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The temperature dependence of the complex magnetic susceptibilityx81x9 of various YBCO
films is investigated at different amplitudes of the exciting fieldHac . It is found that
when the temperatureTm at which the maximum is observed on thex9(T) curve is plotted as a
function of Hac

a ~the parametera51, 1/2, or 2/3, depending on the character of the
coupling between crystallites!, a kink appears at a certain fieldHac5H1* . It is suggested that the
temperatureTc1 obtained by extrapolating theTm(Hac

2/3) curve from the high-field region to
zero field is the Berezinskii–Kosterlitz–Thouless transition temperatureTBKT . This suggestion is
based on a comparison of the present results with published data from a study of the
complex susceptibility of a GdBa2Cu3O6.75 single crystal for directions ofHac parallel to thec
axis of the single crystal and in itsab plane, and also on the coincidence of the calculated
values of certain characteristic temperatures near the BKT transition with our experimental
values. © 2002 American Institute of Physics.@DOI: 10.1063/1.1491175#
te
p
t

wo

g-
on

pe
o

du

t
di

m

n
O

-

in

r-
y
he

tal-
of

si-
e
e of

e at

-
of

ial.
Cs,

a
–O
-
e,

-

INTRODUCTION

Metaloxide high-Tc superconductors~HTSCs! have a
quasi-two-dimensional layered structure which is charac
ized by high anisotropy of a number of their physical pro
erties, and their magnetic properties, in particular. Inheren
such structures is a transition, asT→Tc , from three-
dimensional behavior of the magnetic characteristics to t
dimensional: the Berezinskii–Kosterlitz–Thouless~BKT!
transition.1,2 In the Cu–O layers of YBCO HTSCs the ma
netic dipoles arise under the influence of thermal fluctuati
only in the form of pairs of two-dimensional~2D! vortices
~vortex–antivortex pairs!, the magnetic flux of which is
closed by two Josephson vortices lying between the su
conducting layers. The circulation of the current of the J
sephson vortices is what gives HTSC materials supercon
tivity along thec axis of the crystal. At the temperatureTBKT

the system of 2D vortices becomes unstable with respec
decoupling of the dipoles, and the critical current in the
rection of thec axis falls to zero. AtT.TBKT free vortices
appear in the layers, and the superconductivity in theab
planes is preserved.

The features of the BKT transition in quasi-2D syste
of the HTSC type can be well observed ifl@j(TBKT).2

Herel5dAM /m, whered is the interlayer distance betwee
Cu–O planes,m andM are the effective masses in the Cu–
plane and along thec axis,j(TBKT) is the correlation length
;j(0)t21/2, andTBKT is the temperature of the BKT tran
sition. For YBCO one has (M /m)1/255 – 7, d.4 Å, j(0)
.13 Å, andt512TBKT /Tc0;1022 ~Tc0 is the mean-field
transition temperature!, and the relationl@j(TBKT) is not
3771063-777X/2002/28(6)/6/$22.00
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satisfied. At the same time, the BKT transition is observed
YBCO, both in granular bulk materials3 and films4 and in
single crystals.5

Laser-deposited epitaxial films of YBCO are quite pe
fect. In them thec axis is to a high degree of accurac
oriented perpendicular to the plane of the film, while at t
same time the orientation in theab plane is textured, and
there is incomplete matching of the Cu–O planes in crys
lites or domains with a size of 50–100 nm. The presence
this pseudorandom network of nearly perfect crystallites~do-
mains! will probably affect the character of the BKT
transition.6

The standard procedure for determining the BKT tran
tion temperatureTBKT is to measure the current–voltag
~I–V! characteristics and plot the temperature dependenc
the exponentn in the I–V power law (V}I n). At n>3 a
sharp jump is observed on the I–V curve. The temperatur
n53 is taken asTBKT , and the extrapolation ofn(T) from
the n.3 region ton51 gives the mean-field critical tem
peratureTc0 , which is practically equal to the temperature
the midpoint of the transition on theR(T) curve.7 We recall
that the temperature differenceDTc5Tc02TBKT depends di-
rectly on the value of the effective anisotropy of the mater
YBCO compounds have the lowest anisotropy of the HTS
because the coherence length along thec axis is compara-
tively large in them—at low temperatures it is only about
factor of two smaller than the distance between the Cu
superconducting planes,8 and these compounds exhibit pro
nounced three-dimensional behavior. At the same tim
YBCO films of poor quality~according to the transport prop
© 2002 American Institute of Physics
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erties and the value of the critical current density! are found
to have large values ofDTc .9

For YBCO single crystals a valueDTc50.14 K was
found in Ref. 5, and for high-quality YBCO films, Kim
et al.4 obtained a valueDTc50.5 K. The diamagnetic sus
ceptibility of YBCO films was investigated in Ref. 10. Th
penetration depthl was calculated from measurements
the complex impedanceZ5R1 ivL for high-quality YBCO
films with thicknesses of 500 and 2000 Å. A BKT transitio
was observed only for the 500-Å thick film.

The diamagnetic response of a GdBa2Cu3O6.75 single
crystal was used to measure the temperature dependen
the dissipative lossx19 and of the real part of the susceptib
ity x18 , the latter being responsible for the degree of scre
ing of the external field by the sample.11 The measurement
were made under conditions such that the exciting fieldHac

was applied along thec axis of the crystal and in theab
plane. It is found that whenHac is parallel to theab plane
thex18 signal appears at a lower temperature than in the c
Hacic. It is at this temperature that the true 3D supercond
tivity sets in. Since the value of the diamagnetic respons
proportional to the area of the sample, such measurem
are impossible in principle for HTSC films in the ca
Haciab because of the extremely small area of the fil
However, certain arguments suggest that measuremen
the field and temperature dependences ofx18 and x19 for
Hacic can be used to fix the 2D–3D transition in YBC
films also. This possibility was investigated in the pres
study.

EXPERIMENTAL RESULTS AND DISCUSSION

Studies of the diamagnetic response of YBCO films w
carried out on an inductive apparatus in the range of exci
magnetic fieldsHac50.2– 1000 mOe mainly at a frequenc
of 10 kHz. We recall thatx19 reflects the degree of loss t
magnetization reversal of the sample and resistive losse
this study the temperature positionTm of the maximum ofx19
is obtained as a function of the amplitude of the exciting fi
Hac for three samples. Sample No. 324 was deposited b
magnetron sputtering on a sapphire substrate with a Z2

sublayer stabilized by Y. The polycrystalline film obtaine
had a thicknessd50.8 mm. Sample No. 364 was grown b
laser evaporation on an SrTiO3 substrate and had a thickne
of 0.3mm. The third sample~No. 3! was also grown by lase
deposition on a LaCaO3 substrate stabilized by Nd and had
thickness of 0.2mm. TheTm(Hac

a ) curves for these sample
are presented in Fig. 1. The exponenta depends on the char
acter of the weak coupling between crystallites in t
sample. It is seen that the curves become linear for diffe
values ofa: a51 for film No. 324,a51/2 for film No. 364,
anda52/3 for film No. 3.

In the theory of the critical state, the following relatio
holds at the temperature of the maximum on thex19(T)
curve:12

j c~Tm!5
8Hac

2.474pd
, ~1!

and so the measuredTm(Hac) curves are related toj c(T).
When the flux creep, which plays an appreciable role in
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investigated temperature interval, is taken into account, r
tion ~1! will be more complicated, but the proportionalit
betweenj c andHac will remain.

As we see from Fig. 1, all three films, which were grow
by different methods in different laboratories and on diffe
ent substrates, have the same characteristic features.

1. At very low fields there is a certain interval of excitin
field amplitudes@0,H2* # in which Tm is independent ofHac

to within the experimental error. For the granular film N
324 the value ofH2* is about 1 mOe, while for film No. 3 it
reaches approximately 10 mOe, depending on the freque
of the exciting field.

2. At higher values ofHac the Tm(Hac
a ) plot for each

sample becomes linear for a different value of the expon
of the power law, up to a certain fieldH1* at which a kink is
observed, the slope ofTm(Hac

a ) becoming smaller than fo
Hac,H1* .

3. In the field regionH2* <Hac<H1* an appreciable in-
crease of the amplitude ofx19 is observed, and in fieldsHac

.H1* the growth of the amplitude ofx19 is insignificant or
absent altogether, in agreement with the Bean theory of

FIG. 1. TemperatureTm at which the maximum of the dissipative part of th
magnetic susceptibility occurs, plotted in relation to the amplitudeHac of
the exciting field for different YBCO films. As an example, a plot o
x19/x18(Hac

a ) is shown for film No. 364. The analogous plots for the oth
films have a similar form.
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critical state with flux creep taken into account. In this ca
the value ofx18 remains constant.

4. In the regionHac,H2* one observes a linear respons
in the interval H2* ,Hac,H1* a quasilinear response~the
distortions of the response signalx19 from a sinusoidal form
are insignificant!, and at fieldsHac.H1* the response is sub
stantially nonlinear.

Extrapolation of theTm(Hac
a ) plots from high fieldsHac

to zero field gives a certain temperature valueTm which we
provisionally callTc1 . A similar extrapolation from the field
region H2* ,Hac,H1* gives a different temperature, whic
we call Tc2 .

It would seem that the behavior of the diamagnetic
sponse in the field regionH2* ,Hac,H1* can be described
by the Matsushita theory of reversible vortex motion13

which is based on the Campbell model14 and explains the
growth of the amplitude ofx19 with increasing fieldHac .
However, this theory is constructed by proceeding from
condition of linear response~the motion of the vortices is
reversible, and there is no hysteresis!, and with increasing
Hac the value ofx18 should also change; this is not observ
experimentally.

It is natural to suppose that the kink on theTm(Hac
a )

plots is due to a BKT transition. To justify this conjectur
we consider the temperature dependence ofx18 obtained in
Ref. 11 for a GdBa2Cu3O6.75 sample in the form of a plate
0.7 mm thick and having a surface area of;4 mm2, with a
field orientationHacic axis of the crystal andHaciab plane
~see Fig. 2!. Figure 2 clearly demonstrates the existence
two-dimensionality in the sample in the temperature inter
48–58 K. Indeed~see Fig. 3!, for Hacic the fieldHac induces
currents lying in the plane of the sample, and the respo
signal will exist independently of the dimensionality~2D or
3D! of the structure in the Cu–O layers. ForHaciab plane of
the crystal the response signal can arises only when cohe
coupling between Cu–O layers appears, i.e., when
sample will be found in a three-dimensional state.

In Fig. 4 the temperaturesTm at which the maxima are
observed on thex9(T) curves taken for a GdBa2Cu3O6.75

single crystal at different amplitudes of the exciting fieldHac

are plotted in relation to the critical current densityj c calcu-
lated according to the well-known relation:11

FIG. 2. Temperature dependence of the dissipative part of the mag
susceptibilityx8 for a GdBa2Cu3O6.75 single crystal at various fieldsHac

@Oe#: (Hacic) 0.297 ~1!, 1.11 ~2!, and 4.16~3! for (Hac'c), and 0.22~4!,
2.1 ~5!, and 4.16~6! for Hac'c.
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j c5
Hac*

4pd
, ~2!

whereHac* is the value of the exciting field with allowanc
for the demagnetizing factor.

We note that extrapolation of theTm( j c
2/3) curve from

large currents toj c50 gives a temperatureTc1548 K ~the
temperature at which the diamagnetic response appear
Haciab!, while extrapolation from small currents toj c50
gives a temperatureTc2558 K ~the temperature at which th
x19 andx18 signals appear forHacic!.

From the data obtained it can be concluded that the B
transition temperature in GdBa2Cu3O6.75 is equal to 48 K.

For YBCO epitaxial films withHacic the dependence o
Tm on Hac

2/3 is related to the dependenceTm( j c
2/3) by a simple

coefficient@in the case when the film is in the critical stat
see formula~1!#. By analogy with Ref. 11, it can be assume
that for YBCO films, too, extrapolation from high fieldsHac

to Hac50 gives the valueTc15TBKT , while extrapolation
from fields less thanH1* gives a valueTc2 . The width of the
R(T) transition in epitaxial film No. 3, according to our dat
is around 1 K. The temperature of the midpoint of this tra
sition is usually7 taken to be equal to the mean-field tran
tion temperatureTc0 . The temperature at which the diama
netic response appears (Tc589.8 K) practically coincides
with the temperature at whichR(T) goes to zero, to an ac
curacy of 1023 V/cm or better. It follows that the quantity
DT5Tc02TBKT should be of the order of 0.51uTc2Tc1u.

tic
FIG. 3. Diagram of a YBCO film of thicknessd containing Cu–O super-
conducting layers. ForHaciab plane the currentI ab vanishes at the tem-
perature where the Josephson couplings between the Cu–O planes van
i.e., atTBKT . The diamagnetic response signal also vanishes in this ca

FIG. 4. TemperatureTm at which the maximum occurs on thex9(T) curve,
in relation to the critical currentj c for a GdBa2Cu3O6.75 single crystal.
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TABLE I. Values of a number of characteristic temperatures nearTc for YBCO epitaxial film No. 3.
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On the assumption thatTc15TBKT , the value of DT
50.9 K obtained for film No. 3, with a high current-carryin
capacity, is close to the valueDT50.5 K found for YBCO
films.5 As we see from Fig. 1, the value ofj c(0) also de-
creases~the slope of theTm(Hac

a ) curve increases! with in-
creasingDT. A similar picture was also observed in Ref.

Let us analyze the results obtained for the most-stud
epitaxial film, No. 3.

As we see in Fig. 1, theTm(Hac
a ) plot clearly exhibits

several characteristic points:
T* —the temperature at which the kink is observed

Tm(Hac
a ). We note thatT* is the same for exciting-field fre

quencies of 1 and 30 kHz, even though the emf~and, hence,
the current! induced in the film is 30 times greater forf
530 kHz than forf 51 kHz;

Tc1—the temperature value corresponding toHac50 on
the extrapolation of theTm(Hac

a ) curve plotted forHac

.H1* .
Tc—the temperature at which an infinite cluster arises

the film and a diamagnetic response appears;Tc coincides
with the temperature at which theR(T) curve goes to ‘‘zero’’
(R<1023 V/cm);

Tc0—the mean-field transition temperature, which co
cides with the midpoint of theR(T) transition.7

The values of these temperatures for film No. 3 are giv
in Table I.

In Ref. 15 a hierarchy of characteristic values of t
temperatures~from low to high! is presented for a layere
superconductor with weak magnetic coupling@here t5(T
2Tc0)/Tc0#:

t f—the temperature below which the fluctuations of t
order parameter are significantly less than its mean valu

tBKT—the temperature of the 3D–2D transition in a

individual layer;
tcr—the temperature of the crossover from 3D to 2

behavior;
tc—the true transition temperature;
tc0—the mean-field transition temperature.
The shaded region corresponds to the interval of thr

dimensional fluctuations.
Comparing the hierarchy given in Ref. 15 with our r

sults, we conjecture thatT* corresponds toTf , Tc1

→TBKT , andTc2→Tcr .
Let us estimate the values oftBKT and the smearingt3D
d

n

-

n

e-

of the Kosterlitz–Nelson jump under the influence of therm
fluctuations according to the formulas given in Ref. 15:

utBKTu5
utcu

F12
b

ln2~J/E0 jjab
2 !

G , ~3!

ut3Du5
2utBKtub

ln3~J/E0 jjab
2 !

. ~4!

Here J5F0
2dp /p«(4plab)

2 is the ‘‘stiffness’’ characteriz-
ing the fluctuations in theab plane;dp is the distance be-
tween Cu–O planes (;4 Å), lab5lab(0)/t is the London
penetration depth,«>1 is the effective ‘‘dielectric constant’
describing the reduction of the ‘‘stiffness’’ of the fluctua
tional vortex pairs;16 E0 j5phD/4e2RN is the energy of the
Josephson interaction between layers (Ej5E0 j utu); D is the
energy gap,.20 meV;17 e is the charge of the electron;RN

is the resistance of the sample near the transition; andb takes
on values between 2 and 9.18 If we assume thatb59 and
j(0)ab520 Å,17 then estimates giveJ56310232 J/cm2 and
E0 j51.5310220 J. Using Eq. ~3!, we find tBKT50.95
31022, from which we getTBKT589.44 K, which is close
to the value of Tc1 . From Eq. ~4! we find t3D50.41
31022, which corresponds to a temperature interval
width 0.4 K, i.e., (Tc60.2) K, and agrees with the valu
Tc2589.6 K. An estimate oft f in Ref. 15 gives a tempera
ture several degrees belowTc and is in explicit disagreemen
with our value oft* , and so the physical meaning of th
temperatureT* remains unclear.

It is known that the BKT transition is due to two
dimensional vortices in the Cu–O superconducting lay
and their interaction both with other vortices within a pla
and with vortices in neighboring Cu–O planes. BelowTBKT

there exist only bound vortex–antivortex pairs, and forT
.TBKT the coupling between Cu–O planes is broken, an
fluctuational decay of vortex pairs occurs. When curren
present in the sample~measurements of the I–V characteri
tics and diamagnetic response are made with a transpo
induced current! andT,TBKT , the Lorentz force acts on th
pairs as an effective repulsive interaction and will cause s
stantial decoupling of the vortices if the current exceed
threshold value19,20:

J5JGLjab~Ei /I !, ~5!

whereJGL is the Ginzburg–Landau critical current densi
andI is the specific energy of a 2D vortex. The value of th
current estimated in Ref. 6 is approximately equal to 3mA.
From the results of diamagnetic measurements were ca
estimate the current induced in the film forHac,H1* , since
there is no theory describing the relation betweenHac and j c

in this temperature region. However, we assume that the
rent induced by the exciting field is greater than 3mA, at
least up to fieldsHac5H2* . ForT.TBKT the thermal decou-
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pling of vortices is predominant, while belowTBKT free vor-
tices arise mainly as a result of the decoupling by the
duced current.

Thus, in addition to the fluctuational vortices, at a fin
value of the current free vortices arise in the system due
the current-induced decoupling of the dipoles. The prese
of two mechanisms governing the resistance of the sam
causes the universal Kosterlitz–Nelson jump21 to be smeared
out, and the exponentn in the I–V power law becomes de
pendent on both the temperature and current. Such a sm
ing of the jump on then(T) curve was observed in Refs.
and 9, whenn began to decrease not from 3 but fromn
55.5 ~Ref. 6! and n54.2 ~Ref. 9!. We assume that in ou
case the transition extends fromT* to Tc2 ~a transition width
DT50.5 K!. A valueDT50.35 K was found in Ref. 6, and
a valueDT54 K in Ref. 9.

Real films, especially those obtained by rapid la
evaporation, begin to grow from ‘‘islands’’ formed on the th
film–substrate boundary in the initial stage of growth. T
substrate itself is not ideally smooth but has depressions
prominances, with a height difference reaching seve
YBCO lattice constants along thec axis. As the thickness o
the film increases, the islands, whosec axes are perpendicu
lar to the plane of the substrate but whosea andb axes are
not in a strict mutual orientation, coalesce to form a contin
ous film. Edge and screw dislocations, enriched w
copper,22 form at the places where coalescence occurs. T
a real film consists of crystallites, with sizes ranging from
few nanometers to tens of nanometers, separated by dis
tions, and the Cu–O planes in adjacent crystallites~domains!
may be noncoincident. The transport or induced curr
flowing along the Cu–O planes passes through the dislo
tions, which are normal or superconducting but with a low
order parameter. As a result of the mutual misorientation
the Cu–O planes in adjacent crystallites, ‘‘extra’’ or ‘‘mis
ing’’ partial planes appear. Stacks of Cu–O planes a
which are separated by ‘‘extra’’ or ‘‘missing’’ Cu–O plane
which do not carry a transport current. Thus effective sup
conducting layers carrying a transport current appear wh
are separated from each other by larger distances~and,
hence, have a smallerEj ! than in the single crystal. This, in
turn, leads to an increase in the ‘‘effective’’ anisotropy of t
film.

Let us estimate the sizes of these effective layers. In R
23 it was shown that the magnetic penetration depthLs

52l3D
2 /deff is related toTc asLs@cm#52/Tc@K#, wherel3D

is the bulk magnetic penetration depth anddeff is the thick-
ness of a superconducting layer. Consequently, one can
tain the effective thickness of each layer, assuming that th
is no interaction between layers. Takingl3D(T)
50.15@mm#(12Tc1 /Tc0)20.5, whereTc1589.4 K, we ob-
tain a valuedeff>2 nm. Comparingdeff with the film thick-
ness, which was 200 nm, we can see that quasi-t
dimensional behavior should exist.

The influence of the Josephson interaction on the th
dimensional behavior of YBCO films is manifested in t
appearance of an additional attraction between the vortice
a pair, where this attraction depends quadratically on the
tance for r !r c and linearly for r .r c .15,24 Here r c

5(I /Ej )
0.5 is a certain characteristic distance between vo
-
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ces in a pair, below which one can neglect the influence
the Josephson interaction between layers in comparison
the intralayer vortex interaction. At distancesr .r c the Jo-
sephson contribution is dominant, suppressing the deca
the pairs into free vortices. The decay into free vortices
curs primarily under the influence of the Lorentz force in t
presence of current, and also forT'TBKT , where the Jo-
sephson interaction between layers falls to zero. For film
3 the characteristic distancer c52 mm, which is much larger
than the size of the crystallites, and therefore the sizes of
boundaries between crystallites should apparently not af
the BKT transition.

Of course, it can be assumed that the transition in YBC
films is not a true BKT transition, which is due to dissipatio
of vortex–antivortex pairs, but is a transition caused by
breaking up of the Cu–O planes into effective supercondu
ing layers ~having a thickness of;2 nm for film No. 3!
which do not interact with each other. Such a system will
quasi-two-dimensional. In this case experiments on the I
characteristics and susceptibility will not detect that the BK
transition is replaced by a quasi-two-dimensional one. Ho
ever, the observation of a BKT transition in YBCO sing
crystals, which are free of any mutual misorientation of t
Cu–O planes everywhere in the sample, is at odds with
criterion l@j(TBKT) ~see Introduction!. It is our opinion
that the criterion of a BKT transition is in need of refineme

Thus, by analogy with the results of measurements of
diamagnetic response in a GdBa2Cu3O6.75 single crystal11 for
Hacic axis of the crystal andHaciab plane of the crystal, the
good agreement between the calculated and experimen
obtained values of the characteristic temperatures o
sample near the BKT transition and the proximity of o
values of the transition widthDT to the published data give
us reason to think that a study of how the temperature of
maximum ofx19 depends on the amplitudeHac of the excit-
ing field will afford an opportunity to observe a 2D–3D tra
sition. To confirm the conjecture that we have observe
2D–3D transition in YBCO films by studying their comple
susceptibility, it will be necessary to study the same fi
simultaneously by the methods of I–V characteristics a
diamagnetic response. Such studies are planned for the
future. The physical meaning of the temperatureT* and its
independence of the frequency of the exciting fieldHac also
remain open questions. There is also no explanation for
logarithmic growth of the amplitude ofx19 in the field region
Hac,H1* while the value ofx18 remains constant.

*E-mail: prohorov@levch.fti.ac.donetsk.ua
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Observation of stochastic resonance in percolative Josephson media
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Measurements of the electrical response of granular Sn-Ge thin films below the superconducting
transition temperature are reported. The addition of an external noise to the magnetic field
applied to the sample is found to increase the sample voltage response to a small externally applied
ac signal. The gain coefficient for this signal and the signal-to-noise ratio display clear
maxima at particular noise levels. We interpret these observations as a stochastic resonance in
the percolative Josephson media which occurs close to the percolation threshold. ©2002
American Institute of Physics.@DOI: 10.1063/1.1491176#
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1. INTRODUCTION

The phenomenon of stochastic resonance has been
cussed in relation to diverse problems in nonlinear scien
physics, chemistry and biology.1 Generally speaking, sto
chastic resonance is the enhancement of the output signa
noise ratio by the injection of an optimal amount of noi
into a periodically driven nonlinear system. This kind of b
havior is often thought as counterintuitive, since here a s
chastic force amplifies a small periodic signal. Its mechan
is usually explained in terms of motion of a particle in
double-well potential subjected to noise, in the presence
time-periodic force. The periodic forcing leads to nois
enhanced transitions between the two wells and thus to
enhanced output of the forcing signal.

A clear example of nonlinear systems with few degre
of freedom is a superconducting loop with a Josephson ju
tion, well known as a superconducting quantum interfero
eter ~SQUID!. With a proper choice of the size of the loo
this system undergoes bistable dynamics for magnetic
trapped in the loop. There have already been experim
that reported operating SQUIDs under stochastic resona
conditions, both with external noise injection2 and with ther-
mally generated intrinsic noise.3 The stochastic resonanc
effect can be considerably enhanced in a system of cou
bistable oscillators~see, e.g., Ref. 4!. Therefore, it is inter-
esting to study stochastic amplification for a Josephson
dia consisting of many superconducting loops with Jose
son junctions.

Earlier we observed quantum interference effects
macroscopically inhomogeneous superconducting Sn
thin-film composites near the percolation threshold.5 This
system exhibits a considerable voltage noise under dc cu
bias and a rectification of ac current, which arise below
superconducting transition temperature. According to Ref
a dc voltage is observed when an ac current larger than
critical current passes through a system of two supercond
ors weakly connected by an asymmetric double point c
3831063-777X/2002/28(6)/4/$22.00
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tact, i.e., the magnetic flux quantization induces critic
current oscillations and the respective voltage oscillatio
We have argued5 that the oscillatory dependenceVdc(H) in
Sn-Ge thin-film composites is related to quantum interf
ence in randomly distributed asymmetric superconduct
loops interrupted by Josephson weak links. In Ref. 5
reported measurements of theVdc(H) dependence for vari-
ous orientations of the film relative to the field. The scale
the oscillatory structure inVdc(H) is inversely proportional
to the cosine of the angle between the applied magnetic fi
and the normal to the sample plane. The emergence of
normal magnetic field component alone and also the a
symmetry of the oscillatory structure relative toH50 indi-
cate a quantum-interference origin ofVdc(H). Moreover, it
appears feasible to relate these active contours to the pe
lative cluster that has a well-known fractal structure. T
existence of a wide and self-similar distribution of Josephs
loop areas leads to a fractal character of the depende
Vdc(H). We have suggested and verified a model for
origin of the 1/f voltage noise by a passive transformation
magnetic field oscillations with a fractal transfer functio
Vdc(H).5

In the present paper we study the noise-induced ele
cal response of granular Sn-Ge thin-film composites. We
gue that a distributed network containing many superc
ducting loops with Josephson junctions may show
cooperative behavior as stochastically resonating media.

2. EXPERIMENTAL DETAILS AND RESULTS

Josephson networks may occur naturally, e.g., in nonu
form superconducting materials such as granular thin film
We prepare granular Sn-Ge thin-film composites hav
monotonically varying structure by vacuum condensation
Sn on a long~60 mm! substrate along which a temperatu
gradient is created. Sn is deposited on the previously p
pared 50 nm thick Ge layer. The thickness of the Sn laye
60 nm. The metallic condensate is covered from the top w
© 2002 American Institute of Physics
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amorphous Ge. The structural change results in variatio
the composite properties from metallic to insulating over
substrate. This crossover in properties is observed on a s
consisting of 30 samples cut from different parts of the s
strate. For the present investigations, we chose samples
properties near the percolation threshold, with a characte
tic structure depicted in Fig. 1.

During the measurements, the samples were kept in
change gas inside a superconducting solenoid. The elect
measurements were carried out according to the stan
four-probe technique. A sinusoidal ac current of frequen
f 15100 kHz and amplitudeI ac50.8 mA was produced by
an HP3245A universal source connected to the current le
through a dc-decoupling transformer. Fast Fourier trans
mation spectra of the output voltage are measured by u
an SR770 spectrum analyzer with a Blackman-Harris w
dow function. We used the signal-to-noise ratio~SNR! as the
major characteristic of stochastic resonance. The SNR
measured as the ratio of the voltage amplitude of the spe
line to the voltage noise level below it. The noise bac
ground in the signal bin is estimated by performing a line
fit to the peak clipped spectrum. The noise intensity~noise
level! denotes the standard deviationsN of the Gaussian
white noise signal, which was supplied by the intern
SR770 generator.

The transition of a sample into the superconducting s
is smeared over 1.0 K, with the center of the resistive tr
sition at T053.8 K. At temperatures belowT0 and with ac
currentI ac applied through the sample, we observed a re
fied dc voltageVdc , the magnitude of which oscillated as
function of the dc magnetic fieldH applied perpendicular to
the substrate~Fig. 2a!. The amplitude and frequency of th
currentI ac did not significantly affect the general features
theVdc(H) dependence. The results could be always rea
reproduced.

To observe the phenomenon of stochastic resonance
study the rectified voltage dependence on magnetic field.
applied magnetic field consisted of three components:~i! a
dc field H, which varied in the range between2300 and
1300 mOe,~ii ! a small ac component with a frequencyf H

between 5 and 60 Hz and an amplitudeHac520 mOe, and

FIG. 1. Electron micrograph of Sn–Ge sample prepared close to the p
lation threshold. Black regions correspond to the metallic phase.
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~iii ! Gaussian white noiseHnoisewith an intensitysN ranging
up to 70 mOe. The Fourier spectra of the voltage respo
are shown in Fig. 3 together with oscillograms of the inp
signal Hac1Hnoise. Figure 4 shows the dependence of t
output SNR for the first harmonic off H on the intensity of
input noiseHnoise. One can see that increasing the no
amplitude at first increases the SNR and then decrease
Such maxima are rather characteristic for the phenomeno
stochastic resonance. Similar measurements taken at d
ent magnetic fields and frequencies often showed mult
maxima such as those shown in Fig. 5.

3. DISCUSSION

In summary, our experiments demonstrate the charac
istic feature of the phenomenon of stochastic resonan
namely the nonmonotonic behavior of the SNR. At the op
mum noise level the SNR increases to 40. The presenc
multiple maxima~Figs. 4 and 5! can be due to the effect o
different Josephson loops in our structure, which is opera
at the border of the percolation threshold.

We suppose that the nonmonotonic dependence of
SNR on frequencyf H ~Fig. 5! excludes other possible expla
nations~such as, e.g., a simple rectification effect due to
nonlinearity of the response! for the observed gain of a sma
input signal.

Detailed measurements taken at different frequenc
shown in Fig. 5, indicate, at least in some ranges of the
magnetic field, the existence of parameter regions chara

o-

FIG. 2. a—Oscillatory behavior of the rectified voltage across the Sn–
sample versus dc magnetic field:T53.0 K, f 15100 kHz, and I ac

50.8 mA. b—Illustration of the stochastic resonance detection sche
Magnetic field componentsHac and Hnoise are added to the dc magneti
field H.
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ized by a significant gain for a relatively broadband sign
We interpret this behavior as a property of percolative
sephson media with a wide range of self-similar loops. T
SNR gain in our system can be tuned to a desired opera
frequencyf H by changing the dc magnetic fieldH.

The nature of the stochastic resonance in the sys
studied can be related to the commonly known bistable
cillator behavior of the magnetic flux quantization loop
Moreover, in the presence of current biasI ac at relatively
high frequency~at f 1 about 100 kHz! with amplitude larger
than critical, our samples exhibit dynamical chaos. Suc
regime is commonly characterized by a coexistence of m
tiple attractors in the phase space. Indeed, calculation
Lyapunov exponents from the time evolution of the volta
measured at constant current indicates presence of cha
our system.7 In this case, the ‘‘phase trajectory’’ of the sy

FIG. 3. Input signalHac1Hnoise ~insets! and the Fourier spectrum of th
output voltage for different levels of input noiseHnoise: sN50 ~a!; sN

516 mOe~b!; sN531 mOe~c!; sN547 mOe~d!. The input signal ampli-
tude remains constant atHac520 mOe. Signal frequencyf H518.5 Hz, dc
magnetic fieldH50.17 Oe.
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tem may stay a long time in any of the attractors and perfo
irregular transitions between them. Synchronization of su

FIG. 4. Output signal-to-noise ratio~SNR! versus input noise levelsN for
the first harmonic of the input signal frequencyf H518.5 Hz. Magnetic field
H50.17 Oe.

FIG. 5. SNR dependence on input noise levelsN and input signal frequency
f H at different dc magnetic fieldsH, Oe: 0.17~a!; 0.18 ~b!; 0.19 ~c!.
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intermittent transitions by a small input signal may lead
stochastic resonance as well.8 Yet, these speculations requir
further investigations to be firmly justified.
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Weakly damped oscillations of the magnetic induction with a frequency of;103 Hz are
observed in a hard superconductor. The excitation of oscillations in the mixed state of a Nb–Ti
slab is the result of giant magnetic flux avalanches arising in the development of a
thermomagnetic instability. The existence time of the oscillatory phenomena is tens of times
greater than the duration of the avalanche. These oscillations contain information about the vortex
matter of a superconductor. ©2002 American Institute of Physics.@DOI: 10.1063/1.1491177#
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INTRODUCTION

There have been quite a few papers devoted to the s
of the response of hard type-II superconductors in a m
stable mixed state to a strong external magne
disturbance.1–3 Three types of behavior of the critical state
high-Tc superconductor ~HTSC! single crystals are
observed1 as the rate of change of the external magnetic fi
is increased in the range 0 –42 T/s: a stable regime of
entry at low and extremely high rates, and flux entry in t
form giant jumps as a result of a thermomagnetic instabi
at intermediate rates. The stable regime at very high rate
change of the external field arises because of the suppre
of the instability of the critical state. The use of higher ra
;104 T/s has permitted the observation3 of induced unre-
laxed shielding currents in HTSC materials, an order of m
nitude higher than the typical values of the critical curre
under ordinary conditions of low rates of change of the fie

Our previous studies of thermomagnetic instabil
effects4 and our Hall-probe study of the structure of the gia
flux jumps5 in Nb–Ti and Nb superconductors revealed
number of curious effects. For example, the surge of
magnetic inductionBsurf(t) arising on the surface of the su
perconductor as a result of a giant avalanche (;1010 flux
quanta! has a maximum value exceeding the value of
external magnetic field. In other words, the magnetic ind
tion density rises sharply at the surface of the supercondu
~compression occurs! as a result of a flux avalanche. The flu
compression is followed by oscillations of the magnetic
duction which are strongly damped in time. In addition,
the time interval preceding the avalanche the magnetic
unexpectedly moves in the opposite direction to the a
3871063-777X/2002/28(6)/4/$22.00
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lanche, both during the entry of the flux~the shielding re-
gime! and during its exit~the flux-trapping regime!. Here the
value of the backward~with respect to the direction of the
main flux motion! induction peaks reaches 16% of the to
value of the flux jump. Energetically this is already a signi
cant amount, so that one can speak of a certain dyna
potential barrier opposing the change in flux. At present th
are no theoretical models that can unequivocally explain
novel dynamical properties of the vortex state of a superc
ductor.

The present paper is devoted to an experimental stud
the dynamical properties of the vortex matter in low
temperature superconductors with strong magnetic flux p
ning under extreme conditions by means of induction m
surements. These extreme conditions are realized during
breakaway of the vortex matter from the pinning centers a
the subsequent giant acceleration~500 km/s2) as a result of
the development of a thermomagnetic instability.6,7 Under
the influence of the Lorentz force the magnetic flux in
fraction of a second acquires a velocity of several tens
meters per second. The goal of the present study is to in
tigate experimentally the structure of the flux jump in a s
perconducting slab. The main result of these investigation
the detection of weakly damped oscillatory phenomena, w
a frequency of;103 Hz, in the magnetic induction of the
superconductor. The oscillatory process is observed fo
time of the order of 0.1 s after completion of the flux av
lanche. These oscillatory processes contain informa
about the vortex state arising in the superconductor after
laxation of the nonuniform mixed state.

The observation of weakly damped oscillations with
© 2002 American Institute of Physics
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rather high frequency in the highly dissipative medium th
is the vortex matter of a superconductor in the mixed stat
a quite unexpected result. Low-frequency (;1 Hz! oscilla-
tory processes in various physical properties of a superc
ductor prior to the magnetic flux avalanche are well kno
~see, e.g., Refs. 8–10!. They are due to instability of the
nonuniform critical state at the instant before the magn
avalanche. Slow fluctuations of a boundary between nor
and superconducting regions as a result of a thermal p
have been observed in HTSCs.11 These fluctuations led to
oscillations~with frequency;0.05 Hz! of the measured volt-
ages in dc and ac studies.

EXPERIMENTAL TECHNIQUE

The dynamics of the magnetic flux inside a superc
ductor ~Nb–Ti, 50 at. %,Tc59 K! immersed in liquid he-
lium at T52 K was investigated by means of an inducti
coil wound directly on a 6315315 mm superconducting
slab ~see the inset in Fig. 1a!. The coil consisted of severa
tens of turns. It registered a voltage proportional to the r
of change of the magnetic flux,dF/dt. This voltage was fed
directly to a Riken Denshi TCC-1000 transient recorder. T
structure of each voltage jump across the coil was store
the memory of this recorder as 1020 experimental points,
coordinates of which were then put into a computer. Loo
of the magnetizationM (H) (M5m0HÀBsurf, where H is
the external magnetic field andm0 is the magnetic perme

FIG. 1. Voltage across the measuring coil during the development of
thermomagnetic instability: a—an example of discrete avalanches in
flux-trapping regime~the inset shows the geometry of the experimen!;
b—an example of a practically continuous cascade of avalanches in
magnetic-flux shielding regime~the inset shows how the flux jumps ar
demonstrated in the magnetizationM (H)).
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ability of free space! were recorded by means of Hall probe
one of which measured the surface inductionBsurf and the
other the external magnetic fieldH.

EXPERIMENTAL RESULTS

A study of the signals recorded with the measurem
coil and giving the integral characteristic of the process o
the entire cross section of the superconducting core sho
that during the development of the thermomagnetic insta
ity the magnetic flux enters the sample in a rather comp
random manner. Figure 1 shows examples of such sign
We see that the flux can enter both in the form discrete a
lanches and in a nearly continuous cascade of jumps~Fig.

FIG. 2. Oscillatory phenomena atT52 K in the induction of a supercon-
ductor ~a Nb–Ti slab!: upon the exit~flux-trapping regime! of two succes-
sive flux avalanches~a!; and upon the entry of flux~flux-shielding regime!
in a two-step~b! and a single-step~c! avalanche.
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1b!. Both types of pictures are observed during both the
try and exit of the flux. Figure 1 shows randomly chos
examples of the two types of variation of the flux. Mo
rarely double avalanches~Figs. 2a and 2b! and single ava-
lanches~Figs. 2c and 3! are observed.

As the results presented in Figs. 1–3 attest, the a
lanches end in an oscillatory process. This oscillatory p
cess contains a certain superposition of oscillations with
ferent frequencies. An estimate of the fundamental freque
of the oscillations shown in Fig. 3b, determined as the q
tient of the number of oscillations that have occurred divid
by their total duration, gives a value'4.2 kHz. An analysis

FIG. 3. Detailed picture of the oscillations in a Nb–Ti slab at a tempera
of 2 K: a—in the shielding regime, b—in the flux-trapping regime; c—t
spectrum of the observed oscillations, constructed by a Fourier trans
method.
-

a-
-

f-
cy
-

d

of the frequency spectrum of the oscillations gives a fun
mental frequency of 3.71 kHz, which is close to the estima
Besides the fundamental frequency, the spectrum show
Fig. 3c contains oscillations with lower amplitudes at fr
quencies of 976, 1370, 6250, and 7617 Hz.

The observed oscillations of the induction are apparen
due to density waves arising in the vortex matter in that p
of the superconductor which was entered by the magn
flux as the result of an avalanche. In the rest of the sam
the flux is pinned. Figure 4, which was taken from Ref. 1
shows the result of a magnetooptical visualization~with the
use of a fast motion picture camera! of the penetration of the
magnetic flux into a niobium disk upon the successive p
sage of two avalanches. This diagram shows the succes
positions of the moving flux front. The time interval betwee
successive frames is 103ms. The numbers labeling the flu
fronts are the frame numbers of the film. Figure 4 reflects
important fact: when the second flux avalanche, which ar
near the opposite end of the disk 7 ms after the first, reac
the boundary of the first avalanche after 10 ms, its magn
flux flows around the already frozen~pinned! profile of the
latter. This indicates that the magnetic flux erupting into t
sample has properties of ‘‘molten’’ matter. This suggests t
the induction oscillations detected are due to vortex-ma
density waves arising in ‘‘puddles’’ of erupting flux. Th
oscillatory process which we observed is governed by
properties of the molten vortex matter, the most importan
which are apparently its mass and viscosity.

CONCLUSION

In this study we have experimentally observed oscil
tory phenomena in the magnetic induction of a hard sup
conductor in the mixed state; they appear after an avalan
elike injection of magnetic flux brought about by
thermomagnetic instability. Further experimental studies
these effects and the construction of a theoretical mode
the observed oscillations will make it possible to determ
the most important parameters of the vortex matter.

e

m

FIG. 4. Visualization of two successive flux jumps in a niobium disk~from
Ref. 12!.
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Inelastic electron tunneling across magnetically active interfaces in cuprate
and manganite heterostructures modified by electromigration processes
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We report a study of the electron tunneling transport in point-contact junctions formed by a
sharp Ag tip and two different highly correlated oxides, namely, a magnetoresistive manganite
La0.66Ca0.34MnO3 and a superconducting cuprate LaBa2Cu3O72x . Strong chemical
modifications of the oxide surface~supposedly, oxygen ion displacements! caused by applying
high voltages to the junctions have been observed. This effect is believed to be responsible
for an enormous growth of inelastic tunneling processes across a transition region that reveals itself
in an overall V-shaped conductance background, with a strong temperature impact. The
mechanism of the inelastic scattering is ascribed to charge transmission across magnetically active
interfaces between two electrodes forming the junction. To support the latter statement, we
have fabricated planar junctions between Cr and Ag films with an antiferromagnetic chromium
oxide Cr2O3 as a potential barrier and at high-bias voltages have found an identical
conductance trend with a similar temperature effect. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1491178#
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In the last few years, and mainly due to the progress
nanotechnology, the rapidly emerging field of spin-polariz
transport across heterostructures, often called ‘‘spintroni
has become an area of intensive basic and applied stu
Usually, an analysis of spintronic systems ignores interfa
processes which can flip the spin of a conduction elect
traveling across a device. But their influence on the magn
junction transport characteristics may be dramatic and
would be important to study the sensitivity of tunnelin
transport properties on the magnetic interfacial scatter
This problem was addressed theoretically1 and experimen-
tally ~see Ref. 2 and references therein! in relation to mag-
netic tunnel junctions showing large magnetoresistance. A
was argued by Guinea,1 the effect should be particularly en
hanced in fully polarized magnets such as doped mangan
where the tendency towards ferromagnetism may be redu
at a surface, leading to antiferromagnetic behavior. Thu
3911063-777X/2002/28(6)/4/$22.00
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study an effect of spin-flip processes caused by interfa
magnetic excitations on the charge transport in such syst
seems to be one of the actual issues.

In this sense, ferromagnets as junction electrodes are
good candidates for investigating the role of the spin-assis
tunneling and simpler devices would be preferable. In o
previous paper3 we presented tunneling measurements
high-temperature superconducting cuprates, another fa
of perovskites. It was shown that in these materials inter
tions of tunneling electrons with excitations inside the tra
sitional insulating layer strongly influence the conductan
spectra. The system investigated experimentally3 was a
point-contact junction prepared with a sharp Ag tip press
into the surface of a ceramic superconductor LaBa2Cu3O72x

~LBCO!. The latter material is known to be one of the mo
unstable of the superconducting high-Tc cuprates, with a
badly degraded layer adjoining the surface. Our interpre
tion of the data obtained was based on the assumption
oxygen rearrangement caused by an applied electric field
© 2002 American Institute of Physics
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sults in the appearance of an oxygen-deficient region nea
interface. In accordance with the 123-compound phase
gram it should be antiferromagnetically ordered, and the
lated inelastic-scattering processes can contribute strong
the charge transmission across the junction. In this work,
demonstrate important similarities between background c
ductance spectra of junctions formed by manganites and
prates as well as an effect of high bias voltages on th
experimentally demonstrate signs of near-interface chem
modifications~supposedly, oxygen ion displacements that
believe to be a source of the composition changes!, and con-
firm the hypothesis of the existence and strong effect of m
netic correlations in the transition region between Ag a
lanthanum-based metal oxides by performing the same m
surements on a tunnel junction with a Cr2O3 barrier known
to be antiferromagnetic in the bulk state.

We start with conductance experiments on the mag
toresistive compound La0.66Ca0.34MnO3 ~LCMO!. Bulk
samples of manganites~as well as cuprates! were sintered by
the conventional solid-state method. Appropriate amount
the corresponding oxides were mixed, pressed, and anne
at 1200 °C for 12 hours. The resulting pellet was grou
sintered, and repelletized before a sample with a high pa
ing density was obtained. The values of the Curie tempe
ture agreed well with known data~the inset in Fig. 1a!.
Point-contact junctions were prepared with a silver coun
electrode by the same way as those based on high-Tc LBCO
compounds~for details see Ref. 3!. The corresponding pea
in the temperature dependence of the tunnel resistance
LCMO was always shifted to lowerT as a result of the sup
pression of ferromagnetism in the upper layers of the m

FIG. 1. Switching effect on the current-voltage characteristics
La0.66Ca0.34MnO3 /Ag ~a! and LaBa2Cu3O72x /Ag ~b! point contacts at 300
K ~solid lines! and 77 K~dashed lines!. The insets display the temperatu
behavior of the zero-bias junction resistance compared with that for a
metaloxide sample.
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ganites~the inset in Fig. 1a!. The related findings for super
conducting LBCO contacts withTc’s near 93 K are presente
in the inset in Fig. 1b. Together with the overall increase
the junction resistance expected from the conventional t
neling theory,4 it also displays a minimum belowTc . As was
shown in Ref. 5, such a feature appears in the conducta
spectra of N-1-S heterostructures for moderate values of
insulating region transparency~the standard theory of tunne
ing processes4 assumes the presence of very high poten
barriers!.

A radical ~but reversible! effect of oxygen electromigra
tion processes on the LCMO/Ag contact current–volta
(I –V) curves is shown in Fig. 1a in comparison with corr
sponding data for LBCO/Ag junctions in Fig. 1b. In bo
cases at 300 K we observed a decrease of the point co
resistance when a positive bias voltageV* was applied on
the Ag tip and an increase for the corresponding nega
biases. The values ofV* were different: near 0.8 V for
LCMO and about 0.5 V for LBCO. Following previou
works on the same subject,6,7 we explain abrupt changes o
the point-contact resistance at activation voltages by mod
cations of the oxygen stoichiometry near the intrinsic me
loxide surface under the influence of applied electric fie
Then the difference inV* can be ascribed to the fact that
the lanthanum-based cuprate the Cu– O bond is weaker
the Mn– O bond in LCMO. It should be noted that for
parent yttrium-based cuprate~YBCO!, where the Cu– O
bond is known to be stronger than in LSCO, the bias ran
where the electromigration effect can be detected is, a
rule, essentially larger.7 The picture proposed also explain
why the activation voltagesV* needed to stimulate the tran
sition from one branch of the conductance spectra to ano
have increased with decreasing temperature~Fig. 1!.

Our results show that after applying high voltages
different polarities not only are the conductance values
ferent but the character of the spectra as well is chan
from a parabolic characteristic~the high-resistance characte
istic! to a V-shaped behavior in the low-resistance case. F
ures 2a–c show typical examples of differential conducta
curvess(V)5dI(V)/dV, each at a different temperature.
should be emphasized that there is a fundamental differe
with conventional metal-insulator-metal junctions, where t
background behavior is polynomial for voltages small co
pared with the barrier height:4

s~V!5a1bV1gV2. ~1!

In manganite- and cuprate-based contacts the overal
pendence ofs(V) does not have the form~1! but rather
follows the formula7

s~V!5a1buVu1cV2. ~2!

To demonstrate it, in the insets in Figs. 2a–c we ha
plotted the even conductances(V)5@s(V)1s(2V)#/2 for
the lowest temperatures studied. It does contain a domina
linear term.

It has been already stressed that the V-shaped b
ground is a common feature of the conductance spectras(V)
of different metallic oxide systems.8 Here we present som
novel results for LBCO/Ag contacts and for Cr-Cr oxide-A
multilayered structures that, as we hope, may shed light
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the possible role of inelastic scatterings of a magnetic or
at the injector-oxide interfaces. As is shown in the inset
Fig. 2b, on a large scale the conductances(V) of the LBCO-
based junction exhibits a quasi-linear behavior~2! with a
superimposed superconducting gap-like feature. We rela
to chemical composition changes in the near-interface reg
that are usually attributed to oxygen ion displacement p
cesses at the cuprate surface, leading, in particular, to st
suppression of superconductivity in the upper layers~see the
review9!. The most important thing for our purposes is t
correlation between the strength of electromigration p
cesses in LBCO~compared with YBCO and LCMO! and the
quasi-linear overall behavior of the differential conductan
which is known to serve as a fingerprint of the inelast
tunneling effect.7

Next, we consider the validity of the assumption of
oxygen-deficient near-interface layer created after appl

FIG. 2. Temperature effect on the tunneling conductance spectra f
La0.66Ca0.34MnO3 /Ag point contact~a!, a LaBa2Cu3O72x /Ag point contact
~b!, and a planar junction between Cr and Ag films with a magnetic ch
mium oxide as a potential barrier~c!. Insets show even parts of the diffe
ential conductance vs voltage curves at lowest measured temperatures
the dominatingV-shaped background in all three characteristics.
n
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it
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ng
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tion of corresponding high biases to the metallic injector a
the existence of a magnetically active interlayer between
two electrodes that strongly influences electron tunnel
processes across the transition region. It is believed7 that the
layer appears because of the removal of oxygen in the up
cuprate layers, which modifies the doping of CuO2 planes
and can thus lead to long-range antiferromagnetic corr
tions between localized Cu spins. An argument for suc
supposition comes from Ref. 7, where it was shown that
anomalousbuVu contribution to the conductance spectra o
normal metal/YBCO junction vanishes near the expec
Néel temperatureTN . If we are really dealing with a mag
netic barrier, the same observation should be true for het
structures with both pervoskite oxides. For those with LBC
we did not expect the oxygen removal to be as great as in
YBCO/Pb specimens studied in Ref. 7. The reason is tha
deposited on the metaloxide surface strongly extracts oxy
atoms, forming a PbOx barrier, but this does not occur fo
noble metals such as Au or Ag, whose standard reduc
potential is known to be higher than that for Cu21. Hence,
TN for a surface region of LBCO should be somewhat low
than that found before7 for YBCO-based contacts with Pb
The temperature effect on the linear slope ofse(V), i.e., on
the coefficientb, is shown in Fig. 3 for both structures. As t
electromigration effects, the basic behavior ofb(T) for
LBCO devices is the same as in Ref. 7 for YBCO contac
but the temperature values at whichb decays are consider
ably lower. It is important thatb(T) for manganite samples
goes to zero with increasingT as well ~Fig. 3!.

Why do we interpret the anomalous~proportional touVu!
term in the conductance spectra as being a result of inela
boson-assisted tunneling? The standard theory of tunne
phenomena in metal heterostructures, which takes into
count only elastic transmission and the energy dependenc
the tunneling matrix element,4 predicts the quadratic behav
ior ~1!. There are several possible reasons why a term p
portional to uVu can appear ins(V): the non-Fermi-liquid
nature of the oxides~the RVB model, the marginal Fermi
liquid hypothesis, etc.! as well as extrinsic approaches.10 Fol-
lowing Ref. 7, we reject effects of an intrinsic nature f
superconducting cuprates~because of the lack of any corre
lations between the temperature effect on the supercond
ing parameters and the coefficientb!. The corresponding
contribution to the even conductancese(V) can appear as a
result of inelastic processes.11 It is equal to*0

eVF(v)dv and

a

-

ote

FIG. 3. Temperature behavior of the parameterb characterizing the strength
of the inelastic tunneling processes for LCMO and LBCO based point c
tacts compared with the data for a Cr-Cr2O3-Ag junction.
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hence should be a linear function of the biasV for a near-
constant density of bosonic statesF(v) ~in the case of mag-
netic excitationsF(v) is the dynamic susceptibility inte
grated over the wave vector!. That is precisely the case for
normal YBCO compound12 or an underdoped high-Tc cu-
prate La22xSrxCuO4 ~Ref. 13!, where magnetic inelastic
neutron-scattering data reveal spin fluctuations on a la
energy scale. We suppose that the broad continuum of t
excitations is the origin of the unconventional linear term
se(V). Small nonlinearities inse(V) for LMCO and Cr ox-
ide at voltages below 100 meV~the insets in Figs. 2a and 2c!
reflect fine structures in the correspondingF(v).11

The last argument for our statement about the magn
nature of the enormous enhancement of inelastic tunne
processes is provided by a direct experiment with a junc
in which an insulating interlayer between metallic electrod
is known to be magnetically ordered. For this purpose
have fabricated planar heterostructures between Cr and
thin films with a chromium oxide as a potential barrier. Su
junctions were studied thirty years ago by Rochlin a
Hansma,14 who showed that under appropriate oxidati
conditions an antiferromagnetic Cr2O3 layer grows on the Cr
film. At low temperatures, in accordance with our data
LCMO and LBCO, they observed a nearly linear depende
of se (V) on V, with a fine structure that was related
phonon and/or magnon excitations in the Cr2O3 barrier.
Comparing these findings with those for similar Al-oxid
junctions, the authors14 concluded that the only significan
difference between two sets of experiments was the magn
behavior of Cr2O3 , which must be responsible for increasin
the inelastic tunneling contribution to the conductance
Cr-Cr2O3-metal heterostructures. We have followed t
preparation procedure described by Rochlin and Hansm14

and reproduced their data for 4.2 K. Here we present deta
temperature measurements of Cr-Cr oxide-Ag junction ch
acteristics with a special emphasis on the anomalousuVu
term in s(V), regarded by us as an indication of inelas
tunneling via magnetic excitations in the oxide layer. As c
be seen from Fig. 2c, this contribution is rather strong a
determines the overall behavior of the conductance ba
ground. We have plotted the strength of the process, i.e.
value of the coefficientb versus temperature, and compar
it with analogous curves for perovskite-based junctio
From Fig. 3 one can see a similar behavior ofb(T) for all
three kinds of heterostructures. The abrupt decrease o
parameterb with increasing temperature can be ascribed
the weakness of the spin fluctuations.

To summarize, we have performed conductance-ver
voltage measurements involving both cuprates and man
ites, which we believe are important for deepening our
derstanding of the charge transport in heterostructu
formed by these rather enigmatic materials. In the syste
studied a degraded surface layer with enhanced magn
correlations can play the role of a potential barrier, and
this case spin-assisted inelastic tunneling should stron
e
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contribute to the charge tunneling transmission. To dem
strate this with independent experiments, we have fabrica
planar junctions between Cr and Ag films with an insulati
Cr2O3 layer formed by oxidizing the Cr film. This oxide in
the bulk state is known to be antiferromagnetic at low te
peratures. Despite different materials, barriers, and prep
tion methods, the conductance spectra were found to be
similar, with an unusualuVu term in the background domi
nating at low temperatures. Clearly, the only common feat
of the samples studied is a magnetic interface between
metals forming the junction, and it is this that we suppose
responsible for the anomalous experimental findings. The
vious similarities between the three different systems are
surprising because the underlying physics behind the
served phenomena is expected to be the same—an ine
charge transmission across magnetically active insula
layers.
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Manifestation of Coulomb blockade effects at an arbitrary degeneracy of the levels
of a molecular contact

Yu. O. Klymenko*
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of Ukraine, pr. Akad. Glushkova 40, 03680 GSP Kiev-187, Ukraine
~Submitted December 26, 2001; revised February 4, 2002!
Fiz. Nizk. Temp.28, 558–568~June 2002!

The current-voltage~I–V! characteristics of a metal–molecule–metal structure are investigated
under the condition that electron tunneling occurs only via a single molecular level of
arbitrary degeneracy. A system of kinetic equations taking into account the accumulation of
charge on the molecule is solved, and an exact formula for the steady-state current is obtained for
the first time. In the low-temperature limit the steps on the I–V characteristic are analyzed
and found to be nonequidistant with respect to current. It is shown that with increasing degeneracy
of the level the initial current steps tend toward a completely equidistant spacing. In the
case when the coupling parameters between the molecule and external electrodes are substantially
different, the behavior of the I–V curves on parts with opposite directions of the current is
found to be different: either a single current step is formed, with an amplitude proportional to the
degeneracy of the level, or equidistant current steps appear in a number equal to the
degeneracy of the level. It is shown that for a given polarity of the applied voltage, the matter of
which of the two behaviors of the current is realized is completely conditional on whether
the level via which the electron transport occurs is occupied or unoccupied by electrons. The
results of the theoretical analysis of the I–V characteristics are confirmed by a numerical
simulation. © 2002 American Institute of Physics.@DOI: 10.1063/1.1491179#
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1. INTRODUCTION

The Coulomb blockade and related charge effects ge
ally take place in the tunneling of electrons through me
microgranules placed between two metallic electrodes1–4

According to the ‘‘orthodox’’ theory of one-electron tran
port, in which the electron–electron interaction effects
described in terms of the capacitance of the microgran
and the change of their electrostatic potential due to the
parture or arrival of a single electron on the microgranu
the current–voltage~I–V! characteristics for such a structu
should be equidistant with respect to current and voltage,
voltage period being equal to the charging energy of a
crogranule,d5e2/C ~e is the charge of the electron andC is
its charging capacitance!.3,4 To avoid temperature smearin
of the charge effects, the energykT should not exceed the
charging energyd. For typical capacitances of metallic gra
ules C;10216 F we haved;1023 eV, and therefore the
condition for manifestation of the Coulomb blockade is on
that the temperature be low, of the order of 1 K.

In the past decade substantial progress has been ma
the miniaturization of the physical objects placed betwe
two external electrodes, now all the way down to molecu
size. In particular cases these could be quantum dots,5,6 clus-
ter molecules,7 self-assembling molecular nanostructure8

self-assembling layers of molecules,9,10 etc. If the capaci-
tance of molecular contacts on such structures is estim
on the basis of the semiclassical Coulomb blockade mo
one obtains valuesC;10219–10218 F and d;1 eV,7–9
3951063-777X/2002/28(6)/8/$22.00
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which indicate that charging effects should be experiment
observable even at room temperature (kT50.028 eV!. At the
same time, the value of the charging energyd for small
molecules is of the same order of magnitude as the dista
between molecular levels, thus precluding the possibility
exact solution of the problem.10

In this connection it is important to carry out a theore
ical study of those cases for which analytical expressions
still be obtained for the I–V characteristic. The simplest
the exactly solvable problems is that of tunneling via a no
degenerate molecular level, which gives rise to a single s
at a steady-state current equal to

I 5e
GEGC

GE1GC
, ~1!

whereGE andGC are the probabilities of electron transition
~per unit time! between the molecule and the emitterE and
collectorC, respectively.

The problem of electron tunneling via a nondegener
level of the molecule with twofold spin degeneracy was co
sidered in Ref. 11. In that paper it was shown that spin
generacy of a level leads to the appearance of two step
the I–V characteristic. The first current step, with an amp
tude

I ~1!52e
GEGC

2GE1GC
, ~2!
© 2002 American Institute of Physics
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is characteristic for voltages at which only one-electron
change between the molecule and metallic electrodes is
sible. The second current step arises in those regions w
two electrons can arrive on the molecule~or depart from it!
in succession. This completely opens up the twofold deg
erate level for electron transfer and leads to the follow
formula for the current:

I ~2!52e
GEGC

GE1GC
. ~3!

Formulas~2! and~3! can be interpreted in the following
way.12 In the stage of one-electron exchange the arrival of
electron from the emitter to an unfilled level of the molecu
is possible for either spin~i.e., there are two possibilities!,
while the escape of this electron from the molecule to
collector does not have any spin degree of freedom an
uniquely determined. In comparison with formula~1! this
leads to the factor of 2 multiplyingGE in formula ~2!. When
the level is completely opened up there are two poss
ways for an electron to arrive on the molecule and two w
of leaving it; this is taken into account in formula~3!.

It is easy to see that the tunneling of electrons throug
molecular level occupied in the ground state must be
scribed by a somewhat different expression than~2!, since
the departure of an electron from a filled level of degener
2 can occur in two possible ways, while the arrival of a n
electron on the level can occur in only one way. As a res
one expects a dependence different from that given abo

I 8~1!52e
GEGC

GE12GC
. ~4!

The amplitude for the second current step should not cha
i.e.,

I 8~2!52e
GEGC

GE1GC
5I ~2! . ~5!

The difference of the mechanisms for electron tunnel
via unoccupied and occupied molecules levels will be ma
fested with particular clarity in cases when there is stro
contact of the molecule with one of the external electro
~substrate! and a weak coupling of the molecule with th
other electron~for specificity, the tip of a scanning tunnelin
microscope~STM!!. One can obtain a preliminary confirma
tion of this difference by taking limits in relations~2!–~5!.
For example, for GE@GC we obtain I (1)5eGC, I (2)
52eGC if the molecular level initially does not contain a
electron, andI 8(1)52eGC, I 8(2)52eGC in the case of tun-
neling via a completely filled molecular level. Thus, depen
ing on the occupation of the levels in the initial state of t
molecule, either two equidistant~with respect to current!
steps or only one step, but of doubled amplitude, can app

The goal of the present study was to investigate the I
relations for molecular contacts under the condition of el
tron tunneling via a molecular level of arbitrary degenera
and to analyze the expressions obtained for the curren
cases when this level pertains to a higher occupied molec
orbital ~HOMO! or to a lower unoccupied molecular orbit
~LUMO!. This situation can be realized in the case when
active level of the molecule lies quite close to the Fer
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energy, and the applied potential difference is insufficient
‘‘open up’’ the remaining levels of the molecule. In turn, th
degeneracy of the molecular level can come about thro
the electron spin or a possible high degree of symmetry
the molecule placed between the electrodes. For exam
the C60 fullerene molecule~Fig. 1a! has 10-fold degenerac
of the HOMO level and 6-fold degeneracy of the LUM
level.

As far as we know, this exactly solvable problem has n
been investigated in detail before now. In Sec. 2 we give
main formulas for calculating the current. Unlike Ref. 1
where the method of nonequilibrium Green’s functions w
used to obtain the I–V characteristics, here we use a di
method~which follows from Refs. 5 and 10! of solving the
system of kinetic equations written in terms of the occup
tion of the given level. In Secs. 3 and 4, respectively,
analytical calculation of the current is carried out for t
cases of electron tunneling only via an unoccupied or o
via an occupied molecular level. Exact expressions for
current step in the low-temperature limit are obtained for
first time, and their dependence on the degeneracyK of the
level is traced. It is shown that the I–V steps that appear
periodic with respect to voltage but not with respect to c
rent, but for a high degree of degeneracy of the level
initial current steps are nearly equidistant. On the assump
of strong coupling of the molecule with the substrate a
weak coupling with the STM tip, it is predicted that th
behavior of the I–V characteristic will be qualitatively di
ferent on the parts with opposite directions of the curre
For example, at one polarity of the applied potential diffe
ence one should observe steps which are equidistant
respect to current and voltage~the number of which should
coincide with the degeneracyK of the level!, while for the
opposite potential difference one should observe only
step, with an amplitude proportional toK. Moreover, for the
same polarity of the applied voltage the behavior of the I
characteristic depends substantially on which of the mole
lar levels, LUMO or HOMO, is involved in the electro

FIG. 1. Schematic view of the metal–molecule–metal structure~a! and the
proposed model of the potential distribution on it~b!.
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transport, i.e., one will again observe either a stepwise
rent growth or a single current step. Since the polarity of
applied voltage is uniquely determined by the conditions
the experiment, analysis of the I–V characteristic in the c
of an asymmetric arrangement of the molecule between e
trodes will permit an unambiguous determination of whi
of the levels of the molecule, HOMO or LUMO, is involve
in the electron tunneling in the framework of the one-lev
approximation adopted here. A discussion of the result
presented in Sec. 5, and the findings of this study are s
marized briefly in the Conclusion~Sec. 6!.

2. SYSTEM OF KINETIC EQUATIONS AND THE FORMULA
FOR THE STEADY-STATE CURRENT

To determine the current through a microobject plac
between two electrodes it is necessary to know the solu
of the system of kinetic equations regulating the elect
balance between the microobject and the exter
electrodes.5,10 When the value of the charging energyd be-
comes comparable to the characteristic distance between
ergy levels, these equations cannot be solved exactly e
for a small number of levels (.2). In this connection it is of
interest and importance to find cases with an exact solu
of the problem. For example, imposing the condition that
applied potential difference be small compared tokT allows
one to find an analytical formula for the current.5

We show below that the system of balance equations
be solved exactly if one assumes that the energies of al
levels are identical and that the values of the electron tra
tions are constant. Then the the analytical solution of
problem becomes possible, owing primarily to the existe
of simple recurrence relations between the probabilities
the different level occupations, making it possible to det
mine the latter without having to solve the initial system
kinetic equations.

Since the assumption that the level via which the el
tron transport occurs is degenerate greatly simplifies the
tial formulas in comparison with those given in Refs. 5 a
10, it will be preferable in the exposition to derive the equ
tions we need without going into the details of the mo
general theory.

Let us assume that in the ground state of the molec
the electrostatic energy of the electrons in it is equal to z
and that the molecular level via which the electron transp
occurs has a degeneracyK. Since, on account of the interac
tion with the external electrodes the number of electrons o
level can change, we define the instantaneous numbe
electrons on the level asN (N50, . . . ,K). Then the expres-
sion for the electrostatic energyU as a function of the instan
taneous number of electronsN becomes

U~N!5
1

2
N2d, ~6!

if the given level is unoccupied by electrons, or

U~N!5
1

2
~N2K !2d, ~7!

if this level is filled in the initial state of the molecule.10

Neglecting the potential drop across the molecule,
shall assume that the chemical potentialms of the substrate is
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raised byheV in relation to the potential of the molecule
while the chemical potentialm t of the microscope tip is low-
ered by an amount (12h)eV, as is shown in Fig. 1b, i.e.,

ms5EF1heV, m t5EF2~12h!eV, ~8!

whereEF is the energy of the Fermi level, andh is a param-
eter characterizing the voltage drop across the struct
which can be estimated from the formulah5ds/(ds1dt) if
the lengthds of the substrate–molecule tunnel barrier a
the lengthdt of the molecule–STM tip tunnel barrier ar
known. According to Eq.~8!, a positive potential difference
(eV.0) leads to the flow of electrons from the substrate~the
emitter! toward the microscope tip~the collector!. For the
opposite potential difference the SMT tip plays the role
electron emitter and the substrate that of the collector.

We introduce the notation

W2~1 !~N!5W2~1 !
S ~N!1W2~1 !

t ~N!,

W2
s ~N!5Gs@12 f ~EN2mS!#,

W1
s ~N!5Gsf ~EN2mS!, ~9!

W2
t ~N!5G t@12 f ~EN2m t!#,

W1
t ~N!5G t f ~EN2m t!,

in which W2(N) has the meaning of the total probability fo
an electron to depart from a molecule withN electrons on a
level, andW1(N) gives the total probability of arrival of an
electron on a level containingN21 electrons. The values o
W2

s(t) and W1
s(t) , respectively, specify the particula

electrode—the substrate or the SMT tip—to which or fro
which, respectively, the electron transfer occurs. The par
etersGs(t) are defined as the probability of electron tran
tions ~per unit time! between the molecule and the corr
sponding electrode,f (x) is the Fermi–Dirac distribution
function, and

EN5E1U~N!2U~N21!. ~10!

Here E is the energy of the level, and the differenceU(N)
2U(N21) has the meaning of the change in electrosta
energy of the molecule as a result of the tunneling of a sin
electron.

Assuming that the tunnel barrier between the subst
and molecule~or between the molecule and the STM tip! has
a heightFs(t) ~measured in electron-volts! and a lengthds(t)

~in angstroms!, we can use the WKB approximation forGs(t)

~see Ref. 10 and the discussion in Ref. 13!:

Gs;exp~21.025dsAFs2EF1E!,
~11!

G t;exp~21.025dtAF t2EF1E!.

We now write the complete set of kinetic equations f
the probabilitiesPN of realization of some state withN elec-
trons on the level (N20, . . . ,K):

d

dt
PN52PN@NW2~N!1~K2N!W1~N11!#

1PN21NW1~N!1PN11~K2N!W2~N11!.

~12!
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The structure of these equations is quite clear. A molec
can go from a state withN electrons@a process governed b
the negative terms in~12!# only to a state withN21 elec-
trons, through the loss of any of theN electrons, or to a state
with N11 electrons, through the acquisition of an addition
electron at any of theK2N places available. The positiv
terms in~12! have an analogous interpretation: they take i
account all the ways that the molecule can arrive at a s
with N electrons.

To find the current through the molecule we need o
take into account, with the corresponding sign, all of t
elementary electron-motion events pertaining to so
boundary of the molecule, e.g., the molecule–substrate ju
tion. As a result we obtain

I 52e(
N50

K

PNCK
N@NW2

s ~N!2~K2N!W1
s ~N11!#

52e(
N51

K

NCK
N@PNW2

s ~N!2PN21W1
s ~N!#, ~13!

where we have taken into account that the number of
realizations of a state withN electrons on aK-fold degener-
ate level isCK

N ~i.e., the number of permutations ofK things
takenN at a time!. The second equation in~13! is obtained
with the use of the identity (K2N)CK

N5(N11)CK
N11 . It is

also understood in Eq.~13! that the probabilityPN is nor-
malized to unity, i.e.,

(
N50

K

CK
NPN51. ~14!

To find the steady-state current we need the tim
independent solutions of the system of difference equat
~12!. They are easily found if it is recognized that the so
tions of the linear recurrence relations

W1~N!PN215W2~N!PN , N51,... ,K ~15!

~see below! satisfy~12! automatically. The dimensionality o
the system of equations~12! is one greater than the dimen
sionality of ~15!, but the first system is linearly dependent
virtue of the normalization condition~14!. Therefore, there
exist no steady-state solutions of the linear system~12!
which do not satisfy~15!. The use of Eq.~15! permits one,
first, to simplify the formula for the current~13! signifi-
cantly:

I 5eGsG t (
N51

K

NCK
NPN

f ~EN2ms2 f ~EN2m t!

Gsf ~EN2ms!1G t f ~EN2m t!
~16!

and, second, to obtain the following expression for all
probabilities of occupation of the level:

PN5Z21)
p51

N
W1~p!

W2~p!
, Z5 (

N50

K

CK
N)

p51

N
W1~p!

W2~p!
,

~17!
N51,... ,K.

In writing Eq. ~16! we have made use of definition~9!,
and the normalization condition~14! was taken into accoun
in deriving ~17!.
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Finally, the substitution of~17! into ~16! leads to an ana-
lytical expression for the current, obtained here for the fi
time. Everywhere below the analysis of theI (V) curve in the
low-temperature limit of interest to us is done with the use
the recurrence relations~17! in each of the intervals of con
stancy of the functionsW2(1)(N) from ~9!, with a subse-
quent substitution of the normalized solutions into formu
~16!.

Before turning to the analysis of the I–V characteristic
we note that formulas~12! and~13! can be directly recovered
from Refs. 5 and 10 under the condition that all the levels
identical. Formula~16! for the current was obtained on th
basis of the recurrence relations~15!, and relations of this
kind do not have analogs in the case of an arbitrary distri
tion of levels. It is the existence of the recurrence relatio
~15! that makes it possible to obtain an analytical solution
the problem addressed in this paper.

3. ELECTRON TRANSPORT VIA THE LOWER UNOCCUPIED
LEVEL OF THE MOLECULE

Using ~6! together with~8!–~10! in formulas ~15! and
~16! gives

PN21$G
Sf ~DL1~N21/2!d2heV!

1G t f ~DL1~N21/2!d1~12h!eV!%

5PN$GS@12 f ~DL1~N21/2!d2heV!#

1G t@12 f ~DL1~N21/2!d1~12h!eV!#%,

N51,... ,K ~18!

and

I LUMO5eGSG t(
N51

K

NCK
NPN

3
f ~DL1~N21/2!d2heV!2 f ~DL~N21/2!d1~12h!eV!

GSf ~DL1~N21/2!d2heV!1G t f ~DL1~N21/2!d1~12h!eV!
.

~19!

HereDL5E2EF.0 is the energy distance between the u

occupied level~LUMO! and the Fermi energy. In the low

temperature limit these formulas can be simplified by assu

ing everywhere below that

f ~x!5H 0, x.0,

1, x,0.
~20!

In the flow of electrons from the substrate to the STM
(eV.0) we obtain from~18! and ~19!

PN21GSf ~DL1~N21/2!d2heV!

5PN$GS@12 f ~DL1~N21/2!d2heV!#1G t%, ~21!

I LUMO
. 5eG t (

N51

K

NCK
NPN . ~22!

In the initial part 0,heV,DL1d/2 relations~21! give the
trivial solutionsPN5dN,0 , which upon substitution into~22!
lead to zero current. In the next regionDL1d/2,heV
,DL13d/2 the normalized occupation probabilities of th
level are given by
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P05
G t

G t1KGS
, P15

GS

G t1KGS
, PN50, N>2.

~23!

Substituting these probabilities into~22! give an expression
for the amplitude of the first current step:

I LUMO
. ~1!5e

KG tGS

G t1KGS
. ~24!

Formula~24! agrees with~2! in the case of twofold degen
eracy of the level (K52) and generalizes it to the case
arbitrary degeneracy of the unoccupied level. We recall t
for the given direction of the electron flow the relationsGs

5GE andG t5GC hold.
In the next intervalDL13d/2,heV,DL15d/2 we

have the normalized solutions

P05D21, P15g21D21, P25g22D21,

PN50, N>2. ~25!

D511Kg211
K~K21!

2
g22, g5G t/GS,

which give the following result for the amplitude of the se
ond current step:

I LUMO
. ~2!5eG t

Kg211K~K21!g22

11Kg211@K~K21!/2#g22
, ~26!

which agrees with~3! for K52.
From the induction in the intervalDL1(2M21)d/2

,heV,DL1(2M11)d/2 one can obtain expressions f
all the nonzero occupation probabilities of the LUMO lev

PN5
g2N

(p50
M CK

p g2p
, N50,... ,M , ~27!

which determine theM th current step

I LUMO
. ~M !5eG t

(N51
M NCK

Ng2N

(N50
M CK

Ng2N
. ~28!

From the last expression it is easy to see that under the
dition g!1 ~i.e., Gs@G t) the amplitudes of the steps of th
I–V characteristic are determined by the terms with
maximum value ofN. ThereforeI LUMO

. (M )5eMG t, i.e., in
this limiting case and foreV.0 we have equidistant step
with respect to both the voltage and the current.

In the case of negative potential differenceseV, when
the STM tip is the electron emitter and the substrate is
collector, formulas~18! and~19!, with the use of~20!, reduce
to the form
at

n-

e

e

PN21G t f ~DL1~N21/2!d2~12h!ueVu!

5PN$GS1G t@12 f ~DL1~N21/2!d2~12h!ueVu!#%,

~29!

I LUMO
, 52eGs(

N51

K

NCK
NPN . ~30!

In view of the formal similarity of Eqs.~29! and ~30! with
~21! and ~22!, it is not hard to find expressions for the am
plitudes of the current steps. As a result, for the intervalDL

1(2M21)d/2,(12h)ueVu,DL1(2M11)d/2 we obtain
the nonzero occupation probabilities for the level:

PN5
gN

(p50
M CK

p gp
, N50,... ,M , ~31!

which lead to the expression

I LUMO
, ~M !5eG t

(N51
M NCK

NgN

(N50
M CK

NgN
. ~32!

In the caseg!1 the main contribution to the current~32! is
given by the terms with the minimum value ofN, and there-
fore I LUMO

, (M )'2eKGsg52eKG t in any interval of
variation of the potential difference exceedingueVu5(1
2h)21(DL1d/2). In other words, the I–V characteristic a
the given polarity of the voltage will have only a sing
current step, the amplitude of which is proportional to t
degeneracyK of the level.

Thus in the case of a significant difference of the tunn
ing rates of the junctions,Gs andG t, the I–V characteristics
of a metal–molecule–metal structure display a pronoun
asymmetry of the current. ForGs@G t and positiveeV one
should observeK equidistant current steps, while for neg
tive eV only one step should be observed.

4. ELECTRON TRANSPORT VIA A HIGHER OCCUPIED
LEVEL OF THE MOLECULE

For tunneling via a higher occupied molecular lev
~HOMO! the use of Eq.~7! together with~8!–~10! and ~20!
leads to the expressions below, which follow from~15! and
~16!:

PN21$G
sf ~2DH1~N2K21/2!d2heV!

1G t f ~2DH1~N2K21/2!d1~12h!eV!%

5PN$Gs@12 f ~2DH5~N2K21/2!d2heV!#

1G t@12 f ~2DH1~N2K21/2!d1~12h!eV!#%,

~33!
I HOMO5eGsG t (
N51

K

NCK
NPN

f ~2DH1~N2K21/2!d2heV!] 2 f ~2DH1~N2K21/2!d1~12h!eV!

Gsf ~2DH1~N2K21/2!d2heV!] 1G t f ~2DH1~N2K21/2!d1~12h!eV!
. ~34!



he

re

st

f

d

e

b-
ng

e
t

of
but
I–V
of
oc-
a

low
r

at

e

of
f
to

ses
, in
and
el-
ent

an
to

he
ui-
ua-
of
gle
e

o
the
f

the
to
in
el

on-
–V

400 Low Temp. Phys. 28 (6), June 2002 Yu. A. Klymenko
Here DH5EF2E.0 is the energy distance between t
Fermi energy and the occupied molecular level.

Again restricting consideration to the low-temperatu
limit, we obtain foreV.0

PN21$G
s1G t f ~2DH1~N2K21/2!d1~12h!eV!%

5PNG t@12 f ~2DH1~N2K21/2!d1~1

2h!eV!#, N51,... ,K ~35!

I HOMO
. 5e(

N51

K

GsG tNCK
NPN

3
12 f ~2DH1~N2K21/2!d1~12h!eV!

Gs1G t f ~2DH1~N2K21/2!d1~12h!eV!
.

~36!

In the interval (12h)eV,DH1d/2 equations~35! give a
single nonzero solutionPK51. According to~20! and ~36!,
this leads to zero current. ForDH1d/2,(12h)eV,DH

13d/2 we have the nonzero solutions of equation~35!:

PK5
Gs

KG t1Gs
, PK215

G t

KG t1Gs
, ~37!

leading to the following formula for the amplitude of the fir
current step:

I HOMO
. ~1!5e

KG tGs

KTt1Gs
, ~38!

which agrees with~4! for K52. In the intervalDH13d/2
,(12h)eV,DH15d/2 we obtain for the formation of the
second step

I HOMO
. ~2!5eG t

K1K~K21!g

11Kg1@K~K21!/2#g2
,

~39!
g5G t/Gs,

which reduces to~5! for the case of twofold degeneracy o
the HOMO level.

In the general case forDH1(2M21)d/2,(12h)eV
,DH1(2M11)d/2 the following formula can be obtaine
by induction:

I HOMO
. ~M !5eG t

(N51
M NCK

NgN21

(N50
M CK

NgN
5eGS

(N51
M NCK

NgN

(N50
M CK

NgN
.

~40!

In the caseeV,0 the results of the analysis lead to th
expression

I HOMO
, ~M !52eGs

(N51
M NCK

NgN21

(N50
M CK

NgN

52eG t
(N51

M NCK
Ng2N

(N50
M CK

Ng2N
, ~41!

which is valid in the intervalDH1(2M21)d/2,hueVu
,DH1(2M11)d/2. In the caseGs@G t we see from~40!
and ~41! that the behavior of the I–V characteristic is su
stantially different from the analogous curve for tunneli
via an unoccupied level. In the caseGs@G t for eV.0 one
observes a single step, which is proportional toK and arises
for eV5(12h)21(DH1d/2). On the opposite branch of th
I–V characteristic there will beK steps which are equidistan
with respect to both current and voltage.

5. DISCUSSION OF THE RESULTS AND A NUMERICAL
SIMULATION

A comparison of formula~41! with ~28! and ~40! with
~32! shows that the electron transport via molecular levels
different types leads to the same features for the current,
these features are observed on opposite branches of the
characteristic. This is unsurprising from the standpoint
solid-state theory, since the electron transport via a level
cupied by electrons is similar to the tunneling of holes via
level unoccupied by holes. We shall therefore assume be
~unless otherwise stated! that the active level is the lowe
unoccupied~LUMO! level of the molecule.

As was shown above, the first current step, arising
eV5h21(DL1d/2) if eV.0 or at ueVu5(12h)21(DL

1d/2) if eV,0, is shifted relative to the threshold for th
opening up of the level itself, given aseV5h21DL and
ueVu5(12h)21DL , respectively~see Fig. 1b!. An analo-
gous delay of the threshold of the first current step~i.e., the
appearance of a region of zero current on the initial part
the I–V characteristic! also takes place in the tunneling o
electrons through metal microclusters, which are known
have a quasicontinuous spectrum (DL5DH50). However,
the existence of a finite energy gap in the molecule cau
the boundaries of the current blockade region to depend
addition, on the energy distance between the Fermi level
the active level of the molecule. In particular, in the tunn
ing via an unoccupied level of a molecule there is no curr
if

Ve@2~12h!21~DL1d/2!,h21~DL1d/2!#.

The tunneling of electrons via a degenerate level leads to
I–V characteristic that is equidistant only with respect
voltage and not with respect to current~see Eqs.~28! and
~29!!. This distinguishes it from the analogous curve for t
case of tunneling through metal microgranules, where eq
distance of both types is observed. However, since the q
sicontinuous spectrum of microgranules on the initial part
the I–V characteristic is in a certain sense similar to a sin
level with a large degeneracy, it is useful to find th
asymptotic behavior of~28! and~32! for K@1 and for initial
current steps (M!K). We see that the main contribution t
the asymptotics of these steps is given by terms with
maximum value ofN in the numerator and denominator o
the aforementioned formulas, and therefore

I LUMO
. ~M !52I LUMO

, ~M !'eMG t, ~42!

i.e., for a high degeneracy of the level the first steps on
I–V characteristic are actually equidistant with respect
current. An illustration of this observation is presented
Fig. 2, which shows the I–V characteristic for different lev
degeneracies,K52, 4, and 8.

Let us discuss the caseGs@G t in more detail. As was
shown above, the significant difference of the tunneling c
stants leads to substantially different behavior of the I
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characteristic on parts with opposite directions of the curre
The origin of this current asymmetry can be explained
follows.

In the one-level passage of electrons through a mole
the steps on the I–V characteristic can arise only in conn
tion with a change of the total number of electrons on
molecule. For the caseg!1 formula~27! indeed shows tha
in the flow of electrons from the substrate via an unoccup
molecular level to the STM tip, the total number of electro
on the molecule varies, and in the interval of formation
theM th current step the LUMO level of the molecule will i
fact be occupied byM electrons.

In the reverse direction of the electron flow (eV,0),
i.e., from the STM tip via an unoccupied level of the mo
ecule to the substrate, the total number of electrons in
molecule is practically independent of the applied poten
difference and is found from the condition of zero occupan
of the LUMO level~see Eq.~31! in the limit g!1). This can
be explained as follows. If the coupling of the molecule w
the substrate is assumed to be strong and the coupling
the STM tip weak, then the occupation of the level by ele
trons is completely determined by the position of the che
cal potential of the substrate relative to the energy level
is practically independent of the value of the chemical p
tential at the other electrode. Since the application of a ne
tive potential difference to the structure~see Fig. 1b! de-
creases the chemical potential of the substrate relative toEF ,
this cannot change the occupation of an initially unoccup
molecular level lying aboveEF .

An analogous situation with a constant total number
electrons on the molecule is also observed in the tunne
via an electron-filled HOMO level of the molecule ifeV
.0. Because of the strong coupling of the molecule with
substrate the growth of the chemical potential of the s
strate cannot change the occupation of the completely fi
level lying belowEF . In the caseeV,0 the decrease of th
chemical potential of the substrate leads to a downward ju
in the occupation of the level fromK to 0 as a result of the
leaking of charge from the molecule to the substrate; thi
the cause of the steps on the corresponding branch of
I–V characteristic.

FIG. 2. Current–voltage characteristics of a molecular contact for diffe
degeneracies of the lower unoccupied~LUMO! level of the molecule:K
52 ~solid curve!, K54 ~dashed curve!, andK58 ~dotted curve!. The fol-
lowing values of the parameters of the calculation were chosen:g51,
h50.5, d50.2 eV,ELUMO2EF50.2 eV. It is seen that the first current ste
become increasingly equidistant with increasing degeneracy of the lev
t.
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As an illustration, in Fig. 3 we present the results of
numerical simulation of the current in the tunneling of ele
trons via unoccupied and occupied molecular levels of
generacy 4 for the following values of the parameters:G t

50.01Gs, h50.3, d50.2 eV, and EF2EHOMO50.3 eV
~curve 1! or ELUMO2EF50.1 eV ~curve 2!. The given
curves are obtained on the basis of a direct modeling
formulas~16! and ~17! for zero temperature and room tem
perature and exhibit the current asymmetry predicted abo

In the modeling of the I–V characteristic it was assum
that the tunneling constantsGs andG t do not depend on the
applied potential difference. By virtue of~11! this assump-
tion is valid only if the heights of the tunnel barriersFs and
F t are independent ofV and can be justified only for no
very high voltages applied to the structure. A more detai
discussion of this question is given in Ref. 10.

6. CONCLUSION

In this paper we have presented an analytical calcula
of the current in metal–molecule–metal structures under
condition of electron tunneling via only one molecular lev
with arbitrary degeneracy. The amplitudes of the steps of
I–V characteristics are calculated for the first time in relati
to the degeneracy of the level and its occupation by electr
in the ground state of the molecule. It is shown that the st
on the I–V characteristic are equidistant with respect to v
age but not with respect to current, and that an equidis
spacing of the first current steps can be observed only in
case of a large degeneracy of the level. For an asymme
position of the molecule between electrodes~the typical situ-
ation in STM measurements of molecules and one which
often realized under conditions of a mechanically control
contact with the molecule inside it! it is predicted that the
behavior of the I–V characteristic will be substantially d
ferent on parts with opposite directions of the current. T
is, depending on the sign of the applied potential differen
either a single current step of large amplitude or seve
small steps, equidistant with respect to both current and v
age, can appear. It follows from the results of this study t
the answer as to which of the two types of features w
appear on the I–V characteristic depends not only on

tFIG. 3. The current–voltage characteristics of a metal–molecule–m
structure forG t50.01G2. Curves1 correspond to the transport of electron
via a higher occupied~HOMO! level of the molecule; curves2 to transport
via a lower unoccupied~LUMO! level. The solid and dashed curves corr
spond to the cases of zero temperature and room temperature, respec
The parameters of the simulation are given in the text.
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current density~which is uniquely determined by the cond
tions of the experiment! but also on the type of molecula
level ~occupied or unoccupied! that is involved in the elec-
tron transport. This suggests the possibility of experimen
determination of the type of level via which the electr
tunneling occurs under conditions of the proposed one-le
transport.

The author thanks A. I. Onipko and L. I. Malysheva f
a helpful discussion of the results.
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Features of the thermopower of Mo–Re and Mo–Re–Nb alloys and the
electronic–topological transition in these systems

T. A. Ignatyeva and A. N. Velikodny
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Ukraine*
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The anomalous behavior of the thermopower of Mo12xRex and Mo12x2yRexNby alloys is
investigated over a wide range of temperatures and concentrations~within the limits of the solid
solution!. An extremum on the concentration dependence of the thermopower at 10 K,
observed for both of these systems at the same electron concentration'6.1 electrons/atom,
attests to the presence of a critical energyEc in the electronic spectrum of Mo at which an
electronic–topological transition occurs in Mo under the influence of impurities. According
to the theoretical ideas about the electronic spectrum of Mo, the closestEc.EF

0 corresponds to the
bottom of the band, upon the crossing of which a new electron sheet of the Fermi surface
appears. In the binary systems the Re impurity causes a new sheet of the Fermi surface to appear,
and in the ternary systems it disappears as the Nb impurity is added. A quantitative
comparison of the theory with experiment makes it possible to determine the gapEc2Ef

0 for
Mo, which is found to be'0.02 eV. These results correspond to those obtained
previously from the superconducting characteristics. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1491180#
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1. INTRODUCTION

Transition metals and alloys have a complex electro
structure and are interesting objects for studying Lifsh
transitions of order 2.5.1 In the literature these transition
have since come to be called electronic–topological tra
tions ~ETTs!. Electronic–topological transitions were pr
dicted theoretically1 for pure metals in the normal state an
were analyzed for the case of small elastic stresses. The
perimental study of ETTs has been limited to this theoret
framework. The feature arising in the electron density
states at the ETT in this case,dn'6(Ec2EF)1/2, appears
against the background of the smooth variation ofn0(E) for
the pure metal and is hard to identify. HereEF is the Fermi
energy, andEc is the critical energy at which the ETT occur
After the discovery of these transitions in superconducto2

the situation changed. For superconductors it has been e
lished experimentally2 and theoretically3 that the feature
dn(E) arising at the ETT is related to the features in t
superconducting characteristics. It was shown that the
rivative ]Tc(P,C)/]P has an extremum related t
]dn(E)/]E and is an unambiguous criterion of the ETT
superconducting metals and alloys; hereTc is the supercon-
ducting transition temperature,P is the pressure, andC is the
impurity concentration. Not only was the establishment o
connection between the aforementioned feature and the
tremum of the derivative a new finding, but it was also im
portant that a new external parameter by which one co
make the Fermi energy approach the singular point of
electronic spectrum had been brought into consideration.
the particular case of superconductors it was first sho
experimentally4,5 and theoretically3,6 that the changes of th
fine structure of the electronic spectrum of a metal as
Fermi level moves can be observed not only under pres
4031063-777X/2002/28(6)/9/$22.00
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but also under the influence of an impurity. By simult
neously varying the two parameters—the pressure and
concentration of impurities of different valence, which sh
the Fermi energy up or down relative to the valueEF

0 for the
pure metal—one can always bring about conditions such
EF5Ec and observe the changes of the topology of
Fermi surface: the appearance or disappearance of a gro
carriers~electrons, holes!, and the formation or breaking o
necks. From the position of the extremum on the electr
concentration or pressure scale one can determine the cr
concentration or pressure at which the ETT occurs.

In the 1980s it was pointed out in a number of theore
cal papers7,8 that by studying the concentration dependen
of the thermopowera(C) at a fixed temperature, one ca
observe directly the feature due to the derivative of the e
tron density of states with respect to energy,'6(Ec

2EF)21/2, since a(C)']n(E)/]E and has an extremum
under the conditionEF5Ec . The sign of the extremum de
pends on the type of carrier~electron or hole sheet!.9,10 Thus
it has become clear that the concentration dependence o
thermopowera(C) in a study of the ETT in the normal stat
of a metal is an analog of the dependence of]Tc(P,C)/]P
in a study of the ETT in the superconducting state and i
test for determining singular points in the electronic sp
trum. A general expression for the thermopower can be w
ten in the form

a5AT1BT3, ~1!

where the first term~the diffusive part of the thermopower!
depends on the electron density of states and reflects
features due to the ETT; the second term is due to pho
drag effects.11
© 2002 American Institute of Physics
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In this paper we investigate the thermopower of Mo–
and Mo–Re–Nb superconducting alloys, for which
electronic–topological transition has been observed pr
ously in studies of the behavior ofTc(C), ]Tc(P,C)/]P
~Refs. 12 and 13!, anda(C) ~Ref. 14!, and obtain the quan
titative parameters of this transition.13 This makes it possible
to compare the manifestation of the ETT in the properties
normal metals and superconductors. We note that a l
number of experimental papers have been published on
study of the normal characteristics of Mo and its alloys
relation to the features of the electronic spectrum: the e
tronic heat capacity,15 the Hall effect,16 etc. However, these
data are not suitable for comparison with the concr
changes in the fine structure of the electronic spectrum
especially with the concrete changes in the Fermi surfa
The present studies of the thermopower of Mo–Re and M
Re–Nb alloys make it possible to make an unambigu
determination as to the presence of critical points in the e
tronic spectrum of Mo and to compare with the changes
the Fermi surface. The temperature dependence of the
mopower anomalies of alloys is investigated over a w
range of temperatures; from those measurements we d
mine the numerical values of the damping parameterG due
to scattering of electrons on impurities at the extremal po
and the influence of temperature on the value of the anom
We carry out a quantitative comparison of the theory17,18

with experiment, making it possible to determine such
rameters of the ETT as the energy gapEF

02Ec and the criti-
cal concentrationCc . These data can be used to refine t
fine structure of the electronic spectrum in those cases w
the theoretical calculations, because of their insufficient
curacy~0.1 eV!, do not give complete information about th
small parts of the Fermi surface and, accordingly, ene
gaps of less than 0.1 eV. This is interesting also beca
these alloys have special physical properties, such as
values ofTc ~Ref. 12!, etc.,19 which may be related to the
features of the electronic spectrum. In the general case
study of the thermopower is a rather simple method of
termining the singular points in the electronic spectrum
both normal and superconducting metals and alloys.

2. SAMPLES AND MEASUREMENT TEMPERATURES

The measurements were made on samples cut from
prepared by the floating zone method, which had been u
previously in Refs. 12 and 13 for studies of the ETT from t
superconducting characteristics.

Samples with dimensions of 232330 mm were cut out
along the direction of motion of the zone by an electrosp
cutter. The samples were etched in a mixture of nitric a
fluoric acids and then electropolished to provide a mir
finish and a constant cross section along the entire len
The composition of the samples was determined by act
tion analysis and correlated with the previously measu
dependence ofTc on the concentration of impurities.12 The
maximum possible error of determination of the Re and
content was not more than 10%. Manganin foil was s
welded onto the ends of the sample, which were then tinn
Heaters H1 and H2 were soldered to the ends~see Fig. 1!;
one of these heaters was used to produce a temperature
dient DT along the sample, and the other to set the aver
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temperature of the sample. The heaters were made fro
twisted pair of manganin wires 0.03 mm in diameter, whi
was wound on copper coils. The resistance of the heaters
500–1000V.

Measurements of the thermopower were made with
SQUID used as a null indicator. This technique20 is an ideal
instrument for investigating the kinetic properties of met
at low temperatures. The SQUID permits making measu
ments of small voltages to a rather high accura
10213– 10214 V at small temperature gradients. Howeve
the sensitivity of the device is lower for measurements
samples whose resistance can be rather high. In our cas
resistance of the samples varied from'231027 V for pure
Mo to '1024– 1023 V for alloys; here the sensitivity of the
device is lowered to 10213– 10212 V.

A diagram of the thermopower measurements is sho
in Fig. 1. The sample1 was placed in a vacuum container6,
and the sensitive element of the SQUID8 was placed next to
the container in a helium bath~4.2 K!. The measuring circuit
of the SQUID was wired with copper-clad Nb–Zr superco
ducting wires. They were welded on to the sample and
thermocouple2 and were brought out of the containe
through platinum capillaries5 sealed into the glass and we
connected to the sensitive element of the SQUID. The te
perature gradientDT along the sample was 1022 K.

To measureDT we used a ZLZh thermocouple, Au
0.03Fe versus superconducting Nb–Zr, of equal diame
0.1 mm. The temperature dependence of the thermopo
for this type of thermocouple is well known. The accuracy
which DT was measured was 1025 K. To ensure good ther-
mal contact with the sample the thermocouple was wou
several times around the sample together with the Nb
potential leads and was glued down. The average temp
ture of the sample was set by means of heater H2 , which was

FIG. 1. Layout for the thermopower measurements:1—sample,2—ZLZh
thermocouple,3—cold finger, 4—platinum leads,5—platinum capillaries
for superconducting wires,6—vacuum container,7—carbon resistance ther
mometer,8—sensitive element of the SQUID; H1 and H2 are heaters.
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soldered between the sample1 and the cold finger3, which
was brought out of the container into the helium ba
through a ‘‘tear drop.’’ The average temperature was m
sured by a carbon resistance thermometer7 by a potentio-
metric method. The thermometer was glued to the cente
the sample with BF-2 glue and then, for better thermal c
tact, was soaked with GKZh oil. The accuracy of the aver
temperature measurement was 1023 K below 4.2 K and
1022 K at temperatures of 6–10 K. The above scheme w
used to measure the concentration dependence of the
mopower in the temperature interval 0–10 K. The tempe
ture dependence of the thermopower were measured
wide temperature interval~4.2–300 K! by a differential
method. The difference of the absolute values of the th
mopower of two samples,a12a2 , one of which was the
sample to be studied, while the other had a low value of
thermopower (0.03831027 V/K2) at low temperatures, wa
measured using the vacuum container6 ~Fig. 1! at low tem-
peratures and by a standard potentiometric method at
peratures above 77 K. A diagram of the mounting of t
samples is shown in Fig. 2.

Samples1 and 2 of approximately equal dimension
232330 mm, were glued at their upper ends to a cop
bracket3, which was connected to the cold finger4. Thermal
contact of the remaining parts of the samples was achie
by soaking the ‘‘contact’’ area with GKZh oil.

The samples were electrically isolated from each ot
and from the copper bracket3. Electrical contacts were
formed by welding Constantan wires to the samples and
dering these wires to wires7 consisting of lead ribbons 1 mm
wide and 0.05 mm thick, glued together across a layer
cigarette paper. The lead ribbons were soldered to a Nb
superconducting wire9 which led out of the vacuum con
tainer into the helium bath through sealed-in platinum ca

FIG. 2. Diagram of the mounting of the samples for measurement of
temperature dependence of the thermopower of a wide range of tem
tures:1, 2—samples,3—copper bracket,4—cold finger,5—resistance ther-
mometers,6—thermocouple,7—lead ribbons,8—block for temperature sta-
bilization, 9—superconducting wire,10—vacuum container; H1 and H2 are
heaters.
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laries passing through the glass and was connected to
sensitive element of the SQUID. The places where the w
and ribbons were soldered together were thermally stabili
and had a temperature of 4.2 K. The samples were conne
together at the lower end by the same lead ribbon. Car
thermometers or copper–Constantan thermocouple junct
were mounted on the samples near the places where the
stantan wires were welded on. This mounting arrangem
made it possible to create equal temperature gradients
both samples, and so the voltage was proportional to
difference of the absolute values of the thermopowers,a1

2a2 . The presence of the ‘‘normal’’ wires above 7 K did n
introduce a parasitic emf, since, because of the good the
contact, the lead ribbons had the same local tempera
along the entire length. This was monitored by the abse
of voltage jumps upon the transition of the lead to the norm
state above 7 K.

In the temperature interval 4.2–77 K the measureme
were done in a helium cryostat with the use of a SQUID. T
average temperature of the samples andDT were measured
by two carbon resistance thermometers. With the appeara
of normal resistance of the wires above 7 K the sensitivity of
the measuring circuit fell off. For this reason the temperat
gradient was gradually increased; a value of 1–6 K was u
in the interval from 30 to 77 K.

In the temperature interval 77–300 K the measureme
were done in a liquid-nitrogen cryostat, and the differen
voltage across the samples was determined by a stan
potentiometric method with a sensitivity of 1028 V. The av-
erage temperature of the samples was measured by ca
resistance thermometers, and the temperature gradient a
the samples was measured by a copper–Constantan the
couple.

3. RESULTS OF THE MEASUREMENTS

We investigated the temperature and concentration
pendence of the thermopower of Mo and of its bina
Mo12xRex and ternary Mo12x2yRexNby alloys. The indices
x and y denote the variable concentrations of Re and N
respectively. The samples, which were up to 30 mm lo
were quite homogeneous, as was monitored by the width
the superconducting transition, which was'0.1 K. Figure 3
shows the results of measurements of the temperature de
dence of the thermopowera/T of Mo12xRex alloys in the
temperature interval 0–10 K. A cross section of the grap
for T5const gives the absolute value ofa/T, which corre-
sponds to the diffusive part of the thermopower for alloys
different concentrations. At a fixed concentration the slope
the curve ofa/T versusT2 determines the effects due t
phonon drag.

It is seen from the data presented that the diffusive p
of the thermopower varies under the influence of the im
rity by a factor of'5, whereas the phonon drag parta/T
varies by no more than 15%. However, one cannot fail
notice the features on the curve ofa/T versusT2 in the
temperature interval 0–10 K. The slope for samples of d
ferent composition twice changes sign. In other words,
coefficientB multiplying T3 in formula ~1! has a singularity
as a function of the impurity concentration. This may be d
to features of the interaction of electrons with phonons at

e
ra-
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FIG. 3. Dependence ofa/T on T2 for Mo12xRex alloys with different concentrations of the Re impurity.
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ETT in the alloys. These will be discussed in more detail
a separate paper. In the present paper we will discuss
the features of the diffusive part of the thermopow
a(C)/T, assuming that the variations due to phonon drag
the temperature interval 0–10 K are insignificant in compa
son with the variations of the thermopower under the infl
ence of impurities. Figure 4 shows the results of measu
ments of the curves ofa/T versus T2 for different
concentrations of the Re impurity and also, on the sa
scale, a plot ofa(C)/T at a temperature of 10 K fo
Mo12xRex alloys.

We see from the plots that in this temperature inter
the phonon drag contribution to the thermopower is ne
gible in comparison with the ‘‘giant’’ variations of the diffu
sive part of the thermopower as a function of concentrati
The diffusive part of the thermopower,a(C)/T, is propor-
tional to the derivative]n(E)/]E ~Ref. 7! and, as is seen in
Fig. 4b, has a maximum. The value of the thermopowera/T
increases from 0.431027 V/K2 for pure Mo to 1.8
31027 V/K2 at the maximum for Mo0.9Re0.1. Analogous
curves were obtained for the ternary syste
Mo12x2yRexNby and are presented in Fig. 5. The terna
ly
,
n
i-
-
e-

e

l
i-

.

systems studied were prepared on the basis of the bi
systems with a fixed concentrationx of the Re impurity and
a variable concentrationy of the Nb. The concentration o
Re was chosen such that passage through an anomaly~extre-
mum! would occur, and by varying the concentration of t
Nb impurity one could return to the electron concentration
pure Mo, passing through the anomaly in the reverse dir
tion. In the alloys studiedx'17 at. % for one system an
'29 at. % for the other. The composition of the alloy w
calculated with allowance for the valence of the impur
relative to pure Mo. It follows from a previous study13 that
the effects of Re and Nb impurities are equal and oppos
Here the efficacy of an impurity was defined as the chang
electron concentration of the alloy upon admixture of t
impurity: Dn@electrons/atom#5DZ/100@%#( iCi@%#, where
Ci is the atomic concentration of thei th component,DZ is
the difference of the valences of the impurity and pure M
andn is the electron concentration.

For the ternary systems the results are presented as f
tions of the effective concentrationsCeff5CRe1CNb , calcu-
lated with allowance forDn.13 The a(C)/T curve at 10 K
for the ternary systems consists of two segments~two differ-
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FIG. 4. Dependence ofa/T on T2 ~a! and ofa/T on C at 10 K ~b! for Mo12xRex alloys.
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ent values ofx! corresponding to a single curve, on which
is seen that the extremum is slightly shifted to higher c
centrations in comparison with the binary systems and h
lower numerical value at the extremal point.

The result of a comparison of the thermopower of t
binary and ternary systems is presented in Fig. 6. We see
the values of the thermopower at the extremum differ for
binary and ternary systems by a factor of 1.5.

Figure 7 shows a log–log plot of the temperature dep
dence ofa/T for samples with an electron concentrationn
'6.098 electrons/atom for Mo–Re andn'6.122 electrons/
atom for Mo–Re–Nb in the temperature interval 4.2–300
The measurements were made by the differential method
both cases the difference of the absolute values of the t
-
a

at
e

-

.
In
r-

mopower, a12a2 , were measured relative to the sam
Mo79.5Re20.5 sample, which at low temperatures has a clo
to zero value of the thermopower. From the temperature
pendence of the thermopower for the binary and ternary s
tems measured at the extremal point over a wide tempera
interval one can obtain information about the influence
impurities and temperature on the anomaly. In addition, o
can find experimentally the values of the damping para
etersG1 and G2 for the given samples and determine t
respective values of]G/]C. As we see in Fig. 7, the char
acter of the curves is the same in both cases. The t
mopower varies slightly up to a temperature of 30 K f
Mo–Re and up to 40 K for Mo–Re–Nb and changes shar
upon further increase in temperature. This is due to the p
r
FIG. 5. Dependence ofa/T on T2 ~a! and ofa/T on Ceff at 10 K ~b! for Mo12x2yRex Nby alloys. The concentrationsCeff were calculated with allowance fo
the valence of the impurities.13
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ence of two different scattering mechanisms: impurity a
phonon.8,21 The impurity scattering processes are manifes
to a larger degree at low temperatures. These mechan
become comparable in the region of sharp change of
temperature trend. Therefore the value of the temperatur
this point corresponds to the value ofG for the impurity
mechanism of scattering and equals 30 K for Mo–Re and
K for Mo–Re–Nb. Accordingly, for the binary alloy
]G/]C53.05 K/at. %. The ratio of the anomalous values
the thermopower for the binary and ternary systems
aMo–Re/aMo–Re–Nb'AG2 /G1 ~Ref. 8!, whereG'1/t is the
damping parameter associated with the scattering of e
trons on impurities, andt is the lifetime, on which the re-
sidual resistancer 5R4.2/(Rc2R4.2) and the resistivityr
also depend. These quantities, measured in the samples
independent way, are given in Table I. For Mo–Re withn
'6.098 electrons/atom and for Mo–Re–Nb withn'6.122
electrons/atom the ratioa1 /a251.38 and is proportional to
the ratioAG2 /G151.15. On the other hand,G is proportional
to the residual resistancer 5R4.2/(Rc2R4.2) and to the re-

FIG. 6. Concentration dependence of the thermopower for Mo12xRex and
Mo12x2yRex Nby .

FIG. 7. Temperature dependence ofa/T for Mo0.9Re0.1 and
Mo0.78Re0.17Nb0.05 alloys in the temperature range 0 – 300 K.
d
d
ms
e
at

0

f
is

c-

an

sistivity r, which are measured independently. Their rat
areAr 2 /r 151.43 andAr2 /r151.4.

4. QUANTITATIVE CHARACTERISTICS OF
ELECTRONIC–TOPOLOGICAL TRANSITIONS

According to the theory of Refs. 7 and 8, the ETT
manifested as an extremum of the diffusive part of the th
mopower as the Fermi energy changes under the influenc
an impurity and the conditionEF5Ec is attained. As we see
in Fig. 6, for the binary Mo12xRex and ternary
Mo12x2yRexNby systems the extremum on thea(C)/T
curve is observed at the same value of the electron con
tration, i.e., the Fermi energiesEF of these systems cross th
same critical point of the electronic spectrum. According
theoretical calculations of the band structure of pure Mo22

above the Fermi energyEF
0 along the NH direction there is

an unfilled band, the energy of the bottom of which isEc .
Then whenEF rises under the influence of the Re impuri
and crossesEc , a new sheet of the Fermi surface appears
a concentrationCc . If an Nb impurity is added to a binary
system having a concentrationCRe>Cc , then asEF is low-
ered under the influence of this impurity, the sheet that
appeared will vanish at this sameCc eff .

Thus, by using impurities with opposing valence diffe
ences one can observe two oppositely directed electr
transitions corresponding to the same critical point of
electronic spectrum. These results reflect the electronic
ture of the anomalies that we have observed.

Using the theory of Ref. 17, one can carry out a quan
tative comparison of the theory with experiment and fi
numerical values of the parameters of the ETT. According
the formula in Ref. 18, the diffusive part of the thermopow
a(C)/T, can be written, with allowance for the anomalo
part due to the ETT, in the form of two terms:

a~C!

T
5

a0~C!

T
1

da~C!

T
, ~2!

where

a0~C!

T
5A11A2~C2C0!1A3~C2C0!2;

da~C!

T
5A4ATE

2`

`

Y cosh22
Y

2 H A5

T
~C2Cc!1Y

1F S A5

T
~C2Cc!1YD 2

1S G* ~C2C0!

2T D 2G1/2J 1/2

dY; ~A!

TABLE I.

System
a/T,

1027 V/K2
r,

1026 V•cm

R4.2

Rc2R4.2

G,
K

Mo0.9Re0.1 1.66 3.01 0.36 30
Mo0.78Re0.17Nb0.05 1.2 6.09 0.74 40
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A55]~EF2EC!/]C, G* 5]G/]n, A4AT5A4* ,

andn is the electron concentration.
The first term corresponds to the change in thermopo

of Mo under the influence of the impurity with the exclusio
of the topological contribution and is represented as a se
expansion in (C2C0), whereC0 is the electron concentra
tion of pure Mo. The second term describes the anoma
component of the thermopower due to the ETT in the allo

From a quantitative comparison of the theory with t
experimental data on the thermopower by the least-squ
method, one can obtain the values of the parameters ap
ing in expression~2!. In the calculations we used the nume
cal value of the parameterG given in Table I. The remaining
parameters were determined as adjustable parameters o
fit ~see Table II!.

The results of the comparison of theory and experime
corresponding to the values obtained for the parameter
relations~2!, are shown graphically in Fig. 8 for the Mo–R
and Mo–Re–Nb alloys.

5. DISCUSSION OF THE RESULTS

Let us compare our results with those published pre
ously.

Figure 9 shows the results of Ref. 13. In the measu
ments of the thermopowera(C)/T ~Fig. 8! and in the ETT

FIG. 8. Dependence ofa/T on n for Mo12xRex ~a! and Mo12x2yRex Nby

~b! at 10 K. The solid curve corresponds to the anomalous part of
thermopower,da(C)/t, and the dashed curve to the thermopower witho
the effect of the ETT,a0(C)/T ~formula ~2!!.
er

es
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ar-
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-

studies based on]Tc(P,C)/]P ~Fig. 9!, the ratio of the
anomalies of the binary and ternary systems have com
rable values at the extremum. We see that the experime
and theoretical results agree not only qualitatively but a
quantitatively. This again confirms the unified nature of t
anomalies observed in the normal and superconduc
states.

Using Cc56.1 electrons/atom and the values of the p
rameterA5 for the binary and ternary systems from Table
one can obtain the value of the gapEc2Ef

0 for pure Mo:
Ec2EF

05(Cc2C0)](Ec2EF
0)/]C ~see Table III!.

According to the theory of Makarov and Bar’yakhtar,3,17

the parameters of the anomalous part of the thermopo
a(C)/T ~A55](EF2Ec)/]C andCc! are the same ETT pa
rameters that are determined by the anomalous par
]Tc(P,C)/]P. The values found for these parameters are
agreement with the results of Ref. 13.

The conditions of the experiment for studying th
thermopower—low temperatures and high impur
concentrations—permit one to interpret the parameterG in
the same way for superconductors and normal metals.

e
t

FIG. 9. The functions @(1/Tc)]Tc /]P#(n) for Mo12xRex ~a! and
Mo12x2yRex Nby ~b!. The points are experimental, the solid curves cor
spond to the anomalous part of the dependence, and the dashed curves
smooth component.13
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superconductors at the concentrations studied, the gap
comes isotropic, and the damping parameterG is determined
solely by impurity scattering.23 For the concentration depen
dence ofa(C)/T it is important that at low temperatures th
phonon drag is small, and the impurity scattering plays
governing role here as well.8,21 Therefore, in this caseG is
the same for the superconducting and ‘‘normal’’ states of
alloys. Then the values of the parametersG determined from
experiment can be used as given values for compariso
theory and experiment in both cases.

An important result is the separation of the smooth a
anomalous parts of the thermopower. Better agreement o
experimental data with the theoretical calculation is obtain
when the smooth component is nonlinear~Fig. 8!. Further-
more, far from the singularity it changes sign. It can be
sumed that this is due to a change of the partial contributi
to the thermopower from the electron and hole sheets of
Fermi surface or to the proximity of the band top to t
Fermi level.

Let us discuss the temperature dependence in Fig. 7.
can discern at least two regions in respect to the influenc
scattering processes on the thermopower anomaly:T,G,
where the impurity scattering is more important, andT.G,
where scattering on phonons predominates. At temperat
T.G the scattering on phonons becomes larger than
scattering on impurities, and the temperature dependenc
a/T for the samples at the anomalous point determines
influence of temperature on the value of the anomaly. In
regionG,T,200 K the log–log plots ofa(T)/T are linear.
This corresponds to a variation of the anomaly with tempe
ture by a power lawT2x, where according to our datax
50.5– 0.6 and according the theory8,21 x50.5. For clarity
one can compare the values ofa/T for T1510 K and T2

5100 K, for example, which are 1.731027 and 0.6
31027 V/K2, respectively, for the binary systems and 1
31027 and 0.42531027 V/K2 for the ternary systems. In
this case the ratioaT1

/aT2
52.83 and 2.82, i.e., proportiona

to AT2 /T153.16. It is seen that the results agree with t
theory to an accuracy of 10%.

Our results can also be compared with the data of R
24, in which the temperature dependence of the thermopo
above 10 K was measured for several Mo12xRex alloys and
certain other transition-metal alloys, and it was called to
tention that thea(n)/T curve has a peak at an electron co
centrationn'6.1 electrons/atom. This agrees with our resu
In addition, the value ofa/T at the extremal point agree
with the value which we obtained when the;T20.5 decrease
in the anomaly is taken into account.

6. CONCLUSIONS

1. Two features in the behavior of the thermopower
observed: a maximum on thea(C)/T curve and, as a conse
quence, anomalous behavior of the coefficientB in formula
~1! at low temperatures.

TABLE III.

System Ec2EF
0 eV

Mo12xRex 0.02
Mo12x2yRexNby 0.017
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The observed maximum on the diffusive part of the th
mopower,a(C)/T, is due to the appearance of a new ele
tron sheet under the influence of the Re impurity in the
nary systems and the disappearance of this sheet when a
impurity is added in the ternary systems. Both transitio
occur when the same critical point of the electronic spectr
of Mo is crossed by the Fermi energy as it is shifted
opposite directions. This confirms the electronic nature of
peak in the diffusive part of the thermopower and our int
pretation of the phenomenon observed.

2. A quantitative comparison of theory with experime
is carried out. A value of the energy gapEc2EF

0'0.02 eV is
obtained for Mo at a critical concentration of 6.1 electron
atom.

3. From the temperature dependence of the thermopo
anomaly we have determined the values of the scatte
parameterG for electron scattering on impurities for the b
nary and ternary systems. From these same experime
data a power law is established for the decrease of
anomaly of the diffusive part of the thermopower as the te
perature is varied in the intervalG,T,200 K: a/T;T2x,
wherex, according to our data, is 0.5–0.6, in good agre
ment with the theory.8,21

4. From a comparison of the thermopower anomaly w
the anomalies of the superconducting characteristics at
ETT one can conclude that the nature of these anomalie
the same. Therefore, it is possible that this conceptual fra
work may be used to predict the properties of other syste
including high-Tc superconductors.
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Two-quantum electron spin–lattice relaxation in amorphous solids
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A two-quantum process of electron spin–lattice relaxation in amorphous solids is investigated. A
relaxation mechanism involving two-level tunneling systems and phonons from the region
of the boson peak is considered. It is shown that this mechanism is effective under certain
conditions. © 2002 American Institute of Physics.@DOI: 10.1063/1.1491181#
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The study of nuclear and electronic spin–lattice rela
ation in amorphous solids at low temperatures is a top
problem in physics. It has been established that the l
temperature (T,1 K! properties of amorphous solids a
governed by two-level tunneling systems,1 the main feature
of which is that their density of states is nearly constant~it
depends weakly on energy!, and therefore at low tempera
tures, when it is mainly low-frequency acoustic phonons t
are excited, with a low density, the two-level systems~TLSs!
come to play the governing role. The role of the TLSs in t
process of nuclear and electronic spin–lattice relaxation
studied in Refs. 2 and 3, respectively.

In addition, it has been established that the density
vibrational states of amorphous solids is characterized by
presence of a low-frequency peak. This peak, also called
boson peak, has a substantial influence on the physical p
erties of amorphous materials at temperatures of the orde
10 K.4

In view of what we have said, the following expressio
is obtained for the density of vibrational states:4

g~v!5
2N

vD
3 S v21mvm

2 expS 2
ln2v/vm

2s2 D D , ~1!

wherevD is the Debye frequency,m is a coefficient taking
values from 2 to 10 for different materials,s50.48 is a
parameter characterizing the width of the boson peak,N is
the number of atoms, andvm is the frequency correspondin
to the maximum density of states in the peak.4

The boson peak also has a substantial influence on
electronic spin–lattice relaxation.5,6

In Refs. 2 the process of nuclear spin–lattice relaxat
in amorphous materials was studied at low temperatu
processes of the Raman type involving a TLS and a pho
or two TLSs were considered. It was noted that the proce
involving a TLS and a phonon gives an expression 1T1

'T4 for the nuclear spin–lattice relaxation rate. However,
those papers the Debye model was used, and the featur
the density of vibrational states in amorphous systems w
not taken into account.

In the present study we investigate the electronic sp
lattice relaxation of the Raman type involving a TLS and
phonon from the region of the boson peak.
4121063-777X/2002/28(6)/3/$22.00
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As we know, for a paramagnetic impurity of spin 1/2, th
spin–lattice interaction is determined by the modulation
the g tensor of the paramagnetic impurity due to the mod
lation of the intracrystalline field by lattice vibrations.7 On
the other hand, in glasses the interaction of electron sp
with the TLS can also occur on account of modulation of t
g tensor in response to the tunneling of the paramagn
center from one equilibrium position to the other~we assume
that a part of the paramagnetic center forms a TLS!. The part
of the Zeeman energy responsible for the electron spin re
ation process has the form

H5H0E
i
@g1z~r i !Si

21g2z~r i !Si
1#, ~2!

where S65Sx6 iSy , Sx and Sy are the projections of the
electron spin on theX and Y axes,g6z is the symmetric
second-rankg tensor,H0 is the static magnetic field, which i
directed along theZ axis, andr i is the radius vector of the
impurity forming the TLS. We write it in the form

r i5r i01ui1di l i
z , ~3!

where ui is the relative displacement of the paramagne
center and the origin of coordinates during the lattice vib
tions, udi u is the distance between minima of the double-w
potential, between which the tunneling of the paramagn
center occurs,r i0 is the radius vector of the midpoint be
tween the two minima of the potential well, andl i

z is a pseu-
dospin, with spin-1/2 properties, describing the TLS. Taki
into account thatuui u,udi u!a (a is the average distance be
tween atoms! and expandingg6z(r i) in powers ofuui u/a and
udi u/a, in the eigen-representation of the TLS for the Ham
tonian describing an electron spin relaxation process invo
ing the participation of a TLS and a phonon, we obtain t
expression

Hsdp5
i

2
H0S \

2MV2D 1/2

(
iq

~vq!1/2eiqr i~aq2a2q
1 !

3~Di
1zSi

21Di
2zSi

1!~ l i
z cosu i2 l i

x sinu i !, ~4!
© 2002 American Institute of Physics
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where

Di
6z5 (

abg
~lb f g1lg f b!

1

2

3S ]2g6z~r i !

]r i
a]r i

b U
r i5r i0

r i
g1

]2g6z~r i !

]r i
a]r i

g U
r i5r i0

r i
bD di

a ,

M is the mass of the crystal,V is the speed of sound in th
sample,aq

1 andaq are the creation and annihilation operato
for phonons with wave vectorq, vq is the phonon frequency
la are the direction cosines of the polarization vector,f is a
unit vector along the wave vectorq, cosui5A« i

22D0i
2 /« i ,

sinui5D0i /«i , « i5AD0i
2 1D i

2 is the energy of the TLS, and
D0i is the tunneling energy.1

Let us consider the electron spin–lattice relaxation p
cess due to interaction~4!. The total Hamiltonian of the sys
tem has the form

H5H01Hsdp,

H05\vS(
i

Si
z1\(

n
«nl n

z1\(
q

vqaq
1aq ,

where vs is the Zeeman frequency. In the case whenvs

!vm and the electron spin–lattice relaxation is govern
mainly by the part of the Hamiltonian~4! which is propor-
tional to l i

x , since in the relaxation process due to the ot
part of the Hamiltonian~4!, proportional tol i

z , the main role
will be played by phonons with a frequency of the order
vs11/t, wheret is the correlation time.1! Sincevs@1/t, it
is essentially only phonons with frequencyvs that partici-
pate in the spin–lattice relaxation process. Consequentl
this case the number of phonons taking part in the proce
extremely limited.

Let us calculate the electron spin–lattice relaxation r
using Zubarev’s nonequilibrium statistical operator~nonequi-
librium density matrix! approach.9 We assume that the tim
over which the spin system comes completely to equilibri
is much less than the spin–lattice relaxation time. We c
struct the nonequilibrium density matrix:

r5Q21 expH 2bs\vs(
i

Si
z2b l S \(

n
«nl n

z

1\(
q

vqaq
1aqD 2~b l2bs!E

2`

0

e«tK~ t !dtJ , ~5!

whereQ215Tr r, b l andbs are the inverse temperatures
the lattice and spin system,K(t)5eiHtKe2 iHt is the thermo-
dynamic flux

K5
1

\ FHsdp,\vs(
i

Si
zG

in the interaction representation. Assuming that the last t
in the argument of the exponential function in~5! is small
compared to the first two terms, we expand in a series
powers ofK, keeping only the linear term. After straightfo
ward manipulations10 we obtain

dbs

dt
52

bs2b l

Te
,

-

d

r

f

in
is

e

-

m

in

1

Te
5S b l

]^\vs( iSi
z&

]b l
D 21

3E
0

b l
dlE

2`

0

e«t^K0~ t2 il!K&dt, ~6!

where

K0~ t2 il!5eiH 0~ t2 il!K e2 iH 0~ t2 il!,

^ . . . &5
Tr~e2b lH . . . !

Tr e2b lH
.

Taking formulas~1! and ~6! into account, we finally obtain
for the electron spin–lattice relaxation rate in the hig
temperature approximation (\vs!kBT):

1

Te
5

9

4
pS \

2mV2D H0
2

vD
3

P̄~ I 11I 2!
( i uDi

1zu
Ns

1

\
,

I 15E
0

vD v2Av22D0
2

sinh~\v/kBT!
dv, ~7!

I 25mvm
2 E

0

vD Av22D0
2

sinh~\v/kBT!
expS 2

ln2 v/vm

2s2 D dv,

wherem is the mass of the atom,Ns is the density of para-
magnetic centers,D0 is the minimum value of the tunneling
energy, andP̄ is the density of states of the TLS with respe
to energy.

One can show by means of a numerical integration t
I 1,I 2 in the temperature region 1 K,T,5 K for m510,
vm5531011 Hz, vD51.431013 Hz, ands50.48. Conse-
quently, in this temperature interval the main role is play
by phonons from the region of the boson peak. The temp
ture dependence of the integralsI 1 andI 2 is shown in Fig. 1.
It is easy to verify thatI 1;T4, while I 2 is proportional to
T2. A similar temperature dependence of the spin–lattice
laxation was observed experimentally in Ref. 11. Let us co
pare the spin–lattice relaxation rate obtained here~7! with
the single-phonon relaxation mechanism, since in the gi
temperature region the main role is played by one-pho
processes. The one-phonon electron spin–lattice relaxatio
described by the Hamiltonian

FIG. 1. Temperature dependence ofI 1 and I 2 .
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Hsp5
i

2
H0

1

2 S \

2MV2D 1/2

3(
i

(
q

~vq!1/2eiqr i~aq2a2q
1 !~Ji

1zSi
21Ji

2zSi
1!,

where

Ji
6z5(

ag
~la f g1lg f a!S ]g6z

]r i
a U

r i5r i0

r i
g1

]g6z

]r i
g U

r i5r i0

r i
aD .

For the electron spin–lattice relaxation rate in the hig
temperature approximation (\vs,kBT) we have

1

Tsp
'

9

4
pH0

2
( i uJi

1zu2

Ns

1

2mV2\

kBT

\vs
S vs

vd
D 3

. ~8!

For the ratios of the relaxation rates in the temperature reg
T,5 K and with the parameter values indicated above,
obtain, using~8!:

1

Te
Y 1

Tsp
5

\2

2

P̄

kBT
mS vm

vs
D 2

3
( i uDi

1zu2

( i uJi
1zu2 E0

vD Av22D0
2

sinh~\v/kBT!

3expS 2
ln v/vm

2s2 D dv.

Figure 2 shows the temperature dependence of the rati

the relaxation rates (1/Te)/(1/Tsp) for the parametersP̄
'1021 J21, vm5531011 Hz, vD'1.431013 Hz, s'0.48,
vs'109 Hz, m'10, and a ratio
-

n
e

of

( i uDi
1zu2

( i uJi
1zu2

'S d

aD 2

'0.1.

It follows from Fig. 2 that in the temperature interva
1K,T,5 K the electron spin–lattice relaxation rate is go
erned mainly by a two-quantum relaxation process involv
a two-level system and a phonon from the boson peak
gion.

a!E-mail: Lchotor@yahoo.com
1!The correlation time t is determined by the correlation functio
^d l i

zd l i
z(t)&/^d l i

zd l i
z&, whered l i

z is the fluctuation ofl i
z ~Ref. 8!.
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Contrary to the established ideas that glasses and glass-forming liquids are homogeneous and
isotropic, appreciable structural and compositional heterogeneities are observed in these
states. The nature of the heterogeneities in glasses and glass-forming liquids is considered, and
the influence of these heterogeneities on the properties of magnetic glasses is examined.
Heterophase fluctuations~HPFs!, which are nonperturbative disturbances, can play an important
role in the thermodynamics of glass-forming liquids, and under certain conditions the
liquid has a critical point. The heterogeneities generated in the liquid and glassy states by the
HPFs are considered, and the Ginzburg–Landau equations for the HPFs are derived.
The order parameter chosen is the fraction of noncrystalline solid-state clusters in the liquid. The
correlation length of the order parameter is the characteristic mesoscopic scale of the
heterogeneities. The mesoscopic compositional and topological disorder of a glass ‘‘spills over’’
into disorder of its spin system. The phase transitions in the spin system are investigated
by well-known approaches with allowance for the mesoscopic heterogeneities. It is shown that
correlated domains originating from correlated heterogeneities of the liquid substantially
alter the susceptibility and relaxation properties of the paramagnetic state. The phase diagram of
a magnetic glass is investigated, and some experimental data are discussed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1491182#
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INTRODUCTION

The topological and compositional disorder of glass
containing magnetic atoms engenders disorder of the
system. Therefore the theory of the magnetism of glasses
division of the theory of spin systems with frozen disord
Because the magnetic interactions are comparatively w
they have only a slight influence on the glass formation p
cess. Therefore the problem of the magnetism of glasse
duces to two subproblems that can be solved in succes
First one must solve the problem of the formation of a gl
from the liquid state. Since a glass inherits the structure
the glass-forming liquid, a theory of the structure of a liqu
in the supercooled state is needed. Such a theory should
ply a theory of the liquid–glass transition and a descript
of the structure of the glass. Knowing the structure of
glass, one can set about to solve the second proble
description of its magnetic properties. Clearly the progr
just outlined is extremely difficult. Essentially one is talkin
about a theory of phase transitions and phase transforma
~with violation of ergodicity! in substantially nonequilibrium
and disordered systems. The goal of the present study
describe a general approach to the solution of the probl
and to present the results obtained in the process. We b
in Sec. 1 with a description of the thermodynamics and str
ture of supercooled liquids and proceed to the propertie
disorder in glasses. The theoretical basis for our treatme
provided by the Ginzburg–Landau equations for HP
which are a generalization of the equations based on
mean field approximation and presented in Refs. 1–3. T
in Sec. 2, using standard approaches,4 we consider how the
4151063-777X/2002/28(6)/8/$22.00
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frozen disorder of a glass is manifested in phase transit
of the spin system. We show that a commonality is obser
in the approaches to the description of vitrifying liquids a
glasses, on the one hand, and disordered spin glasses, o
other. Most importantly, in both cases a governing role
played by heterophase fluctuations~HPFs!, which are non-
perturbative disturbances of systems with multiple states

In Sec. 3 we discuss some of the experimental data.

1. HETEROPHASE FLUCTUATIONS IN GLASS-FORMING
LIQUIDS

The numerous experimental data have served as a b
for the hypothesis that HPFs~in the form of crystalline and
especially noncrystalline solid-state nuclei! play a decisive
role in the property of glass-forming liquids and in th
liquid–glass transformation process. HPFs are nonpertu
tive in nature: the ground state of the system, the state
minimum energy, is inhomogeneous. Until recently t
theory of HPFs and kinetic processes in which they are
volved was based on a droplet approach.2,3,5,6 Underlying
this approach is the assumption that the HPFs exist in
form of compact and noninteracting~mutually isolated! nu-
clei. In the droplet approach the contribution of HPFs to t
free energy near the phase equilibrium line is calculated5,7

the kinetics of the evolution of the nuclei is described, an
theory of nucleation and phase transformations
constructed.8,9 When supplemented with the concept of e
cluded volume, the droplet approach becomes the Kolm
orov theory of phase transformations.10 The droplet model is
inapplicable for describing the thermodynamics of a h
© 2002 American Institute of Physics
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erophase system when the volume fraction of the new ph
exceeds about 0.15, and the interaction between ‘‘dropl
can no longer be neglected.3 For states with a large volum
fraction of HPFs, a model of interpercolating heteropha
clusters has been proposed.3,11 In those papers the mean fie
~van der Waals! approximation was used to obtain a criterio
for the existence of mesoscopically heterophase states
which two phases coexist in the form of infinite interperc
lating clusters, in the supercritical region. A description
the correlation properties of HPFs can be obtained in
framework of a theory of the Ginzburg–Landau type. Belo
we present a brief derivation of the Ginzburg–Landau eq
tions for a classical fluctuation field.

As was shown in Refs. 3 and 11, the Gibbs free ene
per molecule of a heterophase liquid in the mean field
proximation can be written in the form

m~P,T!5nsms~P,T!1~12ns!m f~P,T!1ns~12ns!

3m int~P,T!1
kBT

k0
@ns ln ns1~12ns!ln~12ns!#.

~1!

Here ns is the fraction of molecules belonging to solid-lik
clusters,ms , m f , andm int are the chemical potentials of th
molecules in the solid and fluid clusters and in the interph
layer, respectively,k0 is the associativity parameter, which
approximately equal to the number of molecules in
smallest nucleus, andkB is Boltzmann’s constant~ns is the
order parameter!. We note thatms and m f are the chemica
potentials of the ‘‘pure’’ phases withns51 and ns50, re-
spectively.

The phase equilibrium line is determined by the equat

ms~P,T!5m f~P,T! ~2!

Solving this equation for temperature, we find the te
peratureTe(P) of phase equilibrium at pressureP. It can be
assumed that model~1! is isomorphous to the van der Waa
model for a gas–liquid system, and line 2 is analogous to
critical isochore.

It was shown in Refs. 2 and 3 that the position of t
critical point on the phase equilibrium line is determined
the equation

m int~P,T!52Te /k0 ~3!

and in the region where

0,m init<2Te /k0 ~4!

interpercolating solid-like and fluid clusters coexist for 0.
,ns,0.85.

For m int.2Te /k0 a first-order phase transition occurs o
the phase coexistence curve~2!. If one goes around the criti
cal point through region~4! a continuous transformation o
the liquid phase to a noncrystalline solid phase occurs.
stress that a liquid which is heterophase on mesosc
scales is single-phase and ergodic@with chemical potential
~1!# on macroscopic scales.

To obtain an expression for the order-parameter fluct
tion field, we introduce a new parametera(P,T) by the re-
lation

a~P,T!5ns~P,T!21/2. ~5!
se
s’’
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e
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One can readily see the convenience of the substitu
~5! by noting that on the phase equilibrium line the equili
rium valuens @ensuring the minimum of the free energy~1!#
is equal to 1/2.

Treatinga(P,T) as a variable that depends on the sp
tial coordinates and expanding~1! to terms of fourth order in
a, we obtain the following expression for the free energy

G~P,T!5v21E @a~¹a!21ba21ca42ha#dx, ~6!

where we have taken into account the contribution to
energy from the gradient of the order parameter~v is the
specific volume!. A standard analysis shows that

a5a0r 0
2~Dr/ r̄ !2w̄. ~7!

Herea0 is a constant of the order of unity,r 0 is the charac-
teristic range of the intermolecular forces (r 0

3'k0), w̄ is the
average binding energy per molecule,r̄ is the average den
sity, and

Dr5rs2r f ~8!

is the difference of the densities in the solid and liquid clu
ters.

Expressions for the remaining coefficients in~6! follow
directly from ~1!:

b52k0
21Tc2Dm int>2k0

21Tc2Dm int~Te!; ~9!

c52k0
21Te/3; ~10!

h5ms2m f>~sf2ss!~T2Tc!. ~11!

Heresf andss are the entropy per molecule of the liquid an
solid fractions.

It is important to note that the ‘‘external’’ fieldh in the
expression for the free energy~6! depends on temperatur
and goes to zero on the phase equilibrium line. The result
an analysis of the thermodynamic properties of a gla
forming liquid with free energy~6!, obtained with the use o
the standard approaches in the theory of critical phenom
~see, e.g., Refs. 4 and 12! will be published at a future date
Here we give only the expression for the correlation len
Rc , which is the important spatial scale in the critical regio

Rc5ub/au2n, h!hc~b!;

Rc5uhu2m, h@hc~b!, ~12!

where

hc~b!5b~b/c!1/2. ~13!

In spite of the fact that reliable measurements of
thermodynamic quantities have been made only for a co
paratively small number of supercooled glass-forming l
uids, it can be stated with certainty that the majority of the
do not undergo a first- or second-order phase transition u
vitrification, and their glass transition temperatureTg ordi-
narily lies considerably below the temperatureTe ~by 50–80
K!. As the temperature is lowered, all of these liquids u
dergo a continuous phase transformation to the glass,
vitrification sets in when the parameterns approaches unity
~see Refs. 3 and 13 for more details!.

The proximity of the system to the critical point is ind
cated by the value of the parameter



t
v

.g

se

f t
e

tic
-

ng

so
st

o

it

–
e

ow
s
n

s

pi
s

er
s

wi
n

w
g
l
f
s

, are
har-
uch

loped
ith

the
e
d by
the
ase
nsi-

tate
om

re
e of
ld
e

oms

he
are
to-

not

e
he
the
s
to
sses
e of
f the
an-

mble
m-
r of
the
t

417Low Temp. Phys. 28 (6), June 2002 A. S. Baka 
t5b/Te . ~14!

The absence of pronounced features in the behavior of
thermodynamic quantities of the glass-forming liquids abo
Tg indicates that this parameter is not small for them, e
t'1021.

To obtain estimates of the remaining coefficients, we
Te5500 K, Dr/r50.05, k055, w̄52 eV, andsf2ss51.
As a result, we find from~13! that hc'1021Te . For (Te

2Tg)/Te'1021, as we see from Eqs.~9!–~11!, the follow-
ing condition is satisfied:

h~Tg!<hc . ~15!

Therefore, forT.Tg the estimate~12! can be used in the
form

Rc'ub/au2n'Ar0. ~16!

Here the coefficientA&10. Sincer 0 is comparable to the
sizes of the molecules, for the chosen numerical values o
parameters the correlation length has a value of up to sev
nanometers.

The sizes of the solid clusters nearTg are determined by
their growth kinetics and growth time. The characteris
sizes of the solid nuclei forT,Te are greater than or com
parable toRc ~i.e., nanometer-sized!. As the temperature is
lowered, the solid clusters grow, but in view of the slowi
of the structural relaxation processes nearTg the system can-
not avoid having intercluster boundaries. For this rea
glasses inherit a polycluster structure with characteri
cluster sizesr cl;10Rc . For the values chosen above,r cl has
a value of;10 nm.

We see thatr cl is genetically related toRc . Both of these
quantities characterize the scales of the structural and c
positional heterogeneities of the the glass.

The results of structural studies of metallic glasses w
atomic resolution using an ion field microscope11,14,15show
that all of the glasses studied~of the metal–metal and metal
metalloid types! have structural and compositional heterog
neities with the scales indicated above. Atomically narr
intercluster boundaries are observed, with cluster size
;10 nm and with nanometer-size compositional heteroge
ities reaching 10%. Evidently, small-radius atoms~e.g., bo-
ron in glasses of the Fe–B type! often segregate in the layer
near the boundaries.

It can be stated that the notion that the microsco
structure and distribution of the components in glasse
uniform ~this is possible forRc→r 0 and r cl→`! is highly
oversimplified and is apparently inapplicable to the ov
whelming majority of glasses. The description and analy
of the magnetic properties of glasses should be done
allowance for the structural and compositional heteroge
ities discussed above.

2. SPIN ORDERING IN GLASSY MAGNETS

Phase transitions and critical phenomena have been
studied for the case of homogeneous and slightly inhomo
neous crystalline magnets.12 At the present time substantia
progress has been made in understanding the nature o
spin-glass state and paramagnet–spin glass transitions in
tems with homogeneous frozen disorder.16,17 Magnetic
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glasses, as can be seen from the discussion given above
spin systems with inhomogeneous frozen disorder. The c
acter of the phase transitions and critical phenomena in s
systems can be investigated using the approaches deve
in the theory of critical phenomena in spin systems w
disorder ~see Ref. 4 and the references cited therein!. Of
particular interest here is the behavior of the system near
paramagnet–ferromagnet~PF! transition point, since here th
nonperturbative order-parameter fluctuations engendere
the inhomogeneous disorder play a decisive role both in
order-parameter fluctuations and in the structure of the ph
diagram. This state of the spin system above the PF tra
tion temperature is a Griffiths phase.18,19 As we shall show
below, the existence region and the properties of such a s
in glasses is determined by the frozen disorder inherited fr
the liquid phase.

We will be mainly interested in the PF transition, whe
only one order parameter is important—the average valu
the magnetic momentw. Therefore we can use the mean fie
approximation~Ising model! and write the free energy in th
form

F5E F J

2
~¹w~x!!21~T2J!w2~x!

1
1

4
gw4~x!2hw~x!Gd3x, ~17!

where

g5T/3; ~18!

J is the value of the spin–spin interactions, andh is the
external magnetic field. The average distance between at
has been set equal to unity.

The frozen disorder is manifested in the fact that t
coefficients in the expression for the free energy density
random functions, and because of the compositional and
pological heterogeneities their correlation properties are
functions only of the differences of the coordinates.

The value of the interactionJ at each site depends on th
local topological and compositional disorder, i.e., on t
structure of the first coordination sphere. In the clusters
local order is intermediate,11,20 and that leads to fluctuation
of the value ofJ with a characteristic spatial scale close
the interatomic distance. In addition, as we have said, gla
have an inherent mesoscopic inhomogeneity with a scal
from a few nanometers to tens of nanometers. Because o
significant difference of the scales of the disorder, the r
dom quantityJ(x) can be written in the form

J~x!5 J̄~x!1 J̃~x!, ~19!

whereJ̃(x) is a random quantity with zero mean, and

^J̃2&5D2~x!. ~20!

The angle brackets here denote averaging over an ense
of types of local ordering at fixed concentrations of the co
ponents. The variation of the composition and characte
the local ordering on nanoscales is taken into account by
coordinate dependence ofJ̄ andD2. We note once again tha
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this approach to incorporating the heterogeneities in gla
is justified if the correlation lengthRc is much larger than the
interatomic distances.

Let us first consider a system with homogeneous mic
scopic disorder, whenJ̄ and D are independent ofx. The
distribution function of the values of the random interacti
parameter is conveniently chosen in the form

P~J!5~12u!d~J2J0!1uD~J1J0!, ~21!

where

u5
1

2
~12A12~D/J0!2!. ~22!

It is easy to see that the distribution~21! has a mean
value

J̄~122u!J0 ~23!

and a varianceD2.
The phase diagram of an Ising magnet with the distri

tion P(J) of Eq. ~21! is described in Ref. 4, for example.
the temperature is measured in units ofJ0 , then the equation

Tc~u!5~122u! ~24!

determines the temperature of the PF transition as a func
of u on the segment 0<u<u* , whereu* is the point at
which curve~24! intersects the Nishimori line

TN~u!5
2

lnS 12u

u D . ~25!

For u* ,u<1/2 there is a transition from the paramagne
phase to the spin glass.

It follows from ~24! and ~25! that u* '0.15 and
J̄(u* )/D(u* )'1, in good agreement with the phase diagra
of a spin system with disorder in the Sherrington
Kirkpatrick model.16 It is assumed that the pointTc(u* )
5TN(u* ) is a multicritical point at which the paramagneti
ferromagnetic, and spin-glass phases are in equilibrium.

Turning to a study of critical phenomena in a spin sy
tem with inhomogeneous disorder, we note that as a sim
fication,J0 can be assumed constant. In that caseJ̄ and

D52@u~12u!#1/252~u!1/2 ~26!

depend only onu. In Eq. ~26! we have taken into accoun
that u,u* !1. It is this quantity that we shall consider ra
dom and spatially inhomogeneous.

In view of what we have said, the equation for the eq
librium distribution of the fieldw(x),

dF

dw
50 ~27!

takes on the following form~hereD is the Laplacian opera
tor!:

~ J̄1 J̃!Dw1~T2 J̄2 J̃!w1gw35h. ~28!

Here we will be interested mainly in effects associa
with the nanoscale heterogeneities inherited from the liq
state. Averaging~28! over the small-scale inhomogeneitie
we obtain
es

-

-

on

-
li-

-

d
d

J̄~x!Dw1@T2 J̄~x!#1gw35h. ~29!

Separating out inJ̄(x) the average valuêJ̄&, we find

J̄~x!5^J̄&1d J̄~x![Tc1d J̄, ~30!

whered J̄(x) is a random function with zero mean, and th
characteristic scale for variation ofr c is

r cl.r c>Rc . ~31!

The quantityd J̄ is small compared tôJ̄&, as are the meso
scopic fluctuations of the composition, which, according
available estimates~see the previous Section!, is <0.1. This
quantity can be neglected in the first term on the left-ha
side of ~28! but not in the second term, since we are int
ested in the temperature region nearTc , where the fluctua-
tions d J̄ are not small but can exceedT2Tc . In view of
what we have said, we write~28! in the form

Dw1@t1dt~x!#w1g1w35h1 . ~32!

Here

t5
T2Tc

Tc
; dt~x!5

d J̄~x!

Tc
;

g15g/Tc ; h15h/Tc . ~33!

We shall assume thatdt(x) is ‘‘coarse-grained’’~condi-
tion ~31! holds! and is described by a Gaussian distributio

P~dt!5p0 expH 2
1

4D̄2r c
3
E @dt~x!#2d3xJ ,

D̄25^d J̄2&/Tc
2. ~34!

Formally Eqs.~32!–~34! reproduce the model of critica
phenomena in spin systems with disorder, which was con
ered in Ref. 4, for example. An important difference, ho
ever, is the ‘‘coarse-grained’’ nature of the disorder, on
count of which, for

t<D̄, ~35!

the mesoscopic disorder plays the dominant role in the c
cal phenomena.

The fluctuations of the concentrations of the compone
of a glass ordinarily determine the value ofd J̄. Therefore,
for making estimates ofd J̄ one can use the approxima
expression

d J̄5(
i

dci] J̄/]ci5(
i

dci]Tc /]ci , ~36!

where dci is the deviation of the concentration of thei th
component from the average value.

Essentially, as the temperature is lowered, islands~mag-
netic clusters! in which

~w2!2D̄/g

appear in the system and increase in number and size.
islands interact, and at a certain temperature close toTc ,
long-range order is established in the spin system, i.e., a
transition occurs~or a transition to the spin-glass state!. The
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region wherew̄2 is nonzero, determined by condition~35!, in
finite regions has characteristic dimensions of the orde
r cl .

The state of the system having the properties descr
above is called the Griffiths phase. The characteristic pr
erties of this phase are singular behavior of the susceptib
and time correlation function.18,19 Below we shall follow the
description of these quantities given in Ref. 19, with t
coarse-grained heterogeneities taken into account.

The time correlation function is known to be well a
proximated over a wide interval of relaxation times by Koh
rausch’s law:

C~ t !5^w~ t !&;exp@2~ t/tc!
a#, ~37!

wheretc is the characteristic scale of the relaxation time a
a,1 is the Kohlrausch exponent. We see that foraÞ1
Kohlrausch’s law reflects the multiplicity of relaxation time

The time scale for variations in the orientation of t
moment of a compact magnetic island, wheredt,0, de-
pends on the size of the island:

tc~L !;L3w̄2. ~38!

Here L is the linear dimension of a cluster~we are talking
about a three-dimensional system!.

Therefore the spectrum of relaxation times is determin
by the size distribution function of the clusters,P(L). In a
coarse-grained magnet

P~L !}exp@2c~p!~L/r c!
3#. ~39!

Here p is the volume fraction of clusters in whichdt,0,
and

c~p!} ln~1/p!. ~40!

Equations~38! and ~39! imply the following expression for
the spectrum of relaxation times:19

r~ tc!}E P~L !d~ t2tc~L !!dL}exp~2ctc /r c
3w̄2!, ~41!

and the long-time asymptotics of the correlation functi
c(t):

c~ t !u t→`}E r~ tc!tc
21 exp~2t/tc!dtc

}exp@22~ct/r c
3w̄2!1/2#. ~42!

We see thata51/2 in the model chosen. The value ofa
depends substantially on the form of the size distribution
the clusters. In particular, for a Gaussian distribution

P~L !}exp@2~L2L̄ !2/2l2# ~43!

and for L̄@l it is easy to find that

C~ t !}H exp~2t/ t̄ c! t̄ c,t,tc

exp@2~ t/tc!
0.4# t.tc

, ~44!

where

t̄ c}L̄3w2, tc}S l

L D 2

tc . ~45!

It should be noted that the correlation function~44! is of
the same form as the pair correlation function proposed
f

d
p-
ty

d

d

f

in

Ref. 19, which describes relaxation in vitrifying liquids an
other complex systems having a broad relaxation spectru

We see that the model~32!, ~34!, supplemented by the
distributions~39! and ~43!, gives realistic intermediate an
long-time asymptotic behavior of the correlation functio
and reasonable estimates of the Kohlrausch exponenta.

The magnetic susceptibility of a finite cluster,x(L), is
proportional totc(L), so that one may use distribution~39!
for elucidating the behavior of this quantity in the existen
region of the Griffiths phase. We then find that

x}@c~p!#23, ~46!

and, sincec(p) goes to zero forT→Tc ~as lnpup→1!, the
functionx has a singularity at the critical point, but the cha
acter of this singularity is not universal~as it is for systems
with homogeneous disorder! and depends substantially o
the distribution of the heterogeneities.

Magnetized clusters can be treated as supermagnetic
ticles, and with additional assumptions about the interclus
interactions in the critical region one can calculate the m
netic susceptibility, heat capacity, relaxation spectrum,
Here the size distribution of the clusters~in particular, the
average size of a cluster! and the average magnetization a
the most important quantities. This approach is also wid
used in analysis of the properties of amorphous magn
~Ref. 21 and the literature cited therein!.

3. DISCUSSION

It is commonly assumed that the physics of glasses
spin systems with disorder, despite the similarity of a num
of their properties, e.g., multiplicity of structural states, vi
lation of ergodicity, and the broad spectrum of relaxati
times, including extremely long ones, do not share a co
mon constructive basis for the reason that supercoooled
uids have a self-consistent~thermodynamically equilibrium,
although metastable! disorder, whereas the disorder of sp
systems is frozen in, and in them the problem reduces to
of studying the thermodynamics and dynamics of syste
with a stationary disorder, independent of temperature
pressure.

For this reason, despite the great diversity of opinions
to the connection between the vitrification process and ph
transitions and critical phenomena,16 the discussion of the
nature of the liquid–glass transition and of the structure a
properties inherited by the glass is based on heuristic
phenomenological models whose domains of applicabi
are unclear.

A theory of heterophase fluctuations in vitrifying liquid
as we have seen, can be formulated in the framework of
Ginzburg–Landau approach. On the one hand, this ena
one to establish a constructive connection between
liquid–glass transition and phase transitions and, in part
lar, the theory of critical phenomena. And, on the other ha
it reveals a connection between the theory of phase trans
mations and phase transitions in vitrifying liquids and sp
systems with disorder. In the self-consistent field approxim
tion the latter can be described in the framework of the Is
model with random coefficients, which, as we know, h
much in common with the Ginzburg–Landau equations.
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It is clear that HPFs in the region described by Eq.~4!
have a nature reminiscent of compact clusters of a Griffi
phase. The fundamental difference is that the HPFs, un
the heterogeneities of the Griffiths phase, and not ‘‘froze
they appear, change structure, and disappear. It is notewo
that the heterogeneities of glasses due to heterophase
tuations of the liquid inevitably leads to the existence o
Griffiths phase in the spin system. We note that the scale
statistical characteristics of the HPFs are inherited by
Griffiths phase of the spin system@see Eqs.~31! and ~34!#.
Furthermore, the multiplicity of relaxation times in the liqu
and Griffiths magnetic phase have the same genetic roo
the structure of HPFs in the liquid.

We note that the manifestation of microscopic disord
in critical phenomena, in particular, in Griffiths effects,
substantially different from the manifestations of large-sc
heterogeneities. The temperature region in which the G
fiths phase exists in the presence of microscopic disorder
betweenT0 andTc ~T0 is the temperature of the PF transitio
in the absence of disorder!, but spin-glass effects engender
by the frozen microscopic disorder are manifested only re
tively close toTc , for4

t<td5exp~2const/D2!5exp~2const/4u~12u!!.
~47!

Since the PF transition occurs foru,u* '0.15, we have
D2<0.45, so that the microscopic disorder is extremely i
portant only near a multicritical point, i.e., foru'u* . The
coarse-grained disorder leads to appreciable Griffiths eff
even for t;D̄. The value ofD̄ @which is clearly of order
dci ; see Eq.~39!# can be considerably larger thantd on the
whole PF transition line, except, possibly, in the neighb
hood of the multicritical point. Consequently, it is the coars
grained disorder that plays the main role in the Griffiths
fects, in particular, in the structure of the spectrum
relaxation times and the behavior of the magnetic susce
bility.

Figure 1 shows a schematic illustration of the phase d
gram of a glassy magnet on the (T,u) plane. The diagram
shows the lines bounding the stability regions of t
paramagnetic, ferromagnetic, and spin-glass phases;
Nishimori line TN(u) ~25!; and the lines Tc* (u)5Tc

3exp@2const/u(12u)# andTc,meso* (u)5Tc(11D̄). The line
Tc(u) defines the region in which there are substantial ma
festations of nonperturbative fluctuations in the fine-sc
disorder, while the second line,Tc,meso* (u), is its counterpart
for the coarse-grained disorder. We see that the width of
region in which nonperturbative disturbances play the do
nant role depends substantially on the character of the di
bution of magnetic impurities.

As a useful example of a spin system with disorder in
glass, let us discuss, in the light of the theory develop
above, the properties of the magnetic metallic glasses Fe
which have been studied in some detail in numerous exp
ments and are widely discussed in the literature.21–24

A remarkable property of this family of glasses is th
when the Zr concentrationx is changed from 0.12 to 0.07
the temperature of the phase transformation from the p
magnetic to the ferromagnetic phase changes from 25
s
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105 K, and atx50.07 andT5105 K there is a paramagnet
spin glass transition.

At c50.1 the temperatureTc is equal to 225 K, and a
c50.08 one hasTc5174 K. In the light of the above dis
cussion~see Fig. 1! it can be assumed that the multicritic
point lies atc'0.07. We see that the functionTc is nonlinear
even in a comparatively narrow interval of Zr concentratio
and in using formula~23! for the average value of the spin
spin interactionJ̄ one should therefore take into account t
weak dependence ofJ0 on c, if it is assumed thatu is pro-
portional toc.

To estimateD̄ as a function of the zirconium concentra
tion we use expression~36!, assuming thatdc/c50.1, which
is a characteristic measure of the nanoscale heterogeneiti
metallic glasses, as has been established in ion micros
studies.11,14,15The derivative]Tc /]c can be determined from
the experimental values ofTc(c) given above. As a result
we find that D̄(0.07)'0.5 and D̄(0,1)'0.11. This means
that for c50.07 the Griffiths effects should be manifeste
noticeably in a temperature interval 50 K in width aboveTc ,
while for c50.1 this width would be 25 K.

In Ref. 22 a spin-cluster model was developed for am
phous iron–zirconium alloys. Assuming that compact clu
ters have a volume distribution, the authors employed
Néel theory, which describes the behavior of the propert
of fine magnetic particles, and then, making a compari
with the experimental data, established the temperature
pendence of the cluster parameters nearTc for different zir-
conium concentrations. It was found that nearTc the cluster
size is <104 atoms per cluster~this corresponds tor c

'3 – 5 nm!, and the cluster effect is observed up to tempe
tures of 60 K aboveTc for c50.07 and 25 K aboveTc for
c50.1. We see that the characteristic scales of the heter

FIG. 1. Phase diagram of a glass-forming magnetic alloy on the (T,u)
plane, showing the regions of stability of the paramagnetic phase~P!, the
paramagnetic and/or spin-glass phase~P/SG!, and the ferromagnetic phas
~F! and the PF transition lineTc(u) and the Nishimori lineTN(u). Between
the linesTc* (u)5Tc exp@2const/u(12u)# andTc(u) there exists a region of

strong fine-scale nonperturbative fluctuations withD̄50, and between the

linesTc(u) andTc,meso(u)5Tc(11D̄) is a region of coarse-grained nonpe
turbative fluctuations engendered by the mesoscopic concentrational
mogeneity of the magnetic impurities.
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neities of the liquids and glasses given above are in g
agreement with the estimates obtained in Ref. 22.

In studies of the density fluctuations in one-compon
molecular vitrifying liquids, a number of authors26–28 have
observed the presence of large-scale (;102 nm) correlations
of these fluctuations. The characteristic appearance tim
the long correlations~the formation of a Fischer cluster! was
found to be many orders of magnitude larger than the ch
acteristic time for rearrangement of the molecular configu
tions ~the a relaxation time!. In Ref. 29 a theory of large
scale fluctuations in vitrifying liquids was propose
according to which the formation of a Fischer cluster occ
in the following way. It has been shown that HPFs ha
correlations of the short-range topological order on sca
;Rc , i.e., over distances comparable to the correlat
length of the order parameter. There exist many types
short-range ordering of molecules. A quantitative measur
the multiplicity of types of short-range order of HPFs is t
configurational entropy. Thus the correlated domains of s
;Rc differ in the type of short-range topological order. It
shown in Ref. 29 that the formation of correlated doma
with the same type of short-range order of the fractal
glomerates with large correlation lengths;102Rc is ener-
getically favorable. This is what leads to the formation o
Fischer cluster.

The formation of large-scale Fischer clusters can a
occur in multicomponent metallic glass-forming melts. Sin
the topological and compositional short-range order are i
mately related, one expects that in a multicomponent m
the correlated domains will also differ in the short-ran
compositional order. Therefore, in a multicomponent liqu
the Fischer cluster consists of fractal aggregates formed
these correlated domains with different short-range comp
tional order. These large-scale fractal structures are prese
upon vitrification, and their presence can have a substa
influence on the conductivity and magnetic characteristic
glasses. Since the magnetic properties of a correlated do
are determined by the short-range topological and comp
tional order, if magnetic ordering occurs in one correla
domain it should spread to the whole fractal aggregate
that the character, value, and correlation length of the m
netic order depend substantially on the correlation length
the Fischer cluster. Furthermore, the presence of a Fis
cluster in a glass should give rise to slow relaxation mode
the paramagnetic state due to the variation of the orienta
of the magnetic moments in those aggregates in which m
netic ordering has occurred.

Because the formation time of a Fischer cluster is v
long compared to the characteristica relaxation time, its
structure and size depend substantially on the thermal pre
tory of the glass, in particular on the hold time of the melt
the normal or supercooled state and the quenching rate.
study of the magnetic properties of a Nd–Fe–B–Co–Al al-
loy in the glassy and crystalline states30 it was observed tha
at room temperature the crystalline samples are param
netic, whereas the alloy in the glassy state is ferromagn
and its magnetic properties depend substantially on the t
mal prehistory. The magnetic hardness of the glass is
times higher in the case of slow cooling of the melt than
fast cooling. Thus, depending on the cooling rate a gla
d
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alloy of the same composition can be magnetically soft
hard. The authors assume that during slow cooling ther
sufficient time for the formation of clusters, which lend ma
netic hardness to the glass. Because there are as yet no
on the structure of these clusters, they cannot at presen
identified as Fischer clusters.

Similar phenomena have also been observed in o
metallic glasses.31,32

4. CONCLUSION

The theory developed for the heterophase fluctuation
vitrifying liquids allows one to trace the evolution of the
structure during vitrification and to establish the characte
tics of the frozen disorder of the spin system of the gla
The most eloquent expression of this disorder is seen in
Griffiths effects in critical phenomena, where the width
the temperature interval in which these effects are impor
is determined mainly by the large-scale heterogeneities of
glass, which are inherited from the liquid.

The similarity of the formalism used in the descriptio
of the HPFs in liquids and critical phenomena in spin s
tems with disorder reveals the unity of the physics of t
both effects.

The width of the region on the (T,u) plane in which
nonperturbative fluctuations are dominant, and the relaxa
processes that occur in this region, depend substantially
the character of the distribution of concentrational hetero
neities in the glass; because this distribution is inherited fr
the liquid state, a study of those processes in the glass
yield information about the HPFs in the glass-forming liqu

The theory developed here can provide an explanatio
the experimental data on the magnetic properties of meta
glasses.

This work was supported in part by the STCU, Proje
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Dynamical chaos and low-temperature surface diffusion of small adatom clusters
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The nonlinear one-dimensional dynamics of diatomic adatom clusters on an atomically grooved
crystal surface is investigated by a numerical simulation method. It is shown that for
initial conditions such that a given dynamic Hamiltonian of the system possesses chaotic behavior
in phase space, the dynamical chaos is manifested in the coordinate space as diffusive
motion of the cluster. The process investigated is fundamentally different from ordinary thermal
diffusion and can apparently be manifested at low temperatures. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1491183#
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INTRODUCTION

The study of the chaotic behavior of dynamical mod
with a finite number of degrees of freedom and, in particu
nonintegrable Hamiltonian systems, is one of the new fie
of theoretical and mathematical physics. It is known1 that
even in the case of conservative nonlinear systems with
degrees of freedom in the absence of a second integral o
motion ~besides the energy! the dynamics of a particle fo
some initial conditions can have a complex, chao
character.2 Here, however, one usually studies the dynam
of a system in a finite region of phase space and does
discuss the question of the macroscopic manifestation of
chaotic behavior.

In this paper we investigate the one-dimensional dyna
ics of a diatomic cluster on the surface of an ideal crysta
an example of a nonlinear dynamical system with two
grees of freedom which admits infinite motion in configur
tion space, and we consider the question of the possibilit
diffusive motion of such a cluster at low temperatures a
the connection between the diffusive regime and dynam
chaos in phase space.

Numerous experiments3,4 on the surface adsorption o
atoms of alkali~Li, Na, K, Cs! and alkaline earth~Mg, Sr,
Ba! elements on the atomically grooved faces of W, Mo, R
Ni, and Si and also on surface steps have shown that
sorbed atoms~adatoms! occupy positions in the grooves an
around the steps and move mainly along them. That is,
motion ~in particular, diffusion! of adatoms carries a pre
dominantly one-dimensional character. At low coverage
gas of isolated adatoms forms on the surface. However,
cause of the complex character of the interaction of adat
via a metallic substrate, with increasing density of adato
on the surface, first~at low coverages! one-dimensional clus
ters of 2–6 adatoms form, and then whole chains, perio
cally arranged at large distances from one another. Th
linear clusters and chains are oriented either perpendicul
the grooves~in the case of W, Mo, and Re substrates! or
along the grooves~on the Ni and Si surfaces! and along
4231063-777X/2002/28(6)/6/$22.00
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atomic steps on the surface. However, in all of the ca
mentioned, the motion of these objects occurs along
grooves and, regardless of the orientation of the clusters,
be described in the framework of similar one-dimensio
models.

The diffusion of adatoms and adatom clusters has a n
ber of unusual features.5–7 In particular, the diffusion coeffi-
cient depends strongly~and nonmonotonically! on the
coverage,4 undoubtedly because of an interaction betwe
adatoms, and can depend substantially on the mechanism
the formation and change in size of the clusters. On the o
hand, the experimental observation of rapid~nondiffusive!
motion of very large metallic clusters along a graphite s
face was reported in Ref. 8. The theoretical study of
structure and dynamics of one-dimensional atomic chain
finite length has been the subject of a large number
papers.9–11 In particular, a soliton mechanism for the motio
of finite-length clusters was proposed in Ref. 9.

Ordinarily the diffusive motion of adatoms and cluste
is due to their interaction with the substrate: adatoms su
random impacts from thermal phonons in the bulk of t
substrate. As the temperature is lowered and the bulk exc
tions are frozen out, the coefficient of ordinary diffusion fa
off linearly with the decreasing temperature, and diffusion
this kind ceases. It remains possible to have regular~vibra-
tional or drift! motion of individual adatoms excited in rar
collisions with phonons or under the influence of extern
irradiation.

In this paper we consider the possibility of a fundame
tally different mechanism of cluster diffusion, which arises
the transition from isolated adatoms to small adatom co
plexes as the degree of coverage increases. In the excit
of an isolated atom atT50 in the absence of dissipation
only its regular motion is possible. However, as will b
shown below, when atomic complexes are excited, they
undergo stochastic motion, leading to diffusion. Th
‘‘anomalous’’ diffusion of complexes, which is nonzero eve
at zero temperature and which is absent for individual ato
© 2002 American Institute of Physics
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should be observed as the coverage of the substrate
creases.

From the standpoint of the theory of nonlinear regu
and stochastic dynamics, this problem is also of fundame
significance. As a rule, fundamental questions of stocha
dynamics of Hamiltonian systems are considered for
amples of conservative systems with two degrees of fr
dom. It is assumed that the stochastic regime arises
result of instability of the motion of a system in a bound
region of phase space. Our model allows the unbounded
placement of the center of mass~CM! of the adatom com-
plex in coordinate space, and we can consider the fundam
tal question of the connection between the chaotic chara
of the dynamics of a mechanical system with diffusional m
tion of the CM of this complex. We note that for the afor
mentioned experiments on the surface diffusion of ada
complexes the ideal model is that of coupled mathemat
oscillators: the atoms lie along grooves on the surface,
their motion is of a one-dimensional character, and the p
odic potential created along the grooves by the atomic st
ture of the substrate can be modeled by a trigonometric fu
tion.

FORMULATION OF THE MODEL

We shall investigate the one-dimensional motion o
diatomic complex. For simplicity we consider the case wh
the atoms of the cluster move strictly along the grooves
the surface of the crystal, and in equilibrium the cluster
oriented in the direction perpendicular to the grooves~Fig.
1!. ~The one-dimensional model more realistically describ
the situation when the adatom complex is oriented along
grooves. However, then the possible ‘‘jumping’’ of the atom
through each other at high energies becomes a prob
Therefore, in the that case the results which we obtain
applicable only at energies that are not too high. Howe
was will be shown below, this energy interval is one w
several important scenarios of cluster motion.! We denote the
coordinates of the atoms asX1 andX2 and restrict consider
ation to a harmonic interatomic interaction and a sinuso
substrate potential relief for each atom. The total energy
such a system has the form

FIG. 1. Diatomic complex on an atomically grooved surface of a crysta
in-
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Ẽ5(
i 51

2 H m

2 S dXi

dt D 2

1U0F12cos
2pXi

a G J
1

a

2
~X12X2!2, ~1!

wherem is the mass of the atoms,U0 is the amplitude of the
substrate potential, anda is a characteristic of the inter
atomic interaction in the cluster. The equilibrium state of t
diatomic ‘‘molecule’’ corresponds to the valuesX15X2

5na. The parametersa andU0 can be associated with th
respective frequenciesv05A2a/m and v15AU0 /m. We
shall assume below that the frequenciesv0 andv1 are of the
same order of magnitude. The system of dynamical eq
tions has the form

m
d2X1

dt2
1

2pU0

a
sin

2pX1

a
1a~X12X2!50, ~2!

m
d2X2

dt2
1

2pU0

a
sin

2pX2

a
1a~X22X1!50. ~3!

If the displacements are measured in units of the in
atomic distance,xi5Xi /a, and the time in units of&/v0 ,
then the only remaining parameter is the dimensionl
quantityA5(v1 /v0)2/p, which determines the ratio of th
energy of interaction with the substrate to the energy of
teractions within the cluster. All of our numerical calcul
tions were carried out for a valueA51, although the case
A@1 is very interesting: in that case the dynamics of t
system should have traits similar to the stochastic motion
the ‘‘Lorentz gas’’ model. In the case under discussion, E
~2! and ~3! can be written in dimensionless form as

d2x1

dt2
5~x22x1!2sin~2px1!, ~4!

d2x2

dt2
5~x12x2!2sin~2px2!, ~5!

and we introduce a dimensionless energy

E5Ẽ/E* 5(
i 51

2 H 1

2 S dxi

dt D
2

1
1

2p
@12cos~2pxi !#J

1
1

2
~x12x2!2, ~6!

whereE* 5aa2.
The energy~6! is the only integral of motion of the dy

namical system~4!, ~5!, which has two degrees of freedom
Since there is no second integral, the system admits stoc
tic behavior.1

A fragment of the topography of the potential ener
surfaceU(x1 ,x2) corresponding to Eq.~6! is shown in Fig.
2. The simultaneous motion of the diatomic cluster can
represented as two-dimensional motion of a particle with
spect to this potential energy surface~PES!. The absolute
minima of the energy correspond to the pointsx15x25n
with zero energy. Besides these there exist relative minim
the PES at the pointsx1'1/260.3681n and x2'1/2
70.3681n, with energyE0'0.374. ~The values of all the
characteristic energies are given forE5Ẽ/E* @see Eq.~6!#.
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The local maxima of the PES correspond to the poi
x15x25n11/2, with energyEm52/p'0.637. When this
energy is exceeded, the purely ‘‘drift’’ motion withx15x2 ,
in which internal vibrations of the cluster are not excite
becomes possible. Lying between the minima of the PES
saddle points atx151/121n, x257/121n; x157/121n,
x251/121n; x1511/121n, x255/121n; and x155/12
1n, x2511/121n, with energyEs51/p11/8'0.443. This
value of the energy plays an important role in the dynam
of a cluster: at energiesE,Es only vibration of the cluster is
possible, and it is only forE.Es that infinite displacemen
of the dimer becomes possible. When the energy is slig
aboveEs the image point executes a zig-zag motion throu
the saddle points, amounting to a one-dimensional ‘‘expre
motion of the diatomic complex. Finally, a very importa
value of the energy isEt , at which the region in (x1 ,x2)
space that is accessible for the motion of the dimer begin
intersect with the region of negative Gaussian curvature
the PES, in whichK5(rt 2s2)(11p21q2)22,0, wherer
5]2U/]x1

2, t5]2U/]x2
2, s5]2U/]x1]x2 , p5]U/]x1 , and

q5]U/]x2 . The lines of zero curvature of the PES in Fig.
have a nearly square shape with edges parallel to thex1 and
x2 axes.~The energyEt is related to the Toda criterion fo
the onset of stochastization of the motion in nonintegra
nonlinear dynamical systems.12,13! For our choice of param
eters,Et'0.2. We have done a numerical simulation of t
motion of a diatomic complex with energiesE>0.5. At such
energies the infinite displacement of the dimer has beco
possible, and the trajectory ‘‘takes in’’ the region of negati
curvature of the PES, and that can lead to stochastic mo

At low energiesE!Et , according to the Kolmogorov–
Arnold–Moser theory,14 the overwhelming majority of initial
conditions lead to regular dynamics of the cluster: the o
motions that occur are a relative vibrational motion of t
atoms in the dimer and a vibrational motion of its CM re
tive to the potential relief. When the energyEt is exceeded,
the weight of initial conditions that lead to chaotic motio

FIG. 2. Topography of the potential energy surface of the system.
singular points correspond to absolute minima~a!, relative minima~b!, rela-
tive maxima~m!, and saddles~s!. The closed, nearly square contours wi
sides parallel to the axes correspond to zero Gaussian curvature of th
tential energy surface.
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begins to grow rapidly. In the intervalEt,E,Es , however,
the motion occurs in a bounded region of coordinate spa
Here the average values of the CM coordinatex5(x1

1x2)/2 and CM velocityv5(v11v2)/2 of the dimer are
equal to zero, while the rms deviation of the CM does n
exceed the interatomic distance~the unit for the dimension-
less variables!. The chaotic motion in this situation has bee
studied widely and in detail by many authors.1,15

A more interesting energy region isE.Es , where infi-
nite motion of the dimer is possible. Here its CM moves ov
distances substantially exceeding the interatomic distan
on the surface of the crystal, and one can pose the fundam
tal question of the influence of stochastization of the mot
in a nonintegrable system on the character of the ma
scopic displacement of adatom clusters. In particular,
can answer the question of whether this stochastization le
to diffusion of the clusters and what would be the propert
of such diffusion.~We stress that we are talking about diffu
sion in ordinary coordinate space and not Arnold diffusion
phase space.1!

SETUP OF THE NUMERICAL SIMULATION

The theoretical model described above was investiga
by numerical solution of the system of nonlinear equatio
~4!, ~5! on a computer. The computer calculations were do
by the method of finite differences with a discrete time s
D. The value ofD was decreased as the energy increased
was usually chosen in the interval 0.025–0.01. In real ti
this interval corresponds to a time intervalt5D&/v0 . A
fast formula for the Verlet algorithm was used which did n
lead to accumulation of round-off error.

All of the calculations were done for the same initi
values of the coordinates of the atoms of the dimer,x1

(0)

5x2
(0)50, but the initial values of the particle velocitiesv1

(0)

and v2
(0) and, hence, the total energy of the cluster we

varied over wide limits. In practice, instead of the values
v1

(0) and v2
(0) , the related ‘‘rapidities’’ Ei

(0)5sgn(vi
(0))

3@(vi
(0))2/2# of the two particles were assigned. Here,

course,E5uE1
(0)u1uE2

(0)u. Studies were done over a wid
energy interval, fromE50.5 to 100. Although in reality our
assumption that the motion is of a one-dimensional chara

e

po-

TABLE I.
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is violated at high energies and the cluster breaks up,
investigations at high energies of excitation neverthel
proved useful from a methodological standpoint. The res
for the case studies are presented in Tables I–VI. At ener
E50.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6
10.0, 20.0, 30.0, and 40.0 we chose the initial conditio
E1

(0)52E2
(0)5E/2, corresponding to the relative internal v

brations of the dimer with a stationary CM at the initial tim
~Table I!. For energiesE51.125, 2.0, 4.5, 10.0, 20,0, 30.0
40.0, 50.0, 60.0, and 100 we chose the initial conditio
E1

(0)50, E2
(0)5E, corresponding to the motion of only on

atom of the dimer at the initial time~Table VI!. Finally, for
energies of 10, 20, 30, and 40~Tables II–V, respectively! we
chose several initial conditions, ranging from internal vib
tions of the dimer to a purely ‘‘drift’’ motion:E1

(0)52E/2
1n, E2

(0)5E2uE1
(0)u, n50,1,...,E.

Instead of the coordinatesx1 and x2 of the atoms it is
convenient to use the coordinate of the CM of the dimex
5(x11x2)/2 and the characteristic relative distance betwe
atoms y5(x12x2)/2. In the new variables we have two
dimensional motion of the image point on the~x,y! plane,
where the region accessible for motion is a corrugated ‘‘c
ridor’’ which is open in the direction of thex axis ~see Fig.
3!. At the initial time a particle with the specified energ
starts from the point~0,0! with a velocityA2E in different
directions, as is illustrated by the fan of arrows on the l

TABLE II.

TABLE III.
e
s
s
s
,
s

s

n

-

t

end of Fig. 3. Arrowa corresponds to the conditionE1
(0)

52E2
(0)5E/2, and arrowb to the conditionE1

(0)5E2
(0)

5E/2. The main types of motion possible are shown sc
matically in the same figure. First, regular vibrations within
single period of the substrate structure can occur, espec
at low energies~curveA in Fig. 3!. Second, for initial con-
ditions of typeb, a regular ‘‘drift’’ motion, illustrated by
curveB in the figure, can exist at high energies. In particul
when the energy is only slightly aboveEs this trajectory has
the form of curveC, which corresponds to the ‘‘express

TABLE IV.

TABLE V.
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motion of the dimer. Since trajectories of typesB andC pass
through regions of negative curvature of the PES, appare
they also eventually go over to the stochastic regime, bu
very long times~this is especially the case for trajectories
type B, which take in a very small part of the surface wi
K,0!. Finally, the most often encountered situation is th
of stochastic behavior of the trajectory~curveD!.

In the numerical calculation very long trajectories we
considered: the number of computational iterations prod
ing them was of the order of 108. This number of iterations
corresponded to maximum dimensionless times of motion
the dimer ~dimensionless physical times! of the order of
tmax'106, which corresponds to 105 of the characteristic pe
riods of the vibrations of the atoms in the substrate relief
the chaotic regime the CM of the dimer moved over d
tances of up to 43104 periods of this potential relief.

The main computational quantities are the following: t
time dependence of the coordinate of the CM of the dim
x5x(t); the time dependence of the number of reversals
the direction of the velocity of the dimer and the coordina
at which the reversals occur; the time dependence of
standard deviationD5A^x2&2^x&2 for the trajectoryx(t) of
the complexes undergoing chaotic motion; and the param
p5 ln D(t)/ln(t), which determines the character of the ma
roscopic motion of the dimer. In addition, for comparison
the results with those for the conventional methods of stu
ing chaotic dynamics we constructed the Poinare´ surface of
section for the trajectories found and the one-dimensio
point images for the coordinates of the turning points of
CM of the complex.

FIG. 3. Schematic illustration of the possible types of motion of the ima
point. See the text for a description.

TABLE VI.
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Let us discuss in more detail the method of averag
used in the calculation of the standard deviation of a traj
tory. This quantity was calculated three ways. In the first c
an averaging over the time of motion was done from
initial time t050 to a moving time, and the expressions

^x&5
1

n (
k50

n

x~ tk!

and

^x2&5
1

n (
k50

n

x2~ tk!,

were used, wheretk5kD and D is the iteration step. How-
ever, this method of finding the time dependenceD5D(t)
gives unstable and, hence, insufficiently reliable results e
for very long trajectories obtained as a result of;108 com-
putational iterations. When this method is used, the time
pendencep(t) came out to be extremely slow, and it is ha
to reach the limiting value of this quantity in a reasonab
computation time. Another method was to do a simultane
averaging over different time series: the trajectory was cut
into six time intervals of identical length, which were the
superimposed on one another, and an averaging was
over these six time series. Since this method gave be
results, we did the calculations with an averaging ove
large number of time series with practically identical initi
conditions. To obtain well-convergent and stable results a
reasonable computation time we considered bundles of 4
500 trajectories. In the initial conditions of the motion, i.e
in the originally chosen values ofE1

(0) and E2
(0) , a random

number generator was used to introduce small differen
with values of the order of 1028– 1029 times the absolute
value ofEi

(0) ~of course, here the conditionE(0)5const was
strictly enforced!. Such small differences in the initial con
ditions of the motion turned out to be sufficient to make t
chaotic trajectories diverge rapidly~exponentially! from each
other, forming an expanding bundle of trajectories. In t
case the averaging ofx and x2 was done over transvers
cross sections of the trajectory bundle:

^x&~ tn!5
1

m (
i 51

m

x~ i ,n!

and

^x2&~ tn!5
1

m (
i 51

m

x2~ i ,n!,

wherex( i ,n) is the coordinate of the CM of thei th molecule
at the timetn5nD. This method gave more-reliable data f
the time dependenceD(t).

MAIN RESULTS

A diatomic molecule in the system under discussion c
execute four fundamentally different types of motion: loc
ized vibrations of two types, regular translational motio
and, finally, chaotic motion. In the localized vibrations of th
first type the molecule pulsates periodically, but its center
mass does not shift~i.e.,x5const andv50!. In the localized
vibrations of the second type the CM of the molecule e

e
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ecutes periodic vibrations, so thatx5^x&1x0 sinvt, while
the motion of each atom of the complex can be more co
plicated. The translational motion is characterized by the
sence of changes in the direction of motion of the CM of
molecule, although its velocityv does not necessarily rema
constant. Ifv5const, then one can speak of regular trans
tional motion ~or quasiregular, if the velocity changes a
small!. Finally, in the chaotic motion of the molecule th
direction of motion of its CM changes direction many time
and its trajectoryx5x(t) has a random character.

Regular translational motion~‘‘drift’’ trajectories! is ob-
served, as a rule, at high energies~in particular, at the values
E510, 20, 30, 50, and 60!. However, a detailed microscopi
analysis of the Poincare´ section showed that in this case the
is a slow enlargement and chaotization of the region of m
tion in phase space. Curiously, this region pulsates with ti
and its volume varies nonmonotonically. The second imp
tant observation in the course of the computer simulat
was the finding of a ‘‘window of transparency,’’ where eve
at very high energies~in particular, at energiesE540 and
100! one observes a rapid transfer of energy from the tra
lational motion of the CM into internal vibrations of th
dimer and a rapid stochastization of the motion. This p
nomenon is apparently due to an internal parametric re
nance in the system: in the ‘‘drift’’ of the complex above th
periodic relief a periodic force arises which acts on the
ternal degree of freedom of the dimer in a parametric wa

The most interesting results are those concerning
chaotic motion of the dimer. This is the type of motion th
was most often encountered in the numerical simulation.
it, a monotonic change in the parameterEi

(0) corresponds to
a nonmonotonic succession of different types of motion
the molecule. For the chaotic motion, calculation of t
change of the standard deviation with time in the case o
averaging over 400–500 times series gave a rapid appr
to a stationary value of the parameterp. At energy values
E50.5 and 1 it was found that the time dependence of
standard deviation satisfies the standard relationD;tp with
p'0.5, which is characteristic for Brownian motion of
particle.

Thus we have shown that dynamical chaos in ph
space leads to spatial diffusion in configuration space an
the onset of Brownian motion of adatom clusters. This res
is of exceptional interest, since it demonstrates that un
certain conditions cluster diffusion can occur at zero te
perature~but finite energy! in the absence of thermal impac
due to the heat bath. In this case the role of the heat ba
a certain sense is played by the internal degree of freedo
the cluster, and its translational motion can exchange en
with the internal vibrations. Here, as a consequence of
nonlinearity of the system, this exchange can occur in a r
dom manner.

In studying the chaotic motion of a cluster along a t
jectory x5x(t) we also measured the values of the coor
nates of its center of mass,x(1),x(2),...,x(N) at successive
times tk5kd with a fixed time stepd and determined the
change of the coordinatesDx(k)5x(k11)2x(k). The resulting
set of values ofDx(k) was subjected to further processing
the methods of mathematical statistics with the goal of
termining the distribution law of this random quantity. The
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studies were done for energiesE51 and 20, which corre-
sponded to statistical sampling volumes ofN5581 and 410.
It was found that with increasing significance level accord
to the x2 criterion, theDx(k) are distributed according to
normal~Gaussian! law, i.e., they have the same properties
for the trajectories of classical Brownian motion.

In a number of cases, however, the random walk of
dimer at certain times would give way to a rapid ‘‘drift
regime that lasted a finite length of time. On a larger sc
these points in time corresponded to macroscopic jump
the trajectory. That is, the motion is not so much of t
nature of Brownian motion as it is a realization of a Cauc
process. This probably accounts for the following result
was observed that at energyE510, i.e., in the region of
energies high compared toEm , approximating the time de
pendenceD(t) by a power lawD;tp gave an exponentp
'0.65– 0.8, markedly larger than the value 0.5 and typi
of a generalized diffusion process. Moreover, if the appro
mation of D(t) was done for different time intervals, th
values ofp came out different, and its dependence on
time interval was nonmonotonic. Thus at large values of
energy the process investigated here, being stochastic,
not correspond to classical Brownian motion and possi
not even to a generalized Brownian process.
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Self-consistent field model for spatially inhomogeneous Bose systems
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A self-consistent field~SCF! model is constructed for spatially inhomogeneous Bose systems
with broken symmetry. A system of self-consistent equations is obtained for the wave
functions of the quasiparticles and the wave function of the condensate particles and another
system of equations for the normal and anomalous single-particle density matrices. The many-
particle wave function is found. The thermodynamics of multiparticle Bose systems is
constructed on the basis of a microscopic treatment in the SCF approximation. It is stressed that
Bose condensation in the ideal gas model is substantially different from Bose condensation
in a system of interacting Bose particles because a pair condensate is necessarily present as well
as the single-particle condensate, even for an arbitrarily weak interaction. The role of single-
particle and collective excitations in Bose systems is discussed. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1491184#
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1. INTRODUCTION

The self-consistent field~SCF! model in the quantum
mechanics of many-particle systems was introduced
Hartree1 for describing the states of electrons in atoms. T
symmetry of the many-particle wave function in this mod
with respect to permutations was taken into account
Fock.2 Nowadays the SCF model is widely used for calcu
tion of atomic shells,1 nuclear structure,3 and the properties
of molecules and solids.4 An important feature of the SCF
model is that it can be used to describe states with a lo
symmetry than that of the initial Hamiltonian. In particula
Bogolyubov generalized the Hartree–Fock model to sta
with broken symmetry with respect to pha
transformations.5 The Hartree–Fock–Bogolyubov mod
permits a description of the superconducting states of
mion systems with pairing. The SCF model has mainly be
used as a basis for theoretical investigation of the prope
of fermions, and only in isolated cases has it been use
study many-particle Bose systems.6 Interest in the problem
of Bose condensation has risen substantially in connec
with the experimental observation of Bose condensation
spin-polarized atomic gases by various groups
investigators.7,8

In the framework of the SCF model, single-particle e
citations arise with nonzero activation energy at zero m
mentum; the necessity of their existence in Bose systems
pointed out in the book by Bogolyubov and Bogolyubo9

The presence of a gap in the spectrum of these quasipart
is due to the fact that Bose systems with broken phase s
metry contain pairs of particles with opposite momen
which, as was noted in Ref. 9, must have an energy of
sociation. Excitations with an acoustic dispersion relati
which were predicted by Landau10 and also exist in system
of interacting Bose particles, may be found from the nons
4291063-777X/2002/28(6)/13/$22.00
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tionary equations for the self-consistent field.
In Sec. 2 of this paper we derive a system of SCF eq

tions for a many-particle system of interacting Bose p
ticles. These equations can be used for a finite-tempera
description of spatially inhomogeneous states with brok
symmetries with respect to various sorts of transformatio
In Sec. 3, thermodynamic relations and expressions for
energy and thermodynamic potential are obtained in the S
model on the basis of a microscopic approach, and i
thereby shown that the SCF model is in complete agreem
with the general principles of thermodynamics. In Sec. 4
spatially homogeneous Bose system of particles with a sh
range repulsive interaction is considered in the nonsuperfl
and superfluid states with a single-particle Bose condens
The many-particle wave functions are found for a Bose s
tem with a single-particle condensate. The question of
formation of the spectrum of excitations in many-partic
Bose systems is discussed in Sec. 5. We note that this q
tion was discussed in Ref. 11 in connection with the expe
mental data on neutron scattering in4He.

A generalization of the semi-phenomenological Ferm
liquid approach to the case of a superfluid Bose liquid w
made in Ref. 12. The spatially inhomogeneous states o
slightly nonideal Bose gas were considered in the framew
of the Bogolyubov approximation in Ref. 13, and in the a
sence of a single-particle Bose condensate they were con
ered in the linear approximation in Ref. 14.

In this paper, on the basis of the method developed
Fermi systems in Ref. 15, we construct a general formula
of the SCF method for Bose systems with spontaneou
broken symmetry. We show that the state of a system w
broken phase invariance—a system of even arbitra
weakly interacting Bose particles—differs substantially fro
an ideal Bose gas with a condensate. A many-particle B
© 2002 American Institute of Physics
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system at low temperatures always undergoes a transitio
a state with broken phase symmetry, regardless of the c
acter of the interparticle interaction, and the ideal gas mo
is oversimplified and does not reflect the essential feature
such states of interacting Bose particles. Therefore the S
model, in which one can describe states with spontaneo
broken symmetries, is a more natural choice than
independent-particle model as an initial basis for constru
ing a microscopic theory of many-particle Bose system
Among the advantages of the proposed approach is the
that all particles of the system are treated on a comple
equal footing. The separation of a condensate of parti
with zero momentum arises in a spatially homogeneous s
as a consequence of the general theory.

2. EQUATIONS OF THE SELF-CONSISTENT FIELD

Consider a system of Bose particles with spin zero,
teracting by means of a pair potentialU(r ,r 8). The Hamil-
tonian of such a system has the form

H5HK1HI , ~1!

where

HK5E dxdx8C1~x!H~x,x8!C~x8!, ~2!

HI5
1

2 E dxdx8C1~x!C1~x8!U~x,x8!C~x8!C~x!,

~3!

and

H~x,x8!5H0~x,x8!2md~x2x8!,

H0~x,x8!52
\2

2m
Dd~x2x8!1U0~x!d~x2x8!, ~4!

where we have used the notationx5$r%, andU0(x) is the
external field potential. It is assumed that a many-part
system found in contact with a heat bath can exchange
it both energy and particles, i.e., a grand canonical ensem
is used. For this reason the chemical potentialm is included
in the Hamiltonian. The field operators obey the Bose co
mutation relations and have the form

C~x!5(
j

w j~x!aj , C1~x!5(
j

w j* ~x!aj
1 , ~5!

whereaj
1 andaj are the creation and annihilation operato

for real Bose particles in statej , and the wave functions
satisfy the single-particle Schro¨dinger equation

E dx8H0~x,x8!w j~x8!5« j
~0!w j~x!. ~6!

To pass to the SCF approximation we break the ini
Hamiltonian~1! into a sum of two terms:

H5H01HC , ~7!

where the first term is the Hamiltonian of the SCF mod
including terms not higher than quadratic in the field ope
tors:
to
ar-
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H05E dxdx8H C1~x!@H~x,x8!1W~x,x8!#C~x8!

1
1

2
C1~x!D~x,x8!C1~x8!1

1

2
C~x8!D* ~x,x8!C~x!J

1E dx@F~x!C1~x!1F* ~x!C~x!#1E08 , ~8!

while the second term is the correlation Hamiltonian, whi
takes into account particle correlations not included in
SCF approximation:

HC5
1

2 E dxdx8$C1~x!C1~x8!U~x,x8!C~x8!C~x!

22C1~x!W~x,x8!C~x8!

2C1~x!D~x,x8!C1~x8!

2C~x8!D* ~x,x8!C~x!%

2E dx@F~x!C1~x!1F* ~x!C~x!#2E08 . ~9!

The Hamiltonian~8! of the SCF model, unlike its counterpa
for the case of a Fermi system,15 also contains terms linear in
C and C1. The self-consistent fieldsF(x), W(x,x8), and
D(x,x8) appearing inH0 must be found from the condition
that this Hamiltonian be the best approximation to the init
HamiltonianH; by virtue of the Hermitianity, the following
conditions hold:

W~x,x8!5W* ~x8,x!, D~x,x8!5D~x8,x!. ~10!

The choice of the nonoperator termE08 in ~8! and ~9! is
important for correct formulation of the SCF model. Thus,
the SCF approximation a many-particle system is charac
ized by a HamiltonianH0 , while the influence of the corre
lation HamiltonianHC can be taken into account by pertu
bation theory. In this paper, however, we shall limit th
detailed study of the Bose system to the SCF model, negl
ing effects due to the correlation Hamiltonian.

Hamiltonian~8! can be reduced to diagonal form. To d
this, we first eliminate the terms linear in the Bose operat
by introducing ‘‘shifted’’ Bose operatorsF(x), F1(x), so
that

C~x!5x~x!1F~x!, C1~x!5x* ~x!1F1~x!, ~11!

and defining the functionx(x) so that the terms linear in th
field operators drop out ofH0 . As a result, we obtain the
condition

E dx8@V~x,x8!x~x8!1D~x,x8!x* ~x8!#1F~x!50,

~12!

where V(x,x8)5H(x,x8)1W(x,x8). With allowance for
this last condition the self-consistent Hamiltonian takes
form
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H05E dxdx8H F1~x!V~x,x8!F~x8!

1
1

2
F1~x!D~x,x8!F1~x8!

1
1

2
F~x8!D* ~x,x8!F~x!J

2E dxdx8H x* ~x!V~x,x8!x~x8!

1
1

2
x* ~x!D~x,x8!x* ~x8!

1
1

2
x~x8!D* ~x,x8!x~x!J 1E08 . ~13!

This Hamiltonian, with the aid of the canonical Bogolyubo
transformations

F~x!5(
i

@ui~x!g i1v i* ~x!g i
1#,

F1~x!5(
i

@v i~x!g i1ui* ~x!g i
1#, ~14!

is reduced to the diagonal form

H05E01(
i

« ig i
1g i , ~15!

where i is the total set of quantum numbers characteriz
the state of the quasiparticle. We see that the SCF appr
mation leads in a natural way to a quasiparticle represe
tion in Bose systems. The conditions for the transition fro
Hamiltonian ~13! to Hamiltonian~15! are the equations fo
the coefficients of the Bogolyubov transformation, whi
have the meaning of components of the quasiparticle w
vector:

E dx8@V~x,x8!ui~x8!1D~x,x8!v i~x8!#5« iui~x!,

~16!

E dx8@V* ~x,x8!v i~x8!1D* ~x,x8!ui~x8!#52« iv i~x!.

~17!

The requirement that the transformations~14! be canonical
leads to the normalization conditions

E dx@ui~x!ui 8
* ~x!2v i~x!v i 8

* ~x!#5d i i 8 ,

E dx@ui~x!v i 8~x!2v i~x!ui 8~x!#50 ~18!

and the completeness conditions

(
i

@ui~x!ui* ~x8!2v i* ~x!v i~x8!#5d~x2x8!,

(
i

@ui~x!v i* ~x8!2v i* ~x!ui~x8!#50 ~19!

for the solutions of the self-consistent equations.
g
xi-
a-

e

The self-consistent potentialsW(x,x8) andD(x,x8) can
be found from the condition of minimality of the functiona

I 5@^~H2H0!&0#2, ~20!

where the averaging is done with the density matrix

r05expb~V02H0!, b51/T, ~21!

with T being the temperature. The normalizing constan
determined by the condition Trr051:

V052T ln@Tr exp~2bH0!#, ~22!

and, as we shall show, has the meaning of the thermo
namic potential of the system in the SCF approximation.

Defining the total single-particle density matrix by th
relations

r̃~x,x8!5^C1~x8!C~x!&05r~x,x8!1x* ~x8!x~x!,
~23!

t̃~x,x8!5^C~x8!C~x!&05t~x,x8!x~x8!x~x! ~24!

and varying the functional~20! with respect to them, we
obtain from the conditiondI 50 a relation between the self
consistent potentials and the total single-particle density
trices

W~x,x8!5U~x,x8!r̃~x,x8!1d~x2x8!

3E dx9U~x,x9!r̃~x9,x9!, ~25!

D~x,x8!5U~x,x8!t̃~x,x8!. ~26!

The above-condensate density matrices have the for

r~x,x8!5^F1~x8!F~x!&0

5(
i

@ui~x!ui* ~x8! f i1v i* ~x!v i~x8!~11 f i !#,

~27!

t~x,x8!5^F~x8!F~x!&0

5(
i

@ui~x!v i* ~x8! f i1v i* ~x!ui~x8!~11 f i !#,

~28!

where

f i5^g i
1g i&05 f ~« i !5@exp~b« i !21#21 ~29!

is the distribution function of the Bose quasiparticles. The
matrices, liker̃(x,x8) and t̃(x,x8), satisfy the conditions

r~x,x8!5r* ~x8,x!, t~x,x8!5t~x8,x!. ~30!

Since the operatorsF(x) andF1(x), according to Eq.~14!,
are linear ing and g1, while the HamiltonianH0 ~15! is
quadratic, we have

^F~x!&05^F1~x!&050,

and, hence,

x~x!5^C~x!&0 , x* ~x!5^C1~x!&0 . ~31!

Thus x(x) can be interpreted as a function that determin
the particle number density in the single-particle Bose c
densate in the SCF model.

When relations~25! and~26! are taken into account, th
self-consistency conditions~16! and ~17! take the form
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F2
\2

2m
D1U0~x!2m1E dx8U~x,x8!r̃~x8,x8!Gui~x!

1E dx8U~x,x8!@ r̃~x,x8!ui~x8!1 t̃~x,x8!v i~x8!#

5« iui~x!, ~32!

F2
\2

2m
D1U0~x!2m1E dx8U~x,x8!r̃~x8,x8!Gv i~x!

1E dx8U~x,x8!@ r̃* ~x,x8!v i~x8!

1 t̃* ~x,x8!ui~x8!#52« iv i~x!. ~33!

Besides Eqs.~32! and ~33!, we must obtain one more equa
tion, since the Bose-condensate functionx(x) remains unde-
termined. With this goal, by varying~20! with respect to
x(x) and settingdI 50 we find

F~x!522x~x!E dx8U~x,x8!ux~x8!u2. ~34!

Ultimately, taking Eq.~12! into account, we arrive at the
equation

H 2
\2

2m
D1U0~x!2m

1E dx8U~x,x8!@ r̃~x8,x8!22ux~x8!u2#J x~x!

1E dx8U~x,x8!@ r̃~x,x8!x~x8!1 t̃~x,x8!x* ~x8!#

50. ~35!

Equation~35! together with Eqs.~32! and~33! and relations
~18!, ~19!, and ~29! completely describe a system of man
Bose particles in the SCF approximation. The system
equations obtained has three types of solutions:

I) x~x!5v i~x!50, ui~x!Þ0;

II) x~x!50, v i~x!Þ0, ui~x!Þ0;

III) x~x!Þ0, v i~x!Þ0, ui~x!Þ0.

The first type of solutions~I! describe states in which th
symmetry with respect to the phase transformations

C~x!→C~x!ei j, ~36!

wherej is an arbitrary phase, is unbroken. In this ‘‘norma
state the system contains neither a single-particle nor a
condensate and does not possess the property of super
ity. The second type of solutions~II ! describe states whos
symmetry with respect to the transformation~36! is broken
on account of the formation of a pair condensate, analog
to that which arises in superfluid Fermi systems.15 In this
case the Bose system possesses the property of superflu
Superfluidity of Bose systems due to pair correlations
been studied in Refs. 16 and 17. The solutions of type~III !
describe superfluid states with broken phase symmetry,
taining both a single-particle and a pair Bose condensate
note the absence of solutions in which
f

air
id-

us

ity.
s

n-
e

x~x!Þ0, v i~x!50, ui~x!Þ0 . ~37!

It is just such a solution that corresponds to the case
an ideal Bose gas below the point of the Bose transiti
consisting of a Bose condensate and above-condensate
ticles. Thus a system of noninteracting particles with a Bo
condensate and a system of~even arbitrarily weakly! inter-
acting Bose particles with broken phase symmetry are
essentially different systems. The ideal gas model with
Bose condensate is just as unsuitable for describing the
perfluid state of a real system of interacting particles as
ideal Fermi gas model is unsuitable for describing the sup
fluid state of a Fermi system, for example, and it cannot
used as an initial approximation for constructing a pertur
tion theory. The use of the ideal gas model with a condens
as a basis is responsible for the various difficulties enco
tered in constructing a consistent theory of many-parti
Bose systems with broken symmetry. This, as we see, is
to the fact that the pair correlations that always exist in
perfluid systems of interacting particles cannot be descri
in the ideal gas model. In real superfluid Bose systems
pair and higher correlations, which break the phase sym
try, play no less important a role than does the single-part
Bose condensate. Thus, according to the estimates of
18, in superfluid4He only about 8% of the particles ar
found in the single-particle Bose condensate, while the
maining contribution to the superfluid density is given
pair and higher correlations.

3. THERMODYNAMIC RELATIONS

To construct a consistent SCF model and obtain the c
rect thermodynamic relations it is important to make the c
rect choice of the nonoperator part in Hamiltonian~8!. We
find it from the condition

]I /]E0850, ~38!

which ensures that the averages of the exact and s
consistent Hamiltonians are equal:

^H&05^H0&0 . ~39!

By virtue of this we obtain

E0852
1

2 E dxdx8U~x,x8!

3^C1~x!C1~x8!C~x8!C~x!&0

12E dxdx8U~x,x8!ux~x!u2ux~x8!u2. ~40!

The total energy of the system of particles in the SCF
proximation has the form

E5E dxdx8H0~x,x8!^C1~x!C~x8!&0

1
1

2 E dxdx8U~x,x8!^C1~x!C1~x8!C~x8!C~x!&0

~41!

and can be written as a sum of three terms:

E5E11E21E3 , ~42!

whereE1 is the energy determined by the above-condens
excitations,E2 is the energy of the single-particle conde
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sate, andE3 is the ‘‘interaction’’ energy of the condensa
and above-condensate particles. The first term can be wr
in the form of a sum

E15T~1!1UE
~1!1UD

~1!1UEX
~1!1UC

~1! ,

where

T~1!52
\2

2m E dxdx8d~x2x8!Dr~x,x8! ~43!

is the kinetic energy of the above-condensate subsystem

UE
~1!5E dxU0~x!nQ~x! ~44!

is the energy of the above-condensate subsystem in the
ternal field,

UD
~1!5

1

2 E dxdx8U~x,x8!nQ~x!nQ~x8! ~45!

is the energy of the direct interaction of the abov
condensate particles,

UEX
~1!5

1

2 E dxdx8U~x,x8!ur~x,x8!u2 ~46!

is the energy of the exchange interaction of the abo
condensate particles, and

UC
~1!5

1

2 E dxdx8U~x,x8!ut~x,x8!u2 ~47!

is the energy of the condensate pairs. In Eqs.~44! and ~45!
nQ(x)5r(x,x) is the number density of the above
condensate particles. We write the condensate part in
form of a sum:

E25T~2!1UE
~2!1UD

~2! ,

where

T~2!52
\2

4m E dx@x* ~x!Dx~x!1x~x!Dx* ~x!# ~48!

is the kinetic energy of the single-particle condensate,

UE
~2!5E dxU0~x!ux~x!u2 ~49!

is the energy of the condensate in the external field,

UD
~2!5

1

2 E dxdx8U~x,x8!ux~x!u2ux~x8!u2 ~50!

is the interaction energy of the condensate particles.
third contribution to the total energy,

E35E dxdx8U~x,x8!Fr~x,x8!x* ~x!x~x8!

1nQ~x!Ux~x8!U21
1

2
t~x,x8!x* ~x!x* ~x8!

1
1

2
t* ~x,x8!x~x!x~x8!G , ~51!

is determined by the interaction of the above-condensate
ticles and the condensate.
en

x-

-

-

he

e

ar-

We find the thermodynamic potential of a system
Bose particles in the SCF approximation, which, with allo
ance for~15! and ~22!, can be written in the form

V05E02T lnFTr expS 2b(
i

« ig i
1g i D G . ~52!

The second term in~52! is calculated in the same way as
the case of an ideal Bose gas. The constantE0 is found from
Eq. ~15! with allowance for the relation

^H0&05E2mN

~N is the total number of particles!, so that

E05E2mN2(
i

« i f i . ~53!

Using Eqs.~32!, ~33!, and~35!, we write the kinetic energies
T(1) andT(2) in the form

T~1!5mNQ2UE
~1!22~UD

~1!1UEX
~1!1UC

~1!!

1(
i

« i f i2(
i

« iE dxuv i~x!u2

2E dxdx8U~x,x8!Fr~x,x8!x~x!x* ~x8!

1nQ~x!Ux~x8!U21
1

2
t* ~x,x8!x~x!x~x8!

1
1

2
t~x,x8!x* ~x!x* ~x8!G , ~54!

T~2!5mNB2UE
~2!2E dxdx8U~x,x8!

3Fr~x,x8!x~x!x* ~x8!1nQ~x!Ux~x8!U2

1
1

2
t* ~x,x8!x~x!x~x8!

1
1

2
t~x,x8!x* ~x!x* ~x8!1Ux~x!U2Ux~x8!U2G ,

~55!

where NQ5*dx nQ(x) and NB5*dxux(x)u2 are the num-
bers of above-condensate and condensate particles.

By virtue of Eqs.~54! and~55! the energy of the system
can be written in the form

E5mN2~UD
~1!1UEX

~1!1UC
~1!1UD

~2!!

1(
i

« i f i2(
i

« iE dxuv i~x!u22E dxdx8U~x,x8!

3Fr~x,x8!x~x!x* ~x8!1nQ~x!ux~x8!u2

1
1

2
t* ~x,x8!x~x!x~x8!1

1

2
t~x,x8!x* ~x!x* ~x8!G ,

~56!
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from which, by comparison with~53!, we determine the ex
pression forE0 in ~15!. Ultimately we arrive at the final form
of the thermodynamic potential of the Bose system:

V052~UD
~1!1UEX

~1!1UC
~1!1UD

~2!!2(
i

« iE dxuv i~x!u2

2E dxdx8U~x,x8!Fr~x,x8!x~x!x* ~x8!

1nQ~x!Ux~x8!U21
1

2
t* ~x,x8!x~x!x~x8!

1
1

2
t~x,x8!x* ~x!x* ~x8!G1T(

i
ln~12e2b« i !.

~57!

It can be shown that the variation of the thermodynam
potential given by formula~22! is equal to the average, ove
the self-consistent state, of the variation of the Hamiltoni

dV05^dH0&0 . ~58!

Expressing the self-consistent Hamiltonian in terms
x(x), r(x,x8), and t(x,x8) @or r̃(x,x8) and t̃(x,x8)# and
varying it with allowance for~58!, we obtain

dV0

dx* ~x!
5 K dH0

dx* ~x!L
0

5
dV0

dr~x,x8!
5 K dH0

dr~x,x8!L
0

5
dV0

dt* ~x,x8!
5 K dH0

dt* ~x,x8!L
0

50. ~59!

When the terms of the total density matrices are use
relations ~59!, the substitutionsr(x,x8)→ r̃(x,x8) and
t(x,x8)→ t̃(x,x8) should be made. Thus the relation b
tween the fieldsF(x), W(x,x8), andD(x,x8) and the con-
densate wave functionx(x) and the single-particle densit
matricesr(x,x8) and t(x,x8) in ~25!, ~26! and ~34!, which
we established with the aid of a variational principle, lead,
we see from Eq.~59!, to extremality of the thermodynami
potential in regard to its variations with respect todx, dr,
anddt.

From equations~27!, ~28!, ~32!, ~33!, and ~35! one can
obtain a system of equations for the single-particle den
matricesr(x,x8) andt(x,x8) @or r̃(x,x8) and t̃(x,x8)# and
x(x). Let us write the system for the total density matrice

2
\2

2m
@D2D8#r̃~x,x8!1@U0~x!2U0~x8!#r̃~x,x8!

1E dx9@U~x,x9!2U~x8,x9!#@ r̃~x,x9!r̃~x9,x8!

1 r̃~x,x8!r̃~x9,x9!1 t̃~x,x8!t̃* ~x9,x8!

22x~x!x* ~x8!ux~x9!u2#50, ~60!
c

:

f

in

s

ty

:

2
\2

2m
~D1D8!t̃~x,x8!1@U0~x!1U0~x8!1U~x,x8!

22m#t̃~x,x8!1E dx9@U~x,x9!1U~x8,x9!#

3@ r̃~x,x9!t̃~x9,x8!1 r̃~x9,x9!t̃~x,x8!

1 r̃~x8,x9!t̃~x9,x!22x~x!x~x8!ux~x9!u2#50.

~61!

To this system of equations we should add Eq.~35!.
Knowledge of the above-condensate density matrices
condensate wave function is sufficient for calculation of t
average of an arbitrary operatorO:

^O&05E dxdx8O~x,x8!r̃~x,x8!

5E dxdx8@O~x,x8!r~x,x8!

1O~x,x8!x* ~x!x~x8!#. ~62!

We see that the average breaks up into a sum of the ab
condensate and condensate contributions.

The correlation Hamiltonian~9! can be written in terms
of the above-condensate density matrices in the follow
form:

HC5
1

2 E dxdx8U~x,x8!@F1~x!F1~x8!F~x8!F~x!

22r~x,x8!F1~x!F~x8!22r~x8,x8!F1~x!F~x!

2t~x,x8!F1~x!F1~x8!2t* ~x,x8!F~x8F~x!

1r~x,x8!r~x8, x!1r~x,x!r~x8,x8!

1t~x8,x!t* ~x8,x!12x* ~x!F1~x8!F~x8!F~x!

12x~x!F1~x8!F1~x8!F~x!

22r~x,x8!x~x8!F1~x!22r* ~x,x8!x* ~x8!F~x!

22r~x8,x8!x~x!F1~x!22r~x8,x8!x* ~x!F~x!

22t~x,x8!x* ~x8!F1~x!22t* ~x,x8!x~x8!F~x!.

~63!

This rather unwieldy Hamiltonian can be written more co
pactly in terms of the normal products of operators and
used to develop a perturbation theory in analogy with
procedure for Fermi systems.19

4. SPATIALLY HOMOGENEOUS BOSE SYSTEM

The equations obtained, which are suitable for study
spatially inhomogeneous states, can, of course, also be
for study of a spatially homogeneous system. Let us cons
this important particular case. In a spatially homogene
system the states of the particles are characterized by
momentum, so that herei 5k[$k%, and the wave functions
have the form of plane waves. We shall assume that
interparticle interaction has ad-function character:U(x,x8)
5U0d(x2x8). In a normal Bose system~the primed quan-
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tities! the wave function of a quasiparticle, its dispersi
relation, and its distribution function have the forms

uk8~x!5
1

AV
e2kx, «k85

\2k2

2m
2m̃8, f k85~ebk

«8
21!21,

~64!

where

m̃85m822U0n8 ~65!

is the effective chemical potential, and the single-parti
density matrix and particle number density are given by
formulas

r8~x,x8!5
1

V (
k

e2 ik~x2x8! f k8 ,n85
1

V (
k

f k8 , ~66!

whereV is the volume occupied by the system. The chemi
potential is related to the particle number density by a f
mula similar to that for an ideal Bose gas above the cond
sation point, but with the chemical potentialm replaced by
the effective chemical potentialm̃8 ~65!:

n85
~mT!3/2

&p2\3 E0

` d«A«

e«2bm̃821
. ~67!

Since, according to Eq.~65!, the particle number densit
enters intom̃8, Eq.~67! containsn8 on both the left and right
sides, and therefore formula~67! gives a more complex de
pendence of the particle number density on the chemical
tential than in the ideal gas model. It is obvious that t
condition for Bose condensation ism̃850, i.e., the following
relation holds on the phase transition line:

m85m0852U0n. ~68!

The Bose condensation temperature is determined by
same formula as in the case of an ideal Bose gas:

T05
2p\2

m F n8

z~3/2!G
2/3

, ~69!

wherez(3/2)52.612 is the Riemann zeta function.
Below the Bose condensation point the self-consist

equations~32!, ~33!, and~35! admit solutions in the form of
plane waves:

uk~x!5
uk

AV
e2 ikx,vk~x!5

vk

AV
e2 ikx,x5const. ~70!

In this case the single-particle density matrices take the f

r̃~x,x8!5uxu21
1

V (
k

@ uuku2f k1uvku2~11 f k!#e
2 ik~x2x8!,

~71!

t̃~x,x8!5x21
1

V (
k

ukuk* ~112 f k!e
2 ik~x2x8!, ~72!

and the coefficients, according to Eqs.~16! and ~17!, satisfy
the system of algebraic equations

~jk2«k!uk1Dvk50, ~73!

D* uk1~jk1«k!vk50, ~74!
e
e

l
-
n-

o-
e

he

t

m

wherejk5\2k2/2m2m12U0n, D5U0t̃(x,x), and the to-
tal particle number densityn5 r̃(x,x). Applying the normal-
ization condition~18!, i.e., uuku22uvku251, we obtain

uuku25
1

2 S jk

«k
11D ,uvku25

1

2 S jk

«k
21D ,ukvk* 52

D

2«k
.

~75!

Equations~73! and ~74! imply the quasiparticle disper
sion relation

«k5Ajk
22uDu2, ~76!

and Eq.~35! yields a relation between the chemical potent
and the wave function of the Bose-condensate particles:

@2m12U0nQ#x1Dx* 50. ~77!

The total particle number density can be written as

n5uxu21nq1np , ~78!

where the first term is the particle number density in t
Bose condensate, the second term

nq5
1

V (
k

f k ~79!

is the number density of the particles forming the quasip
ticle excitations, and the last term

np5
1

2V (
k

S jk

«k
21D ~112 f k! ~80!

is the number density of the particles correlated in Coo
pairs. Thus the number density of particles that do not en
into the single-particle condensate is

nQ5nq1np . ~81!

The value ofD is determined by the equation

D5
U0x2

11U0J
5Qx2, ~82!

where

J5
1

2V (
k

112 f k

«k
, Q5

U0

11U0J
. ~83!

We note that when the summation inJ is converted to inte-
gration, the resulting integral diverges. This is due to
choice of a point interaction. If a potential with a finite in
teraction radiusa0 were used, the integral would be conve
gent. Therefore, when calculatingJ in ~83! the integral
should be cut off at a wave numberk051/a0 . In the state
with the Bose condensate, the chemical potential, accord
to Eq. ~77!, is determined by the formula

m52U0nQ1Quxu2. ~84!

Taking Eqs.~82! and~84! into account, we obtain from~76!
the final expression for the quasiparticle spectrum:

«k5AS \2k2

2m
12~U02Q!uxu2D S \2k2

2m
12U0uxu2D .

~85!

We see that the energy of a quasiparticle atk50 does not go
to zero but takes on a finite value
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«052uxu2AU0~U02Q!52U0uxu2A U0J

11U0J
, ~86!

i.e., the spectrum has an energy gap. The energy spectru
clearly stable in the case of repulsion between partic
(U0.0). The energy«0 has a clear physical meaning
namely, it is the minimum energy that must be expended
remove a particle from the condensate and thereby crea
new quasiparticle. It is entirely natural that in a Bose co
densate of interacting particles this energy has a finite va
For a more detailed analysis of the meaning of the exp
sion @Eq. ~86!# that determines the energy gap, we use re
tions ~5!, ~11!, and~14! to express the operators of real pa
ticles in terms of the amplitude of the Bose condensate
the quasiparticle operators. Since in this casew j (x)
5e2 ikx/AV, we have

ak5xAVdk,01ukgk1v2k* g2k
1 ,

ak
15x* AVdk,01v2kg2k1uk* gk

1 . ~87!

These relations permit one to find the momentum distri
tion of the real particles,f k

(p)5^ak
1ak&, and the anomalous

averagegk^aka2k&:

f k
~p!5Vuxu2dk,01 f k1

1

2 S jk

«k
21D ~112 f k!, ~88!

gk52x2Q
~112 f k!

2«k
~kÞ0!. ~89!

These formulas imply the relation

1

V U(
kÞ0

^aka2k&U5uxu2
JU0

11JU0
. ~90!

Ultimately, formula~86! can be written in the form

«05
2U0uxu

AV
U(

kÞ0
^aka2k&U1/2

. ~91!

We see that the gap in the quasiparticle spectrum is de
mined by the interparticle interaction constant, the density
particles in the single-particle Bose condensate, and
anomalous averages describing the pair correlations in a
tem of interacting Bose particles with broken phase symm
try.

We note that ifU02Q5U0
2J/(11U0J) in ~86! is for-

mally set equal to zero, then we would obtain the excitat
spectrum found by Bogolyubov:20

«k5A\2k2

2m S \2k2

2m
12U0uxu2D . ~92!

At a finite value of the wave number the difference of t
spectrum~85! from the Bogolyubov spectrum~92! can be
made arbitrarily small if the interaction is weak enough. T
condition for this is

U0
2Juxu2@\2k2/2m.

However, right at the pointk50, which is a singular point
for the spectrum in a perturbation theory in the intensity
the interaction, one is not justified in neglecting the te
2(U02Q)uxu2 that leads to the existence of a gap in t
spectrum~85!. The possibility of the existence of excitation
is
s

to
a

-
e.
s-
-

d

-

r-
f
e
s-
-

n

e

f

with a nonzero activation energy was discussed long a
and excitations with a gap have been considered by m
authors.16,21–24 In the Introduction of the Bogolyubovs
book9 it is mentioned that, because in a Bose gas with in
action there are pairs with opposite momenta, they sho
have a dissociation energy associated with each pair. ‘‘T
means that in addition to the phonon branch of the spect
we have another branch in the excitation spectrum, co
sponding to the excitation of pairs’’~p. 322 of the Russian
edition of Ref. 9!. In addition, we note that the single-partic
and pair condensates for a single coherent system, and
this reason the gap in the excitation spectrum is determi
not only by the pair anomalous average but also by the p
ticle number density in the single-particle condensate~91!. A
discussion of the solutions which have a gap in the quasi
ticle spectrum is given in Ref. 6.

Hugenholtz and Pines25 used Belyaev’s26 quantum-field
perturbation theory for Bose systems with a condensate
show that the quasiparticle spectrum at small momenta ob
a linear law except in possible pathological cases. It sho
also be kept in mind that the validity of this result, as Pin
himself stressed,27 depends on the validity of the perturba
tion series expansion. The efficiency of using perturbat
theory depends substantially on how well the initial appro
mation is chosen, i.e., on how close the structure of the s
in the zeroth approximation is to the state of the real syst
The many-particle wave function of an ideal gas whose p
ticles are all found in the Bose condensate,

uF0&5
~a0!N

AN!
u0&, ~93!

is oversimplified and is far from the form of the wave fun
tion of a system of interacting Bose particles, as can be s
for example, from a comparison of~93! with the many-
particle wave function obtained below@see Eq.~109!# for a
system of interacting Bose particles in the SCF model.
deed, it appears that responsibility for the difficulties enco
tered in a quantum-field treatment of many-particle Bo
systems~the vanishing of the anomalous self-energy part
zero momentum, which was pointed out in Refs. 28 and!
rests with the choice of the ideal Bose gas model for
zeroth approximation, as it does not take into account
pair correlations of particles with opposite momenta, a
these correlations always exist together with the sing
particle condensate. In addition, the result of Hugenholtz
Pines25 relies substantially on the assumption that the ope
tors for particles with zero momentum can be replaced w
C numbers.23 No such assumption is needed in construct
a theory of many-particle Bose systems on the basis of
SCF model.

The existence of a gap in the spectrum has the con
quence that the distribution functionf k of the quasiparticles,
both above and below the Bose transition temperature, h
finite value at the pointk50, except at the temperatureT0

itself, where the distribution function diverges fork→0 as
f k→k22.

For a quadratic Hamiltonian such as the Hamiltonian
the SCF model~8!, one can find the eigenvectors of th
states. In the case when the states of the particle are
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scribed by plane waves~70!, the self-consistent Hamiltonia
has the form

H05(
k

S \2k2

2m
2m Dak

1ak1(
k

FWkak
1ak1

1

2
Dkak

1a2k
1

1
1

2
Dk* a2kakG1Fa0

11F* a01E08 , ~94!

and the Schro¨dinger equation corresponding to it is

H0uI &5EI uI &, ~95!

whereuI & is the eigenvector of the state with energyEI . For
a delta-function interaction in~94! we haveDk5D @see Eq.
~82!#, Wk5W52U0n, andF522AVU0uxu2x. In the deri-
vation of the equations of the self-consistent field a chang
new quasiparticle operators is made with the Hamilton
remaining unchanged. For finding the state vector it is c
venient to go over to a new Hamiltonian expressed in te
of the same particle operators. The new HamiltonianH̃0 ,
related toH0 by a unitary transformation withU,

H̃05U1H0U, ~96!

has the same eigenvalues asH0 , but these values correspon
to the new eigenvectors

u Ī &5U1uI &. ~97!

By applying two successive unitary transformations byU1

andU2 , we go from the HamiltonianH0 to the Hamiltonian

H̃05U2
1U1

1H0U1U25E01(
k

«kak
1ak . ~98!

The unitary transformation with

U15exp~AV~xa0
12x* a0!! ~99!

eliminates from~94! the terms linear in the particle opera
tors, and the unitary transformation with

U25expS 1

2 (
k

~ckak
1a2k

1 2ck* aka2k! D , ck5c2k

~100!

eliminates the quadratic terms which are noninvariant w
respect to phase transformations. The parameterck in ~100!
is determined by the relations

uk5coshucku, vk* 5
ck

ucku
sinhucku. ~101!

We note that Hamiltonian~98!, unlike ~94!, is invariant with
respect to phase transformations and commutes with the
ticle number operator. The eigenvectors ofH̃0 for states with
total particle numberN have the well-known form

uN,l&5~n1!n2!...nj !...!
21/2~a1

1!n1~a2
1!n2...~aj

1!nj ...u0&,

N5(
j

nj , ~102!

where u0& is the vector of the vacuum state of the particle
and the indexl denotes the states with different distributio
to
n
-
s

h

ar-

,

of N particles over the single-particle states. To each s
vector ~102! there corresponds an eigenvector of equat
~95!:

u Ĩ &5U1U2uN,l&. ~103!

The operator~99! can be written in the form

U15U1~x!5expS 2V
uxu2

2
1AVxa0

12AVx* a0D .

~104!

The action of this operator on the vacuum vector create
coherent state28

ux&5U1~x!u0&5e2Vuxu2/2eAVxa0
1

u0&, ~105!

which is an eigenvector of the annihilation operator:a0ux&
5AVxux&. The operator in~100! contains a sum over mo
menta in the exponent. Among the terms in it are pairs w
equal but opposite momenta,k and2k, and also a term with
k50. Taking this into account, we write the operator~100! in
the form

U25U2~c0! )
kÞ2kÞ0

U2~ck!, ~106!

where

U2~c0!5e1/2~c0a0
12

2c0* a0
2
!

5e2G0/2eL0a0
12

e2G0a0
1a0e2L0* a0

2
,

U2~ck!5e~ckak
1a2k

1
2ck* aka2k!

5e2GkeLkak
1a2k

1

e2Gkak
1ake2Gka2k

1 a2ke2Lk* aka2k,

and

L05
c0

2uc0u
tanhuc0u, G05 ln coshuc0u;

Lk5
ck

ucku
tanhucku, Gk5 ln coshucku.

The action of the operator on the vacuum vector generat
state

uck&5U2~ck!u0&5e2Gk(
n50

`
Lk

n~ak
1a2k

1 !n

n!
u0&, ~107!

which is natural to treat as a pair coherent state which is
eigenvector of the operatoruk

2aka2k2vk*
2ak

1a2k
1 , so that

~uk
2aka2k2vk*

2ak
1a2k

1 !uck&5ukvk* uck&. ~108!

The operatorsU2(ck) commute with one another and, fo
kÞ0, with U1(x), and only the operatorsU2(c0) and
U1(x) are noncommutative. The vacuum vector of the se
consistent HamiltonianH0 ~the vacuum vector for the quas
particles! is obtained as a result of the action of the opera
U1U2 on the vacuum vector for the particles:

u0q&5eVL0x* 221/2~Vuxu21G0!eAV~x22L0x* !a0
1

eL0a0
12

3 )
kÞ2kÞ0

e2GkeLkak
1a2k

1

u0&. ~109!
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Taking into account the relation between the particle a
quasiparticle operators

g5U1U2aU2
1U1

1 ~110!

we can easily find an arbitrary eigenvector of the Ham
tonianH0 . These vectors have the form~102! with the par-
ticle operators replaced by the quasiparticle operators
with u0& replaced byu0q&, as is obvious from~15!. The vector
of the state withN quasiparticles is generated from the ve
tor of the state withN particles by operating on it with
U1U2 . The eigenvector~109! and the other eigenvectors o
the self-consistent HamiltonianH0 ~94! are not eigenvectors
of the particle number operator and consist of a superpos
of vectors describing states with different particle numbe
but they are eigenvectors of the operatorNq5( ig i

1g i and
describe states with a fixed number of quasiparticles.

From Eqs.~87!–~89!, and forT50 from the form of the
many-particle wave function~109!, we obtain the average
of the operators for particles with zero momentum:

^a0&05AVx,

^a0
2&05Vx21u0v0* ~112 f 0!,

^a0
1a0&05Vuxu21uv0u21~112uv0u2! f 0 . ~111!

It follows that in the limitV→` we have

^a0
1a0&05^a0

1&0^a0&05A^a0
12&0^a0

2&0.

5. SINGLE-PARTICLE AND COLLECTIVE EXCITATIONS

The concept of quasiparticles arises in the approxim
solution of a many-particle problem as a result of the red
tion of the Hamiltonian of a system of interacting particles
a form analogous to the Hamiltonian of an ideal gas. Such
operation can be performed in at least two ways, and, acc
ingly, there are two types of excitations—single-particle~or
self-similar! and collective.

A method of constructing the single-particle~self-
similar! excitations by proceeding from the many-partic
Hamiltonian was developed by Bogolyubov in the theory
the slightly nonideal Bose gas.20 Essentially, in this approach
a microscopic Hamiltonian containing an interaction ope
tor with at least four~in the case of a pair interaction! cre-
ation and annihilation operators~3! is approximated by a
quadratic operator, which is then diagonalized. This is
approach that was used to construct the SCF model in
paper. On the phenomenological level the concept of sin
particle excitations was introduced by Landau in the the
of the Fermi liquid.31 We note that the Fermi liquid mode
can be obtained by the Bogolyubov method on the basi
the microscopic approach.32 The single-particle excitation
are essentially individual particles having a dispersion re
tion that changes on account of the interaction with the s
rounding particles and depends on the thermodynamic
rameters. In normal~nonsuperfluid! states, where the phas
symmetry is not broken, the number of single-particle ex
tations is fixed and is equal to the number of particles. A
ymptotically, at large momenta, the dispersion relation
these quasiparticles is the same as that for free particle
many-particle systems with broken phase symmetry~super-
fluid, superconducting! the number of single-particle excita
d
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tions depends on the thermodynamic parameters~tempera-
ture, pressure! and is always less than the total number
particles of the system. This is because only a fraction of
particles take part in the formation of the single-particle e
citations, while the rest form condensates~single-particle,
pair!, which break the phase symmetry. This is just how m
ters stand in the phenomenological Bose- and Fermi-liq
theories generalized to superfluid systems12,33and in the SCF
model for Fermi systems with broken symmetry.15 In particu-
lar, in a Bose system at zero temperature the single-par
excitations are absent altogether, and all of the particles
correlated into condensates of different levels, e.g., int
single-particle and a pair condensate if one is using the S
approximation, and into condensates containing a lar
number of particles if the higher approximations are used

Another way of introducing elementary excitations in
many-particle system dates back to Debye, who develope
in the construction of the theory of the heat capacity
solids.34 In this approach the many-particle system is trea
as a continuous medium, the motion of which is described
classical equations. As a result of quantization we arrive
excitations which are vibrational quanta of the medium. Su
excitations are usually called collective. In the case of c
lective excitations the particles forming the system move
herently and are, as it were, ‘‘frozen’’ into the continuo
medium. The number of such excitations, generally spe
ing, is in no way related to the number of particles in t
system. The quanta of the collective oscillations of the d
sity are phonons, which at low momenta have a linear d
persion relation, the energy of which goes to zero with
creasing wavelength. In an analogous way one can introd
collective excitations associated with the coherent osci
tions of other characteristics of the continuous mediu
When the oscillations of the magnetization are quantized,
collective excitations become magnons. In a gas of char
particles, e.g., electrons, the collective excitations are qua
of plasma oscillations—plasmons. A characteristic feature
these excitations is the presence of an energy gap~plasma
frequency! in their dispersion relation, which is due to th
long-range character of the Coulomb interaction.

Thus the quasiparticle excitations considered in this
per in the framework of the SCF model are single-parti
excitations analogous to the excitations with an energy
in Fermi systems with broken phase symmetry~sometimes
called bogolons!. A distinctive feature of such excitations i
Bose systems with a single-particle condensate is the po
bility of creation of solitary excitations. Nonequilibrium sol
tary excitations contribute to density fluctuations and th
dispersion relation can therefore be observed directly in
periments on inelastic neutron scattering.11

The static SCF model describes single-particle exc
tions but does not permit taking into account the contribut
of collective excitations to the thermodynamics. It should
emphasized that Bose and normal Fermi systems have
extremely important difference. In normal Fermi systems
contribution of collective excitations to the thermodynam
decreases with increasing temperature. For example, the
capacity due to single-particle excitations is proportional
the temperature, while the heat capacity due to collec
excitations is proportional to the temperature cubed. Beca
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of this, the SCF model, the phenomenological version
which is the Fermi liquid theory, is well applicable for th
description of Fermi systems at low temperatures. For B
systems the situation is contrary. At sufficiently low tempe
tures, when the Bose system is found in a state with bro
phase symmetry, the number of single-particle excitati
decreases and, furthermore, by virtue of the presence o
gap in the energy spectrum, their contribution to the therm
dynamic properties of the many-particle Bose system
creases. On the other hand, the contribution of collec
excitations, which, as we have said, cannot be described
static SCF model, increases. These same arguments als
ply to uncharged Fermi systems with broken phase sym
try. The good agreement with experiment of the mod
theory of superconductivity, which is a variant of the SC
theory, is due to the fact that the electron system is char
resulting in an energy gap~the plasma frequency! in the
spectrum of collective excitations, so that one can, to h
accuracy, neglect the contribution of collective excitations
the thermodynamics of superconductors. The situation is
ferent in superfluid3He, which is a neutral Fermi liquid
Here the description of the thermodynamic properties in
SCF approximation is less justified, and the role of collect
excitations should be significant. In particular, taking the c
lective spin-wave excitations into account can explain
stability of theA phase of superfluid3He.35

The collective excitations can be taken into account
two ways. The most consistent from the standpoint of
microscopic description is to calculate the two-partic
Green’s function or the vertex function in a higher appro
mation than the SCF approximation. The quantum-field
proach, perturbation theory, and the diagram technique
describing many-particle Fermi systems with broken symm
tries on the basis of the SCF model as an initial approxim
tion are developed in Ref. 19. This approach can be exten
to Bose systems with broken symmetries. The other met
of studying collective excitations is based on the use of
SCF equations generalized to the nonstationary case
studying small oscillations one can establish the dispers
relation of the collective excitations. Such oscillations can
nonequilibrium and excited by an external influence, but
same oscillations are excited by a thermal method utiliz
the energy of a heat bath in contact with the many-part
system. Considering the gas of collective excitations as id
one can calculate the contribution of collective excitations
the thermodynamics of the many-particle system.

The separation of the excitations of the many-parti
system into single-particle and collective, like the concep
quasiparticles in general, is of an approximate character.
problem of separating excitations into collective and sing
particle has been elaborated in greatest detail by Bohm
Pines for the case of the electron gas.36 However, for arbi-
trary many-particle systems, especially those found in st
with spontaneously broken symmetries, a consistent pro
dure for separating the single-particle and collective moti
does not yet exist.

It should also be noted that there is a certain confusio
the terminology, which is reflected in the understanding
the physical essence of the approximations used. This is
pecially true for Bose systems. The many-particle probl
f
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can be reduced to a single-particle problem in only o
case—in the ideal gas model with complete neglect of in
particle interactions. Every state in a system of interact
particles is a collective state, in the broad sense that i
determined by the states of all the particles of the syst
Therefore, both the single-particle and the collective exc
tions discussed above are in this sense collective. This sh
be kept in mind when using a separation of excitations i
single-particle and properly collective. It is natural to reser
the term ‘‘collective’’ for those excitations of a many-partic
system which arise as a result of the quantization of its m
tion as a continuous medium. These excitations are m
fested as a pole of the vertex function.

Collective excitations can be studied in a nonstation
SCF model. It can be shown that the nonstationary equat
for the single-particle density matrix and wave function
the condensate are obtained from the stationary equat
~35!, ~60!, and~61!, respectively, by the addition of the fol
lowing time derivatives on the right-hand sides:i\]x/]t,
i\]r̃(x,x8,t)/]t, andi\]t̃(x,x8,t)/]t. Analysis of small os-
cillations shows that the nonstationary equations have a
lution with a linear dispersion relation fork→0. The propa-
gation velocity of these oscillations,c05AU0n/m ~n is the
total particle number density!, coincides with the quasiparti
cle velocity in the Bogolyubov theory.20 These collective os-
cillations, with practically identical propagation velocitie
exist in both the normal and superfluid phases. For the
locity of long-wavelength disturbances to be independen
the thermodynamic quantities, they must have a rather h
frequency. These oscillations are the analog of zero sou
which was first studied in Fermi systems. At lower freque
cies, in the hydrodynamic region, the sound velocity depe
substantially on the thermodynamic variables. It is these
citations that form the linear part of the spectrum introduc
by Landau.10 The maxon–roton parts of this spectrum a
apparently governed by single-particle excitations. On
qualitative level the problem of formation of a single spe
trum from branches of excitations of different natures is d
cussed in Ref. 11.

As was shown in the framework of the relativistic fie
theory by Goldstone,37 the breaking of the gauge symmet
gives rise to particles of zero mass. A number of pap
~Refs. 38 and 39, for example! have been devoted to th
generalization of the Goldstone result to nonrelativis
many-particle systems. As can be seen from the results o
present paper, in the SCF model the breaking of phase s
metry does not give rise to gapless excitations~the analog of
zero-mass particles!. Let us make a few remarks in this re
gard. We note that fields and many-particle systems are
stantially different objects, and the results obtained in fi
theory do not automatically carry over to nonrelativis
many-particle systems. In field theory it is essentially a co
tinuous medium that is quantized, and the particles that a
on quantization are the quanta of excitations of such a
dium. In a many-particle system there are primary partic
and for this reason, as was discussed above, there are
possible types of excitations—single-particle and collecti
Obviously the analog of the particles of field theory in
many-particle system are the collective excitations and
the single-particle excitations, the presence of which is d
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to the discrete structure of the medium, which is absen
field theory. Therefore, is appears that there are no grou
for expecting the appearance of single-particle excitati
with an acoustic dispersion relation on the basis of the Go
stone result.37 We note that in Fermi systems, too~even in
the absence of the Coulomb interaction!, the breaking of
phase symmetry does not lead to the appearance of ga
excitations.

An essential feature of many-particle systems that d
not have an analogy in quantum field theory is the noninv
ance of this system with respect to the Galileo group
virtue of of the finite particle number density. The breaki
of Galilean invariance is responsible for the appearance
Goldstone collective excitations—phonons. Do new Go
stone collective excitations arise in a system with a fin
particle number density upon the breaking of phase sym
try? It is known that such excitations do not arise in the c
of a Fermi system. Apparently, the situation is similar
many-particle Bose systems. This is also indicated by
results of experimental studies of the spectrum of excitati
in 4He by the method of inelastic neutron scattering. T
linear part of the spectrum is found to be practically inse
sitive to the point of the transition of liquid4He to the super-
fluid state~see Ref. 11 and the literature cited therein!. This
same result, as we have said, follows from the nonstation
SCF equations. Let us conclude our brief discussion of
important question by noting that the generalization of
Goldstone result37 to nonrelativistic systems has usually be
done with the use of model Hamiltonians of the Heisenb
ferromagnet type. Analysis of the connection between
breaking of the symmetry and possible excitations for re
istic many-particle Hamiltonians of the type~1! remains a
topical problem.

CONCLUSION

The static SCF model describes the contribution
single-particle above-condensate excitations and conden
states to the thermodynamics of a many-particle system.
Fermi systems at low temperatures this contribution is
governing one. Therefore, the theory based on a sin
particle description for Fermi systems can be used for stu
ing real systems in this case. For Bose systems this is no
case, since here the contribution to the thermodynamics f
single-particle excitations falls off with decreasing tempe
ture, while the contribution of the collective excitations i
creases. A consistent relativistic theory of many-parti
Bose systems should take into account the collective as
as the single-particle excitations. Although the static S
model does not meet this requirement, its theoretical stud
important for several reasons. First, it permits a better un
standing of the structure of the state of a Bose system w
broken phase invariance; in particular, it can demonstrate
substantial difference of such a state from the state of
ideal Bose gas with a condensate. Second, it allows on
find the contribution of the single-particle degrees of fre
dom to the observable characteristics of the system. Th
the proposed model serves as a natural initial approxima
for constructing a quantum-field perturbation theory and d
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gram technique for Bose systems with spontaneously bro
symmetries, analogous to that developed for Fermi syst
in Ref. 19.
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sion of this study.
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Lattice dynamics and heat capacity of a two-dimensional monoatomic crystal
on a substrate

T. N. Antsygina,* I. I. Poltavsky, M. I. Poltavskaya, and K. A. Chishko
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A model is proposed which gives an analytical description of the dynamics of collective
excitations of two-dimensional close-packed atomic crystal lattices~atomic monolayers on
substrates!. The model takes into account both the interaction between atoms of the
layer and the interaction of the layer with the substrate. The phonon spectra are found for an
ideal triangular lattice and for a triangular lattice with a uniform distortion along one of
the close-packed directions in the plane of the layer. The temperature dependence of the heat
capacity is constructed for crystalline structures of both the commensurate and
incommensurate types~in relation to the substrate!. The theoretical results obtained are used for
a detailed discussion and interpretation of the published experimental data on the spectra
of lattice excitations and the heat capacity of monolayers of rare gases, including3He and4He,
on various types of substrates. ©2002 American Institute of Physics.@DOI: 10.1063/1.1491185#
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1. INTRODUCTION

Investigation of the thermodynamic properties of tw
dimensional~2D! cryocrystals~solid mono- and multilayer
atomic and molecular substances on substrates of var
natures! is an important problem in low-temperature co
densed matter physics. Low-dimensional systems, b
structurally ordered and disordered, have been actively s
ied for many years~a review of the problematics involve
with such systems and a listing of the vast literature on
topic are given in Ref. 1!. Among such systems cryocrysta
are a special group of objects having some unique feature
their low-temperature thermodynamics and kinetics.2

The experimental technique has now become soph
cated enough that one can not only study the structure
thermodynamics of 2D cryocrystals but also measure dire
the dispersion curves of their phonon modes even fo
single layer of adatoms on a substrate. As to the theore
description of the phonon spectra of 2D crystals, here usu
either a long-wavelength approximation is used2,3 or the cal-
culation is done by numerical methods.4–6 Thus the problem
of obtaining the corresponding dispersion relations in a
lytical form is clearly a topical one; first, it would permit a
unambiguous interpretation of the experimental data on
spectra, and second, it would be useful for studying the th
modynamic and kinetic properties of such systems.

The goal of the present study is to construct a theoret
model giving an analytical description of the dynamics
collective excitations and of the thermodynamics of 2
atomic crystal lattices on substrates. The phonon spectra
calculated for an ideal triangular lattice and a triangular
tice with a uniform distortion along one of the close-packi
directions in the plane of the layer. The theoretical resu
obtained in this study are applicable for the detailed disc
4421063-777X/2002/28(6)/10/$22.00
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sion and interpretation of the existing published experimen
data on the spectra of lattice excitations and the heat capa
of 2D cryocrystals on graphite and metals.

2. STATEMENT OF THE PROBLEM

We consider a layer of rare gas atoms of massM lying
on a substrate and forming a triangular lattice in thez50
plane. Thez axis of a Cartesian coordinate system is chos
perpendicular to the layer and directed outward from the s
strate, and the origin is placed at one of the lattice sites.
interaction of adsorbed atoms~adatoms! with one another,
the so-called lateral interactionV1(r ) ~wherer is the three-
dimensional radius vector,r5(R,z), R5(x,y)!, can be de-
scribed in the atom–atom interaction model and is a funct
of the interatomic distancer .7 The potentialV1(r ) is as-
sumed to be short-ranged, so that for our purposes it is
ficient to limit consideration to the nearest neighbors o
~the coordination number in the layerza56!. As to the in-
teraction of the atoms of the monolayer and atoms of
substrate,V2(r ), its explicit form depends substantially o
the substrate material. Graphite or various metals are c
monly used for this purpose.

In the case of metallic substrates a substantial role in
interaction with the adsorbate is played by free electrons
that the approximation of the atom–atom potentials for
scribing the adsorbate–substrate interaction in such sys
is inadequate. The explicit form ofV2(r ) is the subject of
active discussion in the literature~see, e.g., the review8!. In
the general case, with allowance for the periodicity ofV2(r )
in the x0y plane, it can be written in the form

V2~r !5U0~z!1 (
GÞ0

UG~z!exp~ iG•R!, ~1!
© 2002 American Institute of Physics
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whereG is the 2D reciprocal lattice vector of the period
field of the substrate. The quantityU0(z) is the so-called
surface-averaged potential. Attempts to obtain an analyt
expression forU0(z) have been undertaken,8 but its explicit
form has still not been conclusively established. Only
asymptotic behavior at large distances is known exac
U0(z)}2c/z3 ~Ref. 9!, where the coefficientc depends on
both the dielectric constant of the metal and the polarizab
of the adsorbate atom. Calculations of the repulsive term
U0(z) have been done in Refs. 10 and 11, where it is sho
that in the case of substrates of noble metals the repul
part of U0(z) falls off exponentially with distance. At the
present time the potential most often used for describing
interaction of atoms of a monolayer with a metal is the thr
parameter Vidali–Cole–Klein potential,11 which takes into
account the above-mentioned features of the behavio
U0(z) at both long and short distances. As to the Four
amplitudesUG(z), it is known that they depend on the form
of the surface and fall off very rapidly with increasinguGu.
Therefore, as a rule, only the first harmonic is taken i
account in Eq.~1! ~see, e.g., Refs. 6 and 12!. As a result,
expression~1! takes the form

V2~r !5U0~z!1U1~z!(
j

exp~ iGj•R!, ~2!

where the summation is done over the shortest recipr
lattice vectors.

The interaction of adsorbate atoms with graphite is qu
often described by a sum of pair potentials of the Lenna
Jones type.13–15 Such a treatment, however, does not a
equately take into account the covalence of graphite.
tempts to improve the description of this interaction ha
led13 to an expression forV2(r ) which is analogous to Eq
~2!.

Still another rather widely used type of substrate
graphite or a metal coated by a sublayer of an inert elem
~most often argon!. Studies have shown16 that such a coating
makes the adsorbing surface smoother and more uniform
comparison with the bare substrate. A remarkable propert
such systems is that the behavior of an adsorbate depo
on the coated substrate does not depend on the materi
the bare substrate, and even in the case when the coati
only a single layer its role in the interaction with the ads
bate turns out to be decisive.16 Thus in considering thes
systems the substrate can be assumed to be insulating
for V2(r ) one may use a model of short-range atom–at
potentials.

It is well known that a monolayer of adatoms can for
both commensurate~epitaxial! and incommensurate struc
tures. Commensurate structures, whose periods are mult
of the lattice periods of the substrate, are formed only
certain coverage densitiesr ~the number of adatoms per un
area!. In this case all of the adatoms occupy positions cor
sponding to minima of the periodic surface potential rel
V2(r ). Thus each adatom moves in a local potential w
created by the substrate, and in a description of its motio
is necessary to take into account the dependence ofV2(r ) on
all three components of the vectorr .

With increasing coverage density the interaction betw
adatoms increases, and this interaction is what determ
al
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the structure of the monolayer. In this case close-packed
commensurate films are formed, and all of the atoms
found under different conditions, in the sense of interact
with the substrate, so that the layer ‘‘feels’’ the potential
the substrate as a whole, and the dependence ofV2(r ) on R
becomes inessential. Therefore, for describing the dynam
of the layer it seems natural to use a potential averaged
the variableR:3,4

Vs~z!5
1

SES
V2~r !dR, ~3!

whereS is the surface area of the substrate. For incomm
surate lattices the parameters of their structure typically
be varied continuously~by varying r! at constant values o
the lattice parameters of the substrate.

It should be noted, however, that for certain systems
formation of commensurate structure is impossible in pr
ciple, since the diameter of the adatoms exceeds the cha
teristic distance between the adsorption centers on the
strate. An example of this kind is xenon on graphite.

3. EXCITATION SPECTRUM OF A MONOLAYER WITH AN
IDEAL TRIANGULAR LATTICE

Let us calculate the phonon excitation spectrum of a r
gas atomic monolayer on a substrate for the case when
adatoms form an ideal triangular lattice. The approach
forth below makes it possible to describe in a unified w
both epitaxial~commensurate! and nonepitaxial~incommen-
surate! films deposited on substrates of various types and
obtain the dispersion relations for their phonon excitation
explicit form.

The Hamiltonian of the system under study is written
the harmonic approximation as

H5
1

2M (
f

pf
21

k1
2

2 (
f,d

~d•uf,d!21
q

2 (
f,d

uf,d
2

1
k2

2

2 (
f

uf
auf

a1
k3

2

2 (
f

uf
zuf

z , ~4!

whereuf is the displacement of an atom found at a sitef from
its equilibrium position,uf,d5uf2uf¿d , pf52 i ]/]uf , d are
the unit vectors connecting the nearest neighbors in the la
and a5x,y. Here and below we use a system of units
which Planck’s constant\ and Boltzmann’s constantkB are
equal to unity. In writing Hamiltonian~4! we have assumed
that the atoms of the substrate are immobile~rigid substrate!.
This conventional assumption3,4,7,17 is justified for the sys-
tems under consideration because the elastic constants o
substrate materials are much higher than those of the ad
bate.

The second and third terms in~4! are due to the inter-
atomic interaction in the layer:

5k1
25

1

2 FV19~R0!2
V18~R0!

R0
G , q5

V18~R0!

2R0
. ~5!

Here R0 is the equilibrium distance between neare
neighbor atoms of the monolayer, and the prime denotes
ferentiation with respect to the argument. We note that
anharmonic crystals or crystals under pressure the deriva
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V18(R0) is nonzero even in the case of an interaction o
between nearest neighbors. However, the dominant rol
played by higher derivatives with respect toR0 , since the
effective intermolecular potentialV1 is a rapidly varying
function ofR0 . The last two terms in~4! arise on account o
the interaction of the atoms of the monolayer with the s
strate. Here the explicit form of the coefficientsk2 and k3

are determined both by the substrate material and by whe
or not the structures of the monolayer and substrate are c
mensurate.

Let us first consider epitaxial films. Calculations for th
class of systems will be done for the particular case of
so-called ()3))R30° structure, which is most often dis
cussed in the literature.1 In the case when the interaction o
the atoms of the monolayer and substrate can be describ
the short-range atom–atom interaction model, the coe
cientsk2 andk3 have the form

k2
25

s2

2
V29~r 0!,

k3
25~zs2s2!V29~r 0!52k2

2S zs

s221D , ~6!

wherer 0 is the equilibrium distance between an atom of t
layer and its nearest neighbor in the substrate, determ
from the equation of equilibriumV28(r 0)50, zs is the number
of nearest neighbors in the substrate, ands is a dimension-
less geometric parameter relatingR0 and r 0 : for a substrate
with a hexagonal structurezs56 ands5A2/3(R0 /r 0), and
for substrates with a triangular latticezs53 ands5R0 /r 0 .
In the case when the interaction with the substrate is
scribed by expression~2!, the corresponding coefficients tak
the form

k2
25248p2

U1~0!

R0
2 , k3

25@U09~z!16U19~z!#uz50 . ~7!

For incommensurate films the coefficientsk2 andk3 can
be written in a unified way for all types of interactions. U
ing ~3!, we arrive at Hamiltonian~4! in which

k2
250, k3

25Vs9~z!uz50 . ~8!

After a Fourier transformation the Hamiltonian~4! be-
comes

H5
1

2M (
k

pk•p2k1F S k1
2

2
1qD za1

k2
2

2 G
3(

k
uk•u2k2k1

2(
k,d

dadbuk
au2k

b

3exp~ ik•dR0!2q(
k,d

uk•u2k exp~ ik•dR0!

2
1

2
~k1

2za1k2
22k3

2!(
k

uk
zu2k

z , ~a,b5x,y!.

~9!

Further simplification in the problem can be achieved
taking into consideration that the inverse coordination nu
ber for the neighbors in the layer, 1/za (za56), is a rather
small quantity. This allows one to replace the summat
y
is

-

er
m-

e

in
-

ed

e-

y
-

n

over nearest neighbors by an integration over a circle of u
radius. In other words, we shall assume that for an arbitr
function F(d) the following relation holds:

1

za
(

d
F~d!→ 1

2p E dvF~v!. ~10!

The sums overd in Hamiltonian~9! can be evaluated usin
the obvious symmetry

1

za
(

d
dadb exp~ ik•dR0!→ 1

2p E dw exp~ ik•vR0!

3vavb5A0nk
ank

b1B0Da,b ,

~11!

wherenk5k/k. The coefficientsA0 and B0 are determined
from the following system of equations:

A012B05
1

2p E dw exp~ ik•vR0!5J0~kR0!,

A01B05
1

2p E dw exp~ ik•vR0!~nk•v!2

5J0~kR0!2
J1~kR0!

kR0
.

As a result, we find

A052J2~x!, B05
J1~x!

x
, x5kR0 , ~12!

whereJn(x) is a Bessel function of the first kind. Using~11!
and~12! and performing a number of manipulations, we o
tain for the Hamiltonian~9!

H5
1

2M (
k

pk•p2k1
1

2 (
k

F1
~0!~x!uk

au2k
a

1
1

2 (
k

F2
~0!~x!~nk•uk!~nk•u2k!

1
1

2 (
k

F3
~0!~x!uk

zu2k
z . ~13!

Here we have introduced the notation

F1
~0!5k2

21za~k1
212q!~122B0!22zaqA0

5k2
21za~k1

212q!@12J0~x!#2zak1
2J2~x!,

F2
~0!~x!522zak1

2A052zak1
2J2~x!, ~14!

F3
~0!~x!5k3

212zaq~12A022B0!

5k3
212zaq@12J0~x!#.

Using the standard procedure for calculating the spectr
we obtain for the longitudinal (l ) and two transverse (t,z)
phonon modes

v l ,t
2 ~x!5D2~V21D !@12J0~x!#6V2J2~x!, ~15!

vz
2~x!5Dz

21D@12J0~x!#, ~16!
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where

D25
k2

2

M
, Dz

25
k3

2

M
, V25za

k1
2

M
, D52za

q

M
. ~17!

Expressions~15! and ~16! have physical meaning only fo
k<kD , wherekD5R0

21A8p/) is the Debye wave numbe
As we see from relation~17!, the values ofD and Dz are
determined completely by the interaction parameters of
atoms of the monolayer with the substrate. In a commen
rate phase, whenk2 is nonzero, all branches of the phono
spectrum have gaps at the Brillouin zone center~at k50!,
equal toD for modesl and t in the plane of the layer~in-
plane modes! and toDz for the mode polarized perpendicula
to the layer~out-of-plane mode!. Here, if the interaction with
the substrateV2(r ) is described in the model of atom–ato
potentials, then by virtue of Eq.~6! the values of the gapsD
and Dz are related asDz /D5@2(zs /s221)#1/2. In the case
of a metallic substrate, whenV2(r ) is given by Eq.~2!, the
values of the gaps are formally independent. It follows fro
Eq. ~8! that k250 for incommensurate monolayers, and f
them the in-plane modes are acoustic~gapless!, whereas the
z mode, as before, has a gap. We stress that the dispersi
thez mode is determined by the coefficientD @see Eq.~17!#,
which is proportional to the first derivative of the potent
V1 . Since, as we have said, this derivative is small, the
persion of the out-of-plane mode is rather weak This is j
the type of behavior that was observed experimentally
Refs. 5, 6, and 18.

We note that the phonon spectrum in the problem un
consideration can be calculated exactly, but the express
obtained are rather awkward and will not be given here.
illustration of the efficiency of the proposed approach
show in Fig. 1 the dependencev l(kR1) determined by the
relation ~15! in comparison with the exact spectrum for tw
directions ofk. It follows from Fig. 1 that everywhere in th
Brillouin zone, relation~15! gives a rather good quantitativ
description for the experimentally measured longitudi
mode of the phonon spectrum of a 2D triangular lattice.

4. SPECTRUM OF EXCITATIONS IN A MONOLAYER WITH
UNIFORM DISTORTION

The approach proposed above also allows one to c
sider the case in which the structure of the monolayer is
strictly triangular but has a slight uniform dilatation~or com-
pression! along one of the close-packed directions of the i
tial ideal lattice. Such a situation arises, for example, wh
adatoms are deposited on a substrate formed by a cut alo
non-close-packed plane of a cubic crystal.1,18 Here a struc-
ture is formed with a quasi-triangular lattice, in which th
distance to two of the nearest neighbors~for specificity we
shall assume that they lie on the 0x axis! is equal toa, while
the distance to each of the other four isa1 ~see Fig. 2!, so
that ua12au/a!1. Furthermore, it assumed that the area
the unit cell is unchanged by the distortion. We limit cons
eration to the lowest order of perturbation theory in the
rameterua12au/a. In this case the Hamiltonian has a for
analogous to~9! but with the arguments of the exponenti
functions changed fromk•dR0 to k•Rd , whereRd are the
vectors connecting the nearest neighbors in the distorted
tice. The unit vectorsd as before are directed to the neare
e
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f
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neighbors in the ideal lattice~see Fig. 2!. Actually, the cor-
rection to the Hamiltonian from the increments to these v
tors is a quantity of second order in the distortion and can
neglected. We also note that, in relations~5! the parameter
R0 should be replaced by (a12a1)/3.

FIG. 1. Dispersion curves for the longitudinal mode,v l /V versusk/kmax,
wherekmax is the Brillouin zone boundary~D50, D50!. The solid curves
correspond to Eq.~15!, the dashed curves to the exact spectrum for dir
tions of the wave vector along the 0x axis ~a! and at an angle ofp/12 to the
0x axis ~b!; the dotted curve is the Debye approximation.

FIG. 2. Configuration of the cell of a triangular lattice with distortion.
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As in the case of an ideal triangular lattice, we repla
the summation over nearest neighbors by integration ove
ellipse with semiaxesa andb5aA@4(a1 /a)221#/3. In low-
est order of perturbation theory in the parameterj5(a
2b)/a!1 we obtain

1

za
(

d
dadb exp~ ik•Rd!→Ank

ank
b1BDa,b

1Q~Da,xDb,x2Da,yDb,y!.

~18!

Here

A5A01A1 , B5B01B1 ,

A152
jy

4
$J1~y!2J3~y!2cos 2c@J3~y!2J5~y!#%,

B152
j

2
$J2~y!1cos 2c@J2~y!22J4~y!#%,

Q52
j

2
$J2~y!2J4~y!%,

whereA0(y) andB0(y) are given by Eq.~12!, y5kb, andc
is the angle between the 0x axis and the wave vector direc
tion. Using the expressions obtained, we write the Ham
tonian of the system as

H5
1

2M (
k

pk•p2k1
1

2 (
k

F1~y!uk
au2k

a 1
1

2 (
k

F2~y!

3~nk•uk!~nk•u2k!1
1

2 (
k

F3~y!uk
zu2k

z

1
1

2 (
k

F~y!~uk
xu2k

x 2uk
yu2k

y !, ~19!

whereFi are related toA andB by the same expressions th
relate Fi

(0) with A0 and B0 @see Eq. ~14!#, and F(y)
522k1

2zaQ.
In the anisotropic case, as for the ideal triangular latti

the z mode polarized perpendicular to the plane of the la
separates out. The equations of motion for the in-plane
placement componentsuk

x anduk
y become nonequivalent be

cause Eq.~19! contains an additional@as compared to~13!#
term linear in the parameterj, and they take the form

~mv27F2F1!uk
x,y2F2nk

x,y~nk•uk!50. ~20!

As we see from system~20!, for the majority of directions of
the wave vectork there are no solutions in the form of wave
with purely longitudinal or purely transverse polarization
the plane of the layer. This situation is completely analog
to the three-dimensional case, where this circumstance is
of the main manifestations of anisotropy the crystal.19 Be-
cause of the smallness ofj, we can seek the solution o
system~20! in the form of a sum of quasilongitudinaluk

i and
quasitransverseuk

' modes:

uk5uk
i
1uk

' ,

uk
i
5uk

i
~nk1nek!, uk

'5uk
'~ek2nnk!, ~21!
e
an

l-

,
r
s-

s
ne

where the unit vectorsnk and ek satisfy the relation
(nk•ek)50. Substituting~21! into ~20!, we obtain

n5
F
F2

sin 2c5
j

2
@12J4~y!/J2~y!#sin 2c, ~22!

and the corresponding dispersion relations for the quasi
gitudinal ~i!, quasitransverse~'!, andz modes have the form

v i ,'
2 5v l ,t

2 1j$2~V21D !L0~y!6V2@L0~y!2L1~y!#%,
~23!

ṽz
25vz

212jDL0~y!, ~24!

where

Ln5
y

8
$2J2n11~y!1@~21!nJ1~y!2J2n13~y!#cos 2c%.

It is easy to see that forj50 relations~23! and~24! go over
the expressions~15! and ~16! for the frequencies in the iso
tropic case.

It follows from Eq. ~22! that only in-plane excitations
that propagate along axes of twofold symmetry~the 0x and
0y axes! are strictly longitudinal and transverse waves. F
the other directions of the wave vector, by virtue of sma
ness of the parametern, these excitations are well-define
quasilongitudinal and quasitransverse waves. The maxim
deviation of the displacement vector in the quasilongitudi
mode from the k direction occurs at anglesc5p(2n
11)/4, n50,1,2,3@see Eq.~22!#.

5. HEAT CAPACITY

Let us consider the case in which the adatoms form
ideal triangular lattice. The heat capacity of the monola
per site has the form

C

N
5
)

4p (
j 5 l ,t,z

E
0

kDR0
xFS v j~x!

T Ddx,

F~u!5
u2

4
sinh22

u

2
, ~25!

where the frequenciesv j are given by relations~15! and
~16!. At arbitrary temperatures the integration in~25! can be
done only by numerical methods. Analytical results can
obtained in the limit of low temperatures, whereT is the
smallest energy parameter of the problem. In that case
main contribution to the thermodynamics of the system
given by the long-wavelength excitationskR0!1. In addi-
tion, without loss of generality below we can neglect t
small quantityD in the expressions for the frequencies~15!
and ~16!. As a result, we obtain

v l
25D21

3

8
V2~kR0!2, v t

25D21
V2

8
~kR0!2,

vz
25Dz

2. ~26!

We recall that the gapDz in the z mode is always present
and for all the real 2D systems known to us it has a value
least of the order of several degrees,5,6,18,20 so that in the
temperature region of interest to us the relationDz@T holds.
On the other hand, the in-plane branches of the spectrum
we have said, can be gapped or gapless. In deriving the
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temperature asymptotic expressions for the heat capacity
convenient to treat these two cases separately.

First, supposeD50. Then forT!V the integration in
~25! can be done analytically, and we obtain for the h
capacity per site

C

N
5

16)

p
z~3!S T

V D 2

1S D2

T D 2

expS 2
Dz

T D , ~27!

wherez(x) is the Riemann zeta function. The first term, d
to the in-plane modes, has a form analogous to that obta
in the Debye approximation for 2D crystals.21 Here the quan-
tity V is related to the Debye temperatureQD by the expres-
sion

V5S 2

p)
D 1/2

QD.0.6063QD . ~28!

The second term in~27! is the contribution to the heat ca
pacity from excitations perpendicular to the plane of t
monolayer, and it has the typical form for the specific hea
an Einstein oscillator system. We note that at small nonz
values ofD the asymptotic expression~27! is also valid in
the temperature regionD!T!V.

In the case when thel andt modes have a gap satisfyin
the conditionD@T, the asymptotic expression for the he
capacity has the form

C

N
5

8

p)
S D

V D 2S D

T DexpS 2
D

T D1S Dz

T D 2

expS 2
Dz

T D .

~29!

Here, as in Eq.~27!, the first term is due to the contributio
from in-plane excitations, while the second is due
z-polarized phonons. We note that the excitations of the fi
type give a pre-exponential factor;T21 in the low-
temperature heat capacity, unlike the pre-exponential fa
;T22 in the second term of~29!. The possibility of
T21 exp(2D/T) behavior in the case of a 2D square latti
was also pointed out in Ref. 17.

6. DISCUSSION. COMPARISON WITH EXPERIMENT

Various aspects of the problem of interest to us ha
been discussed in the literature both on a theoretical le
and in connection with applications to re
experiments.17,20,22–24In particular, the question of the natur
of the gaps in the excitation spectrum of a 2D crystal o
substrate and the question of how a gapped character o
spectra is manifested in the thermodynamics of a sys
have been examined.2,3,17 In most of the theoretical paper
the calculations of the spectrum have been done by num
cal methods. The use of numerical procedures requires
cializing to a concrete system, i.e., an explicit form must
specified for the potentials of the lateral interaction and
interaction with the substrate, so that one cannot obta
relation in general form between the spectral and thermo
namic characteristics of the system and the parameters o
interaction potentials. For this reason, the experimental d
on the heat capacity are usually described with the use
approximating formulas or relations obtained on the basis
phenomenological arguments,17,20,22,25and the interpretation
of an experiment is then ambiguous.
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The advantage of the analytical approach proposed in
present paper is that it allows one to find the phonon sp
trum of a 2D crystal in explicit form. Here the parameters
the spectrum are expressed in terms of the parameters o
lateral interaction and interaction between the layer and s
strate, the form of which, in principle, can be chosen ar
trarily. Thus it is easy to trace the connection between
character of the interactions in the system and the form of
temperature dependence of the heat capacity.

Let us now compare the results of our study with t
experimental data available in the literature. We start w
the dispersion relations for the phonon modes, which
directly measured by a method based on the inelastic sca
ing of helium atoms.4–6,18For example, in Refs. 5 and 6 th
experimental curves ofv(k) were obtained for Xe monolay
ers adsorbed on the Cu~111! and Cu~100! surfaces. It should
be noted that the experimental technique permitted meas
ment of only the in-plane longitudinal mode and thez mode
polarized perpendicular to the plane of the layer. In the c
when the Cu~100! surface was used as the substrate, so
the Xe monolayer formed an incommensurate structure,
gap was observed at the Brillouin zone center for thel mode.
The z mode was found to be practically dispersionless, w
a gap equal to 31 K. The authors of Refs. 5 and 6 did
numerical calculation for the corresponding modes and p
sented the results in graphical form. For describing the in
action with the substrate they used a potential averaged
R, the interaction in the layer was taken into account in
nearest-neighbor approximation, and the force constant
the Xe–Xe interaction were treated as fitting paramete
Figure 3 shows a comparison of the data5,6 for Xe/Cu ~100!
with the results of the present study. The fitting paramet
which we used wereV518.71 K, Dz531 K, and D50.
The force constants calculated from these fitting parame
are in good agreement with the corresponding values gi
in Ref. 6. Thus we see that the analytical approach base
approximation~11! correctly takes into account all of th
fundamental features of the system under study.

In Refs. 5 and 6 the dispersion relations were also m

FIG. 3. Phonon dispersion curves for Xe/Cu~100!: j ands—experimental
data6 for the l and z modes; solid curves—the results of a calculation a
cording to formulas~15! and~16!; dashed curve—the calculation of Ref. 6
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sured for a commensurate ()3))R30° monolayer of Xe
on Cu~111!. An important result obtained there for the fir
time is the presence of a gap~equal to 5.06 K! in the longi-
tudinal mode atk50. As we see from the experimental data6

thez mode also has a gap at the Brillouin zone center~equal
to 30.4 K! and is practically dispersionless. In the numeric
calculation of the phonon spectrum, the authors of Ref. 6
before described the Xe–Xe interaction in the neare
neighbor approximation, and in taking into account the int
action with the substrate they considered not only the st
ture of the substrate but also the motion of its atoms. Fig
4 shows the data of Ref. 6 and the results of the pres
study. The fitting parameters which we used took the val
V520 K, Dz530.4 K, D5235 K2, andD55.06 K. As in
the incommensurate case, the force constants calculated
these fitting parameters turned out to be very close to th
given in Ref. 6. This indicates that the motion of the regu
atoms has hardly any effect on the character of the pho
modes of the Xe monolayer.

In Ref. 18 the phonon dispersion relations were m
sured in the@11̄0# direction for a Xe monolayer adsorbed o
Cu ~110!. The specifics of the geometry of the substrate
this type of system leads to distortion of the Xe monolay
which, as a result, is found in a weakly anisotropic qua
triangular lattice. Figure 5 shows thev i(k) curves for the
case of an ideal lattice (R054.31 Å) and lattices with dis-
tortion ~a54.42 Å, a154.23 Å!. The lateral interaction be
tween the Xe atoms was modeled by a Lennard-Jones po
tial with parameterse5230.4 K ands53.84 Å. It is seen in
Fig. 5 that even though the distortion is small, it is importa
to take it into account in interpreting the experimental da

It should be pointed out that in Xe/Cu systems, if t
Lennard-Jones potential is chosen to describe the latera
teraction, good agreement of the theory with experimen
achieved by varying the parameters less than 4% in com-
parison with its value in the gas phase26,27 at fixed e. The
same result can be obtained if the value ofs corresponding
to the gaseous phase is kept fixed and the repulsive pa

FIG. 4. Phonon dispersion curves for Se/Cu~111!: j andm—experimental
data6 for the l and z modes; solid curves—the results of a calculation a
cording to formulas~15! and~16!; dashed curve—the calculation of Ref.
l
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the potential is ‘‘softened,’’ as was proposed in Ref. 6.
It is of interest to compare our theoretical results w

the experimental data on the heat capacity. There is a
amount of published material on the results of measurem
of the heat capacity of rare gas monolayers on vari
substrates.2,17,20,22,25,28–33For monolayers of classical rar
gases~Ne, Ar! an exponential dependence ofC(T) is ob-
served at low temperatures in the commensurate pha17

This fact clearly indicates the presence of a gap in the
persion relations for the in-plane modes. The same beha
of C(T) also follows from the theoretical analysis done
the present study@see Eq.~29!#. Unfortunately, the available
published experimental data for the indicated systems in
low-temperature region are presented in a form that does
permit making an accurate quantitative comparison of
theory with experiment.

Particular experimental attention has been devoted to
study of monolayer films of helium isotopes. The heat cap
ity of helium monolayers on graphite was first measur
quite a long time ago.2,25,28–31Recently there has been re
newed interest in these systems. For example, in Ref. 20
C(T) curves for4He monolayers on graphite were measur
for 84 coverages at temperatures from 100 mK upwa
Monolayers of helium isotopes have behavior quite differ
from that of classical rare gas monolayers: even in the co
mensurate phase their low-temperature heat capacity exh
a dependenceC(T)}T2. This fact indicates the absence~or
very small valuesD,100 mK! of gaps for thel and t
modes. In Ref. 20 it was shown that for a coveragerA

50.0637 Å22, corresponding to the commensurate)3)
phase, and the nearby coveragerB50.0663 Å22, the experi-
mental data in the temperature region 0.3 K,T,1.5 K are
well fit by the approximating formula

C

N
5a1bT21~g/T!2 exp~2D/T!, ~30!

whereD5(10.560.1) K, g5(1261) K for both coverages
and a and b are equal to (1962)31024 and (1.7560.04)

FIG. 5. Dispersion curvesv i(k) for Xe/Cu ~110!: j—experimental data of
Ref. 18; solid curve—calculation for a lattice with distortion (j50.055);
dashed curve—calculation for an ideal lattice.
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31022 K22, respectively, forrA and to (6.360.4)31024

and (1.4560.01)31022 K22 for rB . The term proportional
to T2 was attributed in Ref. 20 to the contribution from
liquid phase containing approximately 3% of the atoms
the monolayer. Our results make it possible to interpret
experimentally observed behavior of the system without
voking assumptions about the presence of any additio
phases besides the solid. For explaining the experiment
sufficient to use relation~27!, in which one should setD
59.8 K for both coverages, andV524.6 and 27.0 K forrA

and rB , respectively. Figure 6 gives a comparison of t
temperature dependence of the4He/Gr heat capacity obtaine
by the present approach, the smoothed experimental re
~30!, and the data of Ref. 29.

In Refs. 2, 28, and 29 it is shown that for dense cov
ages (r.0.077 Å22), at which the monolayers of helium
isotopes are found to be in an incommensurate phase at
temperatures, the indicated systems behave as ideal
dimensional crystals in the sense that the influence of
graphite substrate on their thermal properties is insignific

FIG. 6. Temperature dependence of the heat capacity of4He/Gr for cover-
agesrA50.0637 Å22 ~a! and rB50.0663 Å22 ~b!: j—the smoothed ex-
perimental data of Ref. 20;n—the experimental data of Ref. 29; soli
curve—present theory.
f
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and the low-temperature heat capacity of3He (4He) mono-
layers is described quite well by the simple 2D Deb
model.21 However, the domain of applicability of the Deby
approximation is extremely narrow (T/QD<0.07).2,28,29The
smallness of the influence of the substrate apparently me
that the measurements were made at temperaturesT!Dz , at
which the contribution to the heat capacity from thez mode
can be neglected in expressions~25! and ~27!.

To interpret the experimental data25,28–30on the heat ca-
pacity of 3He (4He)/Gr in the temperature region where th
deviation from the lawC}T2 is observed, we used expre
sion ~25! with the phonon frequenciesv l ,t given by relation
~15! at D50. In Fig. 7 the heat capacity of3He and4He
monolayers on graphite is plotted as a function ofT2 at high
coverages. As experimental data for4He we used the fitting
formula given in Ref. 30. As was noted in Ref. 30, the curv
constructed with the use of this formula pass through all
the experimental points. Each value of the coverage is a
ciated with an empirically determined Debye temperat
QD , which is the only fitting parameter@the frequencyV is

FIG. 7. Heat capacity as a function ofT2 for 3He/Gr ~a! and4He/Gr ~b! in
an incommensurate phase for different coveragesr: the symbols in~a! are
the experimental data of Refs. 28 and 29, the symbols in~b! are the
smoothed experimental data of Refs. 25 and 30, the solid curves are
theory, and the dashed curves are the Debye approximation.
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uniquely related toQD by Eq. ~28!#. For comparison the
Debye relation is also shown in Fig. 7~dashed lines!. The
theoretical curves clearly conform to the experimental cur
not only at low temperatures but also at high temperatu
where the Debye approximation becomes ineffective.

The proposed model also permits interpretation of
experimental data on the heat capacity of helium monolay
on metal substrates. In comparison with the graphite s
strates the metal ones are smoother and more uniform,
the adsorbate–substrate interaction in them can be desc
with the averaged potential~2!. Furthermore, it is known tha
the adsorbate–metal interaction is weaker than
adsorbate–graphite interaction. Because of the first of th
circumstances thel andt modes in such systems are acous
(D50), and the second circumstance means that the v
of the gapDz in the case of metal substrates is smaller th
the corresponding value for systems on graphite. Thus
contribution to the heat capacity from thez mode begins to
be manifested at rather low temperatures. We made a c
parison of the theoretical and experimental data22 on the heat
capacity of4He monolayers adsorbed on gold for coverag
r50.067 and 0.096 Å22 see Fig. 8. The theoretical curve
~solid lines! were obtained from relation~25! with the dis-
persion of thez mode neglected (D50). The values of the
fitting parameters giving the best agreement with experim
were found to be: Dz57.8 K and V59.07 K for r
50.067 Å22, and Dz58.5 K and V512.65 K for r
50.096 Å22. The dashed lines show the heat capacit
found with the use of the asymptotic formula~27! for the
same values of the parameters. It is seen in Fig. 8 that
asymptotic expression does not allow one to describe
experiment in the entire temperature range in which m
surements were made, and an adequate interpretation o
behavior ofC(T) is possible only with the use of the exa
spectrum~15!, ~16!.

An attempt to calculateV andD for helium monolayers
using the well-known atom–atom potentials with paramet
obtained from measurements in the gaseous phase doe
lead to physically meaningful values of these quantities. T

FIG. 8. Temperature dependence of the heat capacity of4He/Au. Experi-
mental data of Ref. 22:h—r50.067 Å22, m—r50.096 Å22; the solid
curves were obtained with the use of Eq.~25!, the dashed curves with~27!.
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result, which is well known for three-dimensional heliu
crystals,34 is not unexpected. Indeed, the helium crystal is
quantum crystal, in which the large rms displacements of
atoms cause the equilibrium interatomic distance in the c
tal to be considerably larger than the value correspondin
the minimum of the He–He pair interaction potential. On t
other hand, the fact that the values of the fitting parame
V andD obtained in a comparison of theory and experime
turn out to be reasonable means that the Hamiltonian~4! can
be used for describing the dynamics of monolayers of heli
isotopes if the coefficients in it are not taken to be simply
derivatives of the atom–atom potentials but are determi
in a self-consistent way.34 Finding the relation between thes
coefficients and the parameters of the He–He interaction
tential is a separate problem that is beyond the scope of
paper. We mention only that for solving it one can apparen
use the well-developed methods employed for thr
dimensional quantum crystals.34,35

The quantum character of helium monolayers might a
be responsible for the above-mentioned absence~or essential
smallness! of gaps in the spectra ofl andt excitations of the
commensurate phase. Indeed, the amplitude of the zero-p
vibrations of the helium atoms in the plane of the layer
large, and in their motion they ‘‘feel’’ the fields not only o
the nearest neighbors but also of more distant neighbor
the substrate. As a result, an effective ‘‘averaging’’ of t
substrate field occurs and the gaps of the in-plane mo
vanish ~or decrease substantially!, ultimately leading to a
low-temperature heat capacity behaviorC(T)}T2, as is ob-
served in experiment.

Let us conclude with one more remark on the mod
used here. Following the conventional ideas,1,3,4,7,17we as-
sumed that the 2D crystal lies on a substrate whose atom
immobile. This approximation is justified for the followin
reasons. First, the class of objects studied was created
cifically for the purpose of studying the physical properti
of two-dimensional systems. Therefore the substrate mate
on which the layer was deposited was chosen specially
that its influence on the properties of the 2D crystal would
as small as possible.

Nevertheless, the question of the mutual influence of
phonon modes of the substrate and adsorbate is of inde
dent interest for the experimental study of the thermodyna
ics of such systems, since the heat capacity of the monol
is found as the difference between the total heat capacit
the system and the heat capacity of an empty calorime
which is expected to be known precisely. In Ref. 17 detai
calorimetric measurements were made which showed
the influence of helium, neon, and argon monolayers on
heat capacity of copper substrates is unimportant within
limits of experimental error.

As to the influence of the substrate on the vibration
modes of 2D cryocrystals, a detailed theoretical analysis
this problem was carried out in Ref. 36, where analyti
results were obtained in a model that treats the substrate
semi-infinite elastically isotropic continuum, and numeric
calculations were done for substrates of finite thickness.
main results of this analysis consist in the following. In t
case of an incommensurate structure the motion of the s
strate atoms does not affect thel and t modes of the mono-
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layer because the sound velocity is much higher in the s
strate than in the monolayer. The interaction with modes
the substrate occurs only for the dispersionless branch p
ized perpendicular to the layer. Here the main effect com
from the crossing of thez mode of the layer with the Ray
leigh branch of the substrate spectrum, which occurs nea
center of the Brillouin zone. However, the hybridization
the modes occurs in such a narrow interval of wave vec
that this effect has long resisted attempts to observe it exp
mentally. The interaction is manifested only in the appe
ance of an additional weak dispersion of thez mode and in
the broadening of the spectral lines of the layer on accoun
the energy transfer from the adsorbate to the substrate. A
same time, as was noted in Refs. 7 and 36, observatio
these last two effects will require techniques having
tremely high resolution. We also note that in the case
commensurate structures, when thel and t modes of the
adsorbate are gapped, their crossing with modes of the
strate occurs at very small values ofk, although no related
effects have as yet been observed experimentally.

It is clear that the motion of the substrate atoms can
be reflected to any substantial degree in such integral c
acteristics of the monolayer as the heat capacity. There
the rigid-substrate model is entirely adequate for describ
the behavior of the systems discussed in this paper.

*E-mail: antsygina@ilt.kharkov.ua
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Multidimensional and surface solitons in a nonlinear elastic medium
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Nonlinear shear waves in two-dimensional systems~in particular, surface waves! are investigated
with allowance for the spatial dispersion of the elastic medium. It is shown that the
dispersion plays an important role in the structural and modulational stability of the nonlinear
waves and to a large degree determines the directions of localization of phonons in a
nonlinear localized wave and, in particular, the possibility of existence of elastic surface solitons.
By means of an asymptotic procedure, solutions are found for small-amplitude two-
dimensional elastic shear solitons of the one-parameter stationary-profile type and for envelope
solitons and also for surface solitons localized near an ideal surface of an elastic half
space. Localized excitations of this kind can exist only in a medium with a ‘‘focusing’’~soft!
nonlinearity and positive dispersion]2v/]k2.0, wherev(k) is the dispersion relation
for linear waves. A procedure is proposed for finding solutions for surface envelope solitons
localized near a surface covered with a layer of another substance. A comparison is made between
the structures of the surface shear solitons at an ideal surface and at a surface with a film
coating. © 2002 American Institute of Physics.@DOI: 10.1063/1.1491186#
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Interest in nonlinear elastic surface waves has risen
recent years in connection with the intensive developmen
the physics of nonlinear phenomena.1–17 Because of the con
centration of the energy of the surface wave in a thin ne
surface layer, the influence of the anharmonicity of the cr
tal on the properties of the surface waves is considera
stronger than for volume waves. The nonlinear propertie
surface waves have been observed experimentally in a l
number of studies.12–14,18–20The first clear evidence of non
linearity of surface elastic waves was the observation
higher harmonic generation in a surface wave near an i
surface upon the excitation of an initial periodic sinusoid
signal.18–20 The observable nonlinear wave is of a nons
tionary character on account of the weak dispersion of
wave. At the present time it is well known in the theory
nonlinear waves that stationary nonlinear waves and soli
can exist only in the presence of competing factors: non
earity of the medium and dispersion of the linear wave21

Indeed, experiments with nonlinear surface waves of
Love type near a surface covered by a thin film14 have dem-
onstrated that nonlinear waves with stationary profiles
exist in that case~the film coating leads to a substantial i
crease in the dispersion of linear surface waves!. The ques-
tion of nonlinear surface waves was considered theoretic
in Ref. 2 for the simplest case of purely shear waves a
ideal surface. Some specific question of the dynamics
such waves in that model were investigated in Refs. 3
However, the authors of Refs. 2–5 neglected to take
account the spatial dispersion of the elastic waves. Late
Refs. 6 and 7 it was shown that for the existence of nonlin
surface waves it is extremely important to take the spa
4521063-777X/2002/28(6)/10/$22.00
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dispersion into account. For technical applications of non
ear surface waves~NSWs! the possibility of propagation o
stable weakly-damped pulses or wave packets of NSW
important. It is well known that such properties are po
sessed by dynamical solitons.21 The possibility of propaga-
tion of surface elastic shear solitons is considered in Ref
and 9, and such surface solitons are also discussed in R
10, 11, and 15. However, the authors of those papers in
tigated surface solitons propagating along the surface o
elastic half space covered by a layer of softer material.

In this paper we consider the possibility of propagati
of elastic surface shear solitons near the ideal surface
crystal and show that they have a fundamentally differ
form than solitons at a surface covered by a film, and th
can exist only for a completely definite combination of sig
of the nonlinearity and dispersion of the medium.

The question addressed in this paper also has fundam
tal significance for the general theory of propagation of m
tidimensional solitons, since there is a connection betw
the problem of solitons in an infinite medium and NSWs a
surface solitons in a semi-infinite medium with an ideal fr
boundary. A nonlinear surface wave is ‘‘half’’ of a nonlinea
wave, localized in an infinite medium in the direction pe
pendicular to the direction of propagation of this wave.
this sense a surface soliton is equivalent to ‘‘half’’ of a thre
dimensional soliton localized in all three directions, and t
problem of nonlinear surface localization is similar to t
problem of the nonlinear focusing of phonons.

The problem of localization of nonlinear acoustic wav
in a multidimensional medium is a fundamental and no
trivial one. Until now, multidimensional solitons have bee
© 2002 American Institute of Physics
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studied mainly in systems with strong spatial dispers
~e.g., in magnetically ordered media with easy-a
anisotropy,22 i.e., in the case when the dispersionD
5]2v0(k)/]k2 is nonzero even in the limitk50 ~wherek is
the wave number of the linear excitations,v0(k) is the fre-
quency of a linear wave, andv5v0(k) is the dispersion law
of linear waves!. In this case at zero group velocityV
5]v0(k)/]k at k50 the existence of immobile multidimen
sional, radially symmetric solitons becomes possible. In
motion of the soliton its deformation occurs only in the d
rection of propagationn. However, in nonlinear media w
an acoustic dispersion relation~nonlinear elastic medium o
a magnet with easy-plane anisotropy!, in which, in the limit
of small wave numbers (k→0,) there is no dispersion (D
50) but the group frequency remains finite, the situat
is radically different.~In the case of a nonlinear wave on
usually introduces a ‘‘nonlinear dispersion relation
v5v(k,A),21 whereA is the amplitude of the wave. The
the term dispersion refers toD5]2v(k,A)/]k2uA50 .! Be-
cause of the motion of phonons in a definite direction w
nonzero group velocity, that direction and the two directio
perpendicular to it become nonequivalent for soliton form
tion ~spontaneous breaking of the symmetry of the proble!,
and the conditions of localization of nonlinear waves~and
also the conditions for their stability! along different coordi-
nates also become different. These conditions are determ
by the signs of the dispersionD and of the nonlinearity,
which will be characterized by the parameterN
5]v(k,A)/]A2 ~Ref. 21!. For different relationships be
tween the signs ofD andN there can be localization of th
phonon flux in the phonon propagation direction or perp
dicular to it ~nonlinear phonon channeling! or in all three
directions.

1. NONLINEAR WAVES IN AN ANHARMONIC CHAIN
AND IN A MULTIDIMENSIONAL MEDIUM

The nonlinear dynamics of elastic systems has traditi
ally been studied for the example of one-dimensional anh
monic chains. Below we consider purely shear waves i
three-dimensional medium in the case when the displa
ment in the wave depends only on one spatial coordin
(x), corresponding to the so-called one-dimensionalb model
of Fermi, Pasta, and Ulam, which in the long-waveleng
limit is described by a modified Boussinesq equation:21

mutt5aa2uxx1axa4uxxxx1ba4ux
2uxx , ~1!

wherem is the mass of an atom,a is the lattice constant,a is
a characteristic of the harmonic interparticle interaction,b is
the anharmonic coupling constant for the nearest-neigh
interaction, andu is the transverse displacement of the ato
from its equilibrium position. The second term on the righ
hand side of~1! describes the dispersion of linear waves a
determines the sign of the parameterD. Ordinarily the
dispersionD'23Aaa3k/Am is assumed to be negativ
~x.0, D,0!. In particular, when only central forces o
nearest-neighbor interaction are taken into account, one
x5x051/12.0. However, when the bending stiffness of t
one-dimensional chain is taken into account, or allowanc
made for possible layering in a real three-dimensional cr
tal, the dispersion can also be positive~D.0, x,0!. Ex-
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amples are Nb3Sn, Hg203, MoS2, and MoSe2 ~Ref. 26!. The
choice of the sign of the parameterb in front of the anhar-
monic term is important. The authors of Refs. 2–6 chose
parameterb as negative, as seems natural for transverse
cillations. However, in Refs. 10 and 11 a positive nonline
ity (b.0) was chosen, as is observed experimentally
LiNbO3, in which this sign ofb is apparently due to the
strong piezoelectric effect. We stress once again that we
talking about anharmonic three-dimensional crystals.
studying solitonic excitations in anharmonic chains one or
narily chooses a positive sign of the nonlinear term (b.0)
in the case of negative dispersion (x.0). However, in the
general case it is more justified physically~in any case, for
simple anharmonic elastic media! to choose a negative~soft!
nonlinearity, withb,0, as follows from the zero asympto
ics of the interparticle interaction potential at large distanc

With the suitable choice of scales for the coordina
time, and displacements,@x#5a, @ t#5a/c, @u#5Aubu/a,
wherec5aAa/m is the speed of sound, it is easy to rewri
~1! in dimensionless form

utt5uxx1xuxxxx1dux
2uxx , ~2!

whered5sgn(b) is the sign function (d561).
In the linear limit the spectrum of waves of the for

u5A sin(kx2vt) has the form v0
2(k)5k22xk4, with a

group velocity V'123xk2/2 and the dispersionD'
23xk in the limit of small wave numbersk→0. For weakly
nonlinear waves the dispersion relation is updated to the
lowing form:21

v2~k!5k22xk41dk4A2/4,

D'23xk, N'dk3/8. ~3!

Consequently, the sign of the nonlinearityN is determined
by the sign of the parameterb: sgnN5sgnb.

From the form of the ‘‘nonlinear dispersion relation’’~3!
one can assess the stability of nonlinear periodic waves w
stationary profiles. According to the Lighthill criterion,23

one-dimensional nonlinear spatially periodic waves of co
stant amplitude are modulationally unstable under the co
tion DN,0, i.e.,dx.0. The growth of this instability leads
to the formation of dynamical envelope solitons.

The modified Boussinesq equation~2! is not completely
integrable, and usually one discusses only its exact solut
for one-parameter solitons of stationary profile, of the fo
u5u(x2Vt), which depend only on a single parameter, t
soliton velocityV. The deformation in a nonlinear excitatio
of this kind has the standard soliton form:21

w5
]u

]x
5

A6~V221!/d

cosh@A~V221!/x~x2Vt!#
. ~4!

Obviously such solitons exist only under the conditions

or
x.0, d.0, V.1
x,0, d,0, V,1, ~5!

i.e., for dx.0, in agreement with the Lighthill criterion.
The more complex solutions of the two-parameter en

lope soliton type~breathers! can be obtained only approxi
mately, in the limit of low soliton amplitude by means o
some asymptotic procedure~see, e.g., Ref. 8!. In our opinion,
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the most convenient procedure is the one which was p
posed in Ref. 24 for the nonlinear Klein–Gordon equat
and which was generalized in Ref. 25 to the case of
evolution equations with an acoustic dispersion relation
the typev0

2(k)5k22xk4. For solutions of the envelope sol
ton type the functionu(x,t) can be written in the form of the
following expansion:

u~x,t !5 (
n50

`

$ f 2n11~z!sin~2n11!u

1w2n11~z!cos~2n11!u%, ~6!

where z5x2Vt, u5kx2vt, and the functionsf s and ws

and the soliton velocityV are expanded in power series:

f s5 (
m50

`

f s,s12m«s12m,

ws5 (
m50

`

ws,s12m11«s12m11, ~7!

V5V~k!1«2l~k!1...,

where the small parameter of the expansion~which is related
to the soliton amplitude! is the quantity

«5Auv22v0
2~k!u, ~8!

in which the functionv0(k) corresponds to the dispersio
relation for linear waves.~The derivatives with respect to th
phasez are of order« in smallness:]/]z;«.! The solution
for a two-parameter envelope soliton in the leading appro
mation and for small values ofk has the form

u'A8~v22k21xk4!

dk4

3sechFAv22k21xk4

3xk2 ~x2Vt!Gsin~kx2vt !,

V'12
3

2
xk2, ~9!

where, as the two independent dynamical parameters o
solution, one can choose the wave vectork and frequencyv
of the nonlinear wave localized in the soliton. Here the so
ton velocity is a single-valued function of these two para
eters,V5V(k,v). As we see from Eq.~9!, in the leading
approximation with respect to the amplitude of the sma
amplitude soliton, the functionV5V(k,v) for the soliton
has the same dependence on wave number as the grou
locity of the linear wave. It follows from expression~9! that
one-dimensional envelope solitons exist only under the c
ditions

or
x.0, d.0, V,1, v.v0~k!

x,0, d,0, V.1, v,v0~k!, ~10!

i.e., for dx.0, which again agrees with the Lighthill crite
rion.

It follows from the form of the soliton solution~9! that
in the limit of zero dispersion (x→0) the soliton collapses
i.e., its localization region goes to zero. Moreover, it is ea
to show that the ratio of the amplitudes of the second
o-
n
e
f

i-

he

-
-

-

ve-

n-

y
d

fundamental harmonics is given byf 3 / f 15«/(36k4x), and,
hence, the true parameter of the asymptotic expansio
«2/(k4x), which diverges in the dispersionless limitx→0.
This indicates the importance of taking the spatial dispers
into account in the problem under study.

The existence conditions obtained for one-dimensio
solitons of different types are easily represented on
(ṽ,V) plane, whereV is the soliton velocity andṽ5v
2kV is the frequency of the internal oscillations of the e
velope soliton in a coordinate system moving with veloc
V. ~Here the two independent parameters of the soliton
lution are notk andv but V and ṽ.! In the linear limit ~for
linear waves! the dispersion relationv0

2(k)5k22xk4 im-
plies the following dependence ofṽ05ṽ0(V):

ṽ0'S 2

3D 3/2 1

Ax
~12V!3/2, ~11!

whereV is the group velocity of the linear wave.
In Fig. 1 these parabolas are shown by the fine lines.

shaded regions near them in Figs. 1a and 1b correspon
the small-amplitude envelope solitons considered he
which depend on a single spatial variable. The heavy li
~Figs. 1a and 1b! correspond to small-amplitude one
parameter solitons of stationary profile, which depend o
single spatial variable. The shaded region in Fig. 1c co
sponds to the channeling of phonons or to nonlinear surf
waves.

The solutions discussed above describe solitons i
three-dimensional medium in the case when they are lo
ized only in one direction—the direction of propagation
the nonlinear wave~along thex axis!. Below we show that
there can be situations in which the nonlinear wave is loc
ized in one or two directions perpendicular to the propa
tion or in all three directions in a three-dimensional spa
We restrict discussion to a cubic anharmonic crystal in wh
a wave is propagating along one of the principal crysta
graphic directions, when a purely shear wave is split off fro
waves with other polarizations. Nonlinear surface waves
such a crystal were considered for the first time in Refs. 2
and 5, but without taking the spatial dispersion of the wav
into account. This dispersion was taken into account in R
6 and 7, where nonlinear shear waves were investigate
the framework of the following equation, which is the thre
dimensional generalization of equation~2!:

utt5uxx1uzz1uyy1x~uxxxx1uzzzz1uyyyy1muxxzz

1muxxyy1muyyzz!1d$ux
2uxx1uz

2uzz1uy
2uyy

1l@~ux
2uz!z1~uz

2ux!x1~ux
2uy!y1~uy

2ux!x

1~uz
2uy!y1~uy

2uz!z#%50. ~12!

In what follows we shall mainly be considering th
propagation of waves with a horizontal shear polarizat
and with displacements that depend on two spatial coo
nates, and only in one case~in a discussion of three
dimensional solitons localized in all three dimensions! will
they depend on all three coordinates. The geometry of
problem is is as follows: a wave is propagating along thex
axis, the displacements of the atoms are directed along ty
axis, the plane of the structure~in the case of surface wave
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and surface solitons! is the xy plane, perpendicular to th
direction of thez axis, and the amplitude of the wave d
pends on thex andz coordinates~in the majority of the cases
considered! but not on they coordinate~see Fig. 4b!. Then
]/]y50, and Eq.~12! is simplified considerably. If the wave
is propagating along thex axis and is uniform in the direc
tion of the z axis, then its nonlinear dispersion relation
before will have the form in Eq.~3!. However, now the ques
tion of the stability of the nonlinear wave will be posed in
broader sense. The Lighthill criterionDN,0 (dx.0) de-
termines only the modulational instability of the unifor
wave with respect to longitudinal fluctuations~along thex

FIG. 1. Dispersion relations for linear waves~fine lines!, the existence re-
gion of small-amplitude one-dimensional envelope solitons~the shaded re-
gions in parts ‘‘a’’ and ‘‘b’’!, and the curves corresponding to one-parame
solitons of stationary profile~heavy lines! of the modified Boussinesq equa
tion: x.0, d.0 ~a!; x,0, d,0 ~b!, x.0, d,0 ~c!. The shaded region in
part ‘‘c’’ corresponds to phonon channeling or nonlinear surface waves
axis!. The question of the transverse stability~in the direc-
tions of thez and y axes! is easily solved in the particula
case whenm52 andl51/3. Then the frequency depend
only on the modulus of the wave vector, and the nonlin
dispersion relation remains of the form~3!, where k
5Akx

21kz
21ky

2. Here, as was noted in Ref. 23, the unifor
nonlinear wave is unstable with respect to transverse dis
bances forN,0 (d,0). Thus forx,0 andd.0 the uni-
form nonlinear wave is stable in all directions and it cann
be localized. Forx.0 andd.0 the wave is localized in its
propagation direction, and the one-dimensional solitons
scribed above can exist in a three-dimensional space.
x.0 andd,0 the wave is localized in the direction perpe
dicular to its propagation, and stable surface nonlinear wa
can exist and phonon channeling can occur. Finally, a u
form wave is unstable in all directions when the inequalit
N,0 andD.0 are both met simultaneously. Therefore, o
expects that the two- and three-dimensional acoustic soli
can exist only in media with positive dispersion and s
nonlinearity~for x,0 andd,0!.

Above we have considered the localization of a nonl
ear wave in the direction of its propagation. We now turn
a study of excitations localized in one or two transverse
rections.

2. PHONON CHANNELING, SURFACE WAVES, AND TWO-
DIMENSIONAL SOLITONS

Let us first consider a system with negative dispers
and soft nonlinearity:D,0 (x.0) andN,0 (d,0). This
is the most natural situation for shear waves. Here the n
linear wave is modulationally stable in the direction of
propagation but unstable in the transverse directions;
leads to localization of phonons in these directions. This
fect can be called phonon channeling. Here it is necessar
seek a solution of equation~12! which is periodic along the
propagation direction~the x axis! and localized in the direc-
tions of thez andy axes. We limit consideration to the cas
when the solution is independent ofy. Of course, ultimately
the development of a transverse instability will lead to loc
ization of the wave in the direction of they axis as well, but
we shall not consider that question here. In the sm
amplitude limit the solution is found with the aid of th
following asymptotic expansion:6

u~x,z,t !5 (
n50

`

(
m50

`

f 2n11,2n12m11~z!«2n12m11

3sin~2n11!u, ~13!

whereu5kx2vt and «5Av0
2(k)2v2, and in the leading

approximation has the form6

u'A8~k22xk42v2!

k4

3sechFAk22xk42v2

12xmk2 zGsin~kx2vt !, ~14!

wherek and v are two arbitrary parameters of the solito
solution.

This expression outwardly resembles solution~9! but has
a different existence region on the plane of parame

r
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(ṽ,V): the frequencies of such channeled phonons at a fi
wave vector or group velocity lie below the frequencies
the linear waves~the shaded region in Fig. 1c!. In the dis-
persionless limitx→0 solution ~14! agrees with the resul
obtained in Ref. 2, but it is easy to show that the ratio of
amplitudes of the harmonics in expansion~13! is of order
f s11,s11 / f s,s;«/xk2. Consequently, the solution~14! has
meaning~the asymptotic series converges! only when the
dispersion of the medium in the regionk22xk42v2

!x2k4 is taken into account.
Up till now we have been talking only about the cha

neling of nonlinear phonons in an infinite three-dimensio
elastic medium. However, solution~13!, ~14! also describes
nonlinear surface shear waves near an ideal surface
semi-infinite crystal. Indeed, the boundary condition that f
lows from Eq.~12! at the free boundaryz50 has the form

@uz~11duz
2/31dlux

2!1xuzzz1xmuxxz#z5050, ~15!

and the solution~14! clearly satisfies it.~In this article we
will not be discussing the fundamental question of the nec
sity of formulating additional boundary conditions for E
~12!, which contains higher spatial derivatives up to and
cluding the fourth. They actually reduce to the requirem
that the conditions for a long-wavelength treatment hold.!

Finally, let us investigate the question of multidime
sional and surface solitons localized in three dimensions
we have said, nonlinear excitations of this kind can ex
only in the case of a medium with positive spatial dispers
and soft nonlinearity~x,0, d,0!. The second inequality is
natural for shear waves and should be satisfied in the ma
ity of substances. The first inequality is unusual, since in
majority of materials the dispersion of linear waves is ne
tive. Nevertheless, crystals with positive dispersion at l
frequencies do exist~see Ref. 26!.

Let us begin by studying three-dimensional envelo
solitons localized in two directions~x and z!. They corre-
spond to the shaded region in Fig. 1b~which coincides with
the existence region of two-dimensional envelope soliton
the modified Boussinesq equation!. The small-amplitude so
lutions for multidimensional envelope solitons can be sou
in the form of an expansion~6!–~8! with «5Av0

2(k)2v2,
assuming now that the functionsf rs andw rs depend not only
on the phasez5x2Vt but also on the coordinatez. A com-
plication in this case is that even at the first step of
asymptotic procedure a nonlinear partial differential equat
arises which can only be solved numerically~accordingly, all
the subsequent steps can only be carried out numerical
well!. In the leading~resonance! approximation we have to
accuracy«

u'« f 11~z,z!sinu[« f ~z,z!sinu, ~16!

where the functionf (z,z) depends weakly on its ‘‘slow’’
variables. In the case of longitudinal localization of the no
linear wave the decay of its amplitude is governed by
small parameter«: ]/]z;«, as follows from Eq.~9!. For
transverse localization of the wave, on the other hand
follows from Eq. ~14! that the localization region is als
determined by this small parameter:]/]z;«. It is therefore
natural to assume that in the case of a two-dimensional
velope soliton~16! the dependence of the functionf (z,z) on
d
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its arguments will be determined by the same paramete«.
Then, keeping in Eq.~12! the leading terms of order«3 ( f
;]/]z;]/]z;«), we obtain the following equation for the
function f :

f zz~3xk2!2 f zz1«2f 2«2k4f 3/450. ~17!

~In the coefficient of the first term we have made the a
proximate substitutionV2'123xk2, and in the coefficient
of the second term we have set 12xmk2'1.! As it followed
before from a stability analysis of the uniform nonline
waves, it follows from Eq.~17! that multidimensional local-
ized envelope solitons exist only under the conditio
x,0, d,0, andv,v0(k). Introducing a convenient scal
for the coordinates and field amplitude,

«z/A3uxuk25j, «z5h, f k2/25g, ~18!

we write Eq. ~17! in the radially symmetric dimensionles
form

gjj1ghh2g1g350. ~19!

The radially symmetric solutions of this equation ha
been studied in detail by both qualitative27 and numerical28,29

methods.~The analogous centrosymmetric solutions of t
corresponding equations in three space are also well kno
there the two-dimensional Laplacian in~19! is replaced by its
three-dimensional counterpart, and the solution depends
the coordinatey as well!. There is an infinite set of thes
symmetric solutions parametrized by the number of zeros
the field as a function of the radial coordinate. The low
energy belongs to a solution for which the fieldg falls off
monotonically with the coordinater 5Aj21h2. The field
amplitude at the center of the two-dimensional soliton
g(z5x2Vt50)52.2. ~In the three-dimensional envelop
soliton the degree of localization is higher, and the amplitu
at the center of the soliton at this same frequency and ve
ity will be larger: g3D(0)'4.5.! The profile of the two-

FIG. 2. Profile of the envelope of a two-dimensional dynamical tw
parameter soliton of elastic shear displacements~in dimensionless vari-
ables!.
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dimensional envelope solitong5g(j) is shown in Fig. 2. In
the original variables the solution for the two-dimension
soliton has the form

u5
2«

k2 gS «
x2Vt

A3uxuk2
,«zD sin~kx2vt !, ~20!

where the soliton velocityV depends on the parametersk
and v and in the leading approximation corresponds to
group velocity of linear waves with the same value ofk. It
follows from ~20! that the localization regions of the solito
in different directions~Dx andDz! have different values:

Dx

Dz
;kAuxu. ~21!

As we see from this expression, in the long-wavelen
limit we haveDx!Dz, and the soliton is highly flattened i
the direction of its propagation~see Fig. 4a!. This figure also
illustrates the situation when the soliton is localized in
three directions and is described by Eq.~19! with the three-
dimensional Laplacian.

Since solution~20! satisfies condition~15!, it also de-
scribes a surface-shear-wave envelope soliton localized
an ideal surface. Since surface waves are usually excite
strip radiators, and a finite time is required for developm
of the transverse instability, the two-dimensional surfa
solitons considered here~localized only in one direction in
the plane of the surface! are completely observable. We no
that in Ref. 13, where surface solitons apparently were
observed experimentally, it is stated that the conditions of
experiment corresponded to the signs which we took for
dispersion and nonlinearity~D.0, N,0!.

It should be emphasized that in the given case the lo
ization of the nonlinear wave in the plane of the surface a
near it has the same physical cause: nonlinearity of the e
tic medium.

Let us turn to an analysis of the two-dimensional a
surface one-parameter solitons of stationary profile, i.e.,
two-dimensional analogs of solution~4!. As before, we shall
consider waves propagating along thex axis with a fre-
quencyV, i.e., solutions of the formu5u(x2Vt,z). As it
turned out, such states can exist forx,0, d,0, andV2<1
~see Fig. 1b!. From solution~4! for one-dimensional solitons
it follows that in the limit 12V2!1 the solution become
small-amplitude and weakly localized:

ux;A12V2!1, ]/]x;A12V2!1.

Here the termsutt2uxx and xuxxxx and dux
2uxx in Eq. ~12!

become quantities of the same order:;(12V2)2. We as-
sume that the dependence on the coordinatez is also weak
(]/]z!1) and keep only the leading term in the derivativ
with respect to the coordinatez, viz., uzz. Then this term
will be of order (12V2)2, and the derivative with respect t
the coordinatez will be of order ]/]z;12V2. Then the
terms that have been dropped in Eq.~12! will be of order
(12V2)3 and (12V2)4. In the leading approximation, Eq
~12! reduces to the following:

~12V2!uxx1uzz2uxuuxxxx2ux
2uxx50. ~22!

It is convenient to use the following new coordinates a
displacements:
l

e

h

l

ar
by
t

e

st
e
e

l-
d
s-

e

d

j5
A12V2~x2Vt!

Auxu
, h5

~12V2!z

Auxu
, w5

u

A6uxu
, ~23!

in terms of which the equation for an arbitrary deformati
w5wj takes the form

wjj1whh2wjjjj22~w3!jj50. ~24!

We see that this equation has a different structure than
~19! for the two-dimensional envelope solitons. It is remin
cent of the stationary version of the Kadomtsev–Petviash
equation,30 only with the quadratic nonlinearity of the latte
changed to cubic: (w2)jj→(w3)jj . The soliton solution of
the Kadomtsev–Petviashvili equation is well known.31 It has
a completely different form than the two-parameter solit
~20!. First, its asymptotic behavior is not exponential, as
one-dimensional solitons, but power-law. Furthermore, in
direction of motion the field falls off nonmonotonically wit
distance from the center of the soliton. These properties
preserved in the elastic shear solitons of stationary pro
described by Eq.~24!. Formally this equation is the same a
the equation for small-amplitude nonlinear waves of stati
ary profile in a two-dimensional easy-plane ferromagnet,
tained and studied in Ref. 32. Therefore the profile of
soliton solution~24! can be determined from a compariso
with the data of a numerical simulation of the magnetic d
namics of an easy-plane magnet at velocities of nonlin
excitations close to the velocity of the spin waves recen
recorded by S. Komineas~private communication!. The dis-
tribution of the longitudinal deformation in the soliton
shown in Fig. 3 in the form of two cross sections: along t
motion, w(j,h50), and in the perpendicular direction
w(h,j50). We see that this solution has qualitatively t
same form as the Kadomtsev–Petviashvili soliton: in the
rection of propagation the profile as a nonmonotonic char
ter. In spite of the fact that the minima in Fig. 3 are sm
compared with the central peak, because of the slow fall
of the deformation with distance, the role of the regions
negative deformation is very large. Apparently, as in t

FIG. 3. Distribution of deformation in a two-dimensional soliton of statio
ary profile ~in dimensionless variables!.
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Kadomtsev–Petviashvili equation, in our case the total
formation in the soliton is equal to zero:*wdjdh50. In any
case a calculation of the total magnetization in a mov
magnetic soliton in the limit of large soliton velocities~when
the magnetic and elastic systems are practically equival!
shows that this quantity become anomalously small, wh
corresponds to an anomalously small total deformation in
acoustic soliton. We recall that in the one-dimensional c
in the motion of a soliton of stationary profile~4! the total
deformation is nonzero:*wdx5A24x/dÞ0. It may be that
the properties listed above for a one-parameter tw
dimensional soliton are general for systems with an acou
spectrum of linear excitations. For example, the surface R
leigh solitons16,17 have a form qualitatively similar to tha
shown in Fig. 3.

If we change back to the original variables in the solit
solution, its characteristic size in the direction of propagat
will be Dx;1/A12V2, while the size in the perpendicula
direction will be substantially larger:Dz;1/(12V2)@Dx
~see Fig. 4a!. However, now the flattening of the soliton i
the direction of propagation is determined not by the wa
vector~as in the envelope soliton! but by the velocity of the
soliton of stationary profile.

Since the soliton solution obtained is symmetric w
respect to the axisz50, it describes, as in the previous cas

FIG. 4. Profile of a surface soliton localized near an ideal surface~a! and
around a surface coated with a film of a different material~b!.
-
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surface shear solitons~in this case, of stationary profile! lo-
calized in thex and z directions and propagating along a
ideal surface of a three-dimensional elastic half space.

3. SOLITONS LOCALIZED NEAR A SURFACE WITH A FILM
COATING AND NEAR A PLANAR DEFECT

In the previous Section we considered solitons of diff
ent kinds in a three-dimensional elastic medium and nea
ideal surface of a half space, and we gave the conditions
their existence~a combination of the signs of the nonlineari
and dispersion of the medium!. However, if the surface an a
anharmonic crystal is coated with a film of a different ma
rial ~or in the presence of a planar defect in the crystal!, the
conditions for the existence of surface solitons or solito
localized near a defect plane can change. The possibilit
existence of these shear surface solitons was first pointed
in Refs. 10 and 11. In such a statement of the problem
experimental observation of solitons near the surface
near a planar defect is more probable, since for a thickn
h@a of the coating layer or of the interface between tw
media, the dispersion of linear waves localized near the
face or defect can be substantially higher than the ‘‘intrins
dispersion of bulk elastic waves. As a result, the nonlin
stationary wave or soliton is formed in substantially less ti
~when damping may still be ignored! and the deformation in
the stationary wave decreases; this justifies a lo
wavelength treatment of the problem. However, while in t
previous Section the localization of the wave in two dire
tions was due to nonlinearity, now the nonlinearity leads
localization only in the direction of propagation of the so
ton, while the localization in the transverse direction is d
to the presence of a planar defect or surface layer~i.e., it
exists in the linear limit!. Here for localization of a linear
wave it is necessary that its frequency lie below the spect
of bulk transverse waves; this imposes conditions on
characteristics of the defect layer and leads to negative
fective dispersion of the surface shear waves, contrary to
positive dispersion considered in the previous Section. Mo
over, as was shown in Refs. 10 and 11, in this case
solitons exist only in the case of a ‘‘hard’’ nonlinearity of th
medium (N.0). This condition is opposite to the conditio
for the existence of solitons in a homogeneous medium
near an ideal surface. Indeed, now we are considering a
linear Love wave.33 Since the nonlinearity causes localiz
tion of the wave only in the longitudinal direction, the pro
erties of the solitons that arises are of a specific natu
Although in the previous Section we considered tw
dimensional solutions but~as was pointed out! in a three-
dimensional medium, nonlinearity leads to localization in
three directions. In the case under consideration here,
wave is localized near the surface, while in the plane of
surface it is localized only in the direction of propagatio
Thus in the three-dimensional case the solitons remain t
dimensional~see Fig. 4b!.

For comparison of the surface solitons of different typ
let us first give a way of obtaining a simple qualitative so
tion in a medium with a film coating. We consider a ha
space covered by a thin film~of thicknessh! of a material
differing only in density from that of the bulk. It is clear tha
in the case of a planar defect the symmetric localized e
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tations will be described by the same solutions as in a
space coated by a film if the thickness of the planar defec
equal to 2h. It is known33 that Love waves exist in a linea
medium only in the case when the densityr0 in the film is
greater than the densityr of the material in the bulk (r0 /r
5s.1), and the dispersion relation of such waves at sm
wave numbers has the form

v0
25k22h2n2k4, ~25!

wheren5s21 is a characteristic of the capillary effects;
above, the speed of sound in the bulk is assumed equ
unity. We see that linear Love waves have negative dis
sion (D523h2n2k,0). This dispersion relation is dete
mined by the decay of the amplitude of the surface wa
with distance from the surface:u;exp(2g z), where g
'hk2n;D2. In the long-wavelength limit (hk!1) we have
g/k'hkn!1, i.e., the change in field along the coordinatez
occurs much more slowly than along the coordinatex:
]/]z!]/]x. Therefore, in a treatment of small-amplitud
nonlinear localized Love waves which are independent of
coordinatey, we can neglect all the nonlinear terms in E
~12! which contain derivatives with respect to the coordin
z, keeping only the leading term;ux

2uxx . Furthermore, in
this equation we can drop all of the ‘‘internal’’ dispersion
linear terms on account of the presence of the effective
persion due to the film. As we see from Eq.~25!, its presence
is determined by the dispersion term;h2n2uxxxx, which for
hn@a exceeds the largest dispersion terma2xuxxxx in Eq.
~12!, which is due to the intrinsic dispersion of the bu
waves. Thus instead of~12! we can limit consideration in the
bulk to the equation

utt5uxx1uzz1dux
2uxx , z.0, ~26!

which should be supplemented by an effective boundary c
dition. This is most easily obtained by integrating the eq
tion analogous to~26! for the film over its thickness (2h
,z,0):

hsutt5huxx1uz1hdux
2uxx , z50. ~27!

This approach gives the correct result for the spectr
of Love waves in the case of long wavelengths,k!1/h: in
the linear limit, Eqs.~26! and ~27! imply the dispersion re-
lation

v0
25k22h2~sv0

22k2!2, ~28!

which for k!1/h agrees with the exact expression for t
dispersion relation of Love waves and with expression~25!.
Formally this same dispersion relation can be obtained in
following way. In the linear approximation, it follows from
Eq. ~27! that in the region near the boundary of the mediu
and film

]

]z
'hS s

]2

]t2 2
]2

]x2D . ~29!

~The relation]/]z;]2/]x2 for surface waves was mentione
above.! Now substituting the operator~29! into the linearized
equation~26!, we again arrive at the spectrum of Love wav
~28!. However, if such a substitution is done in the nonline
equation~26!, then we obtain a modified Boussinesq equ
tion ~2! with an effective dispersionx5h2n2:
lf
is

ll

to
r-

e

e
.
e

s-

n-
-

e

r
-

utt5uxx1h2n2uxxxx1dux
2uxx . ~30!

Since now the dispersion is negative (D,0) the soliton
solutions exist only for a ‘‘hard’’ nonlinearity~d.0, N.0!,
i.e., the conditions for the existence of a soliton are direc
opposite to the conditions near an ideal surface. The solu
~30! itself has the form of expression~9! with x5h2n2. Hav-
ing used thez dependence typical for linear Love wave
u;exp(2gz) with g5Ak22v2'hnk2, we have a final ap-
proximate solution for surface solitons near a surface wit
film coating:

u'
2&«

Adk2
sechS «~x2Vt!

)hvk
D

3sin~kx2vt !exp~2hvk2z!, ~31!

where «5Av22k21h2n2k4 and V'123h2n2k3/2. From
solution ~31! and the exact expression for the localizati
parameterg of the Love wave we see that the soliton fr
quencies for a fixed value ofk lie in the interval k2

2h2n2k4,v2,k2. The above derivation of the soliton so
lution is of a qualitative character. A rigorous method
finding the soliton solutions is given in Appendix.

It follows from ~31! that the localization region in the
plane of the surfaceDx;hnk/« is determined by the sam
expression as in the case of an ideal surface, but with
effective dispersion parameter. However, the size of the s
ton in the direction of thez axis is now given by the quantity
Dz;1/(hnk2), which is completely different from the cas
of the ideal surface (Dz;1/«). The ratio of the sizes of the
soliton in different directions,

Dx

Dz
;khv

k2hv
«

~32!

differs from its counterpart in the case of the ideal surface
the factork2hn/«, which can be arbitrary.

Thus we see that multidimensional shear solitons in
homogeneous medium and in a medium with a planar de
and surface solitons near an ideal surface and a surface
ered with a thin film can have substantially different stru
tures.

APPENDIX

Here we consider the system of equations~26!, ~27! for
the displacementsu(x,z,t) in the bulk of an anharmonic
crystal and on its surface,u(x,z50,t)5U(x,t). For small-
amplitude weakly localized surface solitons in the ‘‘res
nance’’ approximation, solution~26!, ~27! can be written in
the form

u5a~x2Vt,z!sin~kx2vt !1b~x2Vt,z!cos~kx2vt !,
~A1!

U5A~x2Vt!sin~kx2vt !1B~x2Vt!cos~kx2vt !,
~A2!

where the frequency differs only slightly from the frequen
of Love linear surface waves,v0(k): v22v0

2(k)5«2!1;
the dependence of the functionsa, b, A, andB on the argu-
ment (x2Vt) is slow: ]/]x;«, while the order of each of
the functionsa, b, A, andB is as follows:a;A;«, b;B
;«2. ~The dependence on the coordinatez is now unrelated
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to the small parameter«.! We introduce the characteristi
deviation of the frequency from the dispersion relation
bulk linear wavesg5Ak22v2. Substituting expansion
~A1! and~A2! into Eqs.~26! and~27! and equating the term
in sin(kx2vt) and cos(kx2vt) to zero, we obtain the follow-
ing system of equations accurate to«3:

azz2g2a5~V221!axx12~k2Vv!bx1dk4a3/4, ~A3!

bzz2g2b522~k2Vv!ax , ~A4!

h~sV221!Axx1h~k22sv2!A12h~k2sVv!Bx

1hdk4A3/42az~z50!50, ~A5!

h~k22sv2!B22h~k2sVv!Ax2bz~z50!50. ~A6!

Writing the functionsa andb in the form of expansions
in powers of the small parameter«: a5a1«1a3«31...,
b5b2«21b4«41... and writing out the terms with to orde
«3, we obtain a system of equations for finding the values
a1 , a3 , andb2 :

«: a1zz2g2a150, ~A7!

«2: b2zz2g2b2522~k2Vv!a1x , ~A8!

«3: a3zz2g2a35~V221!a1xx1dk4a1
3/4

12~k2Vv!b2x . ~A9!

The solution of this system of equations for waves loc
ized near the surface has the obvious form:

a5 f ~x!e2gz2 f xxH ~k2Vv!2

2g2 z21
~k2Vv!2

2g3 z

1
~V221!

2g
zJ e2gz1

dk4

32g2 f 3e23gz, ~A10!

b5 f x

~k2Vv!

g
ze2gz. ~A11!

From here, finding the values ofa, ax , axx , az , b, bx ,
andbz at z50 and substituting them into equations~A5! and
~A6!, we obtain the following two equations for finding th
function f (x) and the parameterV:

«3: Fh~sV221!1
~k2Vv!2

2g3 1
~V221!

2g G f xx

1@g1h~k22sv2!# f 1
dk4

32 Fh~k22sv2!

g2 18h1
3

gG f 350,

~A12!

«2: @2h~k2sVv!1~k2Vv!/g# f x50. ~A13!

From Eq.~A13! we obtain the relationV(k,v) for the
velocity of surface solitons:

V5
k

v

112hAk22v2

112hsAk22v2
. ~A14!

In the limit of linear surface waves, by equating the c
efficient of f in Eq. ~A12! to zero we obtain the dispersio
relation ~25!. It then follows from ~A14! that V'1
23h2k2n2/25]v0(k)/]k, i.e., the soliton velocity is equa
r

f

-

-

to the group velocity of linear surface waves. Taking the
relations into account, we rewrite Eq.~A12! in the leading
approximation as

~)hkv !2f xx2«2f 1dk4f 3/850. ~A15!

Thus in a consistent treatment of the problem, the so
tion for the surface shear solitons has the form

u~x,z,t !'
4«

Adk2
sech

«~x2Vt!

)hvk
e2hvk2z sin~kx2vt !,

~A16!

wherev25k22h2n2k41«2 andV5123h2k2n2/2. This so-
lution differs by a factor of& in the amplitude from the
qualitative result given in the main text.
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Thermal conductivity of a GaAs single crystal grown in microgravity
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A comparative study of the thermal conductivity in the temperature interval 2–300 K is carried
out for single-crystal GaAs samples grown on Earth and grown under analogous conditions
in microgravity on the manned space station Mir. It is found that the heat transfer in the samples
is due to phonons. A consistent processing of the temperature dependence of the thermal
conductivity of the Earth-grown and space-grown samples is carried out in the framework of the
Debye model of the phonon spectrum with allowance for boundary and resonant scattering
and for scattering on ‘‘planar defects’’ and phonon–phononU-processes. The difference in the
behavior of the thermal conductivity space-grown and Earth-grown samples is due to the
presence of excess arsenic in the Earth-grown sample, resulting in both resonant scattering and
scattering on planar defects, which may be clusters of arsenic atoms. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1491187#
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INTRODUCTION

Gallium arsenide is one of the most important semic
ductor materials, used for fabricating fast and radiatio
resistant microelectronic devices. A study of the influence
the growth technology and conditions on the degree of p
fection of GaAs single crystals is a subject of ever-pres
interest.

The experimental study of the thermal conductivity
such materials, especially at low temperatures, with the
sults described in terms of the existing theoretical mod
makes it possible to establish the spectrum of defects in
samples and to estimate the change of their concentration
a result of treatment procedures.

This paper is devoted to a comparative study of the lo
temperature thermal conductivity of GaAs samples grown
the same technique on Earth and in a microgravity envir
ment on the manned space station Mir.

EXPERIMENT

The gallium arsenide single crystal investigated is
single monolith consisting of two parts: a single crys
grown on Earth under laboratory conditions, and a sin
crystal obtained by recrystallization under conditions of m
crogravity in space on the Gallar furnace.

The choice of this two-part single crystal as the object
study was deemed optimal for a comparative analysis, s
the laboratory-grown single crystal is not only the seed
also the initial object for obtaining the gallium arseni
single crystal from the melt by the method of directed cr
tallization under conditions of microgravity.

The initial single crystal prepared for the space expe
ment was a cylinder 22.2 mm in diameter and 85 mm lo
The length of the part of the sample remelted in space wa
mm. After the space experiment, ingot sections 25 and
4621063-777X/2002/28(6)/3/$22.00
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mm long were cut from the Earth and space samples,
then samples were cut from them by oriented cutting te
nology.

The elemental composition of the samples was de
mined on an E´MAL-2 laser energy–mass analyzer. The me
sures of the analysis are presented in Table I.

Analysis of the structure of the gallium arsenide samp
with the use of a URS-60 apparatus and a URS-50 IM d
fractometer and also by standard methods of x-ray struct
analysis showed that these samples are single crystals.
growth direction coincides quite precisely with the@100#
crystallographic direction. In both samples a macroblo
structure is obtained. The average density of dislocations
9.93104 cm22 in the Earth-grown sample and 7.
3104 cm22 in the space-grown sample. The impurity co
centration was determined by spark mass spectrometry
JMS-01-BM2 mass spectrometer. The level of most impu
ties in both samples was less than 1028 by mass. The impu-
rities of fluorine, magnesium, sulfur, calcium, and zinc we
at the level of 1027 by mass. The concentration of sodium
potassium, phosphorus, iron, and chromium in the spa
grown crystal were lower. Considering the level of sensit
ity of the methods employed, we can state that no ph
segregates or elemental precipitates larger than 1mm were
present and that the concentration of light elements was

TABLE I. Elemental composition of the samples.

Element

Concentration, at. %

Earth-grown Space-grown

As 50.044 49.974
Ga 49.944 49.976
O 0.012 0.05
© 2002 American Institute of Physics
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greater than 1024 by mass and that of heavy elements
greater than 1025 by mass.

The thermal conductivity of the samples was measu
using a steady uniaxial heat flux in the temperature inte
2–300 K. The heat flux was directed along the@100# crystal-
lographic direction. The temperature was monitored w
Cu–Au1Fe thermocouples. To eliminate heat loss to rad
tion at T.100 K we used an active antiradiation shield.

RESULTS AND DISCUSSION

1. The temperature dependence of the thermal cond
tivity l of the two GaAs samples is shown in Fig. 1. T
maximum value of the thermal conductivity of the ‘‘spac
grown’’ sample is approximately 5 times as high as t
analogous value for the ‘‘Earth-grown’’ sample. The ma
mum of the thermal conductivity of the space-grown sam
is shifted to lower temperatures.

Measurements of the temperature dependence of
electrical conductivity showed that for both samples the e
tronic contribution to the thermal conductivity can be n
glected in the entire temperature interval studied. We n
that the electrical conductivity of the Earth-grown sample
approximately twice as high as that of the space-gro
sample.

2. The temperature dependence of the thermal cond
tivity of the samples was described by the well-known ph
non scattering mechanisms.

Extremely complicated formulas are often used for c
culating the temperature dependence of the thermal con

FIG. 1. Temperature dependence of the thermal conductivityl of a GaAs
single crystal: Earth-grown sample~1!; the space-grown sample, which ha
been remelted in a microgravity environment~2!.
d
al
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tivity of GaAs ~see, e.g., Refs. 1–6!, which take into account
the nonlinear dispersion of the phonon spectrum, the dif
ence in the phonon–phonon interaction for the longitudi
and transverse phonons, etc. This complication of the mo
inevitably leads to an increase in the number of parame
to be calculated, often without improving the fit but on
increasing the uncertainty in the parameters and the t
required to do the calculations. It is therefore natural to try
use the simplest model that corresponds to the process t
described.

The temperature dependence of the thermal conducti
of the Earth-grown and space-grown samples were ca
lated in the framework of the Debye model of the phon
spectrum7 ~the Debye temperatureQ5344 K; the value
sound velocityVs53265 m/s; Ref. 8!:

l~T!5
k

2p2Vs
S k

hD 3

T3E
0

Q/T

t~x!
x4ex

~ex21!2 dx, ~1!

x5hv/kT,

t21~x!5(
i

t i
21~x!. ~2!

Initially the following processes were taken into accou
in the calculation of the inverse relaxation timet21(x): scat-
tering on boundaries, resonant scattering with allowance
damping, Rayleigh scattering on point defects, phono
phononU- andN-processes, and also scattering on ‘‘plana
defects.

However, it was found in the fitting that the coefficien
for the terms describing theN-processes and Rayleigh sca
tering are equal to zero within the error limits. Taking th
damping of the resonance into account also failed to impr
the fit. Therefore, these terms were not taken into accoun
the subsequent calculations. The boundary scattering pa
eter was not varied, but the values of the transverse dim
sions of the samples were used.

Thus the expression for the inverse relaxation time
the form

t21~v!5V/a11a2v2/~a6
22v2!21a3v2

1a4v2T exp~2Q/Ta5!. ~3!

Here the first term describes the boundary scattering,
second and third terms describe resonant scattering and
tering on ‘‘planar’’ defects,9–11 and the last term describe
TABLE II. Parameters of the temperature dependence of the thermal conductivity of GaAs according to Eqs.~1!–~3!.
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phonon–phononU-processes. The coefficientsa2–a6 were
varied. Values of the coefficients ensuring an approximat
error of not worse than 4% are given in Table I. It is se
from Table II that the coefficientsa4 and a5 for the two
samples are close in value, as expected, since the param
of the phonon–phonon scattering should not depend on
heat treatment.

The contributions of the individual scattering mech
nisms to the total thermal resistivity of the Earth-grown a
space-grown samples are illustrated in Fig. 2.

The difference in the behavior of the space-grown a
Earth-grown samples is entirely due to the presence of
fects. On going from the Earth-grown to the space-gro

FIG. 2. Phonon scattering mechanisms for the Earth-grown~a! and space-
grown ~b! samples. The contribution of the different scattering mechanis
to the overall thermal resistance process:1—boundary scattering,
2—resonant scattering,3—scattering on ‘‘planar’’ defects,4—phonon–
phonon scattering;h—experiment.
n
n

ters
he

-

d
e-
n

sample the coefficients characterizing the resonant scatte
(a2) and the ‘‘planar’’ defects (a3) decrease. Both of thes
terms are proportional to the concentration of the cor
sponding defects.

An elemental analysis~see Table I! showed that the main
difference between the samples is the presence of non
ichiometric ~excess! arsenic~0.1 at. %! in the Earth-grown
sample. In the space-grown sample the concentration of
cess arsenic is about 20 times lower and is right at the lim
of error. This change in the concentration of excess arsen
correlated with the relative changes of the coefficientsa3 and
a2 .

Thus the presence of excess arsenic is the only poss
cause of both the resonant scattering and the scatterin
‘‘planar’’ defects. The latter could be clusters of arsenic
oms. The slight shift of the resonance frequency~the coeffi-
cient a6! may be due to relaxation of the internal stress
caused by the presence of ‘‘planar’’ defects. It was shown
Ref. 12 that the resonance frequencies can be smeared
and shifted in the presence of internal stresses in the sam
These stresses are probably larger in the Earth-gro
sample.

The approximating curve of the thermal conductivity
the space-grown sample at high temperatures deviates o
low side from the experimental values. This may be due
the appearance of photonic heat conduction in the samp13

CONCLUSION

In summary, the results of measurements of the temp
ture dependence of the thermal conductivity have shown
excess arsenic contained in the Earth-grown sample fo
clusters that sharply increase both the resonant scattering
scattering on ‘‘planar’’ defects. Elimination of the excess
senic leads to appreciable growth of the thermal conducti
in the low-temperature region—in the region of the ma
mum the thermal conductivity of the space-grown sam
was 5 times higher than the thermal conductivity of t
Earth-grown sample.
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Kinetics of the low-temperature structural transformation in the In–4.3 at. % Cd solid
solution
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B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
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The reversible structural transformation of the hysteretic type observed previously by the authors
in the In–4.3 at. %Cd alloy on low-temperature thermocycling is investigated further. In the
hysteresis region~150–290 K! a pronounced instability of the macroscopic characteristics of the
alloy is observed, which is manifested as time dependence of the dynamic Young’s modulus
and resistivity of the samples at a constant temperature fixed during the cooling or heating run. The
kinetic effects are investigated in detail near the boundaries of the hysteresis, where they are
most clearly expressed. Less clear signs of the structural transformation are observed on the
temperature dependence of the microhardness of the alloy. It is found that the structural
transformation is governed by thermally activated processes with several characteristic relaxation
times: the analytical form of the kinetic curves and the temperature dependence of the
relaxation times are substantially different for the direct~on cooling! and reverse~on heating!
transformations. Similarities and differences between this transformation and the known
structural rearrangement processes in the physics of alloys are discussed. The structural
transformation investigated here is also discussed in relation to the phase diagram of the In–Cd
system. ©2002 American Institute of Physics.@DOI: 10.1063/1.1491188#
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INTRODUCTION

In–Cd substitution solid solutions with cadmium co
centrations 4 at. %,c,5.9 at. % on cooling undergo a re
versible structural transformation of the martensitic type
which the high-temperature fcc phase goes over to a l
temperature phase with the fct lattice inherited fro
indium.1–4 The temperature of the transformationMs

strongly depends on the cadmium concentrationc and de-
creases fromMs'421 K at c54 at. % toMs'293 K at c
55.9 at. %. The transformation occurs in a temperature
terval of the order of 10 K. As far as we know, the pha
diagram below room temperature has not been studied be
and it is labeled as provisional in the literature.1–4

We recently showed5,6 that the martensitic phase is un
stable at low temperatures. Thus the alloy In–4.3 at. % C
low-temperature thermocycling at a finite rate of change
the temperature undergoes a reversible structural transfo
tion which is accompanied by hysteresis and is clearly d
cerned in measurements of the acoustic, micromechan
and resistive properties. The temperature boundaries of
hysteresis depend on the rate of thermocycling and are
proximately 130–290 K according to the data of acous
measurements, and 175–290 K according to the resisto
ric data. The transformation has a pronounced isother
character: within the hysteresis loop both in the direct tr
sition ~during cooling! and in the reverse transition~during
heating! the Young’s modulus and the resistivity depend su
stantially on the hold time of the sample at a fixed tempe
4651063-777X/2002/28(6)/10/$22.00
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ture. The microscopic picture of this structural transform
tion remains unclear at the present time.

The goal of this study was to make a detailed investi
tion of the kinetics of the transition process in the martens
phase of the In–4.3 at. % Cd solid solution from a metasta
to an equilibrium state in the region of the hysteresis lo
particularly near its boundaries. The kinetics of the rela
ation to equilibrium is studied by measuring the time dep
dence of the dynamic Young’s modulus and resistivity. The
data are supplemented with measurements of the temper
and concentration dependences of the microhardnes
In–Cd solid solutions with cadmium concentrationsc
,5.9 at. %. These results are needed for analysis of the
croscopic processes that govern the low-temperature s
tural instability of In–Cd solid solutions. In addition, the
may be useful for refining the low-temperature, In-rich si
of the state diagram of the In–Cd system.

1. EXPERIMENTAL PROCEDURE

The binary alloys In–c at. % Cd~c51.5, 3, and 4.3!
were obtained by fusion of weighed portions of 99.999
pure indium and cadmium in air in an alundum crucible. T
melt, overheated to about 20 °C above the melting temp
ture, was poured onto the surface of a steel or ceramic s
The ingot was a large-grained polycrystal~average grain di-
ameter;0.3 mm!. The cadmium concentration in the ingo
was determined by chemical analysis.

Part of the ingot was forged and rolled into bars
square cross section~;232 mm or ;0.930.9 mm!, from
© 2002 American Institute of Physics
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which samples of the necessary size were cut. For the ac
tical measurements we used samples with dimension
23237.5 mm, with ends that had been lapped perpend
lar to the long axis of the sample on a steel slab with a fi
abrasive. The samples for the resistance measurements
dimensions of 0.930.9323 mm. The surface of the sample
for the micromechanical measurements was polished
solution of hydrochloric acid and hydrogen peroxide. T
other details of the sample preparation and the measure
of the temperature dependence of the microhardness ca
found in Ref. 7.

A study of the morphology of the grains of the marte
sitic phase showed that they consist of thin domains,
interfaces between which are twin boundaries. This sor
microstructure and crystallographic misorientation of the
mains, as a rule, makes for a number of interesting feat
of the inelastic deformation of the alloy, in particular, sup
elasticity, high damping of mechanical vibrations, etc.

The acoustical properties~the logarithmic decrementd
of vibrations and the dynamic Young’s modulusE! were
studied by the two-component composite vibrator method8 at
a longitudinal standing wave frequency of;75 kHz at a
constant amplitude of the acoustic strain«05231027 in the
amplitude-independent region.

The resistivityr was measured in direct current using
standard four-probe method. The power dissipated in
sample did not exceed 231025 W. To eliminate the influ-
ence of parasitic emf’s, the measurements were made for
opposite directions of the transport current. To establish
temperature boundaries of the structural instability of the
loy, we studied the temperature dependences ofd, E, andr,
which were obtained during an isochronal thermocycling
the temperature interval 320–5.5–320 K with an avera
cooling ~heating! rate of 0.25–1 K/min. The temperature
the sample was changed by using a ‘‘standard’’ two-step p
cedure: first the temperature was lowered~raised! at a rate of
0.5–2 K/min, then held steady for 10–2.5 min; after t
hold, the measurements ofd, E, andr were made.

For studying the kinetics of the transition from on
structural state to another we measured the isothermal
dependences of the dynamic Young’s modulus and the re
tivity at fixed temperatures within the boundaries of the h
teresis loop. For studying the kinetics of the ‘‘direct’’ tran
formation from the high-temperature to the low-temperat
state the samples were cooled at an average rate of 2 K
from room temperature to one of the measurement temp
tures~250, 240, 230, 220, 210, 205, 200, 190, and 175!.
For studying the kinetics of the ‘‘reverse’’ transformation t
samples were first held for six hours at a temperature of
K to establish the equilibrium low-temperature structu
state, and then were heated at an average rate of 1 K/m
one of the measurement temperatures~265, 275, and 280 K!.

The Vickers microhardnessHV was measured in the
temperature interval 77–300 K with a load of 0.046 N on t
indenter and an indentation time of 10 s. For studying
temperature dependence ofHV the sample temperature wa
changed at a rate of 1 K/min or stabilized for a certain ti
at the chosen temperature points. In the latter case 10 in
tations were made and the average value of the diagon
the indentation~and, hence, of the hardness! was determined
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at the given temperature, while in the ‘‘ramp’’ mode ea
temperature corresponded to one indentation, and the len
of the diagonals~hardness values! were averaged over a tem
perature intervalDT55 K. The values obtained were as
signed to the temperature at the midpoint of the interval.

2. EXPERIMENTAL RESULTS

2.1. Temperature dependence of the acoustic attenuation
„internal friction … and the dynamic Young’s modulus

The typical temperature dependence of the logarithm
damping decrementd and dynamic Young’s modulusE, ob-
tained in the temperature interval 300–5.5–300 K on i
chronal thermocycling of a sample of the alloy In–4.3 at.
Cd at an average rate of 0.5 K/min is shown in Fig. 1. T
large values of the decrement (d.531023) over a rather
wide interval of low temperatures attest to the fact that t
alloy should be classed as a high damping material. T
d(T) curve exhibits nonmonotonic behavior~Fig. 1a!: the
decrement decreases sharply with decreasing temper
from 300 to 200 K, reaches a minimum atT'125 K, and
then increases, reaching a maximum atT'12 K, after which
a decrease can be noticed. On heating, thed(T) curve does
not completely retrace the curve obtained on cooling: in
temperature interval 200–270 K the decrement is higher
heating. The maximum size of the hysteresis loop in
vertical direction is observed at 250 K and reaches appr
mately 25% of the value of the attenuation measured
increasing temperature.

The temperature dependence of the dynamic Youn
modulusE is also nonmonotonic and exhibits a wide hyste
esis with boundaries of 130–290 K~Fig. 1b!. In the hyster-
esis region the Young’s modulus, like the decrement, ha

FIG. 1. Temperature dependence of the decrementd ~a! and dynamic
Young’s modulusE ~b! for a single isochronal thermocycling at an avera
rate of 0.5 K/min:~n,m!—In–4.3 at. % Cd, (s,d)—pure In; the unfilled
symbols are data taken on cooling of the samples, the filled symbols
heating.
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higher value on heating: the maximum difference is reac
at T'250 K and amounts to about 10%, which is an app
ciable effect for the elastic modulus. TheE(T) curves both
on cooling and on heating exhibit a pronounced anom
near 190 K in the form of a smeared step with a posit
derivativedE/dT.

The hysteresis loops ond(T) and E(T) are completely
reproduced when the samples are heated to room temper
and the thermocycling is repeated.

The acoustic characteristics of a polycrystalline sam
of pure indium do not exhibit hysteresis on thermocycling
this temperature interval~see Fig. 1! and do not change dur
ing an isothermal hold.

2.2. Instability and kinetics of the change of the Young’s
modulus in the hysteresis region

By repeating the isochronal thermocycling several tim
in the vicinity of the lower boundary of the hysteresis loo
in the temperature interval 175–230 K, the sample can
brought to a stable low-temperature state, which exhi
higher values of the Young’s modulus in the entire tempe
ture interval—all the way down to liquid helium temper
ture. The total increase of the Young’s modulus at 250 K
a value of the order of 22%. Figure 2a shows a schem
illustration of the change of the Young’s modulus on succ
sive thermocycles I, II, and III, constructed from the expe
mental measurements~see also Figs. 3–5 of Ref. 5!. A fea-
ture of the limiting stable low-temperature state is t
absence of any anomalies on the temperature dependen
the Young’s modulus on thermocycling in the temperat
interval 250–5.5 K.

The temporal instability of the Young’s modulus is a
parently due to the occurrence of a structural transforma
in the sample. An interesting feature of the reaction of
Young’s modulus to a variation of the temperature in t
vicinity of the lower boundary of the hysteresis loop is th
the value ofE measured during both cooling and heating fi
falls sharply to values corresponding to the lower curve
Fig. 2a~the ‘‘unrelaxed’’ modulusEU! and then grows, and
by the end of a five-minute isothermal hold it has reach
values corresponding to the upper curve~the partially ‘‘re-
laxed’’ modulusER!. These transitions are illustrated sch
matically in Fig. 2a by the sequences1→28→2 ~cooling!
and3→48→4 ~heating!. In the real experiments the points3,
4 and 1, 2 are the values ofER corresponding to the tem
peraturesT andT65 K ~the ‘‘1 ’’ for heating and the ‘‘2 ’’
for cooling! and are separated in time by 10 min~the 5 min
during which the temperature was changed at a rate o
K/min, and the 5 min of the isothermal hold prior to th
measurements!. The points 28 and 48 correspond to the
‘‘dip’’ values EU measured at the instant the given tempe
ture is reached.

The transition from a low-temperature hardened state
the initial high-temperature state occurs near the up
boundary of the hysteresis loop, in the interval 260–290
~Fig. 2a!, with a decrease of the modulus both during heat
to the temperature of the isothermal hold and during the h
itself ~the points5→68→6!.

Thus we can conclude that below room temperat
there are the two limiting branchesEU(T) andER(T) of the
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temperature dependence of the Young’s modulus of the a
In–4.3 at. % Cd~Fig. 2b!: the branchEU(T) is realized for
extremely rapid variation of the temperature, and the bra
ER(T) for extremely slow. On thermocycling at a finite ra
the Young’s modulus in a timet510 min ‘‘ranges through’’
the values ofE lying within the shaded loops in Fig. 2a
between the two successively measured values of the
tially relaxed modulus~on subsequent thermocycles II and
the vertical range of the loops decreases, and they are
shown on the diagram!. The value of the intermediate ‘‘dip’
of the modulus near the low-temperature boundary of
hysteresis could not be established precisely. The fall of
modulus gave way to a rapid increase immediately after
temperature variation was stopped, and in the cases re
tered amounted to not less than 10% of the measured v
of E. The kinetic curves ofE(t) characterizing the structura
changes in the alloy were recorded after cooling from ro
temperature to one of four temperature points~205, 200, 190,
and 180 K!, which correspond to the smeared step onE(T).
The relaxation of the Young’s modulus to its equilibriu
value corresponds rather well to a first-order reaction~Fig.
3!:

DE~ t !5E~ t !2E~0!5DEmax@12exp~2t/tE!#, ~1!

FIG. 2. Temperature dependence of the dynamic Young’s modulusE during
multiple thermocycling within the boundaries of the hysteresis loop~sche-
matic!: I,II,III—successive thermocycles; points1, 3, and5 correspond to
the values of the elastic modulus before the change in temperature
points 28, 48, 68 are unrelaxed values of the elastic modulus at the ti
when the measurement temperature is reached; points2, 4, 6 are partially
relaxed values of the elastic modulus 5 min after the specified tempera
was established. The temperature interval in which theE(t) isotherms were
measured is in the lower part of panel~a!; the temperature dependence of th
completely unrelaxedEU and relaxedER Young’s modulus~b!.
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where t50 is the time at which the measurement of t
Young’s modulus begins. Here, however, we should men
the presence of small initial segments on theE(t) curves
where the increase ofE is more rapid; clearly approximatio
~1! is not valid for those regions~see Fig. 3b!. The relaxation
time tE determined for the slope of the straight line in Fi
3b has a substantial dependence on temperature~Fig. 4!.

2.3. Temperature dependence of the resistivity

A more detailed study of the reversible structural tra
formation observed here was done by a resistome

FIG. 3. Isothermal change of the Young’s modulus after cooling of the a
from 300 K to the specified temperature. The kinetic curveDE(t)/E(0)
measured at 180 K~a!; the logarithm of the rate of change of the Young
modulus versus the time at different temperatures; the straight lines
linear approximations obtained by the least-squares method; the exper
tal points are shown only forT5180 K ~b!.

FIG. 4. Arrhenius plot for the relaxation times of the Young’s modulus,tE

~d!, and of the resistivity,tr ~.! on cooling from 300 K, and also for two
relaxation times of the resistivity: on heating of samples stabilized at 20
tr1 ~m! and tr2 ~j!, and on isothermal annealing with a step ofDT
55 K, tr8 ~n!.
n

-
ic

method. The resistivity is one of the most sensitive indicat
of the structure state of a material.9,10 In Fig. 5 we show the
temperature dependence of the resistancer of an In–4.3
at. % Cd alloy and of pure indium, obtained during the
mocycling at a cooling~heating! rate of 0.25 K/min in the
interval 320–150–320 K. For the pure indium the direct a
reverse runs ofr(T) coincide completely, while for the alloy
r(T) exhibits a hysteresis loop with temperature bounda
of about 175–290 K, somewhat narrower than the hyster
loop of the dynamic elastic modulus. In the central part
the hysteresis loop the resistance is 9% lower on heating
on cooling.

In the experiments we also recorded the temperature
pendence of the resistivityr on cooling and heating for in-
termediate concentrations of cadmium in the alloy. It is se
in Fig. 5b that in the alloys with concentrations of 1.5 and
at. % Cd there is no hysteresis. This attests to the stabilit
the structure of these alloys in the low-temperature regio

In the hysteresis region a substantial temporal instab
of the resistivity is observed for the In–4.3 at. % Cd allo
The kinetic effects are most pronounced in the vicinity of t
boundary of the hysteresis: an isothermal hold nearT
'190 K is accompanied by a decrease of the resistivity,
one nearT'270 K by an increase~during heating of the

y

re
en-

,

FIG. 5. Temperature dependence of the resistivity of pure In and of In–
alloys; the curves were obtained during single thermocycling at an ave
rate of 0.25 K/min. The temperature interval of the measurement of the
dependence ofr is indicated in the lower part of panel~a!; a 6-hour hold
was made at 200 K during cooling of the alloy In–4.3 at. %Cd~b!.
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sample!. After thermocycling four times through the tem
perature interval 175–230 K as well as after a long hold
the sample at a fixed temperature within this interval~at T
5200 K for the example shown in Fig. 6a!, the value of the
resistivity stabilizes, indicating that the transition to the lo
temperature structural state has gone to completion. Hea
to T'310 K completely restores the resistivity to its initi
~higher! values, which correspond to the high-temperat
structural state of the samples.

2.4. Instability of the resistivity in the hysteresis region

It is seen in Fig. 5 that the hysteresis effect in the te
perature dependence of the resistivity of the alloy In–
at. % Cd is observed against the background of a ra
strong temperature dependence due to the electron–ph
interaction. This background can be subtracted from the
perimentalr(T) curve under conditions such that Matthie
sen’s rule is valid in the range of Cd concentrations stud
In Ref. 1 it was shown that in alloys of the In–Cd system
concentrationsc.2 at. % Cd, Matthiessen’s rule holds rath
well, at least forT>293 K. Our data also attest to the valid
ity of Matthiessen’s rule. Since the temperature depende
of the resistivity for a Cd concentration of 3 at. % shows
anomalies in the temperature region of interest to us,
further analysis we can consider the temperature depend
of the differencerd(T)5r4.3(T)2r3(T) as the differential

FIG. 6. Hysteresis of the reduced residual resistivityrd5r4.32r3 ~see text!
during isochronal thermocycling at a rate of 0.25 K/min~s,d! and during
thermocycling with an intermediate isothermal hold at 200 K~n,m! ~the
unfilled symbols are data taken on cooling of the samples, the filled s
bols, on heating! ~a!. The unrelaxed~s! and partially relaxed~d! values of
rd during isothermal annealing with a stepDT55 K ~the numbers indicate
the annealing time!. The measurements were begun after a hold of 2.5 ho
at 200 K ~b!.
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analog of the change of the residual resistivity of the al
In–4.3 at. % Cd on thermocycling. This allows us to s
more clearly the hysteresis effects and instability effe
caused by the structural rearrangements in the alloy un
study, since the residual resistivity has a particularly h
sensitivity to the change in structural parameters of the c
tal.

Figure 6a shows a plot ofrd(T) obtained both during
isochronal thermocycling at a rate of 0.25 K/min~cf. Fig. 5!
and as a result of thermocycling at the same rate of chang
the temperature in the interval 300–5.5–303 K but with
intermediate isothermal hold for 6 hours atT5200 K. It is
seen that at the chosen rate of cooling, the start of the
ticeable decrease ofrd is observed near 210 K. We note th
the limiting minimum value of the residual resistivity, whic
characterizes the low-temperature state of the sample,
not depend on how this state is reached.

As in the case of the hysteresis of the acoustical prop
ties, a rapid change of temperature corresponds to the u
laxed branch of the temperature dependence of the resi
ity, whereas a slow change in temperature corresponds to
relaxed branch of the temperature dependence. Figure
showsrd(T) for two different degrees of relaxation, corre
sponding to the final stage of the transition of the alloy to
low-temperature stable state, and to the initial stage of
reverse transition to the high-temperature stable state. Fo
chosen regime of temperature variation the two runs cros
T'245 K. A prolonged hold at this temperature does n
lead to any noticeable change in the resistivity.

2.5. Kinetics of the transition of the alloy to the low-
temperature state

Figure 7 shows the time dependence of the resistiv
measured at fixed temperatures. Plotted on the vertical ax
the quantityDr(t)5r(t)2r(0), where t50 is the time at
the start of the measurements. It is seen that at all temp
tures the transformation reaction begins slowly and then,
ter some time, it speeds up, its rate reaching a maximum
then gradually declining. We note that atT5240 K the start
of the transformation is accompanied even by a slight
crease in the resistivity~Fig. 7b!.

In contrast to the relaxation of the dynamic Young
modulus, the kinetic curves ofDr(t) are S-shaped and ar
not described by a first-order reaction equation~1!. The ki-
netic curves shown in Fig. 7 are approximated rather well
a simple expression which was proposed by Avrami for
scribing the kinetics of isothermal transformations govern
by processes of nucleation and growth of the particles of
new phase:11–13

Dr~ t !5DrmaxH 12expF12S t

tr
D nG J , ~2!

wheretr is the effective relaxation time of the alloy to equ
librium at the given temperature. Forn51 this equation de-
scribes a first-order reaction, but for the curves shown in F
7a the exponentn varies in the range 1.5–1.8~with an aver-
age value of 1.57! and this parameter shows no systema
dependence on temperature. The temperature dependen
the relaxation timetr(T) in Arrhenius coordinates is show
in Fig. 4. This is a rather symmetric curve with a minimum
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T5200 K: the relaxation time increases substantially wh
the temperature is decreased or increased from this valu
is seen from Fig. 4 that the transformation is characterized
long relaxation times~the minimum value istr52.2 hours at
T5200 K!.

The maximum value of the rate of change of the res
tance depends substantially on the temperature~see Fig. 8!:
maxudr/dtu initially increases with decreasing temperature
the isothermal hold in the interval 250–200 K and then
creases on going to 190 and 175 K. The minimum time
an experiment to follow the approach of the resistivity to
value close to its equilibrium valuer`5r(t→`) also de-
pends importantly on the temperature: it is;5.5 hours atT
5200 K and a considerably longer 24 hours at temperatu
of 250 and 175 K.

2.6. Kinetics of the transition of the alloy to the high-
temperature state

This transition was studied in less detail. We measu
three r(t) isotherms in the region of the high-temperatu
boundary of the hysteresis, 260–290 K~Fig. 9a!. The reverse

FIG. 7. Kinetic curves of the isothermal change of the resistivity of the a
In–4.3 at. %Cd at the transition to the low-temperature structural state
solid curves show the functions@Eq. ~2!# approximating the experimenta
data~a!; the initial parts of the kinetic curves at 230 K and 240 K~b!.
n
. It
y

-

f
-
r

es

d

structural transition is accompanied by an increase in
resistivity to the values which were obtained at the start
the thermocycling.

The presence of two linear segments with differe
slopes on the plots of ln(dr(t)/dt) versus time~Fig. 9b! shows
that the reverse transition process in this experimental s
corresponds to a heterogeneous first-order reaction with
substantially different characteristic relaxation timestr1 and
tr2 . The experimental points in Fig. 9a are well appro
mated by the expression

y
he

FIG. 8. Time dependence of the rate of isothermal relaxation of the re
tivity in the cooling stage: the solid curves are the time derivatives of
approximating functions@Eq. ~2!# corresponding to different temperature
~see Fig. 7!.

FIG. 9. Kinetic curves of the relaxation of the resistivity of an alloy o
heating of the sample from 200 K; the solid curves show the approxima
functions @Eq. ~3!# ~a!. Logarithm of the rate of change of the resistivit
ln(dr/dt), versus time for different temperatures; the solid curves show
time derivatives of the approximating functions~3! corresponding to the
different temperatures~b!.
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Dr~ t !5Drmax
~h! H mF12expS 2

t

tr1
D G

1~12m!F12expS 2
t

tr2
D G J , ~3!

wherem is the relative contribution of the faster process. T
ratio m/(12m) is equal to 0.21 at 265 K, 0.92 at 275 K, an
1.02 at 280 K.

The values obtained for the relaxation timestr1 andtr2

are shown in Fig. 4. It is seen that the relaxation to the ini
high-temperature state occurs considerably faster than
transition to the low-temperature state.

If the isothermal annealing of the low-temperature st
is done with a small temperature step,DT55 K ~see Fig.
10a!, the transformation occurs uniformly in time in acco
dance with the first-order reaction

Drd~ t !5Drd max@12exp~2t/tr8!#. ~4!

FIG. 10. Kinetic curves of the change of the reduced residual resistivityrd

during isothermal annealing with a stepDT55 K ~a!; the limiting values of
rd on cooling~n! and heating~m! of the sample, obtained by extrapolatin
the corresponding kinetic curves tot→` with the aid of Eqs.~2! and ~3!;
~s,d!—the direct and reverse branches of therd(T) curve during ther-
mocycling at an average rate of 0.25 K/min~see Fig. 6a! ~b!.
e
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The relaxation timetr8 here is close to the relaxatio
time of the slower process~see Fig. 4!. In that experiment the
three successive anneals were interrupted long before
structure of the alloy reached its equilibrium state at
given temperature, and so the initial state of the sample
each successive temperature was not an equilibrium sta

2.7. Dependence of the microhardness of In–Cd alloys on
the temperature and cadmium concentration

As in the acoustical and and resistance experime
signs of the structural instability of the alloy In–4.3 at. % C
are also clearly observed in the temperature dependenc
the microhardness~Fig. 11a! measured in the temperatur
‘‘ramp’’ mode as the sample is cooled. The microhardness
pure indium increases linearly as the temperature is lowe
The microhardness of the alloy is substantially higher at
same temperatures and varies nonlinearly. The hysteresi
gion on E(t) and r(t) corresponds to an interval of stron
temperature dependence of the microhardness. Howeve
the accuracy achievable in our experiments, the recorded
crohardness did not reveal any hysteresis ofHV(T) or insta-
bility effects: the value ofHV(T) is independent of the iso
thermal hold time of the sample, regardless of whether it w
under a loaded indenter or not, and is also independent o
direction of the temperature change.5

The impurity hardening of indium under doping by ca
mium atoms is illustrated by Fig. 11b, which shows the co

FIG. 11. Temperature dependence of the microhardness of the alloy In
at. %Cd~s! and pure In~d! ~a!; the concentration dependence of the m
crohardness of In–Cd alloys at temperatures of 290 K and 77 K~b!.
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centration dependence of the microhardnessHV(c) at tem-
peratures of 293 and 77 K, corresponding to the high-
low-temperature structural states of the alloy In–4.3 at
Cd. As we have said, the solid solutions with cadmium c
centrationsc,4 at. % do not have phase transitions, wh
the alloys with 4 at. %,c,5.9 at. % Cd have a phase tra
sition of the martensitic type on cooling. This feature is n
reflected in any way on theHV(c) curve, which at both tem-
peratures remains linear in the entire range of cadmium c
centrations.

We note that this sort of behavior is a sign that the m
bility of dislocations in the alloy is being affected by th
diffusion of impurity atoms. Indeed, for the standard sta
solid solutions in the low-temperature region, where the d
fusion of impurity atoms is ruled out, a power-law depe
dence of the yield stress of the alloy on the impurity conc
tration, with an exponent of 1/2 or 2/3, is observed.14 Since
the microhardness, as a rule, is proportional to the y
stress, it can be assumed that for stable alloys theHV(c)
curve should have a similar form in the absence of impu
diffusion.

3. DISCUSSION OF THE RESULTS

3.1. Hysteresis properties of the alloy during thermocycling

Analysis of the experimental data obtained in the pres
study shows that the cause of the temporal instability o
number of physical properties of the alloy In–4.3 at. % Cd
the temperature interval 170–290 K is a spontaneous rev
ible low-temperature structural transformation of a hystere
type. The width of the hysteresis depends on the rate
isochronal thermocycling, but even when the rate is m
infinitesimally slow, the width cannot be reduced to zero b
retains a significant residual value. Figure 10b shows a
of the values obtained when therd(t) curves measured a
different temperatures are extrapolated tot→`. Also shown
in this figure for comparison are the direct and reve
branches ofrd(T) measured during isochronal thermoc
cling at an average rate of 0.25 K/min. It follows from Fi
10b that at such a rate of thermocycling, the structure of
alloy is far from equilibrium both on cooling and heating
the sample. In the first case the largest deviation from
equilibrium values ofrd is observed near 200 K, and in th
second case, near 275 K. In addition, it is seen that eve
the limiting caset→` the forward and reverse branches
rd do not coincide with each other, and the maximum
sidual hysteresis in temperature is;30 K. The cause of this
wide residual hysteresis may be the circumstance that in
indicated temperature interval the formation of new-ph
nuclei is hindered~or eliminated altogether!, possibly be-
cause, for example, the decrease of the free energy a
phase transition is small compared to the elastic energy~the
effective driving force of the process is negative11!. The pres-
ence of residual hysteresis attests to the lack of a one-to
correspondence between the structure of the samples an
temperature of the measurement during thermocycling. T
might explain why therd(T) curves did not display a seg
ment of equilibrium values of the residual resistivity, whic
is ordinarily registered during the isochronal annealing
quenched alloys which undergo a transition to an orde
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state.15 On such a segment the equilibrium value ofrd is
uniquely related to the equilibrium structure of the alloys
the given temperature and is independent of the direction
temperature change during the isochronal thermocycling

3.2. Kinetics of formation of the low-temperature state

The low-temperature structural state is characterized
higher values of the elastic modulus and a higher microha
ness. In this sense it can be called a hardened state.
kinetics of the transition to a hardened state can be jud
from the time dependence of the resistivity, which has a ch
acteristic S-shaped form. The initial stage of the transform
tion begins essentially from a zero rate on all the kine
curves. AtT5240 K one even observes an initial increase
the resistivity ~Fig. 7b!. As time goes on, the rate of th
process increases, reaches a maximum value, and then
idly falls off ~Fig. 8!. At temperatures of 175, 240, and 250
the measurement periods used permitted observation of
the initial stage of the process. The maximum rate of
process in the fast stage of the transformation depends
monotonically on temperature and, on the whole, correla
with the temperature dependence of the relaxation timetr of
the process: the shortest relaxation time, at 200 K, co
sponds to the highest value of the maximum rate of the tra
formation ~cf. Figs. 4 and 8!.

The above-described form of the time dependence of
resistivity curvesr(T) for samples cooled from room tem
perature~i.e., from a temperature in the existence region
the stable high-temperature phase! is typical of processes o
nucleation and growth of particles of a new phase and
similar, for example, to the kinetics of the resistivity in th
transformation of the disorder–order type in the alloy Cu3Au
~Ref. 16!. The value of the exponentn ('1.5– 1.8) in the
Avrami equation~2! corresponds to the early stage of th
diffusional growth of the nuclei of small sizes, with a decli
ing rate of their nucleation~see Table 1 in Ref. 11!. The
initial increase of the resistivity at 240 K in this case m
mean that in the early stage of the transformation the siz
the nuclei is comparable to the mean free path of the cha
carriers, and the nuclei are therefore efficient scattering c
ters for conduction electrons. The subsequent growth of
nuclei of the ordered phase decreases the contribution of
mechanism to the resistivity of the alloy.

In the general case, when the rates of nucleation
growth are governed by thermally activated processes,
rate of isothermal transformation is a nonmonotonic funct
of temperature. With decreasing temperature the nuclea
rate increases rapidly in connection with the increase of
driving force of the transformation. At the same time, t
rate of growth decreases with decreasing temperature, s
it is limited by the activation energy of atomic rearrang
ments, which itself is almost independent of temperatur11

Therefore, with decreasing temperature the rate of trans
mation of the high-temperature phase into the lo
temperature phase initially increases~the relaxation time de-
creases! and then decreases~the relaxation time increases! on
account of a competition between two factors: the increas
driving force of the transformation and the simultaneo
slowing of the rate of thermally activated processes. O
notices the similarity of our results to the analogous d
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obtained in Ref. 16 in a study of the kinetics of the disorde
order transformation in Cu3Au ~the data of Ref. 16, pro
cessed according to formula~2!, are presented in Fig. 12!.
The main difference of the results is the marked asymm
of the tr(1/T) curve, which is due to the presence of a cri
cal temperatureTc for long-range ordering in Cu3Au. In the
alloy In–Cd, as is shown in Fig. 10b, the transition to t
low-temperature structural state has a widthDT
550– 70 K, and this can explain the nearly symmetri
shape of thetr(1/T) curve.

3.3. Kinetics of the transition to the high-temperature
structural state

As in the case of the direct transformation, the kinet
of the formation of the high-temperature structural state
pends substantially on the temperature of the isothermal
of the alloy. Furthermore, it is in large measure determin
by the structural state of the samples at the time when
specified measurement temperature is reached. W
samples with the stable low-temperature structure reac
after a long hold at 200 K are heated comparatively rapi
to a temperature above;250 K, the kinetics of the revers
transition to the initial high-temperature~softened! state is
determined by the simultaneous occurrence of at least
thermally activated relaxation processes, one relatively ra
and one relatively slow, with the specific contribution of t
faster process increasing with increasing temperature@see
expression~3!#. During isothermal annealing with a sma
temperature stepDT55 K ~Fig. 10a! the transformation oc-
curs in accordance with a first-order reaction. The relaxa
time here is close to the relaxation times of the slower of
two processes, which governs the kinetics of the chang
the resistivity during an isothermal hold of a sample sta
lized at 200 K~Fig. 4!.

3.4. Relationship of the low-temperature structural
transformation to the state diagram of the alloy

Let us consider the possible connection between the
served structural instability and the state diagram of the

FIG. 12. Arrhenius plot for the relaxation timestD2O of transformations of
the disorder–order type after quenching of the alloy Cu3Au from T.Tc

~Ref. 16!.
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loy. According to the equilibrium phase diagram, the In–C
system has a eutectoid point at a Cd concentration of
at. % and a temperature of 293 K.1–4 As we have said, the
phase diagram has not been studied at temperatures b
the eutectoid point, and in the published sources known
the authors a possible phase boundary has been shown
visionally ~the dotted line1 in Fig. 13!. Presumably, as the
temperature is lowered the tetragonal phasea t with a con-
centrationc,5.9 at. % Cd suffers a decomposition, with th
formation of a small amount of cadmium-enriched solid s
lution in the matrix of thea t phase, and the temperature
the decomposition decreases with decreasing cadmium
centration. If the low-temperature instability of thea t phase
observed by us for the solid solution In–4.3 at. % Cd is d
to this structural transformation, the phase boundary sho
pass between the low- and high-temperature branches o
residual hysteresis, corresponding to the direct and rev
transformations in the alloy with the given Cd concentrati
~dotted line2 in Fig. 13!. Granted, in this case one woul
expect manifestations of instability of the acoustical and
sistive properties of the alloys with Cd concentrations of 1
and 3 at. % in a lower temperature region. The absenc
anomalies in those alloys may be a consequence of a
crease of the driving force of the process as the Cd conc
tration decreases or of a significant decrease of the rat
thermally activated processes when the alloys are coole
the corresponding temperatures~150–160 K for c
51.5 at. % Cd and 190–200 K forc53 at. % Cd!. This as-
sumption will require further experimental study on allo
with cadmium concentrations 3 at.%,c,5.9 at. %.

Of course, experiments done with the use of indire
structurally sensitive methods~acoustic, resistive, and micro
mechanical! do not permit one to establish conclusively th
specific microscopic mechanisms that govern the obser

FIG. 13. State diagram of the alloy In–Cd from the In side:ak is a solid
solution with an fcc structure,a t is a solid solution with an fct structure; the
dot-and-dash vertical lines correspond to Cd concentrations investigate
this study. 1—phase boundary provisionally identified in Refs. 1–
2—position of the phase boundary corresponding to the results obtaine
the present study~see text!.
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low-temperature structural transformation in the alloy In–4
at. % Cd. However, a number of signs indicate that the gi
structural transformation has a more complex nature than
known mechanisms for changes in the mutual arrangem
of atoms in solid solutions~short-range or long-range orde
ing, clustering, decomposition of a supersaturated solut
etc.!. Among these signs we mention the following:

— The presence of a segment with a positive derivat
on the curve of the Young’s modulusE(T) of the metastable
high-temperature phase in precisely that temperature inte
in which the effects of structural instability are most pr
nounced, and the complete absence of such a segment o
E(T) curve in the stable low-temperature phase.

— An unusual reaction of the elastic modulus of
sample in the metastable high-temperature phase to a ch
in temperature in the critical temperature region: regard
of the sign of the change in temperature~decreasing or in-
creasing! a dip of the modulus is always observed, whi
goes away when the temperature is stabilized. Such beha
may be due to a loss of stability of the crystal lattice, whi
ordinarily occurs near a phase transition temperature.

— Appreciable residual hysteresis of the properties
the alloy during thermocycling, which cannot be reduced
zero for arbitrarily slow rates of change of the temperatu

— Anomalously large values of the relative increase
the Young’s modulus (;27%) and decrease of the resistivi
(;11%) at the transition from the high- to the low
temperature stable structural state.

A conclusive explanation of the nature of the observ
effects will require further study, mainly by the methods
structural analysis. The close values of the scattering fac
of the In and Cd atoms makes it difficult to study this all
by x-ray diffraction methods. The high plasticity and lo
melting temperature of the samples make it practically
possible to use the method of high-voltage transmission e
tron microscopy. The most suitable method in this case
neutron diffraction. Useful information can also be obtain
from dilatometric and thermophysical experiments.

CONCLUSIONS

1. A reversible low-temperature structural transformat
of the hysteretic type is observed in polycrystals of the so
solution In–4.3 at. % Cd; it is registered in the acoustic
resistometric, and micromechanical measurements in
temperature interval 175–290 K.

2. The transition to the low-temperature structural st
is spontaneous, smeared in temperature, and features a
residual hysteresis. This transition is governed in a comp
3
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way by thermally activated processes of nucleation a
growth of particles of the low-temperature ordered phase
is attested to by the S-shaped form of the kinetic curves
the resistivity and the nonmonotonic temperature dep
dence of the relaxation time.

3. The low-temperature structural state observed as a
sult of the transformation is characterized by considera
higher values of the Young’s modulus~E increases by
;27%! and microhardness and by a considerably lower
sidual resistivity~rd decreases by approximately 30%!.

4. Further study, mainly by methods of direct structu
analysis, will be needed to explain the detailed microsco
picture of this structural transformation.
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Features of the magnetization of an antiferromagnet with single-ion anisotropy of the
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A theory is proposed for the two-step phase transition from the singlet to a ferromagnetic state in
systems of the ABX3 type. It is shown that the transition is due to a substantial rearrangement
of the single-ion spectrum. The critical fields and magnetic susceptibility are calculated. ©2002
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INTRODUCTION

Recently there has been considerable interest in ma
sublattice hexagonal antiferromagnets~AFMs! of the ABX3

type with the CsNiCl3 lattice, in which the spins of the mag
netic ions B21 form AFM chains along theC6 axis, on the
one hand, and triangular structures in the basal plane, on
other ~see reviews1,2!. A triangular easy-plane Loktev struc
ture in the cryocrystalb-O2 ~Ref. 3! has been quite wel
studied, but in that system the intramolecular anisotropy c
stant is much less than the exchange constant, and so it
not be classed with the quantum magnets. The latter h
anisotropy of a single-particle origin, the value of which
comparable to or greater than the exchange interactions.4 The
necessary relations are fulfilled for the AFM CsFeBr3 , in
which, at a value of the pseudospin of the Fe21 ion S51, the
single-ion anisotropy constantD'20– 30 K, while the ex-
change interactionsJch for the nearest-neighbor ions belon
ing to the two adjacent planes are equal to 3–5 K and for
same ions in the basal planesJpl'0.3– 0.4 K.5–8 At these
values of the parameters a singlet spin state is realized in
AFM. In other words, of the three possible single-ion sp
states with projections on theC6 axis of Sz561 and 0, the
last state is the lowest, so that the crystal is actually nonm
netic.

When such an AFM is placed in a magnetic fieldH, a
change of the sequence of levels occurs, and one of the
let states with nonzero spin projection the lowest~ground!
state. Here the magnetic field causes a transition from a n
magnetic to a magnetic phase.

The available information about the nature of this tra
sition, which was discussed in Ref. 5 for the caseHiC6 , is
contradictory. In Refs. 9 and 10 it is classed as second-or
while in Refs. 11–13 it is identified as first-order. While th
experiment done in Ref. 5 does not permit one to reach
4751063-777X/2002/28(6)/3/$22.00
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unambiguous conclusion, it is the goal of the present pape
to do a comprehensive study the behavior of the CsFe3

crystal in a longitudinal magnetic field. The magnetizati
curves given in Ref. 5 indicate a sequence of two seco
order phase transitions: from the singlet state to a can
phase~CF! and from the latter to a ferromagnetic~FM!
phase. In this paper we consider a theoretical model desc
ing these phase transitions and determine the conditions
der which they occur. In contrast to Ref. 5, the theory co
sidered here contains variational parameters that pertai
physically observable quantities—the sublattice spins
their canting angles.

MODEL

We limit consideration to bilinear isotropic exchange i
teractions, single-ion anisotropy, and the Zeeman contr
tion. In this case the Hamiltonian can be written in the fo

H5
1

2 (
na,mb

JabSnaSmb1D(
na

~Sna
z !22h(

na
Sna

z , ~1!

where a and b (aÞb) label the magnetic sublattices, o
which there are six;n andm are vectors specifying the po
sitions of the spin in the sublattices; the constantD is posi-
tive, corresponding to anisotropy of the easy plane type.
field h5mbgH is given in energy units and is directed pe
pendicular to the easy axis along the axisZiC6 . For such an
orientation of the field the spins of the sublattices differi
with respect to theZ axis will be canted in the same wa
relative to this axis. In the CsFeB3 crystal the exchange in
teraction is anisotropic in space, i.e., it depends on the p
tion of the spins in the lattice. For example,Jpl in the easy
plane differs in value from the exchange interactionJch in
the direction of the hard axis~the direction of the chains!.
© 2002 American Institute of Physics
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When the features of the structure are taken into account
exchange parameterJch in the direction of the hard axis tend
to establish an antiparallel orientation of the nearest-neigh
spins in adjacent planes, andJpl orients the spins nearest t
the easy plane at an angle of 2p/3.

Our analysis of Hamiltonian~1! will be done using the
self-consistent field approximation, in which the effect
spin–spin fluctuations is ignored, and the average of a p
uct of spin operators is equal to the product of their averag
In this case the ground-state energyEgr per unit cell ~for
spins belonging to different sublattices—three in one pla
and three in the neighboring planes! will be equal to

Egr5
1

2 (
ab

Jabzabsasb1D(
a

Qa2h(
a

sa
z , ~2!

wheresa is the average value of the spins of the ions of
sublattices,zab is the number of nearest neighbors, which
equal to three for spins of the same plane and equal to
for spins from two neighboring planes, and we have a
introduced the average values of the squares of thez projec-
tions of the spin operators, which are customarily referred
in the literature as the components of the quadrupole s
momentQa .

For the spins of each sublattice the proper coordin
systemsja , ha , za are such that the direction of the avera
spin of theath sublattice is oriented along theza axis, while
the ja axis lies in theZza plane. Then in the proper coord
nate system the wave function of the the spin ground stat
the sublattice with indexa will have the form4

C5cosfau1&1sinfau21&, ~3!

whereu61&, u0& are the eigenfunctions of the operatorSna
z .

With allowance for Eq.~3! we calculate the mean values
the spin and the components of the quadrupole spin mom

s5cos 2f, Qzz51, Qjj5
1

2
~11sin 2f!. ~4!

In the expressions for the averages~4! we have dropped the
sublattice indices, since in the chosen approach the g
quantities are independent ofa. The energy~2! with the use
of ~4! takes the form

Egr59Jpl cos2 2f~3 cos2 u21!16Jchcos2 2f~2 cos2 u

21!16DS cos2 u1
sin2 u

2
~11sin 2f! D

26h cos 2f cosu, ~5!

whereu is the angle between sublattice spins and the m
netic fieldH and is equal to the angle between the crysta
graphic axis and the proper axesza . We note that in Ref. 5
the ground-state energy of the crystal is also found and m
mized. However, the wave functions chosen in Ref. 5, un
~3!, are written in a general form referring to the crystall
graphic rather than the proper coordinate system and so
tain the parameters of the rotation of the vectorsu61& and
u0& in Hilbert space, and that makes it hard to interpret
relationship between the observable and calculated~varia-
tional! parameters.
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EQUATIONS OF STATE AND THEIR ANALYSIS

The spin configurations that determine the ground s
in the different possible phases and their interconversion
magnetic field are determined from the equations obtai
by minimizing the energy~5! with respect tof andu:

2cos 2f sin 2f@6Jpl~3 cos2 u21!14Jch~2 cos2 u

21!#1D sin2 u cos 2f12h sin 2f cosu50, ~6!

2cosu sinu@~9Jpl14Jch!cos2 2f1D~12sin 2f!#

1h cos 2f sinu50. ~7!

These equations can be reduced to the equations for d
mining the ground state which were obtained by Ostrovs�

and one of the present authors,4 by using an artificial self-
consistency procedure. Although Eqs.~6! and ~7! give the
same solutions as before, they are nevertheless prefer
since they can be used to determine the stability of
phases.

Let us analyze the solutions of the system of equati
~6!, ~7!. The first of them corresponds to a FM state and
realized for sinu50, sin 2f50. In this case the spins of th
sublattices are directed along the field, their magnitudes
maximum: s5S51. This is the so-called paraphase,
which the longitudinal magnetic susceptibilityxzz is equal to
zero.

The second solution corresponds to a three-sublat
state in the plane of the AFM, with the Loktev structure.3 It
obtains for cosu50 and sin 2f52D/(6Jpl14Jch). This so-
lution can exist only in the absence of magnetic field.

In the corresponding 120° structure the values of
spins are equal and contracted:s5A12D2/(6Jpl14Jch)

2.
The third solution pertains to a canted phase in wh

again s<1. From Eq. ~7! we find directly that the angle
between the sublattice spin andH depends nonlinearly on th
value of the field:

cosu5
h cos 2f

~9Jpl14Jch!cos2 2f1D~12sin 2f!
. ~8!

With increasing field the canting of the spins toward the fie
increases and, accordingly, the value ofs increases.

The field of the transition from the canted phase to
state in which all the spins flip to a perpendicular orientat
with respect to the easy plane is determined by substitu
the values cosu51 and cos 2f51 into expression~8! for the
canting angle. We obtainhflip59Jpl14Jch1D, which agrees
with the expression for the spin-flip field given in Ref. 5. W
see that the value of the spin-flip field is additive with resp
to the values of the anisotropy and exchanges, although
physical mechanisms of their action are different.

Taking expressions~4! for the sublattice spins into ac
count, we obtain the magnetic susceptibility in the can
phase in the proper coordinate systems:

xzz522 sin 2f cosu
]f

]h
2cos 2f sinu

]u

]h
. ~9!

Here the derivatives with respect to field in~9! can be
calculated using Eqs.~6! and ~7!.
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At the beginning of the spin canting process upon
introduction of small magnetic fieldsh→0, when the second
solution is the ground state, the value ofxzz in the canted
phase will be determined by the expression

xzzuh50

5
~6Jpl14Jch!

22D2

~9Jpl14Jch!~6Jpl14Jch!
223JplD

21D~6Jpl14Jch!
2 .

~10!

We see from Eq.~10! that in the case of a large value o
D under the conditionD.6Jpl14Jch the value ofxzz be-
comes negative. Consequently, for such a relationship of
constants of the Hamiltonian the antiferromagnetic 12
phase loses stability.

The fourth and last possible solution is specified
the relations cosu50 and cos 2f50. It can be realized both
at nonzero magnetic fields and forh50. The contraction of
the spins in this state is maximum (s50), and here
sin 2f'21. This is the so-called singlet state,14 in which the
magnetic order is characterized by a spin quadrupole
ment. In the singlet state the average values of the spin q
rupole moment are the same for all directions in the e
plane, and because of the vanishing ofs the direction of the
axes of quantization become indeterminate in the pla
Since the energy of this state is independent of the valu
h, the magnetic susceptibility in it, determined in the dire
tion along the field, will also be zero.

Indeed, let us calculate the second derivatives of the
ergy ~5! for the singlet state. We find that]2Egr /]f2

5212(6Jpl14Jch)112D, ]2Egr /]u2512D, ]2Egr /]f]u
512h, and the boundary of the region of its stability is d
termined from the condition that the expressions
]2Egr /]f2 and the Jacobian vanish:

]2Egr

]f2

]2Egr

]u2 2S ]2Egr

]f]u D 2

5144~D22D~6Jpl14Jch!2h2!50. ~11!

Ultimately we arrive at the finding that the stability o
the singlet state is preserved whenD.6Jpl14Jch and the
field h is less than a critical fieldhQP , where

hQP5AD22D~6Jpl14Jch!. ~12!

The susceptibility~9! in the canted phase, determined
zero field forD>6Jpl14Jch, changes sign, indicating a los
of stability. It can be shown that forD.6Jpl14Jch in a field
e

e
°

o-
d-
y

e.
of
-

n-

r

t

equal tohQP , a second-order phase transition occurs fro
the quadrupolar spin state to the canted phase. Here the v
of the fieldhQP is lower than the spin-flip fieldhflip , and the
magnetization of the system forh5hQP changes continu-
ously. In fieldsh>hQP the magnetization, starting from zero
increases continuously as the field increases. In the field
gion h>hflip it reaches a maximum possible value and sto
growing. Thus, in fieldsh<hQP andh>hflip the susceptibil-
ity will equal zero in the canted phase and have a nonz
value in the field intervalhQP<h<hflip . At the points of the
second-order phase transition from the quadrupolar spin s
to the canted phase and from the canted phase to the
state the susceptibilityxzz changes in a jump. It is this be
havior of the magnetization and susceptibility that was o
served experimentally in Ref. 5. If the quantityD2(6Jpl

14Jch) is positive and not small, then the theoretical tre
ment becomes complicated and requires numerical anal
Here the possibility of a first-order phase transition from t
singlet phase to the canted phase or directly to the FM ph
cannot be ruled out. Examples of this will be consider
separated.

This study was supported in part by the Foundation
Basic Research of Ukraine~Project F7/514-2001!.

*E-mail: vloktev@bitp.kiev.ua

1M. F. Collins and O. A. Petrenko, Can. J. Phys.75, 605 ~1997!.
2B. S. Dumesh, Usp. Fiz. Nauk170, 403 ~2000!.
3V. M. Loktev, Fiz. Nizk. Temp.5, 295~1979! @Sov. J. Low Temp. Phys.5,
142 ~1979!#.

4V. M. Loktev and V. S. Ostrovski�, Fiz. Nizk. Temp.20, 983~1994! @Low
Temp. Phys.20, 775 ~1994!#.

5Y. Tanaka, Y. Tanaka, and T. Ono, Preprint cond-mat/0104287~2001!.
6B. Dorner, D. Visser, U. Stiegenberger, K. Kakurai, and N. Stein
Z. Phys. B: Condens. Matter72, 487 ~1988!.

7D. Visser and A. Harrison, J. Phys.~Paris!, Colloq. 49, C 8, 1467~1988!.
8A. Harrison and D. Visser, J. Phys.: Condens. Matter4, 6977~1992!.
9Y. Kawamura, J. Phys. Soc. Jpn.61, 1299~1992!.

10Y. Kawamura, J. Phys.: Condens. Matter10, 4707~1998!.
11Y. Kadowaki, S. M. Shapiro, T. Inami, and Y. Ajiro, J. Phys. Soc. Jpn.57,

2640 ~1998!.
12Y. Ajiro, T. Nakashima, Y. Uno, Y. Kadowaki, M. Mekata, and N. Achiwa

J. Phys. Soc. Jpn.57, 2648~1988!.
13T. E. Mason, B. D. Gaulin, and M. F. Collins, Phys. Rev. B39, 586

~1989!.
14A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov,Rare-Earth

Ions in Magnetically Ordered Crystals@in Russian#, Nauka, Moscow
~1985!.

Translated by Steve Torstveit


	377_1.pdf
	383_1.pdf
	387_1.pdf
	391_1.pdf
	395_1.pdf
	403_1.pdf
	412_1.pdf
	415_1.pdf
	423_1.pdf
	429_1.pdf
	442_1.pdf
	452_1.pdf
	462_1.pdf
	465_1.pdf
	475_1.pdf

