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1. Background independent string field theory [1–5]
is an interesting approach to the problem of defining
string theory off-shell. It has recently received a lot of
attention, particularly as an approach to understanding
the properties of unstable D-branes [6–8].

A concrete problem in the study of off-shell string
theory in this formalism has been to understand its
behavior in the background tachyon field, which is a
quadratic function of the coordinates. This gives a trac-
table model where one can study phenomena such as
tachyon condensation and D-brane–anti-D-brane anni-
hilation [6–18]. In this context, the concept of the
boundary state, which describes the coupling of string
world-sheets to a D-brane, has been used by several
authors [19–23].

The boundary-state formalism could be useful in
many circumstances: in computing D-brane tensions
and cylinder amplitudes, as well as in looking for the
gravity counterparts of D-branes [24, 25]. This formal-
ism was originally used to factorize open-string ampli-
tudes in terms of closed-string states. This could be
valuable in understanding the relationship between
closed and open strings, which is one of the central
problems in uncovering the underlying symmetry of
string theory. In the operator approach to string-pertur-
bation theory, the boundary state contains the coupling
of closed strings to a D-brane.

In this letter, we suggest a generalization of bound-
ary states to be applied to the problem of computing
off-shell amplitudes of an open bosonic string. We con-
sider the boundary state for a D-brane with a tachyon
condensate and take the special case where the tachyon
has a quadratic profile.

Then, we will examine the coupling of massless
closed string states to the boundary state. There are two
ways of analyzing this coupling. The first uses a sigma-
model approach. In that case, we insert the vertex oper-
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ator for a graviton into the sigma-model path integral
with disc geometry and compute the expectation value.
In the second approach, we construct a boundary state
for the D-brane with tachyon condensate and consider
the inner product of this state with the on-shell closed
string graviton. We find that the result does not agree
with the sigma-model computation.

We then explain the reason for this disagreement
and invent a modified boundary state that has the prop-
erty that its inner products with all massless closed-
string states agree with the amplitudes computed by
inserting vertex operators for massless states into the
sigma-model path integral.

2. First, consider the sigma model, which defines
background independent string field theory. We will use
the functional integral representation of the partition
function of the bosonic string. The world-sheet is the
unit disc and the target space is 26-dimensional Euclid-
ean space. The bosonic string action is supplemented
by a boundary term that contains the quadratic open-
string tachyon background:
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Here, α' is the inverse string tension. The world-sheet is
a disc, D, for which we use complex coordinates z =

 with 0 < σ1 < ∞, and 0 ≤ σ2 ≤ 2π is the param-
eterization of the disc D (or of the infinitely long
half-cylinder). We also sometimes use the coordinate
z = ρe–iθ. 0 ≤ θ ≤ 2π is the parameterization of the
boundary of the disc ∂D. Xµ(σ), µ = 1, …, 26 are maps
of the string onto the target space with the constant met-

ric gµν, T(X) = T0 +  is the tachyon profile

with constant T0 and constant matrix Uµν of some rank,
and Fµν is constant gauge field strength. This functional
integral is taken with boundary conditions

(2)

where ∂n and ∂t are the normal and tangential deriva-
tives to the boundary ∂D. We use a nonstandard normal-
ization of X as in [26]. It is related to the standard one

via the rescaling by .

The theory (1) is not conformally invariant and rep-
resents a special example of the background indepen-
dent string field theory [1–4]. Because of the conformal
anomaly, this theory explicitly depends on the confor-
mal factor of the world-sheet metric. The convention is
to consider the theory on the unit disc with flat metric.
The main advantage of the case of (1) is that the theory
is gaussian and therefore is exactly solvable [1–3, 8–
10]. For example, the renormalization group flow of the
parameters Uµν in the functional integral (1) describes
the annihilation of a D25-brane in bosonic string theory
[8]. If the rank of the initial matrix Uµν is 26 – p, what
is left after the annihilation of the D25-brane is a Dp-
brane. This arises from the fact that the β function for
U is βU = –U, and, hence, U goes to zero in the ultravi-
olet and to infinity in the infrared limits. Thus, we see
from (2) that (if F = 0) the Neumann boundary condi-
tions present in the UV limit, where U ~ 0, evolve to
Dirichlet boundary conditions in 26 – p coordinates,
with the rest of the coordinates still obeying Newman
boundary conditions. These final boundary conditions
describe a Dp-brane.

The functional integral (1) is readily computed [1–3]:

(3)
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where x0 is the zero mode of X and the determinant is
taken over the µ and ν indexes.

The expression (3) is divergent. Using ζ-function
regularization [11], one finds

(4)

where Γ(g) is the Γ function. The dependence of the
transcendental functions on the matrix U is assumed to
be defined by their Taylor expansion. The divergence in
(4) as U  0 is due to the infinite volume of the
D-brane (and becomes a volume factor in that limit).

We would like to consider interactions of the D25-
brane (1) with massless closed-string fields. For exam-
ple, the D25-brane tension can be extracted from the
expectation value of the graviton vertex operator. Con-
sider the correlator

(5)

where the averaging is taken in the functional integral
(1). hµν is a constant traceless matrix that defines the
polarization of the graviton, and we could consider in
exactly the same manner correlators corresponding to
the antisymmetric tensor field B or to the dilaton.

It is easy to see that (5) is given by

(6)

where the trace is taken over the µ and ν indices.

3. We can compare this computation with a naive
application of the boundary-state formalism.
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The boundary state |B〉  is a quantum state of closed-
string theory that obeys boundary condition (2):

(7)

where  is the operator corresponding to the bound-
ary value of the map X with the following closed-string
mode expansion:

(8)

In this formula, z =  = ρe–iθ, 0 ≤ ρ ≤ 1 is the
complex coordinate on the disc, x0 and p are the coordi-
nate and momentum of the string center of mass, the
sum runs over n from minus infinity to plus infinity
except zero, and the generators α and  obey certain

conditions to make  hermitian, as well as the standard
commutation relations (see, e.g., [24, 25]).

The solution to (7) is

(9)

where |0〉  is the vacuum state, which is annihilated by
all creation operators αn and  with n > 0, and 1 is a
normalization constant.

The normalization is fixed by considering the cou-
pling of the off-shell (momentum zero) closed-string
tachyon whose coupling to the boundary state should
be equal to a trivial perturbation of the sigma model
partition function,

(10)

Now we would like to find (along the lines of [24,
25]) the reaction of the background closed-string fields
on the state |B〉 . For this, we consider the correlator

(11)

which should be compared with the correlator (5).
However, we obtain
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where at the last step we used the fact that h is traceless.
The formula (6) clearly does not agree with (12).

Note that they would agree if U = 0, ∞ [24, 25]. In fact,
these two expressions agree up to a (infinite) normal-
ization factor at the fixed points of the renormalization
group flow, U  0 and U  ∞. As we will see
below, the infinite factor will turn out to be the volume
of the noncompact group PSL(2, R) [27].

4. The apparent paradox that we have arrived at
should not be surprising. The application of the bound-
ary-state formalism to the computation of the expecta-
tion value of a closed-string vertex operator in open-
string theory requires a conformal mapping of the
punctured disc, which is the world-sheet of open
strings, to the semi-infinite cylinder, which is the
world-sheet of closed strings. In the conformally non-
invariant theory that we are considering here, it is natu-
ral to expect that this mapping is blocked by the confor-
mal anomaly.

The global conformal group of the disc is PSL(2, R).1

If the PSL(2, R) symmetry were not broken, it would be
possible to use it to fix the position at one point on the
disc and one point on its boundary (or three points on
the boundary). This could be used to get rid of integra-
tion over σ in (5). This means that

(13)

Here, σ' is some particular point on the disc, say 0. We
expect that this will occur when U = 0 or U = ∞. How-
ever, since the conformal symmetry is broken when U
does not have these values, the matrix element depends
on the position, and the integration is important.

The conformal mapping of a point z on the disc to a
point η in the cylinder is z = e–η. In this mapping, the
center of the disc, at point z = 0, is mapped to the cap of
the cylinder at infinity, Reη = ∞. In the boundary-state
computation that leads to (11), it is assumed that the
boundary state is at one cap of the cylinder, where
Reη = 0, and the graviton |h〉  is at the other cap, which

1The relevance of PSL(2, R) in a similar context was previously
noticed in [4, 12].
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is located at Reη = ∞, which is the image of the center
of the disc. For this reason, we expect the boundary-
state computation to produce the expectation value of
the graviton vertex operator inserted at the center of the
disc.

In the sigma model, it is straightforward to compute
the correlator

(14)

by summing the perturbation expansion for U, similar
to computations in [26, 28]. In the course of the calcu-
lation, we use the boundary-to-disc propagator with
Neuman boundary conditions:

(15)

which also gives the boundary-to-boundary propagator
in the limit ρ  1. Explicitly, the contribution to the
correlator from n interactions with the background U is

(16)

The above integral is trivial, and, upon summation over
all values of n and inclusion of the antisymmetric field
F, the result is

(17)

Now it is easy to see that to obtain (6) one has to inte-

grate this expression with the measure , while

to obtain (12) it is necessary to put ρ = 0: only the m = 1
term survives in this case. This is in agreement with our
expectation that the boundary state describes the matrix
element only when the operator is inserted at the center
of the disc.

5. With the above choice of coordinates on the disc,
there is a subset of the full conformal group of the plane
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that preserves the position and shape of the boundary of
the disc. This subset is a PSL(2, R) subgroup of the full
conformal group. It acts on the complex coordinates of
the disc as

(18)

where

(19)

It is easy to verify that the unit circle is mapped onto
itself. Thus, this mapping preserves the boundary of the
disc. The origin is mapped to the point b/a* = ρe–iθ in
the interior of the disc.

We will examine how the boundary state |B〉  behaves
under this transformation.

The boundary state is created by the exponential of
the operator

(20)

where  and  are closed-string oscillators. It is use-
ful to write this operator in terms of position variables.
For this, we introduce the two fields

(21)

(22)

Here, z are complex coordinates on the disc and η =
−lnz are coordinates on a cylinder.

Then (20) can be written in the form

(23)

where the integrations are on the unit circle and the ker-
nel is defined by the power series

(24)

Now we take into account that, under a general coordi-
nate transformation, the coordinate functions Aµ(z) and

 transform as

(25)

If we apply this equation to the conformal transforma-
tion and change variables in the integral, we obtain the
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transformed boundary operator

(26)

where

(27)

As an exercise, we can verify that the usual, confor-
mally invariant boundary state is independent of the
PSL(2, R) coordinates (a, b). In that case (for simplic-
ity, we put here F = 0),

(28)

and

(29)

This is independent of a and b, which is the desired
result.

Then the PSL(2, R) transformed boundary state is
created by the exponential of the operator @(a, b). In
terms of oscillators, this operator has the form

(30)

(We will verify that it still contains only negative index
oscillators.) The moments are defined by

(31)

Since |a|/|b| > 1, the contour integrals on the right-hand
side of (31) have poles inside the unit circle only when
m, n > 0. Therefore, they are nonzero only when m > 0
and n > 0, as anticipated in (30). It is straightforward to
evaluate the integrals in (31). For example, in the case
that we will shortly see is relevant to massless closed-
string states,

(32)

We can see from the form of the transformation in (31)
that the boundary states generally depend on all three
parameters of PSL(2, R). In some special cases, (32) for
example, it depends on fewer parameters, such as
|b/a*| = ρ. The matrix element of any massless closed-
string state with the boundary state will depend on the
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PSL(2, R) parameters only through this dependence on
the coordinate.

Note that the matrix element 〈0|B〉  does not change
under the transformation (18); i.e., Eq. (10) is legiti-
mate. However, the correlator 〈h|B〉  transforms accord-
ing to (32) as

(33)

It is worth mentioning here that if U  0 then

exactly cancels (1 – ρ2)2 in the numerator, and, hence,
(6) agrees with (12) and (33).

At the same time, the Haar measure on the PSL(2, R)
group is given by

(34)

which is valid if the function f within the integral
depends only on ρ. Combining formulas (33) and (34),
we find exact agreement.

In conclusion, we conjecture that the average over
PSL(2, R) of the transformed boundary state,

(35)

will have the correct overlap with any on-shell closed-
string state. Here, we have checked this for the closed-
string tachyon and the graviton, and it is straightfor-
ward to check it for the antisymmetric tensor, which has
a nonzero expectation value when a background gauge
field is turned on. It would be interesting to check this
hypothesis for higher order correlation functions. The
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generalization of our results to the superstring bound-
ary states with linear tachyon profile is straightforward.
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Molecular Effect in the Formation of the Energy Spectrum 
upon the Transmission of Low-Energy Hydrogen Ions

through Ultrathin Carbon Foils
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The energy spectra of ions transmitted through ultrathin diamond-like foils irradiated by H+, , and  ions
with energies from 2 to 12 keV/nucleon are studied. For molecular ions incident on the target with identical
velocities, a considerable broadening of the energy spectrum is observed with an increase in the ion mass. The
spectrum halfwidth reduced to the identical particle velocity remains constant for each type of incident ion, irre-
spective of the foil thickness. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 34.50.Dy
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In the last few years, the effects accompanying the
interaction of molecular ions and clusters with matter
have become one of the hottest areas of research in the
field of atomic collisions in solids [1]. The reason is that
such effects offer a better insight into the mechanisms
of interaction between the aforementioned types of par-
ticles and matter. In addition to the radiation effects that
occur in matter and are nonadditive with respect to the
number of atoms in a molecular ion, the vicinage effect,
the wake effect, the charge state of particles scattered in
matter, and other effects are intensively studied. In the
case of the transmission of molecular ions (especially
of the simplest of them ) through thin layers of mat-
ter [2–5], the comparison of experimental data with
model considerations is most simple. For energies cor-
responding to particle velocities higher than the Bohr
velocity, the effect of initial interatomic distance in the
incident cluster on the energy spectra and other param-
eters of the transmitted particle flux was given an ade-
quate theoretical interpretation [3]. However, in the
low-energy region, as far as we know, such investiga-
tions have not been carried out.

This paper presents the study of the effect of the
number of atoms in molecular hydrogen ions on the
specific energy loss and the width of the energy spec-
trum upon the irradiation of thin foil targets by particles
with energies on the order of several keV per nucleon.

Measurements were made on the “Big Mass Mono-
chromator” of the Moscow Engineering Physics Insti-
tute [6]. The system provided an angular beam diver-
gence of less than 0.4° and an energy homogeneity
within 0.003. After the transmission through foils, the
ion energies were analyzed by an automated energy
analyzer with the aperture ∆φ0 = 1.5° and an energy res-

H2
+

0021-3640/03/7701- $24.00 © 20012
olution of 0.005. The pressure in the chamber during
the experiment was 10–7 torr. Other measurement con-
ditions were the same as described in [7].

The targets were carbon foils with the rated thick-
ness values L ≈ 25, 40, and 70 Å and a density of 2 ±
0.2 g/cm3.

The foils were irradiated by H+, , and  ions
with energies from 2 to 12 keV per nucleon. After their
interaction with the foils, only protons arising from the
dissociation of the initial ions were observed, while the
latter lost part of their energy in the target material. The
positions of spectral maxima of the transmitted parti-
cles coincide for the different molecular ions with equal
initial velocities per nucleon (Fig. 1). This suggests that
the energy loss is the same for different molecular ions.
Within the experimental accuracy, the measured veloc-
ity dependence of the most probable energy Em of exit
particles is linear for different foils.

From the dependence of the spectrum width ∆E1/2

on the initial velocity ( ), one can see (Fig. 2) that,
for different ions with equal initial velocities, the
energy spectrum broadens as the number of atoms in
the ion increases, and the velocity dependence of the
spectrum width is approximately linear. The spectrum
for the two- and three-atomic molecular ions broadens
in both high- and low-energy directions, without any
significant asymmetry.

As was shown in [7], in the given hydrogen energy
range, the peak halfwidth observed for the protons

H2
+ H3

+

E0
1/2
003 MAIK “Nauka/Interperiodica”
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detected in the incident beam direction (θ = 0) can be
expressed as

where ∆L is the fluctuation of foil thickness, k is the
proportionality coefficient characterizing the energy
dependence of stopping power, and the last term in the
braces determines the relative energy-loss fluctuations
due to inelastic collisions. According to [8], the relative
energy-loss fluctuation in the inelastic collisions
depends neither on thickness nor on energy but only on
the material. Therefore, for each of the foils under

study, the quantity ∆E1/2/  must not depend on
energy, which is confirmed by the experiment: within
the experimental accuracy (~0.05), this ratio is constant
for any of the foils. As an example, Fig. 3 shows the val-

ues of ∆E1/2/  that were determined from the spectra
measured with a 25-Å-thick foil for atomic and molec-
ular ions with different energies. One can see that

∆E1/2/  = const for each type of ion.

If we represent the halfwidth of energy spectrum in

the form ∆  ∼ {∆  + ∆ } 1/2, where ∆E1/2

is the aforementioned energy spectrum halfwidth
(mainly caused by the fluctuation of foil thickness) of
the protons transmitted through the foil and ∆  is
the contribution from the molecular effect, we find that

the ratio ∆ /  is constant. From the comparison

∆E1/2 2 2 2ln E0kL
∆L
L

------- 
 

2 ε2 E0( )

ε E0( )( )2
------------------- 1

L
---+

 
 
 

1/2

,≅

E0

E0

E0

E1/2
* E0 E1/2

2 Emol
2

Emol

Emol E

Fig. 1. Energy spectra of different molecular hydrogen ions
with equal energies per nucleon.

H,
H2,
H3,
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of the spectra obtained for H+ and , we find

∆ /  = 2.1 ± 0.3 eV1/2 for all foils under study in
the energy range 2–10 keV/nucleon. The comparison of

the spectra from the H+ and  ions for the foil with

L = 25 Å yields the value ∆ /  = 3.6 ± 0.3 eV1/2.

H2
+

Emol E

H3
+

Emol E

Fig. 2. Halfwidths of energy spectra for a diamond-like foil
with L = 25 Å versus the initial velocity of the incident par-

ticles (per nucleon). The values of ∆E1/2/  are indicated

near the curves.

E0
1/2

Fig. 3. The values of ∆E1/2/  versus the initial energy of

incident particles per nucleon for a diamond-like foil with

L = 25 Å. The values of ∆E1/2/  are indicated near the

curves.
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The broadening of the spectra of the fragments of
molecular ions may result from the Coulomb repulsion
of the protons that “suddenly” lost their binding elec-
tron. A simple analysis of this situation for the  ion
with kinetic energy E0 and Coulomb repulsion energy
I = e2/r, where r is the internuclear distance (with the
conservation of the total energy and momentum after
the loss of the electron), yields the following expression
for the energy difference between the particles: ∆E* ≈
2 cosα, where α is the angle between the

direction of the center-of-mass motion of the  ion
and the straight line connecting the nuclei. Thus, the
energy difference ∆E* between the fragments of
molecular ion should linearly depend on the particle

velocity, and the quantity ∆E*/  should be constant.

The numerical value of the quantity ∆E*/  depends
both on the internuclear distance r0 corresponding to
the equilibrium configuration of molecular ion with

minimal binding energy (r0 = 1.03 Å for  and r0 =

0.86 Å for ) and on the orientation of the parent ion
relative to the target surface upon flying up to it. The
calculation of the maximum possible loss due to the

Coulomb repulsion gives ∆E*/  = 2.16 eV1/2 for 

and ∆E*/  = 3.4 eV1/2 for , which agrees well

H2
+

2 IE0( )
H2

+

E

E

H2
+

H3
+

E H2
+

E H3
+

with the experimental data for the quantity ∆ /
corresponding to the contribution of the “molecular”
effect to the spectrum width.

We are grateful to V.Kh. Likhtenshtein for supplying
us with the foils necessary for our experiments and to
N.N. Degtyarenko for the ab initio calculation of the
stable configurations of  and  ions.
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Orbital Phase Transition in Pr1 – xCaxMnO3

V. S. Shakhmatov*, N. M. Plakida*, and N. S. Tonchev**
* Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia

** Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
Received October 31, 2002

The phenomenological theory of phase transition in Pr0.6Ca0.4MnO3 manganite is developed. It is shown that
this is the orbital phase transition and that the two electronic states of the manganese ion, which are discussed
in the literature, result from two different types of condensation of the same orbital order parameter. Thus, the
manganese ions in Pr1 – xCaxMnO3 manganites with 0.3 ≤ x ≤ 0.5 may be in either of the two electronic states,
depending on the thermodynamic parameters. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb
Recently [1], new structural data on the phase tran-
sition (PT) in Pr0.6Ca0.4MnO3 manganite to a state with
both charge and orbital ordering was reported. The
experimental results were interpreted as the observa-
tion of ordered Zener polarons in the low-temperature
phase. In addition, it was concluded that this electronic
state of a manganese ion may be its ground state in
manganites, in which the PT with charge and orbital
ordering is observed at the doping level x = 0.5. The
characteristic feature of this electronic state is that man-
ganese ions have the same valence throughout the crys-
tal, unlike the state [2, 3] in which the charges are sep-
arated while the Mn3+ and Mn4+ ions are spatially
ordered.

Note that the complex interrelation between the
orbital and charge orderings is also typical of mangan-
ites with other doping levels (see, e.g., [4, 5]).

In this paper, we construct the Landau phenomeno-
logical theory for the PT in Pr0.6Ca0.4MnO3 on the basis
of symmetry analysis. We show that this PT is the
orbital PT, while the two states reported in [1] and [2,
3] correspond to two types of orbital ordering of a sin-
gle orbital order parameter (OP) (for a given (OP), three
types of orbital ordering are possible). Hence, it is the
orbital and not the charge degrees of freedom which are
“soft” and whose condensation leads to the PT.

The PT in Pr0.6Ca0.4MnO3 proceeds from the crystal

phase with the Pnma( ) symmetry and is associated
with the wave vector k1 = (1/2, 0, 0) [1–3] (the Carte-
sian coordinate system used in our consideration is
shown in Fig. 1). According to Kovalev [6], the OP for
this PT is two-component and can have the symmetry
of the irreducible representation (IR) τ1 or τ2. Using two

invariants, I1 =  +  and I2 = , we represent
the free energy in the form

(1)

D2h
16

ϕ1
2 ϕ2

2 ϕ1
2 ϕ2

2

F1 Fϕ Fϕψ Fψ,+ +=
0021-3640/03/7701- $24.00 © 20015
where

(2)

(3)

Here, r = α(T – Tc); Tc is the bare PT temperature; α, r1,
u, v, and β1 are temperature-independent phenomeno-
logical constants; {ϕ1, ϕ2} is the main two-component
OP with wave vector k1 = (1/2, 0, 0); and ψ is the sec-
ondary OP with wave vector k2 = (0, 0, 0).

Note that in expansion (2) we restricted ourselves to
the fourth power of the OP, which is sufficient for

Fϕ
1
2
---r ϕ1

2 ϕ2
2+( ) 1

4
---u ϕ1

2 ϕ2
2+( )2 1

2
---v ϕ1

2ϕ2
2,+ +=

Fϕψ β1 ϕ1
2 ϕ2

2–( )ψ, Fψ
1
2
---r1ψ

2.= =

Fig. 1. Structure of the manganese ion sublattice in the
Pnma phase of the crystal. The arrows indicate four non-
equivalent manganese atoms in the primitive cell of the
crystal, and the numbers 1, …, 8 mark the nonequivalent
oxygen ions lying in the MnO2 planes.
003 MAIK “Nauka/Interperiodica”
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describing two low-symmetry phases: ϕi ≠ 0, ϕj = 0 and
ϕ1 = ϕ2 ≠ 0 (see, e.g., [7]). To describe the intermediate
phase ϕ1 ≠ ϕ2 ≠ 0, it is necessary to include the terms up
to the eighth power of the OP inclusive. A complete
symmetry analysis for this PT will be described else-
where. In Eq. (3), one more invariant term is present:
Fϕψ' = . However, in the orbital structures dis-
cussed in this paper, the ψ' OP does not occur.

Figure 2 shows the structure of orbital ordering of
the Mn3+  orbitals for two types of OP condensation:

ϕ1 = ϕ2 ≠ 0 and ϕi ≠ 0, ϕj = 0, ψ ≠ 0 (Figs. 2a and 2b,
respectively). In the analysis, we assume that the 

orbital in the Pnma phase lies in the MnO2 plane and
has two possible directions: along O4–Mn1–O2 or along
O1–Mn1–O3 (Fig. 1). In the case of the OP of τ1 symme-
try, the orbital direction in the neighboring MnO2 plane
does not change (upon the displacement along the Y
axis), while in the case of the τ2 symmetry it changes.

The orbital {ϕ1, ϕ2} and ψ OPs have the physical
meaning of the probabilities of an electron occupying
the  orbital. In the case of the OP condensation of

type ϕ1 = ϕ2 ≠ 0 (Fig. 2a), the probability of occupying
the  orbital is the same for all manganese ions, pro-

viding the same valence for all manganese ions. In the
case of the OP condensation of the ϕ1 ≠ 0, ψ ≠ 0 type
(Figs. 2b, 2c), the probabilities that electrons occupy
the  orbitals are different for different manganese

β1' ϕ1ϕ2ψ'

d
z

2

d
z

2

d
z

2

d
z

2

d
z

2

Fig. 2. Orbital ordering of the  orbitals in the MnO2

plane. The arrows show the displacements of oxygen atoms.
(a) Orbital ordering in the case of the OP condensation of
the ϕ1 = ϕ2 ≠ 0 type; (b) orbital ordering in the case of the
condensation of two OPs ϕ1 ≠ 0 and ψ ≠ 0; and (c) charge
ordering in the case of the condensation of a single second-
ary ψ ≠ 0 OP.

d
z

2

ions. This results in the charge separation and spatial
ordering of the Mn3.5 + δ and Mn3.5 – δ ions (δ > 0).

Taking into account that the Mn3+  orbital

increases the O–Mn3+–O bond length (see, e.g., the
works of Khomskii and Kugel [8, 9]), we show by
arrows in Fig. 2 the displacements of the nearest oxy-
gen atoms, as it follows from the constructed structure
of orbital ordering.

Thus, the physical reason for the orbital PT is a
decrease in the total free energy at the expense of a
decrease in electron energy upon the orientational
ordering of the  orbitals with a certain increase in

energy due to the elastic deformation of the MnO6 octa-
hedra.

The results of our symmetry analysis (Fig. 2) are
presented for manganite with the doping level x = 0.5.
In the high-symmetry Pnma phase, an electron occu-
pies the  orbital of the Mn ion with the probability

P = 50%, and the average valence of the manganese
ions is Mn3.5+. In the low-symmetry phase ϕ1 = ϕ2 ≠ 0,
the valence of manganese ions remains the same, i.e.,
Mn3.5+, while in the phase ϕi ≠ 0, ϕj = 0, the charge sep-
aration into the Mn3.5 + δ and Mn3.5 – δ ions takes place
(The structures with charge ordering in low-symmetry
phases will be considered elsewhere). In the experi-
ments [10, 11], the PT under discussion was observed
in Pr1 – xCaxMnO3 with the concentrations 0.3 < x < 0.7.
It is believed (see, e.g., [1]) that, in the concentration
range 0.3 < x < 0.5, the excess of electrons over the dop-
ing level x = 0.5 (or the electron deficiency at 0.5 < x <
0.7; although striped orbital structures may arise in this
concentration range [4, 9]) is randomly distributed over
the crystal and only gives rise to defects in the orbital
structure, without introducing qualitative changes in it.
Our model of orbital ordering leads to a different pic-
ture for 0.3 < x < 0.5; in this region, at least two phases
with different orbital structures should be observed (for
details, see below).

The structure of orbital ordering can be determined
by the synchrotron X-ray diffraction study [12]. How-
ever, the interpretation of the results obtained by this
method may be ambiguous [13]. Today, the basic infor-
mation on the orbital state of a manganese ion is usually
extracted from data on the exact structure of the MnO6
octahedron. In this connection, we consider below the
phonon degrees of freedom.

In Fig. 3, the arrows indicate the displacements of
oxygen and manganese atoms determined from the
neutron diffraction data [1–3]. The long Mn–O bonds
marked L in Fig. 3 indicate the direction of the 

orbital in the MnO6 octahedron [8, 9]. The comparison
of Figs. 2a and 2b with Figs. 3a and 3b shows that the
constructed orbital structures fully agree with the
experimental data [1–3].
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To describe the deformations of the MnO6 octahe-
dra, we introduce the phonon OPs interacting with the
main orbital OP. These are the two-component Jahn–
Teller {η1, η2} OP, which is characterized by the wave
vector k1 = (1/2, 0, 0) and the symmetry of the main OP,
and the secondary ξ OP characterized by the wave vec-
tor k2 = (0, 0, 0). The expansion of the free energy with
allowance for the orbital and phonon degrees of free-
dom has the form

(4)

where

(5)

(6)

Thus, for the two cases under consideration, the com-
plete set of condensed orbital and phonon OPs is as fol-
lows:

(7)

Note that, similar to Eq. (3), Eq. (6) contains the
additional term  = , which should be
taken into account in the general case. However, in
describing the atomic displacements shown in Figs. 2
and 3, the phonon ξ' OP can be ignored.

The orbital OP has the wave vector k1 = (1/2, 0, 0)
and the IR symmetry τ1 or τ2. Hence, six different PT
are possible from the crystal phase with the Pnma sym-
metry:

(8)

(9)

The low-symmetry phases in Eqs. (8) and (9) are
arranged in the following order of OP condensation:
ϕ1 ≠ 0, ϕ1 = ϕ2 ≠ 0 and ϕ1 ≠ ϕ2 ≠ 0, respectively. In the
experiments [1–3], the phases with symmetries

P21/m( ), Pmn21( ), and Pm( ) were observed.
Therefore, one should take the τ1 IR. Below, only those
phonon basis vectors that are necessary for describing
the experimentally observed atomic displacements are
written for the τ1 IR (Fig. 3).

For the two-dimensional τ1 IR, the symmetrized basis
vectors E(i) of atomic displacements are written as

(10)

F F1 Fϕη Fη Fϕξ Fξ ,+ + + +=

Fϕη r3 ϕ1η1 ϕ2η2+( ), Fη
1
2
---r3' η1

2 η2
2+( ),= =

Fϕξ β2 ϕ1
2 ϕ2

2–( )ξ , Fξ
1
2
---r2ξ

2.= =

ϕ1 0, ψ 0, η1 0, ξ 0,≠≠≠≠
and ϕ1 ϕ2 0, η1≠ η2 0.≠= =

Fϕξ ' β2' ϕ1ϕ2ξ'

Pnma D2h
16( ) τ1 P21/m C2h

2( ),–

Pmn21 C2v
7( ), Pm Cs

1( ),

Pnma D2h
16( ) τ2 P21/c C2h

5( ),–

Pna21 C2v
9( ), Pc Cs

2( ).

C2h
2 C2v

7 Cs
1

E i( ) e1 i( ) e2 i( ),( ).≡
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Here, the unit basis vectors e1(i) and e2(i) are deter-
mined in the space of atomic displacements and related
to the phonon {η1, η2} OP. 

For the manganese atoms, the basis vectors ej(i)
have the form

(11)

where ux(Mni) is the unit displacement of the Mni atom
along the X axis. The displacements of manganese
atoms shown in Figs. 3a and 3b are described by the
functions

(12)

respectively. Here, Rn ≡ n1a1 + n2a2 + n3a3, where {ni}
are integer numbers and ai are the fundamental transla-
tion vectors for the Pnma crystal phase. The first of
functions (12) is associated with the condensation of
the phonon OP of the η1 = η2 ≠ 0 type, and the second
function is associated with the η1 ≠ 0, η2 = 0 type.

For the oxygen atoms in the MnO2 planes, six basis
vectors E(i) exist in the general case. Below, only those
that describe the displacements in the (X, Z) plane are
presented:

2e1 1( ) ux Mn2( ) ux Mn3( ),+=

2e2 1( ) –ux Mn1( ) ux Mn4( ),–=

2e1 2( ) uy Mn2( ) uy Mn3( ),–=

2e2 2( ) –uy Mn1( ) uy Mn4( ),+=

2e1 3( ) uz Mn2( ) uz Mn3( ),+=

2e2 3( ) uz Mn1( ) uz Mn4( ),+=

–e1 3( ) e2 3( )–[ ] –ik1Rn( ),exp

e1 3( ) –ik1Rn( ),exp

Fig. 3. Displacements of oxygen and manganese atoms in
the MnO2 plane. The atomic displacements are shown by
arrows; L and S are, respectively, the long and short Mn–O
bond lengths in the MnO6 octahedron. (a) Atomic displace-
ments in the low-temperature phase of Pr0.6Ca0.4MnO3 [1];
the shown Mn–O–Mn structural fragments represent Zener
polarons [1]. (b) Atomic displacements in the low-tempera-
ture phases of La0.5Ca0.5MnO3 [2] and Pr0.5Ca0.5MnO3 [3].
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(13)

The displacements of oxygen atoms shown in Figs. 3a
and 3b are described by the functions

(14)

respectively. The first of functions (14) is associated
with the condensation of the phonon OP of the η1 =
η2 ≠ 0 type, and the second function is associated with
the η1 ≠ 0, η2 = 0 type. All different mixing coefficients
{αi}, { }, … satisfy the normalization conditions

 = 1,  = 1, ….

The displacements of manganese and oxygen atoms
shown in Fig. 3 are described by functions (12) and (14)
with the wave vector k1 = (1/2, 0, 0). However, our sym-
metry analysis shows [see Eqs. (7)] that the secondary
phonon ξ OP with the wave vector k2 = (0, 0, 0) is also
present. The condensation of this OP leads to the addi-
tional atomic displacements. We denote the basis vec-
tors for the ξ OP by e(i). For the oxygen atoms in the
MnO2 planes, the basis vectors are represented as

(15)

The displacements of the oxygen atoms shown in
Figs. 2a–2c are described by the functions

(16)

respectively. The first of functions (16) is associated
with the condensation of the phonon OP of the η1 =

2e1 4( ) ux O1( ) ux O3( )– ux O5( ) ux O7( ),–+=

2e2 4( ) –ux O2( ) ux O4( )– ux O6( )– ux O8( ),–=

2e1 5( ) ux O2( ) ux O4( )– ux O6( ) ux O8( ),–+=

2e2 5( ) –ux O1( ) ux O3( )– ux O5( )– ux O7( ),–=

2e1 6( ) uz O1( ) uz O3( )– uz O5( ) uz O7( ),–+=

2e2 6( ) uz O2( ) uz O4( ) uz O6( ) uz O8( ),+ + +=

2e1 7( ) uz O2( ) uz O4( )– uz O6( ) uz O8( ),–+=

2e2 7( ) uz O1( ) uz O3( ) uz O5( ) uz O7( ).+ + +=

α1 e1 6( ) e2 6( )+[ ] α 2 e1 7( ) e2 7( )+[ ]+{ } –ik1Rn( ),exp

α1' e1 6( ) α2' e1 7( )+[ ] –ik1Rn( ),exp

α i'

α i
2

i∑ α i'
2

i∑

2 2e 1( ) ux O1( ) ux O2( ) ux O3( )– ux O4( )–+=

+ ux O5( ) ux O6( ) ux O7( )– ux O8( ),–+

2 2e 2( ) uz O1( ) uz O2( )– uz O3( )– uz O4( )+=

+ uz O5( ) uz O6( )– uz O7( )– uz O8( ).+

α1 e1 4( ) e2 4( )+[ ] α 2 e1 5( ) e2 5( )+[ ]–{
+ α3 e1 6( ) e2 6( )+[ ] α 4 e1 7( ) e2 7( )+[ ]+ } –ik1Rn( )exp ,

α1'' α1e1 4( ) α2e1 5( )– α3e1 6( ) α4e1 7( )–+[ ]

× –ik1Rn( )exp α2'' α1' e 1( ) α2' e 2( )+[ ] –ik2Rn( ),exp+

α1e 1( ) α2e 2( )+[ ] –ik2Rn( )exp

=  α1e 1( ) α2e 2( ),+
η2 ≠ 0 type, the second is associated with η1 ≠ 0, ξ ≠ 0,
and the third, with ξ ≠ 0.

The above analysis shows that all atomic displace-
ments observed in the experiments [1–3] are adequately
described by the proposed theory.

Now, we formulate the results of our study. Using
the known PT wave vector k1 = (1/2, 0, 0), the free-
energy expansion was constructed in the form of
Eqs. (1)–(3), which describes all PTs from the crystal
phase with the Pnma symmetry [see Eqs. (8) and (9)].
Based on the experimental data on the symmetry
groups of low-temperature phases (see [1–3]), the τ1 IR
was chosen. Symmetry analysis shows that different

low-temperature phases with the P21/m( ),

Pmn21( ), and Pm( ) symmetries are formed as a
result of three types of OP condensation: ϕ1 ≠ 0, ϕ1 =
ϕ2 ≠ 0, and ϕ1 ≠ ϕ2 ≠ 0, respectively. According to the
experimental data in [10, 11], the PT in Pr1 – xCaxMnO3
manganite with 0.3 < x < 0.7 results in the orbital and
charge orderings. Hence, the OP of this PT is related to
either orbital or charge degrees of freedom, while the
orbital and charge degrees of freedom may interact with
each other. In [1] it was found that all manganese ions
in the low-temperature phase of Pr0.6Ca0.4MnO3 have
the same valence. This fact suggests that the OP of the
PT under discussion is related to the orbital (  orbital)

rather than to the charge degrees of freedom. In our
phenomenological theory, the {ϕ1, ϕ2} OP describes
the crystal-averaged probability for an electron to
occupy the Mn3+  orbital, while all  orbitals lie in

the MnO2 plane and have two possible directions in the
Pnma phase (Fig. 2). Within the framework of this
model, it has been shown that, in the case of the OP
condensation of the ϕ1 = ϕ2 ≠ 0 type, the orbital orien-
tational ordering leads to the identical valences of man-
ganese ions in the low-temperature phase of

Pmn21( ) symmetry (Fig. 2a), while, in the case of
the OP condensation of the ϕ1 ≠ 0 type, it results in
charge separation (the appearance of the Mn3.5 + δ and
Mn3.5 – δ ions) and in the orbital structure shown in

Fig. 2b (P21/m( ) symmetry of the low-temperature
phase). The analysis of atomic displacements also
shows that all atomic displacements observed experi-
mentally for the two electronic states of manganese are
adequately described within the framework of the pro-
posed phenomenological theory and correspond to two
types of orbital OP condensation: ϕ1 = ϕ2 ≠ 0 and ϕi ≠
0, ϕj = 0. The low-temperature phase of P21/m( )
symmetry with the OP condensation of the ϕi ≠ 0, ϕj =
0 type appears when  > 0 and  > 0, and the phase of

Pmn21( ) symmetry with OP condensation of the

ϕ1 = ϕ2 ≠ 0 type arises when  < 0 and  + /2 > 0,

C2v
2
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1
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where  ≡ v  + 4 /r1 + 4 /r2 and  ≡ u – 2 /r1 –

2 /r2 (similar analysis was carried out in [7]). Hence,

the sign of the phenomenological constant  deter-
mines the formation of one phase or the other. In [1], it
was found that the real symmetry of the low-tempera-

ture phase of Pr0.6Ca0.4MnO3 is Pm( ). Our analysis
shows that this is the intermediate phase with the OP
condensation of the ϕ1 ≠ ϕ2 ≠ 0 type, and, hence, it is
for this reason that the phenomenological constant 
changes sign at the concentration x ~ 0.4. Thus, the
phase diagram of Pr1 – xCaxMnO3 with 0.3 < x < 0.7 [10,
11] should be revised. One can assume that
Pr1 − xCaxMnO3 at x ~ 0.4 is in the intermediate phase
corresponding to ϕ1 ≠ ϕ2 ≠ 0 [1], and in the concentra-
tion ranges 0.3 < x < 0.4 and x > 0.4 the two different
orbital structures shown in Fig. 2 should be observed.
The microscopic theory of the orbital and charge order-
ings can be developed using the two-orbital double-
exchange model (see, e.g., [14]).

We are grateful to A.M. Balagurov and V.Yu. Pomy-
akushin for discussing the results of this study. This
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2008) and the Russian Foundation for Basic Research
(project nos. 02-02-16864) and grant no. 01-F-23.
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In the present paper, it is shown that the interaction between classical anharmonic oscillations of a trapped con-
densate and excited Josephson states corresponding to a large enough initial imbalance of particle number gen-
erates their equilibrium bound state. The dynamics of the system are determined by the self-consistent oscilla-
tions of the initial imbalance of the particle number and condensate shape. The existence of the bound state
implies that the Josephson states can be detected by observing the change of the condensate shape. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Lm; 05.30.Jp; 32.80.Pj
1. Since the discovery of two-component conden-
sates [1] and condensates in a double-well potential [2],
the phenomena caused by phase coherence of two-con-
densated modes attract considerable interest, both
experimental and theoretical (see, e.g., [3] and refer-
ences therein). In [2], spatial quantum coherence was
observed by means of the interference pattern in two
overlapping condensates. In [4], coherent oscillations
of the relative populations were observed in driven two-
component condensates with different internal states.
As is well known, a bright manifestation of phase
coherence is the Josephson effect. In numerous studies
devoted to the Josephson effect in systems of two con-
densates in different internal states [4, 5] or in a double-
well potential [6, 7], coherent Josephson oscillations
are considered for various dynamical regimes caused
by the competition between tunneling and intraconden-
sate interaction (nonlinearity). However, experimental
observation of the Josephson effect is difficult, because
the small energy splitting associated with Josephson
coupling means that thermal and quantum fluctuations
will destroy the phase coherence between two conden-
sates even at the lowest achievable temperatures [8, 9].
While the energy splitting can be increased, for
instance, by lowering of the barrier height, it then
becomes comparable with that of motion states of the
condensates.

The problem of interaction between the degrees of
freedom generated by the Josephson coupling and
states of motion (oscillations) of the trapped conden-
sates was partially analyzed in the work [10]. The
present paper focuses on a mechanism of formation of
the bound state of the Josephson degrees of freedom

¶This article was submitted by the author in English.
0021-3640/03/7701- $24.00 © 20020
and trap oscillations due to their interaction. The mech-
anism proposed in what follows may be important for
detection of excited Josephson states.

As is well known [3, 6, 7, 12], the Hamiltonian of
two condensates with Josephson coupling has the form

(1)

Here, ∆N = N1 – N2, EC = ∂µ/∂N, µ ≡ µ1 = µ2 are the
chemical potentials; N are the total particle numbers; EJ

describes the Josephson (tunneling) coupling; and φ =
θ1 – θ2 is the relative phase of the condensates. The
quantities EC, EJ depend on the total particle number N.
(∆N), φ are canonically conjugate variables. In (1), the
energy origin is the mean-field summed energy of the
condensates, namely, E0 ≡ µN. The quantization of the
Hamiltonian (1) produces the spectrum of the particle
number in the Josephson potential EJcosφ. The states
of this spectrum represent the quantum analogue of
Josephson oscillations. As is shown in what follows,
any Josephson state can be realized by means of a
given initial imbalance in the particle number. For this
reason, it is interesting to obtain the complete spec-
trum generated by the Hamiltonian of (1) and to repre-
sent it as a function of the initial imbalance. The
Schrödinger equation for the Hamiltonian (1) is
derived by means of the quantization rule: (∆N) 
−i∂/∂φ. As a result, we obtain Mathieu’s equation. The
spectrum for this equation was derived in [11]. Here,
we obtain the relation between the quantum numbers
and initial imbalance in the particle number. In the
Josephson regime ∆N @ 1 [3], the discrete spectrum

HJ E0– EC ∆N( )2 2EJ φ.cos–=
003 MAIK “Nauka/Interperiodica”
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within the range of –2EJ < ε < 2EJ is specified by the
Bohr–Sommerfeld formula:

(2)

K(κ) and E(κ) are complete elliptic integrals of the first
and second kinds. The quantity νc is of the maximum
possible value of the number of levels in the well. In
what follows, the states with ν < νc are denoted as
“libration” states. In the region of ν ≥ νc, the ν(ε)
dependence is determined by the expression

(3)

The states (3) with ν > νc are self-trapping states [7].
Equations (2), (3) imply that

(4)

At the same time, it is easy to show that d2ε(ν)/dν2 < 0
at ν < νc and d2ε(ν)/dν2 > 0 at ν > νc. At ν = νc, the curve
ε(ν) has a flex point.

Since energy is conserved, a state with a given ν
value can be realized by means of the definition of the
initial values of (∆N)0 and φ(0). Namely, ε(ν) =

EC  – 2EJcosφ(0). Supposing that φ(0) = 0, we
obtain the following relation between ν and (∆N)0:

(5)

Using Eqs. (4), (5), we arrive at the expressions

(6)

2. The interaction of Josephson states and conden-
sate oscillations can be realized by the following mech-
anisms. First, the interaction is secured if we allow for
the dependence of EC in ε(x) on the atom displace-
ments. The latter are generated by the condensate oscil-
lation. Second, the interaction can be realized by apply-
ing a two-photon traveling-wave laser pulse with the
Rabi frequency Ω . The pulse both creates condensates
with the different particle numbers and induces the
interaction of an atom’s displacements with the excited
Josephson states corresponding to the particle-number

ν εν( )
φrd
π

-------∆N φr; εν( )∫°=

=  
φrd
π

------- 1
EC

------ εν 2EJ φcos+( )
1/2

∫°
=  νc E κ( ) 1 κ2–( )K κ( )–[ ] ,
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8
π
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EJ
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------ 
 

1/2

, κ2 εν 2EJ+
4EJ

--------------------, νc @ 1;= =

ν ε( )
4

π2
-----

EJ

EC

------ 
 

1/2

κ E κ 1–( ).=

ε ν( ) –2EJ ωmν at 1 ! ν  ! νc,+≈

ε ν( ) 4π2ECν2 at ν  @ νc.≈

∆N( )0
2

ε ν( ) 2EJ EC ∆N( )0
2.+–=

ν 1
2π
------ ∆N( )0 for the self-trapping (sf) states,=

ν
EC

ωm

------- 
  ∆N( )0

2 for the  libration   (l) states.= “ ”
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imbalance created by the pulse. The general description
proposed in what follows is independent of a specific
mechanism.

Let us consider the classical states of motion of the
condensate. These states may be described in terms of

the complex amplitudes a*, a = n1/2 , where n =

〈a| |a〉  = |a|2 is the average number of quanta in the
coherent state |a〉 . The variables n, ϕ1 are canonical. By
“classical state of motion” we mean that its number of
quanta is very large, n @ 1. It is convenient to specify

the relation between the a, a* amplitudes and the , 
operators as a = N–1/2 . Here, the commutator of a, a*
is equal to zero with macroscopic accuracy: [a, a*] =
1/N  0. The Hamiltonian of the motion states can be
written in the form Ne(n). For the quasiclassical

Josephson states with ν @ 1, the cν,  amplitudes may

be written in the form cν = ν1/2 . However, it is con-
venient to rewrite ε(ν), cν by means of the variable x =
|(∆N)0|/N1/2 @ 1. Combining this inequality with the
requirement that x = |(∆N)0|/N ! 1, we arrive at the con-
ditions for the x values: 1 ! x ! N1/2. Using Eqs. (4),
(5), we find that ν = ν(x), ε(ν) = N(–EJ/N + ECx2). In the
general case, the ν(x) dependence is implicit. It is deter-
mined by Eqs. (2), (3), and (5). However, in the partic-
ular cases of the “libration” (ε(ν) ! EJ) and self-trap-
ping (ε(ν) @ EJ) states, the relations between ν and
(∆N)0 can be represented in a simple form, as is seen
from (6). By means of Eqs. (5) and (6), we come to the
expressions H0 ≡ Nε0(n, x) = N[–(EJ/N) + ε(n) + ECx2]
and

(7)

For any mechanism producing an interaction between
two subsystems, it can be written in the form of a mul-
tiple Fourier series in ϕ1, ϕ2

(8)

Here, k1 and k2 are integers. For the sake of simplicity,
we disregard the phase-independent interaction in

e
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â â+
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Eq. (8). Using Eq. (7), we obtain

(9)

The constant g is specified by the concrete mechanism
producing the interaction. Let us assume that the term

with the phase  = k1rϕ1 – k2rϕ2, which varies anoma-
lously slowly with time, can be set off in sum (8). It is
possible to make this assumption under two conditions:

(10)

where the xm value is determined from the first equality
in (10)

(11)

The inequality in (10) is written taking into account that
H0, Hint are functions of a single dynamic variable, e.g.,

x. The  quantity defines the level separations of an
oscillation spectrum. From Eqs. (10) and (11), one

finds that the time variation of the  phase is propor-
tional to (d2H0/dx2)m(∆x), where (∆x) is the change in x
near the xm value. The maximum (∆x)max value specifies

the width of the near-minimum region, since d /dt ~
∆x. The second condition in (10) implies that the width
of the near-minimum region is large at the characteris-
tic interaction-variation scale. An estimate of (∆x)max is
given in what follows. Thus, the leading term in sum (8)
has the form

(12)

All remaining terms in this sum are rapidly oscillating
perturbations and will be disregarded in this work. Here
and below, the index k in gk and φk denotes a set of k1r,
k2r. One can easily show that, aside from the energy H =
N[ε0(n, x) + gk(N; n, x)cosφk], the system in question
has an additional integral of motion n0 = n/k1r + x/k2r ,
dn0/dt = 0. For this reason, the first condition in (10) is
equivalent to the condition of the minimum of ε0(n0, x)
over x at a given n0 value. Supposing for the sake of
simplicity that k1r = k2r = k, one can readily show that
the second condition in (10) is met provided xm, (n0 –
xm) @ k. And, for this reason, it is fulfilled with macro-
scopic accuracy. Using Eqs. (10)–(12), it is straightfor-
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H int
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sf l,( ) N ; n x,( ) φk,cos=
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ward to write the Hamiltonian Hm = H0 +  near the
minimum of the first nonvanishing order in (∆x):

(13)

where nm = n0 – k1rxm/k2r, (d2ε0/dx2)m = 2Ec, and gkm =

(N; nm, xm). Terms with the derivatives of Hint are
absent in Eq. (13) due to the inequality in (10). Equa-
tion (13) implies that (∆x)max ~ (gkm/EC)1/2. Using the
fact that EC ~ ω0(a/a0)2/5N–3/5 in the Thomas–Fermi
approximation [12] (here a, a0 ~ (1/Mω0)1/2 are the scat-
tering and oscillator lengths), we can represent the 1 !
xm ! N1/2 inequalities in the form

(14)

As is known [12], the (Na/a0) @ 1 relation occurs in
the Thomas–Fermi approximation. However,
N−1/2(Na/a0)2/5 ! 1. Owing to these relations, the condi-
tion (14) or (what is the same) (10) specifies the region
of the dense oscillation spectrum, where  ! ω0. Both
here and in what follows, we suppose that k1r = k2r = 1
for the sake of simplicity.

3. At a fixed n0 value, the principal contribution to
the partition function comes from the neighborhood of
the minimum at x = xm. The expression for Z(n0; xm; T)
is equal to

(15)

where β = 1/T, T is temperature, and I0(x)is the modified
Bessel function. Using Eq. (15), we come to the follow-
ing equation for the  value realizing the minimum of
the free energy:

(16)
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In addition to , the thermodynamic average of cosφk

is determined from Eq. (15). This average is equal to

(17)

The order parameters ,  describe a new

coherent state. There is the bound state of the  oscil-
lation quanta and the Josephson state generated by the
initial imbalance in the particle number, which corre-
sponds to the xm value. In addition, this state has the
equilibrium phase-coherence factor . The

 ≠ 0 value provides the equilibrium distortion of the
condensate shape. The equations obtained above imply
that the shape distortion is self-consistently coupled to
the xm value defining the equilibrium initial imbalance
in the particle number.

At T = 0, the  value reaches the minimum of the
thermodynamic energy

(18)

To determine the (T = 0) value, it is suitable to use
the following consideration. As is well known, the level
separations  change slowly depending on n in the
dense (quasiclassical) spectrum. For this reason, we can
suppose that  ≈ const ≡ ωb ! ω0. On this assumption,

the xm value does not depend on nm, and the  quantity
realizing the minimum of Em is equal to

(19)

(it is worth noting that (∂2Em/∂ ) > 0). Both here and

in what follows, the (N) ≡ g(sf, l)(N) denotation is
used. Taking Eq. (19) into account, one readily gets

(20)

(21)

The expressions for the energies imply, first, that we
obtain the minimum in the region of sufficiently dense
oscillation spectrum, which satisfies condition (14).
The minimum corresponds to the formation of the
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bound state for the , xm values. Second, as is seen
from Eq. (21), the absolute minimum of Em can be real-
ized under the conditions

(22)

These inequalities are met when the interaction matrix
elements g(sf, l)(N) are large enough. Let us estimate the
condensate parameters that are required for the exist-
ence of the absolute minimum. In the Thomas–Fermi
approximation, the g(sf)(N) @ EC inequality occurs pro-
vided that the total particle number is not very large,

namely, N ! (g/ω0)(a0/a)8/3. In turn, the g(l)2(N) @ 
relation holds true under the condition

N0.1[g2/(Ω1/2 )](a0/a)0.6 @ 1. Here, we use the fact
that EJ = ΩN. The latter condition is fulfilled for all

admissible parameters provided g2/(Ω1/2 ) ~ 1. It
should be emphasized that the right-hand-side inequal-
ities in Eq. (22) are much stronger than the condition
xm ! N1/2. These conditions imply that the libration
Josephson state forms the bound state with the conden-
sate oscillation rather than the self-trapping state.

4. The Hamiltonian (13) describes the dynamics of
the system that has the ground state with the parameters
xm,  and phase φk(0) = 0 at t = 0. In the ground state,
the initial imbalance in the particle number is equal to
|(∆N)0m | = N1/2xm = N1/2ωb/2EC. In the case considered
here, the canonical equations of motion have the form
∂φk/∂t = ∂hm/∂(∆x), ∂(∆x)/∂t = –∂hm/∂φk, where hm =

/N. The Hamiltonian  is obtained from Hm in
Eq. (13) at nm =  and g1m = . The  and 
quantities are determined in Eqs. (19) and (20), respec-
tively. The solutions of the equations of motion
describe the self-consistent oscillations of the initial
imbalance and condensate shape. The first oscillates
around the (∆N)0m value. The shape of the condensate
changes around that which corresponds to the 
value. Note that (∆x) = –∆n. For the libration state, the
maximum frequency of the oscillations is determined
by the expression

(23)

where ωm = (ECEJ)1/2 is the maximum oscillation fre-
quency for the “unperturbed” Josephson Hamiltonian (1).
In the Thomas–Fermi approximation, one readily finds
that EC ! ωm ! EJ. Taking into account that ωb @ EC (see
Eq. (11)) and supposing that ωb ~ EJ, we obtain

(24)

nm
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2
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3/2
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ωm
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ωm

--------
g1m

l( )
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-------- 
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Quite a different situation occurs for the self-trapping
states. In this case, we have

(25)

Taking the conditions (22) into account, one finds that

Eq. (25) implies that the ratio /ωm may take on an
arbitrary value.

It should be emphasized that the bound state arises
in the neighborhood of the minimum of the ε0(n0; x)
function, where the conditions (10) are met. The condi-
tions (10) specify the type of interaction between the
Josephson and oscillation degrees of freedom. In addi-
tion, the first condition in (10) imposes definite restric-
tions on the spectrum of the oscillation states, which
may effectively interact with the Josephson degrees of
freedom. Namely, the density of oscillation states
should satisfy the inequalities (14). The region of the
dense spectrum exists in the neighborhood of the bar-
rier top. In this case, according to the consideration pro-
posed above, the equilibrium bound state of the highly
excited oscillation and Josephson states is formed. The
existence of the bound state generates the equilibrium
distortion of the condensate shape specified by the 

ωm
sf( ) ECg1m

sf( )( )1/2
g sf( ) N( ),∼=

ωm
sf( )

ωm

---------- g sf( ) N( )
EC

------------------ 
 

1/2 g sf( ) N( )
EJ

------------------ 
 

1/2

∼

∼ g sf( ) N( )
EC

------------------ 
 

1/2 g
Ω
---- 

 
1/2

N–7/8.

ωm
sf( )

nm
value. This mechanism can provide the experimental
detection of the excited Josephson states. In addition,
Eqs. (21) imply that there quantum phase transitions to
a state with  ≠ 0 can be observed.

I am grateful to Yu.M. Kagan and L.A. Maksimov
for helpful discussions. This work was supported by the
Russian Foundation for Basic Research.
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A method using the atom–vacancy ordering phenomenon for the visualization of structural vacancies in crystals
was suggested and implemented. The ordered nonstoichiometric titanium monoxide Ti5O5 was taken as the
object of investigation, because the structural vacancies in this compound can be observed due to the formation
of continuous vacancy channels in certain crystallographic directions. The structural vacancies in the specially
oriented sample of ordered titanium monoxide were directly observed by high-resolution transmission electron
microscopy with a magnification of 4 × 106. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.72.Ji; 68.37.Lp; 61.72.Ff 
Structural vacancies are an important and inherent
element of the crystal structure of cubic (B1 structure)
carbides, nitrides, and oxides MXy (M is the group IV
or V transition metal and X = C, N, or O) forming a
group of strongly nonstoichiometric compounds [1].
The concentration of structural vacancies in them can
be as high as several tens of atomic percent. Inasmuch
as most of the strongly nonstoichiometric compounds
contain structural vacancies only in the nonmetallic
sublattice, their composition is written as MXy ≡
MXyh1 – y, where h is the nonmetallic structural
vacancy and 0.5 < y < 1.0. However, some compounds,
such as titanium and vanadium monoxides and niobium
nitride, have a double defectiveness, i.e., contain struc-
tural vacancies in both sublattices. Cubic titanium mon-
oxide TiOy ≡ TixOz ≡ Tixj1 – xOzh1 – z (y = z/x and j is
the structural vacancy in the metallic sublattice) has a
very broad homogeneity region from TiO0.7 to TiO1.25,
and the vacancy concentration in each of the sublattices
of TiOy monoxide can achieve 15–17 at. %. Due to the
interparticle interactions, the structural vacancies in
TiOy are ordered to form stable monoclinic Ti5O5 super-
structure (space group C2/m (A12m/1)) in the range
0.9 < O/Ti < 1.1 at temperatures below 1000–1200 K
[2, 3].

So far, the existence of both structural and thermal
vacancies has been confirmed by convincing, though
indirect, proofs based on the analysis of various proper-
ties as functions of temperature and composition. In
this work, the method is proposed and implemented for
the observation of structural vacancies using the order-
ing effect in titanium monoxide.

High-resolution transmission electron microscopy
(HTEM) was used as a method for the observation of
structural vacancies [4]. This method allows the direct
0021-3640/03/7701- $24.00 © 20025
observation of the network of crystal atomic sites. The
corresponding image is a result of the superposition of
tens of atomic layers. In the disordered state, structural
vacancies are randomly distributed, so that each col-
umn of lattice sites contains both atoms and vacancies.
Since the different columns have the same relative con-
tent of atoms and vacancies, they do not contrast in the
image, and the structural vacancies are not seen.
Because of the random distribution, the thermal vacan-
cies have not been observed so far, although they exist
in all crystals at any finite temperature.

The structural vacancies can be visualized in the
ordered nonstoichiometric compound. The structural
vacancies in these compounds are arranged in an
ordered way, so that one can identify the directions
which pass only through the vacancy sites to form con-
tinuous vacancy channels. In the case of ideal ordering,
the atomic columns and vacancy channels are arranged
with a certain periodicity, so that the HTEM images
should have contrast at those sites where the atomic
rows are disrupted by the vacancy channels oriented
perpendicular to the image plane.

Since the nonmetallic interstitial O, C, and N atoms
are weaker scatterers than the transition metals, the
main information in the HTEM images is associated
with the metallic sublattice. For this reason, the struc-
tural vacancies cannot be observed in the ordered car-
bides and nitrites, because they are situated solely in the
nonmetallic sublattice. Consequently, those ordered
nonstoichiometric compounds in which the vacancy
concentration in the metallic sublattice is large are of
the greatest interest for vacancy observation. The
ordered titanium monoxide Ti5O5 (Ti5jO5h) contain-
ing 16.7 at. % vacancies in each of the titanium and
oxygen sublattices is the optimal object for the direct
observation of structural vacancies.
003 MAIK “Nauka/Interperiodica”
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A sample of disordered titanium monoxide TiO1.087

(Ti0.833O0.906) was prepared by high-temperature vac-
uum synthesis from titanium and titanium dioxide pow-
ders. To obtain the ordered state, the synthesized sam-
ple was annealed at 1330 K for 4 h followed by slow
cooling to 300 K at a rate of 10 K h–1. The synthesis
method and the synthesis conditions, as well as the
results of certifying the samples of the nonstoichiomet-
ric disordered and ordered titanium monoxide over the
entire range of existence of the cubic phase, are
described in detail in [5].

The crystal structure of titanium monoxide was
studied by X-ray structural analysis on a Siemens
D-500 autodiffractometer in the Bragg–Brentano pho-
tography geometry using CuKα1, 2 radiation in the 2θ
range from 10° to 160° with the step ∆(2θ) = 0.025°.
The photography was carried out on finely divided tita-
nium monoxide powders. The micro- and crystal struc-
tures of titanium monoxide were also studied by elec-
tron microscopy and electron diffraction. The micro-
structure was studied on a foil with a thickness of no
greater than 50 nm.

The high-atomic-resolution images were made
using a JEM-4000FX electron microscope (wavelength
λ = 0.00164 nm). To determine the orientation of the
ordered Ti5O5 monoxide about the electron-beam direc-
tion, the sample structure was preliminary studied by
electron diffraction. Then the same sample was studied
by HTEM, with the electron diffraction angle relative to
the high-resolution images being zero, so that the elec-
tron beam direction relative to the sample did not
change. Electron diffraction was studied using a Philips
CM-200 electron microscope with a beam width of
70 nm and wavelength λ = 0.00251 nm.

Analysis of the X-ray and electron diffraction data
showed that the atomic and vacancy ordering in TiOy

corresponds to the monoclinic Ti5O5 (Ti5jO5h) super-
structure belonging to the space group C2/m (A12m/1)
described in [3, 5–10]. The primitive translation vectors
of this superstructure in the coordinates of the basis B1
structure are am = {10–1}B1, bm = {0 1 0}B1, and cm =
{1 0 2}B1.

The determination of the TixOz  Ti5O5 order–
disorder phase-transition channel and the calculation of
the distribution functions n(r) for the titanium and oxy-
gen atoms [1, 3, 11] showed that the titanium distribu-
tion in the monoclinic superstructure (space group
C2/m) of TixOz monoxide is described as

(1)

     

nTi xI yI zI, ,( )

=  x η10
Ti /6( ) 2πzIcos η4

Ti/3( ) 4π xI zI+( )/3[ ]cos––

– η I
Ti/3( ) 2π 2xI zI–( )/3[ ] ,cos
 

and the oxygen distribution in the same superstructure
is described by the function

(2)
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 are the coordinates of sites 
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ordered sublattice and 
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 are the long-range
order parameters. A completely ordered state of tita-
nium monoxide is achieved when all long-range order
parameters are equal to unity for each sublattice; i.e.,
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 = 1. The distribution functions 

 

n

 

Ti, O

 

(

 

r

 

) 

 

≡

 

n

 

Ti, O

 

(

 

x

 

I

 

, 

 

y

 

I

 

, 

 

z

 

I

 

) describe the structure of an ordered crys-
tal in analytic form suitable for direct quantitative cal-
culations. These functions are invariant under all sym-
metry transformations of the ordered crystal lattice and
have a physical meaning of the probability of finding an
atom of a given sort at site 

 

r

 

.
The analysis of the distribution functions (1) and (2)

showed that the ordered monoclinic Ti

 

5

 

O
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 monoxide
has two types of continuous vacancy channels and
allowed their directions to be determined. Vacancy
channels of the first type pass through the vacant sites
of only one sublattice, either titanium or oxygen. In the
general form, the vacancy channels have the following
directions: [2
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 + 1), 

 

±2n + 1, 2m + 1]C2/m ≡
[3(2m + 1), ±2n + 1, 0]B1, where m and n are integers.

The vacancy channels of the second type pass
through the sequentially alternating nonmetallic and
metallic vacancies. These channels have the following
directions: [2m + 1, ±2n + 1, 0]C2/m ≡ [2m + 1, ±2n + 1,
±2(m + 1)]B1 and [1, ±2n, 2m + 1]C2/m ≡ [2(m + 1), ±2n,
4m + 1]B1, where m and n are integers, as well as [2m –
2p – 1, ±2n + 1, m + 2p + 1]C2/m ≡ [3m, ±2n + 1, 3(2p +
1)]B1 (m ≠ 0, n, and p are integers) and [2m – 2p – 1,
±2n, m + 2p + 1]C2/m ≡ [3m, ±2n, 3(2p + 1)]B1 (n ≠ 0, m,
and p are integers).

A search for the directions that are most favorable to
the observation of vacancy channels in the ordered
monoclinic (space group C2/m) Ti5O5 monoxide using
high-resolution electron microscopy was accomplished
by computer simulation. Only those vacancy channels
can be observed whose directions coincide with the
electron-beam direction. Besides, to observe a vacancy
in the experiment, it is essential that the distances
between the atomic rows and between the atoms in the
row be no less than the electron microscope resolution
(0.09 nm) in the atomic projection onto the plane per-
pendicular to the chosen direction. All things being the
same, a decrease in the foil thickness is favorable to the
vacancy visualization. The analysis of the crystal lattice
of the ordered Ti5O5 monoxide with allowance for the
interatomic and interplanar spacing and the revealed
directions of the continuous vacancy channels showed

nO xI yI zI, ,( )

=  z η10
O /6( ) 2πzIcos η4

O/3( ) 4π xI zI+( )/3[ ]cos–+

+ η I
O/3( ) 2π 2xI zI–( )/3[ ] ,cos
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that three of them are most favorable for experimental
observation: [1 0 1]C2/m ≡ [2 0 1]B1 (Fig. 1), [1 1 0]C2/m ≡
[1 1 –1]B1 (Fig. 2), and [0 1 1]C2/m ≡ [1 1 2]B1 (Fig. 3a).
The visible distances between the atomic rows and
between the atoms in the rows are the largest for these
directions. To imagine how the atomic and vacancy dis-
tributions appear in the section perpendicular to the
chosen direction, the atomic and vacancy projections
onto the planes perpendicular to this direction in an
ideal completely ordered monoclinic phase Ti5O5 were
determined for each of the indicated directions. The
unfilled sites in the projection correspond to the
vacancy channels.

The vacancy channels in the [1 0 1]C2/m ≡ [2 0 1]B1
direction perpendicular to the family of (1 0 4)C2/m
planes (Fig. 1) or in the [1 1 0]C2/m ≡ [1 1 –1]B1 direction
perpendicular to the (2 1 –1)C2/m planes (Fig. 2) are
channels of the second type; they pass through the
sequentially alternating nonmetallic and metallic
vacancies. The third vacancy-channel direction is
[0 1 1]C2/m ≡ [1 1 2]B1; i.e., it is a normal to the family
of (–1 1 4)C2/m planes (Fig. 3a). In this case, the vacancy
channel of the first type passes through the empty sites
of either the metallic or the nonmetallic sublattice. The

Fig. 1. The distribution of the structural vacancies and the
titanium and oxygen atoms observed in the projection
(along the [1 0 1]C2/m ≡ [2 0 1]B1 direction) onto the
(1 0 4)C2/m ≡ (2 0 1)B1 plane of the ordered monoclinic tita-
nium monoxide Ti5O5 (space group C2/m). The visible dis-
tance drow between the rows of like atoms is aB1/2. The dis-
continuities between the atoms of the same row indicate the
vacancy channels in the [1 0 1]C2/m ≡ [2 0 1]B1 direction.
The distance between the vacancy-separated atoms is

( /5)aB1. The contour of the unit-cell section by the
(1 0 4)C2/m ≡ (2 0 1)B1 plane is also shown.

5
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directions of atomic rows, the visible distances drow
between the rows of like atoms, and the visible dis-
tances between two vacancy-separated atoms are given
in Figs. 1, 2, and 3a.

The visible distance between two vacancy-separated
atoms is maximal for the atomic planes (2 1 –1)C2/m
observed in the [1 1 0]C2/m ≡ [1 1 –1]B1 direction

(Fig. 2); it is equal to ( /3)aB1, or 0.3408 nm for aB1 =
0.4174 nm. In the two other directions, the visible dis-
tances between the vacancy-separated atoms are

smaller and are equal to ( /2)aB1 = 0.2951 nm for the

[0 1 1]C2/m ≡ [1 1 2]B1 direction (Fig. 3a) and ( /5)aB1 =
0.1867 nm for the [1 0 1]C2/m ≡ [2 0 1]B1 direction (Fig. 1).
Thus, the [1 1 0]C2/m ≡ [1 1 –1]B1 direction is most suit-
able for the direct observation of vacancies by high-res-
olution electron microscopy.

The visible distance drow = dTi–Ti ≡ dO–O between
rows of like atoms is maximal if the atoms and vacan-
cies in the ordered Ti5O5 phase are projected in the
[0 1 1]C2/m ≡ [1 1 2]B1 direction onto the (–1 1 4)C2/m ≡
(1 1 2)B1 plane perpendicular to the projection direction

(Fig. 3a); in this case, drow = ( /3)aB1, or 0.2410 nm

6

2

5

3

Fig. 2. Atomic and vacancy projections in the [1 1 0]C2/m ≡
[1 1 –1]B1 direction onto the (2 1 –1)C2/m ≡ (1 1 –1)B1 plane
of the ordered monoclinic Ti5O5 phase. The visible distance

drow between the rows of like atoms is ( /4)aB1. The
directions of vacancy channels are [1 1 0]C2/m ≡ [1 1 –1]B1;
the distance between the vacancy-separated atoms is

( /3)aB1. The contour of the unit-cell section by the
(2 1 −1)C2/m ≡ (1 1 –1)B1 plane is also shown.
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Fig. 3. Distribution of the structural vacancies and the Ti and O atoms in the [0 1 1]C2/m ≡ [1 1 2]B1 direction with respect to the
unit cell of the ordered monoclinic (space group C2/m) Ti5O5 oxide (atomic and vacancy projections in the [0 1 1]C2/m ≡ [1 1 2]B1
direction onto the (–114)C2/m ≡ (112)B1 plane): (a) computer simulation with both Ti and O atoms; (b) experimental high-resolution

pattern (4 × 106 magnification); and (c) computer simulation with only the Ti atoms (the order of alternation of the distribution func-
tion nTi(r) is shown for the titanium sites in the [–1 1 0]B1 rows). The visible model distance between rows of like atoms is drow =

/3aB1 = 0.241 nm (for aB1 = 0.4174 nm), and the experimental distance between the rows is drow = 0.221 nm. The discontinuities
between the atoms of the same row in the model drawings correspond to the vacancy channels in the [0 1 1]C2/m direction. The

visible distance between the vacancy-separated atoms is /2aB1 = 0.295 nm. The contour of the unit-cell section by the
(−1 1 4)C2/m plane is shown in the model drawings.

3

2

for aB1 = 0.4174 nm. If the atoms are projected in the
[1 0 1]C2/m ≡ [2 0 1]B1 direction onto the plane of the
(1 0 4)C2/m ≡ (2 0 1)B1 family, the visible distance is
drow = aB1/2 and equals 0.2087 nm; for the projection in
the [1 1 0]C2/m ≡ [1 1 –1]B1 direction onto the (2 1 –1)C2/m ≡
(1 1 –1)B1 plane, it is equal to ( /4)aB1 = 0.1476 nm.
Therefore, the atomic rows are observed most distinctly
in the [0 1 1]C2/m direction.

One of the experimental diffraction patterns of the
ordered monoclinic (space group C2/m) TiO1.087 mon-
oxide is shown in Fig. 4; the direction of a normal
pointed to the figure plane is [0 1 1]C2/m ≡ [1 1 2]B1. As
was noted above, the visible distance between the rows
of like atoms is the largest in this direction. In addition
to the structural reflections (high-intensity spots), less
intense superstructural reflections are seen from the
twins that are present in the sample. In addition, a sys-
tem of weak diffuse bands parallel to the [

and  directions, slightly shifted from the
structural sites to the large-wavenumber region of the
reciprocal space, is seen in the diffraction pattern.
These bands form a system of geometrically similar
parallelograms concentrically arranged near the parent
(000) spot. None of the bands passes through the (000)
site. The diffuse scattering of this type is primarily
caused by the static displacements of atoms surround-
ing vacancies and by the correlative short-range order.
The diffuse scattering bands were observed earlier [12]

2

2 0 –1[ ] B1
*

0 2 –1[ ] B1
*

in the diffraction pattern of the superstoichiometric
cubic niobium nitride NbN1.2 with vacancies in the nio-
bium sublattice.

A high-resolution experimental pattern (4 × 106

magnification) obtained for the ordered monoclinic
(space group C2/m) TiO1.087 sample studied by electron
diffraction (Fig. 4) is presented in Fig. 3b. The image
was obtained in the (–1 1 4)C2/m ≡ (1 1 2)B1 plane per-
pendicular to the [0 1 1]C2/m ≡ [1 1 2]B1 direction; the
atomic rows are clearly seen in the image.

Since the thickness of the sample under study was
about 50 nm, the pattern is a superposition of several
tens of layers; in the observed area, atoms are arranged
in well-defined rows only in the [–1 1 0]B1 direction.
The atomic chains in the row are disrupted; the discon-
tinuity sites correspond to vacancies, but their arrange-
ment is not perfectly periodic. The regions with a dark
background in the microphotograph (Fig. 3b) corre-
spond to larger sample thickness. The oxygen atoms are
not seen in the experimental pattern (Fig. 3b), because
their scattering factor is three times smaller than the
scattering factor of the titanium atoms. For comparison,
the pattern obtained by computer simulation with inclu-
sion of only titanium atoms is presented in Fig. 3c; it
better fits the real experimental pattern that is shown in
Fig. 3b. In the general case, the distribution function
nTi(r) (1) takes four values that are equal to the proba-
bility of finding Ti atom at the sites of titanium fcc
sublattice in the TiOy ≡ TixOz (y = z/x) monoxide: nTi1 =
JETP LETTERS      Vol. 77      No. 1      2003
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x – η10/6 – η4/3 – η1/3, nTi2 = x + η10/6 – η4/3 + η1/3,
nTi3 = x – η10/6 + η4/6 + η1/6, and nTi4 = x + η10/6 +
η4/6 – η1/6. The value of nTi1 corresponds to the
vacancy site in the titanium sublattice. One can see
from Fig. 3c that the probabilities in the titanium rows
alternate in the [–1 1 0]B1 direction in the following
order: n1, n4, n3, n2, n3, n4, n1, … . In the model image,
every five titanium atoms are separated by the metallic
structural vacancy (the probability of finding titanium
atom equals n1). Although the alternation of atoms and
vacancies in the experimental image is not strictly peri-
odic, it is similar, on the whole, to the model alterna-
tion. The periodicity in atomic rows can be interrupted
by a combination of several factors: (i) the composition
of the experimentally studied TiO1.087 monoxide is dif-
ferent from the equiatomic composition of the titanium
monoxide TiO1.00 (Ti0.833O0.833), which can form an
ideal ordered phase; (ii) the degree of long-range order-
ing in the titanium sublattice of the sample studied is
not maximal; and (iii) apart from the long-range order,
the ordered titanium monoxide under study possesses
the short-range order due to the static relaxational dis-
placements of atoms near the structural vacancies, as
well as the correlative [1, 11, 13, 14] short-range order.
Note that none of these factors can individually inter-
rupt the periodicity in the arrangement of vacancy
channels.

Thus, structural vacancies can be directly observed
using high-resolution transmission electron micros-
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–4 –4 4
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Fig. 4. Electron diffraction by the ordered monoclinic tita-
nium monoxide TiO1.087 (space group C2/m) with the
parameter aB1 = 0.4174 nm of the basis crystal lattice (elec-
tron beam direction [0 1 1]C2/m ≡ [1 1 2]B1). The structural
reflections are labeled indices of the basis B1 structure; the
remaining reflections are due to the presence of superstruc-
ture and to the twinning of the basis cubic phase.
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copy. The ordered titanium monoxide TiO1.087 having
monoclinic Ti5O5 superstructure (space group C2/m)
was used as the object of investigation. The observation
of structural vacancies in TiO1.087 with a magnification
of 4 × 106 became possible due to the ordering and ensu-
ing formation of continuous vacancy channels, as well as
to the special sample orientation for which the electron
beam and vacancy channel directions coincided.
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We discuss the rate of relaxation of the total spin in a two-electron droplet in the vicinity of the magnetic-field-
driven singlet–triplet transition. The total spin relaxation is attributed to spin–orbit and electron–phonon inter-
actions. The relaxation process is found to depend on the spin of ground and excited states. This asymmetry
is used to explain puzzles in recent high source–drain transport experiments. © 2003 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 73.21.La
The electronic structure of artificial atoms in quan-
tum dots (QDs) [1] can be directly studied in transport
measurements. Such voltage-tunable experiments in a
varying magnetic field (e.g., see [1–7] and the works
cited therein) enable researchers to change the number
of electrons confined in a QD, as well as the mutual
arrangement of electronic energy levels. The arrange-
ment of levels depends on the total spin of electronic
configurations [3, 4]. The application of the magnetic
field induces transitions in the ground state between
states characterized by different total spin. In this paper,
we focus on the role played by total spin in the simplest
system, a two-electron droplet. At low magnetic fields,
the ground state is a singlet with total spin S = 0, while
at higher magnetic fields the ground state is a triplet
with total spin S = 1, in analogy to the parahelium–
orthohelium transition, already studied theoretically in
[4, 8]. Both singlet and triplet states and the singlet–
triplet (ST) transition have been observed experimen-
tally in both vertical [2, 6] and lateral QDs [5, 7]. How-
ever, while at least one of the triplet excited states is
observed for magnetic fields below the ST transition,
the singlet excited state is not seen past the ST transi-
tion, resulting in asymmetric (in B) source–drain trans-
port spectra. In the present work, we present model cal-
culations of total spin relaxation due to the mixture of
spin–orbit (SO) and electron–phonon interaction,
which helps to explain the unusual behavior of the lev-
els associated with the different total spin seen in trans-
port experiments.

We start with the SO interaction Hamiltonian for a
two-dimensional (2D) electron in a quantum well, writ-
ten as [9–13]

(1)

¶ This article was submitted by the authors in English.

HSO α k ŝ×( )z β k ŝ⋅( ),–=
0021-3640/03/7701- $24.00 © 20030
where the layer plane is determined by the principal
axes (x, y) of the crystal. This expression is a combina-
tion of the Rashba term [14] (with the coefficient α) and
a 2D analogue of the Dresselhaus term (with the coeffi-
cient β) [10, 11]. We use the following notations: k =

−i∇  + eA/c and  = (kx, –ky) are 2D vectors;  are
the Pauli matrices. The β coefficient is determined by
the formula [10, 11]

(2)

where G is the band-gap width of the semiconductor, γso

is the spin–orbit constant [15], and a0 = "2ε/m*e2 is the
effective Bohr radius. (For GaAs: G = 1.52 eV, γso =
0.07, a0 = 9.95 nm, Ry* ≈ 5.74 meV, m* = 0.067me, and
@ = 0.0043.) The parameter d is determined by averag-
ing the square of the wave-vector  component of a 2D
electron in the layer: d–2 = –〈 f |d2/dz2|f 〉 , where f(z) is the
corresponding size-quantized function. (In the well, we

consider that f = (2/π)1/4 / .)

The Hamiltonian of the system of two interacting

electrons in the harmonic potential (x2 + y2)

may be written in center-of-mass (CM) and relative
coordinates as * = Hm(r) + ****M(R) + *S. Here, R =
(r1 + r2)/2 and r = r1 – r2 are CM and relative (Jacobi)
coordinates of two particles. The first term in the
Hamiltonian is

(3)
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(here, ωc = eB/m*c; µ = m*/2 is the reduced mass and
h = ωc/ω0 is the dimensionless magnetic field). The
expression for ****M(R) may be found from Eq. (3) for
Hm after the substitution r  R, µ  } = 2m*,
m  M, and ε  ∞.

The term *S is the spin-dependent part of the
Hamiltonian, namely, a combination of the Zeeman and
spin–orbit coupling terms: *S =

. For two electrons, the SO

part  +  can also be written in CM and relative

coordinates R and r. Denoting  =  + ,  =  – ,
we obtain

(4)

where

and

(5)

The new operators are

[(X, Y) and (x, y) are the components of 2D vectors R
and r], b = m*ωc/2", and

The wave function of the two-electron system may
be written in the form ΨM(R)eiMΦψm(r)eimφ ,
where σ1 and σ2 are the spin variables of the electrons.
We expand the wave function in the basis set of the sin-
glet and triplet states

(6)

Here, Ψ0 is the ground-state function (i.e., it obeys the

equation ****0Ψ0 = "ω0 Ψ0), while the func-
tions ψ0, 1 have to be found from the equations

(7)

The analytical solution of Eq. (7) could be found if

l = (h2 + 4)–1/4 ! a0 or l @ a0. The l ! a0 case
has been studied perturbatively in [8]. Here we consider
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the opposite limit l @ a0 (this seems to be more relevant
to a typical experimental situation). Then, in the leading
approximation, the solutions of Eqs. (7) are the states of
a one-dimensional oscillator with mass µ and fre-

quency ω0  localized in the vicinity of r0 =

[2 /a0(1 + h2/4)]1/3 @ l0 (here we have designated l0 =

). In this approximation, the energy mea-
sured from the ground state is

(8)

(g* = gm*/me ≈ 0.029). The equation determining the

ST crossing thereby takes the form  = 0 (if a0/l0 =

1/3, then for the ST crossing point we obtain h = 0.64
at Sz = 0, whereas, for the same a0/l0 and Sz, the exact
numerical calculation [8] gives h = 0.69).

We now turn to the effect of SO interaction on the
mixing of singlet and triplet states. Operators Σ± and Σz

commute with S2; therefore, the first and third terms in
Eq. (4) are not responsible for mixing of the singlet and
triplet states. On the contrary, the second term in Eq. (4)
results in this mixing. Indeed, let |S, Sz〉  be the normal-
ized spin states of two electrons. When operating on the
state |0, 0〉 , the term HrSO yields the following nonzero
matrix elements: 〈1, 1|HrSO |0, 0〉  and 〈1, –1|HrSO |0, 0〉 .

(One can check that |0, 0〉 = |1, ±1〉 .)

Hence, we see immediately that the |0, 0〉  singlet
state is mixed with the |1, ±1〉  triplet states but not with
the |1, 0〉  state. This state is therefore long-lived.

For the states that are coupled, the expansion in
terms of the small parameter a0/l0 leads to the following
result for the mixing matrix element between |s〉  and
|t, 1〉  states:

(9)

If we take into account the Rashba term, we find that
another nonzero matrix element is 〈s |HrSO |t, –1〉; how-
ever, the state |t, 0〉  is never mixed with the singlet. Fur-
ther, we neglect the Rashba coupling (usually there is
α < β in GaAs heterostructures; in any case, α vanishes
in the case of an ideally symmetric quantum well).
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Using Eq. (9), we find the hybridized states |S 〉  =
 + , and |T 〉  =  + , where

(10)

(δE = ). The corresponding energies
are ET/S = E0 + (δ1, 1 ± δE)/2.

The next step in our study is the calculation of the
|T 〉   |S 〉  (or |S 〉   |T 〉) relaxation rate for the case
where δ1, 1 > 0 (or δ1, 1 < 0). Evidently, the main relax-
ation channel is determined by emission of the acoustic
phonon with energy "csk = δE, where k = (q, kz) is the
phonon wave vector and cs is the mean sound velocity
(we use the so-called isotropic model, i.e., cs does not
depend on the polarization and on the k direction; we
consider that cs = 3.37 × 105 cm/s). The probability of
this event is determined by

(11)

where  is the appropriate matrix element

(12)

Here, the phonon field is averaged over the angle φ =
r ∧  q:

(13)

[s is the polarization, V is the sample volume, and

 is the renormalized vertex, which includes
the deformation and piezoelectric fields created by the
phonon]. The integration with respect to z has already
been performed and reduces to the renormalization

 = Us(q, kz)F(kz), where the formfactor is F(kz) =

. By using Eqs. (6) and (12) and the expan-
sion J0(qr) ≈ J0(qr0) – q(r – r0)J1(qr0), we obtain the
matrix element (12), and, after the substitution into
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Eq. (11), we find that the relaxation rate is proportional

to . The latter is represented as [12]

(14)

The summation involves averaging over the directions
of the polarization unit vectors for both components of
the electron–phonon interaction. The nominal times for
the deformation and piezoelectric interactions in GaAs
are τD ≈ 0.8 ps and τP ≈ 35 ps [12, 16]. The nominal
momentum is p0 ≈ 2.52 × 106/cm [16]. We also refer to
[12, 16] for details concerning the meaning and the
expressions of these values in terms of the GaAs mate-
rial parameters.

Finally, using Eqs. (2), (9), (10), (12)–(14), and
(11), we calculate the relaxation time

where

[see the definitions for + and $1, 1 in Eqs. (8), (9)],

and

As an illustration, the figure shows the relaxation rate as
a function of the magnetic field on the logarithmic scale
(the main picture) and on the usual scale (the inset). The
relaxation time is seen to have a sharp maximum in the
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vicinity of the ST crossing but constitutes a compara-
tively small value (of the order of 0.1 µs) in the regions
where the singlet and triplet lines are resolved. The
nonmonotonic behavior of τ to the right of the ST cross-
ing originates from the correlations between the wave-
function characteristic distance r0 and the wavelength
"cs/δE of the emitted phonon.

We now turn to the discussion of the manner in
which the ST relaxation could influence the transport
spectroscopy through the QD states. By studying the
kinetic processes of filling and emptying the dot in the
presence of a large “source–drain” voltage, we estimate
the effective electron lifetime inside the dot at the
“working level,” i.e., at the level which participates in
the transport through the dot. This effective lifetime τdot

under the experimental conditions of [6, 7] we estimate
to be on the order of 1 µs, and this value should evi-
dently be compared with the ST relaxation time calcu-
lated above. If the working level is exactly the upper
level of the two-electron droplet, then the relaxation
could influence the current. Namely, if τ < τdot, then the
working level could be emptied due to the ST relax-
ation occurring within the dot. In this case, the current
through the upper two-electron state becomes negligi-
ble. The relaxation process is asymmetric across the ST
transition. Before the transition, the “working level”
involves |t, ±1〉  and |t, 0〉  (6) triplet states. (The Zeeman
splitting is not resolved.) The |t, 0〉  state is long-lived
and hence is observed in experiment, while the |t, 1〉
state relaxes efficiently to the S = 0 singlet state |s〉 . Past
the ST transition, the |t, 1〉  state is the ground state, but
the excited state is the singlet. The singlet state relaxes
efficiently to the |t, 1〉  ground state. Hence, this asym-
metry in the relaxation processes associated with the

The ST relaxation time τ calculated for a0/l0 = 1/3 and d =
5 nm. The maximum corresponds to ST transition at
ωc/ω0 = 0.64. See the text for details.
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singlet–triplet transition could be responsible for the
anomalies observed in the transport experiments [6, 7].

In closing, it is worth mentioning other relaxation
channels that are not taken into account in our calcula-
tion but that, in the framework of the considered mech-
anism, could additionally reduce the ST relaxation
time. These are provided by special phonon modes
(e.g., by surface and confinement phonons excited in
the heterojunction) and certainly by the SO Rashba
coupling if the latter is significant.

The authors thank A. Sachrajda, D.G. Austing, and
J. Kyriakidis for discussions. S.D. acknowledges the
support of the Russian Foundation for Basic Research
and thanks the Institute for Microstructural Science
(Ottawa), where this project was initiated, for hos-
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A premature electric breakdown caused by the formation of a strong-field domain under conditions of negative
differential conductivity in the 6H–SiC n+–n––n+ structure optimized for ultrahigh-frequency measurements
was observed in the range of electric fields corresponding to the Bloch oscillation regime in a natural 6H–SiC
superlattice. The experimental results and ensuing estimates indicate that this domain is mobile and, hence,
oscillating, allowing the microwave oscillations that are rapidly damped under conditions of avalanche break-
down in a natural 6H–SiC superlattice to be forecasted. Crystal perfectness of a natural 6H–SiC superlattice
made it possible to directly observe the Wannier–Stark localization up to electric breakdown, i.e., during the
natural crystal lifetime. This was accomplished by the optical photoelectric transformation method in the mul-
tiplication regime for a photocurrent created by photons with above-bandgap energy. It was shown that the Wan-
nier–Stark localization, which involves only electrons, occurs in natural 6H–SiC superlattice up to fields that
are almost equal to the breakdown field in 6H–SiC, unresponsively to band mixing, i.e., to the fundamental
destroyer of the Wannier–Stark localization. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Cd; 72.20.Ht
The theory of electrical conductivity in crystals [1,
2] predicts that, under the action of an increasing exter-
nal uniform electric field F, the monotonic translational
electron motion turns into oscillations at a certain F.
This phenomenon was called Bloch oscillations (BOs)
or Bragg reflection, by analogy with the well-known
wave effect. In this case, the band spectrum splits into
discrete levels, so-called Wannier–Stark ladders. The
BO effect arises in a sufficiently strong field for which
the following relations are fulfilled:

(1)

(2)

Here, " is Planck’s constant, e is electron charge, a is
lattice constant, τ is the scattering time, l is the electron
(hole) mean free path, and E1 is the lower conduction
band width. In the electric field satisfying Eqs. (1) and
(2), an electron can ballistically reach, with some prob-
ability, the miniband edge to undergo Bragg reflection.
Thereafter, the electron moves back in both k and real
spaces; this means, in fact, a decrease in current with a
rise in electric field. In other words, negative differen-
tial conductivity (NDC) arises in the crystal. The elec-
tron becomes localized in a finite region whose size
decreases with increasing field, and the quantization of
its motion in this region gives rise to discrete energy
levels separated by the energy eFa (Stark splitting).
This phenomenon is known as the Wannier–Stark local-
ization (WSL). It follows that, to observe the BO effect
in conventional semiconductors, where E1 is as large as
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several electron volts, crystal-destroying fields are
required. For this reason, an effort was undertaken to
prepare artificial crystals with a superlattice (SL) [3].

SLs based on a sequence of AlAs–GaAs heterojunc-
tions and their modifications have gained the greatest
acceptance. Since the SL spacing is larger than the base
lattice spacing, while the conduction band is split into a
set of narrow bands (minibands), the lowest of which
may be as narrow as several tens of millielectron volts,
the threshold field determined by Eqs. (1) and (2) will
be substantially lower for the SL. The optical and elec-
trical transport studies aimed at observing the above-
mentioned effects were carried out mostly with the SLs
of this type [4–10]. These studies can be briefly sum-
marized as follows: certain WSL effects were observed
in these SLs. However, their magnitudes were too small
to be of practical importance. These effects are unique
and attractive not only because of their fundamental
nature, but also because they hold obvious practical
promise by themselves. In turn, the practical signifi-
cance of the observed effects would also be a strong
argument in favor of the correctness of solutions [2]
against the theoretical disproofs [11–13] that consider
the WSL regime impossible because of the inevitable
band mixing in an electric field and ensuing delocaliza-
tion due to the change-carrier transfer to the upper
bands.

Note, however, that the SLs with heterojunctions
and, in particular, the AlAs–GaAs SL are not the only
objects for such investigations. It was shown in a num-
ber of works [14–17] that the superstructural polytypic
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(hexagonal and rhombohedral) SiC crystals display in
many experiments unique properties caused by the
WSL and BO. Recall that the field in this case should
be aligned with the SL axis, which coincides with the
crystal axis. In [18–21], the Wannier–Stark resonances
were observed with a rather high NDC, evidencing the
development of the WSL process in these crystals from
BO to the complete localization of the lower miniband
and even to the electron delocalization through reso-
nance tunneling.

In this work, new results on electric-field-induced
electron localization in a natural superstructural 6H–
SiC crystal are presented. Previous results [20] have
shown that electron drift in a specially prepared triode
structure displays pronounced NDC at a certain field
satisfying Eq. (1). This result was obtained in the static
measurement mode. Further analysis invoking experi-
mental miniband-spectrum parameters such as E1 and
E12 [20] showed that the NDC is, most likely, caused by
the BO regime [21]. A further step in this direction con-
sisted in the design of a new homogeneous diode struc-
ture with electron conductivity for the direct measure-
ments of the current–voltage characteristics in fields
ranging from 0 to 200 kV/cm, i.e., near the BO thresh-
old fields obtained in [18]. Such an n+–n––n+ diode
structure optimized for the ultrahigh-frequency mea-
surements was fabricated by the epitaxial technique.
On a highly doped Lely-type substrate, an epitaxial n–

layer was formed with the extremely low concentration
(1015–1016 cm–3) of a residual donor impurity, in which
the electric field was concentrated, while the upper
highly doped contact n+ layer was formed by ion-
implantation doping. The geometric sizes of the mesa
structure were 40 × 3 × 3 µm. The current–voltage char-
acteristic (CVC) of this structure (Fig. 1) shows no
prominent features below a certain bias and is close to
linear. Of interest is the curve portion where, at a certain
bias, the current in the structure increases drastically

Fig. 1. Current–voltage characteristic of the 6H–SiC n+–n––n+

diode structure.
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with light emission. The spectrum of this emission
coincided with the emission spectrum of the p–n-junc-
tion breakdown. However, the strength of a uniform
field did not exceed 150 kV/cm, which is lower, by
more than 15 times, than the known lowest value of the
breakdown field in 6H–SiC. Such a field deficiency can
probably be overcome through the formation of a field
domain in the base region. The formation of a field
domain is known to be accompanied by the appearance
of NDC in crystal [22]. According to the aforesaid, the
NDC observed at 150 kV/cm in 6H–SiC was caused by
the BO regime [18].

The answer to the question of whether the domain is
static or mobile is of fundamental importance. If the
domain is mobile, one should expect microwave gener-
ation. The CVC in Fig. 2 counts in favor of the latter.
Indeed, in this particular case, the localized domain
would have the width d = U/Fbr . At U = 50 V and Fbr =
2000 kV/cm one has d ≤ 0.25 µm. For the static
domain, the CVC would show a plateau with the differ-
ential resistance R = L2/εvS, where L is the width of the
n– region, ε is the dielectric constant of the semiconduc-
tor, v  is the saturated electron-drift velocity, and S is the
area of the n– region. For the unipolar diode n+–n––n+

structure of interest with ε = 10–12 F/cm, v  = 2 ×
106 cm/s, L = 3 µm, and S = 1.3 × 10–5 cm2, the differ-
ential resistance R is equal to 3 × 103 Ω (broken line in
Fig. 4), whereas the differential resistance in the break-
down region is 10–20 Ω .

For a mobile domain, the electron–hole-pair gener-
ation rate in the breakdown region (on the assumption
that the generation is uniform and that the recombina-
tion can be ignored because of a fast transit) would be
G = I/SqL, giving G = 1.2 × 1026 cm–3/s for I = 100 mA.
The theoretical estimate of the generation rate can be
made using Eq. (12b) from [23] for the mobile Gunn
domains. Using aα = 1 × 106 cm–1 [16], nr = 1016 cm–3,
one obtains G = 2 × 1026 cm–3/s. This can be considered

Fig. 2. General view of the 6H–SiC n+–n––n+ triode struc-
ture with a p–n junction gate.
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as a good agreement confirming the assumption about
the mobile domain.

It is known that the action of an electric field on a
dipole (domain in our case) brings about its transforma-
tion up to destruction. To verify this, a comb of diode

Fig. 3. Current–voltage characteristic of the 6H–SiC n+–n––n+

triode structure. (a) JSD ~ f(VSD) and (b) JSD ~ f(VG).

Fig. 4. Photocurrent in the 6H–SiC p+–n––n+ structure as a
function of external voltage.
structures similar to those considered above was fabri-
cated, with a p–n junction built in between (Fig. 2).
This structure is an analogue of a unipolar field-effect
transistor (FET), and its operation is described using
the appropriate terminology. The current n+–n––n+

channel with geometric sizes of 40 × 3 × 3 µm is
bounded on two sides by the p–n-junction fields whose
directions have a component transverse to the current
direction from the drain to the source in the channel.
Experiment showed that the CVC of these channels
(Fig. 3a) at the gate (p–n junction) bias Vg = 0 is similar
to the CVC of the diode structure (Fig. 1). It was estab-
lished experimentally that, at Vg ≠ 0, the behavior of
CVC in the linear region is drastically different from its
behavior in the breakdown region. In the linear region,
the behavior is typical of a FET: the current decreases
with the slope S = 2–4 mA/V as the field at the gates
increases, in accordance with the channel parameters.
However, in the breakdown region, the current
decreased, at a certain gate field, with the slope S = 40–
60 mA/V (Fig. 3). Such a pronounced and sharp current
drop can be explained by the domain destruction in an
electric field directed perpendicular to the domain field.
Naturally, the domain destruction is followed by the
suppression of breakdown and a sharp decrease in cur-
rent. This experimental finding is strong evidence of
domain formation in the channel with natural SL. At the
same time, one can conclude from the data obtained
that the domain is mobile, because, according to geo-
metric considerations, the gate field acts in the channel
region, which is offset by about 2.0 µm from the source,
and cannot act on the static domain that is ordinarily
localized near the source (cathode). Therefore, these
results give new evidence of the occurrence of the BO
regime in natural 6H–SiC SL.

We now turn to the new, from the viewpoint of our
objective and the chosen method, study of WSL. It was
pointed out in [21] that the natural silicon carbide SL is
intrinsically built in a crystal; it has the same ideal crys-
tal structure and, accordingly, creates the optimally
favorable medium for the implementation of fine
effects such as BO and all WSL effects altogether,
which are quite sensitive to the presence of structural
defects acting as charge-carrier scattering centers. For
this reason, natural 6H–SiC SL can be used for the
direct observation of induced localization up to the
electric breakdown, i.e., during the crystal natural life-
time. The previous assumption [16] that only the elec-
tronic spectrum is quantized in silicon carbide SL can
be verified by direct observation. The possibility of
observing a nonquantized hole and quantized electronic
components in the same sample under the same condi-
tions drastically improves the unambiguity of interpre-
tation. This problem can be implemented experimen-
tally using the optical photoelectric transformation
method in the multiplication regime for a photocurrent
created by photons with the above-bandgap energy.
This method allows one to use the internal field in the
space-charge region (SCR) of the p–n junction and
JETP LETTERS      Vol. 77      No. 1      2003
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change it by an external electric field to obtain, in high
electric fields, comparatively low photocurrents con-
trolled by the light incident on the surface of the p–n
junction. Due to this circumstance, sample destruction
in the near-breakdown fields can be avoided. Either
electrons or holes can mostly be injected into the
strong-field region, depending on the experimental
demands.

So, 6H–SiC-based p+–n––n+ structures were pre-
pared for our study. In contrast to the structure
described above, the upper aluminum-doped epitaxial
p+ layer was grown to the concentration of uncompen-
sated acceptors on the order of 1018 cm–3, and the resid-
ual donor concentration in the epitaxial n layer ranged
from 6 × 1016 to 2 × 1017 cm–3. The electric field in the
SCR varied following the law for an abrupt p–n junc-
tion, namely, F ~ (Vk + V)1/2, where Vk = 2.9 V is the
contact potential and V is the external voltage. The p+-
layer thickness and the photon energy were dictated by
two requirements: (i) the number of photons absorbed
in the p+ layer be minimal and (ii) photon absorption in
the p+ layer be as complete as possible. In the first case,
light is mostly absorbed in the SCR and the n– layer.
Holes diffuse from the n– layer first to the SCR and then
to the multiplication layer, where the carriers acquire
additional energy under the action of a strong field to
create new carriers in the collisions with lattice atoms.
Depending on the efficiency of energy transfer from the
field to carrier and on the probability of carrier collision
with atoms, new carriers are created in one or another
amount to increase (multiply) the initial photocurrent.
In this particular case, the initial photocurrent contains
electronic and hole components created in the SCR and
the diffusional hole component from the n– layer. In the
second case, electrons created in the p+ layer and diffu-
sionally transported to the SCR prevail. Our estimates
give In/Ih ≥ 102.

In Fig. 4, the photocurrent (PC) is shown on the
semilogarithmic scale as a function of the square root of
the external voltage applied to the p+–n––n+ structure,
i.e., in fact, to the SCR. Curve 1 corresponds to the
above-mentioned case (i) and curve 2 corresponds to
(ii). In the first case, the PC is intensely multiplied,
starting with certain voltages, to a very high level to
demonstrate the onset of avalanche electric breakdown
at Vbr = 610 V. But, since the initial PC consisted of the
electronic and hole components, one cannot separate
these contributions in this curve. However, the situation
is unambiguous for curve 2, because it corresponds
almost fully to the electronic PC. Electronic PC dis-
plays no evidence of multiplication up to voltages close
to their breakdown values and, hence, curve 1 reflects
only the hole multiplication. So, the electron system
shows no evidence of hole near-critical events. Unfor-
tunately, it is difficult to exactly determine from these
data the voltage corresponding to the onset of electron
multiplication, because the hole multiplication
JETP LETTERS      Vol. 77      No. 1      2003
achieves by this time more than two orders of magni-
tude (curve 1), so that its presence in curve 2 cannot be
excluded even at a ratio of one hole per hundred elec-
trons in the initial PC. Since, by this time, the electric
field far exceeds the value necessary for the onset of
multiplication, it is quite possible that the electron mul-
tiplication arises explosively at the instant of avalanche
electric breakdown, which occurs only in the presence
of both multiplication components. Nevertheless, one
can confidently assert that the electron heating is sup-
pressed up to very high fields because of the WSL,
which arises and continues unresponsive to the band
mixing, i.e., to the fundamental WSL destroyer [11–
13]. Thus, the electronic miniband spectrum in 6H–SiC
provides conditions for WSL life up to very high fields.
Electron tunneling to the upper miniband, which was
observed in [20] at a certain field, does not result in full
electron delocalization, because, as was shown above,
the WSL process is observed at high fields as well.
Moreover, it is precisely the WSL that suppresses elec-
tron heating and, thus, provides anomalously high
(from two to three times higher than the estimates tak-
ing into account only the band gap) breakdown fields in
6H–SiC. Intriguing effects can be obtained in a com-
parative study of the WSL in various SiC polytypic
objects with different electronic miniband spectra.

It is also worthy of note that the presence of only one
multiplying carrier provides unique conditions for the
implementation of high-efficiency photodetectors or
solid-state photomultipliers in the UV region.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-16943) and the
program “Physics of Solid-State Nanostructures.”
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The proximity effect in SF structures is examined. It is shown that, due to the oscillations of the induced super-
conducting order parameter in a ferromagnet, the critical temperature of an SF bilayer becomes minimal when
the thickness of the ferromagnetic layer is close to a quarter of the period of spatial oscillations. It is found that
the spontaneous vortex state arising in the superconductor due to the proximity of the magnetic domain struc-
ture of a ferromagnet brings about noticeable magnetoresistive effects. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 75.70.Cn; 74.80.Dm
In recent years, considerable interest has been
shown in metallic multilayer systems with alternating
magnetic and nonmagnetic layers. The normal metal–
ferromagnet structures (NF systems) exhibiting giant
magnetoresistance have already found practical use in
computer technology [1]. Promising elements based on
the multilayer superconductor–ferromagnet structures
(SF systems), such as the FSF spin gate [2], Josephson
SFS π junction [3], and others, have also been sug-
gested and studied. The coexistence of superconductiv-
ity and ferromagnetism is a problem of long-standing
interest. The antagonism of these two phenomena dif-
fering in spin ordering is a cause for the strong suppres-
sion of superconductivity in the contact area of the S
and F materials [4]. The appearance of oscillating sign-
variable order parameter in the F layer near the SF
interface [3, 5–7] is another fundamental consequence
of the proximity of a ferromagnet and a superconduc-
tor. In spite of numerous theoretical works, experimen-
tal studies of the SF structures are in their infancy. In
particular, the influence of a real domain structure on
the indicated and other phenomena in the SF systems
still remains to be studied. In this work, three different
types of SF structures differing in size and geometry
were prepared and studied: a continuous thin-film strip
of SF bilayer, a macroscopic superconducting S–SF–S
bridge (Notarys–Mercereau bridge [8]), and a one-
dimensional chain of submicron (mesoscopic) S–SF–S
bridges. The goal of this work was to observe the fol-
lowing effects: (i) the influence of the F-layer thickness
and the sign-variable order parameter on the critical
temperature Tc, SF of the SF bilayer; (ii) the appearance
of a spontaneous vortex state due to the proximity of the
magnetic domain structure of a ferromagnet; and
0021-3640/03/7701- $24.00 © 20039
(iii) the appearance of additional resistive contributions
in the S–SF–S-bridge chains caused by the injection of
nonequilibrium quasiparticles from the SF regions into
a superconductor.

Experimental studies were carried out on two-layer
Nb–Cu/Ni SF structures, in which the Cu0.43Ni0.57 alloy
films with the Curie temperature TC ~ 150 K were used
as a ferromagnetic layer [9]. The bottom superconduct-
ing Nb layer, with a thickness of 9–11 nm (close to the
coherence length), was sputtered by dc magnetron. A
top copper–nickel alloy film was deposited in a single
vacuum cycle by rf diode sputtering. Weak ferromag-
netism of the Cu/Ni alloy allowed us to retain the super-
conductivity of the SF bilayer with Tc, SF close to the
standard helium temperatures of 2–4 K and compare
the obtained results with the results of Josephson exper-
iments [3] on the Nb–Cu0.43Ni0.57–Nb sandwiches, in
which a weak ferromagnetism was necessary for the
fabrication of continuous homogeneous F layers whose
thickness would be comparable with the pair-decay
length ξF. Inasmuch as the pair-decay length in the lay-
ers of classical ferromagnetic materials (Co, Fe, Ni) is
close to 1 nm, the fabrication of thin-film Josephson
SFS junctions using these metals is a challenge. The
use of ferromagnetic alloys with low Curie tempera-
tures allowed us to increase the pair-decay length by
several orders of magnitude and observe the transition
of a Josephson SFS junction to the π state upon a
decrease in temperature [3].

Figure 1 shows the experimental geometry and the
measured critical temperature Tc, SF of the belayer SF
structures with a superconducting niobium layer of
thickness 11 nm, close to the coherence length in the
thin-film niobium (7–8 nm), and different thicknesses
003 MAIK “Nauka/Interperiodica”
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dF of a ferromagnetic layer. The superconducting tran-
sition width was ~0.3 K. The curve shows the Tc, SF val-
ues corresponding to the onset of transition, its middle
part, and completion. It is seen that the dependence of
Tc, SF on dF is nonmonotonic and has a minimum at a
ferromagnet thickness of 5–8 nm. Such a dependence
was predicted in [6] and first observed for a belayer
Nb/Gd structure in [10]. This phenomenon is caused by
the appearance of superconducting electron pairs with
nonzero net momentum in the presence of an exchange
field that gives rise to the specific LOFF state with the

Fig. 1. Critical temperature of a belayer Nb–Cu0.43Ni0.57
structure vs. the thickness of ferromagnetic layer.

Fig. 2. Resistive transition of the S–SF–S bridge: (a) full
curve for a current of 0.5 µA and (b) a part of the transition
corresponding to the SF bilayer for currents 0.5, 1, 10, 30,
80, and 110 µA.
inhomogeneous sign-variable order parameter, as was
predicted in 1964 by Larkin and Ovchinnikov [11] and
Fulde and Ferrel [12]. The induced superconductivity
in a ferromagnet near the SF interface proved to be a
quite realizable LOFF modification [5, 6, 13]. It was
shown in [14, 15] that the spatial oscillations of the
order parameter in an SF bilayer with the thickness dF

on the order of coherence length ξF in the ferromagnet
give rise to oscillations of the SF interface transparency,
providing the simplest explanation for the nonmono-
tonic dependence of Tc, SF on dF. Simple considerations
suggest that the lowest barrier at the SF interface (low-
est Tc, SF) corresponds to the thickness dF close to 1/4 of
the period λLOFF of spatial oscillations of the induced
superconducting order parameter in the F layer [16]. A
comparison of the curve in Fig. 1 with the results of a
detailed theoretical analysis was carried out in [16, 17].
We also had a chance to compare the period of spatial
oscillations with the results obtained in the experiments
with the Josephson SFS sandwiches, in which the same
composition of Cu/Ni alloy was used as a Josephson
interlayer and the same sputtering technique was
applied (for the details of preparation and study of the
Josephson SFS junctions, see [3]). The transition to the
π state [3, 5, 13, 18], in which the order parameter has
different signs on different banks of the SFS sandwich,
occurs for ferromagnetic interlayer thicknesses close to
a half-period of spatial oscillations of the order param-
eter. In the Nb–Cu0.43Ni0.57–Nb sandwiches, we
observed this transition [19] for the F layers with a
thickness of 15 nm, i.e., twice the thickness corre-
sponding to the minimal Tc, SF of an SF bilayer, in agree-
ment with the theoretical estimates [3, 16].

To study the resistive processes in the current flow
across the SF bilayer in more detail, planar S–SF–S
structures were prepared (their different projections are
shown in the insets in Figs. 2, 3). The SF bilayer was
situated only in the central section of superconducting
bridge and formed from a ferromagnetic strip, which
completely spanned the superconducting bridge and
suppressed superconductivity in a square area of 10 ×
10 µm. To avoid the effects discussed in the preceding
paragraph, the F-layer thickness was taken to be large
enough (18 nm) to appreciably suppress the S layer and
exclude the formation of a barrier associated with the
oscillations of superconducting order parameter in the
ferromagnet. The bridges with the above-mentioned
sizes and the superconducting bridges with F islands of
submicron size described in the last section of this arti-
cle were formed using electron-beam lithography. A
two-step resistive junction obtained with a minimal
transport current of 0.5 µA is shown in Fig. 2a. The
higher temperature step with normal resistance Rn of
the structure corresponds to the superconducting transi-
tion in the ferromagnet-free thin niobium film. The
transition at Tc, SF = 3.6–3.8 K corresponds to the resis-
tive transition in the SF bilayer with thicknesses dS =
9 nm and dF = 18 nm. As is seen in Fig. 2b, the lower
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temperature transition broadens sizably with an
increase in transport current. However, at the tempera-
ture T* = 2.6–2.65 K a new sharp step arises, evidenc-
ing the abrupt dramatic increase in the critical current
of the S–SF–S bridge below this temperature. The
bridge current–voltage characteristics (CVCs) for dif-
ferent temperatures (in the absence of applied magnetic
field) are shown in Fig. 3. One can clearly see that the
jumplike increase in the critical current below T* is
associated with a cardinal change of the resistance
mechanism in the bridge. In the temperature range
T* < T < Tc, SF, the characteristics exhibit constant dif-
ferential resistance corresponding to the magnetic-flux
flow regime. The behavior below T* is typical of long
superconducting bridges, in which the dissipation is
caused by the sequential appearance of vortex slip lines
at the bridge edges. The appearance of each line is dis-
played on the CVC as a new slanted step, which was
experimentally recorded using a repeated current scan
in the corresponding area. The unexpected, at first
glance, zero-field flux-flow regime at high temperatures
can easily be explained by the presence, in the super-
conductor, of a spontaneous vortex phase associated
with the stray magnetic field in the domain walls of the
ferromagnetic film. The appearance of the spontaneous
vortex phase was theoretically discussed for “supercon-
ducting ferromagnets” and multilayer SF structures in
[20, 21].

The appearance of the vortex phase lines in the
superconducting layer near the domain walls of the fer-
romagnetic layer with in-plane magnetic anisotropy is
shown in the inset in Fig. 4. The correlation between the
flux-flow resistance and the number of domains
(domain walls) is confirmed by the magnetic field mea-
surements (Fig. 4). Magnetic field was applied parallel
to the bilayer plane. The observed symmetric (i.e., even
with respect to the field sign) behavior of R(H) is
caused by the direct action of the field on the supercon-
ducting film. The curves also show positive magnetore-
sistance peaks at the “magnetization reversal” fields
corresponding to the sample coercive field (the hyster-
esis loop M(H) is schematically drawn above the R(H)
curve; coercive fields were measured in the magnetic
and Hall experiments). In the step region on the R(T)
curve (Fig. 2b), i.e., at temperatures T slightly above T*
and currents I ≥ Ic, the magnetoresistance coefficient
can be rather large and exceed 100%.

We now discuss the conditions for the appearance of
spontaneous vortex phase in the SF bilayer and the
value of critical temperature T* for the transition to the
“Meissner” phase. The lower critical field for the pene-
tration of a perpendicular magnetic field into the film is
determined by the effective penetration depth λ⊥  = λ2/ds

and its temperature dependence (λ is the field penetra-
tion depth into a thick film). Using the parameters of
our film, one can estimate Hc1(0) ~ 10–20 G. This is
comparable with the estimates of stray fields in the
domain structure of our weak ferromagnet, if one
JETP LETTERS      Vol. 77      No. 1      2003
assumes that the domain wall width is on the order of
the domain size (~0.2–0.5 µm). Therefore, T* is the
temperature for which the stray field becomes compa-
rable with Hc1(T). Below this temperature, the field of
ferromagnetic film does not pierce the superconducting
film through, and the flux-flow regime ceases. This
model is additionally confirmed by the fact that the con-
stant differential resistance disappears from the CVCs

Fig. 3. Current–voltage characteristics of the S–SF–S
bridge at temperatures 3.47, 3.2, 2.89, 2.66, 2.6, and 2.49 K.

Fig. 4. Resistance of the S–SF–S bridge vs. longitudinal
magnetic field at T = 2.66 K and a current of 50 µA. Arrows
indicate the field-scan direction. The magnetization curve
for a Cu/Ni layer is schematically shown at the top.



 

42

   

RYAZANOV et al.
of S–SF–S bridges with the F-island sizes on the order
of 0.2 × 0.5 µm. The ferromagnetic islands with this
area are, in fact, single-domain, so that the stray field in
the region of such a domain is appreciably weaker than
the field produced by the domain wall.

We undertook an attempt at connecting the neigh-
boring SF regions together in a one-dimensional chain
of S–SF–S bridges using spin-polarized quasiparticles
injected into the ferromagnet-free sections of the super-
conducting film. As is illustrated in the inset in Fig. 5, a
section of the initial SF bilayer was “cut” at a length of
50 µm so as to form SF bridges separated by the sec-
tions of the Nb film. Since the length LF = 0.2 µm of the
ferromagnetic island remained constant, the spacing
between the islands was varied by changing their num-
ber N in the structure. The results obtained for three
structures with the superconducting sections LS = 1,
0.5, and 0.2 µm and, correspondingly, the number of SF
islands N = 30, 70, and 100 are presented in Fig. 5. In
all cases, the bridge width was equal to 0.5 µm. The

resistive transition curves are given in the T/  coor-
dinates, because the critical temperatures of the free Nb
sections were slightly different due to the fact that the
instant of time the Cu/Ni layer etching was completed
could not be controlled accurately, so that the niobium
layers were slightly different in thickness. In addition to
this transition and a rather smeared resistive transition
in the SF islands, a new step, associated with the resis-
tance caused by the nonequilibrium quasiparticle injec-
tion into the superconducting sections, evolves in the
mid-transition region starting at LS = 1 µm. At LS =
0.2 µm (N = 100), this contribution becomes dominant.
The estimate of the penetration depth of nonequilib-
rium quasiparticles (charge-disbalance relaxation
length λQ) into superconducting Nb at temperatures

Tc
Nb

Fig. 5. Resistive transitions of a one-dimensional chain of
S–SF–S bridges: N = (1) 30, (2) 70, and (3) 100.

c

close to  gives a value comparable to 0.2 µm. For
the case of spontaneous antiparallel alignment of the
magnetizations in the neighboring F islands, one could
expect noticeable magnetoresistive effects in a mag-
netic field applied in the layer planes perpendicular to
the bridge chain. Nevertheless, no appreciable effects
were observed, most probably because of the absence
of antiferromagnetic alignment and the weak spin
polarization of quasiparticles in our system.

In summary, proximity effect in the SF system have
been studied in this work; it is shown that, due to the
spatial oscillations of the induced superconducting
order parameter in a ferromagnet, the critical tempera-
ture Tc, SF of a bilayer has a minimum when the thick-
ness of the ferromagnetic layer is close to a quarter of
the period of spatial oscillations. The occurrence of a
spontaneous vortex state caused by the proximity of the
domain magnetic structure of a ferromagnet has been
observed in a superconductor. In this state, the magne-
toresistive effects are quite appreciable.
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The dynamic equations for the energy level of a finite system with impurities are shown to be equivalent to the
rational Ruijsenaars–Schneider system. The action, which is simultaneously the generating function of the
Bäcklund canonical transformation for this system, is calculated. Various variants of statistical averaging of the
energy-level distribution are discussed. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.-i
Much work has been devoted to the problem of elec-
tron-level dynamics under the action of an additional
perturbation (see, e.g., [1, 2]). The role of time in these
dynamics is played by the perturbation amplitude. In
the cited works, the statistical properties of the spectra
are mainly considered; i.e., the response of a system to
the additional perturbation is calculated by averaging,
e.g., over an ensemble of random matrices. Of interest
is also the problem of deriving the dynamic equations
for the energy levels of a system with an arbitrary initial
spectrum and subsequent averaging. In this case, the
averaging procedure may be different, e.g., from the
procedure used in the theory of random matrices. The
problem of spectrum dynamics of a system for an arbi-
trary form of perturbation was solved in [3]. The system
of equations derived in [3] involves both the eigenval-
ues and the matrix elements of perturbation as
unknown functions, for which reason it is too compli-
cated for analysis. From the physical point of view, one
can consider the impurity potential as a perturbation.
This highly simplifies the problem; moreover, the
many-impurity problem can be reduced to a single-
impurity problem (see below).

Let us consider a finite quantum system with N

eigenstates and the Hamiltonian  (N × N matrix). In
the presence of an impurity in the system, the energy
levels undergo shifts (in this way, the problem was con-
sidered, e.g., in [4] and [5]); the problem is to derive
dynamic equations for the energy levels, with the impu-
rity potential playing the role of time.

The Hamiltonian of a system with impurity has the
form

(1)

where |0〉  is the quantum state localized on the impurity.

Ĥ0

Ĥ Ĥ0 t 0| 〉 0〈 | ,+=
0021-3640/03/7701- $24.00 © 20044
For simplicity, we denote by x and y the eigenstates
and by |x〉  and |y〉  the eigenfunctions of the unperturbed
and perturbed systems, respectively; i.e.,

(2)

then, calculating the matrix element  =  +

, one obtains the condition

from which it follows that the equations for the eigen-
values of the perturbed system is

or, in the explicit form,

(3)

Denoting yi = xi(t) and xi = xi(0), one can rewrite Eq. (3)
in the polynomial form

(4)

where

(5)

with (0) = .

Ĥ0 x| 〉 x x| 〉 , Ĥ y| 〉 y y| 〉;= =

x〈 |Ĥ y| 〉 x〈 |Ĥ0

V̂ y| 〉

y x y〈 〉 x x y〈 〉 t x 0〈 〉 0 y〈 〉 ,+=

t
x 0〈 〉 2

y x–
------------------

x

∑ 1,=

t
x j 0〈 〉 2

yi x j–
--------------------

j

N

∑ 1, i 1 2 … N ., , ,= =

R x j t( ) t,( ) 0,=

P ξ t,( ) ξ x j t( )–( )
j

∏ P ξ( ) tQ ξ( ),–= =

P ξ( ) P ξ 0,( ) ξ xi 0( )–( ),
i

∏= =

Q ξ( ) P ξ( )
ẋi 0( )

ξ xi 0( )–
--------------------,

i

∑=

ẋi x 0〈 〉 2
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Note that the case Q(ξ) = (1/N)P'(ξ)  (0) = 1/N

corresponds to the unperturbed Hamiltonian  (2)
whose eigenfunctions are plane waves with the matrix

elements equal in magnitude and  = 1.

From condition (4), it follows that (∂2/∂t2)P(ξ, t) = 0.
Substituting the expression for P(ξ, t), one obtains the
desired equation of level dynamics:

(6)

This is the well-known rational Ruijsenaars–Schneider
(RS) system of equations describing the dynamics of a
many-body system [6, 7].

One can readily see that Eqs. (4) and (5) give the
exact solution of the Cauchy problem for RS system
(6). Indeed, evaluating polynomials P(ξ) and Q(ξ) by
Eqs. (5), one can determine the P(ξ, t) polynomial (4)
whose roots are equal to the particle positions xi(t). In
the impurity problem (3), all velocities  are positive.

The fact that the rational RS system describes the
level dynamics of a finite system with impurity is likely
to be a new fact. In [3], the equation of electron-level
dynamics was derived for an arbitrary perturbation V,
but Eq. (6) was not obtained.

Note that any impurity potential in a finite system
has the form

where |j〉  is the state localized in the coordinate space on
the site with number j. In this case, the eigenvalue equa-
tion for the unperturbed system has the form (cf.
Eq. (3))

(7)

For several impurities, the polynomial P(ξ, t1, t2, …, tN) =

ξ – xj(t1, t2, …, tN)) is a linear function of the
potential tj of each impurity. Because of this, the condi-

tion P(ξ, t1, t2, …, tN) = 0 is fulfilled for each j,
and, hence, the dynamics for each “time” tj obey
Eq. (6). Indeed, let us consider the sequence

with the set of eigenvalues of Hamiltonian Hj being
determined from Eq. (3), where x are the eigenvalues of
Hj – 1, y are the eigenvalues of Hj, and 〈x|0〉  should be
replaced by 〈x|j〉 .

     ẋi

Ĥ0

x 0〈 〉 2

x∑

ẋ̇i 2 ẋi

ẋ j

xi x j–
--------------.

j i≠
∑=

ẋi

V t j j| 〉 j〈 | ,
j

N

∑=

det δij Gijt j–( ) 0, Gij

i x〈 〉 x j〈 〉
y x–

--------------------------.
x

∑= =

(
j∏

∂2/∂t j
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H0 H1 … H j 1– H j … HN ,
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 Let  be the eigenfunctions of Hamiltonian  H j .
Introduce the instants of time 

 
T

 

0

 
 = 0 and 

 
T

 

j

 
 = 

 
T

 

j

 

 – 1

 
 + 

 
t

 

j

 

(

 

j

 

 = 1, 2, …, 

 

N

 

). Then the energy-level evolution for
several impurities can be described by the RS Eqs. (6)
with a single time 

 

t

 

 on the intervals 

 

t

 

 

 

∈  (T0, T1) ∪  (T1,
T2) ∪  (T2, T3) … and the velocities  changing jump-
wise at the times T1, T2, T3 … :

(8)

As is known (see, e.g., [8]), the RS system of
Eqs. (6) is Lagrangian, and the corresponding
Lagrangian has the form

(9)

Interestingly, one can obtain an exact expression for
the action on the classical trajectory for the system of
Eqs. (6): assume that the particle coordinates are xi(0) = xi

at time t = 0 and xi(T) = yi at time t = T. Then it follows
from Eq. (4) that the polynomial Q(ξ) has the form

(10)

At the same time, differentiating P(ξ, t) with respect to
t and substituting ξ = xi(t), one gets

(11)

Substituting Eqs. (10) and (11) into the expression
for Lagrangian (9), one can evaluate the action

(12)

or

(13)

where zα are the roots of polynomial Q(x):
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It is worth noting that the calculated action S is
simultaneously the generating function of the canonical
Bäcklund transformation, i.e., mapping of a momen-
tum–coordinate pair at time t = 0 onto the momentum–
coordinate pair at t = T: ({pi}, {xi})  ( , {yi}) for
the system of Eqs. (6),

(15)

with the canonically conjugate variables for system (6)
being determined in the ordinary way:

(16)

with the canonical Poisson bracket

Let us calculate the phase-space element in the vari-
ables {xi}, {yi}:

(17)

where the Jacobian of transformation is given by the
formula

(18)

because it follows from Eq. (16) that ∂pi/∂yj =
∂log /∂yj, while the velocities  can be found from
Eqs. (10) and (11):

The resulting Jacobian J({xi}, {yi}) can be consid-
ered as a probability density of the joint distribution of
energy levels {xi} in the unperturbed and {yi} in the
perturbed systems. Here, it is assumed that the initial
particle distribution in the phase space is uniform,
which is quite natural for the Hamiltonian particles.
One can also specify the initial positions of particles;
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-------, p̂i
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----------------------------------------------------,

ẋi ẋi

ẋi 0( )
1
t
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xi y j–( )
i j,
∏

xi x j–( )
j i≠
∏
----------------------------.–=
then the statistics will be determined by the momentum
distribution. Therefore, it is assumed that the momen-
tum distribution of particles is uniform in the initial
state.

The momentum distribution function, naturally,
depends on the particular type of system (1). For exam-
ple, the case where the Hamiltonian H0 is a random
matrix belonging to the classical Gaussian ensemble
(orthogonal (β = 1), unitary (β = 2), or symplectic
(β = 4)) was considered in [4]. Note that distribution
function (18) is a formal limit β  0 of Eq. (5) in [4]
for the distribution function in the case of classical
ensembles.

In summary, it has been shown in this work that the
energy-level dynamics of a finite quantum-mechanical
system with impurity is described by the RS equations.
The many-impurity problem can be reduced to a one-
dimensional problem; i.e., it also obeys the RS equa-
tion, with the velocities undergoing jumps in the course
of evolution.

It would be of interest to explicitly describe the tran-
sition from the equation of level dynamics (RS equa-
tion) to the dynamic equations for the level distribution
function; it is shown in [2] that the evolution of the dis-
tribution function is described by the Fokker–Planck
equation, which reduces in this case to the Colojero–
Moser quantum system. It is also known (see, e.g., [8])
that the Colojero–Moser equation is a nonrelativistic
limit of the RS equation. The question then arises of the
interconnection between the quantum RS model [7]
and the statistical properties of electronic spectra.

I am grateful to A.S. Ioselevich and I.V. Polyubin for
helpful remarks, which aided in improving the text of
the manuscript. This work was supported by the Rus-
sian Foundation for Basic Research, project nos. 01-01-
00874-a and 00-15-96747-l.
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Coding theorems formulated as exchange protocols in the space of states of quantum systems do not answer
one of the basic questions of real-time information transmission rate. Expressions obtained for the transmission
capacity of a binary quantum communication channel describe the real-time information transmission rate.
© 2003 MAIK “Nauka/Interperiodica”.
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* Transmission capacity is the basic characteristic that
determines the information transmission rate with an
arbitrarily low error probability in the asymptotic limit
of long sequences [1, 2]. Classical information in quan-
tum communication channels is carried by quantum
states and extracted by measurements. A quantum state
itself can be transmitted through a communication
channel (transmission of quantum information).

A number of profound and remarkable results have
been obtained [3–6] for quantum communication chan-
nels. These results generalize the Shannon theorems for
classical channels. Coding theorems for quantum com-
munication channels were reviewed by Holevo in [3].

When calculating the transmission capacity for
quantum channels, coding theorems are usually formu-
lated as protocols, where only the properties of the
space of states are used. Any information transmission
by both quantum and classical states occurs in space
and time. Coding theorems formulated as protocols in
the space of states of quantum systems do not answer
one of the basic questions of the real-time information
transmission rate. In this work, we obtain the explicit
expressions for the transmission capacity of a binary
quantum communication channel that describe the real-
time information transmission rate. Below, the case of
independent parallel communication channels with
finite observation time is considered. In contrast to a
sequential relativistic quantum communication chan-
nel, the channel transmission capacity in this case can
be obtained in the exact analytic form. Information is
carried by single-particle states of a relativistic mass-
less particle (photon). Classical information is coded
into polarization states. The presence of many parallel
independent channels does not mean that, e.g., many
optical fiber lines are required. The set of parallel chan-

* Basic affiliation.
0021-3640/03/7701- $24.00 © 20047
nels can be realized on the basis of a single channel
with limited frequency band (multimode channel). In
this case, each channel corresponds to its individual fre-
quency band.

A quantum channel is specified by mapping (using
a superoperator) input density matrices onto output
ones. We consider below the ideal communication
channel. The nonideality arises due to a limited obser-
vation time window at the receiver end. It can be effec-
tively described by a certain superoperator. For a binary
quantum channel, one can find the optimal spacetime
form (amplitude) of states that ensures the maximum
transmission capacity for a given observation time win-
dow and channel transmission band. Moreover, the
resulting expression for the transmission capacity also
retains its functional form in the case where measure-
ments at the receiver are carried out in an inertial refer-
ence frame moving relative to the source.

Let the binary alphabet symbols {0, 1} taken with
probabilities {π0, π1} (π0 + π1 = 1) correspond to the
single-photon states of the form

(1)

where [ , ] = k0δ(k – k '), |kµ〉  = |0〉 ,
〈ki |k 'i '〉  = k0 δ(k – k '), i, i ' = ±, polarization index µ
takes the values 0 and 1 (in the general case, states are

not orthogonal),  = αµ  + βµ , (|αµ|2 +
|βµ|2 = 1), and subscript i corresponds to the orthogonal
basis helicity states.

ϕµ| 〉 x̂ϕ x̂( )ϕµ
+ x̂( ) 0| 〉d∫=

=  
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k
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003 MAIK “Nauka/Interperiodica”



 

48

        

MOLOTKOV

                                                            
Below, we consider field states propagating in one
direction of the x axis (k > 0); these are precisely the
states that carry information between remote users:

(2)

where

(3)

The physical states in * are specified by their ampli-
tudes on the mass shell. The amplitude of states propa-
gating in one direction depends only on the difference
τ = x – t; i.e., if the measurement outcome occurs at
time t in the neighborhood (x, x + dx), the same out-
come can be obtained at time t ' in the neighborhood
(x ', x ' – x + t + dx). For brevity, we will say below that
the amplitude ϕ(τ) is specified on the light cone branch.

We assume for the moment that the spatial ampli-
tude is the same for different polarization states and that
the density matrix for an individual channel is ρ =
π0ρ0 + π1ρ1 = π0|ϕ0〉〈ϕ 0| + π1|ϕ1〉〈ϕ 1|. Therefore, the
density matrix for the ensemble of messages of length
n in n different channels is ρ⊗ n = ρ ⊗ ρ  … ρ. In the
quantum case, the coding theorems for a source with mes-
sages described by the tensor product of individual bits
use, as in the classical case, the concept of typical
sequences [1] and random coding. The sequences of M
code words of length n are chosen at random according to

the distribution {π0, π1} –  =  ⊗   … .

Measurements at the receiver reduce to projection
onto the code words (for details, see [3–6]). The space
of outcomes, where the probability distribution arises
upon decoding, is a set of discrete values of index m =
{µ1, µ2, …, µn} for a set of M code words of messages
of length n. The fundamental distinction of the decision
rule (unity decomposition) for a limited observation
time window T at the receiver is that the space of out-
comes is the direct product Ω = [(τ1 ∈  T, µ1) ∪  (τ1 ∉  T,
µ1)] × … × [(τn ∈  T, µn) ∪  (τn ∉  T, µn)]. When decoding,
the measurement outcome in each channel (for each
polarization index µk, k = 1, …, n) can occur either in
the time window τk ∈  T for  or beyond the obser-

ϕµ| 〉 kd
k
-----ϕ̃ k k,( ) kµ| 〉

0

∞

∫=

=  kϕ k( ) kµ| 〉d

0

∞

∫ x t–( )ϕ x t–( ) x t– µ,| 〉 ,d

∞–
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ϕ k( )
ϕ̃ k k,( )

k
----------------,=

ϕ x t–( ) e i k x t–( )( )– ϕ k( ) k,d

0

∞
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x t– µ,| 〉 eik x t–( ) kµ| 〉 , ϕµ ϕµ〈 〉
0

∞

∫ 1.= =

ϕµ
M| 〉 ϕµ1

M| 〉 ϕµ2

M| 〉 ϕµn

M| 〉

ϕµk
| 〉
vation time window τk ∉  T, independently of other
channels. For an observer, these outcomes mean that
the detector does not trigger in the time window T.

Since the information is coded into the polarization
states while the spatial degrees of freedom play the aux-
iliary role of polarization “carrier,” any operator mea-
suring the polarization state in a limited time window
can be expanded in terms of basis operators

(4)

where

(5)

and  has a similar form. Any measurement
of polarization states in a limited time window reduces
to the following reduced density matrix, which is
obtained by taking partial trace over the spacetime vari-
able τ:

(6)

The first and second terms describe the outcomes inside
and outside the time window T, respectively. For an
observer, the latter outcomes mean that the measuring
device does not trigger. The sign of the direct product is
used to emphasize that the reduced density matrix acts
in the orthogonal spaces; i.e., measurements on the
extraction of information from the polarization degrees
of freedom lead to mutually exclusive outcomes inside
and outside the observation time window, indepen-
dently of the polarization states.

From this point, the problem can be reduced to the
calculation of transmission capacity for the communi-
cation channel described by the effective superoperator
that transforms the total density matrix into the reduced
density matrix containing only polarization degrees of
freedom. One has

(7)

The reduced density matrix for pure states can be rep-
resented in the convenient symbolic form

(8)
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(9)

(10)

where |?〉  formally denotes the outcomes beyond the
observation time window. This state is orthogonal to
any basis state; i.e., 〈?|i〉 ≡ 0. Then,

(11)

and the Neumann entropy is equal to (transmission
capacity reaches maximum at π0 = π1 = 1/2[3])

(12)

(13)

where ξ = |〈µ0|µ1〉| [see Eq. (9)]. From this point, the
problem can be formally reduced to the calculation of
transmission capacity for the communication channel
specified by Eqs. (7) and (8). The transmission capacity
can be calculated by the Holevo formula [3–6]; taking
Eqs. (7)–(13) into account, one obtains

(14)
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For pure input states, this formula reduces to the for-
mula

(15)

For the pure orthogonal input states (in this case ξ = 0),
this result becomes particularly transparent: C(T) = 1 –
ε. In this case, Eq. (15) is transformed to the expression
for the transmission capacity of a classical binary eras-
ing channel with transition probabilities p(0|0) =
p(1|1) = 1 – ε, p(0|?) = p(1|?) = ε, and p(0|1) = p(1|0) =
0 (p0 = p1 = 1/2, p? = 0). For the pure orthogonal input
states, the number of typical sequences of length n
(n  ∞) for a source tends to 2nH(ρ).

If measurements at the exit end of the communica-
tion channel are carried out in a wide time window (for-
mally, T  ∞), the number of correctly decoded
sequences is 2nH(ρ) because of the certain distinguish-
ability of orthogonal states (the states are entirely
accessible in this limit). In this case, collective mea-
surements are not required for the orthogonal states (in
the binary channel); instead, it suffices to measure
states in each individual bit. If measurements are car-
ried out in a finite time window T, there will be out-
comes for which the measuring device will not trigger
during T. The probability of such an event is equal to ε,
and, correspondingly, the probability of triggering
within the time window is 1 – ε. If the triggering occurs
during T, the states are identified with certainty. In the
absence of outcome inside the time window, one can
believe that the state is erased (it is formally trans-
formed to a certain new state at the receiver end; one
can also formally assume that this state is sent with the
probability p? = 0 at the entry). Each typical sequence
inflates into the Hamming sphere with radius H(x |y).
Here, H(x |y) is the Shannon conditional entropy for the
input alphabet (x = {0, 1, ?}) with probabilities {p0 =
1/2, p1 = 1/2, p? = 0} and the output alphabet (y = {0, 1,
?}), with transition probabilities in the channel p(0|0) =
p(1|1) = 1 – ε, p(0|1) = p(1|0) = 0, and p(0|?) = p(1|?) =
ε. Therefore, the number of correctly decoded
sequences for n  ∞ is equal to

(16)

which coincides with the transmission capacity of the
classical binary erasing communication channel [2].
Formula (15) is valid for the nonorthogonal input
states.

If the communication channel has a finite transmis-
sion bandwidth ∆k (speed of light c = 1), the transmis-
sion capacity (for fixed angles ξ of the polarization vec-
tors and a fixed time window T) reaches a maximum on
those states with spacetime amplitude ϕ(k) which cor-
respond to the maximum of ε and have carriers inside

C T( ) 1 ε–( )C ξ( ) 1 ε–( )–= =
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----------- 
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the transmission band ∆k. This leads to the variational
problem in unconditional extremum (maximum) of the
functional

(17)

By varying the functional, one arrives at the integral
equation for the amplitude

(18)

The maximum of the functional and the optimal form of
the state are obtained, respectively, for the maximal
eigenvalue and the corresponding eigenfunction. This
equation was analyzed previously in [7–9]. Its eigenval-
ues are positive and form a decreasing sequence (1 >
λ0 > λ1 … > 0, n = 0, 1, …, ∞). The eigenvalues are
functions of the parameter ∆kT. Several first eigenval-
ues for different ∆kT values were numerically calcu-
lated in [8] (for large ∆kT values, they rapidly tend to 1;
e.g., λ0 = 0.99589 for ∆kT = 4). The asymptotic form as
a function of parameter ∆kT @ 1 at a fixed n is also
known [9]:

(19)

i.e., the eigenvalues are exponentially close to unity.
Therefore, the error in distinguishing the orthogonal
states is exponentially low for a wide time window
(T @ 1/∆k), and the channel transmission capacity is
exponentially close to unity. For small ∆kT ! 1, the
eigenvalue λ0 ~ ∆kT and the transmission capacity is
C ~ (∆kT)2 ! 1. Thus, the transmission capacity of a
channel with finite-width frequency band and finite
time window is given by the formula

(20)

It describes the maximum admissible information
transmission rate in bits per unit frequency band and
unit time.

Thus, it follows from Eq. (20) that, in the case of a
binary quantum channel, the transmission capacity
C(T) ≡ C(∆kT) per message reaches its limiting value
for both orthogonal and nonorthogonal input states
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only in the asymptotic limit of infinite observation time
(more precisely, for ∆kT = ∞).

Since we consider the nonrelativistic case, it is
important to realize how the expression for transmis-
sion capacity looks in other inertial reference frames.
We show now that expression (20) for the transmission
capacity retains its functional form if the observer at the
receiving end performs measurements in a moving ref-
erence frame. The measurements in the observer refer-
ence frame are written in the same manner as in
Eqs. (4)–(6). In this case, all quantities in Eqs. (7)–(10)
should be treated as their values in the observer refer-
ence frame. The state produced by the action of the
appropriate unitary operator of the Poincaré-group rep-
resentation should be taken as a quantum state that the
observer “sees” in the moving frame of reference. The
general coordinate transformation in the Poincaré
group is a sum of translations in the Minkowski space-

time and Lorentz rotation  =  =  + ,

where  is the operator of translation by vector  =

(a, a0) and  is the operator of Lorentz rotation
describing the transition to the other inertial system.
These transformations induce transformations of the

operators  = , where

 is a unitary operator acting in *. Since the
polarization vector in this one-dimensional scheme is
perpendicular to the wave vector k, it does not trans-
form if the observer goes to the reference frame moving
along the propagation direction of the photon field.

The observer effectively sees the transformed state
of the form (recall that the spacetime amplitudes are
taken to be identical for the different polarization states;
this (unimportant) assumption enables one to obtain
less cumbersome expressions than in the general case)

(21)

where dk/k0 is the Lorentz invariant integration volume,
and it is taken into account that the vacuum vector is

invariant; i.e., |0〉  = |0〉 . Let the time interval
measured by the observer’s clocks at the receiving end
in the moving coordinate system be equal to the time
interval measured by his clocks in the rest system; i.e.,
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1–
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Û L̂ â,( )
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Tm = T. In this case, the reduced density matrix has the
form 

(22)

(23)

(24)

Our further goal is to determine the maximum of εm.
One has

(25)

Since the eigenvalues of integral equation (18) and, cor-
respondingly, the optimal form of amplitude depend
only on ∆kT, the transmission capacity retains its func-
tional form in the moving reference frame and depends

on ∆k Tm  = ∆kT. That is, measurements

in the moving reference frame do not change transmis-
sion capacity. This result is intuitively understandable,
because, due to the Doppler effect, the transition to the
moving reference frame results in the effective contrac-
tion of the frequency spectrum of the state, ∆k 

∆k  (if the observer moves in the same direction

as the state) and, correspondingly, in the effective spa-
tial extension of the state. As a result, it takes larger
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state in the time window. However, since the result
depends only on the product ∆kT, it does not change
and also does not depend on the direction of observer’s
motion (i.e., sign of β = v /c). This result can be

explained as follows. Since the scalar product  is
Lorentz-invariant, while the spacetime variables for a
photon propagating in one direction k = k0 appear only
as the combination τ = x – t, the quantity kτ determining
the result is Lorentz-invariant.

In conclusion, we present the expression for the
transmission capacity in the case, where the classical
alphabet is assigned to the density matrices of general
form. As above, the information is coded into the differ-
ent polarization states. Let the classical alphabet consist
of N symbols assigned to the single-photon density
matrices ρl taken with the probabilities ρl (l = 1…N). In
the basis of generalized eigenvectors |ki 〉  (i = 0, 1), the
density matrix has the following general form:

(26)

Measurements in the finite time window result in the
reduced density matrix containing only the polarization
degrees of freedom. One has

(27)

(28)

and similarly for . The density-matrix block
with t ∉  T in Eq. (27) is responsible for the outcomes
beyond the observation time window. For this reason,
one can again formally introduce the state |?〉  that is
orthogonal to any polarization state and retain only the
diagonal elements in matrix (27) in order to hold the
general unit trace of the density matrix. In the basis |e0〉 ,
|e1〉 , |?〉 , one has
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The transmission capacity is then calculated using
Eq. (14) [3–6].

We note that Eq. (20) describes the maximum (opti-
mal) transmission rate of classical information for
given transmission band (∆k) and time window (T).
This expression is independent of the initial band split-
ting into n parallel channels, because band narrowing
∆k/n in each channel will lead to the increase in the
observation time as nT; hence, the product for the opti-
mal form of the state does not depend on n and depends
only on the product of the total transmission band and
the observation time (transmission rate) (∆k/n)nT =
∆kT.

Thus, the explicit inclusion of spacetime into the
problem of coding makes it possible to obtain the real-
time transmission capacity of a quantum communica-
tion channel and clarifies the meaning of the expression
obtained for the transmission capacity as an asymptotic
quantity with allowance only for the properties of the
space of states.
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Doubly phase-matched cascaded parametric wave mixing of femtosecond laser pulses in tapered fibers is exper-
imentally demonstrated. Fibers with an appropriately tailored dispersion profile allow simultaneous phase
matching for two types of nonlinear-optical processes—third-harmonic generation and parametric four-wave
mixing. Doubly phase-matched cascaded parametric interactions of ultrashort light pulses give rise to a mani-
fold of new spectral components, expanding substantially the capabilities of the available laser sources of
ultrashort pulses. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky; 42.65.Hw; 42.65.Wi; 42.81.Qb
Phase matching of light fields in nonlinear interac-
tions is one of the key problems in nonlinear optics [1,
2]. Dispersion of nonlinear-optical materials gives rise
to a mismatch of phase velocities of electromagnetic
waves with different frequencies, thereby lowering the
efficiency of nonlinear-optical interactions of light
fields. Classical approaches to the solution of the
phase-matching problem are based on the use of natural
birefringence of nonlinear crystals [1, 2], additions
compensating the phase mismatch in nonlinear-optical
processes in gas media [3], and periodically poled crys-
tals for quasi-phase matching [4, 5]. New phase-match-
ing solutions employing artificial form birefringence
[6, 7] and dispersion of photonic crystals [8, 9] are
widely discussed and studied experimentally in the past
few years.

Optical fibers substantially increase the length of
nonlinear-optical interactions, enhancing the genera-
tion of new spectral components as a result of nonlin-
ear-optical processes. Nonlinear-optical processes in
optical fibers can be phase-matched by using the dis-
persion of guided modes [10]. Microstructure and
tapered fibers [11–13] offer unique opportunities for
phase-matching nonlinear interactions by dispersion
tailoring. Such fibers also provide a high degree of
light-field confinement in the fiber core, leading to high
efficiencies of frequency conversion and spectrum
transformation even for nanojoule ultrashort laser
pulses [13–15].

In this paper, we will show that tapered fibers with
an appropriately tailored dispersion profile allow two
0021-3640/03/7701- $24.00 © 20007
types of nonlinear-optical processes—third-harmonic
generation (THG) and parametric four-wave mixing—
to be simultaneously phase-matched. Such a double
phase matching will be employed to enhance cascaded
nonlinear-optical processes in a tapered fiber. Doubly
phase-matched cascaded parametric wave mixing, as
will be shown in this work, leads to the generation of a
whole manifold of new spectral components, substan-
tially expanding the capabilities of the available laser
sources of ultrashort pulses for basic and applied
research, including applications in the spectroscopy of
ultrafast processes, optical metrology, absolute-phase
measurements, biomedical optics, generation of even
shorter light pulses, and control of their parameters.

Tailoring the dispersion of guided modes is the
backbone of double phase matching in cascaded para-
metric wave mixing. The resulting dispersion profile
should simultaneously phase-match two different non-
linear-optical processes. In this work, we employ
tapered fibers to solve this problem. The taper-waist
region of these fibers is characterized by a high refrac-
tive index step from the fiber core (which is usually
made of fused silica) to the fiber cladding (air), result-
ing in a high degree of laser-radiation confinement in
the fiber core [13, 14]. The wavelength corresponding
to zero group-velocity dispersion can be tuned for such
fibers by changing the taper-waist diameter (Fig. 1).
Recent experimental studies [13, 14] have shown that
tapered fibers radically enhance nonlinear-optical inter-
actions, including supercontinuum generation. In con-
trast to hexagonally periodically poled crystals, permit-
003 MAIK “Nauka/Interperiodica”
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ting quasi-phase matching of noncollinear cascaded
wave-mixing processes [16], tapered fibers, as will be
shown below, can provide phase matching for several
stages of cascaded nonlinear-optical processes in the
collinear, waveguiding regime.

Let us illustrate now how phase matching can be
simultaneously achieved for two types of nonlinear-

Fig. 1. Wavelength dependence of the group-velocity dis-
persion for fiber taper-waist regions with different taper-
waist diameters d: (dash–dotted line) d = 1 µm, (dotted line)
d = 2 µm, (dashed line) d = 3 µm, and (solid line) d = 4 µm.

Fig. 2. (a) Diagram of the femtosecond Cr:forsterite laser
system with a regenerative amplifier. (b) The spectrum and
(c) autocorrelation trace of a laser pulse at the output of the
master oscillator.

µm
µm

µm
µm

MHz
6–9 W
optical processes, namely, third-harmonic generation
and parametric four-wave mixing ω2 + ω1 = ω0 + 3ω0,
with ω0 being the frequency of pump radiation, giving
rise to new spectral components with frequencies ω1
and ω2. Double phase matching implies that the propa-
gation constants β0, β1, β2, and βTH for the guided
modes of light fields with frequencies ω0, ω1, ω2, and
3ω0, respectively, should meet the relations 3β0 = βTH
and β0 + βTH = β1 + β2. These equalities yield the fol-
lowing simple requirement on the propagation con-
stants β0, β1, and β2: 4β0 = β1 + β2.

The half-sum of the propagation constants of the
spectral components with the frequencies ω1 and ω2
should be, thus, equal to twice the propagation constant
of the guided mode of pump radiation. This relation
indicates the possibility to achieve phase matching for
the whole family of nonlinear-optical parametric pro-
cesses, resulting in the generation of new spectral com-
ponents. Geometrically, it is clear that one possible
solution to this problem is a dispersion profile with the
frequency of zero group-velocity dispersion (corre-
sponding to the inflection point in the spectral depen-
dence of the guided-mode propagation constant) lying
around the second harmonic of pump radiation. Guided
modes with such a dispersion would simultaneously
phase-match third-harmonic generation and the wave-
mixing process leading to the generation of spectral
components with frequencies ω1 and ω2 lying bilater-
ally about the second harmonic of pump radiation.

Femtosecond pulses of 1.25-µm Cr:forsterite-laser
radiation were employed as a pump in our experiments.
The dispersion profile of a tapered fiber with a taper-
waist diameter equal to 2 µm (the dotted line in Fig. 1)
features zero group-velocity dispersion around 700 nm
and is ideally suited for the double phase matching of
the above-specified cascaded nonlinear-optical pro-
cesses.

The laser system employed in our experiments
(Fig. 2a) consisted of a Cr4+: forsterite master oscilla-
tor, a stretcher, an optical isolator, a regenerative ampli-
fier, and a compressor. The master oscillator, pumped
with a fiber Nd:YAG laser, generated 30–50-fs light
pulses with a repetition rate of 120 MHz. The central
wavelength of this laser radiation was 1250 nm with a
bandwidth of 26 nm (Fig. 2b) and a mean power of
about 180 mW.

Horizontally polarized 30–50 fs pulses (Fig. 2c)
were then stretched up to 700 ps in a grating stretcher
(Fig. 2). Upon passing through a Faraday isolator and a
λ/4 plate, the light pulses became vertically polarized.
These pulses were then transmitted through a broad-
band polarizer to be injected in the regenerative ampli-
fier at the moment of time corresponding to maximum
population inversion, created by pump pulses with a
repetition rate of 1 kHz. A switch was used to set a hor-
izontal polarization of pulses injected into the cavity of
the amplifier. An amplified pulse with an energy of
JETP LETTERS      Vol. 77      No. 1      2003
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100 µJ was coupled out of the amplifier through the
switch, triggered at the moment of time corresponding
to optimal amplification. Radiation coming out of the
amplifier was vertically polarized again. The amplified
pulse was returned to the isolator along the same optical
path. Radiation passing through the isolator in the
backward direction experienced no change in its polar-
ization, since polarization rotations introduced by the
λ/4 plate and the Faraday isolator compensate for each
other. The pulses coupled out of the isolator through the
broadband polarizer were transmitted through a λ/2
plate and compressed to a 75-fs duration in a grating
compressor. Approximately 50% of pulse energy was
lost at this stage.

Radiation generated by the Cr:forsterite laser sys-
tem was coupled into a tapered fiber fabricated from a
standard telecommunication fiber (Corning SMF-28)
with a core diameter of about 9 µm, cutoff wavelength
of 1250 nm, and numerical aperture of 0.1. The tech-
nology of fiber tapering, described in detail in [13],
involved drawing a heated fiber, leading to a decrease in
the fiber cross-section area. Due to the small fiber diam-
eter of the taper-waist region (Fig. 2) and the high
refractive-index step from the fused silica core to the air
cladding, laser radiation was strongly confined to the
fiber core in the taper-waist region, enhancing nonlin-
ear-optical processes. The tapered section of the fiber
was placed in a dust-proof transparent plastic box. The
length of the taper-waist region of the fiber was equal to
90 mm. Transition regions, connecting tapered and
untapered fiber sections, had a length of 35 mm each.
The core diameter in the taper-waist region for the
fibers employed in our experiments was 2 µm. The
group-velocity dispersion calculated for fiber taper-
waist regions with different diameters as a function of
the wavelength is presented in Fig. 1. The wavelength
of fundamental radiation of the Cr:forsterite laser, as
can be seen from Fig. 1, falls within the anomalous-dis-
persion area of a fiber with a 2-µm-diameter taper-waist
region.

Pump radiation was delivered to the taper-waist
region through a short section of untapered fiber with a
length of about 1 cm. The beam of amplified Cr4+:for-
sterite laser radiation was focused on the fiber end by an
8× objective with a numerical aperture of 0.2. We were
able to vary the power of pump radiation within a broad
range by changing the relative orientation of a polarizer
and a polarization analyzer. The mean power of radia-
tion in front of and behind the fiber was measured with
a power meter. Up to 50% of laser radiation power was
coupled into the fiber according to these measurements.
A lens with a focal length of 10 mm collimated the
beam coming out of the fiber. Radiation spatially dis-
persed by a spectrometer was then registered with an
optical multichannel analyzer. The data read out from
the analyzer were stored and processed by a computer.

Parameters of the tapered fiber employed in our
experiments were chosen in such a way as to phase-
JETP LETTERS      Vol. 77      No. 1      2003
match third-harmonic generation in one of the higher
waveguide modes. Theoretical analysis of phase-
matching conditions for third-harmonic generation in
tapered and microstructure fibers extended to include
the group delay of short light pulses was earlier per-
formed in [17, 18]. Figure 3 displays the wavelength
dependences of the phase mismatches for the genera-
tion of the third harmonic of 1.25-µm Cr:forsterite-
laser radiation in different modes of the tapered fiber.
These dependences indicate the possibility of achieving
generalized phase matching (modified to include
group-delay effects [17, 18]) for third-harmonic gener-
ation in higher modes of tapered fibers. This general-
ized phase matching, however, cannot be achieved for
the third-harmonic generation process involving the
fundamental modes of pump radiation and the third
harmonic. The phase mismatch for this process is
shown by the dash–dotted line in Fig. 3. Neither can
phase matching be achieved with our fiber for the gen-
eration of the third harmonic in the HE12 mode by the
fundamental mode of the pump pulse (the dashed line
in Fig. 3). However, the HE13 mode of the third har-
monic can be phase-matched with the fundamental
mode of the pump pulse in the considered tapered fiber,
as shown by the solid line in Fig. 3. Because of the
group-velocity mismatch of the pump and third-har-
monic pulses, phase matching is never achieved for the
entire spectrum of the pump pulse. The spectrum of the
third harmonic becomes asymmetric under these condi-
tions. Such an asymmetry in the spectra of third-har-
monic pulses was observed earlier in nonlinear experi-
ments with microstructure [19] and tapered [18] fibers.

Tapered fibers with the parameters specified above
provided a high efficiency of third-harmonic generation
even when unamplified 30-fs pulses were used as a
pump. The spectrum of the third harmonic featured a
characteristic asymmetry (Fig. 3), related to group-
delay effects. This result also agrees well with our the-
oretical predictions. The efficiency of third-harmonic
generation with unamplified 30-fs Cr:forsterite-laser
pulses, defined as the total energy of the third-harmonic
pulse measured at the output of the fiber to the total
energy of the fundamental pulse, was estimated as
0.05% under our experimental conditions. However,
the efficiency of third-harmonic generation inside the
fiber was much higher even in experiments with unam-
plified pulses of fundamental radiation. Since this study
was mainly aimed at creating fibers for a cascaded gen-
eration of multiple spectral components, our fibers
were not optimized for a maximum output of third-har-
monic radiation generated in higher order guided
modes. Much of the third-harmonic energy was lost in
our experiments, because the cutoff wavelength of our
fibers was, perhaps, too short for the HE13 mode to be
guided at the third-harmonic wavelength and because
of strong mode coupling in the conical transition
regions of the tapered fiber.
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Fig. 3. Experimental spectra of the third harmonic produced in a tapered fiber by pulses of 1.25-µm Cr:forsterite laser radiation with
an initial duration of 30 fs. The energy of pump laser pulses is (solid curve) 0.24 nJ and (dotted line) 0.32 nJ. Also shown are the
values of ∆βm1, the effective phase mismatch for the HE11 mode of the pump pulse and the HE1m mode of the third harmonic, cal-
culated for a fiber consisting of a fused silica core with a diameter of 2.6 µm and an air cladding: (dash–dotted curve) m = 1, (dashed
curve) m = 2, and (solid curve) m = 3. The insets show transverse intensity distributions of light field in HE1m modes (m = 1, 2, 3)
of the tapered fiber, illustrating the transformation of the spatial mode corresponding to the HE11  HE1m third-harmonic gen-
eration process.
Third-harmonic radiation was then involved in a
cascade of nonlinear-optical interactions, accompany-
ing the propagation of femtosecond pulses in the
tapered fiber. To study these processes, we employed
amplified 75-fs pulses of Cr:forsterite-laser radiation
with an energy of 10–200 nJ. Figure 4a displays the vis-
ible part of the spectrum of radiation coming out of the
fiber. Along with the intense spectral component corre-
sponding to the third harmonic of pump radiation, this
spectrum features clearly resolved maxima centered
around 550 and 720 nm, arising due to cascaded non-
linear-optical processes. Generation of the 720-nm sig-
nal, observed in our experiments, can be qualitatively
explained in terms of the results of numerical simula-
tions [20] performed for cascaded four-wave mixing
processes in microstructure fibers induced by a short
pump pulse with a wavelength lying in the range of
anomalous dispersion. The spectral component cen-
tered at 550 nm can be then attributed to a cascaded
parametric interaction, with the frequency of this com-
ponent, ω2, satisfying the relation ω2 + ω1 = ω0 + 3ω0,
where ω0 is the frequency of pump radiation (the fun-
damental frequency of Cr:forsterite-laser radiation) and
ω1 is the frequency of the 720-nm spectral component.
The dispersion profile of our tapered fiber provided
phase matching for this parametric process. Signals at
550 and 720 nm are, thus, produced through a doubly
phase-matched cascaded parametric process involving
third-harmonic generation as the first stage. As can be
seen from the spectrum presented in Fig. 4a, the inten-
sities of the 550- and 720-nm spectral components are
comparable with the intensity of the third harmonic.
The maximum efficiency of pump-radiation energy
conversion into these spectral components achieved
with 75-fs pump pulses having an energy of 200 nJ is
estimated as approximately 4%.

The propagation of amplified femtosecond pulses
with energies of 10–200 nJ in a tapered fiber with the
parameters specified above is also accompanied by a
transformation of the long-wavelength part of their
spectra (Fig. 4b). As the energy of laser pulses
increases, effects related to stimulated Raman scatter-
ing and soliton frequency shifts [20–22] become more
and more efficient, leading to the growth in the intensity
of long-wavelength spectral components. As can be
seen from the results of experimental studies presented
in Fig. 4b, the infrared part of the spectrum of output
radiation stretches to the range of wavelengths exceed-
ing 1600 nm. These experimental findings indicate that
tapered-fiber-based components for the spectral trans-
formation of ultrashort light pulses substantially
expand the capabilities of femtosecond Cr:forsterite
JETP LETTERS      Vol. 77      No. 1      2003
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lasers for telecommunication technologies, infrared
spectroscopy, and biomedical applications.

Thus, the results of our experiments presented in
this paper demonstrate the possibility to doubly phase-
match cascaded parametric wave mixing of femtosec-
ond laser pulses in tapered fibers. Fibers with an appro-
priately tailored dispersion profile allowed us to simul-
taneously phase-match two types of nonlinear-optical
processes—third-harmonic generation and parametric
four-wave mixing involving the third-harmonic pulse.
Doubly phase-matched cascaded parametric interac-
tions of ultrashort light pulses lead to the generation of
a manifold of new spectral components, substantially
expanding the capabilities of the available laser sources
of ultrashort pulses for the solution of a broad class of
fundamental and applied problems in spectroscopy,
telecommunication technologies, coherent and quan-
tum control, accessing the absolute phase of ultrashort
pulses, optical metrology, and biomedicine.

Fig. 4. Spectra of radiation at the output of a tapered fiber
with a taper-waist diameter of 2 µm measured in the wave-
length ranges of (a) 350–950 nm and (b) 1200–1600 nm.
The energy of 75-fs Cr:forsterite-laser pulses coupled into
the fiber is (solid line) 100 nJ, (dotted line) 150 nJ, and
(dashed line) 200 nJ. The inset in Fig. 4a shows the mis-
match of propagation constants ∆β for the waveguide
modes involved in the parametric wave-mixing process
ω2 + ω1 = ω0 + 3ω0 in a tapered fiber with a taper-waist
diameter of 2 µm as a function of the pump wavelength λ0.
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