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QUANTUM LIQUIDS AND QUANTUM CRYSTALS

Nondissipative flows in many-particle systems as a consequence of symmetry breaking
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It is shown that undamped flows can exist in many-particle systems found in spatially
nonuniform thermodynamic equilibrium states with broken symmetries. If the thermodynamic
potential of the system is invariant with respect to a certain transformation which is a
function of continuous parameters, then this transformation is associated with conserved flux
densities and integrals of motion, the number of which is equal to the number of continuous
parameters of the transformation. The stability of the superconducting and superfluid flows
arising as a result of the breaking of phase symmetry is explained by the fact that the conservation
laws associated with these states, which do not correspond to an absolute minimum of the
thermodynamic potential, do not allow them to be destroyed. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1542371#
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1. INTRODUCTION

Systems of many interacting particles can be found
states that admit the existence of flows which are unacc
panied by energy dissipation. Nondissipative electron flo
~superconductivity! were discovered in metals by Kame
lingh Onnes in 1911,1 and nondissipative mass flows~super-
fluidity! were discovered in liquid4He a quarter of a century
later by Kapitsa.2 The superfluid properties of liquid3He at
millidegree temperatures were detected in the early 1973

In 3He there can be nondissipative transport not only of m
but of other characteristics, spin in particular. In 1986 Be
norz and Mu¨ller discorved4 that nondissipative flows o
charges exist in materials having an extremely complex
ternal structure~high-Tc superconductors!. There are other
systems in which flows unaccompanied by energy diss
tion are possible, e.g., materials with a magnetic struc
and liquid crystals. The problem of nondissipative flows a
superfluidity in4He and3He, magnets, and excitonic insula
tors has been discussed from various points of view
Sonin.5

One notices that flows without dissipation can exist
systems with very different internal structures and parti
statistics. This apparently indicates that the appearanc
nondissipative~superfluid! flows in many-particle system
with different internal structures has a unified cause. T
connection between the superconducting properties and
existence of a complex-valued parameter that breaks
symmetry of the state with respect to a phase transforma
was first demonstrated in the famous paper by Ginzburg
Landau.6 The ideas of Ref. 6 were extended to superfluid4He
by Ginzburg and Pitaevski� in Ref. 7 ~a modified version of
the theory is set forth in Ref. 8!. We note that the breaking o
symmetry with respect to phase transformations is also ta
into account, although in implicit form, in the the famou
Landau theory of superfluidity,9 through the introduction of a
superfluid velocity and a density of the superfluid comp
11063-777X/2003/29(1)/10/$22.00
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nent, which are related to the modulus and phase of the c
plex order parameter.7 In spite of the fact that the fundamen
tal role of broken phase symmetry in the existence
nondissipative flows is perfectly clear from Refs. 6 and 7,
many papers at the present time the phenomena of supe
idity and superconductivity are being attributed to circu
stances that, although they may be accompanied by tra
tions to states with nondissipative flows, are not essential
necessary for the appearance of such flows~macroscopically
occupied state, the presence of pairing, characteristic feat
of the quasiparticle energy spectrum, etc.!.

In the present paper we show in general form that c
rent states arise in systems of many interacting partic
found in spatially nonuniform thermodynamic equilibriu
states with broken symmetries with respect to certain ki
of transformations. These currents may involve the transp
not only of charge or mass but also of other characterist
e.g., magnetization, angular momentum, etc. If the therm
dynamic potential is invariant with respect to the transform
tions in question, then an integral of motion is associated
each such flow. The result of this study is essentially
analog of No¨ther’s theorem,10 well known in field theory, for
the case of a many-particle nonrelativistic system. Accord
to Nöther’s theorem, to each transformation of functions
the field and coordinates which does not affect the act
there are associateds currents and the same number of d
namical invariants, wheres is the number of continuous pa
rameters on which the transformation depends. Spatial tr
formations and transformations of internal symmetries
considered. A special study is made of symmetry with
spect to phase transformations, the breaking of which is
sociated with the appearance of superfluid and supercond
ing properties. The stability of states having superfluid flo
and not corresponding to an absolute minimum of the th
modynamic potential is explained by the fact that the d
struction of these flows is prevented by a conservation
due to the phase symmetry. For the example of flows
© 2003 American Institute of Physics



on

as
-
d

s—
tia
e

de
ia
fo
s
p
p

in

un

ra
, t
an
d

lo

ha

in
s

am

th
t

h
un
he

na

rm
de
n

th

hat

t
e
f
te:

he
led

n

nly

The

e

and
s
es

ts is

y is

2 Low Temp. Phys. 29 (1), January 2003 Yu. M. Poluektov
magnetization near a domain wall in a ferromagnet we c
sider nonconserved localized nondissipative flows.

2. STATEMENT OF THE PROBLEM

According to the Landau theory of second-order ph
transitions,11,12 a phase transition to a state with lower sym
metry can be described as the appearance of certain a
tional characteristics of the system—order parameter
which, generally speaking, can be functions of the spa
coordinates. The assumption that spatially nonuniform th
modynamic equilibrium states with order parameters
pending on the coordinates can exist even under spat
uniform external conditions is of fundamental importance
the treatment that follows. The spatial nonuniformity is a
sociated with a certain energy, and the thermodynamic
tential density therefore depends not only on the order
rameter but also on its gradients.

Suppose that a system of many particles enclosed
volume V is characterized by~in addition to the thermody-
namic variables, which we choose as the temperatureT and
chemical potentialm! a multicomponent order parameter

w5~w1 ,w2 ,...wL!, ~1!

the components of which are the coordinate-dependent f
tions wa(r ) (a51, 2,...L), whereL is the number of com-
ponents of the order parameter. The multicomponent cha
ter of the order parameter may be of various natures, e.g.
components of a vector or tensor. In the case of a multib
superconductor the components of the order parameter
scribe the electrons of different conduction bands.13 Different
components can correspond to different types of anoma
averages~single-particle, pair!. Without specifying the par-
ticular microscopic nature of the order parameter, we s
assume that the functionswa(r ) are complex. The formulas
for the case of real-valued order parameters can be obta
in an obvious way from the formulas given below. We a
sume that the thermodynamic potential density depends
both the thermodynamic variables and on the order par
eter and its gradients:

v5v~m,T:w,w* ,¹w,¹w* !. ~2!

The components of the order parameter are functions of
thermodynamic variablesm and T. We shall assume tha
there are no external fields, and thereforev does not depend
explicitly on the spatial coordinates. A generalization to t
case when such a dependence does exist presents no f
mental difficulties. The total thermodynamic potential of t
system,

V~m,T!5E
V
d3rv~m,T;w,w* ,¹w,¹w* !, ~3!

is a function of the thermodynamic variables and a functio
of the order-parameter componentswa(r ). In the theory of
second-order phase transition it is assumed that the the
dynamic potential near a line of transitions can be expan
in a series in powers of the order parameter and its gradie
However, we shall not specify the dependence ofv on w and
¹w, so that the treatment that follows does not rely on
possibility of such an expansion.
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The order parameter is found from the requirement t
the thermodynamic potential be minimum. By varyingV
with respect to the functionswa(r ) under the condition tha
the variationdwa(r ) vanish at the boundary, we obtain th
Lagrange–Euler equations14 determining the components o
the order parameter in the thermodynamic equilibrium sta

]v

]wa
2¹

]v

]¹wa
50. ~4!

Equations~4! have the solutionw50. The region of the
(m,T) plane in which such a solution corresponds to t
absolute minimum of the thermodynamic potential is cal
the normal or symmetric phase. Regions in whichwÞ0 cor-
respond to phases with broken symmetries.

Using Eqs.~4!, we find the total number of particles i
the system:

N52
]V

]m
52E

V
d3r

]8v

]m
2(

a
E

S
dsS ]v

]¹wa

]wa

]m
1c.c.D ,

~5!

where the prime on the differentiation sign means that o
the explicit dependence ofv on m is taken into account, and
the abbreviation c.c. denotes the complex conjugate.
analogous formula with the substitutionm→T determines
the total entropyS. The total energy is expressed by th
formula

E5E
V
d3r S v2m

]8v

]m
2T

]8v

]T D
2(

a
E

S
dsF ]v

]¹wa
S ]wa

]m
m1

]wa

]T
TD1c.c.G . ~6!

Generally speaking, the surface terms in Eqs.~5! and~6! are
nonzero.

We define a set of new functionswa8(r ;l) related to the
old functionswa(r ) by the expression

wa8~r ,l!5(
b
E d3r 8Tab~r ,r 8;l!wb~r 8!, ~7!

whereTab(r ,r 8;l) is anL3L matrix in the space of indices
enumerating the components of the order parameter
depends on a set ofs continuous real parameter
l5(l1 ,l2 ,...,ls). It is convenient to choose these matric
as unitary, so that

(
c
Ed3r 9Tca* ~r 9,r !Tcb~r 9,r !

5(
c
Ed3r 9Tac* ~r ,r 9!Tbc~r 8,r 9!5dabd~r2r 8!. ~8!

Here the normalization of the order-parameter componen
preserved:

(
a
E d3r uwa~r !u25(

a
E d3r uwa8~r !u2.

We assume that the thermodynamic potential densit
invariant with respect to the linear transformations~7!, and
therefore
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V5E
V
d3rv~w~r !,w* ~r !,¹w~r !,¹w* ~r !!

5E
V
d3rv~w8~r !,w8* ~r !,¹w8~r !,¹w8* ~r !!. ~9!

The functions wa8(r ;l) also satisfy the Lagrange–Eule
equations~4!. Thus, in addition to the state determined by t
set of functionswa(r ), there can be states determined by t
set of functionswa8(r ,l), which depend ons continuous pa-
rameters, i.e., there exist infinitely many states which dif
in the values ofl but for which the value of the thermody
namic potential is the same. This means that there is de
eracy of the states in the many-particle system.

3. DENSITIES OF NONDISSIPATIVE FLOWS

In what follows it is sufficient to consider infinitesima
transformations. One can always choose the set of cont
ous parametersl in such a way that if all these paramete
equal zero, the functionswa(r ) and wa8(r ) coincide. In this
case at small values ofl we have

Tab~r ,r 8;l!5dabd~r2r 8!1 (
n51

s

Qab
n ~r ,r 8!ln , ~10!

where the generator of the transformation is

Qab
n ~r ,r 8!5

]Tab~r ,r 8;l!

]ln
U

l50

.

We note that, by virtue of the unitarity conditions~8!, the
following condition holds:

Qab
n ~r ,r 8!52Qba

n* ~r ,r 8!. ~11!

Substituting~10! into ~7!, we obtain

wa8~r !5wa~r !5dwa~r !, ~12!

where

dwa~r !5 (
b51

L

(
n51

s E d3r 8Qab
n ~r ,r 8!wb~r 8!ln .

Using the invariance of the thermodynamic potential~9! with
respect to infinitesimal transformations~12! and taking the
Lagrange–Euler equations~4! into account, we obtain the
relation

(
a51

L

(
n51

s E d3r¹F ]v

]¹wa
Can~r !1c.c.Gln50, ~13!

where

Can~r !5 (
b51

L E d3r 8Qab
n ~r ,r 8!wb~r 8!.

By virtue of the arbitrariness of the values of the small p
rametersln , it follows from ~13! that

(
a
E d3r¹F ]v

]¹wa
Can~r !1c.c.G50. ~14!

Equations ~14! are a set ofs continuity equations (n
51,2,...,s)

div j n50, ~15!
e

r

n-

u-

-

where the flux densities have the form

j n5(
a

F ]v

]¹wa
Can~r !1c.c.G . ~16!

We see that there ares flux densities corresponding to thes
continuous parameters in the transformation~7!. As we
know, the flux densities are defined nonuniquely, up to
vector with zero divergence. Flows of physical quantities
systems with broken symmetries are considered in
method of quasiaverages in Ref. 15~see also Ref. 16!.

4. INTEGRALS OF MOTION

In the previous Section we obtained expressions fos
flux densities and the corresponding continuity equatio
The existence of continuity equations implies the existe
of conserved quantities—integrals of motion. For finding t
integrals of motion it is insufficient to consider a stationa
state, and one must use the dynamical equations descr
the evolution of the order parameter in time. Here the diff
ential form of the conservation equations is

]pn

]t
1div j n50, ~17!

where pn are the densities of the quantities whose flux
densities arej n . Integrating~17! over the volume and assum
ing that the total flux through the boundary of the volume
zero,

E
S
ds"j n50, ~18!

were find that the quantities

Pn5E
V
d3rpn~r ! ~19!

are integrals of motion. Let us find the densitiespn and,
hence, the integrals of motion~19!. In a phenomenologica
approach this can be done using the Lagrangian formali
We shall treat the thermodynamic potential density as a
tential energy density and introduce a kinetic energy den
related to the change of the order parameter in time:

k5k~m,T;w,w* ,ẇ,ẇ* !. ~20!

Then we write the Lagrangian density in the form

L~w,w* ,¹w,¹w* ,ẇ,ẇ* !

5k~w,w* ,ẇ,ẇ* !2v~w,w* ,¹w,¹w* !. ~21!

We assume that there are no time-dependent external fi
so that the Lagrangian is explicitly dependent on neither
coordinates nor time. Then, in analogy with how this w
done for the steady-state case, we arrive at the conserva
laws ~17!, where the densities of the conserved quantit
have the form

pn~r !5(
a

F ]k

]ẇa
Can~r !1c.c.G . ~22!

Thus, if the thermodynamic potential of the system is inva
ant with respect to the transformations~7!, containings con-
tinuous parameters, then there ares conserved quantities
Pn—integrals of motion.
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In addition to thes continuity equations~17!, which are
valid because of the invariance of the thermodynamic po
tial with respect to the symmetry transformations~7!, we
also have the energy conservation law due to the invaria
of the thermodynamic potential with respect to a translat
in time:

]q

]t
1div j ~«!50, ~23!

where the energy density is

q5(
a

S ]L

]ẇa
ẇa1

]L

]ẇa*
ẇa* D 2L, ~24!

and the energy flux density is

j ~«!5(
a

S ]L

]¹wa
ẇa1c.c.D . ~25!

If the total energy flux through the boundary is zer
*Sds"j («)50, then the total energy

J5E
V
d3rq~r ! ~26!

is a dynamical invariant. We note that in a state of equil
rium the energyJ is equal to the total thermodynamic po
tential and not to the total energyE, which is given by for-
mula ~6!. This is because the dynamics of the ord
parameter is considered at fixed thermodynamic varia
m,T. In a stationary state the energy flux density vanishes
that the flows in a thermodynamic equilibrium state do n
transport energy.

Nonstationary phenomena in a many-particle system
accompanied by energy dissipation, a fact which was
taken into account in the derivation of the continuity equ
tions ~17!. Dissipation can be taken into account in our ph
nomenological approach by specifying a dissipative funct
in addition to the Lagrangian.17 Then the right-hand sides o
equations~17! would be nonzero, and the quantitiesPn

would vary in time, relaxing to their equilibrium value
ThusPn are integrals of motion only when dissipative pr
cesses are neglected, as is the situation in classical mech
also. In this paper we shall not consider dissipative phen
ena in many-particle systems.

5. KINETIC ENERGY

In the phenomenological approach the kinetic ene
density must be specified in additon to the thermodyna
potential density. Taking into account certain general requ
ments, let us refine the form of the kinetic energy. The
netic energy must be real-valued and, since we are descri
nondissipative processes, invariant with respect to time
version. In addition, it should be invariant with respect
phase transformations. In quantum mechanics, as we kn
the operation of time inversion involves changing the sign
the time derivative and replacing the wave function by
complex conjugate. Accordingly, in order for the kinetic e
ergy to remain invariant under the transformations

t→2t, w→w* , ~27!

the following condition must hold:

k~w,w* ,ẇ,ẇ* !5k~w,w* ,2ẇ,2ẇ* !. ~28!
n-
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We note that if the order parameter is a spinor, then the t
inversion operation is somewhat different from~27!.16 In this
paper we restrict discussion to the case when operation~27!
is valid. As in classical mechanics,14 we shall take into ac-
count terms up to quadratic in the velocities or, here, in
derivativesẇ,ẇ* . In classical mechanics the kinetic energ
does not contain terms linear in the velocities and depe
only on the squares of the velocities. In the case of comp
variables, condition~28! can also hold for terms linear in th
quantities ẇ,ẇ* . In addition, the kinetic energy, like an
observable quantity, must be invariant with respect to
phase transformations

w→weix, ~29!

wherex is a real number. Taking into account everything w
have said, we write the kinetic energy in the form

k~w,w* ,ẇ,ẇ* !5(
a

@Aa~w* ,w!ẇa2Aa~w,w* !ẇa* #

1(
ab

@Bab~w* ,w!ẇaẇb

1Bab~w,w* !ẇa* ẇb*

1Dab~w,w* !ẇa* ẇb#. ~30!

By virtue of the requirements that the kinetic energy be r
and invariant with respect to time inversion~28!, the follow-
ing conditions must hold for the coefficients~30!:

Aa~w,w* !52Aa* ~w* ,w!,

Bab~w,w* !5Bba~w,w* !5Bab* ~w* ,w!, ~31!

Dab~w,w* !5Dba* ~w,w* !5Dba~w* ,w!.

The requirement of phase invariance leads to the conditi

Aa~w* e2 ix,weix!eix5Aa~w* ,w!,

Bab~w* e2 ix,weix!e2ix5Bab~w* ,w!, ~32!

Dab~w* e2 ix,weix!5Dab~w* ,w!.

Taking into account only the leading terms of the expans
of the coefficients in~30! in powers of the order paramete
we obtain the simplest possible form of the kinetic energ

k~w,w* ,ẇ,ẇ* !52 i(
a

ba~wa* ẇa2waẇa* !

1
1

2 (
ab

gabẇa* ẇb , ~33!

where ba5ba* and gab5gba* are phenomenological con
stants. The requirements on the symmetry of the thermo
namic potential with respect to other transformations can
pose additional conditions on the coefficients in t
expression for the kinetic energy. We note that the form
the energy~33! is analogous to the choice of a kinetic ener
containing terms linear in the time derivative of the wa
function when the Schro¨dinger equation is obtained by th
Lagrangian method.14 If we use this simplified form for the
kinetic energy, we obtain the following expression for t
densities of conserved quantities:22
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pn52 i(
a

ba~wa* Can2waCan* !

1
1

2 (
ab

~gab* ẇb* Can1gabẇbCan* !. ~34!

We note that the given quantities are nonzero under stat
ary conditionsẇ50 in the case when the kinetic energ
contains terms linear inẇ. This occurs if the order paramete
is complex. In the case of many-particle systems with co
plex order parameters the integrals of motion which are n
zero in stationary equilibrium states substantially determ
the stability of the current states in such systems.

For a kinetic energy density~33! the density of the en-
ergy integral~24! has the form

q5
1

2 (
ab

gabẇa* ẇb1v~w,w* ,¹w,¹w* ! ~35!

and does not contain terms linear in the time derivatives
the order parameter. Defining the canonical momenta

pa5
]L

]ẇa*
52 ibawa1

1

2 (
b

gabẇb ~36!

and changing from velocities to momenta in Eq.~35!, we
obtain the Hamiltonian

H522i(
ab

bbgab
21~pa* wb2pawb* !12(

ab
gab

21~papb*

1babbwawb* !1v~w,w* ,¹w,¹w* !, ~37!

where g21 is the inverse matrix ofg. We note that the
Hamiltonian contains terms linear in the momenta. By s
stituting ~37! into the canonical equations

ẇa5
]H
]pa*

, ṗa52
]H
]wa*

1¹
]H

]¹wa*
, ~38!

we obtain the dynamical equations for the order paramete
Hamiltonian form.

6. SPATIAL SYMMETRIES

Let us consider the consequences that flow from
symmetry of the system with respect to spatial translati
and rotations. We assume that the thermodynamic pote
of the system is not affected by a translation of the system
a vectorr0 : w8(r )5w(r1r0). Then the matrix of the trans
formation~7! and the quantities~10! and~13! have the form

Tab~r, r 8,r0!5dabd~r 82r2r0!,
~39!Qab

n ~r, r 8!5dab¹nd~r 82r !,Can~r !5¹nwa~r !.

The momentum flux density due to the existence of
order-parameter field is described by the tensor

j n i
~ I !5(

a
F ]v

]¹iwa
¹nwa1c.c.G , ~40!

and the momentum density has the form

pn
~ I !5(

a
F ]k

]ẇa
¹nwa1c.c.G . ~41!

If the kinetic energy is chosen in the form~33!, then
n-

-
-

e

f

-

in

e
s
ial
y

e

pn
~ I !52 i(

a
ba~wa* ¹nwa2wa¹nwa* !

1
1

2 (
ab

~gab* ẇb* ¹nwa1gabẇb¹nwa* !. ~42!

We note that for complex fields the momentum density
nonzero even in stationary statesẇ50—in particular, under
conditions of thermodynamic equilibrium.

If the system is invariant with respect to rotations
coordinate space w8(r )5w(g21r ), with (g21r ) i

5( jRji (g)xj , where Rji (g), the matrix of three-
dimensional rotationsg, is specified by a set of three param
eters, e.g., the Euler angles, then the angular momentum
sociated with the order-parameter field is conserv
However, in the case when the rotations do not affect
components of the order parameter, i.e., they do not
mixed, the momentum conservation law is not independ
but is a consequence of momentum conservation. The a
lar momentum flux density and angular momentum den
are expressed in terms of the momentum flux density~40!
and momentum density~41!:

j n i
~L !5(

m,m
«nmmxmj m i

~ I ! ,pn
~L !5(

m,m
«nmmxmpm

~ I ! , ~43!

where «nmm is an antisymmetric tensor. If the thermod
namic potential of the system is invariant with respect
simultaneous rotations in coordinate space and in the sp
of order-parameter components, then a nontrivial conse
tion law arises in relation to rotation. This case is conside
in the next Section.

7. INTERNAL SYMMETRIES

In the previous Section we considered transformatio
affecting only the spatial coordinates of the order parame
components. We now consider transformations with the m
trix form

Tab~r, r 8;l!5Tab~l!d~r2r 8!, ~44!

which do not affect the spatial coordinates. Following t
terminology adopted in field theory,10 we call the symmetries
associated with such transformations ‘‘internal.’’ For infin
tesimal transformations we can write

Tab~l!5dab1 (
n51

s

Qab
n ln , Qab

n 5
]Tab~l!

]ln
U

l50

, ~45!

and, according to condition~11!,

Qab
n 1Qba

n* 50. ~46!

The flux density due to the symmetry transformation~44! has
the form

j n i
~M !5(

ab
F ]v

]¹iwa
wb2

]v

]¹iwb*
wa* GQab

n , ~47!

and the density of the corresponding conserved quantity
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pn
~M !5(

ab
S ]k

]ẇa
wb2

]k

]ẇb*
wa* DQab

n . ~48!

If the kinetic energy is chosen in the form~33!, then

pn
~M !52(

ab
~ba1bb!wa* wbQab

n

1
1

2 (
abc

~gac* ẇcwb2gbcẇcwa* !Qab
n . ~49!

An example of a system which is invariant with respe
to internal symmetry transformations is a ferromagnet,
thermodynamic potential of which contains an exchange
ergyve . In the case of cubic symmetry, the exchange ene
density has the form18

ve5
1

2
a(

i 51

3
]M

]xi

]M

]xi
, ~50!

wherea is a phenomenological constant, andM is the mag-
netic moment density. In this case the components of
order parameter are the projections of the vectorM . Expres-
sion ~50! is obviously invariant with respect to rotation
of the magnetic moment density through an arbitrary an
u 5un:

Ma8~r !5 (
b51

3

Rab~u!Mb~r !, ~51!

where Rab(u) is an orthogonal rotation matrix, andn is a
unit vector specifying the direction of the axis of rotation.
this caseQab

n 52«nab , and the flux density has the wel
known form19

j n i
~M !5a@M3¹iM #n . ~52!

In a thermodynamic equilibrium state the flux density~52! is
nonzero, e.g., in regions near domain walls. The dynam
equations for the magnetization in a ferromagnet18,19 can be
obtained in a Lagrangian approach if the angle variab
specifying the orientation of the magnetization vector
chosen as the generalized coordinates.

It can happen that the thermodynamic potential is alte
by some spatial and internal transformations separately
remains invariant under the combined transformations. S
pose that the spatial coordinates transform according to
rule

xi85(
k

aik~l!xk , where (
i

aik~l!ail ~l!5dkl , ~53!

and that there is a simultaneous rotation, specified by
same set of parametersl, in the space of order-paramet
components, so that

Tab~r , r 8;l!5Tab~l!dS xi82(
k

aik~l!xkD . ~54!

In this case

Can~r !5(
i ,k

u ik
n xk¹iwa~r !1(

b
Qab

n wb~r !, ~55!

where
t
e
n-
y

e

le

al

s
e

d
ut
p-
he

e

u ik
n 5

]aik~l!

]ln
U

l50

, Qab
n 5

]Tab~l!

]ln
U

l50

.

The continuity equation~17! is then valid for the total den-
sities

j n i5 j n i
~L !1 j n i

~M ! , pn5pn
~L !1pn

~M ! ,

where j n i
(M ) and pn

(M ) are given by formulas~47!–~49! and
describe the contribution to the total angular momentum
consequence of the multicomponent nature of the order
rameter; this contribution is an analog of the spin momen
quantum field theory.10 The orbital angular momentum den
sity and flux density are given by the expressions

j n i
~L !5

1

2 (
a

(
ik

F ]v

]¹iwa
~¹lwaxk2¹kwaxl !1c.c.Gukl

n ,

~56!

pn
~L !5

1

2 (
a

(
ik

F ]k

]ẇa
~xk¹iwa2xi¹kwa!1c.c.Gu ik

n . ~57!

With the kinetic energy chosen in the form~33!, we have

pn
~L !52

i

2 (
a

(
ik

@bawa* ~xk¹iwa2xi¹kwa!2c.c.#u ik
n

1
1

4 (
ab

(
ik

@gab* ẇb* ~xk¹iwa2xi¹kwa!1c.c.#u ik
n .

~58!

The conservation of total angular momentum in the case
cussed is a new independent conservation law.

8. PHASE SYMMETRY

An important type of internal symmetry is symmet
with respect to phase transformations with a constant va
of the phase~phase transformations of the first kind!. This
symmetry does not have such a clear interpretation as d
symmetry with respect to translations and rotations, for
ample. The existence of phase symmetry is due to the qu
tum nature of the structure of the substance. In quantum fi
theory, phase symmetry is associated with cha
conservation.10 In the nonrelativistic quantum theory o
many particles one considers electrically neutral syste
consisting of neutral particles or of particles with charges
different sign, so that it is assumeda priori that charge con-
servation holds. Here the breaking of the phase symmetr
a state entails the possibility of existence of superfluid flow
i.e., flows of charge in superconductors and superfluid m
flows in liquid helium.

In the case of phase transformationsw→w85weix we
obtain

Tab~r ,r 8;x!5dabe
ixd~r2r 8!, Qab5 idab . ~59!

We note that for spatially nonuniform states the comp
nature of the field is essential, and the field cannot be m
real by means of a phase transformation of the first kind. T
general formulas~47! and ~48! taken together with~59! im-
ply the following expressions for the flux density and t
density of the conserved quantity associated with phase s
metry:
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j ~x!5 i(
a

S ]v

]¹wa
wa2

]v

]¹wa*
wa* D , ~60!

p~x!5 i(
a

S ]k

]ẇa
wa2

]k

]ẇa*
wa* D . ~61!

If the kinetic energy is chosen in the form~33!, then the
phase symmetry is associated with the integral of motion

p~x!52(
a

bauwau21
i

2 (
ab

~gab* ẇb* wa2gabẇbwa* !.

~62!

We note that for the Schro¨dinger equation in quantum me
chanics the density of the conserved quantity associated
the phase symmetry of the Lagrangian and Hamiltonian
the meaning of a probability density, and the integral of m
tion is the total probability.

When the components of the complex order param
are written in term of the modulus and phase,

wa5haei ja,

formula ~62! takes the form

p~x!52(
a

baha
21

1

2 (
ab

$~gab* 1gab!ha

3@hbj̇b cos~ja2jb!2ḣb sin~ja2jb!#1 i ~gab* 2gab!

3ha@ḣb cos~ja2jb!1hbj̇b sin~ja2jb!#%. ~63!

We see that the density of the conserved quantity~63!, like
any other observable quantity, depends only on the ph
difference or the derivatives of the phases, since observ
quantities are invariant with respect to the phase transfor
tions ~29!.

For systems with broken phase symmetry Eqs.~4! have
the spatially nonuniform solutions

wa~r !5haeiq"r, ~64!

where the modulusha is independent of the coordinates, a
q is a constant vector. Substitution of the function~64! into
Eq. ~4! will lead to a system ofL nonlinear algebraic equa
tions, which determine the moduli of the order-parame
components as functions of the quantityq. This system has
solutions of the form~64! at sufficiently small values ofq.
At values ofq exceeding a certain critical valueqc , solu-
tions of the form~64! do not exist. It is easy to see that th
total momentum is conserved in states described by solut
~64!. The possibility of conserving momentum in spatia
nonuniform states is an important feature of systems wit
complex order parameter. Indeed, if the system as a who
translated by an arbitrary vectorr0 , then the function~64! is
multiplied by an exponential factor with a constant phase

wa~r1r0!1wa~r !eiq"r0,

and, by virtue of the phase invariance of the thermodyna
potential, this does not lead to any change in it. According
the results of Sec. 6, solution~64! describes a state of th
system with conserved total momentum, with a density
termined by the formula
ith
s

-

er

se
le
a-

r

ns

a
is

ic
o

-

p~ I !52q(
a

baha
2. ~65!

We note that the state~64! is equivalent to that determined i
the microscopic approach,20—a spatially uniform, transla-
tionally noninvariant state of a superfluid system with no
zero total momentum.

Up till now we have not specified the form of the depe
dence of the thermodynamic potential on the order param
and its derivatives. To write an explicit expression for t
fluxes, we must specify the dependence of the thermo
namic potential on the gradients. We restrict consideration
the thermodynamic potential to terms quadratic in the gra
ents, choosing it in the form

vg5
1

2 (
ab

(
ik

cab
ik ¹iwa* ¹kwb , ~66!

wherecab
ik 5cba

ki* . Then the momentum flux density becom

j ki
~ l !5

1

2 (
ab; l

~cab
il * ¹lwb* ¹kwa1cab

il ¹lwb¹kwa* !

5
1

2
qk(

ab; l
~cab

il * 1cab
il !hahbql . ~67!

For the state under consideration, the density of the c
served quantity and its flux density~60!, ~61!, which follow
from the condition of phase invariance, are

p~x!52(
a

baha
2, j i

~x!5
1

2 (
ab; l

~cab
il * 1cab

il !hahbql .

~68!

We see that the quantity in~68! is related to the density an
the momentum flux density by the relations

p i
~ I !5qip

~x!, j ki
~ I !5qkj i

~x! , ~69!

so that in the given state with a constant flux density
conservation laws that follow from the translational a
phase invariance of the thermodynamic potential actu
have identical consequences. This is true only in the c
~64!. One could, as is customary, define the superfluid vel
ity vs and densityrs :

v}q, rs}(
a

baha
2,

after having substituted the momentum density in the fo
p(I )5rsvs . The conservation law forp(x) thus acquires the
meaning of conservation of the superfluid mass~at constant
T and m!. We note that in this approach for describing t
dynamics of a system with a single complex order param
one can obtain an equation, analogous to the Gro
Pitaevski� equation,19 describing the dynamics of a slightl
nonideal Bose gas.

9. NONCONSERVED FLOWS

Up till now we have been considering flows in system
whose thermodynamic potential is invariant with respect
the continuous transformations~7!. For such flows, which
are naturally called conserved, the divergence is equa
zero in the stationary state and obeys the continuity equa
~17! in the nonstationary state. In the case when the ther
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dynamic potential is not invariant, it is natural to retain t
definitions of the flux densities. However, in this latter ca
the divergence of these flux densities is nonzero, and in p
of ~15! we obtain

div j n5sn , ~70!

where the functionsn has the meaning of a source densi
Integrating~70! over the volume, we find that the total pro
duction of the physical quantities transported by the flux d
sity j n is equal to the total flux through the boundary of t
volume under consideration. If the total flux through t
boundary is equal to zero, then the total amount of the ph
cal quantity produced is also zero, although the source of
quantity may be locally nonzero.

Under nonstationary conditions with a noninvariant th
modynamic potential the conservation equation has the f

]pn

]t
1div j n5sn , ~71!

wherej n andpn are given by formulas~16! and~22!. In this
case the quantitiesPn ~19! are no longer integrals of motion
even in the case when the total flux through the boundar
zero.

An example of a system in which nonconserved nond
sipative flows exist is a ferromagnet with domain walls. T
thermodynamic potentialv f of a ferromagnet includes, in
addition to the exchange energy~50!, which is invariant with
respect to rotation of the magnetic moment~51!, an anisot-
ropy energy that breaks this invariance:

va5
b

2
@M22~M "n!2#, ~72!

where n is the axis of anisotropy andb is the anisotropy
constant. In this case the flux density of the magnetization
as before, given by formula~52!, and the source density i
given by the formula

sn
~M !5b~n"M !@n3M #n . ~73!

Associated with the magnetization field are the moment
flux density and source density

j n i
~ I !5a¹iM•¹nM , s~ I !5¹v f ~74!

and the orbital angular momentum flux density and sou
density

j n i
~L !5a(

a
@r3¹Ma#n¹iMa , s~L !5@r3s~ I !#. ~75!

Near a Bloch domain wall21 lying in the yz plane one
has

Mx50, M y5M sinq, Mz5M cosq,

and the angleq specifying the orientation of the magnetiz
tion, which is assumed to have a constant magnitude, s
fies the equation

¹x
2q2

b

a
sinq cosq50. ~76!

The localized solution of this equation has the form

cosq52tanhAb

a
x. ~77!
e
ce

.

-

i-
is

-
m

is

-

s,

e

is-

In this case the magnetization flux density and source den
have the following nonzero components:

j xx
~M !52aM2¹xq, sx

~M !52bM2 sinq cosq. ~78!

We see that Eq.~76! follows from the continuity equation
~70! for the magnetization. The nonzero momentum fl
density and source density have the form

j xx
~ I !5aM2~¹xq!2, sx

~ I !5bM2¹x~sin2 q!. ~79!

The continuity equation for the momentum gives a first in
gral of equation~76!. Let us also give the nonzero orbita
angular momentum flux density and source density:

j yx
~L !5azM2~¹xq!2, j zx

~L !52ayM2~¹xq!2,

sy
~L !5bzM2¹x~sin2 q!, sz

~L !52byM
2¹x~sin2 q!.

~80!

Thus, near a domain wall there are localized flo
which, by virtue of the equilibrium character of the state, a
not accompanied by energy dissipation. However, unlike
flows generated by a phase transformation, these flows
not associated with integrals of motion. Such states can
stable only in the case when they correspond to an abso
minimum of the thermodynamic potential.

10. CONCLUSION

It follows from the above discussion that the appeara
of nondissipative flows in many-particle systems is due
extremely general causes which are largely independen
the details of their internal structure. One can identify seve
conditions that must hold for the existence of flows witho
energy dissipation. First, the system must be found in a s
whose symmetry is broken, so that, besides the usual t
modynamic variables, the state will be characterized by so
additional variables—order parameters. Second, this s
must be spatially nonuniform, i.e., the components of
order parameters must be functions of the spatial coo
nates. In that case the system is described by a set of re
complex fields. Third, the complete absence of dissipatio
realized only in the case when the system is found in a
tionary thermodynamic equilibrium state, corresponding t
local or absolute minimum of the thermodynamic potenti
It was shown that then, as in field theory,10 corresponding to
each continuous transformation of the order parameter
preserves the value of the thermodynamic potential there
a conserved flux density and an integral of motion. Flo
without dissipation can also exist in the case when the s
of the system is spatially nonuniform but its thermodynam
potential is noninvariant with respect to symmetry transf
mations. In that case the flow generated by the given s
metry will not be an integral of motion.

An additional energy is associated with the spatial no
uniformity of the order parameter, and therefore such a s
can be stable only under certain conditions. As we have s
it is stable if an absolute minimum of the thermodynam
potential is realized, i.e., if the increase in energy due to
nonuniformity is compensated by a lowering of the oth
contributions to the total energy of the system. An exam
of such a system is a ferromagnet with a domain structure
the deformed state corresponds to a local and not an abs
minimum of the thermodynamic potential, then the state
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metastable, and its lifetime is determined by the size of
potential barrier separating it from another state with a low
value of the thermodynamic potential. Finally, the deform
state of the system may not correspond to an absolute m
mum of the thermodynamic potential but be associated w
some conservation law that prevents the system from sp
taneously passing to a state with a lower value of the th
modynamic potential. In the latter case the state correspo
ing to a local minimum of the thermodynamic potential w
be just as stable as a state corresponding to the abs
minimum of the thermodynamic potential. This is apparen
the situation in systems ordinarily called superconduct
and superfluid. An important feature of these systems is
their order-parameter field is complex, and consequently
phase invariance of the state is broken in this case. Since
phase of a complex order parameter is not an observ
quantity ~only a phase difference or phase gradient can
observed!, all of the observable quantities and, in particul
the thermodynamic potential are independent of the ph
and are invariant with respect to phase transformations. T
the phase symmetry of the thermodynamic potential is ex
unlike the symmetries associated with translations and r
tions, and it cannot be broken by any interactions. Since
phase symmetry is exact, a conserved flux and an integr
motion are always associated with it. Yet another feature
complex fields, the importance of which, in our view, has n
received the attention it deserves, is that the kinetic energ
such fields contains a contribution linear in the time deri
tives of the order parameters. For this reason a system
broken phase symmetry has a nonzero integral of motio
the stationary state. The presence of such an integral of
tion prevents the system from spontaneously passing
state with a lower value of the thermodynamic potential. B
cause of this property, in systems with broken phase sym
try the current states, although they do not correspond to
absolute minimum of the thermodynamic potential, are
tremely stable. For example, a superconducting ring carry
an induced current was held for over two and a half year
a temperature belowTc with no detectable decrease
current.1 Under strictly fixed external conditions the curre
states~except, perhaps, for low-dimensional systems! would
have an infinite lifetime. Unavoidable fluctuations of the e
ternal parameters, primarily the temperature, will bring
system out of the equilibrium state, and any deviations fr
thermodynamic equilibrium and nonstationary proces
present in the system will lead to energy dissipation a
damping of the flow.

In this paper we have not dealt with the problem
critical currents. In this connection we note that the eq
tions for the order parameters have stationary solution
sufficiently low fluxes. For fluxes exceeding a certain critic
value there are no stationary solutions, and the system ca
found only in a nonstationary state, which is accompanied
energy dissipation. The stationarity can be broken at e
lower values of the fluxes in the case when the station
flow loses stability. Despite the analogy in the theoreti
description of superfluid4He and superconductors,6,7 it
should be emphasized that there is a substantial differenc
the behavior of these objects under unsteady conditions.
a slight nonstationarity the dissipative effects in superfl
e
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4He are small, and its superfluid properties are well ma
fested even under slightly nonequilibrium conditions. For s
perconductors the dynamical equation has a diffusio
form,22 and nonstationary processes can lead to strong
ergy dissipation and rapid destruction of the superconduc
properties.

Nonconserved nondissipative flows, since no conser
tion laws are associated with them, can exist stably only
states corresponding to the absolute minimum of the ther
dynamic potential. Therein lies the essential difference
tween nondissipative flows in ferromagnets5 or liquid crys-
tals, for example, where the symmetry, as a rule,
approximate, and in superconductors and superfluids, w
an exact phase symmetry is broken.

The existence of a complex order-parameter field,
pendent on the coordinates, is sufficient for explaining w
nondissipative flows appear. However, within a phenome
logical approach it is impossible to determine the structure
the order parameter or the nature of the onset of a com
field. The answers to these questions must be given b
microscopic theory of systems with broken symmetries.
the microscopic level the nature of the appearance of a c
plex field in superconductors was explained by Gor’kov23

who associated the order parameter of Ginzburg–Lan
theory with a pair-type anomalous average~pair correlation!.
The appearance of pair correlations also leads to a chang
the spectrum of quasiparticle excitations in superconduct
As a rule, an energy gap appears in the spectrum, and th
often perceived to be a hallmak of supercondtivity. Mea
while, it is well known that in superconductors containin
paramagnetic impurities, the energy gap vanishes at a ce
impurity concentration.22 However, this does not lead to van
ishing of the superconducting properties, since the ph
symmetry of the system remains broken on account of
complex order parameter, which remains nonzero. In cer
directions in momentum space the energy gap also vani
in theA phase of superfluid3He.24 These examples and als
the foregoing treatment show that the presence of a ga
the spectrum of excitations, although it affects many prop
ties of the superconductor, has no relation to the existenc
flows unaccompanied by dissipation, i.e., to the phenome
of superfluidity itself.

Landau also linked the property of superfluidity in liqu
4He to the form of the quasiparticle energy gap. According
Landau, the phenomenon of superfluidity can occur if
famous criterion which he introduced is met.9,19 Sixty years
after publication of Landau’s paper,9 which played a key role
in the development of the theory of superfluidity, many ne
experimental data on the structure of liquid4He have been
obtained, and new theoretical ideas have been develo
Studies of the spectrum of excitations in4He by the method
of inelastic neutron scattering show that its form is not fu
damentally altered at the transition from the superfluid to
normal phase,25 and, consequently, the Landau criterion
met even in the normal phase. The Landau criterion is a
met for the spectra of excitations in other nonsuperfluid l
uids. It seems natural to conclude that, as in the case
superconductors, the superfluid properties of a system
bosons are not related to the form of the spectrum of elem
tary excitations or, for that matter, excitations of other typ
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As to the Landau theory of superfluidity,9 its success in de
scribing superfluid properties is due, as we have said, to
introduction of a superfluid velocity and density for takin
into account the breaking of the phase symmetry. The rol
the Landau criterion was investigated by Volovik22 in an
analysis of the superfluid properties of theA phase of3He,
and it was concluded that exceeding the Landau velocit
not crucial for the existence of a nondissipative flow of t
superfluid component. An explanation of superfluidity in4He
as being a consequence of the breaking of phase symm
was given in the paper by Ginzburg and Pitaevski�.7 The
restricted domain of applicability of that theory, even in
modified form,8 is due to the use of an expansion of t
thermodynamic potential nearTl in powers of the modulus
of the order parameter. However, the main idea of t
paper—to describe the superfluid properties through the
troduction of a complex order parameter—is undoubte
correct not only near the temperature of thel transition but
also in the entire existence region of the superfluid phas

Let us make a few remarks about the microscopic na
of the complex field in a superfluid boson system. The ph
symmetry at the microscopic level can be broken as a re
of the appearance of single-particle anomalous quasiaver
^ak& and ^ak

1&, whereak and ak
1 are the annihilation and

creation operators for Bose particles with momentumk. In
a spatially uniform case such quasiaverages exist only
k50, but under spatially nonuniform conditions they a
nonzero even forkÞ0. It follows from a microscopic
treatment26 that in a system of bosons there always exist p
anomalous quasiaverages^akak8&, ^ak

1ak8
1 & in addition to the

single-particle anomalous quasiaverages. In the s
consistent-field approximation,26 anomalous averages of
large number of particles are expressed in terms of sin
particle and pair anomalous averages. In a more exact
proximation this is not so, and there are independent co
lations of more than two particles. Thus, in a Bose syst
with predominant repulsion between particles, as is proba
the case in4He, there should exist at least two complex fiel
associated with the single-particle and pair anomalous a
ages, i.e., the order parameter should be two-component.
model of superfluid Bose systems with two condensates
investigated in Ref. 27. In the case when the interaction
tween particles in the Bose system has a predominantly
tractive character, single-particle anomalous averages ca
exist, and the single-component order parameter is form
only by pair anomalous averages.28

As we have seen, breaking of symmetry and spatial n
uniformity of the order parameter in a state of thermod
namic equilibrium are sufficient conditions for the existen
of nondissipative flows. It is of interest to answer the qu
tion: are these conditions necessary, or are there other
sible mechanisms of creation of nondissipative flows? Th
is no proof of their necessity. Alternative versions can
expected in low-dimensional systems, for example. The
e
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thor is inclined to assume that symmetry breaking sho
take place in all cases in which nondissipative flows ar
and thus is also a necessary condition for the existenc
nondissipative flows.

The author thanks S. V. Peletminski� for a discussion of
this study.
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@Sov. Phys. JETP7, 858 ~1958!#.

8V. L. Ginzburg and A. A. Sobyanin, Usp. Fiz. Nauk120, 153~1976! @Sov.
Phys. Usp.19, 773 ~1976!#.

9L. D. Landau, Zh. E´ksp. Teor. Fiz.11, 592 ~1941!.
10N. N. Bogoliubov and D. V. Shirkov,Introduction to the Theory of Quan-

tized Fields, 3rd ed., Wiley, New York~1980!, Nauka, Moscow~1973!.
11L. D. Landau, Zh. E´ksp. Teor. Fiz.7, 19 ~1937!.
12L. D. Landau and E. M. Lifshitz,Statistical Physics, 2nd ed., Pergamon

Press, Oxford~1969!, Nauka, Moscow~1964!.
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On the suprathermal distribution in an anisotropic phonon system in He II
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The equation that describes the suprathermal distribution of high-energy phonons~h phonons!
created in anisotropic phonon systems in superfluid helium is obtained. The solution of
this equation enables the derivation of the value of suprathermal ratioS as the ratio of the actual
distribution to the Bose–Einstein one, its dependences on the momentum of theh phonons,
the anisotropy parameters, and the temperature of the low-energy phonons from which theh
phonons are created. We analyze this equation to obtain an estimate of the value of the
ratio between theh-phonon number density in anisotropic and isotropic phonon systems and
draw conclusions about the dependence ofS on the relevant parameters. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1542372#
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1. INTRODUCTION

For a phonon system in superfluid4He ~He II! the rates
of kinetic processes are determined by the unusual form
the phonon energy-momentum dependence. At zero pres
the phonon dispersion curve in He II bends upwards,1–3 and
this causes spontaneous decay of phonons with energi«
,«c510 K.4,5 For these phonons, the energy and mom
tum conservation laws allow processes in which the pho
numbers in the initial and final states do not equal one
other. The fastest process among these is the three-ph
process (3pp), in which one phonon decays to two phono
or two phonons interact to create one phonon. The rate
these three-phonon processes was obtained in Refs. 6 a
in the two extreme limits; and the general case was ca
lated in Ref. 8.

At higher energies the phonon dispersion curve be
downwards, and at«.«c the phonon spectrum become
nondecaying. Here the most rapid process is the four-pho
process (4pp), in which there are two phonons in the initia
and final states.

The rate of three-phonon processesn3pp is obtained us-
ing Landau’s Hamiltonian in first-order perturbation theo
and the rate of four-phononn4pp processes is determined b
second-order perturbation theory.9–11 This is quantitatively
evaluated and confirmed by experiment.12 The difference be-
tween the orders of perturbation theory results in the str
inequality n3pp@n4pp . Thus the phonons of superfluid4He
form two subsystems: one of low energy~l phonons! with
«,«c , which very quickly attains equilibrium; and the oth
of high-energy phonons~h phonons!, which goes to equilib-
rium relatively slowly.

The angles between the phonons which take part in 3pp
is small due to the smallness of the deviation of the ener
momentum dispersion from linearity,«5cp. Thus in isotro-
pic phonon systems, when all directions in momentum sp
are uniformly occupied, equilibrium is not attained isotrop
cally in the short term because interactions involve o
111063-777X/2003/29(1)/5/$22.00
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phonons within a limited solid angle. Thus, all thermod
namic parameters of thel subsystem become functions o
angle.11 In the long term, four-phonon processes and dif
sion in angular space bring about complete equilibrium. T
quasidiffusion is determined by fast three-phonon inter
tions involving small angles.13–15

The situation is quite different in highly anisotropic ph
non systems. Here the momenta of all phonons are in a
row cone with solid angleVp , which has a value close to th
typical angle for three-phonon processes. Such strongly
isotropic phonon systems have been created in liquid4He
~Refs. 16–20!. This pure and isotropic superfluid can ha
such a low temperature that one can neglect the existenc
thermal excitations. Low-energy phonons are injected b
heater and then propagate along the direction normal to
surface of the heater. In momentum space all the phonon
in a narrow cone of solid angleVp50.125 sr.

In such experiments16–20the unusual phenomenon of th
creation of high-energy phonons was observed. Thesh
phonons are created by a pulse ofl phonons, which has a
temperature an order of magnitude less than the energy o
high-energy phonons that it creates. The theory of t
unique phenomenon was proposed in Refs. 21 and 22
further development of the theory23–28shows that in strongly
anisotropic phonon systems there exists an asymmetry
tween processes of creation and decay for theh phonons.
Such an asymmetry causes the distribution function oh
phonons in the anisotropic phonon system to beS times
greater than that in the Bose–Einstein distribution. Mo
over, it is possible to haveS@1. Using the notation of Ref
23, we will call such an unusual distribution ofh phonons a
suprathermal distribution, and the parameterS, the suprath-
ermal ratio.

In this paper we derive an exact equation that allows
to calculate the suprathermal ratio and to determine its
pendences on momentum, anisotropy parameter, and
perature. We analyze the contribution of all possible p
© 2003 American Institute of Physics
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12 Low Temp. Phys. 29 (1), January 2003 Adamenko et al.
cesses that lead to the formation of supratherm
distributions in anisotropic phonon systems. From this eq
tion we derive an estimate of the average value of the
prathermal ratioS: the ratio of the number density ofh
phonons in the anisotropic and isotropic phonon systems

2. THE INEQUALITIES FOR DETERMINING OF THE
STATIONARY DISTRIBUTION FUNCTION OF PHONONS
IN AN ANISOTROPIC PHONON SYSTEM

The attainment of equilibrium in the subsystem ofh
phonons can be described by the kinetic equation for
distribution functions, which can be written as

dn1

dt
5Nb~p1!2Nd~p1!, ~1!

where

Nb~p1!5E
Vb

W~p1 ,p2up3 ,p4!n3n4~11n1!~11n2!

3d~«11«22«32«4!d~p11p22p32p4!

3d3p2d3p3d3p4 ~2!

is the number of phonons with momentump1 created per
unit time as the result of four-phonon (4pp) interactions;

Nd~p1!5E
Vd

W~p1 ,p2up3 ,p4!n1n2~11n3!~11n4!

3d~«11«22«32«4!d~p11p22p32p4!

3d3p2d3p3d3p4 ~3!

is the number of phonons that decay per unit tim
W(p1 ,p2up3 ,p4)5W(p3 ,p4up1 ,p2) defines the transition
probability density for 4pp processes, which have bee
calculated;25 Vb and Vd each represent a set of three so
angles, one for each momentum over which the function
integrated, i.e.,Vbi and Vdi ( i 52,3,4). These maximum
angles are determined by the anisotropy of the phonon
tem and the angles in the 4pp interactions. In the isotropic
caseVbi5Vdi . In relations~1!–~3! and below we conside
p1>pc5kB«c /c ~i.e., phonon ‘‘1’’ is theh1 phonon!, while
the other three phonons can bel phonons orh phonons. The
stationary distribution function is determined by the equa

Nb5Nd . ~4!

For isotropic phonon systemsVbi5Vdi , and equality
~4! gives:

n1n2~11n3!~11n4!5n3n4~11n1!~11n2!. ~5!

The solution of this equation is the Bose–Einstein d
tribution

ni
~0!5$exp~« i /T!21%21. ~6!

In an anisotropic phonon system, when the initial phono
are inside a narrow cone with solid angleVp<4p, the result
differs from ~5! and~6!. In this case the limits of integration
in ~2! and~3! with respect to angular variables are defined
the inequalities

V i<Vp . ~7!
l
a-
u-

e

;

is

s-

-

s

y

Here i 53,4 for creation processes, andi 52 for decay pro-
cesses. The angular variables for the final phonons hav
such restrictions.

Such asymmetry for the initial and final states results
the inequalityVbÞVd . In this case in anisotropic phono
systems the equality~4! cannot be satisfied by solution~5!,
and the Bose-Einstein distribution is not a solution of eq
tion ~4!.

In highly anisotropic phonon systems, whenVp is less
than the typical solid angle for four-phonon processes,
stationary distribution ofh phonons will be substantially dif-
ferent from the Bose–Einstein distribution~6! in magnitude
and in momentum dependence.

The integrals~2! and~3! can be written as a sum of fiv
terms with definite ranges of integration. These terms co
spond to the different processes that are possible for the
teractions of h phonons between themselves and withl
phonons:

1) h11 l 2↔ l 31 l 4 ; 2) h11 l 2↔h32 l 4 ;

3) h11 l 2↔h31h4 ; 4) h11h2↔h31 l 4 ; ~8!

5) h12h2↔h31h4.

The arrow to the right indicates the decay of anh1 pho-
non, and to the left, creation. We define the ratesnb,d

(n) of
creation~b! and decay~d! processes with distribution func
tion n for h phonons by the equalities:

Nba5n1
~0!nba

~n! ; Nda5n1nda
~n! ; ~a51,2,3,4,5!. ~9!

As Nb is the sum over allNba , we rewrite relation~4! as
follows:

n1
~0! (

a51

5

nba
~n!5n1 (

a51

5

nda
~n! . ~10!

We take into account that 3pp processes instantaneous
establish equilibrium~on the time scale ofh-phonon creation
and propagation! in the subsystem ofl phonons, which oc-
cupy the solid angleV3pp that is typical for 3pp. The pho-
non pulses in experiments16–20 haveVp close toV3pp .13–15

Therefore in this case we can consider that thel phonons in
the pulse have a Bose–Einstein distribution:

n~p1!5nl
~0! , at pl,pc . ~11!

For the stationary distribution ofh phonons, the distribution
function can be written in the form:

n~ph!5S~ph!nh
~0! , at ph.pc . ~12!

Starting from equalities~10!–~12!, we have

(
a51

5

nba
~n!5S~p1! (

a51

5

nda
~n! . ~13!

This equation is an integral equation with respect to the
known functionS(p1). For decay processes whenh1 com-
bines with anl or h phonon, the rate is independent of or
linear functional ofS, respectively. For creation processes
initially there are zero, one, or twoh phonons then the rate i
independent, a linear functional, or a quadratic function
respectively. Therefore the desired functionS(p1) is absent
in the ratesnb1

(n) , nd1
(n) , nd2

(n) , nd3
(n) if one takes into accoun
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that 12nh'1. The ratesnb2
(n) , nb4

(n) , nd4
(n) , nd5

(n) include linear
functionals, andnb3

(n) , nb5
(n) include quadratic functionals. Us

ing these facts, we present the rates from~9! as

nb1
~n!5nb1

~0! ; nd1
~n!5nd1

~0! ;

nd2
~n!5nd2

~0! ; nd3
~n!5nd3

~0! ;
~14!

nb2
~n!5Sb2~p1!nb2

~0! ; nb4
~n!5Sb4~p1!nb4

~0! ;

nd4
~n!5Sd4~p1!nd4

~0! ; nd5
~n!5Sd5~p1!nd5

~0! ;

and

nb3
~n!5Sb3

2 ~p1!nb3
~0! ; nb5

~n!5Sb5
2 ~p1!nb5

~0! ; ~15!

where

nb,da
~0! 5nb,da

~n0!
~S51! ~16!

are the rates calculated with distribution function~6!. The
above equations defineSb,da , which are functionals of the
function S(ph).

Using ~14!–~16!, we can write relation~13! as

$SSd5nd5
~0!2Sd5

2 nb5
~0!%1$SSd4nd4

~0!2Sb3
2 nb3

~0!%

1$Snd3
~0!2Sb4nb4

~0!%1$Snd2
~0!2Sb2

2 nb2
~0!%5nb1

~0!2Snd1
~0! .

~17!

For isotropic phonon systems, whenVbi5Vdi , relations
~2!, ~3! give nba

(0)5nda
(0)5na

(isotr) . In this case Eq.~17! has the
solutionS(ph)[1, and, according to~12!, we get the Bose–
Einstein distribution~6! for all phonons in an isotropic sys
tem.

3. ASYMMETRY OF PROCESSES OF h-PHONON CREATION
AND DECAY, RESULTING IN A SUPRATHERMAL
DISTRIBUTION IN AN ANISOTROPIC PHONON SYSTEM

In anisotropic phonon systems, whenVbiÞVdi the cre-
ation ratenba

(0) can be significantly different from the deca
ratenda

(0) . In Refs. 25 and 26 the rates of all five processes
creation and decay are calculated for phonons with mom
tum p1 directed along the axis of symmetry of the puls
chosen as theZ axis, sou150. These rates we denotenb,d ,
where the superscript~0! is understood.

The main role in~17! is played by a type-1 process th
describes the exchange of phonons between thel andh sys-
tems. For a pulse typically used in the experiments16–20 the
values are: anisotropy parameterVp50.125 sr and tempera
ture T51 K. Then the minimum value of the rationb1 /nd1

530 at p15pc ; it grows quickly with increasingp1 and
becomes equal to infinity atp1>p0 ~see Fig. 1!. The limiting
momentump0 is determined by the solid angleVp and the
conservation laws of energy and momentum, which gov
the interaction ofl phonons with suchh1 phonons. The cor-
responding analytical expressions and detailed discussio
the rates and their dependences on momentum shown in
1, are given in Refs. 25 and 26.

An infinite lifetime coupled with a finite creation rate o
h phonons withp1>p0 means that in anisotropic phono
systems, type-1 processes cannot effect a dynamic equ
rium between theh andl subsystems. However such an eq
librium can be provided by type-4 processes, becausend4
f
n-
,

n

of
ig.

ib-
-

.nb4 in the momentum region wherend150 ~see Fig. 1!.
Using the numerical values for rates calculated for the an
tropic phonon system~see Fig. 1!, equation~17! can be sat-
isfied for S@1. As a result, in anisotropic phonon system
the stationary distribution function of suchh phonons is
many times greater than the Bose–Einstein one~6! and has a
different energy dependence, which is determined by
momentum-dependent rates shown in Fig. 1.

In the left-hand side of~17! the rates that have the sam
power of S and describe mutually compensating proces
are separated in curved braces. These compensating
cesses in~17! are of two fundamentally different types. Th
second and the third braces describe processes which
change phonons between thel and h systems. At the same
time, type-4 decay processes are partly compensated
type-3 creation processes~but not by type-4 creation pro
cesses!, and type-3 decay processes partly compensate ty
creation process~but not type-3 creation process!. The first
and fourth curved braces describe processes that conserv
number ofh phonons. Here decay is compensated by c
ation in processes of the same type.

The presence in~17! of processes that conserve and
not conserve the number ofh phonons makes it useful to
consider the expression obtained from~17! by averaging the
anisotropic phonon system overp1 . We define the average a

^A&5
*Vp

An1
~0!d3p1

*Vp
n1

~0!d3p1
. ~18!

Then one should take into account the following equa
ties, which are obtained by reindexing the variables of in
gration:

FIG. 1. The momentum dependences of the creation ratesnb and decaynd

rates, atT51 K and Vp50.125 sr, for all the processes which exchan
phonons between thel- andh-phonon systems.
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E
Vp

Nd2~p1!d3p15E
Vd2

~3!
Nb2~p1!d3p1 , ~19!

E
Vp

Nd5~p1!d3p15E
Vd5

~3!
Nb5~p1!d3p1 , ~20!

E
Vp

Nd3~p1!d3p15E
Vd3

~3!
Nb4~p1!d3p1 , ~21!

E
Vp

Nd4~p1!d3p15E
Vd4

~3!
Nb3~p1!d3p1 , ~22!

where Vda
(3) is the solid angle of the createdp3 phonon in

decay processes of the typea.
From the conservation laws of energy and momentum

follows that at the typical momenta of the phonons tak
part in the decay processes, the createdp3 phonon remains
inside the initial phonon pulse. This fact allows us to co
sider approximately thatVda

(3)5Vp . In this case the averag
ing of ~17! with ~19!–~22! taken into account gives:

^SSd4nd4
~0!&2^Sb4nb4

~0!&52^nb1
~0!&22^Snd1

~0!&. ~23!

This result can be rewritten in the form

^S2&ñd4
~0!2^S&ñb4

~0!52nb1
~0!22^S&nd1

~0!, ~24!

wherenb1
(0)5^nb1

(0)&, and the other average values of the ra
ñb1,d4

(0) are determined by the obvious equalities of the resp
tive terms in Eqs.~23! and ~24!. The solution of Eq.~24! is

^S&5
4nb1

~0!

A~2ñd1
~0!2 ñb4

~0!!218ñd4
~0!nb1

~0!12ñd1
~0!2 ñb4

~0!

. ~25!

Using this solution we can estimate the value of^S& if we
replace the rates in~25! ~shown in Fig. 1! by their average
values calculated over the range 10 K,cp1 /kB,20 K, at
u150. These rates we denotenb,d. In this case

2nd12nb4!A8nb1nd4 ~26!

and from~25! we have

^S&'A2
nb1

~0!

nd4
~0!

530. ~27!

This relation has a simple physical meaning. The value of^S&
is defined as the square root of the ratio of the rate of gro
of the number ofh phonons by type-1 processes to the rate
decrease of the number ofh phonons by type-4 processe
which are partly compensated by type-3 processes.

According to ~17! and results obtained fornb2,d2 and
nb5,d5 ~Refs. 25 and 26!, it follows that S depends strongly
on the angleu1 between the direction of the phono
p1(p1 ,u1 ,w1) and theZ axis of symmetry of the anisotropi
phonon system. Therefore, according to Refs. 25 and
over a relatively wide region of momentump1 the creation
rate of h phonons withu150, for the second and the fifth
processes, is greater than the decay rate. Since the total
ber of h phonons is separately conserved in processes 2
5, theh phonons will concentrate in momentum space n
the Z axis. With increasingu1 , the number ofh phonons
it

-

s
c-

th
f

6,

m-
nd
r

decreases, so that there will be relatively fewh1 phonons at
largeu1,up in the pulse. This result agrees with the resu
of experiments,17,19 where theh-phonon cone is found to be
narrower than thel-phonon cone.

The suprathermal ratioS is also a function of the tem
perature of thel phonons, because according to Refs. 25 a
26 the rates of creation and decay of all five processes
come smaller, at different rates, with decreasing temperat
Thus, atVp50.125 sr andp1'pc , according to Ref. 26,
with decreasing temperature from 1 K to 0.7 K theratesnb1

andnd1 becomes smaller by'5 and'6 times, respectively,
the ratesnb2 andnd2 by '9 and'6 times, the ratesnb3 and
nd3 by '70 and'65 times, the ratesnb4 and nd4 by '80
and'95 times, and the ratesnb5 andnd5 by '85 and'100
times, respectively. In general, the suprathermal ratio
creases as the temperature decreases.

Although in this paper we are concerned with the va
of S averaged over momentum, we do expect thatS is
strongly peaked just abovepc , wherend42nd3 is small and
nb3 has a maximum.26 However, the situation is complicated
asS is also expected to vary with angle within the beam.

4. CONCLUSION

In this paper we have shown that the asymmetry
tween the processes of decay and creation of high-en
phonons in long enough phonon pulses created
experiments16–20 in superfluid helium results in a suprathe
mal distribution. Then the quasi-equilibrium distributio
function of theh phonons differs from the Bose–Einste
distribution by a factorS(p).

We have obtained an equation~17! whose solution de-
termines the value of the suprathermal ratioSand its depen-
dence on momentump1 , anisotropy parameterVp , and tem-
peratureT. Expressions that describe mutually compensat
processes are separated in~17! by curved braces. These com
pensated processes have two different principal types:
first type describes processes that exchange phonons bet
the l andh systems, and the second type conserves the n
ber of h phonons. That is why we consider the expressio
~23!, obtained from~17! by averaging with respect to allp1

of the anisotropic phonon system.
Starting from relation~23! and the available results fo

the rates of creation and decay of phonons with momen
p1(p1 ,u150,w1) directed along the symmetry axisZ ~see
Fig. 1!, an estimate is made of the average value^S& of the
suprathermal ratio. The full evaluation of the supratherm
ratio S and its dependence on the parametersp1 , Vp , andT
will only be possible after calculation of all the rates in~17!
at arbitrary anglesu1 . We plan to carry out this calculation
At present we have only the values of all the ratesnb,d for
the caseu150. This estimation of and the analysis of Eq
~17! and ~23! indicates that the distribution function ofh
phonons can exceed the Bose–Einstein energy distribu
by two orders of magnitude in anisotropic phonon system
We find that̂ S& depends strongly on the parametersp1 , Vp ,
andT. Besides the creation̂S& of a more complete theory o
the suprathermal distribution, we plan to carry out expe
ments to observe this very unusual phenomenon occurrin
phonon pulses in He II.
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A theoretical study is made of the odd resistive response~i.e., having odd parity with respect to
inversion of the magnetic field! of a superconductor in the mixed state in the presence of
bianisotropic pinning and a small isotropic Hall effect. The components of the odd
magnetoresistivity in the directions longitudinal and transverse to the current are obtained in a two-
dimensional stochastic model of bianisotropic pinning based on the Fokker–Planck equations
in the approximation of noninteracting vortices and to a first approximation in the small
Hall constant. Both naturally occurring and artificially produced realizations of this model are
possible. It is shown that the nonlinear anisotropic properties of the magnetoresistivities
are naturally related to the principal critical currents and saturation currents of the system under
study. Scaling relations for the Hall conductivity in terms of the longitudinal and transverse
magnetoresistivities obtained are discussed, and scaling and its stability in the basalX and Y
geometries of the problem are examined. ©2003 American Institute of Physics.
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1. INTRODUCTION

One of the topical problems in the physics of superc
ductors in the mixed state when vortex pinning is presen
them is the influence of pinning on the Hall effect and o
served resistive response.1–16The first problem studied theo
retically was the Hall effect in superconductors with a ra
dom distribution of point pinning centers. For a we
isotropic pinning it was found on the basis of a phenome
logical approach1 and collective pinning theory2 that a uni-
versal~independent of the form of the vortex phase and
dynamical regime of the vortices! scalingrxy}rxx

2 obtains,
which had been observed in a number of experime
studies.3,4 It was shown in Refs. 1 and 2 that the Hall co
ductivity is not affected by a weak random disorder, and
anomalous behavior5 as a function of magnetic field and tem
perature is due not to pinning but to the magnetic field a
temperature dependence of the Hall constants. In the
nomenological model of Wang, Dong, and Ting~WDT!6 the
surface force acting on the vortex in the flow of curre
around its core and the force due to the counterflow of c
rent inside the core are explicitly taken into account, and t
leads to explicit dependence of the Hall constant on the
ning force and the velocity of the vortex; this is the fund
mental difference from the theory set forth in Refs. 1 and
In the scaling lawrxy}rxx

b that follows from the WDT
model the exponentb can take different values depending o
the dynamical regime of the vortex.

Another limiting case in the study of the Hall resistiv
161063-777X/2003/29(1)/14/$22.00
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response in the mixed state arises in the presence of uni
anisotropy of the pinning, which in high-temperature sup
conductors is due to a system of unidirectional planar p
ning centers—mainly twins.7–9,11–15,17A phenomenological
theory of superconductors with uniaxial anisotropy was
veloped in Refs. 11–13. In Refs. 14 and 17 a tw
dimensional stochastic model of anisotropic pinning w
proposed. In Ref. 15 this model was supplemented by ani
ropy of the Hall conductivity and the form of the pinnin
potential was specified, making it possible to calculate
observable effects analytically in the nonlinear case~the lin-
ear case is considered in Ref. 14!. In Ref. 15, in contrast to
Ref. 17, the dependence of the resistive response on the
netic field direction was taken into account, and the even
odd components of the resistance were investigated theo
cally. ~Note: Everywhere in this paper the terms even a
odd will refer to parity under inversion of the magnetic fiel
and the terms longitudinal and transverse will mean w
respect to the direction of the current!. It was shown that the
expressions for the odd longitudinalr i

2 and transverser'
2

magnetoresistivities consist of both nonlinear Hall contrib
tions due to the directed motion of the vortices along
planes of the pinning centers~the so-called ‘‘guiding,’’ or
‘‘G’’ effect !21–23 and contributions due to the dependence
the anisotropic vortex dynamics on the magnetic field dir
tion. The mutual influence of the G effect and Hall effect w
investigated and the scaling relations were examined.

In Ref. 7 an odd longitudinal magnetoresistivityr i
2 was

first observed experimentally in a YBa2Cu3Od27 single crys-
© 2003 American Institute of Physics
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tal containing unidirectional twins. In that paper the pheno
enological model of Ref. 12 was used to obtain the dep
dence of the Hall magnetoresistivitiesrHl(H) andrHt(H) in
the L and T geometriesj im and j'm, wherem is a unit
vector perpendicular to the planes of the twins, from
functionsr i

2(H) and r'
2(H) measured at an anglea545°

between the current density vectorj lying in the ab plane
and the planes of the twins~where the value ofr i

2(H) was
expected to be maximal!. It turned out that the behavior o
the functionsrHl(H) andrHt(H) differ substantially, and on
that basis it was concluded that the influence of twins on
Hall constant is anisotropic, and that fact in turn causes
odd longitudinal componentr i

2 to appear. Anisotropy of the
Hall conductivity was investigated experimentally in Ref.
where below the characteristic temperature for the onse
vortex pinning at twins a decreasing ratiosH

'/sH
i was ob-

served (sH
' and sH

i are the Hall conductivities when thej
vector is directed perpendicular to and parallel to the pla
of the twins!. In Ref. 8 the anisotropy of the Hall conductiv
ity due to the influence of twins was explained on the ba
of the WDT theory,6 generalized to take into account th
pinning anisotropy caused by the twins. The influence of
form of the vortex phase and of vortex pinning at twins
the behavior of the Hall conductivity and scaling was inve
tigated in Ref. 9~for a545°). Two types of phase transition
were observed, depending on the magnetic field direc
with respect to the twin planes~specified by the angleu!: in
the regionu.u* a transition from the Bragg glass to th
liquid phase is observed~at T5Tm), and in the region
u,u* , a transition from a Bose glass to the liquid phase~at
T5TBg). In both cases a scaling lawrxy}rxx

b is found, with
an exponentb51.4 for u.u* and b52 for u,u* ; this
relation is independent of the values of the temperatu
magnetic field, current density, and angleu ~within the re-
spective regions! and insensitive to the phase transition.
monotonic decline ofsxy(T) to the temperaturesTm andTBg

was observed, and also a sharp divergence atT,Tm in the
Bragg phase and saturation atT,TBg in the Bose phase; in
the Bragg phase a dependence ofsxy(T) on the pinning was
observed. It was thus concluded that the behavior of the H
conductivity and the form of the scaling are substantia
different in the Bose and Bragg phases, and the latter
pends on the type of disorder~the valueb51.4 corresponds
to point disorder, andb52 to correlated disorder!.

We note that the experimental results7,8 indicate a viola-
tion of the Onsager relation for the kinetic coefficients (sxy

52syx); this is due to the influence of twins on the Ha
conductivity of an isotropic sample. It should be noted th
scaling relations of a general form, expressing the com
nents of the conductivity tensorŝ ~including the Hall con-
ductivity sxy , syz) in terms of the observable current
voltage characteristics in theL andT geometries have bee
obtained in the framework of a phenomenological mode
anisotropic pinning;13 in Ref. 15 a scaling relation for the
Hall conductivity in the presence of anisotropic pinning w
obtained in terms of the observable magnetoresistivities a
arbitrary angle between the current direction and the t
planes; this scaling relation differs substantially from t
power-law scaling obtained in the isotropic case.1

A feature of the theoretical model of anisotropic pinni
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considered in Refs. 11–15 and 17 is the existence of a c
cal currentj c only for the direction strictly perpendicular t
the planes of the twins (a50); for any other direction
j c(a)50 (0,a<p/2). Nevertheless, measurements of t
resistive response for a solid vortex phase always show9,23

that j c(a).0 for any anglesa ~althoughj c(a) may be an-
isotropic!. Thus the model of uniaxial anisotropy of the pin
ning cannot take into account thej c anisotropy of the solid
vortex phase.9,23 The simplest model in whichj c anisotropy
is realized for any anglesa in the presence of a planar pin
ning potential is the model of bianisotropic pinning with
composite potential formed by a superposition of two pe
odic planar pinning potentials acting in mutually perpendic
lar directions. The experimental realization of bianisotrop
pinning, both in naturally occurring24 and in artificially
created25 pinning structures, is based on the presence of
mutually orthogonal systems of planar, unidirectional, eq
distant pinning centers. It should be noted that at the pre
time there have been few experimental studies of the re
tive properties of superconductors, and then only ones w
uniaxial anisotropy of the pinning.7–9,11 For the case of bi-
anisotropic pinning there are no such studies as yet~the first
theoretical paper on this subject appeared only in 2002!.16

We understand that a study of superconductors with a
anisotropic pinning potential created by mutually orthogo
systems of twins and nanocracks25 and also a system of mu
tually orthogonal narrow strips of magnetic materia
~Co,Ni! deposited on superconducting films is planned
the near future.26,27

In this paper we investigate theoretically the odd~with
respect to inversion of the magnetic field! resistive response
of a superconductor in the mixed state in the presence
bianisotropic pinning and a small Hall effect, and the case
an isotropic Hall constant14 is considered. Formulas for th
observed resistive characteristics of the system—the odd
even longitudinal and transverse magnetoresistivi
r i ,'

6 ( j ,T,a) as functions of the current densityj , tempera-
ture T, and anglea specifying the direction of the curren
density vector with respect to the axes of anisotropy~see Fig.
1! have been obtained in the framework of a tw
dimensional stochastic model of bianisotropic pinning on
basis of the Fokker–Planck equation in the approximation
noninteracting vortices and in a first approximation in t
small Hall constant.16 The small Hall effect does not affec
the expressions for the even components of the magne
sistivity r i ,'

1 ( j ,T,a), but it does give rise to magnetoresi
tivity components which are odd in the magnetic fie
r i ,'

2 ( j ,T,a). In the absence of the Hall effect the properti
of the observed~even with respect to magnetic field! magne-
toresistivities and the resulting anisotropy of the critical c
rent and guided motion of the vortices have been studie
detail theoretically in Refs. 18 and 19. The nonlinear beh
ior of the observed magnetoresistivitiesr i ,'

6 ( j ,T,a) in a sto-
chastic model of bianisotropic pinning, both in the presen
and absence of the Hall effect, are determined by the pr
erties of the functionsnx,y( j ,T,a), the probabilities of a vor-
tex overcoming thexy components of the pinning potentia
which describe the vortex dynamics in relation to the cor
sponding systems of planar pinning centers. The behavio
the functionsr i ,'

2 ( j ,T,a) results from the evolution of the
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vortex dynamics with changing current and temperature
is due to the realization of certain combinations of regim
of the vortex dynamics with respect to the two systems
pinning centers. The quantitative and qualitative analysis
these functions is done in terms of the functionsnx,y( j ,T,a)
and is clearly demonstrated with the aid of a diagram of
dynamical states of the vortex system on thej x j y plane.19

The interrelationship between the nonlinear anisotropic pr
erties ofr i ,'

2 and the principal~in the directions of the axe
of anisotropy! critical currents j c

x,y(T) and saturation cur-
rents j s

x,y(T) of the given system are analyzed. New scali
relations16 for the Hall conductivity in the bianisotropic pin
ning model are discussed in terms of the observed ma
toresistivitiesr i ,'

6 ( j ,T,a) are discussed, and the scaling a
its stability in the basalX andY geometries are analyzed.

The material of this article is divided into Sections
follows. In Sec. 2 the two-dimensional stochastic model
bianisotropic pinning based on the Fokker–Planck equat
is set forth, and expressions are obtained for the ave
velocity of the vortex system in a first approximation in t
small Hall constant. In Sec. 3 formulas for the nonline
conductivity and resistivity tensors and all components of
observable magnetoresistivitiesr i ,'

6 are obtained in genera
form. In Sec. 4 the general form of the bianisotropic pinni
potential is made specific to its possible experimental re
izations, and exact expressions for the probability functio
nx and ny in particular cases are discussed. In Sec. 5
observable magnetoresistivitiesr i ,'

2 are analyzed compre
hensively. In Sec. 6 the scaling relations are considered in
framework of the specified model. In the Conclusion w
state the main findings of this study.

2. STOCHASTIC MODEL OF BIANISOTROPIC PINNING

Let us consider the problem of the vortex dynamics in
superconducting sample in the presence of bianisotropic

FIG. 1. Coordinate systemxy associated with two mutually orthogona
systems of pinning centers~their arrangement is specified by the anisotro
vectorsx, y, which are perpendicular to their planes, and the coordin
systemx8y8, tied to the direction of the current~the current density vectorj
is directed along the 0x8 axis!; a is the angle between vectorsy and j , b is
the angle between the velocity vectorv of the vortices and the vectorj ; B is
the magnetic field vector, andFL is the Lorentz force.
d
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ning created by two orthogonal systems of planar unidir
tional equidistant pinning centers, these systems in gen
having different concentrations of pinning centers and dep
of the pinning potentials. The preferred directions alo
which the pinning forces are exerted by the correspond
systems of pinning centers are characterized by pinning
isotropy vectorsx andy ~see Fig. 1!.

The two-dimensional pinning potential of such a syste
of planar defects is assumed to be additive and periodi
the anisotropy directions, i.e.,

Up~x,y!5Upa~x!1Upb~y!, ~1!

where

Upa~x!5Upa~x1a!, Upb~y!5Upb~y1b!,

anda andb are constant periods.
To solve the problem of the vortex dynamics in the pre

ence of bianisotropic pinning we use the Fokker–Plan
method. The Langevin equation for a vortex moving w
velocity v in a magnetic fieldB5nB ~where B[uBu, n
5nz, z is a unit vector along thez axis, andn561) has the
following form:

hv1naHv3z5FL1Fp1Fth , ~2!

where FL5n(F0 /c) j3Z is the Lorentz force (F0 is the
magnetic flux quantum,c is the speed of light, andj is the
current density!; Fp52“Up is the pinning force (Up is the
pinning potential!, Fth is the force of thermal fluctuations,h
is the electronic viscosity constant, andaH is the Hall con-
stant. The fluctuational forceFth(t) is Gaussian white noise
the stochastic properties of which are specified by the r
tions

^F th,i~ t !&50, ^F th,i~ t !F th,j~ t8!&52T̃d i j hd~ t2t8!, ~3!

whereT̃ is the temperature in energy units. Using relatio
~3!, we can reduce Eq.~2! to a system of Fokker–Planc
equations:

hS1naHS3z5~FL2Fp!p2T̃¹P, ~4!

]P

]t
52¹•S, ~5!

whereP(r ,t) is the probability density for finding a vortex a
time t at the pointr5(x,y), andS(r ,t)[P(r ,t)v(r ,t) is the
probability flux density for the vortex velocity. The averag
vortex velocity ^v& is by definition equal to
**Sd2r /**Pd2r .

In the steady-state case Eq.~4! for the functionsP
5P(x,y) and S5(Sx(x,y),Sy(x,y)) reduces to the equa
tions

H hSx1naHSy5FxP2T̃~]P/]x!,

2naHSx1hSy5FyP2T̃~]P/]y!,
~6!

where

Fx5FLx2dUpa /dx, Fy5FLy2dUpb /dy.

The stationarity condition for Eq.~5! leads to the relation

]Sx /]x1]Sy /]y50. ~7!

Because the pinning potential is additive, the probabi
density for finding vortices can be written in factorized form
P(x,y)5Pa(x)Pb(y).

e
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In this paper the Hall constantaH is assumed small com
pared to the electronic viscosityh. We introduce a dimen-
sionless small parametere[aH /h (e!1) and a paramete
d[ne.

To zeroth order in the parameterd ~the case of a negli-
gible Hall effect! the expressions for the components of t
average velocity of a vortex have the form18

^vx&5 ñx~FLx!/h; ^vy&5 ñy~FLy!/h, ~8!

where ñ i(F)[Fn i(F), i 5x,y ~expressions forn i(F) are
given in formula~11! of Ref. 18!, the functionn i(F) has the
physical meaning of the probability that the vortices w
overcome the potential barriers of the pinning centers in
x andy directions under the influence of an external effect
force F ~see Ref. 15 for more details!.

We now obtain expressions for the components of
average velocity of a vortex with allowance for the Hall e
fect in a first approximation with respect to the small para
eterd (udu!1). The functionsPa , Pb andax , by ~defined in
formula ~9! of Ref. 18! in this case can be written as

H Pa5Pa01dPa1 ,
Pb5Pb01dPb1

, H ax5a01dax1 ,
by5b01dby1 , ~9!

wherePa1 , Pb1 andax1 , by1 are the corrections to the func
tions Pa0 , Pb0 and a0 , b0 ~the zeroth approximation ind!
due to taking the small Hall effect into account~the functions
Pa1 , ax1 andPb1 , ay1 are obviously periodic with periodsa
and b, respectively!. Working by analogy with thed50
case,18 we use formulas~6! and ~7! and obtain expression
for ax1 andby1 :

Hax15 ñy~FLy!~Pa0~x!2Pa0~0!!,
by152 ñx~FLx!~Pb0~y!2Pb0~0!!. ~10!

Differential equations forPa1 andPb1 are obtained from the
system of equations forax andby :

H FxPa12T̃dPa1 /dx5ax1 ,

FyPb12T̃dPb1 /dy5by1 .
~11!

Equations~11! are analogous to the equations for t
zeroth approximation, but now on the right-hand side are
x- and y-dependent functionsax1 and by1 . The solution of
equations~11! consists of the function

Pa1~x!5~1/T̃2!ṽy~FLy!a00a
2f ~x!E

x

x1a

djE
j

j1a

dz/ f ~z!,

~12!
f ~x!5exp@2~FLxx2Up~x!!/T̃#

and the functionPb1(y) obtained formally fromPa1(x) by
the change of variablex→y, the indicesx↔y, anda→b,
a0→b0 , ua→ub .

From the definition of the average velocity^v& of a vor-
tex its components to a first approximation in the small
rameterd are

^vx&5 ñx@12d~ñxA1 /aa0!#/h,
~13!^vy&5 ñy@12d~ñyB1 /bb0!#/h,

whereA1[*0
aPa1dx, B1[*0

bPb1dy. ForA1 andB1 by iden-
tity transformations we obtain the following representatio

A152aa0ñyd/dFLx~1/ñx!,
~14!B15bb0ñxd/dFLy~1/ñy!.
e

e

-

e

-

By substituting formulas~14! into ~13!, we finally obtain the
following expressions for the components of the average
locity of a vortex in the presence of a small Hall effect in
first approximation in the parameter gd:

^vx&5 ñx@FLx2dñy~FLy!#/h,
~15!^vy&5 ñy@FLy1dñx~FLx!#/h.

The derivation of formulas~15! with the use of an ex-
pansion in the small parameterd presupposes satisfaction o
the conditionsuFLxu@udñy(FLy)u, uFLyu@udñx(FLx) u . Con-
sequently, expressions~15! for the components of the aver
age velocity of a vortex are valid in the region of anglesa
satisfying the conditione!tana!e21. In Secs. 3 and 5 the
resistive properties are considered for this region of ang
The case of anglesa close to theX and Y geometries is
considered separated in Sec. 6.

3. NONLINEAR CONDUCTIVITY AND MAGNETORESISTIVITY
TENSORS AND THE EXPERIMENTALLY OBSERVABLE
MAGNETORESISTIVITIES

The electric field induced by a moving vortex system

E5~1/c!B3^v&5n~B/c!~2^vy&x1^vx&y!. ~16!

From formulas~15! and ~16! we obtain the magnetore
sistivity tensorr̂ for the nonlinear Ohm’s lawE5 r̂( j ) j :

r̂5S rxx rxy

ryx ryy
D

5S ny~Fy! 2dnx~FLx!ny~FLy!

dnx~FLx!ny~FLy! nx~Fx!
D . ~17!

The components of the tensorr̂ are measured in units o
r f[(F0B/hc2)—the magnetoresistivity to the flux flow
Fx5FLx2dFlyny(FLy), Fy5FLy1dFLxnx(FLx) are the
components of the external force acting along the vectox
andy, respectively.

As is seen from Eq.~17!, in the general nonlinear cas
the off-diagonal components of the tensorr̂ satisfy the On-
sager relation (rxy52ryx). We also note that the compo
nentsrxy andryx depend on the parameterd explicitly, while
the diagonal componentsrxx andryy depend on it implicitly,
in terms of the argumentsFy andFx . All the components of
the tensorr̂ ~unlike the components of the tensorŝ) are
functions of the current density, temperature, and anglea.

The conductivity tensorŝ ~the components of which ar
measured in units of 1/r f), wich is the inverse of the tenso
r̂, has the form

ŝ5S sxx sxy

syx syy
D 5S ny~Fy!21 d

2d nx~Fx!
21D . ~18!

The off-diagonal components of the tensorŝ are, up to a
factor of the sign, equal to the dimensionless Hall constane,
which also satisfies the Onsager relation (sxy52syx). In
the diagonal components the dependence on the paramed,
by analogy with the tensorr̂, is implicit.

The experimentally measurable quantities are referre
a coordinate system tied to the current~see Fig. 1!. The lon-
gitudinal Ei and transverseE' components of the electric
field ~relative to the direction of the current! are related toEx

andEy by the simple relations
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HEi5Ex sina1Ey cosa,
E252Ex cosa2Ey sina. ~19!

In the presence of the Hall effect the longitudinalr i

5Ei / j and transverser'5E' / j magnetoresistivities mus
be separated into components which are even,r15@r(n)
1r(2n)#/2, and odd,r25@r(n)2r(2n)#/2, with respect
to the magnetic field. To do this we find the evenn1

5@n(n)1n(2n)#/2 and oddn15@n(n)2n(2n)#/2 com-
ponents of the functionsnx(Fx) andny(Fy) appearing in Eq.
~17! ~the functionsnx(FLx) and ny(FLy) are even with re-
spect to the magnetic field in view of the assumed evenn
of n(F)). In the region of angles bounded by the conditi
e!tana!e21, in which the functionsnx(Fx) and ny(Fy)
can be expanded in the small parameterd, we have for these
components, with an accuracy up to terms;d3,

H nx
1~Fx!5nx~FLx!,

nx
2~Fx!52dnx8~FLx!ñy~FLy!,

~20!H ny
1~Fy!5ny~FLy!,

ny
2~Fy!52dny8~FLy!ñx~FLx!,

where the prime denotes the derivative,n8(F)[dn(F)/dF.
Using formulas~19! and~20!, we obtain expressions fo

the even and odd components of the longitudinalr i and
transverser' magnetoresistivities:16

H r i
15ny~FLy!sin2 a1nx~FLx!cos2 a,

r2
15@nx~FLx!2ny~FLy!#sina cosa,

~21!

H r i
25ny

2~Fy!sin2 a1nx
2~Fx!cos2 a,

r'
25dnx~FLx!ny~FLy!1@nx

2~Fx!2ny
2~Fy!#sina cosa.

~22!

The even components of the magnetoresistivityr i ,'
1 , being a

combination of the functionsnx andny , reflect the nonlinear
dynamics of vortices in a superconductor with bianisotro
pinning. Formulas~21! for r i ,'

1 do not depend on the param
eter d to a first approximation in that parameter, i.e., th
correspond to the cased50 which was investigated in deta
theoretically in Refs. 18 and 19. The odd components of
magnetoresistivity,r i ,'

2 are of a Hall origin. They are pro
portional to the parameterd and are a combination of th
functions nx , ny and their derivativesnx8 , ny8 . Below we
shall study the properties of the magnetoresistivityr i ,'

2 on
the basis of the model bianisotropic pinning potential used
Refs. 15, 18, and 19.

The dimensionless functionsnx(F,T̃) and ny(F,T̃) (F
denotes the argumentsFLx ,Fx of the functionnx and FLy ,
Fy of the functionny), which have the physical meaning o
the probabilities of a vortex overcoming the potential ba
ers of the corresponding systems of pinning centers—
main nonlinear components of the problem. In the nonlin
case the functionsnx,y correspond to a smoothed steplik
resistive transition, and the functionsnx8 and ny8 have the
form of spikes located in the region of nonlinearity of th
transition ~see below!. In the regions of nonlinearity of the
functionsnx andny with respect to current and temperatu
~or, in other words, in regions of nonlinearity of the pinnin
viscosity! the corresponding dependences of the experim
tally observable magnetoresistivities manifest pronoun
nonlinearity. It can be noticed from formulas~21! and ~22!
ss

c

e

n

-
e
r

n-
d

that in the nonlinear caser i
1 and r'

1 are combinations of
smoothed steplike transitions~steps!: r i

2 is a combination of
spikes, andr'

2 is a combination of steps and spikes.
We note the connection of the four components of

magnetoresistivity to the properties of the functionsnx,y . We
introduce theX and Y geometries, in whichj ix (a5p/2)
and j iy (a50). Here there exist only the longitudinal eve
magnetoresistivities r i

x( j ,T̃)5ny( j ,T̃) and r i
y( j ,T̃)

5nx( j ,T̃), while r'
x 5r'

y [0 ~here we have temporarily
dropped the superscript ‘‘1 ’’ from the quantitiesr i ,'

2 ). Thus,
measurement of the longitudinal even magnetoresistivitie
theX andY geometries allows one to obtain the current a
temperature dependences of the functionsnx,y , which are
sufficient for obtaining all forms of the magnetoresistiviti
r i ,'

6 ( j ,T̃) to a first approximation in the parameterd at arbi-
trary anglesa, since the functionsnx,y appearing in formulas
~21! and ~22! can be written asnx(FLx ,T̃)5nx( j y ,T̃)
5r i

y( j y ,T̃); ny(FLy,T̃)5ny( j xT̃)5pi
x( j x,T̃) and, conse-

quently, to recovernx8(FLx ,T̃) andny8(FLy ,T̃).

4. PROPERTIES OF THE PROBABILITY FUNCTIONS
nx ,y„ j ,t,a,p ,«,k … FOR OVERCOMING OF THE PERIODIC
PINNING POTENTIALS

The nonlinear properties of the odd observable mag
toresistivitiesr i

2 , as can be seen from formulas~20! and
~22!, are completely determined by the behavior of the fun
tions nx(FLx ,T̃), ny(FLy ,T̃), nx8(FLx ,T̃), and ny8(FLy ,T̃),
which depend on the form of the pinning potential~see the
definition in formula~11! of Ref. 18!. In analogy with Refs.
15 and 18, let us make this potential specific to HTSCs of
YBCuO type, where the experimental realization of anis
tropic pinning centers can be twins, nanotracks, or gaps
tween planes of the layered superconductor.20,25,26For each
of these cases the order parameter is depressed in the r
of the pinning center, and, consequently, it is energetica
favorable for the vortices to be localized in that region.

Analysis of the Hall resistive properties will be done o
the basis of the same pinning potentialsUpa and Upb as in
Ref. 18~formulas~19! and Fig. 2 of that paper!, which lead
to formulas~20! for the functionn( f ,t,«). Quantitative and
qualitative analyses of its behavior as a function of all t
parameters and the corresponding asymptotic expression
discussed in detail in Ref. 15. The characteristic curves
n( f ,t,«) as a function of the parametersf andt ~see Figs. 4
and 5 of Ref. 15! describe the nonlinear dynamics of th
vortex system as a function of the temperature and of
external force exerted on the vortex perpendicular to the p
ning center. It can be seen from those figures that the sh
of the n( f ) andn(t) curves is determined by the values
the respective fixed parameterst and f . The monotonically
increasing functionn( f ) reflects the nonlinear transitio
from the regime of thermally activated flux flow~the TAFF
regime! to the regime of free flux flow~the FF regime! as the
external force is increased at low temperatures (T̃!U0),
whereas at high temperatures (T̃>U0) the FF regime is re-
alized in the entire range of variation of the external force~at
low forces because of the effect of thermal fluctuations
the vortices!. Analogously, the monotonically increasin
function n(t) reflects the nonlinear transition from a dy
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namical state corresponding to the value of the external fo
at zero temperature to the saturation FF regime.

A characteristic feature of the odd magnetoresistivit
~22! is the presence in them of not only the functionsn
themselves but also their derivatives with respect to the
ternal force. Mathematically the origin of these derivatives
due to the odd components of the functionsn @see Eqs.~20!#.
The latter, in turn, have a simple physical meaning. The
namics of the vortex system in the presence of the Hall ef
depends substantially on the magnetic field direction. T
effective external forcesFx5FLx2neFLyny(FLy) and Fy

5FLy1neFLxnx(FLx) appearing in the expressions forr i

andr' ~for one of the magnetic field directions! and acting
on the vortices along the pinning anisotropy vectorsx andy
~perpendicular to the pinning center! contain contributions
both from the components of the Lorentz force and the co
ponents of the Magnus force. Depending on the magn
field direction, which is specified by the factorn561, the
pairs of components of the Lorentz and Magnus forces
be codirectional or oppositely directed, and the result
force will be different in these cases; accordingly, the res
tive response will be different. The behavior of the functio
n in relation to the parametersf andt follows directly from
the properties of the probability functionn.

The n8( f ) curve has the form of a spike located in th
region of the nonlinear transition, and it goes to zero in
linear regimes~for f→0,̀ ). For f <1 one hasn8(t50)
[0 ~this is becausen( f )[0 for t50 in the regionf <1),
and the functionn8(t) also has the form of a spike with
zero limit for t→`; for f .1 the functionn8(t) decreases
monotonically from the valuen8( f ,0) to zero fort→`.

The transition to dimensionless parameters, which al
one to take different potentialsUpa , Upb into account in the
general case, is done in the same way as in Ref. 18.
temperature will be characterized by the parametert

5T̃/U0 , the current density will be measured in units ofj c

5cU0 /(F0d), U05(Ux0 ,Uy0)1/2 is the average depth o
the potential wells,«5(«x«y)

1/2 is the average concentratio
of pinning centers, andk5(«y /«x)

1/25(a/b)1/2 and p
5(Ux0 /Uy0)1/2 are measures of the corresponding aniso
pies. We recall that the dimensionless parametersf Lx and
f Ly , which specify the ratio of the Lorentz force componen
FLx and FLy to the corresponding pinning forcesFpx

5U0x /d, Fpy5U0y /d, are equal tof Lx5n jp21 cosa and
f Ly52n jp sina. The dimensionless parametersf x and f y ,
which specify the ratio of the external forces perpendicu
to the pinning centers,Fx andFy , to the pinning forces have
the form f x5Fx /Fpx5n jp21@cos(a)1nevy(fLy ,t)sina# and
f y5Fy /Fpy5n jp@2sina2nenx(fLx ,t)cosa#. The values of
the external forceF5Fx , F5Fy at which the heights of the
potential barriers of the potentialsUpa andUpb vanish atT̃
50 correspond to the dimensionless critical currentsj c

x(a)
'1/(p sina), j c

y(a)'p/cosa ~with accuracy to quantities
nxe cota!1, nye tana!1, respectively!. For T̃50 the prin-
cipal critical currents along the pinning anisotropy vectorx
andy are equal toj c

x[ j c
x(p/2)'p21, j c

y[ j c
y(0)'p. In the

general case of nonzero temperature the critical curr
j c
x(t,a) and j c

y(t,a) depend on temperature and correspo
for a given anglea to a change in the vortex dynamics fro
the TAFF regime to a nonlinear regime in relation to t
e
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systems of pinning centers with pinning anisotropy vectorx
andy. The condition that determines the temperature reg
in which the concept of critical currents has physical me
ing is 0,T̃!U0 ~for T̃>U0 the transition from the TAFF to
the nonlinear regime is smeared, and the concept of crit
current loses physical meaning!. In analogy with the critical
currentsj c

x(t,a) and j c
y(t,a) one can define the saturatio

currentsj s
x(t,a) and j s

y(t,a) at which the nonlinear regime
of vortex dynamics gives way to the FF regime at the cor
sponding systems of pinning centersj s

x5 j s
x(p/2), j s

y

5 j s
y(0) are the principal saturation currents along the p

ning anisotropy vectorsx and y, and j s
x(a)5 j s

x/sina,
j s
y(a)5 j s

y/cosa).

5. ODD MAGNETORESISTIVITIES

Let us discuss the odd longitudinal and transverse m
netoresistivities caused by the Hall effect on the basis of
bianisotropic pinning potential introduced previously~for-
mula ~19! in Ref. 18!. We obtain analytic formulas for them
by substituting the corresponding expressions for thenx,y

functions ~calculated according to formula~20! of Ref. 18!
into formula ~22!:

¦

r i
25ne j sina cosa@p21 cosany~p j sina,t,«y!

3nx8~p21 j cosa,t,«x!

2p sinanx~p21 j cosa,t,«x!

3ny8~p j sina,t,«y!,

r'
25nenx~p21 j cosa,t,«x!ny~p j sina,t,«y!

1ne j sina cosa@p21 sinany~p j sina,t,«y!,

3nx8~p21 j cosa,t,«x!

1p cosanx~p21 j cosa,t,«x!

3ny8~p j sina,t,«y!.
~23!

The behavior of the resistivity curvesr i ,'
2 ( j ) and

r i ,'
2 (t) is a consequence of the character of the action of

Hall effect on the vortices in the case of nonlinear dynam
of the vortex system and, according to formulas~22!, is com-
pletely determined by the properties of the even and o
components of the functionsnx(Fx) and ny(Fy). The mag-
netoresistivityr i

2 is a combination of odd components of th
functionsnx,y . The influence of the Hall effect on the mag
netoresistivityr i

2 is due to the fact that the resultant forc
Fx andFy contain Magnus force components, which depe
on the direction of the magnetic field. This gives rise to o
components of the functionsnx(Fx) and ny(Fy) in regions
oftheir nonlinearity, these components being proportiona
the corresponding Magnus force components in those
gions@see formula~20!#. The magnetoresistivityr'

2 contains
contributions from both even and odd components of
functionsnx,y . The Hall contribution to the magnetoresistiv
ity r'

2 from the even components~the first term in formula
~23! for r'

2) reflects the nonlinear~in current and tempera
ture! Hall effect due to vortex pinning on both systems
pinning centers and is directly related to the action of
Magnus force on the vortices. This effect is more efficient
the case when the vortices are found in the FF regime
motion with respect to both systems of pinning centers, i
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when the influence of the latter can be neglected. If the v
tex pinning on one of the systems of pinning centers is
preciable, so that with respect to that system of pinning c
ters the guided motion of vortices~the G effect! is realized,
then the Magnus force acting perpendicular to the velo
and, hence, the pinning centers of that system, is suppre
by the pinning force~if the vortices move along the 0x axis,
then the action of the Magnus force along the 0y axis is
suppressed by pinning, and vice versa!, and the Hall contri-
bution to the magnetoresistivityr'

2 from the even compo-
nents of the functionsnx,y is negligible.

Thus the physical origin of the Hall contributions to th
magnetoresistivityr i ,'

2 lies in the realization of certain com
binations of dynamical regimes of the vortices with resp
to both systems of pinning centers, and the behavior of
functions r i ,'

2 ( j ,t) is determined by the evolution of th
vortex dynamics upon a change of current and temperat
In Refs. 16 and 19 a description and analysis of the vor
dynamics in a stochastic model of bianisotropic pinning
the presence of the Hall effect is done with the aid of
dynamical state diagram of the vortex system on thej x j y

plane. Since the changes of the critical currents and sat
tion currents due the Hall effect are negligible, one can
glect the difference in the form of the diagram for oppos
directions of the magnetic field, and use that diagram~see
Fig. 2! to elucidate the behavior of the functionsn andn2 in
different regions of the diagram and to analyze the resisti
curvesr i ,'

2 ( j ,t) accordingly.
The plane of Fig. 2 is divided by linesj x5 j c

x(t), j y

FIG. 2. Dynamical state diagram of a vortex system on thej x j y plane and
the characteristic valuesnx

6 , vy
6 in each of its regions.j c

x , j s
x and j c

y , j s
y are

the principal critical currents and saturation currents along the pinning
isotropy vectorsx andy, respectively; FP is the full pinning region, NTx and
NTy are regions of nonlinear transitions between the linear TAFF and
regimes of vortex motion in the directions of the 0x and 0y axes, respec-
tively. FGx and FGy are the regions of directed~guided! motion of the
vortices along the 0x and 0y axes, respectively, and FF is the region of fr
flux flow; a* , a1* , anda2* are characteristic critical angles~see text!.
r-
-

n-

y
ed

t
e

re.
x

e

ra-
-

y

5jc
y(t) and j x5 j s

x(t), j y5 j s
y(t) into several regions corre

sponding to all possible different dynamical states of the v
tex system in the given model. The end of the vectorj , which
has the coordinates (j sina, j cosa), belongs to some one o
these regions, depending on the values ofj anda. We intro-
duce the critical anglesa* 5tan21(jc

x/jc
y), a1* 5tan21(jc

x/js
y),

anda2* 5tan21(js
x/jc

y) ~the anglesa* , a1* , anda2* are formed
by rays passing through the origin of coordinates and
respective crossing points of the pairs of linesj x5 j c

x and
j y5 j c

y , j x5 j c
x and j y5 j s

y , and j x5 j s
x and j y5 j c

y). In Fig. 2
the unshaded region FP corresponds to the full pinning
gime (j x, j c

x , j y, j c
y); here TAFF dynamics of the vortice

is realized in respect to both systems of pinning centers,
nx.0, ny.0. The region NTx corresponds to the nonlinea
transition regime in the linear TAFF and FF regimes of vo
tex motion in the direction of the vectorx ~due to pinning on
the system of pinning centers parallel to the 0y axis!; in this
region j c

y, j y, j s
y ( j c

y(a), j , j s
y(a)) and 0,nx,1, nx

2

Þ0, ny.0, ny
2.0. Similarly, the region NTy corresponds to

a nonlinear transition regime between the direction of
vector y ~due to pinning on the system of pinning cente
parallel to the 0x axis!; here j c

x, j x, j s
x ( j c

x(a), j , j s
x(a))

and nx.0, nx
2.0, 0,ny,1, ny

2Þ0. The region FGx ,
shaded with horizontal lines, corresponds to a regime
guided motion of the vortices along the pinning centers p
allel to the 0x axis ~the FGx regime!, in which j x, j c

x , j y

. j s
y ( j s

y(a), j , j c
x(a)), and nx.1, ny.0, nx

2.0, ny
2.0.

Region FGy , shaded with vertical lines, corresponds to t
regime of guided motion of the vortices along the pinni
centers parallel to the 0y axis ~the FGy regime!; here j x

. j s
x , j y, j c

y ( j s
x(a), j , j c

y(a)), andnx.0, ny.1, nx
2.0,

ny
2.0. Finally, the FF region, shaded by both horizontal a

vertical lines, corresponds to the regime of free flow of ma
netic flux with respect to both systems of pinning cent
and, consequently, an isotropic resistive response~FF re-
gime!; here j x. j s

x , j y. j s
y ( j . j s

x(a), j . j s
y(a)), and nx

.1, ny.1, nx
2.0, ny

2.0. Thus it is only in the region of
the nonlinear regimes NTx and NTy that the values ofnx

2 and
ny

2 and, hence, the corresponding~proportional to them! con-
tributions tor i ,'

2 , are nonzero.
In accordance with these results it is easy to track

sequence of dynamical regimes in which the vortex sys
will be found as the current is increased at a fixed tempe
ture and a given anglea and, hence, to explain the qualita
tive form of the resistivity curvesr i ,'

2 ( j ). Let us discuss
three cases in which their form is different. Fora,a1* we
obtain the following sequence of regimes as the current
creases: FP→NTx→FGx→NTy→FF, which corresponds to
the following sequence of transition currents between
gimes: j c

y(a), j s
y(a), j c

x(a), j s
x(a). In this case, in accor-

dance with formula~20!, only the componentny
2(Fy) con-

tributes tor i
2( j ) in the region of currentsj c

x(a), j , j s
x(a)

~it arises on account of they component of the Magnus forc
FMy'eFLx , corresponding to the FF regime of vortex m
tion along the 0x axis in the region of nonlinearity ofny).
The contribution of the componentsnx

2(Fx) to r i
2( j ), on the

other hand, are negligible, so that in the region of nonline
ity of nx the x component of the Magnus force,FMx

52eFLyny(FLy), is approximately zero owing to the TAFF
regime of motion of vortices along the 0y axis. The function

n-

F
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r'
2( j ) has, in addition to the contribution from the comp

nent ny
2(Fy) in the current regionj c

x(a), j , j s
x(a), there

also exists a contributionnenx(FLx)ny(wLx) from the even
components nx

1(Fx), ny
1(Fy) in the current region

j . j c
x(a), wherenx'1 andny is outside the TAFF region

The casea.a2* can be considered in an analogous way.
that case one obtains the following sequence of regimes
increasing current: FP→NTy→FGy→NTx→FF, which cor-
responds to the following sequence of transition currents
tween regimes:j c

x(a), j s
x(a), j c

y(a), j s
y(a). In this case

the function r i
2( j ) is nonzero in the regionj c

y(a), j
, j s

y(a) on account of the contribution from the compone
nx

2(Fx). The functionr'
2( j ) contains, in addition to this last

a contribution nenx(FLx)ny(FLx) in the current regionj
. j c

y(a), whereny'1, andnx lies outside the TAFF region
Finally, we consider the casea1* ,a,a2* . In this region of
angles the nonlinear regimes NTx and NTy overlap in a cer-
tain interval of currents, and, as a result, the functionr i ,'

2 ( j )
contains componentsnx

2(Fx) and ny
2(Fy). For example, in

the region of anglesa1* ,a,a* , when the current reache
the valuej c

x(a) the nonlinear NTy regime~in the direction of
the 0y axis! begins to exist along with the NTx regime~in the
direction of the 0x axis!. Therefore, at this current, togethe
with the componentny

2(Fy) ~due to they component of the
Magnus force,FMy'eñx(FLx)) a componentnx

2(Fx) ap-
pears~due to thex component of the Magnus forceFMx

'2eñy(FLy)). In the region of anglesa* ,a,a2* , when
the current reaches the valuej c

y(a), the nonlinear NTx re-
gime begins to exist along with the nonlinear NTy regime.
Therefore, at this current a componentny

2(Fy) appears along
with the component nx

2(Fx). The contribution
nenx(FLx)ny(FLx) to the functionr'

2( j ) continues to exist
in the current regionj . j c

x(a) for a1* ,a,a* and in the
current region
j . j c

y(a) for a* ,a,a2* , when neither of the functionsnx

nor ny is found in the TAFF regime of vortex dynamics.
With the aid of the state diagram one can also anal

the qualitative form of the resistivity curvesr i ,'
2 (t) in the

temperature region where the concepts of critical curre
and saturation curves have physical meaning. If one con
ers the breakaway of the vortices from the pinning cen
under the influence of thermal fluctuations and defines
vortex depinning temperatureT̃dp( j ,a,p,«,k) as the value at
which the vortex system goes over into the FF regime
dynamics at given parametersj , a, p, «, and k, then the
condition of applicability of the state diagram for analysis
the functionsr i ,'

2 (t) has the formT̃!T̃dp ~Ref. 19!. The
influence of temperature on the state diagram consists
monotonic decrease of the value of the critical currents
an increase in the values of the saturation currents with
creasing temperature in their domain of definition; this
lows one to track the dynamics of the vortices and to exp
qualitatively the dependencesr i ,'

2 (t). We note that their
characteristic form is due to the vortex dynamics, which
pends onj anda at t50.

By analogy with Ref. 19, where in the bianisotropic pi
ning model in the absence of the Hall effect the obser
dependencesr i ,'

1 ( j ,t) were investigated, one can show th
in the model under consideration, with a small Hall effe
the diversity and qualitative form of ther i ,'

2 ( j ,t) curves at
th
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f
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-
n

-

d
t
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fixed parametersp, «, k, andt, j , respectively, are due to th
influence of the set of values of these parameters~exceptj )
on the values of the principal currentsj c

x , j s
x , j c

y , and j s
y that

form the dynamical state diagram, and also the geome
factor—the value of the anglea, which determines the se
quence of states of the vortex system on the diagram as
current or temperature is increased. Indeed, it follows fr
an analysis of the diagram that at a given valuee!1 the
currentsj c,s

x (t,p,«k) and j c,s
y (t,p,«/k) determine the exis-

tence region and the value of the observed resistive
sponsesr i ,'

2 ( j ,t). As was shown in Ref. 19, the influence o
the ‘‘internal’’ parametersp, «, and k and the temperature
~the parametert! on the values of the currentsj c

x , j s
x , j c

y ,
and j s

y can be characterized as follows. With increasingt
there occurs a decrease in the principal critical currentsj c

x , j c
y

and an increase in the principal saturation currentsj s
x , j s

y , so
that the FP region on the diagram is narrowed and the
region widened. With increasing« there occurs an increas
of both pairs of principal currentsj c

x , j c
y and j s

x , j s
y , so that

the functionsnx,y decrease monotonically with increasing«;
however, the increase of the second pair of currents oc
significantly faster than the first, and, as a result, a widen
of the NT region and a less significant widening of the
region occur on the diagram. The parametersp and k de-
scribe anisotropy of the bianisotropic pinning potential a
determine the anisotropy of the critical currents and satu
tion currents. Growth of the parameterp and/or decline of
the parameterk lead to a decrease in the values of the pair
critical and saturation currentsj c

x , j s
x and an increase in the

values of the pairj c
y , j s

y . Here the NTx region is shifted
upward, the NTy region is shifted to the left, and, accord
ingly, the FP region becomes longer and narrower.

Let us now analyze the behavior of the magnetoresist
ties r i

2 andr'
2 as functions of current and temperature w

the aid of formulas~23!; such an analysis corresponds qua
tatively to the analysis given above for the state diagra
The expressions forr i

2 andr'
2 contain combinations of fac

tors of the form

nx8~ f Lx ,t,«x!ny~ f Ly ,t,«y!,

nx~ f Lx ,t,«x!ny8~ f Ly ,t,«y!,

nx~ f Lx ,t,«x!ny~ f Ly ,t,«y!,

and the properties of their current and temperature dep
dences follow directly from the properties of the correspon
ing dependences of the functionsnx,y at the given values of
the fixed parametersp, «x , «y , andt ~for the current depen-
dences! or j ~for the temperature dependences! and the angle
a. The functionsnx8( j )ny( j ) and nx( j )ny8( j ) have a bell-
shaped form, and the functionsnx8(t)ny(t) and nx(t)ny8(t)
have a bell-shaped or monotonically decreasing form,
pending on the absolute values~moduli! of the argumentsf Lx

and f Ly of the functionsnx,y in relation to unity. The func-
tions nx( j )ny( j ) and nx(t)ny(t) have the form of a
smoothed steplike transition.

Let us illustrate the behavior ofr i ,'
2 ( j ,t) for a number

of values of the anglea and a certain set of parameter valu
e50.01, p51.4, «50.1, k510, t50.1, andj 51.7, which
makes for a clearer picture by providing wide regions of t
nonlinear regimes with pronounced resistive responses
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them. This set of parameters corresponds to the follow
pairs of critical and saturation currents:j c

x.0.5, j s
x.2, and

j c
y>0.5, j s

y.1 and critical anglesa* .45°, a1* .27°, a2*
.76° ~as a criterion for determining the values of the critic
and saturation currents we use the condition that the tang
to thenx,y curves at the corresponding points make an an
of 45° to the abscissa!.

In the nonlinear case the current dependence of the m
netoresistivityr i

2 ~see Fig. 3! is a superposition of bell-
shaped functions of different signs, and their resultant fo
is determined by the relative contribution of these functio
this contribution, in turn, depending on the values of t
parameters and the anglea. We note that in the magnetore
sistivitiesr i ,'

2 there is an external dependence on the an
a, on account of the factors sina and cosa, and an internal
dependence via the argumentsf Lx5p21 j cosa and f Ly

5p j sina of the functionsnx,y . It is seen in Fig. 3 that with
increasing anglea the contribution tor i

2( j ) from the odd
componentnx

2( f x) increases, and that from the odd comp
nentny

2( f y) decreases~according to the state diagram, bo
components exist in the region of anglesa1* ,a,a2* ). In-
deed, in accordance with formula~23!, with increasing angle
a the external angular dependences sina cos2 a and
sin2 a cosa have qualitatively similar behavior; the comp
nentnx

2( f x) increases and the componentny
2( f y) decreases

on account of the increase and decrease of the correspon
components of the Magnus forces,u f Mxu5eñy( f Ly) and
f My52eñx( f Lx). The qualitative form of the temperatur
dependence of the resistivityr i

2 ~see Fig. 4! can be either the
same as the current dependences~in which case the sam
kind of relationship, with a superposition of bell-shap
functions, is manifested upon variation of the anglea!, or
else it can be a function with a finite~non-TAFF! limit as
t→0 ~see curve2 in Fig. 4!; as was shown above, this
determined by the values of the dimensionless forcesf Lx and
f Ly with respect to unity, i.e., the set of values of the para
eterp, k, «, j and anglea ~which specify the correspondin
regime on the state diagram!. The magnetoresistivityr i

2 ex-
ists only in the nonlinear regimes~in regions of nonlinearity
of the functionsnx

2( f x) andny
2( f y)); it is proportional to the

dimensionless Hall constante and of the same order of mag

FIG. 3. The functionr i
2( j ) for several values of the anglea @deg#: 10 ~1!,

20 ~2!, 30 ~3!, 45 ~4!, 60 ~5!, 70 ~6!, and 80 ~7! for e50.01, p51.4,
t50.1, «50.1, k510.
g

l
nts
le

g-
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le

-
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nitude with it. Because of the external dependence ona, one
hasr i

2[0 at a5(0,p/2. The functionr i
2( j ) has a limit of

zero for j→0 and for j→`. The functionr i
2( j ) has the

TAFF limit for t→0 if p21 j cosa<1 and/or p j sina<1,
and a finite~non-TAFF! limit if p21 j cosa.1 and p j sin
a.1; for t→` the limit of r i

2(t) is equal to zero. The
current and temperature dependences ofr i

2 can have a
change of sign~see Figs. 3 and 4!, since the magnetoresis
tivity r i

2 contains positive terms entering with differe
signs.

The current dependence of the magnetoresistivityr'
2 at

low temperatures~see Fig. 5! is a superposition of a
smoothed steplike transition and bell-shaped functions.
qualitative form of the temperature dependence of the m
netoresistivityr'

2 ~see Fig. 6! is either analogous to the cur
rent dependences or differs from them for the same reaso
for the resistivityr i

2 . Like the dependences of the longitu
dinal magnetoresistivity, the change in form of ther'

2( j ) and
r'

2(t) curves with increasing anglea occurs on account o
an increase in the odd componentnx

2( f x) and a decrease o
the odd componentny

2( f y). The magnetoresistivityr'
2 is

FIG. 4. The functionr i
2(t) for several values of the anglea @deg#: 20 ~1!,

30 ~2!, 45 ~3!, 60 ~4!, 70 ~5! for e50.01, p51.4, j 51.7, «50.1, and
k510.

FIG. 5. The functionr'
2( j ) for several values of the anglea @deg#: 10 ~1!,

20 ~2!, 30 ~3!, 45 ~4!, 60 ~5!, 70 ~6!, and 80 ~7! for e50.01, p51.4,
t50.1, «50.1, andk510.
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proportional to the dimensionless Hall constante and has the
same order of magnitude. Unliker i

2 , the magnetoresistivity
r'

2 exists even in the linear regime at high currents and te
peratures on account of the contributionnenxny ; because
the external dependence ona makesr'

2[0 for a50,p/2.
At low temperatures the functionr'

2( j ) has the TAFF limit
for j→0. The functionr'

2(t) has the TAFF limit fort→0 if
p21 j cosa<1 and/or p j sina<1, and a finite limit if
p21 j cosa.1 and p j sina.1. The limit of the functions
r'

2( j ) andr'
2(t) for j→` andt→`, respectively, is equa

to ne. Unlike r i
2 , the functionsr'

2( j ) and r'
2(t) do not

change sign, since all the terms appear with the same sig
the magnetoresistivityr'

2 .
Let us consider the influence of the parametersp,k,«,

which characterize the bianisotropic pinning potential, on
observable magnetoresistivities. The parametersp and k
specify the anisotropy of the potential, and the paramete«
the average concentration of pinning centers~recall that«x

5«/k, «y5«k). In the functionsr i ,'
2 ( j ) an increase of the

parameterp and decrease of the parameterk lead to an in-
crease of the contribution of the odd componentnx

2( f x) and
to a decrease of the contribution of the odd compon
ny

2( f y) owing to the relative displacement of the functio
nx and ny ~the functionnx is shifted to the right andny

is shifted to the left!. In the limiting casesp@1,k!1 and
p!1,k@1 the contributions fromnx

2( f x) and ny
2( f y) are

negligible. Figures 7 and 8 illustrate the current depende
of the magnetoresistivityr i

2 for a number of values of the
parametersp and k. The influence of variations of the pa
rameterp on the functionr i ,'

2 (t) is contained in a change o
the argumentsf Lx , f Ly of the functionsnx ,ny , and the influ-
ence of the parameterk is analogous to the case of the cu
rent dependences. The functionsr i

2( j ) ~see curve3 in Fig.
8! and r i

2(t) a double sign change is possible. This is e
plained by the fact that fora1* ,a,a2* , where a contribu-
tion to the resistance is given by both odd componentsnx

2 ,
ny

2 , there can exist an interval of currents and temperatu
such that one of the components is dominant~in modulus!
within that interval, while outside it the other component
dominant, so that their summation leads to a double s
change in the corresponding dependences. With increa

FIG. 6. The functionr'
2(t) for several values of the anglea @deg#: 10 ~1!,

20 ~2!, 30 ~3!, 45 ~4!, 60 ~5!, 70 ~6!, and 80 ~7! for e50.01, p51.4,
j 51.7, «50.1, andk510.
-

in
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parameter« the quantitiesnx and ny as functions of bothj
andt are shifted rightward, and on that basis one can tr
the variation of the functionsr i ,'

2 ( j ,t). Figure 9 shows the
dependence of the resistivityr'

2( j ) for a number of values of
«.

We note that, according to formulas~23!, the substitution
p→1/p, k→1/k, anda→90°2a reduces to a relabeling o
the coordinates and, hence, to a symmetry of the layou
ther i

2( j ,t) curves for mutually reciprocal values ofp andk
and complementary angles. Therefore, upon this substitu
the r i

2( j ,t) curves are symmetric about the liner i
2( j ,t)

50, and ther'
2( j ,t) curves coincides. The casesp51 and

k51 are degenerate and give these types of symmetry
mutually reciprocal values ofk and p, respectively, and
complementary angles.

6. SCALING RELATIONS

Let us consider the scaling relations in this problem. W
return to formulas of the general type~21!, ~22!. Expressing
the dimensionless Hall constant in terms of the observa
magnetoresistivitiesr i ,'

6 , we obtain anisotropic scaling rela
tions in two equivalent forms:

FIG. 7. The functionr i
2 for several values of the parameterp: 0.7 ~1!, 1.2

~2!, 1.4 ~3!, and 2~4! for e50.01, a5250, t50.1, «50.1, k51.

FIG. 8. The functionr i
2( j ) for several values of the parameterk: 10 ~1!, 1

~2!, 0.25 ~3!, and 0.1~4! and«50.001,a525°, t50.1, «50.1.
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5 d5
r i

2 tana2r'
2

ny8~ j x!ñx~ j y!tana2nx~ j y!ny~ j x!
,

d5
r i

21r'
2 tana

nx~ j y!ny~ j x!tana2nx8~ j y!ñy~ j x!
,

~24!

and the functionsn appearing in these expressions are fou
by inverting Eqs.~21!. Relations~24! are valid in the domain
of applicability of formulas~21! and ~22!, i.e., for e!1 and
at anglesa not close toa50,p/2, so thate!tana!e21.
Scaling relations~24! express the Hall constant in terms
the observable nonlinear magnetoresistivitiesr i ,'

6 . For ex-
ample, by measuring all the magnetoresistivitiesr i ,'

6 , one
can find the value of the Hall constant from the scaling re
tions ~24!. Alternatively, knowing the Hall constant and an
three of the observable magnetoresistivitiesr i ,'

6 , one can
recover the other. It is easily checked that in the particu
case of uniaxial anisotropy (ny[1) the first of the scaling
relations~24! goes over to the relation obtained previously
Ref. 15 ~formula ~40! of that paper!. We note that in the
bianisotropic pinning model under discussion, scaling of
form rxy}rxx

b ordinarily observed in the case of isotrop
pinning is impossible, since the nonmonotonic functi
r'

2( j ,t) and the monotonic functionr i
1( j ,t) cannot be re-

lated by a power law.
Let us also consider the scaling in theX and Y geom-

etries, in whichj ix (a5p/2) and j iy (a50). For these
cases we obtain from formulas~15!, ~16!, and~19!

X geometry, a5p/2: r i ,X
1 5ny~p j !,r',X

2

5n«nx@«p21 j ny~p j !#ny~p j !,

Y geometry, a50: r i ,Y
1 5nx~p21 j !,r',Y

2

5n«nx~p21! j )ny@«p jnx~p21 j !#,

tanQH
X5r',X

2 /r',X
1 5n«nx@«p21 j ny~p j !#,

tanQH
Y5r',Y

2 /r i ,Y
1 5n«ny@«p jnx~p21 j !# ~25!

and r i ,X
2 5r i ,Y

2 5r',X
1 5r',Y

1 [0, i.e., for a superconducto
with anisotropic pinning the longitudinal oddr i

2 and trans-
verse evenr i

1 magnetoresistivities vanish in theX and Y
geometries on account of the vanishing of the ‘‘tensor’’~ex-

FIG. 9. The functionr'( j ) for several values of the parameter«: 0.001~1!,
0.01 ~2!, 0.1 ~3!, and 1~4! for e50.01, a525°, t50.1, k51.
d

-

r

e

ternal! angle dependences. Formulas~25! for r i
1 andr'

2 in
the X and Y geometries are symmetric with respect to t
transformationsny↔nx , p↔p21. The magnetoresistivities
r i

2 in the X and Y geometries depend on the dynamics
vortices with respect to the systems of pinning centers al
which the current is directed and are described by the fu
tionsny andnx . The magnetoresistivitiesr'

2 in theX andY
geometries arise because of the corresponding Mag
forcesf Mx5nep21 j ny(p j) and f My5nep jnx(p21 j ), which
cause motion of the vortices in the direction of the curre
Both the Magnus forces and the magnetoresistivitiesr'

2 are
proportional to the velocity of the vortices, and so they d
pend on the dynamics of the vortices with respect to the
systems of pinning centers. We note that at moderate curr
j ; j s

x,y , which are actually attainable in experimen
nx@ep21 j ny(p j)#'nx(0), ny@ep jnx(p21 j )#'vy(0) with
an accuracy to quantities of orderenx,y8 (0)!1. Conse-
quently, to this accuracy tanQH

X'nenx(0), tanQH
Y'neny(0),

and the Hall anglesQH
X,Y are practically independent of th

current density. Formulas~25! express the scaling relation
between the magnetoresistivitiesr i

1 andr'
2 observed in the

X andY geometries and the Hall constante and also enables
one to recover the functionsnx andny from the observedr i

1

andr'
2 in the X andY geometries.

Let us discuss the question of stability of the measu
ments in theX andY geometries, since in real samples t
anglea cannot correspond precisely to the valuesa50,p/2
~see also Ref. 15!. For finding the magnetoresistivity tenso
near theX andY geometries we use the results of the meth
proposed in Ref. 16 for solving the problem under consid
ation for arbitrary values ofe. In Ref. 16 it was shown tha
the components of the average velocity of the vortices
given by to ^vx&5 ñx(F̄x)/h, ^vy&5 ñy(F̄y)/h, where the
forcesF̄x andF̄y satisfy Eqs.~13!. For e!1 these equations
are transformed to

F̄x5FLx2n«FLyny@FLy1n«FLxnx~ F̃x!#,

F̄y5FLy2n«FLxnx@FLx2n«FLyny~ F̄y!#. ~26!

Let us consider the regions of angles near theX and Y ge-
ometries.

Near theX geometry (cota!e)

ny@FLy1n«FLxnx~ F̄x!#'ny~FLy!1ny8~FLy!

3~n«FLxnx~ F̄x!!.

Neglecting the terms quadratic ine, we obtain

F̄x
X5FLx2n«FLyny@FLy1n«FLxnx~ F̄x!#

'FLx2n«FLyny~FLy!,

F̄y
X'FLy1n«FLxnx@FLx2n«FLyny~FLy!#

'FLy1n«FLxnx~ F̄x
X!,

and in dimensionless quantities

f x
X'np21 j ~cosa1n«ny~ f Ly!sina!,

f y
X'np j~2sina1n«nx~ f x

X!cosa!.

Using formula~26!, we obtain the magnetoresistivity tens
near theX geometry:



we
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r̂X5S ny~ f y
X! 2n«nx~ f x

X!ny~ f Ly!

n«nx~ f x
X!ny~ f Ly! nx~ f x

X!
D ~27!

Similarly, near theY geometry (tana!e) we obtain the
magnetoresistivity tensorr̂Y .

Finally, substituting the tensorsr̂X and r̂Y into formulas
nd
,

h

itie

vit

m
-
en

g

~19!, expandingr i ,' in powers ofDa5p/22a in the vicin-
ity of a5p/2 (cota!eny(pj)) and in powers ofa in the
vicinity of a50 (tana!enx(p

21j)) to the first nonvanish-
ing terms with allowance for the terms of first order ine (e
!1), and separating the odd and even components,
obtain
~28!
f

c-

t to
tive

s

all

m
f

where a prime denotes the derivative:n8( f )[]n( f )/] f .
Formulas~28! for r i ,'

6 at small deviationsDa and a from
the X and Y geometries, like formulas~25!, are symmetric
with respect to the transformationny↔nx , p↔p21. As for-
mulas ~28! show, the corrections of both first and seco
orders inDa,a exist only in the low-temperature region
where the nonlinear regimes are realized~we shall consider
this case! and vanish when the temperature is raised. T
magnetoresistivitiesr i

2 andr'
1 , which are equal to zero in

the X andY geometries, vary linearly inDa anda at small
deviations from those geometries. The magnetoresistiv
r i

2 exist only in regions of nonlinearity of the functionsny,x

~upon a deviation from theX andY geometries, respectively!
and are proportional to the factorsnx(0), ny(0)!1, i.e., they
are stable. The main contribution to the magnetoresisti
r'

1 upon a deviation from theX andY geometries at actually
accessible values of the currents is given by ter
2ny(p j)Da andnx(p21 j )a, so that their stability is deter
mined by the dynamical regime in regard to the pinning c
ters along which the current is directed in theX and Y ge-
ometries. The magnetoresistivitiesr i

2 and r'
2 vary

quadratically with respect toDa anda from their values in
the X andY geometries. The relative deviations of the ma
netoresistivities forr i ,X

1 andr i ,Y
1 are in order of magnitude

Dr i ,X
2 /r i ,X1.H 2

1

2
p jny8~p j !/ny~p j !21J ~Da!2,
e

s

y

s

-

-

Dr i ,Y
1 /r i ,Y

1 .H 2
1

2
p21 j nx8~p21 j !/nx~p21 j !21J a2.

In the linear regime one hasDr i ,X
1 /r i ,X

1 .2(Da)2,
Dr i ,Y

1 /r i ,Y
1 .2a2. The relative deviations of the values o

the magnetoresistivities forr',X
2 and r',Y

2 are in order of
magnitude

Dr',X
2 /r',X

2 .
1

2
p j@ny8~p j !/ny~p j !#~Da!2,

Dr',Y
2 /r',Y

2 .
1

2
p21 j @nx8~p21 j !/nx~p21 j !#a2

and exist only in regions of nonlinearity of the functionsny

andnx . As in the case of the linear corrections, the corre
tions quadratic inDa,a to the magnetoresistivitiesr i

1 and
r'

2 at small deviations from theX and Y geometries are
determined by the dynamics of the vortices with respec
the pinning centers parallel to the current in the respec
geometries.

Formulas ~28! for the observable magnetoresistivitie
r i ,'

6 at small deviations of the anglea from the values
a50,p/2 corresponding to theY and X geometries can be
used to find these deviations. Neglecting at first the sm
contributions quadratic ina andDa5p/22a to the magne-
toresistivitiesr i

1 andr'
2 , one can solve the scaling proble

according to formulas~25!, i.e., one can recover the value o
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the constante and the functionsnx and ny . Then, using
formulas~28! for the magnetoresistivitiesr i

2 andr'
1 , which

vanish in theY and X geometries and are linear ina and
Da5p/22a at small deviations from those geometries, o
can find the corresponding values ofa and Da. The self-
consistency of this scheme is checked by calculating the
rections quadratic ina andDa, which should be small rela
tive to the main contribution in theY andX geometries.

CONCLUSION

The odd resistive response due to the influence of
small isotropic Hall effect for a superconductor in the mix
state in the presence of two mutually orthogonal system
unidirectional pinning centers has been studied in the fra
work of a planar stochastic model of bianisotropic pinnin
Formulas for the observable odd longitudinal and transve
magnetoresistivitiesr i ,'

2 ( j ,T̃,a) are obtained in this mode
on the basis of the Fokker–Planck equations in the nonin
acting vortex approximation and to a first approximation
the small Hall constant. The two-dimensional bianisotro
pinning potential of general form~assumed to be additiv
and periodic in the anisotropy directions!, which models two
mutually orthogonal systems of unidirectional planar pinn
centers, was made specific for the purpose of investiga
the dependences of the magnetoresistivitiesr i ,'

2 on all the
~dimensionless! parameters of the problem—both on the e
ternal parametersj ,t,a, which characterize the current de
sity, temperature, and current direction, and on the inte
parametersp, «, and k, which describe the intensity an
anisotropy of the pinning potential itself, and on the dime
sionless Hall constantse.

The main features of the problem under study are
nonlinear, nonmonotonic behavior of the observed an
tropic magnetoresistivities as functions of the transport c
rent density and temperature and the anisotropy of the c
cal current due to the anisotropic pinning. The nonlinea
of the vortex dynamics with respect to current is due to
nonlinear character of the dependence of the values of
potential barriers of the pinning centers on the external fo
acting on the vortices; the nonlinearity of the vortex dyna
ics with respect to temperature is due to the nonlinear t
perature dependence of the probability that vortices will
cape from the potential wells of the pinning centers. In
stochastic model of bianisotropic pinning investigated he
the principal nonlinear components are the probabi
functions for the vortices to overcome the potential barri
of the corresponding systems of pinning cente
nx,y( j ,t,a,p,«,k), which describe the nonlinear~with re-
spect to current and temperature! dynamics of the vortices
relative to these systems of pinning centers. The investig
odd magnetoresistivitiesr i ,'

2 ( j ,t) are linear combinations o
the functionsnx,y and their derivatives@see formulas~23!#
and, hence, their properties are completely determined by
well-studied properties of the latter. The functionsr i ,'

2 ( j ,t)
in the case of uniaxial anisotropic pinning, which is a p
ticular case of bianisotropic pinning, were investigated
Ref. 15, but for arbitrary values of the Hall constant. A luc
quantitative and qualitative analysis of the functio
e
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r i ,'
2 ( j ,t) has also been done with the aid of the dynam

state diagram of the vortex system on thej x j y plane. This
diagram permits one to analyze how the vortex dynam
evolves upon changes in the current and temperature;
evolution determines the characteristic behavior and the
istence regions of the functionsr i ,'

2 ( j ,t). It was shown that
the nonlinear anisotropic properties of the magnetoresis
tiesr i ,'

2 are naturally linked to the principal critical curren
j c
x,y(t) and saturation currentsj s

x,y(t), which form the state
diagram of the system under study. Unlike the stocha
model of uniaxial anisotropic pinning studied previously15

where the critical current densityj c is indeed equal to zero
for all directions, in the given model the anisotropic critic
current exists for all directions. It should be noted that t
functionsr i

2( j ,t) can have a change of sign~even a double
change!, whereas the sign ofr'

2( j ,t) does not change; a
moderate currentsj & j s

x,y the Hall anglesQH
X,Y are practi-

cally independent of the current density.
We have discussed the scaling relations for the Hall c

ductivity in terms of the observed magnetoresistivitiesr i ,'
6

~in the region of angles bounded by the conditione!tana
!e21), and we have examined the scaling and its stability
the basalX andY geometries.

a!E-mail: valerij.a.shklovskij@univer.kharkov.ua
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LOW-TEMPERATURE MAGNETISM

Kinetic properties and magnetic susceptibility of La 0.9Sr0.1MnO3 under hydrostatic
pressure

E. S. Itskevich, V. F. Kraidenov, A. E. Petrova,* V. A. Ventcel’, and A. V. Rudnev

L. F. Vereshchagin Institute of High Pressure Physics, 142090 Troitsk, Moscow District, Russia
~Submitted June 10, 2002; revised July 8, 2002!
Fiz. Nizk. Temp.29, 39–46~January 2003!

The magnetic susceptibilityx, thermopowera, and electrical resistivityr of single-crystal
samples of the manganite La12xSrxMnO3 with x50.1 are measured in the temperature range
80–300 K at pressures up to 10 kbar. The thermopowera(T) is positive, with a domelike
shape of the curve, and decreases with increasing pressure. Thex(T) andr(T) curves are found
to have features atT'95, 120, and 135 K. The feature atTOO'95 K is attributed to
orbital ordering, and that atTCA'135 K to a canted antiferromagnet↔paramagnet transition.
The physical cause of the feature atTM5120 K is discussed. The transition temperatures
increase with increasing pressure at rates of]TCA /]P50.43 K/kbar and]TM /]P50.57 K/kbar.
A weak feature is detected on ther(T) anda(T) curves atT5225– 235 K. © 2003
American Institute of Physics.@DOI: 10.1063/1.1542374#
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Complex oxides of manganese with the perovskite cr
tal structure, which exhibit colossal magnetoresista
~CMR! and have a number of interesting and unusual ph
cal properties~charge and orbital ordering, quantum pha
transitions! are attracting interest in connection with the po
sibility of their practical application. Their crystal structure
similar to that of the high-Tc superconducting~HTSC! ox-
ides of copper. The main similarity of the manganites a
cuprates is the mechanism of doping by divalent metals
particular La, which substitute for the trivalent rare-earth io
causing the system to acquire new properties.1 By analogy
with HTSCs it can be assumed that the characteristic fea
of the layered perovskite manganites is the two-dimensio
character of the conduction in the MnO2 plane and a strong
interaction of the two-dimensional charge carriers with op
cal phonons.

The results of different experimental studies on the
materials show much disagreement. This is explained by
strong dependence of the physical parameters of metal
ides on the degree of doping, stoichiometry, and struct
defects.

Interest in the compound withx50.1 in the
La12xSrxMnO3 series is dictated by the fact that this Sr co
centration corresponds to the lower edge of the concentra
regionx50.1– 0.15 in which the main low-temperature sta
is a ferromagnetic insulator~FMI!. For 0,x,0.1, canted
antiferromagnetism~CAF! is realized. At the other end o
this region, forx>0.16, the main state is a ferromagne
metal ~FMM!. According to the phase diagram o
La12xSrxMnO3 ~Ref. 2! and the data of Refs. 3–5, a samp
with x50.1 undergoes three phase transitions as the t
perature is lowered.

1. At T5Ts5320 K one observes a structural transiti
of the orthorhombic phaseO to an orthorhombic phaseO8
with Jahn–Teller~JT! distortions (O→O8). Here the sample
301063-777X/2003/29(1)/6/$22.00
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remains in the paramagnetic insulator~PMI! state.
2. At T5TCA'150 K a magnetic transition from th

paramagnetic phase to a phase of canted antiferromagne
occurs, and in many papers6–10 the CAF state is said to be
unstable and accompanied by phase separation into fe
magnetic polarons~droplets! in an antiferromagnetic matrix

3. At T5TOO'95– 105 K a structural transition to
pseudocubic phaseO* is observed (O8→O* ), with a simul-
taneous magnetic transition to the FMI state. This is acco
panied by new orbital and, possibly, charge ordering brou
about by superexchange.

The physical properties of La12xSrxMnO3 have been in-
vestigated in many studies: the magnetic susceptibilityx in
Refs. 2, 5, 11, and 12, the resistivityr in Refs. 2–4, the
magnetizationM in Refs. 4 and 11–13, the conductivit
s~v! and dielectric permittivity«~v! in the submillimeter
and optical frequency ranges in Refs. 11, 12, and 14–16,
the sound velocityVt in Ref. 17.

An important role in understanding the mechanisms g
erning the behavior of manganites is played by studies un
pressure. We know of only one study of La0.9Sr0.1MnO3 un-
der pressure, and that was done at pressures up to 8.8 k4

The values found in that study for the shifts of the pha
transitions under pressure, 2.3 K/kbar forTCA(TC) and 2.5
K/kbar for TOO , obtained on the basis of electrical resistan
measurements under pressure, are close to the values w
we found in Ref. 18 for La12xSrxMnO3 samples with a
higher Sr concentration (x50.125). Since the sample wit
x50.1 is found at the boundary with the AF region, th
coincidence seems strange and needs additional verifica
The goal of the present study was to obtain additional inf
mation about the mechanism of the magnetic phase tra
tions in a comparative study of the kinetic and magne
properties of La12xSrxMnO3 under pressure. For this w
made measurements of the magnetic susceptibilityx, resis-
© 2003 American Institute of Physics
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tivity r, and thermopowera in the temperature range 80
300 K at hydrostatic pressures of up to 10 kbar.

SAMPLES

Single-crystal samples of La12xSrxMnO3 with x50.1
were cut from a cylindrical bar grown by the zone-melti
method with radiant heating,19 with the axis of the bar in the
@100# direction of the crystal.

MAGNETIC SUSCEPTIBILITY

The magnetic susceptibilityx was measured by a modu
lational method in a 19 Hz alternating current and with
magnetic field amplitude of'10 Oe.20 The modulating and
receiving coils were placed inside the high-pressure ch
ber. The pressure was measured by a Manganin manom
in the whole temperature range as the sample was cooled
rate of 0.3–0.5 K/min.

Figure 2 shows the temperature dependence of the m
netic susceptibility at different pressures, and the inset sh
the x(T) curve at atmospheric pressure. The growth of
susceptibility on cooling from room temperature begins
T;160 K, and thex(T) curve has two maxima at temper
tures of 135 and 119 K. The first maximum (TCA) can be
attributed to a phase transition from the paramagnetic in
lator to a canted antiferromagnet, and the second (TM) may
be due to various causes which will be considered bel
Near 100 K one observes a minimum with a subsequ
growth and an inflection point at 95 K. This is a region
orbital ordering (TOO) and also of structural (O8→O* ) and
magnetic (CAF→FMI) transitions. With increasing pressur
all of the singular points shift to higher temperatures.

FIG. 1. Temperature dependence of the magnetic susceptibility
La0.9Sr0.1MnO3 at pressuresP @kbar#: 0 ~1!, 4.3 ~2!, 6.2 ~3!, 8 ~4!. The
average values of the pressures for the temperature interval correspond
the phase transitions are indicated. The inset shows a plot ofx(T) for P
50.
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RESISTIVITY

The sample used for the resistivity measurements wa
cylinder 5 mm in diameter and 7 mm in height. The me
surements ofr were done by the standard four-conta
method. The contacts were prepared using Ag paste.
distance between potential leads was 3.5 mm. The measu
current did not exceed 100mA. The resistivity at room tem-
perature and atmospheric pressure wasr30054.0 V•cm.

The hydrostatic pressures were produced in a steel fix
pressure chamber with an inner channel 12 mm
diameter.21 The pressure medium used was PE´S-1 silicone
liquid.

Figure 2 shows a semilogarithmic plot ofr(T) for dif-
ferent pressures. There are no regions withdr/dT.0. How-
ever, one can clearly see a tendency toward the appear
of such segments as the pressure is raised. Except for
region T'100– 140 K the lnr(T) curves are approximate
by straight lines with kinks at the characteristic phase tr
sition points:T'100, 120, 136, and 225 K. With increasin
pressure the resistivityr decreases and the points at whi
the kinks occur shift to higher temperatures. We associate
following phase transitions to these characteristic points
order of decreasing temperature: 1! Tp'225– 235 K—a
transition within a paramagnetic insulator phase with theO8
lattice, possibly due to diffusion of vacancies and ordering
the structure; 2! TCA'136 K—paramagnetic insulator→
canted antiferromagnet, in which the distortedO8 lattice and
the insulator state are preserved; phase separation into f
magnetic polarons~ferrons! and an AF matrix is not ruled
out; 3! TM'120 K—a phase transition due either to ‘‘free
ing’’ of the polarons and the formation of a spin glass5 or to
a change in the lattice parameters; 4! TOO'100 K—a struc-
tural transitionO8→O* , accompanied by a magnetic trans
tion to a ferromagnetic insulator state with orbital orderi
and possible charge ordering of the type given in Ref. 22

Figure 3 shows the pressure dependence of the p
transition temperaturesTCA , TM , andTOO , obtained from
resistivity measurements and from magnetic susceptib
measurements. The averaged rates of change with pres
obtained from ther and x measurements are]TCA /]P
50.43 K/kbar and]TM /]P50.57 K/kbar.

of

g to

FIG. 2. The temperature dependence of the resistivity of La0.9Sr0.1MnO3 at
pressuresP @kbar#: 0 ~1!, 5.3 ~2!, 7.7 ~3!, and 9.9~4!. The pressure values
correspond to room temperature.
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To monitor the stability of the resistivity in time at
pressure of 5.3 kbar we measured twor(T) curves at an
interval of 15 days. It was found that a hold under press
decreasesr. The observed decrease inr was largest~over
20%! in the room-temperature region and fell to zero f
T,130 K.

THERMOPOWER

The thermopower measurements were made in the
namic regime during cooling and heating of the hig
pressure chamber by a modified form of the technique
forth in Ref. 23, which has previously been used successf
for measurements ofa in metals, HTSCs, and manganite
Figure 4 shows the temperature dependence of the t
mopowera at different pressures. One can discern seve
characteristic features on all the curves.

—At all pressures the curves have a domelike sh
with a maximum at a temperatureTmax'185– 190 K.

FIG. 3. Dependence of the critical temperatureTCA , TM , andT00 on pres-
sure for La0.9Sr0.1MnO3 , obtained from measurements of the resistivity~j!
and magnetic susceptibility~s!. The values of the pressures are given w
allowance for the pressure drop as the temperature is lowered.

FIG. 4. Temperature dependence of the thermopower of La0.9Sr0.1MnO3 at
pressuresP @kbar#: 0 ~1!, 5.3 ~2!, 7.7 ~3!, 9.9 ~4!. The solid curves were
obtained on cooling, the dashed curves on heating. The pressures corre
to room temperature.
e
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—The thermopower falls off with increasing pressure:
the maximum ofa it decreases from 350mV/K at P50 to
250 mV/K at P'10 kbar.

—For T.Tmax the thermopower decreases almost l
early up to room temperature at a rate of'1.3 mV/K2.

—For T,Tmax the thermopower decreases very shar
with decreasing temperature. Measurements ofa in this re-
gion are difficult on account of the high resistivity of th
sample and are restricted to temperatures not lower t
T'120– 150 K.

—In the temperature region 230–240 K the same feat
as on the curves of lnr(T) is observed at all pressures.

—In the cooling–heating cycle the values ofa exhibited
substantial hysteresis, especially noticeable atT<220 K.
Repeated cooling from room temperature gives values of
thermopower;10% higher than the previous measureme
This is seen on thea(T) curves in Fig. 4 at pressures o
P50 and'10 kbar.

—The value ofa at T5300 K decreased by;20% dur-
ing a 7-day hold at a pressure of 10 kbar.

DISCUSSION OF THE RESULTS

The influence of pressure on the manganites can be
duced to three main factors:

1! pressure decreases the distance between atomsdMn-O ,
increasing the overlap of the orbitals and the hopping pr
ability t i j and causing broadening of the conduction bandW
(]dMn– O/]P,0; ]W/]P.0);24,25

2! pressure causes an increase of the geometric angu
in the Mn–O–Mn chain,24,25 which again leads to an in
crease of the temperaturet i j and broadening of the conduc
tion bandW;ucosuu/d3.5 (]u/]P.0; ]W/]P.0);

3! pressure decreases the coupling coefficienta0 of the
electron–phonon interaction due to the JT polaro
(da0 /dP,0; ] ln TC /]P.0),26,27 where TC is the Curie
temperature.

The relative contribution of these factors to the chan
of the Curie temperatureTC of manganites under pressu
was studied in Refs. 24 and 27. On the basis of the exp
mental data on the relative change under pressure of the
tance dMn– O (kd522.3231025 kbar21) and angleu (ku

5(8.5– 16)31025 kbar21) obtained in Ref. 24 on a large
number of oxides L2/3A1/3MnO3 (L5La, Pr; A5Ca, Sr, Ba!,
the theoretical estimate ] ln TC /]P5] ln W/]P'4
31024 kbar21 was made in Ref. 27. However, experimen
on the manganites (La,Y)0.7Ca0.3MnO3 ~Ref. 27! and
La12xSrxMnO3 with x50.125 ~Refs. 18 and 28! and
x50.1 ~Ref. 4! give an average value]TC /]P'2 K/kbar
and, hence,] ln TC /]P'231022 kbar21. This is more than
an order of magnitude higher than the theoretical estim
which takes into account the pressure dependence of only
parametersdMn– O andu. Therefore, as was proposed in Re
27, it is necessary to take into account a third factor, i.e.,
electron–lattice~polaron! coupling and its pressure depe
dence. The lifting of the degeneracy of the ground stateeg of
the electrons on account of the Jahn–Teller effect lead
local deformations of the lattice around these electrons
to the formation of so-called JT polarons. The effective co
duction band of these polarons has the form

ond
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Weff5W exp~22a0!. ~1!

In the case of strong Hund coupling (JH@Weff) one has
TC;Weff , and

] ln TC /]P5] ln W/]P22]a0 /]P. ~2!

According to estimates,27 ]a0 /]P52(1 – 2)
31022 kbar21. Thus the contribution of the change of th
energy of the polaronic coupling to the increase of the te
peratureTC under pressure is an order of magnitude lar
than the contributions due to the change of the dista
dMn– O and angleu ('431024 kbar21). Acting in the same
direction, these three factors provide a good correlation
the calculated estimates and the experimental results fo
dependence] ln TC /]P (;1022 kbar21).

It follows from Refs. 18 and 28 that in a La12xSrxMnO3

sample withx50.125 the characteristic temperaturesTC ,
TOO (TCO), and TM vary with pressure at close rate
;2 K/kbar. This is evidence that the same physical ca
underlies these changes. A similar closeness of the rate
change of the characteristic temperatures (Tchar) TCA , TOO ,
and TM ~0.4–0.6 K/kbar! is also observed for the
La12xSrxMnO3 sample withx50.1, only they are 4–5 time
smaller than for the sample withx50.125. This leads to a
value] ln Tchar/]P'531023 kbar21 in the samples studied
in our view, this can be explained by two causes. With
creasingx in the La12xSrxMnO3 system the value ofa0

increases from 0.07 forx50.15 to a050.19 for x50.1.26

This is due to the growth of the JT distortions of the latti
with decreasingx. One can surmise a strong drop in]a0 /]P
for smallx. However, we think it is more realistic to assum
as was done in Ref. 25, that the low value of]TN /]P
;0.3 K/kbar (TN is the Néel temperature! observed in
LaMnO3 to 60 kbar is explained by strong localization of th
carriers and the absence of double exchange even at su
pressure. The low values of the derivatives]TN /]P are also
obtained for other AF insulators: CaMnO3 ~0.41 K/kbar!,
YCrO3 ~0.38 K/kbar!, and LaTiO3 ~0.23 K/kbar!. However,
with doping and the appearance of double exchange and
romagnetism the values of the derivatives]TC /]P in man-
ganites increase to 1.5–2 K/kbar. This is apparently due
the strong dependence of the double exchange on pres
In the manganites that we studied, which are found near
boundary of the AF region, the double exchange is still v
small.

The appreciable difference in the values obtained for
characteristic temperatures and their pressure derivative
the present study and in Ref. 4 and also the increased v
of r300 in comparison with Ref. 3 made it necessary to che
the stoichiometric composition of the samples. An iodom
ric analysis of the samples for their oxygen concentrat
gave a value of 2.99560.005 oxygen atoms per atom o
manganese.

The disparity in the temperature dependence of the
netic parameters and the phase transition temperature
cording to different investigators for samples of the sa
composition is due to different conditions of chemical sy
thesis, which determines the stoichiometric composition
these samples.29 At low doping levels large accumulations o
vacancies can form at the La and Sr sites and/or Mn sites
the first case there is an increase in the hole concentra
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which facilitates double exchange and is analogous to
increase in the Sr concentration. In the second case, cha
can be localized in the vacant sites of the metal, causin
displacement of the oxygen atoms; this is similar to an
crease in the JT distortions of the lattice. A thermogravim
ric study done in Ref. 29 on samples withx50.1 and which,
like ours, did not have a segment with]r/]T.0 on the
ln r(T) curve, gave a value of 3.00260.002 oxygen atoms
per manganese atom. Since in these manganites the ox
concentration cannot be greater than 3, this number indic
the nearly complete absence of vacancies in the La, Sr,
Mn sites. We therefore concluded that the discrepancie
the data are due either to the presence of dislocations in
samples or to a nonstoichiometric composition and the p
ence of vacancies in the crystals of other authors.

Studies of La12xSrxMnO3 at frequencies in the submil
limeter region, 100–1100 GHz,15 for valuesx50.1—0.175
in the temperature range 10–300 K the transport of cha
~conductivity! is effected mainly by localized carriers, eve
in those regions wheredr/dT.0. As a rule, satisfaction o
this inequality is indicative of the presence of metallic co
ductivity. It turned out that the charge carriers in this range
x and temperatures are still strongly coupled to the latti
This strong localization of carriers should invariably man
fest itself in the temperature dependence ofr(T) obtained in
direct current. In the whole temperature range at all press
we did not observe the segment with decreasing resisti
which was described in Refs. 2–4—we observed only a t
dency toward the appearance of such a region atT,TCA

with increasing pressure~Fig. 2!. To elucidate the nature o
the conductivity and the degree of localization of the cha
carriers we constructed plots of lnr5f(1/T4) and lnr
5f(1/T) ~Fig. 5! for the maximum pressure of 10 kbar. In th
case of hopping conductivity with a variable hopping leng
one has

r5const•exp@~T0 /T!1/4#, ~3!

whereT0 is a characteristic temperature.
However, if thermally activated hops occur only betwe

nearest neighbors~Miller–Abrahams conductivity! or if
there is thermal excitation of carriers from a localized Fer
level to the conduction edge, then

r5const•exp~E/T!, ~4!

whereE is the energy difference of the two states.30 The first
type of dependence is shown in Fig. 5a. One observes
rectilinear segments: one in the low-temperature~LT!, FM
insulator region (T'90– 110 K) and the other in the high
temperature~HT!, PM insulator region (T'185– 300 K).
This is evidence of hopping conductivity with a variab
hopping length in these temperature regions. Figure
shows the second type of dependence, lnr5f(1/T). In the
high-temperature region the curve is nonlinear, but in
low-temperature region a good linear approximation is o
served. However, the thermal excitation of carriers is m
probable in the HT region than in the LT region. It may b
that the linear approximation is explained by the small s
of the LT region (;15 K). Moreover, the start of the linea
dependence (;108 K) is shifted with respect to the temper
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tureTOO by ;6 K. All these factors suggest that the therm
excitation hypothesis be rejected in favor a hopping mec
nism with a variable hopping length.

It is of interest to examine the deviation of the tempe
ture dependence of the resistivity from formula~3! in the
region 100–185 K in relation to the temperatureTmax

'185– 190 K at which the thermopowera(T) reaches its
maximum. To within the experimental accuracy, both of t
characteristic points,Tmax and the boundary of the HT re
gion, are nearly independent of pressure. When the temp
ture is decreased below;185 K, a sharp decrease of th
thermopower and a slowing of the rate of increase of
resistivity are observed. This indicates that a new mec
nism, tending to increase the conductivity, comes into pla
that temperature. We are inclined to attribute it to the app
ance of FM clusters and double exchange. This mechan
will remain present as the temperature is decreased toTOO ,
when the sample passes completely into the orbitally orde
FMI state.

From the plots of lnr5f(1/T1/4) we determined the
phase transitionT0 for all pressures. The values ofT0 at
atmospheric pressure for the LT (T0

( l t )51.33108 K) and HT
(T0

(ht)52.323108 K) regions correlate with the data of Ref
2 and 31. The characteristic temperatureT0 , which deter-
mines the slope of the straight lines in Fig. 5a, depends
the state of the sample. On the high-temperature part of
graph the sample is found in the PMI state, and on the lo
temperature part, in the FMI state. The fact thatT0

( l t ),T0
(ht)

is apparently explained by the fact that the scattering of
carriers on the ordered spins in the FMI state is less than

FIG. 5. Temperature dependence of the resistivity of La0.9Sr0.1MnO3 at a
pressureP59.9 kbar:r5 f (1/T1/4) ~a!; r5 f (1/T) ~b!. The pressure corre
sponds to room temperature.
l
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scattering on the disordered spins in the PMI state. The p
sure dependence of the temperatureT0 from samples with
x50.1 in the LT and HT regions is of an irregular charact
but, on average,T0 decreases with increasing pressure.

As to the anomalies ofr and x at the temperatureTM

'120 K there is as yet no unanimity of opinion. In Ref. 5
is attributed to the formation of a spin glass. That conclus
was reached on the basis of an observation of a shift of
maximum of the magnetic susceptibility at 120 K to high
temperatures as the frequency of the modulating field w
increased. We have conducted a similar experiment, vary
the modulation frequency from 19 Hz to 10 kHz, and d
tected no such effect. We are inclined to regard the ph
transition point atTM'120 K observed in the measuremen
of r andx as being due not to the formation of a spin glas5

but to a transition from a mixture of two phasesO8 andO* ,
which, according to neutron diffraction studies,29 coexist in a
narrow temperature interval 120–140 K, to a single str
tural phaseO* .

The general form of the temperature dependence of
thermopowera(T) for La12xSrxMnO3 with x50.1 has been
encountered previously for other perovskite structures
similar character of thea(T) curve, with a broad maximum
~hump! in the region 160–190 K, was observed by the a
thors previously in HTSC yttrium and mercury cuprates
the normal state. In the compound YBa2Cu3O6.4 a value
Tmax'190 K was obtained.32 In mercury cuprates the valu
of Tmax increases with increasing number of CuO2 planes,
from 165 K for Hg-1223 to 195 K for Hg-1245.33 The man-
ganites and HTSC cuprates both have the perovskite st
ture, and the optical frequencies of their phonon spectra
close: 160– 600 cm21. An attempt to explain the appearanc
of the broad maximum on thea(T) curves in HTSC cuprates
as being due to a strong electron–lattice interaction and
formation of vibrons~correlated polaron theory! was made in
Ref. 34. However, the real change ofTc , amax, and Tmax

under pressure in the yttrium cuprates in many cases dif
from the theory even in sign. But the great similarity of th
behavior ofa(T) in HTSC cuprates and manganites, in bo
of which the charge carriers are small and strongly localiz
suggests that the explanation for this nevertheless lies in
strong electron–lattice interaction.

The anomalies which we have observed in experime
on the resistivity and thermopower in the region 220–235
have also been observed in measurements on the propag
of sound with a frequency of 770 MHz in La12xSrxMnO3

samples withx50.175.35 Since in the case which we inves
tigated the transition occurs to the paramagnetic insula
phase, while in Ref. 35 it occurred to the ferromagne
metal phase, this transition is most likely due to structu
changes, e.g., to a decrease of the JT deformations of
lattice, and not to magnetic transformations.

CONCLUSIONS

1. The temperature dependence of the resistivity a
magnetic susceptibility of a La0.9Sr0.1MnO3 sample in the
temperature region 90–300 K and at pressures up to 10
has been found to exhibit features atT'100, 120, and 135
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K, which are identified as phase transition points. The te
perature dependences of the resistivity and thermopo
have an anomaly atT'220 K.

2. In the temperature range 90–300 K the resistivity h
a semiconductor trend.

3. In the temperature regions 90–110 and 185–300 K
conductivity is due to hops of the carriers with a variab
hopping length.

4. The thermopower in the measured temperature ra
150–300 K is positive and has a domelike shape with
maximum at a temperatureTmax'195 K. The absolute value
of a in this temperature interval decreases with increas
pressure (]a/]P,0).

5. With increasing pressure all of the temperature po
except the temperatureTp shift to higher temperatures
at rates of ]TCA /]P50.43 K/kbar and ]TM /]P50.57
K/kbar. These low rates apparently are evidence of a w
role of double exchange in the samples studied. The temp
ture Tp , which lies in the region 225–250 K, is apparen
due to some structural transition, and it shifts to lower te
peratures as the pressure is raised.

6. We obtained no evidence that the anomaly obser
on the r(T) and x(T) curves atT'120 K is due to the
formation of a spin glass.
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Electronic structure and magneto-optical Kerr effect in UCuAs 2
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The optical and magneto-optical~MO! spectra of the ternary compound UCuAs2 are investigated
theoretically from first principles, using the fully relativistic Dirac linear-muffin-tin-orbital
band structure method. The electronic structure is obtained with the local spin-
density approximation~LSDA!, as well as with the so-called LSDA1U approach. Better
agreement between the theoretically calculated and the experimentally measured MO Kerr spectra
is found with the LSDA1U approximation. The origin of the Kerr rotation in the compound
is examined. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542375#
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1. INTRODUCTION

Determination of the energy band structure of solids i
many-body problem. Band theory~a mean-field theory for
treating this problem! in the framework of the local spin
density approximation~LSDA! has been successful for man
kinds of materials and has become an exceptionally valu
tool for first-principles calculations in solid state physic
However, there are some systematic errors which have b
observed when using the LSDA. In particular, the LSD
fails to describe the electronic structure and properties off
and some 5f electron systems in which the on-site Coulom
interaction among the electrons is strong. A wide variety
physical properties arise from the correlations amongf elec-
trons in these materials: metal—insulator transitions, vale
fluctuations in the Kondo effect, heavy fermion behavi
superconductivity, and so on. Such materials are ca
strongly correlated electron systems. Many new concepts
addressing these phenomena have been proposed, and
a field of very active research.

Actinide compounds occupy an intermediate position
tween itinerant 3d and localized 4f systems,1,2 and one of
the fundamental questions concerning actinide material
whether their 5f states are localized or itinerant. This que
tion is most frequently answered by comparison between
perimental spectroscopies and the different theoretical
scriptions. Indeed, recent progress in first-princip
calculations of optical spectra illustrates that optical a
magneto-optical~MO! spectra are developing into a powe
ful tool for tracing the electronic structure of actinide com
pounds. Both spectra depend quite sensitively on the un
lying electronic structure, and can be utilized to assess
degree of localization of the 5f electrons. The basic suppo
sition is that optical and MO spectra calculated with itinera
361063-777X/2003/29(1)/5/$22.00
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and localized electron models are sufficiently different a
accurate that comparison with experimental spectra allow
meaningful assessment of the localization.

There are quite a few first-principles calculations of t
MO spectra of uranium compounds.3–8 The MO spectra of
such compounds as UAsSe~Ref. 5! and U3P4 ~Refs. 6 and 8!
are well described in the LSDA, and we can conclude t
they have at least partially itinerant electron behavior. On
other hand, the MO spectra in US, USe, and UTe can be w
described only in the LSDA1U approximation,7 supporting
the localized description for their 5f electrons.

In our previous paper9 we reported the theoretically ca
culated MO spectra of UCuP2. Within a bandlike description
of the 5f electrons, good agreement with the measured M
spectra was obtained. In this work we present a detailed
oretical investigation of the electronic structure and MO K
properties of the UCuAs2 compound. The nearest-neighb
distance between uranium atoms is increased from 3.80
UCuP2 to 3.95 Å in UCuAs2 , and one would therefore ex
pect an increase of the 5f localization in going from UCuP2
to UCuAs2 .

Experimental measurements of MO spectra in UCuA2

were reported by Schoeneset al. in Ref. 10. It was found that
the MO Kerr rotation in the ferromagnetic phase reache
value as high as 1.75° at 1.2 eV. The Kerr ellipticity
UCuAs2 has a maximum value of 1.1° at 2.3 eV.10

This paper is organized as follows. The computatio
details are given in Sec. 2. Section 3 presents the theore
electronic structure and MO spectra of UCuAs2 . The results
are then compared to the experimental data. Finally, the
sults are summarized in Sec. 4.
© 2003 American Institute of Physics
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2. CRYSTAL STRUCTURE AND COMPUTATIONAL DETAILS

UCuAs2 belongs to tetragonal As–Cu–Si–Zr cryst
structure with the space groupP4/nmm ~No. 129! with U at
the 2c position, Cu at the 2b position, and As at the 2a and
2c positions. The lattice constants area53.951 Å, c
59.558 Å.11 The unit cell of UCuAs2 contains 8 atoms.

The details of the computational method are describe
our previous paper,9 and here we only mention several a
pects. Self-consistent energy band-structure calculation
UCuAs2 were performed by means of the fully relativisti
spin-polarized linear-muffin-tin-orbital~SPR LMTO! method
using the atomic sphere approximation with combined c
rections included.12–16 The LSDA part of the energy band
structure calculations was based on the spin-dens
functional theory with von Barth–Hedin parametrization17 of
the exchange-correlation potential. Thek-space integrations
were performed with the improved tetrahedron method18 and
the charge was obtained self-consistently with 270 irred
ible k points. The basis consisted of Us, p, d, f andg; Cu s,
p, d andf; As s, p andd LMTOs. We mention, lastly, that the
Kramers–Kronig transformation was used to calculate
dispersive parts of the optical conductivity from the abso
tive parts.

The application of standard LSDA methods tof-shell
systems meets with problems in most cases because o
correlated nature of thef electrons. To account better for th
on-sitef-electron correlations, we have adopted as a suita
model Hamiltonian that of the LSDA1U approach.19 The
main idea is the same as in the Anderson impurity mode20

the separate treatment of localizedf electrons for which the
Coulomb f – f interaction is taken into account by
Hubbard-type term in the Hamiltonian 1/2U (

iÞ j
ninj (ni are

f-orbital occupancies!, and delocalizeds, p, delectrons for
which the local density approximation is regarded as su
cient.

Let us consider thef ion as an open system with a fluc
tuating number off electrons. The formula for the Coulom
energy off – f interactions as a function of the number of
electronsN given by the LSDA isE5UN(N21)/2. If we
subtract this expression from the LSDA total energy fun
tional, add a Hubbard-like term and take into account
exchange interaction, we obtain the following functional19:

E5ELSDA1
1

2
U (

m,m8,s

nmsnm82s

1
1

2
~U2J! (

mÞm8,m8,s

nmsnm8s2d.c., ~1!

where

d.c.5U
N~N21!

2
2

JN↑~N↑21!

2
2

JN↓~N↓21!

2
,

N is the total number of localizedf electrons,N↑ andN↓ are
the number off electrons with spin up and spin down, r
spectively,U is the screened Coulomb parameter, andJ is the
exchange parameter.

The orbital energies« i are derivatives of~1! with respect
to the orbital occupationsni :
in

of

r-

y-

-

e
-

the

le

-

-
e

« i5
]E

]ni
5ELSDA1~U2J!S 1

2
2ni D

5ELSDA1UeffS 1

2
2ni D . ~2!

This simple formula gives the shift of the LSDA orbita
energy2Ueff/2 for occupiedf orbitals (ni51) and1Ueff/2
for unoccupiedf orbitals (ni50). A similar formula is found
for the orbital-dependent potentialVi(r )5dE/dni(r ), where
the variation is taken not on the total charge densityr(r ) but
on the charge density of a particulari th orbital ni(r ):

Vi~r !5VLSDA~r !1UeffS 1

2
2ni D . ~3!

The advantage of the LSDA1U method is the ability to
treat simultaneouslydelocalized conduction band electron
and localizedf electrons in the same computational schem
With regard to these electronic structure calculations,
mention that the present approach is still essentially a sin
particle description, even though intra-atomicf Coulomb cor-
relations are explicitly taken into account.

3. RESULTS AND DISCUSSION

The uranium pnictide ternary compounds with copper
nickel crystallize in a high-symmetry structure: UCuP2,
UCuAs2 , UNiAs2 are tetragonal21 and UCu2P2 and
UCu2As2 are hexagonal.22 The U–Cu ternaries order ferro
magnetically, in contrast to the U–Ni ternaries, which are
antiferromagnets.23 The magnetic ordering temperatures a
among the highest known so far for uranium compoun
reaching 216 K for UCu2P2 ~Ref. 24!. The magnetic and
transport properties of UCuAs2 were investigated by
Kaszorowski et al.25 on single-crystal specimens. The
found that the compound is a ferromagnet below 131 K w
a spontaneous magnetic moment of 1.27mB per U atom, and
in the magnetically ordered region it exhibits large magne
crystalline anisotropy constants. The electrical resistivity
UCuAs2 at low temperature behaves asT2, while in the tem-
perature range aboveTC the observed negative slope ofr(T)
may point to Kondo lattice behavior.25

The energy dependence of the Kerr rotation and ellip
ity of UCuAs2 have been measured by Schoeneset al.10 The
measurements were made on a natural grown surface pe
dicular to thec axis in the energy range 0.55 to 5 eV and
temperatures down to 2 K in anexternal magnetic field up to
10 T. Although UCuAs2 has lower uranium concentration i
comparison with the UX and U3X4 (X5P, As! compounds,
its Kerr rotation reaches 1.75°~Ref. 10!, which is the largest
among these compounds.

The fully relativistic spin-polarized total and partial de
sity of states~DOS! of ferromagnetic UCuAs2 calculated in
the LSDA approximation is shown in Fig. 1. The ener
bands in the lowest region between213.6 and27.5 eV have
mostly As s character, with some amount of U and Cuspd
character mixed in. The energy bands between27.5 and
21.0 eV are As 4p states strongly hybridized with the Cu 3d
and U 6d states. There is a small energy gap between As
andp states. The Cu 3d states are fully occupied and situate
around 5.0 eV below the Fermi level. The highest reg
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above the Fermi energy can be characterized by antibon
U 6d states. The U 5f energy bands in LSDA are locate
above and belowEF at about20.5 to 1.5 eV. It is interesting
to note that the 4p partial densities of states for As1 and As2
sites differ from each other significantly. This reflects t
different geometrical positions of the two arsenic atoms. T
plane with As1 atoms is situated between uranium plan
whereas the plane with As2 atoms is between uranium an
copper planes. The As1 atoms have as neighbors fou
As1 atoms at 2.794 Å distance and four uranium atoms

FIG. 1. Fully relativistic, spin-polarized total@in states/~unit cell•eV!# and
partial densities of state@in states/~atom•eV!# calculated for UCuAs2 in the
LSDA approximation.

FIG. 2. Fully relativistic, spin-polarized U partial 5f densities of states
calculated for UCuAs2 in the LSDA and LSDA1U approximations.
ng

e
,

t

2.981 Å. On the other hand, the As2 atoms have four Cu
neighbor atoms at 2.513 Å distance and four uranium ato
at 2.965 Å. As a result, the 4p partial density of states for the
As1 site has one peak structure for occupied states, reflec
strong hybridization between the As1 3p and U 6d states,
whereas the 4p partial density of states for the As2 site has
two additional peaks at26.5 to 5 eV due to the hybridization
of As2 3p states with Cu 3d states.

In our LSDA1U band structure calculations we starte
the fully consistent iterations from a 5f 2 configuration for
the U41 ion with two on-site 5f levels shifted downward by
Ueff/2 and twelve levels shifted upwards by this amount. T
energies of occupied and unoccupied 5f levels are separate
by approximatelyUeff . The Coulomb repulsionUeff strongly
influences the U 5f electronic states in UCuAs2 . The U 5f
partial density of states calculated in the LSDA and LSD
1U approximations are presented in Fig. 2.

After consideration of the above band structure prop
ties we turn to the MO spectra. In Fig. 3 we show the cal
lated and experimental10 MO Kerr rotation and ellipticity
spectra of the UCuAs2 compound. Better agreement betwe
the calculated and the experimentally measured MO K
spectra was found when we used the LSDA1U approxima-
tion. The prominent peak at 1.2 eV in the Kerr rotation sp
trum originates mostly from U 5f→6d interband transitions.
The interband transitions from Cu 3d to U 5f bands start
above 4 eV. The LSDA calculations produce a two-pe

FIG. 3. Calculated and experimental Kerr ellipticity («K) and Kerr rotation
(uK) spectra of UCuAs2 . The experimental data are those of Ref. 10.
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TABLE I. The experimental and LSDA calculated spin, orbital and total magnetic moments~in mB) of UCuAs2 . The experimental datum is
from Ref. 10.
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structure with the largest peak situated at 0.9 eV. The C
lomb repulsionUeff shifts the energies of occupied 5f levels
downwards and unoccupied ones upwards~Fig. 2!; as a re-
sult, the LSDA1U calculations correctly produce the sha
and energy position of the prominent peak in both the K
rotation and ellipticity spectra~Fig. 3!. On the other hand
the theory, both in the LSDA and LSDA1U approximations,
produces a blue energy shift by about 1 eV in the position
the local minimum and second high-energy peak in the K
rotation and ellipticity spectra in comparison with the expe
ment.

Table I presents a comparison between the calcula
and experimental magnetic moments in UCuAs2 . The LSDA
total magnetic moment on uranium in UCuAs2 is only 0.641
mB ~Table I! ~with spin moment21.677mB and orbital mo-
ment 2.318mB), which is considerably smaller than the e
perimental moment of about 1.27mB .10 The calculated mo-
ment is dominated by 5f states: the 5f components of the
spin and orbital moment are21.569mB and 2.283mB , re-
spectively. It is a well-known fact, however, that within th
LSDA the total magnetic moment of uranium compounds
general comes out too small.26–30Corrections which simulate
Hund’s second rule interactions in solids, describing orb
correlations absent in the homogeneous electron gas, su
the orbital polarization, are needed to bring the magn
moment into better agreement with experiment.27–30 On the
other hand, our LSDA1U calculations overestimate the tot
magnetic moment in UCuAs2 compound ~Table I!. We
should mentioned that it is still not clear how to choose
projectionsml of the orbital momentum onto the spin dire
tion if we have more than one occupied state. From to
energy calculations we found that the U41 ground state cor-
responds to values of the projection of the orbital moment
onto the spin direction equal toml523 and22, in accor-
dance with all three Hund’s rules. The value of the magne
moment and MO spectra depends strongly on theml , and it
may be better to regard the values of theml as parameters
and try to specify them from comparison of the calcula
physical properties with experiment. We performed calcu
tions for every possible combination of theml and found that
the best agreement between the calculated and measure
spectra can be achieved withml523 and 22 for U41 in
UCuAs2 ~in accordance with Hund’s rules and total ener
calculations!. These values give the magnetic moments p
sented in Table I. On the other hand, the theoretically ca
lated magnetic moments are in better agreement with
experiment forml562 ~total magnetic moment at the U sit
equal to 1.029mB , with spin and orbital magnetic momen
u-
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equal to21.144 and 2.173mB , respectively!. Evaluation of
the correct magnetic moment in this compound needs fur
theoretical investigation.

4. SUMMARY

The spectral behavior of the MO Kerr spectra
UCuAs2 is better described by LSDA1U band-structure
theory than by the LSDA. This fact indicates that the Uf
electrons in the ternary UCuAs2 are likely to be partly local-
ized, in contrast to UCuP2, where the U 5f electrons are
itinerant.19 This supports the conclusion drawn early b
Schoeneset al.10 that the localization of thef states is in-
creased in going from UCuP2 to UCuAs2 .

a!E-mail: antonov@ameslab.gov; anton@imp.kiev.ua
b!Permanent address: Institute of Metal Physics, 36 Vernadsky
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Acoustoelectric conversion at a metal boundary. Taking the surface scattering
of carriers into account
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The electric potential arising at a metal surface deformed by ultrasound is calculated for the
diffuse reflection of conduction electrons by the surface. The frequency dependence obtained for
the conversion coefficients~in the case of both a free and a fixed sample boundary! are
compared with the results of a simplified theory which assumes specular reflection of the carriers
by the surface. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542376#
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INTRODUCTION

Low-temperature measurements of the electric poten
arising on a metal surface when a longitudinal sound wav
incident on it ~from the opposite face of the sample! were
reported in Refs. 1 and 2.1!

The effect is linear in the interaction of electrons wi
crystal lattice vibrations and can be used for a compara
estimate of the constants characterizing the deformation
tential in different metals, including the new ‘‘synthetic
conductors.3 However, the theoretical analysis in Refs. 1 a
2 presupposes that the crystal has an ideal boundary
reflects conduction electrons specularly, and that make
difficult to compare the data for different samples in a me
ingful way. In real crystals there is always scattering~stron-
ger or weaker! of charge carriers by defects of the bounda
and its role in surface phenomena is hard to assess on ge
considerations: for example, for the skin effect and cyclot
resonance it is not very important,4,5 whereas in the conduc
tivity of thin films or in the static skin effect in a magnet
field it can change the order of magnitude of the observa
quantities.6,7 Therefore, although the agreement of the the
retical and experimental data in Ref. 2 turned out to be
ceptable, it is important to explore even the tendency of
influence of surface relaxation of carriers on the effect un
discussion. With this goal, in the present study we have
dertaken a calculation of acoustoelectric conversion in
metal in the case of strong, ‘‘diffuse’’ surface scattering
electrons, a completely isotropic distribution of reflected p
ticles. As in Ref. 2, we assume that the sample is thick w
respect to the sound wavelengths 2ps/v and the carrier
mean free pathl 5vFt, so that the mathematical problem
formulated for a conducting half space (x>0) with a speci-
fied field of harmonic longitudinal strainsu8(x) in it.2! We
chose the Wiener–Hopf method for solving this problem.

CONVERSION COEFFICIENTS

Since we are talking about ultrasonic frequencies, c
tainly much lower than the plasma frequency of a ‘‘goo
metal, the latter can to good accuracy be assumed electri
neutral, so that the electric potentialw(x) should be deter-
mined from the condition
411063-777X/2003/29(1)/4/$22.00
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^c&[2~2ph!23E cdSF /v50.

The distribution function of nonequilibrium carriersc satis-
fies the kinetic equation

vx~c2ew!82 i ṽc52 ivLu8, ~1!

wherev is the velocity of an electron on the Fermi surfa
SF , ṽ[v1 i /t, wheret is the relaxation time characteriz
ing the bulk scattering of carriers, andL(p) is thexx com-
ponent of the~reduced! deformation potential tensor; in th
case when the carriers have a quadratic dispersion relati
can be written in the formL(vx)5L(3vx

2/vF
221) ~see Ref.

8!.
Introducinga[ i ṽ/uvxu and solving equation~1! for the

function C[x2ew, we have

C.~x!5C.~0!e}x1E
0

x

dyea~x2y!a

3S ew~y!2
v

ṽ
Lu8~y! D ,

vx.0;

C,~x!5E
x

`

dyea~y2x!aS ew~y!2
v

ṽ
Lu8~y! D , vx,0.

~2!

In the case of diffuse surface scattering one should
C.(0)5const, and from the condition of electrical neutra
ity we obtain the following integral equation for the potenti
w(x):

w~x!^1&21K E
0

`

dyeaux2yuaS w~y!2
vL

ṽe
u8~y! D

2CeaxL 50. ~3!

The Fourier transforms of the kernels of equation~3!
~divided by the energy density of states^1&! are easily calcu-
lated as

K1~k!5
k0

2k
ln

k02k

k01k
;

© 2003 American Institute of Physics
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K2~k!5
vL

ṽe S 11~11K1!S 3
k0

2

k2 21D D ; k0[
ṽ

vF
. ~4!

However, Eq. ~3! is specified only on the semiaxi
x>0, and for the Fourier transformation one should, us
the Wiener–Hopf method~see, e.g., Ref. 9!, extend the defi-
nition of the functions appearing in it to negative values ox
by introducing step functions containing the Heavisideu
function

w1~x![u~x!
ṽe

vL
w~x!,w2~x!}u~2x!,

continuing the free term in an odd way forx,0 and choos-
ing the following function as a new, more convenient kern

K~k![S 123
k0

2

k2D ~11K1~k!!. ~5!

In thek representation we obtain the functional equat

S ik
C11 ikw1~k!

k223k0
2 2D1~k! DK~k!5w2~k!2D1~k!,

~6!

whereC1 is a constant proportional toC, and

D1~k!5
q2u02 iku08

k̄22q2
~7!

is the transform of the harmonic elastic deformation field

D1~x![u~x!~u08 cos~qx!2qu0 sin~qx!!

in a semi-infinite sample with specified boundary values
the displacementsu0 and their derivativesu08 , q[v/s is the
wave number,s is the speed of sound, andk̄5k2 i0.

Then in the Wiener–Hopf method the Fourier transfo
of the kernel,K(k), is separated into factorsK1(k) and
K2(k), which are regular and do not have zeros in the low
and upper halves of the complexk plane, respectively, and
these regions overlap in a strip covering the whole real ax3!

As a result, Eq.~6! can be written in the form of an
equality of two expressions which also have such proper
and, consequently, are the analytic continuations of e
other.4!

In other words, the two of them equal an entire functio
in this case a polynomial, the coefficients of which can
determined by using the asymptotic expressions and par
lar values of the functions appearing in~6!. In particular, in
Eqs. ~4!–~6! obviously imply that limk→0 w250, i.e., the
auxiliary functionw2(x) is on average equal to zero.

In principle the problem can be solved for a gene
mechanical boundary condition, but for the sake of simp
ity we shall consider only the extremal cases of a fixed an
free boundary. In the first of these casesu050 ~see~7!!, and
for the reduced functionsF6(k)[(u08)

21w6(k) equation
~6! takes the form

S C21 ikF1

k2k0)
~ k̄22q2!2k1k0) D K1~k!

5S 11F2

k̄22q2

ik
D k1k0)

K2~k!
5qB01kB1 . ~8!
g

l:

f

r

.

s
h

,
e
u-

l
-
a

The polynomial here should be such a one, since fok
→0 the left-hand side goes to a constantC2q2/k0)
1k0), and fork→` the limits of the functionsikF1(k)
and ikF2(k) are finite~and equal to the boundary values
the originalsF1(x) and 2F2(x)). Further, the function
F2(k) by definition is regular at the pointsk56q2 i0, so
that the coefficients on the right-hand side of~8! are equal to

B05A~a!1S~a!)/a; B15S~a!1A~a!)/a,

where we have introduced the dimensionless varia
z[k/k0 , the frequency-dependent parameter

a~vt![
q

k0
[

vF

s

vt

vt2 i
, ~9!

and ~taking into account the parity of the kernel! the func-
tions

A~z![@K1~z!2K2~z!#/2zK~z!;

S~z![@K1~z!1K2~z!#/2K~z!. ~10!

As a result, the Fourier transform of the solution is giv
by the expression

ikF1~k!5
k2k0)

k̄22q2 S qB01kB1

K1~k!
2k2k0) D2C2 ~11!

with the coefficientsB0 , B1 , and C2 already defined; its
limit for k→`, as is known, gives the boundary value of t
original F1(x→10).5!

Returning to the initial unknown functionw(k), we ob-
tain the desired potential of the deformed surface of
sample; it can be written in the form

ewfix~10!5u08L
s

vF
F~a!,

F~a![~3/a2a!~12S~a!!. ~12!

Now let the boundary of the sample be free,u0850 @see
~7!#. We shall omit the manipulations, which are analogo
to those given above, and just write the result:

ew free~10!5 iqu0L
s

vF
G~a!,

G~a![~a223!A~a!13A~0!. ~13!

The factorsF and G can be called the reduced coeffi
cients of conversion of the elastic field into the electric p
tential measured at the boundary of the metal. At a fix
sound intensity in the sample it is those factors that, throu
the parametera(vt(T)) @see~9!#, determine the frequency
dependence and temperature dependence of the effect. H
ever, the results~12! and~13! as yet have a formal characte
it is necessary to calculate the quantitiesA(0), A(a), and
S(a) @see ~10!#. For this we can use the standard gene
procedure of factorization of the kernel;9 however, the inte-
gral formulas thus obtained are rather complicated and
really only usable for numerical calculations. Neverthele
in the limiting cases characterized by small and large ab
lute values of the parametera it turns out to be possible to
do a direct factorization of the limiting expressions for t
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function K(k); that makes it possible to calculate th
asymptotic expressions for the surface potentialwfix(10)
andw free(10) at low and high frequencies.

ASYMPTOTIC FACTORIZATION

Let us first consider the so-called local limituau!1 (ql
!1). Using the series expansion of the function~5!, for
small values of the argument we write it in the requir
form:

K~z!>11
4

15
z21...5)

6
S 16

2i

A15
zD [K1~z!K2~z!,

where the signs are chosen such that~by definition! the root
of K1(k) lies in the upper half of thek plane and that of
K2(k) in the lower half. In this case the values sought
the functions in~10! are

A~0!52i /A15;

A~a!>A~0!~124a2/15!;

S~a!>124a2/15. ~15!

The approximate factorization of the kernel is just
obvious at large arguments: with an accuracy up to cor
tions }z22 we can write

K~z!>S 11
ln~12z!

2z D S 12
ln~11z!

2z D[K1~z!K2~z!

@see Eqs.~4! and ~5!#, so that in the nonlocal limit for
uau@1 (ql@1) we have

S~a!>12
1

4a
ln

12a

11a
; A~a!>

1

4a2 ln~12a2!. ~16!

RESULTS AND DISCUSSION

Substituting~15! into the general formulas~12! and~13!,
we find in the local range

F~a!>
4

5
a;G~a!>

6

5
A3

5
ia2,uau[UvF

s

vt

vt1 iU!1.

~17!

At the same sound intensity in the sample, i.e., at co
parable absolute values ofu08 andqu0 , the second term con
tains an additional small factoria'ql: in the low-frequency
region the potential of the fixed boundary is much high
than that of the free boundary.

In the nonlocal region of frequencies formulas~12!, ~13!,
and ~16! imply that

F~a!>
1

4
ln

11a

12a
; G~a!>

ln~12a2!

4
22iA3

5
,

uau@1. ~18!

Here, on the contrary, at sufficiently largeuau the con-
version coefficient is much larger~in modulus! for the case
of a free boundary~see Fig. 1!. Consequently, in the genera
case, i.e., at finite values of the ratiouqu0 /u08u, which char-
acterizes the degree of mobility of the boundary, with
creasing value of that ratio the effect should become wea
at low frequencies and stronger at high frequencies.
r

c-

-

r

-
er

Let us compare these asymptotic expressions with
results obtained1,2 in neglect of the surface scattering o
carriers.6!

In our present notation they have the form

F0~a!5
a

12K1~a!
1

3

a
2a;

G0~a!5E
1

` 4a2

a22z2

zdz

S 2z1 ln
z21

z11D 2

1p2

. ~19!

At small uau the conversion coefficients are approx
mately equal toF0>(4/5)a for a fixed boundary and
G0>20.345a2 for a free boundary, i.e., they coincide
‘‘functionally’’ with the asymptotic expression~17!; how-
ever, in the latter case the numerical coefficient in~17! dif-
fers significantly in modulus~0.93! and phase.

The high-frequency asymptotic forms of expressio
~19! are

F0~a!>
1

2
ln

11a

a2a
'2

ip

2

and

G0~a!>
1

2
ln~12a2!'

ip

2
1 lnuau~ uau@1!;

for uau→` this would be double the corresponding ‘‘diffuse
coefficients~18!.

Thus we can conclude that for both types of mechan
boundary conditions considered, taking the surface scatte
of electrons into account does notqualitativelyalter the char-

FIG. 1. Comparison~in absolute value! of the high-frequency dependence
of the conversion coefficients in the case of diffuse~—! and specular~---!
reflection of carriers by the surface of the sample.F corresponds to a fixed
surface, andG to a mechanically free surface;vt@s/vF ; the parameter
s/vF50.005.
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acter of the frequency dependence of the absolute value
the conversion coefficients~Fig. 1!. Nevertheless,numeri-
cally the effect should be noticeably increased~in the case of
a free boundary! at low frequencies and decreased~in both
cases! at high frequencies in comparison with the ideal si
ation of specular surface reflection of carriers. This agr
with the tendency observed in Ga atvt;5: ‘‘The maximum
response at a fixed excitation power could be attained o
for freshly ground surfaces; prolonged storage of a sam
led to a falloff of the signal amplitude, apparently because
diffusion of impurities into the subsurface region.’’2

In addition, for a free boundary the conversion coe
cients (G) in ~17! and ~18! differ in phase from the corre
sponding asymptotic behavior of the ‘‘specular’’ express
~19!, i.e., surface scattering, generally speaking, has an in
ence on the phase relations between the acoustic oscilla
and the electrical oscillations engendered by them.

The author is grateful to V. G. Peschanskii and V. D.
for fruitful discussions which stimulated this study.

1!The potential difference was measured by a contact method or a capa
coupling between the ‘‘acoustic spot’’ on the surface of the sample
points far from it, where there was no deformation.

2!The common temporal factor exp(2ivt) is omitted here and below.
3!As we see from Eq.~4!, the function~5! is even in the complexk plane

with branch cuts along the raysk56k0y, 1<y,`; it is regular and does
not have zeros in the stripuIm ku,1/l , and it approaches 1 at both large an
small values ofk.

4!The first and second parts of~8! are simultaneously analytical in the stri
2 l 21,Im k,10.

5!As we see from Eq.~11!, the electric field distribution in a finite sample i
of

-
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nontrivial: as in the ‘‘specular’’ case, in addition to a term similar to t
elastic field~the ‘‘acoustic’’ pole! there is a nonlocal part associated wi
the branch pointk5k0 of the functionK1 . This is the contribution of the
ballistic motion of the carriers, which can be observed in hf pulse exp
ments as a precursor of the signal proportional tou8(x) ~see Ref. 1!.
However, in the present paper we are interested only in the value of
potential at the surface, measured in an effectively monochromatic reg

6!In the approach adopted in the present paper, those results are obt
when the ‘‘specular’’ boundary conditionC.(0)5C,(0) is substituted
into ~2!. Then the integral equation of electrical neutrality has a m
symmetric form than~3!, and after even continuation of the functions an
kernels to the semiaxisx,0 it can be solved directly by the Fourie
method.
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Single-particle scenario of the metal–insulator transition in two-dimensional systems
at TÄ0
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The conductance of disordered electron systems of finite size is calculated by reducing the initial
dynamical problem of arbitrary dimensionality to strictly one-dimensional problems for
single-particle mode propagators. It is shown that the metallic ground state of two-dimensional
conductors, considered as a limiting case of three-dimensional quantum waveguides, is
due to their multimode nature. As the thickness of the waveguide is decreased, e.g., with the aid
of a ‘‘pressing’’ potential, the electron system undergoes a sequence of continuous quantum
phase transitions involving a discrete change in the number of extended modes. The closing of the
last current-carrying mode is interpreted as a phase transition of the electron system from
the metallic to an insulator state. The results agree qualitatively with the observed ‘‘anomalies’’
of the resistance of various two-dimensional electron and hole systems. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1542377#
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1. INTRODUCTION

The problem of electron transport in disordered cond
tors has attracted research interest for many years, bot
account of its importance in connection with applicatio
and because of the intriguing complexity of the fundamen
problems that arise in this area. One such problem, wh
has yet to be solved unambiguously, is to explain the na
of an unusual phenomenon observed in two-dimensio
electron and hole systems, which many investigators in
pret as a metal–insulator transition~MIT ! caused by disor-
der. The unusual behavior of the conductance of planar
erostructures in experimental observations~see the vast
bibliography in Ref. 1! is clearly at odds with the widely
held conviction that in two-dimensional~2D! systems, as in
one-dimensional~1D! systems, a metallic ground state ca
not exist in the presence of even arbitrarily small disord2

This point of view still remains prevalent, even though,
accommodate the experimental facts, the one-parameter
ing approach2 has already been subjected to both a par
refinement3,4 and a radical revision.5

There have been repeated attempts to explain
‘‘anomalous’’ metallic behavior of 2D systems in the low
temperature region by invoking various physical hypothes
Among them are the onset of a conducting phase in hig
dilute electron systems,6,7 non-Fermi-liquid behavior of such
systems,8 the possibility of a superconducting state of a 2
electron gas with interaction,9,10 temperature-dependen
screening of impurity scattering,11,12 and others. However
the fundamental issue of whether the observed anomalie
the resistance are a manifestation of a true quantum p
transition13 or whether they can be explained in the fram
work of the conventional theory of disordered systems14 re-
mains an open question.
451063-777X/2003/29(1)/10/$22.00
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In the present paper we propose a model for explain
the observed effects. It is in essence a realization of the c
cept of quantum dephasing of the electronic states as a r
of their interaction with a certain ‘‘dephasing environmen
the state of which is not determined in the course of
experiment.15 It is ordinarily assumed that the loss of cohe
ence by the electrons in conductors with astatic disorder is
due to conventional truly inelastic interaction process
~electron–phonon, electron–electron, etc.!, so that the
dephasing frequency due to these types of interactions te
toward zero as the temperature is lowered. However, pu
cations over the past few years show a lack of agreemen
to the physical nature of the dephasing environment.16 Most
often a quasi-elastic electron–electron interaction is con
ered to be the main mechanism for dephasing of the initia
coherent~presumably localized! electronic states, since th
‘‘anomalous’’ behavior of the resistance is registered mai
in 2D systems of low density (r s*10, wherer s5Ee2e /EF

is the ratio of the Coulomb energy of the electrons to th
Fermi energy!. However, the role of this interaction is inte
preted differently in different theories—both as promoti
localization17,18 and as preventing its appearance.6,7,19

Meanwhile, it was shown in Refs. 20 and 21 that deph
ing of quantum states classified with allowance for the fini
ness of a real dynamical system can be brought about
only by inelastic processes but also by scattering on st
inhomogeneities. For proof, a mode representation of
single-particle propagators was used,20,21which is best suited
for analyzingopen quantum systems of a waveguide co
figuration. An important fact here is that in reference to ele
trons in solids the mode states arecollectiveand therefore
well suited for describing a highly correlated systems of c
rent carriers. The correlated nature of that system, even
© 2003 American Institute of Physics
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46 Low Temp. Phys. 29 (1), January 2003 Yu. V. Tarasov
fore the Coulomb interaction is taken into account, is built
from the start in the Green’s function formalism, which e
plicitly incorporates the Pauli principle.22

It was shown in Refs. 20 and 21 that in 2D conducto
that are not too narrow, when more than one extended m
is present~or, in other words, when there is more than o
open quantum channel!, the scattering between such mode
if it is not suppressed by virtue of some special conditio
will lead to dephasing of the coherent modes states and
vent their interference localization. Here the role of t
dephasing environment for each of the channels is playe
the set of all the other open channels of that conducto
intermode scattering is absent, as is the case for condu
which are randomly layered in the current direction, th
Anderson localization of the electronic states arises in e
of the channels independently. This results in an exponen
decrease of the conductance with increasing length of
conductor when the latter exceeds a value of the orde
Nc,, whereNc is the number of open channels and, is the
quasi-classical mean free path of the electrons, which is w
known in the theory of quasi-one-dimension
conductors.23–26

Although the results of Refs. 20 and 21 imply that t
metallic ground state of a two-dimensional statically dis
dered systems should not be regarded as an anomalou
fect, the mechanism of the transition of 2D systems from
conducting to the insulating state, which observed in num
ous experiments, was not identified in those papers. To
cidate the physical nature of the metal–insulator transition
planar structures, in the present paper~a brief version of
which was published previously in Ref. 27! we propose to
adapt the formulation of the problem to the real conditions
the experiment by extending the method of Refs. 20 and
which was developed previously for strictly two-dimension
open systems, to systems of higher dimensionality. Thi
motivated by the fact that in practice, 2D systems are m
often formed by using subsurface potential wells of fin
width, created either by applying an external ‘‘pressin
electric field or by means of a contact potential differenc

2. CHOICE OF MODEL AND STATEMENT OF THE PROBLEM

Conductors of reduced dimensionality~one-dimensional
and two-dimensional! serve as a mathematical idealization
real physical objects which are three-dimensional in a g
metric sense. Potential wells formed by the bending of
energy bands in a contact region between different mate
~see, e.g., Fig. 1a! form a subsurface quantum waveguide
finite width, thetwo-dimensionaldensity of current carriers
in which is ordinarily varied by means of an external pote
tial Fd ~depletion voltage! or by a capacitive effect. The
shape of the subsurface wells~in the majority of cases it is
close to triangular!19,28 is not of fundamental importance fo
their main function—restricting the electron transport in t
direction perpendicular to the heterointerface. Therefore
this paper we will simplify the calculations by considering
model planar conductor in the form of a rectangular thr
dimensional ‘‘electron waveguide’’ having rigid side wal
~Fig. 1b! and occupying the spatial region
s
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xP~2L/2,L/2!, yP@2W/2,W/2#, zP@2H/2,H/2#.
~1!

The lengthL of the conductor and the widthW and thickness
H of the waveguide will be treated as arbitrary.

From linear response theory29 the dimensionless~in units
of e2/p\) static conductanceg(L) at T50 is expressed as
follows in terms of the single-particle electron propagator

g~L !5
2

L2E E drdr 8
]

]x
@GA~r ,r 8!2GR~r ,r 8!#

3
]

]x8
@GA~r 8,r !2GR~r 8,r !#. ~2!

Here GR,A(r ,r 8) are the retarded (R) and advanced (A)
Green’s functions of the electrons, and the integration is o
the spatial region~1! occupied by the waveguide. In th
model of an isotropic Fermi liquid when units such th
\52m51, wherem is the effective mass of the electron!
are used, the retarded propagator, from which we s
henceforth drop the superscriptR, satisfies the equation

@D1kF
21 i02V~r !#G~r ,r 8!5d~rÀr 8!. ~3!

Here D is the three-dimensional Laplacian,kF is the Fermi
wave number,V(r ) is a static random potential characteriz
by a zero mean valuêV(r )&50 and a binary correlation
function ^V(r )V(r 8)&5QW(rÀr 8). The functionW(r ) is
assumed to be normed to unity and to fall off over a char
teristic scaler c ~the correlation radius!. To simplify the for-
mulas below, we restrict discussion to a correlation funct
of a somewhat less general form, viz.,

^V~r !V~r 8!&5QW~x2x8!d~r'2r'8 !, r'5~y,z!,
~4!

FIG. 1. Real~a! and model~b! configurations of a two-dimensional con
ducting system.
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which clearly should not affect the results materially.
The solution of equation~3! requires specifying suitable

boundary conditions. The side boundaries, which are imp
meable to electrons, can be characterized by a real im
ance, a particular case of which leads to the Dirichlet con
tions

G~r ,r 8!U
y56W/2
z56H/2

50. ~5!

At the same time, being joined at the pointsx56L/2 to
equilibrium ‘‘reservoirs,’’ the conductor is anopensystem,
and this has two important consequences. First, in K
theory the chemical potentials of the massive contacts
assumed to be identical. Therefore, the chemical potentia
the conductor connecting them~or, in the conducting phase
the Fermi energy of the electrons in it! can be assumed to b
independent of the geometric parameters of the quan
waveguide, and everywhere below we setkF5const. Sec-
ond, the openness of the ends of the waveguide makes
complexcharacteristic of the impedance of the contact
gions, and because of this the differential operation in Eq.~3!
when applied to system~1! is non-Hermitian.

A method of solving such a non-Hermitian problem
the case of two dimensions was proposed in Refs. 20 and
An important step in it is the transition from one initiall
multidimensional stochastic problem to an infinite system
strictly one-dimensional problems~which are in general non
Hermitian! for the mode Fourier components of the propag
tor G(r ,r 8). Below we set forth in more detail the key ele
ments of the technique of Refs. 20 and 21 as applied to
waveguide system under study.

3. REDUCTION TO ONE DIMENSION

3.1. General scheme

The proposed algorithm for the reduction of the multid
mensional problem~3! to a system of strictly one
dimensional boundary-value problems will be applied
open systems with arbitrary waveguide configurations
with arbitrary levels of disorder. The first step is to change
a mode representation of the electron propagators. In the
of the waveguide illustrated in Fig. 1b, one changes to
representation by expanding in a complete orthonormali
set of eigenfunctionsur' ;m& of the transverse Laplacian op
erator. This set is made up of ordinary trigonometric fun
tions; for configuration~1! and boundary conditions~5!,
these functions have the form

ur' ;m&5
2

AWH
sinF S y

W
1

1

2DpnGsinF S z

H
1

1

2DpmG ,
~6!

wherem5(n,m) is a vector mode index (n,mPN). Using
the functions~6!, one transforms Eq.~3! into a system of
coupled equations for the mode components of the Fou
function G(r ,r 8):
r-
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F ]2

]x2
1km

2 1 i02Vm~x!GGmm8~x,x8!

2 (
nÅm

Umn~x!Gnm8~x,x8!5dmm8d~x2x8!. ~7!

In Eq. ~7! the parameter

km
2 5kF

22~pn/W!22~pm/H !2 ~8!

has the meaning of the unperturbed longitudinal energy
the modem. The potential matrixiUmm8i is made up of the
functions

Umm8~x!5(
S

dr'ur' ;m&V~r !^r' ;m8u, ~9!

where the integration is done over the transverse cross
tion Sof the conductor. The diagonal elements of this matr
Vm(x)[Umm(x) are the Fourier components of the potent
V(r ) due to the intramode scattering of quantum particl
and the off-diagonal elements are those due to the interm
scattering. The reason for separating off the terms with
‘‘intramode’’ potentials from the terms with the ‘‘intermode
potentialsUmn(x) (nÞm) in Eq. ~7! is to avoid singularities
later on when constructing a perturbation theory~see Ref.
21!.

The initial problem, reformulated into a system of on
coordinate differential equations~7! cannot, of course, be
considered to be one-dimensional, because of the entan
ment of all the mode components of the Green’s ma
iGnmi . With the goal of reducing Eq.~3! to a system of
independentone-dimensional equations, we introduce as
first step the auxiliary mode propagators, which take in
account the scattering on only the intramode potentials:

F ]2

]x2
1km

2 i02Vm~x!GGm
~V!~x,x8!5d~x2x8!. ~10!

For the ‘‘trial’’ Green’s functionsGm
(V)(x,x8) the condition

that the quantum waveguide is open at the endsx56L/2 can
be formulated as Sommerfeld radiation conditions,30,31which
in the case of an ideal~not conducive to scattering! contact
of a conductor with the leads has the form

S ]

]x
7 ikmDGm

~V!~x,x8!U
x56L/2

50, x8P~2L/2,L/2!.

~11!

Assuming that the solution of the problem~10!, ~11! is
known, we change from the differential equation~7! to an
integral equation:

Gmm8~x,x8!5Gm
~V!~x,x8!dmm8

1 (
nÅm

dx1 ,Rmn~x,x1!Gnm8~x1 ,x8!, ~12!

whose kernel

Rmn~x,x8!5Gm
~V!~x,x8!Umn~x8! ~13!

contains only intermode harmonics of the scattering pot
tial. From system~12! all of the off-diagonal elements of th
matrix iGnmi can be expressed in terms of the correspond
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diagonal elementsGmm with the aid of a certain linear opera
tor K̂, which is defined on the coordinate–mode spa
M5$x,n%,

Gnm~x,x8!5E
L
dx1 , Knm~x,x1!Gmm~x1 ,x8!, nÅm.

~14!

The matrix elementsKnm(x,x8) can be found from the
Lippmann–Schwinger equation:32

Knm~x,x8!5Rnm~x,x8!

1 (
n1Þm

E
L
dx1Rnn1

~x,x1!Kn1m~x1 ,x8!,

~15!

the solution of which in operator formK̂5(12R̂)21R̂ is
expressed in terms of the operatorR̂, which is represented on
M by the matrix elements~13!.

We note that since the sums~12! and~15! do not contain
terms with the mode indexm, the operatorR̂ can be inter-
preted as the intermode scattering operator, which operat
a reduced coordinate–mode spaceM̄ m containing all the
modes of the quantum waveguide exceptm. The presence o
the mode indexm in the kernel of the integral operator~14!
and in other cases when necessary will be provided by
projection operatorPm , the action of which is to assign th
fixed valuem to the nearest mode index of an arbitrary o
erator standing next to it~either to the left or right!.

Assuming thatm85m in Eq. ~7! and substituting the
intermode propagators in the form~14!, we finally arrive at a
closedone-dimensionaldifferential equation for the diagona
propagatorGmm(x,x8):

F ]2

]x2
1km

2 1 i02Vm~x!2T̂mGGmm~x,x8!5d~x2x8!.

~16!

Here, together with thelocal intramode potentialVm(x),
there has arisen an effectivenonlocal ~operator inx space!
potential

T̂m5Pm Û~12R̂!21R̂Pm5Pm Û~12R̂!21Pm , ~17!

whereÛ is the intermode potential operator, which is defin
on M̄ m by the matrix elements

ux,m&Û^x8nu5Umn~x!d~x2x8!. ~18!

Strictly speaking, the potentialT̂m , like Vm(x), is intramode
in the sense that both the initial and final states of the s
tering on it belong to the modem. However, it effectively
also takesintermodescattering into account, and exactly,
any order of perturbation theory. From the structure of
pression~17! it is seen that scattering on the potential ope
tor T̂m can be interpreted as occurring via intermedi
‘‘trial’’ modes states described by the propagatorsGn

(V)(x,x8)
with nÅm. Therefore, in what follows we shall by conven
tion call the potentialT̂m as the intermode potential. From
mathematical standpoint it is none other than theT matrix,
well known in the quantum theory of scattering.32,33
e

in

e

-

t-

-
-
e

In the finishing stage of the procedure of reducing t
multidimensional problem of the conductance of system~1!
to a one-dimensional problem~16!, we express the conduc
tance~2! directly in terms of the functionGmm(x,x8). Ex-
panding the electron propagators in the eigenfunctions~6!,
we separate out two terms in expression~2!. In the first,
which we shall refer to below as the ‘‘diagonal’’ conductan
and denote it asg(d)(L), we group together those terms o
the expansion which from the beginning contain the diago
mode propagatorsGmm . In the second term, the ‘‘off-
diagonal’’ conductanceg(nd)(L), we combine all the remain
ing terms of the expansion, which contain mode compone
Gnm with nÅm. Taking relation~14! into account along with
the fact that the retarded and advanced Green’s function
the evanescent modes (km

2 ,0) in the case of weak scatterin
can be considered to be real-valued~see formula~23! in the
next Section!, the aforementioned conductance terms can
written in the form

g~d!~L !52
4

L2(m
E E

L
dxdx8

]Gmm~x,x8!

]x

]Gmm8 ~x,x8!

]x8
;

~19a!

g~nd!~L !52
4

L2 (
m,n

nÅm

E E E E
L
dx1 ...dx4

]Knm~x1 ,x2!

]x1

3Gmm~x2 ,x4!Knm* ~x1 ,x3!
]Gmm* ~x3 ,x4!

]x4
. ~19b!

Here and below a bar over a summation sign means tha
summation is only overextendedmodes withkm

2 .0.

3.2. Weak scattering approximation

In view of the statistical formulation of the problem, a
important auxiliary element of the technique used, the t
Green’s functionGm

(V)(x,x8), can be considered to be dete
mined exactly if all of its mathematical momen
^@Gm

(V)(x,x8)#p&, pPN, have been found. For highly disor
dered systems this can be done only by numerical meth
However, if the scattering on the potentialV(r ) is weak, then
by using the technique described in Ref. 21, which allo
one to take into account multiple scattering in the 1D s
chastic problem~10!, ~11!, these moments can be found an
lytically. The criterion of weak scattering is expressed a
system of inequalities

kF , r c!,, ~20!

where, denotes the Born mean free path of the electrons
the particular case of a strictly white-noise potential, wh
W(x)5d(x) in ~4!, this length is equal to 4p/Q. When
conditions~20! are satisfied, the calculation of the desir
moments for extended modes gives

K @Gm
~V!~x,x8!#p5S 2 i

2km
D p

expF ipkmux2x8u
p

2

3S p

L f
~V!~m…

1
1

Lb
~V!~m!D ux2x8uG . ~21!



b

s
r

n
s
o

r
o
a

o
tu

-

n-

r
f

ely
on

ce-

e

the

of

of
he

the
re-

ide

rent

e
a
ys-
the
all
rt of
s
po-
y

de

49Low Temp. Phys. 29 (1), January 2003 Yu. V. Tarasov
HereL f ,b
(V)(m) are the forward (f ) and backward (b) scatter-

ing lengths of modem on the intermode potentialVm(x):

L f
~V!~m!5

4S

9Q ~2km!2,

Lb
~V!~m!5

4S

9Q
~2km!2

W̃~km!
,

whereW̃(km) is the Fourier transform of the functionW(x).
As to the inhomogeneous~evanescent! modes withkm

2 ,0,
for them one can neglect the potentialVm(x) in ~10! in the
case of weak scattering, and consider only the unpertur
solution:

Gm
~V!~x,x8!52

1

2ukmu
exp~2ukmix2x8u!. ~23!

The functional structure of theT matrix ~17! and, ac-
cordingly, of Eq.~16! under condition~20! is substantially
simplified. A direct calculation with the use of~13! and~21!

shows that the norm of the operatorR̂ on a space of basi
functions exp(ikmx) is estimated by the following paramete

iR̂i2;
1

km,
. ~24!

This allows one to replace the operatorK̂ defined in~15! by
its approximate valueK̂'R̂. As a result, potential~17! takes
the form

T̂m5Pm ÛĜ~V!ÛPm , ~25!

where the operatorĜ(V) is defined onM̄ m by the matrix ele-
ments

ux,n&Ĝ~V!~x8,n8u5Gn
~V!~x,x8!dnn8. ~26!

An analogous replacement of the exact matrix eleme
of the operatorK̂ in ~19b! by their approximate values allow
one to conclude that in the case of weak scattering the
diagonal part of the conductanceg(nd)(L) is parametrically
small in comparison with its diagonal partg(d)(L). Further
confirmation of the correctness of such an estimate is p
vided by the result of a numerical calculation of the tw
conductance terms. When this circumstance is taken into
count, we can confine our analysis to only the term in~19a!,
assumingg(L)'g(d)(L).

4. ANALYSIS OF THE SPECTRUM OF MODE STATES

In contrast to the initial potentialV(r ) and, accordingly,
its mode components in Eq.~7!, the effective potentialT̂m

has a nonzero mean. For application to a perturbation the
in this potential, we separate it into its averaged and fluc
ating parts,̂ T̂m& andDT̂m2^T̂m&. As the zeroth approxima
tion for the mode propagatorGmm(x,x8), we consider the
Green’s function of the equation

F ]2

]x2
1km

2 1 i02^T̂m&GGmm
~0!~x,x8!5d~x2x8!, ~27!

which differs from~16! by the absence of fluctuating pote
tials. In determining the action of the operator^T̂m& on the
ed

ts

ff-

o-

c-

ry
-

function Gmm
(0)(x,x8), it is an important circumstance that fo

a waveguide with ‘‘rigid’’ side walls there is no correlation o
the intermode and intramode scattering:

^Umn~x!Vn~x8!&50. ~28!

As a consequence of this, the potential~25! upon averaging
is transformed from an operator equation to an effectiv
local equation. It was shown in Ref. 21 that its operati
reduces to a renormalization of the mode energykm

2 by the
mass operatorS(km)5Dkm

2 1 i /tm
(w) :

~^T̂m&Ĝmm
~0!~x,x8!52S~km!Gmm

~0!~x,x8!. ~29!

Applying to the system under study the calculation pro
dure set forth in Ref. 21, we find

Dkm
2 Q

S (
nÅm

PE
2`

` dq

2p

W̃~q1km!

q22kn
2

, ~30a!

1

tm
~w!

5
Q
4S(

nÅm

1

kn
@W̃~km2kn!1W̃~km1kn!#. ~30b!

The integral in~30a! is understood in the principal valu
sense.

The absolute value of the mass operator~30! does not
depend substantially on the number of open channels in
conductor. For anyNc.1 the estimateDkm

2;1/tm
(w);kF /,

is valid, and that allows one to neglect the renormalization
the velocity due to the term in~30a! for almost all of the
modes. At the same time, the width of the mode levels is
critical importance for analysis of the electron dynamics. T
frequency ~30b! saturates rapidly with increasingNc and
ceases to depend on the mode index. In particular, in
model of point scatterers the asymptotic behavior of this f
quency forNc@1 has the form

1

tm
~w!

'
QkF

4p
5

kF

,
. ~31!

We note that in formula~30b!, unlike ~30a!, the summa-
tion is only over extended modes of the quantum wavegu
which are different from the modem in question. For a
single-channel conductor, where only the lowest modem1

5(1,1) is nonlocal, the term~30b! is absent.
The imaginary part of the mass operator~30! can be

interpreted as being the result of a dephasing of the cohe
mode states. It follows from the structure of expression~30b!
that for an arbitrary modem the cause of the dephasing is th
cyclic ~‘‘reentrant’’! scattering of electrons exclusively vi
nonlocal intermediate modes if such modes exist in the s
tem under study. In such an interpretation, for each of
current-carrying modes one would be justified in treating
the other extended modes of the same conductor as a so
‘‘dephasing environment,’’ the interaction with which i
brought about by means of intermode scattering on the
tential V(r ). Although in terms of the one-electron energ
the scattering on static inhomogeneities is elastic~for T50
this energy is always the Fermi energy!, the many-particle
mode states are characterized by different~longitudinal! en-
ergies. This allows one to consider the virtual intermo
transitions ’’hidden’’ in theT matrices~17! and~25! as effec-
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tively inelastic, thereby upholding the traditional point
view that attributes the dephasing of the quantum states
clusively to inelastic scattering processes.

We note that intermode scattering by strongly localiz
evanescentintermediate modes alone~single-mode conduc
tor! will not lead to dephasing. An appreciable dephas
effect appears in the scattering of electrons via substant
nonlocal extended modes, as is possible, of course, if th
are at least two of them. From this we can conclude that
an interference type of Anderson localization an import
factor is that not only the temporal coherence but also
spatial coherence is preserved in the scattering.

The influence of the fluctuational potentialsVm(x) and
DT̂m on the mode levels can be analyzed by estimating
corresponding Born scattering frequencies 1/tm

(V) and 1/tm
(V) .

With allowance for the structure of operator~25! and the
result ~31!, we have

tm
~w!

tm
~V!

;@kFr cNc cos2 um#21, ~32a!

tm
~w!

tm
~T!

;
tm

~w!

tm
~V!

3H L/,, L,,,

Nloc
~s! , L.l.

~32b!

Here um is the ‘‘slip’’ angle of the mode m (cosum

5uKmu/kF); and Nloc
(s)<Nc is the number of ‘‘bare’’ mode

states, determined by Eq.~10!, whose localization length
4Lb

(V)(m) does not exceed the lengthL of the conductor.
Since in real materials the relationkFr c*1 is usually

satisfied, it is easily inferred from~32! that the influence of
the potentialVm(x) on the dynamics of electrons in mult
mode systems is negligible. The same is also true of
potentialDT̂m if the length of the conductor obeysL!Nc,.
A more careful analysis, carried out in Ref. 21, showed t
scattering on this potential~substantially nonlocal forNc

.1) has a weak effect on the conductance even foL
@Nc,. This seems quite natural if it is taken into accou
that the scattering on the potentialDT̂m is of a ‘‘reentrant’’
character. From the standpoint of perturbation theory
implies that by means of the operatorDT̂m the scattering on
the intermode potentialsUmn(x) is taken into account to
higher order than in the calculation of the mass operator~30!.

Returning to the bare intramode potentialVm(x), we
should stress that the scattering on on it under condition~20!
breaks the spatial coherence of the mode slightly, and it m
therefore be taken into account with special accuracy.
Nc@1 this scattering leads to small weak-localization c
rections to the conductance, which are not being taken
account in this paper. The role of these corrections cle
grows with decreasing number of conducting channels,
even forNc;1 they do not qualitatively alter the result ob
tained in the kinetic approximation. The potentialVm(x) has
a governing influence on the spectrum of electronic sta
only in single-modeconductors, which we shall discuss
more detail in the next Section.
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5. DEPENDENCE OF THE CONDUCTANCE ON THE SHAPE
OF THE CONDUCTOR

The mode spectrum of the current carriers, together w
the energy of the electrons, is determined by the structur
the confining potential—in the model considered here, by
geometry of the sample. If the conductance of a bulk c
ductor varies with the dimensions of the sample in acc
dance with the classical Ohm’s law, then when any of th
dimensions becomes comparable to the microscopic len
of the system, the quantization of the spectrum becomes
tremely important and can radically alter the classical beh
ior of the conductance. Let us consider some limiting ca
in which the size quantization influences the character of
electron transport in substantially different ways.

5.1. Multimode conductors

If the configuration of the confining potential and ele
tron energy are such that there is more than one conduc
channel in the system, the exact Green’s funct
Gmm(x,x8), as follows from~32!, is well approximated by
the functionGmm

(0)(x,x8) in the regionL!Nc,. But even for
L.Nc,, as was shown in Ref. 21, replacing the exact pro
gator in ~19a! by its approximate value from Eq.~27! is
justified in view of the configurational averaging. The sol
tion of equation~27! satisfying radiation boundary cond
tions at the open end of the conductor has the form

Gmm
~0!~x,x8!5

1

2ikm
exp$ ikm21/l m

~w!#ux2x8u%. ~33!

Here l m
(w)52kmtm

(w) is the extinction length~or, equivalently,
the dephasing length! of the modem due to incoherent inter-
mode scattering. The substitution of~33! into ~19a! gives the
following expression for the average conductance:

^g~L !&5(
m

l m
~w!

L F12
l m
~w!

L
expS 2

L

l m
~w!D sinh

L

l m
~w!G . ~34!

In the case of a large number of channels (Nc@1) the re-
placement of the sum~34! by an integral allows one to obtai
simple limiting formulas for the conductance in those r
gions which correspond to the classical ballistic (L!,) and
diffusive (L@,) electron transport:

^g~L !&'Nc , L!,, ~35a!

^g~L !&'
4

3

Nc,

L
, L!,. ~35b!

In the ballistic limit ~35a! the conductance as a function o
the electron energy and the transverse dimensions of
quantum waveguide has a stepped structure, the height o
steps being exactly equal to the quantum of conducta
G05e2/p\ ~recall that for bulk conductorsNc5@kF

2S/4p#,
where@ . . . # denotes the integer part of the number in brac
ets!. As one goes from the ballistic to the diffusive regim
(,!L) the conductance asymptotically approaches the c
sical value~35b!, which is known from kinetic theory. Here
the stepped structure of the conductance is formally p
served, but the height of the steps decreases in proportio
the ratio,/L. The dependence of the average conducta
~34! on the length of the quantum waveguide is presented
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Fig. 2. The curves correspond to different numbers of o
channels, but in the regionL/,.1, they all exhibit identical
‘‘Ohmic’’ behavior.

It is important that the diffusive character of the condu
tance~formula ~35b!! is preserved not only in the region o
lengths,!L!Nc, in which the electron transport is trad
tionally considered to be diffusive, but also forL.Nc,. The
theory of quasi-one-dimensional~Q1D! conductors23–26 pre-
dicts that at such lengthŝg(L)&}exp(2L/Nc,), from which
it is concluded that Anderson localization of all the electro
states obtains in such conductors, regardless of the ene

The reason for the disagreement of the result~35b! with
the predictions of the theory of Q1D localization is due
dephasing of themodeelectronic states arising because
the quasielasticity of the intermode scattering. From a ma
ematical standpoint the inelasticity is due to the absenc
the ‘‘rotational symmetry’’ in thechannelspace which was
explicitly used in the derivation of the equations of th
theory.24–26 If all of the unperturbed mode energies in~7!
could formally be set equal~‘‘symmetric’’ channels!, then the
mass operator~30! would turn out to be real. This, in turn
would mean that in the presence of weak scattering the
herence of the mode electronic states would essentially
preserved. The average conductance in the regionL.Nc, in
this case would actually depend exponentially on the len
of the conductor, in complete agreement with the results
the theory of Refs. 23–26.

In contrast to the model channel-symmetric systems
real Q1D conductors all the channels~waveguide modes! are
characterized bydifferent longitudinal energies~8!, although
the one-electron energy atT50 is, of course, maintained a
the Fermi energy. However, since the theory presented
is based not on the single-particle energies but on the m
energies of the electron system, the inelasticity of interm
scattering cannot be eliminated even for a static scatte
potential. This inelasticity manifests itself in finiteness of t
spatial scale of the damping of the mode propagators~33!;
from a physical standpoint this corresponds to incoher
intrachannel electron transport. It follows from Eq.~31! that
all the modes without exception the coherence lengths do
exceed the electron mean free path, in order of magnitude.

The effective inelasticity of the interchannel scattering
real conductors can be eliminated by assuming that all

FIG. 2. Conductance~34! as a function of the dimensionless leng
l5L/, for conductors with different numbers of open channelsNc : 5 ~1!,
8 ~2!, and 12~3!.
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matrix elements~9! are equal to zero formÅm8. For a
~quasi-!two-dimensional conductor of finite thickness th
can be accomplished by choosing a model for the rand
potential which depends only on the coordinates along
direction of the current~a randomly stratified system!. Such
a model was considered in Ref. 34, where the origin of
‘‘stratified’’ ~and, hence, localizing! random potential was
attributed to long-range charged centers distributed rando
outside the quantum waveguide. The delocalizing mode m
ing of the electrons in Ref. 34 came about not because
intermode impurity scattering but because of an exter
magnetic field oriented parallel to the surface of the Q
conductor.

5.2. Anderson localization in single-mode conductors

If the parameters of the electron system admit the e
tence of only one open channel, then all of the other mo
of the quantum waveguide will be evanescent and hig
localized with respect to the coordinatex. In that case the
potentialT̂m , like Vm(x), is real and local. Because of this
perturbation theory in the form used above is no longer c
structive, since weak scattering, including intermode scat
ing, does not substantially disrupt the coherence of the sin
extended mode. A calculation of the conductance in that s
ation requires the use of methods that permit one to take
account the interference of multiply scattered quant
waves, e.g., such as those which were used in Refs. 35
36 in calculating the conductivity of 1D disordered condu
tors.

In Refs. 37 and 38, with the use of a weak-scatter
resonance method, equivalent to the methods of Refs. 35
36, we obtained a general expression for the statistical
ments of the conductance of single-mode conductors of fi
length in the situation where the disorder is caused not
bulk inhomogeneities but by roughness of the side walls
the conductor. That problem, although it is substantially d
ferent physically from the problem of bulk scattering,
completely analogous to the problem solved in the pres
paper from the standpoint of the mathematical formali
used. In its single-mode version the difference is manifes
only in the concrete form of the scattering lengths, which
the case of inhomogeneities of a surface nature are com
cated nonlocal expressions which differ from~22!. Applying
the technique described in Refs. 37 and 38 to the pre
problem, we obtain for a single-mode conductor with bu
disorder

^gn~L !&5
4

Ap
FLb

~V!~m1!

L G3/2

expF2
L

4Lb
~V!~m1!

G
3E

0

` zdz

cosh2n21 z
expF2z2

Lb
~V!~m1!

L G
3E

0

z

dy cosh2~n21!y. ~36!

We can conclude from Eq.~36! that in the one-channe
case only two regimes of electron transport a
distinguished—ballistic and ‘‘localized’’—the diffusive
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transport regime is absent. The corresponding limiting
pressions for the average conductance have the form

^g~L !&'H 124L/j1 , L/j1!1,

~p5/2/16!~j1 /L !3/2exp~2L/j1!, L/j1@1,
~37!

where j154Lb
(V)(m1) is the one-dimensional localizatio

length of the harmonicm1 in reference to thecollective
‘‘backscattering’’ of electrons on the bare intramode poten
Vm1

(x).

5.3. Metal–insulator transition as a quantum phase
transition

The conductance~37! demonstrates a localized charac
of electron transport in a single-mode quantum wavegu
in agreement with the known results of a spectral analysi
one-dimensional disordered systems.39 This fact in itself is
an indication that it is in principle possible for a bound
electron system to undergo a transition from the conduc
to the insulating state under the influence of geometric f
tors alone, at a fixed level of disorder. The one-dimensio
localization~of the Anderson type! in linear systems is uni-
versal in the sense that in the 1D random potential all
electronic states, regardless of energy, are exponentially
calized. At the same time, in a certain sense this localiza
can be regarded as weak. With decreasing level of diso
the lengthj1 increases without bound, and in comparative
pure conductors, even very long ones, the collective tra
port of electrons can actually remain close to ballistic.

The approach proposed in this paper allows one to
plain the observed transition of an electron system from
conducting state to the insulating state even for sample
mesoscopic length, and independently of the degree of t
structural disorder. With decreasing transverse dimens
the conductor ultimately must pass into a ‘‘cutoff’’ wave
guide regime, where all the modes in it become evanesc
each localized on a scale of its wavelengthukmu21, which in
the framework of the calculational technique used here
considered to be microscopic. In this ‘‘size-localized’’ regim
the conductance falls off sharply relative to its value~37! in
the marginal single-mode state of the quantum system, an
parametric accuracy it can be assumed equal to zero.

It is essential that the mode structure of the conduc
illustrated in Fig. 1b can be altered by changing only one
its transverse dimensions while keeping the other one c
stant. It is seen from Eq.~8! that even at a very large widthW
the quantum waveguide can be brought to a cutoff regime
decreasing only its thicknessH. In real planar structures thi
is accomplished by increasing the externally applied pres
potential ~see Fig. 1a! or by a capacitive influence on th
heterocontact region.

Figure 3 shows the results of a numerical calculation
the dependence of the conductance~34! on the thickness of
the conductor at a fixed value of its width. Curve1 corre-
sponds to the ballistic limit,/L→`, and curves2 and3 to
finite values of this ratio. The ballistic conductance is idea
quantum, with a value of the jump equal to the quantumG0 .
The peculiar modulation of curve1 is due to the quantum
-
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waveguide model used~see Fig. 1b!, the spectrum~8! of
which dictates the opening and closing of conducting ch
nels at nonequidistant points inH.

As the disorder increases~curves2 and3!, the jumps of
the conductance decrease in size, and the shape of the
becomes smoothened. In the neighborhood of the point
opening~closing! of quantum channels one should obser
substantial dips in the conductance. The shape of these
is clearly seen in Fig. 3b, where the curves in the reg
indicated in Fig. 3a are shown on an enlarged scale.
relatively smooth decrease of the conductance as the poi
closing of the next channel is approached from the side
larger values ofH is due to growth of the density of states
the slow marginal modemm and, accordingly, to a transition
of electrons from the faster open modes into it. The deph
ing frequencies of the latter@formula ~30b!# have square-roo
singularities at the critical points (kmm

50), and that is re-
flected in the destructive reduction of the mode propaga
~33! in the vicinity of the critical points.

Analogous dips were observed in a numerical analysis
the optical conductance of waveguide systems in Ref.
using the Landauer approach. However, the dips in Ref.
had a comparatively symmetric shape with respect to
points at which the extended modes vanish, whereas in F
their shape has a pronounced asymmetry. This asymmet
due to the circumstance that in the derivation of formula~34!
in approximation~20! we neglected the contribution of th
evanescent modes to the conductance and were therefor
studying thetunnelingpart of the conductance, which is du
to those modes. For a marginal mode this is not fully jus
fied, since in the vicinity of a critical point the condition o
weak scattering is violated, and the propagator of suc

FIG. 3. Dependence of the dimensionless conductance on the thicknes
quantum waveguide at a fixed width (kFW/p520.5) and different values of
the diffusion parameterl5L/,: 0 ~1!, 0.5 ~2!, and 5~3!.
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mode immediately after its closing is, strictly speaking, n
equal to expression~23!.

The curves shown in Fig. 3 demonstrate the sequenc
quantum phase transitions13 occurring in the electron system
upon a change of its confining potential. At the critical poin
the conductance changes in a jumplike manner, and the
of the correlation length in the electron system in the vicin
of these points is played by the wavelength of the marg
mode, which is proportional to its density of states.

The leftmost phase transition, clearly seen in Fig. 3b
a transition of the electron system from the conducting ph
to an insulating state. In the metallic phase in the immed
vicinity of the transition the value of the conductance in t
ideal ballistic situation is equal to the quantumG0 . This
corresponds approximately to the values observed in
neighborhood of the so-called separatrix—a line wh
nominally divides the set of experimental curves of theT
dependence of the resistance into subsets pertaining to
insulating and conducting phases of 2D systems.1

In the majority of experimental papers the spectral cl
sification of two-dimensional systems is done on the basi
data on the temperature and magnetic-field dependence
their resistance. A detailed analysis of the effects due to
magnetic field is the subject of a separate paper. As to
temperature dependence of the resistance of two-dimens
systems, a number of qualitative conclusions can be reac
already on the basis of the above-described features o
quantum transport in planar structures.

First, we note that the transition from the ‘‘metallic
conductance~34!, ~35! to the small value it has in the loca
ized ~0-mode! phase inevitably occurs via a single-mo
state of the electron system, which, in spite of the mac
scopic width of the quantum waveguide, behaves as ef
tively one-dimensional. For one-dimensional systems it
been predicted previously that the conductance depe
monotonically on temperature, in Ref. 36 for the caseTt
@1 and in Ref. 41 forTt!1. For 2D systems, the resistan
measured near the separatrix on the metallic side1 actually
varies nonmonotonically with temperature.

The weak temperature dependence of the separatri
self can also be explained if one considers that the wa
length of the last of the extended modes increases with
bound as the point of its closing is approached, and it
comes large compared to the wavelength of therm
phonons, whereupon the interaction of the mode with
phonon subsystem of the crystal naturally becomes inef
tive.

Finally, deep in the insulating phase, when all the el
tronic modes have become evanescent and, hence, h
localized, it is natural to expect that the resistance will e
hibit the temperature dependence that follows from the h
ping theory of percolation.42 This is the type of temperatur
dependence that is observed in two-dimensional syst
found in the insulating phase.1,43

CONCLUDING REMARKS

The main goal of the present study was to develo
single-particle field model of the transition of a two
dimensional electron system from the insulating state~pre-
scribed by the scaling theory of localization! to the metallic
t
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phase observed experimentally. The essence of the prop
approach is that systems which from the experimental sta
point are completely two-dimensional should be treated
the limiting case ofthree-dimensionalquantum waveguides
to more fully take into account the quantum character of
electron system.

We note that the procedure of reducing multidimensio
dynamical problems to one-dimensional problems, which
a part of the analytical technique used, has also been app
to systems originally regarded as strict
two-dimensional.20,21However, for such systems it is hard t
consider the possibility of a transition from the metallic
the insulating state in the framework of the approach dev
oped, since the single-mode state of 2D electrons is usu
associated not with macroscopic conductors but with qu
tum wires.

Nevertheless, a macroscopic two-dimensional quan
waveguide, if it is considered as ‘‘flattened’’ three
dimensional one, is fully capable of being found in th
single-mode, and even in the cutoff, 0-mode state. In t
connection one quite naturally wonders which electron s
tems are reasonably classified as two-dimensional and w
ones are not. And, specifically, how do non-one-dimensio
electron systems differ fundamentally from thre
dimensional systems from the standpoint of their transp
properties?

From the numerical and analytical results presented
this paper it is impossible to establish objective criteria
differentiating 2D and 3D systems. Only the conductance
the diffusion type, characteristic fornon-one-dimensiona
systems, and the ‘‘localized’’ conductance of single-mo
conductors and 0-mode~insulating! systems are fundamen
tally different. Since two-dimensional and three-dimensio
transport problems reduce to a one-dimensional problem
the mode representation in an identical way, one is force
conclude that a rational classification of nonballistic syste
of the Fermi type should be done not on the basis of th
formal geometric structure but according to the mode c
tent. From the this standpoint disordered systems with m
than one extended mode, in which a diffusive transport
quasiparticles is realized, so that their single-particle sp
trum has a continuous component, are substantially diffe
from the class of localized systems. The latter, in turn,
clude single-mode systems, which are characterized by lo
ization of an Anderson nature~strong or weak, depending o
the degree of disorder! and 0-mode systems, the localizatio
of the states in which is not due to disorder and/or interact
but rather to the size-quantization of the spectrum of
current carriers.
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Mechanism of vortex switching in magnetic nanodots under a circular magnetic field. II.
Dynamics of a spin plaquette containing a vortex
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For a theoretical explanation of the mechanism of switching of the polarization of magnetic
vortices in an external circular magnetic field, a small spin plaquette in a vortex configuration is
considered. An analytical investigation of the initial~linear! stage of the vortex switching
process is carried out. The analytical results obtained confirm the data of a numerical calculation
of the plaquette dynamics. Both the numerical simulation and an analytical treatment of the
initial stage of activation show the importance of taking the azimuthal modes of the system into
account. It is at the frequencies of these modes that the most rapid growth of the vortex
energy and the total intraplane projection of the magnetization occur. Increasing the amplitude of
these modes leads to parametric excitation of a low-frequency symmetric mode, and that
causes vortex switching. The results provide a qualitative explanation of the data of a numerical
simulation of vortex switching in large magnetic systems and can be used in experiments
on the directed influencing of the polarization of vortices in magnetic nanodots. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1542378#
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INTRODUCTION

In recent years a new kind of object has been attrac
heightened interest among physicists—magnetic particle
small size, from hundreds of nanometers to several magn
atoms and referred to variously as magnetic nanodots, m
netic clusters, and magnetic molecules.1–4 By now there has
been direct experimental confirmation that magnetic n
odots contain magnetic vortices—topological excitatio
close in nature to Pitaevski� vortices in superfluid liquids and
hydrodynamic vortices in two-dimensional incompressi
liquids.1,2 In the case of easy-plane magnetic anisotropy,
magnetization in a magnetic vortex rotates by an angle ofp
in passing around the center of the vortex.5–10 In a number of
cases the presence of a nonzero component of the mag
zation in the direction perpendicular to the easy plane
‘‘polarization’’ of the vortex—has been observe
experimentally.1,2 This polarization can have opposite sig
and is characterized by a topological indexp561 ~see Refs.
10–12!. In real discrete systems this index is not a true
pological charge and can vary under the influence
temperature11 or a circular12 or constant field perpendicula
to the plane of the nanodot.2 The possibility of directed
change of the polarization of a vortex is especially import
when one considers that nanodots containing vortices of
ferent polarity might, in principle, be used in the future
memory elements in high-density data storage media.

Changing the polarization of a vortex in a circular fie
was studied by numerical simulation in Ref. 12, where it w
shown that the vortex switching process has a resona
character and is asymmetric with respect to a change in
of the frequency of the applied field~the direction of its
rotation!. Part I of this paper10 included a critique of the
analytical part of Ref. 12, and it was shown that the scen
proposed by the authors of Ref. 12 does not explain
551063-777X/2003/29(1)/10/$22.00
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asymmetry of the vortex switching process with respect
the direction of rotation of the field. We showed that the t
process of excitation of a nanodot in a vortex configuration
of a complex character and requires that several eigenm
of the system be included in the treatment, chief amo
which are the so-called first azimuthal modes, associa
with the rotation of spin waves around the center of the v
tex. However, the simplified model used by the present
thors in Ref. 10 did not permit explanation of the asymme
of the process upon a change in frequency.

In the present paper, which is a continuation of Ref. 1
we consider the dynamics of a small ‘‘magnetic plaquet
~magnetic cluster! of several coordination spheres of th
magnetic lattice in a vortex configuration under the influen
of a spatially uniform rotating external field, but we hav
taken into account the magnon eigenmodes of the syste
the presence of a vortex. Classification of the magnon eig
modes of such plaquettes in a vortical state has been ca
out previously by the authors in Refs. 13 and 14, where
was shown that the spectra of such a system have a com
qualitative similarity to the low-frequency part of the spec
of the large-radius systems discussed in Part I.10 Our numeri-
cal calculations confirm the results of the qualitative analy
cal treatment of the problem of the change of polarity o
vortex in an external circular field.

The results of the present paper for a small magn
plaquette, together with the results obtained in Part I10 for a
nanodot of finite size, give a complete qualitative descript
of the scenario of vortex switching in a circular magne
field.

1. MODEL AND STATEMENT OF THE PROBLEM

Let us consider the spin dynamics of the small plaque
shown in Fig. 1, in a vortex configuration with fixed boun
© 2003 American Institute of Physics
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ary spins. Such boundary conditions can be explained by
presence of an additional strong surface anisotropy, wh
orders the boundary spins perpendicular to the surface
small magnetic particle, or by an influence exerted on
surface spins by the matrix surrounding this particle. T
equations of spin dynamics—the Landau–Lifshitz equati
~LLEs!—with the circular magnetic fieldh5h(cosvt,
sinvt,0) are written in general form as10

dwn

dt
5(

d
S m'd

m'n
@mn cos~wn2wn1d!2g sin~wn

2wn1d!#2lmn1dD1h
mn

m'n
cos~wn2vt !, ~1!

dmn

dt
5(

d
~2m'nm'n1d@gmn cos~wn2wn1d!1sin~wn

2wn1d!#1glm'n
2 mn1d!2hm'n sin~wn2vt !,

~2!

where we have used the notation from Part I of this pap
mn5Sn

z is thez projection of the spin onto the ‘‘hard’’ axis
wn5tan21(Sn

y/Sn
x) is the azimuthal angle of the spin,J51,

and

m'n[A12mn
2.

FIG. 1. Configuration of a spin plaquette corresponding to an in-plane~a!
and out-of-plane~b! vortex. The dark circlets from the first coordinatio
sphere denote the mobile spins~1,2,3,4!.
he
h
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e
e
s
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The smallness of the damping coefficient for a plaquette
determined by the inequalityg!1, since the eigenmode fre
quencies in this case are of the order of unity.

The magnetic structure and property of the spectrum
the plaquette systems illustrated in Fig. 1 were conside
previously in Refs. 13 and 14, in which it was shown that t
classification of vortex states of such systems~the existence
of an in-plane~IP! vortex configuration in the case of stron
anisotropy and an out-of-plane~OP! vortex configuration at
values of the anisotropy parameter close to unity! is analo-
gous to that in systems of large size,15,16and the spectrum o
excitations of such small plaquettes has a qualitative simi
ity with the low-frequency part of the spin-wave spectrum
systems of large size with the corresponding boundary c
ditions~see Refs. 17 and 18!. In the plaquette considered, th
four spins of its inner~first! coordination sphere can chang
their orientation, while the spins of the second and third
ordination spheres are fixed in the position corresponding
the equilibrium configuration of the in-plane vortex. The vo
tex state for such a plaquette, thanks to the fixing of the ou
spins, is the ground state and is determined by the follow
system of static equations for the four mobile spins w
indicesn51,2,3,4:

(
d

m'nm'n1d sin~wn2wn1d!50, ~3!

(
d

Flmn1d2mn

m'n1d

m'n
cos~wn2wn1d!G50, ~4!

where the summation is over nearest neighbors, with ind
n1d. The state of the 12 boundary spins is fixed and
determined by the valuesm[0 and w5F0 , p/4, p/2
2F0 , p/21F0, 3p/4..., where F05(1/2)sin21()21).
Here the IP vortex configuration corresponds to the solut
for four mobile spinswn

05p/41pn/2, mn
0[0, n5124,

which is stable in the interval of values of the anisotro
parameter 0<l<lc5cos(p/42F0)5A)/2'0.93. We
note that the difference of the critical valuelc from the value
for systems of large size (lc'0.72 for a square lattice15! is
insubstantial and is due to the fact that for systems of sm
size, this quantity depends considerably on the configura
of the system itself and the fixed configuration of the boun
ary spins.14,15By varyingF0 , one can also vary the value o
lc .

For weak easy-plane anisotropy less than the crit
value (l.lc) another vortex configuration—OP, in whic
the spin at the center of the vortex sticks out of its plane—
stable. The static distribution of the the directions of t
mobile spins for an OP configuration is given by the follow
ing expressions:wn

05p/41pn/2, as for the IP configuration
and for thez projection

mn
05m5pA12~lc /l!2, ~5!

wherep561 is the polarization of the vortex. After linear
ization of the system of equations~1!, ~2! for the four mobile
spins with respect to small time-dependent correctionsm and
n to the vortex solution,mn(t)5mn(t)1mn

0 , wn(t)5nn(t)
1wn

0 , we obtain form and n a system of eight first-orde
differential equations:
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dnn

dt
5(

d
S mn

m'n1d

m'n
3 cos~wn1d

0 2wn
0!

2~nn1d2nn!mn

m'n1d

m'n
sin~wn1d

0 2wn
0!G

2mn1dF mnmn1d

m'nm'n1d
cos~wn1d

0 2wn
0!1lG , ~6!

dmn

dt
5(

d
H ~nn1d2nn!m'nm'n1d cos~wn1d

0 2wn
0!

1Fmnmn

m'n1d

m'n
1mn1dmn1d

m'n

m'n1d
G

3sin~wn1d
0 2wn

0!J , ~7!

wheren5124, mn50 for the IP andm for the OP configu-
ration, mn1d50 for the spins of the outer coordinatio
spheres and for the spins withn1d5124 in the IP configu-
ration, andmn1d5m for n1d5124 in the OP configura-
tion. The spectrum of system~6!, ~7! for a plaquette in the
region of stability of the IP vortex configuration (l,lc)
contains three branches.~The total number of modes is equ
to the number of degrees of freedom of the Hamilton
system, i.e., the number of free spins, but for an in-pla
vortex one of the modes is twofold degenerate.! The lowest
branch~see Fig. 2! corresponds to a symmetric mode wi
mn(t)m0 cosV0t, nn(t)5n0 sinV0t, and the dependence o
its frequency on the parameterl is given by the formula

V0
IP~l!52Alc~lc2l!, ~8!

and the ratio of the amplitudes of the oscillations of the sp
in the two perpendicular directions is given by

n0/m05A12l/lc . ~9!

This mode, denoted here by the index 0, corresponds to
symmetric mode with index 2 considered in our previo
paper.10 We see that at the critical pointl→lc the spins
oscillate perpendicular to the easy plane.

The next mode is the twofold degenerate first azimut
mode: mn5m1,2cos(xn2V1,2t), nn5n1,2sin(xn2V1,2t)

FIG. 2. Spectrum of eigenmodes of a spin plaquette in a vortex config
tion in the OP region: symmetric mode~0!; doublet of first azimuthal modes
with different directions of rotation of the spin wave~1,2!; second azimuthal
mode~3!. The inset shows the total spectrum in the whole range of varia
of the anisotropy parameter.
n
e

s

he
s

l

~wherexn is the azimuthal coordinate of thenth spin!. Its
frequency forl,lc is independent of the parameterlc :

V1,2
IP 52lc , ~10!

and

n1,2/m1,2571. ~11!

Finally, the highest-frequency mode, the second azimu
mode with antiphase oscillations of neighboring spins, c
responds to a solution withmn5m3 cos(2xn2V3t), nn

5n3 sin(2xn2V3t), the frequency is

V3
IP~l!52Alc~lc1l!, ~12!

and the amplitude ratio

n3/m35A11l/lc. ~13!

For the OP region (l.lc) we have an analogous classific
tion of modes, with the only difference being that no
thanks to the lowering of the symmetry of the system,
degeneracy of the first two azimuthal modes is lifted. T
corresponding wave parameters of the oscillatory mo
have the following dependence onl:

for the symmetric mode

V0
OP~l!52Al22lc

2, ~14!

n0/m05
l

lc
AS lc

l D 2

21; ~15!

for the lower first azimuthal mode

V1
OP~l!52~l2A12~lc /l!2!, ~16!

n1/m152
l~l2A12~lc /l!2!

lc
21lA12~lc /l!2

; ~17!

for the upper first azimuthal mode

V2
OP~l!52~l1A12~lc /l!2!, ~18!

n2/m252n1/m15
l~l2A12~lc /l!2!

lc
21lA12~lc /l!2

; ~19!

and for the second azimuthal mode

V3
OP~l!52Al21lc

2, ~20!

n3/m35
l

lc
AS lc

l D 2

11. ~21!

The total spectrum of oscillation frequencies of the plaque
in the OP region is shown in Fig. 2. We see that it does
fact have a qualitative similarity to the low-frequency part
the spectrum of systems of large size~for a fixed
boundary!,14,18 but there are several differences. For e
ample, in a large system forl.lc the symmetric and lower
first azimuthal modes cross, and at large values ofl the latter
becomes the lowest in frequency. This is the reason for
change in the numbering of the modes in Part I of t
study:10 the zeroth mode of the plaquette corresponds to
second mode of a large system, the first mode of
plaquette, to the first mode, and the second mode of
plaquette, to the third mode~see Fig. 4b of Ref. 10!. Further-
more, it should be noted that the second azimuthal mode~the

a-
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highest in frequency! in the plaquette corresponds in a lar
system to a solution with four nodes in the azimuthal dir
tion. In Fig. 4b in Ref. 10 this frequency dependence is
shown, and the curve~4! in that figure corresponds to th
first azimuthal mode~with two nodes in the azimuthal direc
tion!, but with an additional node in the radial directio
Below we will be interested in the vortex dynamics only
the OP region, and we shall drop the superscriptOP from all
the quantities.

It will be convenient below to change over from equ
tions for the oscillations of individual spins to equations f
the characteristics of the collective modes discussed ab
We expand the Hamiltonian of the system~see Ref. 10! to
terms of second order in the small deviationsmn andnn from
the OP solution. For a plaquette, with the the symmetry pr
erties of the static OP solution taken into consideration,
Hamiltonian is written explicitly as a positive definite qu
dratic form:

Ho5
lc

m'
3 (

n51

4

mn
21lcm' (

n51

4

nn
22l~m1m21m1m4

1m2m31m3m4!1m~m2n12m1n21m1n42m4n1

1m3n22m2n31m4n32m3n4!, ~22!

and the dynamical equations~6!, ~7!, for the Hamiltonian
~22!, will be Hamilton’s equations for four coupled oscilla
tors with effective momentamn and effective coordinatesnn

conjugate to them. To explain the process of activation of
normal modes of a plaquette by a circular magnetic field,
necessary to diagonalize the Hamiltonian~22! ~change to
normal modes! and write the correction to it due to the in
fluence of the external field,Hint(t), in terms of the normal
momenta and coordinates for each of the modes. We red
the quadratic form~22! to the principal axes:

H05
1

2 (
n50

3

~anPn
21bnQn

2!, ~23!

wherean andbn are the coefficients of the reciprocal ma
and stiffness of thenth effective oscillator, which depend o
the anisotropy parameterl in the following way:

a052lc~12m'
4 !/m'

3 , b05b352lcm' ,

a15b15V152~l2m!, a25b25V252~l1m!,

a352lc~11m'
4 !/m'

3 .

~We recall that the quantitiesm and m' appearing in these
formulas are functions ofl.! The frequencies of the norma
modes~effective oscillators! Vn

2 are expressed in terms of th
parametersan andbn as follows:Vn

25anbn , and the initial
variablesm andn are expressed in terms of the normal ‘‘c
ordinates’’ and ‘‘momenta’’ as

m15
1

2
~P01P31m'Q11m'Q2!,

m25
1

2
~P01m'P12m'P22P3!,

m35
1

2
~P01P32m'Q12m'Q2!,
-
t

e.

-
e

e
s

ce

m45
1

2
~P02m'P11m'P22P3!,

n15
1

2
~P0 /m'1P2 /m'1Q01Q3!,

n25
1

2
~Q02Q1 /m11Q2 /m'2Q3!,

n35
1

2
~2P1 /m'2P2 /m'1Q01Q3!,

n45
1

2
~Q01Q1 /m'2Q2 /m'2Q3!. ~24!

2. DYNAMICS OF A SPIN PLAQUETTE IN AN EXTERNAL
CIRCULAR FIELD

Let us take into account the presence of a circular m
netic field and analyze the resonances arising in the in
stage of activation of the eigenmodes of the plaquette b
field of a given symmetry.

We expand out the interaction Hamiltonian of th
plaquette with the external circular field,Hint(t)
52h(nm'n cos(wn2vt), to terms of first order~in the small
correctionsm andn! and, going over to a description in term
of the normal modes~24!, we have

Hint
d 5h@~12m!P12~11m!P2#sinS p

4
2vt D

2h@~12m!Q12~11m!Q2#cosS p

4
2vt D . ~25!

The superscriptd ~for ‘‘direct’’ ! is introduced in order to
emphasize that this part of the interaction Hamiltonian
responsible for the ‘‘direct’’ resonant influences on the s
tem. To second order inm andn, after an analogous proce
dure, we obtain

Hint
p 5hH F12

m

2 GFP1P31P0P2

m'
2 1Q0Q11Q2Q3G

2F11
m

2 GFP0P11P2P3

m'
2 1Q0Q21Q1Q3G J

3sinS p

4
2vt D1hH F12

m

2 GFP0Q21P3Q1

m'
2

1P1Q01P2Q3G1F11
m

2 GFP0Q11P3Q2

m'
2

1P2Q01P1Q3G J cosS p

4
2vt D . ~26!

Since Eq.~25! contains only quantities with indices 1 and
only the first azimuthal modes are excited in a direct re
nance manner. The part of Hamiltonian~26! with superscript
p ~‘‘parametric’’! is responsible for the parametric excitatio
of the system, but, as we have pointed out previously10 and
will show in detail below, the parametric excitation in th
case is rather unusual.
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The calculations below are less awkward to do if we
over to a description of the dynamics in terms of comp
quantities:

cn5A4 an

bn

Pn

&
1 iA4 bn

an

Qn

&
, ~27!

wherec andc* play the role of classical analogs of creatio
and annihilation operators, creating and annihilating norm
modes. Here the total Hamiltonian of the system in the
proximation quadratic incn is written as follows:

H5
1

2 (
n50

3

Vnucnu21h
12 i

2
@~12m!c1* e2 ivt

2~11m!c2* eivt#2hc1

eivt~11 i !

2&

3H c0F11m/2

m'
2 A4 b0

a0
1S 12

m

2 DA4 a0

b0
G

1c0* F11m/2

m'
2 A4 b0

a0
2S 12

m

2 DA4 a0

b0
G J

1hc2

e2 ivt~12 i !

2&
H c0F12m/2

m'
2 A4 b0

a0

1S 11
m

2 DA4 a0

b0
G1c0* F12m/2

m'
2 A4 b0

a0
2S 11

m

2 D
3A4 a0

b0
G J 2hc2

eivt~11 i !

2&
H c3F11m/2

m'
2

3A4 b3

a3
1S 12

m

2 DA4 a3

b3
G1c3* F11m/2

m'
2

3A4 b3

a3
2S 12

m

2 DA4 b3

b3
G J

1hc1

e2 ivt~12 i !

2&
H c3F12m/2

m1
2 A4 b3

a3
1S 11

m

2 D
3A4 a3

b3
G1c3* F12m/2

m'
2 A4 b3

a3
2S 11

m

2 DA4 a3

b3
G J

1c.c., ~28!

where c.c. stands for the complex conjugate of the en
expression preceding it. Accordingly, the dynamical eq
tions ~LLEs! are now written as

i
dcn

dt
5

]H
]cn*

~29!

~and the anomalous set of complex-conjugate equations! or,
in explicit form,

i
dc0

dt
2V0c05h~a1c1eivt1a2c1* e2 ivt1a3c2e2 ivt

1a4c2* eivt!, ~30!
x

al
-

e
-

i
dc1

dt
2V1c15h~a1* c0e2 ivt1a2c0* e2 ivt1b1* c3eivt

1b2c3* eivt!1hze2 ivt, ~31!

i
dc2

dt
2V2c25h~a3* c0eivt1a4c0* eivt1b3* c3e2 ivt

1b4c3* e2 ivt!1hjeivt, ~32!

i
dc3

dt
2V3c35h~b1c1e2 ivt1b2c1* eivt1b3c2eivt

1b4c2* e2 ivt!, ~33!

where for convenience of notation we have introduced
simplified notation for the coefficients, which are related
the original ones in the obvious way:

a15
e2 ivt

h

]2H
]c0* ]c1

52
11 i

2&
F11m/2

m'
2 A4 b0

a0
2S 12

m

2 DA4 a0

b0
G ,...,

z5
eivt

h

]Hint
d

]c1*
5

12 i

2
~12m!,

j5
e2 ivt

h

]Hint
d

]c2*
52

12 i

2
~11m!

etc. We see that taking the circular magnetic field into
count gives rise to terms responsible for both the direct
the parametric excitation of the eigenmodes. It should
noted that, as is seen from the structure of the system
equations obtained, the parametric excitation of each in
vidual mode in a linear approximation occurs only on a
count of the remaining modes of the system, which can l
to parametric resonance at combination frequencies~see Part
I!.10 This fact was not pointed out in Ref. 12, where t
authors did not take into account the influence of the fi
azimuthal mode on the fundamental symmetric mode,
they neglected terms of the formc0ck , c0ck* , c0* ck , and
c0* ck* with kÞ0 in the Hamiltonian. Another interesting fac
is that for a vortex at the center of the system, a circu
magnetic field can lead to direct resonance only at the
quencies of the first azimuthal modes. In turn, owing to
presence of the cross terms in the phenomenological e
tions for the zeroth mode, direct resonance at the freque
of the first azimuthal mode can also lead to activation of
zeroth mode.

The resonance pattern of the inhomogeneous system
equations~30!–~33! with periodic coefficients can be ob
tained by using the method of multiple scales.19 In the gen-
eral case for correctness of the expansion obtained it is
essary that the modulus of the periodic coefficients be m
less than the moduli of the constant coefficients of the eq
tions. This is correct when the inequalityh!Vn holds. Since
in the case of a plaquette the eigenfrequencies are of
order of unity, it is sufficient to satisfy the inequalityh!1,
i.e., the condition of weak pumping.

In accordance with the method of multiple scales,
replace the true timet by a set of ‘‘times’’Tk , assuming that
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cn~h;t !5cn
0~T0 ,T1 ,T2 ...!1hcn

1~T0 ,T1 ,T2 ...!1... ,
~34!

whereTk5hkT0 are the different time scales, and

d

dt
5

]

]T0
1h

]

]T1
1...5D̂01hD̂11... . ~35!

Substituting~34! and ~35! into ~30!–~33!, we obtain in
the zeroth approximation

iD̂ 0cn5Vncn and cn
05An~T1 ,T2!exp~2 iVnT0!.

To first order inh we obtain an inhomogeneous syste
of the form

iD̂ 0c0
12V0c0

152 iD̂ 1A0e2 iV0T01a1A1ei ~v2V1!T0

1a2A1* ei ~V12v!T01a3A2e2 i ~v1V2!T0

1a4A2* ei ~v1V2!T0 ~36!

and the other analogous equations forcn
1 , n51,2,3. Accord-

ing to Floquet theory,19 at a boundary separating a region
exponentially growing solutions from a region of nongro
ing solutions of a system of equations with periodic coe
cients, the solution is a purely periodic function of time.
arrive at the curve~in terms ofv5v(h)) on which the so-
lution is purely periodic, it is necessary to eliminate the se
lar terms from the right-hand side of equations~36!. If the
combination frequencies of the inhomogeneous terms6v

6Vn are far from the eigenfrequencies, thenD̂1An50 and
An5An(T2 ,...). Weassume that the external pumping fr
quency is such that the following inequality holds:

v5V01V11hs, ~37!

wheres is the detuning parameter. Then from the conditi
that the resonance terms be eliminated, we obtain from~36!

2 iD̂ 1A01a2A1* e2 isT150, ~38!

2 iD̂ 1A11a2A0* e2 isT150 ~39!

or

D̂1
2A1* 1 isD̂1A1* 2ua2u2A1* 50,

where it is taken into account thatT15hT0 , and also the
remaining equationsD̂1An50, n52,3. Hence, assuming
A1* 5A1* (T2 ,...)exp(ieT1), we have

«5
s

2
6As2

4
2ua2u2. ~40!

We see that the increasing solutions~i.e., parametric reso
nance at the given combination frequency! exist under the
condition ua2u2.0, which obviously holds, and the form o
the resonance curvev5v(h), separating the region o
stable oscillations from the exponentially growing solution
in a first approximation inh has the form

v~h!5V01V162hua2u. ~41!

Thus a parametric resonance is observed at the positive c
bination frequencyV01V1 . By doing an analogous trea
ment of all the remaining cases, one can show the followi
-

-

,

m-

:

~1! There is no parametric resonance at the positive
quencyv5V12V0 .

~2! Similarly, there is no parametric resonance at the ne
tive frequencyv5V02V2 .

~3! The parametric resonance at the negative freque
v52V02V2 does exist, and the resonance curve h
the form

v~h!52V02V262hua4u. ~42!

Thus parametric resonances can occur in a plaquette on
the frequenciesV01V1 and2V02V2 . SinceV1ÞV2 for
any l from the regionl.lc , the asymmetry of the reso
nance curve with respect to a change in sign of the exte
pump frequency is obvious. The conclusions as to the p
ence of parametric resonances of the first order~in the field
amplitude! at combination frequencies, including the su
~with the appropriate sign! of the frequencies of the symme
ric and first azimuthal modes, are in agreement with the d
from the analysis in Part I,10 but the frequency asymmetr
was not discussed there.

In system~30!–~33! there also exist direct resonances
first order in h: at the frequencyv52V2 and at the fre-
quencyv5V1 with different ‘‘powers’’—amplitude factors
uju;(12m) anduzu;(11m) from Eqs.~31!, ~32! ~see Fig.
3a!. Thus the pattern of direct resonances is also asymme
with respect to a change in sign of the pump frequen
Figure 3b shows the ‘‘power’’ of the parametric resonanc
in the system as a function of the anisotropy parameterl in

FIG. 3. The ‘‘power’’ of the direct~a! and parametric~b! resonances as
functions of the anisotropy parameter in the OP region. The dotted
corresponds to the valuel50.97 for which the numerical calculations wer
done.
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the existence region of the out-of-plane vortex~i.e., the de-
pendence onl of the opening angle of the curvev
5v(hcr), which bounds the regions of exponential instab
ity!. The power of the parametric resonance is defined
Ppar5p22 tan21(2ua2u) for resonance3 at the frequency
V01V1 , and by the same expression but withua4u for reso-
nance4 at the frequency2V02V1 , P1,2

par(lc)50. From the
curves given it is easy to determine the sequence in wh
the resonances should arise~when damping is taken into ac
count! as the amplitudeh of the external influence increase
The first of the direct resonances to appear should be
resonance at the frequencyv52V2 , which has a high
power. The first of the parametric resonances is that at
frequencyv5V01V1 . Figure 4 shows the frequency de
pendence of the oscillation amplitude~the amplitude–
frequency characteristics! for the direct resonances and th
curves of the critical value of the amplitude of the extern
field as a function of the pump frequency~the critical char-
acteristics! for the parametric resonances. Performing the
pansion by the method of multiple scales, one can show
in the second order inh only a renormalization of the reso
nances frequencies, of orderh2, arises, and no additiona
resonances appear.

Thus in the activation of the low-frequency modes t
following pattern arises: upon a change in the direction
rotation of the external circular field, the role of the lowe
first azimuthal mode begins to be played by the next a
muthal mode~as has been noted in a number of previo
papers, these modes can be regarded as spin waves ro
in opposite directions!, and that leads to a frequency asym
metry of the observed resonance interaction upon a chang
the sign ofv. In the general case the ‘‘power’’ of the reso
nance~determined by the value of the amplitude factors fo
direct resonance and by the opening angle of the chara
istic v5v(hcr) of the form~41!, ~42! for a parametric reso
nance! is also different for different directions of rotation o
the pump field even in the linear approximation. It should
noted that the remarks concerning the presence of a d
resonance are also correct in the case of an arbitrary sy
with a fixed boundary, since in the derivation of the dynam
cal equations only the symmetry of the modes themse

FIG. 4. Illustrative scheme of the main resonances of a plaquette conta
a vortex: for direct resonances the dependence of the oscillation amplit
of the spins on the pump frequency is shown, and for the parametric r
nances, the characteristic curvesv(hcr) and the regions of instability
~shaded!. For each of the resonance curves the presence of finite dampi
taken into account. The labels1,2,3,4correspond to Fig. 3. The dotted lin
corresponds to resonances found in the numerical study.
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and of the external field was taken into account. The pr
ence of a parametric resonance, on the other hand, is d
mined by the sign in front of the coefficientuai u2 in condi-
tions of the form~40! for the different modes, and the powe
of a particular parametric resonance~if it exists! depends
only on the value ofuai u2, which in turn depends on the
configuration of the static vortex solution in the system~and,
hence, on the system itself! and the value of the anisotropy
Therefore, in going from a small plaquette to a macrosco
system only a quantitative change in the results is possi
However, by using the procedure described above, it
straightforward to derive a set of criteria~similar to those
which we derived for the case of the interaction of the zer
and azimuthal modes! that will predict the existence of a
parametric resonance at combination frequencies by sta
from the value of the static discrete distribution of spins
the OP vortex. The results regarding the presence of a d
resonance at the frequencies of the first azimuthal modes
remain valid for considering systems with a free boundary
that case, however, the lowest zeroth mode is absent~its
frequency is identically equal to zero!, so that the pattern o
the combination parametric resonances in the system
qualitatively altered. However, as was pointed out in Ref.
a change in the form of the boundary conditions does
entail a substantial rearrangement of the resonance pat
Therefore, it can be stated that the main effect should b
direct resonance at the frequencies of the first azimu
modes, and that has been confirmed in our subsequen
merical studies.

3. NUMERICAL ANALYSIS OF THE DYNAMICS OF A SPIN
PLAQUETTE IN A CIRCULAR MAGNETIC FIELD

To confirm and check the results of the analytical tre
ment of the mechanism of vortex switching in Sec. 2 a
also to get an understanding of the relation of the lin
analysis to the true physical picture~since the switching it-
self is a substantially nonlinear phenomenon, the reson
activation of the eigenmodes of the system by an exte
field is not guaranteed to lead to a change in polarization
the OP vortex, since here a linear treatment is insufficie!,
we carried out a series of numerical simulations and mode
the process of switching of an OP vortex for a plaquette. T
system of eight nonlinear equations~1!, ~2! for the plaquette
was integrated by the Runge–Kutta method for different v
ues of the frequency and amplitude of the external field.
the chosen value of the anisotropy parameterl50.97 the
total z projection of the magnetization in the OP vortex co
figuration, uM u54umu'1.12, is large enough for a precis
and unambiguous determination of the polarization of
vortex. At the same time, the static valuem'0.28, which is
much smaller than unity, allows one to do the integration
determining the direction of the spin vector in spherical p
jections, making it possible to satisfy the conditionuSnu51
without additional procedures and expenditure of compu
time. As the initial configuration we chose the static dist
bution ~5! with p51 ~spins directed upward! for an OP vor-
tex found precisely at the center of the plaquette, and the
external field was turned on and the dynamic behavior
each of the four spins was tracked. For stabilization of
system a weak dampingg5631023 was taken into accoun
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~this led only to an insignificant renormalization, of orderg2,
of the eigenfrequencies of the system!. The eigenfrequencie
for a value of the anisotropy parameterl50.97 are as fol-
lows: frequency of the zeroth mode~14! V0'0.55; fre-
quency of the lower first azimuthal mode~16! V1'1.38;
frequency of the upper first azimuthal mode~18! V2'2.5;
frequency of the second azimuthal mode~20! V3'2.68 ~see
Fig. 1!. The dependence of the vortex switching timet on
the frequency of the circular pump was found to first ord
for different values of the amplitudeh of the external circu-
lar field h. The corresponding curves are shown in Fig.
The switching time was considered to be that time at wh
the totalz projection of the magnetization of the system b

FIG. 5. Numerically obtained dependence of the vortex switching time
the frequency of the external field for different values of its amplitudeh,
1022: 0.65 ~a!, 0.8 ~b!, 1.05 ~c!. The value of the damping used wa
g50.631022. The arrows indicate the values of the resonance frequen
predicted analytically.
r

.
h
-

came equal to the initial value but with the opposite sig
M521.12. It is seen in Fig. 5a,b,c that initially~at small
values of h) the first switching occurs at a negative fr
quencyv'22.43 ~Fig. 5a!. With increasing field amplitude
another region, at positive frequencies withv'1.46 is added
~Fig. 5b!. Finally, at still larger values of the external field
third switching region arises, at positive frequencies w
v'1.92 ~Fig. 5c!.

By comparing the results of the numerical analysis w
the data from the analytical treatment of the mechanism
activation of the eigenmodes of the plaquette and also tak
into account the values of the eigenfrequencies of the sys
for l50.97, one can conclude that the most pronoun
switching is that due to the direct resonance at a nega
frequency of the upper first azimuthal modev'2V2 , then
the weaker direct resonance at the frequency of the lo
azimuthal modev'V1 , and then the strongest parametr
resonance is seen, at the combination frequencyv'V0

1V1 . The slight difference between the values of the f
quencies at which switching was observed and the value
the eigenfrequencies is apparently due to the deformatio
the amplitude–frequency characteristics for the direct re
nance and of thev(hcr) curves for the parametric resonan
on account of nonlinearity, and also to the nonlinear f
quency shift~the change, of orderh2, in the eigenfrequencies
can also be neglected, since the amplitude of the applied
is rather small!. Figure 6a, b shows the curve ofM (t)
5m1(t)1m2(t)1m3(t)1m4(t) for the switching regions
v522.43 and 1.92.~The form of the M (t) curve for

n

s
FIG. 6. Time dependence of the totalz component of the magnetization fo
a direct resonance~a! and a parametric resonance~b!. The value of the field
amplitude wash51.131022.
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FIG. 7. Time dependence of the totalz componentM and the in-plane componentM' ~see also the inset! of the magnetization. The field amplitudeh
50.931022.
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switching atv51.46 is basically the same as that shown
Fig. 6a!. From a comparison of these figures one can see
qualitative difference of the activation process for the
regions—the switching at the direct resonance frequen
v'V1 and2V2 occurs rapidly, with a very short activatio
time, as should be observed at a direct resonance. At
parametric resonance frequency a slower, exponential gro
of the oscillations amplitude takes place.

In Fig. 7 the time dependences of the totalz projection
of the spins and of the in-plane component of the total m
netizationM'(t)5A((nSn

x)21((nSn
y)2 for switching at the

frequencyv522.43 ~for v51.46 the form of these curve
is basically the same! are shown on one graph. If the vorte
switching is due to activation of only a symmetric mod
then in the course of the switching one should observe
equalityM''0. If azimuthal modes are involved in it, the
the total in-plane magnetization should be nonzero. The fo
of the curves obtained suggests that at least in the in
stage of the switching the first azimuthal modes are sha
excited. Subsequently the switching itself takes on the s
metry of the zeroth mode, a circumstance that confirms
analytical conclusion that the first azimuthal modes pla
sort of ‘‘catalytic’’ role in the switching process: the growt
of the amplitude of these modes leads to activation of
zeroth mode, as a consequence of the presence of cro
terms in the dynamical equations~30!–~33! and also becaus
of the nonlinear mode–mode coupling~when the amplitudes
of the modes become sufficiently large!. In turn, for systems
with a fixed boundary the switching due to activation of t
symmetric mode is energetically most favorable, in agr
ment with what was stated in Ref. 12.

The numerical analysis permits the conclusion that
most important element of the activation process is the di
excitation at the azimuthal mode frequencies, which lead
secondary activation of the zeroth mode, and the switch
he
e
es

he
th

-

,
e

m
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-
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e
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process itself basically acquires the symmetry of this zer
mode.

In studying the dynamics of a spin plaquette we did n
discern any destruction of the vortex configuration by larg
amplitude oscillations in the case of a positive sign of t
frequency of the circular pump~as had been observed in th
numerical simulations by the authors of Ref. 12!. Apparently
this is because in our plaquette treatment there is practic
no difference in the amplitudes of the switching field for t
case of switching at positive and negative frequencies,
this effect becomes noticeable only for systems of large s
However, the plaquette treatment obviously gives an exp
nation for the nonequivalence of the signs of the freque
in the switching process. In the numerical simulation we a
did not attain the values of the field amplitude at which t
parametric resonance at the negative frequencyv52V0

2V2 would be noticeable. However, as was shown in Sec
the parametric resonance at that frequency has a lower po
than the resonance atv5V01V1 .

CONCLUSION

In this paper we have presented a detailed study of a
mechanism for the process by which the polarity of an
vortex in an easy-plane ferromagnet is switched in a circu
field; this mechanism, which was proposed in Part I of t
study,10 differs fundamentally from that considered earlier
Ref. 12. The approximate qualitative treatment of the vor
switching process from Ref. 10 is bolstered by an analysis
this process in a small spin plaquette, for which an ex
analytical treatment of the linear problem of the activation
eigenmodes by a circular pump is possible. The essenc
the proposed mechanism of activation of the system is
the low-frequency circular external field excites the lowe
lying azimuthal modes, which, in turn, act as a ‘‘catalyst’’ fo
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growth of the amplitude of the zeroth ‘‘symmetric’’ mode
which is what leads to vortex switching. The studies do
and a comparison of the data of the present study with
results of the Part I10 show that this unusual mechanism for
change of polarity is dominant for vortices found far fro
the center of the system, and it completely suppresses
mechanism of direct activation of the symmetric mode wh
was proposed in Ref. 12, involving the asymmetry of t
vortex due to its displacement from the center of the syst
We have proposed a scheme for constructing a criterion
which one could predict the possibility of parametric res
nances at combination frequencies from the coefficients
the linear equations~which are determined solely by th
static distribution of the magnetization in the OP vortex!. We
note in this regard that by considering a plaquette one
make a generalization to the case of an arbitrary system
a fixed boundary, and the conclusions as to the direct re
nance at the frequency of the azimuthal modes with the
responding sign are applicable to an arbitrary system w
boundary conditions of any type; this agrees with the c
clusions stated in Ref. 10. The data obtained, and a comp
son with the previous numerical results,12 make it possible to
construct a more correct~applicable to a vortex found clos
to the center of the system! two-mode model for describing
the process of change of the vortex polarization: the simp
model, which in the linear limit must give the results of o
linear treatment, should take into account in a phenome
logical way the presence of nonlinear terms of the fo
ucnu2ucku2, n,k50,1 in the Hamiltonian. However, in con
structing such models it is necessary to keep in mind t
despite the formal equivalence of the mechanism for
switching from the state withp51 to p521 and vice versa
~with the lowest azimuthal mode replaced by the next, ro
ing in the opposite direction!, switching under an asymmetri
influence~in particular, during pumping by a circular field!
has a preferred direction, and so modes of that kind
describe adequately only the switching in one direction.
the final analysis the asymmetry of the process by which
polarization of the vortex is switched is due to the lifting
the degeneracy of the frequency dependence of the azim
modes in the OP configuration, and thus it is of paramo
importance to take them into account.
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A solution of the problem of magnon scattering on Belavin–Polyakov solitons in two-
dimensional magnets is constructed in the framework of a generalizeds model. This model can
serve as a basis for describing both ferromagnets and antiferromagnets, and it can also
describe ferrimagnets near the point of compensation of the sublattice spins. The problem of
magnon scattering on a soliton is formulated‘ for this model, and its exact solution is obtained for
a partial mode with azimuthal quantum numberm51. It is shown that in a linear
approximation this mode completely describes the dynamics of the center of the soliton in a
magnet of finite size. Effective equations of motion for solitons in different magnets are
constructed on the basis of this analysis. ©2003 American Institute of Physics.
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It is well known that in low-dimensional magnets a sp
cial role can be played by nonlinear elementary excitation
solitons. In some cases the thermodynamic properties of
dimensional and two-dimensional magnets are governed
the soliton contribution. Solitons are responsible for the la
of long-range order at nonzero temperatures in o
dimensional and isotropic two-dimensional magnets. In o
dimensional magnets this is due to kinks~see, e.g., the
reviews1–3! and in two-dimensional magnets, to localize
Belavin–Polyakov solitons. For two-dimensional easy-pla
ferromagnets it has been shown that the presence of non
solitons ~vortices! leads to a special form of phas
transition—a Berezinski�–Kosterlitz–Thouless phas
transition.5,6 The motion of solitons and the soliton–magn
interaction lead to a soliton contribution to the dynamic
sponse function, which can be investigated experiment
by neutron scattering7 and spin-wave damping8–10 studies.

The dynamic description of a wide class of classi
two-dimensional isotropic Heisenberg magnets can be g
in terms of the classical unit vector order parametern, nx

1 iny5sinu eiw, nz5cosu.1,11 The dynamics of a classica
ferromagnet is described by the Landau–Lifshitz equat
for the normalized magnetization, which in this case pla
the role of the dynamical variablen. In a classical antiferro-
magnet the dynamical variable is the antiferromagnetic v
tor, which in the long-wavelength approximation can
treated as a unit vector. The dynamics of an antiferromag
is described by the Lorentz invariants model of then field.
Both types of magnets will be treated in the framework o
651063-777X/2003/29(1)/7/$22.00
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unified approach, based on the the generalizeds model, the
dynamical equations of which have the form

¹202sinu cosuF 1

c2 S ]p

]t D
2

2~¹w!2G5
1

c2

]2u

]t2

1
z sinu

D

]w

]t
, ~1!

¹~sin2 u¹w!5
1

c2

]

]t S sin2 u
]w

]t D2
z sinu

D

]u

]t
. ~2!

Here the parameterD has the meaning of the coefficient o
spin stiffness of the ferromagnet, andc is the spin-wave
velocity in the antiferromagnet. In the nearest-neighbor in
action approximation one hasD5JSa2/\ and c
52JSaAZ/\, whereJ is the modulus of the exchange inte
gral,S is the spin of the atom,a is the lattice constant, andZ
is the number of nearest neighbors. The particular type
magnet is determined by the relationship between the par
etersc andD/z. For finiteD andc the generalizeds model
describes a ferrimagnet near the compensation point of
mechanical moments of the sublattices. For such a ma
the gyroscopic term~the term linear in the time derivative! in
the equations has the same structure as in a ferromagne
is proportional to the small parameterz5(S12S2)/(S1

1S2), whereS1 and S2 are the average values of the m
chanical moments of the atoms of the two sublattices.11 For
describing a ferromagnet one should drop the second de
tives with respect to time from the equations, i.e., forma
let c tend to infinity and setS250, i.e.,z51. The dynamic
© 2003 American Institute of Physics
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term in the Lagrangian of a ferromagnet is of a purely gy
scopic nature. The dynamics of the isotropics model, which
describes an antiferromagnet, has a Lorentz invariant f
with a characteristic velocity parameterc. For an antiferro-
magnet the gyroscopic term is absent~one must setz50).

The simplest linear elementary excitation of an isotro
magnet, arising against the background of the unifo
ground state, are magnons of the continuum spectrum.
choosing an orientation of the order parametern along the
polar axis, we obtain magnon solutions in the form of circ
larly polarized waves withu5const!1, w5k"r2v(k)t.
The dispersion relation for a ferromagnet is quadra
vFM(k)5Dk2 ~see Fig. 1!.

In the case of an antiferromagnet the dispersion rela
is linear, uvAFM(k)u5ck; it has two degenerate branch
with opposite circular polarizations,v56ck, which means
that linear polarization of the magnons is possible. Fo
ferrimagnet there are two branches, as in the antiferrom
net, but here the two branches are nondegenerate, their
quencies being given by

v~6 !52z
c2

2D
5AS z

c2

2D D 2

1c2k2. ~3!

For smallk one branch of magnons, as in a ferromagn
has a gapless dispersion relationv1,FIM (k)5Dk2/z, while
the second has a nonzero activationv2,FIM→2zc2 for k
→0.

For an isotropic magnet in the two-dimensional case
exact analytical solution is known, describing the Belavi
Polyakov soliton:4

tan
u0

2
5x2unu, w05a1nx, x5

r

R
. ~4!

FIG. 1. Magnon dispersion relations for various isotropic magnets descr
by the generalizeds model: ferromagnet~FM!, antiferromagnet~AFM!,
ferrimagnet~FiM!.
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Naturally, this solution has the same form for both the fer
or antiferromagnet and the ferrimagnet. Herer andx are the
polar coordinates in the plane of the magnet, the integern is
the topological charge of the soliton, andR anda are arbi-
trary parameters.

The energy of such a soliton is determined by the f
mula

E054pJS2unu

and is independent ofR and a. The nonuniqueness in th
choice ofa is characteristic for many models and is a co
sequence of the isotropicity of the Heisenberg exchange.
existence of an arbitrary parameterR ~soliton radius! and the
fact that the energy is independent ofR are due to the scale
invariance of the static two-dimensionals model.4 It is clear
that this symmetry is broken in dynamics, except for t
trivial case of a pure antiferromagnet and translational m
tion, where everything reduces to a Lorentz transformatio

The equations of the nonlinears model for an antiferro-
magnet are formally Lorentz invariant with a characteris
velocity c—the magnon phase velocity. Consequently,
dynamical properties of solitons in antiferromagnets can
analyzed using a Lorentz transformation with respect to
nonmoving soliton. In particular, in antiferromagnets the e
ergy and momentum of solitons moving at an arbitrary v
locity v is given by

E~v !5
E0

A12v2/c2
, P~v !5

v

c

E0

Ac22v2

with a dispersion relation having the standard Lorentz inva
ant form,E(P)5AE0

21c2P2, whereE0 is the energy of the
nonmoving soliton. In the case of interest here, that of l
soliton velocitiesv!c, this means that in the leading ap
proximation the soliton coordinateX in the case of an anti-
ferromagnet satisfies a Newton equation with a comple
determinate massM , MAFM5E0 /c2:

M
d2X

dt2
5Fe , ~5!

whereFe is the external force acting on the soliton.
The dynamical properties of solitons in ferromagne

have not been adequately studied. It has only been es
lished for them that the dynamical equations contain a gy
scopic termG@ez ,dX/dt#, the value of which is determined
by the topology. For a solitonG54pnJS2/D. Of course, the
combination of this term with the Newton equations~5!
should lead to Larmor precession of the soliton center wit
frequencyvL5G/M . However, the situation turns out to b
more complicated than that. Both for a soliton in an isotro
magnet and for a vortex in an easy-plane magnet the mag
spectrum is gapless. This implies that for soliton motion
the Larmor precession type with a finite frequencyvL , that
frequency inevitably falls in a magnon continuum. As a r
sult, soliton motion excites magnon modes, and that will le
to fundamentally different consequences for soliton mot
in an unbounded medium and in a finite sample. For the c
of interest, a magnet of finite size, one expects that the
diation of magnons, their reflection off the boundary, a
their effect back on the soliton will result in the establis
ment of a dynamical state of the magnet which includes b

ed
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the moving soliton and the coherent magnetization osc
tions matched to the soliton motion. For understanding
complex picture, direct numerical simulations of soliton m
tion for ferromagnets of approximately circular shape~cut
out from a square lattice up to 2003200 in size! under the
influence of image forces exerted by the boundary12,13 have
proved to be extremely important. In those studies it w
shown that the soliton motion is not described by sim
second-order equations of the Newton type, and it is ne
sary to introduce dynamical equations of higher order in
time derivatives. Following this idea, the authors of Ref.
state that an adequate description of the dynamics of a m
netic vortex in an easy-plane ferromagnet can be obta
only with the use of a complicated hierarchy of equations
motion, containing all the higher time derivatives. To und
stand this, we must address the question of in what sense
meaningful to speak of nonuniform motion of a vorte
~which is not a localized disturbance of the field! in an easy-
plane magnet or of a Belavin–Polyakov soliton~in which the
localization is weak! in an isotropic magnet.

For calculating the soliton contribution to the respon
function of a magnet, it is the coordinate of the center of
soliton that is important. The behavior of this coordinate h
been analyzed in numerical simulations.12,13 Thus we arrive
at the problem of constructing effective equations of soli
dynamics, i.e., equations describing the motion of a cer
point X, chosen as the center of the soliton, without tak
into consideration that magnon modes linked to the time e
lution of X(t) can be excited far from the soliton. In th
approach the soliton coordinateX5X(t) plays the role of a
collective variabledescribing both the dynamics of a finit
number of spins coupled to the soliton as such and also
dynamics of the magnon modes far from the soliton. It
clear that such equations can be constructed only appr
mately, and it is important to establish how the form of tho
equations will change as the accuracy is increased~e.g., as an
ever greater number of spins are taken into account!. In ad-
dition, it is clear that such equations at a certain level
comenonlocal, i.e., the coefficients in them will depend su
stantially on the size and shape of the system. Just su
situation arose in the construction of the effective equati
for magnetic vortices proposed in Ref. 12. On the other ha
analysis of the data from a numerical simulation has es
lished that the equations linear in the time derivative of
displacement of the soliton from the center of the syst
give an adequate description of the dynamics of the sol
center, even when the initial displacement is not small~10–
20% of the dimension of the system!. This means that in
practice the only source of nonlinearity in the equations
due to the static term—an external force, e.g., an im
force. This led to the idea of recovering the dynamical eq
tions describing the soliton motion from data on small os
lations of the magnetization against the background of
soliton. Indeed, since the image force acting on a magn
vortex is easily calculated, the frequencies of several mag
modes can be coupled with the dynamic terms in the eq
tions of motion.

Thus we arrive at the problem of small oscillations of t
magnetization against the background of the soliton~this ap-
proach was developed by Wysin15!. Analysis of this problem
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is complicated considerably in comparison with the on
dimensional case by the fact that numerical methods are u
even for studying nonmoving solitons, which is an obvio
first stage in the analysis of the dynamics. Here again
most interesting case is the isotropics model, for which not
only is the nonmoving soliton solution known but substant
progress has been made in the analysis of magnons ag
the background of the soliton.

For the analysis of small oscillations of the magnetiz
tion against the background of the Belavin Polyakov solit
it is necessary to consider the deviation of the angle varia
u andw from their values in the solitonu0 andw0 , respec-
tively. It is convenient to introduceq5u2u0 and the vari-
ablem5(w2w0)sinu0 and then change to the complex va
able c5q1 im. After straightforward transformations th
problem reduces to a complex equation of the form

Ĥc1DUc* 2
2 cosu0

x2 i
]c

]x
52 i

DR2

z

]c

]t
2

R2

c2

]2c

]t2 ,

~6!

whereĤ is the Schro¨dinger operator with a potential

U5
2n2 cos2 u01~u08!22n2 sin2 u0

2x2 ,

2DU5~u08!22S n2

x2D sin2 u0 ;

the prime denotes a derivative with respect to the varia
x5r /R. For a soliton in an isotropic magnet one h
u0852(n/x)sinu0, and the term withDU goes to zero. The
value of DU is nonzero both for magnetic vortices and f
precessional solitons in easy-axis magnets. Although
problem does not require studying anisotropic magnets,
which DUÞ0, we shall begin by discussing the gene
properties of that problem, since they are important
choosing the modes corresponding to the motion of the s
ton center.

The solution of Eq.~6! can be sought in the formc
5q1 im5u(r )eiF1v(r )e2 iF, with F5mx1vt, wherem
is the azimuthal quantum number. Then for the functio
u(r ) andv(r ) one obtains an eigenvalue problem in the fo
of two coupled Schro¨dinger equations:

F Ĥ1
2mn cosu0

x2 Gu1~DU !v5Vu,

~7!F Ĥ2
2mn cosu0

x2 Gv1~DU !u52Vv,

whereV5R2@vD/z1v2/c2# for the generalizeds model.
However, if DU50, then the system decomposes into tw
independent equations of the Schro¨dinger type foru andv:

Ĥ ~1 !u5Vu, Ĥ ~2 !v52Vv, ~8!

Ĥ ~6 !52¹x
21

~m6n cosu0!22n2 sin2 u0

r 2 . ~9!

These two equations are not equivalent; in particu
they have different asymptotics of the solution at ze
u5c1r m2n1c2r 2(m2n), and v5c3r m1n1c4r 2(m1n).
Therefore the equations foru and v play different roles in
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the description of the soliton dynamics. It is easy to see
the operatorsĤ (6) do not have negative eigenvalues. The
fore, in the caseDU50 the equation forv need not be
considered at all—one can setv50 in the solution. Then we
arrive at the conclusion that small oscillations against
background of the soliton in an isotropic magnet are
scribed by a single equation of the Schro¨dinger type~8! with
the operatorĤ (1) for the variableu.

Solutions of this problem were found in Ref. 16 forV
50 and any value of the azimuthal numberm. These zeroth
solutions um

(0) have the formum
(0)5sinu0 /x}du0 /dx. For

2n11<m<n they describe quasilocal modes of this tas
It is particularly important that a mode withm51 exists
among them, and the mode conists ofu1

(0)5sinu0/
x}du0/dx. It is clear that this is the mode that describes
soliton motion and is the mode of greatest interest to us

For any arbitrarily small but nonzero value ofDU the
situation is fundamentally altered. In this case the equati
for u andv form a coupled system. The formal solution f
the second equation of system~7! at smallDU and a finite
valueV.0 can be written in the form

v5
1

Ĥ ~2 !1V
~DU !u.

This quickly leads to the possibility of not two bu
four types of behavior ofu(r ) and the same types of beha
ior for v(r ) for r→0, i.e., for anym both asymptotic forms
can appear:c5c1r m2n1c2r 2(m2n)1c3r m1n1c4r 2(m1n).
From this we immediately see that in the case of a coup
system of general form the soliton dynamics as a whole
associated with modes both withm521 andm511. In a
certain sense, in this case the symmetry with respect to
substitutionm→2m is restored. In particular, the scatterin
amplitude for spin waves with a small wave numberk on a
magnetic vortex (DUÞ0) for m511 and m521 differ
only in the sign,14 whereas for a soliton in an isotropic fe
romagnetDU50, and those amplitudes have different fun
tional dependence onk.17

Thus we come to the conclusion that for a general m
net model, when constructing effective equations for the v
tex center coordinate, which plays the role of a collect
variable, one should use the frequencies of the modes
m511 andm521 the higher modes, both single mod
and modes joined into doublets. For isotropic magnets o
modes withm511 are important in this problem, which i
the limit V→0 have the asymptotic formdu0 /dr and de-
scribe the displacement of the soliton. However, we are
terested in the motion with nonsmall velocity, which corr
sponds to finite frequencies in equations~8!.

A remarkable property of isotropic magnets with
Belavin–Polyakov soliton is that for them there exists
exact solution for the translational mode with azimuth
numberm51 for arbitraryk, and not only of itsk→0 (v
→0) asymptotics; this solution corresponds to a shift of
soliton as a whole with an infinitesimal velocity. For o
analysis this is very important, since for elucidating the qu
tion of whether the soliton motion is of a local or nonloc
character it is necessary to study the dynamics in a magn
at
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finite sizeL and not only in the limitL→`. This solution
was obtained in Ref. 17 and can be written in the form

u1
k5Jn11~kr !1

Jn~kr !

k~r /R!n

du0

dr
, ~10!

which emphasizes that at short distances this mode desc
the displacement of the soliton. Apparently the presence
such a solution is not due to the exact integrability of t
problem. Indeed, an isotropic magnet model is exactly in
grable in the static two-dimensional case,n5n(x,y), but
nothing is known about its integrability in the dynamic (
11) case, forn5n(x,y,t).

Let us study a simple case that permits recovering
soliton equation of motion. We consider oscillations of t
magnetization in a circular magnet with a finite radiusL and
a soliton at the center. We shall discuss the Dirichlet bou
ary conditions corresponding to a fixed value of the mag
tization at the boundary:

c~r ,x!ur 5L50, ~11!

which models the case of repulsion of the soliton from t
boundary on account of the image forces.17 We are interested
only in those magnetization oscillations which are due
displacement of the soliton, i.e., which have azimuthal qu
tum numberm51. When the boundary conditions~11! and
the explicit form of the eigenfunction~10! are taken into
account, the spectrum of the problem is discrete. In the
gion of small wave vectorskL!1 the solution of equation
~10! has the form

c~x!}r n21S 12
4n~n11!

~kr !2

1

~r /R!2n11D ,

from which we find that for fixed boundary conditions the
exists a solution of the spectral problem with an anomalou
low frequency corresponding to this inequality. For it

k0
25

4n~n11!

L2 S R

L D 2n

. ~12!

The next roots of the equation already correspond to
condition kL'1, kn5 j n /L, where j n is the nth root of the
Bessel function. Thus the spectrum of eigenfrequencies
the translational mode withm51 contains an anomalousl
low frequency, which should be manifested in a slow moti
of the soliton, and a discrete set of higher frequencies of
same order of magnitude as for the magnet without the s
ton. It is important to note that for all these frequencies
corresponding solution clearly exhibits a characteristic p
corresponding to soliton displacement. For an anomalou
low frequency the solution is practically indistinguishab
from the functiondu0 /dr in the whole magnet~see Fig. 2a!.
For the next mode the difference fromdu0 /dr is noticeable
far from the soliton, but the translational maximum, as b
fore, is clearly discernable in the region of localization of t
soliton.

For a ferromagnet and antiferromagnet these soluti
lead to fundamentally difference physical pictures of the s
ton dynamics, and these cases must therefore be anal
separately. In the case of an antiferromagnet there are
frequencies corresponding to the translational Goldst
mode:
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v0
25c2k0

25
4n~n11!c2

L2 S R

L D 2n

. ~13!

These frequencies can easily be explained on the bas
a simple physical picture for the motion of a soliton und
the image forceFe52aX/Lp, where p52(n21) and a
516pn2(n21)JS2R2n ~Ref. 17!. For the Dirichlet bound-
ary conditions considered here, the force is a restoring fo
~repulsion from the boundary!, and the motion is stable.

It is extremely important that even for the simple case
an antiferromagnet, for which a Lorentz invariant or~at low
velocities! Newtonian dynamics should be realized, in t
case of a soliton in a magnet of finite size the effective eq
tions turn out to be more complicated than Newton eq
tions. Indeed, the oscillations of the soliton under the infl
ence of the image force has a finite frequency and falls in
continuum. Because of this, magnon modes which in a

FIG. 2. The functionum51(r ) for a translational Goldstone mode~a! and the
next translational mode~b! in an isotropic magnet withL510R.
of
r

e

f

-
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-
e

r-

cular magnet correspond to higher values ofkn are excited.
Taking kn into account forn.0 can also be done on th
basis of the effective equations forX. A hierarchy of effec-
tive equations of motion appears, containing only eve
numbered time derivatives. For describing the dynamics w
allowance for a single higher mode it is sufficient to write t
fourth-order equation in the form

M2

d4X

dt4
1M

d2X

dt2
1

aX

Lp 50, ~14!

the coefficients in which can be found by comparing t
frequenciesv1

25c2k1
2, k15 j /L. For largeL@R it is found

that M2>M /v1
2, i.e., M2 diverges with increasingL,

M25
E0L2

c4 j 2 , ~15!

and taking this mode into account gives nonlocal equati
for the soliton in an antiferromagnet. The soliton motion w
allowance for this term will have the form of a superpositi
of oscillations of the slow motion with frequencies6v0 and
a fast motion with frequencies6v1 . In the general case on
can write for components of theX vector

X5A cosv0t1C cos~v1t1w1!,

Y5B sin~v0t1w0!1D sin~v1t1w2!.

Depending on the relationships of the amplitudesA, B, C, D
and the phasesw0 , w1 , w2 both the fast and slow motion ca
be characterized by both linear and elliptical~or circular!
polarization. Such a great diversity of the solutions is uns
prising for a fourth-order equation, in which as initial cond
tions one must specify the value ofX and its time derivatives
up to the third, inclusive.

Let us discuss how soliton motion is obtained from th
equation under the conditions for which the numerical sim
lation was done.13 In this case the initial state correspond
to a static spin configuration with a soliton, which was in
tially at rest at a certain pointX(0)5ae0 , wheree0 is an
arbitrary unit vector. Since a static configuration was used
the initial time, it should be assumed thatdX/dtu t5050,
d2X/dt2u t5050, andd3X/dt3u t5050. Hence we find that the
soliton moves along a straight line parallel toe0 , and its
displacementX(t) has the form of a superposition of tw
oscillations:

X~ t !5ae0

v1
2 cosv0t2v0

2 cosv1t

v1
22v0

2 .

Thus, by analyzing the simplest case of an antiferrom
net, for which it would seem that the dynamics of solitons
any type should have a Lorentz invariant character, we h
established that the center of the soliton should execu
rather complex motion, which, in turn, should be reflected
the response functions of the magnet. This can be verified
numerical modeling. Unfortunately, such studies have
been done.

Thus, starting only from linear equations for the solito
coordinate, we have obtained a relation between the am
tudes of the different modes excited in the system. To ch
the validity of this approach, let us apply it to a problem th
has been analyzed in detail both analytically and num
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cally. Let us consider the motion of a vortex in an easy-pla
magnet of circular shape with radiusL. In such a system
there is a lowest mode withm51 and a frequency
v0}1/L2. The next modes are joined into doublets w
m561, and their frequenciesv1 andv2 are close in modu-
lus. The lowest doublet corresponds tov152ṽ1d, v2

5ṽ1d, v0<d!ṽ}1/L. This picture is obtained for a nu
merical study of magnon modes against the background
vortex in a discrete magnet model15,14 and analytically from
an analysis of the data for magnon scattering on a vorte14

The presence of these three modes has been observed
numerical simulation of the vortex dynamics, while th
higher doublets were ordinarily not visible.13 When only
these three frequencies are taken into account, the vo
motion is described by an equation that can be obtained
by a generalization of the phenomenological data13 and on
the basis of the method of collective variables with the use
the generalized substitution of the traveling-wave type:18

G3@d3X/dt3,ez#1Md2X/dt21G@dX/dt,ez#1kX50.

Here the coefficients of the gyroforceG and massM are
finite, the coefficient of elasticityk}1/L2, and the coeffi-
cient of the ‘‘higher’’ gyroforceG3 diverges asL2 with in-
creasing size of the system.14 The general solution of this
equation can be written in the form

X5A0 cosv0t1At cos~v1t1w1!1A2 cos~v2t1w2!,

Y5A0 sinv0t1A1 sin~v1t1w1!1A2 sin~v2t1w2!.

For a description of the numerical studies, let us assu
that the vortex is at rest in the initial state, i.e.,dX/dtu t50

50, d2X/dt2u t5050. Assuming for specificity thatX(0)
5a, Y(0)50, we find that all three coefficientsA0 , A1 , and
A2 are nonzero. In the linear approximation in the sm
parameterv0 /ṽ we have

A0'a, A1'2A2'av0/2ṽ.

Here one obtains a trajectory which is extremely simi
to that which is observed in numerical simulations and
that described analytically by Kovalev, Mertens, a
Schnitzer on the basis of an analysis of the conservation l
for a soliton interacting with a magnon cloud.

For localized topological solitons in ferromagnets no n
merical simulation of the soliton motion has been done.
Ref. 17, from an analysis of small oscillations, it was pr
posed to describe the motion of such solitons on the bas
a Newton equation with a gyroforce:

Md2X/dt21G@dX/dt,ez#52aX/Lp.

It was found that for a Belavin–Polyakov soliton in
ferromagnet the nonlocality is manifested even in a seco
derivative analysis, i.e., in the standard equations of
Newtonian type the effective massMFM diverges asL2,
MFM524pnJS2(L/ jD )2, its sign depending on the cha
acter of the boundary conditions.17 For fixed boundary con-
ditions the sign of the mass is negative, and for a mag
with a free boundary the mass becomes positive.

The transition from local to nonlocal dynamics is conv
niently traced for the example of the generalizeds model
~1!, ~2!, which in the antiferromagnet limit~for z→0) and
when only the two lowest modes are taken into account g
e
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local Newton equations with a finite massM5E0 /c2, and
for 1/c2→0 it goes over to the Landau–Lifshitz equation f
a ferromagnet. We restrict the analysis below to the m
interesting case, that with topological chargen51.

Let us discuss the dynamical equations with allowan
for the two lowest eigenvaluesk0

2 andk1
2, k0

2!k1
2 under the

conditionR!L, which is written in the form

k0
25

8R2

L4 , k1
25S j

L D 2

.

In contrast to the case of a ferromagnet, they corresp
to four frequencies, the absolute values of which, unlike
case of an antiferromagnet, can be different. Two frequen
v0

(1) andv0
(2) correspond tok25k0

2,

v0
~6 !52z

c2

2D
6AS z

c2

2D D 2

1c2k0
2, ~16!

and the other two,v1
(1) andv1

(2) , are related tok1
2:

v1
~6 !52z

c2

2D
6AS z

c2

2D D 2

1c2k1
2, ~17!

where the symbols (6) in the notation for the frequencie
must be chosen the same as the signs in front of the sq
root in the formulas. These expressions contains three
mensionless small parameters:z, (R/L)2, andD/cL. Let us
assume that the quantityck0 , containing the product of two
of them, is much less thanck1 , but we shall not yet fix the
relative values ofzc2/D andck0 or ck1 . It is clear that such
an inequality does not rule out the case of a ‘‘pure’’ antife
romagnet, for whichz50.

If the value of z is large enough or the sizeL of the
system small, so thatzc.D/L, then the following inequality
holds:

v0
~1 !!v1

~1 !!v0
~2 !>uv1

~2 !u>zc2/D.

In this limiting case one should throw out the maximu
frequencies of the order ofzc2/D. The point is that for a
‘‘pure’’ ferromagnetz;1, and these frequencies are large,
the order of the exchange integral. More importantly,
whole series of quasi-doublets, corresponding to the va
c2k2

2, c2k2
3 , . . . , kn

2; j n /L, where j n are the next roots of
the Bessel function, lie betweenv1

(6)1 andv0,1
(2) , by virtue

of which it is inconsistent to takev0,1
(2) into account. Then

the the relationship of the two frequenciesv1
(1) and v0

(1) ,
which are important for the problem, are the same as fo
soliton in a ferromagnet:v0

(2)!v1
(1) . One expects that the

equation of motion, as in a ferromagnet, will have Newto
ian form:

M
d2X

dt2
1GFez ,

dX

dt G5Fe . ~18!

HereFe52aX/Lp is the external force, which has the sam
form as for an antiferromagnet;G is the gyroscopic constant
Let us consider how these equations jibe with the regulari
of soliton dynamics obtained from an analysis of small o
cillations. In the leading approximation in the small para
etersz and (R/L)2, we obtain two values of the frequencie
G/M and a/GLp. Comparing these frequencies with th
quantitiesv0

(1) and v1
(1) , we arrive at a formula for the
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effective mass and gyroforce, which differ from those o
tained above for a ferromagnet only by the presence o
factor z:

M52
4pz2JS2

D2 S L

j D
2

, G5
4pzJS2

D
. ~19!

We note that the value of the gyroforce is easily obtain
in the usual way, by direct analysis of the equations of ths
model.

To summarize, in the ‘‘ferromagnetic’’ limiting casezc
.D/L the value of the effective mass turns out to diverge
L2, just as in a ‘‘pure’’ ferromagnet. However, the coefficie
in front of L2 falls off with decreasingz, and in the actual
casez!1 the value ofM for finite L is of orderz in small-
ness.

Let us now consider the other interesting limiting ca
the ‘‘antiferromagnetic,’’zc,D/L. In this limiting case the
inequality uv0

(6)u!uv1
(6)u holds, and the leading approxima

tion corresponds to two frequencies,v0
(1)>aR2/L4G, and

v0
(2)>2zc2/D, and the frequenciesv1

(6) form a high-lying
doublet. It is clear that in this leading approximation w
again obtain the usual Newton dynamical equation with
gyroforce~18!. Comparing its roots with the quantitiesv0

(2)

andv0
(2) from Eq. ~16!, we find that the value of the effec

tive mass is finite and positive:

M5
4pJS2

c2 .

This value literally reproduces the Lorentz invariant a
swer, but in this case the value of the gyroforce is fin
Taking the limit z→0 in the formulas obtained gives
purely antiferromagnetic Lorentz invariant dynamics. Taki
the higher doublet into account leads to the appearanc
fourth-order equations with the same structure as fo
‘‘pure’’ antiferromagnet but with an additional term propo
tional to zd3X/dt3 ~we shall not discuss them here!.

Thus, for the most general but physically interesti
two-dimensional model of an isotropic magnet, we have a
lyzed the dynamics of Belavin–Polyakov solitons a
tracked the transition from local dynamics—Lorentz inva
ant for an antiferromagnet or purely gyroscopic~inertialess!
for the ferromagnet—to nonlocal dynamics. We have sho
that the nonlocal nature necessarily arises in an analys
the motion of the coordinate of the center of the solito
considered as a collective variable, and as necessary take
account a sufficient number of eigenfrequencies of the s
tem. In a ferromagnet the standard inertial term in the Ne
ton equation is already nonlocal, while for a pure antifer
magnet the nonlocality appears when the first non-Goldst
doublet is taken into account. In the intermediate case
ferrimagnet with a small but nonzero decompensation of
-
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nto
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spins, z@(D/cL)(R/L)2, for a soliton in the simplest ap
proximation one obtains typical Newtonian dynamics with
gyroscopic force. Under the inequalityz!D/cL the effec-
tive mass is finite forL→`. The condition for realization of
such behavior is that the inequalitiesz!D/cL hold. Since
D/c;a (a is the lattice constant!, this may reasonably be
reconciled with the point of view of the microscopic approx
mation ~which requires the conditionR@a) only in a finite
magnet at sufficiently low values ofz:

z!
1

L

D

c
'

a

L
.

In the other limiting case,z.D/cL, the effective mass
as in the case of a ferromagnet, diverges asL2 as the size of
the system increases, but with a much smaller coeffici
which goes to zero in the limitz→0. Thus a transition from
local to typically nonlocal behavior occurs upon variations
the size of the system or the decompensation parameterz.
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Elastic constants of borocarbides. New approach to acoustic measurement technique
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A new version of the phase method of determining the sound velocity is proposed and
implemented. It utilizes the ‘‘Nonius’’ measurement technique and can give acceptable accuracy
(<1%) in samples of submillimeter size. Measurements of the sound velocity are made
in single-crystal samples of the borocarbides RNi2B2C (R5Y, Lu, Ho!. The elastic constants
and the Debye temperature are calculated. ©2003 American Institute of Physics.
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1. INTRODUCTION

An important problem of physical acoustics is to obta
reliable data on the elastic constants of newly synthes
compounds. These data, while being of independent inte
also serve as tests for theoretical calculations of band st
tures, force constants, and phonon spectra. As a rule, n
synthesized materials come either in the form of products
solid-phase synthesis~i.e., more or less porous ceramics! or
in the form of fine single crystals. Objects of the first gro
are characterized by appreciable scattering of elastic vi
tions, making it practically impossible to use some version
a resonance or quasiresonance~of the long-pulse type!
method to determine the absolute values of the sound ve
ity in them. Single crystals most often are of millimeter
submillimeter size; besides, in layered crystals the charac
istic size in the direction perpendicular to the layers is of
100–200mm or even less. To determine the elastic consta
of such objects the method of ultrasonic resona
spectroscopy1 was developed, which consists in measu
ment of the spectrum of resonance frequencies of a sam
and subsequent solution of the inverse problem of recove
all the components of the tensor of elastic constants.
technique is inherently a resonance method, i.e., it app
only to objects with small scattering~damping!, a condition
which is not always possible to satisfy even in small sin
crystals, e.g., near points of phase transitions. In additio
can be implemented only in samples having a definite sim
geometric shape~rectangular parallelepiped!. The lucidity of
this method is compromised by the complexity of the ma
ematical processing, making it hard to spot possible erro

We have implemented a new version of the pha
method of measuring sound velocities; it is applicable b
to ceramic samples with strong scattering and to single c
tals of submillimeter size. Utilizing a kind of ‘‘Nonius’’ mea
surement procedure, the method permits one to achieve
ceptable accuracy~as a rule, better than 1%! in both cases. It
721063-777X/2003/29(1)/5/$22.00
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has been used to measure the sound velocity in Mg2

polycrystals2 and in VSe2 layered single crystals.3 Further-
more, being completely independent of the nature of the
nals to be analyzed, the instrumental implementation of
method enables one to study the variation of the amplit
and phase of any pulsed high-frequency signals. In part
lar, it has been used to measure the characteristics o
electric field accompanying a longitudinal sound wave in
metal.4

Section 2 of this paper is devoted to a description of
basic principles of implementation of the ‘‘Nonius’’ metho
of phase measurements of sound velocity. In Sec. 3
present the results of measurements of the elastic cons
in single crystals of the borocarbides RNi2B2C (R5Y, Lu,
Ho!.

2. ‘‘NONIUS’’ METHOD OF SOUND VELOCITY
MEASUREMENT. PRINCIPLES AND INSTRUMENTAL
IMPLEMENTATION

A block diagram of a device implementing the techniq
is presented in Fig. 1. It is essentially a standard compe
tion or bridge circuit, depending on the algorithm used
process the pulsed signals, which is set by the pulse c
modulation unit. In the bridge mode the signal that h
passed through the sample channel is summed with the
tiphase comparison signal, which is equal in absolute va
The amplitude and phase of the latter are regulated by
receiver, which functions as a null device. The unbalan
signal is separated into amplitude and phase component
high-frequency synchronous detectors.5 In the compensation
mode the receiver, with the aid of sampling–storage devic
matches the amplitudes of the signals arriving at its inpu
different times. In this case the noncompensation sign
with respect to amplitude and phase are produced throu
special code modulation of the pulse trains of the signals
the two channels. In any variant the data input to the co
© 2003 American Institute of Physics
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puter are the readings of an attenuator~amplitude of the com-
parison signal! and phase meter~phase difference of the sig
nal to be analyzed and the comparison signal!.

Two original developments employed in the impleme
tation of this standard scheme have substantially expan
its operational capabilities: an electronically controlled~lin-
ear! phase shifter with a practically unlimited tuning rang
and a new data processing algorithm, which maintain
phase shift of 120°~or 240°) between the signals being an
lyzed. The advantages of the new phase shifter are q
obvious. In particular, in relative measurements this ph
shifter provides a practically unlimited dynamic range wh
maintaining an extremely high accuracy of measurem
which is actually determined by the resolution of the pha
meter~at a signal-to-noise ratio>5). Let us discuss the sec
ond development in somewhat more detail. In the brid
mode the working algorithm of the circuit consists in ma
taining a null signal at the input of the receiver upon chan
in the sound velocity and damping in the sample. In inhom
geneous ~e.g., polycrystalline! samples, internal re
reflections and mutual conversion of different modes at
homogeneities lead to nonconstancy of the phase of
signal over the duration of the rf pulse envelope. The sa
situation is observed in short single crystals due to the su
position of secondary reflections. In this case the length
the time interval during which the sum of the two signals h
zero amplitude turns out to be short (<1027 s). For analysis
of such narrow features the receiving system should hav
rather wide passband and not allow any overshoots in re
ducing steep signal fronts.

For the 120° algorithm the sum of two signals of ide
tical amplitude~their equality is maintained by an indepe
dent channel! is equal to the amplitude of each of the signa
~equilateral triangle!. In this case at the time of sampling
storage there are no sharp amplitude drops at the input o
receiver; this substantially improves the working of the s
tem as a whole. A distinct advantage of the 120° algorithm
that it is unnecessary to have frequency~phase! modulation
of the master oscillator in order to obtain unbalance sign
of different polarity upon passage through the compensa
point, as one must have for self-balancing of the circuit. F
thermore, the usual amplitude detection used in the 1
algorithm allows one to use as the signals of the two ch
nels any two reflections that have traveled different distan
in the sample.

The measurement algorithm in part resembles one
posed earlier.6 First the phase–frequency~P–F! characteris-
tic of an acoustic circuit consisting of two delay lines

FIG. 1. Block diagram of the instrument: 1—frequency synthesiz
2—phase meter, 3—switches, 4—pulse-code modulation unit, 5—sam
with piezotransducers, 6—receiver, 7—electronically tunable phase sh
8—smoothly adjustable attenuator.
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measured at fixed frequency points~step 1!. Then the P–F
characteristic of a sandwich consisting of the same de
lines but with the sample between them~Fig. 2! is measured
at the same temperature~step 2!.1!

Because the signal circuits contain elements capabl
resonating~piezotransducers, imperfectly matched feede!,
each of these characteristics is not necessarily a straight
However, their difference, i.e., the P–F characteristic of
sample, in the absence of interference distortions in it, sho
form a strictly straight line, the slope of which determin
the phase velocity of the sound,

v5
360L

S
, ~1!

wherev is the sound velocity~cm/s!, L is the thickness of
the sample~cm!, and S is the slope of the P–F differenc
characteristic~deg/Hz!. It is easily seen by a direct calcula
tion that when the P–F characteristics1 and 2 are approxi-
mated by straight lines by the least-squares method~the
slopes areS1 andS2 , respectively!, then

S5S22S1 ~2!

for any deviations of the P–F characteristics1 and 2 from
straight lines. This relation is valid only if the frequenc
points at which the P–F characteristics1 and2 are measured
are coincident. In Ref. 6 essentially the same procedure
used to determineS, but since the technique used there d
not guarantee the required coincidence, additional er
could have been introduced.

If S is comparable toS1 ~0.3 or larger!, then in homoge-
neous materials the measurements can be limited to this
with completely acceptable accuracy~0.3% or better!.

However, in homogeneous but rather thin samples
superposition of secondary reflections distorts the main
of the measurement signal. Because of this, the parts of
pulse that coincide with the leading edge are customa
used for measurements. An analogous procedure, as a

,
le
r,

FIG. 2. Phase–frequency characteristics of the delay lines~1!, of a sandwich
consisting of the sample (LuNi2B2C, qi@100#, ui@100#, L50.835 mm) and
the delay lines~2!, and the difference function, i.e., the P–F characteristic
the sample~3!. Note the difference in the scales of the vertical axes.
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should be used in inhomogeneous materials for the rea
already mentioned, even though the acoustic path lengt
them may be comparatively large.

As a result of the occurrence of various kinds of tra
sient processes, the rate of which depends on the carrier
quency of the pulses, the slopes of the P–F characterist1
and 2 become functions of the temporal position of t
strobe readout pulse at the leading edge of the measure
signal. The variation ofS1,2, depending on the type of pi
ezotransducers, is 2–4%~for comparison, in extended
samples the variation ofS1,2 at the steady part of the pulse
at the 0.1% level!. This means that in going from step 1
step 2 the readout pulse should be shifted precisely by
sound delay timet0 in the sample. Since the latter is initiall
unknown and also because of the discreteness of the ste
the time shift of the strobe signal (531028 s in our experi-
ments!, it was practically impossible to satisfy this conditio
For findingt0 ~and, hence, the sound velocity! we used the
following interpolation procedure.

For each series of measurements with a definite m
~longitudinal or transverse! we calibrated the dependence
S1 on the temporal positiontx of the readout pulse. Then fo
a given sample we measuredS2 at some known positiontc of
the readout pulse at the leading edge of the signal. It is e
to see from Eqs.~1! and ~2! that t0 is a solution of the
equationS(x)5360x, wherex[tc2tx is the time shift of
the readout pulse between the set of calibration meas
mentsS1 and the measurements with the sample,S2 . An
example of the graphical solution of the interpolation eq
tion for several values oftc is presented in Fig. 3. The resul
of the interpolation~the value oft0) coincide regardless o
the choice oftc .

At this step of the procedure the ‘‘rough’’ determinatio
of the sound velocity is completed. To refine the values
use the ‘‘Nonius’’ method. Let the phase of the signal reg
tered at some definite frequencyf 0 by the phase meter in
step 1 be equal toF1 . In step 2 at the same frequency th
phase of the signal will beF2 . The total phase inserted b

FIG. 3. Example of the interpolation procedure for finding the sound de
time t0 . YNi2B2C sample (qi@100#, ui@010#, L50.885 mm) for several
values oftc ~see text!. At x50 the values oftc increase from bottom to top
with a step of 531028 s. The linear functionF(x)5360x.
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the sample isF05360n1(F22F1), where n50,1,2,... .
SinceF05360f 0L/v, by trying values ofn we find the re-
fined value ofv that is closest to the ‘‘rough’’ estimate.

In the above discussion it was tacitly assumed that
going from step 1 to step 2 the phase of the signal chan
only because of the addition of the sample. Actually, ho
ever, besides the sample we also had an additional laye
grease in step 2. During measurements in very thin sam
the contribution of the grease layer can become noticea
In our experiments GKZh-94 silicone oil was used as
bonding agent, forming a layer;1 – 2mm thick between the
ground surfaces. The passage of an elastic wave thro
such a thin layer is described by the sum of an infinite g
metric progression with the denominatorq5k2e22l (a1 iq),
wherek is the reflection coefficient at the boundary~we as-
sume that the wave impedances of the delay line and sam
are close in value!, l is the thickness of the grease layer,a is
the damping coefficient, andq is the wave number.

An estimate of the propagation velocity of sound in t
grease gavev l;2.13105 cm/s, v t;1.23105 cm/s, which
correspond to reflection coefficientsk;0.85 for our samples
In Fig. 4 we present the calculated dependence of the ph
of the wave passing through the grease layer on the thick
for various damping coefficients. The regions ofql corre-
sponding to the conditions of the experiment are also in
cated in Fig. 4. At low damping the correction can be rath
large. We were unable to estimate the value of the so
damping in the grease—in thick layers (;0.5 mm) it was
very large, probably because of cracking—but we assu
that its value is found at the 20 dB/cm level or higher, i.
the phase inserted by the grease layer is close toql. In pro-
cessing the results of the measurements we introduced a
rection for the additional grease layer—10° for longitudin
sound and 20° for transverse sound. In thin samples the
fect of this correction was not over 1%. We suppose that
correction can be eliminated by making comparative m
surements on two samples of different thickness.3 In that
case the length differencedL should be comparable toL,
since otherwise the contribution of possible nonuniformit
of the sound velocity over the whole length of the sam

y

FIG. 4. Diagram pertaining to the calculation of the additional phase s
inserted by the grease layer. The reflection coefficient at the grease–sa
boundaryk50.85, and the numbers on the curves give the sound dam
coefficient in the grease layer~neper/cm!. The dotted curve corresponds t
F52ql. The horizontal lines indicate the regions of the actual values
the parameterql for the corresponding mode.
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Note: Cik are elastic constants~in units of 1011 dyn/cm2), uD is the Debye
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would be attributed to the small differencedL.
Let us conclude with an estimate of the potential acc

racy of a single measurement. Special studies have es
lished that the irreducibility of the phase upon the remou
ing ~regluing! of the acoustic circuit is at the level of 20°
We estimate the indeterminacy of the correction for the
ditional grease layer to be 10°. Assuming that the accur
of the ‘‘rough’’ estimate of the velocity is sufficient for de
termining the necessary value ofn, we obtain for the mea-
surement error~at f 0;50 MHz)

dv
v

5
30

F0
'231029

v
L

.

FIG. 5. Diagram of the mounting of the sample: 1—piezotransduc
2—delay lines, 3—brass support ring, 4—sample.

TABLE I. Sound velocity in single crystals of borocarbides (T577 K).
Note: The ‘‘superfluous’’ data are denoted by an asterisk (* ). QL and QT
are the quasilongitudinal and quasitransverse modes; the thickness of
sample in mm is given in parentheses.
-
b-

t-

-
y

3. ELASTIC CONSTANTS OF BOROCARBIDES
RNi2B2C „RÄY, Lu, Ho …

In spite of the significant interest in the family of supe
conducting borocarbides, very little information about the
elastic properties can be found in the literature. We know
only one ‘‘acoustical’’ study,7 devoted to YNi2B2C, in which
the sound velocity was measured by a time-of-flight meth
Single crystals of borocarbides were grown by the meth
described in Ref. 8 and had the shape of a slab with a m
mum dimension along the@001# axis of ;0.8 mm (R5Y),
;0.2 mm (R5Ho), and ;0.4 mm (R5Lu). They were
quite brittle, and therefore the mounting of the samples
tween the delay lines was done with the aid of a special br
ring, which acted as a holder and reinforcer; the ring w
ground simultaneously with the preparation of the worki
faces~Fig. 5!. The diameter of the ring was chosen larg
than the diameter of the piezotransducers to prevent spur
signals.

All of the measurements were made at liquid nitrog
temperature. The results are presented in Table I. It cont
some ‘‘superfluous’’ data, marked by an asterisk (* ). For
example, forC44 it was sufficient to make a single measur
ment qi@100#, ui@001# ~u is the polarization vector of the
elastic wave!. We assume, however, that having the ‘‘supe
fluous’’ data will make it possible to get an idea of the acc
racy of the measurements in this case.

One can also see that certain relations which follow fro
the general theory of elasticity9 are well satisfied. For ex-
ample, in a tetragonal crystal the sum of the squares of
velocities of the three modes remains constant under rota
of the wave vectorq in the ~001! plane.

The elastic constants of the single crystals studied
presented in Table II. The x-ray densities were used in c
culating them. For R5Y the agreement with the results o
Ref. 7 is poor, although the relationships among the vario

s,

TABLE II. Calculated parameters for borocarbides (T577 K).
the

temperature, andB is the bulk modulus. For Ho the modulus C13 was not
measured, and in the calculation ofuD andB it was assumed equal to 23.15
~see text!.
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constants are preserved on the whole. The Debye temp
ture was calculated according to the formula9

QD51146.8S rs

AI D
1/3

,

whereA is the molecular weight,s is the number of atoms in
the molecule,r is the mass density, andI is the sum of the
inverse cubes of the phase velocities of the elastic wa
averaged over all directions of the wave normal. F
R5Ho, because of the difficulty of preparing a sample of t
required orientation, the elastic constantC13 was not mea-
sured, and in the calculation of the bulk modulus and De
temperature it was assumed equal to the value ofC13 in
lutecium borocarbide. For R5Y the calculated value ofQD

is close to the thermodynamic estimate.10 For R5Lu the de-
viation of the calculated value ofQD from the thermody-
namic value is, generally speaking, greater than the all
able error. That may be an indication of the existence
lutecium borocarbide of a low-temperature ferroelastic str
tural transition, accompanied by a significant softening
some elastic constant. Our preliminary measurements in
mium borocarbide have shown that at 5.2 K the velocity
the C66 mode falls to;3.33105 cm/s. When this softening
is taken into account, one obtainsQD5383 K for R5Ho.

This study was supported in part by the Governm
Foundation for Basic Research of the Ministry of Educat
and Science of Ukraine~Grant No. 0207/00359!.
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1!At the frequencies we used the scale of the phase variations of the s

are much greater than 360°. The phase meter, of course, measures
differences in the interval 0 – 360°, and the absence of discontinu
(360° jumps! in Fig. 2 is achieved through programming.
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