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The problem of the propagation of a spatial soliton in a system of tunneling-coupled optical
waveguides is studied. The tunneling coupling coefficient is assumed to be modulated in a
transverse direction. The adiabatic dynamics is studied for the case of periodic modulation

of the tunneling coupling coefficient. The stationary points for the beam parameters are found. The
effective potential is calculated for the center of the beam in the equivalent-particle model.

The condition for resonance emission of waves by a soliton is obtained1l998 American
Institute of Physicg.S1063-784£98)00106-9
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INTRODUCTION _|unz_Un,n+1/2un+1+Un—1/2,nun—1+|un| Up. @

Systems  of tunneling-coupled nonlinear  optical yere y(z,n) is the dimensionless intensity of the electric
waveguides are attracting attention in connection with posfielq of the wave and, , is the coupling coefficient be-

sible applications as optical decouplers, components in optigyeen the waveguides. An approximate expressiorvfgr
cal logic circuits, and so oh? Such configurations can be i ’

obtained, for example, by preparing flat waveguides on a
GaAl;_,As substraté.This material possesses positive Kerr Unm~eXd—y(n—m)].

nonlinearity when the wave frequency is less than half the e shall employ a continuum approximation to describe
band gap. An important feature is that soliton propagationhe evolution of a wave in the system of waveguides. This
regimes of powerful optical beams—spatial optical soli-approximation can be used to study the variations of a wave
tons—are possible in such systeffsSuch systems also on scales much larger than the distahdeetween the wave-

have the advantage that it is possible to obtain strong noryyide centerd.Thenu, andv, , can be expanded in a Tay-
linear effects in them by using weak nonlinear materials ingr series

separate waveguides. For applications it is of interest to de-
velop methods for controlling the parameters of spatial soli- Upe 1= U(X) = AUy + — Uyt ...

tons in these systems. In Ref. 6 it is suggested that variaton " o2 ey

of the tunneling coupling coefficient between the waveguides h h2

be used for such purposes. Using a variational approach and . =0 (X) = zv,+ = vyyt... .

the continuum approximation the authors were able to inves- ' 2 8

tigate the effect of linear and quadratic variation of the tun-  Substituting these expressions in Efj) we obtain for
neling coupling coefficient. For their approach the choice ofy(z,x) the equation

trial function is critical. Since the continuum approximation

h2

: s ) 1

leads to a perturbed nonllnear' So(dl@er equation, 'the —iU,= 20U+ h2| VUt v, U+ ~v U | +|ul2u. )
method of the inverse problem in soliton theory provides a 4

systematic approach. We shall study the case of periodic modulation of the

In the present paper we shall study the effect of a peri’[unneling-coupling parameter along the directign =1

odic variation of the tunneling-coupling coefficient on the | . sin@x). Settingh=1 and changing to the new variables

propagation of a spatial soliton in a stack of nonlinear planag,:X/‘/j, z=2t, a=+/2a, we obtain finally the equation

waveguides. The investigation will employ perturbation

theory based on the inverse-problem method. The problem iUt+Uyy:2|U|2U=8R(U,Y)

exhibits special features compared with that studied in Ref. o _ ;

6, specifically, in our case resonance emission of waves by a = e silay)uyy—ea sinfay)uy

spatial soliton appears. 1, _
+Zsa sin(ay)u—4e sin(ay)u. 3

DESCRIPTION OF THE MODEL . I
s¢ ON© © As a result, the problem reduces to investigation of the

The system of equations describing the propagation of aonlinear Schrdinger equation with a periodic perturbation.
wave in an infinite system of tunneling-coupled nonlinearAs follows from Eq.(2), the perturbation is conservative—
planar waveguides §¢ there exists a conserved energy integral
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2 of the solitonl = 1/25. The amplitude of the effective poten-
N= J_w|u|2dx= const. tial depends strongly on the ratibh. Forl/\x<1 the effec-
tive potential equals
We note that the influence of a local nonuniformity of
the refractive index in a stack of waveguides on the dynam- ()~ §8 sin(a?) 72+ 0(12/\2).
ics of a spatial soliton was recently analyzed on the basis of 3
a continuum approximation and the inverse-problem method | this limit the effective potential is virtually indepen-
for solitons:® The corresponding perturbation on the right- gent of the ratio of the length scales and is proportional to
hand side of Eq(3) has the formR(u,x) =z 5(x)u. Numeri- e squared amplitude of the soliton.
cal modeling confirmed that such an approach gives a good Eqr|/A>1 we have

description of beam dynamics. .

TEQ )
u(d)~ 287 exp — waldn)sin(al).

ADIABATIC DYNAMICS OF A SPATIAL SOLITON IN A One can see that the amplitude of the effective potential
SYSTEM OF COUPLED WAVEGUIDES is exponentially small for solitons whose width is greater
than the modulation period. There exists a corridor of param-
'eter values neas~ ¢~ V® where the amplitude of the poten-
Sial <1.

It is difficult to find the general solutions of the system
(4) and(5). Let us analyze the behavior of the system in the
Ug=2i7 sechi2n(y— ¢)]exp( — 2i &y — 4i (9> — €)t). phase plane. For this, let us find the stationary points for the
system(4) and(5). Let us rewrite the system of equations in
the form

We shall study the evolution of a single spatial soliton
propagating in a system of tunneling-coupled waveguide
When there is no modulation, i.e.=0, the soliton solution
can be written in the form

Here 7 is the amplitude of the soliton angf= —4&t, where
&= —vl4 is the coordinate of the center ands the velocity
of the soliton. We note that in dimensional variables the B 5

soliton velocity is the angle/=sin %(&/2) of propagation of at A cogaf)(£°-B), (@)
a beam in the stack of waveguides. In this section we shall
study the effect of large- and small-scale modulations of the df

—=—4¢1+C si , 8
tunneling-coupling coefficient on the dynamics of a spatial  dt ! nad)] ®
soliton. . . ' where

a) Large-scale modulations of the tunneling-coupling co-
efficient.Using the perturbation theofy;'? we find that the B ema?
amplitude of the soliton is conservegl=const. This is a - 2y sinh(waldn)’
reflection of the previously noted fact that for E¢8) and 5
(3) there exists an integral of the motioN.=[”_|u|2dx. (Y, e _A
} . ) . = =n°t+t-—5—-1|, C=-—.
We obtain the following system of equations for the velocity 3 48 2

and coordinate of the center of the soliton: We note thatd, B, andC are decreasing functions af

d¢ ma’e nw o, a Then the conditions for the stationary points can be written
Ut~ 2y snh(maldy) 04| 3 H&+ 571, in the form
@ £=0, al=ml2+nm é==\B,
d¢ mae Sin(af) g n B
= al=-sin~(llc)(-1)", n=1,2,.... 9
dt ag 1+ 47 sin h(7'ra/477)} ®)

_ - ) It can be shown by analyzing the linearized systen
For low soliton velocitiest<1, £2<7” (“heavy” soli-  and(5) that the pointsx¢=m/2+2n are stable, while the
ton) the system(4) and (5) is equivalent to the problem of points a{= — w/2+2n are unstable. The phase portrait of
the motion of a particle of unit mass in a periodic potentialthe system is presented in Fig. 1. Since the phase trajectories

u(f) are periodic, we limited the figure to the valuesmr<a{
2mae sinal) |77 a2 <3m/2. One can see regions of finite motion of an effective
u=——7—"7=\|—=+-5-1]. (6) particle, which correspond to oscillations of a spatial soliton
n sinh(wal/dn) \ 3 48

as a whole in the system of tunneling-coupled waveguides,

In the general case the effective potential depends on thand regions of unbounded motion, which correspond to a
soliton velocity¢. There are examples of velocity-dependentgrowing deflection of the beam. We note that two types of
potentials in physics. For example, velocity-dependent poeffects materialize here. Effects of the first type are due to
tentials have been used to describe the nucleon interactiotise linear periodic potential, and effects of the second type
in nuclei. are due to periodic modulation of the dispersion. The disper-

Let us discuss the role of length scales in the problemsion perturbation dominates for largein R(u)—uv (X)Uuyy
There are two characteristic scales: The modulation period- &% (x)u, which one can see in the phase portrait—region
A =2/ a of the tunneling-coupling parameter and the sizel. For low velocities¢ we have soliton oscillations around
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The adiabatic soliton dynamics studied in this section is

1.0 3 valid when radiation effects can be neglected. We shall
briefly discuss the effect of the emission of waves by a spa-
tial soliton.

Analysis based on solving the equations for the Jost co-
0 @ efficient b(\) of an associated linear spectral problem,
where\ is the spectral parametéi(\ = 2k andk is the wave
numbej, shows that wave emission by a soliton arises. The

“10F radiation is concentrated around two spectral points
A= —ExVaé— 7. (13
-2.0 J 1 i The group velocity of the emitted waves is
~7t/2 ol 3t/2 v=—4\;,. Maximum emission is observed when
FIG. 1. Phase portrait of the syste@) and(5) with e=0.1, 2p=1, a=1. al2—\Jaé— 777< 1. (14

For soliton amplitudeg; small compared with the veloc-
ity £ and modulation frequency we find that the emission is
the bottom of each well of the periodic potential—region 2.maximum when
The line 3, where the soliton velocity is constdnt + B, a=0v (15)
is of special interest. Here the effects of dispersion and po- s
tential disturbances on the motion of the spatial soliton are One can see that resonance radiation occurs when the
balanced. Since the soliton velocity is related with the modulation frequency equals the soliton velocity. On ac-
beam propagation angle in the waveguide stack, we concludgount of the strong soliton-radiation coupling the soliton de-
that a variation of the tunneling-coupling constant betweertays as it propagates in the waveguide stack. In Ref. 15 a
the waveguides leads to periodic variations of the locatiorcondition identical to Eq(15) was obtained from qualitative
where the soliton beam emerges from the waveguide stackonsiderations in a description of numerical experiments on
The latter effect can be used to develop optical devices basétie propagation of a nonlinear Scdinger soliton in a peri-
on spatial optical solitons. odically nonuniform medium. Since the soliton velocity is
b) Small-scale modulations of the tunneling-coupling co-actually the propagation angle of a beam in a system of
efficient. A different approach must be used to describe thevaveguides, we find that intense emission should occur for
limit o> 7, specifically, one or another variant of the propagation angles
method of averaging over fast var.iations w(fy). Herelwe_ Ye=sin"Y(al8). (16)
shall use the method suggested in Ref. 13. The aim is to
obtain an equation for the slowly varying part of the wave  Our results should be correct for these values of the pa-
field, using the expansion rameters. Specifically, intense emission leads to the appear-
. ance of radiation damping and deceleration of the soliton. A
u=U+A coday)+B sin(ay) complete analysis of the problem of wave emission by a
+C cog2a,)+D sin2ay)+..., (10)  spatial soliton in a system of waveguides and a calculation of

. the radiation decay length of a soliton will be performed
where the functiondJ, A, B, C, andD are assumed to be separately.

slowly varying over distances 1/a.
A closed equation fod (y,t) can be obtained by writing  -oncLUSIONS
out the equations for these functions and using asymptotic

expansions in ¥¥. Assuming that <1/e anda>1, we ob- In this paper the propagation of a spatial soliton in a
tain system of tunneling-coupled waveguides with a periodically
. ) varying tunneling-coupling coefficient was investigated. The
. 2. _ ¢ problem was studied in the long-wavelength approximation,
iugtuyy+2[ulfu= u—-——= . ) S !
16 16 where it reduces to investigation of the propagation of a non-
X (2iUy—6Uy + 240u[2). (11) linear Schrdinger soliton with periodic dispersion and po-

tential perturbation. The adiabatic dynamics of a soliton was

Therefore the beam dynamics in a system of tunnelingstudied. It was shown that the motion of the soliton center is
coupled waveguides is described by a renormalized nonlindescribed by the motion of a particle of unit mass in a
ear Schrdinger equation. The first term on the right-hand velocity-dependent effective potential which is a periodic
side of the equation describes the variation of the solitorfunction of the coordinate of the soliton. The stationary
phase and the remaining terms describe the variation of thgoints for the soliton were found. It was shown that the pre-
soliton width. It follows from Eq(11) that the soliton width  dicted effects can be used to control the parameters of a
increases beam in a system of waveguides.
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For fields above a critical value the expansion of the conductivity in powers of the field ceases
to be valid and the weak-nonlinearity approximation no longer works. The density behavior

of the critical fields in strongly inhomogeneous media near the percolation threshold is found on
the basis of two criteria—an average criterion and a local criterion. The parameter values

of the medium for which crossover—a change of the critical behavior—occurs are determined.
Similar calculations are performed for the critical currents. 1@98 American Institute

of Physics[S1063-78428)00206-3

Nonlinear phenomena play a special role in the study othe analogy between the critical behaviorygfand the rela-
the transport properties of strongly inhomogeneous meditive spectral densitfC, of 1/f noise, which were first estab-
near the percolation threshofg.. This is because neg, lished in Refs. 8 and 9.
there exist in a medium locations where the current density  As a rule, two limiting cases are studied. Above the per-
and voltage drop are substantial, making it necessary to takeplation threshold, where the density of the high-
into account the deviations from the linear Ohm’s law. To aconductivity phase>p. and the medium contains an infi-
first approximation there appears in Ohm’s law, besides aite cluster consisting of a phase with conductivity (o

term linear in the field, a nonlinear cubic term >05,), theN/I (normal metal—insulatpicase is studied. The
] 5 low-conductivity phase is assumed to be an ideal insulator—
J(r)=a(rE(r)+x(r|E(r)[*E(r), (1) &,=0. Below the percolation thresholgy<p,, the S/N

(superconductor—normal mexalase is studied. In this case
: - . the system does not contain an infinite cluster, and the cur-
o(r) the ordinary conductivity, ang(r) is a constant char- . -
- ) . ; rent necessarily flows through segments consisting of the
acterizing the cubic nonlinearity. . . .
low-conductivity phase. It is assumed that the entire voltage

Justas in the linear casy£0), to describe the effec- drop occurs across these segments, i.e., the high-conductivit
tive properties of a randomly inhomogeneous medium one P 9 o 9 y

introduces effective transport coefficients, which by defini-ph"ﬂf’r:a :e‘%n ',ofj_es I tﬁgnfglf:gtziﬁnz lvt;lr: gbtaine d for these two
tion relate the volume averages of the field and current denéaseS' ' 9
sity '

wherej(r) is the current densityE(r) is the electric field,

. E).~ *I+V(d*1), P\ V(d*l), > , N/l,
()= E)+ X B ) @ (B Wm0 pmpe WL
where(...)=V~f...dV and the size~V? of the aver- v _q+v
~ ~ <
aging region is assumed to be much larger than the charac- (E)e~lrl" (e~ » P<Pe, SN, ©)
teristic self—averagiqg Iength.—the correlation length ‘where 7=(p—p)/p; is the proximity to the percolation
One of the main questions that must be answered ifhresholdt andq are, respectively, the critical exponents of

describing the effective properties of a medium taking intothe effective linear conductivity above and below threshold,
account the nonlinearity is the question of the values of the, is the critical exponent of the correlation length

electric field and current density for which the relati@ is ~ag|7|”", anda, is the minimum length in the medium,
still valid. It is assumet? that the relation2) remains valid  which for a network problem is the bond length in the net-
if work. The analogy established in Refs. 8 and 9 betwgen
) ) and the relative spectral densiB of 1/f noise and the fact
(D<(Der (E)<(E)e, € that taking the finite ratidh=04/0, into account may be

where(E). and(j) are the so-called critical field and criti- essential f%_dlgs_cribing the crit_ical behavior ®f (in con-
cal current density determined from the condition that thel™@St 10 o) indicate thath=c,/0,#0 must also be

first term in Eq.(2) equals the first term: taken into account when calculating the critical fields and
currents.
(E)e=Voelxe {(i)c= ‘/UZ’/Xe- (4) Models of a percolation structure above and below

can be used to determine the fields and currents in a strongly
Many papers have been devoted to the calculation of thtenhomogeneous mediuniFig. 1).13~*® The principal ele-
critical field and current density in percolation medsee, ments of this structure are a bridge consisting of a high-
for example, Refs. 197 Some of these works are based onconductivity phase and a low-conductivity interlayer. Taking

1063-7842/98/43(6)/3/$15.00 619 © 1998 American Institute of Physics
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1 ) <j>°1:0-1‘0-1/X1TV(d_1)' <j>02:0'2\/(72/)(27-t+ .(10)

For p>p. the average fields and current densities for
which relations(7) still hold and Eq.(2) can be used are the
smaller of the two possible values:

{Efc=min{(E)c; (E)cat,  {i}e=min{(i)c; (I)ca}-
11

mainly through the bridge and interlayéfig. 1b. As the
voltage increases, the local criteria for weak nonlinediiy

are violated here first. Further calculations are most conve-
niently performed in terms of the resistivities. Then, to
within a cubic term, the relation between the current density
and electric field will have the form

E(r)=p(r)j(r)+u(n)[j(n|3(r), (12)

—O17—-.-- s i - -
where to this accuracy;=1/o; and u;= — x; /0'i4.
The local critical current densities are determined by
equating the terms in E@2), i.e.,| .= \/p,/,u,i. Knowing the

FIG. 1. Hierarchical model of lation struct i & finte ratio CrOSS” -sectional area of the brldﬁ and the interlayer
ierarchical model of a percolation structure with a finite ratio d 1 - v(d-2) _

h=0o,/0,. 1—Bridge, N; high-conductivity resistances connected in se- | | we find the average Cl’létlclal current den

ries; 2—interlayer, N, low-conductivity resistances connected in parallel. SltleS from the Cond|t|0n that the currefjp £~ through the

According to Refs. 13 and 14y;~| 7| 1" "(@=2), N,~| 792, entire medium equals the critical currents for the bridge and
interlayer (¢;a3 %, jead Y 7|97 ¥d-2):

l : [ Below the percolation threshold the entire current flows
b

into account the analogy between the weak nonlinearity and (iYea=o1Voy x| "7,
1/f noise (y. andC,), we shall confine our attention to the N s non DY T
two structural elements indicated above, since these elements (Dez= o202/ xal 7 (13

give the main terms iiC, and y, for h+0.* The N/I and From the condition that the total voltage drop across the
S/N approximations correspond to taking into account onlycorrelation length equals the sum of the voltages across the
one element of the structure: abopg only the bridge, and bridge and interlayer we obtain the critical average fields

below p; only the interlayers.
We now require that besides the conditi@®) a similar _9% \/E q+v(d-1) _ \/é v
.. . . <E>cl |T| ) <E>c2 |T| .
condition hold locally, i.e., that at each point of each phase o X1 X2
the local field and current density be less than the local criti- (14)
cal values Both above and below the percolation threshold the criti-
E(N)<Ey, [i(N<ju, i=1,2 7) cal current density and field are the smaller of the expres-
sions in Eqs(13) and(14) (see Eq.(11)).
where for each phase the critical local field and current den- Depending on the values of the parametets h
sity are determined from a local la@): =o,/0,, andH= y,/y; the minimum values in Eq(11)
Eq=vo Ixi jei= m i=1,2 @ can be the first or the second values of the field and current

density. Equating the expressions for the fields(9n and
In contrast to the condition&), which can be called an current densities in E¢10), for the casep>p. we obtain
average criterion, the conditiori8) can be called a local \/(g,y,)/(o1xo) 7 "9 2=1, or, equivalently,
criterion. Of course, there is no guarantee that the (8w B 2At— v(d—2)) B B
holds just because the conditi¢B) is satisfied. This means 7o=(H/h) , h=0zlo1, H=x2/x;.
that in some cases the relatiof and (6) should be re- 19
placed by different relations. Crossover—a change in the critical behavior of the criti-
As one can see from Fig. 1la, the voltage across theal field current density—occurs whenpasses through the
bridge equals the external voltage. Assuming that the electrizalue 7,. The critical current density depends eas~ 7*+"
field on the bridge equals the critical fielid; and expressing for 7<7, and ~ 7"~ 1 for 7>7,. The critical field also
the external voltage drop in terms of the average field, waindergoes crossover: Fox 7y it is ~ 77 and for > g it is
find the average field corresponding to the local critefidn  proportional tor~t"*(@=2),
of weak nonlinearity to beE) ., =(N,aq/&)E¢,. Similar ar- The regionl indicated in Fig. 2a corresponds to the case
guments for the interlayer givE).,= (ag/&)E, or when {E}.=(E)., from Eg. (9) and {j}.=(j). from
T —t4u(d— _ Y Eq. (10). The region2 corresponds to the situations when
(E)er=No1/xam "M, (B)o=Noalxor" (9) {E}e=(E)e1, {i}c={(j)e1, i-€., the critical exponents of the

The critical current densities for the fiel@8) are current density and electric field are identical to E5).
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FIG. 2. Surfaces bounding the regions of the constants rhtios, /o, andH= y,/x, for a weakly nonlinear medium where the results of the standard
approach" are valid (N/I andS/N caseg5) and(6)) and the critical current densities and fields obtained on the basis of a local criterion. Regitendard
approach l—results of this work. The hatched region of valuesr@brresponds to the region of broadenihigThe quantityA is determined on the basis of
the analogy between the effective properties of the weakly nonlinear medium and the effeiciigsg][® A =hY(+d),
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The wave equation is solved by the operator separation method proposed in V. V. Zashkvara and
N. N. Tyndyk, Zh. Tekh. Fiz61(4), 148(1991) [Sov. Phys. Tech. Phy86, 456 (1991)].

Solutions describing the evolution of circular-multipole fields are obtained in a cylindrical
coordinate system. €998 American Institute of Physid$$1063-784£98)00306-1

A new approach to solving Laplace’s equation by sepa-

ration of variables has been proposed and substantiated in ®n(§)= WEZ”“,

Refs. 1-3. In this approach a solution is constructed in the '

form of a sum of paired products of functions of one variable n=0, 1, 2,...,(N—1)/2, if N is odd. 4
that satisfy chains of second-order ordinary differential equa- . : R

tions and zero boundary conditions on a circle. The differen- 1 ne functionsk;(R) and ¢;(¢) and their derivatives at
tial operators of these equations are coordinate-separatdd® POINtR=1, £=0 satisfy the boundary conditions

parts of the Laplacian. A class of circular multipoles in cy- dF,
lindrical and spherical coordinate systems has been obtained Fi(1)=4g| =0, i=0,1,2,...
by the operator separation methbd. R=1
In Ref. 5 a new approach is used to solve Poisson’s do;
equation. It is shown that if the right-hand side of Poisson's  ¢;(0)= d_g =0, i=1,2,.... 5)
equation in a cylindrical system with dimensionless coordi- £=0
natesR/rq, £=2/rq (ro is the radius of an axial circleis In Ref. 5 it was shown that for different values mfthe
represented by the function solutionsV, (R, &) of Poisson’s equation possess the struc-
AR, E)=No(R), (1) ture of modified circular multipoles, which were termed non-

Laplacian. In what follows we shall cafli(R) and F;(R),
whereN is an integer and/(R) is a smooth function oR, respectively, the radial functions of Laplacian and non-
then a solution of Poisson’s equation is given by the sum Laplacian circular multipoles.

Our objective in the present paper is to use the operator

@) separation method to solve the wave equation in a cylindrical

coordinate system, to obtain particular solutions on the basis

. o o of the multipole approach, and to determine the character of
In this sumn=N/2 if N is even anch=(N—1)/2ifNiS e temporal processes described by these solutions.

vn(R,§>=mE:O em(€)-Frnm(R).

odd. The set of radial functiorfs;(R) satisfies a chain af The wave equation in dimensionless cylindrical coordi-
differential equations natesR, ¢ and dimensionless time=ct, /r, (t; is the di-
TFy=N!w(R), mensional time and is the propagation velocity of a distur-
bance in a uniform mediuyis
TF=~Fo, (A= XU, & =0, ®)
--------- ’ whereA is the Laplacian angt= g%/ dt? is the temporal op-
_ erator.
TFn="Fn-1, ©) According to the operator separation metddhe so-
where lution of Eqg. (6) will be a sum of paired products of the
coordinates and temporal functiongR, &) and ®;(t)
ki n
Un(R, & D=2 vo(R, §): P (1), (7)

is a second-order differential operator—the radial part of the
Laplacian. If these functions satisfy the chains of equations

The set of axial functiong;(£) is Avg=0, Aw,=wy,

1
(Pn(g):(zn)' §2n, AVZZVJ_, ......... ,

n=0,1,2,...,N/2, if N is even, Av,=v,_q, 8

1063-7842/98/43(6)/5/$15.00 622 © 1998 American Institute of Physics
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x®o=0, Let us substitute expressi@h5) into Eq.(14). Perform-
ing some manipulations, we arrive at a solution in a form

x® 1=y, that facilitates further analysis of our problem:
xP,=D,, N n N N
V(R,f)ZE ‘Pman—)m: 2 QDmE F§1r1—)m
......... , n=0 m=0 m=0 n=m
X0, =D, _;. (9) N NZm
o | = on> FM9., (16)
Indeed, operating on the suif¥) with the operator m=0 $=0

[A=Xx], we obtain Two successive operations lead to Ef6): switching

n the order ofm and n summations and then replacing the
(A—X)SZO vs(R, §)®-4(1) summation oven by summation oves=n—m. The radial

functionngm) form a triangular matrix
n

n
— 0 1 2 3 4 5 . N
2520 (Avy)®,_s— 520 vs(xPn-s)

n n—-1
=§l vs 1 ®Pp_s— SZ]O ve®, o 1. (10) F&Y F,
F&Z) F(22)1
F(03) F(13) F(23) F(33),
F(o4) F(14) F(24) F(34) FE{”,
FEJS) F(15) F(25) F(35) FEtS) ng),

Let us now shift by 1 the summation index in the first
sums—1=k, vg_ 1=, ®,_s=D,__1- Then
n n—-1

2 vg 1Pp_s= 2 e®pq-
s=1 k=0

O Br W N R O +—
il
n

NOFY RN R YL y FQV.

Thus, the sums in Eq10) are equal and Ed®6) is sat- _ ™) _ _
isfied. The solution of the system of equatidBsis given by The functionsF4™, which together form the solution
the functions (15 and correspond to individual terms of the polynomial

(13), stand in the rows of the matrixr(=const). The solu-

@n(t):Ltzn, n=0,1,2 ... (12) tion of Poisson’s equation with the right-hand side in the

(2n)! form of the polynomial(13), according to Eq(16), consists
if ®y(0)=1, P,(0)=0 (n#0), anddd,/dt|,_,=0, or the of paired products ofp,, times the sum of the functions

functions Fos, These.functions lie glong the diagonal_s of the matrix.
The end point of the diagonal along which the index
o — 201 =01 2 (12) s=0,1,2, ...,N—m varies is determined by specifying
" (2n+1)! ’ T the value ofm. The set of functions forming a diagonal is
if ®,(0)=0, a®y/dt|;_o=1, anddd,/dt|;_o=0 (n#0). FW EMED g2 W 17

According to Eq.(8), to find the coordinate functions - - :
vi(R, &) itis necessary to solve a chain of partial differential Remaining W'”"F‘ the mult|po_le approach, we s.haII solve
equations, consisting of Laplace’s equation for the function§he §ystem of equatlor(ﬁ)_, chposmg ag}O(R’ ¢ a cwpulgr
vy and Poisson’s equations for the remaining functions multipole of order N, which is a harmonic polynomial i§
Before attempting to solve this problem we shall supplemengRefS' 1 and 2 Then
the results of Ref. 5 and find the solution of Poisson’s equa- 1
tion in the case when the right-hand side of this equationisa @™ (R)= Wfon(R)a n=0,1,...,N, (18)
polynomial in & with arbitrary R-dependent coefficients. Let
this be an even polynomial of degre&2 wherefy_, are radial functions of the first or second kind,
N studied in Ref. 4. gms)
B n on We shall show that in this case the functioR
FR, 5)_2‘0 w0 M(R)E". (13 standing on the same diagonal of the matrix are equal, and
i , , , , ) the solution of the chain of equatio(®) can be easily found.
Then the solution of Poisson’s equation will be given by thel_et us operate with the operatdron the function(17), tak-

sum ing into account the differential equati@B) for F; and the
N system of differential equations satisfied by the radial func-
V(R §=2 V(R &). (14  tionsf; (Refs. 1 and 2
n=
In accordance with Eq(2) The==f, 1=0.1,2,...n. (19
n As an example, let us find,(R, £&). According to Eqgs.
VOR, 6= nf™. . (15 (3 and(18), T_Fgm):@m)(R):fN_m. Using Eq.(19), we
m=0 obtain from this relation
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FO"=—fnome. (20

According to Egs.(3) and (20), TF{™*Y=—F{n*1)
=fn_m, and we have on the basis (if9)

1 N
RO~ P2 ()N

Xm[gm N*m]Z (28)
FiM Y= —fy s (22) (N—m)l(2my s P %

According to Egs.(3) and (21), TR 2= —F{"*2) A characteristic feature here is that the sum is a homo-
=fn_m- On the basis of E¢(19) we have geneous polynomial of degre@dn p and¢ containing sign-

F(m+2 (22) alternating coefficients. This polynomial by itself describes a
multipole structure with nodal poiR=1, £=0, where the

and so on. Indeed, aM—m+1 diagonal element§{""® 2N zero equipotential lines converge. The fagtdt in front

are equal and have the valuefy_p,1; there areN—m  of the sum contributes to the structure of the field an addi-

+1 of them. Returning to formulél6), we conclude that if  tional zero equipotential lying on theaxis, which separates

the right-hand side of Poisson’s equation is represented by #e single-potential region into two symmetric parts, thereby

circular multipolevy(R, &) of order 2N, then the solution of increasing the multipole order by 2. In Ref. 5 such structures

this equationvy(R, ¢) is a polynomial of the same orderé  were called incomplete non-Laplacian circular multipoles.

__fN m+1

and has the form We shall also determine the spatiotemporal structure of the
N field (25 on a surface of section by the plage0 nearR
(R, &) == > (N-m+1)on(&)fy_ms1(R). (23)  =1.In accordance with Ed4), we have for even functions
m=0 en(é)

Generalizing Eq(23), one can show that the solution of 1 if m=0
an arbitrary linkA vs=v¢_, in the chain of differential equa- om(0)= o (29
tions (8) is 0, if m= 1,2, ....

(- N (N—m+s)! According to Eq.(25) we have
v(RE=—g— 2 o #m(O)fumis(R).

(24) Un(R, 0,0)= 2 (=1 (R)®y o(1). (30)

Substituting expressiofR4) into Eq. (7), we write the

solution of the wave equatiof®) in the form As an example, let us consider even functions for the

choice of®(t). Then

So(-De
Un(Rv £, t)ZZ —lq)n—s(t) _ 1 2(n—s)
&0 s D, (D)= =9 t . (31
N
> (N-m+s)! on(6)Fr . (R). Substituting expression@7) and(31) into Eq. (30), we
m=o (N—-myt =™ mes arrive at the following expression for estimating the spa-
(25) tiotemporal structure of the field in the sectiés 0
The spatiotemporal structure of the solutigh or (25) 25:2(n—5)
near the axial circl&®R=1, £=0 is determined by the leading Un(R,0,1)= 2 [2(n—s)]! ST (32
terms of the functiong24). To find them it is necessary to .
separate out the leading terms of the radial functifynap- It follows from Eqg. (32) that Un(R, 0,1) is a homoge-

pearing in Eq.(24). It turns out that in consequence of the neous polynomial iR andt of degree & whose coefficients
chain structure of the system of differential equatibfs, all have the same sign. Near the poitt=1, t=0 the equi-
which f; satisfy with zero boundary conditions, we have  potentialsU,(R, 0,t) of the wave field form a system of
) _ closed curves encompassing this point. The fig|dR, O, t)
fisr/fi~p® as p—0 (p=R-1). (26) s not a multipole field. But after one makes the substitution
It follows from this relation that the leading ternfs  t=i7 and transforms to imaginaryin Eg. (32), the field in
equal the coordinatesR,7 becomes a circular multipole with a
i 2it1 node atR=1, §=0, 7=0.
fi~(=1)'p Thus the spatial-wave structure of the wave figldin
for the radial functions of the first kind and all space is determined by a time-dependent polynomial
f—(—1)ip? whose coefficients(R, &) are circular multipoles. Initially
' P (t=0) the structure of the wave field (R, &, t) will be
for the radial functions for the second kind, represented by a non-Laplacian circular multipol¢R, &)
i—0.1 @7 (n#0), and in the limitt—< it will be represented by a
T Laplacian circular multipole/g(R, £&).
We shall confine our attention to the radial functions of ~ As an example, let us examine the structure of the mul-
the second kind. Then the leading terms/i(R, &) (24) can tipole solution of the wave equatidi@) for the caseN=1.
be represented by the formula The Laplacian circular multipole is
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FIG. 1. FIG. 3.
vo(R, &) =f1pg+ . (33) and so on. For even functioni,(t) we have, according to

According to Eq.(24), the non-Laplacian circular multipoles Ea. (7),
can be calculated from the formula

n=0, Ug(r, & )=ve®@o=F100+fop, (36)
(-1)5 & (s+1-m)! !
VS(R! g): S! i, (1_m)| QDm(g)fS-f—l—m(R); n:j-; Ul(Ri §1 t)zsgo VS(Dl—S
(34 L
S:]., Vl=—[2(p0f2+ (Plfl], :E(f1¢o+fO@l)tz_[Z‘Pofz"'(Plfl]u (37)
s=2, v,=3¢of3t ¢i1f>, 2 1
= — _— 4
523, V3= _[4@0f4+ (,le3] (35) n_27 U2(R1 ga t)_szo VS(DZ*S_4! (fl¢0+f0@l)t
E
‘ \_/ !
=
1.0 \ T 1.0
+
0 { 0 }
+
-1.0 T ~1.0pZ T
1 i
3.0 2.0 1.0 0 3.0 2.0 1.0 g
FIG. 2.

FIG. 4.
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FIG. 5.

1
_5[2¢0f2+¢1f1]t2+3€90f3+ e1fs (39

and so on.

To calculateU, the radial functions of the second kfhd
were chosen forf;(R) and the even functiofisof ¢ were
chosen forg;(£):

1
fo(R)=1, f(R)= Z[Z In R+1—R?],
1
fo(R)= & —(4+8R?%)In R—5+4R?+R*]. (39

1
eo(£)=1, <P1(§):§§2- (40

Then, according to Eq37),

1|1 2 2042
Ui(R, & )=7|5(2InR+1-R*)+ £t
1
—3—2[—(4+8R2)In 5+ 4R%*+ R

1
—ggz[zm R+1-R?]. (41)

The computational results obtained fdx (R, &, t) us-

V. V. Zashkvara and N. N. Tyndyk

FIG. 6.

shots” of different times in the development of the spa-
tiotemporal process described by the wave multipole
Ui(R, & t): t=0, 0.3, 0.5, 0.7, and 1.2, respectively. For
=0 the wave multipole is an incomplete non-Laplacian cir-
cular sextupoldéFig. 1). Even for smalk the contribution of
the quadrupole}(2 InR+1-R?)+& eliminates the zero
equipotentialR=1 and destroys the non-Laplacian sextu-
pole. It is evident from these figures that in time the devel-
opment of this process leads to the formation of a structure
close to a circular Laplacian quadrupdkgs. 5, 6.

The process unfolds similarly in the other cases which
we examined. It can be concluded on this basis that the op-
erator separation method makes it possible to obtain a mul-
tipole solution of the wave equation that describes a field
evolving from a more complicated to a simpler structure.
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It is shown that high-accuracy contact-free measurements of the divergence and emittance of an
accelerated H ion beam at the exit from the source can in principle be performed by

passive Doppler spectroscopy of a beam of excited hydrogen atoms produced by neutralization
of the ions with excitation on the residual gas in the source channel. The intensity of the
H,-line radiation detected by the Doppler system is calculated, taking into account the principal
processes leading to the excitation and deexcitation of the8@, and 3 levels of the

hydrogen atoms in the beam, for residual gas densities of the order 610 ° Torr in the

source channel. The computed-ihe intensity was confirmed experimentally, making

it possible to perform photoelectronic detection of the spectral contour of the line in the current
mode rather than the photon-counting mode. 1@98 American Institute of Physics.
[S1063-784298)00406-1

INTRODUCTION N(H,) =N3zs+N3y+Ngq, @

Monitori f th faHi i . . . "
contin%glazrlgge?atEoE E?rt.ﬁr;est(i:fcg is arzogx?ree%rgldurlrggsinWhereNm is the number of photons emitted in the transitions
P yp gsHZp, 3p—2s, and 3—2p, respectively, by hydrogen

problem. Contact sensdrs' do not solve this problem be- atoms in the beam and is determined by the number of spon-
cause they introduce perturbations into the beam and ir£ y P

crease the beam divergence, and it is virtually impossible t ar;?guzndgfoag; ﬁ\cfhuerréineg'][e%\t/iirnt?:c:irc?r\f/:/r?i?h@;rixcrlteesdent in
use contact sensors for continuous monitoring of the diver- ydrog P

gence of an ion beam during the operation of the source. Tht(g]e entire volume of the beam pulse and enter the detection

only method permitting such nonperturbative monitoring isSyStern of the Doppler recording system with angular aper-

Doppler spectroscopy, which has been used in the past féPrEA‘PA

monitoring the divergence of high-intensity beams of atoms DA@AVA, (b

and negative ions of hydrogen in the channel of an Nm:—m f Ny(X)dt. )

acceleratdt® and for measuring the temperature of hydrogen 4mf 0

th) T)S;llsr;;}he plasma discharge of surface-plasma sources ﬂfereD andf are, respectively, the diameter and fppgl length
In the present work we determined the possibilities ofOf the converging lend.,; Ap are the prqbabll|t|es of

performing high-accuracy contact-free monitoring of the gi-the 2 cggrespond|ng sgorjaneous tranS|t|ow7@fl(?.63

vergence and emittance of an accelerated beam of negativ 10757, Agp=2.2<10" s, and Ayg=6.4x10"s% V

hydrogen ions in the source channel by passive Doppler_.;;]ddCbT'Q/4 't‘?’] thbe "°'“dr.“e 0]; a beam/pulsi of dqrat[trll@n
spectroscopy without using a charge-transfer target. with @ being the beam diameter ag=v ¢, whereu IS the
velocity of the ions in the bearm,(x) is the density of

excited hydrogen atoms at the detection point in the states

H,-LINE INTENSITY OF AN ACCELERATED PARTICLE 3s, 3p, and 3

BEAM AT THE SOURCE EXIT

An organically integral component of the ion source ofa  Npy(X)= nom(x)exp(Amt). (©)]
modern accelerator is the turning magtede Fig. 1, which
separates particles according to the transverse velocities of The densitiesi(x) of the excited hydrogen atoms after
the beam extracted from the source and forms an ion beathie particles have passed through a section of lergththe
with a fixed emittance. Transport of the Hon beam along source can be found from an equation that takes into account
the channel of the source magnet is accompanied by neutrdhe excitation of H ions and H atoms in collisions with the
ization of the ions and excitation on the residual gas parresidual gas as well as radiative decay of the excited levels
ticles. The numbeN(H,,) of photons spontaneously emitted and collisional relaxation on the residual gas
in the H, line by excited atoms in the hydrogen beam during 0
the timet, that the beam atoms travel over the rectilinear dnp(x)
detection section at the exit from the magnet is dx

= ng[no(x) 0'O,m_*' n70'71,m:|

1063-7842/98/43(6)/4/$15.00 627 © 1998 American Institute of Physics
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—— o —— > o o s e st e o

Computer

FIG. 1. Doppler system for detecting a kbn beam in the source channel.
S—H™ ion source, M—turning magnet, O—optical window,
L,—converging lens, S;—detector slit, FOC—fiber-optic cable,
L ,—focusing lens of the spectral unkl C—monochromator$ l—scanning
interferometer P M—photomultiplier.

 a(0AR

(4)

0
—NgNy(X)ope,

whereny is the density of residual gas particles in the sourc
channel,n®(x) is the density of hydrogen atoms in the 1
ground state in the beam, (x) is the density of H ions in
the beamg,, is the cross section for the excitation of hy-
drogen atoms into the state in collisions with the residual
gas,o_;, is the cross section for charge transfer from H

ions accompanied by the excitation of hydrogen atoms into

the statem in collisions with the residual gas, is the lon-
gitudinal velocity of the accelerated beam of libns, opc
=0mot om 11+ 0m -1 iS the total cross section for the col-
lisional decay of the excited leveis.

Sinceo_; <o _1, the H’ atom and H ion densities in
the beam are, from Eq$4),

n~(x)=n"(0)exp —Xxngoo 1), (5)
_10n (0
no(x)= %_c(ro)l[exp( —XNg0g1) — EXP(—XNgo_1 )]
- (6)

We introduce the following notatiork pc= 1/ngopc is

the mean free path of excited hydrogen atoms in the sta

m=3 due to collisional decay of the excited levelsyy

=vlA,, is the mean free path of excited hydrogen atoms dug
i o
to the decay of the excited levels as a result of spontaneous

emission; Wp=1MA\pc+pgr; and, \;=1go 10, A
=1/n90'0’1, and B:O-—l,ol(o-—l,o_ 0'0'1). SubStItutIng the
parameters into Eq2), we find

€

V. V. Antsiferov and G. |. Smirnov

dng(x)
dx

n°(x)

=ng[Boomn™ (0)[exp(—x/\5)

—exp(—x/\)]+n"(0)o_1m

X exp( —x/Np)]. (7)

Solving this equation with the initial conditiomﬁ(O)
=0, we obtain

No(x)=ngn "~ (0)[Bogm(Ap = Ay H) " [exp(—x/\,)
—exp( —x/\p)]+(0_1 = Bogm(Ap'—A; H 7!
®)

We shall calculate the densit)&(x) of excited hydro-
gen atoms for two values of the residual gas dengjtin the
source for a H ion source with the optimal parameters:
ion-beam energy 40 keV, pulse current 0.2 A, pulse duration
0.1 ms, beam diameter 2 cm, beam emittance*@d-cm,
and pulse repetition frequency 100 Hz. Then=2.8
X 108 cm/s,n~(0)=2%10° cm 3, and the parametefsare
B,=v/c=7x10"2 for the longitudinal component of the
beam velocity and3, =v, /c=1x10* for the transverse
component.

1. Let the residual gas pressure in the sourcePlse5
X107° Torr. Then ny=1.6x 10" molecules/cri For 40
keV H™ ions the charge-transfer cross section$ are; o
=8.7x10 ¥ cn?, o_;,=4x10 Y e, and og,=1.43
X10 % cm?.  Then oi=03=03%=1.6x10 5 cn?.
The cross sections for neutralization with excitation
ar€  o_15=21x10%cn? and o_jg+o_14=15
x 10718 cn?. For a section of lengtk=20 cm in the source
channel where charge transfer from kbns occurs the other
computational parameters ane;=0.7X10° cm, \,=4.4
X 10° cm, Apc=0.4x10° cm, \3,=44 cm, \3%=12 cm,
and xng=4.3 cm. Then Eq(8) simplifies substantially:

X[exp(—XINq) —exp(—X/\p)].

No(X)=Ngn~ (0)[ o 1 A DRl L —exp( —X/ABR) 1.

©)

Substituting expressio(®) into Eq. (4), integrating and
substituting into Eqs(2) and (1), we find for the number
N(H,) of photons emitted in the Hline

VApp
47 f

D
N(H,)= 2 np()[1-exp(~Ant)]. (10
For a diameteD =6 cm of the lensL, in the optical
detection system the detection time for thg-lhe radiation
ist,=D/v=0.2<x10 " s. Substituting into Eq(10) the val-
ues of all parameters gives

N(H,)=3X10° photons/pulse. (12)

2. For a residual gas pressuRe=5x10 % Torr and a
source-channel density,= 1.6x 10" molecules/cry we
aveN;=70 cm, A,=440 cm, and\pc=40 cm, the other
arameters having similar values. In this case &).be-
mes

No(X)=Ngn "~ (0)[ oo+ BAD[ 1—exp( —x/AD)]

+(0-1m=BoomNp "+ A H
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X [exp(—x/\q) —exp(—x/A]]]. (12) spectrum will equal 2.3 nm, which makes it possible to sepa-

) i o rate quite simply the shifted Hline emitted by an acceler-
Here ooy is the cross section for the excitation of hydrogeneq heam of hydrogen atoms. The contribution to the width
atoms into the 8, 3p, and 3 states in CO||ISIOH§1\;VII:1nZI’e- A\ of the Doppler contour of the Hiine with the detection
sidual gas pa_ll’1t7IC|es in the SOWC&O,G_Sl:BlX 10 ""en’,  angle different from the magic angle will be of the order of
0op=15X10"" cn?, andoguy=7x10 ¥ cn? (Ref. 10. 153

i . A0 .
The working values of the parameten§(x) are: ng(x) The contribution due to the angular apertre , of the

— —3 0 _ —3 0
=2.8<10° cm >, ng,(x)=3.6<10° cm®,  and n3y(x) receiving unit of the Doppler system to the width of the
=3.4x 10° cm 3. Substituting the values of all parameters Doppler contour is eliminated‘f

into Eq. (10), we have in this case for the numbg¢H,) of

photons Agp= 0.10o _, oo (18)
N(H,)=4.2x 10° photons/pulse. (13 NoBi
The intensity of the detected Hine can be increased by
PARAMETERS OF THE DOPPLER DETECTION SYSTEM using in the detecting unit of the Doppler systésee Fig. 1
a lensL; with diameterD and a slit of width

The contribution from the sprea¥g, of the longitudinal
particle velocities in the accelerated beam to the Doppler Al=f-Aga (19
broadening of the K line can be neglected for radiation at the focal point.
detection angle®, close to the “magic” anglepy,, which For a lens with the focal length=20 cm the slit in the
equalé detecting unit should be 1 mm wide. For spectral analysis the
(14) H,-line emission from the detecting unit of the Doppler sys-

tem is extracted with a fiber-optic cable into a spectral unit

Since the average longitudinal velocity of beam particlesconsisting of a monochromator crossed with a scanning
in the source iw=2.8x10° cm/s, the magic angle equals Fabry—Perot interferometer. The monochromator separates
¢m=89.6°. When the radiation detection angle equals thehe shifted H line emitted by the excited hydrogen atoms in
magic anglepy , two H, lines will be observed in the Dop- the accelerated beam, while the width of the Doppler contour
pler detection system: a line shifted by 0.03 nm, emitted byis detected with a scanning interferometer and photomulti-
hydrogen atoms in the beam which are excited in the procesglier, the signal from which is fed into a computer.
of charge transfer from the ions on the residual gas, and an
unshifted line, emitted by excited hydrogen atoms formed in
the residual gas as a result of the dissociation of moleculaCONCLUSIONS
hydrogen in collisions with accelerated hydrogen ions and
atoms in the beam: HHg)+H,—H™(HY)+Hg(n=3)+H,.
The density of the molecular hydrogen in the residual gas i
the source channel is quite high-(0* Torr) and the inten-
sity of the unshifted H line will be comparable to that of the
shifted H, line, while its spectral width will be

@\ = arccosg; .

The results of the present work show that passive Dop-
rpler spectroscopy of a beam of partially excited hydrogen
atoms, obtained by neutralization of the ions in a beam and
excitation of the hydrogen atoms in the beam on the residual
gas in the source channel, can be used for nonperturbative
monitoring of the divergence and emittance of a beam

AN, =2\ovr/C. (15  extracted from the source. There is no need to introduce a
gas target into the source channel, and the Doppler contour
of the H, line can be recorded using photoelectronic detec-
tion of the H,-line contour rather than the photon-counting
mode. The method of passive Doppler spectroscopy devel-
oped was used to record the divergence of a beam abhis
extracted from sources of negative hydrogen ions with plan-
ANp=2\yB, cos b (16)  otronic and Penning electrode geometry. Its accuracy was
confirmed by comparing with contact slit measurements of
the beam divergence. It was shown that for discharge current
densities<25 A/cnt in the sources the divergence of the H
ion beam is smallest in the case of a planotronic source of
H™ ions (Special Report No. 7504, Sukhumi Physicotechni-
cal Institute, 1989

For the average thermal velocity of the residual gas
=1.38x 10°[3E(eV)]*?, the width of the unshifted Hline
equals 0.1 nm.

The width of the Doppler broadened,Hine emitted by
excited hydrogen atoms in the accelerated eam

will equal 0.13 nm in our case. To separate these two H
lines in the spectrum the detection anglemust be chosen
to be somewhat different from the magic anglg,. The
deviationA ¢, of the detection angle from the magic angle
must satisfy the conditidh

ANp
NoBy

+Ap, <107 <30°, (17

) o o ] 1G. E. Derevyankin and V. G. Dudnikov, IYaF SO AN SSSR Preprint No.
for which the contribution from the longitudinal velocity  79-17[in Russian, Institute of Nuclear Physics, Siberian Branch of the
spreadA 8, of the beam to the width of the Doppler contour _Academy of Sciences of the USSR, Novosibitsk79, 15 pp.

; ; 2G. E. Derevyankin, V. G. Dudnikov, and M. L. Troshkov, IYaF SO AN
of the shifted H line can be neglected. Therefore the detec SSSR Preprint No. 82-11[0n Russian, Institute of Nuclear Physics, Si-

tion angle _Of the Doppler SY_Stem can be _chosgncpas berian Branch of the Academy of Sciences of the USSR, Novosibirsk
=60°. In this case the separation of the twg khes in the (1982, 18 pp.
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Cooperative population dynamics of an ensemble of A atoms in a bichromatic field
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Equations are derived which describe the dynamics of three-level atoms witlexeel scheme,
interacting with two coherent resonance fields under conditions such that cooperative
relaxation predominates over incoherent spontaneous emission. A numerical calculation of the
temporal dynamics of the values of the atomic populations is performed. It is shown that
coherent population trapping in the presence of cooperative decay is possible. The quantities
characterizing this phenomenon are calculated—the width of the black line and the

transition time to coherent trapping in this scheme. 1898 American Institute of Physics.
[S1063-784298)00506-9

INTRODUCTION EQUATIONS FOR THE DENSITY MATRIX

Research on the interaction of coherent electromagnetic L€t us list the main assumptions employed in this work.
radiation with multilevel quantum systems is today a rapidly't IS assumed that an ensemble Nfidentical three-level
developing field of nonlinear laser spectroscopy and quar@loms interacts with two resonance electromagnetic waves.
tum optics. In multilevel systems the presence of severat€tL be the linear size of the medium. We denote the atomic

channels of excitation and induction of coherences betweeR €S by0)r, [1)1, and|2),, wherel=1, ....,N enumer-

long-lived quantum states by laser fields plays a fundamentaﬁtes the coherent atoms. The corresponding wave function is
role. This leads to the appearance of different quantum inter-  |i),=[i(INT))®[|i(MOT)),, i=0,1,2, (1)
ference effects in the internal dynamics of the atoms. The

interference of quantum states that arises as a result of cg\ﬁ\fhwh consists of two parts describing the inter(idiT) and

herent excitation and leads in turn to coherent populationran5|at'0na[MOT) degrees of freedom. LED(INT)) be the

. . . S upper excited\ state and1(INT)) and|2(INT)) the low-
trapping (CPT) is the basis of many directions of develop- energy states. Absorption of a photon corresponds to a shift

ment n modern physps: ultradegp Iager cooling of atomsof the translational part of the wave functi¢h in momen-
production of lasers without an inversion, and oth&se

tum space by the amount of the photon momentum. For this

Refs. ,1 and 2 for a more detailed d!scus$10n reason, for further analysis it is convenient to perform the
It is knowrT that different relaxational processes, for ex- following phase transformatioh®

ample collisional, strongly influence the evolution of the ' ' '

populations of atomic systems under CPT conditions. How-  |J(MOT)),=expik;z)|0(MOT));, j=1,2, 2

ever, In previous works concemning CPT in atomic systemsyhare7 s the coordinate of thith atom and; is the wave

the casen-A°=1, whgren is thg .atom density anld. isthe  umber of thejth mode.

wavelength of an optical transition, was not studied. Under  Thjs transformation makes it possible to eliminate in the

these conditions cooperative effects have a determining insquations below the explicit dependence on the coordinates.

fluence on the evolution of the System. As is well knOWn, We define the collective atomic Operator as

the main such effect is the mutual coordination of the behav- N

ior of the atoms. As a result of this, relaxation in such a - o

S - - - . Rij:E IUE (3
ystem is determined not by ordinary spontaneous emission =1

but rather by a coherent procegsuperradiange Effects .

similar to superradiance in a lumped Dicke m&dalso oc- The commutator between the operatgs is

cur in 'eIongatedneedle—shape'dsampIes, where cooperative R R, =6, R, —8, R . 4
emission has a narrow directional pattern. # [t

In the present paper we extend the well-known single- The commutation rules follow directly from the defini-

mode Bonifacio modélto the case of an ensemble of three-tion (3) and the orthonormality of the wave functions

level A atoms interacting with a coherent bichromatic elec- TN

. S ; . Wi )= 8 i ®)
romagnetic field in the presence of cooperative relaxation. It

is established on the basis of equations derived below and The electromagnetic field is described by bosonic cre-
describing the evolution of the system that coherent populaation and annihilation opera\tmag+ and a;. The coupling

tion trapping is possible and the main parameters characteconstant characterizing the interaction of the atomic system
izing this phenomenon are calculated. with the field is defined as

wv

1063-7842/98/43(6)/6/$15.00 631 © 1998 American Institute of Physics
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B /thwoj . where

M(o)=— g[H,O’].
where wy; is the frequencydy; is the |0)—|j) transition
dipole moment, and is the quantization volume. Perturbation theory is applicable if
As a simplification, we shall neglect incoherent decay N
from the upper excited level, which is a consequence of the 79i
interaction of the vacuuntzero modes with the continuum.
The reason for this simplification is that the cooperative prowhich should hold for bothj=1, 2) modes. Therefore pho-

cess is much faster than the incoherent process. Instead @fns escape in a time shorter than the duration of the super-
slow atomic relaxation, fast relaxation of the electromagnetigadiance (SR) pulse (the duration of the SR pulse isq

field into a laser-determined stationary state which produce&|gj|2/h2|\| 7). For this reason, the variation of the field at

<1, (12

a pure coherent stater; )¢, i.e., timest> 7 can be excluded adiabatically.
~ Expanding expressiofll) in a series inr, we obtain up
aj| araz)i=ajlagaz)s, (1) to terms of orderr?

wherea; are complex numbers, is introduced.
The most important characteristic of the system is the

Chorer thar, he electromagnoti feld s il n & sate that __ SUBSUUING €xpressioft3) o Eq. (9) and taking the
’ g trace of both parts of Eq9) over the field variables, we

is coherently coupled with the state of the atomic SyStemobtain an equation for the atomic density matrix
which has emitted a photon. At times longer thaiie pho-
tons leave the region of interaction and coherence betweed . i7|. d . [N T I
the matter and field states breaks down. The tinigof the gz P~ 7 | Hat 3¢ P} == 7 [Hat.p]l= 72 TH[H.[H,p11}+,
order of 1 ns folL.~30 cm and can be chosen as the shortest (14)
time interval in the system, since it is much shorter than . _—

5 - S where we have introduced the Hamiltonian
10~ s—the characteristic spontaneous relaxation time. Thus
the field density matrix arrives in its stationary state Hat:f <aaa2||:||ala’2>f
|y as)i1{ ara,| with relaxation timer.

We shall describe the interaction of two waves with the

entire collection of atoms as

(}(t)Z(}'(t)—T% o' () +7M(a'(1)). (13

which acts only on the atomic variables. Next, we apply to
both parts of Eq(14) the operator

A A ~ 7 4 ~
H = _ﬁﬂlﬁll_h‘()fﬁzz_'— glél’\ROl Q(x) ZX+ %[Hat’ X]Y (15)

+0%a; Root g7 a5 Rygt 9r3,Rpz, (8)  whereX stands for Eq(14).

) _ o According to the accuracy adopted above, we neglect
where(}; is the detuning of th¢th field from the frequency arms proportional ta?

of the corresponding atomic transition.

The density matrixo(t) describing the atoms—field sys- p=——
tem satisfies the Liouville—von Neumann equation with the 97 h

relaxation term " A "
—2TH{H(p®|ajaz)ss (aran|)H}}

J i . R T ~oy A2
— [Hats p1= 72{((H)—Hzp

Jd - [T R

= — - — ! T ~ = ~ A A~

at 7 ﬁ[H'U] T(U o), © _ﬁ(p(<H2>_Hgt)+2HatpHat)v (16)
where the equilibrium density matrix’ is where(H?) = (aja,|H?| ayas)s .

L In the case of a\ scheme the equation for the density

o' =p®|araz) i aay, (100  matrix is

. - . . J e N oaa .~ s
and the reduced d?n_SIty [natr,lxdescrlbes only the ator.mc ﬁ&_T p=—i[Aat,p]+ 7191/ A[Ryo, pRos] + [ Rygps Roal)
degrees of freedomp=Tr{c}; (trace extends over the field

variables. The equation(9) possesses a formal solution in +T|92|2([§20 PRos]+ [ Roogps Rog])- (17)

the form of an infinite series
This equation is the extension of the Bonifacio model.

- — =t/ me = —(t—t")/
o(t)=¢' T)mZ:O o M™(a(0))+ P foe (o ATOMIC OPERATORS AND THEIR AVERAGE VALUES

= (—tym Exhaustive information about the dynamics of the
> E KIM(&(t))dt, (11) ator_mc system is contained in the average value of the col-
m=o m! lective atomic operator
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1 oa
rj=r TiRiph 1.j=012. (18

Switching to the new variables; , we write Eq.(17) as

d i A e T
N Er“/:—%Tr{[Hat,p]R”r}ﬁ'gz

2
X 2 |9j"|2Tr{([§j"0,;)ﬁoy']
j”=l

+[I’:\2j"05’|’:\20j”])§jj’}' (19)

Permuting cyclically within the trace, we obtain
J i ~ o~ oA T
Nﬁr“/: - gTr{p[Hat,R“ /]}"‘ ﬁj

2
X E |gJ//|2Tr{ﬁ[|’\?J/J/ ,ﬁoj//]
]‘//:1

X ﬁl Ho+ ﬁoj H[ ﬁl Hoﬁ, ﬁoju]} .

We now employ the commutation ruléd), which de-
crease on the right-hand side the order with respe@;jtolt

is easy to see that the commutator with the Hamiltonian is

linear

(20

2 2
=3 2 L™ Ry
m=0 /=g

where the coefficients |
explicit form of LV.‘["’ in the Appendix gives

J i &
Er“/_ E E LJ' I’mm,

2
.
m=0 m' =0
2

72N

J
E gj”| Tr{pR“//Ruo}+ 510

2
X E |g]rr|2Tr{ﬁ§OJH§]H]r}_(|gj|2(1_ 510)
j":l

+|gj'|2(1—5j'o))Tr{;7ﬁ0j'ﬁjo} (21

As is customary in the theory of cooperative effects, we
expand the correlator using the quasiclassical approximatior

1 An oA
WZTr{PRini’j }erjrl "y’ (22)

The approximate nature of the simplificati@) is ex-

pressed only in the fact that it is impossible to describe cor-
rectly the early stage of the dynamics of the system in the -/ \

case when there is no external laser field. From i) we
obtain

9 | 2 2 2
EI’“,=% E 2 L“, rmmr 510.,,21 FjrrNrojHr]‘HJr
"=

m=0 /' —o

™ can be calculated easily. The
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2
(Sj/o'”zl F]//NI’”,/I‘]//O-F[F](I— 5]0)
j"=

+Fjr(1_5jr0)]Nr0jrrj0, (23)
where we have introduced the notation
T
F/.L:gf|gu|2'
It is important to note that
ratroptra=1 (24

and the approximatiof22) has no effect on this condition.

After calculating the coefficients™™ , which are either the
detunings (}; or the atom-field coupling constantg;
=gja;/h, we can write Eq(23) as

r11=iViro=iViro+ 2 N|rgl?,
5=Vl 2= 1V3 1 50+ 2T ,N|r o),
Fo1=1Qar o+ iV3(ria—roo) +iVira
—T'1NToy(r11—roo) = T'2NToar o1,
Fa=1 Qo oot IVET 1= 1V3 (oo 12)
—I3Nroar 12— T'oNrox(r 22— 00),s

Fo1=i(Q1—=Qp)rp+iVoro—iVira

+(I'1+T2)Nrygror. (25

The Hermiticity conditiorr;,;= rJ*] then holds. The sys-
tem of equation$25) for the average values of the collective
atomic operators is similar to the system of equations for the
single-particle density matrix in the case of incoherent decay.
Indeed, the diagonal elements give us the populations of
the corresponding statéger aton). Nonetheless, there is an
important distinction: In the case of the cooperative effect
the relaxation terms are nonlinear and proportional to the
total numbem of atoms. As the initial condition in the sys-
tem(25), we assume that all atoms initially occupy the lower
energy leve| 1(INT)), i.e.,

10 |
i |
— |
L 061 ;
i |
04 |
a2 /1N |
/ \\ l

Z | \J I (W | 3 1 ) { [ L |

0 § 10 15 20 25 5] 35

FIG. 1. Temporal evolution of populations in the system for(2=0,
V=0.3'N. The dimensionless tim&I'N is plotted along the abscissa. Thin
curve—level 1, thick curve—level 2, dashed curve—Ilevel zero.
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FIG. 2. Same as Fig. 1 but f@® =0, V=3I'N.
Mijrli=0=8j18y1. (26)

The off-diagonal elements of the matriy equal zero.

COMPUTATIONAL RESULTS

Matisov et al.
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FIG. 3. Same as Fig. 1 but f&=2I'N, V=3I'N.

regime much earlier than the population of the lower levels
(Figs. 1 and 2 In the case of incoherent relaxation, however,
the system of equations describing the population dynamics
is linear® so that the evolution of all populations is deter-
mined by the roots of the same characteristic equation. In the

We shall present the results obtained by integrating nunonlinear case of cooperative dynamics the oscillations of

merically the system of equatiori25) with the initial con-
ditions (26). As a simplification we sel’;=I,=I", V;
:VZEV, andQl=szﬂ.

The temporal evolution of the atomic populationsis
displayed in Figs. 1-4. In the cask=0 the behavior of the
system corresponds to a transition to CR¥here the states

the populations predominate at the initial stage of evolution
for V<I'N (Fig. 1. In the case/>I'N oscillations are sup-
pressed(Fig. 2). Conversely, in the case when incoherent
relaxation predominates the oscillations are suppressed at
Rabi frequencies less than the relaxation rate from the upper
level and are developed in the opposite ca¥¢e note also

|1) and |2) form a noninteracting superposition, while the that the stationary state;;=0.5, r,,=0.5, r,,=—0.5, and

population of the upper leveéd) becomes zerdFigs. 1 and  all other elements;; =0 is an exact solution of the system of
2). There is an important distinction from the ordinary tran- equation(25).

sition to CPT: In the presence of cooperative relaxation in

In the cas&) # 0 the population dynamics is more com-

the system the population of the upper level reaches a steagyicated. The steady state of the system is an oscillatory re-
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FIG. 4. Same as Fig. 1 but f@=1.5'N, V=1.5'N.
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FIG. 6. r,’ell, 8Q0g., and F (in units of I'N) versus the dimensionless

FIG. 5. Time-averaged population, of the upper level0) versus the coupling parametek. Computed values@—r,’ell, A—5Qg, , B—F.

dimensionless detunin@/I'N. V/T'N: a—0.5, b—1.0, c—2.0.

gime (Figs. 3 and 4% in contrast to CPT in the ordinary, CONCLUSIONS
noncooperative case, where the steady state corresponds to

constant populations® These oscillations in the case of co- . o
. . . . with two coherent resonance electromagnetic fields under co-
operative dynamics are periodi€ig. 3). When Q and V . . i . X )
operative relaxation conditions was investigated theoreti-

become equal to one another, the period Increases_cally. The results obtained make it possible to apply the phe-

nonlinearity appears in the behavior of the quantum syStenﬁomenon of coherent population trapping, for example, for

(Fig. .4)' . investigating electromagnetically induced transparency for
Figure 5 shows the time-averaged value of the popula-

tion of the levell0) versus the dimensionless detun@gl’'N purposes of (_:oherent plea}ch?ﬂﬁ in dense optical media
with average interatomic distance of the order of the wave-

for different values of the atom-field coupling constant. OneIength of the atomic transitiomx3~1. It was established
ggz Ti(:]e g:)a:]tstf;ﬁvmdth of the black line increases with th%hat cooperative relaxation introduces substantial changes in
F\)Negnow introduce the following three characteristiCS'the dynamics of the ensemble of atoms. The features that
C . ng . “"distinguish the cooperative case from the case where inco-
the chara_\ctenstlc.tlmerej during which cohergnt population herent spontaneous relaxation predominates were clarified
trapping is established in the system, the widfg,_of the and parameters such as the width of the black line, the con-

black line, and the width O.f the overall cont.o.ur. Analysis tour width, and the transition rate to CPT in the system stud-
of the dependences of the introduced quantities on the value

of the parametek=V/I'N gives simple approximation for- I€d above were calculated.
mulas for all three quantities characterizing the quantum sys-  This work was supported in part by the fund “Fonds zur

The transition to CPT in an atomic ensemble interacting

tem: Forderung der wissenschaftlichen Forschung” under project
No. S6508 and by the State Committee of the Russian Fed-
Tr;Il ~ 0.0%2 805, 0005 0.7k2 eration on Higher Education under Grant No. 5-5.5-139.
N 0.17+k*’ TN 7 0.90+k’
F APPENDIX
_ 0.92
N 2.3 (27

We present here the explicit form of the nonzero coeffi-

; mm’ ; ; ; . 01 10
One can see that the transition ratg' to CPT under clents I;J'J" ozappearmgzom_ e:preg,flo.(QO). Lllll_.lv*l’ Léé
two-photon resonance conditiofig., O, =) behaves just V1 La=1Va, Lyp=iVs LOl(;'Ql.‘ La=iVi, Lo
as in the ordinary single-atom case: It increases quadraticaII:21_'\./l ' L02:|92,01L92=|V1 ’20L92: —Va, Le=iVs,
for k<1 and is constant in the opposite case. Further, th 21:,'(91_92)’ L21='V2’, L21=,'V1' The coefficients
dependence of the width of the black line is similar to thel . satisfy the relatior )" = (L7,"™)*.
ordinary, noncooperative cas&@he width of the overall con-
tour satisfying a power law with an exponent close to 1 in a
wide range of values of the parameterdiffers from the
noncooperative dynamics, where it is constantkferl. The 'B. G. Agap'ev, M. B. Gorny, B. G. Matisovet al, Usp. Fiz. NaukL63 1
computed points for the three characteristicg , 9Qg, , Zggi:r?rﬁondo inProgress in Opticsedited by E. Wolf, North-Holland
and F and the curves corresponding to the approximation amsterdam, 1995, ,80. 35, pp.ngs_zeg_ v R ’
formulas(27) are presented in Fig. 6. 3E. Arimondo, Phys. Rev. A, 2216(1996.
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Thermophoresis of touching solid spheres in the direction along the line joining their
centers
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A theory of the steady motion of an aggregate of two touching solid, nonvolatile, low-thermal-
conductivity, spherical particles in the direction along the line joining their centers in a
nonuniformly heated viscous gas is constructed in a hydrodynamic regime with slipping at low
Reynolds and Peclet numbers. The thermophoretic transport velocity of an aggregate is
determined in an approximation linear in the small parameters. The small parameters are the
relative deviations of the thermal conductivity of the constituent particles of an aggregate from the
thermal conductivity of the external medium. €998 American Institute of Physics.
[S1063-784298)00606-0

INTRODUCTION theories employing a bispherical coordinate system and the
Stimson-Jeffery approach to the hydrodynamic protfiem.

The study of particle dynamics in a viscous mediumThe endeavor to obtain an analytical solution of this problem

with nonuniform temperature is of interest in connectionfor the linearized stationary equations of hydrodynamics and

with investigations of thermophoretic motion in the physicsheat transfer makes it possible to obtain more reliable results

of aerodispersion systems for analysis of the interaction ofor larger temperature differentials than those obtained ear-

hot particles, in mechanics and rheology of suspensions, arliér in the limiting case of touching particles.

in a number of other problems. Thus far the characteristics of

t_her_mophoretic mqtion in viscous medig of_single solid a”d_FORMULATION OF THE PROBLEM

liquid aerosol particles have been studied in greatest detail.

A general bibliography concerning these questions is pre- We shall study the slow motion of an aggregate of

sented in Ref. 1. two touching, solid, nonvolatile, low-thermal-conductivity
It is more important to study the motion of a particle spherical particles in the direction along the line joining their

ensemble, since particles which are sufficiently close to on€enters in a temperature-nonuniform viscous gaseous me-

another strongly influence the relative particle motions. Indium.

aerosol systems, in practice, pairs of particles are most likely ~ The problem of determining the thermophoretic velocity

to approach one another. It is thus of interest to study th&)r of an aggregate can be solved in tangential spherical co-

dynamics of such pairs. ordinates({,7,¢) related to the circular cylindrical coordi-
The thermophoresis of two spherical aerosol particles imates €,z,¢) as
the direction along the line joining their centers was investi-
. : ; . 2{ 27
gated in Refs. 2-5. Exact analytical solutions for particles  y= Zr z= m o= 0. D
Y n

located at an arbitrary distance but quite far from one another

were obtained in a bispherical coordinate system on the basis The origin of the cylindrical coordinate system is rigidly
of linearized stationary equations of hydrodynamics and hedixed at the contact point of the particles. In this coordinate
transfer. A numerical comparison of these solutions with apsystem the center of gravity of the exterior medium moves
proximate solutions obtained by the method of reflectionswith the velocityU= — U+, which is sought, relative to the
shows that for close-lying particles there is a degradation o§tationary aggregate.

the convergence of the approximate solutions. In the limiting A constant temperature gradieft=(VT(®),, is main-
case when the particles touch the exact analytical solutionsined in the gas infinitely far away from the particle aggre-
are suitable only for estimating the instantaneous velocitiegate. Here and below the superscrig@ndi denote physical

of the steady motion of the particles. These estimates arguantities in a region outside and inside an aggregate, re-
strongly limited by the conditions of applicability of the lin- spectively, while a subscript («=1,2) refers to a definite
ear stationary equations of slow flow. particle.

In the present paper we construct on the basis of a hy- Let the axisz=(r cos#é) pass through the centers of the
drodynamic analysis a theory of the motion of two solid touching spheres and be directed parallel to the vetorA
nonvolatile contiguous spheres in the direction along the lineonuniform temperature distribution near the particles results
joining their centers in a nonuniformly heated viscous gasin the appearance of a directéthermophoretic motion of
This work is necessitated by the fact that the limiting prob-the aggregatéon account of the thermal slipping of the gas
lem of two touching spheres cannot be solved on the basis @flong the surfaces of the solid spheres

1063-7842/98/43(6)/7/$15.00 637 © 1998 American Institute of Physics
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The external medium is assumed to be single- Itis convenient to write the equations of hydrodynamics
component, isotropic, incompressible, and continuous—thand heat transfer and the boundary conditions in a reduced
Knudsen number KaA/Ry<<1 (whereh, R,=R;+R,, R;  form. The physical quantities entering in the equations are
=7, andR,=7, " are, respectively, the average meanmade dimensionless as follows:
free path length of the gas molecules, the unit of length, the

radii of curvature of the surfaces=»n,>0 and n=—17 ~_ Y =~ 5 ~_
<0 of the particles in an aggregate ' e Ry’ 2= Ro’ = Ro’ ¢=CRo. 7=7Ro,
We assume that each particle consists of a material
which is uniform and has isotropic properties. ~(e)_£ ~(e)_£ 0= L = (e)_ e
Thermophoresis of an aggregate occurs at low Reynold$¢ _U[O]’ n _U[o]’ - Urop’ _ROZU[O]'
and Peclet numbers Re=UR,/19<1 and R§=UR,/x©
<1. This makes it possible to drop the nonlingaertial and  _ F, (o) T<e>—Tge>
convection terms in the equations of hydrodynamics ansz_WROU[O]' T _Wv
heat transfer. The external mass forces are neglected. There
are no heat sources inside or outside the particles. Tt
The relative temperature differentials under the condi-T!'= ';\ ROO ,
T

tions of the problem are small and the temperature variation
of the coefficients of molecular transport can be neglectedy (®) js the stream function and;o; is the velocity of the gas
The density, kinematic viscosity, and thermal conductivityflow at infinity in the zeroth approximation in the small pa-
are assumed to be constangg’’, v ,«{>") at the unper-  rametergit is determined in the course of the solutjon
turbed temperaturg? (the temperature of the external me-  In what follows the tilde is dropped and the initial equa-
dium at the location of the point of contact of the particles intions and boundary conditions are written in the reduced
an aggregate in the absence of the aggregbtewever, the form as follows:

existing temperature differentials are large enough so that in

comparison the temperature variations due to heating as a E*¥(®=0, (8)
result of energy dissipation by internal friction can be ne- © 0
glected in the heat-transfer equation. AT®=AT, =0, 9
Since the thermal and hydrodynamic relaxation times of
the system are shgrt, Fhe motions qf an aggregqte can be | _ .. wpe—_ Eyzu, (10)
described in a quasistationary approximafiarslow axisym- 2
metric motion of the gas medium and a steady temperature ©
distribution inside and outside the partidles =Z, (11)
The following boundary conditions hold at infinity and B . (e)_
on the surface of the particles: Se (@=1,2): ¥H=0, (12
N O T (e) _ T(e (e (e) (e
r—oo: V®=Ui,, T¥=TyV+A,z, (2 A vy aT
’ o Ui P K(TeSLWATY&—g, (13
Su(@=12: (i, v®)=0 ©) 0
(e T =T (14)
. Vo~ . @’
(V) = K =5 (i VT, (4) "
0 %Oe )
0 (e)— ()
T 1) 5 0 v, Te=v 10, (15)
26 (i VT =xG0li, VT, (6) F,(aggregatg=0,
F,(aggregatg=0. (7 # 19 9P ? 19
The conditiong2)—(7) physically signify the following. dy- wvydy 9z vy yady 0z
At infinity the axisymmetric gas flow is uniform in space (16)

and its velocityU is in the positive direction along theaxis,
while the external temperature field is unperturbed.

On the gas-impermeable surfa@gof the solid nonvola-
tile particles the normal velocity componem‘jf) of the ex-
ternal medium vanishes, while the tangential compon@?nt 0<g,= (%81)— %g)e))/%81>< 1,
equals the velocity of thermal slippir(@ is characterized by
the coefficient<{2,, determined by methods of the kinetic 0<e,= (2l — 2P)/»x)<1,
theory of gases the normal heat flux and temperature are
continuous. U(eq,ep)=1+e,U{3)+ U5 +e5Ul)

The resultant forcd= exerted on an aggregate by the 2. 2012
incident flow of the external medium equals zero. tee U tesUpgt... . 17

The reduced velocityd of the gas flow at infinity is
sought in the form of a power series in the small parameters
€1 and82



Tech. Phys. 43 (6), June 1998

We shall confine ourselves below to determining the
quantitiesUo;, U1], andU (3], which characterize the ther-
mophoretic velocity of an aggregate in the zeroth and first
approximationgthe bracketed subscripts

THERMAL PROBLEM

An exact analytical solution of the thermal problé®),

S. N. D’yakonov and Yu. |. Yalamov 639

T s, =T o & s, (24)
(VT & )]s, = (V, T 0L )]s, (25
TG lree=2 Tpo&mle<oe. (26)

The following algebraic equations follow from the

(11), (14), and(15) cannot be obtained for arbitrary values of boundary conditiong24) and (25 with allowance for the

the reduced thermal conductivities,= /) and »x,
=x9/4) . An approximate solution of the thermélydro-
dynamig problem can be constructed by the method of suc-
cessive approximations in the small parametersand ¢,

(the case of an aggregate of touching low-thermal-
conductivity particlest;~ x,~1). The reduced axisymmet-
ric temperature inside and outside the particles is sought in
the form

TOULN=TIHED+THED+TEE )+,

T D =T (L +Torag(&m+Toa(Lm + ..

Here the temperature perturbatlofré (¢,7) and Tg)[l]
X(¢,m) in an approximation linear in the small parameters
can be written as

TG =t (L )+ et (L m),

Tar(&m=eatih(&m+ ety (¢, m).
Since the Laplacian is a linear operator, the functions

533(5 7), T(oi,)[OJ(éf-??),

t2(,m), 2, g, W)

are solutions of Eqs(9) in a tangential spherical system
(¢,m,¢) of coordinates of revolution

TS &)= z+(§2+n2)1’2f (Ao(N)costi\ ) +Byqy
X(N)sinh(\ 7)) Jo(N{)dN, (18)

(1|[)o](§ n)=(¢ +772)1/2j Cro(N)e™MIg(N)dN
(19

(2|[)0](§ n)= (§2+772)1/2f D[O]()\)eﬂ\”\]o()\{)d)\a
(20

(¢, )= <§2+n2)1’2f (Aj(N)coshin ) +B(Y)

(21)

X(N)sinh(x 7)) Jo(A)dN,

t)(¢, )= <z2+n2>1’2f Cli(Me I\ )dn,  (22)

(e =+ %] De™ a0 pjan

(1=1;2).
The functions(18)—(20) satisfy the conditions

(23

integral transformation§A2) and (A3) in the Appendix:

2\ exp(—A7n1) +Apgy(N)coshih 1) + By
X (N)sinh(\ 71) = Crgy(N) expl— A 771),
— 2N exp(— A 71) +Apoy(N)sinh(\ 71) + By
—Croj(M)exp(—Nn,),
— 2\ exp(— A7)+ Apoy(N)coshih 7,) —Big;
X (N)sinh(\ 7,) =Dpoj(N)exp(— A ),
2\ exp(— A 712) + Apoy(N)Sinh(\ 17,) — Bo;
Dioj(N)exp—A72),

X (N)coshn )=

X(N)coshN ;)= —

whence we have

Ar0j(M)=B(g1(N)=0, Cig(N)=—Dpoj(N) =2\,

(27)
[0](§ =T, [0](§ 7)= (28

Thus in the zeroth approximatios, =e,=0 the tem-

perature gradient is constant everywhere in space.

The functions(21)—(23) satisfy the conditions

(L s, =t L M)]s,, (29)
(VAP =V, TG m)ls, = (VA m)ls,,
(30)
(L mls, =I5 L mls,, (3D)
(VA2 )]s, = (VAL )]s, (32)
¥ s, =to(¢ s, (33
(V1528 )]s, = (V50 m)s, (34)
(L mls, =55 & m)lsy, (35)
(VAL =V, TG )]s, = (V55 L m)ls,,
GG M-a=0, Qi <o, (36)
(L m)in <o, 37)

From the boundary condition®9)—(36) with relations

(A2) and (A3) taken into account it is easy to obtain the
algebraic equations
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ATJ(N)coshin 1)+ B{TJ(A)sinh(A 7,)

—C3j(Mexp =\ 7;) =0,

AD(N)sinh(\ 771) + B{1)(\)coshh 771) + CT)(N)

2 1
Xexp(—)\nl)Z—g (ZK—E)GXF(_)\W),

AF(N)costinpy) + BT (M) sinh(d 7,)
—Ciij(Mexp — N 7:) =0,
AG V) sinh(x 1)+ B{3(N) costin 1)
+CFJ(N)exp(—A75;) =0,
[1]()\)003m\772) B[l](7\)5|n|'()\772)
—D{Hj(N)exp(— A7) =0,
ATJ(N)sinh(\ 7,) — B{3}(A ) coshA 77,)
+D{1/(N)exp(— A7) =0,
ATV coshih 75) = BT} (V) sinh(h 7,)
~D{fj(N)exp(— N 72) =0,

AFI(V)sinh(X 72) = B{3) (M) costiX ) +D{Z](N)

2 1
Xexp—Any)=x= (2)\— 7]—) exp(—AN7,),
Hence we have

1 1 1
A\ =B{T}(\)=D{1}(\)

(o e 2am

=— ——|exp— ,

3 7 71
1 1

C{j(n ——<2>\——),

[1]( ) 3 71

2 2 2
AT =~ B{HI) =C{3j)
1(2x 1) o —2\7,)
=3 — —|exp(— ,
3 7a 72

1 1
DZ(N)= (zx——)
M= .

Using the result$28), (38), and(40), we have

1 o 1
T ) =2— zex(P+ nz)l’zf (ZA— —
3 0 71

Xexp(—2N 1+ A7)Jp(NE)dN
1 % 1
- 24 2\112 _ =

+382(g ) fO(Z)\ 7/2)

(39)

(39

(40)

(41)

(42

S. N. D’yakonov and Yu. I. Yalamov

HYDRODYNAMIC PROBLEM

We seek the solution of the Stokes equati8nin the
form

1 ~
‘I’(e)(gﬂl): - §y2U+‘P(e)(§!7])-

An expression for the distortio®(®)(¢,7) of the sta-
tionary velocity field near an aggregate, bounded on the sym-
metry axis ¢=0) of the flow and vanishing at infinity
({=n=0), was first obtained in Ref. 8

‘T’(e)(én):ﬁ/z J:W<x,n>Jl<mdx,

W(N, n)=[a(\)+ nc(N)]sinh(\ 1)
+[b(N)+ npd(N)]cosHA 7).

We seek the functionX(\)=a(\), b(\), c(\), and
d(\) of the parametek in the form of a power series in;
ande,

X(\,&1,82)=Xo) (M) + &1 X{T(N) + X TN + ... .

Each term in these expansions is determined from the
boundary conditions on the surface of an aggregate of touch-
ing particles. Evidently, we can write

W(N, 7,81,82)=Wg)(X, 77)+81WE%(?\, 7)
+82Wﬁ%(7\,77)+---,
Wio1(N, 7) = (apo1(N) + 7C[01(N))SINN(N )
+ (bpoj(N) + 7d;g)(N))costiA 77),
WL 7) = (@ () + mef (V) sinh(x )
+ (b (N) + 5dl (M) costin 7).

An expression for the resultant force exerted by the ex-
ternal medium on an aggregate of touching spheres moving
in the direction along the line joining their centers is pre-
sented in Ref. 8:

Fz(aggregatra:f Ab(N)dN.
0

Then, since the small parametergs<1 ande,<1 are
arbitrary, we have from the conditig6) of uniform motion
of an aggregate

0

foxbﬁ;(x)dxzf b{f)(\)dx=0. (44)

In what follows we employ the temperature distribution
(42) near an aggregate of touching solid spheres. Using Egs.
(A4) and (A5), we find from the boundary conditiond2)
and(13)

WXl ey =207+ A~ Hexp — N ), (45)
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IWoj(N, 1) WL\, 7) 1

— | =20mh exp— A7), (ag NI o (14 8)+ UL exp— ma),
n _ an _ 3

=M n=7q
1 (52)

Wioi(N, )] = — 5, = 2( 772 H N~ H)exp(— N 7), (47)

) W], =2U (3 (e + A Dexp = 7oN), (59

—EE T =—20m exp—N7),  (49) "

I n==1, awfl]()"”) (1) 2
a0 =2U1)72M exﬂ_ﬁz)\)_§
(e U n=—1,
gt m
s=4——2> 1 49 X (1+ &) (1 + m5){ 2+
Upo; (49 ( (1t 72 P
The dimensional thermophoretic velocity[To]=—U[O]
is determined in the zeroth approximation by solving the =27 A\ exp(— agh), (54)
system(45)—(48) of linear inhomogeneous algebraic equa-
tions, taking Eq(43) into account, WEHO\ M=y, = Eﬁ(?]ﬁ)\ Hexp(— 71N), (55)
X o,000 IWED(N, 7)
Vge) {;D 1( ) [1] 77
T —_—
Vo=~ T 5K g AT, 9= =z ——— (50 My
[ —d(\)d\
o D —_oy® _ 2
=—2U[7mN exp(— 7N+ 3
®1(N)=(m+N"Hexp —\n)Dy
72
+(7}z+7\_1)exli—)\7]2)D3, X(1+ 5)(7]l+ 7]2) 2+ 7t 7]2_27]2)\])\

D(N)=7; exp(—N71)D,— 7, exp(—\7,)Dy,, X exp(—azh), (56)

D= —sintP(N(71+ 72)) + (91+ 72)°\?, WEIN, D)=, =2U (3 (2N~ Hexp(— 7). (57)

. 71 B -

D=—2(m+A"Hexg(—Any)Di+267) IWEI(N,7) 1 2

- ) 7 =27, z(1+8)+UZ)\
xXexp(—A71)Do=2(772+ A7) an — 3
X exp(—\772)D3— 2575\ exp(—A72)Da, X exp(— 7,\),

D1=— 7 M(71+ 72)N cosih ;) +sinh(\ )} ay=2mtm, ax=mt27;. (58)
+{ 71\ cosliN(n1+ 7,)) The additional condition$44) make it possible to write
+siNh(N (71+ 772)) }sinh(X ), »\2

_ IBQj()\)d)\

Do,=—(m1+ N\ sinh(A i 0

2 (71 | 72) 72 h( '711) Ejl)]_( 1)1_31 fl=a0——— )\ , (59)
+ 71 SINAN (771 + 72)SINN(\ 7,), I 5QM)d
0

D3=— M (71+ 72)\ cosi\ ;) +sinh(\ 77,) }
+{ 72\ cosiN(71+ 7,))
+ SN\ (71+ 7)) }sinh(N 771), Xexp—A7)Dot (72417

X exp(— N 72)D3— 7\ exp(—\72)D4,

Q) =(m+N"Yexg —A gD+ A

D4=(71+ 72) 7\ sinh(\ 1)
— 7 Sinh(\(Nny+ 7,))sinh(\ 7). Q1(N) =13 exp(— A7) Do+ (714 1)

The correctiong; U} ande,U(Z) (due to the difference ”m -
of the thermal conductivities of the external medium and the x| 2+ S _27717‘> exp(—a;N)Dy,
particles in the aggregatare finally found with the aid of
the transformationgAl), (A2), (A4)—(A6) from the system 7
of algebraic equation&1)—(59): Qa(N)=(m+ 772)( 2+ Tt 27727‘)

_ (1) -1 _ ~ ~
WO 7o 5, =20 0n A Dexp—mn), (5D K exp(— g Byt 7 eXD(— A7),
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TABLE I. TABLE II.
R; /R, S /3(1) ﬁ(Z) R, /Ry S B(l) ﬁ(Z)
1 4.69309 7.61846810° 2 —7.61846<1072 1 4.69309 7.6184810 2 —7.61846<1072
2 4.77724 1.3130810°* —2.54592% 102 2 477724 2.5459210 2 —1.31308<10°*
3 4.85906 1.4992810°1 —1.08006< 102 3 4.85906 1.08008 102 —1.49923< 107!
4 4.90815 1.5743810°* —5.50003< 1073 4 4.90815 5.5000810 2 —1.57435¢10°*
5 4.93750 1.6102810°* —3.16567% 1072 5 4.93750 3.1656710 3 —1.61028<10°*
6 4.95576 1.6296410°* —1.98498<10°3 6 4.95576 1.9849810° 3 —1.62964< 1071
7 4.96762 1.6410810°* —1.32536<10°°2 7 4.96762 1.3253610°° —1.64103< 107t
8 4.97563 1.6481810°* —9.28434x1074 8 4.97563 9.2843410* —1.64816<10°*
9 4.98121 1.6528710°* —6.75435¢10™* 9 4.98121 6.7543810 4 —1.6528% 107!
10 4.98522 1.6561010 ¢ —5.06618<10™* 10 4.98522 5.0661810* —1.65610<107*
20 4.99735 1.6649910* —7.22619%<10°° 20 4.99735 7.22619107° —1.66499%< 1071
30 4.99911 1.6661810°* —2.24074<10°° 30 4.99911 2.2407410°° —1.66613< 107!
40 4.99960 1.6664810 1 —9.67350<10°© 40 4.99960 9.6735010°° —1.66643<107*

ANALYSIS OF RESULTS

=0 the velocity of an aggregate is higher than that of any

The dimensional thermophoretic velocity of an aggre-single particle and the effect of the form of the aggregation is
gate in an approximation linear in the small parameters cagreatest when equal spheres touittequals at least 5%

be written as follows taking expressiofs0) and (59) into
account:

(e) 1 1 1
v
=_ (e) La - - Dy — 2
U 4KTesL-|—ge) T] 5 3813() 382B( )]-

(60)

It is of interest to check in the course of the numerical

analysis the agreement between E&f) in the limiting cases

Evidently, the theory of thermophoresis constructed on
the basis of a hydrodynamic analysis is also valid for an
aggregate of touching solid hydrosol particles and high-
viscosity pure drops. This case is most important for practi-
cal applications.

of thermophoresis of an aggregate of touching solid nonvola-

tile spheres R;>R, or R,>R;) with the result obtained
earlier for a single particfe

2%, v
UT= - l+—2%a Kgres)L@AT . (61)

Let us expand the expressiox 2/(1+2x,) in a power
series ing,

2% 1
1+2x%, 3\~ 3

Then, comparing the right-hand sides of E(0) and
(61) for the limiting caseR;>R, or R;<R, shows that the
following equalities are satisfied:

4 2
1rs- §(whence 6=5) (62

2 1 2

g4 2

—§8a—... .

in the zeroth approximation and

1 €1 for Rl> Rz,
(1 (2)=_
s18 7~ ef =g g, for Ry>Ry ©3
in the first approximation.
The limiting caseg62) and (63) are confirmed by the
results of a numerical analydipresented in Tables | and)ll

APPENDIX
f” exp(— A7) Jo(N ) dN= ({24 5?) 12, (A1)

0
F exp(— A ) Jo(NONAN= 5({%+ 7%) %2, (A2)

0

f ik exp(— A7) Jo(NONZdN =3 7?( 2+ 5?) 52
0

— (29D, (A3)
* _ 4
JO expi—An)(n+A 1)31(?\§)d)\=mr,
(A4)
® s
fo eX[i—)\ﬂ)Jl()\é'))\d)\Zm-, (A5)
F exp(— A ) I (N ON2dN =3 —y (A6)
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object: modification of the method for complicated cases

A. B. Podlaskin
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The method of calculating the nonlinear aerodynamic characteristics of objects from trajectory
data, based on the differential correction principle, is well kn¢iWnP. Mende, FTI

Preprint No. 1326, A. F. loffe Physicotechnical Institute, LeningiB@89; G. T. Chapman and

D. B. Kirk, AIAA J. 8, 753(1970]. A madification of this method is proposed here, in

which the solution is to be obtained in the form of a spline. This new approach, which has been
tested on model problems, can provide a more reliable guarantee of adequacy of the

solutions and an improvement in accuracy in cases where the functional relations sought have a
complicated form. ©1998 American Institute of Physids$51063-784£98)00706-5

INTRODUCTION of the variance matrix of the regression coefficients of the

) o . unknown functions. The complexity of the question of ad-
One problem of experiments on ballistic apparatus is (Qqyacy of the solution found by the trial-and-error method is

determine the aerodynamic characteristics, i.e., the forcegg known, since the efficiency of the method in a given

and torques acting on a body in free flight. In this context,.aqe js determined by the errors of the experimental data.
researchers have at their disposal trajectory data—an ordered

set of readings of the coordinates of the object at fixed in-
stants of time. These coordinates and the desired function®TATEMENT OF PROBLEM

dependences of the aerodynamic forces and torques are in- Among the objects of ballistic studies, a few are encoun-
terrelated by a system of nonlinear differential equaﬁ’ons,tered that possess a quite complicated form of dependence
which are not analytically integrable. Thus the problem takes(x) of the aerodynamic coefficients on the generalized co-
the general form ordinate. Although the aerodynamic coefficients, as a rule,
AZ(X) = U(x) 1) are described by smooth functions, they can, for example, be
’ substantially nonmonotonic. Complexities of this kind usu-
whereu(x) =X is the vector of measured coordinatess the  ally show up when the range of variation of the independent
vector of aerodynamic coefficienttusz(x) are the desired variable is increased. In such cases a model description of
functional relations and A is the integral operator of the the motion of the object using power series segments as the
problem. This ill-posed problem is prescribed by an operatoregression form can be assumed to be inefficient. The more
equation of the first kind. complicated the form of the unknown function, the further
Only the inverse operatdk ! can be written down ana- out must its approximating series be carried. As the number
lytically. To solve this problem, the trial-and-error method of terms of the series increases, the conditionality of the
has traditionally been used, i.e., for a series of approximaleast-squares matrices deteriorates. This is a well-known fact
tions of the unknown functions the direct problem is solvedin regression analysfsComputational algorithms exi$.g.,
and the deviation of the calculated trajectory from the experiRef. 5 which allow one to solve the corresponding underde-
mental trajectory is calculated. The first approximation istermined systems of equations. However, other shortcomings
chosen on the basis of anpriori expert assessment. As the of higher-degree polynomials do not allow one to go this
algorithm for constructing the minimizing sequence the dif-route in the case of a complicated formagik). Experience
ferential correction method has proved to be succesgfis  shows that the confidence interval for the sum of the series
also known as the Gauss—Newton methcthe class of segment increases severalfold at the end of the approxima-
functions among which the stable solution is to be soughtion interval due to errors in the coefficients of the higher
(the correctness class of the probleoan be restricted in powers of the independent variable. In addition, since a
different ways. The only condition is that the functional sub-power-law basis is not orthogonal, introducing higher pow-
space under consideration be comgaConvergence of the ers in the approximation of the unknown function on large
method in the class of power-law polynomials containing aintervals alters the values of the regression coefficients of the
finite number of terms of even or odd powers was confirmedower powers. The presence of a large humber of terms can
in Ref. 1, where examples are given of successful determilead to the appearance of nonphysical oscillations. All this
nation of aerodynamic coefficients on ballistic experimentamotivates us to look for other forms of representation of the
with sharp cones. The practical importance of a statisticalinknown functions to use in the trial-and-error search for the
assessment of the results was also demonstratethe basis  solution of the ill-posed problem under consideration here.

1063-7842/98/43(6)/4/$15.00 644 © 1998 American Institute of Physics
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X,m As a particular case daf(x), the lower graph plots the static
2.0 aerodynamic moment coefficient as a function of the angle of
attack,C (). This function

Cm(a)=sign(a)[ Cnax Sin3(|a| + ag) + Col,

described by a power series with a finite number of terms. In
regard to the problem under consideration this means that the
Chapman—Kirk algorithfhdoes not allow us to seek out a
solution that would adequately describe the given moment
function. Increasing the degree of the polynomial to 13 does
not achieve the desired model adequacy even though the
| elements of the matrix of normal equations at this point have
I already reached the limit of machine accuracy. If we con-

| sider segments of its domain of definition, e.g., as shown by
by the dashed lines, then it is obvious that on these intervals the
; function can be well fitted by lower-degree polynomials. The

i upper curve is the “trajectory” of the oscillations of a body

: in flight, i.e., the dependence of the attack angle on the lon-
| gitudinal coordinate along the trajectory. From the matching

[ condition for the segments of the unknown function using a

: quadratic polynomial as the regression function to fit the
|

|

|
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|
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: which | used as my model example, cannot in general be
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functional dependenceC,(a) on the domain |
elaj,aj+1] we have

C(a)=sign(@)C(a;) +[dCpy(a;)/da]
L X (a—aj)sign )k 1(a— a;)? 2

|
&
S

o

- [-]
20 (the sign function was introduced in accordance with the

physical requirement that the static aerodynamic moment be
odd.

Thus, the adopted regression form, possessing a
piecewise-continuous second derivative, corresponds to a
first-order spline.

i Many of the advantages of the previously developed
technique for finding the aerodynamic characteristics deter-
FIG. 1. Model functional dependence of the static aerodynamic momenfMin€d the factors of continuity. Only, the use of the sign
coefficient (lower graph and example of the corresponding oscillations of function sign(a) corresponds to the use of polynomials of
the p_bject as a funcFio_n of 'the attack anglgper graph Dashed lines—  even or odd degree in the Chapman—Kirk algorithm, which
partition of the{a} axis into intervals. is yet another example in the trial-and-error method of the
necessity of invokinga priori information about the nature
of the unknown functiore(x). As in the case of an all-at-
One variant that has been proposed is to partition the rangence polynomial approximation of the aerodynamic charac-
of variation of the independent variableand construct a teristics, the unknown number of degrees of freedom can be
regression of power series segments “matched” at theachieved by coprocessing the data of several experiments
boundaries of the intervals in respect to the value of thewith one model. In this case the number of new nodes of the
function and the first derivative. In this case, within the lim- approximation increases more rapidly than the number of
its of comparatively large intervals ixthe unknown func- unknowns(the regression coefficients remain general, only
tion will be described by substantially shorter polynomials. the initial conditions of the launch, which are treated as un-
knowns, are added dnMoreover, the coprocessing of the
data of several launches of one object with different ampli-
CONSTRUCTION OF THE METHOD tudes of oscillations in the attack angle allows one to make
use of the nonisochronicity of these oscillations, which gives

In light of the above considerations regarding the diffi- more information about the nonlinear characteristics of the
culty of elucidating the adequacy of the desired model andnoment than can be had from an analysis of the form of the
the effect of hard-to-control experimental errors at the pro-oscillations.
cessing stage of the algorithm, model problems were exam- As before, the main logical thrust of the algorithm con-
ined, i.e., trajectory data calculated on the basis of prescribesists in constructing a sequence of approximations of the
aerodynamic characteristics of an “object.” Consider Fig. 1.desired solution which minimize the deviation of the calcu-
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lated trajectory from the experimental trajectory in a qua- 04 d10.0
dratic metric. To linearize the target function, i.e., the re-
sidual sum of squares of differences of the attack anglee
expand it in a multidimensional Taylor series in the desired _j 5,
parameters in the vicinity of the solution, where this series is
truncated at the level of the linear terms. In such a represen
tation the deviation is written in terms of the derivativesof
with respect to the regression coefficients of the unknown
function and the initial conditions. The values of the deriva- <&
tives are found from the equations of sensitivity, which are
obtained by differentiating the equation of motion with re-
spect to all the unknowns and are integrated together witt
the equation of motion. This approach allows one to com-
pose the system of normal equations of the method of leas ~%%4
squares—Ilinear algebraic equations based on the equatior
of motion and sensitivity for all points of the scheme. How-
ever, the solution of such a system of equations, which only ~0.05
approximate the given nonlinear problem, gives only a set of
corrections to the coefficients. Therefore, the search for a
solution reaches its goal after several iterations. Calculatiofi!®: 2- Spline-reconstructed dependefmessesof the static aerodynamic

. . .. moment coefficient from Fig. 1. Original function—squares. Solid line—
of the_ variance _matrfkalloyvs one in the course of the dif- _cimate of the residual error of teapproximation.,
ferential correction to estimate the error of the found ap-
proximations of the coefficients and assess its significance.

The new form of representation of the unknown functionan unpropitious choice of the partition of the doméis it is
necessitated certain modifications in the algorithm. In thQ)OSSibb to find a Spurious solution. In practice it has been
trial-and-error search for a solution of the operator equatiofound that good results in terms of efficiency of the algo-
(1), when we are solving the direct problem, i.e., integratingrithm are had by assigning the boundaries at the extrema and
the equations of motion, at each step the current valueisf inflection points of the unknown function. For the indicated
monitored with the aim of determining to which of the des- example(in Fig. 1 the moment is prescribed as the cube of
ignated intervals it belongs. Depending on the interval tothe sine of the attack anglevhich has two inflection points
which the argument belongs, the valuesgf(«) are calcu-  on the positive side and on the negative side in the range
lated according to the formulas of the respective interval ine|<40° (a=+13.25° anda==+36.75% and one extre-
the procedures for calculating these values. Since on diffefmum (o= +25°), acceptable results are achieved by starting
ent intervals offa} the regression coefficients affect the tar- not with four intervals in the absolute value af but with
get function in a different way: some of them directly, somesix: it was necessary to divide up the regions of large curva-
via their effect on the preceding segmehti& formula(2)],  ture symmetrically near an extremuincreasing the number
the calculation of the coefficients of the equations of sensiof intervals above the minimum necessary serves no pur-
tivity also depends on which intervalbelongs to. However, posg. Trajectory data of four “launches” were used, with
from the derivatives calculated in this way a single matrix ofamplitudes of oscillation in the attack angle equal to 7, 14,
normal equations of the method of least squares is cong7, and 38°.
structed, which of course corresponds to a single equation The plan of the “experiment” called for 34 points. Ap-
prescribing the motion of the object, and all coefficients usehroximation with quadratic polynomials on six intervals
to describe the unknown function turn out to be correlated. had 14 degrees of freedom. The accumulation of error of the
found nonlinear regression coefficierkswent from 1 (a
|<a;) to 65% (a|=as). Here the achieved accuracy of
determination of the static moment was within 9%g. 2).

By varying the number and positions of the interval The error was calculated from the variance matrix of the
boundariesy;, it is possible to achieve acceptable results inregression coefficients with their covariances taken into ac-
determiningC, (). Acceptability is determined, on the one count.
hand, by the errors of the found regression coefficients with  Finding the solution of an ill-posed problem by the trial-
allowance for their correlatiotwhen the relative error of the and-error methdtis equivalent to minimizing the distange
coefficient of the square of the independent variable exceedsn the quadratic metrjcfrom the intermediate approximate
100% for a prescribed confidence level, rejection of such assolutionzs to the exact solutiorz;. The result of this pro-
insignificant coefficient is indicated and the moment on thiscess, as a rule, looks like this: the local deviations have op-
interval is taken to be linearOn the other hand, the ad- posite signs at the boundaries of the approximation region
equacy of the found solution for the model problem is easilyand in its middle while its integrab(zs,z1) over the entire
monitored since the exact form of the desired function isregion tends to zero. In the given case on each intewyal
known. Experience shows that the problem does not have & |a|<«;,; the higher(one coefficient of the approximat-
unique solution in the considered class of functions and foing parabolic segment is sought independently. This finds

-0.02

o 10° 20° 30° 40°
o

ANALYSIS OF THE SOLUTION
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04 —12.0 description of the moment function allows it to be found

\ with less error. However, finding it is fraught with greater

difficulties than finding the all-at-once polynomial approxi-

mation. There are additional problems associated with choice
of the boundaries of the segments into which to divide the
range of variation ofa}. Overcoming these difficulties will
require time, but probably with accumulation of experience it
will be possible to shorten the amount of time needed.

~0.02

~0.04 CONCLUSION

Analyzing the difficulties arising during processing of
the algorithm for determining the aerodynamic characteris-
tics from trajectory measurements using splines to describe
the unknown functions, we can form the following picture
regarding application of the method to actual experimental
data. It is unrealistic to choose the initial approximation in
FIG. 3. Comparison of the results of all-at-onesuares and piecewise the form proposed using the given approach if all that is
(crossesapproximation in the reconstruction of the nonlinear static aerody-available are raw data. Therefore it is advisable to begin
ngmic moment Qf a sharp cone. Solid Iings—values of the moment coefprocessing the experimental results with the help of the
gglspot),(i?na;?oe:s.hnes—estlmate of the relative eidasf the corresponding Chapman—Kirk algorithm, for example. Having obtained a

representation of the unknown functions, it is possible to
shift over to the new algorithm and carry out a comparative

analysis of the solutions found by the two approaches as to

expression in the complex character of the dependence of the _. I : :
error function of the found moment coefficient on the attacl?ﬁe'r adequacyto the extent that it is possible to judge,

] L generally and their errors. Features of the unknown func-
angle: the error reflects the character of the local deviation of led in th f fitti . he Ch
zs from z;. Consideration of a model problefwhere the thns reveaied in the course o |tt!n.g. using the C apman-—
o T~ : . : Kirk algorithm can help construct initial spline approxima-
exact solution is knownmakes it possible visually to trace

out the variation op from the relative location of the curves tions, Here an additional optimization factor arises—
. : deciding on the number of intervals in the independent
of the prescribed and found functio®s,(«).

The case of four launches of a sharb cone with a tot ariable and the positions of their boundaries. As has already
. . . P a}/)een noted, for the observations just dealt with the most
vertex angle of 30°, considered in Ref. 1, was also analyze

. L : successful locations, in the sense of convergence, for the
In this case it is possible to compare the results for an all-at;

S . - . “boundaries are at the extrema and inflection points of the
once approximation of the desired moment coefficient usin

the Chapman—Kirk algorithréodd fifth-degree polynomial RUnknown functions. When working with _experlmental data,
. . ; 2 the search for such points must be carried out one after the
and for a piecewise-polynomial approximation. However,

use of the available experimental data had to be rejected bother. A futu_re check 0 f the frwtfulness of the_propose_:d ap-
roach in this case will be possible by obtaining qualitative

virtue of the sensitivity of the method to the systematic an .
. . . Fxperlmental data.
anomalous errors contained in them for a relatively smal
sample space and it was necessary to resort to modeled input | am grateful to N. P. Mende for a statement of the
data. Model trajectories, calculated from the characteristicproblem and for valuable discussions, and to S. V. Bobashev
taken from Ref. 1, was “noised up” by adding normally for helpful remarks.
distributed random error with a standard deviation of 0.5°,
which corresponds to the error of the actual measurements.
For this version of the functiol®,(«) it turned out to be
sufficient to use four interval@ndicated by vertical line seg- IN. P. Mende, FTI Preprint No. 1328n Russiai, A. F. loffe Physico-
ments in Fig. 3. Comparison of the obtained curves reveals ,technical Institute, Leningradl989, 44 pp. _
good agreementthe same solution is foundEstimates of A.N. _T|khonqv and V. Ya. ArseninlMethods of Solving Ill-Posed Prob-

A .. lems[in Russian (Nauka, Moscow, 1979 228 pp.
the regldual mean-square deviations of.the attack am@i® s T Chapman and D. B. Kirk, AIAA Pag8, 753 (1970).
the trajectories calculated by the two different methads 4G. A. SeberLinear Regression Analys[sViley, New York, 1977; Mir,
=0.51° for the all-at-once approximation ang=0.13° for Syvosﬁovl\;v 1980é45|36 pFﬂT- S A Teukolskv. and W. T. Vetteri

. . f - _ . . Press, b. P. annery, S. A. lTeukolsky, an . T. Vetterling,

t_he new metho_)jfavor the ple_ceWISe pOI_ynomlal app_rOX|ma Numerical Recipes in Pascal: The Art of Scientific Programnii@gm-
t!o_n. Co_nstrucuon of the variance mat_rlx of regression coef- prigge University Press, New York, 1989759 pp.
ficients in both cases allows us to estimate the total error ofS. M. Ermakov and A. A. Zhiglyavski Mathematical Theory of the
the moment within the given rande}. Values of the confi-  Optimal Experiment: A Textbodkn Russiar} (Nauka, Moscow, 1987
dence interval of the static moment for a confidence level of 329 PP-
95% are shown in Fig. 3. It can be seen that the piecewisgranslated by Paul F. Schippnick

=0.06
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Steady-state leader breakdown. Nitrogen atmosphere
A. V. lvanovskil
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Physical arguments about the possible mechanism of formation of a leader channel are presented.
A mathematical model describing steady-state leader breakdown is constructed. An algorithm

for determining the propagation velocity, dimensions, and electric field in the streamer zone is
developed. A numerical simulation of the channel formation stage in the plasma of a

streamer zone a nitrogen atmosphere is performed. The dependence of the leader velocity on the
potential is obtained. The tentative model proposed here can be used to describe the leader
breakdown of a long gap at high positive potentials. 1€@98 American Institute of Physics.
[S1063-784298)00806-X

INTRODUCTION length,G=2mx[jordr, is formed by a cylindrical ionization

The problem of steady-state breakdown of an extendelﬁ’a\’.e With nearly consta.nt propagation veloaify. The con-
gas-filled gap with a prescribed potentldl, on one of the ductivity of the streamefi.e., the electron concentratipde-
electrodes is considered. It is well knowsee, e.g., Ref.)1 Pends on the coordinateas o~v2/v,r (G=v3r). It has
that such a discharge has a complicated structure. The poteReen shown that such a regime can support the propagation
tial U, is transmitted along a highly conductive leader chan-of streamers many meters in length. Here the electric field
nel at a temperature high enough for thermal ionization tovaries weakly along the length of the streamer and is equal to
take place. The channel is formed in the poorly conducting~10 kV/m. This picture permits an explanation of the ex-
streamer zone, whose dimensions are quite largel m. perimentally observédinear dependence of the streamer ve-
There are a number of conceptions about the mechanism ddcity on the rate of growth of the potential fatU/dt
formation of the leader channel. According to one of them, it>400 kV/us (v,>4X 10" cm/s). We will proceed from the
is formed as a result of heating of a solitary streafmidy- concept of a streamer given in Ref. 5.
potheses have been developed about the formation of the |tis assumed that the leader channel is formed as a result
channel against the background of a huge number of continisf the development of an ionization—overheating instafility
ously forming streamersWe will proceed from the first. near the axis, where the ionization is maximum. For moder-

If we neglect the pot_ential drOP in a_highly conductive ate rates of current growth it is possible to restrict the dis-
channel, then for gaps with large dimensions of the streamel \«<ion to processes at atmospheric pressuitaout shock

zone it is natural to consider the steady-state breakdown r'?/\'/aves. The description of channel formation is complicated

gime. In_th|s case the problem of the fo_rmatlon_of a I_eaderin that the dimensions of the region in which the instability
channel in a streamer discharge plasma is one-dimensional—

all quantities depend only on the transverse coordinat&e develops_ are uncgrtam. The scalg of this region can erend
z dependence is determined parametrically in terms of th8r_] the initial cpnd|t|ons, e;%" the size of the strgamer tip. We
retarded timer=t—z/v, . For a given medium the described Will neglect this scale<10"~ cm (Ref. 6, assuming that the
breakdown regime is completely determined by onethannel parameters are determined by transport processes in
parameter—the potentiély, on which depend the propaga- the streamer plasma.

tion velocityv, and the parameters of the streamer zone and  In @ quasineutral streamer plasma diffusion is ambipolar.
channel. Determination of the dependencelnof the ve-  However, heating of the electron gas is governed by the elec-
locity v, and of the dimensionk and electric field=, in the  tron diffusion coefficient. On this basis, we neglect diffusion
streamer zone is the aim of the present work. Here it iof charged particles in comparison with the electronic ther-
assumed that, is much greater than the electron drift ve- mal conductivity. Note that by virtue of the low electron
locity, i.e.,v, is determined by the charge transfer rate alongconcentration at the stage of channel formation the electronic
the channel. An important aspect of these studies is thehermal conductivity does not contribute significantly to the

model of the streamer zone of the leader. overall balance of energy. Its influence is manifested in an
averaged way, through the removal of energetic electrons

MODEL OF THE STREAMER ZONE capable of ionizing the gas, into the colder regions.
The situation here is unclehReference 4 calls attention Below, on the basis of the concepts expounded above we

to the fact that broadening of the current-carrying region ofconstruct a calculational model of channel formation in a
the cylindrical ionization wave plays a substantial role in thestreamer discharge plasma. Here the main mechanism of
propagation of a streamer. In R&§ a regime of streamer cold gas entrainment into the channel is the electronic ther-
propagation is constructed in which the conductance per uninal conductivity.

1063-7842/98/43(6)/7/$15.00 648 © 1998 American Institute of Physics
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BASIC EQUATIONS 5
e= EkT+ ey. 5

We assume that the plasma consists of molecular nitro-
gen, the corresponlding ions _and. e.lect_rpns with concentran writing Eq. (5) we have neglected the energy of the
tionsN, n,, ne. This assumption is justified up to tempera- electron-excited particles, assuming that it relaxes quite rap-
tures of the mediumr<4000 K, where it is possible to idly into thermal energy.
neglect dissociatioh.The plasma is electrically neutral, By virtue of retarded deactivation of the vibrational de-

=n, and weakly ionized 10°XN=n,, i.e., itis possible to grees of freedom, to determig it is necessary to solve the
neglect Coulomb collisionsNeglecting diffusive drift of the equatiorf

charged patrticles, the equation of continuity for the electron

component takes the form d(Ney) + 19 _ta dev
ar rr (TvoNev) =T o0 | TN =
. 1 a( )=kKionNNe— k,n2+ S 1)
—— T~ - (FvgNe) = KjonNNe = K Ng tr eb—e
a1 T or =nNS,+N——, (6)
\Y

wherev, is the transverse hydrodynamic velocity.

The source tern$q(v,,v, ,Eo) describes the creation of where S, is the energy lost by an electron to excitation of
electron—ion pairs at the front of the cylindrical ionization Vibrations of a moleculery is the vibrational relaxation
wave forming the streamer discharge. To get the streamdime, e{=hv/[expw/kT)—1] is the vibrational energy un-

discharge to propagate’ itis necessary té set der conditions of thermOdynamiC equilibrium(hv
=0.291 eV is the energy of a vibrational quanjuny
_Co lvv, Sir—r] @ =M/(Ncp) is the thermal diffusivityc,= (7/2)k is the spe-
85”_217 eke(Eg)v(r+rp) (r=rlv), cific heat at constant pressiirand is the thermal conduc-
i . . tivity.
where ko(Eq) =W, /Ey is the electron mobility We(E,) is Transforming Eqs(4)—(6), we obtain a system of hydro-

the drift velocity, the capacitance of the discharge per uniyynamic equations in the temperatuFe concentrationN,
length isCy=1/2Ln(2v,/v,), and the quantity, has been 5,4 mass velocity

introduced to eliminate the singularity in the linmit- 0.
For a given electron energy distribution function
S . L Nc
e—1(&) the ionizationk;,, and recombinatiork, rate con- P
stants are given by

aT aT

_1 J )\&T S N
ey hatiel L0 m +Nne(Se—NS))

2 0 _NSV SV'
/ Tv
Kion= HJ £0ion(e)f(&)de,
e cPo 1 9 LT e
2 (o - kv oar PO Tp g [P [ (S NS
K=\ — f eq,(e)f(e)de, f Jef(e)de, 3
Me Jo 0 N eh—ey
where gj,, and g, the ionization and recombination cross v
_secjuons(l is the ionization potentigl it is assumed that ion- ey gey 1 0 ey eb—sy
ization occurs from the ground state. —+vg—=——|rYN—|+n.S,+ ,
To determineN and v, it is necessary to solve the hy- T gr  Nror o
drodynamic equations which at constant atmospheric pres- Po
sureP, take the form N=17- (7)
ﬁJr 1 i(vao)zo, Po=NKT, To determine the energy scattered by the electron_s, it is
ar r ar necessary to solve the equation of energy balance, which can
be written in the form
i Ne)+ i Ne+P i J)=nS., (4
- (Ne)+ — —-[rvg(Ne +Po)]— - —-(rd) =neSe, 4 9 gn - +Ei ) §n T oo Te
ar\2 ¢ e Trogr| (2 €0 Te gy
where we have neglected the kinetic energy in comparison -
with the internal energy, J is the energy fluxS; is the € Eo _ e a2
energy transferred by an electron to the medium per second _nemeyﬁ1 NeN(Sei= Sn = S) = NeS + Sy ®)

in elastic and inelastic collisions.

By virtue of their small mobility the contribution of the
ions to heating of the medium can be neglected. The internal 3 %
energy ¢ is equal to the sum of the kinetic energy S KTe= fo e¥%f(e)de;
=(3/2)kT, the energy of rotational degrees of freedom,
which under conditions of thermodynamic equilibrium is the kinetic energyneuglz has been neglected in comparison
equal toeg=KT, and the vibrational energy, with kT.; A is the electronic thermal conductivity;

where the electron temperature is understood as
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e’E2/m,vE, is the energy transferred to the electrons by thewherely=14.5 eV is the ionization potential of atomic ni-
field; Sy, Sih, andS; are the rates of energy loss per mol- trogen andlﬁ,+=8.7 eV is the binding energy of thM,
ecule by an electron in elastic and inelastic collisions to ion-rnoleCuIe 2

ization of the gassS, is the rate of energy loss per ion by the '

electrons during recombinations, is the elastic scattering
frequency of the electrons; the source terS; INTERACTION CROSS SECTIONS OF THE ELECTRON WITH

= (3/2)kTSSstr describes the energy acquired by the electronsTHE MEDIUM
at the front of the cylindrical ionization wave; afd is the A detailed analysis of the interaction cross sections of
equilibrium electron temperature in nitrogen at normal denthe electrons with molecular nitrogen was carried out in Ref.
sity in the fieldEg. 8. Let us describe briefly the set of constants which we will
The frequencyvy, and the electron energy loss rate areuse here. To describe the elastic collisions, we employ the
given by dependence of the transport cross sectjgron the electron
energy given in Ref. 9. We describe rotational excitation in
e \/7 * fe)d line with Refs. 10 and 11. Invoking the smallness of the
"m™ Nm, Nfo &dm(e)f(e)de, rotational constanB,=2.5x10 % eV<kT, kT,, we can

take the distribution over levels to be quasicontinuous. This
allows us to replace the sum over levelsy an integral over

de, the corresponding continuudhj from j=0 to j=<. In par-
ticular, for the braking cross section we obtain

[22mg (=
SeI: Fe M fo qum(s)
[2
Sn= m_e EI

—effmsQf(s)f(s)ds

0

f +def
(g) de

fw R kT
g .sQi(s)f(s)ds S=4Bgog 1—? , (13

where 0,=8m/15(agQ)?, a, is the Bohr radius, and
, =1.05 is the electric quadrupole moment.
In the description of excitation of vibrations, we take
account of only collisions of the first kind, i.e., we assume

S = \E I fMSQion(S)f(S)dsy that the molecules are found in the ground state. The excita-
Me Ji tion cross sections’ of the first eight levels are given in
Ref. 12.
_ \/? o, fe)d The electron excitation cross sections were taken from
S= me J; °0r(e)f(e)de, ©  the following sourcesA®S | anda'll, from Ref. 13;BI1,

andC3I1, from Ref. 14;bI1;, b'3 !, and the sums of cross

whereq), is the transport cross section of electron scatteringections of the higher-lying states from Ref. 15.
by a nitrogen moleculeQ;=P;q;(¢) is the excitation cross In describing electron impact ionization we restrict our-
section of theth level with energye; ; P; is the population selves to the process originating in the ground state. The
of theith level; Q; =P;q; (e) is the deactivation cross sec- corresponding cross sections were taken from Ref. 16.
tion of theith level with energy; ; M andm, are the mass In line with Ref. 17, we assign the dissociative recombi-
of a nitrogen molecule and an electron, respectively. nation rate constants as

To determine the rates of ionization, recombination, and

o o ~_(300\2  cn?
electron energy loss and the collision frequency, it is neces- k =3x1077| —| , —([Te]=K). (14)
sary to know the electron energy distribution function. It is Te S
usually assumed to be Maxwellian For the vibrational relaxation time we use the
expressioff
(o) = fyy(e) = — —— p( 8) (10 137
e)=fyle)= —= 7=—apexp — —=—|.
M Jar (KTe)¥ kTe Ty=6.5x10"° exp( T—lr> . A[T]=K). (15)
N Here the expression for the electronic thermal conduc-  The dependence of the thermal conductivity of molecu-
tivity takes the form lar nitrogen on the temperature of the medium is taken from
Ref. 19.
5 k
)\e=§kneDe=§nekTe—e, (11)
MeVm JUSTIFICATION OF THE HYDRODYNAMIC APPROACH
whereDy, is the electron diffusion coefficient. At high electron concentrations scattering takes place in

The contribution of recombination to the energy trans-Coulomb collisions and use of the Maxwell distribution
ferred to the medium per unit ting, can be calculated from function for the electrons is justified by the intense energy
the formula exchange in electron—electron collisions. At low electron
concentrations the distribution function is governed by the
interaction of the electrons with the neutral gas and use of
the Maxwell energy distribution requires justification.

3

2kTe+IN—IZZ+), (12)

S.= krne(
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FIG. 1. Dependence on the parameiN of the ratioeD/k, (1) and the FIG. 2. Dependence on the paramefN of the electron drift velocity1)
electron temperaturd, (2). O—the hydrodynamic approximationT§ and the ionization raté2). N=2.5x 10'° cn®. Curves—the kinetic approxi-

=eD/kg). mation, O—the hydrodynamic approximation.
To describe the electron distribution functiénunder W= — eE \ /i foo & %ds,
conditions of interaction with the neutral medium we use the 3 Vme Jo Ndm(e) de

following approach, which provides a good description of

the experimental datd. Expandingf in a series of Legendre Dezl A /i fw € fo(e)de,
polynomials and limiting it to the first two terms 3 Vme Jo Nom(e)

f=fo(e)+cosOf(e), (16) Te:% " 3% (o) de. (19
0

where O is the angle between the field vectrand the
electron velocity, we obtain the following equation for the
steady-state value df;:

Under similar conditions, in the hydrodynamic approxi-
mation the electron temperatu[é*ﬁ, see Eq.(8)] can be
found from the equation of energy balance

J ([e’E? & KT > Me e2E2
e || N7 Ban(e) TKTE W On(e) e~ N(Sert St S), (19
,2Me where the dependence of the collision frequency and the en-
X£f°(8)+8 qu(s)f()(a) ergy loss rates on the temperature are found from formulas
(9) for f=1(T.,e) (we have neglected the energy losses to
. _ . h | .
:Ei [£Qi(e)fo(s)—(e+8)Qi(s+e))fq Slri:\(ljl)(_:latlom assuming the electron concentration to be

_ o 3 Figures 1, 2, and 3 compare the dependencé&/dh of
X(ete)+eQ (e)fole)—(e—&;)Q; (e—gi)

Xfole =6 )T+ o) o(e)=2 | 'Gnle) 1}
Xfo(e")ih(e" 8)ds’. 17 081° £ 5
The quantityy(e’,e)de is the probability that one of ask °‘l\
the two electrons coming out of the collision will have en- & ’ \
ergy in the interval frone to e +de. It is normalized by the astk f

COhditiOﬂfS,_Ijlﬂ(s',s)ds: 1. For definiteness, we assume
the energies of the electrons to be identigdk’, &)= 5(¢e 0.2
—(&'—1;)/2). For purposes of comparison of the two ap- )
proaches to description of the electron dynamics such an

assumption is admissible. 1617 1E-16 1E-15
Using the distribution functiori, the ionization and re- £E/N, v-em?

combination rate constants are found from formy@s and

. ; ; FIG. 3. Dependence of the relative energy losggen E/N. 1—excitation
the energy loss rate—from formul®). The drift velocity, of rotations together with elastic collisior&—excitation of vibrations3—

electron diffusion coefficient, and electron temperature caiycitation of electron levelsi—ionization. Curves—the kinetic approxima-
be calculated from the formulas tion, O—the hydrodynamic approximation.
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FIG. 4. Time depe”dencefgf the te[rllperatur(i;)f the medi“'f‘galong the disig. 5. Spatial distributions of the electron temperature and relative density
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2.5x10723 (for E4=10.8 kV/cm andv=2x 10 cm/s.

to converge to the true solution obtained in the limjt->0.
the electron temperature, the drift velocities, the diffusionThis testifies to the correctness of the mathematical state-
coefficients, the ionization frequencies, and electron energynent of the problem.
loss rates for molecular nitrogen, obtained by numerical so-  Figure 5 plots the electron temperature distribution and
lution of the kinetic equatiori17), (18) and in the hydrody- medium density distribution across the channel at the instant
namic approximation(9), (11), (19). Equation (17) was of time when the valu&l/N,=0.1 is reached. It can be seen
solved by the method of Ref. 21. FoE/N<4 that at the earlier stage the scale of leader channel formation
X107 V.cn? the difference in the quantities is large. In is ~10"2 cm and depends weakly o, andv,. To de-
the region E/N=4x10"V.cn? the hydrodynamic ap- scribe the further evolution of the channel requires that we
proach gives reasonable agreement with the results obtaingstroduce Coulomb collisions limiting growth of the electron
from the kinetic treatment. temperature, take into account nitrogen dissociation limiting
growth of the temperature of the medium, describe radiative
transfer entraining new masses of gas into the channel due to
ANALYSIS OF THE CALCULATED RESULTS heating of the cold periphery, etc. In addition, the growing
conductivity of and consequently current through the channel
The solution of the problem is defined by Edq%)—(3) affect the magnitude of the electric fielfeedback effegt
and(7)—(12). At the initial time instant the nitrogen is found This requires a self-consistent approach to the description of
under normal conditions:N|,_,=Ny=2.5x10%cm 3, the dynamics of channel formation and the magnitude of the
T|,—0=293 K, &y|,—0=0, the electron concentration electric field. However, basing ourselves on a string of as-
Ne| ,—0=0, and the electron temperatufg ,—,=293 K. The  sumptions it is possible to obtain the dependence of the
boundary conditions follow from the requirement of axial propagation velocity of the leader and the dimensions of the
symmetry: ar =0 the particle and energy fluxes are equal tostreamer zone on the potential without complicating the
zero. The ionization and recombination rate constants, erproblem by bringing in a description of the enumerated ef-
ergy loss rates, collision frequency, and electronic thermafects.
conductivity follow from formulas(3), (9), (11), and (12 The nature of the solution—an abrupt growth of the tem-
assuming a Maxwellian electron energy distribut{dg). perature of the mediurtdecrease in the densjtwt the stage
The ionization sourceS, (2) and the field in the of channel formation—makes it possible to introduce the
streamer zone are determined by the streamer parametersncept of a length of the streamer zdnand a potential of
Eq, v,/v,, andv,, which are unknown. We take the value leader channel formatiow=EyL. For definiteness we take
v,/v,=10(Ref. 5. To findEy andv,, we proceed from the L=uv,-ty, wheretg, is the time it takes the channel density
fact that for a given potentidly, of all possible values d&;  to reach the valu&l/Ny=0.1. Proceeding from the fact that
that one will be realized for which, is maximum. the leader channel possesses a high temperétigk con-
Figure 4 plots the time dependence of the medium temeuctivity), we estimate the value of the leader potentia|
perature along the discharge axis for different valuesof =~V, i.e., we neglect the potential drop in the channel.
(2) in two series of calculations witkEy=12.6 kV/cm, v, Figure 6 plots the dependence of the potendain the
=2x10" cm/s, andE,=10.8 kV/cm,v,=2%x10° cm/s. As  propagation  velocity v,, calculated for E,
ro is decreased, the dimensions of the streamer dischargell.4, 11.64, 12 kV/cm. The curves have a bell shape:
zone decrease and fop<10"“ cm the solutions are indis- growth of the potential at small velocities gives way to a fall
tinguishable, i.e., for,=<10 % cm the solution is observed at large velocities. Qualitatively, this may be understood
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FIG. 7. Diagram of the proces&—leader channeR—streamer zone.

0 111l e 1 1aggl L4+ e eianl

LEYOE 16407 1E+08 1.6+09 impossible since it is associated with a decrease in the field
VpsCR/S strength in the streamer zog .
Thus, if we assume that for a given potential the leader
FIG. 6. Dependence of the potentidlon the propagation velocity, . Eq, propagates with the maximum possible velocity, then its ve-
kviem: 1—11.4,2—11.64,3—12. locity is determined by the maxima in th§v,) curves(the
pointsc,e,f in Fig. 8. The dependenag,(U,), whereU is
the potential determined by the conditi@kﬁ&uzlEO:O (Eo

from the following considerations. On the one hand, growth’S & Parameter heyeis plotted in Fig. 8. V(\)/%‘ growth ot

of the velocity is accompanied by an increase.efv,-to 4 the leader vellocny grows reughly a§.~U0' . This is clear
and consequently also of=E,L. On the other, in the from comparison with the interpolating, dependence also
adopted streamer zone model an increaserleads to  Shown there:

growth of Sy, (2), i.e., ne in the streamer zone, and conse- v,=1.47X 100U cm/g[Ug]=MV). (20)
quently to increased energy release and a decredge amd o _

L, V. At small velocities the first of these prevails while at ~ 1hus, within the framework of the ideas expounded
large velocities, the second, which leads to the appearance BPOVe it is possible to construct the steady-state regime of
a maximum in the dependence \dfon v, . Iead_er propagatlo_n, describe the initial stage of cha_nnel for-

Thus, for a given potentiaV there is a family of curves mation, a_nd obtaln the dependence on the potennal of the
v,(E,) assigning the propagation velocity of the leader as ropagation velocity, t_he field, and .the dlmens!ons of the
function of the electric field in the streamer zone. Thus, forSiréamer zone. These ideas depend in an essential way on the
V=V* the fieldE,=11.4 kV/cm corresponds to the velocity parameters of the plasma in the etreamer zone. These param-
at the pointa, i.e., v,, and at the corresponding point for €ters were chosen on the basis of a model of streamer
largev,; and the fieldE,=11.64 kV/cm corresponds to the br_eakdowr?. Presumably, in the case of a positive streamer
velocitiesv, anduy; the fieldE,= 12 kV/cm corresponds to IS 7model works at propagation velocities,>3—4
the velocityv,, etc. (Fig. 6), i.e., beginning its motion with X 10" cm/s. At least it makes it pOS_S|bIe to explain the linear
velocity v,, the leader can accelerate to the velocitiesdependence of the streamer velocity on the rate of growth of
Up, Ug, Ug, @nd so on.

Generally speaking, the propagation velocity and conse-
guently the field in the streamer zone are determined by the
propagation velocity of the channel. In turn, the channel pa-
rameters and consequently the channel propagation velocity
are determined by processes in the streamer zone, i.e., by the 3.£+8
field Eq and the velocity ,. Let us qualitatively consider the
process of acceleration of a leader due to an increase in the
channel propagation velocitfig. 7). Let at the initial time
the channel velocity$ and streamer zone veloci" be
identical and equal to the leader propagation velooity
Increasing the fieldE, will lead to an increase in the rate of
energy release, i.e., to a growth of, and, conversely, a 1£48
growth of v§ leads to a shrinkage of the dimensions of the
streamer zoné. and consequently to a growth &, (Eg 3
=V*/L). In other words, growth of the leader velocity is 0.640 1 1 1 1
possible with simultaneous growth &, and vice versa. 0 a0 U“”Mv 60 6o
Having started its motion with velocity,, a streamer can 0’
accelerate ta since this acceleration is accompanied by ar|g. g. pependence of the velocity, on the potentiall ;. Solid curve—
growth of E,. Further growth of the velocity, e.g., tq, iS  calculated; dashed curve—interpolation based on forrt20a

4.£+8

2.£+8

U, CM/8
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the potential observed in this regidfi. Therefore we can depends weakly on the potentld}, and is determined by the
assume that what has been said above is valid for positivealue of E/N corresponding to the shift of the electron en-
leaders forU,=3 MV (Fig. ), i.e., at high potentials. It ergy dissipation channel from excitation of vibrations to ex-
cannot be ruled out that at small potentials formation of acitation of electron levels. Under normal conditions this cor-
leader channel takes place via another mechanism, e.gesponds to the valug,=12 kV/cm, i.e., in some sense it is
against the background of a huge number of continuouslyossible to speak of the existence of a threshold field for
forming streamers.The experimental data known to us do leader breakdown.
not allow us to conjecture about the applicability of the 6. Presumably in the case of positive leaders the model
model to negative leaders. works at potentialdJ,=3 MV. It is possible that at low

It is interesting to note that the streamer zone fidlgs potentials channel formation takes place against a back-
depend weakly on the potentill, (on the velocityv,). As  ground of a huge number of continuously forming
U, varies from 6 to 26 MV, the fieldE, varies within the streamers.The experimental data known to us does not al-
range 11.4 12 kV/cm. This has to do with a peculiarity of low us to conjecture about the applicability of the model to
energy dissipation in the given range of field strendffig.  negative leaders.
3), specifically with a shift of the main channel of energy 7. The model can be used to describe a leader break-
scattering by the electrons from excitation of molecular vi-down of a long air gap. When additional processes are added
brations to excitation of electron levels. By reason of re-to the model, it will be possible to obtain leader channel
tarded deactivation of the vibrational levels of the moleculeparameters matched to the potentiky.
heating of the medium and consequently channel formation
are hindered in the first case. In this sense one may speak of
a threshold field for leader breakdown in nitrogair) equal 1Yu. P. Razer, Physics of Gas Dischargén Russiaf (Nauka, Moscow,

to ~11-12 kVv/cm. 1987, 591 pp.
2M. V. Kostenko (Ed), High-Voltage Techniquéin Russiai (Vysshaya
Shkola, Moscow, 1973351 pp.
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Analytical expressions are obtained for the ionization potentials of neutral atoms and ions in the
screened Coulomb potential of a nonideal plasma. Among all the chemical elements

considered, cesium exhibits the greatest relative lowering of the ionization potentials in comparison
with the case of an unscreened interaction. 1898 American Institute of Physics.
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INTRODUCTION variational method and by perturbation theory can be found

Many characteristics of plasmas, in particular the equain Ref. 4). Analytical formulas convenient for practical cal-
' ulations can be obtained by using, instead of &), the

tion of state and the kinetic coefficients, depend substantially. lar Hulth tential3 14
on the electron density**In a not-too-dense plasma ioniza- >''ar Aulther potentia

tion is caused by thermal excitation of electrons to states of Z*IN
the continuum, and at high enough temperatures there exist Un(r)=—gm—7- 3

in the plasma ions in different states of ionization. Such mul-
tistep ionization in an ideal plasma is described the the Saha Like the Debye potential, potentidB) for r<\ goes
equations? according to which the main parameters deter-over to the Coulomb potentidd.(r)=—Z*/r and falls off
mining ionization equilibrium at given plasma temperatureexponentially at large. Z* is the effective charge of the
and density are the ionization potentials of the atoms andtomic radical for the valence electron with principal and
ions. In an ideal plasma these are the ionization potentials drbital quantum numbers and|. We will determineZ*
the isolated neutral atoms and of ions in the various charglom the experimentally measured ionization poteritfglof
states. With growth of the density of the plasma and its dethis valence electron in an isolated atom or ion
viation from ideality a renormalization of the ionization po- 7%2
tentials takes place due to effects of interactions between the Iﬁyl =5n (4)
particles of the plasma. For a weakly nonideal plasma effects n
of the Coulomb interaction can be taken into account within  This gives then- and|-dependent effective charge
the framework of the Debye approximation. The correction 5
to the free energy per unit volume due to interaction in the *=ny2,,. ©)
continuum can be expressed'aghere and below we use Let us determine the energy levels of the bound states of
atomic unitg the electron in a centrally symmetric potenti@). Repre-
2 312 1 senting the electron wave function in the usual way in the
Af=—3 W/T( > niziz) =73y 4 niz?. (1) form of a product of a radial functioR(r) and angular func-
' ' tions Y,n(6,¢) and then transforming to the variable

Heren; is the density of particles of the plasma with chargex=r/\, we obtain the radial Schdinger equation for the
Z;, T is the temperature) is the Debye screening length function x(x) =R(x)/x
leading to an effective interaction of particles with charges 1 d?y 7% 1 I(1+1)

Z, andZ, at the distance — - - =
e nad | T x et e B O
142 _
Up(r)= e " 2 In this equation the states wilk=0 are a special case.

;
For them the centrifugal term,(x)=1(1+1)/(2\?x?) is

Screening of the Coulomb interaction for bound electrongenerally absent, and E¢(p) can be solved by transforming
states in atoms and ions leads to a Iowering of their ionizato the new argumeni= e X (Ref. 13. The energy levels of
tion potentials. the discrete spectrum for=0 are determined by the princi-

pal guantum numbem and can be written as
LOWERING OF THE IONIZATION POTENTIALS AS A 2
CONSEQUENCE OF SCREENING E —_ zt (1_ n
" 2n? 2Z*\

2 \2

)

The Schirdinger equation for the valence electron with
potential(2) does not have an analytical solution in terms of ReplacingZ* by the expression for it given in formul®),
known functions(approximate techniques of solution by the we obtain
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To obtain an analytical expression for the energy level
of the bound states with+#0, we replace the centrifugal
potentialU(x) by
_1a+1) 1
207 (ef-1)*

n
28210,

0

En= _In,O

)

U|(X (9)
The function U,(x) approximates the functiot,(x)
very well. Indeed, forx<1 (r<\) the two functions coin-
cide, but in the localization region of the bound electron
r~1 (x~1/\). Therefore, in a plasma with IargeU,(x) is
a good approximation folJ,(x). With the true centrifugal
termU,(x) replaced by the approximate centrifugal te(@®n
the radial equation fox(x) takes the following form:

1 d? zZ* [(1+1) _z
T ad | TNE=D T e 2 X TEX
(10

and can be solved exactly for ahy We make the transfor-
mation of variableu=e™* in Eq. (10) and introduce the no-
tation

a=\V-2E, B2=2Z*\.

Taking the asymptotic behavior gf(x)

x(X)~x'"T1~(1-u)'*t for x—0,

x(X)~e”¥*~u* for x—oo,
into account, we seek the solution of E4D) in the form
x(W=u*(1—u)"tw(u). (13

Here for the functiorw(u) we obtain the hypergeomet-
ric equation

ul—uw’+2a+1-(2a+21+3)u)w' = ((2a+1)

X(1+1)— B%)w=0. (14)
Its finite solution in the limitu— 1 has the form
w(w=F(a+1+1+vy,—n,,2+1,u). (15

Here y=(a?+ B2+1(1+1))Y2 n,=—

(a+1+1+7y) is the
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- Z*? n’—=1(1+1)\?
o= "o |17 Tz (18

5(n=1,2,3,..., G<l=n-1).

Expressing the effective char@® in terms of the ion-
ization potential 2,, of an isolated atom or ion, we obtain the
ionization potential for an electron with quantum numbers
and| with screening taken into account

n’—1(1+1) 1
2n\ 219,

In,I: _En,lzlg,l< 1-

2
) . (19

As the particles of the plasma we may consider negative
ions of the chemical elements. Loss of electrons by such ions
can also be examined within the framework of the model
expounded above. In this case the ionization eneﬁgyis
the electron affinitye® of isolated atoms of these chemical
elements. As a rulee’<1 (e.g., for hydrogene®=0.029;
therefore, as follows from Ed19), the relative lowering of
the electron affinity as a result of screening turns out to be
still more significant than the lowering of the ionization po-
tentials. Similarly, the critical value of the screening length,
N\, at which the renormalized electron affinity vanishes,

\ _n2—I(I+1) 20
° ZnW

turns out to be substantially greater than the critical screen-
ing length for vanishing of the renormalized first ionization
potential(the Mott screening lengihThis leads to the result
that with growth of the temperature the density of negative
ions in the plasma falls significantly faster in comparison
with the situation where screening of the Coulomb interac-
tion is not taken into account.

The above expressions for the ionization potentials and
the electron affinity were obtained by using the approximate
centrifugal potential9). The difference betweeb,(x) and

U,(x) can be taken into account in perturbation theory. In the
first-order theory

8U,00=U,) = Uy(x) (21)

and the correction to the energy of an electron with quantum
numbersn andl is equal to

radial quantum number taking nonnegative integer values, fﬁle(%—%)dx
andF (&, 5,£,u) is the hypergeometric function 1A +1) TR (e 1) 29
" nl— 2)\2 fﬁoXZ dx . ( )
(& m(7)m um osn
F(&nLu)= Z T On m (16) Substituting the radial functiog,, | (13) into expression
" (22), we writew?(u) as
The symbol €),, is defined as 2n,
(&)m=E&(E+1)...(+m—1) for m>0, wz(u)z_ZO bul. (23)
i=
(&)m=1 for m=0. (17 Here
Forn,=0,1,2,... the hypergeometric serigih) degen- j
erates into a polynomial with degre® . Introducing as in E a.a it j<n,,
the case of the Coulomb potential the principal quantum m=o oo™
numbern=n,+1+ 1, which takes only positive integer val- bi={ (24)
ues, we obtain the discrete spectrum for any orbital quantum if j>n,.

Z amaj_m,
numberl m=j—n;
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The coefficients,, here are equal to
a :(Zy_nr)m(_nr)m
m (2a+1),m!

Calculating the integrals arising in expressi@®2), we
obtain

(29

I(1+1)
OEn =552
=2n ¢ (m+2a)|n(m+za)—zz“‘*l)L
m=0=m m=0 m+2a+2
X c .
2n m
20 m+2a

(26)

The coefficientsc,, can be expressed in terms of the

coefficientsb,, by way of the following formulas:
I<n,—1

+ .
2'. 2) m—i » if m=2n,,

% ool

2n
zzm“_o(—l)m( m)(2a+ m)In(2a+m)—32""2
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In an analogous way the coefficientl, can be ex-
pressed in terms of the coefficiertdg,: for I<n,

ZO (—1)i(2i|)bm_i, if m<2n,,
dm: 2| | (29
B (—1)'( i )bm_i, if m>2n,,
for I>n,
- m—i 2l : -
Z (-1) (m—i)bi’ if m=2l,
On™ (30)

i=0

2n, 2|

> (_1)mi(m i)bi’ if m>2l.
i=m-2I -

In expression$27)—(30) we have used the standard bi-
nomial coefficient notation

(i)_ il
ST 3D

The expression fobE,, | looks especially simple in the
cased=n—1 (n,=0) corresponding to circular Coulomb or-
bitals. For electrons with such quantum numbers

(=™ (2n—2)
0 2¢+2+m m

(0]
Cm=y 21+2
E (—1)'(2|+2)bm|1 if m>2nr,
i=m-2n, I
(27)
forI>n,_;
m
(21+2 .
_qym-i <
26( ) (m |>" if m=2l+2,
Cm= 2n,
(—1)mi<2|+.2)bi, if m>2l+2.
i=m-21-2 m—1
(28)
|
I(1+1)
5En,I:5En,n—1: 22

For large\ the expression fo6E, , for all | is simply

al

5En,| :Xz (33)

(32

on (—1)m<2n)
m=0244+mim

and inert gaseéHe, Ne, Ar, Kr, and X& The relative low-
ering of the first ionization potential of the alkali metals in
comparison with the case of an unscreened interaction in the
isolated atoms is plotted in Fig. 1 as a function of screening

and the ionization potential with screening taken into acdength, and of the second and third potentials, in Figs. 2 and

count for largex can be written in the form

o n2—1(1—1) 1\? | 1
Fni=Ini| 1= 0 1-+ 510 |-
! ! 2n)\ 2|n'| )\ 2|n’|

(39

RESULTS

3, respectively. For the first ionization potential the relative
lowering turns out to be especially significant for cesium.
This is due to the fact that the principal quantum number of
its valence electronn=6) is the largest of all the above-
listed alkali metals for the orbital quantum number 0
(which is the case for all of theand the first ionization
potential of an isolated atom is the lowesg =3.893 V).

The analytical expressions obtained above for the ionizaThe relative lowering of the ionization potential of cesium
tion potentials were used to calculate the first three ionizatioturns out to be the largest for all of the chemical elements

potentials of the alkali-metal atongki, K, Na, Rb, and Cs

considered.
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FIG. 1. Relative lowering of the first ionization potential of lithium, sodium, L . .
potassium, rubidium, and cesium as a function of the interaction screeninth€ ionization potentials obtains for Xe. For all the atoms

length. considered this lowering decreases as the charge state of the
ion increases: the lowering of the first ionization potential is

) ] o . the most significant. The ionization potentials of isolated at-
The relative lowering of the two ionization potentials of 55 of all the elements are taken from Ref. 15.

helium and the first three ionization potentials of the atoms Figure 7 plots the relative lowering of the electron affin-
of the other inert gase@\e, Ar, Kr, and X¢ are plotted in ity qye to screening of the Coulomb interaction for the series
Figs. 4,5, and 6 as functions of the screenlng_length. Among)f elements(H, He, C3. The relative lowering of the elec-
the elements of this group the greatest relative lowering ofron affinity turns out to be substantially greater than the

lowering of the first ionization potential of these elements.

0201
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Rb o1k Kr
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\ L | 1 1
L 20 40 7
1 I L A, au
20 &7} 40 50
A, au FIG. 4. Relative lowering of the first ionization potential of helium, neon,

argon, krypton, and xenon as a function of the screening length in the
FIG. 2. The same as in Fig. 1 for the second ionization potential. plasma.
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FIG. 5. The same as in Fig. 4 for the second ionization potential.
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FIG. 6. The same as in Fig. 4 for the third ionization potential.

S. I. Anisimov and Yu. V. Petrov 659
100+
075
050+
O
He
025+
H
[ | 1 1
20 40 80 80 700

A, au

FIG. 7. Relative lowering of the electron affinity of hydrogen, helium, and
cesium atoms as a function of the interaction screening length in the plasma.
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The technique of probe measuremef@speriment and theojyis applied in a dense, strongly

ionized inert-gas plasma at atmospheric pressure. The measurements are performed in a
high-current(250-550 A free-burning argon arc with a thermionic cathode. As a control
technique we used spectroscopic measurements. Comparison of calculation with experiment
reveals good agreement. The possibility of determining the plasma potential from the

measured floating-probe potential is demonstrated.1998 American Institute of Physics.
[S1063-78498)01006-X

INTRODUCTION an atmospheric-pressure plasma. As the control technique we
used spectroscopic measurements.

Virtues of the probe method of plasma diagnostics in-  The experiments were carried out in a freely burning
clude locality, the possibility to carry out measurements inatmospheric-pressure arc in argon, the most frequently used
devices from which extraction of light is hindered or com- plasma-forming material in plasma devices. Reference 4 pre-
pletely impossible, etc. In practice, only the probe methodsents results of calculations of the probe characteristics in a
allows one to determine the plasma potential—the most imxenon plasma. The present paper applies the theory devel-
portant parameter in the study of processes occurring ne@ped in Ref. 4 to a calculation of the probe characteristics in
the electrodes in various discharges. The latter circumstand® argon plasma.
is the most important stimulus for ongoing studies directed at
g_xtendin_g the range of plasma parameters accessible to Prop§pErIMENTAL SETUP AND MEASUREMENT TECHNIQUE

iagnostics.

In a strongly ionized plasma at atmospheric pressure The experiments were performed in a water-cooled
probe measurements have been carried out for some tinfdainless-steel chamber with an inner diameter of 180 mm
(see, e.g., Refs. 1 and.However, the technique of carrying @nd @ height of 200 mm. The chamber was first pumped
out such measurements has still not been fully worked oud®Wn 10 a pressure gf< 1072 Torr, flushed with argon and
This is frequently explained by the technical difficulties in- tNen filled with argon to 3-5% above atmospheric pressure.

volved in performing the measuremeritsgh heat flux den- The arc was oriented vertically: a tungsten rod-shaped cath-
sities to the probe but mainly by difficulties of interpreta- ode with diameteD =2 mm was located below the arc, and

tion of the results by virtue of the absence of a consistenf flat copper water-cooled anode above it. Care was taken

. .not to sharpen the end of the cathode, which had the shape of
theory of current collection by the probe under these condi- . . .
. ) . : a hemisphere. The interelectrode gap was 12 mm. Thermi-
tions. The assertion made in Ref. 1 on the basis of only

o . . onic emission from the cathode was generated by self-
qualitative arguments that the potentglof a floating probe heating which was produced by a constant-curi@&et—70
relative to the plasma in a strongly ionized, high-pressur

e .- . . K

A) auxiliary (servicg arc. The main pulsed discharge
plgsma has an absolute vaIu_e|Mf|.—(2i1) V has been source—a generator with low internal resistance, pumping
widely accepted. However, this estimate, as results of recenf, ¢ single rectangular current pulses wita 1000 A and du-

calculations have show’t'f‘, is probably incorrect even in or-  ra4ion yp to 5 ms—was connected in parallel with the service

der of magnitude, since a calculation giv&§/=10 V. arc. The leading edge of the pulse was formed by transitory
Since measurements of the floating-probe potential relaprocesses in the discharge and was ms in duration. Mea-

tive to the electrode in atmospheric-pressure arc dischargegrements were performed in the steady-state regime 3—4 ms

usually give a valugeg|<10 V, in the determination of the after onset of the pulsed discharge. The experimental setup is
cathode potential droy according to Ref. 1 it is possible to described in more detail in Ref. 5.

obtain a value ofV, more than two times lower than the Spherical probes with  diameter d=2a=0.45
value that follows from the calculation in Ref. 4. In the de- —0.50 mm were fabricated from a tungsten wire 0.35 mm in
termination of the anode drog, the choice of the correct diameter. The wire was insulated by,8k ceramic 0.75 mm
value ofV; is no less important, since not only the magni-in diameter. The area of the cylindrical part of the probe
tude but also the sign of, depend on it. extending out from the insulator did not exceed 15% of the

The aim of the present work is an experimental check ofarea of the sphere. With the help of an electromagnet the
the theory developed in Ref. 4 and further development oprobe was shot across the arc through the central zone of the
the probe-measurement technique at high ionization levels iarc channel with a speed ef1 m/s. During the motion of

1063-7842/98/43(6)/4/$15.00 660 © 1998 American Institute of Physics
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the probe a special device generated time markers whiclvhere collisions of electrons with ions and neutrals do not
were formed with the help of a comb-type light chopperaffect the electron temperature distributidn(r) in the
mounted to the shaft of the probe holder. probe sheath. In a large number of calculations the value of

With the help of an S9-8 digital storage oscilloscope weT, in the probe sheath was in general not determined but was
recorded the time dependence of the floating-probe potentialssigned as a parametsee, e.g., Refs. 639In fact, here it
¢ relative to the grounded cathode or the ion currgnt was assumed that, coincides with the electron temperature
when a negative bias of 5-15 V relativege was applied to in the unperturbed plasma. In the present work we calculated
the probe. The position of the probe was determined with théor a different situation, typical of rather high pressures, in
help of the time markers. As a result of the unavoidable aifwhich as a consequence of intense collisions between the
gap of the probe holder inside the solenoid of the electroelectrons and heavy particles a single temperaly(m® is
magnet, the accuracy of determination of the position of theestablished in the main part of the probe sheath for both the
probe was~0.3 mm. Measurements in each of the regimeselectrons and the heavy component. This temperature differs
were carried out in the form of a series of 8—10 oscillogramsfrom the temperature of the unperturbed plasima First of
after which the results were averaged, discarding outlierall, this difference is connected with a lowering of the tem-
whose appearance was connected with the bias of the aprature of the heavy particles in the probe sheath fforto
channel. The position of the arc was monitored visually on ahe temperaturd,, of the probe surface. Second, it is con-
screen onto which its magnified image was projected. nected with a lowering of the electron temperature as a con-

Before commencement of the measurements a negativgquence of their motion toward the probe in a retarding
bias of ~20 V relative togp; was applied to the probe and electric field in a quasineutral plasma, and also with energy
the probe was shot through the plasma several times. As thgsses by the electrons to ionization and overcoming the re-
probe passed through the central part of the arc channel, tarding potential barrier in the Langmuir sheath of the probe.
cathode “spot” formed on the surface of the probe, cleaningin the theoretical treatment the probe sheath region was di-
its surface without causing any noticeable erosion since th@ided up into a series of layers in line with the role of the
current was limited to 10 A. Such a preliminary cleaning predominant effects in therfin more detail see Refs. 4 and
prevented the appearance of spots on the probe during iof). Under the conditions considered here the following hi-
current measurements which were carried out at somewhgkarchy of characteristic lengths obtairisy<l;<L <L,
lower (in magnitude biases. Such cleaning was repeated as<| ;<a. HereL, is the thickness of the Langmuir sheath of
needed during the measurements. the probe,l; is the mean free path of the ionk,, is the

To record the arc emission spectrum we used an MDR-31axwellization length of the electrons,; is the length of
spectrometer joined to an OSA B&M Spektronik multichan- single ionization of the argon atoms by the Maxwellized
nel optical analyzer. The half-width of the instrument func-electrons,L; is the relaxation length of the temperature of
tion of the spectroscopic setyfor the width of the entrance the heavy component to the electron temperature. If the
slit <0.08 mm was 0.12 nm. During the measurements theahove sequence of inequalities is fulfilled, it is possible to
width of the entrance slit of the monochromator was set taanalyze processes in the indicated regions separately, taking
0.15 mm, which ensured undistorted transmission of the agnto account the presence of narrower layers in the effective
tual intensity distribution in the emission spectrum. A 25-nmpoundary conditions. The inner layers forL; can be
segment of spectrum was recorded in each exposure. treated as planar. Numerical calculations using a technique

With the help of a system of crossed mirrors and a twoe developed earliémwere performed for a spherical probe
lens quartz condenser a reduced, horizontally oriented imagsf radius a=0.25 mm in an argon plasma at atmospheric
of the arc was formed in the plane of the entrance slit, whictpressure.
was scanned across the slit by rotating a plane-parallel quartz  The condition for realization of the indicated hierarchy
plate. We estimated the spatial resolution along the dischargsf characteristic lengths, in addition to a high enough pres-
axis to be<0.3 mm. The exposure timgemporal resolu-  syre, includes a comparatively high temperatiireof the
tion) of the analyzer was varied within the limits 0.2—0.5 ms. plasma. In particular, if the condition <L is fulfilled, it is
The delay of startup of the analyzer was chosen with theyecessary that the electron temperature in the ionization re-
intention that the start of recording of the spectrum corregion exceed 2 e\(Ref. 4. In this case the temperature of the
spond to the moment the probe passed through the paraxighperturbed plasma should exceed 2.5 eV. In this case the
region of the discharge. The spectral sensitivity of the setupinperturbed plasma consists only of electrons and doubly
was measured with the help of an SI8-200U reference band;harged argon ions Ar", while in the intermediate region
lamp. L;<<r<a a transition takes place from single to double ion-

The probe and spectroscopic measurements were n@fation of the plasma. The extent of the corresponding tran-
performed simultaneously; however, processing of a largegition region under the conditions considered here exceed by
quantity of measurements revealed good reproducibility ofn order of magnitude the recombination length of thé Ar
the arc burning regimes. ions with the electrons. This allows us to use the condition of
local thermodynamic equilibriur{LTE) to determine the
composition of the argon plasma in the probe sheath every-
where forr>L;.

The operation of the probe in dense plasma was previ- Calculated results are shown in Figs. 1 and 2. Figure 1
ously analyzed theoretically mainly in application to regimesplots the calculated dependence of the electron current den-

THEORY
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FIG. 1. Density of the electron and ion current to the probe as functions of
the probe potentialT,=0.15 eV;T,., eV: 1—3.4,2—3.2,3—3.0,4—2.8.
The points show the values of the floating-probe poteittial
is on the order of the probe radias=0.25 mm and is also

quite small in comparison witk,. In addition, it should be
sity j. and ion current density; to the probe on the probe noted that near the cathode at distanzeD there exists a
potential V, relative to the unperturbed plasma. Figure 2stagnation zone; a cathode jet, whose velogity10* cm/s
plots the dependence of the floating-probe potejalrela-  (Ref. 1), is formed in the regiom=D. Therefore probe mea-

tive to the unperturbed plasman the temperaturé., . surements near the axis of the arc channel at distances
a<zy<D can be assumed to be correct and can be compared
EXPERIMENTAL RESULTS with calculations for an immobile plasma.

L L The probe measurements were carried out in the follow-
As was shown above, the criteria of applicability of the . P

. . ing way. For a given discharge current the floating-probe
theory are met in a plasma with>2.5 eV. Such a tempera potential ¢; relative to the grounded cathode was deter-

ture in a freely burning atmospheric-pressure arc is reacheﬁj‘. . : . i
4 ! ined. Then, different negative biasgs-15 V) relative to
near the cathode. Earlier studies showttht the character- o were applied to the probe and the ion current was mea-

istic dimension of the region of plasma wiih>2.5 eV for sured. The dependence of the ion currenon time had a

|>250 Als ~2.mm and grows as the current ls'lncreased.wide maximum which corresponded to passage of the probe
By virtue of this fact, measurements were carried out for,

|=250 A at a distancey~1 mm from the cathode. As cal- through the paraxial region of the arc. The maximum value

. : . of I; was reached near the arc axis. In the investigated re-
culations have_show‘hlhe perturbations introduced l?_Jy the gimes we observed unmistakable saturation of the ion cur-
cold probe in the plasma relax at the distance

L-—10-1 mm<z.. The size of the current collection redion rent with increa_lse of the magnitude of the negative bia_s of
T 0 9 the probe relative tap;. The dependence of the saturation
ion current densityj;s measured in this way on the arc cur-
rentl is plotted in Fig. 3.
The plasma temperature at the distamngérom the cath-
ode on the discharge axis was measured as a function of the
arc current by the method of relative line intensities without
nk using the Abel inversion. As the results of Ref. 11 show,
under the conditions of our measurements the associated er-
ror of determination of the temperature does not exceed a
few percent. The high temperature of the near-cathode
0r- plasma was the reason for using the spectral lines of Ar IlI
for diagnostic purposes. Isolated lines with known probabili-
ties of radiative transitions were cho$&mvhich had been
! \ L used earlié**in arc plasma thermometry. In the working
2.6 3.0 3.2 34 3.6 segment of the emission spectrum 315-340 nm against the
Tea s 8¥ background of the recombination—bremsstrahlung con-
FIG. 2. Dependence of the floating-probe potential on the plasma temperdinuum we distinctly observed the two triplets of Ar Ii$ix
ture T... To=0.15 eV. lines in al) 4s’ °D°—4p’ °F and 4s °S°—4p P with ex-

IV, 1,V
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20k 1 plasma a transitional segment of the probe characteristic is
(i distorted forl .~1; . What is more, the significant decrease of
the ion current to the probe in comparison with the saturation
ion current al .~1; (Fig. 1) prevents us from using the mea-
s sured probe current—voltage characteristic to directly deter-
s minel, (by extrapolatind ;). All this makes the transitional
1.0 ‘ ;’ segment of the characteristic unsuitable for diagnostic pur-
poses. Nevertheless, the plasma temperafurean be de-
termined by measuring the saturation ion current to the
o5 probe. Indeed, as calculation shovysg, is a sensitive func-
tion of the plasma temperature and depends only very
0 . () | weakly on the surface temperature of the préthe dashed
2.5 3.0 3.5 curves in Fig. 4 This is important since during the measure-
T,V ments the surface temperature of the prdhlevaries in an
F1G. 4. Deoend he satura e of the | densiy thuncontrolled way. The maximum value ©f depends on the
e o e e s s anfesidence tme of the probe i the plasma and the probe
calculation.T,, eV: 1—0.05,2—0.25. potential relative to the plasma. Estimates show that in our
experiments the surface temperature of the probe could reach
2500 K. The comparison of calculation with the results of
experiment shown in Fig. 4 reveals good agreement.
The results obtained confirm that the theory developed in
. 4 adequately describes current collection by a floating
probe in a strongly ionized atmospheric-pressure plasma. In
this work we have demonstrated the possibility of measuring
- | nﬁe plasma temperature indirectly from measurements of the
unrealistically exaggerated values of the temperature. This Saturation ion current, and we have also demonstrated the

a resultl ?.f the ;m:OﬁISIb'“;y ﬁf resolvlm_g thlg lmplfement(_ad possibility of determining the plasma temperature from mea-
spectral lines of Ar Il and the near-lying lines of atomic g, o mants of the potential of the floating probe.

tungsten and tungsten ion and also the lines of carbon ion. The studies described in this paper were carried out with

The presence O.f carbon was due t.o its removal from' th(?he support of the International Science Foundati@nants
cathode pin during arc burning, which was noted eaflier. No. R5D000 and R5D300

The excitation temperature of the lines measured by this
method under the conditions of our experiment coincides
with the plasma temperatute.
The spectroscopic measurements were used to construefy. Finkelnburg and G. MeckeElectric Arcs and Thermal Plasmél,

the dependence of the saturation ion current density the Moscow, 196}, 370 pp.

probe on the plasma temperatuiFég. 4). 2B. S. Gavryushchenko, R. Ya. Kucherov, A. V. Postogaemnal, Zh.
Tekh. Fiz.45, 2119(1975 [Sov. Phys. Tech. Phy&0, 1333(1975].

SE. M. Sklyarova and |. B. Chekmarov, Zh. Tekh. F&4(7), 28 (1994
[Tech. Phys39, 649(1994)].
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Numerical calculation of the heavy-ion energy spectrum in the cathode sheath of a glow
discharge in a gas mixture
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A numerical method is developed for solving the equation for the heavy-ion total-energy
distribution function in the cathode sheath of a glow discharge in an inert-gas mixture which
requires much less computer time than the Monte Carlo method. It is shown that it allows

one to calculate with satisfactory accuracy the energy spectrum of the heavy ions bombarding
the cathode in glow-discharge devices. 19898 American Institute of Physics.
[S1063-78498)01106-4

In many gas-discharge devices such as gas lasers aedceeds the elastic collision cross section and the electron
displays, the working medium is a mixture of inert gasesionization cross section of the parent atom. In a mixture con-
containing a light gas with a small admixture of a heavy onetaining only a moderate amount of heavy gas, the motion of
Their service life in many cases is a function of the cathodghe heavy ions can be strongly affected by their elastic col-
sputtering time, where the main contribution to the sputterindisions with atoms of the light gas between charge-transfer
comes from ions of the heavy componéhtTo model the events on gas atoms of their own species. Nonresonant
evolution of the emission surface of the cathode in such gharge transfer on atoms of the light gas, on the other hand,
discharge, it is necessary to know the energy distributiorfan be ignored, since its cross section for inert gases at ion
function of the ions of the heavy component of the mediumenergies below 1 keV is smaft

The energy distribution function of the ions in the cath-  If the mass ratio of the atoms of the two components is
ode sheath of the discharge has been calculated by analytid@f9e My /M >1), then the deviation of the trajectories of
methods in a number of papdtéfor a discharge in a pure the heavy ions from the normal to the cathode surface will be
gas. However, as was shown in Ref. 7, the use of such a ioﬁmalllo_ and their moti(_)n can_be treated as one-dimensional.
distribution function to calculate the sputtering rate of the 1hUS, if we let thez axis be directed along the normal to the
cathode in a gas mixture can lead to qualitatively invaligc@thode surface, the coordinag=0 correspond to the
results. On the other harfd,Monte Carlo simulation of the Poundary of the plasma with the cathode sheath, and the
ion distribution function requires large amounts of computercoord"?atez_: dF' t.o the su_rface of_the cathode, then the
time, which limits the applicability of this method for mod- "€avy-ion distribution functiori(z,¢) in the cathode sheath
eling cathode sputtering in a glow-discharge plasma in ga@”” satisfy the equatioff
mixtures. In Ref. 10, | proposed an equation for the total-

o : ) of dp of 1 1
energy distribution function of the ions of the heavy compo- ——-e — —=—[§(e)—f]+ —
nent of the mixture and found its analytical solution in the 9z 9z 98 Ag Ne
continuous-slowing-down approximation for a heavy ion in a
light gas. The expression | obtained there for the ion distri-
bution function allows one with satisfactory accuracy to cal-

culate the cathode sputtering rate in a gas mixture. Howevep i the boundary conditiorf (0.¢)= 8(s — ;) Where\
[ ’ Cc

it does not describe @ number of properties of the actualy) are the heavy-atom resonant charge-transfer length
distribution function of the ions(in particular, its high-  5hq the elastic collision length of the heavy atoms with the
energy tail, due to the stochastic nature of the ion—atom COIﬁght atoms,y=4MM_/(My+M )2, ¢is the electric field
lisions, which is not taken into account in the Continuous'potential, ande, is the ion energy at the boundary of the
slowing-down approximation for an ion in a gas cathode sheath.

In the present paper | develop a method for numerical  |ntegration of Eq.(1) over & gives the ion flux conser-
solution of the equation proposed in Ref. 10 for the distribu~,ation law
tion function of the heavy ions which allows one to calculate
the energy spectrum of the heavy ions without using the
continuous-slowing-down approximation and requires much J f(z,e)de=1. @
less computer time than the Monte Carlo method.

When an ion moves in a gas of its own species in the  Replacings by the new variable
cathode sheath of a discharge, the main ion—atom interaction
is resonant charge transfer, whose cross section significantly s=g+e¢(2z), 3

G f @

fs/(l—v) f(z,e")de’
X -
& Ye

1063-7842/98/43(6)/4/$15.00 664 © 1998 American Institute of Physics
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we obtain from Eq(1) an equation for the functiof(z,s),
which contains a derivative in only one variable

of

0z

it
N Ne

iJSmf(z,s’)ds’
Ne Js y(s'—eq)’
(4)

1
f= )\—05(S—eqo)+

where

s<eg(l—7y)+yee,

{[S— yeell(1—y),

€0,

Sm

s=go(1—7y)+ yee.

Integrating Eq.(4), we find

f(z,s)zfozdz’ ex;{

X

1 1
_+ —_
Ao Ae

(2’ -2)

1 fsm f(z',s")ds

1
—o(s—ep)+ — ;
TN Y —ee)

i
+d(s—eg)expg —| —+ —

e ng z|. (5)

We represent the functiof(z,s) in the form

11
N Ne

z|+h(z,s). (6)

f(z,8)=8(s— so)exr{ -

The first term in expressiof6) is the ion distribution
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nonzero in the interval frome(z) to ¢4, and the condition
of ion flux conservation(2) after substitution of relatior6)
takes the form

1 1 )

—+ —z|.

€0
h(z,s)ds=1—exg —
Lq; (z3) p[ e e

To find a numerical solution to E(8) we can use a
method similar to that proposed in Ref. 12 to solve the ki-
netic equation for the electron distribution function in the
cathode sheath of a discharge.

We divide the interval 0, d.] along thez axis inton
segments of lengthz=d_./n, whose end-points are equal to
zi=iAz, i=0,1,..,n. We divide up the intervdlee(z),eq]
of variation ofs in each cross sectiare z; into m segments
of length As;=(gq—ep(z))/m, i.e., s,=ee(z)+kAs;,
k=0,1,..,m. In the first cross section, as follows from the
boundary condition for Eq(8), we haveh(zo,sﬁ)zo. To
find the values of the functioh(z,s) in other cross sections
from Eq.(8), we can use the Cauchy—Euler metHdashich
gives

(€)

h(zi,s)=h(z-1,8)+h,(z_1,5)Az. (10)

The valuesh(zi_l,s{() are determined by interpolation
over the known valueb(z _1,s,) for s=s; * and are set
equal to zero fors,<s, . The functionh,(z_4,s}) is a
finite-difference approximation of the right-hand side of Eq.

function of the primary ion beam entering the cathode sheatkB)

from the discharge, and the second term is the distribution
function of the secondary ions formed in the cathode sheathz(zi_llsi(): _
in charge-transfer and elastic collisions of the primary ions.

Substituting expressiofg) into formula (5), we obtain an
equation forh(z,s)

z 1 1
h(z,s)= fodz’ eX[{()\—‘F )\—)(z’—z)

1 5 " 1 fsm
Ao PN s
8(s' —gg)exd — (LIN;+ 1M )z']+h(Z',s")
X - - ds’|.
s’ —ee(z')]

X

(@)

After differentiating with respect ta it is possible to
reduce this equation to the form

dh 1 1 1 1
= )\—C+)\—e h(z,s)+)\—Cé>‘(s—e<p)+)\—e
Xexp{— £+i , 0{s—[e0— v(eo—ep)]}
Ao Ae Y(eo—ep)
+ifsm Nz 8
Ne Js y(s'—eg) '

where 6(x) is the Heaviside step function.

The boundary condition for Eq@8) follows from the
boundary condition for the functiof{z,s) and has the form
h(0, s)=0. The functionh(z,s), as follows from Eq(3), is

1.1 i A N
IV N(zi-1,80)+ 0(—stsp e
Ne Ae A 71 -1

h(z_,,s")

1 f;
+— | " —————=d¢,
Ne Jo Vs —ep(zi-1)]

11

where
em 1= Yeo—ee(zi-1)],

[si—vee(zi-1)1/(1— ),
= sc<eo(1—y)+yee(zi_1),

g0, Sc=eo(l—y)+vee(zi_y).

The function o}, describes the distribution of the ions
that have undergone charge transfer in the segfzent, z |
in the interval[sf,s; *]. The correct choice of its form, as
calculations show, has a substantial affect on the calculated
ion distribution function. SincAz<\,, this function can be
found from Eq.(8) in neglect of the elastic scattering of ions
at a distance\z after charge transfer, which gives

aik: = exrfleik/)\(:) ] )
Ac€p (Zsk)[exqzso /)\c)_quZSO/)\c)]

where the quantitiesl,, z.,, andziy* are found from the
equations—eg(z)=0 for s equal tos,, sy, ands, *. re-

spectively.

(12
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e/el,
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FIG. 1. lon distribution function at the cathode surface, as calculated by the
proposed methosolid line) and the exact solutiof13) (dashed lingin the
absence of elastic collisions of the heavy ions with the light atamsd,
=0.313,\./d>1).

f, arb. units

To avoid nonconservation of the ion flux due to discreti-
zation errors, at each step mthe functionh(z,s) is renor-
malized on the basis of relatidf). Using relationg6), (9)—
(12) successively foi=1,2...,n, it is possible to find the
energy spectrum of the heavy ions over the entire extent of , :
the cathode sheath from the boundary with the plasma to the 0.2 0.4 0.6 0.8 1.0
cathode surface. €/el,

. To estimate the acc_uracy of the p_roposed _methOd O_f SOIEIG. 2. Distribution function of ions of the heavy component at the cathode
lution of Eq.(1), calculations were carried out without taking g face in a helium-neon mixture, calculated by the proposed method
into account the elastic collisions of the heavy ions with the(curves and by the Monte Carlo methahistograms for three discharge
light atoms §.>d.). In this case the velocities of the ions regimesj, mA/en?: a—1.0, b—0.6, c—0.2), V: a—291, b—272, c—
are directed along the axis, and the ion distribution func- 250:dc. cm: a—0.230, b—0.269, c—0.40%/d,: a—0.313, b—0.226,
o . . ¢—0.124;\./d, : a—0.125, b—0.090, c—0.050.
tion, if the initial energye of the ions at the boundary of the
cathode sheath is neglected, is giveritfy

QD anwwdy, © N

1 Figure 3 plots the dependence of the cathode sputtering
f(ze)= elo'[z0(e)]| A zo(e)]+ Ne coefficient averaged over the ion energies
Xexp(zo)fs)) exp(_)\i ’ 13 R=fY(g)f(dc,s)dg (14)
Cc Cc
where the dependencey(c) is given by &=e[¢(zo) on the discharge current density, calculated on the basis of
()] P 0 9 y #1%) " the ion distribution function found by different methods

r{_Y(<9=a(s—st)2 is the ion cathode sputtering coefficiént,
g is the threshold sputtering energy, aamds a constant for
the given kind of ions and cathode matefidlhere is good
agreement between the results obtained from the one-
dimensional and two-dimensional models.

Consequently, the proposed method, based on a numeri-
cal solution of the one-dimensional equation for the ion dis-
tribution function, allows one to calculate the energy spec-

The results obtained for the case of a quadratic depe
dence ofp(2) (Refs. 3 and 14[¢(z)=—U.(z/d.)?, where
U. is the cathode potential drppndm=n=100 are plotted
in Fig. 1, whence it follows that for the given number of
divisions of the spatial and energy intervals of variation of
the functionh(z,s) the numerical solution coincides quite
well with the exact solution. Therefore these valuesxadnd
n were used in further calculations of the ion distribution
function in the presence of elastic collisions, where an exact
solution of the problem is lacking.

Figure 2 plots the ion distribution function for three val- a.20r
ues of the discharge current dengitin a 15:1 helium—neon % "
mixture at a pressure of 6 Torr and temperature of 300 K 3 0151 ,//
(ep=4 eV, with the values otJ. andd. determined from g 0.10} //"
the Aston modé), as found by the given method and as - -~
obtained by a two-dimensional Monte Carlo simulation of - 0.05
the motion of the ions in the cathode sheath by the technique )
described in Ref. 10. It can be seen that the method of cal- 0 0.2 04 0.6 0.8 7.0
culating the ion distribution function proposed here gives j,mA/cm.'

results which are very close to the two-dimensional Monte

Carlo results. Computer time requirements using the oneFlG. 3. Dependence of the cathode sputtering coefficient averaged over the

: : - energy spectrum of the ions, on the discharge current density in a helium—
dimensional model are rothIy an order of magthde Iessheon mixture fore,=30 eV, as found by the Monte Carlo methgmbints,

aﬂd in ComraSt to the Monte Carlo method they do not grow,y the proposed methdagolid ling), and on the basis of the ion distribution
with the ratiod./\.. function (13) for a single-component g4slashed ling
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Motion of the cathode spot of a vacuum arc in an external magnetic field
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Russia
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The problem of the motion of the cathode spot of a vacuum arc electrical discharge in a
magnetic field applied tangential to the cathode surface is considered. The treatment is based on
concepts of the nonstationary, cyclical nature of processes occurring in the cathode spot

and the key role of return electrons falling out of the near-cathode plasma back onto the cathode.
© 1998 American Institute of PhysidsS1063-784£98)01206-9

INTRODUCTION greater, favorable conditions arise for the formation of a new
center: The direction of motion of the spot is toward the

In the present paper we consider the paradoxical phe:~""
nomenon of the retrograde motion of the cathode spot of Legion where the current of return electrons concentrates.
The magnetic field created by the transport current from

vacuum arc in a tangential magnetic fiél@his phenomenon S 6 b timated f the formbif
is attracting research interest because no generally acceptgbe emission centan can be estimated from the formtia

explanation has yet appeared. The existence and motion of o 2iq

the cathode spot is treated as an nonstationary, cyclical pro- BFE T (1)
cess of appearance and dying off of emission centers or ex-

plosive centeré? The direction of motion of the spot is the and is directed according to the “right-hand rule.” The mag-
direction in which a new center will preferentially arise in netic field of the curreni, of the return electrons is given by
place of the old one. On the basis of these ideas we will

attempt to explain the phenomenon of retrograde motion. 2:2’“_0 ﬁ )

m I
MODEL OF RETROGRADE MOTION OF THE CATHODE and this field is nonzero only inside the current torus, where
SPOT it adds together with the field of the forward current. In the

Numerical modeling of the expansion of a plasma jetpresence of an external magnetic field tangential to the cath-
from the emission center of a cathode spot has shown thade surface, a torque equal to
there exists in the vicinity of the center a ring current carried M=[p,Bs] 3
by return electrons moving from the plasma to the cathode m=3 0
and closed through the emission zone of the ceffigr 1).*  will act on each current loop. Here the square brackets de-
The motion of the return electrons forms current loops whichnote the vectotcross product,Bs is the total magnetic field,
together create a toroidal surface. The symmetry axis of thequal to the vector sum of all the fields, and the vector quan-
torus is perpendicular to the cathode surface and pass@gy p,, is the magnetic moment of the current loop carrying
through the center of the spot. The geometry of this arrangea current
ment is shown in Fig. 2. )

The process of formation of a new emission center is  Pm=1S, 4
linked with the return electron current. Where this current isynere S is a vector equal in magnitude to the area encom-
passed by the loop and having the direction prescribed by the
right-hand rule.

The torque will rotate the current loop in such a way that
the vectory,,, and By become parallel and the plane of the
loop becomes perpendicular By . The resulting action on
the current torus will have the direction shown in FigiR,

i.e., the loop will tend to “swing around” to the “anti-
Ampere” direction, or the direction of maximum magnetic
field. In addition, in a nonuniform magnetic field the current
loop is acted on by the force

G=grad pmBsy), ©)
FIG. 1. Geometry of an emission centet:—cathode,2—plasma,3—  Which pulls the loop into the region of higher magnetic field.
current lines. All this leads to a bunching up of the current lines and an

1063-7842/98/43(6)/5/$15.00 668 © 1998 American Institute of Physics
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FIG. 2. a—schematic depiction of the arrangement of current contours of
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ing from the diagram shown in Fig. 4, we can write down the
following relations:

aa
AA,=R cos(E - 95) : (6)

and

_ R T )
p=~arcta RTr 005(5—03 ) (7)

HereR is the radius of the current ring amds the radius of
the emission zone. Figure 5 provides a comparison of the
picture developed above with experiment. Cunieand 2
correspond to experiments with a dirty cathode surface on
which the craters are small and relatively far afidrn this
case, relation(7) must be augmented by the condition
R>r. The corresponding calculated curi is also shown.

In experiments with a good vacuum and a well-cleaned
cathode surface the size of the craters is significantly greater
and they lie one on top of anoth&urve3).° In this case it
may be assumed th&=r (curveb).

In addition to this, one more circumstance should be
noted. The cathode is separated from the near-cathode
plasma by a space-charge sheath in which the charged par-
ticles, electrons and ions, move without collisions. To de-
scribe the particle motion in the sheath layer we will use the
full system of Vlasov equations, with the goal of obtaining
the momentum and energy conservation laws of the particles
and the field. We write the Vlasov equations together with
Maxwell’s equations:

s Vf+e“E+HVf—o 8

TV ozm_a( [VH]DV,f,=0, (8
1 1

V.E=— > e, | fdv=— 2 e (1),, (9)
€0 a €0 «a

JE JE
[VH]:S()E-FE eaf vfadv:soﬁJrE €V,

a

return electrons about an emission center, b—view from above and to the
side. Dashed lines depict reaction of the contours to an external tangential
magnetic field. Arrows on rings show the direction of current. The direction
of motion of the electrons is opposite.

increase in the current density of the return electrons from
the plasma to the cathode in precisely the retrograde direc-
tion.

If the external magnetic field is oriented at an angle with
respect to the cathode surface, then the picture of motion of
the spot changes. The so-called Robson angle effect arises.
This is illustrated in Fig. 3. Figure 4 shows a diagram eluci-
dating this phenomenon. In the given case the current loop
not only swings around but also inclines relative to the cath-
ode plane, tending to occupy the position in which its plane

(10)

9B
[VE]=- i (11
V-B=0. (12

SN

’ \\h\x\:?

becomes perpendicular to the magnetic field vector. Procee@G. 3. lllustration of the Robson angle effedtis the track of a spot
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Heref, denotes the distribution function of particles of
sort a (electrons and ions from the plasma, electrons from
the cathodg e, and m, are the charge and mass of the
particles;E andH are the electric and magnetic field vectors;
the magnetic field inductio=uyH, ¢y and uy are the
electric and magnetic constant§=ad/dx; V,=dldv; the
angle brackets denote averaging over the corresponding dis-
tribution function.

We multiply Eqg.(8) by m,v, integrate ovew, and carry
out the sum over. We then have

Barengol'ts et al.

]

40

401

J
ot ; <mav>“+v'§ <mavv>“ FIG. 5. Dependence of the Robson angle on the inclination angle of the
external magnetic field relative to the cathode-Robson’s experimerit:
Al, 0.15 T, 10! Torr, 28 A; 2—Kesaev’'s experimerit:Cu, 1 kOe,
-> e, (E{1),+[{v),B])=0. (13) 103 Torr, 1-10 A;3—Juttner’s experimerit:Mo, C, 0.37 T, 10° Torr,
a 10-300 A;4—formula (7) for R>r; 5—formula(7) for R=~r.

Using Maxwell’'s equation, we transform the two last
terms in Eq.(13)

E>, e (1),=&0EV-E,

213 (ma)+eond EHI | +7 -3 (m,w),

—eoEV-E+ %VHZ—MOH-VH

&
IE +?OVE2—80E-VE—MOHV~H=0. (14)
S (e B1=[[VHIB] o0 58 .
@ The last term in Eq(14) has been added for symmetry
[to accommodate Eq12)]. According to the rules of vector
1__, calculus, we can write
[ELVE]]=5VE*-E.VE,
1 1 ..
AV~A—EVA2+A~VA=V-(AA—§A2U>, (15)
M
[[VH]B]=— 70VH2+,uH-VH. where the expressioAA is a tensor(direct product of vec-

tors) andU is the identity matrix.

We now rewrite Eq(13) in the following form:

Taking the above vector identit{l5) into account, we

obtain from Eq.(14) the equation of momentum conserva-
tion of the particles and field

J
5t {; (MgV) o+ &omol EH]

+V-

> (M),

eoEE+ poHH— —-—=—10

5 =0. (16

80E2+ ,LL0H2 ~ )}

In an analogous way we obtain the equation of energy

|
7 conservation. Toward this end we multiply E¢l) by
(m,v?)/2, integrate it over, and carry out the sum over.
We obtain
d m,Vv? m,Vv2
, 23 (™) v 3 (%) -3 e o
l (23 a a @ a
| 17
| From Eq.(10)
2.57-6, # | IE
B
\ES lr -, S (V- B)e=[VH]-E-so 7 E. (18)
A A . .
1 2 Carrying out the vector product in E¢L8), we have

FIG. 4. Diagram elucidating the origin of the Robson angle.

9H
[VH]-E=~V-[EH] - oH — . (19
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Employing Eqs(18) and(19), we write the equation of
energy conservation of the particles and field in the form 2

Jd <2 <maV2> +80E2+,LL0H2

at 2 2

a

+V-

2
> <m;\’ v> +[EH])=0. (20)

a

Note the following. The particles, electrons and ions,
cross the space-charge sheath over times close to their re- r
spective inverse plasma frequencies. At the plasma densities
near the centem=10** m 3, these times are very short in
comparison with the characteristic lifetime of an explosive
emission center~10 & s (Ref. 10. FIG. 6. Diagram of an emission center and the sheath layer separating the

The dying out of a center is accompanied by a rapid dro‘yathode(l) frpm the near-gath_ode pla_srfﬁa). The hatched re_gions represent
of the current and the appearance of induced electric a}ngjrg?ji:eiﬁ;ggeﬁe cylindrical cavity over which equatia® and (20
magnetic fields. The correction to the fields associated with
this effect is given by /(7,C), wherer is the radius of the
crater,r, is the characteristic time of current drop, ands
the speed of lighf. The corrections are substantialrif( 7c) perscriptP and subscripK together indicate the flux differ-
=1. In our caser~10 ®m, r~10"%s (Ref. 10, and ence at the boundaries of the sheath with the cathode and

=0. (22

2\ P
0 SOE
; <mav >a 2

K

=]
+ry
K

the fields associated with variation of the current and us@btain
only the time-independent forms of Eq46) and(20) and of
The particles in the cathode sheath are not magnetized;
however, in order to use the one-dimensional Vlasov equa-
nent of the electric field, associated with the Ohmic potentiaf0lloWing expression:
drop at the cathode and in the near-cathode plasma due to the s < m, V2 >
%
taken into account numerically within the framework of the “ 2 a
model described in Ref. 11. The calculations show that: a
tric effects are small, Jothe potential drop can reach a value
<10V, i.e, itis comparable with the cathode fall, andie  here| is the thickness of the sheath, and the subscripts 1
sion zone. outer radius of the hatched region in Fig. 6.
The potential distribution in the near-cathode plasma TakingAr =r,—r, to be sufficiently small, we can write
an Ohmic character and that the field is concentrated on a L L L
scale of the order of I° m. fzJO [EH]2dZ_r1fO [EH]ldz~Arf0 [EH]dz
component of the electric field in the cathode sheath and use Thus, Eq.(23) can be rewritten as follows:
the one-dimensional time-independent Vlasov equations to m 2 P 1 (L
(E < . v> +—f [EH]dz=0. (24)
2 ol r Jo

r/(rc)<10 °<1, i.e., it is possible to ignore the variation of with the plasma. Since the quantity is arbitrary, we finally
Maxwell's equations.
tions it is still necessary to show that the tangential compo- Integration of Eq.(20) over the same region gives the
arc current, is small. The potential drop at the cathode was rAr
L L

the potential drop is almost purely Ohmic, and thermoelec- X fo [EH]zdz—rlfo [EH],dz=0, (23
potential drop is concentrated within10® m of the emis- 54 5 correspond to the value of the function at the inner and
was considered in Ref. 4. It was shown there that it also has

Thus, we can neglect the tangenti@ the cathode
calculate the particle characteristics. We integrate the time-

independent form of Eq(16) over the region indicated in
Fig. 6. It can be assumed that the particle velocities and the . .
electric field in the sheath have only one component, parallel ~R€lation(21) is a consequence of balance of the momen-
to the symmetry axi¢Fig. 1). The volume integral over the tum flux through the end—faces of Fhe cylindrical shell in Fig.
hatched region in Fig. 6 is transformed into an integral overB'_ It allows one to t'deterr’nlne the_f'e“_j strength at the cathode
its surface. By virtue of the cylindrical symmetry of the sys- Without solving Poisson’s equation in the sheath if the par-

tem, integration over the end-faces yields the relation ticle characteristics are known.
Relation(24) shows that the energy flux transported by

L ) eoE?\P the particles normal to the cathode surface increases with
Zwﬁ_mr dr ; (MaV%) o= 2 =0, (22) increasing energy flux transported along the sheath by the
K field. Hence the possibility opens up of a new interpretation
since the magnetic field strength does not depend orz the of retrograde motion of the cathode spot. It is well known

coordinate, which runs perpendicular to the cathode. The suhat the retrograde motion takes place in the direction of the
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The possible onset of unsteady induction magnetohydrodyn@tD) flows in wide channels

or in channels of annular cross section is discovered on the basis of a proposed two-
dimensional mathematical model. Such secondary flows have the character of rotating stall,
which was previously known in high-pressure axial compressors. The existing experimental data
confirm the possibility of observing this phenomenon, which can be interpreted as a new

type of symmetry loss. It is shown for certain relations between the parameters that the system
has a lower margin of stability against disturbances of the rotating-stall type than against
steady-state disturbances. In particular, a loss of stability of a steady uniform flow can occur on
the descending portion of the external characteristic of the machinel998 American

Institute of Physicg.S1063-784£98)01306-3

INTRODUCTION between the properties of the mathematical models of their
different physical phenomena. At the same time, the second-
The loss of stability of uniform induction flows in mag- ary flows in compressors are unsteady, have a helical char-
netohydrodynami¢MHD) channels and the properties of the acter, and the velocity cell formed moves across the width of
secondary flows that arise have hitherto been studied mainihe channel. The observed similarity between the phenomena
on the basis of the so-called one-dimensional jet flow modelprovides some basis to assume that flows of such structure
which was first used for this purpose in Ref. 1. The maincan also exist in induction MHD channels. In the present
results were described in detail in Refs. 2—5. At the sameavork it is shown on the basis of a proposed two-dimensional
time, transverse velocities, which lead to the development ofodel in the long-wavelength approximation that instability
helical motion, were discovered in experiments devised tmf the rotating-stall type can be observed in induction MHD
study the structure of the flows in channels of inductionflows. A linear analysis, which permits drawing several con-
MHD machine"” As was stressed in Ref. 8, the reason forclusions regarding the character of its appearance as a func-
the observation of the transverse velocities could not be egion of the of the parameters of the problem, is performed.
tablished unequivocally. This is because there was asymméd-he previously studied, steady secondary flows are also de-
try of the primary field with respect to the azimuthe trans-  scribed by the two-dimensional system used as special cases
verse coordinajein the experiments performed due to the of possible solutions for definite relations between the pa-
engineering constraints. The question of whether the trangameters.
verse motions are caused by this asymmetry or appear as a
result of the instability of the symmetric problem remained MATHEMATICAL MODEL
open, and an investigation of the stability of at least two-  The flow of the conducting fluid in an induction MHD
dimensional motion was needed to resolve it. Such an alchannel, whose scheme has been presented, for example, in
tempt was apparently undertaken for the first time in Ref. 9Ref. 4, is investigated. Here and below the notation and di-
but the status of the results obtained is not entirely clearections of the coordinate axes correspond to those adopted
since the stability of a uniform flow was studied in that work in Refs. 4 and 5. We shall use the so-called plane-parallel
only with respect to a narrow class of disturbances, whosgeld model(Ref. 11, p. 155 assuming that there is only one

wavelength was equal to or a rational fraction of the wave-magnetic field component normal to the channel wall,
length of the external traveling field.

The study of the properties of steady secondary flows in ~ B=(0,00(x,y,t)exdi(ax—Qt)]),
Refs. 4 and 5 demonstrated their remarkable similarity to the B(x.y.t)=b,+ib o
secondary flows in high-pressure axial compressors, which Yo a r
appear as a result of so-called “rotating staft®This simi-  which corresponds to the fundamental mode of the external
larity encompasses both external integral characterities ~ electromagnetic field traveling along the channel aRis
presence of an extended horizontal segment on them andB,, sin(ax—Qt). This approximation is natural for chan-
operation in an “ideal pressure source” regith@nd the nels of small height with walls having a high magnetic per-
flow structure (the existence of internal boundary layers meability. Unlike the so-called jet model, despite the axial
separating a “cell,” in which the stream has a velocity dif- symmetry of the machine, we allow the possibility of the
fering strongly from the flow nucleus and is possibly evenexistence of an azimuthal velocity component, i.e., we set
oppositely directed Such similarity points out the similarity V= (u,v,0). Substituting1) into the induction equation

1063-7842/98/43(6)/5/$15.00 673 © 1998 American Institute of Physics
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(dis the Laplacian operatprwe obtain for the relative value
of the complex amplitude of the magnetic inducti¢n

=b/B,,

)

+upo curl(VXB)=—curl jgq,

[A1+A2]b:|,

A= ” i 1+ie(l
=52 at ie(1—-u),

PP i i 3
Z_W I& SU& 805, ( )

wheree = o) is the magnetic Reynolds numbéy; is the
operator corresponding to the jet flow model, akgdis an
additional operator which is conditional on the presence o
an azimuthal component of the velociyand the possibility
of that the field amplitude can vary along thexis.

We note that in(2) j, is the extrinsic current density

9°By
x>

curl jo=— —a’By, i exfdi(ax—Qt)].

The equations of motion are averaged with respect to th
period and wavelength of the external traveling electromag
netic field. After application of the averaging operator

T

1 1
0 0
whereT=27/Q) and 7=/, the equations of motion for

T odXx,
the principal velocity component, which varies slowly in

comparison to the variation of the external field, take the

form

(?u+ Ju Ju
4 (9— U& UW

P2

o by by

T ;(ba‘ wx Drgc | TUEH

dv Jv Jdv
4 E U& UW

_dp j* b, dby

——W—;(baw-i-brw —v\v°tu,
&u+&v_0 4
& W_ ) ()

where | is the relative current density due to the voltage
supplied andz is the hydraulic inductance of the pump.
Here, as in the jet model, only the turbulent flow at the
wall [the last terms of the first two equations(#4)] is taken
into account in view of the small height of the channel.
Equations(3) and(4) are supplemented by the periodic-
ity conditions

b|x=0:b|x=L- b|y=0:b|y=S-
| b | b
24 x=0 X x:L’ (?y y=0 &y y:S'

Polovko et al.

Vlx=0=Vlx=L, Vly=0=Vly=s, )
which can be interpreted either as the conditions for a cylin-
drical induction MHD channel closed into a torus or as the
natural boundary conditions for wide and long channels.
HereL andSare the relative length and width of the channel,
respectively. The velocity of the external traveling figid]
=0/« was taken as the velocity scale (8)—(5), and[t]
=1/Q and[b]=B,, were taken for the time and the mag-
netic induction, respectively. We note that the applicability
of the model(3)—(5) just formulated is restricted by the av-
eraging procedure used, which requires weak variation of
andv over lengths of the order of72and times of the order
of T, i.e., the problem is solved in the “long-wavelength”
approximation.

f

LINEAR ANALYSIS. SYSTEM OF EQUATIONS SPECIFYING
NEUTRAL SURFACES

The problem(3)—(5) admits a solution corresponding to
a steady flow that is uniform with respect to both coordi-
nates:
e

8(1_U0)
- u=up, UOZO, baozm,
b — 1
SR TTA LIS
p j2(1—up)

(6)

— Ug|ug|.

=,

We seek solutions of the form
U=Uy+ U=Uy+C exdi(27my/S+27nx/L — wt) ],

x| eX(1—ug)+1

()
where
u Ug (o
v Vo C,
U= ba y Uo = baO f C=| C3 f
b, bro Cy
p Po Cs

which branches off from the uniform solutidf). After lin-
earizing the problen3)—(5) in the vicinity of (6) and plug-
ging in (7), we obtain a system of linear equations, whose
determinant equals

A=|Dy,
where
Dy=ico—ki—ki—1—iskyug,
D= —e(1—ug) —2ik,,
Diz=ebyy, D14=0, D35=0,
D= e(1—Ug) + 2iks,
Do,=iew—k2—k3—1—iekyug,

Dos=—¢ebsy, D2s=0, D=0,
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2 ii2 _ +1)24 £2(1—un)2— £2R2— 4K2
Dys=— (1-ibugk), Daz="o-broks, Ram(Rurt et uormetRemle,
Rs=2¢e[Ry(R;+1)+2(1—ug)ks].

D33:ZUOk2i+2|U0|_ia)Z, D34:0, D35:ik2,

ij2 ij2 ANALYSIS OF THE SYSTEM SPECIFYING THE BRANCH
D41:?k1baoa D42:?brok1, D43=0, POINT

As we have already noted, the mathematical model

adopted is applicable only in the caselgik1l and w<<()
Dg;=0, Ds,=0, Dss—ik,, Dss=ik;, Dss=0. because of the procedure used to average the equations of

) ] ] motion. In this context the form of the asymptotic formula
Here we have introduced the following new notatida:  for , andu, at small values ok, is of interest. After sub-
=2mm/S andk,=2mn/L are wave numbers, which express stituting the series

the relative density of the waves appearing along the width
and length of the channel, respectively. The condition for the ~ ®=wo+ w1ky+O(Ky), Ug=ug+ug”’k3+0O(k3)

eX|st_ence of no_ntrlwal solutions leads to a system of tWOlnto (8) and equating the terms with identical powerskef
nonlinear equations

in a first approximation we obtain
RegA)=0, Im(A)=0,

D44=iZuOk2+|uO|_in, D45=ik1,

wo=0, 2UiG(G+K?—1)—j(G-K—-1)=0, (9
from which the branch pointi; and the stall rotation fre- B 2 - 3 1
quencyw are determined. The expanded form of this systemfvhereK=1+kj, G=1+¢%, ands=1-u. o
is Expression(9) is the familiar equation for determining
the branch points of stationary solutioh§hus, the previ-
Rs|Uo| (Ry+K5) — ZRiRoR,— K5j [ bape (1 Ug) ously investigated steady flows comprise a subset of the so-
+bo(Ry+1)]=0 lutions of the two-dimensional model, whose branch points
roiT ’ are determined fron@8) whenk,=0. Equating the terms of
Ra|Uo| (Ry + k%) + ZR RyR3— k3j?[ 2b 40k, + £b, R, ]=0, orderk, in the second equation and of order in the first
(8)  equation gives the following expressions:
where Gui[4e(Kui+2s) +z(K2+£25%) | — £j%(25— ug)

w3

Ri=k2+k3, R,=kUy— o, G[4sUiK +z(K2+£2s%)]+¢j? ’

G[ (K?+ £28?)ud+ 2k2ug(2K — ?W2— 4) — 2ze K2W(K W+ 25) ]+ k2j 2
2KE[ (K2 +£28%) (G —2uge?s) — 2G uge®s+j2e?s] ’

u@=—

whereW=ug— ;. It is seen that the phase velocity for the on k3 for various values of and the mode number. The
propagation of long waves along the chancelw/k;=w1  honmonotonic character of they(k3) curves appearing for
does not depend on the wavelength. _ fairly large values ot is of fundamental importance for the

~ The case of large currents due to the voltage suppliedo\ysis it means that the region for the existence of flows of
(j—c) is also of practical interest. The asymptotic exXpres-he rotating-stall type can be wider than the region for the
sion then has the simple form existence of steady secondary flows, for whigh=0. Un-

m steady flows should be observed experimentally for such pa-
Uo=1-——"——+8(]), w=ky(3up—2)+8(),
_ . a b c
where(j)—0 andj— . u
The system(8) was solved numerically by Newton’s 0_
. . 05 70 70
method in the general case. The calculations were performet 2 7
mainly for the pump operating regime of an MHD machine g5} 2 65 G5t 3
0<ug<1. The problem of flow in a channel closed into a 3 o0 —
. PP . . . . .50 . 7 | N .50 \ N |
torus is apparently artificial and is not of practical interest; 90 2 4 .6 8 002 465 8 002 4 5 &

therefore, we at once turn to an analysis of flow in an infinite
tube of annular cross section. This corresponds to the con
tinuous  variation ofk, and th‘? discrete set of values FIG. 1. Dependence af, on the square of the wave number for e =4,
I(1:277“_“-: Vxn, n=1,23.... Figure 1 shows the negtral j2=40, »=0.1, andz=5 (@), 10 (b), and 20(c) in the pump regime for
curves, i.e., plots of the dependenceugfat the branch point  various azimuthal mode numbems=1 (1), 2 (2), and 3(3).

2
}rZ
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a b
7
&
/ 74 FIG. 2. Critical value of the angular frequency
M o o (1a), the square of the wave numUei (2a),
*‘; * o andug (b) as functions of the hydraulic induc-
> WA S tancez for k;=0.1, e =4, andj?=40. The plot
was constructed for the region of maximum
72k V4 pressure values in the pump regime.
a.0 ! 1 ) i L 1

0 0 a0 Jo 0 70 20 30
z Z

rameters, since the stability reserve of the system towar&8VOLUTION OF FINITE DISTURBANCES
such disturbances is minimal.

Figure 2 shows the dependences of the critical vaIues
u* =max(U), o, andk2 onz The vertical line in Fig. 2a and
the horizontal line in Fig. 2b correspond to the highest valu

The results obtained demonstrate the possibility, in prin-
Ciple, of the appearance of secondary unsteady induction
MHD flows of the rotating-stall type. However, at least two
. ) ) %mportant guestions can be solved only as a result of the
of Uo possmlt_a for the_steady ””'fOTm flog®) in the pump consideration of finite, but small disturbances. It is not clear,
reglrr12e The intersection of these lines by te(2), w(2), first, whether the instability studied can lead to the twisting
andk3(z) curves attests to the possibility of a loss of stability of an axisymmetric flow and, second whether the wai@s

on the descending branches of the external CharaCte”St'ﬁppeanng can quench one another and lead to a wave which
Such behavior is impossible for steady secondary fofit standing in the azimuthal direction, rather than to a “trav-
is known that branching external characteristics which A%ing cell.” In fact, as follows from a linear analysis, after
smoother than those predicted by the one-dimensional theogye |os5 of stability at the critical point, the main part of a

are observed experimentally. They do not exhibit a characgistyrhance of the uniform solution will have the form
teristic peak in the vicinity of the branch point. The possibil-

ity of the branching of a static external characteristic on the U= 7j1U; exdi(kx+kiy—ot)]+ 7j,U;
descending portion can lead to smoothing of that peak. This Xexdi(k,x—k;y—wt)]+c.c{(O(e)), (10
becomes conclusively clear after a nonlinear analysis and

complete numerical determination of the external character/nere c.c. denotes the complex-conjugate terms.
istics of the unsteady secondary flows. The amplitudeg, andj, are determined from the con-

The limiting case of flow between parallel plates, whereditions of solvability of the equations for the next terms in

both wave numbers; and k, vary continuously, is also the expansmn oBU into a series in the supercriticality?

interesting. Figure 3 shows the neutral surfaggk? k2  —Uo —Uo- These conditions from a so-called system of
corresponding to the zeroth damping decrement of the dlgoranchmg equations, which has the same form as in the case

turbances for this case as an example. It is seen that it has a

maximum corresponding to the critical point for the loss of
stability for the parameters taken. The instability appears on
, .v‘vmv.v‘\\\»
l ’0,,;o,,ooo;§::§g\\

the descending portion of the external characteristic, but the
fairly large values ok (0.4-0.7 at the critical point force :
//( "'"000“ ‘ \g.\s
" ,/'/ ; l' l". ’0’0‘0.\ “
70 ” ( " AR W
\\ K07 'l . ' ' "" '::' A ’ A .‘ \vx‘ \\\ N

ing the stability of flow between plates, at least for quantita-
tive calculations. A rigorous analysis calls for studying the
stability of a system which has not been averaged with re-

us to question the applicability of the model used for study-
0"
spect to time and the wavelength. This leads to the need to \‘\

&
N
f

0
~ o p'#,

solve the far more complex eigenvalue problem for equa- 71 ?:::‘:' "0"0”“'0" :"' o) "‘ “\ R
tions with variable coefficients. “ “ "'0‘ '0"" ' ' ‘.‘.’.

We note that axial symmetry leads to equivalence of the 70 \' “""0 () '0'“ X """‘“’
stall rotation directions, i.e., small disturbances with either p “ 0" ';'" .' "”;’ 7.0
the azimuthal wave numbdr, or —k; are always possible. . 2 w ‘"O‘"O’ -6
However, as is seen directly from systé#), the sign ofk, £ V’ 4 a

does not vary, i.e., the direction of motion of a wave travel-
ing along thex axis always coincides with the direction of
motion of the external field. FIG. 3. The neutral surfacey(k2,k3) for z=11.3, =4, andj?=40.
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of the loss of stability of a hot jé£ As follows from the  several similarities to so-called rotating stall, which has pre-

basic principles of symmetry and is indicated by the prelimi-viously been described for high-pressure compressors.

nary analysis performed, the system of branching equations 3. At fairly high values of the hydrodynamic inductance,

has solutions of the form the region for the existence of such twisting flows can be
 —0 |.|2: 9 (11) wider than that of steady secondary flows.

Jo=8 =0 4. At fairly high values of the twisting hydrodynamic
j.=0, [jI2=j> (12)  inductance, flows can also appear on the descending

branches of static external characteristics in the pump and
Sgenerator regimes, but this is ruled out for steady secondary
flows.
i2=j2= g2 13 5. In all likelihood, the analysis performed accounts for
11=12=6%, (13 i a )

) o o _the previously observed twisting of the flows in the channels
which corresponds to a wave which is standing in the aziys cyjindrical induction MHD machines and the smoothing
muthal direction and traveling in the longitudinal direction. ot the external characteristics of the secondary flows in com-
The helical waves corresponding to solutiddd) and(12)  harison to the flows predicted by the one-dimensional jet
lead to deformation and twisting of the mean flow already in,qqel.
the next approximation with respect ¢ausing the Reynolds 6. The further study of rotating stall in induction MHD
directions (I1- V)u, and nonlinear friction ir(4). An-analy- o\ will involve a nonlinear analysis in the vicinity of the

sis of the stability of these solutions near the neutral CUVgq,ra| curve and numerical construction of nonstationary
reveals which of the two regimes, i.€11) and (12) with  5qtions and the corresponding external characteristics far
twisting or (13) without twisting, is realized. The stability of o the branch point. In addition, a refinement of the pro-

the solutiong11)—(13) will depend on the relation betwegn  ,nseq mathematical model, which would eliminate the con-

and g, which, in turn, can be defined in terms of the param-giaints on the density and velocity of the traveling waves

eters of the original systert8) and (4). This analysis is our  c5,5ed by the procedure used to average the equations of
next subject of investigation. motion, is possible.

We note that the steady flows generated by the evolution
of the perturbation$7) for k,=0 and their external charac-
teristics were constructed completely in Ref. 2 and that theirta. k. Gailitis and O, A. Lielausis, Magn. Gidrodin. Nd, 106 (1975.
stability was demonstrated in Ref. 3 within the one- zYu. A. Polovko and EA. Tropp, Magn. Gidrodin. No4, 106 (1986.
dimensional jet model. However, it is not known whether ,YU- A Polovko, Magn. Gidrodin. Nog, 81 (1989. _
thev are stable in the two-dimensional mod@)—(S) Dis- Yu. A. Polovko, E. P. Romanova, and E. Tropp, Zh. Tekh. Fiz66(4),
y ( : -  36(1996 [Tech. Phys41, 315(1996],
placement of the branch points of the nonstationary solutionSyu. A. Polovko, E. P. Romanova, and K. Tropp, Zh. Tekh. Fiz67(6),
to the right, into the region of negative slope of the static 5 (1997 [Tech. Phys42, 591(1997]. o _
external characteristic for a uniform flow, leads to the fact A O: Klavinya, O. A. Lielausis, and V. V. Riekstin’'sh, “Nonuniform
hat tationary solutions of) can be totally absent flow in the channel of a cylindrical pump,” idbstracts of the 8th Riga
tha Some_ sta y A y Conference on Magnetohydrodynamifgs Russian, Riga (1975, Vol. 2,
over a fairly broad range of variation of the external load pp. 79-81.

after the loss of stability of the uniform flow. 7:\-IR-2Ki{"0|$\(/,19Aég- Ogorodnikov, and V. P. Ostapenko, Magn. Gidrodin.
0. 2, .

8R. A. Valdmane, Ya. Ya. Valdmanis, and L. Ya. Ulmanis, Magn. Gidro-
CONCLUSIONS din. No. 1, 103(1986.

. . 9S. Yu. Reutski Magn. Gidrodin. No. 1, 1211987).
In summary, we formulate the main conclusions follow- 0E M. Greitzer, Trans. Am. Soc. Mech. Ent3 193 (1980.

ing from the analysis performed. 1A, 1. Vol'dek, Induction Magnetohydrodynamic Machines with a Liquid-
1. Twisting helical flows of the traveling-wave type can Metal Working Fluid[in Russiai, Energiya, Leningrad1970, 271 pp.
. . . . 12 H AR A H
appear along with the previously studied static secondaryt. I!\c/il'htZ'EdarZio://a,NlnSSk:?b#ItEyd ang rurbulencelin Russian, M. A
flows in induction MHD channels. ofdshtik and V. N. ShteriEds), Novosibirsk(1989, pp. 71-81.

2. The appearance of secondary flows of such a kind ha®sanslated by P. Shelnitz

which correspond to the generation of rotating stall with cell
moving in opposite directions, and the solution
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The two-phase equilibrium states of a current-carrying thin superconducting film in the case of
convective heat transfer on the free surface are considered, and their stability is investigated

in a first approximation. It is shown that of the two equilibrium states, the state with the normal-
phase region of larger size is stable. In the limiting case of an infinitely long film, the

stable two-phase equilibrium state tends to a spatially uniform normal state, and the unstable
state remains localized. In a definite range of values of the system parameters, the

relaxation time of such a formation can be fairly long, and it should be regarded as a quasistable
equilibrium state. ©1998 American Institute of PhysidsS1063-784£98)01406-§

INTRODUCTION dimensional. We introduce the following notation for the de-
, , viation of the temperature of the superconducting film from
and?gee} g‘; '::r;e problem_s assqmatgd with the developmen}the thermostat temperaturé€y(x,t) is the deviation of the
yoelectronic devices is thermal destruction o _ . . .

the superconducting state, which is accompanied by the fO'I_em_pe_rature in the supercond_uctlng reg!d'm(x,t) is the

mation of a normal phase in the superconducting region. Ifléviation of the temperature in the region of the normal

Ref. 1 such nonuniform equilibrium states were examined irfPhase. It is clear that the stationary distribution of the tem-

reference to one-dimensional and planar structures as tHerature is symmetric relative to the plane passing through

most widely encountered elements in cryoelectronics. In parthe middle of the filmx= 6. Let the system deviate from the

ticular, the following was demonstrated in Ref. 1, where arequilibrium state in the initial moment so that the tempera-

idealized model of a thin superconducting film carrying anture distribution remains symmetric, as before. In this case

alternating current and immersed in a cooling medium washe boundary-value problem for determining the temperature

investigated. At values of the Stekly parameteexceeding field of the superconductings) and normal(N) phases has

the critical valueo, along with the uniform superconduct- ihe form

ing state there are nonuniform equilibrium states, in which

the central part of the film is in the normal state. Because of

the so-called external nonlinearity of the systéhe discon-

tinuity of the parameters and the source density on the phase

boundary, at o> o there are two such double-fronted non-

uniform equilibrium states. , ,
In situations where the existence of some element of & 7 / s / P / 7

cryoelectronic device in a nonuniform state is a necessary /

condition for its operation, as, for example, in Franzen’s

bolometer the problem of the stability of a localized normal /

state arises, which was not investigated in Ref. 1. The

present work is devoted to an analysis of the stability of the

stationary solutions obtained in Ref. 1 against symmetric

perturbations of the temperature field and an investigation of

S~

_____,\
lk_..-
a3

S

Y
Oo‘-——-_
8y

the asymptotic behavior of the two equilibrium states.
(I
/
DYNAMICAL MODEL OF THE SYSTEM T A (5,-t)
e /
I
We consider the thin superconducting film carrying an yd '5 / ‘Eb
alternating current in Fig. 1, whose central portion is in the ; §, (t)

normal state. Let the film be immersed in a thermostat filled

with a liquid or a gas, and let the entire system, with theFIG. 1. Superconducting film in the circuit of an ac source with convective

exception of the film. have a temperature below the Criticapeat transfer on the free surface. The deviation of the film temperature in the
. ' A . . two-phase state from the thermostat temperature is shown. Inset—

value and be in thermal equilibrium. We examine the case ifysplacement of the phase boundary upon perturbation of the temperature

which the nonuniform temperature field of the film is one- field.

1063-7842/98/43(6)/7/$15.00 678 © 1998 American Institute of Physics
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a

h

O &+ Ep(D) ]+ U Ept En(L) 1]
=@ [pt+ En(D ]+ UL Ep+ Ep(D),1]=1,

CysTs=NeTi—2-Ts,

. — o [ — —

CVnTn=>\nT§§+po(1+BTn)J’2—ZFTn, MO &+ E(D) ]+ ug[ £+ £(D) T}

T0D=0, Ti(x.0)]xs=0. Kn{®n[§b.+§(t)]+us[fbfrfft).t]}y. N (5) |
can be expanded in a Taylor series in the vicinity of the point

T Xp(1), t]=To[Xp(1),t]=Tg, &, with respect to the variablé,(t).3 After discarding the
terms which are nonlinear with respect to the perturbations,

NsTe 06 | x=xy () = M Tn(X, D) =) - (1) we obtain a linear approximation of the continuity condi-
tions:

Herecys, Cyn, Ns, @and\,, are the heat capacities per unit o o
volume and the thermal conductivities of the superconduct- O 4(&p) +O¢(&p) ép(t) +ug(ép 1)
ing and normal phases, respectiveby; is the resistance of — —
the normal phaseg is the temperature coefficient of resis- =0n(&p) T On(&p) &p(t) T un(éy,t) =1,
tance;j? is the period-averaged value of the square of the O ENL @ I
current density;a is the heat transfer coefficien, is the A O5(€p) +O5(£p) En(t) +Us(ép,1)]
thickness of the film,, is the coordinate of the phase bound- =N O/(&) + 0" (&) E(DUL(E )], (6)
ary, andT, is the critical temperature. The last terms on the ) ) _ )
right-hand sides of Eqg1) take into account the heat loss Separating the stationary and nonstationary components in
due to convective heat transfer on the surface. In addition, ifhe Problem(2), with consideration of6) we have
view of the small value oh, we assume that there is no L= ar a
. ' . = = ) - + = 1
thermal resistance or temperature gradient along a normal t%s(f) 2Bis@4(£)=0, 0(§)—kOL(£)+K=0
the surface. _ . 040)=0, ©0/(&)]~1=0,
Going over to the normalized variablé3=T/T, and - .
f§=x/5, we bring the problem(1) into the dimensionless ©(£&,)=0,(&,)=1, AS@Q(5)|§=%:)\,}®;(§)|§=%; (7)
orm

2
. &0 = Ul - 2B £
2 Os(ED=05(£,D) ~2BiO(£1), %
’ & .
2 a_ Un(g,t)zuﬁ(g,t)_KUn(f,t),

> On(E,D)=0O0(£)— kO (£, +K,
an Ug(0,1)=0, U(&1)]e=1=0,

0400=0, Oy(£1)]¢-1=0, Ug(Ep 1)+ OL(E9) Ex(1) = Un( &y 1)+ O, (E5) n(1) =0,

O &p(1),1]=On[&(1),1]=1, NLUL(Ep 1)+ OL(Ep) Ex()]= N[ UA(Ep )+ O(Ep) En(D)].
8

)\s®;[§lt]|§:§b(t):)\n®rlw[§!t]|§:§b(t)- 2 ®

The stationary problent7) was considered in Ref. 1,
Here Bi= @&%/h is the product of the intrinsic Biot number Where it was shown that the system has only the uniform
ad/N and the similarity criterion of parametric forr¥h, solution® (&) =0, which corresponds to the superconducting
and k= 2Bi,— Bpoj 26%/\,, and K= p,j26%/\ T, are auxil-  state of the film, for values af=K/« that are smaller than
iary parameters. We seek the solution of the prob(@rin  the critical valueo.. When o>o, the problem(7) has
the form of a sum of the stationary and nonstationary solunonuniform solutions of the form

tons B B B(£)= sinh V2Bis¢ —Fm
OED=B(O+UED,  El)=Ep+ (D), 3 O nvaeEm SR
whereu(,t) is a small symmetric perturbation of the equi-
cosh\/;(l—g) L sEm

librium state: 0,(8)=0+(1-0)

L cosh \/;(1—5,'“)) ,
u(ép,t)/0(&,)<1. (4) 9

It is not difficult to show(Fig. 1) that the displacement of the Where =K/« has the same meaning as the Stekly
coordinate of the phase boundaiy(t) for such a perturba- Paramete? o=j?p,h/2aT, for a classical superconductor,
tion of the temperature field will also be small. Then theto which it is related by the equality=oo/(1—£T00).
continuity conditions of the problert2), which are written The coordinate of the phase boundgﬁv) is defined as
preliminarily as the root of the equation
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o — Ay O 52 . 52
coth \/ 2Bi,— (1— &,)coth 2Bigy=(o—1) \/ — —. pl=—v+2Bi, pl=—v+rx.
g )\s (o aS an
(10

For planar structures based on classical superconducto&s.
the number of equilibrium statesin the supercritical region it
(o>0) is equal to two. According to Ref. 1, more than two
stationary states are permissible for high-temperature super-
conductors. It should be stipulated that we are dealing with o
multifronted two-phase states, whose analysis requires ap- sinh wgéy

As
propriate formulation of the boundary-value problem. Vin(§)=C— ——————coshuy(1-§), 17
Mn coshpun(1— &)

The solutions which satisfy the first three boundary con-
ons have the form

V4(€)=C sinh ugé, (16)

INVESTIGATION OF THE STABILITY OF NONUNIFORM

STATIONARY STATES whereC is a constant.

Substituting(9), (16), and (17) into the last boundary
To determine the stability of the two-phase states in acondition, we obtain an equation for the eigenvalues of the
first approximation we seek solutions of the problg@n The  operatorq15)
last two boundary conditions of this problem assign the con-
tinuity of the nonstationary components of the temperature 4 coth Msa+ﬂn tanh,un(l—zb)
and the heat flux on the phase boundary. Let us consider

these conditions in greater detail. = \J2Bi tanh \2Bis&, + Vk coth Vk(1—&,). (18
Substitution of the solution sought in the fora{¢,t) . N _
=V(£)exp@) into the continuity condition for the tempera-  Thus, to determine the stability of the stationary solu-
ture leads to the following law for the motion of the phasetions of(9), we must find the roots of the characteristic equa-
boundary: tion (18) for the corresponding values &f .
v.(E
Ep(t)=— %exq vt),
O5(&) FURTHER IDEALIZATION OF THE MATHEMATICAL MODEL
E(t)=— Vi( &) exp( vt). (11) The analysis of Eq(18) in its general form is a fairly
O (&) formidable problem; therefore, we shall confine ourselves to

an investigation of the two-phase state of a superconductor

Eliminatin from (11) an king in nt th . . . .
ating &,(t) from (11) and taking into account that with a low temperature coefficient of resistance in a small

®_é(€b) Ay vicinity of the transition point. In this case the thermal con-
0 (Z = )\_ (12 ductivities of the superconducting and normal phases, as well
n(€b) S as the Biot numbers, can clearly be assumed to be equal:
we transform the first of the continuity conditions into the A\ ;=X\, Bi;=Bi,=Bi. In view of the small value o0p,g, it
simpler condition is permissible to takec=2Bi and setu,=us=x and to
= thereby significantly simplify Eq(18):
V(&) A 3 y sig y simplify Eq(18)
Vn(&p) s u[coth wéy+tanh u(1—&)]=A, (19
We write the continuity conditions for the heat flux with
consideration of11) as where

ViE)  0g&)
V(&) 0.8

Vi(d)  03(&)
V(&) 0/(&)

(14) A=/2Bi [tanh V2Bi&,+ coth \2Bi(1— &)]. (20)

Sl Sl Now the proof of the stability of the stationary solutions

_Separating the variables @) and replacing the conti- requces to calculating for assigned values @, and Bi and
nuity conditions by(13) and (14), we arrive at the Sturm— getermining the sign of the parameter

Liouville problem
V(&) =pniVo(8), V(&)= niVa(8),
Vi(&o) _Na

Vn(gb) )\s' The left-hand side of Eq20) is a function of the com-

, —, plex variablew= ' +iu”, while the right-hand side of the
Vin(§) _ On(§) (15) equation, which is an implicit function of the control param-
Va(€)  @)(¢)

a
V=?(,u2—28i). (21)

Vs(0)=0; V'(£)]g=1=0,

AGICKE)
Vs(§) 0.8

eterA=A[Eb((r)], does not depend gu. Separating the real
and imaginary parts i©20) and eliminatingA, we arrive at
where the equation

é=¢, é=¢,
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FIG. 2. Dependence of the roots of the characteristic equation on the coordinate of the phase boundary: a—the solid line in the upper half plane corresponds
to the position of the first root of Eq423) on the imaginary axis, and the dotted line corresponds to the position on the real axis. Biot nisbe2—1,
3—0.1; b—second root of Eq23).

p" coshu' cosu”+u’ sinhp’ sin w” The stability of the equilibrium state®) is determined

by the further course of the'(&,) curve. As is shown in

Fig. 3, the plot ofgb(cro) is symmetric relative tc¢=0.5;
coshu’ sin u”"+coshu' (2&,— 1)sin u"(2&,—1) therefore, in one of the equilibrium states, for example,

= m=1, we always have&,<0.5, while in the other equilib-

rium state?b>0.5. It is easy to see that upon passage of a

(22 real root through the poin§=0.5, i.e., upon passage from
The results of a numerical search for roots of E29) one equilibrium state to the otherchanges sign for any Bi.

indicate that the equation does not have any complex rootsOr this reason, in the second of E¢&3) we must set,

and that all the points of the spectrum lie either on the reafl” 0-2 anci solve it numerically with respect 1. The plot

axis or on the imaginary axis. Alternately settipg=iu”  Of #“=p"(2Bi) in Fig. 4 shows that, regardless of the Biot

andu=pu' in (21), we arrive at the following equations: ~ number, reversal of the sign of always occurs af,=0.5
and, therefore, the second equilibrium state is always un-

2 4 COS n _—
e _ \2Bi(tanh\2Big, stable.
sin "+ sin(2,— 1) "

p' coshu' cosu”—u” sinh ' sin w”

sinh u’ cosu”+sinh M’(Zzb— 1)cos,u”(2€b— 1) .

+coth V2Bi(1-&,)),
2u' coshu” -~
’ ® — \2Bi[tanh \2Big,

sinh ' +sinh(2&,— 1)’

+coth \2Bi(1— &)].
(23

The first of Eqs(23) has an infinite number of roos, ,
two of which are shown in Figs. 2a and 2b. It is seen from
Fig. 2a that the first pair of complex-conjugate rodtsu
tends to zero ag, increases. At the value of the Stekly
parameter for whiché,=§¢., where &. is the root of the
equation

J2Bi&[tanh \2Bi&, +coth V2Bi(1—&,)]=1, (24

the first pair of roots moves over to the real-number axis. 0
The negative root moves over to the positive semiaxis and

vice versa. Thus, the second of E¢®3) has a single pair of g 3. Dependence of the coordinate of the phase boundary on the Stekly
roots. parameter. Bi1—0.1, 2—0.5,3—1, 4—3, 5—7.

I T o——
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FIG. 4. Plot of u?(2Bi) at the branch point of the stationary solutions for

o=0¢.

In the rangeé,<é., where all the eigenvalues of the

operator(16) are imaginary[,uk=i,u’k’(a,)], the solutions
(17) and (18) of the boundary-value problert8) have the

form

O(£0=2, Cy sin(ui)extnd),

OnEn=3 crs SMHds)
G N cos ul(1- )

n2

where v, = — ag/ 8% (u"k+ 2Bi) is negative and the equilib-

rium states are stable.

When &,> &, the first eigenvalue of the operat(i6)
becomes real u,=u1(&,)], and the solutiong25) trans-

form into
O4(£,1)=C sinh(uj&)expvst)

+k§2 Cy sin(upé)exp(nd),

sinh( 1 &)

On(&1)=C As ————————— coshu(1-§)

An coshpj(1— &)

X exp(vit)+ > Cy
k=2

X oS up(1—&)exp(vt).

When?b>0.5, the sign ofv changes, and the solution

(26) becomes exponentially unstable.

INVESTIGATION OF THE ASYMPTOTIC BEHAVIOR OF THE

STATIONARY SOLUTIONS

1 I 1 1 i i i [
05 10 15 20 25 3.0 3.5 40

cos (1 - E)expnd),

A sin(uigdp)
Nn cos (1~ &)

A. S. Rudyl

cosh\2Big(1—¢)
sinh \2Big(1— &™)’

cosh \/;§
coshx&m™’
and the conditior{10) takes the form

— — N
coth \/ZBin? &, coth V2Big(1— &) =(o—1)\/ 1 20

Ns O
(28)
Assuming thatt{V< &2 we consider then=2 state.
As the length of the film tends to infinity, i.e., when the
system becomes degenerate with respe& the coordinate
of the free boundarﬁ(f) also tends to infinity, and the tem-

perature of the normal phag2?) tends to a spatially uniform
distribution:

0,(8)=0. (29)

It follows from (29) that the solution(27) corresponds to
a state whose inhomogeneity is caused only by the proximity
of the boundary. When the latter is moved away to infinity,
the system tends to the normal state with a uniform tempera-
ture distribution.

In the case om=1, the limiting transitionx,— o> leads
to the expressions

— 2
B0 =exp \/i— (G =x),

S
coshy2aoqy/h\oX
coshy2aoq/hh ox(t’

S

0,(&)=0+(1-0) 27)

0,X)=0c+(1-0)

(30

where

h\, o \n O
YW= A [on T — L
X Za oy arctantic—1) Ne oy (31

5

I 1 1

o006 -o004 0002 0 0002 00k OO0z

Let us conclude with a discussion of the physical nature

of an unstable equilibrium state. For reasons of conveniencg

FIG. 5. Locally nonuniform equilibrium state of an infinite thin supercon-
ucting film. The temperature field corresponds to the system parameters

we move the origin of coordinates to the center of the film.;_q -3, and 2x/hx,=10°. The additional plots illustrate the law of

Then the stationary solution®) transform into

equal areas.
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The same expressions were obtained in Ref. 4 as seltwhere the plus sign corresponds to the right-hand phase
similar solutions describing a localized, spatially nonuniformboundary.
equilibrium state of an infinitely long superconducting film Equation(34), like (22), does not have complex roots,
(Fig. 5. and only one root exists for rea| it being such thaz>y.
It is noteworthy that relatiori31), like (10), follows di-  Hence it follows that the parameter
rectly from the energy conservation law. It is not difficult to
obtain these relations by equating the total quantity of heat e L(Zz_yz)
evolved and the heat loss in the system. For a film of infinite c. X2
length, relation(31) allows the following simple geometric
interpretation. We find the are&® and S, of the hatched is always positive and that the solution defined(B9) and
objects in Fig. 5: (31) is unstable.
This result means that the localized nonuniform equilib-

S,= fxb®_n(x)dx=(o— 1) hh, o tanh 2a @;b rium state considered in Ref. 4, is not a stationary autosoli-
0 2a 0g h\, o ' ton. It cannot appear spontaneously, and the artificially cre-
ated temperature distribution defined K80) and (31 is
S,= fj@s(x)dx= . /%_ (32) unstable. On the other hand, it is clear that at large values of
Xb 2a the variables the implicitly assigned functi¢B4) tends to

the explicit formy=z. Settingz—y=¢, wheree<1, it is

Equating$, and S,, we obtain(31) again, whence it not difficult to obtain the following estimate:

follows thatS;=S,. The latter relation is a specific addition
to the law of equal areas.

Self-sustained localized nonuniform formations in dissi- e~ ———2Z exp —22),
. . . 2+Ac/cy,
pative systems are customarily called autosolitons. In Ref. 4
the equilibrium state defined g0) and(31) was interpreted A
as an autosoliton normal phase, since the question of its sta- V== mzz exp(—2z), (35
bility had not been investigated at that time. The same state Xp “CnTAC

was obtained above as an asymptotic form of an unstable : . -
) . a{:cordlng to which the characteristic exponent of the solu-
solution when the system became degenerate; therefore, |

can be expected that it also remains unstable in the case ofngn (26) is prac_tlcally equal _to zero whe . L. SUCh. aqua-
. L sistable nonuniform formation can remain long-lived even
film of infinite length.

Let us investigate the asymptotic behavior of the characl0f comparatively small sizes of the normal regioRy, (

—3
teristic equation defined bi19) and(20). When the origin of 107° m).
coordinates is displaced ®=1, Egs.(19) and (20), which
were written for the right-hand half plang€*$0), transform

into CONCLUSIONS
— Jc 2a C 2a — :
X 05,1 2% coth vt 25 (5-x) The results qf the ana_Iy5|§ performed aIIov_v us to state
Ng \gh Ns \sh that of the nonuniform equilibrium states found in Ref. 2 for
a thin current-carrying superconducting film, the state which
X 2_0‘ tanh /2_“ (5—%) corresponds to a normal-phase region of larger size is stable.
Agh Agh The fact that the stability was investigated only with respect
c c 5w to symmetric perturbations is not significant in the present
= _;b LB tanh A/ 22 5+ ;b case, since of the two equilibrium states only one is generally
Ao Aph An o Agh unstable.
5 In the equilibrium states with a normal phase of smaller
— o o — . . . . .
AN coth R b (33)  dimensions the conditions on the film boundary weakly in-
n n

fluence the heat balance, and the nonuniform solution re-
We assume that the thermal conductivities of the twomains localized upon passage to a film of infinite length.

phases are equak{=\,=X\) and that the specific heat un- This solution is also unstable in an infinitely long film, but

dergoes a jump upon passage into the superconducting stdtee relaxation time to the locally uniform equilibrium state

(c,s=c,nt+Ac). Introducing the notation can be fairly long when the parameters of the system have
certain values. The instability of a given equilibrium state
Z=Xp /@,ﬁ 2_“ y=Xp 2a means that spontaneous localization of the normal pfthse
A Ah Ah formation of a stationary autosolitbris impossible in the
and allowing the film length to tend to infinitys(>), we  SYyStém under consideration. Thin films based on new super-
obtain conductors may be more promising in this sense. As was

shown in Ref. 2, more than two equilibrium states are pos-

sible in films with a large temperature coefficient of resis-

tance; therefore, it would be interesting to investigate the
(39 asymptotic behavior of the corresponding stable solutions.

z

Ac 2
tanhz= \/1+ . (l— %)J—y(cothyt 1)=0,

vn
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A theory is developed for the collinear TE—-TM scattering of optical waveguide modes on dipole-
exchange spin waves in perpendicularly magnetized ferromagnetic films that are
inhomogeneous across their thickness. It is found in homogeneous ferromagnetic films and in
films with small deviations from homogeneity that the TE—TM scattering on higher spin-

wave modes is strongest when the synchronism conditions for the transverse phases and for the
longitudinal and transverse wave vectors are satisfied. When the thickness of the planar

optical waveguide does not match the thickness of the ferromagnetic film, the phase synchronism
condition is violated with the resultant appearance of an oscillating type of dependence of

the TE-TM scattering on the spin-wave mode number. The scattering of light on spin-wave modes
in films with a magnetization gradient is investigated in the presence of turning points for

the magnetostatic potential. It is found that the existence of a turning point in the region of the
antinode for the optical modes leads to an increase in the scattering amplitude. The

formation of inhomogeneous magnetooptical structures and superlattices based on
(Lu,Y,Bi)s(Fe,Gas0;, is discussed. ©1998 American Institute of Physics.

[S1063-78498)01506-2

INTRODUCTION netic layers. The formation of inhomogeneous magnetoopti-
cal structures and superlattices based on

The interaction of light with spin waves in iron garnet (Lu,Y,Bi);(Fe,Gas0,, is discussed.

film has been studied intently in recent years. This interac-

tion can be utilized for both practical and research purposes:

for ultrahigh-frequency optical modulators and for studyingl' DIPOLE-EXCHANGE SPIN WAVES

the spin-wave processes occurring in iron garnet thin films. et us consider a perpendicularly magnetized ferromag-

The results of investigations of the noncollinear interactiometic planar structure of thicknesswith magnetic and di-

of optical waveguide modes with spin waves and TE-TMelectric parameters that are inhomogeneous across its thick-

mode conversion were presented in Refs. 1 and 2. The fegress(Fig. 1). The @z axis is perpendicular, and thex@nd

tures of the TE-TM conversion of optical modes upon col- 0y axes are parallel to the film surface. We assume that the

linear scattering were studied in Refs. 3—7 by both theoretispin-wave and optical modes propagate along tkeafis.

cal and experimental methods. A theoretical analysis of the

diffraction of optical modes on surface and bulk spin waves

for an arbitrary angle of incidence of the optical mode was

conducted in Ref. 8. The purpose of the present work is to z4 IH

take into account the exchange interaction accompanying the

scattering of optical waveguide modes on spin waves inin- | ____ _ __ __ . __ ¢ o

homogeneous ferromagnetic films. The exchange interaction d,

must be taken into account, if the inhomogeneous ferromag-

netic film has a layer with a turning point for the magneto- X

static potential of the spin wave. The magnitude of the vari- |l r )

able magnetic moment is greater in this layer than in other SLTEIM Er

layers, leading, in turn, to an increase in the scattering of the 0

optical waveguide modes. >
This paper is divided into three parts. The first two parts d, 2

describe the properties of dipole-exchange spin waves and T T T

present the dispersion relations and eigenfunctions of optical

waveguide modes. In the third part the optical-mode cou- ) ) ) )

pling equations are derived, and the conditions for achievin@f\/‘e i‘_ fGigﬁrfrtr:ﬁ of a planar structure for collinear light scattering on spin
) ) . . f— gnetic layer, 2—cladding and transitional nonferro-

maximum TE-TM scattering are analyzed for various film magnetic layer with the thicknesses andd, ; A—antenna used to excite

structures with homogeneous and inhomogeneous ferromaghe spin waves.

1063-7842/98/43(6)/6/$15.00 685 © 1998 American Institute of Physics
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Spin waves are described in the magnetostatic approximation  ¢(x,z,t)=(27) le,(z)expikx+iw,t), ®)
by the magnetostatic potentia(x,z,t), which is found from

the equations where
M [ cog k™ (z—d/2)
EZ_Y{M'W}’ +(n—1)m/2] (0=<z=d),
k(M
div(h+47m)=0, (1) en(2)=P, (—1)”’1ﬁexp[|k|(d—z)] (z>d),
where k(zn) °
1 ) @equkh) (z<0),
H:f[—M(H+h)+2W(M,n) —E,Ba(M,n) \ (4)
1 oM oM n=1,2,3,... is the mode numbeP,, is the normalization
—sa_ ) par_ameterkg")2= k?+ kM2 kis the wave vector, ankk” is
I defined by the relation
is the effective (_:Iassical dipol«_e-exchange Hamiltonian, K K|
M=Mgy+m(x,zt) is the magnetic moment densiiM, 2 cotkMd= — (5

does not depend or andt, and|m(x,z,t)|<My), y is the K kY

gyromagnetic ratioH| 0z is the external constant magnetic ~ The dispersion relation for theth mode has the form

field, h(x,z,t)=—Ve(X,z,t) and ¢(X,z,t) are the variable s (n)2 (n)2

magnetic field and the magnetostatic potential of the spin @ =(Q+ yaMoky ™) (Q + yaMokg

wave, a is t_he exchar_lge coupling constaﬁg specifies fthe + y4wM0k2/kg”)2), 6)

uniaxial anisotropy fieldH,= B,(M,n)n with the n axis,

which is perpendicular to the film surface, the termwhereQ=y(H—-47My+H,).

2(M,n)2 in (2) describes the energy of the demagnetizing ~ Taking into account the values of the group velocify’

magnetic field of the film, and/ar; is an abbreviated form of the first mode and!" for |k|</d (Ref. 10, it follows

for writing the derivatives?/dx, d/dy, anddldz. from the dispersion relatio(6) that the dispersion curves of
The system of equatior(d) was investigated in Ref. 10 the first and higher modes cross when

in a linear approximation with respect ta(x,z,t) for the _ (2, (1) _ a\2/43

case of films that are inhomogeneous across their thickness kn=ayMok; ™/vg"=am(n=1)7d" ™

with the magnetic parameters(z), «(z), My(z), and The second equality ifl) gives the relation between the

H,(2). The calculation of TE—-TM scattering on a spin wave variation of the magnetic moment density,(z) and the

requires finding the distribution ofi across the thickness of magnetostatic potentiat,(z) of the nth mode:

the ferromagnetic structure. We shall consider ferromagnetic (M2

films that are homogeneous and weakly inhomogeneous My(2)= —— ¢n(2). @)

across their thickness, as well as ferromagnetic films with a 4 k|

magnetization gradient across their thickness. In the latter For a weakly inhomogeneous ferromagnetic film, in a

case it is assumed that the magnetostatic poteptiall the  first approximation with respect to the degree of deviation of

spin wave has a turning point within the film. the magnetic parameters from the parameters of the homo-

A. Ferromagnetic films that are homogeneous andgeneous film structure the dispersion relation of a spin wave
weakly inhomogeneous across their thicknés® assume s specified by the expression

that the spin-wave frequenayis far from the ferromagnetic ()2 21L(n)2
resonance frequencies of any layer of the ferromagnetic film.  @n={n|Q(2) + ¥(2)Mo(2)(a(2)ky"*+27k/k"%)|n),

In this case the potentiap does not have turning points ©)
within the film, and the magnetic susceptibility tenggr(w)  where(n|f(2)|1)=/3¢% (2)f(2) ¢(z)dz with the normaliza-
does not have singular points. Ferromagnetic structures thgbn factorst=(d/2+|k|/kgj)2)‘1’2 (j=n,0).

are weakly inhomogeneous across their thickness are under- To determine the coupling coefficient of TE and TM
stood to be structures with weak deviatiohgix from the  modes for scattering on a spin wave it is convenient to relate
mean valuesy;, (Ref. 10. The small value ofAy;/xi  the normalization of the eigenfunctions,(z) (4) to the en-
makes it possible to use perturbation theory, where the firstrgy U™ of the spin wave per unit area of the film. Accord-
approximations for calculating the dispersion relations andng to Ref. 11, the energy of a spin wat&" is related to
the magnetostatic potential are the dispersion relations aritie magnon number densily, :

the potentiakp of a homogeneous film with the mean param-

— = d d
etersyix, v, @, Mg, andH,. The expansion parameters are U<n>:f Nnﬁwndz:f Mx®n dz (10)
the A xi /xix » Which, in turn, are determined by the relative 0 o 2YMo
deviationsAy/y, Aala, AMy/My, andAH,/H,. (the bar denotes a time average

The spin-wave eigenfunctions of a homogeneous film  With consideration of3), (4), and(8), from (10) we find
are the normalization parameter
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(4m)?K| 2yMoU™ The equations for_the TE and TM modes are derive_d in
n= 2 (d+ 2Kk (11)  analogy to the equations for the TE and TM modes in a
0 @n 0 planar structure in Refs. 14 and 15 by taking the Fourier
B. Ferromagnetic films with a magnetization gradient transform with respect tband retaining the first terms of the
across their thicknesd.et us consider a ferromagnetic film approximation with respect tg;; /e, (I#]j). A TE mode is
with linear variation of the magnetization,=47M, completely characterized by the field componEpt
—u(z—d/2) and the frequency range in which there is a

2 2 2 s 2
turning point for the potentiab, within the ferromagnetic (9_2+ ‘9_2+ M) y _ et
film structure. According to Ref. 10, the distribution of Jz° - ox c Ceo(Z) wrm
m..=m,*im, across the thickness is described by the ex- 9H 9H
pression X| gy — —g,* —2|=0. (16)
' gz Y% o9x
ikl [ . [ze®) . . .
m.(z)= w(0) vg(z)f mu;(g)dg A TM mode is completely characterized b, :
0
g 1  9H,\ H, eo(z)w?
d 7 y y ™
*”f(z)f %vzi(g)df}, 12 D%l " az)+ we T yted®
V4
) ) . ) — s d( &y dHy d [ &5y dH,
where w(0) is a Wronskian,v (z) =Ai[(u/aMg)~(z X|=|—F=* — |+ —=| —F=3* —
+ oo @i VIRYLE * . dz\ go(2) X X\ eo(2) Jz
—25)] andv; (2) =Bi[(u/aMo)“(z—2zy)] are Airy func-
tions, andzy =[ F o/ y— ak®Mg—H +47My—H4(0)]/ . +Iwm80(2) 9 ey E 9 &y £ llo
The substitution ofm..(m,,m,) into the second equality c 9z \ go(2) Y| ox\eg(z) Y '

in (1) gives an integrodifferential equation i@a(z). This 17)
equation was solved numerically. The dispersion relation

w(k) was found from the requirement thap(z) and In (16) and(17) the symbok denotes the convolution
de(z)/dz be continuous on the boundary of the ferromag-

netic film. Outside the filmp(z) ~exp(-|kZ). (U*W)(w):(zﬂ-)*l/?f U(w—w)W(w;)dw;.
Whenk—0, we can employ a simplified formula speci-
fying w, (Refs. 12 and 18 The terms containing the convolution describe effects
—min Q(2)+ Y[ 22 w2 (n— 1/2)2112, 13 with a change in frequency upon scatteringwhfz and wy
@n (2)+ A2m p"aMo( )’ (13 are much greater than the spin-wave frequengyn (6), (9),
where or (13), the convolution is replaced by the product. The
Q(2)=y(2)[H—47Mo(2)+H,(2)]. terms withH, in (16) and withE, in (17) lead to TE=TM

_ o _ o mode conversion. The fourth term wikh, in (17) describes
In this approximation the turning poiat is given by the  the modulation of the TM mode by the spin wave and will

relation not be taken into account below. Because of the condition
7 =[272aM~(n—1/2)2] 1Y 14 (15), the terms WItth. in (16) and withE, in (17) can be
=l Tr a_ ol ) flL] _ ( ) regarded as perturbations.
Normalization of the eigenfunctiong,(z) per unit of For films with constant values afy(z) (¢, is the value

the energy density of the spin wal™, which is needed to in the claddingg; is the value in the film, ané is the value
compare the TE-TM scattering amplitudes in different fer-in the substratethe eigenfunctions of the unperturbed equa-
romagnetic structures, was found numerically using Egstions (16) and(17) are orthogonal to one another and have

(10) and(12). the formt*
PP(x,y)=(2m) " V2P (z)expli BP)x),
2. OPTICAL WAVEGUIDE MODES
¢(p)(z) =p®
The equations describing TE and TM optical waveguide
modes and the effects of FETM conversion are obtained (1+aP?) Yexd —yP(z—d)] (z>d),
from Maxwell's equations? We consider the case in which w! cogkiP'z— 6P (0<z<d),
the diagonal component of the dielectric constag(tz) is a
function only ofz and is much greater than the off-diagonal (1+aP?) "2 exp( y{P'2) (z<0),
components. The off-diagonal components take into account (18)
the gyrotropic effects, i.e., the dependencenu(x,z,t):°
_ _ where p=0,1,2,... is the mode numbek(P?=— (P2
eo(2)> ey =igepmi() (1 #]), 19 g0t yP)2=pP2— s w?c?, and 6)=arctanal).
whereg=F\Je{/ 7™M, F; is the Faraday coefficiens, is  For a TE mode
the wavelength of the light in a vacuuey, is the mean value 5 2
of £4(2) in the ferromagnetic filme; is a totally antisym- ag)g: 7§?g/k§p), pP) =

; : -1 -1
metric tensor, andl,j, k={x,y,z}. dt y? P
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2
For a TM mode V(p)zzwTE(,B(TpE)—k)|(E§,p>|)gyZ|H§P>>|z -
) 4c?e(BR
alP)— Vs,cEf thTe
SC kP The coupling coefficient(P) determines the period of
the spatial oscillations along thexaxis for TE-TM con-
K(P)+ (P)g(P) KP4y Pla® 1712 arion:
PO =v2| dt o — o+ i | - '
kfp ’)/Sp (1+asp ) kfp ycp (1+acp ) 2T
. - . LP=—m. (23
The subscript$, s, andc indicate that the quantity refers 4

to the f(llr)n the _substr_ate, and_ the cladding. I_n the phase vari- \we shall now examine some special cases of TE-TM
ables{?) the dispersion relations take the simple féfm scattering on spin waves in ferromagnetic films that are ho-
P oP)_ o(P) — _ mogeneous and weakly inhomogeneous across their thick-
Ki"d=05"— 6" =mp  (p=0.12..). (19 ness and in films with a magnetization gradient.
The functions(18) together with the radiative modes ~ A. Ferromagnetic films that are homogeneous and
form a complete orthonormal system. They will be used toVeakly inhomogeneous across their thicknesspstituting
calculate the coupling coefficient of TE and TM modes andthe eigenfunctiond4) and (18) with consideration of(8),

the conditions for synchronism in an inhomogeneous film in(11), and(15) into (22), we obtain the coupling coefficient of
first-order perturbation theory. a pair of TE and TM modes upon scattering on ttle spin-

wave mode

(BR—kyu™ 13
23%"E>wn<d+2|k|/k3")2>MJ

V(P): p(p)p(P)F
3. TE-TM SCATTERING OF OPTICAL MODES ON SPIN n TETTMTf

WAVES

2 sin(K{MPd—E(1P) +sin E(NP)
Variation of the magnetic moment density(x,z,t) x| > ) 55 L
={m,,m,,0} of a spin wave leads to the interconversion of L=t Kii
TE and TM modes. We represent the electromagnetic field iIWhereKj(ln*p)= kg‘) + n(j)k$f’%5+ ﬂ(l)Kg?%M ,
a planar waveguide in the form of the superposition of a pair
of nearby TE and TM modes:

., (29

B =(kMd—m(n—1))2+ nV oL+ 0V 0Py,
(1) — (29— _

WP (x,2)=F(x) T (x,2) + G(Xx) U E)(x,2), (20) o=l 7 1.

An analysis of the relation obtaind@4) shows that the

(2] ()] i . f "
whereWg and Wiy are the function$18). scattering will be strongest when the conditions

We take into account that) dhe derivatives of the am-
plitudesdF (x)/9x and 9G(x)/dx are terms that are small in KigP'=0 (j,1=1,2, (29
first order, i.e., 8% ~'F ~*dF/ox<1 and ) "G~ 19G/ox EPP=2mr (j,1=12,r=0+1%2,.), (26)
<1, that B under the conditionvg, wty> w, the convolu- I
tion in (16) and(17) is replaced by the product, and that ¢ which can be called the conditions for synchronism of the
the dependence afj; (I#j) onm has the form(15) and is  transverse wave vectors and phase synchronism, are satis-
proportional to exgkx+iw,t). In these approximations we fied. The physical meaning of these conditions can be ex-
obtain the coupling equations plained in the following manner. Let us consider two adja-
cent layers with antinodes for the spin-wave mode. Smce
has opposite values in these layers, the rotation of the polar-
ization plane is determined by the difference between the
Faraday effects in these layers. The maximum total rotation
IG(x) iom(BR-K(HP e JEP) of the polarization plane occurs in the case in which there is
ax 2cA%) expiAX)F(X),  4n antinode of the optical mode in one of the layers and there
(21)  is a node in the other layer, as is reflected in the conditions
(25) and (26).
where To illustrate the importance of the fulfillment of relations
<E<yp)|syz|H§,p)>=<H§,p)|szy| E§,p)*) (25) and(26) for obtaining maximum TE-TM conversion,
we performed numerical calculations for a YIG/GGG struc-

2
IF(x) i wTBR(ES ey HI)
X 2cetwmmBY

exp(—iAx)G(x),

9 o ture andk=k,,. Fulfillment of the conditiomA = g{% — g}
= fo e (2)ey2) Piu(z)dz, —k=0, which can be called the synchronism condition for
longitudinal wave vectors, was achieved by introducing layer
A:ﬁ(TpE)— <T'|)\3|—k: ey =igm,. 2 (Fig. 1) with linear variation of the dielectric constant ac-

cording to the lawe(z)=¢¢+ (es—eg)z/dg (ze[0,—dg])
When the synchronism conditioh=0 is satisfied, the within the layer (other ways of achieving the condition
coupling coefficient of the TE and TM modes reaches aA =0 were described in Ref. 1L6The eigenfunctions of the
maximum and is given by the expression optical modes of such a film structure were found frgi6)
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0.6+
o5
oy 0.4} FIG. 2. Ratio between the coupling co-
S efficients {9/ (¥ for TE,—~TM, scat-
-~ tering in a homogeneous ferromagnetic
\‘—>= 0.3+ layer (a YIG/GGG structurgas a func-
tion of the spin-wave mode number for
k=k, [Eq. (7)]. dc, um: a—0, b—0.5,
/¥ ] o c—1.0.
a1t
1
0

and(l?) using perturbation theory in the form of a series intion theory_ The expansion parameter hereAiﬁik/;k,

powers of the deviation from a homogeneous film. In a firstyhich, in turn, is determined by the relative deviations
approximation the eigenfunctions have the fo(@®) with Ay/? Aale. AMo/'\Wo andAHa/ﬁa.

(p) Lo . L .
altered values op B. Ferromagnetic films with a magnetization gradient

across their thicknessThe coupling coefficient of TE and

TE:BP2= B2+ (2a/\) X EP)|(e(2) — £0)|EP), TM modes upon scattering on timth spin-wave mode in a
film with the magnetization gradient™M ,=47M,— u(z
TM: BP2= B2+ (27/N)>(HIP| ((2) — £0) [H{P) —d/2) was found from(22) after plugging in the eigenfunc-
tions (18) with consideration of the distribution @f.. [Egs.
_ < H(P) _’98(2) i <p>> 27) (12) and(15)]. A numerical calculation was performed for a
Y le(z)az oz| v |° YIG/GGG structure. The external magnetic fieldor

wp/2m=9 GH2 was selected so that there would be a turn-

Figure 2 presents the ratios between coupling coeffiing point for the magnetostatic potential within the ferromag-
cientsv{"/{* for TE,—TM, scattering as a function of the netic film. Figure 3 presents the ratios of the coupling coef-
numbern of the spin-wave mode for various values of the ficient v#) for TE,—TM, scattering in a film with a gradient
cladding thicknessl.. The mean values for YIG were used: to the coupling coefficient/(l‘}])om for TE4,—~TM, scattering in
47My=1750 Oe,H,=0, a=47-3.2X10 2cn?, y=27  a homogeneous ferromagnetic film as a function of the spin-
X2.83 MHz/Oe  for d=10um,  w,/2r=9GHz, wave mode numben of the for k—0. The values 4M,
N=1.15um, n.=\e;=10, n;=\e(=2.220, anth;=ve,  =1750 Oe andk=10 Oefzm were used. All the remaining
=1.945. The transition layeZ (Fig. 1), which was employed parameters were the same as for the homogeneous ferromag-
to achieve the conditionA=0, had a thickness netic structure. The condition=0 was achieved just as in
ds=0.6 um. The presence of this layer required recalcula-the case of the homogeneous ferromagnetic film by introduc-
tion of the values ofv{"”, K{", and E{["¥ with altered  ing intermediate laye? (Fig. 1). An analysis of the distribu-
values of 8 according to Eqs(18), (24), and (27). The  tion of m.. (12) reveals tham. has its greatest amplitude in
claddingl had a dielectric constant identical to the dielectricthe vicinity of the turning pointz, (14). If the antinodes of
constant of the YIG layer(e;=2.220) and was nonmag- the TE and TM optical modes are located in the layer with
netic. Thus, the thickness of the spin-wave waveguide didhe turning pointz,, the TE-TM scattering is strongest. In
not coincide with the thickness of the optical waveguide.Fig. 3 this is observed for the spin-wave modes with2,
This led to the addition&{Pd, to the Z{["”, to violation of ~ 7-8, and 14—-16. Variation of the cladding thickndsseads
the phase synchronism conditio(®6), and, thus, to the os- to displacement of the antinodes relativeza It is seen
cillating character of the dependence of the TE-TM scatterfrom a comparison of the plots in Figs. 2 and 3 that if there
ing on the spin-wave mode number. The synchronism conis a turning point for the magnetostatic potentigz), the
dition (25) k{V—k{%—k{%y,=0 was satisfied fom=9  amplitude of the TE-TM scattering in inhomogeneous fer-
—10. romagnetic films can take a larger value than in homoge-

Formula (24) for the coupling coefficien'wff’) was ob- neous films. It can be concluded on this basis that the most
tained for a homogeneous ferromagnetic layer. The employpromising magnetooptical materials are those in which
ment of this formula for weakly inhomogeneous ferromag-TE—TM scattering is possible on a periodic distribution of
netic structures in the absence of turning points for theseveral layers with turning points fap(z). They can be
magnetostatic potential is permissible in first-order perturbamagnetic superlattices, i.e., film structures with spatially pe-
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FIG. 3. Ratio between the coupling co-
efficients (M1} for TE,—~TM, scat-
tering in an inhomogeneous ferromag-
netic layer as a function of the spin-wave
mode number fok— 0. The values ofl.
are the same as in Fig. 2.

g g 70 7”5 20n

riodic deviations of the magnetic parameters from constanof the optical modes increases the amplitude of the TE-TM
values across the thickness, witl>+/L and a fairly large scattering in comparison to the scattering in homogeneous
number of periods. It was noted in Ref. 10 that superlatticeiims.

structures can be obtained on the basis of multicomponent

iron garnets. Iron garnets witth.u®*,Y3"),(Lu®*,Y3" Bi®"),

or (Lu®*,Y3* La®") in dodecahedral lattice sites were pro-
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Postgrowth residual stresses in polycrystalline zinc selenide
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S. I. Vavilov State Optical Institute All-Russia Science Center, 199034 St. Petersburg, Russia
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The residual stresses in samples of polycrystalline ZnSe are studied by measuring the
photoelasticity in the visible part of the spectrum with transillumination parallel and perpendicular
to the growth axis. The thermal and growth components of the birefringence, which exhibit
different types of distributions among samples, are investigated. It is established that the thermal
component has a nearly equilibrium distribution, while the growth component has an

asymmetric distribution, which reflects individual features in the growth of each specific sample.
© 1998 American Institute of Physids$1063-784£98)01606-1

The residual stresses in industrial metals, which comireated in both planes and investigated in polariscope-
prise a widely encountered class of polycrystalline metalspolarimeters with a field of vision from 150 to 300 mm with-
are customarily divided into stresses of the first and secondut magnification using a diffuse source of white light. A
kinds! The former include macrostresses, which affect theKSP-7 polariscope with a magnification of 8—10and a
volume of a body as a whole, and the latter include microsSenarmont compensator for an optical wavelength of 546.1
tresses, which act within the grains of a material and on theinm, which was isolated by a filter, was employed for more
boundaries. Unlike metals, polycrystalline ZnSe is transparexact measurements. Templates cut from disks so that in a
ent in the visible region of the spectrum. Under the influencesection one pair of their sides would be equal to the thickness
of mechanical stresses and strains, the spherical optical inddf the disk and the length would be equal to the radius of the
catrix (X;/n?)=1 is slightly distorted and takes the form of disk or a chord, depending on the cutting geometry, were
a uniaxial or biaxial ellipsoid, depending on the character ofinvestigated in a similar manner. The disks and templates
the stressedstrained state. This permits the application of were marked to show which planes belonged to the substrate
the ordinary tools and methods of photomechanical analysiand the growth surface.
to it. Optical effects of the action of stresses of both kinds A right-hand system of axis, in which the growth axis
can be observed in the field of vision of a polariscope. In thecoincides with the direction of thg coordinate, was used to
present work only stresses of the first kind are investigateddescribe the geometry of the piezobirefringence and the

The application of the methods of photomechanics tostressegFig. 1). In such a system the field of values of the
zinc selenide is significantly simpler than in the case of othebirefringence Ny=An,—An,, where An, and An, are
photoelastic crystalline materials. First, like AgCI or KRS, it small increments of the refractive index along a radius of the
has a fairly high optical sensitivity® but, unlike those ma- disk and in the direction perpendicular to it, can be measured
terials, it is less plastic and, therefore, behaves essentialliyhen the disks are transilluminated aloAgin an axisym-
like an elastic medium, and the application of the law ofmetric distribution of the birefringence, the central part of
photoelasticity, which does not take into account the timethe circular disks is free of birefringence, sinte,=An,,.
factor when a force is applied, is more correct for just suchThe birefringence in directions perpendicularZ@annot be
media. Second, it can be regarded as a proven fact that in amyeasured in an intact disk, since there are no immersion
case polycrystalline ZnSe is an isotropic photoelastic mateliquids with a refractive index close to 2.60; therefore, such
rial within the sensitivity range of polariscope-polarimetérs. measurements were performed on templates. When the tem-
This facilitates application of the photoelasticity law to it plates are transilluminated in directions perpendiculaZ,to
without consideration of the crystallographic coordinates ofthe field of values of the birefringencd, =An,—An,,
the medium, which must be taken into account in the case afthereAn, is the increment of the refractive index along the
single crystald. Thus, it can be regarded as a simple andZ axis andAn,, is the increment of the refractive index along
effective sensor of the piezobirefringence and stresses thatdirection perpendicular téd measured in the perpendicular
appear or are manifested in various stages of a productiodirection, can be determined. In the central parts of the axi-
process. symmetric fieldN; and N, depend on the influence of the

The original disks of polycrystalline ZnSe, with a diam- thermal stresses caused by the axial temperature gradient
eter of 150—400 mm and a thickness of 15-40 mm, wereontrolling the vapor condensation process.
grown by vacuum desublimatiohAn analysis of the micro- It is known from the theory of photoelasticity of opti-
structure and x-ray diffraction investigations provide evi-cally and mechanically isotropic bodies that differences be-
dence of the anisotropy of the external form of the grains andween normal stresses can be calculated from measured val-
their textured character, which become stronger as the comes of the birefringence, if the photoelastic constant of the
densate thickness increades.The disks were optically material is known. Using the notatidp(r,«)=o,— o, , We
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can write the relation between the stresses and the birefrirgirefringence of the second kindA similar phenomenon is
gence in the form of the formula observed when templates are transilluminated in the same
_ direction(Fig. 1b.
t=BN, cos 2, @ Regardless of whether a distribution of birefringence is
whereB=2/n3(my,— my,) is the photoelastic constant of the observed in the disks when they are observed alongZthe
material andp, is the azimuth of the principal directions of axis or not, the piezobirefringendd, is always observed
the indicatrix and of the stresses and o, . when they are observed in the directions perpendiculd; to
When the distribution of the optical anisotropy and thei.e., in templates of the radial and chord ty{fég. 19. The
stresses in the original disk is axisymmetric, the principalpattern of this birefringence in the form of indicatrices and
mechanical and optical directions are oriented radially; theretheir orientation contains an odd number of zones with bire-
fore, ¢;=0. Otherwise, the principal stresses are not radialfringence of opposite sign. K,=0 over the entire plane of
and this situation leads to the appearance of tangentia| disk, and\, #0, as is always observed, the observed bire-
stressesy;, which can be defined by the formula fringence is associated with the formation of uniaxial optical
7,=BN, sin 2¢,/2. (2 indicatrices of opposite §ingig. 1().. Such indicatrices .
clearly form under the action of an axial temperature gradi-
Knowing t;, and 7, we can also define the difference ent AT, and in the absence of a radial gradiesi, . If a
between the principal stresses \tj+ 47, the azimuth of radial gradient still appears for a number of technological
the principal optical and mechanical directions being defineqdeasons, it leads to the distortion of circular sections of the
by an anglep,# 0 directly during the polarization measure- ynjaxial indicatrices(Fig. 19. Biaxial indicatrices, whose
ments. In addition, circular sections can be at different angles to the observation
tan 2p, =27 /t; . 3) direction§ taken in the present work, form. Th_e sectiops of
such indicatrices in the plane of the sample display ellipses
in peripheral zoneéFig. 13. A comparison of this figure and
Fig. 1c reveals the similarity between them, which is con-
1. Residual birefringence and stress@ie magnitude fined to the fact that both patterns are caused by the removal
and distribution of the optical anisotropy clearly depend onof thermal energy from the surface of the growing preform.
the magnitude of the axial temperature gradient, which asWith respect to the temperature gradieafs; andAT, , the
signs the growth rate. If the thickness of the layer grown igndicatrices have identical signs. However, the conditions for
small, the amount of heat removed from the cylindrical sur-mechanical equilibrium of a disk and a template differ sig-
face of the disk is also small. However, above a certairmificantly. In a disk the thermal stresses created on the edge
thickness, at which the cylindrical surface acquires a suffiby the conditionAT, #0 are balanced by the stresses of the
cient area, the latter becomes a source of heat losses, whickntral circular zone, in which the thermal strains are equal
cause the appearance of a radial temperature gradient. Tran-all directions lying in the plane of the disk. This leads to
silluminating the disk along th# axis, we discover axisym- the formation of a uniaxial indicatrix at the center of the
metric fields ofN; (Fig. 18. When there is no radial tem- sample. Whem\T;#0 and the sample is observed in a di-
perature gradient, there are likewise no peripheral zones witfection perpendicular to th& axis, the central zone of a
birefringence. In this case the disk does not contain piezobitemplate contains birefringence of opposite sigig. 10,
refringence of the first kind, but it has birefringence, which isand its thickness is divided into three zones with birefrin-
noticeable within the grain structure of the matefjiezo-  gence of opposite sign. Thus, the distributioNgfmeasured

RESULTS
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FIG. 2. Principal types of postgrowth optical anisotropy observed in themetric, and the diagram in Fig. 2b asymmetric. According to
d_irection perpendicular to the growth qxis: a—equilibrium diagram of re-Ref, 8, the diagram in Fig. 2a should correspond to heating.
sidual thermal stresses of the quenching Yy symmetric typk b—  ny,ing cooling, the signs of the stresses are reversed due to
equilibrium diagram of residual thermal stresses with growth stresses due ti . . .
an axial temperature gradiefthe asymmetric type the plasticity under the high-temperature conditions. There-
fore, this diagram could have formed only after plastic de-
formation, apparently of the grain-boundary tybehich
along theZ axis can be represented with motion along thewould lead, precisely as in the case in Fig. 2, to reversal of
diameter by anN,—0—N; pattern, andN, can be repre- the signs of the residual stresses, whose structure reflects the
sented with motion along th& axis by anN, —(—N,) action of the axial temperature gradiekf, as a whole to
—N, pattern. Knowing the photoelastic properties of thewithin the signs. The diagram in Fig. 2b is also frequently
material?3 its behavior upon heating in the field of vision of encountered and has a more complicated type of distribution
the crossed polariscope in the temperature range 20—200 ‘@ N, andt, than in the preceding diagram. They are, as it
(Ref. 8, and relationg1)—(3), we can make the transition were, two diagrams of opposite sign, which are combined
from indicatrices to stresses using the classical model of aith one another so that the opposite sides of a template have
simple birefringent plate for this transition. The diagram ofresidual stresses of opposite sign. On the substrate side the
stresses caused by the radial temperature gradient during tbpper part of the diagram has a form similar to a diagram of
growth and cooling of the sample consists of peripheral comthe symmetric type. This diagram, however, smoothly joins
pressive stresses, which are balanced at the center by stres#ies analogous diagram of opposite sign in the lower part of
of opposite sign that do not produce birefringence. Coolinghe template. The tensile stresses on the lower edge of the
from the growth temperatures 800—1000 °C was followed bytemplate provide evidence that it was, as it were, additionally
plastic deformatior, as a result of which the sign of the heated at a low temperature, which is such that even upon
residual stresses was the reverse of the sign observed durifigrther cooling the diagram of opposite sign does not manage
growth and cooling under the action AfT, .1 Residual pe- to form because of the low plasticity of the material at those
ripheral compressive stresses, which are balanced by unifortemperatures. The material behaved like a hard spring, but
in-plane stresses that are equal to one another, but cannot thés was not previously detected in Ref. 9, since the thermal
determined by the polarization method, appear. The magnstrains were not frozen.
tude of these stresses is small and amounts to about 2. Influence of mechanical treatment on Bndt, . The
—30 kgf/cnt. These stresses vanish after the templates argirefringenceN, in disks has been investigated fairly thor-
cut in accordance with the scheme in Fig. 1b. oughly, since it is often monitored during the fabrication of
Figures 2a and 2b present two types of diagrams of theptical elements from glass and crystals. The behavior of
residual stresses = o,— o, , which were observed on sev- N, , which is observed in templates, is not so well known.
eral tens of templates. We call the diagram in Fig. 2a symThe influence of the mechanical treatment of templates
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duction of the thickness of a template on both sides by 16%,
the original symmetric diagraniFig. 33 exhibited slight FIG. 5. Influence of isothermal annealing on residual thermal stresses.
changes in its form in the part adjacent to the substrate, pro-
viding some basis to regard the contact with the substrate as
an additional factor which increases the stresses in this part000 °C with holding for 5 h. Each template was annealed
The opposite side underwent significantly smaller changence. The annealing temperature variation step was 100 °C.
For this reason, it would be useful to investigate the influ-All the templates had the same original birefringence pattern
ence of mechanical treatment of the plane of a template adtown to the grain structure. The band patterns were photo-
jacent to the substrate in greater detail, rather than the vari@raphed before and after annealing, and stress diagrams were
tion of N, and t, in templates with diagrams of the constructed from them according to the method adopted. The
asymmetric type. Figure 4 shows the variation of the stresgemplates were held in a gradient-free portion of the furnace,
diagram when 16, 33, 50, and 66% of the thickness is uniand the cooling to room temperature after each anneal was
laterally ground off. After the thickness is reduced by 33%,not forced. It was found that annealing at temperatures from
the diagram remains asymmetric. After 50% is ground off,400 to 700 °C did not cause changes in the diagrams of the
the diagram becomes symmetric, but has a sign which isesidual birefringenc&;, and the stressds . Annealing at
opposite to that of Fig. 3a, and after further treatn@6£6, temperatures from 800 to 1000 °C with the same cooling
it transforms into a diagram which is similar to a diagram for procedure lowerdN, andt, . The decrease in the residual
four-point bending, where the tensile stresses from thetresses at 800 °C amounts to 25%, while annealing at
growth surface increase significantly and compressivel000 °C lowers them by 80—-90%, i.e., increases the optical
stresses appear on the surface on the substrate side. homogeneity of the material. Figure 5 shows the character of
3. Influence of isothermal postgrowth annealidgse- the decrease in the level of the residual stresses as a function
ries of templates from a single original disk was subjected tmf the annealing temperature for a diagram of the asymmetric
isothermal annealing at constant temperatures from 400 ttype.
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4. Influence of mechanical treatmeniBhe four-point 2. The thermal component of the birefringence and
bending of templates was employed to study the influence ddtresses is observed when disks or templates are transillumi-
the grain inhomogeneity across the thickness and the residunhted parallel to the axis of the temperature gradient provid-
stresses on the mechanical behavior of the material in thiag for the growth process. This component has a nearly
region corresponding to its elasticity at room temperatureequilibrium distribution.

The bending was performed so that the stresses appearing as 3. The growth component of the birefringence and the
a result would stress the surface facing the growth front, thetresses is most clearly expressed in templates transillumi-
surface facing the substrate, and the surface parallel t& the nated perpendicularly to the growth axis. It very often has an
axis upon transillumination of the sample in the same direcasymmetric distribution, which is far from equilibrium, and a
tion. The loading was carried out in the field of vision of the tendency toward stratification, which reflects individual fea-

polariscope by a lever press with a graduated load. The M§yres in the growth of each concrete sample.
chanical moment step during the loading was 0.25 kgf. An
analysis of the band pattern for the loading cases indicated
demonstrates their completely identical nature, with the ex-
ception of the local edge deviations caused by individual
features of the grain strt_Jct_ure. The higher was the meCham’Ya. B. Fridman,Mechanical Properties of Metalgn Russian, Oboron-
cal moment, the more similar the band patterns became. Wegiz, Moscow(1952, 554 pp.
observed a similar response of the material upon the diametK. K. Dubenski, A. A. Kaplyanski, and N. G. Lozovskaya, Fiz. Tverd.
ric compression of disks with a diameter of 30 mm and a3Ie'2('Aer:jr‘_9rad 8, |2°|68A(f196@,[30\; Phys. Sold staid |l6g4t(1|?/|6-|0<]ﬁ
thickness of 4 mm, which were cut parallel, perpendicularly, P.rorﬁst.r]57?f(r)])0\é%(i9§0 FS”(?VS eJ\"’Op't. fecﬁ?ésinsis?iégg]: e
and at a 45° angle to the growth aXiZhis is evidence that, 4| | afanasev and N. V. lonina, Opt. Spektrosé?, 319 (1989 [Opt.
as a whole, the material is homogeneous and isotropic ac-Spectrosc(USSR 67, 184 (1989].
cording to its photomechanical behavior and that its grain®!- A- Maksimova, I. A. Mironov, and V. N. Paviova, “Method for obtain-
inhomogeneity, texture, growth features, and residual ::”egr;n?:igf,){isrt]ag'gssggc'l‘:v‘;;tﬂ:z Eé”e‘:t;‘i"(‘:‘:?e'“,\'; Cgifgg:”'des for optical
stresses do not create any macroscopic mechanical featurég s pemidenko, A. A. Dunaev, S. N. Kolesnikova, and 1. A. Mironov,
such as reinforcement, anisotropy, and the like in the mate- vysokochist. Veshchestva, No. 1, pp. 103—12991).
rial. 7G. V. Anan'eva, A. A. Dunaev, and T. I. Merkulyaeva, Vysokochist.
Veshchestva, No. 4, pp. 114-111995.
8L. K. Andrianova, I. |. Afanas’ev, A. A. Dunaeet al, Zh. Tekh. Fiz.
62(8), 102(1992 [Sov. Phys. Tech. Phy87, 708(1992].

1. The induced optical anisotropy in polycrystalline zinc °I. I. Afanas’ev, L. K. Andrianova, and A. A. Demidenko, Opt. Mekh.
selenide grown by a desublimation technology has two com- Promst.57(8), 42 (1990 [Sov. J. Opt. Technob7, 490 (1990

ponents: a growth component and a thermal component. Translated by P. Shelnitz
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Analysis of structural defects in boron-implanted silicon single crystals on the basis
of the results of double- and triple-crystal x-ray diffractometry
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The structural defects in Si single crystals are analyzed on the basis of diffraction reflection
curves and triple-crystal spectra. The relative variation of the lattice period and its distribution as
a function of depth are calculated, and the type of defects appearing and the behavior of the
implanted impurity in response to high-temperature annealing are determineti99® American
Institute of Physics.S1063-784298)01706-1

INTRODUCTION between them, which was measured by an x-ray diffracto-
metric method, was about 1.0The samples were implanted
trical properties of semiconductor materials. Boron is emWith B having an energy of 25 keV in doses frdin-6.2
ployed quite often as the implantant. lon implantation causes® 1010 6.25< 10" cm™ % The implantation was carried out
damage to the subsurface structure of crystals subjected & room temperature under conditions which rule out chan-
irradiation. This structural damage is investigated by differ-neling. The use of a fairly weak ion current with a density of
ent methods. Among the nondestructive methods, doubled.2 uA/cm? also ruled out the phenomenon of self-annealing
and triple-x-ray diffractometry are very informative. These during implantation. After implantation, some of the samples
methods have been used in numerous stues, for ex- were annealed in a nitrogen atmosphere. The annealing tem-
ample, Refs. 1-6of the kinds of defects formed in silicon perature was varied from 300 to 1000 °C. The annealing
single crystals as a result of implantation. At the same timetimes were 10, 60, and 120 min.

the development of a method for treating experimental spec-  The structure of the subsurface layers of the silicon
tra, par.ticularly triple-crystal spectra, would make it possiblesing|e crystals was diagnosed using an automatic double-
to obtain new data on dgfects. The present_paper a”a',yz‘?s tQﬁd triple-crystal x-ray diffractometer, which was assembled
results of systematic triple-crystal x-ray diffractometric in- on the basis of a DRON-UM1 x-ray diffractometer.

vestigations of silicon single crystals that were implanted_. . .
; . . ; ; Dispersion-free double-crystaln(—n) and triple-crystal
with boron in various doses and subjected to isothermal an- a7 o
,—n,n) geometrie$’” and CuK,; radiation were em-

nealing at various temperatures and for various annealing" ) ‘ )
times. loyed. The double-crystal diffraction reflection curves and

the triple-crystal x-ray diffraction spectra were measured in

the ¢ scan modgrotation of the analyzer The sample azi-

muthal angle(w) was varied from—500" to +500'. High-
Nearly perfect single-crystal wafers of KDB-10 silicon perfection silicon single crystals with a symmetticl) re-

with a thickness of 50um were investigated. The surfaces flection served as the monochromator and analyzer. The half-

of the samples coincided with thd11l) plane. The angle widths of the diffraction reflection curves of the

lon implantation is an effective tool for altering the elec-

EXPERIMENTAL METHOD

0.02
0.0156
FIG. 1. Diffraction reflection curves of crys-
0.012 tals. Implantation dose, cm 1—6.25
< X10M, 2—1.875<10°, 3—3.125¢10'%,
~ 0.008 4—6.25x 10'%; P—curve for a perfect crys-
00 tal, I/1,—ratio of the reflected to the inci-
dent intensity.
0.004
o® e e tbn . 1
~300 100 200 Joo

@ , seconds of arc
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monochromator and the analyzer amounted t§ Which is  from a layer with an increased lattice constant. As is seen

close to the theoretical value. from the plot, the maximum value afd/d, which is ap-
proximately equal to 0.003, corresponds to a depth of 0.05
EXPERIMENTAL RESULTS am

A. Dependence of the structural damage on the dosealsoTct]aelceflf:tcettljv?o:htlr?gnfrsa?j%'::(fa(;h:arialﬂlr:aa%?gnﬁ{gsh:lf re
Samples with dose loads from 6230** to 6.25 idths ofuthe maxima oln theI reduced I'On'[(:fr.1s't function, and
X 10 cm™® were investigated to find the dose dependenc?v_v' by the integr;II characteristicumethlod Wilt?:o:jt cclms'ider

. . i o . p = ’ -
of the structural damage in ion-implanted silicon. Figure lation of a region of 20 or 30" around 0. These data are

presents the “tails” of the corresponding diffraction reflec- .
. .. presented in Table I.
tion curves. The zero corresponds to the exact Bragg positio . .
B. Influence of annealing on the structure of ion-

of the reflection from thé111) plane of an undistorted crys- implanted silicon.To investigate the influence of annealin

tal. There is an appreciable increase in the intensity of th(%)npthe structure (;f boron img lanted silicon, we measured '?he

diffraction reflection curve at small angles. Here the intensity.. ; X P . ' .
g(lffractlon reflection curves and triple-crystal x-ray diffrac-

increases with the dose, and a well resolved additional pe ion spectra of samples which were irradiated with a dose of
is observed for the largest dose. The triple-crystal x-ray dif- P 05 o2 P d subi d ling i .
fraction spectra did not display diffuse peaks. Plots of the1'875<1 cm ® and subjected to annealing o'n a_mtrogen
reduced intensity functioR(w)=1- w?/ Py (I is the intensity atmosphere at 300, 600, 800, 900, and 1000 °C with anneal-

of the principal peakw is the sample azimuthal angle, and !‘ng.UTes equallto 10.’ 60, and %20 min. Figure 5 presents the
P,=11 w? is the reduced intensity function for an ideal tails” of the diffraction reflection curves for the samples
I

crystal and is approximately constant for all values of theSUbJQCteOI to annealing at 600 and 800 °C for 10 min. An-

sample azimuthal angleconstructed from the triple-crystal ?heealzj?f?r:(t:titgr? :Z\;:/:gt;{gr:ngsrr\?;u;?\iv?: i?]olt:ialtelr ;[gre ;O;rgs(e)f
x-ray diffraction spectra are shown in Fig. 2. All the samples 5 o : 9-
equal to 1.87% 10" cm 2 Increasing the temperature to

display a distinct maximum on the negative-angle side . o ; .
play 9 9 00 °C led to an increase in intensity on both the negative-

whose intensity increases with the dose. In addition, the shi nd positive-anale sides. Annealing at 800 °C led to an ao-
of the maxima toward negative angles increases. The posﬁa— P 9 C g at P
preciable drop on the negative-angle side.

tion of the peaks on the plot coincides with the region of The plots of the reduced intensity functio(w) con-

elevated intensity on the diffraction reflection curve at Nega_.  ted from the triple-crvstal x-rav diffraction spectra re-
tive angles. The presence of a maximum on the pld?@b) P Y y P

attests to the occurrence of coherent scattering from a lay veal the presence of a maximum on the negative-angle side

with an altered lattice constant. The mean relative strainz[:'g' 8, which coincides with the region of elevated inten-

were calculated from the positions of the maxima in Fig. 2

using the formulaAd/d=cot®,-A® and are presented in

Table I. TABLE |. Values of the strain and thickness of the damaged layer as a
A plot of the dependence of the mean strain on the dos&"!ion °f the implantation dose.

is presented in Fig. 3. Figure 4 presents the strain profile

EXlO’* L [from P(w)],  L;i(20),  Li(30),

calculated using a program developed gccording tq the ose (cm?) d um am am

method described in Ref. 8 for a sample irradiated with a -

dose equal to 6.2610' cm™2. The program calculates the 6-25<10" 08 0.16 0043 0031

variation of the strain as a function of depth from the sampl 187510 12 0.14 0.067 0.054
P PI& 125¢10%5 19 0.14 0.11 0.09

surface on the basis of an analysis of the additional peak ory 55«15 29 0.13 0.12 0.11
the diffraction reflection curve caused by coherent scattering
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FIG. 3. Dependence of the mean relative stramid on the implantation

doseD. FIG. 4. Strain profile as a function of depthcalculated from diffraction

reflection curves.

sity on the corresponding diffraction reflection curve. At
positive angles the plots of the reduced intensity functiorthe use of the integral method to estimate the thickness of the
(for annealing temperatures equal to 300 and 600st@w a damaged layers is incorrect because of the presence of dif-
tendency to rise, which reflects the increase in intensity oriuse scattering, which makes a contribution to the diffraction
the diffraction reflection curvéFig. 5. However, annealing reflection curve.
at 800 °C leads to the appearance of a maximum in this Plots of the dependence of the intensity of the diffuse
range of angles. The values of the mean straifid calcu- peak on the sample azimuthal angle were constructed in log-
lated from the positions of the maxima on the plotR{fw) log coordinates from the diffuse peak on the triple-crystal
are presented in Table II. x-ray diffraction spectra for the samples annealed at 1000 °C
Thus, annealing at 800 °C led to the appearance of twdor 120 min(Fig. 7). Each plot has two linear segments with
regions with strains of different sign in the subsurface layerslopes close to 1 and 3.
It should also be noted that there was no diffuse peak on the The most significant structural changes are observed at
triple-crystal x-ray diffraction spectra obtained in the ana-doses close to the doses-{0'® cm™?) which cause amor-
lyzer scan mode for any of the samples subjected to heathization of a subsurface layer under the implantation con-
treatment at temperatures from 300 to 900 °C. ditions employed. This can be observed for the samples im-
Annealing at higher temperatures leads to furtheplanted with boron in a dose equal to 6:250'° cm™2.
changes in the structure of the subsurface layer. At 1000 °€igures 1 and 2 show the diffraction reflection curves and
the triple-crystal x-ray diffraction spectra display a diffuse plots of P(w) for this implantation dose. Annealing at 400
peak, which intensifies as the annealing time is increased-700 °C for 10 min led to the appearance of one or two
The plot of P(w) for 1000 °C displays only one maximum, additional peaks on the diffraction reflection curve at angles
which attests to the presence of a layer with a negative measmaller than the Bragg angles. Two maxima associated with
strain(Table 1), whose magnitude decreases. coherent scattering are observed on the pld?@b) at nega-
Table Il presents the values bf andL, calculated for tive sample azimuthal angles. After annealing at 800 °C for
all temperatures. The values bf for the heavily annealed 10 min the diffraction reflection curve of the sample practi-
sampleq1000 °C, 60 and 120 mjrare not presented, since cally coincided with the analogous curve for an unimplanted

0.02

0.016

FIG. 5. Diffraction reflection curves of

0.012 . ;

o crystals implanted with a dose equal to
3 1.875<10® cm 2. Annealing tempera-
) ture, °C: 1—600, 2—800 (the annealing

0.008 time was 10 mijy P—curve for a perfect
crystal.
0.004

A 1 .
-J00 -200 =100 0 700 200 300
w, seconds of arc
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FIG. 6. Plot of the reduced intensity functi®t{w). The implantation dose
was 1.875% 10'° cm™2, the annealing temperature was 800 °C, and the an-
nealing time was 10 min.

FIG. 7. Dependence of the logarithm of the intensity of the diffuse peak
In 14 on the logarithm of the sample azimuthal anglewlnThe annealing
temperature was 1000 °C, and the annealing time was 1201mippsitive
sample azimuthal angleg—negative angles.

sample. In this case the plot &f(w) did not display any
peaks. A further increase in the temperature to 900 °C again
led to an increase in the intensity on the diffraction reflection

curve at large and small angles, and the ploP¢&) shows method toward highly strained layers. The valuelgfis
four maxima(Fig. 8. There were no diffuse peaks on the calculated from the difference between the areas under the

triple-crystal x-ray diffraction spectra in the range of anneal—dh;fr""ction reflec;]tion :c:lurvgs of th?f.dgmagfdhar}d perfect cr?/g-
ing temperatures 400-900 °C. Annealing at 1000 °C for 6¢2IS- Because the reflection coefficient of the latter crystal is

min led to the appearance of an intense diffuse peak. h!gher 'than that pf the ion—.implanted' crystal, the part of the
diffraction reflection curve in the region of the Bragg angle

must be excluded. The data in Table | demonstrate the criti-
cal nature of this exclusion. It should also be noted on the
The presence of maxima on the plots of the reducedasis of the data in Table | that the total thickness of the
intensity function(Fig. 2) and the absence of a diffuse peak damaged layer with “large” and “small” degrees of strain
on the triple-crystal x-ray diffraction spectra are caused byaries only slightly(0.20—0.25um) for all the samples ex-
coherent scattering in a subsurface layer with an increase icept the sample irradiated with a dose equal to 6.25
the lattice constant. This quite trivial result is associated withx 10'> cm™2 This can be attributed to amorphization of a
the generation of a large number of point defects upon theertain part of the layer, which takes place in the region of
implantation of boron. Silicon ions displaced from regularthe maximum on the defect distribution profile.
positions into interstitial sites cause expansion of the lattice. ~ When the samples are annealed, restructuring of the de-
As would be expected, the lattice strain increases with infects in the subsurface structure should be expected. Anneal-
creasing doséFig. 3). The absence of a diffuse peak on theing at 300 and 600 °C does not lead to significant changes in
triple-crystal x-ray diffraction spectra indicates that no ex-the x-ray diffraction pattern. However, annealing at 800 °C
tended defects form in silicon following implantation by bo- leads to the appearance of a layer with a negative strain in
ron ions with doses up to 6.2510'° cm™2. the subsurface regiofFig. 6) along with the layer with a
The thickness of the subsurface layer damaged by impositive strain formed as a result of the implantation of ions.
plantation, which was estimated from the half-width of thelts formation can be attributed to a significant increase in the
reduced intensity function, varies only slightly. concentration of substituent boron ions in lattice sites. The
The increase in the value &f calculated by the integral layer with an increased lattice constant is probably located
method can be attributed to the higher sensitivity of thissomewhat closer to the surface because of the stronger dis-

DISCUSSION OF RESULTS

TABLE II. Variation of the strain and the thickness of the damaged layer as a result of annealing.

Ad

— x10°
. d Lo, um
Tempe- Annealing
rature, time, positive negative  positive negative
°C min strain strain strain strain L;(20), um L;(30), um
300 10 1.2 0.13 0.079 0.059
600 10 1.4 0.14 - 0.070 0.050
800 10 1.4 -1.8 0.13 0.09 0.057 0.043
900 60 1.6 -0.97 0.12 0.14 0.045 0.009
1000 60 —0.38 0.18
1000 120 -0.29 0.26
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The data presented in Fig. 7 show that, for the most part,

0 defects of the dislocation-loop type make contributions to the
F18 diffuse peak for the crystal annealed at 1000 °C for 120 min.
* Dislocation loops are associated with stacking faults formed
’§ 6F by interstitial silicon atoms?
s It should be stressed that defects of these types are not
n“_‘_ 4 the only defects which make a contribution to the x-ray dif-
fraction. Other crystal lattice imperfections of silicon in the
2r form of rod-shaped defects, vacancy clusters, interstitial at-
. ) A . . . oms, pores, cracks, tetrahedra of stacking faults, etc. are
U500 =200 -100 ] 700 200 00  known!

@ , seconds of arc
We express our thanks to V. A. Bushuev for his support

FIG. 8. Plot of the reduced intensity functié{w). The implantation dose  gnd advice in all aspects of this work.
was 6.25¢ 10" cm™2, and the annealing temperature was 900 °C.
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The features of mode conversion in an absorbing magnetogyrotropic waveguide are investigated
by a coupled-wave approach. It is shown that absorption leads to an additional contribution

to the coupling of both identically and orthogonally polarized modes. A new waveguide regime for
mode conversion, in which there is no oscillatory energy exchange between modes, is

revealed. The possibility of controlling the damping of the total field in a waveguide by varying
the orientation of the magnetization in the waveguide layer is demonstrated99®

American Institute of Physic§S1063-78428)01806-9

INTRODUCTION faces between the layers. Tke 0 andx= —L planes sepa-

In most planar waveguides in use the losses associate;@te the waveguide layers from the cladding and the sub-

with optical absorption in the film material are insignificant SJS:rlal—:z ;j'::gcégguﬁggt;ntgfrég? ;L?g?;lr;ggi(ealggtrtizion-
and are generally disregarded in theoretical analyses. 2 '

However, in waveguides based on epitaxial iron garnet filmss'tant of the waveguide layer is assumed to be the complex

the absorption in the near-IR range has values in the rangl%uaer;gt?;:hge ;I'gcéltgi rgal?sneec?;r%e\r/?ti‘;ﬁ"Ittlaesuglf t?)”l:rr:i?
a~1-10 cm!, which cannot always be considered Y P 9 yeq Y.

small?* The research reported in the literature deals mainIyThe f||eld of a m(:_de prop?gat'ing/ f'."”,?.max's Vt\{'th tlhte
with the influence of absorption on waveguide eigenmodes;?gn% E:(ofrgfsgi?z()m I(t:oigseﬁy 'ﬁ) Sr']'g V\(';;rogo,{h'gpzvg

and the features of mode conversion in an absorbing wave—ifferent waveauide modes with the fields and H. obe
guide has scarcely been analyzed. For example, mode dam o relation 9 & ! y
ing coefficients were obtained on the basis of the ray ap-
proach in Ref. 5, and waveguide light propagation was
investigated in Ref. 6 with consideration of the absorption in
the metallic coating of the waveguide. The contributions . L
: . : . whereko=w/c, w is the frequency of the radiation, ands
from various absorption mechanisms to the damping coeffi- Do
. . . ; the speed of light in free space.
cients of modes of different orders were considered in Refs. . .
. ) . , Separating the vectds and the operatoV into trans-
2 and 7. Mode damping associated with the conversion of Lo !
. . . verse and longitudinal components, we integrdieover a
part of the energy of a waveguide mode into radiant energ¥ . .
. : . ransverse cross section of the waveguide
was described in Ref. 8. Experimental results on mode con-
version in a magnetogyrotropic waveguide with consider- b
ation of the complex character of the propagation constants f (_Z+tht)dsz 2k08"f E,E3ds, 2)
of the modes were discussed in Ref. 9. Finally, an exact oz
solution and numerical analysis of the problem of waveguide

light propagation in an absorbing, transversely magnetize&\’he_redszd)(dy’ Vt:(‘?/ax"?/‘?)/’o)’ and the integration Is
waveguide, for which the TE and TM modes are eigen-camed out over the cross section of the waveguide.
Replacing the integral over the area from the second

modes, were presented in Ref. 10. In the present work the . -
features of mode conversion in an absorbing planar magné‘—emlq on thehleft-hand side ¢2) by 6ll<r'] integral over a cc;]ntour
togyrotropic waveguide are investigated on the basis of th€1¢losing the waveguide, and taking into account the expo-

coupled-mode theory for an arbitrary orientation of the mag*€"tial damping of the field of waveguide modes with in-
netization in the waveguide layer. creasing distance from the boundaries of the waveguide

layer, we obtain

Vb=V(E H3 +E;H1) =2koe*E4E3 @

ORTHOGONALITY RELATION FOR AN ABSORBING
WAVEGUIDE f (Vib)ds= fﬁ (bg)dI=0, ®)]

The orthogonality relations of modes play an important
role in constructing waveguide solutions on the basis of thevheree, is a unit vector that is perpendicular to the integra-
coupled-wave theory. Let us find the form that they take intion contour.
the presence of absorption. We consider a planar waveguide With consideration of3) we arrive at the following sys-
structure consisting of a substrate, a waveguide layer, andtam of equations for the real and imaginary parts of the com-
cladding. We direct thex axis perpendicularly to the inter- ponentb,:

1063-7842/98/43(6)/7/$15.00 701 © 1998 American Institute of Physics
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| Uy Bibi— (B4 DI Pk IMEEDIAS=0, A= —iko exiiB,2) [ (a5E),dx @

L R . . where the prime denotes the derivative with respect to the
f [(B2—B1)bz+(B2+ B1)b, +2Kee” Re(E,E7)]ds=0. coordinatez and the integration is carried out over the a
(4 section of the waveguide layer of thickndss
It follows from the relations obtained that only modes Of the complete set of modes,_ the strongest coupling is
observed between the modes having the greatest phase syn-

with orthogonal polarizationE, L E,) are orthogonal, i.e., . g
. ; . : chronism. There are generally two such modes, and energy is
do not interact with one another in an absorbing scalar wave-

guide. The orthogonality relatiofib,ds=0 holds for these trlejlir:jsefe\r/r\;aedv\t)rig/v;inc(t)rLeTn ase tzgﬁoﬁrso?;g&tgsénn:gzevsvave-
modes. The orthogonality relation does not hold between dif-g ' biing €q

ferent modes of the same polarization; therefore, a relaton A/ =—iAB,A —iy,,A, exdi(B,—B,)z],
stipulated by the absorption of the waveguide should exist , . - .
for them. AV:_IAﬁVAV_Iy;LVAM qu_'(B#_ﬁy)Z], (8)

where the coupling coefficien}thkof%;’;Aéé‘de.
The corrections to the propagation constants of the TE
EQUATIONS OF COUPLED MODES and TM modes are defined in the following manner

For a further analysis of the influence of absorption on E
mode coupling, a waveguide without absorption having a A,8V=k0f Asyy|ZyldX,
dielectric constant =&’ should be taken as the unperturbed
structure, an_d the imaginary part of the dielectric constant.of Aﬁy = kOJ [Aey] &,y +As,)
the waveguide layer should be taken as the perturbation
Ae(a)= —is"’, whereg"§ a\/?/ko anda is the absorption. 0 Moy gt EF A E 1 ], 9)
of the material. If the dichroism of TE and TM waves is
taken into account, the perturbed part of the dielectric con- ~ The solution of Eqs(8) with the boundary conditions
stant should be regarded as a diagonal tensor with nonide.=A,(0) andA,=0, which were taken a=0, have the
tical diagonal components, and the absorption will be differ-following form:
ent for modes with different polarization. In a iA
magnetogyrotropic waveguide the perturbation of the dielec- AM(Z)IA#(O)< COS X 12— £ sin X urZ
tric constant is also determined by the orientation of the Xuv
magnetizatiort! The total perturbation of the dielectric con- xexfdi(A,,—AB,)zZ],
stant in this case can be represented in the following manner:

72
i

*

“ A “ . Yuv . .
Ae(a,M)=Ae(a)+Ae(M). (5) AV(Z)=—IA,L(0)X” sin x,,z exg —i(A,,+AB,)z],
y7a%
Assuming that there are no radiative modes, we expand
9 Pane 28,,=B,+AB,—B,~ABy, X2, =|YulP+A2,.

the components of the electric field of the perturbed wave-

guide in the complete set of modes of the unperturbed wave- (10
guide: With consideration of(10) the mode conversion effi-

ciency n,,=|A,(2)/A,,(0)|? takes the form
2

Vi exi — (B),+ B1)2]. (1)

E,:EV [A,(2)exp —iB,2) = B,(2)exp(i B,2)]1%(X).
(6)

Here the upper signs in the square brackets refer to the trans-
verse field componentg € x,y); the lower signs refer to the DAMPING CONSTANT AND COUPLING OF IDENTICALLY
o . POLARIZED MODES
longitudinal componentsjEz); A,(z) andB,(z) are the
amplitudes of the forward and backward eigenmodes, which  The damping constant specifying the damping of a mode
propagate in thetz and —z directions and vary along the in a waveguide is found as the imaginary part of the pertur-
waveguide as a result of mode coupling and perturbation obation of the propagation constant, i.e., 85=—1m Ag,,.
their propagation constants; and thg(x) are profile func-  Figure 1 presents the dependence of the damping corsfant
tions, which define the distribution of the field across thefor the TE(solid curve and TM(dashed curvemodes of the
thickness of the waveguide. The coupling of counterpropafirst three orders=0,1,2 on the waveguide thicknelssThe
gating modes is significant in waveguides with a periodicallyfollowing parameters are used here and below in the calcu-
varying dielectric constarif In the case considered here we lations: ¢’ =4.5371,¢,=3.8, £,=1; wavelength of the ra-
shall confine ourselves to an analysis of the interaction ofliation in free space) =1.15um; damping parametewy
only the forward modes. =1cm L The symbols for the zeroth- and second-order
The representation of a field in a waveguide in the formmodes in the figure show the solutions obtained numerically
(6) permits derivation of the following equation for the mode from the dispersion expressions found by matching the fields
amplitudes: on the interfaces of the media. Both methods give coinciding

U Sin x ., Z

Xpv
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[ thicknessL ,=L o and that this dependence asymptotically
approaches the straight lin@(a)=a/2 as the deviation
0.50F from that thickness increases.
v The coupling coefficients of the identically polarized
g L modes are defined by the expressions
s 3 .
o49) 7’;w ko | Aeyy@y@,ydX,
i '}’#M kOJ [/ (Aeyu® xtAexs?,)
0.48 ; + 2% (Ae g7t Aoy ) 1dX. (13)

It follows from (5) that the perturbation of the dielectric
constant contains a component which depends on the absorp-
FIG. 1. Dependence of the damping constaion the waveguide thickness  tion o and leads to the coupling of identically polarized
L. modes even in a scalar waveguide, i.e., in the absence of

magnetization. This is confirmed by the orthogonality rela-
tions obtained abové&l). Whena~1-10 cm?, Ae(a) is of
nghe same order as the perturbation which is quadratic with
respect to the magnetization in the diagonal terms of the
ielectric constant in the iron garnet film. Therefore, the con-
tribution of the absorption introduced to the coupling of
identically polarized modes is comparable to the coupling
taused by the magnetizatidhbut the large phase mismatch
of modes of different orders greatly weakens the mode inter-
action. The mode coupling coefficient appearing as a result

values for g8(L), attesting to the good approximation
achieved using the coupled-mode formalism. It is seen fro
the figure that in the case of equality between the imaginar
parts of the diagonal components of the dielectric tensor, th
damping of the TM modes differs significantly from the
damping of the TE modes only near the cutoff thickness,
where the following relation holds:

(8,)" (CE &'kod

2 E

By~ CVBYhE UII\IA' 12 of absorptlon is of the order dfy,,|~102cm™* for a

e . o , =1lcm while the phase mismatchj,,~1C° cm*. For a

where IDEC ar% normahzg% mode coeff2|cl|gntqs§:(,8y m|smatchAW>|yM,,| the mode conversion efﬂuencyw
—kge1) =Gye'fer, b, "=(doe’— )" and v, <]y I/A! <1.Therefore, in an absorbing waveguide, as in

=L+2 smz(hVL)/q,,—sin(mVL)/ZhV :
Figure 2 presents the dependence of the damping
stant 8, of the zeroth(»r=0, curvesl and 2) and first(v
=1, curves3 and4) TE modes on the absorptiam of the
waveguide-layer material for two waveguide thicknesses:
=1.5um (curvesl and3) andL=1 um (curves2 and4).
An analysis of these curves reveals that the linear depen-
COUPLING OF DIFFERENTLY POLARIZED MODES
dence ofB)(a) has its smallest slope at the mode cutoff

a transparent waveguide, identically polarized modes with
CORifferent propagation constantg{+ 8,) can be considered
noninteracting modes, i.e., eigenmodes, of the waveguide in
the absence of othéfor example, periodicperturbations of
the dielectric constant.

In an absorbing waveguide, as in a transparent wave-
guide, orthogonally polarized modes are coupled only when
the dielectric tensor has off-diagonal components. In a mag-
netogyrotropic waveguide the JEand TM, modes are
coupled with the coupling coefficient

20

ito=

4 va:kOJ' Ery(Bey, 7+ Meyy ) dX, (14

To find the profile functions appearing ifl4), we
10L should take into account the perturbation of the dielectric
constant of the waveguide layer and the propagation con-
stants of the modes, which lead to a dependence of the cou-
pling coefficienty,,, on the absorption. Figure 3 presents the
dependence of the coupling coefficient which provides for
TE,—TM, conversion in the first three ordersut v
=0,1,2) on the thickness of the waveguide layer for orien-
0 Zlﬂ 20 tation of the magnetization along thg axis and «

-1 =20 cm ! (the dashed curves correspond to a transparent
oe, tm waveguidea=0). It is seen that the difference between the

FIG. 2. Dependence of the damping constahbn the absorptiow for two values of| ’Y;w| for absorbing and trf_ir‘Sparem films incr?ases
different waveguide thicknesses. as the deviation from the cutoff thickness increases, i.e., as

f o™
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04l coupled waveguides with strongly different absorption
properties:®> An analysis of(15) shows that the conversion
efficiency reaches its maximal values at the waveguide
lengths z=~w(1/2+n)/(7 cosy) (n=0,1,2,...) and its
minimal values at the lengthg~ =n/(7 cosy), where, in
contrast to the situation in a transparent waveguide, for un-

Y synchronized modes the intensity of theéh mode I,
E =|A,(2)|? is nonzero:
[+ ]
= Yur|?
S | (min) — ‘A (0) EZl sinkf(an tan ¢)
— MV
xexd —(B),+ B,)mn/ cos]. (16

Hence it follows that in an absorbing waveguide the po-
larization of the total field of two coupled modes fgr= 0
and any waveguide length differs from the polarization of the
l"’P'm' field of the input mode. In the case of complete.phase syn-
chronism (A ,=0) the expressions for the intensities of the

2
FIG. 3. Dependence of the coupling coefficient for FETM, conversion input mOdeI «=|A.(2)|* and the intensity of the excited
on the thickness of the waveguide layer. model , take the form

” 2
[ —|A#(O)|2(cosxwz+ = sin x,,,2 )
the film thickness increases. This is due to the fact that, as X
the deviation from the cutoff thickness increases, the local- xext — (Bl+ Bz,
ization of each mode in the film increases with resultant en-
hancement of the influence of absorption on the coupling |y,w|

coefficient, which is determined by the overlap of the profile 1+~ |AM(0)|2( X SiN X2

nv

2
exd —(8),+8,)z],
functions in the layer with the perturbed dielectric constant. * 17
Deflection of the magnetic moment away from a normal to-

— 2 4 1/2
ward the Faraday orientation leads to a signifigdayt more wherex,,,= (|7, —AL) , ,
than two orders of magnitugléncrease iny,,|, while the The energy of theth mode in a waveguide of length

difference | y,,(@)|—|v,.,(0)| varies only slightly; there- =mn/x,, is equal to zero, while the energy of theh mode

fore, it can be stated that the influence of absorption on thfemains nonze,to over the entire course of the waveguide. If
coupling of modes, i.e., ol #,.,()|~|7,.,(0)])/] 7,.,(0)]. the condition A’ | <|y,,,| holds at the minima at the lengths

decreases. Here and in the following we shall use a magn@_"r(l/2+ n)/X/w (n=0,1,2,..), theintensity of the input
togyrotropic waveguide with thE111] crystallographic axis Mde takes the values

normal to the surface of the film for the calculations; its " 1
linear and quadratic magnetooptlcal parameters have the fol(m'”)—lA (O)|2( )ex;{ §+n ('BZJFHL)/X,W .
lowing values: f=3.07x 104, Ag——O 73x10°4, gy Xuv

18
=5.07x10 4, andg,,=2.4x10 *. (18)
We bring the expression for the mode conversion effi- ~ To analyze mode coupling it is useful to introduce the

ciency(11) into the form quantity r ,,(2)=|A,(2)/A,(2)|?>, which characterizes the
contribution of each mode to the intensity of the total field in
N ‘ Yuv [sz( 7Z COS )+ sinte(7Z sin ¢)] the waveguide. The form of the functian,,(z) is largely
Y X determined by the differen(‘A;’w between the damping pa-
xexd — (8" + B")z] rameters of the modes. In real waveguide structures the ab-
# sorption of modes of different polarization can differ by sev-
= (XX )% 2A),=B,~ B, +ReAB,—AB,), eral fold even far from the cutoff thickneS§'he parameter
, , |A7,| increases significantly when waveguides with a clad-
20,,=B,= B ding of a conducting material or waveguides obtained by
1 proton exchange are uséd’
y=5 arctafi2A ), A} (A2 +]y,,[2=A"2 )71, (15) Figure 4 presents plots of,,(z) for TE;—TM, conver-

sion and various values i, and the waveguide thick-
While the conversion efficiency for a transparent wave-nessed.=3.6 (a), 3.7 (b), and 2.0um (c). The difference
guide is a periodic function, the conversion efficiency for abetween the mode damping parameters takes the values
waveguide with absorption is a decreasing oscillating funcA’,’wz —0.25, —0.125, 0, 0.125, and 0.25 crh (Fig. 4a,
tion. When the conditiopA’, |=|y,,,| holds forA ~0, the  curves 1-5), A} =-0.25 cm?! (Fig. 4b, and AV,
conversion efficiency ceases to be an oscnlatmg function=—0.25, - 0.5, —0 75, and—1 cm * (Fig. 4c, curvesl—4)
This effect is similar to the effect considered in a system ofThe growth anisotropy of the iron garnet film was taken into
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Tuw a r.»(2) curve with increasing maxima was obtained as a re-
04 1 sult of an investigation of T&E-TM, conversion forA7,
~0.29 cm L. However, our analysigFig. 49 shows that the
2 maxima ofr,,(z) should obey a dependence which de-
i creases with the waveguide length in this case. When there is
J complete phase synchronism between the mdéés 4b
ozl 4 and the conditionA’, |<|y,,| holds, the intensity of the
- uth input mode reaches a minimum, and the functigy(z)
5 takes very large values at certain waveguide lengths. The
R polarization of the total field approximates the polarization
of the 1th mode in this case. The strong mode mismatch at
the waveguide thicknes& =2 um (Fig. 40 makes the
A | -l . . . .
0 0.5 10 maxima more frequent and_ dramatically lowers their helght.
Also, if ,8;>/3’,j, as the difference between the damping
b parameters of the input and excited modla§ | increases,
10* the contribution of the excited mode to the total intensity
increases, rising with the waveguide length
w0’
NONOSCILLATING INTERMODE INTERACTION REGIME
r
In the case of phase synchronism,;(v:O) and a fairly
_2 large difference between the damping parameters of the
0 coupled modes| @, — 8,|=2|vy,,|), the trigonometric func-
4 tions in(16) transform into hyperbolic functions. As a result,
10 0 L 2.8 4 76 the penod_lc energy exchange_between modes propaggtlng in
y 4 a waveguide that takes place in a transparent waveguide and
c in the case of a small difference between the mode damping
1 4 parameters is not observed. In this case the intensity of the
vth excited model ,=|A,(z)|?> has one maximum at the
10_1 waveguide length
A [) 2 ” "
-f,  ARRRAAR i o] B B2 a9
Y A 20-/“/ ﬁM+Bv_20-/LV
!

and the intensity of theth input mode ,, has one minimum

3 -,
10 ! and one maximum at the waveguide lengths
10™* . 1 . ] 1 Ouy

0 0.8 16 Zy=5-—In| =/,

24 nv
z,cm
FIG. 4. Plot ofr,,(2) for TE;—TM, conversion. Z3= 1 In (’3#+’8V+20-“V)5/i") (20)
20,, \(B,+B,=20,,)6,,

account in constructing the curves in Fig. 4b by adding 1.2espectively, where

%102 to the diagonal componerte,,.!* As a result of
this anisotropy, the TEand TM, modes are completely syn-
chronized, i.e.Aj,=0, whenL~3.7 um. It follows from
the plots presented that if the absorption of s input
mode is greater than the absorption of itle excited mode,
the maxima and minima af,,, increase with the waveguide
length. This means that the contribution of th mode to
the field propagating in the waveguide increases with the .

distancez. When there is no dichroism, the height of the This permits regulation of the mode dampiag , in a
maxima ofr ,, does not vary, but the minima take a zero certain range by varying the coupling coefficient. In addition,
value, at which the field takes on the original polarization. Ifthe total intensityl ,+1, at the waveguide exit can be regu-
the absorption of the input mode is weaker than the absorgdated by varying the coupling coefficient, although this could
tion of the excited mode, the height of the maxima decreasesot be done when identically absorbed modes are coupled.
with only a slight increase in the minima of,. In Ref. 9 an  The results presented are also valid for a small phase mis-

— 2 2\1/2 + _
O-,U.V_(A”,u])_|7/l,l/| ) and 5MD_AZwio-,uv'

It is significant that the interaction of modes results in
changes in their damping, which is determined for the por-
tion of the waveguide at>z; by the quantity

@, ,=2(B,+B)x0,,). (21)
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match 24’ <|vy,,|. Under the conditionsA,,=0 and
A" ,=|v.| the expressions for the intensities of the modes
take the form

|, =1o(zA",+1)% exd — (B.+ Bz,
1,=10(zA",)2 exil —(BL+ Bz, (22

wherel y=|A,,(0)|?, and the intensity maxima of theh and
pth modes and the minimum of theth mode, respectively,
are realized at the lengths

2,=20B,+B)), z=2B,/(B,*~ B,

2= 1B~ B).

If the uth input mode damps more slowly than the ex-
cited mode, its intensity does not have extremum values and
decays monotonically.

As follows from an analysis of the relations presented, in b
the absence of intermode coupling the possibilities of regu- 7
lating the energy damping in a waveguide are increasingly
better the more strongly the absorption coefficients of the
modes differ. To obtain a quantitative estimate of the effect
described, let us consider conversion of the,#ME; type
in a magnetogyrotropic waveguide consisting of an iron gar-
net film on a gadolinium—gallium garnet substrate with a
cladding of a conducting material. The conducting layer 14~
mainly influences the absorption of the modes by strongly
enhancing the dichroism(8y,=—4.5cm?! and B¢
=—0.5 cm ) and has practically no influence on other pa-
rameters of the modé$.The film thicknesd.=6.8 um, at
which the TE and TM; modes are synchronized\LVmO)
in the waveguide considered, was used for the calculations.
Figure 5 presents the dependence of the reldtieemalized 10'3
to |y, i.e., the intensity of the input mode at0) intensity 0
of the input model,,(z)=1,(2)/1,, (curvesl), the relative
intensity of the excited mod&,(z) (curves2), the total rela-
tive intensityJ, (z) +J,(2) (curves3), and the relative inten-
sity of the input mode in the absence of couplidg(z)
=exp(—28,2) (v,,=0, curvesd) on the waveguide length
for TM;—TE; (a) and TE—TM; (b) conversion. The mag- tively varied by altering the coupling coefficient as a result
netization lies in the plane of the film at the angle59° to  of rotation of the magnetic moment of the film. Figure 6
the z axis, at which the mode-synchronism conditiahl’L(, shows the dependence of the total relative intensity of the
~0) and the equalit;A;’w=|yW| hold. It follows from the modes on the waveguide length for TMTE,; conversion
dependences presented in Fig. 5a that the intensity of and various orientations of the magnetic moment in the plane
strongly absorbed input mode interacting with a less stronglyf the film: ¢=0, 30, 50, 59, 80, 85, and 90° for curvis?,
absorbed mode passes through the minimum valy(&,) respectively. Under conditions close to phase synchronism of
and then damps more slowly than the intensity of it  the coupled modes, the most effective control of the energy
eigenmode. If the input mode is absorbed more slowly thartransferred in the waveguide is possible, if the coupling co-
the excited modeFig. 5b, mode coupling accelerates its efficient|y,,| is smaller thadA;’W| (curves4—7) or exceeds
damping. The total intensity is greater in the former case and only slightly (curve 3). When the coupling coefficient is
less in the latter case than the intensity of the noninteractingicreased furthefcurvesl and 2), the possibilities of con-
mode. trolling the waveguide energy by varyifg,,| are greatly

When the magnetization deviates from the angle reduced, and in the limiting case fof,,,|>|A’,,| they vanish
=59°, the phase synchronism is violated to a slight extentompletely, since the energy of two synchronized modes
(A,,=-213 cm? for ¢=0 and A,,=08 cm! for ¢  damps according to an exp(B,+,)z] law, being deter-
=90°), and the character of the mode interaction in this casenined only by the imaginary parts of the propagation param-
is determined mainly by the relation of the coupling coeffi- eters of the modes. For large coupling coefficierjtg,,(|
cient to the difference between the damping paramé«.‘%gs >|A;’w|) variation of the damping of the total energy is pos-
The total energy propagated in a waveguide can be effecsible only by significantly increasing the phase mismatch

T Vv TTYT

FIG. 5. Dependence arof the relative intensitied,, (1), J, (2),J,+J, (3),
andJ,=exp(28,2) for v,,=0 (4).
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strongly different damping parameters, the oscillatory energy
exchange between the modes vanishes and the damping of
the modes themselves becomes dependent on the coupling
coefficient under conditions close to phase synchronism. Ef-
fective control of the damping of the field in the waveguide
becomes possible under such conditions. The effect de-
scribed can be utilized to create radiation amplitude modula-
tors based on absorbing planar waveguides.
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Temperature stability and radiation resistance of holographic gratings on photopolymer
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Data are presented from studies of the temperature dependence of the diffraction efficiency and
radiation resistance of volume phase hologram/transmission gratings. The reversible

diffraction efficiencies are described by the phase equilibrium diagram for the polymer—diffusate
system. The radiation resistance of these hologram/gratings is determined by the thresholds

for photothermolytic decay of the diffusate, bromonaphthalene, that was used. Composites
containing diffusates with high thresholds for photolysis and thermolysis are studied. As a
result, modified versions of the photopolymer recording medium with radiation resistances
exceeding 200 MW/ck are proposed. €1998 American Institute of Physics.
[S1063-78498)01906-7

INTRODUCTION ture, they may cause irreversible changes and destroy a ho-
logram. Researchers encounter a similar situation when

Photosensitive polymer compositd®PCg for holo-  gratings interact with high-power laser beams. During inter-
graphic recording are constantly being developed andctions with high-power laser beams, a third stage may de-
improved!~® The advances of recent years have led to newelop between these two, owing to the nonlinear optical re-
possibilities for photopolymers, such as the recording ofsponse of the grating materigh cubic nonlinearity with
negative holograms in real tifi2d and a thermal technique respect to the field in an isotropic mediunThis stage will
for developing latent holographic imaggdhe known ad- be the subject of later studies; the results of a study of the
vantages of PPCs compared to bichromated gelatin includgrst and second stages are presented in this paper.
the ability to obtain holograms without having to go through  One of the important practical achievements of this work
the stages of chemical development of a latent image anfas been the creation of a modification of the basic compos-
extensive possibilities for optimizing the composites andite which has a higher radiation resistance than bichromated
achieving better reproducibility of the basic parameters. Theelatin.
phase character of the recorded information over a wide
range of thickness and area of the recording medium makes
these materials attractive for the fabrication and developme TRUCTURE AND PROPERTIES OF PHOTOSENSITIVE

. : . X OLYMER COMPOSITE HOLOGRAPHIC MEDIA
of various kinds of holographic optical elements.

We have for sometime been using the basic photopoly- Holographic media based on FPK-488 are made in the
mer holographic recording composite FPK-488 and its modiform of a triplex: substrate—PPC—substrate, with a gap rang-
fications for fabricating various types of holographic opticaling from a few microns to 1 mm, depending on the angular
elements. These include transmission and autocollimatingelectivity specifications for the fabricated holographic opti-
diffraction gratings, diffraction optical filters and selec- cal element. The gap is typically formed by spacers which do
tively reflecting diffraction grating. not inhibit shrinkage of the polymer layer. This kind of me-

Applications of optical devices based on polymer holo-dium is prepared before recording and, for sizes up to 10 cm,
graphic optical components in instruments or systems inevipresents no technical difficulty. PPCs of this class incorpo-
tably rely on the stability of the main operating parametersrate three interacting subsystems: a monomer—oligomer mix-
The primary factor which affects photopolymer holographicture which is capable of polymerizing; a mixture of two or
optical elements is the temperature. Humidity or mechanicamore components which form an effective initiator for a
effects are not as important, since this composite does naadical polymerization process; and, a chemical component
swell in water and the optical element is a rigid structurewhich plays a fundamental role in the diffusion-induced ir-
consisting of a pair of substrates with the holograms betweereversible spatial modulation of the refractive index—a
them. The temperature, on the other hand, is an unavoidabthemically neutral diffusatéCND).
parameter, since local temperature rises may occur because Some characteristics of the photosensitive polymer com-
of dissipative losses during channeling of high power laseposites are listed in Table I. FPK-488M differs from the
beams. basic FPK-488 compositén the monomer—oligomer com-

In the first stage, the effect of general and local heatingponent, and FPK-488N differs in the diffusate.
of holographic optical components on their spectral and an- The basis of the mechanism for holographic recording in
gular characteristics is reversible. With increasing temperathese composites is the radical photopolymerization of the

1063-7842/98/43(6)/6/$15.00 708 © 1998 American Institute of Physics
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TABLE I. o
— ; ; ; 1
Sensitivity  Resolution, Amplitude of the modulaion B
Type of PPC mJ/ch mm~t of the refractive indexgn** - 2
101 3
FPK-488 300 >6000 0.012-0.015 © R o
FPK-488M 60 >6000 0.025 =] = 3
FPK-488N 150 >6000 0.012-0.014 . |
[
— - — - Lo -
*The photosensitivity of the recording medium is defined as the exposure = i
required to attain a maximum diffraction efficiency for write beam inten- o5tk

sities of 0.2 mJ/crhat a writing wavelength ok =0.488um.
** The amplitude of the modulation of the refractive index was calculated
for grating readout by a =0.6328um beam with the electric field vector
E parallel to the “rulings” (s polarization. \ \ . | L R | N

i 1
0 50 100 150 200 250
7,°C

monomer—oligomer mixture and interdiffusion of the mono-
mer and the CND between the phase planes of the incipiemG. 1. Temperature-induced variations in the amplitude of the modulation
h0|ogram which Correspond to the maximum and minimumof th.e refra'tc'tive index of'a grating based on FPK-488 and in the dif-
light intensities in the interference light fietld1 The result- ~ fraction efficiency of gratings based on FPK-4888) and FPK-488(3).

ing spatial modulation in the concentration of the CND en-

hances, by many times, and stabilizes the modulation of the

refractive index of the polymer layer. is destroyed. For gratings based on FPK-488, destruction sets
in at T=218 °C; for the gratings recorded on FPK-488M, at

TEMPERATURE STABILITY OF THE PARAMETERS OF FPK- 244 °C.

488 HOLOGRAPHIC GRATINGS A polymer layer without the neutral component re-

We have studied the temperature dependences of the diff@inéd undamaged up to the highest observation tempera-
fraction efficiency » and transmissioril, of holographic ~tUre, T=250 °C. The damage for all the gratingsith »

gratings recorded on layers of FPK-488 and FPK-488M. For~ 2000 mm %) had a specific and fixed character: cracks

this purpose we measured the variation in the diffraction efformed parallel to the direction of the phase planes of the
ficiency over temperatures of50 to +250 °C. A transmis- 9rating, with a division ratio of roughly 20:1. The cracks
sion diffraction grating was placed in a temperature con-occur periodically and thus convert the thick transmission
trolled cabinet with a temperatufethat was controlled over 9rating into a thin ongaccording to the Klein—Cook crite-
the range+20—+250 °C. The diffraction efficiency was rion) and lead to the appearance of a multiwave diffraction
measured over the interv@= — 100 to +20 °C using a lig- pattern of the pro_be beam: Polymer layers of the same pho-
uid nitrogen cryostat with a variable temperature. The varialoPolymer recording material with no hologram recorded on
tion in the diffraction efficiency of the grating was tested them crack ina d_|sordered fashion at the same _temp(_aratures.
using a He—Ne laser beam € 0.6328.m) incident on the ~As a grating is cooled to arounds °C, its diffraction
sample grating at the Bragg angle. The powers of the inci€fficiency remains prgctlcally constant. At Iovy temperatures
dent (P,), transmitted P,,), and diffracted beamsP(;) ('_|'<O°_C), a rever§|ble reductlor_l in the diffraction gffl—
were monitored using FD-26 photodiodes whose output§i€ncy is observedrig. 2). For gratings with FPK-488 with

were fed to an automatic data recording and processing sy&" initial 7=98%, the minimum diffraction efficiency stabi-
tem. lizes at~0.81. When a grating is heated at an average rate of

The diffraction efficiency was defined as the ratio ~0-5 deg/min, such that a quasiequilibrium temperature dis-
Pai/(Pgi+ Pou). Losses due to light scatteringp£1  tribution can develop over the layer, the diffraction effi-
—T,) were taken into account by measuring the gratingti€ncy increases. The initial value is recovered at+8 °C.
transmissio y= (Pj,— Py, — Pou)/ Py, WherePy, represents  HYSteresis appears in the dlffl’aCtI.OI’] efficiency for gratings of
the Fresnel losses measured when the probe beam was inEEK-488M on cooling and heating. Thus, when a grating
dent on the grating at the angle for whigly;=0. (with an mma} an.QS is |n|t|.aIIy_cooIed to—60°C an_d

These studies yielded the following data. Heating thefhen heated, its efficiency at first increases but then, without

gratings to 100 °C causes a negligible change in the diffraci®@ching its original value, stabilizes at a level 10.8.

tion efficiency. On going taT>100 °C, a reduction in the However, the initial diffraction efficiency is recovered when
diffraction efficiency is observed, with an approach to athe grating is kepﬂ'=°20 °C for a long time(over an hour
steady value which remains invariant for fixédhroughout ~©OF heated to+ 3040 °C. In addition, for gratings based on
the observation timéup to 8 H. Cooling the grating to the the two modified PPCs, the light scattering increases as the

initial (room) temperature is accompanied by a return of thet€mperature is reduced. o
diffraction efficiency to its original value. The diffraction efficiency of a transmission volume

Figure 1 shows the diffraction efficiency=f(T) of ~ Phase grating at the Bragg angiés given by the Kogelnik
transmission gratings for the FPK-488 and FPK-488M comformula? for a given temperature
posites. A temperature-reversible recovery of the diffraction
efficiency occurs up to temperaturé€ssuch that the grating 7(T)=sin7#n(T)d(T)/\ cosB(T)], (@h]
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~ - - FIG. 3. The refractive indices of FPK-488) and of a polymer based on it
60 40 20 T °Co 20 40 (2) as functions of the concentration of the chemically neutral diffusate
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FIG. 2. Temperature-induced variations in the diffraction efficiefitp)
and light scattering losse) for gratings based on FPK-48@,3) and

FPK-488M (2). Let us see which properties of the recording material
determine the magnitude and temperature behavior of

on(T). By definition,
where én is the amplitude of modulation of the refractive
index andd is the grating thickness. SN={(Nmax—Nmin)|/2, 2
It might be expected thay(T) is determined by tem-  wheren,,,, nnare the refractive indices of the polymer in the
perature variations in the grating parameters which enter iphase planes formed at the antinodes and nodes of the inter-
Eq. (). ference field, where the concentration of the CND is differ-
As our measurements showed, the diffraction efficiencyent.
of the grating is essentially unchanged over temperatures of  Qur measuremeni&ig. 3 show that the dependence of
1-100 °C. This appears to be related to the specific structurghe refractive index of the polymer on the amount of CND
features of the holographic optical element and its thermalyithin this range of concentratiorsis quite well described
mechanics: because of the adhesion of the polymer to thgy a linear dependence of the fotn
substrate, the change in the size of the polymer layer along
the grating vector is determined principally by the thermal N~ No*+c(dn/dc), )
expansion (contraction of the glass substrate. FoT  wheredn/dc is the rate of increase of the refractive index
=200 °C and a coefficient of linear thermal expansion of theand n, is the refractive index of the polymer without the
glass ofa,=8x10 °® deg?, the change in the grating pe- neutral component.
riod is roughly 0.07% and the change in the diffraction effi- Substituting Eq(3) in Eq. (2) yields
ciency is 0.02%. Foif <0, «. is smaller and the effect of
this factor on the grating period is even more negligible. on(T)=[dn(T)/dc|cn(T), 4
The changes in the grating thickness is determined byvherec,y is the amplitude of the modulation of the concen-
the coefficient of linear thermal expansion of the polymer tration of the neutral component.
a,, and not of the substrate. The PPCs used here are new The absolute value of the rate of increase of the refrac-
systems of polymeimore often, copolymérand solvent tive index is known® to increase in proportion to the differ-
(CND). There are no published data on their temperaturence between the refractive indices of the polymer and sol-
coefficients of expansion. The estimates given here are basednt. The magnitude oAc depends on the thermodynamic
on values ofay, for polymers with similar properties. Ac- affinity of the neutral component of the polymewe shall
cording to dat& for polymers similar to those studied here, discuss this in more detail belowThus, 6n(T) is deter-
the maximum value ofr,=5X 10 % deg*. For this value mined by the thermodynamic properties of the polymer—
of a,, the grating thicknesd increases by-10% whenTis ~ CND system and by the difference in their refractive indices.
raised to 200 °C. The rate of increase of the refractive index is constant over a
The observed decrease of the diffraction efficiencywide range of temperatures for various polymer—solvent
(rather than an increase with grating thickneissevidence —systems= The slight change in over 20—100 °C indicates
that its temperature behavior is determined primarily by thethat the change ihdn(T)/dc| is small for the PPCs studied
dependencén(T), which decreases by more than the thick- here. Based on this, we may assume that the character of the

nessd increases. temperature dependence &fi(T) is determined mainly by
The temperature variatiobn(T) calculated from Eq(l)  that of Ac(T).
on the basis of the measuredT), with allowance for the The temperature dependencefé=f(T) is explained

change ind for B=const, is shown in Fig. {curvel). by a change in the phase equilibrium of the polymer—CND
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The situation is different when the gratings are cooled
below 20 °C. The monotonic drop in the diffraction effi-
g ciency can be explained by a decrease in the thickness of the
-1 grating with temperature, sinagy changes little according
to the phase diagram. In addition, the drop in the diffraction
efficiency may be related to increased light scattering in the
grating (Fig. 2, curve3d). This last effect may be caused by
- ! R SNON N crystallization of the CND, whose freezing point-is6 °C.
G & S0vl% (06 C; L, S0vil% The further drop in the diffraction efficiency as the tempera-
ture is brought below the freezing point of the CND and the
%bove-described hysteresis may be related to a change in the
diffusion times of the system owing to the high viscosity of
the polymer phase and the peculiarities of the crystallization
system. The phase equilibrium of such a system is describéginetics of the neutral component in the polymer matrix.
by a state diagram. In the following, we shall consider two
models which are capable of describing=f(T) qualita-
tively (Fig. 4a and 4p We consider phase equilibrium
curves with an upper critical temperature of displacenTént
as the most common type of diagram for systems similar to  The radiation resistance of the photosensitive polymer
those studied herg:'® composite gratings was studied by irradiating them with
Our measurements imply that for FPK-488 and FPK-pulsed Nd":YAG (A=1.064, 0.532 um) and dye &
488M, T* lies above the temperature at which the holograms=0.630um) lasers. The transmission and diffraction effi-
are destroyed. Prior to recording, these composites are mutiency of the gratings and their thresholds fpulse and
ticomponent single phase solutions. Polymerization in thenany-pulse damage were measured. The thresholdNfor
gradient interference field destroys the equilibrium state opulse damage is defined as the intensity) (at which N
the system and shifts it to poiit (Fig. 48. Here systeml  pulses on a given point of the sample will produce micro-
breaks up into two phases. When equilibrium is reached, thecopic damage on its surface and in its volume. The multi-
compositions of the phases correspond to the pdnteind  pulse damage threshold is defined as the intensitwhich
C,. The phase planes of the gratings in this case differ irwill cause damage foN>1000 pulses.
having different amounts of these phases. The way the diffraction efficiency and transmissidp
Diagrams2 and 3 of Fig. 4b allow for the difference in varied was similar for laser irradiation at different wave-
solubility of the polymer formed at the antinodes and nodedengths, intensities, and pulse repetition rates. As a rule, the
of the interference field. Such a difference may be caused bgiffraction efficiency and transmission of a grating are ob-
a dependence of the degree of polymerizatiensity factor served to decrease in an irradiated regithe latter is mea-
of the polymer networkand, therefore, of the solubility of sured at orientations off the Bragg angédl the way up until
the polymer, on the spatial distribution of the intensity of thedestruction of the grating. Visually, a blackening of the grat-
light field . ing is observed where later a microscopic hole is formed
During the recording process, at the antinodes of thewing to evaporation of the polymer. Here the transmission
field the system becomes two-phased, and microsyneresig a polymer layer without a neutral component does not
(squeezing outof the excess neutral component from the change until it is destroyed &t ~1 GW/cnf?.
polymer mass takes place. For the polymer formed at the Our results indicate that the damage threshold for holo-
nodes of the field, the concentration of the neutral compographic optical components made of these photosensitive
nent remains in equilibrium. As a result, the phase planes gbolymer compositions is determined primarily by the photo-
the grating consist of polymer phases with different equilib-physical and thermal properties of the CND component of
rium concentrations of the CNIBC; andC, in Fig. 4b. the polymer. Here the processes leading to destruction of the
For the system described by curtean elevated tem- grating have a cumulative character. A reduction in the in-
perature causes the thermodynamic affinity of the CND tdensity is observed as the frequency of the laser light ap-
the polymer to increase and, accordingly, the compositionproaches the edge of the fundamental absorption band of the
of the phases move closer togetfigointsC; andC;). Then diffusate.
Ac(T) andén(T) decrease, which leads to a reduction inthe  Without pretending to an exhaustive description of the
diffraction efficiency. In the second cag€ig. 4b), the equi- damage mechanism, we may assume that under intense irra-
librium concentration of the neutral component in both poly-diation, photochemical processes develop in the polymer ow-
mer phases increases, with an accompanying drop in the comg to multiphoton absorption. The consequence of these
centration gradient of the CND and, therefore, a reduction irprocesses is the formation of photodissociation products of
én. In both cases, the changeAt(T) is reversible, so that the component with the lowest photodissociation threshold.
the diffraction efficiency recovers when the grating is cooled.The products of photodissociation that exhibit fundamental
The choice of a specific model for the holographic re-absorption at the wavelength of the high-power laser are ex-
cording process in these photosensitive polymer compositeemely important, since in this case there is positive feed-
requires additional study of their thermodynamic propertiesback in the chain of events formed by absorption—photoly-

FIG. 4. Phase diagrams of the states of a polymer-CND system for tw
models described in the teit is the concentratioh.

RADIATION RESISTANCE OF POLYMER HOLOGRAPHIC
GRATINGS
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TABLE II.
Diffraction efficiency,
No CND Ng Np=Ng Copt: VOL%  1*, MW/cn? A=0.6328um
1 Bromonaphthalene 1.66 -0.14 30 16.0 0.99
2 Quinolene 1.627 —0.107 35 12 0.85
3 Petachlor Diphenyl 1.636 —-0.116 30 15 0.9
4 Trifluorethanol 1.29 0.23 35 >200 0.94
5 Acetonitryl 1.344 0.176 40 >200 0.04
6 Methanol 1.328 0.192 40 >200 0.03
7 Heptane 1.387 0.133 12 >200 0.98
8 Hexane 1.375 0.145 20 >200 0.98

Note The multi-pulse damage threshold was measured using light from a Nd laser with the following
parametersh =1.06 um, pulse length 10—15 ns, pulse repetition rate 12.5 Hz} ‘means that no damage to
the sample was observed during continuous operation for 6 h.

sis—absorption—heating—thermolysis, etc. An increase in thand 7, 8 have similar affinities to the polymer, and the affin-
concentration of these products leads to local heating of thiéty decreases in the seri€5s,6)—(1,4—(7,98).

polymer and its evaporation in the region of the interaction  Diffusates2 and 3 ensure highly efficient recording at
with the light beam. Apparently in the case of bromonaph-roughly the same optimum concentrations as for the bro-
thalene as the CND, bromine is photodissociated from thenonaphthalene in the basic FPK-488. The multi-pulse dam-
main naphthalene molecule and this then opens up the poage thresholds for them lie between 12 and 16 M\W/amd
sibility of direct absorption of visible light by molecular bro- are roughly the same as for the basic FPK-488. In both cases,
mine. The process proceeds with steady autoacceleration addmage to the grating was accompanied by the formation of
thus is cumulative. Soot formation and the evaporation of thebsorbing products, in agreement with earlier observatibns.
polymer, as a final stage of damage, take place owing t®n the other hand, the CNDs 4-8 greatly increased the ra-
thermolysis during the rapid local heating of the polymer indiation resistance of the gratings, although the photo-
the irradiated regions. sensitive polymer composites based on them differed in their

In order to enhance the radiation resistance of holotecording efficiencies. Thus, the maximum diffraction effi-
graphic optical components based on these photopolymersiency for additives 5 and 6 was less than 30—-40%. CND 4
we have studied replacing the CND contained in the basigielded a diffraction efficiency of up to 96%, but noticeably
composite FPK-488. A list of the diffusates that were studiededuced the photosensitivity of the PPC. This was a result of
and some characteristics of the new FPK-488N are shown ia chemical interaction between this diffusate and the initia-
Table II. tor.

The preliminary choice of the compounds for use as the  The best results for the magnitude of the diffraction ef-
CND was based on the following considerations. Aromaticficiency and the radiation resistance, simultaneously, were
1-3 and aliphatic 4—8 compounds were investigated. Sincebtained using the normal paraffins 7 and 8 as CNDs. Be-
the aromatic compounds undergo thermolysis more easilgides increasing the radiation resistance, going to the normal
than the aliphati¢/ '8 using them as a diffusate in a photo- paraffins made it possible to increase the photosensitivity of
polymer recording medium lowers the radiation resistance othe material by a factor of 1.5—-2 as a result of increasing the
holographic optical components. In order to ensure highlyrate of polymerization of the composite while the concentra-
efficient recording, compounds were chosen for which thdion of the CND was lowered. This last result suggests that
absolute value of the difference between the refractive indifor materials such as FPK-488, reducing the thermodynamic
ces of the polymer-forming parh() and the CND (4) was  affinity of the neutral component leads to an improvement in
at least 0.1. such parameters of the materials as its photosensitivity.

In addition, materials with a different solubility relative
to the polymer were examined, and this made it possible to
establish a relation between the holographic parameters angyyciusion
the thermodynamic properties of the photosensitive polymer
composite. The Huggens parameters, which characterize the Based on the results obtained here, we reach the follow-
thermodynamic affinity of a CND to a polymer, were not ing conclusions:
determined. However, the change in the affinity in a series of 1. The temperature variation in the diffraction efficiency
additives can be estimated qualitatively from the value of theof gratings based on photopolymer materials such as FPK-
optimum concentration,, of the CND which ensures maxi- 488 is characterized by the existence of two temperature
mum recording efficiency. A reduction in this efficiency is ranges. Within the range- 100>T>—10 °C, the grating
evidence of a drop in the equilibrium concentration of theefficiency is essentially constant. The decrease in the diffrac-
neutral component in the polymer and, accordingly, of a retion efficiency forT<—10°C and forT>100 °C up until
duction in the thermodynamic affinity in the system. Asthe grating is destroyed is reversible. The change in the dif-
Table Il implies, the groups of compounds Nos. 1-4, 5, 6fraction efficiency with temperature in the latter case is de-
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Experimental data are presented from a study of the focusing of single, submicrosecond pressure
pulses in water. The effects of the initial amplitude distribution, the initial pressure level,

and the geometric parameters of the opto-acoustic concentrator are studied. It is found that the
focusing efficiency can be substantially enhanced by going from a bell-shaped distribution

of the initial amplitude to an annular distribution. €98 American Institute of Physics.
[S1063-78498)02006-9

INTRODUCTION (4LD/LN)<11 LD:T"(FE)Z/)\:
The focusing acoustic pulses in liquids currently has a )
wide range of applications in different areas of science, tech- Ln=poCoM (27&Po), 3

nology, and mediciné-® Thus the problem of concentrating

pulsed pressures in the smallest possible spatial region WhereLp andLy are, respectively, the diffraction length and
extremely timely. the distance for formation of a discontinuity in a plane wave,

The Kirchhoff—Helmholtz integral equatibris used to &€= (1+¥)/2 is the acoustic nonlinearity parameter, angd
describe the focusing of monochromatic waves in the lineafndCo are the density of the liquid and the speed of sound
approximation. If the local distande is much greater than N It,

the wavelength, while the geometric angle of convergence, ~ Therefore, for sufficiently short waves and large effec-
a, is not too large &<1 rad), then this approach yields the five angles of convergence, nonlinear effects, whose com-

following result® bined effect on the focusing efficiency for monochromatic
, , waves is complicated, must be taken into accuht.
(Pt/Po)~FBIN,  Li~NB%  Di~NB, ) It has been found that the processes involved in the

where p; and p, are, respectively, the maximum pressurepropagation of pu_lsed and r_nonochromatic waves in both the
amplitudes in the focal plane and at the surface of the focudinear a?gllononlme_ar regimes have many features in
ing source,L; and D¢ are the length and diameter of the common:>="In particular, to examine the focusing of an

focal region at a level of Of5, andg is the effective con- initially monopolar pressure pulse of durationone can use

vergence angle. Egs. (1)—(3) with the wavelength\ replaced by the “pulse
The parameteB is defined by the formulds length” co7.2112 Thus, according to the linear theory, the
efficiency with which a single pulse is focused will increase
2 a . . . .
B2:7T71JA dc,of f(6,0)sin 6d0, as its duration is reduced. Then, however, the influence of
0 0 nonlinear effects should become greater, and this may be

ualitatively different, depending on the ratig, /L.
fs(0,¢)=ps(0,¢)/Po, ) ) Hence,)/studies of thg focus%ng of shor't%single pressure
where pg(6,¢) and f4(6,¢) are, respectively, the pressure pulses <10’ s), which are most conveniently generated
amplitude at the surface of the focusing source and its disasing an opto-acoustic approatchare of great interest from
tribution function, while# and ¢ are the latitude and longi- the standpoint of both fundamental and applied problems.
tude angles in a spherical coordinate systéhme origin of In both theoretical and experimental studies of the focus-
the coordinate system lies at the geometric focus, with théng of pressure pulses it is customary to consider bell-shaped
angle 6 reckoned from the acoustic axis agdin the focal profiles of their initial amplitude. An analysis of the avail-
plane) able experimental dat& *®indicates that for enhancing the
Thus in order to enhance the focusing efficiency for lin-focusing efficiency for submicrosecond pulses it is necessary
ear monochromatic waves, it is necessary to reducéo increase the geometric angle of convergence. This conclu-
the wavelength\ and increase the effective convergencesion is consistent with Eq¢l) and(2): as« is increased, so
angleg. doesp, and therefore the focusing conditions are improved.
The criterion for applicability of the linear approach, There is, however, another approach to the problem
which takes only diffraction into account, is the followifig: of increasing the effective convergence angle. According to

1063-7842/98/43(6)/6/$15.00 714 © 1998 American Institute of Physics
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a To osilloscope
1
FIG. 1. The experimental apparati@ and tem-
poral profiles of the pressure puldgs: 1—near
the surface of the absorbing lay@—at the fo-
cus of the opto-acoustic concentrators.
b
Pp=2.0 MPa Pp=20.0 MPa
J \ 0.5 ns J l
._'f "}\/"
7 2
Eq. (2), the largest contribution t@ is from the periphery of Figure 1a shows a sketch of the experimental apparatus.

the beam, rather than from its axial region. Thus, the effecThe laser beanl was expanded by a negative leBsIn

tive angleB can be increased without changiagby going  order to smooth out its transverse multimode structure, a
from a bell-shaped distribution of the initial amplitude to an diffuser 3 was placed at the inlet of the opto-acoustic con-
annular distribution. centrator4.

Under nonlinear conditions a bell-shaped initial distribu-  The laser pulse was converted into a single pressure
tion is clearly even more inferior from the standpoint of fo- pulse of duration 0.2s at half maximum in a solid absorb-
cusing because of the negative effect of nonlinear refractioring layer of thickness=0.4 mm deposited on the concave
In the case of a bell-shaped distribution of the initial ampli-spherical surface of the glass substrate. The layer material
tude, nonlinear refraction straightens the wave front andvas well matched with water in terms of its acoustic imped-
thereby makes focusing more difficult. At the same time, theance (p~10° kd/m?®, c~1.8x10° m/9) and this essentially
nonlinear distortion of the pulse profile, which enriches thegliminated energy losses owing to reflection as the pressure
initial spectrum with higher-frequency harmonics, promotespy|se passed from the opto-acoustic layer into the water
focusing until a shock front develops. Then the deleteriouggnk 5.
effect of nonlinear refraction is augmented by nonlinear ab-  The thermoelastic mechanism for opto-acoustic genera-
sorption. '!'hus, different s!tuations can occur, depending ORon ensured that the absorbing layer could be used many
the intensity of these nonlinear processes. _ .. times and provided good reproducibility of the parameters of

It appears that using beams with an annular distributiono exciting pressure pulses with a high light-to-sound con-
of the initial pressure can greatly attenuate the deleteriougegsion efficiency. The parameter=po/J, (whereJ, is the

influence of nonlinear effects. In this case, in the initial stag&maximum energy density of the laser pulse at the aperture of
of propagation of the wave, nonlinear refraction will not in- 4 concentrator was ~20 MPa(J/cn?) for 0<J,
hibit the focusing process but, on the contrary, will facilitate 5 g 3713,

it. In addition, for a fixed acoustic energy, and, therefore,
the influence of nonlinear effects will be smaller for larger
values ofB.

In order to verify these assumptions, we have made a

experimental study of the dependence of the focusing of sub- The pressure in the water was recorded using a piezoce-

microsecond pressure pulses in water on the Ie\(ﬂoczind ramic probeS with a sensitive area of diameter 0.5 mm. The
on the geometric parameters of the opto-acoqspp Co.nce.ntr%?gnal from the probe was fed to the input of an S8-14 re-
tor for the cases of bell-shaped and annular initial distribu-_~ . . : . )
tions. f:ordlng osullosc.ope(ban.d.Wldth~SQ !\/I_Hz). A differential
interferometer with stabilized sensitivity and photoelectron
pulse counting, operating in a linear mode, was used to cali-
brate the probe.

A multimode Q-switched neodymium glass lasgvave- Studies of focusing were done on two opto-acoustic con-
length 1.06um) was used to excite the pressure pulses. Theentrators: 1 F=68mm and D=54mm, and 2 F
duration of the laser pulse at half maximum was 20 ns and itss91 mm andD =110 mm, whereD is the diameter of the

energy was varied over the interval 0.1-0.3 J. concentrator.

The change in the distribution of the initial amplitude of
the pressure pulse was measured by transforming the inten-
sity distribution of the laser light at the inlet of the opto-

coustic concentrator.

EXPERIMENTAL TECHNIQUE
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Figure 1b shows typical profiles of the pressure pulses 1.0 a
recorded near the surface of the absorbing layer and at the
focus of the opto-acoustic concentrators for different levels
of the initial amplitude. At low pressures, one can observe a
characteristic diffractional transformation of the temporal
profile, i.e., the pulse is differentiated. As the initial ampli-
tude is increased, the influence of nonlinearity shows up
distinctly? the leading edge of the pulse becomes steeper,
the duration of the compression phase is shorter, and its rela-
tive amplitude increases, while the rarefaction phase is ex-
tended and smoothed out.

It should be noted that in our experiments, as opposed
those of Musatov and Sapozhnikimo shock front forma-
tion was observed, so only two nonlinear effects operated:
nonlinear distortion of the temporal profile, and nonlinear
refraction.

%,(8)

RESULTS AND DISCUSSION

The axially symmetric functionsg(6,¢)=14(6) con-
structed on the basis of the experimental data for the case of
a bell-shaped distribution of the initial amplitude are shown
in Fig. 2a. The changes in the amplitude of the compression
phase of the pressure pulse along the acoustic axis and in the
focal plane are shown in Figs. 2b and 2c for two laser pulse
energiesE. The absolute magnitudes of the initial and focal
pressures, the gain coefficie@Gt=p,/py, the length and di-
ameter of the focal region, and the effective convergence
angle are listed in Table I.

These data show that as the effective convergence angle
and the focal length are increaséce., on going from the
first concentrator to the secondhe focal pressure and the
gain increase substantially. At the same time, there is a no-
ticeable reduction in the size of the focal region, both the
dimension along the acoustic aX®) and the diameter.

For low initial pressuresfdy~0.2—0.3 MPa), these data
are in fairly good agreement with the predictions of the lin-
ear theory. According to Ed1), going from the first to the

second concentrator should yield an increasé by a factor ez

of 2.4 asL; andD; are reduced by factors of 1.8 and 1.3, [ . , .
respectively. In the experiment the gain increased by a factor 0 0.5 10 15
of 2.4 and the size of the focal region was reduced to roughly 7, TAMm

half.
- S o _ FIG. 2. Bell-shaped distribution of the initial pressure in the opto-acoustic
At h|gher initial pressuresdﬁ 2-3 MPa), the agree concentrator. The dashed curve is the first concentrator and the smooth

ment between the linear theory and the experimental data igirve, the second (J): 0.3 and 3.0(1), 1.85(2), 0.15(3).

poorer owing to the greater role of nonlinear phenomena.

Here the changes indicating an enhancement in the focusing

efficiency on going from the first concentrator to the secondther at low initial pressures. As, is increased, nonlinear

are less marked than at lguy: the gain increases by a factor refraction begins to predominate and the focusing deterio-

of 1.7, while the size of the focal region is reduced by arates.

factor of 1.3. Let us examine the experimental data for the case of an
The influence of nonlinear effects on the focusing pro-annular distribution of the initial amplitude. The functions

cess is clearly demonstrated by the plots m{py) and  f(6,¢)="1s(0) for this sort of distribution are shown in Fig.

G(pg) for the second concentrator shown in Fig. 3. pgr  4a. Figure 4b shows the variations in the amplitude of the

<1 MPa, these curves are still linear, while for higher initial compression phase of the pressure pulse along the acoustic

pressures the focusing efficiency falls off. That the range ofxis for the first and second concentrators for two laser pulse

linearity was much wider than predicted by E@) is appar- energies. The corresponding radial distributions in the focal

ently explained by the fact that nonlinear refraction and nonplanes of the opto-acoustic concentrators are given in Fig.

linear distortion of the temporal profile counterbalance eaclic. The normalization parameters, gain coefficient, length
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TABLE I.

Opto-acoustic Po. Ps L, Dy,

concentrator E, J MPa MPa G mm mm B°

1 0.30 0.30 2.0 6.7 22 2.8 13.5
1 3.00 3.00 20.0 6.7 22 2.8 135
2 0.15 0.17 2.7 15.9 10 1.6 18.0
2 1.85 2.00 22.9 11.5 18 2.2 18.0

and diameter of the focal region, and the effective conver-
gence angle are listed in Table II.

The data for an annular distribution of the initial ampli-
tude also show that as the effective divergence angle and
focal length are increasetn going from the first to the
second concentratprthere is a significant rise in the gain
and focal pressure with a simultaneous decrease in the size of
the focal region. As opposed to the case of a bell-shaped
initial distribution, these changes are larger than predicted by
the linear theory. In the experiment, even fqy,
~1-2 MPa, an increase in the focusing efficiency by a fac-
tor of 2.7 was observed with respect to all three parameters
(G, L¢, andDy), while for pp~0.1-0.2 MPa these indicators
were still higher.

Here it should be noted that the measured value of the
diameter of the focal region for the second concentrator was
comparable to the size of the sensitive area of the pressure
probe. Thus, the dimensions of the focal volume were over-
stated, while the pressures measured in the neighborhood of
the focus were understated.

The effect of the finite probe size on the measurement
results can be estimated by writing the amplitude distribution
of the compression phase of the pressure pulse in the focal
plane in the form

p(r)=pf F(r/DY), (4

whereF(r/D¥) the dimensionless profile functiopf is the
true value of the pressure at the focus, & is the actual
diameter of the focal region at the @5 level.

40+ H40
Jor 130
N &
S N &
& 20+ -120 :.l N N
L =TT, -~ -~ d
\\\:—’
101 \‘~§\\ -10
L 5 [
] 1 1 1 el L ! 0 1 1 i
/] 7 2 ] 4 0 0.5 10 15
PpoMPa r,mm

FIG. 3. The focal pressure and gain coefficient as functions of the initialFIG. 4. Annular distribution of the initial pressure in the opto-acoustic con-
pressure for the second opto-acoustic concentrator in the case of a bellentrator. The dashed curve is the first concentrator and the smooth curve,
shaped distribution of the initial amplitude. the secondE (J): 0.3 and 3.0(1), 1.85(2), 0.15(3).
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TABLE II.

Opto-acoustic Po, ps, L, D;,

concentrator E, J MPa MPa G mm mm B° M. g

1 0.30 0.18 2.2 12.2 22 2.8 17.0

1 3.00 1.80 22.0 12.2 22 2.8 17.0

2 0.15 0.08 2.7 33.8 5 1.0 22.5 1.42
2 1.85 1.00 29.2 29.2 9 1.3 225 1.16

Introducing the dimensionless averaging coefficisht to be related to a lessening of the negative contribution of
=pf/p;s, we find nonlinear phenomena in the case of an annular distribution of
1 the initial pressures. An analysis of the geometry of the an-

, (5) nular distributions of the initial amplitudérig. 48 shows
that for the second concentrator, the ring of the initial distri-
whered is the probe diameter. bution stands substantially farther away from the center than

SinceD>d, for the purpose of estimates it is sufficient for the first concentrator, a circumstance which also showed
to approximateF (r/D¥) by some bell-shaped function, as- UP in the character of the nonlinear refractjon. This assump-
suming thatD* ~D;—d. Let us compare the values &  tion is confirmed by the plots g¥/p;(2) in Fig. 4b. For the

calculated for LorentziariL) and GaussiaiG) focal distri-  first concentrator the pressure equals zero only in the neigh-
butions borhood of the poing=r =0, while for the second concen-

trator the region in which there is no acoustic perturbation on
the beam axis is much widez£20 mm).

d/i2
M=d2[8j F(r/D¥)rdr
0

M, =x? In"1(1+x?),

Me=x2In21—exg —x2 In2)]", (6) In or.d(.ar to Qetc_arm@ne the influencg of thg geometry of an
. annular initial distribution on the focusing efficiency, we per-
wherex=d/Dy . formed the following experiment. At,~0.1 MPa, an annu-

M_ and Mg begin to differ noticeably only fox>1.5 |5y distribution of the initial amplitude for the second con-
and, therefore, the parametéfl c=(M_+Mg)/2 intro-  centrator was shifted from the center to the edge in a way
duced in Table Il can be used for our estimates. Bar  sych that the effective width of the annulus remained con-
=1.6 mm, the calculation yields values I ¢ which differ  stant. The diameter of the focal region was found to decrease
little from unity (M g=<1.09), so they have not been indi- {5 0.5 mm, i.e., to the size of the sensitive area of the pres-
cated in Table Il and were not taken into account in analyzZsyre probe, with the measured focal presquressentially
ing the experimental data. constant owing to the strong spatial averaging. These results

Thus, in the case of the second type of opto-acousti¢onfirm the important influence of the geometric parameters
concentrator, the growth in the focusing efficiency was un-f an annular distribution on the focusing efficiency and the
derestimated by roughly factors of 1.5 and 1.2, respectivelypossibility of further increasing the efficiency by optimizing
for low and high initial pressures. In order to determine thet (¢ o).
focal parameters more accurately, the spatial resolution of The suppression of the deleterious contribution from
the measurements must be increased severalfold; that is @@nlinear refraction compared to the positive influence of the
independent and by no means simple problem. nonlinear distortion of the temporal profile shows up most

Let us analyze the enhancement in the focusing effideany in the behavior op;(py) andG(p,) for the case of
ciency on going from a bell-shaped distribution of the initial g, annular distribution of the initial amplitud€ig. 5. At
amplitude to an annular one. For the first concentrator, thehitial pressures below 1 MPa3(p,) has a characteristic
gain increases by a factor of 1.8, while the changes in thenaximum. This confirms the earlier conclusiér®***that
dimensions of the focal region are negligible. At the sameyt |ow initial pressures, when a shock front is unable to de-
time, for the second concentrator, the gain increases by @elop, nonlinear effects can improve the focusing conditions
factor of 3.0, while the length and diameter of the focal re-compared to the linear case, if the nonlinear distortion of the
gion are reduced to half. temporal profile predominates over nonlinear refraction. At

Going from a bell-shaped distribution of the initial am- higherp,, as in the case of a bell-shaped initial distribution,

plitude to an annular distribution, therefore, makes it postpe focusing efficiency falls off owing to the dominant con-
sible to greatly enhance the focusing efficiency, and thesgipution of nonlinear refraction.

changes are most noticeable for the second concentrator. In
the meantime, according to E(.), the increase in the focus-
ing efficiency should be the same for the first and secon
concentrators, since on replacing a bell-shaped initial distri- These studies have shown that the distribution of the
bution by an annular ongg increases by the same factor for initial amplitude of submicrosecond pressure pulses in a lig-
both of the concentratordables | and ). uid has a significant effect on the process by which they are
The observed additional improvement in the focusingfocused. In particular, we have demonstrated the possibility
conditions for the second opto-acoustic concentrator appeacds greatly increasing the focusing efficiency by going from a

é}ONCLUSIONS
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4k d40 cantly on the geometric parameters of the annular distribu-
N\ tion of the initial amplitude.
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Magnetostatic surface waves produced by an inhomogeneity of the anisotropy with a
turning point of the spectral function on a ferromagnet surface
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Magnetostatic surface waves with fixed frequency and wave vector are predicted to exist in a
ferromagnet with an inhomogeneity of the magnetic anisotropy such that the spectral

function has a turning point on the surface. This result is most important for the case when an
external magnetic field magnetizes the ferromagnet perpendicular to its surface. The

frequency of the surface wave is determined by the frequency of the magnetostatic volume wave
at the surface of the ferromagnet, and the wave vector is determined by the surface values

of the local magnetic anisotropy field and its derivative. 1898 American Institute of Physics.
[S1063-78498)02106-7

INTRODUCTION EXPERIMENTAL AND THEORETICAL STUDIES OF
MAGNETOSTATIC SURFACE WAVES IN INHOMOGENEOUS

Ferrite epitaxial films, mainly of yttrium iron garnet, FILMS

are widely used in microwave electronics. They areé  nost studies have been made of the case where the ex-
grown on nonmagnetic substrates, such as gallium gadqernal magnetic field and the magnetization are in the same
linium garnet. The existing film growth technologies mainly direction and lie in the plane of the film, while the wave,
yield films that are inhomogeneous over the sampldtself, propagates perpendicular to théf?* The inhomoge-
thickness-? Inhomogeneities can also be created artificiallyneity in the distribution of the magnetization is modeled by a
by ion implantatior? 2 In this regard, a need has arisen for multilayer film consisting of two or three homogeneous lay-
studying the properties of magnetostatic waves in films tha@rs with different magnetic parameté?sz?'-Numerical cal-
are inhomogeneous over their thickness. The distribution ofulations have been donelggza specified inhomogeneity pro-
the magnetization in the ground state of a ferromagnet i lle bY several authorS:'®** It is important to. obtain
analytical results for a rather general form of the inhomoge-

determined to a great extent by the profile of the magnetic ..
neities.

anisotropy constant; here the inhgmqgeneous exchange con- The case in which an external magnetic field magnetizes
stant and the saturation magnetization can be regarded g innomogeneous ferromagnet in a direction perpendicular
constanf. We will therefore consider a ferromagnet with tg its surface is of greatest interest. An inhomogeneity in a
only an inhomogeneity in the magnetic anisotropy. We limitfilm of yttrium iron garnet with this geometry has only been
ourselves to inhomogeneities with a single turning point ofconsidered onc® in an examination of the direct and in-
the spectral function on the surface of the ferromagnet. Averse spectral problems for magnetostatic forward volume
magnetostatic volume wave is thereby allowed to propagat&aves, while the experimental spectra were interpreted in
on the surface of the ferromagnet. We shall choose the prd€ms of a spatial inhomogeneity in the uniaxial anisotropy.
file of the inhomogeneity in the magnetic anisotropy constant
to be such that magnetostatic volume waves cannot propa-
o : STATEMENT OF THE PROBLEM AND BASIC EQUATIONS
gate inside the ferromagnet. In that way, we obtain exponen-
tial damping of the magnetic potential of the wave in the  Let us consider a uniaxial semi-infinite ferromagnet
interior of the ferromagnet, and this leads to localization ofwhich occupies the region>0 (see Fig. 1 and has an ar-
the wave near the surface. A wave of this sort can be classettrary profile of the inhomogeneity of the local magnetic
as a magnetostatic surface wave. This result is of greategfisotropy fieldH(2) =2K(2)/M,, whereK(2) is the mag-

interest for a ferromagnet magnetized by an external magrJetiC anisotropy constant ard,, is the saturation magneti-

netic field perpendicular to its surface, since then only mag:zat'on' We assume that the magnetic anisotropy #|¢z)

. . o is less than the absolute value of the demagnetizing field
netostatic volume waves will exist in the homogeneou

11 g o . ﬁHM|:47TM0. Then in weak magnetic fieldslg<47M,
case’ ! while surface excitations of the spin system ShOW—HA(z) the ground state is inhomogeneous:

up only when exchange is includé®*® Thus, in a normally

magnetized ferromagnet, magnetostatic surface waves can %o(2)==*arccogH,/[47Mo—H,(2)]), (1a)
exist as a result of the inhomogeneity in the magnetic anisotwhile in strong fieldsH,>47M,—H(z) a homogeneous
ropy. ground state is realized,

1063-7842/98/43(6)/6/$15.00 720 © 1998 American Institute of Physics



Tech. Phys. 43 (6), June 1998 I. A. Kaibichev and V. G. Shavrov 721

Z) where y is the gyromagnetic ratidi o(2) =Hg+Hpn+Ha(2
X(Mn)n/M, is the effective magnetic field, andis the unit
vector characterizing the direction of the anisotropy axis of
the ferromagnetic crystddirected along the easy axisof
the ferromagnet

The magnetization vector in the ground state has com-
ponents M, sin ¢,(2), 0, My cosiy(2), and the demagneti-
n zation field is (0,07 47mMq cosyy(2)). We assume that the
deviations of the magnetization vector and the demagne-

X tizing field h from these equilibrium values are small. We

k linearize the Landau-Lifshitz equati@8) to obtain the cou-
pling between the components of the vectorandh, which
we write in the form

e

'@ M

Ferromagnet

mi:Xijhjv iaj:X,y,Z, (4)

Vacuum wherey;; is the high-frequency magnetic susceptibility ten-

FIG. 1. The geometry of the probletd, is the external magnetic field;is

a unit vector characterizing the direction of the easy axa$ the ferromag-
net, which is perpendicular to its surfadé;is the magnetizatiofin general
it deviates from the easy axis by an angig(z)); and,k is the wave vector

sor of the ferromagnet.
Its components are given by

xxx=T(2)Q1(2)cos ¢(2),

of the magnetostatic surface wave. )
Xxy=~Xyx=1'(2)iw cosip(z),

xvy=I(2)Q5(2),

Xzx=Xxz= —I'(2)Q1(2)cos ¢y(2)sin y(2),

Xyz=—Xxzy=1(2)iw sin y(2),
¥o(2)=0. (1b)

This latter condition also occurs in the caseltbf(z) _
>47M, andHy>0. In a situation withH ,(z) >47M, and X2z=T(2)Q(2)SI? 4o(2).
477My—Ha(2)<Hy<0, the homogeneous phas{&b_) IS Here we have used the notation
metastable. Thus, the results for the magnetostatic surface
wave spectrum in the latter case will be valid only when the  T'(z)=yMq/[Q1(2)Q(2) — w?],
energy of the magnetic excitations of the ferromagnet is ()
small compared to the potential barrier preventing a transi-  21(2)=¥[Hg +Ha(2)c0os ¢o(2)]cos ¢(2),
tion of the ferromagnet into the homogeneous stable state B (i)
¥o(z) = 7. The exchange interaction was not taken into ac- 02(z)=y[Hgy’ cos¢p(z) +Ha(z)cos 2hg(2)],

count in determining the ground state. This is valid if theyhile HBZH0—47TM0 cosiyy(2) is the internal magnetic
dimensions of the ferromagnet film and the characteristigje|d. Note that on going to a system of coordinates witlZits
scale length of the inhomogeneity of the magnetic anisotropyyis coincident with the magnetization of the ground state of
field (the length over whiclH z(z) changes from its surface the ferromagnet, we essentially obtain a form of the high-
to its bulk valug, L, exceed the exchange length frequency magnetic susceptibility tensor which was known
0=+2A/(HaoMo). (A is the inhomogeneous exchange con-previously® The differences are related to the dependence of
stant andH o is the anisotropy field in the interior of the the magnetic anisotropy field on the vertical coordinate
film.) The components of the magnetic susceptibility tensor also
Surface magnetostatic waves propagate along/'theis,  pecome functions af. Substituting Eq(4) into the equation
so we assume that all the variables in the problem are proasf magnetostatic&2), and then introducing the magnetic sca-

portional to expiwt—iky), wherew is the frequency anllis  |ar potentiald®(h= —V®), we obtain a second-order differ-
the wave vector. We consider frequencies up to several GHgntial equation with variable coefficients:

since they are usually employed in practtée®® At these
frequencies, the wave vectér<10° cm 2. In this region,

D?®(z) —k’*Q(w,z)®(z)=0, (5)
the contribution of the exchange interaction is small COM~,here Q(w,z)=1+47TyM0(22(Z)/[Ql(Z)Qz(Z)—wz]

pared to the other terms in the magnetic energy: dipole—+wl:){‘w?,,vIO sin Yo Q(D 02— Tk is a function

dipole and Zeeman. In an examination of magnetostatiG,yich determines the character of the solutions, which we
waves, it can be neglected. We shall begin with the system cghall refer to as the spectral function, aBd= ¢%/dz2. The

equations of magnetostatics: form of the spectral functio®(w,z) depends on the choice
curlHy=0, div(Hy+47M)=0, (2  of ground state:

whereH,, is the demagnetization field. Q(w,2)=—[wy1(2)— o][o— wy(2)]/ w? (68
The magnetizationM satisfies the Landau-Lifshitz )
e - for the inhomogeneous ground stéie) and
quation
IM/dt=—y[M-Hex(2)], 3) Q(w,2)=[w§5(2) ~ 0?)[0G1(2) — 0] (6b)
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for the homogeneous phagh). The quantitiesvy,(z) and Thus, the second-order differential equati®hwith the
wy»(2) have the same physical significance in both casesspectral function(6) and the boundary conditior{g) can be
they are the lower and upper local boundaries of the magnassed to describe the propagation of a surface magnetostatic
tostatic volume wave spectrum in a homogeneous slab witlvave in an inhomogeneous ferromagnet.

parameters equal to their values at the painTheir forms,

however, depend on the choice of ground state. For the in-

homogeneous statda),

i=A(2)+(—1)!YA%(2)—B(2),
ov=AZ)+(-1) (2)-B(2) Of all the possible profiles of the local magnetic anisot-

A(z)=2myMg cos y(z)D io(2)/K, ropy fieldH4(z), we shall consider only those which have a

) ) single turning point in the spectral functid®(w,z), at the
B(2)=4my*MoHA(2)si yio(2), D=0ldz, surface of the ferromagnet, i.€Q(w,z=0)=0. This condi-

while for the homogeneous phagk), tion uniquely determines the frequency of the surface mag-

netostatic wave:
ov1(2)=Q0(2),  wy2(2)=VQo(2)[Qo(2) +47YM],

where Q¢(2)=y[Ho—4mMy+Hu(2)] is the local ferro- 5= 0v2(0). ®
magnetic resonance frequency. The frequencyw cannot take other values. The upper
In the beginning we examine a uniform material, wherejocal limit on the magnetostatic volume wave spectrum in a
there is no dependence amrand Q(w,z)=Q(w). In an in-  slab, w\,(0), is given by different expressior§a) or (6b),
finite material there is a single magnetostatic volume wavegepending on whether an inhomogeneg¢la or homoge-
whose frequency is determined from the conditiQfw)  neous(1b) state is realized. In the interior of the ferromagnet
=0. For a slab withQ(w) <0, the solutions of Eq(5) are  for z>0 we assume that the spectral functiQfws,z) is
expressed in terms of a linear combination of the sine an@ositive. Then the upper local limib,,(z) for any z=0
cosine and describe an infinite set of magnetostatic volumgust satisfy the inequality
wave spectral modéd:!! It should be noted that these
waves, by analogy with elastic wav&’’ occupy an inter- wy2(Z) < wy2(0). ©)
mediate position between surface and volume waves, but the The equal sign holds only far=0. Thus, the situation

term “magnetostatic volume waves in a slab” has becoque are examining is realized only for profiles of the local

established in the literature. In a half space v@tw)>0, magnetic anisotropy field which ensure that the upper local

the spIqun of Ea(5) is e>_<pre§sed In terms of a linear COM-~ |imit wy, Of the magnetostatic volume wave spectrum in the
bination of exponents with different signs and describes ab satisfies inequalit(g)

magnetostatic surface wavi it satisfies the boundary con- In the short-wavelength approximatidiL>1 (wave-

ditions). L . : : . length much shorter than the inhomogeneity scale lehgth
Everything is a bit more complicated in an inhomoge- Eq. (5) has the solutio?$:2

neous medium. For example, if there is patgt referred to
as the turning point, such th&(w,z,)=0, then only one D(2)=D, Ai[|k|?3¢(2)],
magnetostatic volume wave can propagate at the gginif
,2)<0 in some layer, then an infinite set of magneto- 3 (2
Qo) g g §<z>={§ |"aniatesn

MAGNETOSTATIC SURFACE WAVE SPECTRA

2/3

: L . , z=0, (10
static volume wave modes exist in it, while f@( w,z) >0 a

magnetostatic volume wave cannot exist, but a magnetostatic
surface wave can propagate. Let us choose a situation su¥iereAi(«) is the Airy function of the first kind.

that Q(w,z=0)=0, while for any otherz>0 the spectral ~ _ Near the surface, forz—0, the function £(z)
function Q(w,z)>0. The conditions for propagation of a =3VDQ(ws,0)z, while the Airy function is written in the
magnetostatic volume wave are thereby created on the suform
face of the ferromagnet, while inside it the magnetic poten-

tial will fall off exponentially. Ultimately, this should result Ai(a)=Ai(0)+[d Ai(@)lda],— o= — som—mm !
in localization of the wave near the surface, so we shall refer 3%°T (2/3)

to this as a surface wave. 2/3 3
z|k|“= YD 0
We now formulate the boundary conditions for the prob- - K 34,%(3/(:;;3 ) :

lem. They involve the continuity at the ferromagnet surface
(z=0) of the normal component of the magnetic inductionwherer(s) is the gamma function.

and the tangential component of the magnetic field strength,  Then the distribution of the magnetic potential of the
which reduces to the following conditions for the magneticsyrface magnetostatic wave with frequent8) has the
potential: asymptotic form

®(0)=Pg(0), —DP(0)+4mm,0)=—-DPg(0), 1 2|k|233DQ(ws0)

(7) =—
. . . . ©(2)==Po| z2Er 273 T T 3 (473
where®(z) is the magnetic potential in the vacuum region

(z=0). near the surfacez(-~0) and

(113
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®y 4 [ Q(ws) z In the case where there is no external magnetic field
*(@2)=5— mexp{—lklf dt\/Q(ﬁ)si)} (Ho=0) one hasws=wy(0). To determine the absolute
s 0 (11b) value of the wave vector according to E@2), we calculate

the derivative of the spectral function on the surface; the
in the interior of the ferromagnek$0). Outside the ferro- dispersion of the surface magnetostatic wave at short wave-

magnet, for the vacuum regioz<€0), we have lengths can be neglected. As a result, we obtain
D(z)=V, exp{|K|z}. (119 DHA(0) 2H2HA(0)
Substituting the expressions for the magnetic potential [Kl=— HA(0) 1= [47Mo—HA(0) 3" (18)

(11) into the boundary conditiond) yields an expression for

the wave vector of the magnetostatic surface wave All these results have been obtained for short wave-

lengths, such thgk|>L 1. This leads to a condition on the

|k|=B8DQ(ws,0), (12)  surface value of the logarithmic derivative of the local mag-
where 8={T'(2/3)IT (4/3)}%/9~0.3874. netic anisotropy field,

In calculating 8 we have used tabulated values of the 1 2H2H ,(0)
gamma functiori® A result for the wave vectof12) was D IN[—HA(0)]> - [14— oA 3], (19)
obtained in the short-wavelength range, where the condition AL [47Mo—Ha(0)]

|k|>L"* must be satisfied. This leads to a requirement fof ¢ the local magnetic anisotropy field must increase near
the surface value of the derivative of the spectral function, the surface. For other values of the logarithmic derivative of
DQ(ws0)>[BL] % (13) the local magnetic anisotropy field at the surface, the short-
wavelength approximation does not hold and our equations

MAGNETOSTATIC SURFACE WAVE SPECTRUM IN A are not applicable. If conditiofl9) is satisfied, then the final

FERROMAGNET WITH AN INHOMOGENEOUS GROUND expression for the magnetostatic surface wave frequency is
STATE obtained from Eq(16) by substituting the wave vector, i.e.,

We now make the results for the frequency of the sur- B . HEV = mMoHA(0)
face magnetostatic wav@) and the absolute value of the @s=@y(0)) 1= sign ¢o(0) [47My—HA(0)]?]"
wave vector(12), as well as the condition®) and (13) for
the inhomogeneous statda), more specific. A magneto- o=signk, (20
static volume wave spectrum with lower,;(z) and upper
wy»(2) local boundarie$7) exists in an inhomogeneous me-
dium if A%(z)>B(z) or

where

— H3
DHA(Z) 2 (1)\/(0):2’}/ _WMOHA(O)[]-_ 2[47TM0_HA(0)]2]

cot Yo(z); . (14
[4mMo—Ha(2)]k is the magnetostatic volume wave frequency in a homoge-
Restricting ourselves to low fieldsHy<<47M, neous ferromagnet with parameters equal to their values on
—Ha(2), we have the surface of the inhomogeneous medium.
MoHA[DH A(2)]2 _If #5(0)>0, then for propaga_tion in the positivé di-
Ha(2)<Hyp= oMo A - rection (0= +1), the magnetostatic surface wave frequency
[47mMo—Ha(2) ]’k ws (20) will be somewhat lower than the magnetostatic vol-
MAH2 ume wave frequencw,/(0), and if thewave propagates in
~ 00 4 . (15  the negativeY direction (c=—1), thenws is higher than
[47Mo—Ha(2)]"[KL] wy(0). In the caseyy(0)<0, for the positiveY direction
This condition is clearly satisfied in an “easy plane” (o=+1) the magnetostatic surface wave frequeney(20)
ferromagnet withH(z)<O0. For short wavelengths, with Will be somewhat higher than the magnetostatic volume
kL>1, the termA(2) in the expression for the upper limit Wave frequencyw(0), and for thenegative direction
wy»(2) can be regarded as small. Then, for the magnetostatic? = —1), lower. Thus, a nonreciprocity effect shows up. It

HA(Z)<7TMO

surface wave frequend), we obtain involves a difference in the frequencies for identical magni-
tudes of the wave vector but different propagation directions
ws=wy(0)[1-a], (16)  of the wave. Equatiof20) implies that it is observed only in

wherewy(0)=27|sin y4(0)|y— mMoHA(0) is the frequency an external magnetic field,. If .there_ is no field Hy#0),
of a magnetostatic volume wave in an infinite homogeneouf€n@s=v(0), and thenonreciprocity effect does not oc-
ferromagnet with parameters equal to their surface values iU

the inhomogeneous medium, while Condition(11), which ensures that the spectral function

is positive in the absence of a magnetic field,&0), is

sign o(0) 3 ™™g 1 satisfied for any profile of the local magnetic anisotropy field
[anMo—HAOTK N Ha0) 17 with

is a small correction leading to a dispersiork 1. Ha(z)=Hg=H4(0). (21

a=H3DHA(0)
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At low fields Ho<<4mMy—Ha(2), the expression for
the critical field is somewhat different,

frequency and wave vector in an inhomogeneous ferromag-
net for which the spectral function has a turning point on the
H2H ,(0) J=aMoHA0) { fsurface. This kind of magnetostatic surface wave is obtained
1 rom a magnetostatic volume wave propagating at the sur-
[47Mo—HA(0)T° face of the ferromagnet by choosing a profile for the local
(22) magnetic anisotropy field which precludes the existence of a
If DHA(Z)/DH4(0) is not a constant equal to 1, thiely magnetostatic volume wave in the interior of the ferromagnet
should depend weakly on the propagation direction of theand ensures exponential damping of the magnetic potential.
wave. Thus we have determined the fixed values of the freThis significantly new result is of greatest interest for a fer-
quency(20) and wave vectof18) of the magnetostatic sur- romagnet that has been magnetized perpendicular to its sur-
face wave in the case where the ferromagnet has an inhomqace, where only a magnetostatic volume wave can exist in
geneous ground state. We have shown that these values af homogeneous case. The fact that the frequency and wave

DHA(2)
~ DHA(0)

H=HA(0)—

different in an external magnetic field for different directions
of propagation of the wavé.e., a nonreciprocity effect oc-
curg. The local magnetic anisotropy field inside the ferro-

vector are fixed is nontraditional. They are uniquely deter-
mined by the values of the local magnetic anisotropy field
and its derivative at the surface. The conditions for the exis-

magnet must be greater than the critical field and increasgyce of the predicted magnetostatic surface wave depend on
near the surface. The critical field is determined mainly bYine choice of the ground state of the ferromagnet.

the local magnetic anisotropy field at the surface.
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ws=wy(0),
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Influence of the edge field on the focusing properties of a coaxial cylindrical lens
L. P. Ovsyannikova and T. Ya. Fishkova

A. F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
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The effect of the distance between the grounded flat entrance diaphragm and the outer cylindrical
electrode(which determines the edge field of the lgmsinvestigated over a wide range of

variation of the geometry of a coaxial cylindrical lens. It is found that focusing of a charged
particle beam on the lens axis is achieved over a wide range only in the case of small
clearances between the diaphragm and the outer electrode. It is shown that for an alternative
power feed arrangement, in which the outer cylindrical electrode is grounded and the voltage is
applied to the inner electrode, beam focusing is in general degraded, in particular on the

lens axis. ©1998 American Institute of Physid$1063-784£98)02206-5

In Refs. 1 and 2 we identified the working regimes of adependence for the entrance edge field. It should be stated
coaxial cylindrical lens focusing an annular charged-particlehat near the diaphragm but far from the field-assigning elec-
beam on its axis and investigated it over a wide range ofrode, the field distribution is similar to the field distribution
variation of its geometrical and electrical parameters. Weaway from the diaphragm. The values of the voltages deter-
also obtained simple empirical formulas for the cardinal el-mining the form of the equipotentials and the rate of falloff
ements of this lens. The clearance between the groundeaf the edge field away from the field-assigning electrode de-
end-face diaphragm at the lens entrance and the external cgend on the geometry of the lens.
lindrical electrode was significantly less than the transverse The charged particle beam trajectories were calculated
and longitudinal dimensions of the lens. Since this clearanceumerically using the TEO computer code for two-
determines the configuration of the edge field, it should havelimensional electrostatic fields. We considered beams enter-
a substantial influence on the focusing properties of the lendng the coaxial cylindrical lens parallel to its longitudinal
The influence of the position of the entrance diaphragm is in
fact the subject of the present paper.

Figure 1a presents a diagram of a coaxial cylindrical lens » a
consisting of two cylindrical electrodes, a flat end-face dia-
phragm at the entrance with an open back face. The inner
electrode and the diaphragm were constructed as a single
unit with a grounded housing, onto which the outer electrode
was mounted through an insulator. Application of a voltage
V to the outer electrode while the diaphragm and inner elec- z
trode remain grounded leads to the appearance of a field on 7
the lens. Therefore, in what follows we will call the outer
cylindrical electrode the field-assigning electrode.

In such a lens, the equipotentials of small absolute val- 4
ues of the potential pass near the inner electrode, then run ¥ L —a
nearly parallel to the end-face diaphragm, and finally close in l A
the space between the housing and the inner electrode. Here
as a consequence of the open back face they penetrate intq. s b
the space beyond the electrodes. The equipotentials of large V=0
absolute values of the potential have a simpler configuration, V=1
smaller extent, and surround the field-assigning electrode 7.2
from the inside and out. It can be seen from Fig. 1b that in
the region of the diaphragm located near the field-assigning g.6
electrode(the edge-field region at the lens entrandkee val- 5
ues of the potential at fixed radius grow with increasing g s}
value of the longitudinal coordinate whereas away from the TR PR NV
diaphragm(the edge-field region at the lens éxihear the 0 04 08 12 15 20 24 28zf
inner elecirode, the potential at first grows and then falls. | IG. 1. a:—Coaxial cylindrical lensi,2—cylindrical electrodes3—flat

the re§t of the exit e_dge.-field regi?” the_ dependence of t_h@aphragmA—housing,5—charged particle trajectories; b—equipotential
potential on the longitudinal coordinate is analogous to thislot.

e —
et 3 !

“»
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axis and determined the working regimes focusing the bearmcreased according to a linear law, whereas with increase of
on the lens axis. For the characteristic geometry of the lenthe clearance it at first grom&urves 1-3) and then falls
with ratio of the radii of the large and small cylindrical elec- (curves4 and5).
trodesR/p=10 the distance from the diaphragm to the field- From the aforesaid it can be concluded that for focusing
assigning electrode was varied over wide limitsc®R  of a parallel beam onto the lens axis, coaxial cylindrical
=<1.5. The length of the latter was varied within the limits lenses should be designed with a small clearance between the
0.5<L/R=1.9 so that the length of the lens from the dia- entrance diaphragm and the field-assigning electrode.
phragm to the back face did not change=(+s=2R It is of interest to investigate the influence of the edge
=const). The minimum clearancetR were governed by field on focusing of a coaxial cylindrical lens for which the
the magnitude of the breakdown voltage, the maximumength of the field-assigning electrode was not varied. The
clearances lead to vigorous growth of the lens excitation dugatter was chosen from the condition that the potential differ-
to decrease of the length of the field-assigning electrode. ence between the electrodes not exceed the accelerating po-

Figure 2 displays the calculated results. It plots the focatential, i.e., a lens excitatiofi<1. We calculated a lens with
length, measured from the back of the lens, and the entran@®/ p =10 andL = R=const for which we varied the clearance
radius of the paraxial beam trajectory—the trajectory aroundithin the limits 0<s/R<2. In this case the overall length of
which the other beam trajectories are focused, as functions ahe lens from the diaphragm to the back face varied within
the lens excitatior (F=eV/e, wheree s the charge of the  the range xIR<3. Results of the numerical calculation are
particle ande is its energy. The small brackets mark off the plotted in Fig. 3. As can be seen, focusing takes place over
minimum and maximum excitations bounding the existencehe entire range of variation of the clearance which deter-
region of the focus. For small clearances<0.3R) focusing  mines the edge field. However, startingsat 0.4R (curves
is realized over a wide range of variation of the distance3—g) the focal region is found near the lens and does not
from lens exit to focusfocal length (100<\/R<0.2); here  extend beyond =2R, and as the clearance is increased this
the value of the minimum achievable focal length decreasegegion decreases in extent. Note that the focal length and the
as the clearance is decreased. At large clearased® the  jnijtial radius of the paraxial beam trajectory for the clear-
focal region substantially narrows, and #r 0.5R focusing  ancess=R and s=2R practically coincide. Consequently,
is generally absent. The entrance radius of the paraxial beaffom the point of view of focusing it is without sense to
trajectory in the focusing regime falls as the excitation ismake the clearance greater than the radius of the outer cylin-
drical electrode.

For small clearances between the entrance diaphragm

)‘/7'27_ and the field-assigning electrode<t0.3R) focusing exists
within wide limits, and while the focal length varies only
slightly with the clearancécurvesl1 and 2 in Fig. 3a, the

Ly radius of the paraxial trajectory at the entrance to the coaxial
cylindrical lens varies considerablgurves1 and 2 in Fig.
8k 3b). Note that with increase of the ratio of the electrode radii
' the region insin which focusing is realized increases some-
sk what and forR/p=100 is 0<s=<0.4R. As this ratio is de-
: creased, the indicated region narrows substantially, and for
R/p=2 the maximum clearance &=0.1R.
4 7\z In the choice of the optimal geometry of a coaxial cylin-
drical lens, the quality of focusing is important, where the
2k latter is defined by the radius of the spot formed by the lens
when focusing a ring beam on the lens axis. Figure 4 plots
) , the radius of the spot in the plane passing through the inter-
T 0.2 section point of the longitudinal axis of the lens and the
2.4 paraxial beam trajectorythe trajectory around which the
- other trajectories are focuseds a function of the clearance
06F 5///" between the diaphragm and the field-assigning electrode.
B ; _a )/// The solid curves correspond to ring thickness at lens en-
a6k ///: — %% tranceAry=0.03R, and .the dasheq ones, &r,=0.1R. In
A // /z/ &/({; the small clearance region the radius of the focal spot is two
3 orders of magnitude smaller than the thickness of the en-
101 trance ring while fors=R this radius grows substantially. In
7‘,//? addition, fors=0.4R, as can be seen from Fig. 3, the focal

region is small. Therefore the geometry of a coaxial cylin-
FIG. 2. Dependence of the focal lengtholid curveg and radius of the  drical lens with a Iarge clearance between the entrance dia-
paraxial beam trajectorydashed curvgson the excitation for a lens with Sy S . .
R/p=10 andl/R=2=const for various clearances between the diaphragmphragm a”‘?' the f'_eld assigning elecj[mde is not of mt_erest
and the field-assigning electrodg/R: 1—0.1, 2—0.25,3—0.75,4—1.0,  {rom the point of view of beam focusing on the lens axis.

5-1.5. Figure 5 plots the radius of the axially focused beam
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over a wide range of variation of the focal length for small

electrode for a coaxial cylindrical lens with ratio of electrode

L. P. Ovsyannikova and T. Ya. Fishkova
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FIG. 4. Radius of the focused spot as a function of the clearance between
the diaphragm and the field-assigning electrode for a coaxial cylindrical lens
with R/p=10 andL/R=1. Solid curves-Ar,=0.03R, dashed curves—
Arg=0.1R; 1,2—\=0.5R; 3,4—\=R.

Thus, for a coaxial cylindrical lens, over a wide range of
variation of the ratio of electrode radii for various lengths of
the field-assigning electrode, the optimum clearance between
the entrance diaphragm and the field-assigning electrode
from the point of view of focusing the beam on the axis is
s<0.1R. In this case, to determine the focal length and the
radius of the paraxial beam trajectofthe trajectory about
which focusing takes plaget is possible to use the corre-
sponding formulas from Ref. 2.

In conclusion, note that we have also investigated a co-
axial cylindrical lens with an alternative power feed arrange-
ment, where the voltage is fed to the inner electrode while
the outer electrode and diaphragm remain grounded. In this
case the design of the lens simplifies since the need for a
housing falls away and the inner electrode is mounted to the
diaphragm through an insulator. However, such a power feed
arrangement leads to a substantial change in the edge field at
the entrance to the lens and, as a consequence, causes the
beam to behave in a different way, leading to degradation of

20F
15k 2~
® ///
(5] —
E ,'0_ /// 7
\ e s . S — ,a_{.__.—_—___.__—_—

clearances between the diaphragm and the field-assignin < 25 “—":/'//—2'/
’ 7

radii R/p=10. It can be seen from the figure that only in the
region 2<\/R=<10 is the spot radius for a lens with clear-
ances= 0.2 smaller than fos=0.1R. Outside this region
of focal length values the clearance vake 0.1R provides
the smallest spot size, whose magnitude varies only slightl
(for Ary=0.00R the spot radiusr;=0.00R, while for
Ary=0.1R it is equal tor;=0.00R).

FIG. 5. Dependence of the radius of the focal spot on position measured

Yrom the back of the lens for small clearances between the diaphragm and
the field-assigning electrodes 1—0.1R, 2—0.2%R; solid curves—Ar,

=0.05R, dashed curvesAt,=0.1R.
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focusing in general and on the axis of the lens in particulargrow with the radius.

This has to do with the fact that thg particles in the edg.e f|eld1L. P. Ovsyannikova and T. Ya. Fishkova, Pis'ma Zh. Tekh. BB(16),
are accelerated, and this acceleration and also the radial forceg (1996 [Tech. Phys. Lett22, 660 (1996].

of the lens decrease with growth of the radius. For the main’L. P. Ovsyannikova and T. Ya. Fishkova, Zh. Tekh. f6Z(8), 89 (1997
voltage feed arrangeme(ig. 1) the particles are slowed LTéch- Phys42, 935(1997]

down, and this slowing down and the radial force of the lensrranslated by Paul F. Schippnick
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A study is made of the features arising in the spatial distributions of reflected electrons as a
result of a focusing effect. Experiments are conducted on single-crystallbM® with primary
electron energies of 0.5—-2 keV and detection of electrons which lose fixed amounts of

energy up to 300 eV. An analysis of the data establishes the dependence of the electron focusing
efficiency on the amount of energy loss. It is shown that when electrons are reflected with

single losses through plasmon excitation, the magnitude of the effect is determined mainly by the
average number of scattering atoms encountered by an electron along its path to the surface.
When the energy losses are high, defocusing owing to multiple elastic and inelastic scattering of
the electrons is found to predominate. 1®98 American Institute of Physics.
[S1063-784298)02306-X]

INTRODUCTION polar angleé of the escaping electrons. The azimuthal exit

In recent years, two types of diffraction effects observeoangle‘p C.OUId be yaned by rotau_ng_the sample abput an axis
during bombardment of test objects by medium energy elecperpendlcular to its surface. This instrument design made it

trons have come into active use for the structural analysis Oqlosstlble o . trrr;easure tt?e tg |str|b.ut|cilrf$ol) oftthe Irg)fleg'tfe d
solid surfaces. The first is the diffraction of reflected elec-c corons With respect to the azimuthal exit angieor ait-

trons, which shows up in the form of peaks in their spatialfe_rent polar angled and thereby to obtain almost complete
distributions oriented along close-packed atomic rows an ifiraction patterns. The energkE lost by the elecirons

planes of the crystdf;3 and the second is the dependence ofdPoN reflection was varied as a parameter. The intensity of

the intensity of electron reflection and Auger electron emis—,t:e ele_'ctron fLux wasteasured bi’ modulatln%th(: curr_ent of
sion on the angle of incidence of the primary electrons rela- € primary beam. Measurements were made Tor primary

tive to the crystal axe$® Here the emission peaks appear for eIect;og te nergieg, of 0f'51_225 l?(e\\//. Prr|1rllcr|]p_al r?tt(ra]ntlon Wﬁ?
the same orientations of the incident electrons at which th&€V0'€d 10 an energy ot 1. €V, which 1S high enougn tor

peaks in the reflected electron diffraction patterns are ob- e focusing effect to show up but not so high that the energy

served. Thus far, it has been established that electron focu esolution of the analyzer no longer allows the main peaks in

ing effects in the crystal play a dominant role in the forma-t el cgaracterlstlc electron energy loss spectrum to be re-
tion of these diffraction features. However, not all aspects ofO'VEL-

this phenomenon have been studied adequately. For ex- _bTh§ Teth%dg $Lepa:|ng lt_he testfstetl]mple ?as befe?hde—
ample, there have been almost no studies of the focusin crived eisewhere. The cleaniiness of the surface ot the

behavior of electrons reflected with different energy losses. olybdenum single crystal was monitored by electron Auger

Only a few papers touch on this problén?.in the mean- Spectroscopy and the structure of its surface region, by low-

time, it is known that the probe depth, the contrast of theSNeray electron diffractio(LEED). The measurements were

diffraction patterns, etc., depend on the magnitude of thgnade at room temperature in a vacuum of 8- Torr.
energy loss. Thus, it seemed appropriate to us to make a

systematic study of the spatial distributions of electrons reRESULTS OF THE MEASUREMENTS AND DISCUSSION
flected with different energy losses over a wide range of exit

angles. Single crystal M@L00), which has been used in ear-
lier work, was chosen as the object of study.

A general idea of the appearance of the electron focusing
effect in the simplest case of quasielastic reflectidyE (
<1eV) is provided in Fig. 1a, which shows a two dimen-
sional map of the distribution of the intensity6, ¢) of the
electrons over the polar and azimuthal exit angles, obtained

The measurements were made in a special ultrahighby synthesis of a family of azimuthal scans measured at an
vacuum angle-resolved secondary electron emission speenergyE,=2 keV. The data are shown in a stereographic
trometer that has been described elsewf®fEhe energy projection. The center of the circle corresponds to the normal
resolution of the modified-plane-mirror analyzer was 0.4%to the surface of the sample, and the outer circle to emission
and the angular resolution was about 1°. The electron beamf electrons along the surface. The distribution is shown in a
of the spectrometer bombarded the sample with electronénear scale of gray shadings in which the maximum reflec-
along the normal to its surface. The energy analyzer could bgon corresponds to white and the minimum, to black. Quasi-
rotated around the sample, making it possible to vary thelastic electron reflection from single-crystal M@00 is

EXPERIMENTAL TECHNIQUE

1063-7842/98/43(6)/5/$15.00 730 © 1998 American Institute of Physics
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FIG. 1. A two dimensional map of the intensity distributio(d,¢) of
quasielastic electron reflection over the polar and azimuthal exit angles ob-
tained at an energl, =2 keV for single crystal Mq100 (a) and a stereo-
graphic projection of this face indicating the most close-packed planes and
directions of the crystalb).

s

evidently highly anisotropic and has a distinct diffraction
pattern. lts symmetry reflects the symmetry of (b€0) face L
of the body-centered cubic crystal, as illustrated in Fig. 1b, 15

which shows the correspondlng stereographlc projection. %IG. 2. Azimuthal angular distributions of electrons inelastically reflected

comparison of the data of Fig. 1a with this projection makesom single crystal molybdenum, measured for a primary electron energy
it possible to identify the main peaks in this pattern at onceg,=1.25 keV and a polar angle of emission of §bm the normal to the
Clearly, they are caused by the escape of electrons alon}gtn;ple shurfafe The er}elrgy' IOﬁseAfIIE forddiflferent gm;zs \C;f ellectronsr
close-packed drectons of the crystal, such (BSD) and s o5 elcesenetial elecn oucyont 2 oy eeeions
(110. These peaks were observed over the entire range gty oy
energies that was studied and are caused by focusing of elec-
trons moving along strings of atoms with small interatomic
distances. These results are all in good agreement with da\tli\?herel

on quasielastic scattering of electrons which we have ob; max Ndl min are the intensities of the electron flux in
' 9 i 9 the analyzed peak of the ¢) distribution and in its deepest
tained previouslft for another face of molybdenum,

Mo (110). minimum, respectively.

. . o By analyzin family of azimuthal distributions mea-
The focusing effect also shows up in the spatial distribu- y analyzing a family of azimutha dSt bUtO.S ca
. . ured for a number of values &E and ¢, it is possible to
tions of the electrons reflected from the crystal with a loss o . : -
: ) X : - determine the electron focusing efficiengyAE) as a func-
energy. As an illustration, Fig. 2 shows several typical azi-,. . .
o . tion of the magnitude of the energy losses for the major
muthal distributions of the electrons reflected with losses

. close-packed directions of the crystal. In order to obtain this
AE<300eV. (In accordance .W'.th the symmetry of the information, the distribution$(¢) were measured for 6 dif-
Mo (100 face, the range of variation of the azimuth here hasferent angles) with a step iINAE amounting to 2 eV. These
been limited to half a quadrantThese data were obtained e . )
for E,=1.25 keV and a polar emission angle @ 55°. A data are represented in Fig. 3. It is clear that for small energy

distinct diffraction structure is visible in all the curves. The !;f;?s grr; d)t(hc?ar:ergelgghA%j/oS?t?;/)r,]ottzsv;?tﬁustlf? gtdls g:gg
strongest feature is the peak observedeatO, which is 9 i y Theloep

caused by focusing of electrons along the most close- ackergonotonically OnAE. For most of the curves, nonmonoto-
y ) 9 P . nicities are observed at the same valuesA&. The fine

(r:r:ﬁ;tgl O(ilre_cilgr;fqldlféovvci?lr(; F())?]adli(r? i;eoﬂzif;;iisaéfﬁ'éstructure of they(AE) curves for small angleg looks like it
= ' P 9 is superimposed on a horizontal straight-line background,

eﬁcaplngg tilgctrons alon% thesg) and t(thO) plaqesé. Tk;eth and as the polar angle is increased, the background falls off
shape o (¢) curves depends on the magnitude ot the, .., increasingAE. This is typical of they(AE) curves for
energy losses experienced by the electronsA Bsncreases, large energy lossesA€>50 eV), as well. However, even

there is a noUcegbIe_drop n_the focu5|_ng peak_for electronﬁere the rate of decrease in the degree of focusing with rising
along the(111) direction, which essentially vanishes by AE depends on the polar angle, increasing with risingor

~200 eV, and then is inverted to form a minimum. Such_ . .
S . . sufficiently large angles, thg(AE) curves are observed to
behavior is typical of the focusing peaks observed for elec- ; : . .
; N settle into a region of negative values corresponding to the
trons moving along other close-packed directions.

For a quantitative estimate of the focusing effect forabove-noted inversion in the diffraction structure of the an-
) . : . ular distributiond for electrons reflected with large en-
electrons reflected along the low-index directigh&l) with g () 9

different energy losses we can use ergy losses.
it In order to clarify the nature of the observed nonmono-

X=[Imax—'min)/ max] - 100%, tonicities iny(AE), let us compare them with the character-

0 1% 30 #5?
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=11 eV, corresponds to overlapping excitation peaks for a
surface plasmonhws=9.5 eV) and a low-energy bulk plas-
mon (hw,=10.4eV)!? The second, larger loss aiE
=23.5eV is caused by the generation of the fundamental
bulk plasmon of molybdenum. The third peak AtE

=48 eV is usually attributed to dynamic polarization of elec-
trons in the shallow coreptlevel® but some part of it may
come from double excitation of bulk plasmons. Besides these
peaks, the spectrum includes a noticeable background of
multiple losses, which increases with risidde. Comparing

the data of Figs. 3 and 4 shows that electron focusing in-
creases if the electrons experience single energy loss through
excitation of bulk plasmons as they are reflected. For small
polar escape angles, the anisotropy of the distributions for
these electrons is greater than in the case of quasielastic scat-
tering.

Let us analyze these data in terms of a simple model that
we have used before to study the focusing of quasielastically
scatteretf’ and primary electron. This model is based on
the assumption that the reflection of electrons from a solid is
the result of single, large-angle electron—phonon scattering
events. Although a rigorous solution of the problem will in-
clude multiple quasielastic scattering procesSehijs model
. . ) is entirely appropriate for describing the motion of electrons
0 100 200 300 in a thin subsurface layer of the crystal. In this case the

4E, eV trajectory of the electrons inside the solid can be approxi-
mated by a broken line consisting of two straight segments.

FIG. 3. Plots ofy(AE), the electron focusing efficiency as a function of the ! ;
energy lost by the electrons during reflection. These data were obtained fQ-Ir-he first of these l(l) corresponds to motion of the electron

E,=1.25keV and apply to the following close-packed directions of the INtO the_ interior of the crystalto a point where a quasielastic
crystal: 1—(012, 2—(112, 3—(110, 4—(111, and 5—<122. All the ~ scattering event occurand the second segmert), to the

curves are plotted on the same scale as that indicated for éuiver the motion of the scattered electron toward the surface. Note

other curves, only the lines corresponding to the shifted zero ordinate ar . .

indicated. that, since the fo_cu_smg of the reflectgd electrons takes place
along pathl,, this is the parameter in the problem which
should have a controlling influence on the magnitude of the

X%

100

50

istic electron energy loss spectrum in molybdenum. On&bserved effect. _ _ _
such spectrum is shown in Fig. 4. It was taken By Estimatingl , is simplest in the case of quasielastic scat-

—0.5keV and a polar angle of 45°. There are three distinci€ring of the electrons, with,=\/(1+cos¢), wherex is the
maxima in this spectrum. The first, observed AE mean free path of the electron with respect to an inelastic

interaction. It is clear that the length of the focusing string in
this case becomes greater@imcreases. For inelastic reflec-
tion of electrons involving single excitation of plasmons, yet

I another elementary act is involved which may take place
before or after the quasielastic scattering into the backward
1 235 48 . . L
hemisphere. Since plasmon excitation takes place through a
[ l long-range Coulomb interaction with the electronic sub-

system of the crystal, the probability of generating plasmons
is essentially independent of electron focusthén addition,
since the electron generates long-wavelength, small-
<6 momentum plasmons with a higher probabilifythere is no
significant change in the direction of motiorf a 1 keV
electron. Thus, the events in which plasmons are generated
should have little effect on the focusing process. Thus, we
assume that the observed differenceg for electrons which

excite plasmons and are scattered only quasielastically origi-

J \ i L nate primarily in a difference in the average exit depths of

0 ZGAE v 50 these groups of electrons and, therefore, in the different
. €

lengths of the focusing strings. Since the exit depth is

FIG. 4. Characteristic electron energy loss spectrum in molybdenum med‘—ou_ghly twice as |arg‘_-:’ for _eleCtronS reflected with plasmon
sured forE, =500 eV. excitation as for quasielastically scattered electrons, we may
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X% both dependences are nonlinear and reveal a distinct slowing
8o down in the growth ofy with increasingn. This is evidence
1 of the onset of an electron defocusing processhich arises
2 because of multiple elastic scattering of electrons in suffi-
60f ° ciently long atomic strings. The effect of defocusing be-
) 0<012) comes espgcially noticeable vyhen. points on cuﬂ/eandZ.
8{7112) corresponding to the same direction are compared pair by
4or °{122) pair. In fact, while a doubling of the length of strings having
*{133) i =1— ~
A 41105 a small number of scatterefgoing fromn=1-2 ton~3)
AL slightly increases the degree of focusing of electrons that
a0 have excited plasmons, in the case of {i¢1) and (110
directions, where the initiah are already quite large, a fur-
ther increase im has the contrary effect of making the points
1 1 ] 1 i

on curve2 appear to lie below those on curte

The weakening of the diffraction structure of the distri-
butions for high energy losséthe drop in the curves in Fig.
FIG. 5. Plots of the electron focusing efficiengyn) as a function of the 3 for AE>50 eV) is evidently also related to enhanced de-

number of scatterers encountered on the path of the electrons toward t’f%cusing of the electrons. Here inelastic interactions of the
surface for emission along different close-packed directions of the crystal, lect ith th tal ol . tant rol | ith
1—Quasielastic reflection—reflection with single excitation of a bulk electrons wi e crystal play an important role, along wi

plasmon;E, = 1.25 keV. multiple elastic interactions. The point is that the focusing of
reflected electrons, which causes them to escape manly along
the atomic rows, leads to an increase in the electron density

assume that the length is also twice as large. Thus, by near the ion core of the crystal, and this should be accompa-
comparing they(AE) curves obtained in the single energy nied by increased elastic, as well as inelastic, scattering of
loss region for different angles we can understand how the the electrons at large angles. As a result, the intensity of the
focusing efficiency for electrons moving along different flux of electrons moving toward the surface along the atomic
crystallographic directions depends on their path lengths. rows falls off more rapidly than in other orientations and, in
The focusing properties of the atomic strings depend orparticular, in those for which minima of tH¢¢) curves are
the characteristic distance between the atoms, as well as @pserved for quasielastic reflection. The influence of these
their length. Thus, it is appropriate to present the data of FigProcesses increases as the path traversed by the electrons in
3 as plots ofy(n), wheren is the average number of scat- the direction toward the surface becomes longer; this hap-
terers encountered along an electron’s path as it moves t¢ens when the energy logsE and angled increase. This
ward the surface along a given string. In terms of our modelfactor also evidently explains the faster drop in ¥\ E)
this number can be estimated as follows:|,/d, wheredis ~ curves seen upon an increase in the polar angle of escape of
the interatomic distance along the given direction. Plots othe electrons. The observed inversion in the structure of the
x(n) obtained on the basis of data for quasielastic scatteringpatial distributions of the electrons which have experienced
and scattering with single excitation of a bulk plasmon ardarge energy losses during reflection is of a similar nature.
shown in Fig. 5(curvesl and?2, respectively. They charac- Thus, an extension of the range of energy losses by the
terize the focusing of electrons by different strings of atomgeflected electrons detected in medium energy electron dif-
oriented along 6 low-index directions of the crystal11),  fraction greatly complicates the picture of the phenomena,
(110, (133, (012, (112, (122) with interatomic distances Since multiple elastic and inelastic scattering processes come
varying between 2.72 and 9.45 A. Pairs of points referring tdnto play which defocus the electrons. This, on one hand,
the same direction are denoted by the same symbol. It ig1akes it more difficult to analyze the patterns and model
clear from the figure that all the data fit fairly well on two them numerically, and, on the other, should reduce the con-
monotonically increasing curves. This means that for eacfyast in the measured distributions.
group of electrons, the number of scatterers in the string
plays a controlling role in focusing them, while the inter-
atomic distance is less important. The data for {h22 di-
rection are especially characteristic in this regard. For the An experimental study of the focusing effect for elec-
other atomic strings, an increase in the polar amgleading  trons with energies of the order of 1 keV using an analysis of
to lengthening of, and an increase in, is accompanied by the spatial distributions of the electrons reflected from
a monotonic rise iny, but in this case, although the path single-crystal Mo(100) with different energy losseAE has
lengthl, is quite large f=70°), the values ofi are quite revealed the following behavior:
small (1.6 and 3.2 because of the large interatomic distance 1. The effect shows up over a fairly wide range of elec-
and, accordingly, the values gfare also lower. tron energy losses up to roughly 200 eV. The size of this
A monotonic growth in the focusing efficiency of range depends on the polar angle of esaapkthe electrons.
guasielastically reflected electrons is observed at least up to 2. For electrons reflected with smdBingle event en-
four scatterers, and for electrons reflected in processes irrgy losses, the focusing efficiency is determined principally
volving plasmon excitation, up to eight. At the same time,by the number of atoms encountered by an electron along

2 4 6 8 10
LT

CONCLUSION
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Mechanisms for formation of a population inversion in the levels of metal atoms and
ions in a plasma jet

V. P. Starodub

Institute of Electron Physics, National Academy of Sciences of Ukraine, 294016 Uzhgorod, Ukraine
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The mechanisms for formation of population inversions in plasma jets of lithium, sodium,
cadmium, and strontium vapor are studied. The primary contribution to forming a population
inversion over the transitions of the alkali atoms is found to be three-body electron—ion
recombination, and for transitions between the ion levels of strontium and cadmium, inelastic
collisions with the buffer gas play an important role. Using helium instead of argon as a
buffer leads to a substantial increase in the magnitude of the inversiorl998 American
Institute of Physics[S1063-78498)02406-4

It is important to examine the conditions and analyze thestrontium plasmas, reactiqi) does not make a significant
mechanisms for population inversions in moving plasmasontribution to the formation of a population inversion. More
with rapidly varying density and temperature in order to asdikely, a population inversion is created over th€$,
certain the feasibility of plasmadynamic lasers. In this paper— 5 2P, transition of strontium through processes involving
a study is made of plasma jets formed from the vapors ofhe buffer gas He, as is indicated by the dependence of the
lithium, sodium, cadmium, and strontium. The experimentamagnitude of the inversion on the helium press(iig. 2).
were conducted on a device described elsewhefle  Note that all the curves shown in Fig. 2 were obtained with a
source of the jet was a dc plasmatron with a 3-mm-diantonstant feed rate for the metals. An analysis of published
acoustic nozzle. Argon and helium were used as buffedatd~’ and of the level diagrams for the strontium and he-
gases. The excited level populations were determined optlium atoms and the strontium ion shows that the following
cally from the intensities of spectral lines, which in turn were elementary processes may play an important role in populat-
determined by comparison with the intensity of a standardng these levels:
source which has a known spectral energy distribution.

These studies showed that population inversions develop
between certain levels of lithium and sodium atoms and cad-
mium and strontium ions. These atoms and ions each have
one electron in their outer shell, so they are similar. The date
show, however, that the behaviors of the population inver-
sions over these atoms and ions are not at all identical, eithe 7
in terms of the initial conditions or along the jet.

Figure 1 shows plots of the magnitudes of the population
inversions as functions of distance along the jet for the tran-,,
sitions of these elements which are the most promising from'g
the standpoint of lasing. For lithium and sodium the maxi- »
mum population inversion is observed near the exit section 3
of the nozzle and falls off rapidly along the jet, followingthe ¥
variation in the electron densiy’ This indicates that pro- 1
cesses involving electrons, in particular, three-body
electron—ion recombination

- 2
AT +ete=A* t+e, (1) M

play an important role in creating the population inversion. L,cm
As opposed to the alkali metals, the peak inversion in theFIG - ations in th iudes of lation | .
. . . . e . L e variations In € magnituaes of population nversions over
pppulatlons of the Srand Cd ions is observed a significant transitions of Li I, Na I, Cd II, and Sr Il along the jet—3 25,2 2Py,
distance away from the nozzle exfig. 1, curves3 and4). || 2525, .32P,, Na |, 3—62S,,—5 2P, Sr II, and 4—5s 2Dy,

This is unambiguous evidence that in the cadmium and-52p,, Cd II.
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In order to clarify the role of processéf)—(4) we have
performed an additional experiment. Some cesium, which is
easily ionized, was added to the He—Sr plasma jet. The ce-
sium density was §-10" cm™2 at most. In this experi-
ment, the cesium impurity enhanced the electron density by
roughly a factor of two, without affecting the electron tem-
perature significantly. If the 6S,,, level is populated by re-
combination(reaction (1)), then the intensity of the corre-
sponding line should have increased. If proces@s(4)
predominate in filling the level, then the intensities of the
430.5 and 416.2 nm lines should have decreased, since in the
first caseAN«N, and in the second cageN«1/N,. Intro-
ducing a cesium impurity into the He—Sr plasma jet did not
increase the intensities of these lines but decreased them by
~20%. It can thus be inferred that reactiq@s—(4) make a
significant contribution to filling the 6S,,, state of Sr II. To
clarify the role of the buffer gas in creating a population
inversion over the cadmium ion lines, helium was replaced
FIG. 2. The magnitudes of population inversions over transitions of Li I, by argon. It was found that in an Ar—Cd plasma the inver-
Nal, Cd Il, and St II as functions of the helium pressute=3°S,,  gjon js 68 times smaller than in the He—Cd plasma jet. This
2 Paplil, 255 "Dgp 5Py, Cd Il 387513 Pgp Nal and o hjained by the fact that the cross section for the endot-

70

{ lllllll 1 1 'l'll|l

1

0 W 20 30 40 50 60 70 60
A, Torr

4—62S,,,—52%P,, Sr l. - ;
hermic charge exchange on the'Qdvel is roughly an order
of magnitude smaller than the corresponding cross section
for the endothermic charge exchange in He—Cd. In addition,
Sr*+Sr*(4'Dy, 5°Pg o) — SIT*(62S,,) + S, (2)  a Penning reaction takes place in the He—Cd plasma, but not
++ + 4 in argon.
Sr'" +HE* (270, 2°S;) — I (6°Sy) + He', ®) Based on data obtained from a study of metal vapor
Sr0)+He*(nI*3L)— S (4p°5526s, 4d) plasma jets, therefore, it has been found that three-body

ko2 electron—ion recombination predominates in the formation of
+He—Sr*(6°Syp)+Hete. (4  population inversions over transitions of the alkali atoms,

Two of these reactions involve atoms of the buffer gasWwhile inelastic collisions with the buffer gas play a signifi-
The rate constants for reactiof®) and (3) are large and, cant role for transitions between levels of the strontium and

according to the data of Ref. 5, are equal, respectively, tgadmium ions, and if helium is used instead of argon as a
1x10 8 cm3s ! and 2x10°8 cm3s7% It was not pos- buffer gas, there is a substantial increase in the magnitude of
sible to find the rate for reactiofd), but there is some the inversion.

indicatiorf that above 19—25 eV there are some autoionizing

Ievels_ of 'Fhe _strontium atom which can deca)_/ to form_ a1g p.Bogacheva, M. F. Veresh, I. P. Zapesochepal, Ukr. Fiz. Zh.30,
strontium ion in the S, state. The cross section for this 186 (1995.

kind of reaction for different levels of 81 is estimated to be S EH Bogké;]chevai L. \g ng%f;);;lk, I. P. Zapesochingy al, Zh. Prikl.
i 14 17 Mekh. Tekh. Fiz., No. 6, 1Q1 .

in the range 1(.) 10 o, . . 3M. F. Veresh, |. P. Zapesochiyand V. P. Starodub, Zh. Tekh. Fig7,
The inversion does not exist for low concentrations of 57 (1987 [Sov. Phys. Tech. Phy82, 347 (1987].

helium (Fig. 2), since the helium concentration is too low for “A. A. Borovik, I. S. Aleksakhin, V. F. Bratsov, and A. B. Kuplyauskene,
pumping the €S, level (reactions(3) and (4)). As the he-  _Opt. Spekirosk53, 976 (1982 [Opt. SpectrosolUSSR 53, 583 (1982
lium concentration is raised, a population inversion appears,2é2”b§m'mov£xc'ted Atomgin Russiar, Energoizdat, Moscow1982,
reaches a maximum, and then falls off. The decrease in they N. kondratev and E. E. NikitinKinetics and Mechanism of Gas-
magnitude of the inversion is explained by the fact that, as Phase Reactiongn Russiaf, Nauka, Moscow(1975, 397 pp.

the helium concentration is raised, relaxation processes in theBi M. zmt'”'\‘AOV' ASV\),/(TS;(;ICZQ,\)AmedS in Collision Theofin Russian,
plasma are faster and the metastable states of strontium and°™=dat Mosco » £9% PP

helium are destroyed more rapidly. Translated by D. H. McNeill
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Thermoelectric energy conversion based on the SeebecluhereTy(x,t) is the temperature of the system in neglect of
Thomson, and Peltier effects has been used extensively fdhe dependence of the thermal properties and thermal sources
several decades in various areas of science, technology, and the temperature and current effects.
low-level power generation. In refrigeration technology, as  Going from a multilayer system to an effective homoge-
well as in thermoelectric generators, stationary operatingieous system using the WKB methbie., making the sub-
regimes have traditionally been used. Studies of nonstatiorstitution
ary cooling and current generation began only much

later (Sti’lbans and Fedorovich,E. K. lordanishvili and _(* dx %
X x—1I(x)= , Q== , (4)
co-workers? and othersand certain advantages of these op- 0 Vap(X) Co

erating regimes were identified at once, especially in the ini- ] ) ) .
tial stage of operation, when the difference in the time connd using a Green function formalishwe obtain
stants of the thermal and electrical processes are important. ()

Thermoelectric power supplies are multilayer structuresTO(x,t)=f Tu(I1")G(I1,t;117,0)dIT’
in which the temperature distributions are determined by 0
solving a sy_stem of nonlinear _differential heat co_n_duction Jﬁ[(le
equations with the corresponding boundary conditions for -

the heat sources and sinks. In their general form in the one 0 #0(0)
dimensional approximation, these equations are Q \/m
[2-(0) 0.7)— | 2V
o | 72T =141 AT ox +Ji (1) pi(T)
aT, +b2\/a0(L)T2(T))G(H,t;H(L),T)]dT. (5)
=Ci{(T) —,
I o To determineU(x,t) we have the integral equation
‘9T1 Ql(t) + TI(L)
W ——%0(0)+b1(T—T1(t)):f1(t,T), x=0, U(X,t):_ft [ \I,(H,,T)G(H,t;H,,T)dH,
0 0
oT t
T _ Q1) +hy(T—To(t)=F,(t,T), x=L, +ag(0)f;G(IL,;0,7)
IX %O(L)
T(x,00=Ty(x), ) _\/ao(L)sz(HytJH(L),T)}dT, (6)

wherej is the current densityx and « are the thermal con-

ductivity and thermopowe(Seebeck coefficient, p is the where
electrical resistivity C is the specific heat, andis the layer T T
number. V=— x Ax(X,T) —|+AC(X,T) —
_ - X ax ot
Usually the thermal characteristics of the material in
each layer can be represented in the form . da dT i
A =) —5 = T Dp(T),
g
o(x,T)=oy(X)+Ac(x,T), — <1. (2)
O 7 fom— 2T 0T), k=12
The system of Eqs1) must be supplemented by equa- K7 ok ax ot T), k=12,

tions for determining the current densjtywhich depend on
the electrical circuit joining the thermal elements. In accor-
dance with the method outlined previousithe solution of
this problem is conveniently represented in the form

Qi and w are known functions; the upper limit- means
that the integration with respect tois taken tot+e¢ fol-

lowed by a transition to the limig—0; G(I1(x),t;I1(x"),7)

is the Green function for the system of equati¢hs which

T(X,t)=To(x,t)+U(x,t), 3 is found approximately using the WKB method as

1063-7842/98/43(6)/2/$15.00 737 © 1998 American Institute of Physics



738 Tech. Phys. 43 (6), June 1998 Yu. |. Dudarev and M. Z. Maksimov

1 S+iwe
GG 7)=5— N N(IL,II’,P)
X exd p(t—7)]dp, (7)
where
— 3
cosh/pIl’ — £1v20(0) sinh \/pIT’ Eg"
Vp N
N= = =
x[bz—‘a"“‘)sinh VpIII(L)—1I1]
Vb

1
+cosh+/p[II(L)-117¢, 0 20 40 60 ¢t,s

FIG. 1. W/W{"™ as a function of timel—calculated by the method pro-
posed here2—experiment3—exact solution.

R= fp{(bN%(L) _ byyag(0)

% % )cosh\/EH(L)

bib,vag(0)ag(L)) of these results shows that their are in satisfactory agreement,
+11- 7 sinh \pII(L) |, (8)  so the method developed here can be recommended for cal-
P culating and analyzing the characteristics of specific thermo-
andIT>1I1". electric devices.
ForII<II’, IT andIl’ must be switched. Equatidf) is Mathematical modeling of the nonstationary operation of
easily solved by successive approximations, wit(x,t) thermoelectric generators shows that, in order to accelerate
taken as a zeroth approximation. the approach of a thermoelectric generator to a given power

It should be noted that using asymptotic methddis, production regime, it is necessary to reduce the thickness of
particular the reduced matching techni§uaakes it possible the transition layers on the hot-junction side and to use ma-
to simplify the computational formulas greatly. For shortterials with a high thermal diffusivity in them. In order to
times sustain prolonged operation of the system, its heat capacity
must be increased and the temperature or calorific capacity

2# <1 of the heat source must be raised. The amplitude of the out-

(L) 4 put electrical signal also depends significantly on these fac-
and low current densities tors.

X X

J <0'1I' L. S. Stil'bans and N. A. Fedorovich, Zh. Tekh. FB8, 489 (1958 [sic].

2E. K. lordanishvili and V. P. BabiriNonstationary Processes in Thermo-
the influence of current effects on the temperature can beelectric and Thermomagnetic Energy Conversion Sysfem&ussiar,
neglected, and this substantially shortens the computationa/Nauka. Moscow(1983, 216 pp. .
’ . .. . Yu. |. Dudarev and M. Z. Maksimov, Teplofiz. Vys. Tem@6, 824
procedure. The effective characteristics for multilayer sys- (19gg.
tems can be obtained using the sum rule for the eigenvalue&. M. Morse and H. FeshbachVlethods of Mathematical Physics
of the original pr0b|em§_ McGraw-Hill, New York (1953; IL, Moscow (1958, Vols. 1 and 2.

Figure 1 shows the time variation in the relative electri- 5;; 'z.?i‘iafgvz‘éggfas“'”’ V. 1. Lozbin, and O. V. Marchenko, Inzh.
cal power of a thermoelectric generatdv/WT®, obtained s p. K.asr;in, T. M. K.varatskheliya, M. Z. Maksimov, and Z. E. Chiko-
through calculations employing the method proposed here vani, Teor. Mat. Fiz78, 392(1989.

(curve 1), an exact solutior(curve 3), and experimentally "Yu. I. Dudarev, A. P. Kashin, and M. Z. Maksimov, Inzh. Fiz. Zi8, 333
(curve 2). The experimental data were obtained by A. A. (1985
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On the problem of estimating the relaxation time of local deformations on metal
surfaces
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Asymptotic methods for evaluating the change in the relief of local surface formations are used
to obtain simple and fairly exact equations for the profile of the relief and characteristic
relaxation times of local deformations on metal surfaces in kinetic and diffusion model$99®
American Institute of Physic§S1063-784£98)02606-3

1. In creating ultrahigh-capacity information storage sys-which develop on metallic surfaces owing to the interaction
tems based on solids, information is coded through the actiowith the tip of a tunneling microscope are much lafgeghan
of the tip of a scanning tunneling microscope made of aheir vertical dimensions, similarly to natural surface

refractory metal. The resulting changes in the rel@bmi-  asperitie$~* In this case,
nences and indentationgan be associated with bits of b
information! Self-diffusion of the material of the storage |fr|~__0 <1,
medium can, however, cause a gradual smoothing of the re- RR

lief and reduce the bit lifetime. Studies of the relaxation ki- so that Eq(l) can be linearized to take the Compact form
netics and dynamics of surface structures are therefore of

some interest for predicting the operating lifetime of this ﬂ:K (—1)"L"f @)
type of device. This question is the subject of a detailed dt A '

paper* We believe, however, that the solutions of the equa-
tions obtained there for the functidifr,t) which describes
the surface relief were not examined analytically to a suffi-
cient extent. We shall discuss this in more detail. First of all
these equations can be written in a unified form

2. Here it should be pointed out that describing a rough-
ness profile by the system of equatiof@ and (4) is fully
equivalent to the problem of the time evolution of the distri-
‘bution functionfy(r) in studies of the kinetics of fine pul-
verization and other technological processes for working

of(r 1) 19 rf, ores and raw materiaf€ This makes the analysis of the
pm =—Ky(—1)"L"? Tl ) corresponding solutions much easier. In fact, according to
Vit Refs. 5 and 6, the solution of the system of E@.and(3)
19 P f of " can be written in the following integral form:
= — — r —_— —_——
rorl\ oar)" " o’ *
fa(r,t)= —bofo fo(ro)Gn(r,tlro,00drg, )

wherel is the radial Laplacian operator on the plane 1

corresponds to the kinetic modek{=K) andn=2, to the  \whereG(r,t|r,,0) is the Green function of the operat@,

diffusion model K,=\). whose Fourier representation has the form

Here it is assumed that the initial profile of the depres- 1
sions on the surface of the metal are described by a Gaussian _ f C 2n
diStribution Gn(r1t|r01t) (271_)2 dq eX[I[Iq(I’ rO) Kntq ]

(6)

2 It is easy to confirm that, as—0,

whereb, is the initial depth of the depression aNg is its Gu(r tro.0)=8(r—ro), @)
volume with a root-mean-square radius of the equivalent cyland on the basis of E¢5) we immediately obtain the result

7Tbor2)

f(r,0)=—bqfo(r)=—by exp( -
0

inder of (2) for any fo(r). Furthermore, since the main contribution
v Vv to the integral(6) is from finite g~qg, by making the sub-
<r2>=R2=—0:b0,u2, MZZ_OE_ () stitution K,q?"t=p it is easy to obtain a second leading
mbo 7b asymptotic term ofz,, ast—o
This representation of the initial conditions for the pro- 1 1
file is entirely natural, since it conforms with the overall G,(r,t|r,0= §F 1+ —|(K,t) =2, (8)
distribution of roughness on the surfacé.In the general n
case, the solution of the system of E¢b. and (2) is diffi- wherel'(z) is the gamma function.
cult; however, the horizontal dimensionR2of the pits Substituting Eq(8) in Eq. (5) yields

1063-7842/98/43(6)/2/$15.00 739 © 1998 American Institute of Physics
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f(r)p=——-oT 4t (K, t)~tn (9)
Tt 4 n n '
since
27Tb0f f(ro)rodrOZVO. (10)
0

In the case of the kinetic modéh=1, K;=K) and the

Gaussian initial condition(2), all the calculations become

Dudarev et al.

from Eq. (1) to Eq.(4) becomes better justified. This is con-
firmed by numerical calculatioh®f two approximations for

t, in the kinetic model. In these cases, we can also assume
fo=1; then Eq.(17) for the kinetic f=1) and diffusion
(n=2) models becomes

simpler! since the corresponding integrals of the Bessel

functions in Eqs(5) and (6) are complete Weber integrdls.
We have

f1(r,t)=—by(t)exp(— wby(t)r3/Vy), (11)
so that
f1(0t)=—b;(t)=—bo(1+4mwKbgt/Vy) 2. (12

For arbitraryn and, in particular, for the diffusion model
(n=2,K,=\), it is not possible to obtain such simple equa-
tions for f,(r,t). However, for approximate estimates we

can use the reduced matching methad the parametet.

tin=71(1/6—1), 7,=RY4K; (18
tgr=7o(1/E%—1), 7,=mRY64N. (19
Their ratio is

tait [tiin= (LIE+ 1) 7o/ 71, (20)

i.e., for other conditions the same, it depends on the degree
of filling. For example, foré=0.5 we have

According to the procedure of this method, for the leading

asymptotic terms of the functiojn—f(r,t)]" we have from
Eqgs.(2) and(9)

f(r,)\"™ [[fo(r)]" t—0
(_b—o) :{Tn/t tos, 13
which, when matched, give
fo(r,t)=—bo(t/ 7+ 1/5(r)) 1M, (14
and
n
. n_(vorizol/n)) 5

From this, first of all for the kinetic modeln(=1) and
the initial condition(2) we obtain

fl(l’,t)% _bo(exqu/Rz)"‘t/Tl),

where Eq.(3) has been used.
Here, on the one hand, the functigh6) satisfies the

m=R%4K, (16)

tdif/tkin:37'2/7'1- (21)

Next, for é—0, Eq. (19 for the diffusion model gives
the correct resultvty/wbgu*=1/64£2, as opposed to the
estimates of Ref. 1, which gave 186

3. By using a rigorous analysis of the initial kinetic
equations and asymptotic methods for the change in the re-
lief of local surface formations, we have obtained simple and
fairly accurate equations for the relief profile and for the
characteristic relaxation times of local deformations on metal
surfaces in the kinetic and diffusion models. All of this, to-
gether with methods for calculating the energy parameters
and transport coefficienfsmakes it much easier to predict
the operating lifetime of memory structures, to determine the
conditions for their reliable operation, to choose the storage-
medium material, and other tasks which are indispensable
steps in nanotechnologies.

initial conditions, and its series expansion and that of expres-

sion (11), in powers ofr?/R? give the same values for the

first few coefficients, and, on the other hand, foy(t)
=f,(0;t) we obtain the correct result, Eq&ll) and (12).

for otherr andn. If here we introduce the degree of preser-

vation of a dip in the surface&= —f(r,t)/by<fy(r), then
for the timet for filling it from the initial f(r) to a given
level & we find

th=Ta(€ "= 1o "(r), E=fo(r). 7
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Three of the simplest schemes for the design of a new physical apparatus based on the Barnett
effect are examined. It is shown that the most realistic is a design with a special type of
electrically open-circuited, superconducting magnetic shield. The design of this device is
described. ©1998 American Institute of Physid$$1063-78428)02706-§

The possibility, in principle, of creating a new type of arrangemefitof a “snake swallowing its tail’. If the ratio
cryogenic ferromagnetic gyroscope, an angular velocity senef the height of the gap to the length of the gap overlap zone
sor, has been discussk@he cryogenic ferromagnetic gyro- is kept at 1:10, then the shielding coefficient will be of the
scope is based on the Barnett efféd, which a magnetic  order of 16—1C°. A further reduction in this ratio will in-
field is generated when a ferromagnetic body is rotated. Ierease the shielding coefficient. This scheme has been used
has been showirthat there are three physical phenomena forby us in the device to be discussed befow.
exciting a magnetic field when different bodies are rotated. ~An example of such a shield is a cylinder with a very
These are the magnetoresonance effedHe, the London narrow slit, of the order of 0.01-0.1 mm, along a generator
moment in superconductors, and the Barnett effect. In ordetnd with a large wall thickness of 2—-3 mm. Besides increas-
to obtain a magnetic induction in the cryogenic ferromag_ing the shielding coefficient, a shield of this sort makes it
netic gyroscope equal to the induction produced in thePossible to ;hield thg sensor winding pla_ced.on it from the
nuclear gyroscope witfHe developed so long agdt would ferromagnetic material and to reduce its inductance by
be necessary for the relative dimensionless magnetic perm&Uughly a factor ofu. . o .
ability of the ferromagnetic body to be800. It was shown The ferromagnetic rod is mounted inside the shield. The

that the cryogenic ferromagnetic gyroscope should be mucqiameter 'of the rod and the inner diameter of the shield must
simpler than the nuclear gyroscope. be close in value@.~D,), so that a field close to the Bar-

In this paper we examine some design versions of Jett inductionBg acts on the inner surface of the shield. The

cryogenic ferromagnetic gyroscope. It was pointed outf#”fe_nlt chrezﬁed on thetlr:mer f"de offthe Srf“tehld toh_c (I)(rjn[t)ensate
previously that the simplest scheme for a cryogenic ferro- € lieldBg Tlows over the outer surtace of the shield, trans-

magnetic gyroscope is a ferromagnetic rod located inside garn_?g the field BtB to :Ee surface 0; th(ta. shield. This .ﬂzl.d
cylindrical superconducting, electrically open-circuited exciies a current in he Superconducting sensor winding,

shield. A superconducting sensor winding is placed on théNhICh IS \.Nou.n_d on the surface 9f the sh|.eld and cqnnecteq 0
. S a short-circuiting superconducting loop incorporating the in-
rod and connected to a superconducting short-circuiting loop

incorporating the input winding of a SQUID. This scheme,pm winding of a SQUID. In order to prevent current leakage,

however, has two disadvantages. First, a simple cylindricaﬁhe width of the shield must be somewhat less than the length

C . . . Lo -of the ferromagnetic rod.
open-circuited magnetic shield gives a low shielding coeffi- A — o
ient and q indi laced directl the f The current excited in the sensor winding, which is pro-
S:t?c ?Q d ’hffscgr;“éﬁ ivr;/:jnué?z?ngjcv?/hicgerﬁ dﬁ(?e?s thee (e;:rc;;nri%- ortional to the rotational speed of the apparatus, flows along
’ e input winding of the SQUID, creating a fl hich is
the input winding of the SQUID and makes it difficult to nput Winding Q g Lx whieh |

h the windi he | t the SOUID. In princiole. | measured by the SQUID. An electrically open-circuited
matc t. e winding to the input of the _Q - In principle, 't shield can obviously be used in place of a sensor winding.
is possible to mount the ferromagnetic rod in a cylindrical,

o . - R The magnetic flux created in the ferromagnetic rod by
closed-circuited superconducting shield, but in this case thﬁ1e Barnett effect is

overall size of the superconducting shield becomes much

larger owing to the compensating magnetic field which de- n

velops inside the shield, or the dimensions of the rod must be Pg=BpgS= y_ S, @

reduced, which results in a lower sensitivity for the device. ®

In sum, the two versions with simple, open- or closed-whereu is the relative dimensionless magnetic permeability

circuited shields are poorly suited to making a realistic cryo-of the rod material(2 is the angular velocity of rotatiorgis

genic ferromagnetic gyroscope. the transverse cross section of the rod, agdis the gyro-
In order to create a functional cryogenic ferromagneticmagnetic ratio fg=1.7x<10" A-s-kg™).

gyroscope we propose using a special electrically open- WhenD.=D,, the flux at the shield is

circuited superconducting shield. It is an essentially cylindri-

cal shield, slit along a generator of the cylinder, with a large q)e:|e|_e:¢,8:ﬂ S, )

overlapping zone at the site of the difor example, in the

1063-7842/98/43(6)/2/$15.00 741 © 1998 American Institute of Physics
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wherel, andL are the current and inductance of the shield.shield 3, To eliminate the influence of the London moment
The magnetic flux at the input winding of the SQUID is on the measurement of the Barnett field, it is necessary that
uQS L the end-cap shields be slit appropriately. Here the ratio of
©) the gap height to the overlap zone must$é:10, i.e., the
cap must be comparatively thick and the slit very narrow.
wherel 4 is the current in the short-circuited superconducting ~ There are still some details involved in making and us-
circuit flowing through the input winding of a SQUID with ing a cryogenic ferromagnetic gyroscope. Cooling the appa-
inductance. ., andL, is the inductance of the sensor wind- ratus to the working temperature to eliminate trapping of the
ing. magnetic flux by superconducting components should be
We refer toL./(Ly+L.)=K as the flux transfer coeffi- done under conditions of essentially zero magnetic field, es-
cient. In complicated circuits this coefficient is more cum-pecially near the superconducting transition temperature of
bersome than in Eq3), but, as a rule, it consists of relation- the material.
ships among the inductances and mutual inductances of the It is desirable to use a single crystal for the ferromag-
components in the device. In practidé~10"1-10 3. The  netic rod material and have the easy axis of magnetization
Barnett magnetic flux can be measuredbif=®,., where coincide with the axis of the rod.

® . is the SQUID noise. Then Ferromagnetic materials are noisy even at extremely low
temperatures. In order to reduce the level of magnetic noise
pn-Q-S-K . . .
O=P,,=—, (4) it is appropriate to coat the surface of the ferromagnetic rod
7B with a nonmagnetic material such as pure copper that has a
which implies that the sensitivity of the cryogenic ferromag-low Ohmic resistance at the operating temperature.
netic gyroscope to angular velocity will be The noise level of SQUIDs increases sharply below a

certain frequency,~0.1-1.0 Hz. To eliminate this effect it

f= &_ (5) is appropriate to modulate a higher frequency signal and de-
2m-p-S-K modulate at the output of the SQUID.
Equation(5) implies that in order to raise the sensitivity ~ |f an additional winding(or windings is placed on the

of the cryogenic ferromagnetic gyroscope, it is necessary t@Pen shield, then the prospects for the cryogenic ferromag-
increaseu, S andK. For example, ford,.=10 °®, (®, netic gyroscope are greatly expanded; with a suitable control
=2x10"1® Wb is the quantum of magnetic fluxu =800, System it can measure angular acceleration and rotation
S=10"%m? andK=10 2, we obtain forf a value of the angle.
order of 107 s71. We have proposed a design for a new physical appara-
A simplified sketch of the cryogenic ferromagnetic gy- tus, the cryogenic ferromagnetic gyroscope. The sensitive
roscope is shown in Fig. 1. Inside the cdsare a ferromag- element of the cryogenic ferromagnetic gyroscdperod
netic rod2 and a superconducting magnetic shigldooth ~ With a shield has no moving parts and does not require any
rigidly connected to the case; possible shapes of the shiel@dditional energy to operate; it does not release heat. Thus, it
are illustrated to the right and left in the figure. A supercon-is very convenient for cryogenic devices and its operating
ducting sensor winding is wound on the shiel@ and con- lifetime is unlimited.
nected to the input winding of a squid6. Superconducting A comparison with the known designs for cryogenic
end-cap shield§ are mounted on the ends to improve the gyroscopes—angular velocity sens@itse cryogenic nuclear
screening coefficient. The ratio of the height of the gaps ta@yroscopg and the cryogenic ferromagnetic gyroscope—
the overlap lengths of the shiel@sand7 is 1:10. shows that the cryogenic ferromagnetic gyroscope design is
It is known that during rotation of a superconducting simpler and more reliable. In terms of sensitivity, the cryo-
body, such as a solid or hollow closed cylinder, a magneti@enic nuclear gyroscope and the cryogenic ferromagnetic gy-
field (the London momentdevelops in it A London mo-  roscope are similar. There is a possibility, in principle,
ment does not develop in the electrically open-circuitedof increasing the sensitivity of the cryogenic ferromagnetic
gyroscope by employing a ferromagnetic material with a
higher u.
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FIG. 1. A design sketch of the cryogenic ferromagnetic gyroscope. Translated by D. H. McNeill
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