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A method is suggested for the unambiguous reconstruction of the heterogeneous slow-ion neutralization kinet-
ics near the surface of a conductor. The method is based on the special features of fast-ion grazing scattering
with above-thermal energies of translational motion along the normal. It is shown that the angular distributions
of fast particles reflected from the surface are related to the slow-ion neutralization rate by a simple algebraic
expression. The method allows the reconstruction of the coordinate dependence for the neutralization rate and
the interaction potentials. Its possibilities are demonstrated by the example of neutralizing fast He+ ions (ion
energies E1 ≈ 2 keV and glancing angles θ0 ≈ 0.5°–0.8°) scattered from the Al(111) surface. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.49.Sf; 68.43.-h
Heterogeneous neutralization of slow ions is at the
basis of two modern spectroscopic methods for study-
ing the structure of the electronic subsystem of solid
surfaces (SSs): ion-neutralization Auger spectroscopy
[1] and spectroscopy of resonance and threshold fea-
tures in the currents of reflected particles [2]. For low
velocities of an ion approaching the surface and a rather
large difference in the atomic ionization potential and
metal work function, the neutralization events can be
considered irreversible. In the case of single-channel
neutralization accompanied by the formation of only
unexcited particles (as, e.g., for the majority of inert
gases interacting with metals whose work function
exceeds the excited-state ionization potential), the elec-
tron-transition kinetics are described by the simplest
equation for the number of ions Ni:

(1)

where Γ(R) is the neutralization rate of an ion fixed at
the point specified by the vector R. The progress in the
implementation of spectroscopic possibilities of the
above-mentioned ion-neutralization methods depends
essentially on the accuracy of determining the function
Γ(R) and the interaction potential Ui(R) that deter-
mines the ion trajectory R(t). These functions are ordi-
narily found by the trial-and-error procedure using var-
ious approximations and by fitting the calculated
energy dependences of survival probabilities to the
experimental energy dependences of the reflected ion
currents. The disadvantages of this way of reconstruct-
ing the neutralization rates are quite evident. The reli-
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ability of the obtained results depends substantially on
the quality of the chosen approximation. The purpose
of this communication is to show that the kinetics of
electronic transitions accompanying the motion of
atomic particles near the SS can be unambiguously
reconstructed from measurements of the angular distri-
butions of neutral atoms that are formed upon the graz-
ing scattering of fast ions. Below, it will be shown that
the results of angular measurements of the scattered
particles would suffice to unambiguously reconstruct Γ
and Ui as functions of the distance Z from the ion to the
metal surface.

The grazing scattering regime of fast atomic parti-
cles from the solid surface (glancing angles θ0 ≈ 0.5°–
5° and particle energies E1 ~ 1–10 keV) has a number
of kinematic features, which were studied in [3–7]. For
fast motion along the surface, the potentials U(R) and
the electron-transition rates Γ(R) are effectively aver-
aged. As a result, the dynamics of particle motion and
the electron-transition kinetics are governed by the
quantities that depend only on the coordinate Z. The
energy of ion (or the formed atom) motion along the
normal to the surface (E2 = E1sin2θ0), which, hence,
determines the character of particle–surface interac-
tion, comprises only 0.03–10 eV. The grazing scatter-
ing of the nonneutralized fast ions is virtually specular;
the corresponding angle of reflection θf = θ0, and its
scatter ∆θf ! θ0. The neutralization is accompanied by
a change of the particle–surface interaction potential.
003 MAIK “Nauka/Interperiodica”
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Because of this, the angle of reflection is a function of
the coordinate Z at the time of neutralization:

(2)

Here, U = (Ui – Ua) and Ui, a(Z)  0 as Z  ∞ (indi-
ces i and a refer, respectively, to the ion and ground-
state atom). If ∆U  E1θ0 in the electron-transition
region, then one has ∆θ  θ0 for the width of the angu-
lar distribution of the fast particles formed in ion-neu-
tralization events.

The number of ions that survive to the time t, when
the particle is at the distance Z(t), is determined by the
neutralization kinetics, which can be reconstructed if
the relation between the angular distribution of fast
neutral atoms and the neutralization rate is known.
Introduce the trajectory Z(t) within the ion term of the
system. Then it is straightforward to obtain from Eq. (1)
the following expression for the angular distribution
density f[θ(Z)] of the reflected ground-state atoms,
which takes into account the two-valued character of
the function t(Z):

(3)

Here, Γia is the electron-transition rate, v i is the abso-
lute value of ion velocity, Zt is the coordinate of the
turning point on the ion trajectory, and q = χ(Z = ∞).
The function ∆U(Z) is assumed to be monotonic. Tak-
ing into account that Γia[Z(t)] = ∂χ[Z(t)]/∂t, we obtain
the following relation for the angular distribution:

(4)

where θt is the maximal angular deviation caused by the
electronic transition at the turning point Zt and θt =
θ(Zt). The total neutralization probability in the colli-
sion is

(5)

Relations (2)–(5) can be used to obtain the follow-
ing expression for the neutralization rate:

(6)

where ∆F = –∂∆U/∂Z and Pi = 1 – Pa.
When analyzing the dependence of angular distribu-

tion on the neutralization rate, the following qualitatively
different situations can be distinguished. At Pi ! 1, the
neutralization mainly occurs before the turning point,
and f(θ) has a maximum between the angles θ0 and θt.
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In the other limiting case, Pa ! 1, the neutralization
events mainly occur near the turning point, and the scat-
tered beam contains only a small fraction of neutral
atoms, whose angular distribution is concentrated near
θt and displays the rainbow effect. The results of
numerical calculations illustrating these conclusions
are presented in Fig. 1. The distributions were obtained
for the model with the following parameters:1 Ua(Z) =
Aexp(–αZ); ∆U(Z) = –1/4Z; Γia(Z) = Cexp(–γZ), E1 =
2 keV, θ0 = 1°, mass of the incident atom m = 4 au, A =
300 eV, α = 3, and γ = 1.12. Four values of parameter C
were used in calculations: 0.2, 0.1, 0.05, and 0.002
(curves 1–4, respectively). The calculated neutraliza-
tion probabilities Pa are 0.999999, 0.9999, 0.99, and
0.17. In this model, Z is measured from the plane of the
so-called image forces; this plane does not necessarily
coincide with the plane of surface atoms. The fact that
the rainbow effect arises at rather large Pa values is
noteworthy (curves 2, 3 in Fig. 1).

Measurements of f(θ) for two different values of E2
(initial energy of particle motion along the normal to
the surface) and the determination of the corresponding
values of Pa provide, in principle, the possibility of
determining Γia, Ui, and Ua as functions of ∆U. In the
method suggested, the function Ua(Z) is assumed to be
known and ∆U(Z) is assumed to be monotonic. As a
result, the functions Γia(Z) and Ui(Z) can be recon-
structed unambiguously. Note that, for the practical
implementation of this procedure, the angular distribu-
tions for different values of E2 should be essentially dif-

1 Atomic units are used, unless otherwise stated.

Fig. 1. Various types of angular distribution of neutral atoms
formed by the neutralization of fast ions in their grazing
scattering from solid surface (scattering parameters are
given in the text).
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ferent from each other. The features caused by the rain-
bow effect in the angular distribution of the resulting
neutral atoms can also be used to determine the param-
eters of interaction potential at the trajectory turning
point, because Ui(Zt) = E2, while ∆U(Zt) is determined
from Eq. (1).

In [8, 9], angular distributions of the He atoms
formed upon the grazing scattering of He+ ions from the
Al(111) surface were measured. The collision parame-
ters were E1 = 2.0 and 2.3 keV, θ0 = 0.5° and 0.79°, and
E2 = 0.15 and 0.44 eV. In the cited works, the following
expression was suggested for the neutralization rate:
Γ1(Z) = 10exp(–2.5Z). It was obtained by fitting the
corresponding parameters to the experimental result.
There are some considerations that cast doubt not only
on this expression but also on the reliability of the pro-
cedure used for determining the neutralization rate.

Fig. 2. Coordinate dependences of the neutralization rate
Γia(Z).

Fig. 3. Kinetic curve for the neutralization of He+ ions (E1 =
2.3 keV, θ0 = 0.79°) in their collisions with the Al(111) sur-
face. Calculations are carried out with the reconstructed
Γia(Z) function.
There is no rational physical interpretation of such a big
exponent. At large Z, the neutralization process is con-
trolled by the subbarrier electron transition from the
surface to the ion. The probability of this transition is
determined by the electron density, which decreases
exponentially with increasing Z, with the exponent
being γ = 2(2Φ)1/2, where Φ is the work function; for
Al(111), Φ = 4.25 eV and γ = 1.12. Moreover, as was
already stated, this procedure does not provide unambi-
guity in determining these parameters.

In our method, Γia[Z(θ)] is directly expressed
through f(θ). The angular distributions measured in [8,
9] for the neutral atoms are close to each other over the
entire interval of scattering angles and have maxima at
θm = 1.95° and 1.88°. From the form of these functions,
one can conclude that the ion neutralization mainly pro-
ceeds before the trajectory turning point. This fact
enables one to assume that the repulsive components of
the potentials Ui(Z) and Ua(Z) can be ignored when
determining v i(Z) and ∆F(Z) and restrict oneself to the
image forces. The functions Γia(Z) reconstructed by us
on the basis of the results presented in [8, 9] are shown
in Fig. 2. (curves 1 and 2, respectively). Curve 3 is the
corresponding interpolation function Γint(Z) =
0.15exp(−γZ). Curves 4 and 5 are, respectively, the
above-mentioned Γ1(Z) and the neutralization rate cal-
culated in [10].

In conclusion, the following is noteworthy. The pos-
sibility of determining the neutralization rate Γia(Z)
from the directly measured angular distribution f[θ]
allows one to reconstruct the ion neutralization kinetics
and calculate the Auger spectra. Equation (2) deter-
mines the characteristic distances from the surface
which make the greatest contribution to the heteroge-
neous neutralization. In particular, for the distributions
obtained in [8, 9], the θm values presented above yield
Zm = 3.14 and 3.33, respectively. Note that the potential
barrier to electron transition from metal to ion along the
Z coordinate is absent for such distances. The analytic
approximation of the geometrical mean of the functions
Γia(Z) reconstructed on the basis of the results pre-
sented in [8, 9] gives Γia(Z) = B/Zn, with B = 0.28 and n
= 4. The corresponding kinetic curve ∂N0/∂Z is shown
in Fig. 3, where N0 is the number (normalized to unity)
of atoms formed in the ground state.

The power-law Γia(Z) dependence, rather than the
commonly accepted exponential dependence, can be
explained by the absence of potential barrier to the tran-
sition of an electron with Fermi energy. This region of
distances poses the greatest difficulties for the theoreti-
cal study of the Auger neutralization mechanism. For
example, the attempt undertaken in [10] at calculating
Γia(Z) for the He+–Al(111) system gave neutralization
rates differing by more than an order of magnitude from
the values obtained using the experimental data
(Fig. 2). The possibility of directly comparing the
experimental and theoretical results is one more merit
JETP LETTERS      Vol. 77      No. 2      2003
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of the problem considered. It is worth noting that this
method is highly sensitive to the accuracy of measuring
angular distributions. For example, the discrepancy
between the Γia(Z) values reconstructed on the basis of
the results [8, 9] (Fig. 2) is caused by the poor accuracy
of measurements in the angular range θ0 < θ < θm in [9].
Recall that the opposite edge of angular distribution
(θm < θ < θt) is of importance to the reconstruction of
the parameters of interaction potential. It is thus neces-
sary to accurately measure f[θ] for the neutral atoms
over the entire range of scattering angles (θ0 < θ < θt)
and not just in the vicinity of the distribution maximum.

Finally, the method suggested for reconstructing the
single-channel kinetics can be used in the study of the
processes with several channels. In [9], the angular dis-
tribution fmet[θ] was also measured for the ground-state
He atoms formed in the grazing scattering of fast meta-
stable He(23S) atoms with the same θ0 = 0.79 and E1 =
2.3 keV as in the case of the He+ ions. The fmet[θ] distri-
bution was similar to f[θ], but it was shifted to the
smaller scattering angles; the maximum of fmet[θ] cor-
responded to θmet = 1.65°. The following mechanism
can be suggested for the heterogeneous de-excitation of
metastable He atoms. When the He(23S) atom
approaches the surface, an electron can undergo transi-
tion directly to the free metal states (above the Fermi
level).2 These transitions occur at Z < Z1, where
Z1 = 13.1 is found from the equation

(7)

where Im = 4.77 eV is the He(23S) ionization potential.
In this region of distances, the potential barrier to the
electron motion along the normal is small (it disappears
at Z < 10). For this reason, the electron transition with

2 The temperature of the surface is assumed to be zero.

1/4Z1 Im Φ,–=
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the ionization of the metastable atom can be rather fast.
The resulting ion is accelerated in its motion toward the
surface. However, the image force potential starts to act
not at infinity but at the point 13.1, thereby shifting the
distribution function to smaller angles. This shift is esti-
mated at –0.21°. The corresponding experimental value
in the region of distribution maxima is –0.23°. This fact
is one more argument in favor of the mechanism sug-
gested in this work.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17090.
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Resonant inelastic X-ray scattering of highly oriented pyrolytic graphite (HOPG) is observed above the C 1s
threshold at different polarization angles. It is shown that combining the polarization and excitation energy
dependence of X-ray emission spectra makes it possible to perform quantitative band mapping selective to the
chemical bonding (σ and π). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.50.Lt; 61.10.Eq; 78.70.En
Nonresonant X-ray emission can exhibit radiation
anisotropy or linear dichroism in anisotropic crystals
[1–3]. It is shown that, using the orientation depen-
dence of polarized X-ray emission spectra (XES) of
single crystals with low symmetry, additional informa-
tion about the anisotropy of chemical bonding parame-
ters can be obtained [4]. Conversely, it was recently
demonstrated that quantitative band mapping can be
performed for occupied electronic states in SiC [5], dia-
mond, graphite, and MgB2 [6] with the help of resonant
inelastic X-ray scattering (RIXS) measurements. In this
paper, we combined both the polarization dependence
of the X-ray absorption spectrum (XAS) and RIXS
measurements to perform quantitative band mapping
selective to chemical bonding. The excitation energy
dependence of C Kα XES (2p  1s transition) of
highly oriented pyrolytic graphite was measured above
the C 1s threshold for 0–10 eV at two different polar-
ization geometries. The results were compared with
specially performed band structure calculations of
graphite.

The X-ray fluorescence measurements were per-
formed on a Beamline 8.0 at the Advanced Light
Source (ALS) at the Lawrence Berkeley National Lab-
oratory using a fluorescence endstation, described in
detail elsewhere [7]. Emitted radiation was measured
using a Rowland circle type spectrometer with a large
spherical grating and a photon-counting area detector.
Total experimental resolution in the carbon Kα X-ray
emission region was 0.3 eV FWHM. The bandwidth of
the incident photons was varied between 500 meV and
1 eV. The C 1s XAS was measured in total electron
yield mode. The fluorescence measurements were
made at the beamline using a depolarized configuration

¶This article was submitted by the authors in English.
0021-3640/03/7702- $24.00 © 20108
(which means that the vector E of the incidence beam
lies in the scattering plane; i.e., we used p polarization),
as well as with the direction of the emitted photons per-
pendicular to the incidence one. Two geometries were
used: α = 85° (which is close to the normal incidence)
and α = 25° (which is close to the grazing incidence).
The variable c is the sample normal and a is the angle
between incident photons and the surface of the sample.

We used the self-consistent linearized muffin–tin
orbital (LMTO) method within the local density
approximation (LDA) for the band structure calculation
of graphite (TBLMTO-47 computer code [8]). The tet-
rahedron method was used to calculate the dispersion
curves E(k) with 1152 k points.

Initially, we studied the polarization dependence of
the near-edge X-ray absorption fine structure of graph-
ite. The transition matrix element M in the X-ray
absorption process contains the scalar product of the
polarization vector of the incoming photon, E, and the
position vector of the electron, r. The expression is

where ϕ1s is the wave function of the C 1s core electron
and ϕf is the wave function of the final state into which
the 1s electron is excited [9]. The dipole transition oper-
ator E · r projects orbitals along the direction of the
polarization vector. Therefore, the orbital-symmetry-
dependent absorption spectra can be obtained using lin-
early polarized synchrotron radiation. In highly ori-
ented pyrolytic graphite, the c axis coincides with the
sample normal. This means that the pz or out-of-plane
orbitals (π*-bands) are mainly excited at K edges or
when E || c. Similarly, the px, y or in-plane orbitals (σ*
bands) are preferentially excited when E ⊥  c.

M ϕ1s E r⋅ ϕ f〈 〉 ,=
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Figure 1a shows C 1s XAS of graphite measured at
different incidence angles (α = 85° and α = 25°) and
Fig. 1b shows the 2p-DOS calculations separately for π
and σ bonds. As observed, the fine structure of C 1s
XAS is very sensitive to the incidence angle. The
absorption peak located at 285 eV caused by the domi-
nant π* states [10] is enhanced at α = 25°. Alternately,
at normal incidence (α = 85°) the σ* states are mainly
probed and the absorption peak located at 291.5 eV has
the highest intensity.

The excitation energy dependence of the X-ray
emission spectra measured for different incidence
angles (α = 25° and α = 85°) is presented in Figs. 2 and
3. The excitation energies were selected according to
features (a–h) in the C 1s XAS (indicated by arrows in
Figs. 2, 3). Excitation energies a–h have the same val-
ues for both incidence angles. The intensities of each
emission spectrum have been normalized to the inci-
dent flux.

Abiding by the dipole selection rules, the carbon Kα
XES of graphite probes the occupied 2p states. This
process depends strongly on the excitation energy of
incoming photons and varies significantly for the two
angles chosen.

When the excitation energy shifts above the K edge,
the fine structure of C Kα XES changes dramatically.
Instead of linear dispersion, the peaks move in a nonlin-
ear fashion. Some of these features move in a manner
opposite to the increasing excitation energy. To inter-
pret these spectra, we used the concept [11] that the
absorption–emission process should be treated as a sin-
gle inelastic scattering process with well-defined crys-
tal momentum conservation for both the photoelectron
and the hole in the valence band. This indicates that,
when a core electron is promoted to a conduction band
with a certain crystal momentum, resulting emission

Fig. 1. (a) C 1s XAS of graphite measured at polarization
angles α = 25° and 85°; (b) C 2p-DOS separated for σ and
π states.
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from the valence band at the same point in the Brillouin
zone will be induced.

To compare the presented spectra for two angles,
one should take into account the fact that the contribu-
tion of π and σ states to the emission process is deter-
mined by the direction in which we register emitted
photons. If this outgoing direction is parallel to the c
axis, then the polarization vector of emitted photons is
parallel to the sample surface and thus the dominant
component is σ. In the opposite situation, when the
direction of departing photons is perpendicular to the c
axis, the polarization vector of the emitted photons is
either parallel to the c direction or to one of the direc-
tions in the sample surface, producing both π and σ
contributions. Our results indicate that the direction of
registration is perpendicular to the incident direction.
Thus, for incidence angle α = 25° (close to grazing inci-
dence), the direction of registration of the emitted pho-
tons is nearly parallel to the c axis and the dominant
component is σ. For α = 85° (close to normal inci-
dence), the direction of registration is nearly perpendic-
ular to the c axis, and we have both π and σ compo-
nents.

All the features of the RIXS for α = 25° are results
of the σ component, with the exception of those in the
high-energy field of the valence band. These π states for

Fig. 2. Excitation energy dependence of C Kα XES of
graphite measured for incidence angle α = 25°.
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excitation energies b–d appear because the registration
of emitted photons is not strictly parallel to the c axis.
For α = 85° with both π and σ components are allowed
in the emission process, the π (high-energy) features
are more considerable in the whole excitation energy
range. The strong elastic peaks corresponding to α =
25° occur because of their localized character and the
strong deviation from grazing incidence that results in
the permissibility of π* states in the emission process.

To construct the experimental dispersion curves
from selectively excited X-ray emission spectra, we
used the procedure described in [5, 6]. According to this
procedure, the top of the valence band corresponding to
the calculated zero in the energy scale is related to the
XPS C 1s binding energy of 284.5 eV measured for
graphite [12]. For the band mapping procedure, we
used only the inelastic part of the spectra. The possible
values of the k vector for excited C 1s electrons are
determined by the intersection of the selected excitation
energy and the calculated dispersion curves for the
2p-vacant states. Using k-momentum conservation,
vertical lines from intersection points are drawn down
on dispersion curves for occupied states. The occupied
states revealed by features in the carbon Kα XES for
selected excitation energies can be indicated by hori-
zontal lines on the dispersion curves for occupied
2p-states. The intersection points of horizontal and ver-

Fig. 3. Excitation energy dependence of C Kα XES of
graphite measured for incidence angle α = 85°.

K

tical lines give the experimental points on dispersion
curves for the occupied states.

As a result, the quantitative band mapping selective
to the chemical bonding (π and σ) was realized for α =
25° (Fig. 4). The obtained results show a good agree-
ment between experiment (points) and calculated dis-
persion curves for occupied π (dotted lines) and σ
(solid lines) states of graphite, which are located at the
top and the bottom of the valence band, respectively.

In conclusion, we have shown that resonant inelastic
X-ray scattering spectra measured at different inci-
dence angles can be used for quantitative band mapping
selective to the chemical bonding using the p polariza-
tion of the incoming photons. This technique has
advantages with respect to angle-resolved photoemis-
sion because of the higher sensitivity to the chemical
bonding and a greater potential for probing the
k-resolved electronic structure of layered materials.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-15-96575) and the
National Sciences and Engineering Research Council
(NSERC). The work at the Advanced Light Source at
Lawrence Berkeley National Laboratory was supported
by the U.S. Department of Energy (contract no. DE-
AC03-76SF00098).

Fig. 4. Band mapping using resonant inelastic X-ray scat-
tering: (lines) calculated band structure and (dots) experi-
mental results (for α = 25°; values of Eexc are: (w) 292.9,
(e) 291.7, (x) 290.8, (,) 287.3, (n) 285.8, (s) 285.2, and
( ) 285.4).

Eexc
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Influence of Long-Range Effects on the Critical Behavior
of Three-Dimensional Systems
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The Padé–Borel resummation technique is used to describe field-theoretically, in the two-loop approximation,
the behavior of Ising systems with long-range effects directly in a three-dimensional space. The renormaliza-
tion-group equations are analyzed and the fixed points governing the critical behavior of the system are deter-
mined. It is shown that the long-range effects can bring about a change in both the regime of critical behavior
and the kind of phase transition. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.-b; 64.60.Ak; 11.10.Lm
The influence of long-range effects showing a
power-law behavior 1/r–D – a at large distances has been
studied analytically within the framework of the
ε-expansion approach [1–3] and numerically by the
Monte Carlo method [4–6] for one- and two-dimen-
sional systems. It was shown that, for a < 2, these
effects have a sizable influence on the critical behavior
of Ising systems. However, up to now, this problem has
not been solved analytically directly for the space
dimensionality D = 3. Nevertheless, such a description
is necessary because of a poor convergence of the ε-
expansion series. In this work, the critical behavior of
three- dimensional Ising systems is described with
allowance for long-range effects and for different val-
ues of parameter a.

The Hamiltonian of a system with long-range
effects can be written as

(1)

where ϕ is the order-parameter fluctuations, D is the
space dimensionality, τ0 ~ |T – Tc |, Tc is the critical tem-
perature, and u0 is a positive constant. The critical
behavior depends essentially on the parameter a that
determines the rate of interaction decay with increasing
distance. As was shown in [1], the influence of long-
range effects is appreciable for 0 < a < 2, while the crit-
ical behavior at a ≥ 2 is equivalent to the behavior of
short-range systems. For this reason, we restrict our-
selves in what follows to the case 0 < a < 2.

The standard renormalization-group procedure
based on the Feynman diagrams [7] with the G(k) =
1/(τ + |k |a) propagator yields the following expressions
for the functions β, γϕ, and γt specifying the differential
renormalization-group equation:

H qD 1
2
--- τ0 qa+( )ϕ2 u0ϕ

4+
 
 
 

,d∫=
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(2)

Let us redefine the effective interaction vertex as

(3)

As a result, we arrive at the following expressions for
the functions β, γϕ, and γt:

(4)

β 4 D–( ) 1 36uJ0– 1728 2J1 J0
2–

2
9
---G– 

  u2+ ,–=

γt 4 D–( ) –12uJ0 288 2J1 J0
2–

1
3
---G– 

  u2+ ,=

γϕ 4 D–( )96Gu2,=

J1
qDd pDd

1 q a+( )2
1 p a+( ) 1 q2 p2 2pq+ +

a/2
+( )

-------------------------------------------------------------------------------------------------------,∫=

J0
qDd

1 q a+( )2
------------------------,∫=

G
k a∂
∂–=

× q
D

d p
D

d

1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2pq+ +
a/2

+( )
----------------------------------------------------------------------------------------------------------------------------------.∫

v u/J0.=

β 4 D–( ) 1 36v 1728 2 J̃1 1–
2
9
---G̃– 

  v 2+– ,–=

γt 4 D–( ) –12v 288 2 J̃1 1–
1
3
---G̃– 

  v 2+ ,=

γϕ 4 D–( )96G̃v 2,=

J̃1
J1

J0
2

----- G̃
G

J0
2

-----.= =
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Fixed points, stability eigenvalues, and critical indices for three-dimensional systems

a v * λ ν α η γ

1.5 0.015151 0.918690 0.555566 0.333302 0.002647 1.109661

1.6 0.015974 0.874129 0.557889 0.326333 0.003936 1.113582

1.7 0.020485 0.699732 0.567334 0.297998 0.004862 1.131910

1.8 0.023230 0.628209 0.572714 0.281858 0.007461 1.141155

1.9 0.042067 0.683927 0.620054 0.139838 0.013420 1.231787
This redefinition is meaningful for a ≤ D/2. In this
case, the functions J0, J1, and G diverge. However, after
JETP LETTERS      Vol. 77      No. 2      2003
the introduction of the cutoff parameter Λ, the expres-
sions
(5)

J1

J0
2

-----

qD pD / 1 q a+( )2
1 p a+( ) 1 q2 p2 2pq+ +

a
+( )( )dd

0

Λ

∫
0

Λ

∫

qD / 1 q a+( )2
d

0

Λ

∫
2

------------------------------------------------------------------------------------------------------------------------------------,=

G

J0
2

-----

–∂/ ∂ k a( ) qDd p/ 1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2pq+ +
a

+( )( )
D

d

0

Λ

∫
0

Λ

∫

qD / 1 q a+( )2
d

0

Λ

∫
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
become finite in the limit Λ  ∞.
The integrals were taken numerically. In the case of

a ≤ D/2, the sequence of the J1/  and G/  values was
constructed for different values of Λ and approximated
to infinity.

The critical behavior regime is fully determined by
the stable fixed points of the renormalization-group
transformation; these points can be found from the con-
dition that the β functions vanish:

(6)

The condition for stability reduces to the requirement
that the β-function derivative at the fixed point be posi-
tive:

(7)

The index ν characterizing the growth of the corre-
lation radius in the vicinity of critical point (Rc ~ |T –
Tc |–ν) is found from the expression

The Fisher index η describing the behavior of the
correlation function in the vicinity of critical point in
the wave-vector space (G ~ k2 + η) is determined by the

J0
2 J0

2

β v ∗( ) 0.=

λ ∂β v ∗( )/∂v 0.>=

ν 1
2
--- 1 γt+( ) 1– .=
scaling function γϕ: h = γϕ. Other critical indices can be
determined from the scaling relations.

It is known that the perturbation-theory series are
asymptotic, and the interaction vertices for the order-
parameter fluctuations are too large for Eq. (4) to be
directly used. For this reason, the necessary physical
information was extracted from these expressions by
using the Padé–Borel resummation method. The direct
and inverse Borel transformations have the form

(8)

(9)

The β functions were calculated using a [2/1]-Padé
approximant, and a [1/1] approximant was used to cal-
culate the functions γt and γϕ.

The stable fixed points of renormalization-group
transformation, the β-function derivatives at the fixed
point, and the critical indices for 1.5 ≤ a ≤ 1.9 are given
in the table. For 0 < a < 1.5, an unstable Gaussian fixed
point v * = 0 only exists. This result is consistent with
the ε-expansion predictions [1–3]. The absence of a sta-

f v( ) civ
i

i

∑ e t– F v t( ) t,d

0

∞

∫= =

F v( )
ci

i!
---v i.

i

∑=
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ble fixed point is evidence that the second-order phase
transition changes to the first-order transition [8].

An analysis of the critical indices shows that ν
decreases with decreasing a; i.e., the growth rate of the
correlation radius decreases as the critical point is
approached.

Thus, the increase in long-rage effects in the three-
dimensional Ising systems first decelerates the growth
rate of the correlation radius in the critical region, after
which the kind of phase transition changes at a < 3/2.
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An infrasonic signal from an atmospheric bolide explosion was detected on September 24, 2002 near the Vitim
river, Irkutsk region (57.9 N, 112.9 E). The signal was detected by three spatially separated microbarographs
of the Polar Geophysical Institute (PGI), Kola Science Center, Russian Academy of Sciences, Apatity (67.6 N,
33 E) at a distance of 4000 km from the source. The acoustic-gravity signal from a falling meteorite at high
latitudes was detected at such a distance for the first time in Russia. © 2003 MAIK “Nauka/Interperiodica”.
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The generation and propagation of acoustic-gravity
waves induced by meteoric bodies invading the atmo-
sphere were studied in [1–5]. According to satellite
data, large bodies 1–10 m in size, which are responsible
for the bolide phenomenon, appear no more frequently
than once a year [6]. Meteorites such as the Tunguska
meteorite collide with the Earth no more frequently
than once per one thousand years [6]. The character of
wave radiation depends on the energy release to the
atmosphere and on the parameters of the atmosphere.
Therefore, the mass of a meteoric body can be esti-
mated from variations in atmospheric pressure
recorded by microbarographs [1, 2], and a conclusion
about the existence of a waveguide in the atmosphere
can be drawn. The formation of atmospheric
waveguides at various altitudes determined by the tem-
perature and wind-velocity gradients [7], as well as the
superreflection effect [8], allow the infrasonic signal to
cover hundreds and thousands of kilometers from a
source.

We report here the results of our preliminary analy-
sis of the infrasonic signal from the Vitim bolide, which
was detected on September 24, 2002 by microbaro-
graphs of the PGI at a distance of 4000 km from the
source. According to the information from the Institute
of Solar–Terrestrial Physics, Siberian Division, Rus-
sian Academy of Sciences, a large space object (pre-
sumably a meteorite) fell near the Vitim river at a dis-
tance of several tens of kilometers from Bodaibo,
Irkutsk region. The fall of the space body was preceded
by an explosion at an altitude of 30 km, which was
detected by U.S. satellites at 16:49 UT on September
24, 2002. According to eyewitnesses, a large shooting
star drew a line through the night sky and collapsed on
0021-3640/03/7702- $24.00 © 20115
the hills. A blinding flash illuminated the taiga for sev-
eral instants with a bright light resembling electric
light, and then such a strong explosion thundered that
ground shaking similar to that from an earthquake was
felt over several kilometers from the fall point.

The table presents some U.S. satellite data on
bolides (coordinates and radiation energies) since 1991
[6]. For most bolides, an infrasonic signal was detected
by a global network of infrasound-monitoring stations
[5, 6]. As is seen, the Vitim bolide is among the largest
recently detected bolides.

Energy and coordinates of points where some bolides entered
the atmosphere according to U.S. satellites [6]

Date UT Coordinates E, J

7.05.1991 23:04 50 N, 15 W 5 × 1010

15.06.1994 00:03 46 N, 73 W 1.3 × 1010

9.10.1997 18:47 32 N, 106 W 1.9 × 1011

16.8.1999 05:18 35 N, 107 W 3.8 × 1010

18.01.2000 16:43 60 N, 135 W 1.1 × 1012

18.02.2000 09:26 1 S, 109 E 3.6 × 1012

6.05.2000 11:54 50 N, 18 E 2.5 × 1010

25.08.2000 01:12 15 N, 106 W 1.4 × 1012

23.04.2001 06:12 28 N, 134 W 4.6 × 1012

9.03.2002 01:20 7 N, 147 W 2.2 × 1011

6.06.2002 04:28 34 N, 21 E 3.8 × 1012

25.07.2002 15:58 29 S, 47 E 2.5 × 1011

24.09.2002 16:49 57.91 N, 112.9 E 8.6 × 1011
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The infrasonic signal was detected by three spatially
separated microbarographs of the PGI high-altitude
measuring complex [9]. In addition to these microbaro-
graphs for measuring variations in atmospheric pres-
sure in the frequency range from 0.0001 to 1 Hz, the
complex includes the electric-field sensors and an
instrument for measuring the air conductivity. The
computer data-acquisition system can gain information
with a polling frequency of five times per second.

Figure 1 shows the records of three microbaro-
graphs on September 24, 2002. It is clearly seen that all
three detectors fixed the arrival of an infrasonic signal
with the maximum amplitude ∆P ≅  45 dyn/cm2 at
~22:20 UT. This signal is clearly seen even against the

Fig. 1. Records of microbarographs at the Apatity observa-
tory for (a) the entire day of September 24, 2002 and (b) the
22:00–24:00 UT interval.

Fig. 2. Scheme of the arrangement of microbarographs
(MB1–MB3).
background of continuously observed downstream
waves associated with the neighboring Khibiny moun-
tains [9].

Figure 2 shows the arrangement of three microbaro-
graphs. By the method of separated receivers, a hori-
zontal-trace velocity of 247 m/s and a wave-arrival
angle of 117° (measured from north) were determined
from the measured differences between the signal
arrival times. Using the time of signal arrival (~22:20
UT) and the distance from the source (~4000 km), one
can estimate the average horizontal projection of sig-
nal-propagation velocity at V = R/T = 209 m/s. This
value, together with the source azimuth, as calculated
from geographical coordinates (113°), agree with the
value of horizontal trace and the signal arrival direction,
which were calculated from the data of three
microbarographs. Such velocities are characteristic for
the signal propagation in the thermosphere (at altitudes
> 85 km) [7], which can be due to the west circulation
of air masses at stratospheric heights at the given lati-
tude in this season.

The bolide mass was estimated using the relation-
ships between the energy E0 of a pulsed source and the
disturbed pressure ∆P detected at the distance R from
the radiation source [1, 10]. According to [1],

(1)

Here, c is the speed of sound, H scales the altitude of
uniform atmosphere, L is the length of the meteoric
trace, γ = 1.4 is the specific heat ratio, θ is the angle
between the direction of infrasonic signal and the axis
of meteoric trace,

(2)

is the average radius of the meteoric trace, where M0
and V0 (11.2 km/s < V0 < 73.2 km/s) are the meteoric
mass and velocity, respectively, and Q0 = 8 × 1010 erg/g
is the latent evaporation heat [1].

Assuming that the detected infrasonic signal propa-
gates in the plane perpendicular to the axis of meteoric
trace (θ = π/2), we find from Eq. (1) that [1]

(3)

Substituting ∆P = 45 dyn/cm2 and the average velocity
V0 = 30 km/s into Eq. (3), we obtain M0 = 6 ton. This
value is a lower limit, because Eq. (3) was derived for a
signal propagating without reflections [1]. In the case
under consideration, the propagating infrasonic signal
undergoes multiple reflections from the waveguide
walls [7].

Reed [10] proposed the following empirical relation
between the explosion energy E0 (kilotons of TNT;

∆P

γ 1–( )E0 R ct–( )
–z/2H ct R–( )2–

R0
2 θsin

2
L2 θcos

2
+

---------------------------------------------
 
 
 

exp

2π3/2R R0
2 θsin

2
L2 θcos

2
+( )

1/2
------------------------------------------------------------------------------------------------------.≈

R0 M0
1/3V0

2/2 2gHQ0( )1/2ρ0
1/3=

∆P γ 1–( )E0/2π3/2RR0
2.≈
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1 kiloton of TNT = 4.185 × 1012 J) and the disturbed
pressure ∆P (kPa) at distance R (km):

(4)

This gives M0 = 38 and 1 ton, respectively, for limiting
velocities V0 = 11.2 and 73.2 km/s.

The table presents the radiation energies of the
bolide, which were obtained from the satellite optical
data. The optical radiation energy comprises from 5 to
10% of the total energy of bolide [6]. In our case, the
optical energy is E = 8.6 × 1011 J. Assuming that this
value is equal to 10% of the total energy E0, we obtain
the bolide mass M0 = 142 and 3.5 ton for two limiting
velocities, respectively. These values are in satisfactory
agreement with the above estimates obtained from the
amplitude of the infrasonic signal.

The analysis of this event corroborates the previous
conclusion that bright heavy bolides can be responsible
for high-power pulsed radiation of acoustic-gravity
waves in the Earth’s atmosphere, which can be detected
by microbarographs at a distance of several thousands
of kilometers.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-05-64850) and
INTAS (grant no. 31008).

∆P 11.8E0
0.4R 1.2– .=
JETP LETTERS      Vol. 77      No. 2      2003
REFERENCES

1. G. S. Golitsyn, G. I. Grigor’ev, and V. P. Dokuchaev, Izv.
Akad. Nauk SSSR, Fiz. Atmos. Okeana 13, 926 (1977).

2. D. O. ReVelle, J. Geophys. Res. 81, 1217 (1976).

3. B. A. McIntosh, M. D. Watson, and D. O. ReVelle, Can.
J. Phys. 54, 655 (1976).

4. L. G. Evers and H. W. Haak, Geophys. Res. Lett. 28, 41
(2001).

5. P. G. Brown, D. O. ReVelle, E. Tagliaferri, and
A. R. Hildebrand, Meteoritics Planet. Sci. 37, 661
(2002).

6. P. Brown, R. E. Spalding, D. O. ReVelle, et al., Nature
420, 294 (2002).

7. S. N. Kulichkov, Izv. Ross. Akad. Nauk, Fiz. Atmos.
Okeana 28, 339 (1992).

8. N. N. Romanova and I. G. Yakushkin, Izv. Ross. Akad.
Nauk, Fiz. Atmos. Okeana 31, 163 (1995).

9. O. I. Shumilov, E. A. Kasatkina, E. D. Tereshchenko,
et al., Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 38,
471 (2002).

10. J. W. Reed, J. Geophys. Res. 77, 1623 (1972).

Translated by R. Tyapaev



  

JETP Letters, Vol. 77, No. 2, 2003, p. 118. 

     

ERRATA

   
Erratum: Critical Current in a System 
of Two Superconductors Connected 
by a Short Small-Diameter Normal Metal Bridge 
(Pis’ma Zh. Éksp. Teor. Fiz. 76, 380 (2002)
[JETP Lett. 76, 321 (2002)]

Yu. N. Ovchinnikov and A. I. Larkin

PACS numbers: 74.50.+r; 74.25.Sv
In our article published in vol. 76, no. 5, pp 321–
325, we studied current states in the SNS junctions. The
solutions described by Eq. (8) in the low-frequency
limit do not agree with the high-frequency results
known from perturbation theory. We have concluded
that the states described by our solution do not exist and
0021-3640/02/7702- $24.00 © 20118
that the only correct solution is that found by I. Kulik
and A. Omel’yanchuk.

We are grateful to M. Feœgel’man and Ya. Fominov
for pinpointing this fact.

Yu. Ovchinnikov and A. Larkin
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In the article of A.V. Mintsev, L.V. Butov, C. Ell, S. Mosor, G. Khitrova, and H.M. Gibbs published in
vol. 76, no. 10, pp. 637–640, Figures 1 and 2 should be reversed. 

Erratum: Polariton Dispersion of Periodic
Quantum Well Structures 
(Pis’ma Zh. Éksp. Teor. Fiz. 76, 739 (2002)
[JETP Lett. 76, 637 (2002)]

A. V. Mintsev, L. V. Butov, C. Ell, S. Mosor, G. Khitrova, and H. M. Gibbs
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Commutativity Equations and Dressing Transformations¶
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We study dressing transformations that generate all solutions to commutativity equations and, after picking up
special coordinates, all solutions to WDVV equations. We conjecture that the homological tensor product of
solutions to the commutativity equations corresponds to the tensor product of matrices of the dressing transfor-
mation and check this in the first nontrivial case. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.25.Hf
The main problem in our current understanding of
the theory of quantum gravity is the uniqueness of
M-theory. In order to understand it, we need to find and
study much simpler and tractable models that have
common features with M-theory. That is why so much
attention is spent on so-called topological strings [1–
12]. Moreover, recent studies of superstrings made by
Berkovits [13] indicate that probably even superstrings
themselves could be considered somehow as a rather
special case of topological strings.

From the very first days of topological strings, it was
found that their tree level amplitudes satisfy remarkable
quadratic equations (WDVV or associativity equa-
tions). Moreover, it turns out that, in many known
examples, higher loop amplitudes can be expressed in
terms of the tree level amplitudes.

All this leads to the following scheme of study of
topological theories. First, we classify solutions to the
WDVV equations. Second, we look for conditions on
solutions to the WDVV equations that correspond to
topological strings.

In this paper, we give a classification of all solutions
of the WDVV equations based on their relations to
solutions of the commutativity equations [14–17] on
GL(dimW)-valued functions in the base space S.

In particular, we will classify all solutions to the
commutativity equations in terms of the maximal com-
mutative subgroups of GL(dimW) and dressing trans-
formation matrices, which are matrices whose elements
are polynomials of one variable.

Moreover, the parametrization of solutions to the
commutativity equations in terms of dressing matrices
looks rather natural when we study the tensor product
of solutions in this parametrization.

Indeed, recall that solutions to the commutativity
equations can be obtained from supersymmetric quan-
tum mechanics. Therefore, one can define the tensor

¶ This article was submitted by the authors in English.
0021-3640/03/7702- $24.00 © 20053
product by considering the tensor product of quantum
mechanics—the total Hilbert space is a product of Hil-
bert spaces, while the total supercharges are sums of
supercharges. As was shown in [16], this tensor product
is equal to the homological tensor product on solutions
to commutativity equations. Really, each solution cor-
responds to a factorizable map to cohomologies of the
moduli space , and a tensor product can be obtained
by taking the product in cohomologies of the moduli
spaces.

In this paper, we conjecture that the above-men-
tioned tensor product corresponds just to the tensor
product of maximal commuting subalgebras and to the
tensor product of dressing transformation matrices. We
check this conjecture in the first nontrivial case and find
that it actually works.

In [18], we studied the procedure of reconstruction
of solutions to the WDVV equations from solutions to
the commutativity equation and found that the homo-
logical tensor product was compatible with the recon-
struction procedure. Therefore, we managed not only to
classify solutions to WDVV but also to find a parame-
trization in which the tensor product on such solutions
takes a rather simple form.

All this implies that the theory of the WDVV equa-
tion and the theory of its quantization in the spirit of
[19, 20] should be rewritten in terms of a dressing
matrix. We should mention that a similar construction
for the semisimple case was given by [21], but from our
presentation it should be clear that the semisimplicity
condition is an auxiliary assumption.

Commutativity equations [14, 17–19] are the set of
equations on τ(t)—a GL(dimW)-valued formal series in
t1, …, tn (later, we would like to treat t1, …, tn as a set of
coordinates on an n-dimensional space S).

If we choose a basis ea in the vector space W, then

we can consider τ(t) as a matrix  taking values in
the formal series in t1, …, tn.

Ln

τa
b t( )
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The commutativity equations have the form

(1)

or, in components,

(2)

We will use the following properties of the commu-
tativity equations:

(A) Suppose that we have a map f: S ' ⊂  S,

(3)

Then f*τ is an induced solution to the commutativity
equations, where

(4)

(B) The commutativity equations are equivalent to
the flat connections in the trivial bundle W over S with
the spectral parameter z; namely, if

(5)

then from

(6)

it follows that (from the terms linear in z–1)

(7)

and that (from the terms quadratic in z–1)

, (8)

which is the commutativity equations.
Now we begin our description of the classification

of solutions to the commutativity equations.
Due to property (A), it is reasonable to consider only

the primitive solution, i.e., solutions with dimW = dimS
and such that these solutions cannot be induced from
the solution with dimS < dimW.

In the classification of primitive solutions, we use
the dressing technique (we are grateful to V. Fock for
discussion on this subject), which works as follows.

We start with the maximal commutative subalgebra
in End(W), which has dimW generators φi. It corre-
sponds to the simple solution of the commutativity
equations

(9)

This corresponds to the connection

(10)

dτ dτ∧ 0=

∂τa
b t( )

∂ti

-------------
∂τb

c t( )
∂t j

-------------
∂τa

b t( )
∂t j

-------------
∂τb

c t( )
∂ti

-------------.=

ti f i t'( ).=

f ∗ τ( ) t'( ) τ f 1 t'( ) … f n t'( ), ,( ).=

∇ z( ) d z 1– A+=

∇ z( )( )2 0,=

A dτ=

A2 0=

τ φ φiti.
i 1=

dim

∑= =

d z 1– φidti

i

∑+ –z 1– φ( )d z 1– φ( ).expexp=
Consider an arbitrary matrix

(11)

that is a holomorphic function of z, and consider the
factorization problem

(12)

such that N(t, 0) = 1. Then,

(13)

and thus

(14)

The left-hand side of the above equation has the form
d + z–1A1(z–1, t), while the right-hand side is obviously
d + z–1A2(z, t). Thus,

(15)

and (from the expression for A2) it follows that

(16)

and that A(t) = dτ, and that this τ solves the commuta-
tivity equations.

In order to get explicit expressions for M(0, t), con-
sider the level zero representation of the GL(dimW)
current algebra. Consider the vacuum |a〉  and covacuum
〈b|, which are annihilated by positive and negative
modes of currents and which form fundamental repre-
sentations for the zero modes of currents. Then, M(0, t)
is a tau function:

(17)

where  denotes the operator corresponding to
the matrix K in the level zero representation.

Below, we will present some explicit formulas for
the first terms in the expansion of τ in terms of dressing
transformation parameters V.

The log of the dressing matrix M(0, t) up to the third
order in t is equal to

(18)

U z( ) zkVk

k 1=

∞

∑ 
 
 

exp=

z 1– φ r( )( )U z( )exp M t z,( )N t z 1–,( ),=

N t z 1–,( ) M t z,( ) 1– z 1– φ t( )( )U z( ),exp=

N t z 1–,( )dN 1– t z 1–,( )

=  M t z,( ) 1– d z 1– dφ+( )M t z,( ).

A1 z 1– t,( ) A2 z t,( ) A t( )= =

A t( ) M 0 t,( ) 1– φiM 0 t,( )dti=

M 0 t,( )a
b b〈 | z 1– φ( )exp U z( ) a| 〉 ,=

〈

K z z 1–,( )

M0 t( )log V1'
1
2
---V2''

1
2!2!
---------- V1'' V1,[ ]+ +=

+
1

3!2!2!
--------------- V1'' V1' V1,[ ],[ ] 1

3!2!2!
--------------- V1'' V1',[ ] V1,[ ]+

+
1

3!3!
---------- V1''' V1,[ ] V1,[ ] 1

3!2!
---------- V2''' V1,[ ]+

+
1

3!2!
---------- V1''' V2,[ ] 1

2!2!
---------- V1'' V2,[ ] 1

3!
-----V3''' O t4( ).+ + +
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The expression for τ up to the fourth order in t is as fol-
lows:

(19)

where  = [φ, Vi],  = [φ, [φ, Vi]], V ''' = [φ, [φ, [φ,
Vi]]], etc.

Explicit formulas for solutions to commutativity
equations suggest that one can obtain a universal for-
mula as a series in the Lie algebra generated by matri-
ces Vk and φi. Conjecturally, the terms in this series are
classified by three-valent rooted trees, and the combi-
natorial coefficient is something like an inverse facto-
rial for the number of φ times inverse factorial for the
number of V’s. This suggests that the commutativity
equation can be proved directly through graphical rea-
soning without appealing to dressing transformations.
We leave this problem for future work.

One can show that the general solution can be
induced from the solution obtained by the dressing
transformation.

After classification of the solutions to the commuta-
tivity equations, we describe the procedure of recon-
struction of solutions to the associativity (WDVV)
equations.

We begin with the acyclic associativity equations.
The associativity equations are not the only equa-

tions that one can associate with the Deligne–Mumford
compactification of the moduli space of marked points
on the sphere. The reason for this is that one can mark
all points as “in” points or “out” points. Consider a sub-
space or markings that contain one “out” point, with all
other points marked as “in” points. When the sphere
degenerates into two spheres, it produces two points—
one “in” point (on the component that contains the
“out” point) and one “out” point (on the component that
contained only “in” points). If we associate vector
spaces with “in” points and dual vector spaces with
“out” points, we can postulate that degeneration is
accompanied by the canonical pairing between the vec-
tor space associated to the “in” point and its dual asso-
ciated to the “out” point. Reasoning as in the standard
derivation of associativity equations from the Keel rela-

τ t( ) φ 1
2!
-----V1''

1
3!2!
---------- V1''' V1,[ ] 1

3!
-----V2'''+ + +=

+
1

2!2!
---------- V1'' V1',[ ] 1

3!2!2!
--------------- V1'' V1'' V1,[ ],[ ]+

+
1

3!3!
---------- V1''' V1',[ ] V1,[ ] 1

3!3!
---------- V1''' V1,[ ] V1',[ ]+

+
1

4!3!
---------- V1'''' V1,[ ] V1,[ ] 1

3!2!
---------- V1'' V1',[ ] V1',[ ]+

+
1

4!2!
---------- V2'''' V1,[ ] 1

4!2!
---------- V1'''' V2,[ ] 1

3!2!
---------- V2''' V1',[ ]+ +

+
1

3!2!
---------- V1''' V2',[ ] 1

2!2!2!
--------------- V1'' V2'',[ ] 1

4!
-----V3'''' O t5( ),+ + +

Vi' Vi''
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tions, we see that now the generating function for the
correlators is a vector field v (T) on the base space W,
equipped with the special coordinates T, such that its
second derivatives form structure constants of associa-
tive algebra. This is what we will call the acyclic asso-
ciativity equation:

(20)

Solutions to the acyclic associativity equations can
be obtained from the solutions to commutativity equa-
tions if we suppose that the latter have a primitive ele-
ment—a vector h ∈  W, such that the operator dτ(h) con-
sidered as an operator from the tangent space to the
base S to the space W is nondegenerate.

The construction goes as follows (see [15, 18]).
Consider a map from S to W that sends the point on V
with coordinates t to the point on W with coordinates
Tb(t) given by:

(21)

Consider the inverse map f from W to S; it expresses
t i as a function of Ta:

(22)

Then one can show that there exists a vector field
v a(T) such that

(23)

and this vector field solves the acyclic associativity
equations.

The special feature of this choice of coordinates is
that the coordinate in the direction of h enters v  only
linearly, namely,

(24)

There are other choices of coordinates that still pro-
duce acyclic associativity equations; they are related to
lifting to the action gravitational descendants and they
will violate property (24). We will discuss this topic
elsewhere.

By associativity equations (without an Euler vector
field) we mean the following equations on a function
F(T) on the space W:

(25)

where η is a constant pairing on the space W.
Suppose that we have a solution to the acyclic asso-

ciativity equations and there is a constant metric η such
that

∂2v e T( )

∂Ta∂Tb
-------------------∂2v d T( )

∂Te∂Tc
------------------- ∂2v e T( )

∂Ta∂Tc
-------------------∂2v d T( )

∂Te∂Tb
-------------------.=

Tb t( ) τa
b t( )ha.=

ti f i T ; h( ); Tb τa
b f T h,( )( )ha.= =

f ∗ τ( )a
b ∂v b/∂Ta=

ha ∂2v b

∂Ta∂Tc
------------------ δb

c .=

∂3F T( )

∂Ta∂Tb∂Te
---------------------------ηef ∂3F T( )

∂T f ∂Tc∂Td
---------------------------

=  
∂3F T( )

∂Ta∂Tc∂Te
---------------------------ηef ∂3F T( )

∂T f ∂Td∂Td
----------------------------,
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. (26)

Then it is easy to show that F(T) is a solution to the
associativity equations. Moreover, if we introduce a
special coordinate

(27)

then one can show that

; (28)

i.e., we get solutions to WDVV with the identity.
We call τ(t)a symmetric (with respect to η) solution

to the commutativity equations if τT = τ; i.e.,

(29)

Suppose that the symmetric solution to the commuta-
tivity equations admits a primitive element h. Then the
solution to the acyclic associativity equation will sat-
isfy property (26), i.e., will lead to the solution to the
associativity equations with identity.

Thus, in order to get solutions to the associativity
equations, we need to study symmetric solutions to the
commutativity equations. As one can show (and check
using the manifest formula), we need to impose the fol-
lowing conditions on φ and Vk:

, (30)

where symmetry is studied with respect to metric η.
We have already seen how useful the dressing trans-

formation is in studying the commutativity equations
and their ability to be promoted to WDVV equations.
Now we will show that dressing transformation param-
etrization probably drastically simplifies the computa-
tion of the homological tensor product of solutions on
the commutativity equations. Namely, we will compare
two tensor products. In order to write explicit formulas,
we need to introduce coefficients of the expansion of
the solution to the commutativity equations in parame-
ters t:

(31)

The first tensor product on solutions to the commu-
tativity equations comes from the tensor products on
commutative algebras and on matrices of the dressing
transformations. Namely, if ei is a basis in S1 and ei ' is a
basis in S2, then we take

(32)

to be a basis in V1 ⊗  2 = V1 ⊗  . Thus, we have

(33)

dTbv aηab dF T( )=

T0 haTbηab=

∂3F T( )
∂T0∂Ta∂Tb

--------------------------- ηab=

τa
bηbc τc

bηba.=

φT φ, Vk
T 1–( )k 1+ Vk= =

τ t( ) τ i1…in

ti1
…tin

n!
---------------.

i1…in

∑
n

∑=

eI eii' ei ei'⊗= =

Ṽ
2

φI
1 2⊗ φi φi'⊗=
and

. (34)

The latter formula can be also rewritten in a form sug-
gestive for the matrices of dressing transformations:

(35)

where U and  are the matrices of dressing transfor-
mations for the first and the second solutions to the
commutativity equations.

The explicit formulas for the tensor product up to
the third order (the formulas for the first two orders are
rather simple) look as follows:

(36)

(37)

(38)

where τij = [φi, [φj, V1]].

The second product comes from the interpretation
of the solutions to the commutativity equations as fac-
torizable maps onto cohomologies of the moduli space

 introduced in [12, 16–18].

Recall that  is the compactification of C*, n/C*;
i.e., the moduli space of n points on C* acted on by a
multiplication by a nonzero complex number.

Namely, given a solution to the commutativity equa-
tion τ, one can construct an element hn:

(39)

and

, (40)

where the product on the r.h.s. of (40) is the product in
cohomologies and a tensor product in

 (note that S1 ⊗  2 = S1 ⊗  S2 and W1 ⊗  2 =
W1 ⊗  W2).

Vm
1 2⊗ 1 Ṽm⊗ Vm 1⊗+=

U1 2⊗ z( ) U z( ) Ũ z( ),⊗=

Ũ

τ I
1 2⊗ τ i τ i' ,⊗=

τ IJ
1 2⊗ τ iτ j τ i' j'⊗ τ ij τ i'τ j' ,⊗+=

τ IJK
1 2⊗ τ ijk φi'φj'φk'⊗ φ iφjφk τ i' j'k'⊗+=

+
1
2
--- τ ijφk φi'φj' φk' Ṽ1,[ ] φkτ ij φk' Ṽ1,[ ]φi'φj'⊗–⊗(

+ τ ikφj φi'φk' φj' Ṽ1,[ ] φ jτ ik φj' Ṽ1,[ ]φi'φk'⊗–⊗

+ φiτ jk φi' φj'φk' Ṽ1,[ ] τ ikφi φj'φk' Ṽ1,[ ]φi'⊗–⊗

+ φiφj φk V1,[ ] τ i' j'φk'⊗ φ k V1,[ ]φiφj φk'τ i' j'⊗–

+ φiφk φj V1,[ ] τ i'k'φj'⊗ φ j V1,[ ]φiφk φi'τ j'k'⊗– ,

+ φi φjφk V1,[ ] τ i'k'⊗ φ jφk V1,[ ] φi'τ j'k'φi'⊗– ),

Ln

Ln

hn H∗ Ln( ) S *⊗ n End W( )⊗⊗∈

hn 1 2⊗, hn 1, hn 2,=

S *⊗ n End W( )⊗
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In the explicit computation of the product, we use
the fact that

(41)

where CA stands for the basis of cycles in homologies

of  and N is the inverse to their intersection matrix.
The equivalence of the tensor products computed on
 and  is obvious and, thus, it is not quite represen-

tative. Here we will compute and compare two tensor
products on  (i.e., for the term that is of third order
in t in the expansion of τ(t)).

In particular (see [18] for details), we obtained the
following result for .

In this case, the intersection matrix of 2-cycles has
rank 4. Let (x, y)(z) correspond to the cycle where the
sphere degenerates into two spheres, with two points
with labels x, y on the first sphere and a point with label
z on the second.

Let j, k, l denote the labels of the marked points.
In the basis of cycles

(42)

the intersection matrix is diagonal: diag(1; –1; –1; –1).
Therefore,

(43)

By comparing formulas (38) and (43), one can show
that they define the same tensor product structure
on .

Thus, we have seen that the dressing matrix param-
etrization of the solutions to the commutativity equa-
tions is quite effective. The next question is to find a
representation for the higher loop amplitudes [19, 20]
in terms of dressing matrices.

We are especially grateful to V. Fock for explanation
of the dressing transformations technique.
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hn 1, hn 2, Ln( )∩ hn 1, CA( )hn 2, CB( )NAB

A B,
∑=

Ln

L1 L2

L3

L3

jl( ) k( ) j( ) kl( )+

+ jk( ) l( ); jk( ) l( ); jl( ) k( ); kl( ) j( )

τ IJK
Hom1 2⊗ τ jkl φj'φk'φl'⊗ φ jφkφl τ j'k'l'⊗+=

+ τklφj τk'l'φj' τklφj φl'τ j'k'⊗+⊗
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Spectroscopy of Baryons Containing Two Heavy Quarks
in Nonperturbative Quark Dynamics¶
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We have studied three quark systems in an effective Hamiltonian approach in QCD. With only two parameters,
namely, the string tension σ = 0.15 GeV2 and the strong coupling constant αs = 0.39, we obtain a good descrip-
tion of the ground state light and heavy baryons. The predictions of masses of the doubly heavy baryons not yet
discovered are also given. In particular, a mass of 3637 MeV for the lightest ccu baryon is found by employing
the hyperspherical formalism to the three-quark confining potential with the string junction. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 12.38.Lg; 14.20.-c
The discovery of the Bc meson [1] demonstrates that
new sectors of hadron physics are becoming accessible
to experiment. In particular, the existence of doubly
heavy baryons is a natural consequence of the quark
model, and it would be surprising if they did not exist.
Data from the BaBar and Belle collaborations at the
SLAG and KEK B-factories would be good places to
look for doubly charmed baryons. Recently, the
SELEX, the charm hadroproduction experiment at Fer-
milab, reported a narrow state at 3519 ± 1 MeV decay-

ing into , consistent with the weak decay of the

doubly charged baryon  [2]. The SELEX result was
recently critically discussed in [3]. Whether or not the
state that SELEX reports turns out to be the first obser-
vation of doubly charmed baryons, studying their prop-
erties is important for a full understanding of the strong
interaction between quarks.

Estimates for the masses and spectra of baryons
containing two or more heavy quarks have been consid-
ered by many authors [4]. The purpose of this letter is
to present a consistent treatment of the masses and
wave functions of the light, heavy, and doubly heavy
baryons obtained in a simple approximation within
nonperturbative QCD. In [5], starting from the QCD
Lagrangian and assuming the minimal area for the
asymptotics of the Wilson loop, the Hamiltonian of the
3q system in the rest frame was derived. The methodol-
ogy of the approach has been reviewed recently [6]. By
using this approach and the hypercentral approximation
[7], we calculate the ground state energies and wave
functions of the doubly heavy baryons as three-quark
systems, with the three-body confinement force. As a
by-product, we also report the masses and wave func-
tions for light and heavy baryons.

¶ This article was submitted by the authors in English.

Λc
+K–π+
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From an experimental point of view, a detailed dis-
cussion of the excited QQ’q states is probably prema-
ture. Therefore, we consider ground state baryons with-
out radial and orbital excitations, in which case tensor
and spin–orbit forces do not contribute perturbatively.
Then only the spin–spin interaction survives in the per-
turbative approximation. The effective Hamiltonian
(EH) has the form [6]

(1)

where H0 is the nonrelativistic kinetic energy operator,
V is the sum of the perturbative one-gluon exchange
potentials Vc,

(2)

and the string potential

(3)

where lmin is the sum of the three distances |ri | from the
string junction point. In contrast to the standard
approach of the constituent quark model, the dynamical
masses mi are no longer free parameters. They are
expressed in terms of the running masses

defined at the appropriate hadronic scale of Q2

from the condition of the minimum of the baryon mass

as function of mi:

(4)

H
mi

0( )2

2mi

-----------
mi

2
-----+ 

  H0 V ,+ +
i 1=

3

∑=

Vc
2
3
---α s

1
rij

-----,
i j<
∑–=

V string r1 r2 r3, ,( ) σlmin,=

mi
0( ) Q2( )

MB
0( )

∂MB
0( ) mi( )

∂mi

------------------------ 0,=

MB
0( ) mi

0( )2

2mi

-----------
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2
-----+ 
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i 1=

3

∑ E0 m1 m2 m3, ,( ),+=
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E0 being an eigenvalue of the operator H0 + V. Techni-
cally, this has been done using the einbein (auxiliary
fields) approach, which has proven to be rather accurate
in various calculations for relativistic systems. Einbeins
are treated as c number variational parameters: the
eigenvalues of the EH are minimized with respect to
einbeins to obtain the physical spectrum. Such a proce-
dure provides a reasonable accuracy for meson ground
states [8].

The physical mass MB of a baryon is [9]

(5)

where the constant C has the meaning of the quark self-
energy. The values of ηi are taken from [9]. They are 1,
0.88, 0.234, and 0.052 for q, s, c, and b quarks, respec-
tively.

The EH is solved using the hyperspherical approach
adequate for confining potentials. The baryon wave
function depends on the three-body Jacobi coordinates

(6)

(i, j, k cyclic), where µij and µij, k are the appropriate
reduced masses

(7)

and µ is an arbitrary parameter with the dimension of
mass that drops off in the final expressions. In terms of
the Jacobi coordinates, the kinetic energy operator H0 is
written as

(8)

where R is the six-dimensional hyperradius R2 =  +

 and K2(Ω) is the angular momentum operator,
whose eigenfunctions (the hyperspherical harmonics)
are K2(Ω)Y[K] = –K(K + 4)Y[K], with K being the grand
orbital momentum. In terms of Y[K], the wave function
ψ(r, l) can be written in a symbolic shorthand as [10]

(9)

In the hyperradial approximation that we shall use
below, K = 0 and ψ = ψ(R). Since R2 is exchange-sym-

MB MB
0( ) C, C+

2σ
π

------
η i
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-----
i

∑ ,–= =

rij

µij

µ
------ ri r j–( ),=

lij

µij k,

µ
---------

miri m jr j+
mi m j+

--------------------------- rk– 
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µij

mim j

mi m j+
------------------, µi j k,

mi m j+( )mk

mi m j mk+ +
------------------------------,= =

H0
1

2µ
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r2

2

∂
∂

l2

2

∂
∂+ 

 –=

=  
1

2µ
------

R2

2

∂
∂ 5

R
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R∂
∂ K2 Ω( )

R2
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metric, the baryon wave function is totally symmetric

under exchange. Introducing the variable x =  and
averaging the interaction U = Vc + Vstring over the six-
dimensional sphere Ω6, one obtains the Schrödinger
equation for u(x) = x5/6ψ(x):

(10)

with the boundary conditions u(x) ~ 2(x5/2) as x  0
and the asymptotic u(x) ~ Ai(y) ~

exp , y = (2b)1/3x, as x  ∞. In

Eq. (10), E0 is the ground state eigenvalue and

(11)

The potential Vstring(r1, r2, r3) has a rather complicated
structure. In a Y shape, the strings meet at 120° in order
to ensure the minimum energy. This shape moves con-
tinuously to a two-legs configuration, where the legs
meet at an angle larger than 120°. Let ϕijk be the angle
between the line from quark i to quark j and that from
quark j to quark k. If ϕijk are all smaller than 120°, then
the equilibrium junction position coincides with the so-
called Torichelli point of the triangle in which the ver-
tices of the three quarks are situated. In this case, in
terms of the variables x, θ = , and
cosχ = r12 · l12/ρ12λ12 (0 % θ % π/2, 0 % χ % π), one
obtains

(12)

where m2 = m1m2m3/(m1 + m2 + m3). For the case m1 =
m2 = m3, this expression coincides with that derived in
[11]. If ϕijk > 120°, the lowest energy configuration has
the junction at the position of quark j and lmin = rij + rjk,
where

(13)
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and

(14)

The boundaries corresponding to the various regions in
the (θ, χ) plane are θ1(2)(χ) =

/m), θ3(χ) =

/2m), f(χ) = (1 –

κ)cosχ + (1 + κ)sinχ/ , κ = m1/m2. These boundaries
are shown in the figure for the case of equal quark
masses.

Note that the frequently used approximation [6, 12]
is to choose the string junction point as coinciding with
the center-of-mass coordinate. In this case,

(15)

r23
x θcos

µ12 3,

--------------- m2

m2
2

------ θtan
2 2m

m2
------- θ χcostan 1+– .=

m1 2( ) χ χ / 3sin–cos+−( )(arctan
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3
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i j<
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b σ 32
15π
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µij k,
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The four regions in the (θ, χ) plane corresponding to ϕijk ≥
120° and ϕijk ≤ 120° for the case of equal quark masses. 

Table 1.  Illustration of the accuracy of the approximation (15)

Baryon Eq. (11) Eq. (15)

qqq 1.583 1.663

qqs 1.556 1.636

qss 1.530 1.608

qsc 1.339 1.417

qqb 1.293 1.384

qcb 1.038 1.101

qbb 0.925 0.975

Shown are the values /σ given by Eqs. (11) and (15), where

mq is the lightest quark mass.

b mq

cosϕijk
This approximation greatly simplifies the calculations
and increases the value of b in Eq. (10) by ~5%, as illus-
trated by the results of Table 1.

We first solve Eq. (4) for the dynamical quark
masses mi and retain only the string potential in the
effective Hamiltonian (1). This procedure is consistent
with [6] but different from that of [12]. Then we add the
perturbative Coulomb potential and solve Eq. (10) to
obtain the ground state eigenvalues E0. The baryon
masses MB are then obtained by solving Eq. (5).

We use the same parameters as in [13]: σ =
0.15 GeV2 (this value has been confirmed in a recent

lattice study [14]), αs = 0.39,  = 0.009 GeV,  =

0.17 GeV,  = 1.4 GeV, and  = 4.8 GeV. In Table 2,
for various three-quark states, we give the quark masses
mi, the ground state eigenvalues E0, and the baryon
masses MB. For completeness, in the last column, we
report the values of the integral

(16)

in terms of which the quantities Rijk = (4 /π2)γ deter-
mining the probability of finding a quark i at the loca-
tion of the quark j in a baryon ijk are expressed. These
quantities are of special importance for the lifetime cal-
culations of heavy hadrons.

Note that there is no good theoretical reason why
quark masses mi need to be the same in different bary-
ons. Inspection of Table 2 shows that the masses of the
light quarks (u, d, or s) are increased by ~100 MeV
when going from light to heavy baryons. The dynami-

cal masses of light quarks mq ~  ~ 400–500 MeV
qualitatively agree with the results of [13] obtained
from the analysis of the heavy–light ground state
mesons.

While studying Table 2 is sufficient to give an appre-
ciation of the accuracy of our predictions, a few com-
ments should be added. We expect the accuracy of the
baryon predictions to be ~5–10%, which is partly due
to the approximations employed in the derivations of
the EH itself [6] and partly due to the error associated
with the variational nature of the hyperspherical
approximation. From this point of view, the overall
agreement with the data is quite satisfactory. For exam-

ple, we get (N + ∆)theory = 1144 MeV vs. (N + ∆)exp =

1085 MeV (a 5% increase in αs would correctly give the

N – ∆ center of gravity), (Λ + Σ + 1Σ*) = 1242 MeV

vs. experimental value of 1267 MeV. We also find
Ξtheory = 1336 MeV (without hyperfine splitting) vs.

 = 1315 MeV and Ξctheory = 2542 MeV vs. Ξcexp =

mq
0( ) ms

0( )

mc
0( ) mb

0( )

γ u2 x( )

x3
------------ xd∫=

µij
3/2

σ

1
2
--- 1

2
---

1
4
---

Ξexp
1/2
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Table 2

 Baryon m1 m2 m3 E0 MB γ

qqq 0.362 0.362 0.362 1.392 1.144 0.1389

qqs 0.367 0.367 0.407 1.362 1.242 0.1369

qss 0.371 0.411 0.411 1.335 1.336 0.1351

sss 0.415 0.415 0.415 1.307 1.426 0.1333

qqc 0.406 0.406 1.470 1.142 2.464 0.1241

qsc 0.409 0.448 1.471 1.116 2.542 0.1228

ssc 0.452 0.452 1.473 1.090 2.621 0.1214

qqb 0.425 0.425 4.825 1.054 5.823 0.1201

qsb 0.429 0.469 4.826 1.026 5.903 0.1188

ssb 0.471 0.471 4.826 1.000 5.975 0.1177

qcc 0.444 1.494 1.494 0.876 3.659 0.1143

scc 0.485 1.496 1.496 0.851 3.726 0.1134

qcb 0.465 1.512 4.836 0.753 6.969 0.1136

scb 0.505 1.514 4.837 0.729 7.032 0.1128

qbb 0.488 4.847 4.847 0.567 10.214 0.1207

sbb 0.526 4.851 4.851 0.544 10.273 0.1202

For various 3q systems in column (1), we display the dynamical quark masses given by Eq. (4), the ground state eigenvalue E0 in Eq. (10), the
baryon masses including the self-energy correction Eq. (5) (all in units of GeV), and the correlation function γ, Eq. (16) (in units of GeV3/2).

Table 3.  Comparison of our predictions for ground state masses (in units of GeV) of doubly heavy baryons with other pre-
dictions

Baryon This work Ref. [12] Ref. [15] Ref. [16] Ref. [17]

Ξcc 3.66 3.69 3.57 3.69 3.70

Ωcc 3.73 3.86 3.66 3.84 3.80

Ξcb 6.97 6.96 6.87 6.96 6.99

Ωcb 7.03 7.13 6.96 7.15 7.07

Ξbb 10.21 10.16 10.12 10.23 10.24

Ωbb 10.27 10.34 10.19 10.38 10.34
2584 MeV. On the other hand, our study shows some
difficulties in reproducing, e.g., the Ω-hyperon mass.

In Table 3, we compare the spin-averaged masses
(computed without the spin–spin term) of the lowest
doubly heavy baryons to the predictions of other mod-
els [15–17], as well as variational calculations of [12],
for which the center of gravity of nonstrange baryons
and hyperons is essentially a free parameter. Most
recent predictions were obtained in a light quark–heavy
diquark model [15, 16], in which case the spin-aver-

aged values are M = (M1/2 + 2M3/2). Note that the

wave function calculated in the hyperspherical approx-
imation shows marginal diquark clustering in the dou-
bly heavy baryons. This is a principally kinematic
effect related to the fact that in this approximation the
difference between the various mean values  in a

1
3
---

rij
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baryon is due to the factor , which varies

between  for mi = mj and  for mi ! mj. In
general, in spite of the completely different physical
picture, we find a reasonable agreement to within
100 MeV between the different predictions for the
ground state masses of the doubly heavy baryons. Our
prediction for Mccu is 3.66 GeV with the perturbative

hyperfine splitting  ~ 40 MeV. Note that the

mass of  is rather sensitive to the value of the run-

ning c-quark mass  [18].

In conclusion, we have shown that baryon spectros-
copy can be unified in a single framework of the effec-
tive Hamiltonian, which is consistent with QCD. This
picture uses a stringlike picture of confinement and per-
turbative one-gluon exchange potential. The main

1/µij

2/mi 1/mi

Ξccu* Ξccu–

Ξcc
+

mc
0( )
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advantage of this work is the demonstration of the fact
that it is possible to describe all the baryons in terms of
the only two parameters inherent to QCD, namely, σ
and αs.

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 00-02-
16363 and 00-15-96786).
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The pion transition form factor for the process γ*γ*  π0 at spacelike values of photon momenta is calculated
within the effective quark–meson model with the interaction induced by instanton exchange. The leading and
next-to-leading order power asymptotics of the form factor and the relation between the light-cone pion distri-
bution amplitudes of twists 2 and 4 and the dynamically generated quark mass are found. © 2003 MAIK
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The pion form factor  for the transition

process γ*(q1)γ*(q2)  π0(p), where q1 and q2 are
photon momenta, is related to fundamental properties
of QCD dynamics at low and high energies. At zero
photon virtualities, the observed value of the width for
the two-photon decay of the π0 meson

(1)

is consistent with the theoretical prediction due to the
chiral anomaly for π0

(2)

where fπ = 92.4 MeV is the pion weak decay constant.

The existing experimental data from the CELLO [1]
and CLEO [2] collaborations on the form factor 

for one almost real photon,  ≈ 0, with the virtuality
of the other photon scanned up to 8 GeV2 can be fitted
by a monopole form factor:

(3)

where gπγγ = 0.275 GeV–1 is the two-photon pion decay
constant. The large Q2 behavior of form factor (3) is in

¶ This article was submitted by the author in English.
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agreement with the lowest order perturbative QCD
(pQCD) prediction [3]

(4)

where the leading (LO) and next-to-leading (NLO)
order asymptotic coefficients J(ω) are expressed in
terms of the light-cone pion distribution amplitudes
(DA), ϕπ(x):

(5)

In the above expressions, Q2 = –(  + ) ≥ 0 is the

total virtuality of the photons and ω = (  – )/(  +

) is the asymmetry in their distribution. The distribu-

tion amplitudes are normalized as  = 1, and

the parameter ∆2 characterizes the scale of the NLO
power corrections. The first perturbative correction to
the LO term in (4) was found in [4], and the NLO power
corrections were discussed in [5, 6] and more recently
in [7] within the light-cone sum rules.

The leading momentum power dependence of form
factor (4) is dictated by the scaling property of the pion
DA. But the coefficients of the power expansion depend
crucially on the internal pion dynamics, which are
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parameterized by the nonperturbative pion DAs, ϕπ(x),
defined at some normalization scale µ, with x being the
fraction of the pion momentum p carried by a quark. At
the asymptotically large normalization scale µ  ∞,
the DAs are determined in pQCD:

(6)

However, for the description of the experimentally
observable hard exclusive processes, one needs to know
the DAs normalized at virtuality µ2 ~ 1 GeV2. The aim
of this letter is to calculate the pion transition form fac-
tor in the kinematical region up to moderately large Q2

and extract from its power expansion in 1/Q2 the pion
DAs at a normalization scale typical for hadrons. The
calculations carried out within the effective model with
nonlocal quark–quark interactions are consistent with
the chiral anomaly and result in relations between the
DAs of twists 2 and 4 and the dynamically generated
nonlocal quark mass. The usage of the covariant nonlo-
cal low-energy model based on the Schwinger–Dyson
approach to the dynamics of quarks and gluons has
many attractive features, such as that the approach pre-
serves gauge invariance, it is consistent with the low-
energy theorems, and it takes into account the long-dis-
tance dynamics of the bound state. Furthermore, the
intrinsic nonlocal structure of the model may be moti-
vated by fundamental QCD interactions induced by the
instanton and gluon exchanges.

The effective quark–pion dynamics motivated by
the instanton-induced interaction1 may be summarized
in terms of the dressed quark propagator

the quark–pion vertex

and the quark–photon vertex satisfying the Ward–
Takahashi identity

where M(k2) is the dynamically generated quark mass.
The dynamical quark mass characterizes the momen-
tum dependence of an order parameter for spontaneous
breaking of chiral symmetry and may be expressed in
terms of the gauge-invariant nonlocal quark condensate

1See for a review, e.g., [8].
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[9]. The inverse size of the nonlocality scale, Λ, is nat-
urally related to the average virtuality of quarks that

flow through the vacuum,  ~ Λ2. The value of  is

known from the QCD sum rule analysis,  ≈ 0.4 ±
0.1 GeV2 [10], and, within the instanton model, may be
expressed through the average instanton size, ρc, as

 ≈ 2  [11]. The pion weak decay constant is
expressed by the Pagels–Stokar formula

(7)

where M'(u) = M(u) and D(u) = u + M2(u).

The invariant amplitude for the process γ*γ*  π0

is given by

where  are the photon polarization vectors. In the
effective model, one finds the contribution of the trian-
gle diagram to the invariant amplitude to be

(8)

where p = q1 + q2, q = q1 – q2, k± = k ± p/2. In the

adopted chiral limit (p2 =  = 0) with both photons

real (  = 0), one finds the result

(9)

which is consistent with the chiral anomaly.
The LO behavior of the form factor at large photon

virtualities is given by the contribution of the first term
in (8), and the NLO power corrections are generated by
the second and third terms in (7) and also appear as the
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+ tr iγ5S k–( )ê2S k q/2–[ ] S k+( )[ ] e1 2k q2+,( )

× G k+
2 k q/2–( )2,( ) } q1 q2; e1 e2( ),+

mπ
2

qi
2

M
π0 0 0,( )

Nc

6π2 f π

--------------=

× ud

0

∞

∫ uM u( ) M u( ) 2uM' u( )–[ ]
D3 u( )

---------------------------------------------------------- 1

4π2 f π

--------------,=
JETP LETTERS      Vol. 77      No. 2      2003



PION DISTRIBUTION AMPLITUDES WITHIN THE INSTANTON MODEL 65
correction to the first term. Thus, for large  =  =
−Q2/2 and p2 = 0, the form factor has the asymptotics

(10)

(11)

which is in agreement with expressions (4) and (5) for
the asymptotic coefficients at ω = 0. The parameter ∆2

has an extra power of u in the integral with respect to
(7) and thus is proportional to the matrix element

. The power correction (11) is
the sum of the positive contribution coming from the
higher Fock states in the pion, effectively taken into
account by the second and third terms in (8), and the
negative two-particle contribution due to the first term
in (8).2 Note that the model provides the opposite sign
of the power correction compared with the QCD sum
rule prediction [5].

In the general case, at large Q2, the model calcula-
tions reproduce the QCD factorization result (4), (5)
with the DAs given by

(12)

(13)

In these expressions, the u variable plays the role of the

quark transverse momentum squared, , and λx, –λ
are the longitudinal projections of the quark momen-
tum onto the light cone directions. The model DAs are
defined at the normalization scale characterized by the
vacuum nonlocality µ2 ~ Λ2. Concerning the LO DA,

2 In [12], only part of the NLO power corrections were discussed.
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 similar results within the instanton model were
derived earlier in [13, 14].

In Fig. 1, the LO and NLO pion DAs, normalized by
unity, are illustrated in comparison with perturbative
asymptotic DAs. For numerical analysis, the dynamical
mass profile is chosen in the Gaussian form M(k2) =
Mqexp(–2k2/Λ2), where we take Mq = 350 MeV and fix
Λ = 1.29 GeV from the pion constant (7). Then, the
value ∆2 ≡ J(4)(ω = 1)/J(2)(ω = 1) = 0.205 GeV2 is
obtained, which characterizes the scale of the power
corrections in hard exclusive processes. The mean
square radius of the pion for the transition γ*π0  γ is

 = (0.566 fm)2 and is numerically close to the value
derived from (3). As is clear from Fig. 1, the predicted
pion DAs for a realistic choice of the model parameters
are close to the asymptotic DAs. The corresponding
conclusion with respect to the LO DA is in agreement
with the results obtained in [15, 16], as is seen from
comparison of Figs. 1 and 2.

The asymptotic coefficients J(2, 4)(ω) given by (5),
(12), and (13) can be identically rewritten in the form

(14)

(15)

ϕπ
2( ) x( )

rπγ
2

J 2( ) ω( )
1

π2 f π

----------- uu v
M1/2 z–( )
D z–( )

------------------
z+∂
∂





d

0

∞

∫d

0

∞

∫–=

×
M3/2 z+( )
D z+( )

------------------- 
  z– z+( )+





,

J 4( ) ω( )
2

π2 f π
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M1/2 z–( )
D z–( )
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M3/2 z+( )
D z+( )

-------------------




d

0

∞

∫d

0

∞

∫=

+ u
z+∂
∂ M3/2 z+( )

D z+( )
------------------- 

  z– z+( )+




,

Fig. 1. The pion distribution amplitudes (normalized to
unity): the model predictions for twist-2 (solid line) and
twist-4 (dashed line) components and the perturbative
asymptotic limits of twist-2 (dotted line) and twist-4 (dash-
dotted line) amplitudes.
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where z± = u + v (1 ± ω). With the model parameters
given above, we find the asymptotic coefficients
J(2)(ω = 1) = 0.171 GeV and J(4)(1)/J(2)(1) = 0.254 GeV2

for the process γγ*  π0. When the error in the exper-
imental fit is taken into account, the estimate of the LO
coefficient, J(2)(1), is in agreement with the fit of CLEO

data  = 0.16 ± 0.03 GeV. The NLO power cor-
rection, ∆2, grows by 20% when the kinematics change
from equally distributed photon virtualities to an asym-
metric distribution.

In Figs. 3 and 4, we plot the model predictions for

the form factors Fπγ*(Q2) =  and

Fπγ*γ*(Q2) = (–Q2/2, –Q2/2) multiplied by squared

momentum Q2 for the processes γγ*  π0 and
γ*γ*  π0, respectively. In Fig. 3, we also indicate the
CLEO data. In the model form factors, the perturbative
αs corrections [4] to the leading twist-2 term are taken
into account with the running coupling, αs(Q2), which
has a zero at zero momentum [17]. With such effective
behavior in the infrared region, the perturbative correc-
tions do not influence the chiral anomaly. At high
momentum squared, the leading perturbative correction
provides a negative contribution to the form factors and
compensates the NLO power corrections in the region
2–10 GeV2. The unknown perturbative corrections to
the twist-4 contribution are considered as inessential.
The power corrections generated by the twist-3 pion
DAs are also negligible, since they are proportional to
the small current quark mass.

In conclusion, within the covariant nonlocal model
describing quark–pion dynamics, we obtain the πγ*γ*
transition form factor in the region up to moderately
high momentum transfer squared, where the perturba-

Jexp
2( ) 1( )

M
π0 Q2 0,–( )

M
π0

Fig. 2. An admissible set of twist-2 pion distribution ampli-
tudes (dashed lines, the best fit is the solid line) as predicted
within the QCD sum rules (from [15b]) with vacuum non-

locality parameter  = 0.4 GeV2 defined at µ2 ≈ 1 GeV2.λq
2

tive QCD evolution does not yet reach the asymptotic
regime. From comparison of the kinematical depen-
dence of the coefficients of the power expansion in 1/Q2

of the transition pion form factor, as it is given by
pQCD and the nonperturbative model, the relations
(12), (13) between the pion DAs and the dynamical
quark mass and quark–pion vertex are derived. The
other possible sources of contributions to the form fac-
tor arise from inclusion into the model of the low-lying
vector and axial-vector mesons. They do not change the
result given by the chiral anomaly (9) for the two-
gamma pion decay. The contributions of the vector
mesons to the leading-order asymptotics of the form
factor are expected to be small, but they may be more

Fig. 3. The pion–photon transition form factor Q2Fπγ*(Q2)
(solid line) and its perturbative limit 2fπ (dotted line). The

experimental points (Q2Fπγ*γ) are taken from [2].

Fig. 4. The pion–photon transition form factor
Q2Fπγ*γ*(Q2) (solid line) and its perturbative limit 4fπ/3
(dashed line).
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important in treating the twist-4 power corrections and
the pion mean radius.

I am grateful to A.P. Bakulev, W. Broniowski, A. Di
Giacomo, A.S. Gorski, N.I. Kochelev, S.V. Mikhailov,
M.K. Volkov, L. Tomio, and V.L. Yudichev for many
useful discussions on topics related to this work. This
work was supported by the Russian Foundation for
Basic Research (project nos. 01-02-16431 and 02-02-
16194) and by INTAS (grant no. 2000-366).
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We derive formulas that describe the energy spectrum of a hydrogen atom in a superstrong magnetic field for
states with various magnetic quantum numbers. Comparison with available numerical calculations of the spec-
trum indicates that the results obtained are highly accurate. These results can be interpreted as a manifestation
of the Zeldovich effect regarding the rearrangement of the hydrogen atomic spectrum under the influence of
strong Coulomb potential distortion at short distances in the problem under consideration. © 2003 MAIK
“Nauka/Interperiodica”.
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1. The problem of a hydrogen atom in an extremely
strong magnetic field, H @ H0 ≡ e3m2c/"3 = 2.35 × 109 G,
is of great interest in astrophysics and solid-state phys-
ics. A large number of studies in which the energy spec-
trum of such an atom was computed by various numer-
ical methods have been published (see [1] and refer-
ences therein).

Nevertheless, as far as I know, there are no correct
analytic expressions for this spectrum [see, however,
the remark after formula (12)]. The standard formula
(Elliott and Loudon) for the binding energy of the
ground atomic state

(1)

see [2] (§112), even at H ~ (104–105)H0 (at the validity
boundary of the nonrelativistic approximation) gives
only order-of-magnitude values of ε0, which are larger
by a factor of 3 than the result of an accurate numerical
calculation. Moreover, the inverse of dependence (1)

(2)

(aB is the Bohr radius) is unsatisfactory altogether,
because it gives an H(κ) underestimated by two orders
of magnitude (see Table 1 below).

This discrepancy stems from the fact that both the
derivation of formula (1) and the general considerations
on the properties of the excited atomic state spectrum in
[2] require a number of significant refinements. In par-
ticular, even and odd (with respect to the reflection of
the electron coordinate along the magnetic field) levels

ε0 H( )
"

2κ2

2m
-----------≡ me4

2"
2

--------- H
H0
------ 

 ln
2

,=

H κ( ) H0e
κ aB=
0021-3640/03/7702- $24.00 © 20068
are described by distinctly different expressions and are
greatly shifted relative to each other. In this case, the
Zeldovich effect regarding the possible rearrangement
of the atomic hydrogen spectrum, En = –me4/2"2n2,
under the influence of Coulomb potential distortion at
short distances, r ! aB, manifests itself in the even-state
spectrum. This effect, which was predicted by Zeldov-
ich [3] in connection with the problem of electron
energy levels in an extrinsic semiconductor, imposes
stringent requirements on the pattern of this Coulomb
potential distortion: for slow particles, it must be reso-
nant. A similar behavior of the levels in the electron
spectrum was found [4] in the relativistic problem with
a nuclear charge Z > 137. In the past, the Zeldovich
effect attracted wide attention, because it could mani-
fest itself in hadron atoms (see [5–8]).

2. Choosing the vector potential of the external mag-

netic field in the form A = [Hr] and directing the z

axis along H, we have the following Hamiltonian of the
system under consideration in the nonrelativistic
approximation:1

1 Below, we use the atomic system of units, e = " = m = 1, in which
the speed of light is c = α–1 = 137.

1
2
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Ĥ
1
2
---∆⊥–

1
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ρ2 H
2c
------ l̂z σ̂z+( )+ +=

–
1
2
---

z2

2

∂
∂ 1

ρ2 z2+
--------------------.–
003 MAIK “Nauka/Interperiodica”



        

THE SPECTRUM OF A HYDROGEN ATOM 69

                                                    
Table 1

κ2
H/c

aH/aB
[1] Eq. (12) Eq. (2) [10]

47.783 105 1.003 × 105 1.0 × 103 1.7 × 105 3.2 × 10–3

41.159 5 × 104 5.014 × 104 611 9.0 × 104 4.5 × 10–3

28.282 104 9991 204 2.1 × 104 10–2

23.747 5 × 103 4970 131 1.1 × 104 1.4 × 10–2

18.610 2 × 103 1961 75 5.0 × 103 2.3 × 10–2

15.325 103 962 50 2.7 × 103 3.2 × 10–2

11.703 4 × 102 368 31 1.3 × 103 5.2 × 10–2

9.4543 2 × 102 174 22 730 7.6 × 10–2

7.5796 102 80 16 420 0.10
For a superstrong magnetic field, the adiabatic approx-
imation can be used to solve the Schrödinger equation.
In this case, the solution can be written as

where  are the standard functions of the trans-
verse electron motion in a purely magnetic external
field [2] (we omitted the spin part of the wave function).
The bound-state spectrum of the Hamiltonian can be
represented as

(3)

where σz = ±1, n is the quantum number for the longi-
tudinal motion, and the last term defines the shift of the
corresponding Landau level produced by the Coulomb
potential. This shift can be determined from the
Schrödinger equation for the longitudinal part of the
wave function:

(4)

in which the effective potential energy is given by the
expression

(5)

Note the following properties of this potential (the spe-
cific expressions for it depend on the quantum numbers
nρ and |m| for the transverse motion).

(1) At distances |z | ≤ aH ! aB, Ueff(|z |) ~ 1/aH, where

aH =  and ωH = eH/mc. In this case, Ueff  ~

ψnnρm r( ) Rnρm r( )χn z( ),=
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aH ! 1, so the potential at such distances is a shallow
one-dimensional potential well.

(2) At |z | @ aH, the effective potential is a Coulomb
one.

(3) Note also that Ueff(|z |) + 1/|z | > 0; i.e., the effec-
tive potential energy curve lies above the Coulomb one.
The effective potential for the m = nρ = 0 states is

(6)

The solutions to Eq. (4) have a certain parity, P = ±1,
relative to the transformation z  –z. We begin with
even states, for which χ'(0) = 0. Treating the terms with
Ueff and κ2 in Eq. (4) at |z | ≤ aH ! 1 as a perturbation,
we have in the zero approximation χ(z) = 1 and χ'(z) = 0.
A more accurate value of χ'(z) can be calculated from
Eq. (4) if we omit the term with the binding energy,
substitute unity for χ(z) in the term with the effective
potential, and integrate the resulting equation over z. As
a result, we obtain

(7)

For the subsequent analysis, we need  only for
distances aH ! |z | ! aB, where the effective potential is
a Coulomb one. Taking into account the dependence of

 on ρ [the polynomials in ρ2 multiplied by

exp(–ρ2/4 )] and using the integral

(8)
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where ψ(z) is the logarithmic derivative of the gamma
function, we find that the derivative  at these dis-
tances, according to formula (7), takes the form2 

(9)

Significantly, the term  does not depend on H. In
particular, for the transverse nodeless states with nρ = 0,
according to Eq. (8), we obtain

(10)

Recall that ψ(1) = –γ, where γ = 0.5772… is the Euler

constant, and ψ(n + 1) = –γ +  for integer n =

1, 2, … .
At the same time, the solution to Eq. (4) with a

purely Coulomb effective potential, which exponen-
tially decreases at large distances, |z |  ∞, is
described by the Whittaker function:

with ν = 1/κ. At small distances, |z | ! 1, this solution is

(11)

(see [9], formula 9.237); we assume that const = Γ(1 – ν).
Differentiating this expression and equating to (9), one
obtains an equation for the even-state spectrum:

(12)

We emphasize that this equation directly defines H(κ) for
even levels; interestingly, exp{– }H( ) is a
universal function (for a given n), which is the same for
states with different quantum numbers |m | and nρ.

The basic properties of this spectrum, i.e., the

dependence (H), can be easily understood if we
notice an analogy between Eq. (12) and the equation
that defines the s-state spectrum in a three-dimensional
attractive Coulomb potential U(r) = –e2/r distorted at

2 First, we should integrate 1/  in the effective potential
(see Eq. (5)) over z and pass to the limit |z |  ∞, neglecting
the decreasing expansion terms. The integral with  can then
be easily calculated and the z-independent integral with  can
be expressed in terms of integrals (8). Note also that, although
χ'(|z |) > 1 in Eq. (9), we still have χ(|z |) ≈ 1.
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z
2 ρ2

+

zln
ρln

χ' z( ) 2 z
aH

------ A m nρ
.+ln–≈

A m nρ

A m 0 2 ψ 1 m+( ).+ln–=

1
k
---

k 1=
n∑

χ z( ) constWν 1/2, 2 z /ν( )=

χ z( ) 1 2 z 2κ z( )---ln–




=

– κ 2ψ 1 1
κ
---– 

  2– 4γ+ + z …+




H
c
---- 1

aH
2

------ln≡ln κ 2 κ 2ψ 1 1
κ
---– 

 +ln+=

+ 4γ 2 2 A m nρ
.+ln+

A m nρ
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short distances, r < aB, by a strong short-range potential
US(r), which can itself bind the particle (electron). This
equation is [6–8]

(13)

where a0 is the (renormalized) scattering length in the s
state in the potential US. Comparison of Eqs. (12) and
(13) indicates that an analogue of the inverse scattering
length is

(14)

in this case, under the validity conditions aH ! a0(H)
for the approach in question, with a0(H) > aB/10 numer-
ically; thus, for H/c = 104 at m = nρ = 0, we have a0(H) ≈
0.15 and aH = 0.01.

Bearing in mind this analogy, we note the following
properties of the even-state spectrum:

(1) For each pair of quantum numbers |m | and nρ,

Eq. (12) has an infinite number of roots  > 0. The

lowest (with n = 1) root with  @ 1 corresponds to
the deep level on the atomic scale; cf. Eq. (1).

(2) The remaining roots, with n ≥ 2, correspond to
excited states. The corresponding energy levels are
located between the neighboring unshifted Coulomb ns

levels with the principal quantum numbers n' equal to
(n – 1) and n.

Note that an equation similar to Eq. (12), in which
ψ(1) = –γ was substituted for ψ(1 – 1/κ), was derived in
[10] for the lower (deep) n = 1+ level. This equation is
definitely inapplicable to excited even states but is still
asymptotically exact for H(κ) for the lower level. How-
ever, the above substitution results in the clear loss of
accuracy at large but finite H (limited because of the use
of the nonrelativistic approximation); see Table 1.

For a further analysis of the states in the lower part
of the energy spectrum, see Section 3.

Let us now discuss the properties of the odd states
that follow from Eq. (4). The energy spectrum for the s
levels in a three-dimensional potential U(r) is known to
match the energy spectrum for the odd levels in a sym-
metric one-dimensional potential U(|z |) of the same
form. Therefore, given the properties of Ueff(|z |) noted
above, we can assert that, if the potential in the corre-
sponding three-dimensional problem is written as
Ueff(r) ≡ –1/r + (Ueff(r) + 1/r), then the last term can be
treated as a small distortion of a purely Coulomb poten-
tial and it can be taken into account by using the pertur-

1
a0
----- κ 2 κ 2ψ 1 1

κ
---– 

  ,+ln+=
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bation theory. Thus, we can write the following expres-
sion for the odd n levels in the potential Ueff(|z |):

(15)

where  are the unperturbed wave functions of
the ns states in the Coulomb potential. The levels are
slightly shifted upward relative to the Coulomb levels
[the integrand in Eq. (15) is positive].

When the short-range distortion of the Coulomb
potential, Ueff(r) + 1/r, decreases with increasing r

faster than ∝ 1/r3, we can factor  outside the
integral sign and derive the following expression:3

(16)

This expression describes the shifts of the Coulomb

levels with arbitrary n;  ∝   = 1/πn3.

We can obtain an asymptotic expansion for the bind-
ing energy of the lower odd level by using expressions
(6) and (15) for m = nρ = 0 and generalize it to the states
with arbitrary n by using formula (16):

(17)

Below, we also generalize this result to the nodeless
states with arbitrary |m |:

3. Let us discuss our results and compare them with
available numerical calculations. The hydrogen atomic
spectrum for a number of states with m = 0 below the
Landau ground level was calculated with a high preci-
sion in [1] over a wide H range. Table 1 illustrates the
dependence H(κ) for the ground atomic state. For the
listed values of κ2, this table compares the correspond-
ing magnetic field strengths taken from [1] and [10], as

3 The integral in this expression, to within the factor 1/2π, defines
the scattering length for the distorting potential in the Born
approximation. Therefore, recall that the following estimate is

valid for the level shift in the nonresonant case:  ≡ 1/n2 –

 ≤ 4as/n
3 ≤ 4rS/n3, where rS is the radius of the distorting

short-range potential and as is the s-scattering length for this
potential.
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well as those calculated from formulas (12) and (2).
Also given in the table are the aH/aB ratios, whose
smallness is required for the adiabatic approximation to
be applicable.

Note that the dependence κ2(H) of the level binding
energy on magnetic field is given by Eq. (12) with a
much higher accuracy than its inverse dependence H(κ)
presented in Table 1. Thus, according to Eq. (12), we
have the following binding energies for magnetic field
strengths H/c of 105, 5 × 103, and 200: 47.755 (6 × 10–4),
23.783 (1.5 × 10–3), and 9.84 (4 × 10–2), respectively;
the error in the result obtained is given in parentheses
(cf. the data in the table). This difference stems from the
fact that the dependence H(κ) is sharply exponential,
and this circumstance is one of the reasons why formula
(2) mentioned in the Introduction is inconsistent.

Note also that, as expected [because a0(H) > aB/10],
the binding energy for the ground level in a strong mag-
netic field is large on the scale of ordinary atomic
energies.

Below, we also present Table 2. It gives the binding
energies for the lower excited atomic states with m = 0
taken from [1] and calculated from the asymptotic for-
mulas (12) and (17) for the states with the quantum
numbers n = 2+, m = nρ = 0 and n = 1–, m = nρ = 0 (in
[1], these are classified as the 2s and 2p states with
m = 0, respectively). We make the following remarks
regarding the results presented in this table:

(1) Comparison with the data of Table 1 indicates
that, for these states excited in the longitudinal direc-
tion of motion, our approach provides a higher accu-
racy. This circumstance can be easily explained,
because the size of the localization region for the wave
function increases in the longitudinal direction for the

Table 2

H/c

n = 2+ (2s) n = 1– (2p)

κ2(H), [1] κ2(H),
Eq. (12) κ2(H), [1] κ2(H),

Eq. (17)

104 – 0.65525 – 0.99760

3000 – 0.62390 – 0.99356

2000 0.61248 0.61250 0.99119 0.99111

1000 0.59171 0.59207 0.98499 0.98482

400 0.56206 0.56342 0.97073 0.97028

200 0.53794 0.54079 0.95306 0.95235

140 0.52496 0.52888 0.94092 0.94014

100 0.51236 0.51760 0.92723 0.92655

60 0.49261 0.50046 0.90186 0.90192

40 0.47640 0.48696 0.87748 0.87888

20 0.44768 0.46440 0.82676 0.83073

10 0.41790 0.44291 0.76530 0.75298
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excited states, causing the extension of the validity
range for the adiabatic approximation to increasingly
low magnetic field strengths.

(2) The results for the odd n = 1– (or 2p) state con-
firm the remarks made after formula (15), and they
hardly require any additional comment. 

However, the even n = 2+ (2s) state is of much
greater interest. As we see from Table 2, the corre-
sponding level is strongly shifted relative to the unper-
turbed Coulomb levels, En = –1/2n2, and lies almost
halfway between the levels with the principal quantum

numbers n = 1 and 2 (  = 0.625 corresponds to this
level location). The situation for more highly excited
even levels is similar. Thus, according to formula (12),
we have κ2 = 0.17471 and 0.18876 for the n = 3+ level

at H/c = 102 and 103, respectively, while  = 0.18056.

Let us discuss the cause of the so different patterns
of the shifts in even and odd levels in a one-dimensional
symmetric potential Ueff(|z |) and the relation of our
results to the Zeldovich effect. As was shown in [3],
large ns-level shifts in the three-dimensional short-
range Coulomb problem are possible only in the case of
a strong distorting short-range potential in which there
is an intrinsic shallow, real or virtual, s level (so that the
scattering of slow particles by this potential is reso-
nant). In the remaining cases, the Coulomb level shifts
are small even if there are intrinsic deep (on the atomic
scale) levels of the discrete spectrum in the distorting
potential. In the one-dimensional case, the wave func-
tions of the even and odd states satisfy the same
Schrödinger equation (4) on the semi-axis r ≡ |z | ≥ 0 but
different boundary conditions at point r = 0: χ(–)(0) = 0
for the odd levels and χ(+)'(0) = 0 for the even levels [in
this case, χ(+)(0) ≠ 0]. The match between the odd-level
spectrum in a symmetric one-dimensional potential and
the ns-level spectrum in the corresponding centrally
symmetric three-dimensional potential has already
been noted above. The normalized wave functions in

these cases are related by ψns(r) = / r, so
ψns(0) < ∞ and the smallness of the odd-level shifts rel-
ative to the Coulomb levels was explained by the weak-
ness of the Coulomb potential distortion.4

This analogy does not hold for even states, because

now  = /r ∝  1/r  ∞ as r  0 and
these singular solutions of the Schrödinger equation are
usually excluded from the analysis except for the zero-
radius three-dimensional potential. Recall that this
potential, localized at point r = 0, is determined by the

4 As we noted, Ueff(|z |) + 1/|z | > 0, so the distorting potential is
repulsive and, hence, it cannot be resonant.

κ̃12
2

κ̃23
2

χn
–( ) r( ) 2π

ψ̃ns r( ) χn
+( ) r( )
superposition of the following boundary condition [11,
12] on the wave function:

(18)

where κ0 defines the energy of the real (for κ0 > 0) or

virtual (for κ0 < 0) s level E0 = –"2 /2m that exists in
this potential.

It can now easily be seen that the solutions  =

χ(+)(r)/ r of the three-dimensional Schrödinger
equation for the s states with the potential U(r) that sat-
isfy the boundary condition (18) with κ0 = 0 are

uniquely related to the even solutions  of the
Schrödinger equation for a symmetric one-dimensional

potential U(|z |) for which  = const ≠ 0 and
χ(+)'(0) = 0. Thus, in this case, the spherically symmet-
ric potential is the superposition of the potential U(r)
[in our problem, this is the effective potential Ueff(r)]
and the zero-radius (at r = 0) potential with κ0 = 0.

Significantly, the case with κ0 = 0 implies that this
zero-radius potential models the strong short-range
potential at the time when a bound state (with a zero
binding energy) emerges in it; the scattering length
(nonrenormalized by the effective potential) is a0 =

 = ∞. This property of the short-range potential that
distorts the three-dimensional Coulomb potential is
required for the Zeldovich effect to arise.5

To generalize our results to single-electron ions with

a nuclear charge Ze, the substitutions e   and

H  H/  should be made in them by writing the
corresponding formulas in standard units.

I thank V.S. Popov and V.D. Mur for helpful discus-
sions and remarks. This study was supported in part by
the Russian Foundation for Basic Research (project
no. 01-02-16850).
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It follows from the analysis of the precision numerical calculations of the energy spectrum of a hydrogen atom
in a static magnetic field that the Zeldovich effect (rearrangement of the atomic spectrum) in the spectrum of
atomic levels is observed at superstrong magnetic fields B * 5 × 1011 G. Magnetic fields of such strengths are
reached in neutron stars and magnetic white dwarfs. We established a lower bound Bmin for the fields required
for this effect to occur. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.30.-r; 03.65.Ge
1. The specific properties of the discrete spectrum in
a Coulomb field distorted at short (0 < r < r0) distances
were first considered by Zeldovich [1] in connection
with the problem of electron energy levels in an impu-
rity semiconductor with a dielectric constant ε @ 1. It
was shown that at the time (g = g0) when a bound s level
emerges in a short-range potential Vs(r) = –gv(r) or if
there is a resonance in the scattering of low-energy par-
ticles (i.e., a virtual level with a nearly zero energy), a
rearrangement of the atomic spectrum occurs: the Cou-
lomb Ens level rapidly drops to En – 1, s (n = 2, 3, …),
while the ground E1s level falls deeply downward. The
width of the rearrangement region (in strong-potential
constant g) is ∆g/g0 ~ r0/aB ! 1.

A similar behavior of the s and p levels in the elec-
tronic spectrum was found [2] in the relativistic Cou-
lomb problem with a nuclear charge Z > 137, when the
1s1/2 level disappears from the discrete spectrum into
the lower continuum E < –mc2 (Dirac sea) at a critical
value of Z = Zcr ≈ 170. It was pointed out in [3] that this
effect could manifest itself in nuclear level shifts of the
lightest hadron atoms ( , K–p, and others). It was
noted that the level shift could be positive (∆Ens > 0;
i.e., the level is forced upward), although the short-
range potential Vs that produces these shifts is attrac-
tive. The following specific model potentials Vs were
used in these calculations: a square potential well
v (r) = θ(r0 – r) [1–3], a parabolic potential correspond-
ing to a constant electric-charge volume density inside
the nucleus [2], and separable finite-rank potentials [4–
7]. The general pattern of this phenomenon, which can
occur in all systems for which the interaction potential
breaks down into two (short- and long-range) parts with
highly incommensurable ranges of action and weakly
depends on the specific inner potential Vs(r), was
outlined in [3, 8] and, in more detail, in the review arti-
cle [6].

p p
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In [9], the Zeldovich effect was considered by using
the model-independent equation1 

. (1)

This equation defines the ns-level locations for the Cou-
lomb long-range part of the potential (r > r0). Here, l =
0, E = –λ2/2 is the level energy, ψ(z) = Γ'(z)/Γ(z) is the
logarithmic derivative of the gamma function [12], c0 =
ln2 + 2γ = 1.848, γ = 0.5772 is the Euler constant, r0 is
the matching point, aB is the Bohr radius, as is the
s-scattering length for the potential Vs acting in the
range r < r0, and small terms on the order of r0 and
r0lnr0 were omitted in Eq. (1). The validity condition
for Eq. (1) is

(2)

(below, " = m = e = 1, c = α–1 = 137, Hartree atomic
units). In the problem considered by Zeldovich [1], the
fact that aB = εm/meff @ r0 ~ 1 (here, m is the electron
mass, meff ! m is the effective electron mass in the lat-
tice, and r0 is the ion radius) ensures that this condition
is satisfied.

Equation (1) shows that the ns-level energies are rig-
idly coupled to each other and can be expressed in
terms of the energy of one of them without requiring the
solution of the Schrödinger equation. The properties of
Eq. (1) were analyzed in detail by Popov et al. [13] in
connection with the then available evidence for a large
1s-level shift in the proton–antiproton atom. In this
case, according to Eq. (1), a shallow deuteron-type
bound state could exist in the  system, which would
be of great interest in nuclear physics. However, it sub-
sequently has become clear that the experimental

1 See also [10, 11]. Note that the term “Zeldovich effect” was pro-
posed in [6]. The term “rearrangement of the atomic spectrum” is
also used.

λ 2 λr0 ψ 1 λ 1––( ) c0+ +ln[ ]+ aB/as=

r0 ! aB "
2/me2=

p p
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results [14] are incorrect, the level shifts in the 
atom are small, and interest in the Zeldovich effect (at
least in the field of nuclear physics) fell sharply.

Recently, Karnakov [15] considered the problem of
a hydrogen atom in a superstrong magnetic field B @
Ba, where Ba = m2e3c/"3 = 2.35 × 109 G is the atomic
unit of magnetic field. This problem is of considerable
interest in astrophysics and solid-state physics. Such a
field compresses the atom, whose characteristic size in
the direction transverse to the field is equal to the Lan-

dau radius aH =  = . In this case,

aH/aB = 1/ , where we introduce the reduced field
* = B/Ba and aH for * @ 1 acts as the cutoff radius of
the Coulomb potential, which is small compared to the
Bohr radius aB. Therefore, it is not surprising that, in
this limit, an equation of type (1) is obtained for the
energy spectrum of hydrogen atom, in which the spe-
cific relation between r0 and aB depends on the quantum
numbers nρ and m [16, 17] for the electron motion in a
uniform magnetic field. In particular, for the nρ = m = 0
states, we have

(3)

Eq. (1) takes the form [15]

(4)

and condition (2) is satisfied if * @ 1. The Hamiltonian
spectrum is described by the formula [16]

(5)

where nf = 0, 1, … is the quantum number for the lon-
gitudinal (along *) electron motion, σz = ±1, λ =

, the term –λ2/2 in Eq. (5) gives the binding
energy reckoned from the corresponding Landau level
and due to the action of the attractive Coulomb poten-
tial, and the field B is directed along the z axis. An equa-
tion of type (4) with a constant dependent on nρ and |m |
is obtained for determining λ.

This equation determines the level energy in a given
field * or (more importantly, e.g., for astrophysics) the
magnetic field strength via the measured level shift. It
is identical to the corresponding equation in the theory
of a  atom [13], in which ξ = aB/acs, where acs is the
nuclear Coulomb low-energy -scattering length.
This shows that the Zeldovich effect must be observed
in the hydrogen atomic level spectrum for * @ 1. The
physical cause of this effect is clear: the ground 1s level
of the atomic spectrum that fell deeply downward (its
binding energy for * > 500 exceeds the ionization
potential of the hydrogen atom by several orders of

p p

"/mωH c"/eB

*

r0

aB

----- –
1
2
--- 2 γ+ln( ) 

  aH

aB

------exp 0.5298/ *,= =

λ 2 λ ψ 1 λ 1––( )+ln[ ]+ *ln 3γ 2ln+( ) ξ ,≡–=

Enρn f mσz
nρ

1
2
--- m m 1 σz+ + +( )+ *

1
2
---λ2–= ,

λnρn f m
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magnitude) acts as a quasinuclear state Qs perturbing
the Coulomb spectrum (see Fig. 1 in [9]).

2. The following question arises: what can be said
about the Zeldovich effect on the basis of available
experimental data? Magnetic fields B @ Ba are encoun-
tered in astrophysics (magnetic white dwarfs, neutron
stars), but here we must wait for the opinion of special-
ists. In addition, there are numerous studies in which
the Schrödinger equation for a hydrogen atom in a uni-
form magnetic field was solved on a computer with a
high accuracy (up to 10 decimal digits) for * ≤ 105 or
B & 2 × 1014 G. The results of these computations are
in close agreement (see [18, 19] and references
therein). We use these data by treating them as the
results of a numerical experiment. First, however, a few
words should be said about some distinguishing prop-
erties of the Zeldovich effect.

Previously, it has already been noted [9] that the
most suitable variable for describing the Zeldovich
effect is not the energy E or momentum of the bound

state λ =  but the quantity

(6)

(if the potential V(r) = –Z/r for r > r0). In atomic phys-
ics, this variable is called the effective principal quan-
tum number and is denoted by n*. A characteristic
property of the Zeldovich effect is that the values of νn

for the entire series of atomic ns levels are highly peri-
odic in n. This can be seen from Fig. 1, which shows the

2E–

ν Z/λ Z2me4/2"
2 E= =

Fig. 1. Quantum defects for ns levels versus ξ = aB/2acs or
versus reduced magnetic field *. The solid curves are for
the lower levels with n = 1 and 2; the dashed curves are for
n @ 1.

log*
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Table 1

n
ξ = 0 (* = 11.3) * = 3120

νn δ1/δ∞ ρn νn ρn

1 0.46957 0.9391 – 0.2179 –

2 1.49637 0.9927 0.738 1.2649 0.500

3 2.49867 0.9973 0.641 2.2668 0.399

4 3.49932 0.9986 0.606 3.2672 0.359

5 4.49958 0.9992 0.583 4.2674 0.337

10 9.49991 0.9998 0.539 9.2676 0.300

n  ∞ n – 1/2 1.0000 0.500 n – 0.732 0.271
quantum defects δn = νn – (n – 1), n = 1, 2, … calculated
from Eqs. (4) and (1). The change in δn from n = 2 to
n = ∞ (for a given *) does not exceed 1%, which char-
acterizes the degree of νn periodicity in the atomic spec-
trum range, i.e., at ν > 1. At the same time, for the
ground 1s level, which falls arbitrarily deep with
increasing *, this change is larger. Thus, the δ1/δ∞ ratio
changes from 0.95 to 0.75 as * changes from 100 to
105; see Table 1 that refers to the exact resonance acs = ∞
(the level formation time with allowance made for the
Coulomb interaction), which corresponds to ξ = 0 or
* ≈ 11.3. In this case, when n  ∞, νn = n – 1/2 and
δn = 1/2. Table 1 also gives the νn and ρn values for ρ2 =
1/2; i.e., the binding energy of the 2s level is ε2s =
5/16 a.u. = 8.5 eV.

The νn periodicity can be easily explained if we
write Eq. (1) or (4) in the following form by using the
identity ψ(1 – z) = π  + ψ(z) [12]:

(7)

The function d(ν) is numerically small in the range of
the atomic spectrum:

Hence, for n @ 1,

(8)

(0 < δ∞ < 1), suggesting a νn periodicity for large n. As
we see from Fig. 1, this periodicity extends up to n = 2.

Occasionally, it is suggested that the rearrangement
of the atomic spectrum shows up most clearly in level
shifts. Of course, this is qualitatively true, but quantita-
tively the atomic level shifts do not obey such a simple

πzcot

πνcot d ν( )– ξ
2π
------

1
2π
------ * 2.425–ln( ).= =

d ν( )
1
π
--- νln ψ ν( )– 1

2ν
------–

0.0246, ν 1=

0.0065, ν 2=

1/12πν2, ν ∞ .





= =

δn δ∞
πδ∞sin

2

12π2n2
-------------------– …, δ∞+

1
π
--- ξarccot= =
law as do νn and δn. Indeed, consider the relative shift
of the ns level

(9)

(  = –Z2/2n2). In contrast to δn, the dependence of ρn

on the level number is significant, as can be seen from
Table 1. Similarly, if ρn = 1/2, i.e., if the ns level is
exactly halfway between the neighboring Coulomb lev-
els, then the quantum defect δn for it is by no means
equal to 0.5:

(10)

and δn = 1/2 – 3/8n + … for n @ 1. Only for highly
excited states are ρn and δn close to each other:

(9')

with δn < ρn < 1.
Thus, the constancy of the quantum defects δn, 2 ≤

n < ∞, is a reliable indicator of the Zeldovich effect in
the atomic level spectrum (in a short-range Coulomb
field).

Note that our definition of the quantum defect
slightly differs from that in atomic physics, where it is
commonly assumed that νn = n – ∆l (the Rydberg cor-
rection ∆l is virtually independent of the principal
quantum number n). In our case, it is convenient to
reckon δnl not from the initial level n in a free (* = 0)
atom but from the limiting value of nf to which ν tends
as *  ∞ in the Schrödinger equation (which corre-
sponds to the level number in a one-dimensional Cou-
lomb potential [17]).

ρn

Ens En 1–
0( )–

En
0( ) En 1–

0( )–
--------------------------

n2 2n 2– δn+( )
2n 1–( ) n 1– δn+( )2
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n 2≥
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0( )

δn n 1–( ) n
2

2n2 2n– 1+
------------------------------ 1–=

=  
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


ρn δn

3δn 1 δn–( )
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The quantum defects δnl can easily be calculated by
using the binding energies εnl from [18, 19]. Following
[19], when classifying the states, we number them by
the quantum numbers n and l for a free (* = 0) atom.
However, nρ, m, nf , and P, where nρ and m describe the
rapid motion around the magnetic field, nf is the level
number in a one-dimensional Coulomb potential (the
slow electron motion along *), and P = ±1 is the wave-
function parity about the reflection z  –z, are good
quantum numbers for * @ 1. In this case,

(11)

Next, we assume that nρ = m = 0, because the energies
of only these states were calculated in [19].

There is the following correspondence between the

quantum numbers (n, l) and : 1s  0+, 2s  1+,
3d  2+, and 3s  3+ for even states and 2p  1–,
3p  2–, 4f  3–, etc., for odd states with increasing
magnetic field. With the exception of the 3s state (see
below), the relation nf = n – 1 holds.

The δnl values are shown in Fig. 2. Its comparison
with Fig. 1 indicates that the Zeldovich effect occurs at
* > *min ~ 100 for even states and, starting from
*min ≈ 1, for odd states. The dashed line in Fig. 1 indi-
cates the limiting curve n  ∞ constructed from
Eq. (8). The difference between this curve and the
curve for the 2s level closely corresponds to Fig. 1. At
the same time, for * < *min, even the arrangement of
the δnl(*) curves differs sharply from the arrangement
shown in Fig. 1 and characteristic of the Zeldovich
effect. Note that for the ns levels, δn ∝  1/ln(*/ln2*)
when *  ∞.

A comment is required on the 3s and 3d states. In the
absence of a magnetic field, the three degenerate2 3s,
3p, and 3d levels, of which 3p has a negative parity and
does not interact with the other two states, while 3s and
3d are the states with identical symmetry, correspond to
the principal quantum number n = 3. These terms mutu-
ally pull apart (see Fig. 3), because their crossing would
be in conflict with the Wigner–Neumann theorem.3 As
we see from Fig. 3, the numerical calculations brought
only to * = 10 in this case [19] are in satisfactory
agreement with the asymptotic equation (4), confirm-
ing that nf = n – 1 = 2 for the 3d state and nf = n = 3 for
the 3s state. That the 3d level lies below the 3s level
probably stems from the fact that its radial wave func-
tion has no nodes (l = n – 1). For clarity, we would like
to continue numerical calculations of the energies ε3s

and ε3d at least up to * = 100.

2 This is the so-called random degeneracy due to the hidden sym-
metry group SO(4) of the Coulomb field.

3 See §79 in [16]. Similarly, one might expect that the 4s, 4d (even)
and 4p, 4f (odd) levels interact with one another. Indeed, the
δ4f(*) curve in Fig. 2 clearly shows some feature.

n f νnl *( )
* ∞→
lim , δnl νnl n f .–= =

n f
P
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The quantum defect δ1s for the ground level differs
markedly from the remaining δns (see Fig. 1). This
quantity can also be used as a kind of test for the Zel-
dovich effect. Consider the ratio

(12)

where ε1, 2 are the binding energies of the two lower 1s
and 2s levels in atomic units me4/"2 = 27.121 eV. In
Fig. 4, curve 1 was recalculated from the numerical

R12 δ1/δ2 ε1/ε2 2ε1–( ) 1–
,= =

Fig. 2. The numerically calculated quantum defects are rep-
resented by the solid curves. The hydrogen atomic states,
according to their classification in the absence of a magnetic
field, are indicated near these curves (the dashed curve
refers to the 3d state).

Fig. 3. ν = Z/λ versus magnetic field for the 3s and 3d states:
the solid curves were recalculated from the data in [19] and
the dashed curves were recalculated from the asymptotic
equation (4).

log*

log*
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data [19] and curve 2 corresponds to the solution to
Eq. (4). These curves approach each other at * * 100,
where a small parameter r0/aB < 1/20 appears in the
problem. In this range, the shift of the atomic 2s level is
related to the location of the ground 1s level by the
expression specific to the Zeldovich effect. This fact
can be used to analyze astrophysical data. If necessary,
one can also turn to the ratios R1n = δ1/δn, the formulas
for which are similar to (12).

The δnl(*) curves shown in Fig. 2 for three odd
states indicate that the Zeldovich effect can exist for
them in the range 1 & * & 103. In this case, there is no
deep quasinuclear (or 1s, as in the case of even states)
level in the system. However, 2p, which drags higher-
lying levels with a negative parity while dropping with
increasing *, acts as this level. In the above * range,
the quantum defects for the 2p, 3p, and 4f states are
close, resulting in a characteristic νnl periodicity. How-
ever, for * > 1000, the shifts of these levels are very
small. Thus, for the 2p level at * = 2000, we have ε2p =
0.991189… (in rydbergs; see Table II in [19]) and δ2p =

Fig. 4. 

log*
 – 1 = 0.00443. In this case, the 2p-level shift
accounts for only 1.2% of the separation between the
unperturbed levels with n = 1 and 2, while, for * > 104,
it is even smaller and can hardly be measured experi-
mentally.

3. Below, we make several concluding remarks.
(1) Table 2 gives the binding energies of the first two

s levels, their quantum defects, and ratios (12). We took
ε1 from [19] and calculated ε2 from Eq. (4)—a proce-
dure that is inverse to that used previously in [9, 13]. In
this case, the relative shift of the 2s level (9) changes
from ρ2 = 0.584 at * = 400 to 0.393 at * = 105. For ε2 =
8.5 eV (* ≈ 3100), this level lies halfway between the

unshifted  levels with n = 1 and 2.

(2) There is a significant difference in the Zeldovich
effects for three-dimensional local potentials and in the
problem with a magnetic field. In the former case, the
rearrangement of the spectrum can be repeated several
times as the coupling constant g increases: thus, for a
square potential well, this occurs at g ≈ gN = (2N +

1)2π2"2/8 , N = 0, 1, 2, …. In the latter case, only the
ground 1s level can become deep with increasing *,
while the remaining levels lie in the range ν > 1 (a typ-
ical property of a one-dimensional Coulomb potential
[17]). Therefore, only one cycle of spectrum rearrange-
ment occurs in a magnetic field (however, there is a
cycle for each pair of quantum numbers nρ and |m |).

(3) For * @ 1, the size of the atom in the direction
transverse to the field is equal to the Landau radius aH,
and the wave function in the longitudinal direction can
be expressed in terms of the Whittaker function:

(13)

where ν = 1/λ and σ = 1 for even and σ =  for odd
states, respectively. Since the integrals in the normal-
ization and in the expression for the rms radius a|| =

 were calculated in [13], we can derive an ana-
lytic formula for a||; this formula was omitted here
because it is cumbersome. Note only that the ratio s =

ε2 p
1/2–

En
0( )

r0
2

χλ z( ) σconstWν 1/2, 2λ z( ), –∞ z ∞,< <=

zsgn

z2〈 〉 1/2
Table 2

* B, G ε1 ε2 δ1 δ2 R12

400 9.4(11) 159.2 7.64 0.2923 0.3339 0.875

1000 2.35(12) 208.4 8.05 0.2554 0.3001 0.851

2000 4.70(12) 253.1 8.33 0.2318 0.2783 0.833

5000 1.18(13) 323.0 8.67 0.2052 0.2524 0.813

1.0(4) 2.35(13) 384.6 8.91 0.1880 0.2354 0.798

5.0(4) 1.18(14) 559.8 9.41 0.1559 0.2025 0.770

1.0(5) 2.35(14) 649.8 9.59 0.1447 0.1907 0.759

Note: ε1 and ε2 are the binding energies of the 1s and 2s levels (for nρ = m = 0) in eV and δ1, 2 are their quantum defects. Notation: a(b) ≡ a × 10b.
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a||/aH, which characterizes the shape of the atom (the
electron localization region), is, respectively, s = 7.1,
15.6, and 37 at * = 1000, 104, and 105 for the 1s level
and s = 90, 255, 760 for the 2s level. Thus, the atom is
cigar-shaped (for 1s at * & 104) or even needle-shaped
(for ns states, n ≥ 2). Its longitudinal size decreases with
increasing *, particularly for the 1s level, for which
a||/aB = 0.225, 0.156, and 0.116 at the above strengths of
the reduced field *. For excited states, a|| ∝  n2.

(4) For * ~ 104–105, the Landau level energy
exceeds the electron rest energy:

(14)

where Bcr = m2c3/e" is the critical or Schwinger field
characteristic of quantum electrodynamics (numeri-
cally, Bcr = 4.41 × 1013 G or *cr = 1.88 × 104). There-
fore, relativistic corrections should be applied to the
level energies for * * 104.

Thus, the quantum defects of ns levels extracted
from previous numerical calculations suggest that the
Zeldovich effect must manifest itself in the energy
spectrum of a hydrogen atom in superstrong magnetic
fields, * * 100 or B * 1011 G. Figures 2–4 clearly
show how this effect occurs with increasing *; we see
that the effect is essentially observable (in numerical
experiment). A confirmation of this result by direct
astrophysical observations would be of great interest.

I thank B.M. Karnakov for information on the paper
[15] and for helpful remarks, S.I. Blinnikov and
V.D. Mur for discussions, and S.G. Pozdnyakov for
help in the numerical calculations. I am also grateful to
M.I. Vysotskiœ, Yu.A. Simonov, and K.A. Ter-Mar-
tirosyan for a discussion of the results. This study was
supported in part by the Russian Foundation for Basic
Research (project no. 01-02-16850).

"ωH/mc2 B/Bcr,=

aH

λ e

2π
------

Bcr

B
-------, λ e

2π"
mc
----------,= =
JETP LETTERS      Vol. 77      No. 2      2003
REFERENCES
1. Ya. B. Zeldovich, Fiz. Tverd. Tela (Leningrad) 1, 1637

(1959) [Sov. Phys. Solid State 1, 1497 (1959)].
2. V. S. Popov, Zh. Éksp. Teor. Fiz. 60, 1228 (1971) [Sov.

Phys. JETP 33, 665 (1971)].
3. A. E. Kudryavtsev, V. E. Markushin, and I. S. Shapiro,

Zh. Éksp. Teor. Fiz. 74, 432 (1978) [Sov. Phys. JETP 47,
225 (1978)].

4. H. van Haeringen, C. V. M. van der Mee, and R. van
Wageningen, J. Math. Phys. 18, 941 (1977).

5. H. van Haeringen and L. P. Kok, Phys. Rev. C 24, 1827
(1981).

6. A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and
Yu. A. Simonov, Phys. Rep. 82, 31 (1982).

7. L. P. Kok, J. W. de Maag, H. H. Brower, and H. van
Haeringen, Phys. Rev. 26, 2381 (1982).

8. D. A. Kirzhnits and F. M. Pen’kov, Zh. Éksp. Teor. Fiz.
82, 657 (1982) [Sov. Phys. JETP 55, 393 (1982)].

9. A. E. Kudryavtsev and V. S. Popov, Pis’ma Zh. Éksp.
Teor. Fiz. 29, 311 (1979) [JETP Lett. 29, 280 (1979)].

10. T. L. Trueman, Nucl. Phys. 26, 57 (1961).
11. A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 52,

223 (1967) [Sov. Phys. JETP 25, 145 (1967)].
12. H. Bateman and A. Erdelyi, Higher Transcendental

Functions (McGraw-Hill, New York, 1953), Vol. 1.
13. V. S. Popov, A. E. Kudryavtsev, and V. D. Mur, Zh. Éksp.

Teor. Fiz. 77, 1727 (1979) [Sov. Phys. JETP 50, 865
(1979)]; Zh. Éksp. Teor. Fiz. 80, 1271 (1981) [Sov. Phys.
JETP 53, 650 (1981)].

14. M. Izycki, G. Bakenstoss, et al., Z. Phys. A 297, 1
(1980).

15. B. M. Karnakov, Pis’ma Zh. Éksp. Teor. Fiz. (in press).
16. L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, New
York, 1977).

17. V. M. Galitskiœ, B. M. Karnakov, and V. I. Kogan, Prob-
lems on Quantum Mechanics (Nauka, Moscow, 1992).

18. S. P. Goldman and Z. Chen, Phys. Rev. Lett. A 67, 1403
(1991); Phys. Rev. A 45, 1722 (1992).

19. Jang-Haur Wang and Chen-Shiung Hsue, Phys. Rev. A
52, 4508 (1995).

Translated by V. Astakhov



  

JETP Letters, Vol. 77, No. 2, 2003, pp. 80–83. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 77, No. 2, 2003, pp. 85–88.
Original Russian Text Copyright © 2003 by Kovalenko, Mytnichenko, Chernov.

                                                                                                     
Smoothing of Interfacial Micron-Scale Roughness
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Correlation between the roughness of neighboring interfaces (roughness cross correlation) in a Ni/C X-ray mul-
tilayer mirror (XMM) prepared by laser ablation was studied by measuring X-ray diffuse scattering (XDS). The
XDS intensities in the vicinity of the first Bragg reflection were measured at different photon energies: slightly
below (8.325 keV) and slightly above (8.350 keV) the nickel photoabsorption K edge. The effective screening
of the contribution from the deep layers to the XDS cross section due to the strong damping of the wave field
at a photon energy higher than the photoabsorption edge allowed information on the character of the in-depth
roughness cross correlation in the sample to be obtained. In particular, the characteristic lateral correlation
length of the roughness was 0.35 µm at a photon energy of 8.325 keV (the contribution to the XDS cross section
of the entire XMM volume), and it increased to 0.4 µm at a photon energy of 8.350 keV (predominantly the
contribution from the upper layers). These data give direct evidence for the mechanism of smoothing of the
interfacial roughness in the process of Ni/C XMM growth on anomalously large (up to micron) spatial scales.
It was found that only rough large-scale defects with sizes of ≥10 µm are reproduced reasonably well from layer
to layer. The processes of viscous flow and (or) reevaporation of high-energy target ions during deposition,
which is characteristic of the laser method of XMM preparation, may serve as a possible explanation of the
observed phenomenon. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.55.Jk; 61.10.Eq
The possibility of smoothing the interfacial rough-
ness in the process of growth of multilayer thin films, in
particular, an X-ray multilayer mirror (XMM), is a
well-known fact. Moreover, if this smoothing were
impossible, the problem of fabricating an XMM with
more or less acceptable diffraction characteristics
would become much more complicated. The smoothing
of the interfacial roughness in an XMM can be
observed in magnetron [1] and laser [2] sputtering, as
well as in thermal sputtering with the use of additional
ion polishing [3–6].

The most consistent phenomenological model of the
evolution of interfaces in the process of XMM growth
was proposed in [7], where the amplitude of roughness
of the mth interface in the reciprocal space fm was
expressed in terms of the amplitude of the antecedent
interface fm – 1 as follows:

(1)

where am(s) is a replication factor of roughness with a
spatial frequency s, and hm(s) is the amplitude of the
intrinsic roughness of the mth interface. Note that the
intrinsic roughnesses of different layers do not correlate

with each other, 〈hmhn〉  = δmn . It is evident that the

f m s( ) hm s( ) am s( ) f m 1– s( ),+=

hm
2〈 〉
0021-3640/03/7702- $24.00 © 20080
short-wavelength roughness components must be sup-
pressed more efficiently (am(s)  0 at s  ∞),
whereas very large-scale roughness must be completely
replicated from layer to layer (am(s)  1 at s  0).
Thus, it is physically reasonable to choose the replica-
tion factor in the form

(2)

where M(s) is a certain polynomial whose form and
coefficients are determined by possible physical and
chemical processes that proceed during the XMM
growth. In [8], it was taken into account that an atom in
the “soft” deposition process can be displaced to a cer-
tain distance that coincides with its sizes in the order of
magnitude. In [7, 9, 10], this approach was developed
mathematically, and the following equation was
obtained for am(s):

(3)

where dm is the layer thickness for the mth interface and
ν is the diffusion length. The characteristic range of ν is
10–3–1 nm. Hence, according to these works, the
smoothing of roughness must occur in the short-wave-
length region. Terms proportional to s and s4 were intro-

am s( ) M s( )–( ),exp=

am s( ) νdms2–( ),exp=
003 MAIK “Nauka/Interperiodica”
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duced into M(s) in [11]. As in the previous works,
smoothing, according to this work, must occur in the
short-wavelength region of the roughness spectrum,
except for the smoothing associated with the term ~s,
which in any case describes viscous flow in the polish-
ing by ions with high kinetic energies (200–1300 eV).
In [12, 13], it was taken into account, by introducing a
constant (~s0) into M(s), that the adsorbed atoms can
travel very long distances over the surface, which
results in uniform smoothing everywhere over the spec-
tral region. According to these works, the replication
factor does not tend to unity at s  0.

The question of the correctness of particular physi-
cal models for the description of the effect of roughness
smoothing in the process of XMM growth can be
solved if experiments are carried out that allow the rep-
lication function a(s) to be measured directly. In spite
of the fact that the potentialities of X-ray diffuse scat-
tering (XDS) in studying roughness cross correlation
through modeling of angular intensity distributions are
widely postulated in the literature, the actual possibility
of calculating the a(s) function from XDS data is rather
conjectural at least in the case of using conventional
experimental schemes. The problems arising are due to
the fact that the coherent reproduction of rough inter-
faces from layer to layer leads to a resonant amplifica-
tion of XDS, giving rise to a so-called “quasi-Bragg
sheet” [7, 14–17] when the modified Bragg condition

is fulfilled, where λ is the wavelength of the X-ray pho-
ton; Λ is the multilayer period; θ0 and θ1 are, respec-
tively, the incoming and outgoing angles with respect to
the lateral planes; and θB is the Bragg angle. Hence, the
contribution to the XDS cross section from layer-to-
layer correlated roughness is proportional to N2 (N is
the number of bilayers in XMM), and the contribution
from the uncorrelated roughness is proportional to N.
As a consequence, violations of the complete rough-
ness cross correlation have only a little effect on the
intensity of diffuse scattering.

The articles [18, 19], in which XDS was studied in
the vicinity of Kiessig modulations, can be mentioned
as examples of efforts made to overcome the difficulty
indicated above. Because the maximum difference in
the behavior of interfaces is reached between the XMM
surface and the XMM–substrate interface, this
approach provides an increase in the sensitivity of XDS
to violations of the complete roughness cross correla-
tion. Giving this approach credit, one should note that
both the surface and the XMM–substrate interface are
of a unique character, and their behavior may differ sig-
nificantly from the behavior of internal interfaces.
Another possibility of obtaining more reliable data on
the character of roughness cross correlation is offered
by studying XMM with a small number of layers,
where the amplification of diffuse scattering due to
coherent reproduction of interfaces is small [20]. It is

λ Λ θ0sin θ1sin+( ) 2Λ θB,sin= =
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natural that the class of objects available for investiga-
tion becomes strongly restricted in this case.

In this work, we used another modification of XDS
that, in our opinion, considerably enhances the possi-
bilities of studying the behavior of roughness cross cor-
relation for interfaces in an XMM. The approach pro-
posed is based on a comparative measurement of the
intensity of diffuse scattering at photon energies
slightly below and slightly above the photoabsorption
edge of atoms entering into the XMM composition.
Whereas the amplitudes of diffuse scattering from
rough interfaces in the first case are approximately
equal over the entire XMM volume, the lower inter-
faces are effectively screened in the second case
because of strong photoabsorption (Fig. 1). Measure-
ments of the relative difference in the XDS intensities
for the first and the second cases considerably increase
the sensitivity of the experiment to violations of the
complete roughness cross correlations. In addition, if
these measurements are carried out depending on the
projection of the momentum transfer in the lateral
direction, the behavior of cross correlation can be
investigated as a function of lateral spatial scales of
roughness.

The Ni/C XMM studied in this work was prepared
by laser ablation [2, 21] onto a fused silica substrate
with a high degree of polishing with nanodiamonds
[22]. A preliminary study of the substrate by X-ray
reflectometry (λ = 0.154 nm) gave a roughness disper-
sion of ~0.5–0.6 nm. The optical XMM parameters
were obtained by modeling the X-ray reflectometry
data in the dynamical approximation [23]: the period
Λ ≈ 5.2 nm; the ratio of the thickness of nickel layers to
period β ≈ 0.4; the density of nickel and carbon layers,
respectively, ρNi ≈ 8.2 g/cm3 and ρC ≈ 2.3 g/cm3; and the
roughness dispersion σ ~ 0.4–0.5 nm. It should be
noted that the roughness dispersion of the XMM

Fig. 1. Comparison of the diffuse scattering amplitude from
a Ni/C XMM at photon energies below (8.325 keV) and
above (8.350 keV) the nickel atom absorption K edge: in the
second case, the contribution to the amplitude of diffuse
scattering from rough defects of the lower layers is mark-
edly lower because of effective screening under conditions
of hard photoabsorption.
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proved to be lower than that of the original substrate.1

Moreover, our previous studies demonstrated [21, 24,
25] that the above value of the XMM roughness disper-
sion reflects both the true roughness and the presence of
mixed layers. An estimation of the true roughness gave
a value of ~0.1–0.2 nm [26].

Diffraction experiments were carried out on a triple-
axis diffractometer2 with the use of synchrotron radia-
tion of a VEPP-3 storage ring [27]. The measurements
of the XDS intensity were performed at two photon
energies (E0 = 8.325 keV and E1 = 8.350 keV) with the
use of transverse scan (ω scan) through the first Bragg
reflection.

The ω profiles obtained experimentally differed in
angular width, which corresponds to different lateral
characteristic correlation lengths ~0.35 µm at a photon
energy of 8.325 keV and ~0.40 µm at a photon energy
of 8.350 keV. With regard to the fact that the contribu-
tion to diffuse scattering in the first case was due to the
interface roughnesses in the entire XMM volume and
that the interfaces of the upper layers predominantly
work in the second case, the values obtained point to
the smoothing of roughness in the sample. The experi-
mental data obtained are presented in Fig. 2 (circles) as
the ratios (I1/I0)1/2 (I0 and I1 are the intensities of diffuse
scattering at the corresponding photon energies)

1 An interesting fact from our experience of fabricating Ni/C
XMMs by laser ablation can be mentioned. Although, according
to X-ray reflectometry data, the roughness dispersion of original
substrates can vary over wide limits, the optical quality of the
fabricated Ni/C XMM remains approximately equal. This fact
gives clear evidence in favor of strong smoothing of roughness in
the process of sputtering.

2 It can be noted that the use of a secondary collimating crystal in
the measurements above the Ni absorption K edge allowed us to
avoid a distortion of the experimental data through the excitation
of fluorescence radiation. Thus, the fluorescence background
measured experimentally was found to be ~10–20 Hz, whereas
the desired signal was no less than several kHz.

Fig. 2. Experimental data (circles) and theoretical DWBA
calculations for the cases of the complete roughness cross
correlation (dashed line) and the roughness smoothing
(solid line).
depending on the diffraction asymmetry angle ω = (θ0 –
θ1)/2, which is directly proportional to the momentum
transfer qx in the lateral direction (qx ≈ 2kθBω). It is
clearly seen in the figure that the experimental data
markedly deviate from the theoretical curve (dashed
line) calculated in the framework of the distorted-wave
Born approximation (DWBA) [17]. The complete
roughness cross correlation is assumed to occur in this
case. The sign of the deviation corresponds to a
decrease in the roughness amplitudes in the process of
XMM growth, and the larger the momentum transfer,
the stronger the deviation magnitude.

With regard to the fact that the range of lateral sizes
of rough defects lies in our measurements in small lim-
its from fractions of micron to several tens of microns,
the difference in the characteristic correlation lengths is
indicative of smoothing off spatial scales as large as a
micron scale. This is clearly seen in Fig. 2, where the
solid line represents model calculations in which
Eq. (3) is formally used for the replication factor and
the intrinsic roughness hm(s) is neglected. In spite of the
apparently good agreement, the obtained parameter ν ~
0.5 µm exceeds the value expected in [7–10] by three
orders of magnitude. At the same time, though smooth-
ing on very large spatial scales is predicted in theoreti-
cal works [12, 13], this smoothing must be uniform
over the entire roughness spectrum, which also contra-
dicts our experiment. In fact, the ratio of XDS intensi-
ties at various photon energies in the close vicinity of
the specular Bragg reflection corresponds to the full
layer-to-layer reproducibility of rough large-scale
defects with sizes of ≥10 µm.

As was already mentioned above, the mechanism of
roughness smoothing-out due to viscous flow when
polishing by high-kinetic-energy ions was considered
in [11]. It was shown that this process leads to smooth-
ing-out on sufficiently large spatial scales. Though the
kinetic energy of atoms deposited in laser ablation is
significantly lower than the ion energy in polishing, an
analogous process of viscous flow can still take place.
The possible processes of reevaporation of target atoms
during deposition may serve as another variant of
explanation of the roughness smoothing on a micron
scale. “Splattering” of atoms over the XMM surface
may result, on the one hand, in the healing of “valleys”
and, on the other hand, in the effective leveling off of
“hills” on the XMM surface.

In summary, the structural method of studying the
cross correlation of XMM roughness proposed in this
work allowed us to observe roughness smoothing on an
anomalously large micron scale.

We are grateful to V.A. Bushuev for useful consulta-
tions, the personnel of the Siberian Center of Synchro-
tron Radiation headed by G.N. Kulipanov, and experi-
menters of the VEPP-3 storage ring for attention and
support.
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The Gross–Pitaevski equation modified through the inclusion of a term accounting for the nonlocality of inter-
atomic interaction was used to demonstrate the occurrence of extremely narrow two- and three-dimensional
solitonic states in atomic Bose–Einstein condensates. The estimates of the sizes of these states gave a value of
~20–60 nm (atomic “needles” and “bullets”) for lithium atoms. The soliton lifetimes caused by two- and three-
particle collisions were estimated. The limiting possibilities of the formation of nanostructures using needles
and bullets were compared with the possibilities of other nanolithographic methods. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 03.75.Lm; 81.16.Nd
For atomic Bose–Einstein condensates (BECs)
described by the Gross–Pitaevski equation [1], only
one-dimensional solitonic states are possible, which
were recently observed in the experiments with lithium
atoms [2, 3]. It is generally believed (see, e.g., [4]) that
two- and three-dimensional condensate solitons do not
exist, because a condensate containing many atoms col-
lapses. This situation is close to radiation self-focusing
in media with cubic (Kerr) nonlinearity, which is
described in optics by the nonlinear Schrödinger equa-
tion [5]. However, there are some factors in optics that
restrict collapse, e.g., the nonparaxiality effects. Due to
them, the final self-focusing stage of beams of super-
critical power may consist in the formation of a spatial
soliton with width less than the light wavelength (“opti-
cal needles”) [6, 7]. It is natural to assume that taking
into account any additional factors will make it possible
to obtain two- and three-dimensional BEC solitons,
including those with sizes substantially smaller than the
de Broglie wavelength (atomic needles and bullets,
respectively). It should be noted that solitons of atomic
condensate with sizes as small as those are not only of
general physical interest but are also of importance to
applications in atomic nanolithography.

In the Gross–Pitaevski equation for the condensate
wave function, the nonlinearity caused by interatomic
interaction has a local character, although in the origi-
nal Bogoliubov equation [8] the nonlinearity is
described by the integral with respect to coordinates.
The nonlocal nonlinearity can, basically, restrict col-
lapse [9]. In [10], a modified Gross–Pitaevski equation
with the corresponding correction term was derived in
the approximation of weak nonlinearity, and it was
shown that this equation provides rather wide stable
two-dimensional solitons.
0021-3640/03/7702- $24.00 © 20084
In this work, we examine the possibility of forming
extremely narrow quasi-two-dimensional (atomic nee-
dles) and three-dimensional (atomic bullets) solitonic
condensate states by the example of 7Li in the (2, 2)
state (the first number is the total atomic spin and the
second is its projection) within the framework of the
Gross–Pitaevski equation with the nonlocal nonlinear-
ity [10] modified by the inclusion of a more complete
form of the interatomic interaction potential. The
choice of the lithium (2, 2) state is motivated by the fact
that the parameters of atomic collisions for this state are
well known. We will show that the cross-sectional
dimension of atomic needles and the radius of atomic
bullets are determined only by the characteristic spatial
scale of interatomic potential and the total number of
atoms in BEC. By changing the atomic scattering
length (which is also determined by the parameters of
interaction potential) in a magnetic field (Feishbach
effect), one can control the sizes of these solitonic BEC
states.

The modified Gross–Pitaevski equation for the one-
particle condensate wave function has the form [10]

(1)

where M is the atomic mass and Np is the number of
atoms in the condensate. The coefficients B0, 2 are
expressed through the interatomic potential V(r), which
is assumed to be spherically symmetric:

(2)

i"
∂Φ r t,( )

∂t
--------------------

=  
"

2M
--------∆ρ– N p B0 Φ 2 B2∆ρ Φ 2+( )+ Φ,
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In Eq. (2), a is the S-wave scattering amplitude in the
Born approximation. The second nonlinear term in
Eq. (1) accounts for the interaction nonlocality. The
wave function is normalized as

(3)

For two-dimensional structures, the number of atoms
Np in Eq. (1) should be replaced by the linear number of
atoms Np/L, where L is the soliton length. This allows
the unit normalization of the two-dimensional distribu-
tion in the cross-sectional plane to be retained.

It is convenient to introduce the dimensionless vari-

ables ρ' = ρ/ρc and t ' = t/tc, where tc = , and
to seek stationary solutions to Eq. (1) in the form

(4)

where the index d = 2 or 3 defines the dimensionality of
the problem (one-dimensional geometry d = 1 can be
considered in a similar way), U2 = 8π|a |Np/L, and U3 =
8π|a |Np. Equation (1) reduces to

(5)

where s = B2/B0 . The nonlinearity sign is chosen so
that the scattering length a is negative; then Eq. (5) has
solitonic solutions (specifically, bright solitons). Note
that, for s = 0 (local nonlinearity), the scaling factor ρc

is arbitrary, reflecting the scale invariance of the solu-
tion. For s > 0, the problem reduces to the case s = 1 by
introducing the scaling factor

(6)

The solitonic (localized) solutions to Eq. (5) for the
two-dimensional (d = 2) and three-dimensional (d = 3)
cases were found numerically. The dependence of the
quantity Nd (which is proportional to the number of
atoms Np) on the soliton parameter k

(7)

is demonstrated in Fig. 1. One can see that the Vakhi-
tov– Kolokolov criterion ∂N/∂k > 0 for soliton stability
is met in the two- and three-dimensional cases. Recall
that, for the local nonlinearity s = 0, this criterion is sat-
isfied neither for the two-dimensional nor for the three-

dimensional solitons (N2 =  = 8π|a | /L = 11.7,
dN2/dk = 0, dN3/dk < 0). The obtained dependences
confirm that the two-dimensional soliton is stable (this
was proved analytically for small k in [10]) and show

Φ 2 ρ3d∫ 1.=
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that the nonlocality stabilizes three-dimensional spher-
ically symmetric solitons as well. The Nd dependence
of the dimensionless effective halfwidth

(8)

of the two- and three-dimensional solitons is shown in
Fig. 2. The vertical dashed line corresponds to the local
nonlinearity in the two-dimensional geometry. The hor-
izontal dotted line shows the asymptotic value at Nd,
k  ∞ for the nonlocal nonlinearity. It can be shown
that the soliton profile is described by the zero-order
Bessel function J0 (s = 1):

(9)

The quantity  = 3.837 is determined from the condi-

tion J1( ) = 0. The asymptotic dimensionless half-
width is w2(∞) = 1.83.

To pass to dimensional quantities, one should use
the coefficients B0, 2 defined in Eqs. (2). However, for
the standard interatomic potentials of the Lennard-
Jones type, both integrals in Eqs. (2) formally diverge
at small r, so that one should take into account that the
distance of closest approach in particle collisions can-
not be smaller than a certain radius which is determined
by the repulsive part of potential and the collision
energy. The simplest way to overcome this difficulty
amounts to the introduction of a finite truncation radius
rtr, whose value can be determined by the first of
Eqs. (2) using the known scattering length a.

wd
2 ρ'2 A ρ'( ) 2 ρ'd /Ndd

0

∞

∫=

A ρ'( )
k1/2 1 J0 ρ'( )/J0 ρ1'( )– , ρ' ρ1' ,<

0, ρ' ρ1' .>



=

ρ1'

ρ1'

Fig. 1. Dependence of Nd (proportional to the number of
atoms) on the soliton parameter k for the two-dimensional
(d = 2) and three-dimensional (d = 3) solitons.
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Let us consider the triplet collision of lithium atoms.
The Lennard-Jones potential has the form

(10)

where the distance at which the potential turns into zero

is r0 = 6.4 au, and D/  = 1.39 × 103 au [12]. The first
of Eqs. (2) gives the following relation:

(11)

By introducing the variable x = (r0/rtr)3, we arrive at the
cubic equation

(12)

The constant on the right-hand side of this equation was
calculated using the scattering length a = –27 au. From
Eq. (12) it is seen that the truncation radius

(13)

only weakly depends on the scattering length. At the
same time, the scattering length changes drastically
upon a slight change in the interatomic potential. The
root of Eq. (12) corresponding to large rtr has no phys-
ical meaning, because the distance of closest approach
in the S scattering is ~r0. The excess of kinetic energy,

V r( ) D
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Fig. 2. Dependence of the dimensionless effective soliton
halfwidth wd on Nd for the two-dimensional (d = 2) and
three-dimensional (d = 3) solitons. The vertical dashed line
corresponds to the approximation of local nonlinearity for
d = 2. The horizontal dotted straight line shows the asymp-
totic value of halfwidth w2(∞) = 1.83 (d = 2).
which permits the colliding particles to attain distances
ttr < r0, arises due to the fact that the distance of closest
approach is finite [4].

We are now in position to calculate the scaling fac-
tor ρc defined by Eq. (6):

(14)

and

(15)

Therefore, ρc = 100 au = 53 A. Note that the integral I2
depends weakly on the scattering length, so that the
scaling factor is ρc ~ 1/|a |1/2.

With these parameters, the minimal halfwidth of a
two-dimensional soliton in the condensate of 7Li (2, 2)
atoms (Fig. 2) is wρ ≈ 1.83ρc ≈ 100 A = 10 nm. One can
control the value of N2 by varying the scattering (see
Eq. (7)) by a static magnetic field. It is seen from Fig. 2
that a rather small width is achieved at N2 ≥ 100. For the
practically minimal narrowing, a cigar-shaped conden-
sate of length 100 µm should contain 3 × 105 atoms, so
that the atomic concentration n ≈ 1.3 × 1019 cm–3. For
concentrations as high as this, the number of condensed
particles rapidly decreases because of the spin flip in
pair collisions. The characteristic time of condensate
decay is

(16)

Here, 〈σV〉  = 5 × 10–15 cm3/s is the decay rate calculated
in [13]. Such a short lifetime of the solitonic state may
present problems in its experimental implementation.
The situation is cardinally changed in the condensate of
7Li (1, 1) atoms. The scattering length in this case is
|a | = 1.6 × 10–8 cm [2]. Although the corresponding
minimal beam halfwidth is ~30 nm, the characteristic
time of atomic loss is now determined by the three-par-
ticle collisions, because the pair collisions are associ-
ated with the transitions to the excited hfs states and so
they are energetically impossible. According to [14],
this time is equal to

(17)

where V is the mean atomic velocity and rc is the effec-
tive radius of three-particle collision. By setting rc ≈ |a |,
we obtain τr ~ 40 s.

The almost limiting narrowing of the three-dimen-
sional solitonic 7Li (2, 2) condensates can be achieved
with appreciably lower atomic concentrations. Indeed,
one can see from Fig. 2 that the soliton halfwidth for
N3 = 250 is w3ρc = 18 nm (minimal halfwidth equals
13 nm). The corresponding soliton contains ~40 atoms,
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and the atomic concentration is n = 1.4 × 1018 cm–3,
which is an order of magnitude lower than the concen-
tration in the two-dimensional soliton. Accordingly, the
condensate decay time caused by the pair collisions is
τr = 80 µs.

Thus, the cross-sectional size of the two- and three-
dimensional solitons in the Bose–Einstein condensates
of alkali-earth atoms can be as small as ~20–60 nm,
rendering the atomic needles and bullets promising for
use in atomic nanolithography. Indeed, the minimal
size of the structures obtained by optical photolithogra-
phy is ~120–150 nm, and only the vacuum ultraviolet
technique could possibly reduce it to 80 nm. At the
same time, the use of other methods, such as focusing
of the preliminarily cooled atoms in the nodes of a
standing light wave [15] or scattering of the atomic
wave packets by a periodic potential [16], provides a
strictly periodic character of the formed structure.
Hence, these methods of forming periodic profile are,
generally speaking, of interest not in nanolithography
as such but in the formation of superlattices with
strictly periodic doping. In contrast, the suggested vari-
ant of nanolithography with the use of atomic needles
and bullets allows one to obtain any arbitrary pattern at
the sample surface, while the simplest estimates of the
exposure time show that a repetition rate of ~102 soli-
ton/s is enough for the practical use of this method. The
possibility of forming a sequence of solitons of the Li
condensate was demonstrated experimentally in [2].
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The Nernst–Ettingshausen (NE) effect in the initial NaCl and high-pressure GeS phases was studied at a high
pressure P for n-PdTe, p-PbSe, and p-PbS to estimate the mobility µ and the charge-carrier scattering parameter
r. It was found that the transverse and longitudinal NE effects in PbTe and PbSe increase with pressure, indi-
cating the transition to the gapless state near P ≈ 3 GPa. The sign of the transverse NE effect changes because
of the change in the electron scattering mechanism in the GeS phase. The experimentally observed weakening
of the NE and magnetoresistance effects at high P gives evidence for the indirect energy gap Eg in the high-
pressure phases with GeS structure. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.20.My; 72.20.Pa
Experimental investigations of the electrophysical
properties of materials subjected to ultrahigh pressures
are an efficient method of studying the electronic struc-
ture and charge-carrier parameters; the observation of
metallic and superconducting oxygen states at P ≈
96 GPA is among the most expressive recent examples
[1]. Up to now, only the electrical resistivity ρ [1], the
thermoelectric power S [2, 3], and the transverse mag-
netoresistance (MR) [4] have been measured at ultra-
high pressures. The efficiency of the MR method was
most conspicious in the studies of semimetal–semicon-
ductor phase transitions at ultrahigh P values for HgX
samples (X = Te, Se, S, O), in which the MR sign was
found to be inverted reversibly. The estimated values of
electron mobility µ were found to correspond to bulk
crystals at P = 0 [4]. This method of measuring MR was
also proposed in [5] for estimating electron mobility
and concentration in semiconductor microstructures—
infrared detectors of sizes ~100 × 50 × 8 µm.

The main difficulty in electric measurements under
ultrahigh P in diamond anvil chambers [1–4] is caused
by small sample sizes, which are comparable with the
sizes of semiconductor microstructures [5]. For this
reason, attempts are being undertaken to solve the prob-
lem of taking electrical probes to the samples by using
modern semiconductor technologies, to form at the sur-
face of a diamond anvil (by ion-implantation tech-
niques, etc.) thin (~1 µm) conducting layers insulated
by a diamond film [6]. Such diamond anvils are now
used in studying the S(P) dependence, true enough,
below 10 GPA [7], where more correct results are
obtained in large-volume chambers with a compress-
ible capsule [8].
0021-3640/03/7702- $24.00 © 20088
Measurements of the thermomagnetic (TM) effects
that carry direct information on µ and r [9] were per-
formed in the range from 0 to 3 GPa, where only a lit-
tle work has been done [10]. Due to the use of syn-
thetic diamond anvils, the P range was extended to
30 GPa in the study of elementary Group VI semicon-
ductors Te and Se [11, 12]. However, it was still
unclear whether one can apply the TM method [11,
12] in studying more complex semiconductors, where
not one but several bands make a contribution to the
conductivity and where the phase transitions are
induced by pressure [13].

In this work, the TM effects were studied under
ultrahigh pressure P in direct-gap IV–VI semiconduc-
tors PbX (X = Te, Se, and S) with, respectively, Eg ≈
0.29, 0.27, and 0.41 eV at the L point of the Brillouin
zone [14]. This class of materials was chosen as a suit-
able object for developing the TM measurement tech-
nique at ultrahigh P, because it was well studied under
ambient conditions [14] and because Eg in PbX tends to
zero twice: in the initial NaCl phase [14–16] and in the
high-pressure GeS-type phase [14, 19–22], which is
formed, respectively, above ~2.5, ~4.0, and ~4.5–6 GPa
[17, 18] near the transition to the metallic CsCl phase at
P ≈ 12–21 GPa [17, 18, 20]. The study of PbX crystals
is also of independent interest, because they are widely
used in electronics in the fabrication of photoresisters,
as model materials for studying quantum dots [23], and
because they are most efficient in the fabrication of
thermogenerators in the moderate temperature range
600–1000 K [14]. Up to now, TM studies in PbX have
been performed only at atmospheric pressure P for bulk
samples [9] and films [24, 25]. As to the microscopic
003 MAIK “Nauka/Interperiodica”
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samples, the TM effects have been investigated neither
for PbX nor for other materials. Our studies were car-
ried out with n-PbTe, p-PbSe, and p-PbS single crys-
tals. The electron (hole) concentration was equal to
1.5 × 1018, 1.1 × 1018, and 1 × 1018 cm–3, respectively.

The purpose of this work was to determine the
mobility and scattering mechanisms for charge carriers
in PbX using TM measurements at an ultrahigh pres-
sure P up to 20 GPa.

The high-pressure TM measurements were made by
a method corresponding to the one described in [11,
12]. High quasi-hydrostatic pressure P was generated
using synthetic diamond chambers [3, 11]. The dia-
mond anvils were used as heat sinks [3, 11]. To produce
a temperature gradient, one of the anvils was heated by
a heater, and the temperature was measured at fixed
anvil points [3, 11, 26]. The value of S was derived from
the linear dependence of the thermoelectric power on
the temperature difference in the sample (insert in
Fig. 1). The samples were disc-shaped with thicknesses
ranging from ~0.05 to 0.02 mm and a diameter of
0.3 mm. The MR and S signals were detected using
pressed platinum–silver 5 µm-thick contacts or well-
conducting diamond anvils [3, 11, 18] with allowance
for the error introduced in the thermoelectric power [3,
18, 26]. The pressure in a solid pressure-transmitting
medium (Catlinite) was estimated with an accuracy of
±10% from the force calibration curve that was con-
structed using the observed phase transformations in
the Bi, ZnS, GaP, etc., reference materials for each
chamber [13, 26].

Measurements of S and MR were performed at
fixed P in a magnetic field B lower than 2 T produced
in an armored electromagnet. The MR and S(B)
effects were not observed for closed anvils (without
sample). Because of the asymmetric arrangement of
the contacts, the even and odd field effects, e.g., the
contribution to MR from the Hall effect, are ordinarily
present in semiconducting samples [27]. This fact was
used in our experiments for measuring the longitudi-
nal and transverse Nernst–Ettingshausen (NE) effects
by rotating the chamber about its axis in the magnetic
field [11, 12]. The setup allowed one to detect and
store the magnetic field strength, the temperature dif-
ference, the current, and the electrical signals from the
sample, followed by transmission of the data to a com-
puter [11, 18].

The electrical resistivity and the thermoelectric
power of the p-PbS, p-PbSe, and n-PbTe crystals
decreased with the pressure buildup because of a
decrease in Eg (with a coefficient of ~0.08 eV/GPa for
all PbXs) [14–16], whereupon they increased jumpwise
in the GeS phase (above ~2.5–5 GPa; Fig. 1), where,
according to the estimates made in [18], semiconductor
gaps of ~0.6, ~0.4, and ~0.1 eV opened. “Smearing” of
the structural transitions in PbX (Fig. 1) was also
observed in Raman scattering upon hydrostatic com-
JETP LETTERS      Vol. 77      No. 2      2003
pression; in PbTe, the spectra typical of the GeS phase
appeared at P ~ 3 GPa (below the structural transition
[20]) and persisted up to ~20 GPa (above the transition
point Pt ≈ 15 GPa in the CsCl lattice [20–22]). In the
GeS phase, S again decreased because of a decrease in
Eg [18] (Fig. 1).

The typical behavior of S caused by the variation of
magnetic induction B upon the rotation of the chamber
with a sample in a magnetic field is shown in Fig. 2. The
function S(B) was the sum of terms linear and quadratic
in B, which were related to the transverse and longitu-
dinal NE TM effects, respectively [9, 11, 27]. The con-
tribution from the longitudinal NE effect to the trans-
verse effect was observed for almost all chamber posi-
tions (Figs. 2–4). The coefficient Q of the transverse NE
effect was derived from the linear portion of the S(B)
curve. The longitudinal (quadratic in B) NE effect was
observed when the chamber with the sample was turned
through an angle of 90°; the residual contribution linear
in B was subtracted (Figs. 2–4).

The sign of S changed with pressure, indicating a
change in the predominant type of charge carriers
(Fig. 1). The expressions for MR and the coefficient Q
of the transverse NE effect, which describe the transi-
tion from hole to electronic conduction (in weak mag-

Fig. 1. Pressure dependence of the thermoelectric power for
the (1) n-PbTe, (2) p-PbSe, and (3) p-PbS samples at T =
295 K. Arrows indicate the onset of phase transitions to the
GeS phase. Insert: the dependence of thermoelectric voltage
U on the temperature difference ∆T for the n-PbTe sample
at T = 295 K and fixed pressures P (in GPa; shown in the
graph).
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netic fields µB < 1) [9, 27], have the form

(1)

(2)

where ρ is the resistivity; k is the Boltzmann constant;
and ar and br are constants depending on the scattering
parameter r, which determines the dependence of relax-
ation time τ on electron energy ε: τ(ε) ~ εr. For zero
electronic conductivity σn or hole conductivity σp,
Eqs. (1) and (2) transform to the single-band expres-
sions, which were used for an analysis of the experi-
mental data; in this case, the signs of the coefficients
∆ρ/ρ and Q do not change [9, 27]. On the contrary, the
longitudinal NE effect (a change in S in the transverse
magnetic field) depends on the charge-carrier sign [27]:

∆S|| (3)

In the presence of two charge-carrier groups, the coef-
ficient A2 in Eq. (3) is replaced by a function depending
on r, Eg, µn/µp, and σn/σp [27]. If charge carriers are
scattered by lattice acoustic vibrations (r = – 1/2) and
charged centers (r = 3/2), the constant A2 takes the
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Fig. 2. Thermopower variations for the n-PbTe sample at
T = 295 K and pressure P = 2.4 GPa upon sequential rota-
tions of a chamber with the sample in a magnetic field: (1)
transverse NE effect, (2) mixed effect, (3) longitudinal NE
effect, and (4) reversion to the initial state (transverse NE
effect).
approximate values +1 and –30, respectively, and the
value of S must increase or decrease in a magnetic field
[27].

The following voltages are measured in the experi-
ment: ∆U||(B) = ∆S||(B)∆T and ∆U⊥ (B) = BQ∆T(∆y/∆x),
where ∆y and ∆x are, respectively, the distances

Fig. 3. Thermopower variations: (a) transverse NE effect,
(b) longitudinal NE effect, and (c) magnetoresistance effect
in a magnetic field for the n-PbTe sample at T = 295 K and
fixed pressures P (in GPa; shown in the graphs).
JETP LETTERS      Vol. 77      No. 2      2003
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between the cold and hot sample edges and between the
potential contacts in the Hall direction [11]. For this
reason, the measured signal for the transverse NE effect
is proportional not only to the coefficient Q but also to
∆y/∆x ~ 1.

In the n-PbTe sample, the magnitude of S increases
in a magnetic field (Figs. 2, 3), which corresponds to
the scattering parameter r = –1/2; the same values were
obtained for r from the TM measurements at P = 0 [9,
14]. For PbSe, the field-induced change in S has the
same sign (Fig. 4), but S has a small positive value
(Fig. 1). The fact that S(P) in the PbSe sample
decreases drastically in its initial NaCl phase (Fig. 1)
indicates that the electronic contribution to the conduc-
tivity increases. It is thus natural to assume that the lon-
gitudinal NE effect in PbSe is caused by electrons,
whose mobility is higher than for holes [14], so that the
scattering parameter for it should also be r = –1/2. The
greatest contribution to the effects quadratic in B comes
from the most mobile charge carriers [27], in our case
electrons. Above 5 GPa, the transverse (Fig. 4b) and
longitudinal (not shown in figure) NE effects in the GeS
phase of PbSe change their signs. This indicates that r

Fig. 4. Thermopower variations in a magnetic field: (a) trans-
verse NE effect and (b) longitudinal NE effect for the p-
PbSe at T = 295 K and fixed pressures P (in GPa; shown in
the graphs).
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changes sign and that the electron scattering by charged
centers (r = 3/2) or optical lattice vibrations (r = 1) [27]
likely becomes dominant. The parameter r can increase
in the presence of lattice structural defects, as was
observed in thin films of triple lead chalcogenides [24,
25].

With an increase in P, both TM and MR effects in
the PbTe and PbSe samples increased and achieved
their greatest magnitudes at the same pressures (Figs. 3,
4). The NE effects in PbSe were observed below
~8 GPa, after which the signal became comparable to
the experimental error, whereas in PbTe the signal was
observed up to the transition to the metallic phase. As P
was reduced to 2–3 GPa, the TM effects in PbSe and
PbTe again increased, while the transverse NE effect in
PbSe again changed its sign (not shown in Fig. 4). No
tangible changes in the thermoelectric power and elec-
trical resistivity were observed for PbS in a magnetic
field. The magnitudes of the TM and MR effects in the
PbX samples correlate with their mobilities: µ(PbS) <
µ(PbSe) < µ(PbTe) [14].

The behavior of the MR and NE effects is represen-
tative of the pressure-induced changes in m and µ
(Fig. 5). The maxima observed at P ~ 3 GPa for these
effects and for the calculated µ(P) values can naturally

Fig. 5. Pressure dependences of mobilities for the (a) n-PbTe
and (b) p-PbSe samples, as estimated from (1) transverse
NE effect, (2) longitudinal NE effect, and (3) MR at T =
295 K.
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be associated with the PbX transition to the gapless
state (GS), where the mobilities µ ~ eτ/m ~ 1/Eg should
be the highest [14, 27]. Analogous maxima were
observed for MR and µ in the region of GS transition at
helium temperatures and at P < 1.8 GPa for PbSe and
for the PbSnX compounds [14, 28, 29]. Judging from
the literature data, the PbX transition to the gapless
state has not been observed at room temperature so far.
The low-P mobilities estimated for PbSe and PbTe are
somewhat lower than in single-crystal films at P = 0 [9,
14, 28, 30] but are higher in the GS (Fig. 5a). In the case
of two-band conduction, the values of µ (Fig. 5) corre-
spond to the effective “mobility” that includes the con-
tributions from different bands (in semimetals, e.g., µ =
(µnµp)1/2 [27]). Since the NE and MR effects decrease
with increasing P in the high-pressure phase (Figs. 2–
4), one can conclude that the relation m ~ Eg does not
hold and, hence, Eg is indirect, contrary to the NaCl
phase.

According to the theoretical model [31, 32], the
NaCl structure of the PbX crystals with metallic con-
duction is unstable against the Peierls distortion, which
doubles the lattice spacing if the energy gain due to the
opening of a semiconducting gap at the Fermi level
exceeds the lattice deformation energy. It follows from
the results of this work that the gapless state in PbTe
and PbSe (electronic structure of metallic type) arises at
~3 GPa; i.e., it precedes the structural transition with
the doubling of lattice parameter [14, 21, 22]. Judging
from the values of Eg and dEg/dP in PbS [14–16], the
structural transition at 2.5 GPa should proceed after the
GS transition. However, one can see from the experi-
mental S(P) and ρ(P) dependences [18] that all three
PbX compounds reach the near-metallic state before
the onset of structural transition.

Thus, measurements of TM effects have made it
possible to observe the PbX transition to the gapless
state at room temperature and to estimate the charge-
carrier mobility and scattering parameter over a wide
range of P values. Analysis of the behavior of Eg in the
high-pressure NaCl and GeS phases of PbX indicates
that the gap in the second phase is indirect. This gives
evidence for the obvious merits of the TM method in
studying microsamples at ultrahigh pressures.

The temperature lowering should result in a sizable
increase of the TM effects because of a strong increase
in the electron and hole mobilities in PbX [14]. Com-
pared to the conventional method of thermoelectric
cooling based on the Peltier effect, the TM effects seem
to be much more promising [33], while the diamond
anvils used in the experiment serve as a real thermo-
electric device, because their heat conductivity is sev-
eral times higher than in copper. For this reason, the
method of studying the TM effects under pressure in a
diamond chamber may find useful practical applica-
tions [13].

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-17203.
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Within a 2D model of Josephson junction arrays (created by a 2D network of twin boundary dislocations with
strain fields acting as an insulating barrier between hole-rich domains in underdoped crystals), a few novel
effects expected to occur in intrinsically granular material are predicted, including (i) Josephson chemomag-
netism (chemically induced magnetic moment in zero applied magnetic field) and its influence on a low-field
magnetization (chemically induced paramagnetic Meissner effect) and (ii) the magnetoconcentration effect
(creation of oxygen vacancies in applied magnetic field) and its influence on a high-field magnetization (the
chemically induced analogue of the “fishtail” anomaly). The conditions under which these effects can be exper-
imentally measured in nonstoichiometric high-Tc superconductors are discussed. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 74.25.Ha; 74.50.+r; 74.72.-h; 61.72.Mm
1. Recent STM-based imaging of the granular struc-
ture in underdoped Bi2Sr2CaCu2O8 + δ crystals [1]
revealed an apparent segregation of its electronic struc-
ture into superconducting domains (on the order of a
few nanometers) located in an electronically distinct
background. In particular, it was found that, at low lev-
els of hole doping (δ < 0.2), the holes become concen-
trated at certain hole-rich domains. (In this regard, it is
interesting to mention the somewhat similar phenome-
non of “chemical localization” that takes place in mate-
rials composed of atoms of only metallic elements
exhibiting metal–insulator transitions [2].) Tunneling
between such domains leads to intrinsic granular super-
conductivity (GS) in high-Tc superconductors (HTSs).
Probably one of the first examples of GS was observed
in YBa2Cu3O7 – δ single crystals in the form of the so-
called “fishtail” anomaly of magnetization [3]. The
granular behavior has been related to 2D clusters of
oxygen defects forming twin boundaries (TBs) or dis-
location walls within the CuO plane that restrict super-
current flow and allow excess flux to enter the crystal.
Indeed, there are serious arguments to consider the TBs
in HTS as insulating regions of the Josephson SIS-type
structure. The average distance between boundaries is
substantially less than the grain size. In particular, net-
works of localized grain boundary dislocations with the
spacing ranging from 10 to 100 nm which produce
effectively continuous normal or insulating barriers at
the grain boundaries have been observed [3]. It was also

¶ This article was submitted by the author in English.
0021-3640/03/7702- $24.00 © 20094
verified that the processes of oxygen ordering in HTSs
leads to the continuous change of the lattice period
along TBs with the change of the oxygen content.
Additionally, the destruction of bulk superconductivity
in these nonstoichiometric materials with increasing
oxygen deficiency parameter µ was found to follow a
classical percolation theory [4].

In addition to their importance for understanding the
underlying microscopic mechanisms governing HTS
materials, the above experiments provide rather versa-
tile tools for designing chemically controlled atomic
scale Josephson junctions (JJs) and their arrays (JJAs)
with preselected properties needed for manufacturing
modern quantum devices [5, 6]. Moreover, as we shall
see below, GS-based phenomena can shed some light
on the origin and evolution of the so-called paramag-
netic Meissner effect (PME), which manifests itself
both in high-Tc and conventional superconductors [7, 8]
and is usually associated with the presence of π junc-
tions and/or unconventional (d-wave) pairing symme-
try. Recently, much attention has been given to both
experimental and theoretical study of PME-related
effects using specially designed SFS-type junctions [9,
10].

In this letter, within a 2D model of JJAs (created by
a regular 2D network of TB dislocations), we discuss
the possibility of a few novel interesting effects that are
expected to occur in an intrinsically granular nonsto-
ichiometric material. In particular, we shall consider
(i) Josephson chemomagnetism (chemically induced
magnetic moment in zero applied magnetic field) and
003 MAIK “Nauka/Interperiodica”
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its influence on low-field magnetization (chemically
induced PME) and (ii) magnetoconcentration effect
(the creation of extra oxygen vacancies in an applied
magnetic field) and its influence on a high-field magne-
tization (the chemically induced analogue of the “fish-
tail” anomaly).

2. The scenario. As is well known, the presence of
a homogeneous chemical potential µ through a single JJ
leads to the AC Josephson effect with time-dependent
phase difference ∂φ/∂t = µ/". In this paper, we will con-
sider some effects in dislocation-induced JJ caused by
a local variation of excess hole concentration c(x) under
chemical pressure (described by inhomogeneous chem-
ical potential µ(x)) equivalent to the presence of the
strain field of 2D dislocation array e(x) forming this
Josephson contact.

To understand how GS manifests itself in nonsto-
ichiometric crystals, let us invoke an analogy with the
previously discussed dislocation models of grain
boundary Josephson junctions (GBJJs) (see, e.g., [11,
12] and references therein). Recall that, under plastic
deformation, grain boundaries (GBs) (which are the
natural sources of weak links in HTSs) move rather rap-
idly via the movement of the grain boundary disloca-
tions (GBDs) comprising these GBs. Using the above
evidence, in the previous paper [12], we studied numer-
ous piezomagnetic effects in granular superconductors
under mechanical loading. At the same time, regular 2D
dislocation networks of oxygen-depleted regions (gen-
erated by the dissociation of 〈110〉  twinning disloca-
tions) with the size d0 of a few Burgers vectors,
observed [1, 3, 13–15] in HTS single crystals and form-
ing a triangular lattice with a spacing d ≥ d0 ranging
from 10 to 100 nm, can provide quite a realistic possi-
bility for the existence of a 2D Josephson network
within the CuO plane. Recall furthermore that, in a
d-wave orthorhombic YBCO crystal, TBs are repre-
sented by tetragonal regions (in which all dislocations
are equally spaced by d0 and have the same Burgers
vectors a parallel to the y axis within the CuO plane),
which produce screened strain fields [14] e(x) =

 with |x | = .

Though in YBa2Cu3O7 – δ the ordinary oxygen diffu-

sion D = D0  is extremely slow even near Tc (due
to the rather high value of the activation energy Ud in
these materials, typically Ud . 1 eV), in underdoped
crystals (with oxygen-induced dislocations), there is a
real possibility to facilitate oxygen transport via the so-
called osmotic (pumping) mechanism [16, 17], which
relates a local value of the chemical potential (chemical
pressure) µ(x) = µ(0) + ∇µ  · x with a local concentra-

tion of point defects as c(x) = . Indeed, when
in such a crystal there exists a nonequilibrium concen-
tration of vacancies, a dislocation is moved an atomic
distance a by adding excess vacancies to the extraplane
edge. The produced work is simply equal to the chemi-

e0e
x /d0–

x2 y2+

e
Ud /kBT–

e
µ x( )/kBT–
JETP LETTERS      Vol. 77      No. 2      2003
cal potential of the added vacancies. It is important that
this mechanism allows us to explicitly incorporate the
oxygen deficiency parameter δ into our model by relat-
ing it to the excess oxygen concentration of vacancies
cv ≡ c(0) as δ = 1 – cv. As a result, the chemical potential
of the single vacancy is µv ≡ µ(0) = –kBT  .
kBTδ. Remarkably, the same osmotic mechanism was
used by Gurevich and Pashitskii [14] to discuss the
modification of oxygen vacancy concentration in the
presence of the TB strain field. In particular, they argue
that the change of e(x) under an applied or chemically
induced pressure results in a significant oxygen redis-
tribution, producing a highly inhomogeneous filamen-
tary structure of oxygen-deficient nonsuperconducting
regions along GBs [15] (for underdoped superconduc-
tors, the vacancies tend to concentrate in the regions of
compressed material). Hence, assuming the following
connection between the variation of mechanical and
chemical properties of planar defects, namely, µ(x) =
KΩ0e(x) (where Ω0 is the effective atomic volume of
the vacancy and K is the bulk elastic modulus), we can
study the properties of TB-induced JJs under intrinsic
chemical pressure ∇µ  (created by the variation of the
oxygen doping parameter δ). More specifically, a single
SIS-type junction (comprising a Josephson network) is
formed around TBs due to a local depression of the
superconducting order parameter ∆(x) ∝  e(x) over dis-
tance d0, thus producing a weak link with (oxygen defi-
ciency δ dependent) Josephson coupling J(δ) = e(x)J0 =

J0(δ) , where J0(δ) = e0J0 = (µv /KΩ0)J0 .
(kBTJ0/KΩ0)δ (here, J0 ∝  ∆0/Rn with Rn being the resis-
tance of the junction). Thus, the model considered here
indeed describes chemically induced GSs in under-
doped systems (with δ ≠ 0) because, in accordance with
the observations, for the stoichiometric situation (when
δ  0), the Josephson coupling J(δ)  0 and the
system loses its explicitly granular signature.

3. The model. To adequately describe the chemo-
magnetic properties of an intrinsically granular super-
conductor, we employ the model of a 2D overdamped
Josephson junction array, which is based on the well-
known tunneling Hamiltonian

(1)

and introduces a short-range (nearest-neighbor) inter-
action between N junctions (which are formed around
oxygen-rich superconducting areas with phases φi(t)),
arranged in a two-dimensional (2D) lattice with coordi-
nates xi = (xi, yi). The areas are separated by oxygen-
poor insulating boundaries (created by TB strain fields
e(xij)) producing a short-range Josephson coupling Jij =

J0(δ) . Thus, typically for granular superconduc-
tors, the Josephson energy of the array varies exponen-

1 δ–( )log

e
x /d0–

* t( ) Jij 1 φij t( )cos–[ ]
ij

N

∑=

e
xij /d–
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tially with the distance xij = xi – xj between neighboring
junctions (with d being the average junction size).

If, in addition to chemical pressure ∇µ (x) = KΩ0∇ e(x),
the network of superconducting grains is under the
influence of an applied frustrating magnetic field B, the
total phase difference through the contact is

(2)

where  is the initial phase difference (see below),
nij = Xij/|Xij | with Xij = (xi + xj)/2, and ω = 2λL(T) + l
with λL being the London penetration depth of the
superconducting area and l being the insulator thick-
ness (which, in the scenario discussed here, is simply
equal to the TB thickness [17]).

To neglect the influence of self-field effects in a real
material, the corresponding Josephson penetration

length λJ =  must be larger than the junc-
tion size d. Here, jc is the critical current density of the
superconducting (hole-rich) area. As we shall see
below, this condition is rather well satisfied for HTS
single crystals.

φij t( ) φij
0 πw

Φ0
------- xij nij∧( ) B⋅

∇µ xijt⋅
"

--------------------,+ +=

φij
0

Φ0/2πµ0 jcw

Fig. 1. The magnetization M(B, δ)/M0(0) as a function of
applied magnetic field B/B0, according to Eq. (5), for differ-
ent values of oxygen deficiency parameter: δ = 0 (solid
line), δ = 0.05 (dashed line), and δ = 0.1 (dotted line). Inset:
δ induced magnetization M(0, δ)/M0(0) in a zero applied
magnetic field (chemomagnetism).
4. Chemomagnetism. Within our scenario, the
sheet magnetization M of 2D granular superconductor
is defined via the average Josephson energy of the array

(3)

as follows:

(4)

where s = 2πd2 is the properly defined normalization
area, τ is a characteristic Josephson time, and we have
made the usual substitution

valid in the long-wavelength approximation [18].
To capture the very essence of the superconducting

analogue of the chemomagnetic effect, in what follows
we assume for simplicity that a stoichiometric sample
(with δ = 0) does not possess any spontaneous magne-
tization at zero magnetic field (that is, M(0, 0) = 0) and
that its Meissner response to a small applied field B is
purely diamagnetic (that is, M(B, 0) . –B). According

to Eq. (4), this condition implies  = 2πm for the ini-
tial phase difference with m = 0, ±1, ±2, ….

Taking the applied magnetic field along the c axis
(and normal to the CuO plane), that is, B = (0, 0, B), we
obtain finally

(5)

for the chemically induced sheet magnetization of the
2D Josephson network.

Here, M0(δ) = J0(δ)/B0 with J0(δ) defined earlier, b =
B/B0, and bµ = Bµ/B0 . (kBTτ/")δ, where Bµ(δ) =
(µv (δ)τ/")B0 is the chemically induced contribution
(which disappears in optimally doped systems with δ = 0)
and B0 = Φ0/wd is a characteristic Josephson field.

Figure 1 shows changes of the initial (stoichiomet-
ric) diamagnetic magnetization M/M0 (solid line) with
oxygen deficiency δ. As is seen, even relatively small
values of the δ parameter render a low-field Meissner
phase strongly paramagnetic (dotted and dashed lines).
The inset of Fig. 1 presents a true chemomagnetic effect
with concentration-deficiency-induced magnetization
M(0, δ) in zero magnetic field. According to Eq. (5), the
initially diamagnetic Meissner effect turns paramag-
netic as soon as the chemomagnetic contribution Bµ(δ)
exceeds the applied magnetic field B. To see whether
this can actually happen in a real material, let us esti-
mate the magnitude of the chemomagnetic field Bµ.
Typically [3, 14], for HTS single crystals, λL(0) ≈ 150 nm

*〈 〉 td
τ
----

0

τ

∫ x2d
s

-------* x t,( )∫=

M B δ,( )
∂ *〈 〉

∂B
--------------,–≡

1
N
---- Aij t( )

ij

∑ 1
s
--- x2 A x t,( )d∫

φij
0
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b bµ–

1 b2+( ) 1 b bµ–( )2+( )
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and d . 10 nm, leading to B0 . 0.5 T. Using τ . "/µv

and jc = 1010A/m2 as a pertinent characteristic time and
the typical value of the critical current density, respec-
tively, we arrive at the following estimate of the chemo-
magnetic field: Bµ(δ) . 0.5B0 for δ = 0.05. Thus, the
predicted chemically induced PME should be observ-
able for applied magnetic fields B . 0.5B0 . 0.25 T
(which are actually much higher than the fields needed
to observe the previously discussed [12] piezomag-
netism and stress-induced PME in high-Tc ceramics).
Notice that, for the above set of parameters, the Joseph-
son length λJ . 1 µm, which means that the small-junc-
tion approximation assumed in this paper (with d ! λJ)
is valid and the so-called “self-field” effects can be
safely neglected.

5. Magnetoconcentration effect. So far, we have
neglected the possible field dependence of the chemical
potential µv of oxygen vacancies. However, in high
enough applied magnetic fields B, the field-induced
change of the chemical potential ∆µv(B) ≡ µv (B) –
µv (0) becomes tangible and must be taken into account.
As is well known [19, 20], in a superconducting state,
∆µv(B) = –M(B)B/n, where M(B) is the corresponding
magnetization and n is the relevant carrier number den-
sity. At the same time, within our scenario, the chemical
potential of a single oxygen vacancy µv depends on the
concentration of oxygen vacancies (through the defi-
ciency parameter δ). As a result, two different effects
are possible, related, respectively, to the magnetic field
dependence of µv (B) and to its dependence on magne-
tization µv (M). The former is nothing but a supercon-
ducting analogue of the so-called magnetoconcentra-
tion effect (which was predicted and observed in inho-
mogeneously doped semiconductors [21]) with field-
induced creation of oxygen vacancies cv (B) =
cv (0)exp(–∆µv(B)/kBT), while the latter (as we shall see
in the next section) results in “fishtail” behavior of the
magnetization. Let us start with the magnetoconcentra-
tion effect. Figure 2 depicts the predicted field-induced
creation of oxygen vacancies δ(B) = 1 – cv (B) using the
magnetization M(B, δ) obtained above (see Fig. 1 and
Eq. (5)). We also assumed, for simplicity, the complete
stoichiometry of the system in zero magnetic field (with
δ(0) = 1 – cv (0) = 0). Notice that δ(B) exhibits a maxi-
mum at δc . 0.23 for applied fields B = B0 (in agree-
ment with the classical percolative behavior observed
in nonstoichiometric YBa2Cu3O7 – δ samples [3, 4, 15]).
Finally, let us show that in underdoped crystals the
above-discussed osmotic mechanism of oxygen trans-
port is indeed much more effective than traditional dif-
fusion. Using typical YBCO parameters [14], e = 0.01,

Ω0 =  with a0 = 0.2 nm, and K = 115 GPa, we have
µv (0) = eKΩ0 . 1 meV for a zero-field value of the
chemical potential in HTS crystals, which leads to the
creation of excess vacancies with concentration cv (0) =

 . 0.7 (equivalent to a deficiency value of

a0
3

e
µv 0( )/kBT–
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δ(0) . 0.3) at T = Tc, while the probability of oxygen
diffusion in these materials (governed by the rather
high activation energy Ud . 1 eV) is extremely slow

under the same conditions, because D ∝   ! 1.
On the other hand, the change of the chemical potential
in an applied magnetic field can reach as much as [20]
∆µv (B) . 0.5 meV for B = 0.5 T, which is quite compa-
rable with the above-mentioned zero-field value of
µv (0).

6. Analogue of “fishtail” anomaly. Let us turn now
to the second effect related to the magnetization depen-
dence of the chemical potential µv (M(B)). In this case,
in view of Eq. (2), the phase difference will acquire an
extra M(B)-dependent contribution, and, as a result, the
r.h.s. of Eq. (5) will become a nonlinear functional of
M(B). The numerical solution of this implicit equation
for the resulting magnetization mf = M(B, δ(B))/M0(0)
is shown in Fig. 3 for the two values of zero-field defi-
ciency parameter δ(0). As is clearly seen, mf exhibits a
field-induced fishtail-like behavior typical for under-
doped crystals with intragrain granularity (for symme-
try and a better visual effect, we also plotted –mf in the
same figure). The extra extremum of the magnetization
appears when the applied magnetic field B matches the
intrinsic chemomagnetic field Bµ(δ(B)) (which now
also depends on B via the above-discussed magneto-
concentration effect). Notice that the fishtail structure
of mf manifests itself even at zero values of field-free
deficiency parameter δ(0) (solid line in Fig. 3), thus
confirming the field-induced nature of intrinsic granu-

e
Ud /kBTc–

Fig. 2. Magnetic field dependence of the oxygen deficiency
parameter δ(B) (magnetoconcentration effect).
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larity [1, 3, 13–15]. At the same time, even a rather
small deviation from the zero-field stoichiometry (with
δ(0) = 0.1) immediately brings about a paramagnetic
Meissner effect at low magnetic fields. Thus, the
present model predicts the appearance of two interre-
lated phenomena: Meissner paramagnetism at low
fields and a “fishtail” anomaly at high fields. It would
be very interesting to verify these predictions experi-
mentally in nonstoichiometric superconductors with
pronounced networks of planar defects.

I thank G. Rotoli and G. Filatrella for hospitality and
interesting discussions on the subject. This work was
done during my stay in L’Aquila and was funded by the
Italian Institute for the Physics of Matter (INFM).

Fig. 3. The fishtail-like behavior of magnetization mf =
M(B, δ(B))/M0(0) in applied magnetic field B/B0in the pres-
ence of magnetoconcentration effect (with field-induced
oxygen vacancies δ(B), see Fig. 2) for two values of field-
free deficiency parameter: δ(0) = 0 (solid line) and δ(0) =
0.1 (dashed line). 
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The behavior of Fermi systems that approach the fermion condensation quantum phase transition (FCQPT)
from the disordered phase is considered. We show that the quasiparticle effective mass M* diverges as M* ∝
1/|x – xFC |, where x is the system density and xFC is the critical point at which FCQPT occurs. Such behavior
is of general form and takes place in both three-dimensional (3D) and two-dimensional (2D) systems. Since the
effective mass M* is finite, the system exhibits the Landau Fermi liquid behavior. At |x – xFC |/xFC ! 1, the
behavior can be viewed as highly correlated, because the effective mass is large and strongly depends on the
density. In the case of electronic systems, the Wiedemann–Franz law is valid and the Kadowaki–Woods ratio is
preserved. Beyond the region |x – xFC |/xFC ! 1, the effective mass is approximately constant and the system
becomes a conventional Landau Fermi liquid. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.Hf; 71.27.+a; 71.10.Ay
It is widely believed that the unusual properties of
the strongly correlated liquids observed in high-tem-
perature superconductors, heavy-fermion metals, 2D
3He, etc., are determined by quantum phase transitions.
Any quantum phase transition occurs at temperature
T = 0 and is driven by a control parameter other than
temperature, for instance, by pressure, magnetic field,
or the density x. A quantum phase transition occurs at
the quantum critical point. As any phase transition, the
quantum phase transition is related to the order param-
eter that induces a broken symmetry. Therefore, direct
experimental studies of relevant quantum phase transi-
tions are of crucial importance for understanding the
physics of high-temperature superconductivity and
strongly correlated systems.

In the case of high-temperature superconductors,
these experiments are difficult to carry out, because at
low temperatures all the corresponding area is occupied
by the superconductivity. On the other hand, experi-
mental data on the behavior of different Fermi liquids
when systems approach the critical point from the dis-
ordered phase can help to illuminate both the nature of
this point and the nature of the control parameter by
which this phase transition is driven. Experimental
facts on high-density 2D 3He [1, 2] show that the effec-
tive mass diverges when the density at which the 2D
3He liquid begins to solidify is approached [2]. Then a
sharp increase of the effective mass in a metallic 2D

¶ This article was submitted by the author in English.
0021-3640/03/7702- $24.00 © 20099
electron system is observed when the density tends to
the critical density of the metal–insulator transition
point. This transition occurs at sufficiently low densi-
ties [3]. Note that there is no ferromagnetic instability
in either Fermi system, and the relevant Landau ampli-

tude  > –1 [2, 3], in accordance with the almost
localized fermion model [4].

Recent measurements for nonsuperconducting
La1.7Sr0.3CuO4 have shown that the resistivity ρ exhibits
T2 behavior, ρ = ρ0 + ∆ρ, with ∆ρ = AT2, which the
Wiedemann–Franz (WF) law is verified to hold per-

fectly, and that the Kadowaki–Woods ratio, A/  [5], is
enhanced compared with heavy-fermion metals [6].
Here, γ0 is the linear specific heat coefficient, C = γ0T.
These data demonstrate the behavior of the Fermi liq-
uid located above the critical point or on the side of the
disordered phase.

In this letter, we study the behavior of Fermi sys-
tems that approach the fermion condensation quantum
phase transition (FCQPT) [7] from the disordered
phase and show that the outlined experimental data can
be explained within the framework of our approach. We
analyze the appearance of FCQPT in different 2D and
3D Fermi liquids and show that at T  0 FCQPT
manifests itself in the divergence of the quasiparticle
effective mass M* as the density x of a system
approaches the critical point xFC at which FCQPT takes
place, so that M* ∝  1/|x – xFC |. Since the effective mass
M* is finite, the system exhibits Landau Fermi liquid

F0
a

γ0
2
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(LFL) behavior at low temperatures. At sufficiently
high temperatures, the system has non-Fermi liquid
(NFL) behavior. At |x – xFC |/xFC ! 1, this behavior can
be viewed as highly correlated, because the effective
mass strongly depends on the density and is large. We
show that, in the case of electronic systems, the WF law
is valid, and the Kadowaki–Woods ratio is preserved.
Beyond the region |x – xFC |/xFC ! 1, the effective mass
is approximately constant and the system becomes a
conventional Landau Fermi liquid.

A new state of Fermi liquid with the fermion con-
densate (FC) [8, 9], which takes place beyond the criti-
cal point xFC, is defined by the equation [8]

(1)

Here, E[n(p)] is the Landau functional of the ground
state energy, n(p) is the quasiparticle distribution func-
tion, ε(p) is the single-particle energy of the quasiparti-
cles, and µ is the chemical potential [10]. At T = 0,
Eq. (1) defines a new state of Fermi liquid with the FC
for which the modulus of the superconducting order
parameter |κ(p) | has finite values in the LFC range of
momenta pi ≤ p ≤ pf occupied by FC. At the same time,
the superconducting gap can be infinitely small, ∆1  0
in LFC, provided that the corresponding pairing interac-
tion is also small [7, 8]. Such a state can be considered
as superconducting, with an infinitely small value of ∆1,
so that the entropy of this state is equal to zero. This
state, created by the quantum phase transition, disap-
pears at T > 0. FCQPT can be considered as a “pure”
quantum phase transition, because it cannot take place
at finite temperatures. Therefore, the corresponding
quantum critical point does not represent the end of a
line of continuous phase transitions at T = 0. Nonethe-
less, FCQPT has a strong impact on the system’s prop-
erties up to temperature Tf , above which FC effects
become insignificant [7, 8]. FCQPT does not violate
any rotational symmetry or translational symmetry,
being characterized by the order parameter κ(p) =

. It follows from Eq. (1) that the quasi-
particle system splits into two quasiparticle sub-
systems: the first one, in LFC range, is occupied by qua-

siparticles with the effective mass  ∝  1/∆1, while

the second by quasiparticles with finite mass  and
momenta p < pi. Note that the existence of such a state
can be revealed experimentally. Since the order param-
eter κ(p)is suppressed by a magnetic field B, when B2 ~

, a weak magnetic field B will destroy the state, with
FC converting the strongly correlated Fermi liquid into
a normal Landau Fermi liquid.

Equation (1), possessing solutions at some density
x  = xFC, determines the critical point of FCQPT. It is

E n p( )[ ]
δn p( )

------------------- µ– ε p( ) µ– 0,= =

if 0 n p( ) 1; pi p p f LFC.∈≤ ≤< <

n p( ) 1 n p( )–( )

MFC
*

ML
*

∆1
2

also evident from Eq. (1) that the effective mass

diverges when x  xFC, (x  xFC)  ∞. Let
us assume that FC has just taken place, pi  pf  pF,
and the deviation δn(p) is small. Expanding functional
E[n(p)] in a Taylor series with respect to δn(p) and
retaining the leading terms, one obtains

(2)

In Eq. (2), FL(p, p1, σ, σ1) = δ2E/δn(p, σ)δn(p1, σ1) is
the Landau interaction [10], and σ denotes the spin
states. Both the Landau interaction and the single-par-
ticle energy ε0(p) are calculated at n(p) = nF(p). Here,
nF(p) = θ(pF – p) and θ(p – pF) is the Fermi–Dirac dis-
tribution at T = 0. Equation (2) has solutions when the
Landau amplitude FL is positive and sufficiently large,
so that the integral on the right-hand side of Eq. (2)
defining the potential energy is large, and therefore the
potential energy prevails over the kinetic energy ε0(p)

[8]. At temperatures T ≥ Tc, the effective mass 
related to FC is given by [7, 11]

(3)

Multiplying both sides of Eq. (3) by pf – pi, we obtain
the energy scale E0 separating the slowly dispersing

low-energy part related to the effective mass  from
the faster-dispersing relatively high-energy part defined

by the effective mass  [7, 11]:

(4)

It is clear from Eq. (4) that the scale E0 does not depend
on the range pf – pi. It is natural to assume that we have
returned back to the Landau theory by integrating out
high-energy degrees of freedom and introducing the
quasiparticles. The sole difference between the Landau
Fermi liquid and a Fermi liquid having undergone
FCQPT is that we have to expand the number of rele-
vant low-energy degrees of freedom by introducing a

new type of quasiparticle with the effective mass 
given by Eq. (3) and the energy scale E0 given by
Eq. (4). It is seen from Eqs. (1) and (2) that the FC qua-
siparticles form a collective state, since their energies
are defined by the macroscopic number of quasiparti-
cles within the region pi – pf. The shape of the spectra is
not affected by the Landau interaction, which, gener-
ally speaking, depends on the system’s properties,
including the collective states, impurities, etc. The only
thing defined by the interaction is the width of the
region pi – pf, provided that the interaction is suffi-

ML
*

µ ε p σ,( ) ε0 p σ,( )= =

+ FL p p1 σ σ1, , ,( )δn p1 σ1,( )
p1d

2π( )2
-------------;∫
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∑
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MFC
*

MFC
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ciently strong to produce the FC phase transition at all.
The spectra related to FC are of universal form and
determined by T, as follows from Eq. (3). Thus, the sys-
tem’s properties and dynamics are dominated by a
strong collective effect originating from FCQPT and
determined by the macroscopic number of quasiparti-
cles in the range LFC. Such a system can be viewed as a
strongly correlated system and cannot be disturbed by
the scattering of individual quasiparticles, thermal exci-
tations, impurities, etc., and has features of a quantum
protectorate [7, 12, 13].

The appearance of FCQPT in Fermi liquids, when
the effective interaction becomes sufficiently large, was
predicted in [14]. FCQPT precedes the formation of
charge-density waves or stripes, which take place at
some value x = xcdw with xFC > xcdw , while the Wigner
solidification takes place at even lower values of x and
leads to an insulator. In the same way, the effective
mass inevitably diverges as soon as the density x
becomes sufficiently large approaching the critical den-
sity at which 2D 3He begins to solidify, as was observed
in [2].

Now we consider the divergence of the effective
mass in 2D and 3D Fermi liquids at T = 0, when the
density x approaches FCQPT from the side of the nor-
mal LFL. First, we calculate the divergence of M* as a
function of the difference (xFC – x) in the case of 2D
3He. For this purpose, we use the equation for M*
obtained in [14], where the divergence of the effective
mass M* due to the onset of FC in different Fermi liq-
uids including 3He was predicted:

(5)

Here, we adopt the shorthand pF  = q(y),
where q(y) is the transferred momentum, M is the bare
mass, ω is the frequency, v (q) is the bare interaction,
and the integral is taken over the coupling constant g
from zero to its real value g0. In Eq. (5), both χ0(q, ω)
and R(q, ω), being the linear response function of non-
interacting Fermi liquid and the effective interaction,
respectively, define the linear response function of the
system under consideration:

(6)

In the vicinity of charge-density wave instability,
occurring at the density xcdw, the singular part of the
function χ–1 on the disordered side is of the well-known
form (see, e.g., [15])

(7)

1
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M
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where qc ~ 2pF is the wave number of the charge-den-
sity wave. Upon substituting Eq. (7) into Eq. (5) and
performing the integrations, the equation for the effec-
tive mass M* can be cast in the form [16]

(8)

where C is some positive constant. It is seen from
Eq. (8) that M* diverges at some point xFC, which is
referred to as the critical point, as a function of the dif-
ference (xFC – x)

(9)

It follows from the derivation of Eqs. (8) and (9) that the
form of these equations is independent of the bare inter-
action v (q); therefore, both of these equations are also
applicable to a 2D electron liquid or to another Fermi
liquid. It is also seen from Eqs. (8) and (9) that FCQPT
precedes the formation of charge-density waves. As a
consequence of this, the effective mass diverges at high
densities in the case of 2D 3He, and it diverges at low
densities in the case of 2D electron systems, in accor-
dance with experimental facts [2, 3]. Note that in both
cases the difference (xFC – x) has to be positive, because
xFC represents the solution of Eq. (8). Thus, considering
electron systems, we have to replace (xFC – x) with (x –
xFC). In the case of a 3D system, the effective mass is
given by [14]

(10)

A comparison of Eq. (10) and Eq. (5) shows that there
is no fundamental difference between these equations,
and along the same lines we again arrive at Eqs. (8) and
(9). The only difference between 2D electron systems
and 3D ones is that FCQPT occurs at densities that are
well below those corresponding to 2D systems, while,
in the bulk 3He, FCQPT probably cannot take place,
being absorbed by the first-order solidification.

In deriving Eq. (9), we assumed that the temperature
T = 0. It is seen from Eq. (3) that the effective mass
decreases when the temperature increases. The same is
true when the system is above the critical point. There-
fore, when T exceeds some temperature T*(x), Eq. (9)
is no longer valid, and M* depends on the temperature
as well. To estimate T*(x), we can compare the devia-
tion ∆x = |x – xFC | with the deviation ∆x(T), generated
by T. The deviation ∆x can be expressed in terms of
M*(x) using Eq. (9), ∆x/x ~ M/M*(x). On the other
hand, the temperature smoothing out the Fermi function
θ(pF – p) at pF induces the variation pF∆p/M*(x) ~ T.

1
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M
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As a result, we have ∆x(T)/x ~ M*(x)T/ . Comparing
these deviations, we find that at T ≥ T*(x) the effective
mass depends noticeably on the temperature, and the
equation for T*(x) becomes

(11)

Here, εF(x) is the Fermi energy of noninteracting elec-
trons with mass M. From Eq. (11) it follows that M* is
always finite, provided that T > 0. We can consider
T*(x) as the energy scale e0(x) . T*(x). This scale
defines the area (µ – e0(x)) in the single-particle spec-
trum where M* is approximately constant, being given
by M* = dε(p)/dp [10]. According to Eqs. (9) and (11),
it is easily verified that e0(x) can be written in the form

(12)

At T ! e0(x) and above the critical point, the effective
mass M*(x) is finite, the energy scale E0 given by
Eq. (4) vanishes, and the system exhibits LFL behavior.
At temperatures T ≥ e0(x), the effective mass M* starts
to depend on the temperature, and NFL behavior is
observed. Thus, at |x – xFC |/xFC ! 1, the system can be
considered as highly correlated: at T ! e0(x), the sys-
tem is LFL, while, at temperatures T ≥ e0(x), the system
possesses NFL behavior. Then, it is clear that at T  0
the WF law is preserved. At |x – xFC |/xFC ! 1, the effec-
tive mass given by Eq. (9) is very large, the Kadowaki–

Woods ratio A/  is obeyed, and the resistivity exhibits
T2 behavior, as was demonstrated within a simple
model of highly correlated liquid [17]. On the other
hand, at T ≥ e0(x), strong deviations from T2 behavior
occur. We suppose that the resistivity follows a Tα

dependence with 1 < α < 2 at T ≥ e0(x). Here, α = 1 cor-
responds to a strongly correlated liquid with FC and
α = 2 corresponds to LFL [7, 17]. We note that the out-
lined behavior was observed in several heavy-fermion
metals [15]. When the system’s density x is outside the
region |x – xFC |/xFC ! 1, the scale e0 becomes compara-
ble with the Fermi level, and the effective mass
becomes M* ~ M and is approximately constant at
energies (µ – ε) ≤ e0. Therefore, the system becomes a
normal Landau Fermi liquid.

We can expect to observe such a highly correlated
electron (or hole) liquid in heavily overdoped high-Tc

compounds, which are located beyond the supercon-
ducting dome. Let us recall that, beyond the FCQPT
point, the superconducting gap ∆1 can be very small or
even absent [18]. Indeed, recent experimental data have
shown that this liquid does exist in heavily overdoped
nonsuperconducting La1.7Sr0.3CuO4 [6]. Note that, up
to T = 55 K, the resistivity exhibits T2 behavior, while,

pF
2

T∗ x( ) pF
2 M

M∗ x( )( )2
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M
M∗ x( )
--------------- 
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2

at T ≥ 100 K, the resistivity follows a T1.6 dependence
[6]. Thus, we can estimate that e0(x) ~ 50 K.

Now consider M*(B) as a function of a weak exter-
nal magnetic field B at finite temperatures. The density
x belongs to the area (x – xFC)/x ! 1, and the electron
system in question is highly correlated. The case when
the system has undergone FCQPT was studied in [19].
This consideration will be applicable to any 2D or 3D
electronic Fermi system. The application of a magnetic
field B leads to a weakly polarized state, or Zeeman
splitting, when some levels at the Fermi level are occu-
pied by spin-up polarized quasiparticles. The width
δp = pF1 – pF2 of the area in the momentum space occu-
pied by these quasiparticles is on the order of

(13)

Here, µeff ~ µB is the electron magnetic effective
moment, pF1 is the Fermi momentum of the spin-up
electrons, and pF2 is the Fermi momentum of the spin-
down electrons. As a result, the Zeeman splitting leads
to the change ∆x in the density x

(14)

We assume that ∆x/xFC ! 1. Now, it follows from
Eqs. (9) and (14) that

(15)

We note that M* is determined by Eq. (15) as long as
M*(B) ≤ M*(x); otherwise, we have to use Eq. (9). It
follows from Eq. (15) that the application of a magnetic
field reduces the effective mass. At finite temperatures
T ≤ T*(x), the effective mass is given by Eq. (15). At
temperatures T ~ T*(x), both the magnetic field and
temperature contribute to the decrease in M*. At
T*(x) ! T, the effective mass is a diminishing function
of the temperature. It is clear from Eq. (15) that M*(B)
remains finite even at x  xFC and T  0. In that
case, the effective mass M*(x) in Eq. (11) has to be
replaced by M*(B). The behavior described above can
be visualized by measuring the magnetic susceptibility
χ(T) at finite magnetic field, so that M*(x) ≥ M*(B).
The function χ(T) is a decreasing function of T at T ~
e0. At T ! e0, the function χ(T) becomes independent of
T and starts to depend on B, being a decreasing function
of B.

Let us comment briefly on the problem of realiza-
tion of the highly correlated liquid in dilute Fermi gases
and in low-density neutron matter. We consider an infi-
nitely extended system composed of Fermi particles, or
atoms, interacting by an artificially constructed poten-
tial with the desirable scattering length a. These objects
may be viewed as trapped Fermi gases, which are sys-
tems composed of Fermi atoms interacting by a poten-
tial with almost any desirable scattering length, simi-
larly to that done for the trapped Bose gases (see, e.g.,
[20]). If a is negative, the system becomes unstable at
densities x ~ |a |–3, provided that the scattering length is

pFδp/M∗ Bµeff.∼

∆x/xFC δp2/ pF
2 .∼

M∗ B( ) M εF/Bµeff( )2/3.∼
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the dominant parameter of the problem. This means
that |a | is much larger than the radius of the interaction
or any other relevant parameter of the system. The com-
pressibility K(x) vanishes at the density xc1 ~ |a |–3, mak-
ing the system completely unstable [21]. Expressing
the linear response function in terms of the compress-
ibility [22],

(16)

we find that the linear response function has a pole at
the origin, q . 0, ω . 0, at the same point xc1. To find
the behavior of the effective mass M* as a function of
the density, we substitute Eq. (7) into Eq. (10) taking
into account the fact that xcdw is replaced by xc1 and
qc/pF ! 1 due to Eq. (16). At low momenta q/pF ~ 1, the
potential v (q) is attractive, because the scattering
length is the dominant parameter and is negative.
Therefore, the integral on the right-hand side of
Eq. (10) is negative and diverges at x  x1c. The
above consideration can be applied to clarify the fact
that the effective mass M* is again given by Eq. (9) with
xFC < xc1. Note that the superfluid correlations cannot
stop the system from squeezing, since their contribu-
tion to the ground state energy is negative. After all, the
superfluid correlations can be considered as additional
degrees of freedom, which can therefore only decrease
the energy. We conclude that highly correlated behavior
can be observed in traps by measuring the density of
states at the Fermi level, which becomes extremely
large as x  xFC. At these densities, the system
remains stable because xFC < xc1. It seems quite proba-
ble that the neutron–neutron scattering length (a .
−20 fm) is sufficiently large to make it the dominant
parameter and to permit the neutron matter to have an
equilibrium energy, equilibrium density, and a singular
point xc1 at which the compressibility vanishes [23].
Therefore, we can expect FCQPT to take place in low-
density neutron matter, leading to the stabilization of
the matter by lowering its ground state energy. A more
detailed analysis of this issue will be published else-
where.

To conclude, we have shown that our simple model
based on FCQPT can explain the main features of the
highly correlated liquid observed in different Fermi liq-
uids. Thus, FCQPT can be viewed as a universal cause
of highly correlated behavior.
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