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An investigation of the dispersion of excitations in a quantum liquid, superfluid4He, is carried
out. An attempt is made to systematize the published experimental data that indicate a
substantially different nature of excitations with wave vectors corresponding to different parts of
the dispersion curve of liquid4He. Neutron spectroscopy data are analyzed in relation to a
certain physical hypothesis concerning the formation of such a spectrum, and it is found that the
majority of the known experimental facts can be explained in framework of that hypothesis.
Particular attention is paid to a comparison of the experimental data obtained on the DIN-2PI time-
of-flight spectrometer~at the IBR-2 Reactor, Dubna! with the results obtained at foreign
research centers. ©2004 American Institute of Physics.@DOI: 10.1063/1.1808151#
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1. INTRODUCTION

By 2001, sixty years had passed since the publication
Landau’s paper1 in which he proposed a form for the excita
tion spectrum in superfluid liquid4He and constructed a
theory of helium II based on that proposed form. Nevert
less, questions concerning the nature of the spectrum of
ergy excitations in liquid helium and in Bose systems
general have been attracting interest ever since. In his
paper on the theory of superfluidity,1 Landau, applying the
quantum hydrodynamics he had developed, proposed the
istence of two types of collective excitations. One type
volves the potential motion of the liquid and compris
simple sound quanta—phonons whose energy« is a linear
function of the wave vectorQ. Landau attributed the othe
type of excitations to the vortical motion of the liquid, an
for that reason they would come to be named ‘‘rotons’’
Tamm. It was assumed that the energy of the rotons dep
quadratically on their wave vector and has a gapD: «(Q)
5D1(\2Q2/2m), wherem is the effective mass of the ro
ton. Thus it was assumed that there exist two independ
branches of excitations. An attempt to calculate the velo
of second sound~which had been measured to high accura
by Peshkov2! on the basis of the proposed picture convinc
Landau in 1947 to abandon these ideas and propose the
ence of a unified dispersion curve for energy excitations
liquid helium3 in the well-known form with a linear initial
segment~phonons! and a characteristic roton minimum. I
another paper of 1947 Bogolyubov,4 using a model of a
weakly nonideal Bose gas in the presence of a Bose con
sate in the system, obtained for the above-condensate
tations a dispersion curve of the same form—with a lin
initial segment. Somewhat later, experimental papers on
7451063-777X/2004/30(10)/11/$26.00
of

-
n-

st

x-
-

ds

nt
y
y
d
es-
n

n-
ci-
r
e

scattering of neutrons on superfluid4He confirmed the form
of Landau’s dispersion curve. However, the physical nat
of the excitations on different parts of that curve remained
open question. A commonly held view was that the sup
fluid 4He can be described completely in terms of the co
cept of a gas of single-particle excitations~quasiparticles!
having a unified dispersion relation. In such an interpre
tion, Bose systems are essentially different from Fermi s
tems ~e.g., from liquid3He), where one considers differen
types of excitations~single-particle, single-pair, multipair
collective!.5 We note that such a differentiation between h
lium isotopes is not completely understood from a gene
theoretical standpoint.

By the end of the 1950s it had become possible to
experiments on inelastic neutron scattering in liquid heliu
The first experiments of this kind were done at the Ch
River National Laboratory in Canada6,7 and somewhat late
in other laboratories, including in the USSR~at JINR,
Dubna!.8,9 The dispersion curve extracted from those expe
ments for the excitations in liquid4He was indeed a single
curve quantitatively similar to the form postulated by Land
~Fig. 1!. The neutron-scattering experiments determined
values of the energy transfer« corresponding to the maxi
mum of the scattering peak at given wave vector transfersQ,
and the dispersion curve was constructed from those po
Those data are insufficient to assess the nature of the ex
tions under study, since, depending on the form of the e
tations, the scattering peak can have different width, int
sity, and shape, and these parameters of the peak can de
differently on the external conditions. More-detailed stud
of the neutron scattering peaks in liquid4He showed that the
characteristics of the peaks as a function of temperature
© 2004 American Institute of Physics
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pressure are substantially different for the long- and sh
wavelength parts of the dispersion curve. At present the
elastic neutron scattering studies of the spectrum of exc
tions in helium by different groups of authors have produc
a large volume of experimental data indicating that the ex
tations pertaining to the phonon~initial! and maxon–roton
parts of the dispersion curve are of different natures. Thu
seems that it is necessary to revisit Landau’s origi
hypothesis1 that there are two different types of excitation
although now, as will be discussed below, the roton par
not associated with vortical motion.

At this new level the papers by Glyde and Griffin~see,
e.g., Refs. 10 and 11! advanced the hypothesis of a differe
physical nature of the phonon and maxon–roton parts of
dispersion curve. In their opinion, the long-wavelength~pho-
non! part of the spectrum is determined by collective exci
tions of the zero-sound type, the existence of which w
proposed earlier by Pines,12 and the maxon–roton part i
determined by single-particle excitations. A unified curve
formed as a result of a ‘‘hybridization’’ of these two branch
of excitations. A similar but somewhat refined concept of
formation of a unified spectrum as a result of the interact
of the dispersion curves of collective and single-particle
citations was proposed in Ref. 13. In the present paper
systematize the published experimental results indicating
existence of excitations of different natures on different pa
of the dispersion curve in4He and analyze them on the bas
of a qualitative model of the formation of the outward
unified dispersion curve proposed in Refs. 13 and 14.

2. EXCITATIONS IN THE PHONON REGION OF THE
DISPERSION CURVE

In Ref. 1 Landau had this to say about these excitatio
‘‘in respect to the excited levels of the potential spectru
the potential internal motion of the liquid is none other th
longitudinal, i.e., sound, waves. The corresponding ‘elem
tary excitations’ are therefore simply sound quanta, i
phonons.’’ Sound in quantum liquids,4He in particular, can
be excited by an external source. These small nonequilibr
oscillations against an equilibrium background in quant
liquids have been well studied experimentally.15 Collective
sound excitations also arise on account of the energy of

FIG. 1. Dispersion curve of excitations in superfluid4He under saturated
vapor pressure atT,1.5 K.
t-
-

a-
d
i-

it
l

,
is

e

-
s

s

e
n
-
e
e

ts

s:
,

-
.,

m

e

heat bath, which is held at a certain finite temperature
equilibrium with the liquid, and this contributes to the the
modynamic quantities characterizing a many-particle syst
The nature of the nonequilibrium and thermal phonons
completely identical, and the only different is in their mann
of excitation and, hence, their energy. At low frequenci
such thatvt!1, wheret is the time between collisions, th
collective sound excitations are described by hydrodyna
equations. In the intermediate region (vt;1) there is a sub-
stantial rise in the damping of the collective excitations.
the high-frequency regionvt@1 once again there ar
weakly damped waves of the zero-sound type, which m
be described using kinetic equations. Such a picture is
served in liquid3He ~Ref. 16!; it is typical of many other
liquids, including classical ones.17 Analysis of the experi-
ments in4He, in particular, those which are discussed belo
shows that in this respect there are no essential differen
between liquid4He and other liquids.

The phonon region of the dispersion curve will be u
derstood to mean that part fromQ50 to Q'0.7 Å21. The
upper boundary of this region is not strictly defined, and
interval fromQ'0.35 Å21 to Q'0.7 Å21 can be regarded
as a transition region from the phonon to the maxon–ro
part. The minimum value of the wave vector transfer tha
realizable in neutron experiments isQmin'0.1 Å21.

We recall that what is measured in experiment is not
dynamic structure factorS(Q,v) but the doubly differential
neutron scattering cross sectiond2s/(dVdE), which is re-
lated toS(Q,v) by the well-known relation

d2s

dVdE
5N

s

4p\

k

k0
Sexp~Q,v!,

wheredV is an interval of scattering solid angles,dE is the
scattering energy interval,N is the number of atoms in the
system, ands is the neutron scattering cross section of
bound atom.

A neutron with wave vectork0 and energyE0 acquires a
wave vectork and energyE in a scattering event. By chang
ing its direction of motion and gaining~or losing! energy in
the scattering process, a neutron transfers to the samp
momentum\Q and an energy«5\v:

\Q5\k02\k,

\v5E02E2«.

After a preliminary processing, which takes into accou
various methodological corrections, one can obtain an
perimental dynamic structure factorSexp(Q,v) which is a su-
perposition of one-phonon, multiphonon, and multiple sc
tering of neutrons:

Sexp~Q,v!5S1~Q,v!1Smph~Q,v!1Smpl~Q,v!.

We are interested in the one-phonon component, wh
corresponds to the creation of a single excitation in a neu
scattering event and which carries information about
properties of that excitation. It is the componentS1(Q,v)
that will be subject to fitting below with the use of differen
models, followed by a detailed analysis of the model para
eters. When we speak of the position or width of the ‘‘sc
tering peak’’ below we shall have in mind the correspondi
fitting parameters of the model description ofS1(Q,v).
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Let us turn to an analysis of the experimental results
neutron experiments in this region. We consider the data
the position of the maximum of the scattering peak«(Q), its
full width at half maximum~FWHM!, denoted 2G, and the
relative intensityZ of the peak and the behavior of that qua
tity with changing temperature, pressure, and value of
wave vector transfer. Before turning to that analysis, let
consider the form of the dynamic structure factorS(Q,v) or
the shape of the neutron scattering peaks.

Shape of the scattering peaks

For a strongly interacting many-particle system the d
namic structure factorS(Q,v) cannot, of course, be calcu
lated exactly. To describe the shape of the scattering pea
expression for the dynamic structure factor is approxima
by some rather simple function containing a set of adjusta
parameters. The functions used for this purpose include
Gaussian and Lorentzian18 and a ‘‘damped harmonic oscilla
tor’’ ~DHO! function~see, e.g., Refs. 19 and 20!. It should be
emphasized that the use of any of these functions is on
means of describing the experimentally observed peak,
one can only say that some approximation or other matc
the general properties of the dynamic structure factor wh
follow from requirements of symmetry and other fundame
tal principles. In this respect the DHO function has the a
vantage that it takes into account scattering processes inv
ing both losses and gains of energy, which becom
important at energies«,kT ~Refs. 11, 21, and 22!. Accord-
ing to Refs. 19, 20, and 23, in the phonon part of the disp
sion curve the experimental peaks are described well eno
by a single DHO fitting function. However, asQ increases,
in the region of the transition to maxons atQ.0.37 Å21,
description by a single function becomes insufficient. F
adequate description of the shape of the peak it beco
necessary to introduce a superposition of two approxima
functions.24,25 It should be noted that we have previously26,27

attempted to describe the experimental scattering peaks
the use of the simplest model, a superposition of Gaus
functions. In doing so, we neglected a number of meth
ological effects. Refinement of the experimental and da
processing techniques showed that the indicated effects
substantially distort the final result. This led us to carry ou
new analysis of the spectra on the basis of a descriptio
the neutron scattering peaks in the form a DHO function a
to reconsider the results. They were published in Ref.
together with a detailed exposition of the procedures use
processing the spectra. In addition, additional precision m
surements of the spectra in the phonon–maxon transition
gion were carried out, the results of which are presente
detail in Ref. 20.

Let us mention one more circumstance: if two or mo
components~e.g., of the DHO type! can be discerned in th
scattering peak, then, strictly speaking, it is necessary to
lyze each of these components with respect to the param
indicated above. However, in the region under study the s
ond component, which can be discerned forQ.0.37 Å21,
is so weak that it actually has no effect on the values of
parameters of«(Q), 2G, and Z of the main component in
comparison with the corresponding values for the total s
tering peak. Therefore the accuracy of determination of
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parameters of the weak component does not permit on
analyze their dependence on the external conditions.
shall discuss the behavior of this component in more de
below when we consider the maxon–roton region of the d
persion curve.

Position of the dispersion curve «„Q…

The position of the maximum of the scattering peak d
termines the form of the dispersion curve in the coordina
«2Q, where« is the excitation energy andQ is the wave
vector transfer. Accurate neutron data as to the shape o
dispersion curve and its initial segment have been obtai
by many authors over a wide range of temperatures, from
to 4.5 K, and at pressures of up to 2.5 MPa~see Refs. 7,
18–20, 23–30, etc.!. Among the most recent results the mo
complete and precise data obtained by the authors in
phonon region are given in Refs. 20 and 31.

First of all, it should be noted that the inelastic scatteri
peaks at momentum transfers corresponding to the pho
part of the dispersion curve are sharp and well-defined
both the superfluid and normal phases. The most chara
istic feature of the phonon part of the curve is the tempe
ture independence of its parameters and, importantly, the
sensitivity to the transition from the superfluid to the norm
state ~see Fig. 2!. ~The slight ‘‘dip’’ of the « values in a
narrow temperature region aroundTl which was observed in
Ref. 7 and to a certain degree in Ref. 20, lies at the limits
experimental accuracy.! Only with growth of Q ~for Q
.0.35 Å21, according to the data of Ref. 20! does the up-
ward shift in energy of the dispersion curve at the transit
to the normal state become noticeable. We note straighta
that such behavior of the phonon region of the dispers
curve differs sharply from the maxon–roton region, the p
sition of which depends on temperature and changes sub
tially at the transition from the superfluid to the normal sta
With increasing pressure the slope of the phonon part of
dispersion curve increases, but as before it remains inde
dent of temperature and the phase state of the liquid. T
the position of the phonon part is determined exclusively
the density of the liquid helium, which, as we know, vari
weakly with temperature.

FIG. 2. Temperature dependence of the energy of excitations in liquid4He
at different values of the wave vector transfer in the phonon region of
dispersion curve under saturated vapor pressure.20
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Anomalous dispersion

The velocity of sound waves (C05«/Q) obtained from
the inelastic neutron scattering experiments are usually c
pared with the velocityC1 of hydrodynamic first sound
which is well known from other experiments.15 It is clear
that C05C1 for Q50. A comparison of the velocities a
nonzero but small values ofQ shows thatC0.C1 under the
same thermodynamic conditions. This phenomenon is
ferred to as anomalous dispersion. As is seen in Fig. 3,
values of the excitation energy obtained from neutron exp
ments at fixedQ lie noticeably higher than those correspon
ing to a linear dispersion law«(Q)5C1Q. With increasing
Q the deviation from the linear dispersion law increases
first, reaches a maximum, and then begins to fall. At a cer
point Qc the experimental dispersion curve crosses
straight line«(Q)5C1Q. The wave vectorQc correspond-
ing to the crossing point depends on temperature, increa
from Qc50.5 Å21 at T50.5 K to Qc50.8 Å21 at T
52.3 K and even to 1.1 Å21 at T54 K. ~This is well seen in
Fig. 3b, where the data are presented in the coordinateC0

versusQ.) Figure 3 once again shows that the position of
phonon part of the dispersion curve is independent of te
perature.

The explanation for the observed ‘‘anomaly’’ is perfect

FIG. 3. Anomalous dispersion curve of excitations in the phonon regio
liquid 4He under saturated vapor pressure20 at differentT @K#: 0.5 ~h!, 1.53
~d!; 2.22~n!; the dotted straight lines correspond to the following values
the first-sound velocity atT @K#: 2.22 ~1!, 1.53 ~2!, 0.5 ~3! ~a!. The initial
parts of the dispersion curve in the coordinatesC0(Q) for a number of
temperatures.20 The horizontal lines correspond to the velocity of fir
sound. The arrows indicate the value ofQc for the corresponding tempera
ture ~b!.
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obvious by virtue of the difference in the velocities of ze
sound and first sound. The zero-sound velocity is indep
dent of temperature and higher than the velocity of fi
sound, and the velocity of first sound should be tempera
dependent, as is in fact observed. Such an ‘‘anomaly’
characteristic not only for4He but also for many other liq-
uids, in particular, for3He ~Ref. 16! and also for liquid Rb,
Ne, and H2 ~see the bibliography of Ref. 17!. This attests to
a unified physical nature of the excitations observed at lowQ
in these liquids and of the unified nature of the ‘‘anomaly’’
the sound dispersion law. Theoretical estimates of the va
of the anomaly in4He were made in Ref. 13, and the valu
obtained were close to the experimental values. Remarka
the transition from the superfluid to the normal state does
have any qualitative effect on this picture. With increasi
pressure~i.e., density of the system! the described regulari
ties of the anomalous dispersion are also preserved c
pletely: only quantitative changes are seen, since the vel
ties of both first and zero sound in liquid4He increase with
pressure and, hence, so does slope of the curve«(Q). Ex-
perimentally the behavior of«(Q) under pressure was firs
studied in detail in Ref. 30~Fig. 4!. This qualitative picture is
confirmed by the data of more recent papers~e.g., Ref. 32!.

Width of the scattering peaks

The experimental determination of the intrinsic width
the neutron scattering peaks is rather complicated, sinc
involves taking the resolution function of the spectrome
into account in an adequate way.33,34For this reason it should
be kept in mind that there may be systematic deviations
tween the results of different studies. The curves of
FWHM of the scattering peak 2G(T) according to the data
of Ref. 20 for several values ofQ are presented in Fig. 5
These curves are smooth, described well by an expone
function, and up toQ'0.35 Å21 their character is un-
changed upon the transition of4He from the normal to the
superfluid state. The dependence of 2G on Q at different
temperatures on the phonon part of the dispersion curve
been studied, e.g., in Refs. 20 and 36~Fig. 6!. Within the

n

f

FIG. 4. Dispersion curves in liquid4He at different pressures: data of Re
30 for T51 K ~d! and~s!; data of Ref. 21 forT51.3 K ~h! and~j!. The
dotted straight lines correspond to the first-sound velocities for the co
sponding external conditions in terms of pressure and temperature.
dashed curve is the dispersion curve averaged over many experimenta
points at temperaturesT,1.5 K under saturated vapor pressure.
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experimental accuracy they are close to linear. Howeve
momentum transfers in the region of the transition from
phonon to the maxon–roton part of the dispersion curve
observes a pronounced change in the character of t
curves~see Fig. 6!.

Relative intensity of the scattering peaks

Figure 7 shows the temperature dependence of the in
sity Z in the phonon part of the dispersion curve for seve
values ofQ, according to the data of Ref. 20. It is seen in t
figure that the intensity is practically independent of te
perature and of the state of the liquid helium~normal or
superfluid!. Here, as in the width of the peak, thel transition
begins to be manifested only at momentum transfersQ
.0.35 Å21. In the phonon region theZ(Q) curve is close to
linear ~Fig. 8!,20 but in the transition region from phonons

FIG. 5. Temperature dependence of the width~FWHM 2G! of the one-
phonon neutron scattering peak at momentum transfers corresponding
phonon region of the dispersion curve:~d! and~j!—data of Ref. 20;~m!—
data of Ref. 29. The dotted curves are approximations by exponential
tions obtained from the experimental data belowT52 K.
a
-
r

at
e
e
se

n-
l

-

maxons the character of the curves changes. Characte
cally in normal helium the linear region ofZ(Q) extends to
higher values ofQ ~see Fig. 8!.

In concluding this Section we note that the experimen
study of the phonon part of the spectrum in liquid4He is of
fundamental value for the theory of superfluid many-parti
Bose systems, since, as we have said, there are diffe
explanations for the nature of the linear part of the spectru
Bogolyubov’s result4 is often interpreted as a microscop
basis for Landau’s phenomenological dispersion relati
The authors do not believe that such an interpretation is
tified. As may be seen from the work cited at the beginn
of this Section, Landau understood ‘‘phonons’’ to mean lo
gitudinal acoustic vibrations of the liquid, and there is
doubt about the presence of such collective excitations. S
excitations exist in a liquid completely independently
whether it is superfluid or normal, whether or not there is
Bose condensate in the system, and whether the liquid c
sists of Bose or Fermi particles. The Bogolyubov quasipa
cles have a completely different nature, being single-part
~atomlike! excitations, the dispersion relation of which
large momenta asymptotically approaches that of free p
ticles, analogous to those which Landau introduced at a p

the

la-

FIG. 7. Relative intensityZ(Q) of the one-phonon neutron scattering
liquid 4He as a function of temperature for different values of the wa
vector transferQ in the phonon region of the dispersion curve.20 The hori-
zontal straight lines reflect the temperature dependence of the relative i
sity of the peaks.

FIG. 8. Relative intensityZ(Q) of the one–phonon neutron scattering as
function of the wave vector transferQ at different temperatures in the pho
non region of the dispersion curve.20 The dotted straight lines are linea
approximations.



si
a
he

a
of
a
o

rm

th
to

ls

th
th
in
a

th
nt
le

se
he

o

e
rt

is
be

o
s-
m
u
rin
is
si

t
h-

n
m

r
a
th
io
he

the
ent

p-
ror
po-
the
en-

and
ite
the
t of

be-
the
oc-
in

tran-
e at
bars
2

750 Low Temp. Phys. 30 (10), October 2004 Bogoyavlenskii et al.
nomenological level in his theory of the Fermi liquid.37

These quasiparticles are actually true particles, the disper
relation of which has been modified because of their inter
tion. The number of Bogolyubov quasiparticles, unlike t
number of Landau quasiparticles in the theory of the norm
Fermi liquid, does not coincide with the total number
particles of the liquid because of the breakdown of the ph
symmetry and the presence of single-particle and pair c
densates in the Bose system.

This raises the question of what type of excitations fo
the phonon part of the dispersion curve in4He. Are they
excitations by quanta of collective coherent vibrations of
medium, or are they single-particle excitations similar
those considered by Bogolyubov?4 The coexistence of two
branches of excitations, each with its own intensity, is a
possible. The set of experimental data presented above~in
any case, for the main components!, in particular, the tem-
perature independence of the shape of the initial part of
curve and its insensitivity to the phase transition and
similarity of the phonon part to the picture typically seen
many other liquids, gives a definite indication that the line
part of the spectrum of4He, as Landau assumed,1 is formed
by collective acoustic vibrations, quanta of first sound in
hydrodynamic region, with a transition to zero-sound qua
with increasing energy. The possible role played by sing
particle excitations analogous to Bogolyubov’s is discus
below in the connection with the maxon–roton part of t
dispersion curve.

3. EXCITATIONS IN THE MAXON ROTON REGION OF THE
DISPERSION CURVE

Let us turn to a discussion of the maxon–roton part
the dispersion curve, which pertains to excitations withQ
.0.7 Å21. The properties of excitations in this part of th
spectrum differ substantially from those in the phonon pa

Shape of the scattering peaks

The possibility that an additional broad component
present in the structure of the scattering peak here has
discussed in a number of papers, starting with the work
Woods and Svensson.38 At the present time it has been e
tablished that, starting with the transition region fro
phonons to maxons, a single approximating function is ins
ficient for adequate description of the shape of the scatte
peak. Experimentally this was found as a result of prec
measurements of the phonon–maxon part of the disper
curve on IN6 spectrometer in Grenoble23 and the DIN-2PI
spectrometer at Dubna.19,20 According to those studies, a
Q.0.37 Å21 additional intensity appears on the hig
energy wing of the neutron scattering peak~see, e.g., Fig. 9!,
which can be interpreted as the appearance of a compo
due to excitations of another type. The intensity of that co
ponent is higher the closer the temperature toTl .

Position of the dispersion curve «„Q…

As an illustration of the position of the neutron scatte
ing peaks for the two distinguished components, the dat
Ref. 20 are presented in Fig. 10. The dispersion curve of
main component is denoted by a solid line. The dispers
curve for the additional, much weaker component lies hig
on
c-

l

se
n-

e

o

e
e

r

e
a
-
d

f

.

en
f

f-
g
e
on

ent
-

-
of
e
n
r

in energy. We note that because of the low intensity of
additional component, the parameters of the main compon
in respect to width, position, and intensity do not differ a
preciably from those of the combined peak within the er
of measurement. Therefore, for analysis of the main com
nent below we shall simply analyze the parameters of
combined peak. Figure 11 shows the temperature dep
dence of the excitation energies for typical values ofQ in the
maxon–roton region. Unlike the phonon part, the shape
position of the maxon–roton part of the curve varies qu
noticeably with temperature. With increasing temperature
excitation energy of the maxon part increases, while tha
the roton part decreases, so that the maxon–roton part
comes more bendy. Figure 4 illustrates the fact that
change of the dispersion curve with increasing pressure
curs completely differently in the maxon–roton part than
the phonon part.

FIG. 9. Dynamic structure factor of superfluid4He near Tl at Q
50.55 Å21: ~s!—data of Ref. 26,~d!—Ref. 23. The solid curve is an
approximation using a ‘‘damped harmonic oscillator’’ function.

FIG. 10. Position of the dispersion curves of the main~d! and additional
~h! components of the dynamic structure factor of liquid4He under satu-
rated vapor pressure and for momentum transfers corresponding to the
sition region from the phonon to the maxon parts of the dispersion curv
a temperature of 2.10 K according to the data of Ref. 20. The vertical
on the points for the additional component correspond to the peak widthG.
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Width of the scattering peak

The possibility that two or more components coexist
the maxon–roton region complicates the introduction o
single intrinsic peak width. If one nevertheless considers
scattering peak to be integral and determines its FWHM
mally, then one obtains the temperature curves of the p
width shown in Fig. 12. This width will to high accuracy b
that of the main, narrower and more intense component.
seen in the figure that as the temperature of the trans
from the superfluid to the normal phase of liquid4He is
approached, the character of the temperature dependen
the peak width in the phonon–maxon region changes an
longer corresponds to the exponential dependence obey
low temperature.

A very clear illustration of the different nature of th
phonon and maxon–roton excitations is given by the dep
dence of the width of the integral peaks on the wave vec
transfer~Fig. 6!. This dependence is sharply different forQ
,0.7 Å21 ~where 2G increases linearly with increasingQ)
andQ.0.7 Å21 ~where 2G is practically independent ofQ).

FIG. 11. Temperature dependence of the energy of excitations in liquid4He
for different values of the wave vector transfer in the maxon–roton regio
the dispersion curve at the saturated vapor pressure.

FIG. 12. Temperature dependence of the peak width~FWHM 2G! of the
one-phonon neutron scattering in liquid4He in the maxon–roton part of the
dispersion curve at the saturated vapor pressure for different values o
momentum transferQ @Å 21#: 1.925 ~j—Ref. 29!; 1 ~s—Ref. 20!, 0.6
~.—Ref. 20!, 1 ~n—Ref. 23!. The dotted curves are approximations b
exponential relations obtained from the experimental data belowT52 K:
Q51 Å21 and 1.925 Å21 ~1!, Q50.6 Å21 ~2!.
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The widths of the peaks of the weaker component
represented by the vertical bars in Fig. 10; they are m
larger than the peak widths of the main component.

Relative intensity of the scattering peaks

As we have said, the intensity of the main compone
practically coincides with that of the central peak. The re
tive intensity Z(T) for maxons and rotons, which varie
weakly at lower temperatures, increases sharply atT.2 K,
and the increase continues, even more rapidly, in the nor
phase~Fig. 13!. TheZ(Q) curve, as we see, differs from tha
in the phonon part of the spectrum~Fig. 7!. The dependence
of the energy of the peak on the wave vector transfer,Z(Q),
shown in Fig. 14, has a characteristic maximum in the ro
region and is also different fromz(Q) for the phonon part.
The intensity of the additional, broad component is mu
less than that of the main component~Fig. 15!.

It should also be noted that the data given above on
parameters of the additional component in the maxon–ro
region are taken from Ref. 20, in which the measureme

f

he

FIG. 13. Relative intensityZ(Q) of the one-phonon neutron scattering o
liquid 4He at saturated vapor pressure as a function of temperature in
maxon–roton region of the dispersion curve for different values of the m
mentum transferQ @Å 21#: 0.59 ~s—Ref. 20!, 1.15 ~j—Ref. 20!, 1.925
~m—Ref. 29!.

FIG. 14. Dependence of the relative intensityZ(Q) of the integral neutron
scattering peaks in superfluid4He at saturated vapor pressure as a funct
of the wave vector transferQ ~according to the data of Ref. 5!. The dotted
straight line is a linear interpolation of the initial part of the curve.
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were made up toQ51 Å21. The existence of a second com
ponent at larger values of the wave vector transfer has b
noted at a qualitative level in many studies~see, e.g., Ref.
38!, but it has not been reliably discriminated analytically

4. DISCUSSION AND ANALYSIS OF THE RESULTS

Summarizing the experimental results reviewed here,
can reach the following main conclusions.

1. The whole set of data indicates the substantially d
ferent physical nature of the main component of the exc
tions on the phonon and maxon–roton parts of the disper
curve of superfluid liquid4He.

2. The excitations forming the phonon part atQ from 0
to 0.37 Å21 are characterized by the following features. T
position of the dispersion curve«(Q) corresponds to group
velocities of the excitations higher than the velocity of fi
sound~Fig. 3!. The position of the dispersion curve is ind
pendent of temperature and is unaffected by the transitio
the liquid 4He from the superfluid to the normal state~Fig.
2!. With increasing pressure (4He density! the dispersion
curve is shifted upward in excitation energy~Fig. 4!. The
width 2G of the scattering peak is a linear function of th
wave vector transferQ ~Fig. 6!, while the temperature de
pendence is described by an exponential function wh
character is unchanged at the transition of the helium fr
the normal to the superfluid phase~Fig. 5!. The intensityZ of
the neutron scattering peaks depends linearly on the valu
Q and is almost independent of temperature~Figs. 7 and 8!.
The shape of the neutron scattering peaks is described
by a single DHO function to within the accuracy of the e
periments. A well-defined phonon part is characteristic
only of the superfluid phase but also exists forT.Tl and is
also observed in many liquids, including nonquantum on

3. The main component of the dynamic structure fac
S(Q,v) at momentum transfersQ from 0.37 to 2.5 Å21,
which pertain to the maxon–roton part of the dispers
curve, is characterized by the following properties. The
sition of the dispersion curve is independent of tempera

FIG. 15. IntensityZ(Q) of the main~d! and additional~h! components of
the one-phonon neutron scattering peak of liquid4He at saturated vapo
pressure in the transition region from the phonons to maxons at a tem
ture of 2.1 K according to the data of Ref. 20. The dotted straight
corresponds to the linear dependence ofZ(Q) in the phonon part of the
dispersion curve.
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at low temperatures up to 2 K, and only above 2 K does a
noticeable variation of the energy position of the peaks be
~Fig. 11!. In the normal phase the position of the dispersi
curve differs substantially from the classical low-temperat
curve ~see Fig. 1!. With increasing pressure the position
the dispersion curve varies in a rather complex manne
increases in energy on the maxon part and decreases o
roton part~Fig. 4!. The width 2G of the neutron scattering
peaks is apparently independent of the wave vector tran
Q ~Fig. 6!. Below 2 K the temperature dependence of t
width of the scattering peaks is described well by an ex
nential function; at higher temperatures approaching thl
transition the increase of the width with increasing tempe
ture becomes stronger; then, after transition to the nor
phase, the temperature dependence becomes much w
~Fig. 12!. The Q dependence of the intensityZ of the scat-
tering peaks is characterized by a broad, flat minimum in
maxon region and a large maximum in the roton region~Fig.
14!. The temperature dependence of the intensity is ra
weak up to 2 K, but above that temperature it increases
ticeably upon the transition to the normal phase~Fig. 13!.
The dynamic structure factorS(Q,v) is not described by a
single function of the DHO type~Fig. 9!. At Q in the region
from 0.37 to 0.8 Å21 the authors of Ref. 20 could distin
guish a second, weaker component~Figs. 10 and 15!; appar-
ently the second component exists at higher values ofQ,
particularly in the roton region.38 It is important to note that
the second component is reliably distinguished only at rat
high temperatures~above 2 K!. Sharp, well-defined neutron
scattering peaks at momentum transfers corresponding to
maxon–roton part are characteristic only for the superfl
phase of4He and are not observed above thel point nor in
other liquids.

Let us analyze the experimental facts adduced above
note that the nature of the main component of the maxo
roton excitations is essentially due to the breaking of
phase symmetry of the state and to the presence of the B
condensate. In Ref. 10 it was conjectured that, unlike
collective phonon branch, the excitations of the maxon p
have a single-particle~atomlike! nature, i.e., they are essen
tially individual atoms whose dispersion relations have be
modified as a result of the interaction with the surround
particles. We note that the single-particle excitations are a
of a collective nature, but their ‘‘collectivity’’ differs consid
erably from the collective character of photon excitation
which are quanta of coherent vibrations of the many-part
system as a whole. As we have said, it was single-part
excitations that were considered by Bogolyubov in his
mous paper on the theory of a slightly nonideal Bose ga4

The dispersion relation of Bogolyubov quasiparticles is s
stantially determined by the presence of a Bose conden
in the system, and it is therefore natural to identify t
maxon–roton excitations with precisely these quasipartic
which should have an analog in a strongly interacting s
tem. The variability of the number of single-particle excit
tions in a superfluid Bose liquid, unlike the single-partic
excitations in a normal Fermi liquid, where their number
equal to the number of particles, is due to the presence
single-particle and pair Bose condensates in the system.

If the single-particle excitations in real liquid helium a
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identified with the quasiparticles considered by Bogolyub4

in the approximation of a slightly nonideal Bose gas, the
somewhat strange situation arises: a superposition of the
ear parts of the spectra of excitations of different natur
quanta of coherent acoustic vibrations and single-particle
citations. We note that experiments have given no indica
of the presence of such a superposition. It should be no
that there are no very weighty theoretical grounds for req
ing that the dispersion relation of single-particle excitatio
have a linear acoustic character at small wave vectors.
deed, the linear dispersion relation in Ref. 4 was obtaine
the framework of a certain approximation that is a simplifi
version of the self-consistent field approximation. In t
present paper we have taken into account the mean
produced by particles of the Bose condensate, determine
the anomalous quasi-mean^aka2k& (ak is the annihilation
operator of a particle with momentumk), on the grounds tha
it is small in the case of a weak interaction. It has be
shown14 that when this particular mean field, which does n
vanish for arbitrarily weak but not identically zero intera
tion, gives rise to a qualitatively new effect—the presence
a gap in the spectrum of single-particle excitations. This
fect has a clear physical meaning—the gap determines
minimum energy that must be expended in order to tea
particle out of the Bose condensate of interacting partic
and thereby create an above-condensate single-particle
tation. The value of the gap is determined by the anomal
quasi-mean̂ aka2k&, the particle number densityn0 of the
single-particle Bose condensate, and the interatomic inte
tion constantU0 .

We note that the discussion of the possibility of exci
tions of a gap character in superfluid helium has a long
tory. Back in one of the early papers on the theory of
energy spectrum of the liquid, Bijl39 came to the conclusion
that an ‘‘energy gap’’ was present between the normal and
the excited states, a view that was criticized by Landau1 on
the grounds that that result would mean that low-freque
acoustic vibrations could not propagate in the liquid. We n
that Landau’s objection is eliminated if it is assumed th
excitations with an energy gap exist together with the aco
tic branch of excitations, and that is in fact what Landau h
postulated in Ref. 1. In a number of papers developing u
Bogolyubov’s approach4 it was shown that, instead of a spe
trum going linearly to zero, a gap appears.40–42 Solutions
with an energy gap in the self-consistent field model
discussed by Griffin43 and were also obtained in Ref. 1
Nevertheless, in view of the apparent agreement of Bog
ubov’s dispersion curve with the experimental dispers
curve in superfluid liquid helium, the ‘‘acoustic’’ character
the single-particle excitations with small momenta in Bo
systems can be regarded as an established fact.44

Thus the arguments presented and the experimental
analyzed above suggest the following picture of the struc
of the spectrum of energy excitations in liquid4He.

There are two types~modes! of elementary excitations in
superfluid4He, which correspond to pronounced peaks in
dynamic structure factor for neutron scattering in differe
parts of the dispersion curve: a collective mode~zero sound,
which goes over to first sound at very low frequencies! and a
single-particle mode. The collective~zero-sound! mode, as in
a
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all liquids, is attenuated with increasing wave vector a
apparently is practically indiscernable atQ.1 Å21. The dis-
persion curve of the single-particle mode has a gap chara
and ‘‘crosses’’ the dispersion curve of the collective mod
At such a ‘‘crossing’’ the dispersion curves split~Fig. 16!. It
should be noted that a similar structure of the dispers
curve of the energy excitations in superfluid4He was dis-
cussed previously in Ref. 14~Fig. 17!. In addition, there
should exist modes of pair excitations: particle–hole, tw
particle, and two-hole, and modes of different multipair e
citations. Those modes should be considerably weaker
the main modes in superfluid helium and may not be
served in experiment. It should be noted that the present-
level of measurement accuracy does not permit an ana
of the internal structure of the additional components of
neutron scattering. It follows from the above picture of t
spectrum that two branches of excitations should exis
small values of the wave vector, i.e., in the phonon part
the dispersion curve: one with lower energy~collective! and
one with higher energy~single-particle!. In neutron-
scattering experiments, as we have said, forQ,0.37 Å21

only the collective, zero-sound mode is well defined. Ho
can one account for the fact that the single-particle pea
not observed all the way toQ50? We note that if at fixedQ
there are several peaks corresponding to several mode
excitations, then their intensity cannot be arbitrary. In p

FIG. 16. Possible picture of the splitting of the dispersion curves of t
modes of excitations in superfluid4He.

FIG. 17. Possible picture of the trend of the dispersion curves of
branches of excitations in superfluid4He ~Ref. 45!. The zero-sound~ZS!
mode of excitations is strongly damped atQ.1 Å21. The single-particle
~SP! mode of excitations is strongly damped forQ,0.7 Å21.
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ticular, the intensity of any peak cannot grow while the
tensity of the other peaks remains unchanged. This follo
from the sum rule for the dynamic structure factor:5

E
0

`

dvvS~Q,v!5
NQ2

2m
, ~1!

which follows from the fundamental law of conservation
the number of particles. Formula~1! shows that at fixedQ
andN the area under the curvef (v)5vS(Q,v) is constant
for any many-particle systems independently of the form
the functionS(Q,v). Since the phonon peak is well define
for Q,0.37 Å21, it can be assumed that the main intens
is concentrated specifically in it, while the peak due to
single-particle excitations is weakly expressed and m
therefore simply escape notice in experiment. Neverthel
it is of fundamental interest to attempt to separate out
high-energy single-particle excitations in this region of t
spectrum. In a certain part of the dispersion cur
0.37 Å21,Q,0.8 Å21 the simultaneous manifestation o
two modes of excitations is observed.20 Apparently, as we
have said, the additional component of the excitations
manifested experimentally also in the roton part of the d
persion curve of superfluid4He ~see, e.g., Refs. 10, 29, an
38!. It should be noted that the additional scattering com
nents are reliably distinguished at relatively high tempe
tures of the experiment~above 2 K!. This is characteristic for
pair excitations created in the scattering of neutrons on
existing thermal excitations of the system in its abov
condensate part. This suggests another hypothesis: the
acteristic changes in the temperature dependence of«(T),
2G(T), andZ(T) at temperatures above 2 K nearTl ~Fig.
11–13! for the maxon–roton part of the dispersion cur
may be due to the fact that the contribution of the additio
scattering component was inadequately subtracted in
analysis of the parameters of the main component. This
ditional component distorts the parameters of the main c
ponent, and in the normal phase only it remains.

In the normal phase of liquid4He ~in the absence of the
Bose condensate! only excitations involving fluctuations o
the density of the liquid can appear. Here evidently the ze
sound mode~the peak atQ<0.6 Å21) contributes on the
phonon part of the dispersion curve and pair excitations~the
broad peak atQ>0.6 Å21) contributes on the maxon–roto
part. The single-particle excitations in the normal phase
not seen directly in neutron scattering experiments, since
virtue of conservation of particle number the creation or
nihilation of an individual single-particle excitation in th
normal phase is impossible.13,14

We have said that the well-defined mode of sing
particle excitations in superfluid liquid4He in a wide region
of wave vector transfersQ can be observed in a neutro
experiment only when a macroscopic Bose condensat
present in the system. The existence of such a conden
can be regarded as reliably established experimentally. A
tailed analysis of all the studies in this region, includi
those of the present authors, is given in a review.46 The ex-
periments showed that the Bose condensate appears in l
helium immediately upon its transition to the superfluid sta
With decreasing temperature the relative density of the B
condensate increases, and at 0 K it reaches;10%.
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In this paper we have examined the existing experim
tal data from the standpoint of a certain physical hypothe
concerning the formation of the spectrum of elementary
ergy excitations. The majority of the existing known expe
mental facts can be explained in the framework of that
pothesis.

The authors express their sincere gratitude to Yu.
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Impurity condensation in liquid and solid helium
E. B. Gordon*
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It is shown from an analysis of x-ray structural and IR spectroscopic studies that when impurity
particles are introduced into liquid or solid helium, the clusters formed in the cold part of
a gas jet have a pronounced spatial separation of impurities with different volatility. In particular,
in the condensation of partially dissociated diatomic molecules the atoms are highly
concentrated near and on the surface of the clusters. Segregation of this kind is preserved in the
condensate in liquid helium, which consists of clusters stuck together into a porous
structure; in solid helium clusters are isolated. The presence of high concentrations of atoms in
the surface layer at the boundary with condensed helium explains the specifics of
condensate behavior observed by methods of optical spectroscopy, ESR, and thermometry. An
experimental strategy is developed for detecting the formation of an impurity–helium
solid. © 2004 American Institute of Physics.@DOI: 10.1063/1.1808152#
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INTRODUCTION

The unique phenomena taking place in liquid and so
helium have been observed experimentally largely owing
the unique purity of the object—the solubility of any foreig
impurities in liquid helium is vanishingly small. At the sam
time, the interaction of a quantum liquid or quantu
crystal—liquid or solid helium—with impurities that hav
been added is of fundamental interest. It is reasonable
such studies have been done primarily with ‘‘natural’’ imp
rities. For example, investigation of the behavior of the lig
isotope3He in liquid 4He permitted H. London in 1951 to
state the principle of deep cooling, which is realized in s
called dilution refrigerators, and a group of physicists fro
Kharkov in the 1970s to discover the quantum diffusion
fect in solid helium.1 Studying the mobility of charges in
condensed helium has led to the discovery of the so-ca
‘‘bubble’’ arising around an electron due to it
delocalization2 and the ‘‘snowball,’’ a concentration of he
lium around a heavy positive ion.3 Recently the behavior o
helium under conditions of restricted geometry has been
subject of much research interest; such conditions are r
ized in porous structures of the aerogel type, which can a
be treated as a sort of impurity. It is of great interest to stu
the interaction of helium, especially3He, with surfaces,
which demonstrate the structurization of the boundary lay
of a quantum liquid.4

The diversity of phenomena observed in the interact
of condensed helium with various inclusions has stimula
attempts to introduce truly foreign microparticles into it. As
rule, the concentrations of impurities that can be introdu
into helium have been extremely low, sufficient only for o
tical studies of allowed transitions in the atoms. An imp
tant exception is the method based on the capture of imp
ties into freely expanding cold helium droplets. Although t
concentrations of particles that can be introduced into hel
here are also small, the method of detection of the spe
which is based on registration of the decrease in size of
droplet due to evaporation of part of the helium atoms ow
7561063-777X/2004/30(10)/7/$26.00
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to the release of the energy of the absorbed photon in i
sufficiently sensitive for studying the spectra of molecul
At the same time, the fact that a particle trapped in a drop
cannot undergo a transition from one droplet to another p
vents coalescence of the impurity and thereby ensures
the particles under study are reliably isolated. By now t
method has been used to study the spectra of a large nu
of molecules, and interesting effects characterizing the in
action of a quantum liquid with quantum microinclusion
have been observed.5,6 The limitations of the method include
the fact that the spectra are influenced by the restricted
of the droplets and, especially, the impossibility of varyi
the temperature and pressure.

JET METHODS OF INTRODUCING IMPURITIES INTO LIQUID
HELIUM

Small concentrations of an impurity can be created
solid or liquid helium, for example, by laser ablation of
target immersed in the helium, but for the majority of th
conceivable applications the impurities must be introduc
into condensed helium externally, from the gas phase,
with the substance under investigation highly diluted by h
lium to avoid coalescence of the impurity as the gas
cooled. It should be kept in mind, however, that cooling h
lium, say, from 300 K to a few kelvin requires removing a
energy of around 450 K per atom, while at the same ti
each helium atom evaporated from the liquid carries with
maximum of 7 K. In other words, in the steady-state case
counterflow of evaporated helium must be 60 times grea
than the flow directed toward the liquid helium. This mea
that under conditions close to uniform there cannot be
appreciable flows at all. Just such a situation existed in
first experiments, where a Dewar containing liquid nitrog
or helium was connected to a volume filled with the co
densed gas;7,8 recently the authors of Ref. 9 turned to a sim
lar technique.9 In such an experimental arrangement so
temperature profile is established in the gas through h
conduction, and coalescence of the impurity begins at th
© 2004 American Institute of Physics
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places where the temperature is close to the dew point. U
the clusters of impurity molecules forming there reach a c
tain size they are unaffected by gravity and move up a
down in a nonuniform temperature field under the influen
of Brownian motion and convective flows. The critical si
at which the clusters begin to acquire a predominant dir
tion of motion downward, to a region of lower temperatur
can be estimated on the basis of the Boltzmann distribu
in the field of gravity:

N'
kT

mgDh
, ~1!

whereN is the number of molecules in the cluster,m is the
mass of a molecule, andDh is the characteristic height of th
condensation region. For a substance with a molec
weight of 20 withDh51 cm and a temperatureT5200 K
we find that the number of molecules in the cluster to beN
'106 and the characteristic spatial dimension of the clus
to be around 30 nm. Since even after the critical size
reached the precipitation of the clusters demonstrates ra
slowly, they are able to grow in size and freeze together i
flakes long before reaching the region of really low tempe
tures, and for that reason the structure of the condensate
not depend strongly on whether the condensation takes p
in liquid nitrogen or liquid helium. The rate of the gravity
controlled process of impurity precipitation in the liquid, th
size of the flakes, and the density of the condensate for
all depend on the size of the precipitation region and the
pressure but, as the experiment of Ref. 9 showed, liquid
lium can be filled rather rapidly with a porous condens
similar in structure to an aerogel.

To achieve a steady gas flow toward the surface of
liquid helium, this flow and the counterflow of evaporatin
helium must be spatially separate. This was first realized
us in Ref. 10, where gaseous helium containing a small
purity of the particles to be studied was admitted into
cryostat through a small aperture, ensuring a high initial
locity of the jet. The existence of a directed gas jet all t
way from the aperture to the superfluid helium surface
cated several centimeters below was proved by the pres
of a rather deep, stationary dimple on the liquid surface,
the jet itself was visualized by the bright recombination
diation when an electric discharge acted on the mixture~a tip
about 1 mm in diameter was brought to the surface!. The
temperature of the jet, measured from the structure of
rotational electronic–vibrational band of recombination
diation of molecular nitrogen, remained sufficiently high
the way to the surface of the liquid helium.11 The formation
of such a well-organized flow at extremely high gas densi
was rather unexpected, and the cause of this effect shou
sought in the gasdynamic features of the propagation o
‘‘warm’’ dilute gas in cold and dense helium. Whatever t
reason, this technique, the basic scheme of which is il
trated in Fig. 1a, permitted the time of the gas transpor
the liquid helium surface to be shortened by many orders
magnitude. This made it possible, through the prelimin
application of an rf electrical discharge to the gaseous m
ture, to bring energetic labile products such as atoms,
radicals, and metastable excited particles to the surface
stabilize them in the liquid helium, i.e., it permitted the low
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temperature creation of materials with a high density
stored energy; this was the motivation for the studies m
tioned. In addition, the presence of such products mad
possible to employ not only visual but also other, quanti
tive means of investigation, such as electron spin resona
~ESR!, optical spectroscopy, thermometry, etc.

It is of fundamental importance that under conditions
flow the question of the coalescence of impurity partic
acquires a kinetic character—is there or is there not suffic
time for clusters of a given size to form during the flight
the surface from the place where the temperature of the
ticles in the flow becomes low enough for coalescence
occur. In particular, it is sufficient to take the impurity co
centration so low that its molecules do not collide with ea
other at all during the time of flight, and the impurity reach
the helium surface in the form of individual atoms or mo
ecules. For estimation we take the temperature and densi
the helium in the jet to be such that the termolecular reac
of coalescence of impurity particles approaches its bimole
lar limit, and its cross section is equal to the gaskinetic o
In that case the particles are incident on the liquid helium
isolated molecules if their concentration obeys

n!
W

svDh
, ~2!

whereW is the velocity of the jet,s is the gaskinetic cross
section, andv is the thermal velocity of the impurity mol
ecules. For a jet propagating at the speed of sound, coa
cence will clearly not occur at impurity concentrations mu
lower than 1015 particles/cm3, while at lower jet velocities
the admissible impurity concentrations are proportiona
lower. In principle, instead of using a mixture prepared b
forehand one can introduce the impurity into the helium g
jet immediately before it enters the superfluid helium, e
by laser ablation from a solid target, as was recently imp
mented in Ref. 12 in a technique analogous to that descr
in Ref. 10.

FIG. 1. Schematic diagrams of the jet techniques with open~a! and closed
~b! helium cycles in the measurement cell:13 1—liquid-nitrogen-cooled
source with a small aperture on the bottom for forming the j
2—electrodes for rf electrical discharge;3—cell filled with superfluid he-
lium; 4—main helium bath of the pumped cryostat;5—capillary for con-
trolling the level of superfluid helium in the cell. The directions of the flow
of gaseous helium are indicated by arrows.
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As we have said, the condensation of a jet in liqu
helium leads to significant heat release, and in a cryosta
which the low temperature is maintained by pumping of h
lium vapor this requires a high-powered pump. For exam
for a warm helium flow of 1020 atoms per second the powe
released in cooling it to helium temperatures~and this is the
main heat release! amounts to almost 1 W, and so 0.01 mo
of helium per second must be pumped out of the cryosta
maintain a steady temperature. At a temperature of 1.5
which corresponds to a saturated vapor pressure of he
equal to 4.7 mbar, a pumping rate of 60 liter/s is require

Although the main counterflow of evaporating heliu
occurs from the main bath of the cryostat, evaporation fr
the superfluid-helium-filled cup is also rather intense. The
fore, the main part of the jet~approximately 60–80%! was
reflected from the liquid helium surface, carried along by
ascending flow. The probability of trapping of an impurity b
liquid helium is increased significantly by using a techniq
which we proposed recently13 wherein the flow and counter
flow of helium are physically separate~see Fig. 1b!. In that
case the thermal coupling of the main helium bath with
cell in which the condensation of the helium jet occurs
achieved through the thermal conductivity of the material
the walls of the cell. When electrolytic copper was used,
temperature difference of the helium bath and the superfl
helium inside the cell did not exceed 0.01 K during the co
densation. The superfluid helium inside the cell served a
cryopump for the condensing jet; its level was maintain
constant by removing helium through an additional capilla
Under steady-state conditions outflow through this capill
determined the flow entering the liquid helium. In this tec
nique the ascending flow in the cell was absent altoget
and the entire jet was trapped by the liquid helium. In ad
tion, the closed cycle for the helium used in the condensa
made it possible to work with specially purified helium a
even with3He. In every other way the condensation con
tions were the same as for the technique with an open he
cycle.

Of course, the coalescence of an impurity can contin
inside the liquid helium. The interaction of individual mo
ecules and small clusters in a quantum liquid is one of
most interesting questions in the problem under discuss
In experiments using the jet technique extraordinarily h
concentrations of stabilized atoms, a specific influence
superfluidity on the stability of the samples, and unusua
long lifetimes of electronically excited metastable ato
trapped in the condensate have been observed. This ha
us to the idea that a peculiar impurity–helium solid pha
exists inside the helium.14 It was assumed that it consists
individual particles or small clusters that are frozen togeth
each surrounded by a helium monolayer solidified owing
its localization in the van der Waals force field. Of cours
such a state can only be metastable, and the calculated
rier for the process of pair coalescence of two impurity c
ters surrounded by a helium shell is only 28 K, which
insufficient to bring about long-term stability,15 although in a
three-dimensional lattice the barrier should be about th
times as high, thus ensuring the necessary metastability
have attempted to observe this impurity–helium phase,
unfortunately, all of our attempts have proved futile. In p
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ticular, x-ray studies done in collaboration with co-worke
at Princeton University16 unambiguously indicated that th
condensate contained impurity particle clusters having
rather regular internal structure and dimensions of aroun
nm. Recently analogous experiments were done at Cor
University using a similar method of condensation~a review
of those studies was given by D. M. Lee at the Nobel La
reates Conference in 2002!.17 Those experiments reproduce
many of the results which we had obtained previously, bu
the same time it was found that the propagation of sound
the condensate precipitated in superfluid helium is the sa
as in an aerogel impregnated with liquid helium.18

The fact that the condensate obtained in liquid heliu
consists of impurity clusters was not unexpected, since
coalescence of impurity molecules could occur already in
gas phase, during their transport to the helium surface.
deed, both in our studies and in recent investigations don
an analogous technique16–18 the impurity concentration was
at least 2–3 orders of magnitude higher than that correspo
ing to criterion~2!. Finally, the most recent study19 done by
this same technique obtained spectroscopic proof of the
mation of clusters in the lower part of the jet. And althou
the authors of Refs. 16–18 continued to use the te
‘‘impurity–helium phase’’ that had been introduced in Re
14, it is clear that we are dealing with a completely differe
object. It is worthwhile to clarify at the start whether impu
rity condensation in superfluid helium from a jet direct
into it is simply a convenient way of creating an aerogel-li
porous structure inside the liquid or whether the struct
that is formed has specific properties. This question is on
the main topics of the present paper.

It is convenient to begin our analysis of the problem w
an examination of the results obtained in the condensatio
binary mixtures of impurities. Figure 2 shows the x-ray d
fraction patterns of the condensate of a mixture of nitrog
and neon in helium, N2 :Ne:He51:1:200. This experiment
was done by us in collaboration with a Princeton group at
synchrotron radiation source at Brookhaven National La

FIG. 2. Diffraction pattern of a sample obtained by condensation of
N2 :Ne:He51:1:200 mixture.22 The four top curves correspond~from top to
bottom! to a hold of the sample in liquid helium~4.2 K!; the lower curves
correspond to a dry sample atT513 K ~fine line! andT516 K ~heavy line!.
The positions of the diffraction peaks are indicated by arrows. The th
arrows pointing downward indicate the positions of the peaks of the
material beryllium. The background scattering observed is mainly due to
liquid helium.
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ratory ~USA! during the time when the work reported in Re
16 was being done. The spectrum of the condensate cle
shows that the two peaks of nitrogen corresponding to
cubic lattice structure are both present. Analysis of the sh
of the peaks, analogous to that performed in Ref. 16, sh
that under the assumption of a perfect crystal lattice t
correspond to clusters containing about 103 molecules. In
nitrogen clusters containing 0.1% neon distributed rando
such peaks should be observed for clusters consisting
104 molecules, while a 1% impurity content in the cluste
should suppress the diffraction altogether~at least no signs o
diffraction are detected at a 10% Ne content in N2 ; Ref. 20!.
The intensities of the peaks were close to those obtaine
the condensation of pure nitrogen, which indicates that th
should not be many clusters of mixed elemental composit
Thus in the condensation of mixtures containing eq
amounts of nitrogen and neon, compact inclusions
formed which consist of at least 103 nitrogen molecules and
contain less than 1% neon impurity atoms. It is hard to im
ine that such a segregation by elemental composition co
occur inside liquid helium, where any foreign particles sti
together with a probability close to unity. Therefore, o
must assume that under the conditions of our experim
either clusters of nitrogen~which is less volatile than neon!
have time to grow in the gas before it reaches the temp
ture region where coalescence of neon begins or else a
solution of nitrogen and neon that forms has time to deco
pose during cooling. In the absence of a jet, on accoun
repeated annealing during the Brownian motion of a clus
phase separation is extremely probable. However, unde
conditions of our experiments, since the saturated va
pressure at which condensation begins~10 Pa! is reached at
40 and 14 K for nitrogen and neon, respectively, and
directionality of the motion of the particles inside the j
makes the kinetics of their temperature variation monoto
this can scarcely come about. The high concentrations
stabilized atoms observed in our experiments are direct p
of phase separation during growth of the cluster—upon se
ration into an individual phase the atoms would undoubte
recombine.

The x-ray scattering cross section on nitrogen molecu
and neon atoms are comparable, and the total number of
in the observation zone should be equal. Nevertheless,
diffraction peaks of neon, if present at all in the spectrum
the condensate atT54.2 K, are very weak.~Only on heating
to T513– 16 K, when the mobility in neon is frozen out, d
the peaks corresponding to the fcc structure of crystal
neon appear, the amplitude and width of which are close
those for nitrogen.! A natural cause of such behavior is th
deposition a significant fraction of the neon on the surface
already formed nitrogen clusters during sedimentation in
gas. For equal volumes occupied by the elements, the th
ness of the shell of the cluster, which determines the width
the diffraction peak from the shell material, should be~as is
easily estimated! a factor of 6 smaller than the diameter
the core, which determines the width of the peak from
core material. At the same time, the formation of the fi
neon layers on the surface of a nitrogen cluster should b
at a higher temperature than the formation of neon clust
rly
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since the Ne-N2 interaction is stronger than the Ne-Ne inte
action.

Similar effects were later observed21 in the precipitation
of mixtures of D2 and N2: in the condensate found insid
liquid helium the diffraction peaks from both deuterium a
nitrogen clusters were clearly observed.

Let us now analyze the consequences of the mode
successive coalescence in the jet in the case when the im
rity particles studied are partially dissociated diatomic m
ecules, such as H2, D2 , and, primarily, N2 , as it is for their
condensates that the most interesting results have been
tained, which led to the hypothesis of an impurity–heliu
solid. The polarizability of atoms is always much less th
that of molecules made up of them, and the nitrogen atom
well modeled by a neon atom, since their polarizabilities
close. In particular, a hypothetical cluster of unrecombined
atoms should be formed approximately at the same temp
tures as a cluster of Ne atoms. This means that in the c
densation of nitrogen that has been partially dissociated
an rf electrical discharge, clusters consisting of molecu
nitrogen form first, and then N atoms condense on their s
face. The segregation effect should be just as strong as in
case of impurity neon, since the local concentration of ato
in the condensate should be determined most likely not
their content in the initial gaseous mixture but by the ma
mum admissible concentration in respect to the mutual
combination of stabilized atoms. This conclusion seems to
to be extremely important, and we therefore deemed it n
essary to find a way of rejecting even the improbable po
bility of phase segregation during the metamorphoses of
two different substances of the condensateinside liquid he-
lium. For this it was necessary to suppress the motion
microparticles of the condensate in the condensed heli
i.e., to carry out the condensation in solid helium.

INTRODUCTION OF IMPURITIES IN SOLID HELIUM

In the matrix isolation technique it is standard practice
dilute the substance to be investigated with a rare gas
deposit everything as a solid on a cold substrate. Howe
such an approach is inapplicable for isolation in helium, si
ply because helium is the only substance that does not h
a triple point and a region of coexistence of the gaseous
solid phases. It would seem that an even more difficult pr
lem to overcome is that the position of the interface betwe
the solid and liquid helium at a fixed pressure is determin
by the temperature field, and nothing can be ‘‘grown’’ on
as is usually done in the growth of a sample in the comm
matrix isolation technique. Nevertheless, we have mana
to devise a method of growing impurity-doped heliu
crystals.23,24The principle of the method is clear from Fig. 3

A helium crystal was grown in a vertical cylindrical ves
sel made of sapphire which was placed in a volume of
perfluid helium. The vessel is connected at the top to a hi
pressure~26–30 bar! helium feed system. If helium is
removed from the bottom of the vessel at a constant r
then, since the friction of the crystal against the unwetta
walls of the vessel is small compared to the forces aris
even at very low pressure gradients, the crystal as a wh
begins to move downward. Then on account of the heli
flow into the cell from the feed system, the crystal simul
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neously grows upward to the original position. Thus t
sample remains in place, while its content is shifted dow
ward at a rate determined by the outflow from the cell. Sin
the incoming flow is fed through a small aperture and a sm
amount of a target impurity is admixed to the helium, t
high-power jet that arises rapidly conveys the impurity
ward the surface of the solid.

Figure 3a shows a typical geometry of the sam
growth process on an experimental apparatus create
Kyoto University in Japan.25 By suitably choosing the ex
perimental conditions—the pressure in the cell, the heli
flow rate, and the power heating the jet-forming aperture
one can achieve stability of the position of the upper edge
the helium crystal to an accuracy of 0.2 mm for one ho
Over that amount of time a doped crystal more than 20 m
thick can be formed.

To demonstrate the segregation effect in a jet ove
solid helium surface we chose conditions close to those
the experiments on impurity condensation in liquid heliu
The size of the inlet aperture was such that the nominal
locity of the jet at the nozzle exit was close to the sou
velocity; since the gas density was three orders of magnit
higher, the aperture diameter was chosen equal to 20mm.
While the typical degree of dilution of the impurity in th
initial mixture in liquid helium experiments was 1:100, he
it was 1:100000. The CO molecule was chosen as the im
rity; a high-resolution FTIR spectrometer was used to reg
ter the vibrational transition (v50, J50→v51, J51),
which takes place in vacuum at a frequency of 2143 cm21.
As we know, in solid carbon monoxide the transition in que
tion has the form of a comparatively broad (2.5 cm21) band
centered at 2140 cm21; in the case of matrix isolation of th
CO molecules by neon the linewidth is around 0.1 cm21; in

FIG. 3. Schematic diagram of the technique for introducing impurities i
solid helium:23 1—sapphire tube,2—porous filter of aluminum oxides
3—outlet capillary,4—copper flanges,5—inlet capillary with vacuum ther-
mal isolation and a small aperture on the lower end,6—high-pressure tank,
7—pressure regulator~reducer!, 8—flow regulators,9—valve. The inset b
shows the typical geometry of growth of a doped helium crystal;g is the gas
dimple, l is a layer of liquid~superfluid! helium,s is solid helium.
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the case of isolation by parahydrogen the observed linew
is less than 1023 cm21, and the same width can be expect
in solid helium. Figure 4 shows the spectrum of CO up
condensation in solid helium of a CO:Ne:He51:12:80000
mixture. Since 12 Ne atoms can be placed simultaneou
around the CO molecule, in the case of a random distribu
of particles in the condensate a significant fraction of the
molecules should be isolated from the other molecules b
least one layer of neon atoms. This would be sufficient
decrease the linewidth by many times in comparison w
solid CO and to increase the intensity by the same fac
However, the band that was detected does not differ in
way from that registered in the condensation of a CO:
mixture and is similar in shape to the band observed in s
CO, which is known from the literature. Thus even in th
case clusters of the less volatile impurity component are
lectively formed during condensation. The size of the C
clusters is rather large—for the oligomers (CO)n , n,10, the
center of the line should be found at another frequency,
the corresponding structure should be seen on its envel
Such an experiment, unlike the condensation of a jet in liq
helium, evidently proves that segregation by composition
curs in the clusters before the impurity enters the conden
helium.

STRUCTURE OF THE CONDENSATE

The foregoing analysis showed that the key feature
the condensate obtained in the introduction of a jet of g
eous helium containing an impurity into liquid and solid h
lium is the spatial separation of impurities of different n
tures in the clusters formed. Particularly interesti
consequences are observed for a molecular impurity tha
partially dissociated under the influence of an electrical d
charge, for example. In that case the weakly polariza
chemically active atoms are concentrated in the periph
regions of the cluster, and if the cluster does not consist
very large number of molecules and if their degree of dis
ciation is not too high, then the atoms will be distributed ne
and on the surface, as is shown schematically in Fig. 5.
we have said, the concentration of atoms in that region
limited exclusively by their recombination, and that is th
maximum local concentration that can be obtained by lo
temperature stabilization. Indeed, the atoms are practicall
direct contact with superfluid helium, and the criteria of th
mal stability ~against thermal and thermal-wave explosio!,
which were considered in Ref. 26, are always met for the

o

FIG. 4. Absorption spectrum of a helium crystal doped with a carbon m
oxide and neon, CO:Ne51:12.25 The dashed line indicates the position o
the most intenseR0 line in the case when CO is isolated in parahydroge
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Therefore the concentration of stabilized atoms will be
termined by their thermal stability, i.e., by the lifetime wi
respect to recombination at a given temperature.

If in accordance with the x-ray diffraction data16 it is
assumed that clusters forming the condensate consist of
molecules, then it is easy to deduce that even at a degre
dissociation of tens of percent the atoms are stabili
mainly on the surface of the cluster. They can therefore
assumed, with all the consequences of that assumption,
physisorbed on a surface consisting of the parent molec
and immersed in superfluid helium. In particular, one sho
observe a specific influence of the helium environment
the optical spectra due to restructuring of the helium en
ronment upon excitation of the atom.27,28 It becomes clear
why the spectra that we observed previously, correspond
to luminescence at the transition2D→4S of the metastable
nitrogen atoms, depended on the type of heavy rare gas~Xe,
Kr, Ar, and Ne! admixed in the condensate and had a sh
resembling the spectra of atoms isolated in liquid and s
helium.28 An unusually large local concentration of atom
which is independent of the degree of dissociation of
initial molecules over wide limits explains the shape of t
ESR spectra of N~Ref. 30!, H, and D~Ref. 31! atoms stabi-
lized in superfluid helium. The high local concentration
nitrogen atoms realized even at high dilution of the nitrog
by heavy rare gases makes it possible for the known me
nism of thermoluminescence to appear:7 N1N→N2* ; N2*
1N→N21N* (2D), which we had previously rejected o
the grounds of the low probability of encounter of three
atoms in the case of a random spatial distribution of atom
different types. This can explain the superlong time of
green afterglow of the nitrogen-atom-containing condens
in liquid helium and the annealing effect.15

Thus despite the presence of a powerful gas jet direc
toward the surface of condensed helium, the coalescenc
an impurity contained in it occurs practically at dew tem
perature, but at the same time, as experiments show, the
of cooling is high enough to prevent recombination of t
atoms trapped in the condensate before they reach the li
helium. The analysis carried out allows one to narrow do
exactly what is the object being studied in the optical, ES
x-ray diffraction, etc. detection of the condensate obtaine
liquid and solid helium. With this key one can reinterpret t
numerous data that have been accumulated over many y

FIG. 5. Idealized structure of the clusters~grain of an impurity condensate
in condensed helium! in the case of an impurity consisting of two compo
nents taken in equal amounts~a! and an impurity consisting of partially
dissociated diatomic molecules~b!. It is assumed that the clusters conta
1000 molecules; the layers are indicated by dashed circles.
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in studies of the condensation of impurities in superfluid h
lium and of the impurity–helium solids.

The question of the existence of an impurity–heliu
solid phase as originally understood14 merits particular atten-
tion. Although physical arguments about the metastability
a structure consisting of frozen-together solid helium clust
arising around heavy microimpurities in helium are co
pletely reasonable, the degree of this metastability is uncl
At the same time, none of the experiments known to us
been set up in such a way that this phase can be formed.
observation of the sticking together of two SF6 molecules
inside a cold liquid helium drop32 does not lend optimism
However, the experimental techniques that have now b
developed permit one to propose a strategy for searching
such a phase. The simplest would be to use the techniqu
introducing impurities into solid helium23,24 after conditions
for stabilization of individual molecules in it have bee
achieved. For this, one should work with impurity conce
trations ensuring the absence of binary collisions of impu
molecules during their transport in the jet to the surface
the condensed helium and their subsequent motion thro
the layer of liquid helium to the surface of the crystal. Aft
that it would be necessary to the melt the helium by lower
the pressure by, say, 1 bar and then raising it again to
value necessary for secondary solidification. A typical effe
tive pressure exerted by the impurity on the first helium sh
is hundreds of bar, while at the same time, for the sec
layer of helium atoms this pressure is only a few bar.27 This
means that if the external pressure is close to the pressu
solidification of helium, then not one but two or more laye
will be found around the impurity in the solid state. Th
impurity–helium solid phase obtained by the method j
described should have a higher stability against the pairw
sticking together of impurity particles, since they are se
rated by large distances in it~four or more layers of helium!.
We tested this procedure during completion of the work
ported in Ref. 33. The main complications—the choice of
adequate method for tracking the state of the impurity m
ecules with a sensitivity of 1012 molecules/cm3 or better as
well as purification of the high-pressure helium to 1 p
(1027%) are in principle solvable.

By the way, in Ref. 19 it was concluded, on the basis
a comparison of the kinetic energy of a particle entering
liquid helium with the work against the forces of surfa
tension in the creation of a bubble inside the liquid, that
embedding of individual molecules from the jet into the li
uid is practically impossible. However, the nitrogen mo
ecules and atoms considered in Ref. 19, like the majority
other particles, form structures of attraction~‘‘snowballs’’!
around themselves in liquid helium; in these structures
attraction of the helium shell to the impurity is compensa
by the mutual repulsion of the He atoms in the shell.27,28

Such a character of the interaction with the environmen
also indicated directly by the form of the calculated heliu
density profile19 around the N atoms and clusters of molec
lar nitrogen, which demonstrates compressing of the hel
around the impurity. Therefore, even in the framework of t
crude approximation used, in the co-condensation of hel
and an impurity there should be areleaseof energy rather
than anexpenditure, and, in contrast to the conclusion of th
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authors of Ref. 19 there should not exist any restrictions
the velocity of the particle for its absorption inside the liqu
In general, a direct answer to the question of the existenc
energy barriers to the entry of an impurity into the medium
given by the value of the chemical potential of the cor
sponding particle in the medium—for nitrogen atoms in l
uid helium, for example, it is 300 K lower than in vacuum27

The low-temperature chemical reactions in isolated cl
ters of reactants under conditions of their initiation by act
particles trapped in clusters have a number of attrac
features.34 The fact that in the condensation of atom
containing mixtures in liquid and solid helium these ato
are stabilized on the surface of the clusters—grains of
condensate—makes this substance still more interesting
use in low-temperature chemistry.

This study was done with the support of the Russ
Foundation for Basic Research, Grant No. 04-03-32684.
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Relaxation and dissipative processes in the phonon–impuriton system of concentrated
superfluid mixtures of 3He in 4He
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The effective thermal conductivity of superfluid mixtures of3He in 4He with an initial
concentration of 9.8%3He is investigated in the temperature interval 70–500 mK. The results,
together with previously available experimental data on the thermal conductivity, viscosity,
and mass and spin diffusion, are analyzed in the framework of the kinetic theory of the
phonon–impuriton system of superfluid mixtures. It is shown that the experimental results
for all the kinetic coefficients can be described from a unified viewpoint if the corresponding
impuriton–impuriton scattering times are used as adjustable parameters. The role of each
relaxation process in the complex hierarchy of relaxation times is determined as a function of
temperature and concentration. It is found that even in concentrated mixtures a substantial
contribution to the establishment of equilibrium is made by three-phonon processes. The
phonon–impuriton relaxation times are calculated by integrating over the phonon energy
in the entire region where such processes are allowed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1808153#
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1. INTRODUCTION

Kinetic processes in3He–4He superfluid mixtures are
governed by the interaction of elementary excitations
phonons, rotons, and3He impurity excitations~impuritons!.
These interactions were first considered by Khalatnikov
Zharkov,1 who calculated the corresponding relaxation tim
and the main kinetic coefficients of3He–4He mixtures: the
thermal conductivity, diffusion, and viscosity. The appe
ance of experimental data on the absorption of first soun
low temperatures2,3 stimulated further development of th
theory. Baym, Saam, and Ebner used those data in const
ing a detailed kinetic theory of3He–4He superfluid mixtures
at temperatures below 0.6 K, when the roton contribution
be neglected. The theory4–6 gave a quantitative explanatio
of the acoustic experiments2,3 done with mixtures of3He in
4He with a molar concentrationx;5% 3He. Subsequent ex
perimental studies of the kinetic processes in more di
mixtures of3He in 4He showed a noticeable difference b
tween experiment and theory, this difference growing w
decreasing concentration of the mixtures.

Further progress in the understanding of relaxation p
cesses in dilute3He–4He superfluid mixtures was achieve
following precision measurements7 of the relative change o
the velocity of first sound in dilute mixtures of3He in 4He,
which stimulated further development of the kinetic theo
by Adamenko and Tsyganok.8,9 It was shown that the pres
ence of anomalous dispersion in the phonon spectrum
stantially alters the phonon–impuriton relaxation in the m
tures and leads to a new two-step mechanism of pho
relaxation in the presence of3He quasiparticles.10 The results
7631063-777X/2004/30(10)/7/$26.00
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of various kinetic experiments were analyzed from the sta
point of the understanding that had been achieved, an
complex hierarchy of relaxation times was established~see
the review11!.

In the 1980s the kinetics of the phonon–impurito
system11 was investigated only in only dilute mixtures of3He
in 4He. Since the concentration of the mixture substantia
determines practically all the relaxation times, one can
pect noticeable changes in the kinetic behavior of the m
tures as the concentration is increased. A feature specifi
concentrated mixtures is the higher Fermi degeneracy t
perature of the gas of impuritons. The temperature reg
investigated in experiments often lies in the intermediate
gion between the quantum and classical limits, where th
are no analytical expressions for the relaxation times. In c
centrated superfluid mixtures at low temperatures a fi
order phase transition—phase separation—occurs, wh
upon the concentration of the dilute phase changes w
changing temperature.

Recently the kinetic properties of concentrated mixtu
of 3He in 4He have been studied experimentally with stead
state heat fluxes of different strength acting on t
system.12,13This made it possible to obtain information abo
the relaxation of the temperature and concentration of
mixtures, to determine the boundary at which the therm
convective instability begins, and to measure the effect
thermal conductivity. In the present study we continue o
experimental research on the effective thermal conductiv
focusing our attention mainly on the interpretation of t
results in the framework of the modern kinetic theory of t
phonon–impuriton system of3He–4He superfluid mixtures.
© 2004 American Institute of Physics
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We analyze the temperature dependence of the other kin
coefficients—the viscosity and mass and spin diffusion, a
also the characteristic relaxation times governing the res
tive processes.

2. CHARACTERISTIC RELAXATION TIME IN THE
PHONON–IMPURITON SYSTEM OF THE MIXTURES

Establishment of equilibrium in the impuriton subsyste
of the mixtures occurs on account of the scattering of3He
quasiparticles on each other. The characteristic impurito
impuriton relaxation time for the nondegenerate region
usually written in the form~see Ref. 11!

t335
A

xTn , ~1!

wherex is the molar concentration of3He in the mixture, the
constantA is determined from the corresponding experime
tal data, and the exponent lies in the range 0.5<n<1.

For the degenerate region the impuriton relaxation ti
was determined in Ref. 4:

t335
a

T2 F11bS T

TF
D 2G , ~2!

where TF is the Fermi degeneracy temperature, and
concentration-dependent parametersa and b are fit from a
comparison with the acoustic data.2,3

We note that formulas~1! and~2! express the relaxation
time in the impuriton subsystem, which determines the sh
viscosity of the mixture and, as a consequence, the visc
absorption of first sound. We denote this time byt33h ; it
characterizes the process of impuriton scattering on an
puriton, accompanied by momentum changing.

In the phonon subsystem the establishment of equ
rium occurs in a more complex way. Since the phonon sp
trum has decay instability in the initial region at not too hi
a total pressure, three-phonon processes are allowed.
leads to the rapid establishment of equilibrium along a c
sen direction~longitudinal relaxation!.11 In the subsystem o
thermal phonons with average velocity«̄53kBT the longi-
tudinal relaxation time is equal to

t i52.6•10210T25@s#. ~3!

Total equilibrium in the phonon subsystem of pure4He
is determined by the transverse phonon relaxation wit
characteristic timet' that is always much greater thant i . In
3He–4He superfluid mixtures, the processes of interaction
phonons with impuritons play an important role in the est
lishment of total equilibrium. As was shown in Ref. 10, u
der such conditions a two-step relaxation mechanism is r
ized: the energetic phonons on account of Rayle
scattering relax toward the impuritons, and all the remain
phonons, over a timet i , relax toward the energetic phonon
The resultant phonon–impuriton relaxation time is

tph35
* t̃ ~ t̃ 1t i!

21n8y4dy

*~ t̃ 1t i!
21n8y4dy

, ~4!

wherey5«/kB is the phonon energy in kelvin,
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kBTD21G21D
is the derivative of the Bose–Einstein energy distributi
function for the phonons;

t̃ 5~ tabs
211tsc

21!21 ~5!

is a combination of the scattering timetsc for phonons on3He
quasiparticles and the absorption timetabs of phonons by
impuritons.

The times (tsc) l for the scattering of phonons by impu
ritons were determined in Ref. 4 as a function of the phon
momentump and the scattering angle. Here it was found th
the relaxation times are proportional top24; this corre-
sponds to Rayleigh scattering of the long-wavelength ‘‘ligh
phonon on the ‘‘heavy’’3He point quasiparticle:

~ tsc! l5
aln4

xcp4 , l 51,2,..., ~6!

wherec is the velocity of first sound in4He, n4 is the num-
ber of 4He atoms per unit volume, and the values of t
constantsal are given in Ref. 11. They correspond to th
l th-order terms in the expansion of the phonon-impurit
collision integral in Legendre polynomials. Herel 51 corre-
sponds to the transport of a change in the density of phon
which characterizes heat conduction, and also the trans
of quasiparticles, which characterizes mass and spin d
sion. The polynomial withl 52 corresponds to momentum
changing of the system and causes shear viscosity. The
laxation times withl>3 do not correspond to any fixed dis
sipative coefficient in the hydrodynamic regime but are
sponsible for relaxation in the phonon–impuriton system
the kinetic and transition regimes.

Processes of phonon absorption and emission by im
ritons are taken into account in~4! because in the integral o
~6! over momenta a divergence arises at the lower limit. T
is due to the rapid growth of the phonon mean free path w
decreasing momentum~by a p24 law!. The absorption and
emission of phonons by3He quasiparticles limits the mea
free path of the long-wavelength phonons, and the co
sponding timetabs has the form

tabs5
4

3

P3

r4
l i

2r2t33h

11S cp

2pkBTD 2

11S cp

2pkBTD 2

1S cp

\
t33hD 2 , ~7!

whereP3 is the osmotic pressure of the gas of impuriton
r45m4n4 is the 4He density (m4 is the mass of the4He
atom!; l i is a parameter of the mixture, determined by t
energy and effective mass of the3He quasiparticles;t33h is
the viscous relaxation time of the impuritons, which gover
the absorption of first sound in the mixture and the sh
viscosity. The hierarchy of relaxation times~1!–~7! is given
in Ref. 11. Here the absorption relaxation time is the char
teristic time of the net difference of absorption and emiss
processes.
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3. EFFECTIVE THERMAL CONDUCTIVITY

3.1. Features of the technique and the experimental results

For measurement of the thermal conductivity the meth
of a steady heat flux emitted by a flat heater placed in
lower part of a cylindrical measurement cell is used. T
layout of the measurement cell, which was 2.4 cm in dia
eter and 4.7 cm high and had thin stainless steel walls
described in detail in Ref. 12. The establishment of a stea
state temperature distribution is established after the
flux is turned on is registered by two identical resistan
thermometers. The measurements were made in two seri
experiments with different distances between thermomet
10 and 27 mm. The upper part of the cell had a clamped
thermal contact with a cold source—the platform of a di
tion refrigerator, the temperature of which was measured
a 3He melting curve thermometer.

A mixture with an initial concentration of 9.8%3He was
investigated in the temperature region 70–500 mK. Belo
temperature of 235 mK in the absence of the heat flux
mixture was separated into a lower, superfluid phase an
upper, normal phase with a concentration close to pure3He.
In this case both thermometers are found in the lower, su
fluid phase. In the presence of a heat flux the3He atoms
move to the colder upper part of the cell, their concentrat
in that part grows, and, according to the phase diagram, s
ration sets in at a higher temperature. Measurements w
made at a constant temperature of the platform of the d
tion refrigerator and upper flange of the cell and at differ
values of the heating power. Special attention was paid
ensuring the absence of convective phenomena, i.e., it
verified that a linear dependence existed between the v
of the applied heat flux densityQ̇ and the temperature gra
dient ¹T that appeared:

Q̇5keff¹T. ~8!

The coefficient of proportionalitykeff in ~8! is the effec-
tive thermal conductivity of the mixture. The temperatu
dependence ofkeff obtained in the experiment is presented
Fig. 1, where for comparison the results of measurement
the effective thermal conductivity made at higher tempe
tures~above;0.65 K)14 are also shown. It is seen in Fig.
that the data of the present study are in good agreement
the results of Ref. 14.

Since in3He–4He superfluid mixtures in the presence
a heat flux both a temperature gradient and a concentra
arise simultaneously, heat is transported both by the diffus
of phonons and by the true heat conduction of3He quasipar-
ticles; this, according to Ref. 1, is described by an effect
thermal conductivity. The existence of an effective therm
conductivity that is determined both by the ordinary dissip
tive heat conduction and also by mass diffusion and th
modiffusion of impurities is a unique feature of3He–4He
superfluid mixtures.

3.2. Comparison with theory

The total thermal conductivity of the phonon–impurito
system of3He–4He superfluid mixtures can be written in th
form of a sum of the impuriton part and a part due to t
diffusion of phonons:15
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keff5k31kD5k31Dm

u2«
2

u2
2 CVS 12

kT

kT*
D 2

, ~9!

whereCV5C31C4 is the heat capacity per unit volume o
the mixture, written as the sum of the heat capacities of
impuriton gas and thermal excitations,kT5Dm /DT is the
thermodiffusion ratio of the mixture,Dm and DT , which
were introduced in Ref. 1, are the coefficients of mass dif
sion and thermodiffusion at constant temperature and c
centration, u2 is the speed of second sound,u2«

2

5S̄2T/CVrn , S̄5S32(]S3 /]n3)Tn3 is a parameter of the
impuriton subsystem which depends on the entropyS3 of the
impuriton gas and the number of impuritons per unit volum
n3 , rn5r31rnt is the total normal density of the mixture
rnt is the density of the normal component of the therm
excitations of the mixture;

kT* 52T
¹x

¹T
5S ~]P3 /]T!xP

~]P3 /]x!TP
D

is a parameter relating the concentration gradient and t
perature gradient.

The thermal conductivitykD due to phonon diffusion
and the true thermal conductivityk3 of the impuriton gas in
formula ~9! can be written in the gaskinetic approximation
the form

kD5
1

3
Cphc

2tph3, ~10!

k35
1

3
C3v3

2t33k , ~11!

wherev35@(3/2m3* )(]P3 /]n3)#1/2 is the average velocity o
the impuritons8 (m3* is the effective mass of the impuritons!.

In this study we have calculated the effective therm
conductivity keff with the use of Eqs.~9!–~11!. The relax-
ation timetph3 that appears in Eq.~10! was determined by
formulas ~4!–~7!, and the timet33h in Eq. ~7! was found
from independent experimental data on the shear visco
~see Sec. 5!. We note that in contrast to Refs. 4 and 5, whe

FIG. 1. Temperature dependence of the effective thermal conductivity
3He–4He mixture with an initial concentration of 9.8%3He. The arrow
indicates the phase separation temperature. The data of the present stu
two distances between thermometers@mm#: 10 ~d! and 27~m!; the data of
Ref. 14~l!. The solid curve is a calculation according to formulas~9!–~11!.
The dotted curves1 and2 are, respectively, the phonon and impuriton co
tribution to the effective thermal conductivity.
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the relaxation time was calculated for thermal phonons of
average energy«̄ph53kBT, the timetph3 was determined by
integration over energies from 0 to the value 10 K at wh
the phonon spectrum becomes nondecaying.

Since the conditions of the experiment correspond to
intermediate region between degenerate and nondegen
states, for which no analytical expression fort33k has been
obtained, here we used the following empirical expressio

t33k5
a

xT
, ~12!

where the constanta played the role of a fitting paramete
and was determined from the experimental data. Analy
showed that good agreement with the experimental value
the effective thermal conductivity~Fig. 1! is achieved in the
whole temperature region fora59310212 K•s. An analo-
gous approach has also been taken for the results
experiments19 in which the effective thermal conductivity o
weaker mixtures of3He in 4He was measured. The parame
a in formula ~12! depends weakly on concentration~see
Table I! and is independent of temperature.

Calculations showed that the main contribution to t
effective thermal conductivity of the mixture comes from t
phonon part~the dotted line1 in Fig. 1!. The corresponding
values of the timet33k which determine the thermal condu
tivity of the gas of impuritons and the other characteris
relaxation times are presented in Fig. 2. As we see from
curves, the impuriton–impuriton scattering process is
fastest process in the hierarchy shown, and that means
equilibrium is established more rapidly in the impuriton su
system than in the phonon subsystem.

TABLE I. Dependence of the parametera, which determines the timet33k ,
on the3He concentration.

x%3He 1.3 5.0 9.8
a, K•s 7.2310212 7.8310212 9310212

FIG. 2. Characteristic times of the different relaxation processes in
phonon–impuriton system as functions of temperature for a mixture with
initial concentration of 9.8%3He: the longitudinal phonon relaxation timet i

~1!; the Rayleigh scattering timetsc for phonons on impuritons~2!; the time
tabsassociated with the absorption~emission! of phonons by impuritons~3!;
the total phonon–impuriton relaxation timetph3 ~4!; the impuriton–
impuriton relaxation timet33k , which determines the effective thermal co
ductivity of the gas of impuritons~5!.
e

e
rate
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r
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e
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Analysis of the behavior of the resultant relaxation tim
tph3 in the phonon–impuriton system showed that at h
temperatures the main process is the scattering of phon
on impuritons, with a characteristic timetsc. The longitudi-
nal relaxation timet i in the phonon subsystem at high tem
peratures is close totsc, and its contribution increases wit
decreasing concentration. As the temperature is lowered
absorption of phonons by impuritons, with a characteris
time tabs, becomes the dominant process. However, in t
case, as analysis of formula~7! shows that the longitudina
relaxation of phonons must be taken into account even
high concentrations of3He.

The arrow in Fig. 1 indicates the phase separation te
perature of the initial mixture. Within the limits of exper
mental error no noticeable anomaly in the behavior of
effective thermal conductivity was observed. Here it w
taken into account that at temperatures below phase sep
tion the concentration of the mixture studied decreased w
decreasing temperature in accordance with the phase
gram.

4. DIFFUSION

In 3He–4He superfluid mixtures the mass transport p
cesses are very specific, since the flux of impurities her
governed by not only the concentration gradient but also
temperature gradient, and therefore the diffusion is due
heat conduction. In the general case of arbitrary tempera
and concentration this process is described, as is show
Ref. 15, by an effective diffusion coefficient having the for

Deff5Dm

u2«
2

u2
2 S 12

kT

kT*
D 2

1
k3

CV

u2N
2

u2
2 , ~13!

whereu2N
2 5n3 /rn (]P3 /]n3)T,n4

, with u2
25u2N

2 1u2«
2 .

Analysis of formula~13! shows that the coefficient o
mass diffusionDm and the effect diffusion coefficientDeff

practically coincide (Deff'Dm) at high temperatures and low
concentrations, when the thermal excitations give the do
nant contribution to the thermodynamic property of the m
ture.

In the other limiting case—low temperatures and hi
concentrations—the effective diffusion is determined by
thermal diffusivityx3 of the mixture:Deff'k3 /C3[x3.

4.1. Mass diffusion

For the phonon–impuriton system of3He–4He super-
fluid mixtures the coefficient of mass diffusionDm , calcu-
lated in Refs. 9 and 16, has the form

Dm5
2

3
«̄3n3

rnph

rn
2 tph3, ~14!

wherernph is the phonon part of the density of the norm
component; the phonon–impuriton relaxation timetph3 was
used in calculating the diffusion part of the effective therm
conductivity. The mean energy of the impuritons,«̄3 , can be
expressed in the general case in terms of the osmotic p
sure of the gas of3He quasiparticles:

«̄35
3

2 S ]P3

]n3
D

T

. ~15!

e
n
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We note that the definition of the mass diffusion coe
cient for superfluid mixtures, written in form~14!, differs
somewhat from the corresponding formula for the class
case. As was shown in Ref. 15, the difference is due to
fact that in3He–4He superfluid mixtures impurities diffus
in a gas of thermal excitations, which transport mass only
accordance with the coefficient of thermal expansion, wh
is anomalously small in liquid helium. In classical mixtur
all components of the system contribute to the mass tra
port.

For determination of the the coefficientDm according to
Eqs. ~14! and ~15! the values of the osmotic pressure fro
Ref. 17 and the values of the effective massm3* taken from
Ref. 18 were used. The temperature dependence of the
ficient of mass diffusion obtained for the mixture under stu
is given in Fig. 3, which also shows the values of the co
ficient of mass diffusion calculated in an analogous w
from the experimental data on the effective thermal cond
tivity, which were obtained previously19 for mixtures with
concentrations of 1.32 and 5.0%3He. It is seen in the figure
that the value ofDm decreases with decreasing temperatu
In the limit T→0, when the contribution of thermal phonon
is absent, the value ofDm should go to zero in accordanc
with ~14!, and the processes of temperature and concen
tion relaxation are then determined by the true thermal c
ductivity of the impuriton subsystemkeff5k3.

4.2. Spin diffusion

Information about diffusion processes in3He–4He su-
perfluid mixtures is usually obtained in NMR experimen
~on the nuclei of the3He atoms, which have spin 1/2!, and
the values of the diffusion coefficient thus obtained a
called the spin diffusion. The most detailed data onDs over
a wide interval of temperatures and concentrations were
tained in Refs. 20–22, where it was established thatDs in-
creases in value with decreasing temperature and thatDs

21

depends linearly on the concentration. The analysis in R
21 of the experimental data for dilute mixtures of3He in 4He
~less than;3% 3He) pertains to the high-temperature r
gion, where the dominant contribution is given by rotons

In the low-temperature region, where the influence of
rotons is negligible and the main kinetic processes are g

FIG. 3. Temperature dependence of the coefficient of mass diffusion ca
lated from the experimental data on the effective thermal conductivity: 9
3He ~present study;1!; 5% 3He ~Ref. 19;2!, 1.32%3He ~Ref. 19;3!. The
solid curves were calculated according to Eq.~13!.
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erned by3He–phonon and3He–3He collisions such a de
scription is inadequate. Since for concentrated mixtures
main contribution to the density of the normal componen
from 3He quasiparticles, the coefficient of spin diffusion,
was shown in Ref. 16, is determined solely by processe
the impuriton gas and can be expressed as follows:

Ds5
2

3

«̄3

m3*
t33s . ~16!

The impuriton–impuriton relaxation timet33s was
treated in Ref. 16 as a fitting parameter.

It was demonstrated in Ref. 16 that good agreement w
the experimental data can be obtained if in calculations us
formula ~16! the relaxation timet33s is taken in the form

t33s5
B

xT2 @s#, ~17!

where B is a constant independent of the temperature
concentration.

Here we have used the approach developed in Ref.
Figure 4 shows the temperature dependence of the co
cient of spin diffusionDs for different 3He concentrations
according to the experimental data of Refs. 20–22 and a
the values ofDs for the concentration~9.8% 3He) investi-
gated in the present study, obtained by interpolation of
results of Refs. 19–21. The solid curves in Fig. 4 correspo
to a calculation according to formulas~16! and~17! with the
constantB57310212. This means that the behavior of th
relaxation timet33s is described by formula~16! over a wide
range of concentrations and temperatures. All of the exp
ments represented in Fig. 4 pertain to an intermediate reg
between the quantum and classical regimes for impuriton

A comparison of formulas~14! and ~16! shows that in
the investigated temperature and concentration range
value ofDm is several orders of magnitude smaller thanDs .
This difference is explained by the following circumstanc
Usually mass diffusion requires the presence of at least
different components, and in the absence of one of them~in
our case phonons atT→0) the diffusion process itself in the
framework of the model of Ref. 1 loses meaning. It follow

u-

FIG. 4. Temperature dependence of the spin diffusion coefficient for dif
ent 3He concentrations: 3%~Ref. 21;1!; 5% ~Ref. 20;2!; 9.8% ~interpola-
tion; 3!; 13.4% ~Ref. 22;4!; the arrows indicate the phase separation te
perature of the initial mixtures. The solid lines we calculated according
formulas~16! and ~17!.
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from formula ~14! that Dm→0 for T→0. Under these con
ditions the mass transport occurs in the process of equili
tion of the temperature and is described by the true ther
conductivity of the impuriton gas. However, in the gene
case of arbitrary temperature and concentration, as
shown in Ref. 15, the mass transport is governed by
effective diffusion coefficient. We note that in classical b
nary mixtures one often considers the interdiffusion coe
cient, which does not vanish when the concentration of
of the components goes to zero. In such a case that co
cient determines the diffusion of an isolated impurity ato
which is directly related to its mobility.

At the same time, the coefficient of spin diffusionDs at
low temperatures tends toward the valuevF

2t33s , which is
actually the coefficient of self-diffusion of impuritons. Thu
as the temperature is lowered,Dm decreases whileDs in-
creases, and therefore at low temperatures these coeffic
differ strongly. However, at high enough temperatures a
low enough concentrations (x,5% 3He) the coefficientsDm

andDs are practically equal:

Dm'Ds'
2

3

«̄3

m3*
rn3

rnph
tph3, ~18!

as is confirmed by experiment.

5. VISCOSITY

The viscosity of the phonon–impuriton system of t
mixture consists of two parts: the viscosity due to the tra
port of momentum by phonons,hph, and the impuriton vis-
cosity h3 , when momentum is transported by3He quasipar-
ticles:

h5hph1h3 , ~19!

where the phonon part of the viscosity has been calculate
Ref. 5:

hph5
2

5
c2rnphtph3. ~20!

An expression for the impuriton part of the viscosity w
obtained in Ref. 4:

h35P3~x,T!t33h , ~21!

where the relaxation timet33h is one of the main parameter
governing the absorption of first sound on account of the fi
viscosity.18

Estimates show that in view of the smallness ofrnph in
formula ~19!, hph makes up only 3.5% of the total viscosit
and this contribution can be neglected, i.e.,h'h3 . The
3He–3He relaxation timet33h in formula ~20! was deter-
mined as an adjustable parameter by fitting to experime
data on the viscosity of mixtures containing 5 and 7.0
3He.23 Analysis showed that good agreement with expe
ment is obtained for

t33h5
5.5310212

xT3/2 @s#. ~22!

The temperature dependence of the shear viscosity
the mixture under discussion, calculated according to
mula~21! with the use of~22!, is given in Fig. 5. Also shown
a-
al
l
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e
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nts
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or
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there are the experimental data on the viscosity obtaine
Refs. 23 and 24 for concentrations of 5.5, 6.2, and 7%3He.
These data, within the experimental error, are well descri
by a single curve in accordance with formulas~21! and~22!.

6. CONCLUSION

Analysis of the experimental data~obtained in the
present study and by other authors! on the effective therma
conductivity, viscosity, mass and spin diffusion in superflu
mixtures of3He in 4He over a wide range of concentration
has shown that at low temperatures they can be adequ
described from a unified viewpoint in the framework of th
kinetic theory of the phonon–impuriton system of superflu
mixtures. The kinetic properties of the impuriton subsyst
of superfluid mixtures can be described in the framework
a Fermi gas model all the way to concentrations of;10%
3He. As a result, the role of each of the relaxation proces
in the complex hierarchy of relaxation times was determin

In characterizing the impuriton–impuriton scatterin
processes we note that the different relaxation times co
spond to different dissipative coefficients. The behavior
the shear viscosity in the low-temperature region is de
mined by the impuriton–impuriton relaxation timet33h .
This time determines both the timetabsand the absorption o
first sound in the mixture. The impuriton part of the effecti
thermal conductivity is determined by the relaxation tim
t33k , while the contribution due to the diffusion of phonon
depends substantially on the timetabs and, through it, on
t33h . The relaxation times governing the mass diffusion a
practically the same as those that govern the effective t
mal conductivity, which is due to diffusion of phonons. Th
behavior of the spin diffusion is governed by the impuriton
impuriton relaxation timet33s . Figure 6 shows the tempera
ture dependence of these relaxation times. The fact that
are somewhat different from each other is due to the differ
physical nature of the kinetic coefficients under consid
ation and to the fact that the impuriton–impuriton scatter
probability depends strongly on the momentum of the imp
ritons and the scattering angle.

From a physical standpoint this difference is due to
fact that the different dissipative processes are due to
transport of different physical quantities. The thermal co
ductivity relates to the transport of energy, the viscosity

FIG. 5. Temperature dependence of the shear viscosity of3He–4He super-
fluid mixtures with3He concentrations: 5%~Ref. 23;d!; 7% ~Ref. 23;j!;
6.2%~Ref. 24;n!. The solid curve was calculated according to Eq.~20! for
a mixture with a concentration of 7%3He.
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the transport of momentum, and the spin diffusion to
transport of the nuclear spin of3He. From a mathematica
standpoint the corresponding scattering frequenciest33h

21 ,
t33k

21 , and t33s
21 are different eigenvalues of the impuriton

impuriton collision integral. An exact calculation of thes
frequencies is difficult at present because of the lack of r
able data on the3He–3He interaction potential.

We also note that in concentrated superfluid mixtures
3He in 4He, especially at low temperatures, the dominant r
in the establishment of equilibrium is played by processe
phonon absorption and emission. In the other limiting ca
that of relatively high temperatures and low concentratio
~below 1%3He), the relaxation of phonons in the presence
impuritons occurs with a substantial influence of the thr
phonon interaction.11 The analysis done in the present pap
shows that the contribution of these processes must be t
into account for mixtures with high concentrations as w
~up to 10%3He). This is actually the first evidence that th
anomalous character of the initial part of the dispersion cu
is preserved for concentrated superfluid mixtures of3He in
4He.

The authors thank V. N. Grigor’ev for a helpful discu
sion of the results of this study.

FIG. 6. Temperature dependence of the relaxation times associated
impuriton–impuriton scattering for a mixture with with an initial concentr
tion of 9.8%3He: t33k , which governs the true thermal conductivity of th
gas of impuritons~1!; t33h , which governs the shear viscosity~2!; t33s ,
which governs the spin diffusion~3!. The arrow corresponds to the separ
tion temperature.
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Drag of superfluid current in bilayer Bose systems
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An effect of nondissipative drag of a superfluid flow in a system of two Bose gases confined in
two parallel quasi-two-dimensional traps is studied. Using an approach based on the
introduction of density and phase operators, we compute the drag current at zero and finite
temperatures for arbitrary ratio of particle densities in the adjacent layers. We demonstrate that in
a system of two ring-shaped traps the ‘‘drag force’’ influences the drag trap in the same
way as an external magnetic flux influences a superconducting ring. This allows one to use the
drag effect to control persistent current states in superfluids and opens up the possibility
of implementing a Bose analog of the superconducting Josephson flux qubit. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1808194#
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1. INTRODUCTION

The existence of nondissipative supercurrents is a c
mon feature of superconducting and superfluid syste
Among various applications of superconductivity, consid
able attention has been paid to the use of superconduc
circuits as very sensitive magnetometers~superconducting
quantum interferometer devices!. At present there is renewe
interest in such systems in view of the possibility of usi
superconducting circuits with weak links as elements
quantum computers~Josephson qubits!. In view of the simi-
larity between superfluids and superconductors, one can
pect that the former may also be used for implementing
bits.

Supercurrent in superconductors is coupled to the ve
potential of electromagnetic fields. It allows one to cont
persistent current states by external fields. Obviously, the
no such channel for control in uncharged superfluid B
systems. In this paper we study another possibility based
a nondissipative drag effect.

The drag in normal systems has been investigated
perimentally and theoretically by many authors~see, for in-
stance, the reviews1,2!. Attention was mainly focused on th
study of bilayer electron systems in semiconductor hete
structures. In such systems an interlayer drag effect ta
place. The effect is caused by electron–electron scatte
processes and it reveals itself in the appearance of a
voltage in one layer when a normal current flows in the
jacent layer. If the former layer is in a closed circuit, the dr
voltage induces a drag current flowing through the circ
The effect is accompanied by dissipation of energy and ta
place only at finite temperatures. Roughly, the drag volt
increases by aT2 law ~the deviation from this law observe
experimentally3 is connected with a phonon contribution
the interaction between the carriers4!.

In superfluid and superconducting systems another k
7701063-777X/2004/30(10)/8/$26.00
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of drag may take place. This drag is nondissipative and
connected with a redistribution of supercurrent between
superfluid ~superconducting! components. In contrast with
the drag in a normal state, the superfluid drag has the lar
value at zero temperatures and decreases with increa
temperature. The existence of nondissipative drag in su
fluid systems was pointed out for the first time in the pap
by Andreev and Bashkin.5 In that paper a three-velocity hy
drodynamic model of a3He–4He mixture was developed. I
has been shown that the superfluid behavior of such syst
can be described by including a ‘‘drag’’ term in the fre
energy. This term is proportional to the scalar product of
superfluid velocities of the two components times the diff
ence between the effective and bare masses of3He atoms.
The nondissipative drag effect in superconductors has b
studied in the paper by Duan and Yip.6 Those authors argue6

that the value of the drag can be obtained from the energ
zero-point fluctuations. It was shown that this energy co
tains a ‘‘drag’’ term analogous to that obtained in Ref. 5
the hydrodynamic approach. The theory of nondissipat
drag in a bilayer system of charged bosons was develope
Tanatar and Das7 and by Terentjev and Shevchenko.8

The existence of nondissipative drag in a system of t
one-dimensional wires in a persistent current state was
dicted by Rojo and Mahan.9 It was also shown by Duan10

that nondissipative drag is responsible for the emergenc
an interlayer Hall voltage in bilayer electron systems in t
fractional quantum Hall regime.

On the basis of previous studies one can consider n
dissipative drag as a fundamental property of systems w
macroscopic quantum coherence. For a system of uncha
bosons this effect is especially important, since the ‘‘dr
force’’ plays a role similar to the role of the magnetic vect
potential in superconductors. It opens up new possibilit
for observing the effects caused by phase coherence in
© 2004 American Institute of Physics
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systems. One of the goals of this paper is to point out
analogy. In particular, we show that the nondissipative d
effect allows one to realize a superposition of flux states
superfluid ring with a Josephson weak link.

Great attention is now being paid to the study of ult
cold alkali-metal vapors confined in magnetic and opti
traps, where Bose–Einstein condensation of atoms has
observed.11 Advances in technology allow one to manipula
the parameters of such systems and make ultracold ato
gases a unique object for the study of various quantu
mechanical phenomena.

In this paper we study the effect of nondissipative dr
in a system of two quasi-two-dimensional atomic Bose ga
confined in two parallel traps. To describe such a situat
we take into account that the densities of atoms in the d
and drag layers can be unequal. In previous studies7,8 only
the case of two layers with equal densities of the partic
was considered. Another important factor is the temperat
In atomic gases it is of the order of or higher than the ene
of intralayer interactions. Previously, the dependence of n
dissipative drag on the temperature has been treated
qualitatively.6,8 Here we study the temperature depende
quantitatively. We also evaluate the drag for concrete mec
nisms of interlayer interaction in atomic Bose gases.

2. MODEL AND APPROACH

The geometry of a Bose cloud can be modified sign
cantly by varying the configuration of external fields formin
the trap. When the confining potential is strongly anisotro
and the temperature and the chemical potential are sm
than the separation between the energy levels of sp
quantization in one direction, the Bose gas can be treate
a two-dimensional one. Recently, low-dimensional atom
gases have been realized experimentally.12

Bose clouds of a ring shape can be created by us
toroidal traps. A configuration of two toroidal traps situat
one above the other is convenient for the study of the d
effect. It follows from the discussion below that if one e
cites a circulating superflow in one trap it inevitably leads
a redistribution of this superflow between the two traps, a
superfluid currents appear in both rings.

The main features of the drag effect can be underst
from the study of a system of two uniform two-dimension
Bose gases situated in parallel layers. The Hamiltonian of
system can be presented in the form

H5 (
l 51,2

~El2m lNl !1
1

2 (
l ,l 851,2

Ell 8
int , ~1!

where

El5E d2r
\2

2m
@¹Ĉ l

1~r !#¹Ĉ l~r ! ~2!

is the kinetic energy,

Ell 8
int

5E d2rd2r 8Ĉ l
1~r !Ĉ l 8

1
~r 8!Vll 8~r2r 8!

3Ĉ l 8~r 8!Ĉ l~r ! ~3!

is the energy of the intralayer (l 5 l 8) and interlayer (lÞ l 8)
interaction, andNl5*d2r Ĉ l

1(r )Ĉ(r ). HereĈ is the Bose
is
g
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d
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e

field operator,l is the layer index,r is the two-dimensional
radius vector lying in the layer, andm l are the chemical
potentials. To be more specific, we consider the case of p
interaction between the atoms:V11(r )5V22(r )5gd(r ),
V12(r )5V21(r )5g8d(r ), with g.0 andug8u,g. Assuming
the barrier between the two traps is quite high, we neglect
tunneling between the layers.

For further analysis it is convenient to use the dens
and phase operator approach~see, for instance, Refs. 13, 14!.
The approach is based on the following representation for
Bose field operators:

Ĉ l~r !5exp@ iw l~r !1 i ŵ l~r !#Ar l1 r̂ l~r !, ~4!

Ĉ l
1~r !5Ar l1 r̂ l~r !exp@2 iw l~r !2 i ŵ l~r !#, ~5!

wherer̂ l andŵ l are the density and phase fluctuation ope
tors,r l5^Ĉ l

1(r )Ĉ l(r )& is thec-number term of the density
operator~one can see that it is just the density of atoms in
layer l ), andw l(r ) is thec-number term of the phase oper
tor ~in the approach considered, the inclusion of this term
the phase operator allows one to describe states with non
average superflows!.

Substituting Eqs.~4!, ~5! into Hamiltonian~1! and ex-
panding it in series in powers ofr̂ l and¹ŵ l , we arrive at the
expression

H5H01H11H21... . ~6!

In ~6! the term

H05E d2r H(
l

F \2

2m
r l~¹w l~r !!21

g

2
r l

22m lr l G
1g8r1r2J ~7!

does not contain the operator part, the term

H15E d2r H(
l

H F \2

2m
~¹w l~r !!21gr l1g8r32 l2m l G

3 r̂ l~r !1
\2

m
r l@¹w l~r !#¹ŵ l~r !J J ~8!

is linear in the phase and density fluctuation operators,
the term

H25E d2r H(
l

\2

2m F ~¹r̂ l~r !!2

4r l
1r l~¹ŵ l~r !!2

1@¹w l~r !#~ r̂ l~r !¹ŵ l~r !1@¹ŵ l~r !#r̂ l~r !!

1
i

2
~@¹r̂ l~r !#¹ŵ l~r !2@¹ŵ l~r !#¹r̂ l~r !!G

1
g

2
@~ r̂1~r !!21~ r̂2~r !!2#1g8r̂1~r !r̂2~r !J ~9!

is quadratic in the¹ŵ l and r̂ l operators.
If the chemical potentials are fixed, the HamiltonianH0

is minimized under the conditions

\2

2m
~¹w l~r !!21gr l1g8r32 l2m l50, ~10!
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¹~r l¹w l~r !!50. ~11!

Fulfillment of Eqs.~10!, ~11! means that theH1 term in the
Hamiltonian ~6! vanishes. One should note that, as follo
from Eq. ~10!, the densities of the components are indep
dent of the coordinates only when the phase gradients rem
space independent as well.

The quadratic part of the Hamiltonian determines
spectrum of elementary excitations. Hereafter we will n
glect the higher-order terms in the Hamiltonian~6!. These
terms describe the scattering of the quasiparticles, and
can be omitted if the temperature is much smaller than
critical temperature (Tc;\2r/m).

3. DRAG CURRENT

The current density operator

ĵ l5
i\

2m
@~¹Ĉ l

1!Ĉ l2Ĉ l
1¹Ĉ l #, ~12!

rewritten in terms of the phase and density operators, has
form

ĵ l5
\

m
Ar l1 r̂ l@¹~w l1ŵ l !#Ar l1 r̂ l . ~13!

Expanding~13! in powers of the density and phase fluctu
tion operators and neglecting the terms of order higher t
quadratic, we obtain the following expression for the me
value of the current density:

j l5
\

m
r l¹w l1

\

2m
~^@¹ŵ l #r̂ l&1^r̂ l¹ŵ l&!. ~14!

In deriving Eq. ~14! we have taken into account that^ŵ l&
5^r̂ l&50.

To compute the averages in~14! we rewrite the quadratic
part of the Hamiltonian in terms of the operators of creat
and annihilation of the elementary excitations. In the abse
of the interlayer interaction (g850) this can be done by th
substitution

r̂ l~r !5Ar l

S (
k

eikrA ek

Elk
@bl~k!1bl

1~2k!#, ~15!
-
in

e
-

ey
e

he

-
n

n

n
ce

ŵ l~r !5
1

2i
A 1

r lS
(

k
e ikrAElk

ek
@bl~k!2bl

1~2k!#,

~16!

where the operatorsbl
1 , bl satisfy the Bose commutatio

relations. HereS is the area of the system,ek5\2k2/2m is
the spectrum of free atoms, andElk5Aek(ek12gr l) is the
spectrum of elementary excitations atg850 and¹w l50.

In the case considered, the substitution~15!, ~16! reduces
the Hamiltonian~9! to the form

H25(
lk

FEl~k!bl
1~k!bl~k!1

1

2
~Elk2ek!G

1(
k

gk@b1
1~k!b2~k!1b1~k!b2~2k!1h.c.#, ~17!

where

El~k!5Elk1
\2

m
k¹w l , ~18!

gk5g8ekA r1r2

E1kE2k
. ~19!

The Hamiltonian ~17! contains terms nondiagonal in th
Bose creation and annihilation operator and can be diago
ized using theu-v transformation

bl~k!5ula~k!a~k!1ulb~k!b~k!1v la~k!a1~2k!

1v lb~k!b1~2k!, ~20!

~see Ref. 15! which reduces the Hamiltonian~17! to the form

H25(
k

FEa~k!S a1~k!a~k!1
1

2D
1Eb~k!S b1~k!b~k!1

1

2D2ekG . ~21!

It is convenient to present theu-v coefficients and the
energies of the elementary excitations as series in power
gk . Theu–v coefficients read as
S u1a~k! u1b~k!

u2a~k! u2b~k!
D 5S Ak 2

gk

E1~k!2E2~k!

gk

E1~k!2E2~k!
Bk

D 1O~gk
3!, ~22!

S v1a~k! v1b~k!

v2a~k! v2b~k!
D

5S2
gk

2@E2~k!1E2~2k!#

@E1~k!1E1~2k!#@E1~2k!2E2~2k!#@E1~2k!1E2~k!#
2

gk

E1~k!1E2~2k!

2
gk

E1~2k!1E2~k!

gk
2@E1~k!1E1~2k!#

@E2~k!1E2~2k!#@E1~2k!2E2~2k!#@E1~k!1E2~2k!#

D
1O~gk

3!, ~23!
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where

Ak512
gk

2

2 S 1

@E1~k!2E2~k!#22
1

@E1~k!1E2~2k!#2D ,

~24!

Bk512
gk

2

2 S 1

@E1~k!2E2~k!#22
1

@E1~2k!1E2~k!#2D .

~25!

The spectra of the elementary excitations are found to b

Ea~k!5E1~k!1gk
2F 1

E1~k!2E2~k!
2

1

E1~k!1E2~2k!G
1O~gk

4!, ~26!

Eb~k!5E2~k!2gk
2F 1

E1~k!2E2~k!
1

1

E1~2k!1E2~k!G
1O~gk

4!. ~27!

One can see that the small parameter of the expansio
gk /uE1(k)2E2(k)u!1. The last inequality takes place for a
k, if g8 max(r1,r2)!g ur12r2u. Since in most cases of inte
est the interlayer interaction is much smaller than the in
layer one, for bilayer systems with different densities in t
adjacent layers one can neglect theO(gk

3) and higher-order
terms in Eqs.~22!, ~23!, ~26!, ~27!.

Using representation~15!, ~16!, we obtain from~14! the
following expression for the current density:

j l5
\

m
r l¹w l1

\

mS(
k

k^bl
1~k!bl~k!&. ~28!

Substituting Eq.~20! with coefficients~22!, ~23! into Eq.
~28!, computing the averages, and expanding the resu
powers of the phase gradients, we obtain the following
pression for the currents:

j15
\

m
@~rs12rdr!¹w11rdr¹w2#, ~29!

j25
\

m
@~rs22rdr!¹w21rdr¹w1#. ~30!

Equations~29!, ~30! are given in the approximation linear i
¹w l . Here the terms of higher order in the phase gradie
can be neglected if the phase gradients¹w l are much smaller
than the inverse healing lengthsj l

21;Amgr l /\ ~this corre-
sponds to velocities of the superflow much smaller than
critical velocitiesvcl;Agr l /m). In Eqs.~29!, ~30! the quan-
tities rsl and rdr with an accuracy up to thegk

2 are deter-
mined by the expressions

rsl5r l1
1

S(
k

«k

]Nlk

]Elk
2

1

S(
k

gk
2ekF ~21! l S ]N1k

]E1k

2
]N2k

]E2k
D S 1

~E1k1E2k!
22

1

~E1k2E2k!
2D

1
]2Nlk

]Elk
2 S 1

E1k1E2k
1

~21! l

E1k2E2k
D G , ~31!
is

-
e

in
-

ts

e

rdr5
2

S(
k

gk
2ekF11N1k1N2k

~E1k1E2k!
3 2

N1k2N2k

~E1k2E2k!
3

1
1

2 S ]N1k

]E1k
1

]N2k

]E2k
D S 1

~E1k2E2k!
2

2
1

~E1k1E2k!
2D G . ~32!

Here Nlk5@exp(Elk /T)21#21 is the Bose distribution func-
tion. One can see that in the absence of the interlayer in
action (gk50) the value ofrdr is equal to zero, and Eq.~31!
for rsl is reduced to the well-known expression for the de
sity of the superfluid component at finite temperatures. If
interlayer interaction is switched on, the value ofrdr be-
comes nonzero. Then, even in the absence of the phase
dient in the drag layer the superfluid current in this lay
emerges as a response to the phase gradient in the
layer.

Equations~31!, ~32! were derived under assumptionr1

Þr2 ~and, consequently,E1kÞE2k). The caser1'r2 re-
quires more rigorous consideration, since in this case
mixing of the modes is strong even for a weak interlay
interaction. One can find that the expressions~31!, ~32! re-
main finite atr1→r2 :

lim
r1→r2

rs15 lim
r1→r2

rs25
1

S(
k

«k

]Nk

]Ek

2
1

2S(
k

gk
2ek

Ek
S ]2Nk

]Ek
2 2Ek

]3Nk

]Ek
3 D , ~33!

lim
r1→r2

rdr5
1

4S(
k

gk
2ek

Ek
3 S 112Nk22Ek

]Nk

]Ek

1
2

3
Ek

3 ]3Nk

]Ek
3 D , ~34!

whereEk is the energy of the elementary excitations atr1

5r2 andg850. Using the exact expressions for the spec
and theu–v coefficients, we find for the case of two laye
with equal densities and in the weak interlayer interact
limit g8!g that the quantitiesrsl andrdr are determined jus
by Eqs.~33!, ~34!. This allows us to conclude that Eqs.~31!,
~32! are valid for an arbitrary ratio between the densities

Let us first consider the case of zero temperature.
define the drag current as the current in the drag layer~e.g.,
layer 1! in the absence of the phase gradient in this layer.
T50 the drag current is equal to

j dr2CdrS g8

g D 2S mg

2p\2D \

m
r1¹w2 , ~35!

where

Cdr5E
0

`

dx
x1/2

Ax11Ax1r1 /r2~Ax111Ax1r1 /r2!3
.

~36!

The factorCdr is an increasing function of the ratior2 /r1 ~at
r2 /r1→0 the factorCdr approaches zero, atr25r1 it is
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equal to 1/12, and it approaches 1/4 atr2 /r1→`). Thus, the
drag current increases with increasing density of particle
the drive layer.

At finite temperatures the drag current decreases.
small T one can use the long-wave approximation for t
spectraE1(2)k in the temperature-dependent part of Eq.~32!
and evaluate this part analytically. This yields the followi
relation:

j dr~T!5 j dr~0!F12
16z~3!

Cdr

r1

r2
S T

2gr1
D 3G . ~37!

But, actually, this approximation is valid only at very lo
temperatures. The results of numerical evaluation of Eq.~32!
are shown in Fig. 1. This figure demonstrates that aT
;2gr1 the temperature decrease of the drag current is m
slower. Based on the results presented in Fig. 1, we
conclude that the temperature reduction of the drag cur
becomes smaller with increasing density of particles in
drive layer.

In a Bose cloud confined in a trap the density is nonu
form. This results in a modification of the spectrum of e
ementary excitations. One may argue that this modifica
reveals itself in only minor changes of the value of the dr
It can be shown that the main contribution to the sum in E
~32! comes from excitations with wave vectors of the ord
of or larger than the inverse healing lengthsj l

21 . In systems
with healing lengths much smaller than the linear size of
Bose clouds the spectrum atq*j1

21 ,j2
21 is well described

by the quasi-uniform approximation. Therefore, in such s
tems the local drag current is given by the same equat
~29!–~32! as in the uniform case, with the only modificatio
that the densitiesr1 , r2 in these formulas should be unde
stood as functions ofr . In particular, we predict that for two
Bose gases confined in harmonic traps having the s
Thomas–Fermi radius~and this radius is much larger tha
the average healing length!, the spatial distribution of the
superflow in the drag trap atT50 will replicate~with a drag
factor! the spatial distribution of the superflow in the driv
trap. At finite temperatures one can expect a reduction of
drag factor near the edge of the Bose cloud, where the d
sity is low.

FIG. 1. Dependence of the drag current on the temperature atr2 /r155.0,
1.0, 0.2 ~solid, dashed, and dotted curves, respectively! normalized to its
value atT50. The dependence ofj dr(0) on the ratior2 /r1 normalized to its
value atr25r1 is shown in the inset.
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One can ask to what extent the two-dimensionality of
system studied may influence the results obtained. I
known that in 2D systems fluctuations of the phase of
order parameter are large, and at nonzero temperature
off-diagonal one-particle density matrix^Ĉ1(r )Ĉ(0)& goes
to zero in the limitur u→`. This implies the absence of long
range order in the systems atTÞ0. But since the asymptotic
behavior of the density matrix is described by a power-l
dependence onr ~not an exponential one!, at temperatures
lower than the critical~the Kosterlitz–Thouless transitio
temperature! the superfluid density becomes nonzero. T
drag of the superflow between two 2D Bose gases, con
ered in this paper, is connected with a finite value of t
superfluid density, and that is why it decreases with incre
ing temperature. The density and phase operator appro
used in this paper, is not based on the existence of the Bo
Einstein condensate. Moreover, the power-law asympt
behavior of the density matrix can be easily derived in t
approach with inclusion of thermal excitations described
the HamiltonianH2 . But at the same level of approximatio
we do not find any crucial influence of the two
dimensionality on the drag phenomena.

4. THE VALUE OF THE DRAG IN ATOMIC BOSE GASES

Let us present some estimates for the value of the dra
atomic Bose gases. For simplicity we specify the caser1

5r25r and T50. It is convenient to introduce the dra
factor f dr5rdr /(r2rdr), which gives the ratio between th
currents in the drag and in the drive traps in the absence
phase gradient in the drag trap. Taking into account thatrdr

!r, we use the approximate expressionf dr5rdr /r for fur-
ther analysis.

The value off dr depends on the interaction parametersg
and g8. The parameterg can be expressed in terms of th
dimensionless effective ‘‘scattering length’’ã:

g5
2A2p\2

m
ã. ~38!

In a quasi-two-dimensional trap the effective scatter
length is connected with the 3D scattering lengtha and the
oscillator length in thez direction l z5A\/mvz by the rela-
tion ã5a/ l z , which is valid fora! l z ~Ref. 16!. We intro-
duce an interlayer dimensionless effective ‘‘scatteri
length’’ ã8 that is connected with the interlayer interactio
parameterg8 by the relation

g85
2A2p\2

m
ã8. ~39!

Substituting Eqs.~38! and ~39! into Eq. ~34!, we obtain the
drag factor in the form

f dr5
1

12
A2

p

~ ã8!2

ã
. ~40!

Equation~40! is valid for uã8u!ã, but one can expect that i
is approximately correct atuã8u'ã ~we emphasize that in
any case the stability condition requires that the inequa
uã8u,ã be satisfied!.
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To estimate the value ofuã8u we should specify the
mechanism of interlayer interaction. Let us first consider
interaction corresponding to the ‘‘tail’’ of the van der Waa
potential:

V12
vdW~r !52

C6

~r 21d2!3 . ~41!

HereC6 is the van der Waals constant andd is the interlayer
distance. The Fourier component of the potential~41! is

V12
vdW~k!5E d2rV12

vdW~r !eikr 52
pC6

4d2 k2K2~kd!, ~42!

whereK2(x) is the modified Bessel function of the seco
kind. Taking into account that the van der Waals interact
is short ranged, we can evaluateg8 as g85V 12

vdW(k→0)
52pC6 /(2d4). This yieldsuãvdW8 u'Ap/2C6m/(4\2d4).

This result can be obtained in a more rigorous way. O
approach is easily generalized to the case of an arbit
central force interlayer interaction potential. To do this, o
should redefine the quantitygk as

gk5V12~k!ekA r1r2

E1kE2k
~43!

and substitute this definition~instead of Eq.~19!! into the
formulas for rsl and rdr obtained in the previous Section
Using Eq.~34!, one can present the drag factor~for T50 and
r15r2) in the form

f dr5
1

16p2

m2

\4ã
Ap

2 E
0

`

dx
x2@V12~q0x!#2

~x211!5/2 ~44!

with q05A8A2prã. Substituting Eq.~42! into Eq.~44!, we
find

f dr5
1

12S C6m

4\2d4D 2 1

ã
Ap

2
FvdW~dq0!. ~45!

Here the function

FvdW~x!5
3x4

4 E
0

`

dy
y6

~11y2!5/2K2
2~xy! ~46!

describes the dependence of the drag factor on the densr.
Comparing Eqs.~46! and ~40!, we obtain the following ex-
pression for the modules of the effective interlayer scatter
length:

uãvdW8 u5Ap

2

C6m

4\2d4 AFvdW~dq0!. ~47!

The dependence of the factorAFvdW on the parameterdq0 is
shown in Fig. 2. One can see from this figure that atdq0

!1 ~which corresponds to the low density limit! the factor
AFvdW in Eq. ~47! is close to unity, and we arrive at th
expression foruãvdW8 u given above.

Due to the short-range nature of the van der Waals in
action the interlayer effective scattering length decrea
quickly with increasingd. Therefore, the interlayer distanc
d should be rather small to achieve an observable valu
the drag. Using a typical value ofC6 (C6'3
310257 erg•cm6) and taking d'10 nm and m587 a.u.
~Rb!, we obtain the estimateuãvdW8 u'1021.
n
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The quantitiesl z anda can be controlled in experiments
The first of these is controlled by changing the profile of t
confining potential in thez direction, and the latter, by tuning
the magnetic field to the value close to the Feshbach re
nance field.17–19 Near this resonance the scattering leng
changes sign, and a situation with rather small 3D scatte
lengtha ~much smaller than the value ofl z , which, in turn,
has to be smaller thand/2) can be realized. Using this pos
sibility, one can tune the quantityã close to the value of
uãvdW8 u and obtain the drag factorf dr'731023.

Off resonance the typical values of the 3D scatter
length lie in the interval 3–5 nm, and forl z,d/2 and d
'10 nm the estimateã5a/ l z is not applicable. In the
ultra-2D limit (l z /a!1) the interaction parameter can b
evaluated by using the formula20

g5
4p\2

m

1

@ ln~ra2!#
.

For typical densitiesr5108– 1010 cm22 this yields ã
50.2– 0.4, and the drag factorf dr'(2 – 3)3103.

At d*100 nm the drag caused by the van der Wa
interaction becomes negligibly small. But in this last case
dipole–dipole interaction may give an essential contribut
to the drag. Let us consider the situation where the dip
moments of the atoms are aligned in the direction perp
dicular to the layers. Then the interaction potential has
form

V12
d2d~r !5D2

r 222d2

~r 21d2!5/2, ~48!

whereD is the dipole moment. The Fourier component
the potential~48! reads as

V 12
d2d~k!522pD2ke2kd. ~49!

Substituting Eq.~49! into Eq. ~44!, we obtain

f dr5
1

12S D2m

\2d D 2 1

ã
Ap

2
Fd2d~dq0!, ~50!

where

Fd2d~x!53x2E
0

`

dy
y4

~11y2!5/2e22xy. ~51!

FIG. 2. The density-dependent factors in the effective interlayer scatte

length versus the parameterdq05A8A2prd2ã. Solid curve—AFvdW ~van
der Waals interaction!; dashed curve—AFd2d ~dipole–dipole interaction!.
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One can see that Eq.~50! is reduced to Eq.~40! under the
definition

uãd2d8 u5
D2m

\2d
Ap

2
AFd2d~dq0!. ~52!

The dependenceAFd2d(dq0) is also shown in Fig. 2. In
contrast to the previous case, the value ofãd2d8 approaches
zero in the low density limit. But atdq0.0.1, which corre-
sponds tor.1022d22/(8A2pã), one can neglect the de
pendence off dr on the density and put the factorAFd2d

'0.2. For the estimates given below we assume that
conditiondq0.0.1 is fulfilled.

For the magnetic dipole–dipole interactionD is the
magnetic dipole moment of the atoms. The magnetic dipo
can be aligned in the same direction if a constant magn
field is applied to the system. Takingd5100 nm, D5mB

~the Bohr magneton!, andm587 a.u., we obtainuãd2d8 u'3
31024. In the case whenã is tuned to the valueuãd2d8 u, one
can achieve a drag factorf dr'231025.

For Bose atoms with large magnetic dipole moments
value can be much larger. A good candidate atom is CrD
56mB). The possibility of realizing a Cr Bose–Einste
condensate is discussed in Ref. 21. Form552 a.u.,
D56mB , and d5100 nm we obtain the valueuãd2d8 u
'631023 and, hence, the maximum drag factorf dr

'431024.

5. THE ‘‘DRAG FORCE’’ AS AN ANALOG OF THE VECTOR
POTENTIAL

In Sec. 3 we compute the drag current directly. The sa
results can be obtained from an analysis of the dependen
the free energy of the system on the phase gradients. The
energy of the system can be found from the common th
modynamic relation

F5H01Ezero1T (
l5a,b

(
k

lnF12expS 2
El~k!

T D G .
~53!

Here the quantityH0 given by Eq.~7! is the classical energy
of the system, and

Ezero5
1

2 (
l5a,b

(
k

@El~k!2ek# ~54!

is the energy of the zero-point fluctuations.
Substituting the spectra~26!, ~27! into Eq. ~53! and ex-

panding the final expression in powers of the phase gr
ents, we find the following expression for the free energy

F5F01E d2r
\2

2m
@rs1~¹w1!21rs2~¹w2!2

2rdr~¹w12¹w2!2#1higher order terms, ~55!

whereF0 does not depend on the phase gradients, and
quantitiesrsl andrdr are determined by expressions~31! and
~32!. One can see that the answer~29!–~32! obtained in Sec.
3 by another method can also be found from Eq.~55! using
the relation

j l5
1

\S

]F

]~¹w l !
. ~56!
e

s
ic

is

e
of

ree
r-

i-

he

Relation~55! is more instructive in the sense that it dem
onstrates an analogy between the drag effect in superfl
and the exciting of a supercurrent by an external magn
field in superconductors. To illustrate this analogy let us c
sider two ring-shaped traps and fix the phase gradient in
drive trap~trap 2 in the notation used below!. Then the free
energy as a function of the phase gradient in the drag
~trap 1! can be presented in the form

F5const1
p\2w

mR
r̃s1~F1Fdr!

2, ~57!

whereR is the radius of the ring,w is its width, r̃s15rs1

2rdr ,

F5
1

2p R
C
dl¹w1 ~58!

~hereC is a contour around the ring! is the winding number
for the phasew1 , and

Fdr5
rdr

r̃s1

1

2p R
C
dl¹w2 ~59!

is the winding number for the phasew2 times the drag factor.
In deriving~57! we, for simplicity, neglect the dependence
the densities on the coordinate inside the traps.

Since the value ofF must be an integer, the minimum o
the free energy atuFdru,1/2 is reached forF50. In this
case the phase gradient in the drag trap is equal to zero,
the superfluid current in the drag trap flows in the same
rection as in the drive trap. IfuFdru.1/2 the free energy
reaches its minimum at nonzeroF, and a phase gradient i
induced in the drag trap. Then, together with the drag c
rent, a counterflow current appears in the drag trap~depend-
ing on the value ofFdr the total current in this trap can b
parallel or antiparallel to the current in the drag trap!. Just the
same situation takes place in a superconducting ring w
nonzero magnetic flux inside the ring. Thus, in two-rin
Bose systems the quantityFdr plays the same role as a
external magnetic flux~measured in units of flux quanta! in
superconducting circuits.

To realize this situation experimentally one should cre
a circulating superflow in the drive trap. This can be done
elliptic rotating deformation of this trap. The rotation can
switched off when a superflow has been created. The va
of the drag current can be found from measurement of
angular momentum of the drag trap. At present a numbe
methods for measuring this quantity have been reali
experimentally.22–25 The methods are based on the study
the dynamics of collective excitations, on the investigation
interference phenomena under hyperfine state transiti
and on the observation of the dynamics of expansion of
Bose cloud.

To extend the analogy with superconductors, let us c
sider the case where a drag trap of ring geometry contai
Josephson weak link. Then the free energy as a functio
the phase shiftDw across the link reads as

F5const2EJ cos~Dw!1
p\2w

mR
r̃s1S Dw

2p
1FdrD 2

, ~60!
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where EJ is the Josephson energy. AtEJ.(EJ)c

5\2wr̃s1 /(2pRm) and uFdru51/2, 3/2,... the dependenc
F(Dw) has two degenerate minima. IfEJ /(EJ)c21!1
these minima are very shallow, and one can expect an ob
vation of a superposition of two quantum states with diff
ent phase shifts~and with the superfluid currents flowing i
opposite directions!. This is the same regime that is require
for implementing the superconducting Josephson flux~per-
sistent current! qubit.26 While in alkali-metal Bose gases th
drag factor is rather small, and even under the most favor
conditions the maximum value that can be reached is of
der 1022– 1023 ~see Sec. 4!, the caseuFdru'1/2 can be re-
alized in ring-shaped traps of large radius (102– 103 mm).

In closing, we would like to mention another system
which the effects described in this paper may take pla
namely, excitonic or electron–hole Bose liquids in electr
bilayers. In these systems electron–hole pairs with com
nents belonging to adjacent layers may form a superfl
state. The effect was first predicted in Refs. 27 and 28, an
was recently confirmed experimentally in Ref. 29. The
perfluid drag effect may emerge in two parallel bilaye
~four-layer system!. In the four-layer system the intralaye
~in the same bilayer! and interlayer~between bilayers! inter-
actions are of the same order: both of them are determ
by the dipole–dipole mechanism. In such a case the dip
moment of the pair is large. Therefore, one can expect
the nondissipative drag in these systems will be rat
strong.
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Transport of charge carriers in a superconductor–semiconductor contact
G. V. Kuznetsov*
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The changes in the passage of charge carriers through a superconducting metal–semiconductor
contact with a tunnel-thin intermediate insulating layer upon the transition of the metal to
the superconducting state are analyzed. The transition of the metal to the superconducting state
leads to a decrease of the forward current and an increase of the reverse current of
thermionic emission in such a contact. For a tunneling mechanism of carrier transport a decrease
in thickness of the intermediate insulating layer and in the degree of doping of the
semiconductor leads to an increase in the nonlinearity parameter of the current–voltage
characteristic. ©2004 American Institute of Physics.@DOI: 10.1063/1.1808195#
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INTRODUCTION

Metal–semiconductor contacts are among the basic
ments of modern integrated electronics, and investigation
the influence of superconductivity on the passage of cur
in such contacts is a topical problem. There is also interes
the possibility of regulating the properties of a potential b
rier by changing the degree of doping of the semiconduc
material. Electron transport processes in superconduc
semiconductor contact structures are usually analyzed in
framework of a tunneling mechanism, which is domina
under conditions of low temperatures and sufficiently th
potential barriers.1–3 The current–voltage~I–V! characteris-
tics of such contacts are similar to the corresponding cha
teristics of metal–insulator–superconductor structures~the
role of the normal metal is played by the heavily dop
semiconductor and the role of the insulator, by the spa
charge region of the semiconductor!. The differences are du
solely to the shape of the potential barrier of the spa
charge region. The advent of materials with a significan
higher temperatures of the critical transition to the superc
ducting state has led to a greater role of the above-ba
mechanism of passage of the charge carriers, which mus
taken into account in determining the total current throu
the contact.4,5 Furthermore, in real metal–semiconduct
contacts an intermediate insulator layer is typically presen
the metal–semiconductor interface, the properties of wh
are determined by the nature of the materials in contact
the technology used to fabricate the contact.6 The presence o
such an intermediate layer determines the structure of
potential barrier of the contact and can lead to a substa
change in both the value of the current passing through
interface and its dependence on the applied voltage. In
majority of cases the intermediate layer formed in the fab
cation of a metal–semiconductor contact is not more t
1–10 nm thick, so that it can be regarded as a tunnel-
insulating layer.

In this paper we discuss the process of charge ca
transport through a superconductor–semiconductor con
7781063-777X/2004/30(10)/5/$26.00
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with a tunnel-thin intermediate insulating layer for the ca
of an isotropic superconductor with a wide energy gapD
Þ0 in the density of states. The energy band diagram of s
a contact is shown in Fig. 1, wherewb is the height of the
potential barrier,eVb is the diffusion potential,eVn is the
difference of the energies between the Fermi level and
bottom of the conduction band~for a degenerate semicon
ductoreVn.0), D is the superconductor energy gap para
eter, andV5V11V2 is the voltage applied to the contact (V1

and V2 are the voltage drops across the intermediate la
and across the space-charge region, respectively!. The pas-
sage of charge carriers is analyzed for ann-type semicon-
ductor in the approximations of diode theory~the energy will
be measured from the bottom of the conduction band of
semiconductor,Ec50). Calculations were done for the cas
of an isotropic superconductor characterized by the prese
of an energy gap in the density of states.

If the height of the potential barrierwb@kT and if the
passage of current does not disturb the thermodynamic e
librium in the emission region, then the total currentI t

through the contact will be determined by the difference
tween the fluxes of carriers from the surface to the me
Jsm, and from the metal to the superconductor,Jms ~Ref. 7!.

FIG. 1. Energy diagram of a superconductor–semiconductor contact.
© 2004 American Institute of Physics
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The number of electrons passing from the semicondu
into the metal in the energy interval fromE to E1dE is
proportional to the number of filled states in the semicond
tor, Ns(E) f (E)dE, the number of unoccupied states in t
metal, Nms(E2eV)@12 f (E2eV)#dE, and the probability
of passage of an electron through the potential barr
Psm(E):

Jsm}Psm~E!Ns~E!Nms~E2eV! f ~E!@12 f ~E2eV!#dE.
~1!

Analogously, one can write for the flux of electrons fro
the metal into the semiconductor

Jms}Pms~E!Ns~E!Nms~E2eV! f ~E2eV!@12 f ~E!#dE.
~2!

In expressions~1! and~2! we have introduced the following
notation:Ns(E)5@4p(2m* )3/2(E2Ec)

1/2#/h3 is the density
of states in the conduction band of the semiconduc
Nms(E2eV)5Nm(E2eV)ns(E2eV) is the density of
states in the conduction band of the superconducting m
Nm(E2eV)5@4p(2m* )3/2(E2Ec1eV)1/2#/h3 is the den-
sity of states in the normal metal;ns(E)5uE2eVn

1eVu@(E2eVn1eV)22D2#21/2 is the superconducting
structure of the density of states in the metal; and,f (E)
5@11exp(E2eVn /kT)#21 and f (E2eV)5@11exp(E2eVn

1eV/kT)#21 are the Fermi distribution functions in the sem
conductor and metal, respectively. In calculating the curr
it is usually assumed that the probability of passage of
charge carriers is independent of their direction of moti
Psm(E)5Pms(E)5P(E), and the density of states in th
semiconductor and in the nonsuperconducting metal
slowly varying functions equal to their value at the Fer
surface:Ns(E)5Ns(0) and Nm(E2eV)5Nm(0). The ex-
pression for the total current densityI t is obtained after in-
tegration over all possible energies:

I t5
Gn

e H E
eVn1D2eV

`

P(E)ns(E)[( f (E)2 f (E2eV)]dE

1E
0

eVn2D2eV

P(E)ns(E)[( f (E)2 f (E2eV)]dEJ ,

~3!

whereGn5eANn(0)Nm(0) is the conductance of the con
tact in the nonsuperconducting state, andA depends on the
geometry of the interface. Equation~3! determines the tota
number of carriers that are capable of crossing the inter
in the superconductor–semiconductor contact at a temp
ture T,Tc .

For determining the energy dependence of the proba
ity of transition of the charge carriers through the poten
barrier shown in Fig. 1 we can use the expression obtai
for P(E) in the WKB approximation,6 which in our notation
has the form

P~E!5P0 exp$2x@~U11eVb2eV12E!3/2

2~U21eVb2E!3/2#%expH 2
eVb

E00
S 12

E

eVb
D 1/2

2
E

eVb
lnF S eVb

eVn
D 1/2

1S eVb2E

eVn
D 1/2G J , ~4!
or

-

r,

r,

al;

t
e
:

re
i

ce
ra-

il-
l
d

where

x5
8p~2m* !1/2d

3h~U12U22eV1!
; E005

eh

4pS n0

«0«2m* D 1/2

;

P0;1 is a numerical coefficient.
The first exponential factor in expression~4! determines

the transparency of the trapezoidal barrier of the intermed
layer and the second, that of the space-charge region o
semiconductor in the approximation of a uniform impuri
distribution.

ABOVE-BARRIER PASSAGE OF CHARGE CARRIERS

Determination of the thermionic component of the cu
rent, I th , through a superconductor–semiconductor cont
reduces to finding the number of carriers passing above
maximum of the potential barrier:E>eVb5wb1eVn

2eV2 .

Voltage interval eVËwb

For wb2eV@kT for the whole range of possible ene
gies of above-barrier electronsE>eVb the following rela-
tions hold:

expS E2eVn

kT D@1, expS E2eVn1eV

kT D@1,

in which case we have for the difference of the Fermi dis
bution functions

f ~E!2 f ~E2eV!5F12expS 2
eV

kTD GexpS 2
E2eVn

kT D .

To determine the influence of the superconducting tr
sition of the metal on the I–V characteristic of the contact
take into account those charge carriers with energies clos
the maximum of the potential barrier, which give the ma
contribution to the thermionic component of the curre
Keeping only the first term of the series expansion of
function ns(E) about the maximum of the potential barrie
eVb5wb1eVn2eV2 , we obtain

ns~V!'F12S D

wb1eV1
D 2G21/2

.

The transparency coefficient for the above-barrier electr
is determined solely by the contribution of the intermedia
layer, and, according to~4!, in the energy regionE;eVb we
have

Pn~V!5P0 exp$2x@~U12eV1!3/22~U2!3/2#%. ~5!

As a rule D,wb , and therefore after integrating~3!
from eVb to ` with the values obtained forPn(V) andns(V)
taken into account, we find for the thermionic current dens

I th5A* T2Pn~V!ns~V!expS 2
wb

kTD FexpS eV2

kT D
2expS 2

eV1

kT D G . ~6!

In Eq. ~6! we have used the notation (kT/e)Gn5A* T2,
which follows from requirements of consistency of expre
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sion ~6! for D→0, d→0 with the known expression for th
thermionic emission current in an ordinary meta
semiconductor contact:7

I th5I sFexpS eV

kTD21G5A* T2 expS 2
wb

kTD FexpS eV

kTD21G ,
~7!

where A* 54pem* k2/h3 is the Richardson constant fo
thermionic emission.

Voltage interval eVÌwb

In this voltage interval the maximum of the potenti
barrier of the Schottky regioneVb5wb1eVn2eV2 is found
below the Fermi leveleVn of the semiconductor. For carrier
with energyE;eVb we have, foreV2wb@kT

expS E2eVn

kT D!1, expS E2eVn1eV

kT D@1

and

f ~E!2 f ~E2eV!512expS 2
eV

kTD'1.

Using the value ofP(E) obtained forE;eVb @Eq. ~5!#, after
evaluation of the integral~3! between the limitseVb andeVn

we obtain a nearly linear dependence of the current on
applied voltage in the intervaleV.wb :

I th5A* T2Pn~V!F12expS 2
eV

kTD G
3

@~eV!22D2#1/22@~wb1eV1!22D2!] 1/2

kT
. ~8!

The influence of superconductivity of the metal on t
thermionic emission current at a fixed value of the voltageV
across the contact can be estimated from the value of
ratio of the current in the superconducting stateI th(S) to the
current in the normal stateI th(S)/I th(N). For ‘‘intimate’’
contact (d50) the ratioI th(S)/I th(N) is determined by the
value ofD/wb and is independent of the applied voltage~Fig.
2!. In the casedÞ0 the parameters of the I–V characteris
should be determined using the known relations for the
distribution of voltage in a metal–semiconductor contact:3

FIG. 2. Dependence of the current ratioI th(S)/I th(N) on the parameter ratio
D/wb (d50).
e

he

-

eV152~wb1eVn!
«2d

«1L0

3H 11
«2d

«1L0
2F S 11

«2d

«1L0
D 2

2
eV

wb1eVn
G1/2J ,

~9!

where

L5F2«0«2~wb1eVn2eV2!

e2n0
G1/2

is the thickness of the Schottky barrier,L0 is the value ofL
at eV50, eVn5(3n0/8p)2/3h2/m* for a degenerate semi
conductor,«1 and«2 are the dielectric constants of the inte
mediate layer and the semiconductor, respectively, andn0

and m* are the density and effective mass of the cha
carriers in the semiconductor.

Figure 3 shows the dependence of the ra
I th(S)/I th(N), calculated according to~6!–~9!, on the voltage
V applied to the contact for different values of«2d/«1L0 .
With increasing thicknessd of the intermediate layer the
ratio I th(S)/I th(N) decreases for forward voltages and i
creases for reverse voltages~curves2 and3 in Fig. 3!. The
dependence ofI th(S)/I th(N) on V and d derives from the
dependence on the applied voltage of the heighteVb of the
Schottky potential barrier, which determines the energy
the above-barrier charge carriers. With increasing forw
voltage the the value ofwb1eV1 increases, the influence o
the superconducting structure of the density of states in
metal becomes weaker, andI th(S)/I th(N)→1.

The difference in the changes of the forward and reve
currents upon the transition of the metal to the supercond
ing state can even lead to a change in sign of the rectifica
in the metal–semiconductor contact at large values of
ratio «2d/«1L0 . Experimentally the change in sign of th
rectification in metal–semiconductor contacts has been
served for YBa2Cu3O72x– Si structures at a high degree
doping of the silicon ~small values of L0)8 and for
YBa2Cu3O72x– NdGaO3– SrTiO3 structures~large values of
«2).9

Nonlinearity parameter of the I–V characteristic

The nonlinearity parametera5d ln I/dV characterizes
the degree of current growth with increasing applied forwa

FIG. 3. Dependence of the current ratioI th(S)/I th(N) on the applied voltage
(D/wb50.25) for different values of«2d/«1L0 : 0 ~1!, 0.1 ~2!, 0.5 ~3!.
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voltage and is one of the main parameters of a met
semiconductor contact. For a metal–semiconductor con
at eV@kT we obtain, after differentiation of~6!,

a5
e

kT

dV2

dV
1

d ln Pn~V!

dV
1

d ln ns~V!

dV

5
e

kT F12
dV1

dV S 12at

kT

e
2aD

kT

e D G , ~10!

where

dV2

dV
5S 11

«2d

«1L D 21

;
dV1

dV
5

«2d

«1L S 11
«2d

«1L D 21

;

d ln Pn~V!

dV
5at

dV1

dV
;

d ln ns~V!

dV
5aD

dV1

dV
;

at5exF3

2
~U12eV1!1/22

~U12eV1!3/22U2
3/2

U12U22eV1
G ;

aD52eH ~wb1eV1!F S wb1eV1

D D 2

21G J 21

.

Figure 4 shows the dependence of the parametera on
the applied voltage. The calculation was done for the inter
of voltagesU1@eV1 at at50.5, wb50.2 eV, D/wb50.25,
«2d/«1L051. For d50 the transition of the metal to th
superconducting state does not lead to changes in the pa
eter a. With increasingd the influence of the supercondu
tivity grows, causing a slight decrease in the parametea
~curve3 in Fig. 4!.

TUNNELING THROUGH THE POTENTIAL BARRIER REGION

In determining the tunneling component of the curre
through a superconductor–semiconductor contact it is ne
sary to take into account in~3! the energy dependence of th
probability of transition of a charge carrier through the p
tential barrier region. For heavily doped semiconductors
sufficiently low temperatures (E00@kT) the current through
the contact is determined by the tunneling of electrons h
ing energies close to the Fermi level~field emission!. If the
Fermi energy is small compared with the effective barr
height, i.e., if eVb@eVn , then in the region of energie
E;eVn we obtain for the transparency coefficient of t
barrier ~4!, after suitable manipulations,

FIG. 4. Influence of the superconductivity of the metal on the nonlinea
parametera for the thermionic component of the current:1—d50; 2—
«2d/«1L051, D50; 3—«2d/«1L051, D/wb50.25.
–
ct

al

m-

t
s-

-
t

v-

r

P~V!5P0 exp$2x@~U11wb2eV!3/22~U21wb

2eV2!3/2#%expS 2
wb1eVn2eV2

E00
D . ~11!

Voltage interval ÀDÏeVÏD

By taking the transparency coefficientPn(V) out from
under the integral sign in~3!, one can determine the I–V
characteristic of the contact for the voltage interval2D
<eV<D, where the influence of the superconducting st
on the tunneling current is the most substantial. The calc
tion is done by making the change of variablesx5E2eVn

2D1eV in the first andx52E1eVn2D2eV in the sec-
ond integral of formula~3!. For D@kT the relation

f ~E!2 f ~E2eV!5expS 2
x1D

kT D FexpS eV

kTD21G
holds for the first and

f ~E!2 f ~E2eV!5expS 2
x1D

kT D F12expS 2
eV

kTD G
holds for the second term of~3!, and after suitable manipu
lations we obtain

I tun5
Gn

e
P~V!expS 2

D

kTD FexpS eV

kTD2expS 2
eV

kTD G
3E

0

` x1D

Ax~x12D!
expS 2

x

kTDdx. ~12!

The integral in~12! can be found in tables of Laplac
transforms:10

E
0

` ~x1D!exp~2x/kT!

Ax~x12D/kT!
dx5D expS D

kTDK1S D

kTD ,

whereK1(D/kT) is the modified Bessel function of the se
ond kind of order one. ForD@kT we can use the following
asymptotic expression for the Bessel function:

K1S D

kTD'S pkT

2D D 1/2

expS 2
D

kTD
and, after substitution, obtain for the current densityI tun

I tun5A* T2P~V!S pD

2kTD 1/2

expS 2
D

kTD FexpS eV

kTD
2expS 2

eV

kTD G . ~13!

Voltage interval eVÌD

In the voltage intervaleV.D the tunneling current is
determined by charge carriers with energyE<eVn , for
which atD@kT the following relations hold:

expS E2eVn

kT D!1, expS E2eVn1eV

kT D@1

and

f ~E!2 f ~E2eV!5F12expS 2
eV

kTD G .

y
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After evaluation of the integral~3! between the limits
eVn1D2eV and eVn we obtain a close to linear depen
dence of the tunneling component of the currentI tun on the
applied voltage:

I tun5A* T2P~V!F12expS 2
eV

kTD G @~eV!22D2#1/2

kT
.

~14!

The asymmetry of the tunneling I–V characteristic o
superconductor–semiconductor contact is due to the de
dence of the transparency coefficientP(V) on the applied
voltage. ForD→0, d→0 relation~14! reduces, up to a pre
exponential factor, to the well-known expression for the tu
neling current in an ordinary metal–semiconductor conta7

I tun5I stexpS eV

E00
D F12expS 2

eV

kTD G . ~15!

Nonlinearity parameter of the I–V characteristic

For the tunneling charge carriers with energyE;eVn in
the voltage interval2D<eV<D one can neglect the depen
dence of the transparency coefficient of the insulator laye
the applied voltage. ForeV@kT the nonlinearity paramete
a5d ln I/dV can be written in the form

a5
e

kT
1

d ln P~V!

dV
'

e

kT F11
kT

E00

dV2

dV D G . ~16!

Figure 5 shows the dependence of the parametera on
the ratio«2d/«1L for the tunneling component of the curren
calculated according to relation~16!. There is a characteristi
growth of the values of the parametera with decreasing
thicknessd of the intermediate layer, this growth being mo
substantial at large values of thekT/E00, i.e., at higher tem-
peratures and lower carrier densities in the semiconduc
The dependence of the parametera described by formula

FIG. 5. Curves of the parametera for a superconductor–semiconduct
tunnel contact for different ratioskT/E00 : 0.1 ~1!, 0.5 ~2!, 1 ~3!.
n-

-
:

n

r.

~16! can be compared with the known experimental results
a study of ‘‘super-Schottky’’ diodes.11 It is clear that the pres-
ence of the intermediate insulating layer at t
superconductor–semiconductor interfaces is one of the m
obstacles to achieving maximal values of the nonlinea
parameter of the I–V characteristic in such diodes. At
same time, for superconductor–semiconductor conta
based on cuprate metal oxides the tunneling processes
complicated to a considerable degree by the anisotropy of
properties of the high-temperature superconductor.12,13

CONCLUSIONS

We have analyzed the influence of an intermediate in
lating layer on the thermionic and tunneling components
the current in a superconductor–semiconductor contact.
transition of the metal to the superconducting state caus
decrease of the forward current and an increase of the rev
current of thermionic emission in a metal–semiconduc
contact. In the case of ‘‘intimate’’ contact, at intermedia
layer thicknessd50, the ratio of the above-barrier current
the superconducting and nonsuperconducting states is i
pendent of the applied voltage and increases with increa
ratio D/wb . In a superconductor–semiconductor tunneli
contact the nonlinearity parameter of the I–V characteris
a5d ln I/dV decreases with increasing relative thickness
the intermediate insulating layer and increasing degree
doping of the semiconductor.
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Magnetization of a nonferromagnetic metal spacer sandwiched between two
magnetically ordered layers

V. Yu. Gorobets*

Institute of Magnetism of the National Academy of Sciences of Ukraine, 36-b Vernadsky Ave. Kiev 03142,
Ukraine
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The exchange coupling of magnetically ordered layers~MOLs! through a nonmagnetic metallic
spacer is calculated. The induced magnetization in the spacer, taking into account the
influence of an external magnetic field, is calculated, too. This calculation shows that the energy
of coupling of the MOLs through the nonmagnetic metallic spacer is a long-periodic
function of the spacer thickness and magnetic field, i.e., the exchange coupling between the
layers varies from ferromagnetic to antiferromagnetic andvice versadepending on the spacer
thickness and magnetic field. Also this calculation shows that in nonferromagnetic spacer
the induced magnetization can undergo many complete rotations, depending on distance to the
boundaries with the MOLs. Moreover, absolute value of the induced magnetization decays
nonmonotonically with distance from the interfaces inside the spacer. It is shown that the character
of the decay of the absolute value of the magnetization from the interfaces into the interior
of the spacer is influenced by magnetic field. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1808196#
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In the last decade much effort has been dedicated to
study of the magnetic coupling in nanoscale multilayer s
tems, because ultrathin magnetic films exhibit unusual m
netic configurations and couplings not found in bu
systems.1,2 In particular, in trilayer systems of th
ferromagnet–nonmagnetic spacer–ferromagnet type~e.g.,
Fe/Cr/Fe, Fe/Cu/Fe, etc.! long-periodic oscillating exchang
coupling as a function of spacer thickness has been found3–7

This means that the coupling changes from antiferromagn
to ferromagnetic with spacer thickness. For deeper un
standing of indirect exchange coupling through a nonm
netic spacer one needs to investigate the magnetic prope
of a nonmagnetic spacer in a multilayer system. Moreo
investigation of the magnetic properties of a nonmagn
spacer sandwiched between ferromagnetic layers is very
portant not only because of oscillating exchange coupli
but also because the contact of a ferromagnetic layer wi
nonmagnetic spacer must change the electronic state o
nonmagnetic spacer. Also, many experimental and theo
cal works are dedicated to the study of such trilayer syste
as antiferromagnet–nonmagnetic spacer–antiferromag
Such systems attract much research interest because the
be used in magneto-resistive devices, for example, in m
netic field sensors, magnetic heads in memory devices,
In view of the aforementioned problems some studies h
been devoted to investigation of the distribution of magn
zation induced in a nonmagnetic metal spacer sandwic
between two ferromagnetic layers. Of great interest is
question of the possibility of inducing magnetization in
material which in the normal state is nonmagnetic but wh
can be polarized if it borders with a magnetically order
7831063-777X/2004/30(10)/7/$26.00
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material.8 Magnetic polarization of a nonmagnetic mater
by a magnetically ordered material is usually called the pr
imity effect. The experimental study of the proximity effe
is described in some works.9–11 For example, the magneti
polarization of a nonmagnetic Au spacer in multilayer sy
tems of the ferromagnet–nonmagnetic spacer–ferroma
type has been measured with the help of Mo¨ssbauer spectros
copy using probe atoms in an Au spacer.12 A small induced
magnetic moment in Cu at a Co/Cu interface was detecte
Refs. 13 and 14 using circular dichroism and in Ref. 15 us
NMR. The oscillating exchange coupling between two fer
magnetic layers separated by a nonmagnetic metal spac
explained in some theoretical works, usually using RKK
coupling.16 Moreover, oscillatory exchange coupling b
tween two ferromagnetic layers separated by a nonmagn
metal spacer layer is associated with oscillation of the m
netic moment in the nonmagnetic spacer layer.3,17–19 The
magnetic moment induced in a nonmagnetic metallic spa
between two ferromagnets with magnetizations turned a
arbitrary angle is calculated theoretically in Ref. 17. As
shown in Ref. 17, the induced magnetization rotates alon
complex three-dimensional spiral and can undergo m
complete rotations.

In this work we propose a phenomenological method
calculating both the oscillating exchange coupling of ma
netically ordered layers through a nonmagnetic meta
spacer and the induced magnetization in a the nonmagn
spacer using a spin-density model20 similar to the Ginzburg–
Landau model.21 In comparison with Ref. 17 the approac
proposed in our work allows one to calculate the magnet
tion induced in the spacer and the oscillating exchange c
© 2004 American Institute of Physics
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pling taking into account the influence of external magne
field. The approach can be used whether the magnetic
ordered layers are ferromagnetic or antiferromagnetic.
consider the system ‘‘magnetically ordered laye
nonmagnetic metallic spacer–magnetically ordered lay
~MOL–NMMS–MOL! in magnetic field, let us consider th
case when external magnetic fieldH is parallel to thez axis
and directed perpendicularly to the plane of the spacer.
interface of the spacer with the first MOL is situated in t
xy plane, the interface of the spacer with the second MO
situated in thez5L plane parallel toxy. Following Ref. 20,
let us define the order parameter for the spacer as the
component function

c5S F1

F2
D , ~1!

in terms of which the magnetic moment density of the spa
is written as

M5m0c1ŝc, ~2!

where m0 is a phenomenological parameter ands& are the
Pauli matrices. We suppose in our approach that the sta
the MOLs does not depend on the distribution of the or
parameter inside the spacer and is characterized only by
directions of homogenous magnetization. Using the appro
of Ref. 20 and the functional method of the Ginzburg
Landau type for the order parameterc, we write the follow-
ing Lagrangian function:

L5E F1

2
i\~ċ1c2c1ċ !2w~c!Gdr . ~3!

Herew is the energy density written to forth-order acc
racy in powers of the functionc:

w~c!5A¹c1¹c1bc1c1
s

2
~c1c!2

2m0H~c1ŝ2c!, ~4!

whereA, b, ands are phenomenological parameters of t
spacer.

From Eq.~3! in a trivial manner we obtain

i\
]c

]t
5ADc2bc2s~c1c!c1m0Hŝzc ~5!

for the order-parameter function, which depends on time
coordinates inside the spacer. The boundary conditions h
the form

cuz505const, cuz5L5const, ~6!

where the pointsz50 andz5L are the coordinates of th
interfaces~see Fig. 1!. The solution of Eq.~5! is sought in
the form

c5S c1~r !exp~ iv1t !
c2~r !exp~ iv2t ! D . ~7!

By inserting Eq.~7! into Eq. ~3! one obtains the system
of nonlinear equations which determines the dependenc
c1 andc2 on the space coordinatesr :

HDc11a1c12b~ uc1u21uc2u2!c11hc150
Dc21a2c22b~ uc1u21uc2u2!c22hc250, ~8!
c
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whereai5(\v i2b)/A; b5s/A; h5m0H/A.
For simplicity we suppose that the external magne

field H changes the directions of the magnetizations of
MOLs in the same way, i.e., the polar angleu05u0(H) for
the MOL magnetizations is the same, and the difference
their orientation is described only by change of azimu
anglew. We choose the constants in the boundary conditi
~6! taking into account that the magnetic moment density
the spacer at the interfaces must be parallel or antipara
respectively, to the direction of magnetization of the MO
on variation of the sign of the exchange coupling. Also w
suppose that the exchange coupling between the magne
tion in the spacer and the magnetizations of the MOLs
appreciable only within the interfacial regions (a!L), i.e.,
that MOLs influence the spacer only through the bound
conditions ~6!. We assume that the magnetization in t
spacer at the boundaries with the MOLs is parallel to
magnetization of the MOLs. The case when the orientatio
antiparallel can be considered analogously. In accorda
with the above-said, one can write the boundary condit
using a spherical coordinate system~see Fig. 1! and Pauli
matrices, in the form

H M0 sinu05m0~F1* F21F2* F1!uz50

052 im0~F1* F22F2* F1!uz50

M0 cosu05m0~F1* F12F2* F2!uz50

, ~9!

H M0 sinu0 cosw5m0~F1* F21F2* F1!uz5L

M0 sinu0 sinw52 im0~F1* F22F2* F1!uz5L

M0 cosu05m0~F1* F12F2* F2!uz5L

, ~10!

where M0 is the magnitude of the magnetization at t
boundaries, which plays the role of a phenomenological
rameter of our problem. The magnitudeuM u is chosen the
same on both interfaces, equal toM0'm0 /V0 ~whereV0 is
the unit cell volume near the interface of a spacer layer
thicknessa, V05LxLya), taking into account the assumptio
of the strong polarizing effect of MOLs on the magnetizati
of the spacer in the immediate neighborhood of the interfa

It’s easy to see using direct substitution, that

c5S B1eid1eik1re2 ik1zeiv1t

B2eid2eik2reik2zeiv2t D , ~11!

FIG. 1. Direction of magnetization of the spacer at the boundary with
first MOL, z50 ~a!, and with the boundary with the second MOL,z5L ~b!.
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where k i , d i , and v i are real magnitudes, andr5(x,y)
satisfies the system of nonlinear equations~8! if the follow-
ing relations between parameters are fulfilled:

H 2~k1
21k1

2!1a12b~B1
21B2

2!1h50

2~k2
21k2

2!1a22b~B1
21B2

2!2h50
. ~12!

To make the solution~11! satisfy the boundary conditions,
is necessary that

H v15v25v
k25k15k
d22d15w0

, H B15Am0 cos
u0

2

B25Am0 sin
u0

2

, ~13!

k11k25
w12Np

L
,

where the conditions

N50,61,..., m05
M0

m0
~14!

are fulfilled, too. Then the solution satisfying the system
nonlinear equations~8! and the boundary conditions~9!, ~10!
is transformed to the form

c5Am0eivtei ~kr1d!

3S cos
u0

2
expS 2 i H w12Np

2L
1

m0HL

A~w12Np!J zD
sin

u0

2
expS i H w12Np

2L
2

m0HL

A~w12Np!J zD D ,

if wÞ0, H.0, N50, 61,...

c5Am0eivtei ~kr1d!

3S cos
u0

2
expS 2 i H Np

L
1

m0HL

2ANpJ zD
sin

u0

2
expS i H Np

L
2

m0HL

2ANpJ zD D ,

if w50, H.0, N561, 62,... . ~15!

By inserting the solution~15! into relation~12! one obtains

«N5b1m0s1Ak21AS w12Np

2L D 2

1A21S m0HL

w12Np D 2

, ~16!

where «N5\v. Let us assume that Eq.~15! describes the
states of quasiparticles~which we will call magnetized elec
trons! that behave according to Fermi–Dirac statistics. A
cording to Ref. 22 let us define the total number of mag
tized electrons in the spacer magnetically polarized by
MOLs, N0 , as a sum over all possible states of the distrib
tion function. For simplicity we consider the case wh
T50, because the most interesting magnetoresistive pro
ties of multilayered nanostructured systems appear at
temperatures. Then the Fermi–Dirac distribution funct
has the form
f

-
-
e
-

er-
w
n

f 0~«N!5H 1, «N<«F

0, «N.«F
, ~17!

where«F is the Fermi energy of the magnetized electron
According to Eq.~17!, the total number of magnetize

electrons in the spacer is written in the form

N052
LxLy

~2p!2 (
N

E
0

kN
2pkdk, ~18!

whereLx'Ly@L are the dimensions of the spacer in thexy
plane, andkN is the largest possible value of the wave vec
k whenN is fixed.k is calculated as

kN5A«F2b2m0s

A
2S w12Np

2L D 2

2S m0HL

A~w12Np! D
2

.

~19!

It is easy to obtain from Eq.~13! that

nL5
1

2p (
N

kN
2 , ~20!

where n5N0 /(LxLyL) is the density of magnetized elec
trons in the spacer. The components of the specific magn
zation of magnetized electrons in a plane with an arbitr
coordinatez inside the spacer, when Eq.~2! is taken into
account, have the form:

5
MxN5M0 sinu0 cosS w12Np

L
zD

M yN5M0 sinu0 sinS w12Np

L
zD

MzN5M0 cosu0

. ~21!

The averagex component of the specific magnetization
the near-interface spacer layer of thicknessa equals

^MxN&5LxLyE
0

a

M0 sinu0 cosS w12Np

L
zD

dz5

LLxLyM0 sinu0 sinS w12Np

L
aD

w12Np
. ~22!

The averagey component of the specific magnetization
the near-interface spacer layer of thicknessa equals

^M yN&2LxLyE
0

a

M0 sinu0 sinS w12Np

L
zD

dz52

LLxLyM0 sinu0 cosS w12Np

L
aD

w12Np
. ~23!

The averagez component of the specific magnetization
the near-interface spacer layer of thicknessa accordingly
equals

^MzN&5LxLyM0a cosu0 . ~24!

In the limiting case whena!L, the average absolute valu
of the magnetization of near-interface spacer layer,^M &
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5A^MxN&21^M yN&21^MzN&2, equalsLxLyM0a. With the
help of Eq.~17! one can find the magnetization of the nea
interface spacer layer of thicknessa:

M52
LxLyM0

~2p!2 (
N

E
0

kN
2pkdk. ~25!

Taking into account Eq.~20!, one can find thatM
5M0nLxLyL. Using the ratioM05m0 /(LxLya), one can
write

M5
m0nL

a
, ~26!

hence:

n5
Ma

m0L
. ~27!

We denoten05M /m0 andn5a0 /L, wherea05Ma/m0 is a
phenomenological constant.

Taking into account Eqs.~19! and~20!, we obtain a tran-
scendental algebraic equation for finding the Fermi ene
«F :

nL5
1

2p (
N

H «F2b2m0s

A
2S w12Np

2L D 2

2S m0HL

A~w12Np! D
2J , ~28!

where the allowed values ofN are found from the inequality
kN

2 >0. N belongs to

N[F2floorH w

2p
1

m2

2pJ ;2ceilH w

2p
1

m1

2pJ G
øFceilH 2

w

2p
1

m1

2pJ ;floorH 2
w

2p
1

m2

2pJ G , ~29!

where

m15&LA«F2b2m0s

A
2AS «F2b2m0s

A D 2

2S m0H

A D 2

,

~30!

m25&LA«F2b2m0s

A
1AS «F2b2m0s

A D 2

2S m0H

A D 2

,

~31!

ceil is the function that gives the maximal integer closes
a given real number, and floor is the function that gives
minimal integer closest to a given real number. The aver
energy of the spacer is defined by the standard formula

^«&52
LxLy

~2p!2 (
N

E
0

kN
2pk«N~k!dk. ~32!

After simple transformations, Eq.~32! transforms to:

^«&
LxLy

5~b1m0s!nL1
A

4p (
N

H S «F2b2m0s

A D 2

2S w12Np

2L D 4

2S m0HL

A~w12Np! D
4

2
1

2 S m0H

A D 2J ,

~33!
-

y

o
e
e

where^«&/(LxLy) is the energy per unit area of the space
By comparing the experimental data for the exchan

coupling energy between MOLs and the maximal excha
coupling energy between the layers23–29for different types of
trilayer systems with the results of numerical calculatio
using the given model, it was found that if the density
magnetized electronsn equals the tabulated point for th
corresponding metal spacer, then the parametera'1 Å and
the parameterA may occupy the region 10230 erg•cm2,A
,10227 erg•cm2. For example, Eq.~28! was solved numeri-
cally for the following values of the spacer paramete
A50.15310230 erg•cm2, n55.931022 cm23, u05p/2,
a51 Å. The curves of the Fermi energy as a function of t
spacer thickness, magnetic field, and the anglew, while the
remaining parameters are fixed, are shown, are performe
Figs. 2, 3, and 4, respectively. It is obvious from the plo
that the Fermi energy has oscillating dependence
the spacer thickness and on magnetic field. These oscillat
are a purely dimensional effect analogous to that descri
Ref. 22.

The results of numerical calculation of^«&/(LxLy) for
the parameters of the spacer, taking into account calcul
numerically Fermi energy, are shown in Figs. 5 and 6. It
obvious from Figs. 5 and 6 that both^«&/(LxLy) and«F also
have oscillating behavior depending on the spacer thickn

FIG. 2. Dependence of the Fermi energy on the anglew. Dashed lineH
5800 Oe, dotted lineH5400 Oe, solid lineH50 Oe. z05A(3p2N)2/3,
z5«F2b2m0s, L523 Å.

FIG. 3. Dependence of the Fermi energy on the spacer thickness. Solid
w50, dashed linew5p; H50.
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and magnetic field.̂ «&/(LxLy) and «F also have minima
when w50 or w5p, depending on the spacer thicknes
magnetic field, and other parameters. That is, the ene
optimal configuration is the parallel or antiparallel mutu
orientation of the projections of the magnetizations of
MOLs on thexy plane.

As is seen from Fig. 7, the exchange coupling of t
MOLs through the metal spacer has a long-periodic osc
tory dependence on the spacer thicknessL, i.e., the exchange
coupling changes from antiferromagnetic to ferromagne
depending on the spacer thickness. As is seen from Fig
the given theoretical calculation shows thatJ
5^«&/(LxLy)uw5p2^«&/(LxLy)uw50 descends faster tha
L22 with increase ofL. Moreover, the period of the oscilla
tions of J is not constant but increases with increase ofL.
Both of these theoretical results agree quantitatively w
results of Ref. 29~see Fig. 5!. As is seen from Figs. 8 and 9
the theoretically obtained values of the first three periods
oscillation of the exchange coupling equal 10, 12, and 15
respectively. The experimentally obtained periods of osci
tion of the exchange coupling~according to Ref. 29! are
equal to 11.0, 13.6, and 15.2 Å with accuracy61 Å.

FIG. 5. Dependence of the exchange coupling energyJ5^«&/(LxLy)uw5p

2^«&/(LxLy)uw50 on the spacer thickness. The solid line is the theoret
calculation, ‘‘s’’ the results of the experimental work.29 It was found by
comparing these theoretical and experimental results that they are shift
6 Å.

FIG. 4. Dependence of the Fermi energy on magnetic field. Solid
w50, dotted linew5p, L523 Å.
,
y-
l
e

-

c
5,

h

f
,
-

The components of the magnetization at a point with
arbitrary coordinatez inside the spacer have the form~21!.
Then, taking into account the Fermi–Dirac statistics and
distribution functions~17!, the mean value of the magnetiza
tion components at an arbitrary point with coordinatez in-
side the spacer has the form:

5
^Mx&52

LxLy

~2p!2 (
N

E
0

kN
2pkdkMxN

^M y&52
LxLy

~2p!2 (
N

E
0

kN
2pkdkM yN

^Mz&52
LxLy

~2p!2 (
N

E
0

kN
2pkdkMzN

.

~34!

It is simple to transform Eq.~34! to the form:

^Mx&
LxLy

5
1

2p (
N

M0 sinu0 cosS w12Np

L
zD

3H «F2b2m0s

A
2S w12Np

2L D 2

2S m0HL

A~w12Np! D
2J , ~35!

l

by

FIG. 6. Dependence of the exchange coupling energyJ on magnetic field.
L523 Å.

FIG. 7. Dependence of the angle at which the energy of coupling of
MOLs is minimal as a function of the spacer thickness.H50.

e
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^M y&
LxLy

5
1

2p (
N

M0 sinu0 sinS w12Np

L
zD

3H «F2b2m0s

A
2S w12Np

2L D 2

2S m0HL

A~w12Np! D
2J , ~36!

^Mz&
LxLy

5M0 cosu0nL. ~37!

The absolute value of the magnetization at a point with
ordinatez inside the spacer is calculated as

^uM u&5A^Mx&
21^M y&

21^Mz&
2. ~38!

The plots of the dependences of^Mx& and ^M y& on the co-
ordinatez inside the spacer are performed in Figs. 8 and
Here the boundary conditions are chosen so that w
z50, the magnetization of the spacer is directed along thx
axis, and whenz5L the magnetization of the spacer is d
rected along they axis. The magnitudêMz&, as is seen from
Eq. ~37!, is constant at all spacer thicknesses, according
our model. As is seen from Fig. 10, the average value
uM u is maximal on the spacer’s boundaries with the MO

FIG. 8. Magnetization componentMx ~divided by the magnetization at th
z50 boundary! as a function ofz. Solid line H50 Oe; dotted line
H52000 Oe. The spacer thickness is 23 Å.

FIG. 9. Magnetization componentM y ~divided by the magnetization at th
z5L boundary! as a function ofz. Solid line H50 Oe; dotted line
H52000 Oe. ForH52000 Oe the spacer thickness is 23 Å.
-

.
n

to
f

and decays from the spacer’s boundaries inside the sp
symmetrically about of the middle of the spacer.

DISCUSSION OF RESULTS

In this paper the exchange coupling of magnetically
dered layers through a nonmagnetic metallic spacer was
culated using a spin-density model similar to the Ginzbur
Landau model. The induced magnetization in the spa
taking into account the influence of an external magne
field, was calculated, too. This calculation shows that
energy of coupling of the MOLs through the nonmagne
metallic spacer is an oscillating function of the spacer thi
ness and magnetic field, i.e., the exchange coupling betw
the layers varies from ferromagnetic to antiferromagne
and vice versaupon variation of the spacer thickness a
magnetic field. Here the magnitude of the exchange coup
decreases with spacer thickness faster thanL22, and the pe-
riod of oscillation of the exchange coupling is not consta
but increaeses with increase of the spacer thickness. T
results match with those of Refs. 29–31 which were obtain
for Cu and Au spacers and for Co and Fe MOLs. Also, t
calculation shows that in a nonferromagnetic spacer the
duced magnetization can undergo many complete rotat
with variation of the distance to the boundaries with t
MOLs. Moreover, the absolute value of the induced mag
tization decays nonmonotonically with distance from the
terfaces inside the spacer. It is shown that the character o
decay of the absolute value of the magnetization from
interfaces into the interior of the spacer is influenced by m
netic field.

The author is grateful to Prof. V. G. Baryakhtar for frui
ful discussion of the results and to Prof. A. V. Svidzinsky f
discussion of basic aspects of the model used in this work
calculation of the induced magnetization of the spacer.

*E-mail: gorob@mail.kar.net
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Spectrum of dynamic magnetic susceptibility of a randomized f – d magnet
with spin–lattice coupling. II. ‘‘Opening’’ of the spin excitation bands

A. B. Beznosov* and E. S. Orel

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
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The transformation of the magnetic absorption spectra of a narrow-band ferromagnetic conductor
containing localf and quasilocald magnetic moments under conditions of weak spin–lattice
coupling and spatial randomization of theg factors of the quasilocal and local spin subsystems is
investigated. It is shown that randomization of theg factors~e.g., as a result of the
introduction of an impurity! leads mainly to the ‘‘opening’’~i.e., to the appearance in the
magnetic absorption spectrum! of acoustic and optical magnon bands formed in the system while
not affecting the position and shape of the narrow magnetic resonance lines comprising the
spectrum of the impurity-free crystal. The effects of spin–lattice coupling, besides the ‘‘opening’’
of the phonon and magnon bands, lead to a shift and a temperature smearing of the narrow
resonance lines. The relative corrections to the effective magnon masses generated by the
spin–lattice coupling in a 4f – 5d metal amount to;231024 for an acoustic mode and to
;431024 for an optical mode. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1808197#
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1. INTRODUCTION

In Part I of this paper1 it was shown that the exchang
interaction of quasilocald and localf electrons leads to an
effective renormalization of theg factors of both magnetic
subsystems, while the spin–lattice coupling at zero temp
ture alters the shape of the magnon bands and leads to d
ing of magnons with quasimomenta exceeding some thr
old value. At a finite temperature all of the magnons a
damped as a result of the absorption of thermal phonons

The present paper is a continuation of Ref. 1. Here
investigate further the spectrum of the transverse dyna
magnetic susceptibilityx12(Q,Q8,«̃) of Eq. ~I.14!1! and
analyze the magnetic absorption~the imaginary parts of the
coherentx2coh

12 (Q,«) and incoherentx2incoh
12 («) components

of the susceptibilityx12(Q,Q8,«̃) of a narrow-band mag
netic f –d conductor in the entire spectral region with allow
ance for a weak spin–lattice coupling. We shall use the sa
notation as in Ref. 1.

2. MAGNETIC ABSORPTION

2.1. General formula

The magnetic susceptibility of a system of interactingd
and f electrons is determined by the sum of four part
contributions~of the d–d, d– f , f –d, and f – f types! from
the four Green’s functions~I.16!. A technique for calculating
such contributions is set forth in Ref. 1 for the example
the Green’s function of thed–d type. The result is given by
formulas ~I.38! and ~I.39! for the coherent and incoheren
components of the susceptibility, respectively. The contri
tions from the remaining Green’s functions~I.16! differ from
~I.38! and ~I.39! in the approximation considered, 1/2S!1,
only by numerical factors which depend on the energy in
7901063-777X/2004/30(10)/9/$26.00
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p-
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val of the corresponding spin excitations—the acoustic,
tical, and Stoner regions of the spectrum~see Ref. 1 and Sec
2 of the present paper!.

The absorption spectrum of the electromagnetic fi
with wave vectorQ is determined by the imaginary compo
nents of the coherent and incoherent spectral componen
the total dynamic susceptibility~I.14!, ~I.36!, and~I.37!:

x2coh
12 ~Q,«! and x2incoh

12 ~«!. ~1!

Applying the technique used to calculate thed–d contribu-
tion ~I.38! and ~I.39! to the remaining Green’s function
~I.16! ~of the d– f , f –d, and f – f types!, summing the re-
sults, and taking the limita→0 in the variable«̃5«1 ia,
we obtain the following approximate expressions for t
imaginary parts of the functions~1! at zero temperature:

x2coh
12 ~Q,«!5A$^gfS

z2gdsz&2@d~«2«acj~Q!!

1j2Q2Lac~Q,«!Nacn~«!#1~gf1gd!2^Sz&

3^sz&@d~«2«opj~Q!!

1j2Q2Lop~Q,«!Nopn~«!#%1Stcoh~Q,«!,

~2!

x2incoh
12 ~«!5A$~g f

2~Sz&21gd
2^sz&2!@Nacj~«!1j2Oac~«!#

1~g f
21gd

2!^Sz&^sz&@Nopj~«!1j2Oop~«!#%

1Stincoh~«!. ~3!

Here

A5
2pmB

2^sz&

va^S
z1sz&

~4!

is the amplitude constant of the magnetic susceptibility,va is
the atomic volume,
© 2004 American Institute of Physics



an

a

th
d

l,

-

nc-

s
n
val-

t

rp-
the

c

the

r

be

m

t
l

he

791Low Temp. Phys. 30 (10), October 2004 A. B. Beznosov and E. S. Orel
Nac~op!j~«!5
1

N (
q

d~«2«ac~op!j~q!! ~5!

is the density of states of the acoustic~ac! and optical~op!
magnons, normalized per lattice site,

Nac~op!n~«!5
1

N (
p

d~«2«ac~op!1~0,p!! ~6!

is the combined atomic density of states of magnons
phonons~we are neglecting the wave vectorQ of the elec-
tromagnetic wave in comparison with the most probable v
ues of the phonon quasimomentap, so that we use
«ac(op)1(0,p) instead of«ac(op)1(Q,p); Oac(op)(«) is a func-
tion whose maximum values do not exceed the values of
function ~6! or, at least, are of the same order of magnitu
as that function;

Lac~op!~Q,«!5Fa^sz&Sac~op!

^Sz1sz& G2

$@«2«ac~op!0~Q!

2Mac~op!8 ~Q,«!#21@Mac~op!9 ~Q,«!#2%21

~7!

is the form-factor function of the acoustic~optical! absorp-
tion band, where

Mac~op!8 ~Q,«!5FjQa^sz&Sac~op!

^Sz1sz& G2

PE Nac~op!n~E!dE

«2E
,

~8!

Mac~op!9 ~Q,«!5pFjQa^sz&Sac~op!

^Sz1sz& G2

Nac~op!n~«!, ~9!

P denotes the principal value of the integral;Sac5^sz&, Sop

5^Sz&; a is the crystal lattice constant~for simplicity we are
considering a simple cubic lattice!;

Stcoh~Q,«!'
pmB

2

va

~gf1gd!2H Ñ~Q,«!

11@p~U2J!Ñ~Q,«!#2

1j2Q2Osec~Q,«!J , ~10!

where

Ñ~Q,«!5
1

N (
k

d~«2D22QaTsin~ka!!nk↑ , ~11!

Stincoh~«!'
pmB

2

va
~gd

21g f
2!

3F E N~E!N~E2D1«!n↑~E!

11@p~U2J!N~E!n↑~E!#2 dE

1j2Osei~«!G ~12!

are the absorption bands in the region of the Stoner~single-
particle! excitations (T is the electron hopping integra
n↑(E) is the Fermi distribution!;

N~E!5
1

N (
k

d~E2E~k!! ~13!
d

l-

e
e

is the electron density of states per spin-atom,E(k) is the
electron energy~I.31!; Osec(Q,«) and Osei(«) are functions
whose maximum values~with the corresponding normaliza
tion ~20!, ~29!! do not exceed the values of the function~13!
or, at least, are of the same order of magnitude as that fu
tion; and, it is assumed that the condition^sz&(U2J)>zT
holds (z is the coordination number of the crystal lattice!.

Since the wave vectorQ of the electromagnetic wave i
quite small (Q!p/a) and since the largest contribution i
the summation over phonon quasimomenta is given by
ues ofp close topB , the functionuJQ,pu2 in the correspond-
ing sums in~2!, ~8!, ~9!, and ~10! is replaced by a constan
@see Eq.~A8!#:

uJQ,pu2'
Q2a2

4 Usin
pa

2 U3

'
Q2a2

4
. ~14!

The origin of the contributions to the magnetic abso
tion in different spectral regions and the main details of
derivation of expressions~2! and ~3! are discussed below.

2.2. Narrow absorption peaks

Taking relations~I.51!–~I.54! into account, we can write
the expression forxcoh

12(Q,«̃) in the regions of the acousti
and optical magnon branches in the form

xcoh
12~Q,«̃ !5constac~op!

1

«̃2«ac~op!j~Q,«̃ !
~15!

and determine the position of the poles from the zeros of
denominator of the function in~15!:

D~Q,«!5«2«ac~op!0~Q!2
2^sz&Sac~op!

^Sz1sz&
M ~Q,«!. ~16!

Then for the poles of the susceptibilityxcoh
12(0,«̃) which lie

outside the region of the poles of the mass operatorM (Q,«̃)
@see Eqs.~I.53! and~I.54!# we obtain, with allowance for the
relation (x1 ia)215P(x21)2 ipd(x), the corresponding
spectral contributions to~2! in the form

x2coh
12 ~Q,«!5constac~op!d~«2«ac~op!j~Q!!. ~17!

2.3. Magnon–phonon bands

In the region of the poles~I.46! of the mass operato
~I.32! the imaginary part of the susceptibility~15! is gener-
ated by the imaginary parts of the mass operator~I.49!. Us-
ing relations~6! and~14!, it is easy to see that the real~I.48!
and imaginary~I.49! components of the mass operator can
written in the form~8!, ~9!, so that, to leading order in 1/S,
we obtain the imaginary part of the susceptibility in the for

x2coh
12 ~Q,«!5constac~op!j

2Q2Lac~op!~Q,«!Nac~op!n~«!,
~18!

where Lac(op)(Q,«) is given by expression~7!. As follows
from ~6!–~9!, the function ~18! has a peak of heigh
;1/Mac(op)9 (Q,«ac(op)j(Q)) in a narrow energy interva
;Mac(op)9 (Q,«ac(op)j(Q)) centered at the point«ac(op)j(Q)
and an extended region of relatively slow variation at t
level ;Mac(op)9 (Q,«)/(uac(op)1uD)2 in the remaining do-
main of definition of the functionMac(op)9 (Q,«). Here and
below uac5uC , uop5uC8 .
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2.4. Single-particle excitations

In the Stoner spectral region («;D) the susceptibility
xcoh

12(Q,«̃) can be written approximately in the followin
form with allowance for relations~I.29!–~I.35!, ~I.38!, and
~I.43!:

xcoh
12~Q,«̃ !'

mB
2

va
~gf1gd!2

3
x0~Q,«̃ !

12@U2J2M ~Q,«̃ !#x0~Q,«̃ !
. ~19!

Separating the real and imaginary parts ofx0(Q,«̃) and
M (Q,«̃), neglecting the componentx08(Q,«) in the absorp-
tion region~the real part of the susceptibility vanishes at t
resonance frequency!, we obtain, with accuracy up to th
term

;~p/va!@mB~gf1gd!jQa/EF#2

3E N~E!Nph~E2D1«!n↑~E!dE,

x2coh
12 ~Q,«!'

mB
2

va
~gf1gd!2

x09~Q,«!

11@~U2J!x09~Q,«!#2 ,

~20!

wherex09(Q,«)'pÑ(Q,«), andÑ(Q,«) andN(E) are de-
termined by relations~11! and ~13!; Nph(«)5 1/N (pd(«
2np) is the phonon density of states;EF is the Fermi energy
measured from the bottom of the band of statesk↑. The
correction to~20! due to the spin–lattice coupling is nonze
in an energy interval of lengthEF1uD , which is a broader
interval than that for the function~20!.

2.5. Incoherent component in the region of the collective
modes

According to ~I.39!, ~I.51!, and ~I.52!, in the region of
the magnon branches one has

x incoh
12 ~ «̃ !5constac~op!(

q

1

«̃2«ac~op!j~q!
~21!

and the poles of the susceptibility outside the poles of
mass operator are determined by the zeros of the functio

D~q,«!5«2«ac~op!0~q!2
2^sz&Sac~op!

^Sz1sz&
M ~q,«! ~22!

@cf. with ~15!, ~16!#. In the region of the poles ofM (q,«̃) the
imaginary part of the susceptibility is determined by t
imaginary part of the mass operator~I.49!:

x2incoh
12 ~«!5constac~op!

3(
q

M̃ac~op!9 ~q,«!

@«2«ac~op!0~q!2M̃ac~op!8 ~q,«!#21@M̃ac~op!9 ~q,«!#2
,

~23!

where
e

M̃ac~op!8 ~q,«!50.35F2jJq
2^sz&Sac~op!

^Sz1sz& G2

3PE Nac~op!n~q,E!dE

«2E
, ~24!

M̃ac~op!9 ~q,«!50.35pF2jJq
2^sz&Sac~op!

^Sz1sz& G2

Nac~op!n~q,«!,

Nac~op!n~q,«!5
1

N (
p

d~«2«ac~op!1~q,p!!, ~25!

Jq
25

1

N (
p

uJq,pu2. ~26!

It follows from ~21!–~26! that the terms of the sum overq in
~23! as functions of energy have the form of smeared re
nance peaks of height;1/M̃ac(op)9 (q,«ac(op)j(q)) and width
;M̃ac(op)9 (q,«ac(op)j(q)), centered on the curve«ac(op)j(q),
and relatively slowly varying functions
;M̃ac(op)9 (q,«)/(uac(op)1uD)2 in the rest of the domain o
definition of M̃ac(op)9 (q,«) ~in the region where magnon–
phonon pairs are generated in the system by the exte
field!. To obtain a simplified expression forx2incoh

12 («) with
the use of the magnon and phonon distribution functions,
replace the terms of the sum~21! by functions of the form

d~«2«ac~op!j~q!!1
M̃ac~op!9 ~q,«!

~uac~op!1jD!2 ;

we replace Nac(op)n(q,«) in formula ~24! by the sums
1/N (pd(«2«ac(op)0(q)2np), and we replaceJq

2 by its
mean value 1/N (qJq

2'0.14. Then we finally obtain

x2incoh
12 ~«!5constac~op!@Nac~op!j~«!1j2Oac~op!~«!#,

where

Oac~op!~«!50,14pF 2^sz&Sac~op!

^Sz1sz&~uac~op!1uD!G
2

3E Nac~op!~E!Nph~«2E!dE,

Nac~op!~«!5
1

N (
q

d~«2«ac~op!0~q!!

is the density of ‘‘unperturbed’’ magnon states, which diffe
little from Nac(op)j(«) in the main region of values in view o
the smallness of the differences between«ac(op)j(q) and
«ac(op)0(q).

2.6. Incoherent component in the Stoner region

Taking the condition («;D) into account, we can write
an approximate expression for~I.39! in the form @cf. ~19!#

x incoh
1 ~ «̃ !'

pmB
2

va
~g f

21gd
2!

3(
q

x0~q,«̃ !

12@U2J2M ~q,«̃ !#x0~q,«̃ !
. ~27!

Using the approach taken in Sec. 2.4, we obtain the ima
nary part of the susceptibility~27! in the form @cf. ~20!#
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x2incoh
12 ~«!'

pmB
2

va
~g f

21gd
2!(

q

x09~q,«!

11@~U2J!x09~q,«!#2 .

~28!

The further transformation of expression~28! can be simpli-
fied substantially if the electron quasimomentum takes
only small values, i.e., ifkF!kB . In that case the energy o
the Stoner excitations~I.30! can be written approximately in
the form D(k,q)'D1E(q)2E(k) @see ~I.31! and ~I.43!#.
We then obtain@see~I.35!#

x09~q,«!5pN~D1Eq2«!n↑~D1Eq2«!,

x2incoh
1 ~«!'

pmB
2

va
~g f

21gd
2!

3E N~E!N~E2D1«!n↑~E!dE

11@p~U2J!N~E!n↑~E!#2 , ~29!

andN(E) is given by expression~13!. The correction to~29!
due to the spin–lattice coupling can be expressed appr
mately as

pmB
2

vaN
~g f

21gd
2!

3(
q

M 9~q,«!@x08~q,«!#2

@12~U2J!x08~q,«!#21@~U2J!x09~q,«!#2 .

This correction is of order of magnitude;pmB
2(g f

2

1gd
2)j2/vaEF

2(EF1uD) and is nonzero in an interval o
length EF1uD , which is broader than that for the functio
~29!.

3. ABSOLUTE VALUES OF THE EFFECTS

3.1. Spin–lattice coupling constant

The abundance of contributions to the magnetic abso
tion spectrum which can in principle compete with ea
other requires making numerical estimates of their mag
tudes. A key question here is the force constantj of the
spin–lattice interaction due to the relation between the m
non stiffness coefficient and the interatomic distance. In
narrow-band magnet model under consideration the co
butionEmph ~I.5! to the magnon energy due to the longitud
nal displacement of the lattice sites is determined by
gradient of the hopping integral,¹T. To estimate it we write
the hopping integral in the form2

T5T~r !5T0 exp~2r /a!, ~30!

whereT0 is the hopping integral in the equilibrium positio
of the lattice sites,a is the lattice constant~for simplicity the
lattice is assumed to be simple cubic!, andr 5uh82hu is the
modulus of the longitudinal displacement of the ion which
the nearest neighbor of sitel from its equilibrium position
l1h. We then have¹T(r )5(]T/]r )er (er is a unit vector
in the direction of the displacementr !, and the modulus of
the gradient of expression~30! is equal tou]T/]r u5T/a.

In the equilibrium state at zero temperature the displa
mentr can be expressed in terms of the rms amplitudeA0 of
the zero-point vibrations of the atoms with a cutoff fr
quencyn0 ~we assume for simplicity that the phonon dispe
sion relation is isotropic!:3
n

i-

p-

i-

g-
e
ri-

e

-

-

A05
\

A2Man0

, ~31!

whereMa is the mass of the atom. For numerical estima
we use the characteristics of gadolinium, the central 4f – 5d
metal. Substituting into~31! the valuesMa5157 a.m.e. and
n0'uD5184 K ~heren0 anduD are expressed in kelvin!, we
obtain A052.931022 Å. Now the spin–lattice coupling
constantj can be calculated using the relation between
magnon stiffness and the hopping integralT on the acoustic
branch@see~I.44!# and the requirement that the renormaliz
tion of the magnon spectrum in the long-wavelength reg
be independent of the microscopic model used for the in
actions, in which case the phenomenological approach
valid. The calculation~see Appendix A! gives

j5
zTA0

a

x2/3sin~kFa!

2p^sz&2 . ~32!

It is of interest first to estimate the influence of the spin
lattice coupling on the intrinsic characteristics of the sp
system—the renormalization of the effective masses and
magnon damping.

3.2. Renormalization of the effective masses

The magnon stiffness in the acoustic band can be
pressed in terms of the Curie temperatureuC . Taking into
account the relation between the hopping integral and
Curie temperature@see Eq.~B.14!#, we can write expression
~32! in the form

j'
uCA0

a

C~S1~sz!!

0.591~S11/2!^sz&2 , ~33!

whereC is a structure constant.
For gadolinium uC5293 K, a52.98 Å, A052.9

31022 Å, ^Sz&53.5, ^sz&'0.05̂ Sz&, and expression~33!
givesj5297 K. Then the relative corrections to the magn
effective masses in the acoustic and optical bands on acc
of the spin–lattice interaction, which for a simple cubic la
tice have the form

Dmac*

mac*
5

2p

x2/3sin~kFa!

^sz&4

^Sz1sz&

j2

T~uC1uD!
,

Dmop*

mop*
5

2p

x2/3sin~kFa!

^Sz&^sz&3

^Sz1sz&

j2

T~uC8 1uD!
~34!

~hereuC8 'uC^Sz&/^sz&), take the values

Dmac*

mac*
5

j2

uC~uC1uD!

0.591z^sz&4~S11/2!

C^Sz1sz&~S1^sz&!
'2.2•1024,

Dmop*

mop*
5

j2

uC~uC8 1uD!

0.591z^Sz&^sz&3~S11/2!

C^Sz1sz&~S1^sz&!

'3.6•1024. ~35!

In absolute terms the effective masses and the cor
tions to them have the values

mac* 5
\2

a2T

p^Sz1sz&
x2/3sin~kFa!

'155me ,
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Dmac* '3.47•1022me ,

mop* 5
\2

a2T

p^Sz1sz&
x2/3sin~kFa!

^sz&

^Sz&
'6.6me ,

Dmop* '2.36•1023me . ~36!

3.3. Magnon damping

The characteristic magnon damping time is given by
expression

tq5
\

2 Im«~q!
, ~37!

where\ is Planck’s constant, and Im«(q) is the imaginary
part of the magnon energy.3 The latter, according to~I.39!,
~I.51!, and~I.52!, is equal to

Im «ac~op!j~q!5
2^sz&Sac~op!

^Sz1sz&
M 9~q,«ac~op!j~q!!. ~38!

Magnons with quasimomenta not exceeding a critical va
q0ac(op), are not damped,1 and therefore one is interested
an estimate of~38! near the edge of the magnon band, whe
q'qB . The maximum value of the functionuJqB ,pu2

5usin(pa/2)ucos2(pa/2) is approximately;0.35 @see Eq.
~A.8!#. Using the definition~I.49!, one can conclude that th
imaginary part of the mass operator in~38! does not exceed
the value@cf. Eq. ~9!#

Mac~op!max9 5
0.7pj2^sz&Sac~op!

^Sz1sz&
Nac~op!n max, ~39!

whereNac(op)n max is the maximum value of the function i
~25!, which is achieved in the three-dimensional case a
value of the magnon quasimomentumqmax;qB . The interval
of nonzero values ofNac(op)n(q,«) is equal to the sum of the
widths of the magnon and phonon bands. Using the norm
ization *Nac(op)n(q,«)d«51, we estimateNac(op)n(q,«) by
the quantity (uC1uD)21 for the acoustic band and (uC8
1uD)21 for the optical band. Using Eq.~39! and the char-
acteristics of gadolinium~see Sec. 3.2!, we obtain from~37!
and ~38! the following estimate for the magnons with Bri
louin quasimomentumqB :

Im «ac~qmax!51024uC , tac'10210 s,

Im «op~qB!52•1024uC8 , top53•10212 s.

3.4. Magnon absorption by collective modes

To determine the relative importance of the effects
pearing in the magnetic absorption as a result of the sp
lattice coupling and as a result of randomization of the s
tem, let us estimate the absolute values of the magn
absorption. For the coherent component the correspon
contribution is contained in~2!. Using the normalization
*Nac(op)n(«)d«51, the values of the constants~32!, and the
characteristics of gadolinium, including its atomic volum
va533 Å3 and g factors gf5gd52, we obtain a valueA
'1022 K for the amplitude constant~4! and the following
estimates for the contributions to~2!:
e

e

e

a

l-

-
–
-

tic
ng

Q;
uC

\ c̃
,

Lac~Q,«!Nacn~«!'F 2a^sz&2

^Sz1sz&uC
G2 1

uC1uD
,

A~gfS
z2gdsz!2j2Q2Lac~Q,«!Nacn~«!'2•10216 ~40!

for the acoustic region, and

Q;
D

\ c̃
,

Lop~Q,«!Nopn~«!'F2a^Sz&^sz&

^Sz1sz&uC8
G2 1

uC8 1uD
,

A~gf1gd!2^Sz&^sz&j2Q2Lop~Q,«!Nopn~«!'2•10215

~41!

for the optical region; herec̃ is the speed of light.
The maximum values of the magnetic absorption

tained under excitation of the system by a field with wa
vectorQ;qB amounts to;1.531027 for the acoustic mag-
non branch and;1028 for the optical magnon branch.

The contribution to the incoherent component in the
gion of the collective modes is contained in Eq.~3!. Assum-
ing g f5gd5g, we obtain

Nacj~«!'~uC1uD!21,

A~g f
2^Sz&21gd

2^sz&2!Nacj~«!'4.6•1024g2 ~42!

for the acoustic region and

Nopj~«!'~uC8 1uD!21,

A~g f
21gd

2!^Sz&^sz&Nopj~«!'9•1026g2 ~43!

for the optical.
Considering a crystal with a nonmagnetic substitutio

impurity with concentrationc and assuminggf5gd52, we
obtaing254c(12c). In such a case the maximum values
the magnetic absorption in the region of the magnon ba
owing to the incoherent component~42!, ~43! and to the
spin–lattice coupling~40!, ~41! become equal atc'8
31023% in the first case and atc'331022% in the sec-
ond.

3.5. Absorption of single-particle excitations

The contribution tox2coh
12 (Q,«) andx2incoh

12 («) in the re-
gion of the single-particle Stoner excitations is given by e
pressions~20! and ~29!. The functionÑ(Q,«) can be esti-
mated as follows:

Ñ~Q,«!5
x

4QaTsin~kFa!
for D2<«<D1

and

Ñ~Q,«!50 for «,D2 or «.D1 ,

where

D65DS 16
2aT sin~kFa!

\ c̃ D .
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Assuming thatx;0.3, kFa;0.3, EF/2zT'0.1, 2zT
'103 K,4 U2J5zT/^sz&, D;104 K, and a value of the
integral in ~29! equal to

;
1

2zT1EF

1

11@~U2J!/EF#2 ,

we obtainStcohn(Q,«)'931029, Stinchon(«)'931029g2.
Equality of the magnetic absorption in the coherent and
coherent Stoner spectral regions is reached atc'0.3%.

4. GRAPHIC REPRESENTATION OF THE MAGNETIC
ABSORPTION SPECTRUM

The magnetic absorption spectra obtained above@Eqs.
~2!, ~3!# are shown schematically in Figs. 1–3. Figure
shows the overall picture of all the absorption bands o
large energy scale. Figure 2 shows the narrow cohe
bands of the inhomogeneous resonance in the optical re
of the spectrum with and without the spin–lattice interactio
Also shown are the ‘‘phonon wing,’’ which arises on accou
of the spin–lattice coupling, and the absorption band due
single-electron transitions with nonzero quasimoment
transfer. Figure 3 shows the inhomogeneous magnetic r

FIG. 1. Diagram of the spectrum of the imaginary partx2(0,«) of the
dynamic magnetic susceptibility of the model under consideration fo
uniform high-frequency field:«ac and«op are the positions of thed-function
peaks of the coherent component of the susceptibilityx2coh(0,«); x2incoh(«)
is the incoherent component, which is proportional to the density of state
acousticNac and opticalNop magnons in the regions corresponding to t
frequencies«ac and «op ; «se is the band of single-particle~Stoner! excita-
tions with a spin flip and arbitrary quasimomentum.

FIG. 2. Diagram of the spectra of the imaginary partx2coh(Q,«) of the
coherent component of the dynamic magnetic susceptibility of the mod
the region of thed– f exchange resonance and single-electron spin~Stoner!
excitations at zero absolute temperature with~solid curve! and without~dot-
ted curve! the spin–lattice coupling;«opj(Q), «op0(Q), and«se(Q) are the
positions of the susceptibility peaks~a weak ‘‘magnon–phonon wing’’ lies
to the right of the main peak with energy«opj(Q), starting at the point
«op0(Q)); the wave vector of the field satisfies the inequality 0,Q
,q0op.
-

a
nt
on
.
t
to

o-

nance lines in the acoustic region of the spectrum~near the
bottom of the acoustic magnon band! at nonzero temperatur
both with and without the spin–lattice coupling~in the
former case the resonance line is smeared!. This contribution
is subsumed in the total coherent contribution, which is
lowed thanks to the spin-lattice coupling—the absorption
magnons by thermal phonons~above and below«ac0(Q))
and the emission of phonons by both thermal magnons
magnons excited by the electromagnetic field~above
«ac0(Q)).

5. DISCUSSION

The results obtained give a quantitative estimate of
spin–lattice coupling effects in the magnon system and p
mit one to compare the degrees to which the spectra of e
tron excitations with a spin flip is influenced by a weak spin
lattice coupling and by randomization of theg factors of the
d and f subsystems. The latter leads mainly to ‘‘openin
~i.e., appearance in the magnetic absorption spectrum! of
bands of acoustic and optical magnons that are being for
in the system, but it does not alter the position and shap
the characteristic magnetic resonance lines of the defect-
crystal. As is seen from formulas~2! and~3! and Figs. 1 and
2, a weak spin–lattice coupling at zero temperature does
affect the shape of the narrow magnetic absorption line
the modulus of the wave vectorQ of the field is less than the
Cherenkov valueq0ac(op), as is usually the case in 4f – 5d
metals. The main effects of weak spin–lattice coupling
duce to the following.

1. Weak spin–lattice coupling leads to opening of t
phonon and magnon bands in the coherent component o
absorption~i.e., even in a perfect crystal!.

2. The real part of the mass operator~I.48! leads to a
shift of the magnon frequencies: the narrow lines~16! of the
inhomogeneous ferromagnetic and exchange resonanc
the perfect crystal at zero temperature are split off from
continuous bands arising as a result of the ‘‘opening’’ of t
phonon and magnon bands~Fig. 2!.

3. The imaginary component of the mass operator~I.49!
causes smearing of thed-function resonance lines if thos
resonances fall in the region of nonzero values ofM 9(«)

a

of

in

FIG. 3. Diagram of the spectra of the imaginary partx2coh(Q,«) of the
coherent component of the dynamic magnetic susceptibility of the mode
the region of the inhomogeneous magnetic resonance~near the bottom of the
acoustic magnon branch! at finite absolute temperature;«acj(Q) and
«ac0(Q) are the positions of the susceptibility peaks with~solid curve! and
without ~dotted curve! the spin–lattice coupling. The temperature and wa
vector of the field satisfy the inequalities 0,u!uC and 0,Q,q0ac.
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~Fig. 3!. The latter occurs at nonzero temperature forQ
,q0ac(op) and at any temperature forQ.q0ac(op).

4. The relative corrections to the magnon effecti
masses from allowance for the spin–lattice coupling in
4 f – 5d metal have values;231024 for an acoustic mode
and;431024 for an optical mode.

5. The value of the maximum magnetic absorption d
to the influence of the spin–lattice coupling on the coher
component of the magnetic susceptibility of anf –d metal at
zero temperature is comparable in order of magnitude w
the influence of randomly distributed defects on the incoh
ent component in a crystal with a concentration of;0.03%
for an acoustic mode and;0.3% for an optical mode.

6. The characteristic lifetime of magnons near the ed
of the band in a narrow-bandd– f magnet is limited by the
spin–lattice coupling to;10210 s for the acoustic branch
and;3310212 s for the optical branch.

The authors thank V. V. Eremenko and N. F. Kharchen
for interest and support and A. A. Loginov for helpful di
cussions and important critical comments.

APPENDIX A

Calculation of the coupling amplitudejp,q in ~I.5! for the
model under discussion constitutes a separate problem
the same time, it is clear that a not oversimplified mic
scopic model in the long-wavelength limit should give
magnon–phonon coupling amplitude for the acoustic m
non branch in agreement with the result of the calculation
the framework of the well-known5 phenomenological ap
proach. Let us therefore obtain a qualitative representatio
the behavior of the coupling amplitude in the whole Brillou
zone using a better-studied path—the model of a Heisen
ferromagnet.3,5,6 In such a model the dispersion of magno
in a band of widthW is determined by an expression of th
same form as that obtained in the present paper for aco
magnons:

«q5
W

2
~12gq!, gq5

1

z (
h

exp~ iq"h!, ~A1!

and the Hamiltonian of the spin–lattice interaction has
form6

Hsp–lat52(
l,h

¹lh
a I ~l,h!ulh

a ~Sl"Sl1h!, ~A2!

where I (l,h) is the intersite exchange integral, andulh

5uh2ul is the relative displacement of the atoms.
Assuming that the exchange integral is nonzero only

pairs of atoms within the first coordination sphere, we wr
its coordinate dependence in a form analogous to~28!:

I ~l,h8!5I ~r !5I 0 exp~2r /a!, ~A3!

wherer 5uh82hu is the value of the longitudinal displace
ment of the ion that is the nearest neighbor of sitel from its
equilibrium positionl1h, andI 0 is the exchange integral in
the equilibrium position of the lattice sites. Using the sta
dard form for the acoustic phonon frequencies3

np5n0usin~pa/2!u, ~A4!
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we express the cutoff angular frequencyn0 in terms of the
rms amplitudeA0 of the zero-point vibrations of the atom
with that frequency~see Eq.~31!!:

n05
\2

2MaA0
2 . ~A5!

Using relations~A2!–~A5!, expressingulh and Sl in
terms of the phonon and magnon operators, and neglec
the magnon anharmonicity, we obtain from~A2! the follow-
ing magnon–phonon coupling operator, which agrees
form with ~I.5!:

Hmph5
1

AN
(
q,p

jq,paq1p
1 aq~bp1b2p

1 !. ~A6!

The magnon–phonon coupling amplitude in~A6!,

jq,p5jJq,p ~A7!

decomposes into a product of the reduced dimensionless
plitude

Jq,p5 i

sin
pa

2 sin
qa

2 sin
~q1p!a

2

AUsin
pa

2 U
~A8!

and the force constant

j5W
A0

a
, ~A9!

in which, in turn, we have separated out the magn
bandwidth3

W54I 0Sz. ~A10!

The magnon energy«j(q) renormalized by coupling
~A6! is calculated by the standard method and is expresse
terms of the bare energy«0(q) and the real part of the mag
non mass operator:3

«j~q!5«0~q!1M 8~q,«j~q!!, ~A11!

M 8~q,«!5
j2

N
P(

p
uJq,pu2F 11np8

«2«1~q,p!

1
np8

«2«2~q,p!
G , ~A12!

«6~q,p!5«0~q1p!6np . ~A13!

The notation in~A11!–~A13! is analogous to that used i
~I.51!, ~I.48!, and~I.46!.

The width of the acoustic magnon band calculated
a simple cubic lattice (gq5(1/3)@cos(qxa)1cos(qya)
1cos(qza)#) in the f –d magnet model under consideratio
with the Fermi surface approximated by the surface of a c
of sidekF5px1/3/a is given, in distinction to~A10!, by

Wac5
Tzx2/3sin~kFa!

p^Sz1sz&
. ~A14!

We note that for the value of the electron concentrat
chosen by us for numerical estimates,x50.3, the Fermi qua-
simomentum is close to the Brillouin one,kF'0.7kB , which
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justifies the approximation adopted above for the shape
the Fermi surface. Comparing~A11!–~A13! with ~I.51!,
~I.48!, and ~I.46!, using ~A14!, and, for clarity, explicitly
separating off the electron bandwidth@see~I.31!#,

We52Tz, ~A15!

we obtain the desired expression for the magnon–pho
coupling amplitude in Eq.~I.5! in the form of ~A7!, ~A8!
with the force constant

j5We

A0

a

x2/3sin~kFa!

4p^sz&2 . ~A16!

The use of the form~A15! here emphasizes, in compar
son with ~A9!, the difference of~A16! from the simple
electron–phonon coupling.

APPENDIX B

The relation between the Curie temperature and the
rameters of Hamiltonian~I.2! is of great interest, but its cal
culation in the model under consideration is the subject o
separate study. At the same time, it is not hard to obtain
estimate ofuC with acceptable accuracy for the purposes
the present study, as a comparison with the Heisenb
model shows. We note that the published value ofuC for
systems with double exchange, calculated numerically in
dynamic molecular field model,7 cannot be used in our cas
since the calculation in Ref. 7 was done for 3<J/We,`,
while in this paperJ/We'0.1.

Following Refs. 8 and 9, we consider the occupation
the magnon states in the temperature regionu;uC . The
relative magnetization

s~u!512
n~u!

S
~B1!

is determined by the number of all spin deviations divided
the number of crystal lattice sites~for simplicity we are as-
suming that the same spinS is found in each of them!:

n~u!5
1

N (
q

nq , ~B2!

wherenq is the magnon distribution function

nq5@exp~«q /u!21#21, ~B3!

and«q is the magnon energy@see~A1!#.
For u.«q the number of magnons with quasimomentu

q can be written approximately in the form

nq5
u

«q
2

1

2
. ~B4!

If relation ~B4! is fulfilled for the majority of the mag-
nons, then the reduced magnetization can be represente
ing ~B1–B3! approximately in the form

s~u!511
1

2S
2

2u

WS

1

N (
q

1

12gq
. ~B5!

The value of the sum in~A5!
of

n

a-

a
n
f
rg

e

f

y

us-

C5
1

N (
q

1

12gq
~B6!

depends on the type of magnetic lattice and is equa
1.5164 for the simple cubic structure, to 1.393 for the b
structure, and to 1.345 for the fcc structure.6,8

In the high-temperature region, where the number
spin deviations is large and the magnon–magnon coup
becomes important, the corresponding effects of nonlinea
in the magnon spectrum can be taken into account to a
approximation by the following renormalization of the ma
non bandwidth:8–10

W̃5WS 12
1

SN(
q

~12gq!nqD . ~B7!

At the Curie point the relative magnetization goes to ze
and from~B5! and ~B6! we obtain

uC5
W~S11/2!

2C
. ~B8!

Magnon anharmonicity lowers this value. Substitution
~B8! into ~B7! gives the following coefficient in the first ste
of the iteration scheme for a simple cubic lattice:9

12
1

SN(
q

~12gq!nq'0.591. ~B9!

We consider a Heisenberg ferromagnet@W54I 0zS; see
~A10!# with the simple cubic lattice (z56) and spinS
57/2, and we compare the values of the Curie tempera
obtained by the different methods. The lowest value, wh
we adopt as the base, is given by the spin-wave model in
Bogolyubov–Tyablikov approximation5,6,11

uC5
W~S11!

6C
. ~B10!

A somewhat larger value is given by the Rushbrook
Wood formula,8,9,12 obtained by the method of high
temperature expansions of the magnetic susceptibility:

uC5
5

96
I 0~z21!@11S~S11!21#. ~B11!

The molecular field model leads to a value higher than
‘‘true’’ value @~B10! or ~B11!# by approximately a factor of
1.5:

uC5
W~S11!

6
. ~B12!

The value in~B8! exceeds that in~B10! by approximately a
factor of three, but if the renormalization~B9! is taken into
account, we obtain the value

uC50.591
W~S11/2!

2C
, ~B13!

which is higher than the ‘‘true’’ value approximately by
factor of 1.5.
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Thus the accuracy of determination of the Curie te
perature with the use of expression~B13! is approximately
the same as with the use of the molecular field model~B12!.
Substituting into ~B13! the acoustic magnon bandwidt
~A14!, we obtain for anf –d magnet

uC50.591
zTx2/3sin~kFa!~S11/2!

2pC~S1^sz&!
. ~B14!

If we take into consideration the result of Ref. 13, whi
implies that the magnon stiffness in the system with dou
exchange14 ~and, accordingly, in anf –d magnet! near the
Curie point is higher than in a Heisenberg ferromagnet, t
we would expect that the ‘‘true’’ value ofuC will be higher
than is predicted by~B10!. In such a case the differenc
between the value in~B14!, in which this increase of the
magnon stiffness is not taken into account, and the true v
of uC should be diminished in comparison with that me
tioned above.

The foregoing analysis has shown that the accuracy
determination of the Curie temperature with the use of
pression~B14! is completely comparable to the accuracy
determination ofuC for a Heisenberg ferromagnet with th
use of the molecular field model. It should also be noted t
formula ~B14! gives a maximum ofuC at x50.35, which is
in much better agreement with expression (x50.33)14 than
the value obtained by a numerical method in the dyna
molecular field model,7 which gives a maximum ofuC at
x50.5.
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The equations for the nuclear magnetizations which describe the dynamics of nuclear spin-
systems with strong Larmor and Rabi inhomogeneous broadenings of the NMR line under
conditions of their nonequilibrium are obtained in the framework of the Mims
transformation matrix method; these equations have been obtained previously by the statistical
tensors method. As an example, the properties of the proton single-pulse echo and its
secondary signals in a test material~silicone oil! coated on the surface of high-Tc superconducting-
oxide powders and in metallic hydride are presented. ©2004 American Institute of Physics.
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The single-pulse echo~SPE! is a resonance response
the inhomogeneously broadened nuclear spin system to
application of a solitary radio-frequency~rf! pulse arising at
a time approximately equal to the pulse durationt after its
termination. Though SPE was discovered by Bloom in 19
for protons in water placed in an inhomogeneous magn
field, the mechanism of SPE formation is not yet so clear-
as for the classical Hahn two-pulse echo~TPE! and it con-
tinues to attract research attention.1

The point is that the theoretical models based exc
sively on strong Larmor inhomogeneous broadening~LIB !
do not agree with the experimentally observed signals
instead result in the formation of oscillatory free-inducti
decays~OFIDs!.1

SPE formation mechanisms could be conditionally s
divided into two classes: the first class comprises the
called edge-type mechanisms, wherein the rf pulse edge
like the rf pulses in the TPE method; these include the d
tortion mechanism1 and the mechanism connected with t
consideration of spectral densities of sufficiently steep
pulse edges.2 The second class includes mechanisms of
internal nature due to particular nonlinearities in the dyna
ics of spin systems, for example, connected with a str
dynamic frequency shift of the NMR frequency or with
nonlinear dynamics of nuclear spins due to the simultene
presence of large Larmor and Rabi inhomogeneous broa
ings of the NMR line.1

In this work we consider in more detail the so-call
multipulse mechanism of SPE formation, presented in Re
for systems with both types of frequency inhomogeneities
NMR lines. An important example of such a system is tha
nuclei arranged in the domain walls of multidomain magne
both in the normal metals, due to the metallic skin effect, a
in the normal cores of Abrikosov vortices in type-II supe
conductors. Earlier in Ref. 3 we have investigated the pr
erties of the SPE formation in lithium ferrite. It was esta
lished that its properties differ sharply from the SP
properties in hexagonal cobalt, where it is formed by
distortion mechanism. It was therefore concluded that
7991063-777X/2004/30(10)/5/$26.00
he

5
ic
t

-

ut

-
o-
act
-

f
n
-
g

us
n-

1,
f
f
,
d

-
-

e
e

SPE internal mechanism of formation could be effective
lithium ferrite, but its concrete mechanism was not fina
established.

Later on, the effectiveness of the multipulse mechani
of SPE formation was experimentally established in t
magnet.4 Moreover, the secondary echo signals of SPE a
the two-pulse echo were also formed by this mechanism

It was shown in Ref. 1 that the multipulse mechanism
SPE formation is effective in some multidomain ferroma
nets like Fe and FeV. From this point of view further the
retical and experimental investigations of SPE multipu
mechanism formation in systems with large Larmor and R
inhomogeneous broadenings of NMR lines are of pract
interest. In Ref. 1, using the formalism of statistical tenso
a theoretical investigation of the SPE and its secondary ec
signal formation mechanism was carried out, allowing
both large Larmor and Rabi inhomogeneous broadening
the NMR line when the repetition period of the rf pulsesT
obeys the inequalityT3!T2,T,T1 , whereT1 is the spin-
lattice relaxation time,T2 is the transverse irreversible relax
ation time, andT3 characterizes the transverse reversible
laxation time (T3;1/D, whereD is the half width at half
maximum of the inhomogeneously broadened line!; there-
fore, the spin system was in a nonequilibrium state before
application of the exciting rf pulse, and only the longitudin
component of the nuclear magnetization was important
fore the rf pulse. It was shown that a dephasing of
nuclear spin system was accumulated duringn-time pulse
excitations and restored within a time interval elapsing fro
the trailing edge of the last ‘‘counting’’@(n11)th# pulse in
the multipulse train. This resulted in the SPE formation a
also its secondary signals at times which were multiples
the rf pulse duration after termination of the ‘‘counting’’ r
pulse.

Let us show further a simple classical derivation of t
equations describing the nuclear spin-system dynamics in
investigated case, in the framework of the usual class
approach, by solving Bloch equations or by the equival
Mim’s transformation matrix method.5 We will use the latter
© 2004 American Institute of Physics
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as it is more visual from the experimental point of view.
Let us consider the case when a local static fieldHn is

directed along theZ axis, and a rf field is along theX axis of
the rotating coordinate system~RCS!.5,6 The modulus ofHeff

in the RCS could be expressed by:

Heff5
1

gn
ADv j

21v1
25

v1

gn
Aa21x2. ~1!

Here x5Dv j /v1, whereDv j5v j2v0 is an isochromate
frequency;a5h/h̄ ~or a5v1 /v1), whereh is the rf field
gain factor andh̄ its mean value;v15h̄v1

APPL is the mean
value of the rf amplitude in frequency units;v15hv1

APPL is
the Rabi frequency of the applied rf field; and,gn is the
nuclear gyromagnetic ratio. In addition, let us introduce
following designations1 for the mean value of the pulse are
y5v1Dt, whereDt is the rf pulse duration,b5v1t is a
characteristic of the time interval following a pulsed exci
tion and is measured from the trailing edge of the rf pul
v0 designates the center of the resonance line, andv j is the
frequency of thej th isochromate. The transformation matr
describing the rotation of the magnetization vector arou
Heff is:6 m̄5(m̄x ;m̄y ;m̄z)

~R!5F Sc
21Cc

2Cu 2CcSu ScCc~12Cu!

CcSu Cu 2ScSu

ScCc~12Cu! ScSu Cc
21Sc

2Cu

G , ~2!

Cc , Sc , Cu , andSu stand for cosc, sinc, cosu, and sinu,
and C5tan21(v1 /Dvj) is the angle between the effectiv
field Heff and theZ axis;u is the angle by which the magne
tization turns about the effective fieldHeff during the pulse
time Dt: u5gnHefft, whereHeff is given by~1!.

Let us consider first the case of single-pulse excitati
Let

Xj5mx j /m; Yj5my j /m; Zj5mz j /m,

and m̄5~Xj ;Yj ;Zj !,

where m is the equilibrium nuclear magnetization, and
equilibrium m̄eq5(0;0;1).

If before the excitation by the rf pulse the nuclear sp
system was at equilibrium conditions, and thereforem̄eq

5(0;0;1), then the result of the rf pulse action is given b
m̄5(R)m̄eq. At the termination of the rf pulse the isochro
mates precess freely around theZ axis; this is described by
the matrix

Rw5S Cw 2Sw 0

Sw Cw 0

0 0 1
D ,

wherew5Dv jt is the angle of rotation of the isochroma
around theZ axis, andt is the time elapsing from the trailing
edge of a pulse. Therefore, we have finally:

m̄15~Rw!~R!m̄eq5S CwScCc~12Cu!1SwScSu

SwScCc~12Cu!2CwScSu

Cc
21Sc

2Cu

D , ~3!

or in the adopted designations:
e

-
;

d

.

t

mx

m
5cosbx

ax

a21x2 ~12cosyAa21x2!

1sinbx
a

Aa21x2
sinyAa21x2,

my

m
5sinbx

ax

a21x2 ~12cosyAa21x2!

2cosbx
a

Aa21x2
sinyAa21x2, ~4!

mz

m
512

a2

a21x2 ~12cosyAa21x2!.

Expressions~4! coincide with the corresponding ones o
tained in Ref. 1 for the case of single-pulse excitation, a
with similar expressions7 obtained by solving the system o
Bloch equations for inhomogeneously broadened Hahn
tems.

Let us now find the effect ofn-time rf excitation in the
model of Ref. 1, when before the next rf pulse of a train on
the longitudinal component of the nuclear magnetization
mains. It is not difficult to prove by successive matrix mu
tiplication that the expression for the nuclear magnetizat
before the final ‘‘counting’’ (n11)th pulse is:

m̄n5~Cc
21Sc

2Cu!nm̄eq,

wherem̄eq5(0;0;1).
Then the result of excitation by the ‘‘counting’’ puls

and subsequent free precession of the magnetization is
scribed by the expression

m̄n115~Rw!~R!m̄n

5~Cc
21Sc

2Cu!nS CwScCc~12Cu!1SwScSu

SwScCc~12Cu!2CwScSu

Cc
21Sc

2Cu

D ,

~5!

which is similar to the one for single-pulse excitation b
allows for a new initial condition.

It follows from the previous expressions~5! that in terms
of the adopted designations

mx

m
5S 12

a2

a21x2 @12cosyAa21x2# D n

3Fcosbx
ax

a21x2 ~12cosyAa21x2!

1sinbx
a

Aa21x2
sinyAa21x2G , ~6!
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my

m
2S 12

a2

a21x2 @12cosyAa21x2# D n

3Fsinbx
ax

a21x2 ~12cosyAa21x2!

1cosbx
a

Aa21x2
sinyAa21x2G .

These expressions coincide with those obtained in Re
using the formalism of statistical tensors. Thenth degree
multiplier has the simple physical meaning of the longitu
nal nuclear magnetization created by then previous pulses of
a multipulse train, reflecting the spin system’s memory of
excitation. The expressions for the SPE and its second
echo signal amplitudes were already obtained in Ref. 1 us
similar expressions for the nuclear magnetization vectors
is easy to prove that the approach considered above cou
immediately applied to the case of periodic two-pulse ex
tation, which is of interest for the description of seconda
echo signals in the investigated systems.

Suppose we also know1 that the effect of SPE and it
secondary echo signals formation is present for a large
in isolation but is stronger in the simultaneous presence
both frequency inhomogeneities, as in the case of multi
main ferromagnets and type II superconductors.

Let us illustrate some of the above-mentioned dep
dences on concrete examples of practical interest.

Experimental results were obtained on a Bruk
Minispec p20 NMR spectrometer provided with a Kawas
Electronica digital signal averager at room and liquid nit
gen temperatures.

Figure 1 shows the averager record of SPE and its
ondary signals from protons in a liquid solution of MnC2

~water was doped by Mn11 paramagnetic impurities by add
ing a paramagnetic solution of MnCl2 in order to obtain a
suitable length of the spin–lattice relaxation timeT1 for the
data collection! under periodic excitation by a pulse tra
with a periodT54 ms. The longitudinal and transverse r
laxation times are, respectively,T1586 ms andT2572 ms
at room temperature (T5300 K). The standard inversion

FIG. 1. Single-pulse echo and its secondary signals in a liquid solutio
MnCl2 at room temperature.t520 ms, T54 ms, T1586 ms,T2572 ms.
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recovery and spin-echo train pulse sequences were empl
in this work for theT1 andT2 determinations, respectively

The dependence of the peak intensities~curve2! of the
SPE~curve1! and its secondary echo signal on the rf pu
repetition periodT at room temperatures in a liquid solutio
of MnCl2 are presented in Fig. 2. The optimal inhomog
neous width of the NMR line for the observation of ech
signals was achieved by using an additional iron plate pla
in the magnet’s clearance, as in Ref. 8.

Let us consider in more detail the SPE signal format
for the example of protons in a test material~silicone oil
~SO!, Silicon KF96! coated on the surface of a powdere
sample of the high-Tc superconductor~HTSC! YBCO-(SO
1YBCO), which is an object similar the one used in Ref.
to study the effect of inhomogeneous broadening of NM
lines due to the formation of an Abrikosov vortex lattice in
HTSC.

Figure 3 shows the SPE record of the investiga
sample (SO1YBCO) at room temperature, and in Fig. 4 th
dependence of its peak intensity on the rf pulse periodT at
room temperature~a! and at liquid nitrogen temperatur
(T577 K) ~b!.

We note that at the given maximal rf pulse length of t
spectrometer~20 ms! for the observation of the SPE sign

of

FIG. 2. Dependence of the SPE~1! and its secondary echo signal’s pea
intensities~2! on the rf pulse repetition periodT at room temperatures in a
liquid solution of MnCl2 .

FIG. 3. SPE in silicone oil~SO! mixed with YBCO powder (SO
1YBCO) at room temperature.T5500 ms,T25150 ms,T15350 ms.
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one should introduce an artificial external magnetic field
homogeneity~with the help of an additional iron plate8! to
allow for condition ~1!!. At the same time atT577 K ~b!,
the SPE signal is observed in an homogeneous magn
field, but the inhomogeneity of the NMR line is caused
the effect of the Abrikosov vortex lattice~AVL ! formation.

The character of the dependence on the repetition pe
T points to a comparatively large role of the multipul
mechanism in the SPE formation at low temperatures.

The SO concentration in the sample under investiga
was chosen as small as possible for enhancement of the
tex lattice effect.9

For comparision, Fig. 5a shows a record of the TPE a
its secondary echo signals for an SO1YBCO sample with a
larger concentration of coating material for obtaining mo
intense signals, while Fig. 4b shows the peak intensity
pendences of the TPE~curve 1! and its secondary signa
~curve 2! on the periodT of the two-pulse train at room
temperature.

It is seen that dependences of the SPE and secon
TPE signals onT have a similar character, reflecting th
significant contribution of the multipulse mechanism in t
SPE intensity. It is known that secondary TPE signals
formed by the multipulse mechanism in proton-contain
systems.10

Vanadium hydride (VH0.68) could be considered as on
more example of a system possessing both types of inho
geneities. In this case the inhomogeneities are the resu
the metallic skin effect. Figure 6 shows the dependence

FIG. 4. Dependence of SPE peak intensities on the periodT of the single-
pulse train at room temperature~a! and at liquid nitrogen temperature~b! in
SO1YBCO.
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the SPE signal peak intensity onT at room temperature. In
this case its intensity is practically unchanged with incre
of T, showing that the contribution of the distortion mech
nism is significant in this material, as it is in some metal
ferromagnets.1

Analysis of the results obtained shows that the S
could be useful not only for a simple determination of t
characteristic relaxation parameters of inhomogeneou
broadened spin systems, but could provide an interesting
proach to the study of AVL dynamics using the SPE sig

FIG. 5. Two-pulse echo~TPE! and its secondary signals in SO1YBCO ~a!.
Dependences of TPE~1! and its secondary signal peak intensities~2! on the
periodT of the two-pulse train~b!. The marks show the time position of th
rf pulses forT5300 K.

FIG. 6. The dependence of the SPE peak intensity on the periodT of the
single-pulse train in vanadium hydride VH0.68. t520 ms, T5300 K.
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due to the effect of magnetic field inhomogeneity caused
the AVL formation.

This allows one to use the SPE effect for the study
AVL stimulated dynamics using pulsed and low-frequen
magnetic fields.11

In conclusion, in the framework of a simple classic
approach using Mim’s transformation matrix method, t
equations for the nuclear magnetizations are obtained w
describe the dynamics of nuclear spin systems with str
Larmor and Rabi inhomogeneous broadenings of NMR li
under conditions of their nonequilibrium.

Properties of the proton single-pulse echo and its s
ondary signals in a test material~silicone oil! coated on the
surface of high-Tc superconducting-oxide powders and
metallic hydride are presented.

In addition, it is shown experimentally that the singl
pulse echo effect gives an opportunity to obtain valua
information on the inhomogeneous NMR broadening,
flecting the character of the microscopic distribution of ma
netic field in such systems as superconductors, hydride
metals, and so on.
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A model is proposed which describes the formation and reversible rearrangement of the
equilibrium domain structure in bulk antiferromagnets with a rather strong magnetoelastic
coupling. The model is based on the assumed existence of a microscopic ordering of a tensor
nature—the microstress tensor that arises due to magnetoelastic coupling during the
formation of the magnetic moment. It is necessary to take such a parameter into account for
adequate description not only of the macroscopic internal stresses and the spontaneous strains
corresponding to them but also of the microstructure of the crystal~e.g., the domain
structure!. The microstresses arising locally in each unit cell are equivalent, from a formal
standpoint, to elastic dipoles, and they create long-range fields whose contribution to the free
energy of the crystal is analogous to that of the magnetostatic energy in ferromagnets and
favors a decrease in the macroscopic strain of the sample through the formation of an equilibrium
domain structure. The corresponding contribution is given the name ‘‘destressing energy’’ by
the authors. It is shown that taking this energy into account in antiferromagnetic crystals allows
one not only to explain the cause of the formation of the domain structure but also to trace
its dependence on the shape of the crystal and the external fields. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1808199#
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1. INTRODUCTION

The possibility of the formation and reversible rea
rangement of a domain structure in antiferromagnetic cr
tals was predicted by Ne´el more than a half century ago1

Although its presence is indicated by experiment, the cau
that lead to the formation of domain structure at phase tr
sitions in crystals that do not possess a macroscopic m
netic moment but are characterized by appreciable spont
ous strains have still not been clarified.

As a rule, the cause of a nonuniform distribution of a
tiferromagnetic vectors and the accompanying spontane
lattice strains are assumed to be initial nonuniformity of
sample ~technological defects!, the existence of boundar
conditions of a definite type~e.g., rigid coupling between th
sample and a nonmagnetic substrate!, or, finally, the entropy
factor. Unfortunately, the models based on these assump
cannot explain a number of experimental facts~see, e.g.,
Refs. 2–7! connected with the reversible rearrangement
the domain structure in antiferromagnetic crystals in
presence of external influences~e.g., a magnetic field or me
chanical stresses!. Furthermore, in the description of th
phase transition itself the spontaneous strains accompan
the transition are considered to be exactly like the mac
scopic strains arising when the sample is subjected to ex
nal loads, without any analysis of their microscopic caus

The authors have previously8–10 made attempts to ex
plain the causes of the formation of domain structure in
tiferromagnets by their internal properties and, in particu
8041063-777X/2004/30(10)/11/$26.00
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by the presence of anisotropic surface energy,8 the impor-
tance of the taking of which into account was first point
out in Ref. 11, and also by the incompatibility of the spo
taneous strains on the surface and in the bulk of
sample.9,10 However, such an approach is applicable on
under rather strong restrictions on the properties of the
face ~for example, its properties must differ substantia
from those of the bulk! and, furthermore, it does not explai
the microscopic nature of the phenomenon.

In Refs. 12 and 13,apropos the formation of domain
structure in ferromagnets with rather strong~in comparison
with the magnetic anisotropy energy! magnetoelastic cou
pling, the idea was first set forth that internal stresses an
gous to the stresses produced by defects~e.g., dislocations or
inclusions! arise at transitions of this kind, but nothing wa
said about the microscopic nature of those stresses. And
though today the microscopic character of the spontane
strains caused by magnetoelasticity is not in doubt, the in
ence of the internal stresses causing these strains on
thermoelastic1! phase transitions in antiferromagnets a
other substances and on the formation of macroscopic~in
particular, domain! structure in them remains an open que
tion.

Let us discuss in general terms the process wherein m
netic order arises in a so-called Heisenberg magnet. Acc
ing to the established ideas, at the critical temperature at e
lattice site, i.e., locally, magnetic moments spontaneou
form, their mutual directions agreeing as a result of the
© 2004 American Institute of Physics
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change interaction. It is perfectly clear that in the presenc
magnetoelastic coupling~including interactions of a spin–
orbit nature! the appearance of spontaneous moments sh
lead to a change in the value of the interaction poten
between an atom on which a spin moment has arisen, an
nearest neighbors, i.e., to the formation oflocal stresses tha
can be characterized by a certain parameterŝmag of a tensor
nature. In the simplest case~when only pair interactions ar
taken into account! this is a second-rank tensor whose sy
metry should correspond to the local symmetry of the cry
lattice, lowered because of the onset of the spin order
Thus, in besides the ‘‘main’’ microscopic order paramet
which in this case is conventionally taken as the antifer
magnetic vector for the given unit cell, one can introduce
‘‘additional’’ ~but which nevertheless has completely eq
standing! microscopic order parameter characterizing the
cal stresses~concentrated forces! and which, in the terminol-
ogy of Kléman,12,13 corresponds to quasi-defects.

It should be emphasized that the local microstresses
troduced here and the global macrostrains employed in
theory of elasticity, which characterizes the state of the cr
tal as a whole, are completely different physical quantiti
They are related only in that both of these quantities cha
terize the change of the elastic state of the crystal, and
microstrains created by them can be regarded as some
grees of freedom’’ of the crystal which take part in the ma
netic phase transitions and influence the magnetocrysta
structures that form as a result of those transitions. Tak
these degrees of freedom into account is justified when do
so leads to nontrivial results, in particular, when describ
phase transitions in ferro- and antiferromagnetic crys
with a degenerate direction of the axis of easy magnetizat

In this paper we propose a model that makes it poss
to describe in a consistent way the formation and revers
rearrangement of the equilibrium domain structure in b
antiferromagnets with a sufficiently strong magnetoela
coupling by starting from ideas about the aforemention
microstresses and utilizing the formalism for description
the fields of elastic dipoles which is well known in the theo
of elasticity.14

The structure of this paper is as follows. In Sec. 2
analyze from the standpoint of the theory of continuous m
dia the interaction of two regions lying far apart~in compari-
son with the size of the regions! in which antiferromagnetic
order has spontaneously arisen and show that under ce
conditions it is energetically favorable to have states w
different ~noncollinear! orientations of the antiferromagnet
vectors in each of the regions. In Sec. 3 we consider a
croscopic mechanism based on the assumption that inte
microstresses arise due to the magnetoelastic coupling,
we obtain a general expression describing the contributio
the long-range elastic fields to the free energy of
crystal—the so-called ‘‘destressing’’ energy. In Sec. 4
consider examples of the calculation of the destressing
ergy for samples in the form of thin slabs with differe
crystallographic symmetry. In Sec. 5 the model develope
applied for analysis of the process of formation and re
rangement of the domain structure in antiferromagnetic c
tals of different types. Finally, in the Conclusion we summ
rize the main results and conclusions of this study.
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2. INTERNAL STRESSES AND THE INTERACTION OF TWO
‘‘MAGNETOELASTIC DIPOLES’’

Let us consider a phase transition to an antiferrom
netic state with allowance for the magnetoelastic coupling
the crystal. We shall assume that in a uniform crystal fou
in the paramagnetic state at temperatureT>TN , antiferro-
magnetic order is established, owing to fluctuations, in a
gion of physically small volumeDV centered at a pointr0 ;
this order is characterized by the so-called antiferromagn
vector L (r )5L0d(r2r0), where in the limit DV→0 the
form functiond(r2r0) is the Dirac delta function.

It is known that the presence of magnetoelastic coupl
leads to a change in the interatomic interaction potentia
the regionDV, which in turn gives rise to local interna
stresses that can be described by a tensorŝmag(r ) that de-
pends on the coordinater and is related to the magnetic ord
parameter by the relations

ŝmag~r !5L̂L0^ L0d~r2r0!→s jk
mag~r !

5L jklmL0lL0md~r2r0!, ~1!

where the 4th-rank tensorL̂ characterizes the magnetoelas
coupling and reflects the magnetocrystalline symmetry of
lattice. In Eq. ~1! and below, as always, summation ov
repeated indices is assumed.

According to the theory of elasticity,14,15 at distances
substantially greater than the linear dimensions of the reg
DV the internal stresses~1! concentrated at the pointr0 cre-
ate a displacement field

uj~r !5
]

]r k
E

DV
Gjl ~r2r 8!skl

mag~r 8!dr 8

5LklmnLmLn

]

]r k
Gjl ~r2r0!, ~2!

where the Green’s functionGjk(r ) of an infinite elastic me-
dium satisfies the equation

]

]r k
cjklm

]

]r l
Gnm~r !1d jnd~r !50, ~3!

in which cjklm is the tensor of elastic constants.
In complete analogy with ferromagnets one can say t

the tensorŝmag(r ) characterizes a ‘‘dipole’’ moment of the
medium, while the displacement vectoru~r ! characterizes the
potential of the elastic field created by those dipoles at s
ficiently large distances.

We now assume that antiferromagnetic order has ar
in two regionsDV1 andDV2 which are the neighborhoods o
pointsr1 andr2 , respectively, the distance between which
also much greater than the size of these regions of spont
ous ordering. The elastic stress fields~1! and the displace-
ment fields~2! induced in the strained regions by the ma
netoelastic transition interact with each other. T
corresponding contributionFdd to the Gibbs thermodynamic
potential can be calculated as the energy of interaction of
elastic dipoles:14,15

Fdd5
1

2

]2

]r 1 j]r 1k
Gml~r12r2!s j l

mag~r1!skm
mag~r2!. ~4!
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We note that independently of the directions of the antif
romagnetic vectors at the pointsr1 and r2 the traces of the
two tensorsŝmag(r1) and ŝmag(r2), which determine the
spontaneous dilatation~volume expansion!, are equal:

Tr ŝmag~r1!5Tr ŝmag~r2!5Tr ŝmag.

The interaction energy acquires a nontrivial contributio
which depends on the mutual orientation of the elastic
poles and, hence, the local directions of the antiferrom
netic vectors, from the shear~deviator! part of the stress
tensor, which we denote as

ŝ~a![ŝmag~ra!2
1̂

3
Tr ŝmag, a51,2,

where1̂ the unit matrix. Substituting into expression~4! the
Green’s function for an isotropic medium14

Gjk~r !5
1

16pm~12n!r F ~324n!d jk1
r j r k

r 2 G ~5!

~wherem[c44 and n are the shear modulus and Poisso
ratio, respectively! and assuming without loss of generali
that r15r , r250, ande5r /r , we find that

Fdd52
1

16pm~12n!r 3 F ~122n!Tr~ ŝ~1!ŝ~2!!

16n~eŝ~1!,ŝ~2!e!2
15

2
~eŝ~1!e!~eŝ~2!e!

1Tr ŝmag~e~ ŝ~1!1ŝ~2!!e!G . ~6!

In the case of a medium that is isotropic in both the ela
and magnetoelastic respects~here and below for symmetri
4th-rank tensors we adopt the Voight notation! (L112L12

52L44)

Tr ŝmag5~L1112L12!L
2

and the shear part of the stress tensor is expressed extre
simply in terms of the components of the antiferromagne
vector:

ŝ~a!52L44FL ~a!
^ L ~a!2

1̂

3
L2G→s jk

~a!

52L44FL j
~a!Lk

~a!2
d jk

3
L2G . ~7!

Substituting~7! into ~6!, we find that the interaction energ
of two antiferromagnetically ordered regions~‘‘antiferro-
magnetic dipoles’’! consists of three contributions:

Fdd5F is1Fan1Fafm. ~8!

The first term in~8! describes an energy that does not depe
on the orientation of the magnetic moments and there
does not play any role in the establishment of the equilibri
direction of the antiferromagnetic vectors:

F is5
L44L

4

12pm~12n!r 3 @L44~124n!1L1112L12#. ~9!

The second term in~8! is determined by the orientation o
each of the vectorsL (a) with respect to the vectore:
-

,
i-
-

c

ely
c

d
re

Fan5
L44

2

8pm~12n!r 3 H 15~L ~1!,e!2,~L ~2!,e!22L2F524n

1
L1112L12

L44
G@~L ~1!,e!21~L ~2!,e!2#J . ~10!

This contribution can be regarded as the anisotropy ene
which influences the equilibrium direction of the antiferr
magnetic vectors.

Finally, the last term contains the scalar products of
antiferromagnetic vectors on different sites and thus de
mines their mutual orientation, which is brought about by
indirect interaction via the elastic subsystem:

Fafm52
L44

2

4pm~12n!r 3 @~122n!~L ~1!,L ~2!!2

16n~L ~1!,L ~2!!~L ~1!,e!~L ~2!,e!#. ~11!

It is seen from expressions~9!–~11! that the ‘‘dipole–
dipole’’ energy~8! remains unchanged, as it should, when t
sign of any of the vectors is changed,L (a)→2L (a), and,
hence, unlike ferromagnets, is indifferent to antipha
domains.2! At the same time, at phase transitions accom
nied by a lowering of the spatial symmetry, the vectorL and,
accordingly, the tensorŝmag can have several equilibrium
orientations differing by a rotation of 60°, 90°, or 120°.

Suppose, for example, that the equilibrium orientatio
L (1) andL (2) can differ by 90°~as, for example, in the cas
of the antiferromagnetic insulators KNiF3 , KCoF3 , K2NiF4

and in the underdoped high-Tc superconductors Y–Ba–
Cu–O and La–Sr–Cu–O!. Analysis of the terms of expres
sion~8! shows that for certain orientations of the vectore the
configuration with a parallel direction of the vecto
L (1)iL (2) will have a lower interaction energy, while for oth
ers the configuration with mutually perpendicular orderin
L (1)'L (2), will have.

Indeed, if the vectore is parallel to one of the ‘‘easy’’
directions for the vectorL , i.e.,eiL (1), then the difference of
the energies of the parallel (i) and perpendicular (') order-
ings

Fdd
i

2Fdd
' 5

L44
2 L4~22n!

2pm~12n!r3 .0, ~12!

and, as a result, the mutually perpendicular orientation of
magnetoelastic dipoles will be more favorable. This cor
sponds to Le Chatelier’s principle: if the appearance of a
ferromagnetic order in the regionDV1 leads to elongation of
the lattice alongL (1), then the stresses created in the rem
regionDV2 will also be tensile in the same direction and c
be diminished by compressive stresses in the case when
vectorL (2) ‘‘turns sideways.’’ In the other limiting case th
vectore is directed at the same angle to both antiferrom
netic vectors (e,L (1))5(e,L (2)), which corresponds to the
‘‘hard’’ direction of L . Then

Fdd
i

2Fdd
' 52

L44
2 L4~11n!

4pm~12n!r 3 ,0, ~13!
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i.e., the parallel orientation of these vectors at differe
points of the crystal will have the lower energy~generally
speaking, this does not rule out the formation of antiph
domains!.

Thus, as in the case of ferromagnetic dipoles, in mag
toelastic crystals with antiferromagnetic ordering there e
certain directions in which it is energetically favorable f
dipoles of different types to appear, corresponding to equ
lent but noncollinear orientations of the spontaneou
strained regions. An important difference from the case
ferromagnetic dipoles lies in the choice of this orientatio
For dipoles of a vector nature~magnetic, electric! the great-
est differences arise in the directions parallel to and perp
dicular to the axis of the dipole, while for elastic and, a
cordingly, antiferromagnetic dipoles, which are characteri
by a 2nd-rank tensor, they arise along the ‘‘easy’’ and ‘‘har
axes of the antiferromagnetic vector, the angle betw
which can, in particular, be 45°.

3. DESTRESSING ENERGY IN AN ANTIFERROMAGNET

In the previous Section the interaction of two magne
elastic dipoles was actually reduced~in the continuous me-
dium approximation! to the interaction of two spatially sepa
rated inclusions of a strained antiferromagnetic phase
paramagnetic matrix. That approach is applicable if the te
perature of the paramagnetic state is only slightly above
critical temperature. In this Section we explore the quest
of how the formalism used can be generalized to the c
when the antiferromagnetic vector and the directions co
sponding to it arise in every unit cell of the crystal.

Let us begin with the simplest example of a tw
dimensional square lattice in which magnetic ions of spec
A ( r0) are surrounded by nonmagnetic nearest neighbor
species B (rn5r01rn , n51,2,3,4; see Fig. 1!. Such a struc-
ture exists in the cuprate layers of high-Tc superconductors
for example, where the paramagnetic copper ions Cu21 (S
51/2) are surrounded by the nonmagnetic ligands O22. The
appearance of a spontaneous moment directed along thOx
axis at site A leads to the displacement of atoms 1 an
along the same axis (ux(r1)52ux(r3)5u0) and of atoms 2
and 4 along the perpendicular direction (uy(r2)52uy(r4)
5u0). The total change of the configuration of the B atom
leading to a shear strain, can be characterized by the qua

FIG. 1. Displacements of the atoms of a square lattice under the influen
local stresses due to the appearance of spin at the atom of species A~unfilled
circle!: the undeformed~a! and the deformed~b! states. The arrows indicat
the direction of displacements of the atoms of species B~filled circles! from
the initial state to the deformed state.
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«~r0!5
1

4
@ux~r1!2uy~r2!2ux~r3!1uy~r4!#, ~14!

which transforms according to the same irreducible repres
tation of the local symmetry group3! as does a linear combi
nation of components of the 2nd-rank tensor«xx2«yy . In
the general case this quantity can be written as

«̂~r0!5
1

z (
n51

z

u~r01rn! ^ rn , ~15!

where the vectorsrn characterize the position of thez
(54) nearest neighbors. The tensor conjugate to this qu
tity determines the change ofVmag, the interatomic interac-
tion potential caused by the magnetic ordering, and can
regarded as the microstress tensor in the neighborhood
specified site:

s jk
micro~r0!5

]Vmag~r0!

]« jk
. ~16!

For an antiferromagnet the nontrivial components of the t
sor ŝmicro are related to the orientation of the spin mome
by a relation of the type~1!, where the components of th
4th-rank tensorL jk are invariant with respect to transforma
tions of the local symmetry group. In the general case
change of the local environment of the magnetic atom can
determined by tensors of higher ranks~when next-neares
neighbors are taken into account!.

We recall that the local stress and strain tensors in
duced above are essentially different from the correspond
macroscopic quantities that are used for describing the s
of the crystal in the theory of elasticity. For example, t
quantities specified by expression~15! depend on the corre
lation functions of the distribution at the neighboring sit
and actually assign a tensor characteristic to every poin
the medium. At the same time, the strains in the stand
theory of elasticity are determined as gradients of the m
displacement vectors, i.e., they depend on the first and
the second moments of the distribution functions. Furth
more, the strains corresponding to the local stressesŝmicro

can in some sense be considered quasi-plastic~in the termi-
nology of Ref. 13!, since they arise in the absence of extern
loads and can be removed only through a change of
whole thermodynamic state of the sample~for example, by
raising the temperature of the crystal!. In other words, for the
microstress tensor one can adopt the same assumptions
the magnetic moments~Ampère ‘‘microcurrents’’! in mag-
netic media—once formed at the point of the phase tra
tion, both the magnetic moment and the microstress ten
retain their value; the action of external forces can lead o
to their reorientation with respect to the axes of the crys
And just as the existence of a magnetic moment does
lead to the onset of macroscopic conduction currents,
existence of the microstress tensor does not lead to pla
flows of the sample as a whole.

For a phenomenological description of the elastic st
that arises at the phase transition, we turn from the mic
scopic stresses~16! to the stresses averaged over mac
scopic but physically small volumes of the crystal. Then
the case of a magnetic transition@cf. Eq. ~1!#

of
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(
r l

ŝmicro~r l !d~r2r l !→ŝmag~r !5
1

v0
^ŝmicro&, ~17!

wherev0 is the unit cell volume and the angle brackets d
note averaging.

Expression~17! together with~1! actuallypostulatesthe
existence at magnetoelastic phase transitions of
primary4! order parameters of microscopic origin: a magne
one, which in the present case is the antiferromagnetic ve
L , and a~magneto!elastic order parameter, characterized
the tensorŝmag(r ). In contrast to this, in the conventiona
description of transitions of this type only the magnetic ve
tors are considered to be primary order parameters, while
spontaneous strains and the stresses that have caused
are considered secondary, macroscopic quantities.

The contribution to the free energy of the crystal whi
depends on the stresses~17! contains terms of different na
tures. The most important for the formation of the order
state are the local interactions, which in the vicinity of t
phase transition are well approximated by a bilinear form
terms of the components of the tensorŝmag(r ), which is
invariant with respect to the symmetry point group of t
crystal:

Fafm5E dVF1

2
s jk

magsjklms lm
mag2l jklms jk

magLlLmG . ~18!

The first term in~18! models the energy of formation of a
elastic dipole~with a strength coefficientŝ) while the second
models the magnetoelastic coupling, which is what gives
to ŝmag(r ) on magnetic ordering@see expression~1!, where
L̂5 ŝ21l̂]. Coupling of the type~18! together with the ex-
change interaction of a purely magnetic nature leads to ‘‘p
allel’’ ~uniform! ordering of the elastic dipoles and can the
fore, by analogy with magnetism, be treated as ‘‘exchang

A weaker, but nevertheless important, contribution
that due to the coupling of elastic dipoles, which is describ
on the microscopic level by expression~4!. Upon integration
over the whole crystal we note that at small~of the order of
interatomic! distances the interactions between elastic
poles are of a substantially nonlinear character and a deta
description of them requires taking into account the int
atomic potentials, electronic structure of the crystal, e
However, it is clear from physical considerations that in t
presence of long-range magnetic order these interactions
responsible for orientation of the elastic dipoles with resp
to the axes of the crystal and the magnetic moments
given point, i.e., in essence they determine the elastic an
ropy. Phenomenologically the local orientation of the elas
dipoles is described by expression~18! under the condition
that the coefficientsl jklm depend not only on the mutua
orientation of the antiferromagnetic vectorsL but also on
their orientation with respect to the crystallographic dire
tions, or the magnetic anisotropy.

In view of what we have said, the macroscopic energy
the elastic dipole coupling can be written in the form of
integral,
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Fdd5
1

2 Eur2r8u.r
drE dr 8s jk

mag~r !s lm
mag~r 8!

3
]2

]r j]r l
Gkm~r2r 8!, ~19!

where the Green’s function is defined by Eq.~3! and the
physically small macroscopic lengthr is much greater than
the interatomic distancesa ~at which the contribution~18! is
dominant! but much less than the linear dimensiondD of the
elastic~and magnetic!5! domains:a!r!dD .

Expression~19! has an important feature that permi
reducing the problem of domain formation at a thermoela
phase transition to the analogous problem of the formation
domains with the opposite direction of the magnetizat
vector in ferromagnetic crystals.19 For example, it is known
that the Green’s function appearing in expression~19! decays
asymptotically asGkm(r )'1/r independently of the symme
try of the crystal, thus ensuring the long-range characte
the dipole forces.6! This leads to two important conse
quences: first, in a system of elastic dipoles the interacti
have a nonlocal character and, hence, it is possible for in
mogeneous~domain! structures to arise; second, as will b
seen below@see formula~22!#, the quantityFdd is propor-
tional to the volume of the crystal and, consequently, its c
tribution to the free energy of the crystal is comparable to
change of its chemical potential due to a phase transfor
tion.

We now use expression~19! to describe the elastic stat
arising in a crystal at a thermoelastic phase transition
show that~by analogy with ferromagnetism! that taking the
dipole interactions into account does in fact allow one
explain the breaking up of an antiferromagnetic crystal
finite size into magnetoelastic domains with different orie
tations of the elastic dipoles.

We start by introducing the quantity that determines
macroscopic strain created by concentrated ‘‘forces’’ŝmag:

ujk~r !52
1

2 EV
F ]

]r k
Gjl ~r2r 8!1

]

]r j

3Gkl~r2r 8!G ]sml
mag~r 8!

]r m8
dr 8, ~20!

where the integration is over the entire crystal volumeV. It
is easy to see that if the Green’s functionG(r ) is given by
expression~3!, then the tensorujk(r ) ~20! satisfies the equa
tion

]

]r k
cjklmulm~r !5

]

]r k
s jk

mag~r !. ~21!

Thus the tensorŝmag has the meaning of the macro
scopic stresses, while the symmetric tensorû introduced in
Eq. ~20! has the meaning of the corresponding spontane
strains arising at the phase transition. We emphasize tha
contrast to the standard theory of elasticity,ŝmag is the result
of exclusively internal changes in the crystal and not of
external load applied to it. In some sense the express
obtained resemble the expressions for the stress and s
fields created by point defects, but, unlike the latter, the
ternal stressesŝmag considered here arise spontaneously a
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exist at all points of the medium and not at isolated in
vidual points in it that form a set of measure zero.

In the case when the tensorŝmag is independent ofr , in
a sample of infinite size the spontaneous strainû is also
uniform and is given by the formula

û5 ĉ21ŝmag.

For a sample of finite size the integrals in~19! and ~20!
depend on its shape. Then the distribution of the inter
stresses that brings about the minimum free energy mus
determined from the solution of a self-consistent probl
taking into account the ‘‘exchange’’ and anisotropic co
plings ~18!, the dipole interactions~19!, and the contribution
of the spin subsystem. In the simplest case, that of a sam
in the form a thin slab, the internal stress field is uniform
scales exceeding the size of the individual domains but
than the thickness of the slab,d@dD . In this case the globa
strain of the sample

ujk
macro5: jklm^s lm

mag& ~22!

is determined by the averaged tensor over the different ty
of domains

^ŝmag&[
1

V E
V
ŝmag~r !dr

and the coordinate-independent 4th-rank tensor

: jklm[
]2

]r k]r m
E

V
Gjl ~r2r 8!dr 8, ~23!

which by analogy with magnetism can be called the tenso
‘‘destressing’’ coefficients.7!

In this case the energy of the dipole interaction takes
rather simple form

Fdd5
V

2
^s jk

mag&: jklm^s lm
mag&. ~24!

The averaged internal stress tensor^ŝmag& describes a
certain effective~‘‘molecular’’ or self-consistent! field that is
created by the phase transition and leads to spontan
strains~22!. It is extraordinarily important that, both in th
particular case under discussion and in the general case
dipole interaction energy~24! is proportional to the volume
of the sample, which is what leads to the possibility of lo
ering the free energy of the crystal through the formation
an inhomogeneous structure, i.e., magnetoelastic dom
despite a certain increase in energy owing to the unavoid
formation of domain walls.

In the foregoing analysis of the elastic state arising i
crystal at a phase transition with spontaneous strains, it
implicitly assumed that no external stresses were presen
the sample~the boundary conditions correspond to a fr
surface of the crystal!. However, the result obtained is easi
generalized to the case when the crystal is subjected to
ternal loads~e.g., mechanical stress or magnetic field! or to
displacements somehow externally fixed on the surface
the sample~the crystal is glued, has a coherent interpha
intergrain boundary, the surface has enhanced stiffness,!,
i.e., the boundary conditions have a more general chara
For example, in the presence of external stressesŝext the
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effective field inside the crystal will contain a contributio
both from the destressing fields^ŝmag& and from the externa
fields:

ŝeff5^ŝmag&1ŝext.

Fixed displacements at the boundary of the sample can
taken into account by the introduction of additional stra
ûadd ensuring satisfaction of the boundary conditions and
compatibility conditions. In this case the total strain of t
sample is given by

ujk
tot~r !5ujk~r !1ujk

add~r !, ~25!

where the first term is given by formula~20! and the second
is an additional strain which satisfies the standard equat
of the theory of elasticity, including the compatibility cond
tions. The requirement of compatibility of the total strains
the boundary of a sample of arbitrary shape leads to
equation

curl~curl ûadd~r !!T5êel~r !, ~26!

êel~r !52n3û~rS!3nd8@n~r2rS!#, ~27!

whered8 is the derivative of the Dirac delta function wit
respect to the argument,n(rS) is the normal to the surface o
the sample at the pointrS , and the tensorêel plays the role of
the ‘‘incompatibility charges’’ arising as a result of the in
compatibility of the elastic strains in the bulk and on t
surface of the sample. The particular solution of Eq.~26! has
the form

ûadd~r !5
1

4p E
V
dr1

êel~r1!21̂Tr êel~r1!

ur2r1u
. ~28!

Substitution of~28! into ~24! allows one to express the d
pole energy in terms of the spontaneous strains~rather than
stresses!. In the particular case discussed above, that of a
slab, this leads to an expression that was obtained previo
by the authors in the model of a sample with a rig
surface9,10 @cf. Eq. ~24!#

Fdd5
V

2
^û&:21^û&, ~29!

where the ‘‘destressing’’ tensor is given by the expressio

:̂215 ĉ1n^ nTr c2n^ ~ ĉn!2~ ĉn! ^ n, ~30!

or

: jklm
21 5cjklm1njnkclmpp2njcklmpnp2npcjpklnm ,

and the domain structure is determined by the average v
of the strain tensor over the sample,^û&.

4. TENSOR OF ‘‘DESTRESSING’’ COEFFICIENTS AND THE
‘‘DESTRESSING’’ ENERGY IN THE CASE OF A THIN
SLAB WITH A FREE SURFACE

Calculation of the dipole–dipole interaction energy~19!
in a sample of arbitrary shape relies on knowledge of
Green’s function, the calculation of which is not a simp
problem in itself. An exception once again is the case o
thin slab, for which the tensor of destressing coefficients,:,
introduced by expression~23! can be calculated in explici
form.
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We suppose that the normal to the plane of the sla
specified by the vectorn, the coordinates of which are dete
mined with respect to the crystallographic axes. Then
destressing tensor is expressed in terms of the componen
the so-called dynamical matrixD jk

21[ci jkl ninl ~see, e.g.,
Refs. 14 and 20! as

: jklm5D jl nknm . ~31!

The destressing energy, accordingly, takes the form

Fdd5
V

2
^nŝmag&D̂^ŝmagn&. ~32!

Importantly, the contribution to the free energy of th
crystal due to the dipole–dipole interaction~32! is always a
positive-definite quadratic form with respect to the comp
nents of the vector̂ŝmagn&. This follows from the positive
definiteness of the dynamical matrixD jk

21 , which determines
the spectrum of the long-wavelength acoustic modes. F
thermore, this contribution is proportional to the volume
the crystal and therefore, as we have said, can compete
the contribution due to the phase transition itself for any s
of the sample.

As an example let us consider an elastically isotro
medium. It follows from symmetry considerations that in th
case the matrixD jk ~the explicit form of which can be found
in Ref. 20! has one eigenvector in the direction of the norm
n to the surface of the slab, which corresponds to an eig
value 1/c11, and two mutually perpendicular vectors (e1 and
e2) lying in the plane of the slab and corresponding to
eigenvalue 1/c44. Taking into account the aforementione
relation between the matrixD jk and the dynamical matrix
we can say that the eigenvectors of this matrix determine
polarization of three acoustic modes—one longitudinal a
two transverse, propagating in the direction of the normal
view of what we have said, the expression for the dip
energy~32! becomes

Fdd5
V

2 F 1

c11
^nŝmagn&21

1

c44
~^e1ŝmagn&2

1^e2ŝmagn&2!G . ~33!

This contribution to the energy is clearly non-negati
and, consequently, as in the case of a ferromagnet, in
absence of external fields it can be decreased only when
corresponding averaged components of the tensorŝmag van-
ish. We emphasize that, in contrast to the case of a ferrom
net, the destressing tensor depends not only on the sha
the sample~in the present case, on the orientation of t
vectorn! but also on the value of the elastic constants. C
sequently, the directions ofn for which the shape effect wil
be most strongly manifested depend not only on the ge
etry of the sample but also on its material constants.

In the general case expression~32! can be written in a
form analogous to~33! provided that the normal to the plan
of the slab is directed in one of the so-called ‘‘pure’’ dire
tions of the crystal, i.e., ifn is an eigenvector of the matri
D̂. Expressing the eigenvalues of the matrixD̂ in terms of
the effective elastic constants corresponding to the longit
nal cl and two transversect1,2 polarizations, we find that
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Fdd5
V

2 F 1

cl
^nŝmagn&21

1

ct1
^e1ŝmage1&

2

1
1

ct2
^e2ŝmage2&

2G . ~34!

Expressions~33! and ~34! allow one to draw some rathe
general conclusions about the relative scale of the dipo
dipole energy as it depends on the sample shape. Sinc
many crystals the elastic constants corresponding to tr
verse modes are considerably smaller than in the cas
longitudinal modes,ct,cl , the last two terms in~33! and
~34! can be much greater than the first. Thus in order
achieve the maximum destressing effect the sample sh
be cut so that the conditionŝmagn50 is satisfied in all of the
domains. Otherwise, whenŝmage1,250 the destressing en
ergy is small, and, as will be shown in the next Section,
sample can easily be brought to a single-domain s
~‘‘monodomainized’’! by external influences.

5. DOMAIN STRUCTURE OF ANTIFERROMAGNETS

Let us now apply the expressions~32!–~34! obtained in
the last Section to elucidate the conditions of formation a
reversible rearrangement of the equilibrium domain struct
at thermoelastic phase transitions.

As the first example we consider an antiferromagne
crystal whose symmetry group belongs to the tetrago
class~e.g., underdoped Y–Ba–Cu–O or La–Sr–Cu–O co
pounds!. For simplicity we shall assume that the crystal
isotropic in the plane of symmetry (c112c1252c66). In the
case of an infinite crystal there are two equivalent equi
rium directions of the vectorL , lying in the symmetry~basal!
plane of the crystal:L iOx (X domain! and L iOy (Y do-
main!. These directions are determined from the conditio
that the part of the free energy that is of purely magne
origin be minimum, and in our treatment they are assume
be specified. The equivalence of the domains in the abse
of external fields means that in the region of uniform ord
ing, the specific thermodynamic~chemical! potentials of the
two domains are identical:mX5mY . In the presence of a
magnetic fieldH lying in the symmetry plane the domain
become inequivalent, and their chemical potentials differ
an amount determined by the Zeeman energy:

mX2mY5
1

2
x~Hx

22Hy
2!, ~35!

wherex is the magnetic susceptibility of the antiferroma
netic phase in the direction perpendicular to the easy axi
the crystal.

In an infinite sample containing domains of both typ
with volume fractionsj and (12j) the thermodynamic po-
tential is a linear function ofj:

F`5V@jmX1~12j!mY#

5F01
V

2 S j2
1

2Dx~Hy
22Hx

2!, ~36!

where F0 is a constant that is unimportant for the give
problem.
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Clearly in the absence of external field (H50) the en-
ergy of the crystal does not depend on the ratio of the fr
tions of domains of each type and the formation of a dom
structure is thermodynamically unfavorable, since it involv
energy costs for the formation of the domain walls. The i
position of a field leads to stabilization of the more favora
of the two single-domain states, i.e., the one for which
potential ~36! will be minimal @domainX (j51) if HiOy
and domainY (j50) if HiOx].

In a sample of finite size the thermodynamic poten
should include the dipole–dipole energy~32! in addition to
the term~36!. For calculating that energy we determine t
internal stress tensor averaged over the volume:

^sxx
mag&5L2FL111L12

2
1L8~122j!G ,

^syy
mag&5L2FL111L12

2
2L8~122j!G ,

^szz
mag&5L13L

2, 2L8[L112L12. ~37!

Clearly if the normal to the plane of the sample is direc
along theOz axis ~the symmetry group of the sample coi
cides with the point group of the high-symmetry phase!, then
the quantity

^ŝmag&n5L13L
2n

will be identical in all the domains. This means that t
dipole–dipole interaction energy~32! in a sample free of
external stresses will not depend on the domain fraction
all, i.e., it will not lead to destressing.8!

However, if the normal to the plane of the slab is p
pendicular to theOz axis ~the symmetry group of the samp
can be lower than the point group of the high-symme
phase!, then the main contribution to the dipole–dipole i
teraction energy depends quadratically on the relative f
tion j of the domains:

Fdd5
1

2
L82L4VS j2

1

2D 2F ~nx
22ny

2!2

4c11
1

nx
2ny

2

c66
G . ~38!

As is seen from Eq.~38!, the destressing energy depen
substantially on the orientation of the slab with respect to
crystallographic axes. Since the shear modulusc66 here is
usually smaller thanc11 by a factor of 3–10~see, e.g., Ref.
20!, the value of the destressing energy will be maximum
the case when the plane of the slab coincides with a twinn
plane~i.e., with the plane of a domain boundary,ni@110#). A
substantially lower value of the energyFdd is obtained when
the slab is cut perpendicular to one of the easy axes for
antiferromagnetic vector (niOx or Oy).

The equilibrium domain fractionj is determined from
the condition that the total thermodynamic potential,F
5F`1Fdd , be minimum, and it is equal to

j5
1

2
1

x~Hx
22Hy

2!

L82L4 F ~nx
22ny

2!2

4c11
1

nx
2ny

2

c66
G21

. ~39!

It follows from ~39! that for any orientation ofn a change of
the relative fraction of one domain or the other can lead t
lowering of the thermodynamic potential of the system, a
so the multidomain state is thermodynamically favorab
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From expression~39! we also arrive at the conclusion that
certain characteristic ‘‘monodomainization’’ field exists,

HMD5
L8

Ax
L2A~nx

22ny
2!2

4c11
1

nx
2ny

2

c66
, ~40!

at which the ‘‘unfavorable’’ domain disappears complete
from the sample. Remarkably, the value of that field depe
on how the sample is cut and can vary over wide limits, fro
zero to a value comparable to the magnetostriction field.

The relation between the shape of the sample and
domain structure was used on an empirical level in the
periments of Refs. 5–7. In particular, for studying the sha
memory effect in the antiferromagnet La–Sr–Cu–O, wh
involves the displacement of the domain walls, a sample
the form of a thin slab was cut out in such a way that its fa
was perpendicular to the easy axes, i.e.,niOx or Oy. Then,
after several on–off cycles of the field the sample beca
practically single-domain, when the domain structure was
longer restored. At the same time, for any other orientat
of the slab, as was mentioned in Refs. 5 and 6, the mem
effect was not observed~it must be assumed that the applie
fields were insufficient for monodomainization of th
sample!. In experiments where it was required to mainta
equal fractions of the domains even in the presence of a fi
the slab was cut in such a way that its faces were paralle
the hard directions, i.e.,nx5ny , and that, in the opinion of
the authors of Ref. 7, prevented motion of the domain wa
~but, as we see, this simply lowered the ‘‘susceptibility’’
the magnetoelastic domain structure to an external magn
field!.

Expression~40! allows one to estimate an experime
tally observable quantity: the monodomainization field. L
us consider, as an example, an underdoped high-Tc super-
conductor La–Sr–Cu–O in the antiferromagnetic state,
domains in which have a nonmagnetic nature but are rig
coupled to the magnetic properties of the sample and ca
rearranged under the influence of an external field. Subst
ing into ~40! the values0[L8L2'30 MPa~defined as the
saturation stress, at which, according to Ref. 21, the sam
becomes single-domain!, the elastic constants c11

5213 GPa~Ref. 22! andx5531027 c.g.s.m.s.u./cm3 ~Ref.
21!, we obtain the value of the monodomainization fie
HMD515 T for a slab cut in the direction of the easy ax
(niOx), which practically coincides with the experimental
observed5,6 value of 14 T. Importantly, for the other orienta
tion of the slab~at a 45° angle to the easy axis!, the value of
the monodomainization field calculated according to form
~40! with c66554 GPa increases to 60 T. In this case, up
external field values of 10–15 T, according to formula~39!,
the fraction of the favorable domain can change by not m
than 10%, i.e., the domain structure is practically insensit
to the external field. The corresponding curves of the fract
of the domain versus the strength of the external field for
two n orientations mentioned are shown in Fig. 2. Figure
shows the angle diagram for the dependence of the of
monodomainization field on the direction ofn in the basal
plane of the crystal. We note that a relation between
value of the monodomainization field and the shape of
sample has also been observed in ferromagnets, but in
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ferromagnets the equivalent orientations of the sample
differ by 90° rather than 180°.

As a second example let us consider the formation
domains in a crystal in which the high-temperature~high-
symmetry! phase has cubic symmetry while the low
temperature~ordered! phase has tetragonal symmetry. Suc
situation arises, e.g., in antiferromagnetic ordering of
crystals KNiF3 and KCoF3 and also at thermoelastic trans
tions of the martensitic type. In the last case the cause of
internal stresses is ordering not of the spin but of the cha
subsystem, although the behavior of the elastic subsyste
completely analogous.

The elastic characteristics of a crystal of cubic symme
are isotropic and to a first approximation can be appro
mated by the expressions~5! and ~23!. The low-symmetry
~antiferromagnetic or martensitic! phase can be realized i
the form of three equivalent domains of tetragonal symme
with principal axes alongOx, Oy, and Oz, respectively.
Suppose that only two types of domains,X and Y, are
present in the slab, with volume fractionsj and 12j, re-
spectively. The internal stress tensor in each of the dom
has the form

FIG. 2. Relative fraction of the ‘‘favorable’’ domain as a function
the external magnetic field; calculation according to formula~39! for the
La–Sr–Cu–O crystal for different directions of the normal to the surface
the sample:n i @100# ~curve1! andn i @110# ~curve2!.

FIG. 3. Angle diagram of the dependence of the monodomainization
on the direction ofn in the basal plane of the La–Sr–Cu–O crystal; calc
lation according to formula~40!.
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0 s0 0

0 0 s0

D , ŝY5S s0 0 0

0 22s0 0

0 0 s0

D .

~41!

Then with ~41! taken into account, the destressing ene
~33! takes the form9!

Fdd2
9

2
Vs0

2H 1

c11
Fj~ny

22nx
2!1

1

3
2ny

2G2

1
1

c44
~2j21!2nx

2ny
21

1

c44
nz

2@j~nx
22ny

2!1ny
2#2J . ~42!

Analysis of expression~42! shows directly that if the
normal to the plane of the slab coincides with an easy dir
tion of one of the domains (niOx or Oy), then the main
contribution to the destressing energy comes from the
term. Here in the absence of external fields the state in wh
the domain fractions are in a ratio of 2:1 (j51/3 or 2/3! are
energetically favorable. In the other limiting case, when
plane of the sample coincides with the interface betweeX
andY domains@n'(110)#, the second term, which favors
structure with equal fractions of domains of the two typ
(j51/2), is nontrivial. Finally, if the plane of the slab coin
cides with a habit plane@n'(011)#, then the fraction of one
of the domains is determined by the ratioc44/c11 and can be
much less than unity. We emphasize that such a ratio of
equilibrium domain fractions can be observed only under
condition that the surface of the sample is free.

In the opposite case of a transition with a coherent int
phase boundary one should use expression~29! for the de-
stressing energy; analysis of that expression leads to a r
that is well known in the physics of martensitic pha
transformations—the equilibrium fractions of the domains
the two types stand in a ratio of 2:1 provided that the int
phase boundary is parallel to a habit plane~see above!. We
note that in contrast to the crystallographic approach adop
in the theory of the martensitic transformations and based
the requirement of coherent matching of the lattices of
two phases, martensitic and austenitic, the model of ‘‘ela
dipoles’’ enables one to predict the possibility of formatio
of a domain structure and to calculate the fraction of
domains of the different types for different boundary con
tions, particularly in the presence of external mechani
stresses or in the case when the interphase boundary a
transition is absent altogether~e.g., for a second-order tran
sition!.

6. CONCLUSION

The elastic dipole model proposed above is based
physical assumptions that can be stated as follows.

1. At a thermoelastic phase transition, concentra
forces–elastic dipoles—arise at every point of the mediu
the origin of these elastic dipoles is due to the change
character of the interatomic bonds. Having arisen, these
poles do not vanish, but they can change their orienta
under the influence of external forces of different natures

2. The orientation of the elastic dipoles is determin
mainly by the magnitude and orientation of the prima
~here, magnetic! order parameter.
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3. At large distances the elastic dipoles create str
fields that can be described in the framework of the stand
theory of elasticity.

The model developed here can give a consistent ex
nation of the causes for the appearance and the condition
the formation of a domain structure in substances in wh
the primary order parameter@the~antiferro!magnetic moment
or electron density# does not create the long-range fields ne
essary for the formation of a macroscopically inhomog
neous structure. Such substances include, for example
collinear ~compensated! antiferromagnets considered in th
paper, and crystals undergoing a thermoelastic marten
transformation. Furthermore, the formalism developed h
can also be applied for the description of the domain str
ture in ferromagnetic crystals with strong magnetoelastic
teractions and a degenerate orientation of the magnetiza
vector. A special case in light of what we have said abo
may be weak ferromagnets and ferromagnetic martens
where a competition between the purely magnetic~ferromag-
netic! and magnetoelastic factors giving rise to the dom
structure is not ruled out.

The expressions~19! obtained for the energy of the mag
netoelastic dipole–dipole interaction are formally analogo
to the expressions for the dipole–dipole energy of an orde
ferromagnet. This analogy is based on the identical chara
of the spatial dependence of the Green’s function of the e
tic medium, which determines the destressing tensor, an
the Green’s function of the Laplacian operator, which a
pears in the expression for the components of the dema
tization tensor. Such an analogy, even without calculatio
allows one to extend the basic results pertaining to the c
ditions of formation of the domain structure in ferromagn
to antiferromagnetic and martensitic crystals. For exam
in both cases the dipole–dipole energy contains two con
butions: one that depends on the order parameters~e.g., the
magnetic moments! averaged over the sample and is prop
tional to the volume of the crystal, and another that is due
the nonuniform distribution of the order parameter over d
tances of the order of the period of the domain structure.
first contribution, which is discussed in the present pap
brings about a lowering of the total energy of the crystal
account of its breaking up into domains and the decreas
the average quantities. The second contribution influen
the size of the domains and in the case when the size o
sample is much greater than the size of a domain it is ne
gibly small compared with the first contribution. Both
ferro- and in antiferromagnets there should exist a cer
limiting size of the sample~thickness of the slab! below
which the formation of domain structure becomes energ
cally unfavorable for any ratio of the domain fractions.10!

The differences between the dipole interactions in fer
magnets and antiferromagnets is due primarily to the ten
~rather than vector! character of the internal stresses, whi
are the order parameter at thermoelastic transitions. As a
sult, in the case of thermoelastic crystals the calculation
the domain structure becomes a much more complica
problem, but a greater diversity of possible domain structu
arises. For example, the structure of the destressing te
unlike the demagnetizing tensor, depends in the general
on the ratio between the different elastic constants, and in
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final analysis that leads to substantial scatter in the m
odomainization fields in relation to the orientation and sha
of the sample.

The expressions obtained in this study for the relat
between the domain fraction and the value and orientatio
the external magnetic field permit one to calculate the fi
dependence of the macroscopic parameters of antiferrom
netic crystals, i.e., such as the elongation or magnetore
tance. The dependence of the monodomainization field
sample on its shape~in the simplest case, the orientation
the plane of the slab in respect to the crystallographic ax!
in turn opens up the possibility of an experimental check
the hypothesis of microscopic elastic dipoles.

Finally, let us mention another circumstance in conn
tion with the value of the internal stress tensorŝmag. As
experiments show, the value of the mechanical stress
which monodomainization of the sample occurs in elas
and magnetoelastic materials~see, e.g., Refs. 5, 18, and 23!
is '30 MPa, while at the same time the value of the micro
tresses estimated from the value of the spontaneous s
and the shear modulus equals'300 MPa. A difference of an
order of magnitude can be explained from the standpoin
the model proposed above if the quantitysjklm appearing in
expression~18! is treated as an anisotropy constant related
the possibility of ‘‘rotation’’ of the elastic dipole but not to
the creation~ordering! of it.
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1!Thermoelastic phase transitions are those at which the internal stre

caused by the transition are so small that they can be treated as elastic
they do not lead to macroscopic plastic deformation of the crystal. A
rule such conditions are realized at phase transitions in magnets~ferromag-
nets and antiferromagnets! and in many cases at martensitic phase tran
tions, e.g., in In–Tl, Co–Pt, etc. crystals.

2!Antiphase domains are those in which the order parameters~in the case of
antiferromagnets–the antiferromagnetic vector! are transformed into each
other by a translation~by time reversal, by spare rotations; see, e.g., R
16!. Formally they are analogous to collinear domains in ferromagn
which go over into each other under the operation of time reversal. F
thermore, in both ferro- and antiferromagnets there can exist domains
go over into each other under spatial rotations—these are orientati
domains. Both types are observed experimentally, but in this paper
consider only the orientational domains.

3!It is easy to see this if it is noted that upon a rotation of the crystallograp
axes by 90° around theOz axis one hasx→y, y→2x, and r1→r2

→r3→r4 .
4!Following the terminology introduced in Ref. 16, the primary or true ord

parameter is one that arises at the transition point and has transform
properties that completely describe the observable change of symme
the phase transition and the anomalies of the physical properties.

5!In the majority of experimentally observable cases the elastic domain
ferro- and antiferromagnets coincide with the magnetic domains, as,
in the crystals NiO~Ref. 17! and Ni2GaMn ~Ref. 18!.

6!Continuing the analogy with ferromagnetism, we should say that
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Green’s function of the Laplacian operator, which appears in the exp
sion for the energy of magnetic dipoles, behaves in the same way.19

7!The proposed term ‘‘destressing’’ tensor and ‘‘destressing’’ energy refl
the role of the corresponding contribution to the free energy in the for
tion of the microstructure of the sample. For example, the influence of
long-range fields~22! leads to a decrease of the macroscopic strain of
sample owing to the formation of domains of different orientation, des
the fact that the local values of the strain tensor in the domains rem
unchanged. The term ‘‘detwinning’’ which we introduced previously
Ref. 10 is, from this standpoint, unfortunate, since it presupposes ex
the opposite process—the vanishing of the domain structure.

8!An analogous situation takes place in the case of the demagnetization
ferromagnetic crystal, e.g., if the sample is in the form of a thin slab
parallel to the plane of easy magnetization.

9!It is assumed that the surface of the sample is free, and effects due t
presence of coherent interphase boundaries in the sample are not take
account.

10!A detailed analysis of the optimal period of the domain structure arisin
a magnetoelastic phase transition and of the critical size of the samp
given in Ref. 10.
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Yastrin, Usp. Fiz. Nauk173, 577 ~2003!.

Translated by Steve Torstveit



LOW TEMPERATURE PHYSICS VOLUME 30, NUMBER 10 OCTOBER 2004
LOW-DIMENSIONAL AND DISORDERED SYSTEM

Fractal character of the spectrum in the vicinity of a local mode in linear chains with
isotopic impurities
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The vibrational spectrum of a one-dimensional disordered chain of atoms with light isotopic
substitutional impurities is calculated numerically for frequencies near a local mode of an isolated
impurity atom. It is shown that in the entire frequency region accessible to the calculation,
the spectrum does indeed have the characteristic features of a fractal. Series of lines clustered
around the lines of an isolated impurity atom or of two and three impurity atoms are
examined. It is shown that in these cases a self-similar structure is preserved at arbitrary reductions
of the scale both outside and inside the concentration broadening region. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1808200#
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1. INTRODUCTION

In Ref. 1 we reported numerical calculations of the
brational spectrum of a one-dimensional disordered chai
atoms with light isotopic substitutional impurities. The r
sults of the numerical simulation were compared with sim
analytical estimates for the spectral distribution of frequ
cies in the vicinity of a local mode of an isolated impuri
atom, and it was shown that the smoothed density of state
this region can be found to a sufficient degree of accur
from considerations based on separating out clusters of
impurity atoms separated by different distances. The ana
cal expressions obtained are in satisfactory agreement
the numerical calculations both outside and inside the reg
of concentration broadening of the local mode.

The complex hierarchical structure of the vibration
spectrum in the vicinity of a local mode outside the conc
tration broadening region was first analyzed in detail by I.
Lifshits.2,3 At the time it was assumed that the density
states inside the concentration broadening region is a ra
smooth function.4–7 However, in Ref. 1 we pointed out tha
for one-dimensional systems the hierarchical structure of
spectrum was completely preserved even inside the con
tration broadening region. In addition, the spectrum in
vicinity of a local mode is self-similar with respect to
change of scale, i.e., it has a fractal character.

The present paper is devoted mainly to a more deta
analysis of the fine structure of the vibrational spectrum
the concentration broadening region. Using numerical ca
lations based on the Dean method,8,9 we show that all the
way to the limit of accessability for the method of solutio
used the spectrum does in fact have the characteristic
tures of a fractal. For example, at the vibrational frequen
of an isolated impurity atom the main peak consists of lin
corresponding to two, three, four, and more-complex com
nations of interacting impurities, each of which, in turn,
also self-similar. The fine structure of the spectrum of
8151063-777X/2004/30(10)/5/$26.00
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main peak and the peaks corresponding to two and th
impurity atoms is investigated over as wide a change of sc
as possible.

2. SELF-SIMILARITY OF THE SPECTRUM OF PAIR
IMPURITY MODES IN THE VICINITY OF A LOCAL MODE
FREQUENCY

According to Ref. 3, the vibrational spectrum near a
cal mode at low impurity concentrations consists of series
discrete lines, the more-intense lines of the spectrum be
points of clustering of less-intense lines. There, as w
shown in Ref. 10, those lines that are split off from the loc
mode by a rather wide frequency interval owing to the int
action of defects can be successfully associated to practic
isolated vibrations of impurity clusters of small size. Th
main series of these lines, clustered at the frequency of
local mode, corresponds to vibrations of pairs of impuriti
It is clear that, the closer the impurity atoms to each oth
the larger the interval by which the two pairs of modes a
separated from the main peak. For the model conside
here, that of an isotopic substitutional impurity, the sm
deviations D of the square frequenciesvR

2 of these pair
modes from the square frequencyvL

2 of an isolated impurity
are described approximately by the expression11,12

vR
25vL

26D~R!, D~R!'AR
2«2

~12«2!2 ,

A5
12«

11«
, D~R!!vL

221, ~1!

where«5(m02md)/m0 , m0 and md are the masses of th
host and impurity atoms, respectively, and the maximum
quency of the acoustic band is taken as unity, so thatvL

2

51/(12«2). For a light substitutional impuritymd,m0 ,
and therefore 0,«,1 and 0,A,1. From Eq.~1! we obtain
© 2004 American Institute of Physics
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D~R11!5AD~R!. ~2!

SinceA,1 it follows from Eq.~2! that as the local mode
is approached, the frequency intervals between succes
pair modes decreases. Furthermore, under the conditio
constant intensity of the corresponding lines of the spect
the overall picture of their distribution does not change wh
the scale is changed by a factor ofA. Thus on the basis o
Eq. ~2! one can say that the spectrum of pair modes has
property of self-similarity.

Figure 1 shows the results of a numerical calculation
the fine structure of the vibrational spectrum of a disorde
chain for «50.5 and concentrationsc50.1 and c50.02
~shaded region!. Here and below the results are obtained
numerical simulation of chains with a length of 108 atoms.
The so-called region of concentration broadening of the lo
mode is specified by the value of the splitting of the p
impurity modes that corresponds to the mean distance
tween impurities in the chain and was previously determin
to beDc5D(1/2c). @The coefficient 2 in this formula come
from the fact that the integral density of states for all the p
modes for which the distance between impurity atoms is
than a certain value is equal to 2c2R1 . Therefore, this quan
tity becomes of the order of the total number of impur
levelsc precisely forR1'1/(2c).] In the casec50.02 all of
the graphs except the last one correspond to the region
side the concentration broadening~for c50.02 the concen-
tration broadening regionDc'10212). As can be seen in the

FIG. 1. Fine structure of the vibrational spectrum of a disordered chai
atoms near a local mode frequency for«50.5 and concentrationsc50.1
andc50.02 ~shaded region!. The density of states, normalized to unity,
plotted along the vertical axis, and the distance from the frequency o
isolated impurity~the difference of the squares of the frequencies! is plotted
along the horizontal.
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figure, the spectrum consists mainly of pair modes, and
first three histograms are practically identical in structure
spite the scale change by a factor of 23105. For a concen-
tration c50.1 the concentration broadening is significan
larger: Dc'431023. Therefore the self-similarity is ob
served not too deep inside the concentration broadening
gion ~Fig. 1a,b!. Deep inside the region of widthDc ~Fig.
1c,d! the spectrum also retains the property of self-similar
but it has a different appearance from the previous ones
all parts of the spectrum at the given concentration one
clearly see several modes corresponding to more-com
combinations of impurity atoms in addition to the pa
modes. A few of the most noticeable of these modes, co
sponding to clusters of three interacting impurities, are in
cated by arrows. The relative intensity of such modes
creases asvL is approached, so that deep inside the region
width Dc the density of states consists almost completely
peaks corresponding to combinations of three and more
purity atoms.

We note that the calculations were also carried out
other values of the system parameters, e.g., for«50.1, and
all the qualitative conclusions reached above remain v
for them as well.

3. VIBRATIONAL SPECTRUM OF A THREE-PARTICLE
IMPURITY CLUSTER

Let us consider the spectrum of vibrations of an isola
group of atoms consisting of three impurity centers. The
sitions of the lines of this spectrum outside the initial aco
tic bandv3

2 can be found as the solutions of a cubic equat
obtained on the basis of the results of Ref. 13:

~v3
22vL

2!32~v3
22vL

2!@D~R01!1D~R02!1D~R12!#

22D~R01!D~R02!D~R12!50, ~3!

whereD(R) is defined in Eq.~1!, andR01, R02, andR12 are
the distances between atoms 0, 1, and 2 in the given clu
of impurity atoms.

Let us take two impurity atoms~0 and 1! separated by a
fixed distanceR01 and bring a third impurity atom toward
this pair ~for the sake of definiteness, from the side of ato
1!. Clearly, forR12@R01 there will exist two modes slightly
shifted relative to the frequencies corresponding to the
lated pair of impurities, and a vibration with a frequen
approximately equal tovL . Such a structure of the spectru
at R0158 is shown in Fig. 2~the caseR0159 is also shown
in Fig. 2c!, where the quantity on the abscissa is the dev
tion ~i.e., the differenceD of the squares of the frequencie!
of the vibrational frequency from that of the local mode, a
the distanceR12 is plotted along the ordinate. The circle
show the frequencies obtained as a result of the nume
calculations for discrete values ofR12, and the solid curve is
the solution of equation~3! for a continuous variation of
R12.

As is seen in Fig. 2a, in the case whenR12 is noticeably
larger than the distance between impurities in the pair~in the
given case, forR12>10) one indeed obtains the spectr
structure described above@the vertical dashed lines in thi
figure show the values of the frequencies of the pair mo
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817Low Temp. Phys. 30 (10), October 2004 Ivanov et al.
corresponding to different values ofR in Eq. ~1!#. The shift
of the left and central lines with decreasingR12 is shown in
more detail in Fig. 2,b,c.

As a third impurity approaches the original pair, wh
R12,R01 the structure of the spectrum does not change s
stantially: the two extreme modes are located almost s
metrically aboutvL

2 at frequencies corresponding to the clo
est pair, with the separationR12, while the third is shifted
slightly relative to the local mode frequency. Upon furth
decrease ofR12 the value of the shift of the central level goe
to some constant for a number ofR12 values. One can there
fore assume that the intensity of such a mode correspon
to three impurities will be anomalously high. For a give
configuration (R0158) the position of this mode is indicate

FIG. 2. Change in the position of the spectral lines as a third impurity a
approaches a pair of impurities separated by a distanceR01 . The position of
the spectral lines in the scaleD is plotted along the horizontal axis, and th
distanceR12 along the vertical. The circles show the calculated positions
the lines, and the solid curves show the solution of the equation for a
tinuous variation ofR12 ; R0158. The vertical dashed lines show the fr
quencies of pair levels with the corresponding values of the distanceR. The
curves labeled a8 and a9 show the shift of the central lines in the triple
R0158 andR0159.

FIG. 3. Part of the spectrum in the vicinity of a local level («50.5,c
50.1). The arrows denote the pair levels corresponding toR517 andR
518. The frequencies of the shifted central lines corresponding to t
impurity atoms forR0158 andR0159 are labeled a8 and a9.
b-
-

-

r

ng

in Fig. 3 as a8, and it is located between the frequencie
the pair vibrations corresponding toR515 andR516 ~the
R515 line is not seen in Fig. 3, as it lies to the left of th
ordinate interval shown!. Here, for a concentrationc50.1,
its intensity is considerably higher than that of the neighb
ing pair modes. For the initial configurationR0159 the po-
sition of the corresponding central mode in the triple~a9! is
found between levelsR517 andR518 ~Fig. 3!. We note
that the lines a8 and a9 are shifted relative to the local le
in the direction of the initial band.

The small shifts of the levels of a pair when a thi
impurity approaches it at distancesR12@R01 is in fact one of
the causes of the appearance of fine structure of the
levels.

4. FRACTAL PROPERTIES OF THE FINE STRUCTURE OF
MODES CORRESPONDING TO TWO AND THREE
IMPURITY CENTERS

Let us discuss in more detail the behavior of the sp
trum near individual pair modes. Figure 4 shows the fi
structure of a pair mode which corresponds toR54 and lies
between the main band and the local mode, for the casc
50.1. At such a distance between impurities in the pair a
at the chosen concentration, the frequency of this mode
outside the concentration broadening region of the lo
mode (Dc'431023). However, as the scale is enlarged,
is seen in Fig. 4c, one can examine a neighborhood of

f
n-

or

e

FIG. 4. Fine structure of the pair mode corresponding toR54 and located
on the main-band side of the frequency of an isolated impurity («50.5, c
50.1,vL

254/3). The quantity plotted along the horizontal isD25v2

2vR
2 , wherevR

251.3217394506.
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pair level which is much smaller than the indicated value
the concentration broadening. However, the self-simila
property of the vibrational spectrum nevertheless contin
to hold. The fine structure of the spectrum of the pair mo
lying inside the concentration broadening region is also o
fractal character. This can be seen for the sample show
Fig. 5, which displays the spectrum in the neighborhood o
pair mode whose frequency is higher than the vibratio
frequency and which corresponds toR520 for a chain with
the same parameters.

It is of interest to examine the fine structure of the mod
corresponding to clusters of a greater number of impu
atoms. For example, Fig. 6a,b shows the spectrum ne
mode corresponding to three impurity centers lying at d
tancesR0153 andR1254, for c50.1 and«50.5. As we see
from this figure, even the fine structure of the modes of th
impurity atoms is characterized by a high degree of s
similarity upon a change of scale. For comparison, the p
of the spectrum shown in Fig. 5a, corresponding to lin
clustered around a pair mode, is replotted in another sca
Fig. 6c. It is seen that even the parts of the spectrum co
sponding to different hierarchical levels exhibit a consid
able degree of self-similarity. This fact, together with t
self-similarity within a single hierarchical structure, is in
dicative of a fractal character of the whole spectrum of
brational modes of a disordered linear chain near a lo
mode.

It is not possible to examine the modes correspondin
isolated vibrations of an even greater number of impu

FIG. 5. Structure of the pair level inside the concentration broadening
gion. R520 ~the region opposite from the main band!. vR

2

51.3333333335883. The remaining parameters and notation are the
as in Fig. 4.
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centers, since the chains that must be generated for d
that are too long.

5. CONCLUSION

We have calculated the vibrational spectra of disorde
linear chains of atoms near an initial local mode. We ha
shown that the spectrum in this region has a clear hierar
and has the self-similarity property that is characteristic o
fractal. We have considered the fine structure of the mo
corresponding to an isolated impurity and to two and th
impurity centers. In all the range of scale variations acc
sible in this study the overall form of the spectrum near th
modes remains unchanged—a central mode with lines
lower intensity clustered around it. Here it turns out that t
interval between closest frequencies of the fine structur
proportional to the size of the interval between these f
quencies and the central peak.

Finally, if one considers the thermodynamic quantiti
~heat capacity, neutron scattering!, then the broadening of the
lines of the local modes14–17 will be much larger than the
fine structure considered in this paper. However, for kine
processes such as the passage of sound through a chai
fine structure can have a extremely important influence. I
therefore also of interest to consider analogous effects for
electronic spectrum of a chain.

The authors thank A. M. Kosevich for a helpful discu
sion.

e-

me

FIG. 6. Fine structure of a level corresponding to three impurity atoms ly
at distancesR0153, R1254 ~the level closest to the band with frequenc
v3

251.29466407). The quantity plotted along the horizontal isD35v2

52v3
2. ~a,b!. The part of the spectrum shown in Fig. 5a but replotted in

different scale~c!.



*E-mail: ivanov@imp.kiev.ua

1M. A. Ivanov, Yu. V. Skripnik, and V. S. Molodid, Fiz. Nizk. Temp.30,
217 ~2004! @Low Temp. Phys.30, 159 ~2004!#.
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Low-temperature ESR spectrum in a powder sample of Cu „C10H8N2…„H2O…2SO4

O. Kravchyna* and A. Kaplienko
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The ESR spectrum of a powder sample of the metal-organic complex Cu(C10H8N2)(H2O)2SO4

is investigated in the temperature interval 2–30 K. It is found that the orbital ground level
of the Cu21 ion in this compound is the Kramers doubletux22y2&. The temperature dependences
of the effectiveg-factor components and of the resonance linewidthDH of individual
powder particles are obtained. Low-temperature broadening of the resonance line connected with
short-range magnetic order in the system is observed. An estimate of the value of the
exchange coupling in the magnetic system is made. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1808201#
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Metal-oxide compounds, being magnetically conce
trated systems, often exhibit properties of low-dimensio
magnets because of the features of the spatial surround
of the magnetic ion, which formed directed interionic bon
Information about the ground state of the magnetic ion i
compound by which one can largely predict its magne
properties can be obtained from the electron spin resona
~ESR! spectrum. In the case of single-crystal objects, stud
by the resonance method are extremely informative.
powder and polycrystalline samples, which are usually
tained in the synthesis of metal-organic compounds, the p
sibilities of this method are essentially limited. As a rule, it
used only for complexes with a magnetic ion of spinS
51/2, the spectrum of which does not have fine struct
and so permits unambiguous interpretation of the results

The goal of the present study is to determine both
ground state of the Cu21 ion (S51/2) in a polycrystalline
bipyridine metal-organic complex Cu(C10H8N2)(H2O)2SO4

@henceforth called Cu(bpy)(H2O)2SO4] and the exchange
interactions in its magnetic subsystem.

The crystal structure of this compound is characteriz
by the monoclinic space groupC2/c; the cell contains four
molecules and is specified by the parametersa515.136 Å,
b512.464 Å,c56.999 Å, b5105.97°~Ref. 1!. This struc-
ture is similar to that of compounds which have investiga
previously.2 They are characterized by the presence of cha
of axially distorted octahedra, which are the local enviro
ment of the divalent copper ions and lie in thec direction of
the cell. The octahedra are joined to each other through
cal oxygen atoms belonging to SO4 groups. The basal plan
of the octahedra, formed by two oxygen ions belonging
water molecules and two nitrogen ions of the organic co
plex, is almost perfectly square.
8201063-777X/2004/30(10)/2/$26.00
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The resonance spectra were measured in thel54 mm
wavelength region, making it possible to obtain higher re
lution of the spectra with respect to the value of theg factor.
The low-temperature properties of the complex were stud
in the temperature interval 4.2–30 K. The precision of t
temperature stabilization and the measurement accu
were 0.1 K in the interval 4.2–15 K and 0.5 K a
T.15 K.

The compound was synthesized in the form of a fi
powder. The ESR spectrum of the sample is a superpos
of the spectra of small single-crystal particles randomly o
ented with respect to the direction of the external magn
field and represents an absorption band spanning a ra
wide range of fields. In the case of axial symmetry of t
local environment of a paramagnetic ion the axis of symm
try of most of the powder particles is oriented perpendicu
to the external field,H'c. This gives a rather narrow peak a
the high-field edge of the absorption band, as is shown
Fig. 1. Particles with theHic orientation of the local axes
contribute to the intensity of the opposite edge of the abso
tion band.

In these extremal orientations of the particles the val
of the resonance fieldsH i and H' are determined by the
values of the effectiveg factorgi andg' , and in the case of
a Lorentzian line shape for the individual powder partic
the shape of the absorption band takes the form3

I ~H !;E
H i

H' H~11H i
22H82!dH8

@~H2H8!21DH2#H82~H'
2 2H82!1/2. ~1!

Here H i ,'5hn/gi ,'mB , n is the working frequency,mB is
the Bohr magneton, andh is Planck’s constant.
© 2004 American Institute of Physics
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This expression was used for computer modeling of
experimentally observed absorption band. The fitting w
done by the least-squares method over the whole width
the band; the fitting parameters weregi , g' , andDH, the
linewidth of the individual particles of the powder.

Temperature variations of the shape of the absorp
band made it possible to track the temperature dependen
these parameters, which are shown in Fig. 2. We see tha
values ofgi andg' are almost independent of temperatu
while the DH plot shows appreciable temperature broad
ing of the line, which can be connected with short-ran
magnetic order in the magnetic system.

On the high-temperature part of the investigated te
perature range the values of theg factor aregi52.26 and
g'52.05. According to Ref. 4, satisfaction of the relatio
gi.g' and (gi22)/(g'22)'4 means that the local env
ronment of the copper ion in this compound is an octahed
elongated along the fourfold axis and that the lowest orb
state is the Kramers doubletux22y2&. Thus the results of the
x-ray studies1 of the structure of the local environment of th
Cu21 ion are confirmed. Since the angular distribution of t

FIG. 1. ESR absorption band in a powder sample of Cu(bpy)(H2O)2SO4 at
a frequencyn572.81 Hz forT @K#: 15 ~1!, 8 ~2!. The dotted curves are
calculated according to Eq.~1! for the parameter values:gi52.26, g'

52.057, DH513.1 Oe~1!; gi52.27, g'52.055, DH519.1 Oe~2!. The
weak absorption peak atH526 kOe is the ESR signal of a standard samp

FIG. 2. Temperature dependence of the extremal values of theg factor:
gi ~s!; g' ~h! ~a! and the resonance linewidthDH ~m! ~b!.
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electron density that is characteristic for theux22y2& state
should lie in the basal plane of the octahedron, it follows t
the exchange interactions along the chains formed by th
octahedra will be absent or at least substantially attenua

At the same time, the signs of possible magnetic ord
ing manifested in the low-temperature broadening of
resonance line attest to the presence of an exchange int
tion in the system, which must be realized predominantly
the interchain directions. A calculation of the exchange in
gral is difficult because of the complexity of the ligand stru
ture, but it can be estimated from the expression relating
exchange fieldHe5zJ with the second momentM2 of the
line and the linewidth:5

He52M2 /DH, ~2!

wherez is the number of magnetic nearest neighbors of
given ion.

The second moment of the line for a powder sample w
a small anisotropy of theg factor can be calculated
numerically6 proceeding from the interionic distance in th
lattice. For Cu(bpy)(H2O)2SO4 it is found by direct summa-
tion of the contribution of 106 sites that M251.105
3104 Oe2. With a linewidth DH515.7 Oe, the value ob
tained in our experiment for the high-temperature part of
DH(T) curve, the exchange fieldHe51.4043103 Oe, cor-
responding to a critical temperature for magnetic ordering
0.094 K. Such a weak exchange interaction can be real
with the participation of the hydrogen bonds present in
interchain directions in the structure of this compound.

Thus the orbital ground state of the copper ionjux2

2y2& in the compound Cu(bpy)(H2O)2SO4 should form a
quasi-two-dimensional magnetic structure with exchange
teractions in thea andb directions of the cell. The extremel
wide range of critical broadening of the resonance line m
also attest to the low-dimensional character of the magn
structure of this compound.

The authors thank Prof. A. G. Anders for interest in th
study and helpful discussions.

*E-mail: kravchina@ilt.kharkov.ua
†E-mail: feher@kosice.upjs.sk

1J. C. Tedenac and E. Philippot, J. Inorg. Nucl. Chem.37, 846 ~1975!.
2O. V. Kravchyna, A. I. Kaplienko, A. G. Anders, M. Orenda´č, A. Orendá-
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Magnetic ordering caused by a disorder in quasi-one-dimensional spin systems
and non-Fermi-liquid systems
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It is shown that a strong disorder in the distribution of exchange couplings between magnetic
impurities and hosts in quantum spin chains and non-Fermi-liquid rare-earth and actinide
compounds can be the cause of magnetic orderings in these systems at low temperatures. ©2004
American Institute of Physics.@DOI: 10.1063/1.1808202#
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Low-dimensional quantum spin systems and hea
fermion systems are of great interest for physicists beca
in those systems an interaction between quantum part
plays an important role. Such an interaction manifests it
in many characteristics of those systems. It is importan
point out that in heavy-fermion systems, as well as in ma
compounds with the properties of quantum spin cha
quantum spin fluctuations often determine their low-ene
properties.

For low-dimensional spin systems quantum spin fluct
tions are enhanced. According to the Mermin–Wag
theorem,1 isotropic Heisenberg magnets have no magn
order in one and two space dimensions at any nonzero
perature. In rare-earth and actinide compounds exhibi
properties of heavy fermions2 and so-called
non-Fermi-liquids3 a hybridization of rare-earth or actinid
localized electrons of 4f or 5f states with conduction elec
tron band~s! usually produces the Kondo effect,4 i.e., the
screening of the spin of a localized electron~magnetic impu-
rity! by spins of conduction electrons. In heavy-fermi
compounds it also gives rise to spin fluctuations of localiz
spin moments, which are completely screened below so
characteristic energy~the Kondo temperature,TK), i.e., the
ground state is a singlet with a finite magnetic susceptibi
Because of this effect the effective masses of the carriers
enhanced compared to normal metals. It manifests itse
large values of the low-temperature magnetic susceptibi
of the Sommerfeld coefficient of the linear temperature
pendence of the electron specific heat, and of the lo
temperature coefficient of the resistivity. Such behavior c
be described in the framework of the standard Fermi liq
theory5 with a heavy effective electron mass. On the oth
hand, for non-Fermi-liquid compounds the magnetic susc
tibility and the Sommerfeld coefficient of the specific he
are usually divergent at low temperatures. It turns out t
there is often no magnetic ordering in heavy-fermion s
tems~they are metals with zero order parameter!. However,
8221063-777X/2004/30(10)/2/$26.00
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very often, by tuning some parameters such as the con
tration of impurities, such systems undergo phase transit
to ordered magnetic or superconducting states.2,3 Sometimes
such phase transitions happen only at zero temperature,
they are quantum critical transitions. In both of these t
classes magnetic impurities play an important role. For
ample, according to two known scenarios the non-Fer
liquid behavior in rare-earth and actinide compounds
caused either by the so-called multichannel Kondo effect~the
spin of the magnetic impurity is overscreened by spins
electrons from several channels! or by disorder in the distri-
bution of Kondo temperatures of magnetic impurities.1!

The idea of~nonscreened! magnetic moments existing in
disordered metallic systems and quantum spin chains
been formulated in Refs. 6–8. It was proposed that
change in interactions between the impurity sites and
host spins can be considered as a modification of the Ko
temperature. The same characteristic, i.e.,TK , can be intro-
duced for the description of the behavior of magnetic imp
rities in quantum spin chains.8–10

The random distribution of magnetic characteristics
impurities renormalizes the single universal parameter,TK ,
which characterizes the state of each magnetic impurity.

Later it was pointed out that the problem of the behav
of magnetic impurities with random distributions of the
Kondo temperatures in metals can be solved exactly with
help of the Bethe ansatz.8–10 It was also shown9–12 that dis-
tributions of effective Kondo temperatures for each magne
impurity can cause divergences of the magnetic suscept
ity and the Sommerfeld coefficient of the specific heat
quasi-one-dimensional organic conductors and quantum
chains, where such behavior has been obser
experimentally.13–16To explain power-law divergences of th
magnetic susceptibilities and Sommerfeld coefficients
rare-earth and actinide compounds, as well as quasi-o
dimensional organic conductors and quantum spin chain
was necessary to use a distribution of Kondo temperatu
© 2004 American Institute of Physics
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~the strong disorder distribution, for which the ‘‘tails’’ wer
large enough! which starts with the term P(TK)
}G2l(TK)l21 (l,1), valid till some energy scaleG for
the lowest values ofTK .9,10,12 Such a distribution was re
cently derived from first principles in Ref. 17.

Let us consider a number of quantum spin chai
weakly coupled with each other~quasi-one-dimensional sys
tem!. Then the magnetic susceptibility of the thre
dimensional set of one-dimensional spin chains is de
mined by Dyson’s formula

xset~T!5
x1~T!

12zJ8x1~T!
, ~1!

where J8 is the constant of the interaction between sp
chains,z is the number of nearest-neighbor chains, andx1 is
the magnetic susceptibility of a chain. In a similar way o
can calculate the magnetic susceptibility of an ensemble
weakly intercoupled magnetic impurities in a metal~in such
a casex1 describes the magnetic susceptibility of magne
impurities in a metal with no interaction between them, a
J8 specifies the interaction between impurtities!. Notice that
the interaction between each impurity and the host~a quan-
tum spin chain, or a metal for non-Fermi-liquid systems! is
considered exactly in our approach; it determinesx1 . Obvi-
ously, the denominator in Eq.~1! becomes zero at the poin
of the phase transition to a magnetically ordered state,
the critical temperature is determined from the condit
x1(Tc)zJ851.

We know18 that for a set of homogeneous quantum s
chains the magnetic susceptibilityx1 as a function of tem-
perature has a maximum with the value;0.14/uJu ~we are
considering units in which theg factors and the Bohr mag
neton are equal to 1!, whereJ is the exchange constant alon
the quantum spin chain. Hence, for weak enough interact
J8,uJu/0.14z the quasi-one-dimensional spin system ne
undergoes a phase transition to the ordered state. The sa
true for spin chains with single impurities and for spin cha
with a weak disorder in the distribution of their Kondo tem
peratures: In those cases the ground state is a singlet, an
magnetic susceptibility of those spin chains is finite at l
temperatures. Thus, for small enough values of the interc
couplings (J8,constTK) the denominator in Eq.~1! never
becomes zero, and there is no phase transition to a mag
cally ordered state. On the other hand, for a strong diso
in the distribution of Kondo temperatures of magnetic imp
rities in quantum spin chains the magnetic susceptibility
each chain is divergent at low temperatures, and any, e
infinitely weak interchain interaction has to produce a ph
transition to a magnetically ordered state. For example,
the distribution of Kondo temperatures derived in Ref. 17
magnetic susceptibility of a spin chain with disordered m
netic impurities isx1}Tl21. Hence, the critical temperatur
of the magnetic transition can be estimated asTc

;(zJ8)1/(12l). For the special casel51 one hasx1}
2 ln T, and the critical temperature is approximatelyTc

;exp(21/zJ8). Obviously, we can reach similar conclusio
about the possibility of phase transitions to magnetically
dered states for rare-earth or actinide compounds, which
hibit non-Fermi-liquid behavior: Any, even infinitely wea
interaction between magnetic impurities with strong disor
,
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in the distribution of their Kondo temperatures has to p
duce a phase transition to a magnetically ordered state.
the other hand, for heavy-fermion systems and for me
with single Kondo impurities and impurities with a wea
disorder in the distribution of their Kondo temperatures th
exist critical values of the impurity–impurity couplingsJ8.
In those cases, if the couplingJ8 is smaller than a critical
value, the total system cannot undergo a phase transition
magnetically ordered phase. The weak interchain
impurity–impurity couplings may be due to the magne
dipole–dipole interaction, present in any magnetic system
is weak and long-ranged. Notice that the presence of a ph
transition at low temperaturesTcÞ0 for rare-earth or ac-
tinide systems with non-Fermi-liquid behavior obvious
calls into question the applicability of the ‘‘quantum critic
point’’ scenario in those cases.

Summarizing, in this Communication we have show
that due to a strong disorder in the distribution of charac
istics of magnetic impurities~Kondo temperatures! in quan-
tum spin chains and non-Fermi-liquid rare-earth and actin
compounds, any weak interaction between spin chains or
tween magnetic impurities in non-Fermi-liquid systems c
produce a phase transition to a magnetically ordered s
On the other hand, for homogeneous spin chains or s
chains and heavy-fermion systems with a weak disode
the distribution of Kondo temperatures there exists a criti
value of the coupling, below which there is no such pha
transition.

*E-mail: zvyagin@ilt.kharkov.ua
1!Another possible cause of the non-Fermi-liquid behavior is the presenc

a quantum critical point: Fluctuations of an order parameter interact w
itinerant electrons and can cause low-temperature divergences of the
dynamic characteristics.2,3
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