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It is shown that undamped flows can exist in many-particle systems found in spatially

nonuniform thermodynamic equilibrium states with broken symmetries. If the thermodynamic
potential of the system is invariant with respect to a certain transformation which is a

function of continuous parameters, then this transformation is associated with conserved flux
densities and integrals of motion, the number of which is equal to the number of continuous
parameters of the transformation. The stability of the superconducting and superfluid flows

arising as a result of the breaking of phase symmetry is explained by the fact that the conservation
laws associated with these states, which do not correspond to an absolute minimum of the
thermodynamic potential, do not allow them to be destroyed20®3 American Institute of
Physics. [DOI: 10.1063/1.1542371

1. INTRODUCTION nent, which are related to the modulus and phase of the com-
plex order parametérin spite of the fact that the fundamen-
Systems of many interacting particles can be found intal role of broken phase symmetry in the existence of
states that admit the existence of flows which are unaccomondissipative flows is perfectly clear from Refs. 6 and 7, in
panied by energy dissipation. Nondissipative electron flowsnany papers at the present time the phenomena of superflu-
(superconductivity were discovered in metals by Kamer- idity and superconductivity are being attributed to circum-
lingh Onnes in 191%,and nondissipative mass flousuper-  stances that, although they may be accompanied by transi-
fluidity) were discovered in liquidHe a quarter of a century tions to states with nondissipative flows, are not essential and
later by Kapits&. The superfluid properties of liquitHe at necessary for the appearance of such fléwacroscopically
millidegree temperatures were detected in the early 1870soccupied state, the presence of pairing, characteristic features
In *He there can be nondissipative transport not only of massef the quasiparticle energy spectrum, gtc.
but of other characteristics, spin in particular. In 1986 Bed-  In the present paper we show in general form that cur-
norz and Miier discorved that nondissipative flows of rent states arise in systems of many interacting particles
charges exist in materials having an extremely complex infound in spatially nonuniform thermodynamic equilibrium
ternal structurghigh-T, superconductojs There are other states with broken symmetries with respect to certain kinds
systems in which flows unaccompanied by energy dissipaef transformations. These currents may involve the transport
tion are possible, e.g., materials with a magnetic structur@ot only of charge or mass but also of other characteristics,
and liquid crystals. The problem of nondissipative flows ande.g., magnetization, angular momentum, etc. If the thermo-
superfluidity in*He and®He, magnets, and excitonic insula- dynamic potential is invariant with respect to the transforma-
tors has been discussed from various points of view byions in question, then an integral of motion is associated to
Sonin® each such flow. The result of this study is essentially an
One notices that flows without dissipation can exist inanalog of Neher's theorent’ well known in field theory, for
systems with very different internal structures and particlehe case of a many-particle nonrelativistic system. According
statistics. This apparently indicates that the appearance od Nother's theorem, to each transformation of functions of
nondissipative(superfluid flows in many-particle systems the field and coordinates which does not affect the action
with different internal structures has a unified cause. Thehere are associatesicurrents and the same number of dy-
connection between the superconducting properties and theamical invariants, whers is the number of continuous pa-
existence of a complex-valued parameter that breaks theameters on which the transformation depends. Spatial trans-
symmetry of the state with respect to a phase transformatioformations and transformations of internal symmetries are
was first demonstrated in the famous paper by Ginzburg andonsidered. A special study is made of symmetry with re-
Landaw® The ideas of Ref. 6 were extended to superffidlé  spect to phase transformations, the breaking of which is as-
by Ginzburg and Pitaevskin Ref. 7 (a modified version of sociated with the appearance of superfluid and superconduct-
the theory is set forth in Ref.)8We note that the breaking of ing properties. The stability of states having superfluid flows
symmetry with respect to phase transformations is also takeand not corresponding to an absolute minimum of the ther-
into account, although in implicit form, in the the famous modynamic potential is explained by the fact that the de-
Landau theory of superfluidifthrough the introduction of a  struction of these flows is prevented by a conservation law
superfluid velocity and a density of the superfluid compo-due to the phase symmetry. For the example of flows of
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magnetization near a domain wall in a ferromagnet we con- The order parameter is found from the requirement that
sider nonconserved localized nondissipative flows. the thermodynamic potential be minimum. By varyitl
with respect to the functiong,(r) under the condition that
the variationdp,(r) vanish at the boundary, we obtain the
Lagrange—Euler equatiol{sdetermining the components of
the order parameter in the thermodynamic equilibrium state:
According to the Landau theory of second-order phase Jw dw
transitions:>*?a phase transition to a state with lower sym- -V =0. (4)
metry can be described as the appearance of certain addi- IPa IV pa

tional characteristics of the system—order parameters—Equations(4) have the solutionp=0. The region of the
which., generally speaking', can be functions of t'he spatiatlu,-r) plane in which such a solution corresponds to the
coordinates. The assumption that spatially nonuniform therspsolute minimum of the thermodynamic potential is called
modynamic equilibrium states with order parameters dehe normal or symmetric phase. Regions in which 0 cor-

pending on the coordinates can exist even under spatiallaspond to phases with broken symmetries.
uniform external conditions is of fundamental importance for sing Egs.(4), we find the total number of particles in

the treatment that follows. The spatial nonuniformity is as-the system:
sociated with a certain energy, and the thermodynamic po-

2. STATEMENT OF THE PROBLEM

tential density therefore depends not only on the order pag, _ a0 3 0w Jdo  Je,
: . =——=—| dr— — d +c.c.|,
rameter but also on its gradients. e p a Js Ve, du
Suppose that a system of many particles enclosed in a (5)

volumeV is characterized byin addition to the thermody-
namic variables, which we choose as the temperafuaad
chemical potential) a multicomponent order parameter

where the prime on the differentiation sign means that only
the explicit dependence @f on w is taken into account, and
the abbreviation c.c. denotes the complex conjugate. The
¢=(¢1,92,.-¢0), (1) analogous formula with the substitutigm— T determines
the components of which are the coordinate-dependent funéhe total entropyS. The total energy is expressed by the
tions ¢,(r) (a=1,2,..L), whereL is the number of com- formula
ponents of the order parameter. The multicomponent charac- 9w o
ter of the order parameter may be of various natures, e.g., the E= f d3r( 0—p— —T—)
components of a vector or tensor. In the case of a multiband v J JT
superconductor the components of the order parameter de- oo |9 P
. . . . Pa Pa
scribe the electrons of different conduction baftBifferent -> f ds{ ( e+ T
components can correspond to different types of anomalous a Js 10Vea\ dp T
averagegsingle-particle, paj: Without specifying the par-
ticular microscopic nature of the order parameter, we shal
assume that the functions,(r) are complex. The formulas
for the case of real-valued order parameters can be obtain%clid
in an obvious way from the formulas given below. We as-
sume that the thermodynamic potential density depends on , . ,
both the thermodynamic variables and on the order param- ‘Pa(r')‘):% J A% Tap(r,r" ;N ep(r'), @)
eter and its gradients:

+c.c.l. (6)

enerally speaking, the surface terms in E§$and(6) are
onzero.

We define a set of new functionrg,(r;\) related to the
functionsg,(r) by the expression

) whereT,,(r,r’;\) is anL XL matrix in the space of indices
enumerating the components of the order parameter and

The components of the order parameter are functions of thgepends on a set ofs continuous real parameters

thermodynamic variableg. and T. We shall assume that \=(\;,\,,...\o). Itis convenient to choose these matrices

there are no external fields, and therefardoes not depend  as unitary, so that

explicitly on the spatial coordinates. A generalization to the

case whgn_ suc_h a dependence does eX|sF present.s no funda- 2 d3r”T’ga(r”,r)ch(r”,r)

mental difficulties. The total thermodynamic potential of the C

system,

o=o(p, T e,e*, Ve, Vo).

=2jd3r”T* (r,r")Tp(r' ") =8,p0(r—r"). (8)
Q(,U«,T)=jvd3rw(M,T;¢,¢*,V¢,V¢*), () c * o "
,—|ere the normalization of the order-parameter components is

is a function of the thermodynamic variables and a functiona .
preserved:

of the order-parameter componenig(r). In the theory of
second-order phase transition it is assumed that the thermo- 3 - 3l 12

dynamic potential near a line of transitions can be expanded ; Jd rl@a(r)| —é Jd rlea(r]?.

in a series in powers of the order parameter and its gradients.

However, we shall not specify the dependence @ ¢ and We assume that the thermodynamic potential density is
Vo, so that the treatment that follows does not rely on thanvariant with respect to the linear transformatidi@$, and
possibility of such an expansion. therefore
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where the flux densities have the form

=2

a &V(Pa

Q=J Pro(e(r),¢* (1), Ve(r), Ve* (1) o
v —— WV, (r)+c.c.. (16)

—_ 3 ’ ’ ’ ’
- Jvd ro(e(r),¢™(r),Ve'(r),Ve™(r). ©) e see that there aeflux densities corresponding to tise

] o ) continuous parameters in the transformatiofi. As we
The functions ¢,(r;\) also satisfy the Lagrange—Euler ynoy, the flux densities are defined nonuniquely, up to a

equationg4). Thus, in addition to the state determined by they,ector with zero divergence. Flows of physical quantities in

set of functionsp,(r), there can be states determined by thesystems with broken symmetries are considered in the
set of functionsp(r,\), which depend o continuous pa-

method of quasiaverages in Ref. (&ge also Ref. )6

rameters, i.e., there exist infinitely many states which differ

in the values ofx but for which the value of the thermody-

namic potential is the same. This means that there is degen- INTEGRALS OF MOTION

eracy of the states in the many-particle system.

3. DENSITIES OF NONDISSIPATIVE FLOWS

In the previous Section we obtained expressionssfor
flux densities and the corresponding continuity equations.
The existence of continuity equations implies the existence
of conserved quantities—integrals of motion. For finding the

In what follows it is sufficient to consider infinitesimal integrals of motion it is insufficient to consider a stationary
transformations. One can always choose the set of contingtate, and one must use the dynamical equations describing
ous parameters in such a way that if all these parametersthe evolution of the order parameter in time. Here the differ-

equal zero, the functiong,(r) and ¢/(r) coincide. In this
case at small values of we have
S

Tap(F, PN =8apd(r—r")+ >, OL(r,r')\,, (10
v=1

where the generator of the transformation is
_ITap(r 15N

Ol (r,r) P

v A=0
We note that, by virtue of the unitarity conditiori8), the
following condition holds:

O (rr)=—0U(rr'). (12)
Substituting(10) into (7), we obtain
@a(r)=@a(r)=Spa(r), (12)
where
L S
Sa(r)=2, 2, | dr'O(rr)ep(r' )\, .

Using the invariance of the thermodynamic poteni@lwith
respect to infinitesimal transformatioi$2) and taking the

Lagrange—Euler equationg) into account, we obtain the

relation
L S
S d3rV[&—w‘lf (N +c.c/n,=0 (13)
a=1vrv=1 aV@a av I '

where

L
W)= | dr'@L(r,r")ep(r’).
b=1

ential form of the conservation equations is
am,

p +divj,=0,

17)
where 77, are the densities of the quantities whose fluxes
densities ar¢, . Integrating(17) over the volume and assum-
ing that the total flux through the boundary of the volume is
zero,

f dsj,=0, (19
S
were find that the quantities
H;f d3rar,(r) (19
\%

are integrals of motion. Let us find the densities and,
hence, the integrals of motiofl9). In a phenomenological
approach this can be done using the Lagrangian formalism.
We shall treat the thermodynamic potential density as a po-
tential energy density and introduce a kinetic energy density
related to the change of the order parameter in time:

k=k(pw,T;0,0%,¢,0%). (20)
Then we write the Lagrangian density in the form
Ao, ¢*.Vo,Vo*,0,0%)
=k(0,0%,0,0")—w(e, ", Vo, Vo*). (21

We assume that there are no time-dependent external fields,
so that the Lagrangian is explicitly dependent on neither the
coordinates nor time. Then, in analogy with how this was
done for the steady-state case, we arrive at the conservation
laws (17), where the densities of the conserved quantities

By virtue of the arbitrariness of the values of the small pa-h5ve the form

rameters\ ,,, it follows from (13) that

> fd3rv

a

Jw
—— WV, (r)+c.c|=0.

Ve, (14

Equations (14) are a set ofs continuity equations
=1,2,...8

divj,=0, (195

(22

wy(r)zg [;.—‘:\Ifav(r)ﬂLc.c. .

Thus, if the thermodynamic potential of the system is invari-
ant with respect to the transformatiof¥, containings con-
tinuous parameters, then there areconserved quantities
IT,—integrals of motion.
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In addition to thes continuity equation$17), which are ~ We note that if the order parameter is a spinor, then the time
valid because of the invariance of the thermodynamic poteninversion operation is somewhat different fr¢2v).X° In this
tial with respect to the symmetry transformatiof®, we  paper we restrict discussion to the case when operé@on
also have the energy conservation law due to the invariands valid. As in classical mechani¢$we shall take into ac-
of the thermodynamic potential with respect to a translatiorcount terms up to quadratic in the velocities or, here, in the

in time: derivativesg, ¢*. In classical mechanics the kinetic energy
does not contain terms linear in the velocities and depends
n — +divj® (23 only on the squares of the velocities. In the case of complex
variables, conditiori28) can also hold for terms linear in the
where the energy density is qguantities ¢, o*. In addition, the kinetic energy, like any
6, A observable quantity, must be invariant with respect to the
- )
E (9¢a a(.p; X | —A, (24)  phase trahsformat|ons
and the energy flux density is o= ee, 29
IA wherey is a real number. Taking into account everything we
j<8>—2 ((N patec.c. (25  have said, we write the kinetic energy in the form

If the total energy flux through the boundary is zero,
[sdsj(®)=0, then the total energy

Ezf d3ro(r)
\%

K<<p,<p*,¢,¢*>=§ [Aa(e* @) Pa—Ax@,0*) ok ]

(26) + 2, [Ban(¢™,¢)@aby
is a dynamical invariant. We note that in a state of equilib-
rium the energy= is equal to the total thermodynamic po-
tential and not to the total enerdy, which is given by for-
mula (6). This is because the dynamics of the order
parameter is considered at fixed thermodynamic variables
u, T. In a stationary state the energy flux density vanishes, s
that the flows in a thermodynamic equilibrium state do not
transport energy.

Nonstationary phenomena in a many-particle system are
accompanied by energy dissipation, a fact which was not
taken into account in the derivation of the continuity equa-
tions (17). Dissipation can be taken into account in our phe-
nomenological approach byjr%specifying a dissipative functionThe requirement of phase invariance leads to the conditions
in addition to the Lagrangiati. Then the right-hand sides of .o N iy *
equations(17) would be nonzero, and the quantitiés, Aalp*e Y, peN)er=Aa(¢",0),
would vary in time, relaxing to their equilibrium values. Bap(@* € X, X)X =B y(¢*,¢),

Dan(¢*e "X, 0€X) =Dap( @™, ¢).

ThuslII, are integrals of motion only when dissipative pro-

cesses are neglected, as is the situation in classical mechanics

also. In this paper we shall not consider dissipative phenomraking into account only the leading terms of the expansion

ena in many-particle systems. of the coefficients in(30) in powers of the order parameter,
we obtain the simplest possible form of the kinetic energy:

+Ban( @, ¢* ) 0% o1

+Dan( @, 0*) @5 ¢pl. (30

By virtue of the requirements that the kinetic energy be real
and invariant with respect to time inversi@8), the follow-
Ing conditions must hold for the coefficient30):

Axle,0*)=—AL(¢*,0),

Bab(¢,0*)=Bpa(@,¢*)=Bi,(¢*,¢), (31

Dab(¢,0*)=Dpa(@,¢*)=Dpa(e*,¢).

(32

5. KINETIC ENERGY

In the phenomenological approach the kinetic energy
density must be specified in additon to the thermodynamic
potential density. Taking into account certain general require-
ments, let us refine the form of the kinetic energy. The ki-
netic energy must be real-valued and, since we are describing
nondissipative processes, invariant with respect to time inwhere 8,= 8% and y.,= v5, are phenomenological con-
version. In addition, it should be invariant with respect tostants. The requirements on the symmetry of the thermody-
phase transformations. In quantum mechanics, as we knowamic potential with respect to other transformations can im-
the operation of time inversion involves changing the sign ofpose additional conditions on the coefficients in the
the time derivative and replacing the wave function by itsexpression for the kinetic energy. We note that the form of
complex conjugate. Accordingly, in order for the kinetic en-the energy(33) is analogous to the choice of a kinetic energy

K<¢,¢*,¢,¢*>:—i§ Ba @k ba— @abt)

1 ..
+3 > YanPh &b, (33
ab

ergy to remain invariant under the transformations

t——t, p—¢*, (27)
the following condition must hold:
K((,D,(,D*,(;D,(;D*):K(QD,(P*,_ _¢*)- (28)

containing terms linear in the time derivative of the wave
function when the Schringer equation is obtained by the
Lagrangian method* If we use this simplified form for the
kinetic energy, we obtain the following expression for the
densities of conserved quantiti&s:
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Ty=— [ Ea: Ba( @;‘Pav_ (Paq,;v)

1 ) .
+5 % (VE@E W 0yt Yar@p VL)) (34)
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=i Ea: Ba( @z V,0a— 02V, 03%)

1 . i
+5 % (VEo@EV,@at YarpV, @k ). (42)

We note that the given quantities are nonzero under statioRye note that for complex fields the momentum density is
ary conditions¢=0 in the case when the kinetic energy nonzerg even in stationary statiés-0—in particular, under

contains terms linear ip. This occurs if the order parameter
is complex. In the case of many-particle systems with com-
plex order parameters the integrals of motion which are non
zero in stationary equilibrium states substantially determine_ = Ri(9)X,

the stability of the current states in such systems.
For a kinetic energy densit{83) the density of the en-
ergy integral(24) has the form

1 "
9=5 2 vanbs fot 0le.¢" Vo,Ve¥) (35

conditions of thermodynamic equilibrium.

If the system is invariant with respect to rotations in
Coordinate  space ¢'(r)=¢(g”'r), with (g~ 'r);
where R;i(g), the matrix of three-
dimensional rotationg, is specified by a set of three param-
eters, e.g., the Euler angles, then the angular momentum as-
sociated with the order-parameter field is conserved.
However, in the case when the rotations do not affect the
components of the order parameter, i.e., they do not get
mixed, the momentum conservation law is not independent

the order parameter. Defining the canonical momenta
N
Iph

. 1 .
Pa= =—1Bapat 5 % Yab®b (36)

and changing from velocities to momenta in Eg5), we
obtain the Hamiltonian

H==2i2 BoYas(Ps $oPa#h) +22 Yan(PaP}

(37

is the inverse matrix ofy. We note that the

+ BaBoeaep) + 0(@,0* ,Vo,Ve*),

where y~1

lar momentum flux density and angular momentum density
are expressed in terms of the momentum flux deng@if)
and momentum densiti41):

(L) — (1 L) _ |
(Vi )_ 2 Sum,u.XmJ ful) ’Tr(v )_ 2 Sum,u.xm'ﬂ'fu) ’ (43)
m,u m, u

where ,,,, is an antisymmetric tensor. If the thermody-
namic potential of the system is invariant with respect to
simultaneous rotations in coordinate space and in the space
of order-parameter components, then a nontrivial conserva-
tion law arises in relation to rotation. This case is considered

Hamiltonian contains terms linear in the momenta. By sub4n the next Section.

stituting (37) into the canonical equations

NN L -
(Pa_&p;, pa_ &QD; quD;’ ( )

we obtain the dynamical equations for the order parameter in

Hamiltonian form.

6. SPATIAL SYMMETRIES

7. INTERNAL SYMMETRIES

In the previous Section we considered transformations
affecting only the spatial coordinates of the order parameter
components. We now consider transformations with the ma-
trix form

Tap(hr ;M) =Tap(N) S(r—r"), (44

Let us consider the consequences that flow from the
symmetry of the system with respect to spatial translationsvhich do not affect the spatial coordinates. Following the
and rotations. We assume that the thermodynamic potentigérminology adopted in field theoH},we call the symmetries
of the system is not affected by a translation of the system bgssociated with such transformations “internal.” For infini-
a vectorry: ¢’ (r)=¢(r+rg). Then the matrix of the trans- tesimal transformations we can write

formation(7) and the quantitie§10) and(13) have the form
Tan(h1",10) = 8apd(r' —r—rg),

(6T )= 83V, 8(1" —1), W, (N =Y,0.r). (39

S

) Y AT ap(N)
Tan(N) = Oapt 21 ab)‘vv ab:a—

x,

The momentum flux density due to the existence of thednd, according to conditiofL1),

order-parameter field is described by the tensor

Jw
'(l_): +
itk Ea: o V,0atC.Cl|, (40)
and the momentum density has the form
K
7T(VI)= E —V,p,+C.Cl. (42
a | 0¢Pa

If the kinetic energy is chosen in the for(83), then

0,+0},=0. (46)

The flux density due to the symmetry transformatiéd) has
the form

Jw Jw
(M) _ *
Lo ; Niga O Ve 2

0%, (47)

and the density of the corresponding conserved quantity is



6 Low Temp. Phys. 29 (1), January 2003 Yu. M. Poluektov

W(VM):% (nga Pp— %QD; ab- (48 0ivk:(76:;;\(j\) . ®;b:(9T;;(:\) -
If the kinetic energy is chosen in the for(83), then T_he continuity equatioril7) is then valid for the total den-
sities
W=~ % (Bat Bb) ez eO4p =i+, m=alPe W,
. Whergjf,'}”) and 77()’_" are given by formulag47)—(49) and
+ Egc (Ve ®b— Yocc®l) O, . (49)  describe the contribution to the total angular momentum in

consequence of the multicomponent nature of the order pa-

rameter; this contribution is an analog of the spin moment in

An example of a system which is invariant with respect , :
to internal symmetry transformations is a ferromagnet, thequantum field theory” The orbital angular momentum den-

thermodynamic potential of which contains an exchange en§Ity and flux density are given by the expressions

er . In the case of cubic symmetry, the exchange ener . 1 Jw Y
9y re Y y 9 o W= > [—(W%Xk_vk%XOJFC-C- O »

density has the forf "29 ® | Viea
1 O dM oM (50
=), — —, (50 1 K
€ 2 =1 9%, X 775}")2—2 2 _—(kaiqpa—xin<pa)+C.c. 0,”k (57)
29 K | 9@,

wherea is a phenomenological constant, avdis the mag-
netic moment density. In this case the components of th
order parameter are the projections of the veMorExpres- L I . Y
sion (50) is obviously invariant with respect to rotations v __EEa: % [Baga (XiViea=XiVicpa) ~C.C0
of the magnetic moment density through an arbitrary angle
0=06n:

gVith the kinetic energy chosen in the for83), we have

1
5 +z% %‘4 [ Yab®b (XkViea—XiVipa) +C.C1 05 .
Ma(r)= 2, Rab(0)Ms(r), (51 (58)

The conservation of total angular momentum in the case dis-

where R,(60) is an orthogonal rotation matrix, andis a cussed is a new independent conservation law.

unit vector specifying the direction of the axis of rotation. In
this case;g=—syab, and the flux density has the well-

known formt

M 8. PHASE SYMMETRY
iM=a[MXVM],. (52)

An important type of internal symmetry is symmetry
with respect to phase transformations with a constant value
3 the phasegphase transformations of the first kind his

In a thermodynamic equilibrium state the flux dengig) is
nonzero, e.g., in regions near domain walls. The dynamic

equations for the magnetization in a fgrroma@;%%can be  symmetry does not have such a clear interpretation as does
obtained in a Lagrangian approach if the angle variablegymmetry with respect to translations and rotations, for ex-
specifying the orientation of the magnetization vector areample. The existence of phase symmetry is due to the quan-

chosen as the generalized coordinates. o tum nature of the structure of the substance. In quantum field
It can happen that the thermodynamic potential is altere‘i’heory, phase symmetry is associated with charge

by some spatial and internal transformations separately b%nservatioﬁ." In the nonrelativistic quantum theory of

remains invariant under the combined transformations. SUlhany particles one considers electrically neutral systems
pose that the spatial coordinates transform according to thgynsisting of neutral particles or of particles with charges of

rule different sign, so that it is assumedpriori that charge con-
servation holds. Here the breaking of the phase symmetry of
X = ; aik(N)Xy, where EI ai(Mai(M)=0da, (53) g state entails the possibility of existence of superfluid flows,
i.e., flows of charge in superconductors and superfluid mass
and that there is a simultaneous rotation, specified by th8ows in liquid helium.

same set of parametels in the space of order-parameter In the case of phase transformatiops- ¢’ = @eX we
components, so that obtain
5 Tap(F. 13 X)=8ap€X8(r—1"),  ©ap=i8ap. (59)
Tap(F, 1N =Tap(N) 8| X! — 2, aipcd(N)X |- 54 , )
ak )= Tav(M) ( 'K k(M) k) ®4 We note that for spatially nonuniform states the complex

nature of the field is essential, and the field cannot be made
real by means of a phase transformation of the first kind. The
general formulag47) and (48) taken together witl{59) im-
‘I’av(r>=i§;, 9inXkVi¢’a(r)+% O Zoen(r), (55 ply the following expressions for the flux density and the
' density of the conserved quantity associated with phase sym-
where metry:

In this case
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Jw Jw
S — _ * (”:2 2_ 65
i IEa: (ﬁcha Pa” Gy gr #a | (60) ™ q; Baa (65)
K oK We note that the stai@4) is equivalent to that determined in
. * ) . : .
W(X)ZIZ (Wgoa—wgoa (61 the microscopic approadi—a spatially uniform, transla-
a a a

tionally noninvariant state of a superfluid system with non-
zero total momentum.
Up till now we have not specified the form of the depen-
dence of the thermodynamic potential on the order parameter
I . ) and its derivatives. To write an explicit expression for the
W(X):Zé Bal@al*+ E% (Yab®h Pa~ YapPo®a)- fluxes, we must specify the dependence of the thermody-
(62)  namic potential on the gradients. We restrict consideration of

o o the thermodynamic potential to terms quadratic in the gradi-
We note that for the Schdinger equation in quantum me- ents. choosing it in the form

chanics the density of the conserved quantity associated with
the phase symmetry of the Lagrangian and Hamiltonian has :_2 E C!(bvi o Viop (66)
the meaning of a probability density, and the integral of mo- ab ik

If the kinetic energy is chosen in the forf33), then the
phase symmetry is associated with the integral of motion

tion is the total probability. whereclk =ck* . Then the momentum flux density becomes
When the components of the complex order parameter
are written in term of the modulus and phase, jgi)zfgﬂ (CgbVI‘P; Viepat CgbVI(Pka‘P;)
Pa= nae'fa, '
1 I,
formula (62) takes the form = EQk% (Cllp +Chp) 7a7p0) - (67)
an;
1 . . :
W0=2>" B.72+ = > {(y*+ Yap) For the state under consideration, the density of the con-
w 7 Y Yab) 7. . . . .
a % 2% {2t 7a0) 72 served quantity and its flux densitg0), (61), which follow

. o - from the condition of phase invariance, are
X[ 7pé€p COLEa— &b) — M SIN(Ea— ) ] +1(Vap™ Yab)

; 1 i
X 74l 775 COS Eam E0) + mobp SiNEa—E)]}. (63 m=22 B 115 2, (Cab * Cab) el

We see that the density of the conserved quarig), like o ) _(68)
any other observable quantity, depends only on the phas\é/e see that the quantity .%8) is related 'to the density and
difference or the derivatives of the phases, since observabl@€ momentum flux density by the relations
quantities are invariant with respect to the phase transforma-  #{'=q;70, j)=q,j¥, (69
tions (29).

For systems with broken phase symmetry Hd$.have
the spatially nonuniform solutions

so that in the given state with a constant flux density the
conservation laws that follow from the translational and

phase invariance of the thermodynamic potential actually
©a(r)= 7,97, (64) have identical consequences. This is true only in the case

o ) (64). One could, as is customary, define the superfluid veloc-
where the modulugy, is independent of the coordinates, andity v_ and densitypy:

g is a constant vector. Substitution of the functi@) into

Eq. (4) will lead to a system of. nonlinear algebraic equa- veeq, Ps’xz Baﬂg,

tions, which determine the moduli of the order-parameter a

components as functions of the quantfy This system has  after having substituted the momentum density in the form
solutions of the form64) at sufficiently small values aof. #)=pv,. The conservation law for¥) thus acquires the

At values ofq exceeding a certain critical valug, SOlu-  meaning of conservation of the superfluid méasconstant
tions of the form(64) do not exist. It is easy to see that the 1 gng w). We note that in this approach for describing the
total momentum is conserved in states described by 30|Uti°r1§ynamics of a system with a single complex order parameter
(64). The possibility of conserving momentum in spatially yne can obtain an equation, analogous to the Gross—

nonuniform states is an important feature of systems with giji5eyski equation'® describing the dynamics of a slightly
complex order parameter. Indeed, if the system as a whole i$ynideal Bose gas.

translated by an arbitrary vectog, then the functior(64) is
multiplied by an exponential factor with a constant phase,

+ro)+ 4To
#all+To) + a(r)E Up till now we have been considering flows in systems
and, by virtue of the phase invariance of the thermodynamievhose thermodynamic potential is invariant with respect to
potential, this does not lead to any change in it. According tc¢he continuous transformatior(). For such flows, which
the results of Sec. 6, solutioi®4) describes a state of the are naturally called conserved, the divergence is equal to
system with conserved total momentum, with a density dezero in the stationary state and obeys the continuity equation
termined by the formula (17) in the nonstationary state. In the case when the thermo-

9. NONCONSERVED FLOWS
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dynamic potential is not invariant, it is natural to retain theIn this case the magnetization flux density and source density
definitions of the flux densities. However, in this latter casehave the following nonzero components:
the divergence of these flux densities is nonzero, and in place J'(x'\f): — aM2V, 9, a_g(M): — BM2sin 9 cosd. (78)

of (15) we obtain
We see that Eq(76) follows from the continuity equation

divi,=o,, (70 (70) for the magnetization. The nonzero momentum flux
where the functiorr, has the meaning of a source density. density and source density have the form
Integrating(70) over the volume, we find that the total pro- j&')Z:aMZ(VXf})Z, aﬁ(')z,BM 2y, (sir? 9). (79)

duction of the physical quantities transported by the flux den-
sity j, is equal to the total flux through the boundary of the The continuity equation for the momentum gives a first inte-
volume under consideration. If the total flux through thegral of equation(76). Let us also give the nonzero orbital
boundary is equal to zero, then the total amount of the physiangular momentum flux density and source density:
cal qu_antity produced is also zero, although the source of this j%(): azZM*(V9)?, 5=~ ayM*(V9)?,
guantity may be locally nonzero. W 5 ) L 5 )

Under nonstationary conditions with a noninvariant ther- @y =8ZM V(Sir? 9), oy == BM?Y(sir? ).
modynamic potential the conservation equation has the form (80)

g, Thus, near a domain wall there are localized flows
7+divjv= o (71 which, by virtue of the equilibrium character of the state, are

not accompanied by energy dissipation. However, unlike the

wherej, andw, are given by formulagl6) and(22). In this  flows generated by a phase transformation, these flows are
case the quantitied ,, (19) are no longer integrals of motion, not associated with integrals of motion. Such states can be
even in the case when the total flux through the boundary istable only in the case when they correspond to an absolute
zero. minimum of the thermodynamic potential.

An example of a system in which nonconserved nondis-
sipative flows exist is a ferromagnet with domain walls. The;5 ~oncLusION
thermodynamic potentiab; of a ferromagnet includes, in

v

addition to the exchange ener(j0), which is invariant with It follows from the above discussion that the appearance
respect to rotation of the magnetic moméb1), an anisot- Of nondissipative flows in many-particle systems is due to
ropy energy that breaks this invariance: extremely general causes which are largely independent of
the details of their internal structure. One can identify several
wazg[Mz—(M-n)z], (72)  conditions that must hold for the existence of flows without

energy dissipation. First, the system must be found in a state
wheren is the axis of anisotropy ang is the anisotropy whose symmetry is broken, so that, besides the usual ther-

constant. In this case the flux density of the magnetization ignodynamic variables, the state will be characterized by some
as before, given by formulés2), and the source density is additional variables—order parameters. Second, this state
given by the formula must be spatially nonuniform, i.e., the components of the

M)_ order parameters must be functions of the spatial coordi-
o, =B(n:M)[nXM],. (73 nates. In that case the system is described by a set of real or
Associated with the magnetization field are the momentunfomplex fields. Third, the complete absence of dissipation is
flux density and source density realized only in the case when the system is found in a sta-
tionary thermodynamic equilibrium state, corresponding to a

iD= VM- (1 = L . .

i =aViM- VM, o=V o (74 local or absolute minimum of the thermodynamic potential.
and the orbital angular momentum flux density and sourcdt Was shown that then, as in field thedRcorresponding to
density each continuous transformation of the order parameter that

preserves the value of the thermodynamic potential there are

iD=a> [rXVM,],ViM,, o =[rxe"]. (75 @ conserved flux density and an integral of motion. Flows
a without dissipation can also exist in the case when the state

of the system is spatially nonuniform but its thermodynamic

Near a Bloch domain wal lying in the yz plane one A ! X ,
potential is noninvariant with respect to symmetry transfor-

has i .
i mations. In that case the flow generated by the given sym-
Mx=0, My=Msind, M,=M cosd, metry will not be an integral of motion.
and the angle¥ specifying the orientation of the magnetiza- An additional energy is associated with the spatial non-

tion, which is assumed to have a constant magnitude, satisiniformity of the order parameter, and therefore such a state
fies the equation can be stable only under certain conditions. As we have said,

it is stable if an absolute minimum of the thermodynamic
Viﬁ_ ésinﬁcosﬁzo. (76) potent?al is _rea]ized, i.e., if the increase in energy due to the
a nonuniformity is compensated by a lowering of the other
contributions to the total energy of the system. An example
of such a system is a ferromagnet with a domain structure. If
cosd = —tanh /éx. (77) th_e _deformed state correspond; toa Ioc_al and not an absol_ute
minimum of the thermodynamic potential, then the state is

The localized solution of this equation has the form
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metastable, and its lifetime is determined by the size of théHe are small, and its superfluid properties are well mani-
potential barrier separating it from another state with a lowefested even under slightly nonequilibrium conditions. For su-
value of the thermodynamic potential. Finally, the deformedperconductors the dynamical equation has a diffusional
state of the system may not correspond to an absolute minform 2> and nonstationary processes can lead to strong en-
mum of the thermodynamic potential but be associated witlergy dissipation and rapid destruction of the superconducting
some conservation law that prevents the system from sporproperties.
taneously passing to a state with a lower value of the ther-  Nonconserved nondissipative flows, since no conserva-
modynamic potential. In the latter case the state correspondion laws are associated with them, can exist stably only in
ing to a local minimum of the thermodynamic potential will states corresponding to the absolute minimum of the thermo-
be just as stable as a state corresponding to the absoluggnamic potential. Therein lies the essential difference be-
minimum of the thermodynamic potential. This is apparentlytween nondissipative flows in ferromagrets liquid crys-
the situation in systems ordinarily called superconductingals, for example, where the symmetry, as a rule, is
and superfluid. An important feature of these systems is thagpproximate, and in superconductors and superfluids, where
their order-parameter field is complex, and consequently than exact phase symmetry is broken.
phase invariance of the state is broken in this case. Since the The existence of a complex order-parameter field, de-
phase of a complex order parameter is not an observablgendent on the coordinates, is sufficient for explaining why
quantity (only a phase difference or phase gradient can bgondissipative flows appear. However, within a phenomeno-
observed all of the observable quantities and, in particular,logical approach it is impossible to determine the structure of
the thermodynamic potential are independent of the phasge order parameter or the nature of the onset of a complex
and are invariant with respect to phase transformations. Thugeld. The answers to these questions must be given by a
the phase symmetry of the thermodynamic potential is exacinicroscopic theory of systems with broken symmetries. On
unlike the symmetries associated with translations and rotahe microscopic level the nature of the appearance of a com-
tions, and it cannot be broken by any interactions. Since thelex field in superconductors was explained by Gor'kdv,
phase symmetry is exact, a conserved flux and an integral afho associated the order parameter of Ginzburg—Landau
motion are always associated with it. Yet another feature ofheory with a pair-type anomalous averdgair correlation.
complex fields, the importance of which, in our view, has notThe appearance of pair correlations also leads to a change in
received the attention it deserves, is that the kinetic energy ahe spectrum of quasiparticle excitations in superconductors.
such fields contains a contribution linear in the time deriva-As a rule, an energy gap appears in the spectrum, and this is
tives of the order parameters. For this reason a system witbften perceived to be a hallmak of supercondtivity. Mean-
broken phase symmetry has a nonzero integral of motion imhile, it is well known that in superconductors containing
the stationary state. The presence of such an integral of m@aramagnetic impurities, the energy gap vanishes at a certain
tion prevents the system from spontaneously passing to ianpurity concentratiod” However, this does not lead to van-
state with a lower value of the thermodynamic potential. Be-ishing of the superconducting properties, since the phase
cause of this property, in systems with broken phase symmeymmetry of the system remains broken on account of the
try the current states, although they do not correspond to theomplex order parameter, which remains nonzero. In certain
absolute minimum of the thermodynamic potential, are exdirections in momentum space the energy gap also vanishes
tremely stable. For example, a superconducting ring carryingn the A phase of superfluidHe.?* These examples and also
an induced current was held for over two and a half years ahe foregoing treatment show that the presence of a gap in
a temperature belowl, with no detectable decrease in the spectrum of excitations, although it affects many proper-
current! Under strictly fixed external conditions the current ties of the superconductor, has no relation to the existence of
states(except, perhaps, for low-dimensional systemeuld  flows unaccompanied by dissipation, i.e., to the phenomenon
have an infinite lifetime. Unavoidable fluctuations of the ex-of superfluidity itself.
ternal parameters, primarily the temperature, will bring the  Landau also linked the property of superfluidity in liquid
system out of the equilibrium state, and any deviations fronfHe to the form of the quasiparticle energy gap. According to
thermodynamic equilibrium and nonstationary processesandau, the phenomenon of superfluidity can occur if the
present in the system will lead to energy dissipation andamous criterion which he introduced is nfeéf Sixty years
damping of the flow. after publication of Landau’s pap&which played a key role

In this paper we have not dealt with the problem ofin the development of the theory of superfluidity, many new
critical currents. In this connection we note that the equaexperimental data on the structure of liqide have been
tions for the order parameters have stationary solutions aibtained, and new theoretical ideas have been developed.
sufficiently low fluxes. For fluxes exceeding a certain critical Studies of the spectrum of excitations®fe by the method
value there are no stationary solutions, and the system can log inelastic neutron scattering show that its form is not fun-
found only in a nonstationary state, which is accompanied bylamentally altered at the transition from the superfluid to the
energy dissipation. The stationarity can be broken at evenormal phasé® and, consequently, the Landau criterion is
lower values of the fluxes in the case when the stationarynet even in the normal phase. The Landau criterion is also
flow loses stability. Despite the analogy in the theoreticalmet for the spectra of excitations in other nonsuperfluid lig-
description of superfluid*He and superconductofg, it uids. It seems natural to conclude that, as in the case of
should be emphasized that there is a substantial difference Buperconductors, the superfluid properties of a system of
the behavior of these objects under unsteady conditions. Fdiosons are not related to the form of the spectrum of elemen-
a slight nonstationarity the dissipative effects in superfluidtary excitations or, for that matter, excitations of other types.
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As to the Landau theory of superfluidityits success in de- thor is inclined to assume that symmetry breaking should
scribing superfluid properties is due, as we have said, to thiake place in all cases in which nondissipative flows arise
introduction of a superfluid velocity and density for taking and thus is also a necessary condition for the existence of
into account the breaking of the phase symmetry. The role ofiondissipative flows.
the Landau criterion was investigated by Voldfkn an The author thanks S. V. Peletminskbr a discussion of
analysis of the superfluid properties of tAephase ofHe,  this study.
and it was concluded that exceeding the Landau velocity is
not crucial for the existence of a nondissipative flow of the E-mail: antarasov@kipt.kharkov.ua
superfluid component. An explanation of superfluidityfite
as being a consequence of the breaking of phase symmetry
was given in the paper by Ginzburg and PitaeuSKrhe E. A. Lynton, Superconductivity4th ed., Chapman and Hall, London

tricted d . f licability of that th in it (19717), Mir, Moscow (1974).
restricte om8a|_n of applicability of that theory, even in its 2p") “anitsa, NaturéLondon 141, 74 (1938.
modified form; is due to the use of an expansion of the 3p. p. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. P&t885
thermodynamic potential nedr, in powers of the modulus 4(1972)- )
of the order parameter. However, the main idea of that gig(;éBEdnorZ and K. A. Mier, Z. Phys. B: Condens. Matte4, 189
paper—to describe the superfluid propertles.through the insg g "sonin, Usp. Fiz. Naulk37, 267 (1982 [Sov. Phys. Usp25, 409
troduction of a complex order parameter—is undoubtedly (1982]. )
correct not only near the temperature of théransition but jV- L. Ginzburg and L. D. Landau, Zh.KSp. Teor. Fiz20, 1064(1950.
also in the entire existence region of the superfluid phase. E/écl;\} %E;g“g%?gd ;3'5; ilgléz;e]vngh. Bksp. Teor. Fiz34, 1240(1958
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The equation that describes the suprathermal distribution of high-energy ph@nphsnon$
created in anisotropic phonon systems in superfluid helium is obtained. The solution of

this equation enables the derivation of the value of suprathermalSat#othe ratio of the actual
distribution to the Bose—Einstein one, its dependences on the momentumloptimons,

the anisotropy parameters, and the temperature of the low-energy phonons from which the
phonons are created. We analyze this equation to obtain an estimate of the value of the

ratio between thé-phonon number density in anisotropic and isotropic phonon systems and
draw conclusions about the dependenceSobén the relevant parameters. 203 American
Institute of Physics.[DOI: 10.1063/1.1542372

1. INTRODUCTION phonons within a limited solid angle. Thus, all thermody-

For a phonon system in superfiidie (He 1) the rates namlcllparameters of thke subsystem become functlons.of
ngle:* In the long term, four-phonon processes and diffu-

of kinetic processes are determined by the unusual form of. =" . o .
the phonon energy-momentum dependence. At zero pressuﬂaOn !n_ang_ular_space b“ﬂg about complete eqwhbnum This
the phonon dispersion curve in He Il bends upwdrdsand quasidiffusion is determined by fast three-phonon interac-

. . . _15
this causes spontaneous decay of phonons with enafgiest'on;']nvo.lvmg S”_‘a” a'nglde?sf;f in hiahl . ic oh
<e,=10 K45 For these phonons, the energy and momen- e situation Is quite different in highly anisotropic pho-

tum conservation laws allow processes in which the phonoﬁIon system.sr.] Helrg the lmomer;]t.ahoI]all phoTonslare in ahnar-
numbers in the initial and final states do not equal one an©W cone with solid angl€l,,, which has a value close to the
bypical angle for three-phonon processes. Such strongly an-

process (Pp), in which one phonon decays to two phonons'SOtrOp'C phonon_systems haye bee_n created_ln liGftid
or two phonons interact to create one phonon. The rate dfXefs. 16—20 This pure and isotropic superfluid can have
these three-phonon processes was obtained in Refs. 6 andSpch & low temperature that one can neglect the existence of
in the two extreme limits; and the general case was calcutN€rmal excitations. Low-energy phonons are injected by a
lated in Ref. 8. heater and then propagate along the direction normal to the
At higher energies the phonon dispersion curve bendsurface of the heater. In momentum space all the phonons lie
downwards, and at>e. the phonon spectrum becomes in & narrow cone of solid angl@,=0.125 sr.
nondecaying. Here the most rapid process is the four-phonon  In such experiment§~?°the unusual phenomenon of the
process (#p), in which there are two phonons in the initial creation of high-energy phonons was observed. These
and final states. phonons are created by a pulselgbhonons, which has a
The rate of three-phonon processes,, is obtained us- temperature an order of magnitude less than the energy of the
ing Landau’s Hamiltonian in first-order perturbation theory, high-energy phonons that it creates. The theory of this
and the rate of four-phonon,,, processes is determined by unique phenomenon was proposed in Refs. 21 and 22. A
second-order perturbation thediy! This is quantitatively further development of the thedfy?®shows that in strongly
evaluated and confirmed by experiméhtThe difference be- anisotropic phonon systems there exists an asymmetry be-
tween the orders of perturbation theory results in the strongveen processes of creation and decay for ihghonons.
inequality v3,,> v4,,. Thus the phonons of superfluftHe ~ Such an asymmetry causes the distribution functiorhof
form two subsystems: one of low ener@yphonon$ with phonons in the anisotropic phonon system to $&mes
e<e., which very quickly attains equilibrium; and the other greater than that in the Bose—Einstein distribution. More-
of high-energy phonong phonong, which goes to equilib- over, it is possible to have>1. Using the notation of Ref.
rium relatively slowly. 23, we will call such an unusual distribution bfphonons a
The angles between the phonons which take parfpip 3 suprathermal distribution, and the paramefethe suprath-
is small due to the smallness of the deviation of the energyermal ratio.
momentum dispersion from linearity=cp. Thus in isotro- In this paper we derive an exact equation that allows us
pic phonon systems, when all directions in momentum spact® calculate the suprathermal ratio and to determine its de-
are uniformly occupied, equilibrium is not attained isotropi- pendences on momentum, anisotropy parameter, and tem-
cally in the short term because interactions involve onlyperature. We analyze the contribution of all possible pro-
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cesses that lead to the formation of suprathermaHerei=3,4 for creation processes, a2 for decay pro-
distributions in anisotropic phonon systems. From this equaeesses. The angular variables for the final phonons have no
tion we derive an estimate of the average value of the susuch restrictions.
prathermal ratioS the ratio of the number density df Such asymmetry for the initial and final states results in
phonons in the anisotropic and isotropic phonon systems. the inequalityQ,# Q4. In this case in anisotropic phonon
systems the equalit{d) cannot be satisfied by solutig),
and the Bose-Einstein distribution is not a solution of equa-

2. THE INEQUALITIES FOR DETERMINING OF THE tion (4).
STATIONARY DISTRIBUTION FUNCTION OF PHONONS In highly anisotropic phonon systems, whék is less
IN AN ANISOTROPIC PHONON SYSTEM than the typical solid angle for four-phonon processes, the

stationary distribution oh phonons will be substantially dif-

The attainment of equilibrium in the subsystem lof . L .
phonons can be described by the kinetic equation for th(faerent from the Bose—Einstein distributidf) in magnitude

distribution functions, which can be written as and in momentum dependence.
' The integral92) and(3) can be written as a sum of five

terms with definite ranges of integration. These terms corre-

LoN N 1
dt b(P1) ~Na(Pa), (1) spond to the different processes that are possible for the in-
teractions ofh phonons between themselves and with
where phonons:
Nb<pl>=f9 W(P1,P2|P3,Pa)NaNa(1+Nn1)(1+1y) 1) hitlpelstlss 2) hatloehs=la;
’ 3) hy+lpeshgthy; 4) hy+hyeshgtly,; ®

X (e1tey,—e3—€4)0(P1+P2—P3—Pa)
5) hl_ hzﬁ h3+ h4.

X d3p,d3p;d3p, 2 o
. ] The arrow to the right indicates the decay oftgnpho-
is the number of phonons with momentuym created per on and to the left, creation. We define the ratd, of
unit time as the result of four-phonon [§4) interactions; creation(b) and decay(d) processes with distribution func-
tion n for h phonons by the equalities:

NP1 = | WL, palpa.pananz(1+ng) (1+n,)
Vg, TR RIS T ¢ Npa=nu": Ng,=nol; («=1,2,345. (9)

X (e1ter—e3—e4)(P1+P2—P3—Pa) As N, is the sum over alN,,, we rewrite relation(4) as
X dp,d®p;dp, ©) follows:
5 5
is the number of phonons that decay per unit time; (0) () _ (n) 10
W(p1,P2|P3.Pa) =W(pP3,palp1,p2) defines the transition M Zl Vba nlazl Vo - (10

probability density for 4p processes, which have been . .
calculated® ), and Q4 each represent a set of three solid estavt:/I(iasLageJﬂittc:rijcn?jgl;ntthg]ﬁgnﬂ; gégT:j?shlgﬁéinﬁgzggsly
angles, one for each momentum over which the function is q P

integrated, i.e.Qy; and Qg (i=2,3,4). These maximum iﬂd ptfgigﬁgc’:r;n |$e Sutﬁit/si;etm %fa?k;gpons, g:éChh%?_
angles are determined by the anisotropy of the phonon sy%—oﬂy ulses in ex gerir;g%zo hav)e/:F;l closeﬁgﬁ 12_15
tem and the angles in thep$ interactions. In the isotropic P > 1N &P P 3pp
_ . : Therefore in this case we can consider thatltp&onons in

case(),;=y;. In relations(1)—(3) and below we consider . S

ot . e - the pulse have a Bose—Einstein distribution:
p1=p.=kge./c (i.e., phonon “1” is theh; phonorn), while
the other three phonons can bghonons oh phonons. The n(py)=n(”, at p,<p;. (12)

stationary distribution function is determined by the equality ) o o
For the stationary distribution df phonons, the distribution

Np=Ng. (49 function can be written in the form:

For isotropic phonon system@,,=Q4;, and equality n(ph)=S(ph)n§1°) at pp>pe. (12)
(4) gives: ’

Starting from equalitie$10)—(12), we have

n1n2(1+ n3)(1+ n4):n3n4(1+ nl)(1+ nz). (5) 5 s

The solution of this equation is the Bose—Einstein dis- 2 vﬁ,“)=8(p1) E vfj”). (13)
tribution a=1 a=1

nfo):{exp(gi IT)y—1}"1, (6)  This equation is an integral equation with respect to the un-

known functionS(p;). For decay processes whén com-
bines with anl or h phonon, the rate is independent of or a
linear functional ofS respectively. For creation processes if
initially there are zero, one, or twophonons then the rate is
independent, a linear functional, or a quadratic functional,
respectively. Therefore the desired functifp,) is absent
Q=Q,. (7)  in the ratesy{), »{7, v{Y, v if one takes into account

In an anisotropic phonon system, when the initial phonon
are inside a narrow cone with solid anglg <4, the result
differs from (5) and(6). In this case the limits of integration
in (2) and(3) with respect to angular variables are defined by
the inequalities
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that 1-n,~1. The rates/{y , v, v, »{? include linear
functionals, and/{3 , »{? include quadratic functionals. Us-

ing these facts, we present the rates fr@nas 107
A= =AY :
= By 10°
Vt)g) = Sp2(P1) VE)%) ; VE)T = Spa(P1) VE)%) ; a4
Vi =Sua(pD) vy Vi =Sus(P) VY ; 10°¢

and -
vy =Sha(p)vhy s vhy = Sks(P) VY ; (15) 2 10

where :
o= gu(S=1) (16) 10°k

are the rates calculated with distribution functi8). The
above equations defin®g, 4,, which are functionals of the I
function S(py,). 102

Using (14)—(16), we can write relatiof13) as
{SSisvi — Shsvhe} H{S Surd — Shavhy} 10 11 12 13 14
(S~ Syari) + (S - ShoriB =Y - i P/ k. K

(17 FIG. 1. The momentum dependences of the creation tatesid decayvy
. . . rates, atT=1K and (,=0.125 sr, for all the processes which exchange
For isotropic phonon systems, whéh,; = (;, relations phonons between tHe and h-phonon systems.
(2), (3) give v{V= 1= 15 |n this case Eq(17) has the

solutionS(py)=1, and, according t¢12), we get the Bose—

Einstein distribution(6) for all phonons in an isotropic sys-
n®) P piC sy >, in the momentum region where;;=0 (see Fig. 1

tem. Using the numerical values for rates calculated for the aniso-
tropic phonon systenfsee Fig. 1, equation(17) can be sat-

3. ASYMMETRY OF PROCESSES OF h-PHONON CREATION isfied for S>1. As a result, in anisotropic phonon systems,

AND DECAY, RESULTING IN A SUPRATHERMAL the stationary distribution function of sudm phonons is

DISTRIBUTION IN AN ANISOTROPIC PHONON SYSTEM many times greater than the Bose—Einstein @end has a

| . ic oh h 0. th different energy dependence, which is determined by the
h anisotropic phonon systems, wheXy;# (}4; the cre- momentum-dependent rates shown in Fig. 1.

ation ratev(?) can be significantly different from the decay In the left-hand side of17) the rates that have the same
rate v_&%’. In Refs. 25 and 26 the rates of all five processes Of)ower of S and describe mutually compensating processes
creation and decay are calculated for phonons with momenyre separated in curved braces. These compensating pro-
tum p, directed along the axis of symmetry of the pulse, cesses ir{17) are of two fundamentally different types. The
chosen as thé axis, s00; =0. These rates we denotgq,  second and the third braces describe processes which ex-
where the superscrigtd) is understood. change phonons between thand h systems. At the same
The main role in(17) is played by a type-1 process that ime “type-4 decay processes are partly compensated by
describes the exchange of phonons between &1@IN Sys- 6 3 creation processeébut not by type-4 creation pro-
tems. For a pulse typically used in the experim&fithe  cosse and type-3 decay processes partly compensate type-4
values are: anisotropy paramefep=0.125 sr and tempera- cyeation procesgbut not type-3 creation procesdhe first
ture T=1K. Then the minimum value of the ratie,/vd1  and fourth curved braces describe processes that conserve the
=30 atp;=pc; it grows quickly with increasing, and  nymper ofh phonons. Here decay is compensated by cre-
becomes equal to infinity gt =p, (see Fig. 1 The limiting  4tion in processes of the same type.
momentump, is determined by the solid angle, and the The presence ii17) of processes that conserve and do
conservation laws of energy and momentum, which govermyot conserve the number of phonons makes it useful to
the interaction of phonons with sucin, phonons. The cor-  ynhsider the expression obtained froh) by averaging the

responding analytical expressions and detailed discussion %isotropic phonon system ovey. We define the average as
the rates and their dependences on momentum shown in Fig.

1, are given in Refs. 25 and 26. prAn(lo)dspl

An infinite lifetime coupled with a finite creation rate of (A)= W- (18
h phonons withp;=p, means that in anisotropic phonon Op 't '
systems, type-1 processes cannot effect a dynamic equilib- Then one should take into account the following equali-
rium between thér andl subsystems. However such an equi-ties, which are obtained by reindexing the variables of inte-
librium can be provided by type-4 processes, becayse gration:
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decreases, so that there will be relatively feyyphonons at
J Ndz(pl)dgplZJ’ (3)Nb2(p1)d3p1, (19 large 6,< 6, in the pulse. This result agrees with the results
Q Qg2 b td7.19 ;
of experiments,*®where theh-phonon cone is found to be
5 5 narrower than thé-phonon cone.
fﬂ Ngs(P1)d°p,= fﬂ<3)Nb5(p1)d P1, (20 The suprathermal rati§ is also a function of the tem-
a5 perature of thé phonons, because according to Refs. 25 and
5 5 26 the rates of creation and decay of all five processes be-
L) Naa(P1)d"pa= fms)NM(pl)d P1, (2D come smaller, at different rates, with decreasing temperature.
a3 Thus, atQ,=0.125 sr andp;~p,, according to Ref. 26,
3 3 with decreasing temperature fmol K to 0.7 K theratesvy;
JQ Naa(p2)d*py= J’Q<3>Nb3(pl)d P1, (22 and vy, becomes smaller b5 and~6 times, respectively,

. a the ratesy,, andvy, by ~9 and~6 times, the rates,; and
where Q) is the solid angle of the creatqsy phonon in vy3 by ~70 and~65 times, the ratesy, and vy, by ~80
decay processes of the type and~95 times, and the rateg; and v45 by ~85 and~100

From the conservation laws of energy and momentum itimes, respectively. In general, the suprathermal ratio in-
follows that at the typical momenta of the phonons takingcreases as the temperature decreases.
part in the decay processes, the cregiggphonon remains Although in this paper we are concerned with the value
inside the initial phonon pulse. This fact allows us to con-of S averaged over momentum, we do expect tBais
sider approximately tha(ﬂfji)zﬂp. In this case the averag- strongly peaked just aboyg,, wherevy,— vqys is small and
ing of (17) with (19)—(22) taken into account gives: 3 has a maximum?® However, the situation is complicated,

asSis also expected to vary with angle within the beam.
(SSur) — (Soart)y =2(vY) — 2(SvY). (23 P Y J

This result can be rewritten in the form

p
p

p

()7~ (S =] - 2, oo NN

07, (0) In this paper we have shown that the asymmetry be-
wgerevbl =(vpr), and the other average values of the rate§yeen the processes of decay and creation of high-energy
7’531),114 are determined by the obvious equalities of the réspeCyhonons in long enough phonon pulses created in

tive terms in Eqs(23) and(24). The solution of Eq(24) is  experiment¥-2in superfluid helium results in a suprather-
400 mal distribution. Then the quasi-equilibrium distribution
(S)= Vb1 (25) function of theh phonons differs from the Bose—Einstein
=0 ' distribution by a factoiS(p).
Vi -52)7+ 895 + 27 -7  tained an equa -

We have obtained an equatidh?7) whose solution de-

Using this solution we can estimate the valug®fif we  termines the value of the suprathermal raiand its depen-

replace the rates if25) (shown in Fig. 1 by their average dence on momentuim, , anisotropy parametél,, and tem-

values calculated over the range 16&Kp,/kg<20 K, at  peraturel. Expressions that describe mutually compensating

6,=0. These rates we denotg 4. In this case processes are separatedi) by curved braces. These com-
__ ' pensated processes have two different principal types: the
2041~ Vpa<< N 8vp1 vy (26)  firsttype describes processes that exchange phonons between

thel andh systems, and the second type conserves the num-
and from(25) we have ber of h phonons. That is why we consider the expressions
0 (23), obtained from(17) by averaging with respect to gbh
(S)~ /222 30 27) of the anisotropic phonon system.
W ' Starting from relation(23) and the available results for
d4 the rates of creation and decay of phonons with momentum
This relation has a simple physical meaning. The valuSpof p;(p1,60,=0,¢;) directed along the symmetry axis (see
is defined as the square root of the ratio of the rate of growtlirig. 1), an estimate is made of the average val8eof the
of the number oh phonons by type-1 processes to the rate ofsuprathermal ratio. The full evaluation of the suprathermal
decrease of the number bf phonons by type-4 processes, ratio Sand its dependence on the paramefars(),, andT
which are partly compensated by type-3 processes. will only be possible after calculation of all the rates(iv)
According to (17) and results obtained for,,4, and  at arbitrary angle®;. We plan to carry out this calculation.
vpsgs (Refs. 25 and 2§ it follows that S depends strongly At present we have only the values of all the raigg for
on the angle#, between the direction of the phonon the casef;=0. This estimation of and the analysis of Egs.
p1(p1,01,¢41) and theZ axis of symmetry of the anisotropic (17) and (23) indicates that the distribution function &f
phonon system. Therefore, according to Refs. 25 and 2Ghonons can exceed the Bose—Einstein energy distribution
over a relatively wide region of momentum the creation by two orders of magnitude in anisotropic phonon systems.
rate of h phonons with#;=0, for the second and the fifth We find tha{S) depends strongly on the parametpys (),
processes, is greater than the decay rate. Since the total nuandT. Besides the creatiof®) of a more complete theory of
ber of h phonons is separately conserved in processes 2 arile suprathermal distribution, we plan to carry out experi-
5, theh phonons will concentrate in momentum space neaments to observe this very unusual phenomenon occurring in
the Z axis. With increasingd,, the number ot phonons phonon pulses in He II.
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A theoretical study is made of the odd resistive respdnse having odd parity with respect to
inversion of the magnetic fieldf a superconductor in the mixed state in the presence of
bianisotropic pinning and a small isotropic Hall effect. The components of the odd
magnetoresistivity in the directions longitudinal and transverse to the current are obtained in a two-
dimensional stochastic model of bianisotropic pinning based on the Fokker—Planck equations

in the approximation of noninteracting vortices and to a first approximation in the small

Hall constant. Both naturally occurring and artificially produced realizations of this model are
possible. It is shown that the nonlinear anisotropic properties of the magnetoresistivities

are naturally related to the principal critical currents and saturation currents of the system under
study. Scaling relations for the Hall conductivity in terms of the longitudinal and transverse
magnetoresistivities obtained are discussed, and scaling and its stability in thexbasdlY
geometries of the problem are examined.28003 American Institute of Physics.

[DOI: 10.1063/1.1542373

1. INTRODUCTION response in the mixed state arises in the presence of uniaxial
anisotropy of the pinning, which in high-temperature super-
One of the topical problems in the physics of superconconductors is due to a system of unidirectional planar pin-
ductors in the mixed state when vortex pinning is present iming centers—mainly twin&:%*~**1’A phenomenological
them is the influence of pinning on the Hall effect and ob-theory of superconductors with uniaxial anisotropy was de-
served resistive response"® The first problem studied theo- veloped in Refs. 11-13. In Refs. 14 and 17 a two-
retically was the Hall effect in superconductors with a ran-dimensional stochastic model of anisotropic pinning was
dom distribution of point pinning centers. For a weak proposed. In Ref. 15 this model was supplemented by anisot-
isotropic pinning it was found on the basis of a phenomenoropy of the Hall conductivity and the form of the pinning
logical approachand collective pinning theofythat a uni-  potential was specified, making it possible to calculate the
versal(independent of the form of the vortex phase and theobservable effects analytically in the nonlinear céke lin-
dynamical regime of the v0rtiC¢Scalingpxy°<p>2<X obtains,  ear case is considered in Ref.)1th Ref. 15, in contrast to
which had been observed in a number of experimentaRef. 17, the dependence of the resistive response on the mag-
studies’® It was shown in Refs. 1 and 2 that the Hall con- netic field direction was taken into account, and the even and
ductivity is not affected by a weak random disorder, and itsodd components of the resistance were investigated theoreti-
anomalous behavidas a function of magnetic field and tem- cally. (Note: Everywhere in this paper the terms even and
perature is due not to pinning but to the magnetic field andbdd will refer to parity under inversion of the magnetic field,
temperature dependence of the Hall constants. In the phend the terms longitudinal and transverse will mean with
nomenological model of Wang, Dong, and TiyDT)® the  respect to the direction of the currgnit was shown that the
surface force acting on the vortex in the flow of currentexpressions for the odd longitudina] and transverse
around its core and the force due to the counterflow of curmagnetoresistivities consist of both nonlinear Hall contribu-
rent inside the core are explicitly taken into account, and thations due to the directed motion of the vortices along the
leads to explicit dependence of the Hall constant on the pinplanes of the pinning centeishe so-called “guiding,” or
ning force and the velocity of the vortex; this is the funda-“G” effect )>~2*and contributions due to the dependence of
mental difference from the theory set forth in Refs. 1 and 2the anisotropic vortex dynamics on the magnetic field direc-
In the scaling IaWprocpr that follows from the WDT tion. The mutual influence of the G effect and Hall effect was
model the exponeng can take different values depending on investigated and the scaling relations were examined.
the dynamical regime of the vortex. In Ref. 7 an odd longitudinal magnetoresistivily was
Another limiting case in the study of the Hall resistive first observed experimentally in a YBau;O,_; single crys-

1063-777X/2003/29(1)/14/$22.00 16 © 2003 American Institute of Physics
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tal containing unidirectional twins. In that paper the phenom-considered in Refs. 11-15 and 17 is the existence of a criti-
enological model of Ref. 12 was used to obtain the depeneal currentj. only for the direction strictly perpendicular to
dence of the Hall magnetoresistivitipg;(H) andpy;(H) in  the planes of the twinsa=0); for any other direction
the L and T geometrieglim andjlL m, wherem is a unit j.(a)=0 (0<a=/2). Nevertheless, measurements of the
vector perpendicular to the planes of the twins, from theresistive response for a solid vortex phase always $fidw
functionsp, (H) andp, (H) measured at an angle=45°  thatj.(a)>0 for any anglesr (althoughj.(a) may be an-
between the current density vectolying in the ab plane isotropig. Thus the model of uniaxial anisotropy of the pin-
and the planes of the twinsvhere the value op, (H) was  ning cannot take into account thg anisotropy of the solid
expected to be maximallt turned out that the behavior of vortex phasé:?® The simplest model in whicl, anisotropy
the functionsp,(H) andpy:(H) differ substantially, and on is realized for any angles in the presence of a planar pin-
that basis it was concluded that the influence of twins on thaing potential is the model of bianisotropic pinning with a
Hall constant is anisotropic, and that fact in turn causes asomposite potential formed by a superposition of two peri-
odd longitudinal component;, to appear. Anisotropy of the odic planar pinning potentials acting in mutually perpendicu-
Hall conductivity was investigated experimentally in Ref. 8, lar directions. The experimental realization of bianisotropic
where below the characteristic temperature for the onset gfinning, both in naturally occurrif§ and in artificially
vortex pinning at twins a decreasing ratiti,/aL was ob- created pinning structures, is based on the presence of two
served @}; and o}, are the Hall conductivities when tje —mutually orthogonal systems of planar, unidirectional, equi-
vector is directed perpendicular to and parallel to the planedistant pinning centers. It should be noted that at the present
of the twing. In Ref. 8 the anisotropy of the Hall conductiv- time there have been few experimental studies of the resis-
ity due to the influence of twins was explained on the basigive properties of superconductors, and then only ones with
of the WDT theory’ generalized to take into account the uniaxial anisotropy of the pinning.>* For the case of bi-
pinning anisotropy caused by the twins. The influence of thexnisotropic pinning there are no such studies agthet first
form of the vortex phase and of vortex pinning at twins ontheoretical paper on this subject appeared only in 2602
the behavior of the Hall conductivity and scaling was inves-We understand that a study of superconductors with a bi-
tigated in Ref. 9for a=45°). Two types of phase transitions anisotropic pinning potential created by mutually orthogonal
were observed, depending on the magnetic field directiosystems of twins and nanocraékand also a system of mu-
with respect to the twin plangspecified by the anglé): in  tually orthogonal narrow strips of magnetic materials
the region> 6* a transition from the Bragg glass to the (Co,Ni) deposited on superconducting films is planned for
liquid phase is observedat T=T,), and in the region the near futuré®?’
A< 6*, a transition from a Bose glass to the liquid phéste In this paper we investigate theoretically the d@dth
T=Tgg). In both cases a scaling |aﬂ\1<y°<pfx is found, with ~ respect to inversion of the magnetic figlesistive response
an exponentB=1.4 for 6> 6* and B=2 for #<*; this  of a superconductor in the mixed state in the presence of
relation is independent of the values of the temperaturehianisotropic pinning and a small Hall effect, and the case of
magnetic field, current density, and anglgwithin the re-  an isotropic Hall constatftis considered. Formulas for the
spective regionsand insensitive to the phase transition. A observed resistive characteristics of the system—the odd and
monotonic decline ofr,,(T) to the temperatureb, andTg,  even longitudinal and transverse magnetoresistivities
was observed, and also a sharp divergencgé<al,,, in the pﬁl(j,T,a) as functions of the current density tempera-
Bragg phase and saturation®t Tgq in the Bose phase; in ture T, and anglea specifying the direction of the current
the Bragg phase a dependencergf(T) on the pinning was  density vector with respect to the axes of anisotrtgge Fig.
observed. It was thus concluded that the behavior of the Hall) have been obtained in the framework of a two-
conductivity and the form of the scaling are substantiallydimensional stochastic model of bianisotropic pinning on the
different in the Bose and Bragg phases, and the latter debasis of the Fokker—Planck equation in the approximation of
pends on the type of disordéhe valueB=1.4 corresponds noninteracting vortices and in a first approximation in the
to point disorder, an@g=2 to correlated disordgr small Hall constant® The small Hall effect does not affect
We note that the experimental restftsndicate a viola-  the expressions for the even components of the magnetore-
tion of the Onsager relation for the kinetic coefficients{  sistivity pL(j ,T,a), but it does give rise to magnetoresis-
=—0yy); this is due to the influence of twins on the Hall tivity components which are odd in the magnetic field,
conductivity of an isotropic sample. It should be noted thatp, , (j,T,). In the absence of the Hall effect the properties
scaling relations of a general form, expressing the compoef the observedeven with respect to magnetic figlchagne-
nents of the conductivity tensé@r (including the Hall con- toresistivities and the resulting anisotropy of the critical cur-
ductivity oy, oy, in terms of the observable current— rent and guided motion of the vortices have been studied in
voltage characteristics in tHe and T geometries have been detail theoretically in Refs. 18 and 19. The nonlinear behav-
obtained in the framework of a phenomenological model ofior of the observed magnetoresistivitigs, (j,T,a) in a sto-
anisotropic pinning? in Ref. 15 a scaling relation for the chastic model of bianisotropic pinning, both in the presence
Hall conductivity in the presence of anisotropic pinning wasand absence of the Hall effect, are determined by the prop-
obtained in terms of the observable magnetoresistivities at aerties of the functions, ,(j,T,«), the probabilities of a vor-
arbitrary angle between the current direction and the twirtex overcoming thexy components of the pinning potential,
planes; this scaling relation differs substantially from thewhich describe the vortex dynamics in relation to the corre-
power-law scaling obtained in the isotropic case. sponding systems of planar pinning centers. The behavior of
A feature of the theoretical model of anisotropic pinningthe functionsp, , (j,T,a) results from the evolution of the
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y ning created by two orthogonal systems of planar unidirec-
tional equidistant pinning centers, these systems in general
having different concentrations of pinning centers and depths
of the pinning potentials. The preferred directions along
which the pinning forces are exerted by the corresponding
systems of pinning centers are characterized by pinning an-
isotropy vectorsx andy (see Fig. 1

The two-dimensional pinning potential of such a system
of planar defects is assumed to be additive and periodic in
the anisotropy directions, i.e.,

Up(X,Y)=Upa(X)+Upb(Y)7 1)
where
Upa(x) = Upa(x+ a), Upb(y) = Upb(y+ b),

anda andb are constant periods.
To solve the problem of the vortex dynamics in the pres-
ence of bianisotropic pinning we use the Fokker—Planck

F'Gt- L Cf°°_’dir_‘ate Syft?ﬁr:‘y_ associated "tVi_th two _fr_”lé“k')a”%’h °fth_°9ct’”a' method. The Langevin equation for a vortex moving with
systems of pinning centettheir arrangement is specified by the anisotropy - . - _ _

vectorsx, y, which are perpendicular to their planes, and the coordinatevelocny, v.in a magnetic fieldB 'f]B (where B_|B|' n
systemx'y’, tied to the direction of the currefihe current density vectgr ~ — NZ, Z IS @ unit vector along the axis, anch=*1) has the
is directed along theX) axis); « is the angle between vectoysandj, gis  following form:

the angle between the velocity vectoof the vortices and the vectrB is i

the magnetic field vector, arfé, is the Lorentz force. VA NayvXz=F + Fp+ Fin 2

where F . =n(®d,/c)jXZ is the Lorentz force @, is the

. ) . magnetic flux quantumg is the speed of light, anfis the
vortex dynamics with changing current and temperature ang ;. -ant density, F,=— VU, is the pinning force ¢, is the

is due to the realizat.ion o_f certain combinations of regime inning potential, Fy, is the force of thermal fluctuations;
of the vortex dynamics with respect to the two systems Okg the electronic viscosity constant, ang is the Hall con-
pinning centers. The quantitative and qualitative analysis Ogtant. The fluctuational forc,(t) is Gaussian white noise,

thes_e functions is done in terms of the_functioa;e},(j T,a) the stochastic properties of which are specified by the rela-
and is clearly demonstrated with the aid of a diagram of the;,,o

dynamical states of the vortex system on fhg, plane®® ~
The interrelationship between the nonlinear anisotropic prop-  (Fun,i(1))=0, (Fni()Fu(t"))=2T&;ns(t—t"), (3)
erties ofp, , and the principalin the directions of the axes
of anisotropy critical currentsjs¥(T) and saturation cur-
rentsjsY(T) of the given system are analyzed. New scaling
relationg® for the Hall conductivity in the bianisotropic pin-

whereT is the temperature in energy units. Using relations
(3), we can reduce Eqg2) to a system of Fokker—Planck
equations:

ning model are discussed in terms of the observed magne- #S+naySxz=(F_—F,)p—TVP, (4)
toresistivitieSp,i(j ,T,a) are discussed, and the scalingand  ,p
its stability in the basaK andY geometries are analyzed. i -V-S 5)

The material of this article is divided into Sections as
follows. In Sec. 2 the two-dimensional stochastic model ofwhereP(r,t) is the probability density for finding a vortex at
bianisotropic pinning based on the Fokker—Planck equationsmet at the pointr=(x,y), andS(r,t)=P(r,t)v(r,t) is the
is set forth, and expressions are obtained for the averagerobability flux density for the vortex velocity. The average
velocity of the vortex system in a first approximation in thevortex velocity (v) is by definiton equal to
small Hall constant. In Sec. 3 formulas for the nonlinearf fSd?r/f[Pd?r.
conductivity and resistivity tensors and all components of the  In the steady-state case E@) for the functionsP
observable magnetoresistivitieg}fL are obtained in general =P(X,y) and S=(S,(x,y),S,(X,y)) reduces to the equa-
form. In Sec. 4 the general form of the bianisotropic pinningtions

potential is made specific to its possible experimental real- nSx+naHSy=FXP—'~I'(<9P/0x),

izations, and exact expressions for the probability functions - (6)

vy and vy in particular cases are discussed. In Sec. 5 the —naySct 7S,=F,P—T(P/dy),

observable magnetoresistivitigg , are analyzed compre- \here

hensively. In Sec. 6 the scaling relations are considered in the e e

framework of the specified model. In the Conclusion we Fu=FLx—dUpaldx, Fy=Fiy=dUpp/dy.

state the main findings of this study. The stationarity condition for E(5) leads to the relation
S/ ax+dS, 13y =0. (7)

2. STOCHASTIC MODEL OF BIANISOTROPIC PINNING - Lo -, -
Because the pinning potential is additive, the probability

Let us consider the problem of the vortex dynamics in adensity for finding vortices can be written in factorized form:
superconducting sample in the presence of bianisotropic pirP(x,y) =P.(X) Py(Y).
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In this paper the Hall constamiy is assumed small com- By substituting formula$14) into (13), we finally obtain the
pared to the electronic viscosity. We introduce a dimen- following expressions for the components of the average ve-
sionless small paramete=ay /7 (e<1) and a parameter locity of a vortex in the presence of a small Hall effect in a

S=ne. first approximation in the parameter gd:
. To zeroth order in the pgrametér(the case of a negli- (V) =T FLy— 8¥y(F) 1 m,
gible Hall effec} the expressions for the components of the _ (15)
average velocity of a vortex have the fofim (vy) =Ty [FrLy+ 60 (FL) 1 7.
(V)=TFLI 1 (vy)=Dy(FLy)l, (8) The derivation of formulagl5) with the use of an ex-

~ _ o . pansion in the small parametéipresupposes satisfaction of
V\{here_vi(F)szi(F), =Xy (expressm.ns fory;(F) are the conditionﬁF,_x|>|57/y(F,_y)|, |F|_y|>|57/x(|:|_x)|- Con-
given in formula(11) of Ref. 18, the functiony;(F) has the sequently, expressior(@5) for the components of the aver-
physical meaning of the probability that the vortices will age velocity of a vortex are valid in the region of angtes
overcome the potential barriers of the pinning centers in th%atisfying the conditiore<tana<e L. In Secs. 3 and 5 the

x andy directions under the influence of an external eﬁeCt'VereSistive properties are considered for this region of angles.

force F (see Ref. _15 for more detalls The case of angles close to theX and Y geometries is
We now obtain expressions for the components of theconsidered separated in Sec. 6.

average velocity of a vortex with allowance for the Hall ef-

fect in a first approximation with respect to the small param-
eters(|5|<1). The function,, P, anda,, b, (defined in 3. NONLINEAR CONDUCTIVITY AND MAGNETORESISTIVITY

TENSORS AND THE EXPERIMENTALLY OBSERVABLE

formula (9) of Ref. 18 in this case can be written as
MAGNETORESISTIVITIES

Pa=Paot 6Pas, ay=aopt day, 9 I . . .
Po=Poo+ 0Ppy’ | by=bo+ dbys, ©) The electric field induced by a moving vortex system is
. = X{V)= - .
whereP,;, Py; anday,, by, are the corrections to the func- E=(1/e)BX{v)=n(B/c)(—(vy)x+(vy)y) (16
tions Py, Pyo andag, by (the zeroth approximation id) From formulas(15) and (16) we obtain the magnetore-
due to taking the small Hall effect into accouttie functions  sistivity tensorp for the nonlinear Ohm’s lavE= p(j)j:
Pa1, &y andPy,, &y, are obviously periodic with periods Pux Pxy
and b, respectively. Working by analogy with thed=0 ;3=<
case'® we use formulag6) and (7) and obtain expressions Pyx Pyy
for a,; andby,: _( vy(Fy) — oy (FL)vy(FLy) an
ovy(FLx) Vy(FLy) vy(Fy)

[ axlzﬂi}y( FLy)( Pao(X) —=P40(0)),

by1= = Vu(F L (Pho(y) = Peo(0))- The components of the tensprare measured in units of
Differential equations foP,, andPy,, are obtained from the p;=(®,B/7c?)—the magnetoresistivity to the flux flow;
system of equations fa, andb, : Fy=Fux—oFyvy(FLy), Fy=F+6F w(F) are the

| F.P.,—TdP,, /dx=ay., components of the external force acting along the vectors

(10

~ (11 andy, respectively.
FyPp1—TdPpi/dy=by;. As is seen from Eq(17), in the general nonlinear case
Equations(11) are analogous to the equations for thethe off-diagonal components of the tengosatisfy the On-

zeroth approximation, but now on the right-hand side are th€ager relation g,,=—p,,). We also note that the compo-
x- andy-dependent functiona,; andby,. The solution of ~ N€NtSpyy andp,, depend on the parametgexplicitly, while

equations(11) consists of the function the diagonal components, andp,, depend on it implicitly,
cia tra in terms of the arguments, andF, . All the components of
pal(x):(1ﬁ2)5y(FLy)a00§f(x)f dgf deifo), the tensorp (unlike the components of the tensé) are
X 3 functions of the current density, temperature, and angle
(12 The conductivity tensoé (the components of which are

FOx)=ex = (FLx—=Up(x))/T] measured in units of 2f), wich is the inverse of the tensor
and the functionP,;(y) obtained formally fromP4,(x) by  p, has the form
the change of variablg—y, the indicesx—y, anda—Db, T Oy Vy(Fy)fl 5
ap—bg, O,— 6. <‘r=( ):< _ -1
From the definition of the average velocity) of a vor- J x(Fx)
tex its components to a first approximation in the small pa-The off-diagonal components of the tensbrare, up to a

(18

Oyx Oyy

rameters are factor of the sign, equal to the dimensionless Hall constant
(0 ) =T[1— (A, laag) 1l 7, which also satisfies the Onsager relatian (= —oy,). In
s _ (13) the diagonal components the dependence on the parafeter
(vy)=7y[1= (7B /bbo) ]/ 7, by analogy with the tensdy, is implicit.
whereA, = [3P,,dx, B;=[5P,,dy. ForA; andB; by iden- The experimentally measurable quantities are referred to

tity transformations we obtain the following representation: & coordinate system tied to the curresiee Fig. 1. The lon-
A= — aagiydidF L (1/5) gitudinal E; and transvers&, components of the electric
1= y Lx x/1

field (relative to the direction of the currerdre related td,
B1=bbgyv,d/dF  (1/vy). (14 andE, by the simple relations
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Ej=Eysina+E, cosa, that in the nonlinear casp”+ and p, are combinations of
E_=—E,cosa—E,sina. (19 smoothed steplike transitiortsteps: p, is a combination of
o spikes, ant, is a combination of steps and spikes.
In the presence of the Hall effect the longitudinal We note the connection of the four components of the

=E,/j and transversg, =E, /] magnetoresisti\lities MUSt - magnetoresistivity to the properties of the functions . We

be separated into components which are eyen=[p(n) introduce theX and Y geometries, in whichlix (a= /2)

+P(h_ n)1/2, and (;d?éo :[Pd(”)_h_/)(_”)]f/_zawﬁh reSZECt andjlly («=0). Here there exist only the longitudinal even

to the magnetic field. To do this we find the ewv X0y yii F
magnetoresistivities py(j,T)=»,(j,T) and p{(j,T)

=[v(n) +»(~n)]/2 and oddv” =[v(n) =»(~n)]/2 com- =1,(j,T), while pX—gy=o (heyre we have terr!porarily

ts of the functi F dv,(F inginEq. | "\ Lo P
ponents of the functions,(F,) andw,(F,) appearing in Eq dropped the superscript#” from the quantitiesp, , ). Thus,

17) (the functionsv,(F ,) and v, (F,) are even with re- L T
(17 ( (FLd v(FLy) égeasurement of the longitudinal even magnetoresistivities in

spect to the magnetic field in view of the assumed evennet X andY i I 1o obtain th t and
of »(F)). In the region of angles bounded by the condition €2 andy geometries allows one o obtain the current an
temperature dependences of the functiens, which are

e<tana<e !, in which the functionsw,(F,) and vy(F,) fficient for obtaining all f fth toresistiviti
can be expanded in the small parameiewe have for these sutficient for obtaining all forms ot the magnetoresistiviies

components, with an accuracy up to terms®, pi . (j,T) to a first approximation in the paramet@at arbi-
N trary anglesy, since the functions, , appearing in formulas
( vy (Fy)=vy(FLy),

x , N (21) and (22) can be written asv,(Fix,T)=r4(jy,T)
vy (Fy)= = oy (FL)Vy(FLy), — V(i FY- Fo FY= o (i) = X0 T d i
iy, )5 vy(Fry,T) =2 (xT)=py(ixT) and, conse

{v;(Fy)z vy(FLy), quently, to recovewy(F ,,T) and vy (F,,T).

V;(Fy):_5V9(FLy)T’x(FLx)y

_ o 4. PROPERTIES OF THE PROBABILITY FUNCTIONS
where the prime denotes the derivativé(F)=dv(F)/dF. v, ,j,7 @ p,e k) FOR OVERCOMING OF THE PERIODIC

Using formulag(19) and(20), we obtain expressions for PINNING POTENTIALS

the even and odd components of the longitudipaland

transverse, magnetoresistivitiet®

[ p| = vy(FLy)sin’ a+ v, (F ,)cos a,
pl=[vx(FLx) — vy(Fy)]sine cosa,

(20

The nonlinear properties of the odd observable magne-
toresistivitiesp, , as can be seen from formul&80) and
(22), are completely determined by the behavior of the func-
tions v, (Fix,T), »y(Fiy.T), vi(Fix,T), and ) (Fy,T),
which depend on the form of the pinning potentiske the
" a 3 ) definition in formula(11) of Ref. 18. In analogy with Refs.
p. = dvx(FLdvy(Fuy) + vy (F) = vy (Fy)]sina cosa. 15 and 18, let us make this potential specific to HTSCs of the
(22) YBCuO type, where the experimental realization of aniso-
The even components of the magnetoresistiy[ty, beinga tropic pinning centers can be twins, nanotracks, or gaps be-
combination of the functions, andw, , reflect the nonlinear tween planes of the layered superconduttdr:2® For each
dynamics of vortices in a superconductor with bianisotropicof these cases the order parameter is depressed in the region
pinning. Formulag21) for p‘h do not depend on the param- of the pinning center, and, consequently, it is energetically
eter § to a first approximation in that parameter, i.e., theyfavorable for the vortices to be localized in that region.
correspond to the case=0 which was investigated in detail Analysis of the Hall resistive properties will be done on
theoretically in Refs. 18 and 19. The odd components of théhe basis of the same pinning potentiélg, andU, as in
magnetoresistivityp, , are of a Hall origin. They are pro- Ref. 18(formulas(19) and Fig. 2 of that papgrwhich lead
portional to the paramete$ and are a combination of the to formulas(20) for the functionv(f,7,e). Quantitative and
functions v, v, and their derivatives, V;, Below we qualitative analyses of its behavior as a function of all the
shall study the properties of the magnetoresistiyify on parameters and the corresponding asymptotic expressions are
the basis of the model bianisotropic pinning potential used irfliscussed in detail in Ref. 15. The characteristic curves of
Refs. 15, 18, and 109. v(f,7,&) as a function of the parametefrsand 7 (see Figs. 4
The dimensionless functions,(F,T) and Vy(F,'T') (F and 5 of Ref. 15 describg the nonlinear dynamics of the
denotes the argumenks,,F, of the functionv, andF,, vortex system as a function of the temperature and of the
F, of the functionv,), which have the physical meaning of e_xternal force exerted on the vortex perpendlcular to the pin-
the probabilities of a vortex overcoming the potential barri-NiNG center. It can be seen from those figures that the shape
ers of the corresponding systems of pinning centers—th@f the »() andv(7) curves is determined by the values of
main nonlinear components of the problem. In the nonlineaf"€ respective fixed parametersand f. The monotonically
case the functions,,, correspond to a smoothed steplike Ncr€asing fl_mct|0nv(f) reflects_ the nonlinear transition
resistive transition, and the functiong and v, have the ~TOM the regime of thermally activated flux floithe TAFF

form of spikes located in the region of nonlinearity of the '€9ime to the regime of free flux flowthe FF regimgas the
transition (see below In the regions of nonlinearity of the external force is increased at low temperatur@s<{),
functionsv, and v, with respect to current and temperature whereas at high temperaturerﬁé Uy) the FF regime is re-
(or, in other words, in regions of nonlinearity of the pinning alized in the entire range of variation of the external foiate
viscosity the corresponding dependences of the experimeriow forces because of the effect of thermal fluctuations on
tally observable magnetoresistivities manifest pronouncethe vortices. Analogously, the monotonically increasing
nonlinearity. It can be noticed from formul@®1) and (22)  function v(7) reflects the nonlinear transition from a dy-

(1)

[pZ vy (Fy)sir? a+ v, (Fy)cos a,
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namical state corresponding to the value of the external forceystems of pinning centers with pinning anisotropy veckors
at zero temperature to the saturation FF regime. andy. The condition that determines the temperature region
A characteristic feature of the odd magnetoresistivitiesn which the concept of critical currents has physical mean-
(22) is the presence in them of not only the functioms ingis 0<T<U, (for T=U, the transition from the TAFF to
themselves but also their derivatives with respect to the exthe nonlinear regime is smeared, and the concept of critical
ternal force. Mathematically the origin of these derivatives iscurrent loses physical meanindn analogy with the critical
due to the odd components of the functionsee Eqs(20)].  currentsj¥(r,a) and j¥(7,«) one can define the saturation
The latter, in turn, have a simple physical meaning. The dycurrentsjX(7,a) andj¥(r,) at which the nonlinear regime
namics of the vortex system in the presence of the Hall effecsf vortex dynamics gives way to the FF regime at the corre-
depends substantially on the magnetic field direction. Thgponding systems of pinning centeig=j(7/2), j¥
effective external forces,=F ,—neF v (F_y) andF,  =j¥(0) are the principal saturation currents along the pin-
=F_y,+neF v, (F ) appearing in the expressions fpf  ning anisotropy vectorsx and y, and j(a)=j¥sina,
andp, (for one of the magnetic field directionand acting  jY(«)=j¥/cosa).
on the vortices along the pinning anisotropy vectoandy
(perpendicular to the pinning centerontain contributions 5 opp MAGNETORESISTIVITIES
both from the components of the Lorentz force and the com- . __
ponents of the Magnus force. Depending on the magnetic Let us q[scuss the odd longitudinal and transver;e mag-
field direction, which is specified by the factar + 1, the netoresistivities caused by the Hall effect on the basis of the

pairs of components of the Lorentz and Magnus forces CaRianisotropic pinning potentiz_il introdl_Jced previousfpr-
be codirectional or oppositely directed, and the resultan ula(19) in Ref. 19. We obtain analytic formulas for them

force will be different in these cases; accordingly, the resis- y sgbsﬂtutmg the correspgndlng expressions for #hg
tive response will be different. The behavior of the functionsfunctlons(calculgted according to formulk0) of Ref. 19
v in relation to the parametefsand 7 follows directly from into formula (22):
the properties of the probability function py =Nej sina COSa[p_lcOSavy(pj sina, 7,&y)
The »'(f) curve has the form of a spike located in the
region of the nonlinear transition, and it goes to zero in the
linear regimes(for f—0:°). For f<1 one hasy'(7=0) —psinav,(p~*j cosa,7,8y)
=0 (this is because/(f )=0 for 7=0 in the regionf<1), X vy(pjsina,Tey),
and the functionv’(t) also has the form of a spike with a
zero limit for 7—o0; for f>1 the functionv’(t) decreases
monotonically from the value’ (f,0) to zero forr— oo, +nej sina COSa[pflsinavy(pj sina, 7,gy),
The transition to dimensionless parameters, which allow
one to take different potentiald,,,, U, into account in the

X vi(p~ 1 cosa,1,ey)

p_ =nevy(p Yj cosa,T,s,) vy(pjsina,7,ey)

X V;((p_lj cosa,T,&y)

general case, is done in the same way as in Ref. 18. The +p cosavy(pj cose, 7ex)
temperature will be characterized by the parameter Xvy(pjsina,7,ey).
=T/U,, the current density will be measured in unitsjef (23

=CcUo/(®od), UO:(Uxo’Uylggl_lz is the average depth of The behavior of the resistivity curveg, (j) and

the potential wellsg = (exey) " is the average cl(/)zncentratmn p;, (7) is a consequence of the character of the action of the
of pinning centers, andk=(s,/e,)"“=(a/b)™* and p  Hg| effect on the vortices in the case of nonlinear dynamics
=(Uxo/Uyo) 12 are measures of the corresponding anisotros the vortex system and, according to formul@g), is com-
pies. We recall that the dimensionless paramefggsand  pietely determined by the properties of the even and odd
fLy, which specify the ratio of the I'_orent'z fqrce componentscomponemS of the functions,(F,) and v,(F,). The mag-

FLx and Fi, to the corresponding pinning forceB netoresistivityp, is a combination of odd components of the
=Uox/d, Fpy=Ug,/d, are equal tof, ,=njp " cosa and functionsv,, . The influence of the Hall effect on the mag-
fLy=—njpsina. The dimensionless parametdtsandf, , netoresistivityp, is due to the fact that the resultant forces
which s_pequ the ratio of the external f_orges perpendmular,:X andF, contain Magnus force components, which depend
to the pinning Ce”terfx_arj?':y' to the pinning forces have o the direction of the magnetic field. This gives rise to odd
the form f,=F,/Fp=njp""[cos@)+nevfiy,7sine] and  components of the functions (F,) and vy(F,) in regions
fy=Fy/Fpy=njp[—sina—nen(f,,7)cosa]. The values of  their nonlinearity, these components being proportional to
the external forcé =F,, F=F, at which the heights of the  {he corresponding Magnus force components in those re-
potential barriers of the potential$,, andUpy, vanish atT  gions[see formulg20)]. The magnetoresistivity, contains

=0 correspond to the dimensionless critical currgif{sr)  contributions from both even and odd components of the
~1/(psina), j{(e)~p/cose (with accuracy to quantities functionsv,, . The Hall contribution to the magnetoresistiv-
vee cota<l, vyetana<1l, respectively. ForT=0 the prin- ity p, from the even componentshe first term in formula
cipal critical currents along the pinning anisotropy vectors (23) for p ) reflects the nonlineain current and tempera-
andy are equal tg*=jX(w/2)~p~ !, jY=jY(0)~p. In the  ture) Hall effect due to vortex pinning on both systems of
general case of nonzero temperature the critical currentginning centers and is directly related to the action of the
j5(r,@) andj¥(7,a) depend on temperature and correspondMiagnus force on the vortices. This effect is more efficient in
for a given anglex to a change in the vortex dynamics from the case when the vortices are found in the FF regime of
the TAFF regime to a nonlinear regime in relation to themotion with respect to both systems of pinning centers, i.e.,
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when the influence of the latter can be neglected. If the vor=j¥(7) and j,=j3(7), j,=ji(7) into several regions corre-
tex pinning on one of the systems of pinning centers is apsponding to all possible different dynamical states of the vor-
preciable, so that with respect to that system of pinning centex system in the given model. The end of the vegtovhich
ters the guided motion of vorticdthe G effect is realized, has the coordinateg 6ina, j cosa), belongs to some one of
then the Magnus force acting perpendicular to the velocitythese regions, depending on the value$ ahd . We intro-
and, hence, the pinning centers of that system, is suppressedce the critical angles:* =tan (j/j¥), af =tan *(j¥jY),
by the pinning forceif the vortices move along thexGaxis,  anda} :tan’l(j’s(/j%’) (the anglesy*, a7 , anda’ are formed
then the action of the Magnus force along the &xis is by rays passing through the origin of coordinates and the
suppressed by pinning, and vice versand the Hall contri-  respective crossing points of the pairs of lings=j% and
bution to the magnetoresistivity, from the even compo- jy:jg, =i andjyzjg’, andj,=j% andjysz). In Fig. 2
nents of the functions, , is negligible. the unshaded region FP corresponds to the full pinning re-
Thus the physical origin of the Hall contributions to the gime (jx<j)é, jy<j¥); here TAFF dynamics of the vortices
magnetoresistivity, , lies in the realization of certain com- s realized in respect to both systems of pinning centers, and
binations of dynamical regimes of the vortices with respecty, =0, vy=0. The region NT corresponds to the nonlinear
to both systems of pinning centers, and the behavior of thgansition regime in the linear TAFF and FF regimes of vor-
functions p; , (j,7) is determined by the evolution of the tex motion in the direction of the vectar(due to pinning on
vortex dynamics upon a change of current and temperaturghe system of pinning centers parallel to the &xis); in this
In Refs. 16 and 19 a description and analysis of the vortexegion j¥<jy<jZ (iIN@)<j<j¥a)) and 0<w,<1, vy
dynamics in a stochastic model of bianisotropic pinning in+q, vy=0, v, =0. Similarly, the region N corresponds to
the presence of the Hall effect is done with the aid of thea nonlinear transition regime between the direction of the
dynamical state diagram of the vortex system on jfig  vectory (due to pinning on the system of pinning centers
plane. Since the changes of the critical currents and saturggrallel to the & axis); herejX<j,<jX (jX(@)<j<j(a))
tion currents due the Hall effect are negligible, one can nezpg 5, ~0, v, =0, 0<w»,<1, », #0. The region FG,
glect the difference in the form of the diagram for oppositeshaded with horizontal lines, corresponds to a regime of
Icil'reCZt)I?Ens |Of 'tget mtagnbetlfclz f'_EId! ?Phd :cjse :.hat dl:g{m guided motion of the vortices along the pinning centers par-
ig. 2 to elucidate the behavior of the functiongand» ™ in ; ; ; SR <X
digerent regions of the diagram and to analyze the resistivit aIIgyI tc-)ythe O( aXIXS (the PG reglme), Ii Whl?ij)(<]£;]y
_ . y>Js () <j<jc(@)), andv,=1, by 0, v, =0, by 0.
curvesp, , (j,7) accordingly. - _ Region FG, shaded with vertical lines, corresponds to the
The plane of Fig. 2 is divided by lineg=jc(7), iy  regime of guided motion of the vortices along the pinning
centers parallel to they0axis (the FG, regime; here j,
" . >J%, jy<il ((X@)<ij<j¥@)), andv,=0, »,~1, v, =0,
/ 4 v, =0. Finally, the FF region, shaded by both horizontal and
/ vertical lines, corresponds to the regime of free flow of mag-
_ netic flux with respect to both systems of pinning centers
/ and, consequently, an isotropic resistive respofige re-
gime); here j,>%, jy>iY (i>iX(e),j>]%a)), and vy
=1, vy=1, v, =0, v, =0. Thus it is only in the region of
NT A the nonlinear regimes NTand NT, that the values of, and
L X vy =0 q 7 v, and, hence, the correspondifmyoportional to themcon-
tributions top, | , are nonzero.
~ / In accordance with these results it is easy to track the
FP / sequence of dynamical regimes in which the vortex system
vx=vy=0 i FG will be found as the current is increased at a fixed tempera-
Vs =0 Vy -1 ture and a given angle and, hence, to explain the qualita-
X s VY . T e . — . .
o [ tive form of the resistivity curveg, (j). Let us discuss
" [ NTy three cases in which their form is different. Fe o} we
2 [\, - obtain the following sequence of regimes as the current in-
Ylog L - creases: FR-NT,—FG,—NT,—FF, which corresponds to
the following sequence of transition currents between re-
gimes:j¥(a)<ji(a)<ji(a)<ji(«). In this case, in accor-
—— - dance with formula20), only the component, (F,) con-
le Js Ix tributes top, (j) in the region of current$y(a)<j<js(a)

(it arises on account of thecomponent of the Magnus force
the characteristic values, , v, in each of its regionsi,j¥ andjY ,j¥ are FMV% eFix, correspoqdmg to th.e FF regime of .vortex mo-
the principal critical currents and saturation currents along the pinning antion along the & axis in the region of nonlinearity of,).
isotropy vectors andy, respectively; FP is the full pinning region, N&nd The contribution of the componentg (F,) to p”’(j ), on the
NT, are regions of nonlinear transitions between the linear TAFF and FFRyther hand, are negligible, so that in the region of nonlinear-

regimes of vortex motion in the directions of tha @nd Oy axes, respec- .
tively. FG, and FG are the regions of directetjuided motion of the ity of », the x component of the Magnus forces

vortices along the ©and Oy axes, respectively, and FF is the region of free = — eF LyVy(FI__y)n is app_roximately Z€ero OWing to the T_AFF
flux flow; a*, o} , andaj are characteristic critical anglésee text regime of motion of vortices along they@xis. The function

X

FIG. 2. Dynamical state diagram of a vortex system onjtfje plane and
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p, (J) has, in addition to the contribution from the compo- fixed parameterp, ¢, k, andt, j, respectively, are due to the
nent », (F,) in the current regiong(a)<j<js(a), there influence of the set of values of these parametexsept;j)

also exists a contributionev,(F ) v,(¢ ) from the even on the values of the principal currerts, js, j¥, andj? that
components v, (F,), v;(Fy) in the current region form the dynamical state diagram, and also the geometric
j>js(a), wherev,~1 andv, is outside the TAFF region. factor—the value of the angle, which determines the se-
The casen> a3 can be considered in an analogous way. Inquence of states of the vortex system on the diagram as the
that case one obtains the following sequence of regimes withurrent or temperature is increased. Indeed, it follows from
increasing current: FRNT,—FG,—NT,—FF, which cor- an analysis of the diagram that at a given vaksl the
responds to the following sequence of transition currents besurrentsjc ((7,p,ek) andjy ((7,p,e/k) determine the exis-
tween regimesj’(a)<ji(a)<j¥(a)<ji(a). In this case tence region and the value of the observed resistive re-
the function p; (j) is nonzero in the regionj¥(a)<j  sponseg,(j,7). As was shown in Ref. 19, the influence of
<j¥(a) on account of the contribution from the componentthe “internal” parametersp, &, andk and the temperature

v (Fy). The functionp; (j) contains, in addition to this last, (the parameter) on the values of the currenig, js, j¢,

a contributionnevy(F ) »,(FL,) in the current regionj and j{ can be characterized as _foII_ows. With incr_ea;izng
>jl(a), wherevy~1, and, lies outside the TAFF region. there occurs a decrease in the principal critical currghty
Finally, we consider the case* <a<a% . In this region of ~and an increase in the principal saturation currgfit{, so
angles the nonlinear regimes N@nd NT, overlap in a cer- that the FP region on the diagram is narrowed and the NT
tain interval of currents, and, as a result, the funcppn(j) ~ region widened. With increasing there occurs an increase
contains components, (F,) and v, (F,). For example, in Of both pairs of principal currentf;,j¢ andjs.js, so that

the region of angles:¥ <a<a*, when the current reaches the functlonsv?(,y decrease monotonlcally_wnh increasiag

the valuejX(a) the nonlinear NJ regime(in the direction of ~however, the increase of the second pair of currents occurs
the Oy axis) begins to exist along with the NFegime(in the significantly faster than the first, and, as a result, a widening
direction of the & axis). Therefore, at this current, together Of the NT region and a less significant widening of the FP
with the component, (F) (due to they component of the  reégion occur on the diagram. The parameterandk de-
Magnus force,Fy,~ €7,(F ) a componentyy (F,) ap- scribe anisotropy of the bianisotropic pinning potential and

pears(due to thex component of the Magnus fordg,,,  determine the anisotropy of the critical currents and satura-
~—€D,(FL,)). In the region of angles* <a<a% , when tion currents. Growth of the parametgrand/or decline of

the current reaches the valji{«), the nonlinear NJ re- the parametek lead to a decrease in the values of the pair of

gime begins to exist along with the nonlinear Niegime. ~ critical and saturqt.ion'currenj%, js and an increase in the
Therefore, at this current a component(F,) appears along Values of the pairjg, j§. Here the NT region is shifted
with the component v, (F,). The contribution upward, the NT region is shifted to the left, and, accord-

nev,(FL,) vy(FLy) to the functionp| (j) continues to exist ingly, the FP region becomes Ionger and narrower. o
in the current regiorj>j%(@) for a* <a<a* and in the Let us now analyze the behavior of the magnetoresistivi-
c

current region tieSpU’ andp, as functions of current gnd temperature With
j>j%(a) for a*<a<a% , when neither of the functions, theT aid of formulas(23)'; suph an analysis corresponds. quali-
nor v, is found in the TAFF regime of vortex dynamics. ~ tatively to the analysis given above for the state diagram.

With the aid of the state diagram one can also analyzd he expressions fqs;" andp, contain combinations of fac-
the qualitative form of the resistivity curvgs , (7) in the  tors of the form
temperature region where the concepts of critical currents
and saturation curves have physical meaning. If one consid-
ers the breakaway of the vortices from the pinning centers v, (f ,,7,&y) v§(f,_y,r,sy),
under the influence of thermal fluctuations and defines the
vortex depinning temperatuﬁejp(j ,a,p,&,k) as the value at
which the vortex system goes over into the FF regime ofnd the properties of their current and temperature depen-
dynamics at given parametejs «, p, &, andk, then the dences follow directly from the properties of the correspond-
condition of applicability of the state diagram for analysis ofing dependences of the functiong,, at the given values of
the functionsp,, (7) has the form7<'~l'dp (Ref. 19. The the fixed parameters, €, €,, andr (for the current depen-
influence of temperature on the state diagram consists in dencegor j (for the temperature dependencaad the angle
monotonic decrease of the value of the critical currents andr. The functionswy(j)v,(j) and v,(j)vy(j) have a bell-
an increase in the values of the saturation currents with inshaped form, and the functiong(7)»,(7) and v,(7) v§(t)
creasing temperature in their domain of definition; this al-have a bell-shaped or monotonically decreasing form, de-
lows one to track the dynamics of the vortices and to explairpending on the absolute valugsoduli) of the arguments$,
qualitatively the dependences (7). We note that their andf,, of the functionsw, , in relation to unity. The func-
characteristic form is due to the vortex dynamics, which detions v,(j)»,(j) and v,(7)vy(7) have the form of a
pends onj and« at 7=0. smoothed steplike transition.

By analogy with Ref. 19, where in the bianisotropic pin- Let us illustrate the behavior of, | (j,7) for a number
ning model in the absence of the Hall effect the observeaf values of the angle: and a certain set of parameter values
dependencep“l(j ,7) were investigated, one can show that e=0.01,p=1.4, e=0.1, k=10, 7=0.1, andj=1.7, which
in the model under consideration, with a small Hall effect,makes for a clearer picture by providing wide regions of the
the diversity and qualitative form of the, | (j,7) curves at nonlinear regimes with pronounced resistive responses in

vi(famedn(fly.me,),

n(fx,medvy(fy, mey),
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FIG. 3. The functiorp; (j) for several values of the angte[deg]: 10 (1),
20 (2), 30 (3), 45 (4), 60 (5), 70 (6), and 80(7) for €=0.01, p=1.4,
7=0.1, e=0.1, k=10.

FIG. 4. The functiorp, (7) for several values of the angte[deg]: 20 (1),
30 (2), 45 (3), 60 (4), 70 (5) for e=0.01, p=1.4, j=1.7, £=0.1, and
k=10.

them. This set of parameters corresponds to the followingnitude with it. Because of the external dependence,oone
pairs of critical and saturation currenfg=0.5, j=2, and hasp, =0 ata=(0,7/2. The functionp, (j) has a limit of
j¥=0.5, j¥=1 and critical anglesx* =45°, a}=27°, a} zero forj—0 and forj—o. The functionp, (j) has the
=76° (as a criterion for determining the values of the critical TAFF limit for 7—0 if p~!j cosa<1 and/orpj sina<1,
and saturation currents we use the condition that the tangengsd a finite (non-TAFB limit if p~!j cose>1 and pj sin
to the v, , curves at the corresponding points make an anglex>1; for 7—co the limit of p, (7) is equal to zero. The
of 45° to the abscisga current and temperature dependencesppf can have a

In the nonlinear case the current dependence of the maghange of sigrisee Figs. 3 and)4since the magnetoresis-
netoresistivity p,” (see Fig. 3 is a superposition of bell- tivity p, contains positive terms entering with different
shaped functions of different signs, and their resultant fornmsigns.
is determined by the relative contribution of these functions,  The current dependence of the magnetoresistpvjtyat
this contribution, in turn, depending on the values of thelow temperatures(see Fig. % is a superposition of a
parameters and the angle We note that in the magnetore- smoothed steplike transition and bell-shaped functions. The
sistivities p, , there is an external dependence on the anglgualitative form of the temperature dependence of the mag-
a, on account of the factors sinand cosy, and an internal netoresistivityp, (see Fig. & is either analogous to the cur-
dependence via the arguments,=p~!jcosa and fiy rent dependences or differs from them for the same reason as
=pj sina of the functionsy, , . It is seen in Fig. 3 that with  for the resistivityp, . Like the dependences of the longitu-
increasing anglev the contribution top, (j) from the odd dinal magnetoresistivity, the change in form of ghe(j) and
componenty, (f,) increases, and that from the odd compo-p | (7) curves with increasing angle occurs on account of
nentw, (f,) decreasegaccording to the state diagram, both an increase in the odd component(f,) and a decrease of
components exist in the region of angle§<a<a5). In-  the odd component, (f,). The magnetoresistivity, is
deed, in accordance with formuw(a3), with increasing angle
« the external angular dependences s« and
sir’ acosa have qualitatively similar behavior; the compo-
nentw, (f,) increases and the component(f,) decreases
on account of the increase and decrease of the corresponding
components of the Magnus forcef,y,|=€7,(f ,) and
fuy=—€y(fLx). The qualitative form of the temperature
dependence of the resistivipy (see Fig. 4can be either the
same as the current dependen¢eswhich case the same =
kind of relationship, with a superposition of bell-shaped
functions, is manifested upon variation of the angje or
else it can be a function with a finiteon-TAFP limit as
7—0 (see curve? in Fig. 4); as was shown above, this is
determined by the values of the dimensionless fofggesand
f_, with respect to unity, i.e., the set of values of the param-
eterp, k, ¢, ] and anglex (which specify the corresponding
regime on the state diagranThe magnetoresistivity, ex-
ists only in _the nPn“near re?'mém _re_g|0ns of r_10nI|near|ty FIG. 5. The functiorp (j) for several values of the angte[deg]: 10 (1),
of the functionsv, (f,) andv, (f,)); itis proportional to the 20 (), 30 (3), 45 (4), 60 (5), 70 (6), and 80(7) for €=0.01, p=1.4,
dimensionless Hall constaatand of the same order of mag- r=0.1,£=0.1, andk=10.
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FIG. 6. The functiorp| (7) for several values of the angte[deg]: 10 (1),
20 (2), 30 (3), 45 (4), 60 (5), 70 (6), and 80(7) for €=0.01, p=1.4,
j=1.7,£=0.1, andk=10.

FIG. 7. The functiorp, for several values of the paramefer0.7 (1), 1.2
(2), 1.4(3), and 2(4) for e=0.01, =25, 7=0.1,£=0.1, k=1.

proportional to the dimensionless Hall constaind has the 5T B BN B T S0 MELIR T 0,
sqme_order of r_nagmtgde. Un“@ , the _magnetore5|st|V|ty the variation of the functiong, , (j, 7). Figure 9 shows the
py exists even in the linear regime _at h_|gh currfants and temEiependence of the resistivipy (j) for a number of values of
peratures on account of the contributioev,v,; because

the external dependence enmakesp, =0 for a=0,7/2.
At low temperatures the functiop, (j) has the TAFF limit
for j—0. The functiornp, (7) has the TAFF limit forr— 0 if
p~1j cosa<1 andlor pjsina<1, and a finite limit if
p~1j cosa>1 and pjsina>1. The limit of the functions
p.(J) andp, (7) for j—e andr—c, respectively, is equal o p; (j,7) curves are symmetric about the ling (j, )

to ne. Unlike p; , the functionsp, (j) andp, (7) do not — _ "5 thep; (j,7) curves coincides. The casps-1 and
change sign, since all the terms appear with the same sign o1 are degenerate and give these types of symmetry for
the magnetoresistivity | .

. . mutually reciprocal values ok and p, respectively, and
Let us consider the influence of the parametes, ¢, y P P P y

which characterize the bianisotropic pinning potential, on thecomplementary angles.
observable magnetoresistivities. The parameterand k
specify the anisotropy of the potential, and the parameter
the average concentration of pinning cent@ecall thate, Let us consider the scaling relations in this problem. We
=elk, ey=¢k). In the functionsp, , (j) an increase of the return to formulas of the general tyg2l), (22). Expressing
parameterp and decrease of the paramekelead to an in- the dimensionless Hall constant in terms of the observable
crease of the contribution of the odd componep{f,) and  magnetoresistivitiep;’, , we obtain anisotropic scaling rela-
to a decrease of the contribution of the odd componentions in two equivalent forms:

vy (fy) owing to the relative displacement of the functions
v, and v, (the functionv, is shifted to the right and,

is shifted to the left In the limiting casep>1,k<1 and
p<1,k>1 the contributions fromw, (f,) and v, (f,) are 1k 4
negligible. Figures 7 and 8 illustrate the current dependence
of the magnetoresistivity, for a number of values of the
parametergp and k. The influence of variations of the pa- 0

rameterp on the functiorp, |, (7) is contained in a change of \\3/
the arguments, , ,f,, of the functionsy, ,v,, and the influ-
ence of the parametédris analogous to the case of the cur- |
rent dependences. The functiops(j) (see curve3 in Fig.

8) andp, (7) a double sign change is possible. This is ex-
plained by the fact that fo} <a<a3 , where a contribu-

tion to the resistance is given by both odd components -3} 1
v, , there can exist an interval of currents and temperatures
such that one of the components is dominantmodulus L L L )
within that interval, while outside it the other component is 0 1 2 3 J
dominant, so that their summation leads to a double Sigii. g. The functiorp; (j) for several values of the parameter10 (1), 1
change in the corresponding dependences. With increasing), 0.25(3), and 0.1(4) ande =0.001, =25°, 7=0.1, £=0.1.

We note that, according to formulé®3), the substitution
p—1/p, k—1/k, anda—90°— « reduces to a relabeling of
the coordinates and, hence, to a symmetry of the layout of
thep, (j,7) curves for mutually reciprocal values pfandk
and complementary angles. Therefore, upon this substitution

6. SCALING RELATIONS
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FIG. 9. The functiorp, (j) for several values of the parameter0.001(1),
0.01(2), 0.1(3), and 1(4) for e=0.01, a=25°, 7=0.1, k=1.
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terna) angle dependences. Formul@$) for pH+ andp, in
the X and Y geometries are symmetric with respect to the
transformationsyy« vy, p—p~ L. The magnetoresistivities
p, in the X andY geometries depend on the dynamics of
vortices with respect to the systems of pinning centers along
which the current is directed and are described by the func-
tions vy andv, . The magnetoresistivitis, in theX andY
geometries arise because of the corresponding Magnus
forcesfy,=nep~*jvy(pj) andfyy=nepjr(p~*j), which
cause motion of the vortices in the direction of the current.
Both the Magnus forces and the magnetoresistiviliesare
proportional to the velocity of the vortices, and so they de-
pend on the dynamics of the vortices with respect to the two
systems of pinning centers. We note that at moderate currents
j~j§'y, which are actually attainable in experiment,
vLep tjvy(pj)]=vx(0), wlepjr(pti)I=vy(0) with
an accuracy to quantities of orderv, (0)<1 Conse-
quently, to this accuracy ta®r ~nevx(0) tan@ p~nery(0),
and the Hall angle@X Y are practically independent of the
current density. Formula&5) express the scaling relations
between the magnetoresistivitip$ andp, observed in the
X andY geometries and the Hall constanand also enables
one to recover the functions, and v, from the observeg,
andp, in the X andY geometries.

Let us discuss the question of stability of the measure-

and the functions appearing in these expressions are foundments in theX andY geometries, since in real samples the
by inverting Eqs(21). Relations(24) are valid in the domain anglea cannot correspond precisely to the values 0,7/2

of applicability of formulas(21) and(22), i.e., fore<1 and
at anglesa not close toa=0, /2, so thate<tana<e !

(see also Ref. 15For finding the magnetoresistivity tensors
near theX andY geometries we use the results of the method

Scaling relationg24) express the Hall constant in terms of proposed in Ref. 16 for solving the problem under consider-

the observable nonlinear magnetoresistivitigs . For ex-
ample, by measuring all the magnetore&shwm one

ation for arbitrary values oé. In Ref. 16 it was shown that
the components of the average velocity of the vortices are

can find the value of the Hall constant from the scaling relagiven by to(v,)= T (F )/ 7, (vy)= Vy(Fy)/’)?, where the
tions (24). Alternatively, knowing the Hall constant and any forceSF andF, satisfy Eqs(13). For e<1 these equations

three of the observable magnetoreasuvmqg one can

recover the other. It is easily checked that in the particular
case of uniaxial anisotropyr(=1) the first of the scaling
relations(24) goes over to the relation obtained previously in
Ref. 15 (formula (40) of that paper. We note that in the

are transformed to
E><: Fix— n‘9|:Ly7/y[ I:Ly'{' Ne FLxVx(ﬁx)]n

Fy=FL,—neF[FLc—neF yv(F))]. (26)

bianisotropic pinning model under discussion, scaling of thd_et us consider the regions of angles near XhandY ge-
form pxyupfx ordinarily observed in the case of isotropic ometries.

pinning is impossible, since the nonmonotonic function

p, (j,7) and the monotonic functiopf(j ,7) cannot be re-
lated by a power law.

Let us also consider the scaling in tieand Y geom-
etries, in whichjlix (e=/2) andjlly («=0). For these
cases we obtain from formuld45), (16), and(19)

X geometry, a=m/2: p/x=vy(Pj).p| x
=nsvep jry(pj)lry(p)),

Y geometry, @=0: py=v,(p *}),p. v
=nev(p Hj)nlepjry(p )],

tan0%=p. /o x=nevdep jr,(pi]l,

t@an®i=p; v/p/y=new[epjr(p )] (25)

and p; x=p;y=pL x=p v=0, i,
with anisotropic pinning the longitudinal odej and trans-
verse everp, magnetoresistivities vanish in thé and Y
geometries on account of the vanishing of the “tens@xX-

for a superconductor

Near theX geometry (cotr<<e)
Vy( FLy) + V),,( FLy)

X (NeFLy(Fy).

v [FLy+neF o (F)]~

Neglecting the terms quadratic # we obtain
FX=FLneFLyn[FLy+neF v (F]
~Fx—neFyvy(FLy),
FR~Fy+neF o Fie—neFymy(FLy)]
~Fuy+neF Lo (FY),
and in dimensionless quantities
fx~np~Yj(cosa+nevy(f )sina),
fr~npj(—sina+nev,(f})cosa).

Using formula(26), we obtain the magnetoresistivity tensor
near theX geometry:
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Vy(f;() —nevy(f) vy(fiy) _(19), expandingp ; in powers oan_= 72— a in the_vicin-
X X (27 ity of a=m/2 (cota<<en(pj)) and in powers ofa in the
nev(F)vy(TLy) vx(1) vicinity of a=0 (tana<er(p~1j)) to the first nonvanish-
Similarly, near theY geometry (tarv<<e€) we obtain the ing terms with allowance for the terms of first ordererfe
magnetoresistivity tensgry . <1), and separating the odd and even components, we
Finally, substituting the tensofs, andpy into formulas  obtain

Px=

|

Plix = -nepjvx[ep‘ijvy(pj)]v’y (pPAa,
plx == {vy i) = vilep™iv, (D1 - ep™ ¥ [ep™iv, (pDIv,, (pid Jaor
Py =nep ™ vy (0 v, lepive (P Dl a
T 1 - -1, - oy : -1,
ply ={va ™D = vy lepve pTIP1 —epiv. T DV lepiv. T D1} o,
=y )+ {valep™ v, D1 - S pilt + 2 ep™ v Tep™ v, DIV, (D) = v, (pid} (80)?
Plx = Vo@D + valep™ vy DT = pilt + 2 ep™ v o Lep™ vy (PDIV y (p1) = v, (pi ,
pLx =nev lep™ v, (pDIv, (o) + np~jv  [ep~ v, (p)1(A)?
i NI Ny U .
+§n€{Pva[ep vy DI (o) + 2 lep™! v, (pDIvy (P } (80,
" ey Ly, . o y
iy = Ve P+ {vylepive 07DV =5 p™ v (0TI + 2epivy Lepive 7D = va(pT D} e,
pLy =nev (pT v, lepiv (p™' D1+ npivylepiv, (p~' D1a’

U (o P B
+5ne{p Ve pT vy lepiva (T DY + 5 P2 (T DV lepiva (p N1} a?,

(28)
|
where a prime denotes the derivative(f )=dv(f)/df. L 1o L )
Formulas(28) for pj’, at small deviations\a and a from Apivlpiy=) = 5P Tin(p " Divdp -1 a”
the X and Y geometries, like formulag25), are symmetric
with respect to the transformation« v, p>p~*. Asfor-  In the linear regime one hasAp,y/p/x=—(Aa)?

mulas (28) show, the corrections of both first and secondAp,y/p,y=—a? The relative deviations of the values of
orders inAa,a exist only in the low-temperature region, the magnetoresistivities fop, x and p,  are in order of
where the nonlinear regimes are realiZee shall consider magnitude

this cas¢ and vanish when the temperature is raised. The
magnetoresistivitiep, and p,, which are equal to zero in
the X andY geometries, vary linearly ih @ and « at small
deviations from those geometries. The magnetoresistivities 1
p; exist only in regions of nonlinearity of the functioms Ap vlply=5P ilvdp D v(p~))]a?

(upon a deviation from th andY geometries, respectively

and are proportional to the factorg(0), »,(0)<1,i.e.,they  anq exist only in regions of nonlinearity of the functions
are stable. The main contribution to the magnetoresistivity, 4 v,. As in the case of the linear corrections, the correc-
p1 upon a deviation from th andY geometries at actually  tjons quadratic inA e, @ to the magnetoresistivities,” and
accessible values of the currents is given by terms,- ot small deviations from th& and Y geometries are

. _1. . oy .
—vy(pj)Aa andw,(p~7j)a, so that their stability is deter-  getermined by the dynamics of the vortices with respect to
mined by the dynamical regime in regard to the pinning cényhe pinning centers parallel to the current in the respective
ters along which the current is directed in tkeandY ge- geometries.

ometries. The magnetoresistivitiep, and p, vary Formulas (28) for the observable magnetoresistivities
quadratically with re_spect Ao an_dafron_1 t_he|r values in Pli at small deviations of the angle from the values
the X andY geometries. The relative deviations of the mag- =g /2 corresponding to th¥ and X geometries can be
. e ey + + . . 1

netoresistivities fop; x andp; y are in order of magnitude  seq to find these deviations. Neglecting at first the small
contributions quadratic ia& andA o= 7/2— « to the magne-
toresistivitieSpH+ andp, , one can solve the scaling problem
according to formula$25), i.e., one can recover the value of

S ST :
ApT Pl x= 5 Pilwy(pDIvy(p))](Ae)?,

_ 1, .
Apyxlpyx+= _EDJVy(pJ)/Vy(pJ)—l (Aa)?,
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the constante and the functionsv, and »,. Then, using p, (j,7) has also been done with the aid of the dynamic
formulas(28) for the magnetoresistivitigs, andp, , which  state diagram of the vortex system on thé, plane. This
vanish in theY and X geometries and are linear ila and  diagram permits one to analyze how the vortex dynamics
Aa=7/2— « at small deviations from those geometries, oneevolves upon changes in the current and temperature; this
can find the corresponding values efand Aa. The self- evolution determines the characteristic behavior and the ex-
consistency of this scheme is checked by calculating the coistence regions of the functions , (j,7). It was shown that
rections quadratic ix and A «, which should be small rela- the nonlinear anisotropic properties of the magnetoresistivi-
tive to the main contribution in th¥ and X geometries. tiesp, , are naturally linked to the principal critical currents
j&¥(7) and saturation currenig’¥(7), which form the state
diagram of the system under study. Unlike the stochastic
model of uniaxial anisotropic pinning studied previously,
CONCLUSION where the critical current densify. is indeed equal to zero

The odd resistive response due to the influence of th(f}or all directions, in the given model the anisotropic critical

. . . . Current exists for all directions. It should be noted that the
small isotropic Hall effect for a superconductor in the mixed : = .
. functionsp, (j,7) can have a change of sigaven a double
state in the presence of two mutually orthogonal systems o . i i
o o . change, whereas the sign o6, (j,7) does not change; at
unidirectional pinning centers has been studied in the frame: Xy XY .
. - .o . moderate currentg<jg”’ the Hall angles®( " are practi-
work of a planar stochastic model of bianisotropic pinning.

Formulas for the observable odd longitudinal and transversgany mdepend_ent of the current_ den5|ty_.
We have discussed the scaling relations for the Hall con-

magnetoresistivitiep, , (j,T,«) are obtained in this model g, ity in terms of the observed magnetoresistivitigs
on the basis of the Fokker—Planck equations in the noninteran the region of angles bounded by the conditiodtana
acting vortex approximation and to a first approximation in<6—1), and we have examined the scaling and its stability in
the small Hall constant. The two-dimensional bianisotropicthe basaX andY geometries.
pinning potential of general forniassumed to be additive
and periodic in the anisotropy directionsvhich models two
mutually orthogonal systems of unidirectional planar pinning
centers, was made specific for the purpose of investigatinge-mail: valerij.a.shklovskij@univer.kharkov.ua
the dependences of the magnetoresistivitigs on all the
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LOW-TEMPERATURE MAGNETISM

Kinetic properties and magnetic susceptibility of La 0.99r0.1MnO3 under hydrostatic
pressure
E. S. Itskevich, V. F. Kraidenov, A. E. Petrova,* V. A. Ventcel', and A. V. Rudnev

L. F. Vereshchagin Institute of High Pressure Physics, 142090 Troitsk, Moscow District, Russia
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The magnetic susceptibility, thermopowerw, and electrical resistivity of single-crystal
samples of the manganite La Sr,MnO; with x=0.1 are measured in the temperature range
80-300 K at pressures up to 10 kbar. The thermopaw@) is positive, with a domelike

shape of the curve, and decreases with increasing pressure.(Theand p(T) curves are found
to have features a@k~95, 120, and 135 K. The feature Bo~95 K is attributed to

orbital ordering, and that a5~ 135 K to a canted antiferromagreparamagnet transition.
The physical cause of the featureTaj =120 K is discussed. The transition temperatures
increase with increasing pressure at ratesof,/dP=0.43 K/kbar andiT,,/dP=0.57 K/kbar.
A weak feature is detected on th€T) and a(T) curves atfT=225-235 K. ©2003

American Institute of Physics[DOI: 10.1063/1.1542374

Complex oxides of manganese with the perovskite crysremains in the paramagnetic insulat®MI) state.
tal structure, which exhibit colossal magnetoresistance 2. At T=T;a~150 K a magnetic transition from the
(CMR) and have a number of interesting and unusual physiparamagnetic phase to a phase of canted antiferromagnetism
cal properties(charge and orbital ordering, quantum phaseoccurs, and in many papérs® the CAF state is said to be
transitiong are attracting interest in connection with the pos-unstable and accompanied by phase separation into ferro-
sibility of their practical application. Their crystal structure is magnetic polarongdroplets in an antiferromagnetic matrix.
similar to that of the highf. superconductingHTSC) ox- 3. At T=T5p~95-105 K a structural transition to a
ides of copper. The main similarity of the manganites andpseudocubic pha€e* is observed Q' — O*), with a simul-
cuprates is the mechanism of doping by divalent metals, itaneous magnetic transition to the FMI state. This is accom-
particular La, which substitute for the trivalent rare-earth ion,panied by new orbital and, possibly, charge ordering brought
causing the system to acquire new properti® analogy about by superexchange.
with HTSCs it can be assumed that the characteristic feature The physical properties of La,Sr,,MnO; have been in-
of the layered perovskite manganites is the two-dimensionaltestigated in many studies: the magnetic susceptibyity
character of the conduction in the Mp@lane and a strong Refs. 2, 5, 11, and 12, the resistivityin Refs. 2—4, the
interaction of the two-dimensional charge carriers with opti-magnetizationM in Refs. 4 and 11-13, the conductivity
cal phonons. o(w) and dielectric permittivitye(w) in the submillimeter

The results of different experimental studies on theseand optical frequency ranges in Refs. 11, 12, and 14-16, and
materials show much disagreement. This is explained by ththe sound velocity/; in Ref. 17.
strong dependence of the physical parameters of metal ox- An important role in understanding the mechanisms gov-
ides on the degree of doping, stoichiometry, and structuragérning the behavior of manganites is played by studies under
defects. pressure. We know of only one study of g ;MnO; un-

Interest in the compound withx=0.1 in the der pressure, and that was done at pressures up to 8.8 kbar.
La; _,Sr,MnO; series is dictated by the fact that this Sr con-The values found in that study for the shifts of the phase
centration corresponds to the lower edge of the concentratiotnansitions under pressure, 2.3 K/kbar fga(Tc) and 2.5
regionx=0.1-0.15 in which the main low-temperature stateK/kbar for T, obtained on the basis of electrical resistance
is a ferromagnetic insulatofFMI). For 0<x<0.1, canted measurements under pressure, are close to the values which
antiferromagnetism(CAF) is realized. At the other end of we found in Ref. 18 for La ,Sr,MnO; samples with a
this region, forx=0.16, the main state is a ferromagnetic higher Sr concentrationxE& 0.125). Since the sample with
metal (FMM). According to the phase diagram of x=0.1 is found at the boundary with the AF region, this
La; _,Sr,MnO; (Ref. 2 and the data of Refs. 3—5, a sample coincidence seems strange and needs additional verification.
with x=0.1 undergoes three phase transitions as the tenFhe goal of the present study was to obtain additional infor-

perature is lowered. mation about the mechanism of the magnetic phase transi-
1. At T=T¢=320 K one observes a structural transitiontions in a comparative study of the kinetic and magnetic
of the orthorhombic phas® to an orthorhombic phas®’ properties of La ,Sr,MnO; under pressure. For this we

with Jahn—TellefJT) distortions O—O'). Here the sample made measurements of the magnetic susceptibjlitsesis-

1063-777X/2003/29(1)/6/$22.00 30 © 2003 American Institute of Physics
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FIG. 2. The temperature dependence of the resistivity giig;MnO; at
1 pressured [kbar]: 0 (1), 5.3(2), 7.7 (3), and 9.9(4). The pressure values
0 ! ! L ' 1 L correspond to room temperature.
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FIG. 1. Temperature dependence of the magnetic susceptibility of
L8y ¢S, ;MnO; at pressures® [kbar: 0 (1), 4.3 (2), 6.2(3), 8 (4). The The sample used for the resistivity measurements was a

average values of the pressures for the temperature interval corresponding to,: : : : : .
the phase transitions are indicated. The inset shows a plg(Bf for P é?/“nder 5 mm in diameter and 7 mm in helght' The mea

-0 surements ofp were done by the standard four-contact
method. The contacts were prepared using Ag paste. The
distance between potential leads was 3.5 mm. The measuring
current did not exceed 100A. The resistivity at room tem-
perature and atmospheric pressure was=4.0 Q) -cm.

The hydrostatic pressures were produced in a steel fixed-
pressure chamber with an inner channel 12 mm in
diameter? The pressure medium used wasSRE silicone
liquid.

Single-crystal samples of La,Sr,MnO; with x=0.1 Figure 2 shows a semilogarithmic plgt p{T) for dif-
were cut from a cylindrical bar grown by the zone-melting férént pressures. There are no regions wiiid T>0. How-

method with radiant heatin§,with the axis of the bar in the ©Ver, one can clearly see a tendency toward the appearance
[100Q] direction of the crystal. of such segments as the pressure is raised. Except for the

region T~100-140 K the Im(T) curves are approximated
by straight lines with kinks at the characteristic phase tran-
sition points:T~100, 120, 136, and 225 K. With increasing
pressure the resistivity decreases and the points at which
The magnetic susceptibility was measured by a modu- the kinks occur shift to higher temperatures. We associate the
lational method in a 19 Hz alternating current and with afollowing phase transitions to these characteristic points in
magnetic field amplitude of 10 Oe® The modulating and order of decreasing temperature) T ,~225-235 K—a
receiving coils were placed inside the high-pressure chamtransition within a paramagnetic insulator phase withGHe
ber. The pressure was measured by a Manganin manometaitice, possibly due to diffusion of vacancies and ordering of
in the whole temperature range as the sample was cooled atlae structure; 2 To,~136 K—paramagnetic insulator
rate of 0.3—0.5 K/min. canted antiferromagnet, in which the distorted lattice and
Figure 2 shows the temperature dependence of the magfe insulator state are preserved; phase separation into ferro-
netic susceptibility at different pressures, and the inset showsagnetic polarongferrong and an AF matrix is not ruled
the x(T) curve at atmospheric pressure. The growth of theout; 3) Ty,~120 K—a phase transition due either to “freez-
susceptibility on cooling from room temperature begins ating” of the polarons and the formation of a spin glass to
T~160 K, and they(T) curve has two maxima at tempera- a change in the lattice parameter$;T4 o~ 100 K—a struc-
tures of 135 and 119 K. The first maximurii{,) can be tural transitionO'—O*, accompanied by a magnetic transi-
attributed to a phase transition from the paramagnetic insuion to a ferromagnetic insulator state with orbital ordering
lator to a canted antiferromagnet, and the secdngl)(may  and possible charge ordering of the type given in Ref. 22.
be due to various causes which will be considered below. Figure 3 shows the pressure dependence of the phase
Near 100 K one observes a minimum with a subsequentransition temperature$-,, Ty, and Tgo, Obtained from
growth and an inflection point at 95 K. This is a region of resistivity measurements and from magnetic susceptibility
orbital ordering Too) and also of structural@’ —O*) and  measurements. The averaged rates of change with pressure
magnetic (CAF-FMI) transitions. With increasing pressure obtained from thep and x measurements aréTca/dP
all of the singular points shift to higher temperatures. =0.43 K/kbar andiT,, /dP=0.57 K/kbar.

tivity p, and thermopower in the temperature range 80—
300 K at hydrostatic pressures of up to 10 kbar.

SAMPLES

MAGNETIC SUSCEPTIBILITY
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150 —The thermopower falls off with increasing pressure: at
Tea the maximum of« it decreases from 35QV/K at P=0 to

140 Q_____-_____e__/———e—r—g— 250 uV/K at P~10 kbar.
- —For T>T . the thermopower decreases almost lin-
130 early up to room temperature at a rate~el.3 uV/K?2.
~ . M —For T<Ta the thermopower decreases very sharply
~ 120 Q’W with decreasing temperature. Measurements @f this re-
gion are difficult on account of the high resistivity of the
1o sample and are restricted to temperatures not lower than

100 Toom T~120-150 K.
<' . 5 © —In the temperature region 230—240 K the same feature

% F o as on the curves of |p(T) is observed at all pressures.
! L ) i —In the cooling—heating cycle the values@gxhibited
0 2 4 6 8 substantial hysteresis, especially noticeableTat220 K.
P, kbar Repeated cooling from room temperature gives values of the

e 1A0A i .
FIG. 3. Dependence of the critical temperatligg,, Ty, and Ty On pres- the,rm,ODO\Ner 10% higher than t,he p,reVIOUS measurement.
sure for La ¢Sk ;MnOs, obtained from measurements of the resistiymy 1 NiS is seen on thex(T) curves in Fig. 4 at pressures of
and magnetic susceptibiliyD). The values of the pressures are given with P=0 and~ 10 kbar.
allowance for the pressure drop as the temperature is lowered. —The value ofa at T=300 K decreased by 20% dur-

ing a 7-day hold at a pressure of 10 kbar.

To monitor the stability of the resistivity in time at a
pressure of 5.3 kbar we measured twQT) curves at an DISCUSSION OF THE RESULTS
interval of 15 days. It was found that a hold under pressure , .
decreaseg. The observed decrease jnwas largestover The influence of pressure on the manganites can be re-

20%) in the room-temperature region and fell to zero forduced to three main factors: i
T<130 K. 1) pressure decreases the distance between atgms,

increasing the overlap of the orbitals and the hopping prob-
ability t;; and causing broadening of the conduction bsd
(ddyn_o/ IP<0; W/ 9P>0);242°
2) pressure causes an increase of the geometric ahgle
The thermopower measurements were made in the dyn the Mn—O-Mnchain?*?®> which again leads to an in-
namic regime during cooling and heating of the high-crease of the temperatutg and broadening of the conduc-
pressure chamber by a modified form of the technique sdion bandW~|cosé|/d** (96/9P>0; JW/JP>0);
forth in Ref. 23, which has previously been used successfully ~ 3) pressure decreases the coupling coefficignof the
for measurements of in metals, HTSCs, and manganites. electron—phonon interaction due to the JT polarons
Figure 4 shows the temperature dependence of the thefdao/dP<0; InTc/dP>0)*%" where T¢ is the Curie
mopower « at different pressures. One can discern severalemperature.

THERMOPOWER

characteristic features on all the curves. The relative contribution of these factors to the change
—At all pressures the curves have a domelike shap@f the Curie temperatur@: of manganites under pressure
with a maximum at a temperatufig,,~185—190 K. was studied in Refs. 24 and 27. On the basis of the experi-

mental data on the relative change under pressure of the dis-
tance dyn_o (kq=—2.32x10"° kbar 1) and angled (k,
=(8.5—16)x 10" ° kbar ') obtained in Ref. 24 on a large

number of oxides §3A1sMNO5 (L=La, Pr; A=Ca, Sr, B3,
300k the theoretical estimate d1InTc/dP=dln W/oP~4
x10 % kbar ! was made in Ref. 27. However, experiments
250+ on the manganites (La,¥)}CaMnO; (Ref. 27 and
X La; ,SrMnO; with x=0.125 (Refs. 18 and 2B and
% 2001 x=0.1 (Ref. 4 give an average valuéT./dP~2 K/kbar
5 1501 and, henceg In Tc/dP~2x10 2 kbar L. This is more than
an order of magnitude higher than the theoretical estimate,
100 which takes into account the pressure dependence of only the
50+ parametersly,,_o and 6. Therefore, as was proposed in Ref.
ol [ . . 1 27, it is necessary to take into account a third factor, i.e., the
100 150 200 250 300 electron-lattice(polaron coupling and its pressure depen-
T.K dence. The lifting of the degeneracy of the ground stgtef

fG. 4 T d § e th o the electrons on account of the Jahn—Teller effect leads to
. 4. Temperature dependence of the thermopower g§dg,MnO; at : :
pressuresP [kbarl: 0 (1). 5.3 (2), 7.7 (3), 9.9 (4). The solid curves were local deformations of the lattice around these electrons and

obtained on cooling, the dashed curves on heating. The pressures correspotr%th.e formation of so-called JT polarons. The effective con-
to room temperature. duction band of these polarons has the form



Low Temp. Phys. 29 (1), January 2003 Itskevich et al. 33

W= W exp( — 2ay). (1)  which facilitates double exchange and is analogous to an
) increase in the Sr concentration. In the second case, changes
In the case of strong Hund coupling(>Wer) one has .41 pe |ocalized in the vacant sites of the metal, causing a
T~ Wer, and displacement of the oxygen atoms; this is similar to an in-
aINTe/dP=aINnW/IP—2day/dP. (2) crease in the JT distortions of the Iatticg. A thermogra_tvimet—

) . ric study done in Ref. 29 on samples witk0.1 and which,
According to estimate¥,  dag/dP=—(1-2) |ike ours, did not have a segment wity/dT>0 on the
X102 kbar *. Thus the contribution of the change of the |, o(T) curve, gave a value of 3.0820.002 oxygen atoms
energy of the polaronic coupling to the increase_of the temper manganese atom. Since in these manganites the oxygen
peratureTc under pressure is an order of magnitude largefzoncentration cannot be greater than 3, this number indicates
than the contributions dU(_?4t0 th_el change of the distancéhe nearly complete absence of vacancies in the La, Sr, and
dyn-o @nd angled (~4x10 " kbar 7). Acting in the same M sjtes. We therefore concluded that the discrepancies in
direction, these three factors provide a good correlation ofne data are due either to the presence of dislocations in our
the calculated estimates and the experimental results for t'%eamples or to a nonstoichiometric composition and the pres-

dependence InTe/oP (~10"% kbar ). ence of vacancies in the crystals of other authors.
It follows from Refs. 18 and 28 that in a ,&,Sr,MnO; Studies of La_,Sr,MnO; at frequencies in the submil-
sample withx=0.125 the characteristic temperatufg,  |imeter region, 100-1100 GHZ,for valuesx=0.1—0.175

Too (Tco), and Ty vary with pressure at close rates jn the temperature range 10-300 K the transport of charge
~2 Kikbar. This is evidence that the same physical causgconductivity is effected mainly by localized carriers, even
underlies these changes. A similar closeness of the rates gf those regions wherdp/dT>0. As a rule, satisfaction of
change of the characteristic temperaturég{) Tca, Too:  this inequality is indicative of the presence of metallic con-
and Ty (0.4-0.6 Kikbar is also observed for the qyctivity. It turned out that the charge carriers in this range of
La; ,SrMnO; sample withx=0.1, only they are 4-5times  y and temperatures are still strongly coupled to the lattice.
smaller than for the sample with=0.125. This leads 10 & Thjs strong localization of carriers should invariably mani-
valued In Tena/ 9P~5x10"° kbar * in the samples studied; fest itself in the temperature dependenceF) obtained in

In our view, this can be explained by two causes. With dejrect current. In the whole temperature range at all pressures
creasingx in the La_,SrMnO; system the value oty we did not observe the segment with decreasing resistivity
increases from 0.07 fox=0.15 t0 ap=0.19 forx=0.1*°  \hich was described in Refs. 2—4—we observed only a ten-
This is due to the growth of the JT distortions of the Iatticedency toward the appearance of such a regio aff ¢,

with decreasing. One can surmise a strong dropiag/dP  with increasing pressur@Fig. 2). To elucidate the nature of
for smallx. However, we think it is more realistic to assume, the conductivity and the degree of localization of the charge
as was done in Ref. 25, that the low value &)TN/aP_ carriers we constructed plots of gaf(1/T%) and Inp
~0.3 K/kbar (Ty is the Nel temperature observed in  —f(1/T) (Fig. 5 for the maximum pressure of 10 kbar. In the

carriers and the absence of double exchange even at suchyge has

pressure. The low values of the derivativids,/JP are also
obtained for other AF insulators: CaMgQ0.41 K/kbay, p=constexd (To/T)], (3)
YCrO; (0.38 K/kbay, and LaTiQ (0.23 K/kbay. However,
with doping and the appearance of double exchange and fefshere T, is a characteristic temperature.
romagnetism the values of the derivativ&k:/JP in man- However, if thermally activated hops occur only between
ganites increase to 1.5-2 K/kbar. This is apparently due t@earest neighborgMiller—Abrahams conductivity or if
the strong dependence of the double exchange on pressutBere is thermal excitation of carriers from a localized Fermi
In the manganites that we studied, which are found near thwvel to the conduction edge, then
boundary of the AF region, the double exchange is still very
small. p=constexp E/T), (4)

The appreciable difference in the values obtained for the
characteristic temperatures and their pressure derivatives imhereE is the energy difference of the two staf8&he first
the present study and in Ref. 4 and also the increased valugpe of dependence is shown in Fig. 5a. One observes two
of p3ggin comparison with Ref. 3 made it necessary to checkectilinear segments: one in the low-temperat(l'€), FM
the stoichiometric composition of the samples. An iodometinsulator region T~90-110 K) and the other in the high-
ric analysis of the samples for their oxygen concentratiortemperature(HT), PM insulator region T~ 185-300 K).
gave a value of 2.9950.005 oxygen atoms per atom of This is evidence of hopping conductivity with a variable
manganese. hopping length in these temperature regions. Figure 5b

The disparity in the temperature dependence of the kishows the second type of dependencey=i(1/T). In the
netic parameters and the phase transition temperatures dugh-temperature region the curve is nonlinear, but in the
cording to different investigators for samples of the samdow-temperature region a good linear approximation is ob-
composition is due to different conditions of chemical syn-served. However, the thermal excitation of carriers is more
thesis, which determines the stoichiometric composition oprobable in the HT region than in the LT region. It may be
these sampleS. At low doping levels large accumulations of that the linear approximation is explained by the small size
vacancies can form at the La and Sr sites and/or Mn sites. lof the LT region 15 K). Moreover, the start of the linear
the first case there is an increase in the hole concentratiodependence+ 108 K) is shifted with respect to the tempera-
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10/TV4 /K4 scattering on the disordered spins in the PMI state. The pres-
24 9286 28 30 39 sure dependence of the temperatiligefrom samples with
' ' ' ' x=0.1in the LT and HT regions is of an irregular character,
- but, on averagel, decreases with increasing pressure.
B As to the anomalies op and y at the temperaturd@,,
[ e ~120 K there is as yet no unanimity of opinion. In Ref. 5 it
L T ] is attributed to the formation of a spin glass. That conclusion
- v T, 102K was reached on the basis of an observation of a shift of the
B - maximum of the magnetic susceptibility at 120 K to higher
temperatures as the frequency of the modulating field was
increased. We have conducted a similar experiment, varying
- the modulation frequency from 19 Hz to 10 kHz, and de-
T w T T tected no such effect. We are inclined to regard the phase
b transition point affy,~ 120 K observed in the measurements
of p andy as being due not to the formation of a spin gfass
but to a transition from a mixture of two phase$ andO*,
which, according to neutron diffraction stud@s;oexist in a
narrow temperature interval 120—-140 K, to a single struc-
tural phaseD*.

The general form of the temperature dependence of the
thermopowerw(T) for La; ,Sr,MnO; with x=0.1 has been
encountered previously for other perovskite structures. A
5 Al, é é 1'0 similar character of the(T) curve, with a broad maximum

3 (hump in the region 160-190 K, was observed by the au-
10771 ,1/K thors previously in HTSC yttrium and mercury cuprates in
FIG. 5. Temperature dependence of the resistivity of 58 ,MnO; at a the normal state. In _the 2compound Y5064 @ value
pressureP=9.9 kbar:p="f(1/T) (a); p="f(1/T) (b). The pressure corre- | max~190 K was obtained? In mercury cuprates the value
sponds to room temperature. of Tax iNCreases with increasing number of Gu@lanes,
from 165 K for Hg-1223 to 195 K for Hg-124%.The man-
ganites and HTSC cuprates both have the perovskite struc-

T bv—6K. Alth ¢ hat the th Iture, and the optical frequencies of their phonon spectra are
ture Too by ~6 K. All these factors suggest that the thermal | ,se. 160600 cmt. An attempt to explain the appearance

excitation hypothesis be rejected in favor a hopping mechays the proad maximum on the(T) curves in HTSC cuprates
nism with a variable hopping length. as being due to a strong electron—lattice interaction and the
Itis of interest to examine the deviation of the tempera-formation of vibrongcorrelated polaron theoryvas made in
ture dependence of Fhe resistivity from formul® in the  Ref 34. However, the real change ©f, @, and T
region 100-185 K in relation to the temperatuig.x  under pressure in the yttrium cuprates in many cases differs
~185-190 K at which the thermopower(T) reaches its  from the theory even in sign. But the great similarity of the
maximum. To Wlt_hln the experimental accuracy, both of thepanavior ofa(T) in HTSC cuprates and manganites, in both
characteristic pointsTmax and the boundary of the HT re- of which the charge carriers are small and strongly localized,
gion, are nearly independent of pressure. When the temperayggests that the explanation for this nevertheless lies in the
ture is decreased below 185 K, a sharp decrease of the strong electron—lattice interaction.
thermopower and a slowing of the rate of increase of the  The anomalies which we have observed in experiments
resistivity are observed. This indicates that a new mechasy, the resistivity and thermopower in the region 220-235 K
nism, tending to increase the conductivity, comes into play ahaye also been observed in measurements on the propagation
that temperature. We are inclined to attribute it to the appearst sound with a frequency of 770 MHz in La,Sr,MnOg
ance of FM clusters and double exchange. This mechanisghmmeS withc=0.175% Since in the case which we inves-
will remain present as the temperature is decreasdihtd,  figated the transition occurs to the paramagnetic insulator
when the sample passes completely into the orbitally ordereghase’ while in Ref. 35 it occurred to the ferromagnetic
FMI state. metal phase, this transition is most likely due to structural

_ 1/4 H
From the plots of Ip=f(1/T™) we determined the cpanges, e.g., to a decrease of the JT deformations of the
phase transitiont, for all pressures. The values df, at lattice, and not to magnetic transformations.
atmospheric pressure for the LT§"=1.3x 10° K) and HT

(TW=2.32¢ 10 K) regions correlate with the data of Refs.

2 and 31. The characteristic temperatlig, which deter-

mines the slope of the straight lines in Fig. 5a, depends ogoncLUSIONS

the state of the sample. On the high-temperature part of the

graph the sample is found in the PMI state, and on the low- 1. The temperature dependence of the resistivity and
temperature part, in the FMI state. The fact tﬂl‘é’()<Tgh‘) magnetic susceptibility of a lkaSr {MnO; sample in the

is apparently explained by the fact that the scattering of théemperature region 90—300 K and at pressures up to 10 kbar
carriers on the ordered spins in the FMI state is less than thieas been found to exhibit featuresTat 100, 120, and 135
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The optical and magneto-optice¥O) spectra of the ternary compound UCyAee investigated
theoretically from first principles, using the fully relativistic Dirac linear-muffin-tin-orbital

band structure method. The electronic structure is obtained with the local spin-

density approximatiodLSDA), as well as with the so-called LSDAU approach. Better

agreement between the theoretically calculated and the experimentally measured MO Kerr spectra
is found with the LSDA-U approximation. The origin of the Kerr rotation in the compound

is examined. ©2003 American Institute of Physic§DOI: 10.1063/1.1542375

1. INTRODUCTION and localized electron models are sufficiently different and
Determination of the energy band structure of solids is aaccurate that comparison with experimental spectra allows a

many-body problem. Band theoa mean-field theory for Meaningful assessment of the localization. _

treating this problemnin the framework of the local spin- There are quite a few first-principles calculations of the
density approximatiofLSDA) has been successful for many MO spectra of uranium compounds’ The MO spectra of
kinds of materials and has become an exceptionally valuablguch compounds as UAs$Ref. 5 and UsP, (Refs. 6 and 8

tool for first-principles calculations in solid state physics.are well described in the LSDA, and we can conclude that
However, there are some systematic errors which have beahey have at least partially itinerant electron behavior. On the
observed when using the LSDA. In particular, the LSDA other hand, the MO spectra in US, USe, and UTe can be well

fails to describe the electronic structure and propertiesfof 4 yescribed only in the LSDA U approximatior, supporting
and some 5 electron systems in which the on-site Coulomb o |ocalized description for theirfSelectrons.

interaction among the electrons is strong. A wide variety of In our previous pap&we reported the theoretically cal-

physu_:al properties grlsg from th_e correlations _a_mba@c- culated MO spectra of UCyP Within a bandlike description
trons in these materials: metal—insulator transitions, valencé

fluctuations in the Kondo effect, heavy fermion behavior,Of the 5f electron's, good agreeme”t with the measured MO

superconductivity, and so on. Such materials are callegPectra was obtained. In this work we present a detailed the-

strongly correlated electron systems. Many new concepts fgpretical investigation of the electronic structure and MO Kerr

addressing these phenomena have been proposed, and thipigperties of the UCuAscompound. The nearest-neighbor

a field of very active research. distance between uranium atoms is increased from 3.80 A in
Actinide compounds occupy an intermediate position belUCuP, to 3.95 A in UCuAs, and one would therefore ex-

tween itinerant 8 and localized 4 systems;? and one of pect an increase of thef3ocalization in going from UCup

the fundamental questions concerning actinide materials iy UCuAs.

v_vhther their 5 states are localized or itinerant. This ques-  Experimental measurements of MO spectra in UGUAS

tion is most frequently answered by comparison between X ere reported by Schoenesal. in Ref. 10. It was found that

perimental spectroscopies and the different theoretical de[he MO Kerr rotation in the ferromagnetic phase reaches a

scriptions. Indeed, recent progress in fwst-pnnuplesvalue as high as 1.75° at 1.2 eV. The Kerr ellipticity of

calculations of optical spectra illustrates that optical an . .
magneto-opticalMO) spectra are developing into a power—dUCUA% has a maximum value of 1.1° at 2.3 &V,

ful tool for tracing the electronic structure of actinide com-  THiS paper is organized as follows. The computational
pounds. Both spectra depend quite sensitively on the undefletails are given in Sec. 2. Section 3 presents the theoretical
lying electronic structure, and can be utilized to assess thelectronic structure and MO spectra of UCyAJhe results
degree of localization of thefSelectrons. The basic suppo- are then compared to the experimental data. Finally, the re-
sition is that optical and MO spectra calculated with itinerantsults are summarized in Sec. 4.

1063-777X/2003/29(1)/5/$22.00 36 © 2003 American Institute of Physics
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2. CRYSTAL STRUCTURE AND COMPUTATIONAL DETAILS JE 1
_ 8i:m:ELSDA+(U_J)(§_ni)
UCuAs, belongs to tetragonal As—Cu-Si—Zr crystal i
structure with the space groig/nmm (No. 129 with U at 1
the 2c position, Cu at the B position, and As at the&and =E_spat Ues > —ni). (2
2c positions. The lattice constants a@=3.951A, ¢
=9.558 A ! The unit cell of UCuAs contains 8 atoms. This simple formula gives the shift of the LSDA orbital

The details of the computational method are described ienergy— U /2 for occupiedf orbitals (1;=1) and+ U /2
our previous papet,and here we only mention several as- for unoccupied orbitals (;=0). A similar formula is found
pects. Self-consistent energy band-structure calculations @r the orbital-dependent potent|(r) = 6E/dn;(r), where
UCuAs, were performed by means of the fully relativistic, the variation is taken not on the total charge density) but
spin-polarized linear-muffin-tin-orbitd SPR LMTO method  on the charge density of a particulidh orbital n;(r):
using the atomic sphere approximation with combined cor-

. ; 1
rections included?™'° The LSDA part of the energy band- Vi(r)=Viso") +Uer| 5 —ni)_ 3
structure calculations was based on the spin-density-
functional theory with von Barth—Hedin parametrizatibaf The advantage of the LSDAU method is the ability to

the exchange-correlation potential. Tkespace integrations treat simultaneouslydelocalized conduction band electrons
were performed with the improved tetrahedron metfiaid  and localized electrons in the same computational scheme.
the charge was obtained self-consistently with 270 irreducwith regard to these electronic structure calculations, we
ible k points. The basis consisted of$Jp, d, f andg; Cus,  mention that the present approach is still essentially a single-
p, d andf; As s, p andd LMTOs. We mention, lastly, that the particle description, even though intra-atorhi@oulomb cor-
Kramers—Kronig transformation was used to calculate theelations are explicitly taken into account.

dispersive parts of the optical conductivity from the absorp-

tive parts.

The application of standard LSDA methods ftghell
systems meets with problems in most cases because of the The uranium pnictide ternary compounds with copper or
correlated nature of thieelectrons. To account better for the nickel crystallize in a high-symmetry structure: UGUP
on-sitef-electron correlations, we have adopted as a suitable/CuAs,, UNiAs, are tetragondt and UCyP, and
model Hamiltonian that of the LSDAU approach® The  UCwAs, are hexagond? The U—Cu ternaries order ferro-
main idea is the same as in the Anderson impurity m&%el: magnetically, in contrast to the U—Ni ternaries, which are all
the separate treatment of localizedlectrons for which the antiferromagneté® The magnetic ordering temperatures are
Coulomb f—f interaction is taken into account by a among the highest known so far for uranium compounds,
Hubbard-type term in the Hamiltonian UZ nin; (n; are  reaching 216 K for UCyP, (Ref. 24. The magnetic and

. . . 1#] transport properties of UCuAs were investigated by
f-orbital occupancies and delocalized, p, delectrons for Kaszorowski et al?® on single-crystal specimens. They
which the local density approximation is regarded as suffiyo, g that the compound is a ferromagnet below 131 K with
cient. _ _ _ a spontaneous magnetic moment of 12y7per U atom, and

Let us consider théion as an open system with a fluc- j, e magnetically ordered region it exhibits large magneto-
tuating number of electrons. The formula for the Coulomb ¢\ ialine anisotropy constants. The electrical resistivity of
energy off —f interactions as a function of the numberfof UCuAs, at low temperature behaves & while in the tem-
electronsN given by the LSDA isE=UN(N—1)/2. If we o a4re range abovk: the observed negative slopeT)
subtract this expression from the LSDA total energy func-may point to Kondo lattice behaviéF.

tional, add. a Hub'bard-llke ter'm and take' into accpunt the The energy dependence of the Kerr rotation and elliptic-
exchange interaction, we obtain the following functiofal ity of UCUAs, have been measured by Schoeetal 1° The
1 measurements were made on a natural grown surface perpen-
U D NN o dicular to thec axis in the energy range 0.55 to 5 eV and at
2 e temperatures dowrnt2 K in anexternal magnetic field up to
1 10 T. Although UCuAs has lower uranium concentration in
+ E(U =D NmeNm? o — d.C., (1) comparison with the UX and 4X, (X=P, As compounds,
m#m’.m’,o its Kerr rotation reaches 1.7%Ref. 10, which is the largest
among these compounds.
The fully relativistic spin-polarized total and partial den-
N(N—1) JIN(N'—=1) JINKN!-1) sity of states(DOS) of ferromagnetic UCuAscalculated in
d.c= 2 - 2 - 2 ' the LSDA approximation is shown in Fig. 1. The energy
bands in the lowest region betweet13.6 and—7.5 eV have
N is the total number of localizetlelectronsN' andN! are  mostly Ass character, with some amount of U and €pd
the number off electrons with spin up and spin down, re- character mixed in. The energy bands between5 and
spectively,U is the screened Coulomb parameter, diglthe  —1.0 eV are As 4 states strongly hybridized with the Cul 3
exchange parameter. and U @ states. There is a small energy gap betweers As
The orbital energies; are derivatives ofl) with respect andp states. The Cu@states are fully occupied and situated
to the orbital occupations; : around 5.0 eV below the Fermi level. The highest region

3. RESULTS AND DISCUSSION

E=E_spat

where
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FIG. 1. Fully relativistic, spin-polarized tot@in statesfunit cell-eV)] and

partial densities of statgn statesfatomeV)] calculated for UCuAsin the
LSDA approximation.
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2.981 A. On the other hand, the Aatoms have four Cu
neighbor atoms at 2.513 A distance and four uranium atoms
at 2.965 A. As a result, thepdpartial density of states for the
As; site has one peak structure for occupied states, reflecting
strong hybridization between the A8p and U & states,
whereas the g partial density of states for the Asite has

two additional peaks at6.5 to 5 eV due to the hybridization

of As, 3p states with Cu d states.

In our LSDA+U band structure calculations we started
the fully consistent iterations from af configuration for
the U*" ion with two on-site 5 levels shifted downward by
U.¢/2 and twelve levels shifted upwards by this amount. The
energies of occupied and unoccupiedi&vels are separated
by approximatelyU«. The Coulomb repulsiot .4 strongly
influences the U & electronic states in UCuAs The U 5f
partial density of states calculated in the LSDA and LSDA
+U approximations are presented in Fig. 2.

After consideration of the above band structure proper-
ties we turn to the MO spectra. In Fig. 3 we show the calcu-
lated and experimentdl MO Kerr rotation and ellipticity
spectra of the UCuAscompound. Better agreement between
the calculated and the experimentally measured MO Kerr
spectra was found when we used the LSPW approxima-
tion. The prominent peak at 1.2 eV in the Kerr rotation spec-
trum originates mostly from U 56— 6d interband transitions.
The interband transitions from Cud3to U 5f bands start

above the Fermi energy can be characterized by antibondingpove 4 eV. The LSDA calculations produce a two-peak

U 6d states. The U 6 energy bands in LSDA are located
above and belovieg at about—0.5 to 1.5 eV. It is interesting
to note that the g partial densities of states for Asnd As

sites differ from each other significantly. This reflects the
different geometrical positions of the two arsenic atoms. The 1+
plane with Ag atoms is situated between uranium planes,
whereas the plane with Asatoms is between uranium and
copper planes. The Asatoms have as neighbors four

As, atoms at 2.794 A distance and four uranium atoms
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TABLE |. The experimental and LSDA calculated spin, orbital and total magnetic mortianig) of UCuAs,. The experimental datum is

from Ref. 10.
LSDA LSDA+ U
Atom MS M[ Mtotal MS M, Mmta; Experiment
8] -1.677 2.318 0.641 -2.135 4.123 1.988 1.27
Cu —0.020 —0.002 —0.022 —-0.017 -0.002 -0.019
As, —-0.003 0.002 —0.001 0.003 0.005 0.008
As, —-0.010 —0.018 ~0.028 ~0.008 -0.016 —0.024

structure with the largest peak situated at 0.9 eV. The Couequal to—1.144 and 2.173:g, respectively. Evaluation of
lomb repulsionU . shifts the energies of occupied fevels  the correct magnetic moment in this compound needs further
downwards and unoccupied ones upwalfelig. 2); as a re- theoretical investigation.

sult, the LSDA+U calculations correctly produce the shape

and energy position of the prominent peak in both the Keri. suMmARY

rotation and ellipticity spectréFig. 3). On the other hand,

the theory, both in the LSDA and LSDAU approximations, The spectral behavior of the MO Kerr specira in

]UCuAsz is better described by LSDAU band-structure

produces a blue energy shift by about 1 eV in the position o . o
. . ; heory than by the LSDA. This fact indicates that the U 5
the local minimum and second high-energy peak in the KerFelectrons in the ternary UCuAsire likely to be partly local-

rotation and ellipticity spectra in comparison with the experi-. )
ment PHcIy sp P P ized, in contrast to UCUR where the U % electrons are

. itinerant'® This supports the conclusion drawn early by
Table | presents a comparison between the calculateé L o
P b choenest al? that the localization of thé states is in-

and experimental magnetic moments in UCpAShe LSDA . ;

total magnetic moment on uranium in UCuAis only 0.641 creased in going from UCyRo UCUAS.

e (Table ) (with spin momen-t_l.(s??'uB and orbital mo- 3E-mail: antonov@ameslab.gov; anton@imp.kiev.ua

ment 2.318ug), which is ConSIderaqloy smaller than the ex- b)Perma{nent address: Inst.i?ute’ of Metal p.Phys.ics, 36 Vernadsky St.,
perimental moment of about 1.2¢5 .~ The calculated mo- ey 03142, Ukraine

ment is dominated by 5 states: the & components of the

spin and orbital moment are1.569 ug and 2.283ug, re-

spectively. It is a well-known fact, however, that within the 1; Becker, J. M. Wills, L. Cox, and B. R. Cooper, Phys. Re\68
LSDA the total magnetic moment of uranium compounds in 17265R(1996.

general comes out too sméft-*’Corrections which simulate L. M. Sandratski and J. Kaler, Phys. Rev. B55, 11395(1997.
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Acoustoelectric conversion at a metal boundary. Taking the surface scattering
of carriers into account

V. M. Gokhfeld*
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The electric potential arising at a metal surface deformed by ultrasound is calculated for the
diffuse reflection of conduction electrons by the surface. The frequency dependence obtained for
the conversion coefficienisn the case of both a free and a fixed sample bourdansy

compared with the results of a simplified theory which assumes specular reflection of the carriers
by the surface. ©2003 American Institute of Physic§DOI: 10.1063/1.1542376

INTRODUCTION

<¢>Ez(2wh)—3j YdS:lv=0.
Low-temperature measurements of the electric potential
arising on a metal surface when a longitudinal sound wave iShe distribution function of nonequilibrium carriegssatis-
incident on it(from the opposite face of the sampleere  fies the kinetic equation
reported in Refs. 1 and 2. o o

The effect is linear in the interaction of electrons with ~ Ux(¥~€¢)' —i@y=—iwAu’, @
crystal lattice vibrations and can be used for a comparativgvherev is the velocity of an electron on the Fermi surface
estimate of the constants characterizing the deformation p&s., @=w-+i/7, wherer is the relaxation time characteriz-
tential in different metals, including the new “synthetic” ing the bulk scattering of carriers, aridp) is thexx com-
conductors. However, the theoretical analysis in Refs. 1 andponent of the(reduced deformation potential tensor; in the
2 presupposes that the crystal has an ideal boundary thaase when the carriers have a quadratic dispersion relation it
reflects conduction electrons specularly, and that makes gan be written in the form\(ux)zL(Svf(/v,Z:—l) (see Ref.
difficult to compare the data for different samples in a meang).
ingful way. In real crystals there is always scatter{stron- |ntroducingazi'&')/|vx| and solving equatiofl) for the
ger or weakerof charge carriers by defects of the boundary,function ¥=y—ep, we have
and its role in surface phenomena is hard to assess on general
considerations: for example, for the skin effect and cyclotron V_(x)=V_(0)e™+ jxdye‘*(x‘y)a
resonance it is not very importaht,whereas in the conduc- 0
tivity of thin films or in the static skin effect in a magnetic
field it can change the order of magnitude of the observable %
quantities>’ Therefore, although the agreement of the theo-
retical and experimental data in Ref. 2 turned out to be ac-
ceptable, it is important to explore even the tendency of an
influence of surface relaxation of carriers on the effect under o B )
discussion. With this goal, in the present study we have un- ¥ <(X)= J'X dye X)CV(e‘P(y)_ 5A“’(y))’ vx<0.
dertaken a calculation of acoustoelectric conversion in a )
metal in the case of strong, “diffuse” surface scattering of ) .
electrons, a completely isotropic distribution of reflected par- N the case of diffuse surface scattering one should set
ticles. As in Ref. 2, we assume that the sample is thick with? >(0)=const, and from the condition of electrical neutral-
respect to the sound wavelengthsrZw and the carrier ity we obtain the following integral equation for the potential
mean free path=uvr7, so that the mathematical problem is ¢(x):
formulated for a conducting half space=0) with a speci- o wA
fied field of harmonic longitudinal strains’ (x) in it.? We e(x){1)— +<J dye‘“_yla( o(y)— ~—u’(y))
chose the Wiener—Hopf method for solving this problem. 0 @€

ecp(y)—%AU’(y)>,

v,>0;

- Ce“x> =0. (©)
CONVERSION COEFFICIENTS

The Fourier transforms of the kernels of equati@

~ Since we are talking about ultrasonic frequencies, cergivided by the energy density of statéi) are easily calcu-
tainly much lower than the plasma frequency of a “good” |ated as

metal, the latter can to good accuracy be assumed electrically
neutral, so that the electric potentia(x) should be deter-
mined from the condition

kOI Ko

Kalk)= g Inf 7

1063-777X/2003/29(1)/4/$22.00 41 © 2003 American Institute of Physics
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K,(k) 1+(1+Ky)

k2 )) o The polynomial here should be such a one, sincekfor

3k_g—1 , ke=—.- (9 -0 the lefthand side goes to a consta@pq?/kyv3

we VE

+kov3, and fork—ce the limits of the functionsk® , (k)
However, Eq.(3) is specified only on the semiaxis andik® _(k) are finite(and equal to the boundary values of

x=0, and for the Fourier transformation one should, usinghe originals® ,(x) and —® _(x)). Further, the function

the Wiener—Hopf methotsee, e.g., Ref.)9extend the defi- & _(k) by definition is regular at the points= +q—i0, so

nition of the functions appearing in it to negative valuexof that the coefficients on the right-hand side(®f are equal to
by introducing step functions containing the Heaviside

function Bo=A(a)+S(a)v3/a; B;=S(a)+A(a)vi/a,
e where we have introduced the dimensionless variable
¢+ (X)=0(x) = ¢(X), 9 (X)* 6(—X), z=k/k,, the frequency-dependent parameter
continuing the free term in an odd way fe< 0 and choos- _a_ve o7
) . . s alwr)=—= -, 9)
ing the following function as a new, more convenient kernel: ko S or—i

2 and (taking into account the parity of the kerhehe func-

K(k)z(l—Sk—g (1+K4(K)). 5 tions
In thek representation we obtain the functional equation ~ A(2)=[K,(2)—K_(2)]/2zK(z);
. Citike, (k) 2)=[K (2)+K_(2)]/2K(z). 10
( 1k2_3|:2 —D+(k))K(k)=(p_(k)—D+(k), S(2)=[K(2) (2)]/2K(2) (10)
0 ©) As a result, the Fourier transform of the solution is given

by the expression
whereC, is a constant proportional 16, and
. k—kov3 [ qBg+ kB,
ikd, (k)=—=
k—q? | Ki(k)

q2up—ikug —k—koev3|—-C, (11
e . - —
with the coefficientsBy, B;, and C, already defined; its
is the transform of the harmonic elastic deformation field limit for k—oe, as is known, gives the boundary value of the
) _ original @, (x— +0).%
D (%)= 6(x) (ug cogGx) — qUp SiN(4x)) Returning to the initial unknown functiop(k), we ob-
in a semi-infinite sample with specified boundary values oftain the desired potential of the deformed surface of the
the displacements, and their derivatives), q=w/s isthe ~ Sample; it can be written in the form
wave numbers is the speed of sound, ahkd=k—i0. S
Then in the Wiener—Hopf method the Fourier transform egii(+0)=ugl —F(a),
of the kernel,K(k), is separated into factork , (k) and UF

D, (k) (7)

K _(k), which are regular and do not have zeros in the lower F(a)=(3/la—a)(1—-S(a)). (12)
and upper halves of the compléxplane, respectively, and
these regions overlap in a strip covering the whole real#xis. ~ Now let the boundary of the sample be freg=0 [see

As a result, Eq.(6) can be written in the form of an (7)]. We shall omit the manipulations, which are analogous
equality of two expressions which also have such propertiet those given above, and just write the result:
and, consequently, are the analytic continuations of each S
other” _ C epned +0)=iquol —G(a),
In other words, the two of them equal an entire function, Ur
in this case a polynomial, the coefficients of which can be

— 2
determined by using the asymptotic expressions and particu- Gla)=(a"~3)A(a)+3A(0). (13
lar values of the functions appearing (). In particular, in The factorsF and G can be called the reduced coeffi-
Eqgs. (4)—(6) obviously imply that lim_,¢_=0, i.e., the cients of conversion of the elastic field into the electric po-
auxiliary functione_(x) is on average equal to zero. tential measured at the boundary of the metal. At a fixed

In principle the problem can be solved for a generalsound intensity in the sample it is those factors that, through
mechanical boundary condition, but for the sake of simplicthe parametea(w7(T)) [see(9)], determine the frequency
ity we shall consider only the extremal cases of a fixed and @ependence and temperature dependence of the effect. How-
free boundary. In the first of these casgs-0 (see(7)), and  ever, the result§12) and(13) as yet have a formal character:
for the reduced functionsb. (k)=(ug) *¢. (k) equation it is necessary to calculate the quantiti®€0), A(a), and

(6) takes the form S(a) [see(10)]. For this we can use the standard general
i procedure of factorization of the kerrfehowever, the inte-

Cotikd, K—q?)—k+k ‘g) K. (k) gral formulas thus obtained are rather complicated and are

k—kqv3 ° B really only usable for numerical calculations. Nevertheless,

in the limiting cases characterized by small and large abso-
k+kov3 ® lute values of the parameterit turns out to be possible to

Ko ~qB,+kB
K_(k) ~ % 1 do a direct factorization of the limiting expressions for the

ik

1+d_
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function K(k); that makes it possible to calculate the Let us compare these asymptotic expressions with the
asymptotic expressions for the surface potengigl(+0) results obtainet? in neglect of the surface scattering of
and ¢ +0) at low and high frequencies. carriers?

In our present notation they have the form

ASYMPTOTIC FACTORIZATION 3
. : - Fo@=r— 7 &
Let us first consider the so-called local limé|<1 (ql o(@) 1-Ky(a) a
<1). Using the series expansion of the functi®), for 2
o . » 4a zdz
small values of the argument we write it in the required Go(a)ZJ’ —— . ) (19
form: R P
4 N z+1
i
K(z)=1+ 1—522+---=H (1i\/T52 =K, (2)K_(2), At small |a] the conversion coefficients are approxi-

mately equal toF,=(4/5)a for a fixed boundary and
where the signs are chosen such tist definition the root  Go=—0.34%* for a free boundary, i.e., they coincides
of K_.(k) lies in the upper half of thé plane and that of “functionally” with the asymptotic expressiorf17); how-
K_(k) in the lower half. In this case the values sought forever, in the latter case the numerical coefficientif) dif-

the functions in(10) are fers significantly in modulu$0.93 and phase.
) The high-frequency asymptotic forms of expressions
A(0)=2i//15; (19) are
A(a)=A(0)(1-4a%/15); Fo(a) 1I 1+a iw
a=-In—~—-—
S(a)=1-4a2/15. (15) o@=3Na~"3

The approximate factorization of the kernel is just asand
obvious at large arguments: with an accuracy up to correc-

1 i
tions <z~ 2 we can write Go(a)= Eln(l—az)m -+ Ina|(|a]>1);
K(z)s(1+ In(l—z)) ( 1- In(1+2) =K, (2)K_(2) for |a| —c this would be double the corresponding “diffuse”
2z 2z coefficients(18).
[see Egs.(4) and (5)], so that in the nonlocal limit for Thus we can conclude that for both types of mechanical
la|>1 (ql>1) we have boundary conditions considered, taking the surface scattering

1 a 1 of electrons into account does reptalitativelyalter the char-
=1— —|n—_-: = _ a2
S(a)=1 4a|n1+a’ A(a)_Hln(l a%). (16

RESULTS AND DISCUSSION

Substituting(15) into the general formula@.2) and(13), <7 G|
we find in the local range .

4 6 [3
F(a)= ga;G(a)zg \[§|a2,|a|E

UV T

- <1. '
S wT+tl

17

At the same sound intensity in the sample, i.e., at com-
parable absolute values of andqug, the second term con-
tains an additional small factéa~ql: in the low-frequency
region the potential of the fixed boundary is much higher
than that of the free boundary.

In the nonlocal region of frequencies formuld®), (13),
and(16) imply that

~1I 1+a _In(1-a?) \F
F(a)=2nm, G(a)zT—ZI g,

la|>1. (18)
0 | | | |

Here, on the contrary, at sufficiently large| the con- -3 ) -1 0 1 2

version coefficient is much largéin modulug for the case In (@1)
of a free boundarysee Fig. 1. Consequently, in the general
case. i.e.. at finite values of the rat'@uolu'| which char- FIG. 1. Comparisoriin absolute valugof the high-frequency dependences
acter,izes,the dearee of mobility of the t?o,undar with in_of the conversion coefficients in the case of diffiise) and speculat---)

: g . y Y: reflection of carriers by the surface of the samplecorresponds to a fixed
creasing value (_)f that ratio the effECt_ should beco_me weakefrface, ands to a mechanically free surfacej=>s/ug; the parameter
at low frequencies and stronger at high frequencies. s/ve=0.005.

Conversion coefficients
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acter of the frequency dependence of the absolute values ofiontrivial: as in the “specular” case, in addition to a term similar to the
the conversion Coefficienté:ig 1) Neverthelessnumeri- elastic field(the “acoustic” pole there is a nonlocal part associated with
SO . the branch poink=Kk, of the functionK , . This is the contribution of the

Ca”y the effect should be n0t|cea_b|y 'ncreaiﬂdthe_case of ballistic motion of the carriers, which can be observed in hf pulse experi-
a free boundaryat low frequencies and decreasg@a both ments as a precursor of the signal proportionalutgx) (see Ref. 1L
casej at high frequencies in comparison with the ideal situ- However, in the present paper we are interested only in the value of the
ation of specular surface reflection of carriers. This agree§potentiall at the surface, measured in an effectively monochromatic regime.

ith th d b di - vTh o In the approach adopted in the present paper, those results are obtained
with the ten em?y 0 Sef\/e .'n Gaat~5: “The maXImum when the “specular” boundary conditiol . (0)=W¥ _(0) is substituted
response at a fixed excitation power could be attained onlyinto (2). Then the integral equation of electrical neutrality has a more
for freshly ground surfaces; prolonged storage of a samplesymmetric form thar(3), and after even continuation of the functions and
led to a falloff of the signal amplitude apparently because of kernels to the semiaxig<0 it can be solved directly by the Fourier

. . . Y ’ . method.
diffusion of impurities into the subsurface region.”

In addition, for a free boundary the conversion coeffi-
cients G) in (17) and (18) differ in phase from the corre-
sponding asymptotic behavior of the “specular” expression—————

(19), i.e., surface scattering, generally speaking, has an influ; o _ _
ence on the phase relations between the acoustic oscillation%/' M. Gokhfeld and V. D. Fil, Fiz. Tekh. Vysokikh Davienti1, No. 4, 76

*E-mail: gokhfeld@host.dipt.donetsk.ua

. N 2001).
and the electrical oscillations engendered by them. 2yu. A. Avramenko, E. V. Bezuglyi, N. G. Burma, V. M. Gokhfeld, 1. G.
The author is grateful to V. G. Peschanskii and V. D. Fil Kolobov, V. D. Fil, and O. A. Shevchenko, Fiz. Nizk. Temp8, 469
for fruitful discussions which stimulated this study. (2002 [Low Temp. Phys28, 328(2002].

3J. Vosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and

1) o . Superconductorsvol. 134 of Springer Tracts of Modern Physick996.
The potential difference was measured by a contact method or a capacitive £ Reuter and E. H. Sondheimer. Proc. R. Soc. London SKI5/336
coupling between the “acoustic spot” on the surface of the sample and (1'94;3_ o ' o ' '
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The conductance of disordered electron systems of finite size is calculated by reducing the initial
dynamical problem of arbitrary dimensionality to strictly one-dimensional problems for
single-particle mode propagators. It is shown that the metallic ground state of two-dimensional
conductors, considered as a limiting case of three-dimensional quantum waveguides, is

due to their multimode nature. As the thickness of the waveguide is decreased, e.g., with the aid
of a “pressing” potential, the electron system undergoes a sequence of continuous quantum
phase transitions involving a discrete change in the number of extended modes. The closing of the
last current-carrying mode is interpreted as a phase transition of the electron system from

the metallic to an insulator state. The results agree qualitatively with the observed “anomalies”
of the resistance of various two-dimensional electron and hole system200® American

Institute of Physics.[DOI: 10.1063/1.1542377

1. INTRODUCTION In the present paper we propose a model for explaining

o the observed effects. It is in essence a realization of the con-
The problem of electron transport in disordered conduc- : .
. cept of quantum dephasing of the electronic states as a result
tors has attracted research interest for many years, both

account of its importance in connection with a Iications%q their interaction with a certain “dephasing environment,”
P PP he state of which is not determined in the course of the

and because of the intriguing complexity of the fundamentaf . 5, - o
problems that arise in this area. One such problem, whicﬁXpe”meml' Itis °rd'”"?‘”'y assumed th.at th? Iqss of cqher—
nce by the electrons in conductors witlstatic disorder is

has yet to be solved unambiguously, is to explain the natur . . o .
of an unusual phenomenon observed in two-dimensiona ue to conventional truly inelastic interaction processes
electron—phonon, electron—electron, gtcso that the

electron and hole systems, which many investigators interd hasing f q h £ ) q
pret as a metal—insulator transitiokllT) caused by disor- ephasing frequency due to these types of Interactions tends

der. The unusual behavior of the conductance of planar hef2Ward zero as the temperature is lowered. However, publi-
erostructures in experimental observatiofsee the vast Caions over the past few years show a lack of agreement as
bibliography in Ref. 1is clearly at odds with the widely t© the physical nature of the dephaSIng.enVIron'n’t%Most .
held conviction that in two-dimensioné2D) systems, as in ©ftén a quasi-elastic electron—electron interaction is consid-
one-dimensional1D) systems, a metallic ground state can- ered to be the main mechqnlsm for dephasmg of the initially
not exist in the presence of even arbitrarily small disofder. conerent(presumably localizedelectronic states, since the
This point of view still remains prevalent, even though, to ‘@nomalous” behavior of the resistance is registered mainly
accommodate the experimental facts, the one-parameter scil-2D systems of low densityr(=10, wherers=Ee_¢/Er
ing approach has already been subjected to both a partials the ratio of the Coulomb energy of the electrons to their
refinement? and a radical revision. Fermi energy. However, the role of this interaction is inter-
There have been repeated attempts to explain thereted differently in different theories—both as promoting
“anomalous” metallic behavior of 2D systems in the low- localizatiort”*®and as preventing its appearafice?’
temperature region by invoking various physical hypotheses. Meanwhile, it was shown in Refs. 20 and 21 that dephas-
Among them are the onset of a conducting phase in highh'yng of quantum states classified with allowance for the finite-
dilute electron systenfs’ non-Fermi-liquid behavior of such ness of a real dynamical system can be brought about not
system$, the possibility of a superconducting state of a 2Donly by inelastic processes but also by scattering on static
electron gas with interactiohl® temperature-dependent inhomogeneities. For proof, a mode representation of the
screening of impurity scattering;'2 and others. However, single-particle propagators was us8d!which is best suited
the fundamental issue of whether the observed anomalies &r analyzingopenquantum systems of a waveguide con-
the resistance are a manifestation of a true quantum phagguration. An important fact here is that in reference to elec-
transitiort® or whether they can be explained in the frame-trons in solids the mode states arellectiveand therefore
work of the conventional theory of disordered syst&hme-  well suited for describing a highly correlated systems of cur-
mains an open question. rent carriers. The correlated nature of that system, even be-

1063-777X/2003/29(1)/10/$22.00 45 © 2003 American Institute of Physics
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fore the Coulomb interaction is taken into account, is built in Si
from the start in the Green'’s function formalism, which ex-
plicitly incorporates the Pauli principfé.

It was shown in Refs. 20 and 21 that in 2D conductors
that are not too narrow, when more than one extended mode
is present(or, in other words, when there is more than one
open quantum channelthe scattering between such modes,
if it is not suppressed by virtue of some special conditions,
will lead to dephasing of the coherent modes states and pre-
vent their interference localization. Here the role of the
dephasing environment for each of the channels is played by
the set of all the other open channels of that conductor. If Si-MOSFET
intermode scattering is absent, as is the case for conductors o,
which are randomly layered in the current direction, then
Anderson localization of the electronic states arises in each p
of the channels independently. This results in an exponential I 1
decrease of the conductance with increasing length of the X e
conductor when the latter exceeds a value of the order of id
N¢€, whereN, is the number of open channels a6ds the y L
quasi-classical mean free path of the electrons, which is well S A R
known in the theory of quasi-one-dimensional W
conductorg>-26 v

Although the results of Refs. 20 and 21 imply that the Z
metallic ground state of a two-dimensional statically disor-
dered systems should not be regarded as an anomalous g
fect, the mechanism of the transition of 2D systems from the
conducting to the insulating state, which observed in numer-
ous experimen'gs, was not identified in t_hose papers. _T_o el_u- xe(—L/2,L12), ye[—WI2WI2], ze[—HI2H/2].
cidate the physical nature of the metal—insulator transition in (1)
planar structures, in the present papgarbrief version of
which was published previously in Ref. RWe propose to ) . .
adapt the formulation of the problem to the real conditions oIH of the WavegU|de will be trgated as arblFrary. . .
the experiment by extending the method of Refs. 20 and 21, 2From Imegr response thedfthe d|rrlen§|0nles€zn units
which was developed previously for strictly two-dimensional of e /Trﬁ) static conduct_ancg(L) _atT—O Is expressed as
open systems, to systems of higher dimensionality. This igollows in terms of the single-particle electron propagators:
motivated by the fact that in practice, 2D systems are most 2 J
often formed by using subsurface potential wells of finite g(L)=—2f f drdr’ﬁ—X[GA(r,r’)—GR(r,r’)]
width, created either by applying an external “pressing” L
electric field or by means of a contact potential difference.

>
@
2

Conduction band

Valence band

L0000 00000000007,

{@. 1. Real(a) and model(b) configurations of a two-dimensional con-
ucting system.

The lengthL of the conductor and the widiv and thickness

xi[GA(r’,r)—GR(r’,r)]. 2
ox’

Here GRA(r,r’) are the retardedR) and advanced A)
Green'’s functions of the electrons, and the integration is over

Conductors of reduced dimensionaliiyne-dimensional the spatial reg|0r(1).occup|e.d.by. the wavegwde. In the
model of an isotropic Fermi liquid when units such that

and two-dimensionalserve as a mathematical idealizationof , ~ _~ ~ . .

real physical objects which are three-dimensional in a geoﬁ_zm_l’ wherem is the effective mass of th? electrons
metric sense. Potential wells formed by the bending of th are used, the retarded propagatqr,.from wh|ch.we shall
energy bands in a contact region between different materialsenceforth drop the superscrifif satisfies the equation

(see, e.g., Fig. Jdorm a subsurface quantum waveguide of ~ [A+k2+i0—V(r)]G(r,r’)=8(r—r"). (3
finite width, thetwo-dimensionatdensity of current carriers
in which is ordinarily varied by means of an external poten-
tial @4 (depletion voltage or by a capacitive effect. The

shape of the subsurface welis the majority of cases it is . N , ; .
close to triangular®?is not of fundamental importance for function (V(r)V(r'))=QW(r—r’). The function\r) is

. : . I . assumed to be normed to unity and to fall off over a charac-
their main function—restricting the electron transport in the

direction perpendicular to the heterointerface. Therefore, ir'ﬁerIStIC scaler (the correlation radiysTo simplify the for-

. o . o mulas below, we restrict discussion to a correlation function
this paper we will simplify the calculations by considering a .
- of a somewhat less general form, viz.,
model planar conductor in the form of a rectangular three-
dimensional “electron waveguide” having rigid side walls VOV )= OW(x—=x")8(r, —r}), 1, =(Y,2),
(Fig. 1b and occupying the spatial region (4)

2. CHOICE OF MODEL AND STATEMENT OF THE PROBLEM

Here A is the three-dimensional Laplaciaky is the Fermi
wave number)/(r) is a static random potential characterized
by a zero mean valuéV(r))=0 and a binary correlation
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which clearly should not affect the results materially. 52

The solution_of equatio(_B) requires _specifyi_ng suita_ble ﬁ+ Ki+i0—vﬂ(x) G (X,X")
boundary conditions. The side boundaries, which are imper- X
meable to electrons, can be characterized by a real imped-

ance, a particular case of which leads to the Dirichlet condi- - Z U p(X) G (X,X) = 8 S(X—X"). (7
tions vER
In Eq. (7) the parameter
2 _ L2
G(I’,r’) y:+W/2:0 (5) Kﬂ—kp_(’ﬂn/W)z_(’ﬂ'm/H)z (8)
z=%HR2 has the meaning of the unperturbed longitudinal energy of

the modeu. The potential matriyU /| is made up of the
At the same time, being joined at the points=L/2 to  functions
equilibrium “reservoirs,” the conductor is aopensystem,
and this has two important consequences. First, in Kubo UW,(X)ZE dro|r ;pV(n(r, ;s p], 9)
theory the chemical potentials of the massive contacts are S

assumed to be identical. Therefore, the chemical potential qf,orq e integration is done over the transverse cross sec-

tEe Ic:ondl_Jctor conr}e(r:]tmgl thear, n t_he ck;)nductlng 3haS§’ tion Sof the conductor. The diagonal elements of this matrix,
the Fermi energy of the electrons in dan be assumed to be V,(x)=U ,,(x) are the Fourier components of the potential

mdepen%ent 0]; the geohmetn(t:) [I)arametirs of the guantuq}(r) due to the intramode scattering of quantum particles,
waveguide, and everywnere below we 8@t Const. Sec- 5 ihe off-diagonal elements are those due to the intermode

ond, the Openness O.f the end_s of the waveguide makes forsff:attering. The reason for separating off the terms with the
complexcharacteristic of the impedance of the contact re<intramode” potentials from the terms with the *intermode”

gions, and because of this the differential operation in(BQg. potentialsU ,,(x) (»# g) in Eq. (7) is to avoid singularities

when applied to syste_r(il) IS non-Hermltlan._ . . later on when constructing a perturbation the¢sge Ref.
A method of solving such a non-Hermitian problem in )

the case of two dimensions was proposed in Refs. 20 and 21. The initial problem, reformulated into a system of one-

An important step in it is the transition from one initially coordinate differential equationd) cannot, of course, be

mqltldlmensu_)nal st_ochastlc problem to an .|nf|n|te system Ofconsidered to be one-dimensional, because of the entangle-
strictly one-dimensional problente/hich are in general non-

- ) ment of all the mode components of the Green’s matrix
Hermitian for the mode Fourier components Qf the propaga-”GmH_ With the goal of reducing Eq(3) to a system of

tor G(r,rf )H Beloxv we se; ;ortfh n;(;nort; gita” the Ir,eﬁ ele'hindependenbne-dimensional equations, we introduce as a
ments of the technique of Refs. an as applied to thg, o step the auxiliary mode propagators, which take into

waveguide system under study. account the scattering on only the intramode potentials:

(92

2; (V) N ’
—+k510—-V _(X) |G}, (X,X")=6(X—X"). 10
3. REDUCTION TO ONE DIMENSION axz WX |Gy ()= ) (

3.1. General scheme For the “trial” Green’s functionstuV)(x,x’) the condition

The proposed algorithm for the reduction of the multidi- that the guantum waveguide is open at the ends-L/2 can
mensional problem(3) to a system of strictly one- Deformulated as Sommerfeld radiation conditidh&which

dimensional boundary-value problems will be applied toin the case of an idedhot conducive to scatteringontact

open systems with arbitrary waveguide configurations an@f @ conductor with the leads has the form
with arbitrary levels of disorder. The first step is to change to 9

a mode representation of the electron propagators. In the case | - i Kﬂ) G (x,x") =0, x'e(—-L/2,L12).
of the waveguide illustrated in Fig. 1b, one changes to this x=*L/2

representation by expanding in a complete orthonormalized 1D
set of eigenfunctionfr| ; u) of the transverse Laplacian op- Assuming that the solution of the problem0), (11) is
erator. This set is made up of ordinary trigonometric func-known, we change from the differential equatitf) to an
tions; for configuration(1) and boundary conditiong5), integral equation:

these functions have the form

Y\ — V) ’
G ppr (XX ) =G (X, X") 8 e

z 1
__|__
H 2

y 1
_+_
W 2

+ 2 dXy, Rup(X,X1) G (Xg,X7),  (12)

N [sin mmy, =,

2
P

WH

(6)  whose kernel
" — (V) ’ ’

where u=(n,m) is a vector mode indexnime N). Using Run(XX") =G (X XU (X') (13
the functions(6), one transforms Eq(3) into a system of contains only intermode harmonics of the scattering poten-
coupled equations for the mode components of the Fourigiial. From systen{12) all of the off-diagonal elements of the
function G(r,r’): matrix |G,,/| can be expressed in terms of the corresponding
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diagonal element§ ,,, with the aid of a certain linear opera- In the finishing stage of the procedure of reducing the
tor K, which is defined on the coordinate—mode spaceMultidimensional problem of the conductance of systéin
M={x,»}, to a one-dimensional probled6), we express the conduc-
tance(2) directly in terms of the functiorG ,,(x,x"). Ex-
L , panding the electron propagators in the eigenfuncti@s
GuulX.X )_del’ Kop(X:X1) G (X1, X)), v pe. we separate out two terms in expressi@. In the first,
(14  which we shall refer to below as the “diagonal” conductance
and denote it ag(¥(L), we group together those terms of
the expansion which from the beginning contain the diagonal
mode propagatorss,,. In the second term, the “off-

The matrix elements,,(x,x") can be found from the
Lippmann—Schwinger equatich:

Ky X) = Ryu(X,X) diagonal” conductancg"¥(L), we combine all the remain-
ing terms of the expansion, which contain mode components
/ G, with »# u. Taking relation(14) into account along with
+ dx;R,, (X,X1)K,_ ,(X1,X"), VR .
ulE;a,L f Lot (XK (0. X7) the fact that the retarded and advanced Green’s functions of

the evanescent modesf(< 0) in the case of weak scattering
can be considered to be real-valusée formula23) in the
the solution of which in operator fom?(:(l_ﬁz)—lfq is  next Sectiol the aforementioned conductance terms can be
expressed in terms of the operafyrwhich is represented on  Written in the form
M by the matrix element§l3). 4 96
We note that since the sunfis2) and(15) do not contain  g(d ()= — FE f f dxdx —*
Y3 L

(19

w(XX") G (X X")

terms with the mode indeg, the operatonfi can be inter- X ax’

preted as the intermode scattering operator, which operates in (193
a reduced coordinate—mode spadg, containing all the 4 IK (X1 Xo)
modes of the quantum waveguide excgptThe presence of g"¥(L)=—— > f f f f dxl...dx4"”&—

the mode indexu in the kernel of the integral operatéit4) L gt L X1

and in other cases when necessary will be provided by the
projection operatoP,,, the action of which is to assign the
fixed valueu to the nearest mode index of an arbitrary op-
erator standing next to {either to the left or right

Assuming thatu'=pu in Eq. (7) and substituting the
intermode propagators in the forth4), we finally arrive at a
closedone-dimensionadifferential equation for the diagonal
propagatoiG ,, ,(x,x"):

0Gtm( X3 1X4)

X, (190

X G (X2, X4) K3, (X1, X3)

Here and below a bar over a summation sign means that the
summation is only oveextendednodes WithKfL> 0.

5 3.2. Weak scattering approximation

(9—2+ Kfl‘f‘iO—V”(X)—'ATM Gpu(X,X") = 8(x—x"). In view of the statistical formulation of the problem, an
X important auxiliary element of the technique used, the trial
(16 Green's functiorG{”(x,x"), can be considered to be deter-
Here, together with thdocal intramode potentiaV (x), minevd exactly if all of its mathematical moments
there has arisen an effectivenlocal (operator inx space  ([G%’(x.x")]?), pe N, have been found. For highly disor-
potential dered systems this can be done only by numerical methods.
R R . R . However, if the scattering on the potenti&r) is weak, then
7,=P,U(1-R)"'RP,=P,U(1-R)"'P,, (17) by using the technique described in Ref. 21, which allows

. . . o ~one to take into account multiple scattering in the 1D sto-
whereU is the intermode potential operator, which is definedpastic problent10), (11), these moments can be found ana-

on I\W,L by the matrix elements lytically. The criterion of weak scattering is expressed as a
. ) system of inequalities
|, MUK ] = U (%) S(X=X"). (18)
ke, re<¢, (20)

Strictly speaking, the potentidl,, like V,(X), is intramode

in the sense that both the initial and final states of the scatvhere¢ denotes the Born mean free path of the electrons. In
tering on it belong to the modg. However, it effectively the particular case of a strictly white-noise potential, when
also takesintermodescattering into account, and exactly, in YY(X)=48(x) in (4), this length is equal to #/Q. When
any order of perturbation theory. From the structure of ex.conditions(20) are satisfied, the calculation of the desired
pression(17) it is seen that scattering on the potential opera-noments for extended modes gives

tor ?ﬂ can be interpreted as occurring via intermediate —j\p D

“trial” modes states described by the propagat6i’ (x,x’) [GY)(x,x")]P= (;) exp ipr,/x—x'| 5

with »#u. Therefore, in what follows we shall by conven- s

tion call the potentiafTM as the intermode potential. From a ( D

mathematical standpoint it is none other than Thmatrix, + [x—x'|
Lt () '—fav)(l“))

well known in the quantum theory of scatteriffg>

. (21
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HereL{")(x) are the forward {) and backwardl) scatter-
ing lengths of modeu on the intermode potentif ,(x):

4S
LY ()= @m,ﬁ

whereVV(KM) is the Fourier transform of the function/(x).
As to the inhomogeneou®&vanescentmodes withxi<0,
for them one can neglect the potentig)(x) in (10) in the

case of weak scattering, and consider only the unperturbed

solution:

G (x,x')=— Lexp(—IK lIx—x'|)
p 2 2|Kﬂ| m .

(23

The functional structure of th& matrix (17) and, ac-
cordingly, of Eq.(16) under condition(20) is substantially
simplified. A direct calculation with the use ¢£3) and(21)

shows that the norm of the operat@ron a space of basis
functions expik,x) is estimated by the following parameter

A 1
IRI?~—.

K M€ (24

This allows one to replace the operatorefined in(15) by

its approximate valu&~R. As a result, potential17) takes

the form
7,=P, UGVUP,, (25)

where the operatag") is defined onM ,, by the matrix ele-
ments

1%, )GV (X' ¥ |=GY(x,X") 8, . (26)

An analogous replacement of the exact matrix element

of the operatoK in (19b) by their approximate values allows
one to conclude that in the case of weak scattering the off-

diagonal part of the conductangg"?(L) is parametrically
small in comparison with its diagonal pagt®(L). Further
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function Gifll(x,x’), it is an important circumstance that for
a waveguide with “rigid” side walls there is no correlation of
the intermode and intramode scattering:

(Ui(X)V,(x"))=0.

As a consequence of this, the potentiab) upon averaging

is transformed from an operator equation to an effectively
local equation. It was shown in Ref. 21 that its operation
reduces to a renormalization of the mode enexgyby the
mass operatok () =Axs+i/ 1)

(28)

(T)Gx,X) = =3 (k) GIO(X,X"). (29

Applying to the system under study the calculation proce-
dure set forth in Ref. 21, we find

Q = dg W+ x,)
A2 Pf 29 AT 30
K"S 1;# _ 2T qz_Ki ( 6)
1 9o 1 . -~
W:4'_Sv¢ﬂ K_V[W(KM_ KV)+W(KF+ KV)]' (SOb)
Mm

The integral in(3039 is understood in the principal value
sense.

The absolute value of the mass operdaf@d) does not
depend substantially on the number of open channels in the
conductor. For anWN.>1 the estimated k%~ 1/7.f) ~kg /¢
is valid, and that allows one to neglect the renormalization of
the velocity due to the term K303 for almost all of the
modes. At the same time, the width of the mode levels is of
critical importance for analysis of the electron dynamics. The
frequency (30b) saturates rapidly with increasiny. and
ceases to depend on the mode index. In particular, in the
model of point scatterers the asymptotic behavior of this fre-
guency forN.>1 has the form

1 Ok ke

~an O (31)

(¢)
T

We note that in formul#30b), unlike (308, the summa-

confirmation of the correctness of such an estimate is protion is only over extended modes of the quantum waveguide
vided by the result of a numerical calculation of the twowhich are different from the modge in question. For a
conductance terms. When this circumstance is taken into agingle-channel conductor, where only the lowest mede

count, we can confine our analysis to only the terniliég),
assumingg(L)~g@(L).

4. ANALYSIS OF THE SPECTRUM OF MODE STATES

In contrast to the initial potentidf(r) and, accordingly,
its mode components in Eq7), the effective potentiafZ’M

=(1,1) is nonlocal, the ternB0b) is absent.

The imaginary part of the mass operat®0) can be
interpreted as being the result of a dephasing of the coherent
mode states. It follows from the structure of expresskob)
that for an arbitrary modg the cause of the dephasing is the
cyclic (“reentrant”) scattering of electrons exclusively via
nonlocal intermediate modes if such modes exist in the sys-

has a nonzero mean. For application to a perturbation theogm under study. In such an interpretation, for each of the

in this potential, we separate it into its averaged and fluctucurrent-carrying modes one would be justified in treating all
ating parts(?') and AT _<AT> As the zeroth approxima- the other extended modes of the same conductor as a sort of
N " &

tion for the mode propagatdB,,,(x,x'), we consider the “dephasing environment,” the interaction Wi'th which is
Green's function of the equation brogght about by means of intermode scattering on the po-
tential V(r). Although in terms of the one-electron energy
the scattering on static inhomogeneities is elagtc T=0

this energy is always the Fermi enefgthe many-particle
mode states are characterized by differ@ongitudina) en-
which differs from(16) by the absence of fluctuating poten- ergies. This allows one to consider the virtual intermode
tials. In determining the action of the opera((ffn) on the transitions "hidden” in theZ matrices(17) and(25) as effec-

7 .
ﬁ—i_ Kfl+io_<Tﬂ>

(27

(0) N v/
GIJ,I_L(XIX )_5()( X )!
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tively inelastic, thereby upholding the traditional point of 5. DEPENDENCE OF THE CONDUCTANCE ON THE SHAPE

view that attributes the dephasing of the quantum states eXx?F THE CONDUCTOR

clusively to inelastic scattering processes. : .
We note that intermode scattering by strongly localized The mode spectrum of the current carriers, together with

evanescenintermediate modes alorsingle-mode conduc- the energy of the electrons, is determined by the structure of

tor) will not lead to dephasing. An appreciable dephasmg the confining potential—in the model considered here, by the

effect appears in the scattering of electrons via substanﬂal%eometry of the sample. If the conductance of a bulk con-

nonlocal extended modes, as is possible, of course, if the uctor vgries with the dimensions of the sample in accor-
are at least two of them. From this we can conclude that fof 21°€ with the classical Ohm’s law, then when any of these

an interference type of Anderson localization an mportanﬂTﬁnS'orl[s bef[:r? mes cc:rn ﬂgrablitﬁ) the m:croscl;oplc lengths
factor is that not only the temporal coherence but also th@' IN€ system, he quantization ol e Spectrim becomes ex-
spatial coherence is preserved in the scattering tremely important and can radically alter the classical behav-

The influence of the fluctuational potentiaﬁ;(x) and ior of the conductance. Let us consider some limiting cases
AT on the mode levels can be analyzed by estimating thm which the size quantization influences the character of the

Blectron transport in substantially different ways.
correspondmg Born scattering frequencies,®/and 1. P y y
With allowance for the structure of operat(QS) and the 5.1. Multimode conductors

result(31), we have If the configuration of the confining potential and elec-
tron energy are such that there is more than one conducting
channel in the system, the exact Green's function

T<‘P> uu(X,X"), as follows from(32), is well approximated by
v ~[kercNgcos 6,174 (32a the functlonG(O)(x x') in the regionL<N_¢. But even for
T L>N.¢, as was shown in Ref. 21, replacing the exact propa-

gator in (199 by its approximate value from Ed27) is
justified in view of the configurational averaging. The solu-

A9 A9 (Lie, L<e, tion of equation(27) satisfying radiation boundary condi-
LI ijg, = (32D tions at the open end of the conductor has the form
M
1
G2 (x,x )—|_exp{|f< =P x=x[}. (33)

Here 6, is the “sl|p” angle of the modeu (cosé,

—|KM|/kF) and N{)<N, is the number of “bare” mode

states, determined by E(ﬁlO), whose localization length

4L§JV)(M) does not exceed the lengthof the conductor. _ _ _
Since in real materials the relatidg.r. =1 is usually following expression for the average conductance:

satisfied, it is easily inferred fror82) that the influence of ((p)

the potentialV ,(x) on the dynamics of electrons in multi- g(L))y= Z

|(‘P) L
A .-
mode systems is negligible. The same is also true of the

potentialA?’ if the Iength of the conductor obeys<Ncf. | the case of a large number of channdﬂ%% 1) the re-
scattering on this potenua(lsubstanually nonlocal foNc  simple limiting formulas for the conductance in those re-

>1) has a weak effect on the conductance even Lfor gions which correspond to the classical ballistic<¢) and
>N.{. This seems quite natural if it is taken into accountgiffusive (L>¢) electron transport:

that the scattering on the potentmlf is of a “reentrant”

Herel(¥'=2x, 7' is the extinction lengtttor, equivalently,
the dephasing lengttof the modeu due to incoherent inter-
mode scattering. The substitution @B3) into (193 gives the

smh— (39

character. From the standpoint of perturbatlon theory this (9(L)=N., L=<, (353
implies that by means of the operamﬁ; the scattering on 4 N¢
the intermode potentials) ,(x) is taken into account to (g(L))= , L=<t (35b)

higher order than in the calculation of the mass oper&o.

Returning to the bare intramode potenti),(x), we In the ballistic limit (353 the conductance as a function of
should stress that the scattering on on it under cond{0h  the electron energy and the transverse dimensions of the
breaks the spatial coherence of the mode slightly, and it musfuantum waveguide has a stepped structure, the height of the
therefore be taken into account with special accuracy. Fosteps being exactly equal to the quantum of conductance
N.>1 this scattering leads to small weak-localization cor-G,=e? 7% (recall that for bulk conductorNc=[k§S/4w],
rections to the conductance, which are not being taken intavhere] . . . ] denotes the integer part of the number in brack-
account in this paper. The role of these corrections clearlgty. As one goes from the ballistic to the diffusive regime
grows with decreasing number of conducting channels, bug¢ <L) the conductance asymptotically approaches the clas-
even forN.~1 they do not qualitatively alter the result ob- sical value(35b), which is known from kinetic theory. Here
tained in the kinetic approximation. The potentig)(x) has  the stepped structure of the conductance is formally pre-
a governing influence on the spectrum of electronic stateserved, but the height of the steps decreases in proportion to
only in single-modeconductors, which we shall discuss in the ratio€¢/L. The dependence of the average conductance
more detail in the next Section. (34) on the length of the quantum waveguide is presented in
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matrix elements(9) are equal to zero fou#u'. For a
(quasiytwo-dimensional conductor of finite thickness this
can be accomplished by choosing a model for the random
potential which depends only on the coordinates along the
direction of the currenta randomly stratified systemSuch

a model was considered in Ref. 34, where the origin of the
“stratified” (and, hence, localizingrandom potential was
attributed to long-range charged centers distributed randomly
outside the quantum waveguide. The delocalizing mode mix-
ing of the electrons in Ref. 34 came about not because of
intermode impurity scattering but because of an external
magnetic field oriented parallel to the surface of the Q2D
conductor.

FIG. 2. Conductancg34) as a function of the dimensionless length
N=L/¢ for conductors with different numbers of open channéls 5 (1),

8 (2), and 12(3). T
(@), an ©® 5.2. Anderson localization in single-mode conductors

) ) If the parameters of the electron system admit the exis-
Fig. 2. The curves correspond to different numbers of opeRence of only one open channel, then all of the other modes
channels, but ir\ the regidn/¢>1, they all exhibit identical  of the quantum waveguide will be evanescent and highly
“Ohmic” behavior. - localized with respect to the coordinate In that case the

It is important thgt the diffusive charact_er of the C_Onduc'potentialAT , like V,(x), is real and local. Because of this,
tance(formula (35h)) is preserved not only in the region of perturbation theory in the form used above is no longer con-

Igngtns€<LiNc€d|n Vt\)’h'ghﬁth? elet::tronl traﬂr;spl(\)lrtfjls_rtrr]adl- structive, since weak scattering, including intermode scatter-
tlr?na y cfon3| ere t%. ed .US'VeiDUt a S; s §3°_26 € ing, does not substantially disrupt the coherence of the single
theory of quasi-one-dimensiongQ1D) conductor Pré= extended mode. A calculation of the conductance in that situ-

.d'.CtS thatl adt s(;juchh I(?:gér(sg(L)?oceT'p(—.L/ NC?’ I]Irc;]m V\I’h'Ch ._ation requires the use of methods that permit one to take into
It is concluded that Anderson localization of all t eeectronlcaccount the interference of multiply scattered quantum

states obtains in such conductors, regardless of the energy, ~ves. e g., such as those which were used in Refs. 35 and
The reason for the disagreement of the re€afi) with RPN i

36 in calculating the conductivity of 1D disordered conduc-
the predictions of the theory of Q1D localization is due toy, g ty

dephasing of thenodeelectronic states arising because of In Refs. 37 and 38, with the use of a weak-scattering

the q_uasielasticity of the.interm_o_de ;cattering. From a mathfesonance method, equivalent to the methods of Refs. 35 and
ematical standpoint the inelasticity is due to the absence %6, we obtained a general expression for the statistical mo-

the ‘.‘rgtatlonal symmetry" n thechannelspace Wh'Ch WaS  ments of the conductance of single-mode conductors of finite
explicitly used in the derivation of the equations of that length in the situation where the disorder is caused not by

theory* "% If all of the unperturbeq ,r'node energies () bulk inhomogeneities but by roughness of the side walls of
could formally be set equétsymmetric channel;‘.,.thgn the the conductor. That problem, although it is substantially dif-
mass operato(30) .WOUId turn out to be real. Th's’_m WM, terent physically from the problem of bulk scattering, is
would mean that in the presence of weak scattering the Coéompletely analogous to the problem solved in the present

herence of the mode electronic state_s would gssenti_ally bSaper from the standpoint of the mathematical formalism
preserved. The average conductance in the relgiohlc¢ in used. In its single-mode version the difference is manifested

this case would a_ctually depend exponentiglly on the lengt nly in the concrete form of the scattering lengths, which in
of the conductor, in complete agreement with the results o he case of inhomogeneities of a surface nature are compli-

the theory of Refs. 23-26. . cated nonlocal expressions which differ frég®). Applying

llnlcgntrasj to the Toﬁel ﬁhannel-symmgtnc Sé/StemS' Mhe technique described in Refs. 37 and 38 to the present
real Q1D conductors all the channélsaveguide modosare problem, we obtain for a single-mode conductor with bulk

characterized bylifferentlongitudinal energie$8), although disorder

the one-electron energy @t=0 is, of course, maintained at

the Fermi energy. However, since the theory presented here 4 (LY (my)]*? L

is based not on the single-particle energies but on the mode (g"(L))= \/_— T} exg — 2L )

energies of the electron system, the inelasticity of intermode 7 b (#1)

scattering cannot be eliminated even for a static scattering Jm 2dz F{ ZLE)V)(M)}
X —

potential. This inelasticity manifests itself in finiteness of the L

-1
spatial scale of the damping of the mode propagat8ss; o cosi"z

from a physical standpoint this corresponds to incoherent z

intrachannel electron transport. It follows from E1) that XJ dy cost"~y. (36)
all the modes without exception the coherence lengths do not 0

exceed the electron mean free pétim order of magnitude. We can conclude from Eq36) that in the one-channel

The effective inelasticity of the interchannel scattering incase only two regimes of electron transport are
real conductors can be eliminated by assuming that all thdistinguished—ballistic and “localized”—the diffusive
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transport regime is absent. The corresponding limiting ex-
pressions for the average conductance have the form

1-4L/&,, L/&<1,

(9('—))” (775/2/16)(§l/|_)3/2exq— L/fl), L/§l>1'
3

where £,=4L{")(u,) is the one-dimensional localization
length of the harmonigu, in reference to thecollective
“backscattering” of electrons on the bare intramode potential

Vﬂl(x).

5.3. Metal—insulator transition as a quantum phase
transition

The conductancé7) demonstrates a localized character
of electron transport in a single-mode quantum waveguide,
in agreement with the known results of a spectral analysis of
one-dimensional disordered systef& his fact in itself is
an indication that it is in principle possible for a bounded 1.0 1.1 1.2 13
electron system to undergo a transition from the conducting k.H/m
to the insulating state under the influence of geometric fac-
tors alone, at a fixed level of disorder. The one-dimensionakIG. 3. Dependence of the dimensionless conductance on the thickness of a
localization (of the Anderson typein linear systems is uni- quantum _waveguide at a fixed widtkeW/7=20.5) and different values of
versal in the sense that in the 1D random potential all thd"® diffusion parametek=L/¢: 0 (1), 0.5(2), and 5(3)
electronic states, regardless of energy, are exponentially lo-
calized. At the same time, in a certain sense this localization
can be regarded as weak. With decreasing level of disorder
the length¢, increases without bound, and in comparativelywaveguide model usetsee Fig. 1h the spectrum8) of
pure conductors, even very long ones, the collective trangvhich dictates the opening and closing of conducting chan-
port of electrons can actually remain close to ballistic. nels at nonequidistant points k.

The approach proposed in this paper allows one to ex- As the disorder increasésurves2 and3), the jumps of
plain the observed transition of an electron system from théhe conductance decrease in size, and the shape of the steps
conducting state to the insulating state even for samples dfecomes smoothened. In the neighborhood of the points of
mesoscopic length, and independently of the degree of thefpening(closing of quantum channels one should observe
structural disorder. With decreasing transverse dimensiongubstantial dips in the conductance. The shape of these dips
the conductor ultimately must pass into a “cutoff” wave- is clearly seen in Fig. 3b, where the curves in the region
guide regime, where all the modes in it become evanescerifidicated in Fig. 3a are shown on an enlarged scale. The
each localized on a scale of its wavelenbﬂ,]lrl, which in  relatively smooth decrease of the conductance as the point of
the framework of the calculational technique used here iglosing of the next channel is approached from the side of
considered to be microscopic. In this “size-localized” regime larger values oH is due to growth of the density of states of
the conductance falls off sharply relative to its val@@) in  the slowmarginal modeuy, and, accordingly, to a transition
the marginal single-mode state of the quantum system, and ®f electrons from the faster open modes into it. The dephas-
parametric accuracy it can be assumed equal to zero. ing frequencies of the latt¢formula (30b)] have square-root

It is essential that the mode structure of the conductopingularities at the critical points«, =0), and that is re-
illustrated in Fig. 1b can be altered by changing only one offlected in the destructive reduction of the mode propagators
its transverse dimensions while keeping the other one con33) in the vicinity of the critical points.
stant. It is seen from E¢8) that even at a very large widilv Analogous dips were observed in a numerical analysis of
the quantum waveguide can be brought to a cutoff regime byhe optical conductance of waveguide systems in Ref. 40,
decreasing only its thicknes$$ In real planar structures this using the Landauer approach. However, the dips in Ref. 40
is accomplished by increasing the externally applied pressingad a comparatively symmetric shape with respect to the
potential (see Fig. 1aor by a capacitive influence on the points at which the extended modes vanish, whereas in Fig. 3
heterocontact region. their shape has a pronounced asymmetry. This asymmetry is

Figure 3 shows the results of a numerical calculation ofdue to the circumstance that in the derivation of form(Gl4
the dependence of the conductari8d) on the thickness of in approximation(20) we neglected the contribution of the
the conductor at a fixed value of its width. Curtecorre-  evanescent modes to the conductance and were therefore not
sponds to the ballistic limif/L—o, and curve® and3to  studying thetunnelingpart of the conductance, which is due
finite values of this ratio. The ballistic conductance is ideallyto those modes. For a marginal mode this is not fully justi-
guantum, with a value of the jump equal to the quantegn  fied, since in the vicinity of a critical point the condition of
The peculiar modulation of curvé is due to the quantum weak scattering is violated, and the propagator of such a
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mode immediately after its closing is, strictly speaking, notphase observed experimentally. The essence of the proposed
equal to expressio(23). approach is that systems which from the experimental stand-
The curves shown in Fig. 3 demonstrate the sequence g@loint are completely two-dimensional should be treated as
quantum phase transitiorisoccurring in the electron system the limiting case othree-dimensionatjuantum waveguides
upon a change of its confining potential. At the critical pointsto more fully take into account the quantum character of the
the conductance changes in a jumplike manner, and the roklectron system.
of the correlation length in the electron system in the vicinity ~ We note that the procedure of reducing multidimensional
of these points is played by the wavelength of the marginatlynamical problems to one-dimensional problems, which is
mode, which is proportional to its density of states. a part of the analytical technique used, has also been applied
The leftmost phase transition, clearly seen in Fig. 3b, igo systems originally regarded as strictly
a transition of the electron system from the conducting phasavo-dimensionaf®?* However, for such systems it is hard to
to an insulating state. In the metallic phase in the immediateonsider the possibility of a transition from the metallic to
vicinity of the transition the value of the conductance in thethe insulating state in the framework of the approach devel-
ideal ballistic situation is equal to the quantu@y. This  oped, since the single-mode state of 2D electrons is usually
corresponds approximately to the values observed in thassociated not with macroscopic conductors but with quan-
neighborhood of the so-called separatrix—a line whichtum wires.
nominally divides the set of experimental curves of the Nevertheless, a macroscopic two-dimensional quantum
dependence of the resistance into subsets pertaining to theaveguide, if it is considered as “flattened” three-
insulating and conducting phases of 2D systéms. dimensional one, is fully capable of being found in the
In the majority of experimental papers the spectral classingle-mode, and even in the cutoff, 0-mode state. In this
sification of two-dimensional systems is done on the basis o€onnection one quite naturally wonders which electron sys-
data on the temperature and magnetic-field dependences t&ms are reasonably classified as two-dimensional and which
their resistance. A detailed analysis of the effects due to thenes are not. And, specifically, how do non-one-dimensional
magnetic field is the subject of a separate paper. As to thelectron systems differ fundamentally from three-
temperature dependence of the resistance of two-dimensiondimensional systems from the standpoint of their transport
systems, a number of qualitative conclusions can be reachemoperties?
already on the basis of the above-described features of the From the numerical and analytical results presented in
guantum transport in planar structures. this paper it is impossible to establish objective criteria for
First, we note that the transition from the “metallic” differentiating 2D and 3D systems. Only the conductance of
conductancé34), (35) to the small value it has in the local- the diffusion type, characteristic fomon-one-dimensional
ized (0-mode phase inevitably occurs via a single-mode systems, and the “localized” conductance of single-mode
state of the electron system, which, in spite of the macroconductors and 0-modg@nsulating systems are fundamen-
scopic width of the quantum waveguide, behaves as effedally different. Since two-dimensional and three-dimensional
tively one-dimensional. For one-dimensional systems it hasransport problems reduce to a one-dimensional problem in
been predicted previously that the conductance dependbe mode representation in an identical way, one is forced to
monotonically on temperature, in Ref. 36 for the cdse  conclude that a rational classification of nonballistic systems
>1 and in Ref. 41 foif 7<1. For 2D systems, the resistance of the Fermi type should be done not on the basis of their
measured near the separatrix on the metallic'si#ually ~ formal geometric structure but according to the mode con-
varies nonmonotonically with temperature. tent. From the this standpoint disordered systems with more
The weak temperature dependence of the separatrix ithan one extended mode, in which a diffusive transport of
self can also be explained if one considers that the wavequasiparticles is realized, so that their single-particle spec-
length of the last of the extended modes increases withoutum has a continuous component, are substantially different
bound as the point of its closing is approached, and it befrom the class of localized systems. The latter, in turn, in-
comes large compared to the wavelength of thermatlude single-mode systems, which are characterized by local-
phonons, whereupon the interaction of the mode with thezation of an Anderson natuistrong or weak, depending on
phonon subsystem of the crystal naturally becomes ineffedhe degree of disordeand 0-mode systems, the localization
tive. of the states in which is not due to disorder and/or interaction
Finally, deep in the insulating phase, when all the elecbut rather to the size-quantization of the spectrum of the
tronic modes have become evanescent and, hence, hightyrrent carriers.
localized, it is natural to expect that the resistance will ex-
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For a theoretical explanation of the mechanism of switching of the polarization of magnetic
vortices in an external circular magnetic field, a small spin plaguette in a vortex configuration is
considered. An analytical investigation of the initiihear stage of the vortex switching

process is carried out. The analytical results obtained confirm the data of a numerical calculation
of the plaquette dynamics. Both the numerical simulation and an analytical treatment of the
initial stage of activation show the importance of taking the azimuthal modes of the system into
account. It is at the frequencies of these modes that the most rapid growth of the vortex

energy and the total intraplane projection of the magnetization occur. Increasing the amplitude of
these modes leads to parametric excitation of a low-frequency symmetric mode, and that
causes vortex switching. The results provide a qualitative explanation of the data of a numerical
simulation of vortex switching in large magnetic systems and can be used in experiments

on the directed influencing of the polarization of vortices in magnetic nanodot20@ American
Institute of Physics.[DOI: 10.1063/1.1542378

INTRODUCTION asymmetry of the vortex switching process with respect to

. . ._the direction of rotation of the field. We showed that the the
In recent years a new kind of object has been attractin e . : oo
gfrocess of excitation of a nanodot in a vortex configuration is

heightened interest among physicists—magnetic particles . :
. of a complex character and requires that several eigenmodes
small size, from hundreds of nanometers to several magneti ) . ;
of the system be included in the treatment, chief among

atoms and referred to varl(_)usly asL?_aggnetlc nanodots, Mahich are the so-called first azimuthal modes, associated
netic clusters, and magnetic molecutesSBy now there has . : . §
with the rotation of spin waves around the center of the vor

been direct experimental confirmation that magnetic nan- S
. . . . ... tex. However, the simplified model used by the present au-
odots contain magnetic vortices—topological excitations

close in nature to Pitaevskiortices in superfluid liquids and thors in Ref. 10 did not permit gxplanatlon of the asymmetry
. . ) . ! . .. of the process upon a change in frequency.

hydrodynamic vortices in two-dimensional incompressible S . .

A . . In the present paper, which is a continuation of Ref. 10,

liquids.”< In the case of easy-plane magnetic anisotropy, the

magnetization in a magnetic vortex rotates by an anglenof 2 we consider the dynamics of a small *magnetic plaquette

in passing around the center of the vorte®In a number of (magnetic cluster of several coordination spheres of the

magnetic lattice in a vortex configuration under the influence
cases the presence of a nonzero component of the magneti: . . ) )

S L ) of a spatially uniform rotating external field, but we have
zation in the direction perpendicular to the easy plane— ; . .
“ e taken into account the magnon eigenmodes of the system in
polarization” of the vortex—has been observed

experimentally:2 This polarization can have opposite Signsthe presence of a vortex. Classification of the magnon eigen-

and is characterized by a topological index + 1 (see Refs. modes of such plaquettes in a vortical state has been carried

10-12. In real discrete systems this index is not a true to—OUt previously by the authors in Refs. 13 and 14, where it

pological charge and can vary under the influence of 'as .shc_)wn ‘.h?‘ the spectra of such a system have a complete
temperatur or a circulat? or constant field perpendicular qualitative similarity to the low-frequency part of the spectra

to the plane of the nanoddtThe possibility of directed of the large-radius systems discussed in P&tOur numeri-

oo . . ) cal calculations confirm the results of the qualitative analyti-
change of the polarization of a vortex is especially important

when one considers that nanodots containing vortices of difgal trea_\tment of the pr_oblem (.)f the change of polarity of a
) . : N . vortex in an external circular field.
ferent polarity might, in principle, be used in the future as

S . . The results of the present paper for a small magnetic
memory elements in high-density data storage media. ) . .
) o ) . _plaquette, together with the results obtained in P&rfdr a
Changing the polarization of a vortex in a circular field

was studied by numerical simulation in Ref. 12, where it Wasnanodot of finite size, give a complete qualitative description

- of the scenario of vortex switching in a circular magnetic
shown that the vortex switching process has a resonance
. o . Tield.
character and is asymmetric with respect to a change in sign
of the frequency of the applied fielthe direction of its
rotation. Part | of this papéf included a critique of the
analytical part of Ref. 12, and it was shown that the scenario  Let us consider the spin dynamics of the small plaquette

proposed by the authors of Ref. 12 does not explain thehown in Fig. 1, in a vortex configuration with fixed bound-

1. MODEL AND STATEMENT OF THE PROBLEM

1063-777X/2003/29(1)/10/$22.00 55 © 2003 American Institute of Physics
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ary spins. Such boundary conditions can be explained by th€he smallness of the damping coefficient for a plaquette is
presence of an additional strong surface anisotropy, whicdetermined by the inequality<1, since the eigenmode fre-
orders the boundary spins perpendicular to the surface of Quencies in this case are of the order of unity.

small magnetic particle, or by an influence exerted on the The magnetic structure and property of the spectrum of
surface spins by the matrix surrounding this particle. Thethe plaquette systems illustrated in Fig. 1 were considered
equations of spin dynamics—the Landau-Lifshitz equationgreviously in Refs. 13 and 14, in which it was shown that the
(LLEs)—with the circular magnetic fieldh=h(coswt, classification of vortex states of such systefie existence

sinwt,0) are written in general form 5 of an in-plang(IP) vortex configuration in the case of strong
anisotropy and an out-of-plar©®P) vortex configuration at
den —E M s i values of the anisotro arameter close to ynisyanalo-
dat m—[mnCOE{%—(in)—J’Sln(QDn - Py p 1516
o Ln gous to that in systems of large size"®and the spectrum of
m excitations of such small plaquettes has a qualitative similar-
—@nis) =AM, s]+h . codp,—owt), (1) ity with the low-frequency part of the spin-wave spectrum in

Min systems of large size with the corresponding boundary con-

dm, _ ditions(see Refs. 17 and 18n the plaquette considered, the
W=Zﬁ (=M M 1ol yMycOL@on—¢@nis) +SiN(en  four spins of its inneffirst) coordination sphere can change
their orientation, while the spins of the second and third co-
—@n+s) T YN mjz_nmn+5) —hm, ,sin(¢,— wt), ordination spheres are fixed in the position corresponding to
the equilibrium configuration of the in-plane vortex. The vor-
2) tex state for such a plaquette, thanks to the fixing of the outer
where we have used the notation from Part | of this paperspins, is the ground state and is determined by the following
m,=S; is thez projection of the spin onto the “hard” axis, system of static equations for the four mobile spins with
pn=tan {(g/S) is the azimuthal angle of the spid=1, indicesn=1,2,3,4:
and

m = 1—mﬁ. 25‘4 My M+ 5SIN(@n— @t 6) =0, ©)
Min+s

Am -my—
25 n+48 n m

Ln

cog ¢n— ¢Pn+ o) [=0, (4)

where the summation is over nearest neighbors, with indices
n+ 4. The state of the 12 boundary spins is fixed and is
determined by the valuesn=0 and ¢=®,, 7/4, 7/2
—®y, w2+ Dy, 37/4..., where dy=(1/2)sin {(v3—1).
Here the IP vortex configuration corresponds to the solution
for four mobile spinse’=n/4+ 7n/2, ml=0, n=1-4,
which is stable in the interval of values of the anisotropy
parameter E&\<\.=cos@/4—dy)=v3/2~0.93. We
note that the difference of the critical valig from the value

for systems of large sizex(~0.72 for a square latti¢8) is
insubstantial and is due to the fact that for systems of small
size, this quantity depends considerably on the configuration
of the system itself and the fixed configuration of the bound-
ary spins-**By varying®,, one can also vary the value of
Ac.

For weak easy-plane anisotropy less than the critical
value \>\.) another vortex configuration—OP, in which
the spin at the center of the vortex sticks out of its plane—is
stable. The static distribution of the the directions of the
mobile spins for an OP configuration is given by the follow-
ing expressionsqo2= l4+ n/2, as for the IP configuration,
and for thez projection

ml=m=py1—(\./N)?, (5)

wherep=*1 is the polarization of the vortex. After linear-
ization of the system of equatiof¥), (2) for the four mobile
spins with respect to small time-dependent correctjorsd

: _ 0 _
FIG. 1. Configuration of a spin plaquette corresponding to an in-plane v 0 the vortex solutionmy(t) = un(t) + My, @n(t) = va(t)

0 . . .
and out-of-plangb) vortex. The dark circlets from the first coordination + Pn s W_e Obta'n_for:“ and v a system of eight first-order
sphere denote the mobile spifis2,3,4. differential equations:
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dv, - M nis 0 0 (where y,, is the azimuthal coordinate of th&th spin. Its
dat & |\ M me, €O @n+ 5~ ¢n) frequency forh <\ is independent of the parametey:
anJr& . 0 0 Qlll?zz 2)\0’ (10)
—(Vnys— V)M, m, . SiN(@n4 s~ ®n) and
1,2),,1,2_ —
3 mnmn+5 COi 0 3 0) “ (6) 14 /,LL =F1. (11)
Bn+s M, oM s Pn+s™ n ' Finally, the highest-frequency mode, the second azimuthal
d mode with antiphase oscillations of neighboring spins, cor-
ﬂzz [(Vn+5_ ,,n)mmmmwcoswgw_ q,g) responds to a solution Withun_=,u3 cos(2,—Qat), v,
dt 5 =17 sin(2x,—Qat), the frequency is
Mints m, n ngp(k)zzv)\c()\c"')\)y (12)
T My + Ut s 5 ——
m m ; ;
+n Lin+ds and the amplitude ratio
37,3 [N In
XSin((P2+§_ (Pg) ’ (7) 14 /,lL = 1+)\/)\C (13)

For the OP regionX>\.) we have an analogous classifica-
wheren=1-4, m,=0 for the IP andn for the OP configu-  tion of modes, with the only difference being that now,
ration, m,, ;=0 for the spins of the outer coordination thanks to the lowering of the symmetry of the system, the
spheres and for the spins with+ 5=1—4 in the IP configu-  degeneracy of the first two azimuthal modes is lifted. The
ration, andm,, s=m for n+§=1-4 in the OP configura- corresponding wave parameters of the oscillatory modes
tion. The spectrum of systeii6), (7) for a plaquette in the have the following dependence an

region of stability of the IP vortex configuratiom €\ ) for the symmetric mode
contains three branched.he total number of modes is equal op 5
to the number of degrees of freedom of the Hamiltonian 26 (M) =2VA®=Xg, (14)
system, i.e., the number of free spins, but for an in-plane N N\ 2
vortex one of the modes is twofold degeneraliene lowest V0 ul=— (_C) —1; (15)
branch(see Fig. 2 corresponds to a symmetric mode with N A
pn(t) w0 cosQet, vy(t)=1sinQt, and the dependence of for the lower first azimuthal mode
its frequency on the parametgris given by the formula
quency P given by QPN =2(n—VI=(Ae/N)D), (16)
IP
Qo (N)=2yNc(Ne—N), (8) ey
and the ratio of the amplitudes of the oscillations of the spins /1= — )\(2)\_ 1= (/MY : (17)
in the two perpendicular directions is given by NoFAVI=(N/N)?
o = 1=\, . 9 for the upper first azimuthal mode
This mode, denoted here by the index 0, corresponds to the Q5F(A\)=2(A+1—(N\./\)?), (18
symmetric mode with index 2 considered in our previous
paper® We see that at the critical poilt—\. the spins 2 a1, 1 MATVI=(ND)
: . vl uc= = ; (19
oscillate perpendicular to the easy plane. )\§+)\\/1—()\C/)\)2
The next mode is the twofold degenerate first azimuthal d for th 4 azimuthal mod
mode:  gn=u2CoSka—Qu o), va=rh2sin(ra— Oy A) and for the second azimuthal mode
Q9P =222, (20)
2
1] T3 3 3 M A
vl N X +1. (21
21 2

|
! The total spectrum of oscillation frequencies of the plaquette
| in the OP region is shown in Fig. 2. We see that it does in
o \:,\ fact have a qualitative similarity to the low-frequency part of

[ the spectrum of systems of large sizgéor a fixed
boundary,**® but there are several differences. For ex-

be '+ 0 ample, in a large system foar>\ . the symmetric and lower
0 | first azimuthal modes cross, and at large values thie latter
0 1 becomes the lowest in frequency. This is the reason for the

|
e 0.94 N 0.97 1 change in the numbering of the modes in Part | of this
study?® the zeroth mode of the plaquette corresponds to the
FIG. 2. Spectrum of eigenmodes of a spin plaquette in a vortex configurasecond mode of a large system, the first mode of the

tion in the OP region: symmetric mod@); doublet of first azimuthal modes -
with different directions of rotation of the spin wavk,2); second azimuthal plaquette, to the first mode, and the second mode of the

mode(3). The inset shows the total spectrum in the whole range of variatior‘plaque_ttei to the third modsee Fig. 4b of Re_f- 10 Further-
of the anisotropy parameter. more, it should be noted that the second azimuthal nitiae
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highest in frequenayin the plaguette corresponds in a large
system to a solution with four nodes in the azimuthal direc- ~ #a=75(Po=m, P1+m, Py—Pj),
tion. In Fig. 4b in Ref. 10 this frequency dependence is not
shown, and the curvéd) in that figure corresponds to the
first azimuthal modéwith two nodes in the azimuthal direc- v1=5(Po/m+P;/m, +Qo+Qa),
tion), but with an additional node in the radial direction.
Below we will be interested in the vortex dynamics only in 1
the OP region, and we shall drop the supersca@iptfrom all v2=75(Qo=Qa1/mM;+Qz/m, —Qy),
the quantities.

It will be convenient below to change over from equa-
tions for the oscillations of individual spins to equations for V3= 2( P1/m; —P3/m; +Qo+Q3),
the characteristics of the collective modes discussed above.
We expand the Hamiltonian of the systdsee Ref. 1Dto
terms of second order in the small deviationsandv,, from v4=5(Qo+Q1/m, —Qz/m, — Q). (24)
the OP solution. For a plaquette, with the the symmetry prop-
erties of the static OP solution taken into consideration, the

Hamiltonian is written explicitly as a positive definite qua- 2 DYNAMICS OF A SPIN PLAQUETTE IN AN EXTERNAL
dratic form: CIRCULAR FIELD

4 4 Let us take into account the presence of a circular mag-
=—3 Z 24 Nem, D) V2 N(ppat pmja netic field and analyze the resonances arising in the initial
m n= n=1 stage of activation of the eigenmodes of the plaquette by a
field of a given symmetry.

We expand out the interaction Hamiltonian of the
T p3va— pavat laVa— mavs), (22 plaquette with the external circular field,H;(t)
—hX,m, , cos(p,— wt), to terms of first orde(in the small
correctionsw andv) and, going over to a description in terms
of the normal mode§24), we have

T pomat pama) T M(povy— pmivot wva— Havy

and the dynamical equation(§), (7), for the Hamiltonian
(22), will be Hamilton’s equations for four coupled oscilla-
tors with effective momenta,, and effective coordinates,
conjugate to them. To explain the process of activation of the -
normal modes of a plaquette by a circular magnetic field, it is ,m =h[(1-m)P;—(1+ m)Pz]sin(— - wt)
. ! o 4
necessary to diagonalize the Hamiltonié2?) (change to
normal modesand write the correction to it due to the in- T
fluence of the external fields;(t), in terms of the normal —h[(1-m)Q;—(1+ m)Qz]COE<Z— wt)- (29
momenta and coordinates for each of the modes. We reduce
the quadratic form(22) to the principal axes: The superscripd (for “direct” ) is introduced in order to
emphasize that this part of the interaction Hamiltonian is
HO:} E (@ P2+ B,Q2) (23) responsible for the “direct" resonant influences on the sys-
2 tem. To second order ip and », after an analogous proce-

where «,, and B,, are the coefficients of the reciprocal massdure’ we obtain

and stiffness of thath effective oscillator, which depend on
the anisotropy parametarin the following way: Hint hH

ao=2A(1-mh)/m}, Bo=pBz=2Am,,

PP+ PoP,
N UL S TN

PoPy+P
_[H_HM

> +QoQ2+ Q1Q3”

al:Bl:Q]_ZZ()\_m), azzﬂzzﬂzzz()\+m), °

az=2\o(1+m?)/m?. N } PoQ,+ P3Qy
. N Xsin——ot|+h{|1-=||———
(We recall that the quantities and m, appearing in these 4 [ 2 [ ml
formulas are functions of.) The frequencies of the normal
modes(effective oscillators)? are expressed in terms of the +P,Qo+PyQs|+| 1+ _} [m
parametersy, and 3, as foIIows:Qﬁz anB,, and the initial 2 my
variablesu and v are expressed in terms of the normal “co- -
ordinates” and “momenta” as +P,Qp+P;Q3 ]cos( o wt) . (26)
=5 (PotP3+m Qy+m, Qy), Since Eq.(25) contains only quantities with indices 1 and 2,

only the first azimuthal modes are excited in a direct reso-
nance manner. The part of Hamiltonié2Z6) with superscript

p (“parametric”) is responsible for the parametric excitation
of the system, but, as we have pointed out previdisind

will show in detail below, the parametric excitation in this
case is rather unusual.

1
MzIE(Po"‘ m, P;—m, P,—P3),

1
,U«3:§(P0+ P3—m; Q;—m, Qy),
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The calculations below are less awkward to do if we go  dy, . it ot e ot
over to a description of the dynamics in terms of complex | ~Qu¥a=h(ay o “iagyge '+ b ye”
guantities: _ '
+b,y5€“)+hie ', (31
ala Py . 4/B,Q
l,bn: IB_n_n+| _n_n’ (27) : d¢2 _ * i ot * A ot * —iwt
nv2 Anv2 ot — Qoo =h(a3 o€ +asg € + b3 e

whereys and ¢* play the role of classical analogs of creation

and annihilation operators, creating and annihilating normal

modes. Here the total Hamiltonian of the system in the ap-  dis
proximation quadratic inj, is written as follows:

3 .
1 1-i :
- _ 2 - _ * ~—iot
H=5 2 Qulgnl®+h——[(1-m)yie
(L4 My h eet(1+1i)
— m wl] _ -
24 U s
1+m/2 4 BO ( m) 4/
X{IJIO mi \[a—0+ 1 E B_O
L 1+m/2 4B, ( m) afag
Yo Tmr Nag 1172/ Vg,
e‘i‘”‘(l—i){ {1—m/2 4/Bo
+h —
b2 s o = o
m\ 4/aq L 1—m/2 4/B, m
+ 1+§)\/’8—J+¢0 ~ a_o_(l+§)
o ao“ é“’t(1+i)( 1+m/2
Bo ) ° mf
B3 m\ 4/as L 1+m/2
* z*(l“) ARG
4/Bs3 m) 4 Bs”
X\ ——[1-5|\/5
ag 2 Bs
e‘i‘”t(l—i)[ {1—m/2 4/B3 m
+h —+|1+ =
1 s U3 -~ o >
4 3 % 1_m/2 4 B3 ( m) 4/03
: ﬂ_} 3[—mf Va, "112)VE,
+c.c., (28)

where c.c. stands for the complex conjugate of the entir
expression preceding it. Accordingly, the dynamical equa“
tions (LLESs) are now written as

dyy_

Iw—m (29)

(and the anomalous set of complex-conjugate equations
in explicit form,

d . ) .
[ % —Qoho=h(ary,€ +ayie ' +agy,e '

+agps e, (30

+hyyse oY +hed, (32

I —Qaz=h(byye '+ by} €+ by

dt
+hyyse Y, (33

where for convenience of notation we have introduced the
simplified notation for the coefficients, which are related to
the original ones in the obvious way:
e*iwt (92H
a= EWCEW
h aygdy,

1+| 1+m/2 4},80 ( m) 4/
s — 2 - 1__ - |- 1]
2V2 my @o 2 :80
dot oS, 1—i 1-m
= — = — —m s

h gy} 2

o g ot aH?m: B
h a9y 2

(1+m)

etc. We see that taking the circular magnetic field into ac-
count gives rise to terms responsible for both the direct and
the parametric excitation of the eigenmodes. It should be
noted that, as is seen from the structure of the system of
equations obtained, the parametric excitation of each indi-
vidual mode in a linear approximation occurs only on ac-
count of the remaining modes of the system, which can lead
to parametric resonance at combination frequenses Part
1).1° This fact was not pointed out in Ref. 12, where the
authors did not take into account the influence of the first
azimuthal mode on the fundamental symmetric mode, i.e.,
they neglected terms of the forgy i, ot , &5 ¥, and

5 e with k# 0 in the Hamiltonian. Another interesting fact

is that for a vortex at the center of the system, a circular
magnetic field can lead to direct resonance only at the fre-
quencies of the first azimuthal modes. In turn, owing to the
presence of the cross terms in the phenomenological equa-
tions for the zeroth mode, direct resonance at the frequency
of the first azimuthal mode can also lead to activation of the
zeroth mode.

The resonance pattern of the inhomogeneous system of
equations(30)—(33) with periodic coefficients can be ob-
tained by using the method of multiple scatésn the gen-
eral case for correctness of the expansion obtained it is nec-
essary that the modulus of the periodic coefficients be much
less than the moduli of the constant coefficients of the equa-
tions. This is correct when the inequaltyz(},, holds. Since
in the case of a plaquette the eigenfrequencies are of the
order of unity, it is sufficient to satisfy the inequality<1,

i.e., the condition of weak pumping.

In accordance with the method of multiple scales, we

replace the true timeby a set of “times”T,, assuming that
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Pn(hi)=g2(To, T1, T )+ hyl (T, T1, To )+, Pyir
(34)
k . . 09
whereT,=h"T, are the different time scales, and
OI—(9+h(9+—f)+hD+ 35
a—&__l_o &__l_l e 0 1 ( ) 0.7_
Substituting(34) and (35) into (30)—(33), we obtain in
the zeroth approximation
iDotn=Qny, and gO=A,(T1,To)exp —iQ,To). 05|
To first order inh we obtain an inhomogeneous system
of the form
iD oy — Qo= —iD1Age oTo+a A e~ 2To Poar [ ;
L1 —
+a,AT 17 @Tot g A eI (@ 22)To 0.8 ;
+a,Alde+ 02T (36) 0.6 2

and the other analogous equations #gr, n=1,2,3. Accord-
ing to Floquet theory? at a boundary separating a region of 0.4
exponentially growing solutions from a region of nongrow- :
ing solutions of a system of equations with periodic coeffi- ;
cients, the solution is a purely periodic function of time. To 0.2 '
arrive at the curvdin terms ofw= w(h)) on which the so- .
lution is purely periodic, itis necessary to eliminate the secu- o 0.04 096 0.98 1
lar terms from the right-hand side of equatiof®§). If the 3
combination frequencies of the inhomogeneous terms

FIG. 3. The “power” of the direct(a) and parametridb) resonances as

iQn are far from the elgenfrequenmes, thri'An:O _and functions of the anisotropy parameter in the OP region. The dotted line
Ar=A(T,,...). Weassume that the external pumping fre- corresponds to the value=0.97 for which the numerical calculations were
guency is such that the following inequality holds: done.

w=00+Q,+ho, (37)

(1) There is no parametric resonance at the positive fre-
quencyw=Q,—Q.
(2) Similarly, there is no parametric resonance at the nega-

where o is the detuning parameter. Then from the condition
that the resonance terms be eliminated, we obtain f{®®h

—iD,Ag+a,Are i7Ti=0, 38 tive frequencyc_o=Qo—Qz. _
P17 827 € (38) (3) The parametric resonance at the negative frequency
—i151A1+a2A’0‘ e ioTi—Q (39) w=—07—, does exist, and the resonance curve has
the form
or

N2A* 17 * _ 2p% . .
DIAT +ioD AT —|ay| AT =0, Thus parametric resonances can occur in a plaquette only at

where it is taken into account th@ =hT,, and also the the frequencieglo+Q; and —Qy— ;. Sinced; # ), for
remaining equationsiﬁlAn=0, n=2,3. Hence, assuming any \ from the region\>\., the asymmetry of the reso-

A% =A*(T,,...)expleTy), we have nance curve Wlth.respe.ct to a change in sign of the external
pump frequency is obvious. The conclusions as to the pres-
o o’ ) ence of parametric resonances of the first ofdethe field
8:§i 4 —[a,]”. (40) amplitude at combination frequencies, including the sum

(with the appropriate sigrof the frequencies of the symmet-
We see that the increasing solutiofi€., parametric reso- ric and first azimuthal modes, are in agreement with the data
nance at the given combination frequenexist under the  from the analysis in Part but the frequency asymmetry
condition|a,|?>0, which obviously holds, and the form of was not discussed there.
the resonance curve=w(h), separating the region of In system(30)—(33) there also exist direct resonances of
stable oscillations from the exponentially growing solutions,first order inh: at the frequencyw=—, and at the fre-
in a first approximation irh has the form quencyw =, with different “powers”—amplitude factors
_ &|~(1—m) and|{|~(1+m) from Egs.(31), (32) (see Fig.
() =00+ 2+ 2ha,. “D |36|\) Thus the pa’|tte|rn of direct resonances is also asymmetric
Thus a parametric resonance is observed at the positive comvth respect to a change in sign of the pump frequency.
bination frequency)y+ (). By doing an analogous treat- Figure 3b shows the “power” of the parametric resonances
ment of all the remaining cases, one can show the followingin the system as a function of the anisotropy parameter
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and of the external field was taken into account. The pres-
ence of a parametric resonance, on the other hand, is deter-
mined by the sign in front of the coefficiefa;|? in condi-
tions of the form(40) for the different modes, and the power
of a particular parametric resonanéé it exists) depends
only on the value ofla;|?, which in turn depends on the
i A configuration of the static vortex solution in the syst&and,
hence, on the system itselind the value of the anisotropy.
f _g) —Q, Q Qf I Therefore, in going from a small plgquette toa mgcroscqpic
Q- Qg2 - 10+Q, system only a qgantltatwe change in the r_esults is poss_lbl_e.
However, by using the procedure described above, it is
straightforward to derive a set of criterigimilar to those
FIG. 4. lllustrative scheme of the main resonances of a plaquette containing’hich we derived for the case of the interaction of the zeroth
a vortex: for direct resonances the dependence of the oscillation amplitudegnd azimuthal modeshat will predict the existence of a
of the spins on the pump frequency is shown, and for the parametric resqs, 9 metric resonance at combination frequencies by starting
nances, the characteristic curvegh) and the regions of instability . . L . .
(shadedl For each of the resonance curves the presence of finite damping ifsrom the value of the static discrete distribution of spins in
taken into account. The labels2,3,4correspond to Fig. 3. The dotted line the OP vortex. The results regarding the presence of a direct
corresponds to resonances found in the numerical study. resonance at the frequencies of the first azimuthal modes also
remain valid for considering systems with a free boundary. In
) ) ] that case, however, the lowest zeroth mode is abgent
the existence region of the out-of-plane vortee., the de-  frequency is identically equal to zeraso that the pattern of
pendence onh of the opening angle of the curve® the combination parametric resonances in the system is
= w(hc), which bounds the regions of exponential instabil- gy alitatively altered. However, as was pointed out in Ref. 12,
ity). The power of the parametric resonance is defined ag change in the form of the boundary conditions does not
Ppa=7—2 tan (2Jay|) for resonance3 at the frequency entajl a substantial rearrangement of the resonance pattern.
Qo+Q4, and by the same expression but wigh| for reso-  Therefore, it can be stated that the main effect should be a
nance4 at the frequency-Qo—Qy, Pi%(Ac)=0. From the girect resonance at the frequencies of the first azimuthal

curves given it is easy to determine the sequence in whichodes, and that has been confirmed in our subsequent nu-
the resonances should arisghen damping is taken into ac- merical studies.

couny as the amplitudé of the external influence increases.
The first of the direct resonances to appear should _be thsgz NUMERICAL ANALYSIS OF THE DYNAMICS OF A SPIN
resonance at the frequenay=—{,, which has a high o o crre |\'A CIRCULAR MAGNETIC FIELD
power. The first of the parametric resonances is that at the
frequencyw=Qq+Q,. Figure 4 shows the frequency de- To confirm and check the results of the analytical treat-
pendence of the oscillation amplitudgéhe amplitude— ment of the mechanism of vortex switching in Sec. 2 and
frequency characteristicgor the direct resonances and the also to get an understanding of the relation of the linear
curves of the critical value of the amplitude of the externalanalysis to the true physical pictu¢since the switching it-
field as a function of the pump frequen@e critical char-  self is a substantially nonlinear phenomenon, the resonant
acteristic$ for the parametric resonances. Performing the exactivation of the eigenmodes of the system by an external
pansion by the method of multiple scales, one can show thdield is not guaranteed to lead to a change in polarization of
in the second order ih only a renormalization of the reso- the OP vortex, since here a linear treatment is insuffizient
nances frequencies, of ordef, arises, and no additional we carried out a series of numerical simulations and modeled
resonances appear. the process of switching of an OP vortex for a plaquette. The
Thus in the activation of the low-frequency modes thesystem of eight nonlinear equatio(is, (2) for the plaquette
following pattern arises: upon a change in the direction ofwas integrated by the Runge—Kutta method for different val-
rotation of the external circular field, the role of the lowestues of the frequency and amplitude of the external field. At
first azimuthal mode begins to be played by the next azithe chosen value of the anisotropy parameter0.97 the
muthal mode(as has been noted in a number of previoustotal z projection of the magnetization in the OP vortex con-
papers, these modes can be regarded as spin waves rotatfiguration, [M|=4|m|~1.12, is large enough for a precise
in opposite directions and that leads to a frequency asym-and unambiguous determination of the polarization of the
metry of the observed resonance interaction upon a change wortex. At the same time, the static valoe~0.28, which is
the sign ofw. In the general case the “power” of the reso- much smaller than unity, allows one to do the integration by
nance(determined by the value of the amplitude factors for adetermining the direction of the spin vector in spherical pro-
direct resonance and by the opening angle of the charactejections, making it possible to satisfy the conditil@®|=1
istic = w(h,) of the form(41), (42) for a parametric reso- without additional procedures and expenditure of computer
nance is also different for different directions of rotation of time. As the initial configuration we chose the static distri-
the pump field even in the linear approximation. It should bebution (5) with p=1 (spins directed upwajdor an OP vor-
noted that the remarks concerning the presence of a diretéx found precisely at the center of the plaquette, and then an
resonance are also correct in the case of an arbitrary systeexternal field was turned on and the dynamic behavior of
with a fixed boundary, since in the derivation of the dynami-each of the four spins was tracked. For stabilization of the
cal equations only the symmetry of the modes themselvesystem a weak damping=6x 10 3 was taken into account

Al olhg,)
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(this led only to an insignificant renormalization, of orde
of the eigenfrequencies of the systerfhe eigenfrequencies
for a value of the anisotropy parameter0.97 are as fol-
lows: frequency of the zeroth modd4) ,~0.55; fre-
quency of the lower first azimuthal mod&6) Q,~1.38;
frequency of the upper first azimuthal mo@ks) (),~2.5;
frequency of the second azimuthal ma@@) ();~2.68(see
Fig. 1. The dependence of the vortex switching timen

A. S. Kovalev and J. E. Prilepsky

came equal to the initial value but with the opposite sign:
M=-1.12. It is seen in Fig. 5a,b,c that initialat small
values ofh) the first switching occurs at a negative fre-
quencyw~ — 2.43(Fig. 539. With increasing field amplitude
another region, at positive frequencies witk-1.46 is added
(Fig. 5b. Finally, at still larger values of the external field a
third switching region arises, at positive frequencies with
w~1.92(Fig. 50.

the frequency of the circular pump was found to first order =~ By comparing the results of the numerical analysis with

for different values of the amplitude of the external circu-

the data from the analytical treatment of the mechanism of

lar field h. The corresponding curves are shown in Fig. 5.activation of the eigenmodes of the plaquette and also taking
The switching time was considered to be that time at whichinto account the values of the eigenfrequencies of the system
the totalz projection of the magnetization of the system be-for A=0.97, one can conclude that the most pronounced
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FIG. 5. Numerically obtained dependence of the vortex switching time on
the frequency of the external field for different values of its amplithde
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switching is that due to the direct resonance at a negative
frequency of the upper first azimuthal mode= —Q,, then

the weaker direct resonance at the frequency of the lower
azimuthal modew~(),, and then the strongest parametric
resonance is seen, at the combination frequeaey(),
+Q4. The slight difference between the values of the fre-
quencies at which switching was observed and the values of
the eigenfrequencies is apparently due to the deformation of
the amplitude—frequency characteristics for the direct reso-
nance and of the(h,) curves for the parametric resonance
on account of nonlinearity, and also to the nonlinear fre-
quency shiftthe change, of ordér?, in the eigenfrequencies
can also be neglected, since the amplitude of the applied field
is rather smajl Figure 6a, b shows the curve &f(t)
=my(t) +my(t) +mg(t) +my(t) for the switching regions
w=-2.43 and 1.92.(The form of the M(t) curve for
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switching atw=1.46 is basically the same as that shown inprocess itself basically acquires the symmetry of this zeroth
Fig. 63. From a comparison of these figures one can see thmode.
qualitative difference of the activation process for these In studying the dynamics of a spin plaquette we did not
regions—the switching at the direct resonance frequenciediscern any destruction of the vortex configuration by large-
w~4 and—, occurs rapidly, with a very short activation amplitude oscillations in the case of a positive sign of the
time, as should be observed at a direct resonance. At thieequency of the circular pum@as had been observed in the
parametric resonance frequency a slower, exponential growtumerical simulations by the authors of Ref).1&pparently
of the oscillations amplitude takes place. this is because in our plaquette treatment there is practically
In Fig. 7 the time dependences of the tatgbrojection  no difference in the amplitudes of the switching field for the
of the spins and of the in-plane component of the total magease of switching at positive and negative frequencies, and
netizationM | (t) = /(£,S5)?+ (2,S%)? for switching at the this effect becomes noticeable only for systems of large size.
frequencyw= —2.43 (for = 1.46 the form of these curves However, the plaquette treatment obviously gives an expla-
is basically the sameare shown on one graph. If the vortex nation for the nonequivalence of the signs of the frequency
switching is due to activation of only a symmetric mode, in the switching process. In the numerical simulation we also
then in the course of the switching one should observe thdid not attain the values of the field amplitude at which the
equalityM , ~0. If azimuthal modes are involved in it, then parametric resonance at the negative frequeney—
the total in-plane magnetization should be nonzero. The form- {2, would be noticeable. However, as was shown in Sec. 2,
of the curves obtained suggests that at least in the initidihe parametric resonance at that frequency has a lower power
stage of the switching the first azimuthal modes are sharplyhan the resonance at=,+();.
excited. Subsequently the switching itself takes on the sym-
metry .of the zerot.h mode, a cwcumstgnce that confirms th%ONCLUSION
analytical conclusion that the first azimuthal modes play a
sort of “catalytic” role in the switching process: the growth In this paper we have presented a detailed study of a new
of the amplitude of these modes leads to activation of thenechanism for the process by which the polarity of an OP
zeroth mode, as a consequence of the presence of crossingrtex in an easy-plane ferromagnet is switched in a circular
terms in the dynamical equatio(30)—(33) and also because field; this mechanism, which was proposed in Part | of this
of the nonlinear mode—mode couplifghen the amplitudes  study:® differs fundamentally from that considered earlier in
of the modes become sufficiently laygén turn, for systems Ref. 12. The approximate qualitative treatment of the vortex
with a fixed boundary the switching due to activation of theswitching process from Ref. 10 is bolstered by an analysis of
symmetric mode is energetically most favorable, in agreethis process in a small spin plaquette, for which an exact
ment with what was stated in Ref. 12. analytical treatment of the linear problem of the activation of
The numerical analysis permits the conclusion that theeigenmodes by a circular pump is possible. The essence of
most important element of the activation process is the diredhe proposed mechanism of activation of the system is that
excitation at the azimuthal mode frequencies, which leads tthe low-frequency circular external field excites the lowest-
secondary activation of the zeroth mode, and the switchindying azimuthal modes, which, in turn, act as a “catalyst” for
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A solution of the problem of magnon scattering on Belavin—Polyakov solitons in two-
dimensional magnets is constructed in the framework of a generalizaddel. This model can

serve as a basis for describing both ferromagnets and antiferromagnets, and it can also
describe ferrimagnets near the point of compensation of the sublattice spins. The problem of
magnon scattering on a soliton is formulated* for this model, and its exact solution is obtained for
a partial mode with azimuthal quantum numimer=1. It is shown that in a linear

approximation this mode completely describes the dynamics of the center of the soliton in a
magnet of finite size. Effective equations of motion for solitons in different magnets are
constructed on the basis of this analysis.2003 American Institute of Physics.
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It is well known that in low-dimensional magnets a spe-unified approach, based on the the generalizedodel, the
cial role can be played by nonlinear elementary excitations—eynamical equations of which have the form
solitons. In some cases the thermodynamic properties of one-

2 2

dimensional and two-dimensional magnets are governed by v20—sin6cosé _12<‘9_p) —(Vg)?|= _12 6_26_'
the soliton contribution. Solitons are responsible for the lack co\at c” ot
of long-range order at nonzero temperatures in one- {sing dg
dimensional and isotropic two-dimensional magnets. In one- + D at’ 1)
dimensional magnets this is due to kinksee, e.g., the
reviews ™3 and in two-dimensional magnets, to localized i 19/ . dp\  {sinb d0

i : i - ) V(si® oVe)=— —| si —| — —. (%)
Belavin—Polyakov solitons. For two-dimensional easy-plane c? ot at D ot

ferromagnets it has been shown that the presence of nonlocal ) o
solitons (vortices leads to a special form of phase Here the parametdd has the meaning of the coefficient of

transiton—a  Berezinski-Kosterlitz—Thouless ~ phase SPin stiffness of the ferromagnet, andis the spin-wave
transition®® The motion of solitons and the soliton—magnon velocity in the antiferromagnet. In the nearest-neighbor inter-

interaction lead to a soliton contribution to the dynamic re-ction  approximation - one hasD=JS&/#h and c

sponse function, which can be investigated experimentally: 2JSaZ/h, whered is the modulus of the exchange ine-

by neutron scatteriﬂgand spin-wave dampiﬁglo studies gral, Sis the spin of the atong is the lattice constant, argl
. e . " . _is the number of nearest neighbors. The particular type of
The dynamic description of a wide class of classical

. . : . ) _magnet is determined by the relationship between the param-
two-dimensional isotropic Heisenberg magnets can be give

. f the classical uni q Btersc andD/¢. For finiteD andc the generalized model
In terms of the classical unit vector order parameten, gescribes a ferrimagnet near the compensation point of the
+iny=singe¥, n,=cosf.” The dynamics of a classical

) ) o " mechanical moments of the sublattices. For such a magnet
ferromagnet is described by the Landau-Lifshitz equationpe gyroscopic ternithe term linear in the time derivatiyén

for the normalized magnetization, which in this case playshe equations has the same structure as in a ferromagnet but
the role of the dynamical variable In a classical antiferro- g proportional to the small parameter=(S;—S,)/(S;
magnet the dynamical variable is the antiferromagnetic vec-S,), whereS,; and S, are the average values of the me-
tor, which in the long-wavelength approximation can bechanical moments of the atoms of the two sublattice®or
treated as a unit vector. The dynamics of an antiferromagnetescribing a ferromagnet one should drop the second deriva-
is described by the Lorentz invariantmodel of then field.  tives with respect to time from the equations, i.e., formally
Both types of magnets will be treated in the framework of alet ¢ tend to infinity and se8,=0, i.e.,{=1. The dynamic

1063-777X/2003/29(1)/7/$22.00 65 © 2003 American Institute of Physics
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Naturally, this solution has the same form for both the ferro-
AFM 7 . or antiferromagnet and the ferrimagnet. Herand y are the
FiM, * polar coordinates in the plane of the magnet, the integer
7 i the topological charge of the soliton, aRdand « are arbi-
/ . trary parameters.
The energy of such a soliton is determined by the for-
mula

Eo=4mIS|v|

and is independent dR and «. The nonuniqueness in the
choice ofa is characteristic for many models and is a con-
sequence of the isotropicity of the Heisenberg exchange. The
existence of an arbitrary paramef«soliton radius and the
\ fact that the energy is independentR®fare due to the scale
S W invariance of the static two-dimensionalmodel? It is clear
N el that this symmetry is broken in dynamics, except for the
e trivial case of a pure antiferromagnet and translational mo-
\ . tion, where everything reduces to a Lorentz transformation.
\ . The equations of the nonlinearmodel for an antiferro-
\ T magnet are formally Lorentz invariant with a characteristic
. velocity c—the magnon phase velocity. Consequently, the
\ ' dynamical properties of solitons in antiferromagnets can be
analyzed using a Lorentz transformation with respect to the
FIG. 1. Magnon dispersion relations for various iSQtI'OpiC magnets deSCI‘ibef}]onmoving soliton. In particular, in antiferromagnets the en-
by _the gener_allzedr model: ferromagnetFM), antiferromagnef{AFM), ergy and momentum of solitons moving at an arbitrary ve-
ferrimagnet(FiM). . . .
locity v is given by

Eo v Ep
term in the Lagrangian of a ferromagnet is of a purely gyro- E(v)= N P()= C\c2—2

scopic nature. The dynamics of the isotropienodel, which ) . . ) . ) _
describes an antiferromagnet, has a Lorentz invariant forpWith a dispersion relation having the standard Lorentz invari-

— 2p2 H
with a characteristic velocity parameter For an antiferro- ~ant form,E(P) = yEg+c“P, whereE, is the energy of the
magnet the gyroscopic term is abs¢éoe must set=0). nonmoving soliton. In the case of interest here, that of low
The simplest linear elementary excitation of an isotropicSOliton velocitiesv<c, this means that in the leading ap-
magnet, arising against the background of the uniformProximation the soliton coordinat in the case of an anti-
ground state, are magnons of the continuum spectrum. B{prromagnet satisfies a Newton t;:quation with a completely
choosing an orientation of the order parametealong the ~ determinate massl, Mgy =Eo/c™:

polar axis, we obtain magnon solutions in the form of circu- d2x

larly polarized waves withd=const1, ¢=k-r—w(Kk)t. M~z =Fe ()
The dispersion relation for a ferromagnet is quadratic:

wem(K)=Dk? (see Fig. 1 whereF, is the external force acting on the soliton.

In the case of an antiferromagnet the dispersion relation ~The dynamical properties of solitons in ferromagnets
is linear, |oapw(K)|=ck; it has two degenerate branches have not been adequately studied. It has only been estab-
with opposite circular polarizationsy= + ck, which means lished for them that the dynamical equations contain a gyro-
that linear polarization of the magnons is possible. For gcopic termG[e,,dX/dt], the value of which is determined
ferrimagnet there are two branches, as in the antiferromagpy the topology. For a solito@=47vJS/D. Of course, the
net, but here the two branches are nondegenerate, their freombination of this term with the Newton equatioffs)

guencies being given by should lead to Larmor precession of the soliton center with a
) T frequencyw, =G/M. However, the situation turns out to be
o)== /( | +c2k2 3) more complicated than that. Both for a soliton in an isotropic
2D 2D magnet and for a vortex in an easy-plane magnet the magnon

For smallk one branch of magnons, as in a ferromagnet,sPeCtrum is gapless_. This implies tha_t for soliton motion of
has a gapless dispersion relatian £y (k) =Dk ¢, while the Larmor_ precession type with a finite frequerm,y, that
the second has a nonzero activa{tio@F,M—>—§c2 for k frequen_cy |neV|t.any fa_lls in a magnon continuum. As_a re-
_.0. ' sult, soliton motion excites magnon modes, and that will lead

For an isotropic magnet in the two-dimensional case arﬁo fundamentally diffe_rent consequences for soliton motion
exact analytical solution is known, describing the Belavin—n @n unbounded medium and in a finite sample. For the case
Polyakov solitorf of interest, a magnet of finite size, one expects that the ra-
diation of magnons, their reflection off the boundary, and
their effect back on the soliton will result in the establish-

() r
=yl = a+ = _
tan 2 X PoTamvx, X=g. @ ment of a dynamical state of the magnet which includes both
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the moving soliton and the coherent magnetization oscillais complicated considerably in comparison with the one-
tions matched to the soliton motion. For understanding thiglimensional case by the fact that numerical methods are used
complex picture, direct numerical simulations of soliton mo-even for studying nonmoving solitons, which is an obvious
tion for ferromagnets of approximately circular shajpat  first stage in the analysis of the dynamics. Here again the
out from a square lattice up to 28@00 in size under the most interesting case is the isotropianodel, for which not
influence of image forces exerted by the boundatyhave  only is the nonmoving soliton solution known but substantial
proved to be extremely important. In those studies it wagprogress has been made in the analysis of magnons against
shown that the soliton motion is not described by simplethe background of the soliton.

second-order equations of the Newton type, and it is neces- For the analysis of small oscillations of the magnetiza-
sary to introduce dynamical equations of higher order in thdion against the background of the Belavin Polyakov soliton
time derivatives. Following this idea, the authors of Ref. 14it is necessary to consider the deviation of the angle variables
state that an adequate description of the dynamics of a mag-and ¢ from their values in the solito, and ¢, respec-
netic vortex in an easy-plane ferromagnet can be obtainelively. It is convenient to introduce}= 6— 6, and the vari-
only with the use of a complicated hierarchy of equations of2ble = (¢~ ¢o)sin 6 and then change to the complex vari-
motion, containing all the higher time derivatives. To under-able ¢=¥+iu. After straightforward transformations the
stand this, we must address the question of in what sense it foblem reduces to a complex equation of the form

meaningful to speak of nonuniform motion of a vortex R 2 cosfy DR? gy R2 3%y
(which is not a localized disturbance of the figid an easy- Hy+AU > — = =,

; L . X dx . dt ¢ oot
plane magnet or of a Belavin—Polyakov solit@mwhich the 6)

localization is weakin an isotropic magnet. R

For calculating the soliton contribution to the responsewhereH is the Schrdinger operator with a potential
function of a magnet, it is the coordinate of the center of the P o 2
soliton that is important. The behavior of this coordinate has = 2v* cos 0°+(eg) — v sin’ 00'
been analyzed in numerical simulatidds2 Thus we arrive 2X
at the problem of constructing effective equations of soliton
dynamics, i.e., equations describing the motion of a certain 2AU=(06)2—(
point X, chosen as the center of the soliton, without taking
into consideration that magnon modes linked to the time evothe prime denotes a derivative with respect to the variable
lution of X(t) can be excited far from the soliton. In this x=r/R. For a soliton in an isotropic magnet one has
approach the soliton coordinake=X(t) plays the role of a 6= —(v/x)sin6,, and the term witlAU goes to zero. The
collective variabledescribing both the dynamics of a finite value of AU is nonzero both for magnetic vortices and for
number of spins coupled to the soliton as such and also therecessional solitons in easy-axis magnets. Although our
dynamics of the magnon modes far from the soliton. It isproblem does not require studying anisotropic magnets, for
clear that such equations can be constructed only approxiwhich AU+#0, we shall begin by discussing the general
mately, and it is important to establish how the form of thoseproperties of that problem, since they are important for
equations will change as the accuracy is incredsegl, as an choosing the modes corresponding to the motion of the soli-
ever greater number of spins are taken into acqoumtad- ~ ton center.
dition, it is clear that such equations at a certain level be- ~ The solution of Eq.(6) can be sought in the forng
comenonlocal i.e., the coefficients in them will depend sub- = 9+iu=u(r)é®+v(r)e”'*, with ®=my+ ot, wherem
stantially on the size and shape of the system. Just suchia the azimuthal quantum number. Then for the functions
situation arose in the construction of the effective equations!(r) andv(r) one obtains an eigenvalue problem in the form
for magnetic vortices proposed in Ref. 12. On the other handf two coupled Schrdinger equations:

V2
)sin2 0o;

X2

analysis of the data from a numerical simulation has estab- 2

. ) . . ) o N mv c0S6,

lished that the equations linear in the time derivative of the { - u+(AU),=Qu,

displacement of the soliton from the center of the system X

give an adequate description of the dynamics of the soliton 2mv cosé, @)
center, even when the initial displacement is not sr0- T v+(AU)u=—-Qu,

20% of the dimension of the systeniThis means that in
practice the only source of nonlinearity in the equations isvhere Q=R wD/{+ w?/c?] for the generalizedr model.
due to the static term—an external force, e.g., an imagélowever, if AU=0, then the system decomposes into two
force. This led to the idea of recovering the dynamical equaindependent equations of the Scotfirmer type foru andv:
tions describing the soliton motion from data on small oscil- . N
lations of the magnetization against the background of the Hou=Qu, Hp=-0v, ®)
soliton.. Indegd, since the image force _acting on a magnetic , (mz v C0S8p)2— v2 Sir 6,
vortex is easily calculated, the frequencies of several magnon H.,=—-Vi+ 2 . 9
modes can be coupled with the dynamic terms in the equa-
tions of motion. These two equations are not equivalent; in particular,
Thus we arrive at the problem of small oscillations of thethey have different asymptotics of the solution at zero:
magnetization against the background of the solithis ap-  u=c;r™ "+c,r (M, and v=cyr™ ¥ +c,r (MY,
proach was developed by Wysih Analysis of this problem  Therefore the equations far andv play different roles in
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the description of the soliton dynamics. It is easy to see thafinite sizeL and not only in the limitL—oc. This solution
the operatorsl;l(i) do not have negative eigenvalues. There-was obtained in Ref. 17 and can be written in the form
fore, in the caseAU=0 the equation forw need not be 3,(kr) dé,
considered at all—one can set0 in the solution. Then we uf=J, .(kr)+ m 4
arrive at the conclusion that small oscillations against the
background of the soliton in an isotropic magnet are dewhich emphasizes that at short distances this mode describes
scribed by a single equation of the Scilirmyer type(8) with  the displacement of the soliton. Apparently the presence of
the operat0||3|(+) for the variableu. such a solution is not due to the exact integrability of the
Solutions of this problem were found in Ref. 16 far ~ problem. Indeed, an isotropic magnet model is exactly inte-
=0 and any value of the azimuthal numiver These zeroth grable in the static two-dimensional casesn(x,y), but
solutions u®) have the formu!%=sin @y/xxdd,/dx For nothing is known about its integrability in the dynamic (2
—v+1=m=v they describe quasilocal modes of this task.+ 1) case, fom=n(x,y,t).
It is particularly important that a mode witm=1 exists Let us study a simple case that permits recovering the
among them, and the mode conists uﬁo)zsin 6o/ soliton equation of motion. We consider oscillations of the
xxdfy/dx. It is clear that this is the mode that describes themagnetization in a circular magnet with a finite radiuand
soliton motion and is the mode of greatest interest to us. @ soliton at the center. We shall discuss the Dirichlet bound-
For any arbitrarily small but nonzero value AU the  ary conditions corresponding to a fixed value of the magne-
situation is fundamentally altered. In this case the equation#ization at the boundary:

(10

for u andv form a coupled system. The formal solution for W(r x|, =0 (11)
the second equation of syste at smallAU and a finite A=
value (>0 can be written in the form which models the case of repulsion of the soliton from the

boundary on account of the image fordésVe are interested
only in those magnetization oscillations which are due the
1 . ; . ) .
o= (AU)u. displacement of the soliton, i.e., which have azimuthal quan-
|2|H+Q tum numbem= 1. When the boundary conditiori1) and
the explicit form of the eigenfunctiofl0) are taken into
account, the spectrum of the problem is discrete. In the re-

four types of behavior ofi(r) and the same types of behav- gion of small wave vectorkL<1 the solution of equation
ior for v(r) for r—0, i.e., for anym both asymptotic forms (10) has the form

can appeary=cyr™ "+ cor (M " cgr™ ¥4 ¢, r (M), ol Av(vtl1) 1

From this we immediately see that in the case of a coupled P(x)r 1 kn?Z (rIRZ+1)

system of general form the soliton dynamics as a whole is . ] ] N
associated with modes both with=—1 andm=+1. Ina from which we find that for fixed boundary conditions there

certain sense, in this case the symmetry with respect to th@XISts & solution of the spectral problem with an anomalously
substitutionm— —m is restored. In particular, the scattering oW frequency corresponding to this inequality. For it

This quickly leads to the possibility of not two but

amplitude for spin waves with a small wave numkeon a 4v(v+1) (R\?”

magnetic vortex AU#0) for m=+1 andm=—1 differ k3= 2 (f) (12)
only in the signt* whereas for a soliton in an isotropic fer-

romagnetAU =0, and those amplitudes have different func- The next roots of the equation already correspond to the
tional dependence ok’ conditionkL~1, k,=j,/L, wherej, is thenth root of the

Thus we come to the conclusion that for a general magBessel function. Thus the spectrum of eigenfrequencies of
net model, when constructing effective equations for the vorthe translational mode witm=1 contains an anomalously
tex center coordinate, which plays the role of a collectivelow frequency, which should be manifested in a slow motion
variable, one should use the frequencies of the modes witbf the soliton, and a discrete set of higher frequencies of the
m=+1 andm=—1 the higher modes, both single modes same order of magnitude as for the magnet without the soli-
and modes joined into doublets. For isotropic magnets onlyon. It is important to note that for all these frequencies the
modes withm= +1 are important in this problem, which in corresponding solution clearly exhibits a characteristic peak
the limit Q—0 have the asymptotic forrdd,/dr and de- corresponding to soliton displacement. For an anomalously
scribe the displacement of the soliton. However, we are infow frequency the solution is practically indistinguishable
terested in the motion with nonsmall velocity, which corre-from the functiond 6, /dr in the whole magnefsee Fig. 2a
sponds to finite frequencies in equatidias. For the next mode the difference frot®,/dr is noticeable

A remarkable property of isotropic magnets with afar from the soliton, but the translational maximum, as be-
Belavin—Polyakov soliton is that for them there exists anfore, is clearly discernable in the region of localization of the
exact solution for the translational mode with azimuthalsoliton.
numberm=1 for arbitraryk, and not only of itsk—0 (w For a ferromagnet and antiferromagnet these solutions
—0) asymptotics; this solution corresponds to a shift of thdead to fundamentally difference physical pictures of the soli-
soliton as a whole with an infinitesimal velocity. For our ton dynamics, and these cases must therefore be analyzed
analysis this is very important, since for elucidating the quesseparately. In the case of an antiferromagnet there are two
tion of whether the soliton motion is of a local or nonlocal frequencies corresponding to the translational Goldstone
character it is necessary to study the dynamics in a magnet afode:
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cular magnet correspond to higher valuekgfare excited.

_4 a
u U4(r), kR =8-10 Taking k,, into account forn>0 can also be done on the
e = - d0,/dr basis of the effective equations fii. A hierarchy of effec-
tive equations of motion appears, containing only even-
0 ' : . L numbered time derivatives. For describing the dynamics with
allowance for a single higher mode it is sufficient to write the

fourth-order equation in the form

M o EX X 14
zat "Mae T 0 (14
the coefficients in which can be found by comparing the
frequenciesw?=c?k3, k;=j/L. For largeL>R it is found
thathzM/wi, i.e., M, diverges with increasing,

-051

Mo=—77, (15

and taking this mode into account gives nonlocal equations
~1.0 for the soliton in an antiferromagnet. The soliton motion with
allowance for this term will have the form of a superposition
of oscillations of the slow motion with frequenciesw, and

b a fast motion with frequencies w; . In the general case one
05k can write for components of thé vector

Uy

X=A coswot +C cog w1t + @),
Y =B sin(wgt+ ¢g) + D Sin(wt+ ¢5).

Depending on the relationships of the amplitudes, C, D

4'. PP é. — and the phases,, ¢;, ¢, both the fast and slow motion can
. r/R be characterized by both linear and ellipticak circulan
polarization. Such a great diversity of the solutions is unsur-
prising for a fourth-order equation, in which as initial condi-
tions one must specify the value X¥fand its time derivatives
uy(r), kR=0.514 up to the third, inclusive.
. - d,/dr Let us discuss how soliton motion is obtained from this
equation under the conditions for which the numerical simu-
lation was doné? In this case the initial state corresponded
to a static spin configuration with a soliton, which was ini-
tially at rest at a certain poinK(0)=ae,, whereg, is an
arbitrary unit vector. Since a static configuration was used at
the initial time, it should be assumed thdX/dt|;_y=0,
FIG. 2. The f_unctiorumzl(r_) for e_ttranslgtional Gold_stone moda and the d2X/dt2|t:0= 0, andd3X/dt3|t:0= 0. Hence we find that the
next translational modéb) in an isotropic magnet with = 10R. . . . .

soliton moves along a straight line parallel ¢9, and its

displacementX(t) has the form of a superposition of two

~-0.5

-1.0

oscillations:
s o Av(r+1)c? (R ) )
wo=CKo=——1z || (13 « w7 COSwot — wj COSw,t
t)=a
(t)=agy P

These frequencies can easily be explained on the basis of
a simple physical picture for the motion of a soliton under  Thus, by analyzing the simplest case of an antiferromag-
the image forceF,=—aX/LP, where p=2(r—1) and « net, for which it would seem that the dynamics of solitons of
=16m1?(v—1)IS’R?” (Ref. 17. For the Dirichlet bound- any type should have a Lorentz invariant character, we have
ary conditions considered here, the force is a restoring forcestablished that the center of the soliton should execute a
(repulsion from the boundayyand the motion is stable. rather complex motion, which, in turn, should be reflected in

It is extremely important that even for the simple case ofthe response functions of the magnet. This can be verified by
an antiferromagnet, for which a Lorentz invariant(at low  numerical modeling. Unfortunately, such studies have not
velocities Newtonian dynamics should be realized, in thebeen done.
case of a soliton in a magnet of finite size the effective equa- Thus, starting only from linear equations for the soliton
tions turn out to be more complicated than Newton equacoordinate, we have obtained a relation between the ampli-
tions. Indeed, the oscillations of the soliton under the influ-tudes of the different modes excited in the system. To check
ence of the image force has a finite frequency and falls in théhe validity of this approach, let us apply it to a problem that
continuum. Because of this, magnon modes which in a cirhas been analyzed in detail both analytically and numeri-
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cally. Let us consider the motion of a vortex in an easy-plandocal Newton equations with a finite mads=E,/c?, and
magnet of circular shape with raditis In such a system for 1/c2—0 it goes over to the Landau—Lifshitz equation for
there is a lowest mode witm=1 and a frequency a ferromagnet. We restrict the analysis below to the most
wo*1/L2. The next modes are joined into doublets with interesting case, that with topological change 1.

m= =1, and their frequencies; andw, are close in modu- Let us discuss the dynamical equations with allowance
lus. The lowest doublet corresponds ég=—®+4, w, for the two lowest eigenvalueg andk?, ki<k3 under the
=W+ 6, wg=56<wx1/L. This picture is obtained for a nu- conditionR<L, which is written in the form

merical study of magnon modes against the background of a 5
vortex in a discrete magnet modfet* and analytically from kzzg k2= L
an analysis of the data for magnon scattering on a vdftex. oLt L

The presence of these three modes has been observed in a |, contrast to the case of a ferromagnet, they correspond

numerical simulation of the vortex dynamics, while the ¢, o frequencies, the absolute values of which, unlike the

higher doublets were ordinarily not visiblé.When only  cace of an antiferromagnet, can be different. Two frequencies
thes:e three fre.quenmes are taken into account, the vorteg)(gﬂ and w((;) correspond td= k2,

motion is described by an equation that can be obtained both
by a generalization of the phenomenological datnd on . C
the basis of the method of collective variables with the use of ®0 = ~¢5 -

the generalized substitution of the traveling-wave te: . B 5
and the other twow{") andw{ ), are related td?:
Gyl d3X/dt3,e,]+ Md2X/dt?+ G[dX/dt,e,] + kX =0.

C2 C2 2
Here the coefficients of the gyroforé@ and massM are w(f)z — Ei D +czk§, (17

finite, the coefficient of elasticity=1/L?, and the coeffi-
cient of the “higher” gyroforceG; diverges ad? with in-  where the symbols%) in the notation for the frequencies
creasing size of the systethThe general solution of this must be chosen the same as the signs in front of the square
equation can be written in the form root in the formulas. These expressions contains three di-
_ mensionless small parametets(R/L)?, andD/cL. Let us
X=Ao COSwol + A, COS w3l + 1)+ Az COS WL+ ), assume that the qupantit;ko, corstaini)ng the product of two
Y=AqSinwgt+A; Sin(wit+ ¢q) + A, Sin(wst+ ¢,). of them, is much less thark,, but we shall not yet fix the
gelative values ot c?/D andck, or ck; . It is clear that such
an inequality does not rule out the case of a “pure” antifer-
romagnet, for whichy =0.
If the value of ¢ is large enough or the siZe of the
system small, so thdic>D/L, then the following inequality
holds:

2

j

2
—) +¢2k3, (16)

For a description of the numerical studies, let us assum
that the vortex is at rest in the initial state, i.dX/dt|;—¢
=0, d2X/dt?|;_o=0. Assuming for specificity thaX(0)
=a, Y(0)=0, we find that all three coefficients,, A;, and
A, are nonzero. In the linear approximation in the small
parametemwy/® we have

Ag~a, Aj=—A,~awy/2o. a)g+)<w(1+)<wg )E|“’(1 )|E§C2/D-

Here one obtains a trajectory which is extremely similar ! this limiting case one SZhOUId throw out the maximum
to that which is observed in numerical simulations and tolf€dUencies of the order afc’/D. The point is that for a
that described analytically by Kovalev, Mertens, and PUre”ferromagnet{~1, and these frequencies are large, of

Schnitzer on the basis of an analysis of the conservation law€ order of the exchange integral. More importantly, a
for a soliton interacting with a magnon cloud. whole series of quasi-doublets, corresponding to the values

202 2.3 2 :

For localized topological solitons in ferromagnets no nu-C K2: €Kz, - .., Ky~ Ja/L, Whereil)n are the(ir;ext roots of
merical simulation of the soliton motion has been done. InNe Bessel function, lie betweep) (J[)a_nd“’oyl , by virtue
Ref. 17, from an analysis of small oscillations, it was pro-Of Which it is inconsistent to takey ' into account. Then

. . . . i i in&t) (+)
posed to describe the motion of such solitons on the basis 4f€ the relationship of the two frequencies™ and g’
a Newton equation with a gyroforce: which are important for the problem, are the same as for a

soliton in a ferromagnetw| ' <w{"). One expects that the

Md?X/dt*+ G[dX/dt,e,]= — aX/LP. equation of motion, as in a ferromagnet, will have Newton-
It was found that for a Belavin—Polyakov soliton in a i@ form:

ferromagnet the nonlocality is manifested even in a second- d2x dx

derivative analysis, i.e., in the standard equations of the MW+G ez,a}ﬂ:e- (18)

Newtonian type the effective maddgy diverges aslL?,
Mey=—4mvdS(L/jD)?, its sign depending on the char- HereF,=— aX/LP is the external force, which has the same
acter of the boundary conditionFor fixed boundary con- form as for an antiferromagneg is the gyroscopic constant.
ditions the sign of the mass is negative, and for a magnetet us consider how these equations jibe with the regularities
with a free boundary the mass becomes positive. of soliton dynamics obtained from an analysis of small os-
The transition from local to nonlocal dynamics is conve-cillations. In the leading approximation in the small param-
niently traced for the example of the generalizednodel  eters{ and (R/L)2, we obtain two values of the frequencies:
(1), (2), which in the antiferromagnet limiffor /—0) and G/M and «/GLP. Comparing these frequencies with the

when only the two lowest modes are taken into account giveguantitiesw{") and »{"), we arrive at a formula for the



Low Temp. Phys. 29 (1), January 2003 Galkina et al. 71

effective mass and gyroforce, which differ from those ob-spins, {>(D/cL)(R/L)?, for a soliton in the simplest ap-
tained above for a ferromagnet only by the presence of @roximation one obtains typical Newtonian dynamics with a
factor ¢: gyroscopic force. Under the inequality<D/cL the effec-
2 2 tive mass is finite fol.— 0. The condition for realization of
- w(k ., G= ﬂ (19 such behavior is that the inequaliti€s<D/cL hold. Since
D ] D D/c~a (a is the lattice constajtthis may reasonably be
We note that the value of the gyroforce is easily obtainedeconciled with the point of view of the microscopic approxi-
in the usual way, by direct analysis of the equations of¢he mation (which requires the conditioR>a) only in a finite

model. magnet at sufficiently low values df

To summarize, in the “ferromagnetic” limiting casé 1D a
>D/L the value of the effective mass turns out to diverge as (<— —~ —.
L?, just as in a “pure” ferromagnet. However, the coefficient Le L
in front of L? falls off with decreasing,, and in the actual In the other limiting case/>D/cL, the effective mass,
case/<1 the value ofM for finite L is of order{ in small-  as in the case of a ferromagnet, diverges 4ss the size of
ness. the system increases, but with a much smaller coefficient,

Let us now consider the other interesting limiting case,which goes to zero in the limig—0. Thus a transition from
the “antiferromagnetic,”,c<D/L. In this limiting case the local to typically nonlocal behavior occurs upon variations in
inequality| ™| <|w{*| holds, and the leading approxima- the size of the system or the decompensation parangeter
tion corresponds to two frequencies(” = aR?/L*G, and
w§)=—¢c?/D, and the frequencies!{™ form a high-lying
doublet. It is clear that in this leading approximation we
again obtain the usual Newton dynamical equation with thé
gyroforce(18). Comparing its roots with the quantities,
and wf{) from Eq. (16), we find that the value of the effec-

* . . .
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A new version of the phase method of determining the sound velocity is proposed and
implemented. It utilizes the “Nonius” measurement technique and can give acceptable accuracy
(=1%) in samples of submillimeter size. Measurements of the sound velocity are made

in single-crystal samples of the borocarbides fFC (R=Y, Lu, Ho). The elastic constants

and the Debye temperature are calculated2@3 American Institute of Physics.
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1. INTRODUCTION has been used to measure the sound velocity in MgB
) i o _ polycrystalé and in VSe layered single crystafsFurther-

_An important problem of physical acoustics is to obtain mqre heing completely independent of the nature of the sig-
reliable data on the elastic constants of newly synthesizeflys 1o pe analyzed, the instrumental implementation of the
compounds. These data, while being of independent interesfyethod enables one to study the variation of the amplitude
also serve as tests for theoretical calculations of band strugg,q phase of any pulsed high-frequency signals. In particu-
tures, force constants, and phonon spectra. As a rule, new|y, it has been used to measure the characteristics of an

synthesized materials come either in the form of products ofectric field accompanying a longitudinal sound wave in a
solid-phase synthesige., more or less porous cerami@®  etgl*

in the form of_fine single crys_tals. Objectg of the first_ group Section 2 of this paper is devoted to a description of the
are characterized by appreciable scattering of elastic vibrg;ggic principles of implementation of the “Nonius” method
tions, making it practically impossible to use some version ofy¢ phase measurements of sound velocity. In Sec. 3 we

a resonance or quasiresonan@ the long-pulse type present the results of measurements of the elastic constants
method to determine the absolute values of the sound velog; single crystals of the borocarbides RBC (R=Y, Lu

ity in them. Single crystals most often are of millimeter or Ho).
submillimeter size; besides, in layered crystals the character-
istic size in the direction perpendicular to the layers is often
100—200um or even less. To determine the elastic constantg:
of such objects the method of ultrasonic resonanc
spectroscopy was developed, which consists in measure-
ment of the spectrum of resonance frequencies of a sample A block diagram of a device implementing the technique
and subsequent solution of the inverse problem of recoverinig presented in Fig. 1. It is essentially a standard compensa-
all the components of the tensor of elastic constants. Th&on or bridge circuit, depending on the algorithm used for
technique is inherently a resonance method, i.e., it applieprocess the pulsed signals, which is set by the pulse code
only to objects with small scatteringlamping, a condition = modulation unit. In the bridge mode the signal that has
which is not always possible to satisfy even in small singlepassed through the sample channel is summed with the an-
crystals, e.g., near points of phase transitions. In addition, itiphase comparison signal, which is equal in absolute value.
can be implemented only in samples having a definite simpl&@he amplitude and phase of the latter are regulated by the
geometric shapé&ectangular parallelepipgdThe lucidity of  receiver, which functions as a null device. The unbalance
this method is compromised by the complexity of the math-signal is separated into amplitude and phase components by
ematical processing, making it hard to spot possible errors high-frequency synchronous detectdiis. the compensation

We have implemented a new version of the phasemode the receiver, with the aid of sampling—storage devices,
method of measuring sound velocities; it is applicable bottmatches the amplitudes of the signals arriving at its input at
to ceramic samples with strong scattering and to single crysdifferent times. In this case the noncompensation signals
tals of submillimeter size. Utilizing a kind of “Nonius” mea- with respect to amplitude and phase are produced through a
surement procedure, the method permits one to achieve aspecial code modulation of the pulse trains of the signals in
ceptable accuractas a rule, better than 1% both cases. It the two channels. In any variant the data input to the com-

“NONIUS” METHOD OF SOUND VELOCITY
EASUREMENT. PRINCIPLES AND INSTRUMENTAL
MPLEMENTATION

1063-777X/2003/29(1)/5/$22.00 72 © 2003 American Institute of Physics
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FIG. 1. Block diagram of the instrument: 1—frequency synthesizer, 3 o
2—phase meter, 3—switches, 4—pulse-code modulation unit, 5—sample ?
with piezotransducers, 6—receiver, 7—electronically tunable phase shifter, -
8—smoothly adjustable attenuator. 4
puter are the readings of an attenudemplitude of the com-
parison signaland phase metdphase difference of the sig- z3 ) e 2
nal to be analyzed and the comparison signal § MHz
L

Two original developments employed in the implemen-
tation of this standard scheme have substantially expandegg. 2. Phase—frequency characteristics of the delay {iesf a sandwich
its operational capabilities: an electronically controll&d- consisting of the sample (Lub,C, gll[100], ul[100], L=0.835 mm) and
eal phase shifter with a practically unlimited tuning ram‘:]e,the delay lineg2), and the difference function, i.e., the P—F characteristic of

. . . . . the samplg3). Note the difference in the scales of the vertical axes.
and a new data processing algorithm, which maintains a
phase shift of 1207or 240°) between the signals being ana-
lyzed. The advantages of the new phase shifter are quite
obvious. In particular, in relative measurements this phaseneasured at fixed frequency poiristep 1. Then the P—F
shifter provides a practically unlimited dynamic range while characteristic of a sandwich consisting of the same delay
maintaining an extremely high accuracy of measurementines but with the sample between théRig. 2) is measured
which is actually determined by the resolution of the phaseat the same temperatutstep 2.V
meter(at a signal-to-noise ratie-5). Let us discuss the sec- Because the signal circuits contain elements capable of
ond development in somewhat more detail. In the bridgeesonating(piezotransducers, imperfectly matched feegers
mode the working algorithm of the circuit consists in main- each of these characteristics is not necessarily a straight line.
taining a null signal at the input of the receiver upon changesiowever, their difference, i.e., the P—F characteristic of the
in the sound velocity and damping in the sample. In inhomosample, in the absence of interference distortions in it, should
geneous (e.g., polycrystalling samples, internal re- form a strictly straight line, the slope of which determines
reflections and mutual conversion of different modes at inthe phase velocity of the sound,
homogeneities lead to nonconstancy of the phase of the
signal over the duration of the rf pulse envelope. The same _ ﬂ
situation is observed in short single crystals due to the super- '"7s
position of secondary reflections. In this case the length of

the time interval during which the sum of the two signals hagVherev is the sound velocitycm/s, L is the thickness of

zero amplitude turns out to be short 107 s). For analysis e sample(cm), and S is the slope of the P—F difference

of such narrow features the receiving system should have gharacteristiddeg/Ha. It is easily seen by a direct calcula-

rather wide passband and not allow any overshoots in reprdion that when the P—F characteristitsnd2 are approxi-

ducing steep signal fronts. mated by straight lines by.the least-squares metttbd
For the 120° algorithm the sum of two signals of iden- SIOP€S ares; ands,, respectively, then
tical amplitude(their equality is maintained by an indepen- S=S,-S, )
dent channelis equal to the amplitude of each of the signals
(equilateral triangle In this case at the time of sampling— for any deviations of the P—F characteristic&nd 2 from
storage there are no sharp amplitude drops at the input of theraight lines. This relation is valid only if the frequency
receiver; this substantially improves the working of the sys-points at which the P—F characteristlcand2 are measured
tem as a whole. A distinct advantage of the 120° algorithm isare coincident. In Ref. 6 essentially the same procedure was
that it is unnecessary to have frequeriphas¢ modulation  used to determin&, but since the technique used there did
of the master oscillator in order to obtain unbalance signalsiot guarantee the required coincidence, additional errors
of different polarity upon passage through the compensatiooould have been introduced.
point, as one must have for self-balancing of the circuit. Fur-  If Sis comparable t&; (0.3 or largey, then in homoge-
thermore, the usual amplitude detection used in the 120heous materials the measurements can be limited to this step
algorithm allows one to use as the signals of the two chanwith completely acceptable accura@.3% or bettex.
nels any two reflections that have traveled different distances However, in homogeneous but rather thin samples the
in the sample. superposition of secondary reflections distorts the main part
The measurement algorithm in part resembles one proaf the measurement signal. Because of this, the parts of the
posed earlie?.First the phase—frequend?—P characteris- pulse that coincide with the leading edge are customarily
tic of an acoustic circuit consisting of two delay lines is used for measurements. An analogous procedure, as a rule,

, @
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should be used in inhomogeneous materials for the reasons Oy
already mentioned, even though the acoustic path length in 2 transverse
. longitudinal

them may be comparatively large. o0l 3

i i - 3

As a result of the occurrence of various kinds of tran-

sient processes, the rate of which depends on the carrier fre- »
qguency of the pulses, the slopes of the P—F characteristics 3_40'
and 2 become functions of the temporal position of the <
strobe readout pulse at the leading edge of the measurement © _eo} 0,1
signal. The variation of5, ,, depending on the type of pi-
ezotransducers, is 2—-4%for comparison, in extended -gol
samples the variation &, , at the steady part of the pulse is ) , ) ) , ,
at the 0.1% level This means that in going from step 1 to 0 10 20 30 40 50 60
step 2 the readout pulse should be shifted precisely by the al» deg

sound delay time in the sample. Since the latter is initially
unknown and also because Of the dlscreteness of the Step ﬂp 4. Dlagram pertaining to the calculation of the additional phase shift

. . . 8 ;. inserted by the grease layer. The reflection coefficient at the grease—sample
the tlme_ shift of th? Strobe S|gn§1I (510 S in O!Jr expe_r! boundaryk=0.85, and the numbers on the curves give the sound damping
ments, it was practically impossible to satisfy this condition. coefficient in the grease layéneper/cr. The dotted curve corresponds to
For finding 7o (and, hence, the sound velogitye used the &= —ql. The horizontal lines indicate the regions of the actual values of
following interpolation procedure. the parameteq] for the corresponding mode.

For each series of measurements with a definite mode
(longitudinal or transvergewve calibrated the dependence of )
S, on the temporal positioty, of the readout pulse. Then for the sample isby=36M+(d,—®,), wheren=0,1,2,....
a given sample we measurglat some known positiot, of ~ Since®o=360f,L/v, by trying values:‘ ofn we find the re-
the readout pulse at the leading edge of the signal. It is eadined value ofu that is closest to the “rough” estimate.
to see from Eqgs(1) and (2) that 7, is a solution of the In the above discussion it was tacitly assumed that on
equationS(x) =36, wherex=t.—t, is the time shift of going from step 1 to step _2 the phase of the signal changes
the readout pulse between the set of calibration measur@nly because of the addition of the sample. Actually, how-
mentsS,; and the measurements with the sami8g, An  €ver, besides the sample we also had an additional layer of
example of the graphical solution of the interpolation equadréase in step 2. During measurements in very thin samples
tion for several values df, is presented in Fig. 3. The results the contrlbutl_on of the grease Ig_yer can_become noticeable.
of the interpolation(the value ofr,) coincide regardless of [N our experiments GKZh-94 silicone oil was used as the
the choice oft,. bonding agent, forming a layer 1—2 um thick between the

At this step of the procedure the “rough” determination ground surfaces. The passage of an elastic wave through
of the sound velocity is completed. To refine the values weSUch a thin layer is described by the sum szarjz!lrggfgt? geo-
use the “Nonius” method. Let the phase of the signal regis-Metric_progression with the denominatqrk-e v,
tered at some definite frequendy by the phase meter in wherek is the reflectilon coefficient at the bour_1da(nye as-
step 1 be equal td,. In step 2 at the same frequency the SUMe that the wave impedances of the delay line and sample

phase of the signal will b, . The total phase inserted by &re close invalugl is the thickness of the grease layeris
the damping coefficient, angl is the wave number.

An estimate of the propagation velocity of sound in the
grease gave),~2.1x10° cm/s, v~ 1.2x 10° cm/s, which
correspond to reflection coefficierits-0.85 for our samples.

In Fig. 4 we present the calculated dependence of the phase
of the wave passing through the grease layer on the thickness
for various damping coefficients. The regions qif corre-
sponding to the conditions of the experiment are also indi-
cated in Fig. 4. At low damping the correction can be rather
large. We were unable to estimate the value of the sound
damping in the grease—in thick layers-0.5 mm) it was
very large, probably because of cracking—but we assume
that its value is found at the 20 dB/cm level or higher, i.e.,
the phase inserted by the grease layer is clogg.tdon pro-
cessing the results of the measurements we introduced a cor-
rection for the additional grease layer—10° for longitudinal

s - - : sound and 20° for transverse sound. In thin samples the ef-
-0.1 0 0.1 0.2 0.3 04 fect of this correction was not over 1%. We suppose that this

X, W$ correction can be eliminated by making comparative mea-

FIG. 3. Example of the interpolation procedure for finding the sound delaySurements on tWC.. samples of different thicknésa. that
time 5. YNi,B,C sample ¢II[100], ull[010], L=0.885 mm) for several C_ase the Iength dlﬁerenc_él‘ _ShOU|d be FOmparabl_e tb,_ .
values oft, (see text At x=0 the values of, increase from bottom to top  SINCe otherwise the contribution of possible nonuniformities
with a step of 5<10°8 s. The linear functiorF (x) = 36(x. of the sound velocity over the whole length of the sample
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3. ELASTIC CONSTANTS OF BOROCARBIDES
RNi,B,C (R=Y, Lu, Ho)

In spite of the significant interest in the family of super-
conducting borocarbides, very little information about their
elastic properties can be found in the literature. We know of
only one “acoustical” study, devoted to YN}jB,C, in which
the sound velocity was measured by a time-of-flight method.
Single crystals of borocarbides were grown by the method
described in Ref. 8 and had the shape of a slab with a maxi-
mum dimension along thgp01] axis of ~0.8 mm (R=Y),
~0.2 mm (R=Ho), and ~0.4 mm (R=Lu). They were
quite brittle, and therefore the mounting of the samples be-
would be attributed to the small differenét. tween the delay lines was done with the aid of a special brass

Let us conclude with an estimate of the potential accuring, which acted as a holder and reinforcer; the ring was
racy of a single measurement. Special studies have estafround simultaneously with the preparation of the working
lished that the irreducibility of the phase upon the remount-faces(Fig_ 5. The diameter of the ring was chosen |arger
ing (regluing of the acoustic circuit is at the level of 20°. than the diameter of the piezotransducers to prevent spurious
We estimate the indeterminacy of the correction for the adsjgnals.
ditional grease layer to be 10°. Assuming that the accuracy Al of the measurements were made at liquid nitrogen
of the “rough” estimate of the velocity is sufficient for de- temperature. The results are presented in Table I. It contains
termining the necessary value of we obtain for the mea- ggme “superfluous” data, marked by an asterigR.( For

2 4

FIG. 5. Diagram of the mounting of the sample: 1—piezotransducers
2—delay lines, 3—brass support ring, 4—sample.

surement errofat f,~50 MHz) example, forC,, it was sufficient to make a single measure-
sv 30 v mentqll[100], ull[001] (u is the polarization vector of the
P 3%2>< 10‘9t. elastic wave We assume, however, that having the “super-
0

fluous” data will make it possible to get an idea of the accu-
racy of the measurements in this case.

One can also see that certain relations which follow from
the general theory of elasticityare well satisfied. For ex-
TABLE I. Sound velocity in single crystals of borocarbidés<77 K). ample, in a tetragonal crystal the sum of the squares of the
velocities of the three modes remains constant under rotation

Polarization v, 10° omss of the wave vectoq in the (001) plane.
ql af | ¥Ni,B,C | LuNi,B,C | HoNi,B,C The elastic constants of the single crystals studied are
presented in Table Il. The x-ray densities were used in cal-
[100] 16.78 (0.885) | 5.8 (0.8) | 6.04 (0.606) culating them. For RY the agreement with the results of

[100) [001] |3.25 (0.885) | 2.65 (0.8) | 2.73 (0.606) Ref. 7 is poor, although the relationships among the various

[010] | 4.80 (0.885) | 4.30 (0.8) |4.33 (0.606)

[110]* | 7.55 (0.59) | 6.64 (0.988) | 6.86 (0.525)
TABLE II. Calculated parameters for borocarbidds<(77 K).

[110] [0011* | 3.26 (0.59) | 2.64 (0.988) -
Parameters YNi BZC LuNizB2C HoNiZBZC
[170] | 3.34 (0.59) |2.77 (0.988) | 2.83 (0.525)
o 27.94 22 [7} 29.39 29.47
[001] | 6.49 (0.84) | 6.01 (0.4) | 5.91 (0.23)
C, 14.39 9.84 [7] 16.34 16.53
[001} [100]* | 3.26 (0.84) | 2.70 (0.4) | 2.81 (0.23)
C,, 17.81 - 23.15 -
[010]* | 3.28 (0.84) | 2.70 (0.4) | 2.83 (0.23)
Cy 25.61 21.1 [7] 30.68 28.20
QL* |7.28 (0.303) - -
45° from the Cys 6.43 5.42 (7] 5.97 6.02
[001]axisin | o7 |3.18 (0.465) - -
the (110) plane Ces 14.0 13.1 [7] 15.71 15.15
[110]* | 3.31 (0.303) - -
B 20.16 - 20.27 23
45° from the op, K 501 490 [10] | 409 (360 [10]) 404
[001] axisin | g - 2.01 (0.27) -
the (100) plane p, g/em? 6.08 6.05 [7] 8.5 8.08

Note: Gy are elastic constantn units of 13* dyn/cn?), 6p is the Debye
Note: The “superfluous” data are denoted by an asterigk. (QL and QT ~ temperature, and is the bulk modulus. For Ho the modulugGvas not
are the quasilongitudinal and quasitransverse modes; the thickness of tifeeasured, and in the calculation&f andB it was assumed equal to 23.15
sample in mm is given in parentheses. (see text
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constants are preserved on the whole. The Debye temperé-mail: fil@ilt.kharkov.ua

ture was calculated according to the formula YAt the frequencies we used the scale of the phase variations of the signal
are much greater than 360°. The phase meter, of course, measures phase

13 differences in the interval 0—-360°, and the absence of discontinuities
_ P (360° jumps in Fig. 2 is achieved through programming.
©p=1146.8 |

the moleculep is the mass density, aridis the sum of the o 70 Zere EWSCE B CF08 e o Wiasattn, v 0. i,
inverse cubes of the phase velocities of the elastic waves,yy. B. Paderno, A. N. Bykov, V. N. Paderno, and V. I. Lyashenko, Fiz.
averaged over all directions of the wave normal. For Nizk. Temp.28, 270(2002 [Low Temp. Phys28, 190(2002].
R=Ho, because of the difficulty of preparing a sample of the °: A Gospodarev, A. V. Eremenko, T. V. Ignatova, G. V. Kamarchuk, I. G.
required orientation, the elastic const&ly; was not mea- E;’L?gr?g’ F;Amgfi':iievéi,' SE Sgrkp'g’olsduBe'sFeF?zd O,f“i\{(' \/T'frﬁ;:,’vAT'eSn?;eau'
sured, and in the calculation of the bulk modulus and Debye phys ] (in press. o S ' '
temperature it was assumed equal to the valué_jg‘ in yu. A. Avramenkc_), E. V. Bezuglyi, N. G. Burm_a, V. _M. Gokhfeld, I. G.
lutecium borocarbide. For RY the calculated value 0B p éc(’)'ggo[‘to\\fv 'I?émF[IJI’YP?ndeZOEi- %igg‘g}e”ko' Fiz. Nizk. Temp8, 469
'S. cl_ose to the thermodynamic estimaleFor R=Lu the de- SV. D. Fil', P. A. Bezuglyt, E. A Masalitin, and V. I. Denisenko, Prib. Tekh.
viation of the calculated value ddp from the thermody- Eksp. No. 3, 210(1973.
namic value is, generally speaking, greater than the allow-E. V. Bezugly, N. G. Burma, I. G. Kolobov, V. D. Fil', I. M. Vitebski A.
able error. That may be an indication of the existence in gésﬁ]nr:?ki\(/koﬁi;\l'NhfikL?r\;rggllkoées(igég?&?fv ?érlﬁ thF')%‘;Z‘;‘i "é’;d4'g'2E'
lutecium borocarbide of a low-temperature ferroelastic struc- (1995;, =~ ’ ' o
tural transition, accompanied by a significant softening of’sS. Isida, A. Matsushita, H. Takeya, and M. Suzuki, Physica4g 150
some elastic constant. Our preliminary measurements in hol(200D. _
mium borocarbide have shown that at 5.2 K the velocity of ydhgétgﬂnunﬁri}sl'Fgg\fyclgﬁgé%%(fégé Canfield, B. K. Cho, and D. C.
the Cqg mode falls to~3.3< 10> cm/s. When this softening  of |, Fedérov,THeory.of Elastic Waves in CrystalBlenum Press, New
is taken into account, one obtaiflg, =383 K for R=Ho. York (1968, Nauka, Moscow(1965.
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