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The superconducting properties of a two-dimensional metallic system with arbitrary carrier
density and both local and various types of attractive indirect boson-exchange interaction in the
cases ofs- andd-wave pairing are analyzed and reviewed atT50. In particular, the
possibility of a crossover from the Bose–Einstein condensation regime to
Bardeen–Cooper–Schrieffer-like superconductivity with growing carrier density and changing
coupling in the case of different pairing channels is discussed. Gaussian fluctuations of
the order parameter are taken into account, and the carrier density dependence of the gap
magnitude is studied. The role of the form of the interparticle attractive interaction in the physical
behavior of the system is also considered. ©2004 American Institute of Physics.
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1. INTRODUCTION

The doping dependence of the various properties of
perconductors ~including high-temperature ones, calle
HTSCs below! raises many theoretical questions—in pa
ticular, the question of the consistent description of suc
dependence, which has a long history. Probably the first
tempt to solve this problem self-consistently was made
Eagles in Ref. 1, in which the author tried to employ f
HTSCs his results for the description of the superconduc
properties of Zr-doped SrTiO3 ~Ref. 2; see also Ref. 3, wher
some experimental data were interpreted as the observ
of Bose–Einstein condensation~BEC! of electronic pairs in
this compound at low itinerant carrier densities, and Refs
and 5, where it was theoretically demonstrated that th
were reasons for such an interpretation!. More precisely, the
author studied the dependence of the superconducting g
T50 and of the mean-field critical temperature on the f
charge carrier densities in two-dimensional~2D! and three-
dimensional~3D! systems with a phonon-like indirect attra
tion at low densities. The set of coupled equations for the
~gap equation! and the Fermi energy, or chemical potent
~number equation!, for these cases was obtained and a
lyzed. It was estimated that at such densities the diamete
the electronic pairs is smaller than the distance betw
them, and therefore in fact the superconductivity has to c
respond to superfluidity of spatially separated~and in this
sense small, or so-called local! pairs. It is important that if
one can change the distance between the particles~for in-
stance, by doping!, the transition from one regime to anoth
~with strongly overlapped pairs! becomes in principle pos
sible. Now this phenomenon is well known as the crosso
from BEC to Bardeen–Cooper–Schrieffer~BCS! supercon-
ductivity with changing carrier density.

In Ref. 1 it was also shown that in 3D systems the
1791063-777X/2004/30(3)/12/$26.00
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exists a critical value of the attraction below which there a
no local pairs, so that BEC–BCS crossover is impossible
is noteworthy that the possibility of a superfluidity scena
for superconductivity was proposed by Ogg6 and
Schafroth7–9 long before Eagles’s paper was published.

Later on the problem of the BEC–BCS crossover w
considered by Leggett,10 who studied systems with shor
range repulsion and finite-range attraction, analyzing the
pendence of the superconducting properties of the system
the dimensionless parameter 1/(akF) (a is the scattering
length andkF is the Fermi momentum!, which defines the
itinerant particle number in the crystal. It was shown that
the limiting cases the metallic system consists of bou
‘‘bielectronic molecules’’ in real space if 1/(akF)5` and of
Cooper pairs ink space when 1/(akF)52`. Nozières and
Schmitt-Rink11 generalized these results to the case of fin
temperatures and the lattice model with a separable inter
ticle nonretarded attractive potentialV. They have demon-
strated that the BEC–BCS crossover is smooth with cha
ing kF andV whenV is larger than the corresponding critic
value for the two-particle~two-fermion! bound state forma-
tion. The aforementioned results were obtained for the c
of s-wave pairing.

The real and unprecedented boom of interest in cro
over phenomena started in the second half of the 1980s
the discovery of copper oxide HTSCs, materials with an e
dent and rather unusual dependence of the supercondu
properties on the carrier density. It should be stressed
practically all physical~and observable! properties of the
HTSC compounds are doping dependent, but below we s
concentrate on the description of the superconductivity
superconducting properties only.

Development of a consistent theory of HTSCs still r
mains one of the most difficult and one of the most import
problems of modern condensed matter physics. Due to
© 2004 American Institute of Physics
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complicated~multicomponent! crystal structure, lowered di
mensionality, magnetism, strong electron correlations, ine
table presence of disorder, etc., a generally accepted th
of these compounds has not yet been completed.

During the last decade many models~see, for example
the review12! which take into account some~not all! cuprate
peculiarities have been proposed to describe various pro
ties of HTSCs, among them the doping dependence of
superconducting gap and the critical temperature. For
stance, the BEC–BCS crossover in thes-wave pairing chan-
nel was studied in Refs. 12–19 for the model with loc
~so-called four-fermion, or 4F! attraction, and in Ref. 20 fo
the model of a nonlocal although separable attractive po
tial. In Ref. 12 an additional example with on-site repulsi
and intersite attraction was also considered. The role of
order parameter fluctuations atT50 was analyzed in Ref. 21
~3D case! and in Ref. 22~both 2D and 3D cases!. A quasi-2D
model withs pairing at zero temperature was also studied
Ref. 23. It can be also noticed that the role of the num
equation in connection with the HTSC problem was emp
sized in Refs. 24.

For a pure 2D system the problem of the crossover in
isotropic s-wave pairing channel was discussed at zeroT
~when real long-range superconducting order is certa
possible—the Mermin–Wagner–Hohenberg–Colema
Bogolyubov theorem25! in Refs. 12, 15, 18, 20 and 26–3
and at finiteT ~when this order is characterized by the we
algebraic decay of correlations! in Refs. 12, 15, 18–20, 28–
30, 32, and 33.

The metal–superconductor phase boundaries on
nf –U phase diagram (nf is the number of fermionic par
ticles, andU is the on-site attraction in the ‘‘negative-U ’’
Hubbard model! was investigated in Ref. 34 forT50 by
means of the dynamical mean-field theory. The retarded
direct, phonon-mediated interfermion attraction and the f
tures of the corresponding BEC–BCS crossover atT50
were studied for the first time in Refs. 35 and 36

The 2D crossover for the anisotropicd-wave pair sym-
metry is more important because just such a pairing is u
ally considered to be observed in HTSCs. The models wh
lead to this phenomenon were considered in Refs. 18, 32
37 at T50. The case of finite temperatures was studied
Ref. 38, where an effective~Ginzburg–Landau! potential
with carrier-density-dependent coefficients was also deriv
The doping dependence of the critical temperatureTc in the
strongly correlated electron model with electron–phonon
teraction was studied in Refs. 39 and 40. It was found t
the vertex corrections to the electron–phonon coupling
this model lead to strengthening of thed-wave superconduc
tivity. In Ref. 29 the cases with different pairing symmetrie
s, sext, dxy and dx22y2, in the 2D system with neares
neighbor~n.n.! and next-nearest-neighbor~n.n.n.! attraction
in the square lattice were studied at zero and finite temp
tures in order to describe the doping dependence of the
perconducting gap and critical temperature~see also Ref.
41!. The possibility of the BEC–BCS crossover at zero te
perature fors, d and mixeds1 id pairings in the 2D system
as a function of coupling constant was considered in Ref.
The same problem in the quasi-2D Hubbard model with n
attraction at finiteT was studied in Ref. 43, where the dopin
i-
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.

dependence of the superconducting properties was also
lyzed.

The 2D model with n.n. attraction and also with n.n. a
n.n.n. hopping atT50 was studied in Ref. 44. It was show
that for some relation between n.n. and n.n.n. hopping
rameters the system proves always to be in the BEC reg
and that there is no pairing at low carrier densities when
coupling is weak ~see also Ref. 37!. However, as was
stressed in Refs. 31 and 45, such a statement cannot be
rect. A more general model with on-site repulsion and n
attraction atT50 in thes- andd-wave channels was inves
tigated in Ref. 46, where the role of n.n.n. hoping was a
studied. Thes- andd-wave crossover at zero temperature
the model with a doping-dependent attractive interaction w
considered in Ref. 47. It is interesting to note that the boso
fermion model with electrons and holes and different kin
of fermion–boson coupling was proposed in Ref. 48 to un
the Bose–Einstein and BCS collective phenomena. It w
shown that the regime of superfluidity with local pairs a
the regime of superconductivity with Cooper pairs take pla
in different sectors of the model parameters.

Even though thed-wave pairing symmetry is now con
sidered as the typical and almost imprescriptible property
the HTSC cuprate compounds,49 there is experimental evi
dence that mixeds1 id- or even pures-wave pairing can
exist in some of these materials at certain doping valu
Indeed, it has been observed that optimally dop
Pr1.855Ce0.145CuO4y at low enough temperatures demo
strates a nodeless gap inconsistent with pured-wave
symmetry,50 and the superconducting compoun
Sr0.9La0.1CuO2 reveals s-wave pairing near the optima
doping.51 The analysis shows52 that the dominant bulk sym
metry of the order parameter in some cuprates is the
tended~or anisotropic! s-wave one. It was also observed th
the crossover from thed-wave pairing in the underdoped an
optimally doped regime to thes1 id-wave pairing in the
overdoped regime takes place in YBa2Cu3O7 ~Ref. 53!. A
crossover fromd-wave tos-wave pairing with doping nea
optimal x was found for the electron-doped Pr2xCexCuO4

~Ref. 54! amd Pr2xCexCuO4y and La2xCexCuO4y ~Ref. 55!.
However, thes-wave pairing is not always present in unde
doped and overdoped cuprates, but thed-wave order param-
eter symmetry in overdoped TlBa2Cu3O61d was found in
Ref. 56.

The results cited above evidently show that the inve
gation of the doping dependence of the physical propertie
superconductors is now an important field in solid state ph
ics. The corresponding questions have not yet been revie
in the literature and demand some generalization. Below
attempt will be made to analyze the behavior of properties
superconducting systems with different interparticle pot
tials in thes- and d-wave pairing channels as functions
particle densities and interaction strength. For the sake
simplicity we restrict our discussion here to the caseT50.
We briefly survey the main superconducting properties
different systems. We should kindly apologize because
results of many authors could not be included in our pap
since it is very difficult and in fact impossible to cover all o
them in such a wide and rapidly growing field as hig
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temperature superconductivity, even within a separate,
cial and rather narrow topic.

2. THE MODEL AND THE MAIN EQUATIONS

The most general and, at the same time, the simp
Hamiltonian, which is usually studied in the theory of sup
conductivity, can be written as

~1!

wherecns[cs(n,t) is the fermionic field operator with spin
s5↑,↓ at the lattice siten and at the timet, tnm describes
the n.n., n.n.n., and other hopping processes;m is the chemi-
cal potential of the system; the nonretarded interparticle
teraction is modeled by the terms proportional toV0 ~the
on-site attraction ifV0.0 and repulsion otherwise! andVnm
~n.n. or n.n.n. interaction!. The last two terms in~1! describe
an additional retarded fermion–boson interaction and
free boson parts of the Hamiltonian, whereq is a boson
mode with the coordinateXn(q), momentumpn(q), and fre-
quency vn(q) and gn(q) is the fermion–boson coupling
One can easily pass to the continuum version of this Ham
tonian by replacing the n.n. hopping operatortnm by tnm
→dnmt(12(a2/(2d))¹2) ~here a is the intersite distance
d(52,3) is the dimensionality of the system!, introducing a
cutoff radius in the interaction terms, etc.

In the case of thed-dimensional square lattice, the fre
fermion dispersion relation in momentum space has the
lowing form, when the n.n. hopping takes place:

j~k!522t(
j 51

d

cosakj2m, ~2!

wherek is a d-dimensional wave vector.
As is well known, it is convenient to calculate the the

modynamic potential by using the path integral approach
studying the properties of a quantum many-particle syst
This method is not necessary in the case of the mean-
solution, but it is extremely useful~see below! when the
fluctuations are studied. Probably one of the first to apply
path integral methodics for the description of supercond
tivity was Svidzinsky.57

The partition function of the system is

~3!

with the action

~4!

To study the superconducting properties of the syst
one should make the Hubbard–Stratonovich transforma
e-
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with so-called bilocal fieldsFnm(t1 ,t2) and Fnm
† (t1 ,t2)

~Ref. 57; it must be noted that in the textbook57 the func-
tional integration was developed for the situation when
spatially inhomogeneous order parameter of the system
pends upon one space variable only, which excluded
d-wave symmetry!:

~5!

whereVnm(t1 ,t2) includes the effective interparticle attrac
tion due to boson coupling after integrations over the bo
fields Xn(q).

Let us introduce the Nambu spinor

In these terms the partition function can be forma
written as

Z5E DC†DCDF†DFe2S~C†,C,F†,F!,

where

~7!

and t̂651/2(t̂x6 t̂y) and t̂z are the Pauli matrices.
The latter action is diagonal over the fermionic field

and therefore the integration overC† and C can be per-
formed exactly. In this case the partition function become

Z5E DFDF* exp~2bV@G# !,

whereV@G# is the thermodynamic potential, which in th
‘‘leading order’’ is

bV@G#5E
0

b

dt1E
0

b

dt2(
n,m

uFnm~t1 ,t2!u2

Vnm~t1 ,t2!

2Tr LnG211Tr LnG0
21. ~8!
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The Nambu spinor Green functionG satisfies the following
equation:

~9!

with anti-periodic boundary conditions for fermions,

Gnm~t12t21b!52Gnm~t12t2!.

The thermodynamic potential~8! is the most general form o
the superconducting effective action, or Ginzburg–Land
potential, with a nonlocal retarded interparticle interactio
As was already mentioned, it will be used below to stu
fluctuation effects.

The minimization of the thermodynamic potential wi
respect to the order parameter and the chemical pote
leads to the following system of coupled equations:

dV

dFnm~t1 ,t2!
50; ~10!

]V

]m
52Nf , ~11!

or

Fnm~t1 ,t2!5Vnl~t1 ,t3!Tr t̂1Glm~t3 ;t2!; ~12!

nf52Tr t̂zGnn~t,t!. ~13!

wherenf5Nf /v is the free fermion density in the system (v
is the volume of the system!.

In general, it is very difficult to find the Green’s functio
Glm(t1 ,t2), and therefore some simplifications must be a
plied. In particular, we shall consider the case of the sp
and time invariance,Vnm(t1 ,t2)5Vn2m(t12t2). In this
case the Green’s function has the following form in mome
tum space:

G~ ivn ,k!

52
ivn1 t̂zj~k!2F~ ivn ,k!t̂12F* ~ ivn ,k!t̂2

vn
21j2~k!1uF~ ivn ,k!u2

,

and the system of equations~12!, ~13! acquires the following
form:

F~ ivn ,k!5E ddp

~2p!d (
m

F~vm ,p!

vm
2 2j2~p!2uF~vm ,p!u2

3FV~p,k!1gf 2b
2

3E ddk

~2p!d

v2~p2k!

~vm2vn!22v2~p2k!G ; ~14!

nf5E ddp

~2p!d F12(
m

j~p!

vm
2 2j2~p!2uF~vm ,p!u2G . ~15!

In Eq. ~14! V(p,k) is the Fourier transform of the nonre
tarded interaction, and the term proportional togf 2b corre-
sponds to the interparticle attraction through the boson fi
vn5pT(2n11) is the Matsubara frequency. The interacti
term in ~14! is written in general form; it describes, for ex
u
.
y

ial

-
e

-

d;

ample, a local nonretarded interaction, whenV(p2k)
5const, gf 2b50; a nonlocal ~nonretarded! interaction,
when V(p2k)Þconst, butgf 2b50; a local retarded inter-
action, when V(p2k)5const, gf 2bÞ0, and v(p2k)
5const, etc. The system~14!, ~15! will be analyzed in the
next Section for various forms of the interparticle potent
V(p,k) and boson spectrumv(k).

3. THE SOLUTIONS

3.1. Model with local nonretarded attraction

The problem of the crossover from small to large fe
mion density in the model with local attraction was cons
ered in Refs. 1 and 12–19 for the 3D case and in Refs. 1,
18, 26 and 31 for the 2D case. The corresponding results
be reduced to the following.

For the simplest case of local nonretarded attraction,
interaction parameters in equations~14!, ~15! have the fol-
lowing form: V(p,k)[V5const, gf 2b50. Therefore, the
gap in this case is momentum- and frequency-independe

F~vn ,k!5D5const.

The summation over frequency in~14!, ~15! can be easily
performed, and one gets the standard system of equatio

15VE ddk

~2p!d

1

2Aj2~k!1D2
tanhSAj2~k!1D2

2T D ; ~16!

nf5E ddk

~2p!d F12
j~k!

Aj2~k!1D2
tanhSAj2~k!1D2

2T D G ,

~17!

which atT50 have a simple form:

15VE ddk

~2p!d

1

2Aj2~k!1D2
; ~18!

nf5E ddk

~2p!d F12
j~k!

Aj2~k!1D2G . ~19!

Since the gap is momentum-independent, only the isotro
s-wave pairing regime is possible in the model with the o
site attraction. Equation~19! is crucial if one wants to inves
tigate the doping dependence of superconducting proper
As a rule, it is not taken into account in the standard the
of superconductivity~or the BCS theory!.

The s-wave pairing regime in the case of a quadra
dispersion law

j~k!5
k2

2m
2m

and an indirect pairing with boson~‘‘Debye’’ ! energy cutoff
u(vD2uj(k)2mu) was considered in the mean-field a
proximation for the 2D and 3D cases and at low carrier d
sities in Ref. 1~see also Refs. 4 and 5!. In fact, in such a
situation the integration over momentum*ddk/(2p)d can be
replaced by the integration over energy* r(e)de, where
r(e) is the density of states~DOS!; it is constant in the case
d52 and;Ae in the cased53.
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It is very easy to solve the system~18!, ~19! in the 2D
case. When«F!W (W is the free fermion bandwidth!, the
solution has a simple form:

D.A2WeFe22p/mV5A2u«bu«F;

m.eF2u«bu/2,

where«b522We24p/mV is the two-fermion bound state en
ergy. Obviously, the crossover from superfluidity to sup
conductivity with doping occurs in the 2D case at any co
pling constant; then there exists the value ofeF when m
50 for anyV.

This is not true in the 3D case, when the BEC–BC
crossover takes place only when the coupling constan
larger than some critical valueVcr . This distinction follows
from the above-mentioned difference in the DOS in the g
equation. In the 2D case, whenr(e)5const, the gap equa
tion has the solutionD5A2Wu«bu at m50 and any coupling
constant.

For the 3D system the gap equation has the follow
form:

15VE k2dk

2p2

1

2Ak41D2
~20!

at m50. The integral overk on the right-hand side has th
maximal valueA2mW/(4p2) at D50. Therefore, a simple
estimate for Vcr is given by the relation 1
.VcrA2mW/(4p2) or Vcr.4p2/A2mW.

In the case of the momentum cutoff

E ddk

~2p!d u~vD2uj~k!2mu!,

the approximate solution can also be easily obtained in
2D case:

D.A2u«buDBCSu~vD2eF!1DBCSu~eF2vD!;

m5eF2
u«bu
2

,

whereDBCS52vDe22p/(mVeff) is the BCS expression for th
gap, and the bound state energy in this case also exists«b

522vDe24p/(mVeff), where Veff is proportional to the
fermion–boson coupling constantgf 2b . The gap is an in-
creasing function of doping in this case, and it asympto
cally approaches its maximal valueDBCS wheneF@vD . In
other words, the dependence of the gap value on the ca
density has no maximum, which evidently means that suc
dependence with saturation is not identical to t
‘‘increasing–decreasing’’ dependence of the gap upon the
fective coupling constantVeff .

In the 3D case, the DOS in equations~18! and ~19! can
be substituted by the DOS at the Fermi level, and the s
tion can be obtained from the 2D result with substituti
mV/(2p)→kFmV/(4p2). It is possible to estimate the criti
cal value of the coupling constant when the crossover ta
place:Vcr52p2/AmvD. In both cases, with and without mo
mentum cutoff, the BEC–BCS transition from superfluid
to superconductivity is smooth and is not a phase transit
the gap value grows continuously with doping.
-
-

is

p

g

e

i-

ier
a

f-

u-

es
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3.2. Models with nonlocal nonretarded interaction

It is important to study the more realistic case of non
cal attraction in the presence of a short-range Coulomb
pulsion. In order to study the superconducting properties
such a model in channels with different pair angular mom
tum l , it is convenient~see, for example, Refs. 32, 33, an
46! to approximate the interaction potential by a separa
function:

Vl~k1 ,k2!52l lwl~k1!w1~k2!, ~21!

wherel l is an effective coupling constant, and

wl~k!5hl~k!coslwk ; ~22!

hl~k!5
~k/k1! l

~11k/k0! l 11/2; ~23!

k5uku is the momentum modulus andwk is the momentum
angle in polar coordinatesk5k(coswk ,sinwk). The param-
eters k0 and k1 put the momentum range in the prop
region—the potential is attractive atr 0,r ,r 1 and repulsive
at r ,r 0 , wherek0;1/r 0 andk1;1/r 1 . The separable form
of the interparticle potential~21! is based on the group
theory decomposition of an arbitrary potential into spheri
harmonics, for example, and the restriction to the relev
terms only, which in our case correspond to the ord
parameter symmetry under consideration.

It is easy to see that the interaction potential~21! has the
correct asymptotic behavior at small and large momen
Vl(k1 ,k2);k1

l k2
l and Vl(k1 ,k2);1/Ak1k2, respectively.

Since the region of low carrier concentrations, where
crossover can take place, is the most interesting, the co
behavior of the interaction potential at small momen
should be most important. These momenta give the m
contribution to the integrals in the case of low carrier co
centrations~see equations below!. We shall study thes- and
d-wave channels withl 50 and 2 separately, so we assum
that the parametersl l for the two channels are independen

In this case the equations for the gap and for the che
cal potential have the following form:

D l~k!52l lE dp

~2p!2

D l~p!

2A«2~p!1D l
2~p!

Vl~p,k!; ~24!

nf5E dk

~2p!2 F12
«~k!

A«2~k!1D l
2~k!

G . ~25!

The solution of equation~24! has the following form:

D l~k!5D l
~0!wl~k!, ~26!

whereD l
(0) does not depend on the momentumk.

As was shown in Refs. 32 and 33, the BEC–BCS cro
over from superfluidity to superconductivity with increasin
doping is smooth~see Figs. 1 and 2 below!. However, in the
d-wave paring channel there exists a critical value of
interaction potential, below which this crossover is impo
sible. This circumstance makes the cases of isotropics- and
anisotropicd-wave pairing essentially different.

The more realistic case in connection with HTSCs w
considered in Ref. 47, where the correlation lengthr 0 was
studied at small carrier densities asr 0;a/Anf . This depen-



rie

si

m

d

n-
e

e

a

n
that

s
ny
ase
the
ss

s
ping
h
r the

u-

an
-

the
4

ca
the

184 Low Temp. Phys. 30 (3), March 2004 V. M. Loktev and V. M. Turkowski
dence for the spin–spin correlation length at small car
densities was found in La22xSrxCuO4, for example. The
magnetic correlation length decreases with carrier den
per cell in this material as 3.8 Å/Anf ~Ref. 59!. The value of
a was considered to bea5A2/pa0 , wherea0 is the simple
square lattice constant. The value ofa can be estimated from
the relation (p/2)r 0

2Nf5a0
2Ncell , where in the left-hand side

the volume of the 2D system is expressed as the volu
~circle of radius;r 0) occupied by one particle, multiplied
by the total number of particlesNf , andNcell is the number
of unit cells in the layered system. The free fermion ban
width W is related toa0 as W5p2/(ma0

2). It should be
noted that the relationr 0;aAnf at a5A2/pa0 is in good
agreement with the experimental data for La22xSrxCuO4

~Ref. 59!, where the magnetically ordered~orthorhombic!
plane lattice parameters are equal to 5.354 Å and 5.401
and the corresponding parametera is .3.8 Å.

It was shown that the critical value of the coupling co
stant exists even in thes-wave pairing channel for this cas
~see Figs. 1 and 2!.

Let us consider different versions of the previous mod
Namely, the correlation radiusr 0(nf)5a0A2/(pnf) can be
introduced in a model with an exponential decay of the
traction:

FIG. 1. Coupling–carrier density crossover line for thes-pairing channel
~solid line!. The dotted curve represents the corresponding line for the
r 0(nf)5const atr 05a0 . The inset shows the doping dependence of
crossover value for coupling at very low charge carrier densities.47 Here and
below all parameters are expressed in units of the bandwidthW.

FIG. 2. Coupling–carrier density crossover line for thed-wave case~solid
line!. The dotted curve is the crossover line for the caser 0(nf)5const at
r 05a0 ~Ref. 47!.
r

ty

e

-

Å,

l.

t-

Vb~r ,t !5gf 2b

e2r /r 0

r
. ~27!

Its Fourier transform has the following form:

Db~q!5
gf 2br 0

~2p!2A11r 0
2q2

. ~28!

In addition, a similar kind of short-range fermion–fermio
repulsion should be taken into account. It is easy to see
in the 2D case this potential has the following form~see, for
example, Ref. 60!:

D f~q!5
gf 2 f

q1qTFg~q/2kF!
, ~29!

wheregf 2 f[2pe2, qTF54e2m/p54/paB is the Thomas–
Fermi momentum, andaB51/(e2m).0.529 Å is the Bohr
radius. The functiong(x) is defined as

g~x!512u~x21!A121/x2. ~30!

This model of thes-wave pairing channel demonstrate
the crossover from superfluidity to superconductivity at a
value of the coupling constant, contrary to the previous c
~see Fig. 3!. The doping dependence of the gap and of
chemical potential at different values of the dimensionle
interaction parameters l f 2b5gf 2b

2 mr0 /(8p2), l f 2 f

5gf 2 f
2 mr0 /(4p) is presented in Figs. 4 and 5. As follow

from these figures, the gap decreases with increasing do
at largeeF . This situation is in qualitative agreement wit
the experiments for the cuprates. One can also conside
interesting situation of a combined local1nonlocal attrac-
tion, when the local~on-site! attraction will tend to transform
the Cooper pairs into local pairs.

The ‘‘mixed’’ case with hl(k)51 and l5ls

1ld cos 2wk was considered in Refs. 41 and 42. In partic
lar, it was shown in Ref. 41 that the crossover fromd-wave
to s-wave superconductivity with doping takes place with
intermediates1d symmetry, in full agreement with the ex
periments on some cuprate materials.53–55

The d-wave case, whenwd(k)5coskx2cosky was con-
sidered in Refs. 37, 44 and 45. For example, the effect of
n.n.n. hoppingtn.n.n. on the pairing was studied in Refs. 4

se
FIG. 3. The crossover interaction valuel f 2b

cross ~defined by the conditionm
50) as a function ofeF at l f 2 f50.
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and 45. It was shown in the latter paper that the crosso
with doping takes place at any value oftn.n.n. when the cou-
pling constant is larger thanVcr .

Finally, it was stated in Ref. 29 that the model with sm
on-site repulsion and n.n.Vn.n. and n.n.n.Vn.n.n. attraction
with Vn.n.n.;60– 80 meV andVn.n.n. /Vn.n..1.3– 1.5 can
describe well the experimental data for the hole-dop
oxides.

3.3. Models with retarded interaction

As is well-known, retardation effects in the interactio
can play a very important role in the superconducting pr
erties of a system. For instance, let us consider a bo
propagator with dispersionv5v(k) @cf. Eq. ~14!#:

D~v,k!5
v2~k!

v22v2~k!1 id
. ~31!

It can be noted that in the general case of phonon disper
one hasv(k)5Av0

21cph
2 k2. We shall describe this rathe

general case below with the following approximatio
D(v,k).D(v,kF), so the effective propagator can be wr
ten as

D~v,k!5
v0

2

v22v0
21 id

, ~32!

whereAv0
21cph

2 kF
2 is replaced by a new effective frequenc

v0 . This approximation corresponds to the case of the o
cal phonon attraction~in the case whenv0Þ0). Generally

FIG. 4. The gap~a! and the chemical potential~b! as functions ofeF at
different l f 2b andl f 2 f50.
er
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-
on

on

i-

speaking, the gap is frequency dependent in this model.
problem of the crossover in the model with a frequenc
dependent gap was investigated in Ref. 36.

The set of equations for the gap and for the chemi
potential in this case is:

~33!

2eF5ReE
0

`

dvF S v

Av22uF~v!u2
21D

3u~m1Av22uF~v!u2!1S v

Av22uF~v!u2
11D

3u~m2Av22uF~v!u2!G . ~34!

Let us consider briefly how this system of equations c
be analyzed analytically. First of all, it is possible to sho
that the approximationF(v)5D5const in ~34! is rather
good. Then, this equation results in

m5eF2
D2

2eF
.eF2

u«bu
2

,

where the two-particle bound state energy«b depends on the
coupling parameter in this case~see below!.

FIG. 5. The gap~a! and the chemical potential~b! as functions ofeF at
different l f 2 f andl f 2b50.01.
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After the Wick rotationv→ iv the gap equation reads

~35!

In polar coordinates, after integration over the angle
come to:

F~v!5
gf 2b

2 v0
2

~2p!2 E
2`

1`

dn
F~n!

~v2n!21v0
2

3E
0

` kdk

~k2/2m2m!21n21F2~n!
.

SinceF~v! is an even function ofv, it can depend only
on v2, and we restrict the integration overn to positive
values:

F~v!5
lv0

2

2 E
0

` dnF~n!

An21F2~n!

1

~v2n!21v0
2

3Fp

2
1arctan

m

An21F2~n!
G , ~36!

where the dimensionless coupling constantl
5gf 2b

2 m/(2p) is introduced. The asymptotic behavior fo
F~v! is

~37!

As the next step we use the following approximation
the interaction potential:61,62

~38!

Then differentiation with respect tov gives

F8~v!52
lv0

2n

~n21v0
2!2 E

0

v dnF~n!

An21F2~n!

3F11
2

p
arctan

m

An21F2~n!
G . ~39!

It is evident thatF8,0, i.e.,Fmax5F(0)[D.
After one more differentiation and the introduction of

new variable:x5n2/v0
2, one gets the following differentia

equation:

~40!

with the boundary conditions

F8~x!ux5050; @F~x!1~x11!F8~x!#ux5`50, ~41!

which follow directly from expressions~36!, ~38!, and~39!.
e

Analysis of Eq.~40! shows that the approximate solutio
for the gap in both the weak and strong coupling regime
~see Ref. 36 for details!: D(v).Du(v0

22v2), whereD is a
parameter that depends on the coupling constant and, wh
very important, on the carrier density. In the weak coupli
regime the parameterD has the following coupling and
carrier-density dependence:

D5A2u«buv0u~v02eF!1DBCSu~eF2v0!,

whereDBCS52v0e21/l is in fact the BCS expression for th
gap, and the bound~Cooper! state energy in this case is«b

522v0e22/l. In the strong coupling regime«b.l and
DBCS→(4/3)lv0 at large carrier densities.35,36

To summarize, the BEC–BCS crossover with chang
carrier density and coupling constant in this effective mo
with retarded interaction is also smooth, and the gap is
small when the pair frequency is smaller than the boson
quency. Such an approach can be used for studying the c
over in cases of different symmetries of the order parame

It is important to mention that the case considered h
can be easily generalized to the case when one takes
account the vertex correction to the electron–phonon in
action. This correction is usually small wheneF@v0 ~the
Migdal theorem!. As was shown in Ref. 63, this correction
rather small even wheneF!v0 . However, in some cases th
vertex correction can lead to rather strong enhancemen
the superconductivity.40,64,65It is also necessary to note tha
this correction leads to enhancement of thed-wave super-
conductivity even in a strongly correlated electro
system,39,40 in spite of the fact that the phonon interactio
due to the symmetry does not allowd-wave pairing in the
case when the short-range electron repulsion is not taken
consideration.

4. THE ROLE OF THE ORDER PARAMETER FLUCTUATIONS

The fluctuations of the order parameter in the 2D a
even in the 3D case atT50 should be essential. As is show
in Ref. 22, the Gaussian fluctuation corrections to thes-wave
order parameter is non-negligible even in the weak coup
case. On the other hand, the fluctuations of the order par
eter phase can lead to increasing of the gap.

In this Section we shall consider how simultaneous or
parameter modulus and phase fluctuations in the model
4F attraction result in a strong increase of the order par
eter when the carrier densities are small and to a weak
crease of the order parameter when the carrier densities
large.

At zero temperature, as follows from~8!, the thermody-
namic potential of the system with local attraction has
following form:

In other words, it depends on the sum of its real and ima
nary parts:uFu25(ReF)21(Im F)2. For studying fluctua-
tions of the order parameter, it is convenient to use new
variables:

F̄~x!5S f1~x!

f2~x! D ,
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such thatF̄2(x)5f1
2(x)1f2

2(x)5uF(x)u2. Another possi-
bility is to use the decomposition of the order parameter i
its phase and modulus:F(x)5D(x)exp@iu(x)#. However, it
leads to some difficulties, since one needs to keep the o
parameter modulus positive in the functional integration o
the fluctuations; we therefore follow another way. The ‘‘old
order parameter variables are connected with the new one

F~x!5f1~x!1 if2~x!, F* ~x!5f1~x!2 if2~x!.

We assume that the mean-field value of the fieldF̄ is
chosen as

F̄0~x!5S D
0 D .

The order parameterF̄ can be written as

F̄~x!5F̄01dF̄~x![S D1df1~x!

df2~x! D ~42!

in the case when its fluctuations are considered. We neg
the fluctuations of the carrier densitynf(r ), and consider a
homogeneous constant value ofnf over the lattice:nf(r )
5nf5const.

Substitution of~42! into the expression for the thermo
dynamic potential gives the following correction to the the
modynamic potential to the second order in fluctuations:66

~43!

whereÂ( in,k)51/V1x̂( in,k) is the 232 matrix with the
susceptibility components

x jk~ in,k!5
1

2
TrE

2`

` dv

2p E d2q

~2p!2

~21! j 1kG~ iv1 ,q1!t̂ jG~ iv2 ,q1!t̂k ,

where v65v6n/2, q65k6q/2, and j ,k[x,y. The inte-
gration overv can be easily performed:

x11~ in,k!52E d2q

~2p!2

1

2

E11E2

n21~E11E2!2

3F11
j1j22D2

E1E2
G ;

x12~ in,k!52x21~ in,k!

52E d2q

~2p!2

1

2

E1j21E2j1

@n21~E11E2!2#E1E2
;

x22~ in,k!52E d2q

~2p!2

1

2

E11E2

n21~E11E2!2

3F11
j1j21D2

E1E2
G ,

where E65Aj6
2 1D2 and j65(k6q/2)2/(2m)2m is the

free fermion dispersion relation. After the integrating out
the fluctuation fieldF̄, the correction to the thermodynam
potential has the following form:
o

er
r

as

ct

-

f

dV5
1

2 E2`

` dn

2p E d2k

~2p!2 lnF H 1

V
1x11~ in,k!J

3H 1

V
1x22~ in,k!J 2x12~ in,k!x21~ in,k!G .

The factor ;D which appears in the measure of th
functional integration overD in Z due to the taking into
account of the symmetry of the thermodynamic poten
with respect to the transformationF̄→eiaF̄ ~see, for ex-
ample, Ref. 66! is omitted in the last expression. This fact
can be absorbed in the measure of the functional inte
over D in the partition function, where the functional inte
gration can be actually performed over the variableD2. Let
us note that only the first component (1/V1x11( in,k)) under
the logarithm indV ~see below! will be present if one con-
siders the particular case of the order parameter phase
tuations.

It is useful to diagonalize the matrixÂ( in,k) in order to
find the contributions which come from both the phase a
the modulus fluctuations of the order parameter. Obviou
the first component will correspond to the phase fluctuati
and the second, to the modulus fluctuations, as follows fr
the definitions of the fieldF̄ @see Eq.~42!#. So, one can
easily arrive at the following representation:

dV5
1

2 E2`

` dn

2p E d2k

~2p!2 lnF H 1

V
1xu~ in,k!J

3H 1

V
1xD~ in,k!J G ,

where

xu~ in,k!5
1

2
@x11~ in,k!1x22~ in,k!#

2A1

4
@x11~ in,k!2x22~ in,k!#22x12~ in,k!x21~ in,k!

and

xD~ in,k!5
1

2
@x11~ in,k!1x22~ in,k!#

1A1

4
@x11~ in,k!2x22~ in,k!#22x12~ in,k!x21~ in,k!

are the effective contributions to the thermodynamic pot
tial from the fluctuations of the order parameter phase
modulus, respectively.

The equations for the gap and for the chemical poten
~10! and~11! have the following form in the case of a Gaus
ian correction to the thermodynamic potential due to the
der parameter fluctuations:
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D

V
5E d2k

~2p!2

D

2Aj2~k!1D2

1
1

2 E2`

` dn

2p E d2k

~2p!2 F ]xu~ in,k!/]D

1/V1xu~ in,k!

1
]xD~ in,k!/]D

1/V1xD~ in,k!G ;
nf5E d2k

~2p!2 F12
j~k!

Aj2~k!1D2G
1E

2`

` dn

2p E d2k

~2p!2 F ]xu~ in,k!/]m

1/V1xu~ in,k!

1
]xD~ in,k!/]m

1/V1xD~ in,k!G .
In considering the limit of a weak coupling, the fun

tions xu and xD in the denominators can be neglected, a
then the integration overn can be performed; after som
trivial manipulations, the following rather simple equatio
can be obtained@compare with~18! and ~19!#:

1

V
5E d2k

~2p!2

1

2Aj2~k!1D2

1
V

2 E d2q

~2p!2 E d2k

~2p!2

j1j2

E1
3 E2

; ~44!

nf5E d2k

~2p!2 F12
j~k!

Aj2~k!1D2G
1VE d2q

~2p!2 E d2k

~2p!2

D2~j12j2!

E1
3 E2

. ~45!

The substitutionk→2k in a part of the terms was mad
in deriving Eqs.~44! and~45!. It is interesting to note that in
the case of the phase fluctuations, the numerator in the
term under the integral in the gap equation will be1

2j1(j2

2j1), and the last term in the number equation will
multiplied by 1/2. It is also a good approximation to putm
5eF , since in the weak coupling regime,m is different from
eF only at extremely low carrier densities. The solution
the equation~44! for the gap parameter as a function ofeF at
m5eF and different values of the coupling constant is p
sented in Fig. 6. An estimate of the order parameter in
case of phase fluctuation is also presented. As was show
Ref. 22, in the 2D case the phase fluctuations lead to
effective increase of the coupling constant:V→V(1
12/p2). The gap can be calculated from the standard me
field BCS equation. A comparison of the different cas
shows that the phase fluctuations lead to increasing of
gap, while the total fluctuations lead to a much stronger
creasing of the gap at low carrier densities and to decrea
of the gap when the carrier density is large. The last resu
familiar, but the first one is very surprising. The depende
of the gap on coupling at a low value of the carrier density
presented in Fig. 7. These results suggest that correction
higher order in the fluctuations should be studied for be
understanding of the behavior of the system.
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It should be mentioned that the role of the disorder d
to the dopants in the fluctuations of the inhomogeneous o
parameter was recently studied by Yu. G. Pogorelov and
present authors in Refs. 67–69. However, we have not
cussed this important issue here, since it deserves a sp
detailed review.

5. CONCLUSIONS

In this paper the BEC–BCS crossover from superfluid
to superconductivity with increasing doping atT50 in the
cases of thes-wave andd-wave pairing was briefly re-

FIG. 6. The dependence ofD on eF for the case of the mean-field solutio
~solid curve! and for the order parameter fluctuations case~dashed curve! at
different values of the dimensionless coupling parameterG5mV/(2p).
The dotted curve is the estimate from Ref. 22 for the case of order param
phase fluctuations.

FIG. 7. The dependence ofD on G for the case of the mean-field solutio
~solid curve! and for the case of order parameter fluctuations~dashed curve!
at eF50.1. The dotted curve is the estimate from Ref. 22 for the or
parameter phase fluctuations.
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viewed. In the 3D case this crossover does not take plac
weak coupling constants, and the same situation takes p
in the d-wave pairing case in two-dimensions, when the
teraction does not depend on the doping. When the corr
tion radius depends on the doping, a minimal value of
coupling for the two-particle bound state exists even in
s-wave channel. Also the gap can decrease with doping
this case.

It was also shown that the fluctuations of the order
rameter play an important role even atT50. The fluctuations
of the order parameter phase in the weak coupling limit
the case of thes-wave pairing regime lead to enhancement
superconductivity at any physical carrier density, while t
modulus fluctuations lead to much stronger enhancemen
superconductivity at low carrier densities. At high carr
densities they lead to suppression of the order paramete
a result, the gap decreases in the BCS regime when both
modulus and the phase fluctuations are taken into accou

This means that higher-order fluctuation correctio
should be investigated in order to develop a self-consis
theory of superconductivity~which can be similar to super
fluidity! at low carrier densities.

We would like to mention some topics that may be
teresting for future investigations. The problem of the cro
over with realistic dispersion relations has not been stud
even on the mean-field level in many interesting cases.
other important problem is the interplay between disor
and superconductivity and between strong correlations
superconductivity in so-called bad metals. The fluctuation
thed-wave pairing channel and in other nonisotropic pairi
channels have not yet been studied carefully even in the
of Gaussian fluctuations. It is also important to go beyo
the Gaussian fluctuations, since the pair susceptibility is
vergent in the 2D and in the 3D cases, as was mentione
Ref. 22. The role of the interlayer coupling is another pro
lem which has not solved in general at present. The solu
of the problems mentioned above will lead to better und
standing of the superconducting properties of systems w
arbitrary carrier density and pairing potential.
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On the possibility of simultaneous spiral and superfluid ordering in a Fermi liquid
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A study is made of one of the possible forms of ordering of Fermi systems—superfluid spiral
ordering, wherein not only the phase invariance of the state is broken but so are the
translational invariance and the invariance with respect to spin rotations. A general method of
studying superfluid spiral ordering is formulated on the basis of the Fermi-liquid approach
to the consideration of superfluid states. For a one-component Fermi system we obtain the self-
consistency equations for four order parameters and the temperature of the simultaneous
phase transition to the superfluid and spiral states. The system of equations is investigated in the
case of two nonzero order parameters. The transition temperature and the energy gap in the
spectrum of elementary fermionic excitations are obtained as functions of the parameter of the
spiral. The region of values of the spiral parameter in which the spiral superfluid ordering
can exist is determined. The correlation function of the spins in the presence of spiral ordering is
investigated. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645176#
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1. INTRODUCTION

In this paper we investigate a superfluid spirally orde
state of a Fermi liquid.

The state of statistical equilibrium of the superfluid li
uid with spiral ordering of the spins is investigated using
Fermi liquid approach to the theory of superfluidity. Th
means that the energy functional of the Fermi liquid is
variant with respect to arbitrary spatial translations in ar
trary spin rotations. However, the state of statistical equi
rium of a Fermi liquid is invariant only with respect to th
simultaneous displacement by an arbitrary vectora and rota-
tion of the spins by an angle 2a"q ~2q is the vector of the
spiral!.

The possibility of magnetic ordering was considere
e.g., in Ref. 1, where the question of the existence of fe
magnetic and superconducting states as a consequen
electrons exchanging a magnon~rather than a phonon, as i
the BCS theory! was studied for the first time. Such an e
change can also lead to an attraction between electrons

Superfluid spiral ordering has been considered in m
papers. For example, it was shown in a study2 of the coex-
istence of superfluid and magnetic ordering that a superc
ducting phase with a spiral ordering of the magnetic m
ments can form in a magnetic superconductor. The ques
of the coexistence of superconductivity and antiferrom
netism, or of the influence of antiferromagnetic ordering
localized spins on the superconducting state, was exam
in a review article.3 Spiral spin ordering in magnetic supe
conductors due to an interaction between the photon fi
persistent current, and a localized spin moment was inve
gated in Ref. 4. An expression for the spin susceptibility
such a system was obtained, and the dynamical prope
due to spiral spin ordering were investigated. It was show
1911063-777X/2004/30(3)/8/$26.00
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a review5 that the temperature of the transition to the ma
netic superfluid state in high-Tc superconductors is signifi
cantly lower than the temperature of the transition from
normal to the superconducting state.

Unlike the aforementioned studies and many others
the present paper the phase transition to the superfluid
arises simultaneously with a spiral ordering of the spins.

The Fermi-liquid approach to the theory of superfluid
is based on the introduction of a nonequilibrium statisti
operator for an ideal gas of quasiparticles and the const
tion of a nonequilibrium entropy on the basis of it.

For studying the kinetics and equilibrium state of a s
perfluid Fermi liquid it is necessary to introduce an ener
functional which is a functional of the normalf and anoma-
lous g matrix distribution functions. In the semiphenomen
logical theory this energy functional replaces the Ham
tonian of the system in the rigorous microscopic theory.

An expression for the entropy of the system, togeth
with the energy functional of the system, allows one to fi
the normal f and anomalousg distribution functions in a
state of statistical equilibrium on the basis of a variation
principle.

A spirally ordered state of statistical equilibrium is sp
tially nonuniform.

An important point here is that it is possible to go ove
as a result of a unitary transformation, from a spatially no
uniform state to a state which is effectively spatially unifor
as a result of a unitary transformation; this substantially s
plifies the treatment of spiral studying of a superfluid liqu

In this paper we derive general equations determin

the order parameterD5(D01DW sW )s2 . Here the solution of
the problem reduces to finding the roots of a bicubic eq
tion and then performing some rather awkward calculatio
© 2004 American Institute of Physics
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For this reason we shall consider only the particular c
D01D3s350.

Analytical expressions are obtained for the order para
eter D26 iD1 and transition temperature as functions of t
spiral vectorq. The three-dimensional surface describing t
dependence of the spiral vector on temperature and the o
parameter is found numerically.

It is shown that in the state under consideration the m
value of the spin is nonzero and independent of the coo
nates, while the spin correlation function^ŝm(x)ŝn(y)& is
periodic in the variable (x1y)/2 and decaying in the variabl
x2y.

2. BASIC EQUATIONS OF A FERMI LIQUID WITH SPIRAL
ORDERING

The state of a superfluid Fermi liquid is characterized
a normalf kk8 and an anomalousgkk8 distribution function,

f kk85Tr r ak8
† ak , gkk85Tr r ak8ak , ~1!

wherer is the statistical operator of the Fermi liquid,ak
† and

ak are the creation and annihilation operators for particle
statek (k[p,a; p is the momentum anda the spin projec-
tion of the particle!. The energy of a superfluid Fermi liqui
is specified by a functional of the normal and anomalo
distribution functionsf andg:

E5E~ f ,g!. ~2!

In a state of statistical equilibrium the normal an
anomalous distribution functions are determined from
condition of maximum entropyS at a fixed energyE of the
system and total number of particlesN ~the momentum of
the system is assumed to be zero!. For solving this varia-
tional problem it is convenient to introduce a block dens
matrix ~supermatrix!

~3!

~the elements of this matrix are expressed in terms of
single-particle distribution functionsf kk8 andgkk8).

Then the equilibrium single-particle density matrixf̂ is
found from the nonlinear integral equation6

~4!

where

~5!

~6!

where m is the chemical potential,b51/T is the inverse
temperature, andgk8k

†
5(gkk8)* . We note that the matrixf is

Hermitian, f kk8
†

5 f kk8 , and that the matrixg, by virtue of
the Fermi statistics, is antisymmetric:gkk852gk8k .
e

-

e
er

n
i-

y

n

s

e

e

We assume that the energy functionalE( f ,g) is invariant
with respect to spatial translations and spin rotations and
the following structure:

E~ f ,g!5E0~ f !1Ef~ f !1Eg~g!, ~7!

where

E0~ f !5
1

V (
k,k8

«kk8
0 f k8k , ~8!

and the interaction between particles is determined by fu
tionals which are quadratic with respect to the normal a
anomalous distribution functions:

Ef~ f !5
1

2V (
k1 ...k4

v~k1k2k3k4!~ f k3k1
f k4k2

2 f k3k2
f k4k1

!, ~9!

Eg~g!5
1

2V (
k1 ...k4

v~k1k2k3k4!gk2k1

† gk3k4
~10!

~the Hartree–Fock approximation!, where

v~k1k2k3k4!5v0~p1p2p3p4!da1a3
da2a4

1v1~p1p2p3p4!s̄a1a3
s̄a2a4

. ~11!

We assume7 that the interaction amplitudesv0 and v1 ,
which contain the Kronecker deltadp11p2 ,2p32p4

, are inde-
pendent of the total momentump11p2 . Thenv0 andv1 can
be written in the form

~12!

where

k5
p12p2

2
k85

p32p4

2
.

It follows from the Hermitianity of the Hamiltonian tha
v0,1(k,k8)5v0,1* (k8,k). Furthermore, we assume that the k
netic energy of free quasiparticles has the form

«k1k2

0 5
p1

2

2m
dk1k2

. ~13!

It follows from formulas~6!, ~9!, and ~10! that the ma-
trices«kk8 andDkk8 are related to the normalf and anoma-
lous g distribution functions by the relations

«k1k2
5

1

2V (
k3 ,k4

@v~k4k1k3k2!1v~k1k4k2k3!

2v~k1k4k3k2!2v~k4k1k2k3!# f k3k4
, ~14!

Dk1k2
5

1

V (
k3 ,k4

v~k1k2k3k4!gk3k4
. ~15!
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Relation~15! establishes a connection between the order
rameterD, the interaction amplitudesv, and the anomalous
distribution functiong.

We have proposed a model description of the spiral
dering with respect to the spins of a superfluid Fermi liqu
Spiral ordering means that the state of the system is invar
with respect to an arbitrary displacement by a vectora and a
simultaneous rotation of the spins around thez axis by an
angle 2a"q. This means that the density matrixf̂ satisfies the
symmetry relation

~16!

whereV̂ is the unitary operator

~17!

Here

ŝ35S s3 0

0 2s3
D , p̂5S p 0

0 2p̃D ,

s3 is the Pauli matrix, andp̂ is the Fermi-particle momentum
operator generalized to a superfluid Fermi liquid.6

Such states of a superfluid Fermi liquid are analogou
the spiral ordering of magnets and exist owing to the s
and translational invariance of the energy functional; th
may possibly be realized in some phase of superfluid3He
~Ref. 8!.

It follows from formulas ~3! and ~16! that the unitary
transformation

Û5expiq"x̂s3 , ~18!

where S x 0

0 x̂ D takes the statef̂ to the state

~19!

which is spatially uniform, i.e.,

@ f̂ q ,p̂#50, ~20!

and at the same time it preserves the structure of the su
matrix f̂ :

~21!

The normal and anomalous spatially uniform distributi
functions f q and gq that determine the supermatrixf̂ q are
related tof andg by the following relations:

~22!
a-

r-
.
nt

to
n
y

er-

The uniform distribution functionsf q andgq , or the super-
matrix f̂ q , satisfy a self-consistency equation that follow
from ~4!:

f̂ q5$expb@«̂q~ f q,gq!2m̂#11%21, ~23!

where

«̂q5Û «̂Û5S «q Dq

Dq
† 2 «̃q

D .

For finding the solutions of this nonlinear self-consisten
equation for a spatially uniform matrixf q one can use the
theory developed in Ref. 6.

3. SPIRAL SUPERFLUID STATE IN A HOMOGENEOUS
REPRESENTATION

It follows from formulas ~22! that the normal and
anomalous distribution functionsf and g are related to the
spatially uniform distribution functionsf qkk85 f q(p)aa8dpp8
andgpkk85gq(p)aa8dp,2p8 by the formulas

f pp85 (
a,b561

Pa f q~p2aq!Pb dp2aq,p82bq , ~24!

gpp85 (
a,b561

Pa gq~p2aq!Pb dp2aq,2p81bq . ~25!

In these relations the matricesf pp8 , gpp8 , f q(p), and
gq(p) act only in spin space. Analogous formulas are va
for «pp8 andDpp8 as well. These formulas were obtained wi
the use of the relation

^pueiq"xs3up8&5 (
a561

dp,p81aqPa ,

with Pa511as3/2, wherea561 is the projection opera
tor on a state with spin projectiona/2.

The inverse formulas expressingf q andgq in terms of f
andg are also valid:

f q~p!dp,p85 (
a,b561

Pa f ~p1aq, p81bq!pb , ~26!

gq~p!dp,2p85 (
a,b561

Pag~p1aq, p81bq!Pb , ~27!

and also the analogous relations linking«q and Dq with «
andD:

«q~p!dp,p85 (
a,b561

Pa «~p1aq,p81bq!Pb , ~28!

Dq~p!dp,2p85 (
a,b561

Pa D~p1aq,p81bq!Pb . ~29!

The matrix gq(p)5(g0(p)1gW (p)sW )s2 is conveniently
expressed in terms of the diagonal matricesgi(p) and
g'(p):

gq~p!5gi~p!s21g'~p!, ~30!

where

~31!
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The matrixDq(p)5(D0(p)1DW (p)sW )s2 can also be repre
sented in the form

Dq~p!5D i~p!s21D'~p!, ~32!

where

~33!

In an analogous way the matricesf q(p)5 f 0(p)1 fW(p)sW and
«q(p)5«0(p)1«W (p)sW are represented as

f q~p!5 f i~p!1 f'~p!s2 , «q~p!5« i~p!1«'~p!s2 ,

where the diagonal matricesf i , f' , « i , and«' are given by
the formulas

f i~p!5 f 0~p!1 f 3~p!s3 , f'~p!5 f 2~p!1 i f 1~p!s3 ,

« i~p!5«0~p!1«3~p!s3 , «'~p!5«2~p!1 i«1~p!s3 .

According to~13!, «q
0(p) is equal to

«q
0~p!5

~p1qs3!2

2m
5«0~p!1«3~p!s3 , ~34!

where

«0~p!5
p21q2

2m
,«3~p!5

p"q

m
.

Using these designations, we transform Eq.~15! to

D i
a~p!5(

p8
$@v0~p1aq,p81aq!2v1~p1aq,p8

1aq!#gi
a~p8!22v1~p1aq,p8

2aq!gi
2a~p8!%, ~35!

D'
a~p!5(

p8
@v0~p,p8!1v1~p,p8!#g'

a~p8!. ~36!

Here

D i
a~p![D0~p!1aD3~p!, gi

a~p![g0~p!1ag3~p!,

D'
a~p![D2~p!1 iaD1~p!,

g'
a~p![g2~p!1 iag1~p!.

In the general case Eqs.~35!, ~36! comprise a coupled
system of equations for determining the four order para
etersD0(p) andDW (p) ~or D i(p) andD'(p)), sincegi(p) and
g'(p) depend on these four order parameters.

For q50 these equations go over to common equati
for the order parametersDq(p)5(D0(p)1DW (p)sW )s2 ,
which correspond to a superposition of a singlet and a tri
pairing (DW Þ0).9

We note that it follows from the definitions~33! that g'

and D' are odd with respect to momenta and describ
triplet state withS51, Sz561, while the functionsgi and
D i describe a superposition of a singlet (S50) and a triplet
(S51) state withSz50, and they therefore do not have
definite parity with respect to the momentap.
-

s

t

a

4. DIAGONALIZATION

We express the normal and anomalous ‘‘uniform’’ dist
bution functionsf q andgq in terms of the four order param
etersD0 andDW ~or D i andD'). With this goal we turn to a
procedure developed in Ref. 6 for block diagonalization
the self-consistency equation~4!.

The matrix ĵ5(D† 2 j̃
j D) is reduced to the block diagona

form (0 2 j̃8
j8 0 ) by means of the Bogolyubov unitary transfo

mation

~37!

where the unitary operatorÛ has the form

~38!

The main role in the diagonalization process is played
the matrixX relating the blocksv and u by the formulav
5Xu* . This matrix satisfies the equation

~39!

After solving this nonlinear matrix equation, one can det
mine the spatially uniform normal and anomalous matrix d
tribution functions by means of the formulas

~40!

~41!

where

~42!

The eigenvalues of the matrixj2XD†5E determine the
spectrum of elementary fermionic excitations. This spectr
is real, since the matrixE is Hermitian in the positive-
definite scalar product̂w,c&5(w,Kc). Indeed, we note in
this regard that the following identities hold:

~j2XD†!~11XX†!5~jX2XD†X1D!X†1j,

~11XX†!~j2DX†!5X~D†1X†j2X†DX†!1j.

Therefore, by virtue of~42! and the fact thatj5j†, we have
K(j2XD†)5(j2DX†)K or KE5E †K. In the new scalar
product (w,Kc) ~where (w,c)[wa* ca is the ordinary scalar
product! the operation of Hermitian conjugation is defined
the standard way:̂w,Ac&5^A/w,c&, i.e., A/5K21A†K.
It follows that in such a scalar product the operatorE is
Hermitian,E /5E , and, consequently, the eigenvalues ofE

are real.
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Noting that

~43!

we obtain from~39! an equation forE :

~44!

where

~45!

Writing the matrixE in the form

E[z1yWsW , ~46!

we obtain from equation~44! after some transformations
bicubic equation forz:

~47!

and a linear algebraic equation for the vectoryW , the solution
of which has the form

~48!

It follows from formulas~43! and ~45! that

~49!

~50!

~51!

The quantityD* in these formulas is equal toDW * DW *
2D0* D0* .

From these formulas and the definition~46! we obtain
the following expression for the spectrum of elementary
citations~the eigenvalues of the matrixE!:

~52!

Thus formulas~49!–~51! determine the spectrum of eleme
tary fermionic excitations~52! in terms of the initial quanti-
ties j andD and the solutionz of the bicubic equation~47!.

As a result of solution of the equation forz2, the quan-
tity X is determined by the formulas
-

~53!

~54!

~55!

Further, using formulas~40! and ~41! we can, in prin-
ciple, find explicit expressions forf q andgq in terms ofj and
D. Substituting the expression forg into formulas~35! and
~36!, we obtain an equation that determines the order par
eterD.

We note here that formulas~53!–~55! and ~47! give a
concrete solution of the quadratic matrix equationX2

22pX1q50 and generalize the well-known Sylvest
formula.10

However, for solution of this problem whenD0 and
D1 ,D2 ,D3Þ0, we run up against some rather awkward
gebraic expressions and formulas. Therefore, in this pa
we restrict consideration to two particular cases, when in
representationD5D is21D' one of two variants is realized
D i50, D'Þ0 or D iÞ0, D'50.

5. ANALYSIS OF THE SOLUTION OF THE
SELF-CONSISTENCY EQUATIONS FOR SUPERFLUID
SPIRAL ORDERING

In both variants Eq.~47! for z reduces to a biquadrati
equation. Since we are interested not only in the roots
equation~47! but also in the whole matrixX and the distri-
bution functionsf and g, we note that in these particula
cases the matricesD' for D i50 or D i for D'50 are diag-
onal, and therefore it is simpler to start directly from Eq.~39!
for X, in which only diagonal matrices appear as unkno
coefficients.

Consider the caseD i50, when the solution of equation
~39! for X has the form

X5X'5
j01aE'

D'
† , ~56!

wherea561, j05@p21q2/2m# 2m, E'[Aj0
21D'D'

† .
The spatially uniform normal and anomalous distributi

functions then have the form

gq5g'52
D'

2E'

@12n~E'2j3!2n~E'1j3!#,

gi50; ~57!

f q5 f i5
1

2 H 11n~E'1j3!2n~E'2j3!

2
j0

E'

@12n~E'1j3!2n~E'2j3!#J , f'50, ~58!

where

n~A![@exp~A/T!11#21. ~59!
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In the caseD'50 we have

X5Xi5
j1aEi

D i
~a561!, ~60!

Ei[Aj21uD iu2, ~61!

and

~62!

~63!

Using these formulas and equations~36!, we obtain the
following self-consistency equation for determiningD' in
the caseD i50:

D'~p!52
1

4V (
p8

C~p,p8!
D'~p8!

E'~p8! H tanh
b

2 FE'~p8!

1
p8•q

m G1tanh
b

2 FE'~p8!2
p8•q

m G J , ~64!

where

C~p,p8![v0~p,p8!1v1~p,p8!. ~65!

In an analogous way in the caseD'50 we have

D i
a~p!52

1

2V (
p8

H @v0~p1aq,p81aq!2v1~p1aq,p8

1aq!#
D i

a~p8!

Ei
a~p8!

tanh
Ei

a~p8!

2T

22v1~p1aq,p82aq!
D i

2a~p8!

Ei
2a~p8!

tanh
Ei

2a~p8!

2T J .

~66!

It follows from this equation that its solution reduces to t
BCS equation for a superposition of a singlet and a trip
order parameter ifSz50. We shall therefore not consider
further but instead turn to an analysis of Eq.~64! for D' ,
which corresponds only to triplet pairing withS51 and l
51 and a superposition of wave functions of Cooper pa
with Sz51 and Sz521. In this case D5D21 iD1s3

5(D2s21D1s1)s2 .
By virtue of the definition of the functionC(p1 ,p2), it

should be antisymmetric with respect to both its argume
p1 and p2 . Therefore, the expansion of the functio
C(p1 ,p2) in Legendre polynomialsPl(cosp1p2̂) will con-
tain only odd polynomials. For simplicity we consider on
the first Legendre polynomial in the expansion. Thus,
shall assume that

C~p1 ,p2!5V~p1 ,p2!cosu,u5p1•p2̂.

In this case

D'~p![D'~p!cosu, u5p"q̂. ~67!
t

s

ts

e

Furthermore, we shall assume thatV(p1 ,p2) is nonzero in a
narrow energy layer with respect to the argumentsp1 andp2

~as is assumed in the BCS theory!:

V~p1 ,p2!52VH 1, U p1
2

2m
2mU<Q, U p2

2

2m
2mU<Q

0 otherwise
~68!

Here 2Q is the width of the energy layer near the Ferm
surface. In this caseD'(p)50 if p lies outside the narrow
energy layer andD'(p)5const if p lies inside that layer.
Thus equation~64! becomes

15
v
8 E21

1

dx x2E
2q

q dj~11j!3/2

A~j1qI
2!21d2x2~11j!

3@ tanhu11tanhu2#, ~69!

where

u6[
1

2t
@A~j1qI

2!21d2x2~11j!62qI xA11j#.

The dimensionless parametersd, qI , andt are related toD' ,
q, andT by the formulas

d[
D'

« f
, t[

T

« f
, qI [

q

pf
. ~70!

The dimensionless energies characterizing the interaction
tential are expressed by the formulas

v52
kf

3

4p2« f
V~pf ,pf !, q5

Q

« f
,

and the dimensionless integration parametersj and x are
given by

j5
1

« f
S p2

2m
2m D , x5cosp"q̂.

In solving Eq.~69! we shall assume thatv!1. Thend
!1, tc!1. The layer widthq is taken such thatd!q, tc

!q, and qI !q. In that case we can assume 11j'1 and
j1qI

2'j. Then Eq.~69! becomes

15
v
2 E0

1

dx x2E
0

q dj

Aj21d2x2 F tanh
1

2t
~Aj21d2x2

12qI x!1tanh
1

2t
~Aj21d2x222qI x!G . ~71!

In the limiting casesd50 or t50 this equation can be
simplified substantially.

Let us find the transition temperaturetc of the spirally
ordered state as a function of the spiral parameterqI . This
temperature is determined by Eq.~71! with d50:

15
v
2 E0

1

dx x2E
0

q dj

j H tanh
1

2t
~j12qI x!

1tanh
1

2t
~j22qI x!J . ~72!
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Integrating overj using integration by parts and the
evaluating the integral overx, we obtain the following equa
tion in the logarithmic approximation (q/tc@1):

2 ln
tc

t
2

p2

6a2 1E
2`

` ds

cosh2 s S 11
s3

a3D lnua1su50, ~73!

wherea[qI /tc and we have introduced the parametert:

t[
q

2
expS 1

3
2

3

v D . ~74!

For qI 50 we have tc54tg exp(21/3)/p, where g
5exp(0.577 . . . ) is theEuler constant.

For qI 5t the transition temperaturetc goes to zero, and
in the vicinity of that point it has the asymptotics

tc'
1

p
A8t~qI 2t!. ~75!

For qI .t the functiontc(qI ) is two-valued, andqI (tc) has a
maximum given by the condition

E
2`

` ds s3

cosh2 s
lnua2su1

ap2

6
50, ~76!

from which we geta'1.644 andqI '1.181t. The depen-
dence of the transition temperaturetc on qI is shown in Fig.
1.

We now determine the dependence ofd on the spiral
vectorqI at t50. According to Eq.~71!, we have

~77!

whereQ(x) is the Heaviside step function. This equation h
two solutions. The first satisfies the conditiond.2qI , and the
second satisfiesd,2qI . For d.2qI we have d54t or
d52q exp(1/32 3/v). This is the formula of BCS theory fo
triplet pairing. Ford,2qI we have

d54At~qI 2t!. ~78!

FIG. 1. Transition temperaturetc ~1! and order parameterd ~2! at T50
versus the spiral parameter.
s

In the regiont,qI ,2t we have a double-valued behavior
the gap as a function of the spiral vector. A graph of t
curve d(qI ) at t50 is shown in Fig. 1 in the same scale
tc(qI ).

The general solution of equation~71! is obtained by nu-
merical methods and is shown in Fig. 2. It is seen from t
graph thatqI 52t is the maximum possible value of the spir
parameter, which is reached att50 andd54t. Thus forqI
.2t the spiral superfluid state does not exist. Figure
shows sections of solution~71! by planes with different val-
ues ofqI .

6. CORRELATION OF SPINS

The matrix distribution functionsf andg determine the
various physical quantities in a state of statistical equil
rium. For example, it follows from the formulas forf that the
mean value of the spin in the caseD i50 is constant:

~79!

FIG. 2. Spiral parameterqI as a function of the temperaturet and order
parameterd.

FIG. 3. Order parameter versus temperature for different values of the s
parameterqI .
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In this connection let us determine the correlation of
spins ŝm(x)[ca

†(x)ŝab
m cb(x) in a superfluid Fermi liquid

with spiral ordering. Since

ca~x![
1

AV
(

p
exp~ ip"x!aap ,

we have

^ŝm~x!ŝn~y!&5
1

V2 (
p1 ,...,p4

$trsmf p2p1
•trsnf p4p3

1trsm~dp2p3
2 f p2p3

!snf p4p1

2trsmgW p4p2
s̃ngp3p1

† %expi @x•~p22p1!

1y•~p42p3!#.

Here the transposition is done only in spin space. He
we obtain the desired formula:

~80!

wherer[x2y, R[(x1y)/2,

f i
6~r ![(

p
f i

6~p!eip"r, g'
6~r ![(

p
g'

6~p!eip"r, ~81!

f i
a~p![ f 0~p!1a f 3~p!, g'

a~p![g2~p!1 iag1~p! ~82!

and

T~m,a,n,b![tr smPasnPb

5
1

2
@dmn~12ab12abd3m!2 i ~a2b!«mn3#.

~83!

As we see, in this case the spiral ordering is manifes
in the circumstance that the correlation functio
e

e

d

^sm(x)sn(y)&2^s3&
2d3md3n are periodic functions of the

variable (x1y)/2. By virtue of the principle of spatial deca
of correlations the correlation functions of the spins w
respect to the variablex2y tend toward zero. Therefore th
spiral ordering is manifested directly only in the correlati
function of the spins.

We note in conclusion that superfluid liquids of the3He
type, with a tensor order parameter, admit the existence
large number of diverse phase states, many of which h
not yet been found.8 Nonuniform spiral states of superflui
phases can be encountered in the study of crystals with o
lapping energy bands and also in the study of heavy nu
~nuclear matter! and astrophysical objects such as neutr
stars.

The spin spiral ordering studied here arises simu
neously with superfluid ordering and constitutes a state o
antiferromagnetic type in which the spatial nonuniformity
manifested in the anomalous distribution function and in
spin correlation function, which can be measured experim
tally. Although such a nonuniform spiral superfluid state h
not been found, it is of interest as an object of study in b
low-temperature physics and in the physics of ultrade
states of matter.
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Variational approach to the problem of the energy spectrum of surface electrons over
a liquid helium film

S. S. Sokolov*

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine
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The energies of the first two subbands are calculated, within a variational approach, for electrons
localized over the surface of a liquid helium film covering a solid substrate. The results are
obtained for arbitrary value of the dielectric constant of the solid substrate, covering both the limit
of a substrate with a dielectric constant close to unity~such as a rare gas solid! and a metal.
The results for the subband energies in the case of a metallic substrate are compared with those
obtained previously by a different method by Gabovich, Ilchenko, and Pashitski�. The
agreement is rather good, supporting the applicability of the variational method for calculating
the energy spectrum of surface electrons in a wide range of substrate parameters. ©2004
American Institute of Physics.@DOI: 10.1063/1.1645177#
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1. INTRODUCTION

The properties of surface electrons~SE! localized over a
liquid helium film are substantially more complicated th
those over bulk helium. As is known, the potential energy
SE in the pointz over bulk liquid occupying the semispac
with z<0 can be written as1

Ub~z!52
L0

z1z0
1eE'z ~1!

where L05e2(«He21)/@4(«He11)#, E' is the holding
electric field oriented normally to helium surface,e is the
electron charge, and«He.1.0572 is the dielectric constant o
liquid helium. The parameterz0.1.01 Å is introduced in
Eq. ~1! to take into account the finiteness of the poten
barrier V0.1 eV on the liquid helium surface, which is a
obstacle to electron penetration inside the liquid phase,
to avoid divergence of the first term of Eq.~1! at z→0. The
value of z0 is estimated by comparison of the experimen
data on the frequencies of spectroscopic transitions betw
the SE surface states and theoretical calculation based o
~1! in the limit of small holding field. One should note that
the limit V0→` (z050) one obtains a SE energy spectru
very close to that really observed,2 and for that reason this
limit is widely used in calculations. The applicability of th
limit V0→` is based on the strong inequalityuD l u!V0 ,
where D l is the energy of SE states numbered byl
51,2,... . For a liquid helium film located at2d,z,0 over
a solid substrate with dielectric constant«s the SE potential
energy can be written as3

U f~z!5Ub~z!1Us~z!, ~2!

where

Us~z!52L1(
n51

`
~2a!n21

z1nd
,

L15e2«He(«s2«He)/@(«He11)2(«s1«He)#, and a5(«He

21)(«s2«He)/@(«He11)(«s1«He)#. Because of the smal
1991063-777X/2004/30(3)/4/$26.00
f

l

nd

l
en
Eq.

difference between«He and unity one can disregard, in th
sum ofUs(z), the terms withn>2 and write, to a very good
accuracy,Us(z)5L1 /(z1d).

The additional contributionUs(z) to the equation for the
SE potential energy, in comparison with that over the b
liquid, is connected with the polarization interaction betwe
the SEs and image forces in the solid substrate atz,2d.
This energy influences strongly the properties of SEs o
film changing not only the structure of the SE energy sta
which were first considered by Shikin and Monarkha,3 but
also the Hamiltonian of electron–ripplon scattering, whi
determines the kinetic properties of the SEs under their m
tion in the plane of the vapor–liquid phase boundary.3 Fur-
thermore, one more scattering mechanism by substrate
face defects can appear which contributes to the SE trans
properties.4

The role ofUs(z) is especially well pronounced for sub
strates with«s@1, such as, for example, some types of gla
where«s*7, to say nothing of metals, where«s→`. For a
metallic substrate one hasL15e2«He/(«He11)2.e2/4, and
the contribution ofUs(z) dominates inU f(z) of Eq. ~2!. The
Schrödinger equation for the SE wave functions and ene
spectrum has been solved, in that approximation, by Gab
ich, Ilchenko, and Pashitski�,5 and the final expression for th
spectrum atE'50, in the limit V0→`, can be written as

D l.2
e2

32a0
F l 2

3

4
1

1

p
A2d

a0
G22

~3!

which differs essentially from the hydrogenlike spectru
D l52D0 / l 2 of SEs over bulk helium.3 Herea05\2/me2 is
the Bohr radius,D05\2g0

2/2m, g05mL0 /\2, andm is the
free electron mass. Equation~3! is valid for 1
!(e2/4\)Am/2uD l u!d/a0 , which is well satisfied ford>5
31027 cm.

For the substrates with relatively small («s*1) or inter-
mediate values of«s the contribution ofUb(z) to U f(z) can
be comparable with that ofUs(z). In such a situation the
only possible way to estimate analytically the SE spectr
© 2004 American Institute of Physics
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over a helium film is to apply the variational approach. T
aim of the present work is to obtain the variational soluti
for the energies of two lowest SE subbandsl 51 and l 52.
For the sake of generality, the calculation is carried out fo
substrate with an arbitrary value of«s , and the effect of the
holding field is also included. The result for a metallic su
strate is obtained under the limiting transition«s→` and is
compared with that given by Eq.~3!. Such a comparison ca
make clearer the possibilities of applying the different a
proaches in the problem of description of the SE spectr
In view of the rising interest in investigating both quasi-tw
dimensional and quasi-one-dimensional SE properties o
helium film in recent years, the present study see
timely.7–13

2. MAIN RELATIONS

To calculate the energiesD1 andD2 one applies the or-
thonormalized trial wave functions14,15

f 1~z!52g1
3/2z exp~2g1z!, ~4!
e

or

s
r

er

y

ns

g
E
io
d

lec
a

a

-

-
.

er
s

f 25
2)g2

5/2z

~g1
22g1g21g2

2!1/2F12S g11g2

3 D zGexp~2g2z!,

~5!

whereg1 and g2 are variational parameters. The energy
the l th subband is calculated as

D l5 K lU2 \2

2m

d

dz
1U f~z!U l L .

The method of calculation is a generalization of that d
veloped in Ref. 15 for the microstratified liquid solutio
3He–4He, and the final expressions for the energies are

D15
\2g1

2

2m
2L0g12L1g1@122g1d

24~g1d!2 exp~2g1d!Ei~22g1d!#1
3eE'

2g1
~6!

and
~7!
the

by
ve-
er a
e

the
the
ic
of
er-

orts
where Ei(x) is the exponential integral. In the limiting cas
d→` the terms depending ond in Eqs. ~6! and ~7! disap-
pear, and we reproduce the values ofg l obtained in Refs. 14
and 15 for the bulk liquid. It is interesting to note that f
d→0 the terms depending ond also disappear in Eqs.~6!
and~7!, which are formally the same as those ford→` but
now depend onL0* 5L01L1 . It is easy to see that in thi
limit, where «He is replaced by unity in the expression fo
L0 , one obtains the energies of an electron localized ov
semi-infinite medium atz<0 with a dielectric constant«s

and without a helium blanket.
The values ofg1 and g2 are calculated numerically b

cumbersome transcedental equations]D1 /]g150 and
]D2 /]g250. By determining the roots of these equatio
and replacing the values ofg1 andg2 in Eqs.~6! and~7! by
them one calculates the energiesD1 andD2 .

3. RESULTS AND DISCUSSION

Here we restrict ourselves to the limit of zero holdin
field E'50, where the influence of film effects on the S
energy spectrum is especially pronounced. The correct
due to finite value ofE' can be included in a straightforwar
way.5,6

We start our consideration by calculating the mean e
tron distance from the helium surface. Based on the SE w
a

ns

-
ve

functions of Eqs.~4! and ~5! one can easily obtain

~8!

The dependences of^z&1 and ^z&2 on d for a metallic
substrate are plotted in Fig. 1. As is seen from Fig. 1
values of^z& l increase withd. For a small film thickness of
531027 cm one has^z&1.29 Å and ^z&2.72.5 Å. At
smaller values ofd the mean electron distance, calculated
Eq. ~8!, tends to the microscopic range, where the abo
mentioned approach to the description of the SE states ov
helium film is no longer applicable. Note that, for the sam
d, the values of̂ z&1 and^z&2 are substantially larger for the
substrate with«s*1. For example, for solid neon («s

*1.20) we estimatêz&1.89 Å and^z&2.288 Å ~for com-
parison,^z1&.144 Å and ^z&2.456 Å for SEs over bulk
helium3!. One concludes that the characteristic values of
mean electron distance from the liquid surface satisfy
inequality ^z& l@z0 , being substantially larger than atom
scale;1028 cm. For this reason the microscopic nature
the helium surface, leading, in particular, to a small inc
tainty of the position of the potential barrierV0 , cannot in-
fluence appreciably the SE energy properties; this supp
the applicability of the limitV0→` with the boundary con-
dition for the SE wave functionf l(z)50 at z50.3



f t

in

,
z
ve
i-

f

r
he
f
ue

s

ia

-

ing

nce

in

ter

um
ure
to
to

h to
l for

su

for

rves
f Ref.

201Low Temp. Phys. 30 (3), March 2004 S. S. Sokolov
The dependences of the SE energiesD1 andD2 on d for
a solid neon substrate, calculated numerically by Eqs.~6! and
~7!, are presented in Fig. 2. One observes the increase o
energies withd ~the decrease of the absolute values ofD1

and D2), which is a natural consequence of the decreas
contribution of2L1 /(z1d) with increasingd. As a result,
the absolute values of the surface energy levels decrease
the distance between them also decreases, tending, for
holding field, to the hydrogenlike values of SE energies o
bulk helium,D l52D0 / l 2, whereas the roots of the minim
zation equations]D1 /]g1 and ]D2 /]g2 tend to the values
g15g0 and g25g0/2, coinciding with the exact result o
solving the Schro¨dinger equation in the limitd→` andE'

50.3 For solid neon this asymptotic limit is achieved ford
*1025 cm. At the same time, for a metallic substrate, whe
the value ofL1 is much larger than that over solid neon, t
region in whichD1 andD2 practically coincide with those o
the hydrogenlike spectrum starts at significantly larger val
d*1024 cm.

Figure 3 shows the dependences ofD1 andD2 on d for
a metallic substrate~solid lines!. For comparison the value
of the level energies calculated by Eq.~3! are also plotted by
the dashed lines. It is seen that the agreement between
energies calculated in different ways is reasonable, espec

FIG. 1. The mean electron distance from the helium surface for the
bands 1 and 2 as a function of film thicknessd for a metallic substrate.

FIG. 2. The energies of the subbands 1 and 2 versus film thickness
solid neon substrate.
he

g
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for relatively small values ofd. At the same time, the agree
ment becomes less satisfactory under increase ofd. Note that
in the derivation of our Eq.~3! in Ref. 5, the contribution
2L0 /(z1z0) of the polarization of the liquid helium to the
SE potential energy was omitted. Obviously, with increas
d and a decreasing contribution2L/(z1d) of the polariza-
tion of the solid substrate to Eq.~2!, the role of 2L0 /z
becomes more essential, which can explain some diverge
of the results calculated by Eqs.~3!, ~6!, and ~7! at d
.1026 cm. To make this point clearer we have plotted,
Fig. 4, the values ofD1 and D2 calculated by Eqs.~6! and
~7!, where we putL050. One can see the substantially bet
agreement with the results of Eq.~3! than that in Fig. 3,
especially for the levell 52 with the larger value of̂ z&2

and, consequently, with the larger distance from the heli
free surface; for this reason the contribution to the struct
of the l 52 subband from the SE potential energy due
polarization of the medium is smaller than the contribution
the ground subband. As a result, the choice of approac
describe the SE potential energy becomes less essentia
l 52 than forl 51.

b-

a

FIG. 3. The same as in Fig. 2 but for a metallic substrate. The solid cu
are the results of the present work, and the dashed curves the results o
5.

FIG. 4. The same as in Fig. 3 but forL050.
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4. CONCLUSIONS

In the present work the energies of the ground and fi
excited SE subbands over helium film are estimated with
variational approach. The expressions for the level ener
are estimated for arbitrary value of substrate dielectric c
stant«s . The values of the mean electron distance from
helium surface are estimated in the macroscopic range,
porting the applicability of the approachV0→` where the
potential barrier is supposed to be exactly at the free hel
surface. The SE energies are calculated, as functions of
thickness, for substrates of solid neon and a metal. The
sults for the metallic substrate are compared with those
tained analytically in Ref. 5. The agreement between the
sults of the present work and those of Ref. 5 seems ra
good, being especially satisfactory for thin helium films w
d,1026 cm, in spite of the different methods of calculatio
in the present work and in Ref. 5. One should note the
plication of the variational approach to obtain the energies
subbands withl .2 leads to overcumbersome calculatio
with practically intractable results. In such a situation t
results of Ref. 5~Eq. ~3!! are especially important, giving th
only way to describe analytically the energy spectrum
subbands withl>3 of SEs localized over a helium film cov
ering a metal.

In closing, the author is highly indebted to V.E. Sivoko
and Ye. V. Syrnikov for assistance in the numerical calcu
tions.
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We report on depairing critical currents in submicron YBa2Cu3O72d microbridges. A small-angle
bicrystal grain boundary junction is used as a tool to study the entrance of vortices induced
by a transport current and their influence on theI –V curves. The interplay between the depairing
and the vortex motion determines a crossover in the temperature dependence of the critical
current. The high entrance field of vortices in very narrow superconducting channels creates the
possibility of carrying a critical current close to the depairing limit determined by the
S–S8–S nature of the small-angle grain boundary junction. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1645178#
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1. INTRODUCTION

An understanding of the limitations of supercurre
transport in high-Tc superconductors~HTS! is important
from both the fundamental and applied points of view. T
upper limit for the critical current density,j cp , in these su-
perconductors is determined by the mechanism of Coo
pair breaking. High nondissipative currents of the order
j cp , however, can only be attained in some special ca
One of the main mechanisms responsible for the redu
values observed is the motion of vortices, which leads
energy dissipation. The critical current density,j c , in such a
case is determined by vortex pinning. Pinning in an HTS
weak because of the small coherence length,j, and to hinder
the vortex motion a special approach is needed. This ma
achieved by employing narrow superconducting channels
such a channel the penetration of magnetic field and the
tex motion can be blocked by a surface barrier, which m
be an effective additional pinning source in the case o
large surface-to-volume ratio. Experiments on narr
YBa2Cu3O72d ~YBCO! microbridges with widthsW of
2–13 mm showed a tendency forj c to increase whileW
decreased.1 It was suggested that in the limit of very narro
microbridges withW,leff the valuej cp may be attained due
to the increasing role of the surface barrier.1 Here leff
2031063-777X/2004/30(3)/5/$26.00
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52lL
2/d is the effective magnetic field penetration depth f

the superconducting film,lL is the London penetration
depth, andd is the film thickness. Experimentally, such b
havior has until now been confirmed in only on
experiment.2 It was reported that aj c value of 109 A/cm2

was measured at 77 K in a 50 nm wide YBCO microbridg
Similar microbridges prepared on the same chip showe
critical current density two orders of magnitude lower. A
though a submicron processing may give a random struct
degradation, the reason for such a spread inj c values is not
completely understood. Thus the limitation of critical curre
densities in high-Tc oxides, especially in the case of narro
filaments, continues to be an unresolved issue and requ
further investigation. In particular, large vortex entran
fields for narrow superconducting channels3 and the influ-
ence of inhomogeneities in the case of a restricted geom
have not been investigated.

In this paper we report on supercurrent transport in s
micron YBCO microbridges, with and without a predete
mined grain boundary. An asymmetric 4° grain boundary
exploited as a tool to study the entrance of vortices and t
influence onj c and theI –V curves. A self-magnetic field
which is due to the transport current, serves as a sourc
vortices in the grain boundary, and therefore one can de
mine the value of the current at which the self-induced v
© 2004 American Institute of Physics
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tices start to contribute to dissipation. This characteristic c
rent separates two different regimes, where depairing
flux flow effects are the dominating mechanisms limiting t
magnitude of the supercurrent. The interplay of these
mechanisms determines the unusual temperature depend
of j c observed in our experiments.

2. EXPERIMENTAL DETAILS

We investigated YBCO microbridges 0.5–1mm wide
and 10mm long. C-axis oriented YBCO thin films with a
thicknessd of 120 nm were grown by laser deposition o
Y-ZrO2 bicrystal substrates. The films had a superconduc
transition temperatureTc of 89–90 K withDTc of 1 K be-
fore patterning. Three microbridges were patterned ac
the bicrystal boundary and two microbridges on each sid
the boundary. A mask of SAL601e-beam resist and Ar ion
milling were used to pattern microbridges and electrodes
four-point measurements. The samples were ion milled
220 °C and theTc of the microbridges decreased by 3–5
in comparison to the as-deposited films. The submic
bridges had a well-defined trapezoid geometry with a sl
of the edges of about 55°, and according to SEM investi
tions no YBCO ‘‘foot’’ was observed around them.

Standard four-point probe measurements were p
formed on all the microbridges. The critical currentI c was
determined from the current-voltage characteristics at
voltage level of 1mV, and its densityj c was calculated using
the geometrical cross-sectional area without taking into
count the real current distribution.

3. RESULTS AND DISCUSSIONS

Current-voltage characteristics were measured at dif
ent temperatures. TheI c versusT dependence for a micro
bridge with a 4° bicrystal grain boundary junction~GBJ! is
shown in Fig. 1. Two well-defined regions with differe
temperature dependences can be distinguished. CloseTc

the I c(T) dependence is described by a relationI c}(1
2T/Tc)

3/2. This behavior is further illustrated in Fig. 2a u
ing the coordinatesj c

2/3 and reduced temperatureT/Tc . Such

FIG. 1. I c(T) dependence for a YBCO microbridge (W5500 nm) with a 4°
bicrystal grain boundary junction. The solid line corresponds to the dep
dence j c}(12T/Tc)

3/2 and the dotted one toj c}(12T/T* )1/2. Note the
large spread inI c within the crossover region.
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behavior is similar to that expected for the depairing critic
current, but it was observed only in a limited temperatu
range. At temperatures aroundT* 581 K, I c becomes un-
stable. BelowT* the temperature dependence ofI c changes
radically. Simultaneously, a change ofI –V characteristics
takes place. AboveT* the I –V curves are smooth, but a
T,T* regular steps appear in theI –V curves which are
periodic in current~Fig. 3!. These steps are only observed

n-

FIG. 2. j c
2/3 versusT/Tc dependences for a microbridge with a 4° gra

boundary junction~a! and for a uniform microbridge~b!. The microbridges
were 500 nm wide, 120 nm thick, and 10mm long.

FIG. 3. I –V curve plotted for currents larger than the critical value in a 5
nm wide microbridge crossing a 4° grain boundary.T579.1 K. Note the
periodic structure (DI'0.5 mA) and that the slope~resistance! in the inter-
mediate regions is proportional to the step number.
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a limited temperature range of 2–4 K, where a large spr
in j c values was also noted. At lower temperatures, theI –V
characteristics are of the flux flow type withV}(I 2I c)

2.
The maximum value ofI c at T'T* corresponds to a

high current density of 33107 A/cm2. We will show below
that the critical current densities in the temperature ra
betweenT* and Tc are very close to the depairing critica
current not only qualitatively but quantitatively as well. A
shown in Fig. 2b, the critical current densities of the mic
bridge in the body of the grain are close to thej c of the GBJ
at the same reduced temperatures.

To explain theI c(T) dependence measured for micr
bridges with GBJ in the whole temperature range and
high values ofj c , two assumptions were made. First, t
barrier of the small-angle GBJ may be described as
‘‘weak’’ superconductor (S8), with a Tc lower than in the
electrodes. Values ofj c approaching the depairing limit ca
be reached only in weak links with large transparency, a
the S–S8–S model may then explain the highj c values in
our experiments in the vicinity ofTc . Another important
assumption concerns the absence of vortices in the mi
bridge atT.T* . As was shown by Likharev,3 the vortex
entrance field,HV , becomes width dependent when the m
crobridge width is comparable toleff and it may attain large
values exceeding the first critical fieldHc1 even in bulk su-
perconductors. For a narrow microbridge3

HV5H ~2F0 /pW2!ln~W/4j! at W!leff

~F0 /pWleff!ln~leff /j! at WL@leff
. ~1!

Here F0 is the magnetic flux quantum. TheHV}W22

dependence was observed for narrow microbridges of c
ventional superconductors.4 If the microbridge edges ar
smooth, the entrance field may even exceed the calcul
HV values due to the surface barrier.3 Large entrance fields
governed by the surface barrier and exceedingHV have also
been observed experimentally.5

The properties ofS–S8–S weak links have been inves
tigated theoretically.6 The authors considered a model of
weak link, S8, which only differed in its properties relativ
to those of the bulk electrodes,S, in having a shorter elec
tron mean free pathl . The weakness of the link was define
by a parameterg5xWl /xel , wherex is a Gorkov universal
function of the impurity parameterl /j0 (j0 is the BCS co-
herence length!. The subscriptsWl andel denote the weak-
link region and electrode regions, respectively. It was sho
that the critical current density of the weak link exceeds
intrinsic value due to the proximity effect, especially in clo
vicinity to Tc ~the coherence length diverges as
2T/Tc)

21/2). If the conditionL/2jWl,g1/2 is met (L is the
geometrical length of the weak link andL/2jWl is its normal-
ized length!, then the critical current density of the wea
region is only slightly below the value in the electrodes, i.
it can be close to the pair-breaking current densityj cp(T).
Nevertheless, since the order parameter in such a conta
depressed in the middle of the weak link, the current-ph
relation is close to the Josephson one, and one can exp
Josephson-like behavior.6 This assumption explains the (Tc

2T)3/2 dependence ofj c and its large value nearTc . Now
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let us try to understand theI c(T) dependence of the micro
bridges with GBJ obtained in the rangeT,T* . NearT* , the
j c of the junction attains values exceeding 107 A/cm2. At
such current densities and small cross sections of the mi
bridge, the self-magnetic field of the critical current,HIc , at
the outer edge of the microbridge, with thicknessd, is given
by the expression:

HIc52p j cd/c. ~2!

The field HIc is quite large and may play an essent
role in determining the GBJ behavior. As long as this field
lower thanHV determined by formula~1!, there are no vor-
tices inside the sample, and the critical current is determi
by pair-breaking. Estimates using~1! and ~2! show thatHIc

is equal toHV at T581 K for the microbridge in Fig. 1.
Penetration of vortices begins at the weakest spot, i.e

the Josephson contact. We believe that the instability
appears atT'T* is connected to the penetration of vortic
into the weak link. The critical magnetic fieldHc1J for pen-
etration of a single vortex into a tunnel junction is7

Hc1J52F0 /~p2lJLeff!. ~3!

Here lJ5(cF0/8p2 j cLeff)
1/2 is the Josephson penetratio

length, andLeff52lL1L. Formula~3! is obtained for a tunne
junction, but one can assume that it is valid for anS–S8–S
junction as well, since the area occupied by a flux quantum
aboutlJLeff . AssumingL!lL and substituting forlJ in ~3!,
we obtain the following expression:

Hc1J5~4/p!~F0 j c /clL!1/2. ~4!

NearTc , whereHIc,Hc1J , the critical current of the weak
link is close to the pair-breaking critical currentj cp(T) for
the bulk material. As the two fields become equal, t
mechanism leading to disappearance of superconduct
changes. Starting with the assumption that atT,T* the criti-
cal current density may be defined by the conditionHIc

5Hc1J , one can find the critical current density connected
the vortex mechanism. Using formulas~2! and~4!, we obtain

j c~T!54cF0 /p4d2lL~T!. ~5!

Relation ~5!, with the temperature dependencelL(T)}(1
2T/T* )21/2 near T* taken into account, is shown by th
dashed curve in Fig. 1 (T* is assumed to be the transitio
temperature of theS8 superconductor!. The agreement of this
approximation with the experimental data is good.lL(0) in
the GBJ region was the only fitting parameter. The va
obtained, 62 nm, is less than the values oflL(0) for YBCO
known from the literature (lL(0)5100– 140 nm; see Ref. 8
and references therein!. In view of the approximateness o
our approach the agreement is quite reasonable. In partic
a numerical coefficient may appear in~5! to take into ac-
count the nonuniform distribution of the self-magnetic fie
of the transport current.

There is additional confirmation that crossover in thej c

temperature dependence is associated with the beginnin
self-field vortex penetration into the microbridge. The cro
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over takes place at practically the same critical current d
sity on different microbridges with equal widths~see Fig. 2!.

As always, the critical current connected with vort
motion should be smaller than the pair-breaking one. Inde
we found not only a drastically changed temperature dep
dence of j c below T* , but relatively small values ofj c in
comparison with values extrapolated from the (12T/Tc)

3/2

dependence. The suppression ofj c may also be considered a
evidence for the validity of our model.

The data for a uniform microbridge cut in the body of
single grain ~see Fig. 2b! also demonstrate aj c}(1
2T/Tc)

3/2 dependence nearTc . For a uniform microbridge
with W50.8 mm, the deviation of the experimental poin
from a (12T/Tc)

3/2 dependence takes place at a lowerT/Tc

than for a microbridge with a GBJ, but the phenomen
determining this deviation from thej cp(T) dependence is o
the same type as in the case of the microbridge with a G
although it is less pronounced. In the uniform microbridg
features similar to those of the GBJ have been obser
instability of j c around T* , steps in theI –V curves ~al-
though irregular!, and a change of thej c(T) dependence be
low T* . These data can be reasonably explained with
assumption that the uniform microbridge contains some r
dom, uncontrolledS–S8–S weak links which are not as
clearly defined as the specially introduced GBJ, but wh
influence thej c and I –V curves in a similar way. One ma
conclude that only if such weak links are not present can
depairing critical current be observed to low temperature

It is also easy to estimate the temperatureT* below
which the inequalityHIc,Hc1J is violated. Using the experi
mental temperature dependence ofj c obtained nearTc , one
can rewrite this condition as follows:

12T* /Tc54cF0 /p4d2 j c~0!lL~0!. ~6!

Here j c(0) is the coefficient in the experimental dependen
j c(T)5 j c(0)(12T/Tc)

3/2. The resulting valueT* 579.4 K
is rather close to that observed in the experiment~see Fig. 1!
when the valuelL(0)562 nm obtained above is used.

A comparison of the experimentalj c(T) dependence a
T.T* with the formula for the depairing critical current,9

j cp5cF0 /@12)p2j~T!lL
2~T!#, ~7!

may also be used to estimate the value oflL(0). It should be
pointed out that there is some uncertainty in such an estim
because of the substantial discrepancy in the values ofj(0)
obtained by different authors (jab(0)51 – 3 nm; see Ref. 8
and references therein!. Another source of error is connecte
with a coefficientj cWl / j cel,1 which should be introduced
in ~7! to take into account the reduced value ofj c in a junc-
tion in comparison with that of the ‘‘bulk.’’ Using formula
~7! with lL(0)562 nm defined in the rangeT,T* , one
obtainsj(0)53.3 nm. This value is in the range of thos
from other measurements. Therefore, the parametea
5 j cWl / j cel is close to unity. This is expected due to th
proximity effect betweenS andS8.

Thus all the experimental numerical values and the te
perature dependence ofj c in the whole temperature rang
may be described self-consistently in terms of anS–S8–S
n-

d,
n-

n

J,
,
d:
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n-
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e

e
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weak-link model using only one fitting parameter,lL(0)
562 nm. The distinction of this parameter from the valu
of lL(0) known from the literature may be explained by t
uncertainty in the numerical factors in formulas~5! and ~7!.
This implies that the measurements ofj c(T) in microbridges
cannot be used for preciselL(0) determination.

It is worthwhile also to mention here that a theory10

considering the critical current of wide HTS epitaxial film
with small-angle misorientation between grains predicts t
the j c(T) dependence is governed by the temperature dep
dence (12T/Tc)

3/2 of the depairing current if the distanc
between edge dislocationsr d on the bicrystal grain boundar
is less than the coherence lengthj(T). For a 4° grain bound-
ary the value ofr d is equal to 5.7 nm. This means that su
a dependence should be observed to temperatures very
to Tc (T/Tc50.997).

The most remarkable feature of Fig. 1 is the crossove
the temperature dependence ofI c and the large spread in th
values of the critical current around the crossover tempe
ture. ThisI c instability is not understood in detail, but mo
probably such a behavior is connected with the dynamics
vortex nucleation and motion under conditions when m
netic field of the transport current attains the threshold
the vortex pair penetration in the GBJ.

Besides the nontrivialj c(T) dependence, another re
markable feature that is characteristic for a small-angle G
is the presence of steps in theI –V curves. The steps ar
periodic with current and they appear within a limited tem
perature interval. At first sight, the origin of regular period
steps inI –V appearing in the temperature range where
critical current is governed by the penetration of Joseph
vortices in the weak link can be connected with the osci
tory behavior predicted in Ref. 11. It would then reflect t
entrance of the second, third and further vortex-antivor
pairs into the Josephson junction.

However, the periodicity of the steps in terms of th
self-field of the current is found to be several Oe, while t
expected periodicity for the entrance of the next vortices11

DH5F0/2WlL(T), is more than an order of magnitud
larger than the values obtained experimentally.

The interaction of moving vortices with the periodic in
homogeneities in the bicrystal boundary~regular misfit dis-
location grid! may be considered as a possible explanation
the step structure in theI –V curve.12 The commensurability
of the dislocation grid and the vortex spacing, which is d
termined by the magnetic field~i.e., transport current!, may
play the key role in this scenario.

In the case of the ‘‘uniform’’ microbridge, the steps a
not periodic with current. This may be explained by the pr
ence of a number of low-angle grain boundaries in the
crobridge due to YBCO island growth.

The question of the origin of the step-like behavior r
quires a closer investigation. The transition at lower tempe
tures to the usual flux flow behavior may be explained b
penetration of Abrikosov vortices along the whole length
the microbridge and their motion.

In summary, we have shown that nearTc the critical
current density of a submicron microbridge is governed
the pair-breaking mechanism. This is also true for a mic
bridge containing a controlled weak link of the grain boun
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ary type if the misorientation angle is small. The possibil
of carrying a critical current close to the depairing limit
due, in particular, to the absence of vortices in the mic
bridge. This is caused by the high vortex entrance field
narrow superconducting channels. The properties of s
small-angle junctions may be described in a model of
S–S8–S Josephson contact with a high current density. T
value of j c in such a contact differs only slightly fromj cp in
the electrodes due to the influence of the proximity effect.
lower temperatures, whenj c becomes controlled by Josep
son vortex penetration into the weak link, thej c(T) depen-
dence changes radically and thej c values become lower. Th
same is true for ‘‘uniform’’ microbridges that often conta
low-angle grain boundaries. The crossover to the vort
motion mechanism of dissipation is accompanied by the
pearance of steps in theI –V curves. These disappear aga
when the whole microbridge enters the vortex state. T
steps may be connected with the dynamics of vortex p
motion and annihilation.
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In n–p bilayer systems an exotic phase-coherent state emerges due to Coulomb pairing of
n-layer electrons withp-layer holes. Unlike Josephson junctions, the order parameter phase may
be locked by matrix elements of interlayer tunneling inn–p bilayers. Here we show how
the phase locking phenomenon specifies the response of the electron–hole condensate to interlayer
voltages. In the absence of an applied magnetic field, the phase is steady-state~locked! at
low interlayer voltages,V,Vc , but the phase increases monotonically with time~is unlocked! at
V.Vc . The change in the system dynamics atV5Vc gives rise to a peak in the differential
tunneling conductance. The peak widthVc is proportional to the absolute value of the tunneling
matrix elementuT12u, but its height does not depend onuT12u; thus the peak is sharp for
small uT12u. An in-plane magnetic field reduces the peak height considerably. The present results
are in qualitative agreement with the zero-bias peak behavior that has recently been
observed in bilayer quantum Hall pseudoferromagnets with spontaneous interlayer phase
coherence. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645179#
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The idea that in bilayern–p structures consisting of a
electron-conductivity layer (n-layer! and a hole-conductivity
layer (p-layer! the Coulomb attraction of electrons and hol
may lead to the formation of electron–hole pairs with sp
tially separated components was put forward rather lo
ago.1,2 As a result of Bose–Einstein condensation of the
pairs, there arises a peculiar superfluid~phase-coherent!
state, in which a nondissipative motion of pairs gives rise
equal-in-magnitude and oppositely directed supercurrent
the n and p layers. At present, two variants of the system
have been realized experimentally, where an excitonic c
densate with spatially separated components is formed
both cases, these are closely lying GaAs/AlGaAs dou
quantum wells, where either interwell excitons are excited
a laser pulse3,4 or two-dimensional electron layers are form
due to doping. In the latter case, the electron layers mus
placed in a strong magnetic field, normal to the layers, s
that the total filling factor should benT5n11n251.5 Since
all these systems have one and the same exciton mecha
for the interlayer phase coherence,6 the physical properties o
these systems in the coherent state must be qualitati
similar.

The present paper has mainly been stimulated by re
impressive experiments of Spielmanet al.,7,8 who have
found that if a bilayer electron system transitions into
phase-coherent state~in which the quantum Hall effect is
observed atnT51), then this transition is accompanied by
sharp rise in the differential tunneling conductanceGT at low
interlayer voltagesV. As the temperature is lowered, th
tunneling conductance peak remains of finite height a
2081063-777X/2004/30(3)/5/$26.00
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width, in contrast to the tunneling conductance peak of
Josephson junction. In a magnetic fieldH parallel to the
layers the peak height decreases the more drastically
higher is the field, and atH.0.6 T the peak becomes prac
tically indistinguishable.

A number of papers have been devoted to theoret
interpretation of the experimental results obtained by Sp
manet al.For example, Fogler and Wilczek9 have treated the
tunneling conductance peak as a consequence of the Jo
son effect in a long inhomogeneous junction. In Refs. 10 a
11, the interpretation of the peak is based on the notion
finite time of phase coherence. Joglekar and MacDona12

have performed both phenomenological and microscopic
culations of the tunneling conductance GT value atV50. In
Ref. 13,GT(V,H) was calculated using a phenomenologic
equation similar to the Landau–Lifshitz equation for t
magnetic moment. Such a diversity of theoretical approac
in the interpretation of experiment7,8 gives impetus to a con
sistent microscopic consideration of the dynamics of pha
coherent bilayer systems, this being the subject of the pre
paper. Though we consider then–p system in the absence o
a perpendicular magnetic field, the exciton nature of the c
lective state in all the above-mentioned systems encoura
us to believe that the present results provide a qualita
description of the experiments of Spielmanet al.7,8

An important but still not completely resolved proble
for the systems with electron–hole pairing is the problem
phase locking by interband transitions1! ~Ref. 14!, which co-
incide with interlayer tunneling transitions in the system
under consideration. The tunneling transitions lift the deg
© 2004 American Institute of Physics
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eracy in the phase of the order parameter, thereby locking
phase and making it equal to the phase of the tunneling
trix elements. The last statement is valid in the absence
magnetic field parallel to the layers. Kulik and one of t
present authors15 have shown that in a magnetic field paral
to the layers the phase is locked only at fieldsH,Hc1 . ~The
critical field Hc1}uT12u1/2, whereT125uT12ueix is the matrix
element of interlayer tunneling.! At H.Hc1 the phase lock-
ing is lifted and the phase changes monotonically in the
rection normal to the field, this giving rise to spatial oscill
tions of the tunneling current~vortex state!. The phase
locking phenomenon appears to exert an essential effec
only on the thermodynamic properties ofn–p systems but
also on their kinetics.

Relying on the microscopic approach, the present pa
deals with the response of a phase-coherentn–p system to
the interlayer voltageV. We demonstrate that similarly to th
existence of the critical fieldHc1 , in the case under consid
eration there exists a threshold voltageVc(}uT12u) that quan-
titatively characterizes the degree of phase locking in
n–p system. At low voltages,V,Vc , the order paramete
phase is locked~steady-state!, and the direct tunneling cur
rent is proportional toV. The Ohmic character of a spatiall
uniform tunneling current atV,Vc means that in the phase
coherentn–p system there is no dc Josephson effect.16 ~The
absence of the dc Josephson effect in the two-layer elec
system has been established by Joglekar and MacDona12!
At voltagesV.Vc , the phase changes monotonically wi
time, and this results in tunneling current oscillations w
frequencyv5eAV22Vc

2 ~heree is the elementary charge
and\51). So, atV.Vc the n–p system retains the esse
tial feature of the ac Josephson effect in superconduct
namely, the presence of tunneling current oscillations a
constant applied voltage. At the same time, the dissipa
character of the oscillating tunneling current~see below!, the
nonuniversality of the voltage dependence ofv, and the
presence of a threshold voltageVc are specific to phase
coherent bilayern–p systems.

Further on, we show that the above-described ‘‘libe
tion’’ of the order parameter phase atV5Vc results in a
sharp peak ofGT(V), the height of which is independent o
uT12u and the width equal to 2Vc , i.e., for small uT12u the
peak will be high and sharp. Thus in our opinion the nat
of the tunneling conductance peak observed in the exp
ments of Spielmanet al. is closely connected with the phe
nomenon of order parameter phase locking by tunne
transitions. The experimentally observed suppression of
GT(V) peak with an increasing parallel magnetic field8 also
lends support in favor of this interpretation, because, as
dicated above, a sufficiently strong in-plane magnetic fi
eliminates the phase locking.

We are now coming to the analysis of the dynamics o
phase-coherentn–p system in the limit of a high pair den
sity, when the average distance between the electron–
pairs is small compared to the characteristic pair size.
advantage of the high-density limit lies in the possibility
considering the phase-coherent system dynamics in the
less state, when the gap in the excitation spectrum beco
zero under the action of strong depairing, and the order
rameterD is reduced but remains nonzero2! ~Ref. 17!. For the
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n–p bilayer the order parameter is proportional to the av
age ^c1(r ,t)c2

1(r ,t)&, wherec i
1 (c i) is the electron cre-

ation ~annihilation! operator in the layeri . An essential sim-
plification consists in the fact that the absence of the g
makes it possible to describe the dynamics of the pha
coherent system only in terms of the complex order para
eter (D5uDueiu) without involving the dynamics of the qua
siparticle distribution function.

The dynamical equation for the order parameter of
n–p system was derived by the Green function technique
our previous paper18 and has the following form:

2~Ḋ2 ieVD!1H A2BuDu21DF ]

]r
1

ie

c
~A12A2!G2J

3D1
T12

zt
50. ~1!

The equation obtained is in perfect agreement with the g
eral theory of relaxation of an order parameter near the p
of a second-order phase transition~see, for instance, Ref
19!. In accordance with this theory a state of a physical s
tem under a second-order phase transition can be desc
by an order parameter, that is nonzero below the transi
point and equal to zero above this point. An equilibriu
value of the order parameter can be found from the condi
that the variation of the corresponding thermodynamic
tential is equal to zero. In the absence of interband hyb
ization the thermodynamic potential for a condensate
electron–hole pairs with spatially separated components
be presented in the form

F5E H DUF2 i
]

]r
1

e

c
~A12A2!GDU2

2AuDu2

1
1

2
BuDu4J dr . ~2!

Expression~2! is similar to the thermodynamic potential fo
Cooper pairs in the Ginzburg–Landau theory, but here
term 2eA is replaced by the terme(A12A2). Such a modi-
fication is quite natural. Indeed, for the case of electron–h
pairs with spatially separated components an electron in
layer 1 ‘‘sees’’ the vector potentialA1 , while a hole in the
layer 2 ‘‘sees’’ the vector potentialA2 . Since the signs of the
electron and hole charges are different, the vector poten
A1 and A2 are subtracted from each other in Eq.~2!. In
equilibrium the order parameterD(r ) is found from the con-
dition dF/dD* (r )50. For a small deviation from equilib
rium, when the derivativedF/dD* (r ) is nonzero but small,
the order parameter relaxation rate~the derivative]D/]t) is
also small. In the mean field approximation these two deri
tives should be proportional to each other. But it is necess
to take into account that due to the gauge invariance of
theory the derivative]/]t must enter into the equation i
combination with the termie(V12V2), whereV1 andV2 are
the electrostatic potentials in layers 1 and 2, respectively.
a result, in the absence of interband hybridization one arri
at Eq.~1!, whereT1250.

In the presence of interband hybridization the Ham
tonian of the system contains terms linear in the order
rameterD and in the matrix elementsT12 and the corre-
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sponding conjugate terms~and that means that th
thermodynamic potential contains the same terms!. These
terms play the role of a source of electron–hole pairs. T
are analogous to the terms that appear in the Hamiltonia
a ferromagnet in an external magnetic field. For the case
magnet it results in the appearance of a term linear in
magnetic field in the equation for the order parameter. Si
for the system considered the matrix elementT12 is analo-
gous to the magnetic field, a term linear inT12 should appear
in the equation for the order parameter in the presence
interband hybridization. We see that Eq.~1! does in fact con-
tain this term. The microscopic analysis shows that altho
the phenomenological arguments presented look quite
eral, in reality Eq.~1! is valid only in a rather narrow interva
of impurity concentration, just in the case of the Gor’kov
Eliashberg equation for superconductors containing p
magnetic impurities.20

In the gapless situation under consideration, the coe
cients of the dynamic Ginzburg–Landau equation~1! have
the forms A(T)5(2p2/3)t(Tc

22T2), B54mt/3M , D
5p0

2t/M2 ~Ref. 18!. Heret is the electron elastic scatterin
time ~for simplicity, it is considered equal to the hole elas
scattering time!, T is the temperature (kB51), Tc is the criti-
cal temperature, M5m11m2 is the pair mass, m
5m1m2 /M is the reduced mass of a pair,p0 is the Fermi
momentum of electrons and holes, andz is the dimensionless
constant of the Coulomb interaction.2 It should be noted tha
Eq. ~1! is derived by expansion of the anomalous Gre
function as a power series in (D/Tc).

18 Since a term linear in
the matrix elementT12 appears in the expression for the o
der parameter, it is necessary thatuT12u!Tc for validity of
Eq. ~1!.

At low fields and currents, the modulus of the ord
parameter varies only slightly in space and time. Assum
uDu to be constant equal toD0 , the imaginary part of Eq.~1!
can be written as follows:

ḟ2D
]

]r S ]f

]r
2

2pd

F0
@H3n# D2eV1eVc sinf50. ~3!

Here the gradient-invariant phasef5u2x2(2pd/F0)Az is
introduced,d is the interlayer distance, andF05hc/e is the
magnetic flux. The unit vectorn5(0,0,1) is normal to the
layers and is directed from layer 1~electron layer! to layer 2
~hole layer!. The threshold voltageVc5uT12u/(eztD0).

It is readily seen that in the uniform case Eq.~3! for the
phasef is different from the equationḟ5eV that appears in
a number of papers and is treated as the Josephson re
for phase-coherent bilayer systems. The occurrence of
term proportional touT12u in the dynamical equation for th
phase radically changes the solutions of this equation. T
in the absence of external fields the stable steady-state
uniform solution of Eq.~3! is f50, i.e., u5x, and this
means that the interlayer tunneling transitions hold the or
parameter phase locked. Below, we consider in detail h
the phase locking phenomenon influences the dynamic p
erties ofn–p systems.

We start from an analysis of the dynamics of then–p
system in the phase-coherent state for the spatially unif
case in the absence of magnetic field. Let then–p tunneling
junction be incorporated into an electrical circuit having
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sistanceR and a voltage sourceE . The resulting voltageV
across then–p tunnel junction determines the difference
electrochemical potentials of the layers and thereby dicta
the carrier density in then andp layers. If dn is the devia-
tion of the electron density from equilibrium, then the equ
ity eV52dn/N* (0) is valid, where the renormalized den
sity of states on the Fermi surface is

N* ~0!5N~0!S 11
e2m

pC D 21

(C is the capacitance of the bilayer system per unit ar
N(0)5m/p).

In the approximation linear inT12 the density of tunnel-
ing current from layer 1 to layer 2 is equal toJ5Jc sinf,
whereJc54eN(0)uT12uD0 /z.18 The charge balance equatio
for layer 1 can be written as

eSdṅ1
E2V

R
2I c sinf50, ~4!

where S is the area of then–p junction, and I c5SJc .
Though below we assumeE5const, it should be noted tha
Eq. ~4! also holds for a time-dependent voltage source.

Making use of the relationship betweendn andV, from
Eqs.~3! and~4! one can derive the equation for the phasef.
In terms of dimensionless variables, this equation takes
the following form, well known in the theory of Josephso
junctions:

f̈1
1

Ab
~11« cosf!ḟ1sinf5r. ~5!

Here the following dimensionless parameters are introduc
b5eEct0 , «5eVct0 , r5E /Ec , where Ec5Vc1I cR and
t05e2N* (0)RS. The time is measured in units of 1/v0,
wherev05(eEc /t0)1/2.

Despite the coincidence of Eq.~5! with the dynamical
equation for the phase difference across the Josephson
tion, the different meaning of the parameterr entering into
these equations leads~as will be seen from what follows! to
a substantially different behavior ofn–p systems and Jo
sephson junctions.

A detailed analysis of the dynamic states of the syst
described by Eq.~5! was performed by Belykhet al.21 With-
out going into the details of that analysis, we shall ment
its main results. For each value of the parameter« one can
find the corresponding numberb1 . At b.b1 ~large resis-
tancesR), the range ofr values is split into three adjacen
intervals: 0,r,rc , rc,r,1, and r.1 @rc(b,«) is the
bifurcation value of the parameterr; Ref. 21#. In the first
interval, there is only one stable solution,f5arcsinr; in the
third interval the only stable state is the limit cycle embra
ing the phase cylinder. In the intermediate~second! interval
both solutions,f5arcsinr and the limit cycle, are stable
This nonuniqueness of the solution of Eq.~5! results in hys-
teresis of the current–voltage characteristic~CVC! at b
.b1 . For b,b1 ~low resistancesR) the stable solutions
will be f arcsinr at 0,r,1 and the limit cycle atr.1,
while the interval ofr with two stable states drops out. Co
respondingly, atb,b1 the CVCs have no hysteresis.
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Further on, we find the CVC and the differential tunne
ing conductance of then–p system in the simple, but phys
cally rather illustrative, caseR50. In this limit, no distinc-
tion may be made betweenV and E , Vc and Ec , and the
dynamics of the system may be analyzed on the basis of
~3! ~without spatial derivatives!. Since in the case considere
we haveb,b1 , hysteresis of the CVC is absent.

If the system is spatially uniform and the voltageV does
not depend on time, Eq.~3! can be integrated. One can s
that for V,Vc Eq. ~3! has the time-independent solutio
f05arcsinV/Vc . In such a case the tunnel current, also
dependent of time, is equal toI c sinf05IcV/Vc[V/Rc . This
current is proportional to the applied voltageV and it is an
ordinary dissipative current.

The corresponding tunneling conductance is given b

GT5
dI

dV
5Rc

2154e2N~0!tD0
2S. ~6!

Note that atV,Vc the tunneling conductance is constant a
is independent of the value of the tunneling matrix elem
uT12u. This independence of the tunneling conductance fr
uT12u and also its proportionality toD0

2(T) are in agreemen
with the result of Joglekar and MacDonald12 for GT at V
50.

In case ofV.Vc the integration yields the tunnel cu
rent, equal to

I ~ t !52I c

tan
f~ t !

2

11tan2
f~ t !

2

~7!

where

tan
f~ t !

2
5Vc /V1A12~Vc /V!2

3tanFe

2
~V22Vc

2!1/2~ t2t0!G . ~8!

One can see that the interlayer current oscillates with
frequencyv5e(V22Vc

2)1/2 and that this current is not sinu
soidal. Because of the nonsinusoidal character of the osc
tions, the average value of the tunnel current is nonzero.
average current is a function of the voltageV:

I 5~ I c /Vc!~V2AV22Vc
2!. ~9!

The behavior of the system considered is similar to
behavior of a Josephson junction between two supercond
ors in a circuit in which the junction is connected in ser
with a resistor and a voltage generator. But in the former c
the essential difference is that the resistor~with Rc5Vc /I c)
is embedded in the junction and cannot be deleted from
circuit. Thus there is no transverse superconductivity in
systems considered.

Since according to Eq.~9! the tunneling current de
creases with increasing voltage, the differential tunnel
conductance atV.Vc is negative:

GT~V!52~ I c /Vc!@V~V22Vc
2!21/221#. ~10!

The conductanceGT(V) has its maximum~constant!
value atuVu,Vc and points of discontinuity atV56Vc . At
q.

-

t

e
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e

e
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se

e
e
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uVu.Vc , as uVu increases, the tunneling conductance ten
monotonically to zero, remaining negative. If we take in
account the fluctuation smoothing of the CVC, then the
pendence ofGT on V will look like a smooth curve with a
maximum atV50 ~approximately 2Vc in width! and two
minima at V'6Vc . It is just this behavior of theGT(V)
curve that was observed in experiment8 in the absence of a
magnetic field parallel to the layers.

It should be noted that both atV.Vc and V,Vc the
spatially uniform tunneling current is dissipative. The reas
for the dissipation lies in the fact that the uniform interlay
current causes the order parameter phase to deviate fro
equilibrium value, and a continuous input of energy is
quired to maintain this nonequilibrium state.

Now let the bilayern–p structure be placed in a mag
netic field H parallel to the layers and directed along thex
axis. If H.Hc15(2F0 /p2d)(JcM /ens)

1/2 ~the two-
dimensional density of pairsns54p0

2N(0)(tD0)2/M ), then
the magnetic field between the layers has a nonuniform~vor-
tex! component. We shall show that the CVCs of then–p
system in the magnetic field differ strongly from the CVCs
zero field and are substantially different at both low and h
resistancesR. In the limiting caseR50 ~andH@Hc1), the
solution of Eq.~3! can be derived using perturbation theor
Putting f5f01f1 , where f05ky1vt (k52pdH/F0 ,
v5eV) and taking into account the correction termf1 ~pro-
portional to a smallT12 value! as a perturbation, we obtai
the following expression for the average tunneling curr
density:

J5Jc

eVc

2

v

~Dk2!21v2 . ~11!

So, for R50 the CVC has a wide diffusion maximum a
v5Dk2.

At high R values, the charge transport from one layer
the other over the electrical circuit is insignificant, and t
electron density dynamics in layer 1 is determined by
continuity equation

edṅ5div2 j1Jc sinf, ~12!

where div2 j denotes the two-dimensional divergence of t
intralayer current

j52
ens

M S ]f

]r
2

2pd

F0
@H3n# D .

On the assumption thateV!tD0
2, the above-described

perturbation-theory procedure yields the following equat
for f1 :

f̈12D
]2ḟ1

]2r
2u0

2 ]2f1

]2r
52

Jc

eN* ~0!
sinf0 , ~13!

whereu05(ns /MN* (0))1/2. Unlike theR50 case, the left-
hand side of Eq.~13! has a wave character rather than
diffusion character. Correspondingly, the expression for
average tunneling current density

J5Jc

1

2lJ
2

vak2

~v2/u0
22k2!21~vak2!2 ~14!
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has a resonance atv5u0k, the width of which is determined
by the attenuationa5D/u0

2. This resonance results from th
coincidence between the plasmon velocityu0 in the bilayer
structure and the velocity of the magnetic-field vortices. T
parameterlJ is equal to (ens /MJc)

1/2.
From relations~11! and ~14! it follows that atH@Hc1

the GT(0) value is proportional to a smalluT12u2 value, i.e.,
the differential tunneling conductance peak~occurring atH
50) is strongly suppressed. The reason for this suppres
lies in the fact that atH.Hc1 the phasef varies monotoni-
cally with the coordinate, and in this case Eq.~3! has no
stationary solution at finite voltage, i.e., no phase lock
arises.

Thus, the present work has demonstrated in the fra
work of a consistent microscopic approach that in pha
coherent bilayern–p systems the known phenomenon
order-parameter phase locking by tunneling matrix eleme
T12 leads to a sharp peak in the differential tunneling co
ductanceGT(V) at V50. The peak height is independent
uT12u and its width is proportional touT12u, i.e., at weak tun-
neling the peak is high and sharp. These results are in q
tative agreement with the peculiarities ofGT(V) observed in
electron bilayer systems in the regime of the integral qu
tum Hall effect at the total filling factornT51. We stress
once again that though the theory developed here desc
the n–p system without a transverse magnetic field, t
present results are in qualitative agreement with the d
from experiments on electron bilayer systems in a stro
transverse magnetic field. This agreement does not see
be accidental. The reason is that most likely the strong m
netic field does not affect the structure of the equation t
defines the dynamics of the order parameter, but o
changes the values of the coefficients entering into this eq
tion.

This work was supported by the INTAS program, Gra
No. 01-2344.

a!E-mail: bezugly@ic.kharkov.ua
b!E-mail: shevchenko@ilt.kharkov.ua
1!R. R. Gusejnov and L. V. Keldysh have first demonstrated that interb

transitions lift the phase degeneracy of the wave function of the electr
hole condensate in the exciton dielectric.
e

on

g

e-
-

ts
-

li-

-

es
e
ta
g
to

g-
t

ly
a-

t

d
–

2!Similarly to magnetic impurities in superconductors, the usual~nonmag-
netic! impurities and crystal lattice distortions in then–p system suppress
the order parameter and lead to the transition of the system to the ga
state in a narrow range of defect concentrations in the vicinity of
critical concentration.
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Josephson and spontaneous currents at the interface between two d -wave
superconductors with transport current in the banks
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A stationary Josephson effect in the ballistic contact of twod-wave superconductors with
different orientation of the axes and with transport current in the banks is considered theoretically.
The influence of the transport current on the current–phase relation of the Josephson and
tangential currents at the interface is studied. It is demonstrated that the spontaneous surface
current at the interface depends on the transport current in the banks due to the
interference of the angle-dependent condensate wave functions of the two
superconductors. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645180#
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1. INTRODUCTION

It has been shown that in the ground state of the con
of two d-wave superconductors with different orientation
the axes there is a current tangential to the boundary.1–8 For
the particularly interesting case ofp/4 misorientation the
ground state is twofold degenerate: there are the tange
currents in opposite directions atw56p/2 in the absence o
Josephson current. The probabilities of finding the contac
one of the two states are equal, and the corresponding
gential current is referred to as the spontaneous one. It
been proposed to use such two-state quantum system
quantum computation.9–11 It is of interest to study the poss
bility of controlling this system by the external transport cu
rent, which is the motivation for the present work.

In the above-described problem of the Josephson con
of two d-wave superconductors with transport current in
banks, the resulting tangential current is not a sum of
spontaneous and transport current. In Ref. 12 we studied
simpler case of the contact of twos-wave superconductor
with a transport current flowing in the banks. It was sho
that the presence of magnetic field,13–16 of transport super-
conducting current,12 or of current in the normal layer17,18 in
a mesoscopic Josephson junction can significantly influe
the current–phase characteristics, current distribution, et

In the present problem the Josephson current is de
mined by the interference of the angle-dependent conden
wave functions of the two superconductors. There are
factors of anisotropy which determine the angle depende
of the order parameter: the pairing anisotropy and the tra
port current. Thus it is natural to expect that the result
interference current~which has both normal and tangenti
components! is parametrized by the external phase differen
w and by the value of the transport current~or by the super-
fluid velocity vs). The presence of these two controlling p
rameters can be useful in the applications of Josephson j
tions of high-Tc superconductors.

In Sec. 2 we derive basic equations to describe a balli
planar Josephson junction of two differently orientedd-wave
superconductors with uniform current in the banks. Th
2131063-777X/2004/30(3)/5/$26.00
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equations are solved analytically in Sec. 3. Then in Sec. 4
study the influence of the transport current on the Joseph
current andvice versaat the interface. In the Appendix th
order parameter and the current density in the homogene
situation are considered.

2. MODEL AND BASIC EQUATIONS

We consider a model of the Josephson junction as
ideal plane between two singlet~in particular,d-wave! su-
perconductors with different orientation of the axes~see Fig.
1!. The pair breaking and the scattering at the junction
well as the electron scattering in the bulk of the metals
ignored. We did not take into account the possibility of t
generation of a subdominant order parameter, which res
in decreasing of the current amplitude.7 The c axes of both
superconductors are parallel to the interface. Thec axis di-
rection is chosen as thez axis. Thea andb axes are situated
in thexy plane. In the banks of the contact a uniform curre
flows with a superconducting velocityvs . We consider the
superfluid velocityvs in the left ~L! and right~R! supercon-
ducting half-spaces to be parallel to each othervsLivsR and to

FIG. 1. Geometry of the contact of two superconductors with differ
orientation of the axes and different transport currents~superfluid velocities
vs;L,R) in the banks.
© 2004 American Institute of Physics
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the boundary; we choose they axis alongvs and thex axis
perpendicular to the boundary;x50 is the boundary plane.

We describe the coherent current state in the super
ducting ballistic structure in the quasiclassical approximat
by the Eilenberger equation19,20

vF

]

]r
Ĝ1@ṽt̂31D̂,Ĝ#50, ~1!

whereṽ5vn1 ipF•vs , vn5pT(2n11) are the Matsubara
frequencies,Ĝ5Ĝv(vF ,r )5( f 1 2g

g f ) is the energy-integrated

Green function, andD̂5(D* 0
0 D). Equation ~1! should be

supplemented by the equation for the order parameter~the
self-consistency equation!:

D~vF ,r !5pN0T(
v

^V~vF ,vF8 ! f ~vF8 ,r !&v
F8
, ~2!

N0 is the density of states at the Fermi level and^...&vF

denotes averaging over directions ofvF ; V(vF ,vF8 ) is a pair-
ing attractive potential. For the bulkd-wave superconducto
it is usually assumed thatD(u)5D0(T,vs)cos 2u and
V(vF ,vF8 )5Vd cos 2u cos 2u8, where the angleu defines a di-
rection of the velocityvF . Solutions of Eqs.~1!, ~2! must
satisfy the conditions for the Green functions and gap fu
tion in the banks far from the interface:

g~7`!5
vL,R

VL,R
, ~3!

f ~7`!5
D~7`!

VL,R
, ~4!

D~7`!5DL,R exp~6 iw/2!. ~5!

Here vL,R5vn1 ipF•vs,L,R , VL,R5AvL,R
2 1DL,R

2 ; w is
the phase difference between the left and right supercond
ors, which parametrizes the Josephson current state.
anglesxL,R define the orientation of the crystal axesa andb
in the left and right half-spaces~see Fig. 1!. The angle be-
tween the axes of the right and left superconductors~the
misorientation angle! is dx5xR2xL .

Provided we know the Green functionĜ, we can calcu-
late the current density:

j ~r !522p ieN0T(
v

^vFg~vF ,r !&vF
. ~6!

For singlet superconductors it is usually assumed
D(2vF)5D(vF), and we therefore have:

f 1~v,2vF!5 f 1~2v,vF!5 f * ~v,vF!, ~7!

g~v,2vF!52g~2v,vF!5g* ~v,vF!. ~8!

Making use of Eq.~8!, we can rewrite Eq.~6! as

j ~r !52 j 0

T

Tc
(
v.0

^v̂F Im g~r !&vF
,

j 054pueuN~0!vFTc . ~9!
n-
n

-

ct-
he

at

3. ANALYTICAL SOLUTION OF THE EILENBERGER
EQUATION

In this paper we consider the problem non-se
consistently: we assume the superconducting velocityvs is
uniform and that the order parameterD is constant in the two
half-spaces:

vs~r !5H vs;L , x,0

vs;R , x.0
, D~r !5H DL exp~ iw/2!, x,0

DR exp~2 iw/2!, x.0
.

~10!

As was shown in Refs. 7, the self-consistent consid
ation of a Josephson junction ofd-wave superconductor
does not differ qualitatively from the non-self-consiste
treatment. In Ref. 7 the self-consistent solution is compa
numerically with the non-self-consistent one. The se
consistency of the solution allows one to take into acco
the suppression of the order parameter at the interface;
major effect of this is a reduction in the current.7

Equation~1!, taken together with Eqs.~3!–~5! and~10!,
yields for the left and right superconductors:

gLR~x!5
vL,R

VL,R
1CL,R expS 2

2uxu
uvxu

VL,RD , ~11!

f L,R~x!5
DL,R

VL,R
e2sgn~x!iw/22CL,R

sgn~x!hVL,R1vL,R

DL,R

3expS 2
2uxu
uvxu

VL,RDe2sgn~x!iw/2, ~12!

whereh5sgn(vx). Making use of the continuity condition
we obtain the expression for theg function at the interface:

g~0!5
VLvR1VRvL2 ihDLDR sinw

VLVR1vLvR1DLDR cosw
. ~13!

Equations~9! and~13! allow us to calculate the Joseph
son current j J5 j x(x50) and the tangential currentj y(x
50) at the interface. We emphasize that these equations
valid for describing the current at the interface of two sing
superconductors with different orientation of the axes a
with different transport currents in the banks. The contac
conventional superconductors was considered in Ref. 12,
in the present paper we study the contact ofd-wave super-
conductors, for which the order parameter isDL,Ru
5D0(T,vs;L,R)cos 2(u2xL,R). The treatment presented he
can be also used to consider the contact ofg-wave supercon-
ductors or ans-wave/d-wave contact, etc.

As we restrict ourselves to the non-self-consiste
model, we should calculate the order parameterD0

5D0(T,vs) in the bulk d-wave superconductor. That is th
subject of the Appendix.

In the particular case considered in detail below, we ha
vs;L5vs;R5vs and denote ṽ5vn1 ipF•vs , VL,R

5Aṽ21DL,R
2 ; in this case we obtain

g~0!5
ṽ~VL1VR!2 ihDLDR sinw

VLVR1ṽ21DLDR cosw
. ~14!

In the absence of the transport current (vs50) in this expres-
sion: ṽ5vn ~Ref. 7!.

We should also clarify the sign of the square root
VL,R . To make the solution~11! convergent, we must re
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quire ReVL,R.0, which fixes the sign of the square root
VL,R to be sgn(vpF•vs;L,R ). Moreover, this requirement, a
can be shown, provides a supplementary condition on Rg:
sgn(Reg)5sgn(v).

4. INFLUENCE OF THE TRANSPORT CURRENT ON THE
JOSEPHSON AND SPONTANEOUS CURRENTS AT
THE INTERFACE

Below we study the Josephson contact for the particu
case whenvsL5vsR5vs andxL50 andxR5p/4.

For small values ofvs ~in the approximation linear in
pFvs /Tc) we can state the following approximate relatio
~which are valid for values ofw in the vicinity of 6p/2):

j J~2vs ,w!. j J~vs ,w!,

j y~2vs ,w!.2 j y~vs ,2w!,

and for the differenced j [ j (vs)2 j (vs50):

d j J~2w!.2d j J~w!, d j y~2w!.d j y~w!,

while at vs50

j J~2w!52 j J~w!, j y~2w!52 j y~w!.

In the linear approximation the shift currentd j y is an
even function ofw, in contrast toj y(vs50). For the sponta-
neous current~at w56p/2) the shift currentsd j y are equal:

j y~w56p/2!5 j S1d j y . ~15!

j S~2p/2!52 j S~p/2!, d j y~2p/2!5d j y~p/2!.

In a nonlinear treatment these shift currents are differ
for the two cases and are discussed below.

In Figs. 2 and 3 we plot the normal~Josephson! and
tangential components of the current densities at the plan
the interface as functions of the phase differencew at low
temperature. In the absence of the transport current:~i! j is an
odd function ofw; ~ii ! the normal component of the curre
~Josephson current! is p-periodic; ~iii ! in the equilibrium
state atw56p/2: j J50, j y(6p/2)5 j S57u j Su. This being
the case, the tangential current exists in the absence o
Josephson current; for that reason it is referred to as
spontaneous current. The presence of the transport cu
breaks the symmetry relations~i!–~iii !. There is a nonzero
Josephson current atw50,p. How the transport current in

FIG. 2. Josephson current density through the interfacej J versus phasew
(xL50,xR5p/4,T50.1Tc); D005D0(T50,vs50)52.14Tc .
r

t

of

he
e

ent

fluences the spontaneous current~i.e., the tangential curren
at w5p/2 andw52p/2) is shown in Fig. 4. The shift of the
two values of the current for small values ofvs ~in the ap-
proximation linear inpFvs /Tc) is equal@see Eq.~15!#; how-
ever, at valuesvs;0.2D00/pF the shift current~i.e., the dif-
ference j y(vs)2 j S(vs50)) is of different sign for the two
currents and in the directions opposite toj S .

We also note the following relations forvsÞ0: 1! j J(w
5p)52 j J(w50)Þ0 ~the presence of the transport curre
induces a nonzero Josephson current in the absence o
external phase difference!; 2! j J(w56p/2)50, d jJ /dw
3(w56p/2).0 ~the transport current does not change t
values of the equilibrium phase difference, atw6p/2); 3!
j y(w5p)5 j y(w50)Þ0. This last relation concerns the in
teresting phenomena studied in Ref. 12: for some value
the phase difference~here in the vicinity ofw50,p) the
interference of the angle-dependent condensate wave f
tions results in the appearance of an additional tangen
current with the direction opposite to the transport curren
the banks. We emphasize that the resulting tangential cur
is not the sum of the spontaneous current and the trans
current.12 Thus, the transport current drastically influenc
both the tangential~spontaneous! and Josephson currents.

We can write down explicitly an expression for the cu

FIG. 3. Fig. 3. Tangential current density at the interfacej y versus phasew
(xL50,xR5p/4,T50.1Tc).

FIG. 4. Tangential current density at the interfacej y for two values of the
phase difference~spontaneous current! versus superfluid velocityvs (xL

50,xR5p/4,T50.1Tc).
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rent for temperatures close to the critical~so close that
D0 ,pFvs!Tc). From Eq.~14! we have:

Im g~0!.DLDRF2h
1

2vn
2 sinw1

pFvs

vn
3 cosw

1h
3

2

~pFvs!
2

vn
4 sinw1h

DLDR

8vn
4 sin 2wG . ~16!

At xL50 andxR5p/4 this results in the following:

j5 j J1 jS1 j̃ , ~17!

j J52
1

3024p
j 0

D0
4

Tc
4 sin 2w•ex , ~18!

jS52
1

60p
j 0

D0
2

Tc
2 sinw•ey , ~19!

j̃ 5
3

560p
j 0

D0
2

Tc
2

~pFvs!
2

Tc
2 sinw•ey . ~20!

HereD05D0(T,vs) and is defined by Eq.~25!. In particular,
at vs50 this gives:

j J521.731022 j 0S 12
T

Tc
D 2

sin 2w, ~21!

j S526.631022 j 0S 12
T

Tc
D sinw. ~22!

We note thatj̃ 52 9
28@(pFvs)

2/Tc
2 # jS . It follows that the ef-

fect of transport current on the spontaneous tangential
rent at T;Tc is to reduce its value by a small shift. It i
remarkable that the current tangential to the boundary c
tains only corrections of the second order in the param
pFvs /Tc .1! If xL50 andxR5dxÞp/4, the integration of
the second term in Eq.~16! would give us the factor
p cos2 dx2p/2, which is zero fordx5p/4; this term at
dx50 and w50 gives the uniform current density~Eq.
~26!!.

The integration of the first term in Eq.~16! gives us the
factor cos 2dx for thex component of the current and sin 2dx
for the y component. In the casedx5p/4 this term gives
only the tangential component. As a consequencej S@ j J @see
Eqs.~21!, ~22!#.

It was discussed above that the terms linear inpFvs /Tc

result in a uniform shift ofj S . We can see that nonlinea
terms result in a shift of different sign, and in both cases
the direction opposite toj S @see Eq.~20!#. This in part ex-
plains the nonmonotonic behavior ofj y ~see Fig. 4!. The fact
that the presence of the transport current significan
changes the tangential~spontaneous! currents might be used
for its control, which is important in view of their possibl
application for quantum computation.9–11

5. CONCLUSION

We have studied influence of the transport current, wh
flows in the banks, on the stationary Josephson effect in
contact of twod-wave superconductors. We have deriv
equations which allow general consideration of the con
of two singlet superconductors with different orientation
the axes and with different transport currents in the banks
r-

n-
er

n

y

h
e

ct
f
In

particular, we have studied the planar contact of twod-wave
superconductors in the case ofp/4 misorientation with equa
transport currents in the banks. It was demonstrated that
current–phase relation depends drastically on the value
the transport current. The ground state degeneracy in
absence of transport current~at w56p/2) is lifted at vs

Þ0. The dependence of the shift current~which is the differ-
ence of the tangential current and the spontaneous one! on vs

is shown to be nonlinear. It is proposed to use the trans
current for the control of qubits based on the contact of t
d-wave superconductors.

We acknowledge support from D-Wave Systems, I
~Vancouver!.

Results of the present study were reported at the In
national Conferences: ‘‘Applied Electrodynamics of High-Tc

Superconductors,’’ IRE, Kharkov, Ukraine~May 2003! and
‘‘Basic Studies and Novel Applications,’’ Jena, Germa
~June 2003!.

6. APPENDIX. ORDER PARAMETER IN THE HOMOGENEOUS
CURRENT STATE

In this Section we study the homogeneous current s
in the bulk d-wave superconductor~see also Ref. 21!. We
note that the order parameterD0 is a function of temperature
T, superfluid velocityvs , and the anglex between the crys-

FIG. 5. Order parameterD0(T,vs) ~a! and current density~b! in a bulk
d-wave superconductor versus superfluid velocityvs for different anglesx
betweenvs and thea axis (T50).
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tallographic axisa and the direction of the superfluid veloc
ity vs . For that we must solve Eqs.~2! and~9! with g and f
given by Eqs.~3! and ~4!:

1

l
52T (

v.0
E

2p/2

p/2

du Re
D2~u!/D0

2

V
,

j

j 0
52

T

pTc
(
v.0

E
2p/2

p/2

du v̂F Im
ṽ

V
.

Here l5N0Vd , ṽ5vn1 ipF•vs , V5Aṽ21D2, D(u)
5D0(T,vs)cos 2(u2x).

For T50 ~replacing pT(v by the integral*dv) we
obtain the equations for the order parameterD0 and the cur-
rent densityj :

lnS D00

D0
D5

2

p E duS D~u!

D0
D 2

lnS Uvs•pF

D~u!
U

1AS vs•pF

D~u! D
2

21D , ~23!

whereD005D0(T50,vs50)5jvce
22/l, j54e21/2, and

j

j 0
52

1

4p

vspF

Tc

1
1

2p2 E duucosuuAS vs•pF

Tc
D 2

2S D~u!

Tc
D 2

. ~24!

In Eqs.~23! and~24! the integration is performed in th
region whereD(u)2,(vs•pF)2 for uP(2 p/2 , p/2).

In Figs. 5 we plot the order parameterD0(T,vs) and the
current density versus the superfluid velocityvs for different
anglesx at low temperature. For comparison we also plot
curves for thes-wave superconductor. A numerical analys
at low temperature shows that in spite of the strong ani
ropy of the pairing potential, the order parameterD0 , the
critical velocity vs

cr , and the critical currentj c depend
weakly on the anglex betweenvs and the crystallographica
axis ~see Figs. 5 and in Ref. 21!. Namely, the respective
difference is maximal forx50 and x5p/4 and does not
exceed 0.1. For small values of the superfluid velocity, i.e.
the approximation linear in the parametervspF /Tc , bothD0

and j are independent ofx.
For a temperature close toTc5bvce

22/l50.47D00,
whereb5(2/p)eC, (C is the Euler constant!, both the gap
function D0 and current densityj are independent of the
anglex:
e

t-

n

D0
25

32p3

21z~3!
Tc

2S 12
T

Tc
D2

4

3
~pFvs!

2, ~25!

j

j 0
52

7z~3!

32p3

D0
2

Tc
2

pFvs

Tc
. ~26!

The temperature dependence of the critical velocityvs
cr

follows from Eq.~25!: pFvs
cr/Tc 5A8p2/7z(3)A12 T/Tc.

*E-mail: omelyanchouk@ilt.kharkov.ua
1!There is also a term with the factor (pfvs /Tc)(D0

4/Tc
4), which is neglected

here. This term results in equal shifts ofj S for w56p/2.
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5T. Löfwander, V. S. Shumeiko, and G. Wendin, Phys. Rev. B62, R14653
~2000!.

6S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys.63, 1641~2000!.
7M. H. S. Amin, A. N. Omelyanchouk, and A. M. Zagoskin, Phys. Rev.
63, 212502~2001!; M. H. S. Amin, A. N. Omelyanchouk, S. N. Rashkee
M. Coury, and A. M. Zagoskin,ibid. 318, 162 ~2002!.

8E. Il’ichev et al., Phys. Rev. Lett.86, 5369~2001!.
9L. B. Ioffe et al., Nature~London! 398, 679 ~1999!.

10A. Blais and A. M. Zagoskin, Phys. Rev. A61, 042308~2000!; A. M.
Zagoskin, J. Phys.: Condens. Matter9, L419 ~1997!.

11M. H. S. Amin, A. Yu. Smirnov, and A. M. Zagoskinet al., arXiv:cond-
mat/0310224~2003!.

12Yu. A. Kolesnichenko, A. N. Omelyanchouk, and S. N. Shevchenko, Ph
Rev. B67, 172504~2003!.

13J. P. Heida, B. J. van Wees, T. M. Klapwijk, and G. Borghs, Phys. Rev
57, R5618~1998!.

14V. Barzykin and A. M. Zagoskin, Superlattices Microstruct.25, 797
~1999!.

15Urs Lederman, Alban L. Fauchere, and Gianni Blatter, Phys. Rev. B59,
R9027~1999!.

16M. H. S. Amin, A. N. Omelyanchouk, and A. M. Zagoskin, Fiz. Nizk
Temp.27, 835 ~2001! @Low Temp. Phys.27, 616 ~2001!#.

17A. Morpurgo, B. J. van Wees, and T. M. Klapwijk, Appl. Phys. Lett.72,
966 ~1998!.

18F. K. Wilhelm, G. Sho¨n, and A. D. Zaikin, Phys. Rev. Lett.81, 1682
~1998!.

19G. Eilenberger, Z. Phys.214, 195 ~1968!.
20I. O. Kulik and A. N. Omelyanchouk, Fiz. Nizk. Temp.4, 296 ~1978!

@Sov. J. Low Temp. Phys.4, 142 ~1978!#.
21J. Ferrer, M. A. Gonzalez-Alvarez, and J. Sanchez-Canizares, Supe

tices Microstruct.25, 1125~1999!.

This article was published in English in the original Russian journal. Rep
duced here with stylistic changes by AIP.



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 3 MARCH 2004
LOW-TEMPERATURE MAGNETISM

Magnetic phase diagram of the manganites Bi 1ÀxSrxMnO3
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An experimental study of the crystal structure and the magnetic and elastic properties of the
manganites Bi12xSrxMnO3 is carried out. The following phase transformations are found:
ferromagnet (x,0.15) –spin glass (0.15<x<0.25) –charge-ordered antiferromagnet (0.35
<x<0.8). The ferromagnetic state corresponds to ordering of the orbitals of the Mn31 ions. It is
assumed that the orbitally disordered phase is not realized in the Bi12xSrxMnO3 system in
the concentration interval 0.15<x<0.35. Samples with 0.25<x<0.8 undergo a first-order
transition of the crystal structure, attributed to ordering of the Mn31 and Mn41 ions in
the ratios 1:1 (x<0.6) and 1:3 (x>0.7). The antiferromagnetic charge-ordered and spin glass
phases coexist in samples with 0.25,x,0.35, possibly because of the martensitic
character of the charge order–disorder phase transformation. A hypothetical magnetic phase
diagram is constructed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645181#
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1. INTRODUCTION

A12xBxMnO3 oxides with the perovskite structure (
5Ca21, Sr21, Pb21, Ba21) are magnetic semiconductors
which a strong interrelationship between the magnetic
electrical properties is observed. These compounds ar
particular interest in connection with the giant magnetore
tance effect observed in them at temperatures near the C
point.1

Perovskites with the chemical formula LnMnO3 (Ln
5La, Y, rare-earth ion! are antiferromagnets with magnet
structure of theA type and, according to Ref. 2, are chara
terized by O8 orthorhombic distortions of the unit ce
(c/&,a,b) due to ordering of theeg orbitals of the Mn31

ions. The ferromagnetism of manganites doped with
alkaline-earth ions Ca21, Sr21, Pb21, and Ba21 is due to the
positive exchange interaction between the ions Mn41 – Mn31

~Refs. 2 and 3!. According to the double exchange theory, t
ferromagnetic properties of the manganites are due to
transitions of the charge carriers between manganese
i.e., to the appearance of heterovalent manganese ions
example, substitution of the La31 ion by Sr21 in the system
La12xSrxMnO3 is accompanied by an antiferromagne
ferromagnet transition atx50.12 ~Ref. 4!. Magnetic mea-
surements show that La2/3Sr1/3MnO3 is a ferromagnet with
the highest Curie temperature (TC5375 K) among the orth-
omanganites with the perovskite structure.

The properties of BiMnO3 give it a distinctive place
among the AMnO3 manganites. This compound is a ferr
magnet with a temperature of the transition to the param
netic state of around 100 K.5,6 The crystal structure is char
acterized by triclinic distortions. Substitution of the Bi31 ion
2181063-777X/2004/30(3)/7/$26.00
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by Sr21 in the Bi12xSrxMnO3 system leads to a decrease
the spontaneous magnetization.6 Although the conductivity
increases gradually, this compound does not become met
at concentrations up tox50.67 ~Ref. 7!. Another extremely
interesting property of bismuth manganite doped with str
tium ions is the very high charge- ordering temperatureTco

~around 550 K! observed in the compoun
Bi0.5Sr0.5(Mn0.5

31Mn0.5
41)O3 ~Refs. 8 and 9!.

Despite the differences in magnetic properties and cr
tal structure, bismuth manganite, like the rare-earth mang
ites, is an insulator. It has been hypothesized that the caus
the behavior described is a special type of orbital orderi
different from that in rare-earth manganites.10 Recent struc-
tural studies11 confirm that hypothesis.

The goal of the present study is to establish the mec
nism of the concentration phase transformations, b
ferromagnet–antiferromagnet and charge order–disorde
the Bi12xSrxMnO3 system.

2. EXPERIMENTAL TECHNIQUE

Solid solutions of the series Bi12xSrxMnO3 (0.2<x
<0.8) were obtained by the usual ceramic method fr
stock consisting of oxides and carbonates with a purity
99.99% or better. The initial components were mixed in
stoichiometric ratio. A preliminary annealing was done in
at 900 °C for 6 h. Synthesis was carried out in air
1100– 1250 °C for 2h. The synthesis temperature was
creased uniformly with increasing strontium concentratio
The samples were slowly cooled (100 °C per hour! in an
oven. The temperature was maintained to a precision
© 2004 American Institute of Physics
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65 °C. The perovskites BiMnO3 and Bi0.9Sr0.1MnO3 were
obtained under conditions of high pressure (P55 GPa, T
5900 °C).

The Bi0.75Sr0.25MnO3 sample was reduced after synth
sis. This was done by placing it in an evacuatedP
;1024 Pa) quartz ampoule together with a definite amo
of metallic tantalum, which was used as an oxygen absor
The quartz ampoule was held at 900 °C for 10 h and t
cooled to room temperature at a rate of 100 degrees per h

An x-ray structural analysis on a DRON-3 diffractomet
in CrKa radiation showed that all of the components a
single-phase perovskites. The angular position of the diffr
tion peaks was determined to an absolute error of60.01°.
To improve the accuracy, the calculations were done us
reflections lying above 60°. The unit cell parameters w
determined to an accuracy of 0.001 Å or better. The spec
magnetization was measured on a Foner vibrating sam
magnetometer in fields up to 16 kOe with an accuracy
1022 G•cm3/g or better. For studying the elastic properti
we measured the temperature dependence of the reson
frequency in the excitation of mechanical vibrations in t
sample, the square of the resonance velocityn2 being pro-
portional to the Young’s modulus. The studies were done
samples of cylindrical shape 50–55 mm long and 5 mm
diameter. The rate of change of the temperature was 2 °C
minute. The resonance frequency was determined to an
curacy of61 Hz.

The electrical conductivity was determined by the sta
dard four-probe method on samples with dimensions o
32310 mm with a relative error of 0.6%. The contac
were formed by the ultrasonic deposition of indium. Duri
the investigations of the magnetic and electrical propertie
the samples the temperature was maintained to a precisio
61 K.

3. RESULTS AND DISCUSSION

According to the results of an x-ray structural analys
the samples with strontium concentrationsx50.20, 0.22, and
0.25 were characterized by a monoclinic unit cell. Compo
tions in the interval 0.3<x<0.8 had a tetragonally distorte
unit cell. It should be noted that the diffraction peaks we
rather narrow, indicating a uniform chemical compositi
and a perfect crystal lattice. Synthesis under conditions
high pressure and quenching from 1000 °C had little eff
on the unit cell parameters.

Table I gives the unit cell parameters of some of t
solid solutions obtained. Analysis of the tabulated data sh
that the degree of tetragonal distortion, reflected in the r
c/a, reaches a maximum value atx50.5. It is also charac-
teristic that the parametera remains practically unchanged a
x increases from 0.35 to 0.5 and then decreases linearly
further increase ofx to 0.75. The parameterc, on the con-
trary, decreases in the regionx50.35– 0.5 and remains prac
tically unchanged forx50.5– 0.75. The unit cell volume
shows a gradual decrease with increasing strontium con
tration.

Our sample of the compound BiMnO3 has a Curie tem-
peratureTC5104 K and a magnetic moment, estimated fro
the field dependence of the magnetization, of arou
3.3mB /Mn31, in good agreement with published data.5,6
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Small substitutions of Bi31 by Sr21 led to a sharp decreas
in the strength of the ferromagnetic exchange interactio
The Bi0.9Sr0.1MnO3 sample hadTC580 K and a magnetic
moment of around 2.3mB /Mn31. The magnetization doe
not reach saturation in fields up to 16 kOe. The magne
properties of this solid solution contrast sharply with those
the rare-earth manganites Ln12xSrxMnO3 (Ln5La, Pr, Nd,
Sm, Eu!, in which substitution of a small fraction~10%! of
the Ln ions by Sr ions stabilizes the ferromagnetic state.12

Figure 1 shows the results of a study of the temperat
dependence of the specific magnetization of solid soluti
in the concentration interval 0.2<x<0.35 during heating of
the samples after zero-field cooling~ZFC! and after cooling
in a rather weak field of 100 Oe~field cooling, FC!. It should
be noted that for all the samples the FC and ZFC cur
diverge near 40 K. Above that temperature the curves p
tically coincide. The magnetic ordering temperature de
mined from the inflection point of the ZFC curve decreas
monotonically with increasing strontium concentration. T
magnetization in a fieldH515 kOe at a temperature of 5 K
is far from saturation~Fig. 2!.

Figure 3 shows the magnetic properties of the sam
with x50.25 before and after reduction. For the stoich
metric Bi0.75Sr0.25MnO3 an appreciable growth of the specifi
magnetizationM (T) in a field of 10 kOe is observed with
decreasing temperature below 80 K~Fig. 3a!. We attribute
this to growth of the number of superparamagnetic clus
with a type of short-range magnetic order peculiar
BiMnO3. The value of the specific magnetization of the r
duced sample was strongly diminished. The curve ofM (T)
in a field of 5 kOe in this case~Fig. 3b! has a pronounced
kink, which can be linked to the antiferromagnetic orderi
temperature, at aroundTN5150 K. This indicates that som

TABLE I. Unit cell parameters of the compounds for different strontiu
concentrations.

Note:Tr stands for triclinic, T for tetragonal, and M for monoclinic symm
try.
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regions in the stoichiometric compounds withx50.25 are
also antiferromagnetically ordered, withTN5150 K. It is
known13,14 that the antiferromagnetic component of the e
change interactions should increase with increasing con
tration of oxygen vacancies, as is observed for the compo
Bi0.75Sr0.25MnO32g .

For stoichiometric samples with 0.35<x<0.6 anoma-
lous behavior of the specific magnetization was also
served near 150 K~Fig. 4!. The clearest anomaly was ob

FIG. 1. ZFC and FC magnetization as functions of temperature for s
solutions with compositions 0.20<x<0.35, measured in a field
H5100 Oe.

FIG. 2. Field curves of the specific magnetization for compounds w
0.22<x<0.7 atT55 K.
-
n-

nd

-

served for the compound withx50.6. It was also at 150 K
that antiferromagnetic ordering was observed
Bi0.5Sr0.5MnO3 in a neutron-diffraction study.8 We therefore
attribute the anomalous behavior ofM (T) nearTN to anti-
ferromagnetic ordering. For compounds withx50.35, 0.42,
and 0.5 the magnetic ordering temperatures are determ
from magnetic measurements~Fig. 4! as the points of inter-
section of the approximating straight lines and are equa
153, 150, and 140 K, respectively. The magnetic behav
was qualitatively different in the concentration interval 0
<x<0.8. The specific magnetization of compounds withx
50.75 and 0.8 begins to increase as room temperatur
approached. For technical reasons we could not measur
magnetization at temperatures above 380 K, but it is s
that the specific magnetization of the sample withx50.75 is
maximum nearTco5380 K ~inset in Fig. 4d!. The Néel point
apparently lies below that temperature. We assume thatTN

5260 K, since a kink is observed in theM (T) curve near
that temperature. It should be noted that anomalous beha
of the specific magnetization due to magnetic ordering
expressed very weakly in the Bi12xSrxMnO3 system, making
it difficult to determine the Ne´el point. We assume that th
true values of the magnetic ordering temperature may di
by 5–10 K from the values given in this paper. Precise
termination ofTN will require neutron-diffraction measure
ments.

Additional information was obtained from a study of th
elastic properties~Fig. 5!. The n2(T) curve was found to
have a minimum for all the samples in the concentrat
interval 0.25<x<0.75. The anomalous behavior of th
Young’s modulus may be due to the presence of a struct
phase transformation in the crystal. The temperature of
phase transformation decreases with increasing stron
content, from Tc05600 K (x50.25) to Tco5375 K (x

id

FIG. 3. Temperature dependence of the specific magnetization for a c
pound withx50.25 before~a! and after~b! the sample was reduced.
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FIG. 4. Temperature dependence of the magnetization for samples withx50.35, 0.42, 0.5, 0.6, 0.7, and 0.8 in a fieldH55 kOe and for a sample with
x50.75 in a fieldH510 kOe.
ans-

ns-
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ue
FIG. 5. Temperature dependence of the square of the resonance freq
for compounds withx50.25, 0.35, 0.4, 0.5, 0.6, and 0.75.
50.75). The temperature hysteresis near the structural tr
formation for the compound withx50.75 is evidence of a
first-order phase transition. In the region of the phase tra
formation the magnetization has a maximum~inset in Fig.
4d!.

Measurements of the resistivityr(T) of solid solutions
of the system Bi12xSrxMnO3 have revealed a semiconduct
character of the conduction. Figure 6 shows the behavio

ncy
FIG. 6. Resistivity versus temperature for samples withx50.75 and 0.08.
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the resistivity of the samples withx50.75 and 0.8. For
Bi0.25Sr0.75MnO3 a change in the trend ofr(T) is observed
near 375 K; this correlates with the behavior of the mag
tization and Young’s modulus. For Bi0.2Sr0.8MnO3 analogous
behavior of the resistivity occurs at 360 K. Above the tra
sition temperature the conductivity remains practically u
changed with increasing temperature.

Figure 7 shows a hypothetical magnetic phase diag
of the Bi12xSrxMnO3 system, constructed from the results
the present studies. The compound BiMnO3 is a ferromag-
netic insulator withTC5104 K. Substitution of Bi31 by
Sr21 led to a decrease of the Curie point and magnetic m
ment. The long-range ferromagnetic order is apparently
stroyed near a critical concentrationx'0.15~the dashed line
passing through the pointx50.15 on the phase diagram
the midpoint of the segment between the pointsx50.1 and
0.2!, at which the volumes of the ferromagnetic and antif
romagnetic phases become comparable. The system b
up into clusters with different magnetic order. Competiti
between ferromagnetically and antiferromagnetically orde
clusters in the interaction gives rise to a state of the clu
spin glass type. In samples with a concentration of 0.35<x
<0.6 long-range antiferromagnetic order is realized bel
the Néel point. For the compound withx50.7 the critical
temperatureTN is near 210 K. The Ne´el points of the
samples withx50.75 and 0.8 are around 260 K, since t
magnetization curves have a kink near that temperature~Fig.
4d!. Thus in the case of antiferromagnetic compositions
magnetic ordering temperature is almost unchanging in
concentration interval fromx50.35 to 0.6 and then increase
to 260 K, indicating a change in the type of antiferroma

FIG. 7. Hypothetical magnetic phase diagram of the Bi12xSrxMnO3 man-
ganites: F is the ferromagnetic phase, O is an orbitally ordered phase
the paramagnetic phase, CO is the charge ordered phase, CD is the c
disordered phase, A is the antiferromagnetic phase, SG is a cluster
glass. The critical temperatures are denoted by the following symbols:d—
TC , m—freezing temperature of the magnetic moments of the clusters,j—
TN , h—temperature of the structural phase transformation of the crys
-

-
-

m

-
e-

-
aks

d
er

e
e

-

netic ordering. The temperature of the structural transform
tion of the crystal, determined from studies of the elas
properties~Fig. 5! and measurements of the resistivity~Fig.
6!, decreases smoothly with increasing strontium concen
tion in the interval fromx50.25 to 0.8.

Let us analyze the nature of the magnetic state in m
ganites undoped with alkaline-earth ions. Such compou
contain manganese ions only in the trivalent state. The a
ferromagnetic structure of LnMnO3 (Ln5La, Y, a rare-earth
ion! can be explained on the basis of the Kanamo
Goodenough rule with allowance for the antiferrodistorti
ordering of the orbitals of thedz2 type.15 For this type of
ordering of the orbitals the exchange interactions in theab
plane are ferromagnetic, while those between planes are
tiferromagnetic. In that case, half of the exchange bo
have a positive sign and the other half, negative. F
BiMnO3 the situation is different. Neutron- diffraction stud
ies have revealed three different positions of the Mn31 ions,
with sharply different types of distortion of the MnO6

octahedra.11 Despite this difference, all of the Mn31 ions
were assigned adz2 orbital ground state, with different direc
tions of the orbitals for each type of distorted octahedron
this model two-thirds of the total number of exchange bon
are positive, and the resulting magnetic structure is fer
magnetic. However, it should be noted that, in our view,
neutron-diffraction data of Ref. 11 can be interpreted anot
way. According to our model, one-third of the mangane
ions are found in thedz2 state and two-thirds in thedx22y2

state; this corresponds to stretching of one-third of the Mn6

octahedra and compression of the other two-thirds. In
case one expects that all of the exchange bonds will be
romagnetic. In our view this model gives a better explanat
of the experimental results of Ref. 11.

According to neutron-diffraction studies,8 in a sample
with x50.5 a magnetic two-phase state consisting of anti
romagnetic structures of types A and CO is realized. The
type of magnetic order corresponds to a charge-orde
phase, similar to that which is realized in manganites of
Pr0.5Ca0.5MnO3 type.16 The transition to the charge- diso
dered state is observed at 520 K, a very high temperatur
comparison with Ln0.5Ca0.5MnO3. Our results on the inves
tigation of the elastic properties of the sample withx50.5
show a critical temperature close to that obtained in Ref.
Therefore, we assume that the minimum on then2(T) curve
is due to a charge order–disorder phase transition. For c
pounds with 0.25<x<0.4 one also observes anomalous b
havior of the elastic properties atT5500– 600 K, close to
the temperature of the anomalous behavior of the sam
with x50.5. Therefore, it is natural to suppose that the
anomalies are also due to a charge ordering effect. In
solid solutions Pr12xCaxMnO3 ~Ref. 17! the charge ordering
of the 1:1 (Mn31/Mn41) type begins atx50.3 and is com-
pleted atx50.7. Apparently in the Bi12xSrxMnO3 system
the charge ordering begins at a lower level of doping.
principle this accords with the anomalously high charge
dering temperature~over 500 K!. Another way the
Bi12xSrxMnO3 system differs from Pr12xCaxMnO3 is that
Tco decreases with increasing concentration of tetrava
manganese, whereas in the praseodymium–calcium s
this temperature increases somewhat. Possibly this is du
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some role of the bismuth ions in the formation of the type
charge and orbital structure. Unlike the lanthanides, the
muth ions actively participate in the chemical bonding,
which case the crystal structure can be strongly disto
owing to the anisotropy induced by the bismuth ions. B
cause of the presence of bismuth ions, the charge struc
of Bi0.5Sr0.5MnO3 and Pr0.5Ca0.5MnO3 differ. In the
praseodymium series the charge structure can be repres
as an alternation of layers occupied by Mn31 and Mn41

ions, whereas in Bi0.5Sr0.5MnO3 these layers have an ever
other alternation.18 In principle, in samples with a high con
centration of bismuth ions there should be more layers w
the trivalent manganese ions than layers with tetrava
manganese. Possibly the Mn31 ions occupy the positions o
the Mn41 ions, but in that case the charge ordering tempe
ture should decrease with decreasing Sr content. In
Pr12xCaxMnO3 system the concentration transition from t
ferromagnetic to the charge-ordered antiferromagnetic s
occurs via a mixed two-phase state, as has been reveale
optical and electron-microscope studies.19 We assume that a
state consisting of a spin glass and a charge-ordered an
romagnetic phase is also realized in the Bi12xSrxMnO3 sys-
tem at concentrations 0.25,x,0.35. Indirect evidence o
this may be seen in the experimental data on the elastic
magnetic properties. That is, the anomalies of the ela
properties~Fig. 5! can be linked with the charge orderin
and the anomaly in the magnetization curve of the redu
sample withx50.25 atT5150 K ~Fig. 3b! practically coin-
cides with the antiferromagnetic ordering temperature of
stoichiometric compounds with 0.35<x<0.6.

In samples with 0.7<x<0.8 a change of type of the
magnetic and charge ordering occurs. This agrees with
results on heavily doped compounds of the Pr12xSrxMnO3

system.20 For example, neutron diffraction studies ha
shown that the magnetic structure in Pr0.15Sr0.85MnO3 is of
the C type, which corresponds to charge ordering of Mn31

and Mn41 in the ratio 1:3. The Ne´el point and charge order
ing temperature lie near room temperature. We assume
an analogous type of magnetic structure and charge orde
is realized in Bi0.25Sr0.75MnO3 and Bi0.2Sr0.8MnO3. The tem-
peraturesTco5375 K for the compound withx50.75 and
Tco5360 K for x50.8 can be ascribed to a charge orde
disorder transition. It is difficult to determine the magne
ordering temperature from the available data. Howev
based on the magnetic measurements~Fig. 4! one can as-
sume that they are found near 260 K, where a kink w
observed on theM (T) polytherms.

Let us consider the nature of the exchange interaction
doped manganites containing tetravalent manganese ion
explain the magnetic and electrical properties of ferrom
netic manganites the so-called double exchange interac
model was proposed in Ref. 21 and subsequently develo
in more detail in Ref. 22. The double exchange is based o
real transition of an electron from the half-filledeg orbitals
of the Mn31 ion to the unoccupiedeg orbital of Mn41. Such
a transition is energetically favorable when the local spinS
of nearest-neighbor Mn31 and Mn41 ions are parallel. Fer-
romagnetic ordering of the local spins increases the hopp
probability of eg electrons and promotes the appearance
metallic conduction. However, for high conductivity it
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necessary to have a strong overlap of the 3d orbitals of the
manganese and the 2p orbitals of the oxygen. It is assume
that this parameter is controlled by the Mn–O–Mn bond
angle.4,15 The larger the size of the lanthanide ion, the larg
the Mn–O–Mnbond angle and 3d bandwidth and, accord
ingly, the higher the magnetic ordering temperature and c
ductivity. The Mn–O–Mn angles in manganite compound
with bismuth ions are rather large, as is attested to by stu
of the crystal structure11 and by the rather high Curie tem
perature of BiMnO3. Consequently, in the case of an orb
ally disordered phase one would expect that the ferrom
netic part of the exchange interactions will be dominant,
contradiction to our experiment. In addition, we did not o
serve a transition to metallic conduction upon doping
BiMnO3 with Sr21 ions. We therefore assume that an orb
ally disordered phase is not realized in the BiMnO3 system
in the concentration interval 0.15<x<0.25, in contrast to
the rare-earth manganites. The temperature of the orbital
ordering in BiMnO3 is apparently rather high—around 76
K. That is the temperature at which evolution of a latent h
of transformation has been observed.23 Doping with Sr21

ions leads to the appearance of the non-Jahn–Teller
Mn41, and the temperature of the orbital ordering stead
decreases until another type of orbital state is realized
state of the orbital glass type should correspond a defi
magnetic state with a short- range type of magnetic order.
therefore assume that the spin-glass state in the sys
Bi12xSrxMnO3 is realized as a result of a competition b
tween ferromagnetic clusters with the type of magnetic or
peculiar to BiMnO3 and antiferromagnetic clusters in whic
the orbitals of the Mn31 ions are frozen in a random direc
tion. With increasing concentration of the Sr21 ions a new
type of antiferromagnetic clusters appears on account of
charge ordering.

Thus we can conclude that the magnetic properties of
Bi12xSrxMnO3 system are intimately related to such ph
nomena as orbital and charge ordering. The role of th
effects is apparently significantly larger than in other syste
of manganites because of the high polarizability of the Bi31

ion.
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On the quantum oscillations of the sound attenuation coefficient in layered conductors
O. V. Kirichenko* and V. G. Peschansky
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The attenuation of a transverse sound wave in a layered conductor with a quasi-two-dimensional
dispersion relation of the charge carriers in a quantizing magnetic field is considered. The
oscillatory dependence of the sound attenuation coefficient on the inverse magnetic field is
analyzed, and the role of Joule losses in the absorption of energy from the sound wave
by electrons is ascertained for different orientations of the magnetic field with respect to the
plane of the layers. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645182#
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The specifics of a quasi-two-dimensional dispersion
lation of the charge carriers in a layered conductor are m
fested in peculiar effects in the propagation of sound wa
at low temperatures in a high magnetic fieldH, when the
mean free timet of the charge carriers is considerably long
than the period of gyration 2p/V of an electron along a
closed orbit in the magnetic field.

In a layered conductor a longitudinal sound wave is v
weakly attenuated if the wave vectork and the vectorH are
directed along the normal to the layers. The high acou
transparency of the conductor in such an experimental ge
etry is due to the fact that the Joule losses are insignific
and the energy losses due to renormalization of the energ
the charge carriers~a deformation mechanism of absorptio!
are proportional to the square of the small quasi-tw
dimensionality parameterh of the electron energy
spectrum.1,2 If there is even a small deviation of the magne
field or wave vector from the normal to the layers the role
the Joule losses increases substantially.

Unlike the case of longitudinal sound, in the propagat
of sound waves with the transverse polarization the Jo
losses are substantial, over a wide range of magnetic fi
for any orientation of the vectorsk andH with respect to the
layers.

If the temperature smearingT of the Fermi distribution
function of the charge carriers is much less than the dista
D«5\V between the quantized Landau energy levels, t
all of the thermodynamic and kinetic characteristics of
conductor, including the sound attenuation coefficientG
~Refs. 3 and 4!, oscillate with variation of 1/H. The periods
of these oscillations are determined by the areas of the
tremal cross sections of the Fermi surface, and the am
tudes contain information about the effective cyclotr
masses of the electrons on the extremal cross sections.

Let us consider the attenuation of a transverse so
2251063-777X/2004/30(3)/4/$26.00
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wave in a layered conductor in a quantizing magnetic field
the case when

T!hV!hm, ~1!

wherem is the chemical potential of the electrons.
For the sake of brevity in the calculations we take t

dispersion relation of the charge carriers in the form

~2!

Herep andm are the quasimomentum and mass of the el
tron, v05(2«F /m)1/2 is its characteristic velocity along th
layers,a is the distance between layers, and the quasi-tw
dimensionality parameterh can be less than unity.

Although the dependence of the energy of the cha
carriers on their quasimomentum in organic layered cond
tors is more complicated, the use of a model dispersion
lation of the form~2! permits a complete explanation of th
dependence of the sound attenuation coefficient on the v
of the magnetic field and the orientation of the vectorsk and
H. Generalization to the case of a quasi-two-dimensio
spectrum of arbitrary form does not present any difficu
and leads only to a refinement of numerical factors of
order of unity in the expression forG.

A sound wave propagating in a conductor leads to ren
malization of the charge carrier energy:5

~3!

Hereuik is the strain tensor, andl ik are the components o
the deformation potential tensor, taken with allowance
conservation of the number of charge carriers.
© 2004 American Institute of Physics
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The quasi-two-dimensional character of the char
carrier spectrum is reflected in anisotropy of the deformat
potential. The deformation interaction of electrons with
sound wave is weakened for sound waves propagating a
the normal to the layers or polarized along it. If the tens
componentsl ik with i ,kÞz are of the order of magnitude o
the Fermi energy, then the components of the deforma
potential for which at least one of the indices is equal toz
can be written in the form6

~4!

whereŁik is a number of the order of unity.
Besides the deformation interaction with the sou

wave, electrons also are acted on by the electromagn
wave generated by the sound.7,8 In a reference frame tied to
the vibrating crystal lattice, the electric field of this wave h
the form

~5!

wherev is the frequency of the wave,u is the displacemen
vector of the sites of the crystal lattice,e is the charge of the
electron, andc is the speed of light. The electric fieldE
satisfies the Maxwell equations

~6!

and the condition of continuity of the electric current in t
conductor:

~7!

In a magnetic fieldH5(0,H sinu, H cosu) deviating
from the normal to the layers by an angleu, the cross section
of the Fermi surface on the planepH[p•H/H5const are
closed and do not contain points of self-intersection if

~8!

In this case the electron energy levels can be found with
aid of the quasiclassical quantization condition

~9!

whereS(«,pH) is the area bounded by the electron traje
tory. It is easily seen that in the case of the dispersion r
tion ~2! the energy levels take the form

«n5S n1
1

2DhV0 cosuA11h
v0am

\
tan2 u cosz

2h
v0\

a
cosz2h2

mv0
2 tan2 u sin2 z

2@11h~v0am/\!tan2 u cosz#
,

~10!
-
n

ng
r

n

tic

s

e

-
a-

wherez5apH /(\ cosu), V05eH/mc.
At temperatures low compared to the Debye tempera

the sound attenuation in a conducting crystal is determi
mainly by the interaction of the acoustic wave with condu
tion electrons. In the quasi-classical approximation the so
energy absorption coefficientG can be written in the form2

~11!

Here r is the density of the crystal,s is the speed of
sound,t is the mean free time of the charge carriers,f 0 is the
Fermi distribution function, and the overbar denotes aver
ing over the time of motiont of the electron along the qua
siclassical closed orbit in the magnetic field. The functionc,
which takes into account the excitation of the electron s
tem by the sound wave, can be written in the form

~12!

wheren5 iv11/t.
Let us consider a sound wave with a displacement ve

u5(u,0,0), propagating in the direction normal to the laye
Using formulas~4!, ~11!, and~12! and also the equations o
motion for a charge in a magnetic field,

FIG. 1. The dependence ofG on 1/H for u50, h51022, bg,1 in arbitrary
units. The figures have different horizontal scales.
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~13!

one is readily convinced that in the region of sound frequ
cies in which the inequalityklh!1 holds, the sound absorp
tion coefficient can be written in the form

~14!

where J0 is the Bessel function, and the parameterg
51/(V0t)!1.

With the use of Maxwell’s equations~6!, ~7! it is not
hard to find the electric field in the conductor if it is assum
that

FIG. 2. Curves ofGmon for different values of the angleu.
,

n

n
or
-

cosu@g. ~15!

This condition, like inequality~8!, excludes from consider
ation a small region of anglesu near u56p/2 where the
magnetic field is almost parallel to the layers.

In the leading approximation in the small parameterh
the components of the electric field of the electromagne
wave have the form

~16!

whereb5(svp /cv)2vt, andvp is the plasma frequency.
Using the Poisson summation formula and chang

from integration overn to integration over energy with the
aid of formula~10!, we obtain the following expression fo
the oscillatory~in 1/H) part of the sound energy absorptio
coefficient:

FIG. 3. Gmon versus angleu for bg@1, in relative units.
~17!
e to
ice
d

hly
-

Here G052mNcv0v/rs2, Nc is the electron density
l 5v0t, F(z)5z/sinhz, L52p2T/\V0 cosu, and the ex-
tremal values of the critical area of the Fermi surface o
planepH5const have the form

S1,25
2pm

cosu

m6hv0\/a

A17h~amv0 /h!tan2 u
. ~18!

In a quasi-two-dimensional conductor these values do
differ strongly from each other, and the oscillations theref
have a double-peak~doublet! form ~Fig. 1!.
a

ot
e

The terms containing the factorLxz in formula ~17! de-
scribe the absorption of energy from the sound wave du
renormalization of the electron spectrum in a vibrating latt
~deformation mechanism!. The Joule losses are determine
by the functionF(g,u), which has the form

F~g,u!5cos2 u
cos2 u1b2g2

@cos2 u2~bg!2#21b2g4 . ~19!

Analogous terms are also contained in the smoot
varying ~with magnetic field! part of the absorption coeffi
cient:
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Gmon5
G0

kl F ~klh!2

2
Lxz

2 J0
2S amv0

\
tanu D1F~g,u!G . ~20!

The density of charge carriers in the organic conduct
now under intensive study are comparable to the densit
conduction electrons in ordinary metals, so that the par
eterb can be much greater than unity. At a sufficiently hi
magnetic field (bg,cosu) the induction mechanism o
sound-wave attenuation is the main one, and a peak sh
be observed on the absorption curve atbg5cosu due to the
excitation of a helicoidal wave in the conductor~Fig. 2!. If
bg is much greater than unity, then the Joule losses are s
(F(g,u)5cos2 u/b2g2) and there can be competition b
tween the induction and deformation mechanisms of abs
tion of the sound energy by electrons. At sufficiently lar
angles of deviation of the magnetic field from the normal
the layers the coefficientG varies periodically with the angle
u. In the region where (bg)21.klh the amplitude of these
oscillations is comparable to the monotonically varying~with
angle! part of the absorption coefficient~Fig. 3!.

The effects considered above, which are specific
quasi-two-dimensional conductivities, are completely o
s
of
-

ld

all

p-

o
-

servable in the region of ultrasonic frequenciesv;108 s21

in magnetic fields of the order of tens of tesla.
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Thermoelectric effects in layered conductors in magnetic field
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The magnetic-field dependence of the thermopower in layered conductors with a quasi-two-
dimensional electron energy spectrum of arbitrary form is investigated theoretically. It is shown
that the dependence of the thermopower on the magnitude and orientation of the magnetic
field with respect to the layers contains detailed information about the velocity distribution of the
charge carriers on the Fermi surface. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645183#
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Thermomagnetic phenomena in high magnetic fieldsH
are extremely sensitive to the form of the electron ene
spectrum of degenerate conductors.1 At sufficiently low tem-
peraturesT, where the temperature smearing of the Fer
distribution function f 0(«) of the conduction electrons i
much less than the distance between quantized energy le
D«5\V and the charge carriers can complete many or
with frequencyV in the magnetic field during the mean fre
time t, the amplitude of the quantum oscillations of the th
mopower with variation of 1/H, as a rule, significantly ex
ceeds the part of the thermopower that varies smoothly w
H. This allows this quantum oscillation effect to be used
the basis of an extremely accurate and reliable spectrosc
method of studying the Fermi surface~FS!. However, even
for T.\V, when it is not so important to take into accou
the quantization of the energy levels of the charge carri
thermoelectric coefficients at high magnetic field (Vt@1)
contain rather detailed information about the energy sp
trum of the charge carriers.

Let us consider the thermoelectric phenomena in laye
conductors with an energy spectrum of the conduction e
trons of arbitrary form:

~1!

where a is the distance between layers, and\ is Planck’s
constant.

We shall assume that the functions«n(px ,py) fall off
with increasing indexn, so that the velocity of the electron
along the normal to the layers is much less than the cha
teristic velocityvF of the electrons along the layers:

~2!

In a large family of organic conductors based on tetra
afulvalene in magnetic fields of the order of several tens
2291063-777X/2004/30(3)/3/$26.00
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tesla the Shubnikov–de Haas effect is observed at the m
diverse orientations of the magnetic field with respect to
layers,2–4 which attests to the fact that at least one shee
the FS of these organic charge-transfer complexes has
form of a slightly corrugated cylinder. For the sake of brev
in the calculations we shall assume that the FS consist
only one slightly corrugated cylinder of arbitrary shape. T
degree of corrugation of the FS is determined by the ratio
the conductivity in the directions parallel to and perpendic
lar to the layers in the absence of magnetic field; this ratio
proportional to the square of the quasi-two-dimensiona
parameterh of the electron energy spectrum. In the organ
layered conductors studied experimentally,h2 is of the order
of 1023– 1024, and in graphite it can reach a small value
the order of 1025.

By solving the kinetic equation for the charge-carri
distribution function at a fixed electrical current densityj and
temperature gradient¹T one can find the electric field

~3!

Herer ik is the resistivity tensor, which is the inverse of th
conductivity tensors ik , and

~4!

The tensor componentss jk
e coincide withs ik if the mo-

mentum relaxation timet p̄ in the latter is replaced by the
energy relaxation timete ; m is the chemical potential of the
system of conduction electrons.

At sufficiently low temperaturesT, much less than the
Debye temperatureTD , viz., T!TD( l k /k0)1/3, wherel k and
l 0 are the mean free paths of the charge carriers at ro
temperature and atT50, respectively, and the charge carrie
are scattered mainly by impurity atoms and crystal latt
defects. In this temperature region the timest p̄ andte are of
the same order of magnitude. The condition of high magn
field is attainable only at liquid helium temperatures, whe
the condition given above is clearly satisfied, and in wh
© 2004 American Institute of Physics
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follows we shall therefore not distinguish between the m
mentum and energy relaxation time of the electrons.

One of the interesting phenomena specific to a qu
two-dimensional electron energy spectrum is the manife
tion of oscillations of the magnetoresistance to a curr
transverse to the layers as a function of the angleu between
the magnetic field vector and the normal to the layers.5,6 An
anomalous oscillation effect should be expected when
temperature gradient is directed along the normal to the
ers. In that case if the magnetic fieldH5(0,H sinu,H cosu)
deviates substantially from the layers, then to a suffici
degree of accuracy the thermoelectric field is directed ma
along thez axis whenVth2!1, so that

~5!

where the conductivity transverse to the layers,szz, in the
caseg51/Vt!1 has the form7,8

~6!

The functionsw i(u), which depend on the concrete form
the dispersion relation of the charge carriers, is of the or
of unity, m* is the cyclotron effective mass of the conducti
electrons, ands0 is of the order of magnitude of the condu
tivity along the layers in the absence of magnetic field.

The dependence ofszz on the orientationu of the mag-
netic field with respect to the layers has narrow peaks wh
for tanu @1 repeat with a periodD(tanu)52p\/naDp ,
whereDp is the diameter of the transverse cross section
the Fermi surface along thepy axis. These minima are usu
ally associated with the orientations of the vectorH for
which the integral

I n~u!5T̃21E
0

T̃
dt«n~ t !cos~py~ t !an tanu/\!, ~7!

vanishes forn51 ~hereT̃52p/V is the period of the mo-
tion of the charge in the magnetic field!.

The coefficientsI n(u) falls off slowly with increasingn,
and at those anglesuc for which I 1(uc)50 a substantial role
in the electrical conductivity and thermoelectric coefficien

azz~u!5
p2

3e

Ta

\v' 5 F~u!1tanu

2(
n51

`

n3I nI n8~jn!

(
n51

`

n2I n
2 6 ~8!

is played by the term withn52. Herev' is the velocity of
the conduction electrons along they axis at the turning point
on the electron orbit«5const,pH5const, and

jn5
aDp

2\
n tanu.

The terms withn51 andn52 do not vanish simulta-
neously, and from now on we will be considering only the
two terms. Inclusion of the next terms in the sum overn will
lead only to insignificant refinements in the dependence
-

i-
a-
t

e
y-

t
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er

h

f

e

f

the kinetic coefficients on tanu. The functionF(u) is of the
order of unity and for tanu @1 represents an insignifican
background in the dependence ofazz on tanu.

For tanu @1 the integrand in formula~7! is a rapidly
oscillating function, and the main contribution to the integ
comes from small neighborhoods of the points of station
phase, wherevx50. There are at least two such points on t
electron orbit:vx(t1)5vx(t2)50. Then«n(t1)5«n(t2), and,
as a result, the asymptotic expression forI n(u) has the form

I n~u!52«n~ t1!
u2phu1/2

T̃UanH ]2py~ t1!

]t1
2 J tanuU1/2

3cosH anDp

2h
tanu2

p

4
J , ~9!

and the thermoelectric coefficientazz(u) for x
5(aDp /\)tanu @1 can be represented by the formula

azz~u!52
p2

3e

T

Dpv'
H F~u!

1x
cosx12l cos 2x

11sinx2l~11sin 2x!J , ~10!

wherel52«2
2(t1)/«1

2(t1)!1.
Figures 1 and 2 give the angular dependence of the m

FIG. 1. Dependence onx of the normalized magnetoresistance transverse
the layers forl51022. The positions of the maxima ofR/x are shifted from
the valuesxk53p/212pk by an amount 2l.

FIG. 2. Normalized thermopower at largex andl51022. The maxima of
the thermopower are proportional to 1/2l and are shifted from the position
of the maximum values ofR/x by an amountA2l.
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netoresistance and thermoelectric field forl51022.
The thermopower goes to zero when the magnetore

tance is equal to its maximum values. The positions of
maxima deviate from the valuesxk53p/212pk (k is an
integer! by a small amountl, and the value of the thermo
electric coefficient at the extrema is inversely proportiona
Al.

Thus the experimental study of the thermopower
quasi-two-dimensional conductors permits one to determ
the degree of diminution of the harmonics of the Four
series expansion of the carrier energy as a function of
momentum projection transverse to the layers and to
their velocity distribution on the Fermi surface.

We thank V. G. Peschansky for fruitful discussions.
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Influence of mechanical stress and temperature on the photoluminescence in the
low-temperature phase of C 60 fullerite

A. Avdeenko,* V. Gorobchenko, P. Zinoviev, N. Silaeva, and V. Zoryanskiı̆
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The results of a study of the low-temperature~5–90 K! photoluminescence of thin films of C60

obtained by vacuum deposition on heated mica substrates are reported. The structure of
the films is analyzed by the method of high-energy electron diffraction. The features of the
luminescence of structural traps (X traps!, which arise on account of mechanical stresses created
by bending of C60 films of different structure on mica substrates, are investigated for the
first time. The temperature behavior of the photoluminescence bands due to defects of this kind
is investigated. The processes of trapping and transport of electronic excitations in the low-
temperature phase of C60 are discussed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645184#
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Spectral luminescence methods have been widely u
for studying the relaxation and transport of excitons in C60

fullerite ~see, e.g., the reviews1,2 and the references cite
therein! since the time of the discovery3 and synthsis4 of this
compound, which is now a model for description
p-electron systems. The photophysical properties of exc
states which reflect the symmetry of the C60 molecule and
crystal are unique and therefore extraordinarily interesti
especially in view of the very promising applications of th
material in photonics and optoelectronics.

Although the mechanisms giving rise to the low
temperature photoluminescence~PL! spectra of crystalline
C60 have been rather scrupulously studied~see, e.g., the
surveys5,6 and the references therein!, a number of unsolved
problems remain in connection with the localization a
transport of excitations, e.g., Jahn–Teller self-trapping
excitons7 and the features of the resonance intermolecu
interaction of C60 molecules found in excited states of ev
symmetry.8,9

Since the time of the pioneering work of Eremenko a
Medvedev,10 structural imperfections in crystals,11 created
mainly by mechanical stress, have been used with great
cess as a tool for studying excitonic processes in molec
crystals.12–14

In the present paper we report the first-ever results on
influence of mechanical stresses on the spectra of l
temperature photoluminescence of thin films of C60 fullerite
of different structure on mica substrates and discuss
mechanisms of trapping and transport of singlet excitons

We studied thin films of fullerite C60 obtained by evapo-
ration of C60 single crystals of at least 99.9% purity on
mica substrates heated to different temperatures in a vac
2321063-777X/2004/30(3)/4/$26.00
ed
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of around 1023 Pa. A quartz oscillator was used to determi
the thickness of the film and the rate of deposition. The str
ture of the films was monitored by electron-diffraction a
electron-microscope methods.

The use of a mica substrate with a suitable choice
deposition regime makes it possible to obtain rather go
crystalline films with no stacking faults.15,16 Because of this,
the low-temperature PL spectra of such films, which are
vestigated here for the first time, have qualities approach
those of single crystals6 and can reveal effects due to th
influence of mechanical stresses.

The photoluminescence of thin films of C60 fullerite was
excited by a spectral line of a DRSh-1000 high-pressure m
cury lamp. This line, at an energy of 2.84 eV, was selected
means of an SPM-2 monochromator with a spectral
width of 10 nm. The PL was registered ‘‘in reflection’’ by a
MDR-3 monochromator with a spectral slit width of 5.2 nm
The PL spectral were registered using a cooled FE´U-79 pho-
tomultiplier, with a spectral sensitivity curve of the type S
in the photon-counting mode. The PL spectral were correc
for the spectral sensitivity of the detection equipment. T
integration and processing of the signal was done with
use of a personal computer. The temperature of the sam
which was found in gaseous helium, was regulated to a p
cision of 0.5 K or less over the temperature range from 5
90 K. Internal stresses were produced in the C60 film on mica
by bending the substrate by different angles. The correspo
ing tensile stresses in the C60 film varied from 90 to 150 MPa
~according to our calculations using the experimen
values17 of the low-temperature elastic constants! and the
compressive stresses from 28 to 50 MPa, depending on
bending angle. To elucidate how the stresses created in
© 2004 American Institute of Physics
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film by bending it affect the PL spectra, we subtracted
initial spectra from the spectra obtained for the bent film. F
this procedure the spectra were normalized to the integr
intensity by the method proposed in Ref. 18.

The influence of the mechanical stresses produce
maximum bending of the mica substrates on the lo
temperature PL spectra of thin films of C60 fullerite with
different structures is well seen in Figs. 1 and 2. Figure
shows the PL spectra for oriented films 90 nm thick obtain

FIG. 1. Photoluminescence~PL! spectra of an oriented thin film of C60

fullerite 90 nm thick on a mica substrate at 5 K under photoexcitation with
an energy of 2.84 eV; unstressed film~a!; film with stress resulting from
deformation of the substrate~b!; the difference spectrum of the PL, obtaine
by subtractingI in panel ‘‘a’’ from I in panel ‘‘b’’: I (b)2I (a) ~c!; the
difference spectrum obtained by subtractingI (a) from the PL spectrum of
the film after the stress was removed~d!; the pattern of high-energy electro
microdiffraction on the crystal structure of the C60 film ~e!. The dotted lines
in panels ‘‘a’’ and ‘‘b’’ correspond to a computer decomposition of t
spectra into bands of Gaussian shape.
e
r
ed

at
-

2
d

at a substrate temperature of 180 °C and a deposition ra
0.1 nm/s. The films were continuous and had an fcc lat
with a period close to that of bulk fullerite. The microcrysta
in those films were of the order of 30–40 nm in size. Figu
2 shows the luminescence spectrum for a disoriented film
nm thick obtained at a substrate temperature of 17 °C an
deposition rate of 0.1 nm/s. The mean size of the microcr
tals in the latter films was around 5 nm. These two types
films, having different structures determining the specifics
the luminescence spectra, were chosen in light of our pr
ous investigations.19

As can be seen in Fig. 1c, which shows the differen
between the PL spectra~normalized by the method of Ref

FIG. 2. PL spectra of a disoriented C60 thin film 60 nm thick on a mica
substrate at a temperature of 5 K under photoexcitation at an energy of 2.8
eV: the unstressed film~a!; the film containing stresses resulting from d
formation of the substrate~b!; the difference spectrum obtained by subtra
tion I (b)2I (a) ~c!; the pattern of high-energy electron microdiffraction o
the crystal structure of the C60 film ~d!. The dotted curves in panels ‘‘a’’ and
‘‘b’’ correspond to a computer decomposition of the spectra into bands
Gaussian shape.
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18! of the unstressed film~Fig. 1a! and bent film~Fig. 1b!,
bending of the film leads to changes in the luminesce
spectrum, the changes being observed in the high-energy
of the luminescence of stress-induced structural def
which are apparently of a dislocation character.20,21

The main changes in the luminescence spectrum~Fig.
1c! are observed near 1.7, 1.76, and 1.79 eV. The behavio
the low-temperature PL band of the C60 crystal under applied
pressure has been studied in some detail:22 there is a band a
1.69 eV due to radiative transitions in the intrinsic, so-cal
‘‘dimer’’ trap,6 which is influenced rather strongly by pre
sure~the application of pressure leads to a long-wavelen
shift, broadening, and changes in intensity of this band!, and
bands due to the luminescence ofX traps, which are shifted
little at low pressures. The task of the present study wa
investigate the structural defects created upon bending o
substrate (X traps! as tests for the motion of excitons in film
of different structure. The band at energy 1.76 eV has
peared in practically all of the studies of structural defects
C60 fullerite ~see, e.g., Ref. 5!, whereas the band at energ
1.79 eV is apparently peculiar to the films, since it is n
observed in single crystals.

Figure 1d shows the difference between the normali
PL spectra of a film of C60 fullerite, taken prior to the bend
ing of the substrate and after the substrate was straight
out. It is seen that the structural defects are partia
‘‘healed’’ after the mechanical stress is removed.

A completely different picture is observed for the diso
ented, nanocrystallite film. As is seen in Fig. 2, in this ca
there is practically no luminescence of induced defects,
parently because the migration of electronic excitation
ergy is confined in the nanocrystals; this is the so-called
citon confinement.19

In order to discuss the possible mechanisms for the p
nomena observed when C60 fullerite films of different struc-
ture are stressed, it is important to consider several fac
that influence the processes of relaxation and migration
excitations in solid C60.

It is known that the lowest-energy excited electron
states of the C60 molecule in the point groupI h are even, so
that the luminescence from the first excited singlet state
symmetryT1g is dipole-forbidden. The mechanisms respo
sible for the PL of individual molecules is determined main
by the Herzberg–Teller vibronic interactions.6,23

In the C60 crystal, because the transition dipole mome
for the lowest singlet state of the Frenkel exciton is zero,
resonance intermolecular interaction is small and is of a q
drupolar character, as was shown experimentally in Ref
The exciton can also be localized by Jahn–Teller distort
of the C60 molecule upon photoexcitation, when the symm
try of the molecule changes fromI h to D5d ~Refs. 7 and 24!.
The structure of the PL spectra of Frenkel excitons is larg
determined, as in the case of individual C60 molecules, by the
Herzberg–Teller vibronic interaction mechanism.6,20

In spite of the weak intermolecular interactions, ex
tonic effects are manifested in the PL spectra not only in
form of luminescence of self-trapped Frenkel excitons6,7,20

and charge-transfer excitons25 but also in the luminescenc
of X traps, which are due to the presence of structu
defects.20,21 Delocalization of a neutral molecular excitatio
e
art
ts

of

d

h

to
he

-
n

t

d

ed
y

e
p-
-

x-

e-

rs
of

f
-

t
e
a-
9.
n
-

ly

-
e

l

can be promoted by the admixing to it of charge-trans
states,26 even in the case when that excitation can be ess
tially immobile in the absence of charge transfer.27

It is this mobility of the excitations that brings about th
luminescence ofX traps in the most perfect single crystal6

and oriented films19 of C60 fullerite.
To determine the depth of theX traps relative to the

bottom of the Frenkel exciton band, we measured the te
perature dependence of the relative yield in the bands
tained by Gaussian decomposition of the PL ofX traps in the
region 5–90 K~Fig. 3!. In the temperature interval 5–90 K
we observed a steep falloff of the intensity of the lumine
cence of theX1 andX2 traps. Keeping in mind that the en
ergy of self-trapping of singlet excitons in C60 fullerite is
rather small6 and assuming that the activational character
the temperature dependence of the intensity of the band
the X traps in the luminescence spectrum should be ind
tive of localization of excitons at those traps,22 we have es-
timated the activation energy for the emptying of theX traps,
approximating this temperature dependence by
formula20,28

I ~T!5I 0 /@11y exp~2Ea /kBT!#, ~1!

whereI is the intensity of the emission from anX trap at the
given temperature,I 0 is the intensity of the emission from
trap at the lowest temperatures,g is the ratio of the probabili-
ties of radiative and nonradiative deactivation of the exci
state of the trap,kB is Boltzmann’s constant, andEa is the
depth of the trap relative to the bottom of the free-excit

FIG. 3. Temperature dependence of the energy of the maxima of the
bands ofX1 traps~a! andX2 traps~b! with energies of 1.79 and 1.76 eV an
the half-widthsDn of these bands in oriented films 90 nm thick~see Fig. 1a!.
The experimental curves are approximated by using formula~1! with the
following parameters: a! g52.63104, Ea50.04 eV. b! g58.03104, Ea

50.06 eV.
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band. The experimental results are presented in Fig. 3.
activation energy for theX1 trap (Emax51.79 eV) is 0.04 eV
~at g52.63104), while that for theX2 trap is 0.06 eV~at
g58.03104). Using the values given above for the ener
positions of the peaks of theX traps, one can determine th
energy of the 0–0 excitonic transition under the assumpti
adopted; it turns out to be 1.83 eV, which is in rather go
agreement~within our experimental error! with the published
data.8,29

Thus the stress-induced structural traps~the so-calledX
traps! are a test for the relaxation dynamics and transpor
excitations in C60 fullerite films of different structure.

The authors thank V. V. Eremenko for steadfast inter
and support of this study, and S. L. Gnatchenko and M.
Strzhemechny for helpful discussions.

*E-mail: avdeenko@ilt.kharkov.ua

1J. Shinar, Z. V. Vardeny, and Z. H. Kafafi~eds.!, Optical and Electronic
Properties of Fullerenes and Fullerene Based Materials, Marcel Dekker,
New York–Basel~2000!.

2P. Rudolf, M. S. Golden, and P. A. Bru¨hwiler, J. Electron Spectrosc. Rela
Phenom.100, 409 ~1999!.

3H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Small
Nature~London! 318, 162 ~1985!.
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11H. Bässler, Phys. Status Solidi B107, 9 ~1981!.
12S. Arnold, W. B. Whitten, and A. C. Damask, J. Chem. Phys.53, 2878

~1970!.
13J. O. Williams, B. P. Clarke, J. M. Tomas, and M. J. Shawe, Chem. P

Lett. 38, 41 ~1976!.
14A. Lisovenko, M. T. Shpak, and V. G. Antonyuk, Chem. Phys. Lett.42,

339 ~1976!.
15A. Richter, R. Ries, K. Szulzewsky, B. Pietsak, and R. Smith, Surf. S

394, 201 ~1997!.
16K. Yase, N. Ara-Kato, T. Hanada, H. Takiguchi, Y. Yoshida, G. Back,

Abe, and N. Tanigaki, Thin Solid Films331, 131 ~1998!.
17N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, and Ya. M. So�fer, Fiz.

Tverd. Tela~St. Petersburg! 44, 415 ~2002! @Phys. Solid State44, 429
~2002!#.

18D. V. Dyachenko-Dekov, Yu. V. Iunin, A. N. Izotov, V. V. Kveder, R. K
Nikolaev, V. I. Orlov, Yu. A. Ossipyan, N. S. Sidorov, and E. A. Steinma
Phys. Status Solidi B222, 111 ~2000!.

19A. A. Avdeenko, V. V. Eremenko, P. V. Zinoviev, N. B. Silaeva, Yu. A
Tiunov, N. I. Gorbenko, A. T. Pugachev, and N. P. Churakova, Fiz. Ni
Temp.25, 49 ~1999! @Low Temp. Phys.25, 37 ~1999!#.

20W. Guss, J. Feldmann, E. O. Go¨bel, C. Taliani, H. Mohn, W. Muller,
P. Haussler, and H.-H. ter Meer, Phys. Rev. Lett.72, 2644~1994!.

21M. Tachibana, K. Nishimura, K. Kikuchi, Y. Achiba, and K. Kojima
J. Lumin.66–67, 249 ~1995!.

22K. P. Meletov and V. D. Negrii, Phys. Status Solidi B211, 217 ~1999!.
23G. Herzberg,Molecular Structure and Molecular Spectra. III. Electroni

Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand
Reinhold, New York,~1966!, MIR, Moscow ~1969!.

24X. L. R. Dauw, G. J. B. van den Berg, D. J. van den Heuvel, O.
Poluektov, and E. J. J. Groenen, J. Chem. Phys.112, 7102~2000!.

25E. L. Shirley, L. X. Benedict, and S. G. Louie, Phys. Rev. B54, 10970
~1996!.

26S. Kazaoui, N. Minami, Y. Tanabe, H. J. Byrne, A. Eilmes, and P. Pe
lenz, Phys. Rev. B58, 7689~1998!.

27P. Petelenz and V. H. Smith, Chem. Phys. Lett181, 430 ~1981!.
28K. Kaneto, K. Rikitake, T. Akiyama, and H. Hasegawa, Jpn. J. Appl. Ph

36, Pt. 1, 910~1997!.
29M. Suzuki, T. Iida, and K. Nasu, Phys. Rev. B61, 2188~2000!.

Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 3 MARCH 2004
LATTICE DYNAMICS

Phase transitions in the magnetoelastic crystals CsDy 1ÀxGdx„MoO4…2
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Based on the data of ultrasonic studies and on the temperature behavior of the absorption
spectra, a study of the phase diagram of the crystals CsDy12xGdx(MoO4)2 is made and the
structural distortions occurring as a result of the pseudo-Jahn–Teller effect are discussed.
It is shown that in the presence of impurities there are several lines of phase transitions on the
x–T phase diagram. It is established that one of the phase transitions these found is
essentially of a magnetoelastic origin. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645185#
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1. INTRODUCTION

The double molybdates of rare-earth elements, with
composition MRe(MoO4)2 , where M is an alkali metal~K,
Cs, Rb! and Re is a rare-earth element, are layered magn
dielectric crystals characterized by the presence of lo
temperature phase transitions. The layered cry
CsDy(MoO4)2 has a first-order structural phase transiti
~SPT!, the nature of which is not yet completely clear, a
critical temperatureTc'40 K. The SPT is accompanied by
downward jump of the ground state energy of the dysp
sium ions and is therefore attributed to cooperative Ja
Teller ~JT! ordering.1 The SPT is sensitive to the substitutio
of a small amount of the Dy31 ions by ions of the non-JT
rare-earth elements. According to the data of Ref. 2, dop
of a sample with Gd31 and Eu31 ions leads to a sharp low
ering of the phase transition temperature, and atx.0.05 (x
is the concentration of the rare-earth impurities! it vanishes
completely. Starting withx>0.03 a line of second-orde
phase transitions, with a relatively weak dependence of
critical temperature on concentration, splits off from the li
of first-order phase transitions. However, studies3 of the sys-
tem CsDy12xGdx(MoO4)2 (x50.01, 0.04, 0.05, 0.1! have
shown that the phase diagram is more complex than
been assumed previously.2 Studies of the phase diagram co
tinue to this day, although the experimental data obtai
with the use of different methods are rather contradictory
particular, studies of the specific heat of CsDy(MoO4)2 over
a wide range of temperatures (40 K,T,330 K) have re-
vealed that, besides the previously known first-order S
(Tc'42 K) there are a number of anomalies attesting to s
stantial restructurings of the energy spectrum of the crys4

One of these, atTi'59 K, has been attributed to a transitio
to an incommensurate phase. For a crystal with 5% Gd31 the
temperature dependence of the specific heat does not co
the anomaly corresponding to the first-order SPT nor
anomaly near 60 K that is observed for undop
CsDy(MoO4)2 . However, atTc'30.5 K one observes a
weak peak in the specific heat, which was interpreted by
2361063-777X/2004/30(3)/11/$26.00
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authors as a second-order SPT. A study of the Raman s
tering spectra of CsDy(MoO4)2 and CsDy0.93Gd0.07(MoO4)2

has revealed the presence of a first-order SPT atTc'50 K in
both crystals.5 We note that none of the techniques list
permits one to observe the whole sequence of SPTs rea
in the system CsDy12xGdx(MoO4)2 . Furthermore, accord
ing to recent data6 of an x-ray structural analysis o
CsDy(MoO4)2 , the crystal structure of this substance,
least at room temperature, is not orthorhombic, as had b
assumed previously,7 but monoclinic.

Because the nature of the SPTs in both CsDy(MoO4)2

and in the doped crystals and also the lattice symmetry in
corresponding phases still remains unsettled, we have
tinued the study of thex–T phase diagram of the
CsDy12xGdx(MoO4)2 system. In particular, to refine th
phase diagram we have used samples withx50.07, in which
phase transitions have been observed in the Raman scatt
spectra at 50 and 30 K.5

Since one of the mechanisms proposed for the first-or
SPT in CsDy(MoO4)2 is ordering of the cooperative JT type
which derives from the electron–phonon interaction, it is i
portant to observe the behavior of the phonon~acoustic! sub-
system while simultaneously tracking the changes in
electron spectrum of the JT ions. In the present paper
have therefore undertaken a comprehensive study of the
tem CsDy12xGdx(MoO4)2 by both an ultrasonic method an
by optical spectroscopy.

Thus the goal of this study was to determine the types
the SPTs and to analyze the symmetry of the phases in do
crystals, to study the influence of magnetic field on the te
perature of the SPT in doped crystals, and to discuss
possible mechanisms for the SPTs using the data of u
sonic studies and optical spectroscopy.

2. SAMPLES AND EXPERIMENTAL TECHNIQUES

The CsDy(MoO4)2 and CsGd(MoO4)2 crystals contain
characteristic layered and chainlike structures and, accor
to Ref. 7, are isostructural. AtT'300 K the cell parameters
© 2004 American Institute of Physics
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of these crystals are close~for CsDy(MoO4)2 they area
59.51 Å, b57.97 Å, c55.05 Å and for CsGd(MoO4)2 ,
a59.52 Å, b58.05 Å, c55.07 Å), and the ionic radii of
the rare-earth elements are also close; it was therefore
sumed that doping leads to an isostructural substitution
Dy31 ions by Gd31. The crystals were grown by the metho
of spontaneous crystallization from a fluxed melt. The imp
rity concentration was assumed to be the same as the rel
content of gadolinium in the stock and for the systems st
ied wasx50, 0.03, 0.04, 0.05, 0.07, 0.1, and 0.25.

The crystals were thin ('1 mm) mica-like slabs having
a perfect cleavage plane~bc!. Besides the perfect cleavag
plane there was also a less perfect cleavage plane~ac!, the
presence of which was easily established from the non
dom orientation of the breakage lines.

The orientation of the samples was carried out at ro
temperature by x-ray ‘‘photography of reflected rays’’ wi
an accuracy of;2 – 3°. According to the data of a
experimental structural analysis,6 the symmetry of the
CsDy12xGdx(MoO4)2 crystals atT'300 K is close to ortho-
rhombic, but there are small monoclinic distortions. The
viation of the monoclinic angle from a right angle is sm
('2°) and comparable to the accuracy of orientation of
samples. This circumstance and also the presence of t
made it impossible to take the monoclinicity into account
preparing the samples for the acoustic experiments.

The samples had characteristic dimensions of 0.531
31 mm. The faces parallel to the perfect cleavable pla
~bc! were not subjected to mechanical processing. The o
two faces, parallel to the~ac! and~ab! planes, were polished
with dry sandpaper with a micron abrasive. The worki
faces of the samples were plane-parallel to a precision
1 mm. The residual stresses arising after the mechanical
ishing were relieved by annealing the samples
T'900 K.

As compared to Ref. 3, the equipment used in the aco
tic measurements was of a new generation.8 This made it
possible, first, to carry out high-accuracy (;1%) measure-
ments of the absolute sound velocities rather than cr
transit-time estimations. Second, the fact that the limit
resolving power is maintained over a practically unlimit
dynamic range made it possible to register slight feature
the behavior of the sound velocity against the backgroun
very substantial variations in the relative measurements.

In the experiment we used a continuous tempera
pulling at a rate of 10 K/h in the interval 2 K,T,60 K. The
temperature was measured by a carbon resistance therm
eter. The thermometer was not in direct contact with
sample but was placed in a common volume which was th
mally insulated and filled with a heat-transfer gas~He4 at
1–10 torr!. The temperature difference between the sam
and thermometer did not exceed 0.5 K, and the resolu
was 0.05 K or better. For the measurements of the rela
variations of the sound velocity in an external magnetic fi
we used a superconducting solenoid with a maximum m
netic field of'3.5 T.

The absorption of light by Dy31 ions in the
CsDy0.93Gd0.07(MoO4)2 crystal was studied in the region o
transitions between levels of the ground multiplet6H15/2 and
the excited states6F3/2 and6F5/2 at temperatures of 2–70 K
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For the experiment we used an apparatus based on a DF
dual monochromator. The spectra were recorded using a p
tomultiplier in the photon-counting mode.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Ultrasound „experiment …

With the goal of elucidating the influence of impuritie
on the phonon subsystem of the crystal we did acoustic s
ies of CsDy12xGdx(MoO4)2 (x50, 0.03, 0.04, 0.05, 0.07
0.1, and 0.25!. For correct comparison of the results of th
acoustic and optical measurements we used the s
samples withx50.07 for which phase transitions had bee
observed at 50 K and at approximately 30 K by the Ram
scattering method.5

Studies have shown that doping with gadolinium h
practically no effect~within the experimental error! on the
absolute values of the sound velocities
CsDy12xGdx(MoO4)2 crystals (x50, 0.04, 0.1!. The results
of the measurements atT577 K for the undoped crysta
CsDy(MoO4)2 , are presented in Table I. Here and below w
use a shortened notation for the experimental geometry.
example, the geometry~ab! means that the sound wave ve
tor q is parallel to thea direction, while the polarizationu,
i.e., the displacement of the particles in the sound wave, i
the b direction. The accuracy of the measurements was g
erally on the 1% level. The geometries~ab! and ~ba! are
exceptions. The very small sound velocity and the result
large damping in those geometries do not permit the achie
ment of a single-mode measurement regime in them, and
a result, rather large errors of an interference nature ar
That is the reason why the value of the sound velocity in
~ab! geometry in Ref. 3 is substantially different from tha
obtained in the present study.

Qualitatively the results reflect a certain degree of lay
ing of the crystals due to the relatively low values of th
sound velocities. This effect is especially noticeable in t

TABLE I. Absolute values of the sound velocities in CsDy(MoO4)2 , mea-
sured atT577 K.

Note:Geometry~mn! means that in the experiment the sound wave vectoq
was parallel to the directionm in the crystal while the polarization vectoru
was parallel to the directionn; the measurement error was 1% except in t
geometries~ab! and ~ba!, where it was;10%.
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~ab! and ~ba! geometries, when the vectorsq andu are or-
thogonal to the cleavage planes. Some ‘‘nonreciprocity’’
the results can be noted, i.e., the values of the transv
sound velocities measured in the geometries~ac! and~ca! are
different, as are the values measured for~ab! and~ba!. This,
we believe, is due to the monoclinic distortions of the crys
structure.

The temperature behavior of the relative variations of
sound velocities measured in different geometries for
crystals CsDy12xGdx(MoO4)2 (x50, 0.04, 0.07, 0.1! are
presented in Figs. 1–5. As is seen in the figures, in the in
val 20–40 K the behavior of both the longitudinal and tran
verse velocities has anomalies~jumps and kinks! which are
characteristic of structural transformations. The typi
anomalies for all the crystals~described in more detail be
low! can be associated to the critical temperaturesTc18 ,
Tc19 , andTc2 .

It is known9 that a second-order structural phase tran
tion is characterized by a jump in the temperature dep
dence of the longitudinal elastic moduli of the crystal and
kink ~jump of the derivative! in the temperature dependen
of the transverse moduli. As is seen in Figs. 1, 2, and 3,
temperature curves of the longitudinal velocities have jum
at the temperaturesTc18 andTc19 . For the velocity measured
in the ~bb! geometry the jumpsDS/S are appreciable (;2
31022) and are accompanied by upsurges in the sound
sorption at these same temperatures~see Fig. 1!. For the
other geometries the variation of the longitudinal velocit
at Tc18 andTc19 are much smaller in scale and are somew
smeared in temperature~Fig. 2, x50.1, and Fig. 3!. There-
fore the critical temperaturesTc18 and Tc19 are determined

FIG. 1. Temperature dependence of the relative changes of the soun
locity (DS/S) ~a! and absorption~Da/a! ~b! in CsDy12xGdx(MoO4)2 for
qib, uib.
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from the position of the maximal jumps in the temperatu
dependence of the longitudinal velocity~and of the related
elastic moduli! measured in the~bb! geometry~Fig. 1!.

The temperature curves of the transverse velocities h
kinks at these same temperatures~Figs. 4 and 5!. We note
that the anomalies of both the longitudinal~jumps! and trans-
verse~kinks! velocities nearTc18 and Tc19 have a qualita-
tively similar character that is typical of second-order pha
transitions.

ve-

FIG. 2. Form of the temperature dependence of the relative changes i
sound velocity in CsDy12xGdx(MoO4)2 for qic, uic.

FIG. 3. Temperature dependence of the relative changes of the soun
locity in CsDy12xGdx(MoO4)2 for qia and uia. The solid curve is in the
absence of magnetic field, the dotted curve in an external magnetic
H53.5 T applied along thea direction. The inset shows the dependence
the critical temperatureTc2 on the square of the magnetic field strength.



s
op
na

-
a-
e
te
o

he
ns
Th

s

th

-
s-

e
th

de-
rve
nd

g

ia-

e
eld

are

ter-
to

the
of

m-
The
of

al
uf-
n-

ch a
rac-

rder
de-

ith
by

nic

d

lo
.

el

239Low Temp. Phys. 30 (3), March 2004 Zvyagina et al.
At lower temperatures, as follows from the data of Fig
1–5, there is another SPT, at which distinct hysteresis lo
are observed. The values of the jumps for the longitudi
and transverse velocities are approximately equal~of the or-
der of 1023). The jumps of the longitudinal velocity mea
sured in the~aa! geometry is localized in a narrow temper
ture interval ~1.5 K!, while for the other geometries th
jumps have some temperature smearing. The significant
perature hysteresis accompanying the anomalies attests t
first-order nature of this SPT.

We determined experimentally the two values of t
temperature at which the jumps of the longitudinal and tra
verse velocities are observed on cooling and heating.
value of the critical temperatureTc2 indicated in the figures
is the mean value between the temperatures of the jump
the longitudinal velocity@~aa! geometry# on decreasing and
increasing temperature. Let us mention some features of
first-order phase transition.

First, for the sound waves withqib one observes prac
tically no anomalies, although a slight irreversibility is di
cernable in this case as well~Fig. 1!. Second, the form of the
anomaly nearTc2 for longitudinal sound, measured in th
~cc! geometry, is preserved for the crystals, including
crystal not containing impurities~Fig. 2!, only the scale of

FIG. 4. Temperature dependence of the relative changes of the soun
locity in CsDy12xGdx(MoO4)2 for qia, uic andqic, uia. The inset shows
the temperature dependence of the relative changes in the sound ve
(qic, uiba) in CsDy0.96Gd0.04(MoO4)2 in the temperature interval 30–55 K

FIG. 5. Temperature dependence of the relative changes in the sound v
ity in CsDy12xGdx(MoO4)2 for qib, uic andqic, uib.
.
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the low-temperature shoulder on theDS/S(T) curve is
changed. Furthermore, increasing the gadolinium content
creases the ‘‘excess’’ part of the left shoulder of the cu
relative to the right. Taking into consideration that the sou
anomalies are ‘‘inherited’’ in all the impurity-containin
crystals, while the temperaturesTc18 , Tc19 , andTc2 depend
on the concentrationx, we have constructed the phase d
gram of these crystals~Fig. 6!.

One way of obtaining additional information about th
nature of the SPTs is to study the influence of magnetic fi
on them. For these crystals we chose the geometry~aa!, in
which all of the phase transformations under discussion
rather clearly expressed~Fig. 3!. It turned out that with in-
creasing magnetic fieldH the critical temperatureTc2 is
shifted quadratically to lower values in proportion toH2 ~in-
set in Fig. 3!. The critical temperatureTc18 is practically
independent of the value of the applied magnetic field. In
estingly, the anomaly of the longitudinal sound is sensitive
external magnetic field.

3.2. Ultrasound „discussion …

The phase diagram of the crystals was constructed on
basis of the similarity of the sonic anomalies in the series
crystals with different impurity concentrations and the te
perature dependence of the position of these anomalies.
upper and middle curves in Fig. 6 correspond to lines
SPTs with critical temperaturesTc18 andTc19 , respectively,
and the lower curve to the line of transitions with critic
temperaturesTc2 . We assume that in the presence of a s
ficient number of gadolinium ions the first-order phase tra
sition in the CsDy(MoO4)2 crystal will be transformed into a
sequence of three SPTs lying close in temperature. Su
phase diagram is possible if the phase transitions are cha
terized by interacting order parameters. Each of these o
parameters depends on the impurity concentration. This
termines the dependence~which is linear in the concentration
region studied! of the critical temperatures of the SPTs onx.
We stress that the order parameters interact differently w
the electronic subsystem, their interaction being regulated
impurities of non-JT ions. The dependence of the so
anomalies on the external magnetic field field nearTc2 is a

ve-

city

oc-

FIG. 6. Fragment of thex–T phase diagram of CsDy12xGdx(MoO4)2 crys-
tals (x is the concentration of the rare-earth impurity!. Lines of second-order
phase transitions~m,j!; line of first-order phase transitions~d!; first-order
phase transition in the crystal without impurities~s!.
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direct indication that the nature of this SPT is largely det
mined by the magnetoelastic coupling. We also note tha
dependence of the temperatureTc18 on the magnetic field
was seen, at least not at the available magnetic fi
strengths.

It has been established that the sonic anomalies in
doped crystals for different geometries are divided into th
groups. One can therefore discuss them on the assum
that they are due to three different phase transitions ly
close together in temperature. Let us discuss the natur
these phase transitions in view of the features of the so
propagation near the critical temperatures.

Since none of the transverse moduli exhibits noticea
softening nearTc18 ~Figs. 4 and 5!, it follows from the phe-
nomenological theory of SPTs9 that the order parameter i
not some linear combination of strain tensor compone
Consequently, the phase transitions atTc18 should be classed
by symmetry with the second-order improper ferroelas
transitions~there is no hysteresis aroundTc18). It is most
natural to suppose that as a result of the SPT a loss of tr
lational invariance occurs, accompanied by multiplication
the unit cell. In this case the order parameterh is of a scalar
character.

Let us now discuss the behavior of the longitudin
moduli in the region ofTc18 ~Figs. 1–3!. According to the
general theory of second-order phase transitions,9 jumps of
the longitudinal modulus can be due to the existence of te
of the type rh2C(uik) in the expansion of the thermody
namic potential, whereC(uik) is any linear combination o
strain tensor components which is invariant with respec
all symmetry transformations of the symmetric phase, anr
is the coupling coefficient. In any experimental geometry o
always has the invariantuii (uii is the trace of the strain
tensor!, which is responsible for the jump of the bulk mod
lus of compression at the SPT and, accordingly, for the ju
in the longitudinal sound velocities. The scale of the
anomalies is determined by the common coefficientr , so that
the anisotropy of the observed variations should be prop
tional to the ‘‘bare’’ sound velocities. However, it is see
from the data presented here that the change in sound v
ity in the geometry~bb! ~Fig. 1! is approximately two orders
of magnitude larger than the analogous changes for the o
geometries~Figs. 2 and 3!. This means that, besides the i
variant rh2C(uik) discussed already, the expansion of t
thermodynamic potential has at least one other invar
r 1h2ubb with an anomalously large coupling coefficientr 1 .
According to the theory of elastic wave propagation
crystals,10 the invariance of some diagonal component of
strain tensor~in our caseubb) is an indication that that par
ticular direction is a longitudinal normal, i.e., a direction
which ‘‘pure’’ acoustic modes propagate. The standard c
dition ensuring the existence of a longitudinal normal is t
the wave normal coincides with an axis of symmetry~or is
perpendicular to a plane of symmetry!. Generally speaking
this condition is sufficient but not necessary, and a long
dinal normal can exist even for a propagation direction o
general kind,10 but such a direction is hit upon in a large
accidental manner and can hardly be what we have h
This direction can be determined rigorously if one knows
the independent components of the tensor of elastic c
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stants. However, our experiments do not permit us to ob
the completely set of tensor components.

Thus we assume that theb direction is an axis of sym-
metry in the system CsDy12xGdx(MoO4)2 near Tc18 , at
least for an appreciable part of the crystal.

According to x-ray structural data,6 the CsDy(MoO4)2

crystal at room temperature has a monoclinic lattice in wh
the twofold axis coincides with thec direction. In the tem-
perature interval 70–48 K~48 K is the critical temperature o
the first-order SPT! the structure is a mixture of twins of th
monoclinic phase with orthorhombic inclusions betwe
them. Below the SPT a new monoclinic phase is realized
the crystal, with a new monoclinic angle but with the sam
twofold axis as in the high-temperature monoclinic pha
~thec direction!. Unfortunately, there are no such data for t
impurity-containing crystals. Nevertheless, it may be hop
that the evolution of these structures is analogous.

However, a consistent interpretation of the results of
acoustic experiments is possible only in case when the t
fold axis of the monoclinic phase in the doped crystals co
cides theb direction aboveTc18 . The contradiction with the
results of Ref. 6 can be resolved by assuming that the jum
of the sound velocity in the~bb! geometry observed by u
are due to a structural transition in the orthorhombic inc
sions.

Since the longitudinal and transverse velocities near
critical temperaturesTc18 and Tc19 experience similar
anomalies, the phase transformation atTc19 probably occurs
by an analogous scenario. Therefore, all the arguments
forth above as to the character of the SPT atTc18 also apply
to the case of the SPT atTc19 . The presence of two phas
transitions of the same type with close values of the criti
temperatures can be explained, e.g., by passage through
commensurate phases in the process of the structural reo
nization of the crystal.

Let us now discuss the phase transition atTc2 using only
the ultrasound data. Two possible scenarios for the SP
Tc2 can be suggested. The structural transformation is
either to a transition from one monoclinic phase to anot
with an accompanying jumplike change in the monoclin
angle ~as was in fact indicated in Ref. 6! or to a jumplike
transition to a monoclinic phase of the orthorhombic int
layers mentioned above. It can be assumed that the value
the diagonal components of the elastic constant tensor, w
reflect the scale of the forces acting between atoms of
crystal lattice, change weakly at the phase transition. T
changes in the sound velocities in any geometry of the
periment are due to both rotation of the principal axes of
tensor and to the appearance of new components in it~upon
the transition from the orthorhombic to the monoclin
phase!. Then, if theb axis remains a longitudinal normal a
the SPT, analysis of the corresponding Christoffel equati
shows that the velocities of theqib acoustic modes that re
main ‘‘pure’’ do not change. At the same time, for the oth
geometries (qia or qic) the interference of the elastic con
stants should lead to jumplike changes of the sound veloc
Let us discuss further the features of the hysteresis loop
the velocity of longitudinal sound measured in the~cc! ge-
ometry ~Fig. 2!.

Despite the different width of the hysteresis loops f
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crystals with different impurity concentrations, the anomal
at Tc2 are similar for all the crystals. It is known that th
width of the hysteresis loop at a first-order SPT depends
the particular nucleation processes for each sample.

Indeed, the value of the hysteresis is influenced by
complex domain structure in the vicinity of the temperatu
of the first-order SPT in the undoped samples, which is
to the significant lattice strains and also to the presenc
twins in the low-temperature phase.6 The features of the tem
perature dependence of the sound velocity measured in
~cc! geometry in the vicinity ofTc18 and of Tc19 are deter-
mined by the proximity to the fields of lability of the first
order phase transition atTc2 . Our experiments showed tha
for the other geometries the hysteresis loops are closed
low Tc19 for all concentrations. Therefore we assume that
sonic anomalies along the linesTc18(x) and Tc19(x) the
sonic anomalies are not accompanied by hysteresis,
these are second-order phase transitions.

We note in conclusion that one of the shortcomings
Ref. 3 was the actual absence of a transition in going fr
the doped crystals to the undoped CsDy(MoO4)2 . In Ref. 3
the structural transformation was determined only from
vanishing of acoustic contact, which is probably due to
significant jumps in the unit cell parameters of the crystals
the first-order SPT.11 In the present study, by suitably choo
ing the experimental geometry and decreasing the are
acoustic contact we were able to record the shape of
anomalies in the sound velocity in the vicinity of the pha
transitions both for crystals with a low impurity concentr
tion and for the undoped CsDy(MoO4)2 ~Fig. 2!. Despite the
change in scale of the effect and the increase in the widt
the hysteresis loop, it is clear that the anomalies all have
same type of shape and that there are no additional fea
on the low-temperature wing of the temperature depende

The ultrasonic measurements give information o
about the macroscopic changes in the system. The chang
the absorption spectra at the phase transitions permit on
assess the local distortions of the structure and carry a
tional information about the nature of the phase transitio
and that was our motivation for studying them.

3.3. Absorption spectra „experiment …

Figure 7 shows the changes in the absorption spectr
the crystal CsDy0.93Gd0.07(MoO4)2 in the temperature region
5–33 K in the energy interval 13200– 13300 cm21. In that
energy region the absorption of light in the free dysprosi
ion occurs on account of electronic transitions from the l
els of the ground term6H15/2 to the excited multiplet6F3/2.
As we see, the absorption spectrum is modified as the t
perature is raised.

At low temperatures the absorption spectrum of
doped crystal, like that of CsDy(MoO4)2 , consists of an in-
tense doublet with an interval of;8 cm21 between compo-
nents and a weak satellite on the high-energy side~Figs. 7
and 8!. As is seen in the figures, the spectra differ in t
position of the doublet—in the CsDy(MoO4)2 crystal it is
shifted by approximately 75 cm21 to lower energy. In the
impurity-containing crystal the band arising with decreas
temperature on the low-energy side is, like the main li
asymmetric and is apparently also a doublet~Fig. 7!. In
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CsDy(MoO4)2 the spectrum typical of the low-temperatu
phase changes with a jump near 42 K, and above that t
perature it takes on the form of two well-resolved bands w
an interval between them of 41 cm21 ~Ref. 12!, as in the
doped crystal near 28–30 K~Fig. 7!. We note that in the
crystal containing 7% Gd31 this temperature is close to th
value ofTc2 determined from the ultrasonic measuremen

The spectrum of the doped crystal near 32 K has so
slight changes from that at 30 K~Fig. 7!: there is a change in
the relative values of the intensities of the components of
spectrum for the two polarizations, while the energy inter
between them remains unchanged. In the vicinity of 50
there are no qualitative changes in the spectra which co
indicate a phase transition.

Since the spectrum contains poorly resolved lines of d
ferent intensity, it was necessary to do a computer proces
of the spectrum. The spectrum was modeled by a set of li
the number of which was decided on the basis of additio
considerations set forth below. Figure 9a shows the dec
position of the spectrum at 25 K, and Fig. 9b shows
temperature dependence of the components of the fine s
ture of the spectrum of the CsDy0.93Gd0.07(MoO4)2 crystal.

In the computer modeling it was assumed, first, tha
doublet structure of the lines is present for the main band
the band that is rising. The spectrum was described b
superposition of lines having the characteristic shape fo
damped oscillator, with temperature-dependent parame

FIG. 7. Absorption spectra for different temperatures
CsDy0.93Gd0.07(MoO4)2 , Eib, the transition6H15/2–

6F3/2 . The inset shows
the level scheme above and belowTc2 .
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the intensity, half-width, and position of the maximum. T
change in line shape has almost no effect on the positio
the maxima of the spectral components in the tempera
region where the maxima of the lines were rather well
solved.

Second, forT.28 K the high-frequency component o
the spectrum has a half-width that does not exceed the h
width of an individual component of the doublet atT
,28 K, and it is a single line. Therefore in the decompo
tion of the spectrum it was assumed that above that temp
ture either the doublet structure of the lines is absent or
second component has a low intensity.

Third, in the temperature region 20–28 K a weak line
appears between the main and the rising doublets, leadin
asymmetry of the adjacent line~Fig. 7!. Therefore, to de-
scribe the spectrum formally we introduced one more co
ponent into consideration~line 3 in Fig. 9a!. In addition, the
modeling took into account a high-energy spectral com
nent ~line 6!, which was observed at low temperatures. F
ure 9b shows the temperature dependence of the maxim
the lines, based on the modeling results.

To elucidate the nature of the low-temperature doub
we recorded the absorption spectrum corresponding to
transition to another excited level—the spectrum of the tr
sition 6H15/2–

6F5/2 ~Fig. 10!. At low temperatures one would
expect three lines for this transition. However, besides
three intense lines, the spectrum at 6 K contains weak nar

FIG. 8. Absorption spectra for the crystals CsDy0.93Gd0.07(MoO4)2 ~1! and
CsDy(MoO4)2 ~2! at a temperature of 6 K; the6H15/2–

6F3/2 transition,Eib.
of
re
-

lf-

-
ra-
e

to

-

-
-
of

t
he
-

e
w

lines on the low-frequency side and weak broad lines on
high-frequency side. Increasing the temperature, as can
seen in Fig. 10, mainly affects the low-frequency wing of t
saturated line: two satellites with intervals of approximate
50 and 20 cm21 arise atT520 K. Despite the complex char
acter of the spectrum, one can conclude that the serie
three intense lines corresponds to the transition from
ground level to an excited triplet, and these lines are sin
~Fig. 10!. This last statement follows from the fact that th
line with half-width 15 cm21 cannot be the envelope of tw
bands split by 8 cm21 ~at a spectral resolution o
1.5– 2 cm21). The spectra measured at low temperatures
the two polarizationsEib andEic are similar and are shifted
as a whole by 2 cm21.

On the temperature dependence of the position of
maxima of the lines~Fig. 9b! one can see that the temper
ture 28 K is distinguished by kinks in the plots of the ener
position of the individual lines. Some of the lines are n
observed at all above that temperature.

Thus it follows from the experimental results that th
absorption spectrum of the doped crystal in the tempera
region 5–32 K is qualitatively altered, and the jumplik
changes, i.e., the vanishing of the doublets and the depo

FIG. 9. Decomposition of the spectral profile atT525 K, Eib ~a!; position
of the maxima of the lines for the transition6H15/2–

6F3/2 in the crystal
CsDy0.93Gd0.07(MoO4)2 with changing temperature~results of a calculation!
~b!; the distribution of the intensity of the envelope of the spectrum has b
logarithmized.
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ization of the lines, occur at temperatures of 28 and 32
which are close to the values ofTc2 andTc18 obtained in the
ultrasonic measurements on CsDy0.93Gd0.07(MoO4)2 . The
doublet structure of the spectrum is manifested for both
doped and ‘‘pure’’ crystals below the critical temperatureTc2

~28 and 42 K, respectively!. AboveTc2 the spectra of the two
crystals are practically indistinguishable.12 Therefore, it can
be assumed that the initial phase preceding the transition
Tc18 and Tc2 is the same in both crystals. Decreasing t
temperature from 28 to 5 K leads to a smooth increase in th
energy interval between the ground level and~apparently!
the second excited level by approximately 16 cm21 and also
to the rise of a line on the high-energy side~line 6 in Fig.
9a,b!. Let us turn to a discussion of the results.

3.4. Absorption spectra „discussion …

In the double molybdates the dysprosium ions occu
positions without a center of inversion, and for that reas
the intraconfigurational transitions of a dipole nature are
lowed. The unit cell of CsDy(MoO4)2 at room temperature
contains two dysprosium ions, and therefore the numbe
Davydov components is 2. In the phase preceding the
the number of components is doubled because the volum
the unit cell is doubled in comparison with the room
temperature phase. The odd~active in the absorption spectra!
excitations are energetically distinct in the different polariz
tions. In determining the possible number of lines in t
spectra one must also take into account the fact that
ground state of the term6H15/2 of the rare-earth ion is spli
by the low-symmetry crystalline field. The number of com
ponents is determined by the value of its total angular m
mentumJ515/2 and is equal to 8. In the excited states6F3/2

and6F5/2 the multiplicities of the Stark splitting are equal
2 and 3. Hence one can determine the expected numbe
lines in the spectra at low temperatures, when the exc

FIG. 10. Absorption spectrum in the CsDy0.93Gd0.07(MoO4)2 crystal at dif-
ferent temperaturesT @K#: 6 ~1!, 15 ~2!, 20 ~3!, 25 ~4!; Eib, the transition
6H15/2–

6F5/2 . The spectral slit is 2 cm21.
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levels of the ground multiplet are not occupied. Let us d
cuss the energy level~band! scheme of the ground and ex
cited multiplets of the dysprosium ions inferred from a
analysis of the experimental spectra.

The doublet structure of the transition from the grou
state6H15/2 to the excited state6F3/2 near helium tempera
tures may be due to both the presence of the Davydov c
ponents 0 – 08 and 0 – 18 of the transitions~Fig. 7! and to the
energy inequivalence of the rare-earth centers, and to
splitting of the excited state6F3/2. We determined that in the
series of transitions from the ground term6H15/2 to the com-
ponents of the excited term6F5/2 the lines are single, and th
Davydov ~polarization! splitting does not exceed 2 cm21.
This means that the doublet structure of the lines in the sp
trum for the transition6H15/2–

6F3/2 at temperatures below 2
K is determined by the splitting of the excited state6F3/2.
Comparing the temperature evolution of the spectra for
transitions6H15/2–

6F3/2 and 6H15/2–
6F5/2 ~Figs. 7 and 10!

and taking into account the appearance of new lines a
result of thermal population of the levels of the ground m
tiplet, we conclude that the first excited level of the grou
state of the ground multiplet6H15/2 of the dysprosium ions
lies at an energy near 20– 23 cm21. The level scheme recon
structed from the spectra for the6H15/2–

6F3/2 transitions is
shown in Fig. 7.

We note the fact that the satellites arising f
6H15/2–

6F5/2 ~denoted by arrows in Fig. 10! are observed
only for one of the most intense lines. This means that
absorption processes going from the excited levels~bands!
(1 – 08 and 2 – 08 in our case; see the scheme! are, first,
related to the intensity of the main transition and, second,
substantially weaker than the 0 – 08 and 0 – 18 transitions,
respectively. This implies that the rise of the lines is due
two-frequency processes occurring at the boundary poin
the band. Thus the single-ion approximation, which was u
to describe our spectrum, is valid only on the assumption
small dispersion of the branches. The small Davydov sp
ting is a measure of this dispersion.

On the other hand, the appearance of doublet structur
the main lines for the transition6H15/2–

6F3/2 is due to a
phase transition and reflects the distortions of the crystal
field near the dysprosium ions. The position symmetry of
rare-earth ions can change at the phase transition on acc
of the doubling of the number of layers in the unit ce
However, doubling of the layers occurs already at 50 K,5 and
the 8 cm21 splitting of the lines in the spectrum takes pla
only below 28 K. From this we conclude that at the SPT w
critical temperatureTc2 distortions probably arise in the
$(Dy– Gd)(MoO4)2%`

2 layer and, in our opinion, lead to th
appearance of the doublet structure of the spectrum~Figs. 7
and 8! in the low-temperature phase.

Let us discuss further the possible lattice distortions
the undoped crystal, starting from a comparative analysis
the low-temperature spectra of the cesium crystals and
KDy(MoO4)2 crystal, which can be regarded as a layer
polytype of them. Indeed, the unit cells of the initial phas
of both CsDy0.93Gd0.07(MoO4)2 and KDy(MoO4)2 contain
at least two$Dy(MoO4)2%1`

2 layers.5,13 The structure of the
layer and the oxygen polyhedron surrounding the dysp
sium ion are nearly the same in the two crystals. In the
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tassium molybdate the dysprosium ions are shifted slig
along the smallest cell parameter, forming a zigzag ch
along the intermediate cell parameter, in contrast to the
sium case.6 In addition, the (MoO4)22 tetrahedra in the po
tassium structure are rotated by a small anglea relative to
the plane of symmetry, which is parallel to~ab!.13 Let us
compare the absorption spectra of the potassium and ce
crystals in the low-temperature phases.

It is known14 that in the KDy(MoO4)2 spectra for the
transition6H15/2–

6F3/2 at low temperatures the interval be
tween components of the intense doublet correspondin
the transition from the ground state to the components of
excited state6F3/2 is ;8 cm21, i.e., the same value as in th
cesium crystals studied.

We assume that the distortion of the structure of
CsDy0.93Gd0.07(MoO4)2 crystal during the phase transform
tion leads to the same distortions of the local environmen
the dysprosium ions as for the KDy(MoO4)2 structure, this
coincidence being not only qualitative but quantitative
well ~we are referring to the agreement of the value of
energy interval between components of the doub
8 cm21). Taking into consideration the results of Refs. 5 a
15, let us discuss the changes in the spectrum with temp
ture due to the smooth changes in the position of the li
with increasing temperature.

The temperature dependence of the energy interval
in the region 6–50 K, reconstructed using the data in Fig.
is shown in Fig. 11. It is seen that with increasing tempe
ture the value of the energy interval~splitting! decreases, and
a kink appears on the temperature dependence at 28 K,
nearTc2 . The squares in Fig. 11 show the position of t
low-frequency Raman-active excitation~with energy
58– 42 cm21) that rises in the Raman scattering spectrum
the low-temperature phase.15 This excitation is even with re
spect to inversion and apparently corresponds to the tra
tion 0–2 between the ground and second excited levels o
ground multiplet~see the scheme in Fig. 7!. The close values
of the energy interval determined by the two methods~from
the absorption and Raman-scattering spectra! indicate that
the Davydov splitting of the even and odd components
small. We note that in the Raman scattering spectra in
low-temperature phase one observes an excitation with a

FIG. 11. Temperature dependenceDE(T) determined from the absorption
spectra~3! and Raman scattering spectra~h!.15 The inset shows the tem
perature dependence of the frequency of the (MoO4)2 deformation
vibrations.5 The dashed and dot-and-dash curves are the approximation
formulas~2! and ~3!.
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quency of 23– 25 cm21, which according to the scheme i
Fig. 7 corresponds to the 0–1 transition and, hence, to
position of the first excited level of the dysprosium ions.15 Its
position in the low-temperature phase varies with decreas
temperature in the same way as the position of the gro
state, unlike the case of the high-frequency excitation.

The inset in Fig. 11 shows the temperature depende
of the frequency of the deformation vibrations of th
(MoO4)22 tetrahedra surrounding the Dy31 ions ~the fre-
quency region;810 cm21).5,15 It is seen that the tempera
ture dependence of the energy interval between levels of
ground multiplet of the dysprosium ions is similar to th
temperature dependence of the frequency of the deforma
vibration of the (MoO4)22 anions. This correlation is appa
ently due to the fact that the phase transition in the ces
crystal is accompanied by a rotation of the tetrahedral ani
(MoO4)22. The ordering of the distortions of the oxyge
polyhedra surrounding the dysprosium ions is accompan
by an energy benefit in the electronic subsystem of the r
earth ions, i.e., by ordering of the cooperative JT type.

Thus one can conclude that as a result of the ‘‘freez
in’’ of the vibrations, including rotations of the tetrahedr
anions and displacement of the rare-earth ions along thc
axis ~the dysprosium ions have an analogous position in
potassium structure!, the structure of the low-temperatur
phase of CsDy0.93Gd0.07(MoO4)2 is distorted. As a result of
the phase transition the local symmetry of the JT center
altered and an additional, temperature-dependent split
arises between the fine-structure components of the spec
of the Dy31 ion; this splitting is discussed below.

The changes of the spectra with temperature can be
scribed qualitatively in the framework of a model for a tw
level spin system16 ~the Hamiltonian of which is analogou
to the Hamiltonian of interacting effective spins 1/2 in
transverse magnetic field!. In the mean field approximation
this Hamiltonian has the form

~1!

Here H1 describes the behavior of the pseudospin com
nent^Sz& arising as a result of the change in symmetry, i.
as a result of the interaction with the elastic subsystem.H1 is
associated with the behavior of the interval 0–2 in the m
lecular field (l1m), wherel is a constant characterizing th
interaction of the electronic subsystem with the elastic de
mations, andm5K^Sz&2 characterizes the nonlinear cou
pling between the elastic and electronic subsystems.H2 de-
termines the interaction of theSx components of the
pseudospin with the lattice, which gives rise to the init
splitting D in the spectrum and its temperature depende
without a change in symmetry.

The temperature behavior of the energy splittingW(T)
corresponding to the behavior of the interval 0–2
CsDy0.93Gd0.07(MoO4)2 is associated to the behavior of^Sz&
according to the formula17

~2!

by
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The normalized value of̂Sz& varies from 0 nearTc2 to 1 at
zero temperature, andW(T), W(0), andD are the splitting
between the ground and excited levels atT,Tc18 ,Tc2 , at
zero temperature, and atT@Tc2 , respectively. Formula~2!
takes into account the interaction of the pseudospin m
^Sz& with deformations of theAg and Bg types. The latter
alter the symmetry of the lattice and, accordingly, the lo
symmetry of the JT center. We note that in the case when
cell contains several inequivalent JT centers, the interac
of the deformationAg with the pseudospin mode can als
lead to a change in̂Sz&, on account of the rotation of th
axes of theg-factor tensors of the individual JT centers. Ta
ing into account the temperature dependence of the inte
D aboveTc2;28 K, we approximate the temperature depe
dence of the splitting in the low-temperature region as

W1~T!5~D11~W1~0!2D1!tanhW1~T!/2kT, ~3!

which is governed by the influence of the thermal contract
of the lattice on the position of the levels, i.e., the interact
of the pseudospin components^Sz& with the Ag deformation
without allowance for the change in this interaction near
critical temperature. HereD1 , W1(T), and W1(0) are the
values of the interval 0–2 at temperaturesT@Tc1,c2 , at
lower temperaturesT, and at zero temperature, respective

The solid curve in Fig. 11 corresponds to the temperat
dependence of the experimentally measured interval betw
the ground and excited level in the absorption spectrum
can be described by a superposition of~2! and ~3! for m
50. It can be seen that there is agreement nearTc2;28 K.
At temperatures in the vicinity of 20 K the deviation excee
the experimental error and is due to both the insufficien
correct application of the two-level model for the descripti
of the temperature behavior ofW(T) and to the necessity o
taking into account the interaction of the electronic sta
with the compressive~expansive! deformations, i.e., defor
mations of theAg type, which change near the phase tran
tion ~their change reflects the behavior of the longitudin
moduli, Figs. 1 and 3!. It is possible that the anomalou
increase below 28 K of the longitudinal velocity measured
the ~cc! geometry~Fig. 2! reflects this interaction. Further
more, the phase transition at the temperaturesTc2 is a first-
order, close to second-order, SPT, and jumps can be obse
in the spectra.

The analysis done form50 formally describes a second
order phase transition. The first-order phase transition
served in the ultrasonic studies can be described in an an
gous way, as was done in Ref. 18. For this it is sufficient
take into account the nonlinear coupling between the e
tronic and elastic subsystems. Taking such a coupling
account is equivalent to taking into account the interaction
the electronic subsystem with low-energy optical phonon

Let us discuss one more component of the spectrum
the line6 ~Fig. 9b!. As is seen in Fig. 7, the intensity of thi
line ~indicated by an arrow! increases with decreasing tem
perature. The intervals between the high-frequency com
nent5 and this line6 and between lines3 and5 ~Fig. 9b! are
the same,;23 cm21. This interval corresponds approx
mately to the position of the first excited level of the grou
state6H15/2 ~see Fig. 7!. In our opinion, the appearance of th
e
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satellite6 is due to the simultaneous excitation of the tran
tions 0 – 08 at one rare-earth center and the 0–1 transition
the second of a pair of interacting rare-earth centers~it is
analogous to the appearance of pair processes in cry
with exchange-coupled pairs of magnetic ions!.

We note that pair excitations can additionally be allow
in the dipole approximation at energetically inequivalent
centers coupled by an elastic interaction~the analog of the
exchange interaction!. Such centers can exist for two rea
sons. First, because of the nonisomorphicity of the subs
tion of gadolinium ions by dysprosium in the initial lattice
Second, because of the appearance of energetically ineq
lent centers arising on account of the doubling of the unit c
volume at the phase transition and on account of the low
ing of the symmetry of the low-temperature phase in co
parison with the system of the initial phase. Let us disc
the second of these possibilities.

We assume that the number of dysprosium ionsN occu-
pying a general position in the unit cell is twice as large
the ordern of the factor group. This is possible if, e.g
multiplication of the unit cell volume occurs at a phase tra
sition to a phase with a low lattice symmetry, viz., when t
SPT from the orthorhombic phase withZ54 occurs to a
monoclinic phase withZ58. Then, besides the Davydo
components, which arise on account of the interaction
tween energetically equivalent rare-earth ions~they are re-
lated by symmetry elements of the factor group! there arise
additional Davydov components due to ions not related
any symmetry elements with the first group of ions. It fo
lows from our results that if inequivalent centers exist, th
the energy difference between them is small and does
exceed 1 – 2 cm21 for the 0 – 08 transition.

Thus the following conclusions can be reached on
basis of an analysis of the absorption spectra. We attrib
the changes observed in the spectra
CsDy0.93Gd0.07(MoO4)2 in the interval 28–10 K we attribute
to the cooperative JT effect, the temperature of which co
sponds toTc2 . It is assumed that analogous changes occu
the spectra of all the doped crystals, and they are due
phase transitions occurring nearTc2 , i.e., along the corre-
sponding lines of phase transitions on thex–T diagram~Fig.
6!. At the temperatureTc18 only a redistribution of the inten-
sities of the lines in the electronic spectra is noticed.

4. CONCLUSIONS

We have constructed the phase diagram of the system
crystals CsDy12xGdx(MoO4)2 for x50, 0.03, 0.04, 0.05,
0.07, 0.1, and 0.25, based on experimental data obtaine
two independent methods. The first-order phase transitio
the low-temperature phase in CsDy(MoO4)2 is modified in
the doped crystals and is observed as a cascade of p
transitions lying close together. For crystals containing a
dolinium impurity with a concentrationx.0.03, two lines of
second-order phase transitions and one line of first-or
transitions are observed; the anomalies of the longitud
and transverse sound velocities along these lines are diffe
but they are similar in all the crystals. Such a phase diag
can arise in the case of a multicomponent order paramete
a crystal without impurities the multicomponent nature of t
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order parameter leads to a first-order phase transition bec
of the nonlinear interaction of the components.

It was established on the basis of ultrasound studies
the observed second-order phase transitions
CsDy12xGdx(MoO4)2 are improper ferroelastic transition
as a result of which the unit cell increases in volume by
integer number of times, apparently along thec direction in
the $Dy(MoO4)2%`

2 layer. It was established that the low
temperature phase~belowTc18 andTc19) cannot have highe
than monoclinic symmetry. Since the initial phase~above
Tc18) already contains two$Dy(MoO4)2%`

2 layers, in the
low-temperature phase the number of inequivalent rare-e
JT centers is at least quadruple the number at room temp
ture. Thus the layered crystals studied are multicenter Ja
Teller magnetoelastics.

The first-order phase transition atTc2 is accompanied by
qualitatively similar anomalies in the behavior of longitud
nal sound in both the ‘‘pure’’ and doped crystals. It w
established from the absorption spectra that the phase tr
tion at Tc2 is satisfactorily described in the theory of th
pseudo-JT effect. Therefore the response of the anomalie
the sound velocity measured in the~aa! geometry to a mag-
netic field up to 3.5 T is regular. On the other hand,
response of the anomalies of the sound velocity to a m
netic field was detected at the temperatureTc18 . There are
grounds for assuming that at the phase transitions along
lines Tc18(x) the lattice distortions are of a different natur
In view of the results of the spectral studies, it is natural
suppose that near that temperature the Dy31 ions are dis-
placed along thec direction without substantial distortion o
the electron shell.

In closing we wish to thank N. F. Kharchenko, V.
Fomin, and A. A. Zvyagin for helpful discussions, Ya.
Zagvozdina for help in the measurements, and V.
Kurnosov for providing the programs for processing t
spectra. Partial financial support for this study was provid
under INTAS Grant 94-935.
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Oscillations of the elastic superstructure formed by a lattice of screw dislocations
A. M. Kosevich*
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The equations of small oscillations of a dislocation lattice formed by a periodic system of
parallel rectilinear screw dislocations are formulated. The stability of such a lattice is discussed,
and it is shown that it brings about a corresponding spontaneous twisting of a crystalline
sample. The long-wavelength collective oscillations of an isotropic elastic medium containing a
dislocation lattice are described, among which are some which resemble plasma oscillations
in a system of electric charges. The dispersion relations are obtained for five branches of
oscillations, corresponding to the five degrees of freedom of the system under study~three
degrees of freedom for displacements of the medium and two corresponding to bending oscillations
of the dislocations!. The possibility of observing the resonance frequency in the oscillation
spectrum near the analog of the plasma frequency is pointed out. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1645186#
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1. INTRODUCTION

The physical properties of optical and acoustic super
tices have lately been attracting a heightened interest. B
superlattice we mean a macroscopic periodic structure
ated on the basis of an elastic or dielectric medium. A
called 2D superlattice of this kind can be formed, e.g., b
set of rectilinear defects aligned into a periodic ‘‘forest’’
parallel lines. The vortex lattices in type-II superconduct
and in superfluid helium are realizations of superlattices
this sort~see, e.g., the reviews1,2 and a recent paper3 on the
subject!.

Although screw dislocations in a crystal are analogous
vortices, the dynamics and interaction of dislocations dif
from those for vortices. Rectilinear screw dislocations int
act like rectilinear electric charges, and one expects that
cillations of the plasma type, which are impossible in pr
ciple in a vortex lattice, will appear in the dynamics of th
dislocation structures. Indeed, long-wavelength oscillati
of a 2D dislocation structure called a dislocation wall ha
dispersion relation typical for the plasma oscillations of a
electron gas.4,5 Unfortunately, the plasma oscillations in
system of rectilinear dislocations were omitted from Ref.

The term dislocation lattice will be understood to mea
system of parallel screw dislocations of the same sign, in
secting the plane perpendicular to them at the sites of a
lattice. The question naturally arises: What stabilizes suc
lattice of mutually repulsive dislocations?

It seems to us that the key point in the formulation of t
dynamical equations of the system of dislocations is to t
into account correctly the dislocation flux density directly
the equations of the elastic field~in the presence of moving
dislocations!.4,7 The proposed system of equations is rem
niscent of the equations of the electromagnetic field in
presence of moving charges but is somewhat more com
cated. The equations of motion of the ‘‘charges,’’ i.e., t
screw dislocations, are taken in the simplest form—an ela
string model. The dynamical equations of the elastic fi
2471063-777X/2004/30(3)/6/$26.00
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and the equations of motion of the dislocations compris
complete system, permitting description of small oscillatio
of the dislocation lattice.

We study long-wavelength oscillations of the dislocati
lattice, for which the wavelength of the oscillations is mu
greater than the lattice period. We obtain two independ
branches of oscillations. One branch comprises coupled
cillations of the density of the dislocation lattic
~compression–expansion waves! and transverse oscillation
of the elastic medium~waves of rotation about a direction o
the dislocation axes!. Corresponding to two degrees of fre
dom, this branch is characterized by two dispersion relatio
One of them pertains to the in-phase motion of the lattice
the medium and thus in the low-frequency limit has the fo
of an acoustic dispersion relation; the second pertains to
tiphase motion of the lattice and the elastic medium, a
therefore in the long-wavelength limit it has a gap, the f
quency of which involves the plasma frequency of the dis
cation lattice.

The other branch comprises coupled transverse osc
tions of the dislocation lattice and oscillations of the elas
medium which have a component of the displacement ve
ity along the dislocation axes. The indicated motions ha
three collective degrees of freedom: transverse oscillation
the dislocation lattice in the plane perpendicular to the d
location axes~the displacement of the dislocation lines o
curs in that plane!, and two degrees of freedom correspon
ing to expansion–compression waves of the elastic med
and waves of rotations in the elastic medium about axes
ing in that plane. Accordingly, this branch of oscillation
gives rise to three dispersion relations: two of them desc
in-phase waves of oscillations of the dislocation lattice a
elastic medium, and one describes antiphase oscillations

A description of the analogous results obtained in
simple, so-called scalar model has been published in Re
© 2004 American Institute of Physics
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2. STABILITY OF THE DISLOCATION LATTICE

A screw dislocation parallel to thez axis creates a one
component, purely shear displacement field: the displa
ment vectoru5(0,0,w) has only one nonzero componentw,
which depends on the coordinatesx,y. If an isolated screw
dislocation coincides with thez axis, then it creates an elast
field in which the value ofw acquires a fixed increment upo
passage around the axis:

w5
b

2p
f, f5arctan

y

x
, ~1!

where b is the Burgers vector of the dislocation, which
directed along thez axis:b5(0,0,b). The displacement field
~1! is related to the stress

~2!

whereszf is thezf element of the stress tensor in cylindr
cal coordinates.

We assume that the system of parallel screw dislocat
oriented along thez axis and intersecting the (x,y) plane at
discrete, periodically arranged points form a 2D lattice,
unit cell of which has areaS0 : S5NS0 , where S is the
cross-sectional area of the sample in the (x,y) plane, andN
is the total number of dislocations. The coordinates of th
points in the equilibrium lattice are

~3!

whereaa (a51,2) are the basic translational vectors of t
lattice (aa;a, wherea is the distance between neighborin
dislocations!.

In organizing such a lattice of screw dislocations
should be kept in mind that screw dislocations of the sa
sign repel one another as like charges.4 Therefore, such a
lattice cannot be found in equilibrium without compensati
of the repulsion of the dislocations. The vortex lattice in
superconductor is stabilized by the magnetic flux through
conductor. The vortex lattice in superfluid helium is sta
lized by torque exerted by the vessel containing the heliu
An analogous ‘‘external field’’ exists even in the case o
lattice of vortex dislocations in a sample free from exter
influences.

Consider a crystalline sample in the form of a cylinder
large radiusR ~in the limit R→`). A large number of screw
dislocations parallel to the axis of the cylinder form a 2
lattice with a unit cell areaS0 in the (x,y) plane. As we are
primarily interested in the macroscopic~averaged! properties
of the lattice, we assume that the dislocations are distribu
continuously with a density 1/S0 . Recall that a dislocation
lying along the axis of the cylinder creates a stress field~2!
around the axis. But because the stress field of the sc
dislocations is similar to the electric field of linear charges
currents, the stresses at a distancer from the axis of the
cylinder are created by all the dislocations intersecting
areaS5pr 2 around the axis of the cylinder and are equal
the stresses around one dislocation lying along the axis o
cylinder (x5y50) and carrying the total ‘‘charge’’~Burgers
e-

s

e

e

e

e
-
.

l

f
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vectorbS/S0) of all those dislocations:

~4!

These stresses, first, create a force acting on a disl
tion lying a distancer from the axis of the cylinder:

~5!

Second, although the dislocation field~4! satisfies the
boundary conditionss rr 5s rz5s rf50 on the free lateral
surface of the sample, it creates the following moment
torque on the end of the cylinder:

~6!

Thus we see that the dislocation lattice creates stre
that generate nonzero torqueMz on the ends of the cylinder
If the ends of the cylinder are free, then the stress field~4!
does not satisfy the boundary conditions on the ends~even if
the latter are infinitely remote!. Consequently, the true solu
tion of the equations of equilibrium of the cylinder mu
include the additional stresses that compensate the to
Mz , i.e., that produce an average torqueMz on the ends of
the cylinder.9 These stresses~and the corresponding displace
ments! are easily obtained from the theory of the torsion
rods. It is known that in the torsion of a rod under the infl
ence of a torqueMz a displacement vectoruf arises which
makes the angle of torsion uniform over the length of t
rod:

~7!

whereC5(1/2)pGR4 is the torsional stiffness of the cylin
drical rod.

Taking ~6! and~7! into account, we easily write the dis
tribution of the additional displacements and stresses in
cylinder:

~8!

The stresses described by the second relation in~8! can
be looked upon as a certain external field in relation to
dislocation lattice. Comparing~8! and ~5!, we see that the
interaction force of a given dislocation with the remainin
continuously distributed dislocations is exactly compensa
by these ‘‘external stresses.’’ This means that the expec
repulsion of the discrete dislocations calculated according
formula~5! with the use of~2! is eliminated on average whe
the boundary conditions and symmetry of the problem wit
continuous distribution of dislocations are taken into a
count. In other words, the equilibrium state of the dislocat
lattice is stabilized by the twisting of the sample.

Since the average stresses created by the whole la
are compensated, it is necessary to eliminate the ave
dislocation stresses from the force of interaction of each
location with the remaining dislocations in the lattice. Co
sequently, in the proposed scheme the lattice of screw di
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cations of the same sign is treated as if in the presence
background of continuously distributed dislocations of t
opposite sign.

3. DYNAMICAL EQUATIONS OF THE ELASTIC FIELD WITH
SCREW DISLOCATIONS

The elastic field of the dislocations is determined, na
rally, by their spatial distribution~the dislocation density ten
sora ik(x,t), i ,k51,2,3) and their fluxes~the Burgers-vector
flux density tensor4,7 j ik(x,t)). In the general case the ind
cated densities are related by the analog of the contin
equation:

~9!

whereeikl is an antisymmetric unit tensor of the third ran
and¹i5]/]xi . In the case of an individual dislocation inte
secting the planez5const at a pointx05(x0 ,y0) these den-
sities are equal to

~10!

wheret is a unit vector tangential to the dislocation line,b is
the Burgers vector of the dislocation, and

~11!

whereV is the velocity vector of an element of the disloc
tion ~in the case of rectilinear dislocations directed along
z axis, this vector has only two components:Va51,2).

If the dislocations are distributed in a crystal, then it
impossible to introduce a displacement vectorw of the me-
dium as a single-valued function of the coordinates, and
deformation of the medium is described by a distortion t
sor uik ( i 51,2,3).4,7 The distortion tensor is the primar
independent characteristic of the deformation of the med
~its symmetric part defines the strain tensor! and appears in
the basic equation of the theory of elasticity of a crys
containing dislocations:

~12!

If the dislocations move, then Eq.~12! remains in force,
but a vectorj appears. The introduction of a dislocation flu
density is a key point in the construction of the dynam
elastic field, since it determines one of the basic equation
the theory of moving dislocations:4,7

~13!

In the present case of screw dislocations lying along
z axis, the Burgers vector has only one nonzero compon
bz5b, and therefore the indexk in Eqs.~10! and~11! enters
as a parameter, and it is convenient to introduce the ve
notation for the flux density of the Burgers vector:

~14!

In addition, we take into consideration that in the problem
the oscillations of a dislocation lattice the velocity of th
dislocation is a small quantity, and in the approximation l
ear inV the vectort in the definition~11! can be assumed t
f a
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be directed always parallel to thez axis ~it is convenient to
settz521). Then j z50, and

~15!

where the matrix«ab is equal to

~16!

Then Eq.~13! takes the form

~17!

The dislocation flux density in the lattice is the sum
the quantities~15! over all the lattice:

~18!

In the problem of small oscillations of a lattice of scre
dislocations relation~18! contains sufficient information for
calculating the contribution of the moving dislocations to t
time dependence of the elastic field. Indeed, the velocity
displacement of an element of the elastic medium,v(x,t), is
the solution of the following equation, which is reconcile
with the basic equation of the dynamic theory of elastic
and with Eq.~13!:4,7

~19!

wherer is the density~mass per unit volume! of the sub-
stance, andl iklm is the elastic-constant tensor of the cryst

However, Eq.~19! does not in any measure take in
account the discreteness of the medium and the presen
the so-called Peierls relief. The latter is due to the obvio
physical circumstance that even small displacements o
dislocation relative to the crystal lattice requires the perf
mance of a definite amount of work, an additional for
arises which is applied at the point of the dislocation and
proportional to the value of the relative displacement b
tween the medium and dislocation. For us it is more con
nient to introduce this force later in the discussion of t
equation of motion of the dislocation. We now note that fo
lattice of screw dislocations in an isotropic medium, Eq.~19!
simplifies:

~20!

wherect andcl are the velocities of transverse and longit
dinal sound, respectively. It is convenient to rewrite Eq.~20!
in components:
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~21!

~22!

Since the Green tensor for the dynamical equation of
theory of elasticity of an isotropic medium is known in e
plicit form, Eqs.~20!–~22! allow us to express the velocit
of displacement of the elements of the medium directly
terms of the spatial derivatives of the dislocation flux dens

4. DYNAMICS OF THE DISLOCATION LATTICE

Thus, if the distribution of dislocation fluxes is know
then we have equations describing the dynamic elastic fi
in the sample. In order to close this system it is necessar
write equations determining the velocities of the disloc
tions, i.e., equations of motion of dislocations under the
fluence of the elastic fields. The simplest form of such
equation is the equation of vibrations of an elastic string.
U(n,z,t) be the displacement vector of an element of thenth
dislocationU(U1 ,U2,0), the time dependence of which d
termines the velocity of the dislocation:Va5]Ua /]t, a
51,2. Then the aforementioned equation has the form~we
omit the index specifying the number of the dislocation!4,7

~23!

Herem is the effective mass per unit length of the disloc
tion. The main part of the effective mass in the so-cal
logarithmic approximation is the field mass~the inertial mass
of the elastic field created by the dislocation!:

~24!

whereRcurl is either the radius of curvature of the dislocati
line or the wavelength of the bending vibrations, andr 0 is
the interatomic distance. However, the true mass of a
length of the dislocation exceeds that value, since the
structuring in the core of a moving dislocation entails t
motion of a portion of the atoms in the vicinity of the axis
the dislocation at distances of the order ofr 0 from it. The
order of magnitude of the mass of the atoms inside a tub
radius r 0;b per unit length of the dislocation can be es
mated asrr 0

2;rb2. Comparing this estimate with~24! and
remembering that this mass must be added to~24!, one will
understand that the effective mass per unit length of a di
cationm.m* .

Further,h is the linear tension of the screw dislocatio
created by the elastic interaction of a given element of
dislocation with the other parts of the same dislocation:

~25!

The corresponding force determines the self-effect of
curved dislocation; it is due to the self-energy of an in
vidual dislocation loop.
e
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The forcef describes the elastic interaction of a give
dislocation with the remaining continuously distributed d
locations; it is given by

~26!

wheresb , ubz , anduzb are the stresses and distortions af
subtraction of the elastic fields of the uniformly and contin
ously distributed dislocations linked with the elastic mediu

Finally, S is the force due to the discreteness of the l
tice, including dissipative forces. As we are interested in
dispersion relation for small oscillations, we neglect the l
ter and take the forceS in the form

~27!

where v0 is the oscillation frequency of the dislocatio
structure in a valley of the Peierls relief.

However, it should be kept in mind thatU is, of course,
the displacement of the dislocation with respect to the m
dium, i.e., that part of the displacement of an element of
medium which is responsible for the plastic deformation.7 It
can be written asU5ug2u, whereug is the geometric dis-
placement of the medium at the point where the elemen
the dislocation line is located, andu is the elastic displace
ment of an element of the medium, giving rise to an elas
distortionui j 5¹iuk .

Force~27! derives from the additional energy arising o
account of the aforementioned work of displacement of
dislocation relative to the medium, which is convenien
written in the form

~28!

It is clear that the energy~28! also gives rise to a force
densityf i

D52]E/]ui acting on volume elements of the me
dium at the places where the dislocations that have b
displaced from their equilibrium positions are located. It
given by

~29!

The force density~29! should be included in the main equa
tion of motion of the elastic medium, and its time derivati

~30!

should be added~after being divided byr! to the right-hand
side of Eq.~20!.

Having the equations of motion of the dislocations~23!
and the equations of the elastic field, either in the form~20!
or in the form~21!, ~22!, supplemented by the force densi
~29!, one can study the collective oscillations of the disloc
tion lattice and elastic medium.

5. LONG-WAVELENGTH COLLECTIVE OSCILLATIONS

Let us investigate the long-wavelength oscillations of t
dislocation lattice, assuming that the wavelength of the
cillations is much greater than the lattice perioda (ak
!1). In this approximation the distribution of the disloc
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tions can be assumed continuous, characterized by its de
n(x,t). In equilibrium n5n0 , wheren051/S05const. The
lattice dynamics is determined mainly by the average dis
cation flux densityj , which in the linear approximation ha
the nonzero components

~31!

whereV is the average velocity of the dislocations. The v
locity V must be determined by the equation of motion of t
dislocation~23!. As we are interested in effects of a pure
field origin, we neglect the effect of the Peierls relief, i.e., w
setv050. We rewrite the equation of motion~23! using~26!
and ~27!:

~32!

wheres is the velocity of the dislocation bending wave (s2

5h/m). Recalling the remarks made in regard to the eff
tive mass per unit length of the dislocation, we assums
,ct .

We differentiate Eq.~32! with respect to time and us
Eq. ~13! and also expression~31!. After elementary calcula-
tions we obtain

~33!

where we have introduced the notation

~34!

The frequencyvpl is the analog of the plasma frequency.
We reconcile the notation in~33! with Eqs. ~21! and

~22!, for which purpose we introduce the average tw
dimensional flux density of dislocation lines

~35!

Then in place of~33! we write

~36!

where we have used the notation

v ik5¹ivk1¹kv i , i ,k51,2,3.

It is easy to see that the equations relating the functi
P5div J[¹aJa and (curlv)z separate out from the rest o
the dynamical equations and form an autonomous pair:

~37!

~38!
ity

-

-

-

-

s

For collective oscillations of the type exp(ik•x2 ivt),
Eqs.~37! and~38! determine a branch of oscillations with a
anisotropic dispersion relation, which we shall write in t
implicit form

~v22ct
2k2!~v22vpl

2 2s2kz
2!5vpl

2 ~ctkz!
2. ~39!

The quadratic equation~39! has two roots, which give a
simple dependence of the frequency on the wave vecto
the long-wavelength limit (ck!vpl).

1. An anisotropic dispersion relation of the low
frequency oscillations of the acoustic type:

~40!

whereu is the angle between the wave vector and thez axis
(kz5k cosu). If the dispersion relation is continued into th
region of large wave vectors, then one can see that w
increasing k this relation approaches the curve ofv2

5s2kz
2 .

2. An anisotropic dispersion relation with a gap~high-
frequency oscillations!:

~41!

Let us again trace the dispersion curve of the branch in
region of large wave vectors. With increasingk this curve
approachesv25ct

2k2. It is seen that both dispersion rela
tions are indeed highly anisotropic.

Thus one branch of collective oscillations corresponds
coupled oscillations of the transverse components of
elastic field (curlv)z and the longitudinal expansion
compression oscillations of the dislocation lattice (P). Of
course, the plasma frequency is incorporated in the cha
teristic of those oscillations. In a wave propagating in t
(x,y) plane, the fields curlv(x,y,t) and P(x,y,t) become
independent and oscillate with the dispersion relations

v25ct
2~kx

21ky
2!, v5vpl .

The transverse oscillations of the lattice are related to
oscillations of the vector variableR5curlJ and with the
longitudinal oscillations of the elastic field (divv) and that
part of the transverse oscillations of the elastic field which
included in the coordinate dependence of the velocity co
ponentvz , i.e., in the components (curlv)a , a51,2. This
branch of oscillations is described by Eq.~21! and by the
following obvious pair of equations:

~42!

~43!

The solution of equations~21!, ~42!, and~43! in the form
of harmonic plane waves leads in an obvious way to
following dispersion relation, which is of third order wit
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respect tov2:

~44!

Although this is a rather awkward equation, its roots a
easily analyzed in the long-wavelength limit, when one c
drop terms higher than quadratic in the expansion of
frequency in powers ofk. The high-frequency branch begin
with the expansion

~45!

and with increasingk it approaches a dependencev2

5cl
2k2. It is characteristic that the curve of Eq.~45! lies

above the curve of Eq.~41!; this means that the indicate
curves do not intersect ask increases.

In the low-frequency region two branches of the acous
spectrum arise,v1,25c1,2k, the sound velocities in which ar
the roots of the quadratic equation

~46!

In the high-frequency limit one of the last two branch
approaches the dispersion relation for transverse so
while the second takes the form of the dispersion relatio

In discussing the behavior of the dispersion relations at la
values of the wave vector, one must be careful to anal
both the high-frequency and low-frequency branches. T
point is that the dispersion relations obtained are valid
l@a ~or ak!1). At large k a periodic dependence of th
dispersion relation of the lattice on the quasi-wave vecto
manifested, with the periodG of the reciprocal lattice:
v(k)5v(k1G), whereG52p/a. Therefore the dispersion
relations obtained are actually valid in all small neighb
hoods of any reciprocal lattice vectorg, i.e., for auk2gu
!1. The fictitious continuation of the curves of the low
branch fork;p/a, and also the inevitably arising interse
tion of the curves of the upper branch atk5((p11)/2)
e
n
e

c

d,

e
e
e
r

is

-

3(p/a), p51,2,3,... can be described only on the basis
the dynamical equations of the discrete dislocation latti
But this is the subject of a separate study.

On the basis of the long-wavelength treatment it is i
possible to say whether there is a band of forbidden frequ
cies between the upper and lower branches~a gap in the
spectrum!. However, it can be stated that in the frequen
spectrum there is a limiting frequencyvpl marking the lower
edge of the upper branch of oscillations, which clearly can
manifested in the resonance acoustic properties of a cry
containing a dislocation lattice. An important distinguishin
feature of this frequency is the dependence of its position
the density of dislocations in the lattice~on the value of the
lattice period!. The experimental observation of this proper
of the limiting resonance frequency would be direct con
mation of the presence of plasmonlike collective oscillatio
in the dislocation lattice.

The author thanks Oksana Charkina for assistance w
the organization of this article, Vasiliy Natsik for helpfu
comments, and Ali Najafi and Ramin Golestanian for prov
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considered here to the author’s attention.
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

Creep of beta-tin single crystals at subkelvin temperatures
V. D. Natsik,* V. P. Soldatov, L. G. Ivanchenko, and G. I. Kirichenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, Kharkov 61103, Ukraine
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Fiz. Nizk. Temp.30, 340–350~March 2004!

The creep ofb-Sn single crystals oriented for slip in the~100!^010& system is investigated in the
temperature range 0.45–4.2 K. A transient creep, decaying in time by a logarithmic law, is
registered both above and below 1 K. The temperature dependence of the coefficient of logarithmic
creep is studied in detail, and the existence of two qualitatively different regions of its
behavior is established: in the interval 4.2–1.2 K the coefficient increases linearly with decreasing
temperature, while below 1 K the creep acquires an athermal character and the coefficient
remains constant. It is shown that the regularities observed in the experiment are in accord with
the idea that the kinetics of creep in pureb-Sn is governed by the motion of dislocations
in the Peierls potential relief by a mechanism of nucleation of kink pairs on the dislocation lines.
This process entails the overcoming of a small effective potential barrier of the order of
0.001 eV: in the temperature regionT,1 K the nucleation of kink pairs occurs by a quantum
tunneling effect, and the creep is of a purely quantum character; at higher temperatures
the leading role is played by thermal fluctuations, and the deformation kinetics corresponds to
the classical ideas of thermally activated creep. Empirical estimates are obtained for the
density of mobile dislocations and the work hardening coefficient. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1645187#
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INTRODUCTION

For many years in the physics of plasticity and stren
of crystalline materials there has been particular interes
the so-called low-temperature anomaly—the substan
weakening or complete absence of temperature depend
of the plastic flow of crystals below a certain thresho
temperature.1 A clear manifestation of this anomaly was fir
registered in a study of the low-temperature creep of meta
crystals at temperatures in the liquid helium region.2–5 Prior
to the discovery of this anomaly it had generally be
thought that the low-temperature creep of crystals is due
the thermally activated motion of dislocations. In the mode
theories of low-temperature plasticity the possibility f
creep to exist under deep cooling conditions, when the in
sity of the thermal motion of the atoms is extremely low,
considered to be a manifestation of the quantum propertie
the carriers of the plastic deformation~i.e., dislocations! and
the influence of those properties on their mobility.6–8

Depending on the type of barriers that must be overco
by the dislocations, the manifestation of quantum effects
the kinetics of plastic deformation can be observed ove
rather wide interval of low temperatures—(1022– 1021)TD

(TD is the Debye temperature!.8,9 However, the experimenta
data of greatest interest for studying the quantum mec
nisms of plasticity are those obtained in the region of
tremely low temperatures~below 1 K!, where the influence
of thermal activation on the mobility of dislocations is e
tremely weak and their quantum properties are manifeste
pure form. However, at the present time such data are q
2531063-777X/2004/30(3)/8/$26.00
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rare: the existence of creep at temperatures below 1 K has as
yet been established only in two studies, which were done
single crystals ofb-CuZn10 and Zn.11 For this reason it is
necessary to add substantially to the list of crystals for wh
the plasticity has been studied at ultralow temperatures
obtain new experimental data on the manifestations of at
mal effects in that region, and to establish their connect
with the quantum mechanisms of plastic deformation.

The goal of the present study was to investigate the
netics of creep of single crystals of pureb-Sn in the tempera-
ture range 0.5–4.2 K. Tin belongs to the group of tetrago
body-centered crystals which have a large set of diverse
and twinning systems. We had previously established that
low-temperature plastic deformation ofb-Sn single crystals
of high purity, oriented for predominant slip in the syste
~100!^010&, is governed by the motion of dislocations in th
Peierls relief.12 Unlike other crystals of the Peierls type~the
bcc metals, ionic and alkali halide crystals, semiconducto!,
single crystals of pureb-Sn have a unique ability to maintai
a high plasticity down to very low temperatures, whic
makes them ideal objects for studying the motion of dislo
tions in the Peierls relief over a wide range of low tempe
tures, including the subkelvin region.

According to the data of Refs. 13 and 14, the yield po
of pureb-Sn single crystals, measured at a constant rate
tensile strain~active deformation!, ceases to depend on tem
perature below a temperature of the order of 1 K, i.e.,
characteristic signs of quantum plasticity appear. In Ref.
such behavior was explained by a transition from the th
© 2004 American Institute of Physics
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mally activated creep of dislocations in the Peierls relief t
tunneling of the dislocations through the potential barriers
that relief. A comparison of the results obtained under c
ditions of active loading and creep, and also an explora
of the correlation between those results, is the second go
the present study.

Finally, still another important circumstance is that t
dislocation creep ofb-Sn single crystal at very low strai
rates (1026– 1025 s21) at temperatures of the order of 1
and below reduces to a sequence of elementary corre
rearrangements of the atomic structure—the tunnel nu
ation of kink pairs on the dislocation lines. Such proces
are accompanied by the overcoming of very small effect
potential barriers of the order of 1023 eV,15 and are one of
the concrete examples of the manifestation of so-called m
roscopic quantum tunneling effects~see Ref. 14 for more
details on this!. Effects of this type are discussed and inve
tigated in the physics of weak superconductivity, in the ph
ics of low-temperature lattice and magnetic phase trans
mations, etc. Therefore the study of athermal~quantum!
creep ofb-Sn in the subkelvin temperature region opens
new opportunities for studying one of the topical problems
the modern quantum physics of solids.

1. EXPERIMENTAL TECHNIQUES

The single-crystal samples were grown from 99.999
pure stock in batches of 10 from a single seed by a modi
Bridgman method.16 They had a double-lobed shape~in the
jaws of the testing machine! with a working part of rectan-
gular cross section 253531.5 mm. The longitudinal axis o
the samples was in â110& direction, which is the most fa
vorable for slip in the~100!^010& system.

Experiments were carried out in the temperature inter
0.45–4.2 K on an apparatus described in Ref. 11. The us
liquid 4He as a coolant made it possible to achieve temp
tures of 1.8–4.2 K, while temperatures in the range 0.45
K were obtained in a3He dilution refrigerator. The tempera
ture was measured by a GaAs semiconductor thermom
and, in parallel, from the saturated vapor pressure of3He or
4He. The relative error in the temperature measurements
not over 1022.

The samples for study were placed inside a superc
ducting solenoid and strained under tension in the regim
creep in the normal state, for which a longitudinal magne
field H.Hc5309 G was produced in the solenoid, destro
ing the superconductivity ofb-Sn atT,Tc53.7 K.

The flow stress on the sample was increased in sm
steps ofDt50.2– 0.4 MPa~see Fig. 1!. The elongation of
the sample corresponding to each increment of stress
measured by an inductive strain gauge whose output si
was fed to a Shch302 digital voltmeter and then sent t
computer and displayed on the monitor. The accuracy of
measurements of the relative strain of the sample wa
31025 at a time constant of the measuring system of aro
0.15 s. Before the yield pointt0 was reached~for (Dt
,t0) the strain increments corresponding to the increme
of the applied load led to elastic straining of the sample, a
the curvesD«(t) corresponding to them had the character
tic G-shaped form. After the yield point was reached~for
(Dt.t0) theD«(t) curves exhibited a pronounced stage
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plastic flow with a decaying velocity~transient creep!. Series
of such curves obtained at different temperatures were
cessed and analyzed to ascertain the influence of the
strain of the sample and its temperature on the behavio
the main kinetic parameters of the low-temperature cree

Let us mention some of the fine points of the metho
used which play an important role in the conducting of t
experiments. First, each increment of external load on
sample was added at approximately the same values o
creep rate immediately prior,«̇st.1025 s21 ~Fig. 1b!. This
made for approximately the same starting level of effect
stress for all the creep curves recorded.

Second, the samples prepared for testing atT,1.8 K
were prestrained by 3–4% at a temperature of 1.8 K,
then the temperature was lowered to the desired tempera
and the loading was continued. This measure was taken
cause atT,1.4 K an incremental loading near the yie
point often causes a sharp, hard-to-control, and very la
strain increment (D«;6 – 7%),while at higher temperature
the uncontrollable strain jumps do not occur. This ‘‘instab
ity’’ of the creep is due to the fact that samples of pureb-Sn
under straining in the slip system~100!^010& at extremely
low temperatures have an easy-slip stage with a very
hardening coefficient and, in individual cases, even a yi
point. Thanks to the prestraining procedure we were able
obtain smooth creep curves all the way down to 0.45 K. F
some samples the jumplike strain growth was absent e
near the yield point, making it possible to obtain informati
about the parameters under study even at low degrees of
strain.

FIG. 1. Diagram of the stepped loading~a! and strain~b! of samples in the
creep regime:t is the applied stress,« is the relative strain,D«(t) is the
time-dependent strain increment within an individual creep curve.
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2. EXPERIMENTAL RESULTS

2.1. Time dependence of the creep

Figure 2 shows ‘‘machine’’ curves of the creepD«(t) of
b-Sn single crystals at several different temperatures in
interval 0.5–4.2 K for a fixed value of the total strain of th
sample,«50.07. For clarity the curves have been shift
relative to one another along the time axis. It is seen t
after an incremental loadingDt at the timetst all the curves
start with brief stages of accelerated creep, and after
maximum strain rate is attained~this time is denoted bytm)
the creep process goes over to a damped regime. It is
sumed that in the time intervaltm– tst a new regime of dis-
location motion is established in the crystal, caused by
increment of flow stress. In this study we have not devo
much attention the fragments of the creep curves corresp
ing to the accelerated strain. A detailed discussion of t
stage is given in Ref. 17.

The subsequent processing and analysis of the c
curves D«(t) recorded in the experiments was done w
allowance for the following arguments. It has long be
established1,18 that the decaying~transient! creep of crystal-
line materials under conditions of low temperatures is m
often described by a logarithmic time dependence

D«~ t !5a ln~bt11!, ~1!

wherea andb are parameters whose values depend on t
perature and on the structural characteristics of the sam
The logarithmic character of the transient creep ofb-Sn at
low temperatures 1.6–78 K was confirmed in our previo
study.19 However, we later showed15,17 that situations are
possible in which the time dependence of the decaying cr
has a more complicated character: in a number of cases
logarithmic stage of the creep is preceded by a brief ex
nential stage. This staged nature is due to the possibilit
realizing two regimes of dislocation motion during the cre
process: a logarithmic stage corresponds to a fluctua
~thermally activated or tunneling! regimes, while the expo
nential stage corresponds to a dynamic~above-barrier! re-
gime. In this paper we will be interested primarily in th

FIG. 2. Characteristic shape of the experimental creep curves forb-Sn
single crystals in the normal state; the curves correspond to the same d
of total strain of the samples,«.0.07. Notation:tst is the time at which the
load increment is applied, the pointM on the creep curves corresponds
the timetm at which the maximum creep rate is reached, andF corresponds
to the timet f of the start of the fluctuation regime.
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possibility of realizing the fluctuational motion of disloca
tions at subkelvin temperatures and in establishing the
ementary physical mechanisms that govern such mot
Therefore, in processing the experimentally recorded cr
curves the main problem is to separate out and analyze
logarithmic stage.

The solution of the problem described can be obtain
by constructing ‘‘machine’’ curves of the creepD«(t) in the
coordinates ln«̇–D«, where «̇5d@D«(t)#/dt. It is easy to
see that the logarithmic dependence~1! is equivalent to the
relation

ln «̇5 ln «̇~ t f !2a21@D«2D«~ t f !#. ~2!

Here t f is the time at which the transient creep starts to ta
on a logarithmic~fluctuational! character, and«̇(t f)5ab is
the starting rate of logarithmic creep. Figure 3 shows
creep curves in the coordinates ln«̇–D« corresponding to the
‘‘machine’’ curvesD«(t) in Fig. 2. It is seen in Fig. 3 tha
when one goes from the temperature of liquid4He ~Fig. 3a!
to the subkelvin region~Fig. 3c! the character of the time
dependence of the decay of the creep remains qualitati
the same: the creep curves fort.tm consist of two stages
the second of which is described rather well by relation~2!.

Figure 3 can be used to determine the value of the cr
deformationD«(t f) at which the creep starts to take on
fluctuational character at a fixed value of the temperatu
and by juxtaposing Fig. 3 with Fig. 2 one can determine
values of the timest f at which that stage begins. The resu
of such a separation of the logarithmic stages of the ‘‘m
chine’’ curves of the creep at different temperatures of
experiment but at a fixed value of the total strain of t
sample are shown in Fig. 4a. By determining the geome
parameters of the straight lines that approximate the gi
stage of creep in Fig. 3, one can obtain numerical value
the parametersa and b of the fluctuation creep at differen
temperatures~Table I!. The tabulated data allow one to con
struct fragments of the ‘‘machine’’ curves of the creep f
timest.t f in a form which illustrates explicitly the logarith
mic character of that stage~Fig. 4b!.

For working out a physical interpretation of the transie
creep the parametera is the more informative, and therefor
one of the important intermediate problems in the study is
obtain the experimental dependence of that parameter on
temperatureT, degree of strain«, flow stresst, etc. To es-
tablish the relationship ofa with each of these paramete
separately, the corresponding creep curves must be obta
at fixed values of all the other parameters that influence
behavior ofa.

2.2. Dependence of the coefficient of logarithmic creep on
the strain and temperature

In this paper we are primarily interested in the tempe
ture dependencea(T). To determine it we first obtained th
curves of the strain dependence of this parameter at fi
values of the temperature,a(«)T , on the basis of which we
determined the temperature dependence of the coeffic
a(T)« corresponding to a specified value of the prestrain«.

The character of the dependence of the parametera on
the strain and temperature is shown in Fig. 5. We note
the values ofa(«,T) given in Fig. 5 were obtained in a

ree
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processing of the creep curves initiated by approxima
equal increments of the flow stressDt;0.2– 0.4 MPa upon
the attainment of approximately equal starting values of
creep rate«̇st.1025 s21. It is seen in Fig. 5 that with de
creasing temperature the character of the strain depend
a(«)T changes. Thea(«)T curves obtained atT.1.2 K are
characterized by a rather sharp decrease ofa with strain at
low degrees of strain~up to 5%! and then this dependenc
become weaker and sometimes even vanishes compl
~Fig. 5a!. In the temperature interval 0.5–1.2 K the value
the coefficienta is insensitive to temperature, and at 0.5 K
is also insensitive to the degree of strain~Fig. 5b!.

The set ofa(«)T curves can be used to obtain the te
perature dependence of the coefficienta(T)« for fixed de-
grees of strain. The corresponding values ofa needed for

FIG. 3. Creep curves from Fig. 2 in the coordinates ln«̇–D« at different
temperatures.
ly

e

nce
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f
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constructing these curves can be determined from the po
of intersection of the curves in Fig. 5 with the straight lin
«5const. Thea(T)« curve for«50.07 is shown in Fig. 6a.
The most important detail of this curve is the threshold te
peratureTg separating the region with a pronounced te
perature sensitivity of the coefficienta and the region of
athermal behavior. In the first region the coefficienta de-
creases linearly with decreasing temperature, approac
zero when thea(T) curve is extrapolated to 0 K, while in th
second region it remains constant at all temperatures. Fo
value of the relative strain chosen here,«50.07, the thresh-
old temperature lies in the region 1.2–1.5 K, and compl
athermality sets in around 1 K. The temperature depende
of the coefficienta has a similar character for the other cro
sections of thea(«)T curves, both to the right and left of th
value «50.07. This means that with increasing strain t
type of barrier governing the motion of dislocations in t
active slip system ofb-Sn remains unchanged, and cons
quently so does the type of dislocation process that de
mines the character of the temperature dependence o
coefficienta.

FIG. 4. Time dependence of the increment of creep deformation for
fluctuation stage in direct~a! and semilogarithmic~b! coordinates.

TABLE I. Values of the parameters of logarithmic creep ofb-Sn single
crystals at different temperatures for a total strain of the samples«50.07.
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3. DISCUSSION OF THE RESULTS

Let us first mention the most important qualitative res
of our investigation: the experimental observation of tra
sient creep inb-Sn at subkelvin temperatures and the reco
ing of fragments of the creep curves having a fluctuatio
nature. This, together with the results of Refs. 10 and
means that the classical ideas of creep, i.e., that it is a t
mally activated process and so the creep of a decaying na
should vanish forT→0 K,18 must be applied judiciously a
extremely low temperatures.

As we mentioned in the Introduction, pureb-Sn single
crystals oriented for predominant slip in the~100!^010& sys-
tem belong to the class of metals with a high Peierls poten
relief. The plastic deformation of such crystals occurs ow
to processes of nucleation, dynamic expansion, and anni
tion of kink pairs on dislocations. The kink mechanis
brings about a displacement of dislocations from one tro
of the Peierls relief to another under the influence of an
fective stresst* . At comparatively low values of the effec
tive stresst* 5t2t i(«),tP ~t is the external stress applie
to the crystal,t i is the internal stress, andtP is the Peierls
stress! and at low temperatures the nucleation of kinks
brought about by thermal or quantum fluctuations. In t
case the fluctuation regime of dislocation motion is realiz
and the damping of the creep occurs on account of w
hardening, i.e., growth of the internal stresses. Fort* .tP

the motion of dislocations becomes above-barrier, the pla
deformation acquires a dynamic character, and the dam

FIG. 5. Dependence of the coefficienta on the value of the plastic defor
mation« at temperatures from 0.8 to 4.2 K~a! and from 0.5 to 1 K~b!. The
different symbols at the same temperature correspond to the data for d
ent samples.
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of the creep occurs as a result of a decrease of the densi
fast dislocations. A theory of the staged transient creep du
the regimes of dislocation motion named above was c
structed in Ref. 15. In the present paper we will be interes
in the possibility of existence, the regularities, and t
mechanisms of fluctuation creep at temperatures of the o
of 1 K.

According to Ref. 15, the transient creep rate«̇(t),
which is determined by the motion of a macroscopic flux
dislocations of densityr in the Peierls relief, is described b
the expression

«̇~ t !5 «̇0 expF E~t* !

2kT* ~dt ,T,B!G , ~3!

E~t* !5Hcdt
5/4, dt5S 12

t*

tP
D ,

«̇05r~a2bn0vk!
1/2.

Herea andb are, respectively, the period of the Peierls rel
and the value of the Burgers vector of the dislocations,n0 is
the characteristic vibrational frequency of the dislocation i
valley of the Peierls relief,vk is the velocity of a dislocation
kink along the dislocation line,Hc is the characteristic en
ergy of the critical pair inflection, andT* is the effective
temperature characterizing the intensity of the quantum m

er-FIG. 6. Temperature dependence of the plasticity parameters of pureb-Sn:
the coefficient of logarithmic creepa at a value of the total strain«.0.07
~a! and the critical shear stresst0 for deformation of the samples at
constant rate«̇5731025 s21 ~Ref. 15! ~b!. Tg is the boundary temperature
between the regions of quantum (T,Tg) and thermally activated (T.Tg)
plasticity.
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tion of a dislocation string in the Peierls relief atT!QP ~the
quantum limit! and the intensity of its thermal motion a
T@QP ~the classical limit!. The following asymptotic ex-
pressions are valid for the effective temperatureT* :

T* ~dt ,T,B!.s0~QPdt
1/42QB!, T!QP ; ~4!

T* ~dt ,T,B!.TS 11
s1

Q0dt
ln

QS

T D2
s1QB

Q0dt
, T>QP .

~5!

In writing formulas~4! and ~5! we have used the following
notation:QP andQB are, respectively, the characteristic tem
peratures associated with the zero-point vibrations of a
location in a Peierls valley and with the damping of su
vibrations by the electron viscosityB, Q05Hc /kQP is the
quasiclassicality parameter for the tunnel nucleation o
kink pair, QS is the characteristic temperature of a free d
location string, ands0 ands1 are numerical parameters. Th
empirical values of the parameters of the Peierls relief
dislocations in theb-Sn slip system under consideratio
which are needed in expressions~3!–~5!, were obtained in
Ref. 14 on the basis of a study of active deformation a
have the following values:

tP51.23107 Pa, Hc52310220 J, n0.531011 s21,

Bn5231025 Pa•s, Q0553102, QP53.3 K,

QB50.4K, QS5100 K, a53.2310210 m,

b55.8310210 m, s050.9, s155.4.

We note thatQB!QP , and therefore the correction t
the effective temperature in formulas~4! and ~5! due to the
electron drag on dislocations is rather small and can be
glected in a description of the creep only in the normal st
or only in the superconducting state of the metal. At the sa
time, this correction largely determines the effect of the
perconducting transition on the plasticity of a metal and m
be taken into account in a description of that effect.14,15

From formulas~3!–~5! one can obtain the following re
lations linking the effective stresst* and the creep rate«̇ in
the quantum and classical limits:

dt5
2s0

Q0
ln

«̇0

«̇
, T!QP ; ~6!

dt
5/45

2T

Q0QP
ln

«̇0

«̇
, T@QP . ~7!

In the theory of low-temperature transient creep it is u
ally assumed that within the confines of an individual cre
curve a linear hardening law is obeyed:Dt i(t)5kD«(t),
wherek5k(«) is the hardening coefficient corresponding
the total strain« prior to the start of the individual cree
curve. Under such an assumption the use of Eq.~3! for de-
scribing the creep kinetics leads to a logarithmic time dep
dence~1! in which the coefficienta is described by the one
of the following expressions:15

in the classical limitT@QP

a5
8tP

5kQ0
S T

QP
D dt f

21/4; ~8!

in the quantum limitT!QP
s-

a
-

d

d

e-
e
e
-
t

-
p

-

a5
2s0tP

kQ0
. ~9!

In formula ~8! the symboldt f denotes the value ofdt at the
time t f corresponding to the start of the fluctuation stage
the creep curve.

Thus the theory15 predicts the existence of two temper
ture regions with characteristic behavior of the coefficiena
in each. The first of these, the ‘‘high-temperature’’ classi
region, is characterized by a dominant role of thermal flu
tuations in the overcoming of the barriers of the Peierls re
by the dislocations and an approximately linear tempera
dependence of the coefficienta. The second region corre
sponds to the quantum limit, where the plastic deformat
comes about through the tunneling motion of dislocatio
through the Peierls barrier and the coefficienta is insensitive
to temperature. Comparing thea(T)« curve obtained on the
basis of the experimental data~Fig. 6! with formulas~8! and
~9!, we come to the conclusion that the theory and exp
ment are in qualitative agreement.

The transition region on the temperature dependenc
the curvea(T) and the boundary temperatureTg separating
the region of thermally activated and quantum creep m
special discussion. According to the estimate obtained
Ref. 14, this temperature has a value of the order of

Tg.QPdt f
1/4. ~10!

Consequently, the location of the transition region on
temperature axis is determined not only by the character
temperatureQP , which is a fundamental quantum parame
of the crystal,14 but also by the parameterdt f , the value of
which depends on the valuet* (t f) of the effective stress a
the start of the logarithmic stage of the creep curve. Sincet*
is determined by the relationship between the flow strest
applied to the crystal and the characteristic value of the
ternal stressest i(«), the boundary temperatureTg , strictly
speaking, depends to some degree on random factors
vary in the course of an experiment. At the same time, t
dependence is rather weak by virtue of of the small value
the exponent in formula~10!. After estimating a valueTg

.1.3 K on the basis of the experimental data ona(T)« ~Fig.
6a!, one can estimate the value of the parameterdt f for that
particular experiment as

dt f.~Tg /QP!4.0.025.

According to formula~6!, the following relation holds at
the timet f corresponding to the start of the logarithmic sta
of quantum creep:

«̇05 «̇~ t f !expS Q0dt f

2s0
D . ~11!

The empirical estimatedt f.0.025 and the estimate
«̇(t f)5431024 s21 from Fig. 3 allows one to obtain an
empirical estimate of the parameter«̇0 for that particular
experiment:«̇050.5 s21. This value is obtained on the bas
of an analysis of the creep of samples prestrained
«50.07. It is several orders of magnitude smaller than
value «̇0.104 s21 found previously14 in an analysis of the
yield point under conditions of active tensile deformation
a rate of«̇5731025 s21 for a different series of samples
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Starting from the expression for«̇0 @see formula~3!# one can
conclude that this difference is due to a difference of sev
orders of magnitude in the densityr of mobile dislocations,
which govern the plastic flow of the crystals in both of the
cases. Using the results of Refs. 14 and 15, we obtain
estimatesn0.531011 s21 andvk.33102 m/s.1! The value
«̇0.0.5 s21 found above corresponds to a density of mob
dislocations, which govern the quantum creep in the giv
experiment, of the order ofr.53106 m22.

Another important kinetic characteristic of the fluctu
tion creep process is the work hardening coefficientk~«!. An
empirical estimate of this parameter for temperatures of
order of 1 K can be obtained using formula~9! and the av-
erage value of the coefficienta.2.431024 in the quantum
creep region for«50.07 ~see Figs. 5 and 6a!: k(«50.07;T
,1.3 K).1.83108 Pa. This value is close to the estima
k(«50.07;T51.6 K).1.63108 Pa in Ref. 15 from the
macroscopic strain diagram ofb-Sn atT51.6 K in the nor-
mal state, but it is smaller by a factor of two than the va
determined from analysis of the creep curves in the su
conducting state.

We note that the conclusion that the work harden
rates of superconducting metals strained in the normal
superconducting states are different was reached previo
in an analysis of active deformation processes.20,21 This ef-
fect does not have an unambiguous physical interpretat
and it seems to us that additional useful information t
would shed light on its physical nature can be obtained
studying the transient creep of such metals in the normal
superconducting states. A study of this effect on sample
b-Sn will be the subject of a separate paper.

It was shown above that measurements of the coeffic
a in the quantum creep region and the use of formula~9!
allow one to obtain the value of the work hardening coe
cient directly if the values of the Peierls stresstP and the
quasiclassicality parameterQ0 are known for the crystal un
der study. However, in the region of thermally activat
creep such a possibility does not exist. In that region one
find the experimental values ofa at different temperature
~Fig. 6a!. Then, by measuring the slope of the straight line
the plot ofa(T)« for T.Tg and using formula~9!, one can
obtain an empirical estimate of the productkdt f

1/4. Conse-
quently, to determine the values of the force parameterdt f it
is necessary to make independent measurements of the
ening coefficientk. From the macroscopic strain diagra
recorded during active deformation of pureb-Sn single crys-
tals atT54.2 K14 we find the valuek(«50.07;T54.2 K)
.1.23108 Pa. A value of a similar magnitude was obtain
in Ref. 15 by the creep method at a temperature of 3.2
Using the given value ofk and the data of Fig. 6a, we obta
the estimatedt f.0.078, which corresponds to conditions
thermally activated creep at«50.07 andT54.2 K.

According to formula~6!, at the time corresponding t
the start of thermally activated creep the following relati
holds:

«̇05 «̇~ t f !expS Q0QPdt f
5/4

2T D . ~12!

The estimates obtained above,dt f.0.078 and «̇(t f).7
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31024 s21 ~Fig. 3c! allow one to estimate the parameters«̇0

and r for the conditions of the experiment at«50.07 and
T54.2 K:

«̇0.2 s21, r.23107 m22.

Another important question for the physics of low
temperature creep is the value of the effective potential b
rier E(t* ) governing the mobility of dislocations and th
rate of plastic deformation@see formula~3!#. The value of
this barrierE(t* )5Hcdt

5/4 is determined by both a funda
mental parameter of the crystal,Hc , and by the force factor
dt5dt f , which depends on the conditions of the experime
and the state of the defect structure of the sample in
particular experimental situation. For the experiment d
scribed in this paper at a total strain value of«50.07 we
obtain the following estimates:

in the quantum region atT,1.3 K

E~t f* !.2310222 J.1.231023 eV;

in the classical region atT54.2 K

E~t f* !.8310222 J.531023 eV.

The analysis in this Section suggests that the ather
creep observed in pureb-Sn single crystals atT<1 K is due
to the tunneling motion of dislocations in the Peierls reli
The elementary process governing such creep is the tun
ing penetration of small parts of the dislocation line throu
an individual barrier of the Peierls relief, i.e., the nucleati
of kink pairs. The nucleation of a kink pair entails the ove
coming of the effective potential barrierE(t* ). The quan-
tum character of that process is due to the very small valu
the barrier, of the order of 1023 eV, and the low intensity of
thermal fluctuations under conditions of extremely low te
peratures. However, already at liquid helium temperature
K the creep at approximately the same rates is accompa
by the overcoming of a potential barrier several times larg
and the elementary process takes on a thermally activ
character.

An analogous conclusion as to the quantum nature of
plastic deformation ofb-Sn in the given temperature interva
was reached in Ref. 14. Figure 6b shows the tempera
dependence of the critical cleavage stresst0(T) of b-Sn
single crystals in the interval 4.2–0.5 K from Ref. 14, o
tained under conditions of a constant tensile strain rate~the
regime of active deformation!. It is easy to see that this tem
perature dependence repeats the characteristic features
a(T) curve. This indicates that one can study the regulari
and mechanisms of plastic flow in crystals under conditio
of deep cooling by different methods of mechanical testi
At the same time, it should be kept in mind that the ex
values of a number of parameters characterizing the pla
flow depend substantially on the particular conditions of
experiment, and their empirical estimates can have a sig
cant scatter: for example, the force parameterdt , the value
of the effective barrierE(t* ), the boundary temperatureTg

of quantum plasticity, the density of mobile dislocationsr,
and the work hardening coefficientk.
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CONCLUSIONS

~1! The creep of single-crystal samples of pureb-Sn ori-
ented to favor slip in the~100!^010& system has been
studied in the temperature range 0.45–4.2 K. The cr
tals were deformed by uniaxial extension in the norm
state in an above-critical longitudinal magnetic field pr
duced by a superconducting solenoid.

~2! Transient creep decaying in time by a logarithmic la
was registered at all temperatures in the investiga
range.

~3! The dependence of the coefficient of logarithmic cre
on the degree of prestrain of the crystal and on the te
perature of the samples was obtained. The existenc
two temperature regions with different sensitivity of th
coefficient to temperature was established. In the firs
these, the ‘‘high-temperature’’ region (1.5 K,T
,4.2 K) the coefficient decreases linearly with decre
ing temperature; below 1 K the creep takes on an athe
mal character, and at 0.45 K,T,1 K the coefficient re-
mains constant.

~4! A detailed analysis of the experimental results was c
ried out in the framework of the modern theory of low
temperature creep. The regularities established in the
periment are in accord with the idea that the lo
temperature creep ofb-Sn is governed by the motion o
dislocations in the Peierls potential relief. The eleme
tary process of such motion is the nucleation of ki
pairs on the dislocation lines; this nucleation entails
overcoming of a small effective potential barrier of th
order of 1023 eV.

~5! In the temperature regionT<1 K the nucleation of kink
pairs occurs by quantum-mechanical tunneling, and
creep is of a purely quantum nature, while at higher te
peratures these processes take on a thermally activ
character.

This study was carried out under the target program
the OFA of the National Academy of Sciences of Ukrain
Topic 1.4.10.1.8.
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1!In Ref. 15 the value ofvk was mistakenly overestimated by about an ord

of magnitude.
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