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Motion of a probe nanoparticle in a quantum crystal with a narrow vacancy band
A. A. Levchenko, L. P. Mezhov-Deglin,* and A. B. Trusov

Institute for Solid-State Physics, pos. Chernogolovka, Moskovskaya obl., 142432, Russia
~Submitted January 8, 2003!
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The temperature dependence of the diffusion coefficientDp(T) of a probe particle with a
diameterdp of several nanometers and moving in a quantum crystal with a narrow vacancy band
Qv!Tmelt changes substantially, as a result of interactions with thermal vacancies, with
decreasing temperature in the rangeTmelt>Ttr>Qv , where a transition occurs from classical
thermally activated vacancy hopping to coherent motion of delocalized vacancies. Moreover, in the
transitional rangeT'Ttr the diffusion coefficient of a probe particle in a viscous vacancion
gas can increase if the effective vacancion mean-free path length is small compared to the particle
diameterl v!dp and increases with decreasing temperature more rapidly than the
concentration of thermal vacanciesxv;exp(2Ev /T). For T!Ttr , in a rarefied vacancion gas
where l v@dp the particle diffusion coefficientDp(T);xvSvp decreases asxv if the cross section
Svp for the inelastic scattering of a vacancion by a probe particle is a weak function of the
temperature. The model developed in this paper can be used to describe the diffusion of positive
charges in4He hcp crystals, grown at pressures above the lowest solidification pressure of
helium, and negative charges in parahydrogen crystals. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542499#
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1. INTRODUCTION

According to Andreev’s classification1 quantum crystals
are crystals where the probability of classical thermally a
vated site-to-site hopping of point defects in a crystal latt
becomes comparable to the probability of subbarrier qu
tum tunneling of defects at sufficiently high temperaturesTtr

close in order of magnitude to the melting pointTmelt of the
sample~the temperatureTtr in ordinary ‘‘classical’’ crystals
is exponentially low compared toTmelt). If the widths Qv
and Qi , respectively, of the energy bands of point defe
~vacancies! and impurity atoms or molecules in the expe
mental quantum crystal are much less thanTmelt, then at
high temperatures close to the melting point of the sam
T;Tmelt.Ttr , the diffusion of point defects is described b
the same laws as in an ordinary ‘‘classical’’ crystal~classical
thermally activated diffusion; see, for example, Ref. 2!. In
the low temperature limit,T!Ttr , point defects are delocal
ized and defecton waves, or defectons~correspondingly, va-
cancions, impuritons! can freely propagate in the volume o
a perfect quantum crystal. In a sample of finite size the
fective travel distances of these quasiparticles are limited
scattering at the surface of the sample, just as the tr
distances of phonons or electrons in a perfect metallic cry
at temperatures close to zero.

In the transitional rangeT;Ttr , where the predominan
mechanism of diffusion of defects changes, the effect
travel distances of defectons are short and comparabl
order of magnitude to the crystal lattice constant of
samplel v , l i;a;0.3 nm. Here scattering of defectons b
phonons or mutual defecton-defecton~for example,
impuriton-impuriton! scattering and scattering by defects
a different nature~dynamical or static shift of defecton leve
in the terminology of Ref. 3! can play the main role here
which is what results in defecton localization atT.Ttr .
3731063-777X/2003/29(5)/5/$24.00
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Detailed calculations of the behavior of the diffusion c
efficient of impurities in quantum crystals with a narrow im
purity band at temperaturesT<Ttr for the diffusion of3He
impurity atoms in4He hcp crystals (Q3 /Tmelt;1024) and a
comparison of the calculations and the results of direct NM
measurements of impurity diffusion with different content
3He atoms in a4He sample are presented in Refs. 1 and
Here we should also mention the theoretical calculations
the self-diffusion coefficient of molecules inp-H2 parahy-
drogen crystals, taking account of the contributions of cl
sical above-barrier and quantum subbarrier transposition
molecules and vacancies occupying neighboring sites in
crystal lattice,4 and NMR measurements of the self-diffusio
coefficient~more accurately, diffusion ofo-H2 impurity mol-
ecules; see Ref. 5! and the diffusion coefficient of deuterium
hydrogen HD molecules (Q3 /Tmelt;1023) in p-H2

crystals.6 In the experiments of Ref. 6 a transition was ob-
served from thermally activated diffusion of localized H
molecules to coherent motion of delocalized impurito
when the sample was cooled below 10 K. The maxim
travel distances of impuritons in these samples at temp
tures T!8 K were limited by scattering by orthohydroge
molecules and decreased with increasing content of the
purity o-H2 in the sample. A transition to itinerant motion o
o-H2 molecules in self-diffusion experiments has not be
observed, probably because the orthohydrogen mole
~which at high temperatures is a freely rotating rotat!
strongly deforms the surrounding crystal matrix of ap-H2

crystal, so that the corresponding width of theo-H2 impuri-
ton band is appreciably smaller than that of the band of
HD impurity molecules.

In the present paper the characteristic behavior of
diffusion coefficientDv(T) of vacancies and the diffusion
coefficientDp(T) of a classical probe nanoparticle with d
© 2003 American Institute of Physics
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ameterdp of the order of several nanometers (dp@a) is
discussed. The probe particle moves as a result of the in
action with thermal vacancies in a quantum crystal with
narrow vacancy bandQv!Tmelt. This question has not bee
previously investigated in detail in the literature; we ha
published a brief note.7 Naturally, when discussing the tem
perature dependence of the diffusion coefficientDv(T) of
vacancies in a crystal with a narrow band we employed
well-known computational results1–3 obtained for the behav
ior of the diffusion coefficientD3(T) of impuritons in4He
crystals.

2. VISCOELASTIC FLOW OF A QUANTUM CRYSTAL

Viscoelastic, i.e. vacancion, flow of a crystal around
probe particle is one of the basic mechanisms whereby
small particle moves under the action of an external forc2

In a coordinate system tied to the probe particle incid
vacancies are absorbed and emitted at the surface of the
ticle, so that the probe particle can be treated as moving
‘‘gas’’ of classical vacancies or in a gas of vacancions wh
are inelastically scattered by the probe particle. As noted
the Introduction, taking account of the transition, as tempe
ture decreases, of the sample from classical thermally a
vated diffusion vacancies to coherent motion of vacanci
should have a substantial effect, first and foremost, on
temperature dependencesDv(T) and Dp(T). However, this
question was not investigated in detail.

The vacancion mechanisms of the diffusion of charg
~more accurately, charged nanoparticles! produced in solid
helium by radioactivity are discussed in detail in Refs. 8 a
9. It is supposed that a negative charge is an electro
vacuum bubble with radiusR2 of the order of 1 nm~this
model has been confirmed experimentally10 in a study of the
absorption of infrared light by negative charges in4He and
3He crystals in the hcp phase!. The structure of the positive
charges produced by irradiation in solid helium or hydrog
has still not been determined definitively. It can be conj
tured by analogy to liquid helium that a positive charge i
snow ball with average radiusR1 of the order of nanometer
and consisting of a positively charged molecular ion s
rounded by a layer of helium atoms or hydrogen molecu
which are confined by electrostatic attraction forces; t
snow ball moves as a whole in the crystal under the actio
an applied electric field. Charge motion in the presence o
interaction with localized vacancies or with vacancio
propagating freely through the sample, i.e. the high- a
low-temperature limits in our classification, is studied
Refs. 8 and 9. Reference 14 is likewise devoted to theore
calculations of the mobility of positive charges in a gas
long-wavelength vacancions~low-temperature limit! in solid
4He. The agreement between the proposed theoretical m
els and the available experimental data on charge mobilit
solid helium requires a separate detailed discussion, w
falls outside the scope of the present paper.

Let us consider the behavior of the diffusion coefficie
Dv(T) of equilibrium thermal vacancies and the diffusio
coefficient Dp(T) of a probe nanoparticle interacting wit
vacancies in a quantum crystal with a narrow vacancy ba
Direct measurements of the vacancy diffusion coefficien
4He andp-H2 crystals are difficult to perform. The coeffi
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cient Dp(T) calculated from the mobility of a probe particl
is determined, to a first approximation, by the sum

Dp~T!5Dp
cl~T!1Dp

qu, ~1!

whereDp
cl corresponds to diffusion in a gas of classical v

cancies andDp
qu to diffusion in a vacancion gas.

We recall that the behavior of the diffusion coefficient
a probe particle in the high- and low-temperature limits h
been studied theoretically in detail. The behavior of the
efficient Dp

qu in the transitional rangeT;Ttr , where vacan-
cion travel distances are comparable to the crystal lat
constanta of the sample and can be much less than
diameter of the probe particle

l v2a!dp ~2!

requires additional analysis. Under the conditions~2! a probe
particle moves under the action of an external force in
dense gas of vacancions. In a coordinate system tied to
particle this corresponds to viscous~hydrodynamic! flow of a
vacancion gas around the probe particle.

It is obvious that forl v!a the probability of subbarrier
tunneling is much lower than the probability of classic
thermally acted site-to-site hopping of localized vacancy,
classical above-barrier transposition with a nearest neigh
~atom or molecule! in the crystal lattice.

In the low-temperature limit the condition

l v@dp ~3!

corresponds to Knudsen flow of a rarefied vacancion
around a particle in a perfect crystal.

The temperature dependences, expected from qualita
considerations, of the diffusion coefficientDv(T) of thermal
vacancies and the diffusion coefficientDp(T) of a probe
nanoparticle in a crystal with a narrow vacancion band
shown schematically in Fig. 1. For convenience a semilo
rithmic scale logD5f(1/T) is used. The figure also show
the variation of the relative concentration of thermal vaca
ciesxv(T);exp(2Ev /T), whereEv is the free energy of va-
cancy formation.

Three temperature ranges are distinguished in Fig. 1
I—High temperatures, T;Tmelt—the region of classica

thermally activated diffusion. The vacancy diffusion coef
cient Dv

cl'(1/6)a2/t, wheret21;exp(2Eb /T) is the above-
barrier site-to-site hopping frequency of a vacancy in
crystal lattice andEb is the height of the potential barrie
separating a vacancy and a matrix atom~molecule! which are
localized in neighboring sites of the crystal lattice. The we
known Arrhenius law describes the behavior of the diffusi
coefficientDp5Dp

cl(T) of a probe particle:

Dp
cl~T!5D0 exp~2E0

cl/T!

'AclxvDv
cl;exp$2~Ev1Eb!/T%. ~4!

The numerical factorAcl is proportional to the ratio (a/dp)3

of the specific volumes of the vacancy and the pro
particle.8,9 For qualitative estimates it is assumed that t
concentration of thermal vacancies around a probe partic
close to their equilibrium concentrationxv in the volume, i.e.
the diffusion activation energy of a probe particle in regio
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is E0
cl5Ev1Eb . The question of the vacancy concentrati

around charged probe particles in quantum crystals requir
separate study.8,9

II—Transitional temperature range T<Ttr , l v!dp . The
nanoparticle moves in a viscous gas of vacancions. The t
perature dependences of the vacancion diffusion coeffic
Dv

qu(T) and the probe-particle diffusion coefficientDp
qu(T) in

region II depend on the nature of the interaction that lim
l v .

If vacancion-phonon scattering plays the main role n
Ttr , l v5 l vph, then as estimated in Refs. 1 and 3l vph;T2n,
where n;9, and the vacancion diffusion coefficient in th
transitional range will increase with decreasing tempera
as a power law

Dv
qu~T!5Dvph

qu ~T!'Vvl vph2T29, ~5!

where Vv is the vacancion velocity in the band andVv
5aKQv /h.

When vacancion-vacancion scattering predominates
temperature dependenceDv

qu5Dvv
qu(T) is determined by the

vacancy content in the volume (xv /a3) and by the elastic
interaction energy of vacanciesU5U0(a/r )35U0xv .1 Here
r 5a/xv

1/3 is the average distance between two vacanci
and U0 is their interaction amplitude (U0@Qv). For high
concentrationsxv.(Qv/3U0)3/4 vacancions are localized, s
that classical thermally activated site-to-site hopping of
cancies plays the main role. The vacancy diffusion mec
nism changes asxv decreases. At temperatures wherer is
greater than the vacancion localization radiusR
5a(3U0 /Qv)1/4 but less than the elastic interaction radius
vacancionsr 05a(U0 /Qv)1/3, i.e.

~Qv/3U0!3/4.xv.Qv /U0 , ~6!

FIG. 1. Temperature dependences of the vacancy diffusion coefficientDv ,
the probe-particle diffusion coefficientDp , and the vacancy concentratio
xv .
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the diffusion coefficient of a weakly localized vacancio
drifting in a random potential field produced by other vaca
cies is proportional1

Dvv
qu~T!;xv

24/32exp~4Ev/3T!, ~7!

i.e. Dvv
qu grows exponentially with decreasing temperature

When the average intervacancion distance exceeds
elastic interaction radius of vacancions,r .r 0 , which corre-
sponds toxv,Qv /U0 , the vacancion-vacancion elastic sca
tering cross sectionSvv;r 0

2 is independent ofxv , and the
vacancion diffusion coefficient can be written as

Dvv
qu~T!'Vvl vv2xv

21, ~8!

where l vv5a3/(xvSvv) is the effective mean-free pat
length.

Let us now examine the behavior of the probe parti
diffusion coefficient Dp

qu in the transitional range. If the
vacancion-phonon interaction predominates nearTtr , then
the nanoparticle diffusion coefficient

Dp
qu~T!5AquxvDvph

qu ;exp~2Ev /T!T29 ~9!

can likewise increase with decreasing temperature provi
that the effective vacancion mean-free path lengthl vph and
correspondinglyDvph

qu ~5! increase more rapidly thanxv
21

with decreasing temperature.
In a viscous gas of strongly interacting vacancions

temperatures such that the inequality~6! is satisfied,

Dp
qu~T!5AquxvDvv

qu;xv
21/3;exp~Ev/3T!, ~10!

i.e. as the sample is cooled, the exponential decrease o
coefficientDp(T) in the range I is replaced in the range II b
an exponential increase. Forxv<Qv /U0 in the temperature
range wherel vv;xv

21!dp ~motion of weakly interacting va-
cancions in a viscous gas!, the particle diffusion coefficient
Dp

qu(T);xvDvv
qu is temperature-independent. This regim

could be observed in experiments with large-diameter pr
particles.

III— Low temperatures. T!Ttr , l v5L@dp (L is a char-
acteristic dimension of the sample!. The vacancion trave
distance is limited by scattering by the surface of a perf
crystal or by static defects in the interior volume of an im
perfect sample. The vacancion diffusion coefficient is de
mined by the productVvl v and is temperature-independen

The diffusion coefficient of a probe particle is propo
tional to the vacancion concentrationxv and the vacancion-
particle inelastic scattering cross sectionSvp :1,8,9,11

Dp
qu'b2xv~kQv /h!~Svp /a2!. ~11!

If the cross sectionSvp is temperature-independent, the
the coefficientDp

qu decreases exponentially as temperat
decreases,Dp

qu;xv;exp(2Ev /T). The values of the numeri
cal factors appearing in the expressions~7!–~9! Aqu!1, since
the center of gravity of the probe particle is displaced by
distanceb;a(a/dp)2!a as a result of inelastic scattering o
an incident vacancion by a particle.



i-
si
es
s

ci
di

n
va
u

rin

le
e
-

n
nd
n
e
de
er
bo

th
o
gh

th
a

ul
-

su
he

h

en
g

e
e

ing
e-
ive
-
ro
e
0

a

to
ta

on

e
ex-

-

e to

tude

mp-

sion

he

n

376 Low Temp. Phys. 29 (5), May 2003 Levchenko et al.
3. COMPARISON WITH MEASUREMENTS OF THE
DIFFUSION COEFFICIENT OF CHARGES IN 4He AND P-H2

HCP CRYSTALS

The ratios of the energiesEv , Eb , U0 , andQv and the
melting temperatureTmelt substantially determine the magn
tude and temperature dependence of the vacancy diffu
coefficient and the diffusion coefficient of probe particl
interacting with vacancies in a quantum crystal. It is impo
sible to calculate the values of these energies for a spe
sample from first principles. Direct measurements of the
fusion coefficientDv(T) of thermal vacancies in quantum
crystals are also problematic. Consequently, the questio
the width of the vacancion band and the role of various
cancy diffusion mechanisms in an experimental sample m
be solved by means of intercomparisons and by compa
with published temperature dependencesxv(T) and experi-
mental data on the diffusion of various kinds probe partic
~isotopic impurities, charges, foreign particles introduc
into a crystal, and so on! in samples with close molar vol
ume.

A critical review of all available experimental data o
the diffusion of various kinds of defects in solid helium a
hydrogen~there are more than 50 publications by differe
authors! is a subject for a separate study. In the present s
tion we shall attempt to determine whether or not the mo
developed above can be used to explain the results of a s
of measurements of charge mobility performed in our la
ratory in 4He andp-H2 hcp crystals11,12 which were grown
from a specially purified liquid under pressures above
lowest solidification pressures for liquid helium and hydr
gen. The charge mobility was measured by the time-of-fli
method in a planar capacitor~diode! frozen into solid helium
or hydrogen. Since hcp crystals are strongly anisotropic,
numerical values and temperature dependences of the ch
mobility in samples grown under identical pressures co
differ substantially~as also the thermal conductivity of he
lium crystals, which we investigated previously!, but the
overall picture was reproduced well.

It can be regarded as proven1,8,9 that in 4He hcp crystals
grown at pressures above the lowest solidification pres
(P.25 atm) the diffusion of positive charges, just as t
diffusion of 3He impurity atoms nearTmelt, is controlled by
the interaction of the charges with thermal vacancies. T
temperature dependences of the coefficientsD3(T) and
D1(T) in samples with close molar volumeVm

'20.7 cm3/mole~solidification pressure;31 atm) is shown
in Fig. 2. The curves1 and 2 illustrate the influence of
impuriton-impuriton interaction on the temperature dep
dence D3(T) with the impurity concentration increasin
from 0.006 to 2%.13

The points on the curve3 were constructed using th
measurements performed in Ref. 11; the crosses describ
results of our own control measurements ofD1(T) in a cell
with a somewhat different construction designed for work
with solid hydrogen.12 In Ref. 11 and our present measur
ments the position of the minimum point and the relat
height of the maximum on the curveD1(T) remained essen
tially unchanged as the applied electric field decreased f
104 to 1.53103 V/cm. Therefore the maximum cannot b
attributed to a change, with the temperature decreasing to
on
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K, of the vacancion interaction with charges drifting in
field 104 V/cm, as proposed in Ref. 14.

The 1.5–4-fold increase of the diffusion coefficientD1

observed in different samples is more naturally attributed
a change in the vacancy diffusion mechanism. X-Ray da15

show that in 4He hcp samples with molar volumeVm

'20.7 cm3/mole the concentration of thermal vacancies
the melting line (Tmelt'1.8 K) is xv(Tmelt)5331023 and
decreases almost 30-fold on cooling to 0.9 K~the straight
line 2 in Fig. 1 describes the temperature dependencexv(T)
for such a sample!. If it is assumed that below 0.9 K th
vacancion-vacancion interaction predominates and the
pression~10! describes the temperature dependenceD1(T),
which is valid when the inequalities~6! hold, then it is easily
estimated that 1025,Qv /U0,1024, i.e. in samples with
molar volumeVm'20.7 cm3/mole the width of the vacan
cion energy bandQv<1024 K is 4–5 orders of magnitude
greater than the values used in Refs. 1 and 14 and is clos
the impuriton band width,Qv<Q3 . To estimateQv it was
assumed that the vacancion-vacancion interaction ampli
U051 K, since the published values1,16,17 are in the range
U052 – 0.1 K.

Numerical calculations have shown that estimates ofQv
based on the formulas presented in Ref. 3, under the assu
tion that nearTtr the dynamical~phonon! shift of the vacancy
levels plays the main role, i.e. expressions of the type~5! and
~9! describe the temperature dependencesDv(T) andD1(T)
near 0.9 K, give close valuesQv<1024 K.

In support of the estimateQv<Q3 it should be noted
that according to Refs. 14 and 15 the local changedV/V
;0.3– 0.5 ~lattice compression! in the specific volume
around a vacancy is greater than the local lattice expan

FIG. 2. Diffusion of charges and impurity atoms in4He hcp crystals with
molar volumeVm520.7 cm3/mole. The temperature dependences of t
diffusion coefficientD3(T) of 3He impurity atoms in4He with 3He impurity
contentx350.006%~1! and 2%~2!13 and the diffusion coefficientD1(T) of
positive charges: the results of this work (1); measurements performed i
Ref. 11~d!.
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dV/V;0.1– 0.2 around a3He impurity atom in4He, i.e. the
displacement field around a localized vacancy and
vacancion-vacancion interaction amplitudeU0;(dV/V)2

appreciably exceed the displacement field and the interac
energy between impurity atoms. We remind the reader e
cially that a vacancy, just as an impurity atom, is a defec
the crystal lattice.

The values Qv!1 K have also been previousl
published.17 The authors18 of the NMR studies of3He diffu-
sion in4He concluded that the width of the vacancion ene
band in4He hcp crystals does not exceed several millikelv
even in samples with the maximum molar volume~and, ac-
cording to Ref. 1, it decreases rapidly with increasing sol
fication pressure!. We also mention Ref. 19 where the inte
action of first and second sound in4He crystals is
investigated and, to explain the results, it is proposed tha
samples grown at the lowest pressures the width of the
fecton ~supposedly vacancion! band can exceed 0.1 K.

In p-H2 crystals grown from liquid under close to atm
spheric pressure, it has been established12 that the tempera-
ture dependence of the diffusion coefficientD2(T) of nega-
tive charges~points3 in Fig. 3! is essentially identical to the
temperature dependence, calculated in Ref. 4, of the s
diffusion coefficientDs(T) of molecules~curve 1! and is
close to the behavior, known from NMR measurements,5 of
the diffusion coefficientDHD of an isotopic impurity in the
range of thermally activated diffusion of molecules~accord-
ing to Ref. 6 the minimum in curve2 corresponds to a tran
sition from transposition with vacancies to coherent mot
of HD impuritons!. The decrease in the activation energy f
the diffusion D2(T) of negative charges as a sample

FIG. 3. Diffusion of charges and impurity molecules inp-H2 crystals: dif-
fusion coefficient computed for hydrogen molecules using the model of
4 ~1!; diffusion coefficientDHD(T) of HD impurity molecules~2!;6 diffusion
coefficientD2(T) of negative charges~s! ~3!.12 The two solid lines drawn
through the points 3 correspond to the high- and low-temperature par
the curveD2(T).
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cooled from 13.3 to 6 K agrees with the predicted4 decrease
of the effective diffusion activation energyE0 of molecules
as a result of a transition from thermally activated hops w
E0

cl5Eb1Ev5200 K to subbarrier vacancy tunneling wit
E0

qu5Ev5100 K.
It is difficult to give a qualitative description of the be

havior of the diffusion coefficient of vacancies and pro
particles inp-H2 in the transitional temperature range 11
.T.9 K because the hopping of vacancies and molecu
into the ground state and the first excited state, which
inside a deep potential well, must be taken into accou4

Below 9 K the contribution of hops into the upper level ca
be neglected. Assuming that the relative concentration
thermal vacancies on the melting line of solid hydrog
xv(Tmelt)'331023 and decreases asxv(T);exp(2100/T)
on cooling, while the vacancion-vacancion interaction amp
tudeU0 is comparable toTmelt, i.e. U0;10 K, it is easy to
estimate from the inequalityxv(9 K)<Qv /U0 that the va-
cancion band width in ap-H2 crystal is close in order of
magnitude toQv;1023 K ~we note that the width of the
band of HD impurity molecules is estimated6 to be close to
1022 K).

In summary, the conjecture that in4He andp-H2 quan-
tum hcp crystals grown under pressures above the low
solidification pressure of a liquid the vacancion band wid
Qv!Tmelt makes it possible not only to explain the appe
ance of distinctive behavior of the diffusion coefficients
charged probe nanoparticles but also to estimateQv for the
same samples.
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Orientational ordering in solid hydrogens with JÄ1 in the presence of a crystal field
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A system of quantum linear rotators with quantum rotational angular momentumJ51 in a
crystal field is investigated. An equation is derived for the orientational order parameter. The
critical parameters, the phase-separation curve, and the line of superheating and
supercooling points are found. It is shown that the thermodynamic behavior of a system of linear
rotators in the classical case is identical to that of the limiting quantum (J51) cases
studied in this work. For positive crystal fields there is an analogy between orientational phase
transitions in a system of rotators withJ51 and phase transformations in a liquid–vapor
system. It is shown that states withJ.1 radically change the character the phase transitions in
the system of rotators: instead of one critical point characteristic for a system ofJ51,
now there is a line of critical points. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542500#
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Orientational ordering in solid hydrogens with odd va
ues of the rotational quantum numberJ ~orthohydrogen
o– H2 and paradeuteriump– D2) is due primarily to the
quadrupole–quadrupole interaction, since the contribution
all other components of the anisotropic potential
negligible.1,2 In three-dimensional (3D) crystals with cubic
symmetry the single-particle terms, with which the appe
ance of a crystal fieldHc is associated affect phase tran
tions only weakly. The orientationally ordered phase appe
ing in these systems belongs to the space groupPa3. Three-
dimensional solid hydrogens have been studied quite w
experimentally and theoretically.2,3

The situation is different for adsorbed layers of so
hydrogens on substrates. In this case the interaction betw
the molecules in a monolayer and the substrate atoms~mol-
ecules! makes a contribution to the crystal field, and for
appropriate substrate structure this contribution can be c
parable to that of the quadrupole–quadrupole interact
Systems for which the harmonicY20 determines the main
contribution toHc were studied in Refs. 4 and 5. It is know
that a crystal field strongly determines the thermodynam
of a system and can radically change its critical propertie6

The objective of the present paper is to study the influenc
a crystal field on the behavior of solid hydrogens with oddJ.

Since the moment of inertiaI of hydrogen molecules is
small and the intermolecular interaction is weak, the state
solid hydrogen at not very high pressures can be chara
ized by the rotational quantum numberJ referring to an in-
dividual molecule. We shall be interested in the behavior o
system at low temperaturesT!B (B5\2/(2I ) is the rota-
tional constant!. In this case, to a high degree of accuracy
can be assumed that all molecules are in a state withJ51
~since the splitting from levels withJ53 is hundreds of
3781063-777X/2003/29(5)/4/$24.00
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degrees! and, therefore, the kinetic energy of the molecu
is a constant, equal to 2B.

The Hamiltonian of the system in a representation wh
the kinetic energy operator is diagonal is

H52BN1
U

2
Ns22U~s1g!(

f
p̂f , ~1!

whereU54U0/25, g5U1 /U0 , U0 andU1 are, respectively,
molecular- and crystal-field constants,N is the total number
of sites, the operator

p̂5
1

2 S 21 0 0

0 21 0

0 0 2
D ;

ands5^ p̂& is the order parameter of the system and is n
malized so thats51 at T50.

In the present approximation the kinetic energy of t
system is constant, and consequently it can be dropped w
calculating the free energy. The free energy per site is

F
NU/2

5s222~s1g!2t ln@112 exp~2j!#,

~2!

j5
3

t
~s1g!,

wheret5T/(U/2) is the dimensionless temperature. Thus,
our limiting quantum case of solid orthohydrogenB as an
energy scale completely drops out of the subsequent an
sis. It is well known that this also happens for classical s
tems, but the reason is that the potential and kinetic ener
commute with one another.7
© 2003 American Institute of Physics
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Minimizing the free energy~2! with respect tos yields
the following equation for the order parameter:

s5
12exp~2j!

112 exp~2j!
. ~3!

The critical points are determined by the relations8

]F
]s

50,
]2F
]s2

50,
]3F
]s3

50,
]4F
]s4

.0. ~4!

In our approximation, however, the critical valuestc , gc ,
and sc can be obtained without solving the system~4!. In-
deed, making the substitutions

m5
1

3
~4s21!, t5

8t

9
~5!

Eq. ~3! becomes the Curie–Weiss equation for the magn
zation of a ferromagnet, described by the Ising Hamiltoni
in the self-consistent field approximation:

m5tanh
m1h

t
, ~6!

whereh is an effective magnetic field and is a function
temperature and the dimensionless crystal-field constantg:

h5
~114g!

3
2

ln 2

2
t. ~7!

Using the well-known properties of Eq.~6!,9 not only can the
critical values of the parameters of our system be found
an explicit equation can be obtained for the phase-separa
line, i.e. the dependence of the equilibrium transition te
peraturet0 on the crystal field strength can be determine
This relation is obtained from the condition that the fieldh
vanishes, which gives a linear dependence oft0 on g:

t0~g!5
2~114g!

3 ln 2
. ~8!

Figure 1 shows the temperature dependences of the o

FIG. 1. Temperature dependences of the order parameters for various
values of the crystal-field parameterg. Thick solid lines—equilibrium states
thin solid lines—metastable states, dotted lines—unstable states. The
cal lines show the temperatures of equilibrium phase transitions.
i-
,

ut
on
-
.

er

parameters for various values of the crystal-field paramet
g. For convenience in the subsequent analysis of the be
ior of the system, the temperaturet in Eq. ~3! is repalced by
the variablet58t/9. According to Fig. 1, forg50 a phase
transition occurs from a state with a positive value ofs into
a disordered state withs50. For positiveg this is a transi-
tion between two states with positive order parameters,
from a more ordered to a less ordered phase. We note tha
g.0 Eq. ~3! in principle also possesses solutions for neg
tive values ofs, but these solutions correspond to maximu
free energy, i.e. they are unstable. Finally, forg,0 an equi-
librium phase transition occurs between states with posi
and negative order parameters.

It follows from Eq. ~6! that the critical temperature

tc051, tc058/9. ~9!

Taking account of the relation~8!, we obtain for the critical
value of the crystal constant

gc05
3 ln 222

8
, ac05

2

5
gc0'0.003972. ~10!

Sincem vanishes at the critical point, it follows from Eqs.~3!
and ~5! that

sc051/4, hc050.1. ~11!

The equation~6! also makes it possible to find the max
mum superheating temperaturetmax and the minimum tem-
peraturetmin to which the system can be supercooled. The
points are determined from the condition that the derivat
ds/dt ~or, equivalently,dm/dt) vanishes at infinity. Differ-
entiating both sides of Eq.~6! with respect tot gives

t512m2. ~12!

Using Eqs.~6! and ~12! we arrive at the following relations
for determining the temperaturestmax andtmin as a function
of the crystal-field constantg:

g6~t,g!50, ~13!

where

g6~t,g!5
4

3
~gc02g!2

12t

2
ln 2

6
t

2
ln

12A12t

11A12t
6A12t. ~14!

Figure 2 shows the functionsg~t! obtained from Eqs.~14!:
the curves1 (g250) and 2 (g150) are, respectively, the
geometric loci of the maximum superheating temperat
and the minimum supercooling temperature. The straight
3 determines the temperature of the equilibrium transition
a function of the parameterg ~8!. For eachg in the range
0,g,gc0 there exist nontrivial values oftmax and tmin

(tmin,t0,tmax) which asg increases tend toward and merg
with one another and with the equilibrium transition point
the critical point (gc0 ,tc0). For g>gc0 no phase transitions
occur in the system.

For g50, together with the nontrivial solutions of Eq
~3!, there always exists a solutions50, which is stable for

rti-



e

a

re
th
rd
rr

or
c

as
s

f

on
m

of
lo
i.e
to
th

t
e
the

der
ility

o

of
le

if
c-

his

er-
n-

, to
nly
the

to
tem

nal
pa-
he

-
u ve

380 Low Temp. Phys. 29 (5), May 2003 Antsygina et al.
t.t0(0)52/(3 ln 2)'0.9618 and unstable in the rang
0<t<8/9. For temperatures 8/9<t<t0(0) the trivial solu-
tion for g corresponds to metastable states.

The situation for negative values of the crystal-field p
rameter is completely different. According to Fig. 2, forg
,0 there is no line of minimum supercooling temperatu
~curve 2!. Thus, in the entire temperature range where
stable phase is characterized by positive values of the o
parameters there always exists a metastable phase co
sponding to negative values ofs. This means that the system
can be supercooled right down to zero temperature. Acc
ing to Fig. 2, the points of maximum superheating on
again lie on the line 1. Interestingly, the phase diagram h
similar form for the opposite limiting case—a system of cla
sical rotators.7

Just as for classical rotators,7 the behavior of a system o
quantum rotators withJ51 is entirely similar to that of a
liquid–vapor system. The thermodynamic parameterst, g,
ands describing the state of a system of rotators corresp
to the parameters temperature, pressure, and particle nu
density in the liquid–vapor system.

An important characteristic determining the stability
the liquid–vapor system is the compressibility. The ana
gous quantity for a system of rotators is the susceptibility,
the derivativeds/dg of the order parameter with respect
the crystal-field parameter. Calculating this quantity on
phase equilibrium curve we obtain

ds

dg
5F~g!~sc02s!

3
1216~sc02s!2/9

F~gc0!~g2gc0!116~sc02s!2/9
, ~15!

where

F~g!5
4

114g
; F~gc0!5

8

3 ln 2
.

FIG. 2. Phase diagramsg~t!: the curves1 and2 are, respectively, the geo
metric loci of the maximum temperature of superheating and the minim
temperature of supercooling. The straight line3 is the line of equilibrium
phase transitions.
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According to the relation~15!, the susceptibility diverges a
the critical point. Using Eq.~3! it is easy to show that as th
critical point is approached the susceptibility behaves as
square root ofgc2g:

ds

dg
56

3

2A2 ln 2

1

Agc2g
. ~16!

The different signs correspond to the two values of the or
parameter on the phase equilibrium curve. The susceptib
versus the crystal-field parameter is shown in Fig. 3.

As already noted, in our limiting quantum case (J51)
the rotational constantB has dropped out, and instead of tw
energy parametersU and B only the single parameterU
remains in the problem. As a result, the geometric locus
critical points in theg2t plane has degenerated into a sing
point with the coordinates (gc0 ,tc0) determined by the ex-
pressions~9! and ~10!. The situation changes completely
levels withJ>3 are taken into account. Then, first, the stru
ture of the low-lying group of levels withJ51 changes.
Since the kinetic energy is not an additive constant in t
approximation, it is natural to take the parameterB as the
unit of energy. To take account of the influence of the high
lying levels on the critical behavior of the system, we i
cluded in our analysis the next group withJ53 and found
the eigenvalues of the Hamiltonian of the system. Then
calculate the free energy we confined our attention to o
the lowest corrected levels. The equation obtained for
order parameter in this approximation no longer reduces
the Weiss equation. The critical parameters of the sys
were calculated using Eqs.~4!. It was found that explicit
relations between them can be obtained only if additio
simplifying assumptions are made. Thus, assuming the
rameterU/B to be less than or of the order of 1 and using t
relation betweenU and U0 , we obtain the following rela-
tions for the critical parameters:

mFIG. 3. Susceptibilityds/dg along the equilibrium phase-separation cur
as a function of the crystal-field parameter for two coexisting phases.



n
e
ith
e

th
q
m
o
in

th

e
la
m

fro
ts

e

e

hi
n

for
h is

ion
-
the

ints
also
ms
ti-

e-
ical

in

ons
ges

ith
int,

ith
st.

r

,

381Low Temp. Phys. 29 (5), May 2003 Antsygina et al.
gc5gc01
27

14000
ln2 2

U0

B
,

sc5sc01
3

875
~5 ln 213!

U0

B
, ~17!

tc5tc01
9

1750
~ ln 215!

U0

B
.

Thus, even in this very simple approximation it is evide
that the phase-transition scenarios in the system dep
strongly on whether the analysis is limited to states w
J51 or the change produced in structure of the lowest lev
by levels withJ.1 is also taken into account.

It is convenient to make the indicated comparison in
coordinatesU02T. In these coordinates, according to E
~9!, the line of critical points is rectilinear and emanates fro
the origin of coordinates; the tangent of the slope angle
the line is U0 /T5100/9. Phase transitions are possible
this system for crystal fields less than the critical fieldgc0 .
The lines of equilibrium phase transitions~8! are rectilinear
and emanate from the origin of coordinates; the slope of
lines depends ong; and, the conditionU0 /T.100/9 should
hold. If the crystal field exceedsgc0 , then the lines of equi-
librium transitions vanish, and for anyT andU0 the system
can be in only a single-phase state.

According to Eqs.~17!, when the upper-lying levels ar
taken into account the line of critical points is a parabo
Numerical analysis shows that the lines of the equilibriu
transitions for not very largeU0 /B are negligibly distorted
and once again can be approximated by rays emanating
the origin of coordinates. Thus, the line of critical points cu
out a region of values ofT and U0 for which phase transi-
tions are impossible. As a result, the picture in the rangg
,gc0 is similar to that described above, and forg.gc0 only
the values ofT andU0 where the line of equilibrium phas
transitions lies above the critical line are admissable.

To conclude, we shall formulate the basic results. In t
paper a system of quantum linear rotators, whose rotatio
states are limited by the valueJ51, in a crystal field was
t
nd

ls

e
.

f

e

.

m

s
al

studied. It was shown that for such a system the equation
the order parameter reduces to the Weiss equation, whic
well known in the theory of magnetism. This representat
made it possible to find explicitly not only the critical param
eters but also the phase-separation curve without solving
equation itself for the order parameter. The lines of the po
of superheating and supercooling of the system were
found. It was shown that thermodynamically the two syste
of rotators—classical and limiting quantum—behave iden
cally. For positiveg there is also a complete analogy b
tween orientational phase transitions in a system of class
or quantum rotators withJ51 and phase transformations
a liquid–vapor system.

It was shown that the character of the phase transiti
in a system of rotators changes radically when the chan
produced in the low-lying groups of levels by states w
J.1 are taken into account. Instead of a single critical po
characteristic for a system ofJ51, a line of critical points
appears. As a result, the analogy with ordinary systems w
one critical point—liquid-vapor, magnet, and others—is lo
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On the phase diagram of the development of an instability of a massive charged
surface of liquid helium
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The existing interpretation of the development of an instability of a massive charged helium
surface requires a definite correction that identifies this phenomenon more closely with the known
spinodal and binodal decomposition processes in the theory of first-order phase
transformations. The distinctive features of the development of an instability of a charged helium
surface, exhibiting indications of spinodal~binodal! decomposition, are discussed and a
qualitative phase diagram for such transitions is constructed in the plane surface electron density—
electric field above a plane charged with 2D electrons. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1542501#
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The problem of the instability and reconstruction of
charged helium surface is well understood. The first res
obtained by Frenkel’ and Tonks1–3 on the oscillations and
instability of the surface of a charged metallic liquid we
extended by Gor’kov and Chernikova4,5 to a helium surface
with 2D electrons. Subsequently, these same authors de
oped a theory of equipotential reconstruction of a char
surface of a liquid~see Ref. 6!. The question here concerns
transition of a charged boundary of a liquid from a planar
a periodic, corrugated state. The theory predicts the typ
lattice that appears, the period of the lattice, the amplitud
the corrugations, and so on. The perturbed surface of
liquid remains electrically equipotential.

In an alternative picture of the reconstruction, a charg
helium surface is divided into a system of individual mul
electron dimples~Shikin and Leiderer7!. Each dimple pos-
sesses a charged nucleus surrounded by neutral liquid.
interaction between dimples can cause the dimples to
semble into clusters and, among other things, create a
odic distribution of the dimples over the surface.

Even though the idea of equipotential reconstruction
been around for a long time, the primacy of this idea still h
never been questioned. The work of Mel’nikov an
Meshkov8 has encouraged this. They showed that when
percriticality ~the excess electric field above the critic
value! increases with the total number of electrons remain
constant, dimple reconstruction replaces equipotential rec
struction.

Experiments performed primarily using electrons on h
lium are in good agreement with the predicted1–5 limits of
stability of a charged liquid surface~see Ref. 9!. Subse-
quently, the most interesting part of the dispersion law
surface oscillations, which is critically sensitive to the ele
tron density, was studied and all expected details w
confirmed.10 Finally, it has been proved that periodic11 and
aperiodic12 reconstruction of a liquid conducting bounda
can occur.

However, this picture is not completely satisfactory.
the first place, the calculations of equipotential periodic
3821063-777X/2003/29(5)/4/$24.00
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construction which are are based on perturbation theory
ploying the smallness of the amplitude of the surface cor
gations compared with the capillary length are valid only
weak charging of a helium surface, when a so-called s
regime of reconstruction occurs~the amplitude of the pertur
bation is much smaller than the capillary length, in the t
minology of Ref. 6!. The charging of the liquid surface is th
ratio n of the average 2D-electron densityns to the critical
densityns

max @see Eq.~10!#. At the same time, periodic recon
struction along the entire accessible helium surface can
observed experimentally11 only near the maximum value
n<1, when a strict reconstruction regime occurs~the corru-
gation amplitude is of the order of the capillary length!. Of
course, this disparity would be not fundamental if a seco
fact were not true. For small valuesn!1 the observed re-
construction is aperiodic. The helium surface is not cove
here by periodic corrugations covering the entire liquid s
face, as follows from the predictions made in Refs. 6 and
Instead, the electrons collect in one or several multielect
dimples which occupy only a small part of the entire heliu
surface. As an illustration, the pattern of dimple reconstr
tion from Ref. 12 in the regionn!1 with n increasing gradu-
ally is presented in Fig. 1. Obviously, the dimple scenario
reconstruction is energetically more favorable, and this
cumstance needs to be understood.

In the present paper it is shown that the reconstruct
process exhibits the properties of a first-order phase tra
tion. For transformations of this type the intersection of t
chemical potentials of competing phases determines
point ~line! of binodal instability near which the favore
phase appears as a result of a fluctuation. For helium
process is represented by the nucleation of multielect
dimples on a background of a uniform, near-critical, charg
state of the liquid surface. In addition, there is a point~line!
of absolute instability~spinodal!, which arises in the dynami
cal equations governing the transition and appears with
any threshold waiting. For a charged liquid the spinoda
the threshold of the dynamical Frenkel–Tonks instability.
the phase diagram the binodal, as a rule, has a large p
© 2003 American Institute of Physics
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FIG. 1. System of individual multielectron dimple
arising on a weakly charged helium surface wi
monotonic growth of the total number of electron
~from Ref. 12!.
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volume, though an activation time is necessary for nucle
appear. A spinodal transition is stimulated by a sharp jump
an external parameter into the spinodal region of the d
gram, after which the instability should develop, as is ch
acteristic, exponentially in time. The question of the poi
of coexistence of a binodal and spinodal does not hav
general solution. Sometimes such a solution exists and so
times it does not.

If the proposed picture is correct, then all experiments
the reconstruction of a charged helium surface which h
been performed thus far have been performed in the bin
region. For small fill factors the question is whether or n
only individual dimples appear. Asn increases, the dimple
form complexes~clusters! with internal periodicity~Figs. 1b
and 1c!. In the rangen→1 the area of a cluster approach
the total area of the liquid surface. As for spinodal deco
position, it has yet to be observed.

1. Proceeding to specific results, we shall discuss
properties of a spinodal first. We shall study the syst
shown in Fig. 2. The electric fieldsE2 above andE1 below
the charged helium surface are

E25
V

h
24ps

d

h
, ~1!

E15
V

h
14ps

~h2d!

h
, ~2!

wheres5ens andV is the potential difference between th
plates of the cell.

When the external field above helium is complete
screened,E250, and therefore

4ps5
V

d
, ~3!

and the fieldE1 is

E15
V

d
. ~4!

For fixed d0 and V, where d0 is the thickness of the
helium film in the absence of an external field, the heliu
surface sags under the electronic pressurePel5E1

2 /8p to the
depth

FIG. 2. Diagram of a cell with a 2D electronic system and geometric var
ables.
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j`5d2d0 , ~5!

which is determined by the conditions of mechanical eq
librium and conservation of the total volume of the liquid

rgj`1
V2

8pd0
2 5rgj0 , ~6!

L2j`1~L0
22L2!j050, L0.L, ~7!

uj`u!d0 .

Herer andg are the density of liquid helium and the acce
eration of gravity,L is the radius of the electronic disk on th
helium surface, andL0 and j0 are, respectively, the radiu
and deformation of the liquid surface outside the electro
disk.

Solving Eqs.~6! and ~7! simultaneously gives

j`52
V2

8prg* d0
2 , g* 5gS 11

L2

L0
22L2D . ~8!

For j`!d0 the deformation of the helium surface is inco
sequential for the subsequent arguments.

In terms of E2 and E1 the dynamical stability of a
charged liquid is given by the condition

~4pens!
21~E11E2!2516pka, k25

rg

a
, ~9!

whereE2 and E1 are given by Eqs.~1! and ~2!, a is the
surface tension of liquid helium, andk21 is the capillary
length. In this problem the potential differenceV and the
electron densityns are actually independent. However, th
clarity of the phase diagram in the ‘‘coordinates’’ (ns , E2)
in Fig. 3 results in a somewhat artificial choice of precise
these variables as independent variables.

If E250 ~complete screening!, then

E15
V

d
[4pens

max,

and the equality~9! determines the maximum electron de
sity ns

max above helium:

smax
2 5

ka

2p
1~E1

max!258pka. ~10!

Introducing the fill factor

n5
s

smax
, ~11!

we put the relation~9! into the form
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n21~«11«2!252, «65
E6

4psmax
. ~12!

In the (n,«2) phase diagram the curven(«2) ~12! is the
spinodal. If«2→0, then

n~«2→0!→1. ~12a!

In the opposite limitn→0

«2~n→0!5«1~n→0!→1/&. ~12b!

The symbolsS0 andS1 mark the positions of the points~12a!
and ~12b! on the spinodal ‘‘S’’ ~Fig. 3!.

The limit ~12b! in the definition~12! actually has no rea
meaning, since on the path toward this limit the deform
helium surface ceases to be equipotential. Different estim
of the position of this boundary have been made, thou
specific calculations of the dispersion law in the transitio
range have not been performed. As a point of referenc
can be assumed that equipotentiality vanishes in the ran

VC<T, VC;e2Ans. ~13!

For T<1 K the transitional range for the electron density
ns* <106 cm22.

For ns,ns* the problem of the oscillations of a charge
helium surface must be solved anew without using the e
potentiality property. A suitable alternative, which takes a
count of the influence of the deformation of the liqu
boundary on the electron densityn(x), is the requirement

n~x!5ns exp@2eE'j~x!/T#, ~14!

wherej(x) is the amplitude of the oscillations of the charg
surface andE' is the clamping electric field.

Using Eq. ~14! ~more accurately, its linear expansio
when eE'j(x),T) and the electronic pressurePel

5eE'n(x) acting on the helium surface, the dispersion la
for small oscillations of the charge surface becomes

rv2

a
5~k22h2!q1aq3, h25

nsE'
2

aT
. ~15!

FIG. 3. Schematic phase diagram for reconstruction of a charged he
surface. The following points are marked on the spinodal~line S):
S0—asymptote~12a!, S* —the ‘‘branch’’ point in the definition of a spinoda
@see comments to Eq.~16!#, S1—abstract point~12b! from the equipotential
‘‘baggage,’’ S`—asymptote~16!. The lineB is the binodal. The following
points are marked onB: B0—the position of the binodal according to th
estimates~22! (n05A16.52/8p50.81), B1—termination of the binodal in
the rangen→0 @estimate~19!#. The region of stability lies in the secto
between the origin of coordinates and the binodal.
d
es
h
l
it

e

i-
-

Just as in the Frenkel–Tonks problem, oscillations with
dispersion law~15! become unstable. But this happens in
different range, specifically,

h2.k2, E'.V/h. ~16!

According to Eqs.~16!, a field which increases with de
creasingns asE'}ns

21/2 must be used in order for a weakl
charged helium surface to become unstable. This assertio
qualitatively different from ‘‘equipotential’’ predictions@see
the asymptotic behavior~12b!#. Therefore the spinodal as
ymptote for smalln does not terminate at the pointS1 but
rather it extends as a square-root function right up to«2

→`. The ordinaten* in Fig. 3 marks the level near which
the transition from Eq.~12b! to Eq. ~16! occurs.

It should be noted that the instability~16! develops pri-
marily at small wave numbers@and not at the capillary
length, as in the case~9!#.

2. In contrast to a spinodal, the binodal of the reconstr
tion process cannot be determined very reliably. Here
competitors are the dimple energy and the electrostatic
ergy of a capacitor with 2D electrons where fluctuation
have produced a dimple. The uncertainty lies in the estim
of the optimal charge forming the critical dimple. The situ
tion is relatively simple only forn!1. Here, taking accoun
of the development of an instability~16! at small wave num-
bers, all free electrons ‘‘roll down’’ into the dimple at th
moment of the transition. This occurs when the Coulom
energyVC of the electronic system occupying a circle
radius L between the capacitor plates~Fig. 2! reaches the
energyW of a multielectron dimple with the same chargeQ:

VC5Q2
~h2d!d

L2h
, Q5pL2ens , ~17!

W5Q2kFs expS x2

2 DEiS 2
x2

2 D2
1

xG , ~18!

s5
2

2kR*
, x5kR, R

*
2 5

Apa

eE'
2 , E'.

V

h
,

and Ei(x) is the integral exponential function. The quanti
R in Eq. ~18! is found from the condition for the energyW to
be minimum as a function ofR.

For L@h the energyVC ~17! is quite low and instead o
a general expression forW ~18!, competing withVC , its
expansion near the zero point can be used:

W~s0 , x0!50, s051.05, x050.72,

W~s, x0!.
]W

]s0
~s2s0!. ~18a!

Equating the competing energies gives

Q2
~h2d!d

L2h
5

]W

]s0
~smax2s0!, ~19!

determining the value ofsmax. Since the left-hand side of Eq
~19! is small, we find thatsmax is close tos0 .

m
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The electric fieldE2
max, related withsmax by the formulas

~18!, determines the abscissa in Fig. 3 into which the bino
‘‘butts’’ as ns→0. This field is finite and is independent ofns

@ns drops out of the definition~19!#. Therefore in the limit
ns→0 the binodal lies ‘‘under’’ the asymptotic spinodal~16!.

In the opposite limitE2→0 the characteristic fluctua
tions develop near wave numbersq;k. Therefore the opti-
mal chargeQk per dimple is

Qk.pk22ens . ~20!

The dipole energyVC
k for a charge distribution in the

form of a flat disk with radiusk21, electron densityns , and
a compensating positive charge localized near the center
pedes the appearance of a dimple. Just as in the case~19!, the
equality

VC
k 5Wk ~21!

is independent ofns . Its left-hand side, by analogy to~19!,
contains an additional smallness (kR)2 compared with the
Coulomb energy of the dimple, though not so serious a
Eq. ~19!. As a result the solution of Eq.~21! for s once again,
@just as in the case~19!# gives a value close tos0 , i.e. the
field threshold essentially remains on the entire binodal
dimensional units this field is

~E1
0 !25~2p!3/2s0ka.~16.5260.005!ka. ~22!

The field (E1
0 )2 is somewhat weaker than the critical fie

E1
max ~9!, ~10! for a spinodal.

Focusing on the two characteristic binodal points~19!,
~21!, and ~22! and assuming that the desired curve in t
(ns ,E2) plane has no special features in the interval
tween its limiting values, the binodal of the reconstruction
a charged helium surface can be represented in the f
shown in Fig. 3~line B).

3. We note that two dimples can be in equilibrium at
finite distance from one another. The interactionWdd

b be-
tween them contains Coulomb and deformation parts

Wdd
b 52

Q2E'
2

2pa
K0~kr !1

Q2

r
. ~23!
l

-

in

n

-
f
m

Here, just as above,Q is the total charge of the dimple,E' is
the clamping field,r is distance between the dimples, an
K0(x) is a modified Bessel function. The energy~23! has a
minimum]Wdd

b /]r 50 at the pointr min , which can be deter-
mined from

K1~xm!2xm
2250, xm5kr min , xm>1. ~24!

The presence of the metastable coupling~24! between
dimples qualitatively explains why an assembly of dimp
arising during binodal decomposition of a 2D charged sys-
tem forms clusters with internal periodicity with character
tic length of the order of the capillary length.

Summarizing, the qualitatively new contribution of ou
analysis is an explanation of the data presented in Fig
which attest to the possibility of aperiodic reconstruction o
charged helium surface. Another point of interest is that b
odal ~spinodal! motifs can be seen in the reconstruction o
charged helium surface, which served as a basis for the
struction of the diagram~Fig. 3!.
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Atomic dynamics and the problem of the structural stability of free clusters of solidified
inert gases

É. T. Verkhovtseva, I. A. Gospodarev, A. V. Grishaev, S. I. Kovalenko, D. D. Solnyshkin,
E. S. Syrkin, and S. B. Feodos’ev*

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina, 47, 61103 Khar’kov, Ukraine
~Submitted January 22, 2003!
Fiz. Nizk. Temp.29, 519–529~May 2003!

The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the
cluster size is investigated theoretically and experimentally. Free clusters are produced by
homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is
used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for
theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters
was found. This was necessary to determine the character of the formation and the stability
conditions of the crystal structure. It wass shown that for clusters consisting of less than
N;103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly
than expected from the increase in the specific contribution of the surface. It is also established
that an fcc structure of a free cluster, as a rule, contains twinning defects~nuclei of an
hcp phase!. One reason for the appearance of such defects is the so-called vertex instability
~anomalously large oscillation amplitudes! of the atoms in coordination spheres. ©2003
American Institute of Physics.@DOI: 10.1063/1.1542502#
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1. INTRODUCTION

The rapid advancement which the physics of nanostr
tures and nanocomposite materials is currently undergoin
due to the exceptional importance of these objects in fun
mental research and modern technological applications.
the one hand it is precisely when a minimum number
atoms combine together that the basic properties of a s
appear while on the other hand small particles~clusters! pos-
sess their own distinguishing features which vanish as
cluster grows in size. In recent years, after the publication
the well-known monographs Refs. 1 and 2, an entire serie
new and interesting features has been discovered in clus
the melting temperature of small metallic particles diffe
ences strongly from the value in the bulk;3,4 the laws gov-
erning the appearance of more stable clusters with so-ca
‘‘critical’’ numbers in the structure of solidified insert gase
have been predicted;5 the existence of a roton cluster in H
II, providing the conditions for the existence of rotons, h
been proposed;6 optical surface modes have been observed
pure defect-free clusters;7 and, a surface plasmon has be
observed in a cluster.8 Interesting features of the physics
clusters on the surface of solids have been analyzed in
9. Two of the main informative characteristics for cluste
are the density of vibrational states and the rms displa
ments of the atoms. As a rule, the size dependences o
physical characteristics of a solid are studied experiment
in most cases, on films~solid or island! condensed on a sub
strate. The drawbacks of such investigations are: a high p
ability of quenching of nonequilibrium states, interaction
the sample with the substrate, and contamination of
3861063-777X/2003/29(5)/8/$24.00
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sample by impurities. Observations performed on clust
free of a substrate are more accurate. At the same time
construct a a theoretical description of the atomic dynam
it is desirable to study models with the smallest possi
number of parameters, and experimental studies should
ploy methods which do not affect the interior structure
clusters. In this sense it is of special interest to study a n
class of physical objects—clusters of inert gases. For s
clusters the important problem is the evolution of the str
tural and dynamical properties with a quasicontinuous tr
sition from atom to solid.

In the present work the problem of the stability of th
crystal structure of free clusters is studied. To this end
size dependence of the rms displacements of atoms in c
ters of inert gases is studied experimentally and theoretica
The experimental objects are substrate-free Ar and Kr c
ters produced by homogeneous nucleation in an isentr
cally expanding supersonic stream of gas. In this case
equilibrium structure is obtained, there is no interaction w
the substrate, and uncontrollable impurities do not conta
nate the experimental objects. Electron diffraction is used
determine the rms amplitudes of the atoms. Sharp, w
recorded diffraction patterns are obtained in electro
diffraction cameras with primary-beam current densitiesj
not exceeding 1022 A/m2. For such densities an electro
beam has virtually no bolometric effect on the experimen
object. Observations performed on condensed films of c
ocrystals~see, for example, Refs. 12 and 13! and theoretical
estimates, obtained for metallic nanoparticles on
substrate,12 which showed no effect due to the beam even
© 2003 American Institute of Physics
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j '0.1 A/m2, have confirmed this. In electron-diffraction in
vestigations of clusters moving with supersonic velociti
the short residence time ('1027 sec) of a cluster in the
irradiation zone makes heating by the electron beam e
less likely.

In the theoretical calculations, the method of Jacobi m
trices ~J matrices!, developed by V. I. Peresada and h
students,13–15 was used to analyze the experimental da
This method makes it possible to clarify the physics of
question in detail, does not require voluminous computer
culations, and provides greater clarity than the molecu
dynamics and similar methods which have been employe
the last few years to calculate the physical properties of c
ters ~see, for example, Ref. 5!. A detailed exposition of this
method is given in Ref. 16~unfortunately, without reference
to the author!. In application to clusters, V. I. Peresada
method makes it possible to investigate the behavior of e
atom. As shown in the present paper, this is extremely
portant because each atom in small particles plays an i
vidual role.

The combination of experimental investigations and t
oretical calculations has revealed new laws in the ato
dynamics of clusters of solidified gases. Specifically,
rapid growth17 of the rms displacements of atoms with d
creasing cluster size is explained. This fact could not be
plained by a simple increase in the fractional contribution
the surface. It has been shown theoretically and experim
tally that the special features of the atomic dynamics of cl
ters with decreasing cluster size are due not so much to
increasing role of the surface as to the special structural
tures of clusters.

2. EXPERIMENTAL PROCEDURE AND RESULTS

The observations were performed using a setup wh
main components are a liquid-hydrogen-cooled appar
that generates a supersonic cluster beam, a cryogenic
densation pump for evacuating the stream gas, and a s
dard ÉMR-100M electron-diffraction camera. A detailed d
scription of the entire setup is given in Ref. 18. T
supersonic cluster beam generator is described in deta
Ref. 19. The average sizeN ~the number of atoms per clus
ter! of the clusters investigated was varied by varying the
pressureP0 at the entrance into the nozzle at constant
temperatureT0 . The average characteristic sized of the crys-
talline clusters was determined, using the Selyakov–Sche
relation,20 from the broadening of the diffraction peaks ta
ing account of their additional smearing due to stack
faults. It should be noted that as the average size of
aggregates in a cluster beam increases, the fraction of ic
hedral formations decreases. For example, forN'1400
21500 the number of clusters with icosahedral structure
'25%, whereas forN;33103 virtually all clusters posses
fcc structure.

When small atomic aggregations with icosahedral str
ture predominated in cluster beams, the characteristic
was established by extrapolating to low pressures the rela
d5w(P0)T05const obtained for average-size crystalline clu
ters. Statistical analysis of the observational results sho
that d was determined to within610%.
,
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The diffraction patterns were photographed to find t
lattice parametersa of the crystal clusters of argon and kryp
ton. In this case, depending on the quality of the electr
diffraction pictures, a was determined to within6(0.1
20.3)%.

Data on the value and temperature dependence of
lattice parameter21 were used to determine the temperature
the clusters. The intensityI of the diffraction peaks was de
termined by analyzing the diffraction patterns obtained
electrometric recording. The relative error in determining t
intensity usually did not exceed63%. The method for de-
termining the instrumental constant 2Ll (L is the distance
between the diffraction region and the detector andl is the
electron wavelength! and the instrumental width of the dif
fraction peaks are described in Ref. 22. These quantities
needed to determine the lattice parameter and the chara
istic size of the clusters.

The rms displacements of the atoms from their equil
rium positions were found using the dependence of the t
perature factor, the intensity of the diffracted rays, e
(22M), on the diffraction angleu.

For an fcc lattice

M58pl22^u2&sin2
u

3
,

where ^u2& is the mean-squared total displacement of
atom from its equilibrium position.23

Thus, the total intensity of the diffracted rays reflect
by a system of planes$hkl%, can be written as

I hkl5I 0Ahkl expS 216p2 sin2 u

l2

^u2&
3 D ~1!

or

I hkl5I 0Ahkl expS 2
Shkl

2 ^u2&
3 D , ~2!

whereShkl54pl21 sinu is the diffraction vector;Ahkl is the
product of all constant factors in the intensity~for a particu-
lar system of reflecting planes! with the exception of the
temperature factor; and,I 0 is the intensity of the primary
electron beam. SinceI 0 can vary appreciably from one ex
periment to another, it is desirable to normalize the intens
of the diffraction peaks to a well-distinguished peak. O
such peak for an fcc structure is the diffraction maximu
~220!. Thus, in what follows, the following relation was use
to determinê u2&:

lnS I hkl

I 220

A220

Ahkl
D5

^u2&
3

~S220
2 2Shkl

2 !, ~3!

which establishes a relation between the logorithm of
normalized intensity of the diffraction peak and the diffe
ence of the squared diffraction vectors. Plots illustrating
dependence of the logarithm of the normalized intensity
the diffraction peaks for argon and krypton on the differen
of the squared diffraction vectors are presented in Figs. 1
2. These plots were constructed for clusters of different s
but to simplify the figures only three plots are presented he

According to Figs. 1 and 2, the slope angle of the e
perimental straight lines increases with decreasing ave
size of the clusters. Since the tangent of the slope angl
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proportional to the mean-squared atomic amplitude~3!, the
observed behavior shows that^u2& increases as cluster siz
decreases. The curve1 in Figs. 3 and 4 shows for argon an
krypton clusters, respectively, the size dependence of the
displacements of the atoms. In these plots, a quantity wh
is the inverse of the cube root of the average cluster siz
plotted along the abscissa and the quantityV—the rms am-
plitude A^u2& normalized to the rms displacement of atom
in the bulkA^u2&v—is plotted along the ordinate.

On the basis of the x-ray data the Debye temperatu
QD

Ar593.3 K andQD
Kr571.9 K for argon and krypton were

used in the calculations. The cluster temperatures, de
mined using the method indicated at the beginning of t
section, were found to beTAr5(3764) K and TKr5(55

FIG. 1. Logarithm of the normalized intensity of the diffraction peaks fro
Ar clusters with 2600, 4400, and 23100 atoms/cluster versus the differ
of the squared diffraction vectorsS220

2 2Shkl
2 , Å22. The reflections~111!,

~200!, ~220!, and~311! were used to construct the plots.

FIG. 2. Logarithm of the normalized intensity of the diffraction peaks fro
Kr clusters with 1450, 2900, and 12500 atoms/cluster versus the differ
of the squared diffraction vectorsS220

2 2Shkl
2 , Å22. The reflections~111!,

~200!, ~220!, and~311! were used to construct the plots.
s
h
is

s

r-
s

64) K. The experimental values of the normalized rms a
plitudes are shown in Figs. 3 and 4~circles!. For large clus-
ters the experimental values ofA^u2& fall quite well on
straight lines corresponding to an increase in the rela
contribution of the surface~see Ref. 17!. Hence it follows
that the increase in the mean-square atomic amplitude
decreasing number of atoms in a cluster~for clusters with
N*43103 atoms/cluster) is due primarily to an increase
the relative number of surface atoms. However, as the clu
size decreases further (N&33103 atoms/cluster) ,̂ u&2 in-
creases very rapidly, which cannot be explained only by
increase in the fractional contribution of the surface. In t
case, other factors, whose effectiveness needs to be anal
probably come into play. The same figures show~curves2!
the results of theoretical calculations~at the microscopic
level! of the rms vibrational amplitudes of the atoms in clu
ters of various sizes. The computational method and res
and a detailed comparison of theory with experiment
given in the next section.

ce

ce

FIG. 3. Evolution ofV—the ratio of the rms atomic vibrational amplitude
averaged over all directions and all possible positions of atoms in a clu
to the rms amplitude in a bulk sample—as a function of the size of a free
cluster: experimental result~1!; theoretical calculation for aproper cluster
~2!; Vm'1.4252~dashed line!; number of atoms in the clusterN; TAr537
64 K.

FIG. 4. Evolution of V as a function of the size of a free Kr cluste
experimental result~1!; theoretical calculation for aproper cluster~2!; Vm

'1.4258~dashed line!; number of atoms in the clusterN; TKr55564 K.
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3. ATOMIC DYNAMICS OF FREE MICROCLUSTERS

Let us consider the temperature dependences of the
tive rms amplitudesUi , i.e. the quantities

Ui~r ,T![
^uui u~T,r !&

a
5

A^ui
2~r ,T!&
a

~4!

for Ar, Kr, and Xe crystals, unbounded and bounded by o
or several flat surfaces. These crystals are regarded a
crystal lattices with a central interaction between nea
neighbors. In Eq.~4! a is the equilibrium interatomic dis
tance in the crystal~which in an fcc lattice is& times shorter
than the edge lengthl of a cube!. The function^u2(r ,T)& is
the temperature dependence of the mean-squared disp
ment of an atom with radius vectorr in the crystallographic
directioni 1! and is defined as~see, for example, Refs. 13 an
24!

^ui
2~r ,T!&5

\

2m~r !
E

0

` r i~«,r !

A«
cothS \A«

2kTD d«. ~5!

Herem(r ) is the mass of an atom whose radius vector isr ;
the integration variable« is the squared frequency of a no
mal vibration;\ andk are, respectively, the Planck and Bo
zmann constants; the functionr i(«,r ) is the spectral density
characterizing the distribution over vibrational frequencies
the crystallographic directioni of an atom with radius vecto
r . In the general case, when the frequency spectrum o
atom consists of a region in the continuous spectrumD ~gen-
erally speaking, multiply connected! and a set of discrete
levels outside this region, this function can be represente
the form13,24–26

r i~«,r !5p21 Im Gi i ~r ,r ,«!

1(
d

rés«5«d
Gi i ~r ,r ,«!d~«2«d!, ~6!

where Gik(r ,r 8,«) is the Green’s tensor of the system@no
summation over repeated indices in Eq.~6!#. The condition
that the imaginary part of the Green’s functionGi i (r ,r 8,«) is
different from zero determines a region of the continuo
spectrumD and the discrete levels«d are poles of this func-
tion, which can lie only outsideD. For «¹D, the Green’s
function is real and piecewise-smooth. The spectral den
is normalized to 1, i.e.

E
0

`

r i~«!d«51. ~7!

If the crystal lattice contains one atom per unit cell, then
region of the continuous spectrum is the interval@0,«max#. In
our case there are no discrete levels outside this interva

The upper limit«max of the band in the continuous spe
trum of the crystal can be associated to a characteristic t
peratureQp[\A«max/k; this quantity is identical to the De
bye temperatureQD at high temperatures and equa
0.95– 0.96QD at low temperatures. Then the expression~5!
can be put into the form

^ui
2~r ,T!&5~Aaa!2

i S T

Qp
,r D , ~8!

where i(z,r ) is the integral («[«maxx)
la-

e
fcc
st

ce-

n

n

in

s

ty

e

-

i~z,r !5E
0

1 r i~x,r !

Ax
cothS \Ax

2z D dx ~9!

which in our case is independent of the parameters of
specific material, and the constant

Aa[
\

aaA2kmaQp
~a!

~the indexa enumerates the material! describes all charac-
teristics of a particular material. The basic characteristics
the crystal lattices of Ar, Kr, and Xe27,28 which we require
are given in Table I.

The spectral densities~6! and the integrals~9! are calcu-
lated using the Jacobi-matrix technique13,14 and continued
fractions~Refs. 15 and 16!2!

Figure 5 shows the temperature dependences ofU for
unbounded Ar, Kr, and Xe crystals in the range from zero
to the melting point. The rms amplitudes for an unbound
ideal lattice are identical for all directions and all atoms
the same crystal. For different crystals they differ by t
preintegral factorsAa . We note that at the melting tempera
ture Tm the values ofU are essentially the same for all thre
cryocrystals. These valuesUm5U(Tm) are also presented in
Table I.

The ratio ofUi(r ,T) to Um , conventionally, serves as
stability criterion for the crystal lattice or atoms located, f
example, at the boundaries of the sample~surfaces, edges
vertices!.

The temperature dependencesUi(r ,T) for all types of
boundary atoms mentioned above are presented in Fig. 6
this and subsequent figures the scale for krypton is the o
nate on the left-hand side and the scale for argon is the
dinate on the right-hand side~the ratio of the scale divisions
equals the ratio of the quantitiesAa ; see Table I!. The curve

TABLE I. Physical properties of Ar, Kr, and Xe.

FIG. 5. Temperature dependences ofU5^uuu&/a[^u2&.
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Sn corresponds to a displacement in a direction normal to
close-packed flat surface~111!. The first moment of the cor
responding spectral density~square of the correspondin
Einstein frequency!3! is ^«&n

(S)5«max/4. The curveSt corre-
sponds to a displacement in the direction in this plane.
such a displacement^«&t

(S)5«max/2, just as for a bulk atom
V, so that the curveSt lies appreciably below the curveSn .

The curvesAC correspond to a vertex of a cube and t
curvesAP correspond to a vertex of a pyramid formed
the intersection of close-packed planes~four such planes in-
tersect at a single point!. The curvesACn and APn , corre-
sponding to normal displacements of vertex atoms, i.e.
placements of atoms atAC vertices in the@111# direction and
atoms at vertices of the typeAP in the @100# direction, are
virtually identical and are denoted by the same symbolAn .
For normal displacements of both types of vertex atoms s
ied here, just as forSn , the squared Einstein frequenc
^«&n

(AP)5^«&n
(AC)5^«&n

(S)5«max/4. Consequently, the curv
An lies near the curveSn ~somewhat above it!.

The curvesACt and APt , corresponding to displace
ments of the vertex atoms in directions perpendicular toACn

and APn , differ substantially from one another: the curv
ACt , corresponding to displacements for which the squa
Einstein frequencŷ«&t

(AC)5«max/16, substantially above th
curve APt , which corresponds to displacements engend
ing a spectral density with the first moment^«&t

(AP)

5«max/8. The rms displacement amplitudes of theAC atoms
are;Um even at low temperatures~for Ar they exceedUm ,
denoted in Fig. 6 by the dashed line, even forT&0.04Qp).
This shows that the position of the atoms at vertices of
type is unstable. Since the vibrational amplitudes of th
atoms in the normal direction are comparatively small,
most likely outcome will not be detachment of these ato
from a monolithic sample but rather a transfer of the ato
into a neighboring position—AC vertices will be smoothed
The atoms atAP vertices are somewhat more stable but th
stability is still weak, especially for argon.

The curvesR corresponds to displacements of edge
oms. For them^«& can assume values from«max/8 to
(7/16)«max, depending on the direction of displacement a
on the planes whose intersection forms the given edge.

FIG. 6. Temperature dependences ofU5^uuu&/a for volume (V), surface
(S), edge (R), and vertex (A) atoms.AC—corresponds to the vertex of
cube,AP—vertex of an octahedron; the indicest andn indicate tangential
and normal displacements of vertex atoms.
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corresponding values ofU lie between the values of the rm
amplitudes of the surface and vertex atoms.

A. Stability of atoms in proper free clusters

We shall say that a free cluster is apropercluster if it is
formed by complete filling of several coordination spher
We shall consider the evolution of the temperature dep
dences of the rms vibrational amplitudes in different cryst
lographic directionsi of the atoms located in different pos
tions of such apropercluster as a function of the number o
these coordination spheresn, i.e. the quantitiesUi(r ,T).

Since the number of atoms in a cluster is finite, the
brational spectrum of a cluster is discrete, and it becom
impossible to calculate the temperature dependencesUi(r ,T)
using an analytical approximation of the spectral dens
The subsequent calculations are performed using the
calledquadrature methodin the Jacobi-matrix method.13,14It
has been shown, for example, in Ref. 31, that the rms
placements calculated using this method converge very
idly as the rank of the Jacobi matrix increases, and t
method gives quite accurate results even for Jacobi-ma
rank N>10. The characteristic vibrational frequencies
atoms in a free cluster have zero frequencies which co
spond to displacements and rotations of a cluster as a wh
The quadrature method makes it possible to separate q
accurately these displacements for a cluster withn<N
~whereN is the rank of the computed Jacobi matrix!. Our
computers and software make it possible to calculate for
systems considered Jacobi matrices of rankN540, so that
we shall confine our attention to clusters with 5<n
<50– 100~it is shown in Ref. 33 that smaller clusters do n
have a crystalline structure!.

The rms amplitudes of atoms in the least stable~i.e. vi-
brating with the highest amplitudes! surface coordination
sphereSn are of greatest interest from the standpoint
studying the stability of a cluster. We denote these am
tudes asU i

Sn(T)5Ui(r ,T)urPSn
. These quantities will be

nonmonotonic functions ofn, since atoms of various type
will be present on the surface.
1! Surface atoms (P-S type!, wheren55,7,10, . . . and so

on. Displacements of this type correspond to the squa
Einstein frequencies:
– for normal displacementŝ«&n5«max/4;
– for tangential displacements~in a plane tangent to the

surface of a cluster! «max/4<^«&t<«max/2.
2! Edge atoms (R-type!, wheren58,9,16,25:

– ^«&n5«max/4;
– ^«&t5«max/8.

3! Vertex atoms (A-type!, wheren56m2 (m is an integer!:
– ^«&n5«max/4;
– ^«&t5«max/16.

The corresponding curves for the normal and tangen
atomic displacements are presented in Figs. 7 and 8.

The rms amplitudes of atomic displacements norma
the surface~Fig. 7! lie near the curveSn in the preceding
figure ~transferred to this figure and shown by the lo
dashes!. Only the rms amplitudes of type-A atoms (n
56, 24, 54) and certain type-R atoms in an extreme low
temperature range lie somewhat above the curveSn , so that
the probability of an atom becoming detached from a f
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cluster, generally speaking, does not exceed the probab
of detachment from a free surface of the type~111!.

As the cluster increases in size, the quantitiesU n
(Sn)(T)

increase and the corresponding curves tend toward the c
Sn from below~except for the curves corresponding to typ
A atoms, lying somewhat aboveSn , but even these depen
dences increase appreciably withn). Such evolution of the
temperature dependencesU n

(Sn)(T) is due primarily to an
increase in the contribution of the recoil energy to the to
energy of a free cluster as the size of the cluster decrea
i.e. the kinetic energy of displacement of an atom as a wh
In addition, an increase in the surface curvature decrea
but to a much lesser degree,U n

(Sn)(T) asn increases. As the
curvature increases, the differences of the projections
neighboring surface atoms on the direction of the norm
increase and hence the normal component of the resto
force, which neighboring surface atoms exert on the surf
atom, increases somewhat. However, this increase is n
gible in our range of values ofn.

The rms amplitudes of the tangential displacements
surface atoms~Fig. 8! are, on the average, much greater th
those of the normal displacements~this agrees with calcula
tions of the rms displacements of atoms adsorbed on a
surface of a crystal32!. The values ofU t

(Sn)(T) are especially
large for A-type atoms. The corresponding curves lie b

FIG. 7. Temperature dependences of the relative rms vibrational amplit
of surface atoms inproper clusters of various sizes in a direction normal
the surface.A atoms,n56, 24, 54~¯!; R atoms,n59, 16, 25~ !;
P-S atoms,n55, 15, 25~ !.

FIG. 8. Temperature dependences of the relative rms vibrational amplit
of surface atoms inproper clusters of various sizes in directions tangent
the surface.A atoms,n56, 24, 54~¯!; R atoms,n59, 16, 25~ !;
P-S atoms,n55, 15, 25~ !.
ity

rve
-

l
es,
e.
es,

of
l

ng
e
li-

f
n

at

-

tween the curvesAPt andACt @Fig. 6, these curves, just a
the curvesSn , are shown in Fig. 8~long dashes!#. We note
that for A- andR-type atomsU t

(Sn)(T) are essentially inde-
pendent of the cluster size. ForP–S-type atoms, as the clus
ter size increases, the rms amplitudes decrease slowly, ex
iting nonmonotonicity for small values ofn. As n→` these
curves tend towardSt ~Fig. 6! from above.

The anomalously high (;Um) values of the rms ampli-
tudesU t

(Sn)(T) for A-type atoms attest to the instability o
coordination spheres withn56, 24, 54, . . . , 6m2. The at-
oms should not detach from the surface of a free clus
sinceU t

(Sn)(T) for these atoms are small~Fig. 7!, but rather
they will move along the surface of the cluster and settle
points where their values of^«&t will be higher~the value of
this quantity for type-A atoms—one sixteenth of«max—is its
minimum possible value! and the rms amplitude, therefore
lower. However, these points will no longer correspond
filling of coordination spheres in aproper free cluster. Spe-
cifically, such improper filling of coordination spheres w
give rise to twins and local nuclei of phases with hcp crys
structure; this will be manifested in the diffractio
patterns.33,34 It should be expected, with a high degree
probability, that the fcc structure will remain as free cluste
grow, as a collection of octahedra formed by the intersect
of close-packed planes of the fcc lattice, since the curveAPt

lies appreciably below the curveACt ~Fig. 6!.

B. Dependence of the average total-displacement amplitudes
of atoms in a cluster on the cluster size

The increase in the contribution of the recoil energy
the total energy of a cluster as the size of the cluster
creases is most clearly seen in the evolution of the rms
plitudes of the central atoms of clustersU(0,T)
5U(r ,T)ur50 ~this quantity is isotropic and is independent
i ). A collection of temperature dependencesU(0,T) is dis-
played in Fig. 9. It is evident that these curves all lie belo
U(T)—the rms amplitude of an atom of an unbound fcc cry
tal ~the curveV in Fig. 6, which we transferred to this fig
ure!, and they tend toward this curve from below asn in-
creases. The somewhat high value ofU(0,T) for n56 is due
to the general ‘‘looseness’’ of this cluster with an unstab
surface, whose contribution to all characteristics of suc
small cluster is very large.

es

es

FIG. 9. Temperature dependences of the relative rms vibrational amplit
of the central atoms inproper free clusters of various sizes.
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The melting temperature of a cluster can be estima
from the relation

^U&~T!;Um ,

where ^U&(T)5a21A^u2& is the average amplitude of th
total displacement of the atoms in a cluster, i.e. the rms
plitude Ui(r ,T) averaged over all directions of atomic di
placements and all positionsr of an atom in the cluster. The
evolution of these quantities as a function of the cluster s
is presented in Fig. 10. It is evident that the values of th
quantities increase appreciably as the cluster size decre
i.e. the increase in the rms amplitudes as a result of an
crease in the contribution of different types of boundary
oms is greater than the decrease of these quantities due
increase in the contribution of the recoil energy. The anom
lously large value of̂ U&(T) for n56 is due to, just as the
anomalously large value ofU(0,T) for the same cluster, the
relatively large number ofA-type atoms. Such a cluster is n
realized as apropercluster. We note that forn524 ^U&(T) is
only negligibly greater than forn525, since this cluster con
sists of 683 atoms, of which only eight are type-A, while the
cluster withn56 also has eight type-A atoms but consists o
only 87 atoms.

For clusters of all sizes considered the values of^U&
3(T) fall between the curvesSt andSn , i.e. for such clus-
ters the increase of the rms amplitudes~and therefore, for
example, the decrease of the melting temperature! is much
greater than expected simply from an increase in the co
bution of the surface. We underscore once again that th
due to the contribution of edge and vertex atoms and
finite relaxation length of the amplitudes of atomic vibratio
from the boundary to the interior volume~the vibrational
amplitudes of atoms located near the boundaries are still
preciably greater than those of interior atoms!.

Figures 3 and 4~curves2! show the results of a theore
ical calculation of the rms amplitudes of the vibrations
atoms inproper clusters of the same size~same number of
atoms! as in the experiment; curves2, just as the experimen
tal curves 1, deviate upwards from the straight lines co
sponding to an increase of the rms amplitudes as a resu
the simple increase of the surface contribution.

At the same time, the experimental curves lie apprec
bly above the theoretical curves~the deviation is 20%!. To

FIG. 10. Evolution of the temperature dependences of the relative rms
plitudes of atomic vibrations averaged over all directions and all poss
positions of atoms for various sizes of aproper free cluster.
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explain this behavior it should be noted first that the vib
tional amplitudes of the atoms in a cluster are strongly n
uniform. Figure 4 shows values ofVn—the ratios of the rms
vibrational amplitudes of atoms in various coordinati
spheres of apropercluster, consisting of 50 such complete
filled spheres (N52123; N21/3'0.0778), to the rms vibra-
tional amplitude of an atom in a bulk sample at the sa
temperature. The ratioV50/V0'1.8. Thus, the deviation o
the shape of a cluster from aproper shape, resulting in an
increase in the specific contribution of the surface or ne
surface atoms~in a proper cluster such a specific contribu
tion for a fixed size is minimal!, can easily explain the ob
served difference between the experimental and theore
values ofV.

In addition, the temperatures at which the rms amp
tudes, shown in Figs. 3 and 4, were measured are quite h
'0.442 and'0.475 times the melting temperature for arg
for krypton, respectively. Consequently,Vn for n>47 lie
above ~and sometimes quite substantially! the dashed line
corresponding toVm determined on the basis of the data
Table I and Fig. 5 (Vm'1.452 for Ar and'1.4258 for Kr!.
Therefore it can be supposed that the surface of a gi
cluster is no longer, generally speaking, in a crystalline st
This can weaken the interatomic interaction and theref
increase the vibrational amplitudes of the atoms~and not
only for atoms close to the surface!, and it can give rise to
additional scattering of electrons and decrease the co
sponding peaks, interpreted in the experiment as an a
tional increase in amplitude. The additional electron scat
ing is indicated by, among other things, the fact that valu
of V aboveVm were recorded experimentally for a free clu
ter ~Fig. 4!.

4. CONCLUSIONS

There exists a complete qualitative and more than sa
factory quantitative agreement between the experime
data and the results of theoretical calculations performe
the microscopic level for the model of aproper cluster. The
strong nonuniformity of the rms amplitudes which is o
tained in these calculations makes it possible to explain
equately not only the main experimental results but also
observed discrepancies between the theoretical and ex
mental curves; these discrepancies are due to the compl
of the experimental object itself. Virtually complete quan
tative agreement can be obtained by taking into account
shape of free clusters which are actually formed in a sup
sonic stream.

Comparing the theoretical and experimental resu
makes it possible to draw two important conclusions wh
determine the basic distinguishing features of the atomic
namics of free clusters and the stability of their crystal str
ture:

~1! The dependence of the rms amplitude of atomic vib
tions, averaged over all atomic positions and all dire
tions of atomic displacements, on cluster size is de
mined by the increase of the contributions ofall types—
vertex, edge, and surface—of boundary atoms, vibrating
with large amplitudes, as the cluster size decreases.
The consequent increase in^U& is much greater than the
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contribution of the vibrations of atoms located in th
interior volume of a cluster. The vibrational amplitud
of such atoms are somewhat smaller than those of at
in bulk samples because of the recoil energy—the kin
energy of the motion of a cluster as a whole. As clus
size decreases, these amplitudes decrease, since the
tribution of the recoil energy increases.
As a result, for clusters consisting of less th
N;103 atoms, as cluster size decreases,^U&, which de-
termines the stability of the crystal structure of a clus
~specifically, the melting temperature of the cluster!, in-
creases much more rapidly than should be expected
ply on the basis of the increase in the specific surf
contribution.

~2! The crystal structure of a free cluster, as a rule, conta
twinning-type stacking faults~nuclei of an hcp phase!.
They appear because of the instability~anomalously
large vibrational amplitudes! of the atoms in the vertex
coordination spheres.
The vertex atoms in free clusters with octahedral str

ture, i.e. bounded by intersecting close-packed planes of
fcc structure, will be more stable. Consequently, nuclei of
hcp phase are less likely to form in such clusters.

We thank V. N. Samovarov for a fruitful discussion
the results and A. G. Danil’chenko for assisting in the e
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1!The temperature dependence of the quantity^u&2 introduced in the preced-

ing section is obtained by averaging^u2(r ,T)& over all positionsr and
displacement directionsi .

2!A succinct description of this method can be found in Ref. 29 or in
Appendix in Ref. 30.

3!This quantity equals the first diagonal component of the correspon
Jacobi matrix.13,14
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and É. T. Verkhovtseva, Prib. Tekh. E´ksp., No. 3, 208~1977!.

20S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov,X-Ray Diffraction and
Electron-Optical Analysis of Metals, Metallurgiya, Moscow~1970!.

21S. I. Kovalenko and N. N. Bagrov, inCondensed State Physics, Institute
for Low Temperature Physics and Engineering, Ukrainian SSR Acade
of Sciences, Khar’kov~1971!, No. 11, p. 44.

22S. I. Kovalenko, D. D. Solnyshkin, E. A. Bondarenko, and E´ . T. Verkhovt-
seva, Fiz. Nizk. Temp.23, 190~1997! @Low Temp. Phys.23, 140~1997!#.

23A. Guinier, X-Ray Diffraction Analysis of Crystals@Russian trans.#, Fiz-
matgiz, Moscow~1961!.
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The nonlinear dynamics of surface acoustic waves at the surface of a linear elastic half-space
coated with a monolayer of a nonlinear material is investigated. A one-dimensional
nonlinear integrodifferential equation describing the dynamics of such a system is derived. The
model proposed is used to study Rayleigh solitons with a stationary profile. The possible
phenomenological generalizations of the equations derived and their exact soliton solutions are
discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542503#
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The theory of nonlinear acoustic waves in on
dimensional atomic chains has been developed in deta1,2

The problem of nonlinear acoustic surface waves at the
face of an anharmonic half-space is much more complica
because it is two-dimensional.3–12However, this problem be
came especially topical immediately after a series of exp
ments were performed on the propagation of nonlinear
face waves13,14 and high-intensity acoustic surfac
pulses.15–17 Most experiments were performed on samp
consisting of a substrate coated with a film of a differe
material. The presence of a film coating is very importa
because it results in the appearance of an additional st
dispersion of linear waves and the competition between
dispersion and the nonlinearity gives rise to stationary n
linear surface waves and surface solitons with a station
profile. The analytic study of these nonlinear waves sim
fies somewhat when the substrate can be treated in the l
approximation.18 The two-dimensional problem for the sub
strate can be solved exactly. It is important to underscore
such a formulation of the problem~a linear half-space with a
nonlinear coating! is fully realizable experimentally. For ex
ample, in Ref. 19 experimental data are presented for an
monic surface phonon effects in systems with a metallic s
strate coated with a monolayer of inert-gas atoms~Ar or Xe!.
A similar situation arises for an inert-gas monolayer on
graphite surface.

1. FORMULATION OF THE MODEL

We shall consider the propagation of a nonlinear surf
acoustic wave in theX direction along the surface of th
half-spaceZ,0 coated with a monatomic layer.~The dis-
placements are independent of the coordinateY and the
problem is effectively two-dimensional.! We shall confine
our attention to the particular case where the nonlinear in
action of the atoms in the surface monolayer with one
other and with atoms of the substrate surface is central. E
3941063-777X/2003/29(5)/7/$24.00
-

r-
d

i-
r-

s
t
t
ng
is
-

ry
i-
ar

at

ar-
-

a

e

r-
-
ch

atom of the monolayer interacts with its nearest neighbor
the direction of theX axis in the monolayer and with th
nearest neighbor and next two neighboring atoms in the s
strate surface~see Fig. 1!. Keeping only the first nonlinea
terms in the expression for the interaction of the atoms in
surface film with one another and with substrate atoms
obtain the following expression for the total energy of t
monatomic coating:

E5(
n

M

2 F S dUn

dt D 2

1S dVn

dt D 2G
1(

n
H a

2
jn,n11

2 2
b

3
jn,n11

3 1
g

2
hn

22
d

3
hn

3

1
l

2
zn,n11

2 2
m

3
zn,n11

3 1
l

2
zn,n21

2 2
m

3
zn,n21

3 J , ~1!

whereUn and Vn are the displacements of thenth atom in
the monolayer in theX andZ directions;

jn,n115A~Un2Un112a!21~Vn2Vn11!22a5 j̃n,n112a

is the deviation of the interneighbor distances in the surf
film from their valuesa in equilibrium; M is the mass of an
atom in the monolayer;

FIG. 1. Geometry of the problem.
© 2003 American Institute of Physics
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hn5A~Un2un!21~Vn2vn1a!22a5h̃n2a

and

zn,n615A~Un2un617a!21~Vn2vn611a!2

2a&5 z̃n,n612a&

are the deviations from the equilibrium distances betw
atoms in the monolayer and neighboring atoms on the
face of the substrate~the nearest and next two neighborin
atoms, respectively!; un andvn are the displacements of su
face atoms in the substrate in theX andZ directions;a, b, g,
d, l, andm are the linear and nonlinear elastic moduli. F
simplicity, we assume that the interatomic distances equa
in all directions. As will be shown below, in the leadin
approximation the nonlinear interaction only between nei
boring atoms in the covering monolayer is important.

The dynamical equations for the monolayer atoms ar

M
d2Un

dt2
1H jn,n11

j̃n,n11

~Un2Un112a!~a2bjn,n11!

1
jn,n21

j̃n,n21

~Un2Un211a!~a2bjn,n21!J
1H zn,n11

z̃n,n11

~Un2un112a!~l2mzn,n11!

1
zn,n21

z̃n,n21

~Un2un211a!~l2mjn,n21!J
1H hn

h̃n

~Un2un!~g2dhn!J 50; ~2!

M
d2Vn

dt2
1H jn,n11

j̃n,n11

~Vn2Vn11!~a2bjn,n11!

1
jn,n21

j̃n,n21

~Vn2Vn21!~a2bjn,n21!J
1H zn,n11

z̃n,n11

~Vn2vn111a!~l2mzn,n11!

1
zn,n21

z̃n,n21

~Vn2vn211a!~l2mjn,n21!J
1H hn

h̃n

~Vn2vn1a!~g2dhn!J 50. ~3!

In what follows, we shall use the continuum approxim
tion to describe the elastic properties of the substrate and
monolayer coating. However, we shall use a discrete desc
tion of the relative displacements of the atoms on the s
strate surface and in the covering monolayer.~Although, as
will be shown below, in the leading approximation these d
placements are identical.! In the long-wavelength approxi
mation we retain in the dynamical equations the linear te
with spatial derivatives up to fourth order and the lead
n
r-

r

-

:

-
he
p-
-

-

s

nonlinear terms which are quadratic in the displacement
the medium. In this approximation Eqs.~2! and ~3! are

MUtt2aS Uxx1
1

12
UxxxxD12bUxUxx2aVxVxx

5l~u2U !2S g2
l

2
1&m D ~u2U !~v2V!

1lS 2vx1
1

2
uxx2

1

6
vxxx1

1

24
uxxxxD

1S l

2
2&m Duxvx1S 3l

2
2&m D ~u2U !ux

2S l

2
1&m D ~v2V!vx2

m

&
~uxuxx1vxvxx!; ~4!

MVtt2a~VxUxx1UxVxx!

5~l2g!~v2V!1S l

4
2

g

2
1

m

&
D ~u2U !2

1S d2
3l

4
1

m

&
D ~v2V!21lS 2ux1

1

2
vxx

2
1

6
uxxx1

1

24
vxxxxD1S l

4
1

m

&
D ux

2

1S 2
3l

4
1

m

&
D vx

22S l

2
1&m D ~v2V!ux

2S l

2
1&m D ~u2U !vx . ~5!

The equations for the displacements of the atoms in
covering monolayer must be supplemented with dynam
equations for the displacements in the substrate volume.
simplicity we shall assume that the medium in the substr
half–space is linear and isotropic and the correspond
equations of motion are

ryttrct
2Dy1r~cl

22ct
2! grad divy, ~6!

wherey5(u,v) are the displacements in the sagittal plane
the substrate volume~the planeXZ); cl and ct are the lon-
gitudinal and transverse velocities in the substrate; and,r is
the substrate density. The nonzero components of the s
tensor are

sxz5r~cl
222ct

2!ux1rcl
2vz , ~7!

szz5rct
2~uz1vx!. ~8!

The right-hand sides of Eqs.~4! and ~5! are the forces
which the substrate exerts on the monolayer. These fo
can be found from the expressions~7! and ~8!. Thus, the
system of equations~4!–~8! completely describes the prob
lem posed.
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2. DERIVATION OF THE EFFECTIVE ONE-DIMENSIONAL
EQUATIONS FOR THE DYNAMICS OF RAYLEIGH WAVES
WITH A STATIONARY PROFILE

It is convenient to represent the displacement vectory as
a sum of transverseyt and longitudinalyl components, each
of which for waves with a stationary profiley5y(x2ct,z)
satisfies a two-dimensional Laplace equation. The spatial
rivatives of all components ofyt and yl on the half-space
surface~in the planeZ50) are coupled by the relation~see,
for example, Ref. 20!

]y

]zU
s

5A12
c2

b2 Ĥ
]y

]xU
s

, ~9!

whereb5cl andb5ct for longitudinal and transverse com
ponents, respectively, andĤ is the integral Hilbert transform
operator~see Appendix, Part 1!. Using the obvious relations
between the displacement components]ut/]x52]v t/]z
and]ul]z5]v l /]z all components of the deformation can b
easily expressed in terms ofux

l and vx
t ~see Appendix, Par

2!. Using these relations in Eqs.~7! and ~8! we rewrite Eqs.
~4! and ~5! in the form

M~12cf
2/c2!Uxx2a~Uxxxx/121VxVxx!12bUxUxx

52ra3ct
2@~s221!ul1k tĤv t#x , ~10!

MVxx2a~UxVxx1UxxVx!

5ra3@~2ct
22c2!v t12ct

2k l Ĥul #x , ~11!

whereu andv are displacements on the substrate surface~in
what follows we assume thata51), M5Mc2, k t

5A12c2/ct
2, k l5A12c2/cl

2, s5c2/2ct
2 , and cf5Aa/M

is the sound velocity in the monolayer. Integrating Eqs.~10!
and~11! with respect tox we obtain the final expressions fo
the displacementsu andv on the substrate surface in term
of the displacements of the atoms in the covering monola

u5
1

« H A@Vx2cf
2/c2UxVx#1BĤFUx2

a/2Vx
21bUx

2

M~12cf
2/c2!G J ,

~12!

v5
1

« H CFUx2
a/2Vx

21bUx
2

M~12cf
2/c2!G1DĤFVx2

cf
2

c2UxVx
G J . ~13!

where

«5~12s!22k tk l , ~14!

A52@~12s!2k tk l #s~M /r!, C52A~12cf
2/c2!,

D5s2k l~M /r!, B5s2k t~M /r!~12cf
2/c2!.

It follows from Eq. ~14! that

AC1BD5«s2~M /r!2~12cf
2/c2!~k lk t21!;«.

It is obvious from the definition of the parameter« that « is
small if the deviation of the velocity of a surface wave fro
the velocity for a linear Rayleigh wave in a half-space w
no film coating is small. The relation~14! gives an expres-
sion for the Rayleigh wave velocityc5cR in the limit
«→0. In what follows we shall study nonlinear surfac
waves with velocities close to the Rayleigh velocity, and
derive the effective dynamical equations we shall emplo«
e-

r:

as a small parameter. Using the relations~12! and ~13! for
u5u(U,V) andv5v(U,V) on the right-hand sides of Eqs
~4! and~5!, we obtain the final closed equations for the fun
tions U(x2ct) andV(x2ct).

We examine first linear Rayleigh waves in a half-spa
covered with a monolayer. In the long-wavelength limit, on
the linear terms with the smallest derivative indices need
retained in Eqs.~4! and ~5!. Then Eqs.~4! and ~5! yield

U'u2vx , V'v2
l

l1g
ux . ~15!

Substituting the relations~15! into the linearized expression
~12! and~13! we obtain the following closed system of linea
equations foru andv:

«u2BĤux5Avx , «v2DĤvx5Cux , ~16!

which can be rewritten in the form

«u2~B1D !Ĥux2BDuxx~12s!250. ~17!

In the absence of a monolayer~with M5A5B5C5D
50) the relation«50 follows from Eq.~17! and the disper-
sion law for nondispersive Rayleigh waves of the for
u5u0 sin(kx2vt) with v5ck and c5cR is obtained from
Eq. ~14!. In the presence of a monolayer the additional ter
in Eq. ~17! engender dispersion for Rayleigh waves. In t
leading approximation the dispersion relation now has
form

v'cRk~12db̃uku!, ~18!

where the parameterb̃5(s2/cR
2)(k t

211k l
21)/(k t

22ct
22

1k l
22cl

2222(12s)21ct
22) and has the same form as for

half-space with a thin but not monatomic film coating.18 The
influence of a monolayer is similar to that of a thin film wit
the effective thickness

d5
M

r S 12
cf

2

cR
2

k̃ t

k̃ t1k̃ l
D , ~19!

where

k̃ t5A12cR
2/ct

2 and k̃ l5A12cR
2/cl

2 @i.e. d;a~r f /r!].

It is well known that the properties of nonlinear wav
and solitons in a specific dynamical system depend stron
on the dispersion properties of linear waves in it. In our ca
the dispersion of linear wavesD5]2v/]k2 remains finite in
the long-wave limit k→0: D→22cRdb̃, i.e. Rayleigh
waves in a system with a film coating are strongly dispersi
Here the question of the character of the nonlinear term
the dynamical equations becomes very important.

Let us now return to nonlinear surface waves in a ha
space covered with a monolayer of a material with nonlin
properties. To obtain an effective one-dimensional dynam
equation for these waves we shall employ the smallnes
the parameter« and introduce the ‘‘slow’’ coordinater
5«(x2ct), wherec is the velocity of the center of a solito
~close to the velocity of a linear Rayleigh wave in a ha
space with no covering layer!. Then, for the new variables
p5ux , q5vx , P5Ux , and Q5Vx the relations~12! and
~13! in the leading approximation in the small paramete«
can be rewritten as
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p5
]

]r H AQ1BĤP2A
cf

2

c2 PQ2
B

2

1

c2/cf
221

3ĤS Q22
2b

a
P2D J , ~20!

q5
]

]r H CP1DĤQ2D
cf

2

c2 ĤPQ2
C

2

1

c2/cf
221

3S Q22
2b

a
P2D J , ~21!

and in the same leading approximation in the small para
eter« from Eqs.~4!, ~5!, and~15! follows

q5Q1O~«!, p5P1O~«!, ~22!

and we can setq5Q and p5P in Eqs. ~20! and ~21! to
obtain the final closed-form equations for the variablesP and
Q. Since it was shown previously thatBD1CA;O(«), in
the leading approximation in« from Eqs.~20! and ~21! fol-
lows a relation between the two components of the defor
tion in the monolayerP andQ:

Q52~C/B!ĤP. ~23!

Using the relation~23! we find the final equation for
P5P(r ):

P2h
]

]r
ĤP2c

]

]r
ĤP250, ~24!

where

h5~M /r!s2@ k̃ t~12cf
2/cR

2 !1k̃ l #.

c5~M /2r!~cf
2s2/cR

2 !~2b/ak̃ t1k̃ l !.

In the initial variables this equation becomes

«U2hĤUx2cĤUx
250. ~25!

The structure of Eq.~25! is similar to that of the equation
obtained in Ref. 18 for an elastic half-space with an id
boundary where the nonlinear properties decrease with
tance away from the surface. Since the other componen
the surface deformationQ5]V/]x is ordinarily measured
experimentally, we shall rewrite Eq.~24! in terms of this
component:

Q2h
]

]r
ĤQ2c

B

C

]

]r
~ĤQ!250. ~26!

It is simple to take the next step in the approximating pro
dure in terms of the small parameter« and find a correction
of the order of« to h. But it is important to point out that this
does not change structure of Eqs.~2!–~26!, and in this ap-
proximation additional nonlinear terms of a different type
not appear in the equations.

3. EQUATIONS FOR SLOWLY TIME-VARYING NONLINEAR
RAYLEIGH WAVES

Thus far we have discussed only nonlinear surfa
waves with a stationary profile. Now we shall extend E
~24! to nonlinear Rayleigh waves with a slowly varying pr
file and we shall introduce an additional dependence of
-

a-

l
is-
of

-

e
.

e

displacements on the ‘‘slow time’’t5jt (j5(c2cR)/cR

!1). in a coordinate system moving with the velocityc
5cR : y5y(x2cRt,z,t). The new parameterj is related
with the previously introduced small parameter« as j
5«/@(2(12 s̃)/ct

22k̃ t /(k̃ lcl
2)2k̃ l /(k lcl

2))cR
2 # and s̃

5cR
2/(2ct

2). In the leading approximation in the small pa
rameterj the Laplace equations for the transverse and l
gitudinal components of the displacements are replaced
the equations

~12cR
2/b2!yxx1yzz52j~2cR /b2!yxx , ~27!

where, just as above,b5cl for y5yl and b5ct for y5yt .
From Eq.~27! follows a relation, which generalizes the e
pression~9!, between the different components of the def
mation on the surface:

]y

]zU
s

2A12
cR

2

b2 Ĥ
]y

]xU
s

'j
cR

bAb22cR
2

Ĥ
]y

]tU
s

. ~28!

Using the relations]ut/]x52]v t/]z and ]ul /]z5]v l /]x
and differentiating the boundary conditions~7! and ~8! with
respect to the coordinatex, all components of the deforma
tion on the right-hand sides of Eqs.~7! and ~8! can be ex-
pressed in terms ofux

l andvx
t ~see Appendix, Part 3!:

]

]x
sxz52rFct

2~12 s̃!vxx
t 1ct

2k̃ l Ĥuxx
l 1jcR

3S ct
2

cl
2k̃ l

Ĥuxt
l 1vxz

t D G , ~29!

]

]x
szz52rF2ct

2~12 s̃!uxx
l 1ct

2k tĤvxx
t 1jcR

3S 1

k̃ l
Ĥvxt

t 2uxt
l D G . ~30!

Performing calculations similar to the preceding on
and using the relations~15! the componentsux

l andvx
t of the

displacements can be expressed in terms of the displ
ments of the atoms in the monolayer

vx
t 5ct

2cl
2k̃ l k̃ tu@~2k̃ l1k̃ l

2k̃ t!ĤUx1~12k̃ l k̃ t!Vx#

1jcRu$2@~cl
22ct

2!k̃ l1ct
2k̃ t#ĤUt1~cl

21ct
2

22cR
2 !Vt%, ~31!

ux
l 5ct

2cl
2k̃ l k̃ tu@~ k̃ t2k̃ l k̃ t

2!ĤVx1~12k̃ l k̃ t!Ux#

1jcRu$@~ct
22cR

2 !k̃ t1cl
2k̃ l #ĤVt1~cl

21ct
2

22cR
2 !Ut%, ~32!

where 1/u5k̃ l k̃ tct
2cl

2(12k̃ l k̃)2. This makes it possible to
obtain a closed system of equations which, after introduc
the variablew5xAj and using the notationsP and Q, be-
come

Aj@McR
2Qww2a~PQ!ww2d̃Pt2ẽĤQt#

52ãPw1b̃ĤQw , ~33!
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AjF ~McR
22a!Pww2

a

2
~Q2!ww1b~P2!ww2g̃Pt

1d̃H̃QtG5 c̃ĤPw1ãQw , ~34!

where

ã5~12s2k̃ l k̃ t!2ct
2ũr, b̃5cR

2 k̃ tũr,

c̃5b̃k̃ l /k̃ t , d̃5~ k̃ t2k̃ l !
2cl

2ct
2urcR ,

ẽ5@~3cR
222cl

2!cl
2k̃ l1~2cl

22cR
2 !ct

2k̃ l
3#urcR ,

g̃5@~3cR
222cl

2!ct
2k̃ t1~2ct

22cR
2 !cl

2k̃ l
3#urcR ,

1/ũ512k lk t ,

and ã22 c̃b̃50. Using these relations we obtain a relati
between the components of the deformations of the sur
layer that is similar to the relation obtained abov
Q52(ã/b̃)ĤP.

The final equation which extends Eq.~24! to the case of
slowly evolving nonlinear waves, close to Rayleigh waves

Pt2h
]2

]m2 ĤP2c
]

]m
Ĥ~PPm!50, ~35!

where the parametersh and c were determined above, an
m5x@2j(2ãd̃1b̃g̃1 c̃ẽ)/( ũr(2ct

2)2)#1/2. It is obvious
from Eq.~35! that if the dependence on (x2cRt,t) is sought
in the stationary formf (x2cRt,t)5 f (x2cRt2cRt)5 f (x
2ct), we arrive at Eq.~24!.

The derivation of Eq.~35! is the main result of this pa
per.

4. SOLITON SOLUTIONS FOR NONLINEAR RAYLEIGH
WAVES

In Sec. 3 we obtained an explicit form of the nonline
terms in the one-dimensional evolutionary equations desc
ing the dynamics of nonlinear Rayleigh waves in a ha
space with a monatomic coating@the last terms in Eqs.~24!
and ~35!#. According to Eq.~35!, the nonlinearity which
arises is very weak: it is quadratic in the field amplitude a
contains the same number of spatial derivatives as the li
dispersion term in this equation. Ordinarily, localized solit
excitations arise in ‘‘nonlinear physics’’ as a result of com
petition between nonlinearity and dispersion of the waves
the present case strong dispersion@the number of spatial de
rivatives in the dispersion term—the second term in E
~35!# cannot be compensated by nonlinearity.~The nonlinear
term contains the same number of spatial derivatives.! Con-
sequently, in the general case Eqs.~24! and~35! probably do
not possess stationary soliton solutions because these e
tions possess such large gradients that their description
the basis of the long-wavelength approximation is unju
fied. However, the situation can change when the param
h in the leading dispersion term is anomalously small. T
can happen for certain definite ratios of the parameters of
substrate half-space and the monolayer covering it: the
equality

s2~M /r!~k l1k t~12cf
2/c2!!!1 ~36!
ce
:

s

r
b-
-

d
ar

n

.

ua-
on
i-
ter
s
e

n-

must hold.
Since all parameters appearing in this relation are of

order of 1, the indicated inequality can in principle be sat
fied. In this case, the leading dispersion term in the evo
tionary equations, which is due to the presence of the
sorbed surface layer, becomes anomalously small and
additional weak dispersion arising in the next order of p
turbation theory in the small parameter« must be taken into
account. Then the relations~22! must be written to a highe
order of accuracy:

q5Q2«
l

l1g
Pr1O~«2!, p5P2«Qr1O~«2!. ~37!

As a result, the relation~23! between the various componen
of the deformation becomes more complicated:

Q52~C/B!ĤP2«LPr1«NĤ~PĤP!r ,

L52l/~l1g!2~C1K ! B2, N5CKcf
2/~B2cR

2 !,

K5~M /2r!2~cR /ct!
4~12cf

2/cR
2 !~ k̃ tk̃ l21!. ~38!

The equation~24! is modified and becomes

P2h̃
]

]r
ĤP2«LD

B

C

]2

]r 2 P2c
]

]r
ĤP250, ~39!

whereh̃5h2«(C1K)/B. A similar equation has been dis
cussed in Ref. 18, but the derivation of the equation usin
certain asymptotic procedure required a definite ratio
tween the small parameters in the expansion~actually, the
wave amplitude! and the thickness of the film covering th
surface of the crystal. In the model proposed the derivat
of the dynamical equations is free of this drawback and
exact at the theoretical-physics level.

Let us now reexamine a weakly dispersive system wh
the parameterh̃ in Eq. ~39! is anomalously small and can b
dropped. Then Eq.~39! in dimensionless form becomes

W2Wzz2Ĥ~W2!z50, ~40!

whereW5PACc/LDB A« andz5A«ACLDB(x2ct). In
this equation the nonlinear and dispersion terms can
longer compensate one another and Rayleigh solitons wi
stationary profile can exist. Unfortunately, such solutio
could not be found in analytic form. However, the form
Eq. ~40! reveals some unusual properties of these solito
Integrating Eq.~40! with respect toz over infinite limits and
assuming zero deformation at infinity, we find that the to
longitudinal deformation in a Rayleigh soliton should b
zero:

E
2`

1`

dxP~x!50,

and therefore the profile of the soliton should be sig
changing. Indeed, the numerical solution which we obtain
for Eq. ~40! for this soliton looks like a ‘‘Mexican sombrero’
~see Fig. 2!. It should be noted that actually the numeric
calculation was performed for a nonlinear periodic Rayle
wave consisting of a train of Rayleigh solitons. However,
the periodl of this wave increased, the wave indeed tran
formed into a periodic structure of strongly localized solito
spread over a large distance. Figure 2 shows the solutio



th

Eq
re

th

th
c

n

ns
os-
n-
w-
eld
tial
he
-

ypes
lds
ua-
he
will

ch

s

et

the
ace

tion
ys-
on

such
of

399Low Temp. Phys. 29 (5), May 2003 Kovalev et al.
Eq. ~40! for a nonlinear Rayleigh wave with waveleng
l 52pA0.15'16. The widthD of an individual soliton~the
distance between the minima of the soliton profile! was ap-
proximately one tenth the period of the wave.

The possible phenomenological generalizations of
~39! admitting analytic solutions for Rayleigh solitons a
discussed in the Appendix~Part 4!.

5. APPENDIX

1. The Hilbert transform is defined as

Ĥ f ~x!5
1

p E
2`

` dx

x82x
f ~x8! ~A1!

and possesses the following properties which we used in
paper:

ĤĤ f ~x!52 f ~x!, ~A2!

Ĥ~ f g!5 f Ĥg1gĤf 1Ĥ~~Ĥ f !~Ĥg!!. ~A3!

2. The relation between the various components of
deformation on the surface of a linear isotropic half-spa
are:

ux
t 52k tĤvx

t , uz
l 52k l Ĥux

l , u2
t 5k t

2vx
t ,

vx
l 5k l Ĥux

l , vz
l 52k l

2ux
l , vz

t 5k tĤvx
t . ~A4!

3. The relations between the deformation compone
for slowly varying waves are:

ux
t 52k̃ tĤvx

t 2j
cR

ct
2k̃ t

Ĥvt
t ,

uz
l 5k̃ l Ĥux

l 1j
cR

cl
2k̃ l

Ĥut
l ,

uz
t 5k̃ t

2vx
t 12j

cR

ct
2 vt

t ,

vx
l 5k̃ l Ĥux

l 1j
cR

cl
2k̃

Ĥut
l , vz

l 52k̃ l
2ux

l 22j
cR

cl
2 ut

l ,

FIG. 2. Numerical solution of Eq.~40! for one period of the profile of a
nonlinear Rayleigh wave with wavelengthl'16.
.

is

e
e

ts

vz
t 5k̃ l Ĥvx

t 1j
cR

ct
2k̃ t

Ĥvt
t . ~A5!

4. We now return to Eq.~24!, which we derived rigor-
ously in the leading approximation in the small parameter«,
and rewrite it in the dimensionless form

F2ĤFx2Ĥ~FFx!50, ~A6!

introducing the new field variableF52cP/h and the coor-
dinatex5r /h. It is now possible to consider generalizatio
of this equation. The linear dispersion term is the only p
sible combination that is linear in the field variable and co
tains one spatial derivative and one Hilbert transform. Ho
ever, the independent nonlinear terms quadratic in the fi
variable and containing one Hilbert transform and one spa
derivative could be, in principle, of three types. Using t
relations~A2! and ~A3! it is easy to show that the indepen
dent combinations areĤ(FFx), FĤFx , andFxĤF. Conse-
quently, as a phenomenological equation extending Eq.~A6!
we suggest an equation that contains all three possible t
of nonlocal nonlinear terms, since such an analysis yie
interesting mathematical results. We hope that such eq
tions can also arise in other physical formulations of t
problem. The generalized phenomenological equation
have the form

F2ĤFx2a1FxĤF2a2FĤFx2a3Ĥ~FFx!50, ~A7!

wherea i are arbitrary constants. This equation looks mu
more complicated than Eq.~A6!, but for certain definite ra-
tios of the parametersa i it admits exact analytical solution
for surface solitons.

We consider first the casea350 anda152a2 . ~Renor-
malizing the amplitude of the solution we can s
a152a251.) The equation obtained

F2ĤFx2FxĤF1FĤFx50 ~A8!

possesses the exact soliton solution

F5
2

11x2 , ~A9!

which has the same form as the well-known solution of
Benjamin–Ono equation for nonlinear waves on the surf
of an infinitely deep liquid.21 We note that in this solution, in
contrast to the solution presented in Fig. 2, the deforma
is everywhere positive and the total deformation in the cr
tal is different from zero. It is also easy to find an extensi
of the solution~A9! for a periodic train of solitons:

F5
12b2

12b cos~x/ l̃ !
, ~A10!

where l̃ 5b2/A12b2 andb<1.
A more interesting case isa15a252a3/2. Here there

arises the equation

F2ĤFx2FxĤF2FĤFx12Ĥ~FFx!50, ~A11!

which also possesses exact soliton solutions; the set of
solutions is infinite. The first and simplest soliton solution
Eq. ~A11! is
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F5
8

~11x2!2
2

4

11x2
. ~A12!

This solution has qualitatively the same form as the
lution of Eq. ~40! derived above and shown in Fig. 2. Th
total deformation corresponding to this solution likewise
strictly equal to zero. However, in this case the soliton pro
is not as narrow as the profile of the solution of Eq.~40!.

The most interesting circumstance is the existence
other more complicated solutions of Eq.~A11! for surface
Rayleigh solitons. For example, the solutions of Eq.~A11!
which are next in terms of the complexity are

F ~2,3!5l1
~1,2!H 2b~1,2!2

~x21b~1,2!2!2 2
1

x21b~1,2!2J
1l2

~12!H 8b~1,2!3

~x21b~1,2!2!3 2
6b~1,2!

~x21b~1,2!2!2J ~A13!

with l1
(1)53(31)), l2

(1)53(312)), and b (1)5(3
1))/2 for the solution F (2) and l1

(2)53(32)), l2
(2)

53(322)), and b (2)5(32))/2 for the solutionF (3).
The profile of the solutionF (2) is similar to that of the solu-
tion ~A12!, whereas the profile of the solutionF (3) has two

FIG. 3. Profiles of the soliton solutions of Eq.~A12! (F) and Eq.~A13!
(F (2) andF (3)).
-

e

f

large maxima and three minima. The profiles of the solutio
for F, F (2), andF (3) are presented in Fig. 3.

More complicated soliton solutions can be written in t
unified form

F ~N!~x!5 (
n51

N

ln
~N!S 2Ĥ

d

dx D n b~N!

x21b~N!2 , ~A14!

where the parametersln
(N) andb (N) for eachN are found as

solutions of a system of algebraic equations. Of course,
largeN the solutions can be found only numerically, but wi
arbitrary accuracy. The solutions of Eq.~A11! are exact to
this accuracy. The evolutionary analog of Eq.~A11! with a
spatiotemporal derivative replacing the first term and w
additional differentiation of all other terms with respect
the coordinate could be exactly integrable.
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Local excitations in the conduction band of crystalline xenon
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~Submitted March 17, 2003!
Fiz. Nizk. Temp.29, 539–555~May 2003!

A detailed experimental investigation of the basic characteristics of the radiation of crystalline
xenon withEmax52 eV (A band! is performed as a function of temperature, impurity
concentration, lattice perfection, and irradiation dose. The radiation parameters of this band are
compared with the same parameters of the radiation of free excitons, localized holes
Xe2

1* , and impurity centers Xe2O* , whose bands were recorded in parallel. The photoexcitation
spectra of theA band and the time decay curves of luminescence are analyzed. Radiation
with similar structure withEmax52.05 eV is also found in the binary crystals Ar1Xe with high
(;10%) xenon concentrations. It is concluded that the observed radiation is due to
intrinsic molecular-type excited states of localized in the interior volume of the crystal and
lyingnear 10 eV in the conduction band. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542504#
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1. INTRODUCTION

Irradiation of a dielectric crystal by light or high-energ
particles can result in the excitation of excitons and f
electron–hole pairs, depending on the energy and spe
width of the exciting beam. The energy transfer and rel
ation processes occurring in the conduction band of a cry
and in other high-energy states need to be investigate
order to construct the complete scheme of channels for
distribution of the initial excitation energy over the radiatin
states—both intrinsic and impurity. The problem is mo
complicated for crystals of inert elements because free
self-localized excitations coexist with one another, and
effect is observed for excitons and holes. A complicated p
tern of branching of the relaxation of the excitation ener
over states of free, self-localized, and surface excitations
excitations localized on defects arises. The band gapEg in
crystals of inert elements exceeds 9 eV, and the lowest re
ation step are excitonic states with radiation energyE
.7 eV, which determine the entire quantum yield of lum
nescence of crystals in the VUV region of the spectrum. T
radiative transitions from the lowest free and localized ex
tonic states and the dependence of their characteristics o
excitation energy, temperature, and defect density of
crystal served as a basis for many experimental invest
tions of the dynamics and localization of excitons and ene
transfer.1–3 Special attention is devoted to xenon crysta
which offer the best conditions for stability and radiation
free excitons.

As a result of the strong resonance coupling in the
lencep states, the hole and excitonic bands in Xe are wi
than in the crystals of other inert elements. Exciton and h
self-localization occurs only in two-center~quasimolecular!
states, which have a large depth (De;0.5 eV) because o
this resonance coupling. In the last few years a theory
mixing of free-exciton states with the vibrational states o
4011063-777X/2003/29(5)/13/$24.00
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molecular self-localized exciton in the region of overlappi
of the excitonic band and local states as a result of the str
exciton–phonon coupling4,5 has been developed, and ne
stability6 and self-localization7 criteria have been propose
for the lowest freeG~3/2! excitons. However, the more th
properties of the lowest excitons were studied, the more
vious it became that their radiation is affected by the dyna
ics of higher-energy excitations and the properties of the
ergy relaxation processes from the moment of excitation
the range of higher-energy excitons or the continuum of
bound electron–hole pairs to the lowest radiating sta
Consequently, the focus has now shifted to radiation fr
higher-energy excitation states. The most interesting ques
is how important the problem of the coexistence of free a
self–localized excitations is for them. The possibility of ho
self-localization can be regarded as proven, but neither
fraction of the band quasiparticles capable of reaching
bottom of the hole band nor their contribution to ener
transfer and relaxation processes is known. For excitons w
energies aboveEg only one characteristic is known thu
far—their contribution to the absorption spectrum. In Xe t
problem complicated by the fact that such excitations inclu
all singlet excitons in theG~1/2! series~including also the
lowest staten51 with a large oscillator strength!. The main
question in this situation is how stable these excitonic sta
are with respect to decay into free electrons and holes
whether or not their self-localization or localization on d
fects is, in principle, possible if the corresponding loc
states lie aboveEg .

Investigations of the photoexcitation spectra of free e
citons at energies aboveEg have shown8,9 that the initial
excitations decay into free electrons and holes in a ti
much shorter than the electron relaxation time in the ba
with excitationEn at high energies (En2Eg;1 eV). Subse-
quently, the hole self-localizes in a quite short time, and
© 2003 American Institute of Physics
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much lighter electron thermalizes in a time almost an or
of magnitude longer. The recombination process is m
more efficient for low electron kinetic energies and occ
primarily near the bottom of the conduction band. The eff
is observed as a long-lived component in the photoexcita
spectra and as a time shift of the radiation peak of a f
exciton relative to the peak of the exciting photopulse.

Data showing that the contribution of the recombinati
channel to the formation of two-center local excitations10 and
free excitons8 depends strongly on the density of defects a
impurities, which initially play the role of traps for holes an
electrons and after recombination for free excitons, have
appeared.

An important recent achievement is the investigation
the visible radiation of local excited hole centers.10–12 It has
been shown that radiative centers corresponding to a q
shallow~as is known from the gas phase! potential of a two-
center ion in the excited state Xe2

1* , appearing when a sin
glet hole with orbital angular momentumJ51/2 becomes
localized, arise in a crystal. Here there are two surpris
First, this shallow molecular potential is somehow capable
becoming a stable state in a crystal, which on the basi
energy considerations should lie in the corresponding h
band~see, for example, Ref. 2!. Second, if the state still lies
above the bottom of its own band, then there arises the q
tion of whether or not the excitation is stable with respect
relaxation into a lower-lying triplet (J53/2) hole band, since
the singlet band essentially overlaps with the latter. Howe
the radiation of such centers is still observed, and there
grounds for believing that the similar effects can also
observed for neutral local excitations which lie in the ran
of band states.

Investigations of the visible radiation from crystals
inert elements pursue two important goals. The first~and
trivial! one reduces to identifying impurity radiation in ord
to monitor the presence of impurities and the effect of imp
rities on the filling of the intrinsic radiating states of a cry
tal. The second one is to search for possible relatively sta
intrinsic excited states which lie at higher energies and
radiate in accordance with transitions between excited sta
Such investigations could yield direct information about
laxation processes in the range of higher-energy excitati

The radiation bands of the lowest-lying (n51) G~3/2!
free exciton~FE! with energyEFE58.36 eV in xenon and
the quasimolecular band (M ) Xe2* EM.7.2 eV have been
investigated in detail in many works1–3 The range of states
that corresponds to higher-energy excitations is convent
ally identified with fast nonradiative relaxation process
since no VUV radiation has been observed from states ab
n51 G~3/2!. This supposition seemed especially valid f
xenon, where the widthB of exciton bandsn51, 2, 3, . . .
(;1 eV), which overlap with one another and with the sta
of free electron–hole pairs right up to the center of the c
duction band (Eg59.30 eV in Xe13!, is greater than in the
crystals of other inert elements.

Nonetheless, even the first investigations of the visi
luminescence of xenon crystals revealed two intrinsic rad
tion bands with peaksEmax near 4.0 and 2.0 eV and wit
half-widths D'1.3 and 0.08 eV, respectively.14–16 It was
suggested that quite long-lived radiative centers exist in
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conduction band aboveEg , in the range where the ban
states overlap. Synchrotron photoexcitation of more per
xenon crystals revealed bands withEmax54.29, 4.44, and
2.16 eV andD50.25, 0.09, and 0.3 eV, identified as intrins
radiation of crystalline xenon.17 A luminescence band with
Emax'2.15 eV andD50.27 eV has been investigated in x
non crystals grown by condensation of a gas from an elec
discharge.13,14

Suggestions have now been made about the natur
some of the radiation bands mentioned above. In Refs.
and 15 the band withEmax'4.0 eV is attributed to a radiative
transition from high-energy molecular states Xe2** to the
dissociative terms1,3Pu and1,3Sg

1 , associated with the low-
est excited states Xe* 6s@3/2#1,2. In Ref. 17 the bands with
Emax54.29, 4.44, and 2.16 eV were initially identified a
recombination radiation, i.e. the excess energy released
result of the recombination of localized holes and electro
accompanying a transition into the ground state of the cr
tal. However, it was shown subsequently that the band w
Emax'2.15 eV is associated with the radiation of excited
calized ionic centers Xe2

1* and is due to a radiative transitio
from the excited ionic state Xe2

1* 2(1/2)g ~the depth of the
potential in the gas phase isDe50.03 eV) into the ground
state Xe2

1 1(1/2)u . The position of the maximum of this
band varies within 0.07 eV, depending on the excitation
ergy. Thus, the discrepancydEmax50.01 eV in Refs. 17 and
12 is not fundamentally important for identifying the ban
Raising the temperature of the crystal above 30 K dea
vated the Xe2

1 centers as a result of recombination proces
with electrons freed from crystalline traps.12

The interpretation of the band withEmax52 eV (A band!
presented the greatest difficulty. Initially, theA band of xe-
non was attributed, on the basis of its high sensitivity to
presence of impurities in the crystal and the perfection of
lattice structure, to a transition from a freeX-type n51 ex-
citonic state near 11 eV into aG-type n51 excitonic state
near 9 eV at theX point of the Brillouin zone.14,15

TheA band has also been observed with photoexcitat
of xenon by synchrotron radiation,17,18 but the authors of the
work did not give any explanation or alternative interpre
tion of the origin of this band. We note that under synch
tron excitation this band was weak and it was only wea
distinguished against the background of a neighboring, wi
band withEmax52.16 eV. TheA band hs not observed at a
with laser photoexcitation of frozen ionic centers Xe2

1 .11,12

The first attempts to measure the excitation spectra u
a synchrotron source of VUV radiation were made to det
mine the origin of theA band.16 However, the inadequate
spectral resolution and the strong overlapping of this ba
with neighboring bands made it impossible to draw defin
conclusions about its origin. The photoexcitation spectrum
the xenon band withEmax52 eV was obtained in Ref. 18
with better spectral resolution. Aside from the high-ener
part, above the conduction band bottomEg a substantial
component in then51 G~3/2! exciton range, i.e. 1 eV below
Eg , was also observed in the spectrum. The existence of
section cast doubt on the correctness of the initial inden
cation of theA band (Emax52.0 eV) with a transition from
high-energy free excitons with energy;11 eV.

In summary, the existing information is clearly inad
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equate for determining the origin of radiation withEmax

52.0 eV. We decided to use a combined approach and
dertake a series of additional multifaceted and system
investigations which would help to establish the nature of
A band in xenon radiation. First and foremost, it was nec
sary to rule out the simplest assumption logically followi
from the fact that this band is excited by low-lyin
excitons—trapping of an exciton by an impurity and rad
tion from a low-lying impurity state. To this end the initia
xenon gas was additionally purified. Next, the question w
posed as to whether theA band is due to radiation from
surface or volume states and whether the emitting states
free or local excitations. In solving this problem the depe
dence of the radiation intensity on the quality of the crys
structure, the irradiation dose, and the temperature of
crystal was decisive. The radiation of Xe as an impurity
the matrix of another inert gas was also investigated, si
the intensity of free excitons is extremely sensitive to
introduction of an impurity. The next important question is
determine if the radiating state is associated with charge
neutral states. Consequently, in this work a compara
analysis was made of the behavior of the radiation band w
Emax52.0 eV and the luminescence of self-localized ho
Xe2

1* (Emax52.15 eV) as a function of the parameters en
merated above. In addition, we obtained the first time de
spectra of the luminescence of theA band for three substan
tially different energies of the excitation pulse. Combin
with the analysis of previously obtained photoexcitati
spectra these investigations made it possible to attribute
diation with Emax52.0 eV to an intrinsic, neutral, localized
molecular-type volume state formed inside the lowest c
duction band of the xenon crystal.

2. EXPERIMENTAL PROCEDURE

The luminescence of pure Xe crystals and Ar cryst
with xenon as an impurity was investigated by using mo
chromatic electrons with energyEe.2 keV to excite the
samples. The current densityj was 0.04 mA/cm2. The elec-
tron flux was directed along the normal to the surface of
sample.

The initial, nominally pure, xenon gas contained resid
impurities with concentrationCi;1023%, as stated on the
supplier’s data sheet. After prepurification in a special ap
ratus, using liquid lithium atT5200 °C, the purity of the
initial gas was improved by more than an order of magnitu
to Ci,1024%. Nominally pure xenon gas with impurit
concentrationCi;1023% and the additionally purified Xe
were used in the experiments. A continuous-flow helium c
ostat with substrate temperature regulatable from 2.5 to 7
was used for growing and performing optical investigatio
on the crystals. The crystals were grown by deposition fr
the gas phase at condensation temperaturesTc55, 35, or 80
K, followed by slow cooling to lower temperatures. Th
polycrystals obtained were;1 mm thick and were optically
completely transparent. The highest-quality crystals were
tained by condensation of prepurified gas on a substrat
T580 K. Crystal quality was checked according to the
tensity and shape of the freeG~3/2! exciton luminescence
band. Argon crystals with xenon impurity concentrati
CXe51% and 10% were grown at 30 K. The workin
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vacuum in the cryostat was maintained at 10210 bar. Radia-
tion at angles645° was detected simultaneously in the v
ible and VUV regions of the spectrum using DFS–24 a
VMR–2 spectral instruments. The spectral resolution w
0.015 and 0.05 nm for the visible and VUV regions, resp
tively. The procedure used for the luminescence investi
tions is described in greater detail in Ref. 19.

The photoexcitation of Xe crystals in the S–60 synch
tron was performed under the following experimental con
tions. Xenon polycrystals were grown at 65 K and irradiat
at the same temperature. The spectrum of the exciting s
chrotron radiation was scanned from 25 to 5 eV with 0.5
resolution. The time interval between the peaks of the li
pulses was 49 ns, and the half-width of a pulse was 8 ns.
experimental spectral interval of luminescence was extrac
using the following interference light filters: IF–625 (Emax

52 eV), IF–550 (Emax52.25 eV), and IF–500 (Emax

52.5 eV). The working transmission range of the light fi
ters was 0.05 eV. The setup used for the optical invest
tions in the S–60 synchrotron is described in greater deta
Ref. 20.

3. EXPERIMENTAL RESULTS

A. Luminescence of Xe crystals

The visible-range luminescence of xenon crystals gro
from purified gas consists of two partially overlapping ban
A and B with maxima Emax52.0 and 2.15 eV and half
widths D50.055 and 0.26 eV, respectively. TheA and B
bands lie adjacent to one another but because they have
ferent widths their contours are well separated, which ma
it possible to reproduce their spectral distribution in the
gion of overlapping. TheB-band maximum lies within 0.01
eV of the maximum of the radiation band of Xe2

1 in a crystal
matrix 2(1/2)g→1(1/2)u (Emax52.147 eV), which was ob-
tained in Ref. 1 by excitation withEn53.72 eV photons. The
intensities, the positions of the maxima, and the half-wid
of the A andB bands exhibit different behavior as function
of the crystal structure, impurity concentration, temperatu
and irradiation duration.

Sensitivity of the spectrum to the impurity concentratio.
Figure 1 shows the radiation spectrum of xenon crystals
different degrees of purification of the initial gas. The qu
well-known band near 1.7 eV, which belongs to the ex
meric compounds XeO* and Xe2O* in an Xe matrix~see,
for example, Ref. 21!, can serve as a spectral indicator of t
presence of impurities. The band near 1.7 eV is comple
absent in the radiation of the purified samples. TheA band
was not observed in samples grown from unpurified gas
the radiation spectra of the most perfect crystals obtai
from purified xenon, theA band is much stronger than theB
band. In the intermediate case, where the initial gas was
purified adequately, theA band is weak and is observed as
small peak on the low-energy shoulder of theB band.

Two parameters were used to monitor theeffect of de-
fects in the crystal on the luminescence spectrum: the growth
temperatureTc of the crystal and the electron irradiation d
ration t i . The first parameter determines the damage~stack-
ing faults! produced in the crystal lattice during growth. A
the condensation temperature decreases, the single-cr
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grains decrease in size and the total extent of the g
boundaries increases. The second parameter determine
generation of radiation point defects, whose concentra
increases with the irradiation time. Figure 2 shows the sp
tra of crystals grown from purified gas at condensation te
peraturesTc535 and 80 K. The ratio (I A /I B) of the A- and
B-band intensities increases with condensation tempera
by approximately a factor of 2. TheA band is virtually ab-
sent in the luminescence spectra of crystals grown at t
peraturesTc,30 K; the intensity of theB band likewise
decreases, but this band is still observed. Therefore it ca
concluded that theA band is more sensitive than theB band
to the sizes of the single-crystal grains.

Figure 3a shows the change in the radiation spectrum
A andB bands with increasing irradiation timet i and there-
fore increasing concentration of radiation defects. The ir
diation dosesNe(t) are approximatelyNe(t1)543108,
Ne(t2)523109, Ne(t3)543109, Ne(t4)583109 electrons
with energyEe52 keV. TheA- and B-band intensities in-
crease witht i . The intensity of the radiation spectrum of
free exciton changes in the opposite direction~Fig. 3b!. Ini-
tially, I FE decreases rapidly and reaches its lowest value

FIG. 1. Xe luminescence spectra as a function of the impurity concentra
in the initial gas:1—unpurified Xe (Ci'1023 at.%), 2—purified Xe (Ci

,1024 at.%), and3—1:100 mixture of these gases.T55 K. The spectra
are normalized to the maximumB-band intensity.

FIG. 2. Radiation spectra of samples grown from purified xenon at diffe
condensation temperatures. The spectra are represented as a superpos
A andB components.
in
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t i.200 min. The dose dependences of the band intens
I FE , I A , andI B are displayed in Fig. 3b~inset!.

The temperature variations of the spectrumof the com-
bined contour of theA and B bands are quite complicated
These bands were spectrally separated in order to deter
the behavior of each one; the separation was done using
reference the shape of a band in these spectra which is
affected by neighboring bands. TheA-band shape was ex
tracted from the spectrum of the most perfect crystal wit
minimal impurity concentration, and theB-band shape was
extracted from the spectrum of a crystal with a low impur
concentration, corresponding to curve3 in Fig. 1. The ex-
tractedA band is displayed in Fig. 4. To see the changes
the band shape more clearly the spectra are normalized to
maximum point. The position of theA-band maximum re-
mains virtually unchanged in the entire experimental te
perature range, and the half-width of this band decrea
with temperature fromDA50.079 eV atT566 K to DA

50.052 eV atT55 K.
The temperature dependences of the intensities of thA

andB bands and the free-exciton band are displayed in F
5. The intensityI A(T) almost doubles as temperature d
creases from 66 to 5 K. The functionI A(T) is flatter from 20
to 50 K than at low and high temperatures. A maximum
observed inI B(T) at T'40 K ~we note that a maximum ha
been observed in the thermal luminescence spectrum at
temperature22!. In most of the temperature range—right up

n

t
on of

FIG. 3. Variations of the luminescence spectrum of crystalline Xe a
function of the electron irradiation dose.Tc580 K, T55 K, I e513 mA,
t1,t2,t3,t4 . a—Visible range, b—VUV range, spectrum of aG~3/2! free
exciton. Inset—band intensitiesI A , I B , and I FE , normalized at the initial
point of measurementst1 . The spectraA, B, andFE were recorded simul-
taneously.
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60 K—practically an anticorrelation is observed in the b
havior of theA and free-exciton bands, while theB band
exhibits weak intermediate behavior.

A superposition of three narrow Gaussian compone
A1 , A2 , andA3 with Emax51.97, 2.0, and 2.05 eV describe
theA-band shape quite well~see Fig. 6!. The highest-energy
weak componentA3 is clearly observed only at low tempera
tures. As temperature increases, the relative inten
I (A1)/I (A2) of the bands decreases and both bands
broadened. The parameters of theA1 and A2 bands as a
function of temperature are presented in Table I. These
agree with the information presented in Ref. 18 on the e
tence of two bands with maximaEmax51.98 and 2.0 eV and
half-widthsD50.08 and 0.05 eV.

B. Luminescence of Ar crystals with Xe impurity

The luminescence spectrum of Xe impurity in an Ar m
trix with concentrationsCXe51 and 10% is shown in Fig. 7
The figure also shows the radiation spectra of theA and B
bands for pure Xe with quite prolonged irradiation. Analys
of the spectra in Fig. 7 shows that for sufficiently high co
centrations (CXe.10%) a superposition of theA and B
bands could account for most of the impurity radiation sp
trum.

FIG. 4. A-band shape at different temperatures. The intensities are nor
ized at the point of the maximum.

FIG. 5. Temperature dependence of the intensities of xenon radiation b
The normalization is done at the initial point at 66 K.
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C. Luminescence excitation spectra and decay curves

TheA-band photoexcitation spectra are presented in F
8. Figure 8a shows the data required for comparative an
sis; these date were obtained by other authors. The
spectrum23 shows which states absorb light~top scale! and
explains a number of minima in the excitation spectra by
anticorrelation effect, since reflection maxima are obser
in the region of the resonance-absorption peaks, in con
quence of which the excitation efficiency decreases. We n
that the photoexcitation spectra of the radiation bandM1

~7.05 eV! of the lowest exciton Xe2
1* , localized on a defect

and the bandM3 ~7.6 eV! at 60 K, when theM3 band domi-
nates in the spectrum of quasimolecular radiation, were
cently obtained in Ref. 24. The last spectrum in Fig. 8a is
two-photon excitation spectrum of theM band, where tran-
sitions which are forbidden in the one-photon regim
appear.25 Figure 8b shows the completeA-band excitation
spectrum which we obtained atT560 K, using the S–60
synchrotron, and the free-exciton photoexcitation spectr
from Ref. 18.

A clear similarity between the excitation spectra of theA
band and the quasimolecular bandM is observed below the
conduction band bottomEg . The A-band excitation
spectrum18 with E158.9 eV;Eex(n52) has a feature~la-
beled with the number 1 in the figure! which is essentially
identical in this region to the behavior of the high
temperature componentM3 , previously ascribed to radiation

al-

ds.

FIG. 6. Representation of theA band as a superposition of three separa
Gaussian bands~top energy scale!. To facilitate comparison the nonstation
ary absorption spectrum of xenon gas from the states of Xe2

1*
(1)0u

2/6s3P2 , (1)1u/6s3P2 , and (1)0u
1/6s3P1 into the states (9)1g ,

(10)1g , (11)1g , (4)2g , and (7)0g
234 is shifted downward in energy by

0.215 eV~bottom energy scale!.

TABLE I. Structure of theA band and variation of the parameters of i
components as a function of the crystal temperature.
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from triatomic quasimolecular complexes.26 The spectrum in
the region of theG~3/2! n51 exciton resonance18 looks more
like the excitation of the standardM band ~the sumM1

1M2) of self-localized exciton Xe2* . We note that in Ref. 18
the measurements were performed atT55 K, and the spec-
trum displayed in Fig. 8b was obtained at 60 K. In our sp
trum the feature 1 is somewhat stronger and then51 reso-
nance is somewhat weaker, and on the whole our spectru
almost completely identical to the excitation spectrum ofM3

at 60 K. AboveEg good agreement is observed between
structure of the excitation spectra of theA-band18 and the
free-exciton band, recorded 49 ns after the excitation pul8

in addition, on the whole, both dependences reflect the c
acter of the absorption spectrum. The spectrumA is distin-
guished by the presence of the feature 2 (E2'10.3 eV) in
the region of absorption of excitons engendered by electr
and holes whose states lie close to the edge pointsL andX of
the Brillouin zone.27 We denoted the corresponding ve
strong band in the absorption spectrum asL,X excitons. This
same feature is also observed in the excitation spectrum
the A band ~Fig. 8b!. Above 12 eV a certain similarity is
observed between the excitation spectra of theA and FE
bands. The feature 3 (E3'13 eV) in the spectrum of theA
band should be noted; its energy corresponds approxima
to the interband transitionX6

2→X7
1 . Substantial intensity

growth is observed at high energies~the threshold near 18
eV!; this growth, taking account of the feature atE1

58.9 eV, can be explained by an increase in the probab
of excitation of two excitons with energyE1 .

The lifetime of theA band was measured on the S–
synchrotron with photon energiesEn59, 13, and 21 eV,
which correspond to the features 1 and 3 and the maxim
energy of the spectrum in Fig. 8b. The curves showing
time decay of the luminescence are presented in Fig. 9.
two top curves correspond to excitation by photons with
ergy En521 eV andEn59 eV. A special feature of thes
decay curves is the time shift of the maximum of the rad

FIG. 7. Luminescence spectrum of Xe in Ar,CXe51% ~1! and CXe

510% ~3!. The series of narrow bands in the region 2.2–2.3 eV is
luminescence of XeO* from the residual oxygen impurity in argon. Th
spectrum of theA andB bands, which is observed in pure xenon~top energy
scale!, shifted upwards in energy by 0.05 eV~2! is presented for compari-
son.
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tion decay curve relative to the maximum of the photoex
tation pulse. This is characteristic for a cascade process.
simplest cascade scheme for the change in the numbe
particles with time is described by the equations

dn0~ t !

dt
5I 0~ t !2

n0~ t !

t0
;

dnA~ t !

dt
5

n0~ t !

t0
2

nA~ t !

tA
, ~1!

whereI 0(t)5I 0d(t2t0) is the excitation pulse~in our case
t055 ns corresponds to the maximum of the excitation pu
curve 3 in Fig. 9!. In this process the primary centers wi
concentrationn0(t) transform over their lifetimet0 into ra-
diating centers with concentrationnA(t) and lifetime tA .
Then theA-band intensity isI A(t)5tA

21nA(t). The solution
of the system of equations~1! is presented in Fig. 9 as th
curve 1 with the parameterst053 ns andtA56 ns. The
strong background with excitation period 48 ns~15 scale
units in the figure! is explained by the presence of a lon
lived radiation component whose time can be estimated
tA

l ;200 ns. The discrepancy between the computed cu
and the experimental points on the initial section is explain
by the large actual width of the exciting pulse. The compu
shift of the maximum of the curve relative to the initial puls
(t55 ns) isDt.4 ns. A similar shift has been observed o

e

FIG. 8. Xenon spectra.~a! Curves from top to bottom: absorption
spectrum,40 the position of the bottom of the excitonic bandsn51, 2, 3
G~3/2!, ~1/2! and the conduction bandsEg , Eg8 are marked at the top
A—excitation spectrum of theA band atT55 K,18 the numbered circles
mark the peaks which have no analogs on theFE curve. FE—excitation
spectrum of aG~3/2! free exciton, recorded in a time window with duratio
t549 ns atT55 K.18 M1—excitation spectrum of the band of two-cente
excitons Xe2* with Emax57.15 eV localized on defects,M 3—excitation
spectrum of theEmax57.6 eV band, both spectra were obtained atT
560 K.24 p excitons—excitation spectrum of theM band atT5158 K,25

the features are attributed top excitons.~b! A—excitation spectrum of theA
band; we obtained the spectrum in the S–60 synchrotron atT560 K,
FE—excitation spectrum of free excitons.18
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the luminescence decay curves of a free exciton excited
photons with energyEn.(Eg10.5) eV.9 The delay is ex-
plained by the fact that as the excitation energy increases
relaxation time of an electron relaxing to the bottom of t
conduction band in a single-phonon scattering process
creases.

A shift in the maximum of curve2 in Fig. 9, obtained
with excitation energyEn513 eV, is not observed; this cor
responds tot0!3 ns (t050.3 ns was used in the calcula
tion!; the lifetimetA56 ns did not change. The short fillin
time is manifested in the fact that the shape of the curve2 at
the initial stage is virtually identical to that of the curve3 of
the exciting pulse.

The fact that the maximum on the decay curve sh
once again as the excitation energy decreases to 9 eV a
to the existence of intermediate delay processes with ex
tion in the excitonic regionE1 .

4. DISCUSSION

A. General description of the radiating states

To clarify the origin of theA-band radiation withEmax

52 eV we shall analyze the results obtained, comparing
dependence of this band on various parameters with the s
dependences for reliably identified radiation bands
impurity centers XeO* , free excitons, molecular excited ce
ters Xe2* , and ionic excitations Xe2

1* .
First, the sharp increase in theA-band radiation intensity

simultaneously with quenching of the impurity band XeO*
after additional purification of the initial xenon gas definite
rules out the version where the radiating states are attrib
to impurities.

FIG. 9. A-band intensity as a function of the time elapsed after the exc
tion pulse:1—excitation energyEn521 and 9 eV~open and filled circles,
respectively!, 2—En513 eV, 3—shape of the exciting light pulse. To fa
cilitate comparison the experimental curve2 is shifted downwards relative
to curve 1. The solid curves1 and2 were calculated using the model~1!.
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The version where theA states are surface states can
immediately ruled out on the basis of the following thr
facts. First, when fine-grained samples are grown and
total surface area increases, the intensity of theA band de-
creases~for Tc,35 K) virtually to zero. Second, the photo
excitation spectrum has the so-called inverted form~anticor-
relation with the absorption spectrum!. This signifies that the
energies at which the absorption coefficient is small~the
‘‘wings’’ of the resonance absorption band! correspond to a
larger penetration depth of light in the crystal and more
ficient excitation of volume excitons. Third, similar, quit
strong radiation due to Xe impurity states in an Ar matr
where at concentrationsCXe510% the fraction of surface
states of xenon atoms~molecules! becomes much smaller, i
observed. Therefore theA band should be attributed to in
trinsic volume states.

Let us discuss whether or not theA band could be due to
a transition from free~band! exciton states with higher ener
gies into the lowest-lyingn51 G~3/2! dipole-active exciton
band. The 2 eV radiation band should correspond to tra
tions from excitonic states far above the conduction ba
bottom Eg59.3 eV ~they are called resonance states!. Ac-
cording to the general theory,28 excitonic states in the con
tinuous spectrum are not bound states in the usual sense
rather they are characterized by an imaginary ene
E2 iG, where G describes the probability that an excito
decays into free charges and their wave function is a w
whose amplitude diverges at infinity. These states can
relatively stable if the symmetry of the wave functions of t
excitonic electron~or hole! is different from that of a free
electron. Eexcitons in theG~1/2! series are distinguished b
the hole state~the lowest conduction band corresponds to
triplet hole withJ53/2) andX,L excitons are distinguished
by a change in the configuration of the electronic band w
function as the band edge is approached. The interaction
defects can result either in localization of an exciton on
defect or it can stimulate decomposition of the exciton in
free charges. In either case it results in rapid quenching
free excitons~just as happens with theFE band in Fig. 3!
and therefore flare-up of radiation from localized states. T
increase in the intensity ofA-band radiation with increasing
irradiation dose, i.e. with increasing concentration of po
defects, clearly points to local excitation. On the other ha
in impurity systems (CXe;10%) theA-band intensity in-
creases and free xenon excitons cannot exist, since tra
tional symmetry is absent. Therefore it must be ackno
edged that the excitation responsible for theA-band radiation
is local.

The next question is whether or not theA band corre-
sponds to the radiation of an excited ionic center. The f
that its energy is close to that of theB band, corresponding to
the excitation Xe2

1* , suggests, first and foremost, the id
that their origins could be similar, but our data show th
these bands behave differently. The intensity of theB band
saturates in a characteristic time;300 min, depending on
the irradiation dose. In an experimental investigation of ph
toconductivity due to ionization of excitons in krypton,29

where it was shown that charges accumulate on the sur
of the crystal, the characteristic time was;100 min. The
saturation of the photocurrent was attributed to the elec

-
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static limit on the accumulation of charge centers in
sample. In our case the increase in the saturation time o
crystal by ionic centers is due to the specific nature of
excitation of the crystal by an electron beam. In contras
the B band, theA-band intensity does not saturate over t
detection time; this shows that there is no charge on aA
center. In addition, as already mentioned, in experiments
samples with a specially created high concentration of io
centers, efficient excitation of theB band by 4.5 eV light was
observed, but in this case theA-band radiation was com
pletely absent.11,12These facts show that theA band belongs
to a neutral radiation center.

Let us consider the next variant of the origin of the o
served band: theA band is due to the excess energy relea
when localized electrons and holes recombine with one
other. When this happens, a transition occurs into the gro
state of the crystal. This interpretation was proposed in R
17 for a number of visible-range bands with ener
;3 – 4 eV. The energy released as a result of recombina
is described by the equation

E~r !5Eg2~Eh1Ee!2
e2

4p« r«0

1

r
2DVL , ~2!

whereEh'0.6 eV is the depth of the self-localized hole;Ee

is the binding energy of an electron in a trap;r is the
electron–ion distance;« r52.2 is the dielectric constant o
solid Xe;e is the electron charge; and,DVL is the difference
of the lattice energies between the excited and ground st
taking account of the contribution of hole and electron c
ters. We note that an equation where the third term in Eq.~2!
is taken with the opposite sign is used in Ref. 17 by analo
to known recombination effects in semiconductors.30 How-
ever, an excited state in semiconductors consists filled~neu-
tral! states of hole and electron traps, and the ground s
consists emptied~charged! acceptor and donor centers. Whe
a local hole recombines with a local electron Coulomb c
pling exists in the excited state~local analog of an exciton!
and the ground state contains neutral atoms, which is w
gives the corresponding sign of the Coulomb energy in
~2!.

The formation of local charge centers in crystals of in
elements could be due to a large deformation of the lattic
two-center hole ion consists of two closely spaced ato
whose repulsion energy in the ground state gives for
DVL'0.8 eV.31 Clearly, there are still not enough exper
mental data on actually existing electronic traps. In shall
pore-type~a large cluster of vacancies! traps the repulsion o
an electron from the nearest-neighbor environment is es
tially compensated by polarization attraction. Deep traps
be only of an impurity origin, and the electronic level in th
case must correspond to a strongly bound state with a s
radius. In both cases the lattice deformation due to the p
ence of an electron in a trap is small. Neglecting the el
tronic contribution toDVL , we obtain from Eq.~2! that the
recombination radiation energyE(r ) can be 2 eV only if the
depthsEe of the electron traps are;5 – 6 eV with the dis-
tancesr between the charged centers ranging froma0 to
r @a0 ~the lattice constant in xenona050.613 nm). In Ref.
17 it was noted that in experiments on the photoyield
electrons an effect corresponding to electron-trap dep
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ranging from 2 to 7 eV and lifetimes up to several hours w
observed. The authors could not explain the nature of s
deep states. It is known that the binding energies of e
tronic traps estimated on the basis of thermal luminesce
data are 60, 72, and 86 meV.22 The main uncontrollable im-
purities in inert gases are other atmospheric gases and w
The binding energy of electrons on impurity traps of atm
spheric gases cannot exceed the electron affinity. Oxygen
the highest electron affinity among known impurities—1.
eV. We remind the reader that we specially investigated
influence of the impurity oxygen concentration; this was d
cussed above.

Another very important argument against the recombi
tion radiation version is the small width of theA band~see
Table I!. When the contribution of the last term in Eq.~2! is
taken into account, an effect which is well known from th
quasimolecular radiation of theM band obtains—a transition
to a repulsive term of the ground state gives a band of wi
;0.5 eV. Therefore the version of theA-band radiation
where such a recombination transition occurs into the gro
state of the crystal seems to us to be groundless.

Let us now examine the conjecture that local excitatio
exist in the conduction band of the crystal. Transitions b
tween excited states are supported by the fact that the p
tion of the A-band maximum is essentially temperatur
independent~see Table I!. As temperature increases, a
appreciable shift is observed in the maximum of the radiat
of atoms and excitons. This shift is due to the fact that
change in the electron–lattice interaction in the excited s
~large radius of the electron state! is different from that in the
ground state~much smaller radius! as the crystal expands. I
the deformation-potential approximation the shift is given
the expression

E~T8!2E~T!5Cb~T!~T2T8!, ~3!

whereE(T) is the position of maximum luminescence;b(T)
is the dilation;C5C12C2 is the deformation potential cor
responding to a transition from the state 1 into the state
Crystals of inert elements possess a strong exciton–pho
coupling; C51.3 eV corresponds to an exciton withn51
~G~3/2!. As temperature increases, the maximum of
G~3/2! excitonic luminescence shifts appreciably to low
energies.2 A similar effect is also observed for atomic exc
tations of Xe in a matrix with a change in its density.1 In
contrast to excitonic luminescence, the position of the m
maximum of theA band remains unchanged as temperat
changes. This situation corresponds to transitions betw
local excited states, whenC1'C2'Ce—the deformation
potential of the electronic state in the limit of a large radiu
For a molecular local state there exists an additional con
tion that the position of maximum radiation is independent
temperature: the states 1 and 2 must have potentials
similar form with the same internuclear distances.

Since intrinsic local quasiatomic excitations in Xe do n
occur either for the lowest excitons or for holes, theA-band
radiation is most likely due to quasimolecular excitation. T
increase in the intensity of theA band in the luminescenc
spectrum of mixed Ar–Xe crystals with the Xe concentrati
increasing to 10% confirms the supposition that the radia
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A centers are of a molecular type. For such a xenon con
tration the probability that Xe–Xe pairs are formed in t
crystal grown is about 75%.32

The energyEA52 eV of the luminescence transition b
tween the excited states of a molecule establishes the lo
limit of the energy of the radiative state:

Emin5Te~ I u!1EA'7.951259.95 eV, ~4!

whereTe(I u)'7.95 eV is the zero-point vibrational energ
of the lowest excited state of the Xe2* molecule in a crystal.2

This limit lies approximately 0.7 eV above the conducti
band bottom in the crystal (Eg59.30 eV).

The possibility that local electronic–vibrational molec
lar excitons are formed at the center of the excitonic ba
has been shown theoretically in Ref. 4. The necessary
dition for this process is the presence of deep molec
states, lying in the same energy range, and defects of
crystal structure which stimulate exciton localization. Ene
relaxation of an exciton in a band is branching proce
which results in deexcitation of free and localized excito
Therefore it can be supposed that resonance excitation
the conduction band likewise form mixed states with t
vibrational levels of high-energy molecular states Xe2** ly-
ing in the same energy range. The interaction of these e
tonic polarons with defects results in relaxation of excitat
along a local system of vibrational levels and deexcitation
their local centers.

B. Identification of radiating states

Proceeding to the analysis of the excited states that c
be responsible for the 2-eVA-band radiation of xenon, we
recall that the temperature dependences of the band w
and position of the band maximum support the ideas that
internuclear distancer e is close for the upper and lower mo
lecular potentials and that these potentials have a sim
shape. The scheme of molecular and atomic states of xe
is displayed in Fig. 10. The lowest bound molecular state
Xe are the states 1u , 0u

2(6s3P2), and 0u
1(6s3P1). The pa-

rameters of these potentials in the gas phase have been
determined (De50.53 eV, r e50.31 nm).33 These potentials
converge to the atomic terms 6s@3/2#2,1 with energies 8.315
and 8.436 eV. Thus if a radiative transition occurs to
lowest vibrational level of Xe2* , then the internuclear dis
tance of the upper potential should ber e'0.3 nm and this
potential should lie about 2 eV above the zeroth vibratio
level of the lowest state of the excited molecule Xe2* .

Calculations of the potential energy of Xe2* molecules34

show that bound states satisfying these conditions do ind
exist. The close-lying potentials(6)0g

2 , (7)0g
1 , (9)1g ,

(4)2g , (10)1g , (11)1g , (7)0g
2 , and (8)0g

1 , arranged in
order of increasing energy, correspond to these condit
~see Fig. 10!. The states(6)0g

2 , (7)0g
1 , (9)1g , (4)2g , and

(10)1g correlate with the 7p atomic asymptote and are de
scribed by the configurationApu7p ~they are shown in the
inset in Fig. 10; the numbers 1–3 denote the first th
states!. The lowest four states possess the3Pg configuration
and (10)1g possesses the1Pg configuration. The higher-
lying states(7)0g

2 , (11)1g , and (8)0g
1 possess3Sg

1 and
1Sg

1 configurations, and they correlate with the 7s atomic
states and are quasibound. They possess a high barri
n-
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dissociation to the lower-lying 5d atomic terms. The calcu
lations show that the right-hand branch of the molecular
tentials(6)0g

2 , (9)1g , (7)0g
1 , (4)2g , and (10)1g is inter-

sected by repulsive terms, but the lowest vibrational lev
can have quite long predissociation lifetimes.34 The transi-
tion dipole moment for the indicated molecular states is n
zero for a transition to the lower bound states of the molec
Xe2* 0u

1(6s3P1) and 1u, 0u
2(6s3P2).

The presence of such states in the gas phase was
firmed experimentally by the nonstationary absorption of
molecule Xe2* from the lowest excited states 0u

1(6s3P1) and
1u, 0u

2(6s3P2). The absorption spectrum near 2.22 eV co
sists of two structured bands, which themselves consist
set of overlapping components.34 The first band was attrib-
uted to a transition from the lower excited molecular st
0u

1(6s3P1) into the excited states(9)1g , (10)1g , and
(11)1g . The second was attributed to transitions fro
1u,0u

2(6s3P2) into the states(9)1g , (10)1g , (11)1g ,
(4)2g , and (7)0g

2 . The nonstationary absorption spectru
of the Xe2* molecule in the gas phase is compared in Fig
with radiation in theA band. We performed a simple recon
struction of the spectrum of a group of bands near 2.21
representing them as a sum of three Gaussians with h
width 0.007 eV. The contour obtained describes well the c
tral componentA2 while at the same time the relative inten
sity of the individual components is preserved and the wi
of each band increases to 0.03 eV as a result of the inte
tion with the lattice. The magnitude of the shiftDES

50.15 eV of the band maximum to lower energies cor
sponds to a crystalline shift due to the difference of the

FIG. 10. Energy scheme of molecular potentials and atomic states of xe
~left-hand side!. The atomic states 6p, 7s, and 7p are designated for sim-
plicity by a single level corresponding to their average value; the 5d levels
are presented completely. The solid arrows denoteA-band and localized-
exciton (M ) radiation, the dashed arrow denotes the absorption from
ground state, corresponding to the closest internuclear distance in the c
d. Inset: molecular potentials of Xe near 10.2 eV,32 the potential curves
denoted by the numbers1–3 correspond to the states (6)0g

2 , (9)1g , and
(7)0g

1 in order of increasing energy. Center—the excitonic states of xen
The position of theG excitons is designated by solid lines, the position ofp
excitons by dotted lines,25 and the conduction band bottomEg by the heavy
line. The arrow shows a radiative transition of a free exciton (FE). Right-
hand side—computed valence-band and conduction-band states of xen38
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larization interaction with the environment in the upper~ra-
diating! state and the lower molecular term.

In crystalline xenon, as a result of the the Franc
Condon principle, absorption from the ground state can
cite only band states or local states withr e;d50.43 nm,
and for nonstationary absorption in Xe2* localized excitons
with r e;0.3 nm can be occupied. The nonstationary abso
tion in inert-gas crystals has been investigated in Refs.
and 36. For Xe it was found in Ref. 35 that the energy of
allowed transition3Su

1 –3Pg from the lowest excited state i
less than 1.1 eV. Continuum absorption is observed in
energy range of interest to us 1.1–3 eV. This absorptio
quite strong, but the resolution in detecting this spectrum
Ref. 35~0.1 eV! was too low to separate the fine structure
it. For krypton, whose structure and properties are closes
xenon, the absorption withEmax51.2 eV between the lowes
excited molecular terms3Su

1 –3Pg and the additional struc
ture at 1.6 and 2.5 eV were observed. The matrix shift
nonstationary absorption in krypton isDES'0.1 eV. This
small value ofDES shows that the molecular terms in the g
phase are close to those of the crystalline phase. The
between the absorption spectrum and the luminescence s
trum in crystalline krypton is 0.11 eV, i.e. the change in t
relaxation energy of the environment makes a comparativ
small contribution to the transition energy. These data
serve as reference points for estimating the magnitude
direction of a possible shift of various molecular potenti
of Xe2** accompanying a transition from the gas into t
crystalline phase.

In the crystalline state the energies of the 7s and 7p
levels of Xe* , which have a large excitation radius, decrea
as a result of the polarization interaction with the enviro
ment. The polarization interaction energy of an electron
cupying an interstice isFe522.26 eV, and for a hole oc
cupying a siteFh521.35 eV.37 If an electron in an excited
atom possesses an intermediate radius, as in the case o
excitations Xe* 5p56s, 5p66p, then its interaction is deter
mined more by the repulsion with the environment, which
only compensated to some extent by the polarization att
tion. Correspondingly, the local crystalline atomic level~ap-
proximately the center of the band! of G~3/2! and G~1/2!
excitons, genetically related with the excited atomic sta
5p56s and 5p56s8, is shifted to higher energies b
;0.4 eV. Fors states with large radii of the electronic orb
i.e. ns with n.6, the polarization interaction is in full play
and a lowering of the levels compared with the levels in
spectrum of a gas and compression of the spectrum sh
be observed. This corresponds to lowering of the atomic i
ization potential for triplet statesI A512.13 eV to the con-
duction band bottom in the crystalEg59.3 eV at the point
G6

1 of the Brillouin zone, which is the convergence limit fo
s excitons~see Fig. 10!. ForG~1/2! excitons the convergenc
limit Eg8 can be estimated as

Eg85Eg1DESO59.311.3510.6 eV, ~5!

whereDESO is the spin-orbital splitting.
The conduction band whose minimum lies at the po

X7
1 of the Brillouin zone corresponds to electronic sta

with p-symmetry wave functions in the crystal. For singl
photon excitation, transitions from the 5p ground state into
x-
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the p excited states of atoms and excitons are forbidd
Investigations of the excitation of theM band in the two-
photon absorption regime atT5158 K revealed a series o
absorption bands whose limit isEg(p)510.9860.08 eV
~see Fig. 8a!.25 Since the X7

2→X7
1 transition energy is

;11 eV,38 these states lie in the bottom conduction ba
and probably are of the same origin as theL, X excitons. On
the basis of the symmetry of the electronic wave funct
and the energy these excitations can be regarded as the
talline analog of the atomic 7p terms. Then, as is evident i
Fig. 10 the molecular levels associated with the atomicp
states, lying in the range 10.9–11 eV, remains virtually u
shifted at the transition into the solid phase. Incidentally, t
signifies that the polarization interaction with the crystal f
p states does not correspond to a model of two point char
as assumed in the estimates ofFe andFh given in Ref. 37.
The states associated with 7s and 7s8 will be shifted by a
larger amount into the region ofEg and Eg8 , respectively.1

The molecular terms associated with small-radius 5d excita-
tions and intermediate-radius 6p excitations should remain
approximately at the same energies as in the gas phase
calization of high-energy excitons can occur with the parti
pation of different potentials in the indicated energy ran
which relax nonradiatively to the lowest molecular term
designated by1–3 in Fig. 10. On account of the differen
configuration of these states in the crystal a difference
arise in the crystalline shift, which is manifested as a sp
ting of theA band into componentsA1–A3 .

In addition to the maxima corresponding top excita-
tions, a local maximum~labeled by the number 2! is ob-
served near 10.3 eV in the photoexcitation spectrum of thA
band; this maximum is absent in the excitation spectrum o
free exciton~see Fig. 8b!. In all probability the states nea
10.3 eV have relaxation channels with direct filling of loca
ized states associated withA centers. The most likely loca
excitations corresponding to this energy are molecular st
converging to the atomic limit 5d@3/2#1 near 10.4 eV. The
selection rules allow transitions into these states. Moreo
Xe2 absorption bands associated with this atomic state
observed in the gas phase of Xe.33 As a rule, the levels
5d@3/2#1 are filled as a result of dissociative recombinati
of molecular ions.39 The weakly bound molecular term con
verging to the atomic level 5d@3/2#1 possesses 1g symmetry
and a shallow potential withDe50.06 eV andr e50.4 nm,
close to the nearest-neighbor distance in the crystald
50.43 nm).40 Consequently, under photon excitation th
molecular term can be efficiently filled from the groun
state. In the crystal the 5d states are converted into narro
bands and their coupling with the lattice can be much str
ger than for other excitations. Subsequently, nonradiative
laxation is possible and can result in filling of deeper m
lecular potentials with different symmetry, since the weak
bound state 1g (5d@3/2#1) is intersected by many deepe
potentials, including potentials associated with 6p8 and 7p
atomic excitations. Ultimately, radiative transitions with e
ergy near 2 eV (A1–A3 bands! can occur from states with a
deep minimum~1–3 in Fig. 10!. The decrease in the inten
sity of the blue componentA3 with increasing temperature
can be explained by thermal activation above a barrier se
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rating the minimum of the potential and repulsive terms
tersecting it.

C. Formation of high-energy radiating states in the
conduction band of crystalline xenon

The character of the absorption spectrum of crystall
xenon reflects the Coulomb interaction force between
electron and a hole.27 In light crystals ~Ne, Ar! with low
permittivity («0;1.5) the screening of the Coulomb intera
tion is weak and the exciton binding energy is high. In a
sorption, most of the intensity~contribution to the oscillator
strength! lies in the exciton region (E,Eg) and the fraction
of interband transitions (E.Eg) ~in the two-band approxi-
mation! in Ar is about 40%, half of them are due toL,X
exciton type resonance states. In heavy crystals~Kr, Xe! the
Coulomb interaction is weaker («0;2), the exciton binding
energy is smaller and the exciton contribution to absorpt
for E,Eg is less than half~in Xe—30%!. The fraction of
resonance states is 62% and only 8% goes into in contin
absorption of free electron–hole pairs. Thus, as the ato
number increases, the role of interband transitions in the
citation of a crystal increases and the question of the me
nisms of shedding~transformation! of the energy of the ini-
tially arising excitations and channels for filling the radiati
excitonic states becomes more critical.

One of the most important questions is to determine
lifetime of resonance states taking account of the decay
electrons and holes, the character of electron–hole pair
combination, and the recombination efficiency for partic
with different energies. Investigation of the excitation spec
of the luminescence bands of the lowest free and s
localized excitons in perfect crystals has shown that e
though light absorption in the region of interband transitio
is efficient the excitation of theM band (Xe2* ) for E.Eg

decreases strongly.~We recall that the radiation of quasimo
lecular states usually strongly predominates in luminesce
luminescence of free excitons comparable toM lumines-
cence is observed only in the most perfect crystals.! This
means that, on the whole, for low defect densities the rec
bination process is inefficient, i.e. excitons in the region
the conduction band either leave the crystal~quenching on a
substrate, and so on! or are quenched on impurities. Th
probability of these processes is determined by the l
mean-free path length of quasiparticles, since it is assu
that a quite large crystal is grown with the lowest possi
impurity concentration. It is still unclear whether or not res
nance states in the conduction band can possess such
diffusion lengths. At the same time the observation of a
rect channel~no delay! for the formation of a localized stat
of a singlet~excited! hole state followed byB-band radiation
with Emax52.15 eV could serve as an indicator of the dec
of excitons aboveEg8510.6 eV.

An especially intriguing fact obtained in this work is th
absence of a time shift of theA-band luminescence relativ
to the photoexcitation maximum at 13 eV. This could sign
that localized molecular states are filled directly from hig
energy free exciton states in this region. Although, in acc
dance with the relatively smooth variation of the photoex
tation spectrum near 13 eV, the contribution of dire
processes fillingA centers from the conduction band do
-
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not predominate, it is important to show that such a proc
is, in principle, possible and to determine the energy rang
its excitation. This requires more accurate measurement
A-band quenching with a small excitation energy step.

With the exception of local maxima~see Fig. 10,1–3!, a
high degree of correlation is observed between the excita
spectrum of theA band and the long-time recombinatio
component of free excitons in defective crystals~see Fig.
8a!. This shows that aside from the channel for direct ex
tation of high-energy excitons, a second channel for filli
the A band is recombination of self-localized holes and fr
electrons, which also can result in filling of high-energy e
citonic states localized in high-energy molecular excito
This process proceeds in two steps and requires additi
time for energy relaxation of holes and electrons. This c
clusion agrees with the existence of a time delayDt'5 ns
between the photoexcitation maximum with energyEn

521 eV for theA band and theA-band radiation maximum
~see Fig. 9!. The time shiftDt is of the same order of mag
nitude as for excitation of free excitons by photons w
excess energyEn2Eg;1.5 eV above the conduction ban
bottom. The delayDt depends on the defect density in th
crystal and is;5 – 10 ns.8,9 The shiftDt is observed only in
crystals with defects and is determined by the time requi
for the energy of the electrons participating in recombinat
with holes localized on defects to relax.9

As shown in Ref. 9, recombination of a thermalize
electron with a localized hole is rapid and the subsequ
relaxation of excitations into the region of the top (n.2)
band excitons likewise occurs without a delay. The fact t
the excitation by light withEn58.9 eV results in a time
delay ofA-band radiation can be explained by the followin
scheme for the process: the recombination of holes and t
malized electrons results in a channel for filling free excito
without a delay, and subsequently the exciton should be
sorbed by another~localized! excited state~to increase the
probability of the process, this state should be long-live!,
the excitation lies in the high-energy range, and the de
occurs along the relaxation path to anA-center state.

The very high sensitivity of theA band, just as of free
excitons, to the presence of even a small amount of imp
ties shows that band excitations with a long mean-free p
i.e. electrons and excitons, the former at the stage of rec
bination of electrons and localized holes and the latter
excitonic excitation of local long-lived states, participate
the filling of the states responsible forA-band radiation. Im-
purity oxygen traps both with high efficiency. The positiv
electron affinity of the oxygen atom and the lower energy
the excimeric terms Xe1O2 compared with excitonic state
facilitates this.21 Since the sensivity of local centers Xe2

1*
(B band! to impurities is much weaker, it can be conclud
that the cross section for trapping of excitons on local cen
corresponding toA-band excitation is smaller than for ioni
centers, and the concentration of such centers is lower
that of impurities in nominally pure xenon. This situatio
corresponds to trapping of excitons by neutral long-lived
cited centers. These long-lived states can be the lowest lo
lived terms of the Xe2* molecule or three-center excitation
whose radiation (M3) appears in the form of a band wit
Emax57.6 eV only at temperaturesT.50 K. This is con-
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firmed by the fact that the maximum 1 of theA-band exci-
tation with E58.9 eV coincides with the analogous max
mum of theM3 band excitation~see Fig. 8!. We note that the
energy range near 8.9 eV corresponds to excitation ofn52
excitons, the radius of whose excited state is four tim
larger (r ex;2a0) than that ofn51 excitons. As shown in
Ref. 10, the polarization attraction of such an exciton to
different excitation is much stronger than for the lowest e
citon and, hence, the capture cross section is larger.

A different nature of the formation of the radiation in th
A and B bands is observed in the luminescence of crys
precipitated at different temperatures. In finely dispers
samples large defects most likely form on the grain bou
aries; these defects can become traps for electrons~an elec-
tron in a perfect Xe crystal cannot become localized!. Since
electron localization only increases the lifetime of localiz
holes Xe2

1 , preventing their recombination with an electro
this increases theB-band intensity. Conversely, the efficienc
with which states associated with recombination proces
are filled decreases substantially, and theA-band intensity in
finely dispersed crystals drops virtually to zero.

For the electronic method of excitation, excess electr
are formed in the crystal. As a result, the recombinat
probability is higher than with photoexcitation. Correspon
ingly, for electronic excitation theA-band intensity clearly
predominates over the ionicB band compared with photoex
citation.

5. CONCLUSIONS

The basic properties of the radiation band of crystall
xenon withEmax52 eV (A band! was studied experimentall
in detail as a function of temperature, impurity concent
tion, lattice perfection, and irradiation dose. The radiat
parameters of this band were compared with the analog
parameters of the radiation bands of free excitons, locali
on holes Xe2

1* and impurity centers Xe2O* ; the latter bands
were detected simultaneously in the same samples. Radi
with Emax52.05 eV and the analogous structure was a
observed in Ar1Xe binary crystals with high (;10%) xe-
non concentrations. The photoexcitation spectra of theA
band and the time decay curves of the luminescence w
analyzed. It was concluded that the observed radiation
associated with molecular-type intrinsic excited states, wh
are localized in the interior volume of the crystal and lie
the conduction band near 10 eV. It is possible that th
states are the terms(6)0g

2 , (9)1g , and (7)0g
1 , associated

with the atomic 7p excitations.34 They lie in the correspond
ing energy range, possess quite deep minima in the poten
De'0.7 eV, and are not intersected by the repuls
branches of other states directly at the minimum of the
tential. A radiative transition occurs to the lowest bound e
cited molecular terms 1u , 0u

2(6s3P2).
An intriguing result was an indication that there exists

direct ~no delay! channel filling radiating states when th
crystal is excited in the region of the conduction band. It w
shown that the excitation ofA centers can occur as a result
the recombination of a free electron with a localized ho
Below the conduction band radiating states are most lik
formed with the participation of two excitations. One is
free exciton and the other should be a long-lived local
s
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cited state. It could be that this is a specific three-center s
responsible for high-temperature 7.6 eV radiation. The
sults obtained show that long-lived excited centers accu
late in a xenon crystal during irradiation.
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Surface and quasisurface states in a strongly anisotropic layered crystal
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In Part 1 a relatively simple model of a strongly anisotropic layered crystal is use to study
various types of surface waves in the long-wavelength approximation. Particular solutions are
obtained for the lattice-dynamics equations in the presence of a surface impurity monolayer.
The solutions have frequencies that lying outside~surface states! and inside~quasisurface states!
a band in the continuous spectrum of an ideal lattice. In Part 2 shear waves localized near
a monatomic layer adsorbed on the free surface of a strongly anisotropic layered crystal are studied
at the microscopic level using a vector laltice model with translational and rotational
invariance and elastic stability. It is shown that in some cases a noncentral interatomic interaction
results in the appearance of surface shear waves of a special type with one or two termination
points and a damping parameter that is a nonmonotonic function the two-dimensional
wave vector. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542505#
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Strongly anisotropic layered crystals comprise a la
class of substances which include semiconductors, die
trics, magnetically ordered systems, polymers, and o
materials.1,2 A characteristic feature of these crystals is t
presence of a weak interlayer bond which strongly influen
various types of excitations. It is unquestionably of inter
to study the surface acoustic waves that can propagat
such compounds. It is known that Rayleigh surface wa
are modified in strongly anisotropic systems~or in crystals
near a structural phase transition associated with softenin
acoustic phonons!: these waves become retarded and dee
penetrating.3–5 The latter property has technological applic
tions ~for example, in acoustoelectronics!. Together with
Rayleigh-type surface waves, purely shear surface wa
with horizontal polarization (SH waves!—an analog of sur-
face Gulyaev–Blyuste�n waves in piezoelectric
crystals6,7—are also modified. In the long-wavelength lim
the penetration depth ofSH elastic waves~in contrast to
Rayleigh waves! is much greater than the wavelength,8,9 and
the characteristics of the waves become extremely sens
to external actions.10 In recent yearsSH waves have been
intensively studied and are now finding increasi
applications.11,12 The fact that single-componentSH waves
are structurally simpler than two-component Rayleigh wa
can be used in experimental research, for example, for m
suring the density of the normal component of superfl
helium13 or for studying Langmuir–Blodgett films.14 The
present paper is devoted to clarifying the basic characteris
of these waves in the presence of strong anisotropy.

The following questions are studied. In Part 1 the lon
wavelength case for a relatively simple model of a stron
anisotropic layered crystal is analyzed to determine the g
4141063-777X/2003/29(5)/8/$24.00
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eral properties of the surface states. Particular solutions
obtained for the equations of lattice dynamics in the prese
of a planar defect. These solutions have frequencies out
~surface states! and inside ~quasisurface! the continuous
spectrum of an ideal lattice. In Part 2 the formation con
tions and characteristics of the vibrational states for pur
shear waves localized near a monatomic layer on the sur
of a strongly anisotropic layered crystal are discussed. I
shown that, among other things, when the noncentral in
action in such crystals is taken into account, deeply pene
ing surface waves, which exist only in a definite range
values of the two-dimensional quasiwave vector, can app

1. LONG-WAVELENGTH APPROXIMATION FOR A SIMPLE
MODEL OF A STRONGLY ANISOTROPIC LAYERED
CRYSTAL

The long-wavelength approximation for a scalar mod
of a semibounded, strongly anisotropic, layered crystal w
an adsorbed layer of impurity atoms on the surface is st
ied. It is assumed that the crystal lattice is body-cente
tetragonal and the crystal surface is perpendicular to a fo
fold symmetry axis. To describe such a lattice it is conv
nient to use a rectangular coordinate system whoseOX and
OY axes lie in the plane of the monatomic layer on t
surface of the crystal and theOZ axis is directed into the
crystal. Leta be the distance between the nearest-neigh
atoms in theXOY plane andb/2 the distance between neigh
boring atomic layers perpendicular to theOZ axis. The
smallest number of different types types of interatomic int
actions that can be consequential for the structures studie
taken into account in this model—the interlayer interaction
taken into account in the nearest-neighbors approxima
© 2003 American Institute of Physics
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and is characterized by the parameterg and the interaction
within the layers of the crystal is also taken into account
the nearest-neighbors approximation~the parametera!.
Strong anisotropy means thatg!a. We introduce param-
eters characterizing the adsorbed monolayer:«5m̃/m21
andz05ã/a21. Herem̃ andm are the masses of the atom
in a layer and in the main lattice;ã anda are the interaction
parameters of the nearest neighbors in the adsorbed m
layer and in the layers of the main lattice, respectively. I
assumed that the interaction of the surface layer with
main lattice, being quite weak, is the same as the interla
interaction in the interior volume of the crystal. Since t
crystal is structurally uniform in theXOY plane, it is conve-
nient to switch in the equations of motion from a site rep
sentation in the plane of the layers to a two-dimensionak
representation, retaining the site representation along thz
axis. This yields difference equations describing station
oscillations of the atomic layers in the interior volume of t
crystal:

lu~z!1
2a

m
@coskx1cosky22u~z!#1

4g

m
@~u~z1b/2!

1u~z2b/2!!cos~kx/2!cos~ky/2!22u~z!#50, ~1!

wherel[v2 andv2 is the squared characteristic frequen
of the oscillations. Using the standard form for the soluti
u(z)5u0 exp@ikzz/(b/2)# we obtain the dispersion law for th
vibrations of an ideal lattice. In this part of our exposition w
shall examine the low-frequency rangev!Aa/m, which
makes it possible to take into account approximately the
persion of the waves propagating along the layers. To t
account of the the influence of a weak interlayer interact
on the propagation of such waves in the long-wavelen
limit, it is sufficient to use in the terms containing the fact
g in the dispersion law the quadratic approximation w
respect to the magnitude of the two-dimensional wave ve
k. However, since the anisotropy of the system is assume
be strong (g!a), the fourth power ofk must be taken into
account in addition to the second power in the terms cont
ing as a factor the constanta of the strongest interaction in
the lattice. The dispersion of the waves propagating perp
dicular to the lattice layers must be taken into account m
accurately, since the frequencies of these oscillations ar
the order ofAg/m!Aa/m and, generally speaking, fall int
the frequency range which are studying. In this approxim
tion the dispersion law for waves of an ideal crystal in t
direction @100# is

l5
1

m
~a1g coskz!k

22
a

12m
k41

16g

m
~sin~kz/2!!2,

~2!

where k5kx is the modulus of the two-dimensional wav
vector. It is evident from this expression that taking acco
of terms of the order of (g/m)k2 and (a/m)4 is important in
the long-wavelength limit for two-dimensional wave vecto
such thatk&Ag/a. This distinguishes the dispersion law~2!
from the dispersion law presented in Ref. 17 for a stron
anisotropic crystal.
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To analyze localized states it is convenient to constru
band in the continuous spectrum of oscillations of an id
crystal as a function of the two-dimensional wave vec
(kx ,ky) for all possible values ofkz ~2!. A characteristic
feature of such bands in strongly anisotropic layered crys
is that the band width~for any value ofk) is determined by
the weak interlayer interaction, and the maximum frequen
of the oscillations is determined by the strong intralayer
teraction, i.e. the band is very narrow and strong
elongated.18 In Figs. 1 and 2 the hatched region correspon
to a band in the continuous spectrum of oscillations of
ideal crystal in the present model. The bottoml low(k) and
top l top(k) boundaries of this band are given by the expr
sions

l low~k!5
1

m
~a1g!k22

a

12m
k4,

lup~k!5
1

m
~a2g!k22

a

12m
k41

16g

m
. ~3!

FIG. 1. Dispersion curve (SW) corresponding to a surface wave whe
neighboring layers of the lattice oscillate in phase: a surface wave exist
two-dimensional wave numbersk.0 ~a!; k.k0 ~b!. The hatching marks the
region of the continuous spectrum of an ideal crystal.
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Let us analyze the characteristics of localized states in
geometry. The system of equations which describe the o
lations of an adsorbed monolayer (z50) and the next layer
(z5b/2) and play the role of boundary conditions for th
volume equations~1! has the form

FIG. 2. Dispersion curve (SW) corresponding to a surface wave whe
neighboring layers of the lattice oscillate in antiphase: a surface wave e
for two-dimensional wave numbersk,k0 ~a!; k.0, a gap between the top
boundary of the continuous spectrum and the frequency of the loca
state exists atk50 ~b!; k.k0 ~c!.
ur
il-

Fl2
a~z011!

m~«11! S k22
k4

12D2
4g

m~«11!Gu~0!

1
4g

m~«11! S 12
k2

8 DuS b

2D50,

4g

m S 12
k2

8 Du~0!1Fl2
a

m S k22
k4

12D2
8g

m GuS b

2D
1

4g

m S 12
k2

8 Du~b!50. ~4!

The solutions decaying into the crystal are

u~0!5w,

u~z!5vq~z2b/2!/~b/2!, z>b/2. ~5!

Herew is the displacement of the adsorbed monolayer,u(z)
is the displacement of the layers in the main lattice, andq is
a parameter characterizing the damping of the solutions
direction into the crystal (uqu,1).

Analyzing Eqs.~1! and ~4! we obtain surface states o
the following types:

1. Surface states with frequencies lying below the ba
in the continuous spectrum of oscillations of an ideal crys
Such states can appear if the lattice parameters of the cr
and the defect satisfyg(2«11);2a(z02«). For this case
the functionq(k) in the approximation considered is

q~k!511
2a~z02«!2g~2«11!

8g
k22

a~z02«!

64g
k4,

~6!

and the splitting of the squared frequency of a surface s
from the bottom boundary of the band in the continuo
spectrum is

Dl5l low2l loc5
4g~12q!2

mq
cos~k/2!. ~7!

According to the expressions~6! and ~7! the magnitude of
the splittingDl in the long-wavelength limit is proportiona
to k4. This is characteristic for the type of waves und
consideration.16

The neighboring atoms in the lattice layers oscillate
phase, sinceq(k).0. If g(2«11).2a(z02«), then a sur-
face wave exists for allk.0 ~Fig. 1a!. However, if the op-
posite inequality holds~i.e. g(2«11),2a(z02«)), then a
surface wave can exist only fork.k0 , where

k052A2
2a~z02«!2g~2«11!

a~z02«!
. ~8!

The dispersion curve corresponding to this case is show
Fig. 1b.

2. Surface states with frequencies lying above the b
in the continuous spectrum of oscillations of an ideal crys
Such states correspond to antiphase displacements of n
boring lattice layers and occur wheng(2«11)!2a(z0

2«). The corresponding value of the parameterq(k) ~in this
caseq(k),0) is

q~k!5
«11

«
2

a~z02«!

8g«
k2, ~9!
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and the splitting of the squared frequency of the surface s
from the top boundary of the band in the continuous sp
trum is

Dl5l loc2lup5
4g~11q!2

kuqu
cos~k/2!. ~10!

If the mass of the atoms in the layer on the surface of
crystal is less than half that of the atoms of the crystal its
~i.e. «,21/2), then fork50 there is a gap between th
frequency of the surface state and the band in the continu
spectrum. Depending on the ratios of the parameters cha
terizing the adsorbed monolayer, surface states can exis
ther for wave numbersk,k0 ~Fig. 2a! or for all k.0 ~Fig.
2b!. The first possibility occurs whenz0,« and the second
occurs in the opposite casez0.«. The value ofk0 for which
the dispersion curve corresponding to a surface wave tou
the top boundary of the band in the continuous spectrum
given by

k052A2
g~2«11!

a~z02«!
. ~11!

However, if the mass of the atoms in the layer is such t
«>21/2, then there is no gap atk50 and surface states ca
exist only fork.k0 ~Fig. 2c!. In addition, the same expres
sion ~11! determinesk0 .

It is also of interest to examine the solutions of Eqs.~1!
and~4! that possess frequencies inside the band in the vi
tional spectrum of an ideal crystal. These solutions are sta
ing waves~with respect to the coordinatez) and can be writ-
ten as

u~z!5w̃ cosS z

~b/2!
kz1fG . ~12!

In these expressionsw̃ is the amplitude of the vibrations o
the crystal layers andf is the phase~an independent param
eter of the solutions!. Thc characteristic frequencies corr
sponding to these solutions are functions of the two variab
k andf and can be obtained from the system of equatio

lm52a~12cosk!18g~12coskz cos~k/2!!;

~lm~«11!22a~z011!~12cosk!24g!cosf

14g cos~k21f!cos~k/2!50. ~13!

It is of interest to analyze qualitatively the possible disp
sion relations obtained from Eqs.~13! for f in the range
~0,p!. We shall do this for the two cases already examin
when surface states exist withk.k0 ~8!, ~11!. First we con-
sider the case corresponding to Fig. 1b. Forf50,p the dis-
persion curves are identical to the curve1 given by the ex-
pression

l5
4a~2z011!

m~2«11!
~sin~k/2!!2. ~14!

The curves2, 3, and4, which approach the top boundary o
the continuous spectrum, correspond to systematically
creasingf in the range 0,f,p/2. Forf5p/2 the disper-
sion curves merge with the top and bottom boundaries of
continuous spectrum~3!. As the parameterf increases fur-
ther in the rangep/2,f,p dispersion curves will exis
only for 0,k,k0 and the corresponding frequencies will b
te
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c-
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s
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e

lower than on the curve1. As f approaches the limiting
value p these curves will tend asymptotically toward th
curve1.

We shall now consider the case corresponding to Fig.
For f50,p the dispersion curves merge with the curve
determined by the same expression~14!. The typical form of
the dispersion curves corresponding to increasing value
the parameterf in the range 0,f,p/2 is presented in this
figure for 0,f1,f2,f3,p/2 ~curves2, 3, and 4!. For
f5p/2 the dispersion curves merge with the top and bott
boundaries of the continuous spectrum~3!. As f increases
further in the rangep/2,f,p the curves assume a form
similar to that shown in Fig. 2c forp/2,f4,f5,f6,p
~curves5, 6, and 7!, and asf approachesp these curves
asymptotically approach the curve1.

Various types of surface waves will be investigated
greater detail in Part 2 below for a vector model of a stron
anisotropic layered crystal exhibiting elastic stability a
translational and rotational invariance.

2. SHEAR SURFACE WAVES IN A SEMI-INFINITE,
STRONGLY ANISOTROPIC, LAYERED CRYSTAL WITH AN
ADSORBED LAYER

In this part of our exposition the formation condition
for and the characteristics of purely shear surface waves
calized near a monolayer adsorbed on the surface o
strongly anisotropic layered crystal are studied. We take a
model of the main lattice a body-centered tetragonal str
ture where the interlayer interaction, being relatively we
can be described in the nearest-neighbors approximation
is purely central, while the central and noncentral inter
tions of the nearest and next-to-nearest neighbors are t
into account in the planes of the layers. The force-consta
matrices of such a model have the form~thez axis is directed
along a four-fold symmetry axis and thex andy axes lie in
the plane of the layers!19,20

F ik~a,0,0!52d ik@ad i ,x1b~d i ,y1d i ,z!#;

F ik~a,a,0!52S a8 j 0

j a8 0

0 0 b8
D ;

F ikS a

2
,
a

2
,
aD

2 D52gS 1 1 D

1 1 D

D D D2
D .

Herea is the interatomic distance in the plane of the lay
aD is the interatomic distance along thez axis ~this axis is
perpendicular to the plane of the layers!. The parametersb
andb8 describe the noncentral interaction in the plane o
layer. The condition for the transition to the long-waveleng
limit of the lattice-dynamics equations in the equations of
theory of elasticity gives the following relation betwee
these parameters:b522b8.19 The same relation obtain
when the boundary oriented along the plane of the laye
stress-free; this allows us to study such a free surface with
taking into account the relaxation of the force constants on

The parameterg describes the weak interlayer intera
tion, and the parametera describes the strongest~in the crys-
tal! central interaction of nearest neighbors in the plane
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the layer. The quantitya8 characterizes the central intera
tion of the next-to-nearest neighbors in the same plane,
j5a81b/2.

The matrix F ik(0,0,0) is determined from the transla
tional invariance of the lattice and is given by

F ik~0,0,0!52~a12a81b14g!~d i ,xdk,x1d i ,ydk,y!

12~b14gD2!d i ,zdk,z .

All other matrices can be obtained using the operations
the point symmetry groupD4h . The present model is me
chanically stable for positivea, a8, g, and j and 0,b
,a.

The mass of the atoms in the adsorbed monolayer
the parameters characterizing the interaction in the plan
the layer differ from the corresponding values for the m
lattice. The interlayer interaction, being relatively weak,
assumed to be the same for the entire structure. We introd
the following parameters describing the monolayer:«

5m̃/m21, z05ã/a21, z15ã8/a821, and z25b̃/b21.
Herem, a, a8, andb denote, respectively, the mass of t
atoms, the central interaction of the nearest and next
nearest neighbors, the noncentral interaction in the plane
the layers in the main lattice;m̃, ã, ã8, andb̃ are the analo-
gous quantities for the monolayer.

The equation describing the characteristic oscillations
the crystal lattice can be written in the form

lui~n!2(
k,n8

Lik~n, n8!uk~n8!50, ~15!

wherel[v2 is the squared characteristic frequency;ui(n)
is the i th component of the displacement of an atom who
position in the lattice is given by the vectorn;

Lik~n,n8!5
F ik~n,n8!

~m~n!m~n8!!1/2

is the matrix of a dynamical operator (F ik(n,n8) is the
force-constants matrix of the crystal,m(n) is the mass of an
atom at the siten!. We shall use the translational periodici
of a defective crystal in thexy plane and represent the sol
tion of Eq. ~15! in the form

ui~n!5x i~z!exp$ i ~kxx1kyy!%.

This gives the following equation for the functionx i(z):

lx i~z!2(
k,z8

Cik~kx ,ky ;zz8!xk~z8!50, ~16!

where

Cik~kx ,ky ;zz8!5(
x,y

Lik~x,y;zz8!exp$2 i ~kxx1kyy!%.

We shall use this approach to study the following problem
Let the plane where the wave propagates also be a m

symmetry plane of the crystal. Then, as is well known,
displacement field of the wave can be represented as
noninteracting modes—a single-componentSH–type mode
~or shear wave! and a two-component mode with Rayleig
polarization.

For single-component displacement fields in anSH
wave Eq. ~16! acquires the especially simple formlx(z)
nd

f

d
of

ce

o-
of

f

e

.
or
e
o

2(z8C(zz8)x(z8)50 and the displacementx(z) is perpen-
dicular to the direction of propagation of the wave.

For our model of a crystal the mirror symmetry plan
are the planes that pass through the directions@10# and @11#
of a two-dimensional Brillouin zone perpendicular to the s
face of the crystal. We shall studySH waves whose phas
velocity vector projected onto the surface of the crystal l
along one of the indicated directions.

A. The direction †10‡ in a two-dimensional Brillouin zone

The system of equations describing the motion of
adsorbed monolayer is

lx~0!5C~00!x~0!1C~01!x~1!,

lx~1!5C~10!x~0!1C~11!x~1!1C~12!x~2!,

where

C~00!5
4

m~«11!
@b~z211!12a8~z111!#

3sin2~ka/2!1
4g

m~«11!
,

C~01!5C~10!52
4g

mA«11
cos~ka/2!,

C~11!5
4

m
~b12a8!sin2~ka/2!1

8g

m
,

C~12!52
4g

m
cos~ka/2!.

We shall seek a solution of these equations that is lo
ized near the surface and has the formx(0)5A and x(n)
5Bqn21, n.0. HereA and B are, respectively, the ampli
tudes of the vibrations of the adsorbed monolayer and
next layer in the main lattice,q characterizes the damping o
the wave in a direction into the crystal (uqu,1), andn is the
number of the layer. Depending on the parameters of
adsorbed layer, the following types of localized waves c
arise:

1. Localized waves with frequencies below the band
the continuous spectrum of an ideal lattice. Such waves a
if the parameters of the adsorbed layer and the main lat
satisfy the relationg(2«11).b(z22«)12a8(z12«) ~for
example, a quite heavy monolayer, where the noncentra
teraction and the interaction of next-to-nearest neighbors
weaker than in the interior volume of the crystal or on
negligibly stronger, corresponds to this inequality!. It is evi-
dent from this expression that since the central interactiona8
of the next-to-nearest neighbors in the plane of the layer
the noncentral interactionb of nearest neighbors in the sam
plane appear additively in the formation condition for a l
calized wave, even though, as a rule,b;0.1a8, in some
cases~for example, whenz1'«) it may be inadequate to
take account of only the stronger central interaction of
next-to-nearest neighbors when analyzing the conditions
the appearance of surface waves. The dependence ofq on the
monolayer parameters and the two-dimensional wave ve
k is given by the relation
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q5
1

2g« cos~ka/2!
[ ~b~«2z2!12a8~«2z1!

3sin2~ka/2!1g~2«11!#2
1

2g« cos~ka/2!

3$@~b~«2z2!12a8~«2z1!!sin2~ka/2!

1g~2«11!#224g2«~«11!cos2~ka/2!%1/2.

Under these conditionsq.0, which corresponds to localize
oscillations where the displacements of the atoms in ne
boring layers of the lattice are in phase. The local freque
splits off the bottom boundary of the spectrum of volumeSH
waves~in Fig. 3 the region of the continuous spectrum ofSH
oscillations is labeled by the number1!. This splitting is
given by

Dl5l low2l loc5
4g~q21!2

mq
cos~ka/2!.

If the parameters of the adsorbed monolayer are such th

«.21/2;
g~2«11!

b~z22«!12a8~z12«!
,2, ~17!

then the dispersion curve corresponding to a wave local
in space splits off neark50 ~Fig. 3, curve2!. In this region
the expression forq is

q512
k2a2

8g
@2b~«2z2!14a8~«2z1!1g~2«11!#,

and the corresponding splitting off of the frequency is

Dl5
k4a4

16gm
@2b~«2z2!14a8~«2z1!1g~2«11!#2.

The quantityDl in the long-wavelength limit (ka!1) is
small enough (;(ka)4) so that a wave of the type we ar
considering here cannot be described on the basis of the

FIG. 3. Region of the continuous spectrum ofSH oscillations~1! and the
dispersion curve~2! corresponding to a wave localized at the adsorb
monolayer, where the displacements of atoms of neighboring layers in
lattice occur in phase in the wave~the direction@10# in the two-dimensional
Brillouin zone!.
h-
y

t

d

or-

dinary local theory of elasticity. This is why surface wav
penetrate deep into the crystal.3 Conversely, if the inequali-
ties ~17! do hold, then the spectrum of surface waves term
nates at a point different fromk50 ~a termination point is a
value of k from the range considered (0,p/a) at which the
dispersion curve corresponding to a localized wave enters
continuous spectrum of volume oscillations!. This point is
given by

k05~4/a!arccosH g~2«11!

2b~z22«!14a8~z12«!J 1/2

.

The splitting-off Dl is determined primarily only by the
weak interlayer interaction, and the corresponding surf
waves are deeply penetrating waves. The maximum of
splitting-off

Dl5
4

m~«11!
~b~«2z2!12a8~«2z1!1g~2«11!!

is reached at the boundary of a two-dimensional Brillou
zone (k5p/a). Near this pointq is given by

q5
g~«11!cos~ka/2!

b~«2z2!12a8~«2z1!1g~2«11!
.

Vanishing ofq at the boundary of the zone corresponds
complete localization of oscillations in the plane of the a
sorbed monolayer.

2. Localized waves with frequencies above the band
the continuous spectrum of an ideal crystal. Such waves
arise if the parameters of the adsorbed layer and the m
lattice satisfy the relation

g~2«11!,b~z22«!12a8~z12«!

~for example, a light monolayer where noncentrality and
interaction of next-to-nearest neighbors are much stron
than in the main lattice!. Thenq is given by

q5
1

2g« cos~ka/2!
@~b~«2z2!12a8~«2z1!!

3sin2~ka/2!1g~2«11!#1
1

2g« cos~ka/2!

3$@~b~«2z2!12a8~«2z1!!sin2~ka/2!

1g~2«11!#224g2«~«11!cos2~ka/2!%1/2.

The function q(k) is negative-definite in the entire rang
(0,p/a) considered. This corresponds to localized oscil
tions where the displacements of the atoms in neighbo
layers in the lattice occur in antiphase. The splitting-off fro
the dispersion curve corresponding to these oscillations
curs from the top boundary of volumeSH oscillations and is
given by

Dl5l loc2lup5
4g~q11!2

muqu
cos~ha/2!.

If the crystal surface is covered with a light layer of adsorb
atoms and«<21/2, then the spectrum of surface waves h
no termination point andl locÞlup at k50 @Fig. 4a, curve2;
the band of volume oscillations~1!#. For wave numbers
k→10 the behavior ofq is given by

he
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q5
«11

«
1

«11

8g«
@2b~«2z2!14a8~«2z1!

1g~2«11!#~ka!2. ~18!

The splitting-off of the frequency in the same region is

FIG. 4. Region of the continuous spectrum ofSH oscillations~1! and the
dispersion curve~2! corresponding to localized oscillations where the d
placements of atoms in neighboring layers in the lattice occur in antiph
~the direction@10# in a two-dimensional Brillouin zone!. The oscillations
localized near a defect exist for all values ofk ~a!; k.k0 ~b!; k,k0 ~c!.
Dl5
4g~2«11!2

mu«u~«11!
1~ka!2

2«11

mu«u~«11!

3@b~«2z2!12a8~«2z1!1g~2«11!#, ~19!

and if «521/2, then

Dl5
~ka!4

16gm
@2b~«2z2!14a8~«2z1!1g~2«11!#2.

If «.21/2 ~the mass of an atom in the adsorbed monola
is greater than half the mass of an atom in the main crys!,
then the spectrum has a termination point given by

k05
4

a
arcsinH g~2«11!

2b~z22«!14a8~z12«!J 1/2

. ~20!

Oscillations localized near the surface of the crystal exist
k.k0 ~Fig. 4b, curve2!. The splitting-off reaches its maxi
mum magnitude at the boundary of a two-dimensional B
louin zone (k5p/a) and is given by

Dl5
4

m~«11!
~b~z22«!12a8~z12«!2g~2«11!!.

Near this point the behavior ofq is identical to that when the
frequency of localized waves lies below the band in the c
tinuous spectrum of an ideal lattice.

Waves existing for two-dimensional wave vectors 0<k
<k0 ~Fig. 4c, curve2!, wherek0 is given by the expression
~20!, also can appear. This situation is observed when
parameters of the monolayer and the crystal satisfy

g~2«11!.b~z22«!12a8~z12«!, «,21/2.

The expressions~18! and~19! describe the behavior ofq and
Dl near the pointk50.

B. The direction †11‡ in a two-dimensional Brillouin zone

In the direction@11# in a two-dimensional Brillouin zone
the conditions for the formation of waves localized near
adsorbed monolayer are more diverse than in the prece
case. But, generally speaking, there are no qualitative pe
liarities compared with the analysis performed above. Ho
ever, there is an interesting, in our opinion, exception wh
the spectrum of surface waves possesses two termina
points in the continuous spectrum of volumeSH oscillations.
This feature of the spectrum is due to the specific manif
tation of a noncentral interaction in the lattice and is n
observed in the absence of such an interaction. This ef
can exist only under special conditions where a numbe
limitations imposed on the parameters of the surface m
atomic layer and the main lattice are satisfied. These lim
tions, incidently, are not too strong and can be easily satis
for actually existing structures:

H b~«2z2!.0, g~2«11!>0
23b~«2z2,a~«2z0!,b~«2z2!

a~«2z0!1b~«2z2!12g~2«11!>0
16bg~«2z2!~2«11!,@a~«2z0!2b~«2z2!#2 .

A wave localized at an adsorbed layer exists in the rangk
P(k1 ,k2), where ki5(2/a)arcsin(Axi), i 51,2; xi5
2(B/2A)@17A12(4AC/B2)# ~here the2 and 1 signs
correspond toi 51,2). The parametersA andB in these ex-

se
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pressions are given byA52b(«2z2), B5a(«2z0)2b(«
2z2), and C52g(2«11). The damping constant of thi
wave is

q5
1

2g«
@~a~«2z0!2b~«2z2!cos~ka!!sin2~ka/2!

1g2«11!] 1
1

2g«
$@~a~«2z0!

2b~«2z2!cos~ka!!sin2~ka/2!1g~2«11!#2

24g2«~«11!%1/2.

FIG. 5. The magnitude of the splitting-offDl versus the wave numberk
~the direction@11# in a two-dimensional Brillouin zone,Dl5l loc2lup is
normalized tod5g/m, k1'0.4 andk2'1.5 are termination points of the
spectrum of a localized wave! ~a!. The damping parameterq(k) for the case
in panel a~b!.
The magnitude of the splitting-offDl is determined prima-
rily by the noncentral and interlayer interaction and as a
sult it is relatively small. Its dependence on the tw
dimensional wave vectork is shown in Fig. 5a (Dl5l loc

2lup is normalized tod5g/m). Figure 5b shows the depen
dence of the damping parameterq(k) of the wave for the
case in Fig. 5a. In this figureq(k)521 at the two points
k1'0.4 andk2'1.5; this corresponds to a transition of a
SH surface wave into a volume wave propagating undam
into the crystal. Thus, when the noncentral interaction
taken into account, for certain ratios of the parameters of
main lattice and the adsorbed layer anSH wave localized at
the surface can exist only for a definite interval (k1 ,k2) of
projections of the wave vector on the@11# direction in the
two-dimensional Brillouin zone.
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Heat transfer by low-frequency phonons and ‘‘diffusive’’ modes in molecular crystals
V. A. Konstantinov*
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A model where low-frequency phonons and, above the mobility limit, ‘‘diffusive’’ modes
migrating randomly from site to site transfer heat is proposed to describe the behavior of the
isochoric thermal conductivity of molecular crystals in orientationally ordered phases.
The mobility limit v0 is found from the condition that the phonon mean-free path length
determined by umklapp processes cannot become less than half the wavelength. The Bridgman
coefficientg52(] ln L/] ln V)T is the weighted-mean over these modes, whose volume
dependence differs strongly. The model proposed here is used to analyze the thermal conductivity
of CO2, N2O, naphthalene C10H8 , anthracene C14H10, and hexamethylenetetramine
(CH2)6N4 . It is shown that site-to-site rotational energy transfer must be taken into account in
order to calculate the lower limit of the thermal conductivity of molecular
crystals. © 2003 American Institute of Physics.@DOI: 10.1063/1.1542506#

Dedicated to my teacher and the coauthor of most works V. G. Manzheli�, Aca-
demician of the Ukrainian National Academy of Sciences, who determine
many respects, the development of this line of research.
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1. INTRODUCTION

It is commonly supposed that phonons, which are
energy quanta of each vibrational mode, transfer heat in
electric crystals; the rate of energy transfer between
phonons of different modes determines the mean-free
length. At temperatures of the order of and above the De
temperatures (T>QD) the following expression is ordinarily
used for the thermal conductivity:1,2

L5K
maQD

3

g2T
, ~1!

wherem is the average atomic~molecular! mass,a3 is the
volume per atom~molecule!, g52(] ln QD /] ln V)T is the
Grüneisen parameter, andK is a structure factor. In order fo
the lawL}1/T to hold the crystal volume must remain co
stant, otherwise the vibrational modes~and with themQD ,
a, andg! will change and this will change the temperatu
dependence of the thermal conductivity. This condition
especially important for molecular crystals, whose therm
expansion coefficients are large. The dependence of the
mal conductivity on the specific volume can be describ
using Bridgman’s coefficient2,3

g52~] ln L/] ln V!T . ~2!

It follows from Eqs.~1! and ~2! that for crystals

g53g12q21/3, ~3!

where q5(] ln g/] ln V)T . Ordinarily, it is assumed that a
temperatures of the order of and above the Debye temp
turesg}V and the second Gru¨neisen coefficientq'1.2,3

As the temperature increases, phonon–phonon scatte
processes intensify and the mean-free path lengthl decreases
but it cannot become less than half the phonon wavelen
4221063-777X/2003/29(5)/7/$24.00
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l/2.4 If all vibrational modes disperse in a distance of t
order ofl/2, the thermal conductivity reaches its lower lim
Lmin :

Lmin5
1

2 S p

6 D 1/3

kBn2/3~v l12v t!, ~4!

wherev l andv t are, respectively, the longitudinal and tran
verse sound velocities andn51/a3 is the number of atoms
per unit volume. At constant volume the lower limit of th
lattice thermal conductivity should not depend on tempe
ture for T>QD , while at the saturated vapor pressureLmin

can be weakly temperature-dependent because of the
perature dependence ofn,v l , andv t . Using the polarization-
averaged sound velocity andQD5v(\/kB)(6p2n)1/3 we ob-
tain Lmin}QD /a and

g5g11/3. ~5!

The thermal conductivity reaches its lower limitLmin in
amorphous solids and strongly disordered crystals.2,4 The
values of the Bridgman coefficient, on the whole, are cor
lated with the structure: as structural disorder increasesg
decreases; the thermal conductivity is least dens
dependent in glasses and polymers.3 There arises the ques
tion of whether or not three-phonon scattering processe
themselves result inLmin in perfect crystals as temperatu
increases. To find an answer we shall compare the ther
conductivity Lmeas of a number of crystals with differen
types of chemical bonds and the lower limit of the therm
conductivityLmin at the corresponding melting temperatur
~Fig. 1!. The data on the thermal conductivity of molecul
crystals are taken from the works of the present author
Ref. 3; for all other substances the data are taken from R
2 and 5–7. The densities and sound velocities required
calculateLmin are taken from Refs. 7–9.
© 2003 American Institute of Physics



ta
e
o-
in

o
r-
b
al
-
d

an
t
b

r
e

v
o

s

ee

h

-

me
ility
s
is
site

of

ut
s
or-

to a
a-

us-
or
la-
it is
-
-
tion
hey

de

.
cal-
d to
the

s’’
cts
z-
t’’
-

es

is

423Low Temp. Phys. 29 (5), May 2003 V. A. Konstantinov
It is evident that the ratioLmeas/Lmin increases as the
crystal bond becomes stronger. In van–der–Waals crys
Lmeas/Lmin'1.5– 2, while in crystals with diamond-typ
structureLmeas/Lmin'10–20, i.e. molecular crystals and s
lidified inert gases are the most suitable objects for observ
the thermal conductivity ‘‘minimum’’ due only to umklapp
processes. Strong deviations of the isochoric thermal c
ductivity from L}1/T, which are associated with the the
mal conductivity approaching its lower limit, have been o
served in solidified inert gases, simple molecular cryst
and their solutions.10–14 The behavior of the isochoric ther
mal conductivity of solidified inert gases Ar, Kr, and Xe an
krypton–methane solid solutions has been described qu
tatively on the basis of a simple model that takes accoun
the fact that the phonon mean-free path length cannot
come less than half the wavelength.13–15In the present pape
it is shown for CO2, N2O, hexamethylenetetramin
(CH2)6N4 , naphthalene C10H8 , and anthracene C14H10 that
the proposed model describes well the temperature and
ume dependences of the thermal conductivity of simple m
lecular crystals in orientationally ordered phases.

2. MODEL

The present calculations were performed on the basi
the Debye model of thermal conductivity1,16 in the spirit of
the approach used by Roufosse and Klemens,17 who em-
ployed the idea of a lower limit for the phonon mean-fr
path. In the Debye model the thermal conductivityL is given
by

L5
kB

2p2v2 E
0

vD
l ~v!v2dv, ~6!

where v is the velocity of sound,vD5(6p2)1/3v/a is the
Debye frequency,l (v) is the phonon mean-free path, whic
for an impurity-free crystal can be written as1,18

l u~v!5v/Av2T, ~7!

A5
18p3

&

kBg2

ma2vD
3 . ~8!

FIG. 1. Comparison of the thermal conductivityLmeasof a number of mo-
lecular crystals~d! and crystals with other types of chemical bond~j! with
a lower limit of thermal conductivityLmin with the corresponding melting
temperatures.
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The expression~7! is inapplicable ifl (v) is of the order
of or less than half the phonon wavelength:l/25pv/v.
Such a situation has been discussed for U processes.17 Let us
assume that in general

l ~v!5H v/Av2T, 0<v<v0 ,

apv/v5al/2, v0,v<vD ,
~9!

where a is a numerical factor of the order of 1. The fre
quencyv0 can be found from the condition

v/Av0
2T5apv/v0 . ~10!

It equals

v051/apAT. ~11!

The condition~10! is the well-known Ioffe–Regel’ crite-
rion, which presumes localization, so that we shall assu
excitations whose frequencies lie above the phonon mob
limit v0 to be ‘‘localized.’’ Since completely localized state
do not contribute to the thermal conductivity, localization
assumed to be weak and excitations can hop from site to
in a diffusion manner, as Cahill and Pohl supposed.4 This
point of view is, on the whole, consistent with the results
Ref. 19, where the theory for the intermediate case~where
disorder is sufficient for oscillations not to propagate b
insufficient for localization! was formulated for amorphou
silicon. The idea was that the dominant scattering was c
rectly described by a harmonic Hamiltonian and reduced
single-particle problem of decoupled oscillators. On this b
sis the thermal conductivity could be calculated exactly
ing a formula similar to the Kubo–Greenwood formula f
the electric conductivity of disordered metals. The calcu
tions performed by the authors showed that in this case
incorrect to identify the Ioffe–Regel’ threshold with localiza
tion. Although the oscillations dominating in high
temperature heat transfer lie near the Anderson localiza
threshold, with the exception of a narrow band of states t
are not completely localized.

The Boltzmann theory assigns to each vibrational mo
with wave vectork and propagation velocityv5]v/]k a
diffusenessDk5v l /3, wherel is the mean-free path length
The authors found that even though vibrations are not lo
ized, a definite wave vector or velocity cannot be assigne
them. Nonetheless, they transfer heat and contribute to
thermal conductivity an amount of the order ofCi(T)Di /V
for the i th mode, where the specific heatCi(T)5kB for T
>QD and Di is the temperature-independent ‘‘diffusenes
of the mode. The numerical calculation is in many respe
similar to the calculation performed according to Bolt
mann’s theory and it confirms the concept of a ‘‘lower limi
for the thermal conductivity in the form in which it is dis
cussed by Slack2 and Cahill, Watson, and Pohl.4

If v0.vD , then the mean-free path length of all mod
is greater thanl/2 and the thermal conductivity is

Lph5
kBvD

2p2vAT
. ~12!

It is easy to show that, to within a structure factor, it
identical to Eq.~1!.
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If v<vD , the integral of the thermal conductivity~6!
separates into two parts which describe the contribution
low-frequency phonons and high-frequency ‘‘diffusive
modes to heat transfer:

L5Lph1L loc . ~13!

In the high-temperature limit (T>QD) these contributions
are

Lph5
kBv0

2p2vAT
, ~14!

L loc5
akB

4pv
~vD

2 2v0
2!. ~15!

The problem of determining the Bridgman coefficient in t
present model reduces to finding the volume derivative of
expression~13!. Since (] ln A/ln V)T53g12q22/3, we ob-
tain

g5
Lph

L
gph1

L loc

L
gloc , ~16!

where

gph55g14q21, ~17!

gloc52S ] ln L loc

] ln V D
T

52g1
1

3
1

2

vD
2 2v0

2 ~vD
2 g2v0

2g0!, ~18!

g053g12q21/3. ~19!

For v0>vD the expression~3! gives the volume depen
dence of the thermal conductivity.

Substituting the expression~11! into Eq. ~15!, the ther-
mal conductivity forv0<vD can be written as

L~T!5
kB

4ap3vA2T2 1
~6p2!2/3akBv

4pa2 . ~20!

It is easy to show that the last term in the expression~20! is
identical to the lower limit of the thermal conductivity~4!, if
the polarization-averaged sound velocity anda51 are used.

3. RESULTS AND DISCUSSION

Crystals containing molecules or molecular ions a
more complicated than crystals containing only atoms
ions, since the former possess translational and orientati
degrees of freedom. They can form phases of a special t
for example, liquid crystals and orientationally disorder
phases. If the noncentral forces are strong and the temp
ture sufficiently low, then long-range orientational order e
ists in the arrangement of the molecular axes. Molecules
dergo small oscillations around selected axes~librations! in a
manner so that the motion of neighboring molecules is c
related and collective orientational excitations~librons!
propagate through the crystal. The main difficulty in descr
ing the orientational subsystem is the strong anharmoni
of librational motions. Estimates of the libration amplitud
and analysis of the thermodynamic properties of molecu
crystals show that anharmonic effects for the rotational s
of
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system are strong even at temperatures much below the
entational ordering temperatures of these crystals, w
translational vibrations can be described quite well in
harmonic approximation.9

In general, translational and orientational motions in m
lecular crystals are not independent of one another, but ra
they occur as coupled translational–orientational vibratio
Nonetheless, at sufficiently low temperatures a simplifi
model where the translational and orientational subsyst
are described independently is often used. In such a des
tion it is assumed that the translational–orientational inter
tion results only in a renormalization of the dispersion la
for the rotational excitations and, correspondingly, the sou
velocities. In this approximation the librational oscillation
result in an additional contribution to the thermal resistiv
of the crystalW51/L, which increases as temperature
that their contribution can be taken into account by a sim
renormalization of the coefficientA in the expression~7!.20

If noncentral forces are relatively weak and the tempe
ture is sufficiently high, then the molecules can possess s
stantial orientational freedom. In this case a number of o
entations are accessible to a molecule, which can pass
one orientation to another. In individual cases the limit
such reorientational motion can be a continuous rotation.
freezing of the rotational motion of molecules is accomp
nied by an increase in the isochoric thermal conductivity21

and the simple expression~7! no longer describes the mean
free path length. We shall illustrate this for some spec
examples.

Crystals of CO2 and N2O consist of linear molecules an
have aPa3 structure. The unit cell contains four molecule
whose centers of gravity lie at the sites of an fcc lattice, a
the axes are oriented along the spatial diagonals of a c
The noncentral part of the intermolecular interaction in the
crystals is determined primarily by the quadrupole
quadrupole interaction. In CO2 and N2O this interaction is so
strong that orientational ordering remains right up to t
melting temperatures. The high-temperature valuesQD

` for
CO2 and N2O are 128 and 120 K, respectively, and the trip
point temperatures are 216.6 and 182.4 K.9

The isochoric thermal conductivity of CO2 and N2O for
crystals with molar volumesVm525.8 and 27.02 cm3/mole
are shown in Fig. 2~filled squares!, following Ref. 11. Such
volumes correspond to equilibrium conditions at 0 K. T
Bridgman coefficients for CO2 and N2O are 5.760.8 and
6.260.8 at the corresponding temperatures.

A least-squares computer fit using the expression~20!
for the thermal conductivity was made by varying the co
ficientsA anda. The parametersa andv in the Debye model
of thermal conductivity,9 which are used in the fit and als
obtained by adjustingA and a, are presented in Table I to
gether with the computed and experimentally obtain
Bridgman coefficients. The figure also shows the Gru¨neisen
constantsg,9 which were used to calculateg. The second
Grüneisen constantq was assumed to be 1.3

Figure 2 shows the results of fitting the thermal condu
tivity, the contributions Lph and L loc of low-frequency
phonons and high-frequency ‘‘diffusive’’ modes, respe
tively, calculated using Eqs.~14! and~15!, to the heat trans-
fer, and the lower limitsLmin8 obtained for the thermal con
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ductivity by fitting. It is evident that ‘‘localization’’ of high-
frequency modes in CO2 starts above 60 K and in N2O
appreciably sooner—at 30 K. Similar methods were used
calculate the contributions of low-frequency phonons a
high-frequency ‘‘diffusive’’ modes to heat transfer in hexam
ethylenetetramine (CH2)6N4 , naphthalene C10H8 , and an-
thracene C14H10.

Hexamethylenetetramine~HMT! is a high-symmetry or-
ganic crystal which is often compared to adamantane. E
though the molecules are similar~they are both globular!,
their crystal properties differ enormously. Right up to th

FIG. 2. Results of a fit of the isochoric thermal conductivity and calculat
of Lph and L loc for CO2 samples with molar volumeVm525.8 cm3/mole
~a! and N2O with Vm527.02 cm3/mole ~b!.

TABLE I. Parameters of the Debye model of thermal conductivity whi
were used in the fit:a andv,9,28–31obtained by fitting the quantitiesA and
a, the Grüneisen constantsg,9,28,29 the computedgth and experimentalgexp

values of the Bridgman coefficients.
to
d

n

triple-point temperatureTt;540 K HMT exists only in a
single orientationally ordered crystalline phase with b
structure of the space groupI43m and contains one molecul
per unit cell.22 Although HMT molecules are nonpolar, it i
thought that there exist strictly directed forces between th
molecules in the crystal as a result of local polarity conc
trated on the nitrogen atoms. The Debye temperature
HMT is 170 K at absolute zero andQD

`;110 K in the high-
temperature limit.

Wigren and Andersson studied the thermal conductiv
of solid HMT at 100 MPa.23 Figure 3a shows the therma
conductivity converted to constant volumeVm

5101.5 cm3/mole using thermal expansion data24 and g
58.9.3 The values used for the sound velocities in maki
the fit were calculated for the elastic constants given in R
25.

FIG. 3. Results of fitting the isochoric thermal conductivity and calculat
of Lph and L loc for HMT samples with molar volume Vm

5101.5 cm3/mole ~a!, naphthalene withVm5103.3 cm3/mole ~b!, and an-
thracene withVm5138.6 cm3/mole ~c!.
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Naphthalene and anthracene~see Fig. 4! are, respec-
tively, the first and second members of a series of lin
polyarenes. The molecules possessD2h symmetry, the struc-
ture of both crystals is monoclinic, and the space group
P21 /a with Z52 molecules per cell.26 The melting tempera-
tures of naphthalene and anthracene are 353.5 and 48
respectively.

Many thermophysical properties of these substan
have been studied in detail. Naphthalene and anthracen
often used as model crystals for theoretical calculations. S
cifically, a model of the lattice dynamics of crystalline nap
thalene and anthracene is presented in Ref. 26, and the
persion curves, density of states, and other constants are
calculated there.

The thermal conductivity of naphthalene and anthrac
has been investigated at 100 MPa.23 Figure 3b shows the
thermal conductivity of naphthalene converted to const
volume Vm5103.3 cm3/mole using thermal expansion da
from Ref. 28 andg58.5 ~Ref. 3!. Figure 3c shows the ther
mal conductivity of anthracene converted toVm

5138.6 cm3/mole using thermal expansion data from R
29 andg58.9 ~Ref. 3!. The sound velocities used to mak
the fit were calculated from the elastic constants given
Refs. 30 and 31.

Figure 3 shows that the ‘‘localization’’ of the high
frequency modes in all three substances starts above 15
The parameters in the Debye model of the thermal cond
tivity of HMT, naphthalene, and anthracene are presente
Table I. The values of the coefficienta, which expresses the
ratio of the lower limitLmin8 of the thermal conductivity ob-
tained by a fit using Eq.~20! to Lmin calculated from Eq.~4!,
vary from 2 to 4. These values are much larger than
solidified inert gases and krypton–methane solid solutio
where a lies in the range 1.2–1.4.13,14 The most obvious
reason for this difference is that site-to-site rotational ene
transfer must be taken into account. The expression~4! for
the lower limit of the thermal conductivity is valid for sub
stances consisting of atoms and not molecules with rotatio
degrees of freedom. Slack2 has taken into account the poss
bility of thermal energy transfer by optical phonons in cry
tals consisting of atoms of different kinds. In molecular cry
tals heat is transferred by mixed translational–orientatio
modes, whose specific heat forT>QD saturates in propor
tion to the number of degrees of freedom. On this basis
following expression can be suggested for the lower limit
the thermal conductivity of molecular crystal whose m
ecules havez rotational degrees of freedom:

Lmin* 5
1

2 S p

6 D 1/3S 11
z

3D kBn2/3~v112v t!. ~21!

FIG. 4. Structural formulas for naphthalene and anthracene.
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Table II gives the lower limits of the thermal conductiv
ties Lmin8 , Lmin , and Lmin* . It is evident that even taking
account of the contribution of the rotational degrees of fre
dom of the molecules the ratioLmin8 /Lmin* on the average is
1.4 ~with the exception of anthracene, where it is somewh
higher!. For solidified inert gases which do not possess ro
tional degrees of freedom, this ratio is 1.3–1.4. It should
noted that although the expression~4! for Lmin describes
well, over all, the thermal conductivity of amorphous bodi
and strongly disordered crystals,4 it is nonetheless semi-
empirical. The assumption that the minimum phonon me
free path length equals half the wavelength is only one
many possibilities. Thus, Slack2 assumed that it is equal to
the phonon wavelength. In addition, the expression was
tained on the basis of a very simple model which negle
phonon dispersion and the real density of states. The co
cient a is an integral factor that effectively takes account
the imperfection of the model.

Figure 5 shows the Bridgman coefficients calculated
cording to Eqs.~16!–~19!. The temperature dependence ofg
was not investigated experimentally. For CO2 and N2O the
Bridgman coefficients were determined at the triple-po
temperature11 and for HMT, naphthalene, and anthracene
room temperature (T'300 K).3 The data in Table I show
that the agreement between the experimental and comp
values ofg is completely satisfactory. The large valuesg
'9 for organic crystals are explained by the fact that th
were measured at temperatures much lower than the me
points and low-frequency phonons transferred a large fr
tion of the heat. As temperature increases, the dependenc
the thermal conductivity on the specific volume should d
crease in accordance with the general trend described by
relations~16!–~19!.

It can be conjectured~see Fig. 1! that the ‘‘localization’’
of high-frequency modes atT>QD occurs, to one extent or
another, in all molecular crystals, in orientationally order
and orientationally disordered phases. In orientationally d
ordered phases, as a rule, the isochoric thermal conduct
increases; this increase is due to the weakening of pho
scattering by fluctuations of short-range orientational ord

TABLE II. Lower limits of the thermal conductivity:Lmin8 , obtained by
fitting Eq. ~20!; Lmin , calculated from Eq.~4! neglecting the rotational de-
grees of freedom;Lmin* , calculated according to Eq.~21! taking account of
site-to-site rotational energy transfer~in mW/cm•K).
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with increasing temperature.21 The lower limit of the thermal
conductivity in this case can no longer be calculated b
direct fit using Eq.~20!, since the simple expressions~7! and
~8! do not describe the phonon mean-free path length.
shall illustrate this for adamantane.

The hydrocarbon adamantane C10H16 is one of the most
carefully studied substances. It is a classic example of
orientationally disordered~plastic! phase. The adamantan
molecule is almost spherical in shape with 16 hydrogen
oms distributed uniformly over the surface of the sphere
the low-temperature ordered phase~II ! adamantane mol
ecules A~II ! are distributed over two mutually perpendicul
orientations, so that two neighboring molecules are perp
dicular to one another (P421c structure!. On heating up to
208.6 K a transition occurs into an orientationally disorder
fcc phase (Fm3m structure! with an approximately 9% jump
in density; this phase is stable right up to the triple-po
temperature 543 K.22 A detailed analysis of the relaxatio
times from the NMR spectra shows that in the ordered ph
the rate of the reorientations of the molecules is 105 sec21 at
170 K ~see Fig. 6!. As temperature increases, it increases a
near the phase transition temperatureTtr it is of the order of
108 sec21. Above 208.6 K the reorientation rate increas
abruptly to 1010 sec21 and once again increases, reaching
the melting pointTm a value equal to approximately half th
Debye frequencynD . The activation energyEr of reorienta-
tions in the phases A~I! and A~II ! is 13 and 27 kJ/mole
respectively. Since the time which the molecule spends
hopping state is of the order ofnD

21 , the reorientation time is

FIG. 5. Temperature dependence of the Bridgman coeffic
g52(] ln L/] ln V)T for solid CO2 and N2O ~a! and HMT, naphthalene, and
anthracene~b!.
a

e

n

t-
n

n-

t

se

d

s
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a

comparable to the time between the hops. This gives a b
for asserting that the molecules in crystalline adamant
near the melting point are close to a state of free rotation

Wigren and Andersson studied the thermal conductiv
of solid adamantane at pressures 0.1, 0.8, and 2.0 GP32

Figure 7 shows the temperature dependences of the the
conductivity referred toP50 and the isochoric thermal con
ductivity of A~II ! and A~I! converted to molar volumes 107.
and 121.5 cm3/mole, respectively, using the thermal expa
sion data of Ref. 24. The Bridgman coefficientsg for the
phases A~II ! and A~I! are 9.8 and 6.4.3 The lower limit Lmin

of the thermal conductivity was calculated for the isoba
case (P50) neglecting the contribution of the rotational d
grees of freedom. The temperature dependences of the
gitudinal and transverse sound velocities were determi
from the elastic constants given in Ref. 32.

It is evident that the isochoric thermal conductivity
adamantane in the orientationally disordered plastic ph
increases with temperature. This effect could be due to we
ening of phonon scattering by collective rotational exci
tions of molecules as the correlations between their rotati
weakens. Unfortunately, the thermal conductivity of adam
tane has been investigated only up to 400 K. It is very like
that it can pass through the characteristic maximum and t

t

FIG. 6. Rate n of reorientational jumps of molecules in crystallin
adamantane.22

FIG. 7. Thermal conductivity of adamantane, scaled toP50, from the data
of Ref. 23~solid line!, and the isochoric thermal conductivity of A~II ! and
A~I! for molar volumes 107.5 and 121.5 cm3/mole, respectively, obtained
using the data of Ref. 24~dashed lines!. The dot–dash line shows the lowe
limit Lmin of the thermal conductivity of A~I! for the isobaric case (P50)
neglecting the contribution of the rotational degrees of freedom.
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decrease down to the melting point, just as in so
methane,33 since in both crystals rotation is nearly free
premelting temperatures.

In certain cases a substantial orientational mobility
molecules and, correspondingly, an increase of isoch
thermal conductivity are observed long before a phase t
sition, for example, as in the case of the low-temperat
phase of carbon tetrachloride.34 The model discussed abov
is applicable for ‘‘normal’’ phases of molecular crystals
the absence of appreciable reorientational motion of the m
ecules. The lower limit of the thermal conductivity of mo
lecular crystals must be estimated in accordance with
~21! in all cases where site-to-site rotational energy trans
is possible.

4. CONCLUSIONS

It has been shown in this paper that the temperature
volume dependences of the thermal conductivity of mole
lar crystals in orientationally ordered phases at temperat
T>QD can be described using a model where low-freque
phonons transfer heat and above the phonon mobility li
‘‘diffusive’’ modes, which migrate randomly from site to site
transfer heat. The phonon mobility limitv0 can be found
from the condition that the phonon mean-free path leng
which is determined by umklapp processes, cannot bec
less than half the phonon wavelength. The Bridgman coe
cient g52(] ln L/ln V)T is the weighted-mean over thes
modes, whose volume dependence differs strongly. It
been shown that site-to-site rotational energy transfer m
be taken into account when calculating the lower limit of t
thermal conductivity of molecular crystals.

I thank V. G. Manzheli�, Academician of the Ukrainian
National Academy of Sciences, and Professor R. O. Poh
a fruitful discussion and V. P. Revyakin, Candidate of Phy
cal and Mathematical Sciences, and engineer E. G. Orl
technical assistance.

*E-mail: konstantinov@ilt.kharkov.ua

1R. Berman,Thermal Conduction in Solids, Clarendon Press, Oxford
~1976!.

2G. A. Slack inSolid State Physics, edited by H. Ehrenreich, F. Seitz, an
D. Turnbull, Academic Press, New York~1979!, Vol. 34, p. 1.

3R. G. Ross, P. A. Andersson, B. Sundqvist, and G. Ba¨ckström, Rep. Prog.
Phys.47, 1347~1984!.
f
ic
n-
e

l-

q.
r

nd
-
es
y
it

,
e
-

s
st

or
i-
or

4D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B46, 6163~1992!.
5S. Pettersson, J. Phys.: Condens. Matter1, 361 ~1989!.
6D. P. Spitzer, J. Phys. Chem. Solids31, 19 ~1970!.
7M. P. Shpol’ski�, Acoustic Crystals, Nauka, Moscow~1982!.
8V. A. Shutilov, Fundamental Physics of Ultrasound, Gordon and Breach
Science Publishes, New York~1988!.

9V. G. Manzhelii, A. I. Prokvatilov, V. G. Gavrilko, and A. P. Isakina
Handbook for Structure and Thermodynamic Properties of Cryocryst,
Begell House Inc., New York~1999!.

10V. A. Konstantinov, V. G. Manzheli�, M. A. Strzhemechny�, and S. A.
Smirnov, Fiz. Nizk. Temp.14, 90 ~1988! @Sov. J. Low Temp. Phys.14, 48
~1988!#.

11V. A. Konstantinov, V. G. Manzheli�, A. M. Tolkachev, and S. A. Smirnov,
Fiz. Nizk. Temp. 14, 189 ~1988! @Sov. J. Low Temp. Phys.14, 104
~1988!#.

12V. A. Konstantinov, V. G. Manzheli�, V. P. Revyakin, and S. A. Smirnov
Fiz. Nizk. Temp.21, 102 ~1995! @Low Temp. Phys.21, 78 ~1995!#.

13V. A. Konstantinov, J. Low Temp. Phys.122, 459 ~2001!.
14V. A. Konstantinov, V. G. Manzhelii, R. O. Pohl, and V. P. Revyakin, F

Nizk. Temp.27, 1159~2001! @Low Temp. Phys.27, 858 ~2001!#.
15V. A. Konstantinov, V. P. Revyakin, and E. S. Orel, Fiz. Nizk. Temp.28,

194 ~2002! @Low Temp. Phys.28, 136 ~2002!#.
16J. Callaway, Phys. Rev.113, 1046~1959!.
17M. C. Roufosse and P. G. Klemens, J. Geophys. Res.79, 703 ~1974!.
18P. G. Klemens, High Temp.-High Press.5, 249 ~1983!.
19J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, Phys. Rev. B48,

12589~1993!.
20V. B. Kokshenev, I. N. Krupskii, and Yu. G. Kravchenko, Braz. J. Phy

27, 510 ~1997!.
21V. A. Konstantinov and V. G. Manzhelii, inDie Kunst of Phonons, edited

by T. Paskiewizc and T. Rapsewizc, Plenum Press, New York~1994!.
22N. Parsonage and L. Staveley,Disorder in Crystals, Clarendon Press,

Oxford ~1978! @Russian trans., Mir, Moscow~1982!#.
23J. Wigren and P. Andersson, Mol. Cryst. Liq. Cryst.59, 137 ~1980!.
24K. V. Mirskaya, Kristallografiya8, 225 ~1963! @Sov. Phys. Crystallogr.8,

167 ~1963!#.
25V. S. Hausshe, Acta Crystallogr.11, 58 ~1958!.
26E. A. Silinch, Organic Molecular Crystals, Springer-Verlag, New York

~1980!.
27R. G. Ross, P. Andersson, and G. Ba¨ckström, Mol. Phys.38, 527 ~1979!.
28A. P. Ryzhenkov and V. M. Kozhin, Kristallografiya12, 1079~1967! @Sov.

Phys. Crystallogr.12, 943 ~1967!#.
29A. P. Ryzhenkov, V. M. Kozhin, and R. M. Myasnikov, Kristallografiy

13, 1028~1968! @Sov. Phys. Crystallogr.13, 892 ~1968!#.
30G. K. Afanas’eva, Kristallografiya13, 1024 ~1969! @Sov. Phys. Crystal-

logr. 13, 892 ~1969!#.
31G. K. Afanas’eva and R. M. Mashnikov, Kristallografiya15, 189 ~1970!

@Sov. Phys. Crystallogr.15, 156 ~1970!#.
32J. C. Damien, Solid State Commun.16, 1271~1975!.
33V. A. Konstantinov, V. G. Manzhelii, V. P. Revyakin, and S. A. Smirno

Physica B262, 421 ~1999!.
34O. I. Purs’ki�, M. M. Zholonko, and V. A. Konstantinov, Ukr. Fiz. Zh.46,

740 ~2001!.

Translated by M. E. Alferieff



LOW TEMPERATURE PHYSICS VOLUME 29, NUMBER 5 MAY 2003
On the orientational relief of the intermolecular potential and the structure of domain
walls in fullerite C 60

J. M. Khalacka)

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine,
14b Metrologichna Str., Kiev-143, 03143 Ukraine; Stockholm University, Arrhenius Laboratory,
Division of Physical Chemistry, S-106 91 Stockholm, Sweden

V. M. Loktevb)

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine,
14b Metrologichna Str., Kiev-143, 03143 Ukraine
~Submitted November 29, 2002!
Fiz. Nizk. Temp.29, 577–589~May 2003!

A simple planar model for an orientational ordering of threefold molecules on a triangular lattice
modeling a close-packed~111! plane of fullerite is considered. The system has 3-sublattice
ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of
orientational domains, which are related with a permutation or a mirror symmetry.
Interdomain walls are found to be rather narrow. The model molecules have two-well orientational
potential profiles, which are slightly effected by a presence of a straight domain wall. The
reason is a stronger correlation between neighbor molecules in the triangular lattice versus the
square lattice previously considered. A considerable reduction~up to one order! of the
orientational interwell potential barrier is found in the core regions of essentially two-
dimensional potential defects, such as a three-domain boundary or a kink in the domain wall. For
ultimately uncorrelated nearest neighbors the height of the interwell barrier can be reduced
even by a factor of 102. © 2003 American Institute of Physics.@DOI: 10.1063/1.1542507#
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1. INTRODUCTION

The elegant hollow cage structure of the C60 fullerene
molecule has drawn the close attention of scientists bec
of its unique icosahedral symmetryI h . The nearly spherica
form of the molecule leads to very unusual physical prop
ties of solid C60, fullerite.1–4 While at room temperature th
molecules can be considered to be perfact spheres, the
temperature properties of fullerite are determined by the
viation of the molecular geometry from spherical. At the
temperatures an orientational molecular ordering takes pl
which is a basic issue for understanding the results of re
He-temperature experiments on heat transport,5,6 linear ther-
mal expansion,7,8 and the specific heat9 of C60 fullerite.

The mass centers of the C60 molecules in fullerite are
arranged in an fcc structure characteristic for close-pac
spheres with isotropic interactions between them. At ro
temperature the molecules are found to be freely rotat

The resulting crystal space group isFm3̄m.
Upon lowering of the temperature, fullerite is undergo

two transitions. AtT'260 K, it undergoes first-order phas
transition, after which the fcc crystal lattice is divided in
four simple cubic sublattices. The molecules are now
lowed to rotate about one of the 10 molecular threefold ax
The other two of the three rotational degrees of freedom
frozen. Within each of the four sublattices, the allowed m
lecular rotation axis is fixed along one of the four~@111#,

@11̄1̄#, @ 1̄1̄1#, or @ 1̄11̄#) threefold cubic axes, so that th

crystal space group isPa3̄.
It is worth noting that the truncated icosahedral shape
4291063-777X/2003/29(5)/11/$24.00
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the C60 molecule allows for a more symmetric regular crys
structure with only one sublattice and with the four abov
mentioned molecular threefold axes oriented along the th
fold crystal axes~usually regarded as the standard molecu
orientation!. But such a structure is energetically unfavorab
for the anisotropic intermolecular interaction. Instead,
observed low-energy structure is obtained by a simultane
22° counterclockwise rotation of the C60 molecules from the

initial standard orientation about their fixedPa3̄ threefold
axes.

As a result of such a rotation, each C60 molecule is ori-
ented in such away that one of the negatively charged do
C5C bonds to each of the six neighbor molecules belong
to the same close-packed~111! plane is perpendicular to th
molecular rotation axis. To the other six neighbors~belong-
ing to two adjacent~111! planes! the molecule is oriented
with the positively charged pentagons~P!. Therefore, follow-
ing a commonly used notation we denote this as the ‘‘P o
entation.’’ For an ideal structure with all the molecules ha
ing a P orientation, every pair of nearest neighbors
characterized by having a pentagon from one molecule
posing a double bond from another molecule.

On the other hand, the potential profile of a fullere
molecule rotating about its fixed threefold axis has an ad
tional metastable minimum1! corresponding to an 82° rota
tion from the standard orientation~and to a 60° rotation from
the P orientation!. In this minimum, the molecule oppose
the neighbor molecules from the same~111! plane with the
double bonds, and the molecules from adjacent planes
opposed with hexagons~H orientation2!!. The energy differ-
© 2003 American Institute of Physics
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ence between the P and H minima is about 11 meV~'130
K! and the height of the potential barrier is 235–280 m
~'2700–3200 K!.10,11

At high enough temperatures, molecules are able
jump between the two energy minima due to the processe
a thermal activation. The average P/H ratio is given by
Boltzmann distribution law. Just below the high-temperat
phase transition (T'260 K) the fraction of H oriented mol
ecules is close to 0.5, and forT'90 K it tends to 0.15~Ref.
12!.

For temperatures below 90 K the situation changes d
tically. The waiting time for a molecule to obtain sufficie
energy for a jump between the P and H orientations reac
the order of several days (104– 105 s) or even more. There
fore at some critical temperature~its exact value near 90 K
depends slightly on the cooling conditions! the molecules
become frozen in their current orientational minima, and
transition to an orientational glassy phase takes place. Be
this transition the fraction of H oriented molecules rema
practically unchanged and equal to its equilibrium va
~about 15%! characteristic for the temperature of the gla
transition. In other words, on the average every 7th molec
has the H orientation, and with a very high probability eve
C60 molecule has at least one misoriented neighbor.

While the orientational glass structure is believed to p
sist down to the lowest temperatures, some of the experim
tal data obtained at helium temperatures can not be expla
in terms of the concept of H oriented molecules alone.
example, the data on heat conductivity5,6 show a maximum
phonon mean free path of about 50 intermolecular spaci
which implies only a 0.02 fraction of scattering~‘‘wrong’’ !
molecules. Besides, the negative thermal expansion7,8 and
the linear contribution to the specific heat9,13 of the fullerite
samples at helium temperatures are explained in terms o
tunneling~i.e., quantum! transitions of the C60 molecules be-
tween nearly degenerate orientational minima. Such a po
bility was firstly assumed in Ref. 14, where all the molecu
in a crystal were assumed to be in tunneling states. Howe
the paper13 accurately estimates the tunneling frequency
be about 5.5 K, and the number of tunneling degrees
freedom to be;4.8•1024 (N/60), whereN is the number of
carbon atoms in the crystal. Obviously, the number of a
oriented molecules is much larger, and the above-mentio
potential barrier between the H and P orientations is too h
to provide such a low tunneling frequency. Therefore
defect states other than the simple H oriented molec
should be considered.

One of the possibilities for a realization of the low p
tential barrier for C60 molecule is indicated in our previou
paper.15 Relatively low barrier sites can appear within th
orientational domain walls because of the superposition
the mutually compensating potential curves due to inter
tion with the neighbor molecules belonging to different d
mains. For the case of orientational ordering of hexagons
a square planar lattice considered in,15 the height of the po-
tential barrier in the wall is found to be 5 times less than
the regularly ordered lattice. Such a lowering seems to
insufficient to provide the necessary magnitude of tunne
frequency following from the available experimental da
analysis.13
to
of
e
e

s-

es

a
w

s

s
le

r-
n-
ed
r

s,

he

si-
s
er,
o
f

ed
h
e
s

f
c-
-
n

e
g

Meanwhile, most of the results obtained for a squa
lattice seem to be caused by the incompatibility of the m
lecular threefoldC3 symmetry axis with the lattice fourfold
C4 symmetry axis. In the case of fullerite, a fullerene mo
ecule has the 4 threefold axes and 3 twofold axes intrinsi
the fcc lattice. Furthermore, the closest-packed~111! plane of
thePa3̄ lattice has a hexagonal structure. Six of the 12 ne
est neighbor molecules belong to a hexagonal plane, w
only 4 of them belong to the same square~001! plane.

Therefore it is interesting and necessary to investig
the main features of orientational ordering for the case o
molecular symmetry identical to that of the lattice. In th
present paper we are concerned with the possible orie
tional domain structures formed by simple flat hexago
molecules arranged in a~more relevant to a real situation!
hexagonal lattice, with both the molecule and the latt
symmetry axes beingC3 . The main purpose of this paper
to estimate the intermolecular interaction energy barriers
both the regular close-packed planar structure and for
vicinity of extended orientational defects.

It is a pleasure and an honor for us to dedicate this pa
to Prof. Vadim G. Manzhelii a Ukrainian low-temperatu
experimentalist of world-wide reputation whose contributi
to the physics of cryocrystals in general and to the physic
fullerites and fullerides, in particular, is well known and ca
not be overestimated.

2. MODEL

Let us consider a system of flat hexagonal molecule3!

located at the sites of a rigid hexagonal planar lattice, m
eling a ~111! plane of the 3D fcc lattice.

Following the empirical potentials used for modeling t
intermolecular fullerene interaction~see, for example, Ref
16 and references therein!, we suppose two kinds of negativ
charges,2(16a), to be located at the centers of the sides
the hexagon~see, the large and small filled circles in Fig. 1a!.
These negative charges recall single and double cova
bonds between carbon atoms at the hexagon edge of the
cated icosahedral fullerene molecule. Introduction of
charge parametera reduces theC6 hexagonal symmetry
down to theC3 symmetry intrinsic to real C60. The require-
ment of electrical-neutrality of the model hexagon molec
stipulates the presence of unit positive charges at its vert
~shown with the open circles in Fig. 1a!.

For the initial orientation~an analog of the standard or
entation in fullerite! the molecules are chosen to be align
with the positive charges along the lattice directions. T
topmost~positiveY direction! negative charge has to be th
larger one~see Fig. 1a!. The molecular rotation anglew is
measured starting from the positiveX direction.

The interaction between two nearest molecules is gi
by the superposition of the Coulomb interactions betwe
the vertices and bonds of these molecules. The exact form
the resulting interaction function can be found in Ref.
@Eqs. ~1!–~4!#. The interaction is multipolar, so it depend
not only on the difference of molecules’ rotation angles~as
for the case of the spin systems with Heisenberg excha
coupling!, but essentially on both the angles. So the ene
of interaction of the two neighbor molecules characteriz
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by rotation anglesw1 andw2 has to be written asW(w1 ;w2).
The clockwise and counterclockwise rotations have differ
effects on the interaction:

W~w1 ;w2!ÞW~2w1 ;w2!ÞW~w1 ;2w2!. ~1!

On the other hand, a clockwise rotation of the first molec
is somewhat equivalent to a counterclockwise rotation of
second molecule. Hence, the combination of the lattice m
ror symmetry with the molecule mirror symmetry leads
the following symmetry relation for the interaction functio

W~w1 ;w2!ÞW~2w2 ;2w1!. ~2!

Rotating the molecules shown in Fig. 1a by an an
2p/3 ~or 4p/3! about a threefold axis located at the center
the triangle 123, one can find that the pair interaction of
molecules 2, 3~or 3, 1! is given by the same function
W(w2 ;w3) ~or W(w3 ;w1), respectively!. The relative dis-
placement~which was vertical or horizontal in the case of th
square lattice considered in Ref. 15! of the two molecules
does not have to be taken into account, but the order of
angle parameters is essential.

For a simulation of the possible domain structures,
consider a finite parallelepiped-shaped system, the geom
of which is shown in Fig. 1b. It consists of 20320 hexagonal
molecules labeled with the two indexesl and m. Arrows

FIG. 1. ~a! A local geometry of the model molecules on the triangu
lattice. Note that molecular rotation angles~shown with the help of dashed
lines! can be measured from any of the three lattice directions.~b! A geom-
etry of the simulation cell. Arrows give the 1→2 order of the input param-
eters for the pair interaction functionW(w1 ;w2).
t
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show the order of the interaction function arguments for e
pair of hexagons. The system Hamiltonian then reads:

H5 (
l ,m50

N21

@W~w lm ;w l 11,m!1W~w l 11,m ;w l ,m11!

1W~w l ,m11 ;w lm!#1 (
l 50

N21

W~w lN ;w l 11,N!

1 (
m50

N21

W~wN,m11 ;wNm!, ~3!

whereN519, and the last two terms are introduced to ta
into account the edge molecules. For numerical simulatio
the charge parametera is chosen to be 1/3. A hexagon sid
makes 0.3 of the lattice spacing.

3. POSSIBLE ORDERING TYPES

For the general case of orientational ordering of identi
molecules on a planar hexagonal lattice, structures with 1
4, and 7 sublattices are possible. The one-sublattice struc
would correspond to a uniform rotation of all the molecul
on a lattice. The three-sublattice structure is characteristi
antiferromagnetic systems~Loktev structure!.17 A close-
packed~111! plane of thePa3̄ structure should contain th
molecules belonging to four different sublattices. The resu
of STM imaging of the~111! fullerite surface18 confirm this
fact.4! The more complicated case of seven sublattices co
be expected for less symmetric molecules.

As to the C3-symmetric hexagons considered, a rath
aesthetic consideration of the threefold site symmetry5! im-
plies either the 1- or 3-sublattice case, or a 4-sublattice st
ture involving three identical rotations. Numerical calcul
tions give for the ground state the three-sublattice struc
shown in Fig. 2a. It is interesting to notice that in th
3-sublattice structure the energy minimum corresponds
molecule positions which do not provide the minimum of t
pair potential. The molecular rotation angles obtained
(a51/3):

w1572.37209°; w2525.24477°; w3510.87533°. ~4!

Another possible~energy degenerate! ground state can be
found with the help of the symmetry relation~2!. The corre-
sponding angles are given by

w1852w1 ; w2852w2 ; w3852w3 . ~5!

This ground state is related by mirror symmetry to the st
defined by Eq.~4!.

The high symmetry of the hexagonal molecules make
difficult to perceive the ordering pattern presented in Fig.
The more complicated task of finding an orientational def
in this pattern becomes unfeasible. Therefore for the purp
of visualization, we implement a vector representation
hexagonal molecules, shown in Fig. 2b. The vector rotat
angle is three times the hexagon rotation angle:w lm

v

53w lm
h . A vector can be rotated from 0° to 360°. As a resu

the difference between sublattices appears more clearly.
Figure 3 shows the change of the interaction of a m

ecule energy upon a change of its orientation for three m
ecules belonging to three different sublattices. It is clea
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seen that the molecules are not identical. All of them ha
double-well energy profiles, but the height of the interw
energy barrier varies by a factor of 2. The potential minim
of the 2nd molecule are almost energy-degenerate, the
ergy difference being only 1/20 of the barrier height~a situ-
ation similar to the case of fullerite!.

For comparison, the same potential profiles are sho
for the molecules from the edge of the simulated lattice~see
Fig. 4!. Such molecules keep only 4 of the 6 nearest nei
bors ~molecules from two different sublattices are missin!.
As a result, the overall potential profile is lowered by a fac
of 6/4. The C60 molecule at the fullerite~111! edge surface is

FIG. 2. A ground-state orientational ordering of the hexagonal molec
~a!, and the same ordering patterned with vectors~b!.

FIG. 3. Orientational potential profiles for regular molecules belonging
three different sublattices.
e
l
a
n-

n

-

r

missing 3 neighbors from 3 different sublattices. Therefo
one could expect a lowering of the orientational barriers b
factor of 12/9.6!

But the real situation is even more complicated. T
three-dimensional character of fullerite lattice leads to s
division of the neighbors of an arbitrary bulk fullerene mo
ecule into only two categories, denoted here as double-b
~for which the molecule is oriented with the double bond!,
and pentagon~for which the molecule is oriented with th
pentagon or hexagon! neighbors. The six double-bond neigh
bors belong to the~111! plane normal to the molecule fixe
C3 axis. The other six pentagon neighbors, which give
major contribution to the molecular orientational profile, a
located in the other~111! planes.

Therefore an edge molecule with a fixedC3 axis normal
to the edge surface is missing three pentagon neighb
while the molecules with the other three directions of t
allowed rotation axis are missing two double-bond and o
pentagon neighbor each. As a result, the potential relief o
molecule with a normal rotation axis is shallower than t
relief of the other molecules. In this way, the molecules fro
the four different sublattices which are identical in their r
tational properties in the bulk fullerite become non-identic
at the edge surface crystal defect due to a loss of symm
This non-identity evidently reveals itself in the presence
two additional lower-temperature order-disorder phase tr
sitions reported in.21

4. LINEAR ORIENTATIONAL DEFECTS

A general kind three-sublattice two-dimensional triang
lar lattice allows for orientational ordering of three differe
types. Molecular orientations for these ordering types
related to each other by cyclic permutations of the rotat
anglesw i @ i 51, 2, 3; cf. Eq.~4!# for the molecules located
at the vertices of a lattice triangle~e.g., the triangle 123
shown by a solid line in Fig. 2!. In the case of hexagona
molecules under consideration the existence of the mi
orientational twin defined by Eq.~5! leads to the appearanc
of three additional ordering types, which are related to
basic permutation ones in mirror symmetry.

As a result, the lattice under discussion allows for t
simultaneous existence of orientational domains with 6 d
ferent ordering types. A boundary between two domains c

s

o

FIG. 4. Orientational potential profiles for the edge molecules belongin
different sublattices.
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tains a linear orientational defect~domain wall!. Such a de-
fect can involve a permutation ~clockwise or
counterclockwise! or a mirror transformation~with a center
at 3 different lattice sites! of molecular orientations.7!

A domain wall of the permutation type is presented
Fig. 5a. The rotation angles of the molecules located at
vertices of a lattice triangle~shown with solid lines! have the
valuesw1 , w2 , andw3 in the left domain. In the right do-
main they are equal tow2 , w3 , and w1 , respectively. The
domain wall~gray! is relatively narrow. Its width~measured
along the horizontal close-packedl direction! is about one
period of the 3-sublattice structure. As seen along the clo
packedm direction, this defect can be regarded as obtain
by the removal of one element from the ideal seque
...1231231... of molecular orientations. The resulting
quence is ...123u231... .

The orientational dependence of the potential energy
the four central molecules from the domain wall is given
Fig. 5b. The molecules are marked in Fig. 5a and labe
with their m index, whilel is taken to be 10. Molecules 8 an
10 have orientations of the type 2, and the rotation angle
molecules 9 and 11 are close tow3 . The potential profiles are
quite close in form to the profiles of the regular molecu
~shown in Fig. 3!, but one of the two potential barriers
lowered for each molecule.

Orientational domain walls of a mirror nature are wid
than the permutation ones. Figure 6a gives an example o
mirror domain wall. For this wall, the sequence of molecu

FIG. 5. Permutation domain wall~a! perpendicular to a close-packed row
and the orientational potential profiles~b! for the four marked molecules
identified with the lattice indexm ( l 510).
e
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orientations in them direction is ...123?382818..., where the
question mark stands for a molecule in the mirror plane. T
molecule does not fit any regular orientation. Instead, it
flects the mirror symmetry of the wall. Figure 6b clear
shows the orientational potential minimum of the molecu
10 to be located at the rotation anglew560°. Such an ori-
entation corresponds to aligning one of the mirror planes
the hexagonal molecule with the domain-wall mirror plan

The mirror symmetry of an orientational defect is al
manifested through the symmetry of the potential curves
other molecules. The potential profiles of molecules 9 and
~orientations 3 and 38) and 8 and 12~orientations 2 and 28)
are related throughDE9(w)5DE11(2w) and DE8(w)
5DE12(2w), respectively.

In the vector pattern of Fig. 6a, this symmetry is giv
with the clockwise—counterclockwise vector rotations
the two different sides of the wall. Since the rotation ang
are measured form theX direction, the vectors representin
rotation of molecules 9 and 11~8 and 12! are related by a
mirror plane parallel to theX direction.

The effect of the domain wall on the potential relief
molecules 8 and 12~orientations 2 and 28) is found to con-
sist in a slight lowering of one of the two barriers. For mo
ecules 9 and 11~orientations 3 and 38), close to the center o
the domain wall, both the potential barriers are lowered c
siderably. But the position and the relative height of the s
ondary minimum are unchanged, resulting in the shall
character of this minimum seen in Fig. 6b.

FIG. 6. Mirror domain wall~a! perpendicular to a close-packed row, and t
potential profiles~b! for the five marked molecules withl 510 and with the
indicatedm value.
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The domain walls given in Figs. 5 and 6 have their
rections parallel to one of the sublattice period vectors,
perpendicular to one of the close-packed molecular row
rections. At the same time, there is a possibility for a dom
wall to lie along the close-packed molecular rows. An e
ample of a permutation domain wall of this kind is presen
in Fig. 7a. The relationship between the left and right d
mains here is the same as in Fig. 5, but the location of
domain wall line is different. As a result, the molecular o
entation sequence along themth molecular row can now rea
...231u312... (l 58), ...312u123... (l 59), or ...123u231... (l
510). Therefore, the central part of the domain wall co
tains molecules with 6 different potential profiles~orienta-
tions 1, 2, and 3 from the left domain, and orientations 3
2 from the right domain!. The three potential profiles with
the lowest energy barriers are shown in Fig. 7b. It is no
worthy that here we gain a low barrier profile with almo
energy-degenerate minima~see dotted curve!.

A domain wall of a mirror nature parallel to a clos
packed molecular row has the more complicated struc
shown in Fig. 8a. It is again wider than the permutation w
so that the molecules fromthree close-packed rows hav
substantially corrupted orientational potential relief. As a
sult, the number of intra-wall molecules with different orie
tational profiles increases up to 9, opposed to 6 differ
profiles for a permutation wall. Furthermore, the direction
the domain wall does not coincide with the lattice mirr
plane, so there is no mirror symmetry in the pattern of F
8a, and, accordingly, no symmetry relations for the poten

FIG. 7. Permutation domain wall parallel to a close-packed row~a!, and the
orientational potential profiles~b! for the marked molecules with the give
lattice indicesl andm.
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curves ~cf. the mirror symmetry of the potential profile
shown in Fig. 6b for a domain wall perpendicular to a clos
packed molecular row!. In Fig. 8b we give the orientationa
potential profiles for the three molecules with the lowest
terwell energy barriers. It is seen that there exists a molec
~+! for which the interwell barrier is about 1.4 times lowe
than the lowest of the interwell barriers of the regular m
ecules. The molecule is situated at the center of the dom
wall and marked with a circle. The corresponding poten
profile is plotted by the solid curve in Fig. 8b. The obtain
reduction of the orientational interwell barrier is caused b
lower correlation between the nearest-neighbor molecu
~every molecule within the considered wall has neighbors
six different orientations!.

5. TWO-DIMENSIONAL DEFECTS

The results on the modeling of the straight domain wa
in the system considered show that the molecules with
shallowest potential profile tend to appear at sites with
reduced correlation between the orientations of the neigh
molecules. For the straight walls this condition is met at
boundary of two domains with different sets of equilibriu
molecular orientations~mirror domain walls!.

Then it is straightforward to continue the search for t
shallow-potential molecules in the core regions of essenti
two-dimensional orientational defects. One of such prom
ing two-dimensional defect is a meeting point of three d
ferent domains. Molecules at the center of this defect sho
have three pairs of neighbors belonging to three differ

FIG. 8. Mirror domain wall parallel to a close-packed row~a!, and the
potential profiles~b! for the marked molecules~the lattice indicesl and m
are indicated!.



f t
ar

u
nd
uc
o

fe
icu

he
e
t

io
r
o

al
te

st

gin-

nly
-
ol-

are
ll.
at

ol-
ules
but

en-
r-

m-
but
ing

ry-
les.
well
rier
the

l
rs.
es-

ins
in-

try
f
in

ial
les.

er-
ol-
by

of
od
ell
ing
r-

u-

nal
that
tion

ran-
nta-
d.
b-

am
the

435Low Temp. Phys. 29 (5), May 2003 J. M. Khalack and V. M. Loktev
domains, so one could expect an additional decrease o
interwell barriers in comparison to the two-domain bound
case.

The results of numerical calculations indeed show a f
ther reduction of the interwell potential barriers at the bou
ary of three orientational domains. The most effective red
tion is found to take place in the presence of mirr
boundaries.

Figure 9a shows an example of an orientational de
formed at the intersection of three domain walls perpend
lar to molecular rows. The left~narrow! domain wall is of a
permutation type, while the other two~the bottom one and
the right one! have a mirror nature and are much wider. T
right domain wall incorporates a kink in order to minimiz
the surface spanned by the defect. The molecules with
lowest interwell barriers are marked.

As we have said no significant potential barrier reduct
has been observed for straight domain walls perpendicula
close-packed molecular rows. Therefore the marked m
ecules can be seen only at the crossing of the three w
The corresponding orientational potential profiles are plot
in Fig. 9b.

It is surprising that the potential profile with the lea
energy barrier belongs not to the moleculeh situated at the
very center of the defect~potential curve plotted with a

FIG. 9. Structure of orientational defect~a! formed at the boundary of three
orientational domains, and the potential profiles~b! for some chosen mol-
ecules in the defect core region. Pairs of molecules marked with the s
sign ~n or L! have symmetry-related potential profiles, so only one of
profiles is given for each pair. The molecules are labeled by the indicesl and
m.
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dashed line! with totally different orientations of all the 6
nearest neighbors, but to the molecule located at the be
ning of the bottom domain wall~s, solid line!. For the last
molecule the orientations of the nearest neighbors differ o
slightly from that in the straight wall, but the interwell po
tential barrier is 2.3 times lower than the lowest regular m
ecule barrier.

The other four molecules that are marked in Fig. 9a
located within the center of the kink in the right domain wa
At a closer look, one can find a kind of symmetry center
the middle of the line between the molecules marked withn.
The exact symmetry is as follows: if the centers of two m
ecules are related by inversion symmetry, these molec
have rotation angles which are equal in absolute value,
opposite sign. Therefore the two molecules marked withn

~as well as the two molecules marked withL! have the same
orientational dependence of intermolecular interaction pot
tial, the only difference being in the clockwise or counte
clockwise direction of molecular rotation. This can be co
pared to the symmetry of the potential curves in Fig. 6b,
there is no mirror plane in the present case. To avoid hav
a very complicated picture, only one of the two symmet
related curves is shown in Fig. 9b for each pair of molecu
Both the dotted and the dash-dotted curves have an inter
energy barrier which is less than the lowest energy bar
characteristic for regular molecules. This means that at
center of the kink in a domain wall~also a two-dimensiona
defect! the molecules have ill-correlated nearest neighbo
Therefore the case of a kinked domain wall has to be inv
tigated more thoroughly.

Figure 10a shows the structure of the kink that conta
the molecule with the lowest height of the orientational
terwell barrier obtained in our simulations. This molecule~in
fact, two molecules, since the kink has a center of symme
of the kind described above! is located at the very center o
the kink, and the corresponding potential curve is shown
Fig. 10b by a solid line. The height of the interwell potent
barrier is 5 times less than for the case of regular molecu

6. TOTALLY UNCORRELATED NEIGHBORHOOD
CONFIGURATION

The three-dimensional defect structure of the real full
ite can be even more complicated. As a result, some m
ecule can have neighbors whose orientations are fixed
different elements of the defect network. In the framework
our simple two-dimensional model such a neighborho
would be totally uncorrelated, and the height of the interw
barriers could be further lowered. Therefore it is interest
to know the minimum possible height of the molecule inte
well potential barrier for an arbitrary orientational config
ration of its neighbor molecules.

For this purpose, let us consider a system of 7 hexago
molecules located at the sites of hexagonal lattice, so
one central molecule has 6 nearest neighbors. The rota
angles of the outer molecules are fixed to be equal to 6
dom numbers between 0° and 120°, and then the orie
tional potential profile of the central molecule is calculate
Configurations with the shallowest potential profiles o
tained in the course of about 106 different realizations of the

e
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random neighborhood configuration are shown in Figs.
12, and 13.

Figure 11 gives an example of a molecular configurat
with interwell potential barriers of a central molecule r
duced by two orders of magnitude with respect to the cas
the totally orientationally ordered lattice. This configurati
is nearly symmetric~the outer molecules have rotatio
angles of about630°!. The central molecule has a four-we
orientational potential profile with the main minimum lo
cated close to 30°. One could expect that a completely s
metric configuration might have an even shallower poten
profile of the central molecule, because of the increase of
interaction energy at the minima of the potential. Contrary
the expectations, the exactly symmetric configuration~not
shown! has an order of magnitude higher interwell barrie
than the one shown in Fig. 11. Thus, interwell barriers pro
to be extremely sensitive to even very small rotations of
molecules.

The case of the molecular configuration with a two-w
orientational profile of the central molecule is presented
Fig. 12. If one does not take into account the differen
between the values of the negative charges, this config
tion seems to be close to having a mirror symmetry. It
probably this difference that leads to the increase of the
teraction energy at the potential minima.

The molecular configuration with the lowest obtain

FIG. 10. The structure of a kink in a mirror domain wall~a!, and the
orientational potential profiles~b! for the marked molecules. Only one po
tential curve is given for every pair of symmetry-related molecules wh
are marked with identical signs. The indicesl andm are indicated.
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interwell potential barrier of the central molecule~shown in
Fig. 13! has no symmetry at all. The orientational profile h
three minima of different depth, and the lowest interw
barrier is about 200 times lower than the corresponding lo
est barrier in the regularly ordered lattice.

Also it should be noted that the molecules of the reg
larly ordered lattice~namely, the molecules with thew1 ori-
entation, see Fig. 3! have the neighborhood configuratio
with the highest possible interwell potential barrier. Wh
minimizing the overall interaction energy, this configuratio
also minimizes the interaction energy at the minimum of
one molecule potential, and deepens this minimum.

7. DISCUSSION

The simple planar model considered recovers some
the features of the fullerite lattice. First of all, it predicts
multi-sublattice structure for a system which would be
ranged in a more symmetric 1-sublattice manner in the
sence of anisotropic intermolecular interactions.

Then, the model involves lowering of the orientation p
tential relief of the molecule at the crystal surface. This c
be compared favorably to the absence of H-oriented m
ecules in the STM image of the fullerite surface.18 Further-
more, at a closer look this image shows a slight difference
orientations of the fullerite molecules belonging to the thr

h

FIG. 11. A molecular configuration with nearly symmetric orientations
the outer molecules~a! and the corresponding shallow potential profile
the central molecule~b!. The inset in the bottom panel shows a magnifi
potential curve.
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sublattices for which the molecularC3 rotation axes are no
perpendicular to the surface. This difference is due to a c
petition of the two-dimensional character of a surface~with
probably another subdivision into sublattices! with the bulk
equilibrium orientations of the molecules below the surfa
molecular layer.

The rather narrow character of the domain walls in
high-symmetry system considered is rather natural for a
tem with only one kind of interaction involved.8! It agrees
well with the very sharp character of the domain wall o
served in a two-dimensional monolayer of C60 fullerene
molecules.22 This wall contains also a very sharp kink, whic
is a kind of essentially two-dimensional defect that can
corporate molecules with low orientational interwell barrie

The sharp character of the observed kink implies
possibility of existence of strongly localized orientational d
fects also in the bulk of the three-dimensional fullerite. So
of these strongly localized defects with necessarily unco
lated orientations of the neighbor molecules’ orientatio
should involve molecules with an orientational potent
which is sufficiently shallow to give a reasonable frequen
of tunneling transitions. As to the rather high C60 molecule
mass, the recent molecular dynamics simulations
dislocation-kink tunneling23 in Ag show an efficient of tun-
neling of complex heavy objects under certain conditions

The idea of explaining negative thermal expansion
solids by the double-well tunneling statistics was sugges
by Freiman in 1983 for the case of solid methane.24 In the

FIG. 12. The same as in Fig. 11: Another nearly symmetric configura
with a two-well potential profile.
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range of temperatures where the conventional pho
mechanism does not work the thermal expansion is es
lished as a result of the competition of two factors. The fi
factor is a lattice contraction due to the process of popula
the tunnel states with an increase of temperature. Shrink
the distances between molecules increases the height o
orientational interwell barriers, which leads to a decrease
the tunneling energy splitting and, as a result, to a decre
of the system free energy. The contraction of the lattice
stabilized by an increase of the elastic part of the free ene
for every fixed value of crystal temperature.

Since the population of tunnel states has a very str
exponential temperature dependence, the thermal expan
resulting from the competition of the two factors is alwa
negative. AtT'0 K it is practically absent~no molecules on
excited tunnel levels!. With an increase of temperature th
population of the excited state grows, and therefore the
tice is contracted. But at T.D, whereD is the tunnel state
energy splitting, both the ground and the excited states
come almost equally populated, so that the effect beco
much less pronounced. This means that there should ex
maximum in the magnitude of the negative thermal exp
sion coefficient.

With a simple differentiation of expression~6! of Ref. 24
one can find that this maximum takes place at the temp
ture Tmax satisfying the equation

n
FIG. 13. The same as in Fig. 11: Nonsymmetryc configuration with
lowest interwell barriers found.
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2Tmax

D
5tanhS D

2Tmax
1

1

2
ln

f 1

f 2
D ,

where f 1 and f 2 are the degeneracies of the ground and
cited states, respectively. It is easy to see thatTmax,D/2
holds for any ratiof 1 / f 2 .

Therefore the tunneling energy splitting in fullerite ca
be estimated from theTmax position in Refs. 7 and 8 to be
more than 8 K. On the other hand, the positive thermal
pansion of pure fullerite atT,2 K implies the presence o
processes other than two-well tunneling~probably, the con-
ventional phonon mechanism is still valid! at this low tem-
perature.

The possibility of detecting experimentally the negati
contribution to thermal expansion due to the tunneling
jects depends strongly on the relative magnitude of the p
tive ~conventional! and negative~tunneling in this case! con-
tributions. In the case of fullerite, the negative contribution
more pronounced, but one still encounters difficulty in det
mining the tunneling object. The first hypothesis of a tunn
ing of regular C60 molecules between P and H orientations14

had the drawback of a high interwell potential barrier. T
subsequent introduction of the idea of a competition of
isotropic and anisotropic parts of intermolecular interact
potential~though in orientational glass!25 has lead to the cur
rent understanding~given in our previous paper15 and the
present one! that the tunneling objects are strongly localiz
orientational defects of the fullerite structure. A more d
tailed description of such defects could be obtained with
help of a more realistic three-dimensional modeling of
C60 crystal structure, which should be a subject for futu
studies.
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1!We do not consider to be distinct the energy-degenerate minima obta
by 120° rotation about the threefold molecular axis.

2!Strictly speaking, the term ‘‘H~or P! configuration’’ is more adequate fo
describing a mutual orientation of two neighboring molecules. Never
less, for every chosen pair of neighboring molecules~let us denote them as
A and B! with fixed directions of the allowed rotation axes, the mutu
orientation depends strongly only on the rotation angle of one mole
~say, A!. The other molecule~B! is always~at any angle of its rotation!
turned to the first one~A! with a double bond. Therefore, the interactio
energy of the pair weakly depends on the rotation angle of the sec
molecule. As to the molecule A, it is at any rotations always turned to
with a belt of pentagons and hexagons interconnected by single bo
Thus it is the molecule A of the pair A, B that is responsible for the mut
orientation. Aside from this, upon the rotation of the molecule A fro
orientation P to orientation H this molecule becomes turned with hexag
~instead of pentagons! to five more its nearest neighbors. At the same tim
the energy of its interaction with the other 6 nearest neighbors rem
-
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practically unchanged, because the energy depends mainly on the or
tion of those latter molecules. For the reasons mentioned above, we fo
the common notations and use the letters ‘‘P’’ and ‘‘H’’ to denote t
orientation of a single molecule, while keeping in mind those 6 pair o
entations for which this molecule rotation angle is crucial.

3!In some sense, they can be regarded as imitating the C60 molecules viewed
along theC3 axis. Strictly speaking, such imitation is realistic only for th
fullerene molecules with the fixedC3 axis perpendicular to the considere
~111! plane. The C60 molecules belonging to other threePa3̄ sublattices
have their fixed threefold axes tilted to this plane.

4!At the beginning of the fullerene era, there were some publications19,20

reporting an 8-sublattice fcc structure for the low-temperature fuller
This structure could be obtained by division of each of the four scPa3̄
sublattices into two fcc sublattices with different~P and H! molecular
orientations. However, the 8-sublattice structure has not been confirme
further investigations. Therefore, we do not consider it here.

5!The absence of site symmetry would induce a distortion of the lattice
6!Nevertheless, it should be emphasized that the change~or relatively weak

lowering! of the intermolecular rotational barriers appears to be too sm
for all the cases of the regular structure to allow for the orientatio
tunneling which is necessary for a number of physical phenomena.
has to remember that the mass of the C60 fullerene molecule is 720 a.u
This makes a very strong constraint for the height and width of the ene
barriers which are able to give the observed probability~or frequencies!13

of orientational tunneling transitions.
7!For the case of fullerite, there are 414 different ordering types and

314 different interdomain boundaries~not related with the symmetry
operations!.

8!For the case of ferromagnets the domain wall width is of the order
aAJ/A, wherea is the lattice spacing,J is the exchange, andA is the
anisotropy. SinceA is a relativistic correction, the ratioJ/A can be in-
creased up to 106. But for the present case of one interaction this ratio
about 1.
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A brief review is given of the interaction between fullerite C60 and various gases under elevated
pressure. Subjects discussed include the formation of ordered interstitial gas-fullerene
compounds, reactions between intercalated gases and fullerene molecules to form new endohedral
and exohedral compounds, and changes in the structure and properties of C60 because of
intercalated gas atoms or molecules. ©2003 American Institute of Physics.
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INTRODUCTION

Solid fullerites, such as C60 and C70, have very interest-
ing physical properties. However, in many cases the un
standing of these properties has been hindered or del
because interactions between the fullerene molecules
their environment have led to significant changes. Althou
the fullerene molecule is not very reactive, the intermole
lar interactions are very weak and many simple proper
change easily when the fullerite lattice is structurally d
formed, or when small amounts of impurities are introduc

A particular case in point is the study of fullerites und
high pressure.1,2 Pressure is a very useful parameter in t
study of carbon-based materials. Although the graphite s
structure has a higher interatomic binding energy than
mond, the weak interplane interaction in the thre
dimensional graphite lattice implies that graphite is eas
deformed by moderate pressures, and the equilibrium p
sure between diamond and graphite at room temperatu
only about 2 GPa.3 Similarly, carbon nanotubes in bundle
begin deforming radially at similar pressures, about
GPa.4,5 Although fullerene molecules do not deform notic
ably under these pressures, their orientation and rota
properties change radically with pressure in the range be
2 GPa,1 and many studies have been carried out to map th
changes as functions of pressurep and temperatureT.

Because C60 and other fullerenes are ‘‘weak’’, easily de
formable solids, it is important to use a pressure transmit
medium which does not cause a large shear stress in
specimens studied. This is most easily done using fluid
dia. However, most fluids that are in the liquid state at ro
temperature have a rather limited pressure and tempera
range before they either crystallize or vitrify into the so
state~at low T or highp!, begin breaking down~pyrolyze!, or
react with the sample material, both usually at highT. In
many cases, gases, such as the rare gases, are therefor
sidered the ‘‘ideal’’ pressure media. Unfortunately, gases
ten strongly change the properties of fullerites by interca
ing into the large interstitials in the lattice.

In this paper I briefly review the interaction of gas
with C60, and the changes brought about in the propertie
C60 when the material has interacted with the gas. The
view is mainly motivated by my own need to understand
4401063-777X/2003/29(5)/5/$24.00
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interactions between fullerites and pressure media, and
be colored by this background, but the subject is also
interesting field of study in itself. The subject has been
cluded before as part of larger reviews,1,6 but since this was
some time ago, new material will be presented here. Firs
very short introduction is given to the structure of pure C60.
This is followed by a review of how solid C60 interacts with
various kinds of gases by intercalation, chemical reactio
and the formation of endohedral compounds.

BACKGROUND: THE ORIENTATIONAL STRUCTURE OF C 60

The structure of C60 has been very well discussed in th
literature,7,8 and only a brief overview will be given here. A
low pressures, C60 has three structurally different phase
which, however, are all very similar. The room-temperatu
structure can be described as face-centered cubic~fcc!. Both
the molecules and the interstitial spaces in the lattice
relatively large, compared to most inorganic atoms or m
ecules. For each C60 molecule in the lattice there are thre
interstitial sites: two small tetragonal sites with an effecti
radius of 1.1 Å and one large octahedral site with a radius
2.1 Å. For comparison, the thresholds or channels betw
sites have an effective radius of 0.7 Å.

Above T05260 K, the C60 molecules carry out quasi
free rotation because of their highly symmetrical shape,
thus the structure can be approximated as a fcc lattice
spherical molecules with a space groupFm3m. With de-
creasingT the correlation between the rotation of neighbo
ing molecules increases, and nearTc large, co-rotating clus-
ters are formed. On cooling throughT0 the molecular
rotation stops and a simple cubic~sc! phase with space grou
Pa3̄ and a temperature-dependent degree of orientationa
der is formed. In this phase the molecular rotation h
stopped but the molecules can still jump between differ
molecular orientations. Finally, below the glassy crystal tra
sition at Tg'90 K, molecular motion is very slow and th
remaining orientational disorder can be considered frozen
orientational glass is formed. With increasing pressure b
T0 and Tg increase, as might be expected. The phase li
have slopes of dT0 /dp5160 K•GPa21 and dTg /dp
562 K•GPa21, respectively,1 and on compression of C60 at
room temperature the fcc-sc~or ‘‘rotational’’ ! transition oc-
© 2003 American Institute of Physics
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curs already near 0.2 GPa. In practice, almost all high p
sure studies are thus carried out on sc~rotationally hindered!
C60.

In spite of its high symmetry the C60 molecule can be
orientationally ordered because it must have 12 carbon a
pentagons, in addition to the ‘‘normal’’ hexagons, in order
have a closed surface. This gives an anisotropic sur
charge distribution and thus an electrostatic driving force
orientation. The two possible orientational states will here
denoted descriptively as theP ~pentagon! and H ~hexagon!
orientations, since they correspond to the orientation o
double bond on one molecule towards the center of a pe
gon or a hexagon, respectively, on a neighboring molecul7,8

At atmospheric pressure the energy difference between t
states is only about 12 meV, with theP orientation being
lower in energy, but compression of the lattice shifts t
energy difference so that at 150 K the two orientations h
the same energy near 0.19 GPa.9 However, the energy thresh
old for reorientation between these states is quite high, an
atmospheric pressure no orientationally ordered state e
in pure C60. When the material is cooled to belowT0 the
orientational order improves with decreasingT, but the glass
transition intervenes at about 90 K, when the fraction
P-oriented molecules is still only about 85%. At sufficient
high pressures, however, a completelyH-ordered phase
should exist.

The evolution of orientational order in the pressu
temperature phase diagram of molecular C60 is shown in Fig.
1. This figure shows the fcc-sc phase line and the glass t
sition line as solid lines. In the fcc phase there is no ori
tational order, and in the low-T ‘‘orientational glass’’ the ori-
entational structure~i.e., the average number ofP- and
H-oriented molecules! will be frozen at the particular value
present when the sample was cooled through the glass
sition line. In the intermediate simple cubic phase, the
proximate equilibrium fraction ofH-oriented molecules is
indicated by several~dotted! lines, corresponding to orienta
tional states with 30, 50, 75 and 90%H-oriented molecules

FIG. 1. Pressure-temperature phase diagram of pure C60 , showing the three
structural phases. In the simple cubic range, the orientational structure u
various conditions is shown as calculated from Eq.~1!. Numbers indicate
the fraction ofH-oriented molecules along each of the dotted lines show
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In the simplest possible model the fraction ofH-oriented
molecules is given by

f ~T!5@11exp~2D/kBT!#21, ~1!

where D is the energy difference between the two stat
Assuming thatD is linear inp and independent ofT, f (T,p)
will be constant on lines in thep-T plane. The dotted lines in
Fig. 1 have been calculated assuming that the two states
equal energies at 0.19 GPa.9 ~An alternative model, which
might be in better agreement with experiment,1 assumes tha
the energies are always identical at the molecular volu
corresponding to 0.19 GPa and 150 K.!

INTERCALATION OF C 60 WITH GASES

Atomic „rare … gases

The chemical reactivity of the fullerene molecules
low, and many atomic or molecular species can diffuse i
the cavities in the fullerite lattice without forming chemic
bonds with individual fullerene molecules. As might be e
pected, there is also a strong correlation between the dim
sions of the intercalant atoms or molecules and their ab
to intercalate into the interstitial sites in the fullerite lattic
Very careful neutron scattering studies of the intercalation
rare gases into these sites have been carried out by Mor
et al.10,11At room temperature they were unable to meas
the very high diffusion rate of He, which has an effecti
atomic radius of 0.93 Å and probably fills all available site
While He is reported to penetrate the lattice complet
within a few minutes, even at quite low applied pressure,
with a radius of 1.54 Å, did not intercalate noticeably ev
after six days at 0.6 GPa. As expected, Ne is an intermed
case because of its atomic radius of 1.12 Å, and, as such
excellent model substance to illustrate the general beha
of many gases. The presence of Ne atoms in the octahe
sites leads to a small expansion of the lattice. Using neu
diffraction, Morosin et al. were able to use this effect t
show that Ne diffuses into the lattice with a time constant
a few hours, finally reaching a saturated state in which
Ne occupancy in the octahedral sites was about 20% a
mospheric pressure and increased to about 100% above
GPa.10 Interestingly, the rate of Ne diffusion into the C60

lattice depends very strongly on the applied Ne pressure
the fcc phase the diffusion time constant increases line
from a few minutes~as for He! at zero pressure to about 9
min at 0.2 GPa, while in the sc phase the time constant
diffusion is approximately 5 h, independent ofp over the
range studied.11 It should be noted that while pressure i
creases the driving force for diffusion, it also decreases
size of the interstitials and channels, but this decreas
much too small to explain the changes in the diffusion ra
On relieving of the Ne pressure, the diffusion of Ne out
the C60 lattice was always very rapid except at very lo
temperatures~200 K!.

To explain these observations, Morosinet al. suggest
that the main transport mechanism for the Ne atoms i
paddlewheel effect.11 Ne atoms are slightly too large to pas
through the static channels in the structure, but when the60

molecules rotate, Ne atoms may follow the movement and
swept in. In particular, it is speculated that Ne atoms m

der

.
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attach to the electron-poor centers of the pentagons
hexagons, which form dimples or buckets in the molecu
structure and which would temporarily afford larger spa
for atomic transport through the intermolecular channels d
ing rotation. Such a mechanism would explain the obser
tion that Ne transport slows down significantly with increa
ing pressure, which leads to a larger interaction between
C60 molecules and thus to a slowing down of the molecu
rotation. In the sc phase, diffusion slows down even m
because rotation is replaced by a stepwise, much slo
ratcheting movement of the molecules. On relief of the
ternal pressure, the presence of Ne atoms in the inters
sites should result in a larger lattice parameter than nor
and thus also a smaller molecular interaction, a more ra
molecular rotation, and a very large diffusion coefficient.

The same model should be applicable over a large in
val in T, and also to other gases that interact weakly with
fullerene molecules. We would expect the diffusion rate to
high and to increase very strongly with increasingT in the
fcc phase~with ‘‘free’’ molecular rotation! and to be smaller
and decrease very rapidly with decreasingT in the sc phase
as the orientational ratcheting dies out. These predicti
agree well with experimental results. At temperatures be
180 K, even He diffusion becomes too slow to be detecta
over several hours or days even at 0.5 GPa,12 and at tempera-
tures above 475 K the heavy rare gases~R–Ar, Xe, and Kr!
may all diffuse into C60 at 0.17 GPa to form compounds13

RxC60 with 0.6,x,1. After cooling and pressure relief thes
compounds are stable over long times at room temperat

Although NMR shows that the intermolecular intera
tions and molecular dynamics of intercalated C60 differ little
from those of the pristine material, intercalation into the
terstitial sites still changes the lattice properties of the ma
rial in several subtle ways. In general, the presence of fore
atomic or molecular species in the lattice makes both
central interactions between the C60 molecules and the ori
entational interaction weaker, because intercalation expa
the C60 lattice. The effects are particularly large in the case
the heavy rare gases and molecular gases. For KrxC60 and
XexC60 this leads to a decrease inT0 from 260 K for pure
C60 to 240 K and 200 K, respectively. Compressibility stu
ies on C60 using the~intercalating! lighter rare gases as pre
sure media showed that the presence of intercalated a
~He or Ne! made the lattice less compressible.14 However,
the fcc-sc transition still occurred at approximately the sa
molecular volume as for pure C60 ~i.e., at a slightly higher
pressure!, showing that the orientational interaction ha
changed little. This was not the case for compounds with
heavy rare gases, for whichT0 at atmospheric pressure o
curred at a larger molecular volume than for pure C60, indi-
cating a more complicated effect on the intermolecular
tential. As mentioned above, the orientational state in
lattice changes with pressure~or, equivalently, volume! in
such a way that compression favors theH orientation.1,9

Conversely, expansion should favor theP orientation, and in
principle the expanded lattices should have a higher frac
of P-oriented molecules at lowT than pure C60. This effect
has not been observed in rare gas compounds, but we re
to this question below.

Because intercalation changes the intermolecular in
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action it also affects the low-energy vibrations and libratio
in the lattice, and thus the low-temperature properties. A
ksandrovskiiet al. have carried out extensive studies of t
low-temperature thermal expansion of C60, which, surpris-
ingly, shows a large negative peak15 below 4 K. The magni-
tude of this effect is also very sensitive to the presence
intercalated gases, even rare gases,16 showing again that in-
tercalation leads to subtle effects in the lattice properties
C60.

Molecular gases

Many other gases have molecules small enough to
fuse into the C60 lattice, especially under low pressures
high temperatures. Many studies have been carried ou
the atmospheric components N2 and O2, because of their
obvious presence in most practical experiments. Other g
that form stable intercalation compounds with C60 are, for
example, H2 , CH4, CO, CO2, and NO.

Gases with relatively large molecules show many int
esting effects, when confined to the octahedral intersti
sites in C60. Complete filling of the octahedral sites is us
ally not observed, except for~Ref. 17! H2 above 75 MPa, but
all gases expand the original C60 lattice, and both molecula
shape and size are important in determining the propertie
the intercalated material. While the very symmetrical C4

~or CD4) molecules continue to rotate freely inside the C60

interstitial sites18 even at 210 K, far below the ‘‘freezing’
temperatureT0 for the C60 lattice, the linear CO2 molecules
must be oriented along the^111& directions of the C60 lattice
to fit inside the cavities at all, and the interaction between
C60 and the rod-like CO2 molecules induces large structur
differences19 between pure C60 and the intercalated com
pound at lowT. The smaller H2 , CO and NO molecules are
also free to vibrate and rotate in their cavities. The dynam
behavior of CO has been observed by NMR and IR spect
copy over large ranges in temperature and pressure~or
‘‘prison cell’’ volume!, and the interaction between the gue
molecules and the C60 host lattice has been analyzed in d
tail. With a decrease in temperature the motion gradua
changes from basically free rotation at room temperature
tunneling between a few orientational states at l
temperatures,20 and with an increase in pressure a simi
restriction in the motion is observed as the available volu
decreases.21 At the highest pressures studied, 3.2 GPa,
molecules must take up oriented positions in the C60 lattice
in much the same way as does CO2, and theoretical calcu-
lations indicate that the observed spectra agree well wit
purely H-oriented C60 lattice. The dynamic behavior o
trapped H2 in C60 has also been studied.17 Studies of the
interaction between hydrogen and the carbon atoms in60

are important from the point of view of understanding ful
the interaction of hydrogen with carbon-based storage me
but C60 itself is not a practical storage host since only one2
molecule can be stored interstitially per C60 molecule, limit-
ing the maximum storage capacity to well below one perc
in pure C60.

As in the case of heavy rare gases, intercalation of m
lecular gases leads to significant downward shifts inT0 , usu-
ally down to 240–250 K, and to large increases in the b
moduli.22 The lattice expansion should also in principle im
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prove the orientational order, as discussed above, and
an effect has indeed been observed in C60 intercalated with
CO ~Ref. 23! and NO.24 For NO, Gu, Tang and Feng24 claim
to identify a completely pentagon-oriented lattice withT0

5230 K from dielectric measurements, but no structural e
dence is shown. However, a very careful structural study
CO shows23 a significant enhancement of the fraction
P-oriented molecules at both intermediate~150 K! and low
temperatures. The improved order is believed to arise fro
combination of three effects. In addition to the lattice expa
sion effect already discussed, the glass transition tempera
is depressed by about 5 K, and the CO molecules are s
turally correlated with the C60 molecules at lowT through
electrostatic interactions. The dipolar CO molecule prefer
bind weakly to the electron-poor single C– C bonds
P-oriented C60 molecules, resulting in an almost complete
P-oriented structure.

Because of its practical importance, the interaction
C60 with N2 and O2 has received much attention. Early NM
studies showed that oxygen diffused reversibly into the
tahedral sites at atmospheric pressure and room temper
with equilibrium filling fractions of at most a few
percent.25,26At high pressures, 10–100 MPa, both O2 and N2

diffuse slowly into the C60 lattice, so that they may fill a
large fraction of the octahedral sites over a time of seve
days.27,28 However, for N2 an elevated temperature~500 K!
is needed to reach high filling fractions. Because diffusion
slow ~and slower for nitrogen than for oxygen!, grain size is
important, and finely ground powder reaches the highest
ing fractions, while the inner parts of crystallites probab
always have a lower filling fraction. Evacuation at slight
elevated temperature~see the next Section! is reported to
restore the C60 to a pure state. The intercalation compoun
of oxygen have been studied by many methods. NMR
give information on the average number of filled octahed
sites25–27,29 and also shows that the oxygen resides at
center of the interstitial sites with no sign of charge trans
or chemical bonding.26 Inelastic neutron scattering and R
man scattering also shows that although some vibra
modes of the intercalated molecules soften appreciably w
the molecules are confined within the C60 interstitial sites,
this has no measurable effect on the vibrational and lib
tional properties of the C60 lattice.28 In spite of this, calorim-
etry, structural studies, and dielectric studies27–29 all show
that the rotational transition temperatureT0 is strongly de-
pressed by both O2 and N2, by up to220 K in (O2)xC60 and
222 K in (N2)xC60 ~Ref. 28!. Again, these figures are muc
larger than can be explained by the intercalation-induced
tice expansion~the negative pressure effect!.27 To explain
this anomaly, Guet al.29 suggest that the local strain set u
by diffusing intercalant molecules enhances fluctuations
the order parameter close toT0 , while Renkeret al.28 sug-
gest that the observed slowing down of molecular motion
the guest molecules transfers energy to the C60 lattice by
anharmonic interaction with librational modes, thus reduc
the effective height of the energy threshold for molecu
rotation.

REACTIONS WITH INTERCALATED GASES

As reported above, treatment of intercalated C60 under
vacuum usually removes the intercalated gas and restore
ch
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material to a pure state. However, this is not true for
gases, and in particular reactions may occur between the60

and the gas if the temperature is raised. Two gases are
ticularly likely to react, hydrogen and oxygen. Hydroge
easily intercalates into C60 under pressure, but is also easi
desorbed by pumping at room temperature.17 However, if a
high hydrogen pressure is applied to C60 at elevated tempera
ture, a reaction occurs between C60 and intercalated hydro
gen, transforming the material into an intercalation co
pound of H2 in C60Hx . At a pressure of 600 MPa and
temperature of 620 K,x'24 has been reported.30 The inter-
calated hydrogen could again be removed by pumping, le
ing the new compound behind, and with a long enough
action time the conversion of C60 into hydrofullerite was
more or less complete.

All forms of carbon, including diamond and fullerites
burn in oxygen at sufficiently high temperatures. Althou
no oxidation of C60 seems to occur at room temperatur
measurements at 370 K shows that reactions have occu
and that oxides have formed.31 At higher temperatures the
oxidation increases rapidly. At 470 K strong IR evidence
oxidation is seen, with traces of trapped CO and strong
sorption bands from C– O and C5O bonds. The fullerene
molecules have started breaking down or have been tr
formed into C60Ox . At 570 K, the material breaks dow
further with the formation of both oxides and amorpho
residues from broken cages; in simple terms, it slowly bur
Any fullerite sample exposed to air should thus be kept
temperatures well below 400 K to protect it from permane
changes by oxidation.

C60 can also react with oxygen without heating. In th
discussions above, it has implicitly been assumed that
material has been protected from visible or UV light, since
is well known that both C60 and C70 polymerize if irradiated
with such light in an oxygen-free environment.32 Oxygen
inhibits this polymerization process, but C60 irradiated in the
presence of oxygen shows other characteristic chan
~‘‘photo-transformation’’!.33,34 First, radiation with visible or
UV light enhances the oxygen diffusion rate in C60 by at
least an order of magnitude, so that thin films in air rapid
become oxygen saturated~most octahedral sites filled, a
least within the light penetration depth!, or oxygen-rich films
lose oxygen in a vacuum. Films~or, equivalently, the surface
layers of irradiated bulk material! irradiated for a short time
do not differ from the materials discussed above, i.e.,
oxygen interacts only weakly with the lattice. After long
times, however, an increasing amount of photo-induced o
dation of C60 to C60Ox becomes evident. After long time
exposure the films become insoluble in toluene like pho
polymerized C60, suggesting the presence of cross-link
carbon-oxygen clusters in the film. Fullerites should the
fore also be protected from light, whether in air, vacuum,
under inert gas.

FORMATION OF ENDOHEDRAL COMPOUNDS

Fullerenes like C60 and C70 are hollow shells, which can
be used as containers for other atoms, and several met
have been found to produce such materials. Here it will o
be noted that the formation of such endohedral compou
has been reported during treatment of fullerenes under



a
e
s
o

,
n-
e
e

am
tin
a

t
es
un
rc

o
g
it
o

m
hy
e
rc
e

n
u
.

se

u.

an

E.

au

ber,

ev.

M.
ch-

B.

.

.

D.

nd

v. B

R.
er

ev.

n,

on

n,

s.

ys.

v. B

y,
on-

nd

g,
J.

lid

d.

L.

d A.

ian

444 Low Temp. Phys. 29 (5), May 2003 B. Sundqvist
sonably high rare-gas pressure at high temperatures. S
derset al.35 reported that under 0.3 GPa at temperatures n
925 K, about 0.1% of the C60 molecules captured rare-ga
guest atoms such as He, Ne, Ar, and Kr. The larger Xe m
ecule, however, did not enter into C60. At high temperatures
C– C bonds on the C60 molecules are believed to break spo
taneously and the rare-gas atoms then have a chance to
and get trapped inside when the ‘‘window’’ closes. Endoh
dral compounds are usually stable for long times under
bient conditions. The method, the properties of the resul
endohedral compounds, and their possible applications h
been thoroughly discussed in Ref. 36.

CONCLUSIONS

Intercalation of atomic and molecular gases gives rise
many novel and interesting phenomena in fullerite lattic
Some of these are well understood, while for others our
derstanding is still only in the early stages. Because inte
lation may lead to significant changes in the properties
fullerite materials both directly and, in some cases, throu
chemical reactions induced by temperature or pressure,
important to understand these effects in order to sort
which properties are intrinsic to C60 or other fullerites and
which depend on the presence of intercalated impurity ato
or molecules. Since intercalation can also be used as a p
cal tool to study the properties of single molecules or th
interactions with carbon or each other, research into inte
lation compounds of fullerites will probably continue to b
of interest for many years to come.

I would like to thank the Swedish Research Council a
the Royal Swedish Academy of Science for funding o
work on fullerenes, and Acad. V. G. Manzhelii and Dr. A. N
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Intercalation of C 60 fullerite with helium and argon at normal temperature
and pressure
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Powder x-ray diffractometry was used to study the effect of intercalating C60 fullerite with
helium and argon atoms on the fullerite structure. The samples were saturated at room temperature
and normal pressure. The dependences obtained for the lattice parameter and half-width of
certain reflections on the intercalation time with helium atoms showed that the voids in the C60

lattice were filled in two stages. Helium filled the octahedral voids relatively rapidly first
and then the tetrahedral subsystem, but much more slowly. Both intercalants affected the half-
width and intensity of the reflections, the matrix lattice parameters, the phase transition
temperature, the volume jump at the transition, and the thermal expansion coefficients of C60

fullerite. © 2003 American Institute of Physics.@DOI: 10.1063/1.1542509#
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1. INTRODUCTION

The saturation of new carbon materials~fullerites, nano-
tubes! with atoms and molecules that enter into a differe
kind of interaction with the matrix is now under intensiv
investigation. One reason for this interest is the desire
understand the microscopic details of the infusion in orde
learn how to the control the technology for obtaining ne
substances on based on carbon materials. In this respec60

fullerite as a matrix is nearly the most often-studied su
stance. The intercalation C60 fullerite with atoms of alkali
metals was performed1–11 soon after its discovery and or
ganic superconductors of a new kind with relatively hi
superconducting transition temperatures were obtained.5–8

According to the arrangement of the centers of gravity
the molecules, C60 fullerite has a face-centered cubic lattic
with quite large tetrahedral and octahedral voids in the en
range of existence of the solid phase. For each C60 molecule
in the lattice there are two tetrahedral voids and one octa
dral void, whose average diameters are 2.2 Å and 4.2
respectively.12,13 This makes it possible to obtain diverse i
terstitial solutions based on C60 fullerite in a wide concentra-
tion range.

Intercalation with particles which do not form a ho
mopolar bond with the matrix occupies a special place.
oms of inert elements and simple di- and triatomic molecu
possess gas-kinetic diameters which are much larger tha
tetrahedral voids and comparable in size to octahedral vo
Consequently, intercalation often fills only the octahed
voids. However, without a forming chemical bond with th
matrix, such interstitial impurities appreciably affect the la
tice energy and the thermodynamic properties of fullerite.
a result, the orientational phase transition temperature
shifted14–17 and changes occur in the lattice parameters
volume,14,15,18,19 compressibility,20 thermal expansion
coefficients,21 diffusion kinetics,22 and the vitrification
process.19 However, if there is a large difference in size a
symmetry between the impurity component and the octa
dral voids, as happens, for example, for intercalation of60
4451063-777X/2003/29(5)/4/$24.00
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with carbon dioxide CO2,23 then the impurity molecules
strongly influence the orientational order of the molecu
and the crystal symmetry of the matrix. In the process
structural symmetry of the low-temperature phase of p
C60 fullerite can be lowered from cubicPa3 to monoclinic
P21 /n. C60 fullerite intercalated with molecules of nitroge
and oxygen has been investigated in Refs. 24 and 25 u
prece methods—dilatometry, neutron diffraction, and inel
tic neutron scattering. It has been shown that even though
bond between the N2(O2) molecules placed into octahedr
voids is weak, substantial structural changes are obse
and not only the orientational high-temperature transition
also the low-temperature vitrification process are affect
Intercalation with CO molecules virtually completely pr
cludes the formation of a glassy state in C60.19

In the works above-mentioned polycrystalline samp
intercalated at quite high pressures~from several to severa
tens of kilobars! and at temperatures of several hundreds
degrees celsius14–16 or samples compacted under pressu
up to 10 kbar at room temperature21 were investigated. Un-
der these conditions partial polymerization of C60 fullerite is
possible20 and defects in the form of polymer complexes
chains can form in the samples. In studying the physi
properties of such objects it is, of course, difficult to separ
the effect of intercalation in a pure form. Consequently, it
important to perform experiments on samples which
stress-free and intercalated with atoms of inert element
simple molecular substances at normal pressure and tem
ture. It should also be noted that even though the numbe
works on intercalation of C60 with simple molecular sub-
stances is relatively large, the physical nature of the effec
these substances on the lattice still remains unclear. Co
quently, any information on the behavior of an impurity
voids is very important. In this respect the results obtained
Refs. 26–28 on the influence of temperature and pressur
the dynamics of the rotational motion of molecules in oc
hedral voids and their interaction with the surrounding C60

molecules are definitely of interest.
© 2003 American Institute of Physics
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On the basis of the arguments presented above and
reasonable assumption that helium most easily penetr
into voids in the fullerite crystal lattice, the infusion of H
atoms into C60 crystallites was studied under relatively lo
pressures (;1 bar) and temperatures;(300610) K. Pow-
der x-ray diffractometry was used to study the saturat
process. Special attention was devoted to determining
helium impurity affects the orientational phase transition a
the orientational vitrification process. Some preliminary
sults obtained on the effect of helium on the structure of60

have been published in a brief communication.29 We note
that for T,20 K measurements were performed in Ref.
of the linear thermal expansion coefficients of C60 fullerite
intercalated, just as in the present investigation, with He
oms at room temperature and pressure 1 atm. In the pre
paper results for samples of C60 fullerite intercalated with the
heavier inert element argon are also presented.

2. EXPERIMENTAL PROCEDURE

The experiments were performed using ultrapu
~99.98%! polycrystalline C60 fullerite. Fullerite powder was
first allowed to stand for several days in a 1023 mm Hg
vacuum at 100 °C in order for degassing to occur. Next,
chamber with the sample was filled with He gas at ro
temperature up to pressure 1 atm, and C60 fullerite was al-
lowed to stand in this atmosphere for several months. Q
complete x-ray diffraction patterns were obtained and
lattice parameter of C60 at room temperature was determin
every 0.5–10 h at the beginning of intercalation and ev
100–200 h at later stages. The measurements were
formed periodically in a limited range of angles with tem
perature varyied from;50 K to room temperature with a
10–20 K step. Specifically, such measurements were
formed after the first stage of rapid saturation of the sam
~see below! was completed. Such x-ray diffraction patter
were obtained with heating and cooling of the samples. T
temperature range chosen for the investigations made it
sible to follow the change in the structural characteristics
intercalated C60 near the temperatureTc of the orientational
phase transition and the vitrification temperatureTg .

In addition to determining the lattice parameters, t
temperature dependences of the half-widths of x-ray refl
tions were also investigated. These characteristics serve
independent data making it possible to judge very relia
the state and distribution of the intercalant in the C60 matrix
and the local effect of the intercalant on the crystal lattic

The investigations were performed using the DRON
x-ray diffractometer, which was automated using a PC-2
personal computer, in a special x-ray gas-flow cryos
which made it possible to stabilize the temperature of
samples to within60.1 K at each point in the temperatu
range 15–300 K. TheKa radiation of a nickel anode (l
51.6591 Å) was used. The lattice parameter of pure
intercalated fullerite was determined to within 0.02%. T
lattice parameters at the reference points—at room temp
ture and 15 K, where the complete diffraction patterns w
obtained—were measured to the same accuracy. This ma
possible to average the data at these temperatures very
ably. The investigation of the temperature dependence of
lattice parameter in the intermediate range was based
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measurements of the temperature shift of the three stron
lines ~111!, ~220!, and~311! relative to their positions at the
reference points.

We judged the kinetics of void filling in the C60 lattice
according to the effect of the impurity on the lattice para
eter and the half-width and intensity of the x-ray reflectio
during the saturation process. Independent measuremen
these quantities performed by other authors at high press
and temperatures were used.16,18,31 Neutron spectroscopy
data32,33 and the results of adsorption and desorpti
investigations,34,35 making it possible to estimate the upp
limit of void filling by atoms and simple molecules, wer
taken into account. The data on the change in the half-w
and intensity of x-ray reflections during the saturation of t
samples also enabled us to draw certain conclusions a
the kinetics of the diffusion of He atoms in C60 crystals.

3. RESULTS AND DISCUSSION

A. Intercalation with helium

The saturation of polycrystalline samples of C60 fuller-
ites with He atoms was conducted at room temperature
pressure 1 atm over a quite long period of time~up to 4000
h!. The lattice parameter of fullerite was observed to incre
continually with time. Figure 1 shows a typical curve of th
time variation of the fullerite lattice parametera(t) with the
samples held in a helium atmosphere. It is evident that
intercalation process characterized by the curvea(t) consists
of two distinct stages. During the first stagea(t) reaches
relatively rapidly ~in ;50260 h) a section of relatively
weak but almost linear temperature dependence. The la
parameter at the first stage increases approximately by 0
Å ~or 0.16%!. During further holding up to 4000 h the in
crease ina(t) is almost twice that at the first stage, i.e. 0.0
Å ~or 0.32%!, with reasonable extrapolation. The conjectu
that the process occurs in two stages is unequivocally s
ported by the time dependence of the half-widthDhkl of the
reflections. Figure 2 shows the most typical time dep
dencesDhkl(t). It is evident that at the first intercalation ste
the half-width of the lines~111!, ~220!, and ~311! increases
by more than 50% relative to the value ordinarily observ
for pure fullerite. This attests to a high level of static loc
distortions which appear in the matrix during intercalati
and are due to the nonunformity of the lattice deformat
near the voids occupied by impurity atoms. The observat
of a sharp decrease in the half-width of the lines at inter
lation times 50–100 h~Fig. 2! and the slower dropoff of the
half-width at longer times were very unexpected. The str
tural data taken as a whole and, especially, the presenc

FIG. 1. Variation of the lattice parameter of the cubic fcc lattice of C60

fullerite as a function of the holding time in a helium atmosphere at press
1 atm andT5295 K.
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two sections, it seems to us, make it possible to reconst
quite reliably the process by which helium saturates C60 ful-
lerite. On the basis of the energetics and geometry of
voids in an fcc lattice it can be supposed that the octahe
voids should be filled more easily than tetrahedral voi
Consequently, virtually all octahedral voids are filled at t
first stage, starting, of course, with the layers near the
face. At the beginning of the first stage this should resul
substantial spatial nonuniformity in the intercalant distrib
tion and, consequently, deformation nonuniformity.
course, voids in deep layers are filled much more slowly a
this process is determined by interstitial diffusion of He
oms from layers near the surface. A new batch of atoms
the octahedral voids which are emptied. This effect has a
been observed in other experiments on the intercalation
C60.22 As the crystallite volumes are filled, the degree
nonuniformity decreases and the half-width returns ess
tially to its previous value. Thus, the first stage termina
with uniform and, probably, complete saturation of the oc
hedral subsystem. Since He atoms are small~the nominal
atomic radius of He is 0.93 Å18,22!, not only octahedral bu
also tetrahedral voids in the fcc fullerite lattice can be fille
The continual slow growth of the lattice parametera of the
matrix at the second~longer-lasting! stage is due to the fac
that the tetrahedral subsystem starts to fill up, a proc
which is essentially uniform over the entire volume of t
crystallite because of diffusion penetration of the intercala
The transfer of the intercalant from the octahedral into
tetrahedral system is rapidly made up from outside the c
tallite as a result of the much more rapid diffusion alo
octahedral voids. Comparing the duration of the two stag
the following rough estimate can be made: the diffusion
efficient in the octahedral subsystem is more than two ord
of magnitude larger than in the tetrahedral system. We n
that the intercalation of octahedral voids by large-diame
atoms is much more rapid at high pressures. For exam
when C60 is held in Ne gas under 2.75 kbar pressurea(t) is
completely time-independent already fort.10 h.18

The temperature dependences of the lattice parameta
on heating and cooling in the temperature range 30–30
were investigated for C60 samples maximally saturated wit
helium. In Fig. 3 the results are compared with pu
fullerite.36 It is evident that when helium fills the octahedr
~and, possibly, tetrahedral! voids in the cubic lattice of C60

the lattice parameters increase substantially~on the average
by 0.3%! in the entire experimental temperature range,
orientational phase transition temperature increases by 1

FIG. 2. Variation of the half-width of the x-ray reflections~111! ~d!, ~220!
~m!, and ~311! ~s! versus the helium saturation time of C60 fullerite at
pressure 1 atm andT5295 K.
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the jump in the lattice parameter~volume! at a phase transi
tion is almost halved, and the thermal expansion coefficie
near the transition temperature increase. Intercalation w
helium atoms affects the vitrification process only slight
The vitrification feature in the temperature dependencea(t)
is observed essentially at the same temperature as in
fullerite, but the lattice parameter decreases somewhat.

We did not observe any appreciable effect of therm
cycling of the samples on the temperature dependence
the lattice parameter of C60 fullerite intercalated with He
atoms. On cooling only a negligible decrease of the orien
tional and vitrification transition temperatures is observ
~see Fig. 3!.

B. Intercalation with Ar atoms

The intercalation of C60 with argon for 500 h performed
at room temperature and 1 atm pressure had virtually
effect on the lattice parameter of the matrix to within t
limits of error in determining this parameter. However, t
lattice parameter tended to decrease for samples held in
gon for 3500–5500 h. The half-widths of the reflections
mained constant. At the same time the intensity of the refl
tions decreased throughout the entire intercalation time
addition, the main drop in the intensity occurred during t
first 200 h. The change in the intensity of the~111! line
during intercalation is presented in Fig. 4. A qualitatively a
quantitatively similar decrease in the intensity with time w
also observed for certain other reflections.

The presence of argon impurity atoms in C60 fullerite
was observed in the experiments distinctly in the tempera
dependences of the lattice parameter. Although in a subs
tial portion of the temperature range of the low- and hig
temperature phases the lattice parameters of arg

FIG. 3. Temperature dependences of the lattice parameter of the cubi
tice of pure C60 fullerite ~ !36 and intercalated with He atoms. The da
were obtained with heating~d! and cooling~,! of the samples in a helium
atmosphere.

FIG. 4. Influence of the intercalation time of C60 fullerite intercalated with
argon at 1 atm andT5295 K on the intensity of the x-ray reflection from
the ~111! plane of the matrix.
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intercalated fullerite are almost identical to the valu
characteristic for pure C60, they clearly are different in the
range of the orientational phase transition~Fig. 5!. The pres-
ence of an interstitial impurity has an especially strong eff
on the transition temperature. This temperature decrease
more than 15 K, and the amount of Ar impurity in th
samples is probably much lower than He impurity in C60.
The shift obtained inTc is virtually identical to that observed
previously14,15 for C60 samples intercalated with argon atom
at 300 °C and pressure 1.7 kbar. The analysis perform
shows that the decrease established in these works in
orientational phase transition temperatureTc corresponds to
complete filling of the octahedral voids by argon.

Just as for saturation with helium, argon impurity atom
decrease the jump in the lattice parameter~volume! at a tran-
sition and substantially increase the thermal expansion c
ficients nearTc ~Fig. 5!. The increase~almost linear! of the
lattice parameter of argon-intercalated fullerite relative
pure C60 asTc is approached was the same as in Ref. 15
follows from our experiments that thermal cycling of C60

samples with argon impurity has virtually no effect on t
character of the temperature dependences of the lattice
rameter~Fig. 5!. In connection with the results obtained
this part of the work, it should be noted that the effect
argon on the temperature change of the C60 lattice parameters
is qualitatively similar to the effect of He impurity atom
even though their change on room-temperature intercala
is much smaller than for the system C601He.

We are deeply grateful to V. G. Manzheli� for his stead-
fast attention to these investigations and for his encoura
ment and to A. N. Aleksandrovski� for a helpful discussion of
the results.
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Low-temperature thermal conductivity of solid carbon dioxide
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Preliminary measurements of the thermal conductivity of pure carbon dioxide in the temperature
range 1.5–35 K are reported. The first data below 25 K have been obtained. The thermal
conductivity reaches very high values, about 700 W/~m•K!, which is unusual for simple molecular
crystals. A straightforward analysis of the data shows a coarse-grained sample. ©2003
American Institute of Physics.@DOI: 10.1063/1.1542510#
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Solid carbon dioxide is an example of a simple molec
lar crystal consisting of linear molecules (N2 , CO, CO2, and
N2O are other examples!. At equilibrium vapor pressure a
CO2 crystal possesses fcc structure, which remains in
entire range of existence of the crystal.1,2 In the solid phase
the axes of theO–C–Omolecules, whose carbon atoms o
cupy lattice sites, are oriented along the spatial diagonal
the cubic unit cell (Pa3 space group!.

The thermal, optical, and other properties of solid C2
have been studied in a wide range of temperatures and p
sures; see, e.g. Refs. 1 and 2 and the references cited t
However, the thermal conductivity at equilibrium vapor pre
sure has been investigated only at temperatures above 23

It is of interest to investigate the thermal conducitivity
solid CO2 at lower temperatures. Furhtermore, compar
with previous results obtained for other simple molecu
crystals would yield new information about various intern
processes occurring in crystals.

This paper reports preliminary measurements of the th
mal conductivity of solid carbon dioxide in the temperatu
range 1.5–36 K.

1. EXPERIMENTAL PROCEDURE

A CO2 crystal was grown and heat-treated. The measu
ments were performed with a hand-made liquid-He exp
mental setup, described fully in Ref. 4.

The main part of the setup is a 36 mm long cylindric
glass ampul, which holds the sample during the experime
with an inner diameter of 4.2 mm and a 1 mmthick wall.
Thin copper rings and heat-conducting glue secure two
manium resistance thermometers to the wall of ampul. T
thermometers are used to determine the the temperature
the temperature gradient. The distance between the therm
eters is 12 mm and the lower thermometer is position
;9 mm from the bottom of the ampul.

The CO2 crystal was grown using 99.999% chemica
pure carbon dioxide gas with natural isotopic composition
mass spectrometer was used to check the purity of the
The solid CO2 sample was grown from the gas phase, sta
ing at the bottom of the ampul. The condensation conditi
were as follows: temperature;173.3 K, pressure;14 kPa,
and growth rate;1.5 mm/h. A temperature graden
;2.2 K/cm was maintained along the ampul during grow
4491063-777X/2003/29(5)/2/$24.00
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When the crystal completely filled the ampul, the grow
process was terminated and the temperature gradient wa
creased to about 1.1 K/cm. Next, the sample was cooled.
cooling rate was about 0.1 K/h in the temperature ran
173–100 K, ;0.2 K/h in the range 100–70 K, an
;0.5 K/h below 70 K. At liquid helium temperatures th
sample was transparent and had no visible defects or vo
When the temperature of the sample was;4.2 K and before
the measurements were started, helium gas at pres
;1 kPa was admitted into the ampul to improve the therm
contact between the sample and the two thermometers
the gradient heater. The steady-state flow method was us
perform the CO2 thermal conductivity measurements. Th
experimental error did not exceed 10%.

Other details experimental are described in Refs. 4–

2. RESULTS AND DISCUSSION

The measurements of the temperature dependence o
thermal conductivity of solid CO2 at tempeartures 1.5–36 K
are displayed in Fig. 1. The high-temperature carbon diox
data of Koloskovaet al.3 are also shown.

The qualitative temperature dependence of the ther
conductivity k(T) is typical for dielectric crystals; see, e.g
Refs. 1 and 2. Initially, at the lowest temperatures the th
mal conductivity increases with temperature, reaching
maximum near 5 K. At temperatures above the maximum
thermal conductivity initially decreases exponentially, af
which the decrease slows down. The maximum thermal c
ductivity is 720 W/~m•K!. This value is much higher than
any value measured so far for simple molecular crystals5–8

except solid parahydrogen.7 For comparison, previous dat
obtained for crystals of pure nitrogen,5 nitrous oxide,7 and
parahydrogen8 are also displayed in Fig. 1.

Even though the high maximum value of the therm
conductivity is high, which attests to the high quality of th
carbon dioxide crystal used for the measurements and to
high chemical purity of the sample, the dependencek(T) at
low temperatures is far from typical for a dielectric cryst
with a low density of defects. For the typical dielectric cry
tal with a low density of point defects and dislocations, ph
non scattering by grains or the boundaries of the sam
determines the low-temperature thermal conductivity, a
being independent of the phonon frequency these proce
© 2003 American Institute of Physics
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450 Low Temp. Phys. 29 (5), May 2003 Sumarokov et al.
give k;T3. For our CO2 samplek;T1.7. This dependence
is close to that observed when phonon scattering by dislo
tion strain fields predominates.9 Assuming in CO2 that at low
temperatures phonon scattering by dislocations predomin
and using the crystal-structure data obtained from nitro
thermal conductivity data5 ~where boudnary scattering pre
dominated at low temperatures! the order of magnitude o
the grain sizes in the experimental carbon dioxide crystal
be estimated as follows. Using the expression for the ther
conductivity of a gask51/3 Cv l , whereC is the specific
heat of the phonon gas,v is the phonon propagation velocity

FIG. 1. Temperature dependence of the thermal conductivity of solid ca
dioxide. Previous data for nitrogen, parahydrogen, and nitrous oxide cry
are also displayed.
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and l is the phonon mean-free path, which in our case
limited by the size of the grains in the sample, the grain s
for our CO2 sample is;10 mm. This result was obtaine
assuming the specific heat of N2 to be 10 times greater tha
for CO2,1 the phonon propagation velocity to be the same
nitrogen and carbon dioxide,1 taking the experimentally de
termined ratiokCO2

/kN2
'100, and taking the grain size i

nitrogen to be;1022 mm.5 This means that the grains i
our sample are large, and we could be dealing with a sin
crystal.

The high thermal conductivity at higher temperatur
could be due to the relatively weak anharmonicity of CO2

translational vibrations and therefore a weak phono
phonon interaction.

A more detailed analysis of the measurements of
temperature dependence of the thermal conductivity of c
bon dioxide will be published elsewhere.

*E-mail: p–stach@int.pan.wroc.pl
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