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It is shown that complexes—equilibrium nanoclusters of impurity atoms—can form in dilute
rare-gas solid solutions consisting of two species of atoms with substantially different radii; the
thermodynamic stability of these complexes is due to relaxation of the excess elastic energy
when the impurity atoms combine into a cluster. Two types of complexes can occur: vacancy
complexes �VCs� and cluster complexes �CCs�. In the VC case, impurity atoms are bound in the
first coordination sphere of a vacancy. The VCs are separate formations, and their equilibrium
concentration can be significantly higher than that of isolated vacancies. In the CC case, clusters
of n impurity atoms with a volume close to that occupied by n−1 host atoms �in the clustering
of n atoms of smaller radius than the host� or n+1 host atoms �in the clustering of n atoms of
larger radius� can form. An analysis is made of the particular case of a dilute solution of 4He in
3He, where, on account of the mass difference of 3He and 4He, the effective radii of the atoms in
the crystal are different, giving rise to elastic stresses around a 4He impurity atom in the
crystal. © 2005 American Institute of Physics. �DOI: 10.1063/1.2144449�
INTRODUCTION

Some types of rare-gas atoms are miscible in the solid
state, and the solid solutions that form can separate, as the
temperature is lowered, into phases consisting of practically
pure constituents. If the radii of the constituent atoms are
substantially different, then in the region of low concentra-
tion of one constituent the elastic stresses arising around the
atoms of that constituent can lead to the formation of
complexes—equilibrium nanoclusters of impurity atoms, the
thermodynamic stability of which is due to a relaxation of
the excess elastic energy when those atoms combine into a
cluster. This relaxation can be due to two causes: the transi-
tion of an impurity atom into the first coordination sphere of
a vacancy, and the formation of an n-atom cluster having a
volume close to that occupied by n−1 �in the clustering of n
atoms of smaller radius� or n+1 �in the clustering of n atoms
of larger radius� host atoms.1,2 Since the energy benefit from
the relaxation of elastic energy is relatively small, favorable
conditions for cluster formation exist at low temperatures,
when the positive contribution to the free energy of the sys-
tem due to the decrease of the configurational entropy of the
solution is also small, although it is necessary that the diffu-
sion mobility of the atoms in the solution remain sufficiently
high. All of these conditions are well satisfied for 4He− 3He
binary solid solutions, which have a high mobility of the
atoms at low temperatures, and the effective radii of the at-
oms in the crystal differ because of the mass difference of
3He and 4He, giving rise to elastic stresses around a 4He
impurity in a 3He crystal or a 3He impurity in a 4He crystal.
For the sake of definiteness our discussion of complex for-
mation in this paper will be done for the case of 3He− 4He
solid solutions; the results are applicable for any binary solid
solution with a sufficiently high atomic mobility.
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In Sec. I we investigate vacancy complexes �VCs� in
which the impurity atoms are bound in the first coordination
sphere of a vacancy. Here the VCs are separate formations
and, as will be shown below, the concentration of such VCs
can be significantly higher than that of isolated vacancies.

In Sec. II we consider the formation of clusters of n+1
impurity atoms—cluster complexes �CCs�—with a displace-
ment volume of n host atoms. For example, n+1 4He atoms
situated at n sites of the 3He crystal. As we shall show, in
decomposing 3He− 4He solutions the most favorable process
will be the formation of such CCs near the decomposition
curves.

I. VACANCY COMPLEXES

The transition of a 4He impurity atom into the first co-
ordination sphere of a vacancy in the 3He crystal will lead to
partial relaxation of the excess elastic energy, making the
region around a vacancy in the 3He crystal energetically fa-
vorable for 4He impurity atoms. This mechanism of cluster
formation around a vacancy for impurity atoms having a
crystallographic radius differing strongly from the atoms of
the host crystal was first considered in Ref. 1, where such
formations were called complexes.

For complexes in 3He− 4He solid solutions we shall as-
sume that when i atoms of the 4He impurity pass into the first
coordination sphere of a vacancy, the energy of vacancy for-
mation u0 in the pure 3He crystal changes additively by i�u,
i.e., the energy of formation of a complex of the ith tssype,
consisting of a vacancy and i atoms of 4He in the first coor-
dination sphere of that vacancy, is equal to

ui = u0 + i�u , �1�

where i=0,1 ,… ,z.
© 2005 American Institute of Physics
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Following Ref. 1, the change of the free energy of the
3He crystal upon dissolution of a small number of 4He atoms
in it can be written as

� = �0 + v0N4 + TN4ln
N4

eG
+ + �

i=0

z �uini

+ Tniln
ni

eGW�i�� , �2�

where N4 is the total number of impurity atoms not bound to
vacancies, v0 is the change of the thermodynamic potential
of the crystal when the 4He impurity atoms are located near
the 3He crystal lattice sites not connected to vacancies, and G
is the total number of lattice sites. The factor

W�i� =
z!

i ! �z − i�!
�3�

takes into account the possible permutations of the 3He and
4He atoms in the first coordination sphere of the vacancy.
The equilibrium values of N4 and ni are determined from the
condition that the thermodynamic potential �2� be minimum
with respect to N4 and ni for a fixed number N0 of 4He
impurity atoms in the system,

N0 = N4 + �
i=0

z

ini, �4�

which is taken into account with the aid of a Lagrange mul-
tiplier �. After minimizing �2� with respect to N4 and ni we
obtain

c4He =
N4

G
= c0e−�1/T, �5�

ci =
ni

G
=

z!

i ! �z − i�!
c0

i cve−i�1/Te−i�w/T. �6�

Here cv=e−u0/T is the equilibrium concentration of vacancies
in the pure crystal, and �w=�u−v0 is the change of the free
energy of the crystal upon the transition of an impurity atom
from the bulk into the first coordination sphere of a vacancy.
For greater clarity we have introduced in �5� and �6� the
renormalized Lagrange multiplier

�1 = v0 + T ln c0 − � , �7�

where c0=N0 /G is the mean impurity concentration in the
crystal. It follows from Eq. �5� that for such a choice of
Lagrange multiplier the value of �1 determines the degree of
deviation of the concentration of impurities not bound to
vacancies from its mean value in the crystal. Taking Eq. �6�
into account, we can write the total concentration of com-
plexes in the crystal in the form

c̄ = �
i=0

z

ci = �1 + c0e−�1/Te−�w/T�zcv. �8�

Equally simple expressions are also obtained for the total
concentration of impurity atoms in complexes
�
i=0

z

ici = zc0e−�1/Te−�w/T�1 + c0e−�1/Te−�w/T�z−1cv �9�

and the balance Eq. �4� for determining the Lagrange multi-
plier:

e�1/T = 1 + ze−�w/T�1 + c0e−�1/Te−�w/T�z−1cv. �10�

The theoretical results �5�–�10� permit one to describe
the state of a dilute �c0�1� solution with allowance for a
possible change of energy �1� of impurity atoms in the first
coordination sphere of a vacancy. As an example, Figs. 1–3
show the results obtained for the equilibrium values of vari-
ous parameters characterizing the complexes in a solution in
the temperature interval 0.05–2 K at c0=0.02 and for an
energy of vacancy formation in the pure 3He crystal u0

=6 K and a relatively weak interaction of impurity atoms
with a vacancy, �w=−1 and −3 K. It should be stressed that
the values of the parameters and the results presented in Figs.
1–3 are purely for illustration. The parameter �w in 3He
− 4He solid solutions the results of Ref. 3 can be evaluated
using the results of Ref. 3, where a calculation of the inter-
action of vacancies with various lattice defects in solid 4He

FIG. 1. Temperature dependence of the concentration of free 4He impurity
atoms in the 3He crystal �c0=0.02,u0=6 K�.

FIG. 2. Temperature dependence of the total concentration c̄ of complexes
in a crystal in comparison with the equilibrium vacancy concentration
c ��w=−3 K,c =0.02,u =6 K�.
v 0 0
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was carried out. In the general case one must determine �w
on the basis of a statistical description of the relaxation of the
medium near a vacant lattice site.

The formation of vacancy complexes—bound states of i
impurity atoms and a vacancy—depletes the supply of free
impurities in the solution, i.e., it leads to a decrease of the
ratio c4He/c0. Figure 1 shows the curve of c4He/c0 for two
values of �w, from which it follows that for a relatively large
value of ��w� /T�1 and low temperatures T�0.5 K, practi-
cally all the impurity atoms are found in complexes. For T
�1 K the concentration of complexes will be significantly
higher than the concentration of vacancies in the crystal �Fig.
2�, and the complexes will in essence be the main type of
equilibrium low-temperature defect in the crystalline solu-
tion. Indeed, in the case of a relatively large negative value
of �w the change of energy upon formation of a complex
consisting of i impurity atoms, uc=u0+ i�w, can turn out to
be negative. In that case in the low-temperature region,
where the contribution of the configurational entropy to the
free energy of complex formation is small, the thermody-
namically favorable process in the solid solution will be the
formation not of vacancies but of vacancy complexes con-
taining a rather large number of impurity atoms surrounding
a vacancy. It follows from Eqs. �5� and �10� that the transi-
tion of impurity atoms to complexes occurs in a rather nar-
row temperature interval �T	�w �Fig. 1�. With increasing
temperature the multiatomic VCs decompose �Figs. 1 and 3�,
and in a dilute solid solution at high temperatures the main
types of defects are isolated vacancies, at which, because
�w�0, impurity atoms can be “adsorbed” in the first coor-
dination sphere �Fig. 3�, i.e., the character of the formation of

FIG. 3. Temperature dependence of the concentration of multiatomic com-
plexes for �w=−3 K,c0=0.02,u0=6 K.
VCs changes with temperature, as is manifested in the non-
monotonic dependence of the curves in Fig. 1. The cause of
the formation of vacancy complexes of 4He atoms in the 3He
crystal could be the change in energy of the impurity atoms
in the first coordination sphere of a vacancy, which is for-
mally taken into account by means of the parameter �w. As
was assumed in Ref. 1, one of the causes of such a lowering
of the energy is the partial relaxation of the excess elastic
energy arising in the crystal on account of the distortion of
the lattice by an impurity with a smaller or larger crystallo-
graphic radius. In the continuum approximation this energy
has the value4

�E 

3E

�1 + 	�
v�R3

R4
− 1�2

, �11�

where v=4
R3
3 /3, E and 	 are Young’s modulus and Pois-

son’s ratio for the 3He crystal, and R3 and R4 are the crystal-
lographic radii of the 3He and 4He atoms. For E=2
�108 dyn/cm2, 	=0.5, R3=3.77�10−8 cm, and R3 /R4


1.06, one gets �E
2.57 K.
Besides the relaxation of elastic energy, substitution of a

host atom by an impurity atom in the first coordination
sphere of a vacancy will also lead to a change of the energy
of the atoms surrounding the vacant lattice site. It can be
assumed that compression of the medium around a vacant
site will prevent an atom of large crystallographic radius
from entering that region �the 3He atoms in the case of the
isotypic solution 4He− 3He� but will favor the substitution of
host atoms by atoms of smaller radius �4He�. This is possibly
the reason for the absence of 3He clusters upon the ther-
mocycling of dilute solid solutions of 3He in 4He.5,6

II. CLUSTER COMPLEXES

If a cluster of n atoms of 4He is formed in a dilute solid
solution of 4He in 3He, then at a certain value n1 the volume
of the cluster can be equal �close to� the volume occupied by
n1−1 3He atoms. At a certain value n2�n1 a cluster with a
volume equal to that of n2−2 3He atoms forms, etc. In each
of these cases a cluster of ni �i=1, 2, …� atoms of 4He will
cause hardly any elastic deformation of the surrounding me-
dium, and the formation of such a cluster will be accompa-
nied by the relaxation of the excess elastic energy of the
individual atoms forming the cluster. Obviously the values of
ni will depend on the molar volumes per 4He and 3He atom:

ni = i
V3He

�V3He − V4He�
.

Thus, at a pressure P=30.6 bar, when V3He

=24.6 cm3/mole and V4He=20.54 cm3/mole, one has n1


6, n2
12, etc. An increase of the cluster size from ni to
ni+1 in the cell formed by ni− i host atoms is accompanied by
a monotonic increase of the elastic strain of the surrounding
medium with increasing n. However, at a certain value of n,
increasing the size of the cell will lead to a decrease of the
elastic energy, which goes to zero for a cluster of ni+1 atoms
in a cell formed by ni+1− �i+1� host atoms. Thus the transi-
tion from a cluster with ni to a cluster with ni+1 requires
overcoming a potential barrier separating these two meta-
stable states of the solution. It should be noted that the argu-
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ments given above are valid for a continuous medium, and
the results can change substantially when the crystal struc-
ture of both the host and the inclusions is taken into account.

The metastability of the cluster state in the solution is
due to the presence of excess surface energy at the cluster–
host boundary, and also the work R�c��0 necessary to cre-
ate a region with a high concentration of impurity atoms in a
homogeneous dilute solution.7 On the decomposition curve
R�c�=0, and the excess energy of the clusters with respect to
the segregation of a bulk phase will be determined by the
surface energy, which is small in 3He− 4He, and near the
decomposition curve a significant number of clusters can
form, with the characteristic feature that they contain a fixed
number of atoms ni. Because of the microscopic size of VCs
and CCs in 3He− 4He solid solutions, the answer to the ques-
tion of which of the types of complexes is formed in these
solutions can be obtained only with a statistical treatment of
the formation of complexes in 3He− 4He solid solutions. In
the case of VCs such a statistical treatment must include a
description of the structure of the vacancy and a determina-
tion of the change of the energy of impurity atoms when they
substitute for atoms of the first coordination sphere of vacan-
cies found in a compressed or dilatated state.

It should be mentioned again that 3He− 4He solid solu-
tions are objects favorable for complex formation. This is
because of the significant difference of the crystallographic
radii of the 3He and 4He atoms and the high diffusion mo-
bility of these atoms at low temperatures, when relatively
weak influences cause appreciable changes in the concentra-
tion of the solution. Since in the present treatment the quan-
tum nature of the 3He and 4He atoms was manifested only in
a difference of their crystallographic radii, all of the results
obtained above can be used for studying complexes in other
systems, e.g., in solid solutions of heavy rare gases.

In closing the author thanks V. N. Grigor’ev and E. Ya.
Rudavskii for fruitful discussion and substantive comments.
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The low-temperature thermodynamics of helium adsorbed in the outer grooves of carbon
nanobundles is investigated theoretically in a lattice-gas model with the use of the Green’s func-
tion formalism. The proposed model describes both the formation of a one-dimensional �1D�
condensate on the bottoms of the grooves and also the formation of two secondary chains in the
groove �a three-chain structure� and thus is adequate for interpreting the behavior of the adsor-
bate over a rather wide range of coverages in the initial stage of deposition. The temperature
dependence of the density of the deposit is obtained for the primary chain and secondary chains.
The energy, heat capacity, and heat of adsorption are found as functions of temperature, and the
total density of the 1D adsorbate is obtained for several different values of the binding energy
with the substrate for atoms deposited in the primary and secondary positions. The adsorption
isotherms �the total density of adsorbate as a function of external pressure� are calculated for
various temperatures. Experimentally measured adsorption isotherms are presented for 4He de-
posited on bundles of single-walled carbon nanotubes. The measurements were made in the tem-
perature range 2–15 K. Those experiments and previously published data on the adsorption iso-
therms of methane are interpreted using a theoretical model developed in this paper. © 2005
American Institute of Physics. �DOI: 10.1063/1.2144450�
I. INTRODUCTION

Low-dimensional cryocrystals obtained by depositing at-
oms or molecules from the gas phase on different types of
substrates are under active experimental and theoretical in-
vestigation at the present time.1,2 A large percentage of the
papers on this subject involve the study of the structure and
thermodynamics of two-dimensional �2D� systems in the
form rare-gas monolayers2–9 on atomically smooth flat sur-
faces of graphite and metals. A recent achievement in this
field is the preparation and experimental study of systems
formed during deposition of molecules or atoms on the inner
and outer surfaces of carbon bundles.10–17

A nanobundle is a sheaf of carbon nanotubes18 with a
hexagonal close-packed structure in the cross section perpen-
dicular to the tubes.19–21 The diameter of the tubes �from 5 to
14Å� and the number of tubes in an individual bundle �from
tens to hundreds� depend on the technology used to prepare
the carbon samples. The deposits are laid down in several
possible positions. First, in the intratube channels, second,
the intertube channels, and, finally, the outer surface of the
bundles. Intratube filling is possible only in nanobundles
consisting of open nanotubes. The deposition in the intertube
channels, owing to their restricted size, is possible only for
small atoms and molecules �helium, neon, hydrogen�.12 Al-
though theoretical estimates22 show that these position are
energetically favorable,23 their role in real systems remains
in dispute.10,12

Of particular interest is the interpretation of effects asso-
ciated with the deposition of particles on the outer surface of
a nanobundle. Typically in such deposition there is a progres-
sion of stages with increasing number of adsorbed particles,
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from the 1D crystal to a three-chain structure, then to a
multilayer quasi-1D structure, and, finally, to a two-
dimensional structure at large occupations. Of course, this
progression of structures is reflected in the thermodynamic
characteristics of the system measured directly in experi-
ment. Thus it is of interest to study the thermodynamics of
deposits on nanobundles theoretically to provide a suitable
interpretation of the observed effects.

Of the considerable number of theoretical papers on the
topic of our discussion, many are devoted to calculations of
the adsorption potentials and the mechanisms of localization
of the deposits inside and on the outer surface of the
bundles,19–22,24–27 and also to phonon excitations in continu-
ous deposits.28 Only a few papers discuss the individual as-
pects of the thermodynamic behavior of the systems of inter-
est to us,29–31 and the findings of most of the theoretical
papers cited are based exclusively on the use of numerical
methods of computer simulation. Thus there is an urgent
need to develop models and approaches that would permit
one to obtain analytical results in the thermodynamics of
low-dimensional deposits.

In Ref. 32 an analytical approach in the lattice-gas model
was used to investigate the thermodynamics of a 1D system
formed in the grooves of a carbon nanobundle in the initial
stage of deposition of an atomic �helium� deposit in them,
and it was shown that the theoretical results obtained are in
quantitative agreement with the experimental data.10 In the
present paper we propose a model that can describe ad-
equately the thermodynamics of an atomic deposit not only
during the formation and consolidation of a 1D condensate
on the bottom of the grooves of a nanobundle but also in the
© 2005 American Institute of Physics
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initial stage of formation of the three-chain structure.

II. STATEMENT OF THE PROBLEM

Let us consider a closed system containing N particles
distributed between two subsystems. The particles deposited
on the outer surface of the bundles form a low-dimensional
subsystem �adsorbate�. The particles enclosed in the free vol-
ume of an isolated cell containing nanobundles belong to the
three-dimensional �3D� subsystem �adsorbent�. The 3D sub-
system will be described by the model of an ideal lattice
gas.33 In such an approach that subsystem is simply a reser-
voir of particles to be deposited on the bundles.

The specific part of the problem lies in the description of
the low-dimensional subsystem. Here the most favorable po-
sitions are in the grooves between two nanotubes, and in the
initial stage of deposition the particles are adsorbed predomi-
nantly at those positions, forming 1D linear chains. As the
occupation of the first row increases, two new chains in sym-
metric positions parallel to it begin to form and develop,
resulting in the formation of a three-chain structure �Fig. 1�.

We will be interested in the case corresponding to the
initial stage of formation of the upper chains, when the num-
ber of particles in them is comparatively small, so that the
interparticle interaction in the upper chains can be neglected.
We shall assume that the Hamiltonian of the system can be
written in lattice-gas form. We divide the total number of
lattice sites B that can be occupied by particles of the system
into three groups. The first group are those sites �the total
number of which is denoted B3� occupied by the particles in
the volume, the second consists of all possible sites �B1�
corresponding to particle positions in the lower chain

FIG. 1. Configuration of the system.
�groove�, and the third group to those sites �2B1� that corre-
spond to particle positions in the two upper chains. The frac-
tion of the total constituted by sites of the lower chain is
denoted as ���=B1 /B ,B=3B1+B3�. The distribution of par-
ticles between the volume and the three-chain subsystem
�which will be referred to below as the low-dimensional sub-
system� at a fixed temperature must be found from the cor-
responding equilibrium conditions. We note that in the initial
adsorption stage of interest to us here, the pressure and den-
sity of the 3D gas are so small that the 3D atmosphere can be
treated to good accuracy as an ideal gas irrespective of its
composition; this justifies the assumption of ideality of the
3D subsystem.

The Hamiltonian of the low-dimensional subsystem has
the form

H = �0�
f

nf + U�
f

nfnf+1 + �1�
f

nfnf+1�Af + Bf� , �1�

where �0 and �1 are the well depths for particles belonging to
the lower and upper chains, respectively, U is the interaction
potential of the particles in the lower chain, and nf, Af, and
Bf are the occupation numbers of the positions in the lower
chain and two upper chains, respectively, which take values
of 0 or 1. The index f labels the cells of the low-dimensional
subsystem. Hamiltonian �1� takes into account explicitly that
the deposition of particles in a site f of the upper chains of a
cell is possible only under the condition that the positions f
and f +1 in the lower chain are occupied by atoms.

The low-dimensional subsystem is found in contact with
a 3D ideal gas, the thermodynamic potential �per site� of
which has the form33

�3D = − T ln�1 + exp����� , �2�

where �=1/T, and � is the chemical potential �we are using
a system of units in which Boltzmann’s constant is equal to
unity�. The two subsystems are found in thermodynamic
equilibrium with each other, i.e., they have equal tempera-
tures T and chemical potentials �. The chemical potential as
a function of temperature can be found from the condition of
conservation of the total number N of particles in the system,

�nads + �1 − 3��n3D = x . �3�

Here x=N /B , nads=n+nuc is the density of the adsorbate in
the low-dimensional subsystem, n= �nf� �the angle brackets
denote thermodynamic averaging�, nuc= �Af�+ �Bf�, and n3D

is the density of particles in the 3D subsystem, equal to

n3D = −
��3D

��
= f�0� , �4�

where f�y� is the Fermi distribution function,

f�y� = �1 + exp���y − ���	−1.

We will be interested in the thermodynamic functions of
the low-dimensional subsystem: the mean energy E and heat
capacity CV �per site�, and also the heat of adsorption Qads:

34

E = �0n + Uc2 + 2�1b2, CV =
�E

�T
,
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Qads = T2
 � ln P

�T
�

N

. �5�

We introduce the following notation:

c2 = �nf+1nf�, b2 = �Afnf+1nf� = �Bfnf+1nf� , �6�

where P is the pressure of a 3D ideal lattice gas,

P =
B3

v3D
T ln�1 + exp����� , �7�

where v3D is the volume of the 3D subsystem. The heat of
adsorption Qads is the energy necessary for the transfer of a
particle from the low-dimensional to the 3D subsystem. For
T→0 and x→0 the value of Qads should approach �0.

Together with the aforementioned quantities, an experi-
mental study will also determine a family of adsorption iso-
therms, i.e., the number of adsorbed particles as a function of
pressure at various temperatures. From that family of curves
one can recover the so-called isosteric heat of adsorption
Qst,

35

Qst = T2
 � ln P

�T
�

B1,nads

. �8�

We note that the isosteric heat of adsorption Qst coincides
with the binding energy �0 of the particles with the substrate
in the limit when the temperature and density of the adsor-
bate approach zero.

III. SYSTEM OF EQUATIONS FOR THE AVERAGES

Our goal is to calculate the averages n, c2, and b2 in
terms of which the thermodynamic characteristics �5� of the
system are expressed. To solve the problem we use the
method of two-time Green’s functions.36 To find n= �cf

+cf� it
is necessary to write the equation of motion for the spectral
components of the anticommutator Green’s function

Gf = ��cf�cf
+���, �9�

where cf
+ and cf are the Fermi creation and annihilation op-

erators in the lower chain. Appearing on the right-hand side
of the equation of motion are Green’s functions of higher
order, for which one should also construct equations of mo-
tion, so that a chain of equations is formed. In this case,
because of the form of the system Hamiltonian �1�, the chain
is broken, resulting in a system of nine equations:

�� + 2�1 + 2U�Gf =
1

2�
+ UKf�1� + �1Kf�S� , �10�

�� + 2�1 + U�Kf�1� =
n

�
+ URf�1,1� + �1�Kf�S�

+ Rf�1,S�� , �11�

�� + 2�1�Rf�1,1� =
n2

�
+ 2�1Rf�1,S� , �12�

�� + �1 + U�Kf�S� =
2b1

�
+ URf�1,S� + 2�1�Kf�	�

+ 2R �1,	�� , �13�
f
�� + �1�Rf�1,S� =
2
1

�
+ 6�1Rf�1,	� , �14�

�� + U�Kf�	� =
�

�
+ URf�1,	� + �1Rf�S,	� , �15�

�Rf�1,	� =

2

�
+ �1Rf�S,	� , �16�

�� − �1�Rf�S,	� =
2
3

�
+ 2�1Rf�	,	� , �17�

�� − 2�1�Rf�	,	� =

4

�
, �18�

where �=�−�0−2�1−2U. In Eqs. �10�–�18� we have intro-
duced the functions

Kf�P� = ���Pfnf+1 + Pf−1nf−1�cf�cf
+���,

Rf�P,Q� = Rf�Q,P� = ���PfQf−1 + QfPf−1�� fcf�cf
+���

�where the arguments P and Q are combinations of occupa-
tion numbers� and the operators

Sf = Af + Bf, 	 f = AfBf, � f = nf+1nf−1,

and the averages

b1 = �Afnf� = �Bfnf� = �Afnf+1� = �Bfnf+1� ,

� = �	 fnf� = �	 fnf+1� ,


1 = �Af� f� = �Bf� f� = �Af−1� f� = �Bf−1� f� ,


2 = �	 f� f� = �	 f−1� f� = �AfAf−1� f� = �BfBf−1� f�

= �AfBf−1� f� = �BfAf−1� f� ,


3 = �	 fAf−1� f� = �	 fBf−1� f� = �Af	 f−1� f� = �Bf	 f−1� f� ,


4 = �	 f	 f−1� f� .

In writing the system of equations we have neglected in
Eq. �12� the correlations between the occupation numbers of
particles at sites found a distance of two steps along the
chain, i.e., we have assumed that the values of nf+1 and nf−1

are statistically independent, so that

�� f� = �nf+1nf−1� = n2. �19�

The accuracy of this approximation is estimated in the
Appendix.

Solving the system of equations �10�–�18� with relation
�19� and using the functions Gf and Kf�1�, one can find the
averages n and c2. We note that Eqs. �10�–�18� contain the
averages b1, �, and 
i, which cannot be determined with the
aid of the Green’s functions that appear in this system. To
close the system it must be supplemented with the equations
for the Green’s functions, which will permit us to find the
quantities indicated. As can be seen from the definition of the
averages b1, �, and 
i, each of them contains at least one of
the operators Af =af

+af or Bf =bf
+bf �af

+, bf
+, af, and bf are the

creation and annihilation operators for particles in the upper
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chains�. This makes it possible to calculate averages with the

use of Green’s function of the type ��L̂af �af
+��� and

��L̂bf �bf
+��� �where L̂ is an operator that depends on the oc-

cupation numbers of particles at the sites of the upper and
lower chains� and thereby to simplify the calculation consid-
erably. We introduce the following notation for the Green’s
functions we seek:

Xf�P� = ��Pf−1nfaf�af
+���, Y f = ��nf+1nfaf�af

+���,

Zf�P� = ��Pf−1� faf�af
+���, Wf = ��Bf	 f−1� faf�af

−���.

Doing the necessary calculations, we obtain

Xf�1� = F�n,c2�, Y f = F�c2,c2�, Xf�B� = F�b1,b2� ,

Zf�1� = F�n2,c3�, Zf�A� = F�
1,s1� ,

Zf�	� = F�
2,s2�, Wf = F�
3,s3� ,

where

F�a,b� =
1

2�

a − b

�
+

b

� − �1
�, sm = c3fm��1� ,

c3 = �� fnf� .

With the aid of the functions X, Z, and W and the dis-
persion relations,36 we can express b1, �, and 
i, which ap-
pear in Eqs. �10�–�18�, and b2, which is needed to determine
the mean energy �5�, in terms of the quantities n, c2, and c3

as follows:

b1 = �n,c2�, b2 = �c2,c2�, � = �b1,b2� ,


1 = �n2,c3�, 
m+1 = �
m,sm�, m = 1,2,3,

where the function �a ,b� has the form

�a,b� = �a − b�f�0� + bf��1� . �20�

On the other hand, the averages n, c2, and c3 are determined
directly with the aid of the Green’s functions, which are
found from Eqs. �10�–�18�. As a result, we arrive at a system
of self-consistent equations for n, c2, and c3:

n = �1 − n�2f��0� + 2c2 − c3, �21�

c2 = �n�1 − n� + � − 2b1 + 2
1 − 
2�f��0 + U� + 2�b1 − �

− 
1 + 
2�f��0 + �1 + U� + �� − 
2�f��0 + 2�1 + U�

+ c3, �22�

c3 = �n2 − 4
1 + 6
2 − 4
3 + 
4�f��0 + 2U� + 4�
1 − 3
2

+ 3
3 − 
4�f��0 + �1 + 2U� + 6�
2 − 2
3 + 
4�f��0

+ 2�1 + 2U� + 4�
3 − 
4�f��0 + 3�1 + 2U� + 
4f��0

+ 4�1 + 2U� . �23�

Relations �21�–�23� must be supplemented by the equa-
tion �3� for determining the chemical potential. The averages
�Af� and �Bf� appearing in �3� are calculated according to the
scheme described above. As a result, Eq. �3� becomes
�n + 2��1,c2� + �1 − 3��f�0� = x . �24�

The system of equations �21�–�24� in the general case can be
solved only numerically.

IV. THERMODYNAMIC FUNCTIONS OF THE SYSTEM

Solving the system of Eqs. �21�–�24�, we find the chemi-
cal potential � and the averages n, c2, and b2 in terms of
which the thermodynamic functions �5� of the adsorbate are
expressed. It is of interest to analyze the character of the
dependences of these quantities for different values of the
system parameters �0 and �1, since they are directly deter-
mined by both the interaction of the adsorbate with the
bundle and by the geometry of the surface onto which the
deposition occurs.

In this Section we choose as the unit of measurement for
the energy the interparticle interaction energy U while retain-
ing the same notation as before for variables of the corre-
sponding dimensions. To do the calculations we must also
specify the values of the parameters � and x. In a real experi-
ment the parameter � depends not only on the structure of the
bundles but also on the free volume of the experimental cell
and is therefore to some degree arbitrary. In all the calcula-
tions of this Section we assume �=0.01, which apparently
corresponds to the real experimental conditions.10 Finally, we
shall assume that the mean density of particles in the system
is unchanging and take its value to be x=0.04, i.e., such that
for a specified total number of particles N there manifestly
exists a temperature region in which all of the positions of
the low-dimensional subsystem are filled by adsorbate.

Figure 2 shows the temperature dependence of the ad-
sorbate densities n�T� and nuc�T� in the lower and upper
chains, respectively, and also the total density of the adsor-
bate nads�T� at a fixed value of the total number of particles
in the system. It is seen in Fig. 2 that the groove is filled
faster than the upper chains. This is completely understand-
able, since, first, the inequality ��0�� ��1� holds, and, second,
the filling of each of the positions in the upper chain is pos-
sible only under the condition that the neighboring positions

FIG. 2. Temperature dependence of the mean densities of the adsorbate in
the lower chain n and in the upper chains nc and also of the total adsorbate
density nads=n+nuc.
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in the lower chain are filled. Accordingly, the total adsorbate
density nads�T�→3 for T→0 if x�3�, as is the case in our
problem. With increasing density of particles in the system
an expansion of the temperature region near zero in which n
and nuc are close to the limiting values occurs.

For the experimental study of the systems under discus-
sion the main thermodynamic quantities are usually pre-
sented as functions of the adsorbate density nads. Figure 3a
shows a family of curves of the heat of adsorption Qads as a
function of nads for different values of �0 and a fixed value
�1=−5, and Fig. 3b shows the same functions for different �1

and a fixed �0=−10. It is seen in Fig. 3a that at small nads

�high temperatures� the heat of adsorption is progressively
larger the larger the ratio �0 /�1, whereas for nads greater than
about 1.25, on the contrary, Qads decreases with increasing
�0 /�1. The curves in Fig. 3b show that Qads increases with
increasing ratio �1 /�0�1, and as it approaches unity the
Qads�nads� curves exhibit a maximum near nads1.5. Such
behavior of Qads is due to the change of the relative contri-
butions to this quantity from the particles of the lower and
upper chains as the ratio between the energies �1 and �0

changes. Indeed, at low occupations the contribution of the
lower chain is always predominant, and the more so the
larger the ratio �0 /�1. With increasing nads the lower chain is
rapidly filled and ceases to influence the variation of the

FIG. 3. Dependence of the heat of adsorption on the total adsorbate density
for various values of �0 �a� and �1 �b�.
system energy, and accordingly the formation of the heat of
adsorption is due to the particles of the upper chains �Fig. 2�.
The energy of localization in the upper chain, ��1�, is smaller
than ��0�, but the upper row has twice as many positions for
adsorption, so that for comparable values of ��1� and ��0� a
maximum appears on the Qads�nads� curve because of the
predominant contribution of atoms deposited in the upper
chains �see Fig. 3b�.

The temperature dependence of the heat capacity of the
low-dimensional subsystem �normalized by B1� at different
values of �0 and fixed �1=−5 is shown in Fig. 4a, and the
same curves for different �1 and fixed �0=−10 are presented
in Fig. 4b. The behavior of the heat capacity changes sub-
stantially with changing ratio �0 /�1. At comparatively large
��0� the heat capacity has a pronounced double-peak charac-
ter, the broad, high-temperature peak being due to the filling
of the groove and the narrow, low-temperature peak to the
deposition of particles in the upper chains. With decreasing
ratio �0 /�1 the two peaks grow in amplitude and draw closer
together. Such behavior of the heat capacity is explained by
the circumstance that the positions of the peaks correspond
to the regions of the fastest variation of nads with tempera-
ture.

Figure 5 shows the dependence of the heat of adsorption
and heat capacity on the mean density x of particles in the
system for three different values of the temperature and at

FIG. 4. Temperature dependence of the heat capacity for different values of
�0 �a� and �1 �b�.
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fixed parameters �0=−10 and �1=−5. It is seen from the
curves that Qads and CV have features at x� and x3�.
Specifically, the Qads�x� curves exhibit steps at those values
of x, and the CV�x� curves have maxima that become more
pronounced as the temperature is lowered. This is due to
details of the filling process in the low- and high-energy
positions at different temperatures. Apparently at low T the
particles settle predominantly in the positions of the groove,
and the transition to the upper chains is a rather sharp one. At
high temperatures, naturally, the picture is smeared.

Moreover, at temperatures below T�0.5 and low densi-
ties, x��, the CV�x� curves acquire a third peak, the param-
eters of which are wholly determined by the value of the
interatomic interaction U. The presence of a maximum of the
heat capacity at T�U is a known property of the 1D lattice
gas.33,37

Figure 6 shows the dependence of the isosteric heat Qst

on the number of adsorbed particles. One can obtain a theo-
retical evaluation of Qst without having to use the adsorption
isotherms, the method commonly used to extract Qst from
experimental data. In the theoretical case one can find it by
supplementing the system of Eqs. �21�–�24� by the condition
of constancy of the number of particles adsorbed on the
nanobundle, nads=const, and assuming that x, the total num-
ber of particles in the system, is variable. As is seen in Fig. 6,

FIG. 5. Dependence of the heat of adsorption �a� and heat capacity �b� on
the density of particles at different temperatures.
with decreasing temperature Qst�nads→0� approaches �0, i.e.,
it approaches the limiting value corresponding to the binding
energy with a groove of a nanobundle, in complete agree-
ment with the physical meaning of Qst.

Thus the analysis carried out in this Section shows that
the variation of each of the system parameters �0, �1, and U
has a different influence on the character of the behavior of
the thermodynamic quantities. This means that in a compari-
son of theory with experiment one can achieve agreement
only for a unique choice of the values of these parameters.

V. EXPERIMENTAL MEASUREMENTS OF 4He ADSORPTION
ISOTHERMS ON NANOBUNDLES

The adsorption isotherms are the conventional tool used
to study the physical properties of adsorbates on substrates.
The experimental setup consists of a cell in which the adsor-
bent is placed, connected to a reservoir in which known
doses of a gas are prepared for introduction into the system.
The cell is held at a low temperature T �the temperature of
measurement� and has a free volume VC in addition to the
surface on which the adsorbate settles. The reservoir has a
volume VI and is held at room temperature. The two volumes
VC and VI should be calibrated for precise determination of
the amount of physisorbed gas �deposited on the adsorbent
surface� as the difference between the total amount of gas
admitted to the system and the amount of gas remaining in
the free volume VC+VI of the measurement system.

An experiment consists of M successive stages in which
metered doses of the gas, prepared beforehand in the reser-
voir at room temperature, are admitted from the volume VI

into the system. Thus, prior to the start of the mth measure-
ment stage �m=1,… ,M� a known gas dose NI

�m� is contained
in a volume VI at room temperature and at pressure PI

�m�. The
mth stage of the experiment starts when the volume VI is
connected to the measurement cell and the system is held for
a time necessary to reach equilibrium. After that, the final
pressure PF

�m� established in the free volume of the system,
VC+VI, is measured and the amount of physisorbed gas Nads

�m�

is measured. For quantitative description of the adsorbate it
is convenient to switch from Nads

�m� to a quantitative Vads
�m� hav-

ing the meaning of the volume of gas adsorbed after the
admission of the mth dose and measured in cubic centimeters

FIG. 6. Dependence of the isosteric heat on the adsorbate density at differ-
ent temperatures: 0.5 �1�, 0.75 �2�, 1 �3�, 2 �4�, 5 �5�, 8 �6�, and 10 �7�.
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under standard conditions �ccSTP�, i.e., at T0=273 K and
P0=760 torr. Assuming that the gas filling the free volume of
the system is ideal, one can calculate Vads

�m� by the formula

Vads
�m� = ��

j=1

m

�PI
�j� − PF

�j�� − �PF
�m�,

where �= �T0 /T��VI / P0� and �= �T0 /T��VC / P0�. For equilib-
rium gas pressures below approximately 2 torr one must in-
troduce corrections in this formula to take into account the
presence of thermomolecular effects. For this we shall use
the procedure proposed in Ref. 38.

The adsorbent used in our experiments contained 20 mg
of unpurified carbon single-walled nanotube bundles
�SWNTBs� prepared at Montpellier.39 The diameter of the
bundles, according to scanning electron microscope data,
was 10 nm. Neutron-diffraction measurements40 showed that
the nanobundles had a close-packed structure with an aver-
age distance between nanotubes of 1.7 nm and contained
from 30 to several hundred nanotubes, with an average of
from 30 to 50 nanotubes/nanobundle. The purity of the
SWNTB sample was around 80%; neutron diffraction re-
veals the presence in the adsorbent of islands of a catalyst
and graphitized particles. It is known from recent neutron
diffraction data41 that the surface density of 4He in a com-
pletely perfect monolayer on the lateral surface of a
nanobundle is 8.9 atoms/nm2, so that the specific surface in
our adsorbent is at least 240 m2/g. From the isotherms ob-
tained for other gases deposited on purified nanobundles it is
known that their specific surface is larger than 400 m2/g.

Figure 7 shows a set of our measured 4He adsorption
isotherms on SWNTB, plotted as the adsorbed gas volume
Vads

�m� �in ccSTP� versus the pressure PF
�m�, with corrections for

thermomolecular effects. Eight of the isotherms of this set
have been published previously.10

The set of isotherms measured using a sufficiently small
step in T can be used to calculate the isosteric heat of ad-
sorption Qst defined according to Eq. �8�. In practice the
isotherms Vads

�m��ln PF
�m�� were processed on a computer, and

the results were plotted in the form of ln P as a function of
1/T at constant Vads and then differentiated. The results of
the evaluation of Qst in the temperature interval from 5.8 to
14 K show10 that after the initial stage of deposition, when

FIG. 7. Adsorption isotherms for 4He, obtained experimentally at different
temperatures.
the heat of adsorption is rapidly decreasing �from values
Qst�230 K� with increasing coverage, the Qst�nads� curve
goes out onto a broad plateau at Qst�125 K, which is 12%
lower than the values corresponding to adsorption on flat
graphite, Qst�140 K.42 This was to be expected, since the
initial adsorption occurs predominantly in the grooves on the
outer surface of the nanobundle and imperfect intertube
positions23 �if such there are, due, e.g., to a spread in the
values of the diameters of the tubes making up the
nanobundle�, and then on the graphitelike surface of the
nanotubes. This outer surface consists of only one carbon
layer and, furthermore, it is curved, and both of these factors
can decrease the attraction to it in comparison with flat
graphite. These results agree with the previously published
data.16,17

VI. DISCUSSION OF THE RESULTS. COMPARISON OF
THEORY AND EXPERIMENT

The theory constructed in the present paper permits cal-
culation of all the important physical quantities characteriz-
ing the thermodynamics of atomic deposits on the outer sur-
faces of nanobundles. It is of interest to compare the results
of the theory with the experimental data presented in the
previous Section and with other published data. Here we
discuss the interpretation of the 4He adsorption isotherms
presented in Fig. 7 and also the CH4 adsorption isotherms
obtained in Ref. 43 for the temperature interval 159.88–
194.68 K. We have calculated the adsorption isotherms for
both systems using expression �7� for the pressure and com-
pared the results of the calculation with the experimental
data mentioned.

For interpreting the helium results we took from the
family of isotherms in Fig. 7 those corresponding to the tem-
perature interval 6.5–14 K, since the low-temperature curves
of this family correspond to high-density coverages, for
which our theory is invalid. We note that although the pro-
posed model was initially constructed for atomic deposits, it
can also be applied to methane, which was studied in Ref.
43, since the temperatures at which those measurements
were made are significantly greater than the rotational con-
stant of methane, B=7.56 K,44 so that the rotational degrees
of freedom of the molecules being deposited are completely
excited, and the molecules can be treated as spherically sym-
metric objects.

The results of a comparison of the theory and experi-
ment are shown in Figs. 8 and 9, and the values of the system
parameters determined from the best fit of the theoretical and
experimental curves. For comparison of the results of the
theory with the experimental data we first chose the values of
�0 and �1. Data have been published only for �0 �Refs. 22,
43, 45, and 46, which was calculated numerically and esti-
mated from experiment, while there are no indications as to
the possible values of �1 and U. One can only say that the
relation ��1�� ��0� should hold, since the particles of an upper
row are clearly less strongly bound to the substrate than is
the adsorbate at the bottom of a groove. The problem of
estimating U has not been discussed before. Our analysis has
shown that the best quantitative agreement of theory and
experiment for the whole family of curves in Figs. 8 and 9
can be obtained only under the assumption that there is a
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repulsion between particles �U�0�. This is not surprising,
since in the region of adsorbate densities of interest to us, the
number of occupied positions in the lower chain is rather
large, and the mean distances between particles are small, so
that the main role is played by the repulsion between adsor-
bate particles on adjacent sites. Then the system as a whole is
stabilized by the strong attraction to the substrate.

We note that in the initial stage of filling of the lower
chain, when the number of adsorbate molecules is small and
the distances between them are large, the properties of the
system are determined predominantly by the attraction be-
tween molecules.32

Obtaining an estimate of the parameter � and the ratio
B3 /v3D which appear in expression �7� is problematic be-

FIG. 8. 4He adsorption isotherms. The symbols represent experimental data
of the presence system at temperatures T�K�, from left to right�: 6.5, 7.5, 8,
9, 10, 11, 12, 13, 14. The curves are the proposed theory. The dotted curves
denote the region in which the theory becomes inapplicable. The arrows
indicate the number of positions in one, two, and three chains.

FIG. 9. Adsorption isotherms for methane. The symbols are the experimen-
tal data of Ref. 43 at temperatures T�K�: 169, 164, 159, 174, 179, 184, 189,
and 194. The curves are the present theory. The arrows indicate the number
of positions in one of the two chains.
cause the free volume of the experimental system and the
surface area of the nanobundles accessible for adsorption are
not known to sufficient accuracy. However, analysis showed
that the results of the fitting are not very sensitive to the
concrete value of �, and what is fundamentally important is
that for any fixed � the value of x took on values from 0 to
x�3�, at which the total amount of the the gas exceeds the
capacity of the low-dimensional subsystem. The ratio B3 /v3D

was determined from the condition of best agreement of
theory and experiment.

For converting from the dimensionless units of the
theory to the dimensional density of the adsorbate �in cm3 at
standard conditions, ccSTP� we use the fact that the number
of adsorbate particles corresponding to the complete filling
of three chains �nads=3� can be estimated from
experiment.11,43 This makes it possible to establish uniquely
the correspondence between the units of measurement of the
density.

It should be emphasized that for the indicated unique
choice of numerical values of the system parameters �see
Table I� the family of calculated adsorption isotherms auto-
matically lies on the corresponding families of experimental
curves �Figs. 7 and 8� all the way to pressures at which the
model considered becomes inapplicable and one must take
into account consideration the presence of 2D positions, the
interparticle interaction in the upper chains, etc. Here the
values which we found for �0 in both the helium and meth-
ane cases are in good agreement with the values obtained
independently from experiment43,46 and by computer
simulation.22,45

The results of a comparison of the temperature-averaged
calculated curve of Qst for a helium deposit with the corre-
sponding dependence obtained experimentally in Refs. 10
and 11 are presented in Fig. 10.

VII. CONCLUSION

The theory constructed in the present paper gives a good
quantitative description of the experimental data actually ob-
served; in particular, it correctly reproduces the behavior of
the adsorption isotherms and isosteric heat of adsorption in
the vicinity of the transition from the completion of deposi-
tion on the bottom of the grooves to the formation of a de-
posit in the upper chains. The proposed model is effective
because it adequately reflects the mechanics of filling of the
positions of the upper row, and that fact, on the one hand,
makes it possible to achieve real qualitative agreement of the
theory and experiment and, on the other hand, suggests a
way to describe other effects accompanying the processes of
formation of atomic or molecular adsorbates on
nanobundles. The model can be generalized to take into ac-
count the intertube and intratube deposition and also the
presence of higher-order positions—multichain quasi-1D and

TABLE I. Values of the parameters of the system for comparison of theory
with experiment.
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quasi-2D. Furthermore, the intraparticle interaction can be
taken into account in a more consistent manner.

An advantage of the proposed method is that it enables
one to estimate the value of the binding energy �0 on the
basis of experimental data at rather high adsorbate densities,
i.e., in the region where measurements can be made to high
accuracy. In addition, the proposed theory can be used to
estimate such important parameters of the system as �1 and
U. In this regard we note that, because the parameters indi-
cated are responsible for the character and position of the
anomalies of the thermodynamic quantities as functions of
the adsorbate density, the accuracy of their extraction from
the experimental data is all the higher the lower the tempera-
ture at which the measurements are made, since the anoma-
lies of the thermodynamic functions of the system become
more pronounced. This also means that for a deeper investi-
gation of the systems of interest to us, it is vital to extend the
experiment to the low-temperature region.

The authors are grateful to the National Science Foun-
dation �U.S.� for support of this study �Grants DMR 0245423
and DMR 98-76763, Kharkov Exchange Supplement�.

APPENDIX

Let us investigate the accuracy of the assumption that
the quantities nf+1 and nf−1 are statistically independent. To
do this, we consider the case when the particles can be ad-
sorbed only in the lower chain of sites ��1=0� or are found in
the 3D subsystem. Then the Hamiltonian of the 1D sub-
system has the form

H1 = �0�
f

nf + U�
f

nfnf+1. �A1�

The problem of calculating the thermodynamic functions of
the system in the model of �A1� admits an exact solution
�see, e.g., Refs. 33 and 47, and a solution can also be ob-
tained by the Green’s function method with the use of ap-
proximation �19�; this allows one to estimate the accuracy of
the approximation.

FIG. 10. Isosteric heat as a function of the adsorbate density. The symbols
are experimental data.10 The curve is the proposed theory. The arrows show
the number of positions in one, two, and three chains.
The exact expression for the thermodynamic potential
�per site� of the 1D subsystem, corresponding to the grand
canonical ensemble, has the form33

�1D = − T ln 
 , �A2�

where


 =
1

2
�1 + R + exp�� + K�� ,

R = ��1 − exp�� + K��2 + 4 exp � ,

� =
� − �0

T
, K = −

U

T
. �A3�

The mean value n= �nf� is equal to

n = −
��1D

��
=

1

2
�1 +

exp�� + K� − 1

R
� , �A4�

and the correlator c2= �nfnf+1� is given by the relation

c2 =
��1D

�U
=

n



exp�� + K� .

The chemical potential is found from the equation expressing
conservation of the total number of particles in the system:

x = �0n + �1 − �0�fF�0� , �A5�

where x=N /B ,�0=B1 /B ,B=B1+B3.
On the other hand, the mean values of n and c2 for the

1D subsystem can be calculated using the Green’s function
method. Doing the calculation in the standard way, we obtain
the following system of three equations:

�� − �0���cf�cf
+��� =

1

2�
+ 2U��nf−1cf�cf

+���, �A6�

�� − �0 − U���nf+1cf�cf
+��� =

n

2�
+ U��� fcf�cf

+���,

�� − �0 − 2U���� fcf�cf
+��� =

�� f�
2�

.

System �A6� is not closed, since the last of the equations
contains the average �� f� on the right-hand side, and it can-
not be calculated using the Green’s functions appearing in
�A6�. However, if the correlator is decoupled according to
Eq. �13�, then the system �A6� is closed. Solving the result-
ing system of equations and using the dispersion relation,36

we find the desired averages n and c2:

�1 − n�2fF��0� + 2n�1 − n�fF��0 − U� + n2fF��0 + 2U� − n = 0. �A7�

c2 = n�1 − n�fF��0 + U� + n2fF��0 + 2U� . �A8�

Equations �A5� and �A7� form a system for finding the
values of � and n.

The mean energy E1D of the two-dimensional subsystem
is given by

E1D = �0n + Uc2 �A9�

and can be found using both the exact and the approximate
expressions for n and c . Analysis shows that both the mean
2
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energy and the heat capacity �the characteristic that is most
sensitive to temperature variation� calculated with the use of
the decoupling �19� are practically no different from the ex-
act values: the error is less than one-tenth of a percent in the
entire temperature region. Consequently, it can be assumed
that the use of the Green’s function method with the indi-
cated decoupling permits one to solve the problem under
discussion to rather high accuracy.
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The kinetics of a bcc–hcp structural phase transition on the melting curve of 4He near the triple
points �bcc–hcp–He II and bcc–hcp–He I� in the temperature range 1.25–2.0 K is investigated.
The capillary blocking method is used to make the samples, and high-precision pressure mea-
surement is used to investigate the kinetics. It is established that far from the triple points expo-
nential functions describe the pressure change accompanying a temperature change on the melt-
ing curve. Anomalous behavior of the pressure and temperature of the sample is observed at a
transition through the triple points. This attests to remelting of the crystal at a structural phase
transition. © 2005 American Institute of Physics. �DOI: 10.1063/1.2144451�
I. INTRODUCTION

A characteristic feature of the phase diagram of 4He is
the presence of a very narrow region of a bcc phase near the
melting curve �Fig. 1�. This was discovered in 1961 from
acoustic measurements1 and then identified in x-ray
experiments.2 Subsequent investigations of the heat capacity
and P–V–T measurements3–5 yielded reliable information
about the thermodynamic parameters characterizing this sys-
tem. As one can see in Fig. 1, there are two triple points on
the melting curve of 4He. At these points the liquid, fcc, and
hcp phases are in equilibrium with one another—the bottom
triple point A �BTT� and the top triple point B �TTT�. The
third triple point C is obtained as a result of the intersection
of the melting curve and line of phase transitions into a su-
perfluid state �� line�. Consequently, at the BTT superfluid
helium �He II� is in equilibrium with the bcc and hcp phases,
and at the TTT normal helium �He I� is in equilibrium with
these phases.

The first experiments investigating the kinetics of phase
transitions at triple points appeared only recently.6–8 In Ref.
6 the optical method was used to establish that the phase
transition occurs differently in TTT and BTT. In the course
of the transition through the TTT, on heating and cooling, a
new crystal phase nucleates inside the existing crystal, giving
rise at first to clouding and then breakdown of the crystal.
The authors suppose that this transition is reminiscent of a
martensite transformation. But they believe that at the BTT
the state of the initial crystal plays no role in the phase tran-
sistion, since the new crystalline phase grows in a superfluid
liquid. Optical observations of nucleation at a transition from
He II into the hcp phase at temperatures T�TA have shown
that at first a metastable bcc phase appears. Then this phase
vanishes and a new hcp phase appears in the liquid.9

New and important information about the kinetics of a
phase transition between two phases—bcc and hcp—with
sharply different crystal structure was obtained using pulsed
nuclear magnetic resonance.7,8 Since NMR on 3He nuclei
was used, the object of investigation was a weak solid solu-
tion of 3He and 4He; the phase diagram of this solution is
close to that shown in Fig. 1. The spin-echo method made it
possible to separate the contributions of all coexisting phases
1063-777X/2005/31�12�/6/$26.00 1017
to the diffusion processes. It was established that besides the
contributions corresponding to the equilibrium phases—bcc,
hcp, and a bulk liquid, an additional diffusion process char-
acterized by an anomalously high value of the diffusion co-
efficient appears. The diffusion coefficient is close to the
corresponding value for liquid helium, but diffusion itself is
spatially bounded. This behavior could be due to the appear-
ance of liquid drops in the course of the bcc-hcp transition.

At the present time there is no clear understanding of the
kinetic processes that are bring about the bcc-hcp transition.
The present work was undertaken to obtain new experimen-
tal data on the kinetics of phase transitions at the triple points
on the melting curve of 4He. It was considered desirable to
use the high-precision pressure measurement method, which
has been used successfully to investigate the kinetics of an-
other phase transition—separation of helium isotopes in solid
solutions,10 and has proven to be very informative.

II. MEASUREMENT CELL AND EXPERIMENTAL PROCEDURE

The experiments were performed in the cell shown in
Fig. 2. The copper case of the cell 1 had a 10 mm in diameter
and 1.5 mm high disk-shaped cavity, where the experimental
sample was placed. The bottom of the cavity consisted of the
mobile membrane of a Straty-Adams capacitive pressure
gauge 3.11 The cell was attached to the cold duct 4, which
was weakly thermally coupled to the source of refigeration
�degree chamber, which is not shown in Fig. 2�. The weak
thermal coupling consisted of a stainless steel tube filled with
a small quantity of 4He gas, so that the cell and the degree
chamber would be coupled primarily via a helium film on the
inner surface of the tube.

The samples investigated were made by the capillary
blocking method at an initial temperature which was chosen
so that the samples would consist of a mixture of a crystal
and liquid with a composition corresponding to different sec-
tions of the 4He phase diagram. A thermal stabilizer main-
tained the cold duct at a constant temperature to within
2–3 mK. This ensured that the temperature of the cold duct
had the prescribed value �from 1.25 to 2.0 K�. The tempera-
ture of the degree chamber remained low ��1.3 K� and its
operational stability remained undisturbed even when the
© 2005 American Institute of Physics
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thermal stabilizer heated the cell up to �2 K. This made it
possible to avoid undesirable phenomena due to possible re-
melting accompanying the solid-helium “plug” punching
through the filling capillary. Since the contact between the
filling capillary and the degree chamber was good, such a
“plug” usually formed near the degree chamber. Several tens
of samples with 50–60% of each sample consisting of a solid
phase were investigated.

The characteristic equalization time of the cell and
degree-chamber temperatures was several seconds with the
thermal stabilizer not operating. In an experiment the cell
was usually cooled or heated in 10–100 mK steps, using the
heat stabilizer. In this case the relaxation time of the cold-
duct temperature was 1–3 s and the relaxation time of the
sample temperature was 20–50 s. The state of the experi-
mental system was recorded by measuring the pressure of the
sample in the cell with an essentially constant volume to
within 0.003 bar.

FIG. 1. Section of the phase diagram of He in the region of existence of the
bcc phase. A—bottom triple point �T1=1.464 K, P1=26.36 bar�, B—top
triple point �T2=1.772 K, P2=30.40 bar�, C—point of intersection with the
� line �T�=1.762 K, P�=30.13 bar�. The insets a and b show on a magnified
scale the sections near the triple points. The points 1-11 correspond to the
states which were investigated in the present work.

FIG. 2. Diagram of the measuring cell: 1–case, 2–sample volume,
3–capacitive pressure gauge, 4–cold duct, 5–filling capillary, 6–cell-
resistance thermometer, 7–heater, 8–resistance thermometer for thermal
stabilization.
III. KINETICS OF PRESSURE CHANGE WITH A CHANGE IN
TEMPERATURE ALONG THE MELTING CURVE

A. Far from the triple points

When a two-phase system is heated or cooled on the
melting curve far from the triple points the corresponding
time variation of the pressure P�t� at constant volume has the
form of smooth curves without any appreciable anomalies.
The typical time dependences P�t� are presented in Fig. 3 for
two sections of the melting curve—below BTT �hcp+He II�
�Fig. 3a� and above TTT �hcp+He I� �Fig. 3b�. Analysis
showed that all time dependences can be described by a su-
perposition of two exponential functions:

P�t� = P0 ± �P�� exp�−
t

�1
	 + �1 − ��exp�−

t

�2
	
 , �1�

where P0 is a finite pressure, �P is the total change in pres-
sure, �1 and �2 are time constants characterizing each expo-
nential process, � and 1−� are the weights of each process.
The � and � signs correspond to cooling and heating of the
system, respectively.

In all cases below the � point on the melting curve the
time constant of the first exponential process is �1=1–8 s
and its specific contribution to �P is �=0.6–0.9. The time
constant �2 of the other, slower process ordinarily equals
several tens of seconds and its contribution to �P is much
smaller. This can be explained qualitatively if the first pro-
cess is attributed to fast equalization of the temperatures of
the superfluid liquid and cell case �estimates show that this
time is several seconds, taking account of the Kapitsa jump�
and the corresponding crystallization �on cooling� or melting
�on heating� in accordance with the phase diagram. The latter
is confirmed by the large �60–90%� relative contribution of

FIG. 3. Kinetics of the change in pressure accompanying stepped heating �a�
on the melting curve below BTT �initial temperature 1.29 K� and stepped
cooling �b� above the TTT �initial temperature 1.88 K�. The dashed line
shows the corresponding fit of the exponential functions �1� to the experi-
mental data.
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this process to the total change in pressure �P. The second
�slow� process is probably due to the final thermal relaxation
of the entire system.

Above TTT the pressure change is described well by a
single exponential function with relaxation time 10–20 s. In
this case the liquid phase is not superfluid, which greatly
increases the equalization time of the liquid and cell-case
temperatures, and here the Kapitsa jump becomes negligible.
Since the heat of melting �crystallization� becomes greater in
this temperature range, this likewise increases the character-
istic time of the first process. The second process accelerates
somewhat compared with the analogous process below the �
point �as the relative fraction of the crystal phase in the sys-
tem decreases�, and both processes are essentially indistin-
guishable. The experiments with stepped heating of the two-
phase system above the TTT showed that as temperature
increases from 1.8 to 1.9 K, i.e. the amount of the crystal
decreases, the time constant does indeed decrease by 32–
40%.

B. Top triple point

At a transition through the top triple point the time de-
pendence P�t� undergoes a series of anomalies which differ
in character for cooling and heating of the two-phase system.
The kinetics of the temperature change and the correspond-
ing pressure change for stepped cooling, i.e. at a transition
from the state “liquid+hcp” �point 1, Fig. 1� into the state “
liquid+bcc” �point 2, Fig. 1�, is shown in Fig. 4. The transi-
tion through the TTT is set by the change in the thermal
stabilization current, i.e. by the cooling of the cold duct 4

FIG. 4. Variation of the indications of the resistance thermometer on the
cold duct �a�, variation of the sample temperature �b�, kinetics of pressure
variation �c� and a fit of the latter �d� �the dashed line is the exponential
variation of the pressure and the solid line is the additional contribution to
the pressure� on cooling through the TTT. The numbers 1 and 2 in Fig. 4c
correspond to inset b in Fig. 1.
�Fig. 2�, whose temperature within each cooling step is main-
tained constant for several minutes �Fig. 4a�, until the pres-
sure stops changing and reaches a stationary value �Fig. 4c�.
As Fig. 4c shows, the time dependence P�t� differs radically
from the smooth exponential dependences observed far from
the triple point �Fig. 3�. Analysis of the observed time de-
pendence P�t� showed that it can be described by a superpo-
sition of an exponental function �1� and a nonmonotonic
function with a maximum �Fig. 4d�. This character of the
anomaly is ordinarily observed at temperatures 5–20 mK
below the TTT, can contain one or two maxima, and is easily
reproduced.

The time dependences presented above show that on
cooling below the TTT the transition hcp→bcc starts with-
out a delay. However, it does not occur all at once but rather
in portions which can be initiated by temperature, i.e. by
successive cooling steps, and by the wait time.

The maxima in the time dependence P�t�, i.e. an addi-
tional positive contribution to the pressure dP�t�, could be
due to, first, the formation from a supercooled metastable
hcp phase of a looser bcc phase and, second, the fact that the
hcp-bcc transition is preceded by melting of the hcp crystal.

We note that a pressure increase is accompanied by a
heat effect �Fig. 4b�—an increase of the temperature of the
sample. Such an effect has also been observed when the
calorimetric measurements were performed near the bcc-hcp
transition.5

The conclusion about remelting can be confirmed by es-
timating the corresponding transition heats.12 If it is assumed
that the hcp-bcc transition occurs without remelting of the
crystal, then two processes should occur. The first �main�
process—crystallization of the liquid into the bcc phase due
to a decrease of the temperature—releases the latent heat of
crystallization ��+7.2 J /mole� and proceeds throughout the
entire cooling time; it should not give rise to time-local ther-
mal effects. The second process—a structural hcp-bcc tran-
sition �HB process�—should result in heat absorption
��−0.6 J /mole�. Then the observed time dependence T�t�
�Fig. 4b�, where time-local heating of the system can be
seen, cannot be explained on the basis of such a model.

When remelting of the crystal phase is taken into ac-
count the second process is regarded as a superposition of
two other processes: melting of the initial hcp phase �HL
process�, which is accompanied by heat absorption ��
−8.0 J /mole�, and crystallization of the liquid formed into a
bcc phase �LB process� with heat release ��+7.2 J /mole�.
Since the HL and LB processes occur against the background
of the above-mentioned crystallization of the liquid as a re-
sult of a decrease of temperature �main process�, a time-local
temperature increase is ultimately observed.

As far as the experimentally observed time-local pres-
sure increase is concerned, it is consistent with the remelting
model.

Using the known values of the compressibility and molar
volumes we find that the positive contribution of the HL
process to the pressure dominates over the negative contri-
bution from the LB process, even taking account of the main
crystallization process.

The remelting of the crystal in the course of a structural
phase transition between two sharply differing crystal lattices
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also occurs on heating through the TTT, i.e. accompanying a
bcc-hcp transition. The kinetics of the change in temperature
and pressure of the two-phase mixture is displayed in Fig. 5.
The transition through the TTT is set by the heating of the
cold duct 4 �Fig. 2�, whose temperature is maintained con-
stant within each heating step by the thermal stabilizer. The
corresponding pressure change is initially exponential, fol-
lowing the change of the sample temperature. On the phase
diagram this corresponds to a transition from the point 2 to
the point 3 on the melting curve �Fig. 1�. The temperature at
the point 3 was stabilized and maintained constant for
30–40 min, and the pressure in the system remained un-
changed. The phase transition and the associated pressure
anomalies �Fig. 5c� were initiated only by subsequent heat-
ing of the system from the point 3 to the point 4. Ordinarily,
the excess heating of the system needed to start the phase
transition was up to 100 mK. The bcc-hcp transition was
observed in the form of a sharp pressure drop by �0.5 bar,
after which the pressure once again continues to increase
exponentially.

We underscore that the sharp pressure drop is accompa-
nied by an appreciable heat effect �Fig. 5b�—a decrease of
the sample temperature. Such an unusual kinetics can be ex-
plained by the fact that initially the bcc phase melts, and part
of the liquid formed crystallizes into the hcp phase.

Estimates show that the heat effect due to heat absorp-
tion �accompanying melting of the bcc phase� is �1.5 times
greater than the heat release accompanying crystallization of
the hcp phase from the liquid formed. However, if the re-

FIG. 5. Variation of the indications of the resistance thermometer on the
cold duct �a�, variation of the sample temperature �b�, and kinetics of pres-
sure variation �c� on heating above TTT. The numbers 3 and 4 in Fig. 5
correspond to inset b in Fig. 1.
melting of the crystal is neglected, then the restructuring of
the lattice from bcc into hcp will give a positive heat effect,
which contradicts the experimental results.

C. Bottom triple point

The character of the pressure and temperature anomalies
on cooling of the two-phase system “liquid+bcc” through
the BTT is presented in Fig. 6. On cooling from the point 5
to the point 6 �Fig. 1� the temperature of thermal stabilization
decreases by a step and then is maintained constant, and the
sample temperature increases by �20 mK in �40 sec. At the
same time the sample pressure increases by �0.75 bar and
the system reaches a static state �point 6� in 40–50 sec.

The following processes should occur when the system
is cooled below the BTT: the main process of crystallization
of the liquid in proportion to the cooling along the melting
curve, which is accompanied by a decrease of the sample
pressure and heat release, and a bcc-hcp transition �BH pro-
cess�, which is accompanied by a pressure decrease and heat
release. None of these processes can explain the time-local
pressure increase observed in Fig. 6. Just as in the case of the
TTT, such a time dependence P�t� can be described by a
superposition of an exponential function �1� and a nonmono-
tonic additional contribution to the pressure.

The anomalous pressure increase can be explained by
assuming that the bcc-hcp transition at the BTT likewise oc-
curs through melting of the bcc phase �BL process� and sub-
sequent crystallization of the liquid into the hcp phase �LH
process�. The heat effect of the LH process �heat release� is
approximately 20% greater than the heat effect of the BL
process �heat absorption�. As far as the local pressure in-
crease is concerned, it cannot be explained without using the

FIG. 6. Kinetics of the change in pressure of the sample �a�, pressure �b�,
and corresponding fit of the change in pressure �c� �dashed line—
exponential pressure change, solid—additional contribution to the pressure�.
The numbers 5 and 6 in Fig. 6b correspond to inset a in Fig. 1.
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remelting model, and when such a model is used the ob-
served effect in �P can be explained by assuming that the
BL process occurs before the LH process.

The behavior of the pressure on heating through the
BTT, i.e. at a transition from the state “liquid+hcp” into the
state “bcc+hcp,” is shown in Fig. 7. It should be noted that
on heating through the BTT, in our experiments, the system
did not immediately pass into the final equilibrium state cor-
responding to the melting curve. Instead, it always arrived on
the bcc-hcp equilibrium curve. The initial state corresponds
to the point 7 on the melting curve below the BTT �Fig. 1�,
and the final state corresponds to the point 8 on the bcc-hcp
equilibrium line. Since the initial state corresponds to the
two-phase system “hcp+liquid” and the final state corre-
sponds to the system “hcp+bcc,” the system could pass into
such a state by crystallization of an equilibrium liquid into
the bcc phase. However, this would be accompanied by a
pressure drop, which contradicts the phase diagram and ex-
periment. Agreement with the experiment can be obtained by
assuming that a hcp-bcc transition occurs and is accompa-
nied by a pressure increase. The kinetics of this process is
shown in Figs. 7c and 7d, where, together with an exponen-
tial pressure increase, a short-time �during the first 15–20 s�
additional pressure increase, as a result of which the function
P�t� has a clear maximum, is also observed. Once again, the
additional contribution to the pressure can be explained by
melting of the hcp phase �HL process� with heat absorption
��−1.7 J /mole� followed by crystallization of this liquid
into the bcc phase �LB process� with heat release ��
+1.4 J /mole�. Apparently, crystallization of the equilibrium
liquid at a transition through the BTT makes the main con-
tribution to the local heating of the system. Without using the

FIG. 7. Variation of the indications of the resistance thermometer on the
cold duct �a�, variation of the sample temperature �b�, kinetics of pressure
variation �c� and a fit of the latter �d� �the dashed line is the exponential
variation of the pressure and the solid line is the additional contribution to
the pressure� on cooling through the BTT. The numbers 7 and 8 in Fig. 7c
correspond to inset a in Fig. 1.
remelting model the hcp-bcc transition would give local
cooling of the system, which contradicts experiment.

IV. DISCUSSION

Analyzing the above-described behavior of the pressure
on passing through triple points on the melting curve, we
note that the character of the time dependence P�t� is the
same in all cases except for heating through the TTT: an
additional contribution dP�t� to the pressure, due to a struc-
tural phase transition, against the background of an exponen-
tial pressure decrease �on cooling� or exponential pressure
increase �on heating�, which was characteristic for a change
in pressure far from the triple points, is observed. Such an
additional contribution is a nonmonotonic function of time
with a maximum, and this process occurs within a limited
time frame 20–30 s.

The observed additional pressure increase accompanying
a phase transition can be explained by the fact that the ap-
pearance and growth of a new phase �bcc or hcp� are due to
partial or complete melting of the old crystalline phase. This
result is confirmed by the appearance of the corresponding
heat effects accompanying melting and crystallization of the
phases. This result also agrees with NMR studies of the ki-
netics of bcc-hcp transitions in weak solid solutions of 3He
and 4He,7,8 where formation of a liquid phase �in the form of
drops� with coexistence of both crystalline modifications was
observed. Remelting at a bcc-hcp transition was observed by
the acoustic method in even earlier work.13

The assumption that the melting of the initial crystal at a
bcc-hcp transition is consistent with optical observations,6

where the observed clouding of the initial crystal on passage
through the TTT can be attributed to the formation of drop-
lets. As far as the BTT is concerned, the authors observed
directly the melting of one phase and crystallization of an-
other phase. This process could also be due to the influence
of the superfluidity of the liquid phase, which is manifested
at the BTT on heating and cooling and at the TTT only on
cooling. The latter is due to the fact that the � point on the
melting curve lies only 10 mK below the TTT, and on cool-
ing the system ordinarily �in our experiments� falls in the
region of existence of the superfluid phase. In this case the
heat exchange due to the transfer of heat released on melting
of the old phase occurs very rapidly through the “super-heat-
conducting” superfluid liquid. On account of the high heat
transmission the anomalous pressure change starts without
any appreciable delay in temperature, and the pressure itself
changes evenly.

The observed time dependence P�t� on heating through
the TTT, when the liquid phase �He I� is a normal liquid with
no thermal conductivity, is of a different character. In this
case an appreciable delay is observed in the onset of the
phase transition �by 1–2.5 bar in pressure� and instead of a
gradual pressure change at the bcc-hcp transition the pressure
is observed to undergo a sharp jump �Fig. 5c�. Against this
background the pressure increase due to melting of the initial
crystal is not always noticeable �especially if the amount of
the crystalline phase is small�, though the change in the tem-
perature of the sample �Fig. 5b� clearly shows cooling of the
sample as a result of the absorption of the heat of the bcc-
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normal liquid transition �against this background the heat
released as a result of the bcc-hcp transition is approximately
an order of magnitude smaller�.

The presence of a superfluid transition on the melting
curve �point C in Fig. 1� also gives rise to special features in
the kinetics of the change in temperature of the sample and
the pressure �Fig. 8�. When the system is heated through the
point C the exponential growth of temperature and pressure
is replaced at this point by a small plateau lasting for
10–20 s. The physical reason for this effect is the very high
heat capacity of the liquid near the � point.

Another possible effect of superfluidity is manifested in
the kinetics of the pressure change far from the triple points
�see Sec. III A�. Below the � point on the melting curve,
where the liquid phase is He II, the pressure variation P�t� is
described by a superposition of two exponential
processes—a fast process, which estimates show to be asso-
ciated with rapid cooling �heating� of He II and therefore

FIG. 8. Variation of the indications of the resistance thermometer on the
cold duct �a�, variation of the sample temperature �b�, kinetics of pressure
variation �c� on heating through the point C. The numbers 9, 10, and 11 in
Fig. 8c correspond to inset c in Fig. 1.
with crystallization �melting� on the liquid-crystal boundary,
and a slow process due to slow thermal relaxation of the
crystal. Above the � point, when the liquid is He I, the fast
process slows down, and the pressure change is described by
a single exponential function with a large time constant.

We call attention to the fact that the kinetics of the pres-
sure change at both triple points is asymmetric with respect
to the direction of temperature change. The phase transition
on heating through the TTT and cooling through BTT, i.e. at
a transition from the bcc into the hcp phase, occurs with an
appreciable delay in temperature �pressure�, while in the op-
posite direction the phase transition starts immediately when
the triple point is reached. The fact that the transition from
the bcc into the hcp phase occurs with greater difficulty than
in the opposite direction has been observed previously.6,9

This could be due to the fact that the surface tension of the
system “hcp-liquid” is almost 25% higher than that of the
system “bcc-liquid.”
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Experimental data on and a theoretical analysis of the conductivity of a two-dimensional Wigner
crystal �WC� on the surface of weak solutions of quantum liquids 3He– 4He �x�0.25% 3He� are
presented. The conductivity is determined using resonance excitation of low-frequency coupled
longitudinal phonon-ripplon modes of a WC. A strong temperature dependence of the resistance
of a WC, differing substantially from that found previously for a nondegenerate electron gas, is
found. At the same time the experimental dependence of the resistance on the impurity concen-
tration is found to be quite weak, which shows that the scattering of transverse phonons by rip-
plons plays the dominant role in the resistance of a two-dimensional WC for x�0.25%. © 2005
American Institute of Physics. �DOI: 10.1063/1.2144452�
A Wigner crystal �WC� on the surface of liquid helium is
a two-dimensional electronic system, whose dynamical prop-
erties are determined by the translational symmetry and the
processes occurring on the surface of the quantum liquid.
The characteristic features of the interaction of electrons with
the surface of liquid helium under the conditions of Wigner
crystallization result in the possibility of excitation of
coupled electron-ripplon oscillations, whose observation was
the first experimental evidence of crystallization in a system
of surface electrons.1 The study of the resonance spectra of
coupled oscillations was found to be a convenient method to
determine the complex conductivity of an electronic crystal,
whose reactive part is associated with the effective mass of
the electron and whose active part reflects the relaxational
processes occurring when an electronic crystal moves along
a helium surface.2

The theoretical investigations of the interaction of elec-
trons with the surface of liquid helium under conditions of
crystallization of the electrons made it possible to, specifi-
cally, calculate the frequency of coupled resonances3,4 and
analyze the special features of the motion of an electronic
crystal along the liquid-vapor interface.5 Subsequently, it was
established that the resonance frequencies, calculated using a
self-consistent approach,4 and the corresponding reactive
part of the conductivity agree quantitatively with the experi-
mental data.6 At the same time, serious difficulties arise in
describing the width of the electron-ripplon resonances in the
conductivity of a WC because the electron-ripplon system is
under strong-coupling conditions. For liquid 4He the dissipa-
tive mechanism due to damping of capillary waves5 is inef-
fective because of the smoothness of the damping coeffi-
cient, and therefore it cannot be explained by the
experimentally obtained values of the width of the coupled
electron-ripplon resonances.6 A theoretical analysis of the di-
rect scattering of the phonons of a two-dimensional WC by
ripplons7 shows that two-phonon processes predominate un-
der strong-coupling conditions, since the interaction resulting
in single-phonon processes is already included in the renor-
malization of the phonon spectrum. Under these conditions
the conductivity of the WC depends on the frequency of the
external field. Consequently, in order to compare theory with
1063-777X/2005/31�12�/4/$26.00 1023
experiment the temperature dependence of the resonance fre-
quency of coupled phonon-ripplon modes, which becomes
strongly distorted even with a very low 3He impurity con-
centration, must be taken into account consistently.

To determine the nature of the broadening of the
electron-ripplon resonances and the mechanism of dissipa-
tive losses of an electronic crystal it is of great interest to
perform experimental investigations of its conductivity
where not only the parameters of the crystal itself but also
the properties of the liquid substrate are changed in a con-
trollable manner. An attempt to analyze the role of the sur-
face in dissipative processes in an electronic crystal was
made in Ref. 8, where the spectra of coupled electron-ripplon
resonances in a crystal with prescribed parameters �surface
electron density ne=1.3·109 cm−2, clamping electric field
E�=600 V/cm� over 3He– 4He solutions with 0.025% and
0.25% 3He were studied experimentally. At low temperatures
the 3He atoms fill the Andreev surface levels, which changes
the surface tension.9 It was found that when 3He is added the
frequencies of the resonances �0, 1� in the experimental cell
shift to lower frequencies and the resonance curves become
somewhat broader. A method making it possible to determine
the mobility of the crystal according to the measured reso-
nance curves was proposed. In this method, together with a
system of equations describing the experimental cell, the the-
oretical response function of the crystal moving along the
surface of a liquid, as proposed in Ref. 5, was used; this
made it possible to calculate the width of the resonance line
as a function of the real part of the reciprocal of the conduc-
tivity and, comparing it to that found experimentally, to find
the mobility of the crystal. It was established that the mobil-
ity of the crystal over a solution is somewhat lower than over
pure 4He, but this result was not discussed, since it was not
clear how accurate the proposed method for analyzing the
data is and also in view of the fact that the 4He data used in
such an analysis were preliminary and were obtained under
conditions which were not adequately controlled.

Subsequently, detailed investigations were performed of
the conductivity of an electronic crystal over pure helium for
a wide range of values of the parameters.2 The conductivity
of the electronic crystal in this work was determined by ana-
© 2005 American Institute of Physics
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lyzing the signal obtained from a measuring cell containing
the electronic crystal under the action of a guiding field with
frequency equal to the frequency of the coupled resonance
�0, 1�. At the same time, to determine the complex conduc-
tivity it is sufficient to use the equations describing the ex-
perimental cell, and there is no need to use the theoretical
response function explicitly. The results of the calculations
for the experimental data obtained in Ref. 2 on the mobility
of a WC agree well with the published data. In the work it
was proposed that the broadening of the electron-ripplon
resonances of the conductivity of the crystal could be due to
defects of the crystal structure �dislocations�. In this connec-
tion it was necessary to analyze once again the role of the
surface of the liquid in dissipative processes of a WC, using
a new method for determining the conductivity2 and new
data on the conductivity of an electronic crystal over pure
4He. Such an analysis is the objective of the present work.

In this work the spectra of coupled electron-ripplon os-
cillations in electronic crystals with surface density
1.3·109 cm−2 over pure 4He and 3He– 4He solutions with
3He concentrations 0.025% and 0.25% are investigated in the
temperature range 80–400 mK. The experimental cell and
the computational scheme for calculating the conductivity of
the electronic crystal from the measured components of the
response of the system to an exciting electric voltage are
described in Ref. 10. The cell consists of a flat circular ca-
pacitor, whose gap contains a layer of liquid helium with
electrons on its surface. A constant voltage, clamping the
electrons to the surface of the liquid, is applied to one of the
capacitor plates. The second plate is a composite structure
and contains the input and output electrodes. An ac voltage is
applied to the input electrode, and the current is measured on
the output electrode. The relation between the output current
and the input voltage is

J = �G1 + i�G2�Vei�t. �1�

The complex conductivity of an electronic layer can be
determined for the cell geometry from the experimentally
measured quantities G1 and G2:

G1 = f1��1,�2,�,A�, G1 = f2��1,�2,�,A� + G0, �2�

where �1=Re �eff
−1, �2=Im �eff

−1, A and G0 are coefficients
which are determined by the geometry of the cell, and f1 and
f2 are certain functions which are quite complicated. The
measurements were performed at frequencies corresponding
to the excitation of coupled electron-ripplon oscillations in
the cell. In the course of the measurements the frequency
dependence of the amplitude and phase of the current at
fixed temperatures and with fixed amplitudes of the exciting
voltage were measured.

Figure 1 shows the resonance spectra of a crystal with
ne=1.3·109 cm−2 over a 3He– 4He solution containing 0.25%
3He. The spectra were measured for different temperatures in
the range 80–400 mK. The melting temperature of this crys-
tal is 760 mK. Figure 1 shows most clearly the resonance
features corresponding to the excitation of the resonance
mode �0, 1�, but the next harmonic �0, 2� can also be seen.
Similar spectra were measured for the same type of crystal
over pure 4He �atomic impurity 3He about 5 ·10−7� and a
solution with 0.25% 3He.
The temperature dependences of the �0, 1� resonance
frequencies are presented in Fig. 2. The experimental data
are compared with the results of a theoretical calculation.
Previously, a model taking account of coupling only with
ripplons whose wave vector has the same magnitude as the
shortest vector g1 of the reciprocal electronic lattice was used
to describe the coupled phonon-ripplon modes. This model
correctly describes the position of the electron-ripplon reso-
nances only near the melting temperature Tm of a WC. At
much lower temperatures the coupling with ripplons with
wave vector �q�=gn with n�1 must be taken into account

FIG. 1. Resonance spectra of coupled electron-ripplon oscillations of a two-
dimensional WC with density ne=1.3·109 cm−2 over the surface of a solu-
tion with 3He concentration 0.25% at different temperatures T, mK: 81 �1�,
98 �2�, 134 �3�, 164 �4�, 195 �5�, 221 �6�, 258 �7�, and 348 �8�.

FIG. 2. Temperature dependence of the resonance frequency of coupled
longitudinal phonon-ripplon modes over 3He– 4He solutions with different
concentrations: pure 4He �dotted line–theoretical calculation�, 4He technical
purity ��—experimental data, dotted-dashed line—theoretical calculation�,
x=0.025% ��—experimental data, dashed line—calculation�, and x
=0.25% ��—experimental data, solid line—theory�.
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even for a low-frequency mode ���1 �here �1=�q with
q=g1, and �q=�� /�q3/2 is the dispersion law for capillary
waves of a liquid with density � and surface tension ��. The
required generalization is easily found for the case where the
frequency dependence of the contribution of terms with �q�
=gn for n�1 to the effective mass of an electron can be
neglected: �n=2

� Cn, where the coefficients Cn characterize the
degree of phonon-ripplon coupling with q=gn.5 This ap-
proximation is applicable for modes with ���1. As a result,
the dispersion law for a low-frequency coupled mode as-
sumes the following form:

	l,k
2 =

�l,k
2 + Md�1

2 − ���l,k
2 + Md�1

2�2 − 4�Md − C1��l,k
2 �1

2

2�Md − C1�
,

�3�

where �l,k is the spectrum of longitudinal oscillations of a
WC over a flat surface, Md=�n=1

� Cn is the effective mass of
the dimple �normalized to the free-electron mass me�, formed
on the surface of liquid helium under each electron because
of the electron-ripplon interaction. In the limit Md→C1 the
relation �1� becomes the well-known result of the simplified
model of Refs. 3 and 4.

The coefficients Cn are proportional to the Debye-Waller
factor exp�−g2�uf

2	 /4� for the high-frequency modes of a WC
and therefore have a strong temperature dependence. We
found Cn following the results of a self-consistent
approach:11 the mean-square displacements �uf

2	 of the elec-
trons at the lattice sites and the Debye-Waller factor can be
described by the simplified model,4 since it correctly reflects
both limiting cases T→Tm and T→0. However, it should be
kept in mind that a quite large number of terms with n�1
must be included in the corresponding lattice sums over gn.
The results of the calculation of the resonance frequency
using the relation �3� with wave vector k=k0, set by the
geometry of the cell, are presented in Fig. 2. The calculation
employed the measured values of the surface tension for a
solution with the corresponding 3He concentration9 or linear
interpolation based on existing data for the two closest con-
centrations. At low temperatures the data obtained for all
solutions strongly deviate from the curve calculated for ide-
ally pure 4He. When the temperature dependence of the sur-
face tension of weak solutions is taken into account the the-
oretical calculation is much closer to the experimental data,
especially for controlled concentrations 0.025% and 0.25%
�dashed and solid lines�. Obviously, the more accurate theory
correctly describes the position of the low-frequency
electron-ripplon resonances, in agreement with the expected
properties of the surface of the solution.

The energy losses of the crystal are characterized by the
real component of the conductivity �. The quantity Re�1/��
for all series of measurements in the present work is deter-
mined similarly to the way this was done for pure helium in
Ref. 2. The results of an analysis of the complex response of
the crystal as a function of temperature at the frequency of
the mode �0, 1� are presented in Fig. 3. The data differ
strongly from the resistance of a nondegenerate electron gas
�dashed line, calculated for x=0.25%� and have a different
temperature dependence �in strong clamping fields 1/� in-
creases with decreasing temperature because the surface ten-
sion of the solution decreases�. There is also a substantial
discrepancy between the experimental data and the resistance
of a WC calculated in the weak-coupling approximation
�dotted line, x=0.25%�. The fact that this estimate is high
was explained in the strong-coupling theory7 by the facts that
the terms of the interaction Hamiltonian which are respon-
sible for the single-phonon scattering by ripplons are already
included in the renormalization of the spectrum of the WC
and relaxation of the momentum of the electrons at low fre-
quencies is determined only by multiphonon scattering pro-
cesses.

For high-frequency coupled phonon-ripplon modes ��
�� f, where � f is the limiting frequency of optical phonons�
the effective frequency of collisions in which two transverse
phonons of a WC participate has the form7

v2f
�f� =


ne

8�me� f
�

g
�g

2Ṽg
2, �4�

where

�g =
g2T

4
mect
2ne

; Ṽg = Ṽg exp�− g2�uf
2	/4�;

ct is the velocity of transverse phonons of a two-dimensional
WC on a flat substrate, and Vg is a function that describes the
electron-ripplon interaction Hamiltonian �in the limit of
strong clamping fields Vg→eE��.

Processes in which low-frequency coupled modes par-
ticipate make a somewhat larger contribution:7

v2f
�8� =


ne

16�me
�

�g�=g1

�g
2J��g − ��

��g − ��
Ṽg

2. �5�

Here the function J��� depends logarithmically on the size of
the system and is approximately described by the formula

J��� 
 ln� � f���

ctk0
��1

2 − �2� ,

where k0 is determined by the size of the experimental cell
�in concrete calculations we used the more accurate formula
presented in Ref. 7�.

FIG. 3. Temperature dependence of the resistance �Re�1/��� over a two-
dimensional WC over 4He of technical grade purity ��� and solutions with
x=0.025% ��� and x=0.25% ���. Dotted line—calculation in the weak-
coupling approximation; dashed line—calculation for a nondegenerate two-
dimensional electron gas; solid line—calculation using Eqs. �4�–�6�, ob-
tained for a WC with x=0.25%.
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For sufficiently high concentrations �greater than or of
the order of 0.25%� the scattering of quasiparticles of the
solution by the WC-induced sublattice of the surface dimples
must also be taken into account. For pure 3He this effect
results in a strong resistance of the dimples characterized by
an effective collision frequency:11

vD =
2�

mene
�

g
gx

2��g�2, �6�

where �g are the Fourier components of the displacements
��r� of the helium surface. In the absence of an energy gap in
the spectrum of the impurity atoms

� =
1

2
23
0

�

f�p�p3dp ,

where f�p� is the equilibrium quasiparticle momentum dis-
tribution function. The case of degenerate statistics of pure
3He is analyzed in Ref. 11. For this case the coefficient � is
independent of the temperature and is determined by the
value of the momentum of the quasiparticles on the Fermi
surface. For the weak solutions studied in the present work
the impuriton gas is nondegenerate and the coefficient �

=n3
�2m3

*T /
 increases with temperature �n3 is the number
of impurity atoms per unit volume of the solution and m3

* is
the effective mass of the impurity quasiparticles�.

The total resistance of the WC is determined by the sum
of the dimple contribution �6� and the electronic contribu-
tions �4� and �5�. The former depends very strongly and the
latter to a much lesser degree on the impurity concentration.
Calculation shows that the electronic contribution to the re-
sistance can even increase somewhat as concentration de-
creases. The presence of an appreciable electronic contribu-
tion greatly decreases the concentration dependence of the
total resistance. The result of the calculation for impurity
concentration 0.25% is presented in Fig. 3 �solid line�. The
theoretical estimates show that under these conditions �x
=0.25% � the electronic and dimple contributions are ap-
proximately of the same order of magnitude.

It should be noted that good numerical agreement be-
tween theory and experiment obtains only for the concentra-
tion 0.25%. For lower concentrations the agreement between
theory and experiment is only qualitative. The numerical dis-
crepancy could be due to breakdown of the ballistic nature of
the regime for quasiparticles scattered by dimples. This re-
gime was used in the derivation of Eq. �6� and could break
down because of the scattering of impurities by phonons.
Another possible explanation is due to the asymptotic char-
acter of the expansion of the electronic dynamical structure
factor used in the derivation of Eq. �5�.
It should also be noted that comparing the data found in
the present work for Re�1/�� with previously obtained data
on the resonance width6 shows good agreement only for the
0.25% solution. For the 0.025% solution there is a discrep-
ancy by approximately a factor of 2. This discrepancy can
hardly be explained by the unreliability of the previously
obtained data for technical-grade 4He, since a two-fold dis-
crepancy exists for quite reliable solutions with 0.025% and
0.25% 3He for which measurements were performed under
identical conditions. Apparently, the discrepancy is due to the
fact that the mobility is not determined accurately enough
from the resonance width.

Experiments with the free surface of a weak solution are
also possible for substantially higher concentrations of the
He impurity �right up to values of the order of 6%�. Under
these conditions, according to the theoretical relations pre-
sented, the dimple resistance should be much greater than the
electronic resistance, even if the gas of 3He quasiparticles is
degenerate at low temperatures. An experimental investiga-
tion of the resistance of WC with such concentrations is of
great interest for determining the contributions of surface
and volume excitations of the solution and are planned for
the future.

We thank Yu. Z. Kovdrya and S. S. Sokolov for discus-
sion of the results obtained in this work.
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A generalized electric displacement is constructed for a superconductor in the mixed state by
averaging the microscopic fields over a system of Abrikosov vortices moving with a velocity
varying in time and space, with the vortex and transport currents of the superconducting compo-
nent and the conduction current of the normal component taken into account. Expressions are
obtained for the linear and nonlinear generalized permeability. It is shown that bulk waves, in-
cluding longitudinal ones, can exist in a superconductor and that spatial dispersion is manifested
even in the rf region of the spectrum and has a substantial influence on higher-harmonic
generation. © 2005 American Institute of Physics. �DOI: 10.1063/1.2144453�
INTRODUCTION

Interest in the electrodynamics of type II superconduct-
ors has not slackened in the half century since the publica-
tion of Ginzburg and Landau’s paper.1 The magnetic flux in
such superconductors is transported by the diffusion2,3 of
Abrikosov vortices4 which form both a comparatively regu-
lar lattice5 and a peculiar vortex liquid6,7 and even a vortex
plasma,8 the order parameter in the mixed state of the super-
conductor being strongly dependent on the coordinates.9 The
dynamics of an isolated vortex has been well studied both
theoretically10 and experimentally.11 The losses arising in the
normal conduction of the core and the irreversible changes of
the order parameter in the viscous motion of the vortices
were taken into account in Ref. 12, and the loss due to po-
larization of the medium by the field of a moving vortex was
taken into account in Ref. 13. The balance equations for the
forces have usually been derived thermodynamically,10 i.e.,
they pertain, strictly speaking, to the equilibrium state.

The mixed state of a type II superconductor can be
treated in a thermodynamic approach as an equilibrium state
of the system of Abrikosov vortices, rectilinear or curved,
characterized as a system of isolated particles, e.g., by a sort
of chemical potential.14 In the description of the reaction of
the system of vortices to an external electromagnetic influ-
ence �transport current or variable magnetic field� a kinetic
approach9 has mainly been used, leading, for example, to an
equation of the kinetic state known as the modified Bean
model.15

Calculation of the response of a superconductor in the
mixed state to an alternating electromagnetic field is usually
done under the assumption that the vortex lattice moves as a
whole, i.e., all of the vortices move with a velocity that var-
ies in time but is uniform in space.9,12,16,17 Such a vibrational
approach to the motion of the lattice has been used for stud-
ies of the frequency dependence of the reflection
coefficient,17 the surface impedance,18 and the
susceptibility,19 harmonic generation,9 and the appearance of
steps on the current–voltage characteristic.16

Models of the critical and resistive states have been well
confirmed experimentally in the quasistationary regime, e.g.,
1063-777X/2005/31�12�/9/$26.00 1027
at frequencies relevant to commercial application.11,14,20 At
the same time, in the rf region substantial deviations from the
classical model have been observed, particularly in ceramic
superconductors, for which the diameter of the vortex lines
can be significantly larger than in metallic superconductors.21

It was shown in Ref. 22 that the surface resistance of a high-
Tc superconductor �HTSC� is several orders of magnitude
larger than is predicted by the theory. The frequency depen-
dence of the surface impedance deviates substantially from
the linearity predicted by the model of the critical state.15

The superconducting current density also has a feature near
the surface of the superconductor.23

In optics the features of the surface impedance and the
corresponding reflection anomalies can be caused by spatial
dispersion of the susceptibility,24 which is manifested when
the wavelength is comparable to the characteristic scale of
the nonlocality. In the mixed state of a superconductor the
corresponding scale can be the size of a vortex or the period
of the vortex lattice, and therefore for ceramic superconduct-
ors the nonlocality affects the surface impedance and the
nonlinear susceptibility even at low frequencies.18 In the rf
region the influence of spatial dispersion on the susceptibility
of the superconductor, both the linear and nonlinear, can be
of a resonance character. As we shall show below, the non-
locality itself can cause nonlinearity of the susceptibility of a
superconductor; this effect is not observed in crystal optics.

The elastic properties of the vortex lattice have been
investigated in detail both theoretically and experimentally.14

As to the complex susceptibility of type II superconductors,
however, only the frequency dependence has been analyzed,
and the dependence on the wave vector was not taken into
consideration,25 although such topics as flux creep and the
corresponding temperature dependence of the absorption26

and the hysteretic dependence of the critical current on the
instantaneous value of the magnetic field27,28 have been
taken into account. Actually, in such an approach the dynam-
ics of the vortex lattice is treated as a vibrational and not a
wave process. That approach can be used to determine the
frequency dispersion relation of the lattice vibrations,29 but
effects of interaction of the electromagnetic wave with quasi-
© 2005 American Institute of Physics
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elastic waves, which are well known in acoustooptics and
spin-wave electronics, vanish. As we shall show below, a
wave propagating in the vortex lattice is not purely longitu-
dinal, like a bulk acoustic wave, but is mixed, like a spin
wave.30 Accordingly, the dispersion characteristics of such a
wave are far richer than for an acoustic wave.

It should be noted that spatial dispersion in insulators
gives rise to new normal waves.31 Such an effect can also be
expected in superconductors, the dispersion characteristics of
such waves being easily controlled electrically, since the pe-
riod of the vortex lattice depends on the external magnetic
field. Previously such a possibility was known only for spin
waves.30 The propagation of electromagnetic and spin waves
in a layered superconductor–ferrite–superconductor structure
was studied in Ref. 32. It was shown that the dispersion
characteristics of spin waves can be controlled efficiently,
but the wave characteristics due to spatial dispersion in the
superconductor itself were not taken into account. Incorpo-
ration of spatial dispersion can expand the functional capa-
bilities of superconductor electronics.33

The analysis of electromagnetic process in type II super-
conductors is complicated by the impossibility of separating
the magnetization current and conduction �transport� current
even in the dc case, since they are created by the motion of
the whole condensate of Cooper pairs.10,14 Therefore, by
analogy with the optics one can describe the state of the
superconductor by a linear functional of the electric field—
the generalized polarization vector P, the derivative of which
is equal to the averaged total microscopic current j=�v in the
medium, including both the conduction current and the local
magnetization and polarization currents of the bound
charges, which can be neglected in the rf region:34

�P�r�
�t

= �j� =
1

V
�

V

j�r + r1�d3r1,

P�r,t� = �
0

� �
−�

�

�̃�r,r1,t1�E�r − r1,t − t1�d3r1dt1

=
1

�2��4�
−�

� �
−�

�

���r,k,��E�k,��exp�ik · r

− i�t�d� d3k ,

E�k,�� = �
−�

� �
−�

�

E�r,t�exp�− ik · r + i�t�dt d3r ,

���r,k,�� = �
0

� �
−�

�

�̃�r,r1,t1�exp�− ik · r1

+ i�t1�dt1 d3 R1. �1�

Here V is a physically small volume, containing a large num-
ber of structural units, in which the variation of the fields can
be neglected. In Eq. �1� the medium is assumed isotropic and
homogeneous but stationary. Then the electromagnetic field
in the medium is described by three vectors, E, B, and the
generalized electric displacement D=E+4�P, and Max-
well’s equations without external currents and charges take
the form34
div B = 0, div D = 0,

c curl E = − �B/�t, c curl B = �D/�t . �2�

Here E and B are macroscopic, i.e., the microscopic fields e
and b averaged over the physically small volume:

E�r� = �e�r�� =
1

V
�

V

e�r + r1�d3r1,

B„r… = �b„r…� =
1

V
�

V

b�r + r1�d3r1. �3�

Equation �1� is a constitutive relation of the medium.
The dependence of the total current on the alternating mag-
netic field in that relation is taken into account through the
third equation in �2� as

B�t� = − c�
0

t

curl E�t1�dt1 + B�0� .

The static magnetic field B0=B�0� is usually introduced into
the generalized susceptibility as a parameter.

The boundary conditions for the vectors E, B, and D are
obtained from Eqs. �2� in the usual way:34

E2� = E1� , B2n = B1n, D2n = D1n,

B2� − B1� = 4�iv/c , �4�

where iv is the linear density of the total surface current
induced in the medium, including the magnetization current.
The fourth condition corresponds to continuity of the field H
at the boundary of the superconductor. However, the thermo-
dynamic definition14,35 of the field H used in the description
of the mixed state of the superconductor is valid only for the
equilibrium state and not for a dissipative resistive state. Fur-
thermore, the construction of the field energy in a dispersive
medium is a rather complex problem, while at the same time
the relation of the field H with the generalized electric dis-
placement D has been obtained under rather general
conditions.34

WAVE EQUATION FOR THE MIXED STATE

The Ginzburg–Landau equations1 were obtained by
minimizing the free energy, and they and the Abrikosov vor-
tex equation4 that follows from them describe a stationary
state in thermodynamic equilibrium. Nonstationary processes
in type II superconductors are described by the microscopic
Gor’kov–Eliashberg equations.36 These equations are ob-
tained by the methods of quantum electrodynamics with the
use of a diagram technique and permit the solution of numer-
ous problems of nonstationary superconductivity in which
the interaction of the Cooper condensate with electron–hole
excitations and nonequilibrium phonons is taken into
account.9,16,37

For analysis of the reaction of a system of Abrikosov
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vortices to an external electromagnetic field one usually de-
rives from the microscopic equations the dynamic �time-
dependent� Ginzburg–Landau equations for the order param-
eter, which demonstrate the macroscopic quantum properties
of the superconductor.37 In that way expressions have been
obtained for the coefficient of viscosity of moving vortices
and the flux-flow resistance over a wide range of tempera-
tures and for any alloy.38,39 However, in the presence of a
propagating electromagnetic wave whose wavelength in the
medium is comparable to the period of the vortex lattice, the
vortex velocity field is nonuniform in both space and time,
and therefore the relation between the electric and magnetic
fields averaged in the sense of Eq. �3� will be more compli-
cated than is assumed in a treatment of laminar flux flow.12

These features, in turn, can have a substantial influence on
the dispersion characteristics of the waves.

The influence of transport processes and spatial disper-
sion on the propagation of electromagnetic waves has been
well studied in plasma electrodynamics.40 To construct the
kinetic equations of a plasma in such a case one uses the
Bogolyubov method of a hierarchy of scales,41 which under
certain assumptions allows one to ignore the internal struc-
ture of the particles of the plasma and describe their motion
classically. In the rf region, when the energy of a quantum is
much less than the gap width, the mixed state of the super-
conductor can also be treated as a plasmalike medium.8 Then
a region of the order of the coherence length � will contain
many cells of the crystal lattice and many Cooper pairs. The
role of the second scale is played by the characteristic vortex
size �	�. Therefore the construction of the macroscopic
fields for a type II superconductor in a magnetic field that is
uniform along the z axis can be carried out in two steps.

First one averages Eqs. �1� and �3� over a volume V in
the form of a cylinder with its generator along the z axis and
with a diameter of the order of �. Such an averaging makes
the problem two-dimensional and “smoothes out” the spatial
nonuniformities of the fields while preserving the nonlocality
due to the interaction of the Abrikosov vortices. In the sec-
ond step a statistical averaging over the ensemble of Abriko-
sov vortices is carried out. Since the characteristic lag time
��
 /� for recovery of the order parameter in a moving
vortex42 is much less than the wave period, the Cooper con-
densate can be assumed to be in microscopic equilibrium, in
which case the quantity −2e� /�, where � is the scalar po-
tential, coincides with the derivative of the phase  of the
order parameter.37

The dynamics of the classical particles in a plasmalike
medium is conveniently described by Lagrange’s equations.
In the framework of the simplifying assumptions made, the
Cooper condensate in the superconductor can be character-
ized by a general scalar potential and regarded as a Lagrang-
ian system. It is therefore of interest to obtain the time-
dependent Ginzburg–Landau equations for such a system by
the methods of the Lagrangian formalism. We construct a
nonrelativistic Lagrangian of a superconducting condensate,
using the classical expression for the free energy of the su-
perconductor in an electromagnetic field:1,12,43–45
L =
ieh

2cm
�� � �* − �* � �� · A −

h2

4m
� � · ��*

−
e2

c2m
A2	�	2 + 2e	�	2� +

ih

2

�

��*

�t
− �*��

�t
� − �	�	2

−
�

2
	�	4 +

1

8�
�1

c

�A

�t
+ ���2

−
1

8�
	curl A	2. �5�

Here we have used the expression46 for the potential energy
of a variable charge in a fixed potential and have taken into
account that

e = −
1

c

�A

�t
− �� . �6�

We write Lagrange’s equation for a continuous medium
in the form43

�L
�qi

−
�

�t

�L
���qi/�t�

−
�

�x

�L
���qi/�x�

−
�

�y

�L
���qi/�y�

−
�

�z

�L
���qi/�z�

=
�F

���qi/�t�
. �7�

The field functions qi�r , t� for the Lagrangian �5� are the
order parameter �* and the components of the vector poten-
tial Ax, Ay, Az. On the right-hand side of Eq. �7� is the de-
rivative of the dissipative function with respect to the corre-
sponding generalized velocity,47 since the superconducting
component and the electromagnetic field do not form a
closed system. Its interaction with the crystal lattice and the
normal component lead to energy dissipation for the electro-
magnetic field in the cores of the moving vortices.42 The rate
of energy of the system corresponds to twice the value of the
dissipative function. Neglecting the lag in the recovery of the
order parameter in a moving vortex,42 we shall assume that
the dissipation is due to the current of the normal component
and set F= 	e	2�n /2, where �n is the conductivity of the nor-
mal component.

After calculating the corresponding derivatives of the
Lagrangian �5� and dissipative function, substituting them
into Eq. �7�, and performing some straightforward vector
transformations with Eq. �6� taken into account, we obtain

i�
��

�t
= −

1

4m

i� � +

2e

c
A�2

+ 2e� − � − �	�	2�� ,

�8�

curl curl A = −
8�e2

c2m
	�	2A +

i2�e�

cm
�� � �* − �* � ��

+
4�

c
�ne +

1

c

�e

�t
. �9�

The boundary-value problem for these equations has the
form of the Cauchy boundary conditions48

� ��

�n
�

S

+ �
2ei

c
An − b���

S
= 0. �10�

The constant b depends on the situation at the boundary S of
the superconductor.
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Equation �8� agrees with the nonstationary equations ob-
tained in Refs. 49,50 if the charge of the nonequilibrium
carriers is neglected. Of course, this only attests to the appli-
cability of the Lagrangian model �5� in the quasiequilibrium
case under consideration, which is characteristic for the mo-
tion of the system of Abrikosov vortices in the field of an
electromagnetic wave of the rf range in the linear approxi-
mation. We note that the description of the dynamics of a
quasiequilibrium Cooper condensate by means of Lagrange’s
equations is close to the idea proposed in the classic paper by
Gor’kov and Kopnin,12 that the rate of change of the order
parameter is proportional to the variational derivative of the
free energy.

By virtue of of the Maxwell equation

curl curl A =
4�

c
js +

4�

c
�ne +

1

c

�e

�t
, �11�

Eq. �9� can be written in the form51

js =
c	�	2

4��2
�c

2e
�  − A� , �12�

where

� = �/�0 − 	�	exp�i�, � =
c

2e
�m/�ns.

The imaginary part of Eq. �8� with allowance for relation
�12� takes the form of the continuity equation for the super-
conducting component �	�	2 /�t=−�1/ens�div js, and the real
part is accordingly

�

�t
=

�

4m


	�	

	�	
− �� −

2e

c�
A�2� −

�

�
�	�	2 − 1� −

2e

�
� .

�13�

If we set 	�	=1 outside the vortex core and assume that
the core radius is negligible if the field is not too high, then,
after taking the curl of Eq. �12� and using formulas �2� and
�11�, we obtain47

b + �2curl curl b +
4��n�2

c2

�b

�t
+

�2

c2

�2b

�t2 = �0��r − ri� .

�14�

Here ri are the coordinates of the vortex centers, �0=�01i,
where 1i is a unit vector directed along the axis of the vortex,
and �0=��c /e.

In the stationary case Eq. �14� coincides with the well-
known equation of a nonmoving Abrikosov vortex.51 For a
vortex moving with velocity v along the x axis, the fourth
term on the right-hand side of Eq. �14� is equal to
��2v2 /c2��2b /�x2 and describes the deformation of a moving
vortex due to the Lorentz contraction. For v�c one can ne-
glect it and assume that the moving vortex is undeformed.
The third term is due to the normal conduction current. Ne-
glecting the interference of this current with the supercon-
ducting component,37 we can assume that it does not distort
the distribution of the supercurrent and the order parameter
with respect to the core of the moving vortex.
We average Eq. �14� over a volume V containing many
parallel vortices and chosen in the form a cylinder with base
S perpendicular to the vortex axes and with generator parallel
to the vortex axes:

B + �2curl curl B +
4��2�n

c2

�B

�t
+

�2

c2

�2B

�t2 = n�0, �15�

where n is the density of vortices. In the averaging it is
assumed that formula �5�, which follows from the Ginzburg–
Landau equations,1 is applicable at small values of the order
parameter. Then one can assume that the concentration of the
normal phase changes insignificantly at the superconducting
transition, while the normal conductivity �n is almost con-
stant over the whole volume of the superconductor.

It follows from the wave equation �15� that only in a
uniform static field can it be assumed that B=n�0. This is
because in the averaging according to formula �3� the bound-
ary of the base S divides several vortices into parts, and if the
vortices are distributed nonuniformly they will not compen-
sate each other. Equation �15� can be regarded as a nonlocal
and nonstationary constitutive relation for the mixed state of
a type II superconductor. The field function it it is the vortex
density n instead of the magnetic field strength H.

It follows from Eqs. �4� that the boundary condition for
the magnetic induction is the total surface current density,
which depends on the position of the vortices near the
boundary. Thus there arises the problem of the additional
boundary conditions that are imposed on the function n�r�.
As in the case of spin waves,27 the additional boundary con-
ditions aside from the electrodynamic conditions �4� are de-
termined by the interaction of the magnetic moments, in this
case vortices, with the boundary.52–54 Since the lattice param-
eters are practically nonvarying near the boundary of a
superconductor,54 the additional boundary conditions for the
mixed state can be stated as Cauchy conditions analogous to
Eq. �10�.

DYNAMICS OF VORTICES IN A PLANE WAVE

The electrodynamics of the mixed state of a supercon-
ductor are significantly “richer” than in crystal optics, where
the nonlocality is due to the rigid lattice, or in a plasma,
where there is no short-range order. When an electromag-
netic wave of wavelength comparable to the period of the
vortex lattice is propagating in a superconductor, the velocity
field of the Abrikosov vortices is nonuniform in space, caus-
ing a change of the electric field produced by the moving
vortices.

We differentiate Eq. �12� with respect to time, taking Eq.
�13� into account:

�js

�t
=

c2	�	2

4��2 e +
�c2

8��2e

� 	�	2

�t

� −

2e

�c
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Here we have used the notation

f =
�

4m


	�	

	�	
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A�2� −

�

�
	�	2.

The first term in Eq. �16� coincides with the first London
equation,51 while the second and third terms are the contri-
bution of the moving vortices and are equal to zero for a
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nonmoving vortex. For v�c it can be assumed that the vor-
tex in its motion is undeformed. Therefore the modulus and
phase of the order parameter, the superconducting current
density and, hence, the vector potential, are distributed rela-
tive to the center ri�t� of the moving vortex in the same
manner as in the nonmoving vortex.

Let �=r−ri. Then �	�	2 /�t=v ·�	�	2, where v�ri�
=dri /dt is the velocity of the center of the vortex, and

� = 1 � �/�2, A = 1 � �A���/� ,

�	�	2 = �d	�	2/d���/�, � f = �df/d���/� .

We average Eq. �16� over a physically small volume contain-
ing many vortices, the centers ri of which are distributed in
the superconductor with a density n. It is not hard to see that
the third term, by virtue of the symmetry of the vortex, av-
erages to zero. Then

� �js�r�
�t

� =
c2

4��2E +
�c2

8��2e
1 � �

S
� n�r − c��v�r

− c� · c�
c

�2

d	�	2

d�

1

�
−

2e

�c
A�d2� .

Here the integration on the right-hand side is over the whole
cross section of the vortex.

We direct the z axis along the axis of the vortex; then the
vector � in the integrals will have components x and y, while
the respective components of r are x0 and y0. Because the
region of supercurrents and magnetic fields in the vortex has
a size of the order of �, the functions nvx and nvy can be
expanded in a Taylor series to second order in x and y.

The integrals obtained are conveniently evaluated in cy-
lindrical coordinates. Integrating by parts with allowance for
the facts that the vortex field has a faster than exponential
decay field at infinity51 and that the flux trapped by a vortex
is equal to the flux quantum �0, and that 	��0�	=0 and
	����	=1, using the stationary equation �14�, and performing
some some vector transformations, we obtain

�2P
�t2 = �n

�E

�t
+

c2

4��2�E +
1

c
�0 � �nv + �2
�nv��� .

�17�

In Eq. �17� the total microscopic current consists of the
currents of the superconducting and normal components
without the interference.37 The last term in �17�, which de-
pends on the vortex velocity, can be regarded as an addi-
tional field produced by the moving vortices: Ev=�0� �nv
+�2
�nv�� /c. Taking the curl of the right and left sides of
this equation with allowance for the fact that the constant
vector �0 is perpendicular to the vectors v and �n and doing
some straightforward vector transformations, we obtain

curl Ev = �0��v + �2
�nv�/n� · �n + n � · �v

+ �2
�nv�/n��/c = �0div�nv + �2
�nv��/c .

We differentiate both sides of Eq. �15� with respect to
time and take its Laplacian 
. Taking into account the con-
tinuity equation �n /�t=−div�nv� and keeping only terms up
to the second derivatives, we obtain �2
��B /�t�−�B /�t
=� div�nv�. Accordingly, ��
B� /�t=� � �
n� /�t=−� 

0 0 0
��div�nv��=−�0div�
�nv��. Thus curl Ev=−�1/c��B /�t,
which coincides with the Maxwell equation and confirms the
applicability of formulas �15� and �17�.

In the motion of a uniform vortex lattice with a velocity
constant in time and space in a superconductor in the ab-
sence of external fields, Eq. �17� goes over to the well-
known formula E=V�v /c �Refs. 12,55, which can be de-
rived from the Lorentz transformation.34,43,46 Indeed, in a
system tied to a vortex flow uniform in time and space, all of
the vortices are at rest, and there is no electric field. If, how-
ever, the vortex density and velocity are functions of time
and the coordinates, in any inertial reference frame some of
the vortices will be moving with variable velocities, and con-
sequently an additional electric field will be present.

For constructing the generalized polarization �1� the gen-
eralized friction force47 on the right-hand side of Eq. �7�
should be expressed in terms of the normal conduction cur-
rent. It is not difficult to show that the magnetic moment M
per unit length of vortex is equal to �0 / �4��. Since the
superconducting component creating that moment does not
exchange energy with the normal component, the field Bn

created by the normal conduction currents can be treated as
an external current for that moment. If the superconductor is
uniform along the z axis, then the field Bn=Bn1, and the
magnetic moment M is directed along z. Using the formula
for the force exerted on a magnetic dipole in an external
field,34 we obtain

f f = grad�M · Bn� = M grad Bn = MI � curl Bn = �0

� jn/c . �18�

We note that the force exerted on the vortex by the nor-
mal conduction currents is directed oppositely to the force
exerted by the superconducting currents.51 This is natural,
since the field formed by the superconducting currents is not
external with respect to the vortex.

LINEAR SUSCEPTIBILITY

Suppose that stationary distributions of the vortices n0�r�
and of the corresponding magnetic field B0�r� are established
in the superconductor by an external source, e.g., a transport
current. In the analysis of the linear susceptibility we shall
assume that the variable parts of the vortex density and field
are small compared to the stationary values, and we set
n�r , t�=n0�r� in Eq. �17�.

We shall assume that in the stationary state the vortices
are pinned at pinning centers and oscillate about them under
the influence of the wave without going into the flux flow
regime. Then vortices are not created or annihilated inside
the superconductor. We use the model of collective pinning
of an elastic vortex on distributed defects.51 Performing the
averaging in �3� first with respect to the z axis, along which
the unit vector 1 is directed, and then over the cross section
S perpendicular to that unit vector, in the first step we obtain
linear vortices oriented along the z axis with a uniformly
distributed pinning force.

We assume in the linear approximation that the pinning
force acting on a unit length of vortex is equal to fp=−au,
where u is the displacement of the vortex from its equilib-
rium position. Using the known formula51 for the force ex-
erted on a unit length of vortex by the superconducting cur-
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rents js flowing around the vortex cores and taking formula
�18� into account, we write the equation of motion of a vor-
tex in the form

au = �js − jn� � �0/c . �19�

We average this equation over the cross section of a
physically small volume:

v =
�u

�t
=

1

ac

 �2P

�t2 − 2�n
�E

�t
� � �0.

Substituting this relation into formula �17�, we obtain

�2

�t2�P −
�0

2n0

4�a�2
P −
�2

n0

�n0P��� =

c2

4��2E + �n
�

�t

��E −
�0

2n0

2�a�2
E −
�2

n0

�n0E��� .

Expressing the instantaneous values of the field and polariza-
tion in terms of their Fourier transformations �1�, we obtain

�1 − ��1 + k2�2��n0�� + ��2�
�n0��� + 2ik · ��n0����

= �1 − 2��1 + k2�2��n0 +
ic2n0

4��2��n
+ 2��2�
n0

+ 2ik · �n0� , �20�

where �=�0
2n0 / �4�a�2�. For vortices rigidly pinned to pin-

ning centers at �→� we obtain

����,k,r� = ��0��,r� =
i�n

�
−

c2

4��2�2 .

The generalized susceptibility

�� = − i��� = �n +
ic2

4��2�

corresponds to the complex conductivity of the supercon-
ductor in the framework of the two-fluid model and describes
the penetration of the electromagnetic field to a depth ����
�� /�1+�2 /�s

2, where �s=c2 / �4��2�n�=e2ns / ��nm�
�1013s−1 is the frequency at which the currents of the super-
conducting and normal components become equal.51

We seek a solution of equation �20� for the case of a low
density of strongly coupled vortices at ��1 by the method
of successive approximations in the small parameter
� : �̂�� ,k ,r�= �̂0�� ,r�+��̂1�� ,k ,r�, and then

��1��,k,r� = − 
 i�n

�
+

c2

4��2�2��n0 + �2�k2n0 − 2ik · �n0

− 
n0�� .

For a metallic superconductor �2k2�1 in the rf range.
Superconductors with an appreciable pinning force typically
have triangular distributions of the vortex density.51 The La-
placian of such a distribution is equal to zero everywhere
except at an kink, and in the averaging one can set �2
n0

�n0. Therefore the expression for the generalized suscepti-
bility of a hard superconductor has the form
�̂��,k,r� = 1 +
c2

�2�2
 i�

�s
− 1� −

�0
2

�2a

c2

�2�2
 i�

�s
+ 1��n0

− 2i�2k · �n0� . �21�

It is seen from formula �21� that the spatial dispersion is
manifested in nonuniformly magnetized superconductors.
Here both the real and imaginary parts of the generalized
permeability depend on the angle between the wave vector k
and the gradient of the vortex density. The influence of the
spatial dispersion on a wave propagating along the vortex
density gradient is particularly strong.

By increasing the transport current in a superconducting
slab and then decreasing it to zero one can create a vortex
distribution in the slab such that the surface density is equal
to zero and the gradient is maximal and determined by the
critical current.51 In that case, even in the case of weak pin-
ning, i.e., a large value of �0

2 /a, the parameter � in the
boundary region will be small and representation �21� can be
used.

To solve rigorously the problem of wave propagation in
the direction of the gradient, i.e., in the direction of the
change of the parameters of the medium, is rather compli-
cated. For example, in such nonuniform media there can be
longitudinal waves, for example, for which E=kE�. For a
longitudinal plane wave the second of Maxwell’s equations
�2� takes the form div D=div��̃�r�E�=E ·��̃+ �̃k ·E=0, i.e.,
k ·��̂=−k2�̄. For ���s it follows from Eq. �21� that for
longitudinal waves k=−�0

2�n0 / �a�2�, which is attainable in
the boundary region.

In the opposite case of a high density of weakly coupled
vortices, Eq. �20� can be solved by the method of successive
approximations in the small parameter 1 /�:

�̃��,k,r� = 1 +
8�i�n

�
+

16�2a�2

�0
2n0�1 + �2k2�

�
 i�n

�
+

c2

4��2�2� . �22�

In the limit of free vortices �a→0� we obtain a purely
imaginary susceptibility, i.e., the motion of the superconduct-
ing phase in the vortices simply doubles the loss in the nor-
mal phase. This is natural, since in an ideal type II supercon-
ductor losses arise at arbitrarily low frequencies.47 For �
��s the generalized susceptibility �22� is almost real and
positive. If �=0.1 and �=10−5 cm, then at a frequency �
=106 s−1 one has ��1020 and a refractive index of the order
of 1010, which corresponds to a wave number k=105 cm−1

�1/�.

NONLINEAR SUSCEPTIBILITY

The generation of higher harmonics and combination
frequencies in the propagation of an electromagnetic wave in
nonlinear media is usually studied by the method of succes-
sive approximations after separating the generalized polar-
ization into a linear and a nonlinear part:34,46,56

P�r,t� = Plin�r,t� + Pnonlin�r,t�,Plin�r,t� = P�1��r,t�,

�Pnonlin�r,t� = P�2��r,t� + P�3��r,t� + … ,
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P�2��r,t� = �
0

� �
0

�

dt1dt2�� �̃�2��r,r1,r2,t1,t2�E�r − r1,t

− t1�E�r − r2,t − t2�d3r1d3r2

= �
−�

� �
−�

� d�1d�2

�2��8 �� ���2�

��r,k1,k2,�1,�2�E�k1,�1�E�k2,�2�

�exp�i�k1 + k2� · r − i��1 + �2�t�d3k1d3k2,

���2��r,k1,k2,�1,�2� = �
0

� �
0

�

dt1dt2�� �̃2�r,r1,r2,t1,t2�

�exp�i�1t1 + i�2t2 − ik1 · r1

− ik2 · r2�d3r1d3r2. �23�

Here the spatial integrals over infinite limits are denoted by
the integral sign alone, and condition �1� holds for the polar-
ization P�1�.

A nonlinear �cubic� polarization P�3� in a superconductor
can arise from a nonlinear dependence of the pinning force
on the displacement of the vortex, and a quadratic polariza-
tion P�2� from field dependence of the vortex concentration n
in Eq. �17� and also from nonlocality, which is manifested
when the amplitude of the vibrations of the vortex are com-
parable to the wavelength of the wave. The latter case is
specific to superconductors. Neither in crystals nor in plas-
mas does the nonlocality give rise to nonlinearity, since it is
practically independent of field. In a superconductor, how-
ever, the contributions of these components to the nonlinear
polarization are approximately equal.

With the nonlocality taken into account, Eq. �19� be-
comes

cau�r� = �js�r + u� − jn�r + u�� � �0 = �js�r� − jn�r�

+ �u · ���js�r� − jn�r��� � �0.

In the framework of the method of successive approxi-
mations we restrict consideration to the case of weak disper-
sion, when �k�1, and we set n=n0+n�1�, u=u�1�+u�2�,
where 	n�1�	��k	n0	, 	u�2�	��k	u�1�	, respectively, and 	P�2�	
��k	P�1�	. Then from the continuity equation we obtain
n�1�=−div�n0u�1��, and Eqs. �17� and �19� decompose into the
equations of the first and second approximations �with re-
spect to �k�:

�2P�1�

�t2 = �n
�E

�t
+

c2

4��2
E +
1

c
�0 � n0

�u�1�

�t
� ,

u�1� =
1

ac

 �P�1�

�t
− 2�nE� � �0, �24�
xxx 1 1y 2 2y xxy 1 2x 1 2 2x xyx
u�2� =
1

ac
��u�1� · ��
 �P�1�

�t
− 2�nE�� � �0

= �u�1� · ��u�1� =
1

2
� �u�1� · u�1�� − u�1� � � � u�1�,

�25�

�2P�2�

�t2 =
c

4��2�0 � 
n0
�u�2�

�t
− n0

�u�1�

�t
· �u�1�

− u�1� ·
�u�1�

�t
� n0� . �26�

The effect of nonlocality is substantial in the case of a
high density of weakly coupled vortices for 4��2a��0

2n0.
Then the stationary density of vortices n0�r� can be assumed
to be a slowly varying function, and the last term in �26� can
be neglected, while from the equations of the zeroth approxi-
mation �24� we obtain with the aid of the spectral method

u�1��r,t� =
1

�2��4�
−�

� �
−�

� 4��2�n� − ic2

n0�0
2c�

�E�k,���0�

�exp�ik · r − i�t�d�d3k ,

u2�r,t� =
i

�2��8�
−�

� �
−�

� �4��2�n�1 − ic2��4��2�n�2 − ic2�
2n0

2�0
2c2�1�2

�exp�i�k1 + k2� · r − i��1 + �2�t�d�1d�2

��−�
� �

−�

�

��k1 + k2��E�k1,�1�E�k2,�2��

− E�k1,�1�k2E�k2,�2� − E�k2,�2�

��k1E�k1,�1���d3k1d3k2.

Substituting these expressions into the right-hand side of
Eq. �26� and into the left-hand side of expression �23�, we
obtain for the quadratic polarization

− ��1 + �2�2���k1,k2,�1,�2�E1E2

=
�4��2�n�1 − ic2��4��2�n�2 − ic2�

8�c�2B0�1�2
���1 + �2�1

� ��k1 + k2��E1E2� − E1�k2E2� − E2�k1E1��

− �1E1�k2�E2 � 1�� − �2E2�k1�E1 � 1��� .

Here E�k1 ,�1�=E1, E�k2 ,�2�=E2. The explicit form of the
quadratic susceptibility operator is more conveniently repre-
sented in tensor form. If the vectors E, P�2�, and k lie in the
xy plane while the unit vector l is directed along the z axis,
then
�ijk
�2��k1,k2,�1,�2� =

�4��2�n�1 − ic2��4��2�n�2 − ic2�
8�c�2B0�1�2��1 + �2�2 gijk�k1,k2,�1,�2� ,

g = � k + � k , g = � k − �� + � �k , g = � k − �� + � �k , g = 0,
2 1x 1 2 1x xyy
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gyxx = 0, gyxy = − �2k1y + ��1 + �2�k2y, gyyx = − �1k2y + ��1 + �2�k1y, gyyy = − �1k1x − �2k2x. �27�
CONCLUSION

Analysis of the electromagnetic processes in type II su-
perconductors by the generalized polarization method allows
one, in the averaging of the microscopic fields in a system of
vortices moving with a velocity that varies in space and time,
to take into account the nonlocality of the interaction of the
vortices and the spatial dispersion caused by it. Despite the
anisotropy created by the transport current, the generalized
permeabilities �21� and �22� are scalars, i.e., the longitudinal
and transverse permeabilities are equal. Consequently, the
differential magnetic susceptibility of the superconductor is
equal to unity.34 This corresponds to the model considered, in
which the vortices vibrate around the pinning centers. In
such motion the magnetization does not vary.

The variation of the magnetization and, accordingly, the
tensor character of the generalized permeability are mani-
fested in the flux flow regime. Analysis of the spatial disper-
sion in such motion of the vortices requires the application of
kinetic methods.41 However, the expressions we have ob-
tained for the generalized susceptibility show the possibility
of several types of waves—longitudinal, slow—but not to
the same degree as follows from formula �22�.

The approximate character of formula �22� is due to the
fact that the features of the generalized susceptibility are of
second-order smallness with respect to �k. Then not only the
quadratic polarization P�2� but also the cubic polarization
P�3� are substantial, and the latter, in turn, influences the
dispersion relation of the main wave.56 Analysis of the cubic
polarization, including the pinning due to the nonlinearity, is
done in a manner analogous to the derivation of formula
�27�, although more awkwardly.

The possibility of electric control of the dispersion char-
acteristics of linear and nonlinear waves and of the aniso-
tropy of the medium by using the transport current and ex-
ternal magnetization to obtain the necessary vortex
distribution makes it possible to use them like spin waves in
functional electronics.29,31,57 The complex character of the
frequency and spatial dispersion relation �27� of nonlinear
waves suggests the possibility of a nonlinear resonance in-
teraction, in particular, the generation of echo responses,
which can be used to create analog Fourier processors.57

Such an interaction can be manifested in the rf range in ce-
ramic superconductors, where the nonlocality is related to
the Josephson penetration depth.
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The nonlinear boundary-value problem of the penetration of a magnetic field b into a supercon-
ducting half space with resistivity � f�b��b� is investigated under the condition that the field
amplitude at the boundary increases in time by a power law �b�0, t���1+ t�m ,m�0� or in the
peaking regime �b�0, t���1− t / t0�m ,m�0,0� t� t0�. Conditions on the values of the parameters
m and � are given under which different scenarios of magnetic flux penetration can occur. The
velocity of the magnetic flux front is calculated in relation to the parameters m and �. © 2005
American Institute of Physics. �DOI: 10.1063/1.2144454�
The systematics of magnetic flux penetration into super-
conducting media have been discussed in many papers �see,
e.g., Refs. 1–5. A detailed analysis of these processes in the
isothermal case, with a field increasing at a constant rate, was
given in Ref. 1 for type II superconductors with different
types of current–voltage characteristics. The velocity and
structure of the electromagnetic wave with allowance for the
nonisothermal dynamics of the flux were investigated in
Refs. 3–5. However, in Refs. 3–5 the field at the boundary of
the sample was fixed, i.e., the question investigated was that
of the stability of the critical state against external perturba-
tions. Such thermodynamic instability leads to anomalies of
the nucleation and propagation of the normal phase, depend-
ing on the electrodynamic conditions at the surface of the
sample.5

In the present paper we investigate the dissipative pro-
cesses of magnetic flux propagation in superconducting me-
dia with a model resistivity � f�b�=�nb�, ��0 �here �n is the
resistivity in the normal state, b=B /Bc2, where Bc2 is the
second critical field� in the case when the external magnetic
field at the boundary of the sample varies by a power law or
in a peaking regime. The investigation is based on analysis
of the self-similar solutions of the parabolic equations �see
Ref. 6 describing the process of penetration of a magnetic
flux that is increasing in time into a medium with a finite
conductivity.

We consider the standard problem of the magnetic flux
penetration into a semi-infinite superconductor in a uniform
external magnetic field parallel to its boundary surface: B �z,
j �y, E=� f�b��j− jc�. Here jc is the critical current. We shall
assume that the temperature of the superconductor is equal to
that of the coolant, i.e., we shall neglect the nonisothermicity
of the process.

The interrelationship between the magnetic induction,
electric field E, and transport current density j is established
by Maxwell’s equations:

curl E = −
1

c

�B

�t
, curl B =

4�

c
j , �1�

where c is the speed of light.
It follows from system �1� and the definition of the field

E that B satisfies a generalized Burgers equation. In dimen-
sionless form �upon the change of variables b=B /B , x
c2
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=�x, t= tht, where � is the London penetration depth, th

=4��2 /c2�n is the characteristic diffusion time of the mag-
netic field, and we have dropped the diacritical marks indi-
cating the new variables� this equation becomes

bt − c�b�bx = �n
−1�� f�b�bx�x, t � 0, x � 0, � � 0.

�2�

Here

c�b� = �n
−1��� f�b��b, � = 4�jc�b��/cBc2.

At a sufficiently small rise of the external magnetic field
we can write the boundary conditions in the form �the power-
law boundary regime�

b�0,t� = b0�1 + t�m, m � 0 �3�

or, if the rate of increase of the field is large,

b�0,t� = b0�1 − t/t0�m, m � 0, 0 � t � t0, �4�

where t0 is the dimensionless peaking time of the power-law
regime. In the latter case for t→ t0 the field b→�, and we
have the so-called boundary regime with peaking. The initial
dimensionless field amplitude b0 can be taken equal to
Bc1 /Bc2, i.e., here B0=Bc1.

The second-order parabolic evolutionary Eqs. �2� under-
lie the mathematical models of diverse physical processes.
According to their general properties �for �=0�, in order for
them to have a finite solution b�x , t� of the traveling wave
type it is necessary and sufficient to satisfy the inequality
�see Ref. 6

� � f�b�b−1db � � .

The spatial–temporal structure of these solutions is de-
termined by the character of the dependence of the coeffi-
cients � f on the quantities b determining the state of the
nonlinear media and by the type of boundary conditions. For
example, in the theory of thermal processes the function
� f�b�=k�b� has the meaning of the thermal conductivity. In
boundary-value problems with a thermal influence acting on
the boundary of the sample, the explicit form of the tempera-
ture dependence of this coefficient determines the law of
motion of the thermal wave. In particular, if k�b� is a power
law, in the peaking regime, despite the unbounded growth of
© 2005 American Institute of Physics
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the temperature at the boundary, the thermal perturbations
can be localized at a finite depth. Since the propagation of
magnetic field in a medium with a finite conductivity is de-
scribed by the same differential equation �2�, one expects
that an analysis of the known spatial–temporal solutions of
equation �2� will permit a description of a developing pertur-
bation of the magnetic structures in superconductors.

As we see from Eq. �2�, for finding the function b�x , t� it
is necessary to know the dependence of the critical current
density on b. Taking this into consideration, let us analyze
first the case when jc=0 �the coefficient � in Eq. �2� is equal
to zero�. In this case Eq. �2� takes the simple form

bt = �b�bx�x. �5�

We shall show below that taking jc explicitly into ac-
count does not influence the qualitative picture of the
spatial–temporal structures of the magnetic flux. Only the
velocity of the wave front is affected. Therefore it is useful to
start by considering the simplest version of the phenomenon.

LOCALIZATION OF MAGNETIC FLUX IN THE POWER-LAW
REGIME OF FIELD VARIATION

Suppose that the rise of the external magnetic field field
is determined by the boundary condition �3�. Then Eq. �5�
has a self-similar solution of the form6

b�x,t� = b0�1 + t�mf�	�, 	 = xb0
−1/2�1 + t�−�1+m��/2, �6�

where f satisfies the ordinary differential equation

�f�f t�t + ��1 + m��/2�	f t − mf = 0, 	 � 0, �7�

and, as following from the statement of the initial problem
and the spatial–temporal structure of solution �6�, the follow-
ing boundary conditions should hold:

f�0� = 1, f��� = 0. �8�

A generalized solution of problem �7� and �8� exists, is
unique, and is a finite function.6 A qualitative graphical rep-
resentation of the solution at different points in time is given
in Fig. 1. The dashed curve denotes the trajectory of the
half-width �the point xeff�t� at which the magnetic induction
is equal to one-half the value of b at the boundary� of the
magnetic inhomogeneity, and x �t� is the point at which the

FIG. 1. Evolution of the self-similar solution �5� �m�0,��1�.6
eff
function b�x , t� goes to zero �the wave front�. Here the time
dependence of the half-width of the magnetic wave is given
by the relation

xeff = 	effbo
1/2�1 + t��1+m��/2; f�	eff� = 1/2. �9�

The solution �see Fig. 1� determines the spatial profile of a
magnetic wave moving in the superconducting sample with a
velocity

v = 	effb0
1/2 �1 + m��

2
�1 + t��m�−t�/2. �10�

In the particular case m=1/� the problem �6�–�8� has
the generalized solution

b�x,t� = b0�1 + t�1/���1 − �1/2	�+�1/�,

	 = xb0
−1/2�1 + t�−1. �11�

Here we have introduced the notation �k�−=k if k
0 and
�k�+=0 if k�0.

For such a special choice of conditions of pumping by
the external field we obtain a constant velocity of the wave
front,

v = 	effb0
1/2 = �1 − �1/2����−1/2b0

1/2, �12�

which for �=1 gives v=b0
1/2 /2.

PEAKING REGIME. EFFECTIVE LOCALIZATION OF THE
MAGNETIC FLUX

In the peaking regime �4� the self-similar solution of Eq.
�5� has the form

b�x,t� = b0�1 − t/t0�mf�	� ,

	 = x�b0t0�−1/2�1 − t/t0�−�1+m��/2 
 0, �13�

where f�	� is determined from the equation

�f�f t�t − ��1 + m��/2�	f t + mf = 0, 	 � 0 �14�

with the boundary conditions �8�.
For the self-similar solution �13� the half-width and the

magnetic wave front have the time dependence

xeff = 	eff�b0t0�1/2�1 − t/t0��1+m��/2, �15�

xf = 	 f�b0t0�1/2�1 − t/t0��1+m��/2, �16�

where 	 f is the value of the self-similar coordinate at which
f�	�=0.

For a graphical illustration in Fig. 2 we present the re-
sults of a numerical solution6 of problem �14� for 1+m�
�0 and 1+m��0.

For 1+m��0 the solution is characterized by the fol-
lowing properties: the coordinate of the wave front is found
at a finite point and together with xeff increases without
bound as the time of the peaking is approached.

For 1+m��0 the wave front is bound at an infinitely
remote point, and xeff�t� decreases at t→ t0. The solutions of
this type can be called �by analogy with thermal waves in the
peaking regime� magnetic waves with contracting effective
sizes. The magnetic field penetrating the medium in this case
will be concentrated in a spatial region that decreases with
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time. Of course, in the real situation the rise of b�x , t� corre-
sponding to this process will be bounded above by the value
of the upper critical field.

We note that the boundary regime for the special choice
m=−1/� corresponds to a self-similar solution of unusual
form—a stationary magnetic wave:

b�x,t� = b0�1 − t/t0�−1/���1 − x/x0�+�2/�, �17�

where x0= �2��+2� /��1/2. The position of the front of this
wave, xf�t�=x0, does not change during the entire peaking
time—magnetic disturbances do not propagate into the
sample, despite the fact that in the region �0,x0� the magnetic
field increases at t→ t0.

TAKING THE CRITICAL CURRENT INTO ACCOUNT

For superconductors with high critical currents the solu-
tions of Eq. �2� must be analyzed taking into account not
only the value of jc itself but also the relation of the critical
current to the induction, which is reflected in the function
c�b� of the initial diffusion equation �2�, describing the de-
pendence of the field propagation velocity c on the value of
the local quantity b. In seeking the solution of such a non-
linear diffusion equation for the magnetic flux one should
transform to the “stretched” coordinates �=x−xs�t�, where
x �t� is a certain function specified by the equation

FIG. 2. Variation of the magnetic field as a function of the self-similar
variable 	 for 1+m��0 �a� and 1+m��0 �b�.
s

dxs/dt = − c�b���t�,t�� . �18�

In this case Eq. �2� reduces to Eq. �5�:

bt = �b�b���, �19�

and for the boundary regime of greatest interest, with peak-
ing, Eq. �19� has the same form �13� and �14� but with the
self-similar variable

	 = �x + �
0

t/t0

c�b��,t��dt	�b0t0�−1/2�1 − t/t0�−�1+m��/2 
 0

�20�

for the function f�	�, which must satisfy the boundary con-
ditions �8�.

Taking relations �13� and �20� into account, one can eas-
ily note that for the initial function b�x , t� the boundary con-
dition �4� at x=0 is satisfied asymptotically at t→ t0 and only
when 1+m��0. Therefore the solution of the corresponding
boundary-value problem can be considered to be defined
only in the limit t→ t0 under the additional condition 1
+m��0 on the exponent � of the dissipative medium and
the exponent m of the rate of change of the external magnetic
field. In this case the position of the front of the magnetic
wave is specified by the integral of the function c�b�� , t��,

xf = − �
0

t/t0

c�b��,t��dt + � f�b0t0�1/2�1 − t/t0��1+m��/2,

�21�

and, consequently, the magnetic wave front propagation ve-
locity is equal to

v f = − c�b��,t�� −
�1 + m��

2
� f�b0�1/2�1 − t/t0��m�−1�/2,

1 + m� � 0. �22�

It follows from the definition of c�b�� , t�� �see Eq. �2��
that this function is specified by the functions � f�b� and jc�b�.
In the Bean model for � f�b��b it degenerates into a constant
c=�=4�jc /cBc2, and result �22� becomes obvious: the ve-
locity of the wave front �contrary to the case considered
above� decreases by an amount �.

The critical current density, as a rule, falls off monotoni-
cally with increasing b. At low fields �b�1� a good approxi-
mation for jc�b� is the Kim–Andersen model jc�b�= jc�0��b
+b1�−1, where b1 is an experimentally determined constant.
In the limiting case of high magnetic fields one has jc�b�
= jc�0��1−b�. However, even for such a simple dependence
of the current on b it is difficult to obtain information about
the evolution of the spatial–temporal properties of the field
penetrating into the sample. Nevertheless, for bb1 one can
make certain interesting observations. For example, at �=2
Eq. �2� is completely identical to the equation for jc=const
�the Bean model� and �=1. Therefore, the conclusions
reached above in the analysis of the solutions of the corre-
spond equation for jc=const are also valid for a more com-
plex process of vortex penetration into the sample.

Thus the dissipative magnetic fluxes propagating in non-
ideal superconductors can have diverse spatial–temporal
structure. The diversity is directly correlated with the ratio of
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the exponent m of the rate of imposition of the magnetic field
and the exponent � of the increase of the resistivity of the
sample with respect to magnetic field. Here one observes the
natural relationship—the higher the intensity of the boundary
regime, the higher the penetration velocity of the magnetic
wave front. However, there is an exception—for m=−1/� in
the peaking regime the wave can be localized and the posi-
tion of its front will not vary with time.

In conclusion we note several important aspects of the
studies reported above. By assuming that the temperature of
the superconductor is the same as that of the coolant, we
have neglected the nonisothermicity of the process. Of
course, in the general case the density of vortices �or the field
b� penetrating into the sample is determined not only by the
value of the induced current but also by the local tempera-
ture. Therefore, Maxwell’s equations should be supple-
mented by the equation of heat balance. The energy of dis-
sipation due to the viscous due to the viscous flow of vortex
lines acts as a heat source in the samples. Such an approach
is usually used in studying the critical state of a supercon-
ductor with a random distribution of pinning centers. Here
one investigates the flux jumps caused by the a propagating
thermal wave large enough to overcome the pinning. In the
present paper we consider either clean superconductors �for
which the density of defects is insubstantial� or the above-
critical state. A thermal wave exists in either case. Following
behind the magnetic flux front, it does not affect the qualita-
tive picture of its distribution but only shifts the position of
the front on account of an increase in the size of the vortex.
On the other hand, when the motion of the flux lines is de-
layed by the pinning centers, the temperature coefficient of
diffusion can bring about a rapid equilibration of the local
temperature gradient, and one can then neglect the noniso-
thermicity of the process. Such an effective cooling is a
known2 characteristic of of composite superconductor.

When one chooses the unknown profile b�x ,0�=b0F�x�
in the form of a self-similar function F�x� at t=0, then the
numerical solution obviously coincides with the self-similar

solution for the diffusion equation �5�. It is proved in the
monograph7 that for monotonically decreasing unknown
functions the solution of the initial equation �5� converges to
the self-similar solutions at t→ t0. At intermediate t the num-
ber solutions can differ from the self-similar ones. In other
words, arbitrary �numerical� solutions are drawn toward the
self-similar solution at t→ t0. It is said that the self-similar
solutions form an attractor of the problem.

As to the asymptotic stability of the solutions, for re-
gimes with resistivity � f�b� close to a power law, the
asymptotic stability is proved in the aforementioned
monograph,7 and, in a particular case �for a power-law resis-
tivity� in the book6 �see also Ref. 8. For a stationary wave
front the stability of the solutions was proved numerically by
Barenblatt and Vishik9 back in 1956. The theoretical proof of
this result can also be found in Ref. 7, where the fundamental
S theorem for the stability of self-similar solutions was
proved for a wide class of equations of the diffusion type.
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An approach to describing the pseudogap state as a two-dimensional antiferromagnetic metal
with non-Fermi charge carriers is developed for quasi-two-dimensional underdoped HTSC cu-
prates with one CuO2 plane. The model of local closed Varma currents is extended to holes of
the ion Cu3+ surrounded by four ionic complexes Cu↑

2+O4
2− �or Cu↓

2+O4
2−�. It is shown that taking

account of the electron-vibrational interactions results in vibronic transitions from a nondegener-
ate state of the Cu3+ ion into doubly degenerate Cu↑

2+ �or Cu↓
2+� with splitting of the energy band

for two types of quasilocal states of a “copper-oxygen” hole �vortex or antivortex�, each of
which moves in its own magnetic sublattice. The transfer of the vortex current from the “mol-
ecule” Cu3+O4

2− to the complex Cu↓
2+O4

2− with the copper ion from the same magnetic sublattice
creates the dynamical effect of a displacement of a Cu3+ ion to the site of a Cu↓

2+ ion and a tran-
sition of the “molecule” Cu3+O4

2− into the complex Cu↓
2+O4

2−. © 2005 American Institute of Phys-
ics. �DOI: 10.1063/1.2144455�
For underdoped �UD� cuprate HTSCs it can now be re-
garded as an established fact that on the �T , p� phase dia-
gram, where p is the doping concentration, the temperature
T*�p� of the transition into the pseudogap �PG� state sepa-
rates the regions where for p� pcr the normal state is the
Fermi-liquid state and for p� pcr the normal state is a state
with non-Fermi charge carriers. For almost all UD HTSCs,
to adequate accuracy,

T*�p� � 1250�1 − p/pcr�K, pcr � 0,22, p � 0. �1�

As shown in Ref. 1 the PG and superconducting states
coexist. In the present paper an approach to the PG state as a
two-dimensional �2D� antiferromagnetic �AFM� state, per-
turbed by charge carrier motion, i.e. a 2D AFM metal with
non-Fermi charge carriers, is developed for quasi-two-
dimensional UD HTSCs with one CuO2 plane.2–4 Starting
from the assumption that in the CuO2 plane the hole concen-
tration equals the concentration of Cu3+ ions randomly dis-
tributed in it, the model of local closed �LC� Varma
currents5,6 is extended to a hole of a Cu3+ ion surrounded by
four ionic complexes—Cu↓

2+O4
2− “squares” �or Cu↑

2+O4
2−,

where the arrow denotes the spin direction of copper, see
Fig. 1�. The energy of the nondegenerate state of the Cu3+

ion is higher than the energy of the doubly degenerate state
of the Cu2+ ion, and the normal electron-vibrational �EV�
modes of oxygen ions in the complexes Cu↓

2+O4
2− or Cu↑

2+O4
2−

result in vibronic transitions from a nondegenerate state of
the Cu3+ ion into a doubly degenerate state �to A→E singlet-
doublet transitions�. Such vibronic transistions of the “mol-
ecules” Cu3+O4

2−→Cu↓
2+O4

2− or Cu3+O4
2−→Cu↑

2+O4
2− with ex-

citation of a quasilocal hole state can be called the “inverse”
Jahn–Teller �JT� effect, which results in a transition of an UD
antiferromagnet �AF� into a 2D AFM metal state.

INVERSE JAHN–TELLER EFFECT

The selection rules for vibronic transitions in a molecule
have been discussed in reviews.7,8 In their classic work
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Longuet–Higgins et al. show convincingly that the allowed
transitions A→E with splitting of the energy band, whose
magnitude is all the greater the stronger the JT interaction,
do indeed exist.9 Experimental investigations of such transi-
tions in the absorption spectra of Fe2+ ions in crystals with
trigonal and cubic symmetry are discussed in Ref. 7.

Let a d hole of a Cu3+ impurity ion interact only with the
EV JT modes Qk of the nearest oxygen ions, which are
shared with the neighboring complexes Cu↑

2+O4
2− �Fig. 1�. For

example, a hole of the Cu3+ ion, substituting for a Cu↓
2+ ion,

transforms into a collectivized, by the “molecule” Cu3+O4
2−,

state with four LC currents, i.e. into a state with “mixed”
symmetry dx2−y2 ± i�px± py� �dx2−y2 is a state of the “copper”
hole; px and py are states of the “oxygen” hole�.6 Taking
account of the compensation of the currents Cu↓

2+−O2− in
neighboring quadrants of the molecule such LC currents
form a circular current around the complex Cu↓

2+O4
2−, which

can be regarded as a quasilocal state of a “copper-oxygen”
hole,1� i.e. a vortex-like state—2D antivortex v↑ �or 2D vor-
tex v↓ around the complex Cu↑

2+O4
2−�. Depending on the mag-

netic sublattice containing the Cu3+ ion the condition for
conservation of the magnetic moment in the “molecule”

mCu3+ = mCu↓
2+ + m�↑

= mCu↑
2+ + m�↓

= 0

determines the direction of the LC currents:2� v↓—clockwise,
v↑—counterclockwise, for example �mv↑

=−mCu↓
2+ and mv↓

=mCu↑
2+ are the magnetic moments of the circular current

around the complex Cu↓
2+O4

2− or Cu↑
2+O4

2−, which determine
the direction of the circular currents�. The vortices v↓ and v↑
with weak damping can move into the CuO2 plane along the
magnetic sublattice of the Cu↑

2+ �or Cu↓
2+� ion whose site was

occupied by the Cu3+ ion; this creates the dynamical effect of
the movement of a Cu3+ ion to the site of a Cu↓

2+ ion and a
transition of the “molecule” Cu3+O4

2− into the complex
Cu↓

2+O4
2−. Thus, the vibronic transitions A→E with splitting

of the energy band result in an inverse JT effect with a tran-
sition of the UD AF into a state which can be called a 2D
© 2005 American Institute of Physics
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AFM metal with two types of quasilocal charge carriers
�two-dimensional vortices v↓ and antivortices v↑� with non-
Fermi statistics.

The following two conditions must be satisfied in order
for such a state to exist.

1. The sample must be quasi-two-dimensional.
2. A transition A→E of a copper ion from a nondegen-

erate into a degenerate state Cu3+O4
2−→Cu↓

2+O4
2−+v↑ �if Cu3+

occupied the site of the Cu↓
2+ ion� and Cu3+O4

2−→Cu↑
2+O4

2−

+v↓ �if Cu3+ occupied the Cu↑
2+ site�, which results in con-

sistent ordering of the magnetic moments of the copper holes
and ions in the CuO2 plane at T�Tf�p�. Consequently, the
region of existence of a 2D AFM metal in the phase diagram
is bounded by the lines T*�p�, Tf�p�, and Tg�p�, where Tg�p�
is the temperature of the transition of a 2D AFM metal into a
3D cluster glass state.3�

POSSIBILITY OF EXPERIMENTAL CONFIRMATION OF THE
EXISTENCE OF A 2D AFM METAL

The model of the PG state as a 2D AFM metal with
splitting into two energy bands of charge carriers—2D vor-
tices and antivortices—which satisfy non-Fermi statistics,
just as the structure of the LC Varma currents,5,6 results in
breaking of time-reversal symmetry for which spontaneous
ordering occurs without breaking of translational symmetry.
The experiment proposed in Refs. 5 and 6 for observing LC
currents consisted in measuring the intensity of the photo-
emission spectrum �ARPES� with right- and left-circular po-
larization of light and analyzing the relative difference be-

FIG. 1. Local currents vi �closed lines� in the quadrants of ionic complexes
CuO4 in the copper-oxygen plane: Varma currents in four complexes
Cu↑

2+O4
2− and the complex Cu↓

2+O4
2− with magnetic moments mvi

of the cur-
rents vi in four quadrants �i=1

4 mvi
=0 �1�, �3�; vortex current v↑ in the “

molecule” Cu3+O4
2−→Cu↓

2+O4
2−+v↑ with magnetic moment mv↑

=�i=1
4 mvi

=
−mCu↓

2+ �2�, �4�. The arrows on the closed lines, indicating the direction of
the currents, are drawn only in the two complexes; the Cu3+ ion occupies a
position in the magnetic sublattice of Cu↓

2+. The transition of the vortex
current v↑ from the “molecule” Cu3+O4

2− to the complex Cu↓
2+O4

2− with a
copper ion from the same magnetic sublattice creates the dynamical effect of
a Cu3+ ion moving into the site of a Cu↓

2+ ion and a transition of the “mol-
ecule” Cu3+O4

2− into the complex Cu↓
2+O4

2−.
tween the circular dichroism spectra obtained. Two groups
performed these measurements: on thin UD Bi2212 films10

and on UD Y–Pb–Bi2212 single-crystals �Tc=80K� and
overdoped Pb–Bi2212 �Tc=72K�.11 The results show that di-
chroism was observed in the UD10 and overdoped11 samples,
which can be explained by the bilayer splitting of the unit
cell of these compounds into two CuO2 planes.

To confirm the hypothesis advanced in Refs. 5 and 6 that
LC currents exist in UD HTSCs it is necessary to perform
measurements on samples with one CuO2 plane in a unit cell.
An ideal object for such investigations could be
Bi2Sr2−xLaxCuO6+� single crystals, for which nuclear mag-
netic resonance measurements1 have made it possible to es-
tablish the region of the PG state and have shown that the
Fermi-liquid state is characteristic only of overdoped
samples. The study of photoemission spectra could also an-
swer the question, which is important for UD HTSCs, of the
role of the interactions along the c axis. This requires mea-
surements similar to those performed on Bi2212 �see Fig. 4
in Ref. 12� for energies equal to �F±30 meV and two values
of the temperature T*�p�±� close to T*�p�. An appreciable
difference in the broadening of the spectral lines for T*�p�
−� and T*�p�+� would make it possible to judge the dimen-
sion of the PG state. For the same samples with doping con-
centration p2� p� pcr, it would be interesting to perform
measurements of the resistance in magnetic fields H�Hc2

�p2 is determined by the equality Tf�p2�=T*�p2��. This would
make it possible to observe with decreasing temperature in
the normal state of the sample two transitions with a change
in the dimension of the state: 1� a transition from a 3D Fermi
metal to a 2D AFM metal at T*�p�; 2� at lower temperatures
Tg�p�—a transition of a 2D AFM metal into a 3D cluster
glass state. The observation of a narrow EPR line at T
�150 K is convincing evidence of the existence of metallic
regions in weakly doped La2−xSrxCuO4, 0.01�x�0.06.13

In closing, we present the words of D. Pines concerning
the mechanism of high-temperature superconductivity: “It is
electronic and magnetic origin.”4 These words could be the
answer to the question of the nature of the pseudogap state:
this is a two-dimensional AFM metal with two types of
quasilocal states of a copper-oxygen hole—vortices and an-
tivortices, each of which moves in its own magnetic sublat-
tice.

a�E-mail: gsergeeva@kipt.kharkov.ua
1�The “mixed” symmetry of the hole state shows that the transition of a hole

into a quasilocal state cannot be regarded as ionization of a Cu3+ ion.
2�It should be noted that the sum of the magnetic moments mvi

of LC Varma
currents vi in the quadrants of the complexes Cu2+O4

2− is zero.
3�The assumption that the line T*�p� bounds the region of existence of a 2D

AFM metal results in the obvious equality T*�pcr�=Tg�pcr�.
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The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by a
method that does not require achieving a critical state. The expected values of the critical current
are estimated. The values obtained are two orders of magnitude greater than the results of “di-
rect” measurements performed on the basis of transport �magnetic� experiments. A giant peak
effect, which the collective pinning model describes quantitatively well, is observed in the field
dependences of the Labush parameter in Y-containing borocarbides. © 2005 American Institute
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The dynamics of vortex matter in type-II superconduct-
ors is determined by the ratios of the elasticity of the fluxoid
lattice, the viscosity, and the pinning. The study of such dy-
namics still attracts a great deal of attention even though it
has been pursued for the past 40 years. This refers to, first
and foremost, the characteristics of pinning because of the
practical importance of understanding its physical nature in
detail.

At the present time the intensity of pinning is ordinarily
characterized, primarily, by the current density jc, corre-
sponding to the achievement of a critical state, i.e. a transi-
tion from a regime of dissipation-free current flow to a re-
gime of free motion of vortices. Pinning can also be
characterized by the “spring” Labush parameter �L

=d2Wp /dx2, which determines the average curvature of the
pinning potential Wp. A transition into the critical state cor-
responds to the Lorentz force being equal to the effective
pinning force:

�L� �
1

c
jcB , �1�

where � is the coherence length and B is the induction in the
sample.

Using the relation �1� it is easy to estimate the value of jc

to be expected for known aL and compare it with “direct”
measurements.

In the present communication the results of measure-
ments of �L in nonmagnetic borocarbides �YNi2B2C,
Y0.95Tb0.05Ni2B2C, and LuNi2B2C�, obtained by a method
that does not require reaching a critical state, are presented. It
was found that our estimates of jc are two orders of magni-
tude higher than the critical currents obtained in transport or
magnetic measurements. In addition, a giant peak effect was
1063-777X/2005/31�12�/5/$26.00 1043
found in the field dependences of �L for Y-containing
samples. It can be described quantitatively well on the basis
of a collective pinning model.1 In leutecium borocarbide,
pinning on defects, whose range is greater than the core size,
is also found to be substantial.

The method is based on analysis of the amplitude and
phase of the electromagnetic field emitted from a conducting
medium under the action of a transverse sound wave propa-
gating along the magnetic field H. For a uniform half-space
and an elastic free interface the induction �Hall� component
of the field is described by the simple expression:2,3 1�

Eind =
�u̇B�

c
·

k2

q2 + k2 �
�u̇B�

c
· X�B� , �2�

where u is the amplitude of the displacements in the elastic
wave at the interface, q is the wave number of the sound, and
k is the skin wave number of the experimental medium. In
the normal state k2=kn

2= �4�i��0� /c2 and �0= �ne2�� /m is
the static conductivity.

In the mixed phase k2=km
2 =4��i��+�L� /B2, where �

and �L are, respectively, the viscosity and Labush parameter
per unit volume.

Since � is approximately proportional to B �i��
�kn

2BHC2 /4�, the Bardeen-Stephen relation4�, in sufficiently
weak field �km

2 ��q2 and X�B� is close in amplitude to 1 and
its phase is close to zero.

For 	�1 �	 is the Ginzburg-Landau parameter�, in the
actual region of the fields we need not distinguish between
the induction in the sample and the applied field. Normaliz-
ing the measured value of E /H so that for H��5–10�HC1 its
modulus is close to 1, and taking the phase 
 in these fields
as the point of reference, we obtain the field dependence of
the complex quantity X�H�.
© 2005 American Institute of Physics
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The values of the viscosity and the Labush parameter are
determined by the relations

�L = Re	 X�H�
1 − X�H�
 ·

q2H2

4�
, �3�

�� = Im	 X�H�
1 − X�H�
 ·

q2H2

4�
. �4�

It should be remembered that the information obtained in
this experiment refers to a thin ��q−1� layer near the surface.
If this layer is nonuniform, the simple relations �2�–�4� break
down. This question is studied in detailed in Ref. 5. It is
shown that the nonuniformity of �0 �the decrease of the con-
ductivity of a layer near the surface� increases the phase
angle, fixed in the normal state. However, the nonuniformity
of pinning results in an apparent nonmonotonic variation of
the parameter �, if the relation �4� is used to reconstruct �,
right up to the appearance of nonphysical negative values of
the viscosity.

We shall indicate a simple test for revealing at least the
nonuniformity of �0: in the normal state the modulus and
phase of X�H� in a uniform material should be related as

�X�H�� = �1 + tan2
�H��−0,5.

In the experiments described below this condition al-
ways holds to within �5%.

The samples were grown by the standard technology
used for compounds of this class.6 They were in the form of
thin �0.5 mm thick flakes with transverse size �3 mm. The
C4 axis was always orthogonal to the plane of the platelet. A
quite perfect face of natural growth was used as the emitting
surface. The opposite face was polished to create a reliable
acoustic contact with a germanium delay line, making it pos-
sible to separate the exciting and analyzed signals in time.
The excitation frequencies were 54–55 MHz. The details of
the measurement procedure are described in Ref. 5.

Examples of typical experimental dependences of the
modulus and phase of X�H� are presented in Fig. 1. All ex-
perimental samples, irrespective of composition, had close
values of kn

2 and, correspondingly, the residual resistivity
� �3 � · cm and London penetration depth ��0�

FIG. 1. Typical field dependence of the amplitude and phase of X�H�. The
scale on the left-hand side is normalized as explained in the text: 
 �1�, �2�;
E /H �3�, �4�; LuNi2B2C �T=6 K� �1�, �3�; Y0.95Tb0.05Ni2B2C �T=1.7K� �2�,
�4�. Inset—hysteresis of the phase near the peak effect in Y0.95Tb0.05Ni2B2C
�T=1.7 K�.
res
�10−5 cm. The values of the velocities, required for these
estimates, of the C44 modes are presented in Ref. 7.

The field dependences of the viscosity, which also turned
out to be similar for identical values of HC2, were found,
using Eq. �4�, from data similar to those presented in Fig. 4.
An example is presented in Fig. 2. Their behavior is close to
that predicted by the Bardeen-Stephen phenomenological
model,4 although the deviations from a linear dependence are
quite large. The inset in Fig. 2 shows the behavior of the
resistivity expected in the resistive regime from the mea-
sured values of the viscosity. The field dependences ��H� do
not show sufficiently strong nonmonotonic behavior, which
in accordance with the results of Ref. 5 indicates that there is
no significant nonuniformity in the characteristics of pinning.
We also call attention to the fact that the presence of sub-
stantial nonmonotonic behavior near HC2 in the primary data
�Fig. 1, curve 2� has essentially no effect on ��H�.

Examples of the field dependences of the Labush param-
eter are presented in Fig. 3. One notices first and foremost
the giant peak effect in the Y-containing samples near HC2.
Traces of its existence are also seen in LuNi2B2C. We also
note that the solution �3� gives negative values of �L for
Y0.95Tb0.05Ni2B2C in intermediate-value fields. We shall as-
sume that for very weak pinning the accuracy of the proce-
dure used to reconstruct the Labush parameter using Eq. �2�
is inadequate because factors such as the nonuniformity of
the near-surface layer or thermal fluctuations are neglected,
and the result �L�0 is a kind of artifact.

FIG. 2. Field dependences of �� in Y0.95Tb0.05Ni2B2C: T=8 K, HC2

=1.7 T �1�; T=4K, HC2=3.3 T �2�; T=1.7K, HC2=3.8 T �3�. Inset—
expected variation of the resistivity. The labeling is the same as in the main
figure.

FIG. 3. Field dependences of �L :Y0.95Tb0.05Ni2B2C �T=1.7K, HC2=3.8 T�
�1�; YNi B C �T=4K, H =3.8 T� �2�; LuNi B C �T=6 K, H =4.2 T� �3�.
2 2 C2 2 2 C2
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Pippard has proposed a qualitative explanation for the
nature of the peak effect.8 The structure of the mixed phase is
determined by the competition between the pinning and the
intervortex interaction force. When the latter predominates
the fluxoids form a nearly translationally ordered lattice and
the details of the relief of the pinning potential are largely
ignored. As HC2 is approached the elasticity of the vortex
lattice decreases more rapidly than the pinning intensity,
which results in more efficient adjustment of the structure to
the relief of the pinning potential and, correspondingly, to an
increase of �L and jc.

The theory of collective pinning �CP� of vortex struc-
tures by point defects �i.e. defects whose range is shorter
than the coherence length� made it possible to convert these
qualitative considerations into a quantitative foundation.1 In
the CP theory a single free parameter characterizing the pin-
ning force is introduced. It is convenient to take as this free
parameter the dimensionless magnetic field hSV�HSV /HC2,
determining the boundary of the so-called bundle vortex pin-
ning �BVP� regime hSV�h�1−hSV, where h=H /HC2 and
the transverse size Rc of Larkin’s correlation region is greater
than the vortex lattice parameter a=�
0 /H �
0 is the flux
quantum�. In the BVP regime �L is determined from the
condition that the pinning energy ���L�2Vc� is equal to the
elastic energy ��C66�� /Rc�2VC� of the vortex lattice in the
correlation volume VC. This gives

�L �
C66

Rc�H�2 . �5�

The shear modulus is defined by the relation9

C66 �

0HC2

�8���2h�1 − h�2. �6�

The equation for finding Rc �with a��� has the form

 h�1 − h�
hSV�1 − hSV��3/2

� 1 + 2 ln
Rc

a
+

Rc

�
�1 − h�1/2. �7�

Actually, Eq. �7� is Eq. �4.17� from Ref. 10, where the
possibility that H approaches HC2 is taken into account �see
Eq. �8� in Ref. 11 and the accompanying explanation�. The
Labush parameter in the single vortex pinning �SVP� regime,
in the lower region with respect to the magnetic field �h
�hSV�, is linear in the magnetic field with the coefficient of
proportionality determined from the condition of matching
with Eq. �5�. In the upper SVP region �1−hSV�h�1� the
estimate �L�C66�h� /�a2�h� can be used, where � is a cor-
rection factor close to 1, which also provides matching with
Eq. �5� for h=1−hSV.

The computed values of �L�h�, constructed for HC2

=4 T and �=10−5 cm, characteristic for the experimental
samples, for various values of the parameter hSV are pre-
sented in Fig. 4. A remarkable property of these dependences
is the single-valued relation between the form of the field
dependence and the scale of the variations of �L�h�. In other
words if �L�h� is bell-shaped without a distinct peak effect,
then the maximum value of �L�h� must be at the level
1015 dynes/cm4. Conversely, if the peak effect is pro-
nounced, the observed values of �L�h� should not exceed
1013–1014 dynes/cm4. Turning to Fig. 3 we immediately
conclude that the behavior of �L�h� in Y-containing samples
can be analyzed from the standpoint of the CP theory, which
cannot be said of leutecium borocarbide.

The CP theory predicts a nearly symmetric function
�L�h� with respect to h=0.5, i.e. if a peak effect is observed
near HC2, then a rise of �L�h� of the same type should also
occur in weak fields. In our experiments we never observed
such a dependence. However, we note that a low-field peak
effect should occur in the field range where it is no longer
possible to neglect the difference between B and H and Eqs.
�3� and �4� become invalid. In addition, in these fields X�H�
is close to 1, and the relation �3�, as already mentioned ear-
lier, is very sensitive to the possible corrections which were
neglected, including also to thermal fluctuations, which de-
crease the effective magnitude of pinning.5

Figure 5 demonstrates the “quality” of the description of
the amplitude of the peak effect near HC2 by the CP theory at
various temperatures. This description is fully acceptable.
The figure was constructed using the only adjustable param-
eter hSV�0�=0.033 and the temperature dependences ��t�
=��0��1− t2�−1/2 and hSV�t�=hSV�0��1− t2�1/2. The latter de-
pendence corresponds to �l pinning.11

The point of view that a transition into the peak-effect
regime corresponds to a first-order phase transformation
from a vortex lattice state into a disordered amorphous state
is currently very popular �see Ref. 11 in the references cited
there�. It is shown in Ref. 11 that the position of this transi-
tion is correlated with the boundary of the upper region of

FIG. 4. Computed dependence �L�h� �HC2=4 T, �=10−5 cm� for various
values of the parameter hSV.

FIG. 5. Comparing the values of �L measured in Y0.95Tb0.05Ni2B2C �solid
lines� and the computed values �hSV=0.033, points� under different condi-
tions: T=1.7 K, HC2=3.8 T �1�; T=4 K, HC2=3.3 T �2�; T=8 K, HC2

=1.7 T �3�.
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the SVP regime. In other words, this point of view relates the
peak effect not simply to a smooth transition from the BVP
into the SVP regime but to a true phase transition. The inset
in Fig. 1 demonstrates the hysteresis observed in our experi-
ment. This hysteresis is characteristic for extended phase
transformations, such as of the martensite type, and confirms
this point of view.

As already mentioned above, the scale and form of �L�h�
in LuNi2B2C do not permit describing the field dependence
of the Labush parameter on the basis of only the CP model.
Since an indistinct peak for the same values of h as in the
Y-containing borocarbides is present on the right-hand wing
of �L�h�, it is evident that weak pinning centers described by
the CP model are also present in leutecium borocarbide. The
main maximum at h�0.4 is probably due to sparse but
stronger pinning centers, whose range r is greater than the
coherence length.1 The maximum value of �L�h� is then de-
scribed by the relation

�L max �
nr2

�

HC2
2

�3	2 ,

where n is the density of “strong” pinning centers. For 	
�10 and r�10−6 the approximate density n�1014 is indeed
low.

It is of interest to compare our estimates of the critical
currents with the values obtained in the transport �magnetic�
measurements. We shall use Eq. �1� to calculate the critical
current expected from the measured values of �L. For all
experimental samples �with H�4 T� we obtain jc

�104 A/cm2. In Ref. 12 the transport measurements in a
LuNi2B2C crystal with H �c near HC2 and T=2.2 K gave jc

�102 A/cm2. The same value is obtained in measurements
of the irreversible magnetization in a YNi2B2C single crystal
at T=5 K.13 It is important to note that the single crystals
studied in the works cited were grown, just as in the present
investigation, using completely identical technologies. These
samples should also have close pinning characteristics, and
the two orders of magnitude difference in the measured val-
ues of the critical currents from our estimates is hardly due to
the individual characteristics of concrete samples.

On the one hand, we note that in the works cited above
it is most likely the current jt established in the sample over
the measurement time in the thermally activated vortex flow
regime is measured rather than jc. The quantity jt can be
estimated from the expression10

jt � jc1 +
�T

Uc
ln	1 +

t

t0

�−1/�

, �8�

where t ��102–103 s� is the characteristic measurement time
in the experiments of Refs. 12 and 13, t0 ��10−5 s� is a
constant which depends on the conductivity and the size of
sample,10 and Uc is an energy barrier which prevents free
motion of a fluxoid. For the parameter � at the boundary of
the BVP and SVP regimes the estimate given by the CP
theory is quite indefinite ���1/7–5/2�. The pinning energy
in the correlation volume Vc �Uc��L�2Vc� should be used as
Uc. Near the peak effect Vc�a3, Uc�1 K, and jt / jc�10−2 is
comparable to �8� for ��0.7–1. Unfortunately, the lack of
the required data in Refs. 12 and 13 �the current-voltage
characteristics and the time evolution of the irreversible
magnetization� precludes a quantitative check of the expla-
nation presented.

The difference of the values of jt measured in Refs. 12
and 13 from our estimates of jc could have another reason, at
least partially. The relation �1� in some sense should be un-
derstood as a condition for attaining the theoretical limit of
elasticity in a vortex lattice. However, it is well known that
in ordinary crystal lattices, as a rule, because of the presence
of defects �dislocations�, irreversible plastic deformations ap-
pear long before the moment of brittle fracture. A similar
scenario can also be expected in vortex lattices with defects.
We shall underscore the fact that it is precisely in borocar-
bides that vortex structures are characterized by a high den-
sity of defects,12 which is due to the phase transformations,
occurring in them, from a low-field hexagonal fluxoid lattice
into a square high-field lattice. In such a case the estimates of
the critical field on the basis of the CP theory must be modi-
fied, since they neglect the possibility of the existence of
dislocations in the vortex lattice. Specifically, the relation
�1�, which presumes that the parameter �L remains un-
changed with small and large ���� deformations, becomes
invalid. In other words, fluxoid motion in defective vortex
lattices with small supercriticality also start as plastic flow.

In closing, we shall formulate the basic results of this
work. The field dependences of the Labush parameter were
measured in single crystals of nonmagnetic borocarbides by
a method that does not require reaching a regime of free flow
of vortices. An estimate of the critical current based on these
dependences gives values which are two orders of magnitude
higher than the values obtained in transport �magnetic� mea-
surements. This is the main result of the present work. In
Y-containing samples, a giant peak effect was found in the
field dependences of �L near HC2. Its magnitude �and tem-
perature variations� are described well on the basis of the
collective pinning model. In leutecium borocarbide, pinning
on defects with range longer than the coherence length
makes the main contribution to �L.
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�grant No. 03-51-3036�.
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1�Strictly speaking, a receiving antenna reacts to the high-frequency mag-

netic component H̃. Near an interface the emitted field is a plane wave, so

that H̃= Ẽ. The component Ẽ, because of continuity, equals to within
� /�EM �10−5 �� is the skin depth and �EM is the wavelength of the elec-
tromagnetic wave in vacuum� the field Eind generated by the elastic wave
in the conductor.2
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I. INTRODUCTION

The electromagnetic properties of small metallic par-
ticles have a host of special features.1 These features are due
to the fact that the electron mean free path length in such
particles is of the same order of magnitude as the linear
dimensions of the particles �this effect is most pronounced at
low temperatures, when the electron mean free path length is
long�. Nonlocal effects start to play a substantial role here.
The classical theory of the interaction of electromagnetic ra-
diation with metallic particles �Mie’s theory�,2 based on the
local equations of macroscopic electrodynamics, is inappli-
cable in this case.

The question of the magnetic dipole absorption of infra-
red radiation by cylindrical particles is examined in Refs. 3
and 4. The standard kinetic theory of a degenerate Fermi gas
of conduction electrons in metals was used to describe the
electromagnetic response of a particle.5 In Ref. 3 the analysis
was limited to the case of purely diffuse reflection of con-
duction electrons from the inner surface of a particle, and in
Ref. 4 a detailed analysis of the magnetic dipole absorption
by a cylindrical particle was performed under the condition
that the reflection of electrons from the particle surface is of
a mixed �specular-diffuse� character.5

The idea that the specular reflection of electrons from
the surface could influence the electromagnetic properties of
small metallic particles was first advanced in Refs. 6–8.

In the present article the theory of the interaction of an
ac electromagnetic field with a cylindrical particle of metal is
constructed taking account of the mixed �specular-diffuse�
character of the reflection of electrons inside the particle.

II. FORMULATION OF THE PROBLEM

A metallic cylinder of length L and radius R, placed in
the field of an electromagnetic plane wave with frequency �,
which in order of magnitude is much lower than the plasma
resonance frequency �p in metals ��p�1016 s−1�, is the sub-
ject of study. The particle is assumed to be small, meaning
that R�2�c /� �c is the speed of light in vacuum�. The
nonuniformity of the external field of the wave and the skin
effect are neglected �R is assumed to be less than the skin-
layer depth ��.
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We shall study the general case of the interaction of
linearly polarized electromagnetic radiation with a cylindri-
cal particle, when the symmetry axis of the particle is or-
thogonal to the propagation direction of the radiation.

Let the direction of the electric field vector E of the
wave make an angle � with the axis of the cylindrical par-
ticle. Then the magnitude of the projection of the electric
field vector in the direction of the cylinder axis is El

=E cos �, and the magnitude of the projection of the electric
field vector in a direction perpendicular to the axis is En

=E sin �.
The absorption cross section of the particle can be rep-

resented as

� = �l cos2 � + �n sin2 � .

The quantities �l and �n are due to the projections of the
electric field vector El and En, respectively.

In the present work �l �the index l is dropped in what
follows� is calculated. When the electric field vector E of the
wave is perpendicular to the cylinder axis, the magnetic field
vector H of the wave is directed along the axis of the cylin-
der. In this case the magnetic dipole absorption of the par-
ticle, which is due to eddy currents, makes the dominant
contribution to the absorption cross section. This absorption
is analyzed in Refs. 3 and 4.

For a sufficiently long cylinder the electric field of the
wave remains unscreened in most of the cylinder. To esti-
mate the parameters for which this regime occurs we shall
examine the well-known solution for a prolate ellipsoid in an
electric field.9 We start with the fact that a sufficiently long
cylinder can be approximated by a prolate ellipsoid. The de-
sired limiting ratio between the radius and length of the par-
ticle ��=R /L� follows from the condition that the local field
of a prolate ellipsoid goes to the unscreened field of an infi-
nite cylinder:

� �� �

2���0���ln
4���0�

�
.

Here ��0�=e2n	 /m is the static conductivity of the
metal �e and m are the charge and effective mass of an elec-
tron in the metal, n is the concentration of conduction elec-
trons, and 	 is the electronic relaxation time�.
© 2005 American Institute of Physics
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An estimate using this formula for an external field with
frequency, for example, 1012 s−1 shows that in this case the
particle length should be approximately four times longer
than the radius of the particle �for higher frequencies of the
external field there is virtually no screening�.

The electric absorption of such a uniform particle is due
to the appearance of high-frequency currents inside it. The
electric field giving rise to these currents has the form

E = E0 exp�− i�t� . �1�

The average dissipated power Q̄ in the particle is given
by9

Q̄ =� �Re E��Re j�d3r =
1

2
Re � jE*d3r , �2�

where the overbar denotes time averaging, the asterisk de-
notes complex conjugation, j is the high-frequency current,
and r is the radius vector �the coordinate origin is placed on
the axis of the particle�.

The relation between E and j in the case where the par-
ticle radius R is comparable to the electron mean free path
length 
 in the metal �or less than 
� is strongly nonlocal. To
describe this relation we shall apply the kinetic equation �in
the relaxation time approximation� to a degenerate Fermi gas
of the conduction electrons inside the particle.

For sufficiently weak external fields this equation can be
linearized with respect to the external field E and with re-
spect to small deviations f1�r ,v� from the equilibrium Fermi
distribution function f0:

− �f1 + v
�f1

�r
+ e�vE�

�f0

��
= −

f1

	
, �3�

where v is the velocity of the conduction electrons.
In what follows we consider a quadratic velocity depen-

dence of the energy of the electrons �=mv2 /2, and we use a
step-function approximation for the equilibrium electron en-
ergy distribution function f0���:10

f0��� = ���F − �� = 	1, 0  �  �F

0, �F � �

 ,

where �F=mvF
2 /2 is the Fermi energy �vF is the Fermi ve-

locity� �the Fermi surface is assumed to be spherical�.
The electron distribution function is

f�r,v� = f0��� + f1�r,v�, � =
mv2

2
.

The deviation f1�r ,v�, arising under the action of an
electric field, of the electron distribution function f�r ,v�
from the equilibrium value f0��� results in the appearance of
a high-frequency current inside the particle

j = en�v� = en� f0d3��−1� f1vd3� . �4�

The electron density n in the particle is determined using
the standard formula, according to which

� = 2�m

h
�3� f0d3� = 2�m

h
�34��F

3

3
, �5�

where h is Planck’s constant.
Taking in Eq. �3� the field E in the form �1� we find
f1�r ,v� as the solution of this equation. Then, using the ex-
pressions �4� and �2�, we determine for the particle the cur-
rent and the cross section for the absorption of energy from
the external electric field:

� =
8�Q̄

cE0
2 . �6�

A unique solution of this problem can be obtained by
choosing a boundary condition for the unknown function
f1�r ,v� on the cylindrical surface of the metallic particle. For
this boundary condition we take the condition of specular-
diffuse reflection of electrons from the surface:4

f1�r�,v�,vz� = qf1�r�,v�� ,vz� for 	�r�� = R

r�v� � 0

 , �7�

where v� and r� are, respectively, the components of the
electron radius vector r and velocity vector v in a plane
perpendicular to the axis of a uniform cylinder;

v�� = v� −
2r��r�v��

R2

is the velocity vector, which on specular reflection from the
inner surface of the particle at the point r� ��r��=R� trans-
forms into the vector v�; vz is the component of the electron
velocity along the axis of the particle; and, q is the specular-
ity coefficient �the probability of specular reflection�: 0q
1.

For q=0 we obtain the condition for diffuse reflection of
conduction electrons from the inner surface of a metallic
particle, and for q=1 we obtain the condition of purely
specular reflection. For q�0 and q�1 we obtain different
variants of mixed �specular-diffuse� reflection of electrons.

III. DISTRIBUTION FUNCTION

The kinetic Eq. �3� is solved by the method of
characteristics.11 The change f1 along a trajectory �character-
istic�

dr = vdt

is determined by the equation

df1 = − �f1 + e�vE�
�f0

��
�dt , �8�

where �= �1/	�− i� is the complex scattering frequency.
The boundary condition �7� makes it possible to follow

the change in the function f1�r� ,v� ,vz� along the specularly
reflecting trajectory. At the reflection point t= tn the function
f1�t� undergoes a jump:

f1�tn + 0� = qf1�tn − 0� . �9�

Here the �/� signs denote the limits of the function
f1�r� ,v� ,vz� at the reflection point tn to the right or left with
respect to the time of flight.

For specular reflection, the projection of the electron ve-
locity on the Z axis is conserved �see below�. Consequently,
the quantity v ·E=vzE is constant along a trajectory.

The difference tn− tn−1 is independent of the number n of
the reflection point:



1050 Low Temp. Phys. 31 �12�, December 2005 E. V. Zavitaev and A. A. Yushkanov
tn = nT + const, n � Z ,

where T is the transit time of an electron with velocity v�

from the point rn−1,� to the point rn�:

T = −
2�vn�rn��

��
2 .

The solution of Eq. �8� is the function

f1 = C exp�− vt� + A , �10�

where A=e�v ·E� /� �f0 /��.
The parameter t in the expression �10� is the time re-

quired for an electron to move along a trajectory from the
boundary where reflection occurs to the point r� with veloc-
ity v�.

We present the solution of this equation on the interval
�tn−1 , tn� for the case of specular reflection of electrons from
the inner surface of the particle.

At the time origin �t=0�

f1�tn−1 + 0� = C + A ,

where we find the value of the constant C:

C = f1�tn−1 + 0� − A .

Now we obtain a relation between the initial value of the
function f1 on two neighboring links of the trajectory. Since
tn−0= tn−1+T,

f1�tn − 0� = �f1�tn−1 + 0� − A�exp�− vT� + A

= A�1 − exp�− vT�� + f1�tn−1 + 0�exp�− vT� .

Using the condition �9� we obtain

f1�tn + 0� = q�A�1 − exp�− vT�� + f1�tn−1 + 0�exp�− vT�� .

Next, using this recurrence relation, expressing f1�tn−1

+0� in terms of f1�tn−2+0�, and so on, we arrive at an ex-
pression for f1�tn+0� in terms of the sum of an infinite geo-
metric progression with the denominator q2 exp�−�T�. Sum-
ming the progression we have

f1�tn + 0� =
qA�1 − exp�− vT��

1 − q exp�− vT�
. �11�

To find the specific form of the solution of Eq. �8� we
employ the relation �10� and the initial condition �11�. At t
=0,

qA�1 − exp�− vT��
1 − q exp�− vT�

= C + A ,

where

C = A	q�1 − exp�− vT��
1 − q exp�− vT�

− 1
 = A	 q − 1

1 − q exp�− vT�
 .

Consequently,

f1�t� = A	 q − 1

1 − q exp�− vT�
exp�− vT� + A

= A	 �q − 1�exp�− vT�
1 − q exp�− vT�

+ 1
 . �12�
The parameters t and T can be related with the coordi-
nates of the point �r� ,v�� in phase space �for n=0, v0�

=v�� by the conditions

r� = r0� + v�t; v�r0� � 0; r0�
2 = R2;

T = −
2�v�r0��

��
2 ,

where r0� are the components of the electron radius vector
in a plane perpendicular to the axis of the cylinder at the
moment of reflection from the cylindrical boundary of the
particle.

Eliminating r0� we obtain

t =
1

��
2 �r�v� + ��r�v��2 + �R2 − r�

2 ���
2 �1/2� , �13�

T =
2

��
2 ��r�v��2 + �R2 − r�

2 ���
2 �1/2. �14�

The relations �12�–�14� completely determine the func-
tion f1�r� ,v� ,vz� for specular-diffuse reflection of electrons
from the inner surface of a cylindrical particle.

IV. ABSORPTION CROSS SECTION

The distribution function found above makes it possible
to calculate the current �4�, the average dissipated power �2�,
and the cross section �6� for the absorption of energy from
the external electromagnetic field.

To calculate the integrals �4� and �2� it is convenient to
switch to cylindrical coordinates in coordinate space �r�, �,
z; polar axis—Z axis; the vector E0 is parallel to the Z axis�
and in velocity space �v�, �, vz; polar axis—vz axis�. The
cylinder axis is also the Z axis.

The field �1� in cylindrical coordinates possesses only a z
component:

E = Ezez; Ez = E0 exp�− i�t� . �15�

Correspondingly, the current �4� possesses only a z com-
ponent �the current lines are straight lines parallel to the Z
axis� and can be calculated from the formula

jz = Ez2e2�m

h
�3 1

v
� �z

2��� − �F�	 �q − 1�exp�− vt�
1 − q exp�− vT�

+ 1
d3� .

Using the properties of the � function we have

��� − �F� =
2

m
��vz

2 + v�
2 − vF

2� =
2

m
��vz

2 − �vF
2 − v�

2 ��

=
2

m
���vz − �vF

2 − v�
2 ��vz + �vF

2 − v�
2 ��

=
1

m�vF
2 − v�

2
���vz − �vF

2 − v�
2 � + ��vz

+ �vF
2 − v�

2 �� .

On account of the symmetry of the problem the integration
over the entire range of velocities vz can be replaced by
integration over a positive region. This doubles the result.
Substituting the integration limits we arrive at the expression
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jz = Ez2e2�m

h
�3 2

v

2

m
�

0

�F �
0

� �
0

�

�z
2���z − ��F

2 − �z
2�

��F
2 − �z

2

� 	 �q − 1�exp�− vt�
1 − q exp�− vT�

+ 1
��d��d�d�z

�the motion of the electrons is symmetric with respect to any
diametric plane which contains the point of the position of
the electrons on a trajectory, so that the angle � in velocity
space can be assumed to vary from 0 to �, and the result of
integrating over this variable can be doubled�.

Integrating with respect to the variable vz we have

jz =
3nEze

2

��F
3mv

�
0

�F �
0

�

��F
2 − ��

2

�	 �q − 1�exp�− vt�
1 − q exp�− vT�

+ 1
��d��d� . �16�

Here we have taken account of the fact that the concen-
tration of conduction electrons in metals is given by the re-
lation �5�.

The cross section for the absorption of electromagnetic
radiation by a nonuniform particle is

� =
1

2

8�

cE0
2 Re	� jzEz

*d3r
 ,

or, taking account of �15� and �16�, simple transformations
yield

� =
24ne2�L

�F
3mc

Re	�
0

R

r�dr��
0

�F �
0

�

��F
2 − ��

2

� �q − 1�exp�− vt�
v�1 − q exp�− vT��

+
1

v
�
��d��d� . �17�

For further calculations and analysis of the results we
introduce the new variables

� =
r�

R
, � =

��

�F
,

z = v
R

�F
= �1

	
− i�� R

�F
= x − iy �18�

and transform the expressions �13� and �14�:

t =
R

��

�� cos � + �1 − �2 sin2 �� =
R

��

� ,

T =
R

��

2�1 − �2 sin2 � =
R

��

�0.

Here we have taken into account the fact that r� ·v�

=r�v� cos � �all electrons on the Fermi surface inside the
particle move with velocity vF�.

It is convenient to represent the absorption cross section
�17� in the following form using Eq. �18�:

� = �0F�x,y,q� ,

where
�0 =
24�ne2R3L

mc�F
, �19�

F�x,y,q� = Re	 1

z
�

0

1

�d��
0

1 �
0

�

��1 − �2

�  �q − 1�exp�− z�/��
1 − q exp�− z�0/��

+ 1�d�d�
 . �20�

For q=0 �diffuse reflection of electrons� it follows from
Eq. �20� that the dimensionless absorption cross section of
the particle is

F�x,y� = Re	 1

z
�

0

1

�d� � �
0

1 �
0

�

��1 − �2

��1 − exp�− z�/���d�d�
 . �21�

Figures 1 and 2 show the numerical calculations of
F�x ,y ,q�.

V. DISCUSSION

In the limit of purely specular reflection of electrons at
the boundary of the particle �q=1� we obtain the following
expression for the dimensionless absorption cross section
F�x ,y�:

F�x,y� = Re	�

6

1

z�x,y�
 .

FIG. 1. Dimensionless absorption cross section F versus the dimensionless
frequency y=R� /v �a� and the reciprocal of the electron mean free path
length x=R /v	 �b� for different values of the reflection coefficient q: 0 �1�,
0.5 �2�, 1 �3�.
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As a result, the absorption cross section of a cylinder
becomes

��x,y� = �0 Re	�

6

1

z�x,y�
 = �0
�

6

x

x2 + y2 . �22�

The expression �22� corresponds to the classical result
for a cylindrical particle �i.e. the result which is obtained
using the classical Drude formula for the conductivity of a
metal�.10 This is because for q=1 the particle boundary has
no effect on the electron distribution function f1�r� ,v� ,vz�.
The high-frequency current inside a specularly reflecting me-
tallic cylinder �see Eq. �16�� satisfies the local Ohm’s law
with any ratio between the cylinder radius R and the electron
mean free path length 
. Thus, for specular reflection there
are no nonlocal �surface� effects.

Irrespective of the character of the electron reflection at
the boundary �for any q�, as particle size increases �for x
�1; in this case the term with the exponentials in Eq. �20�
can be neglected because they decay rapidly� the macro-
scopic asymptotic behavior �22� also obtains.

In Ref. 12 the electric absorption of a prolate ellipsoid of
revolution �actually an infinite cylinder� was studied with a
diffuse boundary condition for reflection of electrons from
the inner surface of an ellipsoid. For low-frequency surface
scattering of electrons, when x�1 and y�1 �free electron
regime�, the expression found for the absorption cross sec-
tion using Eq. �21� �in this case the exponential appearing in
the expression �21� can be expanded in a Taylor series up to
the second term� is identical to the result

�el =
8�ne2R

mc�F
V

�V is the volume of an ellipsoid� obtained in Ref. 12, if the
specific �per unit volume� absorption cross sections of a cyl-
inder and ellipsoid are calculated. However, if the surface
scattering of electrons is high-frequency scattering �x�1,y
�1,x�y�, then the result obtained in Ref. 12

�el =
9

16

�2ne2R

16mc�Fy2V �23�

differs appreciably from the exact kinetic calculation.
To compare the results for high-frequency surface scat-

tering we shall find the macroscopic asymptotic cross section

FIG. 2. Dimensionless absorption cross section F versus the electron reflec-
tion coefficient q for x=0.3 and different values of y: 0.1 �1�, 0.2 �2�, 0.3 �3�.
for the absorption by an infinite cylinder, using the expres-
sion �21� and the technique proposed in Ref. 3. The required
calculations yield

��z� = �0
�

6
Re1

z
−

3

8z2� = �0
�

6
 x

x2 + y2 −
3�x2 − y2�
8�x2 + y2�2� .

�24�

We shall now find the ratio of the specific �per unit vol-
ume� absorption cross sections �23� and �24� in the high-
frequency limit �under the conditions indicated above the
second term in Eq. �24�, proportional to −1/y2, dominates�:
�el /��z�=9/4=2.25.

Thus the result obtained in Ref. 12 for high-frequency
surface scattering is much greater than the result of the exact
kinetic calculation for electric absorption by an elongated
cylindrical particle.

Figure 1a shows the dependence of the dimensionless
absorption cross section F on the dimensionless frequency y
of the external field. The figure was constructed for particles
with a small �compared with the electron mean free path
length 
� radius, which is the same for all curves. Each
curve was constructed for different values of the reflection
coefficient q. As one can see in the figure, for low dimen-
sionless frequencies y �y�0.5� the dimensionless absorption
cross section F is greater for particles where purely specular
reflection of conduction electrons occurs. In the other region
of dimensionless frequencies �y�0.5� the dimensionless ab-
sorption cross section is greater for particles where the re-
flection of conduction electrons at the particle surface is
purely diffuse.

Figure 1b shows the dimensionless absorption cross sec-
tion F versus the dimensionless reciprocal x of the mean free
path length. The figure was constructed for a prescribed di-
mensionless frequency y and different values of the reflec-
tion coefficient q. Each curve has a maximum, whose mag-
nitude depends on the dimensionless frequency y of the
external field. In addition, the curves 1 and 2 do not start
from the coordinate origin, because surface effects influence
the dimensionless absorption cross section F. These effects
are strongest when the particle radius is small compared with
the electron mean free path length 
. As the particle radius
increases, all curves merge and the result becomes the clas-
sical result, which corresponds to curve 3 �for specular re-
flection of electrons there are no surface effects�.

Figure 2 elucidates the effect of the electron reflection
coefficient q on the dimensionless absorption cross section
F. For any values of the reflection coefficient q the absorp-
tion cross section is larger for particles which are in a field
with lower frequency �the particle radius is the same and
small compared with the electron mean free path length 
�.
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After the discovery of high-temperature superconductors
�HTSCs� it was stated1,2 that their unusual properties can be
described in a unified manner using the concept of a Lut-
tinger liquid.3–10 The study of these liquids showed that the
single-particle Green’s function has no poles describing in-
dividual elementary excitations. For example, the elementary
excitations in the one-dimensional Hubbard model11 are neu-
tral spinons and spinless holons.2,10,12 The exact solution of
the one-dimensional Hubbard model13 illustrates the phe-
nomenon of the separation of spin and charge degrees of
freedom, which is an integral property of a Luttinger liquid.

According to Anderson,1,2 if the two-dimensional Hub-
bard model is considered for any magnitude of the repulsive
interaction of the electrons at one lattice site, two Hubbard
subbands necessary appear and the existence of the upper
Hubbard subband must, in Anderson’s opinion, definitely
lead to a Luttinger liquid for a gas of strongly interacting
electrons and not to a Fermi liquid �see, for example, Ref.
14�.

There also exists a different point of view according to
which the two-dimensional Hubbard model is a normal
Fermi liquid, at least in the case of weak coupling. The de-
velopment of a new renormalization-group method15,16 made
it possible to obtain a correct numerical solution for the
renormalization-group equations for the two-dimensional
Hubbard model with weak correlations. These solutions
showed that the Hubbard model in the case of weak interac-
tion is described as a Fermi liquid.17–22

A method for solving the Hubbard model11 in the static-
fluctuations approximation has been developed in Refs.
23–26, and the energy of the ground state of a two-
dimensional bipartite Hubbard model27 is calculated and in-
vestigated in Ref. 26. Comparing the results obtained in Ref.
26 with the exact solution of the one-dimensional model13

showed that the static-fluctuations approximation describes
quite adequately the behavior of the Hubbard model with
weak and strong correlations. In the limits U=0 and U=�
the ground-state energy of the one-dimensional Hubbard
model in the static-fluctuations approximation26 is identical
to that in the case of the exact solution,23 and for intermedi-
ate values of U there is good agreement with the exact solu-
tion. For example, for U /2B=1 the difference of the exact
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and approximate solutions is 2%. This shows that the static-
fluctuations approximation works well for weak, intermedi-
ate, and strong correlations. This is especially important for
layered cuprates.27

The objective of the present paper is to investigate the
single-particle Green’s function in the Hubbard model in the
static-fluctuations approximation. We write the Hamiltonian
for the Hubbard model in the form proposed in Ref. 27,
including a term describing electron hopping to the second-
nearest neighbors of the sites:

H = H0 + V , �1�

H0 = �
�,f�A

�1nf� + �
�,l�C

�2nl� + �
�,f ,l

Bfl�af�
+ al� + al�

+ af��

+ �
�,l�,l

Bl�lal��
+ al,�, �2�

V =
U1

2 �
�,f�A

nf�nf�̄ +
U2

2 �
�,l�C

nl�nl�̄, �3�

where aj�
+ and aj� are the Fermi operators creating and anni-

hilating electrons with spin � at the lattice site j �j= f , l�;
nf�=af�

+ af� is the particle number operator; �1 and �2 are the
characteristic energies of an electron at the sites of the sub-
lattices A and C, respectively; Bfl=B�f − l� and Bl�l=B�l�
− l� are transfer integrals describing electron hopping, from
atom to atom, as a result of the kinetic energy and crystal
field, to the nearest neighbor site and to the second-nearest
neighbor site along the diagonal of a square, respectively;
and, �̄=−�. It is assumed that the electrons of only one
sublattice �by analogy to oxygen on CuO2 planes� can be
transported along the diagonal of a square to the sites of the
same sublattice �to simplify the discussions we consider a
hypothetical square lattice�.

The equations of motion for the electron creation opera-
tors in the Heisenberg representation �j= f , l� are
© 2005 American Institute of Physics
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d

d�
aj�

+ ��� = � jaj�
+ ��� + �

i

Bijai�
+ ��� + �

j�

Bjj�aj��
+ ���

+ Ujnj�̄aj�
+ ��� , �4�

where

� j = ��1�, j = f

�2�, j = l
�, U = �U1, j = f

U2, j = l
� ,

Bjj� = � 0, j = f , j� = f�

Bll�, j = l , j� = l�
�, Bij = Bfl = Blf .

We shall solve the system of differential equations �4� in
the static-fluctuations approximation. The computational
method is described in detail in Refs. 23–25. We note in
connection with the calculations to be performed that, ac-
cording to previously obtained results, the computational er-
ror in the static-fluctuations approximation goes to zero for
�nj�̄	=1/2, �nj�̄	=0, and �nj�̄	=1 and should be minimum in
the regions �nj�̄	
1/2, �nj�̄	
0, and �nj�̄	
1 �see Ref. 24�.
The computational results obtained in the static-fluctuations
approximation are identical to the exact results in the limits
U=0, B=const and U=const, B=0 �see Ref. 26�.

We are interested, first and foremost, in the energy spec-
trum and character of the elementary excitations. To this end
we shall calculate, using the results obtained in Refs. 23–25,
the Fourier transforms of the anticommutator Green’s func-
tions �ak�

+ �ak�	E and �bk�
+ �bk�	E:

�ak�
+ �ak�	E =

i

2�

1

4� 1 + ��1�� − �2k�� �/2tk

E − U1� − tk − ��1�� + �2k�� �/2

+
1 + ��1�� − �2k�� �/2tk

E + U1� − tk − ��1�� + �2k�� �/2

+
1 − ��1�� − �2k�� �/2tk

E − U1� + tk − ��1�� + �2k�� �/2

+
1 − ��1�� − �2k�� �/2tk

E + U1� + tk − ��1�� + �2k�� �/2�; �5�

�bk�
+ �bk�	E =

i

2�

1

4� 1 − ��1�� − �2k�� �/2tk

E − U2� − tk − ��1�� + �2k�� �/2

+
1 − ��1�� − �2k�� �/2tk

E + U2� − tk − ��1�� + �2k�� �/2

+
1 + ��1�� − �2k�� �/2tk

E − U2� + tk − ��1�� + �2k�� �/2

+
1 + ��1�� − �2k�� �/2tk

E + U2� + tk − ��1�� + �2k�� �/2� , �6�

where

�1�� + �2k�� = �1 + �2 + �U1 + U2�/2 + �S�U1 − U2�

− 4B� cos�kxa�cos�kya� ,

�1�� − �2k�� = �1 − �2 + �U1 − U2�/2 + �S�U1 + U2�

+ 4B� cos�k a�cos�k a� ,
x y
�2k�� = �2 + U2/2 − �SU2 + Bk�,

Bk� = − 4B� cos�kxa�cos�kya�, � = �1/4 − S2,

Bk = − 2B�cos�kxa� + cos�kya�� ,

tk = tk� = ����2k�� − �1�� �/2�2 + Bk
2,

and S is the average value of the electron spin projection.
The following Fourier transforms were performed in the
derivation of Eqs. �5� and �6�:

af�
+ =� 2

N
�

k

ak�
+ e−ikrf, al�

+ =� 2

N
�

k

bk�
+ e−ik�,

where bk�
+ and bk� are operators which create and annihilate

an electron, belonging to the sublattice C, with wave vector k
and spin projection �.

Given the Green’s functions �5� and �6�, an equation can
be obtained for the chemical potential, whence it follows in
the case of an exactly half-filled band �n=1� and T=0 that
the following condition is satisfied:

�1 + U1/2 = �2 + U2/2 = 0. �7�

Using Eqs. �5� and �6� a matching equation can also be
obtained for the spin S, whence follows that S=1/2 in the
strong-correlations regime.25 We are interested first and fore-
most in the case of strong correlations in high-temperature
superconductors.

Let us examine the properties of the Hubbard model in
the strong-coupling region at low temperatures. Once the
ground-state energy has been calculated26 it can be shown
that the ground state of a system with an exactly half-filled
band is antiferromagnetic, which agrees with the results ob-
tained by other authors �see, for example, Ref. 28�.

The poles of the Green’s functions �5� and �6� character-
ize the spectrum of elementary excitations of the system.
Figure 1 shows the energy spectrum of the Hubbard model in
the strong-coupling region �S=1/2 ,n=1�. Analysis of Fig. 1
shows that the energy band consists of two subbands, and
each subband consists of two intersecting branches. We note
that as the absolute value of B increases with the sign re-

FIG. 1. Energy spectrum of the Hubbard model with �1=−4 eV, �2=
−2 eV, U1=8 eV, U2=4 eV, B=1.5 eV, B�=−0.25B, S=1/2, and n=1.
�
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maining unchanged the bottom subband separates into two
nonintersecting subbands, which in the ground state are filled
with electrons. The Fermi surface is a collection of such
points in k space at which the energy of elementary excita-
tions, taking account of the shift by the chemical potential, is
zero.29 In Fig. 1 the “Fermi surface,” in contrast to the Fermi
surface of a noninteracting system, is a collection of four
points �� /2 ,� /2�, �� /2 ,−� /2�, �−� /2 ,� /2�, and �−� /2 ,
−� /2�. For lattice parameter a=1 these points correspond to
the maxima of the top branch of the bottom subband �com-
pare with the result for the Fermi surface for a one-
dimensional model in the Luttinger theory4–10�. This form of
the Fermi surface is due to electron transfer along the diago-
nals of a square. If electron transfer to the second-nearest
neighbors of the crystal lattice site is neglected, then the
Fermi surface is identical to the unperturbed Fermi surface.

An investigation of the Green’s function �6� reveals two
electron subsystems whose behavior is different. For elec-
trons in one subsystem the following expressions can be ob-
tained for the anticommutator Green’s functions:

�ak↑
+ �ak↑	E =

i

2�

1

2� 1 + ��1↑� − �2k↑� �/2tk↑

E − tk↑ − ��1↑� + �2k↑� �/2

+
1 − ��1↑� − �2k↑� �/2tk↑

E + tk↑ − ��1↑� + �2k↑� �/2� ,

�bk↓
+ �bk↓	E =

i

2�

1

2� 1 − ��1↓� − �2k↓� �/2tk↓

E − tk↓ − ��1↓� + �2k↓� �/2

+
1 + ��1↓� − �2k↓� �/2tk↓

E + tk↓ − ��1↓� + �2k↓� �/2� . �8�

Let us examine the behavior of Green’s functions at the
boundary of the Brillouin zone �Fermi level�. The Green’s
functions �8� can have the following singularities:

E1,2 = ��1↑� + �2k↑� �/2 ± tk↑,

E3,4 = ��1↓� + �2k↓� �/2 ± tk↓, �9�

which is characteristic for antiferromagnetic ordering in the
system.28 For an exactly half-filled band �n=1� and n�1 �in
the case �1−n�	1� the electrons in the ground state fill the
energy levels corresponding to the roots E2 and E4 �minus
sign in front of tk in Eq. �9��. Let us separate in Eq. �8� the
Green’s functions cooresponding to the energy levels E2 and
E4 filled in the ground state by electrons:

�ak↑
+ �ak↑	E+ =

i

2�

�1 − ��1↑� − �2k↑� �/2tk↑�/2
E + tk↑ − ��1↑� + �2k↑� �/2

,

�bk↓
+ �bk↓	E+ =

i

2�

�1 + ��1↓� − �2k↓� �/2tk↓�/2
E + tk↓ − ��1↓� + �2k↓� �/2

. �10�

The numerators in the Green’s functions �10� are the
probabilities of finding electrons in the corresponding energy
levels �the capacities of these energy levels�. Figure 2 shows
plots of the numerator of the Green’s functions �a+ �a 	 +
k↑ k↑ E
and the top branch of the bottom subband of the Hubbard
model in the strong-coupling regime �the plots for the nu-
merator and the spectrum of elementary excitations for the
Green’s function �bk↓

+ �bk↓	E+ have a similar form�. Analysis
of the figure shows that the minimum of the function corre-
sponding to the numerator of the Green’s function �10�,
equal to zero, lies on the boundary of the first Brillouin zone.
A zero probability of filling with an up-spin electron corre-
sponds to the Fermi energy, i.e. an up-spin electron of sub-
lattice A and a down-spin electron of sublattice C cannot be
found at the Fermi level.

Let us consider electrons of a different subsystem, which
are described by the Green’s functions �bk↓

+ �bk↓	E and
�bk↑

+ �bk↑	E. The capacities of the energy levels and the energy
surfaces corresponding to filling of the sublattice C with
electrons in the ground state are shown in Fig. 3. Analysis of
Fig. 3 shows that the capacities of the points corresponding
to the Fermi energy equal 1—an up-spin electron with prob-
ability equal to the probability of an authentic event fills the

FIG. 2. Capacity of the energy levels �top plot� and energy spectrum �bot-
tom plot� for up-spin electrons of sublattice A for �1=−4 eV, �2=−2 eV,
U1=8 eV, U2=4 eV, B=1.5 eV, B�=−0.30B, S=1/2, and n=1.

FIG. 3. Capacity of the energy levels �top plot� and energy spectrum �bot-
tom plot� for up-spin electrons of sublattice C for �1=−4 eV, �2=−2 eV,
U =8 eV, U =4 eV, B=1.5 eV, B =−0.30B, S=1/2, and n=1.
1 2 �
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Fermi level in a site of the C sublattice �in the ground state�.
For down-spin electrons of sublattice A a down-spin electron
with probability 1 occupies a state on the boundary of the
Brillouin zone �Fermi level�.

Analyzing Figs. 2 and 3 it can be concluded that, appar-
ently, the ground state of the Hubbard model studied here is
an antiferromagnetic ground state.

The fluctuation-dissipation theorem and Eq. �10� can be
used to obtain the following expression for the distribution
function �nk�	 at temperature T:

�nk�	 =
1

2
�1 +

�1�� − �2k��

2tk�
� f+�1�� + �2k��

2
+ tk��

+ 1 −
�1�� − �2k��

2tk�
� f+�1�� + �2k��

2
− tk��� ,

where f+�x�=1/ �1+exp�
x�� and 
=1/kT.
It follows from the exact solution30 and also, for ex-

ample, Ref. 4 that the distribution function is a continuous
function and has no discontinuities on the “Fermi surface”
�at the boundary of the Brillouin zone�. Figure 4 shows plots
of the distribution function in the right-hand half of the Bril-
louin zone for two values of the Coulomb potentials. It fol-
lows from the figure that the behavior of the distribution
function depends on the magnitude of the Coulomb poten-
tial: as the Coulomb repulsion energy decreases, the form of
the distribution function starts to depend less sharply on the
magnitude of the vector k �we note that as the magnitude of
the Coulomb potential decreases, the decrease in the value of
the spin projection S must be taken into account in a self-
consistent solution25�.

In summary, the investigation of the single-particle
Green’s function shows that in the case of two dimensions
with an exactly half-filled band the Hubbard model with
strong interaction within the chosen approximation near the

FIG. 4. Distribution function �nk�	 versus k �lattice constant a=1� in the
limit of a one-dimensional model taking account of hopping to nearest-
neighbor sites of the crystal lattice with B=1.5 eV, B�=−0.20B, S=1/2, n
=1, 
=1/kT=5 eV−1. Plot 1 corresponds to �1=−4 eV, �2=−2 eV, U1

=8 eV, U2=4 eV; plot 2—�1=−2 eV, �2=−1 eV, U1=4 eV, U2=2 eV. The
top plot in 1 and 2 corresponds to �nk↓	 and the bottom plot to �nk↑	.
boundary of the Brillouin zone, apparently, starts to lose the
properties of a Fermi liquid, but it cannot be reduced to a
Luttinger liquid.

It is of interest to study the case of weak coupling, since
many works devoted to the investigation of the two-
dimensional Hubbard model with weak interaction have ap-
peared recently. Salmhofer recently developed a new method
of renormalization for Fermi systems,15,16 which can be used
to solve the two-dimensional Hubbard model with weak in-
teraction. Having solved the renormalization-group equa-
tions the authors of Refs. 17–22 showed that the Fermi-
liquid picture is characteristic for the two-dimensional
Hubbard model, and when the interaction energy is taken
into account the Fermi surface becomes deformed compared
with the case U=0.

It is shown in Ref. 25 that weak coupling corresponds to
spin 0�S	1/2 �see Fig. 4 in Ref. 25�. Consequently, in the
weak-coupling limit there is no predominant orientation of
the spin S �magnetization� within the sublattices. In this case
the energy spectrum is a single band, obtained by the inter-
section of many branches �energy surfaces�. Analysis of the
energy spectrum and capacities of the corresponding energy

FIG. 5. Energy spectrum of the Hubbard model for weak interaction with
�1=�2=−2 eV, U1=U2=4 eV, B=1.5 eV, B�=−0.3B, S=0.15.

FIG. 6. Fermi surface obtained by the intersection of the energy surface and
the plane corresponding to the Fermi level.
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levels using Eqs. �5� and �6� shows that the Fermi surface is
deformed compared with the case of a noninteracting system.
Now, it is not the electrons near the boundary of the first
Brillouin, as in the strong-coupling case, but rather the elec-
trons near the Fermi surface, subjected to deformation when
the finite value of the Coulomb potential is taken into ac-
count, that play the determining role in the system. Figure 5
shows the spectrum of elementary excitations together with
the plane corresponding to the Fermi level. For clarity, Fig. 6
shows the energy surface from Fig. 5 near the Fermi level
and the plane corresponding to the Fermi level, whose inter-
section gives the Fermi surface. It follows from Fig. 6 that
the Fermi surface does indeed become deformed, in agree-
ment with the results obtained previously using the
renormalization-group analysis �see, for example, Refs. 20
and 21�, and electrons fill the energy levels near the Fermi
surface with a finite probability. This means that the anticom-
mutator single-particle Green’s functions have a pole near
the Fermi surface, and therefore in the weak-correlation limit
the Hubbard model is described within the framework of a
normal Fermi liquid.

For the particular case of the one-dimensional model it
can be shown31 that in the static-fluctuations approximation
spin and charge excitations characteristic for the exact solu-
tion of the one-dimensional Hubbard model13 arise �we are
talking about the calculation of the Green’s functions and the
correlation functions in terms of even excitations of the one-
dimensional Hubbard model�.

In conclusion, it can be noted that a linear chain of atoms
in the Hubbard model is described within the framework of a
Luttinger liquid, while the two-dimensional Hubbard model
in the case of strong correlations near the boundary of the
Brillouin zone apparently acquires features of a non-Fermi
liquid system but cannot be reduced to a Luttinger liquid,
and in the case of weak correlations it is described within the
framework of a normal Fermi liquid. The preliminary results
of this work were presented at the Winter School of Theo-
retical Physicists “Kourovka-2004.”31

I thank R. O. Za�tsev and V. V. Val’kov for their interest
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3He− 4He solid solutions
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A precision barometric study has revealed unusual behavior of the pressure of 3He− 4He solid
solutions with a concentration of around 30% 3He: in the pre-separation region the pressure in-
creases with decreasing temperature long before the start of the phase transition. It is established
that such an anomaly is due to correlation effects in the impurity subsystem which give rise to
large-scale fluctuations of the impurity concentration, and the fluctuation contribution to the pres-
sure is much greater than the phonon contribution. Quantitative agreement between the experi-
mental data and the proposed theory is obtained, and it is shown that the observed temperature
dependence of the pressure in the pre-separation and metastable regions can be explained only
when the long-range character of the interaction between impurities is taken into account.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2144456�
I. INTRODUCTION

The thermodynamic and kinetic properties of decompos-
ing 3He– 4He solid solutions have been the subject of many
experimental and theoretical studies.1–12 The primary focus
of attention in those studies has been the details of the phase
separation process, the evolution of the heterophase struc-
ture, and the anomalies of the thermodynamic quantities near
the phase separation temperature Ts. At present it can be
considered reliably established that for T�Ts the thermody-
namics of 3He– 4He solid solutions is adequately described
by the self-consistent field approximation �SCFA�,13 which
in application to solid mixtures is usually called the regular
solution model.14 That approach has given good agreement
of the theory with the experimental data on the jumps of the
heat capacity1 and pressure2,3 upon phase separation, de-
scribed the phase diagram of solid solutions of helium
isotopes,4 and yielded reliable information about the kinetics
of separation.

As to the single-phase region in the immediate vicinity
of the separation temperature, it remains little studied. It it
known that the temperature dependence of the heat capacity
observed experimentally in that region differs substantially
from the predictions of the theory of regular solutions. In
Refs. 10,11 it was pointed out that a fundamental role is
played by fluctuation effects in the impurity subsystem of
3He– 4He solid solutions, and the behavior of their heat ca-
pacity near the separation temperature was explained on the
basis of these ideas. In those papers a consistent thermody-
namic theory of decomposing mixtures of helium isotopes
was constructed that can describe the properties of the sys-
tem from a unified point of view across the entire range of
temperatures and concentrations.

Comparatively recent advances in measurement technol-
ogy have permitted registration of small pressure variations
��10−3 bar� to high accuracy against the background of the
appreciable initial pressure �Pi�35-38 bar� necessary for
crystallization of a 3He– 4He solid solution.7 Our present pre-
1063-777X/2005/31�12�/8/$26.00 1059
cision barometry experiments show that over a rather wide
temperature interval in the pre-separation region and also in
the metastable region a nontrivial temperature dependence of
the pressure is observed which cannot be explained in the
framework of the regular solution model. We believe that the
cause of this behavior of the pressure in homogeneous mix-
tures of helium isotopes is the fluctuation contribution, which
grows as the phase separation temperature Ts is approached.

The goal of the present study is to investigate experi-
mental the behavior of P�T� in solid solutions of helium
isotopes in the pre-separation region and to interpret the ob-
served effects on the basis of a consistent thermodynamic
theory.

II. FEATURES OF THE EXPERIMENTAL TECHNIQUE

We investigated decomposing concentrated 3He− 4He
solid solutions by the technique used previously for studying
dilute solutions of 3He in 4He �Ref. 7 and dilute solutions of
4He in 3He �Ref. 9. Precision measurements of the pressure
at constant volume of the sample were made in the vicinity
of the phase transition �both for T�Ts in the homogeneous
solution and for T�Ts in the two-phase region�. The samples
were prepared from a gaseous mixture of pure helium iso-
topes containing approximately 30% 3He, and the crystals
were grown by the capillary blocking method. The samples
were in a metal cell and were in the form of disks 9 mm in
diameter and 1.5 mm in height. The cell was found in con-
stant thermal contact with the mixing chamber, and its tem-
perature was monitored by a 3He melting curve thermometer
and a resistance thermometer.

The sample solid solutions were annealed at a tempera-
ture of the order of 0.9 times the melting temperature for 24
hours and then, to improve the quality of the crystal and to
permit obtaining reproducible results, they were subjected to
a special thermocycling between the two-phase region and
the homogeneous solution with almost total completion of
the separation and homogenization processes within each
© 2005 American Institute of Physics
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cycle. In the experiment we measured the time dependence
of the variation of the pressure P in the process of cooling
the solid solution from an initial temperature Ti�440 mK to
different final temperatures Tf �Ts, which were held constant
during the subsequent measurements.

Figure 1 shows a typical thermogram and the character
of the pressure variation during the thermocycling. The rate
of cooling of the sample, �3 mK/min, was determined by
the rate of cooling of the dilution refrigerator. As is seen in
Fig. 1b, as the number of the cycle increases, the pressure in
the homogeneous solution decreases somewhat in compari-
son with the initial cycle, apparently attesting to an improve-
ment in the quality of the crystals due to annealing of defects
and the healing of pores. Starting with the fourth cycle the
pressure in the sample remained practically constant on fur-
ther cycling. Analogous effects have been observed previ-
ously in the thermocycling of dilute solid solutions of helium
isotopes.7

In the present study we did fifteen experiments on two
samples. The characteristics of the samples and processes are
presented in Tables I and II �Pi is the pressure in the homo-
geneous solution at temperature Ti, V is the molar volume of
the solution, and x0 is the initial 3He concentration in the
solution�. Besides the experiments listed in Table II on the
cooling of the solutions from an initial temperature Ti in the

FIG. 1. Time dependence of the variations of the temperature �a� and pres-
sure �b� during thermocycling of the sample with an initial concentration
x0=29.6% 3He.

TABLE I. Initial characteristics of the samples studied.
homogeneous region to a final temperature Tf in the separa-
tion region, we also did several experiments with stepwise
cooling, during which the temperature was changed by small
�8–10 mK� steps in the interval between Ti and Tf.

III. DETERMINATION OF THE CONCENTRATION OF THE
SOLID SOLUTION IN SITU

In working with 3He− 4He solid solutions particular at-
tention was paid to correct determination of the initial con-
centration of the isotopes in the mixture, since, owing to
isotopic fractionation effects, upon creation of an elevated
pressure with the aid of adsorbents and during crystal growth
the concentrations of the components in the solid sample can
differ noticeably from their concentrations in the initial gas
mixture. Thus it is extremely important to have additional
independent methods of estimating the concentration of the
components in the solution.

Previously for dilute solutions of 3He in 4He and of 4He
in 3He the initial concentration x0 in the crystal was refined
directly during the experiment from data on the change of
pressure upon phase separation. Here we have made use of
the circumstance that 3He– 4He solid mixtures are described
rather well by the regular solution theory,4 according to
which for a binary solution with a concentration x0 of one of
the components the addition �E to the Gibbs thermodynamic
potential due to the energy of mixing has the form

TABLE II. Parameters illustrating the course of the experiments.
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�E = Ax0�1 − x0� , �1�

where A=2Tc, and Tc is the critical temperature, which is a
function of only the pressure in the system �here and below
we assume that Boltzmann’s constant kB is equal to unity,
i.e., all of the quantities with dimensions of energy are mea-
sured in kelvin�. For the pressure dependence of the param-
eter A the authors of Ref. 4 found the following empirical
relation:

A = 0.76 − 4.38 · 10−3�P − 35.1� , �2�

where the pressure P is expressed in bar. Upon the isother-
mal formation of a homogeneous solution the change of the
volume VE of the system in comparison with the volumes of
the pure components �the “excess” volume� is given by

VE�x0� = � ��E

�P
�

T

= x0�1 − x0�
�A

�P
. �3�

Since �Tc /�P�0, the excess volume VE�x0��0. Below
the separation temperature

VE�x� = x�1 − x�
�A

�P
� VE�x0� , �4�

because x=x�T��x0 is the concentration of the “dilute”
phase �the local concentration of the impurity� in the solu-
tion, and it is clear that 	VE�x�	� 	VE�x0�	. Thus on cooling
below the separation temperature Ts the solution should have
increased in volume by

�V = �x�1 − x� − x0�1 − x0��
�A

�P
� 0. �5�

However, because in our experiments the separation occurs
at a constant total volume V of the system, the pressure in it
increases by the amount

�P =
�V

�TV
, �6�

where �T is the isothermal compressibility,

�T = −
1

V
� �V

�P
�

T

.

For a decomposing solution consisting of concentrated
and dilute phases, it is necessary to use in the denominator of
�6� the averaged quantity, which can be written as

1

�TV
=

k

�cVc
+

�1 − k�
�dVd

. �7�

Here

k =
x0 − x

1 − 2x

is the concentrated-phase fraction of the decomposing solu-
tion, and Vd�c� and �d�c� are, respectively, the molar volume
and compressibility of the dilute �concentrated� phase of the
decomposing solution of 3He in 4He. Taking into account the
symmetry of the separation diagram for concentrated solu-
tions, we write

Vd�c� = V3�4�x + V4�3��1 − x� + VE�x� , �8�
�d�c� = �3�4�x + �4�3��1 − x� − �x�1 − x� , �9�

where V3�4� and �3�4� are the molar volume and compressibil-
ity of pure 3He�4He�. The term proportional to � is intro-
duced to take into account the nonadditivity of the compress-
ibility, which was noted in Ref. 12. Substituting �7� into �6�,
we finally get

�P = �V� k

�cVc
+

1 − k

�dVd
� . �10�

Figure 2 shows a plot of x�1−x� versus �P from the
experimental data for sample B. For dilute solutions, when
the compressibility could be considered approximately con-
stant, this dependence was linear12 and could be used to find
the initial concentration and compressibility. In the case un-
der discussion this dependence is clearly nonlinear, but it can
nevertheless be extrapolated to the value �P=0 in order to
estimate x0. However, if relation �10� is used and the experi-
mental data are processed by the least-squares method, then
one can obtain a more accurate value for x0 and can also find
the value of �. As a result of such a processing we have
found x0= �29.6±0.4�% for sample A and x0= �32.3±0.5�%
for sample B, and a mean value �= �8.1±10−3�. We note that
if the value of �A /�P is treated as an additional fitting pa-
rameter, then its mean value within the limits of error is
−0.364 cm3/mole, in agreement with the value that was
found in Ref. 4 in the processing of a large number of ex-
perimental data.

IV. PRESSURE ANOMALY NEAR Ts

Our measured curves of the time dependence of the tem-
perature T�t� and pressure P�t� in a concentrated 3He− 4He
solid solution on cooling from a temperature Ti�Ts to a
temperature Tf �Ts are presented in Fig. 3. If it is assumed
that in the homogeneous solution the pressure is due to the
presence of phonons, then as the temperature decreases to-
ward Ts, where the jumplike growth due to separation be-
gins, the pressure should decrease ��T4� in comparison with
the initial pressure Pi. As is seen in Fig. 3b, in our case the
behavior of the pressure is different: its growth as the sepa-
ration temperature is approached begins long before Ts �the
temperature Ts is indicated by an arrow in Fig. 3�, and the
dependence P�t�− P is nonmonotonic in the vicinity of the

FIG. 2. Graphic representation of the technique of determining the initial
concentration of the solution �see text�.
i
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separation temperature. And, although the pressure growth in
the pre-separation region is less than 1% of the total pressure
jump at the phase transition �separation�, this effect is plainly
seen and well reproduced in experiment. That is the behavior
we are calling anomalous and whose mechanism we shall
discuss in this paper.

For comparison, in Fig. 4 we show the curves of P�t�
− Pi in dilute solutions of 3He in 4He �Fig. 4a� and 4He in
3He �Fig. 4b�.7,9 In both cases the aforementioned anomalous
behavior of the pressure upon separation of concentrated so-
lutions �Fig. 3b� was absent within the limits of experimental
error. As was established in Refs. 1,2, for dilute solutions the
variation of the pressure with time during separation is ap-
proximated by the function

P�t� = Pf − �Pf − Pi�exp�−
t

	
� , �11�

where 	 is the phase separation time constant. Relation �11�
gives a good description of the experimental data from the
time when the size of the new-phase inclusions can be re-
garded as practically independent of time.

Usually the time constant 	 characterizing the relaxation
of the pressure upon phase separation amounts to tens of
minutes and sometimes hours, depending on the degree of
supersaturation �supercooling�.7–9 The kinetics of the pres-
sure change in the pre-separation region is of a completely
different character, as is illustrated in Fig. 5, where the pres-
sure variation upon a stepped temperature decrease is shown
on a large scale. It is seen from the plots that the pressure
follows the temperature change almost immediately.

The temperature dependence of the pressure in the pre-
separation region �Fig. 6� shows that the pressure of a homo-

FIG. 3. Typical thermogram of the cooling of the sample with x0

=29.6% 3He, V=21.22 cm3/mole in the phase separation region �a� and the
corresponding pressure variation �b�.
geneous solution found in a constant volume begins to grow
with decreasing temperature long before the separation tem-
perature is reached and continues into the metastable region
T�Ts. This means that a nonphononic mechanism operates
in that region. Keeping in mind the arguments made in Refs.

FIG. 4. Typical variation of the pressure upon phase separation of dilute
3He− 4He solid solutions: solution of 3He in 4He�x0�2% 3He� �a�, solution
of 4He in 3He�x0�2% 4He� �b�.

FIG. 5. Kinetics of the pressure variation in the separation region �b� upon
a stepped decrease in temperature �a�, x =32.3% 3He, V=21.84 cm3/mole.
0
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10,11, one can naturally attribute the unusual temperature
dependence of the pressure of a homogeneous 3He– 4He
solid solution to a manifestation of fluctuation effects.

V. INCORPORATION OF FLUCTUATION EFFECTS

As we have said, in the two-phase region the SCFA is
entirely adequate for interpreting the behavior of the thermo-
dynamic characteristics of solutions of helium isotopes, but
in the single-phase region near the separation temperature,
where the role of fluctuations becomes important, that ap-
proximation dies not permit a qualitatively correct descrip-
tion of the observed effects.

The fluctuation contribution to the thermodynamics of a
decomposing solution can be taken into account as a correc-
tion to the corresponding thermodynamic quantities calcu-
lated in the SCFA.10,11 Below we shall use a rather simple
and well-known model for the energy of interaction between
impurities, which essentially reduces to the following. The
interaction of an atom located at a site f with the other im-
purities is assumed constant �equal to U0� up to a certain
coordination sphere of radius R0, within which are found z
atoms interacting with the given atom. The interaction with
the atoms found outside that sphere is assumed equal to zero.
Thus the energy of the pair interaction of the impurity atoms,
Uff�=U�	f− f�	�, has the form

Ufft = 
U0 	f − ft	 � R0,

0 	f − ft	 � R0.
� �12�

The radius R0 and the parameter z, which we shall refer
to below as the effective coordination number, are related by

z =
4
R0

3

3�0
, �13�

where �0 is the volume per site. Thus the parameter z serves
to characterize the interaction radius and is treated as an
adjustable parameter in the comparison of theory with ex-
periment.

In the SCFA one has for the free energy10

FIG. 6. Temperature dependence of the pressure in the separation region for
samples with an initial concentration of 32.3% 3He. The arrow indicates the
phase separation temperature. The solid curve is a calculation according to
Eq. �26�.
F =
Tc

2
�2 − T ln�2 cosh

Tc

T
�� , �14�

where � is the order parameter, which is related to the con-
centration x in the separated phases as

� = 1 − 2x . �15�

The critical temperature Tc is expressed in terms of the
interaction energy U0 as follows:

Tc = U0
z

4
. �16�

The order parameter satisfies the equation of self-
consistency

� = tanh Tc
�

T
�17�

and should be found as a solution of Eq. �17� up until the it
has reached the limiting value �0=1−2x0 corresponding to a
homogeneous solution with the mean concentration x0. The
temperature at which � becomes equal to �0 is just the sepa-
ration temperature Ts:

Ts
−1 =

1

2Tc�0
ln�1 + �0

1 − �0
� . �18�

Upon the transition to the single-phase region �T�Ts�
the order parameter become independent of temperature and
maintains a constant value �0.

The pressure is related to the free energy F of the system
by the well-known relation

P = − � �F

�V
�

T

. �19�

As a result, using Eq. �14� we obtain for the excess pres-
sure due to phase separation

�P =
�2 − �0

2

2

�Tc

�V
. �20�

One is readily convinced that Eq. �20� agrees with ex-
pression �6�.

Relation �20�, obtained in the framework of the SCFA,
gives a good quantitative description of the behavior of the
pressure of a solution only in the two-phase region. Since the
SCFA completely ignores the presence of fluctuations in the
system, for a correct description of a homogeneous solution
it is necessary to calculate the fluctuation contribution to the
pressure, �Pfl. For this purpose we use the expression for the
fluctuation correction �Ffl to the free energy found in Refs.
10,11:

�Ffl =
T

2N
�
q

ln1 −
u�q�

4Tc0
� , �21�

where

0
−1 =

Tc

T
�1 − �2� , �22�

u�q� is the Fourier transform of the function Uff�, and n is the
total number of sites. Since the impurity–impurity interaction
radius is of the order of z1/3, the main contribution to the sum
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�21� is given by terms with 0�q�q0�z−1/3. For the model
of the interaction potential used in this study, Eq. �12�, the
Fourier transform u�q� has the form

u�q� = U0zf�qR0�, f�y� =
3

y3 �sin y − y cos y� . �23�

The function f�y� in the interval from the origin of co-
ordinates to its first zero can be approximated to good accu-
racy by a parabola of the form

f�y� � 1 − � y

4
�2

,

having set f�y0�=0 for y�4. As a result

u�q� = 
U0z�1 − �− q/q0�2� q � q0,

0 q � q0.
� �24�

The value of q0 is related to the effective coordination
number z by the relation

q0 =
4

R0
= 4� 4


3z�0
�1/3

. �25�

Using Eq. �19� and changing from a sum to an integral in
the expressions for �Pfl, we find that the fluctuation contri-
bution to the pressure in the homogeneous phase and in the
metastable region has the form

�Pfl = −
32T

9
zTcV0�0

�A

�P
��0� , �26�

where

��0� = 30�1 − �0 − 1 arctan
1

�0 − 1
� − 1 −

2

50
,

�27�

0
−1=4x0�1−x0�Tc /T, and the molar volume V0 and com-

pressibility �0 are determined by relations �8� and �9�, re-
spectively: V0=Vd�x0�, �0=�d�x0�. It follows from �27� that
in the temperature region corresponding to the homogeneous
solution, for any fixed T the fluctuation contribution to the
pressure will be the larger the higher the initial concentration
of the impurity component �x0�50% � in the solution. Fig-
ure 7 shows the dependence �� �x �� for three values of

FIG. 7. Concentration dependence of the function ��0�x0�� determining the
fluctuation contribution to the pressure: 1—T /Tc=1.0, 2—T /Tc=1.05, 3—
T /Tc=1.1.
0 0
temperature. Analysis shows that in the concentration region
0�x0�0.45% the function ��0�x0�� is very well approxi-
mated by a dependence ��0�x0��=Ax0

B, where the param-
eters A and B depend weakly on temperature, and at T=Tc

they take the values A=5.46 and B=2.11.

VI. COMPARISON OF THEORY WITH EXPERIMENT

The total pressure in the system can be represented as
the sum

P = P0 − �Pfl + �Pph, �28�

where P0 is the pressure of the solution at T=0, and �Pph is
the phonon contribution to the pressure.

Since the Debye temperature � of solid helium is much
higher than its melting temperature, the phonon contribution
to the pressure can be described adequately in the Debye
approximation �see, e.g., Ref. 15:

�Pph = −
3
4

5V
�0T� T

�
�3

, �29�

where ��=� ln � /� ln V is the Grüneisen constant. Since the
Grüneisen constants for the pure components 3He and 4He
are quite close,16,17 we take for �� the average value ���

�2.8� corresponding to the molar volume of the solution
under study. As to the Debye temperature there is as yet no
reliable data on its value for 3He– 4He solid mixtures, and
one should therefore take � in formula �29� as an adjustable
parameter.

Figure 6 shows the theoretical and experimental tem-
perature dependence of the pressure for a solution with a 3He
concentration of 32.3%. It is seen that the agreement be-
tween theory and experiment is very good over the entire
temperature range. Figure 8 demonstrates the temperature
dependence of the fluctuation and phonon contributions. The
fluctuation contribution is dominant across the entire tem-
perature region in which measurements were made.

For comparison of the theory with experiment we fit
three parameters: P0, z, and �. Their values found from the
condition of best agreement of the theory and experiment are
presented in Table III, from which it is seen that P0 is ex-
tremely close to the experimental values of the initial pres-
sure Pi of the homogeneous solution; this is quite natural,
since the measurements were made at rather low tempera-
tures. The Debye temperatures turned out to be equal to
�24.3±1.8�K and �24±3�K at molar volumes of 21.22 and
21.84 cm3/mole, respectively. These values agree precisely
with the values of � found under the assumption that the rule
of additivity holds for the Debye temperature.

From a comparison of the experimental data with the
theory we also determined the fundamental parameter of the
theory—the effective coordination number z, which has the
meaning of the number of atoms enclosed in a sphere of
radius R0 �the correlation radius, which determines the spa-
tial scale of the interactions �12��. The mean value of this
parameter for the solutions with V=21.22 cm3/mole and V
=21.84 cm3/mole is found to be approximately 800. Al-
though the values found for z agree in order of magnitude
with those found previously10,11 through an interpretation of
experiments on the heat capacity of concentrated 3He− 4He
solid solutions, they exceed the latter by a factor ranging
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from of about two and one-half to three. This discrepancy
may be due to the fact that, unlike the heat capacity, which
depends only on z and Tc, the fluctuation correction to the
pressure depends on three parameters: Eq. �26� contains not
only z but also �Tc /�V, which is known to lower accuracy
than Tc, and also the compressibility �T, for which no ex-
perimental data have been published and whose value we
therefore estimated essentially from phenomenological argu-
ments of the type in Eq. �7�. One might also note a more
physical cause of the discrepancy, due to the different experi-
mental conditions. In the present study we measured the heat
capacity of a bulk sample, while the heat capacity of a solu-
tion found in pores of the coolant was measured in Ref. 1. It
is quite possible that under conditions of restricted geometry
the fluctuation effects are weakened, and that leads to a low-
ering of z. Thus the agreement in the values of z extracted
from heat-capacity and pressure data can be regarded as rea-
sonable, corresponding to a radius R0 of six to eight coordi-
nation spheres.

On the other hand, such a large value of z and, conse-
quently, of the number of atoms that effectively interact with
each other, means that viable new-phase nuclei arise against
the background of large-scale fluctuations that promote the
realization of a phase transition. The fluctuation contribution
is particularly significant at large impurity concentrations,
when the distance between impurity atoms is comparable to
the interatomic distance, the elastic fields of the impurities
overlap, and the effective interaction between them becomes
quasi-isotropic while retaining its long-range character. The
good agreement of the experimental and calculated tempera-

FIG. 8. Fluctuation and phonon contributions to the pressure variation for
samples with molar volumes V=21.22 cm3/mole �a� and V
=21.84 cm3/mole �b�. 1—Total pressure variation; 2—�Pfl according to
Eq. �26�; 3—Pph according to Eq. �29�.
ture dependence of the excess pressure in both the pre-
separation and metastable regions attests that the model pro-
posed in Refs. 10,11 for taking into account correlation
effects in 3He− 4He solid solutions is faithful to the real ther-
modynamic behavior of the systems under discussion.

We note that for dilute solutions of 3He and 4He or 4He
in 3He the contribution of fluctuation effects to the pressure
variation is small, in proportion to to the small concentration
of the impurity component, and the pressure variations due
to that contribution can be registered experimentally only at
a substantially higher accuracy of measurement. As a result,
in a homogeneous dilute solution only the phonon contribu-
tion to the pressure is observed in experiment. This conclu-
sion also follows directly from an analysis of the function
��0�x0�� �see Fig. 7�. Thus, at a fixed temperature for dilute
solutions with a concentration of the impurity component of
the order of 2–3%, the value of the function � turns out to be
two orders of magnitude smaller than the corresponding
value for the concentrated solutions investigated in the
present study. It should be kept in mind, however, that in the
transition to dilute solutions there is a decrease in the value
of the effective coordination number z, which appears in the
diameter of relation �26� from which �Pfl is determined. A
detailed analysis in Refs. 10,11 showed that starting from an
x value of the order of a few percent, the value of z depends

TABLE III. Values of the adjustable parameters in the theory.
0
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weakly on the initial concentration of the solution, so that the
dependence of �Pfl on x0 will be determined mainly by the
behavior of the function ��0�x0��.

VII. CONCLUSION

Our experimental and theoretical investigations of the
behavior of the pressure in homogeneous concentrated 3He
− 4He solid solutions near the phase separation region unam-
biguously attests to the presence of anomalous temperature
dependence of the pressure due to correlation effects in the
subsystem of the impurity atoms. The analysis done has also
led to the clear conclusion that the available experimental
results can be interpreted successfully under the assumption
that the interaction between impurities is of a long-range
character. This long-range character is taken into account
directly by the introduction of an effective interaction radius
R0 �or the related parameter z�. Fluctuations in the impurity
subsystem give rise to new-phase nuclei in the form of com-
pact formations �clusters� containing hundreds of atoms. This
effect leads to an increase of the pressure in the solution long
before the phase transition temperature is reached.

The increase of the pressure due to fluctuations of the
order parameter �density� as the phase separation point is
approached from the side of the homogeneous solution in
solid mixtures undergoing decomposition at low tempera-
tures is in principle an effect that follows from general ther-
modynamic arguments and should therefore be expected to
appear in other systems, such as dispersion-hardened metal
alloys. However, there are no data in the literature on the
observation of pressure-fluctuation effects in classical �non-
quantum� solutions. The reason is that decomposition in clas-
sical systems occurs at high temperatures, where the contri-
bution from density fluctuations is overwhelmed by the
much stronger phonon contribution. In the quantum solid
solutions 3He− 4He phase separation occurs at much lower
temperatures, where the phonon energy and, hence, the pho-

non contribution to the effects under discussion are small,
and at high enough densities of the impurity component in
the solution the order-parameter fluctuations, which grow
with decreasing spinodal temperature, will be dominant.
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The first investigations are performed of the magnetization and isothermal relaxation of the mag-
netization of high-temperature superconducting samples with different crystal structure in very
weak constant fields �H�0.5 Oe� at temperatures close to the critical value. It is shown that the
twinning boundaries in YBCO single crystals strongly influence the relaxation rate of the magne-
tization. The collective pinning model is used to estimate the effective pinning potential under
these conditions. This estimate can be used to characterize the degree to which artificially pro-
duced point defects affect the critical currents of MgB2 samples. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2144460�
1. Experimental works studying the pinning of magnetic
flux in type-II superconductors �SPs� focus on determining
the maximum current-carrying capacities in strong magnetic
fields.1,2 The use of highly sensitive squids in contact-free
magnetic susceptibility meters makes it possible to perform
investigations in weak fields �0.01–0.1� Oe and even ob-
serve spontaneous magnetic moments.3,4 In developing high-
temperature superconductor �HTSC� squids, the investiga-
tions of the dynamics of magnetic vortices in weak magnetic
fields ��1 Oe� are especially important for decreasing in
sensors the intrinsic noise which is often associated with
creep and hops of vortices. This noise is decreased, in part,
by producing artificial pinning centers.5

The objective of the present communication is to present
the characteristics of the behavior of the magnetization
M�T , t� of YBa2Cu3O7−x �YBCO� single crystals in very
weak constant magnetic fields �H�0.5 Oe� near the SC tran-
sition. Samples with different crystal structure were investi-
gated to determine the influence of thermally activated trans-
formation of Josephson weak links on the potential of
pinning centers in a system of unidirectional twin boundaries
�TBs�. The main measurements were performed at tempera-
tures close to 77 K so that the results obtained could be used
in the development of liquid-nitrogen-cooled SC electronics.

2. The resistive state in the superconductors investigated
arises at the outset of the motion of magnetic vortices, when
the Lorentz force acting on a vortex starts to exceed the
pinning force. Under the action of this force and thermal
activation, occurring with probability �exp�−U /kT�, the
vortices start to move, and energy dissipation arises
�U—effective activation energy of vortex hopping, equal to
the average depth of the pinning potential; k—Boltzmann’s
constant; T—temperature�. These processes also determine
the critical current of the SC �I �.
c
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An ideal SC placed in a weak magnetic field should be
in a Meissner state. In real SCs of finite size, as a result of
the presence of surface and volume defects the magnetic
field at temperatures close to the critical value starts to pen-
etrate into the sample even for H�Hc1 �Hc1 is the first criti-
cal field of an ideal defect-free ellipsoidal SC�.6 Thermally
activated creep of individual vortices results in redistribution
and damping of the supercurrents and relaxation of M.

The data from the investigation of magnetic relaxation in
SCs are used to obtain the most important parameters of the
vortex pinning mechanism. In the simplest case the effective
depth of the pinning potential can be estimated from mea-
surements of the rate of isothermal relaxation of M�t�:

1/M0�dM/d ln t� = − kT/U , �1�

where M0 is the initial value of the magnetization, which, as
a rule, is taken to be the magnetization in Bean’s critical
state.2 However, virtually all published studies concerning
the relaxation of the magnetization of SCs have been per-
formed in strong magnetic fields �hundreds of Oe or even
several kOe�, when complicated processes in rigid, well-
formed lattice of magnetic vortices play a large role. As
shown in Ref. 7, from the standpoint of the theory of collec-
tive pinning in weak magnetic fields, creep of noninteracting
vortices occurs, the velocity of the magnetic flux is indepen-
dent of the magnitude of the magnetic field, and the results
of the measurements are insensitive to the deviation of the
magnetic field from the direction of the c axis of the HTSC
sample.

3. Impurity-free oriented YBCO single crystals were
chosen as the main object of the investigations.8 Annealing,
required to obtain optimal doping, in oxygen results in a
transformation of the initial structure of the crystals and, in
consequence, the formation of TBs. We chose two types of
samples �with dimensions close to 1�1 mm, thickness
© 2005 American Institute of Physics
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�0.015 mm� to investigate the role of these planar defects
on pinning processes: in some samples unidirectional TBs
were oriented parallel to the c axis of the crystal over its
entire thickness and other samples contained blocks with
multidirectional TBs. For comparison the magnetic re-
sponses and the relaxation of the magnetization of polycrys-
talline YBCO samples with randomly oriented grainy struc-
ture and textured Bi2Sr2Ca2Cu3O10 ceramics are discussed.

The investigations of the dependences M�T , t� near a
phase transition in weak fields were performed using a mag-
netic susceptibility meter based on a squid-gradiometer with
liquid-helium level cooling. The standard procedure for mea-
suring M with a constant current in a uniform magnetic field
of a solenoid was used. The Earth’s residual magnetic field in
this region was screened and did not exceed 0.5 mOe. This
made it possible to cool the sample and transfer it into the
SC state using ZFC �Zero Field Cooling�, which is preferable
for investigating M�T�. To analyze M�t� the sample was
cooled to �77 K in a magnetic field �0.5 Oe, i.e. according
to the FC method �Field Cooling�, after which the field was
screened, a chosen value of T was set, and the behavior of
M�t� was recorded.

Figure 1a shows the normalized function M�T� with tem-
perature increasing in the region of the superconducting tran-
sition in one of the experimental YBCO single crystals with
unidirectional TBs. The magnetic field of the solenoid is ori-
ented along the c axis of the single crystal and its magnitude

FIG. 1. Normalized function M�T� in the region of the superconducting
transition in YBCO single crystal No. 1 with unidirectional TBs �a� and
magnetization dynamics of the same sample in a magnetic field 8 A/m
��0.1 Oe� for two values of the temperature �b�. The dashed line shows the
average slope of the linear section of the dependence. This slope is used to
estimate the effective pinning potential. ZFCW—zero field cooled warming.
is 8.2 A/m ��0.1 Oe�. For this direction the field is parallel
to the planes of the TBs, and Abrikosov vortices are pinned
most effectively. As seen in Fig. 1a the curve of the SC
transition, in contrast to the data from resistive
measurements,8 is nonmonotonic and occupies a substantial
temperature interval �T�5 K. A smoothed step is observed
in this dependence. This step cannot be explained by the
theory of melting of a vortex lattice,1 considering the low
values of H used in the experiment. Figure 1b shows the
temporal dynamics of M�t� of this single crystal. For sample
temperature T=78 K, initially, M�t� is nonlogarithmic and at
long times it behaves according to the Anderson–Kim model.
The value of U estimated from the expression �1� is of the
order of 0.2 eV, which agrees with data obtained by other
authors for HTSC samples in strong magnetic fields.2 The
behavior of M�t� of the same sample at low temperature �T
=6.5 K� is presented in this figure. As one can see, relaxation
of supercurrents is not observed. This can be explained by
the exponential decrease of the thermal creep of magnetic
flux and the presence of Josephson links, which are not sup-
pressed by a magnetic field, near the TBs.3 An additional
argument in support of the latter assertion are the data in Fig.
2a, which shows the normalized function M�T� for a YBCO
single crystal which contains blocks of multidirectional TBs.
The boundaries of the blocks with mutually perpendicular
planes of the TBs give rise to the formation of strong pinning
centers. The superconducting phase transition becomes

FIG. 2. Magnetic response near the superconducting phase transition in
single-crystal YBCO sample No. 4 with multidirectional twin boundaries in
magnetic field 8 A/m parallel to the c axis of the crystal �a� and time
dependence of the magnetization of a Bi2Sr2Ca2Cu3O10 polycrystal in zero
field at temperature 77.5 K �b�.
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sharper ��Tc�0.3 K�, and no magnetization relaxation is
observed in this sample at 78 K.

For comparison, the polycrystalline HTSCs
YBa2Cu3O7−x and Bi2Sr2Ca2Cu3O10 were investigated in
weak magnetic fields. The superconducting granules of a
polycrystal are coupled with one another randomly by barri-
ers with different transmissivities, forming statistically dis-
tributed networks with circulating induced or spontaneous
supercurrents. The latter can exist under certain conditions in
chaotic current loops of HTSCs, engendering paramagnetic
responses. Figure 2b shows the behavior of the normalized
magnetization of a polycrystalline Bi2Sr2Ca2Cu3O10 sample
at 77.5 K.

The results of our experiments with single crystal
samples of YBCO give a basis for supposing that the planes
of the TBs create the conditions required for the formation of
Josephson networks with randomly distributed parameters.
The TBs have a strong local effect on the suppression of the
superconducting order parameter, and they lower the energy
of the trapped vortex lines. Considering the fact that in a
0.1 Oe field the intervortex distance ��104 nm� is greater
than the intertwin distance ��103 nm� and is comparable to
the penetration depth of the field in the given temperature
interval ��104 nm�, it can be expected that all vortices are
localized on TBs.

4. In summary, we have performed the first investiga-
tions of M�T� and M�t� of HTSC samples with different
crystal structure in very weak fields ��0.1 Oe� and at tem-
peratures close to the critical value. It was shown that TBs in
single crystals have a strong effect on the relaxation rate of
the magnetization, and the collective pinning model was
used to estimate the effective pinning potential under these
conditions. The method of contact-free determination of U,
described above, is now used to estimate the degree to which
artificially created pinning centers influence Ic in MgB2

samples. Point defects were produced in the volume of a SC
using controlled doses of irradiation from a linear electron
accelerator.
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crystal samples and V. N. Samovarov for fruitful discussions.
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Igor’ Vadimovich Svechkarev „On his 70th birthday…

�DOI: 10.1063/1.2144461�
Professor Igor’ Vadimovich Svechkarev, a prominent scien-
tist in the field of the physics of weak magnetism of metals
and the director of a division of the B. I. Verkin Institute for
Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, celebrated his 70th birth-
day on December 16, 2005. His work on the investigation
and explanation of the nature of the anomalies of the mag-
netic susceptibility in simple metals and their relation to the
energy spectrum of the conduction electrons and his work on
determining the basic dependences in the variation of the
parameters of the electronic band spectrum of transition and
rare-earth metals under pressure won him wide international
1063-777X/2005/31�12�/1/$26.00 1070
acclaim in physics. Prominent physicists from universities in
Oregon and Maryland �USA�, Toronto �Canada�, Amsterdam
�Netherlands�, and elsewhere repeatedly visited the division
of which he is the director to perform joint studies. Igor’
Vadimovich celebrates his birthday among young colleagues,
researchers, and graduate students, guiding whom is his spe-
cial concern. I. V. Svechkarev was an active member of the
editorial board of this journal for many years.

We warmly congratulate Igor’ Vadimovich on his birth-
day and wish him good health, success, and many years of
fruitful scientific work.

Editorial Board
© 2005 American Institute of Physics
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