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The processes that determine the structure and properties of the resistive state of superconducting
channels having a uniform distribution of the current and order parameter over their
transverse cross section are discussed. Particular attention is devoted to the resistive state arising
when an external alternating electromagnetic field is applied to the superconductor. The
current, temperature, frequency, and power characteristics of the resistive state are examined.
The necessary information about the NS boundary and phase-slip centers is given, and
the known results for high-Tc superconducting materials are presented. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1355514#
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INTRODUCTION

The term ‘‘superconducting channels’’ is commonly a
plied to superconducting samples whose transverse dim
sions are smaller than the Ginzburg–Landau cohere
length j(T) and the magnetic field penetration depthl(T).
When these conditions are satisfied, the electric current d
sity and order parameter are uniformly distributed over
cross section of the sample. These requirements are sat
by thin films ;100 nm thick and about one micron wide
by whiskers;1 mm in diameter. The length of the sample
is ordinarily much larger thanj(T) and l(T) and ranges
from tens to hundreds of microns. These are in esse
quasi-one-dimensional structures, which are interesting
marily in that magnetic flux vortices cannot form in them
and so they are free of the resistivity due to the motion
vortices in the direction transverse to the sample. This ra
the question of the nature of the resistivity that arises in s
samples when direct~dc! or alternating~ac! currents greater
than the critical values are passed through them. Studie
the resistive states due to the passage of dc current
yielded unexpected information about the very nature of
perconductivity and have revealed the essence of many
nomena of nonequilibrium superconductivity. Good revie
are available on some of this research~see, e.g., Refs. 1–4!.

Research on the resistive states arising upon the pas
of ac current is no less interesting and has also yielded
expected results. As far as we know, the results obtaine
this area of research have as yet to be systematized
published review. The present article was undertaken to
this gap.

Since the exposition of the problems due to the flow
ac currents along a channel require information about
effects due to dc current, the necessary information on
topic will be included. In this review preference will b
1651063-777X/2001/27(3)/20/$20.00
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given to experimental results, particularly since in ma
cases the theory does not completely describe the experim
tal results or is lacking altogether. One of the goals of t
review is precisely to get theorists interested in the ac pr
lem.

1. THEORY OF THE RESISTIVE CURRENT STATE
OF A SUPERCONDUCTING CHANNEL

1.1. Charge imbalance and the penetration depth of a
longitudinal dc electric field in a superconductor

In elucidating the structure and properties of the resist
current state we will require certain concepts that are b
introduced by considering the passage of current through
boundary between a normal metal and a superconductor~an
NS boundary!. The features of such a boundary were fi
pointed out in Refs. 5 and 6 in a study of the resistance o
superconductor in an intermediate state.

The excited states of a superconductor, unlike those
the electronic system of a metal in the normal state, are s
rated from the ground state~condensate! by an energy gapD.
The energy of a quasiparticle in a state with momentumk
can be written7,8

Ek5~«k
21D2!1/2, ~1.1!

where«k5\2(k22kF
2)/2m5@(\2k2/2m)2EF# is the energy

of a quasiparticle excitation~electron or hole! in the normal
metal, measured from the Fermi levelEF . Since the energy
Ek for any type of excitation in a superconductor is positiv
the spectrum of excitations can be represented in the form
electronlike branch (k.kF) and a holelike branch (k,kF).
The symmetry of the occupation of the branches of the sp
trum ~an imbalance of the charge of the branches! can be
broken by an outside influence that leads to injection of q
siparticles into the superconductor. Let us consider the c
© 2001 American Institute of Physics
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when a dc current is flowing through an NS boundary. H
the electrons having energies higher thanD penetrate into the
superconductor, disrupting the balance of the occupatio
the branches of the quasiparticle spectrum by overpopula
the electron branch, which leads to an excess quasipar
chargeQ in the superconductor. By virtue of the overa
electrical neutrality of the metal, this charge is compensa
by a decrease of the charge of the condensate, which lea
a shift of the chemical potentialms of the Cooper pairs rela
tive to the Fermi energy by an amount proportional to t
charge:7

Q52N~0!~EF2ms!, ~1.2!

whereN(0) is the density of states at the Fermi level.
Since the excess quasiparticle chargeQ is a function of

the spatial coordinatex, it is clear that the chemical potentia
ms will also depend onx. It follows that a superconducto
can support the existence of an electric fieldE that can be
written in gradient-invariant form as9,10

E5
1

e

]ps

]t
2

1

e
¹F. ~1.3!

Herep5mvs51/2\¹x2eA/c is the momentum of the su
perconducting condensate,F51/2\(]x/]t)1ew is the
gradient-invariant potential, which is the difference of t
chemical potential of the quasiparticlesmn5EF1ew and the
pair chemical potentialms5EF2(1/2)\(]x/]t); x is the
phase of the complex superconducting order parameter,
A and w are the usual electromagnetic potentials. The fi
term in ~1.3! is due to the inertia of the electrons of th
condensate and is important in in the case of ac current
inductive excitation of the field. When a specified dc curre
is flowing through an NS boundary, one can limit consid
ation to the second term in~1.3!:

E52
1

e
¹F. ~1.4!

In the neighborhood of the critical temperatureTc , where
the gap is small (D,kBT, kBT is the characteristic energy o
the quasiparticles!, one can neglect the change in the chem
cal potential of the quasiparticles in comparison with t
change in the chemical potential of the superconducting e
trons. Since forT→Tc there are few paired electrons and
great many normal electrons, removing a certain numbe
pairs from the condensate and transferring them to the
lective of normal electrons will cause a much greater cha
in the properties of the condensate than in the propertie
the collective of normal electrons. Therefore, using~1.2!, we
can write expression~1.4! for E in the form:

E52
1

2eN~0!
¹Q. ~1.5!

Thus an electric field arises in a superconductor un
nonequilibrium conditions in the presence of a gradient
the quasiparticle charge; however, this field will not accel
ate the condensate, since it is compensated by the gradie
the invariant potentialF. The presence of a steady-state no
equilibrium quasiparticle charge in a certain region of t
superconductor means that a flux of quasiparticles is cont
e
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ously entering this region, carrying a certain charge whi
on relaxing, passes over into the condensate. This cond
is expressed by the simple relation

div j n52eQ/tQ , ~1.6!

where j n is the normal component of the total current de
sity, andtQ is the relaxation time of the charge imbalance.
the case when the temperature is close toTc , one can write
Ohm’s law for the quasiparticles in the usual form:

jn5sE, ~1.7!

wheres is the normal conductivity at low temperatures. Fo
mulas~1.5!–~1.7! lead to a closed equation forQ:

¹2Q5
1

l E
2

Q. ~1.8!

Here

l E
25stQ/2e2N~0!. ~1.9!

Since the conductivitys of the normal metal can be
written in the form11

s5
2

3
e2N~0!l ivF , ~1.10!

where l i is the mean free path of an electron andvF is the
velocity of an electron at the Fermi surface, we finally ge

l E5S vFl itQ

3 D 1/2

5~DtQ!1/2. ~1.11!

Here D5(1/3)vFl i is the diffusion coefficient of electron
with mean free pathl i . The depthl E to which normal elec-
trons are drawn into the superconductor by the electric fi
from the normal metal is called the diffusion length or pe
etration depth of the longitudinal electric field. This give
rise to an additional resistance which forD,kBT has the
form12–14

R5r l E /S, ~1.12!

wherer5s21 is the normal resistivity at low temperature
andS is the cross-sectional area of the channel. The quan
tQ , which determines the penetration depthl E , was first
estimated theoretically and measured experimentally in R
8 and 15. In Refs. 8 and 16,tQ was measured using a norm
metal–insulator–superconductor tunnel junction. When c
rent is passed through the junction from the normal me
region, nonequilibrium electrons are injected into the sup
conducting electrode, leading to a difference in the popu
tions of the branches of the excitation spectrum. The valu
tQ was calculated from the potential difference between
point above the tunnel junction and a remote part of
superconducting region.

The process restoring the balance of populations
tween the branches of the quasiparticle spectrum in the
sence of magnetic impurities is governed by the elastic~on
impurities! and inelastic~on phonons! scattering of excita-
tions. However, not all scattering events~elastic or inelastic!
lead to charge relaxation. The most important events
those for excitations with energiesEk in the intervalD<Ek

<2D. This leads to a difference betweentQ and t« by a
factor of D/kBT, since the total number of excitations is o
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the order ofkBT. A more precise calculation of the relax
ation time of the quasiparticle charge gives17,18

tQ5
4kBT

pD S t«

2S D 1/2

. ~1.13!

Here

S5
1

2t«
1

D

2 S 4m2vs
2

\2
2

1

D

]2D

]r2 D ; ~1.14!

t« is the inelastic scattering time for electrons on the Fe
surface, 2mvs is the superconducting momentum, andr is
the spatial variable.

If the relaxation of the charge imbalance is governed
inelastic scattering, then12,13

tQ5
4kBT

pD
t« , ~1.15!

and, consequently, at temperatures close to critical, wh
D'3.16kBTc(12T/Tc)

1/2, ṫQ}(12T/Tc)
21/2. An estimate

of the superfluid velocity in the case when the supercond
ing current assumes the critical value gives17,18

tQ~ j c!5~4kBT/pD!~3t«tGL!1/2, ~1.16!

where tGL5\/8kB(Tc2T) is the Ginzburg–Landau time
which is related to the coherence lengthj5(DtGL)1/2. If the
bias current is set at the critical level for each temperatu
then, as we see from~1.15!, the relaxation time has the fol
lowing temperature dependence:

tQ}~12T/Tc!
21.

Let us consider the last term in~1.14!. If the spatial
dependence of the order parameter has the formD5D0@1
2exp(2x/j)# and the relaxation rate is given bySj

5(2tGL)21, then

tQ5~4kBT/pD!~t«tGL!1/2. ~1.17!

In this case the temperature dependence oftQ is the same as
that given by expression~1.16!. The temperature dependen
of l E will be discussed in more detail in Sec. 2.3.

Thus the passage of electric current through the bou
ary between a normal metal and a superconductor will g
rise to an electric field in the superconductor which
damped over a distancel E . Within a region of lengthl E in
the superconductor near the NS boundary the normal cur
will be converted to supercurrent, and the order parameteD
is restored at a depth of the order ofj(T) in the super-
conductor.19

1.2. Models for the phase-slip centers

1.2.1. Phenomenological model of the resistive current
state of a superconducting channel

The resistive state brought on in a superconducting ch
nel by the passage of a dc current has by now been stu
quite well experimentally and, thanks to the one-dime
sionality of the problem, in which all of the quantities d
pend only on the coordinate along the sample, also theo
cally.

Let us now give a brief chronology of the research to
dealing with the resistive current state of superconduc
channels.
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In a study of the influence of thermodynamic fluctu
tions on the critical current and critical temperature of sup
conducting tin whiskers in 1968, Webb and Warburton20,21

observed a stepped character of the resistive transit
Regular voltage steps on the current–voltage~I–V! charac-
teristics were also observed on uniform tin whiskers in Re
22 and 23 and on narrow tin strips in Ref. 24.

Three important features of the stepped I–V characte
tics were noted: the values of the dynamic resistance on
sloped parts of the I–V characteristic are multiples; the c
tinuations of the sloped parts of the I–V characteristic int
sect at a single point on the current axis; and, there is
hysteresis, a fact which indicates that the stepped structu
the I–V characteristic is of the nature of a loop. In 1969
new effect was reported: the generation of electromagn
oscillations of relatively low frequencies (;107 Hz! com-
pared to those for the Josephson oscillations (;1010 Hz! by
thin, narrow superconducting tin films~channels! when a dc
electric current is passed through them.25 This generation
was observed when the film was in a resistive current st
and there was no current hysteresis at the point of genera
on the I–V characteristic.

Thus by 1973 there had been observations of previou
unknown properties of the resistive current state of superc
ducting channels which were in need of explanation. In t
year Gala�ko, Dmitriev, and Churnilov26 proposed the con-
cept of dynamic phase separation of a current-carrying
perconducting channel into quasinormal and supercond
ing regions. It was emphasized that this phase separatio
of a dynamic and nonequilibrium nature. The resistivity e
ists over a wide range of currents, between the Ginzbu
Landau depairing currentI c and a certain upper critical cur
rent I cn@I c at which the sample undergoes a transition to
normal state.

Here we should mention the large contributions to su
sequent developments which were produced independe
by groups at the B. Verkin Institute for Low Temperatu
Physics and Engineering in Kharkov, Ukraine and at Harv
University, in papers published in 1974–75 which contain
the microscopic10,27,28 and phenomenological24 concepts
concerning the basic features of the resistive state arising
superconducting channel when a dc current is passed thro
it.

It was shown that the resistivity is a consequence of
formation and development, at currentsI c,I ,I cn , of a sys-
tem of superconducting and quasinormal regions alterna
along the sample. The latter are specific dynamic formati
known as phase-slip centers~PSCs!.

A characteristic feature of the I–V characteristics of s
perconducting channels is the presence of voltage jump
which the resistance of the sample changes by a multipl

R5Rd1n, ~1.18!

whereRd1 is the dynamic resistance on the linear I–V se
ment corresponding to the first PSC, andn is the number of
PSCs in the channel. Figure 1 shows a typical I–V char
teristic of a superconducting channel; it is characterized
the following main parameters: the critical currentI c , the
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dynamic resistanceRdi of the PSCs~herei is the number of

the PSC,i 51,2,3. . . ), thecutoff currentĪ s at zero voltage,
and the excess currentI exc at high voltages.

A phenomenological model of the resistive current st
~the SBT model! was proposed in Ref. 24; this model unite
the idea of the quasiparticle diffusion6 and the idea of phase
slip processes29–31 into a picture of the PSCs. According t
this model, a PSC consists of a core, with a size of the o
of the coherence lengthj(T), and diffusion tails extending
away from it on both sides. In the core of the PSC the or
parameterD and superconducting current oscillate, so thaD
goes to zero at certain points and the phase simultaneo
jumps by 2p. The period of the oscillations is given by th
Josephson relation32

vJ52eV/\, ~1.19!

as was confirmed experimentally in Refs. 24,33, and
When narrow tin films24 and tin whiskers33 were irradiated
by an rf electromagnetic field, their I–V characteristics e
hibited not only the voltage jumps typical of PSCs but a
current steps at voltages related to the irradiation freque
by the Josephson relation~1.19!. It should be noted that the
size of the main current step decreased as the irradia
frequency was increased: while the I–V characteristic o
whisker clearly exhibited the main current step during ir
diation at a frequency of 500 MHz, when the irradiatio
frequency was increased to 900 MHz for the same sam
the step was much smaller.33 At irradiation frequencies of 10
GHz and higher it became difficult to discern the main c
rent step, and the subharmonic steps had the same size a
main step.24 The presence of the subharmonic current step
indicative of anharmonicity in the oscillations of the ord
parameter and supercurrent. The time-averaged supercu
flowing through the nonequilibrium region in which the vo
age arises is equal to 0.5–0.8 times the local critical cur
of the superconducting channel, i.e.,Ī s5bI c . Here the nor-

FIG. 1. Typical current–voltage characteristic of a homogeneous film
perconducting channel~Sn-4! at a temperatureT/Tc50.98.
e

er

r

sly

.

-

cy

on
a
-

le,

-
the

is

ent

nt

mal currentI n flowing through a PSC isI 2 Ī s5I 2bI c . The
nonequilibrium quasiparticles formed in the core of the P
diffuse to a depthl E , making for a quasiparticle distribution
that is exponentially damped over a distancel E . In this re-
spect a PSC is analogous to an SNS structure.34,35 Thus the
dynamic resistance of the PSC is given by

Rd15dV/dI52l Er/S. ~1.20!

The total voltage drop across one PSC, according to Ref.
is

V52l Er~ I 2bI c!/S. ~1.21!

Numerous experiments done on narrow aluminu
strips,36–38 tin channels,22,39–41 a tin–indium alloy,42 and
indium43 have confirmed the basic ideas of the phenome
logical model of the PSCs.24 The value of l E determined
from the dynamic resistance of the PSC has the theoretic
predicted dependence on the electron mean free path:l E} l i

~Ref. 43!.
In Ref. 44 the spatial distribution of the chemical pote

tials of pairsms and quasiparticlesmn in the neighborhood of
a PSC were measured by means of normal and supercon
ing tunnel probes placed close together in a tin supercond
ing channel. As expected,ms changed abruptly~jumped!,
since j(T) was smaller than the distance between prob
whereasmn changed over a distancel E from the center of the
PSC by an exponential law. The predicted temperature
pendencel E}(12T/Tc)

21/4 was found, but because of the
mal effects it was not always observed whenl E was deter-
mined from the dynamic resistance of the PSC. The value
l E was in good agreement with the calculated value.

1.2.2. Microscopic theory of the phase-slip centers

The first microscopic theory of the resistive state of n
row superconducting channels was proposed in Refs. 10
and 45–50. The general theoretical concepts from which
theory follows were first stated in Ref. 10, even before
advent of the phenomenological models; these concepts
ply that, despite the absence of vortices, a resistive reg
should exist even in narrow superconducting channels, si
first, there exists a maximum uniform supercurrentI c , and
second, decreasing the current below a certain critical va
I cn in the normal state of the sample should lead to the C
per instability and superconductive pairing of electrons. B
cause the mechanisms governingI c and I cn are different,
these currents in general do not coincide. In Ref. 28
kinetic equations were used to study the structure of the
rent state in a superconducting channel in a model base
microscopic phase separation with alternating supercond
ing and quasinormal regions along the channel. The va
of the chemical potentialsms of neighboring superconduct
ing segments differ by the potential differencedw between
these segments. Thus in each superconducting parE
5¹F/e andms5const. The potentialF is limited by com-
pensation of the potential differencedw by the difference
between the chemical potentials of pairs in neighboring
perconducting segments. At points where the order par
eter equals zero the phase coherence is disrupted, andms ,
and with it F, undergoes a jump. This picture is illustrate
schematically in Fig. 2. We see that the superconduc

-
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parts have different pair chemical potentialsms . This means
that the phase difference between neighboring segments
grow with time. Since the transition region between the
segments, whereD'0, has a width of the order ofj, Joseph-
son oscillations of the order parameter and supercurrent
arise.

In the dynamic model of a PSC51–54 the nonstationary
picture is considered right from the start. In this case
microscopic theory is based on analysis of the tim
dependent microscopic equations of superconductivity.
the region of Josephson frequencies lower thanD/\ and the
energy relaxation rate, these equations were first obtaine
Kramer and Watts-Tobin.55,56 They have the form

2
p

8T
A~4t«

2D21\2!
]D

]t
1

p\

8T
D¹2D

1
p\

8T
DS 2e

\c
Q* D 2

D1
Tc2T

T
D2

7z~3!

8p2

D3

T2
50;

~1.22!

1

eA~4t«
2D21\2!

D2F2
D

\c
div~D2Q* !50; ~1.23!

j 5wE1
spD2

2\cT
Q* , ~1.24!

where

E5
1

c

]Q*

]t
2

1

e
¹F; ~1.25!

Q* 5~\c/2e!¹x2A. ~1.26!

The solution of equations~1.22!–~1.26! and their analysis
and subsequent experimental study have led to the follow
conclusions.1,34,35,51,53,57In the region of a PSC of length
2jG1/2, whereG5\/2t«D0 is the depairing factor, the supe
current and the order parameter undergo substantial osc
tions. At points whereD goes to zero the phasex jumps by
2p, andF(x50) goes to infinity. The amplitude of the os
cillations of D is of the order ofD0G1/2, whereD0 is the
equilibrium value of the order parameter. The oscillations
D are rapidly damped with distance from the PSC, and
distancesx.x25jG1/2 the order parameter is practically in
dependent of time. Forx@j the order parameter assumes
equilibrium valueD0. The supercurrent oscillates but r
mains small, so that all of the current is transported by n
mal excitations. At distancesx15(j l E)1/2,x< l E the oscil-

FIG. 2. Behavior of the order parameterD and potentialsms andF in the
resistive current state model of Ref. 28.
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lations of all of the quantities are negligible. In this region
relaxation of the disequilibrium ofF arising in the core of
the PSC occurs. AsF falls off, there is a decrease in th
normal current, and increase in the supercurrent, and a
crease inD. Figure 3 shows the structure of a PSC, accord
to the dynamic model. Comparing it with Fig. 2, which i
lustrates the static model, we see that the behavior of
order parameterD and potentialF in the two cases is analo
gous almost over the entire span between PSCs except
narrow region in the immediate vicinity of each PSC. T
process of formation of the voltage across the PSC in
static model has the same physical nature as in the dyna
model.

As we have said, the I–V characteristics of superco
ducting channels exhibit voltage jumps. They are due to
appearance of new PSCs in the channel as the curren
creases. A qualitative picture of the voltage jumps, based
the SBT model,24 is considered in Paragraph 1.2.1. A mo
consistent approach is based on the microscopic theo47

We note that the numerical value obtained for the dynam
resistance due to a single isolated PSC in the microsc
theory is equal to 2.06lEr/S, in surprisingly good agreemen
with the phenomenological result obtained in the SBT mo
@see Eq.~1.20!#.

Thus it can be surmised that the resistive current stat
superconducting channels has by now been adequately
ied experimentally and that it can be explained by the ex
ing theory. However, it is still too early to speak of nume
cal agreement. Since the phase-slip processes are by n
substantially nonlinear, it is hardly possible to obtain a ma
ematically exact analytical solution of the dynamical equ
tions ~1.22!–~1.24!. Nevertheless, the main qualitative cha
acteristics of the resistive state are undoubtedly descr
correctly by the theory.

2. RESISTIVE STATE OF A SUPERCONDUCTING CHANNEL
BROUGHT ON BY AN ALTERNATING ELECTROMAGNETIC
FIELD

It is natural to suppose that under the influence of so
external perturbation the equilibrium distribution function

FIG. 3. Behavior of the order parameterD, supercurrent densityj s , and
potentialF in the static~solid curves! and dynamic~dashed curves! regions.
The shaded regions are values that can be assumed byD and j s in the
process of oscillation.
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the quasiparticles in a superconductor will acquire a n
equilibrium admixture. Depending on the parity of this a
mixture to the quasiparticle distribution function with respe
to «k , one can divide the nonequilibrium phenomena in
perconductors into two types.17

The first type of disequilibrium is characterized by
symmetric change in the distribution function of electronli
and holelike excitations and generally comes about whe
superconductor is irradiated by an external electromagn
field. In a certain range of frequency and powers this diseq
librium leads to an increase in the gap and an increase in
critical parameters of a superconducting sample, i.e.,
stimulation of superconductivity.58,59 This effect can be ex-
plained in the theory proposed in Ref. 60.

The second type of nonequilibrium effects are those
which the admixture to the distribution function is odd,
which case the symmetry of the number of quasipartic
over the branches of the excitation spectrum is broken~im-
balance of the charge of the branches!. This situation is ob-
served when a dc current is passed through an NS bound
in the injection of nonequilibrium quasiparticles in SIN tu
nel junctions, and also in a homogeneous supercondu
with a temperature gradient or withI .I c ~PSCs!.

For a long time after the discovery of superconductiv
stimulated by microwave radiation it was assumed that
electromagnetic field produced only a symmetric change
the quasiparticle distribution function and, consequently,
not lead to a population imbalance of the branches of
quasiparticle spectrum. However, in 1976 it was conj
tured61 that microwave irradiation of a superconductor giv
rise to a dc electric field, i.e., leads to imbalance of the q
siparticle charge. The resulting imbalance of the populati
of the branches of the quasiparticle spectrum was attribu
in that paper,61 and also in a later paper,62 to the thermoelec-
tric effect, and its value turned out to be rather small, of
order of«* /EF («* ;D). In Refs. 63 and 64 it was show
theoretically that the homogeneous state of a supercondu
becomes unstable under the influence of an electromag
field, and a transition can occur to a spatially inhomogene
state, the structure of which, however, remained unde
mined. In Ref. 65 it was observed experimentally that un
electromagnetic irradiation at a powerP greater than the
critical valuePc (Pc is the minimum power of electromag
netic radiation at which the critical currentI c of the channel
is equal to zero! the superconducting channel undergoes
phase separation, the physical nature of which remained
clear for some time. In this connection we should also m
tion the results of studies in which stepped structures w
observed on the characteristics at superconducting transi
of narrow films of tin66 and aluminum67 in a microwave
radiation field and also at transitions to the resistive stat
wide superconducting films of tin68 and aluminum69,70 under
the influence of an electromagnetic field.

2.1. Discreteness of the change in resistance of a
superconducting channel irradiated by electromagnetic
fields at powers greater than the critical

Let us consider the structure of the resistive state aris
in a channel under the influence of an electromagnetic fi
Figure 4 shows families of I–V characteristics and their d
rivatives for sample Sn-14 at different power levels of t
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irradiation at a frequencyf 56.3 GHz.71 For the first I–V
characteristic and its derivative the power of the radiat
was zero, and the other curves are labeled in order of incr
ing power. The parameters of all of the samples discusse
this review are presented in Table I.

It is seen from Fig. 4a that as the power of the irradiati
increases, PSCs caused by the electromagnetic radiatio~ac
PSCs! arise in the sample, as distinct from those caused
dc current~dc PSCs!. As the power of the rf field is increase
monotonically, the channel resistanceRi ( i 51,2,3. . . ) de-
termined from the slope of the initial parts of the I–V cha
acteristics changes discretely. Results analogous to th

FIG. 4. Families of I–V characteristics~a! and their derivatives~b! for the
superconducting channel Sn-14 at various irradiation power levels,f 56.3
GHz, T53.719 K.

TABLE I. Parameters of the film samples.

Sample l, mm w, mm d, nm R4.2, V R300, V Tc , K

Sn-2 80 1.0 175 6.85 67.74 3.763
Sn-3 25 1.0 73 5.50 51.20 3.821
Sn-4 30 1.0 199 1.45 21.50 3.783
Sn-5 21 1.5 70 4.26 30.91 3.860
Sn-6 30 1.0 100 4.33 39.32 3.733
Sn-8 33 1.0 88 5.87 51.33 3.821
Sn-10 53 1.5 86 5.13 60.02 3.842
Sn-12 35 1.0 71 5.48 64.73 3.812
Sn-13 35 1.0 88 4.08 52.08 3.820
Sn-14 75 1.0 117 10.5 95 3.781
Sn-15 20 1.0 50 9.32 63.05 3.830

Note: l is the length,w the width, andd the thickness of the sample.
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shown in Fig. 4a were also obtained in Ref. 72 for alumin
samples irradiated at a frequency of 25 GHz. The value
the resistance of an ac PSC can also be determined from
4b, sincedV/dI at I tr50 is also the resistance of an ac PS
measured in alternating current~at a signal modulation fre
quencyf m;1 kHz!.

It is seen in Fig. 4a that for irradiation at a frequency
6.3 GHz the resistance of the first ac PSC isR153.5 V
~curve 3!. With increasing irradiation power the number
PSCs arising under the influence of the electromagnetic fi
increases, and the resistance of the sample increases
multiple: R5R1n, whereR1 is the resistance of one ac PS
n51,2,3 . . .N (N is the largest number of ac PSCs in t
sample for the given irradiation frequency!. Since the dimen-
sions of the samples (;104 m! are small compared with th
wavelength of the electromagnetic field (;1022 m!, we can
assume that a uniform rf currentI fr}AP flows through the
sample, although its value was not measured directly. As
see in Fig. 4, the resistanceR1 of each ac PSC that arise
remains constant as the irradiation power is increased,
the heating effect that would exist if the resistanceR1 were
due to a normal domain with a length of the order ofl E is not
observed. Figure 5 shows how the dc voltage arising
tween the ends of the superconducting channel~sample
Sn-2! depends on the power of the electromagnetic irrad
tion a510 log(P/P0) at a low measuring current (I tr

511 mA!I c). For 0<P,Pc the sample is found in the
superconducting state, and no voltage drop between its
is observed. As the rf current through the channel increa
ac PSCs arise in it, and theV(a) curves exhibit related volt-
age jumps. Results analogous to those shown in Fig. 5 w
also obtained in Refs. 70 and 72 for aluminum samples i
diated at a frequency of 25 GHz.

Thus in the case when the irradiation power is above
critical level, the resistance of a superconducting chan
changes discretely by multiples.

It should be noted, however, that the aforemention
techniques for determining the resistance of the ac PSCs
suppose the presence of dc~in the case of the I–V charac
teristics! or low-frequency~in the case of their derivatives!
measuring currents. There is therefore some doubt a
whether the change in resistance of a superconducting c

FIG. 5. Voltage arising across the ends of sample Sn-2 versus the pow
the electromagnetic irradiation atf 58.9 GHz,I tr511 mA, andT53.650 K.
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nel in the resistive state in an electromagnetic field rema
discrete in the absence of these currents.

It is known that the thermal motion of the current car
ers in a conductor gives rise to thermal or resistan
noise.73,74In accordance with the Nyquist theorem, the effe
tive voltage of the thermal noise as a result of the presenc
a resistanceR is given by75

V5~4kBTRd f !1/2, ~2.1!

whered f is the frequency bandwidth of the circuit for th
noise measurements. Since Eq.~2.1! is valid for any resis-
tanceR, regardless of its nature,74 one expects the appea
ance of jumps in the noise voltage across the ends o
sample in the resistive state by amounts proportional to
square root of the resistances of the ac PSCs.

Figure 6 shows a plot of the spectral density of the noi
SV5V2/d f 54kBTR, versus the power of the electroma
netic irradiationa510 log(P/P0) ( f 56.3 GHz! for sample
Sn-14 in the case of conventional methods of study~see Fig.
4!.71 We see that increasing the power of the electromagn
field results in discrete increases in the voltage between
ends of the channel in the resistive state. It is importan
note that the values of the noise voltage obtained in Ref.
are in quite good agreement with the values calculated
cording to formula~2.1! on the assumption that the sourc
of this noise are the ac PSCs whose resistances were d
mined~see Fig. 4!. It can also be assumed that in the expe
ments investigating the noise of the Sn-14 superconduc
channel the PSCs appear as a result of the flow of a para
dc current arising as a result of rectification of the microwa
signal. However the rectification effect was not observed
Ref. 71. The presence of segments with a constant n
voltage on theSV(a) curve ~see Fig. 6! and the absence o
excess noise suggest that the microwave signal (f 56.3 GHz!
does not contain a parasitic current having a frequency ly
within the frequency bandwidth of the noise measurement71

of

FIG. 6. Spectral noise densitySV of superconducting channel Sn-14 vers
the power of the electromagnetic irradiation atf 56.3 GHz andT53.719 K.
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Measurements of the resistance of a channel in ac
rent (f m;1 kHz! at I tr50 and studies of the noise have th
shown that ac PSCs arise in a narrow channel under irra
tion by an electromagnetic field withP.Pc in the absence
of a dc current.

A similar picture is observed in studies of high
temperature samples. Figure 7 shows a family of I–V ch
acteristics for a YBa2Cu3O72x sample~HS-7! for various
power levels of the external radiation.76 For the first I–V
characteristic the irradiation power was equal to zero, and
rest are numbered in order of increasing power. We see f
the figure that under microwave irradiation, as in the case
tin superconducting channels, the resistance of a h
temperature sample changes in a discrete manner~see the
initial segments of the I–V characteristics in Fig. 7!. First the
sample undergoes an abrupt transition from the super
ducting state to a state with resistanceR151.88V, and upon
further continuous increase in the power a transition to
state withR253.14V occurs, and only then, as the power
increased further, does the sample go to the normal state
resistanceRn54.50 V. This provides grounds for assertin
that ac PSCs also arise in high-temperature samples u
the influence of a microwave field, just as in the case of
superconducting channels. The fact that the resistances o
PSCs deviate slightly from exact multiples~by ;10%) can
be attributed to nonideality of the channel and the its sm
length, which can accomodate only two ac PSCs. Interest
in this experiment the irradiation frequency was such~see
Sec. 2.2! that the dynamic resistances of the PSCs indu
by the dc current are equal to the resistances of the ac P
Rd15R1 , Rd25R2, with Rd1(P50)5Rd1(P.Pc), Rd2(P
50)5Rd2(P.Pc) ~see Fig. 7!.76

FIG. 7. Family of current–voltage characteristics of sample HS-7 at var
levels of attenuation of the power of the external irradiation (f 516.2 GHz!,
P @dB#: 2100 ~1!, 226 ~2!, 23 ~3!. T55 K.
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2.2. Nonmonotonic frequency dependence of the resistance
of a phase-slip center caused by an electromagnetic
field

Let us consider the frequency dependence of the pene
tion depth of a longitudinal electric field into a superco
ductor. Figure 8 shows families of I–V characteristics
sample Sn-5 at various power levels of irradiation at frequ
cies of 1.5 and 5.025 GHz.77 For the first I–V characteristic
the irradiation power is equal to zero, and the remain
curves~2–10! are labeled in order of increasing power.
follows from Fig. 8 that in the case whenP.Pc , increasing
the power of the electromagnetic field in the sample giv
rise to ac PSCs, the resistance of whichR1 is different for
different frequencies. In studying the resistivity arising
superconducting channels upon the formation of PSCs
them, one can determine the penetration depth of a long
dinal electric field into the superconductor@see~1.20!# as:

l E~v50!5 lRd1~P50!/2Rn ;
~2.2!

l E~v!5 lRd1~P>Pc!/2Rn .

s

FIG. 8. Families of current–voltage characteristics of channel Sn-5 for v
ous irradiation power levels atT53.821 K: f 51.5 GHz ~a! and f 55.025
GHz ~b!.
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Herel is the length of the channel,Rn is its normal resistance
at low temperature, andv52p f is the irradiation frequency
It will be shown in Sec. 3.1 that forP.Pc the resistance o
an ac PSC is equal to the resistance of a dc PSC.

As was shown in Sec. 1.1, in our understanding of
penetration of a longitudinal electric field into a superco
ductor an important role is played by the concepts of imb
ance of the branches of the quasiparticle spectrum and o
mechanisms equalizing the populations of the electron
hole subsystems. The simplest mechanism for relaxatio
the charge imbalance nearTc involves inelastic electron–
phonon collisions.9,78 In that case the frequency dependen
l E(v) is given by the expression9,79,80

l E~v!/ l E~0!5@~12 ivt1!~12 ivtD!#21/2, ~2.3!

where t15t« is the inelastic relaxation time for homoge
neous samples,tD is the relaxation time of the phase of th
order parameter:

tD5H t/2~12T/Tc! ‘‘clean’’ limit

2\kBT/pD2 ‘‘dirty’’ limit;

t is the relaxation time in scattering on impurities.
In Ref. 81 the frequency dependence ofl E was consid-

ered with allowance for the relaxation mechanism involvi
collective oscillations. An expression for the penetrati
depth of a longitudinal electric field in that case has the sa
form as for the electron–phonon relaxation mechanism, o
now t1 in formula ~2.3! equalsts , the relaxation time on
collective oscillations. In a thin film this relaxation timets

can be estimated by the an expression of the form:81

ts;
D

kBT S «F

T3D 1/2

pFd~pFl i !
1/2, ~2.4!

whered is the thickness of the film,l i5 l ph(R300/R4.221) is
the mean free path of the electrons in respect to impu
scattering,82 and l ph is the mean free path of the electrons
respect to the phonon scattering mechanism (T5300 K!.

Figure 9 shows the frequency dependence of the r
R1( f )/Rd1( f 50)5 l E(v)/ l E(0) for samples Sn-3 and
Sn-4.83 It is seen that as the frequency is increased, the va
of R1( f ) @and, hence,l E(v)] initially decreases and the
begins to increase. The solid curves in Fig. 9 represent
real parts of the ratiol E(v)/ l E(0) calculated according to

FIG. 9. Resistance of an rf phase-slip centerR1( f )/Rd1(P50) versus
the frequency of the irradiation for samples Sn-3 (d) and Sn-4 (m) at
T53.742 K.
e
-
l-
he
d

of

e

e
ly

y

io

e

e

formula ~2.3! for t15531029 s ~curve 1! and t156.5
31029 s ~curve2!. It is seen that the curves conform well t
the descending parts of the experimental curves, and that1

is greater for sample Sn-4 than for sample Sn-3. In
framework of the model proposed in Ref. 81, this can
explained as follows. According to Eq.~2.4!, the relaxation
time ts for relaxation on collective oscillations is propo
tional to d and l i , and the mean free path and thickness
greater for sample Sn-4 than for Sn-3~see Table I!. It is also
important to note that for samples with largerd and l i the
deviation from the theoretical predictions begins at high
irradiation frequencies~see Fig. 9!.

Thus for a suitable choice of the value of the quasip
ticle relaxation timet1 in real samples, the theory gives
quantitatively as well as qualitatively correct description
the descending part of thel E(v)/ l E(0) curve. As to the total
experimental dependence ofl E(v)/ l E(0), it differs funda-
mentally from the predictions of the theory in that it exhib
nonmonotonicity, which is due to mechanisms that were
taken into account in the existing theories.

To track the behavior of the ascending branch of of
R1( f ) curve at high frequencies, we chose the longer sam
Sn-2. Figure 10 shows the frequency dependence of the
sistanceR1 and the maximum numberN of ac PSCs in
sample Sn-2.84 We see that as the irradiation frequency
increased, the resistance of an ac PSC increases, this b
ior of R1( f ) persisting to frequencies comparable to the g
frequency 2D/\, while N falls off with increasing
frequency.84 The behavior of the ascending branch, we b
lieve, is due to nonlinear processes of relaxation of the po
lations of the electronlike and holelike branches of the q
siparticle energy spectrum under conditions of elect
magnetic pumping at irradiation frequenciesv.tQ

21 . In this
case the population imbalance of the branches of the qu
particle spectrum due to the electromagnetic field does
have time to relax completely in a timev21. As the fre-
quency increases, this process becomes stronger, and a
crease ofl E(v) is observed as a result of spatial diffusion.
seems to us that the nonmonotonicity of the frequency
pendence is a result of the existence of two mechanism
relaxation of the charge imbalance, one of which leads t
decrease and the other to an increase ofl E(v) as the irradia-
tion frequency increases, the mechanism leading to

FIG. 10. ResistanceR1 /Rn and maximum numberN of rf phase-slip centers
as a function of irradiation frequency for sample Sn-2 atT53.650 K.
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growth of l E(v) being ‘‘turned on’’ forv.tQ
21 and becom-

ing dominant as the irradiation frequency increases.

2.3. Temperature dependence of the resistance of a phase-
slip center

Studying the temperature dependence of the resista
of a PSC is important for understanding the mechanism
relaxation of the population imbalance of the branches of
quasiparticle spectrum in a narrow channel. In a numbe
studies of the properties of PSCs in whiskers and long, n
row films deposited on glass substrates, no temperature
pendence of the resistance of a PSC~and, hence, of the pen
etration depth of the longitudinal electric field! was
detected.22–24In Ref. 24 this fact led to the mistaken concl
sion that the penetration depth of the longitudinal elec
field in a superconductor is determined by the energy re
ation timet« and not by the relaxation time of the charg
imbalance,tQ . However, more-careful studies have show
that l E does depend on temperature. In Ref. 85 the temp
ture dependence ofl E was investigated in long, thin, narrow
tin films deposited on crystalline quartz substrates. It w
found that at temperatures sufficiently far fromTc , the value
of l E is determined by collisions of electrons with impuritie
as was predicted in Refs. 46 and 86. At temperatures clos
Tc the situation is quite different, since here the characte
tic times due to elastic relaxation, because of their stro
temperature dependence@(12T/Tc)

21#, become larger, and
elastic processes~scattering on phonons! begin to play the
predominant role. In that casel E}(12T/Tc)

21/4.
Measurements ofl E in thin and narrow films of tin and

indium were also made in Ref. 44, but by a different meth
At a certain place a notch was made in the film, so that
width at that place was decreased by approximately h
When a dc current exceeding the cirtical current was pas
through the film, an electric field arose at the notch. T
decay length of the field was determined by means of mic
probes placed near the notch a short distance apart~;2 mm!.
In agreement with the theory, it was found that forT→Tc the
length l E decreases according to the lawl E}D21/2}(1
2T/Tc)

21/4.
It was shown in Ref. 79 that near the critical tempe

ture, thermal effects can obscure the temperature depend
of the resistance of the PSCs; this temperature depend
can nevertheless be extracted after allowing for the hea
effect.

It should be noted that in certain theoretical models
the relaxation of the charge imbalance there is no temp
ture dependence of the PSC resistance. For example, it
shown in Ref. 87 that taking the scattering of quasipartic
on static inhomogeneities of the order parameter~structure
fluctuations! into account leads to a temperature-independ
penetration depth of the longitudinal electric field. Howev
in the overwhelming majority of experimental studies t
temperature dependence ofl E has still been observed if th
thermal effects were accurately taken into account.

For example, in Ref. 88 studies were made of the te
perature dependence of the dynamic resistanceRd1(P50) of
a PSC due to a dc current and of the resistanceR1( f ) of a
PSC due to an electromagnetic field. Figure 11 shows
I–V characteristics of one of the samples at differe
ce
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temperatures.88 It is seen thatR1( f ) decreases with decreas
ing temperature. Figure 12 shows the temperature dep
dence ofl E for several of the samples studied in Ref. 88. T
numbers2, 3, and4 in this figure label the temperature de
pendence of the penetration depth of a longitudinal dc e
tric field into the superconductor in the absence of elec
magnetic radiation, and the numbers1, 5, 6, and7 label the
temperature dependence ofl E under irradiation at powers
P.Pc and frequencies of 9.2, 4.3, 2.0, and 0.386 GHz,
spectively. It is seen from the figure thatl E}(12T/Tc)

21/4

for both the dc and ac PSCs. This agrees with the result
Refs. 89–92.

As we have said, an important role in the study of t
temperature dependence of the resistance of the PSC
played by overheating processes. The increase in the
perature of the film due to Joule heating of the PSCs is gi
by the relation24

dT5
P

~2h1 l E!a f s8 w
, ~2.5!

whereh5(Kd/a f s8 )1/2 is the thermal length,K is the thermal
conductivity of the metal,a f s8 is the coefficient of heat trans
fer from the film to the substrate, andw is the width of the
film.

FIG. 11. Current–voltage characteristics of homogeneous film channel
in an electromagnetic field withf 52.0 GHz atT53.782 K~1!, T53.657 K
~2!, andT5Tc ~3!.

FIG. 12. Temperature dependence of the penetration depth of a longitu
electric field into samples Sn-5 (m), Sn-8 (d), and Sn-10 (j) in the
absence of electromagnetic irradiation~2,3,4! and at various irradiation
frequenciesf @GHz#: 9.2 ~1!, 4.3 ~5!, 2.0 ~6!, and 0.386~7! in the case
P.Pc .
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The thermal conductivity can be calculated from the
sistivity of the sample using the Wiedemann–Franz law:

K5
p2kBT

3e2r
. ~2.6!

For tin films K50.05–0.10 W/~cm•K!, and the the coeffi-
cient of heat transfer from a tin film to a quartz substrate w
calculated in Ref. 93 as 6 W/~cm•K!. When a dc current
flows through a PSC in the absence of electromagnetic fi
a powerP;1029 W is released, so that the overheating
the film according to~2.5! will be of the order of 1023 K.

It is much more complicated to estimate the overheat
of the sample when both ac and dc currents are flow
through it simultaneously. The square of the amplitude of
ac critical current as a function of frequency has the form94,95

I c0
2 5H I c

2~11A2vt8!, vt8!1

2I c
2@12~4vt8!22#, vt8@1.

~2.7!

Here t8'1.2t« /(12T/Tc)
1/2 is the relaxation time of the

gap.
It follows from ~2.7! that the maximum value of the

amplitudeI c0 of the ac critical current is equal toA2I c . Here
the power released at an ac PSC having resistanceR1 is
given by

Pf5I eff
2 R15I c

2R1 , ~2.8!

whereI eff5I c0 /A2 is the effective value of the current.
Since for tin filmsPf5I c

2R1;1029 W, the overheating
of the film due to the Joule heat released at a PSC on pas
of an ac current is not any bigger than the value obtaine
the case of a dc current, i.e., it is of the order of a millikelv
When a dc measuring current is passed through an ac PS
power P85I 2R1 is released. SinceI ,I c and P8!Pf , the
overheating of the sample due to the passage of the dc
rent can be neglected in this case.

When a superconducting channel is irradiated by an
electromagnetic field, the so-called Ohmic dissipation a
relaxation dissipation occur.95

At high frequencies (vt«.1) the heating of the film
due to Ohmic absorption can be estimated by the expres

dTV5
I c

2R1~3v/4vD!2

a f s8 wl
, ~2.9!

wherevD5pD2/2\kBT, and l is the length of the film.
For tin samples on quartz substrates the heating of

film due to Ohmic dissipation does not exceed a few ten
of a millikelvin, i.e., it is negligible. An estimate of the hea
ing of the film due to relaxation absorption givesdTR /dTV

,1022, i.e., the contribution from relaxation dissipation
also negligible.

Thus in studying the temperature dependence ofl E ,
even high estimates of the overheating of tin films depos
on quartz substrates are so small that one can neglect the
effects in determining the penetration depth of the longitu
nal electric field into the superconductor.

The absence of overheating effects is also seen on
I–V characteristics~see Figs. 4, 8, and 11!. The passage of a
dc current of up to several tens of microamperes does
affect the resistance of an ac PSC~the extended linear part
-
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of the I–V characteristics!; this attests to the good therma
matching of the film and substrate, providing efficient he
removal from the sample into the helium bath.

3. INFLUENCE OF ELECTROMAGNETIC IRRADIATION
ON THE RESISTIVE STATE OF A SUPERCONDUCTING
CHANNEL BROUGHT ON BY THE PASSAGE OF A
DIRECT CURRENT

3.1. Dynamic resistance of a superconducting channel

As was shown above, the dynamic resistance of a PS
proportional to the penetration depth of the longitudinal el
tric field into the superconductor@see Eq.~1.20!# and is
given by

Rd152l ERn / l 54@~D/p!~kBT/D!t«#1/2Rn / l . ~3.1!

In view of ~3.1!, one might expect that suppression
the order parameterD by an electromagnetic field would
increase the dynamic resistance of a PSC produced by
passage of a dc current, while stimulation of superconduc
ity would decrease it.58,59 However, experimental studies o
the effect of electromagnetic field on the resistive curr
state of a superconducting channel have shown that th
not the case.77,88

Figure 8 shows families of I–V characteristics fo
sample Sn-5 at different power levels of the irradiation
frequencies of 1.5 and 5.025 GHz. The length of sam
Sn-5 is such that only one dc PSC, with a resistance of 2
V, can be accomodated in the absence of radiation.
lower frequency boundary for stimulation,f low , calculated
from the transcendental equation60

f low
2 5D/@t«h ln~8D/h f low!#, ~3.2!

is equal to 6 GHz. Therefore, increasing the irradiati
power leads to a decrease of the critical current, i.e., supp
sion of superconductivity, at both 1.5 and 5.025 GHz. Let
first consider the case when the frequency of the exte
electromagnetic field is such that the resistance of a P
caused by the passage of an ac current through the chan
smaller than the resistance of a PSC caused by the passa
a dc current, i.e.,R1( f ),Rd1(P50). Initially the dynamic
resistanceRd1(P) of a dc PSC is unaffected by small in
creases in the irradiation power, but, starting at a cer
power levelP* ,Pc ~see curves2, 3, and4 in Fig. 8a!, in
complete contradiction to the predictions of the theory,
dynamic resistanceRd1(P) of the dc PSC begins to decrea
smoothly.77 It should be noted that as the irradiation power
increased, the state of a superconducting channel in whi
dc PSC has formed becomes more stable against an inc
in the dc current~the linear parts of the I–V characteristic
whose resistances are multiples ofRd1(P), become longer!.
It is seen in Fig. 8a that as the irradiation power is increas
the I–V characteristics show the presence of other dc P
~indicated by arrows! in addition to the single dc PSC tha
existed atP50. This is not surprising. If increasing the ir
radiation power decreases the dynamic resistanceRd1(P) of
the PSC, then its size 2l E will also decrease as a cons
quence. Therefore, at a fixed channel length the maxim
number of dc PSCs that can fit in the channel increases

Curve 3 in Fig. 13 shows the dynamic resistanc
Rd1(P)/Rd1(P50) as a function of the irradiation power~at
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a frequency of 200 MHz! for one of the samples~Sn-6!. It is
seen that when the power of the electromagnetic field is
creased from zero to the critical valuePc , the dynamic re-
sistance of the current-induced PSC decreases by almo
factor of four.

At P5Pc an ac PSC with a resistanceR1 equal to the
dynamic resistanceRd1(P) of a dc PSC atP>Pc arises in
the sample~see curve6 in Fig. 14c!.

At higher irradiation frequencies, whenR1( f )
>Rd1( f ,P50) ~see Fig. 8b!, the dynamic resistance of a d
PSC initially remains unchanged as the power increases
in the previous case. Here one observes a decrease o
stability against dc current~the linear parts of the I–V char
acteristics, the resistances of which are multiples ofRd1(P),
become shorter!. As the irradiation power is increased fu
ther, the existing dc PSC vanishes and a new dc PSC app
~indicated by an arrow in Fig. 8b!, the stability of which
against a rise in dc current increases with increasing pow
Upon further increase in power the dynamic resistance
this PSC remains unchanged and, as in the case of low
diation frequencies, whenR1( f ),Rd1( f ,P50), is equal to
the resistanceR1 of the PSC arising under the influence of
electromagnetic field atP5Pc ~see curves7 and 8 in Fig.
8b!. Thus on the basis of the experimental data presen
above, one can state that irradiation by an electromagn
field with a frequency below the boundary frequency
stimulation can either decrease the dynamic resistance~for
Rd1(P50).R1) or increase it~for Rd1(P50),R1), and
for P>Pc the resistanceRd1(P>Pc) of a dc PSC become
equal to the resistanceR1 of an ac PSC. This behavior of th
dynamic resistance of a dc PSC under the influence of e
tromagnetic radiation cannot be explained by suppressio
the order parameter in the superconducting channel.

It is of considerable interest to study the transition o
superconducting channel from a state of stimulated su
conductivity to a resistive current state.88 Figure 14 shows

FIG. 13. Dynamic resistance of a phase-slip center caused by the pass
a dc current,Rd1(P)/Rd1(P50), versus the irradiation power:1,2! sample
Sn-12: f 523.39 GHz~1! and f 515.46 GHz~2!; 3! sample Sn-6:f 5200
MHz.
-
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families of I–V characteristics for samples Sn-12 and Sn
under irradiation at different power levels. For the first I–
characteristic~curve1! the irradiation power is zero, and th

e of

FIG. 14. Families of current–voltage characteristics of superconduc
channels at various power levels of the irradiation. Sample Sn-12T
53.774 K; f 515.46 GHz~a!, f 523.39 GHz~b!; T53.766 K, f 56.0 GHz
~c!. Sample Sn-13:T53.762 K, f 514.16 GHz~d!.
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other I–V characteristics are numbered in order of increas
power. The frequencies of the electromagnetic irradiat
were above the lower boundary frequency for stimulati
Therefore, increasing the irradiation power leads to a ris
the critical currentI c(P), i.e., to stimulation of superconduc
tivity by the electromagnetic field. Here the resistan
Rd1(P) of a dc PSC initially remains unchanged as the ir
diation power is increased~curve 2 in Fig. 14a; in Fig. 13
this is not visible on account of the scale!. Then, starting at a
certain power levelP* , the resistanceRd1(P) of a dc PSC
begins to increase smoothly with increasingP. It has been
established experimentally77 that there is a tendency forP*
to decrease with increasing irradiation frequencyf. For ex-
ample, P* '0.25Pc for f 5200 MHz ~see curve3 in Fig.
13!, while for f 515.46 GHz one hasP* '0.01Pc , where
P* is the power level above which the dynamic resistance
a dc PSC begins to deviate from Rd1~P 5 0!.

It should be noted that in the stimulated-sup
conductivity regime, as in the case of rather low irradiati
frequencies, for which suppression of superconductivity
observed, as the irradiation power is increased, the stat
the superconducting channel upon the formation of a dc P
in it becomes more stable against an increase in the dc
rent; this is manifested on the I–V characteristics as a len
ening of the linear segments, the resistances of which
multiples ofRd1(P) ~see Fig. 14!.

Upon further increase in the irradiation power in t
stimulated-superconductivity regime one observes a shor
ing of the linear segments of the I–V characteristics~see
curves5 and6 in Fig. 14a; curve4 in Fig. 14b, and curve3
in Fig. 14c! until they vanish completely and a breakoff fro
the state of stimulated superconductivity to the normal s
occurs~see curve7 in Fig. 14a and curves4 and 5 in Fig.
14d!. Then, as the irradiation power is increased further~the
suppression of superconductivity has already set in, and
value of the dc current through the channel is much low!
the dc PSCs again appear~see curves6–9 in Fig. 14d!, and
their stability against a rise of the dc current increases w
increasing power of the electromagnetic field, just as it did
the case of superconductivity suppression at low irradia
frequencies.

It is important to emphasize that the dynamic resista
Rd1(P) of a dc PSC atP>Pc , just as in the case of low
irradiation frequencies, coincides precisely with the res
tanceR1 of an ac PSC~see curves6–9 in Fig. 14d!, although
the value ofR1 in this case is much larger than at low irr
diation frequencies.

Curves1 and2 in Fig. 13 show the dynamic resistanc
Rd1(P)/Rd1(P50) of a dc PSC as a function of the irradi
tion power for sample Sn-12.88 We see that in the regime o
stimulated superconductivity, in the case when the dyna
resistanceRd1(P50) of a dc PSC is much less than th
resistanceR1 of an ac PSC, the dynamic resistanceRd1(P)
increases with increasing irradiation power, and the rate
growth is higher for higher irradiation frequencies. This
clearly due to the following circumstance. As was sho
above, with increasing irradiation power the dynamic res
tanceRd1(P) of a dc PSC tends toward the resistanceR1 of
an ac PSC, andR1( f 523.39 GHz).R1( f 515.46 GHz).

In the regime of stimulated superconductivity in the ca
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when the dynamic resistanceRd1(P50) is much greater
than the ac PSC resistanceR1 arising in the channel at an
irradiation powerP5Pc , one does not observe a decrease
Rd1(P) with increasing irradiation power. However, whe
the power is increased further and superconductivity
comes suppressed, one observes a decrease in the dyn
resistance of a dc PSC, i.e.,Rd1(P) tends towardR1, and at
an irradiation power equal to or greater than the critical va
one hasRd1(P>Pc)5R1, as in the previous case~see Fig.
14c!.

Thus the above results indicate that in the case of stim
lation of superconductivity, as in the case of its suppress
starting at a certain power levelP* ,Pc the electromagnetic
field plays a decisive role in the processes giving rise to
dc PSCs and, consequently, to a population imbalance
tween the branches of the quasiparticle energy spectr
This conclusion was confirmed in Ref. 96, where a cha
imbalance occurring under the influence of a relatively we
(P,Pc) microwave field was measured with a supe
conductor–insulator–normal metal~SIN! junction. The volt-
age across the SIN junction at zero bias is proportional to
charge imbalance. In the presence of the microwave field
voltage is the difference between the voltages of the auto
mous and perturbed I–V characteristics at the pointI 50,
i.e., the detector response of the SIN junction to the mic
wave field. Measurements of the I–V characteristics and
differential resistance from the current through the SIN jun
tion under irradiation by a microwave field at a frequency
45 GHz revealed the presence of a charge imbalance.96

3.2. Time-averaged alternating supercurrent of a phase-slip
center

As we mentioned at the beginning of this review, t
time-averaged alternating supercurrent of a PSC, or the
called cutoff current, is one of the main parameters char
terizing the I–V characteristic of a channel.

In accordance with the above-described microsco
theory of the resistive current state,1,51,53 the supercurrent
exhibits Josephson oscillations in a PSC region with a len
of the order ofx1'(j l E)1/2. It was shown in Refs. 34, 35
and 57 that a PSC displays the properties of an SNS st
ture, wherex1 plays the role of a quasinormal region. It
also known that sinusoidal Josephson oscillations of the
percurrent can occur for superconducting microcontacts w
dimensions much smaller than or comparable to the co
ence length.97,98 Sincex1 is manifestly greater thanj, one
would expect appreciable anharmonicity of the oscillatio
The subharmonic current steps observed in Refs. 24 an
on the I–V characteristic of a channel irradiated by an el
tromagnetic field confirm this. Here the time-averaged sup
current will be nonzero.

The cutoff current is determined by the intercepts on
current axis of the long segments of the I–V characteristic
the channel, the slopes of which are multiples of the dyna
resistanceRd1 of a PSC~see Figs. 1, 14, and 15!. The cutoff
current on the I–V characteristic at zero voltage is just
time-averaged supercurrentĪ s flowing through the nonequi-
librium region in which the Josephson oscillations of t
order parameter parameter arise.24 We see from Figs. 1, 14
and 15 that by varying the critical currentI c and the dynamic
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resistanceRd1 of a PSC, one can varyĪ s . Convenient pa-
rameters of the external influences for this purpose are
temperature and the frequency and power of the exte
electromagnetic radiation.

As we see in Fig. 8a and 14c, in the regime of suppr
sion of superconductivity by electromagnetic radiation,
the case when the dynamic resistanceRd1(P50) of a dc
PSC is larger than the resistanceR1 of a PSC produced by a
electromagnetic field withP>Pc , the average supercurren
increases smoothly with increasing power. Here, as we h
said, one observes a smooth decrease of the dynamic r
tance. Curve3 in Fig. 16 shows the reduced average sup
current Ī s(P)/ Ī s(P50) as a function of power for an irra
diation frequencyf 5200 MHz.99

In the regime of stimulated superconductivity, in th
case when the dynamic resistanceRd1(P50) is less than the
resistanceR1 of an ac PSC, one observes an increase of
average supercurrent with increasing irradiation power~see

FIG. 15. Schematic current–voltage characteristics of a homogeneou
perconducting channel.

FIG. 16. Time-averaged supercurrentĪ s(P)/ Ī s(P50) of a phase-slip cente
brought on by the passage of a dc current, as a function of the irradia
power: 1,2 — sample Sn-12,f 523.39 and 15.46 GHz, respectively;3 —
sample Sn-6,f 5200 MHz.
e
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Fig. 14a, 14b, 14d!. It should be noted that the dynam
resistanceRd1(P) also increases here. Curves1 and2 in Fig.
16 give Ī s(P)/ Ī s(P50) as a function of the irradiation
power in the stimulated superconductivity regime for tw
irradiation frequencies. We see that the rate of growth of
average supercurrent at an irradiation frequency of 23
GHz is higher than atf 515.46 GHz, i.e., the faster the dy
namic resistance grows, the faster the average supercu
of the PSC increases.

As the power is increased further, after suppression
superconductivity has set in, the average supercurrent
decreases, and this decrease inĪ s(P) is faster for lower criti-
cal currentsI c(P). Therefore, starting at some power leve
the cutoff current of a dc PSC become equal to zero, whil
the same timeI c(P)Þ0 ~see curves6–9 in Fig. 14d!, i.e., dc
PSCs without a cutoff current appear.

It is important to note that the influence of the electr
magnetic field on the value of the cutoff current, as on
dynamic resistance of a PSC, has a threshold characte
both the stimulated- and suppressed-superconductivity
gimes~see curve3 in Fig. 16 and curve2 in Fig. 14a; in Fig.
16 this is not visible at high frequencies on account of
scale!,99 as is characteristic for the influence of external
diation on an inhomogeneous superconductor.100

Figure 17 shows theĪ s(T) and I c
2/3(T) curves of super-

conducting channel Sn-15. The domain of the functionĪ s(T)
corresponds to the temperature region in which volta
jumps are observed due to the formation of dc PSCs.99 At
lower temperatures the I–V characteristics of the chan
have a broken character, apparently because of overhea
If Ī s(T) is approximated by a straight line, we obtain th
temperature at which the cutoff current goes to zero:Ts0

53.810 K,Tc,3.830 K. Indeed, forT.Ts0 the I–V char-
acteristics of the superconducting channels do not show
dence of the formation of dc PSCs, i.e., at the critical curr
there are no voltage jumps in the resistive region of the I
characteristics.99 An analogous picture is observed for whi
kers. Figure 18 shows the temperature dependence of
cutoff current, critical current, and voltage jumpV1(T) of
the first dc PSC for an In–Pb whisker, as constructed fr
the family of I–V characteristics given in Ref. 101. For t
film channels one hasDT5Tc2Ts0520–30 mK,99 while for
whiskersDT is several millikelvin, but the noncoincidenc
of Tc andTs0 is common property for them.

A similar situation has also been observed in the study

su-

n

FIG. 17. Temperature dependence of the cutoff currentĪ s and the critical
currentI c

2/3 for the tin film channel Sn-15.
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superconducting channels of high-Tc superconductors
~HTSCs!. Figure 19 shows the temperature dependence
the cutoff current of the first, second, and third PSCs in
YBa2Cu3O72x sample~HS-7!.76 In the resistive state this
sample has a cutoff current. For the first and second dc P
the value of the cutoff current is the same (Ī s15 Ī s2), while
for the third dc PSCĪ s3. Ī s15 Ī s2. This property is not ex-
clusive to the HTSC sample. An analogous picture has b
observed in a study of tin whiskers,23 for example. When the
Ī s1(T), Ī s2(T), and Ī s3(T) curves are approximated b
straight lines, we obtain the temperature at which the cu
currents go to zero:Ts0(88 K),Tc(93 K). For ceramic
samplesDT5Tc2Ts0 is much larger than for channel mad
of conventional superconductors. However, for ceram
samples the temperature region in which dc PSCs are
served is much larger than for conventional channels,
noncoincidence ofTc andTs0 is present in both cases.76

Several models have now been proposed in which
cutoff current has been estimated.24,30,31,98,102To explain the
behavior of the average supercurrent of a dc PSC when
channel is irradiated by an electromagnetic field, we h
used to model proposed in Ref. 98. As we have said, if

FIG. 18. Temperature dependence of the cutoff currentĪ s , critical current
I c

2/3 , and voltage jumpV1 of the first dc PSC of an In–Pb whisker.

FIG. 19. Temperature dependence of the cutoff currentĪ s of the first (s),
second (m), and third (j) dc PSCs in sample HS-7.
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sizex1 of the nonequilibrium region of the PSC were smal
than the coherence length, the dependence of the supe
rent on the total phase shiftã would be sinusoidal. In the rea
situation, whenx1.j, the phase dependence of the superc
rent is modified in such a way thatĪ s(ã) is nonzero, and so
a cutoff current appears. The greater the lengthx1 of the
nonequilibrium region, the larger the average supercurr
through the dc PSC98 ~see Fig. 20!.

Thus in the framework of this model the value of th
cutoff current depends on the amplitude of the supercur
and the degree of anharmonicity of the Josephson osc
tions, and the greater the lengthx1 of the region where these
oscillations occur, the higher the degree of anharmonicit

It is seen in Fig. 15 that as the critical current increas
(I c8.I c), so does the cutoff current (Ī s8. Ī s), but the dy-
namic resistance of the dc PSC remains unchanged (Rd18
5Rd1). Thus as the order parameterD and, with it, the am-
plitude of the superconducting current increase, so does
cutoff current,23,103 provided that, in the process, the degr
of anharmonicity of the Josephson oscillations, i.e.,x1 and,
hence,Rd1 either remain unchanged or change very slow
~as is observed for a superconducting channel on decrea
temperature!. An increase in the average superconduct
current (Ī s9. Ī s8) will also occur with increasing anharmonic
ity of the oscillations of the supercurrent, i.e., with increasi
dynamic resistance (Rd19 .Rd18 ), even if the amplitude of the
supercurrent does not change in the process~the order pa-
rameter and, hence, the critical current remain constant! ~see
Fig. 15!. Experimental studies of superconducting chann
in a resistive current state have established that at fixed t
perature (T/Tc5const) for ‘‘dirty’’ samples the ratioĪ s /I c

'0.5,24 while for ‘‘clean’’ channels the ratioĪ s /I c reaches
0.8.103 This behavior of the average supercurrent can be
plained precisely by an increase in the anharmonicity of
Josephson oscillations. Indeed, with increasing mean
path the diffusion coefficient and, hence, the region of os
lations of the supercurrentx15(j l E)1/25j1/2(DtQ)1/4 also
increase, leading to an increase in the cutoff current.

As the irradiation power is increased in the regime
stimulated superconductivity, the critical current of the cha
nel and, hence, the amplitude of the supercurrent also
crease. If the dynamic resistanceRd1(P) and the region of

FIG. 20. Supercurrent–phase relationĪ s(ã) in a phase-slip center. At the

points ãc , ãc12p, . . . , jumps occur to the branch corresponding to t
minimum supercurrent.
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supercurrent oscillations decrease in the process, then
leads to a decrease in the cutoff current. Therefore, for sti
lation of superconductivity in the case when the dynam
resistanceRd1(P50) of a dc PSC is greater than the res
tanceR1 of an ac PSC,Rd1(P) and Ī s remain unchanged
~curve2 in Fig. 14c!. However, as the power increases fu
ther, when suppression of superconductivity sets in, the
crease of the cutoff currentĪ s occurs for two reasons: first
the amplitude of the supercurrent decreases, and, second
resistanceRd1(P) and, hence, the anharmonicity of the J
sephson oscillations decrease.99

In the case when the dynamic resistanceRd1(P50) of a
dc PSC is less than the resistanceR1 of an ac PSC, as the
irradiation power increases in the regime of stimulated
perconductivity the amplitude of the supercurrent and
dynamic resistanceRd1(P) increase, and hence, so does t
degree of anharmonicity of the oscillations of the superc
rent ~Fig. 14a,b, and d!. Therefore, the average supercurre
Ī s also increases, and the larger the value ofRd1(P) and,
hence, ofx1, the larger the cutoff current~curves1 and2 in
Fig. 16!.99

As the irradiation power is increased in the regime
which the superconductivity is suppressed by an electrom
netic field, the value of the critical current and, hence,
amplitude of the supercurrent through a dc PSC decre
Increasing the region of oscillations of the supercurrentx1

;Rd1(P) leads to growth of the cutoff current. Therefore,
the case when the dynamic resistanceRd1(P) of a dc PSC is
less than or of the order of the resistanceR1 of an ac PSC,
the cutoff current is unchanged in the regime of suppres
superconductivity~see Fig. 8b!.99

When Rd1(P50).R1 both the oscillation region and
the amplitude of the supercurrent decrease with increa
irradiation power. Therefore, the cutoff current also d
creases~see Fig. 8a!. At irradiation powers close to critica
the average supercurrent of the dc PSCs becomes zero,
the critical current is nonzero. It can be assumed that at
ficiently high irradiation powers (P>Pc) the order param-
eter and supercurrent in the PSC executes harmonic os
tions with the frequency of the external electromagne
field. Here averaging the supercurrent through the PSC o
time gives a zero value of the cutoff current.99

As to the fact that the cutoff current in the temperatu
region DT5Tc2Ts0 is equal to zero, here different situa
tions, requiring further study, are possible. One possible
that as the temperature approachesTc , the ratiox1 /j and the
degree of anharmonicity of the Josephson oscillations of
supercurrent decrease, and at a certain temperatureTs0 the
cutoff current goes to zero, i.e., in the temperature inter
DT there exist PSCs for which the Josephson oscillation
the supercurrent are practically harmonic. Indeed, for tin fi
samples the ratiox1 /j}(12T/Tc)

1/8, and forT→Tc it goes
to zero.99 Granted, there remains an open question as to
fluctuations nearTc , which smear out the structure of th
PSC.

4. CURRENTS FOR THE ONSET OF PHASE-SLIP CENTERS
IN A SUPERCONDUCTING CHANNEL

At a dc current below the Ginzburg–Landau critical cu
rent I c , the channel is in the superconducting state.
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I .I c the first dc PSC, with a dynamic resistance Rd1, ap-
pears in the channel.1,24,47This resistive state of the chann
is maintained in the current intervalDI 15I c12I c , whereI c1

is the current at which the second dc PSC arises in the c
nel. The resistive state of a channel with two dc PSCs
maintained in the current intervalDI 25I c22I c1, whereI c2

is the current at which a third dc PSC arises in the chan
As the dc current is increased further, more new dc PS
form, until the whole channel has gone into the normal sta

The experimental dependence of the critical currentsI ci

as a function ofi ( i 51,2,3. . . ) ~see, e.g., Refs. 24 and 88!
is qualitatively the same as predicted in Refs. 47 and 1
We note that the criticism of Ref. 47 brought in Ref. 105 w
based on a misunderstanding in connection with the us
the asymptotic formulaI ci5I c@11exp(2lAD/2i )#. This for-
mula is valid for describingI ci only in extremely long chan-
nels (l @4i l E). In the actual situation one must use the r
sults of a numerical calculation, which are well approx
mated by the asymptotic expression:

I ci5I cFb

a
1a2S 2i l E

l D G'I cF0.84112.075S 2i l E

l D 2G ,
~4.1!

where

a53E
xc

1 dx

AA~x!

x22xc
2

A12x2
;

b53E
xc

1 dx

A3/2~x!
B~x!

x22xc
2

A12x2
;

A~x!53~xcA12xc
22xA12x2!1arcsinxc2arcsinx;

B~x!5
6

5
x522xc

2x31
4

5
xc

5; xc5S 2

3D 1/2

,

and, for simplicity, the cutoff current is assumed equal
zero. Formula~4.1! gives a value ofI ci which is several
percent greater than that obtained in Ref. 104:

I ci5I c

cosh~ l /2i l E!2 Ī s /I c

cosh~ l /2i l E!21
. ~4.2!

It is known, however, that the current intervalDI i be-
tween voltage steps increases more rapidly with the num
of the dc PSC in sequence than is predicted by the theo
i.e., the (i 11)-th PSC is formed by a currentI ci larger than
the predicted current. The reason for this disagreement
be that the dc PSCs that have formed affect the remain
superconducting part of the channel, and this possibility w
not taken into account in Refs. 47 and 104.

In an experimental study of the nonequilibrium states
tin whiskers with multipotential leads, it was shown2 that dc
PSCs separated by distances (;300 mm! much greater than
the coherence lengthj and the penetration depthl E of the
longitudinal electric field into the superconductor intera
with one another. This is manifested in the fact that a dc P
arising at a currentI ci in one part of the channel can increa
or depress the insertion currentI c( i 11) of the next dc PSC,
which is located in a different part of the channel at a mu
greater distance away than could be explained by diffus
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of the quasiparticle current or by quasiparticle injection
extraction.2 This implies that it is a long-range interaction

As to the nature of the increase in the currentI ci for the
onset of the next dc PSC, the most preferable hypoth
appears to be that proposed in Ref. 2 and confirmed in
106, viz., that the Josephson electromagnetic field of a
PSC affects the superconducting properties of the chann

4.1. Phase-slip centers caused by direct current. The
influence of external irradiation

Let us consider the influence of external electromagn
irradiation on the currents at which dc PSCs arise in
channel. Figure 21 shows the differenceDI 15I c12I c be-
tween the values of the currents at which the first and sec
voltage steps appear on the I–V characteristics of sam
Sn-12 as a function of the power of the electromagnetic fi
for frequencies of 23.39 GHz~curve 1! and 15.46 GHz
~curve 2!.106 At these irradiation frequencies stimulation
superconductivity is observed, i.e., the value of the criti
current I ci increases with increasing irradiation power~see
the inset in Fig. 21!. We see that as the irradiation pow
increases,DI 1(P/Pc) initially increases and then begins
decrease. This occurs becauseI c and I c1 depend on the irra-
diation power in different ways: the critical currentI c1 in-
creases with increasing power more rapidly than doesI c , but
then the increase inI c1 slows down, and at a certain powe
one hasI c15I c . Here the channel undergoes a transiti
from the superconducting to the normal state. It should
emphasized that as the irradiation frequency decreases
maximum of DI 1(P/Pc) decreases in value and shifts
higher powers.106

The DI 1(P/Pc) curve ~see Fig. 21! obtained in the re-
gime of stimulated superconductivity is qualitatively simil
to the temperature dependenceDI 1(T) given in Ref. 2~see
Fig. 97 of that paper!. It is seen from the figure that with
decreasing temperature theDI 1(T) curve varies nonmono
tonically, in fundamental disagreement with the predictio
of the theories proposed in Refs. 47 and 104. It is poss
that taking into account the interaction between dc PS

FIG. 21. The difference between the values of the currents at which the
and second voltage steps appear on the current–voltage characteris
sample Sn-12,DI 15I c12I c , versus the power of the external electroma
netic field at frequenciesf 523.39 GHz~1! and 15.46 GHz~2!, T53.774 K.
The inset shows the critical currentsI c1 andI c of sample Sn-12 as function
of the power of the microwave field atf 515.46 GHz.
r
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which was not done in those papers, will change the val
of the critical currentsI ci of the superconducting channel
When a channel is subjected to an electromagnetic field
frequency below the boundary frequency for stimulation,59,60

the superconductivity is suppressed. In that case the cri
currents I c and I c1 decrease with increasing irradiatio
power, with the depression ofI c1 occurring more slowly than
that of I c . Consequently,DI 1(P/Pc) increases, as in the
previous case.106

The stabilizing of the resistive state, which is manifest
in an increase inDI 1(P/Pc), decreases with increasing irra
diation frequency. For tin film samples the increase
DI 1(P/Pc) under irradiation by an electromagnetic fie
starts at frequencies of;100 MHz. Interestingly, the influ-
ence of an electromagnetic field onDI 1(P/Pc), like the in-
fluence on the dynamic resistance and the cutoff current
dc PSC,99 has a threshold in terms of the power of the m
crowave field.

Difficulties also arise in explaining the presence of
descending branch ofDI 1(P/Pc), since even high-side esti
mates show that the overheating of the film in these exp
ments is negligibly small (;1023 K; see Sec. 2.3!. The ab-
sence of an overheating effect is also seen on the
characteristics~see Figs. 8 and 14!. Therefore, the descend
ing branch ofDI 1(P/Pc) is not due to overheating of th
sample but is a consequence of the inherent nature of
interaction of a dc PSC with an external electromagne
field.

It can thus be stated that in the regime of stimula
superconductivity, as in the case of rather low irradiati
frequencies, where suppression of superconductivity is
served, the state of a superconducting channel in wh
current-induced dc PSCs have formed becomes increasi
stable against a rise in the dc current as the irradiation po
is increased. This is manifested in a lengthening of the lin
parts of the I–V characteristics, with resistances that
multiples of Rd1. It should be noted that in the regime o
stimulation of superconductivity by a microwave field,
certain cases tin channels, after the formation of the fi
current-induced dc PSC in them, withstood a dc current
most four times as large as in the case of zero irradia
power before the second dc PSC formed, i.e., the maxim
DI 1(P)/DI 1(P50)'4. Here the value ofI c increased only
by a factor of 1.5.107 This indicates that the microwave fiel
affects the currentsI c and I c1 differently.

Experimental studies106 have confirmed the conjectur
that the Josephson radiation from the dc PSC has a stab
ing influence on the resistive state of a channel. It is imp
tant to note that for tin whiskers the Josephson frequenc
a dc PSC has a valuef J'500 MHz,2,33 which is much
smaller than the lower frequency boundary for stimulatio
However, even in this case a strong increase inDI i with
increasingi is observed. There is as yet no theoretical exp
nation for this effect.

4.2. Phase-slip centers caused by electromagnetic radiation

As was shown in Sec. 2, when a superconducting ch
nel is acted on by an external rf electromagnetic field,
PSCs arise in the channel, starting at a certain power le
Pc . Figure 22 shows two families of I–V characteristics

st
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sample Sn-3.107 It is seen that at a high irradiation frequen
~3.825 GHz! the state of the channel in which an ac PSC h
formed is more stable against a rise in the dc current~the
initial parts of the I–V curves are extended!. At a low irra-
diation frequency~75 MHz! the state of the channel in whic
an ac PSC has formed is extremely unstable with respe
the passage of a dc current: the I–V characteristics bec
nonlinear as the dc current increases.107 It should be noted
here that the resistanceR1 of an ac PSC atf 53.825 GHz is
equal to 1.6V, while at f 575 MHz one hasR151.3 V.
Consequently, the Joule heatingI 2R1( f ) at an irradiation fre-
quency of 3.825 GHz is even larger than atf 575 MHz.
However, the ac PSC is more stable at the higher irradia
frequency than at the low frequency, as is convincingly s
on the initial parts of the I–V characteristics~see Fig. 22!.
Thus with increasing irradiation frequency the states o
superconducting channel in which ac PSCs have formed
become more stable against a rise in the dc current, and
takes place in the entire power interval in which the ac PS
exist, i.e., one observes a preservation of the linearity of
initial segments of the I–V characteristics with increasi
irradiation power at the given frequency.

One should also note the following circumstance.
Refs. 94 and 95 it was shown that with increasing irradiat
frequency an increase of the critical power is observed;
behavior of Pc is observed up to frequenciesv8'(1
2T/Tc)

1/2/1.2t« ~here the frequencyv8 is the inverse relax-

FIG. 22. Families of current–voltage characteristics of channel Sn-3 at
ous power levels of the external irradiation atT53.762 K andf 53.825
GHz ~a! and f 50.075 GHz~b!. For the first I–V characteristic~curve1! the
irradiation power is zero, and the rest of the curves are numbered in ord
increasing power.
s

to
e

n
n

a
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ation time of the gap!, after which Pc remains practically
unchanged as the irradiation frequency is increased furt
Consequently, as the irradiation frequency increases,
value of the ac current giving rise to an ac PSC increas
However, as we have said, the states of the supercondu
channel in which ac PSCs have formed become more,
less stable against the passage of dc current through the
the frequency of the ac current increases.

Thus it is clear from what we have said that the states
superconducting channels with PSCs become more st
against the passage of currents in the presence of an ext
electromagnetic field than in the absence of such a field. T
effect is observed starting at irradiation frequencies of
order of the inverse relaxation time of the charge imbalan
f Q5(2ptQ)21 ( f Q5100 MHz for sample Sn-12!. Conse-
quently, this stimulation of superconductivity by an electr
magnetic field cannot be explained, since that would requ
higher irradiation frequencies.

CONCLUSION

In summary, the onset and formation of phase-slip c
ters in an ac electromagnetic field are complex processes
remain largely unexplained. As the ongoing accumulation
experimental data continues, one can hope that adequate
oretical models will soon make their debut.

At present the resistive state of superconducting ch
nels is represented as a set of individual noninterac
PSCs. To understand the process by which a channel of fi
length is filled with PSCs and the interaction between PS
will require further experimental and theoretical investig
tion. We hope that the present review will facilitate this.

We thank E. V. Bezuglyi, both for many years of scie
tific collaboration, in general, and for providing th
asymptotic formulas~4.1! and for helpful discussions of th
material presented in this review, in particular.
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A self-consistent model is constructed for a superfluid Bose liquid in which the single-particle
Bose–Einstein condensate~BEC! is suppressed on account of the strong interaction
between bosons. The ratio of the density of the BEC to the total density of the Bose liquid is
small,n0 /n!1, in contrast to the Bogolyubov theory for a nearly ideal Bose gas, in
which the small parameter is the ratio of the number of overcondensate excitations to the number
of particles in the intense BEC, (n2n0)/n0!1. A closed system of nonlinear integral

equations for the normalS̃11(p,v) and anomalousS̃12(p,v) self-energy parts is obtained in a
renormalized perturbation theory constructed in the combined hydrodynamic~for p→0)

and field~for pÞ0) variables, the use of which ensures analyticity of the functionsS̃i j (p,«)

for p→0 and«→0 and a nonzero value of the superfluid order parameterS̃12(0,0)Þ0 at
T50. It is shown that the structure of the quasiparticle spectrumE(p) and, in particular, the
presence of a roton minimum are determined by the sign-varying and oscillatory behavior
of the Fourier component of the pair interaction between bosons in the ‘‘hard spheres’’ model.
An important role here is played by the renormalization~screening! of the pair interaction
on account of many-particle~collective! effects, which are described by a polarization operator
of the bosons on the ‘‘mass shell’’ and leads to enhancement of the effective attraction in
certain regions of momentum space. It is shown that the superfluid componentrs at T→0 in this
model is a superposition of the single-particle BEC and a pair coherent condensate,
analogous to the condensate of Cooper pairs in superconductors. The structure of the superfluid
state forTÞ0 is also considered, with allowance for the appearance of a normal component
rn and a branch of second sound, the velocity of which goes to zero at thel point. The
applicability of the Landau superfluidity criterion is examined, and the question of the
limiting permissible critical velocity of superfluid flow in the absence of quantum vortices is
discussed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1355516#
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1. INTRODUCTION

The quantum structure of the superfluid state of liqu
4He below thel point ~He II! remains in dispute~see, e.g.,
Refs. 1–3!. As was pointed out in Ref. 4, there are a numb
of contradictions between underlying principles and conc
sions of the microscopic theory of4He superfluidity5–8 and
the experimental data. In particular, according to recent
sults on the quantum evaporation of4He atoms,9 the maxi-
mum densityr0 of the single-particle Bose–Einstein conde
sate ~BEC! in by the Bose liquid4He, even at very low
temperaturesT!Tl , does not exceed 10% of the total de
sity r of liquid 4He, whereas the density of the superflu
componentrs→r at T→0. This low density of the BEC is
due to the strong interaction between the4He atoms and to
the large energies of the quantum fluctuations~zero-point
vibrations! as T→0 and of the thermodynamic~thermal!
fluctuations forT.0, and it indicates that this ‘‘depleted’
1851063-777X/2001/27(3)/11/$20.00
r
-

-

single-particle BEC cannot by itself serve as the microsco
basis of the superfluid componentrs . Therefore, the quan
tum structure of the effective superfluid condensate in He
with an ‘‘excess’’ density rs2r0@r0, requires deeper
investigation.10,11

The model of a superfluid Bose liquid with pair conde
sation of bosons, analogous to the Cooper pairing of fer
ons ~electrons! in superconductors, has been discussed fo
number of years.12 Two possibilities are considered in tha
model: the coexistence of a pair coherent condensate~PCC!
with a BEC,13–15 or the existence of an intense PCC in t
complete absence of a BEC.16–18 In the first case, problems
with the stability of the ground state and with hybridizatio
of the single-particle ~gap! and collective ~acoustical!
branches of the spectrum of the Bose liquid can arise at
densities of the BEC.17 In the model of a superfluid stat
with a ‘‘Cooper’’ PCC with no BEC (r050) these problems
© 2001 American Institute of Physics
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automatically disappear, since the phase of the PCC is a
trary and can be chosen so as to ensure stability of the so
~hydrodynamic! branch of collective excitations. Here hy
bridization occurs only between those branches of the s
trum that correspond to the same parity of the number
particles taking part in the excitation~see Ref. 17!.

However, in this case there arise difficulties in conne
tion with the fact that the gap single-particle spectru
«(p)5AD21u2p2 violates the Hugenholtz–Pines theorem19

and does not conform to the Reatto–Chester pow
law asymptotic behavior20 of the correlation function

^ĉ(r )ĉ(r 8)&;ur2r 8u22 but becomes exponential instead17

In addition, having a ‘‘Cooper’’ PCC of coupled boson pa
as the basis of the superfluid component in the absence
BEC should lead to half-integer values of the circulati
quantumk5\/2m ~where m is the mass of a4He atom!,
which have not been observed in experiments.21–23

Moreover, the finite gapDÞ0 in the quasiparticle spec
trum for p→0 should give rise to exponential features in t
temperature dependence of the heat capacityCp(T) and to
first-order phase transitions in temperature and press
where the BEC vanishes and the PCC appears,17 and those
have not been observed experimentally, either.

On the other hand, numerous precision experiment
which the dynamic structure factorS(p,«) in liquid 4He has
been recovered from inelastic neutron scattering data24–27

show that the elementary excitation spectrumE(p) due to
collective oscillations of the density of the4He Bose liquid
depends very weakly on temperature up to thel point (Tl

.2.17 K! at all momenta, including the phonon, maxon, a
roton regions. This means that the critical velocity det
mined according to the Landau superfluidity criterion,vc

5min@E(p)/p#, remains practically unchanged asT increases
and does not go to zero asT→Tl . At the same time, we
know that the destruction of superfluidity in macroscop
flows of He II is governed by processes of creation of e
tended Onsager–Feynman quantum vortices or of closed
lines ~loops, rings!.23 As a result of this, the observed valu
of the threshold velocityvc* for the destruction of nondissi
pative flow in He II can be two orders of magnitude smal
than the critical velocityvc.@D r /pr #.60 m/s due to the
roton gapD r.8.6 K at the pointp5pr.1.9 Å21 in the
quasiparticle spectrumE(p).

However, under conditions such that the creation a
motion of vortices~or vortex rings! is hindered, one can
achieve much higher values of the threshold velocity. F
example, maximum valuesvc* .2 –3 m/s are observed23 in
ultrathin films and capillaries atT,1 K, and critical veloci-
tiesvc* .8 –10 m/s have been measured28,29in the passage o
He II through thin obstacles via narrow openings seve
microns in diameter. Moreover, threshold velocities abo
50 m/s have been obtained30 in experiments on ion accelera
tion in He II at pressuresP.15–20 bar.

In this paper we discuss problems pertaining to the
croscopic quantum structure of the superfluid componenrs

in He II and to the Landau superfluidity criterion, whic
determines the maximum permissible critical velocity in t
absence of quantum vortices.

Our approach is based on the microscopic model p
posed in Ref. 17 for the superfluidity of a Bose liquid with
bi-
nd

c-
f

-

r-

f a

re,

in

-

-
ux

r

d

r

l
e

i-

-

suppressed BEC, the small parameter of the model being
ratio of the density of the BEC to the total density of th
Bose liquid,r0 /rs!1, in contrast to the Bogolyubov theory6

for a nearly ideal Bose gas, where the small parameter is
ratio of the number of overcondensate excitations to
number of particles in the intense BEC, (n2n0)/n0!1.

In this model the superfluid state is described by a ‘‘tru
cated’’ system of Dyson–Belyaev equations for the norm

S̃11(k,v) and anomalousS̃12(k,v) self-energy parts in a
renormalized field-theoretic perturbation theory10,11 con-
structed in combined variables,31,32 which in the long-
wavelength limit (p→0) reduce to the hydrodynamic var
ables of the macroscopic quantum~for T50) or two-fluid
~for TÞ0) hydrodynamics, while in the short-waveleng
region they correspond to the boson field operators of qu
particle creation and annihilation.

The density of the superfluid componentrs here is de-

termined by the quantityS̃12(0,0), which is a superposition
of the ‘‘depleted’’ single-particle BEC and the intens
‘‘Cooper’’ PCC, with coincident phases~signs! of the corre-
sponding order parameters. The pair interaction betw
bosons is chosen in the form of a regularized repulsive
tential in the ‘‘hard spheres’’ model,33,34 the Fourier compo-
nentV(p) of which is an oscillatory and sign-varying func
tion of the momentum transferp as a result of the ‘‘excluded
volume’’ effect and the quantum diffraction of the particle
on one another. The negative minima ofV(p) in certain
regions of momentum space correspond to an effective
traction, which can be enhanced as a result of renormal
tion ~screening! of the pair interaction on account of many
particle collective correlations.17,18 It is shown that such an
attraction can be sufficient for the formation of a PCC
momentum space~but not for the existence of coupled boso
pairs in real space!. Self-consistent iterative numerical calcu
lations of the self-energy of the bosons, the pair order par
eter, and the quasiparticle spectrum atT50 permit finding
the conditions under which the theoretical spectrumE(p) is
in good agreement with the experimentally measured sp
trum of elementary excitations. Here it is shown that in t
‘‘hard spheres’’ model the roton minimum in the quasipar
cle spectrumE(p) in a Bose liquid with a suppressed BEC
uniquely related to the first negative minimum of the Four
component of the renormalized potential~analogous to the
minimum in the Bogolyubov spectrum6 of a slightly nonideal
dilute Bose gas33,34!.

We also consider the structure of the superfluid state
TÞ0 with allowance for the suppression of the normal co
ponentrn and the branch of second sound, the velocity
which goes to zero at thel point. We discuss the question
of the applicability of the Landau criterion of superfluidit
and the value of the limiting permissible critical velocity o
superfluid flow in the absence of quantum vortices.

2. GREEN’S FUNCTION AND THE EQUATIONS FOR THE
SELF-ENERGY PARTS IN THE MODEL OF A BOSE
LIQUID WITH A SUPPRESSED BEC

We start from the renormalized field-theortic perturb
tion theory10,11 constructed in the combined variables31,32

C̃~x!5C̃L~x!1C̃sinh~x!, ~1!
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which in the long-wavelength regionuku,k0 ~where k is
some characteristic momentum! are just the hydrodynamic

variablesC̃L(x) in the spirit of Landau quantum hydrody
namics,5 and which in the short-wavelength regionuku.k0

coincide with the usual field operatorsC̃sh(x):

C̃L~x!5A^ñL&F11
ñL2^ñL&

2^ñL&
1 i w̃LG ;

C̃sinh5csinhe
2 i w̃L; Csinh5c2cL ; ~2!

cL~r !5
1

AV
(

uku,k0

ake
ikr 5A^ñL&ei w̃L.

Here the approximate expression for the lon

wavelength partC̃L of the Bose field operatorC̃ includes
only the first-order terms in the expansion in the slowly va
ing ~hydrodynamic! phasew̃L and in the small deviation o
the densityñL from its average valuêñL&. In Refs. 31 and
32 it was assumed that at lowT, owing to the rather weak
interaction (mk0V(k0)!1), almost all of the particles ar
found in the Bose condensate, and therefore the value o
momentumk0 in Ref. 32 was chosen small enough so th
the approximate equalitŷñL&.n0 would hold, wheren0 is
the density of particles in the BEC. In a Bose liquid with
strong interaction, however, where the single-particle BEC
strongly suppressed (n0!n), the quantity ^ñL& should
be normalized to the density of the superfluid compon
ns5rs /m.

On the basis of the field variables~1!, ~2! in the frame-
work of the Green’s function method8 for T→0 one can
construct the usual system of Dyson–Belyaev equatio7

which allow one to express the normalG̃11 and anomalous
G̃12 renormalized single-particle Green’s functions of t

bosons in terms of the corresponding self-energy partsS̃11

and S̃12:

G̃11~p,«!5
G0

21~2p,2«!2S̃11~2p,2«!

Z~p,«!
; ~3!

G̃12~p,«!5S̃12~p,«!/Z~p,«!. ~4!

Here

Z~p,«!5@G0
21~2p,2«!2S̃11~2p,2«!#

3@G0
21~p,«!2S̃11~p,«!#2uS̃12~p,«!u2; ~5!

G0
21~p,«!5F«2

p2

2m
1m1 idG ; d→10, ~6!

where m is the chemical potential of the quasiparticle
which satisfies the Hugenholtz–Pines relation:19

m5S̃11~0,0!2S̃12~0,0!. ~7!

The spectrum of all the elementary excitations with zero
licity, owing to the strong hybridization of the single-partic
and collective branches in a Bose liquid with a finite BE
(n0Þ0) is determined by the poles of the single-partic
Green’s functionsG̃ik(p,«), i.e., by the zeros of the functio
Z(p,«):
-

-

he
t

is

t

,

,

-

E~p!5H F p2

2m
1S̃11

s ~p,E~p!!2mG2

2US̃12~p,E~p!!U2J 1/2

1S̃11
a ~p,E~p!!, ~8!

where

S̃11
s,a~p,«!5

1

2
@S̃11~p,«!6S̃11~2p,2«!#,

the plus sign corresponding to the symmetric partS̃11
s , and

the minus sign to the antisymmetric partS̃11
a . We henceforth

assume thatS̃11 is an even function ofp and«, so thatS̃11
a

50 andS̃11
s 5S̃11.

Relation~7! gives an acoustic dispersion relation for th
quasiparticles atp→0:

E~p→0!. c̃upu; c̃5AS̃12~0,0!/m̃* , ~9!

where

1

m̃*
5

1

B̃
F 1

m
12

]S̃11~0,0!

]upu2
22

]S̃12~0,0!

]upu2 G ; ~10!

B̃5F12
]S̃11~0,0!

]«
G2

2S̃12~0,0!
]2S̃11~0,0!

]«2

1
1

2

]2

]«2
uS̃12~0,0!u2. ~11!

For liquid 4He the phase velocityc̃ should be equal to
the velocity of first~hydrodynamic! sound,c1.236 m/s, ow-
ing to hybridization of the single-particle and collectiv
branches of the spectrum of elementary excitations. Here
long-wavelength asymptotic expression for the Green’s fu
tions has the form

G̃11~p→0,«!52G̃12~p→0,«!5
S̃12~0,0!

B̃@«22c1
2p21 id#

.

~12!

It should be emphasized that in the renormalized fi

theory the self-energy partsS̃i j are analytic functions ofp
and«, so that in the limitp→0 and«→0 we have

S̃12~0,0!Þ0 and B̃Þ0,

in contrast to the renormalized perturbation theory,7,8 in
which, as was shown in Refs. 10 and 32, the functio
S i j (p,«) are nonanalytic atp→0 and«→0, andS12(0,0)
50 andB50. Here an additional procedure to resolve t
indeterminacy of the type 0/0 is required in order to obta
the correct asymptotic expression:35

G11~p→0,«!52G12~p→0,«!5
n0mc1

2

n@«22c1
2p21 id#

;

c1
25

n

m

dm

dn
, ~13!

wheren is the total density of bosons, andn0 is the density
of particles in the BEC.

As was shown in Ref. 17, for a Bose liquid with a su
ficiently strong interaction between particles, in which ca
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the BEC is strongly suppressed, one can to good accu
keep only the first~lowest-order! term of the expansion in
the small density of the BEC (n0!n). This approximation is
in direct opposition to the Bogolyubov approximation6 for a
slightly nonideal Bose gas with an intense BEC, in whi
casen0.n.

As a result, with an accuracy to terms of ordern0 /n

!1, we obtain a truncated system of equations forS̃ik in a
Bose liquid~Ref. 17!:

S̃11~p,«!5n0L~p,«!Ṽ~p,«!1n1V~0!1C̃11~p,«!; ~14!

S̃12~p,«!5n0L~p,«!Ṽ~p,«!1C̃12~p,«!, ~15!

where

C̃i j ~p,«!5 i E d3k

~2p!3E dv

2p
G̃i j ~k,v!Ṽ

3~p2k,«2v!G~p,«,k,v!, ~16!

Ṽ~p,«!5V~p!@12V~p!P~p,«!#21. ~17!

HereV(p) is the Fourier component of the bare potent
of the pair interaction of the bosons;Ṽ(p,«) is the renormal-
ized ~screened! Fourier component of the retarded~nonlocal!
interaction, the renormalization being due to many-parti
collective effects;P(p,«) is the boson polarization operato

P~p,«!5 i E d3k

~2p!3E dv

2p
G~p,«,k,v!$G̃11~k,v!G̃11

3~k1p,«1v!1G̃12~k,v!G̃12~k1p,«1v!%;

~18!

where G(p,«,k,v) is the vertex part ~three-pole!
describing many-particle correlations;L(p,«)5G(p,«,0,0)
5G(0,0,p,«); andn1 is the number of overcondensate pa
ticles (n1@n0), which is determined from the condition o
conservation of the total number of particles:

n5n01n15n01 i E d3k

~2p!3E dv

2p
G̃11~k,v!. ~19!

If one takes into account only the residues at the poles of
Green’s functionG̃i j (p,«) and neglects the contribution o
possible poles of the functionsG(p,«,k,v) and Ṽ(p,«),
then, with allowance for relations~3!–~6!, ~8!, ~14!, and~17!,
equations~16! on the mass shell«5E(k) take the form~at
T50):

C̃11~p,E~p!!5
1

2E d3k

~2p!3
G~p,E~p!;k,E~k!!Ṽ

3~p2k,E~p!2E~k!!FA~k,E~k!!

E~k!
21G ;

~20!
cy

l

e

e

C̃12~p,E~p!!52
1

2E d3k

~2p!3
G~p,E~p!;k,E~k!!Ṽ

3~p2k,E~p!2E~k!!

3
n0L~k,E~k!!Ṽ~k,E~k!!1C̃12~k,E~k!!

E~k!
,

~21!

where

A~p,E~p!!5n0L~p,E~p!!Ṽ~p,E~p!!1n1V~0!

1C̃11~p,E~p!!1
p2

2m
2m. ~22!

Here the nonlinear equation~8! for finding the quasiparticle
spectrumE(p), according to Eqs.~14! and ~15!, becomes

E~p!5$A2~p,E~p!!2@n0L~p,E~p!!Ṽ~p,E~p!!

1C̃12~p,E~p!!#2%1/2, ~23!

and the total quasiparticle density in the Bose liquid is giv
by the relation

n5n01
1

2E d2k

~2p!3 FA~k,E~k!!

E~k!
21G . ~24!

The Hugenholtz–Pines relation~7!, according to Eqs.
~14! and ~15!, can be written in the form

m5n1V~0!1C̃11~0,0!2C̃12~0,0!, ~25!

and, as a result, expression~22! reduces to the form

A~p,E~p!!5n0L~p,E~p!!Ṽ~p,E~p!!1@C̃11~p,E~p!!

2C̃11~0,0!#1C̃12~0,0!1
p2

2m
. ~26!

It follows from Eqs.~23! and~26! that the quasiparticle spec

trum, by virtue of the analyticity of the functionsC̃i j (p,«) is
acoustic forp→0, and its structure forpÞ0 depends sub-
stantially on the character of the pair interaction of t
bosons.

We also note that the expression for the sound velo
c̃, according to Eqs.~9! and~15!, can be written in the form

c̃5AL~0,0!Ṽ~0,0!ñ/m̃* ;
~27!

ñ5n01
C̃12~0,0!

L~0,0!Ṽ~0,0!
,

which is analogous to the expression for the Bogolyub
velocity of sound for a slightly nonideal Bose gas,cB

5AV(0)n/m. The conditionc̃5c1, together with Eq.~13!,
imposes severe restrictions on the choice of the parame
for the model of the boson interaction~see below!.

On the other hand, since forT50 the density of the
superfluid componentrs equals the total mass density of th
Bose liquidr5mn, if it is assumed thatñ5n, when Eq.~20!
is taken into account we obtain the relations

rs5r01 r̃s5m
S̃12~0,0!

L~0,0!Ṽ~0,0!
; ~28!
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r̃s5mn15m
C̃12~0,0!

L~0,0!Ṽ~0,0!
, ~29!

wherer05mn0 is the density of the single-particle BEC,r̃s

is the density of the ‘‘Cooper’’ PCC, and the densityn1

5n2n0 is determined from relation~24! and, for 4He at
T→0, according to the experimental data,9 should comprise
not less than 90% of the total energy of4He atoms. Thus the
superfluid component in this model is a superposition of
single-particle and pair coherent condensates, and rela
~24! and ~28! impose additional relations on the paramet
of the microscopic theory of the superfluid Bose liquid.

3. INFLUENCE OF THE PAIR INTERACTION ON THE
SPECTRUM OF ELEMENTARY EXCITATIONS IN A BOSE
LIQUID WITH A SUPPRESSED BEC

As was shown in Refs. 33 and 34, in the case of a sph
cally symmetric (S-wave! scattering of the particles, a calcu
lation of the Fourier component of the pair interaction pote
tial between bosons in the ‘‘hard spheres’’ model in t
ladder approximation gives a result in the form of a sig
varying and oscillatory function of the momentum trans
on account of the ‘‘excluded volume’’ effect, which can b
regarded as a sort of analog of the Pauli exclusion princ
in real space. Because of the mutual quantum diffraction
particles on an infinite potential jumpV(r )→` as r→a
~wherea is the diameter of a hard sphere!, the effective pair
potential in momentum space has the form (\51)

V~p!5V0 j 0~pa!; j 0~x!5
sinx

x
, ~30!

whereV0 is a positive constant that is determined in a se
consistent manner from a nonlinear integral equation for
single-particle Green’s function atp→0 and depends on th
dimensionless densityna3 of the Bose liquid~see Refs. 33
and 34!, while j 0(x) is the zero-order spherical Bessel fun
tion of the first kind.

The potential~30! is shown by the dashed curve in Fi
1 and corresponds to repulsion,V(p).0, in those regions of
momentum space in which sin(pa).0 ~in particular, forpa
,p), or attractive, V(p),0, in those regions where
sin(pa),0 ~e.g.,p,pa,2p). This oscillatory character o

FIG. 1. Dependence of the ratioṼ/V0 on p for different values of the
dimensionless parametera5V0uPu: the dashed curve1 shows the bare
‘‘hard spheres’’ potential fora50; the solid curve2 corresponds to a value
a52, curve3 to a53, and curve4 to a53.5.
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the interaction~30! is analogous to static Friedel oscillation
of the screened Coulomb potential with periodp/kF in real
space, which arise as a result of the scattering of electr
~fermions! on the filled ~according to the Pauli principle!
Fermi sphere of diameter 2kF , wherekF is the Fermi mo-
mentum of the electrons.

If potential ~30! is substituted into the Bogolyubov spe
trum for a dilute, nearly ideal Bose gas,6

EB~p!5H p2

2m F p2

2m
12nV~p!G J 1/2

, ~31!

then by independently choosing the two parametersV0 and
a, one can achieve entirely satisfactory agreement of
spectrumEB(p) with the experimental spectrum of eleme
tary excitationsEexp(p) observed by neutron scattering
liquid 4He ~Fig. 2a!. However, the self-consistent solutio
obtained in Refs. 33 and 34 forna3.0.23 differs consider-
ably from Eexp(p), and for the typical4He parametersn
52.1731022 cm23 and a52.44 Å, for whichna350.315,
the spectrum~31! with the potential~30! turns out to be
unstable, sinceEB

2(p),0 in a certain region ofp ~Fig. 2b!, a
circumstance which indicates that the Bogolyubov theory6 is
inapplicable for describing the Bose liquid.

FIG. 2. a: Bogolyubov spectrum~31! for a dilute, nearly ideal Bose gas
obtained by substituting the potential~30! with an independent fitting of the
two parametersa52.5 andV0 /a35169 K ata52.44 Å. b: Instability of the
Bogolyubov spectrum obtained by substituting potential~30! into the rela-
tion ~31! for the typical4He parametersn52.1731022 cm22 and a52.44
Å. Here and in Figs. 3–5 the momentump is expressed in terms of the
number of divisionsl of the integration interval; the number of a divisioni
is related to the momentum asp52p i /al.
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Many-particle correlation effects in a Bose liquid lead
substantial renormalization~screening! of the pair interac-
tion, which governs the normal and anomalous self-ene
parts ~14! and ~15!. When ~17! and ~30! are taken into ac-
count, the retarded screened interaction between bo
takes the form

Ṽ~p,v!5
V0 sin~pa!

pa2V0P~p,v!sin~pa!
, ~32!

whereP(p,v) is the boson polarization operator~18!, which
is calculated in the Appendix with allowance for the po
parts of the Green’s functions~3! and ~4!.

An important property of the renormalized potential~32!
is that in those regions of the phase volumep,v in which
P(p,v),0, the screening causes a weakening of the re
sion for sin(pa).0 and an effective enhancement of the
traction for sin(pa),0.

It follows from ~23! and~26! that the main influence on
the quasiparticle spectrumE(p) comes from the form of the
interaction potential~32! on the ‘‘mass shell,’’ where
v5E(p). As to the verticesL and G, their comparatively
weak dependence onp and v can be neglected, assumin
L.G.L(0,0)5const and including the constant quant
L(0,0) in the constantV0, which will be treated below as a
free adjustable parameter. The dependence of the func

C̃i j (p,«) on p, which is determined by the integral equatio
~16! with «5E(p), is also much weaker than the dependen
of the potentialṼ(p,v), as will be seen below.

A key aspect of the behavior of the ‘‘screened’’ potent
Ṽ(p,v) is that the polarization operatorP(p,E(p)) on the
‘‘mass shell’’ remains negative for allp.0, provided that
the quasiparticle spectrumE(p) is stable against decay int
pairs of quasiparticles,36 i.e., if the following conditions hold
for any p andk:

E~p!,E~k!1E~k2p!,
~33!

E~k!,E~p!1E~k2p!.

Indeed, it follows from the expressions~A5! and ~A6!
obtained in the Appendix for the integrandsI i j (p,k,v) that
under condition~33! for v5E(p) the denominator in front
of the curly brackets is always negative,

@E~k!2E~p!2E~k2p!#,0,

whereas the denominator in the first term in curly bracket
always positive,

@E~k!2E~p!1E~k2p!#.0,

and smaller than the positive denominator in the sec
term,

@E~k!1E~p!1E~k2p!#.0.

Then, as numerical calculations have shown, the
merators of both terms remain positive~see Fig. 3! for anyp
and k, and therefore the overall sign of the functio
I i j (p,k,v) is negative, and soP(p,E(p)),0.

With allowance for the negative sign and the relative
weak momentum dependence ofP(p,E(p)), we approxi-
mate the renormalized potential~32! for v5E(p) by the
simpler potential
y

ns

l-
-

ns

e

l

is

d

-

Ṽ~p!5
V0 sin~pa!

pa2a sin~pa!
, ~34!

wherea5V0uP̃u anduP̃u5uP(p,E(p))u is the average value
of the modulus of the polarization operator on the mass s
in the existence region of the spectrumE(p). All of the
numerical calculations reported below were done on the
sis of the model potential~34! with a treated as a free ad
justable parameter~together withV0). Figure 1 shows curves
of Ṽ(p) for different values of the dimensionless parame
a.

As another adjustable parameter of the model we cho
the effective massm* of the quasiparticles, which is relate
to the massm̃* , which according to~9! and~10! determines
the sound velocity~9! in the limit p→0.

As a result, Eqs.~20! and ~21! for the functionsC̃i j

reduce to the simple form

C̃11~p!5
1

2E d3k

~2p!3
Ṽ~p2k!FA0~k!

E~k!
21G , ~35!

C̃12~p!52
1

2E d3k

~2p!3
Ṽ~p2k!

n0Ṽ~k!1C12~k!

E~k!
, ~36!

where

E~p!5AA0
2~p!2@n0Ṽ~p!1C12~p!#2; ~37!

FIG. 3. Momentum dependence of the positive numerators~given in
kelvins! of the two terms in the expression for the functionI 11(p,k,v)
which appears in the definition of the polarization operator~see Appendix!.
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A0~p!5n0Ṽ~p!1@C̃11~p!2C̃11~0!#1C̃12~0!1
p2

2m*
,

~38!

and the effective massm* is related tom̃* by the expression

1

m̃*
5

1

m*
1p2

]2C̃11~0!

]upu2
, ~39!

so that forp→0 we obtain from~37!

E~p→0!5pA@n0Ṽ~0!1C̃12~0!#/m̃* , ~40!

where Ṽ(0)5V0 /(11a). The parametersV0 , a, and m*
are chosen so that the phase velocityE(p→0)/p is equal to
the hydrodynamic sound velocityc1.236 m/s in liquid4He.
On the other hand, the choice of these parameters mus
sure the best agreement of the spectrumE(p) with the ex-
perimental spectrumEexp(p) in 4He ~Refs. 24–27!.

Figure 4 shows the momentum dependence of the fu

tionsC̃11(p), C̃12(p), andA0(p) obtained according to~35!,
~36!, and~38!, for a certain set of parametersV0 , a, m* , and
Fig. 5 shows the curve of the quasiparticle spectrumE(p)
calculated according to~37!. We see that the nonmonoton
character of the spectrumE(p) and, in particular, the pres
ence of a ‘‘roton’’ minimum are governed by the momentu

dependence of the functionsC̃11(p) andA0(p), which have
deep minima because of the oscillations of the alterna
potentialṼ(p) in the regionp,2p/a ~see Fig. 1!. For the
given choice of parameters the theoretical spectrum is
good agreement with the experimental spectrum of4He in
terms of both the position and absolute values of the max
and minima ofE(p). Here the density of the BEC calculate
according to~24! is equal to 10% of the total densityn, in
agreement with the experimental data.9

4. STRUCTURE OF THE SUPERFLUID STATE OF A BOSE
LIQUID AT TÅ0

Let us consider the superfluid state of a Bose liquid
TÞ0, in which case a normal componentrn(T) is present in
addition to rs(T). As was shown in Refs. 31 and 32, fo
T→0 in the region of smallpÞ0 the expressions for th
renormalized Green’s functionsG̃i j (p) constructed in the
combined variables~1!, ~2! have the form

G̃11~p!52nsgww~p!2 igwp~p!

2
1

4rs
gpp~p!2

ns

2
Fww~p! . . . ; ~41!

G̃12~p!5nsgww~p!2
1

4ns
gpp~p!2

ns

2
Fww~p! . . . ;

~42!

where

Fww~p!5E
uqu,q0

d4q

2p4 gww~q!gww~p2q!,

p5~k,«!, q5~q,v!, ~43!
n-

c-

g

in

a

t

and gmn(p) are the ‘‘hydrodynamic’’ Green’s functions
which are associated with the long-wavelength fluctuatio
of the phase and density of the condensate (m,n5w,p). The
expressions forgww(p), gwp(p), and gpp(p) calculated in
Ref. 11 for T.0 contain sums of two pole terms, corre
sponding to first and second sound, with velocitiesc1 andc2,
in the Bose liquid with the normal and superfluid comp
nents:

gmn~k,«!5
~amn2dmnrn /r!

«22c1
2k2

1
bmn rn /r

«22c2
2k2

,

m, n5w,p, ~44!

wherer5rn1rs is the total density of the liquid, and th
coefficientsamn , dmn , andbmn are independent ofT at low

FIG. 4. Momentum dependence of the functionsC̃11(p) ~a!, C̃12(p) ~b!, and
A0(p) ~c! obtained according to Eqs.~35!, ~36!, and~38! for the following
set of parameters:n0510%n, V0 /a35147 K, a53.65, m/m* 50.00175.
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temperatures. This result establishes a unique corres
dence between the microscopic field theory of sup
fluidity7,8 and the macroscopic two-fluid hydrodynamics.36,37

It follows from Eqs. ~41!, ~42!, and ~44! that the pole
parts of the renormalized Green’s functionsG̃i j can be rep-
resented in the form

G̃i j ~k,«!5
~Ai j 2Di j rn /r!

«22c1
2k2

1
Bi j rn /r

«22c2
2k2 , i , j 51,2. ~45!

We henceforth assume that expression~45! is valid in the
entire temperature intervalT,Tl .

It follows from Eq.~45! that forT→0, wherern→0, the
leading contribution to the integral over energy« in ~16!
comes from the first-sound pole«5c1k of the Green’s func-
tions. However, at higher temperaturesT.1 K, wherern

;rs , because of the strong inequalityc1@c2 the main role
comes to be played by the low-energy pole«5c2k, corre-
sponding to second sound.

At finite temperatures (TÞ0), when the contributions o
the first and second poles of the Green’s functions~45! are
taken into account, we obtain for the self-energy parts
G51

S̃i j ~k,T!52
1

2E d3q

~2p!3
Ṽ~k2q!H FAi j 2Di j

rn~T!

r G 1

c1q

3cothS c1q

2T D1Bi j

rn~T!

r

1

c2q
cothS c1q

2T D J . ~46!

It should be emphasized that the long-wavelength
proximation for the Green’s functions~45! in this case are
valid because of the divergence of the temperature fa
coth(c2q/2T) at q→0 and the rather rapid decay of the inte
action kernel asq→`. Moreover, here the system of equ
tions ~46! does not need to be matched with the express
for the renormalized quasiparticle spectrumE(k), as is ordi-
narily done in microscopic field theory forT→0, since the
substitution of the empirical spectra of the first and seco
sound~with the experimental values of the velocitiesc1 and

FIG. 5. Spectrum of elementary excitationsE(p) obtained according to Eq
~37!, for the same set of parameters as in Fig. 4. The valuesEmax514 K and
Emin58.61 K and also the hydrodynamic sound velocityc152.373104

cm/s and total quasiparticle densityn52.1731022 cm23 in the Bose liquid
agree with the experimental values.
n-
r-

t

-

or

n

d

c2) into the expressions for the Green’s functionsG̃i j (p)
corresponds to automatically taking all the necessary re
malizations into account.

Using ~46!, one can determine the superfluid order p
rameter forTÞ0:

S̃12~0,T!5C0~T!1Cs~T!
rs~T!

r
, ~47!

where

C0~T!52
1

2E d3q

~2p!3
Ṽ~q!FA122D12

c1q
cothS c1q

2T D
1

B12

c2q
cothS c2q

2T D G , ~48!

Cs~T!52
1

2E d3q

~2p!3
Ṽ~q!FD12

c1q
cothS c1q

2T D
2

B12

c2q
cothS c2q

2T D G . ~49!

On the other hand, assuming that forTÞ0 a relation

analogous to~28! is maintained betweenrs(T) andS̃12(0,T),
we obtain the following expression for the superflui
component fraction in the Bose liquid:

rs~T!

r
5

C0~T!

Ṽ~0!n
F12

Cs~T!

Ṽ~0!n
G21

. ~50!

The T-dependent density of the BEC,r0(T)5mn0(T), ac-
cording to~19! and ~45!, is given by the relation

r0~T!

r
512

1

2E d3q

~2p!3 H FA112D11

rn~T!

r G 1

c1q
cothS c1q

2T D
1B11

rn~T!

r

1

c2q
cothS c2q

2T D J . ~51!

The velocity of first~hydrodynamic! sound is practically
independent ofT and in the given approximation can b
determined asc15@Ṽ(0)n/m* #1/2, whereas the velocity of
second soundc2 is substantiallyT-dependent, varying from
c2(0)5c1 /A3 at T50 to a valuec2(T).20 m/s in the re-
gion T.1 K, while for T→Tl the velocityc2→0. Thus as
the l point is approached, owing to the strong inequal
c1@c2, the main role begins to be played by the last terms
the integrands in~48! and~51!, which are proportional toB12

andB11 and contain the temperature factor

f ~q,T!5
1

c2~T!q
cothS c2~T!q

2T D.
2T

c2
2~T!q2

, c2q,T,

~52!

which diverges quadratically asq→0. Here the width of the
singular peak increases rapidly with increasingT and de-
creasingc2 ~see Fig. 6!.

As a result, with increasingT there is an increase in th
contribution to the integral~48! from the repulsive part of the
potential Ṽ(q).0 in the long-wavelength regionq,p/a
and a decrease in the functionC0(T), which plays the role
of the superfluid order parameter and which is positive
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low T,c2q on account of the strong attractionṼ(q),0 in
the regionp/a,q,2p/a ~see Fig. 1!. At a certain critical
temperatureT5Tc the functionC0(T) goes to zero and the
becomes negative~for T.Tc), which corresponds to de
struction of the superfluid state (rs50), i.e., Tc coincides
with the l point.

In a similar way, with increasingT the negative integra
in ~51! increases in magnitude whiler0(T) decreases, unti
at a certain pointT5T0 the density of the BEC vanishes an
formally becomes negative forT.T0. The interaction pa-
rametersṼ(q) and the coefficientsB11 andB12 are chosen so
that the temperaturesTc andT0 coincide and equalTl . The
results of numerical calculations done according to~50! with
the parametersA1156.24 K, D1152 K, B1150.00015 K,
A1256.38 K,D1253.14 K, andB1250.0026 K are presente
in Fig. 7. Of course, these results, which correspond to
self-consistent field approximation, are inapplicable close
thel point, where thermodynamic fluctuations play the go
erning role,38 but the curves shown in Fig. 7 give a qualit
tively correct description of the temperature dependence
the density of the superfluid component.

5. SUPERFLUIDITY CRITERION AND THE LIMITING
CRITICAL VELOCITIES

Let us conclude with a brief discussion of the applic
bility of the Landau criterion of superfluidity to He II and o
the value of the limiting critical velocity in the absence
quantum vortices in a Bose liquid with coexisting BEC a
PCC.

As we mentioned in the Introduction, the spectrum
elementary excitationsEexp(p) observed in neutron scatte
ing experiments24–27 leads to a value of the critical velocity
as determined by the roton minimum in accordance with
Landau criterion, that is much too high in comparison w
the experimentally measured velocities at which the sup
fluid flow is destroyed. This is because of the creation
quantum vortices and vortex rings in He II,23 but under con-
ditions such that the creation and/or motion of vortices
hindered, the critical velocities increase sharply,28,29 and at
low temperaturesTc,1 K can reach values comparable
vc5min@«(p)/p#560 m/s.30

It should be emphasized that this situation is analog
to that observed in type-II superconductors, in which
critical currentj c is determined by the condition for the cre

FIG. 6. Temperature factorf (q,T) determined according to relation~52!.
e
o
-

of

-

f

e

r-
f

s

s
e

ation and pinning of Abrikosov quantum vortices at the s
face of the superconductor or near various defects of
crystal lattice, whereas the true maximum value ofj c ~the
so-called depairing critical current, which corresponds to
decay of the Cooper pairs!12 is much larger and is observe
only in rather thin films and in wires whose thicknesses
much less than the London penetration depth of the magn
field into the superconductor, in which case the creation
vortices is prevented.

In the Bose liquid4He at finite temperaturesTÞ0, in
addition to the spectrumEexp(p), which for p→0 corre-
sponds to first~hydrodynamic! sound with a phase velocity
c1, in He II, owing to the appearance of a normal compon
rn , there is also second sound, with a velocityc2!c1 in the
regionT.1 K. We know that36,37 the second-sound branch
by virtue of the smallness of the thermal expansion of liqu
4He, is actually nothing more than oscillations of the te
perature~entropy! without any appreciable net mass tran
port of the substance of the normalrn and superfluidrs

components, the oscillations of which occur in antipha
Therefore, the excitations of second sound, with ene
«2(p)5c2p, cannot be observed in the standard neut
scattering experiments, unlike the case of first sound«1(p)
5c1p, which comprises in-phase oscillations of the densit
rs and rn . At the same time, in a two-component Bo
liquid the coexistence of two different types of acoustic
Goldstone excitations is allowed; these are due, on the
hand, to the spontaneous breaking of the gauge symm
deriving from the phase degeneracy of the coherent su
fluid condensaters at T→0 and to the breaking of the con

FIG. 7. Density of the superfluid componentrs(T)/r calculated according
to Eq. ~50! ~a!, and the dependence of the BEC densityr0(T)/r calculated
according to Eq.~51! ~b!, for the following set of parameters:A1156.24 K,
D1152 K, B1150.00015 K,A1256.38 K, D1253.14 K, B1250.0026 K.
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tinuous translational symmetry, i.e., the uniformity of t
total densityr5rn1rs ~first sound!, and, on the other hand
to the spatially nonuniform deviations of the temperatu
from the uniform distribution as a result of oscillations of t
density of the gas of normal excitationsrn ~second sound!.
Nevertheless, the second-sound excitations transport en
and are therefore taken into account in the determinatio
the minimum critical velocity in in accordance with the in
tial concepts of the Landau superfluidity criterion,5 which
includes all types of excitations of the quantum liquid.

In connection with this one can assume that in the te
perature region wherec2(T),vc.60 m/s, the limiting per-
missible critical velocity of a macroscopic superfluid flow
He II in the absence of quantum vortices~or in the case of
their strong pinning! cannot exceed a value of the order
the second-sound velocityc2(T), which for T→Tl goes to
zero together with the density of the superfluid compon
rs(T). It is just such a situation that is typical for superco
ductors, in which the depairing critical current goes to zero
the critical pointT5Tc together with the energy gapD in the
quasiparticle spectrum.

Finally, it should be noted that the coexistence of a we
BEC and an intense PCC preserves the integer nature o
circulation quantum of the superfluid velocity in the vortice
k5\/m, owing to the total mutual coherence of these co
densates in the superfluid componentrs . Indeed, the rathe
strong effective attraction for the screened Fourier com
nent of the singular ‘‘hard spheres’’ potential ensures
formation of a condensate of bound boson pairs with a p

tive sign of the pair order parameterC̃12(0), the phase of
which in this case coincides with the phase of the BEC.

6. CONCLUSIONS

In summary, the use of the renormalized field theory
describing the superfluid state of a Bose liquid with allo
ance for the low density of the single-particle BEC make
possible to formulate a self-consistent model of superfluid
in which the superfluid component atT→0 is a coherent
superposition of a weak BEC and an intense PCC, the la
e

rgy
of

-

t
-
t

k
he
,
-

-
e
i-

r
-
it
y

er

arising on account of the effective attraction between bos
in momentum space, and to obtain in the framework of
‘‘hard spheres’’ model an explicit expression for the qua
particle spectrum which agrees with the experimental sp
trum of elementary excitations in4He. The use of empirica
data on the frequencies of first and second sound forTÞ0
makes it possible to describe the superfluid state in a c
paratively simple and self-consistent way all the way up
the point of thel transition, and also to obtain the conditio
that the critical velocityvc in macroscopic flows of He II in
the absence of quantum vortices are limited by the velo
of second soundc2(T).

In closing, we express our sincere gratitude to P.
Fomin for many helpful discussions.

APPENDIX

The polarization operator~13! can be written in the fol-
lowing form without allowance for the vertex partG with the
of expressions~3!–~6!:

P~p,v!5E d3k

~2p!3
@ I 11~p,k,v!1I 12~p,k,v!#, ~A1!

where

I i j ~p,k,v!5 i R dz

2p
G̃i j ~k,z!G̃i j ~k2p,z2v!. ~A2!

We assume that the Green’s functionsG̃i j have only one
pole inside the integration contours:

G̃11~k,«!5
«1~k2/2m!2m1S̃11~2k,2«!

«22E2~k!1 id
; ~A3!

G̃12~k,«!5
S̃12~k,«!

«22E2~k!1 id
; d→0. ~A4!

Evaluating the integrals~A.2! with allowance for the poles a
the points«5E(k) and «5E(k2p)1v in the complexZ
plane, we obtain
I 11~p,k,v!5
1

2@E~k!2E~k2p!2v# H FE~k!1
k2

2m
2m1S̃11~2k,2E~k!!G

3
@E~k!2v1@~k2p!2/2m#2m1S̃11~2k1p,2E~k!1v!#

E~k!@E~k!1E~k2p!2v#

2
@E~k2p!1v1~k2/2m!2m1S̃11~2k,2E~k2p!2v#

E~k2p!@E~k!1E~k1p!1v#

3FE~k2p!1
~k2p!2

2m
2m1S̃11~2k1p,2E~k2p!!G J , ~A5!

I 12~p,k,v!5
1

2@E~k!2E~k2p!2v#
H S̃12~k,E~k!!S̃12~k2p,E~k!2v!

E~k!@E~k!1E~k2p!2v#
2

S̃12~k,E~k2p!1v!S̃12~k2p,E~k2p!!

E~k2p!@E~k!1E~k2p!1v#
J .

~A6!
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In the static limit (v→0, p→0) expression~A.5! re-
duces to

I 11~0,k,0!52
1

4 H 1

E2~k!
FE~k!1

k2

2m
2m1S̃11~k,E~k!!G2

1F 2

E~k!
S 11

]S̃11~k!

]«
D 2

k

mE~k!

1

]E~k!/]kG
3FE~k!1

k2

2m
2m1S̃11~k,E~k!!G J . ~A7!

It follows that in a significant region of momentum
space the functionI 11(0,k,0),0. A similar result is obtained
for the function in~A.6! at p50 andv50, i.e., I 12(0,k,0)
,0, so that the static polarization operatorP(0,0) is a nega-
tive quantity, which corresponds to a weakening of t
‘‘screened’’ repulsion forp→0.

It is also seen from~A.5! and ~A.6! that on the mass
shellv5E(p) the integralsI 11 andI 12 remain negative ove
a wide region of momentum space owing to the nega
sign of the common denominator,@E(k)2E(k2p)2E(p)#
,0. The positive sign of the denominator@E(k)1E(k2p)
2E(p)#.0 is related to the fact that the quasiparticle sp
trum E(p) is nondecaying.

Thus the polarization operator on the mass shel«
5E(p) is negative throughout the regionp,2p/a, which
leads to enhancement of the attraction in the regionp/a
,p,2p/a, where sin(pa),0.
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75, 976 ~1978! @Sov. Phys. JETP48, 493 ~1978!#.
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The regimes of coherent precession of ‘‘zero’’ magnetization in a transverse rf field in the
superfluidA phase of liquid3He are investigated with dissipative processes taken into account.
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1. The coherent precession of the magnetization in
perfluid 3He is a time-dependent ordered state with brok
symmetry. The stability of the precessing states is ma
tained mainly by the spin stiffness of the order paramete
the ordered phases of liquid3He and the spin–orbit interac
tion. The magnetic dynamics in this case reduces to col
tive excitations of the magnetization and the spin part of
order parameter of the triplet condensate. Here in superfl
3He the existence of long-lived coherent precessing state
which the magnitude of the magnetizationuM u is substan-
tially different from its equilibrium valueM05xH0 (x is the
magnetic susceptibility of superfluid3He, and H0 is the
strength of the external static magnetic field!. In Refs. 1–3 it
was predicted theoretically that long-lived precessing sta
with half (M5M0/2) or double (M52M0) magnetization
can exist in a high magnetic field. The theoretical predictio
as to the precessing states with half magnetization have
confirmed experimentally4,5 in the case of3He–B. In addi-
tion, the authors of Refs. 4 and 5 also observed an un
pected precessing mode with ‘‘zero’’ magnetization (M
!M0). The possibility of stabilization of this mode had be
previously pointed out in Ref. 6.

The coherent spin dynamics of the states with the eq
librium magnetization (M5M0) and of the states with hal
and double magnetization correspond to the so-called ‘‘re
nant’’ regimes of precession of the magnetic moment. T
stability of these precessing states is due to the presenc
local minima of the dipole–dipole interaction energy av
aged over the fast motions. In the formation of steadily p
cessing states with ‘‘zero’’ magnetization, however, an i
portant contribution is made by the balance between m
netic relaxation processes and the effect of the transv
radio-frequency~rf! magnetic field. It follows from Refs
4–7, in particular, that such processes determine the res
value of the magnetic moment for the state with ‘‘zero
magnetization in3He–B. It is naturally of interest to eluci-
date the role of these processes in theA phase of superfluid
3He. That is the subject of this paper.

2. In the calculations that follow it will be convenient t
use the dimensionless variable

S5
M

M0
. ~1!
1961063-777X/2001/27(3)/5/$20.00
-
n
-
f

c-
e
id
in

s

s
en

x-

i-

o-
e
of

-
-
-
g-
se

al

The equation describing the nondissipative spin dyna
ics of the superfluid phases of liquid3He are written with the
aid of the Leggett Hamiltonian in the form

HL5
S2

2
2SZ1UD . ~2!

The order parameter that determines the characteristic
tures of the superfluid phases of3He in this Hamiltonian is
represented with the use of the dipole–dipole interaction
tential UD . For the superfluidA phase of liquid3He

UD52
1

2 S VA

v0
D 2

~ d̂• l̂!2, ~3!

whereVA is the longitudinal NMR frequency,g is the gyro-
magnetic ratio for the3He nuclei, the vectorl̂ specifies the
axis of the orbital anisotropy, andd̂ is the order parameter in
spin space (d̂251) of the superfluidA phase of3He.

Using the notation

l̂5 l Zẑ1A12 l Z
2x̂, d̂5RI ~a,b,g!• x̂, ~4!

where the orthogonal matrixRI is parametrized by the Eule
anglesa, b, andg, we obtain for the dipole–dipole interac
tion potential

UD5« f ~sZ ,l Z ,a,g!5«(
k,l

f kl~sZ ,l Z!exp@ i ~ka1 lg!#,

~5!

where «}(VA /v0)2, and sZ5cosb. The nonzero coeffi-
cients f kl are given by the expressions@we have set
«5(1/8)(VA /v0)2 below#

f 0052@11 l Z
21~123l Z

2!sZ
2#,

f 105 f 21052sZl ZA12sZ
2A12 l Z

2,

f 205 f 2205
1

2
~12sZ

2!~12 l Z
2!,

f 025 f 0225
1

2
~12sZ

2!~123l Z
2!, ~6!

f 225 f 222252
1

4
~12 l Z

2!~11sZ!2,

f 2225 f 22252
1

4
~12 l Z

2!~12sZ!2,
© 2001 American Institute of Physics
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f 125 f 21225 l Z~11sZ!A12sZ
2A12 l Z

2,

f 1225 f 21252 l Z~12sZ!A12sZ
2A12 l Z

2.

3. In the discharge approximation the relaxation p
cesses are described with the help of the dissipative func

Fdis5
1

2
kF S2

S22SZ
2 S Ṡ21ṠZ

222ṠZṠ
SZ

S D1~S22SZ
2!~ ȧ11!2G ,

~7!

wherek is a phenomenological parameter.8

Compensation of the dissipation is achieved by apply
to the system an external transverse rf fieldH' , with projec-
tions H'cos andH'sinw along thex̂ and ŷ axes, respec-
tively. The interaction energy of the magnetic moment of
system with this field is described by the expression

F'52AS22SZ
2 h' cosu, ~8!

whereh'5H' /H0, andu5a2w is the angle between th
transverse component of the magnetization and the tr
verse rf field.

In the case of a high magnetic field («!1) we choose
(SZ ,a) and (S,g) as the two pairs of canonically conjuga
variables. By the standard procedure we construct for th
variables the following equations of motion from expressio
~2!, ~7!, and~8!:

ṠZ52«S ] f

]a D1«2k~S22SZ
2!S ] f

]SZ
D 2

2AS22SZ
2 h' sinu,

~9!

Ṡ52«
] f

]g
, ~10!

ȧ5211«
]f

]SZ
2«k

S2

S22SZ
2 S ]f

]a
2

SZ

S

]f

]gD1 S

AS22SZ
2

h' cosu,

~11!

ġ5S1«
] f

]S
2«k

S2

S22SZ
2 S ] f

]g
2

SZ

S

] f

]a D
2

S

AS22SZ
2

h' cosu. ~12!

The right-hand sides of these equations contain term
order 1,«, and«2. This allows us to analyze equations~9!–
~12! by the method8,9 of separation of motions occurring a
substantial different velocities, introducing the new variab
S̄, S̄Z , ā, andḡ, the variations of which will be determine
by the spin-system dynamics averaged over the fast v
ables. We see from system~9!, ~10! that in the general cas
the anglesa and g are rapidly varying quantities, and th
momentsSZ andS are slowly varying.

It is not hard to see that the coefficientf 00 in ~6! is the
dipole–dipole interaction potential averaged over the f
variablesa and g. The profile of the coefficientf 00 is pre-
sented in Fig. 1. It follows from the figure that the nonres
nant equilibrium state corresponds to the spin–orbit confi
rations

l Z50, sZ561, ~13!
-
n

g

e
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se
s

of

s

ri-
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l Z561, sZ50. ~14!

4. The procedure of averaging over the fast variab
leads to equations describing the relaxation ofS̄ and sZ

5S̄/S̄Z . These equations have the form

SG 52
2«2k

12sZ
2 F4

S̄
f 02

2 1
8

S̄21
~12sZ! f 22

2 1
1

S̄21/2
~524sZ! f 12

2

1
8

S̄11
~11sZ! f 222

2 1
1

S̄11/2
~514sZ! f 122

2 G , ~15!

ṡZ5
1

S̄H 2«2k

12sZ
2 F f 10

2 1 f 20
2 1

4sZ

S̄
f 02

2 2
8

S̄21
~12sZ!2f 22

2

2
122sZ

2~S̄21/2!
~524sZ! f 12

2 1
8

S̄11
~11sZ!2f 222

2

1
112sZ

2~S̄11/2!
~514sZ! f 122

2 G
1«2k~12sZ

2!(
kl

S ] f kl

]sZ
D 2J 2A12sZ

2 h' sinu. ~16!

In addition to the usual resonance, which correspond
S̄51, Eqs.~15! and ~16! for f 02, f 12Þ0 also contain terms
describing resonant regimes of precession withS̄50 and
S̄51/2.

We begin our study of relaxation processes with the c
when there is no transverse rf field (h'50). It is easy to see
that for l Z50 ~the so-called Leggett orbital configuration!

only those term corresponding to the resonancesS̄50 and
S̄51 remain in Eqs.~15! and~16!. Then when the magneti
zation is oriented along the magnetic field (sZ51) we arrive
at the result obtained previously,8 according to which the
magnetizationS̄ relaxes to the equilibrium valueS̄51 by a
square-root law:

S̄516A~S̄021!2216«2k~ t2t0!. ~17!

FIG. 1. Profile of the averaged dipole–dipole interaction potentialf̄ in the

case whenA«!,S̄!1/2 @the coefficientf 00 from Eq. ~6!#.



e
io

n

:

s

y

lu
rm

f t
n

-

d

th
tio

he
th

eld
be

of

ion
all

ons,

198 Low Temp. Phys. 27 (3), March 2001 N. G. Suramlishvili
Here S̄0 is the value of the magnetization at the initial tim
t5t0; the upper sign on the right-hand side of express
~17! corresponds to the caseS̄0.1 and the lower sign to the
caseS̄0,1.

Let us now consider the case when the magnetizatio
oriented antiparallel to the magnetic field (sZ521). Solving
Eqs. ~15! and ~16! with the initial conditionst5t0 , S̄5S̄0,
we find thatS̄ relaxes to the valueS̄50 by a square-root law

S̄5211A~S̄011!2216«2k~ t2t0!. ~18!

When l Z561, the relaxation equations contain term
corresponding to the resonanceS̄50:

SG 52
8«2k

S̄
~12sZ

2!, ~19!

ṡZ
252

8«2k

S̄
sZ~12sZ

2!S 1

S̄
13sZD . ~20!

According to~14!, the minimum value of the dipole energ
corresponds to the valuesZ50. In this casesZ remains con-
stant, and the magnetizationS̄ relaxes towardS̄50 accord-
ing to the law

S̄5AS̄0
2216«2k~ t2t0!. ~21!

5. From the results obtained in the previous Section
is seen that the magnetization can relax toward the va
S̄50. As it approaches a value of zero, the order of the te
appearing in the right-hand sides of equations~9!–~12! will
depend onS̄ as well as on the parameter«. If

A«!S̄!
1

2
, ~22!

then the the usual nonresonant regime of precession o
magnetization will be realized, and the averaging is do
over the fast variablesa and g. If, on the other hand,S̄
;A«, then the angle variableg varies slowly, and the aver
aging is done over the single remaining fast variablea.

Let us first consider the case whenS̄ satisfies conditions
~22!. Following Ref. 7, we obtain from Eqs.~11! and ~12!

v̄21

«
S̄1

h'

«

sZS̄

A12sZ
2

cosu1
] f̄

]sZ
50, ~23!

S̄2vg

«
S̄2

h'

«

S̄

A12sZ
2

cosu2sZ

] f̄

]sZ
50. ~24!

Here v̄52 ǡ, vg5 ġ̄, and f̄ 5 f 00. In the actual
experiments4,5 done on3He-B the parameter (v̄21)/« var-
ied from 0 to 10, and the parameterh' /« varied from 1 to
10. We assume that similar conditions can also be realize
the case of3He–A. Equation~23! is the condition of mini-
mum free energy of the system, which is the sum of
dipole and spectroscopic parts and the energy of interac
with the transverse rf field. From the conditionS̄!1/2 it
follows that the main contribution to the free energy of t
system is the dipole–dipole interaction energy, while
n

is

it
e
s

he
e

in

e
n

e

spectral energy and the energy of interaction with the rf fi
are small perturbations and to a first approximation can
neglected.

The averaged dipole–dipole potentialf̄ has four degen-
erate minimum values, the spin–orbit configurations
which are given by expressions~13! and ~14!. In the next
approximation the angleu is determined from Eq.~23! and
the frequencyvg from Eq. ~24!. The values ofS̄ andsZ are
found from the relaxation equations describing the evolut
of the spin system to the second approximation in the sm
parameter«. These equations are obtained from system~15!,
~16! and under conditions~22! have the form

SG 52
4«2k

12sZ
2 F2

S̄
f 02

2 24~12sZ! f 22
2 2~524sZ! f 12

2

14~11sZ! f 222
2 1~514sZ! f 122

2 G , ~25!

ṡZ5
1

S̄H 2«2k

12sZ
2 F4sZ

S̄
f 02

2 1 f 10
2 14 f 20

2 18~12sZ!2f 22
2

1~122sZ!~524sZ! f 12
2 18~11sZ!2f 222

2

1~112sZ!~514sZ! f 122
2 G1«2k~12sZ

2!(
kl

S ] f kl

]sZ
D 2J

2h'A12sZ
2 sinu. ~26!

Let us consider the neighborhood of the states~13! and~14!.
For l Z50 the system of equations~25!, ~26!, according to
expressions~6!, becomes

SG 52«2kS 12sZ
2

S̄
23sZ22sZ

3D , ~27!

ṡZ5
«2k

S̄
~12sZ

2!S sZ

S̄
14111sZ

2D 2h'A12sZ
2 sinu.

~28!

In the casesZ5211b2/2, whereb!1, we obtain the
following equations forS̄ andb from the system~27!, ~28!:

SG 52«2kS 2b2

S̄
15D , ~29!

ḃ5
2«2k

S̄2
b2h' sinu. ~30!

This system of equations does not have stationary soluti
since the right-hand side of~29! is always negative.

In the casesZ512b2/2 equations~27! and~28! become

SG 52«2kS b2

S̄
25D , ~31!

ḃ52
«2k

S̄2
b1h' sinu. ~32!

In the stationary stateṠ̄5ḃ50. For it we obtain
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S̄05
b2

5
, b05S 25«2k

h' sinu D 1/3

. ~33!

Since the stationary valueS̄0 must satisfy condition~22!, the
transverse rf field must satisfy the conditionh'!A5k«5/4/
sinu.

Let us now consider the problem of the behavior o
small perturbation against the background of the station
state characterized by the parameters~33!. After localization
of the system~31!, ~32!, we obtain the following equation
for the perturbed quantitiesdS anddb:

S ]

]t
2

b0
2

S̄0
2

«2k D dS12«2k
b0

S̄0

db50,

~34!

2«2k
b0

S̄0
3 dS2S ]

]t
1

1

S̄0
2 «2k D db50.

We seek a solution of this system in the formdS0exp(ivt),
db0exp(ivt). The dispersion relation obtained has the f
lowing solutions:

v' i
5«2k

2S̄0
2 b0

2, v' i
«2k

S̄0
2 . ~35!

Consequently, the perturbations are aperiodically dam
with decrements of 5«2kb0

2/S̄0
2 and«2k/S̄0

2. This means that
the stationary state with parameters~33! is stable.

For the casel Z561, we obtain the following equation
from ~25! and ~26!:

SG 52
8«2k

S̄
~12sZ

2!, ~36!

ṡZ5
8«2k

S̄2 sZ~12sZ
2!2h'A12sZ

2 sinu. ~37!

This system does not have stationary solutions. It follo
from Eq. ~36! that for any values ofsZ the modulus of the
magnetizationS̄ decreases with time and tends toward
value S̄;A«.

6. In the case whenS̄;A«, it follows from ~12! that ġ

;A«. Still, this rate is greater than the rates of change oS̄

and S̄Z . However, S̄ and S̄Z appear in the dipole–dipole
interaction potential in the form of the ratioS̄Z /S̄. Further-

more,ṡZ5 Ṡ̄Z2sZṠ̄. It follows thatṡZ;A«. Thus the rates of
change ofg andsZ are quantities of the same order. Ther
fore, only one fast variable,a, remains in the dipole–dipole
interaction potential. In this situation we write the dipole
dipole interaction potential in the form of a Fourier seri
expansion:

f 5 (
k522

2

f k~S̄,S̄Z ,l Z ,ḡ !eikā ~38!

and we write out only those expansion coefficients which
necessary for further analysis:

f 05 f̄ 52@11 l Z
21~123l Z

2!sZ
22~123l Z

2!~12sZ
2!cos 2g#,

~39!
ry

-

d

s

-

e

f 15 f 21* 522l Z
2A12 l Z

2A12sZ
2@sZ

21cos 2g2 isZ sin 2g#,
~40!

f 25 f 22* 52
1

2
~12 l Z

2!@12sZ
22~11sZ

2!cos 2g2 isZ sin 2g#.

~41!

It is easy to see thatf 0 is the dipole–dipole potentia
averaged over the fast variableā, and its minimization de-
termines the spin–orbit configuration of the equilibrium pr
cessing states. The profile off 0 after minimization with re-
spect to the variableḡ is shown in Fig. 2. It follows from an
analysis of f 0 that for u l Zu<1/A3 the stationary valuegst

5p/2. In this case the spin system has a family of degen
ate minima with the spin–orbit configurations

l Z50, usZu<1. ~42!

If, on the contrary,u l Zu.1/A3, thengst50, and the mini-
mum values of the dipole energy correspond to the state

l Z561, sZ50. ~43!

In the the case under discussion the system of equat
for S̄ andsZ have the form

SG 5
2«2k

12sZ
2 (

k.0
F1

k
ImS ]2f k

]ḡ2

] f k*

]ḡ D 1sZ ReS ]2f k

]ḡ2
f k* D

1k ImS ] f k

]ḡ
f k* D2sZU] f k

]ḡ U
2G , ~44!

FIG. 2. Profile of the averaged dipole–dipole interaction potentialf̄ in the

case whenS̄;A« ~Eq. ~39! after minimization with respect to the variabl
g).
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ṡZ5
2«2k

12sZ
2

1

S̄
(
k.0

H F ~11sZ
2!U] f k

]ḡ U
2

1k2u f ku2

1sZk ImS ] f k

]ḡ
f k* D2

sZ

k
ImS ]2f k

]ḡ2

] f k*

]ḡ D
2sZ

2 ReS ]2f k

]ḡ2
f k* D G J 1

2«2k

S̄
~12sZ

2!F1

2 S ] f 0

]sZ
D 2

1 (
k.0

U] f k

]sZ
U2G2A12sZ

2h' sinu, ~45!

It follows from these equations that the value of t
magnetizationS̄ relaxes much more slowly than value of th
projection of the magnetic moment on the direction of t

external static magnetic field, i.e.,Ṡ̄/ ṡZ;A«!1. Therefore,
we may rightly consider the change ofsZ against the back-
ground of a frozen value ofS̄.

Sincegst5p/2 at l Z50, we find from Eq.~45! that

ṡZ5
4«2k

S̄~12sZ
2!

@sZ
42sZ

31sZ
214#2h'A12sZ

2 sinu. ~46!

In the limiting casesZ'21 the temporal behavior ofb
is determined by the equation

ḃ5
28«2k

S̄b3
2h' sinu, ~47!

i.e., the stationary valueb0 is described by the expression

b05S 28«2k

S̄h' sinu
D 1/3

, ~48!

and small perturbations against the background of the
tionary state~48! decay with a decrement 84«2k/S̄b0

4.
For sZ'1 the temporal behavior ofb is determined by

the equation

ḃ5
20«2k

S̄b3
2h' sinu, ~49!

so that the stationary value ofb0 has the form

b05S 20«2k

S̄h' sinu
D 1/3

, ~50!

and small perturbations against the background of the
tionary state~50! grow with an increment 60«2k/S̄b0

4.
Thus the precessing states withl Z50, sZ'21 are

stable, and those withsZ'1 are unstable.
For the casel Z561 we obtain from~45!, with allow-

ance for the fact thatgst50,

ṡZ5
32«2k

S̄
sZ~12sZ

2!2h'A12sZ
2 sinu. ~51!
a-

a-

From this equation we obtain the following expression
the stationary valuesZ

0 :

s0
Z56S h'S̄sinu

32«2k
D 1/2

. ~52!

Consequently, against a background of positive station
valuessZ

0.0 small perturbations grow with an increment
64«2ksZ

0/S̄, while against a background of negative valu
sZ

0,0 they decay with a decrement of 64«2ksZ
0/S̄. Thus the

states withsZ
0.0 are unstable, while those withsZ

0,0 are
stable.

7. It follows from the above analysis of the spin dynam
ics in 3He–A that with allowance for the relaxation process
and the interaction with the transverse rf field, coheren
precessing states both with half and with ‘‘zero’’ magnetiz
tion are realized for arbitrary values ofl Z . Depending on the
order of magnitude of the modulus of the magnetic mome
the precession of the magnetization will take place in
usual nonresonant regime with two fast angle variables o
a regime characterized by the presence of only one fast a
variable.

In the nonresonant regime the value of the magnetiza
is determined from the balance of magnetic relaxation a
the effect of the transverse rf field. Here stabilization
the state is possible in the neighborhood of the pointl Z50,
sZ51.

In the other case the magnetizationS;A«, and the bal-
ance of the magnetic relaxation and the effect of the rf fi
leads to a spin–orbit configuration of equilibrium precess
states. Forl Z50 stabilization of the state is effected in th
neighborhood of the valuesZ521. In the casel Z561 the
equilibrium states are stabilized at negative values ofsZ .
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6É. B. Sonin, Zh. E´ksp. Teor. Fiz.94~9!, 100 ~1988! @Sov. Phys. JETP67,
1791 ~1988!#.

7G. Kharadze and N. Suramlishvili~to be published!.
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Anisotropy of the vortex creep in a YBa 2Cu3O7Àx single crystal with unidirectional twin
boundaries
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Vortex creep in a single crystal containing unidirectional twin boundaries~TBs! is investigated at
temperatures of 82–87 K in a special experimental geometry:Jiab, JiTB, H'J, with
a[/H,ab as a variable parameter. It is shown that in low magnetic fields the TBs alter the
configuration of the structure of the flux lines at angles of misorientationu between the
magnetic field vectorH and the planes of the TBs of up to 70°: at anglesu,70° a part of the
flux line is trapped by the planes of the TBs. It is shown that a TB is an efficient pinning
center for the motion of the vortices perpendicular to the plane of the TB, and therefore in low
magnetic fields at anglesu,70° a directed motion of the vortices along the planes of the
TBs occurs. The angle dependence of the activation energy for a plastic mechanism of flux creep
is determined, and it is found to agree with the theoretical estimates made. For an orientation
of the vectorH close to theab plane of the crystal, the maximum of the angle dependence of the
measured ‘‘critical’’ currentJcE(a) observed for the theHiab orientation of the field
vector in low magnetic fields gives way to a minimum at higher magnetic fields; this is explained
by a change from single-vortex creep to collective creep as the magnetic field is increased.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1355518#
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INTRODUCTION

High-Tc superconductors have an anisotropic laye
structure. As a result, the characteristic scales of the Abr
sov vortices, which are characterized by a coherence lengj
and a penetration depthl, and the vortex lattice, which is
characterized by the intervortex distancea0, are also aniso-
tropic. This leads to anisotropy of the magnetic flux pinnin
which is ordinarily characterized by the angle dependenc
the measured ‘‘critical’’ currentJm(a), wherea is the angle
between the magnetic field vectorH and theab plane of the
crystal. Analysis of published data shows that the angle
pendence of the currentJm depends on the direction of mo
tion of the magnetic flux, on the density of defects in t
sample, and on the strength of the external magnetic fi
For example, studies of the magnetization of YBaCuO sin
crystals in a relatively low magnetic field at not very sm
anglesa have shown1 that for motion of vortices off theab
plane,Jm does not depend on the anglea, while for motion
along theab plane, Jm decreases with anglea as Jm(a)
'Jm(Hic)sina.

Numerous experimental studies2–4 of high-Tc supercon-
ductors attests to a nonmonotonic field dependence of
currentJm , which is called the ‘‘fishtail effect.’’ The posi-
tion of the minimum ofJm(H), which, according to the ex
isting ideas, can correspond to a phase transition of the
tex lattice5 or a transition between different regimes of cre
2011063-777X/2001/27(3)/15/$20.00
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of the vortex lattice,3,6 and also the position of the maximum
which corresponds to a transition from an elastic to a pla
mechanism of creep,7 depends on the orientation of the ma
netic field vector.4 Therefore, the magnitude of the magne
field may govern the appearance of additional features on
angle dependence of the currentJm owing to a transition
between different creep regimes or phase states of the vo
system.

Still another reason for the anisotropic pinning is t
intrinsic pinning that arises when the magnetic field is o
ented close to theab plane,a<«, and which is manifested
as a sharp increase inJm with decreasing anglea.8 This type
of pinning takes place in layered superconductors and is
to modulation of the order parameter along thec axis. It is
assumed that when the vectorH is oriented parallel to theab
plane, the flux lines are situated between the CuO super
ducting layers so as to minimize the core energy.9 Here the
flux lines are found in the field of a periodic potential, th
maxima of which correspond to the positions of the cores
the flux lines in the CuO planes. It is assumed that in
magnetic field tilted at anglesa<« the flux lines have a
stepped structure. The flux lines now lie partly between
CuO planes, as before, and partly parallel to thec axis. If the
pinning of the vortex segments localized between C
planes is large, then in a tilted magnetic field the magne
flux creep will be mainly governed by the thermally ac
vated motion of the segments oriented along thec axis. Ex-
© 2001 American Institute of Physics
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perimental studies of tilted YBa2Cu3O72x films10 indeed
show evidence of the motion of these segments along theab
plane.

In the high-Tc superconductor YBaCuO twin boundarie
are another source of anisotropic pinning. In a magnetic fi
Hic the anisotropy is manifested as preferential motion
the magnetic flux along the planes of the TBs rather th
along the direction of the Lorentz force.11 This effect indi-
cates that TBs form channels of easy motion of the magn
flux along the plane of the TBs, while the motion of the flu
perpendicular to the TB plane is suppressed. Indeed, a c
parison of the current–voltage~I–V! characteristics of
YBaCuO single crystals containing unidirectional TB plan
has shown that at a temperature of 84 K and in a magn
field of 15 kOe oriented along thec axis, the value of the
currentJm in the motion of vortices in the direction perpe
dicular to the TB plane is approximately seven times as la
as in their motion along the TB plane.12

In a magnetic field tilted with respect to the TB plan
the anisotropy is manifested as a nonmonotonic angle de
dence of the currentJm(u), whereu is the angle between th
field vectorH and the TB plane. When the magnetic field
oriented close to theab plane and the field vector is rotate
out of the plane of the TB, this anisotropy is manifested a
maximum on theJm(u) curve.13 When the magnetic field is
oriented close to thec axis, on the other hand, the minimu
on theJm(u) curve observed at a low level of energy dis
pation gives way to a maximum at a high level of ener
dissipation.14 The influence of the TBs on the magnetic flu
pinning in tilted magnetic fields is due to the circumstan
that at anglesu less than a certain critical angleucr a part of
the vortex line is trapped by the TB plane.15 Theoretical
studies15,16 have shown that the value of the critical ang
depends on the orientation of the magnetic field relative
the crystallographic axes of the single crystal.

Despite the large number of experimental papers
voted to the study of pinning and the dynamics of the m
netic flux in YBa2Cu3O72x single crystals, a number o
questions on this topic remain open. For example, we h
not found any published experimental research on the an
ropy of the plastic creep due to the motion of dislocations
the vortex lattice. Similarly, there has been no discussion
the influence of twin boundaries on the magnetic flux p
ning and dynamics when the field vector is oriented close
theab plane. Under certain conditions, this influence can
quite substantial, since if a stepped structure of the flux li
is realized, the parts of the vortex segments oriented par
to thec axis will be trapped by the TB planes. There is al
a lack of agreement as to the region of anglesu within which
the TBs affect the flux pinning. For example, in Ref. 14
was reported that when the vectorH is rotated away from the
c axis, the TBs play a role in the magnetic flux pinning f
u<15°, while in Ref. 17 it was concluded that their influ
ence is felt all the way tou550°. These and certain othe
aspects of the magnetic flux pinning and dynamics
YBaCuO single crystals will be the subject of this paper.

EXPERIMENTAL RESULTS

We present the results of resistive studies of the ani
ropy of the magnetic flux creep in a YBa2Cu3O72x single
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crystal containing unidirectional twin boundaries. Th
sample had a critical temperatureTc592 K and a supercon
ducting transition width of 0.3 K. The transport current w

FIG. 1. Current–voltage~I–V! characteristics atT584 K in magnetic fields
of 0.5 ~a!, 5 ~b!, and 15 kOe~c! for different anglesa, indicated in the
figures.
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passed along theab plane of the crystal, and the curre
density vectorJ was nearly parallel to the plane of the TB
specifically,/J,TB,7°. The magnetic field vectorH was
rotate out of theab plane toward thec axis, and the vectorH
was always perpendicular to the vectorJ. The stability of the
temperature during the measurements was of the orde
0.03 K, and the stability of the magnetic field was not wo
than 0.05%. Measurements on the sample in the normal
showed that its overheating at the highest level of ene
dissipation, 1024 W, did not exceed 0.05 K. The error i
determining the anglea was 0.1°.

The I–V characteristics measured atT584 K in mag-
netic fields of 0.5, 5, and 15 kOe are shown in Fig. 1. At 0
kOe the electric field increases with increasing anglea in the
regions of anglesa,20°, and then it decreases asa is in-
creased further to the orientationHic. We also note that in a
magnetic field parallel to thec axis and, hence, to the TB
plane, the electric field is zero in the investigated interva
current densities. For this orientation of the field, parts of
vortices are trapped by the TB planes, and the Lorentz fo
is oriented perpendicular to the TB plane. Thus the
planes are efficient pinning centers for the motion of
vortices in the direction perpendicular to them; this agr
with the previous studies11,12of the anisotropy of the pinning
by the TB planes for a field orientationHic. A similar be-
havior of theE(J) curves is observed atH55 kOe. The
E(J) curves are shifted first to lower currents with increas
anglea for a,20° and then to larger currents asa is in-
creased further to the field orientationHic.

Completely different behavior ofE(J) is observed for
H515 kOe. Asa increases, theE(J) curves shift to larger
transport currents in the region of anglesa,20°, to smaller
currents in the angular interval 20°,a,70°, and then again
to larger currents at anglesa.75°. The change of the pin
ning force with anglea is most clearly seen in Fig. 2a, whic
shows the curves of the ‘‘critical’’JcE(a) curves measured
at an electric fieldE51026 V/cm on the sample.

Another difference between the I–V characteristics
Fig. 1 is that atH50.5 kOe the log–log plots ofE(J) have
a negative curvature at all anglesa. In magnetic fields of 5
and 15 kOe, in contrast, the negative curvature obser
when the magnetic field vectorH is oriented close to theab
plane changes to positive curvature whenH is oriented close
to thec axis. The negative curvature indicates that when
I–V characteristics are described by a dependence of
form E}exp@2(U/kBT)(Jc /J)m#, the exponentm.0. Positive
curvature corresponds tom,0. The angle dependence ofm
obtained when the I–V characteristics are described by
exponential dependence is shown in Fig. 2b. The sha
parts correspond to regions of angles in which the exp
mentalE(J) curves cannot be described by an exponen
function with a constant value of the exponentm. In this
interval of angles, as is seen in Fig. 1b, the negative cu
ture of the I–V characteristics, which is observed at h
transport current densities, becomes positive at low cur
densities.

As we see in Fig. 2b, the variation ofm with anglea
depends on the magnitude of the magnetic field. In a m
netic field of 0.5 kOe the exponent is independent ofa (m
51/2! over a wide range of angles (2.5°<a<75°), and only
of
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for a,2° does one observe a slight increase in the expon
(m50.8). At H55 kOe the exponentm takes on values of
3/4, 1/2, 5/2, and21/2 asa increases, and forH515 kOe it
takes on values of 7/4, 5/2, and21/2. A comparison of
m(a) andJcE(a) shows that only in certain cases is there
correlation between the value ofm and the angle dependenc
of the currentJcE . For example, the valuem55/2 always
corresponds to a rapid increase in the currentJcE . However,
the same valuem51/2 corresponds to a decrease ofJcE with
increasinga in the rangea<20° and to an increase inJcE

with a for a.20°. Also, the same valuem521/2 corre-
sponds to an increase of the currentJcE with increasinga in
a magnetic field of 5 kOe, while at 15 kOe the angle dep
dence of the current is nonmonotonic. The value of the
ponentm characterizes the current dependence of the act
tion energy of magnetic flux creep, and its increase
decrease may be evidence of a change in the creep reg
Thus the angle dependence of the currentJcE in a given
creep regime depends on both the region of anglea under
study and on the magnitude of the external magnetic fie
To elucidate the cause of this behavior will require a mo
detailed analysis of the experimental data.

FIG. 2. Angle dependence of the ‘‘critical’’ currentJcE determined from the
level of the voltage drop across the sample,E51026 V/cm ~a!, and the
exponentm obtained when the I–V characteristic is described by an ex
nential dependence of the formE}exp@2(U/kT)(Jc /J)m#.
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CREEP WHEN THE MAGNETIC FIELD ORIENTATION IS
CLOSE TO THE ab PLANE

Low magnetic fields

Let us examine the results of measurements mad
magnetic fieldsH<5 kOe at a field orientation close to th
ab plane, specifically, at anglesa<15°.

As we see in Fig. 2a, in this interval forH<5 kOe the
currentJcE increases with decreasinga, in agreement with
many experimental results.8,14,17 Figure 3 shows the I–V
characteristics measured in this region of angles at a t
perature of 82 K in semilogarithmic scale (logE–J21/2). At
anglesa less than a certain critical angleaL the electric field
does not depend ona. The critical angleaL decreases with
increasing magnetic field:aL'1.5° in a magnetic field of
0.5 kOe, and 0.5° at 1.5 and 5 kOe. This behavior can
explained in terms of the existing ideas about intrinsic p
ning. It is assumed that fora less than the trapping angleaL

the flux lines are localized between the CuO superconduc
planes to minimize the core energy. Therefore, the pinning
the magnetic flux in the angle regiona,aL does not depend
on the orientation of the field vectorH.

The trapping angle is given by the relationaL

>2nHc1
c /H ~Ref. 18!, wheren> l c / l ab is the demagnetizing

factor, Hc1
c is the lower critical field, andl c and l ab are the

dimensions of the sample along thec axis and in theab
plane, respectively. The demagnetizing factor of our sam
was approximately equal to 0.05, and the value ofHc1

c at
82 K<T<85 K lay in the interval 100–200 Oe, respe
tively; hence, at a magnetic field of 500 Oe the trapp
angle is estimated to be 1–2°. The experimental va
aL(500 Oe)>1.5° agrees with the theory, as does the
perimentally observed decrease ofaL with increasing mag-
netic field.

As we see from the inset in Fig. 3c, for a field orientati
Hiab theE(J) curves plotted in the coordinates logE–J20.8

are close to being straight lines. This means that the exp
mental data can be described by an exponential depend
of the form

E5E0 exp$2~U0 /kBT!@~Jc /J!m21#%, ~1!

wherem50.8, E0 is a constant,U0 is the activation energy
which is independent ofJ, kB is Boltzmann’s constant, an
Jc is the critical current for depinning. It is also obvious th
the slope of theE(J) curves is independent of the magne
field and that the electric field increases linearly withH.
These two relationships indicate that the productU0Jc

0.8 and
the velocity of the magnetic fluxv5E/B, whereB is the
magnetic induction, are independent of the magnetic fi
and, from the standpoint of the collective pinning theor6

presuppose single-vortex creep~i.e., noninteracting vortices!.
Indeed, in the collective pinning theory it is predicted that
this creep regime both the critical current and the pinn
potential and, accordingly, the velocity of the vortices a
are independent of the magnitude of the magnetic field.
value of the exponent 0.8 is close to the valuem51 pre-
dicted for single-vortex creep in a magnetic fieldHiab in the
motion of vortices along thec axis. Thus the results obtaine
constitute experimental evidence that single-vortex cree
realized in low magnetic fields.
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FIG. 3. I–V characteristics atT584 K andH50.5 ~a!, 1.5 ~b!, and 5 kOe
~c! in the angle interval 0°<a<16°. The upper inset in Fig. 3a shows th
stepped structure of the flux line that is realized fora,«, and the lower
inset shows the half-loop formed in the creep of the vortex lattice for
field orientationHiab ~Ref. 6!. The inset in Fig. 3b shows the angula
scaling of the I–V characteristics measured atT582 K in different magnetic
fields. The inset in Fig. 3c shows the I–V characteristic atT582 K and
a50°, normalized to the value of the magnetic field (E3(H* /H)), where
H* 51 kOe!.
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At angles in the regionaL,a<15° theE(J) curves in
the coordinates logE–J21/2 are close the being straight line
Consequently, when the I–V characteristics are describe
relation~8!, the exponent ism51/2. It is seen in the inset in
Fig. 3b that the slope of theE(J) curves is almost indepen
dent ofa and of the magnetic field. The latter circumstan
means that the productU0Jc

1/2 is independent of the value o
the magnetic field and, as we have said, is evidence
single-vortex creep is realized. The data presented in the
set of Fig. 3b also show that in the angle interval 2.5°<a
<15° the electric field increases as sina. Such an angle de
pendence is natural if the flux lines have a stepped struc
~see the inset in Fig. 3a!, if it is assumed that the pinning o
the vortex segmentsl ab localized between CuO planes
large and that the electric field on the sample arises a
result of the motion of the vortex segmentsl c oriented along
the c axis. Indeed, the electric field in such a creep is giv
by the expressionE5Bcvab}sina, where the component o
the magnetic induction along thec axis isBc5Bsina, while
vab is the velocity of the segments along theab plane, which
in the case of single-vortex creep is independent of the m
nitude of the magnetic field.

High magnetic fields

Let us first mention that in a magnetic field of 15 kO
and at a<15° the currentJcE increases with increasin
anglea, in contrast to its monotonic decrease in magne
fieldsH<5 kOe~see Fig. 2!. The exponentm in a field of 15
kOe takes values of 1.75–2.5, which are substantially gre
than the values ofm obtained in magnetic fieldsH<5 kOe
~0.5–0.8!. Furthermore, the slope of theE(J) curves in-
creases linearly with increasinga ~Fig. 4a!. This means that
when the I–V characteristics are described by relation~1!,
the productU0Jc

m increases with increasinga. From the
standpoint of the collective pinning theory the value of t
exponentm51.75–2.5 and the increase ofU0Jc

m and of the
currentJcE with increasing anglea may be evidence of flux-
bundle creep. Let us analyze this possibility. We first co
sider the evolution of the I–V characteristics with increas
magnetic field.

Figure 4b shows I–V characteristics measured in m
netic fields up to 15 kOe atT585 K anda50. We see that
up to 7 kOe the I–V curves are described satisfactorily
relation ~1! with m50.8 and that the electric field increas
almost linearly with increasing magnetic field, i.e., one o
serves the regularities characteristic of single-vortex cre
As the magnetic field is increased further, the electric fi
decreases rapidly in the regions of small transport curre
J,Jb . Here the value of the crossover currentJb and the
slope of the I–V characteristic forJ,Jb increase with in-
creasing magnetic field~see Fig. 4b!. The slope angleg of
the E(J) curves plotted in the coordinates logE2J27/4 in-
creases continuously with increasing magnetic field and
satisfactorily described by the power lawg}H1.9.

The growth of the currentJb and slope angleg with
increasing magnetic field is characteristic of a transition fr
single-vortex to flux-bundle creep. Indeed, according to
collective pinning theory, the correlation lengthLc along the
direction of the magnetic induction increases with decreas
current as Lc5j(«/«a)(J0 /Jc)

1/2(Jc /J)5/7, where «a
by
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5(«2cos2a1sin2a)1/2, J05(4/3A3)(c«0 /jF0) is the depair-
ing current,Jc is the critical current in a magnetic fieldHic
in the case of single-vortex creep~it is independent of the
magnitude of the magnetic field and of the anglea), and« is
the anisotropy parameter, which for YBaCuO supercondu
ors varies from 1/8 to 1/6. If the current density becom
smaller than a certain characteristic valueJb , at which the
correlation length becomes greater than«a0«a

21/2, then the
vortex lattice separates into domains. Within each of th
domains the flux lines are pinned collectively, while the d
mains themselves move independently of one another.
cording to the collective pinning theory, the I–V characte
istics at currentsJ,Jb are also described by the exponent
dependence~1!, but the critical currentJc in that relation

FIG. 4. I–V curve forH515 kOe andT584 K in the angle interval 0°
<a<10.5° in the coordinatesE–J27/4. The inset shows a plot ofg r(a)
[g(a)/g(4.5°) atT584 and 82 K~a!. The I–V characteristics normalized
to the value of the magnetic field (E3H* /H, where H* 51 kOe! at T
584 K anda50° in various magnetic fields. The inset shows the change
the slope angleg of the I–V characteristic plotted in the coordinatesE–
J27/4 as the value of the magnetic field is changed~b!.
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must be replaced by the crossover currentJb . The value of
the exponentm and the field dependence of the crosso
currentJb(B) and activation energyU0(B) are determined
by the direction of the magnetic induction vector. For a fie
orientationH'c and with an orientation of the Lorentz forc
FLic the exponentm52, and the crossover current and ac
vation energy have the of the form6

Jb~B!>~3A3p/4!~j/c0!~c0 /a0!2J0}B ~2a!

and

U0~B!>«0c0 , ~2b!

wherec0 is the period of the crystal lattice along thec axis,
«05(F0/4plc)

2, lc is the penetration depth for the fiel
orientationHic, and F0 is the magnetic flux quantum. A
anglesa.« the exponentm52.5, and the crossover curre
and activation energy are given by the relations6

Jb~a,B!>Jc~A«aLc
c/«a0!7/5}~«aB!0.7 ~2c!

and

U0~a,B!>Usv
c ~«a0 /A«aLc!

1/5}~«aB!20.1, ~2d!

whereUsv
c is the activation energy corresponding to sing

vortex creep in a magnetic fieldHic, which is independent o
the magnitude and orientation of the magnetic field.

In a magnetic fieldH'c and with the Lorentz force ori-
ented perpendicular to theab plane, the magnetic flux cree
occurs as a result of the formation of rectangular half-loop6

which are shown in the lower inset of Fig. 3a. Since t
vortex segmentsl ab and l c are mutually orthogonal, it is
assumed that they do not interact with each other and th
fore move independently of each other.19 The electric field
arising in thermally activated creep can be written as

E5E1 exp~2U1 /kBT!1E12

3exp~2U1 /kBT!exp~2U2 /kBT!, ~3a!

where the first term corresponds to the motion of the vor
segmentsl ab along thec axis, and the second term to motio
of the vortex segmentsl c along theab plane. In this relation
U1 is the activation energy of a half-loop, which is given b
expression~2b!; U2 is the activation energy of the vorte
segmentsl c in their motion along theab plane, andE1 and
E12 are constants whose values depend on the specific
croscopic model, and the factor exp(2U1 /kT) in the second
term determines the density of the vortex segmentsl c .

Since the electric field forH'c is given by relation~3a!,
the question arises: which subsystem of vortex segm
~oriented along theab plane or along thec axis! experiences
crossover from single-vortex creep to flux-bundle creep
follows from Eqs.~2a! and ~2d! that for a vortex subsystem
oriented parallel to theab plane the crossover curren
Jb}B and the I–V slope angleg}U0Jb

2}B2, while for
the vortex subsystem oriented along thec axis Jb}B0.7 and
g}U0Jb

2.5}B1.65. Thus the collective pinning theory predic
approximately the same field dependence of the cross
current and slope angleg for both vortex subsystems. It i
therefore impossible to answer the above question on
basis of measurements of the I–V characteristics in differ
magnetic fields, but it is possible to answer it by measur
the I–V characteristics for different anglesa.
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Indeed, if the stepped structure of the flux lines shown
the upper inset of Fig. 3a is realized in magnetic fields tilt
at anglesaL,a,«, then in the creep of such a vortex lin
the electric field can be written in the form

E5E1 exp~2U1 /kBT!1E12exp~2U1 /kBT!

3exp~2U2 /kT!1E2 exp~2U2 /kBT!, ~3b!

where the third term corresponds to motion of the ste
along theab plane. In this expression the contribution of th
first term is independent ofa, since the magnetic induction
along theab plane does not change in the case of a step
structure of the vortex lines. The contributions of the seco
and third terms, however, are very sensitive to a chang
the anglea, since the magnetic induction component alo
thec axis,Bc , increases as sina. Therefore, according to the
collective pinning theory, the crossover current of the vor
subsystem oriented along thec axis should increase a
(sina)0.7, and the slope angle of theE(J) curves in currents
J,Jb should go asg(a)}U0Jb

5/2}(sina)1.65. The inset in
Fig. 4a shows the angle dependence of the reduced s
angleg r(a)[g(a)/g(4.5°), whereg is the slope angle of
the E(J) curves shown in Fig. 4a, and the functionF(a)
5(sina/sin 4.5°)1.65. The fact that the experimental data a
found to agree with the theoretical dependence argues in
vor of a transition from single-vortex creep to flux-bund
creep in the vortex subsystem oriented along thec axis. The
agreement betweeng r(a) and F(a) also suggests that th
contribution of the first term in~2a! and ~2b! is small com-
pared to the contribution of the other terms.

CREEP AT ANGLES aÌ«

Low magnetic fields

Let us now turn to a discussion of the experimental d
obtained at anglesa.«, where the intrinsic pinning does no
affect the configurational structure of the flux lines and th
does not influence the dynamics of the magnetic flux. In t
region of angles the vortex system can be described in
anisotropic superconductor model, and we shall take this
proach to the interpretation of the experimental results.
we see in Fig. 1a, in this region of angles and in low ma
netic fields theE(J) curves are continuously shifted t
higher transport currents with increasinga. This behavior is
substantially different from the behavior of the I–V curv
measured in the motion of the vortices along the planes
the TBs ~in the experimental geometry withJiab, J'TB,
H'J, and variable parametera), i.e., in the direction of easy
motion of the magnetic flux. In the latter case the elect
field for a.« increases with the anglea as «a ~Ref. 20!.
When the transport current is flowing in theab plane of an
anisotropic superconductor, the electric field generated
the motion of the vortices with velocityv is given by the
relation E5«a vB, where the factor«a5h(a)/hc appears
because of the anisotropy of the viscous drag coeffic
h(a)5hc«a , wherehc is the drag coefficient for the field
orientationHic. Thus in the motion of vortices along th
planes of the twins, the velocity of the vortices is indepe
dent of the magnetic field direction. However, the decre
of the electric field observed in this experimental geometry
evidence of a substantial decrease in the velocity of the v
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tices with increasinga. This decrease may be due to th
influence of the TBs, which, as we have said, are effici
pinning centers for the motion of vortices perpendicular
the TB plane. Let us analyze this possibility in more deta

It is assumed that in a magnetic field tilted at anglesu
[/H,TB less than the critical angleucr , the flux lines have
the configurational structure presented in the inset in F
5a.16,21 It is seen that part of the vortex line~segmentL tr) is
trapped by the plane of the TB, and that near the TB
vortex segmentLh is oriented at the critical angleucr to the
plane of the TB, while far from the TB the vortex line
oriented along the magnetic induction vectorB. If the pin-
ning force on the vortex segmentsL tr in their motion off the
TB plane is large~and the absence of creep in the case of
magnetic field orientationHic is evidence in favor of such
an assumption!, then the motion of the vortex lines along th
ab plane will be suppressed. However, the vortices c
move along thec axis under the influence of the Loren
force componentFc5FLcosa. Indeed, the pinning force on
the vortex segmentsL tr in their motion along thec axis, i.e.,
parallel to themselves, is equal to zero. In this case the m
netic flux pinning is governed by the interaction of poi
defects with the vortex segments lying off the TB plane.
the motion of vortices along thec axis the ratioJc /J in Eq.
~1! must be replaced byJc /Ji , where Ji>J@gsinucr1(1
2g)cosa#, g[2Lh /(d22Lh) is a coefficient giving the
fraction of the vortex comprised by segmentsLh (Lh

>(«a0/2Ap)ln(a0 /j); Ref. 16!, and d is the distance be
tween TB planes. In a magnetic field of 500 Oe the interv
tex distancea0>200 nm, the coherence lengthj(82K)>5
nm, andLh>20 nm, and we obtaing>0.1 for the crystal
under study, which had an average distance between TB
500 nm. Thus ifg50.1 anducr570° and single-vortex cree
is realized, theE(J) curves measured at different anglesa
and plotted in the coordinatesE(J)/«a as functions ofJi
should all lie on a universal curve. This is confirmed in F
5a, which shows theE(J) curves measured at angles in t
interval 20°<a,90°. The observed scaling of the I–V cha
acteristics leads to three conclusions. First, in low magn
fields the TBs deform the vortex lines fora>20°, i.e.,ucr

570°. Second, foru,ucr the configurational structure of th
vortex lines proposed in Refs. 16 and 21 is realized. Th
since the pinning of the vortex segmentsL tr trapped by the
TBs is large for their motion off the TB plane and equal
zero for their motion along the TB planes, in magnetic fie
tilted atu,ucr a directed motion of the vortices along the T
planes occurs under the influence of the Lorentz force c
ponentFc along thec axis.

The slope angle of theE(J) curves increases with in
creasing temperature~see Fig. 5a!. This indicates that when
the experimental data are described by the exponential
pendence~1! the productU0Jc

1/2 increases with decreasin
temperature. The value ofJc can be determined in th
Bardeen–Stephen model, as was proposed in Ref. 22.
suming that the differential electrical resistivityrd[dE/dJ
at J5Jc is equal to the viscous drag of the magnetic fl
flow in the Bardeen–Stephen model,rBS5rNB/Bc2(a),23

we determine the value ofJc by extrapolating the ratio
rd /rBS to unity. HererN is the resistivity of the sample in
the normal state, andBc2(a)5F0 /(4pj2«a) is the mag-
t

.
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netic induction at the upper critical field. The curves
rd(Ji)/rBS are plotted in the inset of Fig. 5b, and their e
trapolation to unity givesJc54.53104, 33104, and 23104

A/cm2, respectively, atT582, 84, and 85 K. If the experi-
mental data are interpolated according to Eq.~1! with these
values of the critical current substituted in, we obta
U0 /kBT51.3, 1.2, and 1.1, respectively, atT582, 84, and
85 K. These values agree with the resultU0 /kB5140–160
K obtained24 in the collective pinning theory from measure
ments of the relaxation of the magnetization over a w
temperature range (3 K,T,80 K!.

As the magnetic field and anglea are increased, as ca
be seen in Fig. 5b and 5c, in the region of low transp
currents one observes a deviation from the universal cu
At currentsJ,Jb the electric field decreases rapidly wit
decreasingJ, and the crossover currentJb and slope of the
E(J) curves increase with increasing magnetic field a
anglea. These trends agree with the predictions of the c
lective pinning theory for a transition from single-vortex
flux-bundle creep. Indeed, according to relations~3a! and
~3b!, with increasing magnetic field and anglea the cross-
over current increases quite rapidly and the activation ene
decreases slowly. The transition from single-vortex creep
flux-bundle creep as the magnetic field is increased is
cussed in detail in Ref. 22. The experimental data prese
in the present paper, however, indicate that this transi
also occurs with increasing anglea at a constant value of the
magnetic field.

In addition, we note that the scaling of the I–V chara
teristic in the coordinatesE/(H«a) –J21/2 observed at high
transport current densities and in magnetic fields at leas
to 2.5 kOe attests to the fact that atT584 K the motion of
the magnetic flux along theab plane is suppressed, and d
rected motion of the magnetic flux along the TB planes ta
place. However, as the temperature is increased (T586.7 K!
the ratio E/H at high transport currents increases with i
creasing magnetic field forH>0.9 kOe~Fig. 6!. The most
probable cause of the breakdown of the field scaling of
I–V characteristic at high current densities is a decreas
the pinning force on the vortex segmentsL tr at high tempera-
tures. Because of this, the lengthL tr of the trapped segment
and, accordingly, their contribution to the pinning force
relatively low fields are rather large, so that the creep alo
the ab plane is suppressed, and directed motion of the m
netic flux along the TB planes takes place. As the magn
field is increased, however, the length of the trapped s
ments decreases,L tr}a0}H21/2 ~Ref. 16!, and their contri-
bution to the pinning force also decreases. This leads to
pinning of the vortex segments from the TB planes a
hence, to additional creep of the magnetic flux along theab
plane, and that increases the electric field.

High magnetic fields

Let us now turn to an analysis of the experimental d
obtained in magnetic fields of 5 and 15 kOe. AtH55 kOe
and a.15° theE(J) curves are shifted to higher transpo
currents with increasinga. In addition, at angles in the in
terval 20°<a<30° the slope of the I–V characteristics in
creases rapidly. The increase in slope and the shift of
curves to higher transport currents can be explained in
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framework of the collective pinning theory by a transitio
from single-vortex creep to flux-bundle creep. Indeed,

FIG. 5. Angular scaling of the I–V characteristics in a field of 0.5 kOe
the angle interval 20°<a<85°. The inset shows the configurational stru
ture of the flux line in a magnetic field tilted with respect to the planes of
twin boundaries~a!. Angular scaling of the I–V characteristic in a field o
1.5 kOe in the angle interval 20°<a<70°. The inset shows the curren
dependence of the differential electrical resistivity normalized to the va
of the viscous drag of the flux flow in the Bardeen–Stephen model~b!. The
I–V characteristics normalized to the value of the magnetic fieldE
3(H* /H), whereH* 51 kOe!, at T584 K anda545° for various mag-
netic fields~c!.
-

cording to relations~2c! and ~2d!, the crossover currentJb

}«a
0.7 and the slope of the I–V characteristic at currentsJ

,Jb , viz., g}Jb
2.5U0}«a

1.65, increase with increasinga.
However, quantitative estimates have shown that they
crease faster than they should according to relations~2c! and
~2d!. This is apparently due to the circumstance that it is
this region of angles that the pinning of the vortices on T
begins to play a role, and Eqs.~3a! and ~3b! were obtained
on the assumption of pinning at point defects. The contri
tion of the pinning on twins leads to additional growth of th
critical currentJc and, hence, of the crossover currentJb and
slope of the I–V characteristic. We note in addition that t
idea that flux-bundle creep is realized in the angle reg
25°<a<40° is also indicated by the increased value of t
exponent obtained,m>5/2, which is the value predicted fo
the creep of small flux bundles.

In a magnetic field of 5 kOe at anglea>acr(5 kOe)
>30° the positive curvature exhibited by the I–V charact
istics in the coordinates logE–logJ at large values of the
transport current gives way to negative curvature at low v
ues of the transport current~see Fig. 1b!. As the anglea is
increased further (a.40°) the negative curvature is ob
served throughout the entire interval of transport curre
studied, and the slope of the I–V characteristic decrea
with increasinga. In a magnetic field of 15 kOe the trans
tion from negative curvature to positive occurs at sma
angles~for a>acr(15 kOe)>10°), and the slope of the I–V
characteristic fora.acr also decreases with increasinga. In
the region of negative curvature, theE(J) curves measured
in magnetic fieldsH55 and 15 kOe are close to bein
straight lines if they are plotted in the coordinates log(E/J)
–J1/2 ~Fig. 7!. This means that the experimental data are w

e

e

FIG. 6. I–V characteristics atT586.7 K anda545° in various magnetic
fields, normalized to the value of the magnetic field and plotted in
coordinatesE–J25/2 andE–J21/2.
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FIG. 7. I–V characteristics~in the coordinates logE/J–J1/2) at T584 K for different anglesa andH55 ~a! and 15 kOe~b!. The current dependence of th
differential electrical resistivity for the I–V characteristics normalized to the value of the viscous drag of the flux flow in the Bardeen–Stephen mel, at
different anglesa ~c,d!.
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described by the relation predicted for the creep of dislo
tions of the vortex lattice:7,25

E~J!5r0J exp$~2U0 /kBT!@12~J/Jpl!
1/2#%, ~4!

wherer0 is a constant andJpl is the critical current corre-
sponding to motion of the dislocations of the vortex lattic
For this creep mechanism the activation energy in a magn
field Hic is given by the relationU0'««0a0}H21/2 ~Ref.
26!, where «05(F0/4pl)2, with l being the penetration
depth for the field orientationHic. Previous measure
ments27,28 in this same single crystal ata545° have shown
that the energyUpl determined in the region of temperatu
and magnetic field in which the I–V characteristics are
scribed by Eq.~3!, does in fact decrease with increasin
magnetic field, a circumstance that also argues in favo
creep of dislocations of the vortex lattice. Thus the resu
-

.
tic

-

of
s

obtained show that the collective~elastic! creep that takes
place at small anglesa become plastic creep at large angl
a.

The angle dependence of the energyU0 when the I–V
characteristics are described by relation~4! can be found
from the experimental curves ofE(J) if the critical current
Jpl is known. For an elastic mechanism of creep the vor
lattice moves coherently, i.e., all of the vortices make a
proximately the same contribution to the energy dissipati
In this case, as we have said, the critical current can
determined by extrapolation of the ratiord /rBS to unity. For
a plastic mechanism of creep involving the motion of dis
cations of the vortex lattice, the main contribution to t
energy dissipation comes from only some of the flux lin
and the fraction that these comprise is dependent on the
sity of dislocations of the vortex lattice. For example, if th
dislocations are inserted into every tenth vortex row, th
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only one-tenth of the vortex lines contribute to the ene
dissipation in plastic creep. It is in fact at values of the d
ferential resistivityrd'0.1rBS that one observes a sharp d
crease of the slope of therd(J) curves~Fig. 7c and 7d!. We
therefore assume that the value of the transport curren
which we haverd /rBS>0.1 corresponds to the critical cu
rent Jpl in the case of a plastic mechanism of creep. T
relatively weak growth of the differential resistivity that
actually observed at transport currentsJ.Jpl is probably due
to the onset of coherent creep of the vortex lattice. T
scenario agrees with the theoretical studies of depinning
an anisotropic charge-density wave,29 which was a prototype
for the depinning of the vortex lattice in the field of a rando
potential. It was shown that as the transport current was
creased, incoherent~2D! creep preceded the coherent~3D!
creep. By extrapolating the ratiord /rBS to 0.1, as is shown
in Fig. 7c and 7d, we obtain the dependenceJpl(a) shown in
Fig. 8a. By substituting the values obtained forJpl into Eq.
~4! and interpolating the experimentalE(J) curves by these
formulas, we arrive at theU0(a) curve shown in Fig. 8b. We
see that the activation energyU0 decreases with increasin
anglea.

The theoretical angle dependence of the activation
ergy during plastic creep can be obtained as follows: ass
that a dislocation is oriented along one of the principal v
tors of the vortex lattice,b1 or b2 ~the lower inset in Fig. 8c!.
Then the activation energy is minimum for the motion
dislocations alongb1 or b2, since the motion in the othe
directions gives rise to additional structural defects of
vortex lattice and therefore requires greater energies.30 We
consider the translation of the vortex segmentL0 by the
minimum intervortex distanceb1 or b2 ~see the inset in Fig
8b!. The energy of such an oblique-angled half-loop can
written in the form U0(a,b)52Uel1A, where Uel

5«b«0Lb is the elastic energy of the vortex segmentLb

making an angleb with the ab plane,31 A is the work nec-
essary for moving the vortex segmentL0 by an intervortex
distanceb1 or b2, and«b5(«2cos2b1sin2b)1/2. A displace-
ment of the vortex segmentL0 by the minimum intervortex
distance is stable ifA'2Uel and, hence,U0'4Uel . If the
plane of the dislocation is oriented along the vectorb1 and it
moves along this direction, then the length of the segm
Lb5a0 /@(«a)1/2sin(a1b)#. Minimizing the elastic energy
Uel(a,b)5«b«0a0 /@(«a)1/2sin(a1b)# yields the relation
tana tanb5«2 between the anglesa and b and the energy
Uel(a)5««0a0«1

21/2. Thus the angle dependence of the a
tivation energy in plastic creep has the form

U0~a!54««0a0«a
21/25U0

c/«a
1/2, ~5!

whereU0
c54««0a0 is the activation energy for the field or

entationHic. This energy is equal, to within a factor of 4
with the value««0a0 obtained previously26 for the activation
energy of the the plastic creep mechanism.

If the plane of the dislocation is oriented along the vec
b2 and the dislocation moves along this direction, then
length of the segment Lb5(a0/2)$@3«a /sin2(a1b)#2

11/«a%21/2. In this case the energyUel(a,b) is minimum if
the segmentLb lies in the plane forming an anglew
5arctan(«2/tana) with the ab plane of the crystal, andb
5arcsin$sinw/@11sin2(a1w)/3«a

2 #1/2%. Here the minimum
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energyUel(a) is determined by the same relation as for t
motion of a dislocation along the vectorb1, i.e., the activa-

FIG. 8. Angle dependence of the critical current corresponding to a pla
mechanism of magnetic flux motion in the framework of the Bardee
Stephen model~a!, and the activation energy for the plastic mechanism
creep. The dashed curve showsUpl determined by relation~5! on the as-
sumption thatUpl(Hic)5Upl(75°), the dotted curve showsU int , and the
solid curve shows the dependence determined by relation~6!. The inset
shows a half-loop in a tilted magnetic field~b!. The angleb formed by the
vortex segmentLb with theab plane versus the orientation of the magne
field for motion of the vortices along the vectorb1 ~1! and along the vector
b2 ~2!. The inset shows a plot ofUpl(a)/Upl(Hic) for a rectangular~3! and
an oblique-angle~4! shape of the half-loop~the inset in Fig. 8b! ~c!.
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tion energy of the creep is also given by expression~5!.
The upper inset in Fig. 8c shows the angle depende

of the reduced energy normalized to its value ata5p/2,
U0(a)/U0(a5p/2)5«a

21/2. In the angle interval 0,a
,p/2 this energy is always less than the ener
U0

r (a)/U0
r (a5p/2)5«a

1/2«b /« obtained28 for a dislocation
moving along the vectorb1 on the assumption that the hal
loop in the inset of Fig. 5 has a rectangular shape, i.e.,a
1b5p/2. The cause of this difference is as follows. T
energyUel is determined by the product«bLb , in which the
length of the segmentLb is minimum, in the case of a rect
angular shape of the half-loop, when the angleb increases
linearly with decreasing anglea. On the other hand, the
linear tension of the flux line is minimum if it is oriente
parallel to theab plane ~for b50) and increases with in
creasing angleb as«b . The competition between these tw
factors leads to the change ofb with a shown in Fig. 9c. We
see that fora.30° the angleb is not more than 3°, i.e., the
segmentLb is nearly parallel to theab plane, and that when
the dislocation moves along the vectorb2 the angleb is
always less than 16°.

For Hic relation~5! gives an energy 4««0a0. Assuming
l(0)>140 nm, l(T)5l(0)/@12(T/Tc)

2#1/2, and «51/6,
we find the values of the activation energy forHic ~left-hand
column of Table I!. The right-hand column gives the exper
mental values of the activation energy obtained for an ori
tation of the magnetic field close to thec axis, a575°. We

FIG. 9. Schematic illustration of the half-loop formed in a magnetic fi
Hic in the case of a plastic creep mechanism in the bulk of the crysta~a!
and near its surface~b! in the absence of randomly located pinning cente
and of a half-loop formed in the bulk of the crystal in the presence
randomly located pinning centers~c!.

TABLE I. Activation energy of plastic creep for variousT andH.

H, kOe T, K

4««0a0 /kB T U0(75°)/kB T

Hic H close to thec axis

5 83.9 63 25
5 85 42 16

15 82 32 6
15 83.9 27 3.3
ce

y

-

see that forH55 kOe andT584 K the experimental value
of the activation energy is approximately twice the theore
cal value. This difference becomes even greater with incre
ing magnetic field and temperature. There are at least th
factors that decrease the activation energy in the case
plastic mechanism of creep which were ignored in the d
vation of Eq.~5!. One of these is the presence of the boun
aries of the sample. For a plastic creep mechanism the el
energy necessary for the formation of a step near the sur
of the sample is one-half as large as the elastic energy
essary for the formation of a half-loop in the bulk of th
crystal. This is because, as can be seen in Fig. 9a and 9
the formation of step near the boundary of an object onl
single vortex segmentLb arises, whereas the formation of
half-loop in the bulk of the sample requires two vortex se
mentsLb . Therefore the activation energy for plastic cre
near the surface of the sample is one-half as large as
value in the bulk of the sample. A second factor that d
creases the activation energy is the presence of point pin
centers, the fluctuations of the density of which lead to c
vature of the vortex lines. Therefore, along the vortex li
there can appear segments for which the length of the vo
segmentsLb is shorter than their length in the absence
point pinning centers. This situation is illustrated schema
cally in Fig. 9c. The experimental studies of YBa2Cu3O72x

single crystals indeed provide evidence that the introduc
of additional pinning centers leads to a decrease in the a
vation energy for a plastic creep mechanism.32 The third fac-
tor decreasing the activation energy is the thermal motion
the vortices. It was shown in Refs. 7 and 28 that as
melting point of the vortex lattice is approached, the activ
tion energy decreases considerably more rapidly with
creasing magnetic field and temperature than the depend
given by expression~5!. When all three of these mechanism
leading to a decrease in the activation energy are taken
account, the difference between the experimental and th
retical estimates seems completely reasonable.

Assuming thatU0
c is equal to the values in the right-han

column of Table I, we obtain from~5! the angle dependenc
of the activation energy shown by the dashed curves in F
8b. We see that the activation energyU0(a) ~according to
the experimental data! increases with decreasing anglea
somewhat faster than the energy calculated according to
~5!. One reason for this difference may be that in derivi
relation~5! we did not take into account the interaction of th
vortex segmentsLb with the neighboring vortices. In the
magnetic field orientationHic the vortex segmentsLb are
orthogonal to the neighboring vortices, and they therefore
not interact with the vortex lattice.19 For any other magnetic
field orientation, however, the projection of the vortex se
ment Lb on the magnetic induction vector,Lb

B5a0«a
1/2/

tan(a1b), is nonzero, and therefore it interacts with th
neighboring vortices. The energy of this interaction is giv
by U int'««0(u/a0)2L ~Ref. 6!, where L is the effective
length of the deformable segments. In the linear approxim
tion the deformationu is proportional toLb

B . Therefore, the
value of the deformation can be written asu5ka0«a

1/2/
tan(a1b), where the coefficientk can depend on the mag
nitude of the magnetic field, and in an anisotropic superc
ductor it can also depend on the orientation of the fie

,
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Assuming, however, thatk51/5 andL5l and that the angle
dependence of the energyU int is mainly determined by the
value of the projectionLb

B , we obtain a dependenc
U int(a)5««0l@«a

1/2/2tan(a1b)#2, which is shown by the
dotted curve in Fig. 8b. The angle dependence

Upl~a!54Uel~a!1U int~a!

54««0@a0«a
21/21k2l«a/4 tan2~a1b!# ~6!

is shown by the solid curves in Fig. 8b. We see that
experimental dependence is well described by relation~6!.

DISCUSSION OF THE RESULTS

In a magnetic field of 500 Oe ata>20° the currentJcE

is increasing. The I–V characteristic is a universal cu
when plotted in the coordinatesE(J)/«a –Ji on the assump-
tion that foru,70° the twin boundaries alter the configur
tional structure of the flux lines~see the inset in Fig. 5a!, and
the vortex segmentsLh are oriented at an angleu>70° to
the planes of the TBs. These feature attest to the fact
u570° corresponds to the critical value. An expression
the critical angle is given in Ref. 16:

ucr>@2ap /«2 ln~a0 /j!#1/2, ~7!

where the dimensionless parameterap5Up /«0 , Up is the
pinning potential at the TB, and«05(F0/4plab)

2. Starting
from the valueucr>1.22 rad and assuming thatj(84 K)
55 nm, we obtainap50.055. This value is approximatel
2–3 time greater than the valuesap>0.026 anda>0.017,
respectively, obtained at low temperatures in experiments
volving decoration of the vortex structure33 and in magne-
tooptical studies,34 and also the valueap>0.023 obtained in
resistive studies of the anisotropy of the magnetic flux cr
near the melting temperature of the vortex lattice.16 This in-
crease in value is possibly due to the different conditions
heat treatment of the single crystals in the oxygen flow a
accordingly, different oxygen content in the bulk of the cry
tals and at the twin boundaries. This conjecture requires
ditional experimental investigation, however.

At anglesu<70° in magnetic fields of 1.5 and 5 kO
one observes a rapid growth of the currentJcE ~see Fig. 2a!,
which apparently is also due to the onset of pinning at
TBs. This assumption is justified because, according to~7!,
the critical angle depends weakly~logarithmically! on the
magnetic field. AtH515 kOe the currentJcE increases with
anglea only ata>75°, i.e.,ucr>15°. Thus relation~7! does
not describe the sharp decrease in the critical angle foH
515 kOe. The cause of this decrease inucr is probably due
to the influence of thermal fluctuations. They substantia
decrease the value of the critical angle near the melting t
peratureTM , which in a magnetic field of 15 kOe in theHic
orientation is approximately 86 K. The value of the critic
angle with allowance for the thermal depinning is given
the expressionucr(T>TM)'ap

3/2«0a0 /(2kBT).16 If one uses
the value ap50.055, this relation gives a valueucr(T
>TM)>26°, which agrees satisfactorily with the valu
ucr(15 kOe)>15° obtained from the experimental data pr
sented above, and also with the valuesucr>15–20° observed
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previously in resistive measurements atH515 kOe and at
temperatures above35 and below14 the melting temperature o
the vortex lattice.

The scaling of the I–V characteristics in the coordina
E(J)/«a–Ji at H50.5 kOe is experimental evidence of th
directed motion of vortices parallel to the TB plane in ma
netic fields tilted with respect to the TB plane. This direct
motion presupposes that the pinning of the vortex segm
L tr in their motion perpendicular to the TB plane is grea
than the pinning force on the vortex segments localized
the TB plane; such an assumption is justified. Indeed,
value ofJcE for the crystal studied here exceeds 34 kA/cm2

at T582 and 83.9 K andH50.5 kOe for the the field vecto
orientationHic. For the motion of the vortices along the T
planes, on the other hand, forT583 K, Hic, and 0.1 kOe
<H<15 kOe, one hasJcE'2.7 kA/cm2 ~Ref. 20!. It should
be noted that forH50.1 kOe the intervortex distance i
equal to the average distance between twins in the crys
under study, each flux line is localized at a TB, andJcE is
governed by the pinning of these vortices. In a magnetic fi
of 15 kOe the intervortex distance is approximately 12 tim
the distance between twins, so that the overwhelming ma
ity of the flux lines are localized off the planes of the TB
Therefore, in high magnetic fieldsJcE is mainly determined
by the pinning of vortices lying off the TB planes by poin
defects. Thus the pinning force on vortices localized at
TBs in their motion perpendicular to the TB plane is mo
than 12 times as large as both the pinning force on vorti
located in the bulk of the crystal and the pinning force
vortices trapped by twins in their motion parallel to the T
plane. We also note that the conclusion that directed mo
of the magnetic flux occurs along the TB planes and, hen
along thec axis of the crystal agrees with the experimen
observations11 of directed motion of the magnetic flux in
magnetic fieldHic, where the vortices were probably mov
ing along the TB planes parallel to theab plane of the crystal
and not along the direction of the Lorentz force.

The strong anisotropy of the pinning of vortices loca
ized at the TBs in their motion perpendicular to and para
to the TB planes is due to different physical mechanisms
formation of the pinning force in the two cases. The pinni
by an ideal~defect-free! twin-boundary plane in the paralle
motion of the vortices is equal to zero, and the pinning d
pends mainly on the interaction of the vortices with po
defects. In the motion of the vortices in the direction perpe
dicular to the TB plane, however, the pinning force is main
due to the suppression of the order parameter at the TB
is given by the relation36

Jc
TB'apJ0 . ~8!

At T584 K the depairing currentJ0'23107 A/cm2, and,
according to relation~8!, Jc

TB5106 A/cm2. Therefore, the
fact that the critical current in magnetic fieldsH<5 kOe
exceeds 3.43104 A/cm2 is completely reasonable. We als
note that in a magnetic field of 15 kOe in the field orientati
Hic the critical current for depinning is approximately equ
to 40 kA/cm2 and is a factor of three greater than the val
Jc513 kA/cm2 at anglesu,ucr , where the value ofJc is
determined by the interaction with point defects. Therefo
assuming additivity of the pinning forces and taking in
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account that in a magnetic field of 15 kOe only every twel
vortex line is localized at a TB, we obtain a critical curre
Jc553105 A/cm2 for the vortices trapped by the TB plane
This value is in satisfactory agreement with the calcula
value 106 A/cm2 determined from relation~8!.

In a magnetic field of 15 kOe in the field orientationHic
the activation energy increases substantially,U0 /kBT>14,
in comparison with its valueU0 /kBT>3.4 obtained for an
anglea575° ~see Fig. 8b!. This increase is possibly due t
the influence of the twins. Indeed, the thermal motion of
vortices trapped by the TB planes is suppressed on acc
of the two-dimensional nature of these vortices,15 and there-
fore the activation energy for the creep of trapped vorti
should be larger than the activation energy of the vorti
localized off the TB planes. Since in the experimental geo
etry the creep is mainly governed by the depinning from
TB planes, the latter should lead to an increase in the a
vation energy determined from the experimental data.

In the experimental geometry under study the tw
should also have a substantial influence on the pinning
dynamics of the magnetic flux in the case when the magn
field vector is oriented close to theab plane. This is becaus
a stepped structure of the flux lines is realized in the reg
of anglesa,«, so that part of a flux line is oriented parall
to thec axis and, accordingly, parallel to the TB planes.
we have said, the evolution of the I–V characteristics w
changes in the magnetic field and anglea in this region of
angles indicates that the magnetic flux creep is mainly g
erned by vortex segments oriented along thec axis, which
move perpendicular to the TB planes. The theory of the c
lective pinning predicts that if single-vortex creep is realize
then the critical current and activation energy for these v
tex subsystems coincide with the critical currentJc

c and ac-
tivation energyUc

c measured in the orientationHic. There-
fore the I–V characteristics in the region of anglesa,«
when plotted in the coordinatesE(J) –sina should coincide
with the plots ofE(J) obtained forHic. Thus angular scal-
ing is in fact observed in the experimental geometry w
Jiab, J'TB, H'J, and a as a variable parameter,20 in
which the vortices move along the TB planes, i.e., the p
ning is governed solely by the interaction with point defec
In the experimental geometry under study, however, the v
tices and vortex segments oriented along thec axis move in
the direction perpendicular to the plane of the TB and, as
have mentioned above, the critical angle in this case
mainly determined by the suppression of the order param
at the TBs. The experimental data obtained in this stu
show that the critical current forHic is substantially larger
than for the orientation of the vortex subsystem along thc
axis. This can be explained by the fact that the cohere
lengthLc

c along the magnetic field direction forHic is sub-
stantially larger than the correlation lengthLc>c0 of the
vortex subsystem oriented along thec axis, wherec0 is the
crystal lattice parameter along thec axis.

The difference of the angle dependences of the curr
JcE measured in different magnetic fields~see Fig. 2! can be
explained as follows. When the magnetic field vector is o
ented close to theab plane, a,«, the flux lines have a
stepped structure~see the upper inset in Fig. 3a!. Analysis of
the I–V characteristics shown in Figs. 3 and 4 indicates t
t
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the vortex segmentsLab are pinned on account of the stron
intrinsic pinning due to the layered structure of the superc
ductor, and the energy dissipation occurs on account of
thermally activated motion of the vortex segmentsLc ori-
ented along thec axis of the crystal. Asa and H are in-
creased, the number of vortex segmentsLc and, accordingly,
the magnetic inductionBc along thec axis also increase
Therefore, for the creep of noninteracting vortex segme
Lc ~which, as we see in Fig. 4b, is realized forH<7 kOe!,
when the velocityv of the vortices is independent ofBc and
a, the electric field increases with increasingH and a: E
5Bcv5Bvsina. This leads to a decrease in the currentJcE

with increasinga and increasing magnetic field strength. A
the magnetic field is increased further,H.7 kOe, a transi-
tion occurs from single-vortex creep to flux-bundle cree
The crossover currentJb corresponding to the transition t
collective creep increases with increasingB ~see Fig. 4b! and
a ~see Fig. 4a!, Jb}Bc

0.7}(B sina)0.7, which leads to an in-
crease ofJcE with the fieldH and anglea.

The experimental data obtained attest to the fact that
u less than the critical valueucr>70°, i.e., fora>20°, the
twin boundaries alter the configurational structure of the fl
lines, as is shown in the inset in Fig. 5a. It turns out that
pinning force on the vortex segmentsL tr trapped by the TB
planes is large for the motion of the segments perpendic
to the TB plane. Therefore, directed motion of the magne
flux along the TB planes occurs under the influence of
Lorentz force componentFc directed along thec axis. Be-
cause the value of the forceFc decreases with increasinga,
at a constant transport current density the velocity of
motion of the magnetic flux and, accordingly, the elect
field E5Bv decrease, and the currentJcE increases.

With increasingH anda in the region of low transport
currents one observes a rapid decrease in the voltage
decreasing transport current~see Fig. 5b and 5c and Fig. 6!.
This behavior can be explained in the framework of the c
lective pinning theory as a transition from single-vort
creep to flux-bundle creep at transport currents less than
crossover currentJb . Indeed, according to relation~2c!, the
crossover current increases with increasing magnetic fi
and anglea, Jb}(«aB)0.7, while the activation energy for
creep atJ,Jb increases rapidly with decreasing current de
sity and increasing crossover current,Ub(a,B,J)
}(Jb /J)5/2}(«aB)7/4J25/2. As a result, asH anda increase,
one observes a rapid decrease of the voltage at a con
current density, and that in turn leads to an increase inJcE .

Analysis of the I–V characteristics measured22 for the
crystal under study in various magnetic fields ata545°
showed that forH>5 kOe the activation energy of collectiv
creep becomes larger than that of plastic creep involving
motion of dislocations of the vortex lattice. This is due to t
difference in the field dependence of the activation energy
increases with increasing magnetic field in the case of c
lective creep, while in the case of plastic creep it decrea
Therefore the collective creep realized in low magnetic fie
gives way to plastic creep in high fields. The experimen
data obtained in the present study show that an analog
crossover also takes place with increasing anglea. Indeed,
the results shown in Fig. 4a and 4b attest to the fact that
activation energy of collective creep increases with the an
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a, in agreement with the collective pinning theory. The a
tivation energy for plastic creep, on the contrary, decrea
with increasing anglea ~see Fig. 9b!, which agrees with the
theoretical estimates made here. Therefore, the trans
from collective creep at smalla to plastic creep at largea
appears completely plausible.

The difference of the angle dependence ofJcE for plastic
creep observed in measurements at fields of 5 and 15 kO
due to the presence of twin boundaries. AtH55 kOe the
twins affect the configurational structure and pinning of t
vortices for a>20°, which leads to growth of the critica
current for depinning with increasinga, since the length of
the vortex segmentsL tr trapped by the TB planes increas
continuously with increasinga. Despite the decrease in th
activation energy with increasinga, the growth of the criti-
cal current for depinning turns out to be dominant, since
measured currentJcE increases with increasing anglea. For
H515 kOe, because of thermal depinning, the influence
the twins is felt only fora>75°. Therefore, the activation
energy and critical current for depinning, respectively, a
the measured currentJcE decrease with increasing anglea
up to 75°. Fora>75° the presence of the twins comes in
play, so that the activation energy, critical current for dep
ning, and measured currentJcE increase with increasing
anglea.

CONCLUSIONS

1. The experimental data presented here attest to the
that twin boundaries influence the configurational struct
and pinning of vortices at misorientation anglesu between
the magnetic field vector and the planes of the TBs of up
70°. We have shown that at anglesu,70° the configura-
tional structure of the flux lines proposed in Refs. 16 and
is realized, so that a part of each flux line is pinned by
planes. Because of the strong pinning of the trapped s
ments with respect to their motion perpendicular to the pl
of the TB, the motion of the flux lines along theab plane is
suppressed, and only motion parallel to the TB plane
occur; this leads to motion of the magnetic flux along thc
axis of the crystal. As the magnetic field is increased, i.e.
the melting point of the vortex lattice is approached, a th
mal depinning of the trapped vortex segments occu
sharply decreasing the region of anglesu<15° in which the
TBs influence the configurational structure and pinning
the flux lines.

2. We have shown that the activation energy for a pla
mechanism of creep increases as the magnetic field vect
rotated away from thec axis toward theab plane, in agree-
ment with the theoretical estimates made; in the case of
ning at point defects, the critical current corresponding to
motion of dislocations of the vortex lattice decreases w
increasing deviation of the field vector from theab plane. In
the region of angles for which pinning on TBs plays a su
stantial role, the critical current increases as the field ve
is rotated away from theab plane toward thec axis.

3. In the region of anglesa,«, in which an important
role is played by intrinsic pinning, increasing the magne
field leads to crossover from single-vortex creep to flu
bundle creep. The experimental data obtained show that
transition takes place in the vortex subsystem oriented a
-
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thec axis of the crystal. A consequence of this crossover
change of the angle dependence of the critical currentJcE

and a change of the usual maximum on theJcE(a) curve
~observed in the field orientationHiab in low magnetic
fields! to a minimum at high magnetic fields.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Optical functions of the Drude model: transformation of the spectra over wide ranges
of parameters
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The spectral features of the optical functions of the Drude model are investigated over wide
ranges of parameters — the plasma frequencyvp of the current carriers, their transport relaxation
frequencyg, and the dielectric constant«` due to high-energy electronic transitions in the
system. The conditions are determined for: a! the square-root frequency dependence of the
modulus and phase of the reflection; b! linearity of the phaseu52v/vpA«`1u0 ; c! the
existence of a plasma reflection edge. Approximate relations are obtained which permit simplifying
the analysis of optical reflection and electron characteristic energy loss data both in ‘‘good’’
metals and in materials with a strong temperature dependence of the electrical conductivity
~semiconductors, doped and nonstoichiometric oxides, granular metal films, and amorphous
alloys!. The parameters of the systems of conduction electrons in Al and U2Zn17 are determined.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1355519#
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With the intense development of microelectronics in t
final quarter of the twentieth century, the problem of contr
ling the electrical conductivity of matter over a wide range
temperatures has become increasingly urgent. The exten
use of semiconductors, including magnetic ones, and the
covery of high-Tc superconductors has raised the level
interest in the study of the electronic systems of these m
rials by optical methods.

The interpretation of the results of optical measureme
of conducting objects is most often done using the so-ca
Drude model, which, despite its outward simplicity, requir
an attentive approach to the analysis of individual spec
intervals. In general, the search for the optimal interpreta
of the data of optical studies is complicated by the fact t
the number of parameters is not small~there are three in the
expanded model: the plasma frequencyvp of the current
carriers, their transport relaxation frequencyg, and the di-
electric constant«` due to the polarization of the atomi
cores! and by the large number of optical functions used~the
real «1(v) and imaginary«2(v) components of the dielec
tric function, the modulusr (v) and phaseu(v) of the opti-
cal reflection, the optical conductivitys(v), the energy loss
functionL(v), etc.!, which have different sensitivities to th
individual parameters of the Drude model and their com
nations. This is especially noticeable when comparing
results obtained by different authors using different te
niques over wide ranges of parameters, primarily ofg andvp

~metal–insulator transitions in crystals1,2 and amorphous
materials,1,3 systems exhibiting the giant magnetoresistan
effect,3–7 etc.!.

Large changes of the electrical conductivity of a su
stance may be a consequence of qualitative changes in
conduction mechanism, which are radically reflected both
2161063-777X/2001/27(3)/12/$20.00
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temperature and field effects and in the spectral behavio
the optical functions.3,8 Knowledge of the corresponding fea
tures deriving from the Drude mechanism of conduction c
make it easier to correctly separate out the different con
butions to the optical characteristics. Because of the need
such an analysis, in this paper we address the problem
determining the basic regularities of the spectral behavio
the optical functions of the Drude model and their transf
mation upon changes in the parameters of the model o
wide ranges of values.

DRUDE MODEL

In 1900 Drude published two papers9 on the electronic
theory of metals in a free-electron model approximation, la
ing a foundation for explaining the optical properties of m
als and other conducting materials~those papers are dis
cussed in detail in the monograph by Lorentz10!. In the one-
hundred years since that time the electronic theory has b
developed, become quantum,11 and been supplemented wit
the concepts of numerous quasiparticles. Nevertheless
purely classical Drude model is still being used successf
to explain many new results.12

Since the beginning of the widespread study of t
physical properties of semiconductors, the Drude model
become an important tool, often the main tool, for studyi
their low-frequency optical absorption due to the curre
carriers.13–15 Here the complex interaction of the set of itin
erant electrons with the atomic cores can often be taken
account simply by introducing an effective massm* and the
sign of the carrier charge. It is appropos to note that in
theory16 Drude also proposed the existence of two types
carriers with additive contributions to the absorption, in
© 2001 American Institute of Physics
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sense foreseeing the discovery of semiconductors and im
tance of his model for studying them.

The next peak in the demand for the Drude model ca
with the discovery of high-Tc superconductors~HTSCs!, for
which some form or other of the Drude model is employed
the majority of papers to interpret the results of optical st
ies in the infrared. For example, in Ref. 17 three Drude
rameters were determined for YBaCuO by fitting the refl
tion curve in the interval 1 eV,E,1.9 eV, and in Refs. 18
and 19 this interval was extended to 3 eV and then, in R
20, to 5.6 eV~in Refs. 19 and 20 the anisotropy of the optic
characteristics was studied!. Because of the low concentra
tion of carriers, the infrared spectra of HTSCs can disp
phonon peaks, and the visible spectra have strong band
interband transitions. In such cases an adequate descri
of the observed spectra is most often achieved by sup
menting the Drude model with Lorentzian oscillators,21–24

although in some papers modifications of the Drude mo
with an increased number of parameters are employed;25–27

the Drude model for a normal metal is organically relate28

to the Mattis–Bardeen model29 of a superconductor. There i
no denying the productivity of the Drude model in studies
promising new conducting materials, in particular, of stru
tures with metallic layers of nanometer thickness, man
nites,3,4,6,7and systems with correlated electrons.30

The expressions obtained in the framework of the Dru
model for the real part of the dynamic dielectric functio
«1(v) and the dynamic conductivitys(v) are known as the
Drude–Zener formulas,11 the Drude–Lorentz1! formulas,12

and the Kramers–Kronig relations:15

s~v!5
Ne2

m*

g

v21g2
5

g2

v21g2
s0 ,

~1!

«1~v!5«`2
4pNe2

m*

1

v21g2
5«`2

4pg

v21g2
s0 ,

whereN ande are the concentration and charge of the c
rent carriers,s0 is the static conductivity, and the plasm
frequency is given by the relationvp

254pNe2/m* «` . From
now on we will drop the explicit indication of the frequenc
dependence of the optical functions in those cases where
obvious.

Relations~1! allow one to express in terms of the Drud
model parameters«` , g, and s0 ~or «` , g, and vp) the
frequency dependence of the optical constantsn and k («1

5n22k2, 4ps/v5«252nk) and of all the other optica
functions. Forv,vp the optical transparency of conducto
is negligible, and so one most often studies experiment
the energy coefficient of reflectionR5u r̂ u25r 2 ( r̂ 5re2 iu is
the complex amplitude of the reflection coefficient, andu is
the change in phase of the light wave on reflection!,11,13,14

and the characteristic electron energy loss in their pass
through thin slices of a substance,32,33 and the photoelectron
spectra.34 The electron energy loss function is related to t
dynamic dielectric function of the system by the relati
L5«2 /(«1

21«2
2). It can also be measured by purely optic

methods, by exciting plasma oscillations of the electrons
or-
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the p component of the polarization of an electromagne
wave in the case of oblique incidence of the latter on
reflecting surface of a thin metal film.35

The expressions forn and k ~and, even more so, thos
for R, r, andu) obtained from~1! are rather awkward and ar
amenable to analytical study only after substantial simp
cations, usually involving the approximation of low~or high!
frequencies in comparison with the values ofg or vp . In the
present study, the use of numerical methods for finding
teria of applicability of these simplifications in the region
intermediate frequencies and also for studyingL, R, and u
directly at values of the ratiow5g/vp in the interval 0–10
has made it possible to obtain a number of approximate
lations between the parameters of the Drude model and
characteristic features of these functions, in particular, for
upper boundary of the region of the square-root freque
dependence of the modulus and phase of reflection~the
Hagen–Rubens region36!, for the region of phase linearity
observed at low frequencies,2! for refining the concept of the
plasma reflection edge, and for determining the characte
tics of the reflection minimum that is formed~for «`.1)
beyond the plasma edge.

MAIN SPECTRAL INTERVALS

Figure 1a, b, and c shows the spectra of the reflec
coefficientR and its phaseu, calculated at«`54/3, 4, and
20, respectively, and forw5g/vp50.001 ~solid curves!,
w50.1 ~dashed curves!, and w51 ~dotted curves!; the
curves in Fig. 1a~for w<0.1) are typical for ordinary metals
those in part b for HTSC materials, and those in part c
semiconductors. The chosen horizontal scale makes it
sible to represent all frequencies from 0 to` by substantially
compressing the region (;3vp ,`), which is relatively un-
informative for the Drude model.

Usually in the Drude model one singles out three or fo
characteristic parts of the spectrum, ignoring the question
the boundaries between them:v!g, g!v!vp , v;vp ,
and v.vp ~Refs. 11–14 and 36!. In the present paper we
consider in the given case («`.1) five characteristic spec
tral regions, the boundaries between which will be det
mined below: 1! the Hagen–Rubens region, 2! the region of
linearity of the phase, 3! the neighborhood of the plasm
reflection edge, 4! the neighborhood of the reflection min
mum, 5! frequencies substantially higher than the frequen
of the reflection minimum.

The frequency dependence of 12r andu in the Hagen–
Rubens region is the same. On the whole, the reflection
creases monotonically fromR(0)51 to a minimum value
Rmin5R(vmin) for «`.1, then increases toR(`), while u
increases monotonically fromu(0)50 to a maximumumax

~at smallg this is most likely a plateau!, after which it falls
off to u(`)50. If the relaxation frequency is not too hig
~up tow;0.01–0.1), the widthDvmin of the reflection mini-
mum, determined at the levelR52Rmin , is approximately
equal tog, while the width of the phase plateauDvu , which
we find as the difference of the frequencies of the maxim
rates of rise and fall, increases without bound as«`→1 and
decreases to zero as«`→`, assuming the valueDvu5vp at
«`54/3.
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For g!vp the Drude model gives the following
asymptotic expressions for the different characteristics of
optical functions near and above the plasma frequency:

Dvu.vp@A«` /~«`21!21#, umax.p; ~2a!

vL.vb.v«.vp , Lmax.vp /g«` ,
~2b!

DvL.Dvmin.g,

Rmin.
g2~«`21!3

16vp
2«`

, vmin.vpA«` /~«`21!, ~2c!

R~`!.
~«`

1/221!2

~«`
1/211!2

. ~2d!

FIG. 1. Spectral dependence of the reflection coefficientR and phaseu for
variousv: 0.001~solid curves!, 0.1 ~dashed curves!, 1 ~dotted curves! and
«`54/3 ~a!, 4 ~b!, 20 ~c!, and the values ofLw«` for different values ofw:
0.01 ~1!, 0.1 ~2!, 1 ~3!, 2 ~4! ~d!.
e

Herevb is the frequency of the maximum rate of rise of th
reflection ~i.e., the inflection point ofR(v): d2R/dv250,
d3R/dv3.0 for v5vb), which is natural to call the plasm
edge or threshold of reflection,v« is the frequency at which
the dielectric function goes to zero,vL , Lmax, andDvL are
the position of the maximum of the loss function, its val
there, and the width of theL peak at half maximum, respec
tively.

SCATTERING OF THE CURRENT CARRIERS

The region of the square-root frequency dependence
the reflection~the Hagen–Rubens region! is governed by the
scattering of current carriers upon the breaking of the tra
lational symmetry of the system. This part of the spectr
begins atv50 and extends~within certain error limits! to a
certain boundary frequencyvH2R . For v→0 this depen-
dence is also inherent to the inverse optical constantsn21

.k21.(v/2ps)1/2, the absorptivity A.12R.(2v/
ps)1/2 ~Ref. 11!, the amplitude coefficient of reflection
r .12(v/2ps)1/2, and the phaseu.(v/2ps)1/2; these last
two satisfy relations of the type

r ~v!1u~v!.1, v,vH –R . ~3!

We note that in the expressions given here one can take
the conductivity its value in the static limits0, since for
v→0 we have s.s0(12v2/g2), and in the Hagen–
Rubens regionv2/g2!1. Our detailed analysis will be lim-
ited to the complex reflection, sinceR is a directly measur-
able optical function~and over a wide spectral region it i
often the only one!, and its phaseu is of interest, in particu-
lar, in connection with the problem of the high-frequen
extrapolation ofR in determining the optical functions o
conductors by the Kramers–Kronig method.

Analysis of the spectral dependencer̂ (v) for different
metals, calculated from the known experimental values
their optical constants,37 has shown that at the low-frequenc
boundary of the data used,v'0.05–0.10 eV, the Hagen–
Rubens region has not yet been reached, and the spe
dependence ofu exhibits a rather extended (0.1 eV,v,1
eV! linear region with one or two kinks, which will be dis
cussed below.

Upper boundary of the Hagen–Rubens region

The upper boundaryvH2R of the Hagen–Rubens regio
is naturally defined as the frequency at which the relat
deviation d of the curve of 12r (v) from the square-root
dependence (v/2ps0)1/2 reaches a certain specified value~in
this paper we taked50.01). This boundary will obviously
depend ong, and it is clear that the boundary frequenci
will be different for the other functions mentioned whic
have analogous spectral behavior forv→0. We shall con-
sider these frequencies in parallel forr andu, denoting them
for arbitrary values ofg asv r andvu , respectively~see Fig.
2a!. An analysis shows that the boundary frequency for
phasevu is directly proportional to the values ofg andd up
to values of the deviation;10% or more, with a coefficien
of proportionalitypu(w,«`):

vu5pu~w,«`!gd, ~4a!
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whereas the dependence ofv r on d remains substantially
nonlinear even at very small dimensions (d;1024), i.e.,

v r5pr~d,«` ,w!gd. ~4b!

Furthermore,pr is much more sensitive thanpu to changes
in «` and w5g/vp . This is clearly seen on thepr and pu

curves obtained for«`54/3, 4, 20, and 56~curves1–4 in
Fig. 2b, respectively!; all of the functions were calculated fo
values of the deviations ofr and u from the square-roo
behavior at the 1% level. In general the upper boundary
the Hagen–Rubens region forr is always lower than foru
~for w;1 it is an order of magnitude or more lower!, but for
valuesw<0.01 andd50.01 the coefficientspu and pr are
practically equal and have a value;2, i.e., in this case,
independently of«` , we have

v r5vu5vH –R50.02g~w<0,1, d50.01!. ~4c!

Let us use relation~4c! as the general definition of th
upper boundary of the Hagen–Rubens region for the c
plex reflection coefficient. It is valid, first, for various meta
in which for 0.001 eV,g,0.3 eV the plasma frequencyvp

varies from;3 eV ~Cs! to ;15 eV ~Al ! and, accordingly,w
does not exceed 0.1. However, it can also be valid in se
conductors and in oxide superconducting materials. The
of Eq. ~4c! in these cases leads to estimates of the abso
value of v r and vu ~at the adopted level of deviationd
50.01) which are equal in order of magnitude to 1023 eV;
this is the region of millimeter waves, which are more pe
nent to radiophysics than to optics. At the same time,

FIG. 2. Spectra of the quantities (w/2ps)1/2 ~middle curve!, 12r ~dashed
curve!, andu ~upper curve! in the Hagen–Rubens region forw50.17 and
«`52 (v r andvu are the boundaries of this region forr andu at a tolerance
level d51%) ~a!; the dependence onw and«` of the coefficientsPr andPu

that determine the values ofv r andvu in Eqs.~4a! and~4b! ~the Pr andPu

are numbered from1 to 4 for «`54/3, 4, 20, and 56, respectively! ~b!.
f
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poor metals and other conducting materials withw.1 the
Hagen–Rubens region extends to the near-IR and even to
visible, but here the relationv r5vu no longer holds.

REGION OF PHASE LINEARITY

Frequency dependence of the phase of the reflectio
the form of straight~sometimes broken! lines is often ob-
served on the experimental curves for metals in the opt
region of the spectrum~Fig. 3! and can be explained com
pletely in the framework of the Drude model: a dependen
close to linear also exists at the transition from a conv
shape of theu curve for v→0 to a convex shape nearvp

~see Fig. 1!. One is interested in the extent of this segme
and the presence of kinks. We define the lowervL1 and
uppervL2 boundaries of this region of linearity like we di
for the Hagen–Rubens region, as the frequencies at w
the deviation of the phase from its rectilinear approximat
reaches 1%. For all the metals considered the linear-ph
region is contained inside the region

k2~v!/n2~v!@1, ~5!

and the use of this inequality together with the Drude–Ze
formulas~1! gives a correct expression for the slope of t
linear segment of the phase. A more detailed analysis un
the conditiong2!v2!vp

2 yields the initial ordinateu0 of
the desired straight line:

u52v/vpA«`1u0 . ~6!

The constantu0 determined by the Drude parameters is po
tive and smaller in size~of the order of 1023 rad! than the
error limits for the experimental determination of the pha
at the same time, it is extremely sensitive to the lo

FIG. 3. Regions of nearly linear dispersion of the phase of reflection for
metals: Ni~1!, Ag ~2!, Au ~3!, W ~4!, Pt ~5!, and Al ~6! ~the phasesu are
calculated from the data of Ref. 37 for the optical constants!.
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frequency absorption bands, so that an experimental v
u0.;1022 ~or u0,0) can be indicative of the presence
such bands.

The real region of practically linear dispersion of th
phase is quite wide~even ford;1%). Analysis shows that
for values ofw up to;0.01 ~i.e., for the majority of metals!
vL1 is directly proportional to the collision frequencya,
while vL2 is proportional to the plasma frequency~see Fig.
4!:

vL1. l 1g, l 15const53.40, vL2. l 2vp ,
~7!

l 25 l 2~«`!.~«`10.68!/12.5«` .

As w is increased from;0.01 to;0.1 the linear-phase re
gion decreases in size by almost a factor of three, while
coefficient of its slope changes insignificantly.

Expression ~6! can be useful, in particular, in
Kramers–Kronig analysis of the reflection spectra of met
where it allows one to obtain reference values of the ph
for calculating the coefficients of a high-frequency extrap
lation of R; here one uses the known values of the cond
tivity and electron density.

In the spectral region 0.05 eV,v,0.5 eV the fan of
u(v) curves in Fig. 3 can be divided up according to t
number of valence electrons and the values of the pla
frequencies into three mutually nonintersecting narrow p
cils. The spread of the values of the phase in each of
pencils relative to its axis does not exceed;0.01 rad~i.e., it
is of the order of the error in the determination of the pha
in the Kramers–Kronig method!, making it possible to use
those values directly in the absence of conductivity data
the object under study. In a still narrower frequency inter

FIG. 4. Dependence onw of the coefficientsl 1 ~a! andl 2 ~b! that determine
the boundaries of the linear-phase region~7!; curves1–4 are correspond to
the values«`51, 4/3, 4, and 20, respectively.
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(;0.05 eV,v,;0.1 eV! the following approximation re-
lation holds to an accuracy of 0.01 rad for any metal w
g<0.01:

u@rad#;0.30v@eV#, ;0.05 eV,v,;0.1 eV. ~8!

We also note that in the linear-phase region the refl
tion decreases with frequency by a parabolic law, a
the steepness of the fall increases with increasingg; for suf-
ficiently small g the reflection can be considered consta
r .12w/A«`, R.122w/A«`. At the pointvw determined
by the condition R9(vw)50, the difference between
(12R)A«`/2 andw does not exceed 0.01% forw<0.01 and
amounts to;1% for w50.1.

THE ROLE OF THE OSCILLATORY CONTRIBUTION:
DISPERSION OF THE PHASE OF THE REFLECTION FOR
ALUMINUM

In real crystals the linear-phase region also narro
when local bands of interband transitions are superpose
the continuous absorption of free carriers; these local ba
can distort the spectral dependence of the phase as show
Fig. 3. The behavior of the phase for aluminum, the me
studied in the greatest detail in the optical region, is typi
in this regard. For aluminum, with its high plasma frequen
(vp;15 eV!, condition~5! holds up to;0.97vp ~Ref. 37!,
whereas the linear trend of the phase is interrupted
;1 eV<v<;2 eV, i.e., in the region of the intense band
interband absorption with a maximum near 1.5 eV38,39 ~see
Fig. 5!; a much weaker band near 0.5 eV, which is ma
fested as a slight kink ofu(v) at this point, can be observe
on the scale of the figure.

The value ofN/m* ~the ratio of the concentration o
valence electronsN to the electron effective massm* ) cal-
culated from the slopek of the linear part of theu(v) curve

FIG. 5. Influence of interband transitions on the spectral behavior of
phase of reflection for aluminum: the experimental values of the phase (s),
a linear approximation of the latter~– – –!, a model including a Lorentzian
oscillator and a correction for the effective mass after the interband tra
tion ~———!.
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for aluminum is 12.531022 cm23, which agrees with the
value N518.131022 cm23 determined by other method
when the known data onm* are used~values ranging from
1.15 to 1.5 are given in Ref. 40!. The value 2/vpA«`5k
gives k1.0.154 on the segment before the kink on the e
perimentalu(v) curve, andk2'0.145 after the kink~Fig.
5!. The difference in the values ofk before and after the
interband absorption band can be attributed to a differenc
the effective masses in the 3s and 3p conduction bands o
aluminum, at the transition between which a correct
should be made to the slope coefficient of the straight
describing the dispersion of the phase. The values obta
for k1 and k2 give a ratio of the masses for the first an
second straight lines ofm1* /m2* '1.13, so that in units of the
free electron mass one hasm1* '1.45 andm2* '1.28 if a
valueN518.131022 cm23 is taken.

Analysis of the other curves in Fig. 3 confirms the co
clusion reached for Al: local disruptions of the linear trend
u(v) in the linear-phase region of metals are due to quan
transitions of electrons between subbands within the cond
tion band. Here weak transitions lead only to kinks inu(v)
without breaking the monotonic increase of the phase w
frequency, while stronger absorption can give rise to a reg
of anomalous decrease~the extent of which is approximatel
equal to the half-width of the absorption band!, which is
especially large in Pt. Modeling the optical absorption ba
of aluminum by a Lorentzian oscillator of streng
A54pne2/m* .22 eV2 with a frequencyv0.1.53 eV and
a dampingg.0.37 eV gives good agreement with expe
ment ~Fig. 5! when the correction for the non-Lorentzia
shape of the interband transitions is taken into account~the
latter makes it necessary to use a different effective m
after the transition!.

PLASMA REFLECTION EDGE

Let us now discuss the three remaining spectral regi
of the five listed above. In region 5 the reflection is describ
by formula ~2d!, which contains only one Drude model p
rameter,«` , and this is all the information that can be e
tracted in this case. The phase of the reflection at the in
section of regions 3 and 4 is characterized by formulas~2a!,
which containvp and«` , and these can also be used to fi
the Drude model parameters. Usually in region 3 — in the
neighborhood of the frequency of the plasma oscillations
the current carriers — one studies the shape of
reflection13,14 and characteristic energy loss32,41 curves,
which are well described in the Drude model, especially
small ~semiconductors withvp;g and «`;5 –30) or else
large ~metals,«`;1) concentrations of carriers. For the
expressions~2b! and ~2c! were obtained above, which de
scribe the quantities under discussion here in the limit of
ideal metal~i.e., forw5g/vp→0), the maximum of the loss
function L ~2b! and the minimum of the reflectionR ~2c!,
and also the position of the plasma edgevb and the fre-
quencyv« at which the dielectric function goes to zero~2b!.

Frequency derivatives of the reflection

For the frequenciesvb andv« expressions~2b! hold to
an error of less than 1% all the way to valuesw;0.15, and
on further increase ofg both frequencies rapidly decreas
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this, by the way, is what limits the similarity of their depe
dence on w. The ratio v«(w)/vp approaches unity as
v→0 and, independently of the values ofvp and «` , it
decreases monotonically to 0 asw→1, describing a regular
circle:

v«~w!/vp5~12w2!1/2, 0<w<1. ~9!

The position of the frequencyvb ~its ratio to vp is
shown in Fig. 6 for the values«`51, 4, and 25! depends on
w in a more complicated way which, moreover, is differe
for different «` and coincides with the plasma frequen
only for g50. With increasingg the value ofvb /vp ~see the
inset in Fig. 6! initially increases, passes through a sm
maximum ~the height and position of which are inverse
proportional to the value of«`), and then decreases mon
tonically and loses meaning atw5wlim ~the inflection point
vanishes because of a transformation of the reflection
shape!. In general the relation betweenvb /vp and w de-
pends weakly on«` and is approximated to an accuracy
;5% by the quadratic dependence

vb /vp.12w2/2, 0,w,;0.7. ~10a!

In turn, the dependence ofwlim on «` shown in Fig. 7 is
nontrivial: in the ‘‘good’’ metal region («`;1) wlim falls
from .0.734 at«`51 to a minimum value.0.724 near
«`51.25, and then it increases monotonically as«` is in-
creased further. Starting at«`;2 –3 and above,wlim(«`)
satisfactorily obeys the logarithmic law~see Fig. 7!:

wlim~«`!.0.108 ln«`10.734. ~10b!

We note that atw5wlim a spectral region of linear behavio
of R(v) appears, the extent of which can reach 2vp/3 or
more ~at the61% level!, and extrapolation ofR to zero~at
the pointv5v* ) yields the plasma frequency~to an accu-
racy ;1% for «`,;4) as

FIG. 6. Dependence onw of the frequency position of the plasma reflectio
edgevb . Curves1–3 correspond to the values«`51, 4, and 25, respec-
tively, and curve4 is the approximationvb /vp512(w2/2).
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vp.0.9v* . ~10c!

For practical use it is more convenient to make use of a
observed in an analysis of the spectral dependence of
second derivatived2R/dv2, viz., that the frequencyvd2R of
its maximum is close to the plasma frequency:

vp.vd2R ; dmax;5%, 0,w,;0.7. ~10d!

Thus, by using expressions~10a!, ~10c!, and~10d!, one can
determine the parametersvp andg with an acceptable maxi
mum error of ;5% from measurements of the reflectio
near the plasma reflection edge.

Energy loss function

For the energy loss functionL(v) the difference be-
tween the frequencyvL of the maximum andvp is not more
than one percent at values beloww;0.3 ~and it does not
exceed 13% forw;1). The half-width and especially th
maximum value ofL are even less dependent onw: for them
formulas ~2b! hold to an accuracy of one percent belo
w;0.4, and even atw51 the deviation is less than 11% fo
DvL and 7% forLmax. Thus formulas~2b! describe the pa-
rameters of the loss function to high accuracy for ‘‘good
metals~for which w;0.01; Ref. 11!, while for processing
the spectra of certain alloys and other ‘‘poor’’ metals and
semiconductors they can only be used to make prelimin
estimates. In such cases a substantial~by orders of magni-
tude! improvement in the accuracy can be achieved by tak
the dependence ofvL , DvL , and Lmax on w into account
even in a simple parabolic approximation of the form

F~w!5F~0!~11w2/a!, ~11!

wherea has values of28, 224, and 15 forvL , DvL , and
Lmax, respectively; they hold to an accuracy of;0.1% ~Fig.
8! in the case ofvL andLmax for w in the range from 0 to 1

FIG. 7. Dependence on«` of the limiting valuewlim for the existence of the
plasma reflection edge.
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and above, but only tow;0.3 for DvL . This last circum-
stance is due to the fact that asw increases, the plasma pea
shifts toward zero frequency, which limits the broadening
its low-frequency wing, and the peak becomes asymmetri
a result ~the width DvL is treated as the sum of a low
frequency partD2 and a high-frequency partD1.D2 at
half maximum!. Here it turns out that for 2D1(w) an expres-
sion of the form~11! with a.224 holds to an accuracy o
0.1% to a valuew;1, i.e., an accuracy no worse than forvL

and Lmax. As a result, we obtain a system of equations
lating the Drude parameters and the shape of the experim
tal L(v) curve to a rather high accuracy~of the order of
0.1% forw<1):

vL~w!>vp~12w2/8!,

Lmax~w!>~11w2/15!/w«` , ~11a!

2D1~w!>g~12w2/24!, 0,w,1.

The first and last of Eqs.~11a! contain onlyvp and g as
unknowns, so that one can eliminateg and solve the remain
ing equations numerically.

For w.1 the accuracy of the simple formulas~11a! be-
comes lower, although it remains better than 1% up
w;1.5. As we see in Fig. 1, in contrast to theR and u
curves, whose shapes become smeared forw;1 ~especially
in the case«`.2), theL(v) peak remains well delineated
Because of this, one can extract information from it ev
abovew51, although there it, too, suffers broadening, a r
shift, and an increasing asymmetry. A technique for obta
ing the parameters of the electronic system of conduc
from the data of measurements ofvL , Lmax, and D1 for
w.1 is described in Appendix I~see also Fig. 9!.

FIG. 8. Dependence onw of the loss function parametersvL , DvL , 2D1,
andLmax ~curves1, 2, 28, 3, respectively! for the interval 0.1<w<10; the
ratios of these quantities to their values from Eq.~2b!. The solid curves are
calculated by the Drude formulas, the dashed curves show an approxim
according to~11a!.
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Reflection minimum

For determining the parameters of the Drude model i
of primary interest to use the characteristics of the reflec
minimum above the plasma edge,wmin , Rmin , andDvmin ,
since they are relatively amenable to measurement. H
ever, it turns out that they remain equal~within limits of
;1%) to the values from expressions~2c! and ~2b! only to
w;0.01, above which the value ofg depends substantiall
on bothw and «` ; this complicates the problem conside
ably and lowers the accuracy of the calculations in comp
son with analysis of the loss peak. From Fig. 10, wh
shows the behavior of the ratiosvmin /vmin(0) andDvmin /g
and of the minimum reflectionRmin with increasingw for
values of«` from 1.05 to 36, we see that all of these entiti
increase both withw and with«` : Rmin tends to a valueR` ,
while vmin and Dvmin increase without bound (Dvmin(w)
has vertical asymptotes atw5W(«`). In contrast to the loss
function, the shape of theR(v) curve even atw;1 has
become too smeared to permit experimental processing~see
also Fig. 1!, so that it makes sense to restrict the analysis
the latter to values beloww51. For metals, HTSCs, an
other conductors with«` below ;4 the dependence on«`

can be eliminated almost entirely by constructing the cur
of Dvmin /g and Rmin(w)/R` as functions ofw(«`21)1/2,
and ofvmin(w)/vmin(0) ~with greater error! as a function of
w@(«`21)/(«`11)#1/2 ~Fig. 11a and 11b and Fig. 12, re
spectively!.

The shape of the reflection minimum even at small v
ues ofg has a strong asymmetry~see Fig. 1!, from an analy-
sis of which one can obtain additional information about
Drude parameters and use this information in calculat
them. For example, it has been found that over a wide in

FIG. 9. Interrelationship between the asymmetry parameterD1/D2 of the
peak of the characteristic loss functionL(v) and the quantityw5g/vp

~solid curves! and its approximation by expressions~AI.2! ~the dashed
curve, which is practically coincident with the solid curves on the scale
the figure!.
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val of values of «` ~from 1 to ;4) the productw(«`

21)1/2 is uniquely determined by the ratio of the high
frequency componentDmin

1 of the width of the reflection
minimum to the low-frequency componentDmin

2 ~Fig. 11c!.
Moreover, the observed dependence can be expressed
lytically ~with an average error of,4%) as

w~«`21!1/2.1.17@~x21!/~x10.1!#4/3,
~12!

x5Dmin
1 /Dmin

2 ~1.1,x,30!.

A technique for determining the Drude model para
eters from reflection measurements with the use of relati
~12!, ~10a!, and~AII.1!–~AII.3! is set forth in Appendix II.

The behavior of the low-frequency component of t
width of the reflection minimum with increasingg merits a
separate analysis. This behavior is shown in Fig. 13 in
form of curves of y52Dmin

2 /g versus w for values «`

51.05, 1.5, 2, 4, 10, and 36~curves1–6, respectively!. All

f

FIG. 10. Dependence onw of the characteristics of the minimum ofR above
the plasma edge: the spectral positionvmin for «`51.05, 1.5, 4, 10, 36
~curves1–5, respectively! ~a!; the minimum valueRmin for different «` :
1.05~1!, 1.5 ~2!, 2 ~3!, 4 ~4!, 10 ~5!, 25 ~6!, and 36~7! ~b!; the widths of the
minimumDvmin at a level of 2Rmin for various«` : 1.05 ~1!, 1.5 ~2!, 2 ~3!,
4 ~4!, 10 ~5!, 36 ~6! ~c!.
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of the curves execute some kind of oscillations abouty51:
emerging from a common pointy(0)51, they dip to a mini-
mum of the same depth (.0.85) and then pass through
maximum~with an amplitude proportional to«`) and again
dip below y51, nearly merging at a single point at a lev
y.0.90 nearw55; the positions of the two extrema a
inversely proportional to«` . It is remarkable that over wide
intervals of values of«` ~from 1 to ;4) andw ~from 0 to
;7) the value of 2Dmin

2 /g differs from 1 by not more than
15–20%, so that the following relation holds to the sa
accuracy:

g.2Dmin
2 ~13!

~«`,;4; g,;7vp!.

In the case of normal metals («`,;1.5 andg,;0.1vp)
the error in the above expression is an order of magnit
lower, so that the accuracy of determiningg from Eq.~13! is
limited mainly by the error of measurement of the reflecti
spectrum.

Thus it is more efficient to use relation~13! for deter-
mining g than relation~2b!, since ~13! holds over a wider
range of variation of bothw and the values ofRmin : relations

FIG. 11. Dependence onw(«`21)1/2 of those characteristics of the reflec
tion minimum for which the choice of horizontal scale contains all t
influence of«` beyond that given by expressions~2!: Rmin /R` ~a!, Dvmin /g
~b!; the asymmetry parameterDmin

1 /Dmin
2 ~c!. Curves1–4 correspond to the

values«`51.05, 1.5, 2, and 4.
e

e

~2b! and ~2c! have meaning under two restrictions onRmin ,
viz., Rmin,0.5 andRmin,R`/2, while relation~13! has only
the weaker restrictionRmin,0.5.

It should be noted that in a considerable number of r
conductors the frequencies of rather intense interband tra
tions lie nearvp and cause substantial dispersion«`(v) in

FIG. 12. Dependence onw@(«`21)/(«`11)#1/2 of the spectral position of
the reflection minimum with respect tovmin(0). Curves1–4 correspond to
the values«`51.05, 1.5, 2, and 4.

FIG. 13. Dependence onw of the low-frequency componentDmin
2 of the

width of the reflection minimum. Curves1–6 correspond to the values«`

51.05, 1.5, 2, 4, 10, and 36.
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the region of the plasma reflection edge~this is shown for Ag
in Ref. 42!, as a result of which the use of formulas~9!–~13!
is inefficient, since it requires introducing awkward corre
tions.

REFLECTION AND THE ENERGY LOSS FUNCTION OF
U2Zn17

The reflection spectrum measured on a thin (;230 Å!
film of U2Zn17 in the interval 0.5–13 eV43 was processed by
the Kramers–Kronig method with the use of Eq.~6!, Eqs.
~11a!, ~13!, and ~10c!, and Eqs.~11a!, ~13!, and ~10d! ~Fig.
14! and yielded the following values of the Drude mod
parameters:g52.6 eV,vp55.7 eV, and«`51.9.

The loss function peaks calculated in different ways~in-
set in Fig. 14! are on the whole close in position and sha
except for the additional maximum on curve1, which is due
to interband transitions. Thus we have successfully eli
nated the influence of the oscillatory contribution in findi
the parameters of the system of itinerant electrons. This
sult, in view of the complexity of the electronic structure
the heavy-fermion antiferromagnet U2Zn17, attests to the ef-
ficiency of the technique developed in this paper for de
mining the Drude model parameters even for compound
this type.

DOMAIN OF APPLICABILITY OF THE DRUDE MODEL

The Drude model, which is based on the assumption
free charge carriers, is applicable to conducting system
which the current carriers are electrons belonging to br
bands of thes and p types, for which the concepts of

FIG. 14. Spectra of the reflectionR and the loss functionL ~inset! of a
U2Zn17 film. Curve 1 is obtained by the Kramers–Kronig method, whi
curves2 and3 ~curve2 is the dashed curve, which is nearly coincident w
the solid curve on the scale of the figure! were calculated from the Drude
parameters determined from Eqs.~12!, ~13!, and~10c! and Eqs.~12!, ~13!,
and ~10d!, respectively.
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pseudopotential44,45 and, accordingly, nearly free electron
are valid. This automatically rules out transition and nob
metals45 and their alloys and compounds, including those
the semiconductor type,44 if the current carriers in the latte
ared or f electrons~holes!. Even fors andp systems, how-
ever, the three-parameter Drude model is, generally sp
ing, an extremely idealized scheme. The point is that eac
the model parameters is fundamentally dependent on
quency. Some of the reasons for this are:vp varies with
increasing excitation energy of the electrons on accoun
the nonparabolicity of the conduction bands,g varies be-
cause of the ‘‘Cherenkov’’ generation of quasiparticl
~phonons, etc.46!, and«` varies near the resonance freque
cies of interband transitions. All of these factors can, in pr
ciple, be taken into account by introducing additional para
eters, but that greatly complicates the use of the mode
general form. One of the main provisions at the present t
is to eliminate the ‘‘constant background’’~i.e., the known
spectral behavior! in analysis of the optical properties of con
ducting materials, making it possible to observe and stu
the mechanisms causing the changes in their electronic c
acteristics.

When using the Drude model parameters one sho
take into account the presence of limitations on the ma
mum values ofw for metallic conductivity47 and for conduc-
tivity via the fundamental and impurity bands of sem
conductors.3 According to Ref. 47, the change in the chara
ter of the conductivity~metallic to semiconductor! occurs
when the room-temperature resistivityr300 K of the system
exceeds a certain characteristic valuerc for the given class
of system, whererc lies in the range 100–200mV•cm, i.e.,
for rc5150 mV•cm andvp55 eV the temperature coeffi
cient of the resistance for a system withw.0.1«` will be
negative. An estimate of the minimum conductivitysmin of
three-dimensional conductors gives 200V21cm21 and for
conductivity in purity zone is 12V21 cm21 ~Ref. 3!, which
for vp51 eV gives maximum permissible values ofwmax

'0.7«` and wmax'10«` , respectively. However, even be
fore the system loses conductivity at absolute zero it is p
sible for a radical change to occur in the spectral depende
of the optical functions in the low-frequency region.3,8

CONCLUSIONS

The results of an analysis of the spectra of the opti
functions of the Drude model over wide intervals of para
eters (0.001<W<10, 1<«`<36) have made it possible t
determine the conditions for observing a number of the ch
acteristic features of their behavior. In particular:

a! the square-root frequency dependence of the mod
and phase of the reflection holds in an interval 0<v
<0.02g for w<0.1 with a tolerance ofd50.01;

b! the linear frequency dependence of the phase in
form u52v/vpA«`1u0 in the region g,v,vp for w
<0.01 andd50.01 is restricted to the interval 3.4g<v
<0.1vp ;

c! the concept of the plasma reflection edge as the
quency of the maximum rate of rise ofR(v) is correct only
for values ofw not exceeding a certain valuewlim(«`).

The relations obtained~both for v,vp and for the re-
gion of plasma frequencies and the reflection minimum! de-
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scribing the overall picture of the transformation of the ch
acteristic features of the spectra upon changes in the D
model parameters are useful in the Kramers–Kronig met
and simplify the analysis of the experimental data for opti
reflection and electron characteristic energy loss both
‘‘good’’ metals and in materials with a strong temperatu
dependence of the electrical conductivity~semiconductors,
doped and nonstoichiometric oxides, granular metallic film
and amorphous alloys!.

The values obtained for the parameters of the electro
systems of Al and U2Zn17 in comparison with the publishe
data indicate the possibilities of the scheme proposed in
paper for analysis of the spectra of the optical functions~for
Al the ratio of the concentration of the valence electrons
the effective mass, expressed in units of the free elec
mass, isN/m* 512.531022 cm23, the frequency of the firs
band of strong interband transitions isv051.53 eV, the os-
cillator strength is 22 eV2, and the half-width of the band i
g50.37 eV; for U2Zn17 the plasma freqency isvp55.7 eV,
and«`51.9).

The authors are grateful to V. V. Eremenko and N.
Kharchnko for their interest in and support of this study, a
to A. A. Galuza for assistance in carrying it out.
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APPENDIX I

Technique for calculating the Drude model parameters from
experimental values of the parameters of the energy
loss function

Below w;10 ~to an accuracy of;1%) the parameters
vL , 2D1, and Lmax of the functionL(v) can be approxi-
mated by the polynomials

Pn
a~w!5( Aiw

i , i 50,1, . . . ,n~a!;

a5v,L,D; n~v!55, n~L !54, n~D!56.

In this case relations~11! become

vL~w!>vpPn
v~w!, Lm~w!>~w«`!21Pn

L~w!,
~AI.1!

2D1~w!>gPn
D~w!,

where the coefficientsAi for 1.5,w,10 have the following
values:

1.616, 20.8532, 0.2158,20.02857, 1.90831023,
25.07231025 for vL ;

0.8920, 0.04210, 0.1013,20.01007, 0.000368 forLmax;
0.418945, 1.10685,20.77719, 0.209238,20.0280498,

1.8697431023, 24.9438331025 for 2D1.
A substantial simplification of the solution of the syste

of equations~11!–~A1.1! can be achieved by the followin
method. Consider the process of deformation~which will be
characterized by the ratioD1/D2) of the functionL(w) with
increasingw. The plot ofw(D1/D2) in Fig. 9 shows that the
domain ofD1/D2 values is strictly bounded by the value
-
de
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(D1/D2)min51 and (D1/D2)max.3.7322, and the function
itself is single-valued and admits the following approxim
tion to an average errordav of the order of 1% or less~the
dashed curves in Fig. 9!:

w~D1/D2!

.5 A1~x21!1/31(
i 52

6

Aix
i 22, 0,1,w,1, dav;1%;

B1

~3.73222x!1/4
1(

i 52

6

Bix
i 22, 1,w,10, dav;0.3%.

~AII.2!

Here Ai52.01713, 21408.5, 5213.5,27231.7, 4455.5,
21028.8, andBi52.8756, 26.0338, 7.9701,24.4584,
1.1500, and20.1102, andx5D1/D2. Expression~AI.2!
can be used to obtain the value ofw immediately from the
measuredD1/D2, and substituting the value found into re
lation ~11a! for w,1.5 or into~AI.1! for w.1.5 allows one
to find the Drude parameters by a simple calculation. T
solves the problem of determining the optical functions
conductors from the experimental values ofL(w) without
the use of the Kramers–Kronig relations.

APPENDIX II

Technique for calculating the Drude model parameters from
experimental values of the parameters of the plasma
reflection minimum

By approximating the curves shown in Figs. 11 and
we obtain a system of equations for determining the Dru
parametersvp , «` , andg from the experimental values o
vmin , Rmin , andDvmin :

Dvmin /g.11tan2 x, x5w~«`21!1/2,

w5g/vp , ~AII.1!

Rmin /R`.(
i 50

3

Aix
i , x5w~«`21!1/2, ~AII.2!

vmin /vp@«` /~«`21!#1/2.(
i 50

3

Bix
i ,

~AII.3!
x5w@~«`21!/~«`11!#1/2.

Here A0520.02, A150.0727, a250.861, A3520.488,
B051, B150.09, B250.39, andB3520.18.

Combining relations~12! and ~10a! with equations
~AII.1!–~AII.3! and solving the resulting system of overd
termined equations by the least-squares method will con
erably improve the accuracy of determination of the Dru
parameters from reflection measurements.

*E-mail: galuza@ilt.kharkov.ua
1!In the Russian-language literature the letter ‘‘t’’ is often omitted from t

last name of H. A. Lorentz,12,14,15,31which leads to a certain confusion
beetween this Nobel laureate from Holland and his Danish contempo
L. Lorenz, particularly in view of their overlapping scientific interests,
reflected in the Lorenz–Lorentz formula.31

2!The authors do not know of any cases where the linear dispersion o
phase in the Drude model has been studied by other investiga
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The hydrodynamic fluctuations in a slightly nonideal gas of Bose quasiparticles with
nonconservation of quasiparticle number are considered. The fluctuation dissipation theorem is
used to find the spectral densities of the correlations of the fluctuations for the basic
quantities characterizing the quasiparticle gas, which are expressed in terms of the kinetic
coefficients. In the existence region of secondary waves in the gas of quasiparticles these spectral
densities have a Lorentzian shape. For certain pure single crystals of cubic symmetry the
temperature dependence of the resonant spectral density of energy fluctuations of the phonon gas
are given, from which one can determine the temperature interval in which second sound
waves exist. For NaF this interval agrees with the temperature region in which second sound is
observed in experiment. ©2001 American Institute of Physics.@DOI: 10.1063/1.1355520#
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INTRODUCTION

The fluctuations in a gas of Bose quasiparticles can
studied by different approaches: microscopic, based on
use of Green’s functions,1–5 and macroscopic, using the ga
dynamic equations of the quasiparticles and the fluctua
dissipation theorem~FDT!. The macroscopic approach wa
first proposed in Refs. 6 and 7 for studying the fluctuations
liquids, and in Ref. 8 it was applied to the study of fluctu
tions in the gas of quasiparticles in quantum liquids. In Re
1–5 the fluctuations in a phonon gas in insulators was c
sidered with the use of Green’s functions and the Ham
tonian for a single phonon branch of oscillations. The e
pressions obtained for the spectral densities of the correla
functions of the fluctuations were rather awkward and h
to analyze in the different limiting cases, in particular, in t
hydrodynamic or gasdynamic limits. The hydrodynam
limit is of greatest interest for studying the fluctuations b
cause of the presence of a resonant effect in the exist
region of second sound waves. It would be natural and q
a bit simpler to investigate fluctuations in this region on t
basis of the equations of phonon hydrodynamics.

In the review by Akhiezeret al.9 the gasdynamics o
quasiparticles is considered without taking fluctuations i
account. Quasiparticle gasdynamics differs substanti
from the particle gasdynamics, which is described by
Navier–Stokes equation,10 in that the number of quasipart
cles is not conserved in interaction processes. In addition
the equations of quasiparticle gasdynamics an external
tion force enters in due to the interaction of the quasipartic
with the external medium~umklapp processes, impurity sca
tering, etc.!. Under certain conditions these equations d
scribe weakly damped secondary waves of the second-s
2281063-777X/2001/27(3)/5/$20.00
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type, which, in essence, are temperature or entropy wa
and the existence of coupled waves is possible, with the
ticipation of the secondary waves. All of these differenc
affect the behavior of the fluctuations in a quasiparticle g

In this paper we investigate the hydrodynamic fluctu
tions in a gas of Bose quasiparticles~phonons, magnons
plasmons, etc.!. We use the method proposed in Refs. 6 a
7 for studying hydrodynamic fluctuations in liquids; th
method is based on the introduction of external rand
sources into the dissipative flows and the use of
FDT.11–13

Results are obtained for the spectral dependence of
hydrodynamic fluctuations, which are expressed in terms
the kinetic coefficients for a gas of quasiparticles and whi
for some of them, have a Lorentzian shape in the existe
region of the secondary waves; in particular, the spec
densities of the the square of the temperature and of
energy density of the quasiparticle fluctuations. Such beh
ior of the spectral densities can be made manifest by stu
ing the evolution of thermal pulses and light scattering in
quasiparticle gas, where satellite peaks due to the secon
waves arise. The observation of these peaks in light sca
ing experiments in different quasiparticle gases can serv
evidence of the existence of secondary waves.

In phonon gasdynamics in the region of low tempe
tures the second-sound waves in solids have been obse
experimentally in a study of the evolution of thermal puls
in pure single crystals of4He,14 NaF,15,16and sapphire.17 The
reduced isotropic crystal model proposed in Ref. 9 has m
it possible to determine the numerical values of the kine
coefficients of phonon gasdynamics of specific crystals
to calculate the values of the spectral energies of the co
© 2001 American Institute of Physics
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lations of fluctuations for specific crystals, in contrast to t
qualitative values of the spectral density obtained in the
croscopic approach in the gasdynamic limit with the use
Green’s functions and a Hamiltonian with a single-phon
branch of oscillations. We conclude by presenting the te
perature dependence of the resonant spectral density o
ergy fluctuations for some pure single crystals belonging
the cubic group, making it possible to establish the tempe
ture region~window! in which second sound exists and
determine which of the crystals has the highest spectral d
sity. For NaF crystals this temperature region is found
agree with that in which second sound has been obse
experimentally.15,16

GASDYNAMIC FLUCTUATIONS IN A GAS OF
QUASIPARTICLES WITH A NONCONSERVED NUMBER
OF QUASIPARTICLES

For describing fluctuations in quasiparticle gasdynam
we shall start from the quasiparticle transport equations,9 in-
troducing external sources into them as is done in the the
of hydrodynamic fluctuations.6,7

The system of linear equations of gasdynamics with
ternal sourcesy andy4 for the quasiparticle drift velocityu
and the relative temperatureu5(T2T0)/T0 in the case
when the number of quasiparticles is not conserved in t
interaction has the form

r̃ i j u̇ j1S0T0

]u

]xi
2h̃ i j lm

]2ul

]xm]xj
1r i j uj5yi ;

~1!

C0u̇1S0 div u2k̃ i j

]2u

]xi]xj
5y4 ,

whereT0 is the equilibrium temperature,r̃ i j is a tensor hav-
ing dimensions of mass density and characterizing the ine
of the quasiparticles,C0 andS0 are the equilibrium densitie
of the heat capacity and entropy,h̃ i j lm and k̃ i j are the vis-
cosity and hydrodynamic thermal conductivity tensors,
spectively, andr i j is the symmetric tensor of the extern
friction in the gas of quasiparticles. The values of the
quantities in the kinetic theory of quasiparticles are presen
in Ref. 9.

The general solution of system~1! is represented in the
form of a sum of two solutions: a regular solution, which
the solution of the corresponding homogeneous system
equations with the boundary conditions, and an irregular
lution, which is the solution of the inhomogeneous system
equations and which consists of linear functionals with
spect to the external sourcesy andy4.

In studying the fluctuations we shall consider an infin
spatially homogeneous medium and will assume that the
ternal sources are random. In that case the regular solu
will be zero, and the irregular solutions will be random qua
tities, the mean values of which are equal to zero. The fl
tuations of these quantities will be determined by the follo
ing space–time correlation functions:

^u~x1 ,t1!u~x2 ,t2!&; ^u1~x1 ,t1!ui~x2 ,t2!&;

^ui~x1 ,t1!uj~x2 ,t2!&,
e
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which will depend on the differencesx22x15x and t22t1

5t. These correction fluctuations will also be determined
the linear functionals of the correlation functions of the ra
dom sourcesy andy4, which are found with the help of the
FDT.12

Let us introduce the spectral energies of the correlat
functions defined by the following Fourier transformatio
for the space–time functionsA(x,t):

A~x,t !5E A~k,v!exp~ i ~kx2vt !!dkdv. ~2!

For the correlation function of two random function
A(x1 ,t1) andB(x2 ,t2) we have

^A~x1 ,t1!,B~x2 ,t2!&5E ^AB&kv exp~ i ~kx2vt !!dkdv,

~3!

where^AB&kv is the spectral density of the correlation fun
tion. If the Fourier components ofA andB are known, then
their correlation functions are related to the spectral den
by the relation

^A~k,v!,B~k8,v8!&5^AB&k,vd~k1k8!d~v1v8!. ~4!

After using the FDT we obtain the following expressions f
the spectral densities of the correlation functions of the r
dom quantitiesy andy4:

^y4 ,yi&k,v50; ^y4
2&k,v5c~v!

k2k̃

T0
;

~5!
^yi ,yj&k,v5c~v!~r i j 1k2h̃ i j !,

wherec(v)5\v/(2p)4coth(\v/2T0), andk̃ andh̃ i j denote
the contractions of the tensorsk̃ i j and h̃ i j lm with the unit
vector n5k/k in the form k̃5k̃ i j ninj ; h̃ i j 5h̃ i l jmnlnm . In
an isotropic mediumh̃ i j 5( j̃1(4/3)h̃)ninj1h̃(d i j 2ninj ),
and h̃ and j̃ are the first and second viscosity coefficien
respectively.

Applying the Fourier transformation~2! to the system
~1!, we obtain a system of linear algebraic equations for
Fourier componentsuk,v anduk,v :

al j uj2STklu5 iy l ;
~6!

~vC1 ik2k̃ !u2S~k,u!5 iy4 ,

with the symmetric tensoral j :

al j 5vr̃ l j 1 i ~r l j 1k2h̃ l j !. ~7!

From here on we have dropped the subscript zero on
equilibrium quantities and the indices of the Fourier comp
nents.

On the realv axis in the case of dissipative systems t
tensoral j is nondegenerate (Detiai j iÞ0) and has an inverse
al j

21 , and therefore the solution of the system of equatio
~6! can be written in the form

u5
i

D
~y41Skaj

21yj !; uj5STkuaj
211 ia jl

21yl , ~8!

whereD is the determinant of system~8!:

D5~vC1 i k̃k2!2k2S2Ta21, ~9!
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and ai
215ai j

21nj and a215ai j
21ninj are the contractions o

the tensorai j
21 .

Using expression~8!, we find the spectral densities o
the correlation functions of the fluctuations of the fieldsu
andu:

^u2&k,v52
c~v!

T
ImH 1

DJ ;

^uju&k,v52c~v!kSImH ai
21

D J ; ~10!

^uiuj&k,v52c~v!ImH ai
21aj

21

D
S2Tk21ai j

21J .

In the derivation of these expressions we have used the
tion

r i j 1k2h̃ i j 5
1

2i
~ai j 2ai j* !.

The spectral density of the energy of the fluctuations is gi
by the expression

^dU&k,v5
CT

2
^u2&k,v1

r̃ i j

2
^uiuj&k,v . ~11!

We note that the entropy fluctuationdS5S2S0 is re-
lated to the fluctuation ofu as dS5Cu ~Ref. 9!, and the
spectral density of the entropy correlation function obeys
relation ^(dS)2&k,v5C2^u2&k,v .

At low viscosities, whenr i j 1k2h̃ i j !vr̃ i j , the tensor
ai j

21 is given approximately by

ai j
21'

1

v
r̃ i j

212
i

v2
r̃ i l

21~r lm1k2h̃ lm!r̃m j
21. ~12!

In this case the determinantD in Eq. ~9! can be written in the
form

D5
a21C

r̃21 ~v22V212ivG i!, ~13!

whereV5kWi ; Wi5@(TS/C) r̃21#1/2;

G i5
1

2r̃21 @ r̃ j
21~r i j 1k2h̃ i l !r̃ l

21#1
k2

2C
k̃; ~14!

r̃ j
21 and r̃21 are the contractions of the tensorr i j

21 , i.e.,
r̃ j

215 r̃ j l
21nl , r̃215 r̃ i j

21ninj . Under certain conditions, viz.
in the so-called existence window of the secondary wav
the quantitiesV, Wi , and G i , respectively, determine th
frequency, velocity, and damping coefficient of second
waves.9 In this case the spectral densities have a Lorentz
form:

^u2&k,v5
c~v!

T

v

C

2vG i

~v22V2!214v2G i
2

;

^uiu&k,v5
TSkr̃ i

21

v
^u2&k,v ;

~15!

^uiuj&k,v5CT
V2

v2

r̃ i
21r̃ j

21

r̃21
^u2&k,v ;
la-

n

e

s,

y
n

^dU&k,v5
CT

2
^u2&k,vS 11

V2

v2 D .

In an ideal medium, when the aforementioned kine
coefficients go to zero (G i→0), it follows from ~15! that in
the frequency regionv56V the spectral densities have
d-functionlike character:

^u2&k,v5
pc~v!

2CT
~d~v2V!1d~v1V!!.

Let us consider another limiting case, that whenvr̃ i j

!r i j 1k2h̃ i j and the external frictionr plays a governing
role. The tensorai j

21 in this case has the following form in
the linear approximation in the parametervr̃/r :

ai j
2152 ir i j

211vr im
21r̃mlr l j

21. ~16!

The tensorr i j
21 is related to the static thermal conducti

ity tensork i j by the relationk i j 5TS2r i j
21 ~Ref. 9!, and there-

fore

ai j
2152

i

TS2 S k i j 1
iv

TS2
k imr̃mlkm jD . ~17!

One can show that the second term in~17! is small if
(klk)2!1, where l k5CWik is the mean free path of th
quasiparticles with respect to the external friction. Then
determinantD has the form

D5Cv1 ik2~k1k̃ !, ~18!

and the spectral densities of the correlation functions are
follows:

^u2&k,v5
c~v!

T

k2~k1k̃ !

~Cv!21k4~k1k̃ !2
;

^uiu&k,v5
c~v!kv

TS

Ck i

~Cv!21k4~k1k̃ !2
; ~19!

^uiuj&k,v5
c~v!

TS2 H k i j 2
k4k ik j~k1k̃ !

~Cv!21k4~k1k̃ !2J ,

where k5k i j ninj ; k i5k i j nj . We note that in this case
^u2&k,v is equal to the spectral density of the correlati
function of the temperature in an elastic anisotropic medi
with allowance for the thermal conductivity of the phono
gask i j 1k̃ i j .

SPECTRAL DENSITY OF THE CORRELATION FUNCTION
OF THE HYDRODYNAMIC FLUCTUATIONS IN AN
ISOTROPIC MEDIUM

Let us investigate the basic properties of the hydro
namic fluctuations in quasiparticle gasdynamics for the p
ticular example of an isotropic medium. In an isotropic m
dium the tensorai j can be written in the form

ai j 5a1ninj1a2~d i j 2ninj !, ~20!

and the inverse tensorai j
21 can be obtained without any ap

proximations:

ai j
215a1

21ninj1a2
21~d i j 2ninj !,
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where a15vr̃1 ir 1 ik2( j̃1 4
3h̃), a25vr̃1 ir 1 ik2h̃. The

determinantD in ~9! in this case will be equal to (Cr̃/a1)D,
where

D5F S v1 ik2
k̃

C D S v1 i
r

r̃
1 i

k2

r̃ S j̃1
4

3
h̃ D D2V2G . ~21!

We introduce the following notation for the character
tics of the dissipative processes: the frequencyn r5r / r̃,
which governs the relaxation of the quasiparticle drift velo
ity u as a result of the external friction, and the diffusio
times for the energy (tk̃) and momentum (th̃ and t̃) of the
quasiparticles owing to their interaction:9

tk̃5
k̃

CWi
2

; th̃5
h̃

r̃
Wi

2}; t̃5
~j21 4

3h̃ !

r̃Wi
2

. ~22!

In an isotropic medium it is natural to introduce the lo
gitudinal yi , ui and transversey' , u' components of the
vectorsy andu with respect to the direction of the vectork.
The spectral densities of the correlation functions of the r
dom quantitiesyi andy' are

^yi
2&k,v5c~v!r̃~n r1V2t̃ !;

~23!
^yi'yj'&k,v5c~v!r̃~n r1V2th̃!~d i j 2ninj !.

The longitudinal and transverse componentsyi and y' are
uncorrelated, i.e.,̂yiy' i&k,v50.

For u, ui , andu' we find

^u2&k,v52
c~v!

CT
ImH v1 i ~n1n8!

D J ;

^ui
2&k,v52

c~ṽ !

r̃
ImH v1 i ~n2n8!

D J ; ~24!

^ui'uj'&k,v52
c~v!

r
~d i j 2ninj !ImH 1

v1 in r1 iV2th̃
J ;

^uiu&k,v52
Skc~v!

Cr̃
ImH 1

DJ ;

^ui'ui&k,v50; ^ui'u&k,v50,

whereD5(v1 in)22(V22n82);

n5
1

2
~n r1V2~ t̃1 t̃k!!; n85

1

2
~n r1V2~ t̃2 t̃k!!.

~25!

The energy density is given bydU5dU i1dU' , where
dU i51/2(CTu21 r̃ui

2!, anddU'5(1/2)r̃u'
2 . The spectral

density of the energy of fluctuations has the form

^dU i&k,v52c~v!ImH v1 in

D J ;

~26!

^dU'&k,v52c~v!ImH 1

v1 in r1 iV2th̃
J .

In the existence region of the secondary waves, which
determined by the condition min(1/tk̃ ;1/t̃)@V@n r , the
spectral densitŷdU i&k,v has a Lorentzian shape, and the
is no spectral densitŷdU'&k,v .
-

-

is

CONCLUSION

In Ref. 9 in the reduced isotropic crystal model the v
ues of the kinetic coefficients of the phonon gasdynam
were calculated in the low-temperature region for the follo
ing pure single crystals belonging to the cubic system: Na
NaF, LiF, KCl, MgO, GaAs, InSb, YIG, Si, and Ge. Let u
use the handbook data18 for these crystals to calculate th
phonon heat capacityC, entropy S, density r̃, and the
second-sound velocityWi . If the dimensions of the crystal
are of the order of 1 cm~it is in NaF crystals of such dimen
sions that the second sound has been observed experi
tally!, then the wave vector of the second soundk52p
cm21. Substituting these values into Eq.~26!, we obtain the
spectral density of the fluctuations of the phonon energy a
function of temperature and frequency. As an example, le
give the values of these quantities for NaF: densityr
52.801 g/cm3; n t55.643105 cm/s; n l53.313105 cm/s;
phonon density r̃57.06310211T4 g/cm3; ñ50.203T21

g/~cm•s!; C53S524.3T3 erg/cm3K; Wi51.963105 cm/s;
k̃57.1931012T22 erg/~cm•s•K!; n r54.331015T23exp
3(2220/T)@111023T2exp(212/T)# s21, and V51.23
3106 s21.

In an isotropic medium the spectral densities~26! of
the energy of the fluctuations in a gas of quasiparticles h
their maximum value at the frequencyv r5V@11 t̃ k̃(n r

1V2t̃)#1/2, which is the frequency of the second-sou
wave with allowance for the dissipative corrections. Figure
shows the temperature dependence of the resonant spe
densities of the energy fluctuations at a frequencyv5v r for
certain crystals of the cubic system, each of which ha
Lorentzian shape and indeed determines a temperature
tence window for second sound. Let us check this out for
particular example of NaF~curve 2 in Fig. 1!. We see that
the existence region of second sound lies in the interval 9
K. This coincides with the temperature interval in which se
ond sound has been observed experimentally.15,16 Indeed,
from the form of the frequency dependence of the spec
density of the energy fluctuations for NaF at temperatures

FIG. 1. Temperature dependence of the resonant spectral density of flu
tions of the phonon energŷdU i&k,v for various crystals: NaCl~1!, NaF~2!,
LiF ~3!, KCl ~4!, MgO ~5!, GaAs~6!, InSb ~7!, YIG ~8!, Si ~9!, Ge ~10!.
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6, 10, 13.33, 15, and 18 K it follows that they have a Lore
zian shape in the vicinity of the second-sound frequency
the temperatures 10, 13.33, and 15 K~see Fig. 2!. For NaF
the curve of the resonant spectral density of the phonon
ergy has a maximum at a temperature of 13.33 K. This
incidence of the temperature regions in which second so
exists for NaF serves to confirm that the reduced isotro
crystal model proposed in Ref. 9 is the closest to real cr
tals.

It follows from an analysis of the curves in Fig. 1 th
the highest value of the resonant spectral density of fluc
tions of the phonon energy is for LiF crystals, and the low
is for Ge.

FIG. 2. Spectral density of fluctuations of the phonon energy^dU i&k,v for
NaF as a function of frequency in the neighborhood of the second-so
frequencies for different temperaturesT @K#: 6 ~1!, 10 ~2!, 13.3 ~3!, 15 ~4!,
18 ~5!.
-
r

n-
-
d

ic
s-

a-
t

Knowing the spectral densities of the correlation fun
tions of the fluctuations, one can find the space and t
correlation functions of the fluctuations.
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Fractional and split crowdions in complex crystal structures
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An analysis is made of the existence conditions and dynamical features of crowdion excitations
in crystals with a complex structure of the crystalline field forming the crowdions in close-
packed atomic rows. The crystalline matrix is assumed to be absolutely rigid, and the description
of the crowdions therefore reduces to analysis of the generalized Frenkel–Kontorova model
and the Klein–Gordon nonlinear differential equation corresponding to it. The cases of the so-
called double-well and double-barrier potentials of the crystalline field are studied in this
model: the structures of subcrowdions with fractional topological charges and of split whole
crowdions are described, as is the asymptotic decay of split crowdions into subcrowdions
when the double-barrier potential is transformed into a double well. The existence conditions of
special types of subcrowdions are discussed separately; these conditions involve the
atomic viscosity of the crystal and the external force applied to it. The qualitative analysis
presented does not presuppose an exact solution of the Klein–Gordon nonlinear equation in
explicit form. The results of this study generalize the conclusions reached previously in a
study of certain particular cases of exactly solvable Klein–Gordon equations with complex
potentials. The results of this study may be used not only in the physics of crowdions
but also in other branches of nonlinear physics based on the Frenkel–Kontorova model. ©2001
American Institute of Physics.@DOI: 10.1063/1.1355521#
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INTRODUCTION

Crowdions are nonlinear solitary waves of displaceme
that arise in close-packed atomic rows which are wea
coupled with the crystalline matrix surrounding the
rows.1–3 The distinguished atomic row might be an inhere
part of the crystal itself or a chain of adsorbed atoms on
surface of the crystal.4 There is reason to assume that ex
tations of the crowdion type also play an important role
the dynamics of linear oriented polymers, in particul
double polymer chains; in that case the ‘‘atoms’’ would
relatively rigid monomers whose internal degrees of freed
could be neglected.5,6

For qualitative description of the main properties
crowdions in the physics of crystals, the Frenkel–Kontoro
one-dimensional crystal model is widely used. A Frenke
Kontorova crystal is a chain of strongly interacting atom
executing one-dimensional motion on an immobile perio
substrate created by a relatively weak potential field.3,7,8

When this model is compared with a real crystal it is a
sumed that the mobile chain of atoms corresponds to a
tinguished atomic row, and the periodic potential of the s
strate models the interaction of this rotation with t
crystalline matrix. In our recently published paper9 the prob-
lem of the structure and motion of a crowdion is treated a
dynamical problem of a complex three-dimensional crys
2331063-777X/2001/27(3)/12/$20.00
ts
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lattice. In the present paper we formulate the requireme
that must be met by the parameters of the interatomic in
action and the geometric parameters of the crystal in or
that one can do the following:

— separate out the crowdion excitations from the ba
ground of small elastic deformations of the crystal;

— reduce the description of crowdions to an analysis
solitary waves in a one-dimensional Frenkel–Kontoro
crystal;

— obtain explicit expressions relating the substrate
tential and the parameters of the Frenkel–Kontorova mo
with the interatomic interaction potentials and other mic
scopic characteristics of the three-dimensional crystal.

In Ref. 9 we also showed that a correct separation
nonlinear crowdion excitations and linear elastic deform
tions in a three-dimensional crystal is possible only in t
long-wavelength approximation. This approximation cor
sponds to crowdions having a rather large widthl@b and
low velocity V!c ~b andc are, respectively, the characte
istic values of the interatomic distance and the sound ve
ity in the crystal!. If the requirements listed above are me
one can pass to the continuum limit in the equations desc
ing the crowdions. To a first approximation one can a
assume that the crystalline matrix is absolutely rigid, i.
neglect its deformations. In that case, for the description
© 2001 American Institute of Physics
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the nonlinear dynamics of the atoms of the distinguished
it is convenient to use as the natural dynamical field varia
the functionu(x,t), which is the field of longitudinal dis-
placements of the atoms from their equilibrium positions
the ideal crystal and depends on the coordinatex along the
chain and the timet. It is assumed that the direction of thex
axis and of the displacementu(x,t) is specified by the el-
ementary translation vectorb of the crystal along the distin
guished atomic chain~Fig. 1!. The energy functional corre
sponding to this approximation has the form

H5
1

b* E2`

` Fma

2
~ u̇!21

w

2
~u8!21F~u!2F~x,t !uGdx.

~1!

Here ma and b* are the mass of the atoms of the disti
guished row and the equilibrium distance between the
F(x,t) is the external~to the crystal lattice! force acting on
these atoms,w is the interatomic interaction paramet
within the distinguished row,F(u)5F(u1b) is the peri-
odic potential of the crystalline field for atoms of the disti
guished row ~the ‘‘substrate’’ potential!, and u̇5]u/]t,
u85]u/]x.

If the interaction of two atoms of different chemical e
ementsa anda8 joined by a vectorr is described by a pai
potentialUaa8(r ), then the expressions for the parameterw
and potentialF(u) have the form9

w5
1

2 (
r

r irk

]2U11~r!

]r i]rk
, ~2a!

F~u!5 (
a,R~a!

@U1a~R~a!2tu!2U1a~R~a!!#, ~2b!

t5
b

b
.

In these expressions the atoms of the distinguished
are assigned the chemical indexa51, and the summation is
over the equilibrium positionsr andR(a) of these atoms and
of the atoms of the matrix, respectively~Fig. 1!. It is conve-

FIG. 1. Fragment of a complex crystal lattice with a distinguished ato
row ~two-dimensional scheme!; b andt are the elementary translation vec
tor of the lattice and the direction vector along the distinguished atomic r
r and R(a) are the equilibrium positions of the atoms of the distinguish
row and of the crystalline matrix surround it, respectively, andb* is the
equilibrium distance between atoms of the distinguished row.
w
le

,

w

nient to place the origin from which the vectorsr andR(a)

are measured on one of the atoms of the distinguished r
specifically, the atom with the largest binding energy w
the matrix, thus ensuring that the potential is positive de
nite, F(u)>0. In the general case the parametersb andb*
have different magnitudes, but in this paper we consider
simple case whenb5b* . It will also be convenient to use a
system of physical units in whichma51, b51, andw51,
and keep the former notation for the dimensionless qua
ties. When these simplifications are taken into account,
equation of motion for the displacement fieldu(x,t) and
corresponding to energy functional~1! takes the form

ü2u91
d

du
F~u!5F. ~3!

This differential equation is known in mathematical phys
as the Klein–Gordon nonlinear equation. Not only is it fu
damental to crowdion theory, but the analysis of many ot
physical problems also leads to equations of this form.8,10–14

From the standpoint of the physics of nonlinear pheno
ena, the main interest is in the solitonlike solutions of eq
tion ~3!, which exist if the potentialF(u) has a setup of
absolute minima:F(up)50, where up5p5n1d i , n50,
61,62,..., 0<d i,1. The numbering of the minima her
takes into account both the presence of translational sym
try of the crystal and the possibility that more than one a
solute minimum exists within a translational periodn<u
,n11: the translational periods are numbered by the
quence of natural numbersn, and the absolute minima within
each period by the fractional numbersd i50,d1 ,d2 ,... .
Stable solitonlike solutions of equation~3! in the absence of
crystal forces (F[0) are solitary waves with a stationar
profile:

u~x,t !5uq~j!, j5x2Vqt, ~4!

which move with a constant velocityVq and satisfy the
boundary conditions

uq8~6`!50, uq~`!2uq~2`!5E
2`

`

uq8~j!dj5q. ~5!

Hereq is a positive or negative number equal to the diffe
ence between any two adjacent numbers from the setp5n
1d i ; this number is called the topological charge of t
solitary wave and is an integral of the motion. If the potent
F(u) has a single absolute minimum within a translation
period ~Fig. 2a and 2b! the set of numbersp5n and the
topological charge can assume the two valuesq5s561,
and the corresponding topological soliton is called wh
~integer!. Solitons for whichq5s, whereusu,1, can exist
in the case of so-called multiwell potentials~Fig. 2c! and
have been given the name subsolitons~they may also be
called fractional!.

We note that the uniform solutions of equation~3! up

5p can be interpreted as a multiply degenerate phys
vacuum for the fieldu(x,t), in which case the solitary wave
uq(x2Vqt) plays the role of a nonlinear excitation of th
vacuum,14 and it represents a moving smeared bounda
centered at the pointxq5Vqt, between two uniform statesup

andup1q specified at infinity.
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As we have said, the energy functional~1! and the equa-
tion of motion ~3! are the first~fundamental! approximation
in the description of crowdions. In this approximation t
atomic structure and dynamical properties of the crowdi
are determined primarily by the shape and parameters o
potentialF(u).1! In the classic paper by Frenkel and Ko

FIG. 2. Different types of crystal-field potentialsF(u) and the kinks cor-
responding to them: a—symmetric single-barrier potential; b—asymme
single-barrier potential~solid curve! and its piecewise-continuous parabol
approximation~dashed curve!; c—double-well potential and fractional kink
with centers at the pointsxs i and widthsls i ( i 51,2); d—double-barrier
potential and a split kink consisting of two virtual subkinks with centers
the pointsxs i and widthsls i ;ls is the width of a whole kink, andds is the
width of a stacking fault.
s
he

torova and in the existing theory of crowdions the extrem
simple sinusoidal potentialF(u)5Fm sin2(pu) is consid-
ered. For such a crystal-field potentialp5n and q5s
561; under the inequalityFm!1 the crowdion excitation
has the form of a simple crowding together~or spreading
apart! of the atoms in the distinguished row, the width of th
being of the order ofls5A(12Vs

2)/2Fm@1, and on the
graph of the functionus(x2Vst) this excitation is repre-
sented by an isolated kink centered at the pointxsVst ~Fig.
2a!. The topological charges521 corresponds to a deloca
ized interstitial atom~crowdion!, while s51 corresponds to
a delocalized vacancy~anticrowdion!.

A recent series of studies, starting with Refs. 13, 15, a
16, has explored the effect of a substantial deviation from
sinusoidal form of the potentialF(u) on the soliton structure
and parameters and on the corresponding kinks in the ge
alized Frenkel–Kontorova model~the results of these studie
are reviewed in Ref. 8!. Of greatest interest, in our opinion
are the cases of multiwell~Fig. 2c! and multibarrier~Fig. 2d!
potentialsF(u): the multiwell potential admits the existenc
of subkinks with fractional topological chargeq5s, where
usu,1 ~e.g.,usu5d, 12d,1!; in the case of a multibarrie
potential a whole kink with integer topological chargeq5s
561 has an internal ‘‘fine’’ structure and can be regard
as split into fragments, similar to subkinks, which a
uniquely interrelated.

The potentialsF(u) derived ~or chosen as models! in
the previously studied problems of nonlinear physics ha
been completely specified symmetric double-well a
double-barrier potentials, which for certain values of th
parameters go over to a sinusoidal potential and admit e
solution of the Klein–Gordon equation~3! in explicit form.
One of the simplest concrete examples is a functionF(u)
of17,18

F~u!5Fm@sin2~pu!1g sin2~2pu!#. ~6!

For g50 this function goes over to the classical Frenke
Kontorova potential, and forg.1/4 it is a symmetric
double-barrier potential with an intermediate minimum at t
point d51/2. The function~6! can be interpreted formally a
the approximation of a more complex periodic function
the first terms of the Fourier series.

However, in an analysis of crowdions in complex crys
structures, especially in oriented polymers, the poten
F(u) can turn out to be extremely complex and far from
simple approximation of the form~6!, and therefore the use
of approximations of this kind does not allow one to descr
the many interesting and important properties of real cro
dion excitations. The main problem of the present study is
analyze qualitatively the structure and dynamical proper
of crowdions in the case of multiwell and multibarrie
crystal-field potentials without explicitly specifying the form
of the functionF(u) and without obtaining exact solution
of the Klein–Gordon equation~3! in explicit form. The ex-
isting ideas about subkinks and the splitting of whole kin
will be cast in a more general form and applied to the d
scription of crowdions with allowance for their specifics.
addition, certain new properties of crowdions in compl
crystals will be described. The results of this study can
course be used not only in the theory of crowdions but a
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in other branches of the physics of nonlinear phenom
whose description reduces to analysis of the solutions of
Klein–Gordon nonlinear equation. Some of the results of
analysis are analogous, from a general physical standp
with results obtained earlier in the theory of magne
solitons.

1. WHOLE AND FRACTIONAL CROWDIONS

Let us first turn to a description of the structure a
dynamics of crowdions without specifying the exact form
the potentialF(u) but only assuming that this potential
periodic and has a set of absolute minima,up5p5n1d i

(F(up)50) and a set of the the same number of maxima
various heights at the pointsum5m5n1« i (F(um)
5Fmi), where n50,61,62,..., 0<d i , « i<1. In the ab-
sence of external forces (F[0) the first and second integra
of equation~3!, which describe solitary wavesuq(x2Vqt)
satisfying boundary conditions~5! with an arbitrary value of
q, can be written in the form

uq85sgn~q!S 2F~uq!

12Vq
2 D 1/2

, ~7!

E
« i

uqi du

A2F~u!
5sgn~qi !

x2Vqit

A12Vqi
2

. ~8!

The choice of the lower limit of integration« i in Eq. ~8!
defines the center of the crowdion~kink! xqi5Vqit as the
point at which the absolute value of the crowdion deform
tion reaches its maximum value:

maxuuqi8 u5S 2Fmi

12Vqi
2 D 1/2

. ~9!

Our definition of the centers of the crowdions and th
numbering faithfully reflects the circumstance that an in
vidual type of crowdion is uniquely associated with one
the maxima of the potentialF(u). It is easy to see from Eqs
~7! and ~8! that the details of the internal structure of th
crowdion excitation~kink! are determined by the form of th
potential profileF(u) on the interval joining two neighbor
ing absolute minima; this interval specifies the value of
topological chargeqi . We note immediately that the appl
cability of the formulas obtained above for the description
crowdion excitations in real crystals is restricted by the
quirement maxuuqi8 u!1, which justifies the use of the con
tinuum limit. This requirement, according to Eq.~9!, reduces
to the condition 12Vqi

2 @2Fmi , which is violated if the
crowdion velocity approaches the limiting valueV51 ~in the
original system of units, the valuec5Aw/ma!, and the
analysis of such a fast-moving excitation requires taking
tice effects into account.

As an example, let us first consider a symmetric sing
well potential with a maximum at«51/2 ~Fig. 2a!, which,
over rather wide neighborhoods of the minimumuuu,u*
and maximum uu21/2u,u* , admits a quadratic
approximation3
a
e
r

nt,

f

f

-

r
-
f

e

f
-

t-

-

F~u!5H 1

2
F9~0!u2, uuu,u* ,

Fm1
1

2
F9S 1

2D S u2
1

2D 2

, Uu2
1

2U,u* .

~10!

If one is not considering ‘‘exotic’’ potentials, the param
eter u* that determines the domains of applicability of th
approximations in~10! can be estimated asu* .1/4. This
potential admits the existence of only whole crowdions w
integer topological chargeq5s. Using Eqs.~8! and~10!, we
easily obtain the asymptotic formulas describing the str
ture of the crowdion~shape of the kink! far from and close to
its centerxs5Vst(j50):

us~j!55
12u* expS lc2sj

l0
D , sj.lc ;

1

2
1lm8 sinS sj

lm
D , uju,lc ;

u* expS lc1sj

l0
D , sj,2lc .

~11!

The shape of the kink is characterized by a set of fo
parametersl0, lm , lm* , andlc , which have dimensions o
length:

l05S 12Vs
2

F9~0!
D 1/2

, lm5S 12Vs
2

uF9~1/2!u
D 1/2

,

lm* 5S 2Fm

uF9~1/2!u
D 1/2

, lc5lm arcsinS 122u*

2lm*
D . ~12!

The parameterlc determines the half-width of the centra
part of the kink, whilel0 specifies the extent of its ‘‘wings’’;
therefore, the characteristic kink widthls can be represente
by the sum

ls52~l01lc!52l0F11
lm

l0
arcsinS 122u*

2lm*
D G . ~13!

Analysis shows that for a wide class of potentialsF(u)
satisfying the condition of applicability of the continuum a
proximation maxuus8u!1 @see Eq.~9!# but differing in the
curvature at the minimum and maximum, the parametersl0

and lc are of the same order of magnitude, which depen
substantially on the barrier heightFm :

lc2l0.
ls

4
, ls5S 12Vs

2

2Fm
D 1/2

. ~14!

For barriers with a ‘‘sharpened’’ crest~u* →0, uF9(1/2)u
→`! the central part of the kink is absent, and its width
determined mainly by the barrier heightFm and the value of
the derivativeF9~0!. In those cases whereF9(0)→0 while
the barrier heightFm remains finite, the width of the kink
increases anomalously, and the exponential asymptotic
havior of the displacement fieldus(j) gives way to a power-
law behavior at large distances from the center of the ki
Such kinks have been studied previously14 and are called
power-law or algebraic kinks.

It should be noted that crowdion excitations in re
three-dimensional crystals have the feature that taking
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elastic compliance of the crystalline matrix into accou
leads to a power-law asymptotic behavior of the crowd
strain field at large distances from the center of the crowd
for any shape of the potentialF(u).9,19–21Therefore, in the
case of a crowdion in a three-dimensional crystal the par
eterls has the meaning of the characteristic size of its co

Of special interest is the case of an asymmetric sing
well potentialF(u) ~Fig. 2b!: such a potential can arise i
crystals that do not have a center of inversion. In this c
the structure of the field of displacements of a whole cro
dion ~the shape of the kink! near its center is asymmetric. A
we saw above, the value of the derivative of the poten
F(u) in the neighborhood of the maximum does not ma
rially affect the structure of the crowdion; therefore, t
asymmetry indicated above is conveniently illustrated
considering as an approximation the piecewise continu
function2!

F~u!55
Fm

«2 u2
, 0<u<«,

Fm

~12«!2
~u21!2, «<u<1.

In this approximation one can obtain exact expressi
for the displacement fieldus(j) in explicit form:

us~j!5H « expS sj

l«
D , sj<0,

12~12«!expS 2
sj

l12«
D , sj>0.

~15!

In this case the central part of the kink consists of t
parts with dimensions of the order ofl« andl12« , and the
width of the kink isls5l«1l12« :

S l«

l12«
D5S «

12« Dls , ls5S 12Vs
2

2Fm
D 1/2

. ~16!

If the asymmetric potentialF(u) has a rather extende
crest with a small curvature, there will be yet another dist
guished fragment with a half width oflc @see formulas~12!#.

According to the well-known ideas of nonlinea
mechanics,3,14 any stable solitary wave~in our case, crow-
dion excitation! can be regarded as a particle with certa
values of the self field energyEs and effective rest massms .
A general expression for the energy and mass of an ex
tion in the caseF[0 is easily obtained by substituting th
displacement fieldus(x2Vst) into the energy functional~1!
and using relation~7! at q5s:

Es5
1

A12Vs
2

, ms5I , ~17!

I 5E
0

1
A2F~u!du. ~18!

We will not analyze in detail the dependence ofEs and
ms on the shape and parameters of the potentialF(u), since
this question is discussed quite thoroughly in the review
Braun and Kivshar.8 We note only that when a crowdion in
real crystal is considered with allowance for the elastic co
t
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pliance of the crystalline matrix, formula~17! can be used
only for making order-of-magnitude estimates of its ener
and mass, while the exact values of these parameters de
not only on the potentialF(u) but also on the elastic prop
erties of the crystalline matrix.9

Let us now turn to an analysis of the properties of cro
dions~kinks! for more-complex forms of the potentialF(u).
As we said in the Introduction, in complex crystal structur
the periodic functionF(u) can have several wells~absolute
minima! within a period 0<u,1 of the structure, and the
same number of barriers~maxima! separating them. In this
case the stable stationary solution of the Klein–Gord
equation~3! corresponds to kinks with fractional topologic
chargesq5s, where21,s,1: these kinks join uniform
states fixed at infinity by any pair of adjacent wells of t
potentialF(u), separated by a distanceusu. We describe the
fractional kinks for the particular example of a asymmet
double-well potentialF(u) ~Fig. 2c! having two sets of ab-
solute minima:un5n and un5n5n1d, where n50,61,
62,...,0,d,1. We denote the two sets of maxima of su
a potential by the symbolsum15m1 and um25m2 , where
m15n1«1 , m25n1«2 , 0,«1,d,«2,1. In the general
case the barriers between wells can have different hei
Fm15F(um1) andFm25F(um2).

In the absence of external forces (F[0) Eq.~3! has two
sets of spatially uniform stable solutionsun5n and un5n,
corresponding to the wells of the potentialF(u): F(un)
5F(un)[0. In this case the physical vacuum for the fie
u(x,t) consists of two inequivalent sets of spatially unifor
statesun andun , the degeneracy of which is twice that for
single-well potentialF(u). The fractional crowdions~sub-
kinks! us(x2Vst) are nonlinear solitonlike excitations o
such a vacuum: an individual excitation is a smeared bou
ary between neighboring uniform states of different se
separated by intervalsus i u: the parameters can take values
s151d and s256(12d) ~Fig. 2c!. The increase in the
degree of degeneracy of the vacuum leads to growth of
number of independent elementary excitations: in the c
under study, two types of crowdions and two types of an
crowdions can exist.

The displacement fieldus(x2Vst) of a fractional crow-
dion describes localized crowding together or spread
apart of atoms in a close-packed row and for any speci
value ofs i is determined by relations~7! and~8!. The inter-
nal structure of fractional crowdions is analogous to that
whole crowdions: it is governed by the shape of the poten
F(u) on the intervalss i joining adjacent minima@see for-
mulas ~9!–~16!#. The characteristic value of the width of
fractional crowdion,ls i , can be estimated by the formula

ls i5us i uS 12Vs i
2

2Fmi
D 1/2

, i 51,2. ~19!

Fractional crowdions, like whole ones, have pseudop
ticle properties with self-energiesEs i and effective rest
massesms i , which are given by the expressions

Es i5
I s i

A12Vs i
2

, ms i5I s i ; ~20!
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I s i5E
0

us i uA2F@u2~ i 21!us i u# du, i 51,2. ~21!

2. SPLIT CROWDIONS

The multiwell lattice potentialF(u) considered at
the end of the previous Section is obviously exclusive a
rarely encountered in real situations. Both in the phys
of crowdions and in some other branches of physics
is much more likely to have a multibarrier potenti
F(u).8,10–13,17,18,24The qualitative representation of the fin
structure of a whole crowdion with topological charges
561 in crystals with a multibarrier potentialF(u) is given
by formula ~7! for q5s: the value of the crowdion-create
deformationus8(j) of the close-packed row of atoms ha
maxima and minima corresponding to the extrema ofF(u),
and the graph of the displacement fieldus(j) takes the form
of a multikink consisting of a set of fine kinks. The numb
of such kinks is equal to the number of maxima ofF(u) on
the interval ~0, 1!, and their height is of the order of th
width of the potential barriers. This structure can be int
preted as the splitting of a solitary wave with integer top
logical chargeus(j) into a set of intercoupled solitary wave
moving with a single velocityVs and having fractional topo
logical chargess i : here sgn(si)5sgn(s) and S is i5s. It is
important to emphasize that the individual fragments of
multikink, which are similar to subkinks, are not indepe
dent: their shape and the distance between them are uniq
specified and are interrelated. In order to distinguish th
formations from free subscrowdions, from now on we sh
call them partial~or virtual! crowdions. A rigorous analytica
description of a multikink as a sum of partial kinks has be
obtained8,11,12for a number of specific potentialsF(u), e.g.,
for the potential~6!. The qualitative analysis proposed belo
allows one to establish the conditions under which a wh
crowdion~kink! can be represented approximately as a se
coupled subcrowdions in those cases when it is not poss
to obtain an explicit solution of the Klein–Gordon equatio

In this Section we consider a double-barrier poten
F(u) of arbitrary shape, having within a period 0<u,1
two minima of different depths, separated by two barri
~Fig. 2d!. We denote the minima and maxima of the poten
F(u) we use the symbolsun , un , um1 , andum2 introduced
in the previous Section. The absolute minimaun are num-
bered by integersn50,61,62,...; the local minimaun by
the fractional numbersn5n1d, where 0,d,1; the
maxima umi ( i 51,2) by fractional numbersmi5n1« i ,
where 0,«1,d,«2,1. By definitionF(un)[0, and a lo-
cal minimum will be characterized by the parameterF(un)
5D; the heights of the barriers separating the valleys of
potentialF(u) are denotedF(umi)5Fmi . It is clear that in
the limit D→0 we arrive at the previously investigated ca
of the double-well potential.

The double-barrier potential under consideration adm
the existence of a solitonlike excitationus(x2Vst) with an
integer topological charges561, which is specified by the
corresponding boundary conditions. In this case it is con
nient to take the center of the crowdion~kink! as the point
xs5Vst at which the displacement has the valueus(0)5d,
i.e., coincident with the local minimum. Under this conditio
d
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the second integral of equation~3! in the absence of externa
forces (F[0) has the form

E
d

us du

A2F~u!
5s

x2Vst

A12Vs
2

. ~22!

According to relation~7!, on the axisj5x2Vst there also
exist two maximaj i of the modulus of the deformation
uus8(j)u:

j i5sA12Vs
2E

d

« i du

A2F~u!
, i 51,2. ~23!

It is easy to see that outside the interval (j1 ,j2) the displace-
ment fieldus(j) has a structure described by the upper a
lower lines of formula~11!, and the characteristic extentl0

of the wings of the kink is determined by the value of t
derivativeF9~0!. We note only that in this case as a standa
estimate for the parameteru* one can take the value
u* .1/8 if d.1/2.

The central part of the kink has an extentds5j22j1 :

ds5A12Vs
2E

«1

«2 du

A2F~u!
. ~24!

To obtain an idea of the structure of the displacem
field us(j) near the center of the kink (j50) and to estimate
the characteristic value of the parameterds , we use a qua-
dratic approximation of the potentialF(u) in the neighbor-
hood of the local minimum, on a certain interval 2u* ,«2

2«1 :

F~u!.D1
1

2
F9~d!~u2d!2, uu2du<u* . ~25!

Substituting~25! into ~22! and doing some straightforwar
calculations, we arrive at the following expressions:

us~j!5d1S 2D

f9~d!
D 1/2

sinhS sj

lc*
D , j→0; ~26!

lc* 5S 12Vs
2

F9~d!
D 1/2

.

Let us discuss the question of how the widthds of the
central part of the kink depends on the parameters of
potentialF(u). If the parameterD and the barrier heights
Fmi are of the same order of magnitude, then the integra
~24! can be evaluated using the theorem of the mean:

ds5A12Vs
2 (

i 51

2

ud2« i uS Ci

A2Fmi

1
12Ci

A2D
D ,

0,C1 , C2,1. ~27!

Of special interest is the limiting case of a very de
local minimum of the potentialF(u), when D→0. In this
case the extent of the central part of the kink increa
anomalously according to the asymptotic estimate

ds*dc5lc* lnF2~u* !2F9~d!

D G , D→0. ~28!

It should be noted that the unbounded growth ofds(D)
as D→0 does not occur only in the case of an ‘‘exotic
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double-barrier potential and the double-well correspond
to it in the limit F9(d)5`. For example, suppose tha
on the interval«1,u,«2 the potentialF(u) admits the
approximation

F~u!5D1
Fmi

u« i2dug
uu2dug, 1,g,2, i 51,2. ~29!

Then the widthds(D) of the central part of the kink remain
finite asD→0, but it increases anomalously asg→2:

ds~0!5
2

22g (
i 51

2

u« i2duS 12Vs
2

2Fmi
D 1/2

. ~30!

Thus at sufficiently smallD the central partds(D) of the
kink joins two fragments centered at the pointsj1 andj2 and
having shapes close to those of subkinks with topolog
chargess156d ands256(12d) and widthsls i ~19!. At
the center of the crowdion, at an intervalds , the atoms of the
close-packed row occupy positions close~with exponential
accuracy! to the local minima, and the potential energy
each of these atoms has a value close toD. This fragment of
the crowdion is a sort of stacking fault of the atomic rows—
one-dimensional analog of the planar stacking faults or
tiphase boundaries well known2,25 in the physics of crystals3!

Turning to an analysis of the self-energy of the crowdi
in the case of a double-barrier potential with a rather d
local minimum, we write the functionF(u) in the form of a
sum of a double-well potentialF (DW)(u)(F (DW)(0)
5F (DW)(d)50) and a rather small positive definite functio
w(u) that goes to zero at the ends and outside the inte
between maxima («1 ,«2):

F~u!5F~DW!~u!1w~u!. ~31!

Let maxw(u)5w(d)5D!Fm1,Fm2; then at small values ofD
one may use the expansion

AF~u!.AF~DW!~u!1
D

2AF~DW!~u!1D
.

In this approximation the energy of a whole crowdion~17! is
given by

Es.Es11Es21
D

12Vs
2

ds~D!. ~32!

Here Es i is the energy of a subcrowdion with topologic
charges i , given by formula~20!, and ds is the distance
between the centers of the subcrowdions, the value of wh
can be estimated with the aid of the integral

ds~D!5A12Vs
2E

«1

«2 du

A2@F~DW!~u!1D#
. ~33!

The last term in Eq.~32! has the meaning of the energy
the stacking fault joining the partial crowdions.

On the basis of the above analysis we arrive at the c
clusion that in the case of any double-barrier potentialF(u)
with a sufficiently deep local minimum a whole crowdio
with topological charges can be treated approximately as
set of uniquely interrelated but spatially separate subcrow
ons of the same sign with fractional topological chargess1

5sd ands25s(12d) joined by an extended stacking fau
g

l

-

p

al

h

n-

i-

ds . Such a crowdion~or the corresponding kink! will be
called split, and the subcrowdions bounding it will be call
partial ~or virtual! crowdions. The concepts of crowdio
splitting are useful for an approximate description of cro
dion excitations in crystals with a complex shape of the cr
talline relief of F(u) and are physically justified under th
inequalityls i!ds , which is equivalent to the inequalityD
!Fmi .

A rather good illustration of the general concepts form
lated above is given by the explicit exact solution of t
problem of a split crowdion for a piecewise continuous pa
bolic potential of the form~Fig. 3!

F~u!55
1

2
K0

2u2, 0<u<«1 ;

D1
1

2
Kc

2~u2d!2, «1<u<«2 ;

1

2
K0

2~u21!2, «2<u<1;

~34!

s i
2K0

2>2D, i 51,2.

As independent parameters of this potential we shall c
sider the curvatures at the minima,K0

25F9(0), Kc
2

5F9(d), the depthD5F(d) of the local minimum, and its
position d. Then the maxima«1 and «2 and the barrier
heightsFm1 andFm2 are functions of these parameters, a
the corresponding relations are conveniently written in
form

« i2d5
~21! i

K0
22Kc

2
@ us i uK0

22As i
2K0

2Kc
212~K0

22Kc
2!D#,

Fmi~D!5
1

2
Kc

2~« i2d!21D, i 51,2. ~35!

The displacement field of the whole crowdion is given by t
formulas

FIG. 3. Piecewise-continuous parabolic approximation of a double-ba
potentialF(u).
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us~j!55
«1 expS sj1lc1

l0
D , sj<2lc1 ;

d1lD sinhS sj

lc
D , 2lc1<sj<lc2 ;

12~12«2!expS lc22sj

l0
D , sj>lc2

;

~36!

K0l05Kclc5A12Vs
2, KclD5A2D,

lci5lc lnF u« i2du1AlD
2 1~« i2d!2

lD
G , i 51, 2. ~37!

The deformationus8(x2Vst) in the solitary wave~36!
has two extrema at the pointsxi5Vst1(21)ilci . The two
pointsxi move with a velocityVs and can be regarded as th
centers of virtual subkinks joined by stacking faults with
width

ds~D!5x22x15lc ln

3H@AFm1~D!1AFm1~D!2D#@AFm2~D!1AFm2~D!2D#

D J .

~38!
This interpretation corresponds to the form of the exact
pression for the energy of a whole crowdion, which is t
sum of the energies of the virtual subcrowdionsEs i(D) and
the energy of the stacking fault:

Es~D!5Es1~D!1Es2~D!1
D

12Vs
2

ds~D!,

Es i~D!5
1

K0KcA12Vs
2

3$K0AFmi~D!@Fmi~D!2D#1KcFmi~D!%.

~39!

In the limit D→0 the width of the stacking fault in
creases without bound according to the asymptotic law

ds~D!.lc lnF4AFm1~0!Fm2~0!

D G ,
2Fmi~0!5

s i
2K0

2Kc
2

~K01Kc!
2

. ~40!

Here its energy goes to zero, and the virtual subcrowdi
are transformed into independent fractional crowdions w
topological chargess15sd and s25s(12d) and having
widths ls i and energiesEs i :

ls i5us i uS 12Vs i
2

2Fmi~0!
D 1/2

, Es i5us i uS Fmi~0!

2~12Vs i
2 !

D 1/2

,

i 51, 2. ~41!

The analysis done in this Section leads us to a gen
conclusion of fundamental importance as to the asympt
behavior of the solitary waves~crowdions, kinks! upon the
transformation of any double-barrier potentialF(u) to a
double-well potentialF (DW)(u). In the limit D→0 the en-
ergy of the stacking fault goes to zero (ds(D)D→0), and the
-

s
h

al
ic

whole excitation asymptotically decays into fraction exci
tions. This means that the additional degeneracy of
physical vacuum as a result of such a transformation caus
fundamental rearrangement of the spectrum of nonlinear
citations of the system: the solitary waves with integer top
logical charge vanish, and the role of elementary solitonl
excitations is taken up by solitary waves with fractional t
pological charges. This conclusion is generalized with
difficulty to the case of potentialsF(u) with any number of
barriers on the interval~0, 1!.

As to the dynamics of close-packed atomic rows in cr
tals, the above result means that if the crystalline poten
F(u) for them is a multiwell potential, then the insertion o
an additional atom or the removal of an atom~e.g., under the
influence of radiation! does not give rise to localized struc
tural states of the interstitial atom or vacancy type but
inevitably delocalized, displacing the atomic row by a
amount equal to the elementary translation vector. It is p
sible that in certain real crystal structures there are two m
tually compensating tendencies: the tendency toward lo
ization of the crowdions on account of the large barr
heights of the crystalline potential relief is weakened by
presence of deep local minima in it. This circumstance c
prove important in interpreting the diffusion and radiatio
properties of complex crystals.

It should be noted, however, that this conclusion ne
refinement. Remember that it was obtained in the continu
approximation for a structurally uniform crystal. If th
Peierls barriers that exist because of the discreteness o
lattice structure or the potential barriers for crowdio
erected by local defects and internal stress fields are ta
into account, then the pinning of partial crowdions on su
barriers can substantially limit the aforementioned deloc
zation.4,26 The tendency of whole crowdions to decay is al
weakened by spatial dispersion effects, i.e., when derivat
of higher order are taken into account in the equation
motion ~3!.22

Let us conclude this Section by remarking that the pro
lem of split topological solitons has yet another interest
aspect—the presence of internal dynamics of su
excitations,8,18 but a discussion of those questions in refe
ence to crowdion dynamics goes beyond the scope of
paper.

3. SPECIAL TYPES OF SUBCROWDIONS

In Sec. 1 we determined and discussed fractional cro
dions, which exist only in atomic rows placed in a multiwe
potential relief~Fig. 2c!. However, there are some entire
real special circumstances that promote the appearanc
fractional crowdions in cases of a multibarrier crystalline
lief F(u) as well~Fig. 2d!: these circumstances are the pre
ence of external forcesFÞ0 or the inclusion in the equation
of motion for the fieldu(x,t) the force of dynamic friction
f (u̇), which in general is an odd function of the velocity o
the atomic displacements,f (2u̇)52 f (u̇).

Let us first assume that there is no friction (f (u̇)[0)
and analyze the existence conditions for crowdions in ato
rows placed in the potentialF (F)(u)5F(u)2Fu, where
F(u) is a double-barrier potential~Fig. 2d! with a rather
deep local minimumD andF5const is a constant force of
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rather small magnitude (D!Fmi ,uFu!Fmi ,i 51, 2). The
force F, generally speaking, disrupts the periodicity of t
potential and lifts the degeneracy of the stable energy sta
thereby violating a necessary condition for the existence
stationary soliton excitations with nonzero topologic
charge. Therefore, at arbitrary values ofF the Klein–Gordon
equation~3! does not have solutions in the form of stab
solitary waves with a stationary profile and withq5s561
like those that exist in the absence of external forces
which are described in Sec. 2. An exception is the two d
tinguished critical values of the forceF5Fi( i 51, 2) at
which the potentialF (F)(u) admits the existence of stab
solitary waves of stationary profile but now with a fraction
topological chargeq5s i , us i u,1.

One is readily convinced of the correctness of this as
tion by analyzing the different properties of the potent
F (F)(u). Under the inequalitiesD!Fmi and uFu!Fmi the
potentialF (F)(u) has two families of minima:

un~F !5n1u0~F !, un~F !5~n1d!1ud~F !; ~42!

hereu0(F) andud(F) are, respectively, the displacements
the global and local minima of the potentialF(u) under the
influence of the forceF which can be found by solving th
equationdF(u)/du5F. This means that Eq.~3! for FÞ0
admits a set of locally stable uniform statesun(F) andun(F)
which are periodically~with period 1! arranged on the axis o
displacements. The potential energies of these states,F (F)

3@un(F)# andF (F)@un(F)# for arbitrary values of the force
F, generally speaking, are different, but there exist one p
tive valueF1.0 and one negativeF2,0 value for which
the energies of pairs of neighboring states are equal~Fig. 4!.
These states are separated by intervalsd1ud(F1)2u0(F1)
and (12d)1u0)(F2)2ud(F2), and the values of the forc
Fi( i 51,2) are solutions of the equation

F@d1ud~F !#2F@u0~F !#

1@~ i 212d!2ud~F !1u0~F !#F50. ~43!

For considering the potentialF (F)(u) at the critical val-
ues of the forceF5Fi within the periodn50, we introduce
the notation

max@F~u!2Fiu#2min@F~u!2Fiu#5F̃m
~ i ! , ~44!

6@u0~Fi !2ud~Fi !1~ i 212d!#5s̃ i , i 51, 2. ~45!

The presence of two neighboring spatially uniform sta
u0(Fi)1( i 21) andd1ud(Fi) with the same values of th
potential energy~Fig. 4! creates the necessary condition f
the existence of stable solitary waves of stationary pro
u(x,t)5us(x2Vst) moving with an arbitrary constant ve
locity Vs . The topological charges of these waves,s
5s̃ i( i 51,2) are determined by relation~45!; they can be
specified by the boundary conditions, fixing the indicat
uniform states at infinity. The internal structure of such e
citations and the kinks corresponding to them is analogou
the structure of the fractional crowdions described in Sec
~Fig. 2c!. The first and second integrals of equation~3! with
allowance for boundary conditions fixing the topologic
charges̃ i are determined by expressions analogous to~7!
and~8!: in these expressions one must setqi5s̃ i , the poten-
tial F(u) must be replaced by the renormalized potentia
s,
f

l

d
-

l

r-
l

f

i-

s

e

d
-
to
1

l

F̃~ i !~u!5F~u!2F@u0~Fi !#2@u2u0~Fi !2~ i 21!#Fi ,

i 51,2, ~46!

and, instead of« i , as the lower limit of integration in~8! one
should use the valueumi ; the location of maximum of the

function F̃( i )(u), where it has a heightF̃m
( i ) given by ~44!

and separates the two wells of equal depth under consi
ation.

The energy, effective rest mass, and characteristic w
of the given crowdions can be calculated using formulas~19!

and~20!, replacingFmi by F̃m
( i ) and replacing the integralI s i

by

Ĩ s i5E
0

us̃ i uA2F̃~ i !@u1u0~Fi !1~ i 21!~12us̃ i u!#du,

i 51, 2. ~47!

It is easy to show that at sufficiently small values of t
parameter D one has to a first approximationu0(F)
.F/F9(0) andud(F).F/F9(d), and the solution of equa
tion ~43! for the critical forceFi and the topological charge
s̃ i of the ‘‘critical crowdions’’ have the form

Fi5
D

d112 i
, ~48!

FIG. 4. Transformation of a double-barrier potentialF(u) under the influ-
ence of a uniform external forceF: a—initial (F50) and critical (F5F1)
configurations of the total potentialF (F)(u)5F(u)2Fu for positive values
of the forceF1 ; b—the same, for negative values of the forceF2 .
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s̃ i56~ i 212d!F11
D

~ i 212d!2

F9~0!2F9~d!

F9~0!F9~d!
G ,

i 51, 2. ~49!

For D→0 the ‘‘critical crowdions’’ are transformed into
fraction crowdions with topological chargess156d and
s256(12d), and at small but finite values ofD the param-
eters of the critical and ordinary subcrowdions differ
small quantities proportional toD.

We also note that relation~48! can be given a simple
physical interpretation. The quantityD ~D/b in the original
units! is the energy density per unit length, i.e., tension fo
of a semi-infinite stacking fault, which arises when an in
vidual unstable partial crowdion appears in the crystal. T
tension is equivalent to a force applied to the partial cro
dion, expelling it from the crystal:

Fs i
~D!5~21! i 11 sgn~s i !D. ~50!

At the same time, in the presence of an external forceF
applied to the atoms of a close-packed row, the effec
force acting on a crowdion with topological charges i is
~Refs. 3 and 9!4!

Fs i
~F !52s iF. ~51!

It is easily verified that relation~48! agrees with the
balance condition for these forces,Fs i

(D)1Fs i
(F)50, under

which a partial crowdion is converted into a stable subcro
dion moving with an arbitrary constant velocity.

Direct experimental observation of critical subkinks
complicated by the difficulty of realizing an exact equal
F5Fi . Therefore, from the standpoint of experiment, one
mainly interested in the anomalies of the kinetic characte
tics that should arise in systems with a double-barrier po
tial F(u) when F→Fi . These anomalies have been d
tected, e.g., in studies of the low-temperature plasticity o
number of body-centered metals with double-barrier Pei
relief for dislocations.13,27–30

The existence conditions for stable stationary crowdio
~solitary waves! acquire an additional specific conditio
when, for the displacement fieldu(x,t) in Eq. ~3!, one takes
into account, in addition to the potential forceF, the force of
dynamic friction f (u̇):

ü2u92 f ~ u̇!1
d

du
F~u!5F. ~52!

Let us discuss the changes that are brought about by
introduction of the dynamic friction force in the existen
conditions of fractional crowdions forF50. We saw above
that in the case of a double-barrier potentialF(u) ~Fig. 2d!,
solitary waves with a stationary profile and fractional top
logical charge cannot exist in the absence of external for
but the situation is fundamentally different when the fricti
force is taken into account. We write the double-barrier p
tential F(u) in the form of a sum~31! of a double-well
potentialF (DW)(u) with an intermediate absolute minimum
at the pointd ~Fig. 2c! and a positive admixturew(u), which
reaches a maximum at the pointd and, together with its first
derivative, vanishes at the boundaries of the intervals@0,1#
and @«1 ,«2#: w(d)5D!Fmi ,w8(d)5w(0)5w(1)5w(« i)
e
-
is
-

e

-

s
-

n-
-
a
ls

s

he

-
s,

-

5w8(0)5w8(1)5w8(«i)50. Formally we shall consider the
force f (u̇) together with the potentialw(u) to be small quan-
tities and use perturbation theory methods for analysis of
nonlinear excitations of the fieldu(x,t). The corresponding
inequality ensuring satisfactory convergence of the pertur
tion theory procedure will be obtained at the end of th
Section.

As the zeroth approximation of perturbation theory w
choose the subcrowdions corresponding to the poten
F (DW)(u):

u~x,t !5us i~x2Vt!1h~x2Vt!, ~53!

~12V2!us i9 2
d

dus i
F~DW!~us i !50, ~54!

s i56@ i 211~322i !d#, i 51,2. ~55!

The perturbationh(j) of the displacement field and the pa
rameterV are unknown quantities to be determined. It
natural to assume that the dynamic friction does not aff
the systematics or values of the topological charges but
only to some degree distort the structure of the central p
of the crowdions. Formally this assumption reduces to i
posing boundary conditions of the following form on th
perturbationh(j):

h~6`!5h8~6`!50. ~56!

The first approximation of perturbation theory corr
sponds to the equation

d

du
F~u!.

d

dus i
F~DW!~us i !1

d

dus i
w~us i !

1
d2

dus i
2

F~DW!~us i !h,

f ~ u̇!.2 f ~Vus i8 !.

As a result, we obtain a linear differential equation for t
perturbationh(j):

~12V2!h92
d2

dus i
2

F~DW!~us i !h5
d

dus i
w~us i !1 f ~Vus i8 !.

~57!

In the presence of a friction forcef (u̇) a wave with the
stationary profile~53! cannot satisfy equation~52! for arbi-
trary values of the velocityV, and the problem therefore
reduces to one of determining not only the functionsh(j)
but also the permissible values of the crowdion veloc
V5Vs i

( f ) : in general these values depend on the form a
parameters of the functionsf (u̇) andF(u). The permissible
values of the velocity can be established by using the w
known alternative theorem in the theory of linear different
equations.31,32The existence condition for the solution of th
inhomogeneous linear equation~57! with boundary values
~56! is that the right-hand side of this equation be orthogo
to the particular solutionh (0)(j) corresponding to its homo
geneous equation with the same boundary values. In find
this solution we make use of the equation of the zeroth
proximation~54!. Differentiating Eq.~54! with respect to the
coordinatej, we obtain
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~12V2!~us i8 !92
d2

dus i
2

F~DW!~us i !us i8 50. ~58!

Comparing Eqs.~58! and~57! and taking into according the
absence of crowdion deformations at infinity,us i8 (6`)50,
we come to the conclusion that the required partial solut
of the homogeneous equation~57! can be taken ash (0)(j)
5us i8 (j). Thus the condition determined by the alternati
theorem reduces to the equation

E
2`

`

us i8 ~j! f @Vus i8 ~j!#dj5~21! i sgn~s i !D. ~59!

Thus the derivativeus i8 (j) satisfies relation~7! with the
potentialF (DW)(u) andq5s i , and the friction force is as
sumed to be an odd function of velocity,f (2u̇)52 f (u̇);
then the left-hand side of Eq.~59! can be expressed in term
of the potentialF (DW)(u) and as

Fs i
~ f !~V!1~21! i 11 sgn~s i !D50, ~60!

Fs i
~ f !~V!5E

0

us i u
f FVA2F~DW!@u2~ i 21!us i u#

A12V2 Gdu. ~61!

Thus, if the atoms of the distinguished row are ac
upon by dynamic friction, a necessary condition for the e
istence of stationary crowdion excitations with fractional
pological charges is the presence of real solutionsV5Vs i

( f ) of
equation~60!. We also note that Eq.~60! allows us to inter-
pret the quantityFs i

( f )(V) as an effective force of dynami
drag on the crowdion due to the dissipative properties of
individual atoms. In such an interpretation, Eq.~60! repre-
sents the balance of two forces: the drag forceFs i

( f )(V) ~61!
and the force of linear tensionF s i

(D) ~50! of a semi-infinite
stacking fault, which arises at infinity when a partial cro
dion appears in the crystal ifDÞ0.

As an example which admits solution of this problem
explicit form, let us consider the case of a linear drag on
atoms: f (u̇)52bu̇, where b is the coefficient of atomic
viscosity. In this case

Fs i
~ f !~V!52

I s ibV

A12V2
,

I s i5E
0

us i uA2F~DW!@u2~ i 21!us i u#du, ~62!

and the velocity of steady motion of a fractional crowdi
with topological charges i is

Vs i
~ f !5

~21! i 11 sgn~s i !D

AD21b2I s i
2

. ~63!

Analysis of Eq.~57! for the perturbationh(j) near the
centersj i of the fractional crowdions with allowance for th
above stipulations as to the properties of the potentialw(u)
and for relation~63! yields an estimate of the characteris
values of the perturbation:

h~j i !5
~21! iDA2Fmi

I s i uF9~« i !u
. ~64!
n

d
-
-

e

e

Consequently, the condition of applicability of the co
tinuum approximation,Vs i

( f )!1, and the condition of conver
gence of the above perturbation theory procedure,h(j i)
!us i(j i)5 i 211(322i )« i , reduces to two inequalities:

D!bI s i , D!@ i 211~322i !« i #
uF9~« i !uI s i

A2Fmi

. ~65!

We note that the specific dynamic crowdion with fra
tional topological charge described above, which exists i
viscous crystalline matrix, is analogous from a general phy
cal standpoint to a well-known entity in the theory of ma
netic solitons:p domain walls, which move with a constan
velocity in a dissipative magnetic medium under the infl
ence of a uniform magnetic field~the so-called Walker
regime of domain-wall motion!.

The above analysis of two particular cases is easily g
eralized to the case when both an external forceFÞ0 and a
force of friction f Þ0 are simultaneously present in Eq.~52!.
In this case the double-barrier potentialF(u) ~Fig. 2d! with
a sufficiently deep intermediate minimum (D!Fmi) also ad-
mits the existence of stable solitary waves with station
profile and fractional topological chargess i.6d,6(1
2d). The velocityVs i

(F, f ) of these waves depends on bo
the forcesF and f and the parameters of the potentialF(u).
In an approximation linear inD and F the values ofVs i

(F, f )

are solutions of the balance equation between the ten
force of the stacking fault~50!, the external force~51!, and
the force of friction~61!:

Fs i
~D!1Fs i

~F !1Fs i
~ f !~V!50. ~66!

If the drag on the atoms is of a linear character, then
velocity Vs i

(F, f ) is found to be

Vs i
~F, f !5~21! i 11 sgn~s i !

~21! i us i uF1D

A@~21! i us i uF1D#21b2I s i
2

,

i 51, 2. ~67!

In the numerator of this expression is the total for
exerted on the kink by the stacking fault and the exter
force field; the correctness of this result is conditional on
sufficiently small value of this force. When this force
equal to zero, a nonzero friction force (bÞ0) admits the
existence of static fractional crowdions only.

CONCLUSION

The main goal of this study was to apply to the descr
tion of crowdions in complex crystal structures the conce
of fractional and split topological solitons—concepts whi
were formulated previously in the study of other problems
nonlinear mechanisms.8 In the Introduction we set forth the
main prerequisites that allow the problem of the dynamics
crowdion excitations in a three-dimensional crystal to be
duced to analysis of the one-dimensional Frenkel–Kontor
model with a complicated substrate potentialF(u) and the
Klein–Gordon nonlinear equation~3! corresponding to tha
model. In Sec. 1 of this paper we mainly set forth the kno
concepts of the theory of topological solitons: what w
original was that the exposition was couched in the m
general form possible, permitting a unified description of t
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structure and properties of solitons~crowdions! for any com-
plicated form of the potential profileF(u) and for arbitrary
values and signs of the topological charges. A compara
analysis was made of the characteristics of solitons with
teger and fractional topological charges as independ
stable nonlinear excitations of a multiply degenerate phys
vacuum, and the commonalities and differences of the pr
erties of whole solitons and subsolitons were noted.

In Sec. 2 the splitting of whole solitons~crowdions! into
partial solitons and the conditions for this effect, which tak
place in the case of a so-called multibarrier potentialF(u),
were described in the most general form possible. Previo
the splitting effect had been described for certain types
specific symmetric double-barrier potentialsF(u) admitting
explicit solution of the Klein–Gordon equation. In contra
to the earlier studies, our analysis did not presuppose ob
ing exact solutions of the Klein–Gordon equation in expli
form. Here we have described the qualitative prerequis
that permit the introduction of the concept of partial~virtual!
topological solitons and the stacking fault joining them, a
we also obtained analytical asymptotic expressions for
geometric and energy characteristics of the individual fr
ments of a split soliton in the case of a double-barrier pot
tial F(u) of arbitrary form. A qualitative description wa
given for the asymptotic decay of a whole topological solit
into free subsolitons when the double-barrier potential
transformed into a double well. We have also obtained
explicit form an exact solution of the problem of the splittin
and decay of a whole solitons for the particular example
an asymmetric piecewise-continuous parabolic poten
F(u). We have briefly discussed the analogies between s
crowdions and split dislocations and the possible phys
effects due to the splitting of crowdions in crystals with
complex structure.

In Sec. 3 we discussed the special types of fractio
topological solitons~crowdions! that can arise in the case o
a multibarrier potentialF(u) in the presence of external o
dynamic friction forces acting on the atoms of a clos
packed row in a complex crystal. The necessary condi
for transforming a partial crowdion into a free stable su
crowdion is the balance of three forces: the external for
the force of friction, and the tension force of a semi-infin
stacking fault. We briefly discussed the possibility of obse
ing solitons of this type in experiments and noted their an
ogy with thep domain walls that exist in magnets in a un
form external magnetic field.

The authors are sincerely grateful to A. S. Kovalev a
M. M. Bogdan for a discussion of the problems addresse
this paper and for some constructive criticism.

*E-mail: smirnov@ilt.kharkov.ua
1!The next approximation of crowdion theory is to take into account

elastic compliance and deformation of the crystalline matrix. That lead
a certain renormalization of the crowdion characteristics without alte
the qualitative ideas about the crowdion excitation.9

2!A piecewise parabolic approximation of the potentialF(u) is often used in
the analysis of topological solitions in various physical models.12,14,22,23

3!In the physics of crystals the analogy between topological solitons in
Frenkel-Kontorova one-dimensional crystal model and dislocations
three-dimensional crystal is often discussed. From this standpoint the
tial ~virtual! crowdions described above and the atomic-row stacking fa
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joining them are one-dimensional analogs of partial dislocations
atomic-plane stacking faults.

4!Unfortunately, as a result of a technical error the sign of this force w
indicated incorrectly in Ref. 9.
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Effect of argon on the thermal expansion of fullerite C 60 at helium temperatures
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The linear thermal expansion of compacted Ar-doped fullerite C60(ArxC60) is investigated at
2–12 K using a dilatometric method. The thermal expansion of ArxC60 is also studied after partial
desaturation of argon from fullerite. It is revealed that argon doping resulted in a considerable
change of the temperature dependence of the thermal expansion of fullerite. An
explanation of the observed effects is proposed. ©2001 American Institute of Physics.
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We have previously reported the detection and inve
gation of a negative linear thermal expansion coefficienta of
fullerite C60 at helium temperatures.1,2 The effect was tenta
tively attributed to tunneling transitions between energ
cally equivalent orientations of C60 molecules. To test this
assumption, we have studied the thermal expansion of
doped C60 at liquid helium temperatures. The results of the
studies are presented in this communication. In a fulle
crystal each C60 molecule is associated with two tetrahed
and one octahedral interstitial cavities3 whose average linea
dimensions are about 2.2 Å and 4.2 Å, respectively.4 Accord-
ing to x-ray5 and neutron diffraction6,8 data, the Ar atoms
with a gas-kinetic diameter 3.405 Å,7 occupy only the octa-
hedral cavities. It should also be noted that at 15 K the lat
parameter of a saturated ArxC60 solution is 0.006 Å smaller
than that of fullerite.6 We assumed that the Ar atoms occ
pying the octahedral interstices would increase the poten
barrier impeding rotation of the C60 molecules and thus di
minish the probability of rotational tunnel transitions a
consequently the tunneling splitting of the ground state of
molecules.2 If this assumption is correct, the total negati
thermal expansion*a dT should decrease and the region
negative expansion should shift towards lower temperatu
after doping.

An Ar-doped C60 sample was studied at 2–12 K using
high-sensitivity capacitive dilatometer9 and with the same
procedure as was applied to pure C60 earlier.1,2 The sample
was prepared by compacting high-purity~not worse than
99.98% C60! powder under about 1 kbar. The grain siz
were 0.1–0.3 mm. The resulting C60 sample was a cylinde
9 mm high and 10 mm in diameter. The thermal expans
coefficient along the cylinder axis was first measured at 2
K before doping. The evacuated sealed measuring cell w
the sample was then warmed to room temperature and fi
2451063-777X/2001/27(3)/2/$20.00
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with argon under atmospheric pressure. The doping las
for 19 days.

When the doping process was completed, the Ar-fil
measuring cell with the sample was slowly cooled to heliu
temperatures. In this case both the phase transitions of60

~at 260 and 90 K! occurred in an Ar atmosphere. Figure
shows the measured coefficients before~curve 1! and after
~curve2! Ar-doping. It is seen that the doping not only lea
to the expected decrease in the negative thermal expan
and its shift towards lower temperatures but that is also
duces strongly the~positive! thermal expansion coefficien
above 5.5 K.

It seems natural to assume that the Ar-induced incre
in the barrier impeding rotational motion of the C60 mol-
ecules should also enhance the angular dependence o
noncentral forces acting upon the C60 molecules. As a result

FIG. 1. Temperature dependences of the thermal expansion of comp
fulletite C60: pure fullerite before doping~1!; Ardoped fullerite~2!; fullerite
after evacuation of Ar for 3 days~3! and for 45 days~4!.
© 2001 American Institute of Physics
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the frequencies of the orientational oscillations of the m
ecules should increase, and hence the normal~positive! ther-
mal expansion coefficient dependent on these oscillat
should decrease. This is what we observed experimental
T.5.5 K. The experimental results can thus be explain
qualitatively by proceeding from the assumption that
atomic Ar impurity introduced to the octahedral interstices
C60 suppresses the splitting of the ground state of the60

molecules and modifies the orientational oscillation spectr
of the molecules.

It appears that dissolved Ar atoms influence the ther
expansion very strongly even though they are able to m
quite freely inside the octahedral lattice interstices. W
should also bear in mind that in our experiment the Ar ato
occupy only a part of the octahedral interstices. We did
estimate the quantity of the dissolved Ar. According
Morosin et al. 10 neon occupies only 21% of the octahed
interstices under identical conditions~room temperatures, at
mospheric pressure!. Taking into account that in a simpl
cubic lattice each of C60 molecules is surrounded by six oc
tahedral interstices, the 21% occupancy implies that w
randomly distributed impurity atoms, about 75% of the C60

molecules have Ar atoms nearby. However, because the
atoms are larger than Ne atoms, this number must be con
ered an upper limit of occupancy only.

Another important consideration here is that we belie
that only a small fraction of the C60 molecules~the so-called
‘‘defects’’! for which the rotation-impeding barrierUw is
quite low contributes to the negative thermal expansion
fullerite.2 Correspondingly, the doping-induced change in
negative thermal expansion is determined only by the
atoms neighboring these ‘‘defects.’’ At the same time,
positive thermal expansion is affected by all the dissolved
atoms.

To obtain more information, we studied how the therm
expansion coefficient changed when the doping atoms w
removed from the sample. For this purpose, the measu
cell with the sample was warmed to room temperature
evacuated to 131023 mm Hg. The gas evacuation at roo
temperature lasted for 3 days. The thermal expansion
then measured at low temperatures. The results are show
Fig. 1 ~curve3!. It is seen that the thermal expansion co
ficient changes only slightly above 5 K, but below 3.5 K t
negative thermal expansion again has the minimum typ
for undoped C60. The measuring cell with the sample wa
warmed again to room temperature and gas evacuation
continued for 42 days. The thermal expansion coeffici
was then measured with the results shown in Fig. 1~curve4!.
Note, in particular, that after a total of 45 days evacuation
argon the ‘‘high-temperature’’ part of the thermal expans
coefficient was restored completely. The negative ther
expansion in the range 2.5–5 K, however, still differed fro
that of the initial pure sample.
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This can be accounted for assuming the following. T
octahedral voids adjacent to defects, i.e., C60 molecules with
low Uw barriers, form deeper potential wells for the impuri
atoms than the regular octahedral interstices do. It is th
fore more difficult to remove the impurities from these ne
defect regions, and the residual impurities concentra
around defects are precisely those responsible for the n
tive thermal expansion of fullerite. There is also another f
supporting this assumption. The thermal expansion coe
cientsa of all our C60 samples, both those used in Refs.
and 2 and in this study, agree quite well above 5 K but differ
considerably in the temperature region wherea is negative.
These samples were prepared under different conditions
vary in quality and in the amount of residual impurities.

The proposed qualitative explanation of the effect o
served cannot replace a consistent theoretical interpreta
Several interesting ideas have been published to date, w
are concerned with a tentative mechanism of the nega
thermal expansion of molecular crystals.11 In the case of ful-
lerite, we decide in favor of our explanation since it accou
for the unusually high Gru¨neisen coefficients, which wer
observed experimentally.
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