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An open thermodynamic system is considered. Its state is determined by a one-dimensional
temperature field'(x,t) and a heat flux(x,t), on which nonlocal nonlinear external feedback is
imposed. The change in the Clausius entropy and its production in response to the excitation

of auto-oscillations in the system is calculated on the basis of the results of a dynamical analysis.
The use of the relative increment of the total entropy of the system, normalized to the total
entropy production, as a measure of the ordering of motion is proposed. The analogy between the
formalism of the Andronov—Hopf bifurcation theorem and the Landau—Ginzburg theory of

phase transitions is traced in the second part of the paper. It is shown that in the initial stage of
auto-oscillations the phase matching condition, which determines the amplitude of the

oscillations within the Andronov—Hopf formalism, becomes meaningless because of fluctuations.
In this case the amplitude should be regarded as an order parameter, and the actual state of

the system should be determined from the requirement of a minimum for the nonlinear part of the
increment of entropy production. The proposed approach permits a description of transient
regimes and qualitatively accounts for “soft” and “hard” bifurcations as being due to
nonequilibrium first- and second-order phase transitions.1998 American Institute of
Physics[S1063-784298)00101-9

1. One of the problems in the theory of the self- the Clausius entrop®=[(6Q/T)+S,. This raises the ques-
organization of nonlinear processes in open dynamical sysion of whether the Clausius entropy for a relaxational sys-
tems is selecting fundamental quantitative characteristics dem is of the same order of magnitude as the Boltzmann
the ordering of motiorf.A comparative analysis of different entropy for a Thomson system. The evolution of the entropy
ordering criteria is given in Ref. 2. In particular, the measureand its production in a distributed auto-oscillatory relax-
of order for Thomson systenisscillatory systems with dis- ational system in response to variation of a control parameter
sipative nonlinearityis the Boltzmann entropy is investigated below. The calculations presented are based
on the results of an analysisf a mathematical model of the
system.

2. A convenient object for studying self-organization
processes in relaxational systems is the mathematical model
wheref(X,t) is the single-particle distribution function and of the temperature-stabilization system shown schematically
X denotes the set of variables which determine the state ah Fig. 1. In such devices all the elements, except the con-
the systent. trollable object(dielectric mediumil in the present cagean

As was shown in Ref. 4, the energy-normalized entropybe considered localized, and the mathematical model of the
of an auto-oscillatory system decreases upon passaggstem can be reduced to a boundary-value nonstationary
through the generation threshold and can serve as a criteridreat-conduction problem. For simplicity we assume that the
of self-organizatiorKlimontovich’s S-theoremn). nonuniform temperature field of the system is one-

In open dynamical systems self-organization can takalimensional, and we write the boundary-value heat-
the form of auto-oscillations. In studies of self-organizationconduction problem in the form
auto-oscillations have been treated predominantly as ordered .
states of Thomson systems. Considerably less attention has T(X,t)=aT"(x,t), 1)
been focused on the investigation of auto-oscillations in dis-
tributed relaxational systems, and open relaxational systems T(0H)=0, &)
with nondissipative n_onlmearlty have sc_arcgly been conS|d_- T' (%, 0)|yer = [ B—T(Xo,)]- o[ B—T(X,1)]. 3)
ered. At the same time, the self-organization processes in
such systems call for a detailed treatment because of specific It must be stressed that in systefl)—(3) self-
features of the methods used to describe them. organization is possible only as a result of the self-interaction

In the overwhelming majority of cases the macroscopicof a single degree of freedom involving external feedback. It
level is sufficient for describing the motion of an open relax-is simulated by the nonlocal boundary conditi8), which
ational system, i.e., its mathematical model has the form of assigns the heat flux at the boundary 1 as a function of
deterministic system of parabolic equations. Let us considethe temperature at the internal pokyt Heref[ 8—T(Xq,t)]
the simplest case, in which the motion in a dynamical systenis a certain smooth function of the temperature having a con-
is determined only by the diffusion of heat. It would be natu-cave course over its entire domain, which is a necessary
ral to calculate the entropy of such a deterministic system asondition for the existence of stationary states;is the

S(t)= _ka f(X,t)In f(X,1)dX+ Sp,
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appears in its vicinity. Here f"=[&*f/dT?]|t_cx,;
e=(A—A.)/A. is the supercriticality of the system;
V1(X)=[sinhyw/2a(1+i)x] is the spatial part of the solu-
tion of the linearized boundary-value problé€i—(3); w(&)
and o, are the frequencies of the auto-oscillations of the
§ nonlinear and linear systems, respectively; ap@ndb, are
Lyapunov coefficients, which can be calculated by the
method described in Ref. 5.

The results in Ref. 5 can easily be generalized to the case
of nonlinearity of any type, provided thdt is a globally
concave smooth function which satisfies the condition
1% f’(0)=0. Thenf can be expanded in a Taylor series in
powers of the oscillating component of the temperature,

\Va
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FIG. 1. Temperature-stabilization systemi—controlled object, 2—
thermostat3—differential thermocouplej—regulator, 5—standard voltage  gnd a nonlinear analysis can subsequently be performed us-
source 6—heater. ing the algorithm presented in Ref. 5. If, in addition to the
quadratic nonlinearity, the cubic terms in the expansiof of
are taken into account in conditigi), the general form of
Heaviside step function, which cuts off frofthe positive the solution of the problem defined K$)—(3) remains un-
feedback branch corresponding to positive values of the achanged, but the dynamics of the system can undergo sig-
gument off; and B is a constant. Such a feedback mode|niﬁcant Changes. The derivatif¢’ can be positive or nega-
enables us to cover practically all cases of proportional temtive; therefore, the coefficienlb, can take either sign. If
perature regulation. b,>0, the soft cycle-creation bifurcatidi) can take place
In Ref. 5, where the problem defined t)—(3) was in system (1)—(3). When b,<0, the onset of the auto-
investigated for the case of quadratic nonlinearitf df was ~ oscillations is “hard,” and the asymptotic forit6) of the
shown that all the parameters which determine the level operiodic solution has meaning only in the subcritical region,
negative feedback can be grouped into a single dimensiorwhere it corresponds to an unstable limit cycle.
less parameterA. There is a certain(critical) value The expressions presented above for the temperature
A=A,<0, which is such that for anp>A. the system is field enable us to calculate the entropy of the sys&and

locally exponentially stable and exists in a stationary state:the entropy productiof® and to trace their evolution when
_ auto-oscillations are excited. Since the temperature field and,

T(x)=Cx, (4)  consequentlyS andP are determined by the supercriticality
of the control parametek, the dependence & andP one
is henceforth investigated as the latter parameter is varied
C=F(1-Cx) (5 from —1 to O for hard bifurcation and front=—1 to
—0<e<1 for soft cycle-creation bifurcation.

3. As was noted in constructing the mathematical model
(1)—(3), the only distributedaccumulating element in the
system shown in Fig. 1 is the dielectric medidiri_et all the

s energy supplied to the system in the form of Joule heat be
b—z[Vl(X)eXp(iw(e)t)

whereC is the root of the equation

corresponding to the conditiof<<O0.
When A<A., the equilibrium state loses stability, and
the stable periodic solution

released in an infinitely thin layer on the surfaceats, and
let the lower surface have the temperature of the thermostat
2|V1(x0)|? To. Then the entropy of the syste®in excess of the entropy
of the thermostatS, will be confined and produced only
within the distributed elemert and on its surface. We in-
e ) . troduce the notatiors(x,t)=dSdV for the density of the
+ b_z[Vz(X)eXp(' 20(8)t) + V3 (x) deviation of the entropy of the medium frofg for a certain
temperature distributiom(x,t) + T,. Being an additive func-

2
T(X,t)=C(eg)x+ P

+ Vi (X)exp —iw(e)t)]+ biz 1_—Acx

Xexq—iZw(s)t)]}' © tion of state, the_entropy density can be calculated as the
' result of a reversible process performed over an elementary
volumedV, which in the present case is an isothermal layer
w(e)= Of of thicknessdx and areaV (we recall that the height of
1+(c,/by)e elementl is equal to unity
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To+Txt) dT In an open thermodynamic system the entropy balance is
s(x,t)= ¢, 7 =C IN[1+O(X,1)]. (8)  determined by the fluxes of entropy at the boundaries and its
To production within the system. We shall show that the lower-
Here c, is the volumetric specific heat, and ing of the entropy a$”—0 is not associated with a decrease
O(x,t)=T(x,t)/Ty is the normalized temperature. When Eq. in its production and that, conversely, it occurs against a
(8) is taken into account, the entropy balance equation trandackground of an increase in energy production. Ugg

forms into the diffusion equation we express the total entropy production by heat flow in terms
a of the rate of variation of the total entropy and the difference

s(x,t)=as’(x,t)+ —[s'(x,t)]?, (9) between its fluxes at the boundaries. After adding the en-

Cy tropy production by a heat source to the expression obtained,

where the nonlinear term is the source density or the locale find the total entropy production in the system
entropy production. —~

Relation(8) enables us to find the exact value of the total  p— 14(0)+ ﬁ, (15)
entropy of the stationary state, ot

1 o wherel (0)=VAO'(x,t)|,—, is the flux of entropy into the
1+ ——]|n[1+ @(1)]—1}, (100 thermostat and is the oscillating component of the total
6(1) entropy.
and to evaluate its variation in response to the excitation of ~ The period-averaged value of the total entropy produc-
auto-oscillations. For this purpose, we substitutetion
(x,t)z@(x)+(x,t) into (8) and represent the resulting
expression in the form

_ 1
S=VJ0 s(x)dx= Cp(

<P>H<s):V’\[@7+<@'(0)>n<s>]

VA 2 & 2|Vi(xp)|?
Cley+ 2 2 AVix0)

_VA AN 16
T T b, 1+Ad 18

@)(x,t)

1+ (3(x)

N . which n nly on th ionar mponent of the h
The entropy density increment corresponding to the ex; « depends only on the s'tat.o ary compone t'o the heat
o S flux, increases upon the excitation of auto-oscillations by an
citation of auto-oscillations

amount(®’ (0)) (), Which is evaluated at the steady-state

temperature in solutiofi7). Thus, wherf” decreases and the

1+@x) 2 [1+(3(x)]2 (12 other parameters remain unchanged, the total entropy pro-
duction in the system increases.

will be characterized using the average value of the entropy It follows from a comparison of14) and (16) that the

density(As(x,t))n ) over the periodI(e). Utilizing solu-  entropy decreases as the nonlinearity of the system increases.

tion (6) and calculating the average values@fand ®2 to  In other words, the ordering of an open system increases as

s(x,tH)=c, IN[1+O(x)]+c, In| 1+

@ @2
Asxt)=c, O(x,t) _l O°(x,t)

within terms of orders the entropy flux passing through it increases. Obviously, the
degree of order can be evaluated correctly from the change in
~ 2 & 2|Vi(xo)|? entropy only if its production is constant. In this case it is
<(Xlt)>H = - X, i
(&) ¢ "To b, 1-A. reasonable to normalize the average value of the total en-
tropy of the systen{S)y;, to the average value of its pro-
~, P ) duction, and to take the relative increment of the normalized
(6 (X.t)>n(s>=m b—22|V1(X)| (13  mean value
0

A(<S>H(£) /<P>H(£)) - A<S>H(a) - A<P>H(s)
<S>H(s)/<P>H(e) <S>H(£) <P>H(s) , (1

and then substituting them intd2), we obtain

4e C,
(AS)nie)=— — . . .
bof" [1+0O(x)]T, where the approximate equality holds for small changes in
5 5 and P, as the measure of the ordering of motion.
[V1(Xo)| 1 Va0 In particular, for the degree of order of an auto-

14 : . i
(14) oscillatory state relative to a stationary state we have

It follows from (14) that the entropy density increment (Sne (P 19
corresponding to the excitation of auto-oscillations can be §C P_c '

either positive or negative. The sign of the increment of the L -

total entropy calculated as the volume integral(bf) de- whereS. andP. are the critical values of the entropy and its
pends significantly only on the coordinate of the temperatur@roduction in the stationary state. It is clear that So will
sensomxy and the quadratic nonlinearity of the system, whichsimultaneously be a criterion of the ordering of motion. For
is characterized by". Clearly, in a weakly nonlinear system example, if we take two auto-oscillatory states with the same
(f"<1) the excitation of auto-oscillations will always be ac- entropy value, the state with greater entropy production, i.e.,

companied by lowering of the total entropy of the system. with a smaller value of So, is more ordered.

—X_ R ——
I+AL 7 1+ 00T,
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4. In accordance with the well-known Prigogine 5. As we know, there is an analogy between equilibrium
principle® the real stationary state of an open thermody-phase transitions and self-organization processes in open
namic system is characterized by the minimum local entropyhermodynamic systems, which have been termed nonequi-
production with respect to the possible stationary states. Thébrium phase transition$They include auto-oscillations in
analytical expression of this principle for a system with  Thomson systems, since an influx of energy from without is
degrees of freedom, in which some of the thermodynamimeeded to sustain them, and, therefore, an auto-oscillatory

forcesX; j=0,1, ... k are fixed, has the form system is a nonequilibrium systehWe shall show that the
excitation of auto-oscillations in a distributed relaxational
a_p:(), (19) system also completely fits the scheme of a nonequilibrium
IX; phase transition.

. Let us draw some analogies between the phase transi-
where X; denotes the thermodynamic forces that are no;[. . . : !
fixed. ions in condensed media and in the system under consider-

In a stationary state the system of equatitts-(3) has ation. The hydrodynamic mode of a condensed system in a

only one degree of freedom, i.e., the state is completely dedVen state corresponds to the unstable mode
fined, if one thermodynamic variable = C(¢) is assigned.
According to Ref. 7, two cases are possible for a system with T(
one degree of freedom;) k=1, where the state of the sys- . ) )
tem is completely defined by an external force; k=0, whose amplltude_ is determined by a complex_parameter of
where the system is closed, and its entropy is maximal. The§rder & The choice of the control parameter is aflso quite
can be classified after de Groot as first- and zero-order st2Pvious: the reduced temperature in Landau’'s theory
tionary states, respectively. A third case, which does not fif = (T~ Tc)/T. parallels the supercriticality = (A—Ac)/Ac

this classification and which is considered in the presenff the system.
work, appears in systems with external feedb§iik ex- We note that in the general case the Landau concept of

ample, like(5)]. In the latter case the actual state will clearly Phase transitions does not provide an adequate description of
be indistinguishable in any way by the sign of the entropy otthe plcture.of a npnequmbnum phase transition. As_ follpws
its production from the other stationary states, since it idrom the brief outline of the current theory of nonequilibrium
uniquely specified by Eq5). Nevertheless, after the system Phase transitions presented in the review by Olerfesie

deviates from the stationary state under the action of somioplyk ? it differs from the original Landau concept in that it
external force, it will tend to return to it, i.e., will be stable in €MPIoys at least three additional degrees of freedom, which
the sense of Le Chatelier's principle. correspond to the control parameter, the conjugate field, and

To illustrate this statement, we bring the nonlocalth® order parameter. A transitiquer s¢ which can be re-
boundary conditior(5) into the form garded as the spayotem.poral gyoluuon of a hydrodynamic
mode, whose amplitude is specified by the order parameter,
I(t)—e[lo—1(1)]=0, (20 is a result of the competition between two types of feedback,
, viz., the positive feedback on the order parameter from the
wherel =AVT" andlo=BAV/Xo. control parameter and the negative feedback on the order
We aj;tsfime that the action of_an external.thermodynamlﬁarameter from the field that is conjugate to it. The latter
force AX™"in theeitystem results in the creation of an addi-j,jements Le Chatelier's principle. A quasistatic Landau
tional heat fluxAI®”. The resultant change in the fld is o460 transition takes place when the order parameter is pro-
determined from the coupling condition portional to the field, and the control parameter does not
[+ Al=g(lg—1—Al)+ Al (21) depend on the order paramelem the present case it is
assumed for reasons that are discussed below that the control
Taking into account only the term that is linear with parameter and, therefore, the supercriticaityo not depend
respect to the flux in the expansion of the function of theon the order parameter.

X, t)=&V(x)exdiw(e)t], (29

control signal, we obtain the following relation: Let £>0, and let the temperature oscillationgx,t) be
1 established in the system. We write the periodic solution of
Al= mMext, (22) system of equationél)—(3) in the general form

which is an analytical expression of Le Chatelier’s principle.  _ - o= 2 )
Relation(22) can easily be transformed into the expression T(X,t):nzl &[T 2n(X) + p[SVl(X)EXp(th)

dP 1 dP*™ 23 +EVE () exp —i wt) ]+ [ EV,(x)expli 20t)
dxext 1-A dxext’

+ 2V (x)exp(—i2wt)]
according to which the rate of variation of the entropy pro-

2 i *
duction in response to variation of the external thermody- FIETEWL (0 expliwt) + £ Wi ()

namic force in a system with feedback is-A times smaller X exp(—iwt)]+ | €2 £Va(x)expli3wt)
than in a system without feedback and tends to zero as
A— — o, +&VE(x)exp —i3wt)]+... , (25
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where the sum on the right-hand side(@b) takes into ac- remains unknown, since it is determined in the odd steps of
count the nonlinearity-induced additions to the stationanthe algorithm. However, as will be shown below, in the vi-
temperature, which can be determined in each even step afnity of the bifurcation point the system is not completely
the algorithm described in Ref. 5, and deterministic, and the oscillation amplitude should be sought
Vq(x)=[sinhyw/2(1+i)x] is the spatial part of the solu- on the basis of other considerations.

tion of the linearized boundary-value probldf)—(3). We assume that€e<1 and that the system is so close
Using expansior(7), we substitute(25) into condition  to the critical point that the oscillation amplitude of the sec-
(3) and average the latter over an oscillation period ond harmonic ax, is comparable to the temperature fluctua-
" tions. Then the condition for the complex amplitude of the
(|§|2T_§(x)+ D |§|2nT_§n(X)> =Aﬁ|§|2T_2(x0) third prloblelfn .in the sequence becomes mea_mingless. At the
n=2 e Xo same time, it is no longer necessary to take into account the

feedback on the order parameter from the control parameter,

- or— PO — since this feedback is realized through fundamental-
+ X_o nzz €17 T an(Xo) + X_OSAT(XO) frequency oscillations which enter into the nonlinearity and
inhomogeneity of the third problem in the sequence. In this
i , 8 5 case the oscillation amplitude should be regarded as an order
5| AT (X0) +[¢] E|V1(Xo)| parameter, i.e., as an additional degree of freedom, relative to

which the system can undergo virtual displacements. The

4 actual state is then determined by the minimum of a func-

+|§|4F[W1(X0)V’I(Xo)+M(X0)V1(Xo)] tional of a certain thermodynamic potential, whose nature
follows from condition(26). To make this clearer, we subject

m this condition to several transformations.
+2|§|4|V2(x0)|2+---] +ﬁ|AT3(xo) We perform the following substitutions if26):
°’° LETC Y S — —
_24 12 n_— — NTL (X)) — AT/ (X
AT Va0 2+ |85 Va0 VE ) 2, 167 T 2 1 (%)~ AT (X0

and afteLutiIizing the equalitg&?(xo) =A?(1), wemove
+Vi(X0)V§(Xo)]+'“]- (26) —IAAT'(1) over to the left-hand side of the condition.

Ta_king into account that AT'(1)=AT'(0) and

In condition (26) we equate the terms accompanying AT'(0)=(To/VA)A14(0)=(To/VA)(AP)p(,), we obtain
|€]2. With consideration of the equality ,(Xo)/Xo= T 5(Xo)

LY VA A _
this gives AP S Ty
, < >H(a) T0(1+|Ac|) Xo 8'122 |§| Zn( O)
?:E 2|V1(Xo)| 27) " )
2 £ 1+|Ac| ’ +f_ |§|2nT (X )
2 =, 2n\A0

This solution coincides with the solution obtained in
Ref. 5, as can be seen by compari@@) with the addition to 4
the stationary temperature {6). +]e]* —[W1(X0) V] (Xo) + Wi (X0) V1(Xo)]

To go from a dynamical description to a thermodynamic f
method we turn to the algorithm for constructing the asymp-
tote of a periodic solution in the Andronov—Hopf theorem. +2|§|4|V2(x0)|2+---]

In a certain step of this algorithm the nonlinear problem

defined by(1)—(3) is transformed into a recurrent sequence ” 24 o

of linear inhomogeneous boundary-value problems with non- _ 257 2 anT_
local feedback conditions. These conditions must be satisfied i 3-2 { € f2 Vixo)| nzz €17 Ton(x0)
by the amplitude and phase of the solution of each of the

problems in the sequence. The oscillation amplitude is found n |§|41—2[V (Xo)V*2(Xo)

from the condition of solvability, which follows from the grot 217071 170

condition for the complex amplitude of the third problem in

the sequence. > N

If we henceforth follow the dynamical method, in accor- +Vi(X) V2 (Xo) ]+ (28)
dance with the formalism of the Andronov—Hopf theorem
we must expand the supercriticaligy of the system in a Thus, the potential determining the actual state of the

series in powers of, and after equating the remaining terms system is the entropy production or, more precisely, the ad-
of the same order with respect to the small parameté@y  dition to the entropy production caused by the higher mo-
we must expres3,,(x) in terms of the higher moments of ments of the temperature oscillations. It is noteworthy that
the temperature oscillations g§. At this point, of course¢  the principle of minimum entropy production is satisfied si-
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multaneously with Le Chatelier's principle. The actual en-where 7 is the “slow” time and ® is a functional of the

tropy production increment is#|A.| times smaller than the thermodynamic potential which has a minimum in the equi-

entropy production caused by the perturbing heat filve  librium state®®

right-hand side 0f28)]. Since in the case under consideration the total entropy
Grouping the terms with identical powers éfon the  production(29) is such a functional, the right-hand side of

right-hand side of(28) and taking into account that Eg.(32) takes the form

AT ,(X0)/%o=f"|V1(x0)|Z(1+|A), we arrive at the fol-

lowing relation between the entropy production increment i AP __ 1 2Bl &2 33
and the order parameter P (AP)ns)=—asé+2B[E]%, (33
(AP)1y(s)= —ae| €2+ B| &%, (299  where the complex amplitudgis a function of the “slow”
time.
where Substituting(33) into (32) and performing the normal-
W Al 2 ) ization to &=/ /2B, we arrive at the following form of the
a:T_O (1+|A))? 52|V1(X0)| , Ginzburg—Landau equation
Y
A [ f" —=asy—|yl*y. (34)
- " | _72 " 2 or
Its solution
+ 2[W1(X0) VT (Xo) + W1 (X0) V1(Xo)]
ae
4F" 4|\ (X 4 £ |¢( T)|2: ; (35)
[V1(Xo)| + —2[ V(%) VE2(Xo) 1+ (ael|o|?—1)exp —2as 7)

75 I+[A] 1
where o= (0), describes the transient processes in the
auto-oscillatory system under consideration.
Expressiong31) and(35) enable us to describe soft and
hard cycle bifurcation on the qualitative level. In fact, the
We note that the value of the coefficidditis not defined coefficientB can be positive or negative, depending on the
here, and only the question of the correctness of estimating felationship betweer” and f”. Plots of the dependence of
using the solutions obtained within the dynamical approachthe entropy production on the order parameter are shown in
can be posed. The value of the order parameter is determinédg. 2. If B>0, then, according tg31), a stable limit cycle
by the requirement that the entropy production increment bexists in the transcritical region, i.e., fer>0. The process

+Vi(x0>v;<x0>]) :

extremal: of establishing a limit cycle is described by E@®5), in
which we should seyy= 8§, whereé is the magnitude of the
|§|2:a_8 (31) fluctuations of the order parameter. In this case the limit
2B’ cycle is clearly an attractor, i.e., phase trajectories from dif-

) o ) ) ~ferent initial states tend to the equilibrium value of the order
It is clear that among the periodic solutions which Sat'Sfyparametelf¢_|2= as (Fig. 33

the extremum conditiofB1), the solution which corresponds If B<0, Eq. (31) holds only fore<0, and the corre-
to the entro_py production mini_mum_will be orbitally stable. sponding limit cycle is unstable. As—0, the unstable cycle

A transition can be described in general terms as folgpinis from a region of negative values to an equilibrium
lows. The oscillations of the fundamental frequency which

) " et . “'point, which then loses its stability. In this case, when the
satisfy the feedback condition generate oscillations at h'ghe§ystem passes through the bifurcation point, the onset of the

harmonics, whose second and higher moments, as well as e, oscillations is hard, and the amplitude is infinite within

higher moments at the fundamental frequency, create addine odel under consideration. To characterize qualitatively
tional fluxes that produce additional entropy. The amplltude[he time dependence of the order parameterHer0 and

of the oscillations is established such that the entropy pro; o only the sign of the exponent {85) must be changed
duction(AP)yy ., is minimal. Of course, the picture changes ' '

Let B<0 ande <0, and let the system be displaced from the

as soon as the supercriticality reaches a value at which the, iinrium state as a result of a fluctuation of the order
phase-matching condition is satisfied for the third harmonic arameter. After settingj,|2=als|* 8, wheres<ale|, and

Despite the re_s.tnc_tlon.of this scheme by the requirement of erforming some obvious transformations, we obtain
small supercriticality, it leads to the same results as the dy-

namical method at the qualitative level of the description. ale]
6. The relaxation of unconserved order parameters, |¥(7)|*~— : (36)
> cer p e q+(d/ale|exp(2ale]7))

which include the temperature, to the equilibrium value is

described by the Ginzburg—Landau evolution equation As expected, this cycle is unstab(Eig. 3b, and the

auto-oscillations either damp or their amplitude increases to

f7_§: A 32) infinity in response to even an infinitesimal deviation from
ar 8¢’ the equilibrium value of the order parameter.
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FIG. 2. Dependence of the entropy production increment on the order pa-

rameter ». When B>0, the equilibrium value of the order parameter . he time d d he ord

|4|2=as is determined by the minimum on tka& P(#))u(.) curve, and the FIG. 32 App@(lmate f_qrm 9f the time dependence of the order parameter
. . . for various initial conditions: a—stable cycle, b—unstable cycle.

absolute value of the order parameter is a smooth function of the supercriti-

cality ¢ of the system. WheB<0 ande <0 (b), the stationary state)=0)

is metastable, i.e., when the perturbation is sufficiently strong, the system
can pass into a more stable oscillatory stateB40, the order parameter
changes abruptly upon passage through the bifurcation point, which is in-

terpreted as a first-order nonequilibrium phase transition. moments of the temperature oscillations is minimal. This
principle, which was formulated under the assumption that

In a real system the oscillation amplitude is always re-the control parameter does not depend on the order param-

stricted by a strong nonlinearity, which corresponds to theeter, allows us to treat the ordering of motion as a quasistatic
global minimum of the entropy production in Fig. 2b corre- Phase transition. In particular, hard and soft bifurcations can
sponds. For example, in the system under consideration it ige interpreted within this hypothesis as first- and second-
the supply voltage, whose restricted character is not reflectearder nonequilibrium phase transitions, and the Ginzburg—
in the model described b§l)—(3). Therefore, after passage Landau evolution equation can be used to describe the tran-
through the bifurcation point, the system finds itself in a newsient processes.
stable state. However, whereas under soft auto-oscillation
excitation conditions the order parameter is a smooth func-
tion of &, under hard conditions it changes abruptly. Thus,
hard and soft bifurcation can be interpreted as first- and
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The dynamics of the superconducting—norri&+N) transition in a thin high-temperature
superconducting film heated by microwave radiation is investigated theoretically. The dependence
of the rate of propagation of the normal—supercondu@its) interphase boundary on the

intensity of the radiation is obtained by solving the two-dimensional nonstationary heat conduction
equation. It is shown that in calculating this dependence it is important to take into account
two-dimensional effects connected with nonlinearity of heating over the substrate thickness, the
reverse side of which is stabilized with respect to temperature. The results obtained may be
important in investigating S—N transitions in superconducting devices used in the microwave
range. ©1998 American Institute of Physid$$1063-78428)02101-]

INTRODUCTION 13 for low-temperature composite superconductors carrying
a transport current.

Incident electromagnetic radiation can cause a film of  The propagation of an NS boundary in thin high{ilms
high-temperature superconducting material on a dielectribieated by microwave radiation or by a transport current has
substrate to go from its superconducting to its normal statbeen  investigated both  experimentdfiyt”  and
(an S—N transition This phenomenon has excited consider-theoretically*®~'® The S—N transition in a film—substrate
able interest in recent times, since such films are used isystem exhibits a large number of peculiarities that cannot be
various superconducting devices that operate in the micradescribed within the framework of the standard one-
wave and infrared regiorls2 The abrupt change in electro- dimensional theory of propagation of temperature
dynamic characteristics of a film undergoing this switchingautowaves?3 These features are connected with the pres-
process has suggested potential applications for these filnenhce of nonuniform heating over the cross secfiosat is
as antennas and resonatbrsgreens and filters? switches  released only in the thin high film'®) and with the nonlin-
and power limiters;® etc. The thermal mechanism for the ear distribution of temperature over the thickness of the sub-
S—N transition discussed in detail in Refs. 7 and 8 leads to atrate, which has a high thermal conductivity and plays the
qualitatively correct description of the nonlinear effects con-role of a “heat bath” for the highF film. In Refs. 7-10, the
nected with S—N switching of resonatdfS observed authors analyzed the S—N transition in a highfilm under
experimentally:! The abrupt increase in resistance of filmsthe action of microwave radiation by assuming that the tem-
when the critical temperaturé, is exceeded leads to the perature varies linearly over the substrate thickrigssn the
appearance of thermal bistability. For certain values of thdilm temperaturel to the temperaturg, of the heat sink that
incident microwave poweP the film can be in two stable stabilizes the back side temperature of the subgtratging
uniform states: a superconducting statéth temperature be- this assumption, they were able to solve the problem of
low critical) and a normal statéwith temperature above propagation of an NS boundary in the one-dimensional ap-
critical).” %0 proximation; however, their solution is valid only when the

This S—N transition occurs uniformly over the entire S—N transition takes place uniformly over the length of the
length of the highF film only when the length is relatively film. A correct description of propagation of an NS boundary
small. When this is not true, the thermal disruption of thein this system will, generally speaking, require the solution
superconducting state will, as a rule, be local in character, i®f a two-dimensional nonstationary heat conduction
which case the S—N transition takes place by propagation dtquation®
a temperature switching autowave along the film. This auto-
wave consists of a moving NS interphase boundary that
transforms the sample ahead of it from the superconductingye_piMENSIONAL APPROXIMATION
to the normal state. The asymptotic behavior of the NS
boundary is characterized by a constant velocity of propaga- The heating of a higfi-, film with thicknessD; placed
tion v. The nucleation, propagation, and stability of theseon a dielectric substrate with thickne3g (Fig. 1) by micro-
autowaves, and also the dependence oh the film param- wave radiation is described in the one-dimensional approxi-
eters, were discussed in considerable detail in Refs. 12 ardation by the heat conduction equation:
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T)=syn(T—To). 3
5 v " 7 x(T)=xp7m( ) ©)

2, T~ 7 The temperatures at which uniform steady states of a
high-T film on a thermally stabilized substrate can exist are

determined from the condition that the heat liberated in the

film equals the removal of heat to the substrate. From(Eq.

D, we obtain the equation for heat balance when

aTlgt=3*TI9X?=0:

S

x(T)-P=
Y T=T, D¢Ds

(T—=To), 4

whose solutions are the temperatures of the steady-state su-
FIG. 1. A sketch of the propagation of an NS interphase boundary along @erconducting T1=To) and normal
supe_r_conducting film on a substrate. The reverse side of the substrate (s|_2=To+%nPDst/ks) states. The NS boundary consists
stabilized at a temperatuig,. oo
of a switching autowave between these two stable states of
the highT,, film.
Assuming for simplicity that the temperature depen-
CD, aT 2T K dences of the heat capacity and thermal conductivity of the
T SDSE_ D_S(T_TO):Q(T)va (1) substrate can be neglected, and introducing the dimension-
less parameters

whereT is the film temperatureCg andkg are the heat ca-

pacity and thermal conductivity of the substrate, whose back - 1 _ t

side is stabilized at a temperaturg, Q(T)=x(T)-P is the Ds’ T CDkg’

specific heating power supplied to the filR,is the intensity

of the incident radiation, and(T) is the microwave absorp- T-Ty, x,D¢Dg

tion coefficient of the film. TToT, P k(ToTy) ®)

Equation(1) incorporates the fact that for typical ratios
of the parametergD>kD;, C;D;<C.Ds, k;<ks (where It us write Eq.(1) in the form
C; andk; are the heat capacity and thermal conductivity of 150 20
the film) the film temperature is uniform over its cross sec-  ~__—_— _ _@+py(@—1). (6)
tion, while the effective heat capacity and thermal conduc- 2 J7 2
tivity of the film—substrate system are determined only by
the properties of the substrate. The justification for this as-
sertion comes from the fact that this is in fact the temperaturg
distribution established in the substrate for the case of a
S—N transition in a higfi-. film that is uniform with respect
to length @T/9X=0).

The temperature dependencexdfT) is connected with
the abrupt change in the electrodynamic properties of th
high-T . film during an S—N transition, and within the frame-
work of the two-fluid model of a superconductor this quan-
tity can be described by the relation

The propagating NS boundary is described by a self-
imilar solution to Eq.(6) of the form ®(x,7)=0(x+ur)
hich satisfies the boundary conditio®(—«~)=0 and
(+0o°)=p. Hereu=v/v;, vy=Kks/CsDs is a characteristic
“thermal” velocity of the NS boundary. Note that, is de-
termined only by the properties of the substrate, and for char-
cteristic values of the parameters of a MgO substrate
C=5x10°Jm 3K k=350W-m 1K1 or a
Al,O; substrate C=4x10°Jm 3K ! k=650
W-m 1.K 1) of thickness Ds=103m we obtain
vhy~1 m/s. The dimensionless propagation velocity of the

(Te—To)? NS boundaryu depends on the value of the control param-
x(T)=x, . 2 Lo . . .
(Te—To)2+ B(Te—T)29(T—T) eterp, which is the ratio of film heating in the normal state to
¢ . ¢ ) ¢ o the characteristic removal of heat to the substrate.
Here x,=4r/(2r+1)° is the absorption coefficient of the Equation(6) is a piecewise-linear equation and can be

film in the normal stater = (eo/u0) Y4(p/Ds), pis the resis-  golved analytically2*Swhich allows us to obtain the follow-

tivity of the film in the normal state, B=[(f/fo)  ing expression for the propagation velocity of the NS bound-
X(2r+1)]72, f is the frequency of the incident radiation, ary:

fo=2p(Te—To)/ muwoh?T., N\ is the London penetration

depth atT=T,, and n(x) is the Heaviside step function. p—2
From Eq.(2) it follows that the temperature nonlinearity of u=2\/m. @)

»(T) is strong wherf <f, which leads to microwave bista-

bility of the film. For typical values of the parameters of a Equation(7) determines the function(p) over the en-
Y-Ba-Cu-O film in the range of liquid nitrogen tempera- tire range of bistability values < p<«. The normal phase
turesTy=77 K, T,;=90 K, p=5x10""Q-m,A=10 ‘mwe  emerges from the superconducting phase-0) when the
find that fo~3x 10" Hz. Thus, in the microwave region intensity of the radiation exceeds a threshold vahye 2
(f<f,) the temperature dependencedf) can be approxi- (the “propagation intensity). From Eq.(7) we find that
mated by the step function u=2x(p—2) for p=p, and u=2p*? for p>p,. In the
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range X p<p, the normal phase is suppressed< 0) and
superconductivity is re-established in the film.

TWO-DIMENSIONAL APPROXIMATION

We mentioned above that the one-dimensional approxi

Far from the front of the NS boundary, the high-film
is in the uniform states®(z,0)=0 as z——« and
0(z,0)=p asz—», and the temperature profile in the sub-
strate is linear. Let us pick the coordinate origin such that the
condition®(0,0)=1 is fulfilled [this is always possible due
to the translation invariance of E¢L3)]. Then the boundary
conditions on Eq(13), which are determined by Eq§10)

mation is valid when the temperature variation over theand(12) takingC<1, K<1 into account, can be written in
thickness of the substrate is linear. However, this situation ihe form

encountered only far from the front of the NS boundary. A

more correct description of propagation of the NS boundary

requires the inclusion of the two-dimensionality of the prob-

lem. For this, we must consider the film and substrate sepa-

rately as two interacting thermal subsystems.
kiDs>k,D; the temperature distribution along the film sat-
isfies the one-dimensional heat conduction equation

C aT—k i
o

ke 0

— <Y< .
+9(T)+Dfav' 0<Y<Dj

8

The last term in Eq(8) corresponds to the removal of

heat from the film to the substrate. The temperature distribu-
tion in the substrate is described by the two-dimensional heat

conduction equation

aT_ FT FT
Cfﬁ—kSE‘F Sﬁ, Df<Y<Df+DS (9)
Taking into account  that D;<Dg and

Q(T)=Pux,n(T—T.), along with Eq.(5), let us write Egs.
(8) and(9) in dimensionless form:

a®—K i + 0-1)+ =0 10
9 K2 pn( ) YR y=0, (10
a@_az(%) 5?0 0eve1 "
E_E—F(?_yz’ y<1, (11)

WhereC:Cfo/Cst, K:kaf/kSDS, y:Y/DS
It is necessary to supplement E@.1) by a boundary
condition aty = 1. Taking into account that from the side

J0

0

y=1

0.

y=0
The temperature distribution in the film—substrate sys-

Forem is determined by solving a Dirichlet-Neumann problem

in the strip O<y<1 for the two-dimensional equatioil3)
with boundary conditiong14), which can be done by the
method of separation of variablésee Appendix This al-
lows us to obtain the following expression for the velocity of
propagation of the NS boundary:

p—2 1
_:u —’
2p kS0 NEul+ 4N

where\ = 7(2k+1)/2.

It follows from Eq. (15) that the velocity of the NS in-
terphase boundary = 0 at the “propagation intensity”
pp=2. From Eq.(15) it is convenient to obtain approximate

expressions for the function(p) for p=p, and forp>p,.
For p=p, (u<1) we have

(15

(p—2)~1.84p—2), (16)

_ T
RV E)
where(x) is the Riemanny function.
Using the Euler—Maclauren summation formula when
p>p, (u>1), we find from Eq.(15) that

u=(2/m)p. (17)

In the range of small propagation velocities of the NS inter-
phase boundaryu<1), Egs.(7) and(15) are almost identi-
cal, but whenu=1 the functionu(p) is qualitatively differ-

opposite the film the substrate is temperature stabilized, sgnt(Fig. 2). This difference comes from the fact that for high

thatT=T,, we have

0=0, y=1. (12

Thus, the dynamic temperature variation in the film—
substrate system is described by the two-dimensional nonst
tionary heat conduction Eq11) with the boundary condi-
tions (10) and (12). Simple estimates show that for Y—Ba—
Cu-O films Ci=9x 10 I m 3. K ! k=5 W-m 1.K™1)
with thicknesse®¢=10""-10 % m on MgO or ALO; sub-
strates with thicknesseB =10"%-10 3 m the parameters
C andK are small:C~10 3, K~10°; therefore, we may
neglect the first two terms in E10).

propagation velocitiesi=1 of the interphase boundary the
substrate cannot be heated within the time of passage of the
NS boundary front.

The solution to Eq(13) with the boundary conditions
514) also allows us to obtain an estimate for the width of the
NS boundary front (see the Appendix

4D
—25 U2+ 2.
T

L= (19
It follows from Eq. (18) that L=4D4/mw?~Dg for
p=p,. Thus, for a hight, film on a thermally stabilized

substrate the characteristic scale of the NS boundary front is

The substrate temperature distribution in a system of codetermined by the substrate thicknéssDy.

ordinates moving with the NS boundary=x+ur) satisfies
the equation

PO 0 90 13
— —_— u =
972 ay? 9z
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A HIGH-T, FILM HEATED BY A TRANSPORT CURRENT

Let us now discuss the propagation of an NS boundary
along a hight film carrying a transport current. In this case,
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FIG. 2. Dependence of the propagation velocity of the NS boundary on thé&lG. 3. Dependence of the propagation velocity of an NS boundary on the

radiation intensityl — calculation using Eq7), 2 — calculation using Eq.
(15).

the thermal bistabililty observed experimentatiy’ is con-

transport current densityt — calculated from Eq(20), 2 — calculated
from Eg. (21), a=5.

only slightly from the expression=8(j—j,)/j. that fol-

nected with Joule self-heating of the film. The temperaturdows from Eq.(20). An important distinction arises when
distribution in the film—substrate system is described by Eqi=jc (u>1): in the one-dimensional approximation we
(1) in the one-dimensional approximation and E@, (9) in  haveu=2[«i%(1-i)]"? whereas from Eq(21) it follows
the two-dimensional approximation. The specific heatinghatu=(2/m)ai®(1-i) (Fig. 3.

power delivered to the film by the transport current is given

by the expressidi*?

QM) =pj% n(T-T), (19
wherej is the transport current density,=To+(1—j/j.)

CONCLUSION

In this paper we have discussed the dynamics of S—N
transitions induced by microwave radiation heating or a

X(T.—Ty) is the temperature of the resistive transition, andtransport current in a higfiz film on a thermally stabilized

jc is the critical current density at=T,.
From Eqgs.(1), (2), (9), and(19), it follows that the di-

substrate. The systems we have discussed are characterized
by significant nonuniformity of the heating over the cross

mensionless velocity of the NS boundary in a film heated bysection and a nonlinear distribution of temperature through
a current depends only on the single dimensionless parantkhe thickness of the substrate, which possesses a high ther-

eter é=k(T,—To)/pj?D¢D, while the expression fou
can be obtained from Ed7) (the one-dimensional approxi-
mation and Eq.(15) (the two-dimensional approximatipn
by making the replacemept— 1/¢. Thus, foru we obtain in
the one-dimensional approximation

) @i?+2i—2 20
u:
V(a@i®+i—1)(1-1i)
and in the two-dimensional approximation
ai?+2i-2 1
———=u> NNy (21

0 NZJUZ+4N2
Herea=pj §Dst/ks(TC—To) is the effective Steckl param-
eter of the substrate—film system, while j/j.. From Egs.

(20) and(21) it follows that the NS boundary is at rest for a
“propagation current”j,=j[(1+2a)Y?~1]/a. For typi-

ai? k

mal conductivity and plays the role of a “heat bath” for the
high-T, film. These facts imply that the dynamics of the
thermal transition cannot be correctly described within the
framework of the one-dimensional theory of propagation of
an NS boundary?*3

By solving the two-dimensional nonstationary heat con-
duction equation we obtain the functianP). When the
velocity of the NS interphase boundary is small, i.e.,
v<kCs'Dg! [P=P,=2k{(T.—To)/%,D¢Dg], this func-
tion almost coincides with the functianP) obtained within
the framework of the one-dimensional approximation. For
“fast” propagation of the NS interphase boundary
v=kC; 'D; (P>P,) the functionv(P) differs qualita-
tively from the one-dimensional form: in the two-
dimensional approximation we have<P, whereas the one-
dimensional approximation predicts that<P*2 This
circumstance arises from the fact that wheask,C_ ‘D!

cal values of the film and substrate parameters given abovéhe substrate cannot be fully heated within the transit time of

along withj.=10'°A-m~2, we obtaina~1-10, i.e., for a

high- T, film the quantityj, is comparable tg.. Near the
propagation currenf=j, (u<1), from Eq.(21) we obtain
u=[2737£(3)1(j —Jp)jc=7.36(G—jp)jc, which differs
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the NS boundary front and its temperature distribution devi-
ates significantly from linear. An analogous feature of the
propagation of the NS boundary occurs when the film is
heated by a transport current.
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In conclusion we note that another case is possible

where the highF, film is placed on a substrate that is com-
pletely immersed in liquid nitrogetf:}” In this case, simple

estimates show that the Biosystem parameter for the

substrate—film system is small, i.nD/k;<1 (the heat-
removal coefficient in nitrogen ih=10" W-m 2K 1,
D=10"3m, ke=10° W-m 1K™1) and the temperature is

practically unchanged throughout the substrate thickness.
Consequently, the S—N transition can be satisfactorily de-
scribed within the framework of the one-dimensional theory

of propagation of the NS boundat§’

This work was carried out with the support of the Sci-
ence Advisory on Problems in High: Superconductivity
(Project No. 9302 and the Russian Fund for Fundamental
ResearchProject No. 96-02-18949

APPENDIX

Let us seek a solution to the probleitd), (14) by the

u
>+ uk) Z] cog\yy), 2<0,

0(zy)=p| .
> (14 L)
K=0 A{ 2 i
u
Xexp[ E_’uk)z] cog\y), z>0.

(A4)

Taking into account that the coordinate origin was cho-
sen so that) (0,0)=1, we obtain from Eq(A4)

p—2 1
D — A5
2p kzo A2\UP+H4ANE (A5)

method of separation of variables, which allows us to write

®(z,y) in the form of a Fourier series:

Ozy)=p7((1-y)+ 2 f2codhy), (A
where\ = m(2k+1)/2, f(2) is an unknown function.

Expression(Al) is a general solution to Eq13) that
satisfies the boundary conditigfi4). Substituting Eq(Al)
into Eq. (13) and solving the resulting ordinary differential
equations, we find for the functiof)(z)

u
Ay exp{ 5 i z}, z<0,
fi(2)= ] (A2)
Bk ex[{ E_Iu,k>2}, Z>O,
where A, By are numerical coefficients and
= (UP4+\P) M2,
Using the expansion
1-y=22 \f cos\yy),
k=0
we have from Eqgs(Al) and(A2) that
( o«
u
> A exp{ 5 T MK |Z[COSNY),
k=0 2
z<0,
0(zy)=| =
> 2—erB exp{(g— )z} cog\y)
< 7\& k 2 Mk kY /)
| z>0.
(A3)

The coefficients\, andB, are determined from the con-
dition of continuity of the temperature and its derivative with
respect taz on the linez=0. Omitting intermediate calcula-

tions we present the expression for the temperature distribu-

tion in the substrate:
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From Eg.(A4) we can also obtain an estimate for the
width of the NS boundary front, which obviously is deter-
mined by the smallest value gf,: uo=(u+ 7w2)%/2. Fi-

nally, for the width of the front
L=Dg/(ugt+u/2)+Dg/(ug—ul2) we have
4D
L=—VuZ+ 72, (AB)
T
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A study of the microwave dielectric permittivity of liquid crystals in electric and
magnetic fields

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. N. Shepov

L. V. Kirenski Physics Institute, Siberian Department, Russian Academy of Sciences, 660036 Krasnoyarsk,
Russia

(Submitted May 14, 1996

Zh. Tekh. Fiz68, 117-121(January 1998

A microwave detector based on a self-sustained oscillator circuit is proposed as a means to
investigate the real and imaginary components of the dielectric permittivity of liquid crystals in
external electric and magnetic fields. Results are given for measurements of a 500 MHz
oscillator frequency for two types of nematic crystals, 5CBP and MBBA. Fundamental regularities
are identified in the behavior of the microwave dielectric permittivity of samples in electric

and magnetic fields. It is shown that the minimum of the high-frequency dielectric loss in liquid
crystals correspond to a situation in which the long axes of the molecules are oriented

parallel to the direction of the microwave electric field. 1®98 American Institute of Physics.
[S1063-784298)02201-9

INTRODUCTION the sensitivity of the system and the accuracy of the mea-
surements. The operation of the system is illustrated by the
As a rule, the dielectric constants of liquid crystals areresults of experimental studies of the behavior of the dielec-
studied in the frequency rande=0—10 Hz, where the dis- tric constant of two typical nematogens: 4-n-pentyl-4- cyano-
persive properties of the materials arising from the orientabiphenyl (5CBP and 4-methoxybenzinidene-4- butylaniline
tional mechanisms for polarizing the molecules are mostMBBA) under the action of dc electric and magnetic fields.
strongly manifest. In contrast, in the higher frequency deci-Discussion of the results obtained is based on descriptions of
meter wavelength range f(= 10°— 1% Hz) the behavior of processes whereby electric and magnetic fields orient the di-
the dielectric permittivity of liquid crystals and its interrela- pole molecules of the liquid crystals and change the value of
tion with molecular orientation processes in electric andthe microwave dielectric loss connected with them.
magnetic fields have been practically unstudied. This is
mostly due to experimental difficulties, since traditional de-
tectors based on lumped elements no longer work in thi$ELF-SUSTAINED OSCILLATOR DETECTOR CIRCUIT
frequency range, while electrodynamic structures with dis-  The frequency-defining loop of the microwave detector
tributed parameters are too cumbersome, and hence poss@g$-sustained oscillator circuitFig. 1) is a microstrip
inadequate sensitivity. “ring” resonator that includes the vertical measurement
In order to study liquid crystals in the decimeter wave-p|ates! The oscillator is placed in a metal package with di-
length range, we developed a new and original miniaturgnensijons 3&24x15 mm. The resonator structure itself,
mlcrowave detector structure built around microstripwhich serves as the top cover of the package, is made on a
circuits® We showed that microstrip measurement cells carsypstrate of polycorg=9.8) with thicknessh=1 mm, di-
be used to accurately identify changes in both the real anghensions 2430 mm. In this case the lower metallized side
imaginary components of the dielectric permittivity of liquid of the substrate, which we referred to as the ground plane,
crystals subjected to an external electric field, even for quitgvas soldered to the walls of the metal package of the detec-
small liquid crystal samplegwith volumes=10"3cm 3).  tor along its entire perimeter. The picture shown in Fig. 1
The thickness of the sample layer in the microwave detectogiso includes the wires on the upper side of the substrate.
is determined by a gap between measurement plates, a®bld-plated measurement platea) (with dimensions 2.5
ordinarily is =100 um. This is comparable to the thickness x2.5 mm were soldered to the metal pads at the ends of the
of real liquid crystal cells used in various practical devices.striplines of the microstrip resonator vertical to the plane of
Gaps of this size allow us to obtain important informationthe substrate so that the measurement gap had a value of
about the influence of surfaces that bound the liquid crystai00um. A liquid crystal placed in the gap is subjected to
sample on the behavior of the dielectric characteristics of thegurface tension forces. In order to decrease the effect of the
material. capacitance between the edges of the detector package and
The microstrip detectors described in Ref. 1 were conthe measurement plates, the latter were located close to the
structed for operation in tandem with standard devices focenter of the substrate, at the expense of bending the strip
measuring amplitude-frequency characteristics. In this papdines. To do this, a rather small portion of the metallized
we discuss complete microwave detector structures in whicBcreen was removed from the backside of the substrate di-
the microstrip measurement resonator is included as part okctly under the detector measurement plates by chemical
the frequency-defining loop of a microwave self-sustainecdetching.
oscillator circuit. This arrangement significantly increases  The self-sustained oscillator circuit was tuned for exci-
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+ - tween the end-face poles of the magnet so that the direction
of the field H was either parallel or perpendicular to the

L% Al G 1 direction of the high-frequency and external dc electric
10011 0% L) 100 P I ) field
'_ 5 R, 1eldas.
Irrdﬁ.?wa 35k
chH— 64| p SAMPLES AND METHODS OF INVESTIGATION
a | ! 2 As we have already mentioned, as samples for our in-
Cy _L [1]’73 ”P’T I €y vestigations we used two widely known nematogens—the
J I  ad 2k 509 I’m compound 5CBP, with a relatively high positive dielectric
b anisotropy? and the weakly anisotropic liquid crystal MBBA
1L 6 1 with negative anisotropy.°> Our measurement method was
500 the following: the liquid crystal was placed in the gap be-
I J tween the measurement plates of the self-sustained oscillator
¥ +88 microwave detector, and was kept there for an hour in order
FIG. 1. Basic circuit for the self-sustained oscillator detecier-output for it to reach its equ"lb”um S,t?te' Wlth!n, FhIS time, the
(frequency, 2—output (amplituds. temperature of the detector stabilized and initial values of the

frequency and amplitude of the self-oscillations were estab-
lished. For each sample of liquid crystal a magnetic figld
) o was applied, and the dependence of the relative frequency

tation of the fundamental half-wave mode of oscillation OfchangeF(H) was measured along with the relative change
the microstrip resonator. In orde_r to feed the transistqr with g, amplitudeP(H) of the detector self-sustained oscillations
c_ons_tant curre_nt, the upper strip of the res_onator |_s.shorl'i—n the steady-state regime. Analogous functiéi{®)) and
qrcuned by a jumper to the papkage at a p0|r_1t of miNiMUMp ) were measured when an electric potentialvas ap-
high-frequency voltagépoint b in Fig. 1). In this case the pjied to the measurement plates of the detector. We also
collector of the transistor was connected directly to the St”ﬂnvestigated the dependence of the changes in the microwave
of the mlcrostnp resonator at pglntX n order to create parameters of the self-sustained oscillator under the com-
conductive(autotransformegrcoupling with the resonator at pinad action of electric and magnetic fields on the liquid
high frequencies. An orienting electric field was Createdcrystal.
across the measurement plates by applying a dc voltage 0" gqr an optimal choice of the structural coupling between
the latter through the decoupling resistd®s and Ry. In he microstrip resonator and the microwave transistor, the

order to galvanically decouple the power supply we useqgye| of self-oscillations in the oscillator depended linearly
divider capacitor<C; andC,. The microwave oscillator was g the Q-factor of the frequency-determining resonator,

designed to have two outputs: one for measuring frequencyyhich in turn was related in this experiment to the dielectric
and the other for measuring the amplitude of the selfy55 tangent of the liquid crystal sample. As a result, the
sustained oscillations. The circuit was tuned by setting UR)pserved change in the microwave oscillation amplitude
optlmum conduc_tlve c_ouplmg between the res_onator ar_1d thP(U,H) was inversely proportional to the change in the
microwave tranS|s_t0r, i.e., we looked for an o_phmum point toimaginary component of the dielectric permittivity of the
connect the transistor collector to the strip line of the reSOzampleAs”. As is well known, changing the real component
nator (), and carefully chose poinbj near the midpoint of ¢ the dielectric permittivity of the liquid crystal samples’

the stripline of the microwave resonator as ground. Pouringes4s to a change in the resonant frequency of the self-

liquid crystal into the measurement gap significantly reducedsiained oscillator detector: the frequency increases as the
the Q-factor of the resonator half- wave mode, and we founQjigjectric permittivitys’ decreases, and conversely. Conse-
that the oscillator spontaneously switched to higQer- quently, F(U,H)~(Ae’) .
“parasitic” resonances. In order to avoid this instability we
needed to position the circuit components compactly_near thsESULTS OF EXPERIMENTAL INVESTIGATIONS
resonator and choose a capacita@zeto shunt the higher
resonances to ground. The working frequency of the self- Figure 2 shows the dependence of the relative change in
sustained oscillator microwave detector, which was meathe level of microwave oscillations of a detector containing a
sured using a digital frequency meter, was around 500 MHsample of 5CBP. For convenience of comparison the depen-
when the sample of liquid crystal was poured into the gap. Irdences on electric potentid(U) and on magnetic field
this case the microwave oscillation amplitudes measured b(H) are shown on the same figure. Analogous curves plot-
a digital volt meter at the output to the microwave detectorted for a sample of MBBA are shown in Fig. 3. Curvesn
were found to be about 0.1 V. these figures were plotted for no magnetic field £0),
Note that all our experiments on liquid crystals werewhile curves2 and 3 were plotted for no electric field
carried out at a temperatuiie=24+0.1 °C. Therefore, the (U=0). The dependences 2 were plotted for the case where
microwave detector was placed in a miniature thermostathe direction of the dc magnetic field was parallel to the
which was placed between the poles of an electromagnetlirection of the high-frequency field in the measurement
The magnetic field could be varied up to a valiee2.3 kOe.  gap of the detector, while the curv@svere opposite, i.e., the
The self-sustained oscillator package could be rotated bedirection of the fieldH was perpendicular to the direction of
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5CBP samples the fieldH.~120Oe, and the field

% 5 E.~3 V/mm. Since the anisotropy of the diamagnetic sus-
N ceptibility of the crystaly, is a quantity of order 10’, Eq.
5 (1) allows us to infer that the anisotropy of the dielectric
a&n B permittivity e,~2. This value ofe, is in good agreement
s } with the results of other measurements on liquid crystals of
< 2k this type.
5 The measurements on the samples of liquid crystal
0 MBBA (Fig. 3) show that the electric and magnetic critical
-10 fields are almost an order of magnitude larger in these
20 samples than in the crystal 5CBP. This is entirely natural,
since it is well known that the crystal MBBA is only weakly
FIG. 2. Dependence of the relative level of microwave oscillations in aanisotropic.
detector with a sample of 5CBP on the electric poteritidl) and magnetic By analyzing the behavior characteristics of the electric
field P(H). and magnetic dependencB¢U) and P(H) in fields above

the critical fields we can obviously determine qualitatively

the initial configuration of the molecular states and the pro-
e. Moreover, the function®(U) were plotted while a mag- cesses that orient them under the action of these competing
netic fieldH=2.3 kOe acted simultaneously on the sample;forces. Note that the orienting action of the magnetic field is
this field was directed either parallel é(curves4) or per-  connected with the diamagnetic component of the suscepti-
pendicular toe (curves5). bility caused by the presence of benzene rings in the compo-

The features observed in the behavior of the curvesition of the molecules. The minimum in magnetic energy

P(U) andP(H) are connected with the well-known second- corresponds to a state where the plane of the benzene rings
order orientational phase transitions that have been given thess in the direction of the magnetic field. This implies that in
name Fredericks transitionsThese transitions are a conse- this type of liquid crystal the long axis of the molecule is
quence of the competition between two forces that act omriented parallel to the magnetic field.
molecules of the sample, one exerted by the walls of the cell  |et us first discuss the effect of dc magnetic and electric
that bound the liquid crystal and the other by the externatields on the value of the microwave dielectric loss for the
field. The primary feature of a Fredericks transformation isjiquid crystal 5CBP. As is clear from Fig. 2, when the exter-
the presence of critical fields above which the initial orien-na| magnetic field is parallel to the high-frequency field
tational configuration of the molecules created by the wallghe amplitude of the self-sustained oscillations of the detec-
becomes unstable and the director of the molecules shifts i@y increase monotonically with increasikigup to saturation
a new state determined by the magnitude and direction of th&urve 2). In this case the long axes of the dipole molecules
external fields. For liquid crystals of nematic type with gre rotated normal to the plane of the measurement plates,
anisotropies in the dielectric permittivity,=z|—&, and e, parallel to the high-frequency fietd which appreciably

magnetic susceptibilityy,= x| —x. , the relation between gecreases the microwave dielectric loss in the liquid crystal
the critical electric field€; and magnetic fieldsi; can be  ggmple.

described by the following expressfbn However, in the opposite case, when the direction of the
1 EaEg magnetic fieldH L e, the amplitude of the self-sustained os-
ExaH§= . (1)  cillations, and consequently the dielectric loss in the liquid

crystal sample, are almost unchangedrve 3 in Fig. 2.
From Figs. 2 and 3 it is clear that the critical fields are Obviously this direction of the magnetic field should orient
easy to determine from the experimental results. For thehe long axes of the molecules along the measurement plates,
that is the long axes of the molecule should rotate perpen-
dicular to the direction of the high-frequency field. As a re-
sult, the dielectric loss should increase and the amplitude of

& 3 the self-sustained oscillations should decrease. The fact that
I experiments do not reveal any significant chang®(#l) in
_4r £ this situation is evidence that all the dipoles are already ori-
=T ented along the walls of the measurement plates due to the
a0t orienting forces exerted on the molecules by the surface.
- Sincee, is positive for the liquid crystal 5CBP, the par-
0 allel orientation of the director along the microwave field
-10 LI L L ] 0 should be established even when the external field applied to
0 3-”// kg-eﬂ 0 v ‘?V 30 40 the measurement plates acts on the sample as well. And, in
? ?

fact, as is clear from Fig. 2, the behavior of the function
FIG. 3. Dependence of the relative level of microwave oscillations of aP(U) (curve 1) shows praCtlca"y no difference from that of

detector with a sample of MBBA on the electric potenf{U) and mag-  the corrgsponding_ “_magnet_ic’_’ curve). Ba$ed on what we
netic field P(H). have said above, it is not difficult to explain the behavior of
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the “electric” curves4 and5, which were plotted with the the computed angle~42°. It is clear that the observed
maximum magnetic fieltH =2.3 kOe acting on the sample at change in the quantit?(H) is in rather good agreement
the same time. Obviously the strong magnetic field appliedvith the maximum change iR(U), which confirms that an
parallel to the high-frequency field in this experiment almostoblique orientation of the director forms in the electric field.
completely orients the liquid crystal, rotating the long axesThe rather small values of the dielectric anisotropy in the
of the molecules along the direction ef As a result, as the liquid crystals MBBA, as we already mentioned above,
additional electric field applied in this direction increases wecauses the critical field to increase significantly to
observe only a rather small rotation of the molecular axesE.=50 V/mm (curve 1), and to increase t&.=140 V/mm
therefore, there is only a slight increase in the oscillation(curve5) when a perpendicular magnetic field acts simulta-
amplitudeP(U) (curve4). neously on the sample.

However, for a perpendicular applied magnetic field the  Note that in all the experiments the relative change in the
long axes of the molecules are oriented almost perpendiculaelf-sustained oscillator frequency did not exceed a value of
to the direction ofe. As a result, we require a considerably F~0.6%. Decreasing the microwave loss in the liquid crys-
larger dc electric field to rotate the molecular axis by 90°,tal samples under the action of electric or magnetic dc fields,
because it is necessary to overcome not only the orientings a rule, led to a decrease in the frequency of self-sustained
forces exerted by the surfaces of the measurement plates bagcillations of the detector, i.e., to an increase in the real part
also the orienting forces exerted by the magnetic fieldof the dielectric permittivity, and conversely. Thus, these ex-
Therefore, in these experiments we observe a significant irperiments show that even in the decimeter wavelength range
crease in the value of the critical fiekey (Fig. 2, curveb). the processes that orient the molecules are accompanied by

The liquid crystal MBBA differs from the crystal 5CBP rather large changes not only in the imaginary part but also
by the negative anisotropy of its dielectric permittivity the real part of the components of the microwave dielectric
(e,=—0.59); however, the anisotropy of the diamagneticpermittivity of these liquid crystal samples.
susceptibilityy,=1.23x 10"’ in these materials is positive.

As a result, the long axes of the MBBA molecules are ori-CONCLUSIONS

ented along the direction of the magnetic field, just as in the
crystal 5CBP, while the “magnetic” functions shown in Fig.
3 (curves?2, 3) are very similar to the analogous curves for
5CBP (Fig. 2). The magnetic field parallel to the high-

The self-sustained oscillator detector scheme described
in this paper for studying the properties of liquid crystals at
microwave frequencies allows us to identify operationally
. . . and with good accuracy the relative changes in both the real
frequency field orients the axis of the molecules aleng and imaginary components of the high-frequency dielectric

'(Zherzfore., th? dm[et;tr;;:] Io:s S?ﬁ ”f"’?ses to a m;gmumnve i permittivity of samples subjected to external fields. The high
,)' eeping in min € fact that increasing the magne ICsensitivity of this method reveals even greater potential for
field H, causes only a slight change in &f(H) in this

. Fig. 3 o3 ¢ that the orienti performing new and very precise experiments connected
experiment(Fig. 3, curve3), we may assert that the orienting with the study of orienting processes in liquid crystals, and
forces exerted by the walls of the measurement plates ar

. iIv directed in the ol f the plates for MBBA. t&so distinctive features of the interaction between liquid
gzrslToarrgé:élfc ed n the planes of the piates for +Jus crystal molecules and surfaces made from various materials

. . that bound the sample.

. However, in contrast to t.he previous cases, when we In this paper we have shown that the changes in micro-
simultaneously apply the maximum magnetic fiigito the wave dielectric characteristics of the liquid crystals 5CBP
sample of MBBA crystal a_nd increase the vo Itage W€ and MBBA are uniquely related to processes that orient the
observe' a S“ght. decre:'ase in .the valueRgl)), i.e., an In- dipole molecules. We have also shown that the case where
crease in the dielectric loss in the crystalirve 4). Thls ._the microwave electric field is parallel to the longitudinal

fth lecul to deviate f the directi f th Iaomponent of the dielectric permittivity of the liquid crystal
of the molecular axes to deviate lrom Ihe direction of the orresponds to a minimum dielectric loss. In this situation

parallel orienting magnetic field. This anomalous behavior oﬁve established experimentally that the value of the dielectric

P.(U) is explained by the fact t_hat th_e paralltlella.nd PErPEMNhsses in liquid crystal samples at microwave frequencies are
dicular components of the d_|electr|c permittivity in the comparatively large, although, as follows from other papers
MBBA crystal d|f5fer only slightly from_ one another. (see Refs. 2—4)ghe dielectric permittivity of liquid crystals
?\\:5'17'_%%4'58' In th's case the direction of the resuilt- Pas the tendency to decrease rapidly as the frequency in-
ing polarization .V.ECtOI"IS determlneq as the vector sum Otreases due to the large inertia of the polarization oscillations
these two quantities. Since the polarization vector at lafge ¢ i1« molecules. From this point of view, in the microwave

is oriented along the dc electric field, the long axis of therange a liquid crystal should have only insignificant dielec-

molecule turns out to be rotated relative to its original state af;. | sses approaching those of the optical absorption coef-
U = 0. As a result, the microwave dielectric loss increaseg; jant in magnitude

accordingly. The angle through which the long axes of the

. ) It would be logical to assume that strong absorption of
molecules rotate can be determined from the relation

microwave power observed in these experiments is caused
p=arctaris, /z))=42.34°, 2) py phgrging of i?rg3 complexes or impurities that are prgsent

in liquid crystals;® whose concentration can be quite high.
As a proof of what was said above, in Fig. 3 we showHowever, this assumption does not explain the fact that di-
curve 6, which was plotted for a magnetic field oriented at electric loss in the experiments changes significantly when
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BRIEF COMMUNICATIONS

Linear topological defects in electromagnetic vector fields
M. O. Sopin

Yu. Fed’kovich State University, 274012 Chernovtsy, Ukraine
(Submitted June 8, 1996
Zh. Tekh. Fiz68, 122—-124(January 1998

An analysis is made of the topological structure of an electromagnetic vector field near the point
where the amplitude of the field vanishes. Linear topological defects in the form of

dislocations of the wave front and disclinations are studied. It is shown that the polarization of
the field near a zero of the amplitude differs from the initial value. The structural stability

of the amplitude zeros is studied. €998 American Institute of Physics.
[S1063-78498)02301-0

1.In 1931, Dirac drew attention to the fact that the phase|—|erefl-(i]ri)_ ..j,, are constant coefficients. Satisfaction of con-

of a wave function, by its very meaning, is defined only gitions (2) and(3) has the result that, , are harmonic func-
modulo 2. Dirac considered the exceptional case encountigns of two variables<; and X,. TWO cases may then be
tered when a wave function goes to zero — in that case thaistinguished.

phase of the wave function becomes meaninglessitua- 3. Let us assume thdy‘lrz)
tion where the phase is indeterminate was considered in Ref, . U2

. ) ) s allowsu, , to be considered as a function of a complex
2 with reference to linear scalar waves. The phase singularj-_ . - . .
variable. It is natural to impose the constraint that these func-

:lhees Wr?;(;z fﬁre]dlgesoénsSgas;Oré’;g:};gnczlﬂznv?’:\?gfjrtovxr'Cﬂons are analytigif x;+ix, is considered to be variab)ler
P 9 Jump antianalytic(when x; —ix, is variablg. Thus, two types of

dislocations. It was shqwn .that the dislocations are the fm?ocal solutions are constructed, which have the following
structure of the wave field in the sense that they reveal un;:

usual phase topology on a scale level determined by th]:eorm In the cylindrical coordinate systerp (¢, Xa):
wavelength. Amplitude zeros and associated wave-front dis-

locations have been studied in statistical figftsnd in fields A*=ap™
having a deterministic natufeNote that the problem was
analyzed in the scalar approximation. An attempt to allow,
for the vector character of the speckle field was made in RetH
6. In the present paper it is shown that allowance for th

vector properties of the electromagnetic field yields interestﬁeld strengths The two types of solution correspond to field

ing new results which are not_ found in scalar waves. states with right and left circular polarization. The phase sur-
2. Therefore, let us consider a monochromatic electro

i field . tial inh it Wfaces of the solutions are helicoids of opposite twist, where
magnetic wave Tield possessing spatial INhomogeneily. We,q girection of twist and the character of the circular polar-

shalllposmon the ongin at a certam p0|.nt In space where th(?zation are rigidly interrelated. As a result of the analyticity
amplitude of the field vanishes, directing tke axis along

th tok. B fh h ter. th ¢ (antianalyticity of the components of the complex ampli-
€ wave Vectok. because ot tne wave character, tn€ VClolje e zero is an isolated point in the=0 plane but may
potential of the field may be taken in the form of a two

. " describe some curve in three-dimensional space. This linear
component function phase singularity, being a carrier of an amplitude zero, will
U1(X1,X2,X3)€ be a screw dislocation line. Topologically stable solutions
correspond to lines having no beginning or end.

Here 6, and 6, are certain real constants. As usual, the field The nqntrlwallty of the topological structgre of the .elec-
obeys the wave equation and the additional gauge conaitior;[romagheuc field near the ZEero can be seen if we cor_13|der the

plane field of the phase gradiemt=(J,V,d,¥). The inte-
LA=0, (2 gral trajectories of this field are closed and describe planar
div A=0. (3)  vortices. The topological invariant is

j are complex quantities.

i(wt—kXz*tme)
i e 3 . 5)

erea is a complex constant which is unimportant to us. We
assume that the vectoks E, andH are pairwise orthogonal
E=—0A/cat andH=curl A are the electric and magnetic

6,

— ei(wt—kx?,). (1)

Uz(Xq,Xg,X3)€' %2

Assuming that the components of the vector potential are
smooth and considering for generality the case ofrafold Q= pye % w2(wdw,—wodw, ) =m,
zero, we express the field amplitude in a certain neighbor- ™

hood of the zero point in the form
3

UpdXq Xp Xa) = 2 - fi 5, XX, - - X

which expresses the number of rotations of the vegtor
_ about the zero poirft.For physicists, this quantity has been
Im’ called the topological charge and in this case may have inte-
(4) ger valueQ=0 (backgroung, Q= +1 (monopolar vortex
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Q= +2 (dipolar vortey, and so on. It can be seen from Ref. this follows from the possibility of introducing a symplectic
5 that unlike topological charges may be assigned to the twstructure defined by the 2-forrdx,//\dx, near the zero

types of solution. point. In this case, the amplitude of the vector potential is
4. Let us assume thdﬁi?---im are real quantities. The expressed in the form of the skew-symmetric gradient
vector potential near the zero then has the form u=s gradF. The zero of the field amplitude is therefore the

critical point of the functionF(x4,X,). It is known that the
ai(t—kg) ©) critical point is structurally stable when and only_when it is
ap COSMe— a4 SinNe ' nondegenerate, and the degeneracy of the zero is then deter-

_ ) mined by the rank of the Hessian matfii#®F (0,0)/dx; x|
Here,a, anda, are real constants which are unimportant to(Ref. 10. It is easy to see that only the simple amplitude

us. We again impose the constraint that the set of three Ve€Garos are structurally stabléhe functionF has the Morse

torsk, E, andH should be pairwise orthogonal. An impor- ¢,y \while the zeros of higher multiplicity do not possess
tant difference from the previous case is that the polarlzanon?hiS property. In other words, a small perturbatitof the

IS Imehar near 'th|s|.zer?. h logical  the el boundary conditions, for examplenly shifts the position of
The nontriviality of the topological structure of the elec- simple zero in the plane; = const, without destroying it.

tromagnetic field near the zero can be seen if we considerth& zero of higher multiplicity may be destroyed by such a

a1 COSMe+ a, Sin me
A=p™m

invariant perturbation, as was noted for a dislocation in Ref. 11.
1 ) 7. Thus, in spatially inhomogeneous electromagnetic
Q=5_ ﬁ t Consﬁ_ (A1dA;—AzdAg)=—m. wave fields a distinction should be made between amplitude
Jt=

zeros associated with wave-front dislocations and amplitude
For m=1 the vector field is nondegenerate at the zerazeros associated with disclinations. Although both are topo-
point? In this case, the zero, being an isolated point in thelogically stable formations, only the simple amplitude zeros
planex;=0, may describe some curve in three-dimensionapossess properties of structural stability. In this sense, the
space. The topologically stable solutions correspond to linegeros of higher multiplicity are atypical topological objects.
without a beginning or end. These lines, where the directiorRegardless of the nature of the field, its polarization charac-
of the vector is indeterminate, are called disclinations, anderistics are strictly determined near an amplitude zero, the
they will be carriers of a zero of the amplitude in this par- polarization being circular near one type of zero and linear
ticular situation. The topological charge can generally havanear the other type. The presence of topological objects —
negative integer value)=0 (backgroungi Q=—1 (mo- dislocations and disclinations — converts a simply con-
nopolar charge Q= —2 (quadrupolar chargeand so on. nected manifold into a multiply connected one. The quanti-
5. It is knowr? that a plane smooth vector field defines tative characteristic of these linear defects is a certain invari-
some continuous map of a circle in a circle. The introductionant — the topological charge. Note that local properties of a
of the topological charge allows the set of these maps to bgeneral type of field have been considered here. The size of
divided into nonintersecting classes of equivalence in termghe zero neighborhood in this formulation of the problem
of Q. This separation makes the problem of the creatiorwill be determined by the characteristic parameter of the
(annihilation of topological defects nontrivial. Nevertheless, field — the wavelength. In our next study we shall show that
considering the merging of two dislocations of the samethe two types of zeros considered here by no means exhaust

strength but of opposite twist, we obtain all the fine-structure possibilities of an electromagnetic wave
field.
cosme | .
AT +A =2ap™ gllet=kxg) (7)
—sinme

1p. A. M. Dirac, On the Development of Quantum Field Theory: Major

It can be seen that the dislocations annihilate to create g/\ticles 1925-1958[in Russiar}, Nauka, Moscow(1990.
disclination having a zero of the correspondina order. A M. V. Berry, Singularities in Waves and Raykectures at 1980 Les

! 9 X . p g ) Houches Summer Scho@North-Holland, Amsterdam, 1981

mechanism for the creation of two unlike dislocations from a3N. B. Baranova and B. Ya.Zel'dovich, Zh. Eksp. Tekh. F80, 1789
point zero of the amplitude point was indicated in Ref. 4. 4(19SJ) [Sov. Phys. JETIB3, 925(1981].
Our example implies that there can be conjugation of discli- Ei'z Bgfaf?ggffggg \[(géie'gjﬁ;’:g’égé "gg?':‘(ﬁé;]"’ Zh. Eksp. Tekh.
nations W_'th the_ endS_Of unlike d_lSJOC&ltIOhS, O_r* '_n O_ther 5N. N. Rozanov, Opt. Spektrosk5, 861 (1993 [Opt. Spectrosc. J5, 510
words, pairs of dislocations may originate from disclinations (1993.
and terminate in disclinations. 0. V. Angelsky, R. N. Besaha, I. I. Mokhun, and M. O. Sopin, Proc. SPIE

- : 2647 75(1995.
6. Finally, we m.ake some obsgrvat|ons on the reason f0r7L. D. Landau and E. M. LifshitzThe Classical Theory of Fieldgth ed.
the stru_ctural stap|llty of the amplitude zeros of the elect_ro— [Pergamon Press, Oxford, 1975: Nauka, Moscow, 1973
magnetic vector field under study. We recall that a function®v. I. Amol'd, Ordinary Differential EquationgMIT Press, Cambridge,
is described as structurally stable if its critical points do not Mass, 1973; Nauka, Moscow, 1975

. \ . . . .
change their type for any sufficiently small smooth m’gc'o'\cv””lo;??d A. WallaceDifferential Topology Russian trans., Mir,

: 0
perturbations? It follows from Eq. (3) that a smooth func-  10g. Gilmore,Catastrophe Theory for Scientists and Engind&véley, New
tion F(xy,X,) can always be found such that the amplitude York, 1981; Mir, Moscow, 198}

components of the vector potential of the field will be ex- M. A. Bolshtyanski, Opt. Spektrosk79, 512 (1995 [Opt. Spectrosc. J.
pressed in terms of the derivatives of this function 79, 475(1995.
u;=JdF/dx,, u,=—JF/dx,, and as before;=0. Formally,  Translated by R. M. Durham
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Liquid-crystal diode generator of low-frequency oscillations
Ya. Barton’ and A. A. Kal'nin

St. Petersburg State Electrical Engineering University, 197376 St. Petersburg, Russia
(Submitted December 29, 1995
Zh. Tekh. Fiz68, 125-127(January 1998

The excitation of rhythmic current oscillations in a diode cell containing a nematic liquid crystal
is studied. The external electric field in the interelectrode gap is directed parallel to the
surfaces which orient the liquid crystal molecules. The current oscillations are accompanied by
the formation of an autosoliton at the cathode, which propagates and disappears at the
anode. A hypothetical model is proposed to explain this current instability19@8 American
Institute of Physics[S1063-7848)02401-3

The present investigation is concerned with a dynamigower supply via a series-connected resistarge1.2 MQ
effect accompanied by current instability in nematic liquidto allow the current instabilities to be observed with an os-
crystals. It has been established that under nonequilibriumilloscope.
conditions various types of instabilities appear in nemdtics.  The results of the experimental observations are as fol-
A classical example is the formation of Kapustin—Williams lows:
domains in an external electric field transverse to the sur- 1. As the interelectrode voltage is increased, a domain
faces orienting the liquid crystal molecufe$his effectis a  structure forms but it is less clearly defined than that ob-
manifestation of self-organization in open systdrasd is tained when the field is perpendicular to the planes of the
characterized by a threshold external electric field and by thdielectric plates.
establishment of spatial ordering at the macroscopic level. 2. As the voltage is increased further to a certain critical
The nonlinearity caused by the anisotropy of the liquid crys-value U, a region exhibiting strong light scattering is
tal properties creates preconditions for the action of an autcformed at specific points on the cathode surface. This region
catalytic mechanisntinternal positive feedbagkwvhich pro-  appeared at the cathode and propagated as a traveling wave
motes the buildup of instabiliti€sStudies of nematic liquid (autosoliton toward the anode where it disappeared at the
crystals have mainly been carried out in a transverse fieldsurface. The nucleation, propagation, and disappearance of
and comparatively few have examined the response of theghe autosoliton was a periodic process. As soon as this region
crystals to the action of a longitudinal field, i.e., acting par-of anomalous light scattering disappeared at the surface of
allel to the molecule-orienting surfaces. the anode, it reappeared again at the cathode.

Here we investigate the current instabilities in a planar 3. Current oscillations with a large difference between
diode structure and we attempt to develop a simple economtheir extremum values appeared, matched with the autosoli-
cal generator of current oscillations in the biorhythmic fre-ton motion. Typically, the maximum current was 343\
guency range. This necessitated finding the conditions for thand the minimum was 0.2—-0,6A. Before the oscillations
excitation of current instability in a nematic liquid crystal. appeared, the direct current was some tens of nhanoamperes
As a result of carrying out numerous probe experiments ir{prethreshold regime The threshold external field was
which the orientation of the liquid crystal molecules relative E;=(1—2)x 10* V/cm (interelectrode gap=1 mm).
to the direction of the external electric field, the size, shape, Oscilloscope traces demonstrating the current oscilla-
and relative position of the electrodes in the liquid crystal,tions are shown in Fig. 2, where it can be seen that the
and the microgap between the surfaces defining the molecamplitude of the oscillations and the frequency depend on
lar orientation were varied, we succeeded in identifying thehe voltage. These dependences are plotted in Fig. 3.
conditions required for the buildup of current instability. Observations using an optical microscope showed that

The design of a planar diode cell is shown schematicallythe current has a maximum at the beginning of the autosoli-
in Fig. 1. Two metal electrodes were placed in the gap beton and a minimum when it reaches the anode. As the exter-
tween two glass or quartz platésnd the space between the nal voltage is increased further, the current oscillations be-
electrodes was filled with an MBBA nematic liquid crystal or come stochastic at the upper level of the average.

a mixture of MBBA and EBBA. The gap between the plates 4. The oscillations only occur for small gaphshetween
was 50—-100um and that between the electrodes was 0.1-the plates <150 um). In this case, the orientation of the
1.0 mm. The width of the electrodes was 0.1-0.5 mm. Thdiquid crystal director has a strong influence. The investiga-
surfaces of the dielectric plates wetted by the liquid crystations showed that no current oscillations occurred in samples
were preprocessed to produce a microtexture to control thiar which the director was oriented parallel and perpendicu-
orientation of the liquid crystal molecules. The surfaces werdar to the external field. Experiments with homeotropically
first carefully cleaned to remove any contaminants using &riented liquid crystal molecules also yielded no positive re-
1M KOH solution, followed by a 50%mol) HNO; solution,  sult. A traveling autosoliton regime was only observed in a
and were then washed with distilled water. twisted nematiqand was particularly clearly defined when

The electrodes of the diode cell were connected to dhe angle of relative rotation of the plates was close to 180°).
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FIG. 1. Schematic of nematic-liquid-crystal diode generator of electrical Ny
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Thus, the homogeneous orientation of the liquid crystal molF!G. 3. Amplitude(a) and frequencyb) of current oscillations as a function
ecules must be impaired for these oscillations to occur. of average electric field strength in the interelectrode gap.

5. In the experiments, we observed cases where the au- ) )
tosolitons did not propagate along the shortest path from th&/€re generated not at the cathode but in the interelectrode

cathode to the anode but along a curvilinear “trajectory” or 9P- Pulsations of the autosoliton propagation velocity ac-
companied by complexXmultimoda) current oscillations

were also observed.
The following hypothetical model may be put forward to
explain these current oscillations in a planar diode structure.
It is known that the electrical conductivity of nematic liquid
crystals is of an ionic impurity type against a background of
%oV a negligible electron component. An ion oxidation process
takes place at the anode with neutralizatimeduction at the
cathode’ The process can take place reversibly without the
liquid crystal undergoing decomposition. In a twisted nem-
atic the field is concentrated in the central part of the gap
between the plates.
Anisotropy of the electrical conductivity of the nematic
160v liquid crystal is required for the formation of an autosoliton
(for MBBA this is o /o, = 1.3). Molecules oriented with the
director perpendicular to the field impede the ion motion and
form a kind of gate. When a large number of ions accumu-
late at the cathode, the ion pressure increases, causing the
liquid crystal molecules to rotate parallel to the direction of
action of the field and the “gate” opens, releasing the accu-
200V mulated iongthe conductivity increases from, to o). The
formation of autosoliton fronts is caused by the ion mobility
gradient. After the accumulated ions have been released, the
initial orientation of the liquid crystal molecules is restored.

1A. S. Sonin,Introduction to the Physics of Liquid Crystdlm Russian,
Nauka, Moscow(1983.
300V 2L. K. Vistin’, A. Yu. Kabaenkov, and S. S. Yakovenko, Kristallografiya
31, 360(1986 [Sov. Phys. Crystallogi31, 212(1986)].
3G. Nicolis and I. PrigogineSelf-Organization in Non-Equilibrium Sys-
tems[Wiley, New York, 1977; Mir, Moscow, 1979
4A. E. Borovik, V. Yu. Popkov, and V. N. Robuk, Dokl. Akad. Nauk SSSR
305, 841(1989 [Sov. Phys. Dokl34, 339(1989].
SA. Adamchuk and Z. Strugal'skiLiquid Crystals[in Russiaf, Sov. Ra-
FIG. 2. Oscilloscope traces of current obtained for different voltages on (i, Moscow(1979.
electrodes of diode cell. The voltages are given on the appropriate traces;
MBBA, =1 mm, andd=100 um. Translated by R. M. Durham
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Limiting role of desorption in hydrogen transport across a deposited beryllium film
A. V. Samsonov, A. Yu. Koren’kov, I. E. Gabis, and A. A. Kurdyumov

St. Petersburg State University, Scientific-Research Institute of Physics, 198904 St. Petersburg, Russia
(Submitted May 19, 1997
Zh. Tekh. Fiz68, 128—130(January 1998

Hydrogen transport across a deposited beryllium layer has been investigated using the hydrogen
permeability and concentration pulse methods. A layer of beryllium was deposited on a
prepurified nickel membrane by cathode sputtering in a glow discharge plasma in “especially
pure” grade hydrogen. An analysis of the experimental results showed that the main

limiting process for hydrogen transport is desorption from the layer rather than diffusion in the
bulk of the layer. A mathematical transport model is proposed and used to determine the

rate constant of hydrogen desorption from beryllium. 1@98 American Institute of Physics.
[S1063-78498)02601-4

The proposed use of beryllium as a protective coating irberyllium was used for the deposition process. The compo-
the ITER fusion reactor, and also plasma disruptions whiclsition of the components was 97.8% Be, 1.6% O, and 0.12%
lead to sputtering of the protective material, have stimulatedC. The deposition was carried out in runs of 4—6 h, and after
increased interest in the interaction between hydrogen anelach run the sample was annealed in vacuumh=a673 K
beryllium. This problem is scientifically topical because be-until the hydrogen background pressure was established.
ryllium is one of thes metals, whose interaction with hydro- This nickel-beryllium system was investigated in the
gen has clearly not been sufficiently well studied. Howevertemperature range 523—-723 K at intervals of 25 K. Higher
the interaction between hydrogen and beryllium is difficult totemperatures were not used in order to avoid dissolution of
study because of the nonremovable oxide film present on thine beryllium layer in the nickel. The experiments showed
surface and because of its toxicity and related technologicahat an upper temperature of 723 K does not cause any drift
difficulties. This accounts for the relative lack of studies, theof the results. At temperatures below 500 K, the nickel form-
wide scatter in the results, and the lack of any unified physiing the base of the two-layer system shows some deviation

cal picture of the interaction. from the classical limitation of a penetrating diffusion flux,
Our previous studies of the thermal desorption of hydro-which makes the transport model extremely complex.
gen from polycrystalline berylliuthallowed us to formulate After each deposition run, concentration-pulse experi-

a probable model of the transport process. According to thisnents were carried out. Hydrogen was supplied to the un-
model, the hydrogen atom exhibits high diffusion mobility in coated(inner side of the membrane and rectangular concen-
the bulk of the grain and the limiting transport stage is thetration pulses of hydrogen dissolved in the subsurface region
transfer from one grain to another, i.e., apparently, the escapeere generated. At the end of the transport processes, a pe-
of the diffusate from the bulk of the grain to its surface. Hereriodically varying penetrating flux was recorded on the out-
we propose to study hydrogen transport across a sputteregide of the membrane, this was Fourier expanded, and the
layer of beryllium which, not being polycrystalline, can phase—frequency characteristic of the membrane was deter-
serve as a model for a single grain of a polycrystalline mamined.
terial, and we propose to check the accuracy of this model.  An analysis of the phase—frequency characteristic of the
The investigations were carried out using an ultrahigh-system as a function of the deposition tifkég. 19 revealed
vacuum automated experimental systamy the concentra- the following. Deposition of beryllium for 14 h produces a
tion pulse method, which was described in detail in Ref. 3.continuous film, since subsequent deposition runs do not al-
The substrate for this layer was made of NVK-gradeter the phase—frequency characteristic. Diffusion across the
vacuum-melted nickel. The parameters of its interaction withdeposited layer is not the main limiting factor for the trans-
hydrogen are known in detail, and the high rates of the adport process in the Ni—Be system since the phase—frequency
sorption and desorption processes allow high-quality rectancharacteristics do not depend on the deposition time, i.e., on
gular concentration pulses of dissolved hydrogen to be obthe layer thickness.
tained in the subsurface region by switching on and off a  The hydrogen permeability isotherms, i.e., the depen-
hydrogen dissociatofincandescent tungsten filamgaong  dence of the steady-state penetrating flux on the root of the
the surface. The substrate was purified by high-temperaturdeydrogen pressurp, were measured before and after depo-
annealing in vacuumT=1023 K and by bombardment sition of the beryllium film. Figure 1b gives the permeability
with hydrogen ions from a glow discharge plasma. A layer ofisotherms ar =673 K for pure nickel and for a Ni—Be sys-
beryllium was then deposited on the outer surface of théem after deposition for 56 h. It can be seen that deposition
membrane by cathode sputtering using extra-pure hydrogesf the beryllium film substantially reduces the penetrating
in a glow discharge plasma. Since no oxygen is present iflux and changes the profile of the hydrogen permeability
the vacuum chamber, this procedure eliminates any oxidesotherm. The isotherms are not approximated by the depen-
formation on the surface of the film. Hot-pressed TGP-gradelenceJ~ Jp, typical of hydrogen transport limited only by
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diffusion (as for a membrane W|thout_ a film which aC(x,1) FC(x,1)
suggeststhat the flux across the system is slowed substan- pr =D 5 XE [OJl]. D
ox

tially because of the low rate of hydrogen desorption from
the beryllium film. This is also indicated by the appearance A first-order boundary condition is satisfied on the inside
of even harmonics in the Fourier spectrum of the concentragf the membrane
tion pulse curves after deposition of the layer. These har-
monics do not appear in the spectrum of pure nickel. CLy=1(v). @
The results may be explained in terms of the following  In the case of the concentration pulse method, the func-
model of hydrogen transport across a sputtered layer of baion f describes rectangular pulses with an inverse duty cycle
ryllium. The hydrogen atoms exhibit high diffusion mobility of 2. The density of the steady-state penetrating flux is
in the bulk of the layer and repeatedly cross the layer, beinglearly given by
reflected from the exit boundary, since the process of escap- _ 2 s 2
ing from the dissolved state into vacuum involves overcom- J=DbniC(0) =bgeCae, ©)
ing a high potential barrier. Thus the beryllium layer depos-where Cg, is the hydrogen concentration in the beryllium,
ited on the substrate, while not presenting any diffusionwhich we assume to be independent of the coordinate, and
resistance to the hydrogen, is responsible for its low rate o, is the effective rate constant for the desorption of hydro-
desorption. gen from the nickel, which allows for the influence of the
Our experimental data can be used to check the accuraderyllium film.
of this model and to obtain the rate constant for desorption of ~ The introduction of the constanby; reduces the
hydrogen from berylliumbg.. We consider a nickel mem- boundary-value problem to a simple form — diffusion over a
brane of thicknes$ in which the diffusion of hydrogen is homogeneous membrane with a low rate of desorption on the
described by Fick’s law with the diffusion coefficiebt exit side.
Assuming, as always that the local equilibrium condition
C(0)/Cge=T"\i/T'gc is satisfied at the interface between the
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FIG. 2. Experimental and theoretical kinetic curves of penetrating flux atFIG. 3. Arrhenius curve of the rate constant for desorption of hydrogen
T=573 K. from beryllium.
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metals, wherd; andI" g, are the solubilities of hydrogen in plot the Arrhenius curve of tr_]e rate cons.tant.for the desorp-
nickel and beryllium, respectively, we can easily derive ation of hydrogen from beryllium plotted in Fig. 3, and we

relation to link the rate constanbg, andby;: determined the numerical values of the pre-exponential fac-
2 e tor and the activation energly,=7.7=0.9x10"** [cn/s]
bael Be=bnil - @ andE=13+1 [kcal/mol]. This activation energy is the po-

The solubilities of hydrogen in beryllium and nickel ten_tial barrier prev_enting the hydrogen _dissolved in the be-
were taken from Refs. 5 and 4, respectively. The boundaryyllium from escaping to the surface, with a subsequent as-
condition on the outside is expressed as the balance of thociation to form a molecule and then desorption.
diffusion and desorption fluxes,

1. E. Gabis, A. A. Kurdyumov, and A. V. SamsonoMoble and Rare
2 aC Metals[in Russian, Donetsk(1994, Part 3, pp. 89-90.
bniC<(0t)=D R(Oyt)- 5 2|, E. Gabis, A. A. Kurdyumov, and N. A. Tikhonov, Vestn. St. Petersburg
Gos. Univ. Ser. 4, No. 2, 1(1993.
This boundary-va'ue prob'erﬂ), (2)’ (5) gives excep- 3]. E. Gabis and A. V. Ermakov, Fiz. Khim. Met. Metalloved., No. 4, 64

. . : _ (1989.
tionally good agreement with the experiment. As an ex 1. E. Gabis, T. N. Kompanets, and A. A. Kurdyumdsteraction Between

ample, Fig. 3 gives the experimental curve obtained at pygrogen and Metalsedited by A. P. Zakharoyin Russial, Nauka,

T=573 K for a pulse period of 200 s, together with the Moscow (1987, pp. 177-208.

. . 5 et
superimposed model curve. The experimental curves Were\s/- . ihaFPO"?'Ok‘;]a&d :“:\l M-kguskf'(lsg'sg"po"- Akad. Nauk. Ukr. RSR,
used to determine the temperature dependence of the rate® ™% &N Mal Hauke, :

constanby;. Using Eq.(4), we then used this dependence to Translated by R. M. Durham
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Thermal superconducting—normal transition of superconducting films, induced by the
heating of nonsuperconducting defects in microwave fields

A. A. Zharov and A. N. Reznik

Institute of Physics of Microstructures, Russian Academy of Sciences, 603600 Niaigorod, Russia
(Submitted May 19, 1997
Zh. Tekh. Fiz.68, 131-133(January 1998

A study is made of the thermal superconducting—nor(8alN) transition induced in high-
temperature superconducting films by the Joule heating of small nonsuperconducting defects in a
microwave field. It is shown that the loss of superconductivity either leads to the formation

of a finite region of normal phase localized near the defect or encompasses the entire film.
Estimates of the threshold and S—N switching time show good agreement with the

experimental data. €998 American Institute of Physid$$1063-78428)02501-X

1. Various recently published experimental studies have=H. Converting to the dimensionless temperature
reported observations of the transition of high-temperaturé® = (T—Ty)/(T.—T,) and expressing in explicit form, we
superconductingHTSC) films from the superconducting)  have
to the normal(N) state(S—N switching stimulated by mi-
crowave radiatiod~3 The observed S—N switching pro- d0 a(0)
cesses had a threshold amplitude of the incident wave field Cs 5 =*sA0+ T—T, Pod(z—H), @
and the N state either occurred locally as small regiaias
maing on the surface of the filfnor encompassed the entire \yhereT, is the critical temperature of the S—N transitid,

film (breakdown of the superconduc)t_ﬁre’ Loss of supercon-  js the coolant temperature, and®) is the total absorption
ductivity may be caused by magnetic and thermal effécts,coefficient of a HTSC film with defects.

for Wh|Ch the S—N transition ha.S different thl’esh0|ds and The absorption CoefficiemF of a film without defects

exhibits different overall space—time behavior. An adequat@epends on the temperatué and increases rapidly near
interpretation of the experimental data cannot be given withg =1. The dependencer-(®) in the wavelength range
out studying each of these mechanisms. A>1 cm may be approximately described by a step function.
Studies of the thermal mechanism for loss of supercon- | et us assume that the structure of the HTSC film con-
ductivity have established that the interphase boundaryyjns 5 foreign inclusion of radius (Fig. 1) (we shall sub-
propagates over the surface of the superconductor in t|'1§equent|y call this a defécivhose absorption coefficient,

form of a thermal autowavi.” However, estimates of the does not depend on temperature and may differ substantially
threshold rf field strengths needed to excite such an autGrom that of the film in the S and N states. Fat®), we

wave in perfect samples yielded a result between one angha|ly obtain the following expression:

two orders of magnitude higher than that obserYe@ihe

times of the transition processes were also between two and (@)= a(0)+ap, 3)
three orders of magnitude higher than those obtained from

the measurements It will be shown below that one mecha- \yhere

nism which can explain the comparatively low thresholds

and short breakdown times for HTSC films is the heating of a,, O>1,

structural defects in the films. af {

2. We shall analyze a thin HTSC film deposited on a 0, o<l
thermally stabilized dielectric substrate of thicknéd4$s as
shown in Fig. 1. Incident electromagnetic radiation having _ | man, Tsa,
the energy flux density, is partially absorbed in the film P71 0, r>a.
and is completely shielded from the substrate. The heat
transfer processes in this system are described by the heat The parameter; characterizes the difference between
conduction equation in the substrate the absorption coefficient of the defect and the absorption
coefficient of the superconductor in the normal state.

Let us assume that in the absence of the electromagnetic
field the HTSC film is in the S state with the temperature
®=0. When exposed to microwave radiation, only the de-
wherecg and x are the specific heat and thermal conductiv-fect absorbs enerdgee Eq(3)]. As a result of heat conduc-
ity of the substrate, and is the heat source associated with tion, the superconductor is heated in the vicinity of the de-
heating of the film by the electromagnetic radiation. fect, and the film temperature may exceed the critical value

Since the HTSC film is thin, we assume that the sogrce ®=1. As a result, the film, being switched to the N state,
is localized in ad layer on the surface of the substrate atitself begins to absorb electromagnetic waves and becomes

r>a

T
CSEZKSAT-FQ, D
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FIG. 1. Geometry of the problem. The shaded area on the surface of the film
is a defect and the zone bounded by the dashed line is the region of de-
stroyed superconductivitithermal domain
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whereF(a,B,v,6) is a hypergeometric function.
an additional source of heat. Ultimately, a steady state is EXpression(5) corresponds to the temperature distribu-
established, achieved by a balance of heat release and héi@n inside the domaia similar expression can obviously be
removal when the N state occupies a finite region of ratlius obtained forr>1). We find the dependence of the domain
around the defectFig. 1). The evolution of thermal break- radiusl on the radiation energy flux densif, for which
down arbitrarily corresponds to the absence of any steadye assume in Eq5) r=1 and®(H,r=1)=1. We then have
states with finitd in the solution of Eq(2). Thus, the solu-
tion of the stated problem reduces to determining the steady-
state boundary of the region of destroyed superconductiv-
ity. In the assumed approximations the steady-state solution
of the nonlinear Eq(2) with the boundary condition® =0 wheres=1/a; P = mxy(T.— To)/2naya is the threshold for
atz=0 andd®/dz=aPo/xs(T;=To) atz=H may be de-  ;je4tion of a domain correspondingge 1.
termined accurately by means of a Fourier transformation Figure 2 gives curves af(P,) for various values of the

with r_esperc]:t to thebcoordmatgs aflo_nlg ths surface IOf fh? filMyarametery. It can be seen that the typical value gfis
Omitting the cumbersome, but fairly obvious calculations,,, > “For ', 7 the conditionPy>P.(7) immediately

we directly give the final result for the steady-state temperagg, s to thermal breakdown of the superconductor. However,
ture distribution over the film: if 7> 7,, a steady-state normal-phase domain is formed ini-

7S

Po=Pc ; (6)

+ g2

11 1
ml4(n—1F| 3, 325

Po

An
@(H,r)=m|a2(n—l)

dk

tially, and breakdown sets in only at valuesRy slightly in
excess ofP.. In this last case, an increase R, for

Po=P.(7) corresponds to an increase in the average surface

resistance of the film, as was observed in Refs. 2 afti8

natural to assume that superconductors may have many de-
fects of similar size and properties at which domains appear
independently.

We estimate the magnetic field strength in the incident
wave which corresponds to the threshold energy flux density

X fo Jo(kr)J (ka)tanh(kH) Ka

+szwJo(kr)Jl(kI)tanr(kH)ﬂ( (4)
0

kl |’

where Jp 4(X) is a Bessel function and the radilisof the
thermal domain(region of destroyed superconductivitis
obtained from the conditio® (H,r=1)=1.

If the size of the defech and the domair are small
compared wittH, the integrals in Egi4) may be taken in the
explicit form:

_agPy |@%(n—1) (11 a?
@(H,r)—(TC_TO)%S{ o F E’E’Z’r_Z
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of the waveP0=(c/87T)Br2n= P. (c is the speed of light
Taking xs~3x10° (erg/scm-K), a~10"% cm, T.—T,
=10K, =1, anda,~10 2, we obtainB,,~200 Gs, which
agrees with the experimental d&t4.Estimates of the time
taken to heat the regions of film near defectsTte T, for

Po=<P. also yield values similar to those observed in Refs. 2

and 3:

cd?

T~

f(Pg)~10""s,

%s

A. A. Zharov and A. N. Reznik 118



wherecg~10" erglK-cn?), f(P,) is a form factor of~1 Yit was shown in Ref. 7 that the threshold may be lowered by local heating
which depends Iogarithmically oRy. of the superconductor by an external source.

3. To conclude, if allowance is made for the defects in T Tammel P. Kolodner. P. L. Gammed al. Aol Phvs. Lett69. 571
HTSC films, the thresholds for thermal S—N switching (199, pev ™ T - FPPL TS, EERS
stimulated by microwave fields and the characteristic times’W. Diete, M. Getta, M. Heiret al, Proceedings of the Applied Supercon-

. . ductivity Conference AS@6, Pittsburg, 1996.
of the transition procgsses are similar to t_hose Obs?rV_Ed eng. Wosik, L. M. Xie, J. H. Milleret al,, Proceedings of the Applied Su-
perimentally. Depending on the flux density of the incident perconductivity Conference AS®5, Pittsburg, 1996.

radiation and the power released at the defect as a result oM. Hein, W. Diete, M. Gettat al, Proceedings of the Applied Supercon-

. .. . ductivity Conference AS@6, Pittsburg, 1996.
absorption, the S—N transition may either lead to thermal5A. N. Reznik and A. A. ZharovProceedings of the Ninth Trilateral

breakdown, destroying the superconductivity over the entire German-Russiar-Ukrainian Seminar on High-Temperature Supercon-

surface of the film, or it may result in the formation of ther-  ductors Gabelbach, Germany, 1996. _

. N. A. Buznikov and A. A. Pukhov, Pis’'ma zZh. Tekh. Fi22(22), 45
mal domains. (1996 [Tech. Phys. Lett22, 499 (1996].
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Three-body recombination of electrons and ions in the presence of two-level atoms
A. N. Tkachev and S. I. Yakovlenko

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
(Submitted August 20, 1996
Zh. Tekh. Fiz68, 15—19(January 1998

The distribution function of bound electrons and the recombination rate of electrons and ions in
the presence of two-level atoms is considered within a diffusion model. Two cases are
considered(a) it is assumed in accordance with traditional theories that relaxation occurs as a
result of binary collisionstb) it is assumed that the anomalous drift previously discovered

on the basis of a first-principles simulation takes place. It is shown that the distribution of bound
electrons obtained on the basis of the theory of binary Coulomb collisions is not consistent

with the results of a numerical many-particle dynamics simulation, while a kinetic model which
utilizes the theory of anomalous drift is consistent with the simulation results19€8

American Institute of Physic§S1063-78428)00301-§

INTRODUCTION the motion of electrons along the energy axis is accom-

) ) ) ) plished in small steps and that the kinetic coefficients vary
A many-particle dynamic§MPD) simulation for Cou- weakly in these energy intervals.

lomb parti_cles bears fruitfu_l resqlts,_ if it is accompanied by ag usual, below we shall use the steady-state approxi-
an analysis of correspondmg_ klnetl_c model3.In Refg. 6 mation af/at=0, ' =const, whence it follows that

and 7 the results of an MPD simulation of the relaxation of a

system of Coulomb particles in a heat bath of two-level at- T'=A(g)f(e)—B(e)df(e)de=const. @
oms were compared with kinetic models that contradict the The boundary conditions for this equation depend on
principle of detailed balance, and good agreement was ob—h. h y binati _— tq is bei pd i
tained. In view of the different opinions expressed in Refs /¢ process(recombination or ionizationis being de

8-12 in regard to the interpretation of the results of the MPDSC”bed; they will be _forr_nulated below. qu now, we only
. L= . note that the determination of the relaxation fl(ice., the
simulation in Refs. 1-3, it would be useful to check once

again to what extent the simulation results contradict thenumber of electrons which recombine or detach from ions

traditional models of recombination based on the theory of €' unit timg on the basis of the steady-state Fokker—Planck

binary Coulomb collisions and the principle of detailed bal_equatlon(l) does not require precise specification .Of. th_e
ance. boundary between the bound and free electrons. This is im-

In this context. below we examine the form of the dis- portant, because, as a rule, highly excited electrons cannot be

tribution function following from a diffusion model with ki- unequivocally classified as bound or free particles, and the

netic coefficients which are obtained on the basis of tradi-pOSition of the boundary between them can be indicated only

. ) o approximately.

tional models of binary Coulomb collisions and obey the A . : .
relations following from the principle of detailed balance. . _Prmuple .Of Qeta_uled bala_nceAt thermodynamic equi-
This function is compared with the results of an MPD Simu_I|br|um the distribution func_:t|on of plasma electrons with
lation and the function obtained with kinetic coefficients thatreSpeCt o the total energy is of the Boltzmann type:

do not correspond to the principle of detailed balance. fe(y)=g(y)exp(—y),

2
172 s §13
Y for y> 6%,

FORMULATION OF THE PROBLEM IN THE (y)= =
BINARY-COLLISION MODEL gty Ty | 732
—8ly| %2 for |y|>é'3,  y<O0,
The FokkerPlanck equationFor the distribution func- 4

tion f(e) of electrons with respect to their total energyve wherey=¢/T, is the reduced energy ang=2e°N; /T2 is
use the Fokker—Planck equation the nonideality parameter of the plasma.

oflat=— ol 9e According to the principle of detailed balance, substitu-
' tion of the Boltzmann distribution into the diffusion equation
I'=Af—a(Bf)/de=Af—Baf/de should cause the expression for the flux to vanish identically.

This imposes the following relation on the expressions for
HereT is the electron flux along the energy afiis the case the diffusion and mobility coefficients:
of recombinatiorl’<0); A andB are the kinetic coefficients ~
for mobility and diffusion along the energy axis, respec-  A(€)fa(e/Te) ~B(e)dTg(e/Te)/de=0. 2
tively; and A=A—B/de is the modified mobility coeffi- As we know, in the case of binary collisions, the prin-
cient. The use of the diffusion approximation presumes thatiple of detailed balance follows from the temporal revers-

12 Tech. Phys. 43 (1), January 1998 1063-7842/98/010012-04%$15.00 © 1998 American Institute of Physics 12



ibility of a collision between particles. In the general case the  dd(x) 1—-6 -I'T,
principle of detailed balance is a consequence of the assump- —5,— T P(X) + =0,
. . S . dx 1+B./B; fg(X)B,(1+B./By)
tion that the system under consideration is ergodic.

Kinetic coefficientsThe expression used below for the Wherex=—&/T, and 6=Te/T,.

diffusion coefficient of a bound electron in Coulomb colli- ~ We write the boundary conditions in the form
sions with plasma electrons was derived in Refs. 13 and 14iMx_.®(x) =0, lim,_o®(x)=1. They reflect the fact that
It can be represented in the form the distribution should go over to the Boltzmann distribution
at small electron binding energies and that it should be much
B — 8\/— N A / e, 112 (x), smaller than the Boltzmann distribution at large binding en-
¢ K ergies. These boundary conditions correspond to the steady-

state drainage of electrons from the continuum to tightly
X bound states. The time for establishment of the distribution
J1+6x+0.75¢+ 7x3/16° function corresponding to stationary drainage is of the order

of the time between Coulomb collisiorfor further details,
Herex= —y is the binding energy of an electron normalized see Refs. 1-3, and 14

to the electron temperature, and= 1+ 9/4+ 6 is the Cou-

lomb logarithm. The expression for_ the d|_ffu5|on_ coeffl_c!entDISTRlBUTION OF ELECTRONS ALONG THE ENERGY AXIS
of a bound electron under th(_e act!on of inelastic collisionsynp RECOMBINATION RATE IN THE BINARY-

with two-level atoms was obtained in Refs. 5 antsée also  coLLsION MODEL

12

m(X)=

Ref. 2:
Starting equation.Using concrete expressions for the
4 2T diffusion coefficients, we can bring E¢l) into the form
:_Agz(ToNa _e\/; ¢ m)
dd(x) o 1-0 const x?eX o
Here Ae>0 is the energy difference between the atomic dx (X)1+,u(x)/cl+ 1+u(x)/c;

levels,N, is the atom density, andl, is the cross section for
the excitation of an atom by electron impact near the thresh-
old. For simplicity, it is assumed within the model from 1 Ag?09 N
Refs. 5 and 6 that the cross section does not vary when the C1:2 2 iy N
threshold is exceeded. We note that this leads to some over-
estimation of the relaxation rate for tightly bound electrons.characterizes the ratio between the rates of Coulomb colli-
It is assumed, in addition, that the populations of the groundions and inelastic collisions of electrons with atoms. Since
and excited states obey a Boltzmann distribution with arthis equation is linear, it is simple to write down its solution
atom temperaturé, ; this simulates the action of a heat bath in quadratures. However, the corresponding integral expres-
of two-level atoms. sions are not convenient for obtaining concrete results. It is

Justification of the use of the diffusion approximation simpler to analyze limiting cases and to perform direct nu-
requires fulfillment of the condition that the transition energymerical integration of the differential equation in the inter-
be small compared with the characteristic scale for variatioomediate region.
of the distribution function. In particular, it requires that Limiting cases.When ¢c;—0, neglecting the inelastic
Ae<T,,T,. collisions with atoms, we have the familiar expressions for

Stationary drainage equation and boundary conditions.the distribution function and the recombination figi
We assume that the diffusion of an electron along the energy f _

. . . . (X)="1g(x)

axis as a result of collisions with atoms and with electrons
takes place independently. Then the kinetic coefficients in
Eq. (1) are the sums of the corresponding quantities, and the /
equation for the distribution function takes the form
I'=(A,+A.)f(s)—(Ba+Bc)df(e)de=const. Uo dzZ exp(—2)/u(2) |,
Introducing a function which characterizes the deviation
of the recombination distribution from the Boltzmann distri-
bution

where the parameter

X dezz2 exp(—2)/ u(z)

4 25/2,”_3/2 elOA N_g
5004 O  m. TO2

O (elTe)=1(e)/fp(e/Te), The distribution function is approximated to within an
accuracy no poorer than 5% by the expression

|Fc|:

and using the principle of detailed balance éore ande—a

collisions 732 1+x+0.476¢+0.065%°
~ fe(X)=—0 52 )
A.(e)fp(el/Ty) —B.(e)dfg(e/Te)/de=0, 4 X
=~ B _ which gives correct asymptotic behavior. Whepi—«, ne-
Aa(e)Te(2/Ta) = Ba(e)dTe(s/Ta)/de =0, glecting the Coulomb collisions, we can obtaicompare
we have Refs. 6 and ¥
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FIG. 1. Distribution functions of particles with respect to the total energy
for the model with fulfillment of the principle of detailed balandg5—

Eq. (2), which follows from the principle of detailed balance.

In this case there is anomalous electron drift along the energy
axis: it is anomalously directedrom the region of electrons
with negative energies into the region of positive enefgies
and anomalously strong@t exceeds the Coulomb drjftOn

the basis of approximate arguments we obtained an expres-
sion for the “microfield” distribution function

Jyexp(—y), y>as”?
fiy)= \/—— Cs exp(Ciy+Coy?/2), |yl<ad'®
T ¢, exp Byl 8Y3), y<—asB

4

which takes into account the anomalous drift along the en-

limiting cases of the absence and predominance of inelastic collisions€fdy axis. Here

2—4—calculation forc;=0.1, 0.3, and 1, respectively.

w2 2+ 20x+ 022
fa(X, 0) = T 5—2)(5/2

21/277.1/2 eGUoASZNeNa
34-3/2
3 UmTiTe

Calculation results.As the results of the calculations
show(Fig. 1), in cases in which neither the Coulomb nor the

|Fa|:

inelastic collisions can be neglected, the distribution function
lies between the limiting expressions presented above. The

Ci=[—1+1(2asY3+BI5Y /2,

Co=[—1+1(2a Y3 — BI5Y3)/(2a 63,

Cy= a5 exf — ap¥(1+C1+Cras'32)],
Cy= a6 exd ap—ap(1+2Cy)],

Cl=1—(2Nm y(32,a8 3+ (2C5 /)

1/3

XJWS exp(C,y+ Coy?/2)dy
7(151/3

+(2C46Y B\m)exp — ap),

resultant recombination flux can be represented in the form,, ... _ 5 andB=0.4 are coefficients, whose numerical

I=T[1+c,6%(cy,0)], 3

where the functioré(c,,6) describes the transition region
for the recombination ratéFig. 2).

DISTRIBUTION OF ELECTRONS ALONG THE ENERGY AXIS
AND RECOMBINATION RATE IN THE MODEL OF
ANOMALOUS DRIFT

Microfield distribution.It was conjectured in Ref. (see
also Refs. 2 and)3on the basis of the results of numerical

simulation that a quasisteady-state distribution of electrons

(for I'=0) differing from the equilibrium Boltzmann distri-

values are selected such that the microfield distribution func-
tion would describe the results of the numerical calculations
most faithfully.

Starting equationOn the basis of the expressions for the
kinetic coefficients obtained in Refs. 6 andske also Ref.
3), the equation for the diffusion of an electron along the
energy axis under the action of plasma microfields and in-
elastic collisions with two-level atoms can be written in the
following form

bution can arise. It forms because the mobility and diffusion, hare
coefficients of an electron along the energy axis do not obey

-3

-2 -1 1640

%

1E+1  1E+2

df(x) a(x) const
ax b0 Thoo "

! 5 !
a(x):5T/3+c1 m—\/xa ,  b(x)=1+ciyx

are the dimensionless mobility and diffusion coefficients;

4

B Ag20q N,
- 0.75 3w

“ N,

C1
e
is a parameter which characterizes the efficiency of the in-
elastic collisions; and the solution should transform into the
microfield distribution where; —0.
The boundary conditions are determined from the condi-
tion that the distribution function sought be small compared
with the Boltzmann distribution at large binding energies, as

FIG. 2. Dependence of the fraction of the recombination flux due to inelas- " h . . .
tic collisions on the coefficient characterizing the efficiency of the inelasticWell as from the condition for matching with the microfield

collisions. #=1 (1), 2.5(2), and 5(3). distribution at small binding energies:

A. N. Tkachev and S. I. Yakovlenko 14
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Coulomb collisions and the principle of detailed balance can-
not account for the form of the distribution obtained in the
calculations(Fig. 3).

1.00

T

CONCLUSIONS

The results of the present work are consistent with the
concept reviewed in Refs. 1-3. The essential points of this
concept are as follows. The translational and positional de-
grees of freedom in a system of Coulomb particles mix for
an anomalously long time in comparison with the situation
which would be observed if relaxation of the bound states
FIG. 3. Distribution functions of particles with respect to the total energyWere described by binary Coulomb collisions. On the basis
for the model with anomalous drift for a plasma with the parametersOf the known entropy conservation law for Hamiltonian sys-
6=0.11 and#=2.5: 1—case of the absence of inelastic collisioBs3 cal- tems, it would be natural to conclude that relaxation to a
culation for the _collisipn rates;=0.1 e_lnq O.2;4,5—|imiting distributions state of statistical equilibrium in a dynamic system takes
for the model with fulfillment of the principle of detailed balance. Points— . .
results of the MPD simulation in Ref. 3ee also Ref. )6for a plasma with place (_)nly In the presence _Of e)_(te”(&mh respect to t_he
the parameters=0.11, = 2.5, andc]~0.1. dynamic equations stochastic disturbances. Translational

degrees of freedom are unstable with respect to external dis-
turbances; therefore, even small errors in the numerical cal-
i _ i _ 13 culation lead to the establishment of a Maxwellian distribu-
lmf(x)/fB(x)—O, I|m1/3f(x)—ff(a5 )- tion. At the same time, the establishment of equilibrium
X—ad between free and bound states for classical Coulomb par-

Calculation resultsAnalytical expressions for the cases ticles does not correspond to the theories of binary Coulomb
of predominance of the Coulomb interaction and inelasticcollisions” and the applicability of the principle of detailed
collisions were presented in Refs. 3,6, and 7. Here we shallalance in the transitional formulation in the present case.
consider only some results of the numerical calculations. As  The simulation of both a system of classical Coulomb
the calculation results sho(Fig. 3), in the case of the mi- particles protected from stochastic disturbances and a system
crofield distribution function a “tail” appears at negative that is subjected to external stochastic disturbances shows
energies due to the inelastic collisions. However, the form othat there is anomalous electron drift along the energy axis. It
the distribution of the electrons in the tail differs significantly is possibly caused by collective plasma oscillatidriEhe
from the form which would be observed when the principleoccurrence of anomalous drift leads to the formation of a
of detailed balance holds. When anomalous drift takes placénetastable state of a classical Coulomb plasma.
the drop in the distribution function with increasing binding
energies is, of course, significantly steeper. In this model theas was shown in Refs. 5 and(8ee also Refs. 2 and,3he discrete nature
recombination flux is a function of three parameters and canof the bound states promotes predominance of the role of binary collisions
be represented in the form for light Coulomb particles.
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Sputtering of gold by krypton ions in the inelastic region of energy loss

G. |. Akap'ev, A. N. Balabaev, N. A. Vasil'ev, S. V. Latyshev, V. M. Nazarov,? A. R.
Piuto, I. V. RudskoT, and Yu. N. Cheblukov

Institute of Theoretical and Experimental Physics, 11725 Moscow, Russia
(Submitted November 11, 1996
Zh. Tekh. Fiz68, 134—-135(January 1998

The sputtering coefficient of gold was determined experimentally as a function of the incident
krypton ion energy in the inelastic region of energy loss. It is shown that this dependence

does not differ from that predicted by the cascade theory. The work was carried out using the U-
400 cyclotron beam at the Joint Institute for Nuclear Research, Dubndl998 American

Institute of Physicg.S1063-784£8)02701-9

It was shown for the first time in Ref. 1 that the coeffi- leaves the metal and will contribute to the sputtering. The
cient of sputtering of metals by multiply charged ions, for sputtering process therefore has a threshold nature. Using the
which the inelastic energy lossdE/dx). is considerably results of Ref. 2, it can be shown that ferl00 MeV kryp-
greater than the elastic loss in atomic collisions, differs fromton ions, the threshold value of the inelastic loss in gold is
that predicted by the cascade theory. The sputtering coeffitdE/dx),~2.1 keV/A. The energy loss of 100 MeV kryp-
cientS of coarse-grained gold by 5.5 MeV/nucleon uraniumton ions in gold E/dx).~2.7 keV/A (Ref. 3 exceeds the
ions was found to be (122) atoms/ion. An estimate &  threshold value. It can be seen from Fig. 1 that the experi-
for this uranium ion energy, allowing only for elastic inter- mental dependence shows no deviation from the cascade
actions, givesS~1. This experimental result provided the theory. In the particular energy range studied the krypton
stimulus for a more thorough investigation of the sputteringions (see Fig. 1 have similar parameters to fission fragments
of metals in the inelastic range of energy losses using heawyo that the sputtering coefficient of gold by fragments cannot
ion beams in the U-400 cyclotron at JINR, Dubna. be influenced by the inelastic loss, as was suggested by the

Here we report the experimentally determined depenguthors of Refs. 2 and 4 when comparing the theoretical
dence of the sputtering coefficieBtof gold on the energ¥e  sputtering coefficient with the experimentally measured
of the incident krypton iongsee Fig. 1 This dependence yg|ye.
was obtained by collecting the sputtered gold using a special |n our view, the energy dependence of the sputtering
target consisting of many alternating layers of gold, carbongoefficient of gold by 100-500 MeV uranium ions, where
and aluminum foils. The carbon foils collected the Sputtereqhe energy IOSSC(E/dX)e increases abrupﬂy and is quite ap-
gold atoms and the aluminum foils were used to vary theyreciable, must be determined experimentally to establish
krypton ion energy. The gold foils, 0.2.m thick, were an-  efinitively how the sputtering process of metals is influ-
nealed beforehand in a vacuum furnace at 400 °C to elimignced by the inelastic energy loss. This experiment is sched-
nate any intergranular structure. This design allowed us tgeq using the U-400 cyclotron beam at JINR.
determine the sputtering coefficient of gold at various kryp-  The authors would like to thank Yu. Ts. Oganesyan and

ton ion energies during a single exposure of the target in &, A, shchegolev for support of the experiments, and Yu. N.

monoenergetic beam. The quantity of sputtered gold at thg 5yjinskii for discussions of the results.

carbon collectors was determined by activation analysis. A

Faraday cup was positioned behind the target to measure the

guantity of ions transmitted by the multilayer target. During

the experiment the target was heated~+@00 °C to clean

the surface of the gold foils. 16
According to a model proposed earlier to describe the

sputtering of a metal by fast multiply charged idna, hot 14

electron gas with a temperature of 20—25 eV, which exceeds 12

the ionization potentials of the lattice ions, forms near the ion =

trajectory. At the metal-vacuum interface, as a result of the T 10

high pressure inside the hot electron gas the spatial distribu- 8 0.8

tion of the electrons differs from the ion density profile,

which leads to the formation of an electric double layer. A 0.6

surface metal ion which has zero binding energy above a 04

certain critical temperature of the electron gmssaccelerated 0'2

. . - . A 1 1 ] 1 i 1 1 1 1 -

:)y the double Iayer without be!ng confined by thg restoring 7] 00 750 200 757

orce. If a surface ion located in a hot spot has time to ac- E, MeV

quire an energy higher than the binding energy during cool-

ing of the electron gas to the critical temperature, the iOrFIG. 1. Sputtering coefficient of gold versus incident krypton ion energy.
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dDeceased. 3Nuclear Data TablesVol. 7, No. 3—4(1970.
41. A. Baranov, Yu. V. Martynenko, S. O. Tsepelevich, and Yu. N. Yav-

LYu. N. Cheblukov, D. G. Koshkareet al, Part. Accel.37—-38, 351 linskit, Usp. Fiz. Nauk.156 477 (1988 [Sov. Phys. Usp31, 1015
(1992. (1988].

2Yu. V. Martynenko and Yu. N. Yavlinskj Zh. Tekh. Fiz58, 1164(1989

[Sov. Phys. Tech. Phy83, 683(1988]. Translated by R. M. Durham
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Magnetic properties of an amorphous microconductor in the microwave range

S. A. Baranov
(Submitted December 20, 1996
Zh. Tekh. Fiz68, 136—137(January 1998

The frequency dispersion of the magnetic permeability is taken into account in a calculation of
the impedance of an amorphous microconductor. Possible methods of measuring the

magnetic parameters are analyzed, and the main characteristics of an amorphous microconductor
in the microwave range are described. 1©98 American Institute of Physics.
[S1063-7848)02801-3

Materials possessing high values of the components ofvherer.. is the radius of the central core of the microcon-
the magnetic permeability are needed to develop absorb- ductor, in our case we have
ing screens in the microwave ran@ee Ref. 1, for example

As far as we are aware, a cast amorphous microconductoris z_% 7z (4)
a unique material because, as a result of the natural ferro- n
magnetic resonance in the frequency range up to 10 GHz
. : : Where
(Refs. 2—4, composites based on this material possess a ra-
dio absorbing property. Jn_1(kre)
Note that becausg has a resonant charactetin this anconStk—Jn(krc) : &)

frequency range, model calculations of radio absorbing me-
dia which neglect the frequency dispersion cannot really be  The magnetic permeability is not an additive quantity,
applied to composites based on a cast amorphous microcohut for each mode we can introdugg, which, according to
ductor. The present study is confined to questions of meahe method proposed in Ref. 7, may be calculated numeri-
surement of the magnetic characteristics of an amorphowgally using the equation
microconductor.

An important difference when allowance is made for the %% 2fn 6)
dispersion is that an expansion is obtained for the electric  dr 27— N —nNu,

and magnetic fields in a long cylindrical section of the N . )
microconductof (the boundary conditions and choice of roots are derived

from physical reasonirg).

Specific calculations show that we can only confine our-
selves tou, (n=1) for a fairly thick (r.~5 wm) micro-
. conductor. Note that modes witl>1 are attenuated more
Fo(r ) =143, (kr), (1) rapidly in a waveguide. Standard VSWR meters are not gen-
whereJ, () is a Bessel functior;, ¢ are cylindrical coordi-  €rally suitable for measuring the parameters of natural ferro-
nates, and is the wave vector, which tends to the following Magnetic resonance in thin microconductors, sinag 4,

valué in the case under study, i.e., for the mode of uniformthe microconductor is “transparent” for the field.
another fundamental limitation. When allowance is made for

E An
H™ 2 g n(ri9),

k—(1+1)/4, 2 dispersion at a frequency close to those of the maximum of
where 8 is the skin layer depth. the imaginary part of the magnetic permeability, the real
Unlike the dispersion-free case when only one mode expartu’ tends to zero. This necessitates taking account of the
ists and the wave impedance is expressed by reactance of the conductor—waveguide contact which con-
tributes to the systematic error. Without giving the equiva-
leconsthO(krc), 3 lent circuit (see Ref. 10, for examplewe merely observe
Ja(kre) that in this case
TABLE |.
Characteristics of Resonance frequencies Imaginary part of magnetic Estimated half-width,
amorphous alloy GHz permeability at resonance GHz
Iron-based alloy 7-10 210F-1C° 0.5-2
Alloy of cobalt and iron
in the ratio 5/2 6-3.5 2-810° 1-2
Alloy of cobalt and iron
in the ratio 6/1.5 up to 3 1.5-810° 2
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T#1-R (7) 3S. A. Baranov, S. K. Zotov, V. S. Larin, and A. V. Torkunov, Fiz. Met.
Metalloved.12, 172 (1991).
(T andR are the transmission and reflection coeffici¢arsd 4S. A. Baranov, S. K. Zotov, V. S. Larin, and A. V. TorkundVagnetic
the moduli|T| and|R| are not sufficient to calculatg, but Resonances in an Amorphous Microconductor and Magnetic Structures
we need to know the phase betweRrand T. However, an Proceedings of Conference of Young Scientists at the Physics Faculty of

estimate of the imaginary part of the magnetic permeability ;y"g"gg"c”iﬁg Eg R;fg‘&‘gi‘é ;];"’ers'ty Press, L'vov1990, pp.
for a thick microconductor is more accurate in this method ofsg , Ba?anov, Vesfn_ Pridnest. Univ. No(2l, 126 (1994).
measurementas was noted in Refs. 4 andl. 8 6. G. Gazyan and L. M. Suslov, Radiotekhnika, No. 7,(2989.

Table | gives characteristics of the magnetic properties’Vv. I. Ponomarenko, V. N. Berzhangki. V. Dzodolik et al,, Izv. Vyssh.
of amorphous microconductors in the natural ferromagnetic Uchebn. Zaved. Radiofi2(3), 38 (1989.
8V. N. Berzhanski L. G. Gazyan, V. L. Kokoz, and D. N. Vladimirov,

resonance range, which may be used in radio absorbing ma-
9 y 9 Pis'ma Zh. Tekh. Fiz16(12), 14 (1990 [Sov. Tech. Phys. Lettl6, 447

terials. (1990].
9S. A. Baranov, Vestn. Pridnest. Univ. No. 6, 101996.
IA. G. Alekseev and A. E. Kornevilagnetic Elastomergin Russian, 10A, vaisflokh, Circuit Theory and Measurement Techniques in the Deci-
Khimiya, Moscow(1987). meter and Centimeter Rangga Russian, Sov. Radio, Moscow, 1961.
2s. A. Baranov, V. N. BerzhangkiS. K. Zotovet al, Fiz. Met. Metall-
oved.67, 73 (1989. Translated by R. M. Durham
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Asymptotic fractality and the anomalous transport of particles having finite velocity
V. V. Uchalkin

Ulyanovsk State University, 432700 Ulyanovsk, Russia
(Submitted January 22, 1997
Zh. Tekh. Fiz68, 138—139(January 1998

A generalized time-dependent transport equation is obtained for particles whose free motion has

a finite velocity, which includes “Ley flights” and the effect of “traps.” It is shown that

as a result of allowing for the finite velocity, the asymptdiath respect to timgdistribution of

a particle walking in one dimension has a fractal nature only when the power-law tails of

the mean-free-path distributions and particle residence times in the trap have the same exponents.
© 1998 American Institute of PhysidsS1063-784£8)02901-§

Studies of the chaotic behavior of dynamical systems The authors of Ref. 8 consider formuld) to be “...a
have provided the impetus for the development of a newbasic result that provides extensive opportunities for discus-
branch of transport theory — anomalous diffusion orsion..."” (p. 154. Here we show that allowance for the finite
“strange kinetics.”>* The main difference between anoma- velocity of the particle motion between collisions signifi-
lous transport and normal transport is that the particle meanantly alters the situation.

free pathsé (“Le vy flights”) have a power-law distribution We assume that a particle is created at the origin at time
a1 t=0 in state O(trap with the probabilitypy or in state 1
p(&)~adé , Eox, 0<a<2 (1) (flight with the velocityv=Qu, v = const) with the probabil-

iéy p1, and we assume that the angular distributions of par-
ticles created in state 1 and particles leaving the traps are the
same and equal t&/(€2)

and the analysis includes temporal residence of the particl
in a state of rest“traps”), also having a wide power-law
distribution

Q(T)"‘ﬁTgT_B_l, T—o, 0<B<2. 2 fW(Q)dQ:l

When the first effect predominates, we talk of superdif- Following the logic of the derivation of the time-

fusion and in the opposite case, we ta}Ik of subdiffus?on. Thedependent integral equation in normal transport théeee
authors of Refs. 5-8 considered integral equations foRef 13 under the assumptions made here we arrive at the

anomalous transport, whereas the authors of Refs. 9-12 angyowing equation for the spatial distribution density of a
lyzed equations in fractional derivatives. Both approache§va|king particle at time:

neglect the particle transit time between collisions, i.e., the
velocity of the free particle motion is assumed to be infinite.
In this approximation, the one-dimensional symmetric walk-
ing, fractal in space and timex& 1 andB<1), is given by

w(r,t)=f:dt’Q(t’)Fo(r,t—t’)

[formula (58) in Ref. §| +U_1J dr'P(r')Fy(r—t' t—r'lv), (6)
<|X|>=f |X| ip(x,t)dx~consttFe,  t—oo, 3)
o Fo(r,t)=J dr'p(r')Fa(r—=r',t=r"lv)+pod(r)s(t),
where (x,t) is the coordinate distribution of a particle (7)
walking along thex axis at timet, having been created at "
timet=0 at the pointx=0. Fl(r,t)=f drq(7)Fo(r,t—7)+p18(r)8(t), 8
0

However, formula(3) is inaccurate, since fox<<1 the
absolute first-order moment is infinite as a result of condition,yere
(1). The result obtained in Ref. 8 can be correctly formulated

if formula (57) from that study is expressed in the form Q(t) = ft q(rdr p(r)=[W(r/n/r2]p(r),

w(x,twiq,m,m(i), o, @ -
m(t) m(t) P(r)z[W(r/r)/l’Z]J p(&)dé.

where
It can be confirmed that for exponential distributions

(@B () = f”i“ uf“ dq Buf! u—igx p(¢) and q(7) this result agrees with the usual single-
(2m)% Je-iw -» BUP+A|g|® ' velocity theory of delayed neutron transport, whereasufor
—oo jt yields the known integral equations of anomalous
m(t)=tF (5)  diffusion°>812
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For a one-dimensional symmetric walk along thexis We note in passing that allowance for the finite particle

with the direction vectoe,, we have velocity under normal diffusion conditions does not alter the
self-similar character of the asymptotic form of the spatial
W(Q)=(1/2[ 5(Q~6) + 8(Q+6)]. ©  eribution ymp P
Substituting Eq.(9) into Egs. (6)—(8) and integrating
over the transverse coordinatesindz, we can easily obtain 1 X
an equation for the one-dimensional density <//(x,t)~ﬁ(b ﬁ , t—ooo,

l!/(x,t)szz,b(x,y,z,t)dydz ) 2
|

Adopting the same procedure as in Ref. 8, i.e., perform-  P(X)= g exp— 2 N
ing a Fourier—Laplace transformation with respect to the V2m(E){r+Elv) A&7+ Elv)

variablesx andt, using distributiong1) and (2), and con- This work was supported by the Russian State Commit-

verting to the asymptotic formi— o0, we obtain an analog of . : Ao
expression(4) for walking with the finite velocityv: tee for Higher EducationGrant No. 95-0-3.1-28

Px, )~ e Bt Pl ghlet), (10

where 1J.-P. Bouchard and A. Georges, Phys. REQ5, 127 (1990.
2M. B. Isichenko, Rev. Mod. Phy$4, 961 (1992.
o CHiw 3M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nat(rendon 363
Zj dqf du 31 (1993.
(2m)°iJ —= c—io 4J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Tod&®2), 33
(1996.
Buﬁ’1+v’1(q§0)“’1U[ut/(vq)] B SE. W. Montroll and G. H. Weiss, J. Math. Phy&;. 167 (1965.
euiax 8E. W. Montroll and M. F. Shlesinger, iStudies in Statistical Mechanics
BuP+(qé&p)*V[ut/(vQ)] edited by J. Leibovitz and E. W. Montro{North-Holland, Amsterdam,
1984, pp. 1-121.
© _ M. F. Shlesinger, Physica B8, 304(1989.
B=I'(1-5) Tg- U(z)= fo X~ “ cosxe “dXx, 8V. V. Afanasiev, R. Z. Sagdeev, and G. M. Zaslavsky, Cha@®, 143
(1992.
- °R. R. Nigmatullin, Phys. Status Solidi B23 739 (1984.
10 . . . .
_ ~a(gin x+ -z ) G. M. Zaslavsky, inTopological Aspects of the Dynamics of Fluids and
V(@) jo X~ “(sinx+2z cosx)e dx Plasmas edited by H. K. Moffatt, G. M. Zaslavsky, P. Comte, and
M. Tabor (Kluwer, Dordrecht, 1992 pp. 481-491.
It is easy to see that far—ce this result has the form !G. M. Zaslavsky, irLévy Flights and Related Topics in Physieslited by

(4)—(6), but when the particle velocity is finite, the self- M. F. Shlesinger, G. M. Zaslavsky, and U. Fris@pringer-Verlag, Ber-
lin, 1995, pp. 216—-236.

similar behavior of the distributio(L0) can only be obtained 12"\, cpubar. zh. Eksp. Teor. FiZ08 1875 (1999 [JETP 81 1025

TieP(x,1)=

for equal exponenta= 3, when (1995].
1A, M. Kol'chuzhkin and V. V. Uchikin Introduction to the Theory of
-1 , -1
P(x,t)~1 \Pu(a a)(Xt 1. Particle Propagation Through Mattelin Russiar, Atomizdat, Moscow

Only in this case can we talk of the fractal nature of the (1978.

anomalous walks, at least in the sense of a monofractal. Translated by R. M. Durham
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Influence of electron irradiation of the NOVER-1 vacuum resist on its resistance to ion-
beam etching

Yu. |. Koval'’ and V. T. Petrashov

Institute of Problems of Microelectronics Technology and High-Purity Materials,
Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia
(Submitted May 19, 1997

Zh. Tekh. Fiz68, 140-142(January 1998

The influence of electron irradiation on the resistance of the NOVER-1 resist to ion-beam
etching is studied. Etching is carried out by argon ions with energies between 300 and 2500 eV.
It is found that, depending on the energy and angle of incidence of the ions on the surface

of the resist, electron irradiation may either speed up or slow down the NOVER-1 etching. A clear
correlation is observed between the penetration depth of the ions in the resist and the

influence of the electron irradiation on the resistance of the resist to etching. At ion energies
higher than 500 e\(ion penetration deptkz3.5 nm the resistance decreases, passes through a
minimum at low electron irradiation doses, and returns to the etching rate of the initial

resist at high doses. For glancing etching angte3@° to the surface normeand low ion energies

(300 eV), i.e., small ion penetration depths@.5 nn), an electron-irradiated resist is etched

more slowly than the initial resist at all the electron irradiation doses studied. This effect may be
used to enhance the resistance of resist structures whose height exceeds their width, which

in this case is determined mostly by the rate of etching of the inclined facetd.998 American
Institute of Physicg.S1063-784£8)03001-3

One of the important characteristics of resists is theirenhance their masking propertieShe behavior of the resist
resistance to ion-beam etching. It is known that polymer reunder heating during ion-beam etching also improved, and
sists have a relatively low resistance to ion-beam etchingthe influence of faceting diminished.
and this is a serious disadvantage when these resists are used For our investigations we selected the NOVER-1 resist
as etching masks. Thick resists can be used to satisfy th@egative organic vacuum e-beam resistOVER-1 was de-
resistance requirements but for submicron and particularlyeloped as a resist for electron-beam lithography capable of
nanometer dimensions, an increase in the thickness of thgerforming an entirely dry vacuum cycle — deposition, ex-
resists leads to a deterioration in the resolution of the lithogposure, development, and etching. It has been shown in re-
raphy and therefore is unacceptable in practice. In additiongent studies that in addition to the advantages characteristic
thick masks give rise to various well known deleterious ef-of a vacuum residthe possibility of uniform deposition on a
fects such as sputtering, the formation of grooves around thgurface of complex topology, the absence of any contact with
perimeter of structures caused by retroreflection of ions frontdeveloper fluids, and the possibility of avoiding contact be-
the high walls of the resist, and a substantial difference in théween the samples and giNOVER-1 has a high resolution
resistance of structures of different sizes as a result of théetter than 30 ninand forms continuous stable films less
faceting effect(see, e.g., Ref.)1 than 30 nm thick:’

The possibility of improving the resistance of resists has  In our experiments a resist around Owdn thick was
been considered on many occasiérsbut our understand- deposited by thermal evaporation from a boat at 150 °C. The
ing of the mechanisms responsible for the etching of polymesubstrates were Si wafers. Electron irradiation was carried
materials is clearly inadequate to enable a specific search tmt in a BS-300 relativistic electron machine with a pro-
be carried out. At present, it can be confidently asserted thaggrammed beam control system. The electron energy was 16
in many respects, the low resistance of resists is caused tkeV and the beam current 300 pA. Sections of dimensions
the nature of the polymer materials, and that ion-beam etcht5x20 um were exposed to doses betweer 3 and
ing of polymers does not involve physical sputtering but it is9x 10~ C/cn?. The resist was then etched with 300—2500
also largely determined by radiation-stimulated processes isV Ar* ions in an ion-beam etching systénma difference
the subsurface layer of materral. between the rates of ion-beam etching of the unirradiated and

The influence of different types of radiation on the resis-irradiated regions resulted in the formation of a relief on the
tance of resists to ion-beam etching may also provide inforSi surface. After the resist had been completely removed by
mation on the etching mechanisms of polymer materialsetching, the difference in heigiith between the unirradiated
Thus, a study of the influence of electron irradiation on theand irradiated regions was measured using an optical inter-
resistance of materials to ion-beam etching seems to be uferometer. The Si etching depth, in the sections unpro-
gently required. In addition, electron irradiation of the struc-tected by the resist was also measured. The resistance of the
tures in a resist is of practical interest. For instance, it hasesist was defined asig— Ah)/h,. This method can be used
been shown that electron irradiation of structures in an electo obtain experimental points for the same sample at the
tronic resist such as polymethyl methacryléd®MMA) can  same ion energy under known identical conditions of expo-
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FIG. 1. Thickness of the resist filfl) and
the resistance to ion-beam etchi(@-5)
versus the electron irradiation dose. Etch-
ing was carried out along the normal to the
surface of the resist using 250Q), 500
(3), and 300 eM4) ions and at an angle of
70° relative to the normal to the surface at
500 eV(5).

a.4 et 1l L ot aaaal 3 1 aaaal

0.07 a.1 7

sure and etching on a resist film with the same initial thick-beam etching is determined to a considerable extent by the

ness. etching conditions — by the energy and angle of incidence
As a result of the electron irradiation, the thickness ofof the ions.
the film decreases negligiblgurvelin Fig. 1). The kinetics For ion-beam etching by 2500 eV ions the etching resis-

of the decrease in thickness is described by the logarithmigance decreases by 30% at doses higher thanx3L0 2
dependencéi (D) =Hy(1—A In(1+D/Dy)), whereHy is the  C/cn?, reaching a plateau in the rangex30 2—-4x 101

initial thickness of the resis#\ andD, are parameters, and C/cn?. A further increase in the preliminary electron irradia-

D is the electron irradiation dose. It is known that the de-tjon dose increases the etching resistance almost to the initial
crease in thickness is a consequence of radiation damag@ate. A similar dependence is observed for the 500 eV ions.
The low-molecular fragments formed leave the resist and thﬁowever, the dependence does not have a plateau near the

cavities are filled with surrounding molecules which reducesyinimum. the etching resistance decreases by end0%
the volume of the materidin our case, the thickness of the and begins to increase from substantially lower doses

resis). Estimates ma}dg using a method proposed_in R_ef. 9(’6><10*2 Clcn?). When the ion energy is reduced to 300
i{gyEéhit thetrad:catlor) ylelctt:]ef?:] gasl tflorrfnatlon Itn . eV, no minimum is observed and the etching resistance in-
~- per atom forming part ot the volatie ragments 1S - o ;o monotonically with increasing electron irradiation

0.45 atoms per 100 eV of absorbed energy. A compariso . : . R
with other resists suggests that NOVER-1 has a relativelgose' Finally, for etching by 500 eV ions at an angle of 70

high resistance to radiation damader exampleg.= 12 for o the pormal to the surface of the §ample, thg etghmg resis-
PMMA). tance is more than doubled, reaching saturation in the dose

range of 6<10 2 Clcnt.

The rate of ion-beam etching of organic materials corre- Thus. for thi it the d q £ th .
lates with their resistance to radiation damage. This is be- us, for this resist, the dependence of the resistance to

cause resists are etched as a result of the simultaneous actig-°€am etching on the electron irradiation dose clearly cor-

of physical sputtering processes and the formation of Weakbr,elates with the ion penetration depth. For etching at an angle

bound low-molecular fragments, which may be desorbedf 70°, 500 eV ions penetrate to a depth of less than 1 nm,
Thus, the high resistance to radiation damage is one reas@fd & substantial increase in the etching resistance is ob-
for the relatively high resistance of NOVER-1 to ion-beam served. Normally incident 300 eV ions penetrate to a greater
etching. For instance, for 300 eV, 500 eV, and 2500 eV ionglepth — around 2.5 nm, and the etching resistance of the
the rate of etching is 19 nm/min, 38 nm/min, and 97 nm/min resist increases as before, but substantially less. When the
respectively, for an ion current density of 1 mA&m ion penetration depth equals 3.5 600 eV iong, the etch-
Since the resist under study is a negative, damage undétd resistance begins to vary nonmonotonically, and unlike
electron irradiation is dominated by cross linking processesthe previous cases, it decreases in a certain range of doses.
At high irradiation doses the resist is converted into aThis behavior is observed most clearly for 2500 eV ions,
strongly cross-linked hydrocarbon network in which the for-whose penetration depth is greater than 7 nm. In this case,
mation of weakly bound fragments is less likely in ion-beamthe range of electron irradiation doses in which the etching
etching, and enhanced resistance to ion-beam etching coutdsistance decreases becomes substantially greater, and a pla-
be expected. However, the experiments have shown that theau appears on the curve, as has already been discussed.
influence of electron irradiation on the resistance to ion- In spite of the correlation observed between the behavior

127 Tech. Phys. 43 (1), January 1998 Yu. I. Koval' and V. T. Petrashov 127



of the etching resistance of the resist and the ion penetratiofPlasma Processing for VLStdited by N. G. Einspruch and D. M. Brown,

depth, the available data are insufficient to explain the ob- \C/(‘)’J\'/Bl‘;;\z"-s' Electronics{Academic Press, New York, 1984; Mir, Mos-
served dependences. However, the observed effect may b, B. Borzenko, A. F. Vyatkin, N. N. Gonchkowat al, Vacuum3s, 1007
used to strengthen masks of the NOVER-1 resist with small, (1988 _

. . . . M. . J. Beale, C. Broughton, A. J. Pidduck, and V. G. |. Deshmukh, Nucl.
structure dimensiondess than the thickness of the resish Instrum. Methods9/2Q 995 (1987.
this case, the etching resistance of the resists is mainly defﬁ-gggkaﬂ, K. Tanigaki, and Y. Ohnishi, Solid State Techrfl.163
termined by the etChing resistance of the facets at the edgesl’. B. éorzenko, Y. I. Koval, and V. A. Kudryashov, Microelectron. Eng.

of the structure, whose normals are at 60—70° to the beam,23, 337(1994.
Th ibility of th doubli th tchi ist V. T. Petrashov, Y. T. Abramenko, V. A. Zarubiet al, Phys. Low-

e possibility of more than doubling the etching re§|s ancg Dimens. Struct11/12 103 (1994,
of the structure edges more than doubles the etching resis. T. Petrashov, Ju. T. Abramenko, Ju. I. Koval, and L. Aparshina, Mi-

. . croelectron. Eng35, 161 (1997.

tance of the masks. In _addlthn, strengthening the_ wa!ls Cany, "\ Koval, and E. V. Ilichev, Prib. Tekh. Eksp. NG, 118 (1994,
reduce the drift of the dimensions for structures with dimen-°T. B. Borzenko, Candidate’s Dissertatidim Russiad, Chernogolovka
sions of the order of or greater than the thickness of the resist(1999-

films. Translated by R. M. Durham
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ERRATA

Erratum: Atomic structure of silver clusters on silicon [Tech. Phys. 67, 1429-1432
(December 1997)]
M. V. Gomoyunova, I. I. Pronin, and N. S. Faradzhev

A. F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
Zh. Tekh. Fiz68, 144 (January 1998

[S1063-7848)03201-2

On pages 1430-1432 the pla@40; and{111} should In Sec. 3,Results and discussiprthe phrase “low-
instead read111} and{110}, respectively. temperature atomic planes” in the sixth line up from the
In Sec. 2,Experimental technique$ lines up from the bottom of the right-hand column should read “low-index
bottom of p. 1429, the sample dimensions should read@tomic planes.”
22X14x0.25 mm rather than 224x0.25 mm. Translated by Steve Torstveit
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Parameters for the inclined-path sensing of molecular hydrogen in the atmosphere
by lidar with a YAG:Nd laser

G. V. Laktyushkin, V. E. Privalov, and V. G. Shemanin

Baltic State Technical University, 198005 St. Petersburg, Russia
(Submitted December 16, 1996
Zh. Tekh. Fiz68, 20—22(January 1998

The lidar equation for the vibrational backscattering of neodymium laser radiation and its
harmonics by hydrogen molecules is solved numerically. Inclined paths in the atmosphere are
investigated with the aim of selecting the transmitter wavelength for detecting the lowest
concentrations of hydrogen. @998 American Institute of Physids$S1063-78498)00401-2

fourth harmonics, is widely used in remote sensing systems ==
and permits the generation of pulses with a duration of 10 ns AN[1—exp(—hc/NKT)]

and energies from 1 to 100 mJ at pulse repetition rates aghereb, is the amplitude of the zero-point vibrations of the
high as 50 Hz. The radiation at the third and fourth harmonfJ th mode,g; is its degree of degeneracya3and »; are the

ics of such a laser can be used for the remote sensing face and the anisotropy of the tensor of the derivative of the
molecular hydrogen in the atmosphere by a Raman hOIar-polarizability of the molecule with respect to the normal co-
Therefore, it would be interesting to numerically solve theordinategj , T is the vibrational temperature of the molecule,

lidar equation for the vibrational Raman backscattering #fH | and h are Boltzmann’s and Planck’s constants, respec-
molecules for a YAG:Nd laser and inclined paths in the at+jyely, andc is the speed of light.

mosphere at a distance of 6 km and an altitude of 6 km for | aaying only the dependence an we can rewrite Eq.

the purpose of selecting the wavelength of a Raman liday3) in the form

transmitter for detecting the smallest possible concentration

of hydrogen. (d_U) — A/ (4)
We write the equation for Raman backscattering, as in dQ j ’

Ref. 2, in the form

YAG:Nd laser radiation, especially its second, third, and do 16774b-29j 7
— J 24 2
2 e 2] @

where the constarf is determined from the known value of
the cross section of a Hmolecule for the emission wave-

do ) ) .
P(N,R)=Po(Ag)KARAT(Ag)T(N) T} N,R™ 2, (1) length of a nitrogen laser\,=337.1 nm, viz,
(do/dQ);=8.7x10 % cm®/sr, which is presented in the last
) ) ) ~row of Table I. The constant obtained equals
whereP(\,R) is the power of the Raman scattering signal in1 13065< 10~ 17 cénnt*.
the photodetector at the wavelengtharriving from a dis- The cross section values obtained for the laser wave-

tanceR, Po()o) is the power of the laser at its wavelength, |engths selected are presented in the second column of Table
K is the lidar constantAR is the spacing with respect to the | Henceforth, for the specific case of our lidar the constant

distanceA, is the area of the receiving telescopgho) and Kk, depends on the spectral sensitiviiy(\) of the photo-
T(A) are the transmission of the atmosphere at the wavemyitiplier photocathode as

lengths of the laser radiation and the Raman backscattering

signal, respectively,do/dQ) is the differential cross section K1=Ka&,(N). 6)
for the vibrational Raman scattering of the molecule under  The remaining multipliers in Eq) have the following
investigation,N, is the concentration of the molecules, and,,gjyes: AR=75 m for the measurement timey = 50;

R is the distance to the sensing point. A,=0.008 nt; K,=0.495 for a wavelength of 532 nitthe
The wavelengths of the Raman scattering bands of theg,easurement resiiithe energy of a laser puldg =100 mJ;
H, molecules investigated were calculated for differentihe sensing distande=1,2,3,4,5, and 6 km; and the altitude
wavelengths of laser radiation from the formula H=2,3,4,5, and 6 km. The values of the spectral sensitivity
of the FEJ-79 and FHEJ-140 (FEU-124) photocathodes in
N :1(i_~) @ the ultraviolet region were taken from Ref. 3, and their rela-
RH™H N, 7)) tive values are listed in the sixth column of Table I. The
transmission of the atmosphere was calculated, as in Ref. 1,

where7 is the frequency of the eigenmodes of tand are  USing the formula

presented in the fourth column in Table I. R
Following Ref. 1 and replacing the angular frequeiacy T()\,R)ZGXF{ —f k()\)dR} (6)
by the wavelength, we can determine the differential cross 0
section for vibrational Raman backscattering from thefrom the values of the attenuation factgrwhich were taken
formula from Ref. 4 and are presented in the third and fifth columns
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TABLE |. Values of the differential cross sections, wavelengths of the TABLE Ill. Results of calculations of the minimum power that can be

Raman scattering bands of hydrogen molecules, attenuation factors of ttdetected by a lidar for wavelengths of Raman scattering bands of hydrogen
atmosphere, relative spectral sensitivity of the photomultiplier, and spectramolecules, sensing distances from 1 to 6 km, and altitudes from 1 to 6 km.
brightness of the background solar radiation calculated for the wavelengttr
of the second, third, and fourth harmonics of a YAG:Nd laser and wave- R, km
lengths of the Raman scattering banas=@161 cnit).

1.0 2.0 30 40 50 60
N, nm cm/sr k, km™ g, nm k, km™t £,(\) W/m-sr i ' m
00 6832 8152 1774 685 335 186 1.13
532 1.40 0.16 6832 0145 025 7.9 4165 24809 5032 18.15 828 429 242
355 7.07 0.31 4165 021 052 12.4 2991 5455 870 246 088 036 014
266 2241 0785 2991 045 030 6.0 10 6832 4081 889 343 168 093 056
337.1 8.7 392.7 4165 12439 2521  9.09 414 213 121

299.1 2736 436 124 042 018 0.08
2.0 683.2 2983 650 250 123 068 041
416.5 910 1839 664 3.03 157 088
of Table | for the wavelengths of interest to us. The variation 299.1 20.0 319 090 032 013 0.06
of the attenuation factor with the altitudé¢ was taken into 3.0 683.2 25.89 5.63 218 1.06 059 034
account in accordance with the data in Ref. 4, which were 4165 7874 1609 576 262 136 058

. . 2091  17.36 2.76 076 028 011 0.05
approximated by a function of the form 40 6832 2430 528 204 100 055 034

k(H)=k(0)exp(—0.7%H). 7 416.5 73.53 15.02 541 247 127 0.72
299.1 16.26 2.59 0.73 027 010 0.05

Using the parameters presented above, we performed nu-5.0 683.2 23.56 5.11 1.98 097 054 0.33
merical calculations of the Raman backscattering power on ‘z‘ég-i Ié‘;g 1;‘-55)2 S’?f g-gé’ é-fg g-gg
the basis of Eq(1) for the _wavelengths selecteq anq a laser . 6832 2327 507 195 096 053 032
pulse energyE,=100 mJ in the range of sensing distances 4165  70.77 1433 511 236 122 069
from 1.0 to 60 km with variation of the altitude also from 1.0 299.1 15.56 2.48 070 025 010 0.05
to 6.0 km for the purpose of finding the optimum wavelength
for detecting a very small concentration of hydrogen mol-
ecules. The results of the calculations for the wavelengths . , . .

: . power, which, however, is smaller than in the case of sensing
that we selected are presented in Table Il. It follows from it

: : LU : on a horizontal path without variation of the spectral depen-
that increasing the angle of inclination of the sensing gath dence of the multipliers appearing in the lidar equaitn
its altitude leads to a decrease in the Raman scatterin b pp 9 q

%s the distance is increased, the Raman scattering power
decreases by almost four orders of magnitude in the range
TABLE II. Results of calculations of the Raman backscattering power of Hfrom 1 to 6 km, but when the altitude is increased to 6 km,
, molecules for wavelengths of harmonics of a YAG:Nd laser with a pulsethis decrease amounts to only 14 fold. This difference is
energy of 100 mJ, a sensing distance of 1-6 km, an altitude of 1-6 km, andttributed to the strong influence of the absorption of the
a concentration of molecules equal tg*16m . laser radiation in the layer of the atmosphere near the
ground. An analysis of these results shows that the use of a

R, km ) . . .
laser operating at the third harmonic with a wavelength of
10 20 3.0 4.0 5.0 60 355 nm is optimal, since it provides the maximum value of
H, km X\, nm P, nW the Raman backscattering power for the molecules investi-

gated in this range of distances and altitudes.
0.0 218:_'52 egggg ;gég 2223.'3 égii 333223 11;';?) However, these calculations.wer(.a pgrformed for the_ case
299.1 58060 4224 5456 885 16.77 3.34 Of the absence of background illumination or for precision
1.0 683.2 1931 358 117.9  49.05 23.28 11.99 sensing. Since the solar background radiation has a strong
416.5 16530 2481 663.1 22360 8589 3581 influence on the Raman scattering power detected by a lidar,
299.1 14570 1060 1369 2221 421 084 \ye performed calculations of the background power in the
20 ffg"s ;ggg 1;251.'3 322:3 ﬁg:}lg 4112;2 12‘12 photodetecto_ﬂDb()f,R)_ and examined the influen_c_e_ of the
2091 7779 565.9 731  11.86 225 o045 background illumination on the potential capabilities of a
3.0 683.2 776 1437 4733 1970 935 4.381 lidar. The value of the spectral brightness of the solar radia-
4165 6640 996.3 266.30 89.79 34.49 1438 tion for different dates during the year, times of day, and
40 298%-12 522; ‘556-2 i‘;-gg 1%%21 2-625; ?1-3;43 weather conditions were taken from Ref. 5. The conditions
' 4165 5835 8755 23400 7891 3031 1264 for a bright sunny day were cho;en as the severest conditions
299.1 5141 3740 4831 7.84 148 030 forlidar operation, and the data in Refs. 1,6, and 7 were used
5.0 683.2 643 1191 3922 1632 7.75 4.00 (because of the uncertainty regarding the orientation of the
416.5 5502 8256 220.70 7441 2859 11.92 telescope axis relative to the direction to the)stianconstruct
299.1 4848 3527 4556 739 140  0.28 the gpectral distribution of the background radiat®yf)),
6.0 ffg’_'é 52:2 ;ég_'g 2?2.'51)8 g’:ig 2;:2‘; 13;.?3?1 whose values are presented ir_1 the last column of Table | for
299.1 4721 343.4 4436 720 136 027 the wavelengths selected. Using these valueSy6k) and

the equation
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TABLE IV. Results of calculations of the minimum detectable concentrations,ahblecules with a lidar for
wavelengths of harmonics of a YAG:Nd laser, sensing distances from 1 to 6 km, and altitudes from 1 to 6 km.

R, km
1.0 2.0 3.0 4.0 5.0 6.0
H, km A, NM Na, cm 3
0.0 683.2 1.x10% 1.2x10'° 1.5x10'° 1.7x 10 2.1x 10 2.4x 10

416.5 3.& 10" 5.1x 10% 6.9x 104 9.3x 10 1.3x10%° 1.7x10%°
299.1 9.4 10 2.1x10% 4.5x 104 9.9x 10" 2.2x 10 4.2x10%
1.0 683.2 2.x10% 2.5x 10 2.9x 10'° 3.4x10% 4.0 10 4.7X10%
416.5 7.5¢10% 1.0x 10'° 1.4x10'° 1.9x10'° 2.5x 10'° 3.4x 10
299.1 2.< 10 4.1x< 104 9.1x 10* 1.9x10' 4.3x 10" 9.5x 10'%
2.0 683.2 2.%10% 3.4x 10 4.0x 105 4.7x10% 5.5x 10'° 6.4x 10'°
416.5 1.0 101 1.4x 10'° 1.9x 10 2.5x 10 3.0x 10" 4.6x 101
299.1 2.6 10 5.6x 10* 1.2x10'° 2.7x10'° 5.8x 10'° 1.3x 10
3.0 683.2 3.x10% 3.9x10'% 4.6x 10% 5.4x 10'° 6.3x 10'° 7.5x 10'°
416.5 1.x10% 1.6x 101° 2.2x10'° 2.9x 10" 3.9x10' 4.0 10
299.1 3. 10% 6.5x 10* 1.4x10'° 3.1x10% 6.5x 10'° 1.5x10'®
4.0 683.2 3.5%10'° 4.2x10% 4.9x10% 5.8x 10 6.7x 10'° 8.0x 10'°
416.5 1.3 10% 1.7x10'° 2.3x10'° 3.1x10% 4.2x<10% 5.7x 10'°
299.1 3.4 10% 6.9x 10" 1.5x 10 3.4x 10" 6.8x 10'° 1.7x 106
5.0 683.2 3.%10% 4.3x10% 5.1x 10% 5.9x 10" 7.0x 10'° 8.3x 10'°
416.5 1.3<10% 1.8x10° 2.4x 10'° 3.2x10% 4.4x10% 5.8x 10'°
299.1 3. 10 7.1x 104 1.6x 10'° 3.5x 10% 7.1x10'° 1.8x 106
6.0 683.2 3.%10% 4.4x 10 5.1x 10% 6.0x 10'° 7.3x10'° 8.3x 10'°
416.5 1.3} 10% 1.8x10° 2.4x 10 3.3x10% 4.4x10% 5.6x 10'°
299.1 3.x10* 7.2x10% 1.6x10'° 3.5x10% 7.4x< 10'° 1.9x 10

Po(N,R)=S,(M) TN, RIKLE,(MAQ(R)AN (8) factor of 4.5 for 355 nm, and a factor of 44.7 for 266 nm in

Q(R) is th lid le of the field of visi fth . the range of distances from 1 to 6 km selected. A minimum
[O(R) is the solid angle of the field of vision of the receiv- ¢, entration of 041082 cm? is provided by fourth-
ing telescope, and\ is the spectral width of the reception harmonic radiation at a distance of 1 km

channel, which is similar to the equation in Ref. 7, we cal-
culated the values of the background powg(\,R) for our
case. Assuming, as in Ref. 1, a minimum permissible signal
to-noise ratio §/N) equal to 1.5, as in Ref. 1, we can deter-
mine the minimum poweP,, that can be detected by a lidar
according to the equation

Pm=(SN)Py(A,R). © 1R. M. Measureslaser Remote Sensing: Fundamentals and Applications
The calculation results obtained are presented in Table [Wiley, New York (1984 Mir, Moscow (1987)].
lll. A comparison of these results with the data in Table II Fz'mKér"’?’e‘I‘(’r‘]"sKé'g'(fgé%e”ko"' L. A. Konopel'ko, and V. V. Rastoskuev,
allows us to conclude that the largest excess of the Raman zser Handbookin Russiad, A. M. Prokhorov(ed), Sov. Radio, Mos-
scattering power above the background level was obtainedcow (1978, Vol. 2, p. 182.
for the wavelengths of 266 and 355 nm over the entire range '—f;ff H\t’;mldtioo'ﬁigsRZUSSia“v A. M. Prokhoroted), Sov. Radio, Moscow
of distances and al_tItUdes' A10 _MW laser operating a_t theSQ’I(D. Cgr‘nagr;i, i,nr_)i‘dar Applications to Aerosols and Particles, Optical Re-
wavelengths permits the detection of the concentrations of mote Sensing of Air Pollution. Lectures of a Courtspra, Italy (1983,
H, molecules listed in Table IV. It should be noted that the pp. 205-253.
values of the minimum detectable concentrations increase fofH- Rosen, P. Robish, and O. Chamberlain, Appl. Qg.2703(1975.
all the wavelengths by a factor of 3—4 as the altitude is |- "30&and T. Kobayasi, Opto-electronis101 (1972.

varied from 0 to 6 km and by a factor of 2.2 for 523 nm, a Translated by P. Shelnitz

Thus, the results obtained demonstrate the possibility of
the optimum choice of the wavelength of laser radiation for
sensing molecular hydrogen in a required concentration on
inclined paths in the atmosphere at an assigned distance with
consideration of the background conditions.
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Instability of the flat surface of a magnetic fluid in a cylindrical cavity in the presence of
a vertical magnetic field

V. M. Korovin and A. A. Kubasov

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
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Zh. Tekh. Fiz68, 23—-30(January 1998

The problem of a magnetic liquid which completely fills a vertical cylindrical cavity in an
undeformable horizontal layer of a magnet having the same magnetic properties as the liquid is
considered. The entire system is immersed in a uniform vertical magnetic field. in a linear
formulation of the problem an approximate solution in the form of series is obtained for the
evolution of an initial small deviation of the free surface of the liquid from its flat

equilibrium shape. An experiment is performed which shows that the initially flat free surface
takes on a stable domed shape as the field strength is incréem®dzerg and that a

further increase in the field in a certain restricted range leads to the formation of an annular
corrugation. The structures observed, which are the result of the nonlinear stage in the development
of the initial perturbation, are qualitatively similar to the first two modes of the solution

obtained. ©1998 American Institute of Physid$§1063-784208)00501-7

INTRODUCTION permeability u is equal to that of the liquid, in a uniform

The instability of the free surface of a nonviscous mag_vertlcal magnetic fieldH.,, is considered. A nonmagnetic

netic liquid in a fairly strong orthogonal magnetic field, vertical wall 3 is located above the layer of the magnet

which was discovered and first investigated about 30 year?trICtIy along the boundary of the_ cavity. The ".q‘%'d IS con-
ago,l'2 is one of the best-known surface phenomena characlned from below by a nonmfagneuc platewhich is in cIoge .

teristic of magnetic liquids. The experimental study and ”n__contact with the magnet, V.Vh".e t'he upper surfacg of the liquid
ear analysis of the influence of a vertical magnetic field on> free. The depth of the liquid is equal to the thickndssf

the stability of the initially flat, free surface of a magnetic :Ee Il_aye_:(rj. _In thetcatse _mhtehre thet cgrwlta?tﬂ?r(gléot_rmvfollj by q
liquid occupying the lower half space in Ref. 1 prompted € liquid in contact wi € material ot the vertical bound-

both an investigation of this question within complicated for- ar;;hls equal t(lml 2, ﬂt]ﬁ freg surfacg '; Obv'?ﬁsw hltl):jlzonttal.
mulations based on the linearized equations oiltﬂ € gﬁlnera.casi therﬁ 'S.Z metr:]s urtx;aar ﬁwa ueto
ferrohydrodynamicsand the study of the appearance and € capifiary rise ot the liquid wetling the wall.

reorganizatior(as the field is increasgaf the periodic hex- Following the reasoning used in Quincke’s classical

agonal structure on an initially flat, unbounded surface of af/)r?ttijleﬁr;[o Jgs::fy thle nﬁglectﬂc‘)ftth? merr“SI,ICII ?earntwonfl?rt] r
magnetic liquid in a nonlinear formulatidisee, for example, id Car‘ a?ti e” Ci&%e rs odeisn ar a ervpailra ent Oin(i)ne arr? e
the references cited in Refs. 2 and 4 and are partially iImmersed in a reservoir containing a mag

In this paper we investigate the instability of the flat free neti_c liquid, we shall C(_)nsider a cavity of sufficiently Iar_ge
surface of a magnetic liquid occupying a vertical cylindrical r_adlus so that the b_endlng of the_ free surface due _to Cap'"ary
cavity in a horizontal undeformable layer of a magnet, whosé'€ would be manlfested o_nly N an annular region that IS
magnetic permeability is equal to the permeability of thenarrow compared witla and is adjacent to the wall. In view
liquid, due to a uniform vertical magnetic field. Unlike the

previous studies, here the influence of the vertical wall is

taken into account approximately in the theoretical analysis. 2
This factor imposes a condition on the surface that the nor- rﬂ..
mal component of the velocity vanishes during development Ho
of the initial perturbations, which ultimately leads to destruc-
tion of the original hydrostatic state of a liquid with a flat
free surface. An approximate solution of the problem of the
development of an initial perturbation of the shape of the

J
r
1 N\
free surface is obtained analytically in a linear formulation; 2=-d /lv :\\<,,\\

7
Y <

r=a

i
@
Qt

the first two modes exhibit a qualitative similarity to the
structures observed in our experiment.

EQUILIBRIUM STATE /1,0

A magnetic liquid(Fig. 1), which completely fills a ver-
tical cylindrical cavityl of radiusa in a horizontal layer of a
magnet2 with undeformable boundaries, whose magneticFIG. 1.
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of the small size of this region it will henceforth be ne- turbed as a result of the deformation of the free surface
glected, and it will be assumed that the free surface of theaused by the waves, respectively, in the form
liquid is flat and lies at the same level as the upper boundar
O?the agnet PP Y H=A(Hez+4), B=By+b, M=Mg+m,

Utilizing the solution of the problem of the shape of the Hi=A(H.z+y)); j=12,
free surface of a liquid which is in a gravitational field and in _ S )
contact on one side with a vertical flat walin the cases of Where the index 1 refers to the field in the region 7, and
©+0 and® # 7/2 we can easily writdwithin an order of the index 2 refers to the regian< —d. .
magnitude, i.e., without consideration of the influence of the ~ We also represent the distribution of the pressure in the

meniscus on the distribution of the magnetic fietide con-  liquid in the presence of a wawe=po+p in a similar man-
dition for applicability of such an approach Eer. With accuracy to within small first-order quantities, we

[2B,(1—sin ©)]Y4an @ <1, ave

) ) Y Y dM

where Bo=pga?/a is the Bond numberg is the surface H—Ho=—, M—Mo:X?E, X?:m ,
tension,p is the density of the liquid, and is the accelera- H=H,
tion of gravity. P Mo

Within the assumptions made the magnetic fielgl is m=X2A2¢+X?Eaz, ngH—,
uniform both in the liquid and within the layer of the magnet. 0
Assuming that the functiop = w(H) is known, we can eas- 0 00U o Bo , dB
ily expressHy, in terms ofH., on the basis of the condition of b= A+ g Eaz’ HFe=H MTHR ;
continuity of the normal component of the induction ° H=H,
Bo=uHg on the horizontal boundaries of the region occu- P 1 9
pied by the liquid and the magnet. AZ:Ea,Jr ATy

We introduce the cylindrical coordinate system?,z,
whosez axis is directed vertically upward and whoseO  wherea,, ay, anda, are unit vectors along the respective
plane coincides with the free surface of the motionless mageoordinate axes.
netic liquid and the upper surface of the layer of the magnet. When u=u(H), in the case under consideration the
Owing to the uniformity of the induction, the strong influ- magnetic forceuyMAH, as well as the motion of the liquid,
ence of the magnetic field on the liquid is effected in the cas@re related to potentials. Introducing the velocity potential
under consideration only by the surface ponderomotive forcg=A ¢, from the continuity equation we have
localized at the liquid—air interface, i.e., the magnetic pres-
sure according to the terminology in Ref. 2. Using the equa- V24 <92_<P_0 V2_19_2+ 1
tion of hydrostatics and the condition of continuity of the 2¢ 92 % g2
normal stress on the liquid—air interface, we obtain, as in the

case of an ordinary liquid, the linear variation of the pressure  Using(2), from the linearized equation of motion we can
po With the depth easily obtain a linearized Cauchy—Lagrange integral, which

can be used to calculate the perturbation of the pregsure

1 4
+—=— 3

Jd
ar a - y2 992

Mo 2 1
po=pa+?Mo—ng, Mo=-—Bp—Ho. 1) dp Iy
Mo p:—p—+,lL0M0_ (4)
. . ot 0z

Herep, is the pressure of the air near the free surface of the
liquid, and w4 7x 10”7 H-m™! is the magnetic constant. The distribution of the potential of the perturbation of

It is knowrf that physical realization of the hydrostatic the magnetic field is described by the Laplace equation. In
state of a layer of a magnetic liquid extended in horizontalthe region occupied by the liquid and the layer of the mag-
directions with a flat free surface in the presence of an ornet, from the equations of magnetostatics with consideration

thogonal magnetic field requires that the magnetizakbpn  of (2) we obtain

be smaller than a critical value. In the case under consider- ) 5

ion, of r he critical magnetization differs from th 19 M
ation, o couse,'tectca agnetization differs from the V§¢+__¢:O, a:\/zzl, ®)
value calculated in Refs. 1 and 2. o2 072 ,u?

while outside of this region we have
FORMULATION OF THE STABILITY PROBLEM ,
9 .
Assuming that the liquid is nonviscous, we obtain a lin- V§¢j+ —2'=0; ji=1,2. (6)

ear formulation of the problem of the stability of a hydro- Jz
static stateHy, po with a flat free surface(1). Let The linearized kinematic and dynamic conditions on the

z=7(r,9,t) be the equation of the free surface of the liquid free surface of the liquid with consideration (@ and(4) are
in the presence of standing waves of small amplitude, whergyitten in the following manner
t denotes the time. Introducing the potential of a small per-

turbation of the magnetic field=(r,dJ,z,t) = Ay, we write A 5_77_ de

the magnetic fields, the induction, and the magnetization per- =Y g T ez

@)
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Y determination in subsequent moments in time. Even in the
EZO- 8 initial moment, when the shape of the boundaries separating
the magnetized and unmagnetized media is known every-
The last term in the dynamic conditid8) represents the \yhere, calculating the magnetic field perturbation caused by
perturbation of the surface ponderomotive force due to thgjeformation of the free surface of the liquid is a complex
deformation of the free surface caused by the waves. task. The possibility, in principle, of obtaining a solution for
We impose a condition that the normal component of thet js associated with the use of numerical methods.
velocity must vanish on the impermeable cavity boundaries: Although discussing the computational algorithm is not
our purpose, let us assume that there is an iteration method

de
z=0: p—-+pgn—aVin—puMg

de
r=a, —-d=z<0 W:O’ (9)  for calculating the functions sought at ahypased on their
systematic calculation in the regions
J
O<r<a, z=-d &—jzo, (10) D,={0<r<a, O=d<=2m -—o<z<w),
In the approximation under consideration the continuity =~ De={a<r<e, 0sd<2m, —o<z<x},

conditions of the magnetic field potential and the normal . . . N
component of the induction on the horizontal interfaces beyvhICh have a common boundayin the form of a cylindri-

tween the magnetic and nonmagnetic media have the formCal surface of r_adlua,_ on which, of_course, thg normal com—
ponent of the induction and the field potential are continu-

z=0: ¢Y—iy=Myny for 0=<r<a, ous. When the first approximation is calculatedDpn, we

Y=, for a<r<oo, assume that

24 I I,
7=0" MSE:MOE for 0=r<oo, z=a: 0, p 0, e 0. (14
z=—d: Y=, It should be noted that these boundary conditions corre-
spond to the case of ideal conductivity of the mediurDin
0¥ 47 into which the magnetic field introduced B; att=0 does

Gy = Mo, for O=r<e. 1D ot manage to penetrate within the characteristic time for the

. L development of waves on the free surface. Such a schematic
Of course, physical meaning is attached only to the so- P

lutions of Egs.(5) and (6) which ensure fulfillment of the approach is widely used in problems of magnetic hydrody-

o namics.
conditions A calculation of the functions’, ,, and, in D; using
|4(0,9,z,t)|<>, |¢;(0,9,2,1)|<»; j=12, (14) gives the values off|, ¢1|r, andy, | on theD; side,

which are then employed as the boundary conditiors fatr
calculatingys, 1, and ¢, in D,. After finding these func-
We assume that in the initial moment in time a nonflattions inD., we can calculate the values &f/dr, di/or,
shape is assigned to the free surface and that the liquid is iand d¢,/dr atT" on theD, side and use them to find the
a state of rest: second iteration iD; . This process is then repeated.
_ _ Within the proposed approach the first step on the way to
78,0 =1(r,9),  «(r,9,20=0. (12 calculating the functions sought ib; can be implemented
To simplify the further mathematical manipulations, it is using the Fourier method. We set
expedient to rewrite the dynamic conditi¢g® on the free

Ay—0, Ay;—0 for r?+z%—c.

surface. Differentiating8) with respect to time, with consid- e(r,9,2,)=P(r,9)Y(2)S(t),
eration of kinematic conditiori7) and Laplace equatio(B)
we obtain W(r,9,z,0)=(r,9)Z(2) T(1), (15)
P de P 0 Y i(r,3,2,0) = (r, N Zj()Ti(t); j=12.
z=0: ?#—ng—Fag—MtMom—o. (13

After substituting expressionél5) into Laplace equa-
Thus, in the linear formulation the development of thetions (3), (5), and(6) and separating the variables, we have
initial perturbation(12) is described by Laplace equations

2 28 — 2 2,
(3), (5), and(6), whose solutions must satisfy boundary con- VoK@ =0, Vaytkoy=0,

ditions (7), (99—-(11), and(13). Vglﬂﬁkalﬂj:(); =12, (16
APPROXIMATION SOLUTION Y'—k?Y=0, Z"— kSZ: 0,
In the problem under consideration the magnetic and hy- Z}’— k,-ZZj =0; j=12 (17)

drodynamic fields influence one another because of the con-
ditions for matching of the functions sought on the free sur-  With consideration of the condition that the perturba-
face. Its shape is known only a0, and it is subject to tions vanish a$z|— o, from Egs.(17) we find
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Y=a; expkz)+a, exp(—kz), Z;=c; exp(—k;2), set

Z=b; exp(koz) + by exp(—koz), Z;=c; exp(ky2). n(r, 9,0)=2, Fom(r,9)cog wp mt),
As a result of the substitution of expressiofi$) into "

boundary condition$9) and (14), we have qD(f,ﬂ,Z,t)Z% F oo (T )[4 5 meXP Ky m2)
r=a: %:o, (;—lrpzo, (Z—Iszo; j=1,2. (18 +ayn m eXP(— Ky m2) ISin(wp mt),

The solution of the original initial-boundary problem can P(r,9,z,t)= E Fom(r,H[bynm expky mz)
be constructed in the form of series in the eigenfunctions of nm
the two-dimensional Helmholtz equatio(s) in analogy to +bn m €XP(—Kn m2) 1COS @ mt),
the case of the vibrations of a round membrane. It should,
however, be noted that, in contrast to the case of a membrane

clamped along its edd&the eigenvaluek?, k3, k2, andk3 of Pa(r,9,z,)= % Fam(r9)Cinm
problems(16) and(18) can be expressed in terms of the roots '
%nm» N=0,1,2,... ;m=1,2,... of theequationsJ/(x)=0, X expl —Knmz)cod wp mt),
whereJ, (x) is a Bessel function of the first kind:
2 Y1, 9,2,)= 2 Fom(r,9)Conm
2 ¥n,m n,m
kn’m=( © n=012,..; m=12,.... (19
a X exp(Ky mz)cog wp mt). (21
The set of rootse, is.denoted.b>Q. Each eigenvalue Here Qjnm: bjnm, andc; ., (j=1,2) are arbitrary con-
(19) corresponds to two eigenfunctions stants, and,, , denotes the permissible frequencies of the
standing waves, which are to be determined in the course of
Viam(r¥)=Jn(knmr)cosnd, solving the problem. After substituting expressi@@s) into
) the conditions(7), (10), and(11) for matching of the func-
vznm(r,8)=Jn(knmr)sinndg. tions on the interfaces between the media, we arrive at a

. N . system of algebraic equations with respect to the constants:
Assuming that the initial perturbation of the free surface y g a P

(12) at r=a satisfies the conditio@f/Jr=0, we expand ®nm
f(r,9) in a series in the eigenfunctions: Qinm~ 2n,m= — Kk o

f(r,f}) = nEm Fn,m(r ), eXf.i - kn,md)al,n,m_ equn,md)az,n,m: 0,

bl,n,m+ b2,n,m_ Cinm=— Mo,

where
0
O [y (bl,n,m_ bz,n,m) + MoC1nm= 0,

Fn,m(rva):An,mvl,n,m(rvﬁ)"_Bn,mUZ,n,m(r:ﬂ): eX[I(—O'k d)b +eX|i0'k d)b2
n,m 1n,m n,m n,m

o [?7 (2 —exp(— Kk, md)Con m=0,
An,m:”Ul,n,m” Zfo J;)f(ra'&)vl,n,m(ra'ﬂ)rdrdﬁv " nm ) znm

O',U,?[EX[X - a'kn,m vd)bl,n,m_ exp Ukn,md)bz,n,m]

27 (a _
Bom=llv2nml 2 f f H(r, 9)va,m(r, 9)rdrd 9, ~ 108XP(~Knmd) C2,m=0-
0 0
Hence we find
27 (a
loanl?=losnml?= |7 [ "o3pnir 9)rara0 T L)
o Jo M 2Ky m sinh(k, d)
2 2
SIS P BT @nm XA —kp md)
2 n 2 n n.m7 a2,n,m: - 2k H k d 1
Zn,m n,m Slnl'( n,m )
2 for n=0 Mo 0
— ! b =—-M +ou;)expok, d),
€n [1 for N£0. (20 1n,m 27'n,m oo /"t) of n,m )
Taking into account the initial conditiond2), expan- b, ——— ﬂM —oudexn — ok. d
sion (20), and the form of the solutions of equatiofis), we znm 2Ty m ol o= o) X nmcl).
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Th,m— Sim'((]'kn’md)[,u,é'i‘ (O'M?)Z]

g
0
Cinm™=— P Mol 1o cosioky md)
n,m +20poul cosiak, nd).

+ou sinh( ok, nd)],

MO .- . .
Conm=——uMy explaky md), When these equalities are taken into account, the expressions
for potentials(21) take the form
nm Coshik, m(z+d
o(rd2)=—3, wom OOl )it

n,m I(n,m Sinr(kn,md)

o SINH ok, m(z+d) ]+ ou® costioke, m(z+d)]

r,9,z,t)=uoM
W )= oMo g”l sinh( ok md) [ 1§+ (o) 2]+ 20 mop; costioky md)

I:n,m(r :ﬁ)coiwn,mt,)

ol sint(oky md) + wo cost{ok, md)

g (r,9,2,t)=—opMg X, —

F r,9)exp —k, mz)cof w, mt),
nm Sinh(okn md)[ 16+ (o0)?]+ 20 popf costioky md) il D)X~ m2) 00K 2l

Fom(r,9)exdkn m(z+ od)cog wy mt)]
llfz(rﬁ,Z,t):(TMoﬂ?Mo > N o > nomz 0 n .
nm sin(oky md)[ug+ (op;) ]+ 20 mou; cosiok, nd)

When the series representing and ¢ are substituted 7, always includes a single element which minimizes the
into the transformed dynamical conditi¢h3), which has not  right-hand side of this expression. In the case of a liquid with
yet been used, we obtain a dispersion relation, which can be linear magnetization law, we have
utilized to calculate the permissible frequencies: _

P a o=1, pl=p, Mo=H.(1-u b, w=pluo,
2 so that the critical value of the external magnetic fild is

wh m=tant(ky md){ fky = — specified by the expression

pga u(1+Bgy s

o M3 ot oul tantok, nd)] @ HZ= min m 1)
0 2 0\2 T —Kim(- #n,meQL 0 %n,m( My )
20 pop; +tani ok, md)[ug+ (ou)] P , i
(22) Xzﬂr+(1+ﬂr tanh)(s"n,m) 23)
1+ u, tanh(sx, m)

Thus, when all the defining parameters of the problem,
exceptM, are fixed as functions d#l 5, each of the permis-
sible frequenciess,, 1, is either a real or a purely imaginary
guantity. In the former case the flat free surface is stable, an
in the latter case it is unstable. It follows frof22) with
consideration 0f19) that the critical value of the magneti-
zation of the liquidM,, , above which the onset of instability L[—__IJ 6
occurs, is specified by the formula P

This formula, which, of course, does not claim to be a
quantitative definition of the critical field, can be used to
8stimate it.

5
-1,2
_ pga 1+Bj x ”
M,= min 5 0 ~nm 4y
”n,mEQ Iu‘OIu‘t O-%n'm U

)2] 1/2

0 2 0
o 20 popy Htani(soxn m) [ mo+ (opuy
wot oud tank(sosx, m)

1 2

Hf

oo

. - SIS
It is not difficult to see that the countable $@tof roots,

of which a fairly representative group was presented in RefFIG. 2.
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Ka,m and diffuser5 and was photographed by camesaAxial
FG. 3. illumination in a scheme utilizing a beam splitfewhich is

labeled by the numbef in Fig. 2, was employed.

A magnetic liquid for which p=992 kg/nt,
EXPERIMENT a=2.7X10"? N/m, andu,=1.23 was employed in the ex-

An experiment was carried out in the context of the periment, the radius of the insert was- 1.85<10°* m, the

. X radius of the cell was 3810 2 m, and the depth of the

p“’b'em considered h_ere for the purpose of comparing th yer of the liquid wasl=6x10"3 m. The Bond number for
theore_ztlc_al repre_sentatlon o;l_‘(r,ﬁ,t) expressed by_ the first these values of the defining parameter8js- 123, and the
equality in(21) with the physically obser\_/ed_ ev_olutlo_n pf the critical field calculated from formula23) is HX=36.57
shape of the free surface of a magnetic liquidkasis in- kA/m. As can be seen from Fig. 3, the minimizing element in
creased. . . . .. -the set of roots is ther; 3= 11.3459. All the values ok,

T.he (_expenmental s_e_tup Is shown _schenjat!cally n Fig. 2for which 0=n=<10 and =m=5 were used to construct the
A cylindrical cell containing a magnetic liquitl, into which plot in Fig. 3.
a th‘?"”a”ed nonmagnetic cylipdrical insettwas !owered Figure 4 presents a downward view of the surface of the
coaxially to the cell to the entire depth of the liquid, Wasliquid in the absence of a magnetic field. In this figdrés

placed in solenoi®. The surface of the magnetic liquid was . T )
iluminated by a beam of light rays created by light soutce the wall of the cell2 is the wall of the cylindrical inser8 is

FIG. 4. FIG. 6.
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the capillary meniscus, antl(the bright circular areas the

flat part of the free surface. The bright ring between the wall
of the cell1 and the wall of the inser2 corresponds to the
depression on the surface of the liquid between the menisci,
i.e., the dark rings near the walls.

Figure 5 shows the free surface tdr,=9.31 KA/m. The
number4 in it marks the relatively flatin comparison to the
meniscus next to the wall of the insepfart of the free sur-
face, which has the form of a bright ring. It is followed in the
direction leading to the center of the cell by a rEef the
free surface caused by the magnetic figlde dark ring,
which gives way to relatively flatter central portidh(the
bright spoj. Thus, in a magnetic field the free surface took
on a domed shape rising with distance from the wall of the
insert. It should be stressed that the structure shown in Fig. 5
is the result of the nonlinear stage of development of the
instability.

Figure 6 shows the free surface fdr,=11.78 kA/m. A
comparison of Figs. 5 and 6 reveals that increasing the mag-
netic field causes a depression to form in the central portion
of the dome that had been observed in the lower field Jy (kg 47) cos 4
H..=9.31 kA/m. The incline7 (the dark ring and the rela-
tively flat bottom of the depressidh(the central bright sppt  FIG. 8.
are labeled in Fig. 6. As a whole, the surface structure that

arises has the form of an annular corrugation. structure shown in Fia. 7 exhibits some qualitative similarit
A further increase in the field leads to the formation of uctu wn in F1g. xniot quaiitative simriarty

more complicated surface structures, whose shape depenfsthi.n;?de E%n;al'gz]g“(dlf"‘;}r_)z(isg ;227 J4(Lk4,1r|) ﬁ'n‘m’ ¢
on the azimuthal angle. Figure 7 presents the free surface f Erw ICN %4,1= . anti, =4.L. m. LEvVellines o

H..=13.77 kA/m as an example. For technical reasons thighis mode are shown in Fig. 8c, in which elevated areas are

was the highest value of the magnetic field strength used. A@arked by plus signs and depressions are marked by minus

before, in this figure the bright regions correspond to reIa—Signs’ the latter being separated from one another by radial

tively flat portions of the free surface. nodal lines.
The structures presented in Figs. 5 and 6 are qualita-

tively similar to the first(Fig. 8@ and second(Fig. 8b CONCLUSIONS

modes of the representatig@l) of the free surface, which It follows from the approximate solution of the problem

correspond to the rootg, ;= 3.8317 and¢, ,=7.0156. Inthe of the stability of an initially flat free surface of a magnetic

former case the critical fieltfor the respective modequals  liquid filling a vertical cylindrical cavity in a flat horizonal

46.75 kA/m, and in the latter case it equals 38.5 kA/m. Thdayer of a magnet under the action of a vertical magnetic
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Onset of turbulence in open liquid flows as a nonequilibrium noise-induced second-
order phase transition

P. S. Landa

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
(Submitted June 10, 1996
Zh. Tekh. Fiz68, 31-39(January 1998

It is shown that there is a profound analogy between the transition to turbulence in open liquid
flows and the noise-induced excitation of oscillations of a pendulum with a randomly
oscillating pivot. It is significant that this analogy is based not on the similarity of the equations
describing these processes, but on the generality of the laws of the theory of oscillations.

The existence of this analogy makes it possible to understand and account for numerous
phenomena observed in both numerical simulations and real experiments. Moreover, this
analogy suggests several recommendations to experimenters for achieving a more thorough
suppression of undesirable turbulent pulsations in subsonic jetsl99 American

Institute of Physicg.S1063-7848)00601-1

INTRODUCTION tion describes a wave which is periodic in space and has an
assigned wave numb&rand an amplitude that varies slowly
Liquid flows in channels are laminar at low flow rates with time. Strictly speaking, such a solution is valid only for
and become turbulent at high flow rafes. The problem of  an annular flow of length. = 27n/k, wheren is an integer,
the nature of turbulence has attracted the attention of inves:e., for a flow with feedback. The solution assigned by Stu-
tigators for a long time. If the nature of turbulence is dis-art does not take into account the convective character of the
cussed from the standpoint of the theory of oscillations, mosinstability of laminar flow. Nevertheless, even recently, pe-
scientists would classify turbulence as an auto-oscillatoryiodic boundary conditions along the longitudinal coordinate
process without always thinking over this question, sincehave been assigned quite often in numerical studies of tur-
they employ investigative methods that are suitable specifibulent flows(see, for example, Ref.)9
cally to such processes. The foundation for such an approach The opinion that turbulence can be regarded as auto-
was laid in the work of Landatiaccording to whose ideas oscillations in a continuous medium, i.e., in a system with an
turbulence appears in the following manner. At first, theextremely large number of degrees of freedom, was also held
equilibrium state corresponding to laminar flow becomes unby G. S. Gorelik, as is known from Rytov’s recollectiofis.
stable, and auto-oscillations are excited at one frequency. In the nineteen-seventies, an opinion that regards the de-
Landau wrote a phenomenological equation for the amplivelopment of turbulence as the instantaneous appearance of a
tude of these auto-oscillations, which has the form of thestrange attractor in a phase space of several dynamical vari-
well-known abridged van der Pol equation. “As the Rey-ables became popular following the discovery of dynamical
nolds number increases further,” wrote Landau, “new peri-chaos:'*? These ideas were presented in the latest editions
ods continue to appear in succession. As to the newly apsf Fluid Mechanicsby L. D. Landau and E. M. Lifshitzand
pearing motions themselves, they have increasingly smalleBtatistical Fluid Mechanicsby A. S. Monin and A. M.
scales.” As a result, according to Landau’s hypothesisYaglom? Since the concept of strange attractors generally
multiple-frequency auto-oscillations with incommensuraterefers only to auto-oscillations, it was tacitly assumed in
frequencies, i.e., quasiperiodic motion, are established. Ithese books that turbulence is specifically an auto-oscillatory
phase space such auto-oscillations should correspond to @nocess. On the basis of a representation of turbulence as
attractor in the form of a multidimensional torus. When theauto-oscillations, a group of investigators published a series
number of frequencies is large, such motion differs onlyof papers on the simulation of the development of turbulence
slightly in form from chaotic motion, and, therefore, devel- in the form of an infinite chain of unidirectionally coupled
oped turbulence can be regarded as a random process. Dmscillators®'* and on the use of such characteristics as the
spite the fact that Landau’s theory is phenomenological and;orrelation dimension of an attractor for a quantitative de-
in general, does not follow from the equations of hydrody-scription of turbulent flows?
namics, it has not been challenged for a long time and has It was theorized in Refs. 16—18 that the turbulence ap-
been confirmed by almost all investigations of turbulencepearing in open liquid flows does not consist of auto-
Landau’s theory was further developed by Stdaftwho oscillations, and all the approaches described above are,
proposed a method for calculating the coefficients appearintherefore, not applicable to it. This hypothesis was based on
in Landau’s equation on the basis of an approximate solutiothe fact that the instability of the solutions corresponding to
of the Navier—Stokes equation. Stuart thereby “substantilaminar flow in such open flows is convective. This means
ated” Landau’s theory. However, the form of the approxi- that a disturbance appearing at a certain point in a flow will
mate solution assigned by Stuart, via(et)expfi(wt—kx)}, not grow with time without boundin the linear approxima-
is incorrect from the physical standpoint. In fact, this solu-tion) but will drift downstream. It follows from the proper-
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ties of systems with convective instability that such systems, yzy, a
in themselves, are not auto-oscillatory but are only amplifiers 1.0
of disturbances. To make such a system auto-oscillatory, we
must introduce feedback, for example, by closing the system

in the form of a ring. Disturbances are unavoidably present -
in all real systems due to both external factgss-called . , , .

; ; : 0.4 L
technical fluctuationsand internal factorgnatural fluctua- 0.7
tions). These disturbances can be included in the equation of ™
motion of a system as additional random forces, whose
strength in the general case depends on the variables describ-
ing the state of the system. The forces created by natural
fluctuations in hydrodynamic flows on the basis of the 0.10 20 4'0
fluctuation-dissipation theorem were calculated by
Klimontovich 1°

If the gain of an amplifier is sufficiently small, the pres- FIG. 1. Instantaneous distributions of the longitudinal velocity component
ence of fluctuations can be neglected, and it can be assuméck steady-state regime: a—near the axis of the pipR< 0.02), b—near
that the output signal of the amplifier derives solely from thet® Wall {/R=0.93).
input signal. In hydrodynamic flows the gain is generally
fairly large. In.thi_s_ case th(_e presence of flt_Jctuations is of w=ARgW' (r)e""“Ysin @,
fundamental significance, since, in our opinion, they deter-
mine the turbulent disturbances observed. Hence it followavherev andw are the radial and angular components of the
that an approach to the investigation of turbulerioe of ~ flow velocity, respectively;u’(r), v’(r), and w’(r) are
ordinary amplifiers with a large gairwithin the theory of eigenfunctions of the Orr—Sommerfeld equation for an as-
dynamical systems will be inadequate if fluctuations are nosigned real value of the frequenay, R is the radius of the
taken into account. The amplified fluctuations and nonlinearpipe; andA and w are the amplitude and frequency of the
ity in a system can give rise to a phase transition in which thelisturbance.
system passes into a qualitatively new state. It can be as- The frequency of the disturbance was chosen as
sumed that the onset of turbulence characterized by the preg—=0.36Uy/R, and the velocityu, and the pipe radiuR
ence of large-scale, highly regular structures against a backorresponded to a Reynolds number of 4000. At the initial
ground of small-scale random motions corresponds preciselyme a Poiseuille velocity profile was assigned throughout
to such a transition. In our opinion, application of the theorythe flow, i.e.,
of noise-induced phase transitions to the investigation of tur- 2

V|t_02[u0(1_ ),0,0]

60
/R

bulence may be very fruitful.

R?
NIKITIN'S NUMERICAL SIMULATION AND ITS _ When tlhe "’I‘mp“tUdﬁ‘ of tﬂ.e ﬁhfsturbance excleeqls a Cir'
INTERPRETATION FROM THE STANDPOINT OF NOISE- tain critical value, random high-frequency pulsations that
INDUCED PHASE TRANSITIONS cover the entire lower portion of the pipe, beginning at a

certain valuex=xq, which depends weakly on the distarnce
Indirect evidence that the turbulence in open flows is nofrom the axis of the pipe, appear in the flow after a short time
auto-oscillatory is provided by Nikitin's numerical interval. The value ok, is smaller, the larger is the ampli-
simulatiorf® of turbulent flow in pipes of finite length. He tude A of the disturbance. The appearance of turbulent pul-
investigated flow in a round pipe of radil® with an as-  sations is accompanied by significant alternation of the pro-
signed velocity in the entrance cross section and so-calleflie of the longitudinal component of the mean flow velocity:
“soft” boundary conditions in the exit cross section, which it decreases on the axis of the pipe and increases near the
were of the form wall. The instantaneous distributions of the longitudinal
Pu PE P component of the vel_ocity in a s_teady-state regime for
=7 Al/uy=0.04 are shown in Fig. 1, which was borrowed from
X2 gx?  ax? Ref. 20. If the amplitudeA of the periodic disturbance is
gradually decreased, below a certain value the turbulent re-

Here u is the longitudinal component of the flow velocity, ¥ -~ X .
ggion is carried along by the flow, and the flow in the tube

and ¢ and » are the radial and angular components of th X
vorticity Q=curlV, whereV is the flow velocity vector in becomes laminar. As we knoee, for example, Ref. 21
the cylindrical coordinates, r, . Poiseuille flow in a round pipe, unlike Poiseuille flow in a

The velocity components in the entrance cross section dfat channel, hgs the property tha_t Igmina}r flow at any Rey—
the pipe were assigned in the form nolds number is stable against infinitesimal perturbations.

However, in the case of fairly large Reynolds numbers, such
2

r , ot flow is unstable with respect to disturbances of finite magni-

U=up 1_§ +ARgU’'(r)e'*")cos 0, tude. If an attractor corresponding to a turbulent regime
would be present in the system in the absence of the distur-
v=ARegv’(r)e "“Ycos0®, bance, and the role of the disturbance would be reduced to
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where is the angular deviation of the pendulum relative to

0.2 its equilibrium position; B(1+ a¢?) ¢ is a quantity that is
0.1 proportional to the moment of the forces of friction, which is
s 0 assumed to be nonlineaw, is the eigenfrequency of the
-0.1 small oscillations;&;(t) is the acceleration of the pivot,
- 0: 2 which is a comparatively broad-band random process with a
g 700 zbo 300 /fba 0 100 22,0 300 ,,(}0 nonzero spectral density awg; and ké,(t) is the additive
" ¢ noise, whose intensity can be varied by varying the coeffi-
cientk.
FIG. 2. Form of turbulent velocity pulsations in a pipe with periodic bound- Let us first discuss the case kE0. It was shown in

ary conditions(a) and in a pipe with an assigned harmonic signal at its Refs. 24 and 25 that when the intensity of the pivot oscilla-
entrance(b). tions exceeds a certain critical value, which is proportional to
the coefficient of frictiong, parametric excitation of pendu-

only directing phase trajectories into the region of attractionIurn oscillations occurs, which is manifested by the fact that

of that attractor, the turbulence should not vanish when théhe rms deviation of the rotation angle of the pendulum be-

disturbance causing it is removed. Actually, another situg€OMES NONZero. Examples of such oscillations and the depen-

tion, in which an attractor appears in the presence of aﬁience of the mean square of the rota}tion angle O.f the pendu-
asynchronous disturbance, is also possible, in prinéffe. lum on the ratio of the spectral density of the noig@awo)

In this case it should vanish when the disturbance is re'EO its critical value, which were obtained by numerically
moved. The following arguments against this situation canSOIVing Eq.(1), are presgntgd in Fig. 3. As can be seen from
be cited: first, it follows from the general theory of the asyn-the figure, near the excitation threshold the pendulum oscil-

chronous excitation of auto-oscillatidZ3 that such a situ- |ations have the property of intermittentyi.e., the pendu-

ation is possible only in a narrow range of parameters!um oscillates about its equilibrium position over long time

whereas a transition to turbulence was observed by Nikitifntervais(these are so-called “laminar” Phasesl;hese Seg-
over a broad range of Reynolds numbers; second, the asyA1€Nts give way to short spikéSturbulent” phases. As we

chronous excitation of auto-oscillations is equally possibldNOVe away from the threshold, the duration of the laminar
both for positive and negative detuning of the excitation fre_phases shortens, and then the duration of the turbulent phases

quency relative to the frequency of the oscillations that arisel"créases, and the laminar phases disappear completely as a

while a transition to turbulence was observed only at |0Wresult. During this process, the rms deviation of the rotation
excitation frequencies. angle increases. We note that turbulence also has the prop-

It can be postulated that the observed development Sty of intermittency in the region of transitional Reynolds
turbulence whe=A_, is attributable to the appearance of a Numbers(see, for example, Refs. 9 and 2632@ is no
noise-induced phase transition, which leads to the formatiofCCident that researchers specializing in turbulence were the
of an induced attractor. The similarity of both the externalfirSt to consider the theory of intermittency in detdiand

and statistical characteristics of the turbulence appearing it the terminologylaminar and turbulent phasesas bor-

this case to turbulence in a pipe under periodic boundaryoWed from the theory of turbulence. .
When an additive noise is present, the excitation thresh-

conditions? where there is feedback and auto-oscillations are X i ke
excited, supports the latter hypothesis. The outward similar?!d is obliterated, and the dependence of* on _

ity is demonstrated in Fig. 2, which was constructed on the#(2@o)/x(2wo) becomes smooth. This is demonstrated in
basis of Nikitin's data. If these hypotheses are correct, th&19- 42 for the case in which the rms deviation of the additive
role of the periodic disturbance at the pipe entrance in th&0iSe is proportional to that of the multiplicative noise, with
development of turbulence reduces to only stimulating & Proportionality factor equal to 0.05. The weak additive

phase transition, as will be shown in the next section in thdCiS€ causes intermittency to begin to be observed at inten-
example of a pendulum. sities of the multiplicative noise that are smaller than the

critical value in the absence of the additive naiBeg. 4b). It
is quite surprising that in this case the pendulum oscillations
are similar in form to turbulent pulsations in the presence of
intermittency. An example of such pulsations in a subsonic
A comparatively simple example of a noise-inducedjet near a nozzle is shown in Fig. AcWe note that if the
phase transition that leads to the appearance of undampé#gensity of the multiplicative noise is sufficiently high, even
random oscillations, which are very reminiscent of turbulent2 very appreciable additive noise has practically no influence
pulsations, was considered in our earlier studfés.The  on the form of the oscillations excitédompare Figs. 3c and
equation describing the oscillations of a pendulum with a40).
randomly oscillating pivot was investigated analytically and  If there is no additive noise, and the intensity of the
numerically. If an additive noise is also taken into accountmultiplicative noise is less than the threshold value, the ex-
which was not done in the studies just cited, the equatioitation of pendulum oscillations can be caused by weak ad-
takes the form ditional low-frequency oscillations of the pivot. These oscil-
. - lations can be taken into account if we replaée by
@+ 2B(1+ a@?) o+ wi(1+ & (t)sin o=ké(1), (D) & +acoswgt in Eq. (1), wherea and w, are quantities

NOISE-INDUCED PHASE TRANSITION IN A PENDULUM
WITH A RANDOMLY OSCILLATING PIVOT
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FIG. 4. Dependence of? on k(2)/ky(2) without an additive noise
(square}s and with an additive noisk2§§:0.05§§ (squares [solid line—
=0.01151k(2)/ke(2)—1)] (@, dependence of o¢(t) for

k2§2 0.00012%2 andk(2)/ke(2)=0.92(b), pulsations of the longitudinal
component of the flow velocity on the axis of a round subsonic jet at a
distance from the nozzle amounting to 0.1 of the nozzle diameieand

plots of o(t) and ¢(t) for k(2)/ke(2)=5.6 andk2&2=0.05 (d).

case in which the intensity of the multiplicative noise ex-
ceeds the critical value, the additional low-frequency signal
increases the intensity of the noise-induced oscillations. The
results of the numerical solution of E(1) for two values of
x(2)/x.(2) and various values & are presented in Fig. 5.
We see that in the case af(2)<<x.(2) the excitation of
oscillations exhibits a threshold characteraass increased.
When w,=0.318 and »(2)/%.,(2)=0.51, the threshold
k(2)/%(2) value ofa is equal to 1.1. The dependence of the rms devia-
_ tion of the rotation angle on the difference between the am-
FIG. 3. Plots of o(t) and ¢(t). wo=1, =0.1, «=100, k=0;  plitude of the low-frequency signal and its critical value is
k(2)/k(2)=1.02 (a), 1.2 (b), and 5.6 (c); d—dependence of* on  nearly linear(Fig. 5d. Whena>a,,, the oscillations excited
k(2)/ks(2). Solid line—¢?=0.01151k(2) ke(2) 1) are virtually indistinguishable from the oscillations which
appear only as a result of noise, the intensity being higher,
the greater is the value dof. This means that the low-
which are proportional to the amplitude and frequency of thdrequency signal stimulates the appearance of a phase tran-
additional oscillations of the acceleration of the pivot. In thesition and the creation of an induced attractor.
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NOISE-INDUCED PENDULUM OSCILLATIONS AND turbulence(coherent structuresappears in jets at a definite
TURBULENCE IN JET FLOWS. CONTROLLING THESE distance from the nozzle, mainly in a boundary layer, whose
PROCESSES width increases almost linearly as this distance increases.

The analogy between turbulent processes and noisé-he appearance of coherent structures is accompanied by
induced pendulum oscillations can also be traced in the caseriation of the mean flow velocity.
of the development of turbulence and the control of its de- It is also known that a weak acoustic signal acting on a
velopment in jet flows. Its is knowh®32that large-scale jet in the region where it issues from the nozzle can strongly
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influence the hydrodynamic processes in the jet. If the freresonance character. As an example, Fig. 6a presents the plot
quency of this signal, lies in a certain region, which can be for ¢, = \/u=§/UO=0.02, whereu,, is the oscillatory velocity

called the resonance region, it transforms into an intensifyin the acoustic wave arid, is the mean flow velocity on the

hydrodynamic wave. This is confirmed by the experlmenta?xis of the jet near the nozzle, of the dependence of the rms

results presented in Ref. 33. It follows from these results tha | £ th lati lsati f the lonaitudinal
above a certain value of the amplitude of the acoustic signaf{a ue of the relative pu _Sa 1ons _0 e_(z)ng| udinal compo-
the dependence of the rms value of the pulsations of th8€nt of the hydrodynamic velocity, = \u?/Uo on the fre-

hydrodynamic velocity on the frequency of the signal has auency of the acoustic signal expressed in terms of the

lcos 2.8
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Strouhal number Stf,D/U,, whereD is the diameter of
the nozzle. We see that, reaches a maximum when
St=0.3. A similar dependence is obtained for the rms devia-
tion of the rotation angle of the pendulum under consider-
ation for additional harmonic vibration of the pivot. The cor-
responding dependence far= 0.5 andx(2)/x.(2)=1.01 is
presented in Fig. 6b. We note that in the absence of the
additional signak ,~0.04 and,/,?~0.0317.

It has been shown in several publicatioisee, for ex-
ample, Ref. 17 and 34hat, depending on its frequency, an
acoustic signal can either stimulate or suppress the develop-
ment of large-scale turbulence: stimulation occurs when the
frequency of the signal is low, and suppression occurs when
it is high. This fact alone suggests that the turbulence in jets b
is not an auto-oscillatory process. As we knthe® the
stimulation or suppression of oscillations in auto-oscillatory
systems does not depend on whether the frequency of the t
acoustic signal is lower or higher than the frequency of the
auto-oscillations. These effects are determined only by
whether the auto-oscillatory system is a system with hard or
soft excitation.

The experimental dependence of the rms magnitude of
the pulsations of the longitudinal component of the hydrody-
namic velocitye, on the acoustic pressure at=32.35 is
presented in Fig. 7a. We see that the turbulent pulsations at
first decrease with increasing amplitude of the acoustic sig-
nal and then increase.

We have already discussed the stimulation of a noise-
induced phase transition in a pendulum in the preceding sec-
tion. Let us now consider the possibility of suppressing
noise-induced oscillations by a high-frequency harmonic sig-
nal. Numerical simulation of Eq1) with the replacement of
&, by & +a cosw,t, wherew,>2, showed that such sup-
pression actually occurs. The results of the simulation are
presented in Figs. 7b—7c and 8. We see that if the amplitude

of the high-frequency signal is small, it has practically no » d
influence on the existing oscillations. In addition, it is seen }_‘ Ly — ¢
from Fig. 7 that in the case of signals with not very high A A

frequencies the intensity of the noise-induced oscillations at

first decreases with increasing amplitude, as in the experi-

ment described above, to a certain minimum value, which is ¢

smaller, the higher is the frequency of the signal, and then

begins to increase. True, the higher the frequency, the higher

is the amplitude of the signal at which this minimum value is

achieved. When the frequency of the signal is sufficientlyFIG. 8. Plots ofg(t) and ¢(t). wo=1, 8=0.1, a=100,k(2)/k.(2)=5.6,

high, the oscillations are completely suppressed. Thus, on tHg 0: ©a=19.757, anda=5 (@), 15 (b), 30 (c), and 40(d).

basis of the analogy with the oscillations of a pendulum,

experimental investigators can be advised to increase the freqations decreases with increasing amplitude, while the du-

quency of the acoustic signal to avoid an undesirable iNation of the segments corresponding to “laminar” phases

crease in the turbulent pulsations as the amplitude of thgcreases. When the amplitude exceeds a certain critical

signal is increased. As far as we know, this advice has beepy|ye (it was found to be equal to 42 for the case under

found to hold true. consideration the oscillations are completely suppressed.
The suppression of noise-induced oscillations of a penyhen the amplitude of the signal is increased further, the

dulum by an additional signal of sufficiently high frequency gscillations reappear, but now because the corresponding

is demonstrated in greater detail in Fig. 8, which presentgarametric resonance conditions begin to be satisfied.

plots of the dependence af and ¢ on the time for various It should be noted that the stimulation and suppression

values of the amplitude of a signal whose frequency equalsf noise-induced pendulum oscillations occur not only under

19.757. It is seen that the intensity of the noise-induced osa parametric harmonic signal, but also under a force signal,
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Influence of an electric field on the dynamic viscosity of liquid dielectrics
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Experimental dependences of the dynamic viscosity of dielectric liquids on the applied voltage
are considered. The experiment is remarkable because of the elimination of the electric
current through the liquid in a series of measurements by insulating one of the electrodes from
the liquid. The change in the viscosity of the liquid media can be a consequence of

alteration of the structure of the liquid and the formation of ion—molecule groups differing from
the previously existing ones. The variation of the mechanical properties of the medium

with variation of the applied field strength points out the influence of charge formation on them.
The dependences for polar and nonpolar liquids are considered.998 American

Institute of Physicg.S1063-7848)00701-§

Previously performed investigations of the behavior of aboth electrodes are insulated from the liquid, there will be no
liquid dielectric subjected to the action of a transverse elecinjection, and only the influence of the electric field on the
tric field have shown that the viscosity of the dielectric liquid will be realized.
changes. This phenomenon, which has been termed “elec- The equipment and techniques of capillary viscometry
troviscosity,” has been described by various investigatots. were previously employed in Refs. 1 and 2. A diagram of the
However, the poor reproducibility of the data and the oftenmeasuring apparatus is shown in Fig. 1. The time of passage
apparent contractions between the data of different investief a liquid dielectric between the marks was measured using
gators have made it impossible to clearly single out the mai@ stopwatch or a photorecording device to within 0.1 s. The
mechanism among the numerous phenomena that might kg@rt of the system to which a high voltage was supplied has
the cause of the viscosity change. The possible candidatége form of a flow-through cell of rectangular cross section
include the transport of momentum by means of the electroplaced in a housing of an insulating mater{&igs. 1b,¢.
phoresis of ions, the orientation of polar molecui2she  The dimensions of the channel are as follows: length, 15
formation of clusters near an electrotftand the influence mm; width, 3.5 m; height 0.7 mm. The upper and lower
of space charge and the electrohydrodynamic efféaspite ~ walls of the channel are copper electrodes. A cell with a
the diverse interpretations of the phenomenon, all the invedower electrode insulated from the liquiig. 19 was em-
tigators agree with the need for the passage of an electrigloyed during the development of the experiment. The elec-
current through the liquid. The absence of this phenomenofic field was recalculated to find the field actually existing in
in nonpolar media was pointed out in some paﬁérlslow- the channel. The thickness of the dielectric layer was 0.7
ever, significant changes in the viscosity of nonpolar liquidsmm. The length of the portion of the capillary before the cell
in an electric field were noted when poorly purified liquids Was selected such that the flow would have a steady-state
were used:’ This and several other phenomena indicate thagharacter over the entire length of the cell.
the appearance of space charge at the electrode can be the Then the dynamic viscosity is

cause of the viscosity change. AP
Some investigators believe that the viscosity change is  »p=A—, (1)
caused by electrohydrodynamic flows appearing in the lig- Q

uids and that the influence of the field on the molecular tranSWhereA is a constant of the apparatus akA is the pressure
port of momentum is negligibly small. On the other hand,drop which causes the flow ra@.
there is an opinion that the action of electric fields can lead  When an electric field is supplied,
to perceptible viscosity changes. A basis for this can be pro-
vided by data on the influence of electric fields on the ther- :AA_P @)
mal conductivity® since it, like the viscosity, is a character- T Qu”
istic of molecular transport in a liquid.

The influence of charge formation on a medium can be
investigated by insulating one of the electrodes from the lig- Ne— 71 to—t
uid, which does not eliminate the influence of the electric =77
field on the medium. It is knowhthat electrohydrodynamic g
flows do not appear when no current passes through a liquitheret,, is the time of emergence of the liquid when the
dielectric. Thus, the study of the behavior of a liquid flowing electric fieldE is applied, and is the time of emergence of
through a cell with one insulated electrode allows us to rulghe liquid in the absence of an electric field.
out the influence of electrohydrodynamic flows, on the one It should be noted that the viscosity value obtained with-
hand, and to effect charge injection, on the other hand. Ibut application of a field differed from the values known in

Hence the viscosity change is
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FIG. 1. Diagram of the experimental system. a—overall view; b, c—flow-through cell with an uninsulated electrode and an electrode insulated from the
liquid; A—source of the light signaB—regeneratorC—vessel E—electrodesl—insulating layers2—metallic (coppej layers,3—insulating plate.

the literature by no more than 3%. In both cases the passad® to 160% when the electrodes were uninsulated and from 5
of a current through the cell was monitored by an electroto 40% when one electrode was insulatedys. 2a,b. In the
metric amplifier, which permits the measurement of current®ther group(the nonpolar liquidsthe viscosity changes did
as small as 0.1 nA. The range of field strengths used wasot exceed 6% in the system with uninsulated electrodes and
0.8—120 kV/cm at a temperature of 20 °C. 4% in the system with insulated electrod@sgs. 2c,d. For

The objects of investigation were liquids with different the most part, all thep(E) curves have two segments: a
dielectric parameteridor example, acetone, which is a polar rapid increase and slow variatiésaturation. The curves for
liquid (¢=20.1, and its dipole momeni=9.47x103° C
-m), and hexane, which is a nonpolar liquie=€ 1.9, x=0)
(Table )]. The liquids are all dielectrics and are fairly typical TABLE I.
representatives of considerable groups of the latter. As a ré=

) ; . .. Liquid =10 Pas ,Cm J,eV AH Z
sult of the experiment, we obtained plots of the viscosity 7 cm z
change as a function of the applied voltage for both the celhitrobenzene 0.18 35 1020 7 8.2 20.1
with one insulated electrode and the cell with uninsulatedicetone 0.32 212 94710% 97 89 97
electrodes. The liquids were divided into two groups accordtexane 0.35 19 0, 105 102 335
ing to the magnitude of the viscosity change: in one group o ue"® 0.9 24 1710 9 108 235
9 mag X g y change. '€ 9rOUR-6r0benzene 0.83 53 520 94 124 197
(the polar liquid$ the viscosity changes in the two kinds of pecane 0.92 1.2 0 11 122 402

cells (with uninsulated and insulated electrofdesnged from

36 Tech. Phys. 43 (1), January 1998 A. A. Ostapenko 36



a c thalpy in an electric field is attributable mainly to the change
in AH. The values ofAQ, and AH were calculated from

4 7/ 7 a7/7 0 the formulad?

Vin7el
hN /'

Vel T\dVn
AHe|—RT[In hN — V_m W

AQe|: RT In(

1y It is also knowr that AH> ¢,,,, Wheree, is the molar

70 100 £, klfem energy density of the molecular interaction, i.e., flow should
b d be accompanied by deformation of the “supramolecular
structure” of the liquid and the structure of the local envi-
ronment, which can be described by the parameter

i 2 _ AH
51 /(“ ; Z=— (Ref. 10,

‘PpE

whereZ is the mean number of molecules for which corre-
£ lation of their interactions is observed when the liquid flows

ol 4o v 1o and ¢, is the mean energy of the intermolecular pair inter-
100 EkV/cm action.

N . To estimate the energy of the interaction of molecules of
FIG. 2. Relative viscosity change as a function of the strength of the trans- L. . T . S
verse electric field in polai, b and nonpolatc, d) liquids in cells with one the liquids investigated within the first coordination sphere,
electrode insulated from the liquid, ¢ and uninsulated electrodés, d. a, ~ we use a variant of the London-Debye-Keesom potéritial
b: 1—acetone 2—nitrobenzene 3—chlorobenzene4—toluene; c, d:1—
hexane 2—decane.

- TioTa| S et apas 2 |
p1—L1pp= 1§a+ poa+t %r__&;

acetone and benzene are clearly distinguished from the othvhereJ is the ionization potentiaky is the polarizability of
ers by their steep ascending segment. The curves for the cetise moleculesy is the dipole moment of the moleculeg,,

with one insulated electrode are similar in form. The curvess the mean energy of the intermolecular pair interaction,

for the nonpolar liquids can also be divided into two seg-is the number of molecules averaged over the entire volume,

ments: a rapid increase and slow variation. The curves foéndr_l is the radius of the first coordination sphere.

the two types of cells are similar. It should be noted that the .o application of an electric field should lead to an

magnitude of the viscosity change is higher when a current, ..o« in the dipole moment of the liquid

flows though the cell than in the absence of a curfmt )

example, the corresponding values for decane differ by a a+M_}E

factor of 1.5 when the field strength equals 60 kV/cm, and 3KT

the values for chlorobenzene differ by a factor of 4 when . L — .

E=10 kV/cm). When a current is passed through the cell atand' acc_ordlngly,. inpp, but the est|mate§ s_hoyved that the

E>E,, the increase in viscosity is probably caused by Com_change in the dipole moment of the liquid is smétio

bined electroconvective and molecular momentum transporg,reater than 1%fo_r the parameters us_ed and can b € ne-

while electroconvection does not occur in the cell with the_gleCted' W? can S.t'" postula_te that the increase in viscosity
an electric field is due mainly to enhancement of the cor-

insulated electrode. Qualitative explanations can be proposéﬂI tion bet h lecules in the local ) ¢
for the viscosity changén this casg It is knowr? that relation between the molecules in the local environment.

Then we can write by analogy

- |G ool | = o 2] N
" Vi PR T FART) AHeIZZ_eI(PTpEa

where 7 is the dynamic viscosityT is the absolute tempera-
ture, Q is the free enthalpyh is Planck’s constantk is

Me=pt

where Z, is the mean number of molecules for which the
Boltzmann’s constanR is the universal gas constam, is qorrelation is observed when the liquid flows in an electric
Avogadro’s number, an¥,, is the molar volume. field. _

In this experimen®A and T are constants. Then the vis- It was found experimentallyTable 1)) that Z,>Z both
cosity change in an electric field can be associated only witfn the presence of a current flowing through the cell and in
AQ: ng=A expAQy/RT). From the experiment we have the absence a current. Moreové&r, is greater in the pres-
o> 77; therefore,AQ,>AQ=AH-TAS, where AS and ence of a current than in its absence.

AH are the enthalpy and entropy of activation for flow. The  Thus, this research has shown that a change in viscosity
estimates in Ref. 10 showed that the change in the free emccurs in both polar and nonpolar liquids when an electric
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TABLE II.

Liquid No current flowing through the liquid Current flowing through the liquid
iqui

E, kVicm Anly AHg, J/mol Zq E, kV/cm Anln AHg, J/mol Za
Nitrobenzene 10 0.40 9.0 22.0 10 0.4 8.8 23.1
Acetone 10 0.35 10.0 115 10 1.26 10.9 11.8
Hexane 60 0.025 10.0 33.1 60 0.05 10.6 345
Toluene 10 0.10 12.0 24.8 30 0.15 12.1 25.1
Chlorobenzene 10 0.20 13.2 215 20 0.20 12.9 20.6
Decane 60 0.04 12.9 415 60 0.045 13.3 42.3

field is applied across the flow of a liquid dielectric. The tional Conference on Conduction and Breakdown in Dielectric Liquids,
effect is observed both with and without the passage of a Zurich, IEEE (1993, pp. 509-514.
current through the liquid. The effect is stronger in the pres- 'Y M- Richkov, V. A. Lionaet al, Elekiron. Obrab. Mater(5), 34
ence.of a current. In this case it can be as;umed that MOMeny "Honda and T. Sasada, Jpn. J. Appl. Phs1775(1977.
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transport. The main viscosity change occurs because of apHeat Transfeffin Russiaf, Shtiintsa, Kishinev1977).

1 , \ . .
increase in the number of molecules for which a correlation’ 1€ Electrorheological Effedin Russiaf), A. V. Lykov (edited, Nauka
. . . Tekhnika, Minsk(1972.
!S Obse_rv?dv i.e., because of the_ f_orm_at'on of new structuresyy, k. stishkov and A. A. Ostapenkdlectrohydrodynamic Flows of
in the liquid. The presence of an injecting electrode allows us Liquid Dielectrics[in Russian, Izd. LGU, Leningrad(1989.

to theorize that the structure-formation centers may be ions;S. Glasstone, K. J. Laidler, and H. Eyrinhe Theory of Rate Processes,
The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electro-

.., that ion—molecule complexes appear. chemical PhenomenfMcGraw—Hill, New York (1941); IL, Moscow
(1948].
10M. 1. ShakhparonovMethods for Investigating the Thermal Motion of
'E. N. Andrade and C. Dodd, Proc. R. Soc. London, Serl8y, 296 Molecules and the Structure of Liquifim Russiai, Moscow(1963.
(1946. A E. Lutski, V. S. Klimenko, and E. M. Obukhova, Zh. Fiz. Khir62,
2P, T. Sokolov and S. L. SosingkiDokl. Akad. Nauk SSSR4, 1037 955 (1978 [J. Phys. Chemb2, 543(1978].
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Generation and transport of high-current, low-energy electron beams in a system with
a gas-filled diode

V. N. Devyatkov, N. N. Koval’', and P. M. Shchanin

Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences,
634055 Tomsk, Russia

(Submitted July 26, 1996

Zh. Tekh. Fiz68, 44—48(January 1998

Investigations of the generation and transport of a high-current, low-energy electron beam are
performed in a system with a gas-filled diode based on a plasma cathode. At accelerating
voltages of up to 20 kV and pressures(df-5x 10! Pa, a beam with an emission current of
600 A, emission current density of 12 A/érand pulse duration of 3@s if obtained in

a diode with a grid-stabilized emission opening having a diameter equal to 8 cm. The beam is
transported in the absence of an external magnetic field over a distance of 20 cm. The

beam is compressed by its self-magnetic field, and the current density at the collector reaches
100 A/cn? when the beam diameter is 3 cm. ®998 American Institute of Physics.
[S1063-784298)00801-7

INTRODUCTION This paper presents the experimental results on the gen-
eration and transport of a quasistationary low-energy elec-

One of the effective ways to improve the service char-tron beam in a system with a plasma cathode that provides a

acteristics of structural materials is to treat the surface wittcurrent of hundreds of amperes.

pulsed beams of charged patrticles. It is desirable to carry out

surface modification with highly efficient utilization of the

energy transported by the beam and a uniform distribution of

the current density over a beam cross section with anarea up o -\ AND OPERATING PRINCIPLE OF THE ELECTRON

to several tens of square centimeters. These conditions ay JRCE

satisfied if the beam energy is released in a tbirthe order

of several micronslayer upon irradiation with a power den- The design of the electron source is represented sche-
sity of 1°—10° W/cn?. The release of energy in such a thin matically in Fig. 1. Cylindrical magnesium cathotivith a
layer is ensured by the pulsed high-current ion beams used ¥lameter of 4 mm and a length of 15 mm and permanent
investigate surface modification processes, where the ion emnagnet3, which creates a magnetic field with an induction
ergy usually amounts to 160800 keV! equal to 0.02 T are mounted on a Teflon insulator in the shell
High-current electron beams may be an alternative to thef cathode sectiog, which simultaneously serves as the trig-
ion beams used in pulsed heat treatment if they can providger electrode. Cylindrical hollow anodewith a diameter of
the required power density at electron energies not exceedings0 mm and a length of 160 mm has an emission winBow
20-30 keV. However, when the electron energy is low, it ISW|'[h a diameter of 80 mm, which is covered by a fine me-
extremely difficult to obtain high beam current densities be+allic grid with holes measuring 0x0.1 mm and a geomet-
cause of the restriction of the current in vacuum diodes acric transparency equal to 40%, on its end. The hollow anode
cording to a 3/2 power law, as well as because of the appeajs connected to the trigger electrode through a resistor with
ance of both radial and longitudinal dips in the potentialsR=75 (). Within the hollow anode there is a spherical dis-
created by the self-charge of the beam during the transport afibuting electrode4 with a diameter of 10 mm, which is at
intense beams. On the other hand, in this case the dimensiofige potential of the trigger electrode, at a distance of 20 mm
of the source can be reduced significantly, and the means @fom the cathode section. Electrodeimproves the unifor-
radiation protection, which is an important factor in develop-mity of the distribution of the density of the emission plasma
ing industrial equipment, can be simplified considerably. near the grid electrode and, accordingly, the uniformity of
Gas-filled and plasma-filled diodes, in which the elec-the distribution of the emission current density and also per-
trons are accelerated in a space-charge layer formed undgrits reduction or elimination of the intrusion of the cathode
definite conditions between the cathode and the anodmaterial into the beam-formation region and its appearance
plasma, have a higher perveance than vacuum diodes. Fon the treated surfaces of samples. Accelerating elec#pde
example, current densities up to 1 kA/€rhave been ob- which is fashioned in the form of a diaphragm with an open-
tained in a diode with an exploding cathode and in a plasming having a diameter of 85 mm, is located at a distance of 5
diod€ in the microsecond range of pulse durations. Plasmanm from the emission electrode and is connected to drift
emitters with a grid-stabilized emission surface have a highube 8, which has a diameter of 100 mm and a length of 90
emission capacity? Emission current densities up to 60 mm. Collector9 is located at a distance of 100-600 mm
Alcm? have been achievéih a quasistationary regime with from the emission electrode. The working das, helium or
a pulse duration of 30@&s and a current of 30 A. argon is injected with a flow rate up to 30 mPa®/s
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FIG. 1. Diagram of the electron source.

through a channel in the magnesium cathode. The pressuretracted from the cathode plasma effectively ionize the gas,
the system is regulated in the range frotd 50 3to 1 Pa by  creating an anode plasma in the region of the accelerating
adjusting the gas injection rate. electrode and the collector. The plasma acquires a potential
The discharge currerit, the emission current;, the  close to the anode potentfaland a space-charge layer, in
beam current at the collectbs, and the current reaching the which electrons are accelerated, forms between the grid
accelerating electrodey were measured by Rogowski loops emission electrode and the anode plasma. The perveance of
placed in the respective circuits with consideration of thethe plasma-filled gap exceeds the perveance of a vacuum gap
influence of the plasma formed by the electron beam at thdue to compensation of the negative charge by ions supplied
collector® The collector was equipped with a special protec-from the anode plasma. The mechanism for formation of the
tive ring, which prevents closing of the electrode gaps by thespace-charge layer and variation of the perveance were con-
plasma. sidered in Ref. 2 for the case in which the accelerating gap is
When a regulated current pulse in the range from 100 tdilled with a plasma before the accelerating voltage is sup-
1000 A with a duration of 45«s, which is formed upon the plied. In the case considered here, in contrast to the case in
discharge of capacitor into the primary winding of a pulseRef. 2, the anode plasma, which is responsible for compen-
transformer, is supplied to the cathode, a discharge appeasation of the beam space charge and its formation, is created
at first over the surface of the insulator between the cathodim the absence of an external magnetic field as a result of
and the trigger electrode, which initiates the appearance of @nization of an injected working gas by electrons extracted
cathode spot and ignition of an arc discharge between thifom a plasma cathode based on the quasistationary low-
cathode and the hollow anode. The plasma fills the hollowpressure arc discharge and compression of the beam by its
anode and the electrons drawn through the holes in the griself-magnetic field.
enter the accelerating gap. In the electron source under con-
sideration the use of a permanent magnet in the cathode secs
tion and the separation of the cathode and anode regions o
the discharge by a contracting opening in the trigger elec- Figure 2 presents typical oscillograms of the emission
trode permit considerable lowering of the ignition voltage ofcurrent 1, the current in the collector circuit,, and the
the arc discharge due to the increase in the pressure in tlorrent in the accelerating electrotig and Fig. 3 presents
cathode region as a result of the pressure drop in the corexperimental current—voltage characteristics of the gas-filled
tracting channel and prolongation of the residence time ofliode for various values of the discharge currénirves
the electrons in the magnetic field. 1-3) and the dependence of the current on the voltage cal-
Under the conditions of a gas-filled diode, electrons ex-culated according to the 3/2 power law for a plane-parallel

PERIMENTAL RESULTS AND DISCUSSION
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FIG. 3. Current—voltage characteristics of the electron soyreel0™* Pa;
lo, A: 1—600,2—400,3—270.

tablished on the basis of the condition of equality of the
saturation ion current from the anode plasma and the ion
L c current in the space-charge layer determined from the 3/2
T T T TN power law

| ~\eo/n U4 (ekT,) Y4, )

where | is the width of the space-charge layef; is the
1201 2 dielectric constantlJ is the accelerating voltage is the
1 : charge of an electroik is Boltzmann’s constant, anf, and
n. are the electron temperature and density in the plasma.
If it is taken into account that, according to Refs. 7 and
8, the plasma density, created by a beam under similar
d conditions can be one to two orders of magnitude greater
IR T T T T T ' than the electron density in the beamy, then forn,=10%
cm 3, T,=5-10 eV, andn,=10'" cm 2 the width of the
space-charge laydr=7 mm, if U=10 kV, and 4 mm, if
U=5 kV. At pressures above-110"! Pa the electron ex-
120} 2 traction efficiency(the ratio of the emission current to the
discharge currentve=1.y/1,) is «=0.5-0.7, and the elec-
tron beam entering the drift tube is transported in the plasma
200} 1 to the collector with small losses when the drift distance is
| approximately equal to 20 citFig. 23. The high transport
efficiency attests to compensation of the beam space charge.
FIG. 2. Oscillograms of the emission current(1), the collector current, ~ EVeN without an external magnetic field, the collector current
(2), and the current reaching the accelerating electtgd®) in the absence  greatly exceeds the limiting current calculated from the

(a, b and in the presence of an accelerating ¢ad 1,=300 A; p, Pa: a—  Bogdankevich-Rukhadze formula for the vacuum case
5X107%; b, c—5x107% d—1X1072

I,A

§ o

T

200

_ 4meomoC’[(1+eU/myc?) - 1732

m e[1+2In(R/r)] ;

vacuum diode wh a 5 mm gapcurve 4). As is seen from wherem is the electron rest mass,is the velocity of light,

Fig. 3, the diode operates in a saturation regime, and itandR andr are the radii of the drift and beam tubes.
emission current is determined by the discharge current and The compensated beam is compressed by its self-
can significantly exceed the current of a vacuum diode. Thenagnetic field, and the beam diametemeasured by burn-
electrons are accelerated in the space-charge layer betweimg thin aluminum foils located at various distandegrom

the grid of the plasma emitter and the movable boundary othe entrance opening of the tube decreases along the follow-
the anode plasma, which is created by ionization of the gasg sequencel,=7 cm forL=2 cm,d,=5 cm forL=10

by electrons supplied from the gas-discharge plasma througtm, andd;=3 cm forL=20 cm.

the opening in the emitter electrode. The increase in the per- Figure 2a presents current oscillograms. At the begin-
veance of the diode as the accelerating voltage is lowered ising of a pulse an electron current flows in the circuit of the
a result of displacement of the anode plasma toward thdrift tube. It is formed by accelerated electrons scattered on
emitter electrode. The boundary of the anode plasma is eshe tube and plasma electrons. After a certain time, which

@
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45} gap. Under the conditions of an increase in the discharge
current and the emission capacity of the plasma emitter at
low pressure, the anode plasma cannot ensure the stable ex-
istence of the space-charge layer in the accelerating gap due
to the decrease in the ionization frequefity=1;(M/m)*2].

At pressures belowp=10"2 Pa the beam transport effi-
ciency also decreases, since even the calculated beam space-
charge compensation time exceedsdf) This is confirmed

by the fact that replacement of the accelerating electrode in
the form of a diaphragm by a grid electrode for the purpose
of stabilizing the boundary of the anode plasma at low pres-
sure permits an-1.5-fold increase in the emission and col-
lector currents and significantly reduces their fluctuations

35
%,
N

25

‘15 Lo a1yl 20 el £ 5t el (Flg Zd
1072 0! 7 0 At intermediate pressures ¢1—2x 102 Pa(Fig. 20,
p,Pa if the anode plasma provides a number of ions sufficient for
t4

compensating the beam space charge and for stable existence
FIG. 4. Dependence of the compensation time of the beam space charge &f & space-charge layer during a time comparable to or less
the pressure of the working gag—air; 2—helium. 1,=600 A, and the  than the duration of the discharge current pulse, the fluctua-
accelerating voltage) =10 kV. tions of the emission and collector currents decrease, and the
currents reach values corresponding to the those measured at
elevated pressures.

depends on the pressure, the current drops to zero, and even _Wh(_an thde accelerat_lng voltzge IS Iowe(;ed, thehcompen-
the sign sometimes changes. It can clearly be assumed that3gtion time decreases in accordance W8hdue to the in-

the moment when the current on the drift tube equals serrease in the ionization cross section, and the time of the

the beam space charge is completely compensated. transition to a fluctuation-free current-flow regime shifts to

The oscillogram-determined pressure dependence of tHE'€ P€ginning of the pulse. For example, switching the accel-
time 7, at which the current in the drift tube circuit becomes €rating voltage from 10 to 5 kV causes a A6 shift in the
equal to zero, is presented in Fig. 4. In this case, if heliumtime of the transition to the fluctuation-free regime. Under

whose ionization cross section is smaller than that of nitroj[he conditions of our experiment at pressures exceedmé 10

gen, is employed as the working gas, a higher pressure Ea, We, .unI|ke. '\(Iasovat al,” did nqt observe the develop-
required to compensate the beam space charge. Thergime ment of instabilities or a decrease in the current at the end of
after which the concentration created by the beam in the drifft pulse. However, no special investigations of the microwave

space is comparable to the electron concentration in th[ead!at'on or plasma diagnostics were performed in the ex-
beam, can be determined from the expression periments.

Calorimetric measurements established that at elevated
1 pressures the energy transferred by the beam to the collector

T —, (3 during a pulse is approximately 20% less than the energy
Nooiy2eu/m calculated from the oscillograms of the voltage on the gap

wheren, is the concentration of neutrals angl is the jon-  2Nd the current in the collector. A high current density,
ization cross section. reaching 66-100 A/cnt, causes partial melting of a copper

Under the conditions of an experiment with a beam eleccollector located at a distance of 20 cm from the_ emitter
tron densityn, =10 cm™3, ny=2.3x 10" cm 3, U=10 electrode. The electron beam obtained was used in experi-

KV, and o= 10~ 17 cm™3, we find 7o=3 us. The disparity ments on the pulsed modification of metal surfaces by

between the calculated and experimental values of the Conguenchmg from a melt.

pensation time is attributable either to the finite rise times of

the electron current or to the fact that the escape of plasma

electrons is hampered in the transverse direction to thegoncLusions

beam’s self-magnetic field and they can leave the ionization

zone only along the beam toward the collector, while ions  Investigations of a gas-filled diode with a plasma emitter

escape into the accelerating gap and onto the lateral surfabased on a low-pressure arc have been carried out, and a

of the drift tube. high-current electron beam with a perveance significantly ex-
The character of the extraction and transport of the bearmeeding the perveance of a vacuum diode beam calculated

changes drasticallgFig. 2b), if the pressure in the system is for a fixed gap has been transported. At (Pa the rela-

lowered. At a fixed discharge current, the emission and coltively high ionization efficiency of the low-energy beam re-

lector currents decrease by a factor of 1.5—-2, considerablgults in compensation of its space charge in the drift space.

current fluctuations appear, and most of the beam currerthe compensated beam is compressed by its self-magnetic

reaches the drift tube. The fluctuations are associated mainfield and transported in the drift tube in the absence of an

with the instability of the current flow in the accelerating external magnetic field over a distance of 20 cm. Due to its
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Consideration of vacancies in the interaction between a liquid phase and a solid phase
A. A. Veksler and A. P. Savitskii

Institute of the Physics of Strength and Materials Science, Siberian Branch of the Russian Academy
of Sciences, 634021 Tomsk, Russia

(Submitted July 16, 1996

Zh. Tekh. Fiz68, 49-52(January 1998

An analytical expression is obtained for the time dependence of the concentration of the second
component in the diffusion zone of a solid phase during its interaction with a liquid phase.

A relation describing the deformation of a powdered body with time is found on the basis of the
equations derived. Analytical and experimental curves are compared.998 American

Institute of Physicg.S1063-784£98)00901-3

It has been established that the passage of a solid phaas a result of which the concentration of vacancies tends to
into a melt during dissolution is preceded and then accomincrease to the equilibrium value. The equilibrium concen-
panied by the diffusion of atoms of the second componentration, in turn, continuously increases, because the chemical
from the liquid phase into the solid, which results in the composition of the diffusion zone varies during diffusion,
formation of solid solutions or intermetallic compounds in and the energy for the formation of vacancies decreases. Let
the surface layer of the solid phase adjoining the melt, whosas consider a certain region of the crystal lattice of a solid
concentration enables this layer to pass into the liquid phasghaseG, which consists of an ensemble f, of atoms ofA
by melting? The law discovered enables us to understand thand adjoins the liquid componeBt Let there beN atoms of
essence of such phenomena as contact méliamgl the B per square centimeter of interface, the total contact area
variation of the mechanical properties of metals and alloydeing equal toS. Atoms of B diffuse through the phase
stretched in the presence of melts on their surfdlce Re- boundary into regiorG by the vacancy mechanism, since
binder effect). In addition, expressions relating the relative they can be accommodated only in lattice sites. At the initial
change of the linear dimensions of powdered bodies to thenoment in time regiois contains an equilibrium number of
concentrations of the components established in the solid andacancie$
liquid phases as a result of liquid-phase sintering have been
obtained on the basis of new theories regarding the diffusive u
interaction between a liquid phase and a solid pHaBke b(0)=(Np+ b(O))exp{ - ﬁ]
relations obtained not only agree well with the experimental
data, but can also be used very effectively to analyze the
physica| processes occurring during the |iquid_phase sinter- According to the definition of the diffusion Coefficie?n,
ing of concrete systems. Unfortunately, there is still no mathduring the time
ematical model of the diffusive interaction between a liquid
phase and a solid phase that takes into account the kinetics of ba?
the real proces’:® The theoretical analysis of diffusion pro- R=5—3N (1)
cesses for regions with mobile phase boundaries in a nonsta- BA
tionary formulation has shown that the analytical methods . . . . .
for solving such problems are unacceptable in the generﬁi ato_ms_ofB diffuse |nt(_) reglon_G. I_n 1) a IS _the inter-
case, because the regions where they can be solved vary omic dlstan_ce, fanaBA IS the diffusion coefflc_lent_. In the
the phase boundary mov&%.The method used to numeri- Subsequent time intervali) the number of equilibrium va-
cally solve the Stefan problem for a system consisting of@NCies in regionG is determined from the recurrence
interacting solid and liquid phases with a mobile phaseformu"'th
boundary is quite tediouUsIn the present work an attempt is .
made to obtain an analytical time and temperature depen- : ) o b(t(i—1))a?
dence of the concentration of a component of a liquid phase ()= 21 R(j), R(i)= T Da.SN
in a solid phase due to the diffusive mixing of these phases I~ BA
in the first stage of the interaction on the basis of the vacancy
mechanism of diffusion in metals.

RECURRENCE RELATIONS

I
We start out from the assumption that two interrelated x> b(t(j))] / (1—exp{ 4L P
processes take place in the diffusion zone. One process is the j=0 KT NakT
filing of vacancies by atoms from the liquid phase, as a i

result of which the concentration of vacancies tends to de- > 2 b(t(j))] ); i=1, t(0)=0, @)
crease. The second process is the creation of new vacancies, i=o0

44 Tech. Phys. 43 (1), January 1998 1063-7842/98/010044-03%$15.00 © 1998 American Institute of Physics 44



wherep is a constant, which takes into account the additional t
formation of vacancies as a consequence of the replacement Ca(t)=(Ng(t)+Na) *Ng(t), Ng(t)= fob(u)du,
of a certain fraction of the strongér— A atomic bonds by (5)
weakerA— B bonds. . ) .
Under the assumption that most of the equilibrium va-"hereNg(t) is the number of atoms @ in regionG at the

cancies are replaced by atoms of the second component, thene t.

concentration of atoms d in regionG is described by an According to(4), at values oft that are so small that
equality, which has the form Na(t) is constant and
: L1 b(t)2/NAT<1, b(t)?/NAT>1,
CB(i)~(jEO b(j)+Ny JZO d(j). (3)  we have
b(t)=b(0)exp{at}, (6)

Equationg2) and(3) are valid for the values of the time where
at which the limiting saturation concentration of atomsBof
in the solid phase is not achieved in regi@rand correspond u p u
to averaging over all the possible configurations of the = ®=€XP — i b(0)| 1+ = 1-exp —i7( |-
systerf

We write equalities(2) for continuous division of the Therefore,
time. For this purpose we assume tihgt=Ng(t) and that, Cg(t)=(Ng(t)+Np) INg(t),
in accordance with some functional measure, the functions
b(t) andt(u) have a limit: Ng(t)=b(0)exp{at}/a. @)

The fact that Eq(7) assigns an exponential growth law
for the number of vacancies as a function of time and that the
distribution function of the vacancies can have an unlimited

Then the following system of integrodifferential equa- “tail” partially accounts for the experimentally observed,

lim [b(t(u+h))—b(t(u))]/h=db(t)/dt.
h—0

tions is valid: fairly rapid formation of a solid solution based on the solid
phase due to the diffusion of atoms of the second component
db(t) u p t p in it.
T:eXp{ kTt NAT)kao b(x)dx} b(O)| 1+ 7 Since Cg(t)<C%, whereC% is the saturation concen-
i e tration of atoms from the liquid phase in the solid phase
t t t i i
. PkTJ' b(x)dx| + d(t ) N N( k)T according to the phase diagram, fr¢®) we have
AK1Jo A p=<u(1—C%)/C%. (8)
dNa(t) t
g PO+ fob(x)dx+ NA(t)] DEFORMATION OF THE DIFFUSION ZONE

The diffusion of atoms from the liquid phase into the
dNa(t) p th(x)dx solid phase in the first stage, in which supersaturation has not
dt Ni(t)kT 0 ’ yet been achieved in the surface layer, causes displacement
of the phase boundary in the direction of the nigie Kirk-
zb(t(u))a? endall effect, since new sites occupied by foreign atoms
( Zf I (4 form in the diffusion zone. Therefore, the magnitude of the
displacement of the boundary in this stage of the process is
The proof for this statement is based on the use of exProportional to the number of atoms passing into the lattice.
pansions of the functions in Taylor series. The formation of the first portion of liquid in the surface
The distribution function of the vacanci€x,y,z,t) in  layer of the solid phase after it has been supersaturated sig-
regionG is needed to describe the concentration distributiorlifies that the phase boundary has reversed its direction of
of the atoms o in it. Then the concentration distribution of Motion and traversed a distance equal to the thickness of the

0

the atoms oB in regionG has the form layer of the liquid phase formed in the direction of the solid
phase.
t -1 If particles of a metallic powder that are thoroughly wet-
Ce(x(1),y(1),2(1),0) = fob(u)dF(x,y,z,u)+NA ted by the melt act as the solid phase interacting with the

liquid phase, diffusion from the liquid phase into the solid
% ftb(u)dF(x 2.u) phase should cause an increase in the size of the particles in

0 DAL the bulk. Conversely, the passage of the surface layer of the

particles of the solid phase into the melt by melting should

where the integration is construed in the Lebesgue sensdecrease the dimensions of the particles. This obvious rela-
The total concentration d8 in regionG in the first stage of tionship between the changes in the volume of the particles
the diffusion process is determined from the following for- and the direction of predominant mass transfer on the phase
mula[Nx(t)=N, is a constarjt boundary provides researchers with a unique possibility for
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We note that Eq(6) is valid for small values of the time
t, since it was assumed during its derivation that the entire
regionG is in the solid state. However, with the passage of
time, some of the atoms &, together with a certain number
of atoms ofB, appear in the composition of the liquid phase.
This occurs, because along with the increase in the amount
of the solid phase in the second stage of the interaction, part
of it is lost due to melting on the boundary & after the
critical concentration is achieved in the surface layer. Thus,
the increase in the dimension of a powdered body of the
aluminum-copper system after the third minute of sintering
1 1 1 . . . .
0 50 720 760 260 lags behind an exponential increasee Fig. 1L The same
t,s fact follows directly from Eq.(4), if it is noted that in the

second stage of the proceNs(t) is a nonincreasing func-
FIG. 1. Dependence of the relative change in the linear dimension of &jon, i.e.,
powered body of the Al-Cu system during sintering.
dNa(t)

dt

o.0101

0.005

4Lt)/uo)

studying the nature of the interaction of a solid phase with a

liquid phase by measuring the volume changes in powderedonci usions

bodies directly during liquid-phase sintering. In this case ex-

perimental results of dilatometric measurements of the Recurrence relation$2)—(4) enable us to predict the

growth of powdered bodies in the first stage of liquid-phasevariation of the dimensions of powdered bodies in the

sintering can be used to evaluate the efficiency of the relatiogrowth stage during liquid-phase sintering as a function of

obtained(7). The relative change in the linear dimension of athe time and temperature. Their derivation is based on a mo-

powdered body upon sintering in this stdtfee displacement lecular model of the diffusive interaction between a liquid

of the phase boundary in the direction of the métde- phase and a solid phase. The expressions obtained, which

scribed by the relatidn relate the concentration of equilibrium vacancies in the solid
L(t)—L(0) Calt) phase to the diffusion time, are of more general interest from

= B (9)  the standpoint of their use as tools in the theory of diffusion

L(0)  3(1-Cg(t))’ processes.
where the functiorL (t) specifies the linear dimension of a ~ The research described in this paper was made possible
powdered body at the time in part by Grant NY 8000 from the International Science
Substituting(7) into (9), we have Foundation. We are sincerely grateful to George Soros for

L(t)-L(0)  b(0) the financial support.

L(0)  ~ 3(aNam) SHeth

p=u(1-C¥%)/C§. (10 1A, P. Savitski, Liquid-Phase Sintering of Systems with Interacting Com-
ponentgin Russian, Nauka, Novosibirsk1997).
Let us calculatg(10) for a concrete aluminum—copper 2L. K. Savitskaya and A. P. Savitdkin Surface Phenomena in Melts and
system, for whichC¥ =0.033' u=1.217664410"19J, and Solid Phases Formed from Thefin Russiad, Kabardino-Balkarskoe

— —23 - 8 . Knizh. Izd., Nal'chik (1965, pp. 454—-460.
k=1.38x10""" J/K atT=833 K" The results of the calcu- 5, "5 " i) \vech, Uchebn, Zaved. Fis, 56 (1972,

lation and the eXperime_m are pre§ented in Fig. 1. Cdrve 4p_N. Tikhonov and A. A. SamarskiEquations of Mathematical Physics
was constructed according 0), while curve2 corresponds Pergamon Press, Oxfofd964.

to experimental dilatometric dataAs can be seen from the °A. 1. RI;\ichenko,Mathematical Theory of Diffusion in Applicatioriin

- L . . Russian, Naukova Dumka, Kie1981).

figure, (_:urveSL and?2 nearly coincide at tl_mes corresponding 5A. 1. Nesterenko and N. G. Nesterenko, Zh. Vychisl. Mat. Mat. B,
to the first stage of the process. The difference between thezz4 (1984

curves becomes significant only after the third minute of ’B. Ya. Lyubov, Theory of Crystallization in Large Volumé®m Russia,
sintering, when the shrinking of the powdered body due to, Nauka, Moscow(1975. _ ,

displacement of the phase boundary toward the solid phase'?® E- GeguzinThe Diffusion Zongin Russiad, Nauka, Moscow1979.

begins to be superimposed on the growth process. Translated by P. Shelnitz
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Kinetics of the irreversible propagation of a thermal instability in the presence of a
nonuniform temperature distribution over the cross section of a superconducting
composite

V. R. Romanovskil

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia
(Submitted July 27, 1997
Zh. Tekh. Fiz68, 53-57(January 1998

The conditions for the irreversible propagation of a normal zone along a composite
superconductor are investigated within the model of a continuous medium with consideration of
its transverse thermal conductivity under the assumption of a uniform distribution of the

current over the cross section of the wire. The numerical experiments performed for a current-
carrying element of circular cross section with variation of the cooling rate and the

transverse dimensions are compared with known results of the one-dimensional theory. It is
shown that the one-dimensional theory, as opposed to the two-dimensional theory, leads to
underestimated values of the velocity of a thermal instability. The size effect modifies the
propagation conditions of a normal zone to the greatest extent as the heat-transfer coefficient
increases. This law is based on an increase in temperature at the center of the wire with

a simultaneous decrease on its surface, as a result of which the mean temperature over the cross
section of the composite increases as its radius increase4.998 American Institute of
Physics[S1063-784£98)01001-0

Providing conditions for the stable operation of thethe processes taking place. In this context, in the present
current-carrying elements of superconducting magnetic syswork we investigated the features of the irreversible propa-
tems is one of the main problems in technical superconducgation of a thermal instability along a composite.
tivity. The formulation of these conditions is based on inves-  Let us consider a cooled superconducting composite of
tigations of the processes taking place in the current-carryingil’cmar cross section with a current uniformly distributed
elements as a result of the appearance and development @f€r its cross section, which is immersed in a constant ex-
instabilities of various nature. A significant role in under- ternal magnetic field and placed in a coolant with an as-
standing the physical features of these phenomena is p|ay(§_igned temperaturg,. We describe the variation of its ther-
by the theory of thermal stabilizatidrf. Its main assump- mal state within the model of a Conti_nuous medi_um W_ith
tions were formulated within very simple one-dimensionalt€mperature-averaged parameters using a two-dimensional
models. This made it possible to obtain the principal criterigfduation of the forrh
for the stability of a superconducting state, such as, in par- 2 2
. . e g aT o°T 19/ oT |
ticular, the stationary-stabilization conditband the equal- C—=Ag——+\,— —< r —> +—p(T),
area theorerfi.In addition, analytical expressions have been dt ax? rFory or Sh 1)
derived in the one-dimensional approximation to calculate
the velocity of a normal zone in the case of irreversible
propagation along a superconductof,the stability of the Herec is the volumetric specific heat of the composikg;
superconducting state of current-carrying elements towarend\, are the thermal conductivities in the respective direc-
thermal perturbations has been analyzed as a function of théns; | is the currentS is the cross-sectional area(T) is
duration and spatial extent of the sources of external hedhe effective resistance of the composite
releasé:® and the critical energies of the permissible pertur-
bations have been determined with variation of the percent-
age of the superconductor in the composftés properties, T-Tc
the induction of the external magnetic field, and the tempera-  ,(T)=p{ Tcg—Tc'
ture of the coolant'? However, the details of the develop- |
ment of a normal zone in a composite stipulated by the pres- 0, T<TC=TCB—(TCB—TO)I—,
ence of transverse heat flow are disregarded in one- c

dimensional model§}'* Another factor that is not so wherep, is the resistivity of the matrixJ g is the critical
obvious at first glance, on which the conditions for the thertemperature of the superconductor at zero current in the as-
mal stabilization of current-carrying elements depend, is th&igned magnetic field, ant is the critical current of the
variation of the temperature of the surface of thecomposite at the temperature of the coolant.

composite® Therefore, further development of the theory of In assigning the necessary initial and boundary condi-
thermal stabilization should be based on solving problemsions we start out from the following assumptions. Let a local
which take into account the multidimensional character ofsite in the composite be heated instantaneously to a tempera-

t>0, 0O<x<l, 0<r<ry.

1, T>Tcg,

Tes=T=T¢g,

47 Tech. Phys. 43 (1), January 1998 1063-7842/98/010047-05%$15.00 © 1998 American Institute of Physics 47



ture above the critical temperatufe in the initial moment the so-called thermal-stabilization parameter(the Steckl
in time as a result of heat release that is symmetric wittparameter
respect to the coordinate origin and uniformly distributed )
over the cross section. Such a change in the thermal state can 1cPo
occur under the action of numerous irreversible mechanical  *~ hpSTcg—To)
loads, to which current-carrying elements are subjected. In )
addition, we take into account that the thermal state of th&y the expression
terminal regions will not have an influence on shaping the
. o ; 1S
thermal wave in the composite, if the total spatial extent of ,=_- _—
the composite is many times greater than the so-called MPZ B pL;
length? We also assume that heat transfer with a constan(tp is the perimeter being coolgd

heat-tra_nsfer coefficiertt takes place on the sgrface of the. Problem(3) enables us to investigate the principal physi-
composite and that the end surfaces of the cylinder are MaRal features of the kinetics of a normal zone with consider-

tained at the temperature of the coolant. ._ation of the size effect. A finite-difference method was used
. According to the. assumptions presented above, the N5 solve it because of the piecewise-linear dependence of the
tial boundary conditions have the form effective resistivity of the composite on the temperature. The
propagation rate of a thermal instability along a composite in
the form of a typical temperature wave was determined nu-
To, X>X1, merically with consideration of the qualitative features of its
formation®
—0. (2 First, it was taken into consideration that a temperature
wave forms under the action of a thermal perturbation,
whose energy exceeds a certain threshold value, which de-
We introduce the dimensionless variables scribes the upper limit of permissible perturbations. To illus-
trate this, Fig. 1 presents curves which show the temporal

X=x/Ly, R=rlL,, i=l/l¢, variation of the spatial extent of a normal zone in the central

part of a composite and on its surface, which is determined

T= Axt/(cLﬁ), O=(T—To)/(Tcg—To), from the equatio® (X, ,R,7)=1—i, for various initial tem-

peratures of the region of the composite that is in the normal
where state. The calculation was performed for the following pa-
rametersL =100, 8=0.1,i=0.9, R;=2, andX;=1. It is

L=\ S (Tes—To)18p0) 2 seen that in the case under consideration the thermal insta-
bility acquires an irreversible character when>1.7.

Second, since the velocity of a temperature wave does
fiot depend on the character of the initial perturbation, the set
of the transcritical parameted§; and ®, can take arbitrary
values when the velocity is determined numerically. The cor-
responding plots of the temporal variation of the spatial ex-
tent of a normal zone are constructed in Fig. 2 for the case of
irreversible propagation along the composite for 100,
B=0.1,i=0.9, Ryp=2, ©,;=1, and various values of the

T,=const, 0Osx=xy,0sr=rg,

T(x,r,0)=[

aT
:0, T|X:|:T0, )\ra_r'i'h(T_To)

x=0 r=rq

which permit simplification of the analysis being performed
by using generalized variables that do not depend on th
heat-transfer coefficierf After the new variables are substi-
tuted into Eq.(1) and condition(2), we obtain

a®_52®+1a 90
a1 gx2 RIR\| 4R

1 0>1, initial spatial extent of the normal zone. This figure graphi-
L) O—1+i cally demonstrates the formation of a thermal wave and its
+i2 —— —-i=0=<1, ; ; i ;
i ' propagation with the same velocity for various values<gf
0 O<1—i when the latter is virtually independent of the location of the
' ' point in the radial direction, in which the velocity is deter-
mined.

@(X,R,O):{(al’ OsX<Xy,  0=R<Ry, 3) Third, to completely eliminate the influence of the tran-
0, X>X1, sient process preceding the formation of the thermal wave,

its velocity was determined only after the distribution of the

90 _ _ 90 _ temperature over a cross section of the composite in the most

~ =0, O|x- =0, —5+B0|g_r =0, : .

Xy JR 0 strongly heated part scarcely varied with tirfeig. 3. In
other words, we took into account states that are sufficiently

whereL=1/L,, Ry=rq/L,, X;=X;/Ly, and distant from the initial moment in time, which are asymptoti-
cally close to the steady-state distribution of the temperature
_ hS [Tcg—To of the thermal wave.
B= K \rPo The features noted enable us not only to reduce the error

in the numerical determination of the velocity of a thermal
is the dimensionless heat-transfer coefficient. It is related tinstability on the basis of the solution of the nonstationary
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FIG. 1. Propagation of a normal zone
atR=0 (—) andR=R, (——*—)

under the influence of perturbations
with an energy close to the critical

value. ©;: 1—1, 2—16, 3—17,
ﬁ 4—2.
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FIG. 2. Propagation of a normal zoneR#0 (—) andR=Ry (——*—)
under the influence of transcritical perturbatiols: 1—5, 2—10, 3—20.
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heat-conduction equation, but also to avoid a priori assign-
ment of the temperature of the composite surface.

Figure 4 shows calculated plots of the dimensionless
propagation rate of a thermal instability as a function of the
transport current for various cooling conditions and wires
with two characteristic radius values: a thermally thin com-
posite Ry=1, Fig. 48 and a thermally thick composite
(Rp=10, Fig. 4h. The dotted line shows the results of the
corresponding calculations according to the one-dimensional
model*®

As would be expected, the velocity of the thermal wave
in a thermally isolated composit@& 0) does not depend on
its transverse dimension, since the thermal state of the
current-carrying element is uniform over a cross section. At
the same time, the difference between the velocities of a
normal zone calculated according to the one- and two-
dimensional models for cooled composites depends on the
value of 8 and the transverse dimensions. For example, the
dependence o¥/(i) for a thermally thin wire in the two-
dimensional approximation slightly exceeds the correspond-
ing values in the one-dimensional model over a broad range
of variation of the current. However, thermally thick current-
carrying elements display significant disparity between the
one- and two-dimensional theories. This difference can have
not only a quantitative character, but also a qualitative char-
acter because of the significant increase in the calculated
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FIG. 3. Increase in the temperature of a composite in the cross sections
X=0 for X;=5 (—) andX;=20 (- — — .

two-dimensional values of the velocity of a normal zone. 70}
Switching from the one-dimensional model to the two-
dimensional model results in a significant decrease in thi
range of currents with negative velocity values, which corre-
spond to stable superconducting states. Therefore, if the trai 0.5
sient processes in a thick current-carrying element are inve:
tigated on the basis of one-dimensional models, and, i
particular, the states which are stable toward arbitrary pertui
bations(at V<0) are determined, under real conditions with
the parameters under consideration it can be in a metastat 295 / 0.5 / 101
/

state >0).
The laws noted are based on the corresponding variatio
of the thermal state of a composite in a cross section, whic /
is not taken into account in the one-dimensional theoryBAs -5 51 |
increases and, particularly, as heat transfer improves, tk ]
temperature distribution in a cross section becomes more
nonuniform. As a result, the temperature increases in thelG. 4. Dependence of the velocity of a normal zone on the current calcu-
central portion of a thick composite and decreases on thited according to the one-dimensionat — - - and two-dimensional
surface(Fig. 3). Therefore, despite the fact that in the two- models.
dimensional model, in contrast to the one-dimensional
model, there is a conductive heat flow in the transverse di-

rection, the mean temperature in the most strongly heated i2R, i2R2
part increases. To more rigorously prove this claim, let us O p(R)= ﬁ(l"_BRO/Z)_ 2
consider the problem
which can be used to easily determine the mean temperature

1d[ dOny .

— i2=0 over the cross section

R dR dR '

1
de 0 =—f® wd5=i12(a+R2y.
dgax+ﬁ®ma4 =0, < > S s m 0/8)

R=Ro Furthermore, the expression shows that, as opposed to

which describes the distribution of the temperature in a crosthe corresponding one-dimensional value, which equéfs
section of a composite that is in the normal state after a largeonsideration of the size effect leads to a monotonic increase
time interval has passed. Its solution is a dependence of tha (@) with increasingR,. The dependence &f(i) is modi-
form fied accordingly.
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Surface plasmon—phonon polaritons of hexagonal zinc oxide
A. V. Mel'nichuk, L. Yu. Melnichuk, and Yu. A. Pasechnik

Ukrainian State Pedagogical University, 252030 Kiev, Ukraine
(Submitted May 21, 1996
Zh. Tekh. Fiz68, 58—62(January 1998

The anisotropy of surface plasmon—phonon polaritons of the first and second types in hexagonal
zinc oxide is investigated at various electron concentrations and orientations ©f akis

of the crystal relative to its surface. It is shown that surface plasmon—phonon polaritons of a third
type are generated when the electron concentration in ZnO is greater ¥B®2cm 3

and the orientation correspondsKa C andxyL C. The spectrum of the surface plasmon—phonon
polaritons of the third type are calculated, and the conditions for the existence of surface
plasmon—phonon polaritons of the third type in ZnO single crystals are determinet99®
American Institute of Physic§S1063-784£08)01101-5

The interaction of electromagnetic waves with the latticesponding toKIIC andxyllC. The spectra were recorded with
vibrations of a film and a substrate alters the spatial structuran air gap of thicknesd=26 (curves1 and 2) and 3 um
of the fields, the existence regions, and the dispersion reldeurves3-5) between the ATR element and the sample, and
tions of various surface excitations of the solid-statewith the angles of incidence of the IR radiation in the ATR
system'? The surface plasmon—phonon polaritons ofelement indicated in the captions to Fig. 2. The minima on
heavily doped anisotropic semiconductors were first investithe spectra correspond to the frequencigg,=408, 450,
gated in Ref. 3. The number of dispersion relations for sur496, 518, and 527 cit, and the widths of the spectra are
face plasmon—phonon polaritons in a uniaxial semiconductoFs=32, 27, 22, 17, and 15 cn. Curve 8 was calculated
depends on the charge-carrier concentration and on the otissing the data on the ZC1M samgigith an electron density
entation of theC optical axis of the crystal relative to itsy ~ No=4.2x 10" cm™3) for polaritons of the third type.
surface. The experimental dispersion curves of the surface The v¢(K) curves(Fig. 1, solid curveswere obtained
plasmon—phonon polaritons in heavily doped hexagonal silifrom the expression
con carbide(SiC 6H were obtained in Ref. 4. However,
their differences are determined predominantly by the anisot-
ropy of the electron effective mass in SiC 6H. In the present
work the anisotropy of the surface plasmon—phonon polari-
tons of a hexagonal zinc oxide single crystal was investiwhereK,=Kc/w, w is the angular frequency; is the fre-
gated with various orientations of th@ axis of the crystal quency of the radiation, ang, (v) ande(v) are the dielec-
relative to its surface. The mutually consistent parameters afic functions of ZnO in the directions perpendicular and
the model of ZnO obtained in Ref. 5 were used in the calcuparallel to theC axis.
lations. Equation(1) was written forK L C andxyL C (curve?2).

Zinc oxide crystallizes in the wurtzite structure with If £ (v) ande (v) are interchanged, the,(K) curve(curve
space groupC‘g\,(P63mc).6 Experimental modified attenu- 1) can be obtained using@). Curvesl and?2 in Fig. 1 cor-
ated total reflectionlATR) spectra of ZnO polaritons were respond to extraordinary surface polaritons. Ordinary polari-
obtained using an IKS-29M spectrometer and an NPVO-2ons appear whe L C and xyllC. Equation(1) is trans-
adapter. A KRS-5 semicylinder with a refractive index formed by replacing , (v) by ¢,(v) (curve3).
n=2.38 was selected as the ATR element. The dimensions Agreement between the calculated and experimental data
of the ZnO single crystals (2088 mm) allowed us to was achieved when the optical parameters of ZnO obtained
obtain spectra in polarized radiation with various orientationon the basis of a dispersion analysis of the reflection spectra
of the C axis relative to thexy surface. of the Z0O2-3 sample with an electron dengiy=9.3x 10

Figure 1 (point9 shows three experimental dispersion cm 2 were used in the calculation and the anisotropy of the
curves ofvg(K) for the ZO2-3 sample, which correspond to electron effective mass in ZnO was taken into accauFte
the high-frequency ™ branches of the polaritorfsCurvel  frequencies of the plasmon—phonon mo@asves2 and3)
was obtained folK||C andxylC. The dimensionless wave are 548 and 560 cit, respectively, and the plasma resonant
vector q=Kc/ oy, whereK is the wave vector of the sur- frequencies arev,, =90 cm! and vp =100 cm't (for
face plasmon—phonon polaritortsis the speed of lighty;;  ELC andEIIC).
is the angular frequency of the transverse optical phonon Equation (1) enables us to obtain two dispersion
whenE|IC, andE is the electric vector of the infrared radia- branches in analogy to the isotropic case. The high-
tion. Curve2 is a plot of »(K) for KLC andxylL C, and frequencyr* branch begins at= vy, , and wherkK> w/c,
curve3is for KL C andxylC. vs asymptotically approaches the value corresponding to the

Figure 2 presents the experimental spectra of the ZO2-8olution of the dispersion equation with neglect of the lag,
sample for the orientation of the ZnO single crystal corre-e, = —1:

K2=[e\(v)—e, (v)e)()][1—e&, (v)e (v)], 1)
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FIG. 1. Dispersion curvesy(K) for

k) the surface plasmon—phonon polari-
5 460 tons of ZnO (the ZO2-3 sample,
- ne=9.3x10 cm3%). 1—KIC,

xyllC; 2—KL1C, xyLC; 3—KLC,
xyllC; a—KIIC, xylC.
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KL'/(IJT"

vo= (URYHeR, + &y, £ [(6 +E,)2- 483, £, 1732 Pl =0 el )0

&, =[(1+50)/(1+e00) 144, e (01)=1 (@)=L

()
&5 =e00 v /(1 +e0q). v = (U2 (v, )%+ (vp )2 £ [ )P
The low-frequency ™ branch exists for all values ¢f. +(vp )22 = A(wpy ) (v, ) AYRY2 4
The polaritons investigated appear under two sets of condi-
tions: The maximum number of branches can be 4. When
) K> wl/c, their frequencies asymptotically approach the cut-
1)e, <0, £<0; 2)e,<0, g>K;. (3 off frequencies corresponding to the solutions of the equa-

In contrast to the isotropic case, new branches appear PN €1&=1. Only the portions of the curves which lie in
ZnO whenKIIC andxyilC. The number of existence regions '€9ions of the ¢,K) plane where condition3) hold corre-

for them depends on the electron density in the conductioriPOnd to surface polaritons. The relatiore, =1 is a fourth-
band and on the relative positions of the , |, v, |, order equation with respect i, but only one, two, or three

VoL, VI,”— , a“dﬂf’\f signals. The last eight quantities are solutions lie in regions where, <0, i.e., they are confined

defined by the relatioris to finite values ofK. _ _
In the isotropic case an ordinary polariton has one low-

frequencyr™ branch, which begins at=0 and increases up

to v~ asK—oo. The dispersion curves of the surface polari-

tons have two branches? '~ (K). Figure 3 shows they(K)

curves of ZnO forK|C and xyllC. Ordinary polaritons ap-

pear in this orientation. Calculations of the dispersion curves

were performed in reference to the ZOZ2eirves1 and 2)

and ZO1-3 sample&urves3 and4). Curvesl and 2 were

a8 obtained forv,, =90 cm 1, and curves3 and 4 were ob-

I tained for v, =240 cn*. Thus, we haver,;=561 cm*

w0 2900 4z = 7 -+ and v;;=59 cm!, and when Kc/wp—», we have
v,om™" =578 cm* and v ;=152 cm . The subscriptpf is

used for the cutoff values corresponding to the values of

FIG. 2. ATR spectra of Zn@the Z02-3 sample|IC, xyilC). 1,2—d=26, ™'~ obtained according to Ed2). The calculations show

3-5—3 pm; 1-5—a=25.3, 28, 34, 42, and 52°, respectiveliy=32, 27, that the frequencies of the polaritons are higher, the greater is

22,17, and 15 cm; 6,7—calculation:d=72 and 49um, yu=11 M % o ncentration of free charge carriéetectrons in ZnQ

@g=25.2°;a,=25.7°;vg=401 cm !, ;=423 e}, ', =12 cm 1; 8—

calculation for the ZCIM sampleyy,=6 cml, y, =yy=1 cm, Curvesl1-4 correspond to polaritons of the first type, which

a=28°, andd=26 um. exist for anyK2>1 (Ref. 7.

I,
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FIG. 4. Dispersion curves aofy(K) for the surface plasmon—phonon polari-

FIG. 3. Dispersion curvesg(K) for the surface plasmon—phonon polaritons tons of ZnO wherK L C andxyLC.
of ZnO whenKL C andxyllC.

width d=26 um. The minimum of the spectrum of the third
For ZnO we havery<wvr, <v<v_,, and thery(K)  type was atr3=312.5 cm * whenKc/wr=0.92.
dispersion curves begin at the frequencies on the optical line The anisotropy of the polariton is manifested when

w=Kc: Kc/wp>1.2. For example, it is manifested when
Kc/wp=26vs=18 cm! (curves 1 and 3). As K—00,

v=0; v=vr (e, =00 and (5)  curvesland2tend to 548 cm?. Figure 1a shows the part of
V:Q\T . =0 (g,=1). the v4(K) curve in the frequency range 380—420 chon a

magnified scale. Surface plasmon—phonon polaritons of the

For zinc oxide single crystals nonfulfillment of the con- second type, whose existence is restricted by the conditions
dition Q" <v<w| leads to the presence of only three dis-&,(»)<0 ande,(»)>K2 (Ref. 7) are exhibited in this range
persion branches ofy(K). Figure 4 shows theg(K) curves  up to 412 cm®. The points show the experimental data for
for the ZC1M sample, in whichy,, =605 cmt and  the frequencies, of surface plasmon—phonon polaritons of
v =650 cm . The calculation reveals the existence ofthe second type, which are consistent with the calculation;
three dispersion curveqcurves 1-3). Here we have the v4(K) curves of polaritons of the first types,(v)<0
vp=719 cm* (curve 1) and v,;=305 cm* (curve 2).  and e,(v)<0] begin at 412 cm?, and the experimental
Curve3 begins at(), =309.9 cm ! for Kc/wp=0.815 and  »¢(K) curve(curvel) is continuous. We simulated the spec-
ends atv| =318.4 cm ! for Kc/wr,=1.632. Curve3is pre-  tra of polaritons of the first and second types on a computer
sented on a magnified scale in Fig. 5a. at points near 412 cnt (the “stopping point”).2 The spec-

Figure 5 shows the dispersion curves of the surface potra were calculated foK||C and xyllC at the frequencies
laritons of ZnO whenv, =1300 cm ! and v, =1430  vg,=411 cm ' and vg,=413 cm® with gaps equal to
cm™ L In this casev,=1273.7 cm ', andv,;=363.6 cm*  d=72 and 49um and the damping coefficient of the
when Kc/wr—00. Herevg(K) (curve 3) begins at 363.8 transverse-optical phonong,,=11 cm! (Ref. 5. Here
cm ! and tends ta3=390 cm ' asKc/wr—00. The cal-  Kgp=Kc/wp=1.10415, anK gp;= K¢/ wp = 1.11054. Both
culation of v¢(K) for ZnO with v,, =1500 cm! and  spectra have the same intensity at the minimum and the same
vp=1650 cm' gives v;=1450 cm' and v,=367.7 width I';,=12 cnm*. The spectra practically overlap each
cm L. The cutoff frequency of the third dispersion curve is other, indicating that surface polaritons of the first and sec-
v3=2395.5 cm L. The third branch ob((K) for ZnO differs  ond types are generated simultaneously in the presence of
from the v4(K) curves previously investigated in anisotropic damping at an emission frequency of 412¢m
crystals. When the data for the ZC1M sample were used The experimental spectrum with a minimum at 408
(Fig. 4), a spectrum of the third type was calculat&iy. 2, cm™? hasI’ ;=32 cmi 1, which corresponds to the damping
curve 8). The spectrum was obtained foy,n = ypn=6 coefficient of surface plasmon—phonon polaritohg,= 4
cm 1, Yoo =Ypi=1 cm %, an anglea=28°, and a gap cm ! The cutoff frequencies are determined using &.
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e, =0.If v, >vq, thenvy(K) exists at alkK> () /c. Since
- 0, =301.1 cm !, polaritons of the third type begin to be
exhibited atv,, =550 cm 1. The condition for the existence
& &=1 of the polaritons of the third type of ZnO is 550 ¢t
3 <vp, <1077.3 cm'. Figure 4 shows the,s(K) curve of
polaritons of the third typéthe ZC1M sampleat v, =605
=0 cm . In this case v, =306.5 cm?!, Kc/wp=0.017
318 (5,=0), Q;=309.9 cm?, Kc/wy=0.815 ,=1), and
360 LS g v, =318.4 cm !, Kc/w=1.632 €, =0).
; 3 a The polaritons of the third type of the ZC1M sample
v exist in the frequency range 306.5-318.4 ¢mThe disper-
B g - sion curves ofvg(K) in Fig. 5 were obtained for ZnO in the
) orientation corresponding t&1 C and xyL C at vo>v,
sl B (v >wvq)), where the cutoff frequency;=390 cm 1. At
o _éllf_o__ v, > vy polaritons exist wherKc/wy— . The condition
06 I I S N B | for their existence at frequencies frdij to vy is similar to
- 0.8 1.2 16 Kefwy  &=7 the case of polaritons of the second type, and polaritons of
&=0 the first type appear in the range from, to v, . The low-
360 frequency v (K) curves of the polaritons begin at>0,
| i ] 1 5 . . D
7 15 2 where KX.>1. As the carrier concentration is increased,
Ke /o,y vs(K) varies from 0.54 to 9.5 cm'.
In summary, we have investigated surface plasmon—
FIG. 5. Dispersion curves(K) for the surface plasmon—phonon polaritons phonon polaritons of the first and second types in doped
of ZnO whenKLC and xyLC. 1—v;;=1273.7 cm?, 2—v,;=363.5  anisotropic single crystals of zinc oxide with various orien-
om *, 3—v;=390 cm %, ,=363.8 cm *; vy =363.6 cm " a—vy(K) of  tations of the wave vector relative to the surface and optical
tvr:’ jgggcfmﬂ":"sy”;:gggocnrg,”l ?t%lgr;?fMOLaﬁgp?éisi? 4"an, Cl axis of the crystal. We have shown that a new dispersion
Kclon=1632 :=0), O =309.9 cm’ Kc/wy=0.815 @=1), CUrve for polarltons_ of a third type forms in 2[10 when the
v =306.5 cm % Kc/wn =0.017 (£,=0). electron concentration is greater thar 20' cm™2 and the
orientation corresponds 1 C andxyL C. We have deter-
mined the existence conditions for polaritons of the new type
Curve2 in Fig. 1 corresponds to they(K) curve fork LC ~ and have calculated their dispersion relations and spectrum.
andxy.L C. It begins at 412 cm'® and tends to the frequency
v;f=548 cm'! as Kc/wy—. Polaritons of the second
type can be displayed only when <0 ande,;>K33. Inthe  1g £ venger, vu. A. Pasechnik, O. V. Snitkb al, Pisma Zh. Tekh. Fiz.
case of ZnO the existence region of polaritons of the seconds, 1128(1979 [Sov. Radiophys5, 471 (1979)].
type is restricted to the range 380_412_MF|9 19. They 2], 1. Burshta, Yu. A. Pasechnik, and O. V. Snitko, Zh. Tekh. Biz.423

e : : (1987 [Sov. Phys. Tech. Phy82, 256 (1987)].
are exhibited when the orientation of the sample correspondgl_. E. Gurevich and R. G. Tarkhanyan, Fiz. Tverd. Télaningrad 17,

to KIIC andxylC. _ _ 1944(1975 [Sov. Phys. Solid Staté7, 1273(1975].
The v¢(K) dispersion curves begin ai=0, v=vg, 4Yu. A. Pasechnik and E. F. Venger, Poverkhng8)’ 63 (1982.
(e, =00) and atV:QH* , V:QH* (gy=1), which coincide SA. V. Mel'nichuk, L. Yu. Mel'nichuk, and Yu. A. Pasechnik, Fiz. Tverd.

with the straight inew = Ke. The dispersion curves o(K) o] &0l TEE SIS 5ot 05, o mreparation and Optica
for the polaritons of the third type, which are displayed only propertiesfin Russiai, Nauka, Moscow(1984).

in anisotropic crystals at charge-carrier concentrations abovéV. V. Bryksin, D. N. Mirlin, and 1. I. Reshina, Fiz. Tverd. Telgenin-
a definite value, are of special interest. The existence regiongdad 15 1118(1973 [Sov. Phys. Solid Stat&5, 760 (1973].

of »(K) for polaritons of the third type is bounded by the - Falge and A Otio, Phys. Status SolidbB 523(1973.

straight linegy=1 and by the straight linew=Kc and Translated by P. Shelnitz
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Relationship between the electronic properties of the interface and the interphase
interactions in NbN—-GaAs heterostructures

A. A. Belyaev, E. F. Venger, V. G. Lyapin, R. V. Konakova, V. V. Milenin,
and Yu. A. Tkhorik

Institute of Semiconductor Physics, Ukraine Academy of Sciences, 252650 Kiev, Ukraine

I. Hotovy

Slovakian Technical University, Bratislava, Slovakia
G. N. Kashin

Institute of Surface Chemistry, Ukraine Academy of Sciences, Kiev, Ukraine
(Submitted August 13, 1996
Zh. Tekh. Fiz68, 63—66(January 1998

Peculiarities of contact formation in the system NbN—GaAs upon a change in the structural-phase
state of the deposited metal are investigated. It is shown that the role of the chemical factor

in the processes of contact formation decreases as the degree of structural perfection of the NbN
alloy increases. The causes of the corresponding changes in the electronic structure of the
interface as a result of the phase transition NbNsN\pare discussed. The Auger spectrum and
current—voltage and capacitance—voltage characteristics of NoN—-GaAs surface-barrier

structures are measured before and after annealing in vaculim &0 °C for 10 s. ©1998
American Institute of Physic§S1063-78428)01201-X]

INTRODUCTION differ from those of the phasees in cont&ct.In order to
experimentally justify these conclusions, in this paper we

Despite active efforts directed towards clarifying the fea-investigate how the structural-phase state of the metal con-
tures of the interactions between metals and the semicondutact affects the characteristics of a NoN—GaAs Schottky con-
tors that are widely used in practical applications, at this timeaact.
there is no universal model capable of qualitatively describ-
ing or predicting the parameters of the Schottky barriers that
form when they come in contact. This state of the problem iEXPERIMENTAL METHOD
due to the extreme complexity of the processes that take Layers of NoN (i=100-150 nnj were obtained by re-
place when a metal is deposited onto a semiconductor. lactive sputtering of Nigpurity 99.95% in a mixture of argon
general, these processes include diffusion-induced mixingnd nitrogen onto a substrate oh-type GaAs:Te
and chemical interactions between the components of then=5x10'® cm~3) with (100 surface orientation.Before
heterojunction pair, which lead to chemical heterogeneity othe sputtering, the substrate was etched iR®, : H,O and
the interphase boundary, and the formation and decompos¢hemically cleaned in a solution ¢1:10) NH,OH : H,O.
tion of solid solutions(alloys) in the transition layer of the The structures of the niobium nitride films were investi-
contact. Neither the intensity and direction of these processegated by x-ray phase analysis. Data on the physical and
nor the structural states of the reaction products can be prehemical composition of the substrate surfaces prepared for
dicted from the bulk state diagrams, because the thermodysputtering were obtained using x-ray photoelectron spectros-
namic constants at the surface of the semiconductors diffexopy. The character of the distribution of atomic components
from their corresponding values in bulk. Symmetry breaking,in the NobN—GaAs heterostructures was determined by layer-
changes in the atomic force constants near the semiconductby-layer Auger analysis. The electrical parameters of the
surface, and the presence of electric and mechanical fields Burface-barrier junctions were studied by current—voltage
the reaction zone of the contact all cause significant changesnd capacitance—voltage characteristics. The diode and test
in the thermodynamic and kinetic parameters of the interactstructures were subjected to annealing for 10 s at
ing phases. T=800-950 °C in vacuum.

These facts give us grounds to assert that the processes
of interaction betwee_n a metal and_ a semiconductor dgper‘gESULTs AND DISCUSSION
not only on the physical and chemical state of the semicon-
ductor surface but also to a considerable degree on the state Typical photoelectron spectra of the gallium arsenide af-
of the thin-film condensate, its structural and morphologicaker chemical processing and washing in deionized water in-
characteristics, and its “reactivity,” all of which can change dicate that the dominant phases present at the surface of
the intensity of diffusion processes and phase formation irGaAs prepared for sputtering are: &4 (the binding energy
the contact. One consequence of this is the appearance Bf, of the 2p%? electrons of Ga is~1118.4-1118.9 eV,
transition regions with structure and chemical contents thaarsenic (for which Ey~40.7-41.6 eV}, and AsO;
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(Ep=44.2 e\). The Ga: As concentration ratio is substo- 0.70 a
ichiometric (=0.9), and the oxygen content reaches 80 at. % -
in the subsurface layer. 065
When magnetron sputtering is used to deposit layers of g
niobium nitride on such a chemically heterogeneous surface, s odéor
the data from x-ray structural analysis depend on the content ”-_; s
of nitrogen in the working gas mixture. At nitrogen concen- 0551
trations less than 5% or more than 20%, diffraction phase i : Illﬂ
gnaIyS|s dpgs not r.eveal qystgllographp p'hases. gorrespond- 050 " ——T
ing to stoichiometric modifications of niobium nitride, and Py 1 T T T T
the film structure is amorphous in this case. At intermediate ] 50 750 850 950
nitrogen concentrations the deposited layers have a polycrys-
talline structure consisting of grains of the NbN phase, with 20 b
a phase-centered cubic lattice whose lattice constant varies -
with the nitrogen concentration in the film. The facts that the 181
ratio of atomic radii of nitrogen and niobium is 0.59 and that i
the solubility of nitrogen in niobium is small indicate that M
layers deposited under these conditions are typical interstitial i
phases with respect to their physical and chemical properties. 141
Annealing at a temperature of 850 °C leads to crystalli- i
zation of the amorphous layers of niobium nitride into the 7'2:
face-centered cubic phase of NbN for films obtained with a 1.0 T T I
nitrogen content of 5% in the working mixture, and into the 0 50 o/ )
tetragonal phase for layers obtained at high20%) nitro-
gen concentrations. Thus, depending on the content of nitro- ¢
gen in the working mixture, layers of niobium nitride on 0%}
GaAs undergo various structural transformations under the
same annealing conditions, which indicates that the pro- -5
cesses of nucleation and growth of the layers under these <10 |-
conditions are different. ~
When polycrystalline layers in which the dominant g
phase is NbN are annealed, a structural transition is observed 0 r
with the formation of the phase NHN;.
Not a single case of an intermediate phase including 1077 i I T S N T
components of the semiconductor substrate or impurities— o 50 w0 80 950

oxygen and carbon—was reliably identified. This is a prob- b

lem '|I'T1 nee: of furltherfdetaned mveslt'garf'on- vsis of lay"'C: L Schotiky bartier heighta), ideality factor(b), and magnitude of
us the results of our structural—phase analysis of layzeyerse current folJ,e,=0.4 B (c) versus the annealing temperature for

ers deposited at a fixed discharge power with various nitroNbN-GaAs samples of types I, I, I11.
gen contents in the working gas and subsequently annealed
suggest that our samples can be separated into three groups.
Group | includes samples grown at 5% Montent in the the formation of new products when the components that
working gas. Annealing these samples at 850° for 10 s leadsiake up the heterojunction pair react with one another, and a
to a structural transformation of the amorphous layer to thestructural factor due to peculiarities in the incorporation of
NbN phase. Group Il consists of structures grown at 15% N the film condensate into the semiconductor lattice.
These samples are characterized by a NbN/MNstructural In order to estimate the influence of the first factor, we
phase transition. Group 1l consists of structures grown astudied the distribution of elements in the heterojunctions by
20% N, content; annealing them leads to crystallization oflayer-by-layer Auger analysi€-ig. 2). Our data imply that
the amorphous niobium nitride film into the phase,Nb. there is no appreciable difference in the mixing layers in

Figure 1 shows the results of electrophysical studies oeither the as-grown or annealed structures. No clearly ex-
niobium nitride surface-barrier structures subjected to highpressed features that might indicate the creation of an addi-
temperature annealing. These curves imply that the Schottkiyonal phase were identified in the elemental distribution pro-
barrier parameters and thermal stability depend on the corfiles within the junction region of the contact. The widths of
ditions of preparation of the contacts. This is particualry ob-the junction layers calculated from the data of Fig. 2 in-
vious in the reverse-current characteristics of the diode strucreased in the following sequence: for type |—amorphous
tures, which can change by several orders of magnitude. layer—NNz, 122-134 A, for type II—NbN—NjNz, 210

We can identify two factors that can modify the elec- —257 A, for type l—amorphous layer—NbN, 250-317 A ;
tronic structure of heterointerfaces both as they form andhe widths were not correlated with changes in the electro-
during subsequent anneals: a chemical factor associated wiffhysical parameters of the barrier structures. Therefore, we
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FIG. 2. Profiles of impurity distributions in NbN—GaAs conta@ige I—upper, type Il—middle, type lll—lowgra—as-grown contact, b—after annealing
atT=850°C(10 9.

will assume that the factor connected with the structural stat&chottky barriers. In this case, not only is the structural com-
of the deposited film plays the more important role in thepatibility between the metal film and the semiconductor im-
processes that determine the electronic properties gfortant, but also the degree of disordering of the semicon-
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ductor surface caused by the conditions under which th€ ONCLUSIONS
layers were deposited. The degree of disorder determines the
intensity of mass exchange in the metal—semiconductor sys- (1) The atomic structure of a niobium nitride layer de-
tem, which in turn can change the degree of doping of thé®ends on the growth condition&) polycrystalline films of
subsurface layer of GaAs; evidence for thiexhibited by niobium nitride obtained by magnetron sputtering are, as a
structures of types | and Il after annealing and type 11l before'ule, single-phase3) heat treatment of NbN/GaAs junctions
annealing is the appearance of a voltage-independent segcauses the structural state of the deposited layer to change,
ment that interrupts the linear trend of the inverse-squaréonverting it from an amorphous layer to a crystalline or
junction capacitance versus the applied bias. Moreover, ifecrystallized layer, with the formation of a new phaé®;
polycrystalline films an important role is played by the ratio the best parameters of niobium nitride—GaAs Schottky con-
of diffusion fluxes through the volume of a grain and viatacts are achieved by heat treatment at 850 °C and corre-
intergrain boundaries, which depends on the size of thépond to a film state whose dominant phase igNNb
grains and the layer thickness. Although a systematic and In closing, the authors of this paper who are on the sci-
consistent inclusion of all the circumstances mentionecntific staff of the Institute of Semiconductor Physics, Na-
above will require additional studies, for now we can say thational Academy of Sciences of the Ukraine, express our deep
the best electrical parameters are exhibited by contacts b@ppreciation for joint funding by the government of the
tween GaAs and crystalline N, films, regardless of how Ukraine and the International Science Foundati@rant
the latter phase is formed, i.e., by crystallization of an amorN R5R100, which provided us with support while we car-
phous layer or as a result of a recrystallization NbNried out these investigations.
—>Nb4N3.

Calculations based on the principle of three-dimensional
matching, analogous to those of Ref. 4, show that direct in-
corporation of both N§N, and NbN into the crystal lattice of 1 x w_wu, L. c. zhang, P. Bradlegt al, Appl. Phys. Lett.50, 287
the GaAs substrate is accompanied by the appearance of am9s?. )
appreciable concentration of electrically active defects at the’A- |- Akhinko, E. Ya. Gol'dberg, A. T. Grigor'evet al, Elektronnaya
bo?”_dary’ while qontacts with good electrophysical Ch_arac_3;.ell(.h£;<krﬁn’ske<;; 3 mlf;\?(ﬁllftgnlglfa;e(lga?’ri)ilshsegtg gl?.l'ﬂektronnaya Tekh-
teristics are possible only when the defect concentration at nika ser. 3: Mikrogektronika5(139), 42 (1990.

the boundary is small. *V. N. Inkin, G. G. Kirpilenko, and S. M. Portnov,|&tronnaya Tekhnika
This latter difficulty probably could be addressed by put- SISer- fi M"Sroge":(fon'k%“glﬁr 32 ('1:993- 2 337(199
ting an intermediate monolayer, e.g., of NbAs, between the " HotVY: J- Breka, and J. Huran, Fizika #2), 337(1995.

GaAs substrate and NN, or NbN layer. Translated by Frank J. Crowne
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Production of highly enriched mercury isotopes by a photochemical method
Yu. V. Vyazovetskil and A. P. Senchenkov

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia
(Submitted August 2, 1996
Zh. Tekh. Fiz68, 67—74(January 1998

The Foton-M automatic system for the production of mercury isotopes has been developed in
Russia. The isotopes are obtained by means of a photochemical reaction between excited
mercury atoms and oxygen in the presence of 1.3-butadiene. The possibilities for separating all
mercury isotopes, including those with overlapping resonance line profiles, are examined.

The Foton-M system can produce 98%, 99%, and 99% concentrations of the isotopes Hg-196,
Hg-198, and Hg-202, respectively, in sufficient quantities to meet demand in Russia and

for export abroad. ©1998 American Institute of Physids$$1063-784£98)01301-4

INTRODUCTION is the photochemical reaction between excited mercury at-

oms and oxygen in the presence of 1.3-butadiene. The mer-
There is a steady demand for mercury isotopes in Ruseury atoms are excited by=253.7 nm resonance radiation

sian and in the world markets. One method of obtaining merfrom a low-pressure lamp. This reaction has the maximum

cury isotopes is the photochemical method, which has reselectivity for the separation process, which is particularly

cently seen intensive development. Technologies animportant for the enrichment of mercury isotopes with over-

automatic systentsdesigned to produce appreciable quanti-lapping 253.7 nm line profiles. In addition, the enrichment

ties of mercury isotopes have been developed in Russia. Afrocess can be automated by using various physical and

the time, attention was focused mainly on studies aimed aechnological means so that it can be carried out round the

the development of a technology to produce the rarest, mostiock with minimum supervisory statf

expensive mercury isotope Hg-196. This isotope attracted

interest mainly because of its medical application for the

diagnosis of various diseagemd also to investigate the pos- POSSIBILITIES FOR OBTAINING MERCURY ISOTOPES BY

sibility of using mercury up to 2—4% enriched in Hg-196 to THE PHOTOCHEMICAL METHOD

enhance the luminous efficiency of light sourdes. The isotopic hyperfine structure of the 253.7 nm mer-
The photochemical method of isotope production saweyry resonance line is shown in Fig. 1. It can be seen that
further progress with the development of a technology forynder real enrichment conditions, even when the mercury
Hg-202 enrichment of mercury to a concentration of 99.8%gtom is excited by a fairly narrow radiation line, only the
(Ref. 4. The methods and techniques developed can produggotopes Hg-202, Hg-200, and Hg-196 can be separated from
this high enrichment not only for Hg-202 but also for Hg- the isotope mixture. The other isotopes will be excited and
196 and Hg-200. The Foton-M photochemical systéased  will therefore be separated in groups: Hg-199, Hg-201 and
on the Foton system described earlier was used for thesgg-204; Hg-198 and Hg-201; Hg-199 and Hg-201.
experiments. Furthermore, the radiation line of the mercury lamp used
In some previous studies it was shown that the phototo excite the mercury atoms is not monochromatic. Even if
chemical method of obtaining Hg-196 was more economicathe lamp is filled with mercury enriched up to 99.8% in the
than the electromagnetic techniqudercury enriched in  target isotope, a small percentage of its radiation will excite
Hg-196 was first obtained in 1968 by French researchersother isotopes because of the nonlinearity of the luminous
Their experimental separating system delivered a product erfficiency. The mutual overlap of the emission line profiles
riched in Hg-196 with a yield of around 1 mg/d. Some of the of the lamp and the absorption line profiles of the mercury
main constants characterizing this process were measuregtoms in the reaction cell has the result that the optical se-
Slightly later, some German scientists published studies ofectivity of the process is limited.
various aspects of obtaining Hg-196 by using a photochemi-  The mutual overlap of the resonance line profiles of the
cal mercury oxidation reaction in the presence ofHg-198, Hg-199, Hg-201 and Hg-204 isotopes means that
1.3-butadiené?® The light source in these experiments was adirect excitation of the target isotopes by radiation from a
low-pressure lamp filled with Hg-198-enriched mercury.  monochromatic light source is inadequate to obtain high en-
American researchers proceeded to study the photaichment of these isotopes. However, this does not mean that
chemical reaction between excited mercury atoms and hyisotopes with overlapping spectra cannot be separated by the
drogen chlorid€. The reaction with HCI has a substantially photochemical method. Tested and proven procedures are
higher quantum yield compared with the oxidation reactionavailable to separate all isotopes of mercury photochemi-
but the enrichment factor is lower. cally. Among these procedures, particular mention should be
The technology involved in producing mercury isotopesmade of filtering the light source radiation to suppress that
by a photochemical method has under development in Russ@mponent which reduces the selectivity of the process. The
for some years. The main process used in these experimerdslectivity of the photochemical reaction can be enhanced
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considerably by optimizing the isotopic composition of theeasily be extracted from the mercury depleted in Hg-199,
mercury in the filter, the type and pressure of the buffer andHg-201, and Hg-204 by using suitable light sources.
guencher gas, and the cold point temperature of the filter. In the second procedufethe mercury isotopes are sepa-
It is difficult and frequently impossible to obtain highly rated in several stages. At the first stage, mercury of arbitrary
enriched mercury isotopes without using “negative” enrich- isotopic composition is irradiated by a lamp containing Hg-
ment. Unlike the direct or “positive” enrichment process, 198 and is separated into a mixture enriched in Hg-198 and
where radiation from the light source excites and separatedg-201 and a mixture depleted in these isotopes. The iso-
the target isotopes, in the reverse or negative enrichmenbpes Hg-198 and Hg-201 are separated using a lamp filled
process impurity isotopes are excited and undergo a photavith Hg-199 or Hg-204 or a mixture of these. Using the
chemical reaction. In this case, the valuable product is hosame light source, a mixture of Hg-199 and Hg-204 isotopes
only the mercury enriched in the target isotope but oftenis extracted from the mercury depleted in Hg-198 and Hg-

includes mercury enriched in impurity isotopes. 201. The isotopes Hg-199 and Hg-204 may be separated by
At least two procedures can be proposed to separate alising light sources containing Hg-204 or Hg-196.
the isotopes of mercury. In the first proceditenercury of After significantly modernizing the separator system and

mixed isotopic composition is irradiated by light from a mer- modifying its process cycle, it was found to be possible to
cury lamp containing Hg-199, Hg-204, or a mixture of theseseparate all the isotopes of mercury on an acceptable eco-
isotopes. The isotopes Hg-199, Hg-201, and Hg-204 are themomic basis.
excited and undergo a photochemical reaction. By exposing
this isotope mixture to a lamp containing Hg-198, it is then

. . FOTON-M UNIVERSAL AUTOMATIC SEPARATOR AND ITS
possible to remove Hg-201. The mixture of Hg-199 and Hg-PROCESS CYCLE
204 is then separated using a lamp filled with Hg-196 or
Hg-204. The isotopes Hg-198, Hg-200, and Hg-202 can then A schematic of the Foton-M separator is shown in Fig. 2.

10 DX 12
FIG. 2. Schematic of Foton-M sepa-

D—& 13 rator: 1—compressor2 — reactant

1A g flow rate meter3—gas pressure re-
ducer, 4—cylinder containing reac-

JA A tants, 5—mercury evaporatorf—
—& ! 3 "_ reaction cells,7—isotope collector,
8—mercury vapor density meter,
04

9—mercury vapor trap, 10—
3 forepump, 1A-10A—automatically
11

controlled valves, D1-D3—valves
for fine regulation of the flow11—
manual valve,12—hydrogen, 13—
oxygen.
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In order to obtain highly enriched mercury isotopes, andenriched mercury and the mercury depleted in Hg-198 and
especially isotopes with overlapping resonance line profilesiig-201, which may be used as a raw material to obtain other
the separator must be capable of achieving efficient direamnercury isotopes and also for filling lamps intended for use
enrichment of an isotope or group of isotopes, negative enat the second enrichment stage.
richment, or a combination of these procedures, deep deple- At the second stage, mercury enriched in Hg-198 and
tion of the mixture in one or several isotopes to as low adHg-201 is irradiated by a lamp filled with mercury depleted
fractions of a percent, and there must also be provision fom these isotopes. At this stage the isotope Hg-201 and the
filtering of the lamp radiation if required. other impurity isotopes are separated from the mixture of

The process cycle of the separator consists of six conHg-198 and Hg-201. The residual Hg-198 enriched product
secutive stages. At the first stage the circulation loop is filleds collected in a trap.
with a reactant mixture from the cylinddwia a gas pressure In addition to Hg-198, this two-stage enrichment process
reducer3. The mercury lamps, compressbrand heater of yields Hg-201 and also mercury depleted in these isotopes,
the high-speed evaporatbrare switched on simultaneously. which is a valuable raw material for obtaining other mercury
After the mercury atoms in the reaction cefi$iave reached isotopes.

a given density, recorded by a density meethe system The second method—a single-stage process—is the sim-
switches to the stage where enriched mercury oxide buildplest for the separation of Hg-198 from a natural mixture.

up on the inner surfaces of the reaction cells. For specifitNatural mercury vapor is irradiated by a lamp filled with

applications, the cells may be connected in parallel, in seriesnercury depleted in Hg-198 and Hg-201. In this case, all the
or a combination of both. Mercury depleted in the targetisotopes, except for Hg-198 which is collected in a trap, are
isotopes is collected in a mercury vapor tr@pcooled to  excited and undergo a photochemical oxidation reaction. By
between—50-70 °C. using several enrichment cycles, it is possible to obtain ap-

After this stage has been completed, the heater of thpreciable quantities of highly enriched Hg-198 at relatively
evaporatoi5 is switched off and the density of the mercury low cost. The high efficiency of producing Hg-198 by this
atoms falls by more than an order of magnitude over severahethod can be attributed to the enhanced efficiency of the
minutes. The incorporation of this stage in the process cyclprocess in each successive cycle compared with the previous
substantially reduces the losses of raw material, which i®ne. In addition, the yield increases and the losses of the
frequently extremely expensive. target isotope decrease as the number of cycles increases.

At the next stage, the mercury lamps and compressor are
switched off and the reaction cells are purged with hydrogemIRECT ENRICHMENT OF MERCURY IN ISOTOPES 198
to remove reactants and residual mercury vapor. The meAND 201
cury oxide enriched in the target isotope, which has been
deposited in the reaction cells, is reduced to the metal in fas

hydrogen atmosphere by exciting an rf glow discharge in th%btain Hg-196 and Hg-202. However, because of their over-

cells (this process was described in Ref) 10 lapping absorption lines, enrichment of mercury in the iso-

At the last stage of the process cycle, the inner surfacelsOpes Hg-198 and Hg-201 has various technological charac-
of the reaction cells are cleaned of polymer prodidesiva- teristics and dependences

tiyes of 1.3-butadi¢r)ein an oxygen stream by exciting an rf A lamp filled with mercury enriched in Hg-198 to a con-
Q|scharge. Aﬁer this stage has been completed, a new Worlé'entration of 97.7% was used in experiments to study the
N9 cyple begins. . . direct enrichment of mercury in the isotopes Hg-198 and
Given the technological capabilities of the system,whlchHg_201_ The body of the lamp was made of a chemically
have already been demonstrated in the production of highl re, transparent quartz tube with an inner diameter of 14
enriched Hg-196 and Hg-202 isotopes and are demonstrat m.,A water-cooling jacket, also made of quartz glass, was

here in the separau_on of Hg-1_98, we have every Conf'dencﬁjsed onto the tube over its entire length. Leads with oxide
that other mercury isotopes will also be obtained. cathodes attached to their inner ends were fused onto the
ends of the lamp. The operating mode of the lamp was opti-
mized in terms of the main parameters of the enrichment
process—the yield and the concentration of target isotopes in
It is difficult to separate Hg-198 photochemically be- the product. The temperature of the cooling jacket was main-
cause the absorption line profiles of Hg-198 and one of théained at 22—24 °C and the electrical power consumption of
components of Hg-201 in the hyperfine structure of the 253.7he lamp was around 100 W.
nm resonance line completely overlap under real enrichment Mercury of natural isotopic composition was used as the
process conditions. Nevertheless, a highly concentrated Hgaw material in the first enrichment cycle. In this cycle, and
198 isotope can be obtained from an arbitrary mixture ofparticularly in the following cycles, all the experiments to
mercury isotopes by two methods. The first involves carryingseparate Hg-198 and Hg-201 were carried out with the high-
out the enrichment process in two stages. At the first stagesst possible degree of extractigh of the target isotopes
mercury of complex isotopic composition, such as a naturafrom the raw material. The degree of extraction of the target
mixture, is irradiated by a lamp filled with Hg-198 enriched isotope from the raw material is taken to be the ratio of the
mercury, and mercury enriched in Hg-198 and Hg-201 isyield of this isotope to the amount supplied to the reaction
removed. At this stage the valuable products are both theell during this time.

The method of direct enrichment of mercury isotopes
been fairly well studied and has so far been used to

SEPARATION OF THE MERCURY ISOTOPE Hg-198 FROM A
NATURAL MIXTURE
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FIG. 3. lIsotope concentration versus number of enrichment cycles:
BM—Hg-198, A—Hg-201, C—isotope concentration, ard.—cycle num-

ber. FIG. 4. Separation factorK versus initial isotope concentration:

BM—Hg-198 andA —Hg-201.

Experience in obtaining the isotopes Hg-196 and Hg-202
by direct enrichment shows that the separation faatate-  ficiency of the separation process depends to a considerable
creases with each successive cycle, i.e., with increasing inextent on the ratio of the fraction of light emitted by the
tial concentration of target isotopes in the raw material. Thémpurity isotopes to the fraction in the Hg-198 absorption
separation factow is defined by the expression line. The technology used to separate Hg-198 may be con-
Cu(1-Cy) sidered to be efficient when the amount of impurity isotopes

a= extracted from the raw material substantially exceeds the ex-
(1-CoCo’ traction of Hg-198. Thus, the preparation of mercury de-
where C, is the initial concentration of the target isotope Pleted in Hg-198 and Hg-201 to fractions of a percent was
(expressed as a fractipand C, is the final concentration of identified as a separate problem.
the target isotop¢also expressed as a fractjon Figure 5 gives the concentrations of Hg-198 and Hg-201
Cycling of the process of mercury enrichment in the tar-in the depleted mercury as a function of the cycle number
get isotopes is used to improve their concentration in thdNc- This shows that the rate of decrease in Hg-198 of the
product. However, very appreciable losses of target isotope§aW material exceeds the rate of loss of Hg-201. The most
as high as 25%, are observed for each enrichment cycle. Iprobable reason for this phenomenon is the incomplete
experiments which were undertaken to increase the concefatching between the emission line profile of the lamp and
tration of target isotopes in the final product the losses fothe absorption line profile of the Hg-201 component, i.e., the
each enrichment cycle did not exceed 20%. center of the absorption line of the Hg-201 component is
The results of these experiments to study the direct enlfadiated by the wing of the lamp emission line.
richment of mercury in the isotopes Hg-198 and Hg-201  Figure 6 gives the yield of the system as a function of
were used to plot the concentrations of these isotopes asthe cycle number.
function of the number of the enrichment cy¢kg. 3), and The decrease in the concentration of Hg-198 and Hg-201
the separation factoks for Hg-198 and Hg-201 as a function isotopes in each cycle means that the depletion process can
of their concentration€, in the raw materialFig. 4).
An analysis of these results showed that whereas the first

and second enrichment cycles are justifiable, the third and 14
subsequent cycles do not produce any appreciable increase in
the concentrations of Hg-198 and Hg-201 and thus, if we 12

take into account the losses, are not economically viable.

The concentration of Hg-198 and Hg-201 may be im-
proved by using a mercury-filled lamp with a total concen-
tration of Hg-198, Hg-201, and Hg-204 isotopes of
0.3-0.4% or less in the direct enrichment process or by using
an optical filter containing mercury depleted in Hg-198 and
Hg-201.

PREPARATION OF MERCURY DEPLETED IN Hg-198 AND
Hg-201 5 '3

A light source containing mercury depleted in Hg-198
and Hg-201 should be used to separate the mixture of thesgs. 5. isotope concentratiod versus number of cycled\, is the cycle
isotopes obtained by the direct enrichment method. The efiumbej: A—Hg-198 andll—Hg-201.
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; : : : : IG. 7. Concentratioi€ of impurity isotopes versus number of cycles,(
be carried out with an increasing rate of evaporation of raV\I};S the cycle number A—Hg-199, B—Hg-200, X —Hg-201, @ —Hg-202,

material and therefore with increasing yield. These data cap;,q ¢ —g-204.
be used to predict the parameters of the preparation process
for mercury depleted in Hg-198 and Hg-201 which may be

used as a valuable raw material for the photochemical prepa- ] . ]
ration of Hg-199 and Hg-204 as well as being used in lightthe choice of various process parameters such as the density

sources and optical filters designed to separate Hg-198. of mercury atoms in the reaction cell. This constraint arises
Mercury containing less than 0.05% Hg-198 and lesdrom the need to maximize the extraction of impurity iso-
than 0.15% Hg-201 was obtained in this experiment. A lamgOPes from the raw material in each cycle.

filed with this mercury was then used to study the negative ~An analysis of these results reveals that the rates of ex-
enrichment of mercury in Hg-198. traction of impurity isotopes differ and are mainly deter-

mined by the light source intensity. The relatively low rate of
extraction of the Hg-199 and Hg-204 isotopes is attributed to
the insufficiently high concentration of these isotopes in the
mercury used to fill the light source.

The high concentration of impurity isotopebig-199, The yield of the system at this stage of obtaining Hg-198
Hg-200, Hg-202 and Hg-204in the product obtained by may be improved after optimizing the isotopic composition
direct enrichment makes it very difficult to obtain highly of the mercury intended for the light source. In order to
enriched Hg-201 from this mixture. Thus, only highly en- equalize the rates of extraction of the impurity isotopes from
riched Hg-198 was separated at the second stage. The initife raw material, the concentrations of Hg-199 and Hg-204
raw material for the second stage was mercury having thg, the lamp should be increased by reducing the concentra-

SEPARATION OF A MIXTURE OF Hg-198 AND Hg-201
ISOTOPES

isotopic composition shown in Table . _ _ tion of Hg-200 and especially Hg-202. A typical isotopic
The raw material was irradiated by a lamp filled with composition for this mixture is given in Table II. The prepa-
mercury depleted in Hg-198 and Hg-201. ration of mercury intended for use in a light source to enrich

At this stage, all the isotopes except for Hg-198 are exthe product of the first stage in Hg-198 does not present any
cited by the mercury lamp and undergo a photochemical oxiparticular difficulties. By using a lamp filled with mercury

dation reaction. _ _ _ containing Hg-200 and Hg-202, mercury depleted in Hg-198
~ Figure 7 shows how the concentratior) (of impurity  and Hg-201 can be depleted in Hg-200 and Hg-202 in a
isotopes decrease as a function of the cycle nurher single cycle, with 65% and 80% of these isotopes being ex-

The h|gh concentration of Hg-201 relative to the Othertracted from the raw materialy respectively.
impurity isotopes in the raw material imposes constraints on

TABLE I. TABLE II.

Isotope Concentration, % Isotope Concentration, %
196 0.2 196 0.2

198 48.1 198 <0.05

199 6.0 199 42.0

200 6.1 200 20.00

201 36.7 201 <0.15

202 1.4 202 18.0

204 15 204 19.6
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TABLE Il1. 30

Isotope Concentration, %

25
196 0.11
198 0.05 20
199 21.33 B3
200 26.87 S5
201 0.15
202 41.93
204 9.58 70
5
1 i i
PREPARATION OF Hg-198 BY A SINGLE-STAGE PROCESS 0 2 ;’7 4 5 8
(4

The single-stage process for the production of Hg-198 is
also highly promising because it can produce highly enriched:lG. 8. Concentratioi© of impurity isotopes versus number of cyclds,(
Hg-198 and also a mixture of isotopes depleted in Hg-198° the cycle number A—Hg-199, M—Hg-200, X —Hg-201, 8 —Hg-202,
. . . . and ¢ —Hg-204.
which can then be used to obtain mercury enriched in Hg-

201.

In_the smgle-s_tage process a mixture of mercury 'S_Ompeﬁﬂost strongly influenced by their concentration in the lamp.
of arbitrary isotopic composition, such as a natural MIXtUre,: oo peen shown that the mercury used to fill the lamp

is exposed to light from a lamp containing mercury depleted,; )14 pe depleted in Hg-200 and Hg-202

in Hg-198 and Hg-201. All the isotopes except for Hg-198 Mercury having a low concentration of Hg-198 and Hg-
are excited and undergo a photochemical oxidation reactior201 was depleted in Hg-200 and Hg-202 in a single cycle
A lamp filled with mercury having the isotopic composition using a lamp containing a mixture of Hg-200 and Hg-202

given |anatr)]I_e Il was used in the experiments to Separat?sotopes. The isotopic composition of the mercury obtained
Hg-198 by this process. as a result of this process is shown in Table IV.

Since the absorption and.emission Iin'es of the Hg-199, The mercury obtained was used to fill a lamp intended
Hg-201 and Hg-204 isotopes in the hyperfine structure of th‘?or a new series of experiments to study the enrichment of
253.7 nm resonance line overlap, the emission from the ng'nercury in Hg-198.

199 and Hg-204 isotope components will excite and convert As was to be expected, lamps containing mercury of
to t_h_e oxide not c_)nly these isotopes buF glso Hg'zm'_"hearly optimum isotopic composition yielded mercury up to
addition to these isotopes, the Igmp radiation also exc'_te§9.2% enriched in Hg-198 within four enrichment cycles.

Hg-200 and Hg-202, and these isotopes should be excited o herating efficiency of the system in the negative

considerably more efficiently than the others because of thegnrichment regime may be improved substantially by various

hlghocontefnthln the'lamp.d. i ; high ich - combinations of the separator cells, for instance, all in series,
ne of the main conditions for a high enrichment efii- ., ;, parallel and the others in series, and so on.

ciency is the efficient removal of impurity isotopes from the

raw material at each stage. This primarily involves optimiz-

ing the operating mode of the lamp. The width of the lampCONCLUSIONS

emission lines should be sufficient to excite two components An automatic system has been developed to obtain

Orr the Hg-_ZOlllisotoFehlinﬁ, tr2134st_ronger %neosggééieddfrorﬂighly concentrated isotopes by a photochemical method, in-
the emission line of the Hg- Isotope by 0. n cluding isotopes with overlapping resonance line profiles.

the other weaker one separated from one of the COMPONeNER, the first time this system has produced considerable

of tr;e Hg-199 ebrpishsicén line l?y 0'01"1 CH; . di quantities of the isotopes Hg-196, Hg-202, and Hg-198 with
t was established experimentally that optimum condi-cq,antrations higher than 96%, 99%, and 99%, respec-

tions are ,aChiEVEd when the I{;\mp temperaturg is 28 °C ah'ﬁ\/ely. These isotopes were obtained with a high economic
the electrical power consumption of the lamp is around 11%fficiency and exceed the demand in Russia
W. Graphs showing the rate of decrease in the impurity iso- '

tope concentration) as a function of the cycle number are

plotted in Fig. 8. TABLE IV.
An analysis of these experimental results showed that

the rates of decrease in the concentrations of Hg-200 and  Isotope Concentration, %
Hg-202 isotopes in the enriched product considerably exceed  1gg 0.3

the rates of decrease in the concentrations of Hg-199, Hg- 198 0.1

204, and especially Hg-201 isotopes. By equalizing the rates 199 421

of extraction of the impurity isotopes, it will clearly be pos- 200 15.1

sible to reduce the number of enrichment cycles and enhance 28; 22'_?

the concentration of Hg-198 in the final product. The degree 204 18.4

of extraction of impurity isotopes from the raw material is
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Potential distribution in a bounded piezoelectric in the presence of the
photothermoacoustic effect
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The photothermoacoustic effect in a bounded piezoelectric is studied theoretically and
experimentally. Calculations are made of the potential distribution over the thickness and the
potential difference in a thin piezoelectric layer as a function of the coordinate of this

layer. The amplitude distribution of the potential oscillations over the thickness of the piezoelectric
reveals two maxima. The phase of the oscillations at these maxima is shifted by
approximately 180°. It is shown that the potential difference on the opposite surfaces of the plate
is zero regardless of the propagation constant of the thermal wave. An experiment was

carried out using a layered disk formed by seven identical piezoelements. The amplitude and
phase shift of the potential difference were investigated for each element at different

light modulation frequencies. The experimental results show good agreement with the theory.

© 1998 American Institute of Physids$1063-78498)01401-9

The photothermoacoustic effect is now widely used tosider the caserh>1, which is closest to the real situation
study materials in various aggregate staten this effect, when a thermal wave is recorded via the elastic stresses by
an object is exposed to modulated light, is heated periodimeans of a piezoelectric transducer. To simplify the prob-
cally by the absorption of optical energy and generates &m, we shall assume that the plate is isotropic in terms of
thermal wave, which is recorded by some means. The amplielastic and thermal parameters. The thermal wave generated
tude and phase of the thermal wave carry information on th@s a result of heating of the piezoelectric by the absorbed
thermal and optical parameters of the object. A sensitivdight propagates in the direction of tleaxis. The plate is
method of recording this thermal wave involves using a pi-free, with vacuum on both sides. We find the distribution of
ezoelectric transducer. In this method the piezoelectric tranghe variable component of the temperature in the plate, ne-
ducer records elastic vibrations, which are created in thglecting the thermal radiation into the surrounding space.
sample as a result of the thermoelastic effe¢arious stud- ~ This involves solving the heat conduction equation in the
ies have been devoted to the piezoelectric recordingresence of bulk heat sources produced by the absorbed light
method®~® However, this topic has not been fully analyzed )
and solutions have only been obtained for various particular Cp@_%@:ap expl — az) (1)
cases because of the complexity of the problem. At the same ot Fria
:grglji,st?:r Zlgil?/?:lzcgﬁytsriiglsil:gce:;srzgtsh?ndsho?%l'\s/g”tﬁ:f i?gva?ogether with the poundary condition.s: the heat fluxes at the
further development is a matter of some urgency. sample—vacuum interfaces are zero:

It was shown in Refs. 8 and 9 that when a bounded J0
piezoelectric is heated nonuniformly, a complex polarization %5 =0 ' )
distribution (with inversion of the sighis observed. This
implies that the magnitude and phase of the signal recordedhere ® is the variable component of the temperature,
from the piezoelectric transducer must depend on the geonRP=(Py/2)(1+ coswt) is the optical intensityg, p, andx are
etry of the sample—transducer system, and especially on tiee specific heat, density, and thermal conductivity of the
ratio of their thicknesses. The potential distribution over theplate material, respectively.
thickness of the piezoelectric transducer in the presence of We assume that all the absorbed thermal energy is con-
the photothermoacoustic effect must be known to optimizeverted into heat. As in Ref. 1, Eq$l) and (2) yield the
the thicknesses of the components of the sample—transduckllowing expression for the variable component of the tem-
system. This aspect is also of independent interest from thperature

point of view of identifying the characteristics of the photoa- _ _
coustic effect in piezoelectrics. Here we report theoretical 0 =00{(aly)lexp(yz) +exp2yh)exp( — y2))/

and experimental studies of this topic. [1—exp2yh)]+exp — az)}exp(i wt),
We consider the following geometiffrig. 1). A piezo- s
electric transducer in the form of a plate of thicknésss o= —aPo/[2x(a”—¥)]; ©)

made of a classg, crystal. TheCg axis coincides with the
axis of the coordinate system, The surfaee0 is uniformly
illuminated by light modulated at the frequeney The co- Assumingah>1 anda> v, and omitting the time term,
efficient of absorption of light by the crystal 8. We con-  we simplify expressiorn{3) to the form

y=I1711+i); l1=(2xlcpw)* 2
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z E=——Tu. )
€33
____________________ _ The potential distribution over the thickness of the plate
Z is given by
3 SR LU [,
z z
de:—f E,dz (9)
0 0
0 y . . .
) Integrating expressiof9) with allowance for Eqs(8),
I (6), and (4), we find the potential distributiotd(z) in the
z .
Light plate:

U(2)~U(0)=[(dg1arEPy)/(e39¢y*(1=»))]
x{z/h+6((cosh yh) —1)/(yh sini(yh))

FIG. 1. Geometry of the problem.

O=Py/(2xy){0, exp(—yz)— O, exp(y2)}, —1/2)(Z%/h?—z/h) + sinh(y(h—2))/
@,=(1-exp—2yh)"1, ©,=(1—exp2yh)) L, sinh(yh) —1}. (10

4 . .
. . (.) It can be seen that the electric potential produced by the
v is the propagation constant of the thermal wave, lgni8  piezoelectric effect is a complex function of the coordinate
the thermal diffusion length. _ as a result of the thermoelastic stresses. An important factor
~ As a result of the appearance of thermoelastic stressefere is that the total potential difference between the oppo-
this heating leads to electric polarization of the plate materiakjte surfaces of the sample=h) is zero, regardless of the
moelastic part of the problem in the quasistatic approximazgrees with the data presented in Ref. 6, in which a similar

tion, i.e., for the case of relatively low modulation frequen- resylt was obtained for the particular case0, i.e., neglect-
cies, when the length of the acoustic waves is much greatgpg effects caused by diffusion of heat.

than the characteristic dimensions of the sample. We shall ~ Formula (10) was used to calculate the amplitude and

also assume that the plate is thin, i.e., its thickessmuch  pnase distribution of the oscillations of the potential differ-
smaller than its other dimensions. In this case, under th@nceU(z)—U(O) over the thickness of the plate for various
action of the thermoelastic forces, the plate undergoes forceghermal diffusion lengthd and various light modulation
oscillations which may be described by the quasistatic theorgrequencies for a particular sample. The results of these cal-
of thermoelasticity. The deformations are then a certain sugy|ations are plotted in Fig. 2. It can be seen from Fig. 2a
perposition of the stretching and pure bending of the plateyhat the amplitude distribution of the potential oscillations
while the elastic stresses may be expressed in the'form  gyer the thickness of the piezoelectriBig. 28 has two
h maxima. The phase of the oscillations varies strongly with
T11:T22:[(aTE)/(1_V)][(l/h)f 0dz+(z—h/2) the coordinate, particularly near the minimum amplitude
0 (Fig. 2b). At the maximum amplitudes df(z) the phases of

h the oscillations are shifted by approximately 180°, i.e., the
X(12h%) fo(z—hIZ)dz—(@], (5 voltage oscillations in these parts of the plate are in an-
tiphase.
where a7 is the coefficient of thermal expansiol, is These results indicate that if<h, then for a certain
Young’'s modulus, and is Poisson’s ratio. ratio of sample and transducer thicknesses the sample—
The temperatur® is defined by expressiof). Using  transducer system may be barely sensitive to the photoacous-
this expression foil 1;, we obtain tic signal. For a more specific estimate of the optimum geo-
Ty=[a7E/(1—v){a, /h+(12h3)(z—h/2)a,— O}, metric relafcior?s fqr this system, we _need_ to know the Iay_er-
by-layer distribution of the potential difference for this
a;=Po/(2xv?), (6) particular case. Thus, we calculated the potential difference

AU in a thin piezoelectric layeAh as a function of the

a;=ayh{(cost(yh) = 1)/(yh sinh(¥h)) - 1/2}. coordinate of this layer:

The electric field inductiorD, in the piezoelectric is

iven b z+Ah/2
given by aU=— [ bz [(arEdyPol (e 1- 1) 7))
DZ: 2d31T11+ 833E2, (7) z—Ah/2
whered,; ande 53 are the piezomodulus and the permittivity, X{Ah/h+1Z (cosh yh) —1)/(yh sinh(yh))
andE, is the electric field strength. —121(z/h— 12 Ah/h—2 he
SinceD,=0 outside the plate, we find, from the con- (2 ) costiy(h=2))
dition thatD, be continuous using expressién: X sinh(yAh/2)/sinh yh)}. (12
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Formula(11) was used to calculate the amplitude andgentler slope near the reversal poioturvesl and2) as a
phase shiftAU as a function of the coordinate for  result of an increase in the amplitude of the neutral plane
Ah/h=0.001 and various values df;/h. The results of oscillations.
these calculations are plotted in Fig. 3. It can be seen from Although these calculations were made for a homoge-
Fig. 3a that the amplitude dependendd)(z) has two neous system, they may also be used for an approximate or
minima, the first near the illuminated surface and the secondualitative analysis of sample—transducer system if the pa-
closer to the opposite surface. Ag increases, the minima rameters of the elements are not too different.
are shifted to highez. The phase shift is also a fairly com- For I+/h<1 (this is the most typical case for photoa-
plex function of thez coordinate of the layefFig. 3b. Near  coustic investigations using piezoelectric signal recording
the illuminated surface, wherg /h<<1, the phase changes the differences in the thermophysical parameters of the
appreciably (up to 250°) (curves 4—6). The phase shift sample and the transducer do not play a significant role,
caused by the thermal wave is the decisive factor here. Faince the thermal wave does not reach the transducer. Here
z>1+ the phase shift is mainly determined by the elasticattention is drawn to two possible cases. One is when the
deformations. A characteristic feature here is the phase reemplitude of the photoacoustic signal is large and depends
versal point, at which the phase shift of the variable compostrongly on the parameters of the system, particularly;qn
nent of the plate deformations changes sign. This point corand the other is when the phase of the photoacoustic signal is
responds to the position about which the neutral planenore sensitive to the parameters of the system. The first case
oscillates, i.e., the plane in which the variable component ofvill be found when the thickness of the piezoelectric trans-
the deformations is zero at a given time. Fpfh<1 (curves  ducer is equal to approximately 1/3 of the dimensions of the
4-6) the neutral plane is almost fixed and has the coordinateample—transducer systemit{/h=0.33,z=0.83). It can be
Zo=2h/3. In this case, the phase shifts fairly abruptly from seen from Fig. 3&curves2-6) that the signal amplitude will
/2 to — /2, passing through zero at=z;. As|; increases, have a maximum for this case and will vary strongly with
the phase reversal point shifts toward higeand the de- However, it can be seen from Fig. Zburves2 and 3) that
pendence of the phase shift on the coordinate has a mudhe change in the phase shift for a layer of thickness

de
3} a loos P9 b
100 &
@ 1o0n0 &
22k S FIG. 3. Amplitude of the potential
g % difference(a) and phase shifth) for
5 0.005 = 3 1 a thin layer Ah of a piezoelectric
S £ -100 plate as a function of the coordinate
. ® 49,6 (z/h) of this layer: Ix/h: 1—1/5,
‘1 0 < 2—1/10, 3—1/20, 4—1/75, 5—
1/100, and6—1/130.
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Ah/h=0.3 near the rear surface is relatively small. For in-photothermoacoustic effect show reasonable agreement with
stance, when the parameterh decreases from 0.1 to 0.05, the theory.
the amplitude varies fourfold while the phase shift varies by  To conclude, a complex potential distribution over the
approximately 8°. The second case is achieved when thihickness of a piezoelectric is established in the presence of
thickness of the piezoelectric transducer is approximately 2/8he photothermoacoustic effect. The potential difference be-
of the thickness of the entire systel{/h=0.68,z=0.68). tween the opposite surfaces of a piezoelectric plate when one
It can be seen from Fig. &urves2-6) that the amplitude is exposed to modulated light is zero, regardless of the
has a minimum for this ratio but the phase shift dependpropagation constant of the thermal wave and the relation
strongly onl;. For the same variations of the parameterbetween the thickness of the sample and the thermal wave-
I+/h the phase of the oscillations varies by approximatelylength. In measurements of the signal in a double-layer
75°. sample—transducer system for a sample whose thickness is

The experimental investigations were carried out using aubstantially greater than the thermal diffusion len(jtre
layered disk formed by cementing together seven identicaransducer is positioned at the back of the samp@lttention
piezoelectric elements made of the PZT ceramic TsTS-19s drawn to two possible cases. When the thickness of the
each 0.6 mm thick and 20 mm in diamet#te piezoceramic sample is approximately twice that of the transducer, the
is described by the same matrix constants as €asrys-  maximum signal amplitude may be obtained. In this case, the
tals). One of the end surfaces of the disk was exposed to 6Phase of the signal oscillations is close-tor/2 and is al-
mW modulated light from an LG-38 laseix €0.63um). most independent of the thermal diffusion length. However,
Measurements were made of the amplitude and phase shift athen the sample thickness is approximately half that of the
the potential difference for each element of the sanfple  transducer, the signal amplitude has a minimum although the
cept for the first for various light modulation frequencies. phase of the signal oscillations varies substantially with
No measurements were made for the first layer since, in acdthanges in the properties of the sample.
dition to the piezoelectric effect, the potential difference in
this layer is strongly influenced by the potential generated as
a result of the pyroeffedfTsTS-19 ceramic is a strong pyro- 1J. C. Rosencwaig,Photoacoustics and Photoacoustic Spectroscopy
electrig. At the minimum modulation frequency used in the (wiley, New York, 1980.
experiments {=42 Hz), the thermal diffusion length in the V. P. Zharov, and V. S. Letokho\aser Optoacoustic Spectroscofig
ceramic,|+=50um, was substantially less than the thickness SSV‘fSJS;iES'\(';“;ﬁa “ﬂoﬁoﬁégef‘gj Appl. Phst, 3343(1980.
of the elements. Thus, the pyroelectric effect should only be«g 'p "vardapetyan, Akust. ZI85, 1026 (1989 [Sov. Phys. Acoust35,
observed in the first layer. Since the pyroelectric effect was 597 (1989].
not taken into account in the theory, the electric potentiaI5YllggV- Gulyaev, A. I. Morozov, and V. Yu. RaevskiAkust. Zh.31, 469
was not analyzed in this .Iayer'. . . 6'(I'. Ikgr‘i, S. Shigetomi, and Y. Koga, Phys. Rev.3B, 886(1988.

The results of these investigations for three modulation?; gtvebarria, S. Uriate, J. Fernandezal, J. Phys. C17, 6601(1984.
frequencies 421¢/h=1/75), 75 (+/h=1/100), and 125 Hz  8V. F. Kosorotov, L. S. KremenchugskL. V. Levashet al, Preprint No.
(I+/h=1/130) are shown by the asterisks in Fig. 3. The ex- 9[in Russian, Institute of Physics, Academy of Sciences of the Ukrainian

: . . SSR, Kiev(1984.
perimental data for the amplitude were normalized to thegv_ F. Kosorotov, L. S. KremenchugskiL. V. Levshet al, Fiz. Tverd.

theoretical data using the curve corresponding+5 Hz at Tela(Leningrad 26, 888 (1984 [ Sov. Phys. Solid Stat26, 540 (1984);
the point which refers to the seventh layer. The data for the Erratum26, 1551(1984].

phase shift did not need to be normalized. It can be seen thé?tA' D. Kovalenko, Thermoelasticity{in Russian, Vishcha Shkola, Kiev
the experimental data describing the potential distribution

and its phase shift in a piezoelectric in the presence of th&ranslated by R. M. Durham
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Electromagnetic excitation of infrasound in a conducting medium
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A comparative analysis is made of the mechanisms of interaction between the electromagnetic
fields of a global resonator and hydrodynamic and acoustic disturbances in a conducting
medium. A universal boundary condition at the interface between air and the conducting medium,
which takes into account the motion of the electrolyte, is obtained in an explicit analytical

form to calculate the long-wavelength electromagnetic fields. The intensity of the electromagnetic
field excited by a vertical hydroacoustic wave is estimated together with the efficiency of
excitation of infrasonic oscillations of a conducting medium in the field of a global resonator.

© 1998 American Institute of Physids$1063-7848)01501-3

INTRODUCTION static magnetic field,, in which the electrical currents in-
For electromagnetic oscillations in the ultralow- duced in the seawater by the alternating electromagnetic field
frequency(ULF) range <300 H2 the wavelength is com- Of the global resonator are acted upon by an Araferce,
parable with the radius of the EarRz=6.4x10° km or which then induces hydrodynamic and acoustic ULF distur-
with the altitude of the ionosphete ~70 km, so that their bances of the water at the frequency of the electromagnetic
propagation is strongly influenced by global resonances—oscillations. The opposite situation is also possible: the
resonant cavities formed between the Earth and the ionghovement of highly conducting seawater induces an alter-
sphere. nating electromagnetic field.
For this range we typically find very low attenuation in  Studies of the inverse effetsee Refs. 4-6have shown
air (around 0.2 dB/Mm af~8 Hz and around 1 dB/Mm at that the electromagnetic fields generated by the hydrody-
f~100 H2 and a large skin deptfiin electrolytes and other Namic motion can be observed: a vertical electric field of 30
conducting media. The depth of penetration in seawater, fortV/m and a magnetic field of the order of3.0~° Oe/m
instance, iss [m] ~200f ~ 2 [Hz] which means that radio Parallel to the flow and increasing with depth are generated
communication can be achieved with objects at depths ofn @ slowly varying flow with a velocity of 1 m/¢Ref. 5.
hundreds of meters. Note that these data only refer to the significantly lower-
Ultralow-frequency electromagnetic oscillations are ef-frequency disturbances £ 1 H) or to the disturbances with
fective in geophysics — to study the distribution of thunder-a horizontal wavelength much shorter thgnandRe . _
storms, electron density profiles in the ionosphere, geomag- The second interaction mechanism is caused by a differ-
netic disturbances, and solar activity. ence between the mobilities and masses of the cations and
Ultralow-frequency hydrodynamic disturbances, on theanions in the electrolyte. These ions are entrained differently
other hand, have a substantial influence on biological object8Y the moving solvent, which leads to charge separation, the
in the ocean, which has not yet been fully identified. Theyformation of an electric current, and consequently leads to
can reveal characteristic changes at frequencies up to 10 H$1e generation of an electromagnetic field—the Debye
which show up as fluctuations in the volume scattering of &ffect—(new characteristics were investigated in Refs. 8

probe signal caused by the displacement of individual sca@2nd 9. Conversely, when the ions move under the action of
tering source$? the external field, the overall effect of their friction force

It is therefore important to assess the efficiency of thewith the solvent is uncompensated so that the solvent and the

interaction between ULF electromagnetic oscillations at fre£lectrolyte move as a single entitj:*

quencies close to the natural frequencies of a global resona- A system of hydrodynamic equations of motion for a
tor, with hydrodynamic, including infrasonic, disturbances inmulticomponent(solvent, cations, and anionfiuid is used
the ocean. This problem can naturally be generalized to thas the initial system to describe these effects:

case of a conducting elastic medium of finite conductivity.

An obvious practical application is the possibility of record- pdvidt=| > n;V,—1
ing ULF electromagnetic fields using solid-state acoustic de- i

tectors.

VP+P39+§J_: pivi(Vi—V),

pjdv;/dt=—n;V;Vp+p;g—p;vj(v;—V)
MECHANISMS OF INTERACTION BETWEEN ULTRALOW-
FREQUENCY ELECTROMAGNETIC OSCILLATIONS
AND HYDRODYNAMIC DISTURBANCES OF A CONDUCTING  Herep is the pressuréE andH are the electric and magnetic
MEDIUM field strengths in the electrolyte,is the speed of lighty is
If, to be specific, we consider an oceéihe generaliza- the acceleration due to gravity,is the number of the ion
tion is obvious, the first mechanism involves the Earth’'s speciesps, v andp;, v; are the average density and velocity

+en;(E+v;xXHlc). (D)
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of the solvent and the ion¥/; is the ion volumegtaking into V2H+ (0?/c®)H=0, V-H=0,
account the solvation sheathy; is the coefficient of friction,

n; ande; are the ion concentration and charge, which satisfy E=—i(c/o)(VXH). @)
the electroneutrality principleX;e;n;=0. In the low- The boundary with the ionosphere at altitutleis char-
frequency approximation 2fv; '<1 (f~10-1G Hz,  acterized by the effective impedance
vj~10" s7*; Ref. 8 for low (|uj|<|v|) relative ion veloci-  7,= &~ 12~ (i w1,) Y2 w,, whereg; is the permittivity of the
tiesu;=v;—v, system(1) yields the expression ionospherew, is the plasma frequency which is determined
by the electron densiti, (w§=4we2Ne/me), andv, is the
i [EJF VXH| mj_ViP{ﬂ_ @ collision frequency. For frequencids=10 Hz the altitude is
m; v;| c myv; | dt 9 h;=70 km, andz;=10"2i2 (Ref. 1), so that the ratio of the

impedances of seawater and the ionosphei,ig;=10"3

wherep=ps+2p; is the electrolyte density, and;=p; /n; (Refs. 1 and 1P
are the effective ion masséscluding the sheath We estimate the degree of mutual influence of the hy-

We write the equations for the electromagnetic field indrodynamic and electromagnetic disturbances in seawater,
the electrolyte, neglecting the displacement current € o, assuming in Eq(4)
wheree’ is the real part of the permittivitycompared with
the conduction current= 2;e;n;u;, and expressing the latter |V X H|~ 4ﬂ||:|.
using expressioK2) c

From this it follows that the self-consistent interaction of
the subsystems as a result of the Earth’s static magnetic field
(Ampere mechanismis characterized by the parameter

VXH=(4malc)(E+vXH/c)+(4mylc)(dvidt—g),

VXE=—(1/c)oH/at, V-H=0, (3
xAZHSa'/pCZw. ©)]
i

. . 17 For Ho~0.3 Oe at frequencieb~10-1¢ Hz and typi-
0,
i For f’r? a é\/e}[ter with s0 d';mf agd gr}ﬁrrfg;olrgsman_dl 35%4) parameters of seawater we haye=10"1-10 15,
salnm_/z 16,2 a_aS/zglven N Rel.© yielar= S The coupling of the subsystems by the ion separation
y=10 “ g”'“cm -

D hanism is ch i h
Summing the systerfil) and then substituting the rela- (Debyg mechanism is characterized by the parameter

tive velocitiesu; from expressiori2) andE+ (v H)/c from xp=nywo L. 9

the first equation in syster(8), we obtain the equation of For these conditions we have,=10"13-10"1%

motion for the electrolyte as a whole. Confining ourselves to 1.4 gifference between the frequency dependences in
the linear approximation with respect to the variable fieldexpression$8) and (9) leads to the existence of a boundary
and the electrolyte velocity, assuming that the diswrbanceﬁ‘equencyfb for a given electrolyte for a fixed external mag-

2
whereo=ZXefn;/vim;, y=—2;en;(m;—pV;)/v;m;.

are low-frequency Zf(B—ynlo)<l, where e field:
—_ 1 -1 — -1 -1 ; '
n=—p "Zjgnjv; - and B=p " "Zmn;y; - (in particular,
for seawater we have=10"2 g 2 cn2 andB=2x10"1 fo~=Hoo/2m|ylc. (10)
s), and finally assuming that the magnetic field and velocity  For frequencies < f,, the Ampee effect is the dominant
depend harmonically on time, we obtain mechanism of action of the electromagnetic field on the elec-

trolyte, whereas foif >f, the Debye mechanism predomi-
nates. For seawater in the Earth’s magnetic field we have
f,=10 Hz.

iov+Vplp=—HyXVXH/4mp+ (i ncwldma)(VXH),
V2H—(4miowlc®)H=(4malc)(VXF), (VH)=0. (4

Here we havaw=2=f, and the contribution of the electro-

. L : . BOUNDARY CONDITIONS AT THE AIR-ELECTROLYTE
lyte motion to the variation of the effective electromagnetic

fold is described bu INTERFACE — EXCITATION OF OSCILLATIONS IN
leld Is described by the vector AN ELECTROMAGNETIC RESONATOR BY THE MOTION OF

) A CONDUCTING MEDIUM
F=HyXvic—iywVvl/o. (5)

In the assumed harmonic approximation we have

The boundary conditions at the air-electrolyte interfacey(r,t)=v exp{wt—ikr), wherek={k,k,}, and thez axis is

in the linear approximation assume continuity of the mag-directed vertically upwardz= 0 at the interface Only fairly
netic field H and the tangential component of the electriclarge-scale motion of the electrolyte may be an effective
field E,=n(EXn), wheren is the normal to the interface. In source of ultralong-wavelength electromagnetic waves. For
accordance with expressi@8), the electric field is related to instance, in the oceanic problem with a global cavity formed

the magnetic filed by by the Earth’s surface and the ionosphere, the horizontal
scale of this motionk;*, is considerably greater than the
E=(c/4mo)(VXH)+F. (6)  skin depths (see Introduction Let us assume that the depth

) o of the oceanh,, also exceed$
The equations for the electromagnetic field in the Earth—

ionosphere cavity have the simple form k7. ho[M]>200f "V Hz]. (11
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If conditions (11) are satisfied, it is natural to use the wnle=~[n(n—1)]1YYRg—iZ;/2h;.
approximation of horizontal homogeneity to solve the equa- B .
tions (4). In addition, we havéZ,/Z;|=103<1, so that the The lowest 0=1-3 Shumann frequenciet are 7.8,

field in air above the interface at=0 satisfies the condition 13.8, and 171'29 Hz for Q _factprs of 4.63, 5.76, and 6.56,
|Zo|<|4 In Hidzlc/w<|Zg| . This allows us to obtain an ex- respectively:? Here attention is drawn to the fact that for

plicit relation between the horizontal compondnt of the fseawater tze b:)und;\ryhfriqueg_f)y;romhli_q. él?g a;nd_tf;e
electric field directly above the interface and the amplituderequency o (for which the skin depth is ha t. € infra-
of the velocityv: sound wavelengthare very close to the frequencies of the
’ lowest Shumann resonances.
E,=—{(VXHy),/ct+iyov,/aH{1—(i/2)Y25k,}. Expressior(13) gives an estimate of the electromagnetic
field excited by a hydroacoustic wave. For the Shumann
Relation (12) exhaustively describes, in particular, the (n=1|)( ar;]d vertl?_ald(= 1f) rr]esonapcr-lz$=8 H.Z and 2 kHbZ ¢
influence of the movement of seawater on the electromag - take the amp |tu-e of the vertha QCOUSUC wave (o be o
o : : he order of that typical for sea noise in a band equal to the
netic field above the water and in the Earth—ionosphere cav-

ity. It specifies a boundary condition at the surface of theWidth of the resonance maximudf=f/Q (Af~17 and
Y pec . y oo . 400 Hz (Refs. 1 and 12 v~0.3 and 0.06 cm/¢this corre-
water, which refines the conditiok,=0 conventionally

i sponds to spectral noise densities ok B0® and 40 Pa
used _to calculate the fields of_ a global resonator. ‘Hz Y2 (Ref. 3). An analysis of the equation@) with the
Disturbances at frequencies around 10 Hz can only b‘l?)oundary conditiong13) shows that the gain for a vertical

caused by acoustic waves with the verti¢al ensure hori- . . .
. ) . resonator caused by the resonant buildup which takes place if
zontal homogeneity of the amplitude of the disturbance . ; . T .
the size of the region of acoustic excitation in the ocean is

wave vecto.rkrl—>0 (the surface gravnanonal waves make 2 round 18 km, is (1+|R|)/(1—|R|)~4 (Ref. 12, where
small contribution because of their small-scale ngtufeom . o . .

o : . L R; is the coefficient of reflection of an electromagnetic wave
this it follows that the mechanism of ion separation is an . . .
) . D .~ 7 by the ionosphere. Expressigb3) then gives
ineffective source of electromagnetic field generation in a
global resonator: the corresponding contribution in Bd) |E.|=10"% uVIim, |H|=4Xx10"1 Oe. (14
is proportional to the horizontal component of the velocity
V., which tends to zero fok,—0.

We shall now consider the Ampemechanism which is

associated with the static magnetic fieitf) and vertical
acoustic waves. For acoustic disturbances a sound wave r.

fle;ted ngomv\;.kgﬁ S:“llrfaCbZ_’f_ k;hmusr: be tartehn mt?l ac;pou?r: gion reduce€r, by a factor of i+ 1/2)S/2wR2 , whereS is
in Eq.(20). With allowance for the phase of the reflection €the area of the excitation region. As a result, for the first

boundary condition for the electromagnetic field has theShumann resonancB=8 Hz (for an excitation region of
form 3% 10° km) we obtain

E(z=+0)~—(v/c)(nXHg,)/(1+if/fy), (13 |[ER|=0.3 uV/m, |H]=10"' Oe. (15

For a Shumann resonance, assuming that the excitation
region has global dimensions, the resonant gain may be con-
siderably greater: the radi@fertica) component of the field
Er exceedskE, given by expression(13) by a factor of

Q/wh;. However, the bounded nature of the excitation re-

whereHy, is the horizontal component of the Earth’s static ~ The amplitudes of the electromagnetic fields estimated
magnetic fieldy is the amplitude of the velocity perturbation in formulas (14) and (15 can be measured although this
in the sound wave at the interface, ahg=20c2/c? is the  obviously requires precision methods of processing the re-
frequency for which the skin depth is a quarter of the soundteived signal at a level below the noise level of the global
wavelength € is the velocity of sound For seawater we resonator. For the dominant storm sources, for example, the
havef,=2.8 Hz. average amplitudes of the noise fields ael{))*>~10"8

The electromagnetic modes propagating in the Earth-Oe in the frequency band of the first Shumann resonance.
ionosphere cavity have different frequencies and vertical
structures:?? (w?c 2—k?)Y?h;=7l, where the vertical EXCITATION OF AN ACOUSTIC FIELD IN A CONDUCTING
numberl is the number of half waves between the surface oMEDIUM BY THE ELECTROMAGNETIC FIELDS OF A
the Earth and the ionosphere. Modes withl only exist at GLOBAL RESONATOR

relatively high frequencies=2 kHz and are strongly attenu- In order to estimate the efficiency of the inverse process

ated at distances of the order BE. At frequenciest=10 {4 that considered, we now assume that the electromagnetic
kHz their power attenuation is 2 dB/Mm, and as the cutofffig|q in the global resonator is given. This corresponds to the

frequency is approached the attenuation increases to 10-2@,ation where the right-hand side of the second equation in
dB/Mm atf=1-10 kHz(Ref. 12. Thus for modes with>1 4y \anishes. We consider the frequency rarigef, from

there is no interference between waves repeatedly encirclingq_ (10), in which the Ampee mechanism predominates.
the globe: The lower frequencie$=1-1G Hz correspond The solution of Eq(4) with a harmonic acoustic field for

to the waveguide TM modehorizontal magnetic fieldwith 5 conducting layer of depth determines the required acous-
I=0, which depends weakly on the vertical coordinate. Besi; field in the electrolyte

cause this mode is weakly attenuated, the interference of i o
waves repeatedly encircling the globe produces Shumann  ~_| E(fo/f)"(H /Ho)cs
resonances z 1+i(fo/f)

Z(2). (16)
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Here ¢= Hg,j47-rpc§, R; is the coefficient of reflection of detection parameters and possibly select a more efficient de-
sound by the underlying surface, and the depth dependentection system. Attention is therefore drawn to the possible
in Eq. (16) describes the function use of sensitive bimodal systerfsfor some of which the
B . infrasonic frequency range contains known resonances of in-
Z(2)=exi (1+1)2/0] terest in their own right, where the amplitude of the gener-

exp(—iwz/cg) + Rs exdiw(z—2h)/cq] ated electromagnetic fields may be greater than the mean-
1- R, exp(— 2iwh/cy) : square background values, even in a strongly disturbed
atmosphere.

In the oceanic problem the excitation of an infrasonic  This work was partially supported by the Russian Fund

wave has a low efficiency. It is more promising to use thefy; Fundamental Researc¢Rroject No. 96-02-17642
described excitation of infrasonic waves in a conducting me-

dium for the concentrated reception of regular electromag-
netic 3'9”3'5 in the range 10__100 Hz. The detection SYStemP. V. Bliokh, A. P. Nikolaenko, and Yu. F. FilippoGlobal Electromag-
should incorporate a conducting volume made of a highly netic Resonances in the Eartfonosphere Cavityin Russia, Naukova
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Two-dimensional scattering of electromagnetic waves from a permeable inclusion in an
anisotropic medium

N. P. Zhuk, S. N. Shul'ga, and A. G. Yarovol

Kharkov State University, 310077 Kharkov, Ukraine
(Submitted May 22, 1996
Zh. Tekh. Fiz68, 84—88(January 1998

Integrodifferential equations for the cross section of the scatterer and a collocation method are
used to obtain a numerical solution of the problem of scattering dfl goolarized wave

by an anisotropic layer of a three-layer dielectric structure.1998 American Institute of Physics.
[S1063-78498)01601-9

1. Theoretical modeling of the interaction between har-  To simplify the problem, we assume that the primary
monic electromagnetic waves and anisotropic objects is oélectromagnetic fieldE™, H", generated by harmonic
interest for many physical applications, such as waveguidé~e~'“!) external sources in the absence of an inclusion,
optics, nondestructive testing, and remote sensing. Scatterirgpes not depend or. Then this field, like the fieldz, H
of waves by anisotropic objects in an unbounded homogegenerated in the presence of an inclusion, separate€into
neous isotropic medium was considered, in particular, irand H-polarized components which propagate indepen-
Refs. 1-4, where the scatterers were simulated by a homdaently. It follows from the Maxwell equations that the propa-
geneous cylinder of circulhand arbitrary cross section, by gation and scattering of thE-polarized component takes
an inhomogeneous cylinder of arbitrary cross sectiand  place as in an isotropic structure with the permittivity given

by a three-dimensional inhomogeneity of arbitrary stape. by the xx elements of the tensoks, ande,. This problem
more complex case where an anisotropic medium surroundsas already been considered in Refs. 8 and 9. Thus we focus
an ideally conducting or inhomogeneous permeable cylindesur attention on the more complex case of the
was investigated in Refs. 5 and 6. A wide range of topicsH-polarization, where anisotropy effects are pronounced
relating to the propagation and scattering of waves in anisohoth in the layer and in the inclusion.

tropic waveguiding structures was addressed in Ref. 7. Here 3. |t follows from Maxwell’s equations that in this par-

we generalize Refs. 5 and 6 to the case where an inhomoggcular case oH polarization, the nonzero components of the
neous permeable cylinder is embedded in a homogeneougectric fieldE, andE, may be expressed in terms of a single

layer of a three-layer structure, where the materials forminghonzero magnetic field componeHt,. When the observa-
the layer and the inclusion may be anisotropic. The preserion pointr is in free space, we have
study may also be considered to be a generalization of Refs.
8 and 9, where the authors analyzed two-dimensional scat- 1 9K, 1 dHy
tering by an isotropic inhomogeneous scatterer in an isotro- Y~ ik, dz ' % iky dy ' &)
pic plane-layered medium.
2. The geometry of the problem is shown in Fig. 1. A but for the region within the anisotropic half space but out-
homogeneous anisotropic layer of thicknésss character- Side the inclusion, the corresponding formulas are:

ized by the permittivity tensor

£ 1 &HX+ ﬁHX)
=———lgy,—te,;——1|,
s@ 0 0 Y ikgal "% gy 2 9z 3
es=| 0 &y &l 1) 1 AHy IH,

0 ¥ sg) Ez_ikoa SyyW_ngyE'

zy

s) Similar expressions for the substrate are obtained for-

with the constant elements? , . . . &3 . The layer is depos- or : ,
ited on a homogeneous isotropic substrate having the permif@lly from Eq.(2) after dividing the right-hand side by,
and, for points inside the inclusion, by replacing the sub-

tivity e. and its upper boundary is with free space. The re-""™ ) ) )
gion S is the cross section of an inhomogeneous anisotropigC/iPt S With p on the right-hand side of Eq3). Here
cylindrical inclusion which is situated entirely within the Ko=w/c is the wave number and is the speed of light in
layer and is oriented along theaxis. The permittivity dis- ~Vacuum,

tribution within the inclusion is characterized by a tenégr a=s8gd_
i (") ) s Eyy®az
similar to (1), whose elements;? , . .. &35 may depend on
r=(0y,z). These permittivity tensors describe uniaxial crys- Note that in Egs(2) and (3) terms containing external
tals with an inclined optic axis lying in thgz plane or a cold field sources have been omitted to simplify the notation.
electron plasma in a static external magnetic field directed heir absence is strictly justified when the field sources are
along thex axis. The magnetic permeability is assumed to bepositioned at infinity, which, for specificity, we shall hence-
1 everywhere. forth assume.

(8)(8)

el (P) o (p) _

Neld S(P)S(p) (4

€ yz€zy *

ap=¢
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\ 5 the functionH, should obey the condition of continuity at
In the boundaries of the layer=0,—h and should thereby en-
Ha Free sure continuity ofE, andE, .
space 4. We introduce the solutios(r,r') of the boundary-
value problem forH,(r) from the previous section, which
/] b d - corresponds to the point sourcgr)=5(r—r') positioned
A 1¥Ye y inside the layer { h<z’<0) and satisfies the radiation con-
sli:b ditions at infinity (r—r’|—+). This solution—a Green
£, Iq 1 __L_ function—may be obtained by applying a Fourier transfor-
[T ﬂfq mation with respect toy—y’ and solving the resultant
B$ }{ boundary-value problem with an independent variables-
~ 7 ing a standard procedutéThe final expressions faB(r,r')
€ are given in the Appendix.
Substrate A Having the Green function, we can invert the boundary-
value problem foH, and replace it by the integral relation
FIG. 1.
Hx(r)=H')[‘(r)+f G(r,r")q(r’Hdr’, (11
After elimination of E, and E,, Maxwell's equations where integration is performed over the entire plgize
yield equations for the main unknown functiéfy, . In free Taking into account the definitiof®) of q and integrat-
space and in the substrate, these have the following formng by parts in Eq(11), we obtain
respectively Hy(r) = HI(1) + ikoFEy  E,)(1). (12
(V+k3)H,=0, (5) o . o
In this relationr is an arbitrary point in thegz plane,
(V2 +k2)H,=0, (6)
whereV | is the del operator in thgz plane, andk,=kq/s. FLEy,E.J(r)= Ldr'[Ly(r,r DE(r")
is the wave number in the substrate material.
We write the equation foH, in the region—h<z<O0, +L(rr)ELr")], (13

assuming that the field within this region in the presence of , (), (p) (9 (p)
an inclusion is identical to the field in the absence of an  asby(r')=[ez ey (r') —eyyesy (r')]oG(rr ")/ dy’
inclusion which would excite electric currents with the vol- +[8zz 7]yy(r )_8 ﬂzy(f )]19G(r,r ")/ az',

ume density
A (14
Jp—(ikocl4m)[e,—&]E, (7)
acL,(r,r Py —e&eP(r)]aG(r,r ")/ dz’
distributed withinS (Ref. 10. HereE is the (unknown elec- Larr ) =leszef () —e2el (110G ()
tric field inside the inclusion. The resulting equations oy +[82y nyz(l")—syy 7. Ar")10G(r,r ") ay’.
for —h<z<0 have the standard form (15)
¥ & 92 : : . .

97 L 907 (91 +K2a —a g We substitute expressidi2) for H, into the direct for-

{8“’ ay? &2z 972 (eyz Szy)&y& 0% <4 @ mulas forE, andE,, assuming that the poimt belongs to

the reglonS As a result, we obtain a system of two coupled

for points positioned both outside and inside the 'nCIUS'On1ntegrod|fferent|al equations

The quantity

1 J J
41 1) d J d E (r)=— 8(9)(r)_+8(P)(r)_
R I O AN O T (8) 7 4 (9
T B B e
(9) X[HZ()/iko+F(r)], (16)
has the meaning of secondary sources “induced” by the pri- p
mary field i_n the inclu_sion, and,, and Jpz have nonzero E,(r)= (p>(r) ‘;,)(r)—
values outside the regid® and are given by ap(r) Jz
ik X[Hf(r)/ik(ﬁ— F(r)], (17)

Jpy= = 7~ (myyBy+ myEa), P . .
(10) (r e S) for the electric field inside the inclusion. If the solu-

|k0 tion of these equations is known, formulds) and(13) can
Jo=— (nZyE + 7,kE,) be used to find the functioH, at any point in theyz plane
and the corresponding direct formulas #y andE, can be
within S. Here the functionsy=¢{P)—&{y) determine the used to calculate these values everywhere outside the inclu-
electrical contrast of the |nclu3|on relatlve to the surroundingsion. The outlined sequence of procedures forms the basis of
medium (,k=y,z). In addition to the formulated equations, the algorithm for this scattering problem.

76 Tech. Phys. 43 (1), January 1998 Zhuk et al. 76



5. We search for a numerical solution of Eq$6) and -
(17) by first using the rectangular mesh shown in Fig. 1 to
approximate the cross section of the inclusion by a steppe 06
figure consisting of identical cells having the dimensions
Ayx Az. We then assumed as an approximation that, withir
each cell, the unknowng, and E, are constant and the
permittivity distribution is homogeneous. After taking the 204
integrodifferential equation§l6) and (17) at the center of 8
each cell, we finally obtain a system of linear algebraic equa
tions

0.02
M
Eym= 2, (KitEynt KiEzn) +Qh, (18)
M 0
Eum= 2, (KR Eynt KiEan) +QF, (19
n=1
FIG. 2.
(m=1,2,...M). HereE,, andE,, are the unknown values
of E, andE, in the mth cell andM s the total number of The system of linear algebraic equatiofi$) and (19)
cells approximatingS. The explicit form of the coefficients for the following examples was solved numerically by the
KY, ..., K& and the right-hand sided), andQZ is easily  Gauss method.
determined from relation§l6) and (17). For instance, we 6. Figures 2—4 illustrate a numerical solution of the
have problem for a scattered plarté-polarized wave of unit am-

plitude A"=1 incident from the upper half space normal to
the layer. The layer of electrical thicknekgh=2.0 is situ-
ated in a vacuunti.e., e.=1.0). The rectangular inclusion
(shown in the inset to Fig.)zhas the dimensionky,a=0.4,
, , kob=0.8, and its center of symmetry is located at the dis-
X Lndr Ly(r.r'), (20 tancekyh.=2.0 from the upper boundary of the layer. For
the numerical calculations, the inclusion was divided into 72
cells (twelve horizontal divisions and six vertical divisions
~ Tkean(ro) In these figures the solid curve refers to the base model of an
0%ptim isotropic inclusion with the permittivitye.=2.0, £,=4.0,
X Hixn(f)|r=rma (21) respectively. The dashed curve corresponds to the case
which differs from the previous one in that the layer material
where$S, is the interior of thenth cell andr,, is the central is a uniaxial dielectric. The principal values of the permittiv-
point in themth cell. ity of this dielectric(i.e., the values along the optic axis and
The coefficientskiX (j,k=y,z) are calculated as fol- in the transverse directiorare; = 3.0, ¢, =2.0 and the op-
lows. Using a suitable expression for the Green functiorfiC @xis lying in theyz plane is deflected downward at the
given in the Appendix, the values &f, andL, from formu-
las (14) and (15), and then the coefficienié{fjn may be ex-
pressed as a sum of two component®r instance, a8
KK = KIK(0) 4 k(N "the first describing the scattering from
an inclusion in an unbounded medium with the parameters ¢
an anisotropic layer and the second taking into account th g0¢
finite thickness of the layer. The numerical calculations of
KIK(O) which reduce to calculation of the linear integrals over
the contour of the cell, are described in Refs. 9 and 12. ThE
integrals with respect to’ within thenth cell encountered in =™
calculations of the coefficients!X(") can simply be replaced
by the product of the integrand taken at the centerr,, of
the cell and the areayAz of this cell. Finally the Sommer- 0.02
feld integrals, which appear in the expressionsK#ﬁP be-
cause of the Fourier integral on the right-hand side of for-
mula (A2) for the correction caused by reflectioGs”, are L
calculated by shifting the original integration contour from g 30 60 20 120 150 ?°
the real axis into the complex plane Details of the numeri-
cal implementation of this procedure are given in Ref. 9. FIG. 3.

Yy —
Kmn_

J J

®y 2~ ey
ap(rm) 8yz )&y 822 ( )(?z o
~'m

Q4=

d d
&2 (1) 55 e (1 7
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significant role of interference effects in the formation of the
scattered and total fields. With increasing distance from the
inclusion along the surface of the layer, these oscillations
become smoother and the fieJt,| reaches the constant

value |H™"|

APPENDIX

If the observation point is located in the layer
(—h<z<0), then G(rr’) is expressed as a sum
G=G@+G" of the Green functiorG(r,r ') for an un-
bounded medium with the permittivity of the layer and the
correctionG(")(r,r '), which takes into account the reflection
from the boundarieg=0,—h. We then have

GO(rr )_4|f ), (A1)
FIG. 4. a . q
e X .
GO(rr")= s f dxy=y")
( ) 27T|8 —w (y+—7v-)P
angle ¢o=30° relative to they axis. The elements of the
layer permittivity tensoke in which we are interested have X[expliy,z)AR+texpiy-z)BQ], (A2)
the following values whereH{" is a Hankel function of the first kind,
g,sy)_8 CO§ ¢O+8L S|n2 (P0—2 25 V_syy ZZ (1/4)(8(S)+8(S )2 (A3)
(S)ZSH sir? o +&'® cog @u=2.75, (22 2= aS/V)[s (Z 22+ (y—y')2— (8(s)+s(s)
8(5)_8(5 (sl —sHS))SIn ©g COS o= —0.43. X (y—y" ) (z—2")], (A4)
The dotted curve describes the additional case where the 4 [12g— 260
layer material is an isotropic dielectric with the permittivity ye=—2x yz_ "zy | 207s Yy
es,=2.0 and the inclusion is a uniaxial dielectric for which B 28(231) S(ZSZ)
the principal values of the permittivity are(P=5.0, 6. (s 2112
¢{P=4.0, and the optic axis lies in thez plane and is in- 42 Eyz T ezy (A5)
clined downward at the angle,=30° relative to they axis. 28(252)
The elements of the permittivity tenség are calculated us- (ys =y ohr aiy—2" i
ing formulas similar to(22) and are given by A=el7e 7 e s +Qe 1 ], (AB)
ell)=425 eP)=475 £P=elP)=-043. (29 B=e 742 + R(v+ v IN=iv-2 (A7)
Figures_ 2 and 3 show the angu_lar distrit_;utiqn c_)f th_e field P=1-QRexdi(y,—y_)h], (A8)
calculated in the upper half spad€éig. 2). This distribution
is characterized by the value &f(¢) which is determined B 8(zsé)7’++8(s %= Yols A9
by the asymptotic formula for the component of the scat- Q=- (S)y +e®,— ),Oas (A9)
tered magnetic field in the far-field zone outside the layer ye
) dkol R=_ S(ZSZ)'V +8(S)%+7cas/8c (A10)
H(r)=A"D(¢) NE (24) s(zsz)7++s(s)%+ yeaslee
i . =(k2_ 2)1/2 =(k _ 2)1/2 (All)
(koL>1). The polar coordinatek, ¢ for the observation Yo= Ko™ %) YT (Ko™ 27)

point in the upper or lower half space are defined in Fig. 1. IN0<argy,, y.< ). If the observation point is outside the

this particular case of a rectangular inclusion, the pgint  |ayer, thenG(r,r’) is expressed as the Fourier integral
z. coincides with the center of symmetry of this inclusion.

Figures 2 and 3 clearly demonstrate how anisotropy in the G(rr')= as
layer or inclusion influences the formation of the scattered ’ 2mield
field.
Figure 4 shows the distribution of the total fidld,| at y e dx dx -y E ,
the upper boundary of the layer. As was to be expected, the o (y— 7y )P (%.2,2'),

figure is symmetric relative to the poipt=0 for an isotropic
inclusion and layer since a plane wave is incident normal to
the layer. The oscillatory behavior of these curves reflects thevhere forz>0

(A12)
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Transition radiation of a charge in media with a nonuniform potential
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Zh. Tekh. Fiz68, 11-14(January 1998

The influence of a potential barrier on the transition radiation in the form of volume and surface
electromagnetic waves emitted by a charged particle crossing an interface between media

is investigated. It is shown that the volume-wave radiation field arises not only as a result of the
jump in the dielectric constant at the boundary but also as a result of the velocity jump and

the reflection of an electron induced by the presence of a nonuniform potential barrier. The angular
distribution of the transition radiation intensity is obtained. 1©®98 American Institute of
Physics[S1063-784£98)00201-3

1. The radiation emitted by charged particles on crossing  j,=ev,;8(p)[ 8(z—vt)—Fé(z+v,t)], (4)
an interface between media with different electromagnetic ) ] o )
properties has been the subject of a large number of publ?”d the current in medium 2 is induced by the particle after
cations(see the references cited in Ref. 1 and, for examplelt Nas passed over the barrier
Refs. 2-7. This phenomenon is of interest because transi-  j,—pev, 5(p) 8(z—wv,t). (5)
tion radiation is encountered quite often in very diverse prob-

lems related to astrophysics’ accelerator physiCS, p|asnﬁerED: 1—F is the transmission coefficient of the partiCle
physics, and solid-state physics. over the barrier, ang is a vector in the plane of the inter-

The presence of a potentia| barrier at the interface betace. The eleCtromagnetiC field in each of the media is deter-

tween two media is usually not taken into account in studiegnined from Maxwell's equations, in which the current of
of transition radiation. Nevertheless, its role is very signifi-charged particles is assigned k4) or (5). The boundary
cant. This was shown, for example, in Refs. 3-5 in studies ofonditions are the conditions of continuity of the tangential
the interaction of charged particles with surface plasmons. components of the electri&) and magneti¢H) fields in the
In the present work the features of the transition radiaZ=0 plane at the interface and the condition of radiation at
tion of electromagnetic waves by a particle are investigated= *>. Because of the axial symmetry of Maxwell's equa-
with consideration of the influence of the potential bartier ~tions in an isotropic medium with a current along thaxis,
on the interface between two media. it is convenient to introduce a cylindrical system of the co-
Let a charged particle move uniformly and linearly in Ordinatesp, ¢, andz, in which the TM H,, ,E,, ,E;) and TE
medium 1(for example, in a vacuunz<0) with a velocity ~ (E,,H,,H;) modes propagate independently. Only TM

v, along a normalthe z axis) toward the interface between Waves are excited by a charged particle moving alongzthe
the media. It is assumed thal(z) has the form axis. We represent the dependences of the field components

U@2)=0 for —oo<z<0, of th_is wave on the time_ in the form of an expansion in
Fourier integrals and their dependences wrin terms of
U(z)=Uq for z=0 Fourier-Bessel integrals:

and that the height of the wall is smaller than the kinetic
energy of the particle in the vacuuli=(mqv3)/2. Then the E.p,z,0)= fo xE,(2,%)Jo(xp)dx, (6)
velocity of the particle in medium 2z&0) equals

. /Z(E;Uo); vil|z @) Ep(p,z,w)=fO E, (z,%)J1(%xp)dx, (7

The reflection coefficienE of the particle from the bar- WhereJ,(xp) is a Bessel function of orden.

©

rier is determined from the Schiimger equation and the ~ The relation between the magnetiéi() and electric
boundary conditions in Ref. 8: (E,) fields is defined by the equation
—v5\? dH, iwc
V17 U2 ¢
- =—E&,, 8
v1tuv, 3 9z g P (8)

In medium 1 a current is induced by the particle as it wherei =1,2 labels the medium, ang is the dielectric con-
moves toward the wall or after it has been reflected from itstant of theith medium.
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The delta functiond(p) can be written in terms of a Here

Bessel function:

1 )
o(p)= 5 fo o xp)d. ©

w? 5 w? 5
Alw,x)=e\[—Ze1—x"FTe1\[ e~ " (16)
C C

We note that the term proportional Eoin (15) appears

As a result we find that the components of the electricas a result of reflection of the particle from the potential

and magnetic fields have the form

EQ):f dmo(xp)[A“)exp(—ixizwB“’exr(im
0

. RO
CWexp i—z
Uj

] : (10

+D®

ie 1 2, s
+%( —Bient

LW
Xexp —i1—z
Uj

HO = —i 2o | "dwd (2p){ AVexp(—i\;2)
@ c i 0 1\ %xp |

exzviz ' LW
5 fi| CVexpi—z
TW Uj

] . (11

+BWexp(inz)—i

4 T
+D(')ex;{—|—z)
Ui

The expression for the field componerﬁs) is easily
obtained from Egs(8) and(11). In (10) and (11) we intro-
duced the following notation: the coefficiera$’, B(, ¢,
andD® in media 1 and 2 equal, respectively,

AV=A(x), BY=0, cP=1, DW=-F,

12

A®=0, BP=B(»), C®=t(1-F), D®=o,
2

[ 2

w

)\i: _28i_%2 (R@\|>0),
Cc

f _ 1 . Uj
" ei(Blei— (xR w?) —1)

13

(14

barrier(1).

Let us consider media with different values of the dielec-
tric constants; J(w)>0. The radiation field in medium 1 is
obtained using the stationary-phase method. This radiation
has the form of a spherical wave, in which the field compo-
nents equal

E(w)=E(w)cos®, E,=E(w)sino,
eB,c0s0 sin®
mc[e, COSO + e (e,— &4 SIF )]
exp(i (w/c)\e,R)
X R
« (e2— 1) (14 B1Ve,—eq SIM? O — &85
(1—&,83 cof O)(1+ B1\e,— &, Si? O)
. e1(B2—B1)Ve2—¢&1 Si? ©
(1+B1Ve,—eq Sirf O)(1+By\e,—eq SirF O)
= 82+81ﬂl\ E€r™ &1 S|n2 ®

1—¢,83 cog O

E(w)=

€1
+1+,82\/82—81 sir? @)} 7
Here we have introduced the angl and the distancd
from the point of contact of the particle with the interface
between the media at=0 to the point of observation of the
radiation in medium 1 such th&=p sin®—iz cosO (i is a
unit vector parallel to the axis); it is assumed that the
condition (w/c)R>1 holds. The radiated energy fli%7) in
the solid-angle element() =sin ®dOdy is easily calculated
from the formula

2

The coefficientsA(x) and B(x) in the expressions are
found from the boundary conditions on the interface between
the media az=0. They specify the transition radiation field.
The coefficientA(x) corresponds to a wave propagating
along z<0, andB(x) corresponds to a wave propagating
alongz>0. We are interested in the radiation field in me-

= CRE(w)?
dQdw |
It is seen from expressiofiL7) that the radiation field
consists of three parts. The first is the radiation which is
caused by the jump in the dielectric constants on the bound-

(18

dium 1, which is described by the first terms in formulzag)
and(11):

Alx) iex?v, (f,-1,) 1 [o? )
%)= —fo)ey——\[/—Zer—x
70 A(w,x) | T F 7 o N2l
X(f181U1+f28202)+F (fl+f2)82

1 w? )
+ — _2 Ex—™ X (f181U1_f282U2) . (15)
w Cc
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ary and exists in the absence of a potential bartigg=0).
The second part describes the radiation caused by the veloc-
ity jump on the boundaryl,+ 0) without consideration of
electron reflection from the potential barrier. The third term
specifies the fraction of the radiation associated with propa-
gation of the de Broglie wave “reflected” from the bound-
ary.

In the case of an infinitely high barriedg—o, F=1)
we obtain

2ee,B1 oSO sin O
mc[e, COSO + e (e,— &1 SIF 0)]

E(w)=

Fal'ko et al. 9



The expression for the radiation field in the absence of a  Equation(21) is the dispersion relation of a surface po-
energy are smaller than in the presence of an infinitely high P
[ €1 [1%p .
% p HZ) TeXF(I %pp),
smaller than the radiation field of a particle in the presence of
Let us assume that a particle moves in a semiconductor

1 exp(i (w/c)\e R (&) EER

y 2 Hi (w/c)Veq ) a9 = /1__2_ 2
(1—&,85% cos 0) R c Veg—e;

potential barrier {J,=0) is known! We note that in this lariton. The contribution from polé€21) describes the transi-

case U,=0) the amplitude of the field and the radiated tion radiation field of a cylindrical surface wave

potential barrier Uy— ). For example, if medium 2 is an E(w)=E exp( _

ideal conductor§,— ), the fieldE(w) (Ref. 1) is two times z

an infinitely high potential, and the energy flux differs by a E . &E

factor of 4. (@) =TV [E@),

with a p—n junction, at which the bottom of the conduction e1(les]—e1)

band can be described using a potential barrier of fam He(w)=— e Ew),

(U, is a finite quantity. Since the dielectric constant is de-

termined only by the properties of the crystal lattice, we must 2epB;
sete;=g,=¢ in Egs.(17) and (18). The radiation field in E=— P
such a semiconductor has the form
|| 5232
esin® expi (w/c)\eR) > 2 "1
E(w)= R (leol =1+ B3eD) (e — 81+ B3e5) (25— 7)
27mc(1+ Bo\/ecosO)
T &gl — &1+ B3e5
y (B2—B1)\e cosO Xexp i 7|} (1+F)| ——————
€
1+ B1\/e cos® !
_ 2.2 _ 2.2
2+(B,—B1) Ve cosO , +i,82|82| 81+B1811+(_1F) |eo| — &1+ Biel
+F 1_31\/5 cos® ' ( 0) \/|82|_81 |82|
2.2
It can be seen from20) that the angular distribution of i8 leo| —e1+ B3e3 (22)
the intensity varies and that, in comparison to the classical ! Ve — €1 '

case Upy=0, and e&,#¢,), the radiation pattern is

“pressed” against the=0 plane. It should be noted that in This result refers to the case where the palg and the
the general casgsee (17)] the angular distribution of the stationary-phase point

field E(w) is characterized by the presence of a sharp maxi-
mum, which appears in the vicinity of values of the an@le
for which the condition for the Vavilov—Cherenkov effect is
satisfied in medium 1:

®
xs=C (g1) SINO

are far enough from one another that their contributions to
integrals(10) and(11) can be treated independently.

cos O = 81135 The energy_flux of wavg22) through a circular area
(p, pt+dp) atz=0 equals
(here we are dealing with a maximum, rather than a singu- 5 3
larity, since damping of the wave in the medium must be W €1 E[2 23
taken into account under real conditipns Ipdw 7Tw|82|1/2| * @3

This feature is present both in the first tefinis asso-
ciated with reflection of the Cherenkov radiation produced The energy of a cylindrical wave in the absence of a
by the particle as it moves in the positive direction of the potential barrier ,=0, F=0) (Ref. 1 is 483/(|82|+81)2
axis away from the boundary at=0) and in the third term times smaller than the energy in the case of a perfectly re-
(the Cherenkov radiation in the same medium caused by thiecting boundary Jg—, F=1).
particle after reflection from the barrjein a semiconductor Thus, the radiation field in medium 1 is formed by a
with a p—n junction the maximum in the field distribution spherical volume wave and a cylindrical surface wave. The
E(®) (20) is determined only by the Vavilov—Cherenkov spherical wave forms at large distances from the point of
radiation of the particle after reflection from the boundary. contact of the particle with the interface between the media
As we know, surface waves can propagate on an inteffR>c/(w+/e,)], as follows from the condition for applica-
face between media, if the dielectric constant of one of theility of the stationary-phase methpdand its intensity is
media has a negative value. Let us assume 4¢hat0 and distributed in the range of angles<® < /2. The cylindri-
|eo|>e;. In this case the functiom(w,x) (16) vanishes cal wave propagates along the interface between the media
when (®=7/2) and damps at a depth

10 Tech. Phys. 43 (1), January 1998 Fal'ko et al. 10



L~ C |82|_81 U(Z):V05(Z)1 (29)
wVe, ¥ &1 then

In the region of values of the frequenayand the angle mVé
(near/2) which satisfy the conditions - 2E42 (30
2c The expression foy can be obtained from formul@7)
| /2= 0[<2/ Rove, L if Us>E and @y2mUy)/%i<1, whereVo=Ua.
! (249 The radiation field of the particle is a spherical wave and
les|<eq, can be described in the regiar<0 by (17) and (18), if we

?,Etsl eg,=¢ and B8,=B,=p in them, and the reflection

the distance between the pole and the stationary-phase poi SefficientF = F(E,Uy) can be found from formula&2s)—

becomes smaller than the width of the lines of the features o?

the integrands ir(10) and (11). Then the van der Waerden 30):
method should be used to calculate the integral$lif) and eB sin® _expi (w/c) \/ER)
(11). We shall not present the expressions for the radiation ~E(®)= < R . (31)

field because of their cumbersome nature. We note that a

cylindrical surface wave and a spherical volume wave exist It E>U,, then

in the range of angle§24), but their amplitudes are small d®w  e??Uug sin®
because of this inequality.

Let us next investigate the radiation of a moving charged
particle in a homogeneous medium with a potential barrierin ~ The radiated intensity oscillates, vanishing under the
the form of a rectangle or & function. Such a potential can condition @/#)p=mn(p=+v2m(E—Uy)), i.e., when a
appear, for example, in a semiconductor medium due to thevhole number of half de Broglie wavelengthg= (27#)/p
presence of an impurity or a defect. The reflection coefficienfit into the barrier width. In this case there is some analogy
of the particle in this case can be represented in the followingvith the transition radiation of a particle passing through a
manner: thin isotropic insulating plate, which exhibits oscillations as

W(E.Uy) a result of variation of the ratio of the thickness of the plate
= —0, (25) to the wavelength of the charge=(27v)/w.
1+ ¢(E,Uo) We note that the phenomenon considered here can be
where the form of the functios(E,U,) is determined by utilized in the spectroscopy of solids.
the form of the potential(z).

sin“E\/Zm(E—UO). (32

dOdw 8EX(E—Ug)? h

V. L. Ginzburg and V. N. TsytovichTransition Radiation and Transition

2l. A. Anisimov, I. Yu. Kotlyarov, and S. M. Levitskj Izv. Vyssh.
0 (z<0), Uchebn. Zaved. Radiofi&2, 1034(1989.
_ A. M. Belenov, P. N. Luskinovich, and A. G. Sobolet al, Zh. Tekh.
U(z)={ Uo (0<z<a), (26) Fiz. 56, 1902(1986 [Sov. Phys. Tech. Phy81, 1138(1986].
0 (a<yz), “M. V. Burtyka, V. M. Yakovenko, and I. V. Yakovenko, Fiz. Nizk. Temp.
) 21, 628(1995 [Low Temp. Phys21, 489(1995)].
the functiony(E,Uy) equal§ 5V. M. Yakovenko and I. V. Yakovenko, Phys. Lett. 206, 290 (1994).
U2 jV. V. Krechetov, Izv. Vyssh. Uchebn. Zaved. R[adiotBB, 639(1995.
I. 1. Kalikinskii, Zh. Tekh. Fiz.61 (9), 20 (1991 [Sov. Phys. Tech36,
V= ZEU S'”*’F 7V2m(Uo—E)(Uo>E),  (27) 978(199D]; 65 (10), 131 (1995 [Phys. Tech. Physi0, 1047 (1995].
0 8L. D. Landau and E. M. LifshitzQuantum Mechanics: Non-Relativistic
U2 Theory 3rd ed., Pergamon Press, Oxfdt®77).
Y= — 7 §irP= \/m E>U,) (28 9E. A. Kaner and V. M. Yakovenko, Zh.k&p. Teor. Fiz42, 471 (1962
4E(E—Uy) [Sov. Phys. JETRS5, 330(1962].
If the potential has the form of & function, i.e., Translated by P. Shelnitz

11 Tech. Phys. 43 (1), January 1998 Fal'ko et al. 11



Influence of local dispersion on transient processes accompanying the generation
of rf radiation by an electromagnetic shock wave
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Transient processes accompanying the conversion of a video pulse into a radio pulse in a
nonlinear transmission line having hysteretic properties are studied. It is established that the
transition process leading to the establishment of “steady-stat@se in amplitude

oscillations has a minimum when the electromagnetic shock wave front is phase-matched with
the wave excited by it at a frequency near the minimum local dispersion of the group

velocity. © 1998 American Institute of Physid$$1063-78428)01701-3

INTRODUCTION by rf losses in the linear transmission line. It is also possible
to control the frequency of the generated oscillations by
Electromagnetic shock waves and processes involvingarying the initial conditions. It was noted in these studies
the propagation of electromagnetic radiation in nonlineathat in addition to the hysteretic dependence of the nonlin-
media(transmission lingshave been studied for some time. earity, the dispersion of the mediuitnansmission lingplays
The main fundamental principles and various possible applian important role in the generation of monochromatic oscil-
cations associated with the propagation of electromagnetilations.
signals in dispersive nonlinear media can be found in the first  Here we investigate the transient processes accompany-
reviews and book&:* ing the conversion of a video pulse into a radio pulse in a
Recently published studies have examined the generaronlinear transmission line of finite length which exhibits
tion of rf oscillations by direct conversion of a video pulse hysteretic properties, and we determine the constraints on the
into a radio pulse during its propagation in dispersive nondispersion from the point of view of minimizing the transi-
linear media(transmission lines>~® tion process leading to the establishment of “steady-state”
In Refs. 5 and 6 the authors discuss the generation of &close in amplitudgemonochromatic oscillations in the case
train of solitons inLC lines with a nonlinear capacitance of weak rf losses.
varying as some functio€(V), and in dispersive periodic
structures(medig similar to anLC line. However, this
method of generating rf oscillations has several significanf?YALITATIVE DESCRIPTIONS OF THE TRANSITION
disadvantages The amplitude of the generated oscillations PROCESS AND THE ROLE OF LOCAL DISPERSION IN THE
decays rapidly in the train, the spectrum of the generate O'A\‘\,(I%F:\ISLII?I';SRFQE\SEJE,\? PULSE TO A RADIO PULSE
train is fairly wide because of the nonmonochromatic nature
of the generation process, and the number of generated os- It was shown numerically in Ref. 8 that the transition
cillations rapidly saturates as the video pulse propagates inprocess accompanying the generation of rf oscillations by an
nonlinear transmission lime® electromagnetic shock wave consists of the formation of the
The authors of Refs. 7 and 8 proposed a significantlyshock wave front, generation of quasimonochromatic oscil-
more effective mechanism for direct conversion of a videolations (with increasing amplitude and deformation of the
pulse into a radio pulse with a quasimonochromatic carrieradio pulse envelope as a result of the dispersion of a trans-
(filling) during its propagation in a dispersive nonlinear me-mission line with saturated nonlinearity. As the shock wave
dium (transmission ling In this mechanism, the front of an propagates, the number of oscillations behind the shock
intense electromagnetic shock wave excites a synchronouslyave front increases in proportion to the length traveled by
traveling rf wave. It was shown in these studies that forit, and the spectral composition of the generated radio pulse
monochromatic generation, the nonlinear medium behind th&is enriched” at the frequency of a wave phase-matched
front should saturate and remain saturated for a long timeavith the steady-state front of the electromagnetic shock wave
(compared with the period of the excited waviender these [v,(wo) =vs, Wherev, is the phase velocity ands is the
conditions, rf perturbations of finite amplitude will propagate electromagnetic shock wave veloditBince in this case, the
behind the electromagnetic shock wave front, as in a lineawave packet is “rigidly attached” to the shock wave front
medium. It is observed that the generation may be efficienftraveling radiation sourgeand moves along behind it, the
and the carrier frequency may be stable because of the phadeformation of the wave packet in a linear medium behind
matching with the shock front and the wave excited by it. Anthe shock wave front will entail both a lengthening of the
undoubted advantage of this approach compared with solitopacket as a result of the generation of new oscillations and
generation is that first, the generated oscillations are almostiso its dispersional spreading. In general, this process can
monochromatic, and second, the decay of the amplitude afnly be investigated by numerical methods.
the steady-state oscillations in the radio pulse is only caused However, some constraints imposed on the dispersion of
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FIG. 1. Equivalent circuit of a transmission line with spatial dispersion.
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a transmission line with saturated nonlinearity with a view totortion of the envelope of an extended wave packet
minimizing the transition process, especially on the mini-(Aw/wy<€1) and its phase structure as it propagates over a
mum time taken for establishment of quasisteady-state decgyathl will be negligible if
of the generated radio pulse may be predictedriori by 2

. X o . wg dv
analogy with the propagation of wave packets in linear dis- |s)\(2)(_) / <_9) , 3
persive media. It is knowirisee Ref. 9 that the rate of de- Aw do 0=w
formation of the envelope of a wave packet with a narrow herenn—2 /
frequency spectrumXw/wy<1, whereAw is the width of WHETEAo=2mup/ wo. _ .
the wave packet spectrum aang is the average frequency Ob\_"OUSIy’ for (dvgldw)_“’=‘f’o_0 the value.oﬁ will be
is determined by the local dispersion of the group velocitydetérmined by higher derivatives of; and will be of a
near the average frequency. For the generation of a radigigher order in o/Aw). For the generation of rf oscilla-
pulse by an electromagnetic shock wave, the case of a nafions by an electromagnetic shock wadérect conversion of

row frequency spectrum is achieved when the shock wav8" €xtended video pulse into a radio puise number of
front traverses a specific length of line, i.e., when a fairly9enerated oscillations in the radio pulse increases as the
extended radio pulse is generated. The local behavior of the0ock wave front propagates in a dispersive nonlinear trans-

dispersion near the average frequeney w, may be ex- mission line. Thus, its spectral composition also “narrows”
pressed in the form (Aw/wy decreases In accordance with conditio(8), as the

shock wave front propagates in the transmission line, the

dk 2k ) length | for which the dispersion distortion of the wave
k(“’):k(“’O)Jr(@) (w=wo)+ 5 do? (0= wo) packet remains negligible, will increase. Thus, for a semi-

“o wg infinite (or fairly extended video pulse it may be expected
1/ a3k that the decay profile of the generated radio pulse will stabi-

+ _< _) (0—wg)3+ ..., (1) lize with time, even with low or no rf losses. In this case,

6\ dw® ” only part (in the region between the leading and trailing

° edge$ of the electromagnetic shock wave structure will

Wherek iS the wave number. come C|Ose to Steady_state_

In the first approximation with respect thw/wo<1 However, this reasoning is qualitatively valid from the
(where Aw=w— ), the wave packet propagates without jnstant that the spectrum of the radio pulse generated by the
distortions with the group velocity electromagnetic shock wave becomes sufficiently narrow

dk\ 1 (Aw/wg<<1). At the same time, the transition process begins
vg:(d_w> with the generation of a single oscillation, i.e., at the initial
wg stage of generatiod w~ wy,.

Thus, in general the influence of local dispersion on the
rate of formation of a quasisteady-state radio pulse can only
be investigated by numerical methods.

It follows from the second approximation with respect to
Awl/wy (Ref. 9, that the spreading of the wave packet de-
creases, the stronger the inequality

(d_zk w<(ﬁ) DESCRIPTION OF MODEL. METHODS OF INVESTIGATION
do? g “V g As in Refs. 7 and 8, we shall consider the transmission
or line to be anLC line with capacitive cross couplings via one
element(Fig. 1). An advantage of this system is that the
1 dvg _,dvg dispersion is easily controlled by a single parameter — the
v_g do! %7 Y gk . Ak<1. @ cross coupling coefficieng, =C, /C, (C, is the cross cou-
@0 %o

pling capacitance an@, is the main capacitance of theC

It can be seen from E@2) that the wave packet spreads line) and that for specific values of, the dependence af;
more slowly as its frequency spectrum becomes narrowenn k or the phase shift per element has a minimum. To sim-
and the dispersion of the group velocity becomes smalleplify the analysis, we shall assume that one inductance is
L.e., ([dvg/dw),, or (dvg/dK)y—,. It is known that the dis- nonlinear, in which magnetization reversal of the ferrite
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takes place incoherently in strong fields. Typical dispersiortime (7o=+LCyg), 7 is the filling factor of the inductance
characteristics Y,=v, /v, is the relative phase velocity, by the ferrite,qq is the dimensionless switching coefficient
vp=d-wle, Ug=vg/vo is the relative group velocity, [go=(ay,Mm)/(1+a?), « is the dissipation coefficient,
vg=d-dw/dg, d is the period of the systeng is the phase and y,=1.76x10" Oe 's ! is the absolute value of the
shift per element, and,=d- 7, ') are plotted in Fig. 2. gyromagnetic ratio for an electrdrThis system of equations
These were calculated for several valuesyqf using the s valid forn=3. For the first two elements we have
dispersion relation

du; . d ( )
w2 w2 - =l ye 5o (Uz—Uy),
2 ® dr dr
sir? 5—47* sir? o= — (4)
wg diy .
—-—= —iqrg—uq,
Wherewc=2/\/LOCO. gr e(M Tl
The nonlinear processes in &€ line with cross cou- q q
plings and ferrite nonlinearities are described by the system ﬁ: i (U, —
; . ; 2= i3+ vy, 7= (Us—Uy),
of differential equations dr dr
1 dip
in |n+1+ (un 17 2UptUpyg) E:ul_UZ-
d du, For the last two elements we have
+ 2u,+
Yx 3= dr (Up—2—=2Us+Upip)= ar’ du, . q
di, " dr :Inmax_l_lnmax+ ’Y*E_(Unmax_g_unmax_l),
E:unfl_un_‘lﬂ'nqo(l_mn)'ni .
din -1
=y u
dm, T M a2 Ynpac 1t
"= qo(1—m2)i,. 7
dr
. . . . du, , d
The first two equations are essentially the Kirchhoff T_Inmax_lnmax+l+ y*d—T(unmax,z—unma),

equations for thenth element in the line. The last equation
describes fast incoherent magnetization reversal of the femwhere n,,,, is the number of elements in the transmission
rite. In these equationis, andu,, are the dimensionless cur- line, r is the internal resistance of the input video pulse
rent and voltage in thath element of the transmission line, generator, normalized t@,, andry,q is the load resistance
ro=Rg/Zy, Zo=+Ly/Cy is the wave impedance of the normalized toZ,.

transmission line without cross couplingy,=M,/M is the The initial conditions arei,(r=0)=0, u,(7=0)=0,
dimensionless magnetization of the ferritd (s the satura- m,(7=0)=my (—1<=my=<1), where my is the relative
tion magnetization: 4M =B,), 7=t/ 7 is the dimensionless magnetization of the ferrite. By varying the initial magneti-
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zation, we can control the generation process by altering thevith all the other parameters kept constant. The traces for
shock wave velocity and thus the generation frequdilty  ¢;=1.26 correspond to phase matching at the minimum of
position of the operating point on the dispersion curve can beéhe group velocity @Ivg/d<p)¢:¢l:0, and for¢, and o3,
varied. The boundary condition at the entrantee output  regpectively, 8<(dv,/d¢),. <(dv,/de),.. It can be seen
voltage of the video pulse generate(r) supplied to the . o oL 9 TR .
S from Fig. 3 that as the local dispersion of the group velocity
transmission linghas the form . i o .
varies, the transition process and specifically duration of the
Sir? @17 0< w.r<ar trailing edge of the radio pulsg vqry substantial.ly. _
e(r) =g, 2 1 ' With some degree of arbitrariness, the train of oscilla-
tions formed behind the front may be divided into two char-
acteristic sections: the firdt;(n) (wheren is the number of
The values ofgy and 7 were taken as 0.4 and 0.5, re- the element in the linecomprises oscillations of almost
spectively. We assumedh=5000 so that the rf attenuation jgentical amplitude, and the secohty(n) comprises oscil-
was negligible. lations making up the trailing edge of the radio pui&ég.
3).
DISCUSSION OF THE NUMERICAL RESULTS Figure 4 givesN; and N, in different elements of a

Figure 3 shows typical calculated oscilloscope traces offansmission line withy, =0.2 for various electromagnetic
the voltages/, ,,=u,,— (1/2)(di,/d7) at the midpoint of the shock wave velocities corresponding to phase matching
inductance in a particular set of elements of the transmissiots=vp(@) at frequencies with very different values of the
line (Fig. 1) with y, =0.2 under phase matching conditions first derivative of the group velocity. It can be seen from Fig.
corresponding to different points on the dispersion character4 that for phase matching at the minimum of the group ve-
istic (Fig. 2). The electromagnetic shock wave velocity andlocity (¢;=1.26) the trailing edge of the radio pulse is of a
therefore the phase matching=v ,(w) at different frequen- quasisteady nature as the shock wave propagates through
cies for different local dispersion of the group velocity was 150 elements of the transmission lifeee also Fig. 3 after
regulated by varying the initial magnetization of the ferrite which N, remains constant in the subsequent elements. In
and the output voltage of the input video pulse generatorthis case, the number of oscillatioNs increases almost lin-

1, T<wqT.
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as a function of the element number in the lifier phase matching corre- £\ 5 Number of oscillations\, as a function of the phase shift per

sponding to different points on the dispersion cirug: 1 —1.26,2 —  glement obtained by computer calculatignarves with asterisksand esti-
1.55,3— 1.7, ancbh — 1.85;Up/vol 1—0.7115,2—0.6728,3— 0.6613, mated using formuld5). n: 1 — 50, 2 — 150, and3 — 250.

and4 — 0.6547;my: 1 — 0.068,2 — —0.049,3 — —0.229, and4 —
0.273;e¢: 1 — 14.43,2 — 14.69,3 — 15.07, and4 — 15.17.

minima of v having different slopes. For the transmission

early with the element number in the transmission line. Thdine shown in Fig. 1d%4/d¢® may be varied at the mini-
traces plotted in Fig. 3a show that from the 150th elementum ofv 4 by varying the cross coupling coefficient. Figure
both the number of oscillations on the trailing edge of the6 givesN; andN, as a function of the element number for
radio pulse and the envelope in this region remain constanthe propagation of an electromagnetic shock wave in trans-

For phase matching outside the minimum of the groupmission lines withy, =0.2 and 0.8. It can be seen from Fig.
velocity vy the increment oN, decreases ani, increases 6 that even for a small variation invg,,
with increasingdv 4/de. An increase in the local dispersion [(vg,,), ~08/(Vgee), —0.2~1.07), the number of oscilla-
of the group velocity lengthens the process of formation oftions in the quasisteady-state trailing edge varies by a factor
the quasisteady-state field structure because of the dispesf 1.5—2. However, this quasisteady-state trailing edge forms
sional spreading of the wave packet. Note that for the lengtlafter propagation through approximately the same number of
of transmission line being studied, the trailing edge of theelements in transmission lines with, =0.2 and 0.8. This is
radio pulse generated by the electromagnetic shock wavevidently because, in the line with, =0.8, the spectrum of
does not have time to form a steady-state structure in caseise generated radio pulse narrows faster than in the line with
of appreciable local dispersion even in the first order iny, =0.2 [N(n)|Y*ZO,BIN(n)|y*:O_2>1, N=N;+N,]. Fig-
Awlw [(dvg/dw)(wlvg) is 0.37, 0.49, and 0.56, respec- yre 7 shows the spectral density of the radio pulses formed in
tively for ¢=1.55, 1.7, and 1.85The narrowing of the radio 50, 150, and 250 elements of transmission lines with
pulse spectrumiA w/w~1/(N1+N5)] is clearly insufficient  , =0.2 and 0.8. It can be seen that in both cases, the spec-

[see Eq.(3)] to stabilize the trailing edge of the generatedtral density of the radio pulses at the wave frequency phase-
radio pulse with this dispersion after propagation through

250 elements in the line. Note that the number of oscillations
N, in a radio pulse of the same amplitude will be highest for

phase matching at the minimum of; (Fig. 5. Figure 5 *5:
gives the results of computer calculations and data obtained 40
using an approximate formula ft\; for the establishment of AR
a quasisteady-state regime. This formula is derived from the 0:
condition for backflow of energy from the electromagnetic "
shock wave front at the frequency of the excited oscillations =, ar
and has the forngsee also Ref.)8 = 20:
]
(vs—vgle -
Nl(n)_Tvsn ) s
Some difference between the estimate and the numerical 5r |

results may be attributed to the arbitrary division of the 150 3;;0 330

nonsteady-state generated train into a main section and a n
trailing edge, made when analyzing the results. FIG. 6. Depend 1 (solid 3 andN, (dot-dash curvéson th
. : : . : . 6. Dependences ™, (solia curveg an 2 (dot-aasnh curvgson the
The mﬂut_ance of the local d|_s_perS|on in orders hlgherelememnumbery* 1—02,2— 0.8, ¢: 1— 1.26,2— 1040, fug: 1
than the fIrSt.InAw/.w on the transition processes of genera-_ 71152 — 0.5198;my: 1 — 0.068,2 — —0.720;,: 1 — 14.43,2 —
tion may be investigated by analyzing the phase matching ats.69.
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10 Fig. 3a that for phase matching at the minimumugfthe

[ b " . o :
@ - transition process is stabilized after propagation through 150
0.8 0.8+ . . . . .
R elements of the transmission line, since the number of oscil-
2.4 =50 ser =50 lations and the profile of the transition region of the radio
74 2ol pulse are almost indistinguishable on the oscilloscope traces
ve vek for 150 and 250 elements. After the transition process has

stabilized, the length of the radio pulse increases as a result
of an increase in the number of oscillations with an ampli-
tude that decreases with increasing distance from the front,
net50 as in a steady-state electromagnetic shock wave, because of
rf losses in a transmission line with saturated nonlinearity
whereas at the trailing edge of the radio pulse, this is caused
by dispersion.

|
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CONCLUSIONS

Thus, from the point of view of optimizing the transition
process accompanying the direct conversion of a video pulse
into a radio pulse as this pulse propagates in nonlinear trans-
mission lines possessing hysteretic properties, the optimum
solution involves phase matching between the front of the

YRR T T ; > : - electromagnetic shock wave and the wave excited by it at a
/Tgen 7/fgen frequency near the minimum local dispersion of the group
FIG. 7. Evolution of the spectral density of the radio pulses: & — 0.2 velocity. It has been shown for the example ofla@ trans-

. (. Evolull | | u N — U.g, H H H H HY H
b 0800 vy a—0.711%b—0.5198;m0: a—o.oes?bsfrio.no;ao: mission I|ne_W|th capacitive cross coupling that under phase
a—14.43b — 13.69. matchingvs=v y(w) at the minimum of the group velocity

vs(wp), the trailing edge of the radio pulse relatively rapidly
acquires a steady-state profile and its duration may be 4-5
matched with the electromagnetic shock wave increases witperiods of the generated oscillations. The possible direct con-
increasingn. In these cases, the conditidiw/w<<1 (Aw is  version of a video pulse into a radio pulse with steep leading
the half width of the spectrum at half maximims satisfied and trailing edges is highly promising from the practical
for propagation of the shock wave through 150 elements. Fopoint of view.
v, = 0.8 the spectrum narrows more rapidly. This work was supported financially by the Russian

Knowing the spectral composition and the local disper-Fund for Fundamental Resear@roject No. 94-02-05443
sion, we can easily understand the nature of the amplitude
modulation in the radio pulse generated by the e|ectr0mag.1A. V. Gapanov, L. A. Ostrovskjand G. |. Fredman, Izv. Vyssh. Uchebn.

: : ; _ Zaved. Radiofiz10, 1376(1967).
netic shock waveFig. 3). In particular, under phase match 2A. V. Gapanov, L. A. Ostrovskji and M. I. Rabinovich, Izv. Vyssh.

|ng vs=vp(w0) at the minimum Ofl)g((l)o) a” the SpeCtI’a| Uchebn. Zaved. RadiofiA3, 164(197(}.

componentsvy* Aw for Aw/w<<1 have the group velocity 3a. Scott, Active and Nonlinear Wave Propagation in Electronjugiley-

vg(w)>v4(wo). The energy of these spectral components Interscience, New Yorki1970; Sov. Radio, Moscow(1977].

“lags” more slowly behind the shock wave front than that at $(')rE' ngg?gﬁ"ﬁgcﬁf (Tg?gﬁear Wavephiley Interscience, New
the frequency of the phase-matched wave, and this Shows U ikezi. s.'s. Wojtowicz, R. E. Waltet al, J. Appl. Phys.64, 3277
as negligible amplitude modulation in the radio pu(ég. (1988.

3a). For phase matchings=uv () outside the minimum of ®T. Kuusela and J. Hietarinta, Rev. Sci. Instrua, 2266(1991).

; Re .
vg4(wo), modulation is also observed at the trailing edge of /;é'\’llb?i%%rg;ev and S. L. Klimin, Izv. Vyssh. Uchebn. Zaved. Radiofiz.

the radio pulse (Fig. 30 because components with 8 . Belyantsev, A. I. Dubnev, S. I. Klimiret al, Zh. Eksp. Teor. Fiz.

vg(w)<vg(wy) are present in a narrow band of the radio 658), 132(1999 [Tech. Phys40, 820(1995].

pulse spectrum. Strictly speaking, the amplitude-modulated® % B. E('”ggfaqoga;\l O-kV-MRUdenwkfég%”d A. P. SukhorukhaVave
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part of the generated radio pulse, like its trailing edge, should ' "coYH" Russial Rauka, Mosco
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Some properties of the envelope equations used in the design and adjustment
of electron-optical beams

Yu. V. Zuev
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Zh. Tekh. Fiz.68, 96—102(January 1998

An analytical transformation of the usual envelope equations is used to derive scale
transformation equations for a first-order electron-optic lens. Analysis of these equations, which
take into account both the particle temperature and the particle space charge, leads to the
identification of certain general principles for constructing and scaling beam systems of various
types. The properties of the transformation are illustrated by the example of the equations

for an axisymmetric electrostatic lens. ®998 American Institute of Physics.
[S1063-78428)01801-1

INTRODUCTION w1[h(u) = Al%+ w,[ f(u) —B]?+ wg[g(u) — C]?>< 6.

The design of beam optics always includes, to some ex- ®
tent or other, the solution to an inverse problem of dynamicsHere and in what followsh(u) corresponds to the size and
i.e., that of finding structures and force-field intensities thatf () to the slope angle of the envelope at the target, while
provide the required beam characteristics. In turn, any forc&(u) estimates the finite temperature in the beam. The cur-
field used to shape a beam is in the final analysis alwaykent, charge, mass, and velocity of the particles, the trans-
determined by certain axial functions and their derivativesverse dimensions of the beam cross section at the entrance,
[i.e., controlsu(z)]. Using the paraxial equation, we can the slope of the envelopes, the emittance, etc. play the role of

write the linearr (z) and angular’(z) envelopes of a beam Parameters, here labeled by the pet
in terms of the following integrals: In this formulation, such problems belong to the isope-

rimetric class of variational problems and should be solved
using the corresponding methods. However, the use of these
methods is hindered in practice by the large number of con-
straints imposed on the desired control, which makes it im-
Analogous expressions can be written down for aberrapossible to determine the functionals for all values of their
tion corrections that characterize the intensity of beam heafarguments. Usually these constraints, which ensure physical

ing. From this starting point, the beam design should includgegajizability of the control, are expressed in terms of the
the successive solution of two problemg:fihding an on-  peam aperture

axis field that ensures the desired optical properties of the

system; and Rextrapolating this field into the surrounding o _ fzfg(p dedz<R o<z<l (8
space to determine the necessary field-shaping elements. The ™" Jo Jo [u(¢),p]d¢dz=Rmax, z<L. ©®
first problem reduces to finding that contralz) which, for
the boundary conditions

z

r(z)=ro+J r'(z)dz, r'(z)=ri+ fozd)[u(z),p]dz.

0

the length of the structure
u(0)=ug, u(b)=u, (1) Lmin<L=<Lmax )

, , the achievable field intensity
would assign to functionals of the form

L umingu(z)gumaw (8)
f(u)= fo ®[u(z),p]dz, the rate of change of the control
o U (2)] < U ©
h(U)=j J ®[u({),pldldz etc. The literature to date contains only isolated cases where
0oJo e .
these variational methods are used to solve problems of this
two completely determined values kind.
More often, an attempt is made to describe the control
Ih(u)—A[<8a, [f(u)—B|<dg, by a finite number of parameters and express the functionals

in terms of them. Once this is done, the problem is reduced

while ensuring as far as possible that C . .
to finding an extremum of some effectiveness functiom of

L . variables. The quantity usually used as an effectiveness func-
g(u)= fo Q[u(z),p]dz=C or g(u)—min. (4)  tion is the so-called meriguality, Q function of the device,
which also includes deviations of the beam characteristics
Sometimes these requirements are combined: from their normal values. The search for the extremum is
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carried out by the methods of optimal control or multi-
criterion optimization. Unfortunately, this transformation is
made feasible largely by using a matrix description of the
system, which is unsuitable for beams in which an important rY)
role is played by the self-charge. Hence, in the overwhelm-
ing majority of cases the design procedure consists of finding
multiple solutions to the direct problem, i.e., selecting pa-
rameters that describe the force field and then calculating
beam characteristics until the necessary transformation is ot
tained. The methods most widely used in this case are nor
linear programming techniques. U

Computer programs based on principles such as thes:
while guaranteeing physical realizability of the system de-
signs, can only find a design solution if the initial approxi- T <f—_—
mation is good. This category includes such widely known Z
programs as TRANSPORT and TRAGHhe most impor-
tant cause of this difficulty is the fact that the inverse prob-FIG. 1. A description of a lens—beam system in the spate,¢).
lem is ill-posed. Problems of this kind, in which a cause and
effect relation is inverted, can have either a multiplicity of
solutions or no solution at all, depending on the initial con-where ~ ®(x,y)=yF,+xF,.  Then G=(x"—F,)/x
straints. Moreover, the method of solution also plays a non=(y”"—F,)/(—y) (in this type of description the specified
trivial role. In the problem under discussion here, our task igdlimensions of the beam act as the control
not to optimize a function or functional, but rather to attach  In a deflecting magnet the envelope equations are
definite values to them. These values do not necessarily lie in
the “bottom” that is closest to the starting point. W (1-n) X+F, Y= £y+F

The goal of this paper is to develop a nonoptimizational R2 7 =2 Y
method for solving this problem within the formulation used
currently in the design of beam optics, i.e., matching the™"
parameters of the beam to the transfer characteristics of the yx"+xy’=®d,(x,y). (13
accelerating structures or transport chanfietsditions(2),
(3) but without condition (4)]. The few direct methods decay exponent of the field, and®y(x.y)=yF,
known to the author for solving such problems apply to ST — (xy)IR? NR2=R 2+ (X'~ F)/=(y"—F,)/
tems with a certain field structurdike, e.g., those in 14 (_y)y. ' X y
and negligibly small perveance?®® It is most convenient to witness the advantages of this

approach for the example of the envelope equations in an

axisymmetric electrostatic lens. The field of the lens is de-

U(z)

max

Here R is the radius of deflection of the magnet,is the

TRANSFORMATION OF THE ENVELOPE EQUATIONS BY A termined only by the axial distribution of the potenti#{z),
COUPLING FUNCTION. GENERALIZED EQUATIONS and the behavior of the envelope is determined by the initial
FOR SCALE TRANSFORMATIONS conditionsr (0)=rg, r'(0)=r} and the equation

Ordinarily, the envelope equations most often used to r"U+0.5'U"+0.25U"=®d(r,U), (14

_de3|gn first-order lenses in optl_cal _systems hgvg the fOHOW\'/vherefbu(r,U)=QU/(\/Ur)+sf|/r3, ande,, is the normal-
ing forms. The envelope equation in a solenoid is ized emittance

r"=d«r,B), (10) Consequently, the lens—beam system can be described
by a curve in spacéhe solid curve in Fig. 1lin the coordi-

where®¢(r,B)=Qg|r + £2|r3—constrB?; B is the magnetic natesUrz, which are specified, e.g., by the projectidnéz)
induction on the axisQs is a space charge parameter whichandr (z). Equation(14) is normally used in looking for pro-
depends on the value of the beam current and on the type afektions of this curve on thez plane for a known projection
velocity of the particles; and is the emittance. on theUz plane(or conversely. The idea of this method is

In a quadrupole channel the envelope equations are to start from the projection on thgr plane. Then, by speci-

Y ” fying some function that initially relates the control to the

X"=Gx+Fy, y'=—GCGy+F,. 1) peam, ie., a coupling function, we determine beforehand all
Here the reduced gradief® of the lens plays the role of a the values that both the bgam radius and the potential in the
control: FX(X’y):Ql(XJFy)JrSi/Xs, and  Fy(x.y) lens can take. Particularly important among these values are

=Q/(x+y)+s§/y3. The system of Eq€11) can be reduced their minimum, maximum, and boundary values, i.e., those

to a single equation which relates only the transverse dimerfhat satisfy conditiongl), (2), (6), and(8); see Fig. 1. _
sionsx andy of the beam: There are also a number of advantages associated with

the equation that establishes a relation between the coupling
yX'+ Xy =P4(X,y), (120  function and the optical axis. Its form
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TABLE I.

TR
Z—m[ 2(9)—hs()z7]

Type of optical system  Coupling function ¢ z hy h, hs
Solenoid r(B) B dz dr d2r Dy
@ @8 aE?
B(r) r dz 1 0 g
dr
Axisymmetric r(v) U dz dr dr d2r Dy
electrostatic system au Yggtoes 0.55,tY 102
u(r) r dz du du d2u Py
ar U+0.25% ar O,SW-FO.ZSF
Quadrupole channel y(X) X dz N dy d?y @,
dx YT Xax X0l
x(y) y dz . dx d2x D,
— X+y— =
dy dy ydyz
Deflecting magnet y(X) X dz N dy d2y Dy
dx YT dx X
x(y) y dz Ly 93X d?x Dy
dy XYy Yy

the singularities is a simple matter. Their types and positions
= h—(hz— hsz?) (15  do not depend on the form in which the coupling function is

! represented.
is invariant with respect to selection of a new independent The fundamental equation preserves its form when we
variable and is correct for all the equations we have disconvert from an explicit representation to a parametric one:
cussed abovésee Table)l This latter fact makes it possible
to use unified principles to design systems of different types,
based on the properties of this equation.

Equation(15) can have nodal and saddle-point singulari-
ties. The character and position of these singularities detefthe expressions fdfy, f,, f5 are given in Table II; the dots
mine the uniqueness or multiplicity of realizations of the indicate differentiation with respect to the parametgr
coupling function, or whether it is fundamentally nonrealiz- However, the variabl®& now plays the same role in all
able(by a realization we here mean a solution to the ordinarythe equations — it is the differential coefficient of a scale
envelope equation which gives a corresponding projection otransformation, since by definitio =dz/d\ . Furthermore,
theUr plane. Multiplicity allows one to choose that realiza- Eq. (16) reveals yet another series of properties that are use-
tion which has at the boundaries not only the required valuetul not only in designing the optics but also in adjusting
of the control and beam radius but also all the necessarthem.
derivatives, i.e., the realization that completely solves the Because the expressions fg(\) andfs(\) correspond
problem under consideration. Identification and analysis ofo the left and right sides of Eq&10) and(12)—(14) when\

2

szl(_}\)[fz()\)_fs(MMZ] (16)

TABLE II.

M= M f,(\) —f3(\)M?2

= W[ 2(M) —f3(M)M7]
Type of optical system Coupling function  f(\) fo(N) fa(N) dfi(N)
di

Solenoid {B(\),r(\)} r r by fo(N\)
Electrostatic system {UN)r(n)} 0.258J+Ur ruU+05U0+0250 Py f,(\)+0.75U
Quadrupole channel  {X(\).Y(\}  xY+YX XY+ YX Dg (0 +2XY
Deflecting magnet {X(N), YN} XY+YX XY+YX Dy fo(N) +2XY
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is replaced by, it is now completely obvious thal (A\)=1,  points guarantees a multiplicity of realizations of the cou-
when the parametrically specified coupling function coin-pling function, specified by the initial conditions for integra-
cides with the solution to the ordinary equations. The lattetion of Eq. (16). To eachM there corresponds a different
suggests the idea of using as the coupling function the beastaling of the optical axis for which the derivatives of the
dimensions and the control of the system which is to becontrol and the beam derivatives change but the functions
adjusted or which is being designed if it is necessary tahemselves still satisfy both the ordinary envelope equation
change its characteristics. From this point of view, B)  and the coupling function chosen. In this case the ratio of
is a generalized equatior_1 for a scalle transfqrmation of ﬁrSttheir first derivatives remains unchangedU’ = /0.

order optical systems with a coupling function used as an g hossibility of realization of a coupling function that

invariant. If the parametrically specified coupling function ;¢ ;erges of the characteristic functibndepends on the
corresponds to a solution of the ordinary envelope equatiof racter of the singularities that arise in this case. The pres-

and admits multiple realizations, integration of Eg6) with ¢ inaul int&i£0) al )
M,>1 gives a system with a greater lendth [M(\)d\ ence of nonzero singular pointd/@# 0) always guarantees

but smaller first derivatives along the axidz=M ~1d/dA. that a suitable solution to E416) will exist nearX. This is
Integration withM,<1 has the opposite effect, since the €ither a unique solution passing through the center of a non-
integral curves of Eq(16) do not intersect except for singu- zero saddle pointwhich uniquely determines the admissible
lar points, and the quantityM —1) preserves its sign. Read- initial value My and the only possible value of the boundary
justments(redesign of systems for a new value of the cur- derivativeg, or an infinite set of solutions with a common
rent, emittance, type of particle, etc., can be reduced tgoint at a nonzero node. Provided tHa{X)# —0.5f;(\),
analogous integrations. the integral curves passing through this nonzero node will
In the general case, on the other hand, parametric specilso have a common tangent at the singular point. This al-
fication of the coupling function, assuming that the param{ows us to join any two solutions obtained by integrating Eq.
eter used is the coordinate along the optical axis, may be16) from the left and the right of the singularity at the node
regarded as an approximatgualitative description of the in an ideal way that will ensure continuity of all the deriva-
desired behavior of the beam and control in the system. Elives. This latter property also makes it possible to solve the

ementary analysis of the singular points determines whethgiyoblem (2), (3) formally by specifying the required bound-
the desired configuration is validealizablg. The fundamen- 5y values as initial conditions.

tal equation of the transformation rescales the optical axis so * |, general, there can be several zeroes of the character-
that the beam and control specified by the coupling functiongtic function. Necessary conditions for realizability of a cou-
are rr&atched ytvk:tr:hrespg.ct to their Iderlvatlve?' In exact Correp|ing function in this situation naturally is realizability in the
spondence wi € ordinary envelope equation. vicinity of each zero, i.e.f,(X;)f3(7;)>0, i=1—N. This

condition is also sufficient if the adjacent nonzero singulari-
ties that form are of different type or are nodes. For adjacent
saddle points a sufficient condition of general form has not
yet been found.

It is not difficult to show that Eq(16) with given initial There are two more properties of the transformation we
conditions has a unique solution over the entire range ohave introduced that can be useful in adjusting and redesign-
variation of the independent variable except for singular ing optical systems.
points at which both the numerator and denominator of the  Property A. Let{U(\),r(\)} be a realizable coupling
equation equal zero: function in parametric formC,; andC, are arbitrary positive

G = ~ NI constants; thedC,U(\),C,r(N\)} is also a realizable cou-
1(M)=0, M[T2(A)=T5(MMT]=0. pling function rE)rovided thafg(j,r)f3(C1U,Czr)x_;i>0,

At zeroes of the characteristic functidnp(\), the cou-

ling f X ith inaul since the positions of the zeroas and the character of the
bling uncpon gengrates ?I.t er one singulafiways zera). singular points of Eq(16) are unchanged by such a transfor-
or three different singularitiene zero and two symmetjic mation of the coupling function

corresponding to the real roots of E4.8). The form of the :

) " . . . Property B. Letpy, ... ,px be the parameters enterin
singularities will be the same as for a singular point of the. perty P Pk e p ) ng
into f; of a realizable system with a coupling function

linearized equatioM =M +a(M —M)/(x—\) with coeffi-  {U()),r(\)}, and lety;..., xx be some functions of. Then
cients a;=f,(\)/fy(N) for M;=0, a,3=-—2a; for the coupling functiofU(\), r(\)} will be realizable with
M=+ \E(N)/5(X). If a=0[f,(X)#0], then the singu- parameters xips,... xkPx if  f3(U,r,ps, ... px)

lar point is a node. In the opposite case, a saddle-point sirfa(U.r,x1P1, - - - .xkPk)r=%,>0, since the character of the
gularity occurs. Wherf,(X)=0, the nature of the singular singular points for such changes in the parameters remains as
point can only be determined by investigating terms ofbefore.

higher order(additional information is given in Ref.)7The The only exceptior{but only from the point of view of
coupling function is unrealizable in principle only when the realizability) that can occur here is when adjacent nonzero
corresponding integral curve of the transformation equatiorsaddle points are present. A unique integral curve that con-
passes through zero or suffers a discontinuity. Such solutiongects the centers of the saddle points exists only under cer-
to Eqg. (16) can only be singular. The absence of singulartain conditions, which can be violated as a result of scaling

ANALYSIS AND PROPERTIES OF SINGULAR POINTS OF
THE FUNDAMENTAL EQUATION OF THE
TRANSFORMATION
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of the coupling function or as a consequence of changes in arb. units

the parameters. 4.0F
I/F\\
GENERAL PRINCIPLES FOR CONSTRUCTING AND d.or // ! N
SCALING BEAM SYSTEMS i / \
2.0 r

From what was said above, it follows that the use of /
transformation equations reduces the procedure for design 101 ,"\ /
(adjustment of systems with respect to first-order optical 0 L ,/ L b 1 1
characteristics to a rather arbitrary choi@®rrection of a AN 0.01 , 0.0 0.0 0.04 0052

certain arbitrary function — the coupling function. For speci- -7.0
fied boundary values, this function shouldr should no _
generate some given sort of singularities of the fundamental zor
equation. Analysis of the transformation equation reveals -3 g
certain principles that are common for lenses of different
types. 4.0
Any coupling function ensures the required transforma-
tion of the beam with respect to size if it is realizable and had!G. 2. Characteristics of a unipotential lens and a beam at a current of
the appropriate boundary values. 30 mA.
The same coupling function is realizable, as a rule, over

a wide region of variation of current, emittance, particle ggrnoyji equation, can be converted into a linear inhomoge-
type, etc.(property B. The boundaries of this region can be o5 equation with a solution in the form of quadratdres.
used to determine the limiting values of these parameters. The use of Eq(16) allows us in principle to formalize

_ The coupling function can be subjected to linear scalingne procedure for designing a system of the desired length.
with preservatlo_n of the character of the singular pomtsAny length that is not less than a certain length eapriori
(property A. This scaling of the envelope or control can pe g aranteed by that choice of coupling function for which
significantly accelerate a redesign of optical systems that ing, adjacent nonzero singularities of the node type are found
volves changes in the restrictions on maximum aperture angp, the interval of variation ok. Then it remains only to

force-field intensity, making a readjustment to nearby beam,,qse properly a suitable integral curve that joins these two

parameters easier. , _ nodes, i.e., to pichM,. Unfortunately, such a situation is not
When the coupling function has a nonzero node adjacent,yays realizable. A corresponding change in the sign of the

to the boundary, it is possible to obtain a given beam size fofnction f4(\) is necessary. And the equation for a solenoi-

any slope angle of the same sign. S dal lens, for example, can never have nonzero nodal points
When a nonzero saddle-point singularity is adjacent tq,,qer any conditions, sinde=df, /d\.

the boundary, the boundary value of the slope for a beam A an jllustration of several possible uses of the method

that realizes the chosen coupling function is uniquely SpeCiproposed here, in what follows we give a number of trans-

fied. Certain combinations of boundary values of the characeo mations of an axially symmetric unipotential lens with a
teristic function f,(1), for example f1(0)<<0, f1(L)>0  roton beam that are typical for injection systems in accel-
whenf3(1)>0, entail the formation of such points automati- erating structures with spatially uniform quadrupole focusing
cally. In order to obtain a required slope angle in this case, 3%nergy 60 keV, current 30 mA, normalized emittance 0.25
in the traditional design process, from a formal standpoint, it mrag. The axial distribution of the lens potential, which
rema_ins only to exhaust all variants of the coupling yvith thegives the basic coupling function in parametric form, was
specified boundary values. However, problems with suchy,-qyimated by a sixth order polynomial with zeroes of the
“inconvenient” boundary conditions can be reduced t0 angyst ang second derivatives at the boundaries. The envelope
equivalent problem by including in the system a suitableqnction corresponding to it is found by numerical integra-
segment with optical properties that are known beforehand;y of Eq. (14) with initial valuesr (0)=1.5 mm,r’(0)=0.
which converts the boundary values of the beam and thgpe shapes of the electrodes that realize the required axial

control into more convenient values. A typical example of yigtribution of the potential were determined by the first-
such boundary conditions is a converging input beam at Z€r@nproximation equation

force-field intensity. The simplest equivalent system in this

case need only contain a drift region of a length such that ¥ =U(2)—0.280"(2)R5(2)

gZz;?r?gtTs:oirghc?hnevi:ggsgoirthe input begin to diverge after L Qu{1 42 RA(z)/r(z)]}/m,
By varying the positions of singularities andr) cou- where ¥ is the electrode potential arld, is the aperture

pling functions between them, we can decrease the aberraadius.

tion (4) and optimize the length and other properties of the  The potential of the middle electrode was chosen so as to

system without changing the size and slope angle of théorm a beam at the input of the system with a radius of about

beam at the boundary. In contrast to the classical formulal mm and a convergence angle of 10 mrad. Figure 2 shows

tion, optimization problems approached in this way are madéhe characteristics of this system. Since the coupling function

easier by the fact that Eq16), as a special case of the was obtained by integration of the ordinary envelope equa-
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FIG. 5. Changes in the axial potential distribution and envelope as the beam

0.20 current changesl-5 — 50, 40, 30, 20, 10 mA, respectively.

FIG. 3. Integral curves of Eq16). The solid curves are for a current of 30
mA, the dashed curves affrom top to bottom currents of 10, 20, 40 and

50 mA.
Of course, it is by no means true that every mathematical

realization of a coupling function is realizable physically.
tion, we havefs=f,. The solution to Eq(16) for a current The approach give.n hgre only allows us to formally satisfy a
of 30 mA is given by the solid curves in Fig. 3. The integral "umber of constraints imposed on the control. The physical
curve M =1 corresponds to the basic realization of the cou-"€@lizability of a control can be improved by correcting the
pling function. The remaining realizations differed in the €OUPling function, most importantly by changing the beam
value of the slope angle of the envelope at the input. On thgnvelope, on whose behavior remarkably few restrictions

interval from the nonzero node to the saddle point at thd'@e been imposed. A still more universal approach is the

input, all of the realizations coincide. Figure 4 shows thefollowing procedure, which combines the advantages of a

profile of the electrodes with potentials of the basic systensC@lé transformation with the possibility of explicit specifi-
that realize a coupling function with an angular beam enve€ation of the control: Ldetermine the basic coupling func-
lope at the output of 5, 10, and 20 mrad. The dashed curveion by solving the ordinary envelope equation with a physi-
in Fig. 3 show the solution to E16) for the same system at cally realizable control; Rif the control ghosen does not
different currents; the beam angle at the output is kept equénSure the necessary beam transformation, correct the cou-
to 10 mrad. The axial potential distributions obtained fromP!iNg function such that it satisfies the required boundary
these solutions and the envelopes for the beam correspont@/Ues; 3 with the help of the generalized equation for scale
ing to them are shown in Fig. 5. Figure 6 shows the electrogdansformation, find a control that mathematically realizes
profiles that allow the same transformation of beam radiudh® corrected coupling function,) & the control obtained is

and slope angle to be implemented at currents of 20, 30, 480t realizable physically, replace it by the closest form that
mA without changing the voltage on the electrodes. admits this realization and return to point 1.

- -
T mmn e v e -

0.004

0.002

FIG. 4. Profiles of electrodes for shaping a beam with the radius of 1 mnFIG. 6. Geometry of a lens that implements the same beam transformation
and angular envelope 20 mr&e-), 10 mrad(— - —), 5 mrad(- - -). at currents of 24— - -), 30 (- - -), 40 mA (—).
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CONCLUSION pling functions that correspond to the type of beam transfor-
ations that occur in optical elements is of topical interest.
he approach described here can also be used to solve other
oundary value problems in dynamics.

The transformation described in this paper leads to
unified approach to solving the problem of matching beam
to structures of various types. It is based on introducing
coupling function, which initially defines a relation between
the dependent variables of the ordinary envelope equation
and is invariant under the transformation. The properties OflG. Swain, P. Busch, and M. BurrBroceedings of the 1989 IEEE Particle

: " : ; : Accelerator ConferengeChicago, Ill., 1989, p. 598.
SmgUIam_les of the basic tranqurmaftlon equation can be useczil. P. Yudin, in Proceedings of the 1993 IEEE Particle Accelerator Con-
to formalize the process of desigadjustmentof beam sys-  ference washington, D.C., 1993, p. 191.
tems based on their first-order optical characteristics, while*G. E. Lee-Whiting and N. Bezic, Nucl. Instrum. Metho#l 61 (1969.
taking into account particle temperature and space charge. K- Takayama, Part. AcceRl, 259 (1987).

In manv cases. these eguations can be used to scale5 . Picht, in Einfuhrung in die Theorie der Elektronenoptiknd ed.

_ Yy Cé ) _OI Ll eipzig, 1957, p. 137.
previously designed system; to redesign it for new values ofen. |. Tarantin, Magnetic Static Charged-Particle Analyzers: Fields and
the current, emittance, beam energy, or new types of par-Linear Opticsfin Russiai, Energoatomizdat, Mosco986, pp. 31-36.
ticles; to analyze the realizability of constraints on the force- ]j(“- V-M Zuev, Prfgggt NIIEFA No. P-0940in Russiar, TsNII Atomin-
field intensity, channel aperture, length, etc. For this reason, o " oSO, 295

the problem of creating a catalog of standardid#akio cou-  Translated by Frank J. Crowne
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On envelope equations for electron beams in magnetic fields
N. D. Naumov

Central Physicotechnical Institute, 141300 Sergiev Posad, Russia
(Submitted November 14, 1996
Zh. Tekh. Fiz68, 103-107(January 1998

A self-similarity approach is used to obtain envelope equations for an annular beam propagating
along a magnetic field, and also an electron beam injected at an angle to a magnetic field.

An exact solution is constructed for the self-consistent problem of transverse oscillations of a cold
annular beam in a magnetic field, and a comparison is made with approximate results from

the method of envelope equations. 1®98 American Institute of Physics.
[S1063-7848)01901-1

INTRODUCTION wherew.=¢eyBy/mc is the cyclotron frequencyg= —g; is

The use of envelope equations, which make it possible t(%he electron charge, ardfdt= o/t +V,d/or.
he €q ' P It is not difficult to see that there is a stationary solution

construct a number of analytical self-consistent models foE
beam propagation, has led to substantial progress in the d
scription of the dynamics of charged-particle beanfsThe

0 the equation for the azimuthal velocity of the form
V,=w, (r+C2Ir), where o =wJ/2 is the Larmor fre-

existence of self-similar solutions to the equations of motio guency. The constar€ is determined from the condition

. . . hat particles located a distance=C from the beam axis
for a gas of charged particles makes it possible to conver . . .
i . X . . . . rotate with at the cyclotron frequency. This result is a con-
partial differential equations to ordinary differential .
: . . : sequence of the fact that the azimuthal component of the
equations. For curvilinear beams approximate solutions of

self-similar type can be constructed when the ratio of transgenerahzed momentum of a particle

. ) ) Lo P,=r(p,+mrw,)=mwo, C2is conserved for an axisymmet-
verse dimensions of the beam to its radius is sfhadbw- rig begr)r: i) =M, C7is conserved for an axisymmet

ever, in this case the adequacy of such approximate solutions : . .
An approximate nonstationary solution can be con-

to the nonlinear problem remains an open question. ; . )
. T structed for the radial equation. As was shown previofisly,
In this paper transverse oscillations of a cold annular . : .
. o . . such a solution can be obtained when the ratio of the trans-
beam of electrons in a magnetic field are discussed. It will be : . . T . .
verse dimensions of a beam to its radius is small, in which

shown that an approximate solution of self-similar type can L ) .
: . ase the terms entering into E@L) that involve the azi-
be constructed for a thin annular beam by using the metho . )
uthal velocity can be expanded and only the first-order

of envelope equations, while the Green’s function metho erms kept with respect to the quantidyr,, wherer, is the
iiner radius of the beam ariis the beam thickness. The

self-consistent problem. A comparison of these two solutions : L oL
. T almost linear variation of the self-electric field of the beam
is of undoubted methodological interest.

In this paper envelope equations for a thin helical bea can be exploited by choosing a corresponding profile for the

in a magnetic field are also derived. These equations ﬁrr:beam density:

practical application in connection with the use of electron |

beams to study the ionosphere. The injection of an electron n(x,t)= =————H(&é—£?), 3
: : X 2megurd

beam into an ionospheric plasma at an angle to the geomag- 0

netic field was discussed in Ref. 7, but the results obtame% erel andu are, respectively, the current and longitudinal

there, as these authors themselves showed, cannot be appl ocity of the beamH(x) is the Heaviside step function

to the case of injection at pitch angles close to 90°. Theand§=(r—r )/d is the self-similarity variable '

model derived here fills in this gap for time periods in which ! '

th 1o of t b di . 0 its radi ¢ For this class of nonstationary motions, the velocity of
€ ratio ot transverse beam dimensions 1o ItS radius of CUly,q gjactron gas depends linearly on the self-similar variable;
vature remains a small quantity.

therefore, the radial velocity of the beam has the following

form: V,=r,+ &d. In this case the particle densitg) satis-
ANNULAR BEAMS fies the equation of continuit{2). Substituting this expres-
sion into the linearized equations for the radial velodity

The behavior of an axisymmetry cold beam of nonrela- . . ;
R . e ) leads to an equation for the internal radius of the beam and
tivistic electrons propagating along a magnetic field is de- . )
. . . . jts thickness:
scribed by the self-consistent system of equations of motion

for a gas of charged particles ch cé
dv V2 y +47Tezfr | . r+o? rl—r—a)zo, d+wf(1+3r—4)d:dow§,
— _—— = — P 1 1
dat v T WcVy mr On(X)X X, 1) 4)
i N ViV — oV ﬁ_n+ anv; -0 @) where w,= Jamnge?/m is the beam plasma frequency and
dt ¢ r e gt ar ’ No=/2mwueyr 1do.
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It should be noted that the collective field at the innertime and is determined both by the initial value of its radial
surface of the beam equals zero. Therefore, the equation fqositionr, and by the preset initial density distribution of the
oscillation of the inner radius of the beam, in contrast to theparticles:
equation for the beam thickness, is exact. Qo) :

_It is not difficult to see thgt for_a cold bga_lr_n th_e inner E,[r(t;xo),t]=4men, 0 , Q(ro):f Ov(x)xdx.
radius does not depend on time if at the initial time the r ro
particles at the inner surface of the beam rotate with the (6)
cyclotron frequency, i.e., whe@=r 4. In this case, as fol-
lows from EQq.(3), the thickness and outer radius of a thin
beam vary periodically with time:

In summary, we find for the functiof(,t)

f(Xat):nof drorov(ro)dlr—s(t,ro)]

r,=riptd, d=dg[g+(1—g)coswt], (5
whereg= w?/ o’ . X 8[p,—ms(t,ro)],
. It is obvious that fod=1 a stationary state of the beam wheres(t,ro) is the solution to the equation
is realized.
4 w,%
. oC @p
THE METHOD OF GREEN'S FUNCTIONS s=oi| 578 TRy @

An exact solution can be obtained for the self-consistent . _— " .
problem of transverse motion of an axisymmetric cold bea W't: tge initial chond|t|ton_s§0,ro)f—trr]0, ﬂs(O,rO)—%t For the
in a magnetic field. Although the problem as posed is esse lydrodynamic charactenstics ot the flow we obtain

tially hydrodynamic, it is convenient in solving it to start p(r, O p(r,1)]
from the distribution function of the electron gas, n(r,t)=f F(X,Pa,pz,t)d3p=now, (8)
F(X,Pﬁ,pz,t)=f()(,t)é(P(,—meCZ)(S(pZ—mu), 1
where the collection of variables p, is denoted byy for V,(r,t)= mj PF(x,Py.p, 1)d3p=U(r,1). 9)
brevity.
The solution to the Vlasov equation for the radial func- Here p(r,t) is the solution to the transcendental equation
tion f(x,t) s(t,rg)=r, i.e., g[t,p(r,t)]=r, and the following notations
Lf(x.1)=0 have been introduced:  S(r,t)=R[t,p(r,t)],
’ ’ R(t,ro)=dsldry, U(r,t)=s[t,p(r,t)]. A simpler method
d pr ,[C* d can be used to calculate the hydrodynamic characteristics of
5% T mar T eE+mog =", the flow. It follows from expression€), (9), that at timet
the particle density and radial velocity of the beam at a point
can be written by using the Green'’s function of the operator =s(t,r,) equal
L:
r0V(r0) .
n(s,t)=ng——=7, V(s,t)=s(t,ryp). (10
HO(x.t) = f G(x.x0:D) f(x0.0)dxo, Ps(tro)lRIT ’

Let us find the equation for the functid® by differen-

LG(x.x0:t)= (1) o(x — Xo)- tiating Eq.(7) with respect tary;
Here f(x,0) is the initial function for the beam distribution,
which in  the present case has the form
f(x,0)=ngrv(r)s(p,), wherengr(r)=n(r,0) is the initial
density distribution of particles.

The Green’s function is determined by the radial motion It is obvious that the initial conditions foR have the
of a single particle (t; xo), p(t; xo) in the combined exter- form Ry=1, Ry=0.

2

4
R= 2lo_| 2l 113% “lR
v(ro)wps w| 1+ & -i-Q(I’O)S2 .

nal and collective fields foP ,=mw C?: Thus, calculation of the hydrodynamic characteristics of
e e _ ] an axisymmetric cold flow of charged particles in a magnetic
G(x.x0:t)=H(t)8[r —r(t; xo) 16 pr — Pr(t; x0) 1. field reduces to solving two ordinary differential equations. It
The motion of an electron satisfies the following condi- is obvious that for a solid beam the upper limit of integration

tions: r(0;xo0)="r0, P:(0;x0)=Pro- in Eqg. (6) should be set equal to zero. For an annular beam,

The basic difficulty in implementing this method of solv- Eq.(10) can be used to obtain the characteristics of the beam
ing the self-consistent problem is connected with includingat a given timet by stepping o gradually with a sufficiently
the influence of the self-field of the beam on the motion ofsmall step size from,yto r,g. Note that whersy=r 44, EQ.
the particles, which is unknown beforehand and which(7), which in this case becomes the first of E@), deter-
changes as the beam propagates. This problem is simplifiadines the oscillations of the inner radius of the beam. When
if the layers of particles translate in the radial direction insy=r,q, Eq.(7) describes the time dependence of the exte-
“single file,” without overtaking each other. Then the value rior radius of the beam; choosing the initial particle density
of the collective field acting on a patrticle does not depend orin the form Eq.(3), i.e., v=r4,/r, we obtain
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Herek=w./u, u is the particle velocityg is the path length,
and « is the angle between the magnetic field and initial
electron velocity vectors.

The transverse beam dynamics are conveniently treated

1.05

1.04 in a system of curvilinear coordinateso, {
& x=Y(o)+pe + b,
1.03 whereb=tXn, andt, n, b are the vectors of a Frenet triad
' connected with the curv¥(o).
For a vortex line, the direction of the normal vector is
. . ‘ opposite that of the radial unit vector= — g, . In this system
1.02; 2 i I3 of coordinates the external field has the form

T Bo=Bg(b sina+t cosa).

Let the ratio of transverse dimensions of the beam to its
radius of curvature .= 1/k sin«, and also to the radius of
torsionr,=1/k cosea, be small quantities. To accuracy up to
first-order terms, the longitudinal velocity of the beam is

,T10 constant; therefore, setting=ut+1I'e, + Ab and neglecting
+d0wpr—. 11 second-order terms, we find from the Euler equation for a
2 charged gas the following equations for the functidhd :

_Figure 1 shows the result_s_qf calculafci_ng the external MT+fp=F,, MA=F,,
radius of the beam for initial conditionsC=r g,
r,o=1.05,for g=1 and 0.75. The solid curves correspond d d d d
to the solution to Eq(11), the dashed curves to analogous M= E“LU%“L(F_WD%“AJFWP)(T? (12)
data from the self-similar approximation E&); the variable _ o
T=w.t. We can assert that the equation for envelopes give&heref =u/rc, w=ulr, F,, F are terms that give rise to
a suitable description of the dynamics of the transverse dithe self-field and the beam emittance. _
mensions of the beam at least at the initial stage of motion. ~EXpressions for these terms when the beam has an ellip-
Figure 2 shows a comparison of the exact and approximatéC Cross section are most simply displayed in a system of
solutions for particle densities gt=0.75 at timet=5m/w,  cooOrdinatesy;, g, connected with the axes of symmetry of
(curves 1, 2), t=5.5m/w, (curves 3, 4), and t=67/w, [he beam cross sectidn,
(curvesb, 6). For the particle density the exact and approxi ha, ﬂ ha, Ha,

mate results differ from each other to a larger extent. Fi= (a+b) ot sz —
a(a a a b

FIG. 1. Oscillations of the external beam radius.

4

s 2

r=wi| — -
rs

Hereh=4Ic?/1,%?, | is the beam current,=yumdci/e, is
the Alfven current,a, b are semi-axes of the beam cross

Assume that the beam axis coincides with the trajectory?€Ction, andH=ue, wheree is the beam emittance. The
of a single electron in the magnetic field, i.e., it is in the form Self-field of the beam is approximated by the electromagnetic
of a vortex line field of a rectilinear beam with elliptic cross section, since

corrections due to the beam curvature will, as in the case of
an annular bearpe terms of second order in smallness.

Because the orientation of the beam cross section
changes as time passes, the coordinate axes for the system
d;, g, will rotate with respect to the unit vectos, b
through a certain angl¢

gi=p COS¢p+{ sSing, Q= coSy—p Sin .

Accordingly, I, A should be written in terms of com-
ponents of the gas velocity; in the new system of coordi-
nates:

I'=V, cos¢y—V, sin y— O,

HELICAL BEAM

1 1
Y(o)= K sin a coskoe,+ K sin a sinkoe,+ o cosae,.

| &=

I
AP §
- }

(X

>l

A=V, cosy+V; sin y+pQ,

whereQ =y is the angular velocity of rotation of the beam
- A 1 [T . .

W00 107 1.0z 107 104 1.05 with respect to the Frenet trlad_.

P/ Py If o is replaced by the variable= o—ut, then the de-

rivative with respect tor in Eq. (12) disappears. For this

FIG. 2. Variation in particle density. reason the dependence of the beam characteristics isn
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x/a; , b/,

FIG. 3. Variation in the transverse dimensions of the beam.

now parametric in nature and is determined by the initial
conditions when a beam with a given cross section is in-
jected. As a result, Eq12) for the functionV; leads to the

following equations:

NV;—20V,— 0,0 — gy + f
qz2 .
x(ql cog Y= = sin Zz,b):Fl, (13

NV,+2QV;—q;Q—\qg,+ f

x| q, sir w—%sin 2:,.//)=F2, (14)
where
N= J LV J J J
=5 ia—qi+W Q1a—qz %E,
A=Q(w+Q).

The transverse motion of a gas in the new system o
coordinates can also include translation along with the ellip
tic current lines; therefore, the following starting expression
should be used fo¥; in terms of the self-similar variables

é=q;/a, n=q,/b:
Vi=até—wan, V,=bn+wbé, (15)

wherew is some function of time.

" b .
b=2wQa+| ut+weo_ —f Siré o |b+

a+b+§’
(17)
Qzﬂb'azaéf'_o 18
+20 5 Fop +20p W+ 5 sin =0, (18)
042024024202 w2 L sinzgp=0 19
+ a+wa+ w5+WB §S|n2170_ , ( )

where u=\ + w?.
Adding Egs. (18), (19 and integrating the resulting

equation gives the functiof2 in the form:
Q= 1 W
~ 2ab 2

Zab| 230Po

Qo+

+ wo(@3+b3) — w(a?+b?) (20)

-5

This relation between the angular velocity of rotation of
the beam relative to the Frenet triad and the angular velocity
of the internal motion of the gas can also be obtained from
the condition of conservation of the longitudinal component
of the vector W +eBgy/mc)/n, whereW =curl V is the vor-
ticity and n is the gas density.

Figure 3 shows the results of calculating the transverse
beam dimensions by numerically solving the system of Eqs.
(16)—(19). The following values for the parameters were
chosen: «=37/8, wy=0, h/(w.as)?=0.05, ay=by=as,
wherea, is the equilibrium radius of a Brillouin flow propa-
gating along the magnetic field with intensBy cosa. This
radius is determined from the expression
w?/dag=h/2as+H/a2, since, as is clear from E@20), the
“effective” Larmor frequency of a helical beam equalg2.

The lower curves correspond &ag, the upperb/ag; the
variable T=w.t. In these calculations two initial values of
fangular velocity of the rotating beam were usédly=0
(dashed curvesandQy= —w/2 (solid curve$. These results

show that when a rotating beam is injected at an angle to the
magnetic field, the spreading of the beam under the influence
of space charge is decreased.
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A study of the microstructure of thin a-C:H layers that orient liquid crystals
E. A. Konshina and T. S. Turovskaya

S. I. Vavilov State Optical Institute All-Russia Science Center, 199034 St. Petersburg, Russia
(Submitted November 21, 1996
Zh. Tekh. Fiz68, 108—110(January 1998

The surface structure of thin layers ®fC : H is studied by the method of island decoration,

using silver films. The changes in the dimensions and density of silver particles is tracked by an
electron microscope as a function of the thickness ofait@: H layers. The electrical

microprofile is discussed, along with the nature of the silver crystallization centers on the surface
of thea-C : H layers. ©1998 American Institute of Physid$$1063-784£98)02001-7

The surface microstructure of layers of amorphous hytained by chemical deposition of hydrocarbon vapors in a dc
drogenated carbora(C : H) is being studied as background glow-discharge plasma. The substrates were polished in or-
for the investigation of the orientation-sensitive interactionder to eliminate the influence of their structure on the deco-
of these layers with liquid crystals. Previous papers haveation pattern, and oriented obliquely at an angle of 5° to the
shown that thin layers ad-C : H obtained by chemical depo- axis of the apparatus in accordance with the standard tech-
sition of toluene vapors in a glow-discharge plasma give riseology for depositing orienting-C : H layers. The deposi-
to planar orientation of liquid crystals based ontion of thea-C: H layers was carried out at the temperature
cyanobiphenyl$:? a-C : H has a spatially irregular structure of the surrounding medium from toluene vapor at a discharge
in which the average ordering is determined #ybonded power of 1.8 W and pressure 0.08 Pa.
clusters consisting of carbon atoms in & state linked by Microphotographs of the island-like silver films at the
a common system of conjugated multiple bonds. Along withsurfaces of germanium aredC : H layers are shown in Fig.
polycyclic aromatic groups, polyene chains can also entet. The deposition of am-C: H layer on the germanium
into the composition of these clustérdndividual carbon changes the conditions for silver crystallization in an impor-
clusters can be observed by scanning tunnel microscopy itant way. Indications of this are the difference in density and
amorphous carbon films obtained by deposition of graphitedimensions of the decorating particles seen in Figa). 4nd
which do not contain hydrogét?, In contrast to this, studies 1(b) (at 50 000 magpnification. The silver particles at the
of orientinga-C : H layers deposited on polycrystalline elec- surface of a~600 A thick a-C : H layer are spherical in
trode layergbased on indium and tin oxideky electron and shapdFig. 1(b)]. When the thickness of the-C : H layer is
tunnel microscopy have not revealed any distinctive featuremcreased by a factor of two, a change is observed in the
of their structure. These microscopic investigations showshape and size of the silver particlgBSig. 1(c), 50 000x
that the thin layer ofa-C:H obtained from a carbon- magnification. Particles with irregular shapes appear due to
hydrogen plasma simply repeats the relief of the surface onoalescence of neighboring spherical particles. In a number
which it is deposited. This hinders the study of distinctive of cases, the observed changes in the silver particle density
features of the surface structure @fC : H by direct meth- were associated with defects in the layer structure. Figure
ods. 1(d) (40 000< magnification shows an example of a char-

The goal of this paper is to investigate the morphologyacteristic defect with a radial distribution of silver particles.
of structures at the surface of therC : H layers by the The cause of this defect could be electrical breakdown at the
method of island decoration using silver films. substrate surface during condensation, which leads to a local

The method of decoration, which is based on selectiveechange in the structure of theeC : H layer.
crystallization of a decorating material at a surface of a solid  Figure 2 shows the results of statistical processing of
body, makes it possible to identify local active centers of themicrophotographs of the silver island films at the surface of
surface and its electrical microprofifén this work the deco- a-C : H layers. Depositing am-C : H layer onto a germa-
ration material we used was island-like films of silver with nium surface decreases the average size of the decorating
thicknesses of~50 A, which were deposited by thermal silver particles from 30 140 to 120-30 A. As the thick-
evaporation in vacuum. In order to eliminate the influence ofness of thea-C : H layer increases an increase in the silver
the evaporation rate and substrate temperature on the shaparticle dimensions is observélig. 2(a)]. In this case there
and size of particles of the metal condend4tee silver was is a slight decrease in the density of the silver particle distri-
crystallized at room temperature with all other conditionsbution on the a-C:H surface, from 1.810" to
kept the same. This allowed us to relate the change in th&.4x 10*'cm 2, due to the increase in particle sifEig.
shape and size, and also density distribution, of the silve2(b)]. We observed no significant structural differences in
particles to the structural features and electrical microprofiledhe morphology of silver island films on the surfaces of
of the surfaces of our samples. We used a luminescence elea-C : H layers obtained by orienting the substrates obliquely
tron microscope and the method of replicas to observe thand normally in the plasma. The films were isotropic, which
morphological structure of the silver films. is evidence that the deposition of hydrocarbon vapor in the

The a-C : H layers investigated in this work were ob- plasma onto an obliquely oriented substrate does not lead to
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FIG. 1. Microphotographs of the surfaces of germani@nanda-C : H layers(b, ¢, and d decorated by island-like silver films with thickness50 A.

anisotropy of the surface of the-C : H layers, as happens crease in the diameter of the silver spheroids, a property
with condensates of inorganic materials. shared bya-C : H. However, it is noteworthy that the mor-
The morphological structure of the island-like films of phological structure of silver films at the surface of our
silver depends on the surface properties of the substrate mgamples ofa-C : H different from that of the island-like sil-
terial and the interaction between the metal particles and th@er films at the surface of pyrographite and glassy carbon.
solid surface. The authors of Ref. 9 explained the shape anfhe silver particles at the surface of pyrographite and glassy

size of silver spheroids at the surfaces of glassy carbon anghrhon are irregular in shape. For these materials, the mean
pyrographite by invoking the influence of an electromagnetiqength and width of 60-A-thick island-like films at the sur-

enhancement mechanism based on surface plasmons. For gyze of glassy carbon were 360 and 230 A, while at the
rographite, increasing the film thickness results in an iNgurface of pyrographite they were 760 and 490 A respec-
tively. The dimensions of the silver particles we observed on
the surface oh-C : H were smaller, with an average size in

0 the range 110-220 A. The size of the smallest of these silver
particles (20 A) matches that of the small graphite do-
250 mains (~15 A) observed in amorphous carbon films by
. Jo* scanning tunneling microscopy.
1 200 1 The electrically active centers of silver crystallization at
< 7

o« .
e the surfaces of pyrographite and glassy carbon could be
< graphite structures oriented parallel to the surface. However,
= in our view the current carrying regions of tlaeC : H sur-
face include not only graphitelike clusters but also isolated
L1 sets of several closely spaced clusters that share a common
0 0 w0 w0 2000 20 SEYY SP .
2-CH.& system of delocalizedr electrons. These could explain the
’ large scatter in the dimensions of silver particles at the sur-
FIG. 2. Dependence of the average gi@eand average densit) of silver face Ofa'_C - H Tr_om 20.t0 400 A. ) )
particles at the surface @f-C : H layers on the thickness of the latter. The interstitial regions between silver particles at the

98 Tech. Phys. 43 (1), January 1998 E. A. Konshina and T. S. Turovskaya 98



surface ofa-C : H correspond to portions of the structure thatphase boundary with aa-C : H layer. We claim that for a
do not carry an electric current. These could be hydrocarbohquid crystal of the cyanobiphenyl class, the planar orienta-
clusters containing CH, CHand CH, groups in thesp® tion observed is made possible by the interactionraglec-
state! in which delocalization ofr electrons is impossible. trons from the biphenyl core of the molecule with elec-
In thin a-C : H films [Fig. 1(b)] the distances between indi- trons of the polycyclic aromatic groups. The latter, as
vidual silver particles range from 30 to 300 A. When the Baranovet al. have observed: are oriented parallel to the
thickness of thea-C : H layer is increased te-1200 A, the  a-C : H surface. Understanding of the interaction mechanism
distance between decorating particles decreases to 20—60&k the boundary of this solid-liquid crystal system will enable
[Fig. 1(c)], which could be explained by the influence of the us to perfect the technology for orienting liquid crystal mol-
layer bulk properties on the electrical surface profile. Theecules, and thereby improve the characteristics of devices
structure of thea-C : H surface can be viewed as an “archi- based on them.
pelago of islands” made up of individuat clusters segre- The studies described in this paper were made possible
gated into groups with delocalization of theelectrons and thanks to partial support from the International Science
separated by “channels” of electrodeless space. The electrofoundation(Grant No. NXQ300.
density should have its maximum value near the carbon at-
oms in thesp? state that enter inter-bonded clusters, and _ _ ,

. . E. A. Konshina, Kristallografiyad0, 1074 (1995 [Crystallogr.40, 999
drop to zero at its boundaries. (1995].

By using the method of decoration, we can identify the 2g. A, Konshina, Proc. SPIE731, 20—24(1995.

electrical profile and establish the nature of active centers afé- V. BarartJO%/Sand(;E- SAO-GKggghina, Opt. Spectro8b, 856 (1988 [Opt.
the surface of orienting layers. .The r.eSUItS V\(G have Obtameds.pgcr:;?gs;gg/a, H?D. i3ist, (S B.Bglamarﬁaal., Solid State Commurf0,
lead us to assert that the electrical microprofile of the surface 55 (1994,
of orienting a-C : H layers has an isotropic structure inde- °B. Marchon, M. Salmeron, W. Siekhaes al, Phys. Rev. B39, 12907
pendent of the layer thickness or position of the substrate in6§\j9§/9'|saev £ A Konchina. A P. Onokhov. and T. . Turovskava. zh
the plasma. In our picture, th_e c_enters of silver crystallization Tekh. Fiz.65(10), 175(1995 ’[Téch.. PhysA0, '1071(1995]. ya, £
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regated groups of these with a common system of delocal®L. S. Palatnik, M. Ya. Fuks, and V. M. KosevicBeneration Mechanism
ized 7 electrons that possess electrical activity. The observegand Substructure of Deposited Filifia Russian), Nauka, Moscow, 1972.
increase in the size of the silver particles as the thickness ofgéz's(ggj;é_"" Fukuda, G. Katagiri, and A. Ishitani, Appl. Spectresa.
thea-C : H layer increases attests to the influence of cluster®e A Konshina, Opt. Mekh. Promst., No. 2, p. 18987 [Sov. J. Opt.
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uid crystals, whose molecules contain aromatic rings, at th&ranslated by Frank J. Crowne
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