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The superconducting properties of a two-dimensional metallic system with arbitrary carrier
density and both local and various types of attractive indirect boson-exchange interaction in the
cases of- andd-wave pairing are analyzed and reviewedl'at0. In particular, the

possibility of a crossover from the Bose—Einstein condensation regime to
Bardeen—Cooper—Schrieffer-like superconductivity with growing carrier density and changing
coupling in the case of different pairing channels is discussed. Gaussian fluctuations of

the order parameter are taken into account, and the carrier density dependence of the gap
magnitude is studied. The role of the form of the interparticle attractive interaction in the physical
behavior of the system is also considered.2@04 American Institute of Physics.
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1. INTRODUCTION exists a critical value of the attraction below which there are
no local pairs, so that BEC—BCS crossover is impossible. It
The doping dependence of the various properties of suis noteworthy that the possibility of a superfluidity scenario
perconductors (including high-temperature ones, called for superconductivity was proposed by Gggand
HTSCs below raises many theoretical questions—in par-Schafrotd=° long before Eagles’s paper was published.
ticular, the question of the consistent description of such a  Later on the problem of the BEC—BCS crossover was
dependence, which has a long history. Probably the first aonsidered by Leggetf, who studied systems with short-
tempt to solve this problem self-consistently was made byange repulsion and finite-range attraction, analyzing the de-
Eagles in Ref. 1, in which the author tried to employ for pendence of the superconducting properties of the system on
HTSCs his results for the description of the superconductinghe dimensionless parameter dkt) (a is the scattering
properties of Zr-doped SrTiXRef. 2; see also Ref. 3, where |ength andkg is the Fermi momentuim which defines the
some experimental data were interpreted as the observatidiinerant particle number in the crystal. It was shown that in
of Bose—Einstein condensatidBEC) of electronic pairs in  the limiting cases the metallic system consists of bound
this compound at low itinerant carrier densities, and Refs. 4bielectronic molecules” in real space if Jdkz) = and of
and 5, where it was theoretically demonstrated that ther€ooper pairs irk space when 14kg) = —«. Noziees and
were reasons for such an interpretajioviore precisely, the ~Schmitt-Rink! generalized these results to the case of finite
author studied the dependence of the superconducting gap teimperatures and the lattice model with a separable interpar-
T=0 and of the mean-field critical temperature on the freeticle nonretarded attractive potentidl They have demon-
charge carrier densities in two-dimensioii2D) and three- strated that the BEC—BCS crossover is smooth with chang-
dimensional3D) systems with a phonon-like indirect attrac- ing kg andV whenV is larger than the corresponding critical
tion at low densities. The set of coupled equations for the gapalue for the two-particlétwo-fermion bound state forma-
(gap equationand the Fermi energy, or chemical potential tion. The aforementioned results were obtained for the case
(number equation for these cases was obtained and anaof s-wave pairing.
lyzed. It was estimated that at such densities the diameter of The real and unprecedented boom of interest in cross-
the electronic pairs is smaller than the distance betweenver phenomena started in the second half of the 1980s after
them, and therefore in fact the superconductivity has to corthe discovery of copper oxide HTSCs, materials with an evi-
respond to superfluidity of spatially separat@ohd in this dent and rather unusual dependence of the superconducting
sense small, or so-called loggdairs. It is important that if properties on the carrier density. It should be stressed that
one can change the distance between the partiébesin-  practically all physical(and observab)eproperties of the
stance, by doping the transition from one regime to another HTSC compounds are doping dependent, but below we shall
(with strongly overlapped pairdbecomes in principle pos- concentrate on the description of the superconductivity and
sible. Now this phenomenon is well known as the crossovesuperconducting properties only.
from BEC to Bardeen—Cooper—Schrieff@CS) supercon- Development of a consistent theory of HTSCs still re-
ductivity with changing carrier density. mains one of the most difficult and one of the most important
In Ref. 1 it was also shown that in 3D systems thereproblems of modern condensed matter physics. Due to the
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complicated(multicomponent crystal structure, lowered di- dependence of the superconducting properties was also ana-
mensionality, magnetism, strong electron correlations, inevilyzed.
table presence of disorder, etc., a generally accepted theory The 2D model with n.n. attraction and also with n.n. and
of these compounds has not yet been completed. n.n.n. hopping al =0 was studied in Ref. 44. It was shown
During the last decade many modétee, for example, that for some relation between n.n. and n.n.n. hopping pa-
the review?) which take into account soreot al) cuprate  rameters the system proves always to be in the BEC regime
peculiarities have been proposed to describe various propesnd that there is no pairing at low carrier densities when the
ties of HTSCs, among them the doping dependence of theoupling is weak(see also Ref. 37 However, as was
superconducting gap and the critical temperature. For instressed in Refs. 31 and 45, such a statement cannot be cor-
stance, the BEC—BCS crossover in $iave pairing chan-  rect. A more general model with on-site repulsion and n.n.
nel was studied in Refs. 12—-19 for the model with |Oca|attraction afT=0 in thes- andd-wave channels was inves-
(so-called four-fermion, or 4Fattraction, and in Ref. 20 for tigated in Ref. 46, where the role of n.n.n. hoping was also
the model of a nonlocal although separable attractive potenstudied. Thes- andd-wave crossover at zero temperature in
tial. In Ref. 12 an additional example with on-site repulsionthe model with a doping-dependent attractive interaction was
and intersite attraction was also considered. The role of thggnsidered in Ref. 47. It is interesting to note that the boson—
order parameter fluctuations Bt 0 was analyzed in Ref. 21 fermion model with electrons and holes and different kinds
(3D casgand in Ref. 22both 2D and 3D casgsA quasi-2D  of fermion—boson coupling was proposed in Ref. 48 to unify
model withs pairing at zero temperature was also studied inhe Bose—Einstein and BCS collective phenomena. It was
Ref. 23. It can be also noticed that the role of the numbegp,yn that the regime of superfluidity with local pairs and
equation in connection with the HTSC problem was emphathe regime of superconductivity with Cooper pairs take place
sized in Refs. 24. _in different sectors of the model parameters.
_ For_ a pure 2D sys_tem the problem of_the crossoverinthe g ap though thel-wave pairing symmetry is now con-
isotropic s-wave pairing channel was discussed at Z80 jjereq as the typical and almost imprescriptible property of

(whe.n real long-range §uperconducting order is certainl)fhe HTSC cuprate compoun@there is experimental evi-
possible—the Mermin—Wagner—Hohenberg—Coleman—yo e that mixeds+id- or even pures-wave pairing can

Bogoli/::b_(zv_rthe(r)]reﬁ'?t’)h_in Rgfs._lz,h15, t18" 2% ‘anth26_31kexist in some of these materials at certain doping values.
and at finiteT (when this order is characterized by the wea Indeed, it has been observed that optimally doped

algebraic decay of correlationm Refs. 12, 15, 18—-20, 28— Pr, gs€Ce 14CUQy, at low enough temperatures demon-

30, 32, and 33. . : .
L 7 i I h
The metal-superconductor phase boundaries on thSetrates a nodeless gap inconsistent with puksvave

. . S symmetry’® and the erconductin compound
n{—U phase diagramn is the number of fermionic par- S>: L gu@ reveals s-wavseup aifin unela? the o FtJin:JaI
ticles, andU is the on-site attraction in the “negativg” 0.9-80.1 pairing P

. 51 . . _
Hubbard modelwas investigated in Ref. 34 foF=0 by doping®! The analysis show$ that the dominant bulk sym

means of the dynamical mean-field theory. The retarded ini—negyd?f the_ ot[der_¢parameter n I?ome clupra:)es 'S Ejhfh etx-
direct, phonon-mediated interfermion attraction and the fearc 10cdOr aNISOLropI¢ S-wave one. [t was also observed tha

tures of the corresponding BEC—BCS crossoverTat0 the'crossover from thé—wave pairipg in the uanrdoped and
were studied for the first time in Refs. 35 and 36 optimally dopeq regime to thefld-wave pairing in the
The 2D crossover for the anisotropiewave pair sym- overdoped regime takes place in YEazO, (Ref. 53. A

metry is more important because just such a pairing is us/€rossover frond-wave tos-wave pairing with doping near
ally considered to be observed in HTSCs. The models whicQPtimal x was found for the electron-doped FCe,Cu0,

lead to this phenomenon were considered in Refs. 18, 32 arfft€f- 54 amd P5,CeCu0,, and L, CeCul,y (Ref. 55.

37 atT=0. The case of finite temperatures was studied infloOWever, thes-wave pairing is not always present in under-
Ref. 38, where an effectivéGinzburg—Landau potential ~ doped and overdoped cuprates, butdreave order param-
with carrier-density-dependent coefficients was also derivecgt€’ Symmetry in overdoped TIB&u;Os . ; was found in
The doping dependence of the critical temperafiyén the Ref. 56.

strongly correlated electron model with electron—phonon in-  The results cited above evidently show that the investi-
teraction was studied in Refs. 39 and 40. It was found thagation of the doping dependence of the physical properties of
the vertex corrections to the electron—phonon coupling irfuperconductors is now an important field in solid state phys-
this model lead to strengthening of tHevave superconduc- ics. The corresponding questions have not yet been reviewed
tivity. In Ref. 29 the cases with different pairing symmetries, in the literature and demand some generalization. Below an
S, Sext» Uxy and dy2_y2, in the 2D system with nearest- attempt will be made to analyze the behavior of properties of
neighbor(n.n) and next-nearest-neighbém.n.n) attraction ~ superconducting systems with different interparticle poten-
in the square lattice were studied at zero and finite temperdials in thes- and d-wave pairing channels as functions of
tures in order to describe the doping dependence of the syparticle densities and interaction strength. For the sake of
perconducting gap and critical temperatusze also Ref. simplicity we restrict our discussion here to the cdse0.

41). The possibility of the BEC—BCS crossover at zero tem-We briefly survey the main superconducting properties of
perature fors, d and mixeds+id pairings in the 2D system different systems. We should kindly apologize because the
as a function of coupling constant was considered in Ref. 42esults of many authors could not be included in our paper,
The same problem in the quasi-2D Hubbard model with n.nsince it is very difficult and in fact impossible to cover all of
attraction at finitel was studied in Ref. 43, where the doping them in such a wide and rapidly growing field as high-
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temperature superconductivity, even within a separate, spgvith so-called bilocal fieldsP ,,(7;,7,) and (b;r1m(7-117'2)

cial and rather narrow topic. (Ref. 57; it must be noted that in the textbdbkhe func-
tional integration was developed for the situation when the
2. THE MODEL AND THE MAIN EQUATIONS spatially inhomogeneous order parameter of the system de-

pends upon one space variable only, which excluded a
The most general and, at the same time, the simplegj.\yave symmetry

Hamiltonian, which is usually studied in the theory of super-

conductivity, can be written as exp [y LT(H)‘V:,W(Tz)Vnm(%Tz)Wmi (19 1 (19)]

H=- Y tymCh oo - ¢t c g R 2

z mRoTme HZ fone :JD@TDd)eXp —Jdt1jdr2 ——“‘“M)nm(tbw)'

nmoc Vam (t1,72)
—VOZ 2t e i €allnt —~ Zvnmc :nicmlcn'r

~ @i (11, 1)V g (T 1 (1)
X

+ ;}gn((vcnccno n(q) - W;T(”)W;L(TQ)(DHH\(”'T2)]}’

15 Pa” (@) 2(q) )
+ = + m(Qw (QXE(qQ)

32 i @R @Ak (1) | o ,

9 whereV, (71, 7) includes the effective interparticle attrac-
wherec,,,=c,(n,7) is the fermionic field operator with spin tion due to boson coupling after integrations over the boson

o=1,| at the lattice siter and at the timer, t,,,, describes ~fields Xy(q).

the n.n., n.n.n., and other hopping processeis; the chemi- Let us introduce the Nambu spinor

cal potential of the system; the nonretarded interparticle in- v ()

teraction is modeled by the terms proportional\Mg (the ¥, (1) =[ ;‘T J

on-site attraction i,>0 and repulsion otherwig@andV,,, Vo (O

(n.n. or n.n.n. interactionThe last two terms iril) describe i) = (‘I’TT(T)"an ).

an additional retarded fermion—boson interaction and the n

free boson parts of the Hamiltonian, whegeis a boson In these terms the partition function can be formally

mode with the coordinat¥,(q), momentunp,(q), and fre-  written as
guency w,(q) and g,(q) is the fermion—boson coupling.
One can easily pass to the continuum version of this Hamil-
tonian by replacing the n.n. hopping operatqg, by t.n
— 8,mt(1—(a%/(2d))V?) (herea is the intersite distance,
d(=2,3) is the dimensionality of the systgnintroducing a  where
cutoff radius in the interaction terms, etc.

In the case of thel-dimensional square lattice, the free sy, vt o0")

=f DVIDYDOIDDe SV V.eTe)

fermion dispersion relation in momentum space has the fol- o (11,19)2
lowing form, when the n.n. hopping takes place: J‘d”_[dTZZ{ nm ( 172 S ~8(ty — )W (1))
d Vim {11, 12
Ek)=—2t>, cosak; -, 2 ¥[8 am0r, = T:(tam ~ SamM ] ¥m (1)
=1

_ . D (14,7 Wg (1)F W (32)
wherek is ad-dimensional wave vector.

As is well known, it is convenient to calculate the ther- S W (10D (14, 72) }
modynamic potential by using the path integral approach for

studying the properties of a quantum many-particle system.

This method is not necessary in the case of the mean-fielghd 7, = 1/2(7, = %,) and 7, are the Pauli matrices.
solution, but it is extremely usefulsee below when the The latter action is diagonal over the fermionic fields,
fluctuations are studied. Probably one of the first to apply theynd therefore the integration ovar’ and ¥ can be per-

path integral methodics for the description of superconducformed exactly. In this case the partition function becomes
tivity was Svidzinsky:’

The partition function of the system is

)

Z=J D®DO* exp— BO[G]),
z =IDWDW e™S 3)

with the action where ([ G] is the thermodynamic potential, which in the
“leading order” is

S = Jd‘[ !Z‘Vno(r)ﬁr\ync(r) + H)|, p=1/T. A 5 5 | (71,75)|2
nc (4) BQ[G]ZJ dle deE Hami 71, 721
0 0 Vom(71,72)
To study the superconducting properties of the system,

one should make the Hubbard—Stratonovich transformation —TrLnG *+Tr LnG, . (8)
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The Nambu spinor Green functida satisfies the following
equation:
[-8(zy - ‘53)6nlat3f +8(ty ~ 13ty — 8,

+ 1, @ (1), 13) + 204 (11,73) ]G (13, 72)
=8(1y — 1308 pm
9

with anti-periodic boundary conditions for fermions,

Gim(T1— 72+ B)=—Gpm(71— 72).

The thermodynamic potenti@B) is the most general form of
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ample, a local nonretarded interaction, wh&({p—Kk)
=const, g;_,=0; a nonlocal (nonretarded interaction,
when V(p—k) #const, butg;_,=0; a local retarded inter-
action, when V(p—k)=const, g;_,#0, and w(p—k)
=const, etc. The systerild), (15 will be analyzed in the
next Section for various forms of the interparticle potential
V(p,k) and boson spectrura(k).

3. THE SOLUTIONS

3.1. Model with local nonretarded attraction

the superconducting effective action, or Ginzburg—Landau

potential, with a nonlocal retarded interparticle interaction.

The problem of the crossover from small to large fer-

As was already mentioned, it will be used below to studymion density in the model with local attraction was consid-

fluctuation effects.

ered in Refs. 1 and 12-19 for the 3D case and in Refs. 1, 12,

The minimization of the thermodynamic potential with 18, 26 and 31 for the 2D case. The corresponding results can
respect to the order parameter and the chemical potentidle reduced to the following.

leads to the following system of coupled equations:

60
ET S (19
@=—Nf , (11
I
or
D y(T1,72) =Vii(71,73) Tr 7. Gy (733 72); (12
ni=—Tr7,Gu(7,7). (13

wheren;=N; /v is the free fermion density in the system (

is the volume of the system

In general, it is very difficult to find the Green'’s function
Gm(7,7,), and therefore some simplifications must be ap-

For the simplest case of local nonretarded attraction, the
interaction parameters in equatio(isd), (15 have the fol-
lowing form: V(p,k)=V=const, g;_,=0. Therefore, the
gap in this case is momentum- and frequency-independent:

®(w, ,k)=A=const.

The summation over frequency ii4), (15 can be easily
performed, and one gets the standard system of equations:

plied. In particular, we shall consider the case of the spacghich atT=0 have a simple form:

and time invarianceV m(71,72) =Vo_m(71— 7). In this

case the Green’s function has the following form in momen-

tum space:
G(iwp,k)
ion+ 7E(K)— P(iwy, k)T — P* (1w, ,K) T
wht E2(K)+ D (i wy k)| !

and the system of equatiofk2), (13) acquires the following
form:

®(wm,p)
O(iwy k)= f(z,n_)dE 2= E(p)—|P(wm,p)|?

x| V(p,k)+0?_p,

d’k w?(p—k) }
Xf(Zw) om—wn?—o?p-k) 4
[ d% &(p)
”f‘f@w)a R TS I TS

In Eqg. (14) V(p,k) is the Fourier transform of the nonre-

tarded interaction, and the term proportionalgta ,, corre-

1 ddk 1 t r(\/gz(k)wz . 18
V) emt @ az o 2T )
J &(k) t }‘(VSZ(kHAZ

(2m)? VE(K)+AZ an 2T ’

(17)

1ov | 2 ! : 18

) @2m 2 (k) + A2 (18

&(k)
f mY " JZu+ Al 19

Since the gap is momentum-independent, only the isotropic
s-wave pairing regime is possible in the model with the on-
site attraction. Equatiofl9) is crucial if one wants to inves-
tigate the doping dependence of superconducting properties.
As a rule, it is not taken into account in the standard theory
of superconductivityor the BCS theory

The s-wave pairing regime in the case of a quadratic
dispersion law

2

§k=55"

and an indirect pairing with bosafiDebye”) energy cutoff
O(wp—|€(k)—u|) was considered in the mean-field ap-
proximation for the 2D and 3D cases and at low carrier den-
sities in Ref. 1(see also Refs. 4 and).5n fact, in such a
situation the integration over momentyfd®k/(2)9 can be

sponds to the interparticle attraction through the boson fieldieplaced by the integration over enerdyp(e)de, where
w,=7T(2n+1) is the Matsubara frequency. The interactionp(€) is the density of state®0S); it is constant in the case
term in (14) is written in general form; it describes, for ex- d=2 and~ Je in the cased=3.
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It is very easy to solve the syste(h8), (19) in the 2D  3.2. Models with nonlocal nonretarded interaction
case. Whereg<W (W is the free fermion bandwidihthe

; . It is important to study the more realistic case of nonlo-
solution has a simple form:

cal attraction in the presence of a short-range Coulomb re-

A=\2Were 27™V=\2[g [er: pulsion. In order to study the superconducting properties of
such a model in channels with different pair angular momen-
u=eg—|ep|/2, tum , it is convenient(see, for example, Refs. 32, 33, and

—amimV . 46) to approximate the interaction potential by a separable
whereep= —2We™*™™V is the two-fermion bound state en- function:

ergy. Obviously, the crossover from superfluidity to super-

conductivity with doping occurs in the 2D case at any cou-  Vi(Kg,Kz2) = =N w;(kg)wi(ky), (21)
E'S%O(;O;ns;%nt; then there exists the value ef when 4 where\, is an effective coupling constant, and
This is not true in the 3D case, when the BEC-BCS  w;(k)=h(k)cosl ¢y (22
crossover takes place only when the coupling constant is |
larger than some critical valué.,. This distinction follows hy(k) = (krky) . (23)
. . . . A L L N F1/2
from the above-mentioned difference in the DOS in the gap (1+k/ko)

equation. In the 2D case, wheife) = const, the gap equa- K=

. . ! k| is the momentum modulus angl, is the momentum
tion has the solutiodh = y2W|e,,| at u=0 and any coupling K ek

gle in polar coordinatds=k(cosgy ,singy). The param-

constant. ) . etersky and k; put the momentum range in the proper
Eor the 3D system the gap equation has the fOIIOW'ngregion—the potential is attractive §<<r <r, and repulsive
form: atr<rg, whereky~1/ry andk,;~1/r;. The separable form
K2dk 1 of the interparticle potential21) is based on the group

1=V (200  theory decomposition of an arbitrary potential into spherical

2a% 2\k*+ A% harmonics, for example, and the restriction to the relevant
terms only, which in our case correspond to the order-
parameter symmetry under consideration.

It is easy to see that the interaction potent#) has the
correct asymptotic behavior at small and large momenta:
Vi(kq,kp)~kik, and Vi (kq,kp)~1/\kik,, respectively.
Since the region of low carrier concentrations, where the

ddk crossover can take place, is the most interesting, the correct

f (2—77)d‘9(wD_|§(k)_ﬂ|)- behavior of the interaction potential at small momenta

should be most important. These momenta give the main
the approximate solution can also be easily obtained in theontribution to the integrals in the case of low carrier con-

at u=0. The integral ovek on the right-hand side has the
maximal value\2mW (472) at A=0. Therefore, a simple

estimate for V., is given by the relaton 1

=V 2mW (472) or V=412 \2mW.

In the case of the momentum cutoff

2D case: centrationgsee equations belowWe shall study the- and
_ d-wave channels with=0 and 2 separately, so we assume
A=V2|ep| Apcshwp—€p) + Apcster — wp); that the parameters; for the two channels are independent.
PN In this case the equations for the gap and for the chemi-
n=€g— Tb cal potential have the following form:
whereAgcs=2wpe 2™ (MVerd js the BCS expression for the A(k) = _)"f dp2 Ai(p) Vi(p,k): (24
gap, and the bound state energy in this case also exists: (2m)" 2/e2(p) + Af(p)
=—2wpe 47(MVe)  where V¢ is proportional to the
fermion—boson coupling constagt_,. The gap is an in- - dk e(k) (25
creasing function of doping in this case, and it asymptoti- f (27)? ~/82(k)+A|2(k) '

cally approaches its maximal valdg;cs when eg> wp . In

other words, the dependence of the gap value on the carride solution of equatio24) has the following form:

gensny has no maximum, W_hlch _eV|dentIy means that such a A|(k)=A|(0)W|(k), (26)
ependence with saturation is not identical to the

“increasing—decreasing” dependence of the gap upon the eiNhereAfo) does not depend on the momentkm

fective coupling constant .. As was shown in Refs. 32 and 33, the BEC—BCS cross-

In the 3D case, the DOS in equatiofi8) and(19) can  over from superfluidity to superconductivity with increasing

be substituted by the DOS at the Fermi level, and the soludoping is smootl{see Figs. 1 and 2 belgwHowever, in the

tion can be obtained from the 2D result with substitutiond-wave paring channel there exists a critical value of the

mV/(27)—kemV/(472). It is possible to estimate the criti- interaction potential, below which this crossover is impos-

cal value of the coupling constant when the crossover takesible. This circumstance makes the cases of isotrepand

place:V = 2m?/\mwp. In both cases, with and without mo- anisotropicd-wave pairing essentially different.

mentum cutoff, the BEC—BCS transition from superfluidity The more realistic case in connection with HTSCs was

to superconductivity is smooth and is not a phase transitiongonsidered in Ref. 47, where the correlation leng§hwas

the gap value grows continuously with doping. studied at small carrier densities mg-a/+/n;. This depen-
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2.0
- 1.5 +
B
< 2
~
< e9q10 L
E <
0.5 |
!
0 0.25 0.5 0 0.25 0.5
€r [

FIG. 1. Coupling—carrier density crossover line for #airing channel £ 3. The crossover interaction valag™ss (defined by the condition
(solid ling). The dotted curve represents the corresponding line for the case. 0) as a function of¢ atx;_;=0.

ro(ng)=const atro=a,. The inset shows the doping dependence of the
crossover value for coupling at very low charge carrier densifietere and
below all parameters are expressed in units of the bandwitlith

e—r/ro

dence for the spin—spin correlation length at small carrier V(1) =0r-p ro- (27)
densities was found in La,Sr,CuQ,, for example. The

magnetic correlation length decreases with carrier densit}fs Fourier transform has the following form:

per cell in this material as 3.8 Al (Ref. 59. The value of

a was considered to ba= \2/ma,, wherea, is the simple Dy(q) = _ Otpfo 29)
square lattice constant. The valueaotan be estimated from (2m)%\ 1+ rozq2

the relation ¢r/2)r3N;=a3N.e, where in the left-hand side

the volume of the 2D system is expressed as the volumin addition, a similar kind of short-range fermion—fermion
(circle of radius~r,) occupied by one particle, multiplied repulsion should be taken into account. It is easy to see that

by the total number of particle; . andN is the number in the 2D case this potential has the following fo(see, for
of unit cells in the layered system. The free fermion band£X@mple, Ref. 60
width W is related toa, as W= wzl(maé). It should be g
noted that the relatiomy~a+/n; at a=/2/ma, is in good D¢(q)= ;IZI(
agreement with the experimental data for,LgSr,CuQ, A+ dreg(Q/2Ke)
(Ref. 59, where the magnetically ordere@rthorhombi¢  whereg;_;=2me?, qrr=4e’m/mw=4/mrag is the Thomas—
plane lattice parameters are equal to 5.354 A and 5.401 Azermi momentum, andg=1/(e’m)=0.529 A is the Bohr

(29

and the corresponding parameteis =3.8 A. radius. The functiory(x) is defined as
It was shown that the critical value of the coupling con-
stant exists even in thewave pairing channel for this case g(x)=1—6(x—1)1— 1/ (30

Figs. 1 and)2 . .
(see Figs. 1 a (.j) . : . This model of thes-wave pairing channel demonstrates

Let us consider different versions of the previous model. - -

. : = the crossover from superfluidity to superconductivity at any
Namely, the correlation radiusy(ns) =ag\2/(7n¢) can be : )
. . . . value of the coupling constant, contrary to the previous case
introduced in a model with an exponential decay of the at- : .

o (see Fig. 3. The doping dependence of the gap and of the
traction: . . . ; .
chemical potential at different values of the dimensionless
interaction parameters )\f,b=gf2,bm ro/(872), N¢_¢
zgfz,fmrol(47-r) is presented in Figs. 4 and 5. As follows
from these figures, the gap decreases with increasing doping
at largeeg . This situation is in qualitative agreement with
the experiments for the cuprates. One can also consider the
interesting situation of a combined logahonlocal attrac-
tion, when the locajon-site attraction will tend to transform
the Cooper pairs into local pairs.

The “mixed” case with hj(k)=1 and A=\g
+\4CoS 2p, was considered in Refs. 41 and 42. In particu-
lar, it was shown in Ref. 41 that the crossover frdmvave

L to s-wave superconductivity with doping takes place with an
0 0.25 0.5 intermediates+d symmetry, in full agreement with the ex-
F periments on some cuprate materrais,
FIG. 2. Coupling—carrier density crossover line for thevave casdsolid . The _d'Wa"e case, whew (k) = COSkX_COSky was con-
line). The dotted curve is the crossover line for the cag@,)=const at  Sidered in Refs. 37, 44 and 45. For example, the effect of the
ro=a, (Ref. 47. n.n.n. hopping, ., on the pairing was studied in Refs. 44

mAg/(4m) 10~
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FIG. 4. The gap(@) and the chemical potentigh) as functions ofer at  F|G. 5. The gap(a and the chemical potentidb) as functions ofe at
differentX;_, andA¢_¢=0. different\;_; and\;_,=0.01.

and 45. It was shown in the latter paper that the crossovespeaking, the gap is frequency dependent in this model. The
with doping takes place at any valuetgf, .. when the cou-  problem of the crossover in the model with a frequency-
pling constant is larger thaxi, . dependent gap was investigated in Ref. 36.

on-site repulsion and n.\/,, , and n.n.n.V, , o attraction  potential in this case is:

with V, 5, ~60-80 meV andV, ,, /V,n=13-15 can
describe well the experimental data for the hole-doped d)(co):—ig?_b
oxides.

. ,f d’kdv o(v) w% .
Q2 V2 —e(k)? - [P +i8 (0 - V) —wf + 18
3.3. Models with retarded interaction (33
As is well-known, retardation effects in the interaction o ®
can play a very important role in the superconducting prop- er=Re 0 de 0D ()| -1

erties of a system. For instance, let us consider a boson
propagator with dispersiom= w(k) [cf. Eq. (14)]:

X O(p+ Vol =P (w)]?) +

w
e i
N )

w?(k)
D(w,k)zm. (31)
It can be noted that in the general case of phonon dispersion X O(u— o= [®(w)[?)|. (34
one haSw(k)Z\/woz-l-Cthkz. We shall describe this rather
general case below with the following approximation: Let us consider briefly how this system of equations can
D(w,k)=D(w,kg), so the effective propagator can be writ- be analyzed analytically. First of all, it is possible to show
ten as that the approximationb(w)=A=const in (34) is rather
wé good. Then, this equation results in
D(w,k)—m, (32) B AZ N |8b|
M= €T E_EF_ o

where \/&)02+Cp2hk2|: is replaced by a new effective frequency
wq. This approximation corresponds to the case of the optiwhere the two-particle bound state eneegydepends on the
cal phonon attractioriin the case whemoy#0). Generally  coupling parameter in this cagsee belowy
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After the Wick rotationw—iw the gap equation reads: Analysis of Eq.(40) shows that the approximate solution
5 for the gap in both the weak and strong coupling regimes is
() = 9r-p®0 (see Ref. 36 for detailsA(w)=A6(w3— w?), whereA is a
A2kdv d(v) 1 parameter that depends on the coupling constant and, what is

XJ. : very important, on the carrier density. In the weak coupling
3.2 2 2 2 2, .2

2r)" vE 4 (k%/2m =~ 7 + (V) (0 = )7 + regime the parameteA has the following coupling and

(35 carrier-density dependence:

In polar coordinates, after integration over the angle we ,_ /5
’ =V2|ep|wob(wo— €p) + Agcst(eg— wp),
come to: |ep| o B(wo— €F) + Apcst € — wo)

, whereAgcs=2woe Y is in fact the BCS expression for the
D(w)= 9t-b@o J'” v (v) gap, and the boun@Coopey state energy in this case ig
(2m)* (0—v)?+ 0] =—2wye ?M. In the strong coupling regime,=\ and
Agcs— (413)\w, at large carrier densities:®
fm kdk To summarize, the BEC—BCS crossover with changing
o (K*2m—p)*+1°+d?(v)’ carrier density and coupling constant in this effective model

with retarded interaction is also smooth, and the gap is not

ince®(w) is an even function ob, it can nd onl . ;
Since®(w) is an even function ob, it can depend only small when the pair frequency is smaller than the boson fre-

2

on o, and we restrict the integration overto positive )
vaIJES' g b guency. Such an approach can be used for studying the cross-
' over in cases of different symmetries of the order parameter.
Ao (= dvd(v) 1 It is important to mention that the case considered here
P(w)= 2 can be easily generalized to the case when one takes into
2 Jo \i?+@? 0—v)’+o Y9 . 3
v+ () ( ) 0 account the vertex correction to the electron—phonon inter-
P 1 action. This correction is usually small whea> w, (the
X +arctan— (36) Migdal theorem. As was shown in Ref. 63, this correction is
22|’ '
2 Vit O%(v) rather small even whee-< w,. However, in some cases the

where the dimensionless coupling constanh  Vvertex correction can lead to rather strong enhancement of

—g2 .m/(27) is introduced. The asymptotic behavior for the superconductivit§***It is also necessary to note that

O(w) is this correction leads to enhancement of thevave super-
conductivity even in a strongly correlated electron

O(0)] 0 = const, DOy ~ 37) systent>*% in spite of the fact that the phonon interaction

_2. . . .
® due to the symmetry does not alladvwave pairing in the
As the next step we use the following approximation incase when the short-range electron repulsion is not taken into
the interaction potentiaf*© consideration.
! ! )+ 6(v-w)
7 2o 3 8o - v) + 5 5 vk 4. THE ROLE OF THE ORDER PARAMETER FLUCTUATIONS
(- +0f o°+of Ve + 0f
(39 The fluctuations of the order parameter in the 2D and
Then differentiation with respect te gives even in the 3D case a_‘[=0 shoulql be essen_tial. As is shown
) in Ref. 22, the Gaussian fluctuation corrections tostveave
P’ _ Nwoy © dv®(v) order parameter is non-negligible even in the weak coupling
(w)=- (v°+ w0)2 /_2_2_V TP case. On the other hand, the fluctuations of the order param-

eter phase can lead to increasing of the gap.
o In this Section we shall consider how simultaneous order
”m . (39 parameter modulusland phase fluctuations in the model with
4F attraction result in a strong increase of the order param-
It is evident thatd’ <0, i.e., P ,,=D(0)=A. eter when the carrier densities are small and to a weak de-
After one more differentiation and the introduction of a crease of the order parameter when the carrier densities are
new variablex= vz/wo, one gets the following differential |arge.

2
X|1l+ —arcta
o

equation: At zero temperature, as follows frofB), the thermody-
namic potential of the system with local attraction has the
., 2, A .
@' (x) + . o(x) + following form:

ix(x + 1)2\/x + [@(x) /o)

x|1+ Z-arctan B/ d(x) =0 4

n Vx+ [@(x) /@4]?

2
Q- {"” j 5 )2[w/§ )+ o -] | .

In other words, it depends on the sum of its real and imagi-

(40)  nary parts:|®|*=(Re®)’+(Im®)%. For studying fluctua-
tions of the order parameter, it is convenient to use new real
variables:

O (X)|eo=0; [B(X)+(x+D1)D’ (X ]en=0, (41) g0
¢“*%¢xmy

with the boundary conditions

which follow directly from expressiong6), (38), and(39).
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such that®?(x) = ¢2(x) + ¢3(x)=|P(x)|2. Another possi- 1 (= dv [ d%k
bility is to use the decomposition of the order parameter into o0 = 2 .27 Wln
its phase and modulus (x) =A(x)exdif(x)]. However, it

leads to some difficulties, since one needs to keep the order
parameter modulus positive in the functional integration over
the fluctuations; we therefore follow another way. The “old”
order parameter variables are connected with the new ones as

1 .
V+Xll(”/ak)

X

1
V+X22(i v,k)] — x12i v, K) x21(iv,k)

The factor~A which appears in the measure of the

D(X)=d1(X)Fid(x), P*(X)=d1(X)—ida(X). functional integration over\ in Z due to the taking into
. account of the symmetry of the thermodynamic potential

We assume that the mean-field value of the fidlds with respect to the transformatiﬁﬁeiaq_) (See, for ex-

chosen as ample, Ref. 6Bis omitted in the last expression. This factor
A can be absorbed in the measure of the functional integral
q)o(x):(o)_ over A in the partition function, where the functional inte-

gration can be actually performed over the variabfe Let
us note that only the first component Y1 y,4(i »,k)) under
the logarithm in8Q (see below will be present if one con-

A+ 5¢1(X) siders the particular case of the order parameter phase fluc-
(42 tuations.

5balX) )

_ _ _ _ It is useful to diagonalize the matri(i v,k) in order to
in the case when its fluctuations are considered. We negleghy the contributions which come from both the phase and
Lhe fluctuations of the carrller denSIIM(r)-hanld c_ongder @ the modulus fluctuations of the order parameter. Obviously,
omogeneous constant value of over the lattice:ny(r) e first component will correspond to the phase fluctuations

- ”fS: ct")irtl'?t.t'on 0f(42) into the expression for the thermo and the second, to the modulus fluctuations, as follows from
ubstituti i X i - L =
dynamic potential gives the following correction to the ther-the _deflnl_tlons of the f'e'.‘ﬁ’ [see Eq.(42)]..So, one can
easily arrive at the following representation:

modynamic potential to the second order in fluctuatiths:

The order paramete@ can be written as

D(x)=Dy+ 55(x)=(

TAve AR o i e 1 (= d d2k
80 = — | L2 5@ (v, k) AGiv, K)sD(~iv,—k), _1 f dv [ _dK
JJRJ @0’ @ 2] 2] @

1 .
v+X9(|V,k)}

whereA(iv,k)= 1N+ x(iv,k) is the 2x2 matrix with the

susceptibility components X

1 .
v+XA(I V!k)] ’

_ 1 * dw d?q
Xjk('Vyk):ETrf_wEfW where

(_1)J+kG(|w+ vq+),7\-JG(|w— 'Q+)3'kv

1
iv,k) = 5 [xaa(i v,K) + xaoli v, K
where w.=w*v/2, q.=k=*q/2, andj,k=x,y. The inte- XolivK) Z[Xll( v+ xediv. 0]

gration overw can be easily performed:

. f d’q 1 E,+E_
Xll(IV: )__ (27T)2§V2+(E++E_)2
§+§—_A2

>~ | and
1 B }

1
- \/Z[Xu(i v,K) = X221 v,K) 12— x1i v, K) xoa(i v, K)

X

Xlz(iV,k):_le(iV:k)
_ (a1 EEHEE
] 2em)22[+v*+(E,+E_)3E, E_"

1
xa(iv,k)= E[Xll(i v,K) + x2aiv,K)]

1 : . . :
. d’q 1 E,+E_ + \/—[xll(lv.k)—)(zz(l v,K) 12 = x1i v,K) x21(i 7, K)
XaAiv,K)=— 2572 2 4
(2m)c 2 vv+(E,+E_)
ELE_+A? are the effective contributions to the thermodynamic poten-
x|t ELE_ |’ tial from the fluctuations of the order parameter phase and

modulus, respectively.
where E. = £ +A% and £, = (k= q/2)%/(2m)—pu is the The equations for the gap and for the chemical potential
free fermion disperiion relation. After the integrating out of (10) and(11) have the following form in the case of a Gauss-
the fluctuation field®, the correction to the thermodynamic ian correction to the thermodynamic potential due to the or-
potential has the following form: der parameter fluctuations:
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0.3
Vo) (2m)% 2/2(k) + AZ
N 1 fm dv d?k [ ax,(iv,k)/oA A S
2) 2 ) @a2|[INTxGivk) N e
m ) (2m) Xo(iv,K) 0.05 . e
axa(iv,k)aA] R
IN+xaivk) e T T T
f d%k L (k)
n=| —9|l- —— L
(2) VE (k) +A2 0 0.25 0.5
. F
+f°° dv d?k [ ax,(iv,k)om 05
2w ) (2m)? | IN+ x4(iv,K) 02 ’
07XA(IV,k)/(9,u \\N ------------
e — -t
IN+ xa(iv k)| A S —
In considering the limit of a weak coupling, the func- 0.1
tions y, and x, in the denominators can be neglected, and
then the integration over can be performed; after some
trivial manipulations, the following rather simple equation
can be obtaineficompare with(18) and (19)]: 1
0 0.25 0.5
1 [ d%k 1 ©F
V B (277')2 2./ 2 k)+ Az FIG. 6. The dependence df on e for the case of the mean-field solution
& ) (solid curve and for the order parFameter fluctuations cafmshed curveat
\V d2q d2k ELE different values of the dimensionless coupling param&ermV/(27).
+ = 7 7 —3 ; (44) The dotted curve is the estimate from Ref. 22 for the case of order parameter
2 ) (2m) (2m)° EZE- phase fluctuations.
d?k E(k)
=\ 52" == It should be mentioned that the role of the disorder due
(2m) VE(k)+A? ) ; .
¢lk+a to the dopants in the fluctuations of the inhomogeneous order
d%q d’k A%(&,—¢&) parameter was recently studied by Yu. G. Pogorelov and the
+Vf (qu)zf 2m? e (45 present authors in Refs. 67—69. However, we have not dis-

cussed this important issue here, since it deserves a special

The substitutiork— —k in a part of the terms was made detailed review.
in deriving Egs.(44) and(45). It is interesting to note that in
the case of the phase fluctuations, the numerator in the last coNCLUSIONS
term under the integral in the gap equation will ¥, (¢_
—¢,), and the last term in the number equation will be
multiplied by 1/2. It is also a good approximation to put
=€, since in the weak coupling regimg,is different from
er only at extremely low carrier densities. The solution of
the equatior{44) for the gap parameter as a functionepfat 0.20
u=ep and different values of the coupling constant is pre- /
sented in Fig. 6. An estimate of the order parameter in the ’
case of phase fluctuation is also presented. As was shown in  0.15 s
Ref. 22, in the 2D case the phase fluctuations lead to an ’
effective increase of the coupling constant— V(1 010 - R
+2/7?). The gap can be calculated from the standard mean- ) vy
field BCS equation. A comparison of the different cases
shows that the phase fluctuations lead to increasing of the  0.05

In this paper the BEC—BCS crossover from superfluidity
to superconductivity with increasing doping B&0 in the
cases of thes-wave andd-wave pairing was briefly re-

gap, while the total fluctuations lead to a much stronger in- /’

creasing of the gap at low carrier densities and to decreasing ] —

of the gap when the carrier density is large. The last result is 0 0.25 0.50
familiar, but the first one is very surprising. The dependence G

of the gap on coupling at a low value of the carrier density is _ _
IIG. 7. The dependence df on G for the case of the mean-field solution

presented n Flg. 7. These ,reSU|tS suggest that.correctlons solid curve and for the case of order parameter fluctuati@ashed curve
higher orde_r in the ﬂUCtuatK_)nS should be studied for bettek; . —0.1. The dotted curve is the estimate from Ref. 22 for the order
understanding of the behavior of the system. parameter phase fluctuations.
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A study is made of one of the possible forms of ordering of Fermi systems—superfluid spiral
ordering, wherein not only the phase invariance of the state is broken but so are the
translational invariance and the invariance with respect to spin rotations. A general method of
studying superfluid spiral ordering is formulated on the basis of the Fermi-liquid approach

to the consideration of superfluid states. For a one-component Fermi system we obtain the self-
consistency equations for four order parameters and the temperature of the simultaneous

phase transition to the superfluid and spiral states. The system of equations is investigated in the
case of two nonzero order parameters. The transition temperature and the energy gap in the
spectrum of elementary fermionic excitations are obtained as functions of the parameter of the
spiral. The region of values of the spiral parameter in which the spiral superfluid ordering

can exist is determined. The correlation function of the spins in the presence of spiral ordering is
investigated. ©2004 American Institute of Physic§DOI: 10.1063/1.1645176

1. INTRODUCTION a review that the temperature of the transition to the mag-
netic superfluid state in high; superconductors is signifi-
In this paper we investigate a superfluid spirally orderedcantly lower than the temperature of the transition from the
state of a Fermi liquid. normal to the superconducting state.
~ The state of statistical equilibrium of the superfluid lig-  ypjike the aforementioned studies and many others, in
uid with spiral ordering of the spins is investigated using theihe present paper the phase transition to the superfluid state
Fermi liquid approach to the theory of superfluidity. This 5rises simultaneously with a spiral ordering of the spins.
means that the energy functional of the Fermi liquid is in- 114 Fermi-liquid approach to the theory of superfluidity
variant with respect to arbitrary spatial translations in arbi-s yased on the introduction of a nonequilibrium statistical
trary spin rotations. However, the state of statistical equ"ib'operator for an ideal gas of quasiparticles and the construc-
rium of a Fermi liquid is invariant only with respect to the tion of a nonequilibrium entropy on the basis of it.
simultaneous displacement by an arbitrary veetand rota- For studying the kinetics and equilibrium state of a su-

tlo_n of the spins by an anglesd (2q is the vector of the perfluid Fermi liquid it is necessary to introduce an energy
spiral. . o )
functional which is a functional of the norméland anoma-

The possibility of magnetic ordering was considered, o . .
) . ; lous g matrix distribution functions. In the semiphenomeno-
e.g., in Ref. 1, where the question of the existence of ferro:

magnetic and superconducting states as a consequence I% |_cal theory this energy fgncﬂonal _replace; the Hamil-
electrons exchanging a magn(mather than a phonon, as in tonian of the sy_stem in the rigorous microscopic theory.

the BCS theorywas studied for the first time. Such an ex- . An expression fo_r the entropy of the system, toget_her
change can also lead to an attraction between electrons. With the energy functional of the system, allows one to find

Superfluid spiral ordering has been considered in man{€ Normalf and anomaloug distribution functions in a
papers. For example, it was shown in a sfudfthe coex- stgte_ of statistical equilibrium on the basis of a variational
istence of superfluid and magnetic ordering that a supercorRinciple. o o
ducting phase with a spiral ordering of the magnetic mo- A splrall.y ordered state of statistical equilibrium is spa-
ments can form in a magnetic superconductor. The questiof@!ly nonuniform. _ o _
of the coexistence of superconductivity and antiferromag- AN important point here is that it is possible to go over,
netism, or of the influence of antiferromagnetic ordering of&S @ result of a unitary transformation, from a spatially non-
localized spins on the superconducting state, was examine#liform state to a state which is effectively spatially uniform
in a review articlé® Spiral spin ordering in magnetic super- s & result of a unitary transformation; this substantially sim-
conductors due to an interaction between the photon fieldPlifies the treatment of spiral studying of a superfluid liquid.
persistent current, and a localized spin moment was investi- N this paper we derive general equations determining
gated in Ref. 4. An expression for the spin susceptibility ofthe order parametek=(A,+Ad)o,. Here the solution of
such a system was obtained, and the dynamical propertigbe problem reduces to finding the roots of a bicubic equa-
due to spiral spin ordering were investigated. It was shown iriion and then performing some rather awkward calculations.

1063-777X/2004/30(3)/8/$26.00 191 © 2004 American Institute of Physics
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For this reason we shall consider only the particular case We assume that the energy functioB4f,g) is invariant
Ag+Az03=0. with respect to spatial translations and spin rotations and has
Analytical expressions are obtained for the order paramthe following structure:
eterA,*=iA; and transition temperature as functions of the
spiral vectorg. The three-dimensional surface describing the E(f,9)=Eo(f)+E(f)+Eq(9), @)
dependence of the spiral vector on temperature and the OrdWhere
parameter is found numerically.
It is shown that in the state under consideration the mean 1 0
value of the spin is nonzero and independent of the coordi- Eo(f)= v 2 & e Fcrie ®
nates, while the spin correlation functidi,(x)o,(y)) is oK
periodic in the variablex+y)/2 and decaying in the variable and the interaction between particles is determined by func-
X—Y. tionals which are quadratic with respect to the normal and
anomalous distribution functions:

1
2. BASIC EQUATIONS OF A FERMI LIQUID WITH SPIRAL E¢«(f)= v v(;<1K2K3;<4)(1‘,<3Klf,(4,(2
ORDERING Ky
The state of a superfluid Fermi liquid is characterized by B fKaKzf K4K1)' ©
a normalf ., and an anomaloug,,.r distribution function, 1
for=Trpal,a., g =Trpaca,, (1) Eq(9)= 5y X v(KkikoKkaka)d) Dy, (10)
K1...K4

wherep is the statistical operator of the Fermi quu'mnll and

a, are the creation and annihilation operators for particles in(the Hartree—Fock approximatiprwhere

statex (k=p,a; p is the momentum and the spin projec- v (Kk1KokaKa) =0o(P1P2P3P4) O . Occrae

tion of the particle. The energy of a superfluid Fermi liquid e T

is specified by a functional of the normal and anomalous +v1(p1p2p3p4)3a1a33a2a4. 1y
distribution functionsf andg:

We assumethat the interaction amplitudes, andv,
E=E(f.9). @ Wwhich contain the Kronecker delt@, :p,,—p,p, are inde-
In a state of statistical equilibrium the normal and pendent of the total momentum + p,. Thenv, andv, can

anomalous distribution functions are determined from thepe written in the form

condition of maximum entropy at a fixed energy of the

system and total number of particlés (the momentum of vo(p1P2P3P4) = vo(k, - KK, — k') = 0y (k, k'),

the system is assumed to be 2erBor solving this varia-

tional problem it is convenient to introduce a block density  v{(p1p2p3ps) =v1(k, -k k', - k') =v(k k')

matrix (supermatrix

(py + P2 =pP3 +P4g)s 12
gt 1-f 3 where
(the elements of this matrix are expressed in terms of the | _ P P2, Ps™Pa
single-particle distribution function, . andg,.). 2 2

Then the equilibrium single-particle density matfixs

, ; It follows from the Hermitianity of the Hamiltonian that
found from the nonlinear integral equatfon

voa(k,k")=v§ (k' k). Furthermore, we assume that the ki-

f = (expB [é(f) —a -+t (4) netic energy of free quasiparticles has the form
2
P2
o =
where 8K1K2_ 2m “xike’ (13)
R c A { o It follows from formulas(6), (9), and(10) that the ma-
&(f) =( t ~J, fi =;{0 J, (5) tricese,,, andA, . are related to the norméland anoma-
AL - lous g distribution functions by the relations
OE OF
Ep = , Ay =2———, 1
™ e gt (6) Srny= 3y 2 [0(KaK1K3Ko)+0(K1KaKoK3)
K3,K4
where u is the chemical potentiald=1/T is the inverse —v(K1KgK3Ka) ~U(KaK1KoK3) [F i, (14)
temperature, angI,Kz (9xx’)* - We note that the matrik is 1
" t . .
Hermitian, f,_ ,=f,,,, and that the matrixy, by virtue of A= v > V(K1K2K3Kg) ey, (15)

the Fermi statistics, is antisymmetrig,.,., = — g,/ - K3,K4
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Relation(15) establishes a connection between the order pathe uniform distribution functiong, andg,, or the super-

rameterA, the interaction amplitudes, and the anomalous matrix f,, satisfy a self-consistency equation that follows

distribution functiong. from (4):
We have proposed a model description of the spiral or- . . . .
dering with respect to the spins of a superfluid Fermi liquid. fo={expBleq(fq.99) —m1+1}77, (23

Spiral ordering means that the state of the system is invariaRyhere
with respect to an arbitrary displacement by a veetand a
simultaneous rotation of the spins around thaxis by an
angle 2-q. This means that the density matfisatisfies the
symmetry relation

(@)

. € A
§u=( ¢ )

T o~
Aq €q

For finding the solutions of this nonlinear self-consistency
equation for a spatially uniform matrik, one can use the

8q:

ViVl =f If.p-q31=0, (16)  theory developed in Ref. 6.
3. SPIRAL SUPERFLUID STATE IN A HOMOGENEOUS
whereV is the unitary operator REPRESENTATION
. It follows from formulas (22) that the normal and
V = exp ia-(p - q63). (177  anomalous distribution functions andg are related to the

spatially uniform distribution functionsg,. . = f4(P) wa’ Spp
and gy, =9q(P) e’ 6p,—p' bY the formulas
Here

) (03 0) A (p 0) fpp,=aﬁ2:ﬂPafq(p—aq)Pﬁap,aq,p,,ﬂq, (24)
O3= y - ’

0 —os 0 -p

= P, gy(P—a®)Ps Sy wa—orsgq. (25
o3 is the Pauli matrix, an@ is the Fermi-particle momentum 9o a,ﬂZZil 9q(P~ @)Pg Op-cq.—pr+59 @9

operator generalized to a superfluid Fermi ligBid.

Such states of a superfluid Fermi liquid are analogous t’% In these relations the matricdg, , Gpp', fq(p), and

q(P) act only in spin space. Analogous formulas are valid
or eppr @ndA,r as well. These formulas were obtained with
he use of the relation

the spiral ordering of magnets and exist owing to the spi
and translational invariance of the energy functional; theyt
may possibly be realized in some phase of superffiid
(Ref. 8. iGXo 3| !\
It follows from formulas(3) and (16) that the unitary (ple[p >_a§;1 Op,p'+aqPa

transformation ) i L
with P,=1+ ao3/2, wherea= *1 is the projection opera-

U=expig-Xos, (18)  tor on a state with spin projectio®/2.
The inverse formulas expressifigandg, in terms off

andg are also valid:
takes the staté to the state

(x 0
where o
0 X

fo(Popp= 2 Paf(Ptag, p'+Ba)ps (26

~

fo =U U, (19)
gq(p)ép,_pr=a;+l P.g(p+aq, p'+Bq)Ps, (27)

which is spatially uniform, i.e., and also the analogous relations linking and A, with &

[fq,f)]=0, (20 andA:
and at the same time it preserves the structure of the super- &e4(p)d, pr= E P.e(p+aq,p’+B9)Pg, (28
matrix f: wpm=d
C(fe 4 AP0y = 2 PaA(ptagqp'+Ba)Ps. (29
a gfl 1:qu ‘ (22 The matrix gq(p) =(9o(p) +d(p) )0, is conveniently
expressed in terms of the diagonal matrioggp) and
The normal and anomalous spatially uniform distributiongL(p)'
functions f, and g, that determine the supermatry, are dq(P)=gi(P)o2t+9, (P), (30)
related tof andg by the following relations: where
fq _ efiqxog fe igXc3 , gq _ e—iqxo;; ge -iqXo; ) (22) g”(p) = gO(P) + gB(P)GB’ (31)

9.1 (p) = go(p) +ig1(plos.
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The matriqu(p)=(A0(p)+&(p)&)az can also be repre- 4. DIAGONALIZATION

sented in the form T . e s
We express the normal and anomalous “uniform” distri-

Ag(P)=4A(p)or+A (), (32 bution functiqnsfq andg, in terms of the four order param-
etersAg andA (or A, andA, ). With this goal we turn to a
procedure developed in Ref. 6 for block diagonalization of
the self-consistency equatidd).

33 The matrix&=(+ _%) is reduced to the block diagonal

where

Aj(p) = 4¢(p) + A3(plos,

A()EA()+1A()C '
P 2'P 1ip7os form (g _%,) by means of the Bogolyubov unitary transfor-

- mation
In an analogous way the matricég(p) =fo(p) + f(p)o and

eq(P) =&o(p)+€(p)o are represented as cern (B0
fo(P) = (D) + T, (D)o, sq(P)=8y(P)+e. (P)o, o - 37)

where the diagonal matricds, f, , ¢, ande, are given by  where the unitary operatdy has the form
the formulas

fi(p)=fo(p)+fs(p)os, fL(p)=Fa(p)+ifs(p)os, UE[ . ) 39)
gi(p)=eo(p)+e3(P)os, &, (P)=&x(p)+ier(p)os.

) or + - The main role in the diagonalization process is played by
According to(13), e4(p) is equal to the matrixX relating the blocks) andu by the formulav

(p+qos)? =Xu*. This matrix satisfies the equation
Sg(p)szgo(p)"‘Sa(p)U’a, (34 3
XAYX —eX - XE-A=0,E=¢-p. (39)
where
p’+q? p-q . . . . .
eo(p)= —=—,e3(p)= —. After solving this nonlinear matrix equation, one can deter-
2m m mine the spatially uniform normal and anomalous matrix dis-
Using these designations, we transform Ed) to tribution functions by means of the formulas
Af(p)=2 {[vo(p+aq,p’ +aq) —vi(p+aq,p’ f=Kn+ X4 -DX'K, (40)
p!
+aq)]gi'(p') —2v4(p+ aq,p’ 3
_ = - - Xn_,K_;,
~aq)g; “(p)}, @ ~ IKOTmXXEKy (41)
Af(p)=2 [vo(p,p') +u1(p,p)]1gL(P"). (36)  where
p/
Here

+ -1
K=+xxH™", n= STXA )
Af(P)=8o(p)+ ads(p), 87(P)=0o(P)+aGs(p), ' " {exl’[ r )" (42

AT (p)=Ay(p)+iaAy(p),

The eigenvalues of the matrix- XAT= # determine the
97 (p)=92(p) +iagi(p). spectrum of elementary fermionic excitations. This spectrum
is real, since the matrixt is Hermitian in the positive-
definite scalar produdte, )= (¢,K). Indeed, we note in
this regard that the following identities hold:

In the general case Eq635), (36) comprise a coupled
system of equations for determining the four order param

etersAq(p) andA(p) (or Ay(p) andA , (p)), sinceg,(p) and
g, (p) depend on these four order parameters. (6= XAT)(1+XXT) = (EX—XATX+A)XT+ ¢,
For g=0 these equations go over to common equations ‘ o f ot oot
for the order parameterﬁq(p)=(A0(p)+5(p)&)02, (1+XXD(E-AXD=X(AT+XTE-XTAXD +&.
which correspond to a superposition of a singlet and a tripletherefore, by virtue of42) and the fact thag=¢', we have
pairing (A #0).° K(é—XAT)=(é—AX")K or K£=ZTK. In the new scalar
We note that it follows from the definition83) thatg, product (p,K i) (Where (@, )= ¢% i, is the ordinary scalar
and A, are odd with respect to momenta and describe groduc) the operation of Hermitian conjugation is defined in
triplet state withS=1, S,=+1, while the functionsgy, and  the standard waye, Ay)=(A%p,), i.e., A°=K IA'K.
A, describe a superposition of a singl&=0) and a triplet It follows that in such a scalar product the operatoris
(S=1) state withS,=0, and they therefore do not have a Hermitian,# ° = Z, and, consequently, the eigenvalues‘of
definite parity with respect to the momerga are real.
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Noting that
X =@¢-&hH1, 43)
we obtain from(39) an equation for%:
€2 1285 =%, (a4
where
26 =303 — (AN 'eg04 AT,
%2 =g? —2eb6 + aal. (45)
Writing the matrix# in the form
g=i+ya, (46)

we obtain from equatiori44) after some transformations a

bicubic equation fo:

8 -efct + (0%} + 8% -6 - @b)? =0 (47)

and a linear algebraic equation for the vegforthe solution
of which has the form

- [Cé—i[é,l;]—g%}—l;.

Cz _52 (48
It follows from formulas(43) and (45) that
ef =&5 +E7 + 8980 + A4, (49)

6=ty G —b) —i[E,h] + %(AOA' + DA +ilARTD), (50)

b= ﬁ(mgg, A1 - (AB)A" +EATAT). (51)

The quantityD* in these formulas is equal tA* A*
—AJAG .
From these formulas and the definiti¢f6) we obtain

the following expression for the spectrum of elementary ex-

citations(the eigenvalues of the matrix):

f=Cilil  l=y e -2* -2@b/0). (52)

Thus formulag49)—(51) determine the spectrum of elemen-
tary fermionic excitationg52) in terms of the initial quanti-

ties ¢ and A and the solutior? of the bicubic equatiori47).

As a result of solution of the equation fgf, the quan-

tity X is determined by the formulas
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X =(X, + X&)oy = Xjjo5 + X, (53)

Xo = (G + EA) ~ (€ + £0)Ab), (54

XL+ BT+ A re) -AbG+D) (5D)
D

Further, using formulag40) and (41) we can, in prin-
ciple, find explicit expressions fdg, andg in terms ofé and
A. Substituting the expression fgrinto formulas(35) and
(36), we obtain an equation that determines the order param-
eterA.

We note here that formula&3)—(55) and (47) give a
concrete solution of the quadratic matrix equatidtt
—2pX+q=0 and generalize the well-known Sylvester
formula®

However, for solution of this problem when, and
Aq,A,,A3#0, we run up against some rather awkward al-
gebraic expressions and formulas. Therefore, in this paper
we restrict consideration to two particular cases, when in the
representatiod =A,0,+ A, one of two variants is realized:
A=0,A, #0 orA;#0,A, =0.

5. ANALYSIS OF THE SOLUTION OF THE
SELF-CONSISTENCY EQUATIONS FOR SUPERFLUID
SPIRAL ORDERING

In both variants Eq(47) for ¢ reduces to a biquadratic
equation. Since we are interested not only in the roots of
equation(47) but also in the whole matriX and the distri-
bution functionsf and g, we note that in these particular
cases the matrices, for A;=0 or A, for A, =0 are diag-
onal, and therefore it is simpler to start directly from E2p)
for X, in which only diagonal matrices appear as unknown
coefficients.

Consider the casA;=0, when the solution of equation
(39) for X has the form

§O+ CYEL

wherea=*1, &=[p?+022m] —u, E, =J&+A AT,
The spatially uniform normal and anomalous distribution
functions then have the form

: (56)

A
9q=9,=— E[l_n(EL_§3)_n(EL+§3)]y
9,=0; (57)

1
fq:fuzz 1+n(E, +&3)—n(E, — &)

_é_i[l—n(Eﬁfs)—n(Erfs)] » 1.=0, 59
where

n(A)=[expA/T)+1] L. (59
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In the caseA | =0 we have Furthermore, we shall assume th&tp,,p,) is honzero in a
narrow energy layer with respect to the argumgntandp,
X=X, = §+A“E” (a=+1), (60) (asis assumed in the BCS the))ry
I
— 22N 12 T
E=VEHIAL, 61 V(p1.pp)=—Vy{ 1= ’
and 0 otherwise
(68)
g =_ﬂ[1 —2n(E)los =g 62, g1 =0 Here 2 is the width of the energy layer near the Fermi
q 2F, { 2 I L ’ (62) . A . .
| surface. In this casa , (p)=0 if p lies outside the narrow

energy layer and\ (p)=const if p lies inside that layer.
Thus equatior{64) becomes

_1 § -
fq=fH _5{1—E—”[l—2n(E”)]}, fL =0 (63) 1:2f1 dxxzfﬁ d§(1+§)3/2
—IN(E+D) 2+ 87X (1+§)
Using these formulas and equatiof®6), we obtain the X [tanhu™ +tanhu™], (69
following self-consistency equation for determinidg in
the caseA,=0: where
1
B A (p") B ut=—[V(E+ gD+ 631+ &) = 2gx 1+ £].
A(p= NE VE )(tanh— E.(p") 2t - -
0’ 8 0’ The dimensionless parametelsy, andt are related ta\ | ,
+— +tanh§ E,(p')— 7” (64) g, andT by the formulas
A T q
where =" t=—, q=—. 70
v 65 e’ e’ d P+ (79
L ! = L ! + L ! . . . . . . . B
(P.P")=00(P.P) +va(p.p) 5 The dimensionless energies characterizing the interaction po-
In an analogous way in the cadg =0 we have tential are expressed by the formulas
1 3
E ’ ’ f 0
Ai(P)=~ 5y 2 | [vo(ptaq,p’+aq)—vi(p+aq,p V=" 7aZe, VPR, 9=
Af(p") Ef(p’) and the dimensionless integration parametrmsnd x are
+aq)] E*(p) tanh—> given by
— gt P 1 p?
AP, E%(p )] g:—(— - ) X=cosp-q
—2v4(p+ag,p’ —« — ——tanh . 2m ’ '
1(p+aq,p’ —aq) E “(p") >T &
(66) In solving Eq.(69) we shall assume that<1. Thené

<1, t.<1. The layer widthd is taken such that<, t.
It follows from this equation that its solution reduces to the< 9, and g<4d. In that case we can assume-§~1 and
BCS equation for a superposition of a singlet and a tr|plet§+q ~¢. Then Eq.(69) becomes
order parameter i5,=0. We shall therefore not consider it
further but instead turn to an analysis of E§4) for A,
which corresponds only to triplet pairing witB=1 and| f f \/—2—2—2
=1 and a superposition of wave functions of Cooper pairs
with S,=1 and S,=—1. In this caseA=A,+iAj03 1
= (Apoot Ayoy) 0. +ng)+tanhz(x/§2+ 8*x*—2qx)|.

By virtue of the definition of the functio®’ (p,,p,), it

should be antisymmetric with respect to both its arguments  In the limiting casess=0 or t=0 this equation can be
p, and p,. Therefore, the expansion of the function simplified substantially.
W(py,p,) in Legendre polynomial®,(cosp;p,) will con- Let us find the transition temperatutg of the spirally
tain only odd polynomials. For simplicity we consider only ordered state as a function of the spiral paramgtemhis
the first Legendre polynomial in the expansion. Thus, wetemperature is determined by E1) with §=0:
shall assume that

. v 2 vdé 1
W(p1,p2) =V(P1,p2)C0SH, 6=P; - Py 1—§fodx fo? tanhzy (£429%)

In this case

A, (p)=A,(p)cosd, 6=p-q. (67)

tanh—(\/§2+ 5x°?

(71)

+tanh%(§— 29x)+. (72
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FIG. 1. Transition temperature (1) and order paramete$ (2) at T=0
versus the spiral parameter.

Integrating over¢ using integration by parts and then
evaluating the integral over, we obtain the following equa-
tion in the logarithmic approximation/tc>1):

t, 3

2In; —@ 1+ In|a+s|=0, (73

+J°c ds
_costt s

wherea=g/t. and we have introduced the parameter

9 (13
T—EeX § ;

For gq=0 we have t;=4ryexp(-1/3)/m,
=exp(0.57 . ..) is theEuler constant.

For g= 7 the transition temperaturtg goes to zero, and
in the vicinity of that point it has the asymptotics

1

te~—V871(q—17).

T L

a3

(74

where vy

(79

For g> 7 the functiont.(q) is two-valued, andj(t.) has a
maximum given by the condition

J"C dS§I +a'n'2_o
,wcosl‘?sma S| 6

(76)

from which we geta~1.644 andq~1.181r. The depen-
dence of the transition temperatuteon g is shown in Fig.
1.

We now determine the dependence &bn the spiral
vectorq att=0. According to Eq(71), we have

3 1 9
LG)( 2, 52,2 _qu)
- q

éz +8%x

(77)

where®(x) is the Heaviside step function. This equation has

two solutions. The first satisfies the conditiér» 2q, and the
second satisfiess<2q. For 6>2q we have S=4r or
6=2U exp(1/3- 3/v). This is the formula of BCS theory for
triplet pairing. For6<2q we have

6=4\r(g—17).

(78)

Peletminskii et al. 197

0
1.2 1644

1 o4 @8

FIG. 2. Spiral parameteq as a function of the temperatuteand order
parameters.

In the regionr<<q<27 we have a double-valued behavior of
the gap as a function of the spiral vector. A graph of the
curve §(q) att=0 is shown in Fig. 1 in the same scale as
te(q).

The general solution of equatididl) is obtained by nu-
merical methods and is shown in Fig. 2. It is seen from this
graph thag= 27 is the maximum possible value of the spiral
parameter, which is reachedtat 0 andé=47. Thus forq
>27 the spiral superfluid state does not exist. Figure 3
shows sections of solutiofY1) by planes with different val-
ues ofqg.

6. CORRELATION OF SPINS

The matrix distribution function$ andg determine the
various physical quantities in a state of statistical equilib-
rium. For example, it follows from the formulas férthat the
mean value of the spin in the cadg=0 is constant:

1
<Gm> :63m (c3), (o3) = Tr ﬂ|03 = VZ/IB (p) (79)
P

4 )
q=0
0.6
Q.8
3.9
110
11
1115
L 1 1.’ I1’.5| .1 8. 1 L " 1
0702 04 06 08 10 1.2 1.4 16
th

FIG. 3. Order parameter versus temperature for different values of the spiral
parameteq.
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In this connection let us determine the correlation of the( o (x) o (y)) — (03)283md3n are periodic functions of the

Spins&m(X)EIJIL(X)a’TﬁlJlB(X) in a superfluid Fermi liquid
with spiral ordering. Since

%(x)z%E expip-X)auyp,

p

we have
R ~ 1
<0'm(x)0'n(y)> = W

f png) O-nf P4P1

p2p3_
- trUmGpApzanggspl}eXpi [x-(P2—P1)

+Y-(Pa—P3)].

variable k+y)/2. By virtue of the principle of spatial decay

of correlations the correlation functions of the spins with
respect to the variable—y tend toward zero. Therefore the

spiral ordering is manifested directly only in the correlation
function of the spins.

We note in conclusion that superfluid liquids of tfiée
type, with a tensor order parameter, admit the existence of a
large number of diverse phase states, many of which have
not yet been foun.Nonuniform spiral states of superfluid
phases can be encountered in the study of crystals with over-
lapping energy bands and also in the study of heavy nuclei
(nuclear matterand astrophysical objects such as neutron
stars.

The spin spiral ordering studied here arises simulta-
neously with superfluid ordering and constitutes a state of an

Here the transposition is done only in spin space. Hencantiferromagnetic type in which the spatial nonuniformity is

we obtain the desired formula:
(&m0, (V) - (0328330 = ) G + iBEmn3)
B=+1

t @
xf“ﬁ(o>es(r)+F D Tlmo,nBU-£H (D (-0)

o,p==x1

xexplifo - B)r-ql + (28, - g% (-)g P(-r)
x exp[-i(a + B)r-qlexpli(a - BIC2R - r)-ql}, (80

wherer=x—y, R=(x+y)/2,
fﬁ(ﬂf% fi ()P, gf<r>E§ g (p)ePT, (8D

fi(p)=fo(p)+afz(p), gf(P)=0x(p)+iag:i(p) (82
and

T(m,a,n,B)=tr o,P,0,Pg

1
:E[ﬁmn(l_aﬂ+2a,853m)_i(a_,8)8mn3]-

(83

As we see, in this case the spiral ordering is manifested (
functionsTranslated by Steve Torstveit

in the circumstance that the correlation

manifested in the anomalous distribution function and in the
spin correlation function, which can be measured experimen-
tally. Although such a nonuniform spiral superfluid state has
not been found, it is of interest as an object of study in both
low-temperature physics and in the physics of ultradense
states of matter.

*E-mail: spelet@kipt.kharkov.ua
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The energies of the first two subbands are calculated, within a variational approach, for electrons
localized over the surface of a liquid helium film covering a solid substrate. The results are
obtained for arbitrary value of the dielectric constant of the solid substrate, covering both the limit
of a substrate with a dielectric constant close to ufstych as a rare gas solidnd a metal.

The results for the subband energies in the case of a metallic substrate are compared with those
obtained previously by a different method by Gabovich, llchenko, and Paghitéid

agreement is rather good, supporting the applicability of the variational method for calculating

the energy spectrum of surface electrons in a wide range of substrate parame2084 ©

American Institute of Physics[DOI: 10.1063/1.1645177

1. INTRODUCTION difference betweer . and unity one can disregard, in the

. . sum ofU(z), the terms witm=2 and write, to a very good
The properties of surface electrof®E) localized over a «(2) yg

liquid helium film are substantially more complicated thanaccuracy,Us(z)=Al/(z+ d).

: . . The additional contributiotd¢(z) to the equation for the
those over bulk helium. As is known, the potential energy of, . . . .
: . o . . SE potential energy, in comparison with that over the bulk
SE in the pointz over bulk liquid occupying the semispace

with <0 can be written ds liquid, is connected with the polarization interaction between
the SEs and image forces in the solid substrate<at-d.
Ag This energy influences strongly the properties of SEs over
Up(2)=— z+_zo+eEiZ @ film changing not only the structure of the SE energy states,
which were first considered by Shikin and Monarkhiayt
where Ao=€*(epe—1)/[4(spet1)], E, is the holding aiso the Hamiltonian of electron—ripplon scattering, which
electric field oriented normally to helium surface,is the  determines the kinetic properties of the SEs under their mo-
electron charge, anele=1.0572 is the dielectric constant of tjgn in the plane of the vapor-liquid phase boundaRur-
liquid helium. The parametez,=1.01 A is introduced in  thermore, one more scattering mechanism by substrate sur-
Eqg. (1) to take into account the finiteness of the potentialface defects can appear which contributes to the SE transport
barrier Vo=1 eV on the liquid helium surface, which is an propertiest
obstacle to electron penetration inside the liquid phase, and The role ofU(2) is especially well pronounced for sub-
to avoid divergence of the first term of Ef) atz—0. The  gtrates withe 1, such as, for example, some types of glass,
value of zy is estimated by comparison of the experimentalwheressz 7, to say nothing of metals, wheea—. For a
data on the frequencies of spectroscopic transitions betwegfietallic substrate one has, = e2e o/ (e et 1)2=€%/4, and
the SE surface states and theoretical calculation based on Bfe contribution oU «(z) dominates ifJ¢(z) of Eq.(2). The
(1) in the ||m|t Of Sma” h0|d|ng f|e|d One Should note that in Schf'ﬂjinger equation for the SE wave functions and energy
the limit Vo— (zo=0) one obtains a SE energy spectrumgpectrum has been solved, in that approximation, by Gabov-
very close to that really observédand for that reason this jch, lichenko, and Pashitii and the final expression for the
limit is widely used in calculations. The applicability of the spectrum a€, =0, in the limit Vo—, can be written as
limit Vo—oo is based on the strong inequalith|<Vy,
where A, is the energy of SE states numbered by Am s
=1,2,.... For aliquid helium film located atd<<z<0 over '™ 32a,
a solid substrate with dielectric constantthe SE potential
energy can be written &s

2 3 1 [2d]?

4 a ao

)

which differs essentially from the hydrogenlike spectrum
A,=—A,/I? of SEs over bulk heliumi.Herea,=%2/mée is
U¢(2)=Uy(2)+U4(2), (2)  the Bohr radiusAy=7%2y3/2m, yo=mAy/#2, andm is the
free electron mass. Equation3) is valid for 1

where <(e?/4h) JmiZ[A|[<d/a,, which is well satisfied fod=5
(—a)"? X107 cm.
Ug(2)=—A1 For the substrates with relatively smadi&1) or inter-

mediate values of s the contribution ofU,(z) to U¢(z) can
A= des—epe)/[(epet 1)?(estepe], and a=(eye be comparable with that dfls(z). In such a situation the
—1)(es—ene)/[(enet1)(estene)]. Because of the small only possible way to estimate analytically the SE spectrum

1063-777X/2004/30(3)/4/$26.00 199 © 2004 American Institute of Physics
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over a helium film is to apply the variational approach. The 2‘/‘75/2 Y1+ vo
aim of the present work is to obtain the variational solution sz( n )1,2{ 3 |Z expl — v22),
for the energies of two lowest SE subbardsl and|=2. Y- Vavet Y ®)

For the sake of generality, the calculation is carried out for a
substrate with an arbitrary value of, and the effect of the where y; and y, are variational parameters. The energy of
holding field is also included. The result for a metallic sub-the Ith subband is calculated as

strate is obtained under the limiting transitieg— and is 5
compared with that given by E¢3). Such a comparison can _ i i
Sy . . A|— +Uf(Z)| .
make clearer the possibilities of applying the different ap- 2mdz
proaches in the problem of description of the SE spectrum. o o
In view of the rising interest in investigating both quasi-two- The method of calculation IS a gengr_allza_nor_] of that_ de-
dimensional and quasi-one-dimensional SE properties ovéflOpfd in Ref. 15_ for the mlf:rostratlﬂed I|qU|d_ solution
helium film in recent years, the present study seemsHe—He, and the final expressions for the energies are
7-13

timely.”~ h2y?
A= 2m —Aoy1—=Ayy[1-2y.d
2. MAIN RELATIONS
To calculate the energies;, andA, one applies the or- . 2 L 3eE,
thonormalized trial wave functiofs®® Ayad)"exp2ysd)Bi(=2y,d) ]+ 7 ©
fi(2)=27;"zexp(— 7:2), @ and
|
Ay = n*yi [Y? “Yiv2 t 7Y%J Aoy [vf 27172 + 37%} B Aty
6m { y3 ~yiv2 +73 2 - viv2 + 15 2v§ — 1172 +73)
x{y? -2 343 - 2 (y9d)( )2+ 24313 d2[t - 2y,d — 2 (-
Y1 =271y + 372 = S (d)(yy 4 72)7 + SY203 4 vy + ¥2)d] T - 2v5d - 4lyyd)” expQy,d) Ei (27,1
E, (5y7 -2 2v3
+€¢[Y1 Yivo +2¥3 |
22\ i —viva 473
)
|
where Eik) is the exponential integral. In the limiting case functions of Egs(4) and(5) one can easily obtain
d—o the terms depending ot in Egs. (6) and (7) disap- 5 5
pear, and we reproduce the valuesypbbtained in Refs. 14 (2 = §Y1—1 and (2), = VT~ 2¥1¥2 + 25
and 15 for the bulk liquid. It is interesting to note that for 2 272(}'% - Y1y + y%) (8)
d—0 the terms depending o also disappear in Eq%6)
and(7), which are formally the same as those &b+ but The dependences Qﬁ>l and <z>2 on d for a metallic

now depend om\g=Ao+A;. It is easy to see that in this substrate are plotted in Fig. 1. As is seen from Fig. 1 the
limit, where & is replaced by unity in the expression for values of(z), increase withd. For a small film thickness of
Ao, one obtains the energies of an electron localized over 8x 10"’ cm one has(z);=29 A and (z),=72.5 A. At
semi-infinite medium az<0 with a dielectric constantés;  smaller values ofl the mean electron distance, calculated by
and without a helium blanket. Eq. (8), tends to the microscopic range, where the above-

The values ofy, and vy, are calculated numerically by mentioned approach to the description of the SE states over a
cumbersome transcedental equationd;/dy;=0 and helium film is no longer applicable. Note that, for the same
dA,13y,=0. By determining the roots of these equationsd, the values ofz); and(z), are substantially larger for the
and replacing the values of andy, in Egs.(6) and(7) by  substrate withe;=1. For example, for solid neone(
them one calculates the energiks andA,. =1.20) we estimatéz),=89 A and(z),=288 A (for com-
parison,(z,)=144 A and(z),=456 A for SEs over bulk
heliunt). One concludes that the characteristic values of the
mean electron distance from the liquid surface satisfy the

Here we restrict ourselves to the limit of zero holding inequality(z)|>zo, being substantially larger than atomic
field E, =0, where the influence of film effects on the SE scale~10"8 cm. For this reason the microscopic nature of
energy spectrum is especially pronounced. The correctionthe helium surface, leading, in particular, to a small incer-
due to finite value o, can be included in a straightforward tainty of the position of the potential barri&f,, cannot in-
way>® fluence appreciably the SE energy properties; this supports

We start our consideration by calculating the mean electhe applicability of the limitVy— o with the boundary con-
tron distance from the helium surface. Based on the SE wavdition for the SE wave functior,(zZ)=0 atz=02

3. RESULTS AND DISCUSSION
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FIG. 1. The mean electron distance from the helium surface for the subFIG. 3. The same as in Fig. 2 but for a metallic substrate. The solid curves
bands 1 and 2 as a function of film thicknes$or a metallic substrate. are the results of the present work, and the dashed curves the results of Ref.
5.

The dependences of the SE energigsandA, ond for
a solid neon substrate, calculated numerically by Egsand
(7), are presented in Fig. 2. One observes the increase of t
energies withd (the decrease of the absolute valuesAgf
and A,), which is a natural consequence of the decreasin o : o
contritz)ution of — A1 /(z+d) with increasingd. As a result, n the derivation of our Eq@ In Ref. 5 the cor\trlbutlon
the absolute values of the surface energy levels decrease, and*o/(2+ _ZOI) of the poIanzat_londofc;[Ee_ I|qu||d hgl;}u_m to th?
the distance between them also decreases, tending, for ze%:' p((j)terétla energy was .obmﬁte A/ wgus ¥ gwt |r|1crea5|ng
holding field, to the hydrogenlike values of SE energies ovelq and a decreasing contributionA/(z+d) of the polariza-
bulk helium,A,= —A,/12, whereas the roots of the minimi- tion of the solid subs_trate to Eq2), the rple Of_A_‘)/Z
zation equationgA,; /dy, and dA,/dy, tend to the values becomes more essential, which can explain some divergence
y1= 7, and y,=y0/2, coinciding with the exact result of ©f thFG results calculated by Eq$3), (6), and (7) atd
solving the Schrdinger equation in the limitl—o andE, >.10 cm. To make this point clearer we have plotted, in
=02 For solid neon this asymptotic limit is achieved fr F19- 4. the values o\, andA, calculated by Eqst6) and
=105 cm. At the same time, for a metallic substrate, where(?): Where we pui\,=0. One can see the substantially better
the value ofA, is much larger than that over solid neon, the 29reement with the results of E(S) than that in Fig. 3,
region in whichA, andA, practically coincide with those of ©SPecially for the level=2 with the larger value ofz),
the hydrogenlike spectrum starts at significantly larger value@"d, consequently, with the larger distance from the helium
d=10"% cm. free surface; for this reason the contribution to the structure

Figure 3 shows the dependencesigfand A, ond for of the =2 subband from the SE potential energy due to
a metallic substratésolid line9. For comparison the values polarization of the medium is smaller than the contribution to
of the level energies calculated by E@) are also plotted by the ground subband. As a result, the choice of approach to
the dashed lines. It is seen that the agreement between td€SCribe the SE potential energy becomes less essential for
energies calculated in different ways is reasonable, especially” 2 than forl =1.

e , .
r%or relatively small values ofl. At the same time, the agree-
ent becomes less satisfactory under increaske biote that

30
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FIG. 2. The energies of the subbands 1 and 2 versus film thickness for a

solid neon substrate.

FIG. 4. The same as in Fig. 3 but fary,=0.
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We report on depairing critical currents in submicron ¥B8e;0;_ s microbridges. A small-angle
bicrystal grain boundary junction is used as a tool to study the entrance of vortices induced

by a transport current and their influence on thé/ curves. The interplay between the depairing
and the vortex motion determines a crossover in the temperature dependence of the critical
current. The high entrance field of vortices in very narrow superconducting channels creates the
possibility of carrying a critical current close to the depairing limit determined by the

S-S’ -S nature of the small-angle grain boundary junction.2804 American Institute of

Physics. [DOI: 10.1063/1.1645178

1. INTRODUCTION =2)\f/d is the effective magnetic field penetration depth for
the superconducting film\_ is the London penetration
An understanding of the limitations of supercurrentdepth, andd is the film thickness. Experimentally, such be-
transport in highF, superconductor§HTS) is important  havior has untii now been confirmed in only one
from both the fundamental and applied points of view. Theexperiment It was reported that §. value of 16 Alcm?
upper limit for the critical current density,,, in these su- was measured at 77 K in a 50 nm wide YBCO microbridge.
perconductors is determined by the mechanism of Coopesimilar microbridges prepared on the same chip showed a
pair breaking. High nondissipative currents of the order ofcritical current density two orders of magnitude lower. Al-
jcp, however, can only be attained in some special caseshough a submicron processing may give a random structural
One of the main mechanisms responsible for the reducedegradation, the reason for such a spreafl imalues is not
values observed is the motion of vortices, which leads taompletely understood. Thus the limitation of critical current
energy dissipation. The critical current densjty, in such a  densities in highF. oxides, especially in the case of narrow
case is determined by vortex pinning. Pinning in an HTS isfilaments, continues to be an unresolved issue and requires
weak because of the small coherence lengtand to hinder  further investigation. In particular, large vortex entrance
the vortex motion a special approach is needed. This may bigelds for narrow superconducting chanretsd the influ-
achieved by employing narrow superconducting channels. lence of inhomogeneities in the case of a restricted geometry
such a channel the penetration of magnetic field and the vohave not been investigated.
tex motion can be blocked by a surface barrier, which may In this paper we report on supercurrent transport in sub-
be an effective additional pinning source in the case of anicron YBCO microbridges, with and without a predeter-
large surface-to-volume ratio. Experiments on narrowmined grain boundary. An asymmetric 4° grain boundary is
YBa,Cu;0,_s (YBCO) microbridges with widthsW of  exploited as a tool to study the entrance of vortices and their
2-13 um showed a tendency far, to increase whilew influence onj. and thel-V curves. A self-magnetic field,
decreased It was suggested that in the limit of very narrow which is due to the transport current, serves as a source of
microbridges withW <\ o the valuej ., may be attained due vortices in the grain boundary, and therefore one can deter-
to the increasing role of the surface barfieHere Aoy  mine the value of the current at which the self-induced vor-
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tices start to contribute to dissipation. This characteristic cur-
rent separates two different regimes, where depairing and
flux flow effects are the dominating mechanisms limiting the
magnitude of the supercurrent. The interplay of these two
mechanisms determines the unusual temperature dependence
of j. observed in our experiments.
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FIG. 2. j2° versusT/T, dependences for a microbridge with a 4° grain

2. EXPERIMENTAL DETAILS

boundary junctio{a) and for a uniform microbridgéb). The microbridges

were 500 nm wide, 120 nm thick, and 10n long.

We investigated YBCO microbridges 0.5-4m wide
and 10 um long. C-axis oriented YBCO thin films with a
thicknessd of 120 nm were grown by laser deposition on

Y-ZrO, bicrystal substrates. The films had a superconductingehavior is similar to that expected for the depairing critical

transition temperatur@. of 89—90 K withAT. of 1 K be-

current, but it was observed only in a limited temperature

fore patterning. Three microbridges were patterned acrosginge. At temperatures arouid =81 K, |. becomes un-
the bicrystal boundary and two microbridges on each side o$table. BelowT* the temperature dependencel gichanges

the boundary. A mask of SAL60&-beam resist and Ar ion

radically. Simultaneously, a change bfV characteristics

milling were used to pattern microbridges and electrodes fotakes place. Abov@* the |-V curves are smooth, but at
four-point measurements. The samples were ion milled af<T* regular steps appear in tHe-V curves which are
—20°C and theT. of the microbridges decreased by 3-5 K periodic in curren{Fig. 3). These steps are only observed in

in comparison to the as-deposited films. The submicron
bridges had a well-defined trapezoid geometry with a slope
of the edges of about 55°, and according to SEM investiga-
tions no YBCO *“foot” was observed around them.

Standard four-point probe measurements were per-
formed on all the microbridges. The critical currdgtwas
determined from the current-voltage characteristics at the
voltage level of 1uV, and its densityj . was calculated using
the geometrical cross-sectional area without taking into ac-
count the real current distribution.

3. RESULTS AND DISCUSSIONS

Current-voltage characteristics were measured at differ-
ent temperatures. Thie versusT dependence for a micro-
bridge with a 4° bicrystal grain boundary junctié8BJ) is
shown in Fig. 1. Two well-defined regions with different
temperature dependences can be distinguished. Clogg to
the 1,(T) dependence is described by a relatibn: (1
—T/T.)%2 This behavior is further illustrated in Fig. 2a us-

ing the coordinate$?” and reduced temperatuféT,. Such
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FIG. 3. 1-V curve plotted for currents larger than the critical value in a 500
nm wide microbridge crossing a 4° grain boundaFy: 79.1 K. Note the
periodic structure £1~0.5 mA) and that the slopgesistancgin the inter-
mediate regions is proportional to the step number.
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a limited temperature range of 2—4 K, where a large spreatkt us try to understand thig(T) dependence of the micro-
in j. values was also noted. At lower temperatures,| the bridges with GBJ obtained in the range<T*. NearT*, the
characteristics are of the flux flow type witbec (1 —1,)2. j. of the junction attains values exceeding’ ®cm?. At

The maximum value of . at T~T* corresponds to a such current densities and small cross sections of the micro-
high current density of & 10" A/lcm?. We will show below  bridge, the self-magnetic field of the critical curreHt, , at
that the critical current densities in the temperature rangéhe outer edge of the microbridge, with thickneksss given
betweenT* and T, are very close to the depairing critical by the expression:
current not only qualitatively but quantitatively as well. As

shown in Fig. 2b, the critical current densities of the micro-  H,.=2j.d/c. 2
bridge in the body of the grain are close to fhef the GBJ
at the same reduced temperatures. The fieldH,. is quite large and may play an essential

To explain thel(T) dependence measured for micro- role in determining the GBJ behavior. As long as this field is
bridges with GBJ in the whole temperature range and th%wer thanHV determined by formu|a1)' there are no vor-
high values ofj., two assumptions were made. First, thetices inside the sample, and the critical current is determined
barrier of the small-angle GBJ may be described as @y pair-breaking. Estimates usiri@j) and (2) show thatH
“weak” superconductor §'), with a T. lower than in the s equal toH,, at T=81 K for the microbridge in Fig. 1.
electrodes. Values df; approaching the depairing limit can Penetration of vortices begins at the weakest spot, i.e., in
be reached only in weak links with large transparency, anghe Josephson contact. We believe that the instability that
the S-S'—S model may then explain the higih values in  appears aT~T* is connected to the penetration of vortices

our experiments in the vicinity off .. Another important into the weak link. The critical magnetic field.,; for pen-
assumption concerns the absence of vortices in the micrastration of a single vortex into a tunnel junctior is

bridge atT>T*. As was shown by Likhare¥ the vortex
entrance fieldH,,, becomes width dependent when the mi- Hoyy=2®o/ (72N L oq). 3)
crobridge width is comparable o, and it may attain large

values exceeding the first critical field,; even in bulk su- Here \ ;= (c®y/872j L o)

; X is the Josephson penetration
perconductors. For a narrow microbridge

length, and_.+=2\_ +L. Formula(3) is obtained for a tunnel
junction, but one can assume that it is valid for&rS'—S
(200 / TWR)IN(WIAE)  at W< o junction as well, singe the area occupie.d b_y a flux quantum is
(1) abouth ;L .. AssumingL <\ and substituting fok ; in (3),

HV: .
(Po/ mWAem)IN(eii/€) At WL A we obtain the following expression:

Here @, is the magnetic flux quantum. THe,«W 2 He1g= (4/m)(Pojc/cn )M 4
dependence was observed for narrow microbridges of con-
ventional superconductofsif the microbridge edges are NearT., whereH,.<Hcy;, the critical current of the weak
smooth, the entrance field may even exceed the calculatdifK is close to the pair-breaking critical currept,(T) for
Hy values due to the surface barrfetarge entrance fields the bulk material. As the two fields become equal, the
governed by the surface barrier and exceediqghave also Mechanism leading to disappearance of superconductivity
been observed experimentaly. changes. Starting with the assumption thaf atT* the criti-

The properties 06—S'—S weak links have been inves- cal current density may be defined by the conditidp
tigated theoreticall§. The authors considered a model of a =Hc1, one can find the critical current density connected to
weak link, S’, which only differed in its properties relative the vortex mechanism. Using formulé® and(4), we obtain
to those of the bulk electrodeS, in having a shorter elec-
tron mean free path The weakness of the link was defined jo(T)=4c®y/m*d?\ (T). (5
by a parametety= yw/xe, Wherey is a Gorkov universal
function of the impurity parametdi &, (&, is the BCS co- Relation (5), with the temperature dependenkg(T)«(1
herence length The subscript®V| andel denote the weak- —T/T*)~ 2 near T* taken into account, is shown by the
link region and electrode regions, respectively. It was showrashed curve in Fig. 1T(* is assumed to be the transition
that the critical current density of the weak link exceeds itstemperature of th&' superconductgr The agreement of this
intrinsic value due to the proximity effect, especially in closeapproximation with the experimental data is goagd(0) in
vicinity to T, (the coherence length diverges as (1the GBJ region was the only fitting parameter. The value
—T/T.) 3. If the conditionL/2¢y,<y*? is met (L is the  obtained, 62 nm, is less than the values\pf0) for YBCO
geometrical length of the weak link ahd2¢&,y, is its normal-  known from the literatureX; (0)=100—-140 nm; see Ref. 8
ized length, then the critical current density of the weak and references therginin view of the approximateness of
region is only slightly below the value in the electrodes, i.e.,our approach the agreement is quite reasonable. In particular,
it can be close to the pair-breaking current dengity(T). a numerical coefficient may appear (B) to take into ac-
Nevertheless, since the order parameter in such a contactdsunt the nonuniform distribution of the self-magnetic field
depressed in the middle of the weak link, the current-phasef the transport current.
relation is close to the Josephson one, and one can expect a There is additional confirmation that crossover in ihe
Josephson-like behavibiThis assumption explains thd{  temperature dependence is associated with the beginning of
—T)%2 dependence of, and its large value nedf,. Now  self-field vortex penetration into the microbridge. The cross-
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over takes place at practically the same critical current denweak-link model using only one fitting parametex, (0)

sity on different microbridges with equal widtlisee Fig. 2
As always, the critical current connected with vortex

=62 nm. The distinction of this parameter from the values
of N\ (0) known from the literature may be explained by the

motion should be smaller than the pair-breaking one. Indeedincertainty in the numerical factors in formulé® and (7).
we found not only a drastically changed temperature depenfhjs implies that the measurementsjgfT) in microbridges

dence ofj. below T*, but relatively small values of. in
comparison with values extrapolated from the«(T/T,)%?
dependence. The suppressiorj oay also be considered as
evidence for the validity of our model.

The data for a uniform microbridge cut in the body of a
single grain (see Fig. 2p also demonstrate g.<(1
—T/T.)%? dependence nedr.. For a uniform microbridge
with W=0.8 um, the deviation of the experimental points
from a (1- T/T.)¥? dependence takes place at a loWéT

cannot be used for precisg (0) determination.

It is worthwhile also to mention here that a thetry
considering the critical current of wide HTS epitaxial films
with small-angle misorientation between grains predicts that
thej.(T) dependence is governed by the temperature depen-
dence (+T/T.)%? of the depairing current if the distance
between edge dislocationg on the bicrystal grain boundary
is less than the coherence leng{fT). For a 4° grain bound-
ary the value of 4 is equal to 5.7 nm. This means that such

than for a microbridge with a GBJ, but the phenomenon, jonendence should be observed to temperatures very close
determining this deviation from thig ,(T) dependence is of to T, (T/T,=0.997)
C C . .

the same type as in the case of the microbridge with a GBJ,
although it is less pronounced. In the uniform microbridge,
features similar to those of the GBJ have been observedq:

instability of j, around T*, steps in thel-V curves (al-
though irregulay, and a change of thg,(T) dependence be-
low T*. These data can be reasonably explained with th

assumption that the uniform microbridge contains some ran

dom, uncontrolledS—S’—S weak links which are not as

clearly defined as the specially introduced GBJ, but which

influence thej. andl -V curves in a similar way. One may
conclude that only if such weak links are not present can th
depairing critical current be observed to low temperatures.

It is also easy to estimate the temperatiife below
which the inequalityH,.<Hq; is violated. Using the experi-
mental temperature dependencej obbtained neail ., one
can rewrite this condition as follows:

1—T*/Te=4cdy/m*d?j(0)\ (0). (6)

Herej.(0) is the coefficient in the experimental dependence

ie(T)=jc(0)(1—T/T,)%2 The resulting valud* =79.4 K
is rather close to that observed in the experinieae Fig. 1
when the value\| (0)=62 nm obtained above is used.

A comparison of the experimentf}(T) dependence at
T>T* with the formula for the depairing critical curreht,

jep=CPo/[123m2E(TINE(T)], )

may also be used to estimate the valua of0). It should be

e

The most remarkable feature of Fig. 1 is the crossover in
he temperature dependencel giind the large spread in the
alues of the critical current around the crossover tempera-
ture. Thisl instability is not understood in detail, but most
robably such a behavior is connected with the dynamics of
ortex nucleation and motion under conditions when mag-
netic field of the transport current attains the threshold for
the vortex pair penetration in the GBJ.
Besides the nontrivialj,(T) dependence, another re-
markable feature that is characteristic for a small-angle GBJ
is the presence of steps in thheV curves. The steps are
periodic with current and they appear within a limited tem-
perature interval. At first sight, the origin of regular periodic
steps inl -V appearing in the temperature range where the
critical current is governed by the penetration of Josephson
vortices in the weak link can be connected with the oscilla-
tory behavior predicted in Ref. 11. It would then reflect the
entrance of the second, third and further vortex-antivortex
pairs into the Josephson junction.
However, the periodicity of the steps in terms of the
self-field of the current is found to be several Oe, while the
expected periodicity for the entrance of the next vortiCes,
AH=®/2W\(T), is more than an order of magnitude
larger than the values obtained experimentally.

The interaction of moving vortices with the periodic in-
homogeneities in the bicrystal bounddnggular misfit dis-
location grig may be considered as a possible explanation of
the step structure in the-V curvel? The commensurability
of the dislocation grid and the vortex spacing, which is de-

pointed out that there is some uncertainty in such an estimatermined by the magnetic field.e., transport currejt may

because of the substantial discrepancy in the valueg®f
obtained by different authorst{,(0)=1-3 nm; see Ref. 8
and references thergirAnother source of error is connected
with a coefficientj .y /jcei<1 which should be introduced
in (7) to take into account the reduced valuejgfin a junc-
tion in comparison with that of the “bulk.” Using formula
(7) with A\ (0)=62 nm defined in the rang&<T*, one
obtains £(0)=3.3 nm. This value is in the range of those
from other measurements. Therefore, the parameter
=jcwiljcel IS close to unity. This is expected due to the
proximity effect betweers andS’.

play the key role in this scenario.

In the case of the “uniform” microbridge, the steps are
not periodic with current. This may be explained by the pres-
ence of a number of low-angle grain boundaries in the mi-
crobridge due to YBCO island growth.

The question of the origin of the step-like behavior re-
quires a closer investigation. The transition at lower tempera-
tures to the usual flux flow behavior may be explained by a
penetration of Abrikosov vortices along the whole length of
the microbridge and their motion.

In summary, we have shown that negy the critical

Thus all the experimental numerical values and the temeurrent density of a submicron microbridge is governed by

perature dependence ¢f in the whole temperature range
may be described self-consistently in terms of &S’ —S

the pair-breaking mechanism. This is also true for a micro-
bridge containing a controlled weak link of the grain bound-



Low Temp. Phys. 30 (3), March 2004 lvanov et al. 207

ary type if the misorientation angle is small. The possibility 'Deceased

of carrying a critical current close to the depairing limit is E-mail: nfogel@techunix.technion.ac.il
. . . . . ** E-mail: yuzephovich@ilt.kharkov.ua
due, in particular, to the absence of vortices in the micro-

bridge. This is caused by the high vortex entrance field for—————
narrow superconducting channels. The properties of suchis. Tahara, S. M. Anlage, J. Halbbritter, C. B. Eom, D. K. Fork, T. H.
small-angle junctions may be described in a model of anzﬁeg?"ey a:;dk'\'/'- R. BEaSEy’ ngs-zﬁeV4BC11\3_03(,1992- Widom. b. B

, . . . . Jiang, Y. Huang, H. How, S. Zhang, C. Vittoria, A. Widom, D. B.
S-S —S.Jo.sephson contact V\{Ith a high cgrrent depsny. The Chrisey, J. S. Howitz, and R. Lee, Phys. Rev. L8, 1785(1991.
value ofj in such a contact differs only slightly frofy, in 3K. K. Likharev, Izv. Wssh. Uchebn. Zaved., Radiofi, 919 (1973).
the electrodes due to the influence of the proximity effect. At R- D. Parks and J. M. Mochel, Rev. Mod. Phgs, 284 (1964).
lower temperatures. whein becomes controlled by Joseph- V. G. Cherkasova and N. Ya. Fogel, Fiz. Nizk. Terip, 383(1989 [Sov.

P » WheR : y PR3 Low Temp. Phys15, 216(1989)].
son vortex penetration into the weak link, th€T) depen-  °A. Baratoff, J. A. Blackburn, and B. B. Schwartz, Phys. Rev. L28.
dence changes radically and thevalues become lower. The 1096(1970. _ _
same is true for “uniform” microbridaes that often contain I. O. Kulik and I. K. Yanson,The Josephson Effect in Superconducting
. . g Tunnel Structures Keter Press, Jerusalert1972, Nauka, Moscow,
low-angle grain boundaries. The crossover to the vortex- (1970.
motion mechanism of dissipation is accompanied by the ap~D- M. Ginsberg, inPhysical Properties of High Temperature Supercon-
f st in tHe-V Th di . ductors D. M. Ginsberg(ed), World Scientific, Singaporé1989.

pearance of steps in tHe-V curves. These disappear again s; ga qeen, Rev. Mod. Phy84, 667 (1962.
when the whole microbridge enters the vortex state. Thé°e. A. Pashitskii, V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov,
steps may be connected with the dynamics of vortex pai[lglz-F N'th- Eemrllf’-27,v13l’31%003ék['-0g‘/ _Temp-d ngsélz 96 (lzj?loj)]-R% 5

. o . . Fenrenbacher, V. B. eshkenbein, an . atter, yS. ,
motlop and .annlhlllatlon. . 5450(1992.

Discussions with R. I. Shekhter and L. Yu. Gorelik are 2x. v. cai, A. Gurevich, I-Fei Tsu, D. L. Kaiser, S. E. Babcock, and D. C.
gratefully acknowledged. This project utilized the Swedish Larbalestier, Phys. Rev. B7, 10951(1998.
Nanometer Laboratory and was supported by the Materialgys articie was published in English in the original Russian journal. Repro-

Consortium on Superconductivity. duced here with stylistic changes by AIP.



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 3 MARCH 2004

Order parameter phase locking as a cause of a zero bias peak in the differential
tunneling conductance of bilayers with electron—hole pairing

A. 1. Bezuglyj?

National Science Center “Kharkov Institute of Physics and Technology,” 1 Academicheskaya St.,
Kharkov 61108, Ukraine

S. I. Shevchenko®

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine
(Submitted June 13, 2003; revised October 2, 2003

Fiz. Nizk. Temp.30, 282—287(March 2004

In n—p bilayer systems an exotic phase-coherent state emerges due to Coulomb pairing of
n-layer electrons wittp-layer holes. Unlike Josephson junctions, the order parameter phase may
be locked by matrix elements of interlayer tunnelingninp bilayers. Here we show how

the phase locking phenomenon specifies the response of the electron—hole condensate to interlayer
voltages. In the absence of an applied magnetic field, the phase is steadyestsd at

low interlayer voltagesy <V,, but the phase increases monotonically with tifiseunlocked at
V>V,.. The change in the system dynamicsvat V. gives rise to a peak in the differential
tunneling conductance. The peak width is proportional to the absolute value of the tunneling
matrix elementT,,|, but its height does not depend fhy,|; thus the peak is sharp for

small|T4,]. An in-plane magnetic field reduces the peak height considerably. The present results
are in qualitative agreement with the zero-bias peak behavior that has recently been

observed in bilayer quantum Hall pseudoferromagnets with spontaneous interlayer phase
coherence. ©€2004 American Institute of Physic§DOI: 10.1063/1.1645179

The idea that in bilayen—p structures consisting of an width, in contrast to the tunneling conductance peak of the
electron-conductivity layerr(-layen and a hole-conductivity Josephson junction. In a magnetic figttl parallel to the
layer (p-layen the Coulomb attraction of electrons and holeslayers the peak height decreases the more drastically the
may lead to the formation of electron—hole pairs with spa-higher is the field, and a8 >0.6 T the peak becomes prac-
tially separated components was put forward rather longically indistinguishable.
ago? As a result of Bose—Einstein condensation of these A number of papers have been devoted to theoretical
pairs, there arises a peculiar superfl(icthase-coherent interpretation of the experimental results obtained by Spiel-
state, in which a nondissipative motion of pairs gives rise tananet al. For example, Fogler and Wilczékave treated the
equal-in-magnitude and oppositely directed supercurrents itunneling conductance peak as a consequence of the Joseph-
the n and p layers. At present, two variants of the systemsson effect in a long inhomogeneous junction. In Refs. 10 and
have been realized experimentally, where an excitonic contl, the interpretation of the peak is based on the notion of a
densate with spatially separated components is formed. Ifinite time of phase coherence. Joglekar and MacDdfald
both cases, these are closely lying GaAs/AlGaAs doubldéave performed both phenomenological and microscopic cal-
guantum wells, where either interwell excitons are excited byculations of the tunneling conductance Glue atvV=0. In
a laser puls&® or two-dimensional electron layers are formed Ref. 13,G1(V,H) was calculated using a phenomenological
due to doping. In the latter case, the electron layers must bequation similar to the Landau-Lifshitz equation for the
placed in a strong magnetic field, normal to the layers, sucimagnetic moment. Such a diversity of theoretical approaches
that the total filling factor should be;=v;+ »,=15° Since in the interpretation of experimetftgives impetus to a con-
all these systems have one and the same exciton mechanisistent microscopic consideration of the dynamics of phase-
for the interlayer phase cohererftée physical properties of coherent bilayer systems, this being the subject of the present
these systems in the coherent state must be qualitativelyaper. Though we consider the-p system in the absence of
similar. a perpendicular magnetic field, the exciton nature of the col-

The present paper has mainly been stimulated by receiéctive state in all the above-mentioned systems encourages
impressive experiments of Spielmaet al,”® who have us to believe that the present results provide a qualitative
found that if a bilayer electron system transitions into adescription of the experiments of Spielmanal.’®
phase-coherent stat@n which the quantum Hall effect is An important but still not completely resolved problem
observed avt=1), then this transition is accompanied by a for the systems with electron—hole pairing is the problem of
sharp rise in the differential tunneling conductaeat low  phase locking by interband transitidhéRef. 14, which co-
interlayer voltagesv. As the temperature is lowered, this incide with interlayer tunneling transitions in the systems
tunneling conductance peak remains of finite height andinder consideration. The tunneling transitions lift the degen-
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eracy in the phase of the order parameter, thereby locking the—p bilayer the order parameter is proportional to the aver-
phase and making it equal to the phase of the tunneling maage ( #,1(r,t) ¢, (r,t)), where ¢;" (i) is the electron cre-
trix elements. The last statement is valid in the absence of ation (annihilation operator in the layer. An essential sim-
magnetic field parallel to the layers. Kulik and one of theplification consists in the fact that the absence of the gap
present authots have shown that in a magnetic field parallel makes it possible to describe the dynamics of the phase-
to the layers the phase is locked only at figtis H.,. (The  coherent system only in terms of the complex order param-
critical field Hgyoc|T15| Y2 whereT ,=|T,€X is the matrix  eter (A =|A|€?) without involving the dynamics of the qua-
element of interlayer tunnelingAt H>H, the phase lock- siparticle distribution function.
ing is lifted and the phase changes monotonically in the di- The dynamical equation for the order parameter of the
rection normal to the field, this giving rise to spatial oscilla- N—p system was derived by the Green function technique in
tions of the tunneling currentvortex state The phase our previous papef and has the following form:
locking phenomenon appears to exert an essential effect not
only on the thermodynamic properties ofp systems but —(A—ieVA)Jr
also on their kinetics.

Relying on the microscopic approach, the present paper
deals with the response of a phase-coheresp system to XA+ EZO' (1)
the interlayer voltag®. We demonstrate that similarly to the
existence of the critical fieltH;, in the case under consid- The equation obtained is in perfect agreement with the gen-
eration there exists a threshold voltagg «<|T,,|) that quan-  eral theory of relaxation of an order parameter near the point
titatively characterizes the degree of phase locking in thef a second-order phase transitiésee, for instance, Ref.
n—p system. At low voltagesy<V,, the order parameter 19). In accordance with this theory a state of a physical sys-
phase is lockedsteady-state and the direct tunneling cur- tem under a second-order phase transition can be described
rent is proportional t&/. The Ohmic character of a spatially by an order parameter, that is nonzero below the transition
uniform tunneling current &/ <V, means that in the phase- point and equal to zero above this point. An equilibrium
coherenn—p system there is no dc Josephson efté¢The  value of the order parameter can be found from the condition
absence of the dc Josephson effect in the two-layer electrahat the variation of the corresponding thermodynamic po-
system has been established by Joglekar and MacDdfald. tential is equal to zero. In the absence of interband hybrid-
At voltagesV>V,, the phase changes monotonically with ization the thermodynamic potential for a condensate of
time, and this results in tunneling current oscillations withelectron—hole pairs with spatially separated components can
frequencyw=e\V2—V?Z (heree is the elementary charge, be presented in the form
andA=1). So, atvV>V, the n—p system retains the essen-
. . . d e
tial feature of the ac Josephson effect in superconductors, F:f [DH_, —+—(A1—A2)}A
namely, the presence of tunneling current oscillations at a ar c
constant applied voltage. At the same time, the dissipative 1
character of the oscillating tunneling currésee below, the + §B|A|4] dr. (2
nonuniversality of the voltage dependence @f and the

presence of a threshold voltagg are specific to phase- Expression(2) is similar to the thermodynamic potential for
coherent bilayen—p systems. Cooper pairs in the Ginzburg—Landau theory, but here the
Further on, we show that the above-described “liberaterm 2eA is replaced by the terra(A;—A,). Such a modi-
tion” of the order parameter phase ®t=V, results in a fication is quite natural. Indeed, for the case of electron—hole
sharp peak o51(V), the height of which is independent of pairs with spatially separated components an electron in the
|T1.| and the width equal to\2, i.e., for small|T,J the |ayer 1 “sees” the vector potentiah;, while a hole in the
peak will be high and sharp. Thus in our opinion the naturgayer 2 “sees” the vector potenti#,. Since the signs of the
of the tunneling conductance peak observed in the experelectron and hole charges are different, the vector potentials
ments of Spielmaret al. is closely connected with the phe- A, and A, are subtracted from each other in EQ). In
nomenon of order parameter phase locking by tunnelingquilibrium the order parametex(r) is found from the con-
transitions. The experimentally observed suppression of theition SF/5A* (r)=0. For a small deviation from equilib-
Gr(V) peak with an increasing parallel magnetic fleddso  rium, when the derivativéF/ SA* (r) is nonzero but small,
lends support in favor of this interpretation, because, as inthe order parameter relaxation rdthe derivativegA/dt) is
dicated above, a sufficiently strong in-plane magnetic fieldalso small. In the mean field approximation these two deriva-
eliminates the phase locking. tives should be proportional to each other. But it is necessary
We are now coming to the analysis of the dynamics of ao take into account that due to the gauge invariance of the
phase-cohereni—p system in the limit of a high pair den- theory the derivatived/dgt must enter into the equation in
sity, when the average distance between the electron—hot®mbination with the terme(V,—V,), whereV, andV, are
pairs is small compared to the characteristic pair size. Thénhe electrostatic potentials in layers 1 and 2, respectively. As
advantage of the high-density limit lies in the possibility of a result, in the absence of interband hybridization one arrives
considering the phase-coherent system dynamics in the gapt Eq. (1), whereT;,=0.
less state, when the gap in the excitation spectrum becomes In the presence of interband hybridization the Hamil-
zero under the action of strong depairing, and the order paonian of the system contains terms linear in the order pa-
rameterA is reduced but remains nonz@r(Ref. 17. Forthe  rameterA and in the matrix element¥,, and the corre-

A—-B|A|?+D

J e 2
E‘*’ ?(Al_AZ)} ]

2
—AlA[?
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sponding conjugate termgand that means that the sistanceR and a voltage sourc&. The resulting voltage/
thermodynamic potential contains the same tgriifiese  across then—p tunnel junction determines the difference of
terms play the role of a source of electron—hole pairs. They|ectrochemical potentials of the layers and thereby dictates
are analogous to the terms that appear in the Hamiltonian afe carrier density in the andp layers. If on is the devia-

a ferromagnet in an external magnetic field. For the case of gop; of the electron density from equilibrium, then the equal-
magnet it results in the appearance of a term linear in th@y ev=— sn/N, (0) is valid, where the renormalized den-
magnetic field in the equation for the order parameter. Sincgity of states on the Fermi surface is

for the system considered the matrix eleméns is analo-

gous to the magnetic field, a term linearTig, should appear e’m) 1

in the equation for the order parameter in the presence of N, (0)=N(0)| 1+ E)

interband hybridization. We see that Efj) does in fact con-

tain this term. The microscopic analysis shows that althouglfC is the capacitance of the bilayer system per unit area;
the phenomenological arguments presented look quite gemN(0)=m/).

eral, in reality Eq(1) is valid only in a rather narrow interval In the approximation linear iff ;, the density of tunnel-

of impurity concentration, just in the case of the Gor’kov—ing current from layer 1 to layer 2 is equal fo=J.Sin ¢,
Eliashberg equation for superconductors containing paraA/hereJC=4eN(0)|T12|AO/§.18The charge balance equation

magnetic impuritie® for layer 1 can be written as

In the gapless situation under consideration, the coeffi- )
cients of the dynamic ?inzbugg—Lzandau equati@n have eSS+ é_v—lcsinqb:o, (4)
the forms A(T)=(27%/3)7(T:—T%), B=4m7/3M, D R

=p37/M? (Ref. 18. Here 7 is the electron elastic scattering
time (for simplicity, it is considered equal to the hole elastic
scattering timg T is the temperaturekg=1), T, is the criti-
cal temperature, M=m;+m, is the pair mass, m

=m;m,/M is the reduced mass of a papy is the Fermi . -
momentum of electrons and holes, afid the dimensionless E0S-(3) and(4) one can derive the equation for the phase

constant of the Coulomb interactiérit should be noted that !N térms of dimensionless variables, this equation takes on
Eq. (1) is derived by expansion of the anomalous Green_the fgllowmg form, well known in the theory of Josephson
function as a power series i\ (T,). 8 Since a term linear in JUNctions:
the matrix element, appears in the expression for the or- 1
g(ar (q?rameter, it is necessary thag, <T, for validity of b+ \/_—/3(1+8 COSh) b+ Ssind=p. (5)

At low fields and currents, the modulus of the order ) _ _ )
parameter varies only slightly in space and time. Assumind"ere f[he following d|mensr|orr1less parameters are introduced:
|A| to be constant equal th, the imaginary part of Eql) ~ B=€Zcto, e=€Vcto, p=7£17c, where 2=V +I:R and

where S is the area of then—p junction, andl.=SJ;.

Though below we assumé= const, it should be noted that

Eq. (4) also holds for a time-dependent voltage source.
Making use of the relationship betweén andV, from

can be written as follows: to=e2N*(0)RS The time is measured in units of iy,
wherewy= (e, /tg) 2
$-D d[dp ZWd[Hxn] eV+eV, sing=0. (3 Despite the coincidence of E¢5) with the dynamical
- —_——— - .Sing=0.

equation for the phase difference across the Josephson junc-
tion, the different meaning of the paramejeentering into
Here the gradient-invariant phage= 6 — x — (27d/®)A;is  these equations leadas will be seen from what followgo
introducedd is the interlayer distance, arbly=hc/e is the g substantially different behavior af—p systems and Jo-
magnetic flux. The unit vecton=(0,0,1) is normal to the sephson junctions.
layers and is directed from layer(glectron layerto layer 2 A detailed analysis of the dynamic states of the system
(hole layey. The threshold voltag¥ .= |T1,|/(e{7Ao). described by Eq(5) was performed by Belykbt al 2! With-

Itis readily seen that in the uniform case E8) for the  out going into the details of that analysis, we shall mention
phaseg is different from the equatiogp=eV that appears in its main results. For each value of the parametene can
a number of papers and is treated as the Josephson relatifind the corresponding numbe#;. At 8>3, (large resis-
for phase-coherent bilayer systems. The occurrence of th@ncesR), the range ofp values is split into three adjacent
term proportional td T4, in the dynamical equation for the intervals: 0<p<p., p.<p<1, andp>1 [p.(B,e) is the
phase radically changes the solutions of this equation. Thusifurcation value of the parametg; Ref. 21). In the first
in the absence of external fields the stable steady-state amgterval, there is only one stable solutiahs=arcsing; in the
uniform solution of EQ.(3) is ¢=0, i.e., 6=y, and this third interval the only stable state is the limit cycle embrac-
means that the interlayer tunneling transitions hold the ordeing the phase cylinder. In the intermedidsecond interval
parameter phase locked. Below, we consider in detail hovboth solutions,p=arcsinp and the limit cycle, are stable.
the phase locking phenomenon influences the dynamic proprhis nonuniqueness of the solution of E§) results in hys-
erties ofn—p systems. teresis of the current—voltage characteristtVC) at g

We start from an analysis of the dynamics of thep >pB,. For B< B, (low resistanceRR) the stable solutions
system in the phase-coherent state for the spatially uniforrwill be ¢ arcsinp at 0<p<1 and the limit cycle ap>1,
case in the absence of magnetic field. Letrthe tunneling  while the interval ofp with two stable states drops out. Cor-
junction be incorporated into an electrical circuit having re-respondingly, aj<<3; the CVCs have no hysteresis.

ar\ ar D,
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Further on, we find the CVC and the differential tunnel- |V|>V,, as|V/| increases, the tunneling conductance tends
ing conductance of the—p system in the simple, but physi- monotonically to zero, remaining negative. If we take into
cally rather illustrative, casR=0. In this limit, no distinc- account the fluctuation smoothing of the CVC, then the de-
tion may be made betweevi and #, V, and #., and the pendence of5; on V will look like a smooth curve with a
dynamics of the system may be analyzed on the basis of Egnaximum atV=0 (approximately % in width) and two
(3) (without spatial derivatives Since in the case considered minima atV~=V,. It is just this behavior of thes(V)
we haveB< B, hysteresis of the CVC is absent. curve that was observed in experinteint the absence of a

If the system is spatially uniform and the voltagedoes  magnetic field parallel to the layers.
not depend on time, Eq3) can be integrated. One can see It should be noted that both &>V, and V<V, the
that for V<V, Eq. (3) has the time-independent solution spatially uniform tunneling current is dissipative. The reason
¢o=arcsinV/V;. In such a case the tunnel current, also in-for the dissipation lies in the fact that the uniform interlayer
dependent of time, is equal 1@ sin¢y=I1.V/V.=V/R.. This  current causes the order parameter phase to deviate from its
current is proportional to the applied voltageand it is an  equilibrium value, and a continuous input of energy is re-

ordinary dissipative current. quired to maintain this nonequilibrium state.
The corresponding tunneling conductance is given by Now let the bilayem—p structure be placed in a mag-
di netic fieldH parallel to the layers and directed along the
Tzd_\/zR;1:4e2N(o)TAgs_ (6) axis. If H>Hg=(2®q/m°d)(IM/en)'? (the two-
dimensional density of pairss=4pSN(0)(er)2/M), then

Note that al< V, the tunneling conductance is constant andthe magnetic field between the layers has a nonunifeon
is independent of the value of the tunneling matrix elementex) component. We shall show that the CVCs of thep
|T,,]. This independence of the tunneling conductance frongystem in the magnetic field differ strongly from the CVCsin
|T.2 and also its proportionality td3(T) are in agreement zero field and are substantially different at both low and high
with the result of Joglekar and MacDon#ldor Gy at V  resistance®. In the limiting caseR=0 (andH>H,), the

=0. solution of Eq.(3) can be derived using perturbation theory.
In case ofV>V, the integration yields the tunnel cur- Putting ¢=¢o+ ¢,, where ¢o=ky+ ot (k=27dH/D,,
rent, equal to w=¢eV) and taking into account the correction tegn (pro-
portional to a smalll 1, value as a perturbation, we obtain
tan(/)(t) the following expression for the average tunneling current
2 ity
I(t)=2I, 7) density:
$(1)
1+tarf—— eV, w
2 J=1J (11

¢ 2 (DK??°+w?
where
So, for R=0 the CVC has a wide diffusion maximum at

t
tan? ) _y v TS (Vo2 w=Dk*
2 At high R values, the charge transport from one layer to
e the other over the electrical circuit is insignificant, and the
xtar{z(vz—vﬁ)l’z(t—to) . (8  electron density dynamics in layer 1 is determined by the
continuity equation
One can see that the interlayer current oscillates with the S ]
frequencyo =e(V2—V2)2 and that this current is not sinu- esn=divpj+Jcsing, (12)
soidal. Because of the nonsinusoidal character of the oscillgy ;o e divj denotes the two-dimensional divergence of the
tions, the average value of the tunnel current is nonzero. Thﬁ]
) . tralayer current
average current is a function of the voltage

ens(d 2md
1= (1 V)V = V2 V). @ =222 ).
The behavior of the system considered is similar to the °

behavior of a Josephson junction between two superconduct- On the assumption thaV<7A3, the above-described
ors in a circuit in which the junction is connected in seriesperturbation-theory procedure yields the following equation
with a resistor and a voltage generator. But in the former casr ¢ :
the essential difference is that the residwith R.=V./1.) _
is embedded in the junction and cannot be deleted from the . & ¢y 2 Py o
circuit. Thus there is no transverse superconductivity in the ¢,-D 92r —Ug 2r eN, (0) singy,
systems considered.

Since according to Eq(9) the tunneling current de- Whereug=(ns/MN, (0))"% Unlike theR=0 case, the left-

creases with increasing voltage, the differential tunnelinghand side of Eq(13) has a wave character rather than a
conductance a¥>V, is negative: diffusion character. Correspondingly, the expression for the

average tunneling current density

(13

Gr(V)=—(I/V[V(VZ=V2) 12—1]. (10

The conductances(V) has its maximum(constant I=dic—s 575 -
value at|V| <V, and points of discontinuity &= +V,. At 2\ (0/ug—k)“+ (wak?)

wak?

(14)
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has a resonance at=ugk, the width of which is determined ?Similarly to magnetic impurities in superconductors, the ugnahmag-
by the attenuatiomr= D/ué. This resonance results from the netig impurities and crystal lattice distortions in the-p system suppress
coincidence between the plasmon velogityin the bilayer the order parameter and lead to the transition of the system to the gapless
. .. . state in a narrow range of defect concentrations in the vicinity of the
structure and the velocity of the m?zgnetlc—fleld vortices. The (yitical concentration.
parameten ; is equal to €ng/MJ.) Y2
From relations(11) and (14) it follows that atH>H,;
the G1(0) value is proportional to a smdlT;,|? value, i.e.,
the differential tunneling conductance pe@ccurring atH 1Yu. E. Lozovik and V. I. Yudson, Zh. Eksp. Teor. Fiz1, 738(1976 [Sov.
=0) is strongly suppressed. The reason for this suppressiopPhys. JETR4, 389(1976].

. . s S. I. Shevchenko, Fiz. Nizk. Temj2, 505 (1976 [Sov. J. Low Temp.
lies in the fact that aH>H, the phasep varies monotoni Phys.2, 251 (1976]: Phys. Rev. Lett72, 3242 (1994,

cally with the coordinate, and in this case H§) has no L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S. Chemia,

stationary solution at finite voltage, i.e., no phase locking Nature(London 417, 47 (2002; L. V. Butov, A. C. Gossard, and D. S.
arises. Chemia, NaturéLondon 418 751(2002.
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A stationary Josephson effect in the ballistic contact of tiwvave superconductors with

different orientation of the axes and with transport current in the banks is considered theoretically.
The influence of the transport current on the current—phase relation of the Josephson and
tangential currents at the interface is studied. It is demonstrated that the spontaneous surface
current at the interface depends on the transport current in the banks due to the

interference of the angle-dependent condensate wave functions of the two

superconductors. @004 American Institute of Physic§DOI: 10.1063/1.1645180

1. INTRODUCTION equations are solved analytically in Sec. 3. Then in Sec. 4 we

study the influence of the transport current on the Josephson
It has been shown that in the ground state of the contaaturrent andvice versaat the interface. In the Appendix the

of two d-wave superconductors with different orientation of order parameter and the current density in the homogeneous

the axes there is a current tangential to the bountidrfor  situation are considered.

the particularly interesting case af/4 misorientation the

ground state is twofold degenerate: there are the tangential

currents in opposite directions @t= + /2 in the absence of 2- MODEL AND BASIC EQUATIONS

Josephson current. The probabilities of finding the contactin - \ye consider a model of the Josephson junction as an
one of the two states are equal, and the corresponding tafgeg) plane between two singléin particular,d-wave su-
gential current is referred to as the spontaneous one. It h?%rconductors with different orientation of the axese Fig.
been proposed to_usellsuph two-state quantum systems f@j The pair breaking and the scattering at the junction as
quantum computatiofi.** It is of interest to study the possi- yel| as the electron scattering in the bulk of the metals are
bility of controlling this system by the external transport cur-ignored. We did not take into account the possibility of the
rent, which is the motivation for the present work. generation of a subdominant order parameter, which results

In the above-described problem of the Josephson contag{ decreasing of the current amplituli@he ¢ axes of both
of two d-wave superconductors with transport current in thesyperconductors are parallel to the interface. Thaxis di-
banks, the resulting tangential current is not a sum of theection is chosen as tieaxis. Thea andb axes are situated
spontaneous and transport current. In Ref. 12 we studied th@ thexy plane. In the banks of the contact a uniform current
simpler case of the contact of twewave superconductors flows with a superconducting velocity,. We consider the
with a transport current flowing in the banks. It was shownsuperfluid velocityv, in the left(L) and right(R) supercon-
that the presence of magnetic fiéftf'® of transport super- ducting half-spaces to be parallel to each othgivsr and to
conducting current? or of current in the normal lay&r*€in
a mesoscopic Josephson junction can significantly influence
the current—phase characteristics, current distribution, etc.

In the present problem the Josephson current is deter- b b a
mined by the interference of the angle-dependent condensate 4
wave functions of the two superconductors. There are two R
factors of anisotropy which determine the angle dependence
of the order parameter: the pairing anisotropy and the trans-
port current. Thus it is natural to expect that the resulting — 1 5
interference currenfwhich has both normal and tangential
componentsis parametrized by the external phase difference
¢ and by the value of the transport curréat by the super-
fluid velocity v). The presence of these two controlling pa- T T

. L . %1 %R

rameters can be useful in the applications of Josephson junc-
tions of highT . superconductors.

In Sec. 2 we d§r|ve ,baSIC equat,lons to des_crlbe a baIIIStIEIG. 1. Geometry of the contact of two superconductors with different
planar Josephson junction of two differently orientbave  grientation of the axes and different transport currésterfluid velocities
superconductors with uniform current in the banks. Thesey, g) in the banks.

1063-777X/2004/30(3)/5/$26.00 213 © 2004 American Institute of Physics
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the boundary; we choose tlyeaxis alongv, and thex axis 3. ANALYTICAL SOLUTION OF THE EILENBERGER
perpendicular to the boundary=0 is the boundary plane. EQUATION

We describe the coherent current state in the supercon-
ducting ballistic structure in the quasiclassical approximatio
by the Eilenberger equatioh®

In this paper we consider the problem non-self-
Ttonsistently: we assume the superconducting velogitis
uniform and that the order parametkrs constant in the two

J half-spaces:
Ve GH[@73+4,G]=0, oy v Yo x<0 A A expliol2), x<0
5 , S vgr, x>0 | Agexp—i@l2), x>0
wherem=w,+ipg-Vs, w,=7T(2n+1) are the Matsubara ’ (10)

. ) _ Ja _ g f . _.
frequenciesG =G, (ve,r) = (f- —9) is the energy-integrated As was shown in Refs. 7, the self-consistent consider-

. ~ 0 A .
Green function, andA=(y«,). Equation (1) should be  ation of a Josephson junction aFwave superconductors
supplemented by the equation for the order param@her  yoes not differ qualitatively from the non-self-consistent

self-consistency equatign treatment. In Ref. 7 the self-consistent solution is compared
numerically with the non-self-consistent one. The self-
A(Vg ,r)ZWNoTE (V(Ve VO F(VE 1)), 2) consistency of the solution allows one to take into account

© F

the suppression of the order parameter at the interface; the
. . . major effect of this is a reduction in the currént.

No is the density of states at the Fermi level ahd),_ Equation(1), taken together with Eq¢3)—(5) and (10),
denotes averaging over directionswgf; V(vg,vg) is a pair- yields for the left and right superconductors:

ing attractive potential. For the butk-wave superconductor 21x] )

it is usually assumed that\(8)=Ay(T,vs)cosd and ) = wL’R+C exp{——ﬂ
V(Vg ,VE) =V cos Hcos ¥, where the angl@ defines a di- 9ur() Q g SR lv,| "R
rection of the velocityvg. Solutions of Eqs(1), (2) must

satisfy the conditions for the Green functions and gap func-  f (x)= ALr g soiel2_c ngr(x) 7O RT OLR

(11)

tion in the banks far from the interface: QR ALr
2|x| ) .
_ wL,R X ex — _Q e_SgI’(X)I(p/Z’ 12
g(Fo)= o 3) F{ [o,] LR (12
' where »=sgng,). Making use of the continuity condition,
_ A(F») we obtain the expression for tlgefunction at the interface:
f(F)=—g— (@)
L.R QLwR+QRwL—i ﬂALAR S'n(P
: 9(0)= O, Qg+ +A Agcosp (13
A(Fx)=A_ rexp£ie/2). (5) LERT WLWRT ALARLOSE

. . Equations(9) and(13) allow us to calculate the Joseph-
Here | g=wn+ipe-Vs L R, QLr=VOLrTALR €IS son currentj,=j,(x=0) and the tangential currerjt,(x
the phase difference between the left and right superconduct: g) 4t the interface. We emphasize that these equations are
ors, which parametrizes the Josephson current state. TRgjid for describing the current at the interface of two singlet
anglesy, r define the orientation of the crystal ax@andb  syperconductors with different orientation of the axes and
in the left and right half-spacesee Fig. 1 The angle be- it different transport currents in the banks. The contact of
tween the axes of the right and left superconductth®  conventional superconductors was considered in Ref. 12, and

misorientation angleis ox=xr— Xt - A in the present paper we study the contactlefiave super-
Provided we know the Green functi@, we can calcu-  conductors, for which the order parameter i r6

late the current density: =Ao(T, Vs r)COS 20— x R). The treatment presented here
can be also used to consider the contag-efave supercon-
(= —27TieN0TZ (Veg(Ve J))vF- (6) ductors or ars—wa_veu—wave contact, etc. .
® As we restrict ourselves to the non-self-consistent

. o model, we should calculate the order parametks
For singlet superconductors it is usually assumed that A (T v,) in the bulkd-wave superconductor. That is the
A(—=vg)=A(vg), and we therefore have: subject of the Appendix.

7) In the particular case considered in detail below, we have
Ve =Vgr=Vs and denote @=w,+ipg-vs, Qg
=@+ A{ g; in this case we obtain

f+((l),_V|:):f+(_(!),VF):f*(C!),VF),

g((l),_v;:):_g(_ﬂ),VF):g*(w,VF). (8)

Mak fE E =
aking use of Eq(8), we can rewrite Eq(6) as g(0) 0.0t %2+ D, Apcose

(14)

In the absence of the transport current=t 0) in this expres-
sion: = w, (Ref. 7).

We should also clarify the sign of the square root in
jo=4m|e|N(0)veT,. (99 Q_g. To make the solutior11) convergent, we must re-

.
i0=jor 2 (% M)y,



Low Temp. Phys. 30 (3), March 2004

[ = v,=0
| - - vas/Aoo=O.2
0.04 — . PFVS/A00=0~4

0.02
{ Of----mmoo i I
-0.02 |
~0.04 !
0 02 04 06 08 10
©/2n

FIG. 2. Josephson current density through the interfgceersus phase

(xL=0,xr=7/4,T=0.1T); Agy=Ao(T=0p=0)=2.14T,.
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FIG. 3. Fig. 3. Tangential current density at the interfacgersus phase
(x.=0,xg=m/4,T=0.1T ).

quire ReQ) x>0, which fixes the sign of the square root in fluences the spontaneous curréire., the tangential current
Qg to be sgn@pe- Vs, r). Moreover, this requirement, as ate= /2 ande = —/2) is shown in Fig. 4. The shift of the
can be shown, provides a supplementary condition og:Re two values of the current for small values of (in the ap-

sgn(Reg)=sgn).

4. INFLUENCE OF THE TRANSPORT CURRENT ON THE
JOSEPHSON AND SPONTANEOUS CURRENTS AT

THE INTERFACE

Below we study the Josephson contact for the particula

case whervg =vsg=Vs andy, =0

For small values obg (in the approximation linear in
prvs/T;) we can state the following approximate relations

andyr= /4.

(which are valid for values o in the vicinity of = 77/2):

Ja(—Vs,0)=]4(Vs, ),

jy(_VS,QD):_jy(Vs,_<P),

and for the differencedj=j(vy) —j(vs=0):
Ojs(—@)==0j,(¢), Siy(—@)=0jy(e),

while atvg=0

Ja—e)=—]js(e), jy(—@)=—]y(®).

In the linear approximation the shift curredf, is an
even function ofe, in contrast toj,(vs=0). For the sponta-
neous currentat ¢ = = 7/2) the shift currentsj, are equal:

jWe==m2)=]stdjy.

(19

js(—m2)=—j(m2), 8j,(—mwl2)=25],(wI2).

In a nonlinear treatment these shift currents are different

for the two cases and are discussed below.

In Figs. 2 and 3 we plot the norma&losephsonand
tangential components of the current densities at the plane of
the interface as functions of the phase differegcat low
temperature. In the absence of the transport cur(Bntis an
odd function ofg; (ii) the normal component of the current
(Josephson currenis m-periodic; (iii) in the equilibrium
state atp=*7/2: j;=0, j,(* m/2)=]s=F|jg|. This being
the case, the tangential current exists in the absence of the
Josephson current; for that reason it is referred to as the
spontaneous current. The presence of the transport curreqt; , 1.,

proximation linear inpgvs/T,) is equal[see Eq(15)]; how-
ever, at values s~ 0.2A o/ pg the shift currenti.e., the dif-
ferencej,(vs) —js(vs=0)) is of different sign for the two
currents and in the directions oppositejtn

We also note the following relations fer#0: 1) j;(¢
F 7)=—]3(¢=0)#0 (the presence of the transport current
induces a nonzero Josephson current in the absence of an
external phase differenge2) j;(¢==*m/2)=0, dj;/de
X (¢==*m/2)>0 (the transport current does not change the
values of the equilibrium phase difference, @t 7/2); 3
Jy(p=m) =], (¢=0)+#0. This last relation concerns the in-
teresting phenomena studied in Ref. 12: for some values of
the phase differencéhere in the vicinity of¢=0,7) the
interference of the angle-dependent condensate wave func-
tions results in the appearance of an additional tangential
current with the direction opposite to the transport current in
the banks. We emphasize that the resulting tangential current
is not the sum of the spontaneous current and the transport
current'? Thus, the transport current drastically influences
both the tangentialspontaneoysand Josephson currents.

We can write down explicitly an expression for the cur-

0.10

io=/2)

e 0= -12)

01057792 0.8

L
0.4 0.6

PeVs /Ao

gential current density at the interfggefor two values of the

breaks the symmetry relatiortg—(iii). There is a Nnonzero ppase differencdspontaneous currenversus superfluid velocity . (x,

Josephson current gt=0,7. How the transport current in-

=0,xr=7/4,T=0.1T,).
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rent for temperatures close to the critic@o close that
Ag,Prvs<T,). From Eq.(14) we have:

1 PrVs

Img(0)=A_ Ag —n=—Sing+ —5 COSgp
2wy, wp,
3 AL AA
+77—(pF 43) sing+ 7 L 4Rsin2<p . (16
2 o, 8wy
At x. =0 andyr= /4 this results in the following:
i=istist], 17
_ 1A 8
10= ~ 3542z SIn 20~ &,
Y 30247072
. 1 AG o
is=~ goglogzsine-8, (19
~_ 3 Af(proy)?
= o=z sing- g . (20
56071972~ T2 &

HereAy,=Aq(T,vs) and is defined by Eq25). In particular,
atvs=0 this gives:

T 2
j;=—1.7x 10‘2j0(1— T—) sin 2¢,

C

(21)

-
js=—6.6x 10—2j0(1—T—)sin¢. (22
C

We note thaf = — 5 (prvs) /T2 ]js. It follows that the ef-

Kolesnichenko et al.

particular, we have studied the planar contact of tkwave
superconductors in the case@® misorientation with equal
transport currents in the banks. It was demonstrated that the
current—phase relation depends drastically on the value of
the transport current. The ground state degeneracy in the
absence of transport curretdt ¢=* 7/2) is lifted atvq

#0. The dependence of the shift curréwhich is the differ-
ence of the tangential current and the spontaneousame,

is shown to be nonlinear. It is proposed to use the transport
current for the control of qubits based on the contact of two
d-wave superconductors.

We acknowledge support from D-Wave Systems, Inc.
(Vancouvey.

Results of the present study were reported at the Inter-
national Conferences: “Applied Electrodynamics of High-
Superconductors,” IRE, Kharkov, Ukraingay 2003 and
“Basic Studies and Novel Applications,” Jena, Germany
(June 2003

6. APPENDIX. ORDER PARAMETER IN THE HOMOGENEOUS
CURRENT STATE

In this Section we study the homogeneous current state
in the bulk d-wave superconductdisee also Ref. 21 We
note that the order parametgy is a function of temperature
T, superfluid velocityw, and the anglg between the crys-

fect of transport current on the spontaneous tangential cur-
rent atT~T,. is to reduce its value by a small shift. It is
remarkable that the current tangential to the boundary con-
tains only corrections of the second order in the parameter
Prvs/Te. Y If x =0 and yg= Sx# /4, the integration of
the second term in Eq(16) would give us the factor

7 cog Sy— 12, which is zero foréy=w/4; this term at
Sx=0 and ¢=0 gives the uniform current densit{Eq.
(26)).

The integration of the first term in E¢L6) gives us the
factor cos 2y for thex component of the current and sify
for the y component. In the caséy= m/4 this term gives
only the tangential component. As a consequgrgej ; [see
Egs.(21), (22)].

It was discussed above that the terms lineapdng/T,
result in a uniform shift ofjs. We can see that nonlinear
terms result in a shift of different sign, and in both cases in
the direction opposite tgg [see Eq.(20)]. This in part ex-
plains the nonmonotonic behavior jgf (see Fig. 4 The fact
that the presence of the transport current significantly
changes the tangenti@@pontaneoyscurrents might be used
for its control, which is important in view of their possible
application for quantum computatidn'*

5. CONCLUSION

We have studied influence of the transport current, which
flows in the banks, on the stationary Josephson effect in the
contact of twod-wave superconductors. We have derived

equations which allow general consideration of the contact, = o ger parametes
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vs) (@) and current densityb) in a bulk

of two singlet S_Upe!'condUCtorS with diﬁerent_orientaﬁon Of g-wave superconductor versus superfluid veloeityfor different anglesy
the axes and with different transport currents in the banks. letweenv, and thea axis (T=0).
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tallographic axisa and the direction of the superfluid veloc- ) 323 5 T\ 4 )
ity vs. For that we must solve Eq&2) and(9) with g and f Ag= Tel 1= == 3(Prvs)”, (25
. 214(3) T, 3
given by Eqs.(3) and (4):
| 74(3) A§ pro
1 w2 A%(6)/A2 1__ PrUs
oot doRe— 0 T BT T, (26)
A @>0 J—mp2 Q c
. _ The temperature dependence of the critical veloaify
I T f’ﬁz d69, im2 follows from Eq.(25): pev /T, =8m?/7¢(3)\1— T/T..
Jo 7TTc 0w>0 J—7/2 Q
Here \=NgVy, ®=w,+ipe-Vs, Q=\0’+A% A(6)
=Ay(T,vs)Cos 20— x). *E-mail: omelyanchouk@ilt.kharkov.ua

. . 1) H : 44 . .
For T=0 (replacmg TS, by the mtegralfdw) we There is .also aterm Wlth the factqo.f(us./TC)(AolTC), which is neglected
obtain the equations for the order parametgrand the cur- ~ e'®: This term results in equal shifts jaffor ¢ == /2.
rent densityj:
2
Ago| 2 A(0) Vs* P|
In|—|=—| dé& In
Ao/ 7 Ay A(9)| 1S, Yip, Phys. Rev. B52, 3087(1995.
2M. Matsumoto and H. Shiba, J. Phys. Soc. JpB.2194(1996.
Vs PE 3A. Huck, A. van Otterlo, and M. Sigrist, Phys. Rev.58, 14163(1997.
+ AO)) 1], (23)  4m. sigrist, Prog. Theor. Phy€9, 899 (1998.
5T. Lofwander, V. S. Shumeiko, and G. Wendin, Phys. Re62BR14653
whereAgy=Ay(T=0p,=0)=¢w.e 2N, é=4e 12 and (2000.
6S. Kashiwaya and Y. Tanaka, Rep. Prog. Pi§8.1641(2000.
j 1 vspe M. H. S. Amin, A. N. Omelyanchouk, and A. M. Zagoskin, Phys. Rev. B
— = 63, 212502(2001); M. H. S. Amin, A. N. Omelyanchouk, S. N. Rashkeev,
Jlo 4w T M. Coury, and A. M. Zagoskinipid. 318 162 (2002.
> > 8E. Ilichev et al, Phys. Rev. Lett86, 5369(2001).
1 q Vs Pr A(9) 04 9. B. loffe et al, Nature(London 398 679 (1999.
+ o2n? 9|C050| T T (24) 10A. Blais and A. M. Zagoskin, Phys. Rev. 81, 042308(2000; A. M.
€ € Zagoskin, J. Phys.: Condens. MatfrL419 (1997.

In Egs.(23) and(24) the integration is performed in the M. H. S. Amin, A. Yu. Smirnov, and A. M. Zagoskiet al, arXiv:cond-
reQion WhereA(0)2<(vS- pF)2 for o< (_ ml2, 77/2)' 12$uatfslgglzei‘rfii?12ill<o A. N. Omelyanchouk, and S. N. Shevchenko, Phys
In Figs. 5 we plot the order par_amet@“T,vs) gnd the Rev. B67, 172504(2003. ' '
current density versus the superfluid veloaityfor different 133, p. Heida, B. J. van Wees, T. M. Klapwijk, and G. Borghs, Phys. Rev. B

anglesy at low temperature. For comparison we also plot the 57 R5618(1998. _ . _
curves for thes-wave superconductor. A numerical analysis v Bazykin and A. M. Zagoskin, Superlattices Microstru@s, 797
at low tempera_tL_lre ShOWS_that in spite of the strong anisotssys | ederman, Alban L. Fauchere, and Gianni Blatter, Phys. Res,B
ropy of the pairing potential, the order paramefyy, the R9027(1999.
critical velocity v<", and the critical current. depend 16¥|- H. 257- Aggﬁér},zg(-mNtLOmeleanch;#k, 2a7nt1:5 fé(l\zﬂdozj)e}goskln, Fiz. Nizk.
. emp.27, ow Temp. Phys27, .

We_akly on the angle( be_tweems and the CrySta”Ograth? A, Morpurgo, B. J. van Wees, and T. M. Klapwijk, Appl. Phys. L&,
axis (see Figs. 5 and in Ref. 21Namely, the respective  g66(1993.
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the approximation linear in the parametepg /Tc, bothAg 20 5 "kyiik and A. N. Omelyanchouk, Fiz. Nizk. Temg, 296 (1979
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For a temperature close t@czﬂwce’Z/":OA?Aoo, 21J. Ferrer, M. A. Gonzalez-Alvarez, and J. Sanchez-Canizares, Superlat-
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angIeX: duced here with stylistic changes by AIP.



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 3 MARCH 2004

LOW-TEMPERATURE MAGNETISM

Magnetic phase diagram of the manganites Bi  ;_,Sr,MnO;,
0. S. Mantytskaya, I. O. Troyanchuk,* and A. N. Chobot

Institute of Solid State and Semiconductor Physics of the National Academy of Sciences of Belarus,
ul. P. Brovki 17, Minsk 220072, Belarus

H. Szymczak

Institute of Physics of the Polish Academy of Sciences, 02-668 Warsaw, Poland
(Submitted December 9, 2002; revised November 6, 2003
Fiz. Nizk. Temp.30, 295-303(March 2004

An experimental study of the crystal structure and the magnetic and elastic properties of the
manganites Bi ,Sr,MnO; is carried out. The following phase transformations are found:
ferromagnet X<<0.15)—spin glass (0.X5x=<0.25)—charge-ordered antiferromagnet (0.35
<x=0.8). The ferromagnetic state corresponds to ordering of the orbitals of tRé Mns. It is
assumed that the orbitally disordered phase is not realized in thg 8;{MnO; system in

the concentration interval 0.¥5x<0.35. Samples with 0.256x<0.8 undergo a first-order
transition of the crystal structure, attributed to ordering of the¢Mand Mrf" ions in

the ratios 1:1 X<0.6) and 1:3 x=0.7). The antiferromagnetic charge-ordered and spin glass
phases coexist in samples with 02%<0.35, possibly because of the martensitic

character of the charge order—disorder phase transformation. A hypothetical magnetic phase
diagram is constructed. @004 American Institute of PhysicgDOI: 10.1063/1.1645181

1. INTRODUCTION by SP* in the Bi,_,Sr,MnO; system leads to a decrease of
. . . the spontaneous magnetizatfoAlthough the conductivity
A,_,B,MnO; oxides with the perovskite structure (B in ; ;
) . ) creases gradually, this compound does not become metallic
=Ca&", SP', P, B&") are magnetic semiconductors in g 4 P

hich ¢ it lationshio betw th i t concentrations up = 0.67 (Ref. 7). Another extremely
which a strong Interrelationship between the magnetic an teresting property of bismuth manganite doped with stron-
electrical properties is observed. These compounds are Q

. ! : . . . _tium ions is the very high charge- ordering tempera
particular interest in connection with the giant magnetoressza fy g 9 g perafi

t ffect ob din th (1 t the C round 550 K observed in the compound
pa;rzﬁﬁle ect observed in them at temperatures near the urﬁﬁolg,Sro_s(MnggMné_g)% (Refs. 8 and 9

. . . Despite the differences in magnetic properties and crys-
_L Pe\r(ovskltes mt_h the chet:_rfmcal formutla L.?hM@an i tal structure, bismuth manganite, like the rare-earth mangan-
_t a't ’ ra;ef[;]eeirt ioh arg ant er(;pmatgng Sf V;' ma%ne ' ites, is an insulator. It has been hypothesized that the cause of
structure o , yPe and, according 1o Ret. 2, are charac-y, . ,onayior described is a special type of orbital ordering,
terized by O’ orthorhombic distortions of the unit cell

different from that in rare-earth manganit@sRecent struc-
(c/v2<a<b) due to ordering of they orbitals of the MA* ! I gan )

) The f " f tes doped with th tural studie$' confirm that hypothesis.
lons. The terromagnetism of manganites doped wi € The goal of the present study is to establish the mecha-

alkgl!ne—earth 'ons .éé’ 5'2.+’ PE", and Bé# Is due toatlze nism of the concentration phase transformations, both
positive exchange mtgractlon between the ions'Mamn ferromagnet—antiferromagnet and charge order—disorder, in
(Refs. 2 and B According to the double exchange theory, thet e Bi,_,Sr,MnO, system
ferromagnetic properties of the manganites are due to rea’® BixSHMnO, '
transitions of the charge carriers between manganese ions,
i.e., to the appearance of heterovalent manganese ions. For
example, substitution of the B& ion by SE™ in the system
La; ,SrMnO; is accompanied by an antiferromagnet— Solid solutions of the series Bi,SrMnO; (0.2<x
ferromagnet transition at=0.12 (Ref. 4. Magnetic mea- <0.8) were obtained by the usual ceramic method from
surements show that LgSr,sMnO; is a ferromagnet with  stock consisting of oxides and carbonates with a purity of
the highest Curie temperaturé {=375 K) among the orth- 99.99% or better. The initial components were mixed in the
omanganites with the perovskite structure. stoichiometric ratio. A preliminary annealing was done in air
The properties of BiMn@ give it a distinctive place at 900°C for 6 h. Synthesis was carried out in air at
among the AMn@ manganites. This compound is a ferro- 1100—1250°C for 2h. The synthesis temperature was in-
magnet with a temperature of the transition to the paramagereased uniformly with increasing strontium concentration.
netic state of around 100 ¥ The crystal structure is char- The samples were slowly cooled (100°C per hoiar an
acterized by triclinic distortions. Substitution of the’Biion ~ oven. The temperature was maintained to a precision of

EXPERIMENTAL TECHNIQUE

1063-777X/2004/30(3)/7/$26.00 218 © 2004 American Institute of Physics
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+5°C. The perovskites Bianand Bb.gsro.anOS were TABLE I. Unit cell parameters of the compounds for different strontium

obtained under conditions of high pressu=5 GPa, T concentrations.
=900° C) ) Composition,| Symmetry Parameters 4
The Biy 7550 ,sMnO5 sample was reduced after synthe- ’ ' ¢/a v, A
sis. This was done by placing it in an evacuated ( a A
~10"4 Pa) quartz ampoule together with a definite amount a=c=7.86, b=7.98,
of metallic tantalum, which was used as an oxygen absorbe| 90 Tr ; 246.36
The quartz ampoule was held at 900°C for 10 h and thef =91.20, B=90.35
cooled to room temperature at a rate of 100 degrees per hol ; a=3.894, b=3.925
An x-ray structural analysis on a DRON-3 diffractometer 0.25 M ¢=3.992, p=90.47 61.01

in CrK, radiation showed that all of the components are

single-phase perovskites. The angular position of the diffracl—2-32 T 4=3.926, c=3.856 | 0.982 | 59.45
tion peaks was determined to an absolute error=6£01°. 0.40 T 4=3.927, ¢=3.839 0.978 59.20
To improve the accuracy, the calculations were done usin o
reflections lying above 60°. The unit cell parameters wer 0.42 T 4=3.914, c=3.803 0.972 08.24
determined to an accuracy of 0.001 A or better. The specifi{ 0.50 T a=3.909, c=3.794 0.971 57.96
magnetization was measured on a Foner vibrating sampl
magnetometer in fields up to 16 kOe with an accuracy of—o28 T a=3.901, c=3.791 | 0.972 | 57.68
1072 G-cm/g or better. For studying the elastic properties| 0.60 T a=3.882, ¢=3.795 0.976 | 57.19
we measured the temperature dependence of the resonati . X

. L : L . 0.70 T a=3.869, ¢=3.791 0.980 | 56.74
frequency in the excitation of mechanical vibrations in the
sample, the square of the resonance velogftyeing pro- 0.75 T a=3.866, ¢=3.793 0.981 56.69
portional to the Young’s modulus. The studies were done of] 0.80 T 4=3.855, c=3.813 0.989 56.67

sgmples of Cylmdrlcal shape 50-55 mm Iong and 5 mm i ote: Tr stands for triclinic, T for tetragonal, and M for monoclinic symme-
diameter. The rate of change of the temperature was 2 °C pef,.

minute. The resonance frequency was determined to an ac-
curacy of+1 Hz.

The electrical conductivity was determined by the stan-

dard four-probe method on samples with dimensions of Z’Small substitutions of Bi" by S¢* l?d toa sharp_decrea;e
% 2% 10 mm with a relative error of 0.6%. The contacts " the strength of the ferromagnetic exchange interactions.

were formed by the ultrasonic deposition of indium. DuringThe Bl 9S15.;MnO; sample hadTc=80 K and a magnetic

3+ At
the investigations of the magnetic and electrical properties ofroment of aroun_d Zszl_Mn . The magnetization does_
t reach saturation in fields up to 16 kOe. The magnetic

the samples the temperature was maintained to a precision 8P ) . X ) ;
+1K. properties of this solid solution contrast sharply with those of

the rare-earth manganites LnSr,MnO; (Ln=La, Pr, Nd,
Sm, Eu, in which substitution of a small fractio(10%) of
the Ln ions by Sr ions stabilizes the ferromagnetic state.
According to the results of an x-ray structural analysis,  Figure 1 shows the results of a study of the temperature
the samples with strontium concentratiorss0.20, 0.22, and dependence of the specific magnetization of solid solutions
0.25 were characterized by a monoclinic unit cell. Composiin the concentration interval 0s2x<0.35 during heating of
tions in the interval 0.8x=<0.8 had a tetragonally distorted the samples after zero-field cooliitgFC) and after cooling
unit cell. It should be noted that the diffraction peaks werein a rather weak field of 100 O@eld cooling, FQ. It should
rather narrow, indicating a uniform chemical compositionbe noted that for all the samples the FC and ZFC curves
and a perfect crystal lattice. Synthesis under conditions ofliverge near 40 K. Above that temperature the curves prac-
high pressure and quenching from 1000 °C had little effectically coincide. The magnetic ordering temperature deter-
on the unit cell parameters. mined from the inflection point of the ZFC curve decreases
Table | gives the unit cell parameters of some of themonotonically with increasing strontium concentration. The
solid solutions obtained. Analysis of the tabulated data showmagnetization in a fieltH =15 kOe at a temperature of 5 K
that the degree of tetragonal distortion, reflected in the ratigs far from saturatior(Fig. 2).
c/a, reaches a maximum value @t 0.5. It is also charac- Figure 3 shows the magnetic properties of the sample
teristic that the parametarremains practically unchanged as with x=0.25 before and after reduction. For the stoichio-
x increases from 0.35 to 0.5 and then decreases linearly witimetric Bi, 7551 ,gVINO5 an appreciable growth of the specific
further increase ok to 0.75. The parametar, on the con- magnetizationM(T) in a field of 10 kOe is observed with
trary, decreases in the regiars 0.35—0.5 and remains prac- decreasing temperature below 80(Kig. 33. We attribute
tically unchanged forx=0.5-0.75. The unit cell volume this to growth of the number of superparamagnetic clusters
shows a gradual decrease with increasing strontium concemvith a type of short-range magnetic order peculiar to
tration. BiMnO5. The value of the specific magnetization of the re-
Our sample of the compound BiMnnas a Curie tem- duced sample was strongly diminished. The curvéVi@iT)
peratureT - =104 K and a magnetic moment, estimated fromin a field of 5 kOe in this caséFig. 3b has a pronounced
the field dependence of the magnetization, of aroundink, which can be linked to the antiferromagnetic ordering
3.3ug/Mn®", in good agreement with published dafh. temperature, at arourith, =150 K. This indicates that some

3. RESULTS AND DISCUSSION
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FIG. 3. Temperature dependence of the specific magnetization for a com-
pound withx=0.25 before(a) and after(b) the sample was reduced.

served for the compound with=0.6. It was also at 150 K
that antiferromagnetic ordering was observed in

FIG. 1. ZFC and FC magnetization as functions of temperature for solidBi, :Sr, sMNnO; in a neutron-diffraction studyWe therefore

solutions with compositions 0.20x<0.35, measured in a field

H=100 Oe.

regions in the stoichiometric compounds witk=0.25 are
also antiferromagnetically ordered, witfiy=150 K. It is

attribute the anomalous behavior Bf(T) nearTy to anti-
ferromagnetic ordering. For compounds witk 0.35, 0.42,

and 0.5 the magnetic ordering temperatures are determined
from magnetic measurementsig. 4) as the points of inter-
section of the approximating straight lines and are equal to

knowr* that the antiferromagnetic component of the ex-153, 150, and 140 K, respectively. The magnetic behavior
change interactions should increase with increasing conceiras qualitatively different in the concentration interval 0.7
tration of oxygen vacancies, as is observed for the compound X=<0.8. The specific magnetization of compounds with

Big.75515.2sMN0O5 .

For stoichiometric samples with 0.8%=<0.6 anoma-

=0.75 and 0.8 begins to increase as room temperature is
approached. For technical reasons we could not measure the

lous behavior of the specific magnetization was also obMagnetization at temperatures above 380 K, but it is seen
served near 150 KF|g 4) The clearest anoma|y was ob- that the SpeCIfIC magnetization of the Sample Wwith0.75 is

30

x=0.22

maximum neafl .,=380 K (inset in Fig. 4d. The Neel point
apparently lies below that temperature. We assumeTRat
=260 K, since a kink is observed in thd(T) curve near
that temperature. It should be noted that anomalous behavior
of the specific magnetization due to magnetic ordering is
expressed very weakly in the Bi,Sr,MnO; system, making

it difficult to determine the Nel point. We assume that the
true values of the magnetic ordering temperature may differ
by 5-10 K from the values given in this paper. Precise de-
termination of Ty will require neutron-diffraction measure-
ments.

Additional information was obtained from a study of the
elastic propertiegFig. 5. The »?(T) curve was found to
have a minimum for all the samples in the concentration
interval 0.25sx=<0.75. The anomalous behavior of the
Young’s modulus may be due to the presence of a structural
phase transformation in the crystal. The temperature of this

FIG. 2. Field curves of the specific magnetization for compounds withPhase transformation decreases with increasing strontium

0.22<x<0.7 atT=5K.

content, from T ,,=600 K (x=0.25) to T.,=375 K (x
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=0.75). The temperature hysteresis near the structural trans-
formation for the compound witkk=0.75 is evidence of a
first-order phase transition. In the region of the phase trans-
formation the magnetization has a maximuyimset in Fig.
4d).

Measurements of the resistivip(T) of solid solutions
of the system Bi_,Sr,MnO; have revealed a semiconductor
character of the conduction. Figure 6 shows the behavior of

102

107 EF
1072 F
10—3- s | L | L | L | L L
150 200 250 300 350 400 450
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FIG. 5. Temperature dependence of the square of the resonance frequency
for compounds withk=0.25, 0.35, 0.4, 0.5, 0.6, and 0.75.

FIG. 6. Resistivity versus temperature for samples with0.75 and 0.08.
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800 netic ordering. The temperature of the structural transforma-
tion of the crystal, determined from studies of the elastic
properties(Fig. 5 and measurements of the resistiv{gig.

6), decreases smoothly with increasing strontium concentra-
tion in the interval fromx=0.25 to 0.8.

Let us analyze the nature of the magnetic state in man-
ganites undoped with alkaline-earth ions. Such compounds
contain manganese ions only in the trivalent state. The anti-
ferromagnetic structure of LnMnQLn=La, Y, a rare-earth
ion) can be explained on the basis of the Kanamori—
Goodenough rule with allowance for the antiferrodistortive
ordering of the orbitals of thel,> typel® For this type of
ordering of the orbitals the exchange interactions inahe
plane are ferromagnetic, while those between planes are an-
tiferromagnetic. In that case, half of the exchange bonds
have a positive sign and the other half, negative. For
BiMnO, the situation is different. Neutron- diffraction stud-
ies have revealed three different positions of the*Mions,
with sharply different types of distortion of the MO
octahedrad! Despite this difference, all of the M ions
X were assigned d,2 orbital ground state, with different direc-

tions of the orbitals for each type of distorted octahedron. In

FIG. 7. Hypothetical magnetic phase diagram of the BBLMnO; man- - s model two-thirds of the total number of exchange bonds
ganites: F is the ferromagnetic phase, O is an orbitally ordered phase, P Is

the paramagnetic phase, CO is the charge ordered phase, CD is the cha@EE POSitive, and the resulting magnetic structure is ferro-
disordered phase, A is the antiferromagnetic phase, SG is a cluster spimagnetic. However, it should be noted that, in our view, the
glass. The critical temperatures are denoted by the following sym@els: neutron-diffraction data of Ref. 11 can be interpreted another
T, A—freezing temperature of the magnetic moments of the cludiiers, . thi

Ty, O—temperature of the structural phase transformation of the crystal. Yvay' Accordmg.to our model, one-third _Of the manganese
ions are found in thel > state and two-thirds in thd,2_ >
state; this corresponds to stretching of one-third of the yInO

the resistivity of the samples with=0.75 and 0.8. For ©Octahedra and compression of the other two-thirds. In this

Big 255l zsMNO; a change in the trend gf(T) is observed ~Cas€ one expects that all of the exchange bonds will be fer-
near 375 K; this correlates with the behavior of the magnefomagnetic. In our view this model gives a better explanation
tization and Young’s modulus. For §iSt, gMnO5 analogous ~ Of the experimental results of Ref. 11.
behavior of the resistivity occurs at 360 K. Above the tran-  According to neutron-diffraction studiésin a sample
sition temperature the conductivity remains practically un-With X=0.5 a magnetic two-phase state consisting of antifer-
changed with increasing temperature. romagnetic structures of types A and CO is realized. The CO
Figure 7 shows a hypothetical magnetic phase diagrarfyPe of magnetic order corresponds to a charge-ordered
of the Bi;_,Sr,MnO; system, constructed from the results of phase, similar to that which is realized in manganites of the
the present studies. The compound BiMn® a ferromag-  Plo.sCa sMnO; type!® The transition to the charge- disor-
netic insulator withTo=104 K. Substitution of Bi* by dered state is observed at 520 K, a very high temperature in
SP" led to a decrease of the Curie point and magnetic mocomparison with LpsCa sMnOz. Our results on the inves-
ment. The long-range ferromagnetic order is apparently detigation of the elastic properties of the sample witk 0.5
stroyed near a critical concentratian-0.15 (the dashed line show a critical temperature close to that obtained in Ref. 16.
passing through the point=0.15 on the phase diagram is Therefore, we assume that the minimum on tRET) curve
the midpoint of the segment between the poits0.1 and is due to a charge order—disorder phase transition. For com-
0.2), at which the volumes of the ferromagnetic and antifer-pounds with 0.25:x<0.4 one also observes anomalous be-
romagnetic phases become comparable. The system bredkavior of the elastic properties dt=500-600 K, close to
up into clusters with different magnetic order. Competitionthe temperature of the anomalous behavior of the sample
between ferromagnetically and antiferromagnetically ordereavith x=0.5. Therefore, it is natural to suppose that these
clusters in the interaction gives rise to a state of the clusteanomalies are also due to a charge ordering effect. In the
spin glass type. In samples with a concentration of €.85 solid solutions Pr_,CaMnO; (Ref. 17 the charge ordering
=<0.6 long-range antiferromagnetic order is realized belowof the 1:1 (Mr*/Mn**) type begins ak=0.3 and is com-
the Neel point. For the compound witk=0.7 the critical pleted atx=0.7. Apparently in the Bi ,Sr,MnO; system
temperatureTy is near 210 K. The N& points of the the charge ordering begins at a lower level of doping. In
samples withx=0.75 and 0.8 are around 260 K, since theprinciple this accords with the anomalously high charge or-
magnetization curves have a kink near that temperdfige ~ dering temperature(over 500 K. Another way the
4d). Thus in the case of antiferromagnetic compositions theéBi; _,S,MnO; system differs from Rr ,CaMnO; is that
magnetic ordering temperature is almost unchanging in th&., decreases with increasing concentration of tetravalent
concentration interval from=0.35 to 0.6 and then increases manganese, whereas in the praseodymium-—calcium series
to 260 K, indicating a change in the type of antiferromag-this temperature increases somewhat. Possibly this is due to
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some role of the bismuth ions in the formation of the type ofnecessary to have a strong overlap of tliedsbitals of the
charge and orbital structure. Unlike the lanthanides, the bismanganese and theg2rbitals of the oxygen. It is assumed
muth ions actively participate in the chemical bonding, inthat this parameter is controlled by thenMO—Mn bond
which case the crystal structure can be strongly distorte@ngle®*® The larger the size of the lanthanide ion, the larger
owing to the anisotropy induced by the bismuth ions. Be-the Mn—O—-Mnbond angle and @ bandwidth and, accord-
cause of the presence of bismuth ions, the charge structurégly, the higher the magnetic ordering temperature and con-
of BipsShsMNO; and Pp<Ca MnO; differ. In the  ductivity. The Mn—O-Mnangles in manganite compounds
praseodymium series the charge structure can be representih bismuth ions are rather large, as is attested to by studies
as an alternation of layers occupied by Mnand Mrf* of the crystal structurg and by the rather high Curie tem-
ions, whereas in BisSr, sMnO; these layers have an every- perature of BiMn@. Consequently, in the case of an orbit-
other alternatiort® In principle, in samples with a high con- ally disordered phase one would expect that the ferromag-
centration of bismuth ions there should be more layers witietic part of the exchange interactions will be dominant, in
the trivalent manganese ions than layers with tetravalergontradiction to our experiment. In addition, we did not ob-
manganese. Possibly the #nions occupy the positions of Serve a transition to metallic conduction upon doping of
the Mrf"* ions, but in that case the charge ordering temperaBiMnOs with S”* ions. We therefore assume that an orbit-
ture should decrease with decreasing Sr content. In th@lly disordered phase is not realized in the BiMn§ystem
Pr,_,CaMnO; system the concentration transition from the I the concentration mterval 0.8¥«=<0.25, in contrast to
ferromagnetic to the charge-ordered antiferromagnetic staté® rare-earth manganites. The temperature of the orbital dis-
occurs via a mixed two-phase state, as has been revealed B{f€ring in BiMnQ is apparently rather high—around 760
optical and electron-microscope studt@sve assume that a K. Thatis the temperature at which evolution of a Iateni heat
state consisting of a spin glass and a charge-ordered antifé! transformation has been observédDoping with SF _
romagnetic phase is also realized in thg BBr,MnO; sys- |oni leads to the appearance of the _non—Jahq—TeIIer ions
tem at concentrations 0.25<0.35. Indirect evidence of Mn" » and the temperature of the orbital ordering steadily
this may be seen in the experimental data on the elastic argfcréases until another type of orbital state is realized. A
magnetic properties. That is, the anomalies of the elastidtat® Of, the orblt.al glass type should corresponq a definite
properties(Fig. 5 can be linked with the charge ordering, magnetic state with a short- range type of magnetic order. We

and the anomaly in the magnetization curve of the reduceg].erefore assume that the spin-glass state in the system

sample withx=0.25 atT= 150 K (Fig. 3b practically coin- i1-4SKLMnO; is realized as a result of a competition be-

. . . : . tween ferromagnetic clusters with the type of magnetic order
cides with the antiferromagnetic ordering temperature of the ) : . h . :
stoichiometric compounds with 0.85=0.6 peculiar to BiIMnQ@ and antiferromagnetic clusters in which

In samples with 0.Zx=<0.8 é chan_é]e. of type of the the orbitals of the MA" ions are frozen in a random direc-

. . . - . 2 -
magnetic and charge ordering occurs. This agrees with thttleon' With increasing concentration of the“Srions a new

results on heavily doped compounds of thg PLMnO; type of antn‘elrromagnetm clusters appears on account of the
0 : . . charge ordering.

systent’ For example, neutron diffraction studies have Thus we can conclude that the magnetic properties of the

shown that the magnetic structure iny RfSry ggMNO5 is of

. : Bi; _,SrLMnO; system are intimately related to such phe-
3 1—xx 3
:‘nedCM%Eei’an;C?a;grrﬁgp%zsﬁg ggar?aen?jriﬁg?geo;rdme?— nomena as orbital and charge ordering. The role of these

) . effects is apparently significantly larger than in other systems
ing temperature lie near room temperature. We assume th bp y Sig y 'arg y

. . * manganites because of the high polarizability of th&"Bi
an analogous type of magnetic structure and charge orderi

n.
is realized in By ,551p 79VINnO5 and B ,Sty gMNO3. The tem- This studv was supported bv the Fund for Basic Re-
peraturesT.,=375 K for the compound withx=0.75 and ! ey W HpPp y y I

search of the Republic of BelaryBroject FO1-013GPOFI

gpo=§60 K fo-r.x=0|.8-ca(11r?ﬁpe Iascné)ed to_a cr;]arge Order,_“NanomateriaIs and NanotechnologieéTask 3.3, nanoma-
isorder transition. It is difficult to determine the magnetic, . -1 and nanotechnologles

ordering temperature from the available data. However,
based on the magnetic measureme(fig. 4) one can as- |
sume that they are found near 260 K, where a kink wasE-mail: troyan@ifttp.bas-net.by
observed on th&/(T) polytherms.
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The attenuation of a transverse sound wave in a layered conductor with a quasi-two-dimensional
dispersion relation of the charge carriers in a quantizing magnetic field is considered. The
oscillatory dependence of the sound attenuation coefficient on the inverse magnetic field is
analyzed, and the role of Joule losses in the absorption of energy from the sound wave

by electrons is ascertained for different orientations of the magnetic field with respect to the
plane of the layers. €004 American Institute of Physic§DOI: 10.1063/1.1645182

The specifics of a quasi-two-dimensional dispersion rewave in a layered conductor in a quantizing magnetic field in
lation of the charge carriers in a layered conductor are manithe case when
fested in peculiar effects in the propagation of sound waves
at low temperatures in a high magnetic figl when the T<hQ<nu, (1)
mean free timer of the charge carriers is considerably longer
than the period of gyration72() of an electron along & \yhere . is the chemical potential of the electrons.

closed orbit in the magnetic field. For the sake of brevity in the calculations we take the

In a layered conductor a longitudinal sound wave is verydispersion relation of the charge carriers in the form
weakly attenuated if the wave vectorand the vectoH are

directed along the normal to the layers. The high acoustic 2 9

transparency of the conductor in such an experimental geom- s(p) = Px*Py _ n% B oo Pz

etry is due to the fact that the Joule losses are insignificant, 2m a h

and the energy losses due to renormalization of the energy of

the charge carrier@ deformation mechanism of absorption Herep andm are the quasimomentum and mass of the elec-

are proportional to the square of the small quasi-two4ron, vy=(2er/m)*? is its characteristic velocity along the

dimensionality parametern of the electron energy layers,a is the distance between layers, and the quasi-two-

spectrum-? If there is even a small deviation of the magnetic dimensionality parametey can be less than unity.

field or wave vector from the normal to the layers the role of ~ Although the dependence of the energy of the charge

the Joule losses increases substantially. carriers on their quasimomentum in organic layered conduc-
Unlike the case of longitudinal sound, in the propagationtors is more complicated, the use of a model dispersion re-

of sound waves with the transverse polarization the Jouldation of the form(2) permits a complete explanation of the

losses are substantial, over a wide range of magnetic ﬁe|dj’ependence of the sound attenuation coefficient on the value

for any orientation of the vectotsandH with respect to the ~ Of the magnetic field and the orientation of the vectoind

layers. H. Generalization to the case of a quasi-two-dimensional
If the temperature smearir of the Fermi distribution ~ SPectrum of arbitrary form does not present any difficulty

function of the charge carriers is much less than the distanc@d 1eads only to a refinement of numerical factors of the

Ae=%Q between the quantized Landau energy levels, theiPrder of unity in the expression fdr.

all of the thermodynamic and kinetic characteristics of the /A Sound wave propagating in a conductor leads to renor-

conductor, including the sound attenuation coefficight Malization of the charge carrier energy:

(Refs. 3 and ¥4 oscillate with variation of M. The periods

of these oscillations are determined by the areas of the ex- 8e =X ;5 (p)u;p. ©)

tremal cross sections of the Fermi surface, and the ampli-

tudes contain information about the effective cyclotronHereu;, is the strain tensor, ang,, are the components of

masses of the electrons on the extremal cross sections. the deformation potential tensor, taken with allowance for
Let us consider the attenuation of a transverse soundonservation of the number of charge carriers.

2
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The quasi-two-dimensional character of the chargewhere{=apy/(% cosé), Qy=eH/mc.
carrier spectrum is reflected in anisotropy of the deformation At temperatures low compared to the Debye temperature
potential. The deformation interaction of electrons with athe sound attenuation in a conducting crystal is determined
sound wave is weakened for sound waves propagating alongainly by the interaction of the acoustic wave with conduc-
the normal to the layers or polarized along it. If the tensortion electrons. In the quasi-classical approximation the sound
components\;, with i ,k# z are of the order of magnitude of energy absorption coefficiefit can be written in the forf
the Fermi energy, then the components of the deformation
potential for which at least one of the indices is equakto —
can be written in the forfh re_2 2¢H ZJ‘dPH[‘%“]M~ (11)

o pu’n?s c(2nn)? < Gn) T
b =1 cos =%,

Mk =N Lusr h @ Here p is the density of the crystak is the speed of
sound,ris the mean free time of the charge carridgsis the
wheret j is a number of the order of unity. Fermi distribution function, and the overbar denotes averag-

Besides the deformation interaction with the sounding over the time of motion of the electron along the qua-
wave, electrons also are acted on by the electromagnetigciassical closed orbit in the magnetic field. The functign

wave generated by the souhflin a reference frame tied to \yhich takes into account the excitation of the electron sys-
the vibrating crystal lattice, the electric field of this wave hasiem py the sound wave, can be written in the form

the form

t
. 2 ~
E = E - =2 fuxH] + 222, ) w=[dt lvE - ivhjuy)

xexp {i'k [r(#') — ()] + v(¢-1)}, (12

wherew is the frequency of the wave, is the displacement
vector of the sites of the crystal lattioejs the charge of the
electron, andc is the speed of light. The electric fiel  \\herep=iw+ 1/r.

satisfies the Maxwell equations Let us consider a sound wave with a displacement vector
) 9 u=(u,0,0), propagating in the direction normal to the layers.
curl curl E = 4_"2“_"_j ¥ “’_ZE 6 Using formulas(4), (11), and(12) and also the equations of
c

c motion for a charge in a magnetic field,

and the condition of continuity of the electric current in the

conductor:
div j=0. (7) a
3 L
In a magnetic fieldH=(0,H sind, Hcos#) deviating @
from the normal to the layers by an anglethe cross section § ol
of the Fermi surface on the planmg,=p-H/H=const are 5
closed and do not contain points of self-intersection if &
[
1 -
|6| < arctg 1,/ . (8)
In this case the electron energy levels can be found with the 0 ' ' —
aid of the quasiclassical quantization condition 1/H, arb. units
SGe,pg) = P gy 4 %), ) 3l b
where S(e,py) is the area bounded by the electron trajec- g
tory. It is easily seen that in the case of the dispersion rela- > 2r-
tion (2) the energy levels take the form g
=
1 voam
=|n+5|hQqcoso\/1+7— tarf 6 cos{
2 ) 0 1 1 1
Uofl mvotarF 6S|n2 g 1/H, arb. units

2
— n——COS{— ,
K &= 2[1+ n(voamih)tar? 6 cos{]
FIG. 1. The dependence Bfon 1H for =0, =102, By<1 in arbitrary
(10 units. The figures have different horizontal scales.
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FIG. 2. Curves ofl" o, for different values of the anglé. n/4 n/2 ©

FIG. 3. I'on Versus angle for By>1, in relative units.

Px ﬁI—(vy cos® - v, sinB),
ot c cosf>y. (15
% _ _ﬁvx cos, op, =___vx sing Pz op, ’ (13)  This condition, like inequality8), excludes from consider-
ot c ¢ ot ation a small region of angleg near 6= * 7/2 where the

one is readily convinced that in the region of sound frequen:
cies in which the inequalitikl <1 holds, the sound absorp-
tion coefficient can be written in the form

magnetic field is almost parallel to the layers.
In the leading approximation in the small parameter
the components of the electric field of the electromagnetic

2eHr Z J‘ [ J wave have the form
pu 26 sc(21th)2

Ex =% uH cos? 0 By
c

2 2q _ Y 2’
amuv cos” 0 — (By)“ - 2iPy
x 3 | nkouL,,epJy 2 tan 0 |cosg
) 25 a2
Ey =—1£uHcose 2COS 0 ;BY T (16)
- ~ Y
(eyvo) (B, P |E 2) } (14) cos” 0 — (By)* - 2ipy
2COS where,8=(5wp/0w)2wr, andw, is the plasma frequency.
where J, is the Bessel function, and the parameter Using the Poisson summation formula and changing
=1/(Qq7)<1. from integration ovemn to integration over energy with the

With the use of Maxwell's equation&), (7) it is not  aid of formula(10), we obtain the following expression for
hard to find the electric field in the conductor if it is assumedthe oscillatory(in 1/H) part of the sound energy absorption
that coefficient:

1
5 2
r, = Ty (th 0059)2 [[ (kin) ]Liz]g('@ tan 9) + F(y,e)}
uls

1 2
-V NcS, NcS,
-n/4 — 41|
X ; N P(NA) [COS(2eHh n/4 |+ cos SefTh +m/ (17)
|
Here I'y=2mNwow/ps?, N, is the electron density, The terms containing the factdy,, in formula (17) de-

|=vo7, ®(2)=2/sinhz, A=27?T/hO,cosh, and the ex- scribe the absorption of energy from the sound wave due to

tremal values of the critical area of the Fermi surface on aenormalization of the electron spectrum in a vibrating lattice

planepy = const have the form (deformation mechanismThe Joule losses are determined
by the functionF(+y, ), which has the form

2mm /.Li ﬂvoﬁ/a (18) CO§ 0+ Bzyz

cos¢ \/1: ﬂ(amvo/h)tanz 0 F(’Y!a)zcoga[cos’? 0_(ﬁ,y)2]2+ﬂ2,y4 (19)

51,2:

In a quasi-two-dimensional conductor these values do not Analogous terms are also contained in the smoothly
differ strongly from each other, and the oscillations thereforevarying (with magnetic field part of the absorption coeffi-
have a double-peatdouble} form (Fig. 1). cient:
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servable in the region of ultrasonic frequencies 10° s™*

in magnetic fields of the order of tens of tesla.

tand| +F(y,6)|. (20

mon:W 2 xz70| T g
The density of charge carriers in the organic conductors
now under intensive study are comparable to the density of
. . ; E-mail: kirichenko@ilt.kharkov.
conduction electrons in ordinary metals, so that the param- mail: kirichenko@ilt.kharkav.ua
eter 8 can be much greater than unity. At a sufficiently high
magnetic field By<cosh) the induction mechanism of
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The magnetic-field dependence of the thermopower in layered conductors with a quasi-two-
dimensional electron energy spectrum of arbitrary form is investigated theoretically. It is shown
that the dependence of the thermopower on the magnitude and orientation of the magnetic
field with respect to the layers contains detailed information about the velocity distribution of the
charge carriers on the Fermi surface.2004 American Institute of Physics.
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Thermomagnetic phenomena in high magnetic fi¢hds tesla the Shubnikov—de Haas effect is observed at the most
are extremely sensitive to the form of the electron energydiverse orientations of the magnetic field with respect to the
spectrum of degenerate conductbsst sufficiently low tem-  layers?=* which attests to the fact that at least one sheet of
peraturesT, where the temperature smearing of the Fermithe FS of these organic charge-transfer complexes has the
distribution functionfy(e) of the conduction electrons is form of a slightly corrugated cylinder. For the sake of brevity
much less than the distance between quantized energy levets the calculations we shall assume that the FS consists of
Ae=% and the charge carriers can complete many orbit®nly one slightly corrugated cylinder of arbitrary shape. The
with frequencyQ in the magnetic field during the mean free degree of corrugation of the FS is determined by the ratio of
time 7, the amplitude of the quantum oscillations of the ther-the conductivity in the directions parallel to and perpendicu-
mopower with variation of H, as a rule, significantly ex- lar to the layers in the absence of magnetic field; this ratio is
ceeds the part of the thermopower that varies smoothly witlproportional to the square of the quasi-two-dimensionality
H. This allows this quantum oscillation effect to be used agparametery of the electron energy spectrum. In the organic
the basis of an extremely accurate and reliable spectroscopiayered conductors studied experimentad}¥,is of the order
method of studying the Fermi surfa¢eS). However, even of 10 -~10 4, and in graphite it can reach a small value of
for T>#(), when it is not so important to take into account the order of 10°.
the quantization of the energy levels of the charge carriers, By solving the kinetic equation for the charge-carrier
thermoelectric coefficients at high magnetic field £=>1) distribution function at a fixed electrical current dengignd
contain rather detailed information about the energy spectemperature gradier®T one can find the electric field
trum of the charge carriers.

Let us consider the thermoelectric phenomena in layered aT
conductors with an energy spectrum of the conduction elec- E; =pirfg + % jx P ®)
trons of arbitrary form: k

Here p;, is the resistivity tensor, which is the inverse of the

e(p) = Zen(Px,Py)COS {an;z +ocn(Px:Py)}§ conductivity tensowr;, , and
n=0
( ) =0 (Prpy); nr 0 e
€0 (-PaPy) =6n (P Py); ik =35 TPij 5 %k @
1
o‘n(px:py)‘_‘_an(“va_Py)r (1)

The tensor componentqek coincide withoy if the mo-
mentum relaxation timery in the latter is replaced by the
energy relaxation time,; u is the chemical potential of the
system of conduction electrons.

At sufficiently low temperature3, much less than the
Debye temperatur&p , viz., T<Tp(l,/ko) ™3 wherel, and
?0 are the mean free paths of the charge carriers at room
temperature and dt= 0, respectively, and the charge carriers
are scattered mainly by impurity atoms and crystal lattice
defects. In this temperature region the timgsand 7, are of
the same order of magnitude. The condition of high magnetic

In a large family of organic conductors based on tetrathifield is attainable only at liquid helium temperatures, where
afulvalene in magnetic fields of the order of several tens othe condition given above is clearly satisfied, and in what

wherea is the distance between layers, afids Planck’s
constant.

We shall assume that the functioag(py,py) fall off
with increasing index, so that the velocity of the electrons
along the normal to the layers is much less than the chara
teristic velocityv g of the electrons along the layers:

v, =V:n<NUE. (2

1063-777X/2004/30(3)/3/$26.00 229 © 2004 American Institute of Physics
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follows we shall therefore not distinguish between the mo- 449
mentum and energy relaxation time of the electrons.

One of the interesting phenomena specific to a quasi 80
two-dimensional electron energy spectrum is the manifeste
tion of oscillations of the magnetoresistance to a currenX 60
transverse to the layers as a function of the argbetween
the magnetic field vector and the normal to the layéran 4or
anomalous oscillation effect should be expected when th 20.} J L J LL J
temperature gradient is directed along the normal to the lay L
ers. In that case if the magnetic fight= (0,H sin 6,H cosé) 0% 15 50 55 30
deviates substantially from the layers, then to a sufficien
degree of accuracy the thermoelectric field is directed mainl
along thez axis whenQ 77°<1, so that

%IG. 1. Dependence onof the normalized magnetoresistance transverse to
the layers foin =10 2. The positions of the maxima & x are shifted from

2 the valuesx,=3m/2+ 27k by an amount 2.
E,=-0, g’ & 2z == 11’10‘22, )
z oz 3e Op
where the conductivity transverse to the layers,, in the  the kinetic coefficients on taf The functionF () is of the
casey=1/Q7r<1 has the forrh® order of unity and for ta®>1 represents an insignificant
background in the dependence ®f, on tané.
2 * 0 . . - -
ae“m tcosd 2.2 9 2 2 For tang >1 the integrand in formuld?) is a rapidly
= 0 + . P . . oo .
= Qan)d Zn [5®) + oo (e +77e2) oscillating function, and the main contribution to the integral

n=l ®)  comes from small neighborhoods of the points of stationary

; ; hase, where,=0. There are at least two such points on the
The f : hich h form of P x=
e functionse;(6), which depend on the concrete form o electron orbit (t1) = vy(t,) = 0. Thene,(t1) = en(t,), and,

the dispersion relation of the charge carriers, is of the orde it. th toti it has the f
of unity, m* is the cyclotron effective mass of the conduction asaresu € asymptotic expressionligrd) has the form

electrons, andr is of the order of magnitude of the conduc-

1/2
tivity along the layers in the absence of magnetic field. 1.(0)=2¢(ty) il
The dependence af,, on the orientatiord of the mag- " m 9%py(ty) 12
netic field with respect to the layers has narrow peaks which Tlan Tz tand
1

for tand>1 repeat with a periodA(tand)=2nh/nab,,
whereD,, is the diameter of the transverse cross section of %anD 77]
X co

the Fermi surface along th®, axis. These minima are usu- tang— ik
ally associated with the orientations of the vectdrfor
which the integral and the thermoelectric coefficienta,6) for x
=(aDp/h)tand>1 can be represented by the formula

9

In(0)='~r*1JTdtsn(t)cos(py(t)antan&/h), 7) )
0
vanishes fom=1 (hereT=2#/Q is the period of the mo- P
tion of the charge in the magnetic figld COSX+ 2\ €COS X
The coefficientd ,(0) falls off slowly with increasingn, X 1+sinx—N(1+sin2x)|’ (10

and at those angle. for which1,(6.)=0 a substantial role

5.2 200 \
in the electrical conductivity and thermoelectric coefficient Wherer=2e5(t1)/e1(t))<1.

Figures 1 and 2 give the angular dependence of the mag-

214 22 n3loln(én)
a,0)= 3eﬁ_ F(e)+tan0T (8 6L
n<l B
n=1 n 4
. . . . 2 B
is played by the term witm=2. Herev, is the velocity of X g
the conduction electrons along thieaxis at the turning point o
on the electron orbit = const,py = const, and -2
4L
ab, 6
gn—ﬁ ntané. . . .
10 15 20 25 30
The terms withn=1 andn=2 do not vanish simulta- X
neously, and from now on we will be C_O”Sidering Only_theseFlG. 2. Normalized thermopower at largeand A = 10"2. The maxima of
two terms. Inclusion of the next terms in the sum omewill the thermopower are proportional to 1/and are shifted from the position

lead only to insignificant refinements in the dependence 0éf the maximum values dR/x by an amount/2X.
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Influence of mechanical stress and temperature on the photoluminescence in the
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The results of a study of the low-temperatiife-90 K) photoluminescence of thin films ofsg
obtained by vacuum deposition on heated mica substrates are reported. The structure of

the films is analyzed by the method of high-energy electron diffraction. The features of the
luminescence of structural trapX traps, which arise on account of mechanical stresses created
by bending of G, films of different structure on mica substrates, are investigated for the

first time. The temperature behavior of the photoluminescence bands due to defects of this kind
is investigated. The processes of trapping and transport of electronic excitations in the low-
temperature phase ofggare discussed. @004 American Institute of Physics.

[DOI: 10.1063/1.1645184

Spectral luminescence methods have been widely usegf around 10° Pa. A quartz oscillator was used to determine
for studying the relaxation and transport of excitons i C the thickness of the film and the rate of deposition. The struc-
fullerite (see, e.g., the review$ and the references cited ture of the films was monitored by electron-diffraction and
therein since the time of the discove%ynd synthsisof this electron-microscope methods.
compound, which is now a model for description of  The use of a mica substrate with a suitable choice of
m-electron systems. The photophysical properties of excitedeposition regime makes it possible to obtain rather good
states which reflect the symmetry of thgy@nolecule and  crystalline films with no stacking fault$:*® Because of this,
crystal are unique and therefore extraordinarily interestingthe low-temperature PL spectra of such films, which are in-
especially in view of the very promising applications of this vestigated here for the first time, have qualities approaching

material in photonics and optoelectronics. those of single crystdisand can reveal effects due to the
Although the mechanisms giving rise to the low- influence of mechanical stresses.
temperature photoluminescen¢®L) spectra of crystalline The photoluminescence of thin films ofJfullerite was

Ceo have been rather scrupulously studieske, e.g., the excited by a spectral line of a DRSh-1000 high-pressure mer-
surveys® and the references thergim number of unsolved cury lamp. This line, at an energy of 2.84 eV, was selected by
problems remain in connection with the localization andmeans of an SPM-2 monochromator with a spectral slit
transport of excitations, e.g., Jahn—Teller self-trapping olwidth of 10 nm. The PL was registered “in reflection” by an
excitong and the features of the resonance intermoleculaMDR-3 monochromator with a spectral slit width of 5.2 nm.
interaction of G molecules found in excited states of even The PL spectral were registered using a coolet) 7@ pho-
symmetry?® tomultiplier, with a spectral sensitivity curve of the type S-8
Since the time of the pioneering work of Eremenko andin the photon-counting mode. The PL spectral were corrected
MedvedeVi® structural imperfections in crystat$,created for the spectral sensitivity of the detection equipment. The
mainly by mechanical stress, have been used with great suitegration and processing of the signal was done with the
cess as a tool for studying excitonic processes in molecularse of a personal computer. The temperature of the sample,
crystalst?~14 which was found in gaseous helium, was regulated to a pre-
In the present paper we report the first-ever results on theision of 0.5 K or less over the temperature range from 5 to
influence of mechanical stresses on the spectra of low90 K. Internal stresses were produced in thgfllm on mica
temperature photoluminescence of thin films gf @llerite by bending the substrate by different angles. The correspond-
of different structure on mica substrates and discuss thing tensile stresses in theygilm varied from 90 to 150 MPa
mechanisms of trapping and transport of singlet excitons. (according to our calculations using the experimental
We studied thin films of fullerite g, obtained by evapo- values’ of the low-temperature elastic constangnd the
ration of G single crystals of at least 99.9% purity onto compressive stresses from 28 to 50 MPa, depending on the
mica substrates heated to different temperatures in a vacuubending angle. To elucidate how the stresses created in the

1063-777X/2004/30(3)/4/$26.00 232 © 2004 American Institute of Physics
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FIG. 2. PL spectra of a disoriented;ghin film 60 nm thick on a mica
substrate at a temperature5oK under photoexcitation at an energy of 2.84
eV: the unstressed filnfe); the film containing stresses resulting from de-
formation of the substraté); the difference spectrum obtained by subtrac-
FIG. 1. PhotoluminescencéL) spectra of an oriented thin film of&  tion I(b)—1(a) (c); the pattern of high-energy electron microdiffraction on
fullerite 90 nm thick on a mica substrate@K under photoexcitation with  the crystal structure of theggfilm (d). The dotted curves in panels “a” and

an energy of 2.84 eV; unstressed fil@; film with stress resulting from  «y» coprespond to a computer decomposition of the spectra into bands of
deformation of the substrafb); the difference spectrum of the PL, obtained Gayssian shape.

by subtractingl in panel “a” from | in panel “b™ I(b)—I(a) (c); the
difference spectrum obtained by subtractifg) from the PL spectrum of
the film after the stress was removiell; the pattern of high-energy electron

_microdiffragti’(y)n on the crystal structure of thg Gilm (e). The dot_t_ed lines gt a substrate temperature of 180°C and a deposition rate of
'Snpfgrfliimaba%i 0? GC;J;esfap:gﬂ;;eé computer decomposition of the 0.1 nm/s. The films were continuous and had an fcc lattice
with a period close to that of bulk fullerite. The microcrystals
in those films were of the order of 30—40 nm in size. Figure
film by bending it affect the PL spectra, we subtracted the2 shows the luminescence spectrum for a disoriented film 60
initial spectra from the spectra obtained for the bent film. Fomm thick obtained at a substrate temperature of 17 °C and a
this procedure the spectra were normalized to the integratedeposition rate of 0.1 nm/s. The mean size of the microcrys-
intensity by the method proposed in Ref. 18. tals in the latter films was around 5 nm. These two types of
The influence of the mechanical stresses produced dilms, having different structures determining the specifics of
maximum bending of the mica substrates on the low-the luminescence spectra, were chosen in light of our previ-
temperature PL spectra of thin films ofsCfullerite with  ous investigation&’
different structures is well seen in Figs. 1 and 2. Figure 2  As can be seen in Fig. 1c, which shows the difference
shows the PL spectra for oriented films 90 nm thick obtainedetween the PL specti@ormalized by the method of Ref.
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18) of the unstressed filndFig. 18 and bent film(Fig. 1b), 60
bending of the film leads to changes in the luminescence
spectrum, the changes being observed in the high-energy part
of the luminescence of stress-induced structural defects
which are apparently of a dislocation charaéfert

The main changes in the luminescence spect(Big.
1c) are observed near 1.7, 1.76, and 1.79 eV. The behavior of
the low-temperature PL band of thg4&rystal under applied
pressure has been studied in some défahere is a band at
1.69 eV due to radiative transitions in the intrinsic, so-called
“dimer” trap,® which is influenced rather strongly by pres-
sure(the application of pressure leads to a long-wavelength
shift, broadening, and changes in intensity of this baadd
bands due to the luminescenceXotraps, which are shifted
little at low pressures. The task of the present study was to
investigate the structural defects created upon bending of the
substrate X trap9 as tests for the motion of excitons in films
of different structure. The band at energy 1.76 eV has ap-
peared in practically all of the studies of structural defects in
Ceo fullerite (see, e.g., Ref.)5whereas the band at energy
1.79 eV is apparently peculiar to the films, since it is not
observed in single crystals.

Figure 1d shows the difference between the normalized 0 20 40 60 80 100
PL spectra of a film of g, fullerite, taken prior to the bend- T.K

'ng of the substrate and after the substrate was stralghten%gG_ 3. Temperature dependence of the energy of the maxima of the PL

out. It is seen that the structural defects are partia”ybands ofX, traps(a) andX, traps(b) with energies of 1.79 and 1.76 eV and
“healed” after the mechanical stress is removed. the half-widthsAv of these bands in oriented films 90 nm thislee Fig. 1

A completely different picture is observed for the disori- The e_xperimental curves are approximated by using fornilawith the
ented, nanocrystallite film. As is seen in Fig. 2, in this caséf"(')ot‘;‘g”gvparametersz Jay=2.6x10, E,;=0.04 eV. b y=8.0x10/, E,
there is practically no luminescence of induced defects, ap- '

parently because the migration of electronic excitation en-
ergy is confined in the nanocrystals; this is the so-called exz5n pe promoted by the admixing to it of charge-transfer

Intensity, arb. units

Intensity, arb. units

. . 9
citon conflnemen’t. _ _ states’® even in the case when that excitation can be essen-
In order to discuss the possible mechanisms for the thTaIIy immobile in the absence of charge trandfer.
nomena observed wherggJullerite films of different struc- It is this mobility of the excitations that brings about the

ture are stressed, it is important to consider several factongminescence ok traps in the most perfect single crysfals
that influence the processes of relaxation and migration of,q oriented film€ of Ceo fullerite.
excitations in solid G. . ~ To determine the depth of th¥ traps relative to the

It is known that the lowest-energy excited electroniCpottom of the Frenkel exciton band, we measured the tem-
states of the g molecule in the point group, are even, so  perature dependence of the relative yield in the bands ob-
that the luminescence from the first excited singlet state O?ained by Gaussian decomposition of the PIXdfaps in the
symmetryTyq is dipole-forbidden. The mechanisms respon-region 5-90 K(Fig. 3). In the temperature interval 5-90 K
sible for the PL of individual molecules is determined mainly we observed a Steep falloff of the intensity of the lumines-
by the Herzberg—Teller vibronic interactioh&’ cence of theX; andX, traps. Keeping in mind that the en-

In the G crystal, because the transition dipole momentergy of self-trapping of singlet excitons inggfullerite is
for the lowest singlet state of the Frenkel exciton is zero, thather smafi and assuming that the activational character of
resonance intermolecular interaction is small and is of a quathe temperature dependence of the intensity of the bands of
drupolar character, as was shown experimentally in Ref. %he X traps in the luminescence spectrum should be indica-
The exciton can also be localized by Jahn-Teller diStOl’tiOﬂive of localization of excitons at those traﬁs\Ne have es-
of the Ggo molecule upon photoexcitation, when the symme-timated the activation energy for the emptying of ¥éraps,

try of the molecule changes frohj to Dsq (Refs. 7and 24 approximating this temperature dependence by the
The structure of the PL spectra of Frenkel excitons is largelyformula®28

determined, as in the case of individugl,@olecules, by the
Herzberg—Teller vibronic interaction mechani8#?. H(T)=lo/[1+yexp—Ea/keT)], @)

In spite of the weak intermolecular interactions, exci-wherel is the intensity of the emission from attrap at the
tonic effects are manifested in the PL spectra not only in thejiven temperaturd,; is the intensity of the emission from a
form of luminescence of self-trapped Frenkel excifor®®  trap at the lowest temperaturesis the ratio of the probabili-
and charge-transfer excitdisbut also in the luminescence ties of radiative and nonradiative deactivation of the excited
of X traps, which are due to the presence of structurabtate of the trapkg is Boltzmann’s constant, anfd, is the
defects’®?! Delocalization of a neutral molecular excitation depth of the trap relative to the bottom of the free-exciton
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Based on the data of ultrasonic studies and on the temperature behavior of the absorption
spectra, a study of the phase diagram of the crystals Cs®d,(Mo0O,), is made and the
structural distortions occurring as a result of the pseudo-Jahn—Teller effect are discussed.

It is shown that in the presence of impurities there are several lines of phase transitions on the
x—T phase diagram. It is established that one of the phase transitions these found is
essentially of a magnetoelastic origin. ZD04 American Institute of Physics.
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1. INTRODUCTION authors as a second-order SPT. A study of the Raman scat-
_ tering spectra of CsDy(Mog), and CsDy 44Gd, oA M0O,),

The double molybdates of rare-earth elements, with thé,as revealed the presence of a first-order SPIat50 K in
composition MRe(MoG),, where M is an alkali metal,  poth crystal$. We note that none of the techniques listed
Cs, Rb and Re is a rare-earth element, are layered magnetigermits one to observe the whole sequence of SPTs realized
dielectric crystals characterized by the presence of lowi, the system CsDy ,Gd(MoO,),. Furthermore, accord-
temperature phase transitions. The layered crystqhg to recent dafaof an x-ray structural analysis of
CsDy(MoQ,), has a fir'st—o.rder structural phase transitionCSDy(MOQl)z' the crystal structure of this substance, at
(SPT), the nature of which is not yet completely clear, at ajeast at room temperature, is not orthorhombic, as had been
critical temperaturd ;~40 K. The SPT is accompanied by a 355ymed previousfyput monoclinic.
dpwnyvard jump of the ground _state energy of th_e dyspro-  Because the nature of the SPTs in both CsDy(MgO
sium ions and is therefore attributed to cooperative Jahn4nd in the doped crystals and also the lattice symmetry in the
Teller (JT) ordering! The SPT is sensitive to the substitution corresponding phases still remains unsettled, we have con-
of a small amount of the By ions by ions of the Non-JT tiqued the study of thex—T phase diagram of the
rare-earth elements. According to the data of Ref. 2, doPinQ?sDyl_xGoL(MoO4)2 system. In particular, to refine the
of a sample with G#" and EJ" ions leads to a sharp low- phase diagram we have used samples wi.07, in which
ering of the phase transition temperature, anda0.05 X phase transitions have been observed in the Raman scattering
is the concentration of the rare-earth impuritiésvanishes spectra at 50 and 30 K.
completely. Starting withx=0.03 a line of second-order ~ gjnce one of the mechanisms proposed for the first-order
phase transitions, with a relatively weak dependence of thgpT i CsDy(MoQ),, is ordering of the cooperative JT type,
critical temperature on concentration, splits off from the lineynich derives from the electron—phonon interaction, it is im-
of first-order phase transitions. However, studlieisthe sys- portant to observe the behavior of the phottacousti¢ sub-
tem CsDy,Gd,(M0O,), (x=0.01, 0.04, 0.05, 0)thave  system while simultaneously tracking the changes in the
shown that the phase diagram is more complex than hagdiectron spectrum of the JT ions. In the present paper we
been assumed previouditudies of the phase diagram con- paye therefore undertaken a comprehensive study of the sys-
tinue to this day, although the experimental data obtainegy, CsDy _,Gd,(Mo0O,), by both an ultrasonic method and
with the use of different methods are rather contradictory. Irby optical spectroscopy.
particular, studies of the specific heat of CsDy(Mg£over Thus the goal of this study was to determine the types of
a wide range of temperatures (40K <330 K) have re-  the SPTs and to analyze the symmetry of the phases in doped
vealed that, besides the previously known first-order SPrystals, to study the influence of magnetic field on the tem-
(T.=42 K) there are a number of anomalies attesting to Sprerature of the SPT in doped crystals, and to discuss the

stantial restructurings of the energy spectrum of the CrﬁStal'pOSSible mechanisms for the SPTs using the data of ultra-
One of these, af;~59 K, has been attributed to a transition gopjc studies and optical spectroscopy.

to an incommensurate phase. For a crystal with 5%'GHe
temperature dependence of the specific heat does not cont%in
the anomaly corresponding to the first-order SPT nor the”
anomaly near 60 K that is observed for undoped The CsDy(MoQ), and CsGd(Mo@), crystals contain
CsDy(MoQ,),. However, atT,~30.5 K one observes a characteristic layered and chainlike structures and, according
weak peak in the specific heat, which was interpreted by théo Ref. 7, are isostructural. Ai~300 K the cell parameters

SAMPLES AND EXPERIMENTAL TECHNIQUES
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of these crystals are clogéor CsDy(MoQy), they area  TABLEI. Absolute values of the sound velocities in CsDy(Mg@, mea-
=951 A, b=7.97 A, c=5.05 A and for CsGd(Mog),, swedaT_ 77K

a=9.52 A, b=8.05 A, ¢=5.07 A), and the ionic radii of Geometry (mn) Sound velocity, 10° cm/s

the rare-earth elements are also close; it was therefore &

sumed that doping leads to an isostructural substitution ¢ aa 2.85

Dy®* ions by Gd™. The crystals were grown by the method b o7

of spontaneous crystallization from a fluxed melt. The impu- i

rity concentration was assumed to be the same as the relati ac 1.9

content of gadolinium in the stock and for the systems stud

ied wasx=0, 0.03, 0.04, 0.05, 0.07, 0.1, and 0.25. ba 0.9
The crystals were thin<£1 mm) mica-like slabs having bb 3.8

a perfect cleavage planbc). Besides the perfect cleavage

plane there was also a less perfect cleavage plage the be 1.89

presence of which was easily established from the nonrar

dom orientation of the breakage lines. e 197
The orientation of the samples was carried out at roon cb 1.9

temperature by x-ray “photography of reflected rays” with

an accuracy of~2-3°. According to the data of an ce 4.04

experimental structural analys?islhe symmetry of the Note: Geometry(mn) means that in the experiment the sound wave vegtor
CsDy_,Gd,(M0O,); cystals aT~300 K i close to ortho- 22 Praie o e Srectom i e cystel e e polrizatonvertr
rhombic, but there are small monoclinic distortions. The deyeometriesab) and (ba), where it was~10%.
viation of the monoclinic angle from a right angle is small
(=2°) and comparable to the accuracy of orientation of the
samples. This circumstance and also the presence of twirkr the experiment we used an apparatus based on a DFS-12
made it impossible to take the monoclinicity into account indual monochromator. The spectra were recorded using a pho-
preparing the samples for the acoustic experiments. tomultiplier in the photon-counting mode.

The samples had characteristic dimensions of<Q.5
X1mm. The facgs parallel to thg perfect cle.avable plan%' EXPERIMENTAL RESULTS AND DISCUSSION
(bc) were not subjected to mechanical processing. The other
two faces, parallel to théac) and(ab) planes, were polished 3.1. Ultrasound (experiment )

with dry sandpaper with a micron abrasive. The working  \jth the goal of elucidating the influence of impurities
faces of the samples were plane-parallel to a precision An the phonon subsystem of the crystal we did acoustic stud-
1 um. The residual stresses arising after the mechanical polag of CsDy_,Gd,(MoO,), (x=0, 0.03, 0.04, 0.05, 0.07,
ishing were relieved by annealing the samples al 1 and 0.25 For correct comparison of the results of the
T~900 K. acoustic and optical measurements we used the same
As compared to Ref. 3, the equipment used in the acoussamples withx=0.07 for which phase transitions had been

tic measurements was of a new generafidfhis made it opserved at 50 K and at approximately 30 K by the Raman
possible, first, to carry out high-accuracy {%) measure-  scattering method.

ments of the absolute sound velocities rather than crude Studies have shown that doping with gadolinium has
transit-time estimations. Second, the fact that the limitingpractically no effect(within the experimental errpron the
resolving power is maintained over a practically unlimited gphsolute  values of the sound velocities in
dynamic range made it possible to register slight features iTsDy, _,Gd,(Mo0Q,), crystals k=0, 0.04, 0.1. The results
the behavior of the sound velocity against the background off the measurements &=77 K for the undoped crystal
very substantial variations in the relative measurements. CsDy(MoQy),, are presented in Table I. Here and below we
In the experiment we used a continuous temperaturgse a shortened notation for the experimental geometry. For
pulling at a rate of 10 K/h in the interval 2&KT<60 K. The  example, the geometiiab) means that the sound wave vec-
temperature was measured by a carbon resistance thermogor q is parallel to thea direction, while the polarization,
eter. The thermometer was not in direct contact with the.e., the displacement of the particles in the sound wave, is in
sample but was placed in a common volume which was thetthe b direction. The accuracy of the measurements was gen-
mally insulated and filled with a heat-transfer gae* at erally on the 1% level. The geometri¢ab) and (ba) are
1-10 tory. The temperature difference between the sampl@xceptions. The very small sound velocity and the resulting
and thermometer did not exceed 0.5 K, and the resolutiotarge damping in those geometries do not permit the achieve-
was 0.05 K or better. For the measurements of the relativenent of a single-mode measurement regime in them, and, as
variations of the sound velocity in an external magnetic fielda result, rather large errors of an interference nature arise.
we used a superconducting solenoid with a maximum magfhat is the reason why the value of the sound velocity in the

netic field of~3.5 T. (ab) geometry in Ref. 3 is substantially different from that
The absorption of light by DY ions in the obtained in the present study.
CsDyy 0G0ty oA M0Q,), crystal was studied in the region of Qualitatively the results reflect a certain degree of layer-

transitions between levels of the ground multifletys, and  ing of the crystals due to the relatively low values of the
the excited state¥F 5, and®F s, at temperatures of 2—70 K. sound velocities. This effect is especially noticeable in the
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FIG. 1. Temperature dependence of the relative changes of the sound ve- T.K
locity (AS/S) (a) and absorptio(Aa/@) (b) in CsDy; _,Gd,(MoO,), for ’
qllb, ullb.

FIG. 2. Form of the temperature dependence of the relative changes in the
sound velocity in CsDy_,Gd,(MoQ,), for g||c, uc.

ab) and(ba) geometries, when the vectogsandu are or- . . . .
(ab) (ba) g ’ oS from the position of the maximal jumps in the temperature

thogonal to the cleavage planes. Some “nonreciprocity” of o i
the results can be noted, i.e., the values of the transversdeloendence of the longitudinal velocignd of the related

sound velocities measured in the geometfés and(ca) are e‘?ashc moduli measured in thebb) geometry(Fig. 1).

different, as are the values measured(fds) and(ba). This, kinkl;h;t tggsgrs;l:;i igxezgut?e' trsanjvgrzzegill\(/):laifehave
we believe, is due to the monoclinic distortions of the crystal . P Esng o
structure. that the anomalies of both the longitudirfalmps and trans-

The temperature behavior of the relative variations of thevérse (kinks) velocities nearTe,, and Teyr have a qualita-

sound velocities measured in different geometries for thett'r\;enlgit?éwgar character that is typical of second-order phase
crystals CsDy_,Gd,(MoO,), (x=0, 0.04, 0.07, 0.1 are '
presented in Figs. 1-5. As is seen in the figures, in the inter-
val 20—40 K the behavior of both the longitudinal and trans- T.K
verse vel_oc!ties has anomaligemps and [(ink}swhich are 18 20 22 24 26 28 30 32 34 36 38
characteristic of structural transformations. The typical —— T
anomalies for all the crystal@escribed in more detail be- x=0.1 Te2 ch1“ &ch
low) can be associated to the critical temperatufeg ,
Te1r, andT,.

It is knowr? that a second-order structural phase transi-
tion is characterized by a jump in the temperature depen-

dence of the longitudinal elastic moduli of the crystal and a g
N 0 2 4 6 8 1012
kink (jump of the derivativgin the temperature dependence < T
of the transverse moduli. As is seen in Figs. 1, 2, and 3, the 26.0
temperature curves of the longitudinal velocities have jumps ’;25_5_
at the temperaturek;; andT.,». For the velocity measured | ™% I 250
in the (bb) geometry the jumpa S/S are appreciable~2 T
% 10"2) and are accompanied by upsurges in the sound ab- 24.5

sorption at these same temperatu(sse Fig. 1 For the
other geometries the variation of the Iongitudinal velocitiesF!G- 3. Temperature dependence of the relative changes of the sound ve-

: ocity in CsDy,_,Gd(MoO,), for glla andula. The solid curve is in the
atTey andTe,» are much smaller in scale and are SomeWhat-lbsence of magnetic field, the dotted curve in an external magnetic field

smeared ir? _temperatul(Eig. 2,x=0.1, and Fig. B The_re— H=3.5 T applied along tha direction. The inset shows the dependence of
fore the critical temperaturet.,, and T;y» are determined the critical temperatur&., on the square of the magnetic field strength.
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FIG. 4. Temperature dependence of the relative changes of the sound ve- )
locity in CsDy; _,Gd(MoO,), for gl|a, ullc andq]c, ulla. The inset shows FIG. 6. Fragment of th&—T phase diagram of CsRy,Gd,(MoQ,), crys-

the temperature dependence of the relative changes in the sound veloci§s (X is the concentration of the rare-earth impurityines of second-order

(dllc, ullba) in CsDyp oeGth 0 M0O,), in the temperature interval 3055 K. phase transitionéA,M); line of first-order phase transitiort®); first-order
’ ’ phase transition in the crystal without impuriti&s).

At lower temperatures, as follows from the data of Figs.
1-5, there is another SPT, at which distinct hysteresis loope low-temperature shoulder on theS/S(T) curve is
are observed. The values of the jumps for the longitudinafhanged. Furthermore, increasing the gadolinium content de-
and transverse velocities are approximate|y e(q“hthe or- creases the “excess” part of the left shoulder of the curve
der of 10°3). The jumps of the longitudinal velocity mea- relative to the right. Taking into consideration that the sound
sured in the(aa) geometry is localized in a narrow tempera- @nomalies are “inherited” in all the impurity-containing
ture interval (1.5 K), while for the other geometries the Crystals, while the temperatur@s;, T¢i», andT., depend
jumps have some temperature smearing. The significant tenfn the concentratiow, we have constructed the phase dia-
perature hysteresis accompanying the anomalies attests to t§gam of these crystald-ig. 6).
first-order nature of this SPT. One way of obtaining additional information about the
We determined experimenta”y the two values of thenature of the SPTs is to Study the influence of magnetiC field
temperature at which the jumps of the longitudinal and transOn them. For these crystals we chose the geom(ety, in
verse velocities are observed on cooling and heating. Thehich all of the phase transformations under discussion are
value of the critical temperatufE,, indicated in the figures rather clearly expresse@ig. 3). It turned out that with in-
is the mean value between the temperatures of the jumps 6feasing magnetic field the critical temperaturel, is
the longitudinal velocity[(aa) geometry on decreasing and Shifted quadratically to lower values in proportionHg (in-
increasing temperature. Let us mention some features of thEet in Fig. 3. The critical temperaturd ;. is practically
first-order phase transition. independent of the value of the applied magnetic field. Inter-
First, for the sound waves wit)|b one observes prac- estingly, the anomaly of the longitudinal sound is sensitive to
tically no anomalies, although a slight irreversibility is dis- €xternal magnetic field.
cernable in this case as wehig. 1). Second, the form of the
anomaly neaiT, for longitudinal sound, measured in the 32 ultrasound (discussion )
(cc) geometry, is preserved for the crystals, including the

crystal not containing impuritie€ig. 2), only the scale of The phase diagram of the crystals was constructed on the

basis of the similarity of the sonic anomalies in the series of
crystals with different impurity concentrations and the tem-

AS/S

TC1” ‘ TC1,

(cb)

20

T, K

35

perature dependence of the position of these anomalies. The
upper and middle curves in Fig. 6 correspond to lines of
SPTs with critical temperaturék,;» andT.q», respectively,

and the lower curve to the line of transitions with critical
temperatureg ;,. We assume that in the presence of a suf-
ficient number of gadolinium ions the first-order phase tran-
sition in the CsDy(MoQ), crystal will be transformed into a
sequence of three SPTs lying close in temperature. Such a
phase diagram is possible if the phase transitions are charac-
terized by interacting order parameters. Each of these order
parameters depends on the impurity concentration. This de-
termines the dependengehich is linear in the concentration
region studiedlof the critical temperatures of the SPTsxan

We stress that the order parameters interact differently with
the electronic subsystem, their interaction being regulated by

FIG. 5. Temperature dependence of the relative changes in the sound velodlpurities of non-JT ions. The dependence of the sonic
ity in CsDy;_,Gd,(MoO,), for g b, ulc andg]|c, ulb.

anomalies on the external magnetic field field n€gr is a
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direct indication that the nature of this SPT is largely deter-stants. However, our experiments do not permit us to obtain
mined by the magnetoelastic coupling. We also note that nthe completely set of tensor components.

dependence of the temperatufg,, on the magnetic field Thus we assume that thedirection is an axis of sym-
was seen, at least not at the available magnetic fielanetry in the system CsQy,Gd,(MoQO,), near T/, at
strengths. least for an appreciable part of the crystal.

It has been established that the sonic anomalies in the According to x-ray structural dafathe CsDy(MoQ),
doped crystals for different geometries are divided into threerystal at room temperature has a monoclinic lattice in which
groups. One can therefore discuss them on the assumptidhe twofold axis coincides with the direction. In the tem-
that they are due to three different phase transitions lyingerature interval 70—48 K48 K is the critical temperature of
close together in temperature. Let us discuss the nature diie first-order SP)the structure is a mixture of twins of the
these phase transitions in view of the features of the sounchonoclinic phase with orthorhombic inclusions between
propagation near the critical temperatures. them. Below the SPT a new monoclinic phase is realized in

Since none of the transverse moduli exhibits noticeablehe crystal, with a new monoclinic angle but with the same
softening neafl ., (Figs. 4 and § it follows from the phe- twofold axis as in the high-temperature monoclinic phase
nomenological theory of SP¥shat the order parameter is (thec direction. Unfortunately, there are no such data for the
not some linear combination of strain tensor componentsampurity-containing crystals. Nevertheless, it may be hoped
Consequently, the phase transitiong gt should be classed that the evolution of these structures is analogous.
by symmetry with the second-order improper ferroelastic = However, a consistent interpretation of the results of the
transitions(there is no hysteresis arourid;/). It is most  acoustic experiments is possible only in case when the two-
natural to suppose that as a result of the SPT a loss of tran®ld axis of the monoclinic phase in the doped crystals coin-
lational invariance occurs, accompanied by multiplication ofcides theb direction abover ;. . The contradiction with the
the unit cell. In this case the order parametes of a scalar results of Ref. 6 can be resolved by assuming that the jumps
character. of the sound velocity in thébb) geometry observed by us

Let us now discuss the behavior of the longitudinalare due to a structural transition in the orthorhombic inclu-
moduli in the region ofT.;, (Figs. 1-3. According to the sions.
general theory of second-order phase transitfojsnps of Since the longitudinal and transverse velocities near the
the longitudinal modulus can be due to the existence of termeritical temperaturesT.;, and T.;» experience similar
of the typer »?C(uy) in the expansion of the thermody- anomalies, the phase transformatiorTat, probably occurs
namic potential, wher€(u;,) is any linear combination of by an analogous scenario. Therefore, all the arguments set
strain tensor components which is invariant with respect tdorth above as to the character of the SPTat also apply
all symmetry transformations of the symmetric phase, land to the case of the SPT ai,;». The presence of two phase
is the coupling coefficient. In any experimental geometry ondransitions of the same type with close values of the critical
always has the invariani; (u;; is the trace of the strain temperatures can be explained, e.g., by passage through two
tensoj, which is responsible for the jump of the bulk modu- commensurate phases in the process of the structural reorga-
lus of compression at the SPT and, accordingly, for the jummization of the crystal.
in the longitudinal sound velocities. The scale of these Let us now discuss the phase transitiof gt using only
anomalies is determined by the common coefficiersto that  the ultrasound data. Two possible scenarios for the SPT at
the anisotropy of the observed variations should be proporf;, can be suggested. The structural transformation is due
tional to the “bare” sound velocities. However, it is seen either to a transition from one monoclinic phase to another
from the data presented here that the change in sound veloaith an accompanying jumplike change in the monoclinic
ity in the geometrybb) (Fig. 1) is approximately two orders angle (as was in fact indicated in Ref) ®&r to a jumplike
of magnitude larger than the analogous changes for the othémansition to a monoclinic phase of the orthorhombic inter-
geometriegFigs. 2 and 3 This means that, besides the in- layers mentioned above. It can be assumed that the values of
variant r 7°C(u;,) discussed already, the expansion of thethe diagonal components of the elastic constant tensor, which
thermodynamic potential has at least one other invarianteflect the scale of the forces acting between atoms of the
r,m°up;, With an anomalously large coupling coefficiemt. crystal lattice, change weakly at the phase transition. The
According to the theory of elastic wave propagation inchanges in the sound velocities in any geometry of the ex-
crystalst® the invariance of some diagonal component of theperiment are due to both rotation of the principal axes of the
strain tensoKin our caseuy;,) is an indication that that par- tensor and to the appearance of new components(irpn
ticular direction is a longitudinal normal, i.e., a direction in the transition from the orthorhombic to the monoclinic
which “pure” acoustic modes propagate. The standard conphasg. Then, if theb axis remains a longitudinal normal at
dition ensuring the existence of a longitudinal normal is thathe SPT, analysis of the corresponding Christoffel equations
the wave normal coincides with an axis of symmefny is  shows that the velocities of thgl|b acoustic modes that re-
perpendicular to a plane of symmetrgenerally speaking, main “pure” do not change. At the same time, for the other
this condition is sufficient but not necessary, and a longitugeometries §a or g||c) the interference of the elastic con-
dinal normal can exist even for a propagation direction of astants should lead to jumplike changes of the sound velocity.
general kind® but such a direction is hit upon in a largely Let us discuss further the features of the hysteresis loops of
accidental manner and can hardly be what we have her¢he velocity of longitudinal sound measured in tfoe) ge-
This direction can be determined rigorously if one knows allometry (Fig. 2).
the independent components of the tensor of elastic con- Despite the different width of the hysteresis loops for
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crystals with different impurity concentrations, the anomalies
at T., are similar for all the crystals. It is known that the Tor=32K
width of the hysteresis loop at a first-order SPT depends on
the particular nucleation processes for each sample. -1+

Indeed, the value of the hysteresis is influenced by the
complex domain structure in the vicinity of the temperature
of the first-order SPT in the undoped samples, which is due Teo=28K
to the significant lattice strains and also to the presence of
twins in the low-temperature phaS@he features of the tem-
perature dependence of the sound velocity measured in the
(cc) geometry in the vicinity ofT,;,» and of T.;» are deter-
mined by the proximity to the fields of lability of the first-
order phase transition &t.,. Our experiments showed that
for the other geometries the hysteresis loops are closed be-
low T4~ for all concentrations. Therefore we assume that the
sonic anomalies along the lin€k;;/(x) and T.i#(X) the
sonic anomalies are not accompanied by hysteresis, i.e.,
these are second-order phase transitions.

We note in conclusion that one of the shortcomings of
Ref. 3 was the actual absence of a transition in going from
the doped crystals to the undoped CsDy(MpO In Ref. 3
the structural transformation was determined only from the
vanishing of acoustic contact, which is probably due to the
significant jumps in the unit cell parameters of the crystals at
the first-order SP# In the present study, by suitably choos- -
ing the experimental geometry and decreasing the area of Lo b b b
acoustic contact we were able to record the shape of the 13180 13210 13240 13270
anomalies in the sound velocity in the vicinity of the phase Energy, cm ~1
transitions both for crystals with a low impurity concentra-
tion and for the undoped CsDy(Mq} (Fig. 2. Despite the FIG. 7. Absorption spectra _fqr differeent temperatures in
change in scale of the effect and the increase in the width oﬁ'ﬁfﬁ?ﬁﬁﬁémgzﬁg\"fgﬁ’dtzzlgans't'OneH15’2_ Fa. The inset shows
the hysteresis loop, it is clear that the anomalies all have the ks
same type of shape and that there are no additional features
on the low-temperature wing of the temperature dependence.

The ultrasonic measurements give information onlyCSDY(MoQ,), the spectrum typical of the low-temperature
about the macroscopic changes in the system. The changesRff@se changes with a jump near 42 K, and above that tem-
the absorption spectra at the phase transitions permit one Rgrature it takes on the form of two well-resolved bands with
assess the local distortions of the structure and carry add@n interval between them of 41 crh (Ref. 12, as in the

tional information about the nature of the phase transitionsdoped crystal near 2830 KFig. 7). We note that in the
and that was our motivation for studying them. crystal containing 7% G this temperature is close to the

value of T., determined from the ultrasonic measurements.

The spectrum of the doped crystal near 32 K has some
slight changes from that at 30 (kig. 7): there is a change in

Figure 7 shows the changes in the absorption spectra dhe relative values of the intensities of the components of the
the crystal CsDyq/Gdy oAM0Q,), in the temperature region spectrum for the two polarizations, while the energy interval
5-33 K in the energy interval 13200—13300¢h In that  between them remains unchanged. In the vicinity of 50 K
energy region the absorption of light in the free dysprosiunthere are no qualitative changes in the spectra which could
ion occurs on account of electronic transitions from the lev4indicate a phase transition.

30K

Intensity, arb. units

3.3. Absorption spectra  (experiment )

els of the ground terriH ;5/, to the excited multiplefF5),. Since the spectrum contains poorly resolved lines of dif-
As we see, the absorption spectrum is modified as the tenferent intensity, it was necessary to do a computer processing
perature is raised. of the spectrum. The spectrum was modeled by a set of lines,

At low temperatures the absorption spectrum of thethe number of which was decided on the basis of additional
doped crystal, like that of CsDy(Mafp,, consists of an in- considerations set forth below. Figure 9a shows the decom-
tense doublet with an interval 6f8 cm ! between compo- position of the spectrum at 25 K, and Fig. 9b shows the
nents and a weak satellite on the high-energy skgs. 7  temperature dependence of the components of the fine struc-
and 8. As is seen in the figures, the spectra differ in theture of the spectrum of the CsPy{Gd, oA M00O,), crystal.
position of the doublet—in the CsDy(Mo{®, crystal it is In the computer modeling it was assumed, first, that a
shifted by approximately 75 cit to lower energy. In the doublet structure of the lines is present for the main band and
impurity-containing crystal the band arising with decreasingthe band that is rising. The spectrum was described by a
temperature on the low-energy side is, like the main linesuperposition of lines having the characteristic shape for a
asymmetric and is apparently also a doulleig. 7). In  damped oscillator, with temperature-dependent parameters:
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FIG. 8. Absorption spectra for the crystals CgR¥d, A M00O,), (1) and T.K
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FIG. 9. Decomposition of the spectral profileTat 25 K, E||b (a); position
of the maxima of the lines for the transitidit ;5,—°F 3, in the crystal

) ) ) . ) CsDyy ofGth oA M00O,) , with changing temperatur@esults of a calculation
the intensity, half-width, and position of the maximum. The (b); the distribution of the intensity of the envelope of the spectrum has been

change in line shape has almost no effect on the position dfgarithmized.
the maxima of the spectral components in the temperature
region where the maxima of the lines were rather well re-
solved. lines on the low-frequency side and weak broad lines on the
Second, forT>28 K the high-frequency component of high-frequency side. Increasing the temperature, as can be
the spectrum has a half-width that does not exceed the haléeen in Fig. 10, mainly affects the low-frequency wing of the
width of an individual component of the doublet &  saturated line: two satellites with intervals of approximately
<28 K, and it is a single line. Therefore in the decomposi-50 and 20 cm* arise aff =20 K. Despite the complex char-
tion of the spectrum it was assumed that above that temperacter of the spectrum, one can conclude that the series of
ture either the doublet structure of the lines is absent or théhree intense lines corresponds to the transition from the
second component has a low intensity. ground level to an excited triplet, and these lines are single
Third, in the temperature region 208X a weak line  (Fig. 10. This last statement follows from the fact that the
appears between the main and the rising doublets, leading tme with half-width 15 cm* cannot be the envelope of two
asymmetry of the adjacent lingig. 7). Therefore, to de- bands split by 8cm! (at a spectral resolution of
scribe the spectrum formally we introduced one more com1.5—2 cm1). The spectra measured at low temperatures for
ponent into consideratiogline 3 in Fig. 939. In addition, the  the two polarization&| b andE||c are similar and are shifted
modeling took into account a high-energy spectral compoas a whole by 2 cm.
nent(line 6), which was observed at low temperatures. Fig-  On the temperature dependence of the position of the
ure 9b shows the temperature dependence of the maxima ofaxima of the linegFig. 9b one can see that the tempera-
the lines, based on the modeling results. ture 28 K is distinguished by kinks in the plots of the energy
To elucidate the nature of the low-temperature doubleposition of the individual lines. Some of the lines are not
we recorded the absorption spectrum corresponding to thebserved at all above that temperature.
transition to another excited level—the spectrum of the tran-  Thus it follows from the experimental results that the
sition ®H5,~°F s, (Fig. 10. At low temperatures one would absorption spectrum of the doped crystal in the temperature
expect three lines for this transition. However, besides theegion 5-32 K is qualitatively altered, and the jumplike
three intense lines, the spectrum at 6 K contains weak narroshanges, i.e., the vanishing of the doublets and the depolar-
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levels of the ground multiplet are not occupied. Let us dis-
cuss the energy levéband scheme of the ground and ex-

cited multiplets of the dysprosium ions inferred from an
analysis of the experimental spectra.

The doublet structure of the transition from the ground
state®H 5/, to the excited statéF 5, near helium tempera-
tures may be due to both the presence of the Davydov com-
ponents 0—0and 0—1 of the transitiongFig. 7) and to the
energy inequivalence of the rare-earth centers, and to the
splitting of the excited stat¥F5,. We determined that in the
series of transitions from the ground tefi s/, to the com-
ponents of the excited terfifF 5/, the lines are single, and the
Davydov (polarization splitting does not exceed 2 crh
This means that the doublet structure of the lines in the spec-
trum for the transitiorfH ;5,—°F 3/, at temperatures below 28
K is determined by the splitting of the excited st&fey,.

, , , Comparing the temperature evolution of the spectra for the
12350 12450 12550 transitions®H ;5,,—°F 3, and ®H5,~5F 5, (Figs. 7 and 1D
1 and taking into account the appearance of new lines as a
result of thermal population of the levels of the ground mul-
FIG. 10. Absorption spectrum in the CsRuGdy o{M0O,), crystal at dif-  tiplet, we conclude that the first excited level of the ground
1;erent teemperatureE [K]: 6 (:_L),_ 15 (22, 20 (3), 25 (4); El|b, the transition state of the ground multipleﬁi—ll5,2 of the dysprosium ions
Hasiz"Fsp;. The spectral it is 2 ont. lies at an energy near 20— 23 tf The level scheme recon-
structed from the spectra for tHél,5,—°F 3, transitions is

ization of the lines, occur at temperatures of 28 and 32 K:shown in Fig. 7. . -
We note the fact that the satellites arising for

which are close to the values of, and T, obtained in the 6 A

ultrasonic measurements on CsyGd o{M00,),. The sz Fsp (denoted by arrows in Fig. 0are observed
doublet structure of the spectrum is manifested for both thé’nIy for' one of the most .|ntense lines. Th,'s means that the
doped and “pure” crystals below the critical temperatiigg absor,ptlon processes going from the excited Ie\QB@ds

(28 and 42 K, respectivelyAboveT, the spectra of the two (1 =0" and 20 in our case; see the schemare, first,
crystals are practically indistinguishaBfeTherefore, it can related to the intensity of the main transition and, second, are

be assumed that the initial phase preceding the transitions StPStantially weaker than the 0~@nd 0-1 transitions,
T, and T, is the same in both crystals. Decreasing therespectively. This implies that the rise of the lines is due to

temperature from 28&t5 K leads to a smooth increase in the (WO-frequency processes occurring at the boundary point of
energy interval between the ground level afpparently the banql. Thus the smgle-lpn ap'prOX|mat|on, which was used
the second excited level by approximately 16 ¢nand also to descrlbe our spectrum, is valid only on the assumption -of
to the rise of a line on the high-energy siime 6 in Fig. small dispersion of the branches. The small Davydov split-

9a,h. Let us turn to a discussion of the results. ting is a measure of this dispersion.
On the other hand, the appearance of doublet structure of

_ _ _ the main lines for the transitiofiH5,~°F3, is due to a
3.4. Absorption spectra  (discussion ) phase transition and reflects the distortions of the crystalline

In the double molybdates the dysprosium ions occupyfield near the dysprosium ions. The position symmetry of the
positions without a center of inversion, and for that reasorfare-earth ions can change at the phase transition on account
the intraconfigurational transitions of a dipole nature are alof the doubling of the number of layers in the unit cell.
lowed. The unit cell of CsDy(Mog), at room temperature However, doubling of the layers occurs already at 50atd
contains two dysprosium ions, and therefore the number ohe 8 cmi * splitting of the lines in the spectrum takes place
Davydov components is 2. In the phase preceding the SPgnly below 28 K. From this we conclude that at the SPT with
the number of components is doubled because the volume éfitical temperatureT, distortions probably arise in the
the unit cell is doubled in comparison with the room- {(Dy—Gd)(MoQ,),}.. layer and, in our opinion, lead to the
temperature phase. The ogittive in the absorption spectra appearance of the doublet structure of the spectifeigs. 7
excitations are energetically distinct in the different polariza-and § in the low-temperature phase.
tions. In determining the possible number of lines in the  Let us discuss further the possible lattice distortions in
spectra one must also take into account the fact that thi#e undoped crystal, starting from a comparative analysis of
ground state of the terifH 5, of the rare-earth ion is split the low-temperature spectra of the cesium crystals and the
by the low-symmetry crystalline field. The number of com- KDy(MoO,), crystal, which can be regarded as a layered
ponents is determined by the value of its total angular mopolytype of them. Indeed, the unit cells of the initial phases
mentumJ=15/2 and is equal to 8. In the excited stadtfs,,  of both CsDy; ¢dGd,o{M00,), and KDy(MoQ,), contain
and®F, the multiplicities of the Stark splitting are equal to at least two{Dy(MoO,),};.. layers>*3 The structure of the
2 and 3. Hence one can determine the expected number &fyer and the oxygen polyhedron surrounding the dyspro-
lines in the spectra at low temperatures, when the excitedium ion are nearly the same in the two crystals. In the po-

1

Absorption, arb. units
\}g @ gji

Energy, cm~
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58 De_o_xx _ quency of 23—25 cmt, which according to the scheme in
RESAVIRITR Fig. 7 corresponds to the 0—1 transition and, hence, to the
541 \i(” % g1s position of the first excited level of the dysprosium idRdts
'TE 50 - ,\x % position in the low-temperature phase varies with decreasing
S v L 814 temperature in the same way as the position of the ground
“45’ 46— >$‘ T state, unlike the case of the high-frequency excitation.
T ~ T.K The inset in Fig. 11 shows the temperature dependence
42 *%x' of the frequency of the deformation vibrations of the
T (MoO,)?~ tetrahedra surrounding the BY ions (the fre-
‘- | | | X - quency region~810 cm 1).>%% It is seen that the tempera-
0 10 20 30 40 50 60 ture dependence of the energy interval between levels of the
T,K ground multiplet of the dysprosium ions is similar to the

temperature dependence of the frequency of the deformation
. 15 vibration of the (MoQ)?2~ anions. This correlation is appar-
spectra(X) and Raman scattering spectfd).”™ The inset shows the tem- . . .
perature dependence of the frequency of the (MeOdeformation €Nty due to the fact that the phase transition in the cesium
vibrations® The dashed and dot-and-dash curves are the approximations bgrystal is accompanied by a rotation of the tetrahedral anions
formulas(2) and (3). (MoO,)2~. The ordering of the distortions of the oxygen
polyhedra surrounding the dysprosium ions is accompanied

. ) } . : by an energy benefit in the electronic subsystem of the rare-
tassium molybdate the dysprosium ions are shifted Sl'ght%arth ions, i.e., by ordering of the cooperative JT type.

along the smallest cell parameter, forming a zigzag chain Thus one can conclude that as a result of the “freezing

a_Iong theé|r|1terr§§_ol_|ate Ee" [l\)/lararr;e_ter, mhc%ntra_lst LO the C& of the vibrations, including rotations of the tetrahedral
slum case. In addition, the (don) tetr|e|1 € rla |Int € PO anions and displacement of the rare-earth ions alongcthe
tﬁssmlm strufcture are rotathg h ya Smﬁ Ian% E?Satlve 0 axis (the dysprosium ions have an analogous position in the
the plane o symmeFry, which is parallel ta ) et us . potassium structuje the structure of the low-temperature
compare the absorption spectra of the potassium and cesmgl)]ase of CsDyelGth o{M0O,), is distorted. As a result of
cryslta!s II? thenllawi;temperhatulr<erhl\a/1|ses. for th the phase transition the local symmetry of the JT centers is
tis Gnow Gt atin the KDy(MoQ), spectra for the  jiared and an additional, temperature-dependent splitting
transition "H s;,—"F 5, at low temperatures the interval be- o jqeq perween the fine-structure components of the spectrum

tween components of the intense doublet corresponding tg; 1 Dy?* ion; this splitting is discussed below.

the _transition from the grogrfd_state to the component_s of the The changes of the spectra with temperature can be de-

exc!ted StatéF g, is ~.8 ¢ 7, i.e., the same value as in the scribed qualitatively in the framework of a model for a two-

cesium crystals studied. level spin systedf (the Hamiltonian of which is analogous
%o the Hamiltonian of interacting effective spins 1/2 in a

We assume that the distortion of the structure of th
CsDy 945th 0AM0Oy) crystal during the phase transforma- [ransverse magnetic figldin the mean field approximation
his Hamiltonian has the form

FIG. 11. Temperature dependent&(T) determined from the absorption

tion leads to the same distortions of the local environment o
the dysprosium ions as for the KDy(M@p) structure, this
coincidence being not only qualitative but quantitative as
well (we are referring to the agreement of the value of the
energy interval between components of the doublet,
8 cm 1). Taking into consideration the results of Refs. 5 and 1)
15, let us discuss the changes in the spectrum with tempera-

ture due to the smooth changes in the position of the "neﬁere M, describes the behavior of the pseudospin compo-

with increasing temperature. _Qent<SZ> arising as a result of the change in symmetry, i.e.,

The temperature dependence of the energy interval O : . : . )
. ) : A as a result of the interaction with the elastic subsystmis
in the region 650 K, reconstructed using the data in Fig. 9b ; . . ) .
. - ) o . associated with the behavior of the interval 0-2 in the mo-
is shown in Fig. 11. It is seen that with increasing tempera-

. - lecular field . + u), where is a constant characterizing the
ture the value of the energy intervablitting) decreases, and . . : . .
X . interaction of the electronic subsystem with the elastic defor-
a kink appears on the temperature dependence at 28 K, i.e

Hati — Z\ 2 i i _
nearT.,. The squares in Fig. 11 show the position of therﬁatlons, andu=K(S’)” characterizes the nonlinear cou

low-frequency Raman-active excitationwith energy pling between the elastic and electronic subsystéfisde-

1 : . . . termines the interaction of the&* components of the
58-42 cm *) that rises in the Raman scattering spectrum in S . . . . S
pseudospin with the lattice, which gives rise to the initial

the low-temperature phadeThis excitation is even with re- ” . )

) . splitting A in the spectrum and its temperature dependence
spect to inversion and apparently corresponds to the transi-. :
tion 0—2 between the ground and second excited levels of th\é"thom a change in symmeFry. .

The temperature behavior of the energy splitt/WgT)

ground multiplet(see the scheme in Fig).7The close values corresponding to the behavior of the interval 0-2 in

of the energy interval determined by the two methddsm . . X z
the absorption and Raman-scattering spedtmdicate that CSDM)-%Gdom(MOO“)Z is associated to the behavior (§°)
- according to the formufd

the Davydov splitting of the even and odd components is
small. We note that in the Raman scattering spectra in the
low-temperature phase one observes an excitation with a fre-  W(T) = (a2 + (W(0)? - (A%)(s*)H) /2. 2

H=tH +Hy=- O +p(SHZ,S* () - A28, 5% (n).
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The normalized value ofS?) varies from 0 neaff, to 1 at  satellite6 is due to the simultaneous excitation of the transi-
zero temperature, and/(T), W(0), andA are the splitting tions 0—0 at one rare-earth center and the 0—1 transitions at
between the ground and excited levelsTat T, , T, at  the second of a pair of interacting rare-earth centérss

zero temperature, and a&T.,, respectively. Formuld2) analogous to the appearance of pair processes in crystals
takes into account the interaction of the pseudospin modeith exchange-coupled pairs of magnetic ipns

(S?) with deformations of theAy and By types. The latter We note that pair excitations can additionally be allowed
alter the symmetry of the lattice and, accordingly, the localin the dipole approximation at energetically inequivalent JT
symmetry of the JT center. We note that in the case when theenters coupled by an elastic interactithe analog of the

cell contains several inequivalent JT centers, the interactioexchange interaction Such centers can exist for two rea-

of the deformationAy with the pseudospin mode can also sons. First, because of the nonisomorphicity of the substitu-
lead to a change i§S?), on account of the rotation of the tion of gadolinium ions by dysprosium in the initial lattice.
axes of theg-factor tensors of the individual JT centers. Tak- Second, because of the appearance of energetically inequiva-
ing into account the temperature dependence of the intervdént centers arising on account of the doubling of the unit cell
A aboveT.,~28 K, we approximate the temperature depen-volume at the phase transition and on account of the lower-

dence of the splitting in the low-temperature region as ing of the symmetry of the low-temperature phase in com-
parison with the system of the initial phase. Let us discuss
W, (T)= (A + (W (0)— A;)tanhWy (T)/2KT, 3) the second of these possibilities.

We assume that the number of dysprosium ibnsccu-

o ] _pying a general position in the unit cell is twice as large as
which is governed by the influence of the thermal contractionne ordern of the factor group. This is possible if, e.g.,
of the lattice on t_he position of the I_evels, i.e., the inter_aCtiO”multiplication of the unit cell volume occurs at a phase tran-
of the pseudospin componer(s’) with the Ay deformation  sjtion to a phase with a low lattice symmetry, viz., when the
without allowance for the change in this interaction near thespT from the orthorhombic phase with=4 occurs to a
critical temperature. Hera,, Wy(T), and Wy(0) are the  monoclinic phase withiz=8. Then, besides the Davydov
values of the interval 0-2 at temperatur® Tcic2, a  components, which arise on account of the interaction be-
lower temperatures, an_d at zero temperature, respectively.qween energetically equivalent rare-earth idtiey are re-

The solid curve in F|g.. 11 corresponds to t.he temperaturgyieq by symmetry elements of the factor grptipere arise
dependence of the gxpenmenf[ally measureq interval betweeygitional Davydov components due to ions not related by
the ground an_d excited level in th_e_absorptlon spectrum angny symmetry elements with the first group of ions. It fol-
can be described by a superposition (@f and (3) for 1 |ows from our results that if inequivalent centers exist, then
=0. It can be seen that there is agreement lear-28 K. the energy difference between them is small and does not
At temperatures in the vicinity of 20 K the deviation exceedsayceed 1—2 cm for the 0—0 transition.
the experimental error and is due to both the insufficiently  Thus the following conclusions can be reached on the
correct application of the two-level model for the descriptionyasis of an analysis of the absorption spectra. We attribute
of the temperature behavior W(T) and to the necessity of pe changes observed in the spectra  of
taking into account the interaction of the electronic statecsDy, oGy oA M0O,), in the interval 28—10 K we attribute
with the compressivéexpansive deformations, i.e., defor- o the cooperative JT effect, the temperature of which corre-
mations of theA, type, which change near the phase transi-spongs tar, . It is assumed that analogous changes occur in
tion (their change reflects the behavior of the longitudinalipe spectra of all the doped crystals, and they are due to
moduli, Figs. 1 and B It is possible that the anomalous phase transitions occurring ned,, i.e., along the corre-
increase below 28 K of the longitudinal velocity measured iNsponding lines of phase transitions on #eT diagram(Fig.
the (cc) geometry(Fig. 2) reflects this interaction. Further- g) At the temperaturd@,,, only a redistribution of the inten-

more, the phase transition at the temperatdigsis a first-  sities of the lines in the electronic spectra is noticed.
order, close to second-order, SPT, and jumps can be observed

in the spectra.
The analysis dgne fqu=0 formally describes a seppnd— 4. CONCLUSIONS
order phase transition. The first-order phase transition ob-
served in the ultrasonic studies can be described in an analo- We have constructed the phase diagram of the system of
gous way, as was done in Ref. 18. For this it is sufficient tocrystals CsDy_,Gd,(MoQ,), for x=0, 0.03, 0.04, 0.05,
take into account the nonlinear coupling between the elecd.07, 0.1, and 0.25, based on experimental data obtained by
tronic and elastic subsystems. Taking such a coupling intéwo independent methods. The first-order phase transition to
account is equivalent to taking into account the interaction othe low-temperature phase in CsDy(MgQ® is modified in
the electronic subsystem with low-energy optical phonons. the doped crystals and is observed as a cascade of phase
Let us discuss one more component of the spectrum—transitions lying close together. For crystals containing a ga-
the line6 (Fig. 9b). As is seen in Fig. 7, the intensity of this dolinium impurity with a concentratiorn>0.03, two lines of
line (indicated by an arroyincreases with decreasing tem- second-order phase transitions and one line of first-order
perature. The intervals between the high-frequency compdransitions are observed; the anomalies of the longitudinal
nent5 and this line6 and between line8 and5 (Fig. 9b are  and transverse sound velocities along these lines are different
the same,~23 cm 1. This interval corresponds approxi- but they are similar in all the crystals. Such a phase diagram
mately to the position of the first excited level of the groundcan arise in the case of a multicomponent order parameter. In
state®H 5/, (see Fig. 7. In our opinion, the appearance of the a crystal without impurities the multicomponent nature of the
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order parameter leads to a first-order phase transition becau&®mail: zvyagina@ilt.kharkov.ua
of the nonlinear interaction of the components.
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The equations of small oscillations of a dislocation lattice formed by a periodic system of
parallel rectilinear screw dislocations are formulated. The stability of such a lattice is discussed,
and it is shown that it brings about a corresponding spontaneous twisting of a crystalline
sample. The long-wavelength collective oscillations of an isotropic elastic medium containing a
dislocation lattice are described, among which are some which resemble plasma oscillations

in a system of electric charges. The dispersion relations are obtained for five branches of
oscillations, corresponding to the five degrees of freedom of the system unden(thiugty

degrees of freedom for displacements of the medium and two corresponding to bending oscillations
of the dislocations The possibility of observing the resonance frequency in the oscillation
spectrum near the analog of the plasma frequency is pointed o®0@ American Institute of
Physics. [DOI: 10.1063/1.1645186

1. INTRODUCTION and the equations of motion of the dislocations comprise a
complete system, permitting description of small oscillations

The physical properties of optical and acoustic superlat-mc the dislocation lattice.

tices have lately been attracting a heightened interest. By a _ . .
y g g y We study long-wavelength oscillations of the dislocation

superlattice we mean a macroscopic periodic structure cre-

ated on the basis of an elastic or dielectric medium. A solattice, for which the wavelength of the oscillations is much

called 2D superlattice of this kind can be formed, e.g., by Jreater than the lattice period. We obtain two independent
set of rectilinear defects aligned into a periodic “forest” of branches of oscillations. One branch comprises coupled os-
parallel lines. The vortex lattices in type-Il superconductorscillations of the density of the dislocation lattice
and in superfluid helium are realizations of superlattices ofcompression—expansion wayemnd transverse oscillations
this sort(see, e.g., the reviewd and a recent papeon the  of the elastic mediungwaves of rotation about a direction of
subjec}. the dislocation axgs Corresponding to two degrees of free-
Although screw dislocations in a crystal are analogous tQjom, this branch is characterized by two dispersion relations.
vortices, the dynamics and interaction of dislocations differgna of them pertains to the in-phase motion of the lattice and

from those for vortices. Rectilinear screw dislocations inter- . - 4iim and thus in the low-frequency limit has the form

act like rectilinear electric charges, and one expects that os- C : oo .
- : . L . —of an acoustic dispersion relation; the second pertains to an-
cillations of the plasma type, which are impossible in prin-

ciple in a vortex lattice, will appear in the dynamics of thet|phase motion of the lattice and the elastic medium, and

dislocation structures. Indeed, long-wavelength oscillationdherefore in the long-wavelength limit it has a gap, the fre-
of a 2D dislocation structure called a dislocation wall has gluéncy of which involves the plasma frequency of the dislo-
dispersion relation typical for the plasma oscillations of a 2Dcation lattice.
electron gaé® Unfortunately, the plasma oscillations in a  The other branch comprises coupled transverse oscilla-
system of rectilinear dislocations were omitted from Ref. 6.tions of the dislocation lattice and oscillations of the elastic
The term dislocation lattice will be understood to mean amedium which have a component of the displacement veloc-
system of parallel screw dislocations of the same sign, interity along the dislocation axes. The indicated motions have
secting the plane perpendicular to them at the sites of a 2hree collective degrees of freedom: transverse oscillations of
Iatt?ce. The question natl_JraIIy_ arises_: What stabilizes such ghe dislocation lattice in the plane perpendicular to the dis-
lattice of mutually repulsive dislocations? location axegthe displacement of the dislocation lines oc-

I seems (o us that the key point in the form_ulatu_)n Ofthe e s in that plang and two degrees of freedom correspond-
dynamical equations of the system of dislocations is to take

into account correctly the dislocation flux density directly in ng to expansmn—c_ompressmn wayes of Fhe elastic medium
the equations of the elastic fie(th the presence of moving fand waves of rotations in .the elas.tlc medium about. axes ly-
dislocations.” The proposed system of equations is remi-'n_g in 'that plane. Accord!ngly, th!s branch of osc:|llat|on.s

niscent of the equations of the electromagnetic field in theliVes rise to three dispersion relations: two of them describe
presence of moving Charges but is somewhat more Comp”n'phase waves of oscillations of the dislocation lattice and
cated. The equations of motion of the “charges,” i.e., the€lastic medium, and one describes antiphase oscillations.

screw dislocations, are taken in the simplest form—an elastic A description of the analogous results obtained in the
string model. The dynamical equations of the elastic fieldsimple, so-called scalar model has been published in Ref. 8.

1063-777X/2004/30(3)/6/$26.00 247 © 2004 American Institute of Physics
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2. STABILITY OF THE DISLOCATION LATTICE vectorbS'Sy) of all those dislocations:
A screw dislocation parallel to the axis creates a one- oo = S o _bG
; - : =0z r.
component, purely shear displacement field: the displace- So 25y (4)
ment vectou= (0,0w) has only one nonzero componemnt
which depends on the coordinatey. If an isolated screw These stresses, first, create a force acting on a disloca-

dislocation coincides with theaxis, then it creates an elastic tion lying a distance from the axis of the cylinder:
field in which the value ofv acquires a fixed increment upon

is: b%G
passage around the axis: fr = b6 = = (5)
0
b
w= 2—¢, d):arctar%, (1) Second, although the dislocation fie{d) satisfies the
aw

boundary conditionsr,,=o,,=0,,=0 on the free lateral
surface of the sample, it creates the following moment of

her is the Burger r of the disl ion, which i .
whereb is the Burgers vector of the dislocation, whic 'Storque on the end of the cylinder:

directed along the axis:b=(0,0p). The displacement field
(1) is related to the stress R , <Gb 4
0 _bG 1 M, :Jrcz¢d5:2njcz¢r dr:ER . 6)
" on y ) 0
Thus we see that the dislocation lattice creates stresses
whereo, is thez¢ element of the stress tensor in cylindri- that generate nonzero torqiw, on the ends of the cylinder.
cal coordinates. If the ends of the cylinder are free, then the stress fidjd
We assume that the system of parallel screw dislocationgges not satisfy the boundary conditions on the deten if
oriented along the axis and intersecting thex(y) plane at  the |atter are infinitely remo}eConsequently, the true solu-
discrete, periodically arranged points form a 2D lattice, thejon of the equations of equilibrium of the cylinder must
unit cell of which has are&,: S=N&), whereS is the  include the additional stresses that compensate the torque
cross-sectional area of the sample in thgy] plane, andN 1, je., that produce an average torgde on the ends of
is the total number of dislocations. The coordinates of thesghe cylinder® These stressdand the corresponding displace-
points in the equilibrium lattice are ments are easily obtained from the theory of the torsion of
rods. It is known that in the torsion of a rod under the influ-
x(n) =R, = Zaana’ n = (ny, 1,0, ®)  ence of a torquév, a displacement vectar,, arises which
* makes the angle of torsion uniform over the length of the

wherea, (a=1,2) are the basic translational vectors of therOd:

lattice (a,~a, wherea is the distance between neighboring 48 _ ¢ “_fb} _ 16“_¢’ _ ﬂi’
dislocations. dz oz r r 0z C 7
In organizing such a lattice of screw dislocations it ) _ _ _
should be kept in mind that screw dislocations of the sama'hereC=(1/2)mGR" is the torsional stiffness of the cylin-
sign repel one another as like char§eBherefore, such a drical rod. _ _ . .
lattice cannot be found in equilibrium without compensation _ 1aKing (6) and(7) into account, we easily write the dis-
of the repulsion of the dislocations. The vortex lattice in atrlputlon of the additional displacements and stresses in the
superconductor is stabilized by the magnetic flux through th&Ylinder:
conductor. The vortex lattice in superfluid helium is stabi- . - _bﬁ, G. = — b_G,.
lized by torque exerted by the vessel containing the helium. 25y $T 28, ()
An analogous “external field” exists even in the case of a
lattice of vortex dislocations in a sample free from external  The stresses described by the second relatigB)ican
influences. be looked upon as a certain external field in relation to the
Consider a crystalline sample in the form of a cylinder ofdislocation lattice. Comparing8) and (5), we see that the
large radiusR (in the limit R—). A large number of screw interaction force of a given dislocation with the remaining,
dislocations parallel to the axis of the cylinder form a 2D continuously distributed dislocations is exactly compensated
lattice with a unit cell are&, in the (x,y) plane. As we are by these “external stresses.” This means that the expected
primarily interested in the macroscofgveragegiproperties  repulsion of the discrete dislocations calculated according to
of the lattice, we assume that the dislocations are distributetbrmula(5) with the use of2) is eliminated on average when
continuously with a density $). Recall that a dislocation the boundary conditions and symmetry of the problem with a
lying along the axis of the cylinder creates a stress figJd continuous distribution of dislocations are taken into ac-
around the axis. But because the stress field of the screwount. In other words, the equilibrium state of the dislocation
dislocations is similar to the electric field of linear charges orlattice is stabilized by the twisting of the sample.
currents, the stresses at a distamcéom the axis of the Since the average stresses created by the whole lattice
cylinder are created by all the dislocations intersecting arare compensated, it is necessary to eliminate the average
areaS= 7r2 around the axis of the cylinder and are equal todislocation stresses from the force of interaction of each dis-
the stresses around one dislocation lying along the axis of thiecation with the remaining dislocations in the lattice. Con-
cylinder (x=y=0) and carrying the total “charge(Burgers  sequently, in the proposed scheme the lattice of screw dislo-
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cations of the same sign is treated as if in the presence of lae directed always parallel to ttzeaxis (it is convenient to
background of continuously distributed dislocations of thesetr,=—1). Thenj,=0, and

opposite sign.
PP g Ja =beapVpd(x —x¢), a=12,

(15)
3. DYNAMICAL EQUATIONS OF THE ELASTIC FIELD WITH
SCREW DISLOCATIONS where the matrix ,z is equal to
The elastic field of the dislocations is determined, natu- 0 1
rally, by their spatial distributiofithe dislocation density ten- €ap=| 4 o] ©7 1, 2. 16
sor aj(x,t), i,k=1,2,3) and their fluxeg&he Burgers-vector
flux density tensd¥’ j(x,t)). In the general case the indi-
cated densities are related by the analog of the continuit)".hen Eq.(13) takes the form
equation: '
ou; ov ou; dv
o ; . i=——z+ '.) 1:1)273; __E_z_g_’ _1’2
] + eilmv ,‘]mk =0, (9) ot 6x,~ Ji ot 6xi
(17)

whereg;,, is an antisymmetric unit tensor of the third rank,
andV,= g/ dx; . In the case of an individual dislocation inter-
secting the plane=const at a poinky=(Xq,Yo) these den-
sities are equal to

o = 108X - Xo),  x=(x,), (10) Jo = bsaBZVB(n)S(x -R(n)).
n

The dislocation flux density in the lattice is the sum of
the quantitieg15) over all the lattice:

(18)
whereris a unit vector tangential to the dislocation lifeis

the Burgers vector of the dislocation, and In the problem of small oscillations of a lattice of screw
dislocations relatior{18) contains sufficient information for
calculating the contribution of the moving dislocations to the
time dependence of the elastic field. Indeed, the velocity of

whereV is the velocity vector of an element of the disloca- displ t of | t of the elasti difot). i
tion (in the case of rectilinear dislocations directed along the isplacement of an element of the elastic mediu(w.t), is

7 axis, this vector has only two component;= 1,2) the solution of the following equation, which is reconciled
If ’the dislocations are distributed in a crysta{l then it isWith the basic equation of the dynamic theory of elasticity

impossible to introduce a displacement veatoof the me- and with Eq.(13):*’

dium as a single-valued function of the coordinates, and the 52, o

deformation of the medium is described by a distortion ten-  P——~ = *itimV £V1¥m =X ikimV ki, 1 =12,3,

sor u;, (i=1,2,3)*" The distortion tensor is the primary

independent characteristic of the deformation of the medium (19

(its symmetric part defines the strain tensand appears in

the basic equation of the theory of elasticity of a crystalwherep is the density(mass per unit volumeof the sub-

containing dislocations: stance, and , is the elastic-constant tensor of the crystal.

However, Eq.(19) does not in any measure take into

account the discreteness of the medium and the presence of
the so-called Peierls relief. The latter is due to the obvious

X physical circumstance that even small displacements of a

density is a key point in the construction of the dynamicdlslocatlon relative to the crystal lattice requires the perfor-

elastic field, since it determines one of the basic equations gpance Of_ a Qef|n|te_ amount of.work, an gddltlo'nal forge
the theory of moving dislocatiorfs* arises which is applied at the point of the dislocation and is

proportional to the value of the relative displacement be-
Ouip _ 0k j G k=123 tween the medium and dislocation. For us it is more conve-
ot ox; 7 " (13 hient to introduce this force later in the discussion of the

. . . equation of motion of the dislocation. We now note that for a
In the present case of screw dislocations lying along thEfattice of screw dislocations in an isotropic medium, Edf)
z axis, the Burgers vector has only one nonzero compone implifies: '
b,=b, and therefore the indaxin Eqgs.(10) and(11) enters
as a parameter, and it is convenient to introduce the vector 5201.
notation for the flux density of the Burgers vector: o

Jik = €imT1Vmbrd(X ~ X ), (11

eimV mp == k- (12

If the dislocations move, then E¢L2) remains in force,
but a vectolj appears. The introduction of a dislocation flu

- ¢ Av; —(clz — 2V divy

Ji =i (14 =6 (V2fi + Vaiodis)y i=1,23, (20

In addition, we take into consideration that in the problem of

the oscillations of a dislocation lattice the velocity of the wherec, andc, are the velocities of transverse and longitu-
dislocation is a small quantity, and in the approximation lin-dinal sound, respectively. It is convenient to rewrite E2f)
ear inV the vectorr in the definition(11) can be assumed to in components:
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2 ) 5 . b The forcef describes the elastic interaction of a given
P iAo - (e = ¢V divy =¢;V g fq, dislocation with the remaining continuously distributed dis-
(21) locations; it is given by

fon = bgaﬁcﬁ = ngaB (uBZ + uzﬁ), (26)
2
‘3_2 _ cfA] Oy — (612 - Ct2 W, divv = Cfvzja, a=12 whereog, Ug,, andu,z are the stresses and distortions after
ot subtraction of the elastic fields of the uniformly and continu-

(22) ously distributed dislocations linked with the elastic medium.

Since the Green tensor for the dynamical equation of the  Finally, S is the force due to the discreteness of the lat-

theory of elasticity of an isotropic medium is known in ex- tice, including dissipative forces. As we are interested in the

plicit form, Egs.(20)—(22) allow us to express the velocity dispersion relation for small oscillations, we neglect the lat-
of displacement of the elements of the medium directly inter and take the forc8 in the form

terms of the spatial derivatives of the dislocation flux density. 5
S = -moyU, (27)
4. DYNAMICS OF THE DISLOCATION LATTICE . o . .
Thus, if the distribution of dislocation fluxes is known, where @o 1S the oscillation frequenc;y of the dislocation
then we have equations describing the dynamic elastic fieldsstrUCture in a valley of the Peierls relief.
However, it should be kept in mind thikis, of course,

in the sample. In order to close this system it is necessary tﬁ]e displacement of the dislocation with respect to the me-

write equations determining the velocities of the disloca- . . .

. ; . - ) . . dium, i.e., that part of the displacement of an element of the

tions, i.e., equations of motion of dislocations under the in- . r . .
e . medium which is responsible for the plastic deformafidn.

fluence of the elastic fields. The simplest form of such an . . .

S X L . . an be written a&J=u,—u, whereu, is the geometric dis-
equation is the equation of vibrations of an elastic string. Le lacement of the medgium at the gint where the element of
U(n,z,t) be the displacement vector of an element ofritte P P

dislocationU(U,,U,,0), the time dependence of which de- the dislocation line is located, a_mdls t_h(_e eIa;nc displace- .
. : . : - ment of an element of the medium, giving rise to an elastic

termines the velocity of the dislocatio ,=dU,/dt, « distortionu: = V.u

=1,2. Then the aforementioned equation has the fomm i itk

| ) . . Force(27) derives from the additional energy arising on
omit the index specifying the number of the dislocatfon account of the aforementioned work of displacement of the

82U, 8%U dislocation relative to the medium, which is conveniently

Py =N 522 +fa + So (23)  written in the form

Herem is the effective mass per unit length of the disloca- &E = %mngsz U%(x,2). 28)
n

tion. The main part of the effective mass in the so-called
logarithmic approximation is the field maghke inertial mass

U ) . It is clear that the energy28) also gives rise to a force
of the elastic field created by the dislocation 9428) 9

densityfiD= — dE/du; acting on volume elements of the me-

ob? (R dium at the places where the dislocations that have been

my = Eln(—} (249 displaced from their equilibrium positions are located. It is
given by

whereR,, is either the radius of curvature of the dislocation 5 X

line or the wavelength of the bending vibrations, amdis 7 =mwj ZU(":2)5(X - Rn)). 29

the interatomic distance. However, the true mass of a unit n ) ] ]

length of the dislocation exceeds that value, since the relne force density29) should be included in the main equa-

structuring in the core of a moving dislocation entails thetion of motion of the elastic medium, and its time derivative

motion of a portion of the atoms in the vicinity of the axis of &P

the dislocation at distances of the orderrgffrom it. The L= mw%ZVi(n,z)S(x -R(m)

order of magnitude of the mass of the atoms inside a tube of t n

radiusro~b per unit length of the dislocation can be esti- sqy)q be addedafter being divided by) to the right-hand

mated aspry~pb“. Comparing this estimate witt24) and 4o of Eq.(20).

remembering that this mass must be adde®#), one will

understand that the effective mass per unit length of a dislogq the equations of the elastic field, either in the f¢26)

cationm=>m, . or in the form(21), (22), supplemented by the force density

Further, 7 is the linear tension of the screw dislocation, (>g) gne can study the collective oscillations of the disloca-
created by the elastic interaction of a given element of the;,, |attice and elastic medium.

dislocation with the other parts of the same dislocation:

o

(30

Having the equations of motion of the dislocatid28)

2p2
n= pcib In (Rcul'l) 25) 5. LONG-WAVELENGTH COLLECTIVE OSCILLATIONS

4in "
0 Let us investigate the long-wavelength oscillations of the

The corresponding force determines the self-effect of thelislocation lattice, assuming that the wavelength of the os-
curved dislocation; it is due to the self-energy of an indi-cillations is much greater than the lattice periad(ak
vidual dislocation loop. <1). In this approximation the distribution of the disloca-
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tions can be assumed continuous, characterized by its density For collective oscillations of the type exR{x—iwt),
n(x,t). In equilibriumn=ng,, whereny=1/Sy=const. The Egs.(37) and(38) determine a branch of oscillations with an
lattice dynamics is determined mainly by the average disloanisotropic dispersion relation, which we shall write in the
cation flux densityj, which in the linear approximation has implicit form

the nonzero components

(02— c?k?) (0%~ w?

51— 52K2) = w3 (Crk,)2. (39)

]‘(1 (X, t) = bﬂoSaBVﬁ(X, t), a =12, (31)
The quadratic equatioi39) has two roots, which give a

whereV is the average velocity of the dislocations. The ve-SImple dependence of the frequency on the wave vector in
the long-wavelength limit¢k<wp,).

locity V must be determined by the equation of motion of the ) ) - 0 )

dislocation(23). As we are interested in effects of a purely ~ 1+ An anisotropic dispersion _relatlgn of the low-

field origin, we neglect the effect of the Peierls relief, i.e., wefequency oscillations of the acoustic type:

setwy=0. We rewrite the equation of motig23) using(26) ol = sin? G(Ctk)2 _ Ct2 (k?c k2, (40)

and(27):

2 where# is the angle between the wave vector andzfeis
Vo _ §2 oUq Egaﬁ(uﬁz +uyp), 32 (k,=k cos#). If the dispersion relation is continued into the

ot oz* m (32 region of large wave vectors, then one can see that with
. . . . 2
wheres is the velocity of the dislocation bending wave? ( lncreasmg k this relation approaches the curve of

= »/m). Recalling the remarks made in regard to the effec-—S k

tive mass per unit length of the dislocation, we assisne 2. An anisotropic dispersion relation with a gépgh-
<c. frequency oscillations
We differentiate Eq(32) with respect to time and use 9 2 2nar 2 2Ne2 2 2 28,2
. = = k .
Eqg. (13) and also expressiof81). After elementary calcula- @ =@y * 08 0(ci + sk Op * (ci + s7k;
tions we obtain (41)
o%v, 2y 2 aZVa bG dv, ovp Let us again trace the dispersion curve of the branch in the
o2 POV 7S 572 Eap oxp AP region of Iarge wave vectors. With increasigthis curve

approachesw? =Ci 2Kk2. It is seen that both dispersion rela-
(33 tions are indeed highly anisotropic.

Thus one branch of collective oscillations corresponds to

where we have introduced the notation coupled oscillations of the transverse components of the
D elastic field (curl), and the longitudinal expansion—

21 :bﬂo_, (34) compression oscillations of the dislocation lattide) ( Of
P m course, the plasma frequency is incorporated in the charac-
teristic of those oscillations. In a wave propagating in the
(x,y) plane, the fields cus(x,y,t) and P(x,y,t) become
independent and oscillate with the dispersion relations

The frequencyw, is the analog of the plasma frequency.
We reconcile the notation i633) with Egs. (21) and
(22), for which purpose we introduce the average two-

dimensional flux density of dislocation lines w?=c?(k2+ ki), 0=wp.
J=bneV. (35 The transverse oscillations of the lattice are related to the
oscillations of the vector variabl®=curlJ and with the
Then in place 0f33) we write longitudinal oscillations of the elastic field (dW and that
) 9 part of the transverse oscillations of the elastic field which is
0" Ja + 0%y - §2 0Ja _ w2lgaB025, included in the coordinate dependence of the velocity com-
ot o 0z* P (36) ponentv,, i.e., in the components (cw),, «=1,2. This
branch of oscillations is described by E®1) and by the
where we have used the notation following obvious pair of equations:
vik=Vivk+Vkvi, i,k=1,2,3. 82 }
— = 2A ldivy =2¢2V, divj = 2ctV R,,
It is easy to see that the equations relating the functions [515 (42)
P=divJ=V,J, and (curl), separate out from the rest of ) 5
the dynamical equations and form an autonomous pair: {6_2 + ‘”?)1 Y E_JRZ - _mil [V,divy
22 ) ) 22 ot 0z
— oy, st — P = m V. (eurlv),, 3 ) ,
o oz 37) ; [5_ - @_}jz], (43
oxl  82°

2

2
[6— ~c? )(cml v), =ctV, (eurl ), = - ¢2V, P.
ot~

The solution of equation®1), (42), and(43) in the form
of harmonic plane waves leads in an obvious way to the
(38)  following dispersion relation, which is of third order with
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respect tow?: X(m/a), p=1,2,3,... can be described only on the basis of
s 2.9 2 2.2v 0 ) 5.9 5y o the dynamical equations of the discrete dislocation lattice.
(07 =ik )N 0"~ cih™) o —ap) ~ k) =06 But this is the subject of a separate study.

R T T 9. 9 2.9 On the basis of the long-wavelength treatment it is im-
x [(0° = ek )y + ky = k) + 2k3 (0 k7)) possible to say whether there is a band of forbidden frequen-
2 202 2yv¢p2 . p2 12 cies between the upper and lower branckesggap in the

pi ek (e = e (ki by = k). 44 spectrum. However, it can be stated that in the frequency
Although this is a rather awkward equation, its roots arespectrum there iS a ||m|t|ng frequen%l marking the |0wer
easily analyzed in the long-wavelength limit, when one canedge of the upper branch of oscillations, which clearly can be
drop terms higher than quadratic in the expansion of thenanifested in the resonance acoustic properties of a crystal
frequency in powers df. The high-frequency branch begins containing a dislocation lattice. An important distinguishing
with the expansion feature of this frequency is the dependence of its position on
the density of dislocations in the latti¢en the value of the
lattice period. The experimental observation of this property

and with increasingk it approaches a dependenee?  Of the limiting resonance frequency would be direct confir-
=c2k?. It is characteristic that the curve of E(5) lies mation of the presence of plasmonlike collective oscillations

above the curve of Eq41); this means that the indicated in the dislocation lattice. _ _ .
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The creep of3-Sn single crystals oriented for slip in thi&00(010 system is investigated in the
temperature range 0.45-4.2 K. A transient creep, decaying in time by a logarithmic law, is
registered both above and below 1 K. The temperature dependence of the coefficient of logarithmic
creep is studied in detail, and the existence of two qualitatively different regions of its

behavior is established: in the interval 4.2—1.2 K the coefficient increases linearly with decreasing
temperature, while belo 1 K the creep acquires an athermal character and the coefficient
remains constant. It is shown that the regularities observed in the experiment are in accord with
the idea that the kinetics of creep in py8eSn is governed by the motion of dislocations

in the Peierls potential relief by a mechanism of nucleation of kink pairs on the dislocation lines.
This process entails the overcoming of a small effective potential barrier of the order of

0.001 eV: in the temperature regidn<1 K the nucleation of kink pairs occurs by a quantum
tunneling effect, and the creep is of a purely quantum character; at higher temperatures

the leading role is played by thermal fluctuations, and the deformation kinetics corresponds to
the classical ideas of thermally activated creep. Empirical estimates are obtained for the

density of mobile dislocations and the work hardening coefficient2@4 American Institute of
Physics. [DOI: 10.1063/1.1645187

INTRODUCTION rare: the existence of creep at temperaturesvbdli has as
yet been established only in two studies, which were done on

For many years in the physics of plasticity and strengthsingle crystals ofg-Cuzn'® and zn!* For this reason it is
of crystalline materials there has been particular interest.itp,eCessary to add substantially to the list of crystals for which
the so-called low-temperature anomaly—the substantighe plasticity has been studied at ultralow temperatures, to
weakening or complete absence of temperature dependenggiain new experimental data on the manifestations of ather-

of the plasétlz ﬂIOW of cr]?/stalg bel?vx;].a certalr: thres?old mal effects in that region, and to establish their connection
temperature.A clear manifestation of this anomaly was first iy, e quantum mechanisms of plastic deformation.

registered in a study of the low-temperature creep of metallic The goal of the present study was to investigate the ki-
crystals at temperatures in the liquid helium regionPrior . . .
netics of creep of single crystals of pyseSn in the tempera-

to the discovery of this anomaly it had generally beer'ture range 0.5—4.2 K. Tin belongs to the group of tetragonal

thought that the low-temperature creep of crystals is due t%od -centered crystals which have a large set of diverse sli
the thermally activated motion of dislocations. In the modern y Y 9 P

theories of low-temperature plasticity the possibility for and twinning systems..We had pre_:viously esFainshed thatthe
creep to exist under deep cooling conditions, when the imenlpw—_temperature _plastlc deformatlon pESn _sm_gle crystals
sity of the thermal motion of the atoms is extremely low, is ©f Nigh purity, oriented for predominant slip in the system

considered to be a manifestation of the quantum properties ¢£00¢010; is Zgovgrned by the motion of dislocations in the
the carriers of the plastic deformatidie., dislocationsand ~ Peierls relleﬁ Unlike other crystals of the Peierls tyjithe
the influence of those properties on their mobifits. bcc metals, ionic and alkali halide crystals, semicondugtors
Depending on the type of barriers that must be overcom&ingle crystals of pur@-Sn have a unique ability to maintain
by the dislocations, the manifestation of quantum effects i high plasticity down to very low temperatures, which
the kinetics of plastic deformation can be observed over &nakes them ideal objects for studying the motion of disloca-
rather wide interval of low temperatures—(10-10"1)Tp tions in the Peierls relief over a wide range of low tempera-
(Tp is the Debye temperatur&® However, the experimental tures, including the subkelvin region.
data of greatest interest for studying the quantum mecha- According to the data of Refs. 13 and 14, the yield point
nisms of plasticity are those obtained in the region of ex-of pure 8-Sn single crystals, measured at a constant rate of
tremely low temperaturetbelow 1 K), where the influence tensile strain(active deformatioj) ceases to depend on tem-
of thermal activation on the mobility of dislocations is ex- perature below a temperature of the order of 1 K, i.e., the
tremely weak and their quantum properties are manifested inharacteristic signs of quantum plasticity appear. In Ref. 14
pure form. However, at the present time such data are quitsuch behavior was explained by a transition from the ther-

1063-777X/2004/30(3)/8/$26.00 253 © 2004 American Institute of Physics
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mally activated creep of dislocations in the Peierls relieftoa =
tunneling of the dislocations through the potential barriers of ——
that relief. A comparison of the results obtained under con- At
ditions of active loading and creep, and also an exploration
of the correlation between those results, is the second goal of =
the present study.

Finally, still another important circumstance is that the
dislocation creep of3-Sn single crystal at very low strain
rates (106-10° s~ 1) at temperatures of the order of 1 K
and below reduces to a sequence of elementary correlated
rearrangements of the atomic structure—the tunnel nucle- 0 t
ation of kink pairs on the dislocation lines. Such processes
are accompanied by the overcoming of very small effective
potential barriers of the order of 18 eV,'® and are one of
the concrete examples of the manifestation of so-called mac-
roscopic quantum tunneling effectsee Ref. 14 for more
details on thig Effects of this type are discussed and inves-
tigated in the physics of weak superconductivity, in the phys-
ics of low-temperature lattice and magnetic phase transfor-
mations, etc. Therefore the study of atherntquantum)
creep of3-Sn in the subkelvin temperature region opens up
new opportunities for studying one of the topical problems of
the modern quantum physics of solids.

1. EXPERIMENTAL TECHNIQUES

t
The single-crystal samples were grown from 99.9995%

pure stock in batches of 10 from a single seed by a modifie§'C: 1. Diagram of the stepped loadifig and strain(b) of samples in the
Bridgman method® They had a double-lobed shafia the ;:_ree!od regm:je.r is thg a_tpplled stress; is the_ rel_a_nve strainAe(t) is the
ime-dependent strain increment within an individual creep curve.
jaws of the testing machinevith a working part of rectan-
gular cross section 265X 1.5 mm. The longitudinal axis of
the samples was in @10 direction, which is the most fa- plastic flow with a decaying velocitftransient creep Series
vorable for slip in thg(100(010) system. of such curves obtained at different temperatures were pro-
Experiments were carried out in the temperature intervatessed and analyzed to ascertain the influence of the total
0.45-4.2 K on an apparatus described in Ref. 11. The use atrain of the sample and its temperature on the behavior of
liquid “He as a coolant made it possible to achieve temperathe main kinetic parameters of the low-temperature creep.
tures of 1.8—4.2 K, while temperatures in the range 0.45-2 Let us mention some of the fine points of the methods
K were obtained in &He dilution refrigerator. The tempera- used which play an important role in the conducting of the
ture was measured by a GaAs semiconductor thermometexperiments. First, each increment of external load on the
and, in parallel, from the saturated vapor pressuréHef or  sample was added at approximately the same values of the
“He. The relative error in the temperature measurements waseep rate immediately priokg=10° s (Fig. 1b. This
not over 102, made for approximately the same starting level of effective
The samples for study were placed inside a superconstress for all the creep curves recorded.
ducting solenoid and strained under tension in the regime of Second, the samples prepared for testingl &t1.8 K
creep in the normal state, for which a longitudinal magnetiowere prestrained by 3—4% at a temperature of 1.8 K, and
field H>H_ =309 G was produced in the solenoid, destroy-then the temperature was lowered to the desired temperature
ing the superconductivity o8-Sn atT<T.=3.7 K. and the loading was continued. This measure was taken be-
The flow stress on the sample was increased in smattause atT<1.4 K an incremental loading near the yield
steps ofA7=0.2—0.4 MPa(see Fig. 1L The elongation of point often causes a sharp, hard-to-control, and very large
the sample corresponding to each increment of stress wasrain incrementfe~6-7%),while at higher temperatures
measured by an inductive strain gauge whose output signéihe uncontrollable strain jumps do not occur. This “instabil-
was fed to a Shch302 digital voltmeter and then sent to dy” of the creep is due to the fact that samples of p@&n
computer and displayed on the monitor. The accuracy of thender straining in the slip systeid00(010 at extremely
measurements of the relative strain of the sample was fow temperatures have an easy-slip stage with a very low
X 10" ° at a time constant of the measuring system of aroundhardening coefficient and, in individual cases, even a yield
0.15 s. Before the yield point, was reachedfor A7  point. Thanks to the prestraining procedure we were able to
< 10) the strain increments corresponding to the incrementsbtain smooth creep curves all the way down to 0.45 K. For
of the applied load led to elastic straining of the sample, andome samples the jumplike strain growth was absent even
the curvesAe(t) corresponding to them had the characteris-near the yield point, making it possible to obtain information
tic I-shaped form. After the yield point was reach@dr  about the parameters under study even at low degrees of total
>A7>15) the Ae(t) curves exhibited a pronounced stage of strain.
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5 possibility of realizing the fluctuational motion of disloca-
tions at subkelvin temperatures and in establishing the el-

4r ementary physical mechanisms that govern such motion.
Therefore, in processing the experimentally recorded creep

o 3f curves the main problem is to separate out and analyze the

e logarithmic stage.

s ol The solution of the problem described can be obtained
by constructing “machine” curves of the creép:(t) in the
coordinates Ie—Ae, wheree=d[Ae(t)]/dt. It is easy to

H see that the logarithmic depender@¢ is equivalent to the
relation
0 P Ine=In&(t;)—a YAe—Ae(ty)]. 2
ty tots t

Heret; is the time at which the transient creep starts to take
FIG. 2. Characteristic shape of the experimental creep curveggon 0N a logarithmic(fluctuationa) character, ané(t;) = af is
single crystals in the normal state; the curves correspond to the same degrlee starting rate of logarithmic creep. Figure 3 shows the
D e  aa SO s e g STE2R UV i he coordnlesinbe comesponding (o the
taz timet,, at which Tr?e mélximupr)‘n creep rate is regched,ﬁmbrres%onds “machine” curvesAe(t) in Fig. 2. It is see.n I.n Flg. 3 that
to the timet; of the start of the fluctuation regime. when one goes from the temperature of liqtiite (Fig. 33
to the subkelvin regior{Fig. 39 the character of the time
dependence of the decay of the creep remains qualitatively
2. EXPERIMENTAL RESULTS the same: the creep curves fort,, consist of two stages,
the second of which is described rather well by relaii@n

Figure 3 can be used to determine the value of the creep

Figure 2 shows “machine” curves of the credg(t) of  deformationAe(t;) at which the creep starts to take on a
B-Sn single crystals at several different temperatures in th@uctuational character at a fixed value of the temperature,
interval 0.5—-4.2 K for a fixed value of the total strain of the and by juxtaposing Fig. 3 with Fig. 2 one can determine the
sample,e=0.07. For clarity the curves have been shiftedvalues of the times; at which that stage begins. The results
relative to one another along the time axis. It is seen thapf such a separation of the logarithmic stages of the “ma-
after an incremental loading 7 at the timet; all the curves  chine” curves of the creep at different temperatures of the
start with brief stages of accelerated creep, and after thexperiment but at a fixed value of the total strain of the
maximum strain rate is attaingthis time is denoted by,)  sample are shown in Fig. 4a. By determining the geometric
the creep process goes over to a damped regime. It is aparameters of the straight lines that approximate the given
sumed that in the time interval,—ts; a new regime of dis- stage of creep in Fig. 3, one can obtain numerical values of
location motion is established in the crystal, caused by theéhe parametersr and B8 of the fluctuation creep at different
increment of flow stress. In this study we have not devotedemperaturegTable |). The tabulated data allow one to con-
much attention the fragments of the creep curves correspondtruct fragments of the “machine” curves of the creep for
ing to the accelerated strain. A detailed discussion of thatimest>t; in a form which illustrates explicitly the logarith-
stage is given in Ref. 17. mic character of that stag€&ig. 4b.

The subsequent processing and analysis of the creep For working out a physical interpretation of the transient
curves Ag(t) recorded in the experiments was done withcreep the parameter is the more informative, and therefore
allowance for the following arguments. It has long beenone of the important intermediate problems in the study is to
establisheti™® that the decayingtransient creep of crystal-  obtain the experimental dependence of that parameter on the
line materials under conditions of low temperatures is mostemperaturel, degree of strairz, flow stressr, etc. To es-
often described by a logarithmic time dependence tablish the relationship ofr with each of these parameters

As(t)=aIn(Bt+1), 1) separately, the corresponding creep curves must be obtained

at fixed values of all the other parameters that influence the
wherea and 8 are parameters whose values depend on tenpehavior ofa.

perature and on the structural characteristics of the samples.
The logarithmic character of the transient creepBe®n at
low temperatures 1.6—78 K was confirmed in our previou
study?® However, we later showéd!’ that situations are
possible in which the time dependence of the decaying creep In this paper we are primarily interested in the tempera-
has a more complicated character: in a number of cases there dependence(T). To determine it we first obtained the
logarithmic stage of the creep is preceded by a brief expoeurves of the strain dependence of this parameter at fixed
nential stage. This staged nature is due to the possibility ofalues of the temperature(e)+, on the basis of which we
realizing two regimes of dislocation motion during the creepdetermined the temperature dependence of the coefficient
process: a logarithmic stage corresponds to a fluctuation(T), corresponding to a specified value of the presteain
(thermally activated or tunnelingegimes, while the expo- The character of the dependence of the parameten
nential stage corresponds to a dynartabove-barrierre-  the strain and temperature is shown in Fig. 5. We note that
gime. In this paper we will be interested primarily in the the values ofa(e,T) given in Fig. 5 were obtained in a

2.1. Time dependence of the creep

S2.2. Dependence of the coefficient of logarithmic creep on
the strain and temperature
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FIG. 4. Time dependence of the increment of creep deformation for the
fluctuation stage in diredl) and semilogarithmi¢b) coordinates.

T=05K constructing these curves can be determined from the points
----------------- %00 ) of intersection of the curves in Fig. 5 with the straight lines
100 f---------- R A e=const. Thea(T), curve fore=0.07 is shown in Fig. 6a.
o c The most important detail of this curve is the threshold tem-
: peratureTy separating the region with a pronounced tem-
perature sensitivity of the coefficient and the region of
10p @ athermal behavior. In the first region the coefficientle-
o creases linearly with decreasing temperature, approaching
zero when thex(T) curve is extrapolated to 0 K, while in the
second region it remains constant at all temperatures. For the
value of the relative strain chosen hetes 0.07, the thresh-
4 old temperature lies in the region 1.2-1.5 K, and complete
Ae-10 athermality sets in around 1 K. The temperature dependence
FIG. 3. Creep curves from Fig. 2 in the coordinateg+ie at different of th_e coefficientx has a similar CharaCter for the other cross
temperatures. sections of thex(e)+ curves, both to the right and left of the
value e=0.07. This means that with increasing strain the
type of barrier governing the motion of dislocations in the
processing of the creep curves initiated by approximatelfcuve slip system of3-Sn remains unphanged, and conse-
quently so does the type of dislocation process that deter-

equal increments of the flow streds~0.2—0.4 MPa upon .
. . . mines the character of the temperature dependence of the
the attainment of approximately equal starting values of the

creep rates=10 ° s 1. It is seen in Fig. 5 that with de- coefficienta.

creasing temperature the character of the strain dependence

a(e)t changes. Thex(e)t curves obtained af>1.2 K-are  7ABLE I. Values of the parameters of logarithmic creep ®Bn single
characterized by a rather sharp decrease @fith strain at  crystals at different temperatures for a total strain of the sampte8.07.
low degrees of straifup to 5% and then this dependence

-1

£-10°, s

1"? L 1 1 1 : L 1 !
0 2 4 6 8 10 12 14 16

4 -1
become weaker and sometimes even vanishes completel LK 19 B.s
(Fig. 58. In the temperature interval 0.5-1.2 K the value of 4.2 8.0 1.35
the coefficientr is insensitive to temperature, and at 0.5 K it 2.8 4.5 3.7
is also insensitive to the degree of stralifig. 5b. _ 14 3.5 5.45
The set ofa(e)t curves can be used to obtain the tem-
- . 0.8 2.4 5.60
perature dependence of the coefficier(tT), for fixed de- s
grees of strain. The corresponding valuesaofeeded for 0.55 2.0 2.3
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FIG. 5. Dependence of the coefficiemton the value of the plastic defor- T.K

matione at temperatures from 0.8 to 4.2() and from 0.5 to 1 K(b). The

different symbols at the same temperature correspond to the data for diffef:'C- 6. T_e_mperature d_ependence of the plasticity parameters offpSre
ent samples. the coefficient of logarithmic creep at a value of the total strain=0.07

(8 and the critical shear stress, for deformation of the samples at a
constant rate =7x107° s~ ! (Ref. 19 (b). Tg is the boundary temperature
between the regions of quanturii{Tg) and thermally activatedTt>T,)

3. DISCUSSION OF THE RESULTS plasticity.

Let us first mention the most important qualitative result

of our investigation: the experimental observation of tran- .
. : . of the creep occurs as a result of a decrease of the density of
sient creep inB-Sn at subkelvin temperatures and the record-

) . X ast dislocations. A theory of the staged transient creep due to
ing of fragments of the creep curves having a fluctuatlona[ y g b

. : he regimes of dislocation motion named above was con-
nmaetgaes' ;gl[s{hteoiﬂzgircglzge?: Orfe(s::JeIt: O{ eReI;étli(t) ignad trl];ﬁtructed in Ref. 15. In the present paper we will be interested
. p. 1.€., . in the possibility of existence, the regularities, and the
mally activated process and so the creep of a decaying nature : .
. 18 RS mechanisms of fluctuation creep at temperatures of the order
should vanish folT—0 K, must be applied judiciously at of 1 K
extremely low te_mpergtures. . . According to Ref. 15, the transient creep ratét),
As we mentioned in the Introduction, puf®Sn single L . . .
. . T which is determined by the motion of a macroscopic flux of
crystals oriented for predominant slip in tiE00(010 sys- . . 7 . . .
. ) ) ._dislocations of density in the Peierls relief, is described by
tem belong to the class of metals with a high Peierls potentw{f‘h .
. . . .~ the expression
relief. The plastic deformation of such crystals occurs owing
to processes of nucleation, dynamic expansion, and annihila- . . E(7)
tion of kink pairs on dislocations. The kink mechanism &(t)=&q€X 2kT*(8,,T,B)|’
brings about a displacement of dislocations from one trough .
of the Peierls relief to another under the influence of an ef- E(r*)=H 554 _ T
i * i (T )_HC T 57_ 1__1
fective stress™. At comparatively low values of the effec- Tp
tive stressr* = 7— 7,(g) < 7p (7is the external stress applied
to the crystal,7; is the internal stress, anth is the Peierls
stresg and at low temperatures the nucleation of kinks isHerea andb are, respectively, the period of the Peierls relief
brought about by thermal or quantum fluctuations. In thatand the value of the Burgers vector of the dislocatioRsis
case the fluctuation regime of dislocation motion is realizedthe characteristic vibrational frequency of the dislocation in a
and the damping of the creep occurs on account of workzalley of the Peierls reliefy, is the velocity of a dislocation
hardening, i.e., growth of the internal stresses. For 7p kink along the dislocation linel. is the characteristic en-
the motion of dislocations becomes above-barrier, the plastiergy of the critical pair inflection, and* is the effective

deformation acquires a dynamic character, and the dampintgmperature characterizing the intensity of the quantum mo-

(©)

£0=p(a®brgui) '
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tion of a dislocation string in the Peierls reliefB& 0, (the 2S07p
quantum limi} and the intensity of its thermal motion at a= xQq C)
T>0p (the classical limit The following asymptotic ex- 0
pressions are valid for the effective temperatiie In formula (8) the symbols,; denotes the value af, at the
time t; corresponding to the start of the fluctuation stage on
* ~ 1/4__ < . f
T (5T1T!B)_SO(®P57 ®B)1 T<®P1 (4) the Creep curve.
s 05| $,0p Thu; the theor’yr> predict_s 'Fhe existgnce of two ter_npera-
T*(6,,T,B)=T| 1+ Q_5|n? — Q_5 T=05p. ture regions with characteristic behavior of the coefficient
0%r 0%r

(5) in each. The first of these, the “high-temperature” classical
region, is characterized by a dominant role of thermal fluc-
In writing formulas(4) and (5) we have used the following  tyations in the overcoming of the barriers of the Peierls relief
notation:®p and®y are, respectively, the characteristic tem- py the dislocations and an approximately linear temperature
peratures associated with the zero-point vibrations of a disdependence of the coefficieat The second region corre-
location in a Peierls valley and with the damping of suchsponds to the quantum limit, where the plastic deformation
vibrations by the electron viscosiy, Qo=H:/k®p is the  comes about through the tunneling motion of dislocations
quasiclassicality parameter for the tunnel nucleation of &nrough the Peierls barrier and the coefficieris insensitive
kink pair, ®S is the characteristic temperature of a free dis-to temperature' Comparing thﬁ'l')S curve Obtained on the
location string, and, ands; are numerical parameters. The pasis of the experimental dat@ig. 6) with formulas(8) and

empirical values of the parameters of the Peierls relief andg) we come to the conclusion that the theory and experi-
dislocations in thes-Sn slip system under consideration, ment are in qualitative agreement.

which are needed in expressio(®—(5), were obtained in The transition region on the temperature dependence of

Ref. 14 on the.baSIS of a Study of active deformation anqhe Curvea(T) and the boundary temperatu're Separating

have the following values: the region of thermally activated and quantum creep merit

7p=1.2¢10" Pa, H.=2Xx10"2 J, 1,=5x10" s, special discussion. According to the estimate obtained in
Ref. 14, this temperature has a value of the order of

B,=2x10"° Pas, Q,=5x10?, 0p,=3.3 K,
" 0 3 Ty=0psH, (10)

7f
0g=0.4K, ©5=100 K, a=3.2x10 0 m, _ N _
Consequently, the location of the transition region on the

b=5.8x10"1" m, 5,=0.9, s;=5.4. temperature axis is determined not only by the characteristic
We note that®g<®p, and therefore the correction to temperatur®p, which is a fundamental quantum parameter

4

the effective temperature in formuléé) and (5) due to the ©f the crystaf* but also by the parametet,, the value of

electron drag on dislocations is rather small and can be nd¥hich depends on the valu€ () of the effective stress at
glected in a description of the creep only in the normal statdh€ Start of the logarithmic stage of the creep curve. Sirice

or only in the superconducting state of the metal. At the sam& determined by the relationship between the flow stress

time, this correction largely determines the effect of the su@PPlied to the crystal and the characteristic value of the in-
ernal stresses;(e), the boundary temperatuilg,, strictly

perconducting transition on the plasticity of a metal and must )
be taken into account in a description of that efféct speaking, depends to some degree on random factors that
From formulas(3)—(5) one can obtain the following re- vary in the course of an experlment. At the same time, that
lations linking the effective stres¢' and the creep rate in dependence is rather weak by virtue qf of _the small value of
the quantum and classical limits: the exponent in formuld10). After estimating a valudlq
=1.3 K on the basis of the experimental data«d(iT), (Fig.

25y ¢ '
5T=—O|n-—0y T<0p: ©) 6a), one can est'lmate the value of the paraméterfor that
Qo ¢ particular experiment as
2T & 8,4=(T,/0p)*=0.025.
SM=" In2 T>0,. (7) e
QoOp & According to formula6), the following relation holds at

In the theory of low-temperature transient creep it is usuthe timet; corresponding to the start of the logarithmic stage
ally assumed that within the confines of an individual creepf quantum creep:
curve a linear hardening law is obeyefir,(t) = kAeg(t),

. . e . . . Q057'f

wherekx= k(&) is the hardening coefficient corresponding to go=¢£(t;)ex
the total straine prior to the start of the individual creep
curve. Under such an assumption the use of Byifor de- The empirical estimates,;=0.025 and the estimate
scribing the creep kinetics leads to a logarithmic time depenz (t,)=4x 1074 s™* from Fig. 3 allows one to obtain an

dence(1) in which the coefficient is described by the one empirical estimate of the parameteg for that particular

2sp (1)

of the following expression§: experimentz,=0.5 s 1. This value is obtained on the basis
in the classical limifT>0p of an analysis of the creep of samples prestrained to
£=0.07. It is several orders of magnitude smaller than the
87p [T _in . 1 ' ! :
a= — o5, (8) value £,=10" s * found previously* in an analysis of the
5kQo | Op

yield point under conditions of active tensile deformation at
in the quantum IIMifT<® a rate ofe=7x10"° s ! for a different series of samples.
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Starting from the expression fép, [see formulg3)] one can  x 104 s~ (Fig. 39 allow one to estimate the parametégs

conclude that this difference is due to a difference of severaand p for the conditions of the experiment at=0.07 and

orders of magnitude in the densipyof mobile dislocations, T=4.2 K:

which govern the plastic flow of the crystals in both of these

cases. Using the results of Refs. 14 and 15, we obtain the ; ~2 51 p~2x10' m 2

estimates/o=5x 10" s~ andv,=3x 10> m/sY) The value

épzo.Slsflfounq above corresponds to a density of mobile  Another important question for the physics of low-

dislocations, which govern the quantum creep in the givefemperature creep is the value of the effective potential bar-

experiment, of the order gf=5x10° m™2, rier E(7*) governing the mobility of dislocations and the
Another important kinetic characteristic of the fluctua- (56 of plastic deformatiofisee formula(3)]. The value of

tion creep process is the work hardening coefficieg). An  his barrierE(*) = Hca\im is determined by both a funda-

empirical estimate of thig param_eter for temperatures of thg,antal parameter of the crystad,, and by the force factor

order d 1 K can be obtained using form4u_[9) and the av- 5 — 5 . which depends on the conditions of the experiment

erage value of the coefficient=2.4<10"" in the quantum  5nq the state of the defect structure of the sample in the

creep region foe =0.07 (see Figs. 5 and 6ax(e =0.07T  particular experimental situation. For the experiment de-
<1.3 K)=1.8x10° Pa. This value is close to the estimate s¢riped in this paper at a total strain value o 0.07 we

x(£=0.07T=1.6 K)=1.6x10° Pa in Ref. 15 from the gptain the following estimates:
macroscopic strain diagram @g¢Sn atT=1.6 K in the nor- in the quantum region ai<1.3 K
mal state, but it is smaller by a factor of two than the value
determined from analysis of the creep curves in the super- *\ —22 1 -3 .
conducting state. E(77)=2X10"%° J=1.2<x10° eV,
We note that the conclusion that the work hardening
rates of superconducting metals strained in the normal and
superconducting states are different was reached previously
in an analysis of active deformation proces&<. This ef-

fect does not have an unambiguous physical interpretation, o )
and it seems to us that additional useful information that ~ The analysis in this Section suggests that the athermal
would shed light on its physical nature can be obtained by'€€p observed in purg-Sn single crystals af<1 K'is due
studying the transient creep of such metals in the normal antp the tunneling motion of dislocations in the Peierls relief.
superconducting states. A study of this effect on samples of "€ elementary process governing such creep is the tunnel-
B-Sn will be the subject of a separate paper. ing penetration of small parts of the dislocation line through
It was shown above that measurements of the coefficiern individual barrier of the Peierls relief, i.e., the nucleation
a in the quantum creep region and the use of form@a  ©f kipk pairs. The nu.cleation of a kink_ pair entails the over-
allow one to obtain the value of the work hardening coeffi-cOming of the effective potential barrié(7*). The quan-
cient directly if the values of the Peierls stress and the UM cha_racter of that process is due to the very.smallivalue of
quasiclassicality paramet&, are known for the crystal un- the barrier, of the order of 10 eV, and the low intensity of
der study. However, in the region of thermally activatedthermal fluctuations under condl.tlorjs of gxtremely low tem-
creep such a possibility does not exist. In that region one caReratures. However, already at liquid helium temperature 4.2
find the experimental values of at different temperatures K the creep at approximately the same rates is accompanied
(Fig. 6a. Then, by measuring the slope of the straight line onPY the overcoming of a potential barrier several times Iqrger,
the plot of a(T), for T>T, and using formuld9), one can and the elementary process takes on a thermally activated

obtain an empirical estimate of the produesy’. Conse- ~character. .
quently, to determine the values of the force paraméfeit An analogous conclusion as to the quantum nature of the
is necessary to make independent measurements of the haRfastic deformation oB-Sn in the given temperature interval
ening coefficientx. From the macroscopic strain diagram Was reached in Ref. 14. Figure 6b shows the temperature
recorded during active deformation of pyseSn single crys- dependence of the critical cleavage streggT) of B-Sn
tals atT=4.2 K we find the valuex(s=0.07T=4.2 K)  Single crystals in the interval 4.2—0.5 K from Ref. 14, ob-
=1.2x 1P Pa. A value of a similar magnitude was obtainedt@ined under conditions of a constant tensile strain thte
in Ref. 15 by the creep method at a temperature of 3.2 kregime of active deformationlt is easy to see that this tem-
Using the given value o and the data of Fig. 6a, we obtain Perature dependence repeats the characteristic features of the
the estimates,;~0.078, which corresponds to conditions of a(T) curve. This indicates that one can study the regularities
thermally activated creep at=0.07 andT=4.2 K. and mechanisms of plastic flow in crystals under conditions
According to formula(6), at the time corresponding to Of deep coolin.g by .different methods.of m_echanical testing.
the start of thermally activated creep the following relationAt the same time, it should be kept in mind that the exact
holds: values of a number of parameters characterizing the plastic
flow depend substantially on the particular conditions of an
- QuOp o5’
go=¢e(tp)exp —=—|. : :
2T of the effective barrieE(7*), the boundary temperatufg,
of quantum plasticity, the density of mobile dislocatigns

experiment, and their empirical estimates can have a signifi-
The estimates obtained abové,;=0.078 ande(t;)=7  and the work hardening coefficiert

in the classical region a=4.2 K

E(7f)=8x10 % J=5x103 eV.

(12 cant scatter: for example, the force parameigr the value
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