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Orientational order parameter in the ordered phase of solid deuterium from neutron-
diffraction data
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The method of direct reconstruction of the orientational order parameterh from diffraction
intensities is applied to the case of the orientationally ordered phase of the quantum crystal para-
D2 using the neutron elastic scattering data of Yarnell, Mills, and Schuch. The average
value obtained,h50.368, is close but somewhat lower than the value 0.4 corresponding to the
theoretical value atT50 in the molecular field approximation. The nature of this decrease
is assessed theoretically with allowance for three factors that influence the absolute value ofh :
thermal excitation of librons, rotational anharmonicities, and rotational polarization. It is
shown that the total theoretical renormalization (28.8%) is close to the value obtained in the
reconstruction (28.0%). © 2004 American Institute of Physics.@DOI: 10.1063/1.1645162#
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1. INTRODUCTION

The total nuclear spinI of homonuclear molecules o
hydrogen isotopes can assume values of 0 and 1 for H2 and
of 0, 1, and 2 for D2 . In the solid phase at sufficiently low
temperatures the species with evenI are found in a state with
rotational momentumJ50, while the species withI 51 have
a rotational momentum equal to 1. Molecules withJ51
have a quadrupole moment, which gives rise to a noncen
intermolecular interaction and the possibility of orientation
ordering of the rotational subsystem. Such a transforma
occurs at sufficiently low temperatures and sufficiently h
concentrationsx>0.55 of the species withJ51. This phase
transition has been the subject of many theoretical and
perimental studies~see, e.g., Refs. 1 and 2!, as a result of
which it has been established that the transition occurs f
the high-temperature orientationally disordered hcp phas
a cubic orientationally ordered phasePa3 with four mol-
ecules oriented with their axes along directions of the^111&
type in the crystal. The ordering is characterized by the
entational order parameter

h5^P2~cosq!&, ~1!

where the angle brackets denote thermodynamic
quantum-mechanical averaging over rotational states,q is
the angle between the instantaneous orientation of the m
ecule and the corresponding direction of the^111& type, and
P2(x) is a Legendre polynomial.

Skipping the historical details of the determination of t
structure of the ordered phase of solid hydrogens withJ
51, we refer the reader to review articles.2 The circumstance
that the Pake doublet splitting in the NMR spectrum is p
portional to the orientational order parameter3 was used4,5 to
construct the temperature dependence of the order param
in a wide region of temperatures and concentrations of p
D2 (J51). Good agreement was obtained with the results
a calculation by the cluster expansion method6 and with cal-
culations using experimental data on the energy of libro
excitations.5 It should be noted that in all the experiment
1181063-777X/2004/30(2)/4/$26.00
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studies mentioned the values reconstructed were those o
reduced quantityh̄, i.e., the values ofh from Eq.~1! relative
to its value atT50. The absolute values ofh in the low-
temperature phases of hydrogen and deuterium, which c
in principle be reconstructed from structural data, have lo
resisted determination. The problem of determining the
solute values ofh for ordered phases of crystals formed b
symmetric diatomic molecules can be solved relativ
easily7 if one has reliable information about the intensities
both structure and superstructure reflections. The intensit
the latter are directly related to the character and degre
orientational ordering of the molecules in the lattice. In x-r
studies8–10 of hydrogen and deuterium with high concentr
tions of theJ51 species only the hcp–fcc phase transiti
has been documented, but it has not been possible to obs
the superstructure reflections characteristic ofPa3 symmetry
in the low-temperature phase. Neutron-diffractio
studies11–14 of the cubic phase of paradeuterium containi
over 80% molecules withJ51 have been more fruitful.
Weak superstructure reflections were observed, and g
agreement of the observed and calculated structure am
tudes for the scattering has been obtained; thus thePa3 sym-
metry of the low-temperature phase of the hydrogens
been confirmed experimentally.14 The measurements in Refs
13 and 14 were made on samples with an appreciably hig
concentration of the para fractionJ51 (x.90%) and with
higher precision, making it possible for the investigators
carry out a quantitative comparison of the intensities with
theoretical values calculated with allowance for the quant
nature of the rotation of the molecules. In particular, t
experimental values of the scattering amplitudesF(q) were
reconstructed for several Bragg reflections~10 in all!, and
they were compared with the theoretically calculated val
of F(q) integrated with the use of the wave functions of t
rotational states withJ51, m51 in the local frame~along
the space diagonal of the cube of thePa3 structure!.

These calculations showed satisfactory agreement w
the experimental scattering amplitudes, providing stro
© 2004 American Institute of Physics
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proof of the realization of thePa3 structure. AtT50 all of
the molecules withJ51 in Pa3 are oriented along the spac
diagonals of the cube, so that their rotational ground stat
described by the functionuJ51,m50&, where the projection
m of the rotational motion is taken in relation to that diag
nal. By definition, the orientational order parameterh for T
50 is given by the expression

h5^GSuP2~cosq!uGS&, ~2!

where uGS& is the ground-state wave function. It is easy
show15 that if fine effects~see below! are neglected in the
framework of the simplest molecular field approximatio
uGS& coincides withuJ51,m50& and, as a result, we hav
h052/5 atT50.

The availability of experimental data on the scatteri
intensities on ordered sublattices makes it possible to re
struct the value of the order parameter directly from the
The idea for the correct reconstruction of the characteris
of orientational order from the diffraction intensities by e
pansion of the scattering amplitudes in spherical harmo
for the particular case of the ordered phases of the hydrog
was apparently first published in the papers by Press.16 At the
time those papers appeared, however, there had not yet
any precision measurements of the intensities of the diffr
tion lines, and the idea remained without application. To
sess the applicability of that approach, the correspond
procedure was used successfully to reconstructh from x-ray
data for thea phase of nitrogen.7 This same approach ha
been used17 for a semi-quantitative estimate of the orient
tional order parameter of CO2– Ar mixtures from electron-
diffraction data. The application of this method to the case
orientational ordering of triatomic molecules has some pe
liarities of its own.18

The present study was motivated by the following co
siderations. First, since the time that Refs. 11 and 14
peared, our understanding of the nature of quantum crys
has become considerably deeper, making it possible to el
nate a number of inconsistencies in the published treatme
Second, on the basis of the available structural data it
now become possible for the method of direct reconstruc
of the absolute values of the orientational order parameteh
from the intensities of diffraction lines to be tested on act
quantum crystals.7,17 Third, the question of numerical est
mation of the theoretically predicted fine effects in the ro
tional dynamics of the solid hydrogens is addressed here
the first time.

2. THEORY

The structure amplitude for neutron scattering can
written in the following form:19

F~q!5(
i

bie
2wie2p i ~q"r i !, ~3!

wherebi is the amplitude for scattering by the bound nucle
of an atomi ~in this particular case, a D atom!, r i enumerates
the vectors of the atomic scatterers within a unit cell,q is the
momentum transfer in the scattering,

wi58p2ui
2@sinu/l#2, ~4!
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u is the scattering angle,l is the de Broglie wavelength o
the neutrons, andui

2 is the mean-square thermal displac
ment of atomi in the isotropic approximation.19 In neu-
tronography the scattering amplitude on the bound nucl
of an atomi is independent of the interplane distance~the
diffraction angle!. The dependence on angle enters in t
expression for the Debye–Waller temperature factor~4!. Pro-
ceeding from this, we can write the structure scattering a
plitude in the form

F~q!5bDe2w~q!(
c

exp~2p iq"Rc!cosj~q"mc!, ~5!

where the summation is over the four sublatticesc of the
Pa3 structure,Rc enumerates the centers of the molecul
mc is the instantaneous direction of the unit vector along
corresponding molecular axis in sublatticec, j52pd/a,
whered50.3707 Å is one-half the internuclear separation
the D2 molecule, anda55.0760 Å is the lattice paramete
The values ofd anda were taken from Ref. 14. In that pape
the experimental structural data are given not in the form
intensities but in the form of values of the structure amp
tudes for the corresponding diffraction lines, without allow
ance for the constant cofactorbD in Eq. ~5!. We used those
structure amplitudes to reconstruct the orientational order
rameter.

For short molecules a good approximation for the str
ture amplitudes~5! is the sum of the first two terms:7

F~q!5bDe2w~q!F4 j 0~jq!25h j 2~jq!(
c

Gc~q!G , ~6!

where j n(x) are the spherical Bessel functions, andGc(q)
has the same meaning as in Ref. 7. The technique prop
in Ref. 7 was used to calculate in an analogous way the e
of using the approximate formula~6! for the regular and
superstructure lines given in Ref. 14 for almost pure pa
D2. As had been assumed, as a consequence of the
length of the D2 molecule the error even for the far supe
structure lines did not exceed 1% for the caseh51 in com-
parison with the results of the exact calculation20 for rigidly
oriented molecules. Such an accuracy gives a high degre
confidence in the procedure of reconstructing the value oh
from experimental values of the scattering amplitudes.
important property of formula~6! is that for regular lines
only the first term in~6! is nonzero, while for superstructur
reflections only the second term is nonzero. This distinct
makes it possible to determine the exponentw(q) in Eq. ~6!
from experiment. Taking this fact into account, we write~6!
for the quantityF(q)/bD in the form

F~q!/bD[ f r
calc1h f s

calc. ~7!

The problem of taking the Debye–Waller factorw(q) into
account consists in the following. The expression forw(q) in
~4! is usually written in the form~see, e.g., Ref. 20!

w~q!5
6p2\2H2

MkBQa2 FFS Q

T D1
1

4G , ~8!

whereQ is the Debye temperature,F(x) is the well-known
Debye–Waller function,M is the mass of a deuterium atom
kB is Boltzmann’s constant, andH2[h21k21 l 2 (h,k,l are
the indices of the reflecting planes!. Expression~8! was ob-
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tained in the approximation that the self-consistent poten
well in which the particle moves is quadratic. However, ev
when all possible factors are taken into account, the poten
well in a quantum crystal of any isotope of hydrogen is e
tremely far from being harmonic.21 Therefore, the true value
of the rms displacement of the particle must be determi
from experiment, if possible. Fortunately in the case un
discussion such a possibility does exist. In particular, it f
lows from ~4! and ~8! that the argument of the exponenti
function in Ref. ~5! is proportional toH2. This makes it
possible to use the scattering amplitudes measured by Ya
et al.14 for regular reflections, which should be described
the expressionf r

calc} j 0(jq)exp@2w(q)#, wherew(q) can be
written in the form BH2. Figure 1 shows a plot o
ln@Fr

exp/j0(jq)# versusH2, whereFr
exp is, of course, assume

proportional tof r
calc. It is seen that a linear dependence

well obeyed, as a result of which we obtain a value of 0.06
for B, which after the appropriate adjustments is close to
value determined in Ref. 14 from the formula of the se
consistent harmonic approximation.

In contrast to Ref. 7, where the orientational order p
rameter was reconstructed directly from the intensities
Ref. 14 we had the more-convenient structure amplitude
our disposal. As a result, the values ofh were determined
from the relation

h5
Fs

expf r
calc

Fr
expf s

calc, ~9!

whereFs
exp and Fr

exp are the scattering amplitudes obtain
on the basis of the experimental neutron-scattering data
reflections of the corresponding types, andf s

cal and f r
cal are

defined in Eq.~7! and are obtained as a result of a numeri
calculation.

Performing the calculation ofh for the 20 intensity ra-
tios of superstructure to regular reflections at our dispo
and averaging the values found forh, we obtained a value
h̄50.36860.006, or h52/52Dh with Dh50.032. This
value agrees remarkably well with the theoretical value
the zeroth approximation,h050.4, but there is a systemat
shift to lower valuesDh/h0.28%. Thus the present stud
demonstrates the universality, simplicity, and accuracy of
method proposed in Ref. 7 for reconstruction of the orien
tional order parameter not only for classical molecular cr

FIG. 1. Plot from which the coefficientB in the Debye–Waller factor is
determined.
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tals of diatomic molecules but also for quantum crystals. T
fact that the values ofh were reconstructed from the neutro
diffraction data confirms that the applicability of the meth
is independent of the experimental techniques. For satis
tory application of the proposed method it is only necess
to know the integrated intensities~or structure amplitudes! to
sufficient accuracy.

Besides the calculation ofh from the results of neutron
diffraction studies of D2 with a para concentration
x.90%,14 we have attempted to reconstruct the orien
tional order parameter from the results of Ref. 11, where
the p-D2 concentration was barely over 80%. However, o
calculations of the corresponding structure amplitud
showed~and this agrees with the conclusions of the analy
by Yarnellet al.14! that for the superstructure lines the valu
of the structure amplitudes in Ref. 11 are highly overstat
The authors of Ref. 14 estimated the change in the conc
tration of the para species during the course of the exp
ment. It follows from the data given that even for the highe
p-D2 concentrationx.96%, its change during the exper
ment did not exceed 2%. For samples with a lower conc
tration the changes would be proportionately smaller.

3. DISCUSSION OF THE RESULTS

Thus we have obtained absolute values ofh in good
agreement with the theoretical value in the molecular fi
approximation, 0.4, but systematically lower byDh
>0.032. Let us consider and estimate the three most pon
able causes of this decrease.

Thermal librons. The most obvious cause is the influen
of thermal librations, the excitation of which is a disorderin
factor. An estimate of this effect can be obtained in t
framework of the simplest single-particle approximation,
which the wave functions of local excited states a
uEx(61)&5uJ51,m561&. We assume that the populatio
of these states is proportional top5e2E/kT, whereE is the
weighted mean energy of the libronic excitations relative
the ground state. The quantum-mechanical average ove
excited state,

hm[^Ex~m!uP2~cosq!uEx~m!&51/5

is independent of the sign ofm. The value ofh as the ther-
modynamic mean has the form (h052/5)

h5

(
m

hme2Em /kT

(
m

e2Em /kT

, ~10!

where the summation is over the three values of the pro
tion of the rotational momentum in the stateJ51. In sum,
we have~the subscript 1 denotes the deviation due to therm
librons!

h[2/52Dh15
2/5~12p!

112p
, ~11!

which gives Dh152/@5p/(112p)#, or Dh1 /h05p/(1
12p). When the temperature of the neutron-diffractio
experiment14 T51.5 K and the experimentally determined22

thermodynamically weighted mean valueE519.2 K are
taken into account, we obtain the estimateDh1 /h052.3
31024. Thus the influence of librons is negligible.
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Rotational polarization. Each molecule in thePa3
structure is found in a molecular field which in the prop
frame of this molecule has the form15,23

V5VcC20~w!, ~12!

wherew is the orientation vector of the molecule, and

Vc52~5/3!19G, ~13!

where the experimentally determined1 value of the
quadrupole–quadrupole coupling constantG for deuterium is
1.026 K. The field~12! polarizes the ground eigenstateu10&
of the molecule, mixing in higher rotational states, primar
the state withJ53. Using a standard perturbation theory, o
can easily show that to a first approximation the sing
particle wave functionC has the form

C5u10&1
3)Vc

50A7B
u30&, ~14!

whereB542.97 K is the rotational constant of the deuteriu
molecule ~the correction to the normalization is neglect
because it is of second order in the small parameter of
expansion,Vc /(10B)>0.076). Starting from Eq.~14!, one
can estimate the correctionDh2 /h0 due to the rotationa
polarization of the rotational ground state:

Dh2 /h05
27

350

Vc

B
, ~15!

which givesDh2 /h0>25.8%. It is interesting that at sma
negativeVc the molecular field has a disordering effect
the antisymmetric stateJ51. At large ratiosVc /B the order-
ing is, of course, enhanced. A similar situation occurs fo
rotator in a field of cubic symmetry.24

Rotational anharmonicity. It is well known23,25 that the
rotational dynamics of J51 states interacting by
quadrupole–quadrupole forces is characterized~especially in
the orientationally ordered phase! by distinctly large anhar-
monicities. The influence of this factor on the orientation
order parameterh leads to a decrease of the latter by
amount Dh3 /h0.22.5%.23 A more careful treatment o
this problem gave the value23.0%.26

Thus the combined effect of taking these three fact
into account is a theoretical valueDhcalc/h0.28.8%,
which turns out very close to the value28.0% which we
obtained experimentally~although with a large total error!.
We can give only the statistical error~see above!; the sys-
tematic error of the method and the error of reconstruction
the constants in the Debye–Waller factor are insignifica
Unfortunately, Yarnellet al.14 do not give the error of deter
mination of the scattering amplitudes, but, judging from t
published neutron diffraction patterns~see Fig. 5 of Ref. 14!,
the error cannot be small.

4. CONCLUSIONS

1. The method of reconstruction of the absolute value
the orientational order parameter in the ordered phase
diatomic molecular crystals from the diffraction~in this case,
neutron diffraction! data was found to be effective also
application to the quantum deuterium crystal.
r
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e
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l

s

f
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f
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2. The value of the rotational order parameterh
50.368 obtained from the neutron diffraction data of Yarn
et al.14 is close to the valueh050.4 obtained in molecular
field theory atT50. The relative deviation fromh0 is 28%.

3. We have carried out a theoretical analysis of the f
tors capable of renormalizingh. We showed that the stron
gest influence is due to two causes: rotational polarization
the rotational ground state, and rotational anharmonicity. T
total renormalization due to these two factors is28.8%,
surprisingly close to the value obtained in the reconstruct
of h from the neutron diffraction data. Thermal librons ha
a negligible effect on the value ofh ~at least at the tempera
ture 1.8 K of the neutron experiment!. Since the first two
factors depend weakly on temperature, the value ofh di-
vided by its value atT50 should depend weakly on tem
perature, as in fact follows from various experiments.4,5

The authors are sincerely grateful to the referee for c
structive comments that helped improve this paper sign
cantly. This study was supported by the CRDF~Grant UP2-
2445-KH-02!.
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Relaxation of temperature and concentration in superfluid 3He– 4He mixtures. Effective
thermal conductivity
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K. É. Nemchenko

V. N. Karazin Kharkov National University, pl. Svobody 4, Kharkov 61022, Ukraine
~Submitted June 13, 2003; revised August 21, 2003!
Fiz. Nizk. Temp.30, 169–176~February 2004!

The relaxation of temperature and concentration of a superfluid3He–4He mixture with an initial
molar concentration of 9.8%3He is investigated in the temperature interval 100–500 mK
for different values of the heat flux. It is shown that the kinetics of the change in temperature of
the liquid can be approximated by an exponential function, and the time constants obtained
depend weakly on temperature. The concentration relaxation processes are analogous to the
temperature relaxation processes only in the region of the single-phase mixture, while
below the phase separation temperature the change in concentration with time is of a
nonmonotonic character and can be described by a superposition of two exponential functions. This
kind of kinetic behavior of the mixture is explained in the framework of a simple model
which illustrates the distribution of the concentration over the height of the cell at various times
after a heat flux is turned on. In this case the concentration relaxation of the dilute phase
consists of two processes—growth of the concentration due to the participation of3He in the
normal motion, and decline of the concentration due to the formation and growth of the
concentrated phase. The data on the relaxation times are used for determining the effective thermal
conductivity of the mixture; the value obtained is in agreement with a calculation done in
the framework of a kinetic theory of the phonon–impurity system of superfluid mixtures. ©2004
American Institute of Physics.@DOI: 10.1063/1.1645163#
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1. INTRODUCTION

The principles of description of the kinetic properties
superfluid3He–4He mixtures were set forth by Khalatniko
and Zharkov,1 who showed that the mechanism of heat tra
fer in such mixtures is much richer and more complex th
in pure He II. Whereas in He II, according to Landau theo
the heat carriers are thermal excitations—phonons
rotons—in superfluid mixtures a substantial role can also
played by impurity excitations (3He quasiparticles!, which
collide and interact with phonons and rotons and are
trained by their motion.

In the general case, temperature and concentration
dients will arise in a mixture in the presence of a heat fl
and those gradients determine the flow of impurity exc
tions. In such a situation the processes of heat conduc
mass diffusion, and thermodiffusion are interrelated. Furt
theoretical studies of the kinetic and relaxation processe
superfluid mixtures were done in Refs. 2–9, where it w
noted that relaxation of the temperature and concentra
can come about through two mechanisms: second sound
a mechanism involving dissipation processes.

The experimental study of processes of temperature
concentration relaxation in superfluid3He–4He mixtures has
so far been carried out only at rather high temperatu
~above;0.8 K), close to the temperature of the superflu
transition.4,5,10,11The authors have made measurements
1221063-777X/2004/30(2)/6/$26.00
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low input of thermal power and found that the characteris
times describing the relaxation of temperature and conc
tration are practically equal. The time constants correspo
ing to the switching on and switching off of the power inp
are also the same. These experimental results are in ag
ment with the theoretical analysis done by the authors
Refs. 4 and 5.

In the present paper we report an experimental study
the processes of temperature and concentration relaxatio
a lower temperature region over a wide range of heat fl
powers. An important factor is the presence of phase sep
tion of the superfluid mixtures, the features of which in t
presence of a heat flux have been studied in Ref. 12.

2. EXPERIMENTAL TECHNIQUE

We investigated a3He–4He mixture with an initial molar
concentration of 9.8%3He in the temperature interval 100
500 mK at the saturated vapor pressure. We used a cylin
cal cell 24 mm in diameter and 47 mm in height, the co
struction of which is described in Ref. 12. To prevent t
walls of the cell from introducing a noticeable contributio
to the heat transfer, they were made of stainless steel,
mm thick. The upper flange of the cell was in thermal cont
with the mixing chamber, and a special heat exchange
© 2004 American Institute of Physics
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ultradisperse silver powder, with a surface area of;1.5 m2,
was used to decrease the thermal boundary resistance
tween the liquid and flange.

The heat flux was produced by a flat heater placed
rectly in the liquid in the lower part of the cell. The temper
ture was registered by means of two miniature RuO2 resis-
tance thermometers placed at distances of 15 and 25
from the lower edge of the cell. The maximum absolute er
in the temperature determination was 0.2 mK.

The change in the concentration of the mixture was
termined from the change in the dielectric constant of t
special capacitive sensors with the use of the Clausi
Mossotti equation. The sensors were cylindrical capacito
mm in height, the electrodes of which were wound in a he
with a gap between windings. Both capacitive sensors w
placed near the resistance thermometers a distance 10
apart. The accuracy of determination of the3He concentra-
tion was 60.1%. Owing to the mutual influence via th
electric coupling the sensors operated alternately, and th
fore the time dependence of the change in concentration
determined according to the upper sensor, while the lo
sensor was used only for determination of the steady-s
concentration gradients.

The thermometers and concentration sensors were
brated in the absence of heat flux, when the temperature
concentration were the same throughout the entire cell. D
on the variation of the temperature, concentration, and p
sure were automatically registered with the aid of a compu
program.

Several types of experiments were done.
Experiment A. The temperature of the upper flange

the cell was fixed at values of 150 and 270 mK, and a s
cific power of from 1 to 20mW/cm2 was delivered to the
heater. The relaxation of the temperature and concentra
was measured both with the heat flux turned on and tur
off.

Experiment B. The relaxation of the temperature an
concentration in the mixture was measured upon the swi
ing on and off of the same heat fluxQ̇54.5 mW/cm2 but for
different mean temperatures of the liquid, which were set
varying the temperature of the mixing chamber.

Experiment C. The variations of the temperature an
concentration were registered upon a stepwise increase o
heat fluxQ̇ from 0.2 to 15mW/cm2. Here the starting equi
librium temperatures of the liquid were 150 and 270 mK.

3. TEMPERATURE RELAXATION

Figure 1 shows the typical time dependence of the te
perature changeDT(t) upon the switching on and off of th
heat flux. Both of these time dependences can be well
proximated by a single exponential function:

DT~ t !5be2t/tT, ~1!

whereb is a function that depends on the distance along
height of the cell, while the time constanttT is a quantitative
characteristic describing the relaxation of the temperat
Here it was found that the values oftT for the switching on
and off of the heat flux are practically the same.
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We note that the function~1! gives a good approximation
of the time dependence of the temperature registered by
two thermometers used in the experiment, and practically
same values oftT were obtained. The same values of t
time constanttT were also obtained in an analysis of the tim
dependence of the difference of the readings of the two th
mometers,T12T2 .

The exponential character of the change in tempera
upon switching on of the heat flux is most clearly revealed
a semilog plot~see Fig. 2!, where a linear dependence ind
cates the presence of a single exponential. The influenc
the heat flux powerQ̇ on the character of the temperatu
relaxation is illustrated in Fig. 3, which shows the data o
tained in experimentA at a constant temperature of the upp
flange of the cell.

The kinetics of the change in temperature of the mixtu
upon a stepwise increase in the heat flux powerQ̇ ~experi-
mentC) is shown in Fig. 4. In this case the values ofQ̇ were
chosen the same as in experimentA ~Fig. 3!, and at each step
the dependenceT(t) is also well described by the functio
~1!. The values obtained for the temperature relaxation ti
constanttT in all three types of experiments are summariz
in Fig. 5 as a function of the mean temperature of the m

FIG. 1. Typical time dependence of the change in temperature in experim

A (Q̇54.4 mW/cm2). The arrows indicate the times at which the heat fl
was turned on (A) and off (B).

FIG. 2. Semilogarithmic plot of the change in temperature versus time u

the turning on a heat fluxQ̇54.4 mW/cm2 in experimentB at various mean
temperaturesT of the liquid @mK#: 253 ~1!, 290 ~2!, 328 ~3!, 371 ~4!.
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ture. As can be seen from this figure, all of the data are
agreement with each other within the experimental error l
its and do not show any noticeable temperature depende

4. RELAXATION OF THE CONCENTRATION OF THE
MIXTURE

When a heat flux is turned on in superfluid3He–4He
mixtures the local increase in the density of thermal exc
tions near the heater relaxes very rapidly~at the velocity of
second sound!. This is accompanied by the establishment
the mixture of a nonequilibrium state which is characteriz
by the simultaneous creation of a temperature gradient¹T
and concentration gradient¹x in the absence of gradients o
both the total pressure and the sum of the osmotic press
of the thermal and impurity excitations; this is a conseque
of the constancy of the chemical potential of4He in the mix-
ture. Such processes represent the first rapid step of the
perature and concentration relaxation, governed by a s
mechanism.

In the second step of the relaxation process, as a co
quence of the presence of temperature and concentration
dients in the liquid, dissipative flows of thermal and impur

FIG. 3. Change in the temperature of the liquid upon the turning ont

50) of various heat fluxes in experimentA, Q̇ @mW/cm2#: 2.2 ~1!, 3.8 ~2!,
5.5 ~3!, 8.9~4!, 13.3~5!, 17.8~6!. The temperature of the upper flange of th
cell was constant and equal to 270 mK. The solid curves show the calc
tion according to formula~1!.

FIG. 4. Typical time dependence of the liquid temperature registered by

of the thermometers upon a stepwise change in the heat fluxQ̇ ~experiment
C) @mW/cm2#: 2.2 ~1!, 3.8 ~2!, 5.5 ~3!, 8.9 ~4!, 13.3 ~5!, 17.8 ~6!.
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excitations arise in it, governed by the effective thermal co
ductivity of the mixture. Here at each point in time the vari
tions arising in the gradients of the osmotic pressure of
thermal and impurity excitations also relax at the velocity
second sound.8 The relaxation time in the second step, whi
is governed by a dissipative mechanism, is much longer t
the time constant for relaxation of the concentration and te
perature due to the sonic mechanism. In an experiment
actually registers the time of the second step of the re
ation, in comparison with which the characteristic time of t
first step is negligibly short.

According to this model, the characteristic relaxati
timestT andtx for the temperature and concentration shou
be close to each other. The experiments showed that
holds under the condition that phase separation does no
cur in the mixture under the influence of the heat flux. T
corresponding dependence of the concentration of the m
ture on the time after the turning on of the heat flux~experi-
ment B! is shown in Fig. 6~curves1–3!. These curves can
be approximated by the function

Dx~ t !5x01B expS 2
t2t0

tx
D , ~2!

la-

FIG. 5. Dependence of the temperature relaxation time of the mixture on
mean temperature:s—experimentA, D—experimentB; h—experiment
C.

FIG. 6. Time dependence of the change in concentration of the mixture

the turning on of a heat fluxQ̇54.4 mW/cm2 ~experimentB) for different
final temperaturesT near the concentration sensor@mK#: 290 ~1!, 330 ~2!,
370 ~3!, 255 ~4!. The solid curves show a calculation according to formu
~2! and ~3!.
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where x0 is the concentration of the mixture at the initi
time t0 , whenQ̇50, and the parameterB is determined by
the initial and boundary conditions.

Curve4 in Fig. 6 corresponds to a lower temperature
the liquid, when phase separation occurs in the mixture
der the influence of a heat flux.12 For this case the depen
dence obtained forDx(t) can be described by a superpo
tion of two exponential functions with weight factorsB1 and
B2 :

Dx~ t !5x01B1 expS 2
t2t0

tx1
D1B2 expS 2

t2t0

tx2
D , ~3!

with two characteristic relaxation times for the concent
tion, tx1 andtx2 .

This kind of behavior is manifested more clearly in e
perimentA ~Fig. 7!. The data shown pertain to a fixed tem
perature of the upper flange of the cellT05270 mK under
the influence of various heat fluxes. Curves1 and2 in Fig. 7
correspond to conditions for which phase separation does
occur in the mixture, and, as for experimentB ~curves1–3 in
Fig. 6! the experimental data are well described by expr
sion ~2! with a single exponential. The evolution of th
Dx(T) curves with increasing heat flux powerQ̇ can be seen
by examining curves3–5 in Fig. 7. The time dependence o
the change in concentration becomes nonmonotonic,
value of the maximum increasing with increasingQ̇. An
analogous nonmonotonicity was also observed in experim
C in those cases when phase separation occurs in the mi
under the influence of the heat flux.

The measured values of the concentration relaxa
time constanttx as a function of the mean temperature in t
absence of phase separation are shown in Fig. 8 for two ty
of experiments. The values oftx are practically independen
of temperature, within the experimental error, and, as
turned out, the characteristic relaxation times of the conc
tration and temperature are practically the same.

The nonmonotonic character of the kinetics of t
change in concentration of the mixture in the presence
phase separation can be explained by starting from a sim
model illustrating the distribution of the concentration ov
the height of the cell at different times after the heat flux w

FIG. 7. Change in the concentration with time in experimentA at a fixed
temperature of the upper flange of the cell,T05270 mK, and various values

of the heat flux powerQ̇ @mW/cm2#: 2.2 ~1!, 3.8 ~2!, 8.9 ~3!, 13.3~4!, 17.8
~5!. The solid curves show a calculation according to formulas~2! and ~3!.
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turned on~Fig. 9!. Figure 9a corresponds to the initial tim
prior to the turning on of the heat flux, when the concent
tion x0 of the mixture is the same along the entire heig
After the heat flux is turned on, when the3He atoms together
with the normal component of the mixture tend to mo
toward the colder part of the cell, the3He concentration will
increase in the upper part of the cell. On the assumption
linear distribution of the3He concentration along the heigh
of the cell~Fig. 9b!, the concentration at the center of the c
will remain equal tox0 . This corresponds to the point in tim
when the concentration near the upper flange of the ce
lower than the concentrationxs at which phase separatio
occurs.

Figure 9c corresponds to the time when the concen
tion at the top of the cell becomes equal toxs , and phase
separation of the mixture begins. The lighter concentra
phase is located in the upper part, and the concentration
sor lies in the dilute phase. From that time on, the furth
relaxation of the solution toward an equilibrium relation b
tween the amounts of the concentrated and dilute phases
curs on account of depletion of the lower dilute phase. T
means that the3He concentration at the place where the se
sor is located will decrease until a steady state is reach
and the concentration at the center of the cell becomes
thanx0 .

FIG. 8. Temperature dependence of the time constant for relaxation o
concentration:h—experiment B,s—experimentC.

FIG. 9. Diagram illustrating the concentration distribution over height in
cell at different times: a—before the heat flux was turned on; b—after
heat flux was turned on but before the onset of phase separation; c—
phase separation~the dotted line corresponds to a time when the volume
the upper phase had grown!, d—distribution of the concentration with time
at the site of the sensor.1—Position of the cell’s upper flange, which wa
cooled by the dilution refrigerator;2—position of the capacitive concentra
tion sensor;3—center of the cell.
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Thus, if phase separation occurs in a mixture under
influence of a heat flux, then the relaxation of the concen
tion of the dilute phase consists of two processes: growth
the concentration under the influence of the heat flux,
~after phase separation! a decrease in the concentration of t
dilute phase necessary for the formation of the normal ph
which at sufficiently low temperatures is almost pure3He.
Hence a maximum arises in the time dependence ofx, and
there are two characteristic concentration relaxation tim
~Fig. 9d!.

5. RELAXATION PROCESSES AND THE EFFECTIVE
THERMAL CONDUCTIVITY

In superfluid3He–4He mixtures the relaxation time con
stants are determined by the effective thermal conducti
keff introduced by Khalatnikov,1 which is a combination of
the diffusion coefficient, thermal conductivity, and thermo
iffusion coefficient:

keff5k̃1k3 , ~4!

where the so-called phonon–impurity thermal conductivityk̃
is due to the macroscopic motion of the normal compon
of the mixture, diffusion, and thermodiffusion of impuriton
while k3 is due to the thermal conductivity of the gas
impuritons. We note that formula~4! was obtained in neglec
of the roton contribution.

A relation between the temperature~or concentration!
relaxation timetT ~or tx) and the effective thermal conduc
tivity for superfluid mixtures was obtained in Ref. 5 on th
basis of an analysis of the dispersion relation for the dif
sion mode, obtained by solving a system of hydrodynam
equations forP5const. When the corresponding bounda
conditions are taken into account, this relation is expres
as follows:

tT5
d2rCP,x

keff
f ~T,x!, ~5!

whered is the height of the experimental cell,r is the den-
sity of the liquid,Cp,x is the heat capacity per unit volume o
the mixture, and the functionf (T,x) is determined by the
properties of the mixture and the boundary conditions.
Ref. 5 the functionf (T,x) was calculated only for the tem
perature region near thel point under the condition that th
impurity flux equals zero on both ends of the cell. Then
steady heat flux is applied to one of the flanges, while
temperature of the other flange is held constant. In a sim
situation for the conditions of the given experiment
T,0.5 K, estimates show that the value off (T,x) is close to
unity.

In this approximation the values ofkeff calculated ac-
cording to formula~5! with the use of the relaxation timestT

measured in the present paper are plotted in Fig. 10. A
shown for comparison are the corresponding values ofkeff

obtained for the same mixture from measurements of
steady-state temperature gradients12 under conditions such
that thermal convection has not yet arisen in the mixtu
Figure 10 also shows the results of high-temperature m
surements of the effective thermal conductivity obtained
Ref. 13 for a mixture with the same 9.8%3He concentration.
It is seen that the experimental results are all in satisfac
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agreement with one another. The agreement between th
sults of the relaxation and steady-state measurements o
effective thermal conductivity means physically that the
sumption thatf (T,x) is equal to unity adequately reflects th
experimental conditions.

The values ofkeff obtained can be compared with th
result of a calculation in the framework of the kinetic theo
of superfluid3He–4He mixtures~see, e.g., Ref. 14!. The term
k̃ was calculated in neglect of rotons in Ref. 6:

k̃5
1

3
Cphu1

2tphi , ~6!

whereCph is the phonon heat capacity of the mixture,u1 is
the velocity of first sound in the mixture, andtphi is the
effective phonon–impurity relaxation time. The calculatio
of tphi in Ref. 6 was done with allowance for extreme
complex and diverse mechanisms for establishing equ
rium in the phonon subsystem in the presence of3He impu-
rities. Because of the decomposing character of the pho
spectrum in mixtures at low pressures,14 three-particle pho-
non processes are allowed, ensuring a rapid establishme
equilibrium along a specified direction~longitudinal relax-
ation! with a characteristic time

t i52.6•10210T25 @s#. ~7!

Besides the timet i , the value oftphi is also determined
by processes of interaction between phonons and impu
excitations. As was shown in Ref. 15, these processes
described by two relaxation times—the timetsc, which takes
into account Rayleigh scattering of long-wavelength ‘‘ligh
phonon on a ‘‘heavy’’ impurity, and the timeta , which takes
into account processes of absorption and emission
phonons by impurity excitations, which limit the free path
the phonons at low momenta. In sum, we have

FIG. 10. Temperature dependence of the effective thermal conductivity
mixture with a 9.8%3He concentration:m—steady-state measurement
s—relaxation measurements;d—the results of Ref. 13; the solid curve i
the total effective thermal conductivity calculated according to Eq.~4!;
1—the phonon–impurity thermal conductivity calculated according to E
~6!; 2—the impurity thermal conductivity calculated according to Eq.~12!.
The arrow indicates the phase separation temperature.
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tphi5

E
0

`

t̃ phi~t i1 t̃ phi !
21p4n8dp

E
0

`

~t i1 t̃ phi !
21p4n8dp

, ~8!

where

t̃ phi
215tsc

211ta
21, ~9!

and p and n8 are, respectively, the momentum and the d
rivative of the phonon distribution function with respect
momentum.14 The relaxation time corresponding to Rayleig
scattering of phonons on impurities can be written in
form

tsc~p!5
7.7N4\4

u1xp4 , ~10!

whereN4 is the number of4He atoms per unit volume.
The relaxation rate characterizing the absorption

phonons by impurities is given, according to Ref. 16, by

ta
21~p!5

4

3

PFl i
2p2t i i F11S «

2pTD 2G
r4\2H F11S «

2pTD 2G2

1«2t i i
2 J , ~11!

wherePF is the pressure of the Fermi gas,« is the phonon
energy,t i i is the impurity–impurity relaxation time, which
can usually be found from experiments on the viscosity a
absorption of first sound, andl i is a parameter of the mixtur
which is determined by the energy and effective mass of
impurity excitations.14

Since the main role in the integration of expressions~10!
and ~11! over momenta is played by phonons with a me
thermal energy 3kT, in calculating the timestsc and ta we
used the values«53kT andp53kT/u1 . In accordance with
Ref. 6, here the role of the longitudinal phonon relaxat
was not taken into account for concentrated mixtures. T
calculated phonon–impurity partk̃ of the effective thermal
conductivity is shown by the dashed curve1 in Fig. 10.

The impuriton partk3 of the effective thermal conduc
tivity can be calculated in the usual gas-kinetic approxim
tion, and for the degenerate case it is given by

k35
1

3
C3vF

2t i i , ~12!

whereC3 is the impurity part of the heat capacity andvF is
the Fermi velocity of the impurity excitations. The calcul
tion of k3 according to Eq.~12! is shown by the dotted curv
2 in Fig. 10, and the total effective thermal conductivity
shown by the solid curve. The arrow denotes the phase s
ration temperature, below which the calculation was do
with allowance for the change of the concentration of
dilute phase with decreasing temperature. As is seen in
10, the experimental data obtained forkeff agree with the
calculation in the framework of the kinetic theory of th
phonon–impuriton system of superfluid3He–4He mixtures.
Here the dominant contribution tokeff is from the phonon–
impurity thermal conductivity.
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6. CONCLUSION

The experiments done here comprise the first system
study of temperature and concentration relaxation proce
in superfluid3He–4He mixtures at low temperatures, whe
the initial mixture separates into a concentrated and a di
phase. They showed that only in the homogeneous regio
the temperature and concentration of the mixture relax
cording to the same law with close values of the relaxat
times. In the phase-separation region the relaxation of
concentration is more complicated because of the forma
and growth of the concentrated phase in the upper part of
cell.

Another specific feature of superfluid3He–4He mixtures
is due to the presence of two modes—sonic and dissipa
which leads to a peculiar two-step relaxation. In the prese
of a heat flux the variations that arise in the osmotic press
of the thermal and impurity excitations relax at the veloc
of second sound, and then, on account of the appearanc
temperature and concentration gradients, there arise dis
tive flows of excitations, which are characterized by an
fective thermal conductivity. The values of the effective th
mal conductivity obtained from relaxation measurements
in good agreement with the corresponding data obtai
upon a change in steady-state temperature gradients.

This study was supported in part by the NATO Scien
Program, Grant PST.CLG.978495.
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Kinetics of the phase transition in solid solutions of 4He in 3He at different degrees
of supersaturation
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Precision measurements of the pressure during phase separation in samples of solid solutions of
4He in 3He have been used to obtain data on the characteristic times of the phase transition.
A processing of the results gives additional evidence supporting the view that homogeneous
nucleation is realized in3He–4He solid solutions at significant supercoolings and
heterogeneous nucleation at the smallest supercoolings. Two different ways are proposed for
comparing the results with a theoretical calculation taking into account the processes at the
boundary of a nucleus of the new phase. Both give roughly similar values of the coefficient
of surface tension at the nucleus–matrix boundary, and those values agree with those obtained in
other studies. It is conjectured that the bcc–hcp transition has a substantial influence on the
kinetics of separation at the lowest supersaturations. ©2004 American Institute of Physics.
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1. INTRODUCTION

Solid helium has been of interest as an object of phys
research primarily as a typical representative of the quan
crystals. Indeed, it is helium that is typified by such unus
properties as melting at arbitrarily low temperatures, qu
tum diffusion of impurities, and phase separation of mixtu
at low temperatures. On the other hand, a number of eff
first observed and studied in solid helium have been su
quently found in other substances: the hydrodynamic flow
phonons, second sound in crystals, and faceting phase
sitions. It has turned out that the study of these and o
phenomena can be done more efficiently in helium thank
the possibility of obtaining pure and perfect crystals and
presence of diverse well-developed low-temperature exp
mental techniques.

A number of papers1–3 have expressed the idea that h
lium would be a good object on which to study the kinet
of phase transformations. Research on this topic has
been done for several decades, and yet many importan
pects of this fundamental problem remain unclear. It can
hoped that the advantages of helium will permit a detai
investigation of the physical mechanisms of the phase s
ration of isotopic mixtures and to obtain experimental d
suitable for quantitative comparison with the calculatio
done in the theory of homogeneous nucleation.

Our recent experimental research on phase separatio
solid mixtures of helium isotopes has already led to the d
covery of a number of interesting, often unexpected effe
~see Refs. 4–7!. The present paper reports a continuation
this research and is devoted to a study of the influence of
1281063-777X/2004/30(2)/5/$26.00
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degree of supersaturation on the rate of the phase trans
and a comparison with theoretical results.

2. BASIC RELATIONS OF THE THEORY OF HOMOGENEOUS
NUCLEATION

A phase transition under conditions of homogeneo
nucleation occurs in a supersaturated solution by the fluc
tional formation of new-phase nuclei randomly distributed
the volume. Nuclei in which the number of particlesn is less
than a certain critical valuenc , specified by the condition o
equality of the bulk and surface contributions to the therm
dynamic potential, are unstable and rapidly dissolve.
n.nc the nuclei are stable, and their size increases w
time, bringing about the development of the phase transit
The number of particles in a roughly spherical critic
nucleus formed in an initially homogeneous solution with
concentrationc0 and supercooled from the phase separat
temperatureTs0 to a temperatureTf corresponding to an
equilibrium concentrationcf is determined by the relation
~see, e.g., Ref. 8!

nc5S b

ln~c0 /cf !
D 3

, ~1!

where

b5
8p

3

sa2

Tf
, ~2!

s is the surface tension at the nucleus–matrix boundary,a is
the interatomic separation, determined by the relat
4pa3/35Vm /NA (Vm is the molar volume, andNA is
Avogadro’s number!.
© 2004 American Institute of Physics



is
f
th

se

l

ia

c

o
e

c

i-
in
a

de
la
al

e
as
e

lei
d

to

the

ix.
on

n

s
n

e in
r
ous

the
im-
vel-
les,
-
in
etal
ere
ix-

le
ty–

e-
pon

129Low Temp. Phys. 30 (2), February 2004 Grigor’ev et al.
A governing role in the kinetics of the phase transition
played by a functionI (n) which characterizes the rate o
growth of the nuclei and can be regarded as the flux in
space of nucleus sizes~numbers of particles in the nucleus!.
I (n) is a very sharp~exponential! function of the nucleus
size, and the development of practically all the proces
occurring at the phase transition is specified by the valueI 0

[I (nc), which is the flux of particles through the critica
point in the size space.I 0 can be written in the form8,9

I 05A3b

2p
c0

2 expF2
DF~nc!

T G , ~3!

whereDF(n) is the change of the thermodynamic potent
upon the transition ofn particles from the initial solution into
the nucleus. If the nucleus is assumed spherical, then one
write

DF~n!5nDm14pa2sn2/3. ~4!

For an ideal solution the difference of the chemical p
tentials of an impurity in the initial solution and in th
nucleus is

Dm5T ln
cf

c0
. ~5!

Taking Eqs.~1!, ~2!, and~5! into account, one can get

DF~nc!

Tf
5

b3

2 ln2
c0

cf

,

I 05A3b

2p
c0

2 expS 2
b3

2 ln2~c0 /cf !
D . ~6!

An expression for the nucleation time in the approa
considered here was found in Ref. 8:

tN5S 4c0

b3I 0
D 1/4a2c0

D
, ~7!

whereD is the diffusion coefficient of the impurities. Est
mates show thattN is an extremely small quantity, at least
comparison with the time of the next stage of diffusion
growth of the nucleus. Indeed, this circumstance provi
grounds for assuming that the nucleation process takes p
at a practically constant concentration, since it is essenti
completed at a concentrationcc determined by the condition
(c02cc)/c0'nc

21!1. This, in turn, allows one to introduc
the concept of a maximum concentration of new-ph
nuclei,8 equal to the ratio of the number of nuclei to th
number of lattice sites:

Nm5I 0tN

D

c0a2 5~4c0!1/4S I 0

b D 3/4

. ~8!

If it is assumed that the diffusional growth of the nuc
takes place under conditions such that each nucleus of ra
r is found in a sphere of mean radiusR5a/Nm

1/3, then the
characteristic time for the diffusional growth will be equal
~see, e.g., Ref. 5!

tD5
1

l2D
, ~9!
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wherel is a solution of the transcendental equation

tanl~R2r !5lR. ~10!

For

l~R2r !,1 ~10a!

tanl(R2r) can be expanded in a series; keeping only
cubic terms of this expansion, we get

l25
3z

R2~12z!3 , ~11!

where

z5
r

R
5S c02 c̄

122c̄D 1/3

, ~12!

andc̄ is the mean concentration of the impurity in the matr
Equation~12! was obtained with the use of the conservati
law for impurities in the volume of a sphere of radiusR.

Taking Eq.~11! into account, we can write an expressio
for tD :

tD5
R2

3D

~12z!3

z
5

a2

3DNm
2/3

~12z!3

z

5
a2b1/2

3D~4c0!1/6I 0
1/2

~12z!3

z
~13!

and, substitutingI 0 from Eq. ~6!, we find

tD5
ab1/4a2

Dc0
7/6

~12z!3

z
expS b3

4 ln2~c0 /cf !
D , ~14!

where a5
p1/4

35/421/12'0.32.

Thus for a knownD, Eq. ~14! can be used with value
obtained fortD to determineb and hence the surface tensio
s which enters into it.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In the experiment the time dependence of the pressur
samples of solid solutions of4He in 3He was measured afte
cooling from the region of the homogeneous state to vari
temperaturesTf below the phase separation temperatureTs0

of the initial solution. The measurement techniques and
experimental setup are described in detail in Ref. 5. An
portant element of the previous experiments was the de
opment of a technique for obtaining homogeneous samp
making it possible to obtain practically equilibrium solu
tions. Samples of solid helium in the form a disk 9 mm
diameter and 1.5 mm in height were located inside a m
chamber cooled by a dilution refrigerator; the samples w
grown by the capillary blocking method from a gaseous m
ture containing approximately 2%4He. The bottom of the
chamber, which was'1 mm thick, served as the movab
plate of a precision capacitive pressure gauge of the Stra
Adams type. The4He concentration in the sample was r
fined according to the value of the change in pressure u
complete separation,DP0 , by the Mullin formula:10

DP050.4
Vm

g
c0~12c0!, ~15!
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TABLE I. Some characteristics of the samples studied.

Note: c0 is the4He concentration,P0 is the pressure,Vm is the molar volume,Ts0 is the phase separation temperature of the intial soluti
T* is the temperature of intense nucleation, ands* and s̄ are the coefficients of interfacial surface tension found by different means.
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whereg is the compressibility.
We studied five samples with concentrations from 2.2

3.35%4He. We note that for all the samples the experimen
values of the separation temperature corresponded within
error limits with those calculated according to the formu
of Edwards and Balibar.11 Some of the characteristics of th
samples studied are presented in Table I.

As in the majority of previously studied situations, th
time dependence of the pressure in the sample upon a
wise lowering of the temperature in the phase separation
gion is described well by an exponential function of the fo

Pf2P~ t !5DPm exp~2t/t!, ~16!

whereDPm5Pf2Pi is the difference of the equilibrium val
ues of the final pressurePf and initial pressurePi ; t is the
characteristic time for establishment of equilibrium at t
step under consideration. In the present study we meas
the values oft corresponding to lowering of the temperatu
from the region of the homogeneous solution into the ph
separation region. The primary data for one of the samp
are presented in Fig. 1, which shows the time depende
DP5P(t)2P0 for different values ofTf . All of the curves
are described satisfactorily by relation~16!, and the timet
decreases noticeably at largeTf and becomes practically in
dependent ofTf for Tf<160 mK. This is more clearly see
in Fig. 2, where the values oft for all the samples are plotte
as a function of the relative supercoolingDT/Ts (DT5Ts

2Tf).

FIG. 1. Time dependence of the change in pressure in sample No. 4
cooling from the region of the homogeneous solution to different temp
turesTf , indicated in the figure.
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At small supercoolings (DT,20 mK) the characteristic
times turn out to be extremely long~up to 104 s), and they
decrease rapidly with increasingDT to values of the order of
500–700 s, and atDT>50 mK they become practically in
dependent of the degree of supercooling. This beha
agrees qualitatively with what is expected under conditio
of homogeneous nucleation. According to Eq.~15!, the
change in pressure is uniquely related to the change in c
centration, and the timest found characterize the progress
the diffusion process in the presence of separation, whic
governed by a timetD'R2/D'Nm

22/3D21 ~see Sec. 2!. The
concentration of nucleiNm in the presence of separatio
grows sharply with increasing degree of supersaturation~su-
percooling! @see Eq.~8!#, and that brings about a correspon
ing decrease oft. The ultimate plateauing oft can be come
about for several reasons.

1. At short diffusion times, as we have mention
previously,12,13 the impurity atoms at the nucleus–matr
boundary have a resistance to transition characterized
time ts that is practically independent ofT at low
temperatures.13

2. As was shown in Refs. 3 and 14, at a finite rate
cooling, when it is necessary to take into account the cha
of the concentrationcf with time, one can introduce the con
cept of the temperature of maximum nucleation rate,T* , at

on
-
FIG. 2. Characteristic timest versus the relative supercooling for all th
samples studied: samples No. 1~d!, No. 2 ~n!, No. 3 ~s!, No. 4 ~j!, No.
5 ~,!.
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which the decrease of the degree of supersatura
«5c(t)2cf(t) due to the decrease of the matrix concent
tion c(t) with time owing to the escape of impurities into th
new-phase nuclei is comparable to the increase in« due to
the decrease ofcf(t). The value ofT* becomes the deter
mining factor specifying the concentration of nuclei, and d
creasingTf further does not alter the value ofNm , and,
hence, oft for a sufficiently weak temperature dependen
of D(T).

3. The minimum timest found are close to the charac
teristic times for establishment of a temperature.

4. With decreasingT* a fundamental circumstance ca
be come into play: at sufficiently high supersaturations
number of atoms in a nucleus becomes of the order of 1. T
will mean that the macroscopic approach described in Se
will not be applicable under these conditions, and there
probably a change of nucleation mechanism.

Apparently the most probable cause of the plateauing
t with increasing supersaturation is a combination of the fi
two factors. The time for establishment of an equilibriu
temperature was practically always less than the experim
tal values oft. It was shown in Ref. 13 that under conditio
~10a! the measured characteristic time for the influence
the boundary resistance to be noticeable can be written in
form

t5tD1ts , ~17!

wheretD as before is described by formula~13!, and

ts5
R

3K

12z3

z2 , ~18!

whereK is a constant characterizing the probability of pe
etration of an impurity through the boundary of a nucleus
Tf<T* , then R ceases to depend onTf , and then the ex-
pression

t[t
z2

12z3 2
R2

3D

~12z!3z

12z3 5
R

3K
, ~19!

obtained by substituting formulas~11! and~18! into ~17! will
be a constant. Relation~19! can be used to estimateT* as the
temperature starting with which the left-hand side of t
formula becomes independent ofTf , and the value ofR here
is figured as the minimum value ofRm corresponding to the
temperatureT* . For determination of the values ofT* and
Rm we constructed a plot oft versusTf according to Eq.~19!
~see Fig. 3!. In constructing the plot we used the valueK
52.731025 cm/s from Ref. 13, while the values of the di
fusion coefficientD obtained in Ref. 13 were adjusted to th
molar volumes of the samples studied. From the valuest̃
in the plateau region one can use Eq.~18! to estimate the
experimental value ofRm corresponding to the concentratio
of nuclei formed at the temperatureT* ~see Table I! and
compare it with the calculated value

Rm5
a

N1/3'ac0
27/12expF b* 3

8 ln2~c0 /cf* !G , ~20!

where the asterisk* denotes values corresponding to t
temperatureT* . Such a comparison makes it possible to d
termineb and the quantitys which enters intob. The values
thus found are listed in the table unders* . The noticeable
n
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scatter of the values ofs* for different samples is mos
likely due to inaccuracy of the purely visual estimate ofT*
from the plot in Fig. 3.

The data obtained at medium supersaturations, i.e.,
Tf.T* , can also be used for an estimate ofs. Formula~17!,
written in the form

t5
R2

3D

~12z!3

z
1

R

3K

12z3

z2 , ~21!

can be considered to be an equation for findingR and can
thus be used with the measured values oft(Tf) to determine
R(Tf) and, with the use of~20!, s. The values ofs thus
obtained, averaged for the differentTf , are listed in the table
unders̄. The difference of the mean values of the surface
surface tension (s* 51.831022 erg/cm2 and s̄51.3
31022 erg/cm2) estimated by the two methods is;20%.
An averaging of all the data gives a values51.5
31022 erg/cm2, practically the same as the results of pre
ous estimates.12,13

Curious features of the time dependence are observe
the lowest supersaturations~Fig. 4!: the total time for estab-
lishment of equilibrium turns out to be very long there, a
the DP(t) curves display noticeable irregularities. Since t
probability of homogeneous nucleation at such low sup

FIG. 3. Dependence of the reduced timet̃ ~see text! on the final temperature
for samples No. 4~d! and No. 1~s!.

FIG. 4. Time dependence of the change in pressure at very low degre
supersaturation for samples No. 1~h; curve2! and No. 3~s; curve1!.
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saturations is very small, it can be assumed that heter
neous nucleation becomes the governing process. If he
geneous nucleation occurs on the wall of the cell, then
change in the mean concentration~and, hence, the pressur!
should correspond to the solution of the diffusion proble
for a sample situated between two planes and is describe
the expression~see, e.g., Ref. 15!

DP5DPmF12aN
21(

n50

N
1

~2n11!2expS 2
p2Dt

d2 ~2n11!2D G ,

~22!

where aN5(n50
N 1/(2n11)2 , d is the distance betwee

planes, andN is the number of terms in the sum.
A processing of the curves in Fig. 4 with the aid of~22!

shows that the use of 3–4 terms of the sum decreases the
deviationd by more than a factor of 3 compared to proce
ing with the use of a single exponential, and increasingN
further has little effect on the value ofd. We note that for-
mula ~22! differs from the analogous formula for a spheric
geometry~see, e.g., Ref. 5! by a significantly slower decreas
of the successive terms of the sum. The relaxation timt
5d2/p2D obtained here is of the order of 43104 s, and
when the height of the cell is substituted in ford one obtains
a value D;531028 cm2/s for the diffusion coefficient,
which agrees with the data obtained in Ref. 13. This f
argues strongly in favor of heterogeneous nucleation un
these conditions.

The irregularity of the curves in Fig. 4 may be due to t
formation, at low supersaturations, of new-phase nuclei w
the bcc structure, which later transforms to the hcp struct
A similar phenomenon has been observed16 in the crystalli-
zation of4He in the region of the triple points. This possib
ity is also supported by the fact, registered in x-ray studie
the decomposition of the solutions, that a nonequilibrium b
structure of the new phase persists to temperatures
;100 mK.17

4. CONCLUSION

In this paper we have reported measurements of
characteristic times for the diffusional decomposition
solid solutions of4He in 3He. The results of the experimen
were compared with theoretical calculations of the para
eters of homogeneous nucleation under conditions of a fi
resistance at the nucleus–matrix boundary, and on the b
of that comparison the value of the coefficient of interpha
surface tension was estimated by two methods.

The closeness of the surface-tension results obtaine
the different methods and their good agreement with val
of s found previously13 ~see also Ref. 18! furnish additional
evidence for the realization of conditions for homogeneo
nucleation in perfect samples of3He–4He solid solutions.
However, for a final answer to this question it will be nece
sary to do more careful and systematic studies to minimiz
not eliminate the errors existing in the present treatment,
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a! the approximate character of formulas~17! and ~19!,
which are based on an expansion of Eq.~10!, because of the
proximity of l(R2r ) to 1;

b! insufficient accuracy of the estimate ofT* , owing to
the small number of experimental points;

c! possible errors in bringing in the parametersD andK
from Ref. 13~it would be desirable to measure them in t
same experiment!;

d! possible influence of heterogeneous nucleation an
bcc–hcp transition, especially at low supersaturations.

Experiments done with these circumstances taken
account will make it possible to perform a more quantitat
comparison with the results of the theory of homogene
nucleation, extended to the situation with a finite rate
supercooling,14 and to trace the transition from heterog
neous to homogeneous nucleation in3He–4He solutions.

This study was supported in part by the Ukrainian Go
ernment Foundation for Basic Research~Project 02.07/
00391, contract F7/286-2001!.
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The quasi-two-dimensional antiferromagnet CsDy(MoO4)2 is studied by neutron diffraction and
quasielastic neutron scattering. The crystal structure of two low-temperature phases~below
120 K and below 40 K! is determined. An approximate structure of the magnetically ordered
phase (TN51.36 K) is proposed. In the ordered state the order-parameter critical exponent
b50.17(0.01), the in-plane correlation length exponentn50.94(0.07), and the staggered
susceptibility critical indexg51.01(0.04) were determined. Comparing these results to
the exact solution for a 2D Ising magnet, we conclude that, although 2D behavior is apparent in
CsDy(MoO4)2 , there are deviations from the simple 2D Ising model. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1645155#
e
m

o
he
c

te
n
a

th
at
F
om
h
a
o

e
te

of
etic

he

ring
c-

ic
nts

to
the

on,
or-
the
he
in-
not

ron
ely
d
ag-
1. INTRODUCTION

For many years low-dimensional~low-D! magnetism has
remained at the forefront of solid-state research. Experim
tal studies of magnetic phase transitions in quasi-low-D co
pounds are very important for the general understanding
critical phenomena. The study of 2D Ising compounds is
special interest, since for certain low-dimensional Ising t
oretical models there is an exact solution and the results
be directly compared to experiment. A relatively few ma
rials simultaneously have strong single-ion anisotropy a
adequate two-dimensional magnetic interactions to qualify
model 2D Ising magnets.

Double rare-earth molybdates~DRMs! with the general
formula MR(MoO4)2 (R5rare earth, M5alkali metal! crys-
tallize in a variety of layered structures~see for example
Refs. 1–4! and are a large family of 2D compounds wi
some very interesting species. The magnetism of molybd
is entirely due to the presence of trivalent rare-earth ions.
the latter, magnetic anisotropy effects are crucial, and c
ponents of theg tensor may vary from almost 0 to as muc
as 20. In many DRMs the rare-earth sites behave as ne
ideal Ising centers. Typically large rare-earth magnetic m
ments in many cases result in appreciable dipolar magn
interactions.5,6 Long-range magnetic order has been detec
1331063-777X/2004/30(2)/7/$26.00
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in several species7–9 and typically occurs only at sub-kelvin
temperatures. The rather unusual magnetic properties
DRMs have been investigated using dc and ac magn
measurements,7–9 optical experiments10,11 and ESR.12,13

Although neutron diffraction has been widely used in t
study of crystal structures,1,3,14we were surprised not to find
any reports in the literature on magnetic neutron scatte
experiments on DRMs. Although magnetic neutron diffra
tion often is the ‘‘ultimate’’ technique for studying magnet
phase transitions and critical behavior, actual experime
may be, from a purely technical point of view, nontrivial
carry out. Low magnetic ordering temperatures require
use of bulky cryogenic equipment that limits the region ofQ
space accessible in a diffraction experiment. In additi
most DRMs go through a whole series of structural transf
mations when cooled down from room temperature, and
formation of crystallographic domains may complicate t
interpretation of the diffraction pattern. These problems
deed have to be dealt with, but, as we show below, do
present an insurmountable obstacle.

In the present paper we report the results of neut
scattering experiments on one particular compound, nam
CsDy(MoO4)2 . Data pertaining to the crystallographic an
magnetic structures, as well as measurements of the m
© 2004 American Institute of Physics
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netic critical behavior, confirm the 2D Ising nature of th
system. At the same time, certain new features hint at
important role played by dipolar interactions.

2. EXPERIMENTAL

Our choice of CsDy(MoO4)2 over other DRM species
was largely governed by the availability of large sing
crystal samples. Among the rare-earth ions, Dy31 in the mo-
lybdates has the advantage of having one of the largest m
netic moments. The tradeoff is its appreciable neut
absorption cross section. CsDy(MoO4)2 would not be an
ideal candidate for inelastic experiments, but it is well sui
for measurements of elastic magnetic scattering. Mica-
transparent rectangular single-crystal samples for our exp
ments were prepared by spontaneous crystallization f
melt solution.15 43430.15 mm and 831230.15 mm
samples were used for conventional and magnetic neu
scattering experiments, respectively.

4-circle diffraction data were collected at the H6
4-circle diffractometer at the High Flux Beam React
~HFBR! at Brookhaven National Laboratory. In this expe
ment the sample environment was a standard Displex re
erator. Two separate sets of (hkl) data were collected at 50 K
and 15 K, respectively.

Low-temperature~0.35–5 K! neutron scattering experi
ments were performed at the H8, H7, and H4M 3-axis sp
trometers at the HFBR with the use of a pumped-3He Dewar.
The temperature was controlled with an automated resista
bridge to a precision of'0.01 K. The sample was wrappe
in thin aluminum foil and mounted as strain-free as possib
A neutron beam of fixed final energyEf514.7 MeV was
used with a pyrolitic graphite~PG! filter positioned after the
sample. Pyrolitic graphite~002! reflections were used for th
monochromator and analyzer. The collimation setup w
408– 408– 408– 808. The sample mosaic was found to be
the order of 2.5° full width at half maximum~FWHM!. Spe-
cial care was taken to precisely measure the dimensions
orientations of the crystallographic faces. This informati
was later used to analytically calculate absorption correcti
to the measured intensities.

3. RESULTS

3.1. Crystal structure

At room temperature CsDy(MoO4)2 was believed to be
orthorhombic, space groupPccm, with cell constantsa
59.51 Å, b55.05 Å, andc57.97 Å.3 This structure is es-
sentially the same as for CsPr(MoO4)2 ~Ref. 16!. The most
prominent feature is a stacking of alternating layers along
crystallographica axis: – Dy– (MoO4) – Cs– (MoO4) – ~Fig.
1a!. Each layer is parallel to the~100! perfect cleavage plane
The arrangement of magnetic ions is quasi-two-dimensio
The interlayer Dy–Dy distance is large,'9.5 Å5a ~Fig.
1b!. Within each layer the magnetic sites form a rectangu
lattice with nearest-neighbor distances'5 Å5b and'4 Å
5c/2. Although thePccmstructure has not been seen in a
of our CsDy(MoO4)2 samples at any temperature, all th
crystallographic phases that were observed~see below! can
be described as distortions of this ‘‘parent’’ structure.
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For our samples the room-temperature structure w
found to bemonoclinic, with the measured cell paramete
a59.49 Å, b55.05 Å, c57.97 Å, andb588.4°. The two
monoclinic domains share commona* andb* axes. A typi-
cal rocking curve of the~0,0,4! Bragg reflection, rotating
around the@0,1,0# axis, is shown in Fig. 2 and illustrates th
domain structure. It should be noted that monoclinic str
ture at room temperature correlates with recent x-
analysis.17 No further crystallographic information was ob
tained at room temperature, since our main interest was w
the low-temperature behavior.

Below T1'120 K, a structural phase transition tak
place and CsDy(MoO4)2 becomes orthorhombic~Fig. 2,
curve2!. An analysis of the 4-circle diffraction data sugges
the space group in this low-temperature~LT-1! phase is
Pcca, with the 50 K cell parametersa518.760(7) Å

FIG. 1. ‘‘Parent’’ model of thePccm structure of CsDy(MoO4)2 . ~a! A
projection onto theac crystallographic plane showing the Dy and Cs sites
well as the MoO4 tetrahedra.~b! Structural relation between neares
neighbor magnetic Dy31 ions in the unit cell.

FIG. 2. Rocking curves of the~0,0,4! Bragg peak~rotation around~0,1,0!!
measured at different temperatures in a CsDy(MoO4)2 single crystal. The
crystal structure is monoclinic at room temperature~1!, becomes orthorhom-
bic (Pcca) below T1'120 K ~2!, and finally turns monoclinic again
(P21 /c) on cooling throughT2'40 K ~3!.
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52aPccm, b55.013(4) Å, andc57.920(6) Å. Compared
to the ‘‘parent’’Pccmstructure thea axis is doubled and the
Dy ions are displaced along thec axis in a direction that
alternates from site to site along thea axis.18 The Dy point
group isC2 , as compared toD2 in the Pccmcell.

On cooling throughT2'40 K a structural phase trans
tion to yet another monoclinic structure occurs~Fig. 2, curve
3!. It is interesting to note that both crystallographic tran
tions atT1 andT2 are totally reversible. The low-temperatu
monoclinic ~LT-2! phase is ofP21 /c symmetry, with a
518.86(5) Å52aPccm, b510.05(3) Å52bPccm, c
57.78(2) Å, andb586.6(2)° at T515 K. As in the high-
temperature monoclinic phase, the two types of monocl
domains share commona* and b* axes. Atom positions
above~50 K! and below~15 K! the phase transition atT2 are
summarized in Table I. The phase transition atT2 has been
previously observed by Zvyaginet al.,10 but the low-
temperature phase structure could not be determined f
their experiments. It is accompanied by an abrupt chang
the energy spectrum of the Dy31 ions which is due to a
lowering of the Dy site symmetry~point group 1 in the LT-2
phase!.19 In the low-temperature phase there are two crys
lographically inequivalent Dy sites.20

3.2. Magnetic long-range order

Below TN51.36 K new magnetic Bragg reflections wit
Miller indices (P21 /c notation! (h,0,l ) (h-odd, l -even! and
(h,k,0) (h,k-integer,h-odd, k-even! were observed in the
~0,1,0! and ~0,0,1! reciprocal-space planes, respective
Much weaker magnetic peaks were seen at (h,l ,0) (h,l -odd!
positions. Constraints imposed by the experimental geom
prevented us from measuring magnetic scattering in o
planes. Most of the diffraction data were collected atT
50.35 K in the (h,0,l ) zone. In general, magnetic reflection
from different structural domains could always be separa
although partial overlap occurs in some cases. A typ
h-scan along (h,0,2) measured atT50.35 K is presented in
Fig. 3. It shows both the nuclear and magnetic peaks or
nating from the two monoclinic domains.

Peak shapes. As can be seen in Fig. 3~for example, by
comparing the~3,0,2! magnetic and~4,0,2! nuclear peaks!
the magnetic Bragg reflections are visibly broader than
nuclear ones. This anomalously large width of magnetic
flections, more clearly seen in Fig. 4, was only observ
along thea* direction. TheQ-width of all the magnetic
peaks investigated is resolution-limited in theb* and c*
directions. The anomaloush-width was found to be depen
dent on the rate at which the sample is brought down to
temperature. Fast cooling~10 min! from T51.5 K down to
T50.35 K produces the broadest peaks~Fig. 4, open
circles!, whereas slow~2 hours! cooling throughTN results
in sharper peaks~Fig. 4, solid circles!. The Q-integrated
magnetic Bragg intensity was slightly higher in slow-cooli
experiments. Moreover, some annealing~sharpening and in-
tensifying of the magnetic peaks! over a time scale of 24
hours was observed even atT50.35 K.

Order parameter. The large time constants associat
with the establishing of long-range magnetic order ma
temperature-dependent measurements of the order para
extremely difficult. TN'1.3 K happens to be close to th
-
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condensation temperature of3He, and long measurement
aboveT51 K are hard to perform due to a high consumptio
of liquid 3He. The best we could do was to collect data o
slow cooling ~1 hour per fixed temperature with a 0.05 K
step!. The resulting order parameter deduced from the me
sured~3,0,0! magnetic Bragg intensity is plotted against tem
perature in Fig. 5. The critical exponentb and the Ne´el tem-

TABLE I. Positions of atoms in the CsDy(MoO4)2 lattice.



de
f

tu
r
tt

ta

o
ur
th
im
ns

on

e
e

-

ere-

phi-

g-
unts

ly-

cts

e-
rm

uc-
pins

con-

The

m-
nsi-

ar
ne

on

d

the
ith

136 Low Temp. Phys. 30 (2), February 2004 Khatsko et al.
perature were obtained in log–log plots. The analysis yiel
TN51.36(0.01) K andb50.17(0.01). The normalization o
the data in Fig. 5 is as discussed below.

Approximate spin structure. Detailed magnetic diffrac-
tion data could only be collected in the (h,0,l ) reciprocal-
space plane. Accurately determining the magnetic struc
is further hindered by the necessity of making strong abso
tion corrections to the measured Bragg intensities. The la
introduces systematic errors, which become very impor
at large reflection~transmission! angles. The quantity and
quality of the data do not allow us to base the analysis
magnetic intensities on the complicated low-temperat
crystal structure determined in the experiments with
4-circle diffractometer. Instead, we have utilized an overs
plified a priori model for the arrangement of magnetic io
in the crystal to obtain information on the spin structure.

For each monoclinic domain the observed resoluti
and absorption-corrected intensities ofP21 /c-inequivalent
(h,0,l ) and (h,0,2 l ) Bragg peaks were found to be the sam
within experimental error. In addition, in our treatment w

FIG. 3. Elastic scan along (h,0,2)P21 /c measured in a CsDy(MoO4)2 single
crystal. Bragg reflections originating from the two monoclinic domains
labeled in italic and normal characters, respectively. The indices of mag
reflections are underlined.

FIG. 4. Longitudinalh-scans through the~3,0,0! magnetic Bragg peak in
CsDy(MoO4)2 measured atT50.4 K. Fast cooling throughTN produces
very broad peaks~open circles!, as compared to the experimental resoluti
~dotted line!. Slow cooling results in much sharper Bragg reflections~solid
circles!. Thek- and l -width of all magnetic reflections is resolution-limite
independently of the cooling rate.
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have totally neglected the (h,0,l ) (h,l -odd! magnetic peaks,
since they are significantly weaker than those at (h,0,l )
(h-odd, l -even! and only a few could be measured. The sim
plified monoclinic arrangement for the Dy31 ions that we
employed in the analysis of the magnetic structure was th
fore based on a reduced cell withã[ 1

2aP21 /c'9.43 Å, b̃
[ 1

2bP21 /c'5.03 Å, c̃[cP21 /c'7.82 Å, andb586.6(2)°.
We have also assumed all the Dy sites to be crystallogra
cally equivalent and positioned at~0,0,1/4! and~0,0,3/4!. The
above construct is oversimplified, but a model for the ma
netic structure based on these positional coordinates acco
reasonably well for the experimental data.

A good consistency test for our experiments is an ana
sis of Bragg intensities measured inh-scans along (h,0,0).
These were corrected for absorption and resolution effe
and are plotted against momentum transfer in Fig. 6~open
circles!. The experimentalQ dependence is in good agre
ment with a theoretical prediction for the square of the fo
factor of a free Dy31 ion,21 shown as solid line in Fig. 6.

The models used for the analysis of the magnetic str
ture assumed a parallel alignment of nearest-neighbor s
along theb andc axes. The nearest neighbors alonga were
assumed to have antiparallel spins. Three models were
sidered, with spins lying in theac, bc, andab planes. Only
the last model was found to be consistent with the data.
tilt of the spins in theab plane with respect to theb axis and
an overall scaling factor were the only two adjustable para
eters. These were refined to best fit the experimental inte
ties of 17 magnetic Bragg peaks of the type (h,0,l ) (h-odd,

e
tic

FIG. 5. Magnetic order parameter in CsDy(MoO4)2 plotted against tem-
perature ~circles!, as deduced from the temperature dependence of
~3,0,0! magnetic Bragg intensity. The solid line represents a power law w
the critical exponentb50.17 andTN51.36 K. The top inset shows the
approximate spin structure determined atT50.4 K. In the bottom inset the
measured temperature dependence of the magnetization~open circles! is
compared to the exact result of Onsager for a 2D Ising system~solid line!.
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l -even! that were measured inh-scans to compensate for th
anomalous broadening of magnetic peaks in thea* direction.
Measurements were done separately for each monoclinic
main and corrected for resolution and absorption effects.
results of the refinement are summarized in Table II. Con
ering the limiting systematic errors arising from severe re
lution and absorption effects, a reasonably good fit to
experimental data was obtained.

The refined value for the angle between the spin dir
tion and theb axis is 17.7(0.5)°. The resulting spin structu
is visualized in the top inset in Fig. 5. The absolute value
the magnetic moment residing on the Dy sites was obtai
through normalizing the magnetic Bragg intensities by th
of several (h,0,0) nuclear peaks. The structure factors for
latter were calculated from the known atomic fractional c
ordinates. AtT50.35 K the Dy31 moment was estimated t
be MDy'6.8mB . This is to be compared toMDy5gLJmB

'10mB for a free ion.

3.3. Magnetic critical scattering

Generous magnetic neutron scattering intensities
lowed us to study the magnetic critical scattering, wh
could be plainly seen at temperatures up toT51.8 K. All of
the measurements were performed on the (2.5,0,0)Pccm mag-
netic Bragg reflection in a two-axis mode. Scans alo
(h,0,0) and (2.5,0,l ) were analyzed by first subtractin
~point by point! the background measured atT54 K and
then fitting the data to Voigt profiles. Some typical scans
shown in Fig. 7a. The width of the Gaussian componen
the Voigt function was fixed to the experimentalQ resolution
determined from measurements on nearby nuclear Bragg

FIG. 6. Intensity of (h,0,0) magnetic Bragg reflections measured
CsDy(MoO4)2 as a function of momentum transfer~open circles!. The data
were corrected for absorption and resolution effects. The solid line re
sents the square of the magnetic form factor for a free Dy31 ion.
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flections. The Lorentzian component represents the class
Ornstein—Zernike form for the energy-integrated neutr
cross section:22,23

ds

dV
5

AT

k21q2
, x5A/k2. ~1!

The Lorentzian widthsk ~reciprocal correlation lengths! and
temperature-adjusted amplitudesA were refined to best fit
the data. The solid lines in Fig. 7a show the results of su
fits. The reciprocal correlation lengths alonga* andc* , ka

andkc , respectively, are plotted against (T2TN)/TN in Fig.
7b usingTN51.36 K. The same figure shows the temper
ture evolution of the staggered susceptibilityx. As shown by
solid lines in Fig. 7b, the experimental temperature dep
dences were analyzed using power-law fits to the data.
have obtained the following values for the critical exponen
g51.0160.04, na50.3560.04, andnc50.9460.07.

4. DISCUSSION

The distinguishing features of rare-earth double moly
dates in general, and CsDy(MoO4)2 in particular, are the
relatively low crystallographic symmetry and rather hig
magnetic moments associated with the rare-earth ions. Th
peculiarities make single-ion crystal-field effects extreme
important and result in a huge anisotropy of magne
susceptibility.7,8 The site symmetry of the Dy31 ions ~the
ground term6H15/2) in the low-temperature phase is low
enough for the ground state to be a single Kramers dou
with J5615/2 ~Ref. 8!. In other words, the Dy31 are ex-
pected to be Ising magnetic centers. Indeed, according
EPR studies,24 there are two magnetically inequivalent site

e-

TABLE II. List of calculatedI calc and experimentally observedI obs intensi-
ties for the 17 independent magnetic reflections in CsDy(MoO4)2 at T
50.35 K.
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with similar principal values of the effectiveg-factor tensor
(ga853.760.2, gb8513.460.5, gc85160.5). Theg-tensor
principal axisa8 is reportedly tilted by'610° with respect
to thea direction in theab plane, andb8 forms an angle of
no more than'65° with theb axis in thebc plane. These
two g-tensor orientations presumably correspond to the
crystallographically inequivalent Dy31 sites that are identi-
fied in this work.

The crystal-field separation of Dy31 Kramers doublets in
CsDy(MoO4)2 is expected to be much larger than the ord
ing temperature, i.e., than the characteristic energy of m
netic interactions. The direction of magnetic moments in
ordered phase is therefore dictated by the orientations
single-ion easy axes. From our analysis of the magnetic
fraction data we conclude that the moments lie in theab
crystallographic plane and are tilted by 17° with respect
the b axis. It is important to emphasize, though, that sin
two inequivalent magnetic sites are present, the actual st
ture should be noncollinear, and that the collinear mode
no more than an approximation.

The 2D Ising character of the material becomes appa
in its critical behavior. The technique used to measure
indicesn andg relies on the so-called static approximation22

i.e., on the assumption that the incident neutron energ
two-axis experiments is much larger than the character
energy width of critical scattering. Fortunately, for Ising sy
tems the approximation is excellent, since the time scale
critical fluctuations is infinitely long. The in-plane correla
tion length exponentnc50.94 and the order-parameter exp

FIG. 7. Magnetic critical scattering measured in CsDy(MoO4)2 aboveTN

51.36 K. ~a! Example two-axis scans across the magnetic zone center.
background has been subtracted, as described in the text. The solid
represent fits with Lorentzian profiles, convolved with the Gaussian exp
mental resolution~dotted line!. ~b! Measured temperature dependence of
staggered susceptibilityx ~solid circles! and reciprocal magnetic correlatio
lengthk along thea ~triangles! andc ~open circles! crystallographic axes.
The solid lines are power-law fits to the data.
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nent b50.17 measured in CsDy(MoO4)2 are reasonably
close to the exact characteristics of a 2D Ising magnet, wh
b50.125 andn51. Such behavior is consistent with th
layered structure of CsDy(MoO4)2 .

Other data obtained in the present study indicate that
temperature dependences of magnetic characteristics
CsDy(MoO4)2 are more complicated than simple 2D Isin
behavior. In particular, the measured temperature dep
dence of the order parameter deviates from the exact re
of Onsager in a wide temperature range~Fig. 5, bottom in-
set!. An even more obvious discrepancy is revealed in
behavior of the critical indexg. The experimental valueg
51 is the same as in Ginsburg–Landau theory and q
different from that for a 2D Ising magnet, whereg51.75 is
expected. Note that in well-established 2D Ising materia
such as K2CoF4 ~Refs. 25 and 26! and Rb2CoF4 ~Refs. 27–
29!, all three critical indicesb, g, andn are in good agree-
ment with theory.

We tentatively propose that the main reason for any
viations from 2D Ising behavior in CsDy(MoO4)2 are due to
dipolar interactions. As indicated in experiments and cal
lations on related molybdates, dipolar coupling of Isi
chains or planes may be responsible for experimentally
servable short-range effects6,30 and may even drive the mag
netic phase transition, as, for example, in KEr(MoO4)2 ~Ref.
5!. For CsDy(MoO4)2 the in-plane interactions are relative
strong and are, most likely, of exchange origin. On the ot
hand, interplane coupling is much weaker and yields o
short-range order between the planes. At (T2TN)/TN

50.03, for instance, the interplane magnetic correlat
length amounts to only a few lattice repeats@Fig. 7b#. All
relevant interactions, but the weak interplane coupling m
of all, should have a significant contribution from dipol
effects. The latter must be enhanced by i! large magnetic
moments of the Dy31 ions, and ii! ferromagneticcorrelations
in the planes. Indeed, the ordered moments are nearly p
lel to the planes and generate a large magnetic field
favors antiparallel spin alignment in adjacent planes. If
correlations within the planes were antiferromagnetic, the
polar field would decay much more rapidly with distance.
has been experimentally confirmed31 for LiTbF4 , dipolar
magnets fall into a universality class different from that
exchange systems, and this may be responsible for the
served values of critical indices in CsDy(MoO4)2 .

Finally, let us comment on the observed anomalo
a* -width of the magnetic Bragg reflections. The effect c
be easily explained. Critical slowing down of spin fluctu
tions is enhanced in Ising systems. On relatively fast cool
throughTN the short-range magnetic correlations presen
the critical regime are ‘‘frozen’’ in the ordered phase. Sin
in-plane spin correlations are much stronger that interpl
ones, the broadening of magnetic Bragg peaks is most
nounced in the direction normal to the planes.

CONCLUSION

In summary, the present investigations enabled us to
termine the crystal structure of two low-temperature str
tural phases~below 120 K and below 40 K!, and suggest an
approximate magnetic structure of the CsDy(MoO4)2 . A
more precise model of the magnetic structure calls for furt
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investigations. In the ordered state the order-parameter c
cal exponentb50.17(0.01), the in-plane correlation leng
exponent n50.94(0.07), and the staggered susceptibi
critical index g51.01(0.04) were determined. Comparin
these results to the exact solution for a 2D Ising magnet,
conclude that, although 2D behavior is apparent
CsDy(MoO4)2 , there are deviations from the simple 2
Ising model. One of the possible reasons is the influenc
the dipole–dipole interplane interaction.
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The temperature dependence of the coercive fieldHc is determined for a multilayer
@Gd75 Å/Si5 Å/Co30 Å/Si5 Å#20 film with ferrimagnetic ordering of the magnetic moments of
the cobalt and gadolinium layers. The maximum value ofHc is observed at a temperature
of around 118 K, which corresponds to the compensation point of the film. It is established that
in the entire interval of temperatures studied, the variation of the coercive field is due to
the variation of the spontaneous magnetization. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645165#
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Multilayer films grown on the basis of alternating nan
scopic layers of a rare-earth metal~REM! and a 3d transition
metal ~TM! are attracting attention primarily as model o
jects for studying fundamental physical phenomena.
studying them, one can obtain information about the nat
of the exchange coupling between magnetic metals of dif
ent types. It has been established that an external field
induce the formation of noncollinear surface phases
multilayer films.1,2 On the other hand, these films may fin
application in magnetooptical recording devices and also
‘‘pinning’’ layers in so-called spin-valve structures with gia
magnetoresistance~GMR!.3 It is known that a necessary con
dition for the appearance of the GMR effect in such str
tures is a layer-by-layer magnetization reversal, which occ
on account of the different coercive force of the differe
components of the structure. Devices working on the basi
the GMR effect are used, for example, as sensitive probe
heads for magnetic recording systems.

In multilayer REM/TM films the magnetic moments o
adjacent layers lie in the plane of the film and are orde
antiparallel owing to the antiferromagnetic exchange c
pling on the interface between layers. Therefore, in s
films one can observe effects which are characteristic
ferromagnets—in particular, compensation of the magnet
tion. However, the properties of artificial magnetic superl
tices obtained on the basis of nanoscopic layers of an R
and a TM can differ appreciably from the properties of co
ventional ferrimagnets. The superlattice period is usua
much greater than the unit cell parameter of any known
rimagnet. At the same time, the antiferromagnetic excha
in multilayer films is localized in narrow regions adjacent
the interfaces between layers, and the magnetic order in
rest of the film is maintained by the ferromagnetic intralay
exchange interaction. Therefore, a decrease in the antife
magnetic exchange, an increase in the superlattice pe
1401063-777X/2004/30(2)/4/$26.00
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and also differences in the structural properties of the lay
of the film can promote the magnetization reversal of in
vidual layers of its rare-earth and transition-metal su
systems. In this case the coercive properties of the film w
differ significantly from those of ordinary ferrimagnets.

It is known4,5 that near the compensation point of typic
ferrimagnets, in particular, of REM–TM alloys, there is
sharp increase in the coercive fieldHc , which is one of the
most important characteristics of magnetic materials. Nev
theless, the temperature dependence ofHc observed in
multilayer films is of a different character. For example,
Gd/Co films6 the value ofHc does not vary with tempera
ture; in Dy/Co films7 heating causes a weak growth ofHc for
T.Tcomp ~whereTcomp is the compensation temperature
the particular film!, while for T,Tcomp the coercive field is

FIG. 1. Temperature dependence of the spontaneous magnetizatio
a @Gd75 Å/Si5 Å/Co30 Å/Si5 Å#20 film, measured in an external field
H5500 Oe. This film had a compensation temperatureTcomp.118 K.
© 2004 American Institute of Physics
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practical independent of temperature. In Gd/Co films hav
different ratios of the layer thicknesses and lacking a co
pensation point at temperatures of 5–300 K~Ref. 8! it is
observed that the values of the coercive field and spont
ous magnetizationMs are related. In view of this it is un
doubtedly of interest to investigate further the coercive pr
erties and the possibilities for their control in multilay
REM/TM films. It should also be noted that the properties
REM/TM films with nonmagnetic spacer layers deposit
between the magnetic layers have been little studied,
though it is known that variation of the thickness of t
spacers leads to a shift of the compensation temperature9 A
nonmagnetic spacer of silicon weakens the antiferromagn
interlayer exchange in the film under study by more than
order of magnitude.10

In the this paper we report the results of investigations
the temperature dependence of the coercive field o
@Gd75 Å/Si5 Å/Co30 Å/Si5 Å#20 multilayer film. The film
g
-

e-

-

f

l-

tic
n

f
a

was grown by rf ion sputtering on a glass substrate at a b
pressure of 1026 torr and a working-gas~Ar! pressure of
1024 torr. The deposition took place at a temperature
above 100 °C. The rate of deposition of Gd, Co, and
according to the results of a preliminary calibration, were
0.4, and 0.3 Å/s, respectively.

In this study we used a magnetooptic method based
the use of the longitudinal Kerr effect. The magnetic fie
was oriented parallel to the film in the plane of incidence
a He–Ne laser beam~wavelength 633 nm!. The angle of
rotationF of the plane of polarization of the reflected ligh
was measured as a function of external field. In this geo
etry the Kerr rotation of the plane of polarization is propo
tional to the magnetization component lying in the plane
the film parallel to the plane of incidence of the light.
helium cryostat was used in the experiments. The sam
was placed on a cold finger in vacuum inside a superc
ducting solenoid. Measurements of the magnetization of
FIG. 2. Hysteresis loops measured by a magnetooptic method in a@Gd75 Å/Si5 Å/Co30 Å/Si5 Å#20 film at various temperatures.
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film were also made on an MPMS-5 Quantum Des
SQUID magnetometer.

Figure 1 shows the temperature dependence of the s
taneous magnetizationMs measured on the SQUID magn
tometer; it has a pronounced minimum atT.118 K associ-
ated with the compensation of the magnetic moments of
Gd and Co layers. The observed nonzero minimum valu
the magnetization may be due to some nonuniformity of
film and also to the onset of a noncollinear phase nearTcomp

in the fieldH5500 Oe in which the magnetization measu
ments were made.10 The spontaneous magnetization falls o
as the film is heated from 5 K to thecompensation tempera
ture and then increases forT.Tcomp. The sharpest change i
Ms occurs nearTcomp.

Figure 2 shows the field dependence of the Kerr rotat
F(H) obtained at different temperatures for the film und
study. The magnetooptic curves shown carry informat
about the magnetization reversal in a few layers near
surface. However, those curves are practically no differ
from theM (H) curves measured on the SQUID magnetom
ter, which reflect the magnetization reversal process in
entire sample. The rather simple form of theM (H) and
F(H) loops is evidence that the cobalt and gadolinium la
ers forming the magnetic structure of the film are not ind
pendent during magnetization reversal. At a fixed tempe
ture these loops are close in shape and practically identic
width within the measurement error. It should be conclud
that magnetization reversal occurs uniformly over the en
thickness of the film, including its surface layers. Thus
value of the coercive field of a film is quite correctly dete
mined from the half-width of the magnetooptic hystere
loop atF50.

It should be noted that the sign of the Kerr rotation
different at temperatures below and above 118 K. This is
to the dominance of the contribution of the transition me
to the Kerr effect. Below the compensation temperature
magnetic moment of the cobalt layer,mCo, is smaller than
that of the gadolinium layer,mGd. Because of this, it is di-
rected counter to the external field. AtT.Tcomp the situation
is reversed:mCo is greater thanmGd and is codirectional with

FIG. 3. Temperature dependence of the coercive field of
@Gd75 Å/Si5 Å/Co30 Å/Si5 Å#20 film.
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the external field. Accordingly, a change in the sign of t
magnetooptic rotation occurs at the transition through
compensation point. Such a change in the sign of rotation
been observed1 for multilayer Gd/Fe films.

Figure 3 shows the temperature dependence of the c
cive field of a film from the magnetooptic measuremen
The value ofHc increases as the compensation point is
proached from both the low- and high-temperature sides.
Hc(T) curve has a pronounced maximum near 118 K.

As we know, magnetization reversal occurs by nuc
ation of domains of an energetically favorable phase and
spreading of these domains to the whole volume of
sample. The coercivity, accordingly, is related to the nuc
ation process and to the pinning of the domain walls at
fects. The expression for the coercive field can be writ
as11,12

Hc5
a

Ms
2NMs , ~1!

where the first term is due to energy losses in the forma
of a nucleus and motion of the domain wall, and the seco
is due to demagnetizing fields of the nucleus (N is the de-
magnetizing factor!. If nucleation is the dominant proces
then one can assume that, to within a numerical coeffici
a5s/v1/3, wheres is the domain-wall energy andv is the
critical volume of a nucleus. If, on the contrary, the ma
contribution to the coercivity comes from the pinning of d
main walls on structural defects, then the coercive field
also described by formula~1! but with a being the energy
barrier surmounted by the domain wall in its motion.

It has been shown previously8 that the temperature de
pendence of the coercive field of two thin multilayer film
@Gd30 Å/Co30 Å#20 and @Gd30 Å/Co38 Å#10, which do
not have compensation points, is determined by the varia
of their spontaneous magnetization. The curves ofHc /Ms

versus 1/Ms
2 constructed with the use of the experimen

data are straight lines with slopes determined by the coe
cients a1 ~for the first film! and a2 ~for the second!. The
values ofa1 anda2 remained constant over the entire tem

a
FIG. 4. The dependence ofHc /Ms on 1/Ms

2 for a @Gd75 Å/Si5 Å/
Co30 Å/Si5 Å#20 film, from experimental measurements atT,Tcomp and
T.Tcomp.
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perature interval investigated, from 25 to 300 K, and had
values:a1'0.73104 erg/cm3 anda2'8.23104 erg/cm3.

Figure 4 shows the dependence ofHc /Ms on 1/Ms
2 for a

Gd/Si/Co film. As can be seen in the figure, all of the poi
plotted are well approximated by straight lines. Thus a lin
dependence ofHc /Ms on 1/Ms

2 is observed on both sides o
the compensation temperature. This allows us to conclude!
the variation of the coercive field of this film, which has
compensation point, is determined mainly by the variation
the spontaneous magnetization; 2! the value ofa changes
only at the transition through the compensation point a
remains constant on either side of that point:aT,118 K'0.6
3104 erg/cm3, aT.118 K'3.53104 erg/cm3. We note the
coincidence in order of magnitude of the values ofa1 and
aT,118 K, on the one side, and the values ofa2 and
aT.118 K, on the other. In the former case the magnetic m
ment of the gadolinium layer,mGd, exceeds the magneti
momentmCo of the cobalt layer in both films, while in the
latter casemGd,mCo.

The Gd/Si/Co film has a nonmagnetic silicon spac
appreciably lowering the antiferromagnetic exchange, wh
is localized at the boundaries of the layers. However, we
not establish any experimental facts indicating a layer-
layer magnetization reversal of the film. The temperature
pendence of the coercive field of the investigated multila
film with a compensation point is due to the variation of t
spontaneous magnetization of the film. The coercive fi
reaches a maximum value in the region of the compensa
point. In this regard the film that we investigated is fund
mentally no different from ordinary ferrimagnets. Therefo
one way to effectively influence the coercive properties
thin REM/TM multilayer films is to deposit nonmagnet
spacers between magnetic layers and also, within certain
e
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its, to vary the thickness of these spacers, which lead
changes in the temperature dependence of the spontan
magnetization of the film and in the compensation tempe
ture.

V. O. Vas’kovskiy and A. V. Svalov thank the Ministry
of Education of the Russian Federation for partial suppor
this study under Grant T02-05.1-3153.

*E-mail: merenkov@ilt.kharkov.ua

1W. Hahn, M. Loewenhaupt, Y. Y. Huang, G. P. Felcher, and S. S. P. Par
Phys. Rev. B52, 16041~1995!.

2S. L. Gnatchenko, A. B. Chizhik, D. N. Merenkov, V. V. Eremenk
H. Szymczak, R. Szymczak, K. Fronc, and R. Zuberek, J. Magn. Ma
Mater.186, 139 ~1998!.

3A. V. Svalov, P. A. Savin, G. V. Kurlyandskaya, I. Gutie´rrez, and V. O.
Vas’kovskiy, Zh. Tekh. Fiz.72~8!, 54 ~2002! @Tech. Phys.47, 987~2002!#.

4P. Chaudhari, J. J. Cuomo, and R. J. Gambino, Appl. Phys. Lett.22, 337
~1973!.

5R. C. Taylor, J. Appl. Phys.47, 1164~1976!.
6D. J. Webb, R. G. Wamsley, K. Parvin, P. H. Dickinson, T. H. Geballe, a
R. M. White, Phys. Rev. B32, 4667~1985!.

7Z. S. Shahn and P. Sellmyer, Phys. Rev. B42, 10433~1990!.
8S. L. Gnatchenko, A. B. Chizhik, D. N. Merenkov, H. Szymczak, L.
Baczewski, A. Wawro, and H. Gamari-Seale, J. Appl. Phys.84, 5105
~1998!.

9K. Takanashi, H. Fujimori, and H. Kurokawa, J. Magn. Magn. Mater.126,
242 ~1993!.

10D. N. Merenkov, A. B. Chizhik, S. L. Gnatchenko, M. Baran, R. Szym
zak, V. O. Vas’kovskiy, and A. V. Svalov, Fiz. Nizk. Temp.27, 188~2001!
@Low Temp. Phys.27, 137 ~2001!#.

11D. Givord, P. Teneaud, and T. Viadeu, IEEE Trans. Magn.MAG-24, 1921
~1988!.

12D. W. Taylor, V. Villas-Boas, Q. Lu, M. F. Rossignol, F. P. Misse
D. Givord, and S. Hirosawa, J. Magn. Magn. Mater.130, 225 ~1994!.

Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 2 FEBRUARY 2004
Electron paramagnetic resonance in powder samples of metalorganic copper
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The EPR spectra of powder samples of a number of metalorganic compounds containing Cu21

ions are investigated. These compounds are characterized by the presence of identical
chains of octahedra forming the local environment of Cu21, but they differ strongly in their
interchain ligand structure. The resonance absorption bands permit determination of
the components of the effectiveg factor and linewidth of individual powder particles and also
their temperature dependence. It is found that the orbital singletux22y2& is the ground
state of the copper ion in all the compounds, and the exchange interaction parameters in them
are estimated. The maximum exchange is observed in the system with the simplest
geometry of the interchain structure in the series of compounds studied. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1645166#
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INTRODUCTION

Crystals of metalorganic compounds often have p
nounced chains or planes of metallic ions with a compa
tively simple local environment while at the same time t
interchain or interplane space is filled with large fragme
of organic complexes. If the metal ions belong to an elem
of a transition group, this can lead to the formation of
quasi-one-dimensional or quasi-two-dimensional magn
system with a high degree of low-dimensionality. Such m
alorganic complexes are of interest for magne
coordination-chemical, biological, biochemical, etc. studi
but the use of the informative magnetic resonance meth
for this has a certain peculiarity because such compounds
generally synthesized in the form of finely disperse powde

In this paper we report an EPR study of a number
metalorganic complexes of copper. The members of this
ries of compounds are of the general structure form
@Cu(SO4)L(H2O)2#, among which are@Cu(SO4)(C2H8N2)
3(H2O)2#—henceforth referred to as Cu~en!, @Cu(SO4)
3(C6H6N2O)2(H2O)2#—Cu~nad!, and @Cu(SO4)
3(C12H8N2)(H2O)2#—Cu~phen!. These compounds have
very similar local environment of the paramagnetic ion a
differ markedly in the structure of the organic ligand
Analysis of the magnetoresistive properties of such a se
of compounds can reveal the common traits of the EPR s
tra formed by the local environment and to find correlatio
in the differences of their structures and magnetic charac
istics.

The goal of this study was to compare the properties
the paramagnetic centers in powder samples of the g
compounds in order to clarify both the influence of deform
tions of the local environment on the parameters of the re
nance spectrum and the role of the ligand structures in
forming of the interactions between magnetic centers.
1441063-777X/2004/30(2)/5/$26.00
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STRUCTURAL CHARACTERISTICS OF THE SYSTEMS AND
THE MEASUREMENT TECHNIQUES

Despite the substantial differences of the chemical co
position, all of the compounds investigated here have a u
fied structural motif: the presence of chains of octahe
forming the local environment of divalent copper ions a
lying along the direction of the smallest parameter of t
cell. Octahedra in a chain are linked by apical oxygen io
O2, which also belong to tetrahedral sulfate groups SO4

22.
The basal plane of the octahedra is formed by two oxyg

FIG. 1. Projection of the crystallographic structure of the compound Cu~en!
on theab plane.
© 2004 American Institute of Physics
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atoms O1 belonging to two water molecules and two nit
gen atoms belonging to ligand groups. The position of
ions in the cell of the compound Cu~en!, with the simplest
ligand group, is shown schematically in Fig. 1, and the ba
structural parameters of the compounds studied are prese
in Table I.

The basal plane of the octahedra in all these compou
has a configuration close to square, with a distance from
central ion of'2 Å, while at the same time the distance
the vertex ions O2 is around 2.4–2.5 Å. The noticeable el
gation of the octahedra along the direction of the cha
should give rise to a substantial axial component of the
tracrystalline field, increasing with the change in bond len
r Cu-O2. Consequently, the EPR spectra of the copper ion
these compounds, which are largely determined by the lo
environment, should have axial anisotropy, at least.

In contrast to the simple geometry of the octahed
chains, the interchain space in the compounds of this seri
of rather complex construction. It is filled with fragments
molecules of the different compounds, which are five- a
six-member rings of organic ligand groups. Under these c
ditions the interchain interaction can most likely be realiz
via a complex path of hydrogen bonds involving hydrog
atoms in water molecules or in the ligand groups. The va
of this interchain coupling is not very amenable to predict
and must be determined experimentally.

The compounds Cu~nad! and Cu~phen! investigated in
this study were synthesized in the form of fine-crystalli
powders. For Cu~en! we first obtained small needle-shap
single crystals, for which we had previously studied the f
tures of the low-temperature resonance spectra.4 Powder
samples were then prepared from them. A comparison of
data obtained on the two types of samples confirmed
correctness of our measurement technique and the meth
processing of the results in working with powder sample

The EPR spectra were studied in the wavelength ra
l'4 mm to increase the resolving power with respect
magnetic field. The appreciable intensity of the signal ma
it possible to record the integrated shape of the resona
absorption band. To avoid the influence of spin–lattice rel
ation processes, which broaden the resonance line, the
perature range of the measurements was;2 – 30 K. This
made it possible to track the most interesting features du
interionic interaction processes in the low-temperature
havior of the resonance spectra. The precision of the t
perature stabilization and measurement was 0.1 K on
interval 2.3–15 K and;0.5 K for T.15 K.
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GENERAL CHARACTERISTICS OF THE RESONANCE
SPECTRA OF POWDER SAMPLES

The EPR spectrum of a powder is a superposition of
spectra of small single-crystal particles with a random a
equiprobable orientation with respect to the direction of
external magnetic fieldH. The intensity of the total envelop
of a line at each point will be determined by both the numb
of particles having a given orientation and the transiti
probability for the given orientation.

In the case of axial symmetry of the intracrystalline fie
and, hence, of the resonance spectra of the individual
ticles, the angular dependence of the effectiveg factor has
the form

g25gi
2 cos2 u1g'

2 sin2 u, ~1!

wheregi5gz , g'5gx5gy , andu is the angle between th
direction of the external field and the axis of anisotropy. T
transition probability in the case of a linearly polarized
field is proportional to the quantity

K;g'
2 @~gi /g!211# ~2!

at small anisotropy of theg factor. The number of particles
with axes of crystallographic anisotropy lying at an angleu
to the field direction is given by

dN52pN0 sinudu, ~3!

whereN0 is the total number of particles in the sample.
For spectra with spinS51/2 one can use the basic res

nance relationhn5gmBH8, whereH8 is the resonance field
to introduce the fields

H i5hn/gimB and H'5hn/g'mB , ~4!

which determine the boundaries of the powder spectrum w
respect to field for the extreme orientationsu50 and u
5p/2, respectively. Hereh is Planck’s constant,n is the
working frequency, andmB is the Bohr magneton.

Then taking relations~2! and~3! into account, an expres
sion for the field dependence of the intensity of the signa
an absorption band in which all the orientations are reali
takes the form

I ~H !;E
0

p/2

K f ~H !sinudu, ~5!

where the resonance line shape of the individual partic
f (H) is assumed Lorentzian and independent of orientat

f ~H !;@~H2H8!21~DH/2!2#21. ~6!
TABLE I. Some structural characteristics of the copper–organic complexes investigated in this study.
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Here DH/2 is the half width of the line at half maximum
Making a change of integration variable in~5! and taking~1!
and ~2! into account, we obtain5

I ~H !;E
H i

H' ~11H i
2H82!dH8

@~H2H8!21~DH/2!2#H82~H'
2 2H82!1/2

~7!

for H i,H' .
The contour of the absorption band determined by t

expression has a specific shape. Since according to ex
sion ~3! the main mass of particles is oriented perpendicu
to the field, at smallDH a rather narrow peak is formed a
the band edge nearH' while the intensity of the band nea
H i should be minimum though finite, forming a narro
shelf. With increasingDH these features are smeared out
such a degree that the inflection atH i vanishes completely
Therefore, it is desirable to use the highest possible work
frequencyn in an experiment, since the distanceH i2H'

increases linearly with it.
For all of the systems studied, the shape of the resona

absorption band corresponds to that described above. A
example, Fig. 2 shows the absorption band for Cu~phen!
taken atT56 K at a frequency of 72.81 GHz. Also show
there is its dependence calculated according to expres
~7!.

EXPERIMENTAL RESULTS

For all the systems studied here the shape of the b
was calculated according to~7! by the least-squares metho
with gi , g' , and DH used as adjustable parameters. T
computer program terminated the iteration procedure app
to fit the parameters when the change in the sum of
squares of the deviations calculated from 100 points bec
less than 0.1%. From observation of the band shape ov
wide range of temperatures we could determine the temp
ture dependence of these parameters. The results of th
periment are presented in Fig. 3.

FIG. 2. Low-temperature EPR spectrum of a powder sample of Cu~phen! at
a frequencyn572.81 GHz. The solid curve was calculated according
expression~7! for the parameter valuesg'52.067, gi52.342, andDH
538.35 Oe.
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1! Cu~en!, Fig. 3a. The components of the effectiveg
factor have the valuesgi52.31 andg'52.06 and are inde-
pendent of temperature, whereas the resonance linewidt
creases sharply with decreasing temperature atT,15 K.
This behavior of the parameters of the resonance absorp
of the powder agrees completely with results obtained4 for a
single crystal of this compound, where in the same tempe

FIG. 3. Temperature dependence of the components of the effectiveg factor
gi ~s! andg' ~h! and the resonance linewidthDH ~m! for the compounds
Cu~en! ~a!, Cu~nad! ~b!, and Cu~phen! ~c!.
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TABLE II. Parameters of the resonance spectra and energy interactions of the systems studied.
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ture interval a weak (;1%) change ofg' and an even
weaker (;0.5%) change ofg' were observed, which wer
attributed to the Jahn–Teller effect. The values of theg fac-
tors are determined with a considerably larger error o
powder, of course, because these weak variations are
scured by the process of computer calculation.

At the same time, the low-temperature line-broaden
process atT,15 K, which in the single crystal was attrib
uted to the establishment of short-range magnetic orde
the Néel point is approached, was reproduced completely
the case of the powder. It should be noted that the hi
temperature (T.15 K) value of the linewidth in the powde
turned out the be about a factor of two lower than in t
single crystal. Apparently this can be explained by signific
inhomogeneous broadening of the line in the single cry
due to internal stresses. In the powder, which was obta
by grinding those single crystals, the stresses are relieve
mechanical strains and, despite the increase in the numb
defect centers on the developed surface of the powder
ticles, on the whole the linewidth turned out to be narrow

2! Cu~nad!, Fig. 3b. For this compound the values of th
g-factor components have the valuesgi52.35 and g'

52.065 and are independent of temperature. One obse
appreciable low-temperature broadening of the line aT
,6 K, which can also be attributed to the establishmen
short-range magnetic order in the region near the surfac

3! Cu~phen!, Fig. 3c. The values of theg-factor compo-
nents are close to those obtained for the previous c
pounds,gi52.34 andg'52.07, and no temperature depe
dence of them is observed. The resonance has a mark
weaker temperature dependence than in the previous ca

The values obtained for the effectiveg factor and reso-
nance linewidth in the high-temperature part of the inve
gated range are presented in Table II.

DISCUSSION OF THE RESULTS

It is known that6 the main orbitalD term of the Cu21 ion
is split in an octahedral crystalline field into a doublet and
triplet, the doublet lying lower. Under the combined infl
ence of the axial component of the crystalline field and
spin–orbit coupling the degeneracy of the doublet is lifte
and the sign of the axial component determines which of
statesuz2& or ux22y2& ~which are still Kramers doublets! is
the ground state. For the spin doubletuz2& the components o
the effective g factor obtained in first-order perturbatio
theory are

gi52; g'5226l/D,

wherel is the spin–orbit coupling parameter~for a free ion
l52830 cm21), andD is the energy splitting of the term b
a
b-
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a cubic field. For a typical value of the ratiol/D520.05 in
this case one should expect the relationgi,g' to hold, with
a valueg'>2.3.

For the Kramers doubletux22y2& the components of the
g factor look like

gi5228l/D; g'5222l/D,

i.e., the opposite inequality,gi.g' , should hold, with (gi

22)/(g'22)'4.
As may be seen from the results of our experiments,

all of the systems studied this last relation holds fairly we
This means that the orbital singletux22y2& is in all cases the
ground state.

For that orbital state the angular distribution of the ele
tron density lies in the basal plane of the octahedron, w
the maxima in the directions of the ligand atoms. Such
distribution should promote realization of indirect exchan
interactions between copper ions predominantly in the dir
tions perpendicular to the chains of octahedra. As we h
said, because of the complexity of the structure of the liga
configurations the exchange in the interchain directions
hard to calculate. Nevertheless, a general estimate of the
change interactions can be obtained starting from the exp
sion relating the exchange fieldHe with the second momen
M2 and the resonance linewidthDH observed in the experi
ment of Ref. 7:

He52M2 /DH.

The second moment of the line for a powder can
calculated numerically8 by starting from the inter-ion dis-
tances in the lattice:

M25
3

5
g4mB

4h22S~S11!(
k

1

r ik
6 .

The results of a calculation of the second moment of
line for the systems analyzed, obtained by summing over6

cells of the lattice, are presented in Table II. Also sho
there are the calculated values of the Lorentzian linewi
~6! corresponding to this value of the second moment in
absence of exchange, i.e., in the presence of only the m
netic dipole–dipole interaction:

DHdip'~M2!1/2,

and also the values of the linewidths observed in the exp
ment and the corresponding values of the exchange field

Analysis of Table II shows that Cu~en! has the highest
value of the exchange interactions in the series of co
pounds studied, while the exchange field for Cu~phen! is an
order of magnitude lower; for Cu~nad! it occupies an inter-
mediate position. This agrees qualitatively with the expe
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mental dependence of the resonance linewidths of th
compounds. For them, as we have said, the region of l
temperature line broadening in them corresponds to the c
cal region of the short-range magnetic order, which prece
the magnetic ordering point. The values of the critical te
peratureTc corresponding to the calculated exchange fie
gmBHe5kTc are also indicated in Table II. The compoun
Cu~en!, which has the highest value ofTc , accordingly dem-
onstrates the widest range of critical broadening.

It should be noted that the results of studies of the lo
temperature heat capacity and magnetic susceptibility
these compounds9,10 have shown that the magnetic orderin
temperature of Cu~nad! and Cu~phen! lie below 0.1 K, while
for Cu~en! it is TN50.9 K, and it is preceded by a region
('10 K wide! of short-range magnetic order. In order
magnitude these values correlate well the values obtaine
the present study.

As was pointed out above, the crystal structure of
three compounds investigated is characterized by the p
ence of practically identical chains of octahedra forming
local environment of the copper, and that should make
identical intrachain interactions. Therefore the marked diff
ences observed in the exchange interactions of the sys
must be generated by features of not the intrachain but
interchain interactions, which most likely involve intercha
hydrogen bonds. This picture is in qualitative agreement b
with the symmetry of the ground state of the copper io
which promotes interchain exchange, and with the corre
tion between the simplified geometry of the interchain str
ture and the ascending values of the exchange interactio
the series of compounds studied.

CONCLUSIONS

1. The EPR spectra of samples in the form of fine
disperse powders in which the paramagnetic ion has spS
51/2 are quite informative if sufficiently high working fre
quencies are used. These spectra yield numerical value
the main spectroscopic parameters of the system and
anisotropy parameters and make it possible to study the
pendence of those parameters on external influence
temperature, in particular.

2. For the compounds Cu~en! and Cu~nad! on the low-
temperature part of the investigated range a region of sh
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range magnetic order is realized before the magnetic or
ing point is reached. In that region the components of
effectiveg factor are independent of temperature, while t
resonance linewidth increases noticeably with decreas
temperature.

3. The ground state of the copper ion in the investiga
series of metalorganic compounds, which are character
by the presence of chains of octahedra forming the lo
environment, is an orbital singletux22y2&. The angular dis-
tribution of the electron density for this state promotes
formation of interchain exchange interactions.

4. The largest value of the exchange interactions in
investigated series is found in Cu~en!, which has the simples
geometry of the interchain couplings in the series. This m
also attest to the dominance of the interchain exchang
these compounds.
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Nizk. Temp.28, 642 ~2002! @Low Temp. Phys.28, 642 ~2002!#.

5J. A. Ibers and J. D. Swalen, Phys. Rev.127, 1914~1962!; T. S. Al’tshuler,
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Anomalous acoustic transparency under conditions of the tilt effect
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An anomalous acoustic transparency phenomenon is discovered and investigated in high-purity
Ga samples under conditions of the tilt effect. This phenomenon is due to resonance
coupling of the high-frequency elastic waves with weakly damped electromagnetic eigenmodes
of the metal. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645167#
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The interaction of high-frequency sound (vt@1, where
v is the angular frequency of the sound andt is the relax-
ation time of the electrons! with ballistic and wave excita-
tions of the plasma in a metal in certain situations can lea
additional effective mechanisms of propagation of elas
strain. If the damping of the fundamental acoustic signa
large, the amplitude of that signal can turn out to be sign
cantly lower than the amplitude of the signals due to ad
tional mechanisms of elastic strain propagation; this lead
the phenomenon of acoustic transparency of the metal.

In the case when the sound is coupled with ballistic
citations, anomalous acoustic transparency can evidentl
observed in weak magnetic fields (qrH@1, whereq is the
wave number andr H is the radius of gyration of the electron
in the magnetic fieldH! on account of the electron transpo
of sound1,2 in metals with flat spots on the Fermi surfa
~FS!.1! In such metals the damping of the fundamental aco
tic signal in its synchronous motion with electrons of the fl
spot is extremely large3 and increases linearly with the fre
quencyv, while the damping of the acoustic signals tran
ported by the electrons is determined by relaxation proce
and is independent of the frequency of the sound. As a re
starting with a certain sound frequency~or thickness of the
sample!, it is expected that the amplitude of the fundamen
acoustic signal will be small compared to the amplitude
the signals transported by the electrons.

In this paper we present the results of a study of
acoustic transparency of a metal under conditions for
existence of the tilt effect~TE!, which was first observed by
Reneker on bismuth.4 The tilt effect is known to be a thresh
old phenomenon in the resonance absorption of soun
classically high magnetic fields (qrH!1) under conditions
of strong temporal dispersionvt@1. The condition of reso-
nance coupling of the electrons with the sound is fulfill
starting at a threshold anglew05S/VH max satisfying the con-
dition

qVH sinw2v50, ~1!

whereS is the speed of sound,VH is the drift velocity of the
electrons alongH, p/22w is the angle betweenq andH, and
the transition from the region of anglesw,w0 to the region
1491063-777X/2004/30(2)/4/$26.00
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w.w0 is accompanied by a sharp increase in the absorp
of sound. The reason why acoustic transparency arises in
tilt effect is presumably that elastic strain is transported
electromagnetic eigenmodes of the metal.

Experiments have been done on samples of gallium p
pared from material of grade Ga000 at longitudinal sou
frequencies of 50–450 MHz in magnetic fields up to 15 kO
Under the conditions of the experiment the direction of t
wave vector of the sound coincided with the principal axesa,
b, andc of the crystal~the @100#, @010#, and@001# directions,
respectively! with an accuracy of'0.3°. The thickness of
the samples ranged from 0.5 to 5 mm. The experime
setup was a bridge with the sample in one arm. The bri
was automatically balanced with respect to phase and am
tude and worked in a pulsed mode, making it possible
obtain the dependence of the dampinga and dispersion of
the sound velocityDS/S on the anglew or on the magnetic
field strength.5 The value of the parametervt was deter-
mined from the dispersion of the sound velocity in magne
fields.6

The idea for the present study arose in the course o
study of the tilt effect in gallium, when in certain situations
strong change in the shape of the pulse envelope of
acoustic signal was observed at tilt angleswmax (wmax is the
tilt angle at which the sound damping is maximum!. The
situation is reminiscent of the picture of the electron tra
port of sound,1 where one observes a change in shape of
acoustic pulse owing to interference of the fundamen
acoustic signal with the acoustic precursor pulse gener
by it.

Under conditions of the tilt effect the distortion of th
envelope of the acoustic signal is manifested most strongl
directions ofH close to thea axis in the casesqib andqic
and near theb axis for qia. According to gallium band-
structure calculations7 which have been confirmed by nume
ous experiments, the Fermi surface has rather large flat s
perpendicular to thea andb axis. Experimentally a flat spo
of the Fermi surface with a relative area;1% was observed
in Ga in Ref. 3. The direction of the electron velocity on th
flat spot is practically coincident with thea direction.

A detailed study of the acoustic transparency was car
© 2004 American Institute of Physics
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out in the experimental geometryqib, with the anglew
scanned in theab plane. This experimental geometry is co
venient because in it one observes a single strong maxim
of a~w!, and the dependence of the maximum drift veloc
on the direction in the crystal, obtained by processing
a~w! curves for this maximum, also partially confirms th
there is a significant region of the Fermi surface near tha
axis where the electron velocity has the same value, equ
3.83107 cm/s ~see Fig. 1!.

A specific feature of the experiment in this geometry
that the dependence ofDS/S on the anglew differs strongly
from the theoretical dependence. A theoretical study of
tilt effect8,9 has shown that in ‘‘good’’ metals such as galliu
under conditions of the tilt effect an important role is play
by strain-induced solenoidal electric fields accompanying
propagation of the sound wave, in addition to the dir
strain coupling. Figure 2 shows the experimental curve
DS/S as a function ofw, obtained under the condition
qrH!1, vt'10 ~solid curve! and the calculated curves fo
the case of a quadratic electron spectrum.9 The dot-and-dash
curve corresponds to the direct strain coupling, and
dashed curve to the result of a renormalization of that c
pling by the solenoidal fields with polarization along theH
vector. The theoretically predicted result of the renormali
tion is quite substantial: the rate of growth ofDS/S on ap-
proach tow0 decreases significantly, and the sharp decre
of DS/S, with a change of sign, in a small angular regi
after the transition throughw0 vanishes. A comparison of th
results of the experiment and theory confirms the substa
role of the solenoidal fields under the conditions of our e
periment, but only in the region 0,w,w0 . In the region
w.w0 , on the other hand, the renormalization of the str
coupling is weakened sharply, apparently because of vi
tion of the condition (qd)2!1 ~d is the skin depth for the

FIG. 1. Angular dependence of the Fermi velocity of the electrons that
the main contribution to the tilt effect forqib in the ac plane.
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electric fields with polarization alongH!. It may be that this
situation arises because the existence conditions for ele
magnetic modes of the metal are satisfied forw>w0 .

Figure 3 demonstrates the manifestation of the acou
transparency phenomenon at the lowest sound freque
v/2p550 MHz (vt52.3). The solid curves showa~w! ob-
tained by automatic recording on a thin sampleL
50.92 mm) and on a thick sample (L53.7 mm) and the
dashed curves show the results calculated for the same v
of vt in the approximation of a quadratic spectrum.

It is seen in Fig. 3 that the acoustic transparency p
nomenon is manifested only in the thick sample, where
takes the form of a vanishing of the maximum ofa~w!; the
damping has a lower value atw;w0 than atw50, and, as a
result,a~w! is a smooth curve without a maximum. In oth
words, the acoustic transparency effects ‘‘erode’’ the ma
mum of a~w! in the tilt effect. The gain in amplitude of the

e

FIG. 2. Comparison of the experimental dependence ofDS/S(w) ~solid
curve! with the curves calculated in the approximation of a quadratic el
tron spectrum9 (v/2p5200 MHz, vt59.2, qrH!1). The dot-and-dash
line was calculated with only the strain coupling of the electrons with
sound, while the dashed line is that coupling renormalized by the indu
solenoidal fields.

FIG. 3. Angular dependence of the damping of an acoustic signal atv/2p
550 MHz (vt52.3). The solid curves are experimental, the dashed cur
calculated in the approximation of a quadratic electron spectrum.9



bo

e

z
he
u

is
st

d
.
ffe

om
ian

e

n
d
c

a

na
s
le

e
at

a
th
g
e

ni
y,
u
o
oc

ore
the
ef.

o-
olic
tion
. 3
ate
ture
d-
the
am
es-
ally.

e

g-

ld,
f the
he

on

ur-

d

d to
tri-
ny

tio

ined
z

151Low Temp. Phys. 30 (2), February 2004 Burma et al.
elastic wave due to the acoustic transparency effect is a
80 dB atw'wmax, as can be seen from Fig. 3.

Figure 4 shows the evolution of the efficiency of th
acoustic transparency mechanism as a function ofvt for the
thin and thick samples at a sound frequency of 150 MH
The value oft was varied by changing the temperature of t
sample. The dashed curve in the figure shows the res
calculated using the results of Ref. 9 for the case of an
tropic quadratic spectrum. In the thin sample the acou
transparency effect begins to be manifested atvt'2.5, and
at a maximum valuevt56.8 the amplitude of the measure
signal exceeds its calculated value by more than 30 dB
the thick sample, in contrast, the acoustic transparency e
is manifested throughout the range ofvt, and atvt56.8 the
gain in amplitude of the measured elastic component in c
parison with its calculated value in the sound wave is a g
;240 dB.

Another manifestation of the acoustic transparency
fect is the appearance of additional maxima on thea~w!
curve. Figure 5 shows thea~w! curves obtained on the thi
sample at sound frequencies of 150 and 450 MHz un
conditions of maximum manifestation of the transparen
effect (T51.7 K). It is seen that while at 150 MHz only
weak second maximum appears on thea~w! curve, at 450
MHz this curve displays a developed structure of additio
peaks. Studies showed that the number of these peak
greater for higher sound frequencies and thicker samp
indicating that they are of an interference nature.

In our view, the set of experimental results describ
above finds a reasonable explanation in the hypothesis th
the given case a resonance coupling of the sound with
electromagnetic eigenmode of the metal is observed in
tilt-effect regime. At present only one type of electroma
netic wave that can propagate transverse to the magn
field in a metal is known—the so-called fast magnetoso
wave.10 However, its velocity is close to the Fermi velocit
and one cannot speak of any resonance coupling of so
with it. As we have emphasized previously, the region
observation of the effects described is geometrically ass

FIG. 4. Damping of the elastic component of a coupled wave as a func
of vt for the thin and thick samples.
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ated with flat spots of the Fermi surface, and it is theref
natural to suppose that an electromagnetic eigenmode in
given case is also due to those formations. It is shown in R
11 that for H50 the electrons of the flat spot form a s
called beam wave, the spectrum of which has both parab
parts and linear parts and depends on the mutual orienta
of the wave vector and the flat spot. It was shown in Ref
that under real experimental conditions in the normal st
the beam mode is highly damped, but below the tempera
of the superconducting transition its damping falls off, lea
ing to noticeable features in the temperature behavior of
sound velocity and damping. The properties of the be
wave and the features of its coupling with sound in the pr
ence of a magnetic field have not been studied theoretic
Physically it is clear, however, that ifH is directed along the
velocity of the electrons at the flat spot then it will not driv
them from the flat spot, and the feature~singularity! in the
conductivity of the metal which gives rise to the electroma
netic eigenmode should be preserved.

It can also be expected that in a high magnetic fie
because of the vanishing of the transverse components o
conductivity, the spectrum of the beam wave lies in t
weak-damping region, unlike theH50 case.

The authors thank E. V. Bezuglyi for a helpful discussi
of the results of this study.

*E-mail: fil@ilt.kharkov.ua
1!Here and below we use the historical term ‘‘flat spots’’ of the Fermi s

face. We actually have in mind objects of rather large sizes (dp
@pF /qvFt) on which the projection of the Fermi velocity on a specifie
direction is practically constant (dvF /vF!1/qvFt). In the case whenuvFu
is practically constant on the Fermi surface these requirements lea
geometrically flat objects, although in principle one can imagine a dis
bution ofvF on the Fermi surface such that the given region will not in a
way be distinguished geometrically.
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FIG. 5. Angular dependence of the damping of an acoustic signal obta
on the thin sample (L50.92 mm) at sound frequencies of 150 and 450 MH
(T51.7 K, H515 kOe).
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Nonlinear conductance of a quantum contact containing single impurities
Ye. S. Avotina* and Yu. A. Kolesnichenko
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The conductance of a quantum contact containing single point defects and a potential barrier is
investigated theoretically. The dependence of the conductanceG on the applied voltageU
is obtained for the model of a quantum wire connecting massive banks. The comparative values
of the different nonlinear contributions to the conductance due to the interference of
electron waves scattered by defects and by defects and the barrier are analyzed. The latter
contribution becomes dominant even at extremely small coefficients of reflection of electrons from
the barrier. It is shown that the dependence of the transmission coefficientT12 on the
electron energyE explains the experimentally observed suppression of oscillation of the
conductanceG(U) when its absolute value is close to the single-quantum valueG0

52e2/h. © 2004 American Institute of Physics.@DOI: 10.1063/1.1645168#
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INTRODUCTION

The physical characteristics of conductors with mes
copic dimensions, such as quantum contacts, wires, ri
and dots, for example, are extremely sensitive to the p
ence of single defects, which can substantially alter th
properties and give rise to new effects that are absent in
pure, ballistic objects. Diverse defects inevitably arise in
preparation of conducting structures, and the study of th
influence on the transport characteristics is important in c
nection with the intensive development of nanoelectron
On the other hand, the introduction of a controlled numbe
impurities having definite properties into mesoscopic s
tems opens up the possibility of varying their kinetic coe
cients. A study of the influence of individual impurities o
transport properties in mesoscopic systems is also intere
from the standpoint of basic physics, since in that case
scattering of electrons~e.g., Kondo scattering! manifests it-
self in the most explicit form, unobscured by averaging o
a large number of defects, so that detailed information can
obtained from it. These circumstances have attracted inte
in the experimental and theoretical study of the propertie
conductors of small size containing single defects.

One of the classes of mesoscopic conductors now b
studied intensively is that of quantum ballistic contac
Quantum contacts are microscopic constrictions or w
having diameters comparable to the electron de Bro
wavelength and connecting massive metallic ‘‘banks.’’ T
conductanceG ~the first derivative of the current–voltag
characteristic,G5dI/dU) of such systems is determined b
the numberN of transverse quantization levels of the ele
tron energy with «s,«F («F is the Fermi energy,s
51,...,N) or, as is often said, the number of quantum co
ducting modes. Each of those modes, according to the L
dauer theory,1,2 contributes to G a single quantumG0

52e2/h, so that the total conductanceG5NG0 . The value
of N can be varied, for example, by varying the diameted
of the contact. Here the functionG(d) is a step function with
a step equal to the quantum of conductanceG0 . This effect
1531063-777X/2004/30(2)/6/$26.00
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was first obtained in necks created on the basis of a t
dimensional electron gas and was later observed in th
dimensional contacts of ordinary metals~see, e.g., the
reviews3,4!. In real contacts the reflection of electrons can
taken into account with the aid of a transmission coeffici
of the sth mode,ts<1, and the conductance in the Ohm
law approximation (U→0) at low temperatures (T→0) is
described by the Landauer–Buttiker formula1,2

G5G0(
s51

N

ts . ~1!

The difference of the coefficientsts from unity is due to both
the shape of the contact and the scattering of electrons. H
if the conductance is determined by a small number of qu
tum modes, then the presence of single defects can lead
substantial change in the conductance. A number of pa
have been devoted to the theoretical study of t
question.5–12 However, effects nonlinear in the voltage
quantum contacts have been little studied. At the same ti
the small size of the contact and, hence, its large resista
make it possible to avoid heating effects at biaseseU of the
order of tenths of the Fermi energy, making it possible
study highly nonequilibrium electronic states.

The nonmonotonic dependence of the conductance
quantum contact on the voltageU was first observed experi
mentally in Ref. 13. This effect was subsequently obser
in the experiments of Ref. 14. It was conjectured in Ref.
that the cause of this nonmonotonicity might be interferen
of electron waves. The essence of this effect is as follows.
electron wave with wave vectorks incident on the contac
passes through it with a probabilityts or is reflected with a
probability r s . If a defect is located a distancezi from the
contact, the reflected wave after backscattering on it can
turn again to the contact. The two waves are coherent
interfere. The corresponding contribution of this process
the total transmission coefficientts depends in an oscillatory
manner on the relative phase shift 2kszi between the two
waves. Since the electron energy and, hence the wave
© 2004 American Institute of Physics
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tors ks depend on the applied voltageU, varying the latter
leads to a nonmonotonic dependence of the conducta
G(U). The influence of ‘‘dirty’’ banks on the nonlinear con
ductanceG(U) of ballistic contacts was examined theore
cally in Refs. 14 and 15. The authors of Ref. 15 predic
that conductance fluctuations will be suppressed near
edges of the steps of the functionG(d), and this effect was
subsequently observed experimentally.14 The study in Ref.
15 was based on a numerical simulation using definite va
of the parameters, and for that reason its results canno
used for analysis of concrete experimental data. In Ref.
the scattering-matrix formalism was used to obtain a qu
general expression for the nonlinear conductance. Bes
the scattering matrix for electrons in the contact the the
also took into account the scattering matrix for backscat
ing in the banks, and the total probabilityT12 of transmission
of an electron from one bank of the contact to another w
expressed in terms of the latter matrix. Because the conc
form of the scattering matrices in the formulas for the co
ductance which were obtained in Ref. 14 is indefinite, it
impossible to estimate the amplitude and characteristic p
ods of the nonmonotonicities of the functionG(U). At the
same time, the probability that an electron will again be
cident on the contact after scattering by an impurity locate
sufficient distance from it at a pointr i is small, of the order
of the solid angle within which the contact is viewed fro
the pointr i ~Ref. 16!. A more realistic situation, it seems,
the interference of electron waves reflected from defe
within the contact or in the direct vicinity of it. In Ref. 5 th
conductance of a long quantum contact~wire! containing
single point defects was analyzed theoretically, and the n
linear corrections oscillatory in the voltage were found. Su
a model ignores one important fact—the finite probability
reflection of electrons even in a pure ballistic contact. Su
reflection may be due, for example, to a mismatch of
Fermi velocities when different metals are brought into co
tact or to nonadiabaticity of the shape of the contact.

In this paper we consider the voltage dependence of
conductance of a quantum wire that contains single p
defects~for which no averaging over their positions is don!
and a potential barrier cutting across the wire. This mo
allows one to take into account both the reflection from
plane of the contact~which is described by the coefficient o
reflection from the barrier! and also scattering on impurities
The relative simplicity of the model makes it possible
obtain exact analytical expressions describing the dep
dence of the conductance on the position of the defects.

MODEL AND CALCULATION OF THE TRANSMISSION
COEFFICIENT OF ELECTRONS THROUGH THE CONTACT

Consider a contact in the form of a long, narrow chan
having a lengthL much greater than its diameterd52R. The
edge of the channel is smoothly~on the scale of the Ferm
wavelengthlF) connected to massive metallic ‘‘banks’’~the
adiabatic approximation17!, to which a voltageeU!«F is
applied~Fig. 1!. These conditions permit one to neglect t
reflection of electrons from the edges of the contact. At
center of the contact (z50) is a potential barrierV, near
ce
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which, at the pointsr i , are found several point impurities
The single-electron Hamiltonian of this system is written
the form

Ĥ5
p̂2

2m
1Vd~z!1g(

i
d~r2r i !, ~2!

wherep̂ andm are the momentum operator and the effect
mass of the electron, andg is the coupling constant of the
electron with the impurities.

Calculation of the conductance of a mesoscopic chan
~see, e.g., Ref. 18! reduces to determination of the scatteri
matrix t̂ (E) as a function of the electron energyE. The most
general expression for the electric current through the ch
nel has the form

I 5
2e2

h E
2`

`

dET12~E!F f FS E1
eU

2 D2 f FS E2
eU

2 D G ,
~3!

T125Tr~ t̂† t̂ !5(
ss8

Tss85(
ss8

utss8u
2, ~4!

whereTss8 is the probability that an electron belonging to th
quantum conducting mode of indexs in the left bank of the
contact will pass through it and belong to the mode w
index s8 in the right bank. The summation overs ands8 in
formula ~4! is restricted by the condition«s(s8),«F . One
can diagonalize the matrixt̂† t̂ and write the Landauer–
Buttiker formula~1! in terms of its eigenvaluests . At tem-
peratureT→0 the expression for the conductance takes
simple form

G5
e2

h FT12S «F1
eU

2 D1T12S «F2
eU

2 D G . ~5!

We note that at finite voltagesU the conductance of a bal
listic contact is determined by two fluxes of electrons mo
ing in opposite directions, with energies differing by a
amount eU.19 Accordingly, the energy of the transvers
quantum modes for these groups of electrons also differ
eU. Therefore with increasing diameter of the contact t
quantum mode becomes allowed for one direction of
wave vector first, viz., that with the lowest energy. As
result, the conductance jumps byG0/2.20,21

The probabilitiesTss8 can be expressed in terms of th
advanced Green’s functionsG1(r ,r 8,E) of the electrons~see
below!. In the adiabatic approximation~far from the edges!
the wave functionsca(r ) of the electrons in a ballistic chan

FIG. 1. Model of a quantum contact in the form of a channel of radiusR
connecting two massive ‘‘banks.’’ The barrier and the impurities inside
contact are shown schematically. The arrows indicate the direction of
tion of the electrons coming into the contact, reflected by the barrier,
transmitted through it;r i is the distance of the defect from the axis of th
contact.
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nel in the absence of the barrier (V5g50) can be written in
the form

ca~r !5
1

AL
c'b~R!eikzz, ~6!

wherea5(b,kz) is the complete set of quantum numbe
consisting of a set of two discrete numbersb5(m,n) which
specify the energy levels«b of the transverse quantization
and the continuous wave numberkz is the projection of the
wave vector of the electron on the axis of the conta
c'b(R) is the component of the electron wave function p
pendicular to the axis of the contact and can be chosen
andr5(R,z). Accordingly, the total energy of the electron
«a5«b1\2kz

2/2m. The functions c'b(R) satisfy zero
boundary conditions at the surface of the contact. In the
merical calculations presented below we have assumed
definiteness that the channel has a cylindrical shape. T
the wave functions and energy levels of the transverse q
tization of the electrons in a ballistic channel (L→`) with-
out the impurities and barrier have the form

c'nm~r,w,z!5
1

ApR2Jm11~gmn!
JmS gmn

r

RDeimw;

«nm5
\2gmn

2

2mR2 . ~7!

Here we have used the cylindrical coordinatesr5(r,w,z);
gmn is thenth zero of the Bessel functionJm(x).

By factorizing the wave function~6!, we can write
G1(r ,r 8,E) in the form of an expansion:

G1~r ,r 8,E!5(
bb8

c'b~R!c'b8~R8!Gbb8
1

~z,z8!. ~8!

In accordance with the results of Ref. 22, the transmiss
probabilitiesTbb8(E) are equal to

Tbb8~E!5
\4

m2 kbkb8uGbb8
1

~z,z8,E!u2, z→2`, z8→1`,

~9!

wherekb5A2m(E2«b)/\ is the electron wave vector cor
responding to the quantized energy level«b . In formula ~9!
we have gone from the classification of electron modes
cording to indexs @formulas~1! and ~4!#, for which the en-
es
r-
,

t,
-
al,

u-
or
en
n-

n

c-

ergies«s increase with that index, to a classification acco
ing to a set of discrete quantum numbersb.

The Green’s functionGb(r ,r 8) in a channel with a po-
tential barrier in the absence of impurities satisfies the eq
tion

Gb~r ,r 8!5G0~r ,r 8!

1VE dR9G0~r ,R9!Gb~R9,r 8!uz950 , ~10!

where

G0
1~r ,r 8!5 lim

h→0
(
a

ca~R!ca* ~R8!

E2«a2 ih
~11!

is the Green’s function in the absence of impurities and
barrier. From Eq.~10! we find the coefficients of the expan
sion ~9! of the functionGb(r ,r 8,E):

Gbbb8
1

~z,z8,E!52dbb8

im

\2kb
$eikbuz82zu1r beikb~ uzu1uz8u!%,

~12!
where the amplitude for reflection from the barrier,r b , is
equal to

r b52
imV

~\2kb1 imV!
52 i ur bueiwb. ~13!

The matrixTbb8 from ~9! can be written in the formTbb8
5Tb

bdbb8 , whereTb
b is expressed in terms of the amplitud

of the transmitted wavetb5r b115utbueiwb:

Tb
b5utbu25F11S mV

\2kb
D 2G21

. ~14!

In the presence of impurities the Green’s functi
G(r ,r 8,E) that determines the transmission probability~9!
must be found from the equation

G~r ,r 8!5Gb~r ,r 8!1g(
i

Gb~r ,r i !G~r i ,r 8!. ~15!

Equation~15! can be solved exactly for any finite num
ber of impuritiesi . For this it is necessary to write Eq.~15!
at all the valuesr5r i and solve the system ofi linear alge-
braic equations for the functionsG1(r i ,r 8). As examples,
let us solve Eq.~15! for one and two impurities.

For one impurity at the pointr1 :

G~1!~r ,r 8!5Gb~r ,r 8!1G1~r1!Gb~r ,r1!Gb~r1 ,r 8!.
~16!

For two impurities located at the pointsr5r1,2:
~17!
whereG1(r i)5 g/12gGb(r i ,r i).
For a rather large number of impurities the exact expr

sion for the functionG(r ,r 8) becomes extremely cumbe
some. If it is assumed that the coupling constantg is small,
the expression for the transmission probabilities~9! can be
obtained with the use of the Born expansion in powers ofg.
-
With accuracy to terms proportional tog2 we obtain

Tbb85Tb
bdbb81DT1bb81DT2bb8 . ~18!

The first-order correction is equal to
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FIG. 2. Schematic illustration of some possible types of electron trajectories in a quantum channel with a barrier and impurities.
de-
ies
DT1bb8522dbb8S m

\2DTb
bg

1

kb
(

i
Abb

~ i i !ur bucos~2kbzi1wb!,

~19!

whereAbb
( i j )

5c'b(Ri)c'b8(Rj ).
8
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The form of the second-order correctionDT2bb8 to the
transmission coefficient depends on the position of the
fects relative to the barrier. In the case when the impurit
are located on different sides of the barrier,DT2bb8 is given
by the formula (zi,0, zj.0)
~20!

or in the case when the impurities lie on one side of the barrier (zi,zj ):

~21!
tron

he
eral

en
oes
he
-
tain

a-
r.
These formulas are valid when the value of the to
energy of the electrons is not close in value to the ener
«b of the quantum modes. If that is not the case~i.e., kb

→0), then the transmission coefficient must be calcula
using the exact expression for the Green’s function.

DISCUSSION OF THE RESULTS

When the reflection of electrons from a barrier in t
contact is taken into account, the conductance becom
complicated nonmonotonic function of the voltage. If t
coupling constantg of an electron with the impurity is small
then the electron transmission probabilityTbb8 in ~18! can be
obtained in the Born approximation for an arbitrary numb
of defects~15!. In this case the terms in the probabilityTbb8
~18! with an oscillatory dependence on energy have a c
physical meaning and can be explained in terms of elec
trajectories. As we discussed in the Introduction, the pr
l
s

d

a

r

ar
n

s-

ence of such terms is due to the interference of the elec
wave passing through the contact without scattering~trajec-
tory 1 in Fig. 2! and the electron waves reflected by t
defects and barrier. As an example, Fig. 2 shows sev
possible electron trajectories. The first correctionDT1bb8
~proportional tog) corresponds to the interference betwe
the directly transmitted wave and the wave that underg
one reflection from an impurity and one reflection from t
barrier ~trajectory2 in Fig. 2a!. The interference of the tra
jectories illustrated in Fig. 2b and 2c corresponds to a cer
term in the second-order correctionDT2bb8 , while trajecto-
ries 3 and 5 contain two scatterings on impurities, and tr
jectories4 and6 also include two reflections from the barrie
The first and second terms in formula~21! are due to the
interference between trajectories1 and trajectories3 and4 in
Fig. 2b, respectively. Figure 2c shows trajectories5 and 6,
the interference between each of which and trajectory1 cor-



157Low Temp. Phys. 30 (2), February 2004 Ye. S. Avotina and Yu. A. Kolesnichenko
FIG. 3. Dependence of the conductance oneU/2 ~in units of the Fermi energy! in the presence of two defects in the contact~impurities located on one side
~a! and on different sides~b! of the barrier!; r15|F , r251.5|F , g050.1, R53|F , V05mV/(\2kF), g05mg/(pR2\2kF).
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responds to the first and second terms in formula~20!. It is
interesting to note that the conductance of the contact c
tains a term proportional tog, which is absent when impurity
scattering processes are taken into account with the quan
analog of the collision integral, for example. Although th
term vanishes after averaging over positions of a large n
ber of impurities, in a mesoscopic contact with several
fects and a barrier it can play a decisive role. The additio
phase shift depends on the distance between impurities,
distribution relative to the barrier, the possible variation
the magnitude of the wave vectorkb ~the indexb of the
quantum mode! in scattering on an impurity and also in th
reflection of an electron from the barrier. We note that
interaction of an electron with the barrier in the framewo
of this model does not lead to mixing of the quantum mod
The contribution of the interference terms to the conducta
depends substantially on the position of the impurities re
tive to the axis of the contact,Ri , and is determined by the
local density of states for thebth mode at the pointRi :
nb(Ri ,E)5mc'b

2 (Ri)/(\
2kb(E)). Since the transvers

wave functionsc'b vanish at certain points, the scatterin
on impurities located near such points contributes little to
conductance of thebth mode. In particular, impurities on th
surface do not influence the conductance.

Figure 3 shows the voltage-dependent part of the c

FIG. 4. Dependence of the conductance oneU/2 ~in units of the Fermi
energy! calculated in the linear approximation in the coupling constantg;
r1[|F , r251.5|F , g050.1, R53|F .
n-

m

-
-

al
eir
f

e

s.
e
-

e

-

ductanceDG(U) for various values of the barrier potentialV
and for two impurities located on the same side or on diff
ent sides of the barrier~all the numerical calculations wer
done at zero temperature!. These curves show that even
relatively small values ofV the contribution corresponding
to a single act of scattering on an impurity and reflecti
from the barrier becomes dominant. For comparison Fig
shows the analogous dependenceDG(U) calculated in
second-order perturbation theory in the coupling constang.

Figure 5 shows the dependenceDG(U) for a single-
mode channelb5(0,1) at different values of its radius. A
R53|F the energy of the quantum mode«01 is quite far
from the Fermi level«F , while for R52.6|F it is found near
the Fermi level. These dependences clearly demonstrate
pression of the oscillations ofDG(U) near the steps wher
the conductance jumps occur; this agrees with the exp
mental result of Ref. 14. In the framework of our model th
decrease in the conductance oscillations has a natural p
cal explanation. The coefficient of transmission of an el
tron through the barrier,T01

b ~14!, depends on the mode en
ergy «b , which, according to formula~7!, decreases with
increasing radiusR. WhenR approaches the valueR2 cor-
responding to the entry of the next mode with a higher
ergy «11 in the channel, the coefficientT01

b increases and the
interference contribution due to reflection from the barrier

FIG. 5. Dependence oneU/2 ~in units of the Fermi energy! of the conduc-
tance of a single-mode channel (b5(0,1)) for different values of the radius
of the contact~the radius is indicated in units of|F); g050.1, V050.1.
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minimum. The conductance oscillations are small neaR
5R2 in the two-mode channel (R.R2) as well, sinceTb

b

→0 for E→«b , as can easily be seen from formula~14!.

CONCLUSION

In this paper we have investigated theoretically the n
linear conductanceG(U) of a quantum channel containin
single impurities and a barrier. It is shown that the additio
phase shift of the wave function, which depends on the
tances between impurities or between impurities and the
rier, leads to oscillations of the transmission probability of
electron through the contact as a function of the elect
energyE. Upon reflection of the electron from the barrier
transmission through it, the electron wave function also
quires a certain phasewb(E). Increasing the applied voltag
U alters the energies of the incoming electrons, leading
nonmonotonic dependence ofG(U). The functionG(U) is
aperiodic ~it cannot be represented by a finite number
Fourier harmonics with respect to the voltageU) because of
the complicated dependence of the phase of the wave f
tions on the energyE. The amplitude of the nonmonotonic
ties of the conductanceG(U) is determined by the distribu
tion of impurities relative to the axis of the contac
Impurities located at points where the local density of el
tron states for one of the quantum modes vanishes and
purities on the surface of the contact do not influence
contribution to the conductance from that mode. We ha
shown that the reflection of electrons from a barrier in
contact become the main cause of nonmonotonic behavio
G(U) already at extremely small amplitudes of that refle
tion ~the absolute value of the conductance is close to
value it has in a ballistic contact in the absence of a barri!.
The results obtained provide evidence that the energy de
dence of the probability of transmission of electrons throu
the barrier can account for the experimentally observe14

suppression of conductance oscillations of a single-m
contact having a diameter close to the value correspondin
the entry of the next quantum mode.
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Vibrational spectrum in the vicinity of a local mode in linear chains with isotopic
impurities
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The vibrational spectrum in the vicinity of the frequency of a local vibration of an isolated light
isotopic impurity in a one-dimensional disordered chain containing such impurities is
calculated numerically. Chains consisting of 108– 109 atoms, corresponding to macroscopic
samples several centimeters in size, are used. A complex hierarchical structure of the spectrum is
obtained for this system. The results of the numerical calculations are compared with
simple analytical expressions. It is shown that the smoothed density of states in a narrow
neighborhood of the local mode can be obtained to sufficient accuracy from arguments based on
separating out the nearest neighbor of the chosen impurity atom. It turns out that the
expression for the density of states obtained in that manner gives an acceptable result not only
outside but also inside the region of concentration broadening of the local mode. ©2004
American Institute of Physics.@DOI: 10.1063/1.1645169#
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1. INTRODUCTION

Determination of the vibrational spectra of disorder
systems is a traditional topic in condensed matter phys
Such spectra are of great interest in the study of the pro
ties of crystals at low temperatures, where they determin
wide group of observable physical properties. The probl
of the vibrational spectrum of a nonideal crystal reduces
one of solving a system of equations equal in number to
product of the dimensionality times the number of atoms
the system. Since translational symmetry is absent and o
there are no other ways of simplifying the problem, vario
approximate analytical and numerical methods of solut
have been developed for the physically most important m
els of disorder.

Beginning with the pioneering work of I. M. Lifshits,1,2

many authors have proposed different analytical methods
determining the structure of the vibrational spectrum of d
ordered systems, often based on comparatively simple m
systems. One such widely used model is the linear chain w
nearest-neighbor interaction and substitutional disorder.
spite its simplicity, it can describe many properties of re
physical objects such as chain crystals and even some
cally inhomogeneous media.3,4 Particular interest in disor
dered systems with reduced dimensionality arose after
discovery of high-temperature superconductivity.

However, the exact equation5 from which one can deter
mine the spectrum of such a chain is inconvenient to appl
the general case. Other known approaches to the solutio
this problem often assume that there is some small param
or restrict consideration to some definite spectral intervals
particular, a wide group of studies has been done on
assumption that there is an isolated impurity center or
1591063-777X/2004/30(2)/7/$26.00
s.
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isolated defect of the type consisting of a pair of impuriti
~see, e.g., Refs. 6 and 7!.

Numerical modeling is extremely important and use
in the analysis of the spectra of disordered systems. In
ticular, it can permit one to design an experiment or to che
results obtained analytically. Back in the 1960s Dean8 carried
out calculations of the spectra of disordered chains at ra
high ~0.1–0.5! concentrations of impurities. In spite of th
fact that the density of vibrational states could not be a
lyzed in detail, Dean’s studies showed that the hig
frequency part of the spectrum in the presence of a li
isotopic impurity is very choppy. It was also established th
certain spectral lines located near the local mode corresp
to the simplest clusters of impurity atoms. In addition, b
cause of the impossibility of calculating chains of sufficie
length, cases of low impurity concentrations have not be
studied. However, it is just such a case that is of particu
interest, since, on the one hand, even extremely low impu
concentrations can in some cases have a substantial influ
on the properties of crystals and, on the other hand, it is
low impurity concentrations that one can neglect the indir
interaction between impurities and for which it has been p
sible to obtain some analytical results.

Today’s computational facilities enable one to tre
chains in which the number of atoms corresponds to
sample size of several centimeters or more. As a result,
can study the structure of the vibrational spectrum in mu
greater detail, focusing attention on different spectral int
vals, and can include the case of low impurity concent
tions. This, in turn, can aid in the construction of an adequ
analytical method of determining the spectrum.

This paper is devoted to an analysis of the vibratio
spectrum of a disordered chain near a local mode cause
© 2004 American Institute of Physics
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the presence of light substitutional impurities and to a co
parison of the results of a numerical simulation with so
analytical results available for such a model system.

2. QUALITATIVE DESCRIPTION OF THE SPECTRUM NEAR
THE LOCAL MODE FREQUENCY

Let us consider a disordered chain consisting of t
types of atoms interacting only with nearest neighbors.
shall assume that the presence of a defect at one of the
of a given chain leads only to a change in the mass of
given atom, while the rest of the parameters all remain
changed. The impurities will be assumed to be distribu
randomly with some concentrationc, so that this model cor-
responds completely to the approximation of an isotopic s
stitutional impurity.

The equations of motion of such a chain ofN atoms with
fixed ends has the form

bnun211~an2v2!un1bn11un1150, ~1!

n51,2...N, u15uN1150,

wherev is the vibrational frequency of the atoms,mn is the
mass of thenth atom,un5pnAmn, pn is the displacement o
the nth atom from its position at rest,

an5
2g

mn
, bn52

g

Amn21mn

, ~2!

andg is the bond stiffness.
It is well known that in the case of a light impurity in

one-dimensional system there exists a local mode ly
above the maximum frequency of the acoustic band. T
frequency of the local mode is determined by the express

15ng00, ~3!

whereg00 is a diagonal element of the Green’s function
the site representation, andn is a perturbation. In the case o
an isotopic defect

n5«v2, «5
m02md

m0
, ~4!

where m0 and md are the mass of the host and impuri
atoms, respectively,« is the mass defect~for local vibrations
to arise it is necessary to satisfy the conditionmd,m0 , so
that in this case 0,«,1). The solution of equation~3! for
the one-dimensional case has the well-known and sim
form vL

251/(12«2).
Interaction between impurities leads to splitting of t

mode and the appearance of fine structure in the spect
For example, the interaction of two impurities leads to sp
ting of the local mode into two, the distance between th
frequencies decreasing with increasing distance between
fects. The frequencies of these modes~symmetric and anti-
symmetric modes, respectively! are given in implicit form by
the equations

15t2g0R
2 , t5

n

12ng00
, ~5!

whereR is the distance between the impurities of the pair~in
units of the interatomic distance!. In the case considered, th
Green’s functiong0R has the form9
-
e

o
e
tes
e
-
d

-

g
e
n

le

m.
-
ir
e-

g0R5
1

N (
k

e2 ikR

v22vk
2 5

~21!R~Av22Av221!2R

Av2Av221
, ~6!

where the maximum vibrational frequency of the ideal ch
consisting only of atoms of massm0 is assumed equal to
unity. Thus the frequenciesvR of the pair modes for impu-
rity atoms separated by a distanceR can be determined from
the equation

S 1

«
AvR

221

vR
2 21D 6~AvR

22AvR
221!2R50. ~7!

Below, for obtaining analytic expressions for the dens
of states in the vicinity of the local mode frequencyvL we
shall use the approximate solution of equation~7! in this
region. Here the impurities in a pair will be placed f
enough apart that the shift of the pair modes from the ini
frequency is substantially less than the distance betwee
and the band edge. Expanding the left-hand side of~7! about
the local mode frequency, we find that the frequencyvR of
these pair modes are distributed almost symmetrically w
respect tovL and lie a distance away from it given by9

D~R!5vR
22vL

2'6S 12«

11« D R 2«2

~12«2!2 . ~8!

In other words, the modes lying a distanceD from the local
mode (D5v22vL

2) correspond to pairs of impurities foun
a distance apart equal to

R[R~D!5 lnS D
~12«2!2

2«2 D S ln
12«

11« D 21

. ~9!

Starting from simple qualitative arguments one can e
ily determine the number of impurity modes that at a lo
defect concentration fall within a certain neighborhood of t
square frequency of the local vibration.10 The modes corre-
sponding to a pair of impurities separated by a dista
greater than the chosen value ofR will be split by an amount
not exceedingD(R). The probability that the nearest impu
rity is found a distance greater than or equal toR from some
given impurity is

P~R!5~12c!2~R21!. ~10!

As a result, by substituting~9! into ~10! and neglecting
the discreteness, we find that the number of modesND that
fall into a neighborhood of half-widthD around the square
frequency of the local vibration is equal to

ND5NcP~R~D!!5NcS D~12«2!2

2«2 D q

, ~11!

where

q5
2 ln~12c!

ln
12«

11«

.

An expression for the density of states averaged o
some frequency interval@the smoothed density of state
r~D!# can be obtained by differentiation of expression~11!
with respect to the square frequency:
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r~D!5c2S UD~12«2!2

2«2 U D qS UDUU ln 12«

11«U D
21

. ~12!

A formula similar to Eq.~12! but for the electron prob-
lem was obtained by Lifshits.11

It should be noted that expressions~11! and~12! have in
essence been obtained from analysis of the structure of
modes of the spectrum. Since at a low concentration of
purities the frequency spectrum above the initial acou
band, except for an extremely narrow neighborhood of
local mode, is formed mainly by just such pair impuri
modes, its approximate description by the monotonic fu
tion ~12! is correct only under the condition that at lea
several of them fall into the averaging region. In oth
words, expression~12! is valid in the case when the relativ
variation of the density of states over the discreteness in
val associated with the pair modes is small, i.e., under
condition

1

r~D!

]r~D!

]R
!1. ~13!

When the form ofr~D! described by expression~12! is
taken into account along with the relation betweenD andR,
i.e., with the discreteness of the pair modes according to
~8!, we find that at low impurity concentrations criterion~13!
takes the form

2 ln
12«

11«
!1. ~14!

Thus expression~12! for the smoothed density of state
~and others like it! can be used to some degree or other
description of the states only in the case of local modes ly
near the edge of the main band.

We also note that previously in a number of papers14–18

an analysis of the convergence of the series describing c
ter expansions in complexes of interacting impurity cent
indicated a region of concentration broadeningDc around the
local vibration, i.e., a frequency interval (vL

27Dc), within
which the spectrum cannot be described by those cluster
pansions. The value ofDc is determined by the interaction o
impurities at the mean distances, i.e.,

Dc5D~xRc!, ~15!

whereRc51/c is the mean distance between impurities, a
x is a numerical coefficient which we take equal to 0.5 in o
estimations. Below, in making a comparison of the analyti
and numerical results, we shall useDc for analysis of the
domains of applicability of the different approaches.

3. NUMERICAL RESULTS

An exact numerical calculation of the spectrum of a d
ordered crystal of macroscopic size~even for the one-
dimensional case! involves a considerable volume of comp
tations. The number of operations necessary to determin
of the vibrational eigenfrequencies of a linear chain is p
portional to N2/2. The calculation of the spectrum can b
optimized using a theorem of negative eigenvalues pro
by Dean.8,12,13

According to that theorem, the number of eigenfrequ
cies lying in an interval~0,v! for the model system chose
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above with only nearest-neighbor interactions is equal to
number of negative terms in the sequence of valuesgi(v

2),
which are determined by the recursion formula

gi~v2!5~a i2v2!2b i
2 1

gi 21~v2!
, ~16!

wherea i andb i are scalar quantities defined in relations~2!,
and the indexi goes over all atoms of the chain. Thus th
number of operations necessary to determine the numbe
modes lying in an interval~0,v! is proportional toN.

Figure 1 shows the structure of the spectrum near
local mode frequency for an isotopic impurity withm51/2
in various spectral intervals. In Fig. 1a the distribution of t
local mode is shown relative to the band edge (v251), and
in Figs. 1b and 1c the zero is placed at the vibrational f
quency of an isolated impurity. The position of the ma
levels shown in this figure agree to high accuracy with
solutions obtained using expression~7! for isolated pairs of
impurities, including for the levels lying farthest from th
unperturbed local mode.

It should be noted that the transition to higher magn
cation of the scale near the local frequency does not alter
overall form of the spectrum. Such a situation is analogou
that observed for fractal structures. It should also be no
that here, unlike the three-dimensional case, the intensit
the central peak is always much greater than that of the
peaks, even in very close proximity to the local mode of
isolated isotope, in spite of the difference in the step width
the histogram. In this case the density of states increa
monotonically as the local mode frequency is approache

Let us estimate the chain length necessary for obtain
an adequate description of the spectrum above the in
acoustic band. As the chain length increases, new modes
always appear, bringing with them new nuances in the fi
structure of the spectrum. Strictly speaking, any spectrum

FIG. 1. Structure of the vibrational spectrum near a local level for differ
magnifications of the frequency scale. The concentrationc51/20; «50.5;
chain lengthN5108. The density of states normalized to unity is plotte
along the vertical axis and the squares of the frequencies along the hor
tal axis. In Fig. 1a theX axis is labeled with the true values of the squar
of the frequencies~1 equals the edge of the unperturbed spectrum!, while in
Figs. 1b and 1c the values are measured from the frequency of the
level.
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a chain of finite length is unique and does not corresp
exactly to the spectrum of an infinite system. It was me
tioned above that at a low impurity concentration the sp
trum above the acoustic band of a chain of heavy ato
consists mainly of pair impurity modes. The probability
pair formation for impurities located close together is prop
tional to the square of the concentration; consequently,
chain length must be such that the inequality

c2N@1 ~17!

holds by an extremely wide margin. It will be shown belo
that the requirements on the chain length become more s
gent for the nearest neighborhood of the local vibrati
where it is necessary to take widely separated defect p
into account.

Figure 2 shows how the spectrum depends on the c
length for an impurity massmd50.9 and a concentrationc
50.01. As is seen in Fig. 2a, a chain length of 104 atoms is
insufficient even to reveal all of the pair modes. At a cha
length of the order of 106 atoms~Fig. 2b! all the pair modes
are present, but their spectral weight changes for differ
realizations of the chain and contain a substantial noise c
ponent. Only for chains of the order of 107 and more atoms
long ~Fig. 2c! does the overall form of the spectrum cease
depend on the chain length and become similar to the s
trum of an infinitely long chain.

In this paper numerical calculations are done for cha
consisting of 108– 109 atoms, corresponding to objects se
eral centimeters long. This makes it possibility to obtain s
tistically reliable and reproducible results conveying the
sic features of the spectrum above the initial acoustic ban
impurity concentrations above 1023.

Figure 3 shows, for two values of the impurity mass, t
curves obtained numerically for the number of modes~nor-
malized tocN) that fall into aD neighborhood of the loca
vibration as a function of impurity concentration for differe
values of D ~the solid curves!. The irregular trend of the

FIG. 2. Structure of the vibrational spectrum near a local level for differ
values of the number of atoms in the chain,N; herec51/100,«50.5. The
squares of the frequencies are plotted along theX axis.
d
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curves for concentrations of 1024 and less is due to the finite
size of the chains generated. The dashed curves are obta
from expression~11!. The crosses on the curves denote t
concentration values for which the value ofDc coincides
with the specified value of the intervalD ~the region of con-
centrations whereDc,D lies to the left!.

The best agreement of the analytical and numerical
sults is observed at a relatively low impurity concentratio
whenDc is less than or of the order ofD. However, as can be
seen in Fig. 3, good agreement is obtained even in the re
whereDc.D, and with increasingD the agreement of the
two results extends to ever higher concentrations. Thus f
one-dimensional chain the results obtained using separa
of the closest pair is valid in a narrow neighborhood of t
local vibration, with a width less than the concentrati
broadening of the latter.

In Fig. 4 one can see the good agreement of
smoothed density of states~12! with the calculated density o
states for a value of the mass defect satisfying~13!. Figures
4a,b,c respectively show the spectra inside and near
boundary and outside the concentration broadening reg
respectively. Here small values of the mass defect«
'0.01) were chosen because they make it possible to
lyze in greater detail the fine structure of the spectrum ne
local mode and accordingly to do a more detailed comp
son of the numerical and analytical results.

The numerical results obtained show that the density
states always increases as the frequency of the local vibra
is approached. However, according to Eq.~12!, such growth

t

FIG. 3. Number of levels falling into aD neighborhood of the local leve
(xL2D, xL1D) as a function of the impurity concentration, forD510212

~1!; 1026 ~2!, 1022 ~3!. The dashed lines show the calculation according
Eq. ~11!. N5108.



th

th

in-
fact
at

in
ion
-
tion
e-

tes

g
n-
ter
n

en-
’’
air
o-
se
y of

ad-
ion
al
in
of

ion

yti-
er-
r in

bi-
to

er
t
hat
ion

.

163Low Temp. Phys. 30 (2), February 2004 Ivanov et al.
of the density of states should take place only under
condition

q,1. ~18!

Figure 5a shows the region in which condition~18! holds.
The lines bounding it can be described approximately by
relationc'«. A calculation for the casec.«, presented in

FIG. 4. Comparison of the smoothed spectrum described by expression~12!
with the numerically calculated spectrum~for N553108 and «50.01; c
51023) inside ~a!, near~b!, and outside~c! the concentration broadening

FIG. 5. a—Diagram determining the regions of growth~I! and decay~II ! of
the density of states~according to expression~12!!. b—Behavior of the
density of states near a local level forc.« (c51/80, «50.01). The dashed
curve is the analytical calculation~12!, the solid line is the result of a
numerical calculation forN5108.
e

e

Fig. 5b, shows that the density of states nevertheless
creases as the local mode frequency is approached. This
is explained by a restructuring of the spectrum starting
c'«, so that expression~12! is no longer valid.

4. MODIFIED EXPANSION IN CONCENTRATIONS

The direct expansion of the thermodynamic quantities
disordered systems in powers of the impurity concentrat
was proposed by Lifshits.11,14 When only the terms corre
sponding to pairs are taken into account and the contribu
from clusters containing three or more impurities are n
glected, this expansion for the density of vibrational sta
can be written

r~v2!5cd~v22vL
2!1c2(

R
@d~v22~vR

l !2!1d~v2

2~vR
r !2!22d~v22vL

2!#1..., ~19!

wherevR
l andvR

r are the frequencies of the pair modes lyin
to the left and right of the local mode frequency. This expa
sion is equivalent to the so-called unrenormalized clus
expansion15 and is valid outside the region of concentratio
broadening.

If one considers only the terms mentioned, then the d
sity of vibrational states will have the form of a ‘‘universal
function of frequency, determined by the position of the p
modes, which varies with the impurity concentration in pr
portion toc2. In the case when the local vibration lies clo
to the band edge, one can introduce a smoothed densit
states, as above, if the summation in formula~19! is replaced
by integration:

rc~v2!5
c2

uvL
22v2uU ln 12«

11«U
. ~20!

Figure 6 shows a comparison ofr(v2)/c2 obtained with the
use of expressions~20! and ~12!. It is seen that they differ
appreciably from each other inside the concentration bro
ening region, in that frequency interval where express
~12! still agrees fairly well with the results of the numeric
simulation. It would be interesting to introduce changes
expression~19! such that the results obtained on the basis
that expression would agree with the numerical simulat
over a wider range of frequencies.

To obtain better agreement of the numerical and anal
cal results and to find an interpolation formula for the av
aged density of states we shall choose the weight facto
the pair mode not in the formc2, as was done in~19!, but in
the next more accurate approximation, in which the com
natorics of the occupation of sites by impurities giving rise
some pair mode or other is taken into account:

p~R!5c2~12c!gR, ~21!

whereg is a numerical coefficient. Below we shall consid
this coefficient to be a function ofR and, moreover, differen
for pair modes having higher or lower frequencies than t
of an isolated local mode. Thus in place of the expans
~19! we get



-
he

ar
ia
ffi
m
pa

t
th

e
on
-
n
air
sit

e
is
o

er
n

p

f
It is
s
is

ters,

ht

ent

n

or-

n,

ra-
m-

opic
ion

te
the

th
-

164 Low Temp. Phys. 30 (2), February 2004 Ivanov et al.
r~v2!5cd~v22vL
2!1c2(

R
@~12c!g l ~R!R

3d~v22~vR
l !2!1~12c!gr ~R!Rd~v22~vR

r !2!1...,

~22!

whereg l(R) and g r(R) are the indicated numerical coeffi
cients for the pair modes found to the left and right of t
local mode frequency.

It is expected that in a frequency region sufficiently f
from the local mode, as a consequence of the exponent
rapid decay of the interaction between impurities, the coe
cient g l ,r(R) should be equal to three, which meets the si
plest requirement that the impurity atom nearest to the
under consideration be found at a distance greater than
distance between the impurity atoms in that pair. Thus
condition g l ,r(R)53 will most likely hold for the impurity
modes corresponding to relatively short distances betw
impurities ~but nevertheless sufficiently long in comparis
with the interatomic distance!. On the other hand, it is inter
esting to note that forg l ,r(R)52, an averaging of expressio
~22! over a frequency interval corresponding to several p
of levels will lead to an expression for the smoothed den
of states which agrees exactly with~12!. Since the latter
expression was obtained starting from an analysis of the d
sity of states near the central peak, even though the heur
discussions also correspond to the singling out of pairs
impurity atoms, one can expect that the valueg l ,r(R)52
will correspond to impurities located at significantly larg
distances from each other~and hence, to a spectral regio
closer to the central peak!.

To determine the dependencesg l ,r(R), an averaging of
the numerical results was done, as in expression~22!, over an
interval larger than the distance between successive

FIG. 6. Comparison of the analytical expressions for the density of sta
normalized toc2, in the neighborhood of a local level. The dashed line is
concentration-independent expression that follows from Eq.~20!; the solid
curves are calculated according to Eq.~12!: for c51/1000 ~I! and c
51/500 ~II ! ~panels a–c correspond to different values of the scale of
region near the local level!; «50.01.
lly
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e
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modes. Theg l ,r(R) curves obtained for different values o
the concentration and mass defect are shown in Fig. 7.
seen that the parameterg l ,r(R) is independent of the mas
defect and impurity concentration if the unit of distance
taken equal to the mean distance between impurity cen
Rc51/c, and decreases monotonically with increasingR.
The curves obtained for pair modes lying to the left and rig
of the local mode frequency, i.e.,g l(R) and g r(R), are
somewhat different. As expected, the value of the coeffici
g r(R) approaches three at small values ofR and is approxi-
mately equal to two atR5Rc51/c. Analysis of the calcu-
lated spectrum to the left of the local mode~between its
frequency and the band edge! shows that the values ofg l(R)
come out somewhat smaller~by approximately a factor of
1.2 to 2.3!, but the general character of the dependence oR
remains unchanged.

Thus if the dependenceg l ,r(R) is taken into account one
can, in particular, obtain a more accurate interpolation f
mula for the density of states than expression~19!. Within
the concentration broadening band, whenR@Rc , the coeffi-
cient g l ,r(R) turns out to be less than two. In this regio
generally speaking, neither expansion~19! nor interpolation
formula ~22! is applicable. However, such values ofg l ,r(R)
formally produce agreement between~22! and the calculated
spectrum.

5. CONCLUSION

In this paper we have reported a calculation of the vib
tional spectra of disordered linear chains containing a nu
ber of atoms which corresponds to samples of macrosc
size. Attention is devoted mainly to the detailed examinat

s,

e
FIG. 7. Dependence of the exponentg l ,r(R) on the distance between impu
rities in a pair~the value ofcR5R/Rc is plotted along the horizontal axis!
for different values of the mass defect and concentration:«50.6, c51/20
~L!; «50.6, c51/100 ~h!; «50.9, c51/20 ~s!; «50.95, c51/100 ~3!;
«50.95, c51/20 ~1!.
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of the structure of the spectrum near the local mode
quency of an isolated impurity and to comparison of t
numerical results with some simple analytical expression

The comparison showed that the smoothed density
states in a narrow neighborhood of the local mode can
obtained to a sufficient degree of accuracy from argume
based on the singling out of the nearest neighbor to a cho
impurity center. It was found that the expression thus
tained for the density of states gives an acceptable re
including inside the region of concentration broadening
the local mode.

At an impurity concentration much less than the ma
defect«, the main contribution to the spectral energy is giv
by pair impurity modes. Here, in order to describe the d
sity of states at the boundary of the concentration smea
region and in a somewhat closer vicinity of the local mode
is necessary to assign other, concentration-dependent w
factors to the contributions from the pairs of defects in ad
tion to the direct expansion in powers of the concentratio

It is of interest for the future to continue the numeric
studies of the vibrational spectra of long, disordered lin
chains, particularly to study the fractal hierarchical struct
of the local levels and also the spectrum inside the cont
ous band both for light and heavy substitutional impuriti
This method can be used to treat the analogous problem
the presence of a two-parameter impurity center and to
troduce a coupling to the immobile substrate that is differ
for different atoms. That could be applicable for the descr
tion of the vibrations of atoms on the surface of a crys
With further improvements in computing power this meth
can also be used for analysis of two- and three-dimensio
systems.
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Electron diffraction study of the structural transformations in free argon clusters
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An electron diffraction technique is used to study the structure of clusters formed in an
isentropically expanding supersonic argon jet. The formation of the hcp phase with increasing
cluster size is reliably detected for the first time. Observations are made for mean cluster
sizesN̄ in the range from 13103 to 83104 atoms/cluster. An analysis of the shape of the
diffraction peaks is carried out. It is found that in the rangeN̄<23103 atoms/cluster,
where the clusters are icosahedral, the profiles of the diffraction peaks are well approximated by
a Lorentzian. For fcc clusters withN̄>33103 atoms/cluster a better approximation is the
standard Gaussian function. In the caseN̄>13104 atoms/cluster one observes peaks of the hcp
phase in addition to the fcc peaks. The intensity of the hcp peaks increases with increasing
cluster size, and forN̄'83104 atoms/cluster, the~110!, ~101!, ~103!, and ~202! peaks,
characteristic only for the hcp phase, are clearly registered in addition to the fcc peaks. A
possible mechanism for the formation of the hcp structure in Ar clusters is proposed. ©2004
American Institute of Physics.@DOI: 10.1063/1.1645170#
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The problem of the formation of hcp–fcc structure
solidified rare gases first came up quite long ago. The
sence of this problem is as follows. According to the resu
of x-ray studies, rare gases~except for helium! in bulk
samples crystallize in an fcc lattice. This experimental fac
nontrivial, since a calculation in the approximation of a p
interaction of the atoms~which works rather well for de-
scribing the thermodynamic properties of atomic cryocr
tals! predicts that the hexagonal close-packed~hcp! structure
is stable.1

It should be noted, however, that in the case of sm
particles, when the contribution of the surface energy
comes comparable to the bulk component of the free ene
of the system, the formation of the hcp structure is, in pr
ciple, possible. This is due to the circumstance that, acc
ing to the theoretical notions,2 the transition from fcc to hcp
stacking of the atoms leads to a slight lowering of the surf
energy at faces perpendicular to the~111! face, as a result o
the increase in the density of surface atoms. Therefore
formation of an hcp phase in thin films and small atom
aggregations of rare gases has long seemed quite prob
but has been in need of an experimental check. Observa
made previously3–5 on highly disperse condensed films
Ar, Kr, Xe and Ne have shown that heating them to pres
limation temperatures~amounting to about 1/3 of the meltin
temperature! is always accompanied by intense recrystalliz
tion. As a result of that process rather large crystallites fo
not only with the fcc but also with the hcp structure.

However, for films condensed on a substrate the res
of observations are influenced by a number of poorly c
trolled factors, including the high probability of quenching
a nonequilibrium state in the sample, contamination of
specimens by impurities of residual gases, and also the in
action of the particles being deposited with atoms of
1661063-777X/2004/30(2)/5/$26.00
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substrate. For investigation of size effects it is more corr
to use clusters free of a substrate, formed in a supersonic
jet flowing into vacuum. Such objects are free of the abo
listed shortcomings typical of condensed films.

The dependence of the structure of Ar clusters on th
size has been investigated in a number of experime
studies,6–8 but reliable evidence of fcc–hcp transformatio
has not been obtained. The reason is that the objects of s
have been atomic aggregations of comparatively small s
containing from a few tens to (2 – 3)3103 atoms/cluster. As
a result of a comparison of the observed diffraction patte
with the interference functions calculated with the aid o
computer modeling, the authors have established the foll

ing. Small clusters with mean sizesN̄ not greater than
102 atoms/cluster have an amorphous or polycrystall

structure. In the case whenN̄ is between 102 and 2
3103 atoms/cluster a multilayer icosahedral stacking of
atoms is realized. According the electron diffraction data,8 Ar
clusters with mean sizes greater than 33103 atoms/cluster
have the fcc structure with stacking faults, the density of

latter decreasing with increasingN̄. By computer modeling
of the diffraction pattern the authors of Ref. 9 came to t
conclusion that one of the possible reasons for the poor r
lution of the fcc peaks~111! and~200! in crystalline clusters
might be the presence in them of not only the fcc phase
also of extremely small, randomly oriented regions with t
hcp structure. However, an experiment that would unambi
ously confirm the presence of the hcp phase in argon clus
has not been done.

The problem addressed in the present electron diffrac
study is to investigate the structure of free Ar clusters ove
wide range of mean cluster sizes with the goal of detect
the hcp phase in them. This study has taken a qualitativ
© 2004 American Institute of Physics
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new approach to doing the experiments and processing
data obtained.

EXPERIMENTAL TECHNIQUE

The structure of the clusters was studied on an appar
consisting of a generator of a supersonic cluster beam an
ÉMR-100M electron diffraction unit. The gases from the s
personic jet were pumped out by a condensation pump w
liquid hydrogen. A detailed description of the apparatus
given in Ref. 10. Here we note only the key elements of
experiment.

To create a supersonic gas jet a conical nozzle wit
throat diameter of 0.34 mm, a cone angle of 8.6°, and
area ratio of the exit section to the throat of 36.7. Fo
nozzle with these parameters the Mach number at the e
from the nozzle has the valueMout58.0. The region of in-
tersection of the cluster beam and electron beam was a
tance of 110 mm from the nozzle exit. At this distance t
gas cooling processes are already completed,11 and the clus-
ters are found in the equilibrium state. The gas pressureP0 at
the nozzle entrance could be varied from 0 to 0.6 MPa,
the temperatureT0 could be varied from 120 K to room
temperature.

As the gas flows through the nozzle into vacuum, th
mal energy of random motion of the molecules is conver
to kinetic energy of directed motion of the supersonic flo
As a result of the isentropic expansion of the jet the g
temperature falls and the gas is transformed into a supers
rated vapor, and hence conditions of homogeneous nu
ation are created, i.e., the formation and growth of cluster
the condensed phase.

Since the expansion of the gas is isentropic, the stat
the jet is determined by the equation of the adiabat:

P0T0
g/~12g!5const, ~1!

whereg5Cp /CV is the ratio of specific heats of the gas
constant pressure and constant volume, respectively. In
case of an ideal gas one hasCV5 i

2R andCP5CV1R, where
i is the number of degrees of freedom of a molecule of
gas andR is the universal gas constant. For a monatomic
such as argon one hasi 53.

Usually in experiments the two parametersP0 and T0

are varied. Using relation~1!, one can reduce the situation
a single parameter—the equivalent pressurePeq. Then the
values ofN̄ corresponding to differentP0 and T0 must be
referred to a single temperature. In this study all the ob
vations were referred toT05200 K, and therefore the ex
pression for the equivalent pressure has the formPeq

5P0(T0/200)g/(12g). It should be noted that the calculatio
of Peq was done using the value of the exponentg/(12g)
522.29 established previously for Ar by the authors o
mass spectrometric study.12 ~This value is somewhat smalle
in absolute value than the value22.5 characteristic for an
ideal gas.! Subsequently all of the diffraction patterns o
tained were referred to an equivalent pressure with an ex
nent of22.29.

The size of the clusters, their flux density, and size d
tribution are specified by the temperatureT0 , pressureP0 ,
and nozzle parameters and by the thermodynamic prope
of the gas. For a fixed nozzle geometry the size of the c
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ters of a given gas and their flux density increase with
creasingP0 and decreasingT0 ~Ref. 12!. The temperature of
the clusters depends on the species of atoms, and for a
personic argon jet it is around 38 K.10 The characteristic
mean linear size of the clusters in the approximation

spherical cluster shape isd5aA3 3N̄/2p ~wherea is the lat-

tice parameter of crystalline argon,N̄ is the mean number o
atoms in a cluster! was obtained as follows.

For clusters withN̄>13103 atoms/cluster the value o
d was found with an accuracy of 10% or better from the to
broadening of the diffraction peaks with the use of t
Selyakov–Scherrer relation.13 The correctness of applying
the Selyakov–Scherrer relation to crystalline clusters w

the fcc structure andN̄.103 atoms/cluster has been con
firmed by calculations done by the authors of Ref. 14.
addition, in Ref. 8 a comparison of the values ofd measured
by independent methods was done: electron diffraction w
the use of the Selyakov–Scherrer relation and electron
croscopy. Measurements were made on gold island films
tained by the thermal evaporation of Au in high vacuum w
deposition on an amorphous carbon film substrate. The
ues ofd obtained by the two methods were in good agre
ment, with a disparity of 10% or less.

In the case of clusters withN̄<33103 atoms cluster the
value ofd was found by the following technique. In Ref. 1
it was shown by an electron diffraction method that for ra
gases withN̄ in the range from 13104 to 103 atoms/cluster
the relationN̄5kP0

1.83 holds well for T05const. We note
that the mass spectrometric technique for supersonic jet
rare gases15 has shown that this relation holds even for clu
ters with N̄5102– 103 atoms/cluster. Therefore, by dete
mining the parameterk for large clusters one can, by spec
fying P0 , i.e., Peq, establish the value ofN̄ for small
clusters.

With the goal of obtaining a large set of data for a sing
experiment we used photographic registration of the diffr
tion pattern. For this we used photographic films design
for nuclear research, with a wide region of linearity of th
blackeningS as a function of exposure~dose! Q5I t, where
I is the intensity of the electron beam andt is the exposure
time. The electronograms obtained were scanned on a m
photometer with a scanning step of 50mm. The numerical
values ofS were processed on a computer to construct
densitometer traces and to isolate the background compo
of the diffraction patterns, due to incoherent scattering
electrons and to their scattering on gas atoms present in
jet. To separate out the background curve at different part
the densitometer traces we took the points far from the
fraction peaks and drew through them an approximat
curve which was described rather well by the sum of t
exponentialsA exp(2S/r) with different parametersA andr .

A densitometer trace before subtraction of the ba
ground is shown in Fig. 1a. Figure 1b shows a series
densitometer traces for different equivalent pressures~differ-
ent values ofN̄) after subtraction of the background.

The recording of the diffraction patterns was usua
limited to values of the diffraction vectors'6 Å21 (s
54p sinu/l, whereu is the Bragg angle andl is the elec-
tron wavelength!.
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RESULTS AND DISCUSSION

Figure 1b shows a series of diffraction patterns cor
sponding to equivalent pressures at the nozzle entrancePeq

50.15, 0.2, 0.3, 0.4, and 0.7 MPa. The mean size of
clusters corresponding to these pressures are, respect
~1.35, 2.3, 4.8, 8.8, and 22.5!3103 atoms/cluster.

It was established previously7 that in the caseN̄
<(2 – 3)3103 atoms/cluster in argon cluster beams and a
in free metal clusters the dominant clusters are atomic ag
gations with the icosahedral structure. This assertion is ba
on the rather good agreement of the positions and rela
intensities of the peaks on the experimental diffraction p
terns with model interference functions calculated for ico
hedral formations of different sizes. The evidence for
icosahedral structure of the small clusters is the more ra
broadening of the diffraction peaks with decreasing lin
size of the atomic aggregations than follows from t
Selyakov–Scherrer relation and also the fact that the valu
the ratioH (311) /H (111) is uncharacteristically low for an fcc
structure,16 where H (311) and H (111) are the heights of the
peaks lying in the region of the fcc peaks~311! and ~111!,
respectively. It was determined that the clusters with m
sizes greater than the limit indicated above have the

FIG. 1. Densitometer traces for free clusters of argon withN̄'22.5
3103 atoms/cluster (Peq50.7 MPa). The dashed curve shows the ba
ground component of the diffraction pattern~a!. The diffraction patterns

after subtraction of the background, for cluster beams with differenN̄
@103 atoms/cluster#: 1.35 (Peq50.15 MPa) ~1!; 2.3 (Peq50.2 MPa) ~2!;
4.8 (Peq50.3 MPa) ~3!; 8.2 (Peq50.4 MPa) ~4!; 22.5 (Peq50.7 MPa) ~5!
~b!.
-
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structure with stacking faults, the density of which decrea
with increasingN̄ ~Ref. 8!.

In the present study we have for the first time carri
out an analysis of the shape of the diffraction peaks w
the aid of a computer processing of the experimental resu
This analysis was done for cluster beams withN̄
5(1.35, 4.8, and 22.5)3103 atoms/cluster. The results ar
presented in Fig. 2 in the form of three plots. The intens
on them is expressed in arbitrary units, the intensity of
~111! peak having been scaled to the same value for e
curve.

The bottom panel corresponds to clusters withN̄51.35
3103 atoms/cluster. It is seen that the distribution of t
intensity in the diffraction peaks in the case of small clust
is well approximated~to an accuracy of around 5%! by a
Lorentzian functionav/@v214(s2s0)2#, where s0 is the
position of the maximum in units of the diffraction vecto
For the highest-intensity peak the parameters of the con
are as follows:s052.0502 Å21, v50.2011 Å21, and a
55.8715 Å21; for the second peaks052.2928 Å21, v
50.2376 Å21, and a51.3906 Å21. Attempts to describe
the experimental data by Gaussian curves while maintain
the positions of the peaks give significantly poorer~around
20%! accuracy, and this approximation was completely u
suitable on the ‘‘wings.’’ The situation was not improved b
varying the parameters of the Gaussian peaks~including
their positions!.

The good approximation of the experimental intens
distribution by a Lorentzian is indicative of strong lattic
distortion, as was noted back by Guinier.17 A Lorentzian pro-
file of the diffraction peaks is observed in a crystal in t

-

FIG. 2. Fragments of the diffractograms forN̄'(1.35, 4.8, and 22.5)
3103 atoms/cluster, approximated by smoothed Gaussian~a,b! and Lorent-
zian ~c! functions. The experimental curves are shown by heavy lines,
the Lorentzian and Gaussian contours by fine lines. The combined m
curves coincide with the experimental curves to an accuracy of 3–5%.
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case of a rather highly nonuniform distribution of the inte
atomic spacings~of an exponential character!.17 For an ideal
crystal a Gaussian function is usually a good approxima
of the diffraction peaks.

Modulation of the interplane distances in small clust
in the framework of the most general approach can b
consequence of two factors: first, the influence of the surf
on the interatomic interaction and, second, the presenc
microstresses in the clusters. However, an analysis18 of the
structural studies showed that the influence of the surf
does not extend to the core of the cluster to a meanin
degree. In our opinion, the role of microstresses, which w
evidenced in Refs. 7 and 18, is more substantial. Inde
nonuniformity of the interatomic distances both in the co
of the cluster and on its surface is more easily realized in
presence of microstresses. Microstresses can appear in
clusters only when the atomic aggregations have an icos
dral structure. Thus, even when a regular pentagonal bip
mid of seven atoms, constructed by the twinning of regu
tetrahedra, is realized, an elastic strain is needed to collap
gap of 7.35° formed between two neighboring atoms. As
size of the icosahedral formation increases, the ela
stresses grow, ultimately leading to instability of structu
with a fivefold symmetry axis. In a multilayer relaxed icos
hedron, when the interaction of the atoms is described b
Lennard-Jones pair potential, the flat~111! faces of the ideal
icosahedron are distorted. In this case the radial distan
between neighboring layers is shortened as one approa
the center of the cluster, and the distance between atom
the surface layers is larger than in the central layers.18

The middle panel in Fig. 2 pertains to larger cluste

with N̄54.83103 atoms/cluster. As we have said, cluste
of this size have the fcc structure. Analysis of the experim
tal data shows that~and this follows from the plot in the
figure! the distribution of the intensity of the diffractio
peaks is well~to 5% accuracy! approximated by a standar
Gaussian curveA2/pb$exp22(s2s0)

2/v2%/v, wherev is the
standard deviation. The parameters for the~111! peak are
s052.0396 Å21, v50.1652 Å21, b55.4622 Å21, and for
the ~200! peak s052.2951 Å21, v50.2056 Å21, and b
52.8283 Å21. We call attention to the fact that the standa
deviationsv in this case are somewhat smaller than for cl
ters of smaller size, the diffraction peaks of which are d
scribed by Lorentzian functions.

The Gaussian curve also approximates well the diffr
tion peaks in the case of clusters withN̄522.5
3103 atoms/cluster~see the upper panel in Fig. 2!. The ap-
proximation presented in the figure was the most optimal
minimization ~to 5%! of the disparities between experime
and the model curves. A small shift of the~200! peak to
larger angles is observed. In addition, besides the intense
peaks, one also observes weak anomalies in the regio
diffraction vectors corresponding to the~100! and ~101!
peaks of the hcp phase.~In a number of cases a maximum
observed between the~101! hcp peak and the~200! fcc peak
~see Fig. 2!; its origin has not yet been established.! Based on
the foregoing facts one can say that the diffraction patte
obtained from clusters withN̄522.53103 atoms/cluster
show evidence of the presence of small traces of the
phase along with the predominant fcc phase. Experime
n
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with larger clusters, which will be analyzed below, have co
firmed this supposition.

It following from what we have said that the results
an analysis of the distribution of the intensity of the diffra
tion peaks can be used as one more criterion for identify
the structure of clusters. The strong modulation of the in
atomic distances causes the Gaussian profile characte
for regions with constant interatomic distances to be tra
formed into a Lorentzian profile.

When the equivalent pressure is raised to 1.4 MPa
the mean cluster size increases toN̄'83104 atoms/cluster
the diffraction pattern changes substantially. A typical den
tometer trace for this case is presented in Fig. 3. It is s
that here, along with the set of diffraction peaks of the f
phase, there are also hcp peaks which are noncoincident
them, viz.,~100!, ~101!, and~103!, and in the region where
the weak hcp maximum~202! should be, one observes
small feature in the intensity distribution. The increase
intensity of the hcp peaks indicates unambiguously that
contribution of the hcp phase in clusters withN̄'8
3104 atoms/cluster has grown. It should be noted that
regions of the hcp phase have have rather large linear dim
sions, as is attested to by the comparatively small width
the hcp maxima.

The results obtained suggest the following mechanism
cluster formation. In the first step, after the jet leaves
nozzle, the clusters near its end are found in the liquid st
This view is confirmed by the results of an investigation
clusters of organic compounds in a supersonic jet.19 As the
jet moves away from the end of the nozzle toward the d
fraction zone, a cooling of the liquid drops occurs because
intense evaporation of atoms, and there is a transition to
solid state. Small clusters cool faster and solidify earlier th
large clusters do. Therefore, small clusters are found in
solid state directly near the nozzle. They can grow further
a mechanism involving the coalescence of icosahedral ag
gations with a subsequent condensation of atoms of the
on steps that have formed as a result of the coalescence
are not yet overgrown.20,21This process results in the forma
tion of fcc clusters of medium size containing stacki
faults. The large clusters cool slowly, and their crystallizati

FIG. 3. Diffraction pattern from an argon cluster beam withN̄58
3104 atoms/cluster. The maxima for both the fcc and hcp phases are
beled.
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is completed far from the end of the nozzle. The duration
the crystallization process promotes the formation a
growth of a small number of supracritical nuclei of both t
fcc and hcp phases. As a result, rather large regions of e
phase form in the clusters. The possibility of such a scen
is confirmed by the both the results of observations of rec
tallization of highly disperse condensates of heavy rare ga
on a substrate and the study by Barrett and co-worke22

who noted that the x-ray diffraction patterns of undeform
polycrystalline samples of Ar grown from the liquid pha
exhibit peaks of the hcp phase in addition to those of the
phase. Plastic deformation of such samples leads to van
ing of the hcp peaks. Some theoretical aspects of the for
tion of the hcp phase in rare-gas clusters are discusse
Ref. 23.

CONCLUSIONS

1. Our observations have shown that in large cluster
argon containingN̄>23104 atoms/cluster, rather large re
gions of the hcp phase form in addition to the fcc phase. T
hcp fraction increases with increasing mean cluster size.
data obtained suggest that the hcp phase forms in liq
drops and is not a consequence of a size effect assoc
with the small size of the solid-state cluster.

2. In small clusters (N̄<23103 atoms/cluster) an icosa
hedral structure is realized through rapid freezing of atom
aggregations. Further growth of the small clusters appare
occurs by their coalescence and the subsequent condens
of atoms of the gas on atomic steps that have not been o
grown.

3. We have found that the profile of the diffraction pea
of the icosahedral clusters is described well by a Lorentz
line shape, while the peaks from the fcc clusters hav
Gaussian profile. The qualitative change in the profiles of
diffraction peaks is due to the presence in the icosahe
clusters of microstresses inherent to structures with a five
symmetry axis. The microstresses cause a strong modula
of the interatomic distances, which vary from the center
the cluster toward its surface. Such modulation causes a
sition from the standard Gaussian profile typical for clust
with constant interatomic distances to a Lorentzian.

In closing, the authors express their sincere gratitude
V. V. Eremenko for support of this study.
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Local exciton states at isoelectronic centers in superlattices
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The optical spectrum of strained type-II ZnSe/ZnTe superlattices, both freshly grown and stored
for some time, are analyzed with allowance for the formation of ZnSe12xTex mixed
layers, having a cluster structure, at their heterointerfaces. The dependence of the hole localization
energy on the radius of the clusters of Te atoms is calculated and found to agree well with
the experimental data. In the samples stored for some time there is a change in the shape of the
photoluminescence band and a monotonic shift of this band to shorter wavelengths. It is
shown that the shift is caused by a change in the internal structure of the mixed layer over time
and by the formation of local states induced by isoelectronic impurities~Te atoms!. © 2004
American Institute of Physics.@DOI: 10.1063/1.1645171#
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1. INTRODUCTION

Numerous experimental studies of superlattices~SLs!
with alternating ZnSe and ZnTe layers grown on GaAs s
strates have shown that they have a very intense photol
nescence band, attesting that such structures have a
quantum yield of photoluminescence~PL!.1–6 Attempts to
explain this effect by radiative recombination of the eige
states of the ZnSe/ZnTe superlattice run up against a num
of difficulties. Chief among these is the fact that superlatti
of this type are classed as type–II quantum structures
which holes created by photoexcitation are localized in
ZnTe layers, and these regions act as potential barrier
electrons. It is well known that the probability of radiativ
recombination of spatially separated carriers is insignific
in both 3D and 2D structures, and so the intensity of the
band of these SLs is weak and is rapidly attenuated w
increasing thickness of the ZnSe and ZnTe layers and
with increasing temperatureT. However, it has been estab
lished that, regardless of the thickness of the ZnSe and Z
layers, the PL intensity of ZnSe/ZnTe SLs is always ve
high, and the PL is easily observed all the way up to ro
temperature.1–6 X-ray diffraction and optical studies of thes
objects have established that the source of such intense P
these SLs is the recombination of excitons localized in
ZnSe12xTex mixed layers formed at the heterointerfaces d
ing growth of the structures.4,5

The mixed layers that arise are different from their bu
counterparts, the ZnSe12xTex substitutional solid solutions
~SSSs!, both in the way they are formed~diffusion of Te
atoms out of the plane! and in their internal state, which is
result of the lattice misfit between ZnSe and ZnTe~see be-
low!. In spite of this, however, at low concentrations of
the radiative properties of both systems are mainly de
mined by small clusters Ten with n<4, which are aggrega
tions of atoms in nearest-neighbor sites of the crystal latt
Localization of excitons on such clusters is so efficient tha
completely suppresses all other channels of energy tran
to the radiative and nonradiative recombination centers.7–11
1711063-777X/2004/30(2)/8/$26.00
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The reason for this high efficiency of localization is that t
ZnSe12xTex SSSs are classed as systems with strong sca
ing, in which the perturbation of the electronic states due
even isolated Te atoms is sufficient to split off the localiz
state from the band bottom.7–13 This property of the system
is due to the fact that Te atoms in ZnSe are an isoelectro
impurity and, having a larger volume and mass but sma
electronegativity than the Se atoms, they create an attrac
short-range potential for holes in ZnSe. The Coulomb field
the latter traps electrons, leading to the formation of loc
ized excitons.

The authors7–11 who have studied ZnSe12xTex SSSs
with low Te concentrations have found that atx<0.02 the
low-temperature PL band exhibits structure due to the
combination of excitons localized on Ten clusters withn
>2. It was the opinion of those authors that isolated ato
Te1 did not create bound states for holes in the band gap
ZnSe. Studies of SSSs with similar concentrations by ot
groups1–6 have established that in both 3D and 2
ZnSe12xTex structures the localization of excitons on Ten

clusters occurs starting withn>1. The values calculated in
Ref. 5 for the binding energies of holes at Te1 and Te2 in
ZnSe12xTex SSSs were 40 and 250 meV, respectively.

Another problem that has remained little studied till no
relates to the change of the structure of the ZnSe12xTex

mixed layer over time. That problem has a broader asp
since it bears upon practically all strained quantum str
tures, and its solution would make it possible to predict
operating parameters of optoelectronic devices based on
materials. The essence of this problem consists in the
that, because of the lattice misfit (;7.3%) the ZnSe layers
are stretched and the ZnTe layers compressed in the gro
plane of the SL, and this has a definite influence on
diffusion of Te atoms into the ZnSe layers. The formation
mixed layer occurs in the growth stage of the SL, but t
process continues even after the samples are grown, an
that reason the structure of the ZnSe12xTex mixed layer will
change over the course of time. This effect was noted by
© 2004 American Institute of Physics
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authors of Ref. 14, who had studied SLs with very thin Zn
and ZnTe layers~one or two atomic monolayers or less!. As
a result, even in the growth stage a certain mixed struc
forms which bears no relationship to a SL. The nucleat
and evolution of ZnSe12xTex mixed layers and their influ-
ence on the band structure of a SL with ZnSe and ZnTe la
thicknesses of a few tens of angstroms have completely
caped notice and have not been studied before.

In this paper we present and analyze the emission s
tra of ZnSe~50 Å!/ZnTe~50 Å! type-II SLs recorded both
immediately after fabrication of the samples and some t
later after storage at room temperature under normal co
tions. The feature distinguishing our SLs from the analog
samples studied by other authors is a large thickness of
ZnSe and ZnTe layers. The stretching of the ZnSe lay
weakens the bond between Zn and Se, making it easier fo
to diffuse into the ZnSe layers and replace the Se atoms
addition, the ZnSe12xTex mixed layers are stretched in th
growth plane of the SL. The random substitution of the
atoms by Te leads to a cluster structure of the mixed lay
as a result of which the contour of the PL band exhib
structure consisting of several peaks due to the recomb
tion of excitons localized at small clusters Ten with n
51,2,3,4. In contrast to ZnSe12xTex SSSs withx,0.01 or
SLs with thin ZnSe and ZnTe layers, the structure appear
the PL band not at helium temperatures but atT'20 K; this
was apparently observed for the first time in such syste
Using an exciton model in which it is assumed that only
hole is localized at a cluster, while the electron is separa
spatially from it by a potential barrier in the conduction ba
and is held near it by the Coulomb interaction, we calcul
the dependence of the energy of localization of a hole«b

(n)

and exciton«x as functions of the radiusr of the cluster; the
calculated localization energies are in good agreement
experiment. By periodically recording the low-temperatu
PL band of these SL in the course of their storage, we w
able to detect a monotonic shift to shorter wavelengths an
subsequent decrease in the half-width of the PL band. T
shift is directly related to a change in the internal structure
mixed layer over time and reflects the dynamics of locali
tion of excitons~holes! in them and the formation of loca
states induced by isoelectronic impurities~Te atoms!.

2. EXPERIMENTAL RESULTS

We studied ZnSe/ZnTe SLs obtained by molecular be
epitaxy on GaAs~001! substrates at a growth temperature
360 °C with a ZnSe buffer layer about 0.3mm thick. The
samples had thicknesses of 30d, 25d, and 10d, where d
5100 Å is the SL period. The source of excitation of the
was a He–Cd laser with wavelengthl5325 nm and average
powerP0'10 mW.

It should be noted that the form of the reflection and
spectra is practically independent of the overall thickness
the samples, and therefore in Fig. 1 we show the reflec
spectrum~RS! of one of them (30d) and the PL band re
corded at differentT. Although the contour of the reflectio
spectrum is broadened, as is characteristic for ZnSe12xTex

structures, the large amplitude makes it possible to determ
the value of the resonance energy (E1s

0 52521 meV) of the
exciton transition in the mixed layer to rather good accura
e

re
n

er
s-

c-

e
i-
s
he
rs
Te
In

e
s,
s
a-

in

s.
e
d

e

th

re
a
is
f
-

m
f

f
n

ne

y.

It is seen in Fig. 1 thatE1s
0 lies at the beginning of the

short-wavelength part of the PL band atT'5.5 K ~curve1!,
which is broad ('300 meV at half maximum!, structureless,
and asymmetric, with an extended long-wavelength wi
When T is increased to 10 K one observes a sharp lo
wavelength shift of the band by about 80 meV~curve2!, and
at T'20 K a distinct structure appears on it in the regi
belowE1s

0 . The structure consists of five peaks, the shorte
wavelength of which~the zeroth peak! coincides in position
with E1s

0 ~curve 3a in Fig. 1!. For a more precise determ
nation of the position of these peaks we scanned the l
excitation spot over the surface of the SL atT'20 K and
recorded the band at different points of the surface~curve 3b
in Fig. 1!. It was found as a result that the peaks lie
distances of 65, 127, 204, and 319 meV fromE1s

0 and that
their spectral position depends very weakly on the coordin
of the point of excitation on the surface of the SL. It is se
in Fig. 2 that the first three peaks have practically vanish
by T'40 K ~curve 2! and upon further increase ofT a
monotonic shift of the fourth peak to longer wavelengths

FIG. 1. Reflection spectrum~RS! and photoluminescence spectrum~PL! of
a ZnSe/ZnTe superlattice:1—5.5 K, 2—10 K. Lines 3a and 3b were taken a
20 K at different points on the surface.

FIG. 2. Temperature dependence of the PL linewidth of ZnSe/ZnTe aT
'20– 100 K; the broken line shows a fit to the long-wavelength part of
band by an experimental dependence.



-
n,
n

t
a
a

S
rm

a
y
se
e

on

e
io

re
d
-
is
d
i

re

cu

n-
e
th

ifi
P
iv

ers

er

d

ers,
ef.

on-
SL

sfit
is

m
SL
e-
e
ick-
d

nd
of

r a
he

e

173Low Temp. Phys. 30 (2), February 2004 N. V. Bondar’
observed, reaching a value of;385 meV~relative toE1s
0 ) at

T'60 K ~curve 3 in Fig. 2!. With further increase in tem
perature atT.60 K the band shifts in the opposite directio
and atT'100 K its maximum coincides with the positio
that it had atT'40 K ~curve4 in Fig. 2!. We note that when
the pump density was decreased the picture remained
same in its overall features, but the broadening of the pe
remained rather large, and it was impossible to make out
distinct structure of the PL band.

Figure 3 shows how the emission spectrum of the
changes over time when the sample is stored under no
conditions. It was noted that about a year after the SL w
grown the PL band~band2! began to shift in an unusual wa
to shorter wavelengths; this was detected over the next
eral months~band3!. As a result, it was established that th
maximum of the band was stabilized in the regi
;2900 meV, and its half width~at half maximum! de-
creased to;190 meV~band4!. Thus over such a time th
emission has almost completely vanished from the reg
2600–2400 meV, and the band has shifted by;500 meV in
the direction of shorter wavelengths. It is clear that if it we
the case that a simple ‘‘mixing’’ of the original ZnSe an
ZnTe layers to form ZnSe12xTex had occurred, then the di
rection of the shift of the band would be the opposite of th
as is observed in the SSSs. In the last Section we shall
cuss the possible influence of various impurities, oxygen
particular, on this shift, since the SL samples were sto
under normal conditions.

3. ENERGY SPECTRUM OF HEAVY EXCITONS IN ZnSe ÕZnTe
MIXED SUPERLATTICES

Before turning to an analysis of the results, let us cal
late the eigenstate energiesEhh(d) of the SL, considering
only heavyhh excitons and using the model of ideal qua
tum wells, assuming the presence of ideal interfaces betw
the corresponding layers of the SL. Then, by comparing
value obtained forEhh(d) with the experimental value, we
shall show that the eigenstates of the given SL lies sign
cantly lower in energy than the experimentally observed
band~Fig. 1!. Therefore the PL cannot be due to the radiat

FIG. 3. Change in the shape of the PL band of a ZnSe/ZnTe SL~1–4! over
time during storage of the samples;5—the PL spectrum of a ZnS/ZnS
superlattice.
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recombination of freehh excitons formed by electronse1
and heavy holeshh1 from the first subband of their size
quantization. In the case of ideal interfaces between lay
one has

Ehh~d!5EgSL1Qe~L !1Qhh~L !2«x , ~1!

whered5L11L2 ~from here on the subscripts 1 and 2 ref
to ZnSe and ZnTe, respectively!, EgSL is the band gap of the
SL, Qe(L) and Qhh(L) are the energies of electrons an
holes in the corresponding potential wellsDEc andDEv . If
at first we neglect the stress in the ZnSe and ZnTe lay
then, according to the calculation scheme presented in R
15, the unperturbed values of the discontinuities of the c
duction band and valence band upon the formation of the
will be DE0c52920 meV andDE0v51360 meV, respec-
tively.

The internal stress arising as a result of the lattice mi
between layers brings about a new state of the SL which
characterized by lattice constants in the growth planeai and
in the normal directiona'

1,2 which are different from those in
the bulk,a1,2. These values can be written in analytical for
by minimizing the expression for the elastic energy of the
but under the condition that the SL is found in a fre
standing state.15 According to our estimates, this should b
the case for the solutions studied here, since their total th
ness ('0.3 mm) is greater than the critical thickness, an
thereforeai anda'

1,2 are given by the following relations:15

ai5
a1G1L11a2G2L2

G1L11G2L2
, ~2!

a'
1,25a1,2F12D1,2S ai

a1,2
21D G , ~3!

whereG1,2 are the elastic moduli,D1,252C11
1,2/C12

1,2, andC11
1,2

andC12
1,2 are the elastic constants~see Table I!. A scheme for

calculation of the band discontinuitiesDEc and DEv with
allowance for the stress in the layers is given in Ref. 15 a
was used by us previously for an analogous calculation
Ehh(L) in a type-I ZnS/ZnSe SL,16 and we shall therefore
give only the necessary expressions forDEc and DEv with
allowance for the features of the SLs studied here. Fo
quantitative description of the deformation we introduce t
strain tensor with diagonal elements:15

TABLE I. Material parameters of ZnSe and ZnTe~Ref. 15!.
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«xx
1,25«yy

1,25
ai

a1,2
21, «zz

1,25
a'

1,2

a1,2
21. ~4!

ThenDEc is determined by the following relation:

DEc5DE0c1ac
1 DV1

V1
1ac

2 DV2

V2
, ~5!

whereDV1,2/V1,25«xx
1,21«yy

1,21«zz
1,2 are the relative change

in the volumes of the respective unit cells, andac
1,2 are the

isotropic deformation potentials of the conduction band. T
stress arising in the layers leads to lifting of the degener
at the pointk50 of the valence bands of ZnSe and ZnT
which are split into heavy-holeEvhh

1,2 and light-holeEv lh
1,2

subbands:15

Evhh
1,2 5Ev

1,22
1

2
dE001

1,2 , ~6!

Ev1h
1,2 5Ev

1,22
1

2 H D0
1,22

1

2
dE001

1,22F ~D0
1,2!22D0

1,2dE001
1,2

1
9

4
~dE001

1,2 !2G0,5J , ~7!

dE001
1,252b1,2(«zz

1,22«xx
1,2) and Ev

1,25E0v
1,21avDV1,2/V1,2,

andav
1,2(b1,2) are the isotropic~uniaxial! deformation poten-

tials of the valence bands. However, in ZnSe, the unit cell
which are elongated in the SL growth plane, the maximum
thehh subband lies lower in energy~relative toEc

1) than the
maximum of thelh subband, and by virtue of the differenc
of the dispersion curves, degeneracy of the valence ban
ZnSe sets in again atkÞ0, where these subbands have co
mon points of intersection. In ZnTe this does not happ
because the subband there moves in the opposite directio
a consequence of the fact that the unit cells of ZnSe
compressed in the growth plane of the SL~see the scheme in
Ref. 4!. We choose the energy corresponding to the point
intersection of thehh and lh subbands in ZnSe as the refe
ence level and, using~2!–~9! and the data from Ref. 15, w
determine the maximum and minimum depths of the pot
tial well for holes in ZnTe and also the maximum and min
mum values of the band gap of the SL:DEc5
21212 meV, DEv

max51480 meV, DEgSL
min 51280 meV; and

DEc521212 meV, DEv
min51202 meV, DEgSL

max

51450 meV. We note that the values found forDEv are in
good agreement with the data of Ref. 17, where the res
were obtained by a more rigorous method in the framew
of the sp3s* tight-binding model with allowance for the
spin–orbit interaction.

To calculate the values ofQe , Qhh , and«x we solve the
Schrödinger equation, describing the motion ofe andhh in
the corresponding layers with allowance for their Coulom
attraction:

@He1Hh1Hex2V~r,ze ,zh!#C~r,ze ,zh!

5Ehh~d!Cex~r,ze ,zh!, ~8!

where

V~r,ze ,zh!5
e2

«@r0
21~ze2zh!2#1/2, ~9!
e
y

,

f
f

of
-
,
as

re

of

-

lts
k

r0 is the relative distance between carriers in the plane of
well, and« is the dielectric constant, which, since the valu
of «1 and «2 are close, is chosen as«50.5(«11«2). The
wave functions of the electrons and holes in a potential w
with finite or infinitely high walls are well known, and there
fore the problem of findingQ j (L) is utterly trivial. For cal-
culating«x we take the wave function of the relative motio
of the electron and hole in the plane of the SL in the fo
w(r0 ,ze2zh)5B exp(2(1/ax)(z

22r0
2)1/2), where B is a

normalization coefficient andax is the Bohr radius of the
exciton, which is treated as a variational parameter. Deter
nation of the exciton binding energy requires minimizing t
following expression with respect to variation ofax :

«x~ax!5
p2\2

2max
2^CexuHuCex&, ~10!

where m is the reduced mass of thehh exciton. Figure 4
shows two curves of Ehh(d) calculated for DEc

51212 meV:1—(DEgSL
max51450 meV,DEv

min51202 meV);
2—(DEgSL

min 51280 meV;DEv
max51480 meV), and the inse

shows«x(d). It is seen thatEhh(100)'1550– 1350 meV,
i.e., it lies approximately 1000 meV belowE1s

0 , and there-
fore the experimental PL band in Fig. 1 cannot be due to
eigenstates of the SL, i.e., to radiative recombination ofhh
excitons as proposed above. Thus the presence of m
ZnSe12xTex layers at the heterointerfaces of the SL is pra
tically the only condition that can satisfactorily explain th
experimental results.

Let us now estimate the band gapEg
0 of the ZnSe12xTex

mixed layers, taking into account that under the influence
the stresses that have arisen in the ZnSe and ZnTe layer
initial values of the band gapsEg1 andEg2 are renormalized:

Eg
1,25Ec

1,22Ev
1,21

DV1,2

V1,2
~ac

1,22av
1,2!, ~11!

from which we obtain the new valuesEg
152667 meV and

Eg
252589 meV (Eg1 andEg2 are given in Table I!. Assum-

ing that the energy of the resonance transition in the mi
layers is given to sufficient accuracy by the value ofE1s

0 , we
obtain Eg

05E1s
0 1«x52542 meV, where«x'21 meV is the

exciton binding energy in bulk ZnSe. It is clear that if th
renormalization is not taken into account, the initial Zn
layers will be nontransparent to photons formed in t

FIG. 4. Dependence of the energyEhh of heavy excitons on the SL period
d; the inset shows the dependence of their binding energy«x on d.
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ZnSe12xTex , since Eg252391 meV. The dependence o
Eg

0(x) on concentration is determined, as in a SSS, by
following relation:11,13

Eg
0~x!5xEg

21~12x!Eg
12bx~12x! ~12!

~whereb51504 meV is the bowing parameter!, from which
we obtain the value of the concentration of Te atoms in
mixed layers:x;0.075; this value is in fair agreement wit
the results of Ref. 18, where it was determined for analog
SLs by x-ray structural analysis. Here it should be noted t
at large thicknesses of the ZnSe and ZnTe layers and o
SL as a whole, when it reaches a free-standing state,
position of Eg

0(x), in contrast to the SSSs, depends wea
on the Te concentration. This follows already from the fa
that in the SSSs one has the valueDEg5Eg12Eg2

'430 meV, whereas in our case it is only 75 meV. Th
circumstance can explain why the structure in the PL ban
the SL is observed even atx'0.075 while in bulk SSSs it is
smeared even atx'0.01.7–11 It is known that the smearing
of the structure is due to the shift of the band edge of
SSSs and to the increase in the radius of the states loca
at clusters with 1<n,3, as a consequence of which a su
sequent merging of these states with the main band occ
this is absent in the ZnSe12xTex mixed layers.

4. LOCALIZATION OF EXCITONS ON Te CLUSTERS IN
ZnSe1ÀxTex MIXED LAYERS

1. Assuming that the structure observed on the cont
of the PL band is due to the levels of excitons localized
small clusters of Te atoms, let us consider the features of
formation of bound hole states in ZnSe12xTex mixed layers.
Substitution of an atom of the initial semiconductor~ZnSe!
introduces a local perturbationU5V02V, which can give
rise to a discrete structure of energy levels in its band g
The particle spectrum in the presence of the perturbed po
tial is found from the solution of the one-site Koster–Sla
equation with an impurity potentialU.19 For a bound hole
state to appear in the band gap of ZnSe it is necessary
the conditionUG(0).1 be satisfied, whereG(E) is the
Green’s function of the ideal crystal with the impurity pote
tial (@G(0)#215Ecr) and Ecr is the critical value ofU at
which the bound state appears. Using the relationEcr

5(p\)2/(8mh* r1
2), where r1'3.5 Å is the radius of the

first hole bound state~see below!, we obtain Ecr

51275 meV, which is close to the analogous value~1250
meV! obtained in Ref. 11. To calculateU it is necessary to
know the values of the ionic potentials of the Te atoms a
the ZnSe; one must take into account the screening of
difference of these potentials by the valence electrons of
latter, and the spin–orbit interaction should also
included.19 Ultimately the value obtained forU in that way
will be exactly equal to the value of the discontinuity of th
valence bands of ZnSe and ZnTe at the heterointerface:15

U[DEv5~Ev
12Ev

2!1~V̄tot
1 2V̄tot

2 !, ~13!

whereV̄tot5V̄H1V̄ion1V̄ECSL is the averaged total potentia
of the atoms of ZnSe and ZnTe. Since the Te atoms ha
larger radius than the Se atoms, the value ofU also depends
on the strain of the ZnSe layer, and therefore, in order fo
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bound state to appear, the conditionU/Ecr>1 must hold in
the entire range of variation ofU. To characterize the loca
distortions of the lattice in the bulk of the samples the p
rameterX5R/(Ri2Rh) is used, whereRi and Rh are, re-
spectively, the lengths of the unperturbed covalent bond
the presence and absence of an impurity.19 In our case we use
the quantityQ5(ai2a1)/(a22a1), as a result of which we
obtain Q150, U(Q1)51360 meV—the unperturbed stat
Q250.475, U(Q2)51480 meV—the free-standing stat
Q351, U(Q3)51560—the maximum perturbation. One ca
check that the conditionU/Ecr.1 holds in the entire interva
U(Q1) –U(Q2). This scheme also gives correct results f
other systems, e.g., ZnS~Te! and CdS~Te!, in which the lo-
calization of excitons on isolated atoms Te1 is considered a
reliably established fact.12 Using the corresponding param
eters for those systems from Ref. 15, we findU(Q1)
52230 meV for ZnS andU(Q1)51330 meV for CdS~we
note that in Ref. 12 a valueU(Q1)51320 meV was obtained
for CdS by a fitting procedure!, which giveU/Ecr.1. It is
known that in ZnS~Se! SSSs the states on isolated Se clust
have never been observed experimentally; this can be
firmed: U(Q1)5860 meV andU(Q3)5923 meV, which
give U/Ecr,1 in the whole range of variation
U(Q1) –U(Q3). Thus the set of data obtained allows us
state that the localization of a hole on a single Te atom
occur in the ZnSe12xTex mixed layers, and since a cluste
with a larger number of atoms also creates a bound state,
clear that the four main peaks of the PL band are the level
excitons localized on Ten clusters (n51,2,3,4) with binding
energies of 65, 127, 204, and 319 meV.

2. We consider the features of the PL band shape and
variation in certain temperature intervals. WhenT is raised
to 20 K there are two discrete shifts of the maximum of t
PL band to longer wavelengths by distances comparabl
the distances between its individual peaks, and a band s
ture appears, as is seen in Fig. 1. In the interval 20–40 K
latter vanishes completely as a result of the thermal brea
of excitons localized at clusters with 1<n<3. Further in-
crease ofT to 60 K leads to the aforementioned monoton
shift of the band in the long-wavelength direction~see curves
2 and3 in Fig. 2!.

The observed discrete shift of the PL band and its mo
tonic shift are easily explained if it is taken into account th
a cluster of sizen has a certain number of spatial configur
tions, each of which is characterized by an exciton locali
tion energy«b

(n) («b.0 is a positive quantity measured from
E1s

0 into the band gap of the mixed layer!.7–9 Thus to each
cluster there corresponds a region of valuesD«b

(n) , the over-
lap of which leads to the formation of a quasi-continuous
of the density of localized states. For those clusters for wh
this overlap does not exist one observes individual exci
levels, as, e.g., on clusters with 1<n<3 ~see Figs. 1 and 2!,
although for clusters withn>4 («b>«b

(4)) a quasi-
continuous tail of the density of states is formed; otherw
one would observe individual levels of excitons localized
clusters with n55,6,7,..., as is thecase for the system
ZnS~Te!.12 At T540 K the long-wavelength part of the P
band reflects a form of the density of localized statesg(«b)
which falls off smoothly into the band gap of the mixed lay
by an exponential lawg(«b)'exp@2(«b /«0)#, ~the part of
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curve 2 shown by the broken line in Fig. 2!, where «0

'150 meV is the energy scale of the localized states. Ba
on the data obtained we can conjecture that the energy«b

(4)

5319 meV is the mobility threshold of the localized exc
tons. This energy divides the states localized on clusters
1<n<3 and states belonging to the quasi-continuous tai
the density of states. It was also established in Ref. 10 tha
ZnSe12xTex SSSs withx50.13 the mobility threshold of the
localized excitons lies in the vicinity of the energy of loca
ization of a cluster of four Te atoms.

The observed monotonic shift of the PL band as the te
perature is increased forT.40 K is due to the tunneling
relaxation of excitons~holes! via states of the tail of the
density of states with the emission of acoustic phonons
T560 K this shift reaches a value;385 meV relative to
E1s

0 , which approximately corresponds to the energy of
calization of a hole on a cluster withn55. As a result, we
obtain the five experimental values:«b

(n)565, 127, 204, 319,
and 385 meV for 1<n<5, which will be used for compari-
son of the calculated and experimental«b

(n)(r) curves. When
T is increased further to 100 K, processes involving the
sorption of phonons by localized excitons begin to domina
and as a result, the PL band is shifted to shorter waveleng
reaching the same spectral position atT5100 K as atT
540 K ~curve 4 in Fig. 2!. Analogous behavior of the PL
band was noted in Ref. 8~Fig. 2!, where ZnSe12xTex SSSs
with x55% were studied, i.e., concentrations for which t
PL band becomes structureless.

Let us now discuss on a qualitative level the reason w
the structure of the PL band in the SLs studied here is m
fested at higher temperatures ('20 K), which has been ob
served for the first time in such SLs. We recall that in S
with thin ZnSe and ZnTe layers~1–2 monolayers and less!
and in SSSs withx<0.01 the structure of the PL band
clearly observed at helium temperatures.7,14 Clearly the
structureless PL band observed at helium temperatures in
SLs is a consequence of the large thickness of the ZnSe
ZnTe layers. The mutual deformation of these layers sp
their degenerate valence bands and thereby increase
depth of the potential well, leading to stronger localization
holes as compared to the bulk SSSs. This, in turn, incre
the occupation of exciton levels at clusters with 1<n<3,
leading to their broadening. When the temperature is ra
to 20 K the radiative and nonradiative processes are a
vated, and an overall decline of the integrated intensity of
PL occurs, as a result of which the structure appears in
band. This can also be used to establish the position of
shortest-wavelength~zeroth! peak of the PL band, which cor
responds toE1s

0 , and to link it with the recombination of free
excitons in the ZnSe12xTex mixed layers. Thus the exper
mental data obtained allow us to make the quite defin
assumption that in systems with lowered dimensionality, i
the ZnSe12xTex mixed layers, the processes of cluster form
tion have the same character as in the bulk SSSs, in spi
the straining~stretching! of the layers of the initial semicon
ductors due to their lattice misfit.

3. Let us turn to a calculation of the dependence of
hole localization energy on the cluster radius,«b

(n)(r). As is
seen from Sec. 3, the value of the impurity potential loca
ing the hh hole in the ZnSe12xTex mixed layer is V0
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[DEv51480 meV. It is usually assumed that the impur
potentialV0(r ) contains two parts: a short-range partV0(r )
5V0 for r<r and a long-range partV0(r )5V0f (r/r ),
which takes into account the local distortions of the lattic
for r .r, where f (r/r ) is some function ofr andr. In our
case such a choice of potential is based on the considera
that, since the Te atoms are larger than the Se atoms,
gives rise to an additional stress field around them and le
to a tail of the potential atr .r ~Ref. 20!. HereV0(r ) has the
following form:

V0~r !5H V0 , r<r,

V0S r

r D 3

, r .r.
~14!

In choosing the wave function of the localized state o
must take into account the degeneracy of the valence ba
of ZnSe and ZnTe, but this degeneracy is lifted as a resu
the strain; therefore, starting from the spherical symmetry
the problem and taking into account the character of the
calization of a particle at an isoelectronic impurity, we wri
the wave function of the state in the form21

C1~r !5S 8
a3

p D 1/2

j 0~ar !exp~2ar !, r<r, ~15a!

C2~r !5~4b3!1/2exp~2br !, r .r, ~15b!

where j 0(ar ) is the spherical Bessel function anda is a
variational parameter. The coefficients in front of the wa
functions are obtained from their normalization conditions
the corresponding regions, and the quantityb(a,r)51/r
1a@12cot(a,r)# is obtained from the condition thatc8/c
be continuous atr 5r. We find the hole localization energ
«b

(n)(r) by minimizing the expression̂c(r h)u2\2¹h
2/2mh*

1V(r h)uc(r h)& with respect toa, where c(r h)5C1(r )
1C2(r ). Doing the integration over the spatial coordina
we obtain the following expressions for the kinetic ener
KE(a,r)5KE1(a,r)1KE2(a,r) and the potential energy
PE~a,r!:

KE1~a,r!528
\2a3

pmh*
E

0

r

uc1~r !u2@~11ar !

3~12ar cot~ar !#dr, ~16!

KE2~a,r!522
\2

mh*
b5E

r

`

exp~22br!r 2dr, ~17!

PE~a,r!5V0F12
22cos~2ar!1sin~2ar!

exp~2ar!

14b3r3Ei~2br!G , ~18!

wheremh* 50.6m0 is the effective mass of anhh hole, and
Ei(x) is the exponential integral function.

The experimental position of peaks1–4 of the PL band
~see Fig. 1! is given as\vn5Eg

02«b
(n)(r)2«x(r), where

«x(r) is the binding energy of an exciton at the cluster.
cluster that has formed acts as a potential well for a hole
a potential barrier for an electron, which with increasingr
‘‘feels’’ a hole charge that is smeared out over the clus
q(r)52e(c2(r))2, and for this reason the Coulomb attra
tion Vc(r e)5eq(r)/«r e and, hence,«x(r) are reduced.22 In
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estimating«x(r) one must take into account that the wa
function of an exciton localized at a cluster must satisfy
boundary conditionCex(r 35r,r h)50, i.e., it must vanish on
the surface of the cluster. This problem was solved in R
22, where in the regionr,0.5Re , which corresponds to the
size of the clusters forming the PL band at smallx, the
following expression was obtained:

«x~r!'F120.4S r

Re
D 2GEe , ~19!

where Ee5me* e4/(2\2«2), Re5\2«/(me* e2), where me*
50.17m0 is the effective mass of an electron. It is seen fro
~19! that for r→0 the value of«x(r)→Ee526.3 meV, i.e.,
it tends toward the value of the binding energy of an elect
at a donor in ZnSe. Using equations~16!–~18!, we find the
radius of the first hole bound stater1'3.5 Å, the value of
which is comparable to the analogous quantities in the s
tems ZnS:Te~3.2 Å! and CdS:Te~3.9 Å!.12 The solid line in
Fig. 5 shows the calculated«b

(n)(r) curve, and the points ar
the experimental values of«b

(n)(r)5Eg
02\vn2«x(r) with

allowance for Eq.~19!, where the cluster radius was taken
bern5n1/3r1 . Also shown in the figure is the critical size o
the potential wellrcr>2.51 Å in which a hole bound stat
with practically zero binding energy is formed; therefore t
first experimental point«x(rcr)526.3 meV is indicated in
the figure by a star. If the covalent radii of ZnSe (r c

52.45 Å) and ZnTe (r c52.63 Å) and the stretching of th
ZnSe12xTex layers in the plane of the SL are taken into a
count, it becomes clear thatrcr is correlated with these quan
tities. As we have said, as the number of atoms in a clu
increases, the number of its spatial configurations increa
exponentially. In a first approximation each configuration
characterized by a certain averaged spherical wave func
C(r h), as a consequence of which a slight disparity betw
the experimental and calculated values of«b

(2,3)(r2,3) is ob-
served. With increasingn the shape of the cluster will ap
proach ever closer to spherical, and therefore the state
such clusters will be described most accurately by spher
wave functions.

FIG. 5. Dependence of the hole localization energy«b
(n) on the cluster radius
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5. EVOLUTION OF THE EXCITON SPECTRUM OF A ZnSe Õ
ZnTe SUPERLATTICE DUE TO CHANGES IN THE
STRUCTURE OF THE MIXED LAYERS

The changes in the shape and spectral position of the
bands shown in Fig. 3 can be explained by the processe
elastic energy relaxation that take place in practically a
strained quantum structure. In our particular case this occ
through an increase in the concentration of Te atoms in
ZnSe layers on account of diffusion. We recall that such
diffusion process is made easier by the fact that the bond
between Zn and Se in the ZnSe layers is weakened on
count of the stretching of those layers in the growth plane
a SSS the growth of the Te concentration leads to a chang
the width of the band gap and an increase in the number
mean size of the clusters. The first factor does not pla
substantial role in a SL, sinceEg

0(x) is determined mainly by
the renormalized band gaps of the ZnSe and ZnTe lay
This follows from Fig. 3, where band2, recorded in samples
stored for some time, is shifted to shorter wavelengths,
like the long-wavelength shift with increasing concentrati
observed in ZnSe12xTex SSSs.

The second factor, the increase in the number and m
size of the clusters with increasing concentration leads
overlap of the wave functions of the states localized on th
and, as a consequence, to the formation of a percolating c
ter. As a result of the appearance of a percolation level
the hole states, the holes can move freely and be trappe
the ZnTe layers; therefore, the localization in the mixed la
falls off. This explains the rather unusual phenomenon
practically complete disappearance of the emission from
region 2600–2400 meV~bands2 and3 in Fig. 3!. However,
the emission does not simply vanish from the indica
region—the PL bands shift monotonically to shorter wav
lengths, into a region which is significantly greater than ev
the band gap of bulk ZnSe~2823 meV!. We note that be-
tween bands2 and3 there exist several more bands that w
recorded at different times, showing a smooth transition
tween them, but they have been left out of Fig. 3 to av
clutter. The short-wavelength shift of the PL band is abo
500 meV and is accompanied by a narrowing of the band
190 meV at half maximum~band4!.

For a qualitative explanation of the observed sho
wavelength shift of the band we show for comparison in F
3 the PL band~5! of a type-I superlattice ZnS~60 Å!/ZnSe~20
Å! which we studied previously, in which the excitons a
localized in the ZnSe layer.16 Comparing the spectral pos
tions of the PL bands1, 2, 3, and5, we can draw the follow-
ing conclusions. The freshly grown ZnSe/ZnTe SLs a
SSSs with low Te concentrations have practically the sa
emission properties, which are due to localization of the
citons at isolated traps and clusters. This is confirmed by
similar shape of the PL bands and the coincidence of th
spectral positions.7,14 However, as time goes on, the thick
ness of the mixed layers increases and, accordingly,
thickness of the ZnSe layers dencreases. The energy of
quantization of the electrons localized in the latter begins
exceed their binding energy at isolated traps and clust
and, as a result, the PL band is shifted monotonically
shorter wavelengths. Thus a periodic structure with altern
ing ZnSe and ZnTe layers after a certain time begins to
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quire the characteristic features of a quantum structure
which the short-wavelength shift of the PL band is due
size quantization of the motion of one or both of the carri
in the exciton.

A calculation shows that the fact that the size quanti
tion energy of the electrons exceeds the binding energ
isoelectronic traps in the mixed layers begins to be the do
nant factor at ZnSe thicknessesL,30 Å. The hole states ar
not affected by the sizes of the ZnSe layers on accoun
their strong localization. This model of the exciton was co
sidered in Ref. 23, where the energy of a local exciton s
induced by isoelectronic traps of vanishingly small rad
was calculated as a function of the width of the quant
layer ~ZnSe! and for various positions of the impurity at it.
is seen from Fig. 3 that the shift of the PL band relative
E1s

0 is «15500 meV, which can be written as follows:«1

5(\t1)2/(2me* L1
2), wheret1 is the first root of the equation

relating the widthL1 of a quantum layer to its widthDEc

and the mass ratio of the electrons in ZnTe (mb* 50.13m0)
and in ZnSe:24

tanS t1

2 D5S me*

mb*
D 1/2Fq22t1

2

t1
2 G1/2

, ~20!

whereq252me* L1
2DEc /\2. SinceDEc51212 meV, we can

without loss of generality setDEc→` and t15p, where-
upon we obtainL1'20 Å andLx'30 Å.

It should be noted that the results of the calculation
only estimates, for the following reasons. As a result of
diffusion of Te atoms into the ZnSe layers a smearing of
heterointerface occurs, and one can therefore no lon
represent the ZnSe layer in the form of a square poten
well; more likely the potential well should be written a
V52V0 / f (r ), where f (r ) is a function describing the
smearing of the boundaries of the quantum layer and wh
has the following properties:f (r 50)51 at the center of the
layer, and f (r )→` with increasingr . It is clear that the
position of the size quantization level of a particle in such
potential will differ from that in the usual square well wit
sharp interfacial boundaries.23 The smearing of the heteroin
erfaces leads to strong fluctuations of the thickness of
ZnSe layer and, as a consequence, to fluctuations of the
ergy level of electrons in it; this leads to strong broaden
of the PL band, which can be seen in Fig. 3. Although flu
tuations of the thickness of the ZnSe layers in ZnS/ZnSe
also occur, they are considerably smaller, as can be
from a comparison of PL bands4 and5.

CONCLUSION

Let us conclude by discussing the possible influence
oxygen on the SL spectra obtained, since the samples w
stored under normal conditions at room temperature. Acco
ing to its position in the periodic table, oxygen is an isoele
tronic acceptor with respect to both ZnSe and ZnTe. Ho
ever, in the ZnSe:O system the PL band (I 152.791 eV),
which is due to the recombination of excitons bound to
atoms, is not dominant in the spectrum, and a numbe
other bands (I 2 , I d, etc.; see Ref. 25 for details! are observed
in addition to it. It is clear that these bands to not appea
all in the SL spectra shown. In contrast to ZnSe, in Zn
in

s

-
at
i-

of
-
te
s

e
e
e
er
al

h

a

e
n-

g
-
s
en

f
re

d-
-
-

of

at
e

oxygen plays a substantial role, and even at low oxygen c
centrations an appreciable rearrangement of the original
citon spectrum of ZnTe occurs wherein an isolated band
to the recombination of excitons on O clusters of differe
shape appears.25 However, in that case the PL band is shifte
into the energy region 2.2–1.8 eV, which likewise has
effect on the spectra of the SLs studied here. Thus it is c
that the change in the internal structure of a ZnSe/ZnTe
due to the influence of relaxation processes, which lead
lowering of the elastic energy in the system, is the m
source of rearrangement of the emission spectra of the g
SRs.

*E-mail: jbond@iop.kiev.ua

1N. Takojima, F. Iida, K. Imai, and K. Kumazaki, J. Cryst. Growth138, 633
~1994!.

2S. Nakashima, A. Wada, H. Fujiyasu, M. Aoki, and H. Yang, J. Appl. Ph
62, 2009~1987!.

3H. Kuwabara, H. Fujiyasu, M. Aoki, and Sh. Yamada, Jpn. J. Appl. Ph
25, L707 ~1986!.

4M. Kobajashi, N. Mino, H. Katagiri, R. Kimura, M. Kanagi, and K
Takahashi, J. Appl. Phys.60, 773 ~1986!; C. D. Lee, H. K. Kim, H. L.
Park, C. H. Chung, and S. K. Chang, J. Lumin.48–49, Part 1, 116~1991!.

5J. J. Davies, Semicond. Sci. Technol.3, 219~1988!; T. Yao, M. Kato, J. J.
Davies, and H. Tanino, J. Cryst. Growth86, 552 ~1988!.

6D. Lee, A. Mysyrowicz, A. V. Nurmikko, and B. J. Fitzpatrick, Phys. Re
Lett. 58, 1475~1987!.

7A. Yu. Naumov, S. A. Permogorov, A. N. Reznitski�, V. Ya. Zhula�, V. A.
Novozhilov, and G. T. Petrovski�, Fiz. Tverd. Tela~Leningrad! 29, 377
~1987! @Sov. Phys. Solid State29, 215 ~1987!#.

8A. N. Reznitski�, S. A. Permogorov, and A. Yu. Naumov, Izv. AN SSS
Ser. Fiz.52, 691 ~1988!; 49, 2019~1985!.

9S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz, and W. von der Os
J. Phys.: Condens. Matter1, 5125~1989!.

10A. A. Klochikhin, S. G. Ogloblin, S. A. Permogorov, A. Reznitsky, S
Klingshirn, V. Lysenko, and J. M. Hvan, JETP Lett.72, 320 ~2000!.

11A. A. Klochikhin, S. A. Permogorov, and A. N. Reznitski�, Zh. Éksp. Teor.
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The topological aspect of the dynamics of electrons in a crystal~band electrons! and of crystal
lattice vibrations~phonons! is discussed. The main features of the dynamics of conduction
electrons in metals are connected with the shape of their Fermi surface, which is different from
that for free electrons. It is demonstrated that the behavior of band electrons under the
influence of external electric and magnetic fields depends strongly on the topology of the Fermi
surface. Various examples of such a dependence~calculation of the periods of quantum
oscillations, magnetic breakdown, features of the magnetoresistance, Bloch oscillations! are
adduced and discussed. The features of the dynamics of phonons are manifested in singularities of
the density of vibrational states~van Hove singularities!, which are directly related to a
change in the topology of the constant-frequency surfaces. The presence of a topological invariant
that changes by a jump upon a change in topology of the constant-frequency surface is
pointed out. The origin of the so-called phase transition of order two and a half is
discussed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645161#
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1. INTRODUCTION

The quantitative description of processes and observ
physical phenomena requires the use of mathematical m
ods. The more complex the nature of the phenomenon
more powerful the mathematical methods that are use
describe it. Delving into the details of physical process
requires that theoretical physicists employ ever more refi
methods of calculation.

However, there are branches of mathematics that h
one to understand not the details of some physical phen
ena~as would be important, in particular, for discussing sp
cific experimental data! but rather some general relations th
unify the physical relationships obtained in many differe
kind of experiments. Well-known examples in solid-sta
physics are group theory and the theory of symmetry. T
make it possible to systematize in a rather general way
expected and observed effects without having to write
the corresponding equations in concrete form, knowing o
the symmetry of the crystalline objects and the set of ma
ematical entities~vectors, tensors, etc.! used for describing
the physical phenomena in question.

An example of a general type of assertion based only
symmetry properties is the following statement in the d
namics of any periodic structure: an oscillation frequency
any physical nature~or the energy of any elementary excit
tion! in such a system is a periodic function of the wave~or
quasi-wave! vector with a period determined by the structu
of the reciprocal lattice and is equal in order of magnitude
2(p/a), wherea is the spatial period of the system und
discussion.

Another type of general systematization of physical p
nomena in crystalline objects can be obtained using ano
971063-777X/2004/30(2)/21/$26.00
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branch of mathematics—topology. Although topology is
younger science than physics, its methods and ideas h
penetrated into many areas of theoretical physics and en
one to formulate some rather important physical relations
a general character. Topological derivations are espec
valuable when the equations of the physical fields hav
complicated mathematical structure and do not admit sim
general solutions. Descriptions of how topological conc
sions are used in field theory, in the theory of phase tra
tions, the theory of the superfluid phases of3He, nonlinear
dynamics, etc. can be found in the books by Nakahara1 and
Monastyrski�.2 In condensed matter physics, however, on
two aspects are actually discussed: first, the topology of
order parameter in systems undergoing phase transfo
tions, and, second, the classification of possible forms
such nonlinear objects as solitons, vortices, dislocations,
clinations, monopoles, etc.

We wish to call attention to another point of view on
problem that reflects the original understanding of topolo
From our point of view~regarding the use of topology in th
problems discussed below!, topology refers to the geometr
of curved lines~trajectories! and surfaces. Can these objec
be systematized? A curved line in a 2D or 3D space can
either closed or unclosed; a closed curve can have node
not. If those curves are classical trajectories of a parti
then its quantum properties will be different depending
which class of curves the trajectory belongs to. Surfaces~2D
manifolds in a 3D space! can contain holes~breaks in conti-
nuity! or can be continuous; the surfaces can be closed~like
spheres! or open~like a hyperboloid of one sheet!; surfaces
can be self-intersecting. The characteristic surfaces in so
state physics are constant-frequency or constant-energy
© 2004 American Institute of Physics
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faces ink space; in the electron theory of metals the Fer
surface most often comes to mind. It turns out that a cha
in topology of a constant-frequency surface~a transformation
from a closed to an open surface! at a certain frequency lead
to the appearance of features in the density of vibratio
states at that frequency—van Hove singularities. Metals w
Fermi surfaces of different topology have different asym
totics of their low-temperature magnetoresistance at h
magnetic fields.

Substantial progress in elucidating the role of the to
logical properties of the characteristic surfaces in crys
physics has been reached thanks to the work of I. M. Lifs
and his scientific school~his students and successors!. Their
work underlies the branch of theoretical condensed ma
physics discussed in this review. The interweaving of
classical concepts of particle trajectories, the topolog
properties of trajectories and constant-energy surfaces,
also the quantum nature of the laws of motion of microp
ticles is, to the author, the most engaging part of those s
ies. And although the first studies cited in this review we
done over half a century ago, interesting results have b
obtained in recent years, demonstrating the inexhaustib
of the problem. The author considers himself to be a dir
student of I. M. Lifshits and dedicates this review to t
memory of his teacher.

2. GEOMETRY AND TOPOLOGY OF THE FERMI SURFACE
OF THE ELECTRON GAS IN METALS

2.1. Dynamics of conduction electrons and the Fermi
surface

The terms ‘‘electron gas’’ and ‘‘electron dynamics’’ ar
basic concepts in the branch of theoretical solid-state phy
known as the electron theory of metals. This theory is ba
on the concept that the electrical conduction of a metal
its interaction with the electromagnetic field are due to
presence of a collective of atomic electrons which for a
riety of reasons behaves as a gas capable of flowing thro
the crystal lattice. As stated in words, this concept, wh
was formulated a century ago by Drude, remains unchan
to this day. Now not only do we understand in general ter
the reasons for the validity of such a simple model, but i
also clear that the dynamics and kinematics of electrons
crystal must be substantially altered in comparison w
those for an electron in vacuum.

The reason why the model of a gas of noninteract
electrons can be employed with confidence is that at
temperatures the majority of electrons, obeying the therm
dynamic requirement of minimization of the energy of t
system, densely occupy the low-lying energy levels, filli
the individual states in pairs~with opposite spins! and be-
coming incapable of participating in any motion~which in-
evitably involves a transition from one state to another!. The
remaining electrons can be considered to have been pu
out of this ‘‘dead sea’’ and represent Fermi elementary ex
tations of the whole electron system. It is completely adm
sible to treat the set of these excitations as an ideal Fe
gas. The energy per particle separating the occupied and
occupied electronic states is called the Fermi energy. I
literal sense such a clear separation of electronic state
possible only at absolute zero (T50), but if the thermal
i
e
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energy of an electron~the temperatureT in energy units! is
small compared to the Fermi energy, then a narrow ene
region ~with a width of the order ofT) containing only par-
tially filled electronic states will arise near the Fermi energ
It is the electrons in these states that actively participate in
the processes involving the motion of electrons. The low
the temperature, the greater the confidence with which
can say that only electrons with the Fermi energy particip
in physical processes.

Thus we have agreed to consider electrons with ener
close to the Fermi energy as free particles forming an id
Fermi gas. The main dynamical variable of a free particle
its momentump. In a quasiclassical approximation the pos
tion of an electron in space is specified by its coordinatex.
The coordinatesx andp are a pair of canonically conjugat
variables specifying the instantaneous state of the particl
classical mechanics. In the absence of external fields the
ergy « of an electron depends only onp: «5«(p), and this
dependence is called a dispersion relation. For a free elec
«5p2/(2m0), wherem0 is the mass of the electron, and w
speak of a quadratic dispersion relation. An equal-energy
‘‘constant-energy’’! surface is a geometric mapping of th
dispersion relation. A constant-energy surface is a surfac
p space specified by the condition

«~p!5«5const. ~1!

For a free electron this is a sphere of radiusp5A2m0«.
The constant-energy surface corresponding to the Fe

energy «F is called the Fermi surface. For a gas of fr
electrons it is a sphere of radiuspF5A2m0«F. At T50 all
states inside the Fermi surface are occupied, and there
for a fixed number of electrons the volume inside the Fe
sphere and, hence, the Fermi energy«F are uniquely related
to the number of electrons:

N52
VV~«F!

~2p\!3 5
8pVpF

3

3~2p\!3 5
p~2m0!3/2

3~2p\!3 «F
3/2, ~2!

where V(«F) is the volume inp space inside the Ferm
sphere, and the factor of 2 takes into account the two p
sible values of the electron spin. It follows from~2! that

pF
353p2

N

V
\3. ~3!

If we write N/V51/a3, wherea is introduced as the averag
distance between electrons, relation~3! to good accuracy re-
duces to the estimate

pF5\~p/a!. ~4!

We note that estimate~4! does not contain any of the
parameters of the free-electron dispersion relation. This is
extremely important circumstance, since it raises the qu
tion of to what degree the calculation~2!, which is based on
the concept of a gas of free particles with a quadratic disp
sion relation, can be used to discuss the properties of e
trons in a crystalline metal. In fact, in a periodic structu
such as any single crystal, the momentump is a convenient
dynamical variable—its role is played by the quasimome
tum, and the energy of an elementary excitation, the role
which we confer on the electron, becomes a periodic fu
tion of the quasimomentum with the period of the recipro
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lattice. Consequently, the dispersion relation of an electro
a metal must be a more complex~and necessarily aniso
tropic! function of the quasimomentum, and the Fermi s
face can therefore acquire a shape that is very unlik
sphere. Nevertheless, the characteristic radius of the F
surface is estimated correctly by formula~4!. The point is
that, in the calculation of~2! we were interested only in th
number of states occupied by electrons, which is actu
determined by the number of degrees of freedom of all
electrons. In distributing the states corresponding to th
degrees of freedom over ‘‘cells’’ of the phase space, we w
have filled some volume of phase space invariant with
spect to the choice of the concrete description of the sin
particle states.

Let us turn to the question of the shape of the Fe
surface of the electrons in a crystal and what determines
shape, and discuss the possible manifestations of the s
of the constant-energy surface in the electron dynamics.
motion of an electron in a magnetic field is the most sensi
to this shape.

Let us consider the dynamics of an electron with a d
persion relation«5«(p) in a uniform magnetic fieldB. The
pair of Hamilton’s equations of classical dynamics of t
electron have the form

dp

dt
5

e

c
@v3B#, v[

dx

dt
5

]«

]p
. ~5!

Choosing thez axis along the direction ofB, we obtain the
following system of equations of motion:

dpx

dt
5

eB

c
vy ,

dpy

dt
52

eB

c
vx ,

dpz

dt
50, ~6!

which have two integrals of the motion:

«~p!5const, pz5const. ~7!

The pair of conditions~7! determines the trajectory o
the electron inp space—it is the curve of the intersection
the surface«(p)5const and the planepz5const~Fig. 1!. It
follows from Eq. ~6! that the projection of the electron tra
jectory in x space is similar to the trajectory~7!. Indeed, we
rewrite the first two equations of~6! in the form

dpx

dt
5

eB

c

dy

dt
,

dpy

dt
52

eB

c

dx

dt
. ~8!

Relations~8! show that the projection of the trajectory
x space on thexoy plane is indeed similar to that inp space,
but rotated by 90° in relation to the coordinate axesox and
oy ~Fig. 2!. The coincidence of the directions of the electr
velocity vector can also be noted in Fig. 2.

Analysis of the equations of motion~6! and inspection of
Fig. 2 lead to the conclusion that the electron executes cy
motion in a magnetic field, revolving along a closed traje
tory ~in the case of a free electron this would be moti
along a circle!. The frequency of this cyclic motion is easil
calculated. It follows from~6! that the velocity of the elec
tron’s motion along the trajectory inp space is given by

dpl

dt
5

eB

c
v' , ~9!
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where v' is the projection of the electron velocity on th
plane perpendicular to the magnetic fieldB. Relation ~9!
generates a chain of equations

~10!

where the integral is evaluated along the electron traject
Dt is the period of the cyclic motion of the electron, and t
last integral is taken over the whole closed trajectory. Kno
ing Dt, we determine the frequency of the cyclic motion
the electron:vc52p/Dt. This the cyclotron resonance fre
quency in a magnetic field for an electron in a crystal. Ho
ever, this frequency is customarily written in the formvc

5eB/mc, wherem is the electron mass. Consequently, t
cyclotron mass of the electron in a crystal depends on
trajectory and is a function of state and not a numerical ch
acteristic~as in the case of a free electron, wheremc5m0

5const). It is not hard to get the geometric sense of t
characteristic of the electron. One need only calculate
change in area bounded by an electron trajectory on
plane pz5const upon a small increased« in the electron
energy:

FIG. 1. Trajectory of an electron inp space and its projection on a plan
perpendicular to the magnetic field.

FIG. 2. Trajectory of an electron inp space~a! and inx space~b!.
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~11!

Here the integral is evaluated over the closed trajectory
the electron. Comparing the expression forDt in ~10! with
~11!, we find

Dt5
c

eB

]S

]«
, ~12!

where the functionS5S(«,pz) is the aforementioned are
bounded by the electron trajectory on the planepz5const.
Thus the effective cyclotron mass of the electron is given
the expression3

mc5mc~«,pz!5
1

2p

]S

]«
. ~13!

In light of what we have said above, for electrons in a me
formula ~13! has actuality on the Fermi surface«5«F . This
means that the area of the cross section of the Fermi sur
on the planepz5const and its dependence on the Fermi
ergy have direct physical meaning—the derivative in~13! is
an experimentally measurable quantity.

2.2. Geometry of the Fermi surface in a crystal

The circumstance that the constant-energy surfaces
electrons in a crystal can have shapes that differ stron
from spherical was obvious from the time the electron the
of metals first appeared, as the figures for the const
energy surfaces in the well-known monograph of Bethe
Sommerfeld4 attest. It was understood that, by virtue of t
complex structure of the electron spectrum of crystals, th
can exist a great diversity of Fermi surfaces of the m
unusual shapes, some of which are described in the boo
Lifshits, Azbel’, and Kaganov.3 But for a long time it re-
mained unclear whether the shape of the Fermi surface
given metal could be predicted even as far as its gen
traits. Only the lucid and rather simple arguments
Harrison5 made it possible to clarify, first, why an expecte
shape of the Fermi surface appears in a given metal
second, the possibility of several Fermi surfaces~more pre-
cisely, several different sheets of a multiply connected Fe
surface! coexisting in the same metal.

Let us illustrate Harrison’s method by the example o
2D square lattice, considering it as some symmetric cr
section of a 3D lattice. The unit cell in the reciprocal latti
is usually chosen such that the pointk50 lies at its center
~the main square in Fig. 3a and the square in Fig. 3b!. How-
ever, it could also be chosen differently~a dashed square i
Fig. 3c or 3d!. Starting from the density of electrons in th
metal under discussion, we determine the radius of the Fe
surface~4! ~if there is one conduction electron for each ato
in the crystal, this radius will be of the same order of ma
nitude as the size of the unit cell!. We draw a circle of that
radius around the coordinate origin in Fig. 3a; this will be t
cross section of the Fermi surface. Since the energy o
electron in a crystal is a periodic function of the quasim
mentum, such circles should also be drawn around each
of the reciprocal lattice. Then a system of intersecting lin
~Fermi surfaces! appears in which each point of intersectio
is a point of degeneracy. It is clear that the points of deg
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eracy arose by virtue of the primitive model representation
a circular ~spherical! shape of the constant-energy surfac
and must be regarded as the result in zeroth approxima
When practically any physical circumstances are taken
account in the next approximation the degeneracy will
removed, and all of the points of intersection of the graphs
the constant-energy surfaces will be shifted slightly. On
plane of the reciprocal lattice an ornament of several clo
lines appears. Part of them are conveniently placed in a
cell of the first type, and part of them in a cell of the seco
type. Usually they pertain to different~first, second, third,

FIG. 3. Construction of the Fermi surface for a square lattice: spheres in
zeroth approximation~a!; sheets of the Fermi surface which are situated
different Brillouin zones~b,c,d!.
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etc.! Brillouin zones and are taken to be different sheets
the Fermi surface.

A somewhat different system of sheets of Fermi surfa
arises in an anisotropic crystal~Fig. 4!. After the degeneracy
is lifted there will not only be closed lines but also line
threading through the whole reciprocal lattice—cross s
tions of open Fermi surfaces. Consequently, there can exi
two topologically different types of Fermi surfaces—clos
and open.

If the plane in Fig. 4 is perpendicular to the extern
magnetic field, then the two types of cross sections of
Fermi surface will lead to two types of electron trajector
in a magnetic field: closed~typical for a free electron! and
open, i.e., traversing all of reciprocal space. The latter me
that in ordinary coordinate space in the plane perpendic
to the magnetic field the electron executes unboun
motion—it goes off to infinity. It is clear that such a situatio
is possible only for electrons in a crystal and demonstra
the manifestation of the features of the topology of the Fe
surface in the dynamics of the electrons.

Naturally, only closed cross sections can arise on clo
Fermi surfaces, and therefore the corresponding elect
will move along closed~cyclic! trajectories in a magnetic
field. On open Fermi surfaces both closed and open crys
are possible. Figure 5 shows various cross sections of a
face having the form of a corrugated cylinder with its ax
along theopx axis. The lines of these cross sections de
mine electron trajectories with different values of the m
mentumpz in the magnetic field. Trajectories of type1 are
open trajectories corresponding to infinite motion of the el
tron ~corresponding to smallpz), while trajectories of type2
are closed trajectories. The two types of trajectories are s
rated by an open trajectory~the separatrix, which passes

FIG. 4. Two types of electron trajectories on a highly anisotropic Fe
surface: open~1! and closed~2!

FIG. 5. Different types of electron trajectories: open~1! and closed~2!,
corresponding to cross sections of a Fermi surface in the form of a co
gated cylinder onpz5const planes for differentpz .
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through the saddle point on the Fermi surface and there
has points of self-intersection at the boundaries of the B
louin zone. These points are singular points because at t
the group velocity~equal to the gradient inp space! is di-
rected strictly along the normal to the plane of section a
consequently, the projection of the electron velocity on t
plane vanishes. The electron at this point should be at r
but in its motion along such a trajectory it approaches
saddle point only asymptotically~for t→`). The forced
stopping of an electron at the saddle point means tha
mass goes to infinity. From a mathematical standpoint
trajectory passing through the saddle point has a sing
mass.

In the previous Section it was shown that the effect
mass of an electron in a magnetic field is determined a
function of energy« by formula ~13!, whereS is the cross-
sectional area of the constant-energy surface. If one g
from the Fermi energy«F to an energy exceeding it by a
amount D«, i.e., to «5«F1D«, then at the samepz the
singular trajectory will be replaced by a nearby closed cyc
tron trajectory of type2. Figure 6a shows portions of trajec
tories of the different types near a saddle point. The anom
of the trajectory of the second type is due to the presenc
the close-lying saddle point, and therefore the singularity
sults from the energy dependence of only that part of the a
DS which is enclosed by the part of the trajectory near t
point. In the leading approximation the part of the cyclotr
trajectory of interest to us can be taken as the hyperbola

px
2

2m1
2

py
2

2m2
5D«, ~14!

wheremi.0 (i 51,2) are characteristics of the correspon
ing curvatures of the Fermi surface~the trajectory passing
through the saddle point can be replaced by the asympt
of the hyperbola!. The quantityDS can be calculated as th
area bounded by the hyperbola and the straight linepx5Q
5const, whereQ is chosen a small~but finite! distance away
from the saddle point~see Fig. 6b!. Then

~15!

i

u-

FIG. 6. Trajectories of an electron in the vicinity of a saddle point: t
saddle pointO on the Fermi surface~a!; trajectories close to the saddle poin
~b!.
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wherep05A2m1D« andx(D«)5Q/A2m1D«. Then in the
leading approximation the cyclotron mass of an electron o
trajectory close to the singular trajectory is equal to3

mc5
~m1m2!1/2

p
ln

«~Q!

D«
, ~16!

where «(Q)5Q2/(2m1). Thus as the saddle point is ap
proached, the effective mass of the electron increases l
rithmically. Consequently, the period of gyration of the ele
tron in the magnetic field~its cyclotron period! increases to
infinity, and the motion along a trajectory passing throu
the saddle point become similar to motion along an op
trajectory—the electron takes an infinite time to traverse
trajectory.

2.3. Quantum magnetic oscillations and the shape of the
Fermi surface

A direct reflection of the shape of the Fermi surface
found in thede Haas–van Alphen effect, which is among the
most interesting of macroscopic quantum phenomena.
manifested in an oscillatory dependence of the magnetiza
of a metal on the strength of the magnetic field. This effe
discovered in 1930 by the Leiden physicists for whom it
named, has a surprising distinction: the de Haas–van Alp
effect is amenable to theoretical interpretation in all its d
tails. A detailed description of the history of the discovery
this effect and its observation over the course of many
cades and an assessment of its role in the experimenta
termination of the electronic spectrum of metals is found
the monograph by Shoenberg.6 For us it is important that it is
a purely quantum phenomenon, due to the quantization
the electron motion in a magnetic field.

We perform a quasiclassical quantization of the elect
motion along a closed orbit. It is known that the magne
flux F enclosed by the electron orbit is quantized:

F5f0n, n50,1,2,...; f05
2p\c

e
, ~17!

wheref0 is the magnetic flux quantum. IfA denotes the area
enclosed by the projection of the electron orbit on thexy
plane, perpendicular to the magnetic fieldB, then one can
write F5BA. But according to~8! the areaA is proportional
to the cross-sectional area of the constant-energy sur
«(p)5«5const on the planepz5const:

A5S c

eBD 2

S~«,pz!,

and therefore the following quantization rule arises:

S~«,pz!5
2p\eB

c
~n1g!, n50,1,2,..., ~18!

whereg is a parameter having a value of the order of un
Formula ~18!, which was first proposed by Onsager,7 gives
the dependence of the electron energy on the quantum n
bersn andpz : «5«n(pz), from which one can construct th
thermodynamics of the electron gas in a magnetic field.

The quantization of the electron motion along trajec
ries close to the separatrix in Fig. 4~or, in other words, close
to a self-intersecting trajectory! requires special study. Let u
a
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consider the electron orbits into which the separatrix in F
4 is transformed either upon a small deviation of the m
netic field from thez axis or upon a small change in th
value of pz . We shall discuss the case when there are t
closed trajectories enclosing a cross section of the Fermi
face, of the type indicated by the shading in Fig. 7. T
quasiclassical quantization in such a case was investig
by Azbel’.8 If the trajectories1 and2 in Fig. 7 have parts tha
are close, then the effective value ofg will depend strongly
on the numbern, and near the self-intersecting trajectory t
distance between energy levels oscillates with variation
the magnetic field.

In the papers by Lifshits and Kosevich9 the magnetiza-
tion of the electron gas was calculated at low temperatu
and an expression was obtained for the oscillatory part of
magnetization of the metal. This expression can be rep
sented schematically in the form

DMosc5M0~B,T!cosS c\Sm~«F!

eB
2g D cosS pg

2

mc

m0
D ,

~19!

whereM0 is a smoothly varying~with B) amplitude of the
oscillations,Sm(«F) is the area of the extremal cross secti
of the Fermi surface on the planepz5const,mc is the effec-
tive cyclotron mass of an electron in the metal,m0 is the
mass of a free electron, andg is the gyromagnetic ratio
which determines the spin magneton of the electron~for a
free electrong52). The main characteristic of the de Haas
van Alphen effect is the period of the oscillations. In th
inverse magnetic field it is given by

DS 1

BD5
2pueu\

cSm
. ~20!

This period is independent of the magnetic field~see Fig. 8!
and also independent of temperature~!!. In terms of the field
itself, under the conditionDB!B2 one has

D~B!5
2pe\

cSm
B2, ~21!

i.e., at high fields the period is proportional to the square
the magnetic field.

If the Fermi surface is convex, then there is only o
extremal cross section~a maximum!. If the surface is non-
convex there may be several of them~Fig. 9!. Consequently,
the experimentally observed dependences forMosc can have
the form of a superposition of several oscillatory curves.

FIG. 7. Magnetic orbits in the vicinity of a separatrix in the form of a figu
eight.
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A set of cross sections of the Fermi surface and, hen
of oscillation periods arises in quasi-two-dimensional co
ductors, for which the Fermi surfaces typically have the fo
of corrugated cylinders. If the magnetic fieldB is directed
along the axis of the cylinder, then two types of extrem
cross sections~minimum and maximum! are possible. If the
direction ofB deviates from the axis of the cylinder by som
angleu ~see Fig. 10!, then there arises a continuous set
cross sections whose areas increase with increasing angu.
It is easy to see that the areas of the extremal cross sec
will increase in proportion to tanu (0,u,p/2), and this
will lead to an inverse dependence on tanu of the periods of
the quantum oscillations in the inverse magnetic field~20!.
For u5p/2 a cross section threading through the whole m
mentum space arises, and its contour becomes an open
jectory of the type like curve1 in Fig. 5; the corresponding
quantum oscillations then vanish.

The amplitude of the oscillations have the simplest
pendence onT at not very low temperaturesT.\vc , where
vc5eB/(mcc) is the cyclotron frequency, when

M0;expS 2
2p2T

\vc
D . ~22!

Thus the three separated factors in Eq.~19! make it pos-
sible to determine the three most important characteristic
the electron system: a! from the periods of the oscillation
one can determine the extremal cross sections of the F
surface for different directions of the magnetic field~the di-
mensions of the projection of the Fermi surface on differ

FIG. 8. Oscillations of the magnetization of a Bi single crystal~Shoenberg,
1938!.

FIG. 9. Two types of extremal single crystals of a nonconvex Fermi surf
e,
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planes!, b! from the temperature dependence~22! one can
determine the effective electron masses on the extremal
jectories and, finally, c! the last cofactor tells about the gy
romagnetic ratio for an electron in the metal. All of the
possibilities have been used successfully in numerous exp
ments, and formula~19! is highly valued by those who in
vestigate the electronic properties of metals. The Fermi
faces of many metals have been studied and an atlas of F
surfaces has even been compiled on the basis of form
~19!. Such an atlas, prepared by Yu. P. Gaidukov, was fi
published as a proposal in Ref. 3. In Shoenberg’s book6 for-
mula ~19! is called the Lifshits–Kosevich~LK ! formula, a
name that is used repeatedly in original papers and revie
including the book by Wosnitza.10

From the standpoint of geometry, item ‘‘a!’’ is the most
interesting possibility, since it entails a statement of the pr
lem of determining the shape of the Fermi surface from a
of extremal cross sections for various orientations of the
cant plane~Fig. 11!. This question was posed in the form o
an inverse problem and solved by Lifshits and Pogorelov.11 It
was shown that if the surface has a center of symmetry
any ray drawn from the center intersects the surface at o
one point~there are no folds on the surface!, then the shape
of the surface can be reconstructed uniquely from the dep
dence of the area of the central cross section on the direc
of the normal to this cross section. Unfortunately, as far
we know, this result is not being used to reconstruct
Fermi surface from experimental data, since the attention
researchers has been focused on searching for and iden
ing the unusual sheets, Fermi surfaces that do not satisfy
conditions of the Lifshits–Pogorelov theorem.

In addition to the de Haas–van Alphen effect, quantu
magnetic oscillations are characterized by the Shubnikove.

FIG. 10. Cross section of a Fermi surface in the form of a corruga
cylinder, in relation to the direction of the magnetic field.
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Haas effect—oscillatory dependence of the magnetore
tance of a metal on the magnetic field. Since the phys
nature of the latter effect is the same, measurements o
magnetoresistance yield the same periods as for the
Haas–van Alphen effect.12 Magnetoresistance oscillation
are easily observed not only in conventional metals but a
in organic conductors~Fig. 12! and thus can be used to stud
their electronic spectra.

2.4. Magnetic breakdown

In discussing the periods of the quantum oscillations
the case of a complex Fermi surface, we start from the
that if there are several different extremal cross section
cross sections of different sheets of the Fermi surface, t
the experimental plot will be a superposition of several in
pendent curves with independent periods. In other word
is assumed that the motion of an electron along each of
closed orbits shown in Fig. 3b or in Fig. 4 is complete
independent of the presence of a nearby trajectory of ano
type. But the Lorentz force can lead to transitions from o
trajectory to another. In fact, that can occur if different cla
sical trajectories approach each other very closely. The p
nomenon due to these transitions is calledmagnetic
breakdown.13

The essence of magnetic breakdown is easily illustra
by examining Figs. 4 and 13. In a weak magnetic field
motion of an electron along a small orbit of type2 in Fig. 13

FIG. 11. Cross section of the Fermi surface, in relation to the direction
the magnetic field.

FIG. 12. Oscillations of the magnetoresistance of the organic condu
a-(ET)2TlHg(SeCN)4 at T580 mK.10
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gives rise to the de Haas–van Alphen effect with large p
ods. However, an electron on a closed trajectory of small s
at some times comes very close to an open trajectory of t
1. If the magnetic field exceeds a certain limiting value, th
the electron at that time hops ‘‘by inertia’’ to the trajectory1
~see Fig. 13! and then, moving along the latter, ‘‘slips into’’
short part of a second trajectory of type2, emerging as a
result on a closed trajectory of large radius. This leads t
decrease in the period of the quantum oscillations.

The magnetic breakdown result can be interpreted
other way: an electron moving along an open trajectory
type 1 which threads all of reciprocal space goes over to
closed trajectory, the area of which is shaded in Fig.
Consequently, a high magnetic field can alter not only
size but also the topology of the electron trajectories.

It is clear that the phenomenon described goes bey
the framework of the classical dynamics of particles with
definite trajectory. The transition~or nontransition! to an-
other trajectory occurs with a certain quantum probabil
Therefore, magnetic breakdown is a rather complex quan
process that can lead to a rearrangement of the electr
spectrum of a metal in a high magnetic field. An expositi
of the theory of magnetic breakdown may be found in t
book by Lifshitset al.3 and in several reviews.14

Magnetic breakdown is manifested in oscillatory effec
only as a jumplike change in the oscillation period when
magnetic field reaches a limiting~breakdown! value, at
which the electrons hop from one closed trajectory to anot
or in the vanishing of oscillations if the second trajecto
encloses such a large area that the period of the oscillat
and their amplitude become vanishingly small.

The presence of magnetic breakdown modifies the qu
tization rule~18!. The areaS(«,pz) appearing in this formula
is that of the closed electron trajectory lying within one u
cell of p space. In the leading approximation, when relati
~18! is valid, the motion along such a trajectory is auton
mous and is insensitive to the periodic dependence of
energy on the quasimomentum. However, in an exten
band scheme there are analogous orbits in all cells of
reciprocal lattice—the energy levels obtained from~18! are
continuously degenerate@the parameter of this degeneracy
known: it is one of the coordinates of the center of the el
tron orbit in x space; we denote it asy052cpx /(eB)]. On
the basis of magnetic breakdown concepts, one should
tulate a small tunnel coupling between the motions alo
these orbits, which lifts the degeneracy of then levels ob-
tained from~18!.

Zil’berman15 showed on the basis of other argumen

f

or

FIG. 13. Diagram explaining the nature of magnetic breakdown: an elec
‘‘hops’’ from the small orbit to the large orbit.
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that taking the quantum corrections to the quasiclassica
sult into account leads to the conclusion that the parametg
in ~18! becomes dependent on the position of the cente
the electron orbit within the unit cell of the metal:

g5
1

2
1dgn~px!,

and the level smearingdg is small, of the order of the ratio o
the lattice constanta to the minimum cyclotron radius of th
electron:«5aAeB/(c\)!1 ~usuallydg;«2).

The influence of tunneling effects on the electronic sp
trum is, of course, enhanced if the trajectories under disc
sion have close-lying~almost touching! parts. An example of
such a system is a chain of closed electron trajectories
magnetic field~Fig. 14!, linked by centers of magnetic break
down ~the small dark circles at the Brillouin zone boun
aries!. In terms of magnetic breakdown the motion of
electron along the main part of the orbit is classical, while
the magnetic-breakdown center a probabilityw5r2(B) of
tunneling to a neighboring closed trajectory arises. As w
shown previously,16 one usually has

r5exp~2B0/2B!!1,

whereB0 is called the breakdown field~it is determined by
the effective potential barrier separating the trajectories
the magnetic field!. A calculation of the energy of the sta
tionary states in a chain of circular orbits of the type sho
in Fig. 14 with the magnetic-breakdown tunneling taken in
account leads to the result17

dgn5
~21!n

p
arcsinS r cos

apx

\ D ,

which in the caser!1 reduces to a typical one-dimension
dispersion relation

gn~px!5
~21!n

p
r cos

apx

\
.

The broadening of the electron energy levels as a re
of magnetic breakdown no doubt affects the amplitude of
quantum oscillations, leading to an additional decrease
amplitude with increasing magnetic field.

2.5. Band electrons in an electric field and Bloch
oscillations

The diversity of the shapes of constant-energy surfa
the Fermi surfaces in particular, which lead to features of
quantum oscillations is in the final analysis due to the p
odic dependence of the energy of a band electron on its
simomentum. A peculiar manifestation of this dependenc
observed in the behavior of an electron under the influe
of a uniform static electric fieldE.

In the quasiclassical approximation the electron dyna
ics is determined by the usual equation

FIG. 14. Chain of magnetic-breakdown orbits in a highly anisotropic me
e-
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dp

dt
5eE ~23!

with the usual Hamiltonian definition of the velocity:

v5
]«

]p
, ~24!

where«5«(p)5«(p1G), with G being a reciprocal lattice
vector inp space.

We direct the vectorE along theox axis and adopt the
simplest dependence«5«(px):

«5« sin
apx

\
; v5

a«0

\
cos

apx

\
; ~25!

then it follows from~23! that px5eEt, which immediately
gives a periodic time dependence of the electron velocity18

vx5v0~ t ![
a«0

\
cos~vBt !. ~26!

The frequencyvB5eEa/\ is called theBloch frequency.
The point is that from a quantum point of view the pre

ence of a definite frequency means that discrete levels, w
an energy differenceD«5\vB , are present in the electro
spectrum. What reason can there be for this value ofD« to be
selected in a uniform field? By virtue of the uniformity of th
field, there can be no preferred value of«. Therefore, the
necessary discreteness can only be due to an equidistan
crete spectrum of the type

«5«01n\v, n50,61,62,... .

This equidistant spectrum and especially its manifestation
optical experiments19 is called theWannier–Stark ladder. It
turns out that the distance between ‘‘rungs’’ of this ladder
the case of an electron in a uniform electric field determin
the Bloch frequency of the oscillations:v5vB . A brief ac-
count of the quantum theory of Bloch oscillations can
found in a review.20

At reasonable values of the electric field the frequen
of the Bloch oscillations of an electron in a metal is ma
orders of magnitude smaller than the electron collision f
quency even in extremely pure metals~in other words, the
oscillation period is much longer than the relaxation timet
in the metal, and the amplitude of the Bloch oscillations
much greater than the electron mean free path!.3 Therefore,
in calculating the electrical resistance of conductors and
other analogous cases the periodic character of the elec
motion may be ignored if it is kept in mind that on sma
parts of its path the motion of an electron is translational. F
a long time it was considered that Bloch oscillations are
extremely curious physical phenomenon but one that is
only theoretical interest.

The situation changed fundamentally when a technolo
was developed for preparing perfect semiconductor supe
tices with structure periods much greater than the lattice c
stant. Since in such structures the reciprocal lattice perio
strongly reduced and the electron energy spectrum is bro
up into narrow subbands, the Bloch oscillations correspo
ing to them have rather high frequencies~the obvious condi-
tion vBt@1 becomes attainable!, affording a real opportu-
nity for generating and observing these oscillations. Rece

l.
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direct observations of Bloch oscillations of an electron c
rent in the bulk of semiconductor superlattices have b
made~the first direct experiments of this type were app
ently carried out in Refs. 21 and 22!.

The experimental possibility of ‘‘sensing’’ the periodic
ity of the electron energy in a semiconductor superlattice w
first pointed out by Esaki and Tsu.23 Their arguments and a
calculation done in the relaxation-time approximation redu
to the following. If relaxation did not occur, then the tim
dependence of the electron energy would be determined
formula ~26!, where nowa is the superlattice period. Takin
dissipative processes~relaxation! into account forces one to
consider that the real change in the electron velocity occ
more slowly~is damped!:

dvx5exp~2t/t!dv0 . ~27!

It follows from ~27! that

vx~ t !5E exp~2t/t!dv0~ t !5E
0

t dv0

dt8
exp~2t8/t!dt8.

~28!

Thus it turns out that

vx~ t !5eEE
0

t ]2«

]px
2 exp~2t8/t!dt8

5
eE

m~0!
E

0

t

cos~vBz8!exp~2z8/t!dz8, ~29!

wherem(0)215]2«/]px
2 is the inverse effective mass of a

electron atpx50.
For long times (t@t) one can sett5` at the upper limit

in ~29!, and then one gets the well-known formula of Esa
and Tsu23 for the steady-state mean velocity of an electron
a semiconductor superlattice:

^v&5vx~`!5
vBt

11~vBt!2

a«0

\
. ~30!

In weak fields~whenvBt!1) Eq. ~30! implies the standard
linear dependence of the mean electron velocity on the fi

^v&5
et

m~0!
E, ~31!

which explains the electrical conductivity in weak elect
fields. In a strong electric field (vBt@1), attainable in semi-
conductor materials, Eq.~30! implies that the mean velocity
is a decreasing function ofE ~which is impossible in metals!:

^v&5
«0

et

1

E
, ~32!

and that leads to a negative differential conductance of
semiconductor superlattice.

Bloch oscillations, as we have said, can occur at tim
shorter than the relaxation time and in sufficiently stro
electric fields, i.e., under the condition 1/vB!t!t. In the
limit t5` expression~29! goes over to formula~26!. At
large but finitet formula ~29! describes Bloch oscillations o
an anharmonic form.

The electrodynamics of semiconductor superlattices
now an independent branch of physics,24 the content of
which touches only lightly on our theme.
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2.6. Topology of the Fermi surface and the low-temperature
magnetoresistance of metals

The above-described quantum oscillation effects in m
als undoubtedly provide a beautiful demonstration of
quantum nature of magnetism, and the diverse forms of t
manifestation confirm the complexity of the Fermi surface
metals. However, only closed electron orbits contribute
the observed quantum oscillations. We have mentioned
if, when the direction of the magnetic field is changed,
electron orbit on an open Fermi surface becomes very la
and in the limit is transformed to an unclosed trajectory, th
the quantum oscillations vanish. The latter circumstan
makes it possible to determine the direction in which t
Fermi surface is open. However, the specifics of the elec
dynamics in motion along open trajectories are reflected
study of other phenomena.

The dynamics of electrons on open trajectories is clea
manifested in features of those macroscopic properties
metals which can be described without invoking the quant
mechanics of a particle with an arbitrary dispersion relat
but which are sensitive to the shape of the classical traje
ries of the current carriers. Foremost among such prope
are the galvanomagnetic properties of metals in high m
netic fields. The topological aspect of the theory of galvan
magnetic phenomena in metals at low temperatures has
come the subject of a deep mathematical analysis.25

However, we are not interested in the details of t
mathematical analysis but with the physical inferences re
ing observable phenomena with the geometry of the Fe
surface.

The theme stated by the heading of this subsection
been exhaustively discussed in a splendid review articl26

and we can therefore limit the discussion here to some g
eral qualitative remarks. It need only be said that th
review26 and the aforementioned monograph3 give a com-
plete exposition of the theory of low-temperature galvan
magnetic properties of metals in high magnetic fields, wh
the topological features of the Fermi surfaces are manife
in full measure. In its day this theory was called the LA
theory, after the initial letters of the names of its creato
Lifshits, Azbel’, and Kaganov.

At sufficiently high magnetic fields the cyclotron fre
quency is so large that at low temperatures an electron du
its mean free time will go around any closed trajecto
within the Brillouin zone many times, and it therefor
traverses many unit cells in the reciprocal space, mov
along an open trajectory. It is this circumstance that make
possible for ‘‘openness’’ of the electron trajectories to
manifested in the macroscopic properties of a metal.

The value of the electric field in a metal is very sma
and therefore in a leading approximation the dynamics of
electron is determined by the shape of its trajectory in
magnetic field. The electric field can be taken into accoun
a small perturbation that makes the electron jump from o
trajectory to another. An exception is the situation in whi
the magnetic fieldB and electric fieldE are mutually perpen-
dicular. Then all of the electrons on the closed trajector
are entrained into Hall drift with a constant macroscopic v
locity ^v&5cE/B. The Hall drift for electrons on open tra
jectories looks somewhat different, but we will mainly b
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interested not in the Hall but in the diagonal elementrxx of
the resistivity as a function of the direction of the magne
field. A detailed analysis of the different situations and d
ferent possibilities in the dynamics of electrons on op
Fermi surfaces was given in Refs. 27 and 28 and analyze
the monograph cited as Ref. 29. We shall limit considerat
to the simplest version.

Let us consider a metal for which the Fermi surface i
corrugated cylinder~of the type illustrated in Fig. 10 or 15!.
A model dispersion relation that gives such a Fermi surf
is

«~p!5D sin2
bpx

2
1

py
21pz

2

2m
, ~33!

where«F.D. The magnetic field direction is close to thez
axis.

The cross section of such a Fermi surface on thepz50
plane is shown in Fig. 5. It is clear that if the magnetic fie
is strictly parallel to thez axis, then open trajectories aris
for upzu,p1 . However, if the magnetic field deviates fro
the z axis by a finite angleu, then the trajectories becom
closed~see Fig. 15!. But at small angleu!1 the trajectories,
although closed, are very extended, and therefore the le
of the trajectory can be much greater than the recipro
lattice period 2p/b.

If the corresponding length of a trajectory in coordina
space begins to exceed the mean free path of an electro
the metal, then such a trajectory will be manifested in
kinetics as open. Recalling the relationship between the
rameters of the electron trajectories in the coordinate

FIG. 15. Long trajectory on a Fermi surface in the form of a corruga
cylinder.
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reciprocal spaces~8!, we can easily estimate the limitin
angle as that value for which the quantity 2pc/(beBu) is
comparable to the electron mean free path. Inside the e
mated angular interval are extended closed orbits on wh
the electrons are unable to execute cyclotron motion. A
result, for those electronŝvx&50, while at the same time
^vy&Þ0. The latter circumstance leads to a sharp increas
rxx in the vicinity of u50 ~see Fig. 16!.

If the Fermi surface is more complex than a corruga
cylinder, e.g., if it is like that shown in Fig. 17, then th
orientation of the topological features can be illustrated w
the aid of a stereographic projection~Fig. 18!. The center of
the circle corresponds to the normal in Fig. 17, and
boundary of the circle tou5p/2. The shaded areas sho
regions in which one encounters open trajectories. The s
lines from the center to the boundary and the circleu5p/2
itself correspond to open trajectories, which arise when
field is rotated in one of the principal planes. The points
the center and on the circumference correspond to direct
in which again only closed trajectories are encountered;
dashed lines delimit the region of trajectories which,
though closed, extend for many reciprocal lattice periods

d

FIG. 16. Singular dependence of the magnetoresistance of a metal w
Fermi surface in the form of a corrugated cylinder on the direction of
magnetic field.

FIG. 17. An open Fermi surface of complex shape.
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A peculiar manifestation of the band motion of electro
in a magnetic field, which affords another opportunity f
studying the geometry of the Fermi surface, is demonstra
by the classical size-effect oscillations of the magnetore
tance in a conducting superlattice. If the superlattice is a
structure with a macroscopic periodb along thex axis, then
in the single-band approximation the electron can be
signed a dispersion relation of the type~33!. We assume tha
the external magnetic field is directed along thez axis, and
we consider classical electron trajectories in thexoy plane.
From all we have said it is clear that resonance featu
appear in the dynamics of an electron gas when the siz
the Fermi orbit of an electron along theox axis in that plane
is a multiple of the periodb. The corresponding calculation
of the low-temperature magnetoresistance of such a sys
and a bibliography can be found in Ref. 30.

We note that the classical oscillations described are
analog of the magnetoacoustic oscillations predicted by P
pard ~see, e.g., Ref. 29!. We are talking about a geometr
resonance arising when a monochromatic longitudinal aco
tic plane wave traverses a metal perpendicular to an exte
magnetic field. The wave of compression and rarefaction
ates a moving periodic structure. Since the velocity of
electron is significantly higher than the speed of sound
perceives this wave as a slowly moving superlattice wit
period equal to the acoustic wavelength. A resonance e
arises when the size of the electron orbit along the direc
of propagation of the wave is equal to a whole number
wavelengths. The anisotropy of the effect in relation to
direction of propagation of the sound wave makes it poss
to judge the shape of the electron trajectory in the magn
field.

Additional information about the details of the Ferm
surface and the effective masses of the electron can als
obtained from an analysis of the Azbel’–Kaner cyclotr
resonance.31,32 However that effect is due to the high
frequency properties of metals, an analysis of which wo
be the subject of a separate publication. Therefore, w
appreciating the enormous importance of the Azbel’–Ka
effect in the electron theory of metals, here we shall o
mention it in passing.

FIG. 18. Stereographic projection of the directions of the magnetic field
which open trajectories are possible.
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2.7. Berry phase and the topology of trajectories in a
magnetic field

Completing our discussion of the problems relating
the topology of electron trajectories in a magnetic field, let
mention the profoundly quantum effect of Berry’s geomet
phase33 in magnetic oscillation phenomena. The questi
concerns the discussion of the parameterg in formula ~18!,
which influences the phase of the magnetization oscillati
~19!. A calculation ofg by the WKB method was first carried
of these in Ref. 15, and later a more rigorous calculation w
done in Ref. 34 for a single-band electron spectrum. In p
ticular, the calculation of Ref. 34 confirmed the special co
tribution tog from self-intersecting electron trajectories~like
the separatrix in Fig. 5!, described previously in Ref. 8.

Let us now say a few general words about the circu
stances requiring that the Berry phase be taken into acco
It is known that the local instantaneous value of the phas
the wave function is not measurable~only its gradients and
time derivative are locally measurable!. We write the wave
function in the form

c~x,t !5ucuexp~ iw~x,t !!.

It is assumed thatc(x,t) is a single-valued function of the
coordinates and time. However, the phasew(x,t) need not be
single-valued, but its variation along any closed conto
must be a multiple of 2p. In the case of interest to us, that o
an electron in a static magnetic field directed along thez
axis, whenpz5const,«5const, the dependence of the pha
on x andy is important:

w5
pzz2«t

\
1w0~x,y!.

The condition formulated above takes the form

~34!

where the integration is done along any closed contour in
(x,y) plane.

The phase of a quasiclassical wave function is de
mined by the classical actionS for the system under study
w5(1/\)S. In a magnetic field the actionS acquires an ad-
ditional term,

dS05
e

c E0

x
Adx, ~35!

whereA is the vector potential, and therefore a closed el
tron trajectory G should satisfy the following condition
which drives from~34!:

~36!

Condition~36! is equivalent to the quasiclassical quan
zation of the magnetic flux~16!. Relation~36! underlies the
Aharonov–Bohm effect35 and explains the quantization o
circular electron orbits in the field of a singular vect
potential.36 What seems strange about this effect is the f
lowing. An infinitely thin ~in the limit! rectilinear solenoid
creates a magnetic fieldF0 localized along thez axis, while
in the surrounding space it creates a vector potentialA with

r
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a single nonzero angular componentAu5F0 /(2pr ), where
r 25x21y2. Although such a vector potential does not ge
erate a magnetic field in the surrounding space (curlA50,
rÞ0), an electron constrained to move~e.g., by a specia
distribution of the electric potential! along a closed trajectory
G that encloses thez axis nevertheless ‘‘feels’’ the presenc
of the magnetic flux, since its trajectory obeys conditi
~36!.

This is a nonlocal topological effect. There is no physic
field of magnetic origin acting locally on the electron at a
point zÞ0. The entire trajectory functions as a whole. Th
trajectory G has the feature that the forced motion of t
electron takes place in a doubly connected plane (x,y) ~its
simply connected nature is destroyed by the presence
localized magnetic flux piercing the plane at the pointx5y
50). The Aharonov–Bohm effect was in fact the first phy
cal realization of what later became attributed to a manif
tation of the Berry phase.

In Ref. 33, Berry made an extremely important obser
tion that led to a discovery with far-reaching consequenc
Suppose that the Hamiltonian and action of a quantum
tem depend on some set of continuous parameters, w
may be called thespace of parametersR. Then the phase o
the wave function of that system will also depend on tho
parameters. For an electron in a crystal the parameter s
might be the Brillouin zone ink space, for example.37 If the
parametersR undergo adiabatic changes and vary slowly
time, R(t), in such a way that at the end of some cyc
process att5T they return to their initial valuesR(T)
5R(0), then the phase of the wave function obtains an
ditional changedb that is not related to an increment of th
classical action. The incrementdb was called thegeometric
phase, and that is the Berry phase. The total phase adva
along any closed contour in the parameter space must ob
condition of the type~34!:

dw[
1

\
dS01db52pn, n50,1,2,... . ~37!

It is not hard to obtain a formal expression for the Be
phase. LetH(R(t)) be the Hamiltonian anduc(t)& be the
wave function—the state vector of the system~we follow the
original paper33 and use the Dirac notation!. The evolution of
uc(t)& is described by the Schro¨dinger equation

i\U]c~ t !

]t L 5H~P~ t !!uc~ t !&. ~38!

At a fixed time we obtain the eigenfunctions and eige
values of the HamiltonianH~R!, whereR5R(t):

En~R!un~R!&5H~Run~R!&. ~39!

We assume that the spectrumEn(R) is discrete and non
degenerate. According to Ehrenfest’s quantum adiabatic
pothesis, a system found at the initial time in a state withn
energy levels will be found in the same state during adiab
evolution, although the state itself and the levelEn(R) will
vary with time. Therefore the wave function of the system
any time can be written in the form38
-

l

t

a

-
-

-
s.
s-
ch

e
ce

-

ce
y a

-

y-

ic

t

uc~ t !&5expS 2 i

\ E
0

t

En~R~ t !!dt8D
3exp~ ibn~ t !!un~R~ t !!&, ~40!

where the first exponential factor is the usual phase fac
the last factorun(R(t))& is a single-valued function of the
parametersR(t), and the second exponential factor, whi
arises naturally in Eq.~40!, is the key element in the analy
sis, since the phasebn(t) is not necessarily a single-value
function ofR(t). Therefore in a cyclic process it can happ
that bn(T)Þbn(0).

Substituting~40! into ~38!, we easily obtain an equatio
for bn(t):

dbn~ t !

dt
5 i K n~R~ t !!U]n~R~ t !!

]t L . ~41!

Let us calculate the increment tobn upon an adiabatic
variation along some closed contourC in the parameter
space, so thatR(T)5R(0):

~42!

Since the functionsun& are normalized (̂nun&51), the
quantity ^nu(]n/]t) is purely imaginary, which guarantee
that the phasebn(T) is real. If we takebn(0)50, then
bn(T) is the geometric~Berry! phase.

Consider the geometric phase for an electron moving
a crystal along some closed orbitG in k space. As we have
said, the Brillouin zone in this case can play the role of t
parameter space, withR5k.

Suppose that at timet the electron has an energy from
the bands. Then its wave function has the form~we return to
the usual notation for the wave function!

us&5usk~x!exp~ ik•x!, ~43!

whereusk(x) is the Bloch amplitude, periodic in space. Th
Bloch amplitude and the electron energy«s(k) are the eigen-
functions and eigenvalues of a stationary equation of the t
~39! at time t. The quasi-wave vectork enters this equation
as a parameter. For example, in a magnetic fieldk(t)5k
2(e/\c)A(t). Therefore upon an adiabatic variation of th
physical conditions one should set

us,t&5usk~ t !exp~ ik•x!, ~44!

assuming that the quasi-wave vector in the exponential fa
exp(ik•x) is independent of time. The slow dependence
time is contained in the Bloch amplitude and ener
«s(k(t)). Taking this last observation into account, we su
stitute ~44! into ~42!:

~45!

This is the geometric phase of an electron executing cy
motion in a magnetic field. Curiously,34 the integral

V~k!5 i E usk* ~x!
]usk~x!

]x
d3x ~46!

coincides with the diagonal element of the matrix
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Vss8~k!5 i E usk* ~x!¹kus8k~x!d3x, ~47!

which determines the so-called periodic part of the coo
nate operator in thek representation, which is responsible f
the interband transitions~see, e.g., Ref. 39!:

~48!

Thus it can be considered that the Berry phase has ca
attention to the second term in the coordinate operator~48!
in a spatially periodic structure.

Finally, let us return to the quantization rules~37! and
the discussion of theg term in formula~18!. If the corre-
sponding electron orbits with differentn in a magnetic field
are not very close to each other and their shape is subs
tially different from that of the self-intersecting orbits, the
as was shown in Ref. 15 and confirmed in Ref. 39, the
rameterg always has the value

g5
1

2
. ~49!

This is the value usually used in discussing quantum osc
tions in metals.6 Consequently, upon quantization of the ele
tron motion in a magnetic field under the conditions in
cated above, the value ofdS0 to be used in~37! is

dS052pS n1
1

2D\. ~50!

Thus the constantg in formula ~18! is equal to

g5
1

2
2

1

2p
Db, ~51!

where Db5b(T)2b(0) is the advance of the geometr
phase in a complete turn of the electron along its clo
trajectory in the magnetic field.

The possibility of using formula~51! and the conse-
quences of doing so are discussed in Ref. 40. A nonz
Berry phase is usually due to degeneracy of the electro
states. Degeneracy, i.e., the touching or intersection
constant-energy surfaces~sheets of the Fermi surfaces! can
be of two types: 1! caused by symmetry, in which case
occurs either at points of symmetry or along axes of symm
try in the Brillouin zone; 2! along lines of accidental
degeneracy.41 Analysis of the geometry of the Fermi surfac
shows that lines of symmetry-related and accidental con
should exist in many metals. Figure 19 shows the pecu
shapes of the Fermi surfaces in various metals in which
features under discussion are found. To calculate the valu
g we use a result obtained back in 1962.42 It turns out that if
a trajectoryG encloses a line of degeneracy, then the g
metric phaseDb along it is largely determined by the cha
acter of the dependence of the energy splitting on the
tance of the pointk from the indicated line. If the splitting o
the energy bands increases linearly with that distance,
the integral~45! giving the geometric phaseDb is equal to

Db56p, ~52!

where the sign depends on the direction of integration
~45!.
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The stated conditions hold in the vicinity of a line o
accidental degeneracy and also near a line of degene
coinciding with a threefold symmetry axis~trajectories3 and
4 in Fig. 19b, c!. Therefore, for the indicated trajectories

g50; ~53!

g51 andg50 are equivalent.
If the energy splitting near a line of degeneracy increa

quadratically with increasing distance of the pointk from
that line, then

Db50. ~54!

Consequently, in this case, and also for trajectoriesG that
do not enclose lines of degeneracy~or which enclose an even
number of lines of degeneracy—trajectories of the type1 and
2 in Fig. 19a, b!,

g5
1

2
.

Summarizing, we note that the described role of t
Berry phase is of a purely topological character and depe
on neither the form of«~k! in the vicinity of the line of
degeneracy nor on the linear dimensions of the trajectoryG.
The result depends only on whether that trajectory enclos
line of singularity for the Bloch wave function~in which
caseg50) or does not enclose such a line~in which case the
usual valueg51/2 obtains!. As we have said, experimenta
measurement of the phase shift of quantum oscillations in
metals mentioned above makes it possible in principle
distinguish the presence of lines of degeneracy in their
ergy spectrum.

3. TOPOLOGY OF THE CHARACTERISTIC SURFACES IN
THE DYNAMICS AND THERMODYNAMICS OF
QUASIPARTICLES IN CRYSTALS

3.1. Geometry of constant-energy „constant-frequency …

surfaces and the asymptotics of the scattered waves

In discussing the geometry and topology of Fermi s
faces we start from the fact that for Fermi particles~such as
electrons! at low temperatures the region near a single s
face is important, viz., that which corresponds to the Fe

FIG. 19. Schematic illustration of Fermi surfaces for certain metals wh
have lines of degeneracy in the electron spectrum: electron ‘‘lenses’’ for
and Cd~a!; the hole ‘‘monster’’ for Be and Mg~b!; the self-intersecting
Fermi surface for graphite~c!. The dashed lines show lines of degenerac
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energy. For Bose particles~such as photons in a medium
phonons, and magnons! there is no single characteristic pr
ferred energy~frequency!. Therefore it is of interest to stud
the dynamics of such particles~quasiparticles! at all possible
energies. The thermodynamics of a gas of such particle
extremely sensitive to temperature, and its features reflec
singularities of the density of states of Bose particles.

As in the case of electrons, the main dynamical char
teristic of any particles is the dispersion relation, i.e.,
dependence of the energy« of the particle on the quasimo
mentump. In the case of phonons one usually considers
dependence of the square of the frequency,«5v2, on the
quasi-wave vector. Here, of course, it is understood t
p5\k.

Since the features of the manifestation of the comp
form of the electron Fermi energy were discussed in deta
Section 1, now we shall, for the sake of definiteness, sp
of phonons. As in the case of electrons, all of the qualitat
arguments are conveniently linked to the geometry of
constant-frequency surfacev(k)5v5const. At low fre-
quencies and long wavelengths (ak!1), when the disper-
sion relation isv5ck, the constant-frequency surfaces a
closed. However, since the sound velocitys in a crystal de-
pends on the direction of the wave vectork, even for long-
wavelength oscillations the constant-energy surface can
nonconvex. The parts on which the cross section of
constant-frequency surface is convex are separated from
parts on which it is concave by points of zero curvature
the cross section~Fig. 20!. In a three-dimensionalk space
the convex parts of the constant-frequency surface are s
rated from the concave parts by lines along which the Ga
ian ~total! curvature vanishes. Figure 21 illustrates one oct
of the constant-frequency surface of the Ge single crys
The heavy lines in Fig. 21 are lines of zero Gaussian cur
ture separating the convex and concave parts of the sur

By virtue of the periodicity ofv(k)5v(k1G), where
G is a reciprocal lattice vector, the closed surfaces descr
must repeat periodically ink space. Figure 22 shows a cro
section of the reciprocal lattice on the planekz50; the cross
sections of these surfaces are situated at the po
k15(2p/a1)n1 , k25(2p/a2)n2 , where n1 ,n250,61,

FIG. 20. Cross section of a nonconvex constant-frequency surface
acoustic oscillations in a cubic lattice.
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62,... . The pointsk15p/a1 , k25p/a2 correspond to the
maximum frequencyv5vmax. The constant-frequency su
faces around it are also closed~ellipsoids!. Between the two
types of closed surfaces is a layer of open constant-freque
surfaces (v1,v,v2 in Fig. 22!. Usually the surface sepa
rating the open and closed surfaces has aconical point, in the
vicinity of which the constant-frequency surfaces have
form shown in Fig. 23, i.e., they resemble hyperboloids.
the scheme in Fig. 22 the conical points are points of the t
k150, k25p/a2 or k15p/a1 , k250.

The shape of the constant-frequency surface is extrem
important in studying the propagation of quasiparticles. T
phonon group velocity is given byv5]v/]k, and therefore
its direction for a nonspherical constant-frequency surfac
the general case is noncoincident with the direction ofk. The
interrelationship of the directions is determined geome
cally by the shape of the constant-frequency surfacev(k)
5const, since the vectorv is always normal to a surface o
constant frequency level~see Fig. 24!. To each wave vectork

or

FIG. 21. Consant-frequency surface for one of the branches of vibration
the Ge crystal.

FIG. 22. Scheme of the cross sections of the constant-frequency surfac
the planekz50.
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at a fixed frequency there corresponds a single velocityv.
However, to a specified direction of the group velocityv
~i.e., to a specified direction of the energy transfern5v/v)
there can correspond several wave vectorsk (k1 , k2 , andk3

in Fig. 24!, i.e., several waves with different directions
propagation of the phase of the wave~the wave front!.

Suppose that we are studying a quasiparticle of arbitr
dispersion relation emitted~or scattered by a point defect! at
the coordinate origin, and we are interested in its asympt

FIG. 23. Form of the constant-frequency surface near a conical poin

FIG. 24. Reference points on the constant-frequency surface, correspo
to the directionn.
ry

ic

behavior at large distances. Such a statement of the prob
was proposed by I. M. Lifshits,43 who showed that the inten
sity of the wave function in this case is conveniently char
terized by the integral

~55!

The asymptotic behavior of the integral~55! for r→` is
characterized by the following. First, the number of waves
a directionn is determined by the number of points of ta
gency of the constant-energy surface with a plane perp
dicular to the direction ofn ~points k1 , k2 , andk3 in Fig.
24!. Second, the intensity~55! at each point of tangency~or
‘‘reference point’’! n depends on the total~Gaussian! curve
Kn of the surface at that point (Kn5a1a2 , wherea1 anda2

are the principal curvatures!. If Kn.0 the corresponding
point is calledelliptical, and if Kn,0 it is calledhyperbolic.

All points of a convex surface are elliptical. If the su
face is not convex~but of the type shown in Fig. 21!, then it
has parts of different types~elliptical or hyperbolic!. But the
parts of the constant-frequency surface of first and sec
types are separated by lines along which one of the co
cients (a1 or a2) vanishes. These are calledlines of para-
bolic points. Finally, at the intersection of lines of parabol
points there are ‘‘flat spots’’ wherea15a250.

Let us begin with an analysis of the asymptotic form
the integral~55! in the case when the reference points a
elliptical or hyperbolic points. The asymptotic expression
~55! in this case is43

J~r ,«!5
2p

r (
v

expS iknr6 i
p

4
6

p

4
D

u¹«~k!uAuKnu
, ~56!

where the signs in the argument of the exponential funct
are determined by the signs of the principal curvaturesa1

anda2 . The intensity~56! is typical for a diverging spherica
wave:J;1/r .

Thus the scattered wave is, generally speaking, a su
position of several diverging waves. Each of these waves
its own shape and its own propagation velocity. An idea
the spatial distribution of the scattered waves can be go
studying the so-calledwave surface. The wave surface in
coordinate space is in a certain sense the polar opposit
the constant-frequency surface and is constructed as follo
From the position of a defect~point O in Fig. 25! a ray is
constructed in the direction ofn, and along it the length
r 51/(n•kn) is marked off, wherekn5kn(n) are the refer-
ence points. If the constant-frequency surface is convex, t
there is a single reference point, withn•vn.0. If the
constant-frequency surface is nonconvex, then there ca
several such points. In the latter case, folds and cusps ap
on the wave surface. The tangent plane in the vicinity of e
reference point generates its own part of the wave surface
the boundary of adjacent folds there is a transition from
gions of elliptical points on the constant-frequency surface
regions of hyperbolic points. The boundaries are lines
parabolic points (Kn50). There is always a continuou
manifold of directions~conical surface! corresponding to
Kn50. These directions are shown by the straight linesOS1

andOS2 in Fig. 25; at the pointsS1 andS2 a pair of parts of
ing
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the wave surface comes together and breaks apart. In c
trophe theory a classification of such singularities is carr
out: in respect to the scattering of elastic waves in crysta
has been made clear that the only types of catastrophes
sible are the folds and cusps. The ‘‘catastrophe’’ lies in
fact that the energy flux density in the indicated directio
calculated formally with the use of Eq.~56!, goes to infinity
(Kn50). Indeed, at those points~more precisely, on the cor
responding conical surfaces! a change in the asymptotic be
havior of the scattered wave occurs—a decrease in the po
to which the distancer is raised in the denominator of th
expansion of the functionJ(r ,«).

Let us consider as an example the simplest parab
point k0 , in the vicinity of which the functionh5k•n has
the expansion

h5k0•n01
1

2
aj1

21bj2
3, ~57!

wheren0 is a unit vector in the direction for which the re
erence planes are tangent to the constant-frequency surfa
the parabolic pointk0 ~we have chosen the coordinate lin
j1 and j2 along the principal directions of curvature of th
constant-frequency surface!. In this case we obtain44 instead
of ~56!

J~r ,«!5
A6pG~4/3!

r 5/6

expS ik0•r6 i
p

4 D
u¹v2~k0!uuau1/2ubu1/3. ~58!

Using ~58! to calculate the asymptotics of the Green
function and then the energy flux density, we find that
latter is proportional to 1/r 5/3. If there are no other singulari
ties on the line of parabolic points, then on average one
in order of magnitudeuauAubu;K* , whereK* is the Gauss-
ian curvature at an arbitrary~nonpreferred! point of the
constant-frequency surface. Therefore, the energy flux d
sity along the directionn0 at larger ‘‘catastrophically’’ ex-
ceeds the energy flux density from the other points, in
ratio r 1/3/ubu1/6.

However, the solid angle within which this energy flu
density exists decreases with increasingr . Indeed, consider

FIG. 25. Cross section of the wave surface on which the raysOS1 andOS2

delimit a ‘‘fold.’’
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the scattered wave in a directionn that deviates fromn0 by
an angleu2 ~alongj2). Then the reference point is shifted b
an amountdj2 determined by the relationu253b(dj2)2. At
the new reference point the Gaussian curvature has the v
K56abdj2 . Comparing expression~56!, in which this
Gaussian curvature is used, with expression~58! for a para-
bolic reference point, one can see that they become of
same order of magnitude fordj2;1/(ubur )1/3. Consequently,
the angle within which energy is radiated with elevated
tensity can be estimated asdu2;ubu1/3/r 2/3. We see that the
angledu2 decreases with increasingr faster than the energy
density increases. Therefore the total energy flux into
angle du2 falls off with distance in proportion to 1/r 1/3,
which completely compensates the effect of the increa
flux density.

Finally, let us calculate the contribution to the integr
~55! due to a ‘‘flat spot,’’ where one has the expansion

h5k0•n01b1j1
31b2j2

3.

Without repeating the calculation of Ref. 45, we can im
mediately write down the corresponding part of the integra45

~1!:

J~r ,«!5

3FGS 4

3D G2

r 2/3

exp~ ik0•r !

u¹v2~k0!uub1b2u1/3. ~59!

In this case the energy flux density in the scattered w
exceeds that under ordinary conditions by the ra
r 2/3/ub1b2u1/6. Accordingly, the solid angle in which the flu
is concentrated with such a density decreases with dista
in proportion toub1b2u1/3/r 4/3.

The presence of flat spots and lines of parabolic po
on the constant-frequency surface for phonons gives ris
phonon focusing. This phenomenon consists in the fact th
the point generation of phonons in a single-crystal sam
gives rise to elastic wave propagation characterized by sh
focusing along selected directions associated with these
gular lines and points on the constant-frequency surface
detailed analysis of phonon focusing and its experimen
implementation is the subject of a series of papers
Every,46 with which one can become acquainted in the bo
by Wolfe.47

An analogous phenomenon can be observed in a stud
the propagation of electrons in sufficiently pure metals~e.g.,
the mean free path of the electron in a metal film must
greater than the thickness of the film!. It was predicted in
Ref. 48 that the point excitation~generation! of electrons on
one surface of a slab leads to electron flows which, wh
detected on the opposite surface of the slab, are also cha
terized by focusing along the same kinds of directions. T
focusing of electrons was detected experimentally in Ref.

Curiously, the phonon features due to the shape of
constant-frequency surfaces can be manifested even in
lowest-frequency~sonic! region of the frequency spectrum
Indeed, for certain relations between the elastic constants
corresponding cross section of the acoustic const
frequency surfaces can be convex or concave. In turn,
property of convexity of nonconvexity of these surfaces d
termines, for example, the character of the decay of surf
~Rayleigh! waves with depth in the crystal. For ordinar
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Rayleigh waves the amplitude falls off monotonically wi
increasing distance from the surface. In an anisotropic
dium such as a crystal, however, the amplitude of the
called generalized Rayleigh waves falls off nonmonoto
cally ~in an oscillatory manner!.

As an example, let us consider a situation which is ea
discussed with the aid of Fig. 24. Suppose that the plan
the figure is the central secant plane (kz ,kx), with the oz
axis ~normal to the surface! directed horizontally and theox
axis vertically, and that a surface wave is propagating al
this direction, indicated by the vectorn in the figure. At a
fixed frequencyv the vectorsk1 andk3 in Fig. 24 indicate
points of tangency of the planekz5const to the constant
frequency surface. The character of the surface waves is
termined by the dispersion relation in the vicinity of the
points.

A cross section of the constant-frequency surface n
the point of tangencyk5k0 ~wherek0 coincides withk1 or
k3) can be written in the form

kx5kx
02a2~kz2kz

0!2, v~kx
0,0,kz

0!5v.

A surface wave has a wave vector componentkx some-
what greater thankx

0 (kx.kx
0), and therefore

kz5kz
06 ik, k5

~kx2kx
0!1/2

a2 .

Using the standard representation for a surface wave with
use of a complex-valuedkz , we see that it falls off non-
monotonically with depthz:

u5u0 exp@~2k1 ikz
0!z#eikx2 ivt.

Since the nonmonotonicity of thez dependence is
uniquely related to a nonzero value ofkz

0 , nonconvexity of a
cross section of the constant-frequency surface is a suffic
condition for the existence of a generalized Rayleigh wa
A detailed discussion of the problem can be found in Re
50.

3.2. Density of vibrational states in a crystal and van Hove
singularities

The distribution of the vibrations of the crystal over fr
quencies is conveniently characterized by the so-called d
sity of vibrationsg(«), where«5v2 ~the latter means tha
we are talking about the distribution over the squares of
frequencies!:

~60!

whereV is the volume of the crystal and the integration
over the sureferenceacev2(k)5«.

Since the band of allowed frequencies is restricted
,«,vm

2 , andg(«)[0 for «,0 and«.vm
2 ), the function

g(«) loses analyticity at the band edges. Forv!vm in the
isotropic approximation we havev25s2k2, and therefore
Eq. ~60! gives

g~«!5
V

~2p!2s3 A«, «!vm
2 . ~61!
e-
-

-

ly
of

g

e-

ar

he

nt
.
.

n-

e

0

For vm2v!vm one can usually write~as near points of a
maximum of a function!:

v25vm
2 2g1

2k1
22g2

2k2
22g3

2k3
2, ~62!

wherek is measured from the point in the Brillouin zone
which v5vm . However, because we are interested in top
logically equivalent situations, Eq.~62! can be simplified to

v25vm
2 2g2k2. ~63!

Substituting~63! into ~60!, we get

g~«!5
V

~2p!2g3 Avm
2 2«, vm

2 2«!vm
2 . ~64!

Comparing~61! and ~64!, we see thatg(«) vanishes at
the ends of the band of eigenfrequencies by a singular la

g~«!5constAu«2«* u, ~65!

where«* is one of the boundaries of the continuous sp
trum of frequencies squared.

Besides boundaries of the continuous spectrum, sin
larities of the density of states are manifested at values«
separating parts of the surface with different topology. It w
mentioned above that the presence of a conical point se
as a indicator of the corresponding surface—the separa
Examining Fig. 23, we easily see that near the conical po
v5vk the transformation of the closed constant-frequen
surfaces to open surfaces occurs continuously. However,
important that this continuous transformation is accompan
by a change in the topology of the surfaces. But the topolo
of a surface, like its symmetry, cannot change continuou
The transition from closed to open surfaces is in principl
jumplike process and must therefore be characterized b
corresponding change of some topological parameter of
surface. Such a parameter does indeed exist, and it is c
the topological invariant of Euler~or the Euler characteris
tic!.

The topological invariant of Euler for the surfacev(k)
5v5const can be written in the form

x~v!5
1

4p E K~k!dSk , ~66!

where the integration is over the whole surface,dSk is an
element of surface area, andK(k) is its Gaussian~or total!
curvature at the pointk. The Gaussian curvature is defined
terms of the partial derivatives of the functionv5v(k)
[v(kx ,ky ,kz)5v(k1 ,k2 ,k3) by the following formula:

~67!

where v i is the group velocity vector,v i , j5]v i /]kj

5]2v/(]ki]kj ), i , j 51,2,3.
In using Eq.~66! for the characteristic of the constan

frequency surfaces it should be kept in mind that they rep
periodically over all of reciprocal space. The topological i
variant will be understood to be the integral~66! calculated
over that part of the constant-frequency surface which
found in a single unit cell ofk space.
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Near the conical point the dispersion relation in the si
plest case has the form

v~k!5vk1g1
2~k1

21k2
2!2g3

2k3
2, ~68!

wherek is measured from the conical point. In the vicinity
that point one has

K~k!5
~g1g2g3!2~vk2v!

@~g1
2k1!21~g2

2k2!21~g3
2k3!2#2 . ~69!

At the conical point itself (v5vk and k15k25k350)
the Gaussian curvature~69! is singular, but off that point the
constant-frequency surfaces are regular and the curvatuK
does not have singularities. We assume that the other si
lar points on the constant-frequency surface are far from
selected conical point. Then forv→vk the singular behavior
of the invariantx~v! due to the appearance of the conic
point should be determined by the integration in~66! over a
small neighborhood of that point.

Having a clear idea of the surfaces near the conical p
@Fig. ~23!#, for v→vk we can easily do the calculation
proposed in Ref. 51. For frequenciesv,vk they give hyper-
boloids of two sheets:

dx~v!512
g3

Ag1
21g3

2
. ~70!

For frequenciesv.vk we obtain hyperboloids of one
sheet:

dx~v!52
g3

Ag1
21g3

2
. ~71!

Comparing~70! and~71!, we see that in the presence
a conical point on the constant-frequency surface the to
logical invariant x~v! changes exactly by unity upon
change in frequency~for each conical point per unit cell o
the reciprocal lattice!.

For mathematicians that statement may be trivial, but
physicists it is important that there exists a definite topolo
cal invariant, which makes it possible to monitor the re
tionship between the qualitative features of the consta
frequency surfaces and the analytical model description
them.

The presence of a jump in the frequency depende
x~v! should naturally be reflected in the analytical propert
of the density of states in the vicinity of the frequencyvk .
The features of the density of states generated by the dis
sion relation~68! are straightforwardly calculated, and th
corresponding calculations are reported in Refs. 45 and
Let us summarize them.

If «k5vk
2 is the square of the frequency at the critic

point, and if values«,«k correspond to closed constan
frequency surfaces and«.«k correspond to open ones, the
for «→«k we have

g~«!5H g~«k!2A2A«k2«1O~«k2«!, «,«k ;

g~«k!1O~«2«k!, «.«k ,
~72!

whereA25const, andO(x) is a small quantity of orderx
~for x→0).

The frequency giving a square-root feature of the type
~72! is called ananalytical critical point of type S. In the
-
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spectrum of a 3D crystal there exist at least two critic
points of typeS. In Fig. 22 the two separatrices with conic
points «5v1

2 and «5v2
2 bound a layer of open constan

frequency surfaces.
Type-S singularities generated by a change in topolo

of the constant-frequency surfaces and features at the bo
aries of the continuous spectrum are calledvan Hove singu-
larities.

3.3. Electronic phase transition of order 2 1
2

Van Hove singularities are weakly manifested in t
thermodynamics of the crystal lattice, since the thermo
namic characteristics are expressed by integrals over all
quencies, and square-root singularities of the density
states cannot lead to any noticeable effects in them. Mat
are different in the thermodynamics of the electron gas
metals, which at low temperatures have a characteri
energy—the Fermi energy. And if for physical reasons
energy«k at the singular point is close to«F and depends so
strongly on some continuous parameters that the differe
«F2«k can pass through zero, then there arises the poss
ity of a change in topology of the Fermi surface. Then up
a change in the indicated parameter one should ex
anomalies of the thermodynamic characteristics of the e
tron gas.52

Such a continuous parameter can be high-pressure
drostatic compression. In view of the low compressibility
metals, one might assume that observation of the ef
would require enormous pressures. However, there is a
ation in which the required pressures are not so large.

Consider a metal for which the Fermi surface has t
sheets: large and small, i.e., two groups of electrons: num
ous and anomalously few. Such a metal is interesting fr
the standpoint of observation of the de Haas–van Alph
effect, since the cross sections of the small sheet of the Fe
surface will give large and easily observed periods of
quantum oscillations. In a one-electron scheme the elec
energy spectrum can be characterized by the follow
picture53 ~see Fig. 26!. Here«F is the Fermi energy, equal to
the chemical potentialz0 measured from the bottom of th
band of the large electron group in the absence of pres
~analogously,zs5«F2«s is the chemical potential measure
from the bottom«s of the anomalously small group of elec
trons!. At a small strain~compression! under hydrostatic
pressurep the shift d«F is proportional top, and for the
main group of electrons

ud«Fu
z0

;
p

G
, ~73!

FIG. 26. Scheme of the electron spectrum of a metal with two groups
conduction electrons.
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whereG is the shear modulus. Finally,p/G!1, but by virtue
of the anomalous smallness of the second group of elect
(zs!«F) the value ofd«F can be comparable tozs . In any
case the study of the de Haas–van Alphen effect un
pressure54 demonstrates the possibility of changing the os
lation periods by an amount comparable to the period its
But that means that at high but reasonable pressures one
achieve the conditionud«Fu.zs . Since under compressio
of the crystal, by virtue of the invariance of the number
electrons belonging to it, the volume ink space expands, on
expects thatd«F,0. Consequently, at the time when«F falls
below«s the small closed surface vanishes, and therefore
term of the type~61! in the density of states vanishes with
singular dependence:

gs~«!5H 0, «,«s ;

VA2A«2«s, «.«s ,
~74!

whereA25const.
Let us consider an electron gas with the energy spect

described above at a temperature of absolute zero. Then
free energy of the gas is equal to its internal energy:

F~V!5E~V!5E
0

«F
«g~«!d«. ~75!

We single out in~75! that part ofF which is generated
by the anomalously small group of electrons:

Fs~V!5VA2E
«s

«F
«A«2«s d«.

The pressure in the system also includes a singular p

ps52
]Fs

]V
5H 0, «F,«s ;

2A2E
«s

«F
«A«2«sd«, «F.«s .

~76!

The transition from the region«F,«s to the region«F

.«s corresponds to the appearance of a new sheet of
surface«(k)5«F . Here«F is a function of the external pa
rameter that determines the singularity in question. In
case of hydrostatic compression this parameter is the
ume: «F5«F(V). Therefore the singular part of the com
pressibilityk ~the second derivative of the free energy! can
be written in the form

ks5
]ps

]V
5H 0, «F,«s ;

2A2«FA«F2«s

d«F

dV
, «F.«s .

~77!

We see that the second derivative ofF at the point«F

5«s has a vertical kink, and the third derivative goes
infinity as u«F2«su21/2. Thus atT50 there is a singularity a
the point«F5«s , which according to the Ehrenfest term
nology can be nominally called a phase transition of or

2 1
2. For TÞ0, however, the singularity at«F5«s is smeared

out, and so there is no true phase transition, although a
tain anomaly exists at«F5«s .

A peculiar manifestation of an electronic topologic

phase transition is realized if the phase transition of order1
2

coincides with a superconducting phase transition. Since
transition of a metal to the superconducting state is a
ns
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phase transition, the ‘‘interference’’ in the thermodynam
of the superconducting transition from the situation d
scribed above is undoubtedly of interest.

We have called attention to the fact that electrons in
metal can be separated into groups with strongly differ
Fermi surfaces and dynamical properties. In the proces
the electron–topological phase transition, one or sev
small groups of electrons can appear or disappear. H
many physical characteristics of the metal change shar
the value and anisotropy of the electrical conductivity, ma
netoelastic effects, and the Hall effect. A theoretical tre
ment of the interesting physical phenomena that arise un
such conditions was proposed by Bar’yaktar and Makaro55

Their paper55 gave a splendid explanation of the features
the influence of pressure on the superconducting transitio
thallium, observed experimentally at about the same tim56

A detailed review of the experimental and theoretical
search done by physicists in Kharkov on the manifestation
topological features of the electron spectrum in the superc
ducting characteristics of a metal has been published in R
57.

The electron–topological features at the superconduc
phase transition under high pressure can even lead to an
preciable change in the vibrational spectrum of the crys
owing to the strong electron–phonon coupling. Someth
similar is observed in the high-temperature supercondu
MgB2. The electron and phonon spectra of this crystal ha
certain peculiarities. First, there are two different groups
conduction electrons: a large group of electrons with prop
ties typical for a 3D electron gas, and a small group w
practically 2D dynamics, the dispersion relation of which
analogous to~33! and the Fermi surface of which is close
a cylinder—a situation similar to that which was analyzed
the discussion of Fig. 25; second, the electron–phonon c
pling that brings about the Cooper pairing of the electrons
mainly due to justonephonon mode, corresponding to mo
tion of the boron atoms in the basal plane.58 The strong cou-
pling of this vibrational mode with the small group of ele
trons makes it extremely sensitive to the state of the sm
group of electrons: when the small group of electrons v
ishes upon a change in pressure, a kink appears on the
responding experimental curves relating to the state of
vibrational system, develops a kink~a rather complete bibli-
ography on this topic can be found in Ref. 59 and in
upcoming review article60!.

The author thanks Oksana Charkina and Aleksandr K
lyar for assistance in preparing the manuscript and illus
tions, respectively, and is deeply grateful to V. G. Pesch
sky, V. M. Gvozdikov, and S. S. Syrkin for helpfu
discussions and to I. K. Yanson for valuable comments.
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