) turns out to be
unstable, sinc&3(p) <0 in a certain region op (Fig. 2b), a
circumstance which indicates that the Bogolyubov thEay
inapplicable for describing the Bose liquid.
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Many-particle correlation effects in a Bose liquid lead to
substantial renormalizatiofscreening of the pair interac-
tion, which governs the normal and anomalous self-energy
parts (14) and (15). When (17) and (30) are taken into ac-
count, the retarded screened interaction between bosons
takes the form

Vo sin(pa)
pa—Voll(p,w)sin(pa)’

wherell(p, ) is the boson polarization operatdr), which
is calculated in the Appendix with allowance for the pole
parts of the Green’s function8) and (4).

An important property of the renormalized potentiz2)
is that in those regions of the phase volum@ in which
II(p,w)<0, the screening causes a weakening of the repul-
sion for sinpa)>0 and an effective enhancement of the at-
traction for sinpa)<O0.

It follows from (23) and (26) that the main influence on
the quasiparticle spectrui(p) comes from the form of the
interaction potential(32) on the “mass shell,” where
w=E(p). As to the vertices\ and I, their comparatively
weak dependence gm and w can be neglected, assuming
A=I'=A(0,0)=const and including the constant quantity
A(0,0) in the constant/,, which will be treated below as a
free adjustable parameter. The dependence of the functions

Wi;(p,&) onp, which is determined by the integral equations

(16) with e =E(p), is also much weaker than the dependence

of the potentiaV(p, ), as will be seen below. FIG. 3. Momentum dependence of the positive numeratgigen in
A key aspect of the behavior of the “screened” potential kelving of the two terms in the expression for the functibp(p,k,®)

V(p,w) is that the polarization operatdi(p,E(p)) on the which appears in the definition of the polarization oper&see Appendix

“mass shell” remains negative for app>0, provided that

the quasiparticle spectrui(p) is stable against decay into

pairs of quasiparticle¥ i.e., if the following conditions hold 5 V, sin(pa)

for any p andk: V(p)=

E(p)<E(k)+E(k—p),

V(p,w)=

(32

pa—asin(pa)’ (34

(33) wherea= V|11 and|I1|=[TI(p,E(p))] is the average value
E(k)<E(p) +E(k—p). of the modulus of the polarization operator on the mass shell
Indeed, it follows from the expressior#5) and (A6) in the existence region of the spectrugf{p). All of the

obtained in the Appendix for the integrants(p,k, ) that numerical calculations reported below were done on the ba-

under condition(33) for w=E(p) the denominator in front Sis of the model potentiaB4) with « treated as a free ad-
of the curly brackets is always negative, justable parametdtogether withV,). Figure 1 shows curves
of V(p) for different values of the dimensionless parameter
[E(k)—E(p)—E(k—p)]<0, N

whereas the denominator in the first term in curly brackets is  As another adjustable parameter of the model we choose
always positive, the effective mass* of the quasiparticles, which is related
to the masg$n*, which according td9) and(10) determines

the sound velocity9) in the limit p—0.

and smaller than the positive denominator in the second As a result, Eqs(20) and (21) for the functions‘i’ij
term, reduce to the simple form

[E(k)—E(p)+E(k—p)]>0,

[E(k)+E(p)+E(k—p)]>0. ~ dk ~ Ao(k)

Then, as numerical calculations have shown, the nu- qfll(p)zif (ZW)3V(p—k){ E(k) —1 (35
merators of both terms remain positilgee Fig. 3for anyp B
and k, and therefore the overall sign of the functions ~ 11 dk ~ NoV(k) + W 14(k)
lii(p.k, ) is negative, and sbl(p,E(p))<0. WiAp)=— §J (27 p—k) B (36)

With allowance for the negative sign and the relatively
weak momentum dependence Of(p,E(p)), we approxi- where

mate the renormalized potentiéd2) for w=E(p) by the 5 5
simpler potential E(p)=VA2(p)—[neV(p)+ ¥ 1o(p)]% (37
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2

2m*’
(38)

Ag(p)= nOV(p) + [qjll( p)— q’ll(o)] + {i’lz(o) +

and the effective mass* is related toh* by the expression

1 1 92V 1,(0)
= 2 -7
'r-"h* m* a|p|2 (39)
so that forp— 0 we obtain from(37)
E(p—0)=p\[NnoV(0)+W,;,0))/m*, (40)

whereV(0)=V,/(1+ a). The parameter¥,, «, and m*
are chosen so that the phase velo&fyp—0)/p is equal to
the hydrodynamic sound velocity =236 m/s in liquid*He.

On the other hand, the choice of these parameters must en

sure the best agreement of the spectift(p) with the ex-
perimental spectrurte,(p) in “He (Refs. 24-27.

Figure 4 shows the momentum dependence of the func- a4l

tionsW1(p), V12(p), andAy(p) obtained according t(85),
(36), and(38), for a certain set of parametevgy, a, m*, and
Fig. 5 shows the curve of the quasiparticle spectiti(p)
calculated according t(37). We see that the nonmonotonic
character of the spectrud(p) and, in particular, the pres-

ence of a “roton” minimum are governed by the momentum

dependence of the functior@ll(p) andAy(p), which have

deep minima because of the oscillations of the alternating

potential V(p) in the regionp<2w/a (see Fig. 1 For the

given choice of parameters the theoretical spectrum is in

good agreement with the experimental spectrunftéé in

terms of both the position and absolute values of the maxima

and minima ofE(p). Here the density of the BEC calculated
according to(24) is equal to 10% of the total density; in
agreement with the experimental data.

4. STRUCTURE OF THE SUPERFLUID STATE OF A BOSE
LIQUID AT T#0

Let us consider the superfluid state of a Bose liquid at

T+0, in which case a normal compongn{(T) is present in
addition to pg(T). As was shown in Refs. 31 and 32, for
T—0 in the region of smalp#0 the expressions for the

renormalized Green’s function@ij(p) constructed in the
combined variable$l), (2) have the form

éll(p) = nsgcpgo(p) - Ig(pw(p)
1

Ng _
5 97 (P) = G PeelP) (4D)
~ 1 Ng
Glz(p):nsng(p)_ 4_nsgﬂ'77(p)_ 5‘b¢¢(p) Cee
(42
where
dq
D =qu<qoﬁgw¢(q)g¢@(p—q),
p=(k,e), q=(q,0), (43
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FIG. 4. Momentum dependence of the functi&ng(p) (a), \Iflz(p) (b), and
Ay(p) (c) obtained according to Eq$35), (36), and(38) for the following
set of parametersiy=10%n, V,/a®=147 K, = 3.65, m/m* =0.00175.

and g,,(p) are the “hydrodynamic” Green’s functions,
which are associated with the long-wavelength fluctuations
of the phase and density of the condensaigvE ¢, 7). The
expressions fog,.(p), 9,-(p), andg,.(p) calculated in
Ref. 11 for T>0 contain sums of two pole terms, corre-
sponding to first and second sound, with velocitgsndc,,

in the Bose liquid with the normal and superfluid compo-
nents:

D pnlp
sz—cgkz,

(au,—dupnlp)
e%— Cik2

9un(k,e)=

K, (44)

where p=p,+ ps is the total density of the liquid, and the
coefficientsa,,,, d andb,,, are independent of at low

v=g,m,

uvr Hpvs
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FIG. 5. Spectrum of elementary excitatioBép) obtained according to Eq.
(37), for the same set of parameters as in Fig. 4. The vafijgs=14 K and
Emin=8.61 K and also the hydrodynamic sound veloaity=2.37x 10*
cm/s and total quasiparticle densiiy=2.17x 16?2 cm 2 in the Bose liquid
agree with the experimental values.

temperatures. This result establishes a unique correspon-
dence between the microscopic field theory of super-

fluidity”® and the macroscopic two-fluid hydrodynami&s’
It follows from Egs.(41), (42), and (44) that the pole

parts of the renormalized Green’s functio@g can be rep-
resented in the form

(Aij—=Dijpnlp)  Bijpnlp

é“ k5 = ’
L e P e

i,j=12. (49
We henceforth assume that expressidb) is valid in the
entire temperature interval<T, .

It follows from Egq.(45) that forT—0, wherep,— 0, the
leading contribution to the integral over energyin (16)
comes from the first-sound pote=c,k of the Green'’s func-
tions. However, at higher temperaturés-1 K, wherep,
~ps, because of the strong inequality>c, the main role
comes to be played by the low-energy pele c,k, corre-
sponding to second sound.

E. A. Pashitski and S. I. Vilchynski

C,) into the expressions for the Green’s functioﬁéﬁ(p)
corresponds to automatically taking all the necessary renor-
malizations into account.

Using (46), one can determine the superfluid order pa-
rameter forT #0:

< ps(T)
210, T)=Wo(T)+W(T) P (47)
where
¥ )__lf d’q ~ ) A12_D1200t’_(%>
of 2) (2m)? @ —cq oT
Bio C2q
+T Ot%ﬁ”’ (48)
1 d’q 12 €14
Bz C2q
—@COﬂ'(E> . (49

On the other hand, assuming that fo¥-0 a relation

analogous t@28) is maintained between(T) andilz(O,T),
we obtain the following expression for the superfluid-
component fraction in the Bose liquid:

psT) _Wo(M)[  ¥(T)
P VO] VO)n

The T-dependent density of the BEQ@y(T)=mny(T), ac-
cording to(19) and(45), is given by the relation

-1

(50

po(T) 1J’ d3q H pn(T)| 1 r<01Q)
—1- 2| — 1 |A;- Dy cot] ==
P 2) emll"™ T p ag 2T
pn(T) 1 C.q
1, 6 t"(ﬁ ] (51)

The velocity of firstthydrodynami¢ sound is practically
independent ofT and in the given approximation can be

At finite temperaturesT+0), when the contributions of determined as,=[V(0)n/m*]*2 whereas the velocity of

the first and second poles of the Green’s functiffy are

second sound, is substantiallyT-dependent, varying from

taken into account, we obtain for the self-energy parts at,(0)=c;/\/3 atT=0 to a valuec,(T)=20 m/s in the re-

r=1
< 1( dq ~ pn(T] 1
(kT =——f V(k— HAr—Di-——
i 2) (2m)® (k=a) ' "p e
€1q pn(T) 1 €19
XCOU{W)'FB” P @COU’(ﬁ ’ (46)

It should be emphasized that the long-wavelength ap-

proximation for the Green'’s function@b5) in this case are

gion T>1 K, while for T—T, the velocityc,—0. Thus as
the N point is approached, owing to the strong inequality
c1>C,, the main role begins to be played by the last terms in
the integrands i1i48) and(51), which are proportional t8,,
andB;; and contain the temperature factor

1 c2(T)q
e D= mq Cow( 2T

2T -1

= ) C2q ]
c3(T)g? 2
52

valid because of the divergence of the temperature factophich diverges quadratically as—0. Here the width of the
coth(c,o/2T) atq—0 and the rather rapid decay of the inter- Singular peak increases rapidly with increasiigand de-
action kernel ag|—o. Moreover, here the system of equa- creasingc, (see Fig. 6.

tions (46) does not need to be matched with the expression

for the renormalized quasiparticle spectré&tk), as is ordi-
narily done in microscopic field theory far—0, since the

As a result, with increasing there is an increase in the
contribution to the integrag8) from the repulsive part of the

potential V(q)>0 in the long-wavelength region<m/a

substitution of the empirical spectra of the first and secondnd a decrease in the functiting(T), which plays the role

sound(with the experimental values of the velocities and

of the superfluid order parameter and which is positive at
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FIG. 6. Temperature factdi(q,T) determined according to relatids2). b
Q
~ >
low T<c,q on account of the strong attractidf(q) <O in Q
the regionm/a<qg<2w/a (see Fig. 1 At a certain critical 0.045-
temperaturd =T, the function¥ y(T) goes to zero and then
becomes negativéfor T>T.), which corresponds to de-
struction of the superfluid statep{=0), i.e., T, coincides
with the \ point.
In a similar way, with increasingd the negative integral ! ! | L
in (51) increases in magnitude whije,(T) decreases, until 0 0.5 1.0 1.5 217
at a certain poinT =T, the density of the BEC vanishes and T.K

formal|y~becomes negative f0T>T0' The interaction Pa- g 7. Density of the superfluid compones(T)/p calculated according
rameters/(q) and the coefficientB,; andB;, are chosen so to Eq.(50) (a), and the dependence of the BEC dengig¢T)/p calculated
that the temperaturég, and T, coincide and equal, . The according to Eq(51) (b), for the following set of parameters;;=6.24 K,
results of numerical calculations done accordings@ with ~ P12 K Bu=0.00015 K/A;;=6.38 K, D1,=3.14 K, B1,=0.0026 K.
the parameter®\;;,=6.24 K, D;;=2 K, B;;=0.00015 K,

A12=6.38 K,D1,=3.14 K, andB,,=0.0026 K are presented 4tjon and pinning of Abrikosov quantum vortices at the sur-

in Fig. 7.'Of course, these.resglts, whigh correspond to thesce of the superconductor or near various defects of the
self-consistent field approximation, are inapplicable close tQ:rystaI lattice, whereas the true maximum valuej ofithe

thex pomt,at\a/vhere thermodynamic fluctuations play the gov-gq_cajled depairing critical current, which corresponds to the
erning role;® but the_ curves shown in Fig. 7 give a qualita- decay of the Cooper pajf€ is much larger and is observed
tively correct description of the temperature dependence Ofpy in rather thin films and in wires whose thicknesses are
the density of the superfluid component. much less than the London penetration depth of the magnetic
field into the superconductor, in which case the creation of
vortices is prevented.

In the Bose liquid*He at finite temperature¥+0, in

Let us conclude with a brief discussion of the applica-addition to the spectrunt,,p), which for p—0 corre-
bility of the Landau criterion of superfluidity to He Il and of sponds to firsthydrodynami¢ sound with a phase velocity
the value of the limiting critical velocity in the absence of c,, in He Il, owing to the appearance of a normal component
guantum vortices in a Bose liquid with coexisting BEC andp,,, there is also second sound, with a velo@sy<c; in the
PCC. regionT>1 K. We know that®?" the second-sound branch,

As we mentioned in the Introduction, the spectrum ofby virtue of the smallness of the thermal expansion of liquid
elementary excitationg.,(p) observed in neutron scatter- “He, is actually nothing more than oscillations of the tem-
ing experiment¥~2’leads to a value of the critical velocity, perature(entropy without any appreciable net mass trans-
as determined by the roton minimum in accordance with theoort of the substance of the normaj, and superfluidpg
Landau criterion, that is much too high in comparison withcomponents, the oscillations of which occur in antiphase.
the experimentally measured velocities at which the superfherefore, the excitations of second sound, with energy
fluid flow is destroyed. This is because of the creation ofs,(p)=c,p, cannot be observed in the standard neutron
quantum vortices and vortex rings in HE*flput under con-  scattering experiments, unlike the case of first sosp@)
ditions such that the creation and/or motion of vortices is=c,p, which comprises in-phase oscillations of the densities
hindered, the critical velocities increase shaiif° and at  ps and p,,. At the same time, in a two-component Bose
low temperature§ ;<1 K can reach values comparable to liquid the coexistence of two different types of acoustical
v.=min[e(p)/p]=60 m/s* Goldstone excitations is allowed; these are due, on the one

It should be emphasized that this situation is analogousand, to the spontaneous breaking of the gauge symmetry
to that observed in type-ll superconductors, in which thederiving from the phase degeneracy of the coherent super-
critical currentj, is determined by the condition for the cre- fluid condensates at T—0 and to the breaking of the con-

5. SUPERFLUIDITY CRITERION AND THE LIMITING
CRITICAL VELOCITIES
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tinuous translational symmetry, i.e., the uniformity of the arising on account of the effective attraction between bosons
total densityp= p,,+ ps (first sound, and, on the other hand, in momentum space, and to obtain in the framework of the
to the spatially nonuniform deviations of the temperature“hard spheres” model an explicit expression for the quasi-
from the uniform distribution as a result of oscillations of the particle spectrum which agrees with the experimental spec-
density of the gas of normal excitatiops (second sound  trum of elementary excitations itHe. The use of empirical
Nevertheless, the second-sound excitations transport energwta on the frequencies of first and second soundr 60
and are therefore taken into account in the determination afakes it possible to describe the superfluid state in a com-
the minimum critical velocity in in accordance with the ini- paratively simple and self-consistent way all the way up to
tial concepts of the Landau superfluidity criterionvhich  the point of thex transition, and also to obtain the condition
includes all types of excitations of the quantum liquid. that the critical velocity . in macroscopic flows of He Il in

In connection with this one can assume that in the temthe absence of quantum vortices are limited by the velocity
perature region where,(T)<v.=60 m/s, the limiting per- of second sound,(T).
missible critical velocity of a macroscopic superfluid flow in In closing, we express our sincere gratitude to P. I.
He Il in the absence of quantum vorticés in the case of Fomin for many helpful discussions.
their strong pinning cannot exceed a value of the order of
the second-sound velocity(T), which for T—T, goes to
zero together with the density of the superfluid componen

ps(T). Itis just such a situation that is typical for supercon-  The polarization operatdtl3) can be written in the fol-

ductors, in which the depairing critical current goes to zero afowing form without allowance for the vertex pdttwith the
the critical pointT =T, together with the energy gapinthe  of expressiong3)—(6):

guasiparticle spectrum. ik
Finally, it should be noted that the coexistence of a weak _

BEC and an intense PCC preserves the integer nature of the () f (277)3“11(p’k’“’)+|12(p’k'“’)]' (A1)

circulation quantum of the superfluid velocity in the vortices,

«=%/m, owing to the total mutual coherence of these con-Where

densates in the superfluid componegt Indeed, the rather dz ~ ~

strong effective attraction for the screened Fourier compo-  lij(P.K,@)=i jg ZGij(k,Z)Gij(k—p,Z—w)- (A2)

nent of the singular “hard spheres” potential ensures the _

formation of a condensate of bound boson pairs with a posiwe assume that the Green’s functioBg have only one

tive sign of the pair order parametdt;,(0), the phase of Pole inside the integration contours:

@PPENDIX

which in this case coincides with the phase of the BEC. 5 s+(k2/2m)—,u+§11(— k,—¢)
Gu(k,e)= 7 =2 : ; (A3)
6. CONCLUSIONS e“—E(k)+io
In summary, the use of the renormalized field theory for — _ ilz(k,S)
describing the superfluid state of a Bose liquid with allow-  GiaK,e)= m (A4)

ance for the low density of the single-particle BEC makes it
possible to formulate a self-consistent model of superfluidityEvaluating the integraléA.2) with allowance for the poles at
in which the superfluid component a—-0 is a coherent the pointse=E(k) ande=E(k—p)+ o in the complexZ
superposition of a weak BEC and an intense PCC, the lattgrlane, we obtain

1 k2 ~

><[E(k)—w+[(k—IO)Z/ZmJ—Wriu(—k+ p.,—E(k) + w)]
E(K)[E(k)+E(k—p)— o]
 [E(k—p)+ o+ (K¥2m) — i+ 315(—k, — E(k—p) — 0]
E(k—p)[E(k)+E(k+p)+ o]

k-p?
x| E(k=p)+ —o 2 — ot Sy~ ket p,—ECk—p) | (AS)
e 1 21k E(k)Z 1Ak PEK) ~w) Sk E(k—p)+ @) Siok—p,E(k—p))
AP k)= S I CE(k—p)—w] | E(KIE(K)+E(K—p)—o] E(k—p)E(K)+E(k—p) + o]

(AB)
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In the static limit (w—0, p—0) expression(A.5) re-
duces to

1
|11(0,k,0) == Z

k2 ~ 2
{E(k)"‘ ﬁ—,u+211(k,E(k))}

E?(k)

+

&ill(k)) k 1
de | mEK) JE(K)/ak

(
k2

X E(k)+%—,u+ill(k,E(k)) (A7)

It follows that in a significant region of momentum
space the functioh;;(0,k,0)<0. A similar result is obtained
for the function in(A.6) at p=0 andw=0, i.e.,1;(0k,0)
<0, so that the static polarization operalb¢0,0) is a nega-
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The regimes of coherent precession of “zero” magnetization in a transverse rf field in the
superfluidA phase of liquid®He are investigated with dissipative processes taken into account.
© 2001 American Institute of Physic§DOI: 10.1063/1.1355517

1. The coherent precession of the magnetization in su- The equation describing the nondissipative spin dynam-
perfluid *He is a time-dependent ordered state with brokerics of the superfluid phases of liquitie are written with the
symmetry. The stability of the precessing states is mainaid of the Leggett Hamiltonian in the form
tained mainly by the spin stiffness of the order parameter of ?
the ordered phases of liquitHe and the spin—orbit interac- H =--S;,+Up. 2
tion. The magnetic dynamics in this case reduces to collec- 2
tive excitations of the magnetization and the spin part of theThe order parameter that determines the characteristic fea-
order parameter of the triplet condensate. Here in superfluitires of the superfluid phases e in this Hamiltonian is
3He the existence of long-lived coherent precessing states irepresented with the use of the dipole—dipole interaction po-
which the magnitude of the magnetizatiod| is substan- tential Uy . For the superfluich phase of liquid®He
tially different from its equilibrium valuévi 3= yHq (x is the 1 2
magnetic susceptibility of superfluidHe, andH, is the UD=—§(—A) (d-1)?, ©)
strength of the external static magnetic fjelsh Refs. 1-3 it @o
was predicted theoretically that long-lived precessing statewhere(), is the longitudinal NMR frequencyg is the gyro-
with half (M =Mg/2) or double 1 =2M;,) magnetization magnetic ratio for théHe nuclei, the vectot specifies the
can exist in a high magnetic field. The theoretical predictionsais of the orbital anisotropy, ardlis the order parameter in
as to the precessing states with half magnetization have be%in spaced®=1) of the superfluidA phase ofHe.

confirmed experimentalfy’ in the case ofHe-B. In addi- Using the notation
tion, the authors of Refs. 4 and 5 also observed an unex- .
pected precessing mode with “zero” magnetizatiom ( I=1,z+ \/1—|§x, d=R (a,8,7)X, (4

<My). The possibility of stabilization of this mode had been <
0) POSSIOHty Hizatl S where the orthogonal matriR is parametrized by the Euler

previously pointed out in Ref. 6. | d btain for the dinole—dinole int
The coherent spin dynamics of the states with the equif’lng esa, f3, andy, we obtain for the dipole—dipole interac-

librium magnetization 1 =M,) and of the states with half tion potential
and double magnetization correspond to the so-called “reso- .
nant” regimes of precession of the magnetic moment. The UD:Sf(SZ'lz’“'y):S% fu(sz 1z)exdi(ka+1y)],
stability of these precessing states is due to the presence of (5)
local minima of the d|pole—d|pole |nteragt|on energy aver-Where 55 (Q/wg)2, and s,=cos3. The nonzero coeffi-
aged over the fast motions. In the formation of steadily pre-_. ) .
. o o o . “cients f,, are given by the expressionsve have set
cessing states with “zero” magnetization, however, an Im_s=(l/8)(Q o )2 below]
portant contribution is made by the balance between mag- ATTO
netic relaxation processes and the effect of the transverse f00=—[1+I§+(1—3I§)s§],
radio-frequency(rf) magnetic field. It follows from Refs.
4-7, in particular, that such processes determine the residual f1o=f 1072571 21-s3V1-1%,
value of the magnetic moment for the state with “zero” 1
magnetization irfHe-B. It is naturally of interest to eluci- f20=f_20=§(1—s§)(1—li),
date the role of these processes in #hphase of superfluid
3He. That is the subject of this paper. 1 ) )
2.In the calculations that follow it will be convenientto ~ fo2=fo-2=5(1=52)(1=3l2), (6)
use the dimensionless variable

fo=f o p=——(1-15)(1+s,)?,

S=v (1) foo=f_ =~ (1-15)(1-5)?

<
E N N
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fro=f 1 2=12(1+s7)V1—-s2V1—-13,
f1o=T 1= —1z(1-s7)V1-s5V1-15.

3. In the discharge approximation the relaxation pro-
cesses are described with the help of the dissipative function

? . . .. S, )
ng(susg—zszsg +(S-Sh)(at1)?

1
Fais=5 K S
()

wherex is a phenomenological paramefer.

Compensation of the dissipation is achieved by applying
to the system an external transverse rf fidld, with projec-
tions H, cos andH  sing along thex andf/ axes, respec-
tively. The interaction energy of the magnetic moment of the
system with this field is described by the expression

FIG. 1. Profile of the averaged dipole—dipole interaction poteﬁial the
F,=—VS?—S2h, cosé, 8 — i
L S-Sz (8) case when/s << S<1/2 [the coefficientfy, from Eq. (6)].

whereh, =H, /Hy, and 6= a— ¢ is the angle between the
transverse component of the magnetization and the trans-
verse rf field.

In the case of a high magnetic field €1) we choose lz=*1, 5=0. (14
(S;,a) and (S,vy) as the two pairs of canonically conjugate 4. The procedure of averaging over the fast variables
variables. By the standard procedure we construct for thesgads to equations describing the relaxation Sfand s,
variables the following equations of motion from expressionszglgz_ These equations have the form
(2), (7), and(8):

of af |2 s k|4, 8 (1-8)f2 4+ ——— (5—4s,)f2
- . =———|= —(1-s = —4s
S;= 2| o +82K(32—s§)(g> —\/s2—gZh, siné, 1-2|s ® s—1 % s ze
C) 8 1
+——(1+s,)f5_ ,+ =———(5+4s,)f%_,|, (15
S: —e z?_f (10) S+1 S+1/2
ay’
. 1)2e%| , , 4s,, 8 0e2
of S [of S if S A f10+f20+?f02__s_1(1—52) f22
a —l+SaSZ—SKSZ_§ %—ga—y ?hi coso, z
11 1-2s 8
(0 _——2(5_4Sz)f%2+—_(1+52)2f§72
7:S+8¢9_S_8KSZ—S§((9_’)’_§£) 2s, i
+———(5+4s,)f]_5
S 2(S+1/2)
— ———nh, cosé. (12

[@2_2 2
ST ]—\/1—s§hL sin . (16)
The right-hand sides of these equations contain terms of

order 1,¢, ande?. This allows us to analyze equatiof®- In addition to the usual resonance, which corresponds to
(12 by the n_wethoﬂ of se_parat_lon of motlons occurring at S=1, Egs.(15) and (16) for fg,,f1,#0 also contain terms
substantial different velocities, introducing the new variables . . . —

describing resonant regimes of precession v8th0 and

S, S;, a, andvy, the variations of which will be determined —
; : S=1/2.
by the spin-system dynamics averaged over the fast vari- . . .
. We begin our study of relaxation processes with the case
ables. We see from systef8), (10) that in the general case . . o .
when there is no transverse rf field,(=0). It is easy to see

the anglesax and y are rapidly varying quantities, and the that for 1,=0 (the so-called Leggett orbital configuratjon
momentsS, and S are slowly varying. . —

It is not hard to see that the coefficiefy, in (6) is the ~ ONly those term corresponding to the resonared and
dipole—dipole interaction potential averaged over the fas®=1 remain in Eqs(15) and(16). Then when the magneti-
variablesa and y. The profile of the coefficienty, is pre-  zation is oriented along the magnetic fiel} 1) we arrive
sented in Fig. 1. It follows from the figure that the nonreso-at the result obtained previousiyaccording to which the
nant equilibrium state corresponds to the spin—orbit configumagnetizatiorS relaxes to the equilibrium valug=1 by a
rations square-root law:

s,

+82K(1_S§)% (

1,=0, s,==*1, (13) S=1+(Sy—1)2— 162k (t—tg). (17)
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Here S, is the value of the magnetization at the initial time spectral energy and the energy of interaction with the rf field
t=to; the upper sign on the right-hand side of expressiorare small perturbations and to a first approximation can be
(17) corresponds to the caSg>1 and the lower sign to the Neglected. _
case§0<1. The averaged dipole—dipole potentfahas four degen-
Let us now consider the case when the magnetization i§fa€ minimum values, the spin—orbit configurations  of
oriented antiparallel to the magnetic fiels,& —1). Solving ~ WWhich are given by expressiori¢3) and (14). In the next
Egs. (15) and (16) with the initial conditionst=t,, S=S. approximation the anglé is determined from Eq(23) and
: = — . the frequencyw, from Eg. (24). The values ofS ands; are
we find thatS relaxes to the valu8=0 by a square-root law: Y . . o .
found from the relaxation equations describing the evolution
of the spin system to the second approximation in the small
parametee. These equations are obtained from syst&B),
When ;= =1, the relaxation equations contain terms(16) and under condition&22) have the form
corresponding to the resonan8e 0:

S=—1+(Sy+1)2— 162k(t—1y). (18)

- 4%k |2 ) ) )
- 8e2k S=-— =f5—4(1—5s)f5—(5—-4s)f],
S=——(1-%}), (19) 1=%1S
S
, 8% , (1 +4(1+sp)f5 o+ (5+4s)fl |, (25)
S;=——57(1—-s%)| =+ 3s;]. 20
z S 7(1—57) St (20
. 1] 2% | 4s, > o2 ) 92
According to(14), the minimum value of the dipole energy S2=g & ?foﬁ'flo*‘ 450+ 8(1—s2)°f5,
corresponds to the valug=0. In this cases, remains con- Sz

stant, and the magnetizati@relaxes towards=0 accord-

_ +(1—-2s,)(5—4s,)f2,+8(1+s,)2f5_,
ing to the law

2
+82K(1—S§)E (@) ]

(21)

o_ 2 2 _
S=S2— 1662k (t—t). > | 55,

+(1+2s,)(5+4s,)f3_,
5. From the results obtained in the previous Section it S
is seen that the magnetization can relax toward the value —h.V1—szsiné. (26)

S=0. As it approaches a value of zero, the order of the termg et us consider the neighborhood of the stafi8 and(14).
appearing in the right-hand sides of equati¢®s-(12) will For 1,=0 the system of equation@5), (26), according to
depend orS as well as on the parameter If expressiong6), becomes

— 1 ) 1-g2
\/E<S<§’ (22) S:—SZK( 52—352—253), (27)
then the the usual nonresonant regime of precession of the
o . . S g2 S
magnetization W|I_I be realized, and the averaging is done 5= (1-82) =Z+4+1]s§ —hl\/l——sgsina.
over the fast variablesr and y. If, on the other handS S S
~ /e, then the angle variablg varies slowly, and the aver- (28

aging is done over the single remaining fast variable

Let us first consider the case whersatisfies conditions
(22). Following Ref. 7, we obtain from Eq$11) and(12)

In the cases;= -1+ B?/2, where <1, we obtain the
following equations foIS and 8 from the systeni27), (28):

— — . , (28
w—1— h, s, of S=—¢eg“k| —+5], (29
+— cosf+ =0, (23 S
€ e 1_55 1%
s h, S ot B 282"3 h, sing (30)
—w.,— =——p3—h, sing.
’s— — cosf—s, — =0 (24) 3 *
€ € 1—S§ JSz

L o o This system of equations does not have stationary solutions,
Here w=-a, w,=y, and f=fy. In the actual since the right-hand side ¢29) is always negative.

experiment$® done on®He-B the parameterd—1)/e var-

ied from O to 10, and the parametey /¢ varied from 1 to

10. We assume that similar conditions can also be realized in
the case ofHe-A. Equation(23) is the condition of mini-
mum free energy of the system, which is the sum of the
dipole and spectroscopic parts and the energy of interaction
with the transverse rf field. From the conditi®<1/2 it
follows that the main contribution to the free energy of the
system is the dipole—dipole interaction energy, while the

In the cases,=1— 8%/2 equationg27) and(28) become

. 2

S=—¢2k %—5), (3D
- e’k .

,8:—?,8+hi siné. (32

In the stationary stats= B=0. For it we obtain
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—,32

S0 5’ BO:(

25¢ 2K 1/3
(33

h, siné

Since the stationary valu®, must satisfy conditiori22), the
transverse rf field must satisfy the conditibn<5x&>%
sing.

Let us now consider the problem of the behavior of a
small perturbation against the background of the stationary
state characterized by the parame{&3. After localization
of the system(31), (32), we obtain the following equations
for the perturbed quantitie8S and §8:

a B
— -2 | oS+ 282,(&53:0,
ot 3(2) S
(34)
2622005 L+ 2 e2c| op=0
&K % ot Sg ek |0p=0. FIG. 2. Profile of the averaged dipole—dipole interaction poteﬁial the

case wher§~\/; (Eg. (39 after minimization with respect to the variable
We seek a solution of this system in the fodByexp(wt), 7).
SBoexplwt). The dispersion relation obtained has the fol-
lowing solutions:

5e’k ek
~| —— 2 ~| — . .
w=I 29 Bo  w=I =~ (39 fo=f*,=—212\1—-12\1—s2[s5+cos 2y—iszsin Zy]i )
40
Consequently, the perturbations are aperiodically damped
with decrements of 52« 3%/S2 ande?«/S3. This means that
the stationary state with paramet¢8s) is stable. fo=f*,=— E(l—lz)[l—sz—(1+52)cos 2y—is, sin 2y].
For the casé,= =1, we obtain the following equations - 2 z z z
from (25) and (26): (41)
- 8¢’k ) ) ) ) ) )
S=-— S (1-s7), (36) It is easy to see that, is the dipole—dipole potential

averaged over the fast variabde and its minimization de-
. 8g2 termines the spin—orbit configuration of the equilibrium pre-
sz=?sz(1—s§)—hi V1—s3siné. (37)  cessing states. The profile & after minimization with re-
spect to the variable is shown in Fig. 2. It follows from an
This system does not have stationary solutions. It followsanalysis off, that for |Iz|s1/\/§ the stationary valuey,
from Eq. (36) that for any values 0§, the modulus of the = /2. In this case the spin system has a family of degener-
magnetizationS decreases with time and tends toward aate minima with the spin—orbit configurations
valueS~ \e.
6. In the case wheS~ |/, it follows from (12) that'l 1,=0, |s;|<1. (42)
~ \Je. Still, this rate is greater than the rates of chang& of
andgz. However, S and§Z appear in the dipole—dipole
interaction potential in the form of the rat®,/S. Further-
more,s,=S,—s,S. It follows thats,~ . Thus the rates of
change ofy ands;, are quantities of the same order. There-
fore, only one fast variabley, remains in the dipole—dipole l,=*+1, s,=0. (43
interaction potential. In this situation we write the dipole—

dipole interaction potential in the form of a Fourier series ) ] .
expansion: In the the case under discussion the system of equations

for S ands, have the form

If, on the contrary,|l,|>1/\/3, then y4=0, and the mini-
mum values of the dipole energy correspond to the states

2
f= > f(S.S.lz,y)ek (38)
k=—2
. 28%k 1 [ &% ofy 7ty
and we write out only those expansion coefficients which are S= 1-s2 kZO K Im (9_;2 ﬁ +szR _&;2 fi
necessary for further analysis: z

d % 2

fo= = —[1+12+(1-313)2— (1-312)(1— 2)cos 2], +k|m(&—f—kf’k‘)—sz
(39) ¥
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2:2, 1 Jf |2 From this equation we obtain the following expression for
S,= 5= (1+s3) vl k2| f,|? the stationary valus9:
s s h,Ssing| "
ot |\ sy [Pfy afr si=+| ——— (52
+Szk|m( —f*) kz m(%a——k) 0 3282K
d Y . " .
Y Consequently, against a background of positive stationary
) Pf 2 2, af, valuessg>0 small perturbations grow with an increment of
* —
-szR pral ah —“(1- 9|5 (&s ) 642ks/S, while against a background of negative values
s3<0 they decay with a decrement of £4s5/S. Thus the
6’fk states withso>0 are unstable, while those wi$)<0 are
+> —+1-szh, siné, (45) stable. z 8
k>0 (932

7. It follows from the above analysis of the spin dynam-
It follows from these equations that the value of thejqq i, 3,16 _ that with allowance for the relaxation processes
magnetizatiorS relaxes much more slowly than value of the and the interaction with the transverse rf field, coherently
projection of the magnetic moment on the direction of theprecessing states both with half and with “zero” magnetiza-
external static magnetic field, i. eS/sZ Je<1. Therefore, tion are realized for arbitrary values lgf. Depending on the
we may rightly consider the change sf against the back- order of magnitude of the modulus of the magnetic moment,
ground of a frozen value d8. the precession of the magnetization will take place in the
Since y= /2 atl,=0, we find from Eq.(45) that usual nonresonant regime with two fast angle variables or in
Ao a rggérlne characterized by the presence of only one fast angle
43,2 h i 2 variable.
Sz~ S(1- Z) S(1_sp) Sz Szt sz Almhiyl-s;sind. (49 In the nonresonant regime the value of the magnetization
is determined from the balance of magnetic relaxation and
the effect of the transverse rf field. Here stabilization of
the state is possible in the neighborhood of the pbirt0,
. 28e%k _ s;=1.
= 5 h, sing, (47) In the other case the magnetizatisn- \/e, and the bal-
ance of the magnetic relaxation and the effect of the rf field
i.e., the stationary valug, is described by the expression leads to a spin—orbit configuration of equilibrium precessing
( 2862, )1,3 states. Folt;=0 stabilization of the state is effected in the
0=

In the limiting cases,~ —1 the temporal behavior g8
is determined by the equation

(48) neighborhood of the valug,= —1. In the casé,=*=1 the
equilibrium states are stabilized at negative values,of
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steady interest, guidance, and numerous discussions.
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Sh, sing

and small perturbations against the background of the sta
tionary state(48) decay with a decrement 83«/8,80.

For s,~1 the temporal behavior @8 is determined by
the equation

2062 K *E-mail: nugzars@iph.hepi.edu.ge; nugzars@hotmail.com
B=-——=——h, sing, (49
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Anisotropy of the vortex creep in a YBa ,Cu30,_, single crystal with unidirectional twin
boundaries
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Vortex creep in a single crystal containing unidirectional twin bounddii@&s) is investigated at
temperatures of 82—87 K in a special experimental geoméfgb, J|TB, H L J, with

a=/H,ab as a variable parameter. It is shown that in low magnetic fields the TBs alter the
configuration of the structure of the flux lines at angles of misorientadibetween the

magnetic field vectoH and the planes of the TBs of up to 70°: at angles70° a part of the

flux line is trapped by the planes of the TBs. It is shown that a TB is an efficient pinning

center for the motion of the vortices perpendicular to the plane of the TB, and therefore in low
magnetic fields at angle®<70° a directed motion of the vortices along the planes of the

TBs occurs. The angle dependence of the activation energy for a plastic mechanism of flux creep
is determined, and it is found to agree with the theoretical estimates made. For an orientation

of the vectorH close to theab plane of the crystal, the maximum of the angle dependence of the
measured “critical” currentl.g(«) observed for the thél|ab orientation of the field

vector in low magnetic fields gives way to a minimum at higher magnetic fields; this is explained
by a change from single-vortex creep to collective creep as the magnetic field is increased.

© 2001 American Institute of Physic§DOI: 10.1063/1.1355518

INTRODUCTION of the vortex latticé’® and also the position of the maximum,
which corresponds to a transition from an elastic to a plastic
High-T. superconductors have an anisotropic layerednechanism of creepdepends on the orientation of the mag-
structure. As a result, the characteristic scales of the Abrikonetic field vectof: Therefore, the magnitude of the magnetic
sov vortices, which are characterized by a coherence lehgthfield may govern the appearance of additional features on the
and a penetration depth, and the vortex lattice, which is angle dependence of the curreh} owing to a transition
characterized by the intervortex distareg are also aniso- between different creep regimes or phase states of the vortex
tropic. This leads to anisotropy of the magnetic flux pinning,system.
which is ordinarily characterized by the angle dependence of  Still another reason for the anisotropic pinning is the
the measured “critical” currend,,,(«), wherea is the angle intrinsic pinning that arises when the magnetic field is ori-
between the magnetic field vectidrand theab plane of the  ented close to thab plane,a<e, and which is manifested
crystal. Analysis of published data shows that the angle deas a sharp increase d, with decreasing angle.® This type
pendence of the curredt, depends on the direction of mo- of pinning takes place in layered superconductors and is due
tion of the magnetic flux, on the density of defects in theto modulation of the order parameter along thexis. It is
sample, and on the strength of the external magnetic fieldassumed that when the vectdris oriented parallel to thab
For example, studies of the magnetization of YBaCuO singlelane, the flux lines are situated between the CuO supercon-
crystals in a relatively low magnetic field at not very small ducting layers so as to minimize the core enetdiere the
anglesa have showhthat for motion of vortices off thab  flux lines are found in the field of a periodic potential, the
plane,J,, does not depend on the angie while for motion ~ maxima of which correspond to the positions of the cores of
along theab plane, J,, decreases with angle as J.,(«) the flux lines in the CuO planes. It is assumed that in a
~ J(HJ|c) sine. magnetic field tilted at anglee<e the flux lines have a
Numerous experimental studfes of high-T,, supercon- stepped structure. The flux lines now lie partly between the
ductors attests to a nonmonotonic field dependence of theuO planes, as before, and partly parallel todlais. If the
currentJ,,, which is called the “fishtail effect.” The posi- pinning of the vortex segments localized between CuO
tion of the minimum ofJ,(H), which, according to the ex- planes is large, then in a tilted magnetic field the magnetic
isting ideas, can correspond to a phase transition of the voftux creep will be mainly governed by the thermally acti-
tex lattice or a transition between different regimes of creepvated motion of the segments oriented along dteis. Ex-

1063-777X/2001/27(3)/15/$20.00 201 © 2001 American Institute of Physics
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perimental studies of tilted YB&uO,_, films! indeed
show evidence of the motion of these segments alonglhe
plane.

In the highT; superconductor YBaCuO twin boundaries
are another source of anisotropic pinning. In a magnetic field
H||c the anisotropy is manifested as preferential motion of
the magnetic flux along the planes of the TBs rather than
along the direction of the Lorentz forétThis effect indi-
cates that TBs form channels of easy motion of the magnetic
flux along the plane of the TBs, while the motion of the flux
perpendicular to the TB plane is suppressed. Indeed, a com-
parison of the current—voltagél-V) characteristics of
YBaCuO single crystals containing unidirectional TB planes
has shown that at a temperature of 84 K and in a magnetic
field of 15 kOe oriented along the axis, the value of the
currentd,, in the motion of vortices in the direction perpen-
dicular to the TB plane is approximately seven times as large
as in their motion along the TB plarté.

In a magnetic field tilted with respect to the TB planes
the anisotropy is manifested as a nonmonotonic angle depen-
dence of the current,,(6), whered is the angle between the
field vectorH and the TB plane. When the magnetic field is
oriented close to thab plane and the field vector is rotated
out of the plane of the TB, this anisotropy is manifested as a |,
maximum on thel,(6) curvel® When the magnetic field is
oriented close to the axis, on the other hand, the minimum
on theJ,(6) curve observed at a low level of energy dissi-
pation gives way to a maximum at a high level of energy
dissipation** The influence of the TBs on the magnetic flux
pinning in tilted magnetic fields is due to the circumstance
that at angle® less than a certain critical angtg, a part of
the vortex line is trapped by the TB plafe Theoretical
studie$®!® have shown that the value of the critical angle
depends on the orientation of the magnetic field relative to
the crystallographic axes of the single crystal.

Despite the large number of experimental papers de-
voted to the study of pinning and the dynamics of the mag-
netic flux in YBgCu;O,_, single crystals, a number of
guestions on this topic remain open. For example, we have
not found any published experimental research on the anisot-
ropy of the plastic creep due to the motion of dislocations of £
the vortex lattice. Similarly, there has been no discussion of <
the influence of twin boundaries on the magnetic flux pin- =~
ning and dynamics when the field vector is oriented close to LU
theab plane. Under certain conditions, this influence can be
quite substantial, since if a stepped structure of the flux lines
is realized, the parts of the vortex segments oriented parallel
to thec axis will be trapped by the TB planes. There is also
a lack of agreement as to the region of anglesithin which
the TBs affect the flux pinning. For example, in Ref. 14 it
was reported that when the vectdris rotated away from the
c axis, the TBs play a role in the magnetic flux pinning for
0=<15°, while in Ref. 17 it was concluded that their influ-
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aspects of the magnetic flux pinning and dynamics inof 0.5 (a), 5 (b), and 15 kOe(c) for different anglese, indicated in the

crystal containing unidirectional twin boundaries. The

We present the results of resistive studies of the anisotsample had a critical temperatufe=92 K and a supercon-

ropy of the magnetic flux creep in a YBauwO,_, single

ducting transition width of 0.3 K. The transport current was
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passed along thab plane of the crystal, and the current
density vectord was nearly parallel to the plane of the TBs, H, kOe a
specifically, 2 J,TB<7°. The magnetic field vectdd was 30 —o— 105
rotate out of theab plane toward the axis, and the vectd# o 15 POVl
was always perpendicular to the vecoiThe stability of the - —2— 5.0 A /
temperature during the measurements was of the order of 20 v 150 / o
0.03 K, and the stability of the magnetic field was not worse /
than 0.05%. Measurements on the sample in the normal state
showed that its overheating at the highest level of energy
dissipation, 104 W, did not exceed 0.05 K. The error in
determining the angle: was 0.1°. D o

The |-V characteristics measured B84 K in mag- 0 %szg%ﬁp\
netic fields of 0.5, 5, and 15 kOe are shown in Fig. 1. At 0.5 ' )
kOe the electric field increases with increasing angia the 0
regions of anglesx<<20°, and then it decreases asis in-
creased further to the orientatiétjc. We also note that in a 1
magnetic field parallel to the axis and, hence, to the TB 2'5;
plane, the electric field is zero in the investigated interval of [
current densities. For this orientation of the field, parts of the 2-0_ Al
vortices are trapped by the TB planes, and the Lorentz force A
is oriented perpendicular to the TB plane. Thus the TB 1.5}
planes are efficient pinning centers for the motion of the :
vortices in the direction perpendicular to them; this agrees = 1.0}
with the previous studiés!?of the anisotropy of the pinning
by the TB planes for a field orientatidr|c. A similar be- 0.5 , §
havior of the E(J) curves is observed ati=5 kOe. The [ o N
E(J) curves are shifted first to lower currents with increasing 0 - % \
anglea for «<<20° and then to larger currents asis in- [
creased further to the field orientatiét|c. -05 AAAORORORORRARRA

Completely different behavior oE(J) is observed for e . : .
H=15 kOe. Asa increases, th&(J) curves shift to larger 0 30 60 a0
transport currents in the region of angles:20°, to smaller o, deg
currents in the angular interval 28°¢<70°, and then again
to larger currents at angles>75°. The change of the pin- FIG. 2. Angle dependence of the “critical” curreagfsdetermined from the
ning force with anglex is most clearly seen in Fig. 2a, which '€v8! 0f the voitage drop across the samyiie; 10 * Viem (a), and the

L. exponentu obtained when the 1-V characteristic is described by an expo-

shows the curves of the “critical'J;g() curves measured  penial dependence of the forimexg — (UKT)(J /)]
at an electric fielde=10 ° V/cm on the sample.

Another difference between the |-V characteristics in
Fig. 1 is that aH =0.5 kOe the log—log plots dE(J) have  for «<2° does one observe a slight increase in the exponent
a negative curvature at all angles In magnetic fields of 5 (,,=0.8). At H=5 kOe the exponeni takes on values of
and 15 kOe, in contrast, the negative curvature observegd/4, 1/2, 5/2, and- 1/2 asa increases, and fdd =15 kOe it
when the magnetic field vectét is oriented close to theb  takes on values of 7/4, 5/2, and1/2. A comparison of
plane changes to positive curvature whtiis oriented close () andJ.g(«) shows that only in certain cases is there a
to thec axis. The negative curvature indicates that when theorrelation between the value pafand the angle dependence
|-V characteristics are described by a dependence of thef the current).z. For example, the valug=5/2 always
form Exexd —(U/kgT)(J./J)“], the exponeni.>0. Positive  corresponds to a rapid increase in the curtept However,
curvature corresponds @<0. The angle dependence @f  the same valug.=1/2 corresponds to a decreaselgf with
obtained when the 1-V characteristics are described by amcreasinga in the rangea<20° and to an increase g
exponential dependence is shown in Fig. 2b. The shade@ith o for «>20°. Also, the same valugp=—1/2 corre-
parts correspond to regions of angles in which the experisponds to an increase of the currépt with increasinga in
mental E(J) curves cannot be described by an exponentiah magnetic field of 5 kOe, while at 15 kOe the angle depen-
function with a constant value of the exponent In this  dence of the current is nonmonotonic. The value of the ex-
interval of angles, as is seen in Fig. 1b, the negative curvaponentu characterizes the current dependence of the activa-
ture of the |-V characteristics, which is observed at hightion energy of magnetic flux creep, and its increase or
transport current densities, becomes positive at low currerdecrease may be evidence of a change in the creep regime.
densities. Thus the angle dependence of the currégt in a given

As we see in Fig. 2b, the variation @f with anglea  creep regime depends on both the region of amglender
depends on the magnitude of the magnetic field. In a magstudy and on the magnitude of the external magnetic field.
netic field of 0.5 kOe the exponent is independenwofw  To elucidate the cause of this behavior will require a more
=1/2) over a wide range of angles (28«=<75°), and only  detailed analysis of the experimental data.
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CREEP WHEN THE MAGNETIC FIELD ORIENTATION IS

CLOSE TO THE ab PLANE B -l

Low magnetic fields

Let us examine the results of measurements made in
magnetic fieldH=<5 kOe at a field orientation close to the
ab plane, specifically, at angles<15°.

As we see in Fig. 2a, in this interval fétt<5 kOe the
currentJ.g increases with decreasing in agreement with
many experimental results*!” Figure 3 shows the |-V
characteristics measured in this region of angles at a tem-
perature of 82 K in semilogarithmic scale (IBgJ~ 7). At AN
anglesa less than a certain critical angle the electric field E : s — B
does not depend oa. The critical anglex; decreases with N
increasing magnetic fieldy, ~1.5° in a magnetic field of
0.5 kOe, and 0.5° at 1.5 and 5 kOe. This behavior can be
explained in terms of the existing ideas about intrinsic pin-
ning. It is assumed that fat less than the trapping angie
the flux lines are localized between the CuO superconducting
planes to minimize the core energy. Therefore, the pinning of
the magnetic flux in the angle regian< «; does not depend
on the orientation of the field vectdt.

The trapping angle is given by the relation

=2vH,/H (Ref. 18, wherev=I_/l,, is the demagnetizing
Cc

0.5k0e

factor, H¢; is the lower critical field, and, andl,, are the 5 _1,210 315_1,2 20
dimensions of the sample along teaxis and in theab & A0 e J10°, Aem
plane, respectively. The demagnetizing factor of our sample i 5 TR meA

was approximately equal to 0.05, and the valueHdf at '\::\:\‘
82 K=T=85 K lay in the interval 100-200 Oe, respec- ;\\‘03\‘:\

tively; hence, at a magnetic field of 500 Oe the trapping
angle is estimated to be 1-2°. The experimental value
a (500 OeE1.5° agrees with the theory, as does the ex-
perimentally observed decrease @f with increasing mag-
netic field.

As we see from the inset in Fig. 3c, for a field orientation
H|lab the E(J) curves plotted in the coordinates BgJ %8
are close to being straight lines. This means that the experi-
mental data can be described by an exponential dependence
of the form

E=Eoexp{—(Uo/kgT)[(Jc/I)*— 11}, )

whereu=0.8, Eq is a constantlJ is the activation energy,
which is independent al, kg is Boltzmann’s constant, and
J. is the critical current for depinning. It is also obvious that
the slope of thee(J) curves is independent of the magnetic
field and that the electric field increases linearly with

These two relationships indicate that the produgd’® and 6 8 10 12 14 16 18
the velocity of the magnetic flux =E/B, whereB is the 12 3
magnetic induction, are independent of the magnetic field, J “x10°, A" cm

and, from the standpoint of the collective pinning thebry,

presuppose single-vortex cre@., noninteracting vortices

Indeed, in the collective pinning theory it is predicted that for

this crgep regime bOFh the critical C,urrem and th,e plrmlngFIG. 3. |-V characteristics afi=84 K andH=0.5 (a), 1.5 (b), and 5 kOe

pote_ntlal and, accordingly, th.e velocity of the VO}"[IC?S also(c) in the angle interval 0% a<16°. The upper inset in Fig. 3a shows the

are independent of the magnitude of the magnetic field. Thetepped structure of the flux line that is realized fore, and the lower

value of the exponent 0.8 is close to the vajue-1 pre- inset shows the half-loop formed in the creep of the vortex lattice for the

dicted for single-vortex creep in a magnetic fielfab in the ~ field orientationHab (Ref. §. The inset in Fig. 3b shows the angular
ti f vortices alona the axis. Thus the results obtained scaling of the 1-V characteristics measured at82 K in different magnetic

mo 'O_n 0 " 9 - : . fields. The inset in Fig. 3c shows the |-V characteristicTat82 K and

constitute experimental evidence that single-vortex creep ig=o°, normalized to the value of the magnetic fieElIX (H*/H)), where

realized in low magnetic fields. H*=1 kOs.
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At angles in the regiomy <a<15° theE(J) curves in
the coordinates Idg—J~ 2 are close the being straight lines.
Consequently, when the |-V characteristics are described by
relation(8), the exponent ig.=1/2. It is seen in the inset in
Fig. 3b that the slope of thE(J) curves is almost indepen-
dent of @ and of the magnetic field. The latter circumstance
means that the produtto.lg/2 is independent of the value of
the magnetic field and, as we have said, is evidence that
single-vortex creep is realized. The data presented in the in-
set of Fig. 3b also show that in the angle interval Z%°
<15° the electric field increases as @irSuch an angle de-
pendence is natural if the flux lines have a stepped structure
(see the inset in Fig. 3aif it is assumed that the pinning of
the vortex segments,;, localized between CuO planes is
large and that the electric field on the sample arises as a

result of the motion of the vortex segmeihtsoriented along ; 4 8 12 16
the c axis. Indeed, the electric field in such a creep is given

T : TA A ~T AT T2
by the expressiolt =B.v ,pSina, where the component of J"x10 , A" cm

the magnetic induction along tteeaxis isB.= Bsina, while
v 4p IS the velocity of the segments along thk plane, which

in the case of single-vortex creep is independent of the mag- 3 :f::?
nitude of the magnetic field. 10 3 T

i o A 14
High magnetic fields A \iﬁ:o?'—ﬁ

. . . L 10 . ‘\(&\
Let us first mention that in a magnetic field of 15 kOe § v VA e w N

and at a<15° the currentJ.g increases with increasing Yok VoW kO
angle «, in contrast to its monotonic decrease in magnetic 510 15 20

fieldsH=<5 kOe(see Fig. 2 The exponeni in a field of 15
kOe takes values of 1.75-2.5, which are substantially greater
than the values of. obtained in magnetic fieldd <5 kOe
(0.5-0.8. Furthermore, the slope of thE(J) curves in-
creases linearly with increasing (Fig. 43. This means that
when the |-V characteristics are described by relatibn

the productUyJ4 increases with increasing. From the
standpoint of the collective pinning theory the value of the
exponentu=1.75-2.5 and the increase 0{J5 and of the -2 3 12
currentd.g with increasing angler may be evidence of flux- J 7 x10°, A "cm
bundle creep. Let us analyze this possibility. We first con-

. . - L . FIG. 4. 1=V curve forH=15 kOe andT=84 K in the angle interval 0°
sider the evolution of the 1-V characteristics with increasing_ , <105 in the coordinateE—J-7 The inset shows a plot of,(«)
= = . . r

magnetic field. =y(a)/y(4.5°) atT=84 and 82 K(a). The |-V characteristics normalized
Figure 4b shows |-V characteristics measured in magto the value of the magnetic fieldEH*/H, whereH*=1 kO¢ at T

netic fields up to 15 kOe a&=85 K anda=0. We see that =84 Kanda=0° in various magnetic ﬁel_ds. The in§et shows th(_—:' change in
up to 7 kOe the 1=V curves are described satisfactorily by®,S1ope angley of the |-V characteristic plotted in the coordinates

. . .o . J as the value of the magnetic field is chandgbg
relation (1) with »=0.8 and that the electric field increases
almost linearly with increasing magnetic field, i.e., one ob-
serves the regularities characteristic of single-vortex creep.
As the magnetic field is increased further, the electric field=(c’coSa+sirfa)*?, Jo=(4/3\3)(ce,/ D) is the depair-
decreases rapidly in the regions of small transport currentimg current,J.. is the critical current in a magnetic fietd||c
J<J,. Here the value of the crossover curréigtand the in the case of single-vortex cre€ijt is independent of the
slope of the 1-V characteristic fai<J,, increase with in- magnitude of the magnetic field and of the ang)e ande is
creasing magnetic fielsee Fig. 4h The slope angley of  the anisotropy parameter, which for YBaCuO superconduct-
the E(J) curves plotted in the coordinates BgJ~"*in-  ors varies from 1/8 to 1/6. If the current density becomes
creases continuously with increasing magnetic field and ismaller than a certain characteristic valyyg at which the
satisfactorily described by the power layscH?*®, correlation length becomes greater tlmbs;”z, then the

The growth of the currenf, and slope angley with  vortex lattice separates into domains. Within each of these
increasing magnetic field is characteristic of a transition fromdomains the flux lines are pinned collectively, while the do-
single-vortex to flux-bundle creep. Indeed, according to themains themselves move independently of one another. Ac-
collective pinning theory, the correlation lendth along the  cording to the collective pinning theory, the |-V character-
direction of the magnetic induction increases with decreasingstics at currentd<<J, are also described by the exponential
current as L.=£&(ele,)(Jo/I) Y43 13)%7, where &,  dependencél), but the critical currentl, in that relation

-7/4 7 =714 12
Jx10°, A" .em

Ex(H*H), Vicm
6:"

-
o
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must be replaced by the crossover currént The value of Indeed, if the stepped structure of the flux lines shown in
the exponenfw and the field dependence of the crossoverthe upper inset of Fig. 3a is realized in magnetic fields tilted
currentJy(B) and activation energy(B) are determined at anglesa; <a<e, then in the creep of such a vortex line
by the direction of the magnetic induction vector. For a fieldthe electric field can be written in the form
orientationH L ¢ and with an orientation of the Lorentz force

: E=E;exp(—U,/kgT)+Epexp(—U;/kgT
F_|lc the exponeni.=2, and the crossover current and acti- 1€~ U1 /keT) +Egpxp = Uy /keT)

vation energy have the of the fofm Xexp(—U,/KT)+Eexp(—U,/kgT), (3b)
Jb(B)z(3\/§w/4)(§/co)(colaO)ZJoocB (289 where the third term corresponds to motion of the steps
and along theab plane. In this expression the contribution of the

first term is independent af, since the magnetic induction
Uo(B)=¢g(Cq, (2b) along theab plane does not change in the case of a stepped
structure of the vortex lines. The contributions of the second
and third terms, however, are very sensitive to a change in
the anglee, since the magnetic induction component along
thec axis, B, increases as sin Therefore, according to the
collective pinning theory, the crossover current of the vortex
subsystem oriented along the axis should increase as
Jo(a@,B)=J.(\e LY cag) "= (e,B)°7 (20  (sin@)®’, and the slope angle of tH&(J) curves in currents

J<Jy,, should go asy(a)=UgJp%=(sina)'% The inset in

Fig. 4a shows the angle dependence of the reduced slope
UO(Q,B)EUEU(gaO/\/g_aLc)llsoc(gaB)_o'j‘, (2d) angley,(a)=vy(a)/y(4.5°), wherey is the slope angle of
the E(J) curves shown in Fig. 4a, and the functiéif«)
=(sina/sin 4.5°)-55 The fact that the experimental data are
i X X e found to agree with the theoretical dependence argues in fa-
the magnitude and orientation of the magnetic field. . of 5 transition from single-vortex creep to flux-bundle

In a magnetic fieldd.L ¢ and with the Lorentz force ori- o rean in the vortex subsystem oriented alongdfaeis. The

ented perpendicular to theeb plane, the magnetic flux creep agreement between, (o) and F(a) also suggests that the
occurs as a result of the formation of rectangular half'l‘fops'contribution of the first term if2a) and (2b) is small com-
which are shown in the lower inset of Fig. 3a. Since thepared to the contribution of the other terms.

vortex segmentd,, and |, are mutually orthogonal, it is

assumed that they do not interact with each other and there-

fore move independently of each otHérThe electric field CREEP AT ANGLES a>e
arising in thermally activated creep can be written as Low magnetic fields

wherec, is the period of the crystal lattice along thexis,
eo=(Po/dmho)?, A\, is the penetration depth for the field
orientationH||c, and @, is the magnetic flux quantum. At
anglesa> ¢ the exponeni=2.5, and the crossover current
and activation energy are given by the relatfons

and

whereU¢, is the activation energy corresponding to single-
vortex creep in a magnetic fiekd||c, which is independent of

E=E;exp—U;/kgT)+Eq» Let us now turn to a discussion of the experimental data
obtained at angles> &, where the intrinsic pinning does not

X exp(— Uy [kgT)exp(— Uz ke T), (39 affect the configurational structure of the flux lines and thus
where the first term corresponds to the motion of the vortexdoes not influence the dynamics of the magnetic flux. In this
segments,,, along thec axis, and the second term to motion region of angles the vortex system can be described in an
of the vortex segments along theab plane. In this relation anisotropic superconductor model, and we shall take this ap-
U, is the activation energy of a half-loop, which is given by proach to the interpretation of the experimental results. As
expression(2b); U, is the activation energy of the vortex we see in Fig. 1a, in this region of angles and in low mag-
segments. in their motion along theb plane, andE; and  netic fields theE(J) curves are continuously shifted to
E,, are constants whose values depend on the specific miigher transport currents with increasiag This behavior is
croscopic model, and the factor exgd,/kT) in the second substantially different from the behavior of the |-V curves
term determines the density of the vortex segménts measured in the motion of the vortices along the planes of

Since the electric field foH_L c is given by relation(3a),  the TBs(in the experimental geometry withjlab, JL TB,
the question arises: which subsystem of vortex segmentd 1 J, and variable parametes), i.e., in the direction of easy
(oriented along theb plane or along the axis) experiences motion of the magnetic flux. In the latter case the electric
crossover from single-vortex creep to flux-bundle creep? Ifield for a>¢ increases with the angle as e, (Ref. 20.
follows from Eqgs.(28) and(2d) that for a vortex subsystem When the transport current is flowing in tlad plane of an
oriented parallel to theab plane the crossover current anisotropic superconductor, the electric field generated by
J,=B and the |-V slope angley=UyJ2=B?, while for  the motion of the vortices with velocity is given by the
the vortex subsystem oriented along thexis J,=B%’ and  relation E=¢,vB, where the factoe ,= 7(«)/ 5. appears
yocUOJﬁ'SocBlf’S. Thus the collective pinning theory predicts because of the anisotropy of the viscous drag coefficient
approximately the same field dependence of the crossovej(«)= 7.c,, Where . is the drag coefficient for the field
current and slope angle for both vortex subsystems. It is orientationH|/c. Thus in the motion of vortices along the
therefore impossible to answer the above question on thplanes of the twins, the velocity of the vortices is indepen-
basis of measurements of the 1-V characteristics in differendlent of the magnetic field direction. However, the decrease
magnetic fields, but it is possible to answer it by measuringf the electric field observed in this experimental geometry is
the 1-V characteristics for different angles evidence of a substantial decrease in the velocity of the vor-
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tices with increasingr. This decrease may be due to the netic induction at the upper critical field. The curves of
influence of the TBs, which, as we have said, are efficienpy(J))/pgs are plotted in the inset of Fig. 5b, and their ex-
pinning centers for the motion of vortices perpendicular totrapolation to unity gives.=4.5x 10%, 3x 10%, and 2<10*
the TB plane. Let us analyze this possibility in more detail. Alcm?, respectively, af =82, 84, and 85 K. If the experi-

It is assumed that in a magnetic field tilted at angles mental data are interpolated according to Eq.with these
=/ H,TB less than the critical angle.,, the flux lines have values of the critical current substituted in, we obtain
the configurational structure presented in the inset in FigUo/kgT=1.3, 1.2, and 1.1, respectively, at=82, 84, and
5a’%?t is seen that part of the vortex lineegment,) is 85 K. These values agree with the reduff/kB=140-160
trapped by the plane of the TB, and that near the TB thé< obtained” in the collective pinning theory from measure-
vortex segment., is oriented at the critical anglé,, to the ~ ments of the relaxation of the magnetization over a wide
plane of the TB, while far from the TB the vortex line is temperature range (3KT <80 K).
oriented along the magnetic induction vec®r If the pin- As the magnetic field and angte are increased, as can
ning force on the vortex segmerits in their motion off the ~ be seen in Fig. 5b and 5c, in the region of low transport
TB plane is largéand the absence of creep in the case of the€urrents one observes a deviation from the universal curve.
magnetic field orientatiom||c is evidence in favor of such At currentsJ<Jj, the electric field decreases rapidly with
an assumption then the motion of the vortex lines along the decreasingl, and the crossover curredf and slope of the
ab plane will be suppressed. However, the vortices carfF(J) curves increase with increasing magnetic field and
move along thec axis under the influence of the Lorentz @ndlea. These trends agree with the predictions of the col-
force componenE,.=F cos. Indeed, the pinning force on lective pinning theory for a transition from single-vortex to
the vortex segments, in their motion along the axis, i.e., uUx-bundle creep. Indeed, according to relatid8s) and

parallel to themselves, is equal to zero. In this case the mag3P)» With increasing magnetic field and angiethe cross-
netic flux pinning is governed by the interaction of point over current increases quite rapidly and the activation energy

defects with the vortex segments lying off the TB plane. Indecreases slowly. The transition from sin.glg—vortex creep _to
the motion of vortices along theaxis the ratial,/J in Eq. qux—bunFiIe creep as the magnetic flgld is increased is dis-
(1) must be replaced by, /J;, where J;=J[ ysing,+ (1 f:ussed in detail in Ref. 22. The gxpgnmental da?a presgr_\ted
—y)cos], y=2L,/(d—2L,) is a coefficient giving the in the presen't paper, h'owever, indicate that this transition
fraction of the vortex comprised by segments, (L also occurs with increasing angleat a constant value of the

_ ) . . _ magnetic field.

=(e80/2ym)In(2/8); Ref. 16,_an_d dis the d|stanc_e be In addition, we note that the scaling of the |-V charac-
tweelj TB planes. In a magnetic field of 500 Oe the mtervor—teristic in the coordinate/(He,)—J~“2 observed at high
;er); d;]thce:agg i?: r;r:d :?/g gg?:ireic; 1|efr(1)§r)§’f[@h8e2l2=st5al transport current densities and in magnetic fields at least up
under stug_which ’had an avera (:y(;st.ance betweeyn TBs t? 2.5 kOe attests to the fact that &84 K the motion of
500 nm Thyljs ifv—0.1 ando =70°gand sinale-vortex cree e magnetic flux along thab plane is suppressed, and di-

. . Lo cr 9 P rected motion of the magnetic flux along the TB planes takes
is realized, t.hEE(‘]) curves measured at dlffergnt angles place. However, as the temperature is increa3ed86.7 K)

and plotteq in the cqordmatdS(J)/sa_as_ funct!ons O.f‘]” . the ratioE/H at high transport currents increases with in-
should all lie on a universal curve. This is confirmed in F'g'creasing magnetic field fo=0.9 kOe(Fig. 6. The most

5?’ Wh;czhoiovisggf_(r‘]h) cut:ves mdeasulred a]:[t?]nglle\s/mhthe probable cause of the breakdown of the field scaling of the
interval 2Us= a - 'heobserved scaling otthe 1=V char- |y, oharacteristic at high current densities is a decrease in
acteristics leads to three conclusions. First, in low magnetufhe pinning force on the vortex segmehtsat high tempera-
fle;%i tge TBZ o]Icef;Ln; tr;ﬁ vorte?.( Imet§ f(arlzfo ’t"e" 6:‘C{h tures. Because of this, the lendth of the trapped segments

- ' ' I_econ , 10 dc.f F;e(f:onllguradlo;f_s ruclgredo Thedand, accordingly, their contribution to the pinning force at
vortex ines proposed in Rels. an IS realized. Thir relatively low fields are rather large, so that the creep along
since the pinning of the vortex segments trapped by the

TBs is | for thei : # the TB ol q I theab plane is suppressed, and directed motion of the mag-
s Is large for their motion off the plane and equal to e £,y along the TB planes takes place. As the magnetic

zero for their motion along the TB planes, in magnetic fieldsfield is increased, however, the length of the trapped seg-
tilted at #< 0, a directed motion of the vortices along the TB ments decreaseis,t xayxH “172 (Ref. 16, and their contri-
str . ’

planes occurs under the influence of the Lorentz force cOMp, inn 0 the pinning force also decreases. This leads to de-

ponentF along thec axis. pinning of the vortex segments from the TB planes and,

The slope angle of th&(J) curves increases with in-  ponce 1 additional creep of the magnetic flux alongahe
creasing temperatur@ee Fig. 5a This indicates that when plane, and that increases the electric field.
the experimental data are described by the exponential de-
pendencgl) the productUoJé’2 increases with decreasing
temperature. The value aol. can be determined in the
Bardeen—Stephen model, as was proposed in Ref. 22. As- Let us now turn to an analysis of the experimental data
suming that the differential electrical resistivipg=dE/dJ  obtained in magnetic fields of 5 and 15 kOe. At=5 kOe
at J=J. is equal to the viscous drag of the magnetic fluxand a>15° theE(J) curves are shifted to higher transport
flow in the Bardeen—Stephen mod@ls=pnB/B(a), >  currents with increasing. In addition, at angles in the in-
we determine the value od. by extrapolating the ratio terval 20°<a=<30° the slope of the |-V characteristics in-
pdlpes to unity. Herepy is the resistivity of the sample in creases rapidly. The increase in slope and the shift of the
the normal state, an@.,(«)=®,/(47&%,) is the mag-  curves to higher transport currents can be explained in the

High magnetic fields
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FIG. 6. -V characteristics &f=86.7 K anda=45° in various magnetic
fields, normalized to the value of the magnetic field and plotted in the
coordinatesE—J %2 andE-J "2

cording to relationg2c) and (2d), the crossover currendl,
«£%7 and the slope of the |-V characteristic at currehts
<Jp, Viz., y=I2Uxe%, increase with increasing.
However, quantitative estimates have shown that they in-
crease faster than they should according to relatidosand
(2d). This is apparently due to the circumstance that it is in
this region of angles that the pinning of the vortices on TBs
begins to play a role, and Eq&8a and(3b) were obtained
on the assumption of pinning at point defects. The contribu-
tion of the pinning on twins leads to additional growth of the
critical current], and, hence, of the crossover currdptand
slope of the |-V characteristic. We note in addition that the
idea that flux-bundle creep is realized in the angle region
25°= a=<40° is also indicated by the increased value of the
exponent obtainedy=5/2, which is the value predicted for
) L . the creep of small flux bundles.
6 8 10 12 14 In a magnetic field of 5 kOe at angle= a(5 kOe)
-1/2 3 -1 =30° the positive curvature exhibited by the 1-V character-
J" x10°, A em istics in the coordinates Id&g-logd at large values of the
transport current gives way to negative curvature at low val-
FIG. 5. Ar_lgular scaling of the 1-V _characteristics ina figld of_ 0.5 kOe in ues of the transport curre(ﬂ;ee Fig. 1bl As the anglea is
the angle interval 20% «<85°. The inset shows the configurational struc- . ° . .
ture of the flux line in a magnetic field tilted with respect to the planes of theIncreased further C(>40 ) _the_ negative curvature Is ob-
twin boundaries(a). Angular scaling of the 1=V characteristic in a field of Served throughout the entire interval of transport currents
1.5 kOe in the angle interval 26°a<70°. The inset shows the current studied, and the slope of the |-V characteristic decreases
dependence of the differential electrical resistivity normalized to the valugyith increasinga. In a magnetic field of 15 kOe the transi-

of the viscous drag of the flux flow in the Bardeen—Stephen mdxleThe ti f ti t t it i I
|-V characteristics normalized to the value of the magnetic fied ( lon from negatve curvature 1o posiuve occurs at smailer

X (H*/H), whereH* =1 k0@, at T=84 K anda=45° for various mag-  angles(for = a(15 kOe)=10°), and the slope of the I-V
netic fields(c). characteristic forr> a, also decreases with increasiagin
the region of negative curvature, tg€J) curves measured
in magnetic fieldsH=5 and 15 kOe are close to being
framework of the collective pinning theory by a transition straight lines if they are plotted in the coordinates E/g)
from single-vortex creep to flux-bundle creep. Indeed, ac—J¥? (Fig. 7). This means that the experimental data are well

1
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FIG. 7. 1-V characteristicén the coordinates Idg/J-J'?) at T=84 K for different anglesyr andH=5 (a) and 15 kOgb). The current dependence of the
differential electrical resistivity for the 1-V characteristics normalized to the value of the viscous drag of the flux flow in the Bardeen—Stepheat mod
different anglesx (c,d).

described by the relation predicted for the creep of dislocaebtained show that the collectivelastio creep that takes
tions of the vortex latticé:>® place at small angles become plastic creep at large angles
.
E(J)=pod exp{(—Uo/kgT)[1—(I/I ) ]}, (4) The angle dependence of the enetdly when the |-V
characteristics are described by relatigh can be found
wherep, is a constant andy, is the critical current corre- from the experimental curves &(J) if the critical current
sponding to motion of the dislocations of the vortex lattice.Jy is known. For an elastic mechanism of creep the vortex
For this creep mechanism the activation energy in a magneti@ttice moves coherently, i.e., all of the vortices make ap-
field H|c is given by the relatiord,~egqa,<H Y2 (Ref.  proximately the same contribution to the energy dissipation.
26), where gq=(®y/4m\)2, with N being the penetration In this case, as we have said, the critical current can be
depth for the field orientatiorH||c. Previous measure- determined by extrapolation of the rajpq/pgsto unity. For
ment$”?8in this same single crystal at=45° have shown a plastic mechanism of creep involving the motion of dislo-
that the energyJ,,; determined in the region of temperature cations of the vortex lattice, the main contribution to the
and magnetic field in which the 1-V characteristics are de-energy dissipation comes from only some of the flux lines,
scribed by Eq.(3), does in fact decrease with increasing and the fraction that these comprise is dependent on the den-
magnetic field, a circumstance that also argues in favor o$ity of dislocations of the vortex lattice. For example, if the
creep of dislocations of the vortex lattice. Thus the resultglislocations are inserted into every tenth vortex row, then
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only one-tenth of the vortex lines contribute to the energy 50

dissipation in plastic creep. It is in fact at values of the dif- a Aaa. a
ferential resistivitypy~0.1pgs that one observes a sharp de- / A\A o A
crease of the slope of thg(J) curves(Fig. 7c and 74 We 40t / A /c’n/ /O/A/AY
therefore assume that the value of the transport current at | /A D)‘LA-g;ﬁ-A /
which we havepy/pgs=0.1 corresponds to the critical cur- lf‘ v / p’°'D/ /
rent J, in the case of a plastic mechanism of creep. The 30t A,vv o d o v
relatively weak growth of the differential resistivity that is v /

actually observed at transport curredtsJ,, is probably due
to the onset of coherent creep of the vortex lattice. This
scenario agrees with the theoretical studies of depinning of

20 I~ /

J, KA/cm?
{
q\
<

an anisotropic charge-density wat’ayhich was a prototype 10+ e ggzgﬁ
for the depinning of the vortex lattice in the field of a random I —A—15kQe, 82.0K
potential. It was shown that as the transport current was in- —V—15kCe, 83.9K
creased, incohereriD) creep preceded the cohergBD) Or
creep. By extrapolating the ratjgy/pgsto 0.1, as is shown _ o Eros 36K ' :
in Fig. 7c and 7d, we obtain the dependedgéa) shown in b4 skoe 850K c B
Fig. 8a. By substituting the values obtained 8y into Eq. 80} . —a-1skoe 820K
(4) and interpolating the experiment&(J) curves by these /\ —V—15k0e, 835K o
formulas, we arrive at thgy(«a) curve shown in Fig. 8b. We / ‘\ Lo 7 ] B
see that the activation enerdy, decreases with increasing ; 60 \\ p Lo
anglea. AN .

The theoretical angle dependence of the activation en- = \ a,
ergy during plastic creep can be obtained as follows: assume X 40 TA \E\E\U\ '
that a dislocation is oriented along one of the principal vec- :)‘1 ‘QA\ 0\\4:,,& a(b)
tors of the vortex latticeh; or b, (the lower inset in Fig. 8¢ ~"""'~37\:;\‘"~3\° el -
Then the activation energy is minimum for the motion of 20} :,:" ':\'V-\A*A\ "'79:0:9;0-0.9.0 ....... %
dislocations alongb; or b,, since the motion in the other ._,:" ”"\?.fy.:A\\s\AuA /e/(v
directions gives rise to additional structural defects of the 0 - """""" - ~v32:$‘_ﬁ‘A_$£/

vortex lattice and therefore requires greater enertjiae

consider the translation of the vortex segmént by the

minimum intervortex distancbk; or b, (see the inset in Fig. 100
8b). The energy of such an oblique-angled half-loop can be

written in the form Ug(a,B)=2Ug+A, where Uy

=ggeol g is the elastic energy of the vortex segmery

making an angle8 with the ab plane® A is the work nec- 10
essary for moving the vortex segmdry by an intervortex
distanceb; or by, ande ;= (e2cogB+sir’B)Y2 A displace-
ment of the vortex segmeihty by the minimum intervortex
distance is stable iA~2U and, hencelJ,~4U,. If the
plane of the dislocation is oriented along the vedtpand it
moves along this direction, then the length of the segment
Lg=ao/[(e,)**sin(@+pB)]. Minimizing the elastic energy
Uel(@, B) =& ge00/[(£4) *%sin(a+pB)] yields the relation
tane tan3=¢? between the angles and 3 and the energy 0.1t L : .
Ue(a)=ee0a0e; ¥2. Thus the angle dependence of the ac- 0 30 60 deg 90
tivation energy in plastic creep has the form a, deg

B, deg

— —1/2__yc/.1/2 FIG. 8. Angle dependence of the critical current corresponding to a plastic
UO(a)_4880a08“ N UO/S“ ! ©) mechanisrr&J of mggnetic flux motion in the frameworkp of thg Bardpeen—
c . L . . Stephen modefa), and the activation energy for the plastic mechanism of
whereUy=4ee0ay is the activation energy for the field ori- ¢reep. The dashed curve shows, determined by relatiorf5) on the as-
entationH|[c. This energy is equal, to within a factor of 4, sumption thatU,(H|lc)=U,(75°), the dotted curve shows,,, and the
with the values e ga, obtained previousﬁ? for the activation  solid curve ShOWS. the _dependence_ dt_etermined by reldBpnThe inset
energy of the the plastic creep mechanism. shows a half-loop in a tilted magnetic fie(d). The angleB formed by the

If the plane of the dislocation is oriented along the Vectorv_ortex segm_entﬁ with the_ab plane versus the orientation of the magnetic
) ] Rt . field for motion of the vortices along the vector (1) and along the vector

b, and the dislocation moves along this direction, then the, (2). The inset shows a plot & (@)/U ,(H||c) for a rectangulat3) and

length of the segment LB: (30/2){[38a/3in2(a+ﬁ)]2 an oblique-angl€4) shape of the half-loofthe inset in Fig. 8b(c).

+1/e,} Y2 In this case the energyq(a,B) is minimum if

the segmentlL; lies in the plane forming an angle

=arctang?/tane) with the ab plane of the crystal, an@g  energyU,(«) is determined by the same relation as for the

= arcsif{sing/[1+sirf(a+ ¢)/3:2]*%. Here the minimum motion of a dislocation along the vectby, i.e., the activa-
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a b c see that foH=5 kOe andT=84 K the experimental value

of the activation energy is approximately twice the theoreti-
cal value. This difference becomes even greater with increas-
ing magnetic field and temperature. There are at least three
factors that decrease the activation energy in the case of a
plastic mechanism of creep which were ignored in the deri-
vation of Eq.(5). One of these is the presence of the bound-
aries of the sample. For a plastic creep mechanism the elastic
energy necessary for the formation of a step near the surface
of the sample is one-half as large as the elastic energy nec-
essary for the formation of a half-loop in the bulk of the
crystal. This is because, as can be seen in Fig. 9a and 9b, in
the formation of step near the boundary of an object only a

ag ag

- - ' single vortex segmerit; arises, whereas the formation of a
\ Boundary half-loop in the bulk of the sample requires two vortex seg-
of sample mentsL ;. Therefore the activation energy for plastic creep

o _ _ _ .. near the surface of the sample is one-half as large as the
FIG._9. Schematic |Ilustra_t|on of the haIf-Iqop formed in a magnetic field value in the bulk of the sample. A second factor that de-
H||c in the case of a plastic creep mechanism in the bulk of the criatal T ) ) -
and near its surfacgh) in the absence of randomly located pinning centers, Cr€ases the activation energy is the presence of point pinning
and of a half-loop formed in the bulk of the crystal in the presence ofcenters, the fluctuations of the density of which lead to cur-
randomly located pinning centefs). vature of the vortex lines. Therefore, along the vortex line
there can appear segments for which the length of the vortex
) ] ) segmentd. ; is shorter than their length in the absence of
tion energy of the creep is also given by expressiain point pinning centers. This situation is illustrated schemati-
The upper inset in Fig. 8c shows the angle dependencgyy in Fig. 9c. The experimental studies of Y&a,0,_,
of the reduced energ)_/llr;ormallzed to its v_alueaat 2, single crystals indeed provide evidence that the introduction
Uo(@)/Uo(a=ml2)=e, . In the angle interval &a ot agditional pinning centers leads to a decrease in the acti-
<qu/2 trrus energy 1I;Sé always _Iessé than _the ENer9Yyation energy for a plastic creep mechani&rthe third fac-
Up(a)/Ug(a=mi2)=e, /e obtained® for a dislocation o decreasing the activation energy is the thermal motion of
moving along the vectdp, on the assumption that the half- o \ortices. It was shown in Refs. 7 and 28 that as the
loop in the inset of Fig. 5 h_as a rectangu_lar shape, i.ar, if melting point of the vortex lattice is approached, the activa-
+p=ml2. The cause of this difference is as follows. The o, “energy decreases considerably more rapidly with in-
energyU is determmed.by t_hg prodqeggLﬁ, in which the creasing magnetic field and temperature than the dependence
length of the segmert 5 is minimum, in the case of a rect- given by expressiofb). When all three of these mechanisms
gngular shape of the.half-loop, when the angléincreases leading to a decrease in the activation energy are taken into
I!nearly W't.h decreasing a'ngle'. O.” .the ot.hefr .hanq, the account, the difference between the experimental and theo-
linear tension of the flux line is minimum if it is oriented retical estimates seems completely reasonable.
parall_el to theab plane (for 5=0) g_nd increases with in- Assuming thatJ§ is equal to the values in the right-hand
creasing angigs ase. The competltmn bet\_/vee_n these two column of Table I, v(\)/e obtain frontb) the angle dependence
Lae(ﬂ,salﬁz?;;%&etﬁze;nngg?iﬁf!tzo? ;Z?(\;V?hlgnz% ?(; V\t/ﬁe of the activation energy shown by the dashed curves in Fig.
: o 8b. We see that the activation energy(«) (according to
segm_enLB IS nearly parallel to thab plane, and that when the experimental dataincreases with decreasing anghe
gl]\?va(:/lgllczacsasn?hnar?fgss along the vectoj the angle is somewhat faster than Fhe energy calculated acco_rding _to_ Eq.
For H||c relation(5) gives an energy deya,. Assuming (). One reason for this d_lfference may b(_a that " deriving
A(0)=140 nm, \(T)=A(0)/[1—(T/T)2]*2 and e=1/6 relation(5) we did not t_ake into a_ccount_ the |nte_ract|on of the
4 ' o y i ' vortex segmentd ; with the neighboring vortices. In the
we find the values of the activation energy Hifc (left-hand ma i fiel B
gnetic field orientatioH|c the vortex segmentk ; are

column of Table ). The right-hand column gives the experi- . | .
mental values of the activation energy obtained for an Orienprthogonal to the neighboring vortices, and they therefore do

tation of the magnetic field close to tlweaxis, a=75°. We qot intgract V.Vith the vortex lattic€. I':or.any other magnetic
field orientation, however, the projection of the vortex seg-
ment L, on the magnetic induction vectot,3=age %
tan(a+ B), is nonzero, and therefore it interacts with the
neighboring vortices. The energy of this interaction is given
4geqaglks T Uo(75°) kg T by Uw~eeo(u/ag)’L (Ref. 6, wherelL is the effective

length of the deformable segments. In the linear approxima-

TABLE |. Activation energy of plastic creep for variodsandH.

H, kOe T, K Hilc H close to thec axis ; 8 . ; B
tion the deformatioru is proportional toL ;. Therefore, the
5 83.9 63 25 value of the deformation can be written as=kage'?
12 22 gi 12 tan(a+ B), where the coefficienk can depend on the mag-
15 83.9 27 33 nitude of the magnetic field, and in an anisotropic supercon-

ductor it can also depend on the orientation of the field.
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Assuming, however, th&=1/5 andL =\ and that the angle previously in resistive measurementstht 15 kOe and at
dependence of the enerdy,,, is mainly determined by the temperatures abo¥®and below* the melting temperature of
value of the projection LE, we obtain a dependence the vortex lattice.

Uim(a)=sso)\[si’2/2tan(a+ﬁ)]2, which is shown by the The scaling of the |-V characteristics in the coordinates
dotted curve in Fig. 8b. The angle dependence E(J)/e,—J) at H=0.5 kOe is experimental evidence of the
directed motion of vortices parallel to the TB plane in mag-
Upi(@) =4Ug(a) +Uiy(a) netic fields tilted with respect to the TB plane. This directed
:4880[a08;1/2+ K2\ & J4tarft(a+ B)] 6) motion presupposes that the pinning of the vortex segments

Ly in their motion perpendicular to the TB plane is greater
is shown by the solid curves in Fig. 8b. We see that thehan the pinning force on the vortex segments localized off
experimental dependence is well described by relaffon the TB plane; such an assumption is justified. Indeed, the
value ofJg for the crystal studied here exceeds 34 kAfcm
atT=82 and 83.9 K andi=0.5 kOe for the the field vector
orientationH||c. For the motion of the vortices along the TB
planes, on the other hand, far=83 K, H|c, and 0.1 kOe

In a magnetic field of 500 Oe ai=20° the current,. ~ =H =15 kOe, one had.e~2.7 kAlcnt (Ref. 20. It should
is increasing. The 1-V characteristic is a universal curve?® noted that forH=0.1 kOe the intervortex distance is
when plotted in the coordinatd(J)/s,—J; on the assump- equal to the average d|§tan'ce betvyeen twins in the grystals
tion that for #<70° the twin boundaries alter the configura- Under study, each flux line is localized at a TB, ah is
tional structure of the flux linegsee the inset in Fig. Saand governed by the pinning of these vortices. In a magnetic field
the vortex segments,, are oriented at an anglé=70° to of 15 kOe the intervortex distance is approximately 12 times

the planes of the TBs. These feature attest to the fact thape distance between twins, so that the overwhelming major-
9=70° corresponds to the critical value. An expression fory of the flux lines are localized off the planes of the TBs.

DISCUSSION OF THE RESULTS

the critical angle is given in Ref. 16: Therefore, in high magnetic fields.g is mainly determined
by the pinning of vortices lying off the TB planes by point
9crz[2ap/szln(a0/§)]1’2, (7) defects. Thus the pinning force on vortices localized at the

) ) ) TBs in their motion perpendicular to the TB plane is more
where the dimensionless parametgj=Uy/eq, Up IS the  than 12 times as large as both the pinning force on vortices
pinning potential at the TB, andy=(Po/4m\ap)”. Starting  |ocated in the bulk of the crystal and the pinning force on
from the valuef=1.22 rad and assuming th&(84 K)  yortices trapped by twins in their motion parallel to the TB
=5 nm, we obtaina,=0.055. This value is approximately pjane, We also note that the conclusion that directed motion
2-3 time greater than the value=0.026 anda=0.017,  of the magnetic flux occurs along the TB planes and, hence,
respectively, obtained at low temperatures in experiments inyjong thec axis of the crystal agrees with the experimental
volving decoration of the vortex structidfeand in magne-  gpservationt of directed motion of the magnetic flux in a
tooptical studiess and also the valuer,=0.023 obtained in magnetic fieldH||c, where the vortices were probably mov-
resistive studies of the anisotropy of the magnetic flux Creepng along the TB planes parallel to th® plane of the crystal
near the melting temperature of the vortex latfi€&his in-  gnd not along the direction of the Lorentz force.
crease in value is possibly due to the different conditions of e strong anisotropy of the pinning of vortices local-
heat treatment of the single crystals in the oxygen flow andieq at the TBs in their motion perpendicular to and parallel
accordingly, different oxygen content in the bulk of the crys-ig the TB planes is due to different physical mechanisms of
tals and at the twin boundaries. This conjecture requires adyrmation of the pinning force in the two cases. The pinning
ditional experimental investigation, however. by an ideal(defect-fre¢ twin-boundary plane in the parallel

At angles §<70° in magnetic fields of 1.5 and 5 kOe motion of the vortices is equal to zero, and the pinning de-
one observes a rapid growth of the currdg (see Fig. 28 pends mainly on the interaction of the vortices with point
which apparently is also due to the onset of pinning at thjefects. In the motion of the vortices in the direction perpen-
TBs. This assumption is justified because, according’lo  gjcular to the TB plane, however, the pinning force is mainly

the critical angle depends weakljogarithmically on the  gye to the suppression of the order parameter at the TB and
magnetic field. At =15 kOe the curren.g increases with g given by the relatiof?

anglea only ata=75°, i.e.,f,=15°. Thus relatior{7) does

not describe the sharp decrease in the critical angleHfor JIB~ apdo. 8
=15 kOe. The cause of this decreasedinis probably due

to the influence of thermal fluctuations. They substantiallyAt T=84 K the depairing currenl;~2x 10" A/lcm?, and,
decrease the value of the critical angle near the melting temaccording to relation8), JIBz 1P Alcm?. Therefore, the
peratureTy, , which in a magnetic field of 15 kOe in thi¢l|c ~ fact that the critical current in magnetic field#s<5 kOe
orientation is approximately 86 K. The value of the critical exceeds 3.4 10* A/cm? is completely reasonable. We also
angle with allowance for the thermal depinning is given bynote that in a magnetic field of 15 kOe in the field orientation
the expressiom}cr(TETM)~a2’230a0/(2kBT) 181f one uses  H|c the critical current for depinning is approximately equal
the value @,=0.055, this relation gives a valug.(T  to 40 kA/cnt and is a factor of three greater than the value
=Ty)=26°, which agrees satisfactorily with the value J,=13 kA/cn? at anglesf< 6., where the value ofl, is
0.(15 kOe)=15° obtained from the experimental data pre-determined by the interaction with point defects. Therefore,
sented above, and also with the valdgs=15-20° observed assuming additivity of the pinning forces and taking into
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account that in a magnetic field of 15 kOe only every twelfththe vortex segments,, are pinned on account of the strong
vortex line is localized at a TB, we obtain a critical currentintrinsic pinning due to the layered structure of the supercon-
J.=5x10° Alcm? for the vortices trapped by the TB planes. ductor, and the energy dissipation occurs on account of the
This value is in satisfactory agreement with the calculatedhermally activated motion of the vortex segmehts ori-
value 16 A/cm? determined from relatiof8). ented along the axis of the crystal. Axx andH are in-

In a magnetic field of 15 kOe in the field orientatibiffc ~ creased, the number of vortex segmdntand, accordingly,
the activation energy increases substantidly,/kgT=14, the magnetic inductioB. along thec axis also increase.
in comparison with its valuéJ,/kgT=3.4 obtained for an Therefore, for the creep of noninteracting vortex segments
anglea=75° (see Fig. 8h This increase is possibly due to L. (which, as we see in Fig. 4b, is realized td=<7 kOeg),
the influence of the twins. Indeed, the thermal motion of thewhen the velocity of the vortices is independent Bf, and
vortices trapped by the TB planes is suppressed on account, the electric field increases with increasihgand «: E
of the two-dimensional nature of these vorti¢ceand there- =B.v =Busina. This leads to a decrease in the currdgt
fore the activation energy for the creep of trapped vorticeswith increasinga and increasing magnetic field strength. As
should be larger than the activation energy of the vorticeshe magnetic field is increased furthét;>7 kOe, a transi-
localized off the TB planes. Since in the experimental geomtion occurs from single-vortex creep to flux-bundle creep.
etry the creep is mainly governed by the depinning from thelThe crossover currenl, corresponding to the transition to
TB planes, the latter should lead to an increase in the actieollective creep increases with increasBigsee Fig. 4band
vation energy determined from the experimental data. a (see Fig. 45 J,<B2 (B sine)®’, which leads to an in-

In the experimental geometry under study the twinscrease ofl g with the fieldH and anglex.
should also have a substantial influence on the pinning and The experimental data obtained attest to the fact that for
dynamics of the magnetic flux in the case when the magnetié less than the critical valué,=70°, i.e., fora=20°, the
field vector is oriented close to tleb plane. This is because twin boundaries alter the configurational structure of the flux
a stepped structure of the flux lines is realized in the regiorines, as is shown in the inset in Fig. 5a. It turns out that the
of anglesa< ¢, so that part of a flux line is oriented parallel pinning force on the vortex segmeritg trapped by the TB
to thec axis and, accordingly, parallel to the TB planes. Asplanes is large for the motion of the segments perpendicular
we have said, the evolution of the 1-V characteristics withto the TB plane. Therefore, directed motion of the magnetic
changes in the magnetic field and anglen this region of  flux along the TB planes occurs under the influence of the
angles indicates that the magnetic flux creep is mainly govtorentz force componerf, directed along the axis. Be-
erned by vortex segments oriented along thaxis, which  cause the value of the foré¢e. decreases with increasing
move perpendicular to the TB planes. The theory of the colat a constant transport current density the velocity of the
lective pinning predicts that if single-vortex creep is realized,motion of the magnetic flux and, accordingly, the electric
then the critical current and activation energy for these vorfield E=Buv decrease, and the curreht: increases.
tex subsystems coincide with the critical currdfitand ac- With increasingH and « in the region of low transport
tivation energyUZ measured in the orientatidr|c. There-  currents one observes a rapid decrease in the voltage with
fore the |-V characteristics in the region of anglesie decreasing transport currefsee Fig. 5b and 5c and Fig).6
when plotted in the coordinatds(J)—sine should coincide  This behavior can be explained in the framework of the col-
with the plots ofE(J) obtained forH|c. Thus angular scal- lective pinning theory as a transition from single-vortex
ing is in fact observed in the experimental geometry withcreep to flux-bundle creep at transport currents less than the
Jlab, JLTB, HLJ, and o as a variable parametét,in  crossover currend, . Indeed, according to relatiof2c), the
which the vortices move along the TB planes, i.e., the pincrossover current increases with increasing magnetic field
ning is governed solely by the interaction with point defects.and anglea, Jy>(¢,B)%’, while the activation energy for
In the experimental geometry under study, however, the vorereep atl<J, increases rapidly with decreasing current den-
tices and vortex segments oriented alongdfaxis move in  sity and increasing crossover currentU,(«,B,J)
the direction perpendicular to the plane of the TB and, as wex (J,,/J)%%x (¢,B) 743~ %2 As a result, a$! anda increase,
have mentioned above, the critical angle in this case i®ne observes a rapid decrease of the voltage at a constant
mainly determined by the suppression of the order parameteurrent density, and that in turn leads to an increas&.in
at the TBs. The experimental data obtained in this study Analysis of the |-V characteristics measuietbr the
show that the critical current fad| c is substantially larger crystal under study in various magnetic fields @t 45°
than for the orientation of the vortex subsystem alongahe showed that foH=5 kOe the activation energy of collective
axis. This can be explained by the fact that the coherencereep becomes larger than that of plastic creep involving the
lengthL¢ along the magnetic field direction fét|c is sub-  motion of dislocations of the vortex lattice. This is due to the
stantially larger than the correlation length=c, of the difference in the field dependence of the activation energy: it
vortex subsystem oriented along tbexis, wherec, is the  increases with increasing magnetic field in the case of col-
crystal lattice parameter along tleaxis. lective creep, while in the case of plastic creep it decreases.

The difference of the angle dependences of the currentSherefore the collective creep realized in low magnetic fields
J.e measured in different magnetic fiel(lee Fig. 2can be  gives way to plastic creep in high fields. The experimental
explained as follows. When the magnetic field vector is ori-data obtained in the present study show that an analogous
ented close to thab plane, a<e, the flux lines have a crossover also takes place with increasing angléndeed,
stepped structuresee the upper inset in Fig. Badnalysis of  the results shown in Fig. 4a and 4b attest to the fact that the
the I-V characteristics shown in Figs. 3 and 4 indicates thaactivation energy of collective creep increases with the angle
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@, in agreement with the collective pinning theory. The ac-thec axis of the crystal. A consequence of this crossover is a
tivation energy for plastic creep, on the contrary, decreaseshange of the angle dependence of the critical curdept
with increasing anglex (see Fig. 9l which agrees with the and a change of the usual maximum on the(a) curve
theoretical estimates made here. Therefore, the transitiofpbserved in the field orientatioki||ab in low magnetic
from collective creep at smalt to plastic creep at large fields) to a minimum at high magnetic fields.

appears completely plausible.
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The spectral features of the optical functions of the Drude model are investigated over wide
ranges of parameters — the plasma frequesngyof the current carriers, their transport relaxation
frequencyg, and the dielectric constaat, due to high-energy electronic transitions in the

system. The conditions are determined foy:tlae square-root frequency dependence of the
modulus and phase of the reflection;limearity of the phase):2w/wp\/g+ 0y; C) the

existence of a plasma reflection edge. Approximate relations are obtained which permit simplifying
the analysis of optical reflection and electron characteristic energy loss data both in “good”
metals and in materials with a strong temperature dependence of the electrical conductivity
(semiconductors, doped and nonstoichiometric oxides, granular metal films, and amorphous
alloys). The parameters of the systems of conduction electrons in Al gdaare determined.

© 2001 American Institute of Physic§DOI: 10.1063/1.1355519

With the intense development of microelectronics in thetemperature and field effects and in the spectral behavior of
final quarter of the twentieth century, the problem of control-the optical functions:® Knowledge of the corresponding fea-
ling the electrical conductivity of matter over a wide range oftures deriving from the Drude mechanism of conduction can
temperatures has become increasingly urgent. The extensivgake it easier to correctly separate out the different contri-
use of semiconductors, including magnetic ones, and the digutions to the optical characteristics. Because of the need for
covery of highT, superconductors has raised the level ofsuch an analysis, in this paper we address the problem of
interest in the study of the electronic systems of these mateletermining the basic regularities of the spectral behavior of
rials by optical methods. the optical functions of the Drude model and their transfor-

The interpretation of the results of optical measurementgnation upon changes in the parameters of the model over
of conducting objects is most often done using the so-calledVide ranges of values.

Drude model, which, despite its outward simplicity, requires
an attentive approach to the analysis of individual spectral
intervals. In general, the search for the optimal interpretatio?RUPE MODEL

of the data of optical studies is complicated by the fact that |4 1900 Drude published two pap@rsn the electronic

the number of pa-rameters is not smiéflere are three in the  theory of metals in a free-electron model approximation, lay-
expanded model: the plasma frequenay of the current jng 4 foundation for explaining the optical properties of met-
carriers, their transport relaxation frequengyand the di- 55 and other conducting materialthose papers are dis-
electric constant., due to the polarization of the atomic ¢ssed in detail in the monograph by Loréfizin the one-
coreg and by the large number of optical functions us#®  hyndred years since that time the electronic theory has been
real e1(w) and imaginarye,(w) components of the dielec- developed, become quantifand been supplemented with
tric function, the modulus(w) and phas&(w) of the opti-  the concepts of numerous quasiparticles. Nevertheless, the

cal reflection, the optical conductivity(w), the energy loss purely classical Drude model is still being used successfully
functionL (), etc), which have different sensitivities to the to explain many new resulig.

individual parameters of the Drude model and their combi-  Since the beginning of the widespread study of the
nations. This is especially noticeable when comparing thehysical properties of semiconductors, the Drude model has
results obtained by different authors using different techhecome an important tool, often the main tool, for studying
niques over wide ranges of parameters, primarilg ehdw,  their low-frequency optical absorption due to the current
(metal—insulator transitions in crystafs and amorphous carriers!3~°Here the complex interaction of the set of itin-
materialst® systems exhibiting the giant magnetoresistancesrant electrons with the atomic cores can often be taken into
effect®~ etc). account simply by introducing an effective mas$ and the
Large changes of the electrical conductivity of a sub-sign of the carrier charge. It is appropos to note that in his
stance may be a consequence of qualitative changes in thieeory*® Drude also proposed the existence of two types of
conduction mechanism, which are radically reflected both ircarriers with additive contributions to the absorption, in a

1063-777X/2001/27(3)/12/$20.00 216 © 2001 American Institute of Physics
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sense foreseeing the discovery of semiconductors and impothe p component of the polarization of an electromagnetic

tance of his model for studying them. wave in the case of oblique incidence of the latter on the
The next peak in the demand for the Drude model cameeflecting surface of a thin metal filf.
with the discovery of highF. superconductoréHTSCs9, for The expressions fon and k (and, even more so, those

which some form or other of the Drude model is employed infor R, r, and#) obtained from(1) are rather awkward and are
the majority of papers to interpret the results of optical stud-amenable to analytical study only after substantial simplifi-
ies in the infrared. For example, in Ref. 17 three Drude pacations, usually involving the approximation of Iqar high)
rameters were determined for YBaCuO by fitting the reflecfrequencies in comparison with the valuesyasr w,,. In the
tion curve in the interval 1 e E<1.9 eV, and in Refs. 18 present study, the use of numerical methods for finding cri-
and 19 this interval was extended to 3 eV and then, in Refteria of applicability of these simplifications in the region of
20, to 5.6 eM(in Refs. 19 and 20 the anisotropy of the optical intermediate frequencies and also for studyingR, and
characteristics was studiedBecause of the low concentra- directly at values of the ratio/=g/w,, in the interval 0-10
tion of carriers, the infrared spectra of HTSCs can displayhas made it possible to obtain a number of approximate re-
phonon peaks, and the visible spectra have strong bands lations between the parameters of the Drude model and the
interband transitions. In such cases an adequate descripticharacteristic features of these functions, in particular, for the
of the observed spectra is most often achieved by supplatpper boundary of the region of the square-root frequency
menting the Drude model with Lorentzian oscillatéts?®*  dependence of the modulus and phase of reflecttbe
although in some papers modifications of the Drude modeHagen—Rubens regidh, for the region of phase linearity
with an increased number of parameters are empléy&d; observed at low frequenciésfor refining the concept of the
the Drude model for a normal metal is organically reldted plasma reflection edge, and for determining the characteris-
to the Mattis—Bardeen mod@&lof a superconductor. There is tics of the reflection minimum that is formedor £..>1)
no denying the productivity of the Drude model in studies ofbeyond the plasma edge.
promising new conducting materials, in particular, of struc-
tures with metallic layers of nanometer thickness, manga-
nites>*®7and systems with correlated electrdfis. MAIN SPECTRAL INTERVALS

The expressions obtained in the framework of the Drude ) ]
model for the real part of the dynamic dielectric function ~ Figure 1a, b, and c shows the spectra of the reflection
e1() and the dynamic conductivity(w) are known as the coefficientR and its phasé, calculated at..=4/3, 4, and

Drude—Zener formula¥ the Drude—Lorent? formulast? 20, respectively, and fow=g/w,=0.001 (solid curves,
and the Kramers—Kronig relations: w=0.1 (dashed curvgs and w=1 (dotted curveg the

curves in Fig. ldfor w=0.1) are typical for ordinary metals,
those in part b for HTSC materials, and those in part ¢ for
Ne? g _ g semiconductors. The chosen horizontal scale makes it pos-

o(w)= M @’ g witg? 7o sible to represent all frequencies from O¢doy substantially
1) compressing the region~(3w,,*), which is relatively un-
informative for the Drude model.
47Ne? 1 47 Usually in the Drude model one singles out three or four
e1(w) =g 200 characteristic parts of the spectrum, ignoring the question of

* 2, 2 =7 75
metrg ©°tg the boundaries between them<g, g<w<w,, o~wy,

. and >w, (Refs. 11-14 and 361In the present paper we
whereN ande are the concentration and charge of the cur-consider in the given case{>1) five characteristic spec-
rent carriers,oq is the static conductivity, and the plasma tral regions, the boundaries between which will be deter-
frequency is given by the relatian;=47Ne*/m*e... From  mined below: 1 the Hagen—Rubens region), the region of
now on we will drop the explicit indication of the frequency |inearity of the phase, )3the neighborhood of the plasma
dependence of the optical functions in those cases where it gflection edge, ¥the neighborhood of the reflection mini-

obvious. mum, 5 frequencies substantially higher than the frequency
Relations(1) allow one to express in terms of the Drude of the reflection minimum.
model parameters.., g, and g (or &, g, and w,) the The frequency dependence of-t andd in the Hagen—

frequency dependence of the optical constantndk (¢;  Rubens region is the same. On the whole, the reflection de-
=n’-k? 4mglo=g,=2nk) and of all the other optical creases monotonically frorR(0)=1 to a minimum value
functions. Fore<w), the optical transparency of conductors R . =R(w,,;) for €.,>1, then increases tB(x), while 6

is negligible, and so one most often studies experimentallyhcreases monotonically frori(0)=0 to a maximuméay

the energy coefficient of reflectidR= |F|2=r2 (r=re"'?is  (at smallg this is most likely a plateayafter which it falls
the complex amplitude of the reflection coefficient, ahté  off to 4(e)=0. If the relaxation frequency is not too high
the change in phase of the light wave on reflegtidrt®**  (up tow~0.01-0.1), the width wy;, of the reflection mini-
and the characteristic electron energy loss in their passagaum, determined at the lev&®=2R,,, is approximately
through thin slices of a substante®® and the photoelectron equal tog, while the width of the phase plateduw,, which
spectra® The electron energy loss function is related to thewe find as the difference of the frequencies of the maximum
dynamic dielectric function of the system by the relationrates of rise and fall, increases without bound:as+1 and
L=82/(gi+e§). It can also be measured by purely optical decreases to zero as— o, assuming the valud w,= w, at
methods, by exciting plasma oscillations of the electrons by, = 4/3.
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Here w, is the frequency of the maximum rate of rise of the
reflection (i.e., the inflection point oR(w): d?R/dw?=0,
d®R/dw®>0 for o= wy), which is natural to call the plasma
edge or threshold of reflectiom, is the frequency at which
the dielectric function goes to zere, , Ly, andAw, are
the position of the maximum of the loss function, its value
there, and the width of the peak at half maximum, respec-
tively.

SCATTERING OF THE CURRENT CARRIERS

The region of the square-root frequency dependence of
the reflectionthe Hagen—Rubens regipis governed by the
scattering of current carriers upon the breaking of the trans-
lational symmetry of the system. This part of the spectrum
begins atw=0 and extend$within certain error limit3 to a
certain boundary frequency,_r. For «—0 this depen-
dence is also inherent to the inverse optical constants
=k l=(w/2mo)Y? the absorptivity A=1—R=(2w/
wo)Y? (Ref. 11, the amplitude coefficient of reflection
r=1—(w/2wo)? and the phasé=(w/2mwo)*? these last
two satisfy relations of the type

Nw)+0(w)=1, o<oy_gr- 3

We note that in the expressions given here one can take for
the conductivity its value in the static limitg, since for
w—0 we have o=0y(1—w?/g?), and in the Hagen-—
Rubens regionw?/g?<1. Our detailed analysis will be lim-
ited to the complex reflection, sindeis a directly measur-
able optical function(and over a wide spectral region it is
often the only ong and its phasé is of interest, in particu-

lar, in connection with the problem of the high-frequency
extrapolation ofR in determining the optical functions of
conductors by the Kramers—Kronig method.

Analysis of the spectral dependenciw) for different
metals, calculated from the known experimental values of
their optical constant¥, has shown that at the low-frequency
boundary of the data usedy~0.05-0.10 eV, the Hagen-—
Rubens region has not yet been reached, and the spectral
dependence ofl exhibits a rather extended (0.1 €\w<1
eV) linear region with one or two kinks, which will be dis-
cussed below.

Upper boundary of the Hagen—Rubens region

The upper boundary,, g of the Hagen—Rubens region

For g<w, the Drude model gives the following is naturally defined as the frequency at which the relative
asymptotic expressions for the different characteristics of thdeviation & of the curve of +-r(w) from the square-root

optical functions near and above the plasma frequency:
Awp=wp[ Ve, l(ex—1)—1], Omac=,; (29

O =0p=0,=0p, Ln,~0,/gc.,

2b
Aw =Awnp=0, (2b)
92(89c_ 1)3
Rnin= "> @mn~®pVe/(e=—1), (20
16wye.,
(eY2_1)2
RE)= o (20

dependenced/27 o) 2 reaches a certain specified valire
this paper we take&d=0.01). This boundary will obviously
depend ong, and it is clear that the boundary frequencies
will be different for the other functions mentioned which
have analogous spectral behavior fer-0. We shall con-
sider these frequencies in parallel foand #, denoting them
for arbitrary values o) asw, andw,, respectively(see Fig.
2a). An analysis shows that the boundary frequency for the
phasew, is directly proportional to the values gfand § up

to values of the deviation-10% or more, with a coefficient
of proportionalityp y(w,e..):

0y=Py(W,e.,)90, (48
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FIG. 2. Spectra of the quantitiesv(2o)Y? (middle curve, 1—r (dashed

curve), and § (upper curvg in the Hagen—Rubens region far=0.17 and . . .
&£,.,=2 (w, andw, are the boundaries of this region foand 6 at a tolerance poor metals and other conductlng materials with-1 the

level §=1%) (a); the dependence amands., of the coefficient®, andP,  Hagen—Rubens region extends to the near-IR and even to the

that determine the values @f; andw, in Egs.(4a and(4b) (theP, andP,  visible, but here the relatiom, = w, no longer holds.
are numbered from to 4 for e,,=4/3, 4, 20, and 56, respectivélib).

whereas the dependence ©f on é remains substantially REGION OF PHASE LINEARITY

nonlinear even at very small dimension$~10"%), i.e.,
Frequency dependence of the phase of the reflection in

@ =Pr(9,62,W)Qg0. (4D the form of straight(sometimes brokenlines is often ob-
Furthermorep, is much more sensitive tham, to changes served on the experimental curves for metals in the optical
in &, andw=g/w,. This is clearly seen on the, andp, region of the spectruniFig. 3) and can be explained com-
curves obtained foe..=4/3, 4, 20, and 5@curves1—4 in pletely in the framework of the Drude model: a dependence
Fig. 2b, respectively all of the functions were calculated for close to linear also exists at the transition from a convex
values of the deviations of and ¢ from the square-root shape of thed curve foro—0 to a convex shape near,
behavior at the 1% level. In general the upper boundary ofsee Fig. 1L One is interested in the extent of this segment
the Hagen—Rubens region foris always lower than fow  and the presence of kinks. We define the lowsgr and
(for w~1 it is an order of magnitude or more lowebut for ~ upperw , boundaries of this region of linearity like we did
valuesw=0.01 andé=0.01 the coefficientp, andp, are  for the Hagen—Rubens region, as the frequencies at which
practically equal and have a value2, i.e., in this case, the deviation of the phase from its rectilinear approximation
independently ok.., we have reaches 1%. For all the metals considered the linear-phase
region is contained inside the region

0, =wy=wy_g=0.0(W=<0,1, §=0.01). (40)
K2(w)/n?(w)>1, ()

Let us use relatiort4c) as the general definition of the
upper boundary of the Hagen—Rubens region for the comand the use of this inequality together with the Drude—Zener
plex reflection coefficient. It is valid, first, for various metals, formulas(1) gives a correct expression for the slope of the
in which for 0.001 e\ g<0.3 eV the plasma frequeney, linear segment of the phase. A more detailed analysis under
varies from~3 eV (Cs) to ~15 eV (Al) and, accordinglyw  the conditiong?< w?< ws yields the initial ordinated, of
does not exceed 0.1. However, it can also be valid in semithe desired straight line:
conductors and in oxide superconducting materials. The use
of Eq. (40) in these cases leads to estimates of the absolute 022w/wp\/;+ %- ©)
value of w, and w, (at the adopted level of deviatioA = The constant, determined by the Drude parameters is posi-
=0.01) which are equal in order of magnitude to $GV; tive and smaller in sizéof the order of 10° rad) than the
this is the region of millimeter waves, which are more perti-error limits for the experimental determination of the phase;
nent to radiophysics than to optics. At the same time, forat the same time, it is extremely sensitive to the low-
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phase of reflection for aluminum: the experimental values of the phlage (
a linear approximation of the latté~ — —), a model including a Lorentzian

o ) oscillator and a correction for the effective mass after the interband transi-
FIG. 4. Dependence om of the coefficientd; (a) andl, (b) that determine  tjon ( ).

the boundaries of the linear-phase regi@h curvesl-4 are correspond to
the valuese,.=1, 4/3, 4, and 20, respectively.

(~0.05 e\ K w<~0.1 eV) the following approximation re-
lation holds to an accuracy of 0.01 rad for any metal with

frequency absorption bands, so that an experimental valug<0.0L:
6p>~10"2 (or 6,<0) can be indicative of the presence of 6[rad]~0.30w[eV], ~0.05eW<w<~0.1eV. (8)

such bands. _ . _

The real region of practically linear dispersion of the = W€ @lso note that in the linear-phase region the reflec-
phase is quite widéeven for5~19%). Analysis shows that tion decreases with freguency by a _parabo!lc law, and
for values ofw up to~0.01 i.e., for the majority of meta)s the steepness of the fall increases with increaginfgr suf-

ficiently small g the reflection can be considered constant:

w1 Iis directly proportional to the collision frequenay i s
while o, , is proportional to the plasma frequentsee Fig. r=1-w/\s.., R=1-2w/e... At the pointw,, determined

4): by the condition R"(w,)=0, the difference between
(1-R)e../2 andw does not exceed 0.01% far<0.01 and

w1=119, l;=const=3.40, w ,=l,w0,, amounts to~1% forw=0.1.

(7

,=1,(g,)=(e,+0.68/12.5¢.,. THE ROLE OF THE OSCILLATORY CONTRIBUTION:

As w is increased from~0.01 to~0.1 the linear-phase re- 25’7\;E3'&)N OF THE PHASE OF THE REFLECTION FOR

gion decreases in size by almost a factor of three, while the

coefficient of its slope changes insignificantly. In real crystals the linear-phase region also narrows
Expression (6) can be useful, in particular, in a when local bands of interband transitions are superposed on

Kramers—Kronig analysis of the reflection spectra of metalsthe continuous absorption of free carriers; these local bands

where it allows one to obtain reference values of the phasean distort the spectral dependence of the phase as shown in

for calculating the coefficients of a high-frequency extrapo-Fig. 3. The behavior of the phase for aluminum, the metal

lation of R; here one uses the known values of the conducstudied in the greatest detail in the optical region, is typical

tivity and electron density. in this regard. For aluminum, with its high plasma frequency
In the spectral region 0.05 eVw<0.5 eV the fan of (w,~15 eV), condition(5) holds up to~0.97w, (Ref. 37,

0(w) curves in Fig. 3 can be divided up according to thewhereas the linear trend of the phase is interrupted at

number of valence electrons and the values of the plasmal eV=s=w<~2 eV, i.e., in the region of the intense band of

frequencies into three mutually nonintersecting narrow peninterband absorption with a maximum near 1.5°&% (see

cils. The spread of the values of the phase in each of th&ig. 5; a much weaker band near 0.5 eV, which is mani-

pencils relative to its axis does not excee@.01 rad(i.e., it  fested as a slight kink of() at this point, can be observed

is of the order of the error in the determination of the phaseon the scale of the figure.

in the Kramers—Kronig methgdmaking it possible to use The value ofN/m* (the ratio of the concentration of

those values directly in the absence of conductivity data fowalence electronsl to the electron effective mase*) cal-

the object under study. In a still narrower frequency intervalculated from the slope of the linear part of the&d(w) curve
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for aluminum is 12.%10?> cm™3, which agrees with the
value N=18.1x 10?2 cm 2 determined by other methods
when the known data om* are usedvalues ranging from
1.15 to 1.5 are given in Ref. 40The value 2b,\e.. =«
gives k;=0.154 on the segment before the kink on the ex-
perimental §(w) curve, andk,~0.145 after the kinkFig.

5). The difference in the values of before and after the
interband absorption band can be attributed to a difference in
the effective masses in thes@and 3 conduction bands of
aluminum, at the transition between which a correction
should be made to the slope coefficient of the straight line
describing the dispersion of the phase. The values obtained
for k, and x, give a ratio of the masses for the first and
second straight lines @h}/m} ~1.13, so that in units of the
free electron mass one has}~1.45 andm3~1.28 if a
valueN=18.1x 10?> cm™? is taken.

Analysis of the other curves in Fig. 3 confirms the con-
clusion reached for Al: local disruptions of the linear trend of
f(w) in the linear-phase region of metals are due to quantum I I S Y NS Y U IR N
transitions of electrons between subbands within the conduc- 0 0.3 0.6 0.9
tion band. Here weak transitions lead only to kinksfifw)
without breaking the monotonic increase of the phase wittFIG. 6. Dependence om of the frequency position of the plasma reflection
frequency, while stronger absorption can give rise to a regiof29¢«- Curves1-3 correspond fo the values.=1, 4, and 25, respec-

L . tively, and curved is the approximationwy, / w,=1— (w</2).
of anomalous decreasthe extent of which is approximately P
equal to the half-width of the absorption bandvhich is
especially large in Pt. Modeling the optical absorption band
of aluminum by a Lorentzian oscillator of strength this, by the way, is what limits the similarity of their depen-
A=4mne’/m* =22 e\ with a frequencyw,=1.53 eV and dence onw. The ratio w.(w)/w, approaches unity as
a dampingg=0.37 eV gives good agreement with experi- w—0 and, independently of the values @f, and ¢.., it
ment (Fig. 5 when the correction for the non-Lorentzian decreases monotonically to 0 as— 1, describing a regular
shape of the interband transitions is taken into accdtingt  circle:
latter makes if[_necessary to use a different effective mass W) wy=(1-w)¥2  0=w=1. 9)
after the transitiohn e P

O)b/(\)p

The position of the frequencw,, (its ratio to w, is
shown in Fig. 6 for the values,,=1, 4, and 25depends on
w in a more complicated way which, moreover, is different

Let us now discuss the three remaining spectral regionfor different e,, and coincides with the plasma frequency
of the five listed above. In region 5 the reflection is describedbnly for g=0. With increasingy the value ofw, /o, (see the
by formula(2d), which contains only one Drude model pa- inset in Fig. 6 initially increases, passes through a small
rameter,s.., and this is all the information that can be ex- maximum (the height and position of which are inversely
tracted in this case. The phase of the reflection at the interoportional to the value of..), and then decreases mono-
section of regions 3 and 4 is characterized by form(a$,  tonically and loses meaning at=wy,, (the inflection point
which containw, ande.., and these can also be used to findvanishes because of a transformation of the reflection line
the Drude model parameters. Usually in reg® — in the  shape. In general the relation between,/w, and w de-
neighborhood of the frequency of the plasma oscillations opends weakly orz,, and is approximated to an accuracy of
the current carriers — one studies the shape of the-5% by the quadratic dependence
reflectiot®'* and characteristic energy 1344 curves, )
which are well described in the Drude model, especially at wpl0p=1=W72, O0<w<~07. (109
small (semiconductors withw,~g ande.,~5-30) or else In turn, the dependence @f;,, on e, shown in Fig. 7 is
large (metals,s.,~1) concentrations of carriers. For them nontrivial: in the “good” metal region §.~1) wy, falls
expressiong2hb) and (2c) were obtained above, which de- from =0.734 ate,,=1 to a minimum value=0.724 near
scribe the quantities under discussion here in the limit of arz.,=1.25, and then it increases monotonicallysasis in-
ideal metali.e., forw=g/w,—0), the maximum of the loss creased further. Starting at.~2-3 and abovew;i,(&..)
function L (2b) and the minimum of the reflectioR (20¢), satisfactorily obeys the logarithmic laigee Fig. T:
and also the position of the plasma edgg and the fre- Wi (£..)=0.108 Ine.,+0.734. (10b)

guencyw, at which the dielectric function goes to zd2h).
We note that atv=wy;,, a spectral region of linear behavior

of R(w) appears, the extent of which can reach,23 or

For the frequencies, and w, expressiong2b) hold to  more(at the=1% leve), and extrapolation oR to zero(at
an error of less than 1% all the way to values-0.15, and the pointw= w*) yields the plasma frequendyo an accu-
on further increase of both frequencies rapidly decrease; racy ~1% fore.,,<~4) as

PLASMA REFLECTION EDGE

Frequency derivatives of the reflection
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Wiim
A(DL/g , 2A+/g s Lmax WEg,

col_/cop,

0.70 Y L
1 2 3 0
1

07 Lo 1 1 L
0 10 20 30 40 FIG. 8. Dependence ow of the loss function parametess , Aw, , 2A™",
€ andL . (curvesl, 2, 2', 3, respectively for the interval 0.&w=10; the
ratios of these quantities to their values from E2p). The solid curves are
FIG. 7. Dependence s, of the limiting valuew;;, for the existence of the  cajlculated by the Drude formulas, the dashed curves show an approximation
plasma reflection edge. according to(113.

0p=0.90". (100 ) )

and above, but only tev~0.3 for Aw, . This last circum-
For practical use it is more convenient to make use of a fac§tance is due to the fact that asncreases, the plasma peak
observed in an analysis of the spectral dependence of thgifts toward zero frequency, which limits the broadening of
second derivativel’R/dw?, viz., that the frequencypazr Of  its low-frequency wing, and the peak becomes asymmetric as
its maximum is close to the plasma frequency: a result(the width Aw, is treated as the sum of a low-
Smax~5%, 0<w<~0.7. (109  frequency partA™ and a high-frequency pah*>A" at
. , half maximum. Here it turns out that for 8 * (w) an expres-
Thus, by using expressiort&0a, (100, and(10d), one can  gjon of the form(11) with a=— 24 holds to an accuracy of

determine the parametess, andg with an acceptable maxi- (5 194 t0 a valuav~1, i.e., an accuracy no worse than oy
mum error of ~5% from measurements of the reflection 54 L. As a result, we obtain a system of equations re-

Wp= Og2R);

near the plasma reflection edge. lating the Drude parameters and the shape of the experimen-
tal L(w) curve to a rather high accuradpf the order of
Energy loss function 0.1% forw=1):

For the energy loss functioh(w) the difference be-
tween the frequency, of the maximum andv,, is not more
than one percent at values belaw~0.3 (and it does not
exceed 13% fow~1). The half-width and especially the
maximum value ot are even less dependentwnfor them
formulas (2b) hold to an accuracy of one percent below  2A"(w)=g(1-w?/24), 0<w<L1.
w~0.4, and even av=1 the deviation is less than 11% for
Aw, and 7% forL .. Thus formulag2b) describe the pa- The first and last of Eqs(11g contain onlyw, and g as
rameters of the loss function to high accuracy for “good” unknowns, so that one can elimingi@nd solve the remain-
metals (for which w~0.01; Ref. 11, while for processing ing equations numerically.
the spectra of certain alloys and other “poor” metals and of ~ Forw>1 the accuracy of the simple formulékla be-
semiconductors they can only be used to make preliminargomes lower, although it remains better than 1% up to
estimates. In such cases a substaritgl orders of magni- w~1.5. As we see in Fig. 1, in contrast to tfieand 6
tude improvement in the accuracy can be achieved by takingurves, whose shapes become smearedvfer (especially
the dependence ab, , Aw, , andL, ON W into account in the cases..>2), theL(w) peak remains well delineated.
even in a simple parabolic approximation of the form Because of this, one can extract information from it even

abovew=1, although there it, too, suffers broadening, a red

F(w)=F(0)(1+w?a), 1D shift, and an increasing asymmetry. A technique for obtain-
wherea has values of-8, —24, and 15 forw, , Aw,, and ing the parameters of the electronic system of conductors
Lmax, Fespectively; they hold to an accuracy-60.1% (Fig.  from the data of measurements @f , L, andA™ for
8) in the case ofv, andL . for win the range from0to 1 w>1 is described in Appendix (see also Fig. @

o (W)= w,(1-w%8),

Lmad W)= (1+wW?/15)/we., , (11a
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FIG. 9. Interrelationship between the asymmetry paramgteid = of the
peak of the characteristic loss functitf{w) and the quantityw=g/w,
(solid curve$ and its approximation by expressioifAl.2) (the dashed
curve, which is practically coincident with the solid curves on the scale of
the figure.

Reflection minimum

A®min/ 9

For determining the parameters of the Drude model it is
of primary interest to use the characteristics of the reflection
minimum above the plasma edg&,,, Rmin, andAwqin,
since they are relatively amenable to measurement. How- 0 R R TTT W)
ever, it turns out that they remain equalithin limits of 0.01 0.1 , 1 10
~1%) to the values from expressiofizc) and (2b) only to
w~0.01, above which the value of depends substantially FIG. 10. Dependence omof the chargpteristics of the minimum Bfabove
on bothw and .. ; this complicates the problem consider- ¢ plasma edge: the spectral positiog, for &.=1.05, 1.5, 4, 10, 36

. . .(curves1-5, respectively (a); the minimum valueR,,;, for differente.,. :
ably and lowers the accuracy of the calculations in compariy g5(1), 1.5(2), 2 (3), 4 (4), 10(5), 25(6), and 36(7) (b): the widths of the
son with analysis of the loss peak. From Fig. 10, whichminimum Ay, at a level of R, for variouse., : 1.05(1), 1.5(2), 2 (3),
shows the behavior of the raties,;,/ omin(0) andAwyi,/g 44, 10(5), 36 (6) (o).
and of the minimum reflectiolR,;, with increasingw for
values ofe., from 1.05 to 36, we see that all of these entities
increase both withv and withe . : Ry, tends to a valu®,, , val of values ofe.. (from 1 to ~4) the productw(s..

while o, and Awp, increase without boundNw pin(w) —1)¥2 is uniquely determined by the ratio of the high-

has vertical asymptotes at=W(e.,). In contrast to the loss frequency componend’. of the width of the reflection

. min
function, the shape of th&(w) curve even atw~1 has minimum to the low-frequency componet... (Fig. 110.

b;aco?e too srr:ﬁatre_td to kpermlt expterlmetn'_[a: &roceiﬁm F/Ioreover, the observed dependence can be expressed ana-
also Fig. 3, so that it makes sense to restrict the analysis o ytically (with an average error o 4%) as

the latter to values below=1. For metals, HTSCs, and
other conductors witle., below ~4 the dependence an, W(e,—1)Y2=1.17 (x—1)/(x+0.1)]*3,
can be eliminated almost entirely by constructing the curves o+ A
of Awnin/g and Ryn(W)/R.. as functions ofw(e..— 1) X=Amirf Amin (1.1<x<30).
and of win(W)/ wmin(0) (with greater erroras a function of A technique for determining the Drude model param-
W[ (g..—1)/(e,,+1)]*2 (Fig. 11a and 11b and Fig. 12, re- eters from reflection measurements with the use of relations
spectively. (12), (103, and(All.1)—(All.3) is set forth in Appendix .

The shape of the reflection minimum even at small val-  The behavior of the low-frequency component of the
ues ofg has a strong asymmet(gee Fig. 1, from an analy- width of the reflection minimum with increasingymerits a
sis of which one can obtain additional information about theseparate analysis. This behavior is shown in Fig. 13 in the
Drude parameters and use this information in calculatingorm of curves ofy=2A_;, /g versusw for values .,
them. For example, it has been found that over a wide inter=1.05, 1.5, 2, 4, 10, and 3@urves1-6, respectively. All

(12
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FIG. 12. Dependence on[ (¢..— 1)/ (e, + 1)]*? of the spectral position of
the reflection minimum with respect ©,,,(0). Curvesl—4 correspond to
the valuese.,=1.05, 1.5, 2, and 4.

(2b) and(2c) have meaning under two restrictions By,
viz., Rpin<0.5 andR,,,<R../2, while relation(13) has only
the weaker restrictiofR,;;<0.5.

It should be noted that in a considerable number of real

FIG. 11. Dependence om(e..— 1)Y2 of those characteristics of the reflec- conductors the frequencies of rather intense interband transi-
tion minimum for which the choice of horizontal scale contains all the tions lie nearw, and cause substantial dispersion(w) in

influence ofe., beyond that given by expressiof®: Ry, /R.. (&), Awmin/g
(b); the asymmetry parametér}, /A . (c). Curvesl—4 correspond to the
valuese,.=1.05, 1.5, 2, and 4.

of the curves execute some kind of oscillations abosatl:
emerging from a common poig{0)= 1, they dip to a mini-
mum of the same depth=(0.85) and then pass through a
maximum(with an amplitude proportional te.,) and again
dip belowy=1, nearly merging at a single point at a level
y=0.90 nearw=>5; the positions of the two extrema are
inversely proportional te .. . It is remarkable that over wide
intervals of values ot., (from 1 to ~4) andw (from O to
~7) the value of A /g differs from 1 by not more than
15-20%, so that the following relation holds to the same
accuracy:

9=2A i (13

(e,<~4; g<~7wp).

In the case of normal metalg{<~1.5 andg<~0.1lw,)
the error in the above expression is an order of magnitude
lower, so that the accuracy of determinigdrom Eq.(13) is
limited mainly by the error of measurement of the reflection
spectrum.

Thus it is more efficient to use relatiaqidi3) for deter-
mining g than relation(2b), since (13) holds over a wider
range of variation of botkv and the values dR,,: relations

FIG. 13. Dependence ow of the low-frequency componemt;, of the
width of the reflection minimum. Curvek-6 correspond to the values,
=1.05, 1.5, 2, 4, 10, and 36.
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pseudopotentiat*® and, accordingly, nearly free electrons
are valid. This automatically rules out transition and noble
metalé® and their alloys and compounds, including those of
the semiconductor typ¥,if the current carriers in the latter
ared or f electrons(holes. Even fors andp systems, how-
ever, the three-parameter Drude model is, generally speak-
ing, an extremely idealized scheme. The point is that each of
the model parameters is fundamentally dependent on fre-
quency. Some of the reasons for this asg; varies with
increasing excitation energy of the electrons on account of
the nonparabolicity of the conduction bandgyvaries be-
cause of the “Cherenkov” generation of quasiparticles
(phonons, eté%, ande.. varies near the resonance frequen-
cies of interband transitions. All of these factors can, in prin-
ciple, be taken into account by introducing additional param-
eters, but that greatly complicates the use of the model in
general form. One of the main provisions at the present time
is to eliminate the “constant backgroundt.e., the known
spectral behavigin analysis of the optical properties of con-
ducting materials, making it possible to observe and study
the mechanisms causing the changes in their electronic char-
acteristics.

FIG. 14. Spectra of the reflectioR and the loss functior. (insep of a When using the Drude model paran_weters one shou!d
U,Zny, film. Curve 1 is obtained by the Kramers—Kronig method, while t@ke into account the presence of limitations on the maxi-
curves2 and3 (curve2 is the dashed curve, which is nearly coincident with mum values ofv for metallic COI‘\dUCtiVit)L}7 and for conduc-

the solid curve on Fhe scale of the figumgere calculated from the Drude tivity via the fundamental and impurity bands of semi-
Qﬁﬁﬁerfegﬁtee&?lgié from Eqs2), (13), and (109 and Bqs(12), (19, -qnquctorS According to Ref. 47, the change in the charac-

' ter of the conductivity(metallic to semiconductdroccurs
when the room-temperature resistivibyyg k of the system
exceeds a certain characteristic vapyefor the given class
of system, wherg_ lies in the range 100—-20Q(-cm, i.e.,
for p=150 u{)-cm andw,=5 eV the temperature coeffi-
cient of the resistance for a system with>0.1s., will be

021

the region of the plasma reflection edgies is shown for Ag
in Ref. 42, as a result of which the use of formul@—(13)
is inefficient, since it requires introducing awkward correc-

tions. negative. An estimate of the minimum conductivity;, of
three-dimensional conductors gives 200 *cm ! and for

. . . . . 71 71 .
REFLECTION AND THE ENERGY LOSS FUNCTION OF conductivity in purity zone is 122™“cm* (Ref. 3, which
U,Zny, for w,=1 eV gives maximum permissible values @,y

~0.7e,, andw,,,~10¢.., respectively. However, even be-

The reflection spectrum measured on a thin280 A fore the system loses conductivity at absolute zero it is pos-
film of U,Zny7 in the interval 0.5-13 e¥ was processed by sible for a radical change to occur in the spectral dependence
the Kramers—Kronig method with the use of H@), Eds.  of the optical functions in the low-frequency regidf.

(113, (13), and(100), and Eqgs(11a), (13), and(10d (Fig.
14) and yielded the following values of the Drude model
parametersg=2.6 eV,w,=5.7 eV, ands,.=1.9.

The loss function peaks calculated in different wéiys The results of an analysis of the spectra of the optical
set in Fig. 14 are on the whole close in position and shapefunctions of the Drude model over wide intervals of param-
except for the additional maximum on curtewhich is due  eters (0.005W=10, 1<e.=<36) have made it possible to
to interband transitions. Thus we have successfully elimidetermine the conditions for observing a number of the char-
nated the influence of the oscillatory contribution in finding acteristic features of their behavior. In particular:
the parameters of the system of itinerant electrons. This re- @) the square-root frequency dependence of the modulus
sult, in view of the complexity of the electronic structure of and phase of the reflection holds in an intervak ®
the heavy-fermion antiferromagnetZh,;, attests to the ef- <0.02 for w<0.1 with a tolerance 06=0.01;
ficiency of the technique developed in this paper for deter-  b) the linear frequency dependence of the phase in the
mining the Drude model parameters even for compounds dorm 6=2w/w,\e.+ 6 in the regiong<w<w, for w
this type. =<0.01 and 6=0.01 is restricted to the interval 3% w
sO.lmp;

c) the concept of the plasma reflection edge as the fre-

The Drude model, which is based on the assumption ofjuency of the maximum rate of rise B{ w) is correct only
free charge carriers, is applicable to conducting systems ifor values ofw not exceeding a certain valwg;,(c.,).
which the current carriers are electrons belonging to broad The relations obtaine¢both for o<w, and for the re-
bands of thes and p types, for which the concepts of a gion of plasma frequencies and the reflection minimuie-

CONCLUSIONS

DOMAIN OF APPLICABILITY OF THE DRUDE MODEL
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scribing the overall picture of the transformation of the char-(A*/A7);,=1 and A /A ™) ma=3.7322, and the function
acteristic features of the spectra upon changes in the Drudgself is single-valued and admits the following approxima-

model parameters are useful in the Kramers—Kronig methoglon to an average erra$,, of the order of 1% or leséthe
and simplify the analysis of the experimental data for opticaldashed curves in Fig.)9

reflection and electron characteristic energy loss both in
“good” metals and in materials with a strong temperature

dependence of the electrical conductivitsemiconductors,

doped and nonstoichiometric oxides, granular metallic films,

and amorphous alloys

The values obtained for the parameters of the electronic B,
systems of Al and LWZn;; in comparison with the published
data indicate the possibilities of the scheme proposed in this

paper for analysis of the spectra of the optical functi¢os

W(AT/AT)
6

A(x—1)M+ DT AXT2 01<w<1, 8y~1%;
i=2

6

E BiXi_z,

—_ 4 1<w<10, &,~0.3%.
(3.7322- )Y = av

(All.2)

Al the ratio of the concentration of the valence electrons tdiere Aji=2.01713, —1408.5, 5213.5,~7231.7, 4455.5,
the effective mass, expressed in units of the free electron 1028.8, andB;=2.8756, —6.0338, 7.9701,—4.4584,

mass, isN/m* =12.5x 1072 cm™ 3, the frequency of the first
band of strong interband transitionsdg=1.53 eV, the os-

1.1500, and—0.1102, andx=A"/A". Expression(Al.2)
can be used to obtain the value wfimmediately from the

cillator strength is 22 €%/ and the half-width of the band is Measured\ /A~ and substituting the value found into re-

g=0.37 eV; for UZny; the plasma fregency i®,=5.7 eV,
ande,.=1.9).

lation (113 for w<1.5 or into(Al.1) for w>1.5 allows one
to find the Drude parameters by a simple calculation. This

The authors are grateful to V. V. Eremenko and N. F.Solves the problem of determining the optical functions of
Kharchnko for their interest in and support of this study, andgconductors from the experimental values lofw) without

to A. A. Galuza for assistance in carrying it out.

the use of the Kramers—Kronig relations.
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U9L000 and ISF/UA No. U9L200.

APPENDIX |

Technique for calculating the Drude model parameters from
experimental values of the parameters of the energy
loss function

Below w~ 10 (to an accuracy of-1%) the parameters
o, 2A", and L, of the functionL(w) can be approxi-
mated by the polynomials

PXw)=> AW, i=01,...n(a);

a=w,L,A; n(w)=5, n(L)=4, n(A)=6.

In this case relation&l1) become
o (W)=wpPr(w), Ly(w)=(we.) Pr(w),
(Al.1)
207 (w)=gPy(w),

where the coefficientd,; for 1.5<w<10 have the following
values:

1.616, —0.8532, 0.2158,—0.02857, 1.90810 3,
—5.072x10 ° for w ;

0.8920, 0.04210, 0.1013;0.01007, 0.000368 far ;,,y;

0.418945, 1.10685,-0.77719, 0.209238;-0.0280498,
1.86974< 10 3, —4.94383< 10 ° for 2A*.

APPENDIX Il

Technique for calculating the Drude model parameters from
experimental values of the parameters of the plasma
reflection minimum

By approximating the curves shown in Figs. 11 and 12
we obtain a system of equations for determining the Drude
parameterso,, €.,, andg from the experimental values of
Omins Rmin, andAwpin:

Awginlg=1+tarfx, x=w(e,—1)"?

w=glw,, (All.1)
3
Rmin/Rm:iEO AX, x=w(e,—1)¥2 (All.2)
3
wmin/wp[sm/(sw—l)]llzzizo B;x',
(All.3)

X=W[(e5—1)/(e,+1)]"2

Here Ap=-0.02, A;=0.0727, a,=0.861, A;=—0.488,
Bo=1, B;=0.09,B,=0.39, andB;=—0.18.

Combining relations(12) and (103 with equations
(All.1)—(All.3) and solving the resulting system of overde-
termined equations by the least-squares method will consid-
erably improve the accuracy of determination of the Drude
parameters from reflection measurements.

*E-mail: galuza@ilt.kharkov.ua

A substantial simplification of the solution of the system YIn the Russian-language literature the letter “t” is often omitted from the

of equations(11)—(A1.1) can be achieved by the following

method. Consider the process of deformatiahich will be
characterized by the ratid*/A ™) of the functionL (w) with
increasingw. The plot ofw(A /A7) in Fig. 9 shows that the

last name of H. A. Lorent#*%3lwhich leads to a certain confusion
beetween this Nobel laureate from Holland and his Danish contemporary
L. Lorenz, particularly in view of their overlapping scientific interests, as
reflected in the Lorenz—Lorentz formuih.

IThe authors do not know of any cases where the linear dispersion of the

domain of A"/A~ values is strictly bounded by the values phase in the Drude model has been studied by other investigators.
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The hydrodynamic fluctuations in a slightly nonideal gas of Bose quasiparticles with
nonconservation of quasiparticle number are considered. The fluctuation dissipation theorem is
used to find the spectral densities of the correlations of the fluctuations for the basic

quantities characterizing the quasiparticle gas, which are expressed in terms of the kinetic
coefficients. In the existence region of secondary waves in the gas of quasiparticles these spectral
densities have a Lorentzian shape. For certain pure single crystals of cubic symmetry the
temperature dependence of the resonant spectral density of energy fluctuations of the phonon gas
are given, from which one can determine the temperature interval in which second sound

waves exist. For NaF this interval agrees with the temperature region in which second sound is
observed in experiment. @001 American Institute of Physic$DOI: 10.1063/1.1355520

INTRODUCTION type, which, in essence, are temperature or entropy waves,
and the existence of coupled waves is possible, with the par-
The fluctuations in a gas of Bose quasiparticles can bgcipation of the secondary waves. All of these differences
studied by different _apprsoaches: microscopic, based on thgftect the behavior of the fluctuations in a quasiparticle gas.
use of _Green’s_funcnonjs‘, and macroscopic, using the gas- | this paper we investigate the hydrodynamic fluctua-
dynamic equations of the quasiparticles and the fluctuatiop,ns in a gas of Bose quasiparticléshonons, magnons,
dissipation theorentFDT). The macroscopic approach was plasmons, ety. We use the method proposed in Refs. 6 and
first proposed in Refs. 6 and 7 for studying the fluctuations in7 for studying hydrodynamic fluctuations in liquids; the

liquids, and in Ref. 8 it was applied to the study of fIUCtua'method is based on the introduction of external random

tions in the gas 9f qu§13|part|cles n qua}ntym liquids. In RGfs'sources into the dissipative flows and the use of the
1-5 the fluctuations in a phonon gas in insulators was con:

11-13
sidered with the use of Green’'s functions and the HamiI-FDT' .
) . _— Results are obtained for the spectral dependence of the
tonian for a single phonon branch of oscillations. The ex-

pressions obtained for the spectral densities of the correIatiorﬁydr(?dyr.'émIC ﬂ_ugtuaﬂons, which are e>.<pre.ssed n termg of
he kinetic coefficients for a gas of quasiparticles and which,

functions of the fluctuations were rather awkward and har . . .
or some of them, have a Lorentzian shape in the existence

to analyze in the different limiting cases, in particular, in the = - .
hydrodynamic or gasdynamic limits. The hydrodynamicreg'on of the secondary waves; in particular, the spectral
densities of the the square of the temperature and of the

limit is of greatest interest for studying the fluctuations be- ) o i
cause of the presence of a resonant effect in the existen_@e“ergy density of the quasiparticle fluctuations. Such behav-

region of second sound waves. It would be natural and quitl" ©f the spectral densities can be made manifest by study-
a bit simpler to investigate fluctuations in this region on thelnd the evolution of thermal pulses and light scattering in the
basis of the equations of phonon hydrodynamics. qua3|part_|cle gas, where sgtelllte peaks due tq th_e secondary
In the review by Akhiezeret al® the gasdynamics of Waves arise. The observation of these peaks in light scatter-
quasiparticles is considered without taking fluctuations intd"d experiments in different quasiparticle gases can serve as
account. Quasiparticle gasdynamics differs substantiallgvidence of the existence of secondary waves.
from the particle gasdynamics, which is described by the In phonon gasdynamics in the region of low tempera-
Navier—Stokes equatiof,in that the number of quasiparti- tures the second-sound waves in solids have been observed
cles is not conserved in interaction processes. In addition, igxperimentally in a study of the evolution of thermal pulses
the equations of quasiparticle gasdynamics an external frigh pure single crystals éfHe,** NaF>*®and sapphiré! The
tion force enters in due to the interaction of the quasiparticleseduced isotropic crystal model proposed in Ref. 9 has made
with the external mediurfumklapp processes, impurity scat- it possible to determine the numerical values of the kinetic
tering, etc). Under certain conditions these equations de-coefficients of phonon gasdynamics of specific crystals and
scribe weakly damped secondary waves of the second-sound calculate the values of the spectral energies of the corre-

1063-777X/2001/27(3)/5/$20.00 228 © 2001 American Institute of Physics
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lations of fluctuations for specific crystals, in contrast to thewhich will depend on the differences—x;=x andt,—t;
qualitative values of the spectral density obtained in the mi=t. These correction fluctuations will also be determined by
croscopic approach in the gasdynamic limit with the use othe linear functionals of the correlation functions of the ran-
Green’s functions and a Hamiltonian with a single-phonondom sourcey andy,, which are found with the help of the
branch of oscillations. We conclude by presenting the temFDT .12

perature dependence of the resonant spectral density of en- Let us introduce the spectral energies of the correlation
ergy fluctuations for some pure single crystals belonging tdunctions defined by the following Fourier transformations
the cubic group, making it possible to establish the temperafor the space—time function&(x,t):

ture region(window) in which second sound exists and to

determine which of the crystals has the highest spectral den- A(X't):J Ak, w)exp(i(kx— wt))dkdw. 2)
sity. For NaF crystals this temperature region is found to

agree with that in which second sound has been observed For the correlation function of two random functions

experimentally->*° A(Xq,t;) andB(x,,t,) we have

(A(Xq,t1),B(x,t5)) = f (AB)y, expli (kx— wt))dkdw,

GASDYNAMIC FLUCTUATIONS IN A GAS OF (3)
QUASIPARTICLES WITH A NONCONSERVED NUMBER _ . .
OF QUASIPARTICLES where(AB),,, is the spectral density of the correlation func-

tion. If the Fourier components & andB are known, then

For describing fluctuations in quasiparticle gasdynamicsheir correlation functions are related to the spectral density
we shall start from the quasiparticle transport equatfans, by the relation

troducing external sources into them as is done in the theory o, ) )
of hydrodynamic fluctuation%’ (Ak,0),B(k",0"))=(AB),,6(k+k")d(w+w’). (4)
The system of linear equations of gasdynamics with exagter using the FDT we obtain the following expressions for

ternal sourcey andy, for the quasiparticle drift velocity  the spectral densities of the correlation functions of the ran-
and the relative temperaturé=(T—T,)/T, in the case yom quantitiesy andy,:

when the number of quasiparticles is not conserved in their

interaction has the form 7k

K
(Ya.¥Yi)kw=0; <y421>k,w:C(w)T_;
30 a?u, 0

pijujtSoTo ax, Miilm W+rijUJZYiJ

(Vi Yi)ko=Cl@)(ri;+k7;), ©®
526 @ wherec(w) =% /(21)*coth@w/2T), andx and7;; denote

IX; X j Y4 the contractions of the tanscfsi and z;ij,m~with the unit

. . -~ vectorn=k/k in the form x=k;;nin;; 7;;= 7ijjmNiNm- In

yvher_eTO |s_the equilibrium temperature,»j is a .te.nsor ha_v- an isotropic mediurmy: = (E+ (4/3)7)nn: + (8 — nin)

ing dimensions of mass density and characterizing the inertia = = - ! AR IR

of the quasiparticlesC, andS, are the equilibrium densities and » and ¢ are the first and second viscosity coefficients,

of the heat capacity and entropy; |, and;; are the vis- respectively. . .

) : Him o Applying the Fourier transformatiof?) to the system
cosity and hydrodynamic thermal conductivity tensors, re- . : ; .

. ; . (1), we obtain a system of linear algebraic equations for the

spectively, and;; is the symmetric tensor of the external Fourier components. . and 6. -
friction in the gas of quasiparticles. The values of these P Ko Ko
guantities in the kinetic theory of quasiparticles are presented aju;—STko=iy;
in Ref. 9. . _ (6)

The general solution of systefd) is represented in the (0C+ik“k) 60— S(k,u)=ly4,
form of a sum of two solutions: a regular solution, which is yith the symmetric tensoa,; :
the solution of the corresponding homogeneous system of o -
equations with the boundary conditions, and an irregular so- ~ &;; = @wpj; +i(r;; +kz;). (7)

lution, which is the solution of the inhomogeneous system ok 0.\ here on we have dropped the subscript zero on the
equations and which consists of linear functionals with re'equilibrium quantities and the indices of the Fourier compo-
spect to the external sourcgsandy,. nents

In studying the fluctuations we shall consider an infinite On the reak axis in the case of dissipative systems the

tspatl?lly homogeneous(,j med:urr:ha?d will ?hssume lthat trl]et,ext'ensora” is nondegenerate (Dgt; || #0) and has an inverse
ernal sources are random. In that case the reguiar SolUlions-1 -4 therefore the solution of the system of equations
will be zero, and the irregular solutions will be random quan—(é’) ’ y a
tities, the mean values of which are equal to zero. The fluc-
tuations of these quantities will be determined by the follow-

ing space—time correlation functions:

CO-H+SodiVU_7(ij

can be written in the form
i
0= 5(y4+8kq’1yj); uj=STkoa; ‘+ia;ly;, (8)

(0(X1,11) 0(X2,t5)); (01(Xq1,t)Ui(X2,t2)); whereD is the determinant of systef8):
<Ui(X1,t1)Uj(X2,t2)>, D:(wC‘HT(kz)—szzTa_l, 9)
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1

anda; “=a; n, anda” 1—ai]1ninj are the contractions of CT 02
the tensora] (5U)k,w=7<02>k,w 1+— .

Using expression(8), we find the spectral densities of @
the correlation functions of the fluctuations of the fieléls In an ideal medium, when the aforementioned kinetic
andu: coefficients go to zerol{;—0), it follows from (15) that in

the frequency regiom= * () the spectral densities have a
Clw) |1 e
(6% 0=~ — Mg o-functionlike character:
mC(w)
at (%)= (Ao +8(w+Q)).
(u]-&)k’w:—c(w)kSIm T (10

Let us consider another limiting case, that WhﬂElH

<r”+k n” and the external frictiomr plays a governing
role. The tensog;; Yin this case has the following form in

-1,-1
(Uil = —c(w)lm[u
' D

In the derivation of these expressions we have used the rel§1€ linear apprOX|mat|on in the parametep/r

STk + aijl’.

tion a; =it or i P (16)
K 1 at) The tensow] is related to the static thermal conductiv-
ij + K7 =57 (@55~ &) ity tensorx;; by the relationw;; = TSr;;* (Ref. 9, and there-
. . .. fore
The spectral density of the energy of the fluctuations is given
by the expression 1 i iw ~
p” aj; =~ @ Kij T T2 — KimPmIKmj (17)

CT
<5U>k,w:7<02>k,w <U U; >kw (11)

One can show that the second term(ir) is small if
We note that the entropy fluctuatiof8=S—S, is re- (kl,)?<1, wherel .= CW« is the mean free path of the
lated to the fluctuation of as 5S=C@ (Ref. 9, and the qua5|pe_1rt|cles with respect to the external friction. Then the

spectral density of the entropy correlation function obeys th&l€terminanD has the form
relation{(89)?) ,=C* 6., - D=Cw+ik?*(k+%), (18
At low viscosities, Whenru+k 77|]<wp|], the tensor

and the spectral densities of the correlation functions are as
ajj 1is given approximately by

follows:
_ 1 i - 2 ~
a;t~ P”l 2P Y1+ K2im) P} - (12) (6%) = c(w) k(k+x)
T (Ca?+Ki(x+7)?
In this case the determinabtin Eq. (9) can be written in the
form C(w)kw Ck;
(Ui O)k,0= A =3 (19
a-lc TS (Cw)?+k*k+%)
D= —— 2-0%+2iwl), 13 ~
r(w ol (13 —r o (k%)
- Uilj)y o= Kij — =
whereQ=kW,; W,=[(TS/C)p~ 1112 e TS T (Cw)2+ KA (kR
1 2 where k= k;;nin;j; «;=k;;n;. We note that in this case
I‘HZF[T)fl(rij+k27;”)}3|’1]+ f;; (14 (6%, is equal to the spectral density of the correlation

function of the temperature in an elastic anisotropic medium

pJ and P are the contractions of the tenspﬁl' ie., with allowance for the thermal conductivity of the phonon

p; *=p; 0y, p~t=Ppj; "nin; . Under certain conditions, viz., 9aSki;+ kij .
in the so-called existence window of the secondary waves,
the quantitiest2, Wy, andI’;, respectively, determine the gpecrRAl DENSITY OF THE CORRELATION FUNCTION

frequency, velocity, and damping coefficient of secondaryor THE HYDRODYNAMIC FLUCTUATIONS IN AN
waves’ In this case the spectral densities have a LorentziaflsoTROPIC MEDIUM

form:
Let us investigate the basic properties of the hydrody-
) C(w) w 20l _ namic fluctuations in quasiparticle gasdynamics for the par-
(0)k,0= T C (02— 02)2+ 422’ ticular example of an isotropic medium. In an isotropic me-
! dium the tensom;; can be written in the form
<Ui6>kw l@l <02>kw, aij:alninj+az(5ij_ninj), (20)
(15) and the inverse tensarﬁl can be obtained without any ap-
02 Bl—lﬁj—l proximations:
Uil o CT— — ()0 I
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where a;=wp+ir +ik?(é+47), a,=wp+ir +ik%z. The

determinanD in (9) in this case will be equal todp/a;)A,
where

P K

wtl=+I=

PP

We introduce the following notation for the characteris-

tics of the dissipative processes: the frequengy:r/p,
which governs the relaxation of the quasiparticle drift veloc-
ity u as a result of the external friction, and the diffusion

times for the energy«;) and momentum+;, and7) of the
quasiparticles owing to their interactidn:

- (&+%p)
T ——.
pW?

K
w+ik?=

A= c

~ 4
£+ 37 )—QZ} (21)

702
== W,
p

i
cw?’

In an isotropic medium it is natural to introduce the lon-
gitudinal y;, uj and transversg, , u, components of the
vectorsy andu with respect to the direction of the vector
The spectral densities of the correlation functions of the ran
dom guantitiesy; andy, are

(Y2 0=C(@)p(v,+Q%7);

b (22

T';'(:

~ 23
YiYie=cl@p(n+ Q2m) (8-, @Y
The longitudinal and transverse componeytsandy, are
uncorrelated, i.e{yy,i)k,»=0.

For 6, uj, andu, we find

<02>k,m=—cé(;) m{mi(:w’)};

(W=~ S i) L }; (24)

<uiJ.ujJ_>k,w:_ﬂ(éij_ninj)lm|.—.2 ;
w+iv+i0%r

(00~ e ml 3,

(UL UDke=0; (Ui O)k =0,

whereA = (w+iv)2—(Q%—v'?);

V/

= > (1 +0%(7-7,).
(25

The energy density is given byU=46U + 46U, , where
8U =1/2(CT¢?+puf), and 8U, =(1/2)pu? . The spectral
density of the energy of fluctuations has the form

|

w+ivr+iQZT“;7

N| =

v=3 (n+ QX(7+7,);

2

+iv

A

(0Ukw=— c(a))lm[ -
(26)

<5UL>k,w: —C(w)lm[

V. F. Aleksin and V. D. Khodusov

231

FIG. 1. Temperature dependence of the resonant spectral density of fluctua-
tions of the phonon energysU \I>k,w for various crystals: NaQll), NaF(2),
LiF (3), KCI (4), MgO (5), GaAs(6), InSh(7), YIG (8), Si (9), Ge (10).

CONCLUSION

In Ref. 9 in the reduced isotropic crystal model the val-
ues of the kinetic coefficients of the phonon gasdynamics
were calculated in the low-temperature region for the follow-
ing pure single crystals belonging to the cubic system: NacCl,
NaF, LiF, KCI, MgO, GaAs, InSb, YIG, Si, and Ge. Let us
use the handbook dafafor these crystals to calculate the
phonon heat capacit, entropy S, density p, and the
second-sound velocity . If the dimensions of the crystals
are of the order of 1 cnit is in NaF crystals of such dimen-
sions that the second sound has been observed experimen-
tally), then the wave vector of the second soukd 27
cm™ L. Substituting these values into E@6), we obtain the
spectral density of the fluctuations of the phonon energy as a
function of temperature and frequency. As an example, let us
give the values of these quantities for NaF: density
=2.801 g/cmi; »,=5.64x10° cm/s; v;=3.31X10° cm/s;
phonon densityp=7.06x10 *T* g/cn?; h=0.2037 !
glcm-s); C=3S=24.3r% erg/cn?K; W;=1.96x10° cm/s;
k=7.19<10%T~2 erglcm-s-K); »,=4.3x 10T 3exp
X(—220mM)[1+10 3T?exp(-12/T)] s!, and Q=1.23
x10° 571,

In an isotropic medium the spectral densitig6) of
the energy of the fluctuations in a gas of quasiparticles have
their maximum value at the frequenay,=Q[1+ 7(v,
+07%7)1¥2 which is the frequency of the second-sound
wave with allowance for the dissipative corrections. Figure 1
shows the temperature dependence of the resonant spectral
densities of the energy fluctuations at a frequeneyw, for
certain crystals of the cubic system, each of which has a
Lorentzian shape and indeed determines a temperature exis-
tence window for second sound. Let us check this out for the
particular example of NakFcurve 2 in Fig. 1). We see that
the existence region of second sound lies in the interval 9-16

In the existence region of the secondary waves, which iX. This coincides with the temperature interval in which sec-

determined by the condition min@/;1/7)>Q>v,, the
spectral density 6U ), has a Lorentzian shape, and there
is no spectral densitysU | )y , .

ond sound has been observed experimentaf§.indeed,
from the form of the frequency dependence of the spectral
density of the energy fluctuations for NaF at temperatures of
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Knowing the spectral densities of the correlation func-
tions of the fluctuations, one can find the space and time
correlation functions of the fluctuations.
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An analysis is made of the existence conditions and dynamical features of crowdion excitations
in crystals with a complex structure of the crystalline field forming the crowdions in close-
packed atomic rows. The crystalline matrix is assumed to be absolutely rigid, and the description
of the crowdions therefore reduces to analysis of the generalized Frenkel-Kontorova model
and the Klein—Gordon nonlinear differential equation corresponding to it. The cases of the so-
called double-well and double-barrier potentials of the crystalline field are studied in this

model: the structures of subcrowdions with fractional topological charges and of split whole
crowdions are described, as is the asymptotic decay of split crowdions into subcrowdions

when the double-barrier potential is transformed into a double well. The existence conditions of
special types of subcrowdions are discussed separately; these conditions involve the

atomic viscosity of the crystal and the external force applied to it. The qualitative analysis
presented does not presuppose an exact solution of the Klein—Gordon nonlinear equation in
explicit form. The results of this study generalize the conclusions reached previously in a

study of certain particular cases of exactly solvable Klein—Gordon equations with complex
potentials. The results of this study may be used not only in the physics of crowdions

but also in other branches of nonlinear physics based on the Frenkel-Kontorova modz01©
American Institute of Physics[DOI: 10.1063/1.1355521

INTRODUCTION lattice. In the present paper we formulate the requirements

that must be met by the parameters of the interatomic inter-
Crowdions are nonlinear solitary waves of displacementgction and the geometric parameters of the crystal in order
that arise ip close-packed.atomic rows which are weaklfhat one can do the following:
couplle_cai with the crystalline matrix surrounding these  __ genarate out the crowdion excitations from the back-
rows:~° The distinguished atomic row might be an mherentground of small elastic deformations of the crystal:

parft of th? tchrystal Ittséﬂtr? ra phaln of a?sorbed atotrr?ston the — reduce the description of crowdions to an analysis of
surtace of the crystdl.There Is reason to assume ha exCI'solitary waves in a one-dimensional Frenkel-Kontorova

tations of the crowdion type also play an important role incrystal'
the dynamics of linear oriented polymers, in particular, == obtain explicit expressions relating the substrate po-

double polymer chains; in that case the “atoms” would betential and the parameters of the Frenkel-Kontorova model
relatively rigid monomers whose internal degrees of freedom P

could be neglected® with the interatomic interaction potentials and other micro-
For qualitative description of the main properties of scopic characteristics of the three-dimensional crystal.

crowdions in the physics of crystals, the Frenkel—Kontorova N Ref. 9 we also showed that a correct separation of
one-dimensional crystal model is widely used. A Frenkel—’?onl'”_ear crowdlo_n exc_ltatlons and I_mear e_Iastlc defprma—
Kontorova crystal is a chain of strongly interacting atomstions in a three-dimensional crystal is possible only in the
executing one-dimensional motion on an immobile periodidong-wavelength approximation. This approximation corre-
substrate created by a relatively weak potential fiélfl. SPonds to crowdions having a rather large widthb and
When this model is compared with a real crystal it is as-l0OW velocity V<c (b andc are, respectively, the character-
sumed that the mobile chain of atoms corresponds to a didstic values of the interatomic distance and the sound veloc-
tinguished atomic row, and the periodic potential of the subity in the crysta). If the requirements listed above are met,
strate models the interaction of this rotation with theone can pass to the continuum limit in the equations describ-
crystalline matrix. In our recently published pap#re prob- ing the crowdions. To a first approximation one can also
lem of the structure and motion of a crowdion is treated as @ssume that the crystalline matrix is absolutely rigid, i.e.,
dynamical problem of a complex three-dimensional crystaheglect its deformations. In that case, for the description of
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nient to place the origin from which the vectgssand R(*)

are measured on one of the atoms of the distinguished row,
specifically, the atom with the largest binding energy with
the matrix, thus ensuring that the potential is positive defi-
nite, ®(u)=0. In the general case the parametemndb*
have different magnitudes, but in this paper we consider the
simple case whebh=b*. It will also be convenient to use a
system of physical units in whicm,=1, b=1, andw=1,

and keep the former notation for the dimensionless quanti-
ties. When these simplifications are taken into account, the
R(a) equation of motion for the displacement field{x,t) and

corresponding to energy functiondl) takes the form
® 6 6 o o o d
U—u"+ —®(u)=F. ()

FIG. 1. Fragment of a complex crystal lattice with a distinguished atomic du

row (two-dimensional schemeb and = are the elementary translation vec- L . . . ) )
tor of the lattice and the direction vector along the distinguished atomic row,T his differential equation is known in mathematical physics

p and R are the equilibrium positions of the atoms of the distinguished as the Klein—Gordon nonlinear equation. Not only is it fun-

row_gnq of the crystalline matrix surround |t resp_ectively, drfdis the damental to crowdion theory, but the analysis of many other

equilibrium distance between atoms of the distinguished row. physical problems also leads to equations of this B4

From the standpoint of the physics of nonlinear phenom-

ena, the main interest is in the solitonlike solutions of equa-

the nonlinear dynamics of the atoms of the distinguished rowiion (3), which exist if the potentiatb(u) has a seu, of

it is convenient to use as the natural dynamical field variabl@bsolute minima:®(u,)=0, whereu,=p=n+4;, n=0,

the functionu(x,t), which is the field of longitudinal dis- =*=1,+2,..., 0<§;<1. The numbering of the minima here

placements of the atoms from their equilibrium positions intakes into account both the presence of translational symme-

the ideal crystal and depends on the coordinatdong the try of the crystal and the possibility that more than one ab-

chain and the timeé. It is assumed that the direction of the solute minimum exists within a translational perioesu

axis and of the displacemenix,t) is specified by the el- <n+1: the translational periods are numbered by the se-

ementary translation vectdr of the crystal along the distin- quence of natural numbens and the absolute minima within

guished atomic chaifFig. 1). The energy functional corre- each period by the fractional numbe&=0,5,,6,,....
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sponding to this approximation has the form Stable solitonlike solutions of equatid8) in the absence of
1 (e m W crystal forces F=0) are solitary waves with a stationary
H=b—*f §(0)2+E(u’)2+<b(u)—F(x,t)u dx. profile:
(1) u(x,t)=uq(&), £=x—Vqt, @)

Herem, andb* are the mass of the atoms of the distin-yhich move with a constant velocity,, and satisfy the
guished row and the equilibrium distance between themyq,ndary conditions

F(x,t) is the externalto the crystal latticeforce acting on
these atomsw is the interatomic interaction parameter , ,
within the distinguished rows(u)=®(u+b) is the peri- Ug(£)=0, Uq(”’)—uq(—""):f_wuq(f)dgzq- (5
odic potential of the crystalline field for atoms of the distin-
guished row (the ‘“substrate” potential and u=du/at, Hereq is a positive or negative number equal to the differ-
u’=agulax. ence between any two adjacent numbers from thgset
If the interaction of two atoms of different chemical el- + &;; this number is called the topological charge of the
ementsa and«’ joined by a vector is described by a pair solitary wave and is an integral of the motion. If the potential
potentialU . (r), then the expressions for the paramater ®(u) has a single absolute minimum within a translational
and potentiakb(u) have the form period (Fig. 2a and 2pthe set of numberp=n and the
5 topological charge can assume the two valgess==*1,
- (2a9  and the corresponding topological soliton is called whole
Ipidpk (intege). Solitons for whichq= o, where|a|<1, can exist
in the case of so-called multiwell potentialBig. 20 and
P(Uu)= >, [Ui(RW—7u)—U (R)], (2b)  have been given the name subsolitdtisey may also be
a,R@ called fractiona).
b We note that the uniform solutions of equati@) u,
=5 =p can be interpreted as a multiply degenerate physical
vacuum for the fieldu(x,t), in which case the solitary wave
In these expressions the atoms of the distinguished row,(x—V,4t) plays the role of a nonlinear excitation of the
are assigned the chemical index- 1, and the summation is vacuum'* and it represents a moving smeared boundary,
over the equilibrium positions andR(®) of these atoms and centered at the poing,=V4t, between two uniform states,
of the atoms of the matrix, respectivellyig. 1). Itis conve-  andu, 4 specified at infinity.
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a b torova and in the existing theory of crowdions the extremely
D 4 D a4 . . . . . . .
simple sinusoidal potentiad (u)=®,,sir(wu) is consid-
I ' D, oo ered. For such a crystal-field potentigl=n and q=s
: 2\ =*1; under the inequalityp,<1 the crowdion excitation
,'\ has the form of a simple crowding togeth@r spreading
ll : ‘\ apar} of the atoms in the distinguished row, the width of this
PN being of the order of\s=\/(1—VZ)/2® >1, and on the
PN graph of the functionug(x—Vt) this excitation is repre-
: R 0 : . sented by an isolated kink centered at the paiMt (Fig.
0.5 1 u £ 1 u 2a). The topological charge= — 1 corresponds to a delocal-
: : : : ized interstitial atom(crowdion), while s=1 corresponds to
: ' a delocalized vacancdfanticrowdion.
: : A recent series of studies, starting with Refs. 13, 15, and
' 3 16, has explored the effect of a substantial deviation from a
sinusoidal form of the potentiab(u) on the soliton structure
and parameters and on the corresponding kinks in the gener-
alized Frenkel-Kontorova modéhe results of these studies
are reviewed in Ref.)38 Of greatest interest, in our opinion,
are the cases of multiwelFig. 20 and multibarrierFig. 2d
potentials® (u): the multiwell potential admits the existence
D 4 ¢ @ a d of subkinks with fractional topological charge= o, where
|o|<1 (e.g.,|o|=8, 1—6<1); in the case of a multibarrier
. IRl : potential a whole kink with integer topological charge s
: ® ... : ==*1 has an internal “fine” structure and can be regarded
mif £ : as split into fragments, similar to subkinks, which are
: uniquely interrelated.
The potentials® (u) derived (or chosen as modelsn
the previously studied problems of nonlinear physics have
> been completely specified symmetric double-well and
& lu double-barrier potentials, which for certain values of their
: parameters go over to a sinusoidal potential and admit exact
oo solution of the Klein—Gordon equatiai3) in explicit form.
. One of the simplest concrete examples is a functigfu)
IS T oft 18
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®(u)=D[sirP(u)+ ysirf(2mu)]. (6)

d, A For y=0 this function goes over to the classical Frenkel—
: Kontorova potential, and fory>1/4 it is a symmetric
; double-barrier potential with an intermediate minimum at the
{ 7K point §=1/2. The function6) can be interpreted formally as
Xoz [~ N GZJ' ; the approximation of a more complex periodic function by
: —;" the first terms of the Fourier series.

However, in an analysis of crowdions in complex crystal
Py structures, especially in oriented polymers, the potential
X4 b ®(u) can turn out to be extremely complex and far from a
simple approximation of the forrt6), and therefore the use

FIG. 2. Different types of crystal-field potentials(u) and the kinks cor- o ahroximations of this kind does not allow one to describe
responding to them: a—symmetric single-barrier potential; b—asymmetric

single-barrier potentialsolid curvé and its piecewise-continuous parabolic the many mtereSting an(_j important properties of real crow-

approximation(dashed curvye c—double-well potential and fractional kinks ~ dion excitations. The main problem of the present study is to

with centers at the points,; and widths),,; (i=1,2); d—double-barrier  gnalyze qualitatively the structure and dynamical properties

potential and a split kink consisting of two virtual subkinks with centers at of crowdions in the case of multiwell and multibarrier

the pointsx,; and widths\ ;; ;A\ is the width of a whole kink, and; is the . . . .. e

width of a stacking fault. crystal—ﬁeld.potenuals wnhqut exphcnly specifying the form
of the function®(u) and without obtaining exact solutions
of the Klein—Gordon equatio(B) in explicit form. The ex-

As we have said, the energy functiorid] and the equa- isting ideas about subkinks and the splitting of whole kinks
tion of motion(3) are the first(fundamental approximation  will be cast in a more general form and applied to the de-
in the description of crowdions. In this approximation the scription of crowdions with allowance for their specifics. In
atomic structure and dynamical properties of the crowdiongddition, certain new properties of crowdions in complex
are determined primarily by the shape and parameters of therystals will be described. The results of this study can of
potential®(u).Y In the classic paper by Frenkel and Kon- course be used not only in the theory of crowdions but also

ol ".:
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in other branches of the physics of nonlinear phenomena

whose description reduces to analysis of the solutions of the Ecp”(o)uz, lul<u*,

Klein—Gordon nonlinear equation. Some of the results of our @ (u)= )

analysis are analogous, from a general physical standpoint, o+ Eq),,(l) ( u— E) u— E <u*

with results obtained earlier in the theory of magnetic meo2 2 2] 2 '
solitons. (10

If one is not considering “exotic” potentials, the param-

eteru* that determines the domains of applicability of the
1. WHOLE AND FRACTIONAL CROWDIONS approximations in(10) can be estimated as*=1/4. This

potential admits the existence of only whole crowdions with

Let us first turn to a description of the structure andinteger topological chargg=s. Using Egs(8) and(10), we

dynamics of crowdions without specifying the exact form of easily obtain the asymptotic formulas describing the struc-
the potentiald®(u) but only assuming that this potential is ture of the crowdiorishape of the kinkfar from and close to
periodic and has a set of absolute minimg=p=n+ 4 its centerxg=Vt(£=0):
(®(up)=0) and a set of the the same number of maxima of

various heights at the pointsi,=m=n+¢; (P(u,) ( 1—u* ex%)\c—s§>, SE> ¢!
=®d.,), wheren=0,+1,+2,..., 0<6;, & <1. In the ab- Ao
sence of external forces&0) the first and second integrals . [sE
of equation(3), which describe solitary waves,(x—V,t) Us(§)=9 5 TApsin m) &l <Nc; (11)
satisfying boundary condition®) with an arbitrary value of Aot SE
g, can be written in the form u* ex;{ C}\ , sE<—\,.
u’ = sgr(q) 20 (ug) ) The shape of the kink is characterized by a set of four
4 1_\/(24 ' parametera.g, Ay, A}, and\., which have dimensions of
length:
Ugi du Xx—V.t \/2 1/2 N2 1/2
e ® e D) e
° ai P"(0) " (1/2)]
The choice of the lower limit of integratios; in Eq. (8) . 20, 2 [1-2u*
defines the center of the crowdigkink) x4 =Vt as the m= m Ne=Amarcsi (12
m

point at which the absolute value of the crowdion deforma-
tion reaches its maximum value: The parameteh . determines the half-width of the central
part of the kink, while\ ; specifies the extent of its “wings”;
therefore, the characteristic kink widkh can be represented
(9 by the sum

zq)mi 1/2

2

max ug;| =

N 1-2u*

Our definition of the centers of the crowdions and their ~ As=2(AotAc)=2Ng[ 1+ )\—:arcsw( N ) - (13
numbering faithfully reflects the circumstance that an indi- "
vidual type of crowdion is uniquely associated with one of ~ Analysis shows that for a wide class of potentidigu)
the maxima of the potentia(u). It is easy to see from Egs. Satisfying the condition of applicability of the continuum ap-
(7) and (8) that the details of the internal structure of the Proximation maxug|<1 [see Eq.(9)] but differing in the
crowdion excitatior(kink) are determined by the form of the curvature at the minimum and maximum, the parametgrs
potential profile®(u) on the interval joining two neighbor- and\. are of the same order of magnitude, which depends
ing absolute minima; this interval specifies the value of thesubstantially on the barrier heigfity,:
topc_)l_ogical chargey;, . We nqte immediately that the_ appli- A l—V§ 1/2
cability of the formulas obtained above for the description of ~ A,— A= 7 SZ(W)
crowdion excitations in real crystals is restricted by the re- m
quirement maj|<1, which justifies the use of the con- For barriers with a “sharpened” cresu* —0, [®"(1/2)|
tinuum limit. This requirement, according to E), reduces —x) the central part of the kink is absent, and its width is
to the condition 1—V§i>2<bmi, which is violated if the determined mainly by the barrier height,, and the value of
crowdion velocity approaches the limiting valMe=1 (inthe  the derivatived”(0). In those cases wher®”(0)—0 while
original system of units, the value=\w/m,), and the the barrier heightb,, remains finite, the width of the kink
analysis of such a fast-moving excitation requires taking latincreases anomalously, and the exponential asymptotic be-
tice effects into account. havior of the displacement fiela,(£) gives way to a power-

As an example, let us first consider a symmetric singledaw behavior at large distances from the center of the kink.
well potential with a maximum at¢=1/2 (Fig. 28, which, ~ Such kinks have been studied previod&lpnd are called
over rather wide neighborhoods of the minimyoj<u*  power-law or algebraic kinks.
and maximum |u—1/2<u*, admits a quadratic It should be noted that crowdion excitations in real
approximation three-dimensional crystals have the feature that taking the

(14)
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elastic compliance of the crystalline matrix into accountpliance of the crystalline matrix, formul@?7) can be used
leads to a power-law asymptotic behavior of the crowdiononly for making order-of-magnitude estimates of its energy
strain field at large distances from the center of the crowdiorand mass, while the exact values of these parameters depend
for any shape of the potentidi(u).®1°-2' Therefore, in the not only on the potentia®(u) but also on the elastic prop-
case of a crowdion in a three-dimensional crystal the paramerties of the crystalline matri.
eter\¢ has the meaning of the characteristic size of its core.  Let us now turn to an analysis of the properties of crow-
Of special interest is the case of an asymmetric singledions(kinks) for more-complex forms of the potentidl(u).
well potential®(u) (Fig. 2b): such a potential can arise in As we said in the Introduction, in complex crystal structures
crystals that do not have a center of inversion. In this cas¢he periodic function®(u) can have several well@bsolute
the structure of the field of displacements of a whole crow-minima) within a period Gsu<1 of the structure, and the
dion (the shape of the kinknear its center is asymmetric. As same number of barriefgnaximg separating them. In this
we saw above, the value of the derivative of the potentiatase the stable stationary solution of the Klein—Gordon
®(u) in the neighborhood of the maximum does not mate-equation(3) corresponds to kinks with fractional topological
rially affect the structure of the crowdion; therefore, thechargesq= o, where—1<o<1: these kinks join uniform
asymmetry indicated above is conveniently illustrated bystates fixed at infinity by any pair of adjacent wells of the
considering as an approximation the piecewise continuoupotential®(u), separated by a distan@g. We describe the
functior? fractional kinks for the particular example of a asymmetric
double-well potentiatb (u) (Fig. 20 having two sets of ab-
Py solute minima:u,=n andu,=v=n+§, wheren=0,£1,
+2,...,0<6<1. We denote the two sets of maxima of such
O(u)= a potential by the symbols,,;=m; and u,,=m,, where
m (U-1)2, e<u<1l. m;=n-+egq, m?=n+sz, 0<g1<d<e,r<l. In t_he generall
(1—¢)? case the barriers between wells can have different heights
In this approximation one can obtain exact expressiong)mlzq)(uml) aNd® o= D (Uno)-
: X ) e In the absence of external forcds=£0) Eq.(3) has two
for the displacement fieldy(¢) in explicit form: sets of spatially uniform stable solutiong=n andu,= v,
sé corresponding to the wells of the potenti@(u): ®(u,)
& eXP(r) sé<0, =®(u,)=0. In this case the physical vacuum for the field
(15) u(x,t) consists of two inequivalent sets of spatially uniform
statesu, andu,,, the degeneracy of which is twice that for a
single-well potential®(u). The fractional crowdiongsub-
kinks) u,(x—V,t) are nonlinear solitonlike excitations of
such a vacuum: an individual excitation is a smeared bound-
i T i ary between neighboring uniform states of different sets,
width of the kink ishs=X,+ X, separated by intervalsr;|: the parameter can take values
A, e 1-V3\ 2 o,=+6 and o,=*=(1-6) (Fig. 29. The increase in the
()\1_ :(1_8)7\5, 7\52( > (16)  degree of degeneracy of the vacuum leads to growth of the
¢ m number of independent elementary excitations: in the case
If the asymmetric potentiab(u) has a rather extended under study, two types of crowdions and two types of anti-
crest with a small curvature, there will be yet another distincrowdions can exist.
guished fragment with a half width of; [see formulag12)]. The displacement field ,(x—V,t) of a fractional crow-
According to the well-known ideas of nonlinear dion describes localized crowding together or spreading
mechanics;* any stable solitary wavéin our case, crow- apart of atoms in a close-packed row and for any specified
dion excitation can be regarded as a particle with certainvalue ofg; is determined by relation&) and(8). The inter-
values of the self field enerdy, and effective rest mass;. nal structure of fractional crowdions is analogous to that of
A general expression for the energy and mass of an excitawhole crowdions: it is governed by the shape of the potential
tion in the casé==0 is easily obtained by substituting the ®(u) on the intervalss; joining adjacent minimdsee for-
displacement fieldig(x—Vt) into the energy functiondll) mulas (9)—(16)]. The characteristic value of the width of a

&

ug(é)=

s§
1—(1—s)exr{—)\ ) sé=0.

1-¢

In this case the central part of the kink consists of two
parts with dimensions of the order &f and\;_,., and the

and using relatior{7) atg=s: fractional crowdion\ ;;, can be estimated by the formula
ESZJ;—Z' e & Noi=|ail 1_Vii)m i=1.2 (19
1=V AT 2w, | TS
I = folMd u. (18 Fractional crowdions, like whole ones, have pseudopar-

ticle properties with self-energieg,; and effective rest
We will not analyze in detail the dependencekafand  massesn,;, which are given by the expressions
mg on the shape and parameters of the potedtial), since
this question is discussed quite thoroughly in the review by |
Braun and Kivshaf.We note only that when a crowdion in a Eji=————, m,=|

20)
) ) ) . ol 2 1 g (
real crystal is considered with allowance for the elastic com- V1=V5

i
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the second integral of equati@8) in the absence of external

il . .
loi= . V2@[u—(i—1loil]du, i=1.2. (21 forces E=0) has the form
us du X—Vt
———=5 ) (22
2. SPLIT CROWDIONS 5 20U NIV

The multiwell lattice potential®(u) considered at According to relation(7), on the axis¢=x—Vt there also
the end of the previous Section is obviously exclusive andXist two maximag¢; of the modulus of the deformation
rarely encountered in real situations. Both in the physicgUs(€)!:
of crowdions and in some other branches of physics one

. . . . . gj du
is much more likely to have a multibarrier potential §-=s«/1—V2J . i=1,2. (23
®(u).B10-1317.1824he qualitative representation of the fine | *Js 20 (u)

structure of a whole crowdion with topological charge (s easy to see that outside the intervaj (£,) the displace-
=+1 in crystals with a multibarrier potentig(u) is given  ment fieldu (¢) has a structure described by the upper and
by formu!a(?), for g=s: the value of the crowdion-created |o ey jines of formula(11), and the characteristic exteng
deformationus(¢) of the close-packed row of atoms has ot the \wings of the kink is determined by the value of the
maxima and minima corresponding to the extrema6tl),  gerivatived”(0). We note only that in this case as a standard

and the graph of the displacement fiel( ) takes the form  oqtimate for the parametar* one can take the value
of a multikink consisting of a set of fine kinks. The number ;x _1/g if 5=1/2.

of sqch kinks is equal to th'e nurnber of maximadafu) on The central part of the kink has an exteqt &,— &;:

the interval (0, 1), and their height is of the order of the

width of the potential barriers. This structure can be inter- e du
o - L de=+/1-V?2 :

preted as the splitting of a solitary wave with integer topo- s s a1

logical chargeaug(€) into a set of intercoupled solitary waves _ _ _

moving with a single velocitys and having fractional topo- ~ To obtain an idea of the structure of the displacement

logical chargess;: here sgng;)=sgn€) andS,o;=s. Itis  field us(¢) near t_he center of the kinkk&0) and to estimate

important to emphasize that the individual fragments of th¢he characteristic value of the parametier we use a qua-

multikink, which are similar to subkinks, are not indepen-dratic approximation of the potentii(u) in the neighbor-

dent: their shape and the distance between them are uniqudipod of the local minimum, on a certain interval2<e,

specified and are interrelated. In order to distinguish these €1:

formations from free subscrowdions, from now on we shall 1

call them partialor virtual) crowdions. A rigorous analytical d(u)=A+ Eq)”( 8)(u—98)?, |u—édl<u*. (25

description of a multikink as a sum of partial kinks has been

obtained**?for a number of specific potentiaf(u), e.g.,  Substituting(25) into (22) and doing some straightforward

for the potential6). The qualitative analysis proposed below calculations, we arrive at the following expressions:

allows one to establish the conditions under which a whole

(24)

1/2
crowdion(kink) can be represented approximately as a set of ug(&)= 5+ 24 ) sinr(ﬁ) . £—0: (26)
coupled subcrowdions in those cases when it is not possible ¢"(6) g
to obtain an explicit solution of the Klein—Gordon equation. )\ 172
In this Section we consider a double-barrier potential « [ 17V5
®(u) of arbitrary shape, having within a period<u<1 c d"(5)

two minima of different depths, separated by two barriers ] . ]

(Fig. 2d. We denote the minima and maxima of the potential L€t us discuss the question of how the widthof the
®(u) we use the symbols,, u,, U, andu., introduced ~ central part of the kink depends on the parameters of the
in the previous Section. The absolute minimaare num- potential ®(u). If the parameteA and the barrier heights
bered by integersi=0,+1,+2,...; the local minimau, by d,,; are of the same order of magnitude, then the integral in

the fractional numbersy=n+35, where 0<&<1: the (24 can be evaluated using the theorem of the mean:

maxima u,,; (i=1,2) by fractional numbersn,=n+g;, 2 C. 1-C.

where 0<e,< 8§<e,<1. By definition®(u,)=0, and a lo- de=vV1-V2 Y [6—¢|| ——+ —|,

cal minimum will be characterized by the parameig(u,) =1 V20, (24

=A; the heights of the barriers separating the valleys of the 0<C;, C,<Ll. 27)

potential®(u) are denotedb (u,,;) =P ;. It is clear that in

the limit A—0 we arrive at the previously investigated case ~ Of special interest is the limiting case of a very deep

of the double-well potential. local minimum of the potentiadb (u), whenA—0. In this
The double-barrier potential under consideration admit$ase the extent of the central part of the kink increases

the existence of a solitonlike excitatian(x— V) with an ~ anomalously according to the asymptotic estimate

integer topological charge=*+1, which is specified by the 2(u*)2D"(5)

corresponding boundary conditions. In this case it is conve- ds=d.=\% In B S—

nient to take the center of the crowdidkink) as the point

Xs= Vgt at which the displacement has the valug0)= 6, It should be noted that the unbounded growthdg(fA)

i.e., coincident with the local minimum. Under this condition as A—0 does not occur only in the case of an “exotic”

, A—DO. (28)
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double-barrier potential and the double-well corresponding @ 4
to it in the limit ®"(5)=«. For example, suppose that

on the intervale;<u<e, the potential®(u) admits the D
approximation B PR
@ .
P=A+ 55 | Slu—4l7, 1<y<2, i=12.(29 Y —

Then the widthdg(A) of the central part of the kink remains
finite asA—0, but it increases anomalously &s-2:

1—V§ 1/2
ds(0) ——E i Zq)mi) (30
Thus at sufficiently smalh the central partis(A) of the i A
kink joins two fragments centered at the poié{sand ¢, and l R
having shapes close to those of subkinks with topological 0 € 5 c 1 0
1 2

chargesr;=* 8§ ando,= *(1— 6) and widths\ ;; (19). At
the center of the crowdion, at an intend, the atoms of the  FIG. 3. Piecewise-continuous parabolic approximation of a double-barrier
close-packed row occupy positions cloggith exponential — potential®(u).
accuracy to the local minima, and the potential energy of
each of these atoms has a value closA td@ his fragment of
the crowdion is a sort of stacking fault of the atomic rows—a
one-dimensional analog of the planar stacking faults or an-
tiphase boundaries well kno®f in the physics of crystats
Turning to an analysis of the self-energy of the crowdion
in the case of a double-barrier potential with a rather dee
local minimum, we write the functio® (u) in the form of a
sum of a double-well potential®®W)(u)(d®CW(0)
=d(PW)(5)=0) and a rather small positive definite function
¢(u) that goes to zero at the ends and outside the interval
between maximad,e,):

Such a crowdion(or the corresponding kinkwill be
called split, and the subcrowdions bounding it will be called
partial (or virtual) crowdions. The concepts of crowdion
splitting are useful for an approximate description of crow-
Riion excitations in crystals with a complex shape of the crys-
talline relief of ®(u) and are physically justified under the
inequality)\ai<ds, which is equivalent to the inequalit

A rather good illustration of the general concepts formu-
lated above is given by the explicit exact solution of the
O (u)=PPW(u)+ ¢(u). (3D problem of a split crowdion for a piecewise continuous para-

bolic potential of the formFig. 3
Let maxe(u)=¢(8) =A<, Pp; then at small values af P mFig. 3

one may use the expansion r1
—K3u?, O=us=sy;
J<D(U):J<D(DW)(U)+;. ?
2/dPW (1) + A _ 1o o .
CI)(U)—< A+ ZKC(U 5) y 81\“\82, (34)

In this approximation the energy of a whole crowdidn) is
given by

1. 2
EKO(U_l), grsuUsl;
\

ES:E0'1+ Eo’2+ 1—dS(A) (32)

Ve

o?K2=2A, i=1.2.

Here E,; is the energy of a subcrowdion with topological As independent parameters of this potential we shall con-
chargeo;, given by formula(20), and d; is the distance sider the curvatures at the minima&2=®"(0), K2
between the centers of the subcrowdions, the value of which-®"(6), the depthA =® () of the local minimum, and its
can be estimated with the aid of the integral position 5. Then the maximas,; and e, and the barrier
heights® ,; and®,,, are functions of these parameters, and
d(A)= WJ (33) the corresponding relations are conveniently written in the

V2[PPW(u)+AT form

The last term in Eq(32) has the meaning of the energy of (—1)
the stacking fault joining the partial crowdions. g~ 6= [|oi|K2— \/o-iZKSK§+ 2(K3—K2)A],
On the basis of the above analysis we arrive at the con- Ki—K?2

clusion that in the case of any double-barrier potenbial)

with a sufficiently deep local minimum a whole crowdion
with topological charges can be treated approximately as a
set of uniquely interrelated but spatially separate subcrowdi-
ons of the same sign with fractional topological charggs The displacement field of the whole crowdion is given by the
=sd ando,=s(1- 6) joined by an extended stacking fault formulas

@mi(A):%Kg(si—5)2+A, i=1,2. (35)
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s SE+N¢y whole excitation asymptotically decays into fraction excita-
€1 ex;{ o ) o SES—Ney; tions. This means that the additional degeneracy of the
physical vacuum as a result of such a transformation causes a
u(&)=4{ 6+, sin)-(s—g) A SSESAg: fgnd.amental rearrangement of_the spectrum. of_nonlinear ex-
S )’ ¢ e citations of the system: the solitary waves with integer topo-
Nep— SE logical charge vanish, and the role of elementary solitonlike
1—(1—82)exp( N ) SE=Neo (36) excitations is taken up by solitary waves with fractional to-
. 0 pological charges. This conclusion is generalized without
Koho=Kc\o= \/1_—\/5 Kk a=424, difficulty to the case of potential® (u) with any number of
barriers on the intervalo, 1).
le;— 8|+ \/)\i+ (e;—6)? . As to the dynamics of close-packed atomic rows in crys-
Aei=AcIn W , 1=1,2. (37) (I, the above result means that if the crystalline potential

) ) . ®(u) for them is a multiwell potential, then the insertion of
The deformationug(x—Vt) in the solitary wave(36)  an additional atom or the removal of an atéeng., under the
has two extrema at the poinks=Vgt+(—1)'\¢i. The tWo  jnquence of radiationdoes not give rise to localized struc-
pointsx; move with a velocityVs and can be regarded as the g states of the interstitial atom or vacancy type but are
ce_znters of virtual subkinks joined by stacking faults with @jnevitably delocalized, displacing the atomic row by an
width amount equal to the elementary translation vector. It is pos-
ds(A)=X,—X;=\cIn sible that in certain real crystal structures there are two mu-
tually compensating tendencies: the tendency toward local-
[NPmi(A) + VP g (A) = AJ[ VD p(A) + P p(A) —A] ization of the crowdions on account of the large barrier
X A *heights of the crystalline potential relief is weakened by the
(39 presence of deep local minima in it. This circumstance can
This interpretation corresponds to the form of the exact exprove important in interpreting the diffusion and radiation
pression for the energy of a whole crowdion, which is theproperties of complex crystals.
sum of the energies of the virtual subcrowdidhg(A) and It should be noted, however, that this conclusion needs
the energy of the stacking fault: refinement. Remember that it was obtained in the continuum
approximation for a structurally uniform crystal. If the
Peierls barriers that exist because of the discreteness of the
lattice structure or the potential barriers for crowdions
erected by local defects and internal stress fields are taken
into account, then the pinning of partial crowdions on such

A
Es(A)=Ey1(A)+E(A)+ mds(A),

S

Eqi(A)= m barriers can substantially limit the aforementioned delocali-
o s zation*?% The tendency of whole crowdions to decay is also
X{K VP i M) [P i(A) — AT+ KD i(A)}. weakened by spatial dispersion effects, i.e., when derivatives
of higher order are taken into account in the equation of
39 motion (3).%2
In the limit A—0O the width of the stacking fault in- Let us conclude this Section by remarking that the prob-

creases without bound according to the asymptotic law  lem of split topological solitons has yet another interesting

4 m asp_ect_—the presence of_ internal dynam?cs _of such
ds(A)“—‘)\cln[ mi T Tm2 excitations’}'® but a discussion of those questions in refer-
A ence to crowdion dynamics goes beyond the scope of this
2K 2K?2 paper.
20 i(0)= ———. (40)
(Kot+Ko) 3. SPECIAL TYPES OF SUBCROWDIONS

Here its energy goes to zero, and the virtual subcrowdions | Sec. 1 we determined and discussed fractional crow-
are transformed into independent fractional crowdions withyions, which exist only in atomic rows placed in a multiwell
topological chargesr;=sé and o,=s(1-6) and having potential relief(Fig. 29. However, there are some entirely
widths \ ,; and energie&; : real special circumstances that promote the appearance of
N2 V12 12 fractional crowdions in cases of a multibarrier crystalline re-
1-V5; ®,;(0) - - ) -
)\Ui:|gi|(m) . Ei :|gi|(—2 lief ®(u) as well(Fig. 2d: these cqcums_tant_:es are the pres-
mi 2(1-Vy) ence of external forcels+# 0 or the inclusion in the equation
of motion for the fieldu(x,t) the force of dynamic friction
f(u), which in general is an odd function of the velocity of
The analysis done in this Section leads us to a generdahe atomic displacement§(—u)=—f(u).
conclusion of fundamental importance as to the asymptotic Let us first assume that there is no frictioh({)=0)
behavior of the solitary wave&rowdions, kinky upon the and analyze the existence conditions for crowdions in atomic
transformation of any double-barrier potenti®(u) to a rows placed in the potentiab(™(u)=®(u)—Fu, where
double-well potentiakb(®)(u). In the limit A—0 the en- ®(u) is a double-barrier potentigFig. 2d with a rather
ergy of the stacking fault goes to zerd(A)A—0), and the  deep local minimum\ andF = const is a constant force of a

i=1,2. (41
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rather small magnitude N<® ,,;,|F|<®P,i,i=1,2). The
force F, generally speaking, disrupts the periodicity of the
potential and lifts the degeneracy of the stable energy states,
thereby violating a necessary condition for the existence of
stationary soliton excitations with nonzero topological
charge. Therefore, at arbitrary valuesrothe Klein—Gordon
equation(3) does not have solutions in the form of stable
solitary waves with a stationary profile and wigr=s=*+1 ~ =()
like those that exist in the absence of external forces and P A
which are described in Sec. 2. An exception is the two dis- 0 | Fr .
tinguished critical values of the forcé=F;(i=1,2) at u w8
which the potentiakb(F)(u) admits the existence of stable
solitary waves of stationary profile but now with a fractional =F,
topological chargg =0, |o;|<1.

One is readily convinced of the correctness of this asser-
tion by analyzing the different properties of the potential b
®P(u). Under the inequalitied <®,; and|F|<®,; the o® 1
potential®(F)(u) has two families of minima:

up(F)=n+ug(F), u,(F)=(n+8)+usF); (42

(I)(F) 1& a

hereug(F) andus(F) are, respectively, the displacements of ~ F=
the global and local minima of the potenti&(u) under the oy

influence of the forcd- which can be found by solvingthe |  //  \N\Louif...... l ......... .
equationd® (u)/du=F. This means that Eq3) for F+0 =()
admits a set of locally stable uniform stategF) andu,(F) h i i
which are periodicallywith period 1 arranged on the axis of , i 3 >
displacements. The potential energies of these stdi€s3, 0 d+u; 6 u, l+ul u
X[un(F)] and®P[u,(F)] for arbitrary values of the force

F, generally speaking, are different, but there exist one posiEIG. 4. Transformation of a double-barrier potentia{u) under the influ-

. - . ence of a uniform external forde: a—initial (F=0) and critical E=F,)
tive valueF,>0 and one negativé,<0 value for which configurations of the total potentidi(F)(u) = ®(u) — Fu for positive values

the energies of pairs of neighboring states are e(ftigl 4). of the forceF, ; b—the same, for negative values of the foFee.
These states are separated by intendatau s(F1) —ug(F1)

and (1- 8) +ug)(F2) —us(F»), and the values of the force
Fi(i=1,2) are solutions of the equation

P[5+ us(F)]=PLug(F)]
+[(i—1—8) —us(F)+Uup(F)]JF=0. (43) i=12, (46)

2

B (u) =P (u) = P[ug(F)]-[u=uo(F) —(i-DIF;,

For considering the potentid@ (7 (u) at the critical val-  and, instead of;, as the lower limit of integration if8) one
ues of the forcé==F; within the periodn=0, we introduce should use the valua,,;; the location of maximum of the

the notation function " (u), where it has a heighbl) given by (44)
max{ (1) — F;u] — min[ & (u) — Fiu]zéﬂq), (44) Z?ignseparates the two wells of equal depth under consider-
F[ug(F)—usF)+(i—1-8)]=5;, i=1,2. (45 The energy, effective rest mass, and characteristic width

of the given crowdions can be calculated using formi#®s

The presence of two neighboring spatially uniform states . o () . . _
ug(F;)+(i—1) and 6+ u4(F;) with the same values of the and(20), replacing®p; by @r,’ and replacing the integray,

potential energyFig. 4) creates the necessary condition for

the existence of stable solitary waves of stationary profile ol =

u(x,t)=u,(x—V,t) moving with an arbitrary constant ve- Ioi:j V230 u+ug(Fy) + (i —1)(1-3)]duy,
locity V,. The topological charges of these waves, 0

=07i(i=1,2) are determined by relatio@5); they can be i=1,2. (47)

specified by the boundary conditions, fixing the indicated

uniform states at infinity. The internal structure of such ex- It is easy to show that at sufficiently small values of the
citations and the kinks corresponding to them is analogous tparameter A one has to a first approximatiomiy(F)

the structure of the fractional crowdions described in Sec. =F/®”(0) anduyF)=F/®" (), and the solution of equa-
(Fig. 20. The first and second integrals of equati@ with  tion (43) for the critical forceF; and the topological charges
allowance for boundary conditions fixing the topological ; of the “critical crowdions” have the form

charged; are determined by expressions analogous7jo

and(8): in these expressions one mustggt o;, the poten- : A 48)

tial ®(u) must be replaced by the renormalized potential LS+l
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B . ®"(0)— D" () =<p’(0)f<p’(1)=<p’(si)_=0. Formally we shall consider the

o=*(i—1-906)| 1+ — > - , force f(u) together with the potentiap(u) to be small quan-
(i=1=6)" @"(0)®"() tities and use perturbation theory methods for analysis of the

=12 (49) nonlinear excitations of the field(x,t). The corresponding

inequality ensuring satisfactory convergence of the perturba-
For A—0 the *“critical crowdions” are transformed into tion theory procedure will be obtained at the end of this
fraction crowdions with topological charges,=*+ 6 and  Section.

o,=*(1-6), and at small but finite values df the param- As the zeroth approximation of perturbation theory we
eters of the critical and ordinary subcrowdions differ by choose the subcrowdions corresponding to the potential
small quantities proportional t. OOW(y):

We also note that relatiofd8) can be given a simple

physical interpretation. The quantity (A/b in the original U(X,t) = Ugi(X—= V) + n(x—=V1), (53
units) is the energy density per unit length, i.e., tension force

of a semi-infinite stacking fault, which arises when an indi-  (1—V?)u’,— 30 -®PW(u,;)=0, (54)
vidual unstable partial crowdion appears in the crystal. This ol

tension is equivalent to a force applied to the partial crow- .= +[i—1+(3-2i)5], i=1,2. (55)

dion, expelling it from the crystal: ) ) .
A _ The perturbationy(¢) of the displacement field and the pa-
Fi'=(=1)"""sgroy)A. (50)  rameterV are unknown quantities to be determined. It is
natural to assume that the dynamic friction does not affect

At the same time, in the presence of an external fdfce h temati r val f the topoloaical char but can
applied to the atoms of a close-packed row, the effective € systemalics or values of the topological charges but ¢

force acting on a crowdion with topological charge is only to some degree distort the structure of the central parts

) of the crowdions. Formally this assumption reduces to im-
(Refs. 3 and posing boundary conditions of the following form on the
Fi)=—oiF. (51)  perturbations(£):
It is easily verified that relatior48) agrees with the (£ o)=7n"(£=*)=0. (56)

balance condition for these forceg4)+ F)=0, under
which a partial crowdion is converted into a stable subcrow
dion moving with an arbitrary constant velocity.

Direct experimental observation of critical subkinks is d OW) d
complicated by the difficulty of realizing an exact equality gy ®(W= Waiq) (Ugi) + EQD(UUi)
F=F;. Therefore, from the standpoint of experiment, one is
mainly interested in the anomalies of the kinetic characteris-
tics that should arise in systems with a double-barrier poten-
tial ®(u) when F—F;. These anomalies have been de-
tected, e.g., in studies of the low-temperature plasticity of a f(u)y=—"f(vu),).
number of body-centered metals with double-barrier Peierls

The first approximation of perturbation theory corre-
'sponds to the equation

d2
+ —Z‘D(DW)(Uai)ﬂ-

ol

relief for dislocationg3:27-30 As a result, we obtain a linear differential equation for the
The existence conditions for stable stationary crowdiond€rturbationz(é):

(solitary wave$ acquire an additional specific condition a2 d

when, for the displacement field(x,t) in Eq. (3), one takes  (1—V?) 4" — _zq)<DW>(uUi)77: d_¢(uui)+f(vu(,ri)'

into account, in addition to the potential forEethe force of Ugi Ui

dynamic frictionf(u): (57)

d In the presence of a friction fordgu) a wave with the

u—u"—f(u)+ E(I)(u)z F. (52 stationary profile(53) cannot satisfy equatio(b2) for arbi-

trary values of the velocity/, and the problem therefore
Let us discuss the changes that are brought about by theduces to one of determining not only the functiof(&)

introduction of the dynamic friction force in the existence but also the permissible values of the crowdion velocity
conditions of fractional crowdions fdf =0. We saw above V=V{): in general these values depend on the form and
that in the case of a double-barrier potentiglu) (Fig. 2d, parameters of the functiorf§u) and® (u). The permissible
solitary waves with a stationary profile and fractional topo-values of the velocity can be established by using the well-
logical charge cannot exist in the absence of external forcegnown alternative theorem in the theory of linear differential
but the situation is fundamentally different when the friction equations*2 The existence condition for the solution of the
force is taken into account. We write the double-barrier poinhomogeneous linear equatigh7) with boundary values
tential ®(u) in the form of a sum(31) of a double-well  (56) is that the right-hand side of this equation be orthogonal
potential®(®W)(u) with an intermediate absolute minimum to the particular solutiom®)(&) corresponding to its homo-
at the points (Fig. 20 and a positive admixture(u), which  geneous equation with the same boundary values. In finding
reaches a maximum at the poifiand, together with its first this solution we make use of the equation of the zeroth ap-
derivative, vanishes at the boundaries of the interf/@J§]  proximation(54). Differentiating Eq.(54) with respect to the
and [e1,85]: (8)=A<P 1,0 (8)=¢(0)=¢(1)=¢(s) coordinate¢, we obtain
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d2 Consequently, the condition of applicability of the con-
(1—-V?)(u.)"— —2®(Dm(u(,i)u[,i =0. (58)  tinuum approximationy/)<1, and the condition of conver-
Usi gence of the above perturbation theory proceduj€s;)
Comparing Eqs(58) and (57) and taking into according the <Uei(&)=1—14(3—2i)e;, reduces to two inequalities:
absence of crowdion deformations at infinity,;(=«)=0, D" ()|l
we come to the conclusion that the required partial solution A<pgl,;, A<[i—1+(3—2i)g] (65
of the homogeneous equati®7) can be taken ag(?)(¢) V2P,
=u,i(£). Thus the condition determined by the alternative  Wwe note that the specific dynamic crowdion with frac-
theorem reduces to the equation tional topological charge described above, which exists in a
" viscous crystalline matrix, is analogous from a general physi-
J ul (&)U (&)]dé=(— 1)! sgr(oi)A. (59) cal standpoint to a well-known entity in the theory of mag-
e netic solitons: domain walls, which move with a constant

velocity in a dissipative magnetic medium under the influ-
ence of a uniform magnetic fieldthe so-called Walker
regime of domain-wall motion

The above analysis of two particular cases is easily gen-
eralized to the case when both an external fdfee0 and a
force of frictionf# 0 are simultaneously present in E§2).

Thus the derivativer’;(£) satisfies relatiort7) with the
potential®(®W(u) andq=o;, and the friction force is as-
sumed to be an odd function of velocitff—u)=—f(U);
then the left-hand side of EG59) can be expressed in terms
of the potentiakb®W)(u) and as

f((rfi)(v)+(_1)i+l sgna;)A=0, (60) In this case the double-barrier potentia(u) (Fig. 2d with
a sufficiently deep intermediate minimua € ® ;) also ad-
0 loil [ V20PWu—(i—1)|oi]] mits the existence of stable solitary waves with stationary
A= fo f v du. (61)  profile and fractional topological charges;== 3, (1

— ). The velocityV'") of these waves depends on both
Thus, if the atoms of the distinguished row are actedthe forcesF andf and the parameters of the potentia(u).
upon by dynamic friction, a necessary condition for the ex-In an approximation linear i\ andF the values of\/ffi'f)
istence of stationary crowdion excitations with fractional to-are solutions of the balance equation between the tension
pological charges is the presence of real solutirsv’) of  force of the stacking fault50), the external forcé51), and
equation(60). We :(ifI?o note that Eq60) allows us to inter- the force of friction(61):
pret the quantityF;;’(V) as an effective force of dynamic A) F) AN
drag on the crowdion due to the dissipative properties of the Foal+ P+ (V) =0. (66)
individual atoms. In such an interpretation, H§0) repre- If the drag on the atoms is of a linear character, then the
sents the balance of two forces: the drag faf$e)(V) (61)  velocity V") is found to be
and the force of linear tensio#(}) (50) of a semi-infinite :
stacking fault, which arises at infinity when a partial crow- VIED = (—1)i*lsgr(o) (__1) |oi|F+A ’
dion appears in the crystal X +0. ” V(= 1) oi|[F+ A%+ 8212,
As an example which admits solution of this problem in

explicit form, let us consider the case of a linear drag on the 1=1,2. (67)
atoms: f(u)=— Bu, where 8 is the coefficient of atomic In the numerator of this expression is the total force
viscosity. In this case exerted on the kink by the stacking fault and the external
force field; the correctness of this result is conditional on a
FOv)=— | 5i BV sufficiently small value of this force. When this force is
ol J1—v?' equal to zero, a nonzero friction forcgg4¢0) admits the
existence of static fractional crowdions only.
loi = | 'lJZCD(DW)[U—(i—l)IUiI]du, (62)
0 CONCLUSION
and the velocity of steady motion of a fractional crowdion The main goal of this study was to apply to the descrip-
with topological charger; is tion of crowdions in complex crystal structures the concepts
1 of fractional and split topological solitons—concepts which
v = (-1 sgnioi)A 63) were formulated previously in the study of other problems of
a! \/A2+,32|§i nonlinear mechanisnfsin the Introduction we set forth the

main prerequisites that allow the problem of the dynamics of

Analysis of Eq.(57) for the perturbationy(£) near the  crowdion excitations in a three-dimensional crystal to be re-

centerst; of the fractional crowdions with allowance for the dyced to analysis of the one-dimensional Frenkel—Kontorova
above stipulations as to the properties of the potent{al)  model with a complicated substrate potentiz(u) and the

values of the perturbation: model. In Sec. 1 of this paper we mainly set forth the known
A A concepts of the theory of topological solitons: what was
(&)= (CDAN2ZPmi (64)  original was that the exposition was couched in the most

il ®" (&) ' general form possible, permitting a unified description of the
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structure and properties of solitofowdions for any com- joining them are one-dimensional analogs of partial dislocations and
plicated form of the potential profilé(u) and for arbitrary ~ atomic-plane stacking faults.
values and signs of the topological charges. A Comparativg_Unfortuna.tely, as a r‘esult of a technical error the sign of this force was
analysis was made of the characteristics of solitons with in- "dicated incorrectly in Ref. 9.
teger and fractional topological charges as independent———
stable nonlinear excitations of a multiply degenerate physical
vacuum, and the commonalities and differences of the prop-
erties of whole solitons and subsolitons were noted.

In Sec. 2 the splitting of whole solitor{srowdions into )
partial solitons and the conditions for this effect, which takes ™ R Paneth, Phys. Re@0, 708 (1950. .

. . . ) J. Friedel,Dislocations[Pergamon Press, Oxford964); Mir, Moscow

place in the case of a so-called multibarrier poterdigli), (1967)].
were described in the most general form possible. Previouslya . kosevich, Theory of the Crystal Latticdin Russiad, Vishcha
the splitting effect had been described for certain types of Shkola, Kharkou1988.
specific symmetric double-barrier potentidi§u) admitting ~ “I. F. Lyuksutov, A. G. Naumovets, and V. L. PokrovskiTwo-

explicit solution of the Klein—Gordon equation. In contrast Dimensional Crystal$in Russiaf}, Naukova Dumka, Kiev1988.

to the earlier studies, our analysis did not presuppose obtain;C- KaushDestruction of PolymegsMoscow, Mir (1983.
V. R. Regel’, A. I. Slutsker, and .EE. Tomashevski Kinetic Nature of the

ing exact solutions of the K!ein—Gordon gqqation in expligit Strength of Solidéin Russiar, Nauka, Moscow1974).

form. Here we have described the qualitative prerequisiteS'ya | Frenker,Introduction to the Theory of Metalin Russiai, Nauka,
that permit the introduction of the concept of parfuttual) Leningrad(1972.

topological solitons and the stacking fault joining them, and ®0. M. Braun and Yu. S. Kivshar, Phys. Re306, 1 (1998.

we also obtained analytical asymptotic expressions for the'V- D. Natsik and E. I. Nazarenko, Fiz. Nizk. Teng8, 283(2000 [Low
geometric and energy characteristics of the individual frag, €™ Phys26, 210(2000].

ments of a split soliton in the case of a double-barrier poten- K. Lonngren and A. ScottEds), Solitons in Action[Academic Press,
pl ! : u lerp New York (1978; Mir, Moscow (1981)].

ti?-' ®(u) of arbitrary _form- A qualitative description Was 1R K. Bullough and P. J. Caudrégds), Solitons Springer-Verlag, Berlin
given for the asymptotic decay of a whole topological soliton (1989; Mir, Moscow (1983].
into free subsolitons when the double-barrier potential iS“R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. MorrBplitons and
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Effect of argon on the thermal expansion of fullerite C 60 at helium temperatures
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The linear thermal expansion of compacted Ar-doped fullergg A&, Cgp) is investigated at

2—-12 K using a dilatometric method. The thermal expansion g€4yis also studied after partial
desaturation of argon from fullerite. It is revealed that argon doping resulted in a considerable
change of the temperature dependence of the thermal expansion of fullerite. An
explanation of the observed effects is proposed.2@1 American Institute of Physics.

[DOI: 10.1063/1.1355522

We have previously reported the detection and investiwith argon under atmospheric pressure. The doping lasted
gation of a negative linear thermal expansion coefficienf ~ for 19 days.
fullerite Cqp at helium temperaturés’ The effect was tenta- When the doping process was completed, the Ar-filled
tively attributed to tunneling transitions between energeti-measuring cell with the sample was slowly cooled to helium
cally equivalent orientations of & molecules. To test this temperatures. In this case both the phase transitionssof C
assumption, we have studied the thermal expansion of Af@t 260 and 90 Koccurred in an Ar atmosphere. Figure 1
doped G, at liquid helium temperatures. The resuits of theseS10Ws the measured coefficients beférarve 1) and after
studies are presented in this communication. In a fuIIerite(CUNez) Ar-doping. It is seen that the dpplng not only Ieads_
crystal each g, molecule is associated with two tetrahedral o th_e exp_ected decrease in the negative thermal_ expansion
and one octahedral interstitial cavitteshose average linear and its shift towards lower temperatures but that is also re-

duces strongly thépositive thermal expansion coefficient
dimensions are about 2.2 A and 4.2 A, respectiVelgcord- uces strongly thepositive xpanst 'c!

) . rys above 5.5 K.
ing to x-ray’ and neutron diffractioh” data, the Ar atoms, It seems natural to assume that the Ar-induced increase

with a gas-kinetic diameter 3.405 Zoccupy only the octa- i the barrier impeding rotational motion of thesgmol-

parameter of a saturated Al solution is 0.006 A smaller noncentral forces acting upon thgq@nolecules. As a result,
than that of fullerit€®. We assumed that the Ar atoms occu-

pying the octahedral interstices would increase the potential
barrier impeding rotation of the &g molecules and thus di-
minish the probability of rotational tunnel transitions and
consequently the tunneling splitting of the ground state of the 4]
molecule< If this assumption is correct, the total negative
thermal expansiorf « dT should decrease and the region of - 3

negative expansion should shift towards lower temperatures '«

after doping. coo' 2r
An Ar-doped Gy sample was studied at 2—-12 K using a -

high-sensitivity capacitive dilatomefeand with the same 3 1F

procedure as was applied to purg,@arlier'?> The sample

was prepared by compacting high-purifgot worse than 0

99.98% Gy powder under about 1 kbar. The grain sizes -1

were 0.1-0.3 mm. The resultings&sample was a cylinder 1
9 mm high and 10 mm in diameter. The thermal expansion
coefficient along the cylinder axis was first measured at 2—12 _

bef dooi h d led . Il wi IG. 1. Temperature dependences of the thermal expansion of compacted
K before doping. The evacuated sealed measuring ce \_N't lletite Cgy: pure fullerite before dopin@l); Ardoped fullerite(2); fullerite
the sample was then warmed to room temperature and filleskter evacuation of Ar for 3 day) and for 45 dayg4).

1063-777X/2001/27(3)/2/$20.00 245 © 2001 American Institute of Physics
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the frequencies of the orientational oscillations of the mol-  This can be accounted for assuming the following. The
ecules should increase, and hence the nofpwsitive ther-  octahedral voids adjacent to defects, i.e;, @olecules with
mal expansion coefficient dependent on these oscillationw U, barriers, form deeper potential wells for the impurity
should decrease. This is what we observed experimentally @toms than the regular octahedral interstices do. It is there-
T>5.5K. The experimental results can thus be explainedore more difficult to remove the impurities from these near-
qualitatively by proceeding from the assumption that thedefect regions, and the residual impurities concentrated
atomic Ar impurity introduced to the octahedral interstices ofaround defects are precisely those responsible for the nega-
Cso suppresses the splitting of the ground state of thg C tive thermal expansion of fullerite. There is also another fact
molecules and modifies the orientational oscillation spectrunsupporting this assumption. The thermal expansion coeffi-
of the molecules. cientsa of all our G samples, both those used in Refs. 1
It appears that dissolved Ar atoms influence the therma&nd 2 and in this study, agree quite well ab&/K but differ
expansion very strongly even though they are able to moveonsiderably in the temperature region wherés negative.
quite freely inside the octahedral lattice interstices. WeThese samples were prepared under different conditions and
should also bear in mind that in our experiment the Ar atomsvary in quality and in the amount of residual impurities.
occupy only a part of the octahedral interstices. We did not The proposed qualitative explanation of the effect ob-
estimate the quantity of the dissolved Ar. According toserved cannot replace a consistent theoretical interpretation.
Morosin et al. 1° neon occupies only 21% of the octahedral Several interesting ideas have been published to date, which
interstices under identical conditiof®om temperatures, at- are concerned with a tentative mechanism of the negative
mospheric pressureTaking into account that in a simple thermal expansion of molecular crystaldn the case of ful-
cubic lattice each of g molecules is surrounded by six oc- lerite, we decide in favor of our explanation since it accounts
tahedral interstices, the 21% occupancy implies that witifor the unusually high Gmeisen coefficients, which were
randomly distributed impurity atoms, about 75% of thg, C observed experimentally.
molecules have Ar atoms nearby. However, because the Ar ) )
atoms are larger than Ne atoms, this number must be consid- /e wish to thank Yu. A. Freiman, V. M. Loktev, V. D.
ered an upper limit of occupancy only. Natsik, A. I. Prokhvatilov, and M. A. Strzhemechny for par-

Another important consideration here is that we believdiCiPation in the discussion of the results.
that only a small fraction of the & molecules(the so-called The authors are indebted to the Science and Technology
“defects”) for which the rotation-impeding barried , is Center of Ukraine and the Royal Academy of Sweden for

quite low contributes to the negative thermal expansion ofUPPOrt.
fullerite 2 Correspondingly, the doping-induced change in the
negative thermal expansion is determined only by the Ar
atoms neighboring these “defects.” At the same time, the
positive thermal expansion 1s affected by all the dissolved ArlA. N. Aleksandrovskii, V. B. Esel’'son, V. G. Manzhelii, A. Soldatov, B.
atoms. . ) ) ) Sundgqvist, and B. G. Udovidchenko, Fiz. Nizk. Ten3® 1256 (1997
To obtain more information, we studied how the thermal [Low Temp. Phys23, 943(1997].
expansion coefficient changed when the doping atoms weréA. N. Al.eksandrovskii, V. B..Esel’son, V. G. Manzhelii, A. Soldatov, B.
removed from the sample. For this purpose, the measuring[Sl_%r\‘/qu\gf‘T:’pag?]ygég'?g?;a’gg]henko’ Fiz. Nizk. Teng8, 100 (2000
cell with the sample was warmed to room temperature antp A Heine'y, 3 phy’s. Chem. Soligs, 1333(1992.
evacuated to ¥ 10" 3mm Hg. The gas evacuation at room “C. H. Pennington and V. A. Stenger, Rev. Mod. PI§&.855(1996.
temperature |asted for 3 days_ The therma| expansion WagG. E. Gadd, M. James, S. Moricca, P. J. Evans and R. L. Davis, Fullerene
. Sci. Technol4, 853(1996.
th_en measured at !ow temperatures. The results are shown "E. Gadd, S. J. Kennedy, S. Moricca, C. J. Howard, M. M. Elcombe,
Elg. 1 (curved). ltis seen that the thermal expansion coef- p_j Evans, and M. James, Phys. Re\68 14794(1997.
ficient changes only slightly above 5 K, but below 3.5 K the V. G. Manzhelii, A. I. Prokhvatilov, I. Ya. Minchina, and L. D.
negative thermal expansion again has the minimum typical Yantsevich, inHandbook of Binary Solutions of CryocrystdiBegell
. . House Inc., New York; WallingfordUK) (1996)].
for undOPed,GO' The measuring cell with the sample Was s g, Gadd, P. J. Evans, D. J. Hurwood, J. Wood, and M. James, Chem.
warmed again to room temperature and gas evacuation washys. Lett.261, 221 (1996.
continued for 42 days. The thermal expansion coefficient®A. M. Tolkachev, A. N. Aleksandrovskii, and V. 1. Kuchnev, Cryogenics
was then measured with the results shown in Figputved). 10% |5\/|407r£>1$?rT?] D. Jorgenson, S. Short, G. H. Kwei, and J. E. Shirber, Phys
Note, in particular, that after a total of 45 days evacuation of 5., gs3 ’16'75'(199%_ T R ' T IS,
argon the “high-temperature” part of the thermal expansiontly. m. Loktev, Fiz. Nizk. Temp.25, 1099(1999 [Low Temp. Phys25,
coefficient was restored completely. The negative thermal 823(1999].
expansion in the range 2.5-5 K, however, still differed fromhis article was published in English in the original Russian journal. Repro-
that of the initial pure sample. duced here with stylistic changes by AIP.
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