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The temperature dependence of the complex magnetic susceptitity” of various YBCO
films is investigated at different amplitudes of the exciting fillgl. . It is found that

when the temperaturg,, at which the maximum is observed on t&T) curve is plotted as a
function of H3,, (the parametexr=1, 1/2, or 2/3, depending on the character of the

coupling between crystallitgsa kink appears at a certain fiet,.=H7 . It is suggested that the
temperaturel ;; obtained by extrapolating thEm(Hilca) curve from the high-field region to

zero field is the Berezinskii—Kosterlitz—Thouless transition temperditggg . This suggestion is
based on a comparison of the present results with published data from a study of the
complex susceptibility of a GdBEu;Og 75 Single crystal for directions dofl ;. parallel to thec
axis of the single crystal and in itsb plane, and also on the coincidence of the calculated
values of certain characteristic temperatures near the BKT transition with our experimental
values. ©2002 American Institute of Physic§DOI: 10.1063/1.1491175

INTRODUCTION satisfied. At the same time, the BKT transition is observed in

Metaloxide highT, superconductor§HTSCS have a YBCO, both in granular bulk materidlsand film¢ and in

quasi-two-dimensional layered structure which is character§ingle crysotlal§. ited epitaxial fil ¢ .
ized by high anisotropy of a number of their physical prop- Laser-deposited epitaxial films of YBCO are quite per-

erties, and their magnetic properties, in particular. Inherent t§¢t: In them thec axis is to a high degree of accuracy
such structures is a transition, a—T,, from three- oriented perpendicular to the plane of the film, while at the

dimensional behavior of the magnetic characteristics to twoS@Me time the orientation in treb plane is textured, and

dimensional: the Berezinskii—Kosterlitz—Thoule¢gkT)  there is incomplete matching of the Cu—0O planes in crystal-
transition®?2 In the Cu—O layers of YBCO HTSCs the mag- Iltgs or domains with a size of 50—-100 nm. The presence of
netic dipoles arise under the influence of thermal fluctuationghis Pseudorandom network of nearly perfect crystallites
only in the form of pairs of two-dimension&2D) vortices ~Maing. Wé” probably affect the character of the BKT
(vortex—antivortex paijs the magnetic flux of which is transition. . _
closed by two Josephson vortices lying between the super- The standard procedure for determining the BKT transi-
conducting layers. The circulation of the current of the Jo-tion temperatureTgyr is to measure the current—voltage
sephson vortices is what gives HTSC materials superconduél—V) characteristics and plot the temperature dependence of
tivity along thec axis of the crystal. At the temperatufg,;  the exponenh in the |-V power law ¥=1"). At n=3 a
the system of 2D vortices becomes unstable with respect t8harp jump is observed on the |-V curve. The temperature at
decoupling of the dipoles, and the critical current in the di-N=3 is taken asTgxy, and the extrapolation af(T) from
rection of thec axis falls to zero. AfT>Tg free vortices the n>3 region ton=1 gives the mean-field critical tem-
appear in the layers, and the superconductivity in aile  peratureT,, which is practically equal to the temperature of
planes is preserved. the midpoint of the transition on the(T) curve! We recall
The features of the BKT transition in quasi-2D systemsthat the temperature differendel ;= T o— Tgyt depends di-
of the HTSC type can be well observed Nf>£(Tgky).2  rectly on the value of the effective anisotropy of the material.
Herex =d\M/m, whered is the interlayer distance between YBCO compounds have the lowest anisotropy of the HTSCs,
Cu-0 planesm andM are the effective masses in the Cu—O because the coherence length along ¢haxis is compara-
plane and along the axis, £(Tgk7) is the correlation length tively large in them—at low temperatures it is only about a
~&(0)7 Y2, and Tgky is the temperature of the BKT tran- factor of two smaller than the distance between the Cu-O
sition. For YBCO one hasM/m)Y?=5-7,d=4 A, £(0) superconducting planésand these compounds exhibit pro-
=13 A, andr=1—Tgk7/Tco~10 2 (T is the mean-field nounced three-dimensional behavior. At the same time,
transition temperatuje and the relatiol\> &(Tgk) is not  YBCO films of poor quality(according to the transport prop-
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erties and the value of the critical current denséye found Film Ne 324 (granular)
to have large values af T, .° 785

For YBCO single crystals a valuAT.=0.14 K was .
found in Ref. 5, and for high-quality YBCO films, Kim - 79l
et al* obtained a value\T,=0.5 K. The diamagnetic sus- -
ceptibility of YBCO films was investigated in Ref. 10. The
penetration depthh was calculated from measurements of
the complex impedancé=R+iwL for high-quality YBCO Te2
films with thicknesses of 500 and 2000 A. A BKT transition 810/ 10 20 30 40 50
was observed only for the 500-A thick film. H,, .m Oe

The diamagnetic response of a GdBeOg 75 Single
crystal was used to measure the temperature dependence of 86.5
the dissipative losg] and of the real part of the susceptibil-
ity x;, the latter being responsible for the degree of screen-
ing of the external field by the sampfeThe measurements ¥
were made under conditions such that the exciting fi¢ld £
was applied along the axis of the crystal and in thab
plane. It is found that whehl . is parallel to theab plane ;
the x; signal appears at a lower temperature than in the case g ol Te2 2 , , __Jo.02
H.dlc. Itis at this temperature that the true 3D superconduc- 0 02 04 06 08 10
tivity sets in. Since the value of the diamagnetic response is HY2 m 0e'?
proportional to the area of the sample, such measurements
are impossible in principle for HTSC films in the case 88.5
H.Jlab because of the extremely small area of the film.
However, certain arguments suggest that measurements of
the field and temperature dependencesydfand y; for 80 T, La g
H,dlc can be used to fix the 2D—-3D transition in YBCO W
films also. This possibility was investigated in the present
study.
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EXPERIMENTAL RESULTS AND DISCUSSION R moe®?

Studies of the diamagnetic response of YBCO films wereFIG. 1. Temperatur& ,, at which the maximum of the dissipative part of the
carried out on an inductive apparatus in the range of excitin%i‘ggi‘?iﬁi :;Sf(i:;zti?girtydi?fcecrgft’ 352‘;“ fiifl‘n:;"ai‘s’”;: tehxzagﬂ"th;q%gt of
magnetic fieldsH ;= 0.2-1000 mOe mainly at a frequency X1/ x1(Hgo) is shown for film No. 364. The analogous plots f(‘JI’ the other
of 10 kHz. We recall thaj] reflects the degree of 10SS t0 fims have a similar form.
magnetization reversal of the sample and resistive losses. In
this study the temperature positidg, of the maximum ofy}
is obtained as a function of the amplitude of the exciting field
H,. for three samples. Sample No. 324 was deposited by rinvestigated temperature interval, is taken into account, rela-
magnetron sputtering on a sapphire substrate with a ZrOtion (1) will be more complicated, but the proportionality
sublayer stabilized by Y. The polycrystalline film obtained betweenj, andH . will remain.
had a thicknesd=0.8 um. Sample No. 364 was grown by As we see from Fig. 1, all three films, which were grown
laser evaporation on an SrTi@ubstrate and had a thickness by different methods in different laboratories and on differ-
of 0.3 um. The third sampléNo. 3) was also grown by laser ent substrates, have the same characteristic features.
deposition on a LaCa{substrate stabilized by Nd and had a 1. At very low fields there is a certain interval of exciting
thickness of 0.2um. TheT,(Hz,) curves for these samples field amplitudeg 0,H% ] in which T, is independent oH 4
are presented in Fig. 1. The exponendepends on the char- to within the experimental error. For the granular film No.
acter of the weak coupling between crystallites in the324 the value oH} is about 1 mOe, while for film No. 3 it
sample. It is seen that the curves become linear for differenteaches approximately 10 mOe, depending on the frequency
values ofa: a=1 for film No. 324,a=1/2 for film No. 364,  of the exciting field.
and o= 2/3 for film No. 3. 2. At higher values oH,. the T,,(H5.) plot for each

In the theory of the critical state, the following relation sample becomes linear for a different value of the exponent
holds at the temperature of the maximum on tHKT) of the power law, up to a certain field; at which a kink is
curvel? observed, the slope df,(HZ.) becoming smaller than for

8H.,. Hac<H7. ' . ' '

3. In the field regiorH3 <H,.<H7 an appreciable in-
crease of the amplitude qf] is observed, and in fieldd 5.
and so the measuref,(H,.) curves are related tp.(T). >H7 the growth of the amplitude of] is insignificant or
When the flux creep, which plays an appreciable role in theabsent altogether, in agreement with the Bean theory of the

Jo(Tm) = > A74md" (1)
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o FIG. 3. Diagram of a YBCO film of thickness containing Cu-O super-
FIG. 2. Temperature dependence of the dissipative part of the magnetigonducting layers. FoH,lab plane the current,;, vanishes at the tem-
susceptibility y” for a GdB3CusOg 75 single crystal at various fields perature where the Josephson couplings between the Cu—O planes vanishes,

[O€]: (Hadlc) 0.297(1), 1.11(2), and 4.16(3) for (Haclc), and 0.22(4), i.e., atTgkr. The diamagnetic response signal also vanishes in this case.
2.1(5), and 4.16(6) for H,.L c.

o _H:
fe=7—g @

critical state with flux creep taken into account. In this case
the value ofy; remains constant.

4. In the regiorH ,.<H3 one observes a linear response
in the intervalH} <H,.<H a quasilinear responsghe
distortions of the response signg] from a sinusoidal form
are insignificant and at fielddH,.>H? the response is sub-

whereH}. is the value of the exciting field with allowance
'for the demagnetizing factor.

We note that extrapolation of th€,(j2”) curve from
large currents tg.=0 gives a temperatur€;; =48 K (the
_ : temperature at which the diamagnetic response appears for
stantially nonlinear. H.Jlab), while extrapolation from small currents jg=0

Extrapolation of theTn(Hz,) plots from high fieldsHa.  gives a temperatur®,, =58 K (the temperature at which the
to zero field gives a certain temperature valygwhich we X} andy} signals appear fokl ,lc).

proyisiorlally caIITcl*. A similar extrapolation from the field From the data obtained it can be concluded that the BKT
regionH; <H,.<H7T gives a different temperature, which .o <ition temperature in GdBAU;O; 75 is equal to 48 K.
we call Te,. For YBCO epitaxial films withH ,(l|c the dependence of

It would seem that the behavior of the diamagnetic re 50235 related to the dependentg (2% by a simple

sponse in the field regiohi3 <Hac<HI can be described  efficient[in the case when the film is in the critical state:
by the Matsushita theory of reversible vortex moti‘an, see formulg1)]. By analogy with Ref. 11, it can be assumed
which is based on the Campbell n_wo’d‘ean(_j explains the  hat for YBCO films, too, extrapolation from high field, .
growth of the amplitude ofy] with increasing fieldH .. to Hae=0 gives the valuel,,=Tgyr, while extrapolation
However, this theory is constructed by proceeding from thgrom fields less thai? gives a valuel,. The width of the
condition of linear responsgthe motion of the vortices is  r(Ty transition in epitaxial film No. 3, according to our data,
reversible, and there is no hystergsiand with increasing  is around 1 K. The temperature of the midpoint of this tran-
Hac the value ofy; should also change; this is not observedsition is usually taken to be equal to the mean-field transi-
experimentally. _ tion temperaturd .. The temperature at which the diamag-
It is natural to suppose that the kink on tiig(Hz0)  netic response appeard (=89.8 K) practically coincides
plots is due to a BKT transition. To justify this conjecture, \ith the temperature at whicR(T) goes to zero, to an ac-
we consider the temperature dependencgobbtained in  cyracy of 102 (/cm or better. It follows that the quantity

Ref. 11 for a GdBgCu;0¢.75 sample in the form of a plate AT—T_ — T, should be of the order of 0:5|T.—T
0.7 mm thick and having a surface area~o# mn?, with a

field orientationH . lc axis of the crystal andi,Jlab plane

cal-

(see Fig. 2 Figure 2 clearly demonstrates the existence of 40t

two-dimensionality in the sample in the temperature interval

48-58 K. Indeedsee Fig. 3, for H,lc the fieldH ,. induces 45

currents lying in the plane of the sample, and the response x

signal will exist independently of the dimensionali®D or g 50}

3D) of the structure in the Cu—0 layers. Rdgllab plane of -

the crystal the response signal can arises only when coherent 551

coupling between Cu-O layers appears, i.e., when the T . =58K

sample will be found in a three-dimensional state. 60 c2 . . .
In Fig. 4 the temperaturek,, at which the maxima are 0 5 10 15 20 25

observed on the"(T) curves taken for a GdB&uUsOg 75 j2/3. (A/em?2) /3

single crystal at different amplitudes of the exciting fielg, ¢

are plotted ir_‘ relation to the critical current densjtycalcu- [, 4. Temperaturd,, at which the maximum occurs on thé(T) curve,
lated according to the well-known relatidh: in relation to the critical curreni, for a GdBaCu,Og -5 Single crystal.
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TABLE I. Values of a number of characteristic temperatures figgfior YBCO epitaxial film No. 3.

T.K T T“. K T TC2. K T, TC. K T, Tco‘ K RN.Q

89.12 1.3x1072 89.4 1072 89.6 0.77x1072 89.8 0.55x1072 90.3 0.7

On the assumption thal,=Tgkr, the value of AT of the Kosterlitz—Nelson jump under the influence of thermal
=0.9 K obtained for film No. 3, with a high current-carrying fluctuations according to the formulas given in Ref. 15:

capacity, is close to the valueT=0.5 K found for YBCO

-
films>® As we see from Fig. 1, the value ¢f(0) also de- |TBKT|={ 7

1 b
In?(J/Eq;€2p)

creasegthe slope of thel,(H5,) curve increasgswith in-
creasingAT. A similar picture was also observed in Ref. 9.

Let us analyze the results obtained for the most-studied
epitaxial film, No. 3. (o= 2| gk b @
As we see in Fig. 1, th&,(HZ,) plot clearly exhibits U I3 (JIEg;E2y)

several characteristic points: 2 o e ) .
T*—the temperature at which the kink is observed onHere J=&od,/me(4mhap)” is the “stiffness” characteriz-

T.(H2). We note thalT* is the same for exciting-field fre- ing the fluctuations in thab plane;d, is the distance be-
ac/*

guencies of 1 and 30 kHz, even though the €anfd, hence, tween C}J—O planes~(4 A)., )‘ab:)fab(,(‘))./’r IS t_he London”
the current induced in the film is 30 times greater fér penetration depths=1 is the effective “dielectric constant

=30 Kz than forf 11tz {onal Vot paite® £ - ThAI4E?Ry 8 he energy of e
T.1—the temperature value correspondingtg.=0 on pairs,” Eo; = m N 9y

. « Josephson interaction between layeEs= Eq|7]); A is the
thH*extrapoIatmn of thel,(H3,) curve plotted forH, energy gap=20 mev7 e is the charge of the electroRy,
T

T.—the temperature at which an infinite cluster arises in> the resistance of the sample near the transition etadtes

the film and a diamagnetic response appedscoincides on values between 2 and'd.f we assume thab=9 and
_ 17 ; - — 32
with the temperature at which tHT) curve goes to “zero” £(0)ap=20 A, " then estimates giva=6x 10 ** Jjent and

~ Eoi=1.5x10 2°J. Using Eg.(3), we find 7gct=0.95
(R<10 3 Q/cm); o5 : = BKT
T.o—the mean-field transition temperature, which coin- X 10°7, from which we geflgr=89.44 K, which is close

cides with the midpoint of th&(T) transition’ to the value ofTc,. From Eq.(4) we find 73p=0.41

The values of these temperatures for film No. 3 are giveri 10°% which corresponds to a temperature interval of
in Table | P ' 9 width 0.4 K, i.e., T.=0.2) K, and agrees with the value

In Ref. 15 a hierarchy of characteristic values of theLCrze:SBe?/fr;' dénrzzgrgiﬁ?m;)fgng isRieg.e%(S Iigcl;:edsisz t?en;%eer}i;
temperaturegfrom low to high is presented for a layered 9 P 9

. . ! >
superconductor with weak magnetic coupliffiere 7= (T with our valu*e of 7 ; and so the physical meaning of the
—Teo)/ Teol: temperaturel* remains unclear.

c :

It is known that the BKT transition is due to two-
mr—the temperature below which the fluctuations of thedimensional vortices in the Cu—O superconducting layers
order parameter are significantly less than its mean value; and their interaction both with other vortices within a plane
TgkT—the temperature of the 3D-2D transition in an and with vortices in neighboring Cu—O planes. Bel®yyr
there exist only bound vortex—antivortex pairs, and Tor
Weak 20 Weak 2D Weak3D >Tgkt _the coupling between Cu_—O planes is broken, and_a
fluctuations fluctuations  fluctuations fluctuational decay of vortex pairs occurs. When current is

‘| 1 (3)

T3p present in the samplgneasurements of the |-V characteris-
| I - l =T tics and diamagnetic response are made with a transport or
T . T 1 . induced currentand T<Tgk7, the Lorentz force acts on the
f BKT er“c c0 pairs as an effective repulsive interaction and will cause sub-
stantial decoupling of the vortices if the current exceeds a
threshold valu&+2%
individual layer; _
ro—the temperature of the crossover from 3D to 2D I=JoLéan(Ei 1), ®
behavior; where Jg, is the Ginzburg—Landau critical current density
T7.—the true transition temperature; andl is the specific energy of a 2D vortex. The value of this
T.0—the mean-field transition temperature. current estimated in Ref. 6 is approximately equal ta/AR
The shaded region corresponds to the interval of threeFrom the results of diamagnetic measurements were cannot
dimensional fluctuations. estimate the current induced in the film fidg, <H? , since

Comparing the hierarchy given in Ref. 15 with our re- there is no theory describing the relation betwekp andj
sults, we conjecture thafl* corresponds toT;, T.; in this temperature region. However, we assume that the cur-
—Tgkr, andTo— T rent induced by the exciting field is greater tharu3, at

Let us estimate the values okt and the smearingsp least up to field# ,.=H% . For T> Ty the thermal decou-
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pling of vortices is predominant, while beloWigt free vor-  ces in a pair, below which one can neglect the influence of
tices arise mainly as a result of the decoupling by the inthe Josephson interaction between layers in comparison with
duced current. the intralayer vortex interaction. At distancesr. the Jo-
Thus, in addition to the fluctuational vortices, at a finite sephson contribution is dominant, suppressing the decay of
value of the current free vortices arise in the system due tthe pairs into free vortices. The decay into free vortices oc-
the current-induced decoupling of the dipoles. The presenceurs primarily under the influence of the Lorentz force in the
of two mechanisms governing the resistance of the sampleresence of current, and also for=Tgkr, where the Jo-
causes the universal Kosterlitz—Nelson jifip be smeared sephson interaction between layers falls to zero. For film No.
out, and the exponenmt in the 1-V power law becomes de- 3 the characteristic distancg=2 um, which is much larger
pendent on both the temperature and current. Such a smedhan the size of the crystallites, and therefore the sizes of the
ing of the jump on then(T) curve was observed in Refs. 6 boundaries between crystallites should apparently not affect
and 9, whenn began to decrease not from 3 but fram the BKT transition.
=5.5 (Ref. 6 andn=4.2 (Ref. 9. We assume that in our Of course, it can be assumed that the transition in YBCO
case the transition extends frdF to T., (a transition width ~ films is not a true BKT transition, which is due to dissipation

AT=0.5 K). A value AT=0.35 K was found in Ref. 6, and Of vortex—antivortex pairs, but is a transition caused by the
avalueAT=4 K in Ref. 9. breaking up of the Cu—0 planes into effective superconduct-

Real films, especially those obtained by rapid lasednd layers(having a thickness of-2nm for film No. 3
evaporation, begin to grow from “islands” formed on the the Which do not interact with each other. Such a system will be
film—substrate boundary in the initial stage of growth. Theduasi-two-dimensional. In this case experiments on the 1-V
substrate itself is not ideally smooth but has depressions arfd!aracteristics and susceptibility will not detect that the BKT
prominances, with a height difference reaching severalf@nsition is replaced by a quasi-two-dimensional one. How-
YBCO lattice constants along theaxis. As the thickness of €Ver. the observation of a BKT transition in YBCO single
the film increases, the islands, whasaxes are perpendicu- crystals, which are free of any mutual misorientation of the
lar to the plane of the substrate but whasandb axes are CU~O Planes everywhere in the sample, is at odds with the

not in a strict mutual orientation, coalesce to form a continu-cMterion )‘.> f.(TBKT) (see Intro_quct[o)? Itis our opinion
ous film. Edge and screw dislocations, enriched Withthat the criterion of a BKT transition is in need of refinement.

copper?? form at the places where coalescence occurs. Thug. Thus, ?y analogy W'th tge resugs of meflalsurenlglrlltfs of the
a real film consists of crystallites, with sizes ranging from ad/amagnetic response in a Glag s 75 single crystat for

. H,dlcaxis of the crystal an#ll ;llab plane of the crystal, the
few nanometers to tens of nanometers, separated by dlsloca(-)od aareement between the caleulated and exoerimentall
tions, and the Cu—0 planes in adjacent crystallitesmaing 9 9 P y

may be noncoincident. The transport or induced curren?btamEd values of the characteristic temperatures of a

. . sample near the BKT transition and the proximity of our
flowing along the Cu—-O planes passes through the disloca- " : . .
. ) . . values of the transition widtA T to the published data give
tions, which are normal or superconducting but with a lower .

S . s reason to think that a study of how the temperature of the
order parameter. As a result of the mutual misorientation o

. . . - “maximum ofy depends on the amplitud¢, of the excit-
the Cu—0O planes in adjacent crystallites, “extra” or “miss- X1 dep P ac

ina” partial planes appear. Stacks of Cu—O planes ariseing field will afford an opportunity to observe a 2D—-3D tran-
g P P PP A P sition. To confirm the conjecture that we have observed a
which are separated by “extra” or “missing” Cu—0O planes,

hich do not Carry a transport current. Thus effective s er_2D—3D transition in YBCO films by studying their complex
wh y P u - V€ sup usceptibility, it will be necessary to study the same film

conducting layers carrying a transport current appear WhiCIiimultaneously by the methods of |-V characteristics and

ﬁre sep;]arated frorﬂ aea;:rr: ot_hetrh by. Ialrger d'tStlaf(r?Ej’. diamagnetic response. Such studies are planned for the near
ence, have a sma i) an in . € sing e” crystal. This, N ¢,1ure. The physical meaning of the temperatlifeand its

t!Jrn, leads to an increase in the “effective” anisotropy of theindependence of the frequency of the exciting fillgl also

film. emain open questions. There is also no explanation for the

_Let us estimate the sizes of thes_e effective I_ayers. In Re ogarithmic growth of the amplitude of; in the field region
23 it was shown that the magnetic penetration delph H..<H* while the value ofy! remains constant.
=2\3,/de is related toT asL cm]=2/T[K], where\sp ac =Tt !

is the bulk magnetic penetration depth ahg is the thick-
ness of a superconducting layer. Consequently, one can o
tain the effective thickness of each layer, assuming that there——
iS no interaction between layers. Taking\sp(T)
=0.19 um](1—T¢1/Teo) 2% whereT,;=89.4 K, we ob-
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Measurements of the electrical response of granular Sn-Ge thin films below the superconducting
transition temperature are reported. The addition of an external noise to the magnetic field

applied to the sample is found to increase the sample voltage response to a small externally applied
ac signal. The gain coefficient for this signal and the signal-to-noise ratio display clear

maxima at particular noise levels. We interpret these observations as a stochastic resonance in
the percolative Josephson media which occurs close to the percolation threshd@®020

American Institute of Physics[DOI: 10.1063/1.1491176

1. INTRODUCTION tact, i.e., the magnetic flux quantization induces critical-
current oscillations and the respective voltage oscillations.
The phenomenon of stochastic resonance has been digfe have arguetithat the oscillatory dependentg(H) in
cussed in relation to diverse problems in nonlinear sciencesn-Ge thin-film composites is related to quantum interfer-
physics, chemistry and biolodyGenerally speaking, sto- ence in randomly distributed asymmetric superconducting
chastic resonance is the enhancement of the output signal-tisops interrupted by Josephson weak links. In Ref. 5 we
noise ratio by the injection of an optimal amount of noisereported measurements of thig.(H) dependence for vari-
into a periodically driven nonlinear system. This kind of be- gus orientations of the film relative to the field. The scale of
havior is often thought as counterintuitive, since here a stothe oscillatory structure iV4.(H) is inversely proportional
chastic force amplifies a small periodic signal. Its mechanisnio the cosine of the angle between the applied magnetic field
is usually explained in terms of motion of a particle in aand the normal to the sample plane. The emergence of the
double-well potential subjected to noise, in the presence of Aormal magnetic field Component alone and also the anti-
time-periodic force. The periodic forcing leads to noise-symmetry of the oscillatory structure relative b=0 indi-
enhanced transitions between the two wells and thus to agate a quantum-interference origin \gf,.(H). Moreover, it
enhanced output of the forcing signal. appears feasible to relate these active contours to the perco-
A clear example of nonlinear systems with few degreegative cluster that has a well-known fractal structure. The
of freedom is a superconducting loop with a Josephson juncexistence of a wide and self-similar distribution of Josephson
tion, well known as a superconducting quantum interferom{gop areas leads to a fractal character of the dependence
eter (SQUID). With a proper choice of the size of the loop, v, (H). We have suggested and verified a model for the
this system undergoes bistable dynamics for magnetic fluyrigin of the 1f voltage noise by a passive transformation of

trapped in the loop. There have already been experimenigagnetic field oscillations with a fractal transfer function
that reported operating SQUIDs under stochastic resonanag, (H).®

conditions, both with external noise inject?omd with ther- In the present paper we study the noise-induced electri-
mally generated intrinsic noiseThe stochastic resonance cg| response of granular Sn-Ge thin-film composites. We ar-
effect can be considerably enhanced in a system of couplegue that a distributed network containing many supercon-
bistable OSCiIIatorisee, e.g., Ref. )4 Therefore, it is inter- ducting |00pS with Josephson junctions may show a

esting to study stochastic amplification for a Josephson meczooperative behavior as stochastically resonating media.
dia consisting of many superconducting loops with Joseph-

son junctions. . _ 2. EXPERIMENTAL DETAILS AND RESULTS
Earlier we observed quantum interference effects in
macroscopically inhomogeneous superconducting Sn-Ge Josephson networks may occur naturally, e.g., in nonuni-
thin-film composites near the percolation thresholthis  form superconducting materials such as granular thin films.
system exhibits a considerable voltage noise under dc currelife prepare granular Sn-Ge thin-film composites having
bias and a rectification of ac current, which arise below thenonotonically varying structure by vacuum condensation of
superconducting transition temperature. According to Ref. 6Sn on a long(60 mm) substrate along which a temperature
a dc voltage is observed when an ac current larger than thgradient is created. Sn is deposited on the previously pre-
critical current passes through a system of two superconducpared 50 nm thick Ge layer. The thickness of the Sn layer is
ors weakly connected by an asymmetric double point con60 nm. The metallic condensate is covered from the top with

1063-777X/2002/28(6)/4/$22.00 383 © 2002 American Institute of Physics
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See below

FIG. 1. Electron micrograph of Sn—Ge sample prepared close to the perco- >1
lation threshold. Black regions correspond to the metallic phase. - 2

amorphous _Ge. The s_tructural change re_sults in variation of _(;_3 _6.2 01 00 01 02 03

the composite properties from metallic to insulating over the

substrate. This crossover in properties is observed on a series H, Oe

consisting of 30 samples cut from different parts of the sub+iG. 2. a—0scillatory behavior of the rectified voltage across the Sn—Ge

strate. For the present investigations, we chose samples witlample versus dc magnetic fieldf=3.0K, f;=100kHz, and I

properties near the percolation threshold, with a characteris 0.8 mA. _b—IIIustration of the stochastic resonance detection sch(_eme.

tic structure depicted in Fig. 1. ?i/leél‘gr:tlc field componentsi,. and H,,s. are added to the dc magnetic
During the measurements, the samples were kept in ex-

change gas inside a superconducting solenoid. The electrical

measurements were carried out according to the standard

four-probe technique. A sinusoidal ac current of frequency(i“) Gaussian white noisél..,With an intensityoy, ranging

f1=100 kHz and amplitudé,.=0.8 mA was produced by ;15 70 mOe. The Fourier spectra of the voltage response

an HP3245A universal source connected to the current Ieaqﬁe shown in Fig. 3 together with oscillograms of the input

through a dc-decoupling transformer. Fast Fourier transfor-signa| H.o+Hogee Figure 4 shows the dependence of the

mation spectra of the output voltage are measured by using,u,+ SNR for the first harmonic df, on the intensity of
an SR770 spectrum analyzer with a Blackman-Harris W|n—Inlout noiseH .. One can see that increasing the noise

dow function. We used the signal-to-noise raiNR) as the amplitude at first increases the SNR and then decreases it.

major characteristic of stochastic resonance. The SNR wag,,ch maxima are rather characteristic for the phenomenon of
measured as the ratio of the voltage amplitude of the spectr@}q-nastic resonance. Similar measurements taken at differ-

line to the voltage noise level below it. The noise back-gnt magnetic fields and frequencies often showed multiple
ground in the signal bin is estimated by performing a I'nearmaxima such as those shown in Fig. 5.

fit to the peak clipped spectrum. The noise intensitgise
level) denotes the standard deviatiery of the Gaussian
white noise signal, which was supplied by the internal
SR770 generator. 3. DISCUSSION
The transition of a sample into the superconducting state
is smeared over 1.0 K, with the center of the resistive tran-  In summary, our experiments demonstrate the character-
sition atTy=3.8 K. At temperatures beloW, and with ac istic feature of the phenomenon of stochastic resonance,
currentl 5. applied through the sample, we observed a rectinamely the nonmonotonic behavior of the SNR. At the opti-
fied dc voltageV,., the magnitude of which oscillated as a mum noise level the SNR increases to 40. The presence of
function of the dc magnetic fieldl applied perpendicular to multiple maxima(Figs. 4 and b can be due to the effect of
the substratéFig. 29. The amplitude and frequency of the different Josephson loops in our structure, which is operated
currentl .. did not significantly affect the general features of at the border of the percolation threshold.
theV4.(H) dependence. The results could be always readily = We suppose that the nonmonotonic dependence of the
reproduced. SNR on frequencyy (Fig. 5 excludes other possible expla-
To observe the phenomenon of stochastic resonance, wations(such as, e.g., a simple rectification effect due to a
study the rectified voltage dependence on magnetic field. Theonlinearity of the respongéor the observed gain of a small
applied magnetic field consisted of three componefijsa  input signal.
dc field H, which varied in the range between300 and Detailed measurements taken at different frequencies,
+300 mOe,(ii) a small ac component with a frequenty ~ shown in Fig. 5, indicate, at least in some ranges of the dc
between 5 and 60 Hz and an amplitudg.=20 mOe, and magnetic field, the existence of parameter regions character-



Low Temp. Phys. 28 (6), June 2002 Glukhov et al. 385

300 — 20
0.1 Oel Input
200
ANN 20-
TS >
100L | 100 ms 5
10+
0 T Y, P N S\
N 1 1 1
300 or | I I 1
b 0 20 40 60
2001+ Gy , mOe
WW FIG. 4. Output signal-to-noise rati®NR) versus input noise levek for
100k the first harmonic of the input signal frequenigy=18.5 Hz. Magnetic field
2 : H=0.17 Oe.
£
g op
§ 1 L L L tem may stay a long time in any of the attractors and perform
2 300~ irregular transitions between them. Synchronization of such
g
© 200t
100+
oF
1 i 1 1
300
d
200}
OF
) ] 1 1
16 20 25 30

Frequency, Hz

FIG. 3. Input signalH .+ Hise (insets and the Fourier spectrum of the
output voltage for different levels of input noidé,us.: on=0 (a); oy
=16 mOe(b); on=31 mOe(c); =47 mOe(d). The input signal ampli-
tude remains constant &t,.=20 mOe. Signal frequencfj;=18.5 Hz, dc
magnetic fieldH =0.17 Oe.

ized by a significant gain for a relatively broadband signal.
We interpret this behavior as a property of percolative Jo-
sephson media with a wide range of self-similar loops. The N
SNR gain in our system can be tuned to a desired operation -
frequencyfy by changing the dc magnetic fiekdl.

The nature of the stochastic resonance in the system
studied can be related to the commonly known bistable os-
cillator behavior of the magnetic flux quantization loops.
Moreover, in the presence of current bigg at relatively
high frequency(at f; about 100 kHg with amplitude larger .
than critical, our samples exhibit dynamical chaos. Such a 60 15 .. Hz
regime is commonly characterized by a coexistence of mul- a0 4L H
tiple attractors in the phase space. Indeed, calculation of - 20 “on
Lyapunov exponents from the time evolution of the voltage N
measured at constant current indicates presence of chaosgf. 5. SNR dependence on input noise levgland input signal frequency
our systent. In this case, the “phase trajectory” of the sys- f, at different dc magnetic fields, Oe: 0.17(a); 0.18 (b); 0.19 (c).
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Weakly damped oscillations of the magnetic induction with a frequency 13 Hz are

observed in a hard superconductor. The excitation of oscillations in the mixed state of a Nb—Ti
slab is the result of giant magnetic flux avalanches arising in the development of a
thermomagnetic instability. The existence time of the oscillatory phenomena is tens of times
greater than the duration of the avalanche. These oscillations contain information about the vortex
matter of a superconductor. ®002 American Institute of Physic§DOI: 10.1063/1.1491177

INTRODUCTION lanche, both during the entry of the flythe shielding re-
) ime) and during its exitthe flux-trapping regime Here the
There have been quite a few papers devoted to the studyyjye of the backwardwith respect to the direction of the
of the response of hard type-Il superconductors in a metasain flux motion induction peaks reaches 16% of the total
s'FabIe m|x?d state to a sirong exterqgl magnetiq 5 e of the flux jump. Energetically this is already a signifi-
disturbancé 3 Three types of behavior of the critical state of cant amount, so that one can speak of a certain dynamic

h't?h'TC asup;ﬁrcorlducftorh(HTsczc thsmglte clrystals t.ar]? I(gotential barrier opposing the change in flux. At present there
observedas the rate of changeé of the external magnetic €16, ., iheoretical models that can unequivocally explain the

is increased in the range O_.42 T/s: a stable regime .Of qu)lglovel dynamical properties of the vortex state of a supercon-
entry at low and extremely high rates, and flux entry in theductor

form giant jumps as a result of a thermomagnetic instability The present paper is devoted to an experimental study of
at intermediate rates. The stable regime at very high rates II1 ; ) .
e dynamical properties of the vortex matter in low-

change of the external field arises because of the suppressi nm catur rconductors with strona maanetic flux pin
of the instability of the critical state. The use of higher rates emperature superconductors strong magnetic flux pin-

~10* T/s has permitted the observatioof induced unre- ning under extreme conditions by means of induction mea-

laxed shielding currents in HTSC materials, an order of mag_surements. These extreme conditions are realized during the

nitude higher than the typical values of the critical currents®réakaway of the vortex matter from the ginning centers and
under ordinary conditions of low rates of change of the field {N€ Subsequent giant accelerati@®0 km/s) as a result of

Our previous studies of thermomagnetic instability e development of a thermomagnetic instabﬁi'fyUnde.r
effecté and our Hall-probe study of the structure of the giantth€ influence of the Lorentz force the magnetic flux in a
flux jumps in Nb—Ti and Nb superconductors revealed afraction of a second acquires a velocity of severgl tens of
number of curious effects. For example, the surge of thdneters per second. The goal of the present study is to inves-
magnetic inductiorBg,(t) arising on the surface of the su- tigate experimentally the structure of the flux jump in a su-
perconductor as a result of a giant avalanchelQ'° flux perconducting slab. The main result of these investigations is
quanta has a maximum value exceeding the value of thethe detection of weakly damped oscillatory phenomena, with
external magnetic field. In other words, the magnetic induc@ frequency of~10° Hz, in the magnetic induction of the
tion density rises sharply at the surface of the superconduct&uperconductor. The oscillatory process is observed for a
(compression occuyss a result of a flux avalanche. The flux time of the order of 0.1 s after completion of the flux ava-
compression is followed by oscillations of the magnetic in-lanche. These oscillatory processes contain information
duction which are strongly damped in time. In addition, in about the vortex state arising in the superconductor after re-
the time interval preceding the avalanche the magnetic flulaxation of the nonuniform mixed state.
unexpectedly moves in the opposite direction to the ava- The observation of weakly damped oscillations with a

1063-777X/2002/28(6)/4/$22.00 387 © 2002 American Institute of Physics
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FIG. 1. Voltage across the measuring coil during the development of the b
thermomagnetic instability: a—an example of discrete avalanches in the
flux-trapping regime(the inset shows the geometry of the experinient -2 é 1'0
b—an example of a practically continuous cascade of avalanches in the 0
magnetic-flux shielding regiméthe inset shows how the flux jumps are
demonstrated in the magnetizatibh(H)). =
0 4160 Hz
rather high frequency in the highly dissipative medium that = 1.56
is the vortex matter of a superconductor in the mixed state is 2
a quite unexpected result. Low-frequency I Hz) oscilla- ® 1.54
tory processes in various physical properties of a supercon- 5 4 3 8 70
ductor prior to the magnetic flux avalanche are well known 5 Or t. ms
(see, e.g., Refs. 8—10They are due to instability of the ©
nonuniform critical state at the instant before the magnetic
. C
avalanche. Slow fluctuations of a boundary between normal , .
and superconducting regions as a result of a thermal pulse 0 5 10
have been observed in HTS&sThese fluctuations led to t. ms
OSC'”?‘“O”S(W'th frequer}cy~0.05 H2 of the measured volt- ki, 2. oscillatory phenomena @t=2 K in the induction of a supercon-
ages in dc and ac studies. ductor (a Nb—Ti slaB: upon the exit(flux-trapping regimg of two succes-

sive flux avalanche&); and upon the entry of fluflux-shielding regimg
in a two-step(b) and a single-stefc) avalanche.

EXPERIMENTAL TECHNIQUE
ability of free spacewere recorded by means of Hall probes,

The dynamics of the magnetic flux inside a supercon,ng of which measured the surface induct®g,; and the
ductor (Nb—Ti, 50 at.%,T.,=9 K) immersed in liquid he- other the external magnetic fiekd.

lium at T=2 K was investigated by means of an induction
coil wound directly on a & 15X15 mm superconducting
slab (see the inset in Fig. 1aThe coil consisted of several
tens of turns. It registered a voltage proportional to the rate A study of the signals recorded with the measurement
of change of the magnetic flug®/dt. This voltage was fed coil and giving the integral characteristic of the process over
directly to a Riken Denshi TCC-1000 transient recorder. Thehe entire cross section of the superconducting core showed
structure of each voltage jump across the coil was stored ithat during the development of the thermomagnetic instabil-
the memory of this recorder as 1020 experimental points, thgy the magnetic flux enters the sample in a rather complex
coordinates of which were then put into a computer. Loopgsandom manner. Figure 1 shows examples of such signals.
of the magnetizatiorM (H) (M= uoH—Bg,, whereH is  We see that the flux can enter both in the form discrete ava-
the external magnetic field and, is the magnetic perme- lanches and in a nearly continuous cascade of juffixs

EXPERIMENTAL RESULTS
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T,’ 1l mental frequency of 3.71 kHz, which is close to the estimate.

- _1 Besides the fundamental frequency, the spectrum shown in

4210 Hz b Fig. 3c contains oscillations with lower amplitudes at fre-
1

5 0 quencies of 976, 1370, 6250, and 7617 Hz.

The observed oscillations of the induction are apparently
due to density waves arising in the vortex matter in that part

t, ms
3710 Hz -0.9; of the superconductor which was entered by the magnetic
0.06 -1.0 flux as the result of an avalanche. In the rest of the sample
| o’y the flux is pinned. Figure 4, which was taken from Ref. 12,
2 .2 shows the result of a magnetooptical visualizatfoith the
= 004} | use of a fast motion picture camgiat the penetration of the
£ -1.3f magnetic flux into a niobium disk upon the successive pas-
g 976 Hz 5 & 10 sage of two avalanches. This diagram shows the successive
% 002t Wia7oH ’ positions of the moving flux front. The time interval between
g successive frames is 103s. The numbers labeling the flux
< [ 6250 Hz fronts are the frame numbers of the film. Figure 4 reflects an
7617Hz ¢ important fact: when the second flux avalanche, which arose
0 . 40'00 - 8000 near the opposite end of the disk 7 ms after the first, reaches

the boundary of the first avalanche after 10 ms, its magnetic

flux flows around the already frozepinned profile of the

FIG. 3. Detailed picture of the oscillations in a Nb—Ti slab at a temperaturelatter. This indicates that the magnetic flux erupting into the

of 2 K: a—in the shielding regime, b—in the flux-trapping regime; c—the sample has properties of “molten” matter. This suggests that

spectrum of the observed oscillations, constructed by a Fourier transforr;&1 inducti illati d d d

method. e in uction oscil gtlon.s etected are due tq vortex-matter
density waves arising in “puddles” of erupting flux. The

oscillatory process which we observed is governed by the

properties of the molten vortex matter, the most important of

which are apparently its mass and viscosity.

Frequency, Hz

1b). Both types of pictures are observed during both the en
try and exit of the flux. Figure 1 shows randomly chosen
examples of the two types of variation of the flux. More
rarely double avalanchg$igs. 2a and 2band single ava-
lanches(Figs. 2c and Bare observed. In this study we have experimentally observed oscilla-

As the results presented in Figs. 1-3 attest, the avaory phenomena in the magnetic induction of a hard super-
lanches end in an oscillatory process. This oscillatory pro€onductor in the mixed state; they appear after an avalanch-
cess contains a certain superposition of oscillations with difelike injection of magnetic flux brought about by a
ferent frequencies. An estimate of the fundamental frequencthermomagnetic instability. Further experimental studies of
of the oscillations shown in Fig. 3b, determined as the quothese effects and the construction of a theoretical model of
tient of the number of oscillations that have occurred dividedhe observed oscillations will make it possible to determine
by their total duration, gives a value4.2 kHz. An analysis the most important parameters of the vortex matter.

CONCLUSION
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We report a study of the electron tunneling transport in point-contact junctions formed by a

sharp Ag tip and two different highly correlated oxides, namely, a magnetoresistive manganite
Lay 6eCa34MNO; and a superconducting cuprate LaBa;O;_, . Strong chemical

modifications of the oxide surfadsupposedly, oxygen ion displacemgrtaused by applying

high voltages to the junctions have been observed. This effect is believed to be responsible

for an enormous growth of inelastic tunneling processes across a transition region that reveals itself
in an overall V-shaped conductance background, with a strong temperature impact. The
mechanism of the inelastic scattering is ascribed to charge transmission across magnetically active
interfaces between two electrodes forming the junction. To support the latter statement, we

have fabricated planar junctions between Cr and Ag films with an antiferromagnetic chromium
oxide CpO5 as a potential barrier and at high-bias voltages have found an identical

conductance trend with a similar temperature effect. 2@2 American Institute of Physics.

[DOI: 10.1063/1.1491178

In the last few years, and mainly due to the progress irstudy an effect of spin-flip processes caused by interfacial
nanotechnology, the rapidly emerging field of spin-polarizedmagnetic excitations on the charge transport in such systems
transport across heterostructures, often called “spintronics,3eems to be one of the actual issues.

has become an area of intensive basic and applied studies. I this sense, ferromagnets as junction electrodes are not
Usually, an analysis of spintronic systems ignores interfacia@00d candidates for investigating the role of the spin-assisted

processes which can flip the spin of a conduction electrofUNNeling and simpler devices would be preferable. In our
revious papérwe presented tunneling measurements on

traveling across a device. But their influence on the magneti¢. ) .
. . o . igh-temperature superconducting cuprates, another family
junction transport characteristics may be dramatic and i ; . o

Id be i tant to studv th itivity of t i of perovskites. It was shown that in these materials interac-
wou € 1mpor _an 0 Study the S_en_s' vity 9 unne 'r_]g tions of tunneling electrons with excitations inside the tran-
transport properties on the magnetic interfacial scatteringgjiona| insulating layer strongly influence the conductance
This problem was addressed theoreticakynd experimen- spectra. The system investigated experimertaiyas a
tally (see Ref. 2 and references thejeiim relation to mag-  point-contact junction prepared with a sharp Ag tip pressed
netic tunnel junctions showing large magnetoresistance. As fhto the surface of a ceramic superconductor LAB8O,_
was argued by Guinéathe effect should be particularly en- (LBCO). The latter material is known to be one of the most
hanced in fully polarized magnets such as doped manganitesnstable of the superconducting high-cuprates, with a
where the tendency towards ferromagnetism may be reducdwdly degraded layer adjoining the surface. Our interpreta-

at a surface, leading to antiferromagnetic behavior. Thus t§on of the data obtained was based on the assumption that
oxygen rearrangement caused by an applied electric field re-
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ganites(the inset in Fig. 1a The related findings for super-
conducting LBCO contacts with;'s near 93 K are presented
in the inset in Fig. 1b. Together with the overall increase of
the junction resistance expected from the conventional tun-
neling theoryt it also displays a minimum beloW, . As was
shown in Ref. 5, such a feature appears in the conductance
spectra of N-1-S heterostructures for moderate values of the
insulating region transparen¢the standard theory of tunnel-
ing processésassumes the presence of very high potential
barriers.

A radical (but reversibl¢ effect of oxygen electromigra-
tion processes on the LCMO/Ag contact current—voltage
(I-V) curves is shown in Fig. 1a in comparison with corre-

04f.
: sponding data for LBCO/Ag junctions in Fig. 1b. In both
cases at 300 K we observed a decrease of the point contact
resistance when a positive bias voltagé was applied on
the Ag tip and an increase for the corresponding negative
biases. The values o¥* were different: near 0.8 V for
LCMO and about 0.5 V for LBCO. Following previous
works on the same subjetf,we explain abrupt changes of
b the point-contact resistance at activation voltages by modifi-
cations of the oxygen stoichiometry near the intrinsic meta-
loxide surface under the influence of applied electric field.
Then the difference iv* can be ascribed to the fact that in
FIG. 1. Switching effect on the current-voltage characteristics ofthe lanthanum-based cuprate the Cu—O bond is weaker than
e o L nanas s he e oy o emporange (he Mn—0 bond n LCMO. f shauld be noted that for a
be(hs:vlior of the zero-bias junction resistance compa?ecilwith thatpfor a bullparenF yttrium-based cupraté(BCQ), where the Qu—O
metaloxide sample. bond is known to be stronger than in LSCO, the bias range
where the electromigration effect can be detected is, as a

_ o ) rule, essentially larger.The picture proposed also explains
sults in the appearance of an oxygen-deficient region near thghy the activation voltage¥* needed to stimulate the tran-

interface. In accordance with the 123-compound phase diajtion from one branch of the conductance spectra to another
gram it should be antiferromagnetically ordered, and the repave increased with decreasing temperatfig. 1).

lated inelastic-scattering processes can contribute strongly to  oyr results show that after applying high voltages of
the charge transmission across the junction. In this work, Wejifferent polarities not only are the conductance values dif-
demonstrate important similarities between background corgarent put the character of the spectra as well is changed
ductance spectra of junctions formed by manganites and Cyrom a parabolic characteristithe high-resistance character-
prates as well as an effect of high bias voltages on themgtic) to a V-shaped behavior in the low-resistance case. Fig-
experimentally demonstrate signs of near-interface chemicg|res 2a_c show typical examples of differential conductance
modifications(supposedly, oxygen ion displacements that wecyryeso (V) =dI(V)/dV, each at a different temperature. It
believe to be a source of the composition chajgasd con-  should be emphasized that there is a fundamental difference
firm the hypothesis of the existence and strong effect of maggith conventional metal-insulator-metal junctions, where the

netic correlations in the transition region between Ag andyackground behavior is polynomial for voltages small com-
lanthanum-based metal oxides by performing the same megzred with the barrier height:

surements on a tunnel junction with a,Og barrier known
to be antiferromagnetic in the bulk state.

We start with conductance experiments on the magne-
toresistive compound lgg{Cay3MnO; (LCMO). Bulk
samples of manganitéas well as cupratgsvere sintered by
the conventional solid-state method. Appropriate amounts
the corresponding oxides were mixed, pressed, and annealed o(V)=a+b|V|+cV2. )
at 1200 °C for 12 hours. The resulting pellet was ground,
sintered, and repelletized before a sample with a high pack- To demonstrate it, in the insets in Figs. 2a—c we have
ing density was obtained. The values of the Curie temperaplotted the even conductane€V) =[ o (V) + o(—V)]/2 for
ture agreed well with known datéhe inset in Fig. 1  the lowest temperatures studied. It does contain a dominating
Point-contact junctions were prepared with a silver counterlinear term.
electrode by the same way as those based on THidtBCO It has been already stressed that the V-shaped back-
compoundgfor details see Ref.)3The corresponding peak ground is a common feature of the conductance spedivag
in the temperature dependence of the tunnel resistance fof different metallic oxide systenfsHere we present some
LCMO was always shifted to lower as a result of the sup- novel results for LBCO/Ag contacts and for Cr-Cr oxide-Ag
pression of ferromagnetism in the upper layers of the manmultilayered structures that, as we hope, may shed light on

Sample resistance £

+Ag

Vv,V

a(V)=a+ BV+yV2, (1)

In manganite- and cuprate-based contacts the overall de-
pendence ofo(V) does not have the fornil) but rather
Jllows the formuld
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of the inelastic tunneling processes for LCMO and LBCO based point con-
0,7}‘ §§1_2 T ;:E b tacts compared with the data for a Cr,O-Ag junction.
0.6l 28 LBCO/Ag 125K
- T 30K
IC} 05r2° ° Vom0 Tk tion of corresponding high biases to the metallic injector and
- W the existence of a magnetically active interlayer between the
b 0.4; two electrodes that strongly influences electron tunneling
0.3} M processes across the transition region. It is beliéteat the
layer appears because of the removal of oxygen in the upper
0.2f W cuprate layers, which modifies the doping of Gu@lanes
-150 =100 -50 0 50 100 150 and can thus lead to long-range antiferromagnetic correla-
vV, mv tions between localized Cu spins. An argument for such a
supposition comes from Ref. 7, where it was shown that the
0.035 §§ I — c anomalous|V/| contribution to the conductance spectra of a
38 nqrmal metal/YBCO junction vanishes near the expected
0.030F E’g Neel temperaturdl . If we are really dealing with a mag-

T = netic barrier, the same observation should be true for hetero-
C': 0.025¢ structures with both pervoskite oxides. For those with LBCO
b we did not expect the oxygen removal to be as great as in the

0.020F ° YBCO/Pb specimens studied in Ref. 7. The reason is that Pb
deposited on the metaloxide surface strongly extracts oxygen
0'015-Cr/Croxide/Ag é?{ atoms, forming a PbQbarrier, but this does not occur for
) . , 42K noble metals such as Au or Ag, whose standard reduction
-100 -50 0 50 100 potential is known to be higher than that for Tu Hence,
vV, mv Ty for a surface region of LBCO should be somewhat lower

FIG. 2. T . than that found befofefor YBCO-based contacts with Pb.
. 2. Temperature gffect on the tunneling conductancg spectra for %_ . .
Lag ¢Ca sMnO, /Ag point contact@), a LaBaCu;O;_, /Ag point contact he temperature effect on the linear slopeog(V), i.e., on
(b), and a planar junction between Cr and Ag films with a magnetic chro-the coefficient, is shown in Fig. 3 for both structures. As to
mium oxide as a potential barriéc). Insets show even parts of the differ- eIectromigration effects, the basic behavior MT) for
ential co_ndu_ctance Vs voltage curves _at lowest measured t_err_\peratures. N(E%CO devices is the same as in Ref. 7 for YBCO contacts,
the dominatingv-shaped background in all three characteristics. . .
but the temperature values at whibhdecays are consider-
ably lower. It is important thab(T) for manganite samples
the possible role of inelastic scatterings of a magnetic origirgoes to zero with increasingas well (Fig. 3).
at the injector-oxide interfaces. As is shown in the inset in ~ Why do we interpret the anomalo(sroportional toV|)
Fig. 2b, on a large scale the conductan¢®’) of the LBCO-  term in the conductance spectra as being a result of inelastic
based junction exhibits a quasi-linear behavi@y with a  boson-assisted tunneling? The standard theory of tunneling
superimposed superconducting gap-like feature. We relate ghenomena in metal heterostructures, which takes into ac-
to chemical composition changes in the near-interface regionount only elastic transmission and the energy dependence of
that are usually attributed to oxygen ion displacement prothe tunneling matrix elemefitpredicts the quadratic behav-
cesses at the cuprate surface, leading, in particular, to strongr (1). There are several possible reasons why a term pro-
suppression of superconductivity in the upper layeee the portional to|V| can appear inr(V): the non-Fermi-liquid
review’). The most important thing for our purposes is thenature of the oxidegthe RVB model, the marginal Fermi-
correlation between the strength of electromigration prodiquid hypothesis, etgas well as extrinsic approach¥sol-
cesses in LBCQcompared with YBCO and LCMPand the  lowing Ref. 7, we reject effects of an intrinsic nature for
quasi-linear overall behavior of the differential conductance superconducting cupratésecause of the lack of any corre-
which is known to serve as a fingerprint of the inelastic-lations between the temperature effect on the superconduct-
tunneling effect. ing parameters and the coefficieht. The corresponding
Next, we consider the validity of the assumption of ancontribution to the even conductaneg(V) can appear as a
oxygen-deficient near-interface layer created after applicaresult of inelastic processéslt is equal tofSVF(w)dw and
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hence should be a linear function of the bMador a near- contribute to the charge tunneling transmission. To demon-
constant density of bosonic stateéw) (in the case of mag- strate this with independent experiments, we have fabricated
netic excitationsF(w) is the dynamic susceptibility inte- planar junctions between Cr and Ag films with an insulating
grated over the wave vecjoiThat is precisely the case for a Cr,O5 layer formed by oxidizing the Cr film. This oxide in
normal YBCO compound or an underdoped highi; cu-  the bulk state is known to be antiferromagnetic at low tem-
prate La_,Sr,CuO, (Ref. 13, where magnetic inelastic peratures. Despite different materials, barriers, and prepara-
neutron-scattering data reveal spin fluctuations on a larggon methods, the conductance spectra were found to be very
energy scale. We suppose that the broad continuum of thesmilar, with an unusualV| term in the background domi-
excitations is the origin of the unconventional linear term innating at low temperatures. Clearly, the only common feature
oo(V). Small nonlinearities inr (V) for LMCO and Cr ox-  of the samples studied is a magnetic interface between two
ide at voltages below 100 melthe insets in Figs. 2a and 2c  metals forming the junction, and it is this that we suppose is
reflect fine structures in the correspondiffw).* responsible for the anomalous experimental findings. The ob-
The last argument for our statement about the magnetizious similarities between the three different systems are not
nature of the enormous enhancement of inelastic tunnelingurprising because the underlying physics behind the ob-
processes is provided by a direct experiment with a junctiorserved phenomena is expected to be the same—an inelastic
in which an insulating interlayer between metallic electrodescharge transmission across magnetically active insulating
is known to be magnetically ordered. For this purpose wdayers.
have fabricated planar heterostructures between Cr and Ag .
thin films with a chromium oxide as a potential barrier. Such We thank Prof. M. A. Obolenskii, Prof..A. N. .Ome_lyan-
junctions were studied thirty years ago by Rochlin andc'houk, and Prof. Yu. V. Medvedev for stimulating discus-
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film. At low temperatures, in accordance with our data forat Hokkaido University, and to the Research and Educational
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The current-voltagél—V) characteristics of a metal-molecule—metal structure are investigated
under the condition that electron tunneling occurs only via a single molecular level of

arbitrary degeneracy. A system of kinetic equations taking into account the accumulation of
charge on the molecule is solved, and an exact formula for the steady-state current is obtained for
the first time. In the low-temperature limit the steps on the 1-V characteristic are analyzed

and found to be nonequidistant with respect to current. It is shown that with increasing degeneracy
of the level the initial current steps tend toward a completely equidistant spacing. In the

case when the coupling parameters between the molecule and external electrodes are substantially
different, the behavior of the 1-V curves on parts with opposite directions of the current is

found to be different: either a single current step is formed, with an amplitude proportional to the
degeneracy of the level, or equidistant current steps appear in a number equal to the

degeneracy of the level. It is shown that for a given polarity of the applied voltage, the matter of
which of the two behaviors of the current is realized is completely conditional on whether

the level via which the electron transport occurs is occupied or unoccupied by electrons. The
results of the theoretical analysis of the |-V characteristics are confirmed by a numerical
simulation. © 2002 American Institute of Physic§DOI: 10.1063/1.1491179

1. INTRODUCTION which indicate that charging effects should be experimentally
observable even at room temperatuk@ € 0.028 eV}. At the
The Coulomb blockade and related charge effects geneggme time, the value of the charging enemyfor small
ally take place in the tunneling of electrons through metalygjecules is of the same order of magnitude as the distance

microgranules placed between two metallic electrddés. petween molecular levels, thus precluding the possibility of
According to the “orthodox” theory of one-electron trans- exact solution of the probledf.

port, in which the electron—electron interaction effects are | this connection it is important to carry out a theoret-

described in terms of the capacitance of the microgranuleg ) study of those cases for which analytical expressions can
and the change of their electrostatic potential due to the destjll be obtained for the 1-V characteristic. The simplest of
parture or arrival of a single electron on the microgranuleye exactly solvable problems is that of tunneling via a non-

the current—voltagd—V) characteristics for such a structure degenerate molecular level, which gives rise to a single step
should be equidistant with respect to current and voltage, thg; g steady-state current equal to

voltage period being equal to the charging energy of a mi-
crogranule 5=e?/C (e is the charge of the electron afis TErc
its charging capacitangd* To avoid temperature smearing =
of the charge effects, the energyl should not exceed the
charging energy. For typical capacitances of metallic gran-
ules C~10"® F we haves~10"2 eV, and therefore the
condition for manifestation of the Coulomb blockade is only .
that the temperature be low, of the order of 1 K. collectorC, respectively.

In the past decade substantial progress has been made,in The problem of electron tunneling via a nondegenerate

the miniaturization of the physical objects placed betweerlevel of the molecule with twofold spin degeneracy was con-

two external electrodes, now all the way down to molecularSldeer in Ref. 11. In that paper it was shown that spin de-

size. In particular cases these could be quantum®dathys- generacy of a level leads to the appearance of two steps on

ter moleculed, self-assembling molecular nanostructdfes, the 1-V characteristic. The first current step, with an ampli-

self-assembling layers of moleculk¥ etc. If the capaci- tude

tance of molecular contacts on such structures is estimated

on the basis of the semiclassical Coulomb blockade model, 1(1)="2e
one obtains valueC~10 *°-10'® F and 5~1 eV/™®

@

e—y
rE+1C

whereI'E andI' are the probabilities of electron transitions
(per unit time between the molecule and the emitieand

rere

_ 2
2TE+TC @

1063-777X/2002/28(6)/8/$22.00 395 © 2002 American Institute of Physics



396 Low Temp. Phys. 28 (6), June 2002 Yu. A. Klymenko

is characteristic for voltages at which only one-electron ex- a
change between the molecule and metallic electrodes is pos-
sible. The second current step arises in those regions where
two electrons can arrive on the molecute depart from ix
in succession. This completely opens up the twofold degen-
erate level for electron transfer and leads to the following
formula for the current:
E
1(2)= Zer—rc- (3) Substrate
rE+rec

Formulas(2) and(3) can be interpreted in the following
way? In the stage of one-electron exchange the arrival of an
electron from the emitter to an unfilled level of the molecule
is possible for either spifii.e., there are two possibilities
while the escape of this electron from the molecule to the
collector does not have any spin degree of freedom and is
uniquely determined. In comparison with formuld) this
leads to the factor of 2 multiplyin§ € in formula(2). When
the level is completely opened up there are two possible
ways for an electron to arrive on the molecule and two Wayé:IG. 1. Schematic view of the_ me‘tal—_mollecule—_metal structarand the

. e . . proposed model of the potential distribution or{h}.

of leaving it; this is taken into account in formu(d).

It is easy to see that the tunneling of electrons through a
molecular level occupied in the ground state must be deenergy, and the applied potential difference is insufficient to
scribed by a somewhat different expression tii@n since  “open up” the remaining levels of the molecule. In turn, the
the departure of an electron from a filled level of degeneracyegeneracy of the molecular level can come about through
2 can occur in two possible ways, while the arrival of a NEWthe electron Spin or a possib]e h|gh degree of symmetry of
electron on the level can occur in only one way. As a resultthe molecule placed between the electrodes. For example,
one expects a dependence different from that given aboveithe G, fullerene moleculdFig. 1a has 10-fold degeneracy

FEFC of the HOMO level and 6-fold degeneracy of the LUMO
I'(1)=2e . (4) level
E c .
r=+2r As far as we know, this exactly solvable problem has not

The amplitude for the second current step should not changg,&e.n investigated in detail before now. In Sec. 2we give the
main formulas for calculating the current. Unlike Ref. 11,

1€ where the method of nonequilibrium Green’s functions was
I'Erc used to obtain the I-V characteristics, here we use a direct
|'(2)=29FE+FC=|(2)- (5)  method(which follows from Refs. 5 and 20of solving the

system of kinetic equations written in terms of the occupa-

The difference of the mechanisms for electron tunnelingtion of the given level. In Secs. 3 and 4, respectively, an
via unoccupied and occupied molecules levels will be manianalytical calculation of the current is carried out for the
fested with particular clarity in cases when there is strongcases of electron tunneling only via an unoccupied or only
contact of the molecule with one of the external electrodewia an occupied molecular level. Exact expressions for the
(substratg and a weak coupling of the molecule with the current step in the low-temperature limit are obtained for the
other electror{for specificity, the tip of a scanning tunneling first time, and their dependence on the degenekaoy the
microscopgSTM)). One can obtain a preliminary confirma- level is traced. It is shown that the |-V steps that appear are
tion of this difference by taking limits in relation®)—(5). periodic with respect to voltage but not with respect to cur-
For example, forT>T'C we obtain I(1)=el'®, 1(2) rent, but for a high degree of degeneracy of the level the
=2el'C if the molecular level initially does not contain an initial current steps are nearly equidistant. On the assumption
electron, and’ (1)=2eI'®, I'(2)=2el' in the case of tun- of strong coupling of the molecule with the substrate and
neling via a completely filled molecular level. Thus, depend-weak coupling with the STM tip, it is predicted that the
ing on the occupation of the levels in the initial state of thebehavior of the |-V characteristic will be qualitatively dif-
molecule, either two equidistarivith respect to currept ferent on the parts with opposite directions of the current.
steps or only one step, but of doubled amplitude, can appedfor example, at one polarity of the applied potential differ-

The goal of the present study was to investigate the I-\ence one should observe steps which are equidistant with
relations for molecular contacts under the condition of electespect to current and voltagthe number of which should
tron tunneling via a molecular level of arbitrary degeneracycoincide with the degenerady of the leve), while for the
and to analyze the expressions obtained for the current inpposite potential difference one should observe only one
cases when this level pertains to a higher occupied moleculatep, with an amplitude proportional kb Moreover, for the
orbital (HOMO) or to a lower unoccupied molecular orbital same polarity of the applied voltage the behavior of the 1-V
(LUMO). This situation can be realized in the case when theharacteristic depends substantially on which of the molecu-
active level of the molecule lies quite close to the Fermilar levels, LUMO or HOMO, is involved in the electron
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transport, i.e., one will again observe either a stepwise curaised by»eV in relation to the potential of the molecule,
rent growth or a single current step. Since the polarity of thavhile the chemical potentiak® of the microscope tip is low-
applied voltage is uniquely determined by the conditions ofered by an amount (% )eV, as is shown in Fig. 1b, i.e.,
the experiment, analysis of the |-V characteristic in the case .
of an asymmetric arrangement of the molecule between elec- # ~ ErtneV, w=Ee=(1-neV, ©®)
trodes will permit an unambiguous determination of WhiChwhereEF is the energy of the Fermi level, anﬂis a param-

of the levels of the molecule, HOMO or LUMO, is involved eter characterizing the voltage drop across the structure
in the electron tunneling in the framework of the one-levelwhich can be estimated from the formute= d3/(dS+d") if
approximation adopted here. A discussion of the results ithe lengthd, of the substrate—molecule tunnel barrier and
presented in Sec. 5, and the findings of this study are sumhe |engthd! of the molecule—STM tip tunnel barrier are

marized briefly in the Conclusio(Sec. 6. known. According to Eq(8), a positive potential difference
(eV>0) leads to the flow of electrons from the substihe

2. SYSTEM OF KINETIC EQUATIONS AND THE FORMULA emitten toward the microscope tifthe collecto). For the

FOR THE STEADY-STATE CURRENT opposite potential difference the SMT tip plays the role of

To determine the current through a microobject placeoeleCtron emitter and the substrate that of the collector.
between two electrodes it is necessary to know the solution Ve introduce the notation
of the system of kinetic eql_Jation_s regulating the electron W,H)(N)=W§(+)(N)+Wt_(+)(N),
balance between the microobject and the external

electrodes:'® When the value of the charging energybe- WS (N)=T1—f(Ey— u9)],
comes comparable to the characteristic distance between en-
ergy levels, these equations cannot be solved exactly even WS (N)=TSf(Ey— u¥), 9

for a small number of levels*2). In this connection it is of . . .
interest and importance to find cases with an exact solution W-(N)=T"[1—f(Ex—nu)],
of the problem. For example, imposing the condition that the W (N) =T (Ey— )
applied potential difference be small comparedioallows + (En—m),
one to find an analytical formula for the currént. in which W_(N) has the meaning of the total probability for
We show below that the system of balance equations cagn electron to depart from a molecule wihelectrons on a
be solved exactly if one assumes that the energies of all thewvel, andw, (N) gives the total probability of arrival of an
levels are identical and that the values of the electron transielectron on a level containing—1 electrons. The values of
tions are constant. Then the the analytical solution of theys® and WS respectively, specify the particular
problem becomes possible, owing primarily to the existencelectrode—the substrate or the SMT tip—to which or from
of simple recurrence relations between the probabilities ofvhich, respectively, the electron transfer occurs. The param-
the different level occupations, making it possible to deteretersI'S() are defined as the probability of electron transi-
mine the latter without having to solve the initial system oftjons (per unit timé between the molecule and the corre-

kinetic equations. sponding electrodef(x) is the Fermi—Dirac distribution
Since the assumption that the level via which the elecfynction, and

tron transport occurs is degenerate greatly simplifies the ini-
tial formulas in comparison with those given in Refs. 5 and ~ En=E+U(N)—U(N—1). (10

10, it will be preferable in the exposition to derive the equa-yere E is the energy of the level, and the differenid¢N)
tions we need without going into the details of the more_U(N_l) has the meaning of the change in electrostatic

general theory. , energy of the molecule as a result of the tunneling of a single
Let us assume that in the ground state of the mOIGCUI%Iectron.

the electrostatic energy of the electrons in it is equal to zero Assuming that the tunnel barrier between the substrate

and that the molecular level via which the electron transport moleculdor between the molecule and the STM)tifas
occurs has a degeneraky Since, on account of the interac- a heightq)s(t) (measured in electron-vojtand a |engtm5(t)
tion with the external electrodes the number of electrons on fin angstromy we can use the WKB approximation B¢
level can change, we define the instantaneous number ((’gee Ref. 10 and the discussion in Ref):13

electrons on the level a$ (N=0, ... K). Then the expres-
sion for the electrostatic energyas a function of the instan- IS~exp(—1.025°/®3—E+E),
taneous number of electrofsbecomes (11
I'~exp —1.025'®'—E-+E).

U(N)= §N25, (6) We now write the complete set of kinetic equations for
] ) ] ] the probabilitiedPy, of realization of some state witk elec-
if the given level is unoccupied by electrons, or trons on the level—0, . .. K):

U(N) = 2 (N-K)25 Y d

2 ’ giPn= ~ PANWL(N) +(K=N)W,(N+1)]

if this level is filled in the initial state of the molecuté.
Neglecting the potential drop across the molecule, we FPN-tNWL(N) + Py (K=N)W_(N+1).
shall assume that the chemical potentidlof the substrate is (12
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The structure of these equations is quite clear. A molecule Finally, the substitution of17) into (16) leads to an ana-
can go from a state witNl electronga process governed by lytical expression for the current, obtained here for the first
the negative terms if12)] only to a state witiN—1 elec- time. Everywhere below the analysis of tH&/) curve in the
trons, through the loss of any of tiNeelectrons, or to a state low-temperature limit of interest to us is done with the use of
with N+ 1 electrons, through the acquisition of an additionalthe recurrence relationd7) in each of the intervals of con-
electron at any of th& —N places available. The positive stancy of the function®V_,,(N) from (9), with a subse-
terms in(12) have an analogous interpretation: they take intoquent substitution of the normalized solutions into formula
account all the ways that the molecule can arrive at a stat€l6).
with N electrons. Before turning to the analysis of the |-V characteristics,
To find the current through the molecule we need onlywe note that formulagl2) and(13) can be directly recovered
take into account, with the corresponding sign, all of thefrom Refs. 5 and 10 under the condition that all the levels are
elementary electron-motion events pertaining to someédentical. Formula(16) for the current was obtained on the
boundary of the molecule, e.g., the molecule—substrate jundasis of the recurrence relatio$5), and relations of this
tion. As a result we obtain kind do not have analogs in the case of an arbitrary distribu-
tion of levels. It is the existence of the recurrence relations
(15) that makes it possible to obtain an analytical solution of
the problem addressed in this paper.

K
| = —eNZO PNCRINWE (N) — (K—N)WS (N+1)]

3. ELECTRON TRANSPORT VIA THE LOWER UNOCCUPIED
LEVEL OF THE MOLECULE

Using (6) together with(8)—(10) in formulas(15) and

K
= ‘eN; NCRIPyWS (N)— Py ;W5 (N)], (13)

where we have taken into account that the number of all

realizations of a state witN electrons on &-fold degener- (16) gives

ate level isC} (i.e., the number of permutations Kfthings Pn_{TSf(A +(N—1/2) 6— neV)
takenN at a time. The second equation if13) is obtained .

with the use of the identity — N)CN=(N+1)CN*2. Itis +IH(ALH(N=1/2)5+(1-n)eV)}
also understood in Eq13) that the probabilityPy is nor- =PI 1-f(A +(N-1/2)6— neV)]

malized to unity, i.e.,
< +T{1-f(A +(N—1/25+(1—n)eWn]},

>, CRPy=1. (14) N=1,.. K (18)
N=0
and
To find the steady-state current we need the time- K
independent solutions of the system of difference equationﬁUMozerth NCYP,,
N=1

(12). They are easily found if it is recognized that the solu-

tions of the linear recurrence relations f(AL+(N—1/28— neV)— f(A(N-1/2) 6+ (1— p)eV)

X .
W, (N)Py_1=W_(N)Py, N=1,.. K (15) TSH(A+(N=1/2)5— neV) + THH(A +(N=1/2) 5+ (1— p)eV)

(see belowsatisfy(12) automatically. The dimensionality of (19
the sy_stem of equat|or(51__2) IS one g_rea_lter than the dimen- Here A, =E—E>0 is the energy distance between the un-
sionality of (15), but the first system is linearly dependent by ied levelLUMO d the Fermi in the |
virtue of the normalization conditiofil4). Therefore, there ~°¢CUP!€ evg(. ) and the Fermi enfargy.. . n the low-
exist no steady-state solutions of the linear syst®  temperature limit these formulas can be simplified by assum-
which do not satisfy(15). The use of Eq(15) permits one, ing everywhere below that

first, to simplify the formula for the currentl3) signifi- 0

cantly: f » x>0,
' =11, x<o. 20
¢ f(En—pS— fF(Ey—ub) .
|:eFSFtE NCNPN NTH NTH In the flow of electrons from the substrate to the STM tip
=1 N Sf(Ey— 1) + TH (Ey— 1) (eV>0) we obtain from(18) and(19)
16
. . . (18 Pn_1Sf(AL+(N—1/2) 6— neV)
and, second, to obtain the following expression for all the S .
probabilities of occupation of the level: =PI T1-f(AL+(N=12)6—neV)]+17}, (21)
N K N K
W, (p) W, (p) > t N
Py=2"1 , z=2>, CN , lTumo =€l >, NCRPy. (22)
NTE 2 Wo(p) & Ko=1 W_(p) LMoy O

(17) In the initial part 0< e V<A + &/2 relations(21) give the
trivial solutionsPy= 8y o, which upon substitution int@2)
In writing Eq. (16) we have made use of definitiq@), lead to zero current. In the next regiah, + §/2< eV
and the normalization conditiofi4) was taken into account <A, +36/2 the normalized occupation probabilities of the
in deriving (17). level are given by

N=1,... K.
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It rs Pyl (AL+H(N=1/2)6—(1-7n)|eV)
Po= , Pp= , Pny=0, N=2.
I'+Krs I'+Krs =P {TS+T{1-f(A +(N=1/2)6—(1—p)leV)]},
(23 29
Substituting these probabilities inf@2) give an expression
for the amplitude of the first current step: K
liumo=—€I'* X, NCKPy. (30
§ KT'T'S N
ILUMO(l):eFUr—KFS' (249 In view of the formal similarity of Eqs(29) and (30) with

(21) and (22), it is not hard to find expressions for the am-
Formula(24) agrees with(2) in the case of twofold degen- plitudes of the current steps. As a result, for the intetval
eracy of the level K=2) and generalizes it to the case of +(2M—1)8/2<(1— 7)|eV|<A_+(2M+1)5/2 we obtain
arbitrary degeneracy of the unoccupied level. We recall thathe nonzero occupation probabilities for the level:
for the given direction of the electron flow the relatioRi$
=T'E andI''=TC hold. W
In the next intervalA| +36/2<neV<A, +56/2 we PN:M—pp’

. ) 25-0CkY

have the normalized solutions P

N=0,.. M, (31)

which lead to the expression
Po=D7%, Pi=y D!, P=y?D7}
EM: NCN'}/N
Py=0, N=2. (25 | fumo(M) = el (32
2ZN=0CkY

K(K—1)

D=1+Ky 1+ > y2  y=TYTS, In the casey<1 the main contribution to the curre(82) is

given by the terms with the minimum value Nf and there-

fore I umo(M)~—eKl'Sy=—eKI'" in any interval of

variation of the potential difference exceedingV|=(1

— ) Y(A_+ 8/2). In other words, the |-V characteristic at

Ky 1+ K(K—1)y 2 the given polarity of t_he voltage _WiII_have onl_y a single

, (26) current step, the amplitude of which is proportional to the

1+Ky M [K(K=1)/2]y~? degeneracK of the level.

which agrees with(3) for K=2. _ Thus in the case _of a significant difference of the_tu_nnel-
From the induction in the intervah +(2M—1)s/2 N9 rates of the junctiond;® andI™, the 1-V characteristics

<npeV<A_+(2M+1)5/2 one can obtain expressions for Of @ metal-molecule—metal structure display a pronounced

i "
all the nonzero occupation probabilities of the LUMO level: @8ymmetry of the current. Fdi*>1" and positiveeV one
should observeK equidistant current steps, while for nega-

which give the following result for the amplitude of the sec-
ond current step:

4N tive eV only one step should be observed.
Py=—————, N=0,.. M, 27)
M —
zp=0cﬁ7’ P
which determine thé/th current step 4. ELECTRON TRANSPORT VIA A HIGHER OCCUPIED

LEVEL OF THE MOLECULE

SN-NCy ™

W- (28) For tunneling via a higher occupied molecular level
N=0~KY (HOMO) the use of Eq(7) together with(8)—(10) and (20)

From the last expression it is easy to see that under the coteads to the expressions below, which follow fr@fb) and

dition y<1 (i.e., I'>>T") the amplitudes of the steps of the (16):

I-V characteristic are determined by the terms with the

L>UM0(M):eFt

maximum value ofN. Thereforel [ o(M)=eMT", i.e., in Pnotf{ TS (= A+ (N=K=1/2) 6— e V)
th_is limiting case and foeV>0 we have equidistant steps +TH(=Ay+(N—K—1/2) 8+ (1— n)eV)}
with respect to both the voltage and the current.

In the case of negative potential differenaa¥, when =P{I'[1-f(—Ay=(N-K-=1/2)5—neV)]

the STM tip is the electron emitter and the substrate is the ¢
collector, formulag18) and(19), with the use 0f20), reduce 1= f(— A+ (N-K=12)5+(1-n)eV)]},
to the form (33

K

f(—Ay+(N—-K—-1/2)6— ne —f(—Ay+(N—-K-=1/2)6+(1—n)e
TR G (G ) 5— V)] — F(— A+ ( ) 5+(1- p)eV)
N=1

TSf(—Apy+(N—K—1/2) 56— peV)] +TH(— A+ (N—K—1/2) 5+ (1— p)eV)

(34)
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Here Ay=E—E>0 is the energy distance between thevia an unoccupied level. In the caBé&>T" for eV>0 one

Fermi energy and the occupied molecular level. observes a single step, which is proportionaKtand arises
Again restricting consideration to the low-temperaturefor eV=(1— ) (A4 + 6/2). On the opposite branch of the
limit, we obtain foreV>0 I-V characteristic there will b& steps which are equidistant

Pu TS TH(— Ayt (N—K—1/2) 6+ (1— p)eV)} with respect to both current and voltage.

=Py [1-f(—Ay+(N-K=-1/25+(1 5. DISCUSSION OF THE RESULTS AND A NUMERICAL
—peVv)], N=1,.K (35) SIMULATION
K A comparison of formula41) with (28) and (40) with
|§omo:eE SN C§PN (32) shows that the electron transport via molecular levels of
N=1 different types leads to the same features for the current, but
these features are observed on opposite branches of the -V
1-f(—Ay+(N-K-1/2)6+(1—7p)eV) characteristic. This is unsurprising from the standpoint of
[S+TH(—Ay+(N—K—1/2) 6+ (1— p)eV) solid-state theory, since the electron transport via a level oc-
36 cupied by electrons is similar to the tunneling of holes via a

level unoccupied by holes. We shall therefore assume below
In the interval (- n)eV<Ay+ 6/2 equations(35) give a  (unless otherwise statedhat the active level is the lower
single nonzero solutio, = 1. According to(20) and (36), unoccupiedLUMO) level of the molecule.
this leads to zero current. Faky+ 6/2<(1— n)eV<Ay As was shown above, the first current step, arising at
+36/2 we have the nonzero solutions of equati8s): eV=7"Y(A_+68/2) if eV>0 or at|eV|=(1—7) YA,
+6/2) if eV<O, is shifted relative to the threshold for the
(37) opening up of the level itself, given asV=7, A, and
leV|=(1—7) 'A_, respectively(see Fig. 1h An analo-
gous delay of the threshold of the first current steg., the
appearance of a region of zero current on the initial part of
the |-V characteristicalso takes place in the tunneling of
KIS electrons through metal microclusters, which are known to
—— (38)  have a quasicontinuous spectruly, A =0). However,
KT+ the existence of a finite energy gap in the molecule causes
which agrees with(4) for K=2. In the intervalA,+35/2  the boundaries of the current blockade region to depend, in
<(1—n)eV<A,+55/2 we obtain for the formation of the addition, on the energy distance between the Fermi level and

rs It
P=—— Py =
“krterst N krters

leading to the following formula for the amplitude of the first
current step:

lhomo(1)=¢€

second step the active level of the molecule. In particular, in the tunnel-
ing via an unoccupied level of a molecule there is no current
K+K(K=1)y if
1+Ky+[K(K=1)/2]y Ve[ —(1—5) YA +8/2), 77 XA+ 8/2)].
(39

y=TYTs, The tunneling of electrons via a degenerate level leads to an
I-V characteristic that is equidistant only with respect to
voltage and not with respect to currefsee Egs(28) and
(29)). This distinguishes it from the analogous curve for the
case of tunneling through metal microgranules, where equi-

distance of both types is observed. However, since the qua-

which reduces td5) for the case of twofold degeneracy of
the HOMO level.

In the general case foA,+(2M—1)6/2<(1— n)eV
<AL+ (2M+1)6/2 the following formula can be obtained

by induction: sicontinuous spectrum of microgranules on the initial part of
y tER‘/LlN C%Nfl 52M=1N CﬂyN the I—V.charactenstlc isina certam sense similar to. a single
lhomo(M)=el’ v et level with a large degeneracy, it is useful to find the
N=0CKY 2N=0CkY (40) asymptotic behavior of28) and(32) for K>1 and for initial

current stepsNI <K). We see that the main contribution to
In the caseeV< 0 the results of the analysis lead to the the asymptotics of these steps is given by terms with the
expression maximum value ofN in the numerator and denominator of

" N N-1 the aforementioned formulas, and therefore
2Zn-1NCyy

I homo(M) = —el'® SV ClN Itumo(M) = =1 ymo(M)~eMT*, (42
N i.e., for a high degeneracy of the level the first steps on the
tE,’L"leCE;ﬁN I-V characteristic are actually equidistant with respect to
=—el SH N (41)  current. An illustration of this observation is presented in
N=0%“K

Fig. 2, which shows the |-V characteristic for different level
which is valid in the intervalAy+(2M —1)8/2<pleV|  degeneracieX=2, 4, and 8.

<Au+(2M+1)6/2. In the casd *>T" we see from(40) Let us discuss the cade®™>T" in more detail. As was
and (41) that the behavior of the |-V characteristic is sub- shown above, the significant difference of the tunneling con-
stantially different from the analogous curve for tunnelingstants leads to substantially different behavior of the -V
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FIG. 2. Current-voltage characteristics of a molecular contact for differenf /G- 3. The current—zvoltage characteristics of a metal-molecule-metal

degeneracies of the lower unoccupi@dUMO) level of the moleculeX structure forl''=0.01'%. Curvesl correspond to the transport of electrons

=2 (solid curve, K=4 (dashed curve andK =8 (dotted curve The fol- v@a a higher occupiemOMO) level of the mol_ecule; curves to transport

lowing values of the parameters of the calculation were choseni via a lower unoccupied.UMO) level. The solid and dashed curves corre-

7=05,5=0.2 eV,E —E.=0.2 eV. Itis seen that the first current sieps spond to the cases of zero temperature and room temperature, respectively.
T, O Y 1=LUMO F— Y .

become increasingly equidistant with increasing degeneracy of the level, 1€ Parameters of the simulation are given in the text.

o ) S As an illustration, in Fig. 3 we present the results of a
characteristic on parts with opposite directions of the currenty merical simulation of the current in the tunneling of elec-

The origin of this current asymmetry can be explained ag;ons via unoccupied and occupied molecular levels of de-

follows. generacy 4 for the following values of the parametdts:
In the one-level passage of electrons through a molecule. 0.0Ir'S, =0.3, 6=0.2 eV, andEr—Eomo=0.3 eV

the stgps on the -V characteristic can arise only in conneqeyrve 1) or E,umo—Er=0.1 eV (curve 2). The given
tion with a change of the total number of electrons on the.es are obtained on the basis of a direct modeling of
molecule. For the casg<1 formula(27) indeed shows that  5:mylas(16) and (17) for zero temperature and room tem-
in the flow of electrons from.the substrate via an unoccupleq)erature and exhibit the current asymmetry predicted above.
molecular level to the STM tip, the total number of electrons’ |, the modeling of the I-V characteristic it was assumed
on the molecule varies, and in the interval of formati(_)n_ ofthat the tunneling constanks andT't do not depend on the
theMth currer_1t step the LUMO level of the molecule will in applied potential difference. By virtue ¢11) this assump-
fact be occupied by electrons. tion is valid only if the heights of the tunnel barriets and

In the reverse direction of the electron floe\(<0), ¢t are independent 0¥ and can be justified only for not

i.e., from the STM tip via an unoccupied level of the mol- ey high voltages applied to the structure. A more detailed
ecule to the substrate, the total number of electrons in thgiscussion of this question is given in Ref. 10.

molecule is practically independent of the applied potential
difference and is found from the condition of zero occupancy.
of the LUMO level(see Eq(31) in the limit y<1). Thiscan > CONCLUSION
be explained as follows. If the coupling of the molecule with In this paper we have presented an analytical calculation
the substrate is assumed to be strong and the coupling withf the current in metal-molecule—metal structures under the
the STM tip weak, then the occupation of the level by elec-condition of electron tunneling via only one molecular level
trons is completely determined by the position of the chemiwith arbitrary degeneracy. The amplitudes of the steps of the
cal potential of the substrate relative to the energy level and-V characteristics are calculated for the first time in relation
is practically independent of the value of the chemical po-to the degeneracy of the level and its occupation by electrons
tential at the other electrode. Since the application of a negan the ground state of the molecule. It is shown that the steps
tive potential difference to the structufsee Fig. 1b de- on the |-V characteristic are equidistant with respect to volt-
creases the chemical potential of the substrate relatigg fo  age but not with respect to current, and that an equidistant
this cannot change the occupation of an initially unoccupiedspacing of the first current steps can be observed only in the
molecular level lying abov& . case of a large degeneracy of the level. For an asymmetric
An analogous situation with a constant total number ofposition of the molecule between electrodié® typical situ-
electrons on the molecule is also observed in the tunnelingtion in STM measurements of molecules and one which is
via an electron-filled HOMO level of the molecule &/  often realized under conditions of a mechanically controlled
>0. Because of the strong coupling of the molecule with thecontact with the molecule inside)iit is predicted that the
substrate the growth of the chemical potential of the subbehavior of the 1-V characteristic will be substantially dif-
strate cannot change the occupation of the completely filleferent on parts with opposite directions of the current. That
level lying belowEg . In the casee V<0 the decrease of the is, depending on the sign of the applied potential difference,
chemical potential of the substrate leads to a downward jumpither a single current step of large amplitude or several
in the occupation of the level froid to O as a result of the small steps, equidistant with respect to both current and volt-
leaking of charge from the molecule to the substrate; this isge, can appear. It follows from the results of this study that
the cause of the steps on the corresponding branch of thbe answer as to which of the two types of features will
-V characteristic. appear on the |-V characteristic depends not only on the
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The anomalous behavior of the thermopower of;M@&e and Mg _,_,ReNb, alloys is
investigated over a wide range of temperatures and concentrétitthin the limits of the solid
solution). An extremum on the concentration dependence of the thermopower at 10 K,
observed for both of these systems at the same electron concentrddi@relectrons/atom,
attests to the presence of a critical enefgy in the electronic spectrum of Mo at which an
electronic—topological transition occurs in Mo under the influence of impurities. According
to the theoretical ideas about the electronic spectrum of Mo, the cIEgEsECF’ corresponds to the
bottom of the band, upon the crossing of which a new electron sheet of the Fermi surface
appears. In the binary systems the Re impurity causes a new sheet of the Fermi surface to appear,
and in the ternary systems it disappears as the Nb impurity is added. A quantitative
comparison of the theory with experiment makes it possible to determine thggal! for

Mo, which is found to be=~0.02 eV. These results correspond to those obtained
previously from the superconducting characteristics2@?2 American Institute of Physics.
[DOI: 10.1063/1.1491180

1. INTRODUCTION but also under the influence of an impurity. By simulta-
Transition metals and alloys have a complex electronicneOUSIy varying the two parameters—the pressure and the

structure and are interesting objects for studying I_ifshitsconcentratlon of impurities of different valence, which shift

transitions of order 2.5.In the literature these transitions the Fermi energy up or down relative to the vaE&for the

have since come to be called electronic—topological transie"® metal—one can always bring about conditions such that

tions (ETT9. Electronic—topological transitions were pre- Er=E. and observe the changes of the topology of the

dicted theoretically for pure metals in the normal state and Fermi surface: the appearance or disappearance of a group of

were analyzed for the case of small elastic stresses. The eg:(gmers(electrons, holgs and the formation or breaking of

perimental study of ETTs has been limited to this theoreticaPeCks' From the position of the extremum on the electron-

- - . concentration or pressure scale one can determine the critical
framework. The feature arising in the electron density of P

states at the ETT in this casépwt(Ec—EF)”Z, appears concentration or pressure at which the ETT occurs.

. e In the 1980s it was pointed out in a number of theoreti-
against the background of the smooth variationg(fE) for cal paper&® that by studving the concentration dependence
the pure metal and is hard to identify. Hefe is the Fermi bap y stuaying ! P

energy. ance, isthe criical energy at which the ETT occurs. & (0 "EEOIRAC S B 8 et T e alec
After the discovery of these transitions in superconduétors y

. . .
the situation changed. For superconductors it has been estatf)gn density of states with respect to energy,* (E,

D -12 & ~
lished experimentalfy and theoretically that the feature unI(Eer)r thé csérr:?jiigr(’g)— é V(I‘:_I')r{eaEsi a:%fr:ﬁ: :;r:;r(;ﬁnmgz
Sv(E) arising at the ETT is related to the features in the F—=c 9

; 10
superconducting characteristics. It was shown that the dé:gends on the type of carri¢electron or h_oIe shegt ™ Thus

e it has become clear that the concentration dependence of the
rivative JT.(P,C)/dP has an extremum related to

dov(E)/9E and is an unambiguous criterion of the ETT in thermopow_era(C) In a study of the ETT in the normal state

. . . of a metal is an analog of the dependence/®f(P,C)/dP
superconducting metals and alloys; héeis the supercon- in a studv of the ETT in the superconducting state and is a
ducting transition temperaturB,is the pressure, ard is the ! udy ! up ucting !

impurity concentration. Not only was the establishment of a';(rausrtnfcx dsr:i:g]llgglgressigi%ﬂ?;rﬁ%lgt;](Iar:rrzgeoal/i(r:tcr;c;:l%;%(i:t:
connection between the aforementioned feature and the eg[<én iﬁ thge form P P

tremum of the derivative a new finding, but it was also im-

portant that a new external parameter by which one could

make the Fermi energy approach the singular point of the @=AT+BT?, (€Y
electronic spectrum had been brought into consideration. For

the particular case of superconductors it was first shownvhere the first ternithe diffusive part of the thermopower
experimentall§® and theoreticall§/® that the changes of the depends on the electron density of states and reflects the
fine structure of the electronic spectrum of a metal as thdéeatures due to the ETT,; the second term is due to phonon
Fermi level moves can be observed not only under pressurdrag effects?

1063-777X/2002/28(6)/9/$22.00 403 © 2002 American Institute of Physics
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In this paper we investigate the thermopower of Mo—Re
and Mo—Re—Nb superconducting alloys, for which an
electronic—topological transition has been observed previ-
ously in studies of the behavior df.(C), dT.(P,C)/dP
(Refs. 12 and 183 anda(C) (Ref. 14, and obtain the quan-
titative parameters of this transitidA This makes it possible
to compare the manifestation of the ETT in the properties of
normal metals and superconductors. We note that a large
number of experimental papers have been published on the
study of the normal characteristics of Mo and its alloys in
relation to the features of the electronic spectrum: the elec-
tronic heat capacity; the Hall effect!® etc. However, these
data are not suitable for comparison with the concrete
changes in the fine structure of the electronic spectrum and 8

2}

¥
___J-
=

especially with the concrete changes in the Fermi surface.
The present studies of the thermopower of Mo—Re and Mo—
Re—Nb alloys make it possible to make an unambiguous
determination as to the presence of critical points in the elec-
tronic spectrum of Mo and to compare with the changes of
the Fermi surface. The temperature dependence of the ther-
mopower anomalies of alloys is investigated over a wide
range of temperatures; from those measurements we detetic. 1. Layout for the thermopower measuremetts:sample,2—ZLZh
mine the numerical values of the damping param&teiue thermocouple 3—cold finger, 4—platinum leads5—platinum capillaries
to scattering of electrons on impurities at the extremal poinfC" Superconducting wire§—vacuum containe—carbon resistance ther-
and the influence of temperature on the value of the anomal)r/r.1 ometer,§—sensitive element of the SQUID:;Hand H are heaters.
We carry out a quantitative comparison of the thébH
with experiment, making it possible to determine such pa-

rameters of the ETT as the energy g&b- E. and the criti-  témperature of the sar_nple_. The heaters. were made frem a
cal concentratiorC,. These data can be used to refine theWisted pair of manganin wires 0.03 mm in diameter, which
fine structure of the electronic spectrum in those cases wheff@s wound on copper coils. The resistance of the heaters was
the theoretical calculations, because of their insufficient aco00—10000. ]
curacy(0.1 eV), do not give complete information about the ~ Measurements of the thermopower were made with a
small parts of the Fermi surface and, accordingly, energ@QUID used as a null indicator. This techniffuis an ideal

gaps of less than 0.1 eV. This is interesting also becaus®strument for investigating the kinetic propemes of metals
these alloys have special physical properties, such as higf 10w temperatures. The SQUID permits making measure-
values of T, (Ref. 12, etc.!® which may be related to the Ments of small voltages to a rather high accuracy
features of the electronic spectrum. In the general case thtd - 1(_r_l‘_1V at small temperature gradients. However,
study of the thermopower is a rather simple method of delhe sensitivity of the device is lower for measurements on
termining the singular points in the electronic spectrum forsamples whose resistance can be rather high. In our case the

both normal and superconducting metals and alloys. resistance of the samples varied fron2 10”7 Q for pure
Mo to ~10 4-10 2 Q for alloys; here the sensitivity of the

device is lowered to 10°-10 12 V.

A diagram of the thermopower measurements is shown

The measurements were made on samples cut from bais Fig. 1. The sampld was placed in a vacuum contairgr
prepared by the floating zone method, which had been usezhd the sensitive element of the SQU8vas placed next to
previously in Refs. 12 and 13 for studies of the ETT from thethe container in a helium batd.2 K). The measuring circuit
superconducting characteristics. of the SQUID was wired with copper-clad Nb—Zr supercon-

Samples with dimensions of22 X 30 mm were cut out ducting wires. They were welded on to the sample and the
along the direction of motion of the zone by an electrosparkhermocouple2 and were brought out of the container
cutter. The samples were etched in a mixture of nitric andhrough platinum capillarie§ sealed into the glass and were
fluoric acids and then electropolished to provide a mirrorconnected to the sensitive element of the SQUID. The tem-
finish and a constant cross section along the entire lengtiperature gradienA T along the sample was 16 K.
The composition of the samples was determined by activa- To measureAT we used a ZLZh thermocouple, Au—
tion analysis and correlated with the previously measured.03Fe versus superconducting Nb—Zr, of equal diameters
dependence of; on the concentration of impuritiéé.The 0.1 mm. The temperature dependence of the thermopower
maximum possible error of determination of the Re and Nbfor this type of thermocouple is well known. The accuracy to
content was not more than 10%. Manganin foil was spotwhich AT was measured was 18 K. To ensure good ther-
welded onto the ends of the sample, which were then tinnednal contact with the sample the thermocouple was wound
Heaters H and H, were soldered to the endsee Fig. 1;  several times around the sample together with the Nb—2Zr
one of these heaters was used to produce a temperature gptential leads and was glued down. The average tempera-
dient AT along the sample, and the other to set the averagtire of the sample was set by means of heatgrwhich was

Hj

2. SAMPLES AND MEASUREMENT TEMPERATURES
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soldered between the samdend the cold fingeB, which  laries passing through the glass and was connected to the
was brought out of the container into the helium bathsensitive element of the SQUID. The places where the wires
through a “tear drop.” The average temperature was meaand ribbons were soldered together were thermally stabilized
sured by a carbon resistance thermom@tdany a potentio- and had a temperature of 4.2 K. The samples were connected
metric method. The thermometer was glued to the center dbgether at the lower end by the same lead ribbon. Carbon
the sample with BF-2 glue and then, for better thermal conthermometers or copper—Constantan thermocouple junctions
tact, was soaked with GKZh oil. The accuracy of the averagevere mounted on the samples near the places where the Con-
temperature measurement was 1K below 4.2 K and stantan wires were welded on. This mounting arrangement
102 K at temperatures of 6—10 K. The above scheme wasnade it possible to create equal temperature gradients on
used to measure the concentration dependence of the thdmth samples, and so the voltage was proportional to the
mopower in the temperature interval 0—10 K. The temperadifference of the absolute values of the thermopowaess,
ture dependence of the thermopower were measured in @aa,. The presence of the “normal” wires above 7 K did not
wide temperature interva{4.2—300 K by a differential introduce a parasitic emf, since, because of the good thermal
method. The difference of the absolute values of the thereontact, the lead ribbons had the same local temperature
mopower of two samplesg;— a5, one of which was the along the entire length. This was monitored by the absence
sample to be studied, while the other had a low value of thef voltage jumps upon the transition of the lead to the normal
thermopower (0.038 107 V/K?) at low temperatures, was state above 7 K.
measured using the vacuum contaifieiFig. 1) at low tem- In the temperature interval 4.2—77 K the measurements
peratures and by a standard potentiometric method at temwere done in a helium cryostat with the use of a SQUID. The
peratures above 77 K. A diagram of the mounting of theaverage temperature of the samples Addwere measured
samples is shown in Fig. 2. by two carbon resistance thermometers. With the appearance
Samplesl and 2 of approximately equal dimensions of normal resistance of the wires al@oV K the sensitivity of
2X2x30 mm, were glued at their upper ends to a coppethe measuring circuit fell off. For this reason the temperature
bracket3, which was connected to the cold fingefThermal gradient was gradually increased; a value of 1-6 K was used
contact of the remaining parts of the samples was achieveith the interval from 30 to 77 K.
by soaking the “contact” area with GKZh oil. In the temperature interval 77—300 K the measurements
The samples were electrically isolated from each othewere done in a liquid-nitrogen cryostat, and the difference
and from the copper bracked. Electrical contacts were voltage across the samples was determined by a standard
formed by welding Constantan wires to the samples and sopotentiometric method with a sensitivity of 19 V. The av-
dering these wires to wiresconsisting of lead ribbons 1 mm erage temperature of the samples was measured by carbon
wide and 0.05 mm thick, glued together across a layer ofesistance thermometers, and the temperature gradient along
cigarette paper. The lead ribbons were soldered to a Nb—zZhe samples was measured by a copper—Constantan thermo-
superconducting wir® which led out of the vacuum con- couple.
tainer into the helium bath through sealed-in platinum capil-

3. RESULTS OF THE MEASUREMENTS

9 4 We investigated the temperature and concentration de-
pendence of the thermopower of Mo and of its binary
Mo, _,Re and ternary Me_,_,RegNb, alloys. The indices
x andy denote the variable concentrations of Re and Nb,
respectively. The samples, which were up to 30 mm long,
were quite homogeneous, as was monitored by the width of
7 -3 the superconducting transition, which wa®.1 K. Figure 3
] shows the results of measurements of the temperature depen-
/ dence of the thermopower/T of Mo,_,Re, alloys in the
temperature interval 0—10 K. A cross section of the graphs
6 for T=const gives the absolute value @fT, which corre-
sponds to the diffusive part of the thermopower for alloys of
’ different concentrations. At a fixed concentration the slope of
the curve ofa/T versusT? determines the effects due to
\ phonon drag.

2 It is seen from the data presented that the diffusive part
of the thermopower varies under the influence of the impu-
rity by a factor of ~5, whereas the phonon drag patT
10 varies by no more than 15%. However, one cannot fail to
notice the features on the curve ef T versusT? in the
FIG. 2. Diagram of the mounting of the samples for measurement of thdemperature interval 0—10 K. The slope for samples of dif-
temperature dependence of the thermopower of a wide range of tempergarent composition twice changes sign. In other words, the

tures:1, 2—samples3—copper bracke4—cold finger,5—resistance ther- s S 3 ; ;
mometers6—thermocouple7—lead ribbons8—block for temperature sta- coefficientB mUItlplymg T in formUIa(l) has a SInQUIamy

bilization, 9—superconducting wirel0—vacuum container; Hand H, are @S @ function of th_e impurity Concentraﬂon-_This may be due
heaters. to features of the interaction of electrons with phonons at the
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FIG. 3. Dependence af/T on T2 for Mo, _,Re, alloys with different concentrations of the Re impurity.

ETT in the alloys. These will be discussed in more detail insystems studied were prepared on the basis of the binary
a separate paper. In the present paper we will discuss onlystems with a fixed concentrationof the Re impurity and
the features of the diffusive part of the thermopower,a variable concentratiop of the Nb. The concentration of
a(C)/T, assuming that the variations due to phonon drag irRe was chosen such that passage through an andedieg-
the temperature interval 0—10 K are insignificant in compari-mum) would occur, and by varying the concentration of the
son with the variations of the thermopower under the influ-Nb impurity one could return to the electron concentration of
ence of impurities. Figure 4 shows the results of measurepure Mo, passing through the anomaly in the reverse direc-
ments of the curves ofa/T versus T? for different tion. In the alloys studiek~17 at. % for one system and
concentrations of the Re impurity and also, on the same=29 at. % for the other. The composition of the alloy was
scale, a plot ofa(C)/T at a temperature of 10 K for calculated with allowance for the valence of the impurity
Mo, _«Re, alloys. relative to pure Mo. It follows from a previous studythat

We see from the plots that in this temperature intervalthe effects of Re and Nb impurities are equal and opposite.
the phonon drag contribution to the thermopower is negli-Here the efficacy of an impurity was defined as the change in
gible in comparison with the “giant” variations of the diffu- electron concentration of the alloy upon admixture of the
sive part of the thermopower as a function of concentrationimpurity: An[ electrons/atof=AZ/100 %]2;C;[ %], where
The diffusive part of the thermopowes,(C)/T, is propor- C; is the atomic concentration of théh componentAZ is
tional to the derivative)v(E)/JE (Ref. 7) and, as is seen in the difference of the valences of the impurity and pure Mo,
Fig. 4b, has a maximum. The value of the thermopowr  andn is the electron concentration.
increases from 0410 7 V/K? for pure Mo to 1.8 For the ternary systems the results are presented as func-
X 1077 VIK? at the maximum for Mg4Re, ;. Analogous tions of the effective concentratioi@;=Cget Cpp, calcu-
curves were obtained for the ternary systemlated with allowance forAn.'® The «(C)/T curve at 10 K
Mo, ,ReNb, and are presented in Fig. 5. The ternaryfor the ternary systems consists of two segmétws differ-
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FIG. 4. Dependence af/T on T? (a) and ofa/T on C at 10 K (b) for Mo, _,Re, alloys.

ent values ok) corresponding to a single curve, on which it mopower, a;—a,, were measured relative to the same
is seen that the extremum is slightly shifted to higher con-Mo-4 Re,, 5 Sample, which at low temperatures has a close
centrations in comparison with the binary systems and has @ zero value of the thermopower. From the temperature de-
lower numerical value at the extremal point. pendence of the thermopower for the binary and ternary sys-
The result of a comparison of the thermopower of thetems measured at the extremal point over a wide temperature
binary and ternary systems is presented in Fig. 6. We see thatterval one can obtain information about the influence of
the values of the thermopower at the extremum differ for thampurities and temperature on the anomaly. In addition, one
binary and ternary systems by a factor of 1.5. can find experimentally the values of the damping param-
Figure 7 shows a log—log plot of the temperature depenetersI'; and I', for the given samples and determine the
dence ofa/T for samples with an electron concentration respective values of'/dC. As we see in Fig. 7, the char-
~6.098 electrons/atom for Mo—Re amnd=6.122 electrons/ acter of the curves is the same in both cases. The ther-
atom for Mo—Re—Nb in the temperature interval 4.2—300 K.mopower varies slightly up to a temperature of 30 K for
The measurements were made by the differential method. IMo—Re and up to 40 K for Mo—Re—Nb and changes sharply
both cases the difference of the absolute values of the thetypon further increase in temperature. This is due to the pres-
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FIG. 5. Dependence af/T on T2 (a) and ofa/T on Cy; at 10 K (b) for Mo, _,_,Re, Nb, alloys. The concentratiorS,; were calculated with allowance for
the valence of the impurities.
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2.0 TABLE I.
1 .8- alT, P Riz r,
16 System 1077 V/K? 108 Q.cm Re—Ry2 K
T M0 gRes 1 1.66 3.01 0.36 30
> 1.4 M0g 7€ 1NDg 05 12 6.09 0.74 40
T 1.2
o |
- 1.0_
~

sistivity p, which are measured independently. Their ratios

are\r,/r;=1.43 andyp,/p;=1.4.

4. QUANTITATIVE CHARACTERISTICS OF
0.2r a Mo, ,Re, ELECTRONIC-TOPOLOGICAL TRANSITIONS

| ® Moy g3, Reqg 47 Nby

0 % Mo Re. - Nb According to the theory of Refs. 7 and 8, the ETT is
0.0l o7y Fe.29 Ty TR manifested as an extremum of the diffusive part of the ther-
% 5 10 15 20 25 30 mopower as the Fermi energy changes under the influence of

Cyp-at.% an impurity and the conditioBg=E_ is attained. As we see
in Fig. 6, for the binary Me¢_,Re  and ternary
FIG. 6. Concentration dependence of the thermopower for_lyRe, and Mol—x—yRQ(be systems the extremum on the(C)/T
MoO;——yR8 Nby curve is observed at the same value of the electron concen-
tration, i.e., the Fermi energi€s: of these systems cross the
same critical point of the electronic spectrum. According to
ence of two different scattering mechanisms: impurity andtheoretical calculations of the band structure of pure ®lo,
phonon®2! The impurity scattering processes are manifestedbove the Fermi energe along the NH direction there is
to a larger degree at low temperatures. These mechanisrag unfilled band, the energy of the bottom of whichEis.
become comparable in the region of sharp change of th&hen whenEg rises under the influence of the Re impurity
temperature trend. Therefore the value of the temperature and crosseg&., a new sheet of the Fermi surface appears at
this point corresponds to the value bffor the impurity @ concentratiorC,. If an Nb impurity is added to a binary
mechanism of scattering and equals 30 K for Mo—Re and 48ystem having a concentrati@ge=>C,., then asEg is low-
K for Mo—Re—Nb. Accordingly, for the binary alloys ered under the influence of this impurity, the sheet that has
dI'l9C=3.05 K/at. %. The ratio of the anomalous values ofappeared will vanish at this san@® .
the thermopower for the binary and ternary systems is Thus, by using impurities with opposing valence differ-
Ayvo-rel Amo_rene= V2 /T, (Ref. 8, whereI'~1/r is the  ences one can observe two oppositely directed electronic
damping parameter associated with the scattering of eledransitions corresponding to the same critical point of the
trons on impurities, and is the lifetime, on which the re- electronic spectrum. These results reflect the electronic na-
sidual resistance =R, ,/(R.—R,,) and the resistivityp  ture of the anomalies that we have observed.
also depend. These quantities, measured in the samples in an Using the theory of Ref. 17, one can carry out a quanti-
independent way, are given in Table I. For Mo—Re with tative comparison of the theory with experiment and find
~6.098 electrons/atom and for Mo—Re—Nb with=6.122  numerical values of the parameters of the ETT. According to
electrons/atom the ratia, /«,=1.38 and is proportional to the formula in Ref. 18, the diffusive part of the thermopower,
the ratioyT',/T";=1.15. On the other hand,is proportional ~ @(C)/T, can be written, with allowance for the anomalous
to the residual resistanae=R,,/(R.—R4,) and to the re- part due to the ETT, in the form of two terms:

a(C) B ag(C)  da(C)

T T T @

N 1 where

¥ —

~ r aO(C)
'\> r T =A1+Ay(C—Cp)+A3(C—Cp)?%

! [ =-Mo,gRe

= 0.9R¢€0.1
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FIG. 7. Temperature dependence o&/T for MoggRe; and + I*(C-Co) dy: (A)
Mog 7gR&, 17Nby o5 alloys in the temperature range 0—300 K. 2T ’



Low Temp. Phys. 28 (6), June 2002 T. A. Ignatyeva and A. N. Velikodny 409
TABLE II.
4, . A, . Ay Ay Ay C,,
System 2 2 2 2 2
V/IK V/K™-(electrons/atom)| V/K™-(electrons/atom) V/IK K/(electrons/atomy) |electrons/atom
Mo,_,Re, 4.79 -7.94 -177.46 14.3 1993.6 6,1004
Mo, ReNb | 5727 ~58.8 24.9 13.69 1702.4 6,1077

As=d(Eg—Ec)/dC, T*=aTlon, AgT=A%, studies based o@dT.(P,C)/dP (Fig. 9), the ratio of the
anomalies of the binary and ternary systems have compa-

andn is the electron concentration. . rable values at the extremum. We see that the experimental
The first term corresponds to the change in thermopower

of Mo under the influence of the impurity with the exclusion and theqretical rgsults .agree .not only qulallitatively but also

of the topological contribution and is represented as a serie%uam'ta_lt'vely' This aga_un confirms the unified nature of the

expansion in C—C,), whereC, is the electron concentra- anomalies observed in the normal and superconducting

tion of pure Mo. The second term describes the anomalougtates.

component of the thermopower due to the ETT in the alloys.  Using C.=6.1 electrons/atom and the values of the pa-
From a quantitative comparison of the theory with therameterAg for the binary and ternary systems from Table I,

experimental data on the thermopower by the least-squar@me can obtain the value of the gp—E? for pure Mo:

method, one can obtain the values of the parameters apped; —E2=(C.— Co)d(E.— E2)/dC (see Table II).

ing in expressiori2). In the calculations we used the numeri- According to the theory of Makarov and Bar’yakhtdr,

cal value of the parametét given in Table I. The remaining the parameters of the anomalous part of the thermopower,

parameters were determined as adjustable parameters of tH?C)/T (As=d(Eg—E.)/JC andC,) are the same ETT pa-

fit (see Table I\ rameters that are determined by the anomalous part of

The res.ults of the comparlson_of theory and eXper'mem.%?TC(P,C)/&P. The values found for these parameters are in
corresponding to the values obtained for the parameters in

relations(2), are shown graphically in Fig. 8 for the Mo—Re agreement Wlt.h. the results of Ref. .13' :
The conditions of the experiment for studying the
and Mo—Re—Nb alloys.

thermopower—Ilow temperatures and high impurity
concentrations—permit one to interpret the paraméten
the same way for superconductors and normal metals. For
Let us compare our results with those published previ-
ously.
Figure 9 shows the results of Ref. 13. In the measure-
ments of the thermopower(C)/T (Fig. 8 and in the ETT

5. DISCUSSION OF THE RESULTS
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0
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FIG. 8. Dependence at/T onn for Mo, _,Re, (a) and Mo _,_,Re Nb, FIG. 9. The functions[(1/T;)dT./dP](n) for Mo, ,Re, (a) and

(b) at 10 K. The solid curve corresponds to the anomalous part of theMo,_,_,Re, Nby (b). The points are experimental, the solid curves corre-
thermopowerda(C)/7, and the dashed curve to the thermopower without spond to the anomalous part of the dependence, and the dashed curves to the
the effect of the ETT(C)/T (formula(2)). smooth componerit
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TABLE 1Il. The observed maximum on the diffusive part of the ther-
System E 0oy mopower,«(C)/T, is c_iue to the appearance of anew elec_-
°c F tron sheet under the influence of the Re impurity in the bi-
Mo Re 0.02 nary systems and the disappearance of this sheet when an Nb
Mo, —-yReNb, 0.017 impurity is added in the ternary systems. Both transitions

occur when the same critical point of the electronic spectrum
of Mo is crossed by the Fermi energy as it is shifted in

prosite directions. This confirms the electronic nature of the
peak in the diffusive part of the thermopower and our inter-
pretation of the phenomenon observed.

2. A quantitative comparison of theory with experiment

superconductors at the concentrations studied, the gap b
comes isotropic, and the damping paramétés determined
solely by impurity scattering® For the concentration depen-
dence ofa(C)/T it is important that at low temperatures the
phonon drag is small, and the impurity scattering plays th . _FO0_ ,
governing role here as wélf! Therefore, in this cas€ is s carried out. A value of the energy gp— Ez~0.02 eV is

. . obtained for Mo at a critical concentration of 6.1 electrons/
the same for the superconducting and “normal” states of the

. atom.
aIons.. Then the values of the parametErdetermmed f".)m 3. From the temperature dependence of the thermopower
experiment can be used as given values for comparison 9{

. . nomaly we have determined the values of the scatterin
theory and experiment in both cases. y g

AN important result is the separation of the smooth andparameterl“ for electron scattering on impurities for the bi-
P P nary and ternary systems. From these same experimental

anomalous parts of the thermopower. Better agreement of tr:f

experimental data with the theoretical calculation is obtaine ata a power law is established for the decrease of the
P nomaly of the diffusive part of the thermopower as the tem-

Vr:/]h?n tfh? fsrmrgot:] coirr?polnstnt ilts rkllorr:hnéﬁr?.n8).ItFur:1h§r— perature is varied in the intervll<T<200 K: a/T~T %,
ome,d ?h t?hi : eds ?u a %/ nc af?r?s Sgrti.l Cﬁtribetiai'wherex, according to our data, is 0.5-0.6, in good agree-
sumed that this is due to a change of the partial co utions Lt with the theor§2!

to the thermopower from the electron and hole sheets of the 4. From a comparison of the thermopower anomaly with

Fermi surface or to the proximity of the band top to thethe anomalies of the superconducting characteristics at the

Fermi level. ETT one can conclude that the nature of these anomalies is

Let us discuss the temperature dependence in Fig. 7. ogﬁe same. Therefore, it is possible that this conceptual frame-

gigttilz?]em ?ggg:;;wgnret%'gnti'er:l;eoslﬁsé:oz;r?;:%z;’?nce work may be used to predict the properties of other systems,
9p P ' including highT. superconductors.

where the impurity scattering is more important, andI’,
where scattering on phonons predominates. At temperatures

T>T the scattering on phonons becomes larger than theE-mail: xkbom@komeran.com.ua

scattering on impurities, and the temperature dependence of

alT for the samples at the anomalous point determines the

influence of temperature on the value of the anomaly. In thel|. m. Lifshits, Zh. Eksp. Teor. Fiz:38, 1569(1960 [Sov. Phys. JETRL,
regionI’<T<200 K the log—log plots ofe(T)/T are linear. 1130(1960].

2 s
; it i _“B. G. Lazarey, L. S. Lazareva, V. |. Makarov, and T. A. Ignat'eva, Zh.
This corresponds to a variation of the anomaly with tempera Eksp. Teor. Fiz 48, 1065(1963 [Sov. Phys. JETRL 711 (1965].

x .
ture by a power IaWT. , where according to our dapa 3V. I. Makarov and V. G. Bar'yakhtar, Zh.ksp. Teor. Fiz48, 1717(1965
=0.5-0.6 and according the thebf x=0.5. For clarity [Sov. Phys. JETR1, 1151(1965]. )

one can compare the values @f T for Tl: 10 K and T2 4T. A. Ignat'eva, V. |. Makarov, and Yu. A. Cherevan’, Zhk$p. Teor. Fiz.

— i —7 67, 994 (1974 [Sov. Phys. JETRO, 492 (1975].
1097K’ fgr example, which are, 1710 and 0.6 51. Ya. \olynskii, V. I. Makarov, and V. V. Gann, Zh. Eksp. Teor. Fi8,
x10"" VIK?, respectively, for the binary systems and 1.2 1919 [sic].

X 10™7 and 0.42% 10 7 V/K? for the ternary systems. In  ®M. A. Krivoglaz and Tyu-Khao, Fiz. Met. Metallove@1, 817 (1966.

this case the rati@T /aT =2.83 and 2.82, i.e., proportional V. G. Vaks, A. V. Trefilov, and S. V. Fomichev, ZhkEp. Teor. Fiz.80,
12 . 1613(1981) [Sov. Phys. JETB3, 830(1981)].
to yT,/T;=3.16. It is seen that the results agree with the sy A varlamov and A. V. Pantsulaya, ZhkEp. Teor. Fiz89, 2188(1985

theory to an accuracy of 10%. [Sov. Phys. JETB2, 1263(1985].
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. . Sov. Phys. JETBS8, 959(1983].
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Two-quantum electron spin—Iattice relaxation in amorphous solids
L. G. Zakharov, L. L. Chotorlishvili,) and T. L. Buishvili

Institute of Physics, Academy of Sciences of Georgia, ul. Tamarashvili 6, 380077 Thilisi, Georgia
(Submitted December 11, 2001; revised February 22, 002
Fiz. Nizk. Temp.28, 580-583(June 2002

A two-quantum process of electron spin—lattice relaxation in amorphous solids is investigated. A
relaxation mechanism involving two-level tunneling systems and phonons from the region

of the boson peak is considered. It is shown that this mechanism is effective under certain
conditions. ©2002 American Institute of Physic§DOI: 10.1063/1.1491181

The study of nuclear and electronic spin—lattice relax-  As we know, for a paramagnetic impurity of spin 1/2, the
ation in amorphous solids at low temperatures is a topicaspin—lattice interaction is determined by the modulation of
problem in physics. It has been established that the lowthe g tensor of the paramagnetic impurity due to the modu-
temperature T<1 K) properties of amorphous solids are lation of the intracrystalline field by lattice vibratioA<On
governed by two-level tunneling systefthe main feature the other hand, in glasses the interaction of electron spins
of which is that their density of states is nearly constd@nt with the TLS can also occur on account of modulation of the
depends weakly on energyand therefore at low tempera- g tensor in response to the tunneling of the paramagnetic
tures, when it is mainly low-frequency acoustic phonons thatenter from one equilibrium position to the otiere assume
are excited, with a low density, the two-level systeificSs)  that a part of the paramagnetic center forms a )JTT8e part
come to play the governing role. The role of the TLSs in theof the Zeeman energy responsible for the electron spin relax-
process of nuclear and electronic spin—lattice relaxation waation process has the form
studied in Refs. 2 and 3, respectively.

In addition, it has been established that the density of N o N
vibrational states of amorphous solids is characterized by the H= Hofi[g (r)S +g9 A(r)S'l @
presence of a low-frequency peak. This peak, also called the

boson peak, has a substantial influence on the physical pro ‘here Sizsxiisy, S, and S, are the projections of the

i(r)tleKs4of amorphous materials at temperatures of the order Uectron spin on thek and Y axes,g*? is the symmetric

. . . . second-rank) tensorH, is the static magnetic field, which is
In view of what we have said, the following expression di d al h : dr. is th di fth
is obtained for the density of vibrational stafes: . |rect_e along the axis, andr, |s_t © radius vector of the
' impurity forming the TLS. We write it in the form

) 5 INw/ o,
o tponexp - ————| |, (1) r=riotutdlf, @)

( )_2N
gle w% 20

wherew is the Debye frequencyy is a coefficient taking where u; is the relative displacement of the paramagnetic
values from 2 to 10 for different materialg;=0.48 is a  center and the origin of coordinates during the lattice vibra-
parameter characterizing the width of the boson péaiks  tions,|d;| is the distance between minima of the double-well
the number of atoms, and,, is the frequency corresponding potential, between which the tunneling of the paramagnetic

to the maximum density of states in the p&ak. center occursr;g is the radius vector of the midpoint be-
The boson peak also has a substantial influence on thveen the two minima of the potential well, atfdis a pseu-
electronic spin—lattice relaxatiotf. dospin, with spin-1/2 properties, describing the TLS. Taking

In Refs. 2 the process of nuclear spin—lattice relaxatiorinto account thafu;|,|d;|<a (a is the average distance be-
in amorphous materials was studied at low temperaturegween atomsand expanding~%(r;) in powers of|u;|/a and
processes of the Raman type involving a TLS and a phonofd;|/a, in the eigen-representation of the TLS for the Hamil-
or two TLSs were considered. It was noted that the processdenian describing an electron spin relaxation process involv-
involving a TLS and a phonon gives an expressiofi;1/ ing the participation of a TLS and a phonon, we obtain the
~T* for the nuclear spin—lattice relaxation rate. However, inexpression
those papers the Debye model was used, and the features of
the density of vibrational states in amorphous systems were

. 1/2
not taken into account. ' h 12.9qr: ¥
o o Hegp=5Ho| —— ri(g,—
In the present study we investigate the electronic spin— R PYVIVZ % (wg)%e¥i(ag—aZ)
lattice relaxation of the Raman type involving a TLS and a g e .
phonon from the region of the boson peak. X(Di S +D; “§ ) (I cosi—1ising),  (4)

1063-777X/2002/28(6)/3/$22.00 412 © 2002 American Institute of Physics
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where

1
+z_ -
D, —%(xﬁfﬁxyfﬁ)z
(92 *z r 52 *z r

x( g=%(r) 9 %(r)

ariary

ro+

B o

e
"i=Tio
M is the mass of the crystal/ is the speed of sound in the
sampleag anda, are the creation and annihilation operators
for phonons with wave vecta, o is the phonon frequency,
\, are the direction cosines of the polarization vectas, a
unit vector along the wave vectay, cosﬁi:\/azi —Aozi/si ,
sinG=Agls;, &= \/Aozi-i-Aiz is the energy of the TLS, and
Ay is the tunneling energy.

Let us consider the electron spin—lattice relaxation pro-
cess due to interactio@). The total Hamiltonian of the sys-
tem has the form

i~lio

H = H0+ Hsdp1

HOZthZ S i, epli+hY, wqagaq,
i n q

where wg is the Zeeman frequency. In the case when
<w,, and the electron spin—lattice relaxation is governed
mainly by the part of the Hamiltoniat®) which is propor-
tional tol}’, since in the relaxation process due to the other
part of the Hamiltoniar{4), proportional td{, the main role
will be played by phonons with a frequency of the order of

Zakharov et al.

»
I

7
.1, 107 Hz

T,K

FIG. 1. Temperature dependencel pfandl,.

1 HhoZ S
L (B|< S5

- B

B o .
Xfo d)\J_me£<Ko(t—l)\)K>dt,

here

Ko(t_ih)zeiHO(tfi)‘)K g Holt=ir)
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(6)

ws+ 1/7, wherer is the correlation timé. Sincew>1/7, it
is essentially only phonons with frequeney that partici-
pate in the spin—lattice relaxation process. Consequently,

this case the number of phonons taking part in the process Is

extremely limited.

Let us calculate the electron spin—lattice relaxation rate 3=
e

using Zubarev’s nonequilibrium statistical operafteonequi-
librium density matrix approach. We assume that the time

over which the spin system comes completely to equilibrium
is much less than the spin—lattice relaxation time. We con-

struct the nonequilibrium density matrix:
pP= Q_l eXp[ _BsﬁwsEi S|Z_ BI( ﬁ; snlfm

+5 > wqdg aq| —(
q

0
ppa] ewwa,

whereQ '=Trp, B, and B, are the inverse temperatures of
the lattice and spin systert(t) =€'Ke " is the thermo-
dynamic flux

K= 7 |Hsapfos S

Taking formulas(1) and (6) into account, we finally obtain
for the electron spin—lattice relaxation rate in the high-
Pemperature approximatiorh <kgT):

1 9 fo \H3— D 1
37 o) o2 (Lt —5— 7.
4 2m\2 wp Ng %

o [ i
-

smk(hw/kBT)

(7)
Jw?—A2
|2:Mw2mJ0 —

'{ In? w/wm)
exp — ——— |do,
sinh(f w/kgT) 20°

wherem is the mass of the atonlNy is the density of para-
magnetic centers) is the minimum value of the tunneling

energy, andP is the density of states of the TLS with respect
to energy.

One can show by means of a numerical integration that
I1<<I, in the temperature region 1 KT<5 K for u=10,
wm=5%X10" Hz, wp=1.4x 10" Hz, ando=0.48. Conse-
quently, in this temperature interval the main role is played
by phonons from the region of the boson peak. The tempera-
ture dependence of the integralsandl , is shown in Fig. 1.

in the interaction representation. Assuming that the last ternt is easy to verify that ;~T*, while |, is proportional to

in the argument of the exponential function (®) is small

T2. A similar temperature dependence of the spin—lattice re-

compared to the first two terms, we expand in a series ifaxation was observed experimentally in Ref. 11. Let us com-

powers ofK, keeping only the linear term. After straightfor-
ward manipulation¥ we obtain

dBS__BS_BI
dat = T

pare the spin—lattice relaxation rate obtained H@ewith

the single-phonon relaxation mechanism, since in the given
temperature region the main role is played by one-phonon
processes. The one-phonon electron spin—lattice relaxation is
described by the Hamiltonian
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12
h

2M V2

i 1

HspZEHOE

in % (wg) V" i(ag—a’ ) (I*S +J7°S)),
where

+z (9 +z
2 Nof )N, f ) jr rr+ g

"i=Tio

For the electron spin-lattice relaxation rate in the high-

temperature approximatiort o s<kgT) we have

1 9 EJ” 1 kgT
| | B(ws). (8)

T 4 Ns 2mV2h fiwg

Wq
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It follows from Fig. 2 that in the temperature interval
1K<T<5 K the electron spin—lattice relaxation rate is gov-
erned mainly by a two-quantum relaxation process involving
a two-level system and a phonon from the boson peak re-

gion.

d
a
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UThe correlation timer is determined by the correlation function
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On the correlation of nonperturbative fluctuations of glass-forming liquids
and magnetic glasses

A. S. Baka *
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Contrary to the established ideas that glasses and glass-forming liquids are homogeneous and
isotropic, appreciable structural and compositional heterogeneities are observed in these

states. The nature of the heterogeneities in glasses and glass-forming liquids is considered, and
the influence of these heterogeneities on the properties of magnetic glasses is examined.
Heterophase fluctuatioriglPF9, which are nonperturbative disturbances, can play an important
role in the thermodynamics of glass-forming liquids, and under certain conditions the

liquid has a critical point. The heterogeneities generated in the liquid and glassy states by the
HPFs are considered, and the Ginzburg—Landau equations for the HPFs are derived.

The order parameter chosen is the fraction of noncrystalline solid-state clusters in the liquid. The
correlation length of the order parameter is the characteristic mesoscopic scale of the
heterogeneities. The mesoscopic compositional and topological disorder of a glass “spills over”
into disorder of its spin system. The phase transitions in the spin system are investigated

by well-known approaches with allowance for the mesoscopic heterogeneities. It is shown that
correlated domains originating from correlated heterogeneities of the liquid substantially

alter the susceptibility and relaxation properties of the paramagnetic state. The phase diagram of
a magnetic glass is investigated, and some experimental data are discus2602 ©

American Institute of Physics[DOI: 10.1063/1.1491182

INTRODUCTION frozen disorder of a glass is manifested in phase transitions
of the spin system. We show that a commonality is observed

The topological and compositional disorder of glassesm the approaches to the description of vitrifying liquids and

containing magnetic atoms engenders disorder of the spin . .
. - glasses, on the one hand, and disordered spin glasses, on the
system. Therefore the theory of the magnetism of glasses is . . . .
other. Most importantly, in both cases a governing role is

division of the theory_ of_ spin systems with frozen. dlrsorder.P?Iayed by heterophase fluctuatiofi4PF9, which are non-
Because the magnetic interactions are comparatively weak, . . . )
perturbative disturbances of systems with multiple states.

they have only a slight influence on the glass formation pro- . .
. In Sec. 3 we discuss some of the experimental data.
cess. Therefore the problem of the magnetism of glasses re-

duces to two subproblems that can be solved in succession.

First one must solve the problem of the formation of a glass™ HETEROPHASE FLUCTUATIONS IN GLASS-FORMING

from the liquid state. Since a glass inherits the structure OPQUIDS

the glass-forming liquid, a theory of the structure of a liquid The numerous experimental data have served as a basis
in the supercooled state is needed. Such a theory should infier the hypothesis that HPR# the form of crystalline and

ply a theory of the liquid—glass transition and a descriptionespecially noncrystalline solid-state nuglglay a decisive

of the structure of the glass. Knowing the structure of therole in the property of glass-forming liquids and in the
glass, one can set about to solve the second problem-iguid—glass transformation process. HPFs are nonperturba-
description of its magnetic properties. Clearly the programtive in nature: the ground state of the system, the state of
just outlined is extremely difficult. Essentially one is talking minimum energy, is inhomogeneous. Until recently the
about a theory of phase transitions and phase transformatiotiseory of HPFs and kinetic processes in which they are in-
(with violation of ergodicity in substantially nonequilibrium volved was based on a droplet appro&c¢fi:® Underlying

and disordered systems. The goal of the present study is this approach is the assumption that the HPFs exist in the
describe a general approach to the solution of the problemf®rm of compact and noninteractighutually isolatedl nu-

and to present the results obtained in the process. We begatei. In the droplet approach the contribution of HPFs to the
in Sec. 1 with a description of the thermodynamics and strucfree energy near the phase equilibrium line is calculated,
ture of supercooled liquids and proceed to the properties dhe kinetics of the evolution of the nuclei is described, and a
disorder in glasses. The theoretical basis for our treatment iheory of nucleation and phase transformations is
provided by the Ginzburg—Landau equations for HPFsgconstructed:® When supplemented with the concept of ex-
which are a generalization of the equations based on theluded volume, the droplet approach becomes the Kolmog-
mean field approximation and presented in Refs. 1-3. Thenrov theory of phase transformatiotfsThe droplet model is

in Sec. 2, using standard approachese consider how the inapplicable for describing the thermodynamics of a het-
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erophase system when the volume fraction of the new phase One can readily see the convenience of the substitution
exceeds about 0.15, and the interaction between “droplets(5) by noting that on the phase equilibrium line the equilib-
can no longer be neglectédror states with a large volume rium valueng [ensuring the minimum of the free energ]
fraction of HPFs, a model of interpercolating heterophases equal to 1/2.
clusters has been proposett.in those papers the mean field Treatinga(P,T) as a variable that depends on the spa-
(van der Waalsapproximation was used to obtain a criterion tial coordinates and expandiiit) to terms of fourth order in
for the existence of mesoscopically heterophase states, i we obtain the following expression for the free energy:
which two phases coexist in the form of infinite interperco-
lating clusters, in the supercritical region. A description of G(P,T)=v_1J [a(Va)?+ba?+ca®—haldx, (6)
the correlation properties of HPFs can be obtained in the
framework of a theory of the Ginzburg—Landau type. Belowwhere we have taken into account the contribution to the
we present a brief derivation of the Ginzburg—Landau equaenergy from the gradient of the order parameteris the
tions for a classical fluctuation field. specific volumé A standard analysis shows that
As was shown in Refs. 3 and 11, the Gibbs free energy 2 _
per molecule of a heterophase liquid in the mean field ap- a=aoro(Ap/p)’e. @)
proximation can be written in the form Herea, is a constant of the order of unityg is the charac-
-~ teristic range of the intermolecular forceg€kg), ¢ is the
#(PT=Neus(PT)H(1=ng) (P, T+ (1) average binding energy per molecu]éiseie average den-
» (PT)+kBT[ Nt (1-noin(1—no)] sity, and
int(P, —[nglnn —ng)In(1—ng)].
Mint Ko s s s s Ap=pe—ps )
@ is the difference of the densities in the solid and liquid clus-

Hereng is the fraction of molecules belonging to solid-like ters.

clusters,us, us, andu;, are the chemical potentials of the Expressions for the remaining coefficients(6) follow
molecules in the solid and fluid clusters and in the interphasélirectly from (1):
layer, rgspectivelwo is the associativity parameter, Whi'Ch is b=2kg T — A = 2Kg T~ Ap(To): 9)
approximately equal to the number of molecules in the
smallest nucleus, ankk is Boltzmann’s constaning is the c=2k, lTe/3; (10
order parameter We note thatus and w; are the chemical
potentials of the “pure” phases withg=1 andng=0, re- h=ps= pi=(St=89)(T—To). (1)
spectively. Heres; ands, are the entropy per molecule of the liquid and
The phase equilibrium line is determined by the equatiorsolid fractions.
ms(P,T)=us(P,T) @) It is important to note that the “external” fielt in the

expression for the free enerd$) depends on temperature
Solving this equation for temperature, we find the tem-and goes to zero on the phase equilibrium line. The results of
peratureT(P) of phase equilibrium at pressuRe It can be  an analysis of the thermodynamic properties of a glass-
assumed that modél) is isomorphous to the van der Waals forming liquid with free energy6), obtained with the use of
model for a gas—liquid system, and line 2 is analogous to théhe standard approaches in the theory of critical phenomena
critical isochore. (see, e.g., Refs. 4 and 1&ill be published at a future date.
It was shown in Refs. 2 and 3 that the position of theHere we give only the expression for the correlation length
critical point on the phase equilibrium line is determined byR_, which is the important spatial scale in the critical region:

the equation Rc.=|b/al™", h<hg(b);

(P, T)=2T,/k 3
Hint(P,T) e/Ko (3) R.=|h|"# h>h.(b), (12
and in the region where
where
< Winit=
0<pinit=2Te/ko @ h(b)=b(b/c)"2 (13

interpercolating solid-like and fluid clusters coexist for 0.15

<n,<0.85. In spite of the fact that reliable measurements of the

For uin=>2T./kq a first-order phase transition occurs on thermodynamlc quantities have been made only for_ a com-

the phase coexistence curi®. If one goes around the criti- pfaran_vely small ”“mb?‘r of supercooled glass_-fo_rmlng lig-

cal point through regiorid) a continuous transformation of uids, it can be stated with certainty that the majority of them
do not undergo a first- or second-order phase transition upon

the liquid phase to a noncrystalline solid phase occurs. We

stress that a liquid which is heterophase on mesoscopi\é'mf'cat'on’ and their glass transition temperatdrg ordi-

scales is single-phase and ergofliath chemical potential narily lies considerably b_elow the temperatiig(by .50780
. K). As the temperature is lowered, all of these liquids un-
(1)] on macroscopic scales.

To obtain an expression for the order-parameter fluctua(-jergo a continuous phase transformation to the glass, and

tion field, we introduce a new paramete¢P,T) by the re- vitrification sets in when the parameneg approaches unity
lation (see Refs. 3 and 13 for more details

The proximity of the system to the critical point is indi-
a(P,T)=ny(P,T)—1/2. (5) cated by the value of the parameter
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=b/T,. (14) glasses, as can be seen from the discussion given above, are
in systems with inhomogeneous frozen disorder. The char-
cter of the phase transitions and critical phenomena in such
ystems can be investigated using the approaches developed
in the theory of critical phenomena in spin systems with
disorder (see Ref. 4 and the references cited thered®f
barticular interest here is the behavior of the system near the
paramagnet—ferromagn@F) transition point, since here the
nonperturbative order-parameter fluctuations engendered by
the inhomogeneous disorder play a decisive role both in the
order-parameter fluctuations and in the structure of the phase
h(Tg)<h.. (15  diagram. This state of the spin system above the PF transi-
tion temperature is a Griffiths pha¥&'® As we shall show
below, the existence region and the properties of such a state
in glasses is determined by the frozen disorder inherited from
R.~|b/a|"*~Ar,. (16)  the liquid phase.
Here the coefficienA<10. Sincer, is comparable to the We will be mainly inter'es.ted in the PF transition, where
nly one order parameter is important—the average value of

sizes of the molecules, for the chosen numerical values of th ) .
e magnetic momens. Therefore we can use the mean field

parameters the correlation length has a value of up to sever 2 . . .
nanometers approximation(lsing mode] and write the free energy in the
' form

The sizes of the solid clusters nély are determined by
their growth kinetics and growth time. The characteristic J
sizes of the solid nuclei fof <T, are greater than or com- F=j {E(V<p(x))2+(T—J)go2(x)
parable toR; (i.e., nanometer-sizedAs the temperature is
lowered, the solid clusters grow, but in view of the slowing 1
of the structural relaxation processes n€athe system can- + Zg¢4(x) —he(x)
not avoid having intercluster boundaries. For this reason
glasses inherit a polycluster structure with characteristiavhere
cluster sizes ~10R.. For the values chosen abovg, has
a value of~10 nm. g=T/3; (18)

We see that  is genetically related t&. . Both of these , . o .
guantities chara%terigze the sc);les of thecstructural and con‘?— is the value O_f the spin=spin mtera_lctlons, ands the
positional heterogeneities of the the glass. external magnetic field. The average distance between atoms

The results of structural studies of metallic glasses meas been set equ_al to un!ty. . .
atomic resolution using an ion field microscob¥15show The frozen disorder is manifested in the fact that the

that all of the glasses studiéf the metal—metal and metal— coefficients in the expression for the free energy density are

metalloid typeg have structural and compositional heteroge-r"’mdo_m functions, an.d. becaqse of the-composmolnal and to-
neities with the scales indicated above. Atomically narrowpc’log'cal heterogenem.es their correlation prqpertles are not
intercluster boundaries are observed, with cluster sizes JPHCIIOHS only of the'd|fferer_10es of the c.oordmates.

~10 nm and with nanometer-size compositional heterogen%— The valug of the mteractlom.a@t each §|te depgnds on the
ities reaching 10%. Evidently, small-radius atotesy., bo- ocal topological and compositional disorder, i.e., on the

ron in glasses of the Fe—B typeften segregate in the layers ;5tru<|:tur§ of th_etflrst C(;?";g',gg"‘ t'og t:;pi:elre. dln tthﬁ cltu Stft‘rs the
near the boundaries. ocal order is intermediate;”” and that leads to fluctuations

It can be stated that the notion that the microscopicOf the value ofJ with a characteristic spatial scale close to

structure and distribution of the components in glasses i%je mtera_tohmlc distance. In gdqmr?n, aswe .have. sha|d, gle}ssefs
uniform (this is possible folR,—ro andrq—s) is highly ave an inherent mesoscopic inhomogeneity with a scale o

S - . ; from a few nanometers to tens of nanometers. Because of the
oversimplified and is apparently inapplicable to the over-" " ° ) :
P PP y Inapp ignificant difference of the scales of the disorder, the ran-

whelming majority of glasses. The description and analysi§ ) b . i the f
of the magnetic properties of glasses should be done Witﬁiom quantityJ(x) can be written in the form
allowance for the structural and compositional heterogene- = ~

ities discussed above. J0) =300 +I00), (19

The absence of pronounced features in the behavior of thS
thermodynamic quantities of the glass-forming liquids aboveS
Ty indi(l:ates that this parameter is not small for them, e.g.
~10" "

To obtain estimates of the remaining coefficients, we se
T.=500 K, Ap/p=0.05, kg=5, ¢=2¢€V, ands;—s=1.
As a result, we find from(13) that h,~10 1T,. For (T,
—Tg)/Te~ 101, as we see from Eq$9)—(11), the follow-
ing condition is satisfied:

Therefore, forT>T, the estimatg12) can be used in the
form

d3x, (17)

whereJ(x) is a random quantity with zero mean, and

2. SPIN ORDERING IN GLASSY MAGNETS ~
(3%y=A%(x). (20)
Phase transitions and critical phenomena have been well
studied for the case of homogeneous and slightly inhomogerhe angle brackets here denote averaging over an ensemble
neous crystalline magnet$At the present time substantial Of types of local ordering at fixed concentrations of the com-
progress has been made in understanding the nature of tpenents. The variation of the composition and character of
spin-glass state and paramagnet—spin glass transitions in sy§€ local ordering on nanoscales is taken into account by the

tems with homogeneous frozen disorfet’ Magnetic  coordinate dependenceEfandAz. We note once again that
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this approach to incorporating the heterogeneities in glasses J(x)Acp+[T J(X)]+gcp (29)
is justified if the correlation lengtR; is much larger than the o
interatomic distances. Separating out id(x) the average valuél), we find

Let us first consider a system with homogeneous micro-  —  — = — —
scopic disorder, whed and A are independent ot. The JX)=(I)+I(x)=Tc+4J, (30)
distribution function of the values of the random interactionwhere 53(x) is a random function with zero mean, and the

parameter is conveniently chosen in the form characteristic scale for variation of is
P(J)=(1-u)6(I—Jo) +UA(J+Jy), (21) rg>re=Re. (31)
where

The quantitysJ is small compared t¢J), as are the meso-
scopic fluctuations of the composition, which, according to
5 (1=V1-(A13p)%). (22)  available estimatetsee the previous Sectipris <0.1. This
quantity can be neglected in the first term on the left-hand
It is easy to see that the distributid@1) has a mean sjde of (28) but not in the second term, since we are inter-
value ested in the temperature region ndar, where the fluctua-
J_(1—2u)J0 (23) tions 8J are not §mal| but_ can .exce%—Tc. In view of
what we have said, we write8) in the form

I\)I—‘

and a variance\?. .

The phase diagram of an Ising magnet with the distribu- ¢ +[7+87(X)]¢+g1¢”=h;. (32
tion P(J) of Eq. (21) is described in Ref. 4, for example. If Here
the temperature is measured in unitslgf then the equation

T-T 8J(x)
To(w=(1-2u) eo =1l sro=
determines the temperature of the PF transition as a function ¢ ¢
of u on the segment @u=<u*, whereu* is the point at 01=9/T¢; hy=h/T. (33

which curve(24) intersects the Nishimori line We shall assume thatr(x) is “coarse-grained’(condi-

2 tion (31) holdg and is described by a Gaussian distribution:
Th(u)= T (25
'”(T) P(87)=po exp| - 2d3x] ,
For u* <u=1/2 there is a transition from the paramagnetic
phase to the spin glass. A2=(53%)IT2. (34)

It follows from (24) and (25 that u*~0.15 and
J(u*)/A(u*)~1, in good agreement with the phase diagram
of a spin system with disorder in the Sherrington—
Kirkpatrick model*® It is assumed that the poirk,(u*)
=Ty(u*) is a multicritical point at which the paramagnetic,
ferromagnetic, and spin-glass phases are in equilibrium.

Turning to a study of critical phenomena in a spin sys- <A, (35)

tem with inhomogeneous disorder, we note that as a S|mpI|—h disord | he d | h
fication, Jo can be assumed constant. In that casnd the mesoscopic disorder plays the dominant role in the criti-
cal phenomena.

A=2[u(1—u)]¥?=2(u)'? (26) The fluctuations of the concentrations of the components

depend only oru. In Eq. (26) we have taken into account of a glass ordinarily determine the value &1. Therefore,
thatu<u* <1. It is this quantity that we shall consider ran- for making estimates 06J one can use the approximate

Formally Eqgs.(32)—(34) reproduce the model of critical
phenomena in spin systems with disorder, which was consid-
ered in Ref. 4, for example. An important difference, how-
ever, is the “coarse-grained” nature of the disorder, on ac-
count of which, for

dom and spatially inhomogeneous. expression
In view of what we have said, the equation for the equi- . o
librium distribution of the fielde(X), 8J=2, 6¢;93laci=2, 6c;dT ldc;, (36)
I I
SF
5o (27) where éc; is the deviation of the concentration of thth
¢ component from the average value.
takes on the following fornthereA is the Laplacian opera- Essentially, as the temperature is lowered, islanoisg-
tor): netic clustersin which
(J+I)Ae+(T-3-T)e+ge’=h. (28) (¢?)—Alg

Here we will be interested mainly in effects associatedappear in the system and increase in number and size. The
with the nanoscale heterogeneities inherited from the liquidslands interact, and at a certain temperature clos&.to
state. Averaging28) over the small-scale inhomogeneities, long-range order is established in the spin system, i.e., a PF
we obtain transition occurgor a transition to the spin-glass stat€he
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Ref. 19, which describes relaxation in vitrifying liquids and

finite regions has characteristic dimensions of the order obther complex systems having a broad relaxation spectrum.

M-

We see that the modé€B2), (34), supplemented by the

The state of the system having the properties describedistributions(39) and (43), gives realistic intermediate and
above is called the Griffiths phase. The characteristic proplong-time asymptotic behavior of the correlation function
erties of this phase are singular behavior of the susceptibilitand reasonable estimates of the Kohlrausch expament

and time correlation functiotf'*° Below we shall follow the

The magnetic susceptibility of a finite clustes(L), is

description of these quantities given in Ref. 19, with theproportional tot.(L), so that one may use distributi¢g9)

coarse-grained heterogeneities taken into account.

for elucidating the behavior of this quantity in the existence

The time correlation function is known to be well ap- region of the Griffiths phase. We then find that

proximated over a wide interval of relaxation times by Kohl-

rausch’s law:

C(t)=(e(t))~exd - (t/7)“], (37

x>[c(p)]”?, (46)

and, sincec(p) goes to zero folT—T, (as Inp|,_,), the
function y has a singularity at the critical point, but the char-

wherer, is the characteristic scale of the relaxation time andacter of this singularity is not universés it is for systems

a<1 is the Kohlrausch exponent. We see that &o¥ 1

with homogeneous disordeand depends substantially on

Kohlrausch’s law reflects the multiplicity of relaxation times. the distribution of the heterogeneities.

The time scale for variations in the orientation of the

moment of a compact magnetic island, whete<O, de-
pends on the size of the island:

te(L)~ L3¢ (39

Herel is the linear dimension of a clustéwe are talking
about a three-dimensional system

Magnetized clusters can be treated as supermagnetic par-
ticles, and with additional assumptions about the intercluster
interactions in the critical region one can calculate the mag-
netic susceptibility, heat capacity, relaxation spectrum, etc.
Here the size distribution of the clustelis particular, the
average size of a clusjeand the average magnetization are
the most important quantities. This approach is also widely

Therefore the spectrum of relaxation times is determinedised in analysis of the properties of amorphous magnets

by the size distribution function of the cluste®(L). In a
coarse-grained magnet

P(L)=exd —c(p)(L/r)]. (39)

Here p is the volume fraction of clusters in whichir<<0,
and

c(p)x=In(1/p). (40

Equations(38) and (39) imply the following expression for
the spectrum of relaxation timés:

plte)or f P(L)(t—to(L))dLeexpl — cte/r3p?), (41)

(Ref. 21 and the literature cited thergin

3. DISCUSSION

It is commonly assumed that the physics of glasses and
spin systems with disorder, despite the similarity of a number
of their properties, e.g., multiplicity of structural states, vio-
lation of ergodicity, and the broad spectrum of relaxation
times, including extremely long ones, do not share a com-
mon constructive basis for the reason that supercoooled lig-
uids have a self-consistefthermodynamically equilibrium,
although metastabledisorder, whereas the disorder of spin

and the long-time asymptotics of the correlation functionsystems is frozen in, and in them the problem reduces to one

c(t):
C(t)] f p(to)te texp(—t/to)dt

xexyd —2(ct/rip?)12). (42)

We see thate=1/2 in the model chosen. The value af

of studying the thermodynamics and dynamics of systems
with a stationary disorder, independent of temperature and
pressure.

For this reason, despite the great diversity of opinions as
to the connection between the vitrification process and phase
transitions and critical phenomelfathe discussion of the
nature of the liquid—glass transition and of the structure and

depends substantially on the form of the size distribution oforoperties inherited by the glass is based on heuristic and

the clusters. In particular, for a Gaussian distribution

P(L)xexd — (L—L)2/2x2] (43)
and forL>\ it is easy to find that
exp( —t/t, t<t<
C(t)o o c) 9 c 7'c’ (44)
exg — (t/7o)" " t>7
where
_ A2
tex S‘PZa TC“(E) te. (45)

It should be noted that the correlation functi@) is of

phenomenological models whose domains of applicability
are unclear.

A theory of heterophase fluctuations in vitrifying liquids,
as we have seen, can be formulated in the framework of the
Ginzburg—Landau approach. On the one hand, this enables
one to establish a constructive connection between the
liquid—glass transition and phase transitions and, in particu-
lar, the theory of critical phenomena. And, on the other hand,
it reveals a connection between the theory of phase transfor-
mations and phase transitions in vitrifying liquids and spin
systems with disorder. In the self-consistent field approxima-
tion the latter can be described in the framework of the Ising
model with random coefficients, which, as we know, has

the same form as the pair correlation function proposed itmuch in common with the Ginzburg—Landau equations.
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It is clear that HPFs in the region described by E4). T
have a nature reminiscent of compact clusters of a Griffiths
phase. The fundamental difference is that the HPFs, unlike
the heterogeneities of the Griffiths phase, and not “frozen”:
they appear, change structure, and disappear. It is noteworthy
that the heterogeneities of glasses due to heterophase fluc-
tuations of the liquid inevitably leads to the existence of a
Griffiths phase in the spin system. We note that the scale and
statistical characteristics of the HPFs are inherited by the
Griffiths phase of the spin systefaee Eqs(31) and(34)].
Furthermore, the multiplicity of relaxation times in the liquid
and Griffiths magnetic phase have the same genetic roots—
the structure of HPFs in the liquid.

We note that the manifestation of microscopic disorder
in critical phenomena, in particular, in Griffiths effects, is
substantially different from the manifestations of large-scale ] 12 u
heterogeneities. The temperature region in which the Grif-
fiths phase exists in the presence of microscopic disorder lig3G. 1. Phase diagram of a glass-forming magnetic alloy on The)(
betweeriT, and T, (T, is the temperature of the PF transition P'ane. showing the regions of stability of the paramagnetic phsehe
in the absence of disordebut spin-glass effects engendered ?g‘::; e t":,CFi?;:S’irﬂzﬂ':}%ass phaBIS@, and the feromagnetic phase

- v ) <(u) and the Nishimori lin€ly(u). Between
by the frozen microscopic disorder are manifested only relame linesT* (u) =T, exd —constti(1—u)] andT,(u) there exists a region of

tively close toT, for* strong fine-scale nonperturbative fluctuations with0, and between the

linesT¢(u) anchymes((u)=Tc(1+K) is a region of coarse-grained nonper-
turbative fluctuations engendered by the mesoscopic concentrational inho-
mogeneity of the magnetic impurities.

T::k, meso (1)

Té(w)

e m e e e e, —,— ———————————— -

< 74=exp( — constA?) = exp( — const/4i(1—u)).

(47)

Since the PF transition occurs for<u*~0.15, we have )

A2<0.45, so that the microscopic disorder is extremely im-105 K, and ak=0.07 andT =105 K there is a paramagnet—
portant only near a multicritical point, i.e., far~u*. The  spin glass transition.

coarse-grained disorder leads to appreciable Griffiths effects At ¢=0.1 the temperatur& is equal to 225 K, and at
even forr~A. The value ofA [which is clearly of order C€=0.08 one has'c=174 K. In the light of the above dis-
sc;; see Eq(39)] can be considerably larger thag on the cu§S|qn(see Fig. 1it can be assumed thgt the mult.|cr|t|cal
whole PF transition line, except, possibly, in the neighbor-Peint lies atc~0.07. We see that the functidh is nonlinear
hood of the multicritical point. Consequently, it is the coarse-8Ven in a comparatively narrow interval of Zr concentrations,
grained disorder that plays the main role in the Griffiths ef-2nd in using formuld23) for the average value of the spin—
fects, in particular, in the structure of the spectrum ofSpin interaction one should therefore take into account the
relaxation times and the behavior of the magnetic susceptweak dependence df, onc, if it is assumed thati is pro-
bility. portional toc.

Figure 1 shows a schematic illustration of the phase dia- To estimateA as a function of the zirconium concentra-
gram of a glassy magnet on th&,() plane. The diagram tion we use expressidi36), assuming thadc/c= 0.1, which
shows the lines bounding the stability regions of theis a characteristic measure of the nanoscale heterogeneities in
paramagnetic, ferromagnetic, and spin-glass phases; theetallic glasses, as has been established in ion microscope
Nishimori line Ty(u) (25); and the linesTf(u)=T, studies™'*!*The derivativesT/dc can be determined from
X exf —constu(1-u)] and T¥ . {u)=Tc(1+A). The line the experimeﬂtal values dfc(c)_given above. As a result,
T.(u) defines the region in which there are substantial maniwe find thatA(0.07)~0.5 andA(0,1)=0.11. This means
festations of nonperturbative fluctuations in the fine-scalehat for c=0.07 the Griffiths effects should be manifested
disorder, while the second lin&; .s{u), is its counterpart noticeably in a temperature interval 50 K in width abdyg
for the coarse-grained disorder. We see that the width of thevhile for c=0.1 this width would be 25 K.
region in which nonperturbative disturbances play the domi-  In Ref. 22 a spin-cluster model was developed for amor-
nant role depends substantially on the character of the distrphous iron—zirconium alloys. Assuming that compact clus-
bution of magnetic impurities. ters have a volume distribution, the authors employed the

As a useful example of a spin system with disorder in aNeel theory, which describes the behavior of the properties
glass, let us discuss, in the light of the theory developeaf fine magnetic particles, and then, making a comparison
above, the properties of the magnetic metallic glasses Fe—Zwith the experimental data, established the temperature de-
which have been studied in some detail in numerous experpendence of the cluster parameters rigafor different zir-
ments and are widely discussed in the literafdré? conium concentrations. It was found that n@arthe cluster

A remarkable property of this family of glasses is thatsize is <10* atoms per clusterthis corresponds ta
when the Zr concentratior is changed from 0.12 to 0.07, ~3-5 nn), and the cluster effect is observed up to tempera-
the temperature of the phase transformation from the paraures of 60 K abovel; for c=0.07 and 25 K abovéd . for
magnetic to the ferromagnetic phase changes from 255 to=0.1. We see that the characteristic scales of the heteroge-
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neities of the liquids and glasses given above are in goodlloy of the same composition can be magnetically soft or

agreement with the estimates obtained in Ref. 22. hard. The authors assume that during slow cooling there is
In studies of the density fluctuations in one-componenisufficient time for the formation of clusters, which lend mag-

molecular vitrifying liquids, a number of authéfs?®have  netic hardness to the glass. Because there are as yet no data

observed the presence of large-scalel(? nm) correlations on the structure of these clusters, they cannot at present be

of these fluctuations. The characteristic appearance time dédlentified as Fischer clusters.

the long correlationgthe formation of a Fischer clustewvas Similar phenomena have also been observed in other

found to be many orders of magnitude larger than the chametallic glassed"**

acteristic time for rearrangement of the molecular configura-

tions (the « relaxation timeg. In Ref. 29 a theory of large- 4. CONCLUSION

scale _fluctuat|o_ns n V|tr|fy|_ng I|qUId_s was proposed, The theory developed for the heterophase fluctuations in
according to which the formation of a Fischer cluster occurs

in the following way. It has been shown that HPFs havewtnfymg |IQU!dS a.”O.V.VS one to trace the _evolut|on of the'f
structure during vitrification and to establish the characteris-

correlations of the short-range topological order on scale;{aICS of the frozen disorder of the spin system of the glass.

INRCt'h |.?.,thoverdd|stances tcom%a]\rable t_ot the co;relano he most eloquent expression of this disorder is seen in the
ehngt ot the ((j)r er p?ramle erl. :re ex;st tr_nany YPES Ofitfiths effects in critical phenomena, where the width of
short-rangé ordering ot molecules. A quantitalive measure Gy, , temperature interval in which these effects are important

the r_nultip!icity of types of short-range order of HP_FS s th_eis determined mainly by the large-scale heterogeneities of the
configurational entropy. Thus the correlated domains of S'Z%Iass which are inherited from the liquid

~Re differ in the type of short-ran_ge topological order. It Fs The similarity of the formalism used in the description
shown in Ref. 29 that the formation of correlated domainsy¢ the HPEs in liquids and critical phenomena in spin sys-

with the same type of short-range order of the fractal adiems with disorder reveals the unity of the physics of the
glomerates with large correlation lengths1(0?R, is ener- both effects.
getically favorable. This is what leads to the formation of a  Tne width of the region on theT(u) plane in which

Fischer cluster. _ nonperturbative fluctuations are dominant, and the relaxation
The formation of large-scale Fischer clusters can alsgyrocesses that occur in this region, depend substantially on

occur in multicomponent metallic glass-forming melts. Sincéthe character of the distribution of concentrational heteroge-

the topological and compositional short-range order are intingities in the glass; because this distribution is inherited from

mately related, one expects that in a multicomponent melhe jiquid state, a study of those processes in the glass can

the correlated domains will also differ in the short-rangeyje|d information about the HPFs in the glass-forming liquid.

compositional order. Therefore, in a multicomponent liquid  The theory developed here can provide an explanation of

the Fischer cluster consists of fractal aggregates formed bie experimental data on the magnetic properties of metallic

these correlated domains with different short-range composglasses.

tional order. These large-scale fractal structures are preserved

upon vitrification, and their presence can have a substantial This work was supported in part by the STCU, Project
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The nonlinear one-dimensional dynamics of diatomic adatom clusters on an atomically grooved
crystal surface is investigated by a numerical simulation method. It is shown that for

initial conditions such that a given dynamic Hamiltonian of the system possesses chaotic behavior
in phase space, the dynamical chaos is manifested in the coordinate space as diffusive

motion of the cluster. The process investigated is fundamentally different from ordinary thermal
diffusion and can apparently be manifested at low temperature20@ American

Institute of Physics.[DOI: 10.1063/1.1491183

INTRODUCTION atomic steps on the surface. However, in all of the cases
mentioned, the motion of these objects occurs along the

. Th? ?t“dy of the chaotic behavior of dynam_lcal m_Odelsgrooves and, regardless of the orientation of the clusters, can
with a finite number of degrees of freedom and, in pamcularbe described in the framework of similar one-dimensional
nonintegrable Hamiltonian systems, is one of the new field odels

of theoretical and mathematical physics. It is knowhat The diffusion of adatoms and adatom clusters has a num-
even in the case of conservative nonlinear systems with tw% 7 . e )
er of unusual features! In particular, the diffusion coeffi-

degrees of freedom in the absence of a second integral of the

: . . . ien n ronglyand nonmonotonically on th
motion (besides the ener@ythe dynamics of a particle for cient depends stronglyand nonmo ot_o ca}y on the
S i . coveragé, undoubtedly because of an interaction between
some initial conditions can have a complex, chaotic

charactef Here, however, one usually studies the dynamicsadatoms’ and can depend substantially on the mechanism for

of a system in a finite region of phase space and does nﬂe formation and change in size of the clusters. On the other

t ) . . . .
discuss the question of the macroscopic manifestation of th and, the experimental observation of ragibndiffusive
chaotic behavior.

motion of very large metallic clusters along a graphite sur-

In this paper we investigate the one-dimensional dynamtace was reported in Ref. 8. The theoretical study of the

ics of a diatomic cluster on the surface of an ideal crystal astructure and dynamics of one-dimensional atomic chains of

an example of a nonlinear dynamical system with two de-finite Ie_nlgth has been the subject of a large number of
7 n particular, a soliton mechanism for the motion

grees of freedom which admits infinite motion in configura- P2Per :
tion space, and we consider the question of the possibility off finite-length clusters was proposed in Ref. 9.
diffusive motion of such a cluster at low temperatures and Ordinarily the diffusive motion of adatoms and clusters

the connection between the diffusive regime and dynamicdf due to their interaction with the substrate: adatoms suffer
chaos in phase space. random impacts from thermal phonons in the bulk of the

Numerous experimerté on the surface adsorption of Substrate. As the temperature is lowered and the bulk excita-

atoms of alkali(Li, Na, K, C9 and alkaline eartlfMg, Sr, tions are frozen out, the coefficient of ordinary diffusion falls
Ba) elements on the atomically grooved faces of W, Mo, Re,off linearly with the decreasing temperature, and diffusion of
Ni, and Si and also on surface steps have shown that adbis kind ceases. It remains possible to have regéra-
sorbed atomgadatoms occupy positions in the grooves and tional or drif) motion of individual adatoms excited in rare
around the steps and move mainly along them. That is, theollisions with phonons or under the influence of external
motion (in particular, diffusion of adatoms carries a pre- irradiation.

dominantly one-dimensional character. At low coverages a In this paper we consider the possibility of a fundamen-
gas of isolated adatoms forms on the surface. However, bdally different mechanism of cluster diffusion, which arises at
cause of the complex character of the interaction of adatomie transition from isolated adatoms to small adatom com-
via a metallic substrate, with increasing density of adatomglexes as the degree of coverage increases. In the excitation
on the surface, firgtat low coveragesone-dimensional clus- of an isolated atom at=0 in the absence of dissipation,
ters of 2—6 adatoms form, and then whole chains, periodionly its regular motion is possible. However, as will be
cally arranged at large distances from one another. Thesthown below, when atomic complexes are excited, they can
linear clusters and chains are oriented either perpendicular tendergo stochastic motion, leading to diffusion. This
the grooves(in the case of W, Mo, and Re substrates  “anomalous” diffusion of complexes, which is nonzero even
along the groovegon the Ni and Si surfacgsand along at zero temperature and which is absent for individual atoms,

1063-777X/2002/28(6)/6/$22.00 423 © 2002 American Institute of Physics
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should be observed as the coverage of the substrate in- 2 dx; )2 27X,
creases. E=> :E(W) +U, 1—005—”
From the standpoint of the theory of nonlinear regular =1 a
and stochastic dynamics, this problem is also of fundamental a
significance. As a rule, fundamental questions of stochastic + §(X1—X2)2, 1)

dynamics of Hamiltonian systems are considered for ex-
amples of conservative systems with two degrees of freewherem is the mass of the atoms,; is the amplitude of the
dom. It is assumed that the stochastic regime arises as abstrate potential, and is a characteristic of the inter-
result of instability of the motion of a system in a boundedatomic interaction in the cluster. The equilibrium state of the
region of phase space. Our model allows the unbounded digliatomic “molecule” corresponds to the values;=X,
placement of the center of magSM) of the adatom com- =na. The parameters andU, can be associated with the
plex in coordinate space, and we can consider the fundamenespective frequencies®,=2a/m and w;=Ug/m. We
tal question of the connection between the chaotic charactehall assume below that the frequenaigsandw, are of the
of the dynamics of a mechanical system with diffusional mo-same order of magnitude. The system of dynamical equa-
tion of the CM of this complex. We note that for the afore- tions has the form
mentioned experiments on the surface diffusion of adatom d?X. 27U 20X
. . . 1 LASH TAq
complexes the ideal model is that of coupled mathematical m—+ sin + a(X;—X,)=0, 2
oscillators: the atoms lie along grooves on the surface, and dt a a
the_ir motior_1 is of a one-dimensional character, and the peri- d?X, 27U, 27X,
odic potential created along the grooves by the atomic struc- m—— + sin +a(X,—X;)=0. (3
. ) dt a a
ture of the substrate can be modeled by a trigonometric func-
tion. If the displacements are measured in units of the inter-
atomic distancex;=X;/a, and the time in units 0f2/w,,
then the only remaining parameter is the dimensionless
FORMULATION OF THE MODEL quantity A= (w4 /w)?/ 7, which determines the ratio of the
energy of interaction with the substrate to the energy of in-
We shall investigate the one-dimensional motion of ateractions within the cluster. All of our numerical calcula-
diatomic complex. For simplicity we consider the case whertions were carried out for a valuk=1, although the case
the atoms of the cluster move strictly along the grooves omA>1 is very interesting: in that case the dynamics of the
the surface of the crystal, and in equilibrium the cluster issystem should have traits similar to the stochastic motion in
oriented in the direction perpendicular to the grooyel).  the “Lorentz gas” model. In the case under discussion, Egs.
1). (The one-dimensional model more realistically describe€2) and(3) can be written in dimensionless form as
the situation when the adatom complex is oriented along the
grooves. However, then the possible “jumping” of the atoms ~ _ ! = (Xp—X1) — SIN(277X7) (4)
through each other at high energies becomes a problem. dt? ’
Therefore, in the that case the results which we obtain are 2,
appllca_ble only at energies that are no_t too hlg_h. Howeyer, —22=(x1—x2)—sin(27-rx2), (5)
was will be shown below, this energy interval is one with dt
several important scenarios of cluster motjoe denote the 54 we introduce a dimensionless energy
coordinates of the atoms &5 and X, and restrict consider- )
ation to a harmonic interatomic interaction and a sinusoidal ~ 1/dx
substrate potential relief for each atom. The total energy of E=E/E, :i; (E(
such a system has the form

2

1
dt +%[1_C03277Xi)]

1 2
5007, ®)

whereE, = aa®.

The energy(6) is the only integral of motion of the dy-
namical systen{4), (5), which has two degrees of freedom.
Since there is no second integral, the system admits stochas-
tic behavior*

A fragment of the topography of the potential energy
surfaceU(x4,x5) corresponding to Eq6) is shown in Fig.

2. The simultaneous motion of the diatomic cluster can be
represented as two-dimensional motion of a particle with re-
spect to this potential energy surfa@@ES. The absolute
minima of the energy correspond to the poimts=x,=n

with zero energy. Besides these there exist relative minima of
the PES at the pointx;~1/2+0.368+n and x,~1/2
+0.368+n, with energyE,~0.374. (The values of all the
FIG. 1. Diatomic complex on an atomically grooved surface of a crystal. characteristic energies are given for E/E* [see Eq(6)].
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begins to grow rapidly. In the interve,<E<Eg, however,
the motion occurs in a bounded region of coordinate space.
Here the average values of the CM coordinate (X,
+X,)/2 and CM velocityv=(v,+v,)/2 of the dimer are
equal to zero, while the rms deviation of the CM does not
exceed the interatomic distan@he unit for the dimension-
less variables The chaotic motion in this situation has been
studied widely and in detail by many authdrs.

A more interesting energy region E>Eg, where infi-
nite motion of the dimer is possible. Here its CM moves over
distances substantially exceeding the interatomic distances
on the surface of the crystal, and one can pose the fundamen-
tal question of the influence of stochastization of the motion
in a nonintegrable system on the character of the macro-
scopic displacement of adatom clusters. In particular, one
can answer the question of whether this stochastization leads
to diffusion of the clusters and what would be the properties
of such diffusion.(We stress that we are talking about diffu-
%ion in ordinary coordinate space and not Arnold diffusion in

X2

1,0 -

0,5

FIG. 2. Topography of the potential energy surface of the system. Th
singular points correspond to absolute miniag relative minima(b), rela-
tive maxima(m), and saddlegs). The closed, nearly square contours with phase Spacb-

sides parallel to the axes correspond to zero Gaussian curvature of the po-
tential energy surface. SETUP OF THE NUMERICAL SIMULATION

The theoretical model described above was investigated

by numerical solution of the system of nonlinear equations
The local maxima of the PES correspond to the pointg4), (5) on a computer. The computer calculations were done
X1=Xp,=n+1/2, with energyE,=2/m~0.637. When this by the method of finite differences with a discrete time step
energy is exceeded, the purely “drift” motion witky = x5, A. The value ofA was decreased as the energy increased and
in which internal vibrations of the cluster are not excited,was usually chosen in the interval 0.025-0.01. In real time
becomes possible. Lying between the minima of the PES arghis interval corresponds to a time interva: Av2/w,. A
saddle points ak;=1/12+n, x,=7/12+n; x;=7/12+n,  fast formula for the Verlet algorithm was used which did not
X,=1/12+n; x;=11/12+n, x,=5/12+n; and x;=5/12 |ead to accumulation of round-off error.
+n, X,=11/12+n, with energyE,=1/7+ 1/8~0.443. This All of the calculations were done for the same initial
value of the energy plays an important role in the dynamics/alues of the coordinates of the atoms of the dimé?)
of a cluster: at energies< E; only vibration of the clusteris  =x{?=0, but the initial values of the particle velocitiet”
possible, and it is only foE>Ej that infinite displacement and v{® and, hence, the total energy of the cluster were
of the dimer becomes possible. When the energy is slightlyaried over wide limits. In practice, instead of the values of
aboveE, the image point executes a zig-zag motion throughy{?) and v{?), the related ‘“rapidities” E(®=sgne®)
the saddle points, amounting to a one-dimensional “expressk[(v(*)%/2] of the two particles were assigned. Here, of
motion of the diatomic complex. Finally, a very important course,E=|E{”| +|E{”)|. Studies were done over a wide
value of the energy i€, at which the region inX;,X;)  energy interval, fronE=0.5 to 100. Although in reality our
space that is accessible for the motion of the dimer begins tassumption that the motion is of a one-dimensional character
intersect with the region of negative Gaussian curvature of
the PES, in whichk = (rt —s?)(1+ p2+g?) "2<0, wherer ~ ~2EL

=0?U19x3, t=3?Uldx5, s=d?Uldx1d%,, p=2dUldx,, and E, E, E Type of dynamics
g=JU/dx,. The lines of zero curvature of the PES in Fig. 2 , —
have a nearly square shape with edges parallel tthsnd 025 0.25 0.5 Localized vibrations
X, axes.(The energyE; is related to the Toda criterion for 0.50 0.50 1'? chaos
the onset of stochastization of the motion in nonintegrable ~0.75 0.75 1 chaos
nonlinear dynamical system&3 For our choice of param- ~1.00 1.00 2.0 chaos
eters,E;~0.2. We have done a numerical simulation of the ~1.25 1.25 2.5 chaos
motion of a diatomic complex with energi&s=0.5. At such ~1.50 1.50 3.0 chaos
energies the infinite displacement of the dimer has become 175 175 3.5 , Chac?s ,
possible, and the trajectory “takes in” the region of negative 2.00 2.00 4.0 Localfzed Vfbratfons
curvature of the PES, and that can lead to stochastic motion -2'35 2'35 4 Localized vibrations
At low energiesE<E,, according to the Kolmogorov— 2.0 2‘°9 .2.0 chaos
Arnold—Moser theory? the overwhelming majority of initial 275 2.7 25 chaos
conditions lead to regular dynamics of the cluster: the only ~3.00 3.00 6.0 chaos
motions that occur are a relative vibrational motion of the ~5.00 >.00 10.0 chaos
atoms in the dimer and a vibrational motion of its CM rela- ~2-% 1(3‘00 20.0 chaos
tive to the potential relief. When the energy is exceeded, ~15.00 15.00 30.0 chaos
the weight of initial conditions that lead to chaotic motion ~20.00 20.00 40.0 chaos
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TABLE || TABLE V.
Ey E, E Type of dynamics E, E, E Type of dynamics
Sl e o e e [
3 7 10 chaos -14 16 30 Quasiregular
) -13 17 30 Regular
-2 8 10 Quasiregular ~12 18 30 Regular
-1 9 10 chaos ~11 19 30 Quasiregular
0 10 10 Quasiregular -10 20 30 Quasiregular
1 9 10 Quasiregular -9 21 30 Regular
2 8 10 Regular -8 22 30 Regular
3 7 10 Regular -7 23 30 Quasiregular
4 6 10 Regular -6 24 30 Quasiregular
b 5 10 Regular -5 25 30 Regular
-4 26 30 Regular
-3 27 30 Quasiregular
is violated at high energies and the cluster breaks up, the -2 28 30 Regular
investigations at high energies of excitation nevertheless -1 29 30 Quasiregular
proved useful from a methodological standpoint. The results 0 30 30 Quasiregular
for the case studies are presented in Tables I-VI. At energies 1 29 30 Regular
E=05, 1.0, 15, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 2 28 30 Regular
10.0, 20.0, 30.0, and 40.0 we chose the initial conditions 3 27 30 Regular
E{®=—E®=E/2, corresponding to the relative internal vi- 15 15 30 Regular

brations of the dimer with a stationary CM at the initial time
(Table ). For energie€=1.125, 2.0, 4.5, 10.0, 20,0, 30.0,
40.0, 50.0, 60.0, and 100 we chose the initial conditionend of Fig. 3. Arrowa corresponds to the conditioB{”
E{®=0, EQ=E, corresponding to the motion of only one =—EY)=E/2, and arrowb to the conditionE{® =g
atom of the dimer at the initial timéTable VI). Finally, for =~ =E/2. The main types of motion possible are shown sche-
energies of 10, 20, 30, and 4Tables II-V, respectivelywe  matically in the same figure. First, regular vibrations within a
chose several initial conditions, ranging from internal vibra-single period of the substrate structure can occur, especially
tions of the dimer to a purely “drift” motionE{”’=—E/2  at low energiegcurve A in Fig. 3). Second, for initial con-
+n, EQ=e-|E{"|, n=0,1,..E. ditions of typeb, a regular “drift” motion, illustrated by
Instead of the coordinates, and x, of the atoms it is curveB in the figure, can exist at high energies. In particular,
convenient to use the coordinate of the CM of the dimer when the energy is only slightly abo¥g, this trajectory has
=(X;+X5)/2 and the characteristic relative distance betweerthe form of curveC, which corresponds to the “express”
atomsy=(x;—X,)/2. In the new variables we have two-
dimensional motion of the image point on they) plane, tagE v

where the region accessible for motion is a corrugated “cor-
ridor” which is open in the direction of th& axis (see Fig. Ey Ey E Type of dynamics
3). At the initial time a particle with the specified energy
starts from the point0,0) with a velocity 2E in different —20 20 40 chaos
directions, as is illustrated by the fan of arrows on the left '8 22 40 chaos
-16 24 40 chaos
—14 26 40 Quasiregular
TABLE Il -12 28 40 Regular
Eq E, E Type of dynamics -10 30 40 Quasiregular
-9 31 40 Quasiregular
-10 10 20 chaos -8 32 40 Quasiregular
-8 12 20 chaos -7 33 40 Regular
-6 14 20 chaos -6 34 40 Quasiregular
—4 16 20 chaos -5 35 40 chaos
-3 17 20 chaos —4 36 40 Quasiregular
-2 18 20 Quasiregular -3 37 40 Regular
-1 19 20 chaos -2 38 40 Quasiregular
0 20 20 Quasiregular -1 39 40 Quasiregular
1 19 20 Quasiregular 0 40 40 chaos
2 18 20 Regular 1 39 40 Quasiregular
4 16 20 Regular 2 38 40 Regular
6 14 20 Regular 3 37 40 Regular
8 12 20 Regular 4 36 40 Regular
10 10 20 Regular 20 20 40 Regular
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TABLE VI. Let us discuss in more detail the method of averaging
E, E, E Type of dynamics used m_the caI(_:uIat|0n of the standard deviation of a trajec-
tory. This quantity was calculated three ways. In the first case
0 1,125 1,125 chaos an averaging over the time of motion was done from the
0 2,0 2,0 chaos initial time t,=0 to a moving time, and the expressions
0 4,5 4,5 chaos 1 n
0 10,0 10,0 Quasiregular <X>: - E X(ty)
0 20,0 20,0 Quasiregular Nk=o
0 30,0 30,0 Quasiregular and
0 40,0 40,0 chaos .
0 50,0 50,0 Quasiregular n 1 )
0 60,0 60,0 Quasiregular (=5 2 x(t),
0 100,0 100,0 chaos

were used, wherg=kA and A is the iteration step. How-
ever, this method of finding the time dependeire D(t)

. ) . . . gives unstable and, hence, insufficiently reliable results even
motion of the dimer. Since trajectories of tyd@®ndC pass for very long trajectories obtained as a result-o10° com-

through regions of negative curvature of the PES, apparently ;iasional iterations. When this method is used, the time de-

they also efventua'lly. go over to the stochastic re.gime,' but %endencep(t) came out to be extremely slow, and it is hard
very long times(this is especially the case for trajectories of  ye4ch the limiting value of this quantity in a reasonable

type B, Wh'Ch take in a very small part of the_ sur_face_ with computation time. Another method was to do a simultaneous
K<0). F'n"‘_‘"y’ the most often e_ncountered situation is thataveraging over different time series: the trajectory was cut up
of stochastic behavior of the trajectofgurveD).

) _ : ) into six time intervals of identical length, which were then
Ir_1 the numerical calculation veryllong Frajec_tones Weresuperimposed on one another, and an averaging was done
considered: the number of computational iterations produc

, § X ) X over these six time series. Since this method gave better
ing them was of the order of 0This number of iterations  oq1ts we did the calculations with an averaging over a

corresponded to maximum dimensionless times of Motion ofy 4 numper of time series with practically identical initial
the dimer (dimensionless physical timeof the order of ., jitions. To obtain well-convergent and stable results at a

t.maxmloﬁ, whi'ch cprresponds to f(bf the characteristic P€- reasonable computation time we considered bundles of 400—
riods of the vibrations of the atoms in the substrate relief. IN500 trajectories. In the initial conditions of the motion, i.e.

the chaoftlc reglmeoihe C'\g Offthr? dimer r_n(I)velql ;)ver diS-i the originally chosen values & andEY, a random
tances of up to 410" periods of this potential relief. number generator was used to introduce small differences

The main computational quantities are the following: thewith values of the order of T®—10"? times the absolute
time dependence of the coordinate of the CM of the dimer, alue ofE(?) (of course, here the conditid®(® = const was
I )

X:X(.t); the time depend_ence of th_e number of revers_als 0 trictly enforced. Such small differences in the initial con-
the direction of the velocity of the dimer and the coordmatesditions of the motion turned out to be sufficient to make the

at which the. rgvers_als oceur; the time de_:pendence of th8haotic trajectories diverge rapid{gxponentially from each
standard deviatioD = y(x“) — (x)* for the trajectoryx(t) of et forming an expanding bundle of trajectories. In this

the complexes undergoing chaotic motion; and the parameter, o he averaging of and x> was done over transverse
p=InD(t)/In(t), which determines the character of the mac-. o< sections of the trajectory bundle:

roscopic motion of the dimer. In addition, for comparison of
the results with those for the conventional methods of study- ,
ing chaotic dynamics we constructed the Poinsuegface of () (tn) = 52:1 x(i,n)
section for the trajectories found and the one-dimensional

point images for the coordinates of the turning points of theand

CM of the complex. m

1
() (ta) = — 2 x*(i,n),

m

Y wherex(i,n) is the coordinate of the CM of tHéh molecule
at the timet,=nA. This method gave more-reliable data for
the time dependende(t).

MAIN RESULTS

A diatomic molecule in the system under discussion can

T ‘ execute four fundamentally different types of motion: local-
i ¢ H ’ ized vibrations of two types, regular translational motion,
and, finally, chaotic motion. In the localized vibrations of the
first type the molecule pulsates periodically, but its center of

FIG. 3. Schematic illustration of the possible types of motion of the imagerT_]a-SS_does not shifte., x=const and = 0). In the localized
point. See the text for a description. vibrations of the second type the CM of the molecule ex-
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ecutes periodic vibrations, so that=(x)+ X, sinet, while  studies were done for energi&=1 and 20, which corre-
the motion of each atom of the complex can be more comsponded to statistical sampling volumeshof 581 and 410.
plicated. The translational motion is characterized by the ablt was found that with increasing significance level according
sence of changes in the direction of motion of the CM of theto the x? criterion, theAx™®) are distributed according to a
molecule, although its velocity does not necessarily remain normal(Gaussiaplaw, i.e., they have the same properties as
constant. Ifv =const, then one can speak of regular translafor the trajectories of classical Brownian motion.
tional motion (or quasiregular, if the velocity changes are  In @ number of cases, however, the random walk of the
smal). Finally, in the chaotic motion of the molecule the dimer at certain times would give way to a rapid “drift”
direction of motion of its CM changes direction many times,regime that lasted a finite length of time. On a larger scale
and its trajectoryc=x(t) has a random character. these points in time corresponded to macroscopic jumps of
Regular translational motioftdrift” trajectories) is ob- ~ the trajectory. That is, the motion is not so much of the
served, as a rule, at high energi@sparticular, at the values nature of Brownian motion as it is a realization of a Cauchy
E=10, 20, 30, 50, and 60However, a detailed microscopic Process. This probably accounts for the following result: it
analysis of the Poincaection showed that in this case therewas observed that at ener@y=10, i.e., in the region of
is a slow enlargement and chaotization of the region of moenergies high compared ,,, approximating the time de-
tion in phase space. Curiously, this region pulsates with timependenceD(t) by a power lawD~tP gave an exponer
and its volume varies nonmonotonically. The second impor=0.65—0.8, markedly larger than the value 0.5 and typical
tant observation in the course of the computer simulatiorof a generalized diffusion process. Moreover, if the approxi-
was the finding of a “window of transparency,” where even mation of D(t) was done for different time intervals, the
at very high energiegin particular, at energieE=40 and Vvalues ofp came out different, and its dependence on the
100 one observes a rapid transfer of energy from the transtime interval was nonmonotonic. Thus at large values of the
lational motion of the CM into internal vibrations of the energy the process investigated here, being stochastic, does
dimer and a rapid stochastization of the motion. This phehot correspond to classical Brownian motion and possibly
nomenon is apparently due to an internal parametric resoiot even to a generalized Brownian process.
nance in the system: in the “drift” of the complex above the
periodic relief a periodic force arises which acts on the in-
ternal degree of freedom of the dimer in a parametric way.
The most interesting results are those concerning thd\TAS Grant No. 99-0167.
chaotic motion of the dimer. This is the type of motion that
was most often encountered in the numerical simulation. For
it, @ monotonic change in the parameEéP) corresponds to
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change of the standard deviation with time in the case of aR———
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A self-consistent fieldSCH model is constructed for spatially inhomogeneous Bose systems

with broken symmetry. A system of self-consistent equations is obtained for the wave

functions of the quasiparticles and the wave function of the condensate particles and another
system of equations for the normal and anomalous single-particle density matrices. The many-
particle wave function is found. The thermodynamics of multiparticle Bose systems is

constructed on the basis of a microscopic treatment in the SCF approximation. It is stressed that
Bose condensation in the ideal gas model is substantially different from Bose condensation

in a system of interacting Bose particles because a pair condensate is necessarily present as well
as the single-particle condensate, even for an arbitrarily weak interaction. The role of single-
particle and collective excitations in Bose systems is discussed20@ American Institute of
Physics. [DOI: 10.1063/1.1491184

1. INTRODUCTION tionary equations for the self-consistent field.
In Sec. 2 of this paper we derive a system of SCF equa-
The self-consistent fieldSCH model in the quantum tions for a many-particle system of interacting Bose par-
mechanics of many-particle systems was introduced byicles, These equations can be used for a finite-temperature
Hartreé for describing the states of electrons in atoms. Theyescription of spatially inhomogeneous states with broken
symmetry of the many-particle wave function in this model sy mmetries with respect to various sorts of transformations.
with Zrespect to permutations was taken into account by, sec. 3, thermodynamic relations and expressions for the
Fock” Nowadays the SCF model is widely used for calcula-gnerqy and thermodynamic potential are obtained in the SCF
tion of atomic shell$, nuclear structurd,and the properties model on the basis of a microscopic approach, and it is
of molgcules gnd solidsAn |mportant_feature of the SCF thereby shown that the SCF model is in complete agreement
model is that it can be used to describe states with a Iowe\}'vith the general principles of thermodynamics. In Sec. 4 a

symmetry than that of the initial Hamiltonian. In particular, spatially homogeneous Bose system of particles with a short-

Bogolyubov generalized the Hartree—Fock model to stateg L2 o . . .
. ! range repulsive interaction is considered in the nonsuperfluid
with  broken symmetry with respect to phase

transformationg. The Hartree—Fock—Bogolyubov model and superfluid states with a single-particle Bose condensate.

permits a description of the superconducting states of fer--rhe many-particle wave functions are found for a Bose sys-

mion systems with pairing. The SCF model has mainly beerﬁem with a single-particle condensate. The question of the

used as a basis for theoretical investigation of the propertieé) rmation of the spectrum 0 f excitations in many-pgrtlcle
gose systems is discussed in Sec. 5. We note that this ques-

of fermions, and only in isolated cases has it been used tQ X s _ - i _
tion was discussed in Ref. 11 in connection with the experi-

study many-particle Bose systefhinterest in the problem A
of Bose condensation has risen substantially in connectiofl€Ntal data on neutron scatteringiie. _ _
with the experimental observation of Bose condensation in A 9eneralization of the semi-phenomenological Fermi-
spin-polarized atomic gases by various groups ofiiquid gpproach to the case of a.superflwd Bose liquid was
investigatord.® made in Ref. 12. The spatially inhomogeneous states of a
In the framework of the SCF model, single-particle ex- slightly nonideal Bose gas were considered in the framework
citations arise with nonzero activation energy at zero mo®f the Bogolyubov approximation in Ref. 13, and in the ab-
mentum; the necessity of their existence in Bose systems w&&nce of a single-particle Bose condensate they were consid-
pointed out in the book by Bogolyubov and BogolyulSov. ered in the linear approximation in Ref. 14.
The presence of a gap in the spectrum of these quasiparticles In this paper, on the basis of the method developed for
is due to the fact that Bose systems with broken phase syntermi systems in Ref. 15, we construct a general formulation
metry contain pairs of particles with opposite momenta,0f the SCF method for Bose systems with spontaneously
which, as was noted in Ref. 9, must have an energy of disbroken symmetry. We show that the state of a system with
sociation. Excitations with an acoustic dispersion relationproken phase invariance—a system of even arbitrarily
which were predicted by Land¥liand also exist in systems weakly interacting Bose particles—differs substantially from
of interacting Bose particles, may be found from the nonstaan ideal Bose gas with a condensate. A many-particle Bose

1063-777X/2002/28(6)/13/$22.00 429 © 2002 American Institute of Physics
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system at low temperatures always undergoes a transition to

a state with broken phase symmetry, regardless of the chato= dXdX'[‘1’+(X)[H(X,X')+W(X.X’)]‘1’(X’)
acter of the interparticle interaction, and the ideal gas model
is oversimplified and does not reflect the essential features of
such states of interacting Bose particles. Therefore the SCF
model, in which one can describe states with spontaneously
proken symmetr?es, is a more .na'lt.ural choice than the +J dX[F(X)W " (x)+F* ()W (x)]+E}, @)
independent-particle model as an initial basis for construct-

ing a microscopic theory of many-particle Bose systems.

Among the advantages of the proposed approach is the fagthile the second term is the correlation Hamiltonian, which
that all particles of the system are treated on a completelfakes into account particle correlations not included in the
equal footing. The separation of a condensate of particleSCF approximation:

with zero momentum arises in a spatially homogeneous state
as a consequence of the general theory.

+%‘I’+(X)A(x,x')\lﬁ(x')+%\If(x')A*(X,X’)‘I’(X)

Hc:;f dxdX {% " ()W (x")U(x,x )W (X' ) ¥ (X)

=2 (OW(X, X)W (x")
— W (X)AXX )P (")

2. EQUATIONS OF THE SELF-CONSISTENT FIELD

Consider a system of Bose particles with spin zero, in-

teracting by means of a pair potentid(r,r’). The Hamil- =W (x")A* (x,x")¥(x)}
tonian of such a system has the form

H=Hy+H,, (1) —f dX[F(X)P*(x)+F*(X)W(x)]—Eg. 9
where

The Hamiltonian(8) of the SCF model, unlike its counterpart
for the case of a Fermi systethalso contains terms linear in
¥ and¥*. The self-consistent fieldB(x), W(x,x"), and
A(x,x") appearing inH, must be found from the condition
lef dxdX W+ ()W (x")U(x,x )P (x" )W (x), that t_his I_—|ami|toniar_1 be the best app.r(.)xir.nation to the .initiaI
2 .
HamiltonianH; by virtue of the Hermitianity, the following
(3 conditions hold:

HK=J dxdX ¥ (x)H(x,x")¥(x"), (2)

and
W(x,x")=W*(x",X), A(X,x")=A(x",X). 10
H(X,X,):Ho(X,X,)_/.Lé(X_XI), ( ) ( ) ( ) ( ) ( )
72 The choice of the nonoperator terEy, in (8) and (9) is
Ho(x,xX")=— EA5(X—X')+U0(X)5(X—X’), (4 important for correct formulation of the SCF model. Thus, in

the SCF approximation a many-particle system is character-
where we have used the notatigs{r}, andUy(x) is the ized by a HamiltoniarH,, while the influence of the corre-
external field potential. It is assumed that a many-particl@ation HamiltonianHc can be taken into account by pertur-
system found in contact with a heat bath can exchange withation theory. In this paper, however, we shall limit the
it both energy and particles, i.e., a grand canonical ensemblgetailed study of the Bose system to the SCF model, neglect-
is used. For this reason the chemical potentias included ing effects due to the correlation Hamiltonian.

in the Hamiltonian. The field operators obey the Bose com-  Hamiltonian(8) can be reduced to diagonal form. To do

mutation relations and have the form this, we first eliminate the terms linear in the Bose operators
by introducing “shifted” Bose operator®(x), ® " (x), so
\P<x>=Ej i, \If+<x)=21 eF (0, (5  that

wherea, anda; are the creation and annihilation operators ~ W(X)=x(x)+®(x), ¥ (x)=x*(x)+®"(x), (1)

for real Bose particles in statg and the wave functions

satisfy the single-particle Schitimger equation and defining the functio(x) so that the terms linear in the
field operators drop out ofl,. As a result, we obtain the
f dxX Ho(x,x")@j(x") =&V g;(x). (6)  condition
To pass to the SCF approximation we break the initial , , , e
Hamiltonian(1) into a sum of two terms: dxX' LX) (XT) + A X ) x* (X)) ]+ F(x)=0,

where the first term is the Hamiltonian of the SCF model,where Q(x,x")=H(x,x")+W(x,x"). With allowance for
including terms not higher than quadratic in the field operathis last condition the self-consistent Hamiltonian takes the
tors: form
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H0=f dxdx’[d>+(x)Q(x,x’)fI>(x’)

1

+§<I>*(X)A(x,x’)<b*(x’)
1

+§<D(x’)A*(x,x’)(I>(x)}

—f dxdx’[)(*(x)Q(x,x')X(x')
1

X OOAGX ) X ()

+Ej.

1
+ 5 x(X)AT (XX x(x) 13

This Hamiltonian, with the aid of the canonical Bogolyubov

transformations

<I><x>=2 [ui(X) yi+oF (%) 1,

®T00= 2 i) %+ uf (0], (14)
is reduced to the diagonal form
H0=Eo+§i: EV Vi (15
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The self-consistent potential¥(x,x") andA(x,x") can
be found from the condition of minimality of the functional

I=[((H=Ho))ol? (20)
where the averaging is done with the density matrix
po=expB(o—Ho), B=1T, (21

with T being the temperature. The normalizing constant is
determined by the condition pp=1:

Qo=—TIn[Trexp—BHy) ], (22

and, as we shall show, has the meaning of the thermody-
namic potential of the system in the SCF approximation.

Defining the total single-particle density matrix by the
relations

PO =(T T (X )P (X))o=p(X,X") + x* (X') x(X),
(23

76X ) =(W (X)W (X))o= 7(X,X") x(X) x(X) (24)

and varying the functiona(20) with respect to them, we
obtain from the conditior5l =0 a relation between the self-
consistent potentials and the total single-particle density ma-
trices

W(X,x")=U(X,x")p(x,x") + 8(x—x")

X f dX”U(X,X”)ﬁ(X",XH), (25)

AX,x")=U(X,x")7(x,x"). (26)

The above-condensate density matrices have the form

wherei is the total set of quantum numbers characterizing
the state of the quasiparticle. We see that the SCF approxi-
mation leads in a natural way to a quasiparticle representa-
tion in Bose systems. The conditions for the transition from
Hamiltonian(13) to Hamiltonian(15) are the equations for
the coefficients of the Bogolyubov transformation, which
have the meaning of components of the quasiparticle wave

p(x,X")=(D (X)) D(X))o
=2 [uOOuF (X)) fi+uf (v (X" ) (1+F)],

(27)

vector:

f dX TQXX)Ui(X") +AXX)vi(X") = &iui(x),
(16)

f dx'[Q* (X, x")vi(x" )+ A* (X, X" )uj(X") ] = —&jvi(X).
17

The requirement that the transformatiofigl) be canonical
leads to the normalization conditions

[ axtuo0us 00-ui000, 0010,

| 000100 -wi00u 001-0 18)
and the completeness conditions

2 [UiO0uf (X)) = v (ui(x)] = 8(x=x"),

2 [u(v (X)) v ()ui(x')]=0 (19

for the solutions of the self-consistent equations.

(XX ) =(P(x") (X))o

=2 [ui()oF (X)) fi+uf U (X ) (1+F)],

(28)
where

fi=(» v)o="f(e))=[expBe)—1]"* (29
is the distribution function of the Bose quasiparticles. These
matrices, likép(x,x") and7(x,x"), satisfy the conditions
(30)
Since the operator® (x) and® " (x), according to Eq(14),

are linear iny and y*, while the HamiltonianH, (15) is
gquadratic, we have

(P(x))o=(P"(x))o=0,
and, hence,
x(X)=(¥ (X))o, x*(X)=(¥"(X))o. (31

Thus y(x) can be interpreted as a function that determines
the particle number density in the single-particle Bose con-
densate in the SCF model.

When relationg25) and(26) are taken into account, the
self-consistency conditiond 6) and(17) take the form

p(X,x")=p*(x",x), 7(x,x")=7(X",X).



432 Low Temp. Phys. 28 (6), June 2002 Yu. M. Poluéktov

[ h? 5 x(X)#0, vi(x)=0, u;(x)#0. (37)
——A+uo<x>—u+f dX U (x,x")B(x",x") |uj(x) o .
2m It is just such a solution that corresponds to the case of
an ideal Bose gas below the point of the Bose transition,
+f dx" U X)[pOGX D Uu(X") +7(X,xvi(x")] consisting of a Bose condensate and above-condensate par-
ticles. Thus a system of noninteracting particles with a Bose
=g;Uj(x), (320  condensate and a system (efven arbitrarily weakly inter-
acting Bose particles with broken phase symmetry are two
h? , ot oy essentially different systems. The ideal gas model with a
a ﬁA+U°(X)_M+f AXUXD)PO X vil0) Bose condensate is just as unsuitable for describing the su-
perfluid state of a real system of interacting particles as the
+f dx’ U (x,x)[P* (x,x")vi(X") ideal Fermi gas model is unsuitable for describing the super-
fluid state of a Fermi system, for example, and it cannot be
FF (XX Ui(X)]= = £01(X). (33 used as an initial approximation for constructing a perturba-

tion theory. The use of the ideal gas model with a condensate
Besides Eqs(32) and(33), we must obtain one more equa- as a basis is responsible for the various difficulties encoun-
tion, since the Bose-condensate functigix) remains unde- tered in constructing a consistent theory of many-particle
termined. With this goal, by varying20) with respect to  Bose systems with broken symmetry. This, as we see, is due

x(x) and settingsl =0 we find to the fact that the pair correlations that always exist in su-
perfluid systems of interacting particles cannot be described
F(X)Z—ZX(X)f dx'U(x,x")|[x(x")|2. (34 in the ideal gas model. In real superfluid Bose systems the

pair and higher correlations, which break the phase symme-
Ultimately, taking Eq(12) into account, we arrive at the try, play no less important a role than does the single-particle

equation Bose condensate. Thus, according to the estimates of Ref.
42 18, in superfluid*He only about 8% of the particles are
(_ — A+ Ug(X)— found in the single-particle Bose condensate, while the re-
2m maining contribution to the superfluid density is given by
pair and higher correlations.
+f dx" U x)[B(x" x") = 2 x(x") 2] x(x) 3. THERMODYNAMIC RELATIONS
To construct a consistent SCF model and obtain the cor-
+ f dx’ U(x,xX)[BX,X ) x (X ) +7x,X" ) x* (X')] rect thermodynamic relations it is important to make the cor-
rect choice of the nonoperator part in Hamiltonig®). We
=0. (35) find it from the condition

Equation(35) together with Egs(32) and(33) and relations dl/9E=0, (38)

(18), (19), and (29) completely describe a system of many which ensures that the averages of the exact and self-
Bose particles in the SCF approximation. The system otonsistent Hamiltonians are equal:

equations obtained has three types of solutions: (HYo=(Ho)o. (39)

) x(x)=v;(x)=0, u;(x)#0; By virtue of this we obtain
”) X(X):o! Ui(x)7&0! ui(x)7&0; E(l):_%f dXdX’U(X,X,)
) x(x)#0, vij(x)#0, u;j(x)#0.

X(UT(x)PH (X)W (X )P(x
The first type of solutiongl) describe states in which the (FOOT T )T (X))

symmetry with respect to the phase transformations

_ +2f dxdx U(x,x")| x(x)|%| x(x")]2. (40)
P (x)—¥(x)eé, (36)

] ] ] i The total energy of the system of particles in the SCF ap-
where¢ is an arbitrary phase, is unbroken. In this “normal” proximation has the form

state the system contains neither a single-particle nor a pair

_condensate and does not possess the p_roperty of superflu@-:f dxdx Ho(x,x" (W ()P (x"))

ity. The second type of solution$l) describe states whose

symmetry with respect to the transformati(86) is broken 1

on account of the formation of a pair condensate, analogous + —j dxdX U(x,x" }{TFx)TH(x")W(Xx )P (X))o

to that which arises in superfluid Fermi systemsn this 2

case the Bose system possesses the property of superfluidity. (41
Superfluidity of Bose systems due to pair correlations hagng can be written as a sum of three terms:

been studied in Refs. 16 and 17. The solutions of tiffie

describe superfluid states with broken phase symmetry, con- E=E,+E;+Es, (42)
taining both a single-particle and a pair Bose condensate. WehereE; is the energy determined by the above-condensate
note the absence of solutions in which excitations,E, is the energy of the single-particle conden-
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sate, andg; is the “interaction” energy of the condensate
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We find the thermodynamic potential of a system of

and above-condensate particles. The first term can be writtdBose particles in the SCF approximation, which, with allow-

in the form of a sum
E;=TO+uUd+u+Ud+uy,
where
hZ
TW=— ﬁj dxdx 8(x—x")Ap(x,x") (43

is the kinetic energy of the above-condensate subsystem,

ud= f dxUp(X)Ng(X) (44)

ance for(15) and(22), can be written in the form
TreXF{ _le 8,’}/;‘—’}/,)}

The second term if52) is calculated in the same way as in
the case of an ideal Bose gas. The consignis found from
Eqg. (15 with allowance for the relation

(Ho)o=E—uN

(N is the total number of particlgsso that

QO=EO—T|I’] (52)

is the energy of the above-condensate subsystem in the ex-

ternal field,

1
UgﬁziJ‘ddeU(xxUnQOOndX') (45

is the energy of the direct interaction of the above-

condensate particles,

U(l)_l

Ex—if dxdx U(x,x")|p(x,x")|? 48

is the energy of the exchange interaction of the above-

condensate particles, and
(1) 1 ’ |2
Ug =3 dxdx U(x,x")| 7(x,x")] 47

is the energy of the condensate pairs. In E¢d) and (45)
No(X)=p(x,x) is the number density of the above-

condensate particles. We write the condensate part in the

form of a sum:
E,=T@+Uu@+U¥,
where
hZ
10— [ aX (0800 x00AX (0] (@8
is the kinetic energy of the single-particle condensate,
Ug'= f dxU(x)|x(x)|? (49)

is the energy of the condensate in the external field,

1
U<D2>=§f dxdx U (x,x") [ x)|?[ x(x')[? (50)

Eo=E—uN-2 &f. (53)

Using Eqs(32), (33), and(35), we write the kinetic energies
T® and T@ in the form

TW=uNg—UP -2(U+UR+U)

+Z Sifi_z Sif dX|Ui(X)|2

~ [ axax v poex ) xoow 0

1
+ng(x)| x(x)|?+ 5 7 06X X (%) x(x")

1
+ ET(X.X’)X*(X)X*(X’) , (54
T(z)z,uNB—U(EZ)—f dxdx U(x,x")
X[ p(x,X") x(X) x* (X") +ng(X)| x(X")|?
1
+ Er*(x,X’)x(X)x(X’)
1
5 TOGX )X ()" (X)) +| x(X) 2 x(x")|?],
(55

where No=[dx ng(x) and Ng=[dx|x(x)|? are the num-
bers of above-condensate and condensate particles.
By virtue of Egs.(54) and(55) the energy of the system

is the interaction energy of the condensate particles. Thean be written in the form

third contribution to the total energy,

p(X,X") x* (X) x(x")

Es;= f dxdx U(x,x")

1
+no(X)| x(X')| 2+ 5 70X X 00X (X')

1
+§T*(X,X’)X(X)X(X') : (51

is determined by the interaction of the above-condensate par-

ticles and the condensate.

E=uN—(Uy+UZ+Ud+U2)

+2 sifi—z

sif dx|vi(x)|2—f dxdx U(x,x")

X

p(x,x" ) X () x* (X") +ng(x)| x(x")|?

1 1
+ 57*(X,X’)X(X)X(X’)+ ET(X,X’)X*(X)X*(X’)

(56)
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from which, by comparison witli53), we determine the ex- #2 B
pression foiE, in (15). Ultimately we arrive at the final form ~ om (AFADTXX) +[Ug(x) +Ug(x") +U(X,x")
of the thermodynamic potential of the Bose system:

—2,u]”r(x,x’)+f dX"TU(x,x")+U(x",x")]
Qo=—(UFP+UR+UP+UP)- > sif dx|vi(x)|?

. X[POXX)T(X", X" )+ (X", X")7(X,X")

+BOX X FXX) = 2x (%) x (X)) x(X")[*]1=0.
p(X,X" ) x(X)x* (xX") (61)

- f dxdxX U(x,x")

1 To this system of equations we should add E8p).
2Jrzf*(X,X’))((X))((X’) Knowledge of the above-condensate density matrices and

condensate wave function is sufficient for calculation of the
average of an arbitrary operator.

+N(X) | x(x")

1
+ ET(X,X’)X*(X)X*(X’)

+T>, In(1—e Fo).

57 (O)0=f dxdX O(x,x")p(x,x")

It can be shown that the variation of the thermodynamic :f dxdX[O(X,X")p(x.x")

potential given by formuld22) is equal to the average, over ,
the self-consistent state, of the variation of the Hamiltonian: +O0X)x* () x(X)]- (62)
We see that the average breaks up into a sum of the above-
condensate and condensate contributions.

The correlation Hamiltoniaf9) can be written in terms
of the above-condensate density matrices in the following

Expressing the self-consistent Hamiltonian in terms ofform:
x(X), p(x,x"), and 7(x,x") [or p(x,x") and7(x,x")] and

6Q0=(SHg)o. (58)

varying it with allowance for(58), we obtain HC:%J' dxdX U(x,x)[®F(x)D " (x")P(x")D(X)
50 _< SHo > 80, _< SHo > —2p(x,x )P (X)D(x") = 2p(X" X" )P T (x)P(X)
Sx*(x) \ox* (), Sp(xx") \dp(x.x")/ —7(X, X" )P T(X)DH(X")— 7 (X, X" )P (X' D(X)
50 SHo +p(X,x")p(X", X)+p(X,x)p(X",X")
= * N * ! :O (59)
ot (X,X ) <5T (X,X )>0 +T(XI,X)T*(XI,X)+ZX*(X)(D+(X')(I)(X,)(I)(X)

+2x(X)P T (X" ) DT (x")D(x)
When the terms of the total density matrices are used in , g * N wros
relations (59), the substitutionsp(x,x’)—p(x,x’) and ~2pOX )X (X (X) =2p™ (XX x* (XT) D(X)
7(X,X")—=7(x,x") should be made. Thus the relation be- —2p(X" X" )x(X)P T (x)—2p(x",x" ) x* (X)D(X)
tween the fieldd=(x), W(x,x"), andA(x,x") and the con- ey . , )
densate wave functiog(x) and the single-particle density —270X") X" (X T (X) =277 (XX ) Y (X") D ().
matricesp(x,x") and 7(x,x") in (25), (26) and (34), which (63
we established with the aid of a variational principle, lead, a
we see from Eq(59), to extremality of the thermodynamic
potential in regard to its variations with respectdg, dp,
and 7.

From equationg27), (28), (32), (33), and(35) one can

obtain a system of equations for the single-particle density
matricesp(x,x") and 7(x,x") [or p(x,x") and7(x,x")] and
x(X). Let us write the system for the total density matrices:4. SPATIALLY HOMOGENEOUS BOSE SYSTEM

Srhis rather unwieldy Hamiltonian can be written more com-
pactly in terms of the normal products of operators and be
used to develop a perturbation theory in analogy with the
procedure for Fermi systems.

The equations obtained, which are suitable for studying

12 e , e , spatially inhomogeneous states, can, of course, also be used
B %[A— ATp(xX") +[Uo(x) = Uo(x) Ip(x,X") for study of a spatially homogeneous system. Let us consider
this important particular case. In a spatially homogeneous
+ | dXTUGX) = U X XD (XXX X! system the states of the particles are characterized by their
f [UGx") =0 BT ) momentum, so that heie=k={k}, and the wave functions

have the form of plane waves. We shall assume that the
interparticle interaction has &function charactertJ(x,x")
—2x(x)x* (x")|x(x")|?]=0, (600  =Uyd(x—x"). In a normal Bose systeifthe primed quan-

+o0, X )p(X" X" +7(X, X" )7 (X", X")
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tities) the wave function of a quasiparticle, its dispersionwhere &,=#%2k?/2m— u+2Uqn, A=Ugs7(x,x), and the to-
relation, and its distribution function have the forms tal particle number density="p(x,x). Applying the normal-
ization condition(18), i.e., |u,|?>—|v|?=1, we obtain

/( ) 1 —kx 7 hzkz ~ £/ (eBS, l)*l 1 1 A
u(x)=—e ™ gr=—=——nu', f =(ek — ,
“ W © 2m ‘ |Uk|2:—(i+1)v|Uk|2:—(i_1>kaU::__-

(64) 2 €k 2 €k 28k

(75)
where Equations(73) and (74) imply the quasiparticle disper-
n'=u'—2Uon’ (65  sion relation

is thg effect?ve chemigal potential, and.the single-particle sk=\/§k2—|A|2, (76)
;joerrrflljtlgsmatrlx and particle number density are given by theand Eq.(35) yields a relation between the chemical potential

and the wave function of the Bose-condensate particles:

1 : , 1
p’(X,X’)ZvZ g Ikix—x )f,’(,n’zvz fr, (66) [—u+2Ugnglx+Ax*=0. (77
k k
The total particle number density can be written as

whereV is the volume occupied by the system. The chemical o
potential is related to the particle number density by a for-  N=IX|"+Ng* Ny, (78)
mula similar to that for an ideal Bose gas above the condenyhere the first term is the particle number density in the
sation point, but with the chemical potentjalreplaced by Bose condensate, the second term
the effective chemical potential’ (65):

1
B (mT)3’2Jw deve ”q:\—,zk fx (79

= —. (67

Vam*h?Jo e -1 is the number density of the particles forming the quasipar-
Since, according to Eq(65), the particle number density ticle excitations, and the last term
enters intge’, Eq.(67) containsn’ on both the left and right 1
sides, and therefore formul&7) gives a more complex de- HPZWE (
pendence of the particle number density on the chemical po- k
tential than in the ideal gas model. It is obvious that thejs the number density of the particles correlated in Cooper
condition for Bose condensationjs =0, i.e., the following  pairs. Thus the number density of particles that do not enter

!

Sy
€k

(1+21y) (80)

relation holds on the phase transition line: into the single-particle condensate is
©'=pi=2Ugn. (689 Ng=nNg+Ny. (81
The Bose condensation temperature is determined by ththe value ofA is determined by the equation
same formula as in the case of an ideal Bose gas: 2
A= DX e (82)
2mh2[ n' |28 T1+U0d X
To=——" : (69)
m (372 where
where(3/2)=2.612 is the Riemann zeta function. 1 1+2f U
. : . k 0
Below the Bose condensation point the self-consistent J= WE » O=17073" (83)
equationg32), (33), and(35) admit solutions in the form of K &k 0
plane waves: We note that when the summationJdnis converted to inte-
gration, the resulting integral diverges. This is due to the
U(X) = ie—ikx,vk(x): ﬂe—ikx,X:Const_ (70) ~ choice of a point interaction. If a potential with a finite in-
\/V \/V teraction radius, were used, the integral would be conver-

ent. Therefore, when calculating in (83) the integral

In this case the single-particle density matrices take the for hould be cut off at a wave numbkg=1/a,. In the state

B , 1 ) ) i with the Bose condensate, the chemical potential, according
p(x,x")=x| +v; [lud it [od2(1+f)1e ™ ), 1o Eq.(77), is determined by the formula
(72) pw=2Ugng+0|x|% (84)
1 ) , Taking Eqgs.(82) and(84) into account, we obtain fror(i76)
~ "N 2 —ik(x—
T(XX") = x"+ VEK Ul (1+2 fj)e KO, (72 the final expression for the quasiparticle spectrum:
21,2 21,2
and the coefficients, according to Eq$6) and(17), satisfy _ \/(ﬁ k L 2(Une 2) hk 4o 2)
the system of algebraic equations Ek om 2(Uo ©)lx] 2m Uolx|®)-
(85)
(&= e Ut Av,=0, (73

We see that the energy of a quasiparticl&at0 does not go
A*ut (§t+ev=0, (74)  to zero but takes on a finite value
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Ugd with a nonzero activation energy was discussed long ago,
£0=2|x|*VUo(Uo—©)=2Ug|x|? : (86)  and excitations with a gap have been considered by many
1+UoJ authorst®?1=24 |n the Introduction of the Bogolyubovs’
; golyubovs
i.e., the spectrum has an energy gap. The energy spectrumhgoll it is mentioned that, because in a Bose gas with inter-
clearly stable in the case of repulsion between particlegiction there are pairs with opposite momenta, they should
(Up>0). The energye, has a clear physical meaning, have a dissociation energy associated with each pair. “This
namely, it is the minimum energy that must be expended teneans that in addition to the phonon branch of the spectrum
remove a particle from the condensate and thereby createvge have another branch in the excitation spectrum, corre-
new quasiparticle. It is entirely natural that in a Bose con-sponding to the excitation of pairgp. 322 of the Russian
densate of interacting particles this energy has a finite valuedition of Ref. 9. In addition, we note that the single-particle
For a more detailed analysis of the meaning of the expresand pair condensates for a single coherent system, and for
sion[Eq. (86)] that determines the energy gap, we use relathis reason the gap in the excitation spectrum is determined
tions (5), (11), and(14) to express the operators of real par- not only by the pair anomalous average but also by the par-
ticles in terms of the amplitude of the Bose condensate angcle number density in the single-particle condengaii. A
the quasiparticle operators. Since in this cagg(x)  discussion of the solutions which have a gap in the quasipar-
=e "/ V, we have ticle spectrum is given ig Ref. 6. %5
_ * L+ Hugenholtz and Piné3used Belyaev® quantum-field
A= XV oot Urch v v perturbation theory for Bose systems with a condensate to
a; =x* \/V5k10+ DR THE (87) sh(_)w that the quasiparticle spectrum at s;_mall momenta obeys
] ] ) ~alinear law except in possible pathological cases. It should
These relations permit one to find the momentum distribuy|sg pe kept in mind that the validity of this result, as Pines

i i () . -
tion of the real particlesf,” =(a, ay), and the anomalous himself stressed depends on the validity of the perturba-

averagegi(axa-): tion series expansion. The efficiency of using perturbation
1/ & theory depends substantially on how well the initial approxi-
FiP'=V|x|? 8 ot fi+ 5(8— —1](1+2fy), (88)  mation is chosen, i.e., on how close the structure of the state
k in the zeroth approximation is to the state of the real system.
,  (1+2fy) The many-particle wave function of an ideal gas whose par-
9=—x"0 26, (k#0). 89 ticles are all found in the Bose condensate,
These formulas imply the relation (ag)N
0
1 JU, [Do)= i 0), (93)
— —v|2 N!
V‘k;o <aka—k> |X| 1+‘]UO (90)
Ultimately, formula(86) can be written in the form is oversimplified and is far from the form of the wave func-
tion of a system of interacting Bose particles, as can be seen,
 2Uq|x| S (aa ) V2 01) for example, from a comparison @®3) with the many-
g0~ W& Tk particle wave function obtained belogee Eq.(109)] for a

) o ) system of interacting Bose patrticles in the SCF model. In-

We see that the gap in the quasiparticle spectrum is detefjeeq it appears that responsibility for the difficulties encoun-
mined by the interparticle interaction constant, the density ofgreq in a quantum-field treatment of many-particle Bose
particles in the single-particle Bose condensate, and th§ystems(the vanishing of the anomalous self-energy part at
anomalous averages describing the pair correlations in a sysgrq momentum, which was pointed out in Refs. 28 and 29
tem of interacting Bose particles with broken phase symmeyests with the choice of the ideal Bose gas model for the
try. ) ) . ) zeroth approximation, as it does not take into account the
We note that ifUo—0=UgJ/(1+UgJ) in (86) is for-  pajr correlations of particles with opposite momenta, and
mally set equal to zero, then we would obtain the excitationpese correlations always exist together with the single-

spectrum found by Bogolyubc: particle condensate. In addition, the result of Hugenholtz and
72K2 [ 112K2 Pine£® relies substantially on the assumption that the opera-
&= \/W(m+2uo|x|2). (92)  tors for particles with zero momentum can be replaced with

C numbers®® No such assumption is needed in constructing

At a finite value of the wave number the difference of thea theory of many-particle Bose systems on the basis of the

spectrum(85) from the Bogolyubov spectrun®2) can be  SCF model.

made arbitrarily small if the interaction is weak enough. The  The existence of a gap in the spectrum has the conse-

condition for this is quence that the distribution functidp of the quasiparticles,
U2J| 125 72k%/2m t?o_th above and belov_v the Bose transition temperature, has a

ovIX ' finite value at the poink=0, except at the temperatulg

However, right at the poink=0, which is a singular point itself, where the distribution function diverges for—~0 as

for the spectrum in a perturbation theory in the intensity off,—k 2.

the interaction, one is not justified in neglecting the term  For a quadratic Hamiltonian such as the Hamiltonian of

2(Uo—0)|x|? that leads to the existence of a gap in thethe SCF model8), one can find the eigenvectors of the

spectrum(85). The possibility of the existence of excitations states. In the case when the states of the particle are de-
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scribed by plane waved0), the self-consistent Hamiltonian of N particles over the single-particle states. To each state
has the form vector (102 there corresponds an eigenvector of equation

(95):
_ E hzkz + E + 1 + o+
Ho— - _2m - ak ak+ - Wkak ak+ EAkak a,k |T>:U1U2|N,)\> (103)
1 The operatof99) can be written in the form
JFEA*k*a,kak +Fag +F*ay+Ey, (94 |

2
i U1=U1()()=ex;<—v—|x +\/V)(a5’—\/vx*ao).
and the Schrdinger equation corresponding to it is 2 (104)

Holl)=E/[1), (99 The action of this operator on the vacuum vector creates a
where|l) is the eigenvector of the state with eneigy. For ~ coherent stafé
a delta-function interaction if@4) we haveA,=A [see Eq. 200 fvat
(82)], W, =W=2U,n, andFie—)ZJvuolxlz;. In t[he et [X)=U1(x)|0)=e~"IX"Ze Vx| 0), (109
vation of the equations of the self-consistent field a change tohich is an eigenvector of the annihilation operatagty)
new quasiparticle operators is made with the Hamiltonian= \/\/y|y). The operator in100) contains a sum over mo-
remaining unchanged. For finding the state vector it is conmenta in the exponent. Among the terms in it are pairs with
venient to go over to a new Hamiltonian expressed in termgqual but opposite momentaand—k, and also a term with
of the same particle operators. The new Hamiltonidg, k=0. Taking this into account, we write the operat®@0) in

related toH, by a unitary transformation witkJ, the form
Ho=U"H,U, 96
0=U"Ho %8 Uz=Ua(so) TI Ua(un, (106
has the same eigenvalueshkag, but these values correspond
to the new eigenvectors where
H=u"). @) Uslip)=eron’ ¥
By applying two successive unitary transformations Uy — e To2ghodg 2(;Foaé aoefA(*,aﬁ,

andU,, we go from the Hamiltoniaiil, to the Hamiltonian
Uy(gh) = e(‘//ka;afk* Ui aa—)

Tt —E.+ ta, . «
Ho=U, U HoU;U,=E, Ek &yay ag (98) :efrke/\kaljatke*Fka:ake*rkatka—ke*/\k Ak
The unitary transformation with and
Ur=exp(\V(xa; —x* o)) (99 Yo
Ao=z——tanf |, To=IncosHyyl;
- . . . 2
eliminates from(94) the terms linear in the particle opera- [0l
tors, and the unitary transformation with A e Hund, Toel ol
=——tan , I'i=Incos .
e i, Tk 2

1
— - 4t ok —
Uz ex% 2 ; (V@A i@ | =1« The action of the operator on the vacuum vector generates a
(100 state

eliminates the quadratic terms which are noninvariant with “ Ajafaty)"
respect to phase transformations. The paramgten (100) ) =U,(#)|0y=e 1> n—||0>' (107
is determined by the relations n=o '
which is natural to treat as a pair coherent state which is an
ue=coshinl, v} =|%sinﬁ . (101  eigenvector of the operatofga,a——vi *a; a’y, so that
k

o . o . (Uaw@-k—vic “a a’ ) i) =uwwic [ ). (108
We note that Hamiltoniaf98), unlike (94), is invariant with )
respect to phase transformations and commutes with the pafe operator,(y) commute with one another and, for

ticle number operator. The eigenvectorshy for states with Il(j& 0, with Uy(X), antdt.onIyTr':he operatoryf(wo)f tﬁnd i
total particle numbeN have the well-known form 1(x) are noncommutative. The vacuum vector of the self-

consistent Hamiltoniahl, (the vacuum vector for the quasi-
IN,N)=(n,! nz!...nj!...)‘1’2(af)”1(a§')”2..-(ar)”i---|0>, particles is obtained as a result of the action of the operator
U,U, on the vacuum vector for the particles:

N= 2 nj, (102 0g)= eVAox* 2= 12(V| x|+ T o) eV(x—2A0x* )ag ghodg 2

where|0) is the vector of the vacuum state of the particles, x I efl"keAka:afk|0>_ (109
and the index denotes the states with different distributions k#—k#0



438 Low Temp. Phys. 28 (6), June 2002 Yu. M. Poluéktov

Taking into account the relation between the particle andions depends on the thermodynamic paramefensipera-
quasiparticle operators ture, pressuneand is always less than the total number of
_ F— particles of the system. This is because only a fraction of the
y=UiUal; Uy (110 particles take part in the formation of the single-particle ex-
we can easily find an arbitrary eigenvector of the Hamil-citations, while the rest form condensat@sngle-particle,
tonianH,. These vectors have the for(h02 with the par-  pair), which break the phase symmetry. This is just how mat-
ticle operators replaced by the quasiparticle operators angrs stand in the phenomenological Bose- and Fermi-liquid
with |0) replaced by0,), as is obvious fronf15). The vector  theories generalized to superfluid syst&hidand in the SCF
of the state withN quasiparticles is generated from the vec-model for Fermi systems with broken symmeltyn particu-
tor of the state withN particles by operating on it with |ar, in a Bose system at zero temperature the single-particle
U;U,. The eigenvectof109 and the other eigenvectors of excitations are absent altogether, and all of the particles are
the self-consistent Hamiltonia, (94) are not eigenvectors correlated into condensates of different levels, e.g., into a
of the particle number operator and consist of a superpositiogingle-particle and a pair condensate if one is using the SCF
of vectors describing states with different particle numbersgpproximation, and into condensates containing a larger
but they are eigenvectors of the operabdy==;y; v; and  number of particles if the higher approximations are used.
describe states with a fixed number of quasiparticles. Another way of introducing elementary excitations in a
From Eqs.(87)—(89), and forT=0 from the form of the  many-particle system dates back to Debye, who developed it
many-particle wave functioi109), we obtain the averages i, the construction of the theory of the heat capacity of

of the operators for particles with zero momentum: solids®* In this approach the many-particle system is treated
(agYo=VVx, as a continuous medium, the motion of which is described by
) ) classical equations. As a result of quantization we arrive at
(ag)o=Vx“+Uoug (1+2fy), excitations which are vibrational quanta of the medium. Such

¥ _ 2 5 2 excitations are usually called collective. In the case of col-

= + +(1+ . . o . .

(80 80)o=VIx| ™+ |vol“+ (1+2[vel o 11D |ective excitations the particles forming the system move co-

It follows that in the limitV— o we have herently and are, as it were, “frozen” into the continuous
medium. The number of such excitations, generally speak-

(ag a0)0=(ag Yo(@0)o= V(ag *)o(aG)o- g Y °p

ing, is in no way related to the number of particles in the
system. The quanta of the collective oscillations of the den-
sity are phonons, which at low momenta have a linear dis-

The concept of quasiparticles arises in the approximat@€rsion relation, the energy of which goes to zero with in-
solution of a many-particle problem as a result of the reducéréasing wavelength. In an analogous way one can introduce
a form analogous to the Hamiltonian of an ideal gas. Such aHons of other characteristics of the continuous medium.
Operation can be performed in at least two WayS, and, accor(yyhen the oscillations of the magnet|zat|on are quant|zed, the

ingly, there are two types of excitations—single-partigle  Collective excitations become magnons. In a gas of charged
self-similap and collective. particles, e.g., electrons, the collective excitations are quanta

A method of constructing the single-particleself- of plasma oscillations—plasmons. A characteristic feature of
similar) excitations by proceeding from the many-particle these excitations is the presence of an energy (g&gsma
Hamiltonian was developed by Bogolyubov in the theory offrequency in their dispersion relation, which is due to the
the slightly nonideal Bose g&%Essentially, in this approach long-range character of the Coulomb interaction.

a microscopic Hamiltonian containing an interaction opera-  Thus the quasiparticle excitations considered in this pa-
tor with at least four(in the case of a pair interactipere- ~ per in the framework of the SCF model are single-particle
ation and annihilation operator®) is approximated by a excitations analogous to the excitations with an energy gap
quadratic operator, which is then diagonalized. This is thén Fermi systems with broken phase symmesgmetimes
approach that was used to construct the SCF model in thigalled bogolons A distinctive feature of such excitations in
paper. On the phenomenological level the concept of singleBose systems with a single-particle condensate is the possi-
particle excitations was introduced by Landau in the theonypility of creation of solitary excitations. Nonequilibrium soli-

of the Fermi quuid?1 We note that the Fermi liquid model tary excitations contribute to density fluctuations and their
can be obtained by the Bogolyubov method on the basis dfispersion relation can therefore be observed directly in ex-
the microscopic approadi.The single-particle excitations periments on inelastic neutron scatterig.

are essentially individual particles having a dispersion rela- The static SCF model describes single-particle excita-
tion that changes on account of the interaction with the surtions but does not permit taking into account the contribution
rounding particles and depends on the thermodynamic pasf collective excitations to the thermodynamics. It should be
rameters. In normalnonsuperfluigl states, where the phase emphasized that Bose and normal Fermi systems have an
symmetry is not broken, the number of single-particle exci-extremely important difference. In normal Fermi systems the
tations is fixed and is equal to the number of particles. Ascontribution of collective excitations to the thermodynamics
ymptotically, at large momenta, the dispersion relation ofdecreases with increasing temperature. For example, the heat
these quasiparticles is the same as that for free particles. kapacity due to single-particle excitations is proportional to
many-particle systems with broken phase symmé&inper-  the temperature, while the heat capacity due to collective
fluid, superconductingthe number of single-particle excita- excitations is proportional to the temperature cubed. Because

5. SINGLE-PARTICLE AND COLLECTIVE EXCITATIONS
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of this, the SCF model, the phenomenological version otan be reduced to a single-particle problem in only one
which is the Fermi liquid theory, is well applicable for the case—in the ideal gas model with complete neglect of inter-
description of Fermi systems at low temperatures. For Bosparticle interactions. Every state in a system of interacting
systems the situation is contrary. At sufficiently low tempera-particles is a collective state, in the broad sense that it is
tures, when the Bose system is found in a state with brokedetermined by the states of all the particles of the system.
phase symmetry, the number of single-particle excitationgherefore, both the single-particle and the collective excita-
decreases and, furthermore, by virtue of the presence of th@ns discussed above are in this sense collective. This should
gap in the energy spectrum, their contribution to the thermobe kept in mind when using a separation of excitations into
dynamic properties of the many-particle Bose system desingle-particle and properly collective. It is natural to reserve
creases. On the other hand, the contribution of collectivehe term “collective” for those excitations of a many-particle
excitations, which, as we have said, cannot be described insystem which arise as a result of the quantization of its mo-
static SCF model, increases. These same arguments also diph as a continuous medium. These excitations are mani-
ply to uncharged Fermi systems with broken phase symmeested as a pole of the vertex function.
try. The good agreement with experiment of the modern  Collective excitations can be studied in a nonstationary
theory of superconductivity, which is a variant of the SCFSCF model. It can be shown that the nonstationary equations
theory, is due to the fact that the electron system is chargedor the single-particle density matrix and wave function of
resulting in an energy gaghe plasma frequengyin the the condensate are obtained from the stationary equations
spectrum of collective excitations, so that one can, to high35), (60), and(61), respectively, by the addition of the fol-
accuracy, neglect the contribution of collective excitations tdowing time derivatives on the right-hand sided:dy/dt,
the thermodynamics of superconductors. The situation is difi# dp(x,x’,t)/dt, andif d7(x,x’,t)/dt. Analysis of small os-
ferent in superfluid®He, which is a neutral Fermi liquid. cillations shows that the nonstationary equations have a so-
Here the description of the thermodynamic properties in théution with a linear dispersion relation fd«— 0. The propa-
SCF approximation is less justified, and the role of collectivegation velocity of these oscillationsy=\Uyn/m (n is the
excitations should be significant. In particular, taking the col-total particle number densitycoincides with the quasiparti-
lective spin-wave excitations into account can explain thecle velocity in the Bogolyubov theoR). These collective os-
stability of theA phase of superfluidHe *®° cillations, with practically identical propagation velocities,
The collective excitations can be taken into account inexist in both the normal and superfluid phases. For the ve-
two ways. The most consistent from the standpoint of thdocity of long-wavelength disturbances to be independent of
microscopic description is to calculate the two-particlethe thermodynamic quantities, they must have a rather high
Green’s function or the vertex function in a higher approxi-frequency. These oscillations are the analog of zero sound,
mation than the SCF approximation. The quantum-field apwhich was first studied in Fermi systems. At lower frequen-
proach, perturbation theory, and the diagram technique focies, in the hydrodynamic region, the sound velocity depends
describing many-particle Fermi systems with broken symmesubstantially on the thermodynamic variables. It is these ex-
tries on the basis of the SCF model as an initial approximaeitations that form the linear part of the spectrum introduced
tion are developed in Ref. 19. This approach can be extenddsy Landau'’ The maxon—roton parts of this spectrum are
to Bose systems with broken symmetries. The other methodpparently governed by single-particle excitations. On a
of studying collective excitations is based on the use of thejualitative level the problem of formation of a single spec-
SCF equations generalized to the nonstationary case. Byum from branches of excitations of different natures is dis-
studying small oscillations one can establish the dispersiooussed in Ref. 11.
relation of the collective excitations. Such oscillations can be  As was shown in the framework of the relativistic field
nonequilibrium and excited by an external influence, but theheory by Goldstoné’ the breaking of the gauge symmetry
same oscillations are excited by a thermal method utilizinggives rise to particles of zero mass. A number of papers
the energy of a heat bath in contact with the many-particléRefs. 38 and 39, for exampldave been devoted to the
system. Considering the gas of collective excitations as ideagjeneralization of the Goldstone result to nonrelativistic
one can calculate the contribution of collective excitations tamany-particle systems. As can be seen from the results of the
the thermodynamics of the many-particle system. present paper, in the SCF model the breaking of phase sym-
The separation of the excitations of the many-particlemetry does not give rise to gapless excitatithe analog of
system into single-particle and collective, like the concept ofzero-mass particlgsLet us make a few remarks in this re-
guasiparticles in general, is of an approximate character. Thgard. We note that fields and many-particle systems are sub-
problem of separating excitations into collective and single-stantially different objects, and the results obtained in field
particle has been elaborated in greatest detail by Bohm aritieory do not automatically carry over to nonrelativistic
Pines for the case of the electron gisdowever, for arbi- many-particle systems. In field theory it is essentially a con-
trary many-particle systems, especially those found in statesnuous medium that is quantized, and the particles that arise
with spontaneously broken symmetries, a consistent procen quantization are the quanta of excitations of such a me-
dure for separating the single-particle and collective motionglium. In a many-particle system there are primary particles,
does not yet exist. and for this reason, as was discussed above, there are two
It should also be noted that there is a certain confusion inpossible types of excitations—single-particle and collective.
the terminology, which is reflected in the understanding ofObviously the analog of the particles of field theory in a
the physical essence of the approximations used. This is emany-particle system are the collective excitations and not
pecially true for Bose systems. The many-particle problenthe single-particle excitations, the presence of which is due
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to the discrete structure of the medium, which is absent ilgram technique for Bose systems with spontaneously broken
field theory. Therefore, is appears that there are no grounds/mmetries, analogous to that developed for Fermi systems
for expecting the appearance of single-particle excitationgn Ref. 19.
with an acoustic dispersion relation on the basis of the Gold- The author is grateful to I. V. Bogoyavlenskii and L. V.
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A model is proposed which gives an analytical description of the dynamics of collective
excitations of two-dimensional close-packed atomic crystal latti@ésmic monolayers on
substrates The model takes into account both the interaction between atoms of the

layer and the interaction of the layer with the substrate. The phonon spectra are found for an
ideal triangular lattice and for a triangular lattice with a uniform distortion along one of

the close-packed directions in the plane of the layer. The temperature dependence of the heat
capacity is constructed for crystalline structures of both the commensurate and
incommensurate typg relation to the substrateThe theoretical results obtained are used for
a detailed discussion and interpretation of the published experimental data on the spectra

of lattice excitations and the heat capacity of monolayers of rare gases, incfiiténand*He,

on various types of substrates. @02 American Institute of Physic$DOI: 10.1063/1.1491185

1. INTRODUCTION sion and interpretation of the existing published experimental
data on the spectra of lattice excitations and the heat capacity

Investigation of the thermodynamic properties of two- ;¢ op cryocrystals on graphite and metals.

dimensional(2D) cryocrystals(solid mono- and multilayer
atomic and molecular substances on substrates of various
nature$ is an important problem in low-temperature con- 2- STATEMENT OF THE PROBLEM

densed matter physics. Low-dimensional systems, both \ye consider a layer of rare gas atoms of miiséying
structurally ordered and disordered, have been actively stugsy 3 substrate and forming a triangular lattice in #ve0
ied for many yearda review of the problematics involved pjane. Thez axis of a Cartesian coordinate system is chosen
with such systems and a listing of the vast literature on thigyerpendicular to the layer and directed outward from the sub-
topic are given in Ref. )l Among such systems cryocrystals strate, and the origin is placed at one of the lattice sites. The
are a special group of objects having some unique features {Rteraction of adsorbed atonfadatoms with one another,
their low-temperature thermodynamics and kinetics. the so-called lateral interactiov,(r) (wherer is the three-
The experimental technique has now become sophistigimensional radius vector=(R,z), R=(x,y)), can be de-
cated enough that one can not only study the structure angkriped in the atom—atom interaction model and is a function
thermodynamics of 2D cryocrystals but also measure directlyf the interatomic distance.” The potentialV,(r) is as-
the dispersion curves of their phonon modes even for &ymed to be short-ranged, so that for our purposes it is suf-
single layer of adatoms on a substrate. As to the theoreticajcient to limit consideration to the nearest neighbors only
description of the phonon spectra of 2D crystals, here usualljhe coordination number in the layer=6). As to the in-
either a long-wavelength approximation is U&8dr the cal-  teraction of the atoms of the monolayer and atoms of the
culation is done by numerical methoti$ Thus the problem  gypstrateV,(r), its explicit form depends substantially on
of obtaining the corresponding dispersion relations in anatne supstrate material. Graphite or various metals are com-
lytical form is clearly a topical one; first, it would permit an monly used for this purpose.
unambiguous interpretation of the experimental data on the | the case of metallic substrates a substantial role in the
spectra, and second, it would be useful for studying the thefinteraction with the adsorbate is played by free electrons, so
modynamic and kinetic properties of such systems. that the approximation of the atom—atom potentials for de-
The goal of the present study is to construct a theoreticalcriping the adsorbate—substrate interaction in such systems
model giving an analytical description of the dynamics ofg inadequate. The explicit form of,(r) is the subject of
collective excitations and of the thermodynamics of 2D gctive discussion in the literatureee, e.g., the reviév In

atomic crystal lattices on substrates. The phonon spectra afge general case, with allowance for the periodicity/gfr)
calculated for an ideal triangular lattice and a triangular latin the x0y plane, it can be written in the form

tice with a uniform distortion along one of the close-packing
directions in the plane of the layer. The theoretical results , (N=Ux(2)+ S Ug(2)exp(iG-R) 1)
obtained in this study are applicable for the detailed discus- 2 0 & © ’
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where G is the 2D reciprocal lattice vector of the periodic the structure of the monolayer. In this case close-packed in-
field of the substrate. The quantityy(z) is the so-called commensurate films are formed, and all of the atoms are
surface-averaged potential. Attempts to obtain an analyticbund under different conditions, in the sense of interaction
expression folJ,(z) have been undertak&rhut its explicit ~ with the substrate, so that the layer “feels” the potential of
form has still not been conclusively established. Only itsthe substrate as a whole, and the dependens& @) on R
asymptotic behavior at large distances is known exactlybecomes inessential. Therefore, for describing the dynamics
Uo(2)=—c/z® (Ref. 9, where the coefficient depends on of the layer it seems natural to use a potential averaged over
both the dielectric constant of the metal and the polarizabilitthe variableR:3*

of the adsorbate atom. Calculations of the repulsive term in 1

Uo(2) have been done in Refs. 10 and 11, where it is shown v (z)=— f V,(r)dR, 3

that in the case of substrates of noble metals the repulsive Sls

part of Uo(2) falls off exponentially with distance. At the \yhereS is the surface area of the substrate. For incommen-
present time the potential most often used for describing thgyrate Jattices the parameters of their structure typically can

interaction of atoms of a monolayer with a metal is the threeqe varied continuouslyby varying p) at constant values of
parameter Vidali-Cole—Klein potenti&ll,which takes into  the |attice parameters of the substrate.

account the above-mentioned features of the behavior of |t should be noted, however, that for certain systems the
Uo(2) at both long and short distances. As to the Fourieformation of commensurate structure is impossible in prin-
amplitudesUg(2), it is known that they depend on the form ¢jpje since the diameter of the adatoms exceeds the charac-
of the surface and fall off very rapidly with increasif@|.  teristic distance between the adsorption centers on the sub-

Therefore, as a rule, only the first harmonic is taken intosirate. An example of this kind is xenon on graphite.
account in Eq.(1) (see, e.g., Refs. 6 and 12As a result,

expression1) takes the form
3. EXCITATION SPECTRUM OF A MONOLAYER WITH AN

) IDEAL TRIANGULAR LATTICE
Va(1)=Uo(2) +U1(2) X expliGj-R), 2 »
i Let us calculate the phonon excitation spectrum of a rare

o . &%as atomic monolayer on a substrate for the case when the
where the summation is done over the shortest reciproc . . :
adatoms form an ideal triangular lattice. The approach set

lattice vectors. forth below makes it possible to describe in a unified way

The interaction of adsorbate atoms with graphite is quitebo,[h epitaxiakcommensuraleand nonepitaiafincommens
often described by a sum of pair potentials of the Lennard- P b

rate film it n trat f vari t nd t
Jones typé®~15 Such a treatment, however, does not ad->- atg films deposited on substrates of various types and to

. . obtain the dispersion relations for their phonon excitation in
equately take into account the covalence of graphite. At'explicit form P P

tempts to improve the description of this interaction have S . . .
led to an expression fov,(r) which is analogous to Eq. The Hamlltoman .of th_e system under study is written in
2. the harmonic approximation as
Still another rather widely used type of substrate is 1 Kf q
graphite or a metal coated by a sublayer of an inert element H= mzf: P+ j% (6 up )%+ 5% Ui s
(most often argon Studies have showhthat such a coating ' ’
makes the adsorbing surface smoother and more uniform in K5 K3
comoai : + = D) ufuUf+ — ) UAUE, (4
parison with the bare substrate. A remarkable property of 2 4 T T Ty A T
such systems is that the behavior of an adsorbate deposited
on the coated substrate does not depend on the material Whereu; is the displacement of an atom found at a sitem
the bare substrate, and even in the case when the coatingitg equilibrium positions 5= Us— Uty 5, Pr= —1d/du;, dare
only a single layer its role in the interaction with the adsor-the unit vectors connecting the nearest neighbors in the layer,
bate turns out to be decisiv&. Thus in considering these and a=x,y. Here and below we use a system of units in
systems the substrate can be assumed to be insulating, af#ich Planck’s constani and Boltzmann's constaiii are
for V,(r) one may use a model of short-range atom—atonfdual to unity. In writing Hamiltoniart4) we have assumed
potentials. that the atoms of the substrate are immokilgid substrate

It is well known that a monolayer of adatoms can form This conventional assumptidfi”*’is justified for the sys-
both commensuratéepitaxia) and incommensurate struc- tems under consideration because the elastic constants of the
tures. Commensurate structures, whose periods are multipl§gbstrate materials are much higher than those of the adsor-
of the lattice periods of the substrate, are formed only foate.
certain coverage densitigs(the number of adatoms per unit ~ The second and third terms {#) are due to the inter-
area. In this case all of the adatoms occupy positions correatomic interaction in the layer:
sponding to minima of the periodiq surface potentia}l relief , ) VI(Ry) VI(Ry)
V,(r). Thus each adatom moves in a local potential well =K1=5 1(Rg) — R , =R
created by the substrate, and in a description of its motion it 0 0
is necessary to take into account the dependentg(@) on  Here R, is the equilibrium distance between nearest-
all three components of the vector neighbor atoms of the monolayer, and the prime denotes dif-
With increasing coverage density the interaction betweeffierentiation with respect to the argument. We note that for
adatoms increases, and this interaction is what determinemharmonic crystals or crystals under pressure the derivative

®
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Vi(Rg) is nonzero even in the case of an interaction onlyover nearest neighbors by an integration over a circle of unit

between nearest neighbors. However, the dominant role isdius. In other words, we shall assume that for an arbitrary

played by higher derivatives with respect Ry, since the functionF(é) the following relation holds:

effective intermolecular potentia¥; is a rapidly varying

fungtion of RO. The last two terms if4) arise on agcount of iE F(&Hif dewF (w). (10)

the interaction of the atoms of the monolayer with the sub- Za™5 2m

strate. Here the explicit form of the coefficients and x5

are determined both by the substrate material and by wheth

or not the structures of the monolayer and substrate are corﬁ—

mensurate. 1 1
Let us first consider epitaxial films. Calculations for this — >, 8,85 explik- 5Ro)—>2—f de explik- wRy)

class of systems will be done for the particular case of the® ° m

so-called ¢3xXv3)R30° structure, which is most often dis- Xwawﬁ=Aonffnf+ BoAu s,

cussed in the literatureln the case when the interaction of '

the atoms of the monolayer and substrate can be described in 1D

the short-range atom—atom interaction model, the coeffiwheren,=k/k. The coefficientsA, and B, are determined

|he sums ovew in Hamiltonian(9) can be evaluated using
e obvious symmetry

cientsk, and k3 have the form from the following system of equations:
0'2 1
K2:_V//(r ) .
2 2 2110/ A0+ ZBOZE d(p eXR”('wRo):J()(kRo),
k2= (25— 02)V(ro) =263 -1 (6) 1
3\ 210 2| 52 : Ao"‘Bo:ﬂj do exp(ik- wR) (N @)?
wherer is the equilibrium distance between an atom of the Ik
layer and its nearest neighbor in the substrate, determined = Jo(kRo) — a( RO)_
from the equation of equilibriuri'5(r) =0, zg is the number kRo

of nearest neighbors in the substrate, and a dimension-

. ) As a result, we find
less geometric parameter relatiRg andr: for a substrate

with a hexagonal structure,=6 ando= \2/3(R,/r), and J1(X)
for substrates with a triangular lattize=3 ando=R,/ry. Ao=—Ja(X), Bo=— —, Xx=kRy, (12

In the case when the interaction with the substrate is de-

scribed by expressiof2), the corresponding coefficients take WhereJ,(x) is a Bessel function of the first kind. Usirig1)
the form and(12) and performing a number of manipulations, we ob-

tain for the Hamiltonian(9)
U1(0)

2 ’
RO

Ky =~ 48’ K5=[U5(2)+6Ui(@)]l . (7) 1 le o
H=m§ PPkt 5; Fr()uguly

For incommensurate films the coefficiertsand x5 can

be written in a unified way for all types of interactions. Us- 1 0
ing (3), we arrive at Hamiltoniart4) in which + 5; FE 00 (Mg u) (M- U_y)
k3=0, Kk3=VI(2)|,-0. (8 1
. . . . _ (0)
After a Fourier transformation the Hamiltonidd) be- *t5 ; F3 () uRuy. (13
comes
2 2 Here we have introduced the notation
He > gl 2
oM g PP ATy Fi¥'= i3+ 25(k7+20) (1-2Bg) — 22,0Aq

2 2 2
N = k51 Zo(k1+2q)[1—Jo(X) ] — Zax1d2(X),
X; Uk'u_k_Kikz 5a5ﬁukuljk
0 FO(X) = — 22,62 A0 = 22,x235(X), (14)

xexplik- 5R0)—qk25 Ug-U_ exp(ik- 6Rg) FO(X)=k3+22,0(1—Ag— 2By)

= K5+ 22,0[ 1~ Jo(x)].

1
T2 2_ .2 z,.z _
7 (K1Zat K5 K3); Uz, (@ B=X.Y). Using the standard procedure for calculating the spectrum,

we obtain for the longitudinallj and two transverset (z)
©) phonon modes
Further simplification in the problem can be achieved by
taking into consideration that the inverse coordination num-  w?(x)=A2(Q%+D)[1—Jo(X)]* Q2J5(x), (15
ber for the neighbors in the layer,z1/(z,=6), is a rather 5 )
small quantity. This allows one to replace the summation —@z(X)=A;+D[1-Jo(X)], (16)
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where 1.5 7

2 2 2 a ,’

K K K - -
2.2 42 K3 p K15 50 4 . LRI
A—M,AZ M’Q AVE D ZZaM. (17) 12+ /,

Expressiong15) and (16) have physical meaning only for ,'
k<kp, wherek, =R, *\/87/V3 is the Debye wave number. 0.9 2
As we see from relatiorf17), the values ofA and A, are /
determined completely by the interaction parameters of the G /
atoms of the monolayer with the substrate. In a commensu- g 06

rate phase, wher, is nonzero, all branches of the phonon

spectrum have gaps at the Brillouin zone ceritgrk=0),

equal toA for modesl andt in the plane of the layefin- 0.3
plane modesand toA, for the mode polarized perpendicular

to the layer(out-of-plane modge Here, if the interaction with | | | |
the substrat&/,(r) is described in the model of atom—atom 0 02 04 06 08 1.0
potentials, then by virtue of Eq6) the values of the gap$
and A, are related ad,/A=[2(zs/0?>—1)]¥2 In the case max
of a metallic substrate, whewi,(r) is given by Eq.(2), the 1.5
values of the gaps are formally independent. It follows from b ’ ==
Eq. (8) that k,=0 for incommensurate monolayers, and for 1201 )

them the in-plane modes are acoustiaplesy whereas the ' ’

z mode, as before, has a gap. We stress that the dispersion of ’
thez mode is determined by the coefficidbt[see Eq(17)], 09| ’
which is proportional to the first derivative of the potential W

V. Since, as we have said, this derivative is small, the dis-

persion of the out-of-plane mode is rather weak This is just

the type of behavior that was observed experimentally in

Refs. 5, 6, and 18.

We note that the phonon spectrum in the problem under
consideration can be calculated exactly, but the expressions
obtained are rather awkward and will not be given here. For | | | |
iIIustra'tion' of the efficiency of the proposed.approach we 0 02 04 06 08 10
show in Fig. 1 the dependenceg(kR;) determined by the
relation (15) in comparison with the exact spectrum for two kik
directions ofk. It follows from Fig. 1 that everywhere in the gig. 1. Dpispersion curves for the longitudinal moag/ € versusk/Kay,
Brillouin zone, relation(15) gives a rather good quantitative wherek is the Brillouin zone boundaryD =0, A=0). The solid curves
description for the experimentally measured |0ngitudina|correspond to Eq(15), the dashed curves to the exact spectrum for direc-

mode of the phonon spectrum of a 2D triangular lattice tions of the wave vector along thex@xis (a) and at an angle ofr/12 to the
' 0x axis (b); the dotted curve is the Debye approximation.

o, Q
Ny

06

03}

4. SPECTRUM OF EXCITATIONS IN A MONOLAYER WITH
UNIFORM DISTORTION neighbors in the ideal latticesee Fig. 2. Actually, the cor-
The approach proposed above also allows one to corf€ction to the Hamiltonian from the increments to these vec-

sider the case in which the structure of the monolayer is no°rs is a quantity of second ord(_er in th? distortion and can be
strictly triangular but has a slight uniform dilatatiéor com- neglected. We also note that, in relatiof®$ the parameter
pression along one of the close-packed directions of the ini—RO should be replaced byat 2a,)/3.

tial ideal lattice. Such a situation arises, for example, when

adatoms are deposited on a substrate formed by a cut along a y
non-close-packed plane of a cubic crystHl.Here a struc-
ture is formed with a quasi-triangular lattice, in which the
distance to two of the nearest neighbdier specificity we
shall assume that they lie on th& @xis) is equal toa, while

the distance to each of the other fourais (see Fig. 2, so
that |a; —al/a<1. Furthermore, it assumed that the area of
the unit cell is unchanged by the distortion. We limit consid-
eration to the lowest order of perturbation theory in the pa-
rameter|a; —al/a. In this case the Hamiltonian has a form
analogous tq9) but with the arguments of the exponential
functions changed frork- 6R; to k- Rs, whereRs are the
vectors connecting the nearest neighbors in the distorted lat- _.7 ~_=
tice. The unit vectorsd as before are directed to the nearestriG. 2. Configuration of the cell of a triangular lattice with distortion.
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As in the case of an ideal triangular lattice, we replacewhere the unit vectorsn, and e, satisfy the relation
the summation over nearest neighbors by integration over afn,-g)=0. Substituting(21) into (20), we obtain

ellipse with semiaxea andb=a\[4(a; /a)?—1]/3. In low-

est order of perturbation theory in the parameget(a yv= isin 2= g[l—J4(y)/J2(y)]sin 2, (22)
—b)/a<1 we obtain F2 2
1 and the corresponding dispersion relations for the quasilon-
=> 8o EXik- Ry —ANInf+BA, s gitudinal(Il), quasitransversg.), andz modes have the form
Zy"% !
wf | =i+ E2(07+D)Ao(Y) = Q[ Ao(y) — As(y) ]},
TQ(ALxApx—AsyApy). (23
(18) ®2=w2+2EDA(Y), (24)
Here where

A=Ay+A;, B=By+B, y
An=5{2320 1)+ (= 1)"31(Y) = a0+ 5(y) Icos 20}

&y
A= Z{‘]l(y) —J3(y) —cos 2{ J5(y) — Is(Y) ]}, It is easy to see that faf=0 relations(23) and(24) go over
the expression§l5) and(16) for the frequencies in the iso-
3 tropic case.
Bi=— E{Jz(y)+cos 2 32(y) = 234(Y) 11, It follows from Eg. (22) that only in-plane excitations

that propagate along axes of twofold symmeiye Ox and

Oy axeg are strictly longitudinal and transverse waves. For
the other directions of the wave vector, by virtue of small-

) ness of the parameter, these excitations are well-defined
whereAy(y) andBo(y) are given by Eq(12), y=kb, andy g asjlongitudinal and quasitransverse waves. The maximum
is the angle between thexGaxis and the wave vector direc- qeviation of the displacement vector in the quasilongitudinal
tion. Using the expressions obtained, we write the Hamil\,o4e from thek direction occurs at angles/= m(2n

tonian of the system as +1)/4,n=0,1,2,3[see Eq(22)].

Q=- g{Jz(y) =J4(Y)},

1 1 1
H= — Ptz F Ui+ 20 F
oM ; PiP-k 2; 1(Y)UU = 2; 2] 5 eat capaciTy

1 , Let us consider the case in which the adatoms form an
X (N i) (M- Ug) + 5% Fa(y)uiuZy ideal triangular lattice. The heat capacity of the monolayer
per site has the form
1
52 FUY)(UUE - uful ), (19 c v J kDRqu,(wj<x>)dX,
N 47Tz Jo T
whereF; are related t&A andB by the same expressions that 02 y
relate Fi(o) with Ay and B, [see Egq.(14)], and F(y) ®(u)= —sinh 2=, (25)
= —2x%2,Q. 4 2

In the anisotropic case, as for the ideal triangular latticeyyhere the frequencies; are given by relationg15) and
the z mode polarized perpendicular to the plane of the layeq16). At arbitrary temperatures the integration(&6) can be
separates out. The equations of motion for the in-plane disdone only by numerical methods. Analytical results can be
placement components anduy become nonequivalent be- obtained in the limit of low temperatures, whefeis the
cause Eq(19) contains an additiondlas compared t613)]  smallest energy parameter of the problem. In that case the
term linear in the parametet and they take the form main contribution to the thermodynamics of the system is

— X, X, _ iven by the long-wavelength excitatiohfy<1. In addi-

(Mo F= F)ui” = Foni? (- u) =0. (20 gon, Wi%out Iossg,J of gener?ility below \I:Ivfocan neglect the
As we see from systerf20), for the majority of directions of ~small quantityD in the expressions for the frequencigs)
the wave vectok there are no solutions in the form of waves and(16). As a result, we obtain
with purely longitudinal or purely transverse polarization in 3 2
the plane of the layer. This situation is completely analogous — w?=A?+ gQZ(kRO)Z, wi=A%+ ?(kRO)Z,
to the three-dimensional case, where this circumstance is one
of the main manifestations of anisotropy the crytaBe- w§: AE. (26)
cause of the smallness & we can seek the solution of
system(20) in the form of a sum of quasilongitudimal!< and
quasitransversa, modes:

We recall that the gap, in the z mode is always present,
and for all the real 2D systems known to us it has a value at
least of the order of several degréés®?°so that in the
U= u‘ﬂ(+ Uy temperature region of interest to us the relatios T holds.

o L On the other hand, the in-plane branches of the spectrum, as
U= U (Nt v8), Ui = Ui (&— vNy), (21)  we have said, can be gapped or gapless. In deriving the low-
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temperature asymptotic expressions for the heat capacity it is 40
convenient to treat these two cases separately.

First, supposel =0. Then forT<( the integration in
(25 can be done analytically, and we obtain for the heat
capacity per site

C 16/3 T\2 [A,)\2 A, -
N—T“‘”(a) +(?) exp(‘?)’ @n .

where{(x) is the Riemann zeta function. The first term, due 8
to the in-plane modes, has a form analogous to that obtained

in the Debye approximation for 2D crystafsHere the quan- 10 b
tity Q is related to the Debye temperatiédg by the expres-
sion

5 |\ 12
Q=|——] 0p,=0.6063p. (28 0 1 2 3 4
T 3 kR
. . . . 0
The second term i27) is the contribution to the heat ca-
pacity from excitations perpendicular to the plane of theFIG.3. Phonon dispersion curves for Xe/Ci00): M andO—experimental
. . tp T(Cjaté for the |l andz modes; solid curves—the results of a calculation ac-

mon<_)laye_r, and_'t has the typical form for the specific heat ol ging to formulag15) and(16); dashed curve—the calculation of Ref. 6.
an Einstein oscillator system. We note that at small nonzero
values ofA the asymptotic expressiaf27) is also valid in
the temperature regioA<T<(). The advantage of the analytical approach proposed in the

In the case when thleandt modes have a gap satisfying present paper is that it allows one to find the phonon spec-
the conditionA>T, the asymptotic expression for the heattrum of a 2D crystal in explicit form. Here the parameters of

capacity has the form the spectrum are expressed in terms of the parameters of the
C 8 [A2/A A A2 A lateral interaction and interaction between the layer and sub-
~ = _<_) <_) ex;{ Sl IS e ex;{ - _Z)_ strate, the form of which, in principle, can be chosen arbi-
N 73 Q)T T T T trarily. Thus it is easy to trace the connection between the

(29 character of the interactions in the system and the form of the

Here, as in Eq(27), the first term is due to the contribution temperature dependence of the heat capacity. .
from in-plane excitations, while the second is due to L€t us now compare the results of our study with the
z-polarized phonons. We note that the excitations of the firsexPerimental data available in the literature. We start with

temperature heat capacity, unlike the pre-exponential factdfirectly measured by a method based on the inelastic scatter-
~T72 in the second term of(29). The possibility of ing of helium atom$™®*®For example, in Refs. 5 and 6 the

T~ Yexp(~A/T) behavior in the case of a 2D square lattice €xperimental curves ab(k) were obtained for Xe monolay-
was also pointed out in Ref. 17. ers adsorbed on the Q11 and Cu(100 surfaces. It should
be noted that the experimental technique permitted measure-
ment of only the in-plane longitudinal mode and thenode
polarized perpendicular to the plane of the layer. In the case
Various aspects of the problem of interest to us havevhen the Cu100) surface was used as the substrate, so that
been discussed in the literature both on a theoretical levehe Xe monolayer formed an incommensurate structure, no
and in connection with applications to real gap was observed at the Brillouin zone center forltheode.
experiments’2%22-24n particular, the question of the nature The z mode was found to be practically dispersionless, with
of the gaps in the excitation spectrum of a 2D crystal on @ gap equal to 31 K. The authors of Refs. 5 and 6 did a
substrate and the question of how a gapped character of thumerical calculation for the corresponding modes and pre-
spectra is manifested in the thermodynamics of a systersented the results in graphical form. For describing the inter-
have been examingd''’ In most of the theoretical papers action with the substrate they used a potential averaged over
the calculations of the spectrum have been done by numerR, the interaction in the layer was taken into account in a
cal methods. The use of numerical procedures requires spaearest-neighbor approximation, and the force constants of
cializing to a concrete system, i.e., an explicit form must bethe Xe—Xe interaction were treated as fitting parameters.
specified for the potentials of the lateral interaction and theFigure 3 shows a comparison of the datfor Xe/Cu (100)
interaction with the substrate, so that one cannot obtain with the results of the present study. The fitting parameters
relation in general form between the spectral and thermodywhich we used were)=18.71 K, A,=31 K, andD=0.
namic characteristics of the system and the parameters of thighe force constants calculated from these fitting parameters
interaction potentials. For this reason, the experimental datare in good agreement with the corresponding values given
on the heat capacity are usually described with the use dh Ref. 6. Thus we see that the analytical approach based on
approximating formulas or relations obtained on the basis oépproximation(11) correctly takes into account all of the
phenomenological arguments?®?22°and the interpretation fundamental features of the system under study.
of an experiment is then ambiguous. In Refs. 5 and 6 the dispersion relations were also mea-

6. DISCUSSION. COMPARISON WITH EXPERIMENT
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FIG. 4. Phonon dispersion curves for Se/Qd1): M and A—experimental FIC:' 5. .Disgl)_ersion curvetlg”(:() .for ;(e/CuI(l}O): l;e;_perimental data _Of
datd for the| andz modes; solid curves—the results of a calculation ac- Ref. 18; solid curve—calculation for a lattice with distortiog=(0.055);

cording to formulag15) and(16); dashed curve—the calculation of Ref. 6, 9ashed curve—calculation for an ideal lattice.

sured for a commensurat&3 <X v3)R30° monolayer of Xe the potential is “softened,” as was proposed in Ref. 6.
on Cu11l. An important result obtained there for the first It is of interest to compare our theoretical results with
time is the presence of a gépqual to 5.06 Kin the longi-  the experimental data on the heat capacity. There is a vast
tudinal mode ak=0. As we see from the experimental d&ta, amount of published material on the results of measurements
thez mode also has a gap at the Brillouin zone ceféqual of the heat capacity of rare gas monolayers on various
to 30.4 K) and is practically dispersionless. In the numericalsubstrate$:1’:2%-22:25.28=3%5r monolayers of classical rare
calculation of the phonon spectrum, the authors of Ref. 6 agases(Ne, Ar) an exponential dependence ©{T) is ob-
before described the Xe—Xe interaction in the nearestserved at low temperatures in the commensurate pHase.
neighbor approximation, and in taking into account the inter-This fact clearly indicates the presence of a gap in the dis-
action with the substrate they considered not only the strucpersion relations for the in-plane modes. The same behavior
ture of the substrate but also the motion of its atoms. Figuref C(T) also follows from the theoretical analysis done in
4 shows the data of Ref. 6 and the results of the presernhe present studjsee Eq(29)]. Unfortunately, the available
study. The fitting parameters which we used took the valuepublished experimental data for the indicated systems in the
0=20K, A,=30.4 K,D=-35K?, andA=5.06 K. As in  low-temperature region are presented in a form that does not
the incommensurate case, the force constants calculated fropermit making an accurate quantitative comparison of the
these fitting parameters turned out to be very close to thosgheory with experiment.
given in Ref. 6. This indicates that the motion of the regular  Particular experimental attention has been devoted to the
atoms has hardly any effect on the character of the phonostudy of monolayer films of helium isotopes. The heat capac-
modes of the Xe monolayer. ity of helium monolayers on graphite was first measured
In Ref. 18 the phonon dispersion relations were meagquite a long time agé?>?8~3!Recently there has been re-
sured in thg 110] direction for a Xe monolayer adsorbed on newed interest in these systems. For example, in Ref. 20 the
Cu (110. The specifics of the geometry of the substrate inC(T) curves for'He monolayers on graphite were measured
this type of system leads to distortion of the Xe monolayerfor 84 coverages at temperatures from 100 mK upward.
which, as a result, is found in a weakly anisotropic quasi-Monolayers of helium isotopes have behavior quite different
triangular lattice. Figure 5 shows the (k) curves for the from that of classical rare gas monolayers: even in the com-
case of an ideal latticeR,=4.31 A) and lattices with dis- mensurate phase their low-temperature heat capacity exhibits
tortion (a=4.42 A, a;=4.23 A). The lateral interaction be- a dependenc€(T)=T2. This fact indicates the absentar
tween the Xe atoms was modeled by a Lennard-Jones poteMery small valuesA <100 mK) of gaps for thel and t
tial with parameterg=230.4 K andr=3.84 A. Itis seenin modes. In Ref. 20 it was shown that for a coverage
Fig. 5 that even though the distortion is small, it is important=0.0637 A2, corresponding to the commensurafxv3
to take it into account in interpreting the experimental data.phase, and the nearby coverage=0.0663 A™2, the experi-
It should be pointed out that in Xe/Cu systems, if themental data in the temperature region 0.8 K<1.5 K are
Lennard-Jones potential is chosen to describe the lateral inwell fit by the approximating formula
teraction, good agreement of the theory with experiment is
achieved by varying the parameterless than 4% in com- —=a+ BT+ (y/T)?exp —AIT), (30
parison with its value in the gas pha%&' at fixed e. The N
same result can be obtained if the valuesoforresponding whereA=(10.5£0.1) K, y=(12*+1) K for both coverages
to the gaseous phase is kept fixed and the repulsive part @hd « and 8 are equal to (122)x10 * and (1.75-0.04)
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T, K FIG. 7. Heat capacity as a function ®f for *He/Gr (a) and*He/Gr (b) in
an incommensurate phase for different coveragethe symbols in(a) are
FIG. 6. Temperature dependence of the heat capacifidefGr for cover- the experimental data of Refs. 28 and 29, the symbolgbjnare the
agesp,=0.0637 A 2 (a) and pg=0.0663 A2 (b): B—the smoothed ex- smoothed experimental data of Refs. 25 and 30, the solid curves are our
perimental data of Ref. 20A—the experimental data of Ref. 29; solid theory, and the dashed curves are the Debye approximation.
curve—present theory.

X102 K~2, respectively, forp, and to (6.3-0.4)x10°%  and the low-temperature heat capacity’die (*He) mono-
and (1.45-0.01)x 10 2 K2 for pg . The term proportional layers is described quite well by the simple 2D Debye
to T? was attributed in Ref. 20 to the contribution from a model?! However, the domain of applicability of the Debye
liquid phase containing approximately 3% of the atoms ofapproximation is extremely narrowr(® ,<0.07) 2%%The
the monolayer. Our results make it possible to interpret thesmallness of the influence of the substrate apparently means
experimentally observed behavior of the system without inthat the measurements were made at temperaluges,, at
voking assumptions about the presence of any additionakhich the contribution to the heat capacity from thmode
phases besides the solid. For explaining the experiment it isan be neglected in expressia@$) and (27).
sufficient to use relatior{27), in which one should set To interpret the experimental dat&®~*°on the heat ca-
=9.8 K for both coverages, afd=24.6 and 27.0 K fop,  pacity of *He (*He)/Gr in the temperature region where the
and pg, respectively. Figure 6 gives a comparison of thedeviation from the lawCT? is observed, we used expres-
temperature dependence of fiie/Gr heat capacity obtained sion (25) with the phonon frequencias, ; given by relation
by the present approach, the smoothed experimental resul$5) at D=0. In Fig. 7 the heat capacity dHe and“He
(30), and the data of Ref. 29. monolayers on graphite is plotted as a functioéfat high

In Refs. 2, 28, and 29 it is shown that for dense covercoverages. As experimental data fiste we used the fitting
ages p>0.077 A~?), at which the monolayers of helium formula given in Ref. 30. As was noted in Ref. 30, the curves
isotopes are found to be in an incommensurate phase at loeonstructed with the use of this formula pass through all of
temperatures, the indicated systems behave as ideal twthie experimental points. Each value of the coverage is asso-
dimensional crystals in the sense that the influence of theiated with an empirically determined Debye temperature
graphite substrate on their thermal properties is insignificant) 5 , which is the only fitting parametgthe frequency is
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0.6 result, which is well known for three-dimensional helium
crystals®* is not unexpected. Indeed, the helium crystal is a
quantum crystal, in which the large rms displacements of the
atoms cause the equilibrium interatomic distance in the crys-
tal to be considerably larger than the value corresponding to
the minimum of the He—He pair interaction potential. On the
other hand, the fact that the values of the fitting parameters
Q) andD obtained in a comparison of theory and experiment
turn out to be reasonable means that the Hamiltofdaiean
be used for describing the dynamics of monolayers of helium
isotopes if the coefficients in it are not taken to be simply the
derivatives of the atom—atom potentials but are determined
in a self-consistent wa¥f Finding the relation between these
coefficients and the parameters of the He—He interaction po-
0 0.4 0.8 1.2 1.6 tential is a separate problem that is beyond the scope of this
T, K paper. We mention only that for solving it one can apparently
use the well-developed methods employed for three-
FIG. 8I. dT(imp?r;m:rezggpendeg%esg&t_r;e ieat cagaoc;t;jhlzi_feu.thExpelrg dimensional quantum crysta%.%
::nuercct-:‘as wir?—:‘ gbtaienéd with tphe u.se of Eai%), thepdasﬁed curvés vsi(lsioﬂl. The qu"_intum character of he"‘%m monolayers mlgh.t also
be responsible for the above-mentioned abséocessential
smallnessof gaps in the spectra dfandt excitations of the
commensurate phase. Indeed, the amplitude of the zero-point

Debye relation is also shown in Fig. (@ashed lines The vibrations of the helium atoms in the plane of the layer is

theoretical curves clearly conform to the experimental curvel2r9€. and in their motion they *feel” the fields not only of -
not only at low temperatures but also at high temperatureéhe nearest neighbors but also of more distant r_1e|ghbors in
where the Debye approximation becomes ineffective. the substrgte. As a result, an effective “ave_ragmg” of the
The proposed model also permits interpretation of thesUPbstrate field occurs and the gaps of the in-plane modes
experimental data on the heat capacity of helium monolayer¢anish (or decrease substantiallyultimately leading to a
on metal substrates. In comparison with the graphite sup9W-temperature heat capacity behav@{T)=T?, as is ob-
strates the metal ones are smoother and more uniform, ar@rved in experiment.
the adsorbate—substrate interaction in them can be described L€t us conclude with one more remark on the model
with the averaged potentié2). Furthermore, it is known that Used here. Following the conventional idéds;"*'we as-
the adsorbate—metal interaction is weaker than thsumed thatthe 2D crystal lies on a substrate whose atoms are
adsorbate—graphite interaction. Because of the first of thedgymobile. This approximation is justified for the following
circumstances thieandt modes in such systems are acousticreéasons. First, the class of objects studied was created spe-
(A=0), and the second circumstance means that the valugfically for the purpose of studying the physical properties
of the gapA, in the case of metal substrates is smaller tharPf two-dimensional systems. Therefore the substrate material
the corresponding value for systems on graphite. Thus then which the layer was deposited was chosen specially so
contribution to the heat capacity from temode begins to that its influence on the properties of the 2D crystal would be
be manifested at rather low temperatures. We made a conds small as possible.
parison of the theoretical and experimental &t the heat Nevertheless, the question of the mutual influence of the
capacity of*He monolayers adsorbed on gold for coverage?honon modes of the substrate and adsorbate is of indepen-
p=0.067 and 0.096 A see Fig. 8. The theoretical curves dent interest for the experimental study of the thermodynam-
(solid lineg were obtained from relatiof25) with the dis-  ics of such systems, since the heat capacity of the monolayer
persion of thez mode neglected{=0). The values of the is found as the difference between the total heat capacity of
fitting parameters giving the best agreement with experimerihe system and the heat capacity of an empty calorimeter,
were found to be:A,=7.8K and Q=9.07K for p which is expected to be known precisely. In Ref. 17 detailed
=0.067 A"2, and A,=85K and Q=12.65K for p  calorimetric measurements were made which showed that
=0.096 A"2. The dashed lines show the heat capacitieghe influence of helium, neon, and argon monolayers on the
found with the use of the asymptotic formula7) for the  heat capacity of copper substrates is unimportant within the
same values of the parameters. It is seen in Fig. 8 that thigmits of experimental error.
asymptotic expression does not allow one to describe the As to the influence of the substrate on the vibrational
experiment in the entire temperature range in which meamodes of 2D cryocrystals, a detailed theoretical analysis of
surements were made, and an adequate interpretation of th@s problem was carried out in Ref. 36, where analytical
behavior ofC(T) is possible only with the use of the exact results were obtained in a model that treats the substrate as a
spectrum(15), (16). semi-infinite elastically isotropic continuum, and numerical
An attempt to calculat€) andD for helium monolayers calculations were done for substrates of finite thickness. The
using the well-known atom—atom potentials with parametersnain results of this analysis consist in the following. In the
obtained from measurements in the gaseous phase does maise of an incommensurate structure the motion of the sub-
lead to physically meaningful values of these quantities. Thistrate atoms does not affect thandt modes of the mono-

C/Nkg

uniquely related to® by Eq. (28)]. For comparison the
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Nonlinear shear waves in two-dimensional systémsarticular, surface wavgsre investigated

with allowance for the spatial dispersion of the elastic medium. It is shown that the

dispersion plays an important role in the structural and modulational stability of the nonlinear
waves and to a large degree determines the directions of localization of phonons in a

nonlinear localized wave and, in particular, the possibility of existence of elastic surface solitons.
By means of an asymptotic procedure, solutions are found for small-amplitude two-

dimensional elastic shear solitons of the one-parameter stationary-profile type and for envelope
solitons and also for surface solitons localized near an ideal surface of an elastic half

space. Localized excitations of this kind can exist only in a medium with a “focusisgft)
nonlinearity and positive dispersiarfw/dk?>>0, wherew(k) is the dispersion relation

for linear waves. A procedure is proposed for finding solutions for surface envelope solitons
localized near a surface covered with a layer of another substance. A comparison is made between
the structures of the surface shear solitons at an ideal surface and at a surface with a film
coating. © 2002 American Institute of Physic§DOI: 10.1063/1.1491186

Interest in nonlinear elastic surface waves has risen imdispersion into account. For technical applications of nonlin-
recent years in connection with the intensive development oéar surface wave@NSW9 the possibility of propagation of
the physics of nonlinear phenomehad’ Because of the con- stable weakly-damped pulses or wave packets of NSWs is
centration of the energy of the surface wave in a thin nearimportant. It is well known that such properties are pos-
surface layer, the influence of the anharmonicity of the cryssessed by dynamical solitoAsThe possibility of propaga-
tal on the properties of the surface waves is considerablyion of surface elastic shear solitons is considered in Refs. 8
stronger than for volume waves. The nonlinear properties odnd 9, and such surface solitons are also discussed in Refs.
surface waves have been observed experimentally in a larde, 11, and 15. However, the authors of those papers inves-
number of studie$®~1418-2The first clear evidence of non- tigated surface solitons propagating along the surface of an
linearity of surface elastic waves was the observation oklastic half space covered by a layer of softer material.
higher harmonic generation in a surface wave near an ideal In this paper we consider the possibility of propagation
surface upon the excitation of an initial periodic sinusoidalof elastic surface shear solitons near the ideal surface of a
signal’®2° The observable nonlinear wave is of a nonsta-crystal and show that they have a fundamentally different
tionary character on account of the weak dispersion of thisorm than solitons at a surface covered by a film, and they
wave. At the present time it is well known in the theory of can exist only for a completely definite combination of signs
nonlinear waves that stationary nonlinear waves and solitonsf the nonlinearity and dispersion of the medium.
can exist only in the presence of competing factors: nonlin-  The question addressed in this paper also has fundamen-
earity of the medium and dispersion of the linear waifes. tal significance for the general theory of propagation of mul-
Indeed, experiments with nonlinear surface waves of theidimensional solitons, since there is a connection between
Love type near a surface covered by a thin ffithave dem-  the problem of solitons in an infinite medium and NSWs and
onstrated that nonlinear waves with stationary profiles casurface solitons in a semi-infinite medium with an ideal free
exist in that caséthe film coating leads to a substantial in- boundary. A nonlinear surface wave is “half” of a nonlinear
crease in the dispersion of linear surface wavébe ques- wave, localized in an infinite medium in the direction per-
tion of nonlinear surface waves was considered theoreticallpendicular to the direction of propagation of this wave. In
in Ref. 2 for the simplest case of purely shear waves at athis sense a surface soliton is equivalent to “half” of a three-
ideal surface. Some specific question of the dynamics oflimensional soliton localized in all three directions, and the
such waves in that model were investigated in Refs. 3—5problem of nonlinear surface localization is similar to the
However, the authors of Refs. 2—5 neglected to take int@roblem of the nonlinear focusing of phonons.
account the spatial dispersion of the elastic waves. Later, in  The problem of localization of nonlinear acoustic waves
Refs. 6 and 7 it was shown that for the existence of nonlineain a multidimensional medium is a fundamental and non-
surface waves it is extremely important to take the spatiatrivial one. Until now, multidimensional solitons have been

1063-777X/2002/28(6)/10/$22.00 452 © 2002 American Institute of Physics
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studied mainly in systems with strong spatial dispersioramples are Nfsn, HF%, MoS,, and MoSg (Ref. 26. The
(e.g., in magnetically ordered media with easy-axischoice of the sign of the parametgrin front of the anhar-
anisotropy;” i.e., in the case when the dispersidd  monic term is important. The authors of Refs. 2—6 chose the
= 3?wo(K)/k? is nonzero even in the limk=0 (wherek is  parameteys as negative, as seems natural for transverse os-
the wave number of the linear excitationsy(k) is the fre-  cillations. However, in Refs. 10 and 11 a positive nonlinear-
quency of a linear wave, and= wo(k) is the dispersion law jty (8>0) was chosen, as is observed experimentally in
of linear waveg In this case at zero group velocity  LiNbOj;, in which this sign of3 is apparently due to the

= dwo(k)/dk atk=0 the existence of immobile multidimen- strong piezoelectric effect. We stress once again that we are
sional, radially symmetric solitons becomes possible. In thealking about anharmonic three-dimensional crystals. For
motion of the soliton its deformation occurs only in the di- studying solitonic excitations in anharmonic chains one ordi-
rection of propagationn. However, in nonlinear media withnarily chooses a positive sign of the nonlinear ter0)

an acoustic dispersion relatignonlinear elastic medium or in the case of negative dispersiog>0). However, in the

a magnet with easy-plane anisotropyn which, in the limit  general case it is more justified physicallp any case, for

of small wave numbersk(-0,) there is no dispersiond(  simple anharmonic elastic medli@ choose a negativsoft)

=0) but the group frequency remains finite, the situationnonlinearity, with3<0, as follows from the zero asymptot-

is radically different.(In the case of a nonlinear wave one ics of the interparticle interaction potential at large distances.
usually introduces a “nonlinear dispersion relation” With the suitable choice of scales for the coordinate,
w=w(k,A),* whereA is the amplitude of the wave. Then time, and displacement§x]=a, [t]=a/c, [u]=1[B]/a,

the term dispersion refers 0 =d%w(k,A)/dk?|a—o.) Be-  wherec=a\/a/m is the speed of sound, it is easy to rewrite
cause of the motion of phonons in a definite direction with(1) in dimensionless form

nonzero group velocity, that direction and the two directions 5
perpendicular to it become nonequivalent for soliton forma-  Utt=Uxx T XUsxxxxt SUsUxx, 2
tion (spontaneous breaking of the symmetry of the problem \, hore 5= sgn(@) is the sign function §=*+1).

and the conditions of localization of nonlinear wavesd In the linear limit the spectrum of waves of the form
also the conditions for their stabilityalong different coordi- u=Asinkx—wt) has the form wé(k)zkz—xk“, with a
nates also become different. These conditions are determin%qoup velocity V~1—3yk%?2 and the dispersionD~

by the signs of the dispersiod and of the nonlinearity,
which will be characterized by the parameteX
=dw(k,A)/9A% (Ref. 21). For different relationships be-
tween the signs oD andN there can be localization of the
phonon flux in the phonon propagation direction or perpen-  ®?(k)=k*— yk*+ 5k*A%/4,
dicular to it (nonlinear phonon channelingr in all three

—3xk in the limit of small wave numbers— 0. For weakly
nonlinear waves the dispersion relation is updated to the fol-
lowing form:2!

~_ ~ Sk3
directions. D~—3xk, N~dk"/8. )
Consequently, the sign of the nonlinearityis determined
1. NONLINEAR WAVES IN AN ANHARMONIC CHAIN by the sign of the parametg sgnN=sgng. _
AND IN A MULTIDIMENSIONAL MEDIUM From the form of the “nonlinear dispersion relatio(B)

) ) ) _.one can assess the stability of nonlinear periodic waves with
The nonlinear dynamics of elastic systems has traditiongationary profiles. According to the Lighthill criteriGa,

ally been studied for the example of one-dimensional anhargne_gimensional nonlinear spatially periodic waves of con-

monic chains. Below we consider purely shear waves in &iant amplitude are modulationally unstable under the condi-

three-dimensional medium in the case when the displacgjon pN<Q, i.e., sy>0. The growth of this instability leads
ment in the wave depends only on one spatial coordinatg, ine formation of dynamical envelope solitons.

(x), corresponding to the so-called one-dimensighaiodel The modified Boussinesq equatié) is not completely

of Fermi, Pasta, and Ulam, which in the long-wavelengthinieqraple, and usually one discusses only its exact solutions

limit is described by a modified Boussinesq equafibn: for one-parameter solitons of stationary profile, of the form
MU= @@2Uyy+ @ xa Uyt ,334U>2<Uxx' (1) u=u(x—Vt), which depend only on a single parameter, the

) ) ) ) soliton velocityV. The deformation in a nonlinear excitation
wherem is the mass of an atom, is the lattice constanty is of this kind has the standard soliton fofh:

a characteristic of the harmonic interparticle interactjgis

the anharmonic coupling constant for the nearest-neighbor _du V6(V2—1)/6
interaction, andu is the transverse displacement of the atom W= Ix cosi (V2= 1)/ x(x—V1)] : (4)

from its equilibrium position. The second term on the right-

hand side of1) describes the dispersion of linear waves andObviously such solitons exist only under the conditions
d.etermi.nes the sign of the _parameﬂar Ordinarily thg x>0, 6>0, V>1

dispersionD~ —3+/@a’k/\m is assumed to be negative  or <0, 8<0. V<1 (5)
(x>0, D<0). In particular, when only central forces of X=5 ' '
nearest-neighbor interaction are taken into account, one ha., for x>0, in agreement with the Lighthill criterion.

X= xo=1/12>0. However, when the bending stiffness of the The more complex solutions of the two-parameter enve-
one-dimensional chain is taken into account, or allowance ifope soliton type(breathers can be obtained only approxi-
made for possible layering in a real three-dimensional crysmately, in the limit of low soliton amplitude by means of
tal, the dispersion can also be positi@>0, y<0). Ex-  some asymptotic procedufgee, e.g., Ref.)8In our opinion,
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the most convenient procedure is the one which was profundamental harmonics is given By/f,=¢/(36k*y), and,
posed in Ref. 24 for the nonlinear Klein—Gordon equationhence, the true parameter of the asymptotic expansion is
and which was generalized in Ref. 25 to the case of the?/(k*x), which diverges in the dispersionless limit-0.
evolution equations with an acoustic dispersion relation ofThis indicates the importance of taking the spatial dispersion
the typewé(k)=k2—xk4. For solutions of the envelope soli- into account in the problem under study.

ton type the functiou(x,t) can be written in the form of the

following expansion:

©

u(x,t)= 2>, {fons1()sin(2n+1)0

n=0

+ @on+1(£)cog2n+1) 6}, (6)

where {=x—Vt, §=kx—wt, and the functiond, and ¢
and the soliton velocity are expanded in power series:

ee]
— s+2m
fs= 2 fss+2me )
m=0

)

_ 2 1
Ps= mZO (Ps,s+2m+lss+ me, (7)

V=V(k)+e?\(k)+...,

where the small parameter of the expangiwhich is related
to the soliton amplitudeis the quantity

s=\/|w2—wé(k)|, 8

The existence conditions obtained for one-dimensional
solitons of different types are easily represented on the
(®,V) plane, whereV is the soliton velocity andw=w
—kV is the frequency of the internal oscillations of the en-
velope soliton in a coordinate system moving with velocity
V. (Here the two independent parameters of the soliton so-
lution are notk andw butV and®.) In the linear limit(for
linear wave$ the dispersion relationwz(k)=k?— yk* im-
plies the following dependence @fy=wy(V):

3/2 1
5’0’“(‘) —(1-Vv)¥, (11

3/ x

whereV is the group velocity of the linear wave.

In Fig. 1 these parabolas are shown by the fine lines. The
shaded regions near them in Figs. 1a and 1b correspond to
the small-amplitude envelope solitons considered here,
which depend on a single spatial variable. The heavy lines
(Figs. 1a and 1b correspond to small-amplitude one-
parameter solitons of stationary profile, which depend on a
single spatial variable. The shaded region in Fig. 1c corre-
sponds to the channeling of phonons or to nonlinear surface

in which the functionwq(k) corresponds to the dispersion waves.
relation for linear wavegThe derivatives with respect to the The solutions discussed above describe solitons in a
phase{ are of ordere in smallnessi/d{~¢.) The solution  three-dimensional medium in the case when they are local-
for a two-parameter envelope soliton in the leading approxiized only in one direction—the direction of propagation of
mation and for small values & has the form the nonlinear wavealong thex axis). Below we show that
> i there can be situations in which the nonlinear wave is local-
[8(w”—k“+ xk™) : : S .
u~\/———7—— ized in one or two directions perpendicular to the propaga-
oK tion or in all three directions in a three-dimensional space.

02— K2+ K We restrict discussion to a cubic anharmonic crystal in which

><sec+ ————(X= V1) |sin(kx— wt), a wave is propagating along one of the principal crystallo-
3xk graphic directions, when a purely shear wave is split off from

3 waves with other polarizations. Nonlinear surface waves in
V~1- Exkz, (9 such a crystal were considered for the first time in Refs. 2, 3,

and 5, but without taking the spatial dispersion of the waves
where, as the two independent dynamical parameters of thiato account. This dispersion was taken into account in Refs.
solution, one can choose the wave vedt@nd frequencys 6 and 7, where nonlinear shear waves were investigated in
of the nonlinear wave localized in the soliton. Here the soli-the framework of the following equation, which is the three-
ton velocity is a single-valued function of these two param-dimensional generalization of equati@@):
eters,V=V(k,w). As we see from Eq(9), in the leading
approximation with respect to the amplitude of the small-
amplitude soliton, the functiovV=V(k,w) for the soliton
has the same dependence on wave number as the group ve-
locity of the linear wave. It follows from expressi@8) that
one-dimensional envelope solitons exist only under the con-
ditions

Ug = Uxx T Uzt Uyt X (Uyyxxt Uzt UyyyyT MUyxz7
2 2 2
F WUy mUyy 7)) + S UsUy+ UZU, + uyUyy
2 2 2 2
ENL(U2U) o (U2U,) (W20, + (U2 )

+(uZuy)y+ (ulu,),]}=0. (12)

In what follows we shall mainly be considering the
propagation of waves with a horizontal shear polarization
and with displacements that depend on two spatial coordi-
i.e., for 5y>0, which again agrees with the Lighthill crite- nates, and only in one cas@gn a discussion of three-
rion. dimensional solitons localized in all three dimensijonsl

It follows from the form of the soliton solutiof®) that  they depend on all three coordinates. The geometry of the
in the limit of zero dispersion¥—0) the soliton collapses, problem is is as follows: a wave is propagating alongxhe
i.e., its localization region goes to zero. Moreover, it is easyaxis, the displacements of the atoms are directed along the
to show that the ratio of the amplitudes of the second andxis, the plane of the structutan the case of surface waves

x>0, 6>0, V<1, w>wqy(k)

x<0, 6<0, V>1, w<wy(k), (10

or
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axis). The question of the transverse stability the direc-
tions of thez andy axeg is easily solved in the particular
case whenu=2 and\=1/3. Then the frequency depends
only on the modulus of the wave vector, and the nonlinear
dispersion relation remains of the forrB), where k

= K2+ K3+ kyz. Here, as was noted in Ref. 23, the uniform
nonlinear wave is unstable with respect to transverse distur-
bances foN<0 (6<0). Thus fory<0 and >0 the uni-
form nonlinear wave is stable in all directions and it cannot
be localized. Foiy>0 and5>0 the wave is localized in its
propagation direction, and the one-dimensional solitons de-
scribed above can exist in a three-dimensional space. For
1 v x>0 ands<0 the wave is localized in the direction perpen-
dicular to its propagation, and stable surface nonlinear waves
b can exist and phonon channeling can occur. Finally, a uni-
X <0 §&§<0 form wave is unstable in all directions when the inequalities
N<0 andD>0 are both met simultaneously. Therefore, one
expects that the two- and three-dimensional acoustic solitons
can exist only in media with positive dispersion and soft
nonlinearity (for y<0 and §<0).

Above we have considered the localization of a nonlin-
ear wave in the direction of its propagation. We now turn to
a study of excitations localized in one or two transverse di-
rections.

@ a
X>0 §>0

en

2. PHONON CHANNELING, SURFACE WAVES, AND TWO-
1 \ DIMENSIONAL SOLITONS

Let us first consider a system with negative dispersion
and soft nonlinearityD<<0 (xy>0) andN<O0 (5§<0). This
X>0 &<0 is the most natural situation for shear waves. Here the non-
linear wave is modulationally stable in the direction of its
propagation but unstable in the transverse directions; this
leads to localization of phonons in these directions. This ef-
fect can be called phonon channeling. Here it is necessary to
seek a solution of equatioil2) which is periodic along the
propagation directiofithe x axis) and localized in the direc-
tions of thez andy axes. We limit consideration to the case
when the solution is independent pf Of course, ultimately
the development of a transverse instability will lead to local-
ization of the wave in the direction of theaxis as well, but
1 \Y we shall not consider that question here. In the small-
amplitude limit the solution is found with the aid of the
following asymptotic expansioh:

en

FIG. 1. Dispersion relations for linear wavéne line9, the existence re-
gion of small-amplitude one-dimensional envelope solitthe shaded re-

gions in parts “a” and “b”), and the curves corresponding to one-parameter ©
solitons of stationary profiléheavy lineg of the modified Boussinesq equa- _ on+2m+1
tion: x>0, >0 (a); <0, §<0 (b), x>0, §<0 (c). The shaded region in U(X’Z’t)_nzo EO fant1m+2m+1(2)e

part “c” corresponds to phonon channeling or nonlinear surface waves.

Xsin(2n+1)8, (13

and surface solitonsis the xy plane, perpendicular to the where 6=kx— ot ande=\w§(k) — »?, and in the leading
direction of thez axis, and the amplitude of the wave de- approximation has the fortn
pends on thet andz coordinategin the majority of the cases

Z
considerefl but not on they coordinate(see Fig. 4ln Then U~ S(kx—fw)

dldy=0, and Eq(12) is simplified considerably. If the wave K

is propagating along thr axis and is uniform in the direc- K=K —w

tion of the z axis, then its nonlinear dispersion relation as XSec% \/ﬁz sin(kx— wt), (19
before will have the form in E¢3). However, now the ques- XK

tion of the stability of the nonlinear wave will be posed in awherek and w are two arbitrary parameters of the soliton
broader sense. The Lighthill criteriddDN<<0 (6x>0) de-  solution.

termines only the modulational instability of the uniform This expression outwardly resembles soluti@nbut has
wave with respect to longitudinal fluctuatiofglong thex  a different existence region on the plane of parameters
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(®,V): the frequencies of such channeled phonons at a fixeids arguments will be determined by the same parameter

wave vector or group velocity lie below the frequencies ofThen, keeping in Eq(12) the leading terms of ordes® (f

the linear wavesthe shaded region in Fig. Lcln the dis- ~d/d{~dldz~¢), we obtain the following equation for the

persionless limity— 0 solution (14) agrees with the result function f:

obtained in Ref. 2, but it is easy to show that the ratio of the 2 2 21 4e31 5

amplitudes of the harmonics in expansi@iB) is of order Fe(3xK) = Tozt e7f =7k 17/4=0. (a7

fsr1s+1/fss~elxk?. Consequently, the solutiofl4) has (In the coefficient of the first term we have made the ap-

meaning (the asymptotic series convergesnly when the proximate substitution/?~1—3yk?, and in the coefficient

dispersion of the medium in the regiok®— yk*— w? of the second term we have set }uk?~1.) As it followed

<x%k* is taken into account. before from a stability analysis of the uniform nonlinear
Up till now we have been talking only about the chan-waves, it follows from Eq(17) that multidimensional local-

neling of nonlinear phonons in an infinite three-dimensionalized envelope solitons exist only under the conditions

elastic medium. However, solutiori3), (14) also describes x<0, 6<0, andw<wo(k). Introducing a convenient scale

nonlinear surface shear waves near an ideal surface of far the coordinates and field amplitude,

semi-infinite crystal. Indeed, the boundary condition that fol- ST _ 2/m

lows from Eq.(12) at the free boundarg=0 has the form elI\N3|x|k*=¢, ez=n, fkl2=g, (18

5 5 we write EqQ.(17) in the radially symmetric dimensionless
[u(1+ 5uz/3+ ONUY) + XUz, + XMUyy],-0=0, ) form

and the solution14) clearly satisfies it(In this article we g§§+g,7,,—g+g3=0. (19
will not be discussing the fundamental question of the neces-

sity of formulating additional boundary conditions for E The radially symmetric solutions of this equation have
y o K g ad : yce Y- peen studied in detail by both qualitat¥@nd numericf2°
(12), which contains higher spatial derivatives up to and in-

. . hods.(The anal ntrosymmetri lutions of th
cluding the fourth. They actually reduce to the reqwremen{:;:egdzr(]dme i 323;#:;%:;% acgta(r:eszgl:(; ?Nesll Okn(t)V\?n'
that the conditions for a long-wavelength treatment hold. P ged P ’

. . . . e there the two-dimensional Laplacian(it9) is replaced by its
Finally, let us investigate the question of multidimen- P () P y

. . . . : : three-dimensional counterpart, and the solution depends on
sional and surface solitons localized in three dimensions. A

we have said, nonlinear excitations of this kind can exis‘?ne coordinatey as wel). There is an infinite set of these
. ' . . o - .~ 'symmetric solutions parametrized by the number of zeros of
only in the case of a medium with positive spatial dispersio

) . . JEISION o field as a function of the radial coordinate. The lowest

and soft nonlinearityy<0, §<0). The second inequality is . : .
natural for shear waves and should be satisfied in the ma.oﬁnergy belongs to a solution for which the figjdfalls off
J monotonically with the coordinate= &2+ 7% The field

ity of substances. The first inequality is unusual, since in th%mplitude at the center of the two-dimensional soliton is

majority of materials the dispersion of linear waves is nega- (z=x—Vt=0)=2.2. (In the three-dimensional envelope
tive. Nevertheless, crystals with positive dispersion at lo soliton the degree of localization is higher, and the amplitude

frequencies do gxw{'see Ref. 25 . . at the center of the soliton at this same frequency and veloc-
Let us begin by studying three-dimensional envelope

solitons localized in two directionéx and z). They corre- ity will be larger: gsp(0)~4.5) The profile of the two-
spond to the shaded region in Fig. Qehich coincides with

the existence region of two-dimensional envelope solitons of

the modified Boussinesq equatjoiThe small-amplitude so- g
lutions for multidimensional envelope solitons can be sought
in the form of an expansiofB6)—(8) with ¢= \/woz(k)—wz,
assuming now that the functiotig; and ¢, depend not only

on the phasé&=x—Vt but also on the coordinate A com-
plication in this case is that even at the first step of the
asymptotic procedure a nonlinear partial differential equation
arises which can only be solved numericdtgcordingly, all

the subsequent steps can only be carried out numerically as
well). In the leading(resonanceapproximation we have to
accuracye

u~efq4(L,z)sinf=¢ef({,z)sin6, (16)

where the functionf({,z) depends weakly on its “slow”
variables. In the case of longitudinal localization of the non-
linear wave the decay of its amplitude is governed by the
small parametek: d/d{~e, as follows from Eq.(9). For
transverse localization of the wave, on the other hand, it
follows from Eq. (14) that the localization region is also r

determined by this Sma!l parametérsz—e. It IS. there.fore FIG. 2. Profile of the envelope of a two-dimensional dynamical two-
natural to assume that in the case of a two-dimensional erb'arameter soliton of elastic shear displacemdmisdimensionless vari-
velope soliton(16) the dependence of the functid(,z) on  ables.
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dimensional envelope solitag= g(¢£) is shown in Fig. 2. In 1—VZ(x—Vit 1-\?2
the original variables the solution for the two-dimensional &= # :( )2 !

- ) 7] il (P: H
soliton has the form Vx| Vx| V6| x|

(23

2¢ x—Vt . in terms of which the equation for an arbitrary deformation
u=129 SWvSZ sin(kx—wt), (20 w= ¢ takes the form
Wee Wy~ Wegee = 2(W2) ge=0. (24)

where the soliton velocityy depends on the parameteqs
and w and in the leading approximation corresponds to théNe see that this equation has a different structure than Eq.
group velocity of linear waves with the same valuekofit (19) for the two-dimensional envelope solitons. It is reminis-

follows from (20) that the localization regions of the soliton cent of the stationary version of the Kadomtsev—Petviashvili

in different directiongdAx andAz) have different values: equatiort?® only with the quadratic nonlinearity of the latter
A changed to CUbiCZV(IZ)§§—>(W3)§§. The soliton solution of
X . - S
A_Nk‘/m' (21)  the Kadomtsev—Petviashvili equation is well knoWrt has
z

a completely different form than the two-parameter soliton

As we see from this expression, in the Iong-wavelengtr(ZO)- First, its asymptotic behavior is not exponential, as in
limit we haveAx<Az, and the soliton is highly flattened in one-dimensional solitons, but power-law. Furthermore, in the
the direction of its propagatiofsee Fig. 4a This figure also  direction of motion the field falls off nonmonotonically with
illustrates the situation when the soliton is localized in alldistance from the center of the soliton. These properties are
three directions and is described by Ej9) with the three-  preserved in the elastic shear solitons of stationary profile
dimensional Laplacian. described by Eq(24). Formally this equation is the same as

Since solution(20) satisfies condition(15), it also de- the equation for small-amplitude nonlinear waves of station-
scribes a surface-shear-wave envelope soliton localized neafy profile in a two-dimensional easy-plane ferromagnet, ob-
an ideal surface. Since surface waves are usually excited Bgined and studied in Ref. 32. Therefore the profile of the
strip radiators, and a finite time is required for developmensoliton solution(24) can be determined from a comparison
of the transverse instability, the two-dimensional surfacevith the data of a numerical simulation of the magnetic dy-
solitons considered her@ocalized only in one direction in hamics of an easy-plane magnet at velocities of nonlinear
the plane of the surfag@re completely observable. We note eXcitations close to the velocity of the spin waves recently
that in Ref. 13, where surface solitons apparently were firstecorded by S. Komineagprivate communication The dis-
observed experimentally, it is stated that the conditions of thé&fibution of the longitudinal deformation in the soliton is
experiment corresponded to the signs which we took for th&hown in Fig. 3 in the form of two cross sections: along the
dispersion and nonlinearityd >0, N<0). motion, w(¢&,7=0), and in the perpendicular direction,

It should be emphasized that in the given case the locaW(7,§=0). We see that this solution has qualitatively the
ization of the nonlinear wave in the plane of the surface angame form as the Kadomtsev—Petviashvili soliton: in the di-

near it has the same physical cause: nonlinearity of the elagection of propagation the profile as a nonmonotonic charac-
tic medium. ter. In spite of the fact that the minima in Fig. 3 are small

Let us turn to an analysis of the two-dimensional andcompared with the central peak, because of the slow fall-off
surface one-parameter solitons of stationary profile, i.e., thef the deformation with distance, the role of the regions of
two-dimensional analogs of soluti@d). As before, we shall negative deformation is very large. Apparently, as in the
consider waves propagating along tkeaxis with a fre-
qguencyV, i.e., solutions of the fornu=u(x—Vt,z). As it
turned out, such states can exist for 0, <0, andV?<1 w
(see Fig. 1l From solution(4) for one-dimensional solitons
it follows that in the limit 1—V?<1 the solution becomes 2.5
small-amplitude and weakly localized:

Uy~ V1-V2<1, 9/ax~1-V2<1. 27

Here the termsai,;— uy, and yuy,yy and 6u)2(uXX in Eq. (12
become quantities of the same order(1—V?)?2. We as-
sume that the dependence on the coordizaite also weak
(0l9z<1) and keep only the leading term in the derivatives
with respect to the coordinate viz., u,,. Then this term
will be of order (1—V?)2, and the derivative with respect to 0.5 7
the coordinatez will be of order 9/9z~1—V?. Then the

terms that have been dropped in Ef2) will be of order 0
(1—V?)?2 and (1-V?)*. In the leading approximation, Eq.

(12) reduces to the following: 6 -4 2 0 5 4 6

(1_V2)Uxx+ uzz_|X|uxxxx_ u>2<uxx: 0. (22 £, 1

_ It is convenient to use the following new coordinates andgg. 3. pistribution of deformation in a two-dimensional soliton of station-
displacements: ary profile (in dimensionless variablgs
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Kadomtsev—Petviashvili equation, in our case the total desurface shear solitorign this case, of stationary profjldo-
formation in the soliton is equal to zerpwdéd»=0. Inany  calized in thex and z directions and propagating along an
case a calculation of the total magnetization in a movingdeal surface of a three-dimensional elastic half space.
magnetic soliton in the limit of large soliton velocitieghen

the magnetic gnd ela_f,tic systems are practically equi\balgng_ SOLITONS LOCALIZED NEAR A SURFACE WITH A FILM

shows that this quantity become anomalously small, WhIC}'tOA'nNG AND NEAR A PLANAR DEFECT

corresponds to an anomalously small total deformation in the _ _ _ ) )
acoustic soliton. We recall that in the one-dimensional case [N the previous Section we considered solitons of differ-
in the motion of a soliton of stationary profild) the total ent kinds in a three-dimensional elastic medium and near an

deformation is nonzerof wdx=y24y/6+0. It may be that ideal surface of a half space, and we gave the conditions for
the properties listed above for a one-parameter twolheir existencéa combination of the signs of the nonlinearity
dimensional soliton are general for systems with an acoustighd dispersion of the mediynHowever, if the surface an an

spectrum of linear excitations. For example, the surface Ray2nharmonic crystal is coated with a film of a different mate-
leigh solitond®” have a form qualitatively similar to that '@l (or in the presence of a planar defect in the crystale
shown in Fig. 3. conditions for the existence of surface solitons or solitons

If we change back to the original variables in the solitonlocalized near a defect plane can change. The possibility of
solution, its characteristic size in the direction of propagatiorfXiStence of these shear surface solitons was first pointed out

will be Ax~1/yI—VZ, while the size in the perpendicular N Refs. 10 and 11. In such a statement of the problem the
direction will be substantially largerAz~1/(1—V2)>Ax  €xperimental observation of solitons near the surface and

(see Fig. 4p However, now the flattening of the soliton in N€ar a planar defect is more probable, since for a thickness

the direction of propagation is determined not by the wave'>@a of the coating layer or of the interface between two

vector(as in the envelope solitput by the velocity of the Media, the dispersion of linear waves localized near the sur-

soliton of stationary profile. face or defect can be substantially higher than the “intrinsic”
Since the soliton solution obtained is symmetric with dispersion of bulk elastic waves. As a result, the nonlinear

respect to the axiz=0, it describes, as in the previous cases stationary wave or soliton is formed in substantially less time
(when damping may still be ignorgdnd the deformation in

the stationary wave decreases; this justifies a long-
wavelength treatment of the problem. However, while in the
previous Section the localization of the wave in two direc-
tions was due to nonlinearity, now the nonlinearity leads to
localization only in the direction of propagation of the soli-
ton, while the localization in the transverse direction is due
to the presence of a planar defect or surface ldyer, it
exists in the linear limjt Here for localization of a linear
wave it is necessary that its frequency lie below the spectrum
of bulk transverse waves; this imposes conditions on the
characteristics of the defect layer and leads to negative ef-
fective dispersion of the surface shear waves, contrary to the
positive dispersion considered in the previous Section. More-
over, as was shown in Refs. 10 and 11, in this case the
solitons exist only in the case of a “hard” nonlinearity of the
medium (N>0). This condition is opposite to the condition
for the existence of solitons in a homogeneous medium or
near an ideal surface. Indeed, now we are considering a non-
linear Love wave? Since the nonlinearity causes localiza-
tion of the wave only in the longitudinal direction, the prop-
erties of the solitons that arises are of a specific nature.
Although in the previous Section we considered two-
dimensional solutions butas was pointed outin a three-
dimensional medium, nonlinearity leads to localization in all
three directions. In the case under consideration here, the
wave is localized near the surface, while in the plane of the
surface it is localized only in the direction of propagation.
Thus in the three-dimensional case the solitons remain two-
dimensional(see Fig. 4

For comparison of the surface solitons of different types,
" let us first give a way of obtaining a simple qualitative solu-
'7 . ; tion in a medium with a film coating. We consider a half
space covered by a thin filifof thicknessh) of a material
FIG. 4. Profile of a surface soliton localized near an ideal surfarend  differing only in density from that of the bulk. It is clear that
around a surface coated with a film of a different mateil in the case of a planar defect the symmetric localized exci-
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tations will be described by the same solutions as in a half  y, =u,,+h?p2u,,,+ 8u)2(uxx. (30
space coated by a film if the thickness of the planar defect is
equal to 4. It is knowr? that Love waves exist in a linear _ , >1on 13 Ve
medium only in the case when the densityin the film is solutions exist only for a “hard” nonlinearitys>0, N>0),

greater than the densify of the material in the bulk 4o/ p i.e., the conditions for the existence of a soliton are directly
=s>1), and the dispersion relation of such waves at smalPPPosite to the conditions near an ideal surface. The solution
wave numbers has the form (30) itself has the form of expressidg) with y=h?»?. Hav-

ing used thez dependence typical for linear Love waves,

Since now the dispersion is negatiie@ € 0) the soliton

5=k*—h2p2k?, (25  u~exp(y2) with y=k?>— w’~hvk?, we have a final ap-
wherev=s—1 is a characteristic of the capillary effects; as proximate solution for surface solitons near a surface with a
above, the speed of sound in the bulk is assumed equal {§jm coating:
unity. We see that linear Love waves have negative disper- 2Vie e(x—V1t)
sion (D=—3h?1v?k<0). This dispersion relation is deter- u~ 5S
mined by the decay of the amplitude of the surface wave ok V3hok
with distance from the surfaceu~exp(-yz), where y X sin(kx— wt)exp( — hvk?z), (31)

~hk?»~D?. In the long-wavelength limitf{k<1) we have

ylk~hkv<1, i.e., the change in field along the coordinate Where &= Vo?—k*+h*»?k* and V~1-3h?»*k%2. From
occurs much more slowly than along the coordinate solution (31) and the exact expression for the localization
919z<9ldx. Therefore, in a treatment of small-amplitude Parametery of the Love wave we see that the soliton fre-
nonlinear localized Love waves which are independent of th&lUeNncies fog azflxed value ok lie in the interval k
coordinatey, we can neglect all the nonlinear terms in Eq. ~h"»“k"<w“<k". The above derivation of the soliton so-
(12) which contain derivatives with respect to the coordinatelution is of a qualitative character. A rigorous method of
z, keeping only the leading termuiuxx. Furthermore, in finding the soliton solutions is given in Appendbf. _

this equation we can drop all of the “internal” dispersional !t follows from (31) that the localization region in the
linear terms on account of the presence of the effective disPlane of the surfac&x—~hvk/e is determined by the same
persion due to the film. As we see from ER5), its presence  €XPression as in the case of an ideal surfacg, but with an
is determined by the dispersion terrh?v2u, ., which for effe_ctlve dlgperglon parameter. Howev_er, the size of the_ soli-
hv>a exceeds the largest dispersion teaiy U,y in Eq.  ©ONIN the dlrectlon of _the axis is now given by the quantity
(12), which is due to the intrinsic dispersion of the bulk Az~ 1/(hvk?), which is completely different from the case

waves. Thus instead ¢12) we can limit consideration in the ©Of the ideal surfaceXz~1/¢). The ratio of the sizes of the
bulk to the equation soliton in different directions,

(26) AX kth

o v

Ugt= Uy Uy 4 02Uy, Z>0,

(32)
which should be supplemented by an effective boundary con- ¢

dition. This is most easily obtained by integrating the equadiffers fromzits counterpart in the case of the ideal surface by
tion analogous tq26) for the film over its thickness{h  the factork®hv/e, which can be arbitrary.

<z<0): Thus we see that multidimensional shear solitons in a
) homogeneous medium and in a medium with a planar defect
hsuy,=huy,+u,+hduu,,, z=0. (27)  and surface solitons near an ideal surface and a surface cov-

This approach gives the correct result for the spectrunf’®d with a thin film can have substantially different struc-

of Love waves in the case of long wavelengtkss1/h: in ~ tures.
the linear limit, Eqs.(26) and (27) imply the dispersion re-
lation APPENDIX

2=Kk?—h%(sw3—k?)?, (28 Here we consider the system of equati¢®6), (27) for
. ] . the displacementsi(x,z,t) in the bulk of an anharmonic
which for k<1/h agrees with the exact expression for the crystal and on its surfacey(x,z=0;t) = U(x,t). For small-

dispersion relation of Love waves and with express@®).  amplitude weakly localized surface solitons in the “reso-

Formally this same dispersion relation can be obtained in thgance” approximation, solutiof26), (27) can be written in
following way. In the linear approximation, it follows from {he form

Eq. (27) that in the region near the boundary of the medium

and film u=a(x—Vt,z)sin(kx— wt) + b(x—Vt,z)cogkx— wt),
(A1)
J N _
E%h SF _E ) (29 U=A(x—Vt)sin(kx— wt) +B(x—Vt)cogkx— wt)’(AZ)

(The relationg/ 9z~ 9%/ 9x? for surface waves was mentioned where the frequency differs only slightly from the frequency
above) Now substituting the operat¢29) into the linearized of Love linear surface wavesyy(k): w?— wa(k)=g?<1;
equation(26), we again arrive at the spectrum of Love wavesthe dependence of the functioasb, A, andB on the argu-
(28). However, if such a substitution is done in the nonlinearment x—Vt) is slow: d/dx~ ¢, while the order of each of
equation(26), then we obtain a modified Boussinesq equa-the functionsa, b, A, andB is as follows:a~A~¢, b~B
tion (2) with an effective dispersioy=h?v?: ~ &2, (The dependence on the coordinatis now unrelated
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to the small parametet.) We introduce the characteristic to the group velocity of linear surface waves. Taking these
deviation of the frequency from the dispersion relation forrelations into account, we rewrite EGA12) in the leading
bulk linear wavesy=k’— w?. Substituting expansions approximation as

(A1) and(A2) into Egs.(26) and(27) and equating the terms Vi3hko )2 2 4¢3

A . —e“f+ 5k*f°/8=0. Al

in sin(kx— wt) and coskx— wt) to zero, we obtain the follow- (V3hku) e /8=0 (AL5)
ing system of equations accuratesttx Thus in a consistent treatment of the problem, the solu-

) ) 43 tion for the surface shear solitons has the form
a,,— ya=(V-—1)a,,+2(k—Vw)b,+ sk*a°/4, (A3)

b,,— v2b=—2(k—Vw)a (A4) uxzt)~ 2 seeht XYY e g o)
2z == - X 1 ,Z,1) = ! —wl),
Jok? V3hok
h(sV2—1)A,+ h(k?*—sw?)A+2h(k— sVw)B, (A16)
+hok*A%/4—a,(z=0)=0, (A5) wherew?=k?—h?1v?k*+ ¢2 andV=1-3h?k?v?/2. This so-

lution differs by a factor ofv2 in the amplitude from the
h(k?—sw?)B—2h(k—sVw)A,—b,(z=0)=0.  (A6)  qualitative result given in the main text.
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A comparative study of the thermal conductivity in the temperature interval 2—300 K is carried
out for single-crystal GaAs samples grown on Earth and grown under analogous conditions

in microgravity on the manned space station Mir. It is found that the heat transfer in the samples
is due to phonons. A consistent processing of the temperature dependence of the thermal
conductivity of the Earth-grown and space-grown samples is carried out in the framework of the
Debye model of the phonon spectrum with allowance for boundary and resonant scattering

and for scattering on “planar defects” and phonon—phokbprocesses. The difference in the
behavior of the thermal conductivity space-grown and Earth-grown samples is due to the
presence of excess arsenic in the Earth-grown sample, resulting in both resonant scattering and
scattering on planar defects, which may be clusters of arsenic atonZ)0® American

Institute of Physics.[DOI: 10.1063/1.1491187

INTRODUCTION mm long were cut from the Earth and space samples, and
then samples were cut from them by oriented cutting tech-

Gallium arsenide is one of the most important semicon-
nology.

ductor materials, used for fabricating fast and radiation- The elemental composition of the samples was deter-

resistant microelectronic devices. A study of the influence of_.
. mined on an MAL-2 laser energy—mass analyzer. The mea-
the growth technology and conditions on the degree of per- . .
ures of the analysis are presented in Table I.

fection of GaAs single crystals is a subject of ever-presen% Analysis of the structure of the gallium arsenide samples

interest. . .
The experimental study of the thermal conductivity of with the use of a URS-60 apparatus and a URS-50 IM dif
) . . fractometer and also by standard methods of x-ray structural
such materials, especially at low temperatures, with the re- . .
. . _ . analysis showed that these samples are single crystals. The
sults described in terms of the existing theoretical models L o . . g
; . . : rowth direction coincides quite precisely with th&00]
makes it possible to establish the spectrum of defects in th R
) . . crystallographic direction. In both samples a macroblock
samples and to estimate the change of their concentrations & , . . . :
sfructure is obtained. The average density of dislocations was
a result of treatment procedures.

. . . 9.9x10 cm 2 in the Earth-grown sample and 7.8
This paper is devoted to a comparative study of the low- P . .
. x 10* cm~? in the space-grown sample. The impurity con-
temperature thermal conductivity of GaAs samples grown by : )
. . . ; . _“centration was determined by spark mass spectrometry on a
the same technique on Earth and in a microgravity environ- : .
. . JMS-01-BM2 mass spectrometer. The level of most impuri-
ment on the manned space station Mir. o _ .
ties in both samples was less thar §®y mass. The impu-
rities of fluorine, magnesium, sulfur, calcium, and zinc were
EXPERIMENT at the level of 107 by mass. The concentration of sodium,

The gallium arsenide single crystal investigated is apotassmm, phosphorus, iron, and chromium in the space-

. : I ) . grown crystal were lower. Considering the level of sensitiv-
single monolith consisting of two parts: a single crystal

grown on Earth under laboratory conditions, and a singléty of the methods employed, we can state that no phase

crystal obtained by recrystallization under conditions of mi_segregates or elemental preC|p|_tates Ia_lrger thammiwere
o present and that the concentration of light elements was no
crogravity in space on the Gallar furnace.

The choice of this two-part single crystal as the object of
study was deemed optimal for a comparative analysis, since
the laboratory-grown single crystal is not only the seed butraBLE I. Elemental composition of the samples.
also the initial object for obtaining the gallium arsenide
single crystal from the melt by the method of directed crys- Concentration, at. %
tallization under conditions of microgravity. Element Earth-grown Space-grown

The initial single crystal prepared for the space experi-

. T As 50.044 49.974

ment was a cylinder 22.2 mm in diameter and 85 mm long. 49.944 49.976
The length of the part of the sample remelted in space was 50 o 0.012 0.05
mm. After the space experiment, ingot sections 25 and 1%
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tivity of GaAs (see, e.g., Refs. 146which take into account
the nonlinear dispersion of the phonon spectrum, the differ-
ence in the phonon—phonon interaction for the longitudinal
and transverse phonons, etc. This complication of the model
inevitably leads to an increase in the number of parameters
to be calculated, often without improving the fit but only
increasing the uncertainty in the parameters and the time
200 [ -""';21-;_. required to do the calculations. It is therefore natural to try to

: . use the simplest model that corresponds to the process to be
described.

The temperature dependence of the thermal conductivity
of the Earth-grown and space-grown samples were calcu-
FIG. 1. Temperature dependence of the thermal conductivioj a GaAs  |ated in the framework of the Debye model of the phonon
single crystal: Earth-grown sampi@); the space-grown sample, which has spectrumi (the Debye temperatur® =344 K: the value

1000
800

% W/(m-K)
N
o
o

150 200 250
T,K

50 100

been remelted in a microgravity environméay. sound velocityV=3265 m/s; Ref. B
k k 3 . O/T X4 X
greater than 10 by mass and that of heavy elements no  MT)=5—u- || T f 7(X) 2 9% (1)
27V 0 (e=1)
greater than 10° by mass.
The thermal conductivity of the samples was measured  x=h/kT,
using a steady uniaxial heat flux in the temperature interval
2-300 K. The heat flux was directed along fi€0] crystal- 7 1(x) = 2 77 (%) @)
lographic direction. The temperature was monitored with ! '
Cu—Au+ Fe thermocouples. To eliminate heat loss to radia- . ) ,
tion at T>100 K we used an active antiradiation shield. Initially th‘? followmg processes were ta}keirl Into account
in the calculation of the inverse relaxation time*(x): scat-
RESULTS AND DISCUSSION tering on boundaries, resonant scattering with allowance for

damping, Rayleigh scattering on point defects, phonon-—
1. The temperature dependence of the thermal condugshononU- andN-processes, and also scattering on “planar”

tivity \ of the two GaAs samples is shown in Fig. 1. The defects.
maximum value of the thermal conductivity of the “space-  However, it was found in the fitting that the coefficients
grown” sample is approximately 5 times as high as thefor the terms describing thi-processes and Rayleigh scat-
analogous value for the “Earth-grown” sample. The maxi-tering are equal to zero within the error limits. Taking the
mum of the thermal conductivity of the space-grown samplejamping of the resonance into account also failed to improve
is shifted to lower temperatures. the fit. Therefore, these terms were not taken into account in
Measurements of the temperature dependence of th@e subsequent calculations. The boundary scattering param-
electrical conductivity showed that for both samples the elecgter was not varied, but the values of the transverse dimen-
tronic contribution to the thermal conductivity can be ne-gjgns of the samples were used.

glected in the entire temperature interval studied. We note  Thys the expression for the inverse relaxation time has
that the electrical conductivity of the Earth-grown sample isthe form
approximately twice as high as that of the space-grown
Samp|e_ r’l(w)=V/a1+ a2w2/(a§—w2)2+ a3w2
2. The temperature dependence of the thermal conduc- 2
tivity of the san?ples was dzscribed by the well-known pho- Fago T exp—0/Tas). ©
non scattering mechanisms. Here the first term describes the boundary scattering, the
Extremely complicated formulas are often used for cal-second and third terms describe resonant scattering and scat-
culating the temperature dependence of the thermal condutering on “planar” defects; ! and the last term describes

TABLE II. Parameters of the temperature dependence of the thermal conductivity of GaAs according (th-H§s.

Scattering Coefficient Sample Relative change on going from the
mechanism Earth-grown | Space-grown Earth-grown to the space-grown sample
On boundaries a,,m 3.36-107° 1.94.107 -
Resonant ay, 873 29.9-10% 3.122-10% 8.6
ag, s 10.065-10" 6.068-10' 0.7
On "planar" defects a3 8 96.83.10719 2.016.107" 47.0
phonon-phonon a, sk 1.172:107* 1.156-107" 0.01
as 2.820 3.272 —0.14
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sample the coefficients characterizing the resonant scattering
(a,) and the “planar” defects ;) decrease. Both of these
terms are proportional to the concentration of the corre-
sponding defects.

An elemental analysisee Table)lshowed that the main
difference between the samples is the presence of nonsto-
ichiometric (exces$ arsenic(0.1 at. % in the Earth-grown
sample. In the space-grown sample the concentration of ex-
cess arsenic is about 20 times lower and is right at the limits
of error. This change in the concentration of excess arsenic is
correlated with the relative changes of the coefficientand
a2.

Thus the presence of excess arsenic is the only possible
cause of both the resonant scattering and the scattering on
“planar” defects. The latter could be clusters of arsenic at-
oms. The slight shift of the resonance frequefitye coeffi-
cient ag) may be due to relaxation of the internal stresses
caused by the presence of “planar” defects. It was shown in
Ref. 12 that the resonance frequencies can be smeared out
and shifted in the presence of internal stresses in the sample.
These stresses are probably larger in the Earth-grown
sample.

The approximating curve of the thermal conductivity of
the space-grown sample at high temperatures deviates on the
low side from the experimental values. This may be due to
the appearance of photonic heat conduction in the safiple.

1672

o CONCLUSION
10 In summary, the results of measurements of the tempera-
ture dependence of the thermal conductivity have shown that
excess arsenic contained in the Earth-grown sample forms
clusters that sharply increase both the resonant scattering and
scattering on “planar” defects. Elimination of the excess ar-
senic leads to appreciable growth of the thermal conductivity
in the low-temperature region—in the region of the maxi-
mum the thermal conductivity of the space-grown sample
was 5 times higher than the thermal conductivity of the

Earth-grown sample.

W, mK/W

=5l L )

10 10 100
T.K

*E-mail: george.ya.khadjai@univer.kharkov.ua
FIG. 2. Phonon scattering mechanisms for the Earth-gr@viand space-
grown (b) samples. The contribution of the different scattering mechanisms
to the overall thermal resistance process—boundary scattering,
2—resonant scattering3—scattering on “planar” defects4—phonon— IM. D. Tiwari, D. N. Talwar, and B. K. Agrawal, Solid State Comm@;.
phonon scattering;}l—experiment. 995 (1971).
2M. C. Al Edani and K. S. Dubey, Phys. Status SolidBB, K47 (1978.
zM. C. Al Edani and K. S. Dubey, Phys. Status SolidBB, 741(1978.
_ K. S. Dubey and G. S. Verma, Phys. Rev4B4491(1971).
phonon—phonorJ-processes. The coefficiendss—ag were 5S. Singh agld G. S. Verma, Phys. éevlﬂ 1529(1579. )
varied. Values of the coefficients ensuring an approximation®c. M. Bhandari and G. S. Verma, Phys. R&40, A2101 (1965.
error of not worse than 4% are given in Table I. It is seen 'R. Berman, Thermal Conduction in Solid§Clarendon Press, Oxford
s (1976; Mir, Moscow (1979].
from Table Il that _the coefficients, and as for the two 8C. W, Garland and K. C. Parks, J. Appl. Phgs, 759 (1962,
samples are close in value, as expected, since the parameteis | yillermoz, A. Laugier, and P. Pinard, Solid State Comniih.413
of the phonon—phonon scattering should not depend on the(1975.
heat treatment. 0p, . vuillermoz, J. Jouglar, A. Laugier, and H. R. Winteler, Phys. Status

- PRI - _Solidi A 41, 561 (1977.
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The reversible structural transformation of the hysteretic type observed previously by the authors
in the In—-4.3 at. %Cd alloy on low-temperature thermocycling is investigated further. In the
hysteresis regioii150—290 K a pronounced instability of the macroscopic characteristics of the
alloy is observed, which is manifested as time dependence of the dynamic Young’'s modulus

and resistivity of the samples at a constant temperature fixed during the cooling or heating run. The
kinetic effects are investigated in detail near the boundaries of the hysteresis, where they are
most clearly expressed. Less clear signs of the structural transformation are observed on the
temperature dependence of the microhardness of the alloy. It is found that the structural
transformation is governed by thermally activated processes with several characteristic relaxation
times: the analytical form of the kinetic curves and the temperature dependence of the

relaxation times are substantially different for the dir@mt cooling and revers€on heating
transformations. Similarities and differences between this transformation and the known

structural rearrangement processes in the physics of alloys are discussed. The structural
transformation investigated here is also discussed in relation to the phase diagram of the In—Cd
system. ©2002 American Institute of Physic§DOI: 10.1063/1.1491188

INTRODUCTION ture. The microscopic picture of this structural transforma-
tion remains unclear at the present time.
In—Cd substitution solid solutions with cadmium con- The goal of this study was to make a detailed investiga-

centrations 4 at. %.¢<5.9 at. % on cooling undergo a re- tion of the kinetics of the transition process in the martensitic
versible structural transformation of the martensitic type, aphase of the In—-4.3 at. % Cd solid solution from a metastable
which the high-temperature fcc phase goes over to a lowto an equilibrium state in the region of the hysteresis loop,
temperature phase with the fct lattice inherited fromparticularly near its boundaries. The kinetics of the relax-
indium!~* The temperature of the transformatiokly  ation to equilibrium is studied by measuring the time depen-

strongly depends on the cadmium concentratioand de- dence of the dynamic Young's modulus and resistivity. These
creases fromM~421 K atc=4 at. % toM¢~293 K atc data are supplemented with measurements of the temperature

=5.9 at. %. The transformation occurs in a temperature in@nd concentration dependences of the microhardness of

terval of the order of 10 K. As far as we know, the phase'n—Cd solid solutions with cadmium concentratiorts

diagram below room temperature has not been studied befofe5-9 at- %. These results are needed for analysis of the mi-

and it is labeled as provisional in the literatdré. croscopic processes that govern the low-temperature struc-
We recently showetf that the martensitic phase is un- tural instability of In—_C_d solid solutions. In additior_1, the_:y

stable at low temperatures. Thus the alloy In—4.3 at. % Cd i@ be useful for refining the low-temperature, In-rich side

low-temperature thermocycling at a finite rate of change off the state diagram of the In—Cd system.

the temperature undergoes a reversible structural transforma-

tion which is accompanied by hysteresis and is clearly disl- EXPERIMENTAL PROCEDURE

cerned in measurements of the acoustic, micromechanical, The pinary alloys In—c at. % Cdc=1.5, 3, and 4.8

and resistive properties. The temperature boundaries of there obtained by fusion of weighed portions of 99.999%

hysteresis depend on the rate of thermocycling and are agwre indium and cadmium in air in an alundum crucible. The

proximately 130—-290 K according to the data of acousticmelt, overheated to about 20 °C above the melting tempera-

measurements, and 175-290 K according to the resistometure, was poured onto the surface of a steel or ceramic slab.

ric data. The transformation has a pronounced isothermafhe ingot was a large-grained polycrystalerage grain di-

character: within the hysteresis loop both in the direct tranameter~0.3 mm). The cadmium concentration in the ingot

sition (during cooling and in the reverse transitigiduring  was determined by chemical analysis.

heating the Young’s modulus and the resistivity depend sub-  Part of the ingot was forged and rolled into bars of

stantially on the hold time of the sample at a fixed temperasquare cross sectiof~2xX2 mm or ~0.9X0.9 mm), from

1063-777X/2002/28(6)/10/$22.00 465 © 2002 American Institute of Physics
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which samples of the necessary size were cut. For the acouat the given temperature, while in the “ramp” mode each
tical measurements we used samples with dimensions démperature corresponded to one indentation, and the lengths
2X2X7.5 mm, with ends that had been lapped perpendicuef the diagonalghardness valugsvere averaged over a tem-

lar to the long axis of the sample on a steel slab with a fingperature intervaAT=5 K. The values obtained were as-
abrasive. The samples for the resistance measurements hgigned to the temperature at the midpoint of the interval.
dimensions of 0.80.9X 23 mm. The surface of the samples

for the micromechanical measurements was polished in & EXPERIMENTAL RESULTS

solution of hydrochloric acid and hydrogen peroxide. TheZ.l. Temperature dependence of the acoustic attenuation

other details of the sample preparation and the measuremegifiiernal friction ) and the dynamic Young’s modulus

of the temperature dependence of the microhardness can be . o
found in Ref. 7. The typical temperature dependence of the logarithmic

damping decrement and dynamic Young'’s modulus, ob-
éained in the temperature interval 300-5.5-300 K on iso-

i — 0,
interfaces between which are twin boundaries. This sort o hronal thermocycling of a samplg O.f the aIon_ In .4'3 at. %
. L . d at an average rate of 0.5 K/min is shown in Fig. 1. The
microstructure and crystallographic misorientation of the do-

. . . large values of the decremend¥5x 10 3) over a rather
mains, as a rule, makes for a number of interesting features

i . ) : . wide interval of low temperatures attest to the fact that this
of the inelastic deformation of the alloy, in particular, super- . . :
. ; . : Lo alloy should be classed as a high damping material. The
elasticity, high (_jampmg of _mechanlcal_ V|br_at|ons, ete. S(T) curve exhibits nonmonotonic behavigFig. 13: the
of Tt?r Zt% ?losui[r']%altﬁemge:‘fiﬁhce\:ggﬁrlfgmn;(;sei%emiﬁ decrement decreases sharply with decreasing temperature
; \é' dtl) the t y tl u g‘t ib ut W?hud from 300 to 200 K, reaches a minimum &t=125 K, and
studied by the two-component composite vibrator me then increases, reaching a maximunTat12 K, after which
a longitudinal standing wave frequency of75 kHz at a

litude of th . 55107 in th a decrease can be noticed. On heating,di) curve does
cons'Fant amp ltude of the a,COUSt'C stragr inthe ot completely retrace the curve obtained on cooling: in the
amplitude-independent region.

Lo o . temperature interval 200—-270 K the decrement is higher on
The resistivityp was measured in direct current using apeaiing. The maximum size of the hysteresis loop in the
standard four-probe method. The power dissipated in thGeriical direction is observed at 250 K and reaches approxi-

. _5 . . -
sample did not exceed>210"> W. To eliminate the influ- ey 2504 of the value of the attenuation measured on
ence of parasitic emf’s, the measurements were made for t""lﬂcreasing temperature.

opposite directions of the transport current. To establish the ¢ temperature dependence of the dynamic Young's
temperature boundaries of the structural instability of the alioqulusE is also nonmonotonic and exhibits a wide hyster-
loy, we studied the temperature dependences &, andp,  esjs with boundaries of 130—290 (Rig. 10. In the hyster-

which were obtained during an isochronal thermocycling inggjg region the Young’s modulus, like the decrement, has a
the temperature interval 320-5.5-320 K with an average

cooling (heating rate of 0.25—1 K/min. The temperature of
the sample was changed by using a “standard” two-step pro- 2.5
cedure: first the temperature was lowefmalsed at a rate of
0.5-2 K/min, then held steady for 10-2.5 min; after the
hold, the measurements éf E, andp were made.

For studying the kinetics of the transition from one
structural state to another we measured the isothermal time
dependences of the dynamic Young’s modulus and the resis-
tivity at fixed temperatures within the boundaries of the hys-
teresis loop. For studying the kinetics of the “direct” trans-
formation from the high-temperature to the low-temperature
state the samples were cooled at an average rate of 2 K/min
from room temperature to one of the measurement tempera-
tures (250, 240, 230, 220, 210, 205, 200, 190, and 175 K
For studying the kinetics of the “reverse” transformation the
samples were first held for six hours at a temperature of 200
K to establish the equilibrium low-temperature structural
state, and then were heated at an average rate of 1 K/min to
one of the measurement temperatu@gs, 275, and 280 K

The Vickers microhardnesbl,, was measured in the

A study of the morphology of the grains of the marten-
sitic phase showed that they consist of thin domains, th

1 1 1 1

fcemperature interyal 77—300 Kwith a load of 0.046 N'on the 0 5'0 100 150 200 250 300 8
indenter and an indentation time of 10 s. For studying the T K

temperature dependence ldf, the sample temperature was

changed at a rate of 1 K/min or stabilized for a certain timeFIG. 1. Temperature dependence of the decrem®ii®) and dynamic

; : oung’s modulusE (b) for a single isochronal thermocycling at an average
at the chosen temperature points. In the latter case 10 mdeﬁﬁte of 0.5 Kimin:(A A)—In_4.3 at. % Cd, ©,@)—pure In; the unfilled

tatiqns Were_ made and the average value of the dia_gonal Qmbols are data taken on cooling of the samples, the filled symbols, on
the indentatior{and, hence, of the hardnessas determined heating.
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higher value on heating: the maximum difference is reached

at T~250 K and amounts to about 10%, which is an appre-

ciable effect for the elastic modulus. TE€T) curves both

on cooling and on heating exhibit a pronounced anomaly

near 190 K in the form of a smeared step with a positive
derivativedE/dT. l

The hysteresis loops of(T) andE(T) are completely
reproduced when the samples are heated to room temperature
and the thermocycling is repeated.

The acoustic characteristics of a polycrystalline sample
of pure indium do not exhibit hysteresis on thermocycling in
this temperature intervdbee Fig. 1 and do not change dur-
ing an isothermal hold.

2.2. Instability and kinetics of the change of the Young’s
modulus in the hysteresis region

By repeating the isochronal thermocycling several times
in the vicinity of the lower boundary of the hysteresis loop,
in the temperature interval 175-230 K, the sample can be
brought to a stable low-temperature state, which exhibits
higher values of the Young’s modulus in the entire tempera-
ture interval—all the way down to liquid helium tempera-
ture. The total increase of the Young’s modulus at 250 K has
a value of the order of 22%. Figure 2a shows a schematic . . . '
illustration of the change of the Young’s modulus on succes- 150 200 250 300
sive thermocycles I, Il, and lll, constructed from the experi- T,K
mental measurementsee also Figs. 3—5 of Ref).5A fea-
ture of the limiting stable low-temperature state is the

FIG. 2. Temperature dependence of the dynamic Young's modubiging
multiple thermocycling within the boundaries of the hysteresis Ismhe-

absence of any anomalies on the temperature dependencengitio: 1,I1,1I—successive thermocycles; points 3, and5 correspond to
the Young’s modulus on thermocycling in the temperaturehe values of the elastic modulus before the change in temperature, the
interval 250-5.5 K. points2’, 4', 6' are unrelaxed values of the elastic modulus at the time

. - , . when the measurement temperature is reached; pjnts6 are partially
The temporal mStabI“ty of the Young's modulus is ap- relaxed values of the elastic modulus 5 min after the specified temperature

parently due to the occurrence of a structural transformatiofas established. The temperature interval in which&t® isotherms were
in the sample. An interesting feature of the reaction of theneasured is in the lower part of partel; the temperature dependence of the
Young’s modulus to a variation of the temperature in thecompletely unrelaxeé, and relaxecEg Young's modulus(b).

vicinity of the lower boundary of the hysteresis loop is that

the value ofE measured during both cooling and heating first ,
falls sharply to values corresponding to the lower curve intemperature dependence of the Young's mgdulus_ of the alloy
In—4.3 at. % CdFig. 2b: the branchg(T) is realized for

Fig. 2a(the "unrelaxed” modulusky) and then grows, and xtremely rapid variation of the temperature, and the branch

\k/)glgeli iggreosf f\)r:‘(lj\/irra]-rrll(;wtr;]ee|30th§rrr(r:1$|(£<e)ld z;trtir;(al‘ls rer :_Che(ﬁR(T) for extremely slow. On thermocycling at a finite rate
P 9 PP b y the Young’s modulus in a time=10 min “ranges through”

laxed” modulusEg). These transitions are illustrated sche-the values ofE lying within the shaded loops in Fig. 2a,

g‘nﬁgﬂlz,ﬂ Egé ;t?ngylr:rlﬁ esreellfzgce;r’i_)n?eair(\zoog?gs between the two successively measured values of the par-
4 and 1 2 are the vallues oE correz onding to tﬁe tem- tially relaxed modulugon subsequent thermocycles Il and Il
eraturésT andT+5K (the f for hegtin agnd the the vertical range of the loops decreases, and they are not
For cooling and a?e separated in time b go nthe 5 min shown on the diagrammThe value of the intermediate “dip”
durina which the tem perature was chgn ed at a rate of 2f the modulus near the low-temperature boundary of the
K/mir? and the 5 minpof the isothermal %old fior 1o the ysteresis could not be established precisely. The fall of the
measijremenls The points2’ and 4’ correspor?d to the modulus gave way to a rapid increase immediately after the
Wi : : temperature variation was stopped, and in the cases regis-
tS:E i\s/argJ::hEg measured at the instant the given temperatered amounted to not less than 10% of the measured value
The transition from a low-temperature hardened state tc())f E. The kinetic curves oOE(t) characterizing the structural

the initial high-temperature state occurs near the uppe(r;ham(‘:‘Ies In the alloy were recorded after cooling from room

. . . emperature to one of four temperature poi2@5, 200, 190,
boundary of the hysteresis loop, in the interval 260—290 Kt .
(Fig. 29, with a decrease of the modulus both during heatin and 180 K, which correspond to the smeared stepkd).

to the temperature of the isothermal hold and during the hol(ﬁhe relaxation of the Young's modqlus to its eqwhpnum
. . , value corresponds rather well to a first-order reactieigy.
itself (the points5— 6’ —6).

3):

Thus we can conclude that below room temperature
there are the two limiting branch&s,(T) andEg(T) of the AE(t)=E(t) —E(0)=AE ol 1—exp —t/7)], @
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FIG. 3. Isothermal change of the Young’s modulus after cooling of the alloy
from 300 K to the specified temperature. The kinetic cuts(t)/E(0)
measured at 180 Ka); the logarithm of the rate of change of the Young’s
modulus versus the time at different temperatures; the straight lines ar
linear approximations obtained by the least-squares method; the experime
tal points are shown only fof =180 K (b).

wheret=0 is the time at which the measurement of the

Young's modulus begins. Here, however, we should mention

the presence of small initial segments on tB@) curves
where the increase @& is more rapid; clearly approximation
(1) is not valid for those regionsee Fig. 3h The relaxation
time ¢ determined for the slope of the straight line in Fig.
3b has a substantial dependence on temperéfige 4).

2.3. Temperature dependence of the resistivity

A more detailed study of the reversible structural trans

formation observed here was done by a resistometri?

T,K

200 160

280 240

In-4.3 at.% Cd

1 1 1 1 1 1
35 40 45 50 55 6.0
1000/T,K™?
FIG. 4. Arrhenius plot for the relaxation times of the Young’s modulys,
(@), and of the resistivitys, (¥) on cooling from 300 K, and also for two
relaxation times of the resistivity: on heating of samples stabilized at 200 K

7,1 (A) and 7, (M), and on isothermal annealing with a step &T
=5K, T,/) (D).
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FIG. 5. Temperature dependence of the resistivity of pure In and of In—Cd
alloys; the curves were obtained during single thermocycling at an average
rate of 0.25 K/min. The temperature interval of the measurement of the time
dependence of is indicated in the lower part of pané); a 6-hour hold

was made at 200 K during cooling of the alloy In—4.3 at. %463

method. The resistivity is one of the most sensitive indicators
f the structure state of a material In Fig. 5 we show the
emperature dependence of the resistapcef an In—-4.3
at.% Cd alloy and of pure indium, obtained during ther-
mocycling at a coolingheating rate of 0.25 K/min in the
interval 320—150-320 K. For the pure indium the direct and
reverse runs of(T) coincide completely, while for the alloy
p(T) exhibits a hysteresis loop with temperature boundaries
of about 175-290 K, somewhat narrower than the hysteresis
loop of the dynamic elastic modulus. In the central part of
the hysteresis loop the resistance is 9% lower on heating than
on cooling.

In the experiments we also recorded the temperature de-
pendence of the resistivity on cooling and heating for in-
termediate concentrations of cadmium in the alloy. It is seen
in Fig. 5b that in the alloys with concentrations of 1.5 and 3
at. % Cd there is no hysteresis. This attests to the stability of
the structure of these alloys in the low-temperature region.

In the hysteresis region a substantial temporal instability
of the resistivity is observed for the In—4.3 at. % Cd alloy.
The kinetic effects are most pronounced in the vicinity of the
boundary of the hysteresis: an isothermal hold n&ar
~190 K is accompanied by a decrease of the resistivity, and
one nearT~270 K by an increaséduring heating of the
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0.6 analog of the change of the residual resistivity of the alloy
In-4.3 at% Cd — In-4.3 at.% Cd on thermocycling. This allows us to see
0.4+ more clearly the hysteresis effects and instability effects
caused by the structural rearrangements in the alloy under
g0.2r study, since the residual resistivity has a particularly high
é sensitivity to the change in structural parameters of the crys-
= Or tal.
D Figure 6a shows a plot giy(T) obtained both during
-0.2r > isochronal thermocycling at a rate of 0.25 K/nfaf. Fig. 5
S a and as a result of thermocycling at the same rate of change of
-0.4 15‘0 200 250 300 the temperature in the interval 300-5.5-303 K but with an
T K intermediate isothermal hold for 6 hours Bt 200 K. It is
seen that at the chosen rate of cooling, the start of the no-
ticeable decrease @f; is observed near 210 K. We note that
02k In-4.3 at% Cd the limiting minimum value of the residual resistivity, which
88 characterizes the low-temperature state of the sample, does
e 0.1} 60 not depend on how this state is reached.
e . As in the case of the hysteresis of the acoustical proper-
S 15 min . .
2 o 118 ties, a rapid change of temperature corresponds to the unre-
o 15 laxed branch of the temperature dependence of the resistiv-
01} 15 20 ity, whereas a slow change in temperature corresponds to the
*8Ggee® 8 b relaxed branch of the temperature dependence. Figure 6b
-0.2F | . , . . showspy(T) for two different degrees of relaxation, corre-
200 220 240 260 280 sponding to the final stage of the transition of the alloy to the
T,K low-temperature stable state, and to the initial stage of the

reverse transition to the high-temperature stable state. For the
FIG. 6. Hysteresis of the reduced residual resistipify- ps3—p3 (See Xt cpggen regime of temperature variation the two runs cross at
during isochronal thermocycling at a rate of 0.25 K/niin,®) and during .
thermocycling with an intermediate isothermal hold at 20qQ4<A) (the T~245 K. A prolonged hold at this temperature does not

unfilled symbols are data taken on cooling of the samples, the filled symlead to any noticeable change in the resistivity.
bols, on heating(a). The unrelaxedO) and partially relaxed®) values of

pq during isothermal annealing with a st&f =5 K (the numbers indicate L »

the annealing time The measurements were begun after a hold of 2.5 hours?-5- Kinetics of the transition of the alloy to the low-

at 200 K (b). temperature state

Figure 7 shows the time dependence of the resistivity
measured at fixed temperatures. Plotted on the vertical axis is
1Ihe quantityA p(t) = p(t) — p(0), wheret=0 is the time at
the sample at a fixed temperature within this interelT the start of the meas.urements. It is seen that at all tempera-
— 200 K for the example shown in Fig. Bahe value of the tures the t.ransflormatlon reagtlon begins §Iowly and. then, af-

ter some time, it speeds up, its rate reaching a maximum and

resistivity stabilizes, indicating that the transition to the low- o
temperature structural state has gone to completion. Heatint en gradually dec_lmln_g. We note that'ai: 240 K the s_tart .
the transformation is accompanied even by a slight in-

to T~310 K completely restores the resistivity to its initial i th stivittEia. 7h
(highen values, which correspond to the high-temperatureCrease in the resistivitifig. )Z . ,
In contrast to the relaxation of the dynamic Young’s

structural state of the samples. L
P modulus, the kinetic curves dfp(t) are S-shaped and are

sample. After thermocycling four times through the tem-
perature interval 175-230 K as well as after a long hold o

N S _ _ not described by a first-order reaction equatiéh The ki-

2.4. Instability of the resistivity in the hysteresis region netic curves shown in Fig. 7 are approximated rather well by

It is seen in Fig. 5 that the hysteresis effect in the tem-a simple expression which was proposed by Avrami for de-
perature dependence of the resistivity of the alloy In—4.35cribing the kinetics of isothermal transformations governed
at.% Cd is observed against the background of a rathedy processes of nucleation and growth of the particles of the
strong temperature dependence due to the electron—phon8gwW phasé! ™3
interaction. This background can be subtracted from the ex- t\n
perimentalp(T) curve under conditions such that Matthies- Ap(t)ZApmaX{ 1—ex;{1— —) “ 2
sen’s rule is valid in the range of Cd concentrations studied. Tp
In Ref. 1 it was shown that in alloys of the In—Cd system atwherer, is the effective relaxation time of the alloy to equi-
concentrations>2 at. % Cd, Matthiessen’s rule holds rather librium at the given temperature. For=1 this equation de-
well, at least forT=293 K. Our data also attest to the valid- scribes a first-order reaction, but for the curves shown in Fig.
ity of Matthiessen’s rule. Since the temperature dependenceéa the exponent varies in the range 1.5—-1(&ith an aver-
of the resistivity for a Cd concentration of 3 at. % shows noage value of 1.57and this parameter shows no systematic
anomalies in the temperature region of interest to us, fodependence on temperature. The temperature dependence of
further analysis we can consider the temperature dependenttee relaxation timer,(T) in Arrhenius coordinates is shown
of the differencepy(T)=p4sT)—p3(T) as the differential in Fig. 4. This is a rather symmetric curve with a minimum at
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In-4.3 at. % Cd

t, hours

Lubenets et al.

105dp/dt, uQd-cm/s

FIG. 8. Time dependence of the rate of isothermal relaxation of the resis-
tivity in the cooling stage: the solid curves are the time derivatives of the
approximating function$Eq. (2)] corresponding to different temperatures
(see Fig. 7.

structural transition is accompanied by an increase in the
resistivity to the values which were obtained at the start of
the thermocycling.

The presence of two linear segments with different
slopes on the plots of ldp(t)/dt) versus timgFig. 9b shows
that the reverse transition process in this experimental setup
corresponds to a heterogeneous first-order reaction with two

0,02
In-4.3at. % Cd
0
a 240K
3
c
4
-0,02 |
b 230K
-0,04 1 1 1

0 02 04 06 08 1.0
t, hours

FIG. 7. Kinetic curves of the isothermal change of the resistivity of the alloy
In-4.3 at. %Cd at the transition to the low-temperature structural state; the
solid curves show the functiori€q. (2)] approximating the experimental
data(a); the initial parts of the kinetic curves at 230 K and 24Q.

T=200 K: the relaxation time increases substantially when
the temperature is decreased or increased from this value. It
is seen from Fig. 4 that the transformation is characterized by
long relaxation timesthe minimum value is-,= 2.2 hours at
T=200 K).

The maximum value of the rate of change of the resis-
tance depends substantially on the temperatsee Fig. &
maxdp/dt| initially increases with decreasing temperature of
the isothermal hold in the interval 250—-200 K and then de-
creases on going to 190 and 175 K. The minimum time for
an experiment to follow the approach of the resistivity to a
value close to its equilibrium valup.,= p(t—<) also de-
pends importantly on the temperature: it45.5 hours afl
=200 K and a considerably longer 24 hours at temperatures
of 250 and 175 K.

2.6. Kinetics of the transition of the alloy to the high-

substantially different characteristic relaxation timgg and
7,2. The experimental points in Fig. 9a are well approxi-
mated by the expression

[l 1 1

0 2 3
t, hours
10°F b
10°E
£ .5
S 107 . 265K
6F ~
= 10°%F \280K
E o o
Q -7'_ an
= 0¥ " TNo75K
0 2 3
t, hours

FIG. 9. Kinetic curves of the relaxation of the resistivity of an alloy on

temperature state heating of the sample from 200 K; the solid curves show the approximating

This transition was studied in less detail. We measure(ﬁ';

nctions[Eq. (3)] (a). Logarithm of the rate of change of the resistivity,
(dp/dt), versus time for different temperatures; the solid curves show the

three p(t) isotherms in the region of the high-temperatureme derivatives of the approximating functiof®) corresponding to the

boundary of the hysteresis, 260—290Kg. 93. The reverse different temperatureg).
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0.20F o g0l VT
£ 0.15) i 3 ®
S o.10f e = oo In %
& s T 40} \\ Q)OO%

0.05

o In-4.3 at.% Cd a 1 L 1 ) L
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FIG. 11. Temperature dependence of the microhardness of the alloy In-4.3
04F¢ at. %Cd(O) and pure In(®) (a); the concentration dependence of the mi-
) crohardness of In—Cd alloys at temperatures of 290 K and 18)K

1 1 1,
150 200 250 300
T, K
. . , . .
FIG. 10. Kinetic curves of the change of the reduced residual resisfiyity .. Thfe hrelalxatlon tlmeTf’ here. IS CIOSE to the .relaxatrl]on
during isothermal annealing with a st&@ =5 K (a); the limiting values of time ofthe s Ower proceisee Fig. 4 In that experiment the
pq on cooling(/) and heatingA) of the sample, obtained by extrapolating three successive anneals were interrupted long before the
the corresponding kinetic curves te- with the aid of Eqs(2) and(3);  structure of the alloy reached its equilibrium state at the
(O,@)—the direct and reverse branches of #higT) curve during ther-  gjven temperature, and so the initial state of the sample at
mocycling at an average rate of 0.25 Kinfiee Fig. 6(b. each successive temperature was not an equilibrium state.

2.7. Dependence of the microhardness of In—Cd alloys on
1 [{ t ” the temperature and cadmium concentration

— A
b Apmax[ m Tp1 As in the acoustical and and resistance experiments,
¢ signs of the structural instability of the alloy In—4.3 at. % Cd
+(1—m) 1—exp{ - —)” (3 are also clearly observed in the temperature dependence of
the microhardness$Fig. 119 measured in the temperature
) . o “ramp” mode as the sample is cooled. The microhardness of
wh_erem is the r_elatlve contribution of the faster process. Thepure indium increases linearly as the temperature is lowered.
ratiom/(1—m) is equal to 0.21 at 265 K, 0.92 at 275 K, and g mjcrohardness of the alloy is substantially higher at the
1.02 at 280 K. . . same temperatures and varies nonlinearly. The hysteresis re-
The values obtained for the relaxation timgs and 7> ion onE(t) and p(t) corresponds to an interval of strong
are shown in Fig. 4. It is seen that the relaxation to the 'n't'altemperature dependence of the microhardness. However, at
high-temperature state occurs considerably faster than thge accuracy achievable in our experiments, the recorded mi-
transition to the low-temperature state. crohardness did not reveal any hysteresisiof T) or insta-
_ If the |§othermal annealing of the Iow-temperature_ Stateoility effects: the value oHy(T) is independent of the iso-
is done with & small temperature stepI'=5K (see Fig. tharmal hold time of the sample, regardiess of whether it was
10a), the transformation occurs uniformly in time in accor- nger 4 loaded indenter or not, and is also independent of the
dance with the first-order reaction direction of the temperature change.
The impurity hardening of indium under doping by cad-
Apg(t) =Apgmal1—exp(—t/T,)]. (4 mium atoms is illustrated by Fig. 11b, which shows the con-

Tp2
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centration dependence of the microhardnidg§c) at tem-  state'® On such a segment the equilibrium value gf is
peratures of 293 and 77 K, corresponding to the high- andniquely related to the equilibrium structure of the alloys at
low-temperature structural states of the alloy In—-4.3 at. %he given temperature and is independent of the direction of
Cd. As we have said, the solid solutions with cadmium contemperature change during the isochronal thermocycling.
centrationsc<<4 at. % do not have phase transitions, while

the alloys with 4 at. %<c<5.9 at. % Cd have a phase tran- 3.2. Kinetics of formation of the low-temperature state

sition of the martensitic type on cooling. This feature is not

reflected in any way on thidy(c) curve, which at both tem- The low-temperature structural state is characterized by
peratures remains linear in the entire range of cadmium corfligher values of the elastic modulus and a higher microhard-
centrations. ness. In this sense it can be called a hardened state. The

We note that this sort of behavior is a sign that the mo-XKinetics of the transition to a hardened state can be judged
bility of dislocations in the alloy is being affected by the from the time dependence of the resistivity, which has a char-
diffusion of impurity atoms. Indeed, for the standard stableaCteristic S-shaped form. The initial stage of the transforma-
solid solutions in the low-temperature region, where the dif-tion begins essentially from a zero rate on all the kinetic
fusion of impurity atoms is ruled out, a power-law depen-Curves. AtT =240 K one even observes an initial increase in
dence of the yield stress of the alloy on the impurity concenthe resistivity (Fig. 7b. As time goes on, the rate of the
tration, with an exponent of 1/2 or 2/3, is obserdé@ince ~ Process increases, reaches a maximum value, and then rap-
the microhardness, as a rule, is proportional to the yielddly falls off (Fig. 8). At temperatures of 175, 240, and 250 K
stress, it can be assumed that for stable alloysHhéc)  the measurement periods used permitted observation of only

curve should have a similar form in the absence of impurityth® initial stage of the process. The maximum rate of the
diffusion. process in the fast stage of the transformation depends non-

monotonically on temperature and, on the whole, correlates

with the temperature dependence of the relaxation tipnef
3. DISCUSSION OF THE RESULTS the process: the shortest relaxation time, at 200 K, corre-
sponds to the highest value of the maximum rate of the trans-
formation (cf. Figs. 4 and 8

Analysis of the experimental data obtained in the present The above-described form of the time dependence of the

study shows that the cause of the temporal instability of aesistivity curvesp(T) for samples cooled from room tem-
number of physical properties of the alloy In-4.3 at. % Cd inperature(i.e., from a temperature in the existence region of
the temperature interval 170-290 K is a spontaneous reverfhe stable high-temperature phagetypical of processes of
ible low-temperature structural transformation of a hysteretimucleation and growth of particles of a new phase and is
type. The width of the hysteresis depends on the rate ofimilar, for example, to the kinetics of the resistivity in the
isochronal thermocycling, but even when the rate is madéransformation of the disorder—order type in the alloy;Quw
infinitesimally slow, the width cannot be reduced to zero but(Ref. 16. The value of the exponemt (=~1.5—-1.8) in the
retains a significant residual value. Figure 10b shows a plofvrami equation(2) corresponds to the early stage of the
of the values obtained when thg(t) curves measured at diffusional growth of the nuclei of small sizes, with a declin-
different temperatures are extrapolated-te~. Also shown ing rate of their nucleatiorisee Table 1 in Ref. 31 The
in this figure for comparison are the direct and reversdnitial increase of the resistivity at 240 K in this case may
branches ofpy(T) measured during isochronal thermocy- mean that in the early stage of the transformation the size of
cling at an average rate of 0.25 K/min. It follows from Fig. the nuclei is comparable to the mean free path of the charge
10b that at such a rate of thermocycling, the structure of thearriers, and the nuclei are therefore efficient scattering cen-
alloy is far from equilibrium both on cooling and heating of ters for conduction electrons. The subsequent growth of the
the sample. In the first case the largest deviation from thauclei of the ordered phase decreases the contribution of this
equilibrium values o4 is observed near 200 K, and in the mechanism to the resistivity of the alloy.
second case, near 275 K. In addition, it is seen that even in In the general case, when the rates of nucleation and
the limiting caset—« the forward and reverse branches of growth are governed by thermally activated processes, the
pq do not coincide with each other, and the maximum re-rate of isothermal transformation is a nonmonotonic function
sidual hysteresis in temperature+s30 K. The cause of this of temperature. With decreasing temperature the nucleation
wide residual hysteresis may be the circumstance that in theate increases rapidly in connection with the increase of the
indicated temperature interval the formation of new-phaselriving force of the transformation. At the same time, the
nuclei is hindered(or eliminated altogethgr possibly be- rate of growth decreases with decreasing temperature, since
cause, for example, the decrease of the free energy at tlieis limited by the activation energy of atomic rearrange-
phase transition is small compared to the elastic enéltgy  ments, which itself is almost independent of temperattire.
effective driving force of the process is negatiyeThe pres-  Therefore, with decreasing temperature the rate of transfor-
ence of residual hysteresis attests to the lack of a one-to-ormmmation of the high-temperature phase into the low-
correspondence between the structure of the samples and ttemperature phase initially increagéise relaxation time de-
temperature of the measurement during thermocycling. Thisreasesand then decreaséthe relaxation time increasesn
might explain why thepy(T) curves did not display a seg- account of a competition between two factors: the increasing
ment of equilibrium values of the residual resistivity, which driving force of the transformation and the simultaneous
is ordinarily registered during the isochronal annealing ofslowing of the rate of thermally activated processes. One
guenched alloys which undergo a transition to an orderediotices the similarity of our results to the analogous data

3.1. Hysteresis properties of the alloy during thermocycling
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FIG. 12. Arrhenius plot for the relaxation timeg _, of transformations of 0 5 10 15 20 25
the disorder—order type after quenching of the alloyAufrom T>T, ¢, at.%Cd

(Ref. 16.
FIG. 13. State diagram of the alloy In—Cd from the In sidg:is a solid
solution with an fcc structurey, is a solid solution with an fct structure; the
obtained in Ref. 16 in a study of the kinetics of the disorder—dot-and-dash vertical lines correspond to Cd concentrations investigated in
order transformation in Géu (the data of Ref. 16, pro- this study. 1—phase boundary provisionally identified in Refs. 1-4;
. . S 2—position of the phase boundary corresponding to the results obtained in
cessed according to formul@), are presented in Fig. 12 4. bresent studgsee text
The main difference of the results is the marked asymmetry
of the 7,(1/T) curve, which is due to the presence of a criti-
cal temperaturd for long-range ordering in GAu. In the _ o _
alloy In—Cd, as is shown in Fig. 10b, the transition to theloy. According to the equilibrium phase diagram, the In—Cd
low-temperature  structural state has a widtAT  System has a eutectoid point at a Cd concentration of 5.9

—50-70 K, and this can explain the nearly symmetrical@t-% and a temperature of 293'K' As we have said, the

shape of ther,(1/T) curve. phase diagram has not been studied at temperatures below
the eutectoid point, and in the published sources known to

3.3. Kinetics of the transition to the high-temperature the authors a possible phase boundary has been shown pro-

structural state visionally (the dotted linel in Fig. 13. Presumably, as the

temperature is lowered the tetragonal phagevith a con-

As in the case of the direct transformation, the k'net'cscentrationc<5.9 at. % Cd suffers a decomposition, with the

of the formation of the high-temperature structural state deﬁrmaﬁon of a small amount of cadmium-enriched solid so-

pends substantially on the Femperature of the isothermal' hol tion in the matrix of thea, phase, and the temperature of
of the alloy. Furthermore, it is in large measure determinegy,q decomposition decreases with decreasing cadmium con-
by th_g structural state of the samples at the ime when thgentration. If the low-temperature instability of the phase
specified measurement temperature is reached. Wh served by us for the solid solution In—-4.3 at. % Cd is due

s?tmple'ls W't?] tlge stzact))cl)elgow-timperczjature strucjcurtla reat_:gl this structural transformation, the phase boundary should
after a long hold at are eate. cqmparatlvey rapi ypass between the low- and high-temperature branches of the
to a temperature above 250 K, the kinetics of the reverse

. i . . residual hysteresis, corresponding to the direct and reverse
transition to the initial high-temperatursoftened state is

q ined by the simul ¢ at | transformations in the alloy with the given Cd concentration
etermined by the simultaneous occurrence of at least tvy dotted line2 in Fig. 13. Granted, in this case one would

thermally activated relaxation processes, one relatively rapi
and one relatively slow, with the specific contribution of the
faster process increasing with increasing temperafsee

xpect manifestations of instability of the acoustical and re-
sistive properties of the alloys with Cd concentrations of 1.5

ion(3)1. During isoth | i ith I and 3 at. % in a lower temperature region. The absence of
expression(3)). During isothermal annealing with a smal anomalies in those alloys may be a consequence of a de-

temp_erature stepT:5 K (F.'g' 109 the transformanon 9C  crease of the driving force of the process as the Cd concen-
curs in accordance with a first-order reaction. The reIaxathration decreases or of a significant decrease of the rate of

time here is close to the relaxation times of the slower of the[ ermally activated processes when the alloys are cooled to
two processes, which governs the kinetics of the change Q[Ee corresponding temperature€150—160 K for c
the resistivity during an isothermal hold of a sample stabi-_ ; £ i oy cd and 190-200 K far=3 at. % Cd. This as-

lized at 200 K(Fig. 4). sumption will require further experimental study on alloys
with cadmium concentrations 3 at&<5.9 at. %.
Of course, experiments done with the use of indirect
structurally sensitive methodacoustic, resistive, and micro-
Let us consider the possible connection between the olimechanicgl do not permit one to establish conclusively the
served structural instability and the state diagram of the alspecific microscopic mechanisms that govern the observed

3.4. Relationship of the low-temperature structural
transformation to the state diagram of the alloy
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low-temperature structural transformation in the alloy In—4.3way by thermally activated processes of nucleation and
at. % Cd. However, a number of signs indicate that the givergrowth of particles of the low-temperature ordered phase, as
structural transformation has a more complex nature than this attested to by the S-shaped form of the kinetic curves of
known mechanisms for changes in the mutual arrangemere resistivity and the nonmonotonic temperature depen-
of atoms in solid solutiongshort-range or long-range order- dence of the relaxation time.

ing, clustering, decomposition of a supersaturated solution, 3. The low-temperature structural state observed as a re-
etc). Among these signs we mention the following: sult of the transformation is characterized by considerably

— The presence of a segment with a positive derivativenigher values of the Young’s modulu€ increases by
on the curve of the Young’s modul& T) of the metastable ~27%) and microhardness and by a considerably lower re-
high-temperature phase in precisely that temperature intervaldual resistivity(pq decreases by approximately 3D%
in which the effects of structural instability are most pro- 4. Further study, mainly by methods of direct structural
nounced, and the complete absence of such a segment on tealysis, will be needed to explain the detailed microscopic
E(T) curve in the stable low-temperature phase. picture of this structural transformation.

— An unusual reaction of the elastic modulus of a
sample in the metastable high-temperature phase to a chan
in temperature in the critical temperature region: regardlesg
of the sign of the change in temperaturiecreasing or in-
creasing a dip of the modulus is always observed, whic
goes away when the temperature is stabilized. Such behavior
may be due to a loss of stability of the crystal lattice, which*E-mail: palval@ilt.kharkov.ua
ordinarily occurs near a phase transition temperature.

— Appreciable residual hysteresis of the properties of
the alloy during thermocycling, which cannot be reduced t0 11 Heumann and B. Predel, Z. Metallkdi8, 240 (1962.
zero for arbitrarily slow rates of change of the temperature. 2F. A. Shunk Constitution of Binary AlloysSecond Supplement, McGraw-

— Anomalously large values of the relative increase of 3:i”’E,\“\e/\é)vl \ng:Ig (Ilgrzbkg/leatﬁlg{rgltjzargﬁ(;srl(:ciovgrlowe?t.ies of Binary Metal
the Young'’s modulus(v2_7'%) and decreas_e of the resistivity systém $in Russ'iaﬂ; Vol.gs, Nauka, Mosco W19$6- Y
(~11%) at the transition from the high- to the low- 41 g. Massalskied), Binary Alloy Phase Diagrama/ol. 2, 2nd ed., ASM
temperature stable structural state. International, Materials Park, OH 44073, U$2090).
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A theory is proposed for the two-step phase transition from the singlet to a ferromagnetic state in
systems of the ABXtype. It is shown that the transition is due to a substantial rearrangement

of the single-ion spectrum. The critical fields and magnetic susceptibility are calculat@®0®
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INTRODUCTION unambiguous conclusion, it is the goal of the present paper is
to do a comprehensive study the behavior of the CskeBr

yc'rystal in a longitudinal magnetic field. The magnetization

curves given in Ref. 5 indicate a sequence of two second-
order phase transitions: from the singlet state to a canted
@hase(CF) and from the latter to a ferromagnetiEM)

ther ( iews?), A tri | | Lokt : Shase. In this paper we consider a theoretical model describ-
other(see revie - A tnanguiar easy-piane Loklev struc- ing these phase transitions and determine the conditions un-

tur((aj.md tge gry(?]crysta]B-Ozh(R_ef. 3 hlas t?een qune well der which they occur. In contrast to Ref. 5, the theory con-
stu ed, utin that system the intramolecular an'SOtrOpy.Conéidered here contains variational parameters that pertain to
stant is much less than the exchange constant, and so it ¢

. hysically observable quantities—the sublattice spins and
not be classed with the quantum magnets. The latter ha y y q P

anisotropy of a single-particle origin, the value of which is their canting angles.
comparable to or greater than the exchange interactihs.
necessary relations are fulfilled for the AFM CsFgBin MODEL
which, at a value of the pseudospin of thé Féon S=1, the o ) ) . ) ) )
single-ion anisotropy constam~20-30 K, while the ex- We limit _consujeratm_n to bilinear isotropic exchange in-
change interactiond, for the nearest-neighbor ions belong- teractions, single-ion anisotropy, and the Zeeman contribu-
ing to the two adjacent planes are equal to 3—5 K and for th&on- In this case the Hamiltonian can be written in the form
same ions in the basal plandg~0.3—-0.4 K>® At these 1
values of the parameters a singlet spin state is realized inthe H=5 > J,58,Sms+tDY (S5)2—h> S5, (D)
AFM. In other words, of the three possible single-ion spin nemp na na
states with projections on th@g axis of S==*1 and 0, the where « and 8 (a# B) label the magnetic sublattices, of
last state is the lowest, so that the crystal is actually nonmagwhich there are sixn andm are vectors specifying the po-
netic. sitions of the spin in the sublattices; the const@nis posi-
When such an AFM is placed in a magnetic fitlda  tive, corresponding to anisotropy of the easy plane type. The
change of the sequence of levels occurs, and one of the triffield h=usgH is given in energy units and is directed per-
let states with nonzero spin projection the lowégtound pendicular to the easy axis along the aXi€¢. For such an
state. Here the magnetic field causes a transition from a nomrientation of the field the spins of the sublattices differing
magnetic to a magnetic phase. with respect to theZ axis will be canted in the same way
The available information about the nature of this tran-relative to this axis. In the CsFgRrystal the exchange in-
sition, which was discussed in Ref. 5 for the c&liCg, is  teraction is anisotropic in space, i.e., it depends on the posi-
contradictory. In Refs. 9 and 10 it is classed as second-ordetion of the spins in the lattice. For examplg, in the easy
while in Refs. 11-13 it is identified as first-order. While the plane differs in value from the exchange interactihg in
experiment done in Ref. 5 does not permit one to reach athe direction of the hard axi€he direction of the chains

Recently there has been considerable interest in man
sublattice hexagonal antiferromagnétd-Ms) of the ABX;
type with the CsNi{{ lattice, in which the spins of the mag-
netic ions B form AFM chains along the&€, axis, on the
one hand, and triangular structures in the basal plane, on t

1063-777X/2002/28(6)/3/$22.00 475 © 2002 American Institute of Physics
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When the features of the structure are taken into account, tHEQUATIONS OF STATE AND THEIR ANALYSIS
exchange parametég, in the direction of the hard axis tends , . . )
to establish an antiparallel orientation of the nearest-neighbor _1n€ SPin configurations that determine the ground state

spins in adjacent planes, adg orients the spins nearest to in the different possible phases and their interconversion in a
the easy plane at an anéle of 8. magnetic field are determined from the equations obtained

Our analysis of Hamiltoniafi1) will be done using the PY Minimizing the energy5) with respect tog and ¢

self-consistent field approximation, in which the effect of
spin—spin fluctuations is ignored, and the average of a prod-
uct of spin operators is equal to the product of their averages. —1)]+D sir? 6 cos 26+ 2h sin 2¢p cosf=0, (6)
In this case the ground-state enery, per unit cell (for

spins belonging to different sublattices—three in one plane  —cosésin 19[(9Jp|+4~lch)cos2 2¢+D(1-sin2¢)]
and three in the neighboring planesill be equal to

—C0S 2p Sin 2¢[ 6J,(3 co$ §—1) +4J(2 cog 6

+hcos 2¢ sinf=0. W)
1 . .
EQ’ZEE JopZapSaSat D> Q,~h> s, 2 The_se equations can be re_duced to the equations for det_er-
ap a a mining the ground state which were obtained by Ostrdvski

wheres, is the average value of the spins of the ions of theand one of the present authdrby using an artificial self-

sublatticesz,  is the number of nearest neighbors, which isConSIStenCy procedure. Although Eq§) and (7) give the

. same solutions as before, they are nevertheless preferable,
equal to three for spins of the same plane and equal to twQ. . .

. ) . Since they can be used to determine the stability of the
for spins from two neighboring planes, and we have alsg hases
introduced the average values of the squares of thjec- P '

. : : . Let us analyze the solutions of the system of equations
tions of the spin operators, which are customarily referred t ' .

. . .(6), (7). The first of them corresponds to a FM state and is
in the literature as the components of the quadrupole spi

momentQ,, . realized for sir9=0, sin 2p=0. In this case the spins of the

. . . sublattices are directed along the field, their magnitudes are
For the spins of each sublattice the proper coordinate 9 N

T maximum: s=S=1. This is the so-called paraphase, in
systems,, 7., {, are such that the direction of the average . N . S
. T . ) which the longitudinal magnetic susceptibilipy, is equal to
spin of theath sublattice is oriented along tlig axis, while 2er0
the &, axis lies in thez{, plane. Then in the proper coordi- i

. . The second solution corresponds to a three-sublattice
nate system the wave function of the the spin ground state of, . !
. L . State in the plane of the AFM, with the Loktev structdri.
the sublattice with indexr will have the fornd

obtains for co$=0 and sin 2=—D/(6J,+4J). This so-
W =cosp,|1)+sing,|— 1), (3)  lution can exist only in the absence of magnetic field.
In the corresponding 120° structure the values of the
where| + 1), |0) are the eigenfunctions of the operagj, . spins are equal and contractesd: 1— D2/(6Jp|+4Jch)2.
With allowance for Eq(3) we calculate the mean values of The third solution pertains to a canted phase in which
the spin and the components of the quadrupole spin momemigain s<1. From Eq.(7) we find directly that the angle
between the sublattice spin aRiddepends nonlinearly on the

1 PPN
S=C0S 2¢, Q“: 1, Q§§=§(1+sin 2¢). (4) value of the field:

h cos 26
In the expressions for the averagd$ we have dropped the coso= (93 +4Jcp) oS 2¢p+D(1—sin2¢) ®)

sublattice indices, since in the chosen approach the given
quantities are independent af The energy(2) with the use  With increasing field the canting of the spins toward the field
of (4) takes the form increases and, accordingly, the valuesdhcreases.

The field of the transition from the canted phase to a
state in which all the spins flip to a perpendicular orientation

Egr= 93,08 2¢(3 cog 6— 1) +6J,c08 2¢5(2 cog 6

Sin 6 with respect to the easy plane is determined by substituting
—1)+6D| cos 6+ T(1+sin 2¢) the values cog=1 and cos =1 into expressior8) for the
canting angle. We obtaing, = 9J,,+4J.,+ D, which agrees
—6h cos 2¢ cosb, (5)  with the expression for the spin-flip field given in Ref. 5. We

) _ ) see that the value of the spin-flip field is additive with respect
where ¢ is the angle between sublattice spins and the magy, the values of the anisotropy and exchanges, although the
graphic axis and the proper axg¢s. We note that in Ref. 5 Taking expression$d) for the sublattice spins into ac-

the ground-state energy of the crystal is also found and mi”iCount, we obtain the magnetic susceptibility in the canted
mized. However, the wave functions chosen in Ref. 5, unlike\phase in the proper coordinate systems:

(3), are written in a general form referring to the crystallo-

graphic rather than the proper coordinate system and so con- ) d¢ . a6

tain the parameters of the rotation of the vectorsl) and Xzz= —2SIN 2¢ COSH—-—COS 2pSinb —. ©
|0) in Hilbert space, and that makes it hard to interpret the

relationship between the observable and calculdtedia- Here the derivatives with respect to field (@ can be

tional) parameters. calculated using Eqg6) and (7).
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At the beginning of the spin canting process upon theequal tohgp, a second-order phase transition occurs from
introduction of small magnetic fields— 0, when the second the quadrupolar spin state to the canted phase. Here the value
solution is the ground state, the value xpf, in the canted of the fieldhqp is lower than the spin-flip fielth;, , and the
phase will be determined by the expression magnetization of the system fdr=hgp changes continu-
ously. In fieldsh=hgp the magnetization, starting from zero,

Xzdn=o increases continuously as the field increases. In the field re-
B (6 +4Jc)2—D? gion h=hy, it reaches a maximum possible value and stops
(93, 43 ) (635 43 o)~ 3I,DZ+ D(6Jy+ 43 ) growing. Thus, in fieldh<hgp andh=hg, the susceptibil-

(100 ity will equal zero in the canted phase and have a nonzero
value in the field intervahgp<h=<hy;, . At the points of the
second-order phase transition from the quadrupolar spin state
to the canted phase and from the canted phase to the FM
§tate the susceptibility,, changes in a jump. It is this be-
havior of the magnetization and susceptibility that was ob-
served experimentally in Ref. 5. If the quantiy—(6J,
+4J.) is positive and not small, then the theoretical treat-
ment becomes complicated and requires numerical analysis.
Here the possibility of a first-order phase transition from the
singlet phase to the canted phase or directly to the FM phase
cannot be ruled out. Examples of this will be considered
3eparated

We see from Eq(10) that in the case of a large value of
D under the conditiorD>6J,+4J¢, the value ofy,, be-
comes negative. Consequently, for such a relationship of th
constants of the Hamiltonian the antiferromagnetic 120°
phase loses stability.

The fourth and last possible solution is specified by
the relations cog=0 and cos =0. It can be realized both
at nonzero magnetic fields and for=0. The contraction of
the spins in this state is maximums=£0), and here
sin 2¢~—1. This is the so-called singlet stdfkin which the
magnetic order is characterized by a spin quadrupole mo
ment. In the singlet state the average values of the spin qua
rupole moment are the same for all directions in the easy This study was supported in part by the Foundation for
plane, and because of the vanishingsdhe direction of the  Basic Research of Ukrain@roject F7/514-2001
axes of quantization become indeterminate in the plane.

Since the energy of this state is independent of the value ofe-mail: vioktev@bitp.kiev.ua
h, the magnetic susceptibility in it, determined in the direc-

tion along the field, will also be zero.
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