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The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is ana-
lyzed in Fermi liquid theory with the Skyrme effective interaction. The density dependence of the ferromagnetic
and antiferromagnetic parameters of spin polarization at zero temperature is obtained for SkM* and SGII effec-
tive potentials. In the density region where both solutions of self-consistency equations exist, the ferromagnetic
spin state is preferable over the antiferromagnetic spin state. © 2003 MAIK “Nauka/Interperiodica”.
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The appearance of states with spin polarization in
nuclear matter is of great interest in view of astrophys-
ical applications. Depending on whether the nuclear
matter is spin polarized or not, different scenarios of a
supernova explosion and cooling of neutron stars can
be realized. The possibility of a phase transition of nor-
mal nuclear matter to the ferromagnetic state has been
studied by many authors. In the gas model of hard
spheres, neutron matter was shown to become ferro-
magnetic at ρ ≈ 0.41 fm–3 [1]. It was found in [2, 3] that
a long-range attractive interaction significantly
increases the ferromagnetic transition density (e.g., to
ρ ≈ 2.3 fm–3 in Brueckner theory with a simple central
potential and hard core only for singlet spin states [3]).
By determining magnetic susceptibility with Skyrme
effective forces, it was shown in [4] that the ferromag-
netic transition occurs at ρ ≈ 0.18–0.26 fm–3. The Fermi
liquid criterion for ferromagnetic instability in neutron
matter with the Skyrme interaction is achieved at ρ ≈ 2–
4ρ0 [5], where ρ0 is the saturation density of nuclear
matter. Akhiezer et al. [6] formulated the general con-
ditions on the parameters of neutron–neutron interac-
tion, which lead to the appearance of a magnetically
ordered state in neutron matter. Spin correlations in
dense neutron matter were studied in the Dirac–Har-
tree–Fock relativistic approach with the effective
nucleon–meson Lagrangian in [7], where the ferromag-
netic transition was predicted for a density equal to sev-
eral saturation densities of nuclear matter. As was
shown in [8], the Fock exchange term in relativistic
mean-field theory is important for the rise of ferromag-
netism in nuclear matter. The stability of strongly
asymmetric nuclear matter against spin fluctuations
was analyzed in [9], where it was shown that even a
small admixture of protons encourages the ferromag-
netic instability of the system. This conclusion was cor-
0021-3640/03/7706- $24.00 © 20251
roborated in [10] in the Dirac–Hartree–Fock relativistic
approach for strongly asymmetric nuclear matter.

In models with relativistic nucleon–nucleon (NN)
interaction, the ferromagnetic phase transition is likely
suppressed up to the densities much higher than ρ0 [11–
13]. In particular, ferromagnetic instability was not
found in recent investigations of neutron matter [14]
and asymmetric nuclear matter [15] in the Brueckner–
Hartree–Fock approach with Nijmegen II, Reid 93, and
Nijmegen NSC97e realistic NN potentials. The same
conclusion was obtained in [16], where the magnetic
susceptibility of nuclear matter was calculated by using
the Argonne two-body potential v 18 and Urbana IX
three-body potential.

In this paper, the study of the spin polarizability of
nuclear matter is continued using the Fermi liquid
description of nuclear matter [17, 18] with the effective
Skyrme NN interaction used previously for calculations
in nuclear matter [19–22]. Since the calculations of
magnetic susceptibility with the effective Skyrme
forces show that the ferromagnetic phase transition
occurs in nuclear matter of a certain critical density, it
is reasonable to determine the density dependence of
the ferromagnetic spin polarization parameter of
nuclear matter. In addition, the possibility of the anti-
ferromagnetic phase transition in nuclear matter will be
analyzed for the case where spins of protons and neu-
trons are oppositely directed. The antiferromagnetic
spin-polarization parameter will be found as a function
of density as well. The problem of the thermodynamic
stability of the ferromagnetic and antiferromagnetic
spin states will then be analyzed, and the phase prefer-
able in the density region, where both types of solutions
of self-consistency equations exist, will be determined.

We consider the thermodynamic properties of spin
polarized states in nuclear matter up to high astrophys-
ical densities. Nevertheless, we use a pure nucleon
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description of nuclear matter, although other degrees of
freedom such as pion, hyperon, kaon, or quark can be
important for such high densities.

Basic equations. The normal states of nuclear mat-
ter is described by the normal nucleon distribution

function  = Trρ . Here, κ ≡ (p, σ, τ), where
p is the momentum and σ(τ) is the projection of spin
(isospin) onto the quantization axis, and ρ is the density
matrix of the system. The energy of the system is a
functional of the distribution function f, E = E(f ), and
determines the single-particle energy

(1)

The matrix self-consistent equation for the distribution
function f follows from the condition of a minimum of
the thermodynamic potential [17]:

(2)

Here, ε and Y4 are matrices in variables κ,  =

 (τ1 = p, n); Y0 = 1/T, Y4p = – /T, and Y4n =

− /T are the Lagrange multipliers;  and  are the
chemical potentials of protons and neutrons, respec-
tively; and T is temperature. We will analyze the possi-
bility of forming various types of spin ordering (ferro-
magnetic and antiferromagnetic) in nuclear matter.

The normal distribution function can be decom-
posed in the Pauli matrices σi and τk in spin and isospin
spaces as

(3)

For the energy functional invariant about the rotations
in spin and isospin spaces, the structure of the single-
particle energy is similar to the structure of the distribu-
tion function f:

(4)

Using Eqs. (2) and (4), we can express the distribution
functions f00, f30, f03, and f33 in terms of ε in the explicit
form

(5)

f κ1κ2
aκ2

+ aκ1

εκ1κ2
f( ) ∂E f( )/∂ f κ2κ1

.=

f Y0ε Y4+( )exp 1+{ } 1–= Y0ξ( )exp 1+{ } 1– .≡

Y4κ1κ2

Y4τ1
δκ1κ2

µp
0

µn
0 µp

0 µn
0

f p( ) f 00 p( )σ0τ0 f 30 p( )σ3τ0+=

+ f 03 p( )σ0τ3 f 33 p( )σ3τ3.+

ε p( ) ε00 p( )σ0τ0 ε30 p( )σ3τ0+=

+ ε03 p( )σ0τ3 ε33 p( )σ3τ3.+

f 00
1
4
--- n ω+ +,( ) n ω+ –,( ) n ω– +,( ) n ω– –,( )+ + +{ } ,=

f 30
1
4
--- n ω+ +,( ) n ω+ –,( ) n ω– +,( )– n ω– –,( )–+{ } ,=

f 03
1
4
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f 33
1
4
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Here, n(ω) = {exp(Y0ω) + 1}–1 and

where

As follows from the structure of distribution functions
f, the exponent ω±, ± of the Fermi distribution function n
plays the role of quasiparticle spectrum. In the case
under consideration, the spectrum is fourfold split due
to the spin and isospin dependences of the single-parti-
cle energy in Eq. (4). The distribution functions f must
satisfy the normalization conditions

(6)

(7)

(8)

(9)

Here, α is the isospin asymmetry parameter; , 

and ,  are the densities of spin-up and spin-
down protons and neutrons, respectively; and ρ↑ =

 +  and ρ↓ =  +  are the densities of spin-
up and spin-down nucleons, respectively. The densities
∆ρ↑↑  and ∆ρ↑↓  can be treated as ferromagnetic (FM)
and antiferromagnetic (AFM) spin order parameters,
respectively. Indeed, when all nucleon spins are identi-
cally directed (completely polarized FM spin state),
∆ρ↑↑  = ρ and ∆ρ↑↓  = 0; when all proton spins are ori-
ented in one direction and all neutron spins are oriented
in the opposite direction (completely polarized AFM
spin state), ∆ρ↑↓  = ρ and ∆ρ↑↑  = 0.

ω+ +, ξ00 ξ30 ξ03 ξ33,+ + +=

ω+ –, ξ00 ξ30 ξ03– ξ33,–+=

ω– +, ξ00 ξ30– ξ03 ξ33,–+=

ω– –, ξ00 ξ30– ξ03– ξ33,+=

ξ00 ε00 µ00
0 , ξ30– ε30,= =

ξ03 ε03 µ03
0 , ξ33– ε33,= =

µ00
0 µp

0 µn
0+

2
-----------------, µ03

0 µp
0 µn

0–
2

-----------------.= =

4
9
----- f 00 p( )

p

∑ ρ,=

4
9
----- f 03 p( )

p

∑ ρp ρn αρ ,–≡–=

4
9
----- f 30 p( )

p

∑ ρ↑ ρ↓–= ∆ρ↑↑ ,≡

4
9
----- f 33 p( )

p

∑ ρp↑ ρn↓+( ) ρp↓ ρn↑+( ) ∆ρ↑↓ .≡–=

ρp↑ ρp↓
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To obtain the self-consistency equations, we specify
the energy functional of the system in the form

(10)

Here, m0 is the free-nucleon mass; and

are Fermi liquid corrections to the free single-particle
spectrum, where U0(k), …, U3(k) are the normal Fermi
liquid amplitudes. Taking Eqs. (1) and (10) into
account, we arrive at the self-consistency equations in
the form

(11)

To obtain numerical results, we use the effective
Skyrme interaction. In this case, the normal Fermi liq-
uid amplitudes have the form [18]

(12)

E f( ) E0 f( ) Eint f( ),+=

E0 f( ) 4 ε0 p( ) f 00 p( ), ε0 p( )
p

∑ p2

2m0
---------,= =

Eint f( ) 2 ε̃00 p( ) f 00 p( ) ε̃30 p( ) f 30 p( )+{
p

∑=

+ ε̃03 p( ) f 03 p( ) ε̃33 p( ) f 33 p( )+ } .

ε̃00 p( )
1

29
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q
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2

------------,= =

ε̃30 p( )
1

29
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q

∑=
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1
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q
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1

29
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∑=
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–
2

"
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JETP LETTERS      Vol. 77      No. 6      2003
where ti, xi, and β are the phenomenological constants
characterizing a given parameterization of the Skyrme
forces. For the numerical calculations, we use the
SkM* [23] and SGII [24] potentials designed for
describing the properties of systems with small isospin
asymmetry. Taking into account the explicit form of the
Fermi liquid amplitudes and Eqs. (6)–(9), we obtain

(13)

(14)

(15)

(16)

Here, the effective nucleon mass m00 and effective
isovector mass m03 are determined by the formulas

(17)

the renormalized chemical potentials µ00 and µ03 should
be found from Eqs. (6) and (7), and

(18)

(19)

are the second-order moments of the corresponding
distribution functions.

Thus, taking into account expressions (5) for the
distribution functions f, we obtain self-consistent equa-
tions (6)–(9), (18), and (19) for the effective chemical
potentials µ00 and µ03, FM and AFM spin order param-
eters ∆ρ↑↑  and ∆ρ↑↓ , and second-order moments 〈q2〉30

and 〈q2〉33.

Ferromagnetic and antiferromagnetic spin-
order parameters at zero temperature. Early investi-
gations on the spin polarizability with the effective
Skyrme forces were based on the calculation of mag-
netic susceptibility and determination of its pole struc-
ture [4, 5] that is responsible for the onset of instability
with respect to spin fluctuations. In this paper, the FM
spin polarization will be directly found as a function of
the nuclear-matter density for zero temperature. More-
over, the possibility of AFM ordering in nuclear matter
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"
2
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2
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ρ
16
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"
2
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αρ
16
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q2〈 〉 30
4
V
--- q2 f 30 q( ),

q

∑=

q2〈 〉 33
4
V
--- q2 f 33 q( )

q
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and thermodynamic stability of two types of ordering
will be analyzed.

We consider the behavior of the zero-temperature
spin polarization in symmetric nuclear matter (ρp = ρn).
Ferromagnetic spin ordering corresponds to ∆ρ↑↑  ≠ 0,
〈q2〉30 ≠ 0, ∆ρ↑↓  = 0, and 〈q2〉33 = 0. Antiferromagnetic
spin ordering corresponds to ∆ρ↑↓  ≠ 0, 〈q2〉33 ≠ 0,
∆ρ↑↑  = 0, and 〈q2〉30 = 0. In the completely polarized
FM state, nontrivial solutions of the self-consistency
equations have the form

(20)

Here, kF = (3π2ρ)1/3 is the Fermi wavenumber of sym-
metric nuclear matter for the case, where the degrees of
freedom corresponding to the spin-down nucleons are
inaccessible. For completely AFM polarized nuclear
matter,

(21)

Here, kF is the same as in Eq. (20), because the degrees
of freedom corresponding to spin-down protons and

∆ρ↑↑ ρ, q2〈 〉 30
3
5
---ρkF

2 .= =

∆ρ↑↓ ρ, q2〈 〉 33
3
5
---ρkF

2 .= =

Fig. 1. Density dependence of the FM and AFM spin polar-
ization parameters at zero temperature for (a) SkM* and
(b) SGII potentials.
spin-up neutrons are inaccessible. Figure 1 shows the
FM ∆ρ↑↑ /ρ and AFM ∆ρ↑↓ /ρ spin polarization parame-
ters calculated numerically with the effective SkM* and
SGII potentials.

The FM spin-order parameter appears at the density
ρ ≈ 2ρ0 and ρ ≈ 2.75ρ0 for SkM* and SGII potentials,
respectively. The AFM spin-order parameter appears at
the density ρ ≈ 3.3ρ0 and ρ ≈ 5ρ0 for SkM* and SGII
potentials, respectively. For both potentials, FM order-
ing appears earlier than the AFM ordering. Nuclear
matter becomes completely FM polarized (∆ρ↑↑ /ρ = 1)
at the density ρ ≈ 2.7ρ0 and ρ ≈ 3.9ρ0 for the SkM* and
SGII potentials, respectively. The completely AFM
polarized state (∆ρ↑↓ /ρ = 1) arises at the density ρ ≈
4.5ρ0 and ρ ≈ 7.2ρ0 for the SkM* and SGII potentials,
respectively.

The second-order moments 〈q2〉30 and 〈q2〉33 of the
distribution functions f30 and f33 also play the role of
order parameters. Figure 2 shows the density depen-
dence of these quantities normalized to their values in

the completely polarized state. The ratios 5〈q2〉30/3ρ

and 5〈q2〉30/3ρ  are treated as the FM and AFM order

kF
2

kF
2

Fig. 2. Same as in Fig. 1, but for the second-order moments
of the distribution functions.

F
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parameter, respectively. These quantities behave simi-
lar to the spin polarization parameters in Fig. 1 with the
same critical densities for the appearance and satura-
tion of the order parameters.

To determine which of the solutions is thermodynam-
ically preferable in the density region, where the FM and
AFM solutions of the self-consistency equations coexist,
it is necessary to compare the free energies of both states.
Figure 3 shows the results of calculations of the free-
energy density measured from the free-energy density of
the normal state. It is seen that the FM spin ordering is
preferable over the AFM ordering over the entire coexist-
ence range. Moreover, the difference between the corre-
sponding free energies increases with density. Therefore,
there is no reason to expect that AFM spin ordering can
be preferable for higher densities.

In summary, the possibility of spontaneous appear-
ance of spin polarized states in symmetric nuclear mat-
ter corresponding to the FM and AFM spin orderings
was considered in the Fermi liquid formalism, where
NN interaction is described by the Skyrme effective
forces (SkM* and SGII potentials). In contrast to the
previous considerations, where the possibility of the
arising of FM spin polarized states was analyzed by cal-

Fig. 3. Same as in Fig. 1, but for the free-energy density,
which is measured from the normal-state density, for FM
and AFM spin orderings.
JETP LETTERS      Vol. 77      No. 6      2003
culating magnetic susceptibility, the self-consistent
equations for the FM and AFM spin polarization
parameters were obtained and solved for zero tempera-
ture. The FM and AFM order parameters were shown to
appear for densities 2–2.75ρ0 and 3.3–5ρ0, respectively.
In the density range where both types of solutions exist,
the FM spin ordering is thermodynamically preferable.

This work was supported by the Ukrainian Center
for Science and Technology (grant no. 1480).
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The mechanism of radiative return to resonance can be effectively used to describe radiative corrections in
terms of the Drell–Yan process. The iteration procedure is proposed. It is shown that the y  1 kinematic
region can be described in terms of modified structure functions and the Sudakov formfactor, which signifi-
cantly changes the result obtained both in the lowest order and with allowance for all leading orders of pertur-
bation theory. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.60.–r; 13.40.Ks; 14.60.Cd
Comment 1. At present, it is commonly accepted
that the deep-inelastic scattering

(1)

is most adequately described as the Drell–Yan process
(see [1, 2] and references therein) whose cross section
with radiative corrections has the form

(2)

that includes the lowest order correction (see [3]) and
leading corrections in all orders of perturbation theory,
which enter into the lepton structure functions $(z, L).
Here,

(3)

The parameters of hard-scattering cross section in the
Born approximation are defined as

e p1( ) P P( ) e p2( ) X Px( )+ +

σ2 obsd p1 p2,( )

dQ2dy
------------------------------- z1d

z1m

1

∫ z2
1

z2
2

----$ z1 L,( )$ z2 L,( )d

z2m

1

∫=

×
d2σhard p̃1 p̃2,( )

dQ̃
2
dỹ

----------------------------------,

L Q2/me
2( ), p1

2ln p2
2 me

2, P2 M2,= = = =

Q2 p1 p2–( )2
 @ me

2
, y–

2 p1q
2 p1P
-------------, q p1 p2,–= = =

p̃1 = z1 p1, p̃2 = 
p2

z2
-----, Q̃

2
 = 

z1

z2
----Q2, ỹ = 1

1 y–
z1z2
-----------,–
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and the lower integration limits have the form

(4)

When calculating the integral in Eq. (2) with respect to
energy fraction z1, one has to take into account two
properties of the behavior of the integrand. The basic
property is a rapid decrease in cross section with
increasing Q2:

(5)

where

(6)

is the Born cross section, Π(Q2) is the polarization
operator of a virtual photon, and the explicit expres-
sions for the K factor can be found in [2].

z1m

1 zth y–+
1 xy–

-----------------------, z2m

1 y– xyz1+
z1 zth–

----------------------------,= =

zth

2mπM
2 p1P
--------------- ! 1.=

dσhard

dQ2dy
----------------

1

1 Π Q2( )–[ ] 2
------------------------------

dσB

dQ2dy
---------------- 1

α
π
---K+ 

  ,=

dσB

dQ2dy
----------------

4πα2

Q4y
------------=

× 1 y– x2y2M2

Q2
-------– 

  F2 x Q2,( ) xy2F1 x Q2,( )+
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The other region of enhancing contributions is
determined by the slow increase in the structure func-
tions for near-unity energy fractions:

(7)

The first of the two competing tendencies dominates.

Let us represent the right-hand side of Eq. (2) in the
form

(8)

where integration by parts is carried out. The second
term on the right-hand side of Eq. (8) is smaller than
the first term by an order of magnitude if z2m ! 1.
Enhancing tendencies in the integrand of the second
term on the right-hand side of Eq. (8) are identical:

β (1 – z1)–1 + β.

The integration with respect to z2 is determined by
the only tendency that is associated with the structure
function $(z2, L) ~ δ(1 – z2), which is beyond the scope
of this paper.

Based on the cross section written in form (8), an
iteration procedure using the direct experimental data
for Ψ can be constructed.

Comment 2. Experimental data on deep-inelastic
scattering for 1 – y ! 1 are usually not analyzed,
because the lowest order radiative corrections are large
and can even exceed 100% in this region [3]. Additional
inclusion of the leading radiative corrections in all-
order perturbation theory (2) makes the situation worse
rather than better [2]. For these reasons, experimental
data in the region y > 0.8 are not analyzed.

A rather accurate expression for the cross section for
large y, including radiative corrections, can be obtained
by using the modified form of the structure functions
and introducing the Sudakov suppressing formfactor
that is characteristic for this region.

To this end, we consider radiative corrections of the
two lowest orders of the perturbation theory. Along
with contributions from the emission of virtual pho-
tons, it is necessary to take into account contributions
from the emission of low-energy (soft) real photons and
pairs of charged particles with energies ∆ε ! ε on the
order of the scattered-lepton energy ε2:

(9)
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Cross section including the first and second-order radi-
ative corrections is expressed in terms of the Born cross
section as

(10)

The lowest order contribution has the form

(11)

where θ and ε2 are the scattering angle and energy of
the scattered lepton in the laboratory system. According
to the above argumentation concerning the energy of
soft real photons and pairs, we can use the approxima-
tion

(12)

The leading terms in ∆(1) involving L are associated
with the known ∆ part of the kernel of evolution equa-
tion for the structure function:

(13)

For the case under consideration, the θ part  cor-
responding to the emission of hard collinear photons
does not contribute (the dominant energy part of initial
lepton is transferred to hadrons). Indeed, when the ini-
tial electron emits a hard photon, the magnitude of the
squared 4-momentum transfer to the hadron is too low:

 ~ ε2(1 – y)2 ! Q2 = 2ε2(1 – y)(1 – cosθ). Moreover,
we can take the parameter ∆ as 1 – y.

Assumption (9) concerning the energies of soft par-

ticles results in a certain modification of :

(14)

The second-order correction can be represented as
the sum of contributions from the emission of photons
(virtual and real) and formation of pairs of charged par-
ticles (virtual and real) ∆(2) = δγγ + δsp. Replacing the
fine-structure constant by the “running” constant, we
can only consider contributions from photons.
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The contribution to the radiative corrections from
the emission of virtual and real photons has the form

(15)

where the first two terms for y = 0 agree with the pre-
diction of the evolution equations for the structure func-
tions [4]. The first term involves expressions such as
ln2(1 – y) and Lln(1 – y), which present the suppression
of cross section due to the Sudakov formfactor mecha-
nism. These terms are substantial in the y  1 limit.

Introducing the additional integration

(16)

to the right-hand side of Eq. (2), we consider the cross
section for deep-inelastic scattering averaged over a

small interval  ~ Q2. Small variations in the momen-
tum transfer occur due to the emission of photons (vir-
tual and real). Since the hard-scattering cross section is
smooth in this range, the cross sections with and with-
out radiative corrections have the form

(17)

where

(18)
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F x L,( ) z1 z2$ z1 L,( )$ z2 L,( )θ xz1 z2–( ).dd∫∫=

The quantity δ (22) vs. y in the HERMES experiment kine-
matics for (solid lines) radiative corrections determined by
Eq. (21), (dashed lines) first-order radiative corrections
from the inelastic spectrum, and (dotted lines) radiative cor-
rections from the inelastic spectrum calculated by Eq. (2).
Using the following differential evolution equations for
the nonsinglet structure function $(x, L):

where α(Q2) = α/[1 – Π(Q2)] is the running coupling
constant, we arrive at the following differential equa-
tion for F(x, L):

(19)

The solution

(20)

to this equation was found in [4] (we are grateful to
L.N. Lipatov, who called our attention to works [5],
where a similar method was developed).

Terms involving ln(1 – y) were ignored in the above
analysis of evolution.

According to the argumentation based on the factor-
ization of infrared divergences in the form of the Yen-
nie–Frauchi–Surra factor [6] and on the Bloch–Nord-
sick theorem about the change of the logarithm of the
lepton-to-“photon” mass ratio to ln(∆e/e) (as a result of
taking account of the emission of soft particles), the
terms involving ln(1 – y) can be taken into account in
the form of a universal exponential factor.

Replacing ln(1/x) = 1 – y, we obtain

(21)

where CE = 0.577 is the Euler constant. This result is
consistent with the lower order perturbation calcula-
tions given by Eqs. (11) and (15) up to the nonleading
terms included in the form of the K factor. Formula (21)
takes radiative corrections into account with an accu-
racy of 1% for |K | ~ 1.
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To numerically estimate radiative effect, the quan-
tity

(22)

is calculated from Eq. (21). The result as a function of
y for different values of the Bjorken parameter x is
shown in the figure, where the results obtained with the
corrections from the inelastic spectrum that are calcu-
lated both in the lowest order of perturbation theory and
by Eq. (2) with the ESFRAD code [2] are also shown.
As for the polelike behavior 1/(1 – y) obtained in [2], it
is due to the hard hadron emission in the initial state and
corresponds to small energy transfer to hadron.
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dau Foundation. We are grateful to the Scientific Center
of Applied Research, JINR and to V.N. Samoœlov for
interest in this work, to V. Fadin and L. Lipatov for

δ σobsd

y Q2dd
---------------/

σBd

y Q2dd
--------------- 1– 

 =
JETP LETTERS      Vol. 77      No. 6      2003
stimulating discussions, and to I. Akushevich, who
placed the ESFRAD code at our disposal.

REFERENCES
1. É. Kuraev, V. Fadin, and N. Merenkov, Yad. Fiz. 47, 1593

(1988) [Sov. J. Nucl. Phys. 47, 1009 (1988)].
2. A. Afanasev, I. Akushevich, and N. Merenkov, hep-

ph/0111331 (2001).
3. A. Akhundov, D. Bardin, and N. Shumeœko, Yad. Fiz. 44,

1517 (1986) [Sov. J. Nucl. Phys. 44, 988 (1986)].
4. É. Kuraev and V. Fadin, Yad. Fiz. 41, 733 (1985) [Sov. J.

Nucl. Phys. 41, 466 (1985)].
5. V. Gribov and L. Lipatov, Yad. Fiz. 15, 781 (1972) [Sov.

J. Nucl. Phys. 15, 438 (1972)]; Yad. Fiz. 15, 1218 (1972)
[Sov. J. Nucl. Phys. 15, 675 (1972)].

6. D. Yennie, S. Frauchi, and H. Suura, Ann. Phys. (N.Y.)
13, 379 (1961).

Translated by R. Tyapaev



  

JETP Letters, Vol. 77, No. 6, 2003, pp. 260–265. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 77, No. 6, 2003, pp. 309–313.
Original English Text Copyright © 2003 by Kogan, Polyakov.

                      
Feigenbaum Universality in String Theory¶

I. I. Kogan1, 2 and D. Polyakov3

1 Theoretical Physics, Department of Physics, Oxford University, Oxford, OX1 3NP, UK
2 Institute of Theoretical and Experimental Physics, Moscow, 117259 Russia

3 Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics,
FIN-00014 Helsinki, Finland

e-mail: i.kogan@physics.ox.ac.uk, polyakov@pcu.helsinki.fl
Received December 23, 2002; in final form, February 10, 2003

Brane-like vertex operators, defining backgrounds with ghost-matter mixing in NSR superstring theory, play an
important role in the world-sheet formulation of D-branes and M theory as creation operators for extended
objects in the second quantized formalism. In this paper, we show that the dilaton beta function in ghost-matter
mixing backgrounds becomes stochastic. The renormalization group (RG) equations in ghost-matter mixing
backgrounds lead to non-Markovian Fokker–Planck equations whose solutions describe superstrings in curved
space-times with brane-like metrics. We show that the Feigenbaum universality constant δ = 4.669…, describ-
ing transitions from order to chaos in a huge variety of dynamical systems, appears analytically in these RG
equations. We find that the appearance of this constant is related to the scaling of relative space-time curvatures
at fixed points of the RG flow. In this picture, the fixed points correspond to the period doubling of Feigenbaum
iteration schemes. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.25.Uv; 11.25.Hf; 11.10.Hi; 05.45.-a
Superstring theory is our current hope to put gravity
in a Prokrust bed of quantum mechanics. In spite of all
the spectacular progress in the last quarter century [1],
the full structure and underlying symmetries of the the-
ory have yet to be unveiled. One of the most striking
features of string theory is the deep relation between
renormalization group (RG) flows on a world sheet and
evolution in a target space. Critical points of these RG
flows, described by 2D conformal field theories (CFT),
determine equations of motion in a target space. The
structure of these equations is determined by the world-
sheet correlation functions of the appropriate vertex
operators in respective CFT [2]. The conformal field
theory description of strings in curved backgrounds,
such as of strings in the presence of branes, as well as
the underlying CFT of strongly coupled strings, is a
much harder problem to tackle, in particular because
adequate knowledge of quantum degrees of freedom of
M-theory and nonperturbative strings is still lacking.
Some time ago, we proposed a formalism [3–6] that
describes the nonperturbative dynamics of solitons in
string and M-theory in terms of a special class of vertex
operators, called brane-like states. The crucial distinc-
tion of these vertex operators from usual ones (such as
a photon or a graviton) is that they exist at nonzero
ghost pictures only. A simplest example of these verti-

¶ This article was submitted by the authors in English.
0021-3640/03/7706- $24.00 © 20260
ces in the closed string case is given by (before integra-
tion over the world-sheet)

(1)

It is important that the discrete picture-changing
gauge symmetry is broken for such operators and that
their superconformal ghost dependence cannot be
removed by any picture-changing transformation. We
shall refer to this property of the brane-like vertices as
the ghost-matter mixing. The crucial property of these
special vertex operators is that they do not correspond
to any perturbative string excitation but describe the
nonperturbative dynamics of extended solitonic
objects, such as D-branes.

In [6], we showed that the low-energy effective
action of the sigma-model with the brane-like states is
given by the DBI action for D-branes. From the world
sheet point of view, this means that the insertion of ver-
tices with the ghost-matter mixing makes the deform
CFT describing strings in flat space-time, and it flows
to a new fixed point, corresponding to the CFT of
strings in a curved background induced by D-branes. In
this paper, we shall further investigate RG flows in the
ghost-matter mixing backgrounds. It appears that the
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properties of these RG flows are stunningly different
from the usual ones. We found that ghost-matter mixing
adds to RG flow operator-valued stochastic terms. Even
more intriguing is the emergence of a universal con-
stant in the RG equations, which with an accuracy less
than 0.5%, is just the logarithm of the famous Feigen-
baum constant δ = 4.669 [7]. This coincidence is not
accidental but reflects remarkable and new relations
between superstrings, chaos, gravity, and stochastic
processes, which is the subject of this letter.

The crucial property of world-sheet conformal beta-
functions (e.g., of a dilaton) in ghost-matter mixing
backgrounds is the presence of stochastic terms in the
RG equations. One specific property of the brane-like
states is that their OPE algebra is picture-dependent.
This picture dependence leads to nondeterministic sto-
chastic terms in the dilaton beta-function. Namely, con-
sider the NSR sigma model in D = 10 perturbed by the
dilaton and the ghost-matter mixing vertex (1). The
generating functional for this model is

(2)

Here,

is the measure function of picture-changing operator,
: Γ :=: eφG : with G = Gm + Ggh being the full matter +
ghost world-sheet supercurrent. The dilaton vertex
operator can be taken at any negative picture. It is con-
venient to take Vϕ at picture –2 (both left and right), as
in this case the dilaton vertex operator is given by

Let us expand the generating functional (2) up to the
third order of λ and the second order of ϕ, which sym-
bolically can be written as (keeping only relevant
terms)

(3)

To determine the UV divergences in the partition func-
tion (2), relevant to the dilaton beta-function, one has to
point out the relevant singular terms in the OPE algebra

Z ϕ λ,( ) DXDψD ghosts[ ]∫  : f Γ( ) :: f Γ( ) : =

× –SNSR q4 λ q( ) z2 V5 q z z, ,( )d∫d∫+{exp

+ p10 ϕ p( ) w2 Vϕ
2–( )ϕ p w w, ,( )d∫d∫ } .

 : f Γ( ) :=: 
1

1 Γ–
------------ := 1 : Γ  : : Γ2 : …+ + +

Vϕ p( ) z2 e–2φ 2φ– ∂Xm∂Xn ηmn kmkn– knkm–( ).d∫=
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of the dilaton and V5. In the on-shell limit, the relevant
terms in the operator algebra are given by

(4)

where

(5)

Next, one has to point out the picture-changing rules for
the left part of the V5 operator, in order to specify how
it is acted on by : f(Γ) : The picture changing transfor-
mation rules for the V5 operators (1) can be written in
the form

(6)

In the beta-function calculations, when the vertex oper-
ators are taken slightly off-shell, the following identi-
ties are useful:

(7)

Finally, using the fact that picture-changing opera-
tors form the polynomial ring,

, (8)

the action of the : Γn : operator on the vertex operators
inside the functional integral can be expressed as

(9)

i.e., the correlator does not depend on w. The factor of
N–n in (9) ensures the correct normalization of ampli-
tudes in the picture-independent case. Using relations
(6)–(9), we are finally in a position to start evaluating
the beta-function. The first contribution of interest to
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the beta-function comes from the λ2 term, bilinear in
the V5 operator. At a given picture level n, this term
leads to the following divergence in the order of λ2:

(10)

where ξ = 1/2(w1 + w2), η = 1/2(w1 – w2) and logΛ =

 is the log of the world sheet UV cutoff. For the

sake of brevity, we suppress the momentum depen-
dence of fields, vertices, and structure constants here
and below. This divergence is removed by renormaliz-
ing the dilaton field as

(11)

In the absence of picture-dependence, the sum over k

would have been reduced to  for each pic-

ture, as it should be in the standard case, when ghost-
matter mixing is absent.

As a result of the dilaton RG flow, the λϕ  cross-term
is renormalized by λ3 logarithmic divergence:

(12)

Using identities (7) relating α and C and after some
straightforward transformations, we can cast the renor-
malization of the λϕ  term under the flow (11) as

(13)

where in the sum over k and l one must have ak ≠ 2, 3,
n + 3, n + 6; l ≠ n + 2, n + 3. This gives the renormal-
ization of the λϕ  cross-term under the RG flow (11) of
the dilaton field in the ghost-matter mixing case. The
other contribution on the same order of λ3 to the dilaton
beta-function comes from the OPE singularities inside
the λ3 term itself, appearing in the expansion (3) of the
partition function. After simple calculations, we get
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Again, it is easy to see that, in the absence of the
ghost-matter mixing (α = 1, all C are picture-indepen-
dent), this contribution sums to

; (15)

precisely canceling the divergence of the same λ3 type,
originating from the renormalization of the λϕ  cross
term under the flow. In the picture-independent case,
this ensures that the renormalization (11) of the dilaton
field under the flow does not bring about any additional
singularities from higher order terms, such as the cubic
one and the λφ cross-term. In particular, this guarantees
that terms of the type

(16)

never appear in the dilaton or other perturbative close
string field beta-functions in the picture-independent
case. On the contrary, should terms of this type appear
in the beta-function, that would imply that the RG
equations become stochastic, since from the point of
view of the space-time fields, the world-sheet operator

 is a stochastic random variable, with

the cutoff parameter Λ playing the role of the stochastic
time. In this case, the RG equations have the form of
non-Markovian Langevin equations, where the mem-
ory of the noise is determined by the world-sheet corre-
lations of the V5 operators. This is exactly what happens
in the ghost-matter mixing backgrounds, due to the
OPE picture dependence. To get the total flow on the λ3

level, one has to subtract the sum (14) from (12) using
identities (7). We obtain

(17)
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Therefore, the resulting beta-function equations for the
dilaton in the ghost-matter mixing background gives
(with the momentum dependence restored):

(19)

with σ = 1.534…. There are other examples of vertex
operators with ghost-matter mixing, and they also lead
to stochastic terms in the beta-function of the dilaton. In
particular, we have also considered the dilaton field in
the background of closed string operators of higher
ghost cohomologies:

(20)

where the G tensor is symmetric and traceless in m1, …,
m5 (round brackets imply the symmetrization in space-
time indices) and k⊥  is transverse to directions m1, …,
m6 and

(21)

We have found that, even though the OPE details are
quite different in each case, in the end one nevertheless
always gets beta-function equations in the form (19).
The crucial point is that the σ factor, reflecting the sto-
chasticity of the beta-function, appears to be universal,
and its value is independent of details of the ghost-mat-
ter mixing. Namely, we have found [8] σ = 1.541… for
the W5 insertion and σ = 1.538… for the U5 case. Even
more remarkably, can easily check that in fact

(22)

where δ = 4.669… is the famous Feigenbaum univer-
sality constant describing the universal scaling of the
iteration parameter in a huge variety of dynamical sys-
tems under bifurcations and transitions from order to
chaos [7].

To understand the physical meaning behind the
appearance of the Feigenbaum constant in (19), it is
necessary to analyze the non-Markovian Fokker–
Planck (FP) equation describing the stochastic process,
which can be straightforwardly derived from the Lan-
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gevin equation (19). We shall present here the FP equa-
tion for scaling functions λ(q) = λ0/q4

(23)

where τ = logΛ now plays the role of the stochastic
time variable. The Green’s function G5(ξ, τ, p, q) is
defined by the cutoff dependence of the two-point cor-
relator of the V5-vertices:

(24)

We shall look for the anzats solving this equation in the
form (for more details, see [3] and references therein)

(25)

Substituting this into (23), we find that (25) solves the
FP equation provided that the functions f(τ) and g(τ)
satisfy the following differential equations:

(26)

The first equation is elementary; its solution is given by

(27)

The second equation on f(τ) can be reduced to a
Bessel-type equation by making the substitution

∂PFP ϕ τ,( )
∂τ

-------------------------

=  – p4 q4 δ
δϕ p τ,( )
---------------------

δSϕ

δϕ q τ,( )
-------------------PFP ϕ τ,( ) 

 d∫d∫

+ σ2λ0
6 k4

1 k4
2

p4d

p4
-------- q4d

q4
------- ξd∫∫∫d∫d∫

× α–3 1C –3 –3[ ]
k1 p+

2
-------------- 

  α–3 1C –3 –3[ ]
k2 q+

2
-------------- 

 

× δ
δϕ p τ,( )
---------------------G5 ξ τ,( ) δ

δϕ q ξ,( )
---------------------PFP ϕ τ,( ),

G5 ξ τ,( ) z2d

Λ1

∫ w z w– 4– δ p q+( )
2

d

Λ2

∫=

=  
1 eξ τ–+

1 eξ τ––
------------------- 

 
2

δ p q+( ),

ξ Λ 1, τlog Λ2.log= =

PFP ϕ τ,( ) –HADM ϕ τ,( )[ ]exp=

=  p4 g τ( ) ∂τϕ( )2 f τ( ) p2ϕ2+{ }d∫–[ ] .exp

g' τ( ) 4g τ( )
σ2λ0

6

2
-----------+ + 0,=

1
4
--- f '' 1 1

4τ
-----+ 

  f ' 1 1
4τ
-----

1

4σ2λ0
6

-------------- 1 1

τ2
----– 

 + + 
  f+ +

– 1 1

τ2
----– 

  e 2τ– 1

4σ2λ0
6

--------------+ 
  1.=
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σ2λ0

6

2
----------- e 4τ– 1–( ), τ 0.<=
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The solution is given by

, (28)

where  is the Bessel function. In terms
of the τ coordinate, the stochastic process, describing
the RG flow in ghost-matter mixing backgrounds,
evolves in the direction of τ = –∞. Next, let us study the
behavior of Hamiltonian (25), (27), (28) in the confor-
mal limit of τ  –∞. In this limit, the exponents
become very large and, moreover,

, (29)

and after rescaling the Hamiltonian reduces to

, (30)

which is just the ADM Hamijtonian for the AdS5 gravity

in the temporal gauge [9]; it is easy to see that the 
parameter has the meaning of the square of the radius
R2 of the metric.

Let us now analyze in more detail the solution (25),
(27), (28) of the non-Markovian FP equation, leading to
a new space geometry. Let us note first of all that the
limit λ0  0 is not the same as λ0 = 0 (ghost-matter
mixing absent). The RG flow described by the effective
metric (27), (28) must be single-valued; since Bessel
functions at zero argument are single-valued for the
integer orders only, this leads to the quantization condi-
tion

(31)

Moreover, since Jν(τ) ~ τν as τ  0, the absence of a
physical singularities at τ = 0 requires N to be positive.
The quantization condition (31) implies that

, (32)

implying the iteration law

, (33)

where δ is the Feigenbaum number.
Therefore, the Feigenbaum iteration rule (33) deter-

mines the scaling of characteristic curvatures of geom-
etries emerging at the fixed points of the stochastic
renormalization group. The role of iteration parameter

characterizing the bifurcations is played by ~ ,
vanishing at R = 0 and being finite at large R, as should
be the case for the scaling parameter of the Feigenbaum
iteration scheme.

From the quantization condition (31), it is clear that
the stochastic renormalization group (19) has fixed

f τ( ) 1 σ2λ0
6e 2τ– 1 J

1/σλ0
3 τ /σλ0

3( )+( )+=

J1/σλ0
3 τ /σλ0

3( )

J1/σλ0
3 τ

σλ0
3

--------- 
  O

1

τ
------ 

   ! 1∼

H ϕ τ,( ) R2 p4 e 4τ– ∂τϕ( )2 p2e 2τ– ϕ2+{ }d∫=

λ0
6

σλ0
3( ) 1–

N .=

λ0( )N( ) 3– Nσ, e
λ0( )N

3–

δN= =

e
λ0( )N 1+

3–

e
λ0( )N

3–

–

e
λ0( )N

3–

e
λ0( )N 1–

3–

–
---------------------------------- δ=

e–1/R
2

points for 0 < λ0 < 1, i.e., that correspond to large cur-
vatures. Moreover, the period doubling that lead to the
transition to chaos corresponds to N  ∞, i.e.,
λ0  0, which is a singularity. So we have reached
the amazing conclusion that, precisely near the singu-
larity, our RG flow becomes chaotic. It is tempting to
assume that this may be the mechanism that can solve
the problem of singularities in string theory.

In this letter, we discussed how matter-ghost mixing
can radically modify the nature of the world sheet RG
flows and lead to the emergence of chaos near curvature
singularities. Here we analyzed only dilaton evolution,
but a similar picture can be obtained for other mass-less
fields, for example metric [8].

Amusingly, recently the chaotic behavior of metric
was discussed in [10] (for earlier papers, see [11] and
references therein), where the emergence of chaos in
supergravity near a cosmological singularity was dem-
onstrated in the presence of higher rank antisymmetric
tensor fields, i.e., R–R fields. It will be extremely inter-
esting to understand how chaos emerging during cos-
mological evolution in supergravity can be related to
the chaotic nature of RG flows in underlying string
theory in the presence of the sources of the background
R–R fields.

It is tempting to assume that the resolution of the
singularities problem is a transition to chaos and emer-
gence of smooth distributions of fields not restricted
on-shell. One can imagine that the curvature R is some
new “Reynolds” number in string theory and for large
R one has a transition to chaotic behavior in a fashion
similar to hydrodynamics, where there is a transition
from a laminar to a turbulent flow. These ideas defi-
nitely need further investigation.
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The results of theoretical and experimental studies allowing the use of Cherenkov superradiance for the gener-
ation of electromagnetic pulses with a peak power higher than electron flow power are reported. For an injection
current of 2.6 kA and a particle energy of 330 keV, the power of a microwave pulse with a carrier frequency of
9.3 GHz and a duration of 0.5 ns attained 1.2 GW. © 2003 MAIK “Nauka/Interperiodica”.
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Superradiance (SR) of finite-duration electron flows
provides an example of a nonstationary collective pro-
cess that is pertinent to various mechanisms of stimu-
lated radiation of charged particles [1–7]. The highest
peak power was obtained for the Cherenkov radiation
[8, 9] of rectilinearly moving electrons in a periodic
retarding system and their synchronous interaction with
the spatial wave harmonic whose energy flux was
directed toward the translatory particle motion. The
peak power levels obtained for the millimeter and cen-
timeter ranges exceeded (by almost an order of magni-
tude [9]) the power level of rather extended electron
current pulses in the quasi-stationary generation
regime. In essence, these works realize classical ana-
logues of the effect that is known in quantum electron-
ics as the Dicke SR [10]. The main difficulty in its
application to two-level systems is caused, as is known,
by the relaxation processes [11]. The conditions at
which the relaxation time exceeds the pulse de-excita-
tion time have been attained only for a narrow class of
active media [12]. Estimates show that the collision
effects can be ignored for electron flows in vacuum
[13]. Therefore, the SR effect can be realized only with
a rather high instability increment: Im(ω)L/V0 @ 1 (L is
the interaction length and V0 is the initial particle veloc-
ity). In the case of particle interaction with a counter-
propagating wave, there is a certain time interval ta =
L(1/V0 + 1/ |Vg |) corresponding to energy accumulation
in the wave, where Vg is the wave group velocity. If the
beam current duration is close to ta, almost all beam
electrons can be involved in the formation of a counter-
propagating solitary electromagnetic pulse. The SR
pulse duration can be estimated as a value inversely
0021-3640/03/7706- $24.00 © 20266
proportional to the absolute instability increment [14,
15] that appears in the system upon the injection of a
stationary electron flow: Im(ω) ≈ Cω0/(1 + V0/|Vg |),
where C is the amplification coefficient (Pierce param-
eter) and ω0 is the precise matching frequency between
particles and synchronous spatial harmonic (ω0 –
hsV0 = 0, where hs is the harmonic longitudinal wave-
number):

(1)

In the cases where the SR pulse duration ∆t is small
compared to the energy accumulation time, ∆t ! ta, the
SR pulse peak power can exceed (even appreciably) the
electron flow power. This is not contradictory to the
energy conservation law, because the SR pulse energy
is still lower than the total kinetic energy of electron
flow.

In this communication, the results of theoretical
analysis corroborating this possibility and the results of
the experiment on SR pulse generation in the range of
10 GHz with a power 1.4 times higher than the electron
beam power are reported.

We assume that the amplification coefficient is
small; i.e., C ! 1, which, on the one hand, provides a
rather narrow spectral width (∆ω ~ Cω0), as compared
to the finite passband of a real retarding system and, on
the other hand, allows the description of the interaction
process within the framework of the method of slowly
varying amplitudes. Let us represent the longitudinal

∆t
1 V0/ Vg+

ω0C
--------------------------.≈
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field component of the synchronous harmonic with the
tubular beam radius rb as

(2)

Here, A is the slowly varying fundamental-harmonic

complex amplitude and  is a function describing the
field transverse distribution. The function χ accounts
for the ratio between the synchronous and fundamental
amplitudes; it varies with changing corrugation ampli-
tude along the length L and satisfies the normalization

condition  = L. In the case of a homogeneous

coupling impedance, χ = 1. Without regard for the wave
dispersion, the equations describing the one- dimen-
sional unidirectional (without stops and turns) particle
motion and the evolution of wave amplitude can be
written in the form

(3)

Here, θ = ω0(t – z/V0) is the particle phase in the syn-

chronous field, γ0 = (1 – /c2)–1/2 is the initial value of
relativistic factor,

ξ = ω0Cz/V0, a = eA/C , and J = 

is the dimensionless amplitude of rf current. For χ = 1,
Eqs. (3) contain two independent parameters: normal-
ized interaction length ξk = ω0CL/V0 and the Pierce

parameter C = (eJbZ/2mc2 )1/3, where Jb is the beam
current; e and m are electron charge and mass, respec-
tively; c is the speed of light; and Z is the beam–wave
coupling impedance [13] (in the case of an inhomoge-
neous system, it should be taken for the average corru-
gation amplitude). In addition to ξk and C, there are
another two parameters whose choice is restricted by
the conditions of a particular experiment; these are γ0
and the initial noise level that, for high-current beams,
is determined by the current front radiation [14]. The
particular form of the function a0(ξ) in Eq. (3) is found
by a nonselfconsistent method from the known current
front profile, e.g., using the initial calculation step with
a given rf current J f ! 1. For an arbitrary ξk @ 1, the
optimal level of initial perturbations should be that for
which the region where the rf current amplitude is
restricted by the nonlinearity (particle rearrangement)
is near the edge of the interaction space. In this case, the
SR-pulse formation time at the output of the system

Ez χ z( )Re Ê rb( )A t z,( ) iω0 t z/V0–( )[ ]exp( ).=

Ê

χ z( ) zd
0

L∫

∂2θ
∂ξ2
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3 1 C
∂θ
∂ξ
------+ 

 
2

1 γ0
2––( )–

3
2
---

χ ξ( )Re aeiθ( ),=

∂a
∂τ
------ ∂a

∂ξ
------– χ ξ( )J ,=

θ 0( ) θ0 0 2π,( ), ∂θ/∂ξ ξ 0=∈ 0,= =

a τ ξ k,( ) 0, a 0 ξ,( ) a0 ξ( ).= =

V0
2

τ ω0C t z/V0–( )/ 1 V0/ Vg+( ),=

γ0
3V0mω0

1
π
--- e iθ– θ0d

0

2π∫

γ0
3
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(z = 0) is found from the expression τΣ ≈ ξk (Fig. 1), i.e.,
equal to the sum of the particle- and wave-transit times
through the interaction space. If, for a given ξk, the ini-
tial perturbation is larger than its optimal value, the
pulse forms within a shorter time and has a lower
power, so that the rf current is saturated before a parti-
cle pass through the full interaction length. If the initial
perturbation is small, the pulse appears later, and its
amplitude is independent of J f. Figure 1 shows the typ-
ical form of the SR-pulse envelope amplitude at the sys-
tem output (z = 0) and the running frequency detuning
Ω = d(arga)/dτ from the exact matching frequency.

Let us define the conversion ratio as the ratio of peak
radiation power to the electron flow power:

(4)

The introduction of the generalized nonlinearity
parameter ν allows one to represent the results for var-
ious γ0 in a simpler form, because the influence of ini-
tial particle energy can be taken into account using the
similarity relations [16]. One can see in Fig. 2 that the
conversion ratio is maximal for the nonrelativistic par-
ticles and is equal to about 1.4 for the parameters ν ≈
νcr ≈ 0.35 and ξk ≈ 10. The critical values of nonlinear-
ity parameter correspond to the appearance of stopping
electrons, for which the model no longer applies. In the
ultrarelativistic approximation, electrons do not stop
(K  1 for ν ≈ 1 and ξk  ∞). The asymptotic limit
ν  0 corresponds to the regime of small relative
changes in particle energies, for which the SR pulse
duration is maximal and close to estimate (1). The fact
that the duration decreases for high ν values is
explained by a change in the pulse shape as a result of
shortening the particle rearrangement step.

Note that the increase in the SR peak power can be
achieved by choosing an appropriate profile for the cou-
pling parameter along the interaction length. In partic-
ular, in the experiment described below, the coupling
parameter increases linearly (by 1.6 times) at the first

K
γ0 1+( )

γ0
-------------------

ν A τ 0,( ) max
2

8
-----------------------------, ν 2γ0

2C.≡=

Fig. 1. The calculated pulse shape and the running fre-
quency shift taken with minus sign (dashes) for ξk = 6,

ν = 0.5, J f = 0.003, and γ0 @ 1.
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Fig. 2. Conversion ratio (solid lines) and normalized pulse
duration (dashed lines) as functions of the nonlinearity
parameter: (1) γ0 – 1 ! 1, (2) γ0 = 1.6, and (3) γ0 @ 1 (ξk = 6

and J f = 0.003).

Fig. 3. Dispersion characteristic of a corrugated waveguide
(with period d).

Fig. 4. Oscillograms of the accelerating voltage pulses
(channel 1) and a signal recorded by a microwave hot-car-
rier detector (channel 4; signal duration is indicated by ver-
tical cursors). Resolution: 1 ns per mesh.
half-length. The conversion ratio corresponding to this
profile achieves 1.7 for ξk = 6 and γ0 = 1.6.

The conversion ratio is maximal for a certain opti-
mal form of the function χ(z). Assume that, when the
pulse propagates from the collector to the cathode
region, the signal shape and amplitude for the synchro-
nous harmonic are constant, while the pulse peak power
linearly increases at the greater portion of interaction
length. One can readily show that, in the limiting case,
these requirements are satisfied by the function χ(z) ∝
(1 – z/La)–1/2, where La is slightly greater than L. This
case is of interest to future studies and corresponds to
solitonlike solutions for K @ 1.

In the practical implementation of the Cherenkov
SR, the effects associated with the dispersion of elec-
tromagnetic pulse (not taken into account in the model)
may be important. In the active interaction phase, the
generated pulse propagates counter to the electron
motion, whereupon it is reflected from the cathode area
and is led through the same corrugated waveguide to
the collector. During each phase, the wave packet can
spread because of the dispersion Vg(ω) = dω/dh of
group velocity in the pulse spectral range. Figure 3
shows the dispersion characteristic of a lowest type
(E01) symmetric wave in a corrugated waveguide that
was used in the experiment. Estimates show that this
effect could be significant in some early works, where
a portion of an evanescent waveguide (with a reduced
radius) was used as a reflector, while the mean radius of
the corrugated waveguide was only slightly different
from the critical value. For this reason, the bandwidth
(1 – ωmin/ωmax) of the retarding system, which was lim-
ited from above by blocking near the Bragg resonance,
was equal to 25–35%. To reduce the dispersive spread-
ing, a corrugated waveguide with an increased (almost
twice) mean radius was used in this work. A low-finesse
band reflector was used [17]. In parallel to the passband
broadening, which, as seen from Fig. 3, achieves ~50%,
the packet group velocity increases approximately two-
fold. As known, for the Gaussian pulse envelope, the

scale, on which the pulse broadens by a factor of ,

is proportional to . According to the estimates and
simulation with the “KARAT” program, the dispersive
spreading was small in our experiment.

Apart from the dispersion of group velocity, such
factors as the particle interaction with nonsynchronous
waves and the field of beam space charge may reduce
the conversion coefficient in real conditions. All these
factors were also taken into account in the large-particle
numerical simulation (KARAT program). After
detailed computations, which gave K ≈ 1.4 for the con-
version ratio, the geometry of the system was carried to
the experiment. The maximal accelerating voltage in a
coaxial vacuum diode tube of a compact electron accel-
erator SINUS-150 [15] was equal to 330 kV, with a
pulse duration of 4 ns (Fig. 4). The beam current was as
high as 2.6 kA. Thus, the maximal electron-beam

2

Vg
3
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power was estimated at 0.9 GW with an accuracy of
±10%. The range of controlled voltage was 230–330 kV,
which corresponded to currents from 1.6 to 2.6 kA. A
tubular electron beam with an o.d. of 34.5 mm was
transported in a uniform magnetic field of 24 kOe along
a periodic decelerating system with a mean radius of
20 mm, a period of 13.1 mm, a length of 22d, and a
maximal corrugation amplitude of 2.3 mm.

Signals were recorded by a TDS694C digital oscil-
loscope with an analog band of 3 GHz. With allowance
for the nonlinear volt–watt characteristic of the detec-
tor, the microwave pulse duration reproduced by the
program was equal to 0.5 ns at a 3 dB level for the max-
imal cathode voltage. The pulse energy measured by a
calorimeter was as high as 0.6 J, which allowed the
peak power to be estimated at 1.2 GW with an accuracy
no worse than ±12%. The experimental data on the
pulse shape, its duration, and a value of 1.4 ± 0.3
obtained for the maximal conversion ratio (for a cath-
ode voltage of 300 kV) were in compliance with the
simulation results. The SR-pulse spectrum, as mea-
sured by the heterodyne method followed by the Fou-
rier analysis, had a width from 7 to 15% at a 3 dB level,
in accordance with the natural width of the recorded
microwave signals.

Thus, the possibility of realizing SR regimes with a
pulse peak power exceeding the electron flow power
has been proved theoretically and experimentally for
the conditions of Cherenkov interaction between a rec-
tilinear particle flow and a synchronous harmonic of a
counterpropagating wave. Theoretical analysis shows
that the SR-pulse peak power can be further increased
in the inhomogeneous decelerating systems with spe-
cial longitudinal profile of the coupling coefficient
between electrons and synchronous spatial harmonic.
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to the Echo Phenomenon
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In numerical experiments with the Fitzhugh–Nagumo set of reaction-diffusion equations describing two-
dimensional excitable media, unusual solutions are found that correspond to a concave spiral wave steadily
rotating round a circular obstacle in a finite-size medium. Such a wave arises in the region of parameters cor-
responding to the solitonlike regime (see text); it appears due to the interaction between the peripheral areas of
a “seed” spiral wave with a convex front and the echo waves incoming from the outer boundaries of a medium.
The solutions obtained are in contradiction with intuition and represent a numerical counterexample to the
known theories that forbid steadily moving excitation waves with concave fronts. Nevertheless, a concave spiral
wave is a stable object; being transformed to the usual spiral wave with a convex front by suppressing echo at
the outer boundaries of the medium, it is again recovered upon restoring the echo conditions. In addition to the
single-arm spiral concave wave, solutions are obtained that describe multiarm waves of this type; for this rea-
son, the concave fronts of these waves are a coarse property. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 82.40.Bj; 82.40.Ck
It is often believed that distributed autocatalytic
reaction-diffusion systems (excitable media) are inca-
pable of sustaining stable motion of excitation waves
(autowaves) with a leading front concave toward the
wave propagation direction. The argumentation of this
opinion is based, in particular, on the theoretical works
of Zel’dovich [1], where it was shown that the flat front
of a flame propagating in a spatially homogeneous
combustible medium with moderately large Reynolds
numbers is stable to bending perturbations. The physi-
cal explanation of the stability is that medium is fired
ahead of the concave (convex) front areas faster
(slower) than ahead of the flat front because of the
focusing (scattering) of heat flow propagating from the
front along the orthogonal trajectories in the direction
of decreasing temperature gradient. As a result, the
motion of the front concave areas is accelerated, while
the motion of convex areas is decelerated, and the front
flattens.

Note that the kinetic mechanism for sustaining the
propagation of combustion autowave, namely, the acti-
vator (heat) diffusion in the direction of wave motion
and the triggering of autocatalytic processes ahead of
the front, to provide its propagation, is quite universal.
In particular, this mechanism underlies biologically
important phenomena such as the transfer of nerve
0021-3640/03/7706- $24.00 © 20270
impulses in the nervous system and the propagation of
electrochemical excitation autowaves to the heart [2–
5]. The fact that not heat but the alkali metal ions are the
diffusing activators in biologically excitable media
(BEM) does not change anything; for this reason, when
appealing to the qualitative argumentation such as that
presented above with a slightly modified terminology,
one usually arrives at the conclusion that a stable prop-
agating concave wave cannot exist in the BEM.

This assumption is also supported by the theory of
autowave bending stability [6], which was developed
by Kuramoto for multicomponent excitable media con-
taining the autocatalysis activators and inhibitors and
described by the reaction-diffusion equations

(1)

Here, ∂t ≡ ∂/∂t; t is time; ∆ is the Laplacian acting on the
spatial coordinates; X ≡ {X1, …, Xn} is the vector of
component concentrations; F(X) ≡ {F1(X), …, Fn(X)}
is the vector of kinetic functions that determine the
component production rate in unit volume; n is the
number of components; and D ≡ diag{D1, … Dn} (D1 >
0, …, Dn > 0) is the diagonal matrix of component dif-
fusivities. In the Kuramoto theory, the local normal
velocity v n of a bent autowave wave front is related to

∂tX D∆X F X( ).+=
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its local curvature K and velocity v 0 of the flat front by
the expression

(2)

where β is a constant that depends on the activator and
inhibitor diffusivities (for flames, Eq. (2) was obtained
independently by Zel’dovich in [1]). If a multicompo-
nent medium contains only a single diffusing compo-
nent (activator), while the inhibitors do not diffuse,
then, as follows from the Kuramoto formalism, the con-
stant β in Eq. (2) is positive. This situation corresponds
to the BEM; the known Hodgkin–Huxley nerve-con-
duction equations and their analogues describing the
excitable heart medium have the form of Eqs. (1) with
the matrix D = diag{D1, 0, …, 0}. However, for positive
β, the velocity v n in Eq. (2) satisfies the inequalities
v n > v 0 for K < 0 (concave front) and v n < v 0 for K > 0
(convex front). Because of this, the bent autowaves
should flatten with time.

The latter conclusion does not contradict the exist-
ence of the known spiral waves that usually have con-
vex front upon the steady rotation in the spatially
homogeneous excitable media [7–9]; when explaining
the convex geometry of spiral waves [10–13], the mod-
ern theory uses Eq. (2) with β > 0 as one of the key pos-
tulates. As to the spiral waves with the stable concave
leading front, their possible existence in the BEM is
usually not disputed.

Recently, the first numerical examples against this
opinion have been presented to demonstrate that con-
cave spiral waves can be realized in the BEM [14, 15].
Later on, such waves were detected in the experiments
on a multicomponent chemical excitable medium
showing the Belousov–Zhabotinsky oscillation reac-
tion [16] (contrary to BEM, inhibitors in this medium
diffuse). These results raise the question of the physical
mechanism that sustains the concave spiral waves.
Below, numerical experiments aimed at revealing this
mechanism are presented.

The experiments were carried out using the well-
known Fitzhugh–Nagumo set of second-order reaction-
diffusion equations that are used in biophysics for mod-
eling the phenomena in BEM [2, 5]. A modification
[17] of this system was used, which, when adapted to
the description of a two-dimensional BEM and written
in the dimensionless variables, takes the form

(3a)

(3b)

(3c)

v n v 0 βK ,–=

∂tV ∂x
2 ∂x

2+( )V kV V V th–( ) V 1–( ) I;––=

∂t I σV I–( )/τ V ∆ε,( );=

τ V ; ∆ε( )

=  0.05 ∆ ε 2 V 0.04+
0.01

--------------------tanh V 0.75–
0.1

--------------------tanh+– 
 =+

1–
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(here,  ≡ ∂2/∂x2;  ≡ ∂2/∂y2; x and y are the spatial
coordinates; and the physical meaning of the remaining
variables and parameters is given in [17]).

The set of Eqs. (3) belongs to the reaction-diffusion
Eqs. (1) and, being characterized by the diffusivity
matrix D = diag{1, 0}, describes a homogeneous two-
component excitable medium with diffusing activator
(variable V) and immobile inhibitor (variable I). From
the above considerations, the traditional intuition
refuses the possibility of the existence of steadily rotat-
ing concave spiral waves in this medium. However,
such waves were observed by us in the numerical
experiments described below. It turned out that concave
spiral waves appear if the parameters correspond to the
solitonlike regime. Contrary to the ordinary annihila-
tion regime, the solitonlike regime in the BEM is char-
acterized not by the quenching but by the reflection of
autowaves colliding with each other and/or with imper-
meable medium boundaries (echo) [15, 17–19].1 The
data presented below allow one to conclude that the
echo waves incoming from the outer boundaries of the
medium sustain the existence of concave spiral waves.

Calculations were carried out for a medium of size
Lx × Ly, Lx = Ly = 50 using the Euler method; the inte-
gration steps hx, hy, and ht with respect to the variables
x, y, and t were hx = hy = 0.5 and ht = 0.005 (the con-
trolled hx = hy = 0.125 and ht = 0.0003). Two types of
boundary conditions were used alternately for different
boundary areas (the details will be clarified below): the
Neumann conditions ∂nV = 0 that describe the imper-
meability of the respective boundary area to the activa-
tor diffusion flux (∂n ≡ ∂/∂n symbolizes the derivative
along the normal to the boundary) and the zero
Dirichlet conditions V = 0. The parameters in Eq. (3)
were established for k = 8, Vth = 0.12, σ = 4, and ∆ε =
0.62 corresponding to the solitonlike regime [17].

Recall the physical mechanism of echo phenome-
non in the BEM with the solitonlike regime. Calcula-
tions show that the plane autowave in this regime is a
doublet composed of a high-amplitude nonlinear lead-
ing pulse and a low-amplitude “near-linear” below-
threshold satellite wave (Figs. 1a, 1b). Upon the colli-
sion of two counterpropagating doublets, the leaders
annihilate, while the satellites are summed up and, by
locally changing the variable V to the above-threshold
value, initiate a pair of diverging doublet echo waves
(Figs. 1c, 1d). However, the echo waves are not always
generated upon the collision of the doublets with
boundaries; the Neumann impermeability conditions
correspond to the reflection from the boundaries
(Fig. 1c), while the Dirichlet zero conditions suppress

1 We refused the term “soliton regime” that was used in our early
works in favor of the more careful synonym “solitonlike regime.”
In these terms, there is an allusion to the well-known soliton
property of escaping from the interactions without destruction in
conservative systems. However, the analogy with solitons is
superficial, because the physical nature of the latter is basically
different from the physics of autowaves.

∂x
2 ∂y

2



272 MORNEV et al.
0

y

x

(a)

2 1

100

50

0 25 50

t

x

(c)

0.60

0.40

0.20

0.10

0.05

0.03

0.02

V

0

V

x

(b)

2

1

30 60

0.8

0.4

100

50

0 25 50

t

x

(d)

Fig. 1. Solitonlike regime in a two-dimensional excitable medium described by the set of Eqs. (3). (a) Doublet structure of a plane
autowave (1 leader and 2 satellite; the autowave moves from left to right); (b) spatial profile of the doublet along the x axis; (c) and
(d) spatiotemporal interaction diagrams for plane autowaves moving along x and colliding with each other and with medium bound-
aries under the (c) impermeability conditions or (d) Dirichlet zero conditions. Charts in (a), (c), and (d) and in the subsequent figures
reflect the distribution of the activation variable V. The correspondence between colors and V is shown in the palette.
reflection without affecting the doublet capability of
being reflected in the mutual collisions in medium bulk
(Fig. 1d).2 

The latter fact was used in our numerical experi-
ments with spiral waves rotated round a circular obsta-
cle in the middle of computational mesh, set by the soft-
ware tools. The experimental results are as follows.

1. In the solitonlike regime, if the boundary condi-
tions at the outer boundary of the medium and the
obstacle boundary are of the Neumann impermeability
type, the set of Eqs. (3) has a solution in the form of
steadily rotating concave spiral wave (Fig. 2). The for-
mation of a spiral wave is initiated by a plane autowave,
which initially moves along a finite medium region

2 From the symmetry considerations, the echo-wave generation in
the doublet collision with the impermeable boundary can be
regarded as the result of summing up the satellite and its virtual
“mirror twin” moving counter the wave out from this boundary.
For the Dirichlet zero boundary conditions, the doublet decays
upon the collision with boundary without reflection because V
becomes zero.
determined by the impermeable barrier (Fig. 2, t = 10).3

After the plane autowave penetrates into the medium,
the barrier is eliminated, and a seed doublet spiral wave
with the convex leading front appears in the medium.
This wave is captured by the circular obstacle with
radius ρ = 4 in the middle of the medium (Fig. 2, t = 30)
and starts to rotate clockwise. The collisions of periph-
eral areas of spiral satellite with the impermeable
boundaries are accompanied by the appearance of echo
waves. The latter, when penetrating into the medium
and re-reflecting upon collisions, destroy the regular
dynamic picture (Fig. 2, t = 50–400). With time, this
irregular regime is surprisingly rearranged into a spiral
(not doublet!) wave with a concave front, which rotates
round the obstacle clockwise (Fig. 2, t = 800–806)

3 The barrier shown in Fig. 2 for t = 10 by a thin vertical section is
established by the program. The plane autowave is initiated by
specifying the following initial (t = 0) conditions: V = 0.5 at the
stripe 0 ≤ y ≤ 2 between the left boundary of the medium and the
barrier; V = 0 at other points; I = 0 everywhere. Hereafter, the ori-
gin of x, y coordinates is in the left bottom corner of the medium.
JETP LETTERS      Vol. 77      No. 6      2003
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Fig. 2. Formation dynamics of a concave spiral wave rotating about circular obstacle in the solitonlike regime (see text).
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Fig. 3. The figure demonstrating that the mechanism sustaining the concavity of spiral wave is independent of the conditions at the
boundary of circular obstacle.
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Fig. 4. The connection between the mechanism sustaining the concavity of spiral wave and the conditions at the outer boundary of
the medium. The same as in Fig. 3, but the change from the impermeability conditions to the Dirichlet zero conditions occurs at the
outer boundary of the medium rather than at the obstacle boundary.
retaining its characteristics during thousand revolutions
(during all computational time).

2. The dynamic mechanism sustaining the stable
front concavity of the spiral wave is not associated with
the ability of a local obstacle, around which the wave
circulates, to produce echo waves. This conclusion is
confirmed by the following observation. If the imper-
meability conditions occur at the outer boundary, while
they are replaced by the echo-suppressing Dirichlet
zero conditions at the obstacle boundaries, the spiral
wave remains concave (Fig. 3). In this case, the concave
spiral clockwise-rotating wave (t = 805, 806) is formed
as in Fig. 2. At t = 809 (not shown), the impermeability
conditions at the obstacle boundary are changed to the
Dirichlet zero conditions. As a result, the parameters of
spiral wave change, but the front retains its concave
shape (t = 810–1009). After the impermeability condi-
tions are restored at the obstacle boundary, the spiral-
wave parameters evolve to their initial values (t = 1010–
2509). If the Dirichlet zero conditions are established
for the outer boundary from the beginning of the exper-
iment (t = 0), the seed spiral doublet shown in Fig. 2
rotates around the obstacle without producing echo
waves and with retaining the convex shape.

3. The concave front shape of the spiral wave is due
to the ability of the outer medium boundary to sustain
the echo-wave generation (Fig. 4); if the impermeabil-
ity condition at the outer boundary is changed at t = 809
to the Dirichlet zero conditions, the concave spiral
wave transforms to the convex spiral wave (t = 820–
1002). This transformation is reversible: after the
impermeability conditions are returned to the outer
boundary at t = 1010, the front again becomes concave
(t = 1050–2208).

4. In the solitonlike regime, the front concavity of
spiral wave is a coarse property in the sense that it is
inherent not only in single-arm but also in multiarm spi-
ral waves. This is illustrated in Fig. 5 by the formation
dynamics of a concave three-arm spiral wave. The
radius of circular obstacle is ρ = 5; the impermeability
conditions are kept at the obstacle and outer bound-
aries. The spiral wave is initiated by three plane auto-
waves, as in Fig. 2. As in the case of a single-arm wave,
a wave with three concave arms is formed through the
stage of irregular regime resulting from the re-reflec-
tion of echo waves coming from the outer boundaries.

From the viewpoint of intuition based on the results
of Zel’dovich and Kuramoto, the positions formulated
in items 1–4 are paradoxical. They are seemingly
unusual also for the kinematic theory of spiral waves,
according to which the structure of a spiral wave is
determined by the local situation in the vicinity of its
core and not by the peripheral events ([11], chapter 1,
section 8). This, however, signifies that the traditional
intuition needs reorganization using a refined but as yet
undeveloped theory.
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Fig. 5. Formation dynamics of a concave three-arm spiral wave.
P.S. When the manuscript had already been written,
we received the reprints of article [20], where the ana-
lytic solutions were obtained for the main equation of
kinematic theory of concave spiral waves. However,
their relevance to the effects considered in this work is
unclear, because the modern kinematic theory does not
describe the solitonlike regime. We are grateful to
Yu. E. El’kin and V.N. Biktashev for these reprints.

This work was supported by the Russian Foundation
for Basic Research, project nos. 99-01-00956 and
02-01-00626.
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It is shown that in an argon discharge plasma it is possible to obtain the overpopulation of certain electronic
levels of atomic argon under the influence of acoustic waves. When the specified threshold is passed, superlu-
minescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Os; 43.35.Lq; 32.50.+d
The investigation of the properties of low-tempera-
ture ionized plasma and of different influences on it is
always urgent, since, besides the elucidation of new
physical mechanisms, the results of these investigations
find immediate practical applications. It is noteworthy,
however, that work on the influence of acoustic waves
on plasma parameters and on processes in the plasma
environment is relatively scarce. In addition, the prob-
lem of acoustic wave interactions with a thermodynam-
ically nonequilibrium gas, such as the partially ionized
gas-discharge plasma, where the electron temperature
usually far exceeds that of heavier particles [1–3], has
lately been of high interest. Note that of numerous
problems connected with interactions of acoustic waves
with partially ionized plasma, the study of the influence
of acoustic waves on radiation spectra of gas-discharge
plasma appears to be especially promising. In recent
years, an interesting effect of an abrupt change of the
radiation spectrum under the action of sound waves in
a dense (p ~ 100 Torr) argon discharge plasma was
observed in our laboratory [4, 5]. Several seconds after
cutting off the sound wave, light flashes were observed
over several minutes at different points of the discharge
tube in the bulk of the positive column, which appar-
ently corresponded to some transitions between elec-
tronic levels of atomic argon. An assumption was made
about the autogeneration (single-pass generation) of
appropriate lines in the argon spectrum (the colored
photo of this effect is given in [5]).

It was shown as a result of further research of this
effect that, under certain conditions, the change in the
plasma radiation at the interaction of acoustic waves
with plasma shows up not only as flashes but also as a
substantial amplification of some spectral lines. Con-
trary to [4, 5], in the present work the correspondence
of the observed spectral lines to transitions between
electronic levels of atomic argon was specified.

¶ This article was submitted by the author in English.
0021-3640/03/7706- $24.00 © 20276
The studies of the change of a radiation spectrum
under the influence of acoustic waves were conducted
in low-temperature argon discharge plasma (pressure
100 Torr, discharge current 50mA, voltage on elec-
trodes 2 kV). The experimental setup (Fig. 1) includes
a quartz discharge tube with an internal diameter of
6 cm and a length of 100 cm. The distance between the
electrodes was 85 cm. An electrodynamic transmitter is
attached to one of the butt ends of the tube. Beforehand,
the power from the electrodynamic transmitter was cal-
ibrated with a ROBOTRON 01012 sound level meter
for conditions existing in the discharge tube. The light
emitted from plasma passes through the second butt
and is directed to a monochromator. The investigation
of intensity variations of some lines of plasma radiation
spectra is curried out under the action of acoustic
waves.

The dependence of the radiation intensity of the
6s  4p transition on the acoustic wave intensity at
190 Hz frequency is given in Fig. 2 and is seen to show
hysteresis behavior. When the intensity of acoustic
waves increases (from zero) to Amax (corresponding to
90 dB), no changes in the radiation spectrum are
observed, and for these acoustic wave intensities a
decontraction of plasma takes place and completely
fills the tube volume. On the return path of acoustic
wave intensity, a notable increase in line radiation

Fig. 1. The experimental setup: 1 is the discharge tube; 2 is
the electrodes; 3 is the electrodynamic transmitter of sonic
waves; 4 is the window; 5 is the lens; 6 is the monochroma-
tor; 7 is the photoelectric multiplier tube.
003 MAIK “Nauka/Interperiodica”



        

ACOUSTIC IMPACT ON SUPERLUMINESCENCE IN ARGON PLASMA 277

                                                                             
intensity is observed at the value Ac. The critical value
Ac (82 dB) corresponds to the unpinching threshold of
discharge. The line intensity is observed to increase
after the pinching of discharge. The further reduction of
acoustic wave intensity is accompanied by a smooth
decrease of the line intensity.

To find the relation between the constant increase of
spectral line intensity and flashes, we have plotted the
dependences to be discussed below. The reduction in
acoustic wave intensity on the return path A stays at the
value Ao, which is less than Ac and corresponds to 80 dB
(Fig. 2). In Fig. 3a, the time dependence of the radiation
intensity of 6s  4p transition under constant influ-
ence of resonant acoustic waves with 190 Hz frequency
and intensity A0 is shown. It is seen that, in the absence
of flashes, the intensity of line radiation has the con-
stant value Io. At the bursting of flashes, the line inten-
sity sharply increases (by nearly 100 times) up to Imax.
After the bursting (with duration of 15–20 ms), the
intensity drops to a minimum, Imin, which corresponds
to the value of radiation intensity in the absence of
acoustic waves. The rise of intensity from Imin to Io is
rather long, ~1s. Shown in the second plot (Fig. 3b) is
the dependence of radiation intensity of an analogous
transition after cutting out acoustic waves, the initial
frequency of which was 190 Hz and intensity 90 dB.
After cutting out of acoustic waves, the line intensity
stays at the minimum initial value of Imin for several
seconds (~2s). The value of Io is reached in a time
period, and then Io smoothly decreases to Imin in 15–
20 s. The pattern of light flashes in this regime is similar
to the previous one (Fig. 3a).

Thus, summarizing the above experimental data one
can draw a qualitative conclusion about the mechanism
of this effect.

It is obvious that low frequency phonons cannot
influence transitions between electronic levels and pro-
cesses of radiation. It is possible to say that we are deal-
ing with hydrodynamics, i.e., hydrodynamic flows,
which can influence stability and configuration of a
plasma cloud and, through them, processes of ioniza-
tion and recombination. As is known [6–8], in the pres-
ence of inhomogeneity of the acoustic field, there arise
vortex-type acoustic flows in the standing sound wave.
The velocity of these flows has an order-of-magnitude

value U ~ /C (ua is the vibration velocity, C is the
sound velocity). In the discharge tube the inhomoge-
neous acoustic field is formed, first of all, due to the
existence of a strong temperature gradient along the
tube radius, and secondly, of a boundary layer near the
walls, where the velocity of motion is reduced from its
value in the sound wave to zero. The calculations show
[7] that the intensity of acoustic flow due to the temper-
ature gradient essentially exceeds that due to the
boundary layer. It was shown that a sufficiently intense
standing acoustic wave may produce vortex-type
acoustic flows, the contribution of which to the process

ua
2
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of particle transfer in the radial direction may be sub-
stantial. That was also confirmed experimentally in [9],
where a pinched discharge decontracted under the
influence of high-intensity acoustic waves and the
radial temperature gradient considerably smoothed out.

It is also known that at sufficiently high pressures
(P > 10 mm Hg), virtually the only process of bulk neu-
tralization of charged particles in the gas-discharge
plasma, which is competitive with the diffusion pro-
cess, is the dissociative recombination [10] of electrons

Fig. 2. Dependence of the radiation intensity of 6s  4p
transition on the acoustic wave intensity at 190 Hz.

Fig. 3. The time dependence of radiation intensity of
6s  4p transition: (a) under constant action of resonant
acoustic waves of frequency 190 Hz and intensity 80 dB,
(b) after cutting out of acoustic waves, the initial frequency
and intensity of which were 190 Hz and 90 dB.
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and molecular ions. In an inert gas discharge, the
molecular ions are predominant at high pressures (P >
10 mm Hg) and relatively low gas temperatures (T <
1000 K). So, we may assume that our experiment pro-
ceeds via the following processes:

Ar+ + 2Ar   + Ar,  + e  Ar* + Ar.

These processes run at a very high rate and lead to
efficient formation of excited atoms of inert gas. It is
known that highly excited atoms are produced as a
result of electron impact dissociation of molecules [11,
12]. This process was widely used in early investiga-
tions of Rydberg atoms.

High quantum levels of hydrogen atoms are known
from the quantum theory to have large lifetimes. The
average lifetime of tn depends on the value of the first
quantum number n as tn ~ n4.

So, taking into account the aforesaid, we may make
the following assumptions: The flows formed (Fig. 4)
are directed in some places to walls and in some places
to the center of tube. These flows carry the particles in
and out of the discharge range. In this process, the par-
ticles may be found in the regions of the discharge tube
where the temperature of electrons and neutral particles
are notably lower than in the discharge range. Hence,
hot electrons are quickly cooled, mainly due to elastic
electron–atom collisions. Then, recombination of elec-
trons with ions takes place, basically with molecular
ions. An analogous intense recombination occurs also
in places, where the acoustic flows are directed to the
center of tube. When and where the particles of cool gas
get in the discharge, they cause an intense recombina-
tion. It turned out that, during these recombination
events, i.e., during the dissociative recombinations,
highly excited long-lived atoms were produced. So, in
the indicated places, the accumulation of highly excited
atoms occurs.

Ar2
+ Ar2

+

Fig. 4. The diagram of “acoustical flows” in the tube.
Now consider the destruction of such highly excited
long-lived states of the atom as a result of collisions
with atoms and molecules.

In conformity with the theory of atomic collisions
[13], the probability of transition between two states
strongly depends on the Messi parameter ξ (the proba-
bility is ~exp(–ξ)). Let us estimate the value of the
Messi parameter for the transition nl  n'l ', where
n' = n – 1. The difference in energy for this transition is
∆ε ~ (δl – δl' )/n3, where δl is the quantum defect and n
is the first quantum number. The Messi parameter is
[14]

where a is the size of the strongly excited atom and νa

is the velocity of nucleus motion. For n, l @ 1 the Messi
parameter turns out to be small, due to the smallness of
the quantum defect δ, and the probability of appropriate
transitions is high. The situation is different when the
highly excited states have orbital momentum l ≥ 0. In
these cases, the Messi parameter is ξ ≥ 1 for moderate
values of n. Then the probability of transition at the col-
lision is much less than that in the former case.

Owing to the quenching of highly excited states at
collisions with atoms and molecules, the levels with n,
l ≥ 1 are quickly emptied, whereas the levels with n @ 1,
l ≥ 0 are occupied. In this experiment, the levels 7s, 6s,
7d are occupied. Due to this fact, an increase in radia-
tion intensity from transitions 7s  4p, 6s  4p,
7d  4p was observed. As for the flashes and loca-
tions of their formation, these are, presumably, due to
the superluminescence that takes place when the over-
population threshold for autogeneration is passed.

As was mentioned in the results, the blue flash of
7d  4p arises only inside the discharge pinch and
the orange one (7s  4p, 6s  4p)—both inside
and outside of the pinch boundaries. This is connected
with the fact that, as a result of quenching at collisions,
the 7d level may be depopulated. Since the concentra-
tion of charged particles inside the pinch is much
greater than beyond the pinch boundary, one can
assume that the recombination of charged particles
inside the pinch (in consequence of acoustic flows) pro-
ceeds more intensely that beyond the radial boundary
of pinch. For this reason, the concentration of highly
excited atoms inside the pinch is much higher, with the
result that the overpopulation threshold between levels
7d  4p may be passed, to cause the superlumines-
cence observed as blue flashes. As to the levels 7s and
6s (orange flashes), they are intensely populated inside
and outside the pinch, but the probability of quenching
of these levels on account of collisions with atoms and
molecules is much lower than for the level 7d. For this
reason, the orange flashes are observed both inside and
outside the pinch.

As is seen in Fig. 2, after displaying superlumines-
cence, the intensity of observed lines drops to a mini-
mum for sufficiently long periods (~1s), which are

ξ ∆εa/νa δl/nνa,∼=
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determined by the velocity of acoustic flow. Under our
experimental conditions (tube radius R ≈ 3 cm, sound
wavelength λ = 200 cm, T ≈ 400 K, P ≈ 100 mm Hg,
and 83 dB intensity of sound wave), the velocity of
acoustic flow U ~ 0.1–0.2 cm/s. For these velocities, the
charged particles cover the distance from the center of
the discharge (diam. 2–3 cm) to the radial boundary in
~1s. So, after superluminescence (i.e., the stimulated
depopulation of the levels 7s, 6s, 7d), approximately 1s
is required to restore the population of these levels that
existed prior to flashing.

The hysteresis-type dependence of the intensity of
the above spectral lines on sound wave intensity is
probably connected with the effect of generation of
space harmonics of the major acoustic vortex [7].

Finally, we arrive at the following conclusion about
the dynamics of this effect. The acoustic vortices that
arise in the case of sufficiently intensive acoustic field
transfer cool neutral atoms and charged particles in the
radial plane in the discharge tube. At a definite value of
the velocity of these motions, some regions emerge at
specific locations of the tube (either in the discharge
pinch or out of it), where an intense recombination of
charged particles takes place (in this case, the dissocia-
tive recombination). As a consequence of this recombi-
nation, the concentration of highly excited atoms in the
mentioned locations abruptly increases. Due to quench-
ing of highly excited atoms at the collisions with atoms
and molecules, the population of levels 6s, 7s, 7d is
increased. The observed flashes occur when the over-
population threshold for superluminescence between
levels 6s  4p, 7d  4p, 7s  4p is passed.

From the above-stated, it is possible to make the fol-
lowing conclusion. For realization of the observed
effect, acoustic vibrations are not essential. The same
effect can be caused by vortical flows generated in
another way, if the speed of a flow does not result in a
significant decrease in the temperature radial gradient.
The strong flow will result in discharge decontraction
[9], when, in the given experiment, the speed of flow
comes to ~0.2 cm/s.
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It is worth noting that such a recombinational super-
luminescence is also observed in astrophysical objects
[15, 16]. One could say that the obtained effect in the
gas discharge plasma may be used for modeling similar
observed phenomena in astrophysics.

I am grateful to Academician A.R. Mkrtchyan for
his continuous attention, discussions, and assistance in
this work.
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The results of experimental study of a condensate of cesium excited states (Rydberg matter) are presented.
The possibility of condensate formation was predicted theoretically first by Prof. É.A. Manykin and coauthors
from the Russian Research Center Kurchatov Institute and experimentally observed by L. Holmlid and coau-
thors from the Chalmers University, Sweden. In a thermionic energy converter with interelectrode medium,
where, according to the data of Swedish researchers, Rydberg matter is formed, we observed similarities and
distinctions between our and Swedish data on the formation of a condensate of cesium excited states. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.-p; 64.60.My; 32.80.Rm; 79.40.+z
1. Introduction. For an excitation energy close to
the ionization energy, alkali metal atoms reach 10–6–
10−5 cm in size. At a density of ~1017–1018 cm–3, such
highly excited atoms may form a metastable conden-
sate with a free gas of valence electrons. The possibility
of the condensate of excited states (CES) existing
at zero temperature was predicted in the theoretical works
of Prof. É.A. Manykin with coauthors from the Russian
Research Center Kurchatov Institute [1–3]. The region
of CES existence at nonzero temperatures was theoret-
ically determined by Prof. G.É. Norman in [4].

According to the calculations, cesium CES pos-
sesses the following properties at a density of 1017–
1018 cm–3: binding energy ~0.1 eV, melting point 450–
550 K, lifetime up to ~100 h, resistivity ~10–3 Ω m, and
electron work function ~0.2 eV. Note that the CES pos-
sesses high internal energy (~4 eV/atom for cesium).
Macroscopic amounts of condensate cannot arise under
the equilibrium isothermal conditions. At the same
time, the energy release in such a large amount upon the
CES decay can serve as a direct proof of the CES exist-
ence.

At present, the methods of obtaining CES are not
described in the literature. However, a group of Swed-
ish researchers at Chalmers University has performed
experiments that confirm, in their opinion, the existence
of CES [5, 6]. The Swedish researchers called this sub-
stance Rydberg matter (RM). Their main results were
obtained in the experiments with a laboratory thermi-
onic converter (TIC). The TIC was a cesium diode,
whose electrodes (emitter and collector) were kept at
different temperatures; cesium vapor was fed through a
0021-3640/03/7706- $24.00 © 20280
grid collector into the interelectrode gap (IEG) and then
condensed at the walls of vacuum cap, where the TIC
was placed. This provided continuous circulation of the
cesium vapor through a collector containing many
holes (~103 cm–2; hole diameter ~0.1 mm) and through
the IEG. The hole-free collector surface was covered
with a thin carbon layer using a colloidal graphite solu-
tion (Aquadag).

The experimentally observed TIC characteristics
with dynamic feed of cesium vapor into the IEG gave
evidence for the unusual properties of the interelectrode
medium and of the state of electrode surfaces. This can
be explained by the assumption that CES exists in the
interelectrode gap. The unusual shapes of TIC current–
voltage characteristics (CVCs) in the Swedish experi-
ments were considered as the main evidence of RM for-
mation. It was established in those experiments that, in
the working regimes, a high back current (the collector
work function decreased to <0.7 eV) and the CVC tran-
sition to the electric-energy generation quadrant (the
output voltage increased drastically [6]) were the main
evidence of the CES (RM) formation. It was found
experimentally that the Rydberg particles are formed in
a large amount at the surface, covered with carbon or
metal oxides, and do not form at a metallic surface.
Mass-spectrometric analysis showed the presence of
heavy clusters (up to 103 atoms) in the interelectrode
gap.

The authors of [6, 7] pointed out that electrode acti-
vation in TIC before the experiment is a necessary con-
dition for obtaining RM. The activation parameters are
as follows: emitter temperature TE = 1570 K, collector
003 MAIK “Nauka/Interperiodica”
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temperature TC = 670 K, cesium reservoir temperature
TCs = 570 K, and the activation time should be no less
than 1 h. They also pointed out that, under Rydberg
conditions, the IEG was dark and emitted appreciably
weaker visible radiation, as compared to the ordinary
plasma regime [5].

The main purpose of our experiments was the inde-
pendent repetition of the results and conclusions of
Swedish researchers about the existence of RM. Our
experiments were performed with a more perfect
(regarding the apparatus and technique) laboratory TIC
equipped with an original grid collector and colloidal
graphite solution Aquadag, which were kindly pro-
vided us by R. Svensson. It was necessary to compare,
in a single experiment with a constant systematic error,
the TIC characteristics under the conditions of dynamic
feed of cesium vapor into IEG (as in the Swedish exper-
iments) and the traditional feed from the cesium reser-
voir.

2. Experimental. The cesium CES was formed in a
laboratory TIC with flat electrodes and variable IEG
(d = 0.2–3 mm) containing vacuum cesium injection
track and allowing either the equilibrium of dynamic
feed of cesium vapor to be performed under conditions
of a single experiment. As in the Swedish experiments,
the following materials were used as TIC electrodes:
the emitter was a polycrystalline molybdenum vacuum-
melt pellet with a diameter of 14 mm and a thickness of
11 mm and the collimator was a tantalum 0.2-mm-thick
foil disk with a diameter of 8 mm.

In the central part of collector (4 × 3.1 mm),
400 holes with a diameter of 0.1 mm were punched by
a laser beam. The hole-free collector surface was cov-
ered (using Aquadag) with a carbon layer 0.1–0.2 mm
in thickness.

The emitter pellet had a single hole (1 mm in diam-
eter) at its side surface to simulate a black body and
independently measure temperature using a reference
optical micropyrometer and also had five holes on the
inside for placing tungsten–rhenium thermocouples in
them. The emitter was heated by electron bombard-
ment.

The TIC frame contained two viewing leucosap-
phire windows, through which the IEG was measured
using an optical instrument (cathetometer KM-6) and
the visual observations were carried out (photograph-
ing, video photography, etc.). The TIC and emitter
heater cavity were pumped out by high-vacuum elec-
tric-discharge pumps NORD-100.

The preparation of TIC for measurements included
conventional degassing procedures [8].

With the dynamic feed of cesium vapor, it was led
along high-pressure cesium tracks to the grid collector,
passed through it to IEG and then into the TIC working
cavity, condensed at the cold walls of the low-pressure
vacuum tracks and drained down into a liquid cesium
receiver. The stored liquid cesium was sufficient for
several working hours. Next, cesium was carried from
JETP LETTERS      Vol. 77      No. 6      2003
the cesium receiver to the working Cs thermostat. After
this, the measurement and CVC optimization run was
repeated.

In the case of equilibrium feed, the cesium vapor
pressure in the IEG and the TIC working cavity was
determined by the cesium reservoir temperature (Cs
thermostat). The CVCs were measured by the pulsed
method by sweeping electric current from the static
working point, which, as a rule, corresponded to the
diffusional TIC regime [9].

After completing the first stage of measurements
(measurement and optimization of CVC for the equilib-
rium feed), the TIC electrodes were activated following
the regime proposed by the Swedish researchers in
[6, 7].

In the course of experimental studies, the transition
from equilibrium feed to the dynamic feed and back to
the equilibrium feed was performed several ten times.

2.1. Results. In the case of the equilibrium feed of
cesium vapor, the TIC CVCs were measured to deter-
mine reference points (starting database) for the pur-
pose of comparison with the TIC characteristics that
were obtained in the simulation of the CES formation
conditions. One of the resulting CVC families obtained
upon measuring the temperature of cesium reservoir at
TE = 1573 K is shown in Fig. 1. The emitting working
area in TIC was taken to be equal to the total collector
area (SC = 0.5 cm2). The optimization (with respect to
TCs, d, and TC) of the TIC output electric characteristics
showed that they corresponded to the minimal barrier
index VB = 2.1 eV. In the working region of parameter
TE/TCs = 2.3–3.0, the emitter vacuum work function

Fig. 1. Equilibrium cesium feed regime. The CVC family
for different temperatures of cesium reservoir and TE =
1573 K, TC = 900 K, and d = 0.3 mm; (5) TCs = 528.7 K and
PCs = 0.585 mm Hg; (6) TCs = 539.5 K and PCs =
0.817 mm Hg; (7) TCs = 551.3 K and PCs = 1.16 mm Hg;
(8) TCs = 562.7 K and PCs = 1.6 mm Hg; (9) TCs = 571.3 K
and PCs = 2.03 mm Hg; (10) TCs = 580.2 K and PCs =
2.57 mm Hg; (11) TCs = 587.5 K and PCs = 3.1 mm Hg; and
(12) TCs = 594.7 K and PCs = 3.72 mm Hg.
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was ΦE0 = 4.6–4.7 eV. It is typical of polycrystalline
molybdenum. The work function ΦE0 was virtually
independent of the collector temperature in the range of
working temperatures TC = 740–950 K, indicating the

Fig. 2. Dynamic cesium feed regime. The CVC family for
different temperatures of cesium reservoir and TE = 1572 K,
TC = 903 K, and d = 0.3 mm; (2) TCs = 602.2 K and PCs =
4.47 mm Hg; (3) TCs = 616.6 K and PCs = 6.28 mm Hg;
(4) TCs = 628.1 K and PCs = 8.14 mm Hg; (5)TCs = 638.1 K
and PCs = 10.1 mm Hg; (6) TCs = 646.4 K and PCs =
12.1 mm Hg; (7) TCs = 655.2 K and PCs = 14.5 mm Hg;
(8) TCs = 656.4 K and PCs = 14.8 mm Hg; and (9) TCs =
660.4 K and PCs = 16.1 mm Hg.

Fig. 3. Comparison of the collector work functions 

obtained from the emission measurements with different
methods of feeding cesium vapor. Feed regime: j equilib-
rium and n dynamic.

ΦC
Em
absence of oxygen-containing impurities in the inter-
electrode medium. These data are typical for the usual
characteristics of TICs operating in the standard low-
voltage arc discharge regime with an electrode pair that
is analogous to Mo–Ta and is not optimal for achieving
high TIC efficiency against the VB criterion [10].

In the case of dynamic feed of cesium vapor into the
IEG, the CVC measurements and optimization were
performed over a wide range of parameters TE, TCs, d,
and TC. Figure 2 presents an example of such a CVC
family for the same TE, TC, and d values as in Fig. 1. The
emitting (working) area was taken to be equal to the
collector area SC = 0.125 cm2 (the area of the grid part
of collector). The visual observation and video photog-
raphy of the IEG and its environment with a magnifica-
tion of ×25, without and with illumination by a diode
laser, and the monitoring of the character and shape of
a low-voltage arc discharge glow at the TV display sug-
gested that the discharge electric current was “locked”
to this emitting (working) electrode area. Note that,
according to the similar IEG monitoring data in the case
of equilibrium feed, the discharge occurred from the
entire collector area (SC = 0.5 cm2).

In the experiments with the dynamic feed of cesium
vapor, we determined the collector emission character-
istics and the energetic effects in the interelectrode
medium. Although we call them “anomalous,” they can
be, in principle, related to the CES (RM) that was
observed by the Swedish researchers. These are, prima-
rily, a decrease in the collector work function from 1.4–
1.5 eV for the equilibrium feed to 1.0–1.1 eV for the
dynamic feed and the appearance of a green-colored
plasma drop fraction.

The results of emission measurements for the col-

lector work function  as a function of the Rasor
parameter are given in Fig. 3.

2.2. Appearance of a plasma drop fraction. In the
dynamic feed regimes, the collector surface was in one
of the three states; (1) the surface was covered with a
stable and visible cesium film, and there was no excess
pressure in the cesium feed chamber; (2) the surface
was “dry,” and the excess pressure in the cesium feed
chamber was 25–50 mm Hg; and (3) a visible cesium
film appeared periodically at the surface, and there was
an excess pressure in the cesium-vapor feed chamber.
The first state lasted 10–15 min, and the second state
lasted several hours. In the first and second states, the
low-voltage arc discharge had the ordinary shape, and
the CVC showed no sizable qualitative and quantitative
anomalies.

The third state appeared periodically during ~1 h.
As in case (2), the operation time was limited by the
store of cesium in the working reservoir (Cs thermo-
stat). In the full cycle of this state, one can also distin-
guish between three phases: (a) the collector is dry; (b)
the collector is covered with a visible liquid cesium
film; and (c) spraying of cesium drops with “drying”

ΦC
Em
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the collector surface. The maintenance of this state, the
cycle duration, and the duration of cycle phases
depended on the ratio between the collector and reser-
voir temperatures.

When the TIC was at the short-circuit point of the
diffusional CVC portion during the entire measurement
time, no anomalous phenomena were observed. If, in
the course of voltage sweep for measuring CVC, the
discharges occurred in the (a) or (b) phase, the CVC
and the character of low-voltage arc discharge were of
the usual type. However, when the discharge coincided
with phase (c), an unusual glow appeared with a certain
time delay from the main discharge in the space
between the electrodes (IEG) and the outer (with
respect to IEG) walls of the laboratory TIC frame. The
frame was under the emitter voltage and separated from
the electrodes by a distance of 2–3 cm. The observed
glow color (light green) differed strongly from the tra-
ditional color of the main discharge (red tones). The
glow had a short duration and, unfortunately, we have
failed, at the present stage of investigation, to record
CVC at the instant the green-colored cesium plasma
drop fraction appeared.

From the results of our experiments, one can state
that the light-green glow of the plasma drop fraction
arises only under the combined action of two factors:
cesium vapor circulation and the TIC IEG breakdown.
Note that, in the previous experiments with dynamic
feed of cesium vapor through a hole in a collector [11],
the current flowing in the center and periphery of the
collector was highly inhomogeneous and the emitter
erosion was observed, which can occur only under the
combined action of the discharge and circulation on the
IEG.

Due to a high internal energy, the CES can arise only
in the presence of energy sources. In our experiments,
two such energy sources are present. The first consists
of the isothermal expansion of cesium vapor in the
holes of the grid collector. We have established that,
when cesium vapor passes through the collector, its
pressure decreases almost tenfold. In this case, the
work per molecule is ~0.1–0.2 eV. However, only 2–5%
of flowing vapor can transform into CES even for the
best use of this energy. A low-voltage electric discharge
is another energy source. Estimates show that the
energy liberated in this discharge is an order of magni-
tude higher than the cesium vapor expansion work.

Since, according to our data, the electric discharge is
necessary for the CES formation, some distinctions
between our characteristics and the Swedish data, for
which the discharge pulse repetition rate was several
times (~3) higher than in our experiments, can be
explained. It is conceivable that this fact did not allow
us to completely reproduce the CES (RM) characteris-
tics at the present stage of investigations.

3. Calculated estimates of cluster size in the
plasma drop fraction. When the cesium drops sprayed
from the collector fall on the emitter or hot walls of the
JETP LETTERS      Vol. 77      No. 6      2003
TIC frame surrounding the electrodes, they are rapidly
evaporated. In the case of dynamic cesium-vapor feed
into the IEG, a combined plasma is formed, which is
composed of electrons, ions, neutral atoms, and liquid
cesium drops of different size.

Let us estimate the decay time of such plasma after
switching off the electric fields. The decay of low-tem-
perature plasma in the IEG with d = 0.1–1.0 cm is
mainly due to the ions that go out to the electrodes and
loose their charge. The characteristic plasma-decay
time, i.e., the time plasma density to decrease by e
times, is t0 = d2/lv, where l ≈ 10–3 cm is the mean free
path of the cesium ions (PCs ≈ 1 mm Hg), and v  ≈
104 cm/s is their thermal velocity [12].

The concentration of excited cesium atoms
decreases with approximately the same characteristic
time.

For the IEG with d = 0.1 cm, the characteristic decay
time is found to be t0 ≈ 10–3 s and, for d = 1 cm, t0 ≈ 0.1 s.

In our experiment, the green glow of the plasma
drop fraction was observed for several seconds in the
IEG and in the near-electrode zone with characteristic
d = 1 cm. This is 10–100 times longer than the decay
time of cluster-free plasma.

Consequently, the experimentally observed plasma
fraction contained clusters with mass corresponding to
≈100 atoms. Note that, according to the Swedish data,
the clusters formed in RM may contain several hundred
of cesium atoms (up to 1000).

Therefore, the estimate of plasma decay rate from
the data of our measurements under the conditions of
CES formation in the form of green-colored interelec-
trode medium in the cesium TIC with dynamic feed of
cesium vapor give evidence for the presence of a
plasma drop fraction in the form of clusters with a mass
of ~102 excited or ionized cesium atoms.
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Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on the dimen-
sionality of inhomogeneities modulating the period of the superlattice are studied. The cases of one- and three-
dimensional modulations, as well as modulation by a mixture of inhomogeneities of both of these dimension-
alities, are considered. The correlation function of the superlattice K(r) has the form of a product of the same
periodic function and a decreasing function that is significantly different for these different cases. The decreas-
ing part of the correlation function for the mixture of inhomogeneities of different dimensionalities has the form
of a product of the decreasing parts of the correlation functions of the components of the mixture. This leads to
the nonadditivity of the contributions of the components of different dimensionalities to the resulting modifica-
tion of the parameters of the wave spectrum that are due to the inhomogeneities (the damping of waves for the
mixture of these components is smaller than the sum of the dampings of the components, the maximum gap in
the spectrum corresponds to the simultaneous presence of both components of the mixture, not only of the
three-dimensional inhomogeneities). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.65.Cd
1. Investigations of the spectrum of waves in par-
tially randomized superlattices (SLs) have been carried
out very intensively in recent years. This is due to the
wide use of these materials in various high-technology
devices, as well as to the fact that they are convenient
models for developing new methods of theoretical
physics for studying media without translation symme-
try. Several methods now exist for developing a theory
of such SLs: the modeling of the randomization by
altering the order of successive layers of two different
materials [1–7]; the numerical modeling of the random
derivations of the interfaces between layers from their
initial periodic arrangement [8–10]; the postulation of
the form of the correlation function of a SL with inho-
mogeneities [11, 12]; the application of the geometrical
optics approximation [13]; and the development of the
dynamic composite elastic medium theory [14].

One more method for the investigation of the influ-
ence of inhomogeneities on the wave spectrum of a SL
was suggested in [15]: the method of the random spatial
modulation (RSM) of the period of the SL. This method
is an extension of the well-known theory of the random
frequency (phase) modulation of a radio signal [16, 17]
to the case of spatial inhomogeneities in the SL. The
advantage of this method is that the form of the corre-
lation function (CF) of the SL is not postulated but is
developed from the most general assumptions about the
nature of a random spatial modulation of the SL period.

¶ This article was submitted by the authors in English.
0021-3640/03/7706- $24.00 © 20285
It appeared that in the general case this function had
quite a complicated form that depended on the dimen-
sionality of the inhomogeneities. Knowledge of the CF
corresponding to a particular type and dimensionality
of the inhomogeneities permitted us to apply methods
of investigation of averaged Green’s functions to find
the energy spectrum and other characteristics of the
waves [15, 18–23]. The RSM method permitted us to
consider inhomogeneities of different dimensionalities
in the framework of the same model. Effects of one-
dimensional (1D) and three-dimensional (3D) inhomo-
geneities on the wave spectrum were studied for sinu-
soidal SLs, SLs with sharp interfaces, and SLs with
arbitrary thicknesses of interfaces. The influence of
inhomogeneities of each dimensionality was studied
separately. So, a significant aspect of the problem that
was not considered up to now is the situation when
inhomogeneities of different dimensionalities are
present simultaneously in a superlattice. The study of
this aspect is the objective of the present work.

2. Model and correlation function. A SL is charac-
terized by the dependence of some material parameter
A on the coordinates x = {x, y, z}. The physical nature
of the parameter A(x) can be different. This parameter
can be a density of matter or a force constant for the
elastic system of a medium, the magnetization, anisot-
ropy, or exchange for a magnetic system, and so on. We
represent A(x) in the form

(1)A x( ) A 1 γρ x( )+[ ] ,=
003 MAIK “Nauka/Interperiodica”
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where A is the average value of the parameter, γ is its rel-
ative rms variation, and ρ(x) is a centered (〈ρ(x)〉 = 0)
and normalized (〈ρ2(x)〉  = 1) function. The function
ρ(x) describes the periodic dependence of the parame-
ter along the SL axis z, as well as the random spatial
modulation of this parameter, which, in the general
case, can be a function of all three coordinates x =
{x, y, z}.

We will consider in this paper a SL that has a sinu-
soidal dependence of the material parameter on the
coordinate z in the initial state when inhomogeneities
are absent. According to the RSM method, we represent
the function ρ(x) in the form

(2)

where q = 2π/l is the SL wave number.

The function u1(z) describes 1D inhomogeneities of
the phase of the function ρ(x). The sensitivity of the
profile of the function ρ(x) to the action of the modula-
tion u1(z) is different for different points of the function
ρ(x). The smallest changes of the profile occur in the
vicinities of the minima and maxima of the function
cos(qz). In contrast to this, the displacements of the
zero points of cos(qz) by the values of u1(z) lead to the
strongest changes in the profile. The zero points of the
function ρ(x) correspond to the interfaces of the SL.
Because of this, we assume in the RSM method that the
function u1(z) models 1D displacements of the inter-
faces from their initial periodic arrangement.

The function u3(x) is introduced in Eq. (2) to model
a random deformation of the surfaces of the interfaces.
At first glance, it would seem that this function must
depend only on the two coordinates, x and y. But the
function u(x, y) describes in the RSM method a 2D
deformation that is uniform for all interfaces of the SL,
i.e., that has an infinite value of the correlation radius
along the z coordinate. The directly opposed cases are
of interest in reality, namely, the cases where the defor-
mations of the two nearest interfaces are uncorrelated
(the correlation radius along z is much smaller than l/2)
or only several interfaces are correlated. That is why
u3(x) must be a random function of all three coordinates
x, y, and z.

In the general case, this function has an anisotropy
of correlation properties, because the values of the cor-
relation radii in the xy plane and along the z axis are
determined by different physical reasons. But we
restrict ourselves here to the simplest case and assume
that u3(x) is a 3D random function with isotropic corre-
lation properties. A coordinate-independent random
phase ψ is introduced into Eq. (2) to ensure the fulfill-
ment of the condition of ergodicity for the function ρ(x)
(see [15]); it is characterized by a uniform distribution
in the interval (–π, π). After averaging the product of

ρ x( ) 2 q z u1 z( )– u3 x( )–( ) ψ+[ ] ,cos=
the functions ρ(x) and ρ(x + r) over the phase ψ, we
obtain

(3)

where

(4)

We assume that the random functions χ1 and χ3 are
mutually uncorrelated and that each of them is a Gaus-
sian random process. After averaging Eq. (3) over χ1
and χ3, we obtain a general expression for the CF of the
SL in the form

(5)

where

(6)

(7)

and the structure functions Qi(r) are defined by the
equations

(8)

One can see from Eqs. (6)–(8) that K1(rz) and K3(r) are
the decreasing parts of the CFs of the SLs with 1D or
3D inhomogeneities (recall that the complete CFs for
these cases have the form of the product of cos(qrz) and
K1(rz) or K3(r), respectively [15]. So, the decreasing
part of the CF of a SL with a mixture of the mutually
uncorrelated phase inhomogeneities of different dimen-
sionalities has the form of the product of the decreasing
parts of the CFs of the components of this mixture.

To find the structure functions Q1(rz) and Q3(r), we
must model the correlation properties of the modulat-
ing functions u1(z) and u3(x) or, more precisely, the cor-
relation properties of their gradients. Both Q1(rz) and
Q3(r) were found in [15] (see also some refinements of
the coefficients in these expressions in [21]) by the use
of different forms of the model CFs for the random
modulation. It was shown that the forms of the func-
tions Qi do not depend asymptotically (for both small
and large values of r) on the form of the model CF but
strictly depend on the dimensionalities of the inhomo-
geneities. For the exponential model CFs for u1(z) and
u3(x), the structure functions were obtained in the forms

(9)

(10)

where γ1 and k|| are the relative rms fluctuation and cor-
relation wave number of the random modulation u1(z),

ρ x( )ρ x r+( )〈 〉 ψ qrz χ1– χ3–( ),cos=

χ1 q u1 z rz+( ) u1 z( )–[ ] ,=

χ3 q u3 x r+( ) u3 x( )–[ ] .=

K r( ) qrz( )cos K1 rz( )K3 r( ),=

K1 rz( )
1
2
---Q1 rz( )– ,exp=

K3 r( )
1
2
---Q3 r( )– ,exp=

Q1 rz( ) χ1
2〈 〉 , Q3 r( ) χ3

2〈 〉 .= =

Q1 rz( ) 2γ1
2 k ||rz–( )exp k ||rz 1–+[ ] ,=

Q3 r( ) 6γ3
2 1 2

k0r
------- 1 2

k0r
-------+ 

  k0r–( )exp+– ,=
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γ3 and k0 are the corresponding characteristics of the
random modulation u3(x).

After the substitution of Eqs. (9) and (10) into them,
Eqs. (6) and (7) become quite complicated. That is why
approximate expressions for K1(rz) and K3(r) were sug-
gested for the 1D and 3D inhomogeneities (see [15, 23],
respectively):

(11)

(12)

where L = exp(–3 ) is the asymptotic form of K3(r)
when r  ∞.

According to these equations, effective correlation
radii of the SL can be introduced for the 1D and 3D
cases, respectively:

(13)

One can see that the effective correlation radii of the SL

depend not only on the correlation radii  or  of
the corresponding modulating functions u1 or u3 but
also on the rms fluctuations of these functions, γ1 or γ3.

3. Dispersion law and damping of waves. We con-
sider the equation for waves in the superlattice in the
form

(14)

where the expressions for the parameters ε and ν and
the variable µ are different for waves of different
natures. For spin waves, when the parameter of the
superlattice A(x) in Eq. (1) is the value of the magnetic
anisotropy β(x), we have [15] ν = (ω – ω0)/αgM, ε =
γβ/α, where ω is the frequency, ω0 = g(H + βM), g is the
gyro-magnetic ratio, α is the exchange parameter, H is
the magnetic field strength, M is the value of the mag-
netization, β is the average value of the anisotropy, and
γ is its relative rms variation. For elastic waves in the
scalar approximation, we have ν = (ω/v)2, ε = γν, where
γ is the rms fluctuation of the density of the material and
v  is the wave velocity. For an electromagnetic wave in
the same approximation, we have ν = ee(ω/c)2, ε = γν,
where ee is the average value of the dielectric perme-
ability, γ is its rms deviation, and c is the speed of light.

Laws of the dispersion and damping of the averaged
waves are determined by the equation for the complex
frequency ν = ν' + iξ, which follows from the vanishing
of the denominator of the Green’s function of Eq. (14).
In the Bourret approximation [24], this equation has the
form [15]

(15)

K1 rz( ) γ1
2k ||rz–( ),exp=

K3 r( ) 1 L–( ) γ3
2k0r–( ) L,+exp=

γ3
2

r1 γ1
2k ||( ) 1–

, r3 γ3
2k0( ) 1–

.= =

k ||
1– k0

1–

∇ 2µ ν ερ x( )–( )ν+ 0,=

ν k2– ε2 S k k1–( ) k1d

ν k1
2–

------------------------------,∫=
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where S(k) is the spectral density of the function ρ(x):

(16)

Substituting Eq. (5) into Eq. (16), then Eq. (16) into
Eq. (15), and approximating K1(rz) and K3(r) by
Eqs. (11) and (12), we obtain an exactly integrable
expression. Upon integrating this expression with
respect to k1 and r, we obtain an explicit form of the
equation for ν:

(17)

where

(18)

We consider this equation at the Brillouin zone bound-

ary k = kr ≡ q/2. Under the conditions that ε, (k|| )2,

and (k0 )2 are much smaller than νr = , we obtain
Eq. (17) in the form of a cubic equation in ν:

(19)

Both limiting cases of this equation, corresponding to
1D (γ1 ≠ 0, γ3 = 0) and 3D (γ1 = 0, γ3 ≠ 0) inhomogene-
ities, were considered in our previous works.

The equation (19) for the mixture of 1D and 3D
inhomogeneities has been investigated by numerical
methods. The results of this investigation are shown in
Figs. 1 and 2 by solid curves. Dotted and dashed curves
in these figures correspond to the limiting cases of the
presence of only 1D or 3D inhomogeneities, respec-
tively. All figures correspond to the same correlation

wave numbers for 1D (η1 ≡ k||q/Λ = 4, where Λ = ε)
and 3D (η3 ≡ k0q/Λ = 4) inhomogeneities. Different sit-
uations are shown in these figures.

Figure 1a shows the decrease of the gap ∆ν =  – 

with the increase of  or . If γ3 = 0, the increase in

 leads to the closing of the gap at  = 0.25 (dotted
curve). Simultaneously the damping of both eigenfre-

quencies increases linearly till the point  = 0.25 (dot-

S k( )
1

2π( )3
------------- K r( )e ikr– r.d∫=

ν k2–

=  
ε2

2
---- 1 L–( )

P13

P3
------- 1

P13
2 k q–( )2–

-------------------------------- 1

P13
2 k q+( )2–

--------------------------------+




+ L
P1

ν
------- 1

P1
2 k q–( )2–

------------------------------ 1

P1
2 k q+( )2–

------------------------------+




,

P1 ν ik ||γ1
2, P3– ν ik0γ3

2,–= =

P13 ν i k ||γ1
2 k0γ3

2+( ).–=

γ1
2

γ3
2

kr
2

ν kr
2

–
ε2

2
---- 1 L–

ν 2ikr k ||γ1
2 k0γ3

2+( )– kr
2–

-------------------------------------------------------------=

+
L

ν 2ikrk ||γ1
2– kr

2–
---------------------------------------- .

2

ν+' ν–'

γ1
2 γ3

2

γ1
2 γ1

2

γ1
2
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ted curve in Fig. 1b). For  > 0.25, two degenerate

eigenfrequencies  =  exist with different damp-

ings, ξ+ ≠ ξ–. If  = 0 the increase of  also leads to
the decrease of the gap (dashed curve in Fig. 1a) but
significantly more slowly than under the action of the
1D inhomogeneities. For example, a large gap exists for

 = 0.25, while the gap closes when  has the same
value. In line with this, the damping increases very

γ1
2

ν+' ν–'

γ1
2 γ3

2

γ3
2 γ1

2

Fig. 1. The width of the (a) gap and (b) damping as func-

tions of the sum  +  for different situations:  ≠ 0,

 = 0 (dotted curves);  = 0,  ≠ 0 (dashed curves);

 = 0.2,  ≠ 0 (solid curves). The explanation of the dot-

ted-dashed curve in Fig. 1b is given in the text.

γ1
2 γ3

2 γ1
2

γ3
2 γ1

2 γ3
2

γ1
2 γ3

2

γ1
2 γ3

2+
slightly with the increase in  (dashed curve in
Fig. 1b).

To show the effects of the mixture of inhomogene-
ities of different dimensionalities, the following situa-
tion is depicted in Figs. 1. Let us have only 1D inhomo-

γ3
2

Fig. 2. The width of the (a) gap and (b) damping under the

condition  +  = 0.3 (solid curves) and for the situations

when  increases for  = 0 (dashed curves, the scale is

under the picture), and when  decreases for  = 0 (dot-

ted curves, the scale is above the picture). 

γ1
2 γ3

2

γ3
2 γ1

2

γ1
2 γ3

2

γ3
2

γ1
2

γ1
2

γ3
2
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geneities with  = 0.2 and, correspondingly, let the
spectrum gap be ∆ν/Λ = 0.6. Then we add 3D inhomo-

geneities increasing  and keeping  = 0.2. One can

see that the gap decreases slowly and closes at  +

 = 0.45 (solid curve in Fig. 1a). Simultaneously, the
increase in the damping slows down (solid curve in
Fig. 1b). The dashed-dotted curve in Fig. 1b corre-
sponds to the unreal situation that would have been
realized if the damping of the mixture of 1D inhomoge-

neities with  = 0.2 and 3D inhomogeneities with 
were equal to the simple sum of the damping of the
components of the mixture. One can see that in reality
the additional contribution to the damping due to 3D
inhomogeneities in the presence of the 1D inhomoge-
neities is approximately two times smaller than in the
absence of the latter.

Quite another situation is shown in Figs. 2 by the

solid curves. We assume here that the sum  + 
remains constant (and equal to 0.3 in these graphs)

when  and  are varied. In other words, we consider
a gradual replacement of the 1D inhomogeneities by
3D inhomogeneities with the same values of rms fluc-
tuations. For comparison, the functions ∆ν and ξ are
shown in Figs. 2 separately for the 1D and 3D inhomo-
geneities. The origin of the coordinates corresponds to

 = 0 (the scale is under the picture) and  = 0.3 (the
scale is above the picture). The width ∆ν of the gap is
equal to zero for the 1D inhomogeneities and to Λ for
the 3D inhomogeneities. The dashed curve in Fig. 2a

shows the decrease in ∆ν when  increases for  = 0.
The dotted curve in this figure shows the opening and

increase of ∆ν when  decreases for  = 0. The solid

curve shows the dependence of ∆ν on  under the con-

dition  +  = 0.3. One can see that the maximum of
∆ν corresponds to some point corresponding to the

presence of both components of the mixture (  ≠ 0,

 ≠ 0) but not to the absence of the 1D inhomogene-

ities (  = 0,  = 0.3), as might be expected from the
general point of view.

4. The method of the random spatial modulation of
the superlattice period [15] permits developing the CF
of a SL with 1D random modulation (which models
random displacements of the interfaces from their ini-
tial periodic arrangement), 3D modulation (which
models random deformations of the interfaces), and the
simultaneous presence of both kinds of modulation
(which models the mixture of the 1D and 3D inhomo-
geneities of the SL structure).

γ1
2

γ3
2 γ1

2

γ1
2

γ3
2

γ1
2 γ3

2

γ1
2 γ3

2

γ1
2 γ3

2

γ3
2 γ1

2

γ3
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2

γ1
2 γ3

2
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2
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2 γ3

2

γ1
2

γ3
2
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2 γ3

2

JETP LETTERS      Vol. 77      No. 6      2003
The decreasing part of the CF of the SL in the pres-
ence of the mixture of the 1D and 3D inhomogeneities
has the form of the product of the decreasing parts of
the CFs of the components of the mixture K1(rz) and
K3(r).

The widths of the gap in the spectrum and damping
of waves at the boundary of the first Brillouin zone have
the following behavior depending on the relationship
between rms fluctuations γ1 and γ3 of the 1D and 3D
inhomogeneities. On addition of the 3D inhomogene-
ities to the SL containing only 1D inhomogeneities, the
damping of waves increases. But this additional damp-
ing is approximately half as large as the damping that is

due to the inhomogeneities with the same value of 
in the absence of the 1D inhomogeneities. The situation
has also been considered when a gradual replacement
of inhomogeneities of one dimensionality by inhomo-
geneities of the other dimensionality subject to the con-

dition  +  = const occurs. It has been shown that
the maximum value of the gap corresponds to some

relationship between  and  but not to  = 0, as
one could expect from general considerations. This
phenomenon, as well as the phenomenon of the reduc-
tion of the damping induced by the 3D inhomogeneities
in the presence of 1D inhomogeneities, is due to the fact
that the decreasing parts of the CFs of the components
of the mixture K1(rz)and K3(r), as for the mixture of any
phase inhomogeneities, enter into the CF of the SL in
the form of a product, not a sum.

This work was supported by the NATO Science Pro-
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and the Russian Foundation for Basic Research (project
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The luminescence of Eu3+ ions implanted in ultradisperse diamond powders, activated by impregnating with a
solution of Eu(NO3)3 · 6H2O and heat-treated at various temperatures, is studied. A multiple increase in the effi-
ciency of excitation in the charge-transfer band is observed for the 5D0 state of Eu3+ ions as compared to
europium nitrate heat-treated similarly. This effect is explained by an increase in the degree of Eu–O bond cova-
lency and a change in the activator coordination polyhedron due to the formation of chemical bonds Eu–O–C.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.Bf; 78.55.-m 
Ultradisperse diamond (UDD) powders obtained by
detonation synthesis consist of nanoparticles that repre-
sent diamond nuclei with an average size of ~ 4 nm cov-
ered by a cluster shell of nondiamond carbon in the so-
called “onionlike” form [1]. Inclusions of the graphite
phase, which additionally contains various types of
hydrocarbons and impurities [1, 2], are located on this
shell. Such nanoparticles exhibit luminescence proper-
ties in the visible and near-UV spectral regions,
whereas the band gap width of nondiamond carbon can
decrease down to 2 eV as in the fraction of “graphite-
like” sp2 bonds increases with respect to “diamond-
like” sp3 bonds (the band gap width in single crystal
diamond comprises 5.5 eV) [3, 4]. These features make
UDD an interesting object for studying its effect on the
spectral luminescence properties of rare-earth ions
implanted in an onionlike shell. This work reports
results of such an investigation with the use of Eu3+ ions
as a spectroscopic probe.

Samples were prepared by mixing a dry UDD pow-
der with a water–alcohol solution of Eu(NO3)3 · 6H2O
under conditions of ultrasonic dispersion, dried, and
then successively annealed in air at different tempera-
tures (Tan) for 30 min (the heating rate was 300 K/h).
Luminescence spectra (LS) and luminescence excita-
tion spectra (LES) were measured by the reflectance
method on an SDL-2 spectrofluorimeter, corrected with
regard to the spectral sensitivity of the detection system
and the spectral density distribution of the exciting radi-
ation according to [5], and plotted the number of quanta
per unit wavelength interval [dn(λ)/dλ] against the
wavelength. All the spectral measurements were per-
formed at T = 298 K. The decomposition of spectral
bands into individual components and the determina-
0021-3640/03/7706- $24.00 © 20291
tion of their barycenters were carried out by the proce-
dures outlined in [6, 7].

Figure 1 shows the LS of a Eu-containing UDD
powder (sample 1) annealed at different temperatures;
the excitation wavelength λexc = 280 nm (curves 1). LS
of a Eu(NO3)3 · 6H2O crystalline hydrate powder (sam-
ple 2) annealed and measured under identical condi-
tions (curves 2) are displayed in the same figure. Frag-
ments of these spectra measured with a high resolution
are given in insets. These spectra were normalized by
reducing the maximum of the Eu3+ 5D0  7F2 band
(λ ~ 615 nm) to unity; spectra in the insets were nor-
malized to the maximum of the 5D0  7F1 band lying
in the range 585–600 nm. It is evident that a long-wave-
length shift of the barycenter of the nonsplit 5D0 
7F0 band (λ ~ 580 nm) and a drastic change in the split-
ting pattern of 5D0  7F2 and 5D0  7F4 bands take
place at Tan = 450°C for sample 1 as compared to sam-
ple 2 (Fig. 1a). An increase in Tan up to 700°C (Fig. 1b)
leads to a significant narrowing of spectral bands, a
change in their shapes, and the appearance of excessive
components in the bands corresponding to the 5D0 
7F0, 7F1 transitions. At Tan = 1000°C (Fig. 1c), the dif-
ference between the spectra of the samples under com-
parison is essentially leveled.

Figure 2 shows the LES of the samples studied nor-
malized to the maximum of the magnetic dipole
7F0  5D1 band (λ ~ 530 nm); the detection wave-
length λdet = 611 nm. It is evident that an approximately
ninefold increase in the intensity of the broad band at
λ = 250 nm, a decrease by a factor of 1.5 in the relative
intensity of the 7F0  5L6 band (λ ~ 395 nm), and a
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multiple decrease in the relative intensity of the 7F0 
5G2, 5D4 bands (λ ~ 382 and 364 nm, respectively) take
place at Tan = 450°C (Fig. 2a) for sample 1 (curve 1) as
compared to sample 2 (curve 2). At Tan = 700°C
(Fig. 2b), a significant and nonsimilar redistribution of
the intensities of electric dipole f–f bands of the activa-
tor is observed in the spectra of both samples, and the
excess of the intensity of the band at λ ~ 250 nm in
curve 1 as compared to curve 2 approaches a twenty-
fold one. At T = 1000°C (Fig. 2c), the intensity and
shape of the f–f bands for the samples under compari-
son significantly approach each other, and the ratio of
band intensities at λ ~ 250 nm decreases down to 8. The
scanning of the monochromator slit with ∆λdet = 2 nm
over the 5D0  7F2 band at Tan = 450 and 1000°C
weakly affects LES. The redistribution of the relative
intensities and shape of the f–f bands for samples with
Tan = 700°C with the same scanning is more significant;
however, the efficiency of Eu3+ luminescence excitation
in sample 1 at λ ~ 250 nm remains many times higher
than in sample 2 in all the cases. Here it should be noted

Fig. 1. Luminescence spectra of (1) Eu-containing UDD
powder and (2) Eu(NO3)3 · 6H2O crystalline hydrate
annealed in air; λexc = 280 nm. The width of the detection
line ∆λdet = 2.6 nm and 0.2 nm (inset). ∆λexc = 2.6 nm and
0.3 nm (inset). Tan, °C: (a) 450, (b) 700, and (c) 1000.
that, when the samples under comparison annealed at
Tan = 450°C were held for many days in a wet atmo-
sphere, the relative intensity of the broad short-wave-
length band and the shape and intensity of the f–f bands
become virtually identical in both LES and LS. At Tan ≥
700°C, this effect was not observed.

In addition to the results described above, it is nec-
essary to report that the color of the obtained powders
of activated UDD changed in the following sequence:
gray (Tan = 450°C), pink (Tan = 700°C), and light beige
(Tan = 1000°C). It is also essential to note that the LS of
the nonactivated UDD at λexc = 240 nm and Tan = 450°C
is characterized by a broad (∆λ ~ 250 nm), weakly
structured band with a maximum in the region of
500 nm. The corresponding LES weakly depends on
λdet and represents a band that reaches a significant
intensity at λ < 250 nm, whereas its maximum lies
beyond the limits of the short-wavelength boundary of
the working region of the detection system (λ ≈
215 nm).

Fig. 2. Luminescence excitation spectra of (1) Eu-contain-
ing UDD powder and (2) Eu(NO3)3 · 6H2O crystalline
hydrate annealed in air; λdet = 611 nm, ∆λdet = 2 nm; Tan,
°C: (a) 450, (b) 700, and (c) 1000.
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According to [8], the complete dehydration of
Eu(NO3)3 · 6H2O crystalline hydrate and, possibly, the
appearance of the phase of the EuONO3 oxy salt take
place at Tan = 450°C for the annealing regime used in
this work. Judging from curves 1 and 2 in Fig. 1a, the
optical Eu3+ centers forming in this case are character-
ized by low symmetry and large inhomogeneous broad-
ening. A notable 0.5-nm (15-cm–1) long-wavelength
shift of the barycenter of the 5D0  7F0 band of Eu3+

ions in Fig. 1a and a significant weakening of the elec-
tric dipole Eu3+ f–f bands in Fig. 2a in going from
sample 2 to sample 1 point to an increase on the average
in the degree of Eu–O chemical bond covalency [9]. It
is evident that the reason for this increase is associated
with the interaction of Eu3+ and EuO+ ions with the
onion-like shell of UDD and with the residual acid
groups located on its surface (carbonyl, carboxyl, etc.
[2]) with the formation of Eu–O–C bonds. Actually,
calculating the strength of a single chemical bond by
the procedure [10] based on the use of the electronega-
tivities of interacting elements, one can easily show that
it comprises 1.94 and 1.80 relative units for the N–O
and C–O bonds, respectively. This, according to the
known rule of “polarization” and “counter polariza-
tion,” leads to a weaker displacement of oxygen from
europium in the Eu–O–C chain and to an increase in the
degree of Eu–O bond covalency. Here, a significant
increase in the splitting of the 5D0  7F4 band indi-
cates, according to [11], a change in the shape of the
activator coordination polyhedron. Apparently, it is
these two facts that lead to a multiple increase in the
intensity of the luminescence excitation band of Eu3+

ions in UDD with the shortest wavelength. Based on the
similarity of this band for both samples and also on the
absence of the analogous band in the LES of nonacti-
vated UDD, it should be assigned to absorption in the
Eu3+  O2– charge-transfer band. It is not inconceiv-
able that the efficiency of excitation in the Eu3+  O2–

band is even higher, because, judging from the gray
color of sample 1, it is possible that this band is
screened by the absorption of the UDD shell. As to the
similarity between the LS and LES of the samples
under comparison with Tan = 450°C after their hold in a
wet atmosphere, it is appropriate to associate this simi-
larity with the formation of basic europium salts due to
the hydrolysis reaction.

At Tan = 700°C, anhydrous europium salts are trans-
formed to oxy salts and, partially, to oxides [8]. This
fact is reflected in the sharp decrease in the inhomoge-
neous broadening and, judging from the appearance of
additional components in the region of 5D0  7F0, 7F1
bands (see the inset in Fig. 1b), in the appearance of two
types of Eu3+ optical centers in sample 1 and three or
four types in sample 2. In addition, the degree of Eu–O
bond covalency in the main type of centers in both sam-
ple 1 and sample 2 increases, whereas the distance
between the barycenters of the corresponding nonsplit
JETP LETTERS      Vol. 77      No. 6      2003
bands decreases down to 0.05 nm (1.5 cm–1); however,
according to the retaining of the 5D0  7F4 band split-
ting character, the activator coordination polyhedron
retains its shape. It is evident that the significant
increase for UDD in the efficiency of the excitation of
the 5D0 state in the Eu3+  O2– charge-transfer band
in this case can be explained by both an increase in the
quantum yield of the intracomplex transfer of excita-
tions and the weakening of luminescence quenching as
a result of an increase in the band gap width of the
onionlike shell due to the partial burning of amorphous
carbon. According to the data from [12], the quantum
yield indicated above increases as the charge-transfer
absorption band shifts toward the short-wavelength
side, which also occurs in our case: the barycenters of
the Eu3+  O2– bands in Figs. 2b and 2c for sample 1
shift with respect to the corresponding bands of sample 2
by 4.7 nm (690 cm–1) and 3.9 nm (570 cm–1), respec-
tively. Simultaneously, this shift gives additional evi-
dence of the increase in the degree of Eu–O bond cova-
lency, because the energy of electron detachment from
the ligand and electron transfer to the activator must
increase in this case.

Significant leveling of the differences in spectra at
Tan = 1000°C due to Eu3+ f–f transitions in the samples
under comparison can be explained by the burning of
the most part of amorphous carbon. It is notable that the
differences in the LS of the samples under comparison
are virtually absent already at Tan = 1100°C; however,
the efficiency of luminescence excitation in the
Eu3+  O2– bands for UDD remains approximately
seven times higher. Apparently, this is due to the reten-
tion of the Eu–O–C bonds, but at the expense of dan-
gling surface bonds of the diamond cluster.

It may be believed that the multiple increase in the
luminescence intensity of Eu3+ ions upon excitation in
the charge-transfer band found in this work is of a uni-
versal character. This increase is associated with the
chemical interaction of Eu3+ ions with the UDD surface
and must be manifested in all cases when chemical
bonds form between variable valence metals and car-
bon-containing nanoparticles.

We are grateful to ZAO “Sinta” (Minsk, Belarus) for
presenting UDD samples.
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Correlations have been studied between the recombination radiation intensities of a two-dimensional electron
gas measured at different points of the sample with giant luminescence fluctuations in the quantum Hall effect
regime. It has been found that the correlation of the radiation intensities measured under these conditions at
different points of the sample separated by a distance of 1–3 mm is close to unity and disappeared in a threshold
way with increasing temperature. It is shown that macroscopic spatial correlations also disappear if the electron
system is artificially divided into two subsystems not connected with each other. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 73.20.-r; 73.43.-f; 78.66.-w
1. Giant fluctuations that we observed previously in
the luminescence intensity of a two-dimensional elec-
tron gas under the conditions of the quantum Hall effect
[1] exhibit a number of completely unusual properties
pointing to the fundamentality of the new phenomenon.
Among these are the following properties: (a) the dis-
persion of radiation intensity fluctuations is anoma-
lously high, (b) fluctuations are observed exclusively in
the quantum Hall effect regime, (c) the range of mag-
netic fields at integer filling factors in which fluctua-
tions can be observed is extremely narrow (less than
0.01 T), (d) fluctuations rapidly disappear as the tem-
perature is raised above a critical one, and (e) the criti-
cal temperatures for even and odd filling factors are
essentially different. The very possibility of observing
giant intensity fluctuations in the radiation collected by
a light guide from the surface of the sample about 1 mm
in size already points to the existence of mechanisms in
the system determining that recombination processes
proceed consistently at macroscopic distances. The
nature of these mechanisms is not clear at present; how-
ever, the necessity of studying spatial correlations in
radiation fluctuations is evident. It is not inconceivable
that luminescence intensity fluctuations are due to the
effect of additional background illumination on the
two-dimensional electron system. This background
illumination serves to excite the luminescence signal,
and although it creates a negligibly small concentration
of electrons as compared to their dark concentration in
the two-dimensional channel, it can nevertheless
0021-3640/03/7706- $24.00 © 20295
become significant because of an extremely fast varia-
tion of system parameters in the immediate vicinity of
an integer filling factor. Another explanation is of a
more fundamental character. It may be believed that the
electron system undergoes a phase transition; that is, a
new coherent macroscopic state of two-dimensional
electrons described by a common wave function arises.
In this case, the unity of wave function provides an
exceptionally high degree of the uniformity of the con-
centration of electrons at macroscopic distances, which
is manifested in the abnormally narrow peak of noise
localized at an integer filling factor (the peak width at
the filling factor scale is less than 0.001). In the case of
this scenario, an analogue of the Josephson effect in the
two-dimensional electron system in the quantum Hall
effect regime and a manifestation of the phase of the
common wave function of the coherent state should be
sought. From the viewpoint of the theory of dynamic
systems (see, for example, [2, 3]), it is appropriate to
raise the question of whether the observed fluctuations
are a random process or a manifestation of the deter-
ministic chaos of the dynamic system with the phase
space of a finite dimension. In the latter case, an effort
can be made to determine the phase space dimension
and to find the form of the strange attractor of the sys-
tem. It is of course hardly probable that studies of this
sort can unambiguously elucidate the microscopic rea-
sons for the fluctuations; however, these can strongly
help in constructing the theory of this phenomenon,
because the phase space dimension is directly related to
003 MAIK “Nauka/Interperiodica”
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the number of independent differential equations
describing the dynamic system. This work is devoted to
a study of correlations between luminescent signals
measured from two spatially separated regions of the
sample surface under conditions of giant fluctuations of
the radiation of two-dimensional electrons in the vicin-
ity of the filling factor equal to 2. It is found that virtu-

Fig. 1. Schematic diagram of the experiment.

Fig. 2. Luminescence spectrum of two-dimensional elec-
trons measured in a single quantum well with a width of
25 nm under conditions of the quantum Hall effect (ν = 2,
ns = 3.85 × 1011 cm–2, B = 7.95 T) at T = 1.5 K. Curve C12
corresponds to the spectral dependence of the correlation
coefficient of luminescence intensities measured simulta-
neously in two different sections of the sample spaced at
1 mm (the inset shows time dependences of these lumines-
cence signals). The arrow indicates the spectral position of
the luminescence line from the GaAs buffer layer.
ally complete correlation is observed for the radiation
intensities measured at different points of the sample
separated by a distance of 1–3 mm. It is shown that
macroscopic spatial correlations disappear if the elec-
tron system is divided into two subsystems uncon-
nected with each other.

2. Measurements were performed with high-quality
samples containing a single GaAs quantum well, in
which the radiative recombination of 2D electrons with
photoexcited holes was studied. The samples were
grown by molecular-beam epitaxy on a GaAs substrate
by the following scheme: GaAs buffer layer 3000 Å
thick, undoped GaAs/AlGaAs (30/100 Å) superlattice
13000 Å in total thickness, GaAs quantum well 250 Å
thick, AlGaAs spacer 400 Å thick, and doped AlGaAs : Si
layer (doping level, 1018 cm–3) 650 Å thick. The charac-
teristic mobility of 2D electrons in these structures at
3.8 × 1011 cm–2 was 1.3 × 106 cm2 V–1 s–1. The optical
excitation of the sample was carried out by a laser light-
emitting diode with a photon energy of 1.653 eV and
the time instability of the radiation power less than 10–4.
A Monospec monochromator with a spectral resolution
of 0.03 meV served as the spectral instrument. A semi-
conductor charge-coupled device (CCD) matrix was
used for detecting the radiative recombination signal
and for analyzing its intensity fluctuations. This
allowed the entire luminescence spectrum to be mea-
sured simultaneously in the wavelength region of our
interest. At the same time, the CCD matrix response
speed (1 spectrum per minute) was quite sufficient for
studying signal fluctuations, because the fluctuations at
hand are predominantly of a low-frequency character
with characteristic times on the order of tens of sec-
onds. Sufficiently long sequences of spectra were
recorded at a step of 1 s for studying the fluctuations.
The characteristic duration of a series of spectra was
3000 s. The sample was placed in a helium cryostat
inside a superconducting solenoid. The exciting radia-
tion was delivered and the luminescence signals were
collected using light guides as shown in Fig. 1. The
radiation of the pumping laser was supplied to the sam-
ple through light guide F3 0.4 mm in diameter, which
gave a spot about 2–3 mm in diameter on the sample
surface. Short-focus lens L constructed an image of the
sample with a magnification close to unity in the plane
where the ends of receiving light guides F1 and F2 were
arranged. This symmetric optical scheme is the least
critical with respect to the accuracy of the arrangement
of the light guides and, therefore, minimizes the effect
of misalignment, which inevitably arises on cooling to
helium temperatures. The receiving light guides were
1 mm in diameter and were arranged right up to each
other. As a result, we had the possibility of recording
signals from two sections of the sample surface 1 mm
in diameter each with distances between their centers of
about 1.2 mm, which did not overlap with each other.
The accurate alignment of the whole system was car-
ried out in the following way. The sample was illumi-
JETP LETTERS      Vol. 77      No. 6      2003
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nated through the receiving light guides and the lens
using a filament lamp. A screen of thin white paper was
placed on the surface of the sample, and the sample and
the screen were transferred along the optical axis until
a sharp image of light guide ends F1 and F2 appeared on
the screen. As a result, we could be assured that the sec-
tions of the sample surface from which signals were
recorded did not actually overlap.

3. Figure 2 demonstrates the luminescence spectrum
measured in a single quantum well with a concentration
of 2D electrons of 3.85 × 1011 cm–2 in a magnetic field
of 7.95 T, which corresponds to a filling factor ν = 2.00.
It is important that under these conditions the radiative
recombination spectra measured from two different
points of the sample with the use of two light guides
spaced at about 1 mm coincided. This fact indicates that
a 2D-electron system under conditions of the integer
quantum Hall effect becomes uniform and the local
electron concentrations at different points of the sample
coincide with a high accuracy. This result is in good
agreement with the fact that anomalous radiation inten-
sity fluctuations are observed within an extremely nar-
row range of magnetic fields in the vicinity of integer
filling factors that corresponds to the change in the fill-
ing factor by less than 0.005. Measuring with the use of
two light guides allowed us to record the time evolution
of radiation spectra from different points of the sample
simultaneously, because the signals from the light
guides were detected simultaneously by two different
sections of one CCD matrix. This allowed us to perform
a quantitative comparison of the parameters of giant
radiation intensity oscillations at different points of the
sample and to study spatial correlation effects. With
this purpose, we calculated the correlation coefficient
(see, for example, [3]) between the radiation intensities
(I1 and I2) measured simultaneously from two different
light guides

where 〈Ii 〉  is the average intensity over the whole mea-

surement time and ∆Ii = Ii – 〈Ii 〉 , Di =  is the vari-
ance of Ii. A comparison of the results measured from
different light guides showed that giant intensity fluctu-
ations are observed simultaneously in the same narrow
range of magnetic fields in the vicinity of an integer
value of the filling factor equal to 2 (and also in the
vicinity of ν = 4, 6, 8). Therefore, it was possible to
measure the correlation coefficient of fluctuating sig-
nals and its dependence on the wavelength in the emis-
sion spectrum. A typical example of measurements of
anomalous radiation intensity fluctuations carried out
with the use of two light guides under conditions of the
quantum Hall effect at a maximum of the luminescence
line is shown in the inset in Fig. 2. It is evident that
strong correlation (phase coherence) is observed under
these conditions for fluctuations of the two intensities.
The spectral dependence of the coefficient C12 under

C12 ∆I1∆I2〈 〉 / D1D2( )1/2,=

∆Ii
2〈 〉
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conditions when the filling factor equals 2 (B = 7.95 T)
is shown in Fig. 2 (curve C12). It is evident that the coef-
ficient C12 is rather close to unity for all the wave-
lengths corresponding to the luminescence of the 2D
electron gas and drops virtually to zero in the vicinity
of 1514.66 meV, where the contribution of bulk lumi-
nescence from the GaAs buffer layer (shoulder in the
luminescence spectrum marked by an arrow in Fig. 2)
dominates. Note that we identified luminescence lines
from bulk GaAs by an analysis of the behavior of these
lines upon varying the magnetic field and the concen-
tration of 2D electrons [4]. It is directly followed from
Fig. 2 that sections of the two-dimensional electron sys-
tem spaced at about 1 mm can emit light in a strongly
correlated way.

Tracing the temperature dependence of the correla-
tion coefficient is of interest. We measured giant fluctu-
ations under conditions when all the macroscopic
parameters were fixed with the greatest possible accu-
racy and the temperature varied slowly with time. The
results of the corresponding measurements are shown
in Fig. 3. As the temperature increases, the lumines-
cence signal somewhat decreases; however, it is more
important that giant fluctuations disappear with
increasing T. This is reflected in Fig. 3, where it is
shown how the luminescence intensity measured at the
line maximum (1.516 eV) varies. In addition, it is indi-
cated in the same figure how the ratio D/〈I 〉  varies with
temperature. In is evident that the ratio D/〈I 〉  takes an
anomalously high value of about 30 at 1.5 K and
sharply drops down to normal Poisson values (0.5–1) at
T > 1.9 K. As to the correlation coefficient, it is evident

Fig. 3. Temperature dependence of the luminescence inten-
sity measured at a maximum of the recombination line of
two-dimensional electrons (1.516 eV) under conditions of
the quantum Hall effect (ν = 2, ns = 3.85 × 1011 cm–2, B =
7.95 T) at T = 1.5 K. Points in the figure indicate how the
correlation coefficient C12 of two radiative recombination
intensities of two-dimensional electrons measured simulta-
neously at two spatially distant points of the sample. The
value of the ratio D/〈I 〉  is indicated for each point.
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in the figure that it remains close to unity down to the
critical temperature Tc = 1.9 K, at which giant fluctua-
tions disappear, and then sharply drops down to its
background value (less than 0.1). Thus, it may be
argued that the occurrence of spatial correlations of
luminescence signals at macroscopic distances is a
characteristic feature of the regime of giant fluctuations
under conditions of the integer quantum Hall effect at
T < Tc.

In order to check whether the existence of a com-
mon excitation spot is essential for the observed corre-
lations, the following experiment was set up. A thin
strip (0.5 mm) of black paper was placed on the sample
so that it divided the excitation spot into two parts and
the signal arrived at each of the light guides from its
own part of the excitation spot. It should be noted that
the signals from the same two parts of the sample mea-
sured in the absence of the black strip at ν = 2 exhibited
in-phase giant fluctuations with a correlation coeffi-
cient of 0.95. In the presence of the black strip correla-
tions between the signals were not observed even at ν =
2, though the signal from each light guide still exhibited
giant fluctuations (ratio D/〈I 〉  > 10). The results
obtained under the same experimental conditions with
the dividing strip and without it are compared in
Figs. 4a and 4b, respectively. It is evident that dividing
the sample into two subsystems completely suppresses
the effect of correlations between luminescence inten-
sity fluctuations. Small residual correlations that are
seen in Fig. 4b can be explained by insufficient mag-
netic field stability, because these correlations were
observed even in the absence of giant intensity fluctua-
tions. It is known that the magnetic field strongly

Fig. 4. Comparison of giant fluctuations of luminescence
intensities measured under the same experimental condi-
tions (a) without and (b) with a strip dividing the system of
two-dimensional electrons into two subsystems. It is evi-
dent that dividing the sample into two subsystems com-
pletely suppresses the effect of correlations between lumi-
nescence intensity fluctuations and decreases the correla-
tion coefficient from 0.95 down to 0.2. Measurements were
performed under conditions of the quantum Hall effect at
ν = 2, ns = 3.85 × 1011 cm–2, B = 7.95 T, and T = 1.5 K.
affects the shape of the luminescence spectrum of a 2D
electron gas, especially under conditions of the quan-
tum Hall effect [4, 5]. By virtue of this fact, the insuffi-
cient stability of the field can give rise to residual cor-
relations of the signals. In the case when the lumines-
cence spectrum only weakly depends on the field
strength, as takes place for bulk luminescence, the mag-
nitude of residual correlations is close to zero. The sup-
pression of correlations in intensity fluctuations
observed in this work on artificially dividing the 2D
electron system into two subsystems allows us to
exclude unambiguously the possible interpretation of
giant fluctuation according to which the fluctuations are
due to the anomalous enhancement of instabilities of
the magnetic field or the photoexcitation source. Actu-
ally, it is possible to suggest that, because of the sharp
stepwise character of the magnetic-field dependence of
the spectral position of the luminescence line in the
vicinity of integer filling factors [1], even weak mag-
netic field fluctuations can be manifested under these
conditions as a strong instability of the luminescence
intensity. If this were so, it would be reasonable to
expect in-phase fluctuations in both parts of the sample
upon dividing the 2D electron system into two sub-
systems (with the use of a thin black strip), because the
source of fluctuations is similar in both cases and spec-
ifies a common phase. However, it is evident in Fig. 4
that correlations in intensity fluctuations disappear
upon dividing the electron system into two subsystems,
which most likely points to the occurrence of a com-
mon single phase in the macroscopic wave function of
2D electrons under conditions of the quantum Hall
effect. Upon artificially dividing the electron system
into two subsystems, the unity of the wave function dis-
appears and a phase difference appears between the
wave functions of two subsystems, which leads to dis-
turbance of the phase coherence of fluctuations mea-
sured in different parts of the sample. The occurrence of
a phase difference in the wave functions must lead to
phenomena analogous to the Josephson effect. There-
fore, it may be expected that oscillations associated
with phase periodicity must arise in the correlation
coefficient C12 if the parameters of the barrier (its width
and the potential height) dividing the electron system
into two subsystems are smoothly varied.

Thus, correlations between recombination radiation
intensities of a 2D electron gas measured at different
points of the sample with giant luminescence fluctua-
tions in the regime of the quantum Hall effect have been
investigated in this work. It has been found that
extremely strong correlations are observed in intensity
fluctuations under these conditions. These correlations
most likely point to the macroscopic coherence of the
electron system in the regime of the quantum Hall
effect. It has been shown that these correlations disap-
pear as the temperature increases or if the electron sys-
tem is artificially divided into two subsystems uncon-
nected with each other.
JETP LETTERS      Vol. 77      No. 6      2003
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Parametric generation of intense solitonlike spin-wave pulses is experimentally observed in ring resonators
based on ferromagnetic films under the effect of a periodic parallel pulsed magnetic pumping. Depending on
the repetition rate of the pumping pulses and the position of their carrier frequency about the eigenfrequency
spectrum of the ring resonator, different types of nonlinear pulse sequences are obtained. The theoretical expla-
nation of this phenomenon is proposed. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Ds; 75.70.-i; 85.70.Ge
1 It is well known that, in nonlinear dispersion media,
the excitation and propagation of nonlinear pulses in
the form of envelope solitons is possible (see, e.g., [1,
2]). Recently, the use of “active rings” constructed on
the basis of nonlinear dispersion waveguide media was
proposed for the self-generation of envelope solitons.
For example, active rings on the basis of ferromagnetic
films were used for the self-generation of both bright
and dark microwave magnetic envelope solitons [3–6].
In such rings, an external microwave amplifier con-
nected in series with the ferromagnetic film served to
compensate for the losses associated with the spin wave
and other ring elements. The compensation of the
losses could cause the ring, which actually was a trav-
elling wave resonator, to operate in the multifrequency
self-generation regime with a discrete spectrum of gen-
erated frequencies. With active resonant rings, two dif-
ferent mechanisms of the stationary spin-wave soliton
self-generation were realized. These mechanisms were
based on the time [3] and frequency [4–6] filtering of
the circulating signal. Thus, previous studies showed
that active resonant rings fabricated on the basis of fer-
romagnetic films can be used for an effective self-gen-
eration of periodic sequences of spin wave envelope
solitons.

The purpose of this work is the experimental inves-
tigation of the possibility of obtaining a parametric gen-
eration of periodic sequences of nonlinear spin-wave
pulses in a ring resonator by using a spatially localized
parallel pulsed magnetic pumping. In contrast to the
previous studies of the spin-wave soliton generation in

1 Permanent address: Radio Physics Faculty, Shevchenko National
University, Kiev, 01033 Ukraine.
0021-3640/03/7706- $24.00 © 20300
rings, in our experiments the loss in the resonant ring
was compensated by the “internal” mechanism of para-
metric amplification of spin waves.

The mechanism of parametric amplification of spin-
wave pulses, including nonlinear solitonlike pulses, by
a spatially localized parallel pumping was investigated
in [7–16]. In particular, in the previous studies, it was
shown that, for the realization of a parametric amplifi-
cation of both linear and nonlinear spin-wave pulses
(bright solitons), the most convenient objects are the
so-called backward volume magnetostatic waves
(BVMSWs) propagating along the direction of a bias
magnetic field in a tangentially magnetized ferromag-
netic film. The gain factors obtained experimentally for
a short BVMSW pulse in the pulsed pumping regime
exceed 30 dB [13].

In addition, it was shown that the parametric ampli-
fication of BVMSWs by means of a parallel pulsed
pumping by a spatially localized microwave magnetic
field has some distinctive features that distinguish it
from the amplification of a spin-wave signal by a con-
ventional microwave amplifier. Such features are the
comparable gain values for a multitude of parametri-
cally amplified thickness modes and the formation of
counter- and copropagating idle pulses that occur
simultaneously with the amplification of the signal
pulse.

In the experiments, we used an active resonant ring
whose basic elements were a tangentially magnetized
yttrium iron garnet (YIG) film, a microwave amplifier,
and an attenuator. A backward volume magnetostatic
wave was used as the “carrier” wave. It should be noted
that the microwave amplifier mainly served for the
003 MAIK “Nauka/Interperiodica”
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compensation of the matching losses in the antennas
used for the excitation and reception of spin waves in
the film. We stress that the amplifier parameters (the
amplified frequency band and the dynamic range) were
chosen so that the nonlinear properties of the resonant
ring were determined solely by the YIG film. The atten-
uator served for a smooth attenuation control in the
ring.

The experiments were performed on a narrow YIG
film strip, 1.5 mm wide, which served as a “waveguide”
for spin waves. The waveguide was cut out of a single-
crystal film grown on a gadolinium gallium garnet sub-
strate with the (111) orientation; the film thickness was
L = 4.9 µm. To excite and receive the spin waves, a con-
ventional delay line structure was used [17, 18], which
had short-circuited input and output microstrip anten-
nas 50 µm wide. The distance between the input and
output microstrip antennas was equal to 8 mm. The
pumping element was placed in the middle between the
input and output antennas. It was made of a wire 50 µm
in diameter, in the form of a half-wave resonator tuned
to a frequency of 14.518 GHz.

Experiments on the parametric generation of soli-
tonlike pulses formed by the lowest thickness mode of
the BVMSW were performed in several steps. At the
first step, with the interrupted feedback circuit, the
amplitude–frequency characteristic (AFC) of the spin-
wave delay line was measured in a definitely linear
regime by supplying a continuous external signal to its
input. The resulting AFC is shown in Fig. 1a. One can
see that, at the operating frequency, the transmission
loss of the microwave signal in the structure was about
45 dB. A simple calculation (based on the known half-
power ferromagnetic resonance linewidth of the film
∆H = 0.4 Oe) shows that the net value of the BVMSW
transmission loss in the structure was about 11 dB. This
means that the main contribution to the total loss was
made by the signal conversion in the antennas (of about
34 dB).

In addition to the loss measurement, an external sig-
nal supplied to the disconnected ring was used to mea-
sure the gain in the spin-wave pulse due to the parallel
pumping. The maximal internal (i.e., without regard for
the signal conversion loss in the antennas) gain factor
was 13 dB. This result showed that, in the parallel
pumping regime, the given experimental structure
allows a complete compensation of the BVMSW pulse
transmission loss but provides no compensation of the
loss in the antennas. In the experiment, the latter was
achieved using a microwave amplifier.

At the second stage of the experiment, the ring was
closed and the gain in the feedback circuit was chosen
so as to compensate the conversion loss in the antennas
without allowing the system to switch to the spontane-
ous self-generation mode. In these conditions, an exter-
nal monochromatic signal was supplied to the delay
line input, and the AFC of the structure was again mea-
sured in the transmission configuration. Figure 1b
JETP LETTERS      Vol. 77      No. 6      2003
shows the AFC part lying in the region near the fre-
quency chosen as the operating one for the following
measurements. As one would expect in the case of a
ring resonator, the measured AFC is characterized by a
set of narrow resonance peaks. The distance between
the peaks (3.2 MHz) corresponds to the propagation
distance of spin waves in the YIG film. Simple calcula-
tions using the theoretical value of the spin wave group
velocity and the distance between the antennas showed
that the delay time of the microwave signal in the feed-
back circuit was only 5 ns out of the whole time of sig-
nal circulation in the ring t1 = 315 ns.

Then, a periodic sequence of short rectangular
microwave pulses was supplied to the input of the
pumped element. The pulse duration was 24 ns, and the
period Tp was chosen to be equal to the period of signal
circulation in the ring: Tp = tr = 315 ns. The pumping
carrier frequency was fp = 14.518 GHz. By varying the
bias magnetic field, the half pumping frequency fp/2
was placed within the long-wavelength part of the
BVMSW spectrum. (In Fig. 1, the position of one-half
the pumping frequency fp/2 with respect to the AFC of

Fig. 1. (a) Amplitude–frequency characteristic (AFC) of a
disconnected ring and (b) the working part of the AFC (the
solid lines). The dashed line in the lower plot (b) shows the
working part of the AFC measured for a closed ring with a
microwave amplifier gain of 43 dB in the absence of pulsed
pumping. The arrow indicates the position of half the carrier
frequency of the pumping pulses.
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the structure is shown by a vertical arrow.) The power
of the pumping pulses was chosen so as to exceed the
threshold of the pulsed parametric generation of spin
waves in the ring.

The measurements showed that a stable parametric
generation of short spin wave pulses is observed in a
very narrow interval of the pumping pulse repetition
period values. At the same time, it was found that the
pumping carrier frequency, at which the effective para-
metric generation of nonlinear solitonlike pulses is
observed, can be easily varied. Such a tuning was of a
discrete character, and the tuning step, i.e., the distance
between the neighboring frequencies at which the
effective parametric generation of nonlinear solitonlike
pulses took place, was equal to 1.59 MHz. In other
words, the carrier frequency of the generated pulses
(which was determined by us as one-half the pumping
carrier frequency fp/2) could be easily varied at a step of
1.59 MHz. A typical profile of the pulse sequence gen-
erated in our experiment is shown in Fig. 2 by the thick
line. The profile was obtained at the pumping frequency
fp = 14.518 GHz with a bias magnetic field of 1852 Oe.

The last stage of measurements was the study of dif-
ferent generation regimes that occurred with the varia-
tion of the pumping pulse repetition period. We
obtained single-pulse and two-pulse generation
regimes. As was mentioned above, a single-pulse gen-
eration was observed when the pumping pulse repeti-
tion period was equal to the time of the signal circula-
tion in the ring (see Fig. 2). The two-pulse generation
was observed when the pumping pulse repetition period
was equal to half the time of pulse circulation in the
ring. Typical periodic pulse sequences observed in

Fig. 2. Profile of a parametrically generated sequence of
spin-wave pulses. The thick line represents the experiment,
and the thin line, the numerical calculation. The YIG film
thickness is 4.9 µm, the distance between the input and out-
put antennas is 8 mm, the microstrip resonator width is
50 µm, the bias magnetic field is 1852 Oe, the duration of a
pumping pulse is 24 ns, and the pumping pulse repetition
period is 315 ns.
these two generation regimes are shown in Fig. 3. Note
that, in the case of a stationary generation, a small vari-
ation of the pumping pulse repetition period (of about
10 ns) suppressed the generation.

To explain the experimental results, we performed
analytical calculations and a numerical modeling of the
experiment. The model was constructed using the fol-
lowing simplifying assumptions: the ring was assumed
to be homogeneous with respect to the wave propaga-
tion, and the ring properties, including the transmission
loss per unit distance, were described as if they were
completely determined by the ferromagnetic film in
which the BVMSW propagates. We stress that the
model takes into account the spatially localized para-
metric amplification of only the lowest thickness mode
of the BVMSW. To obtain a unidirectional circulation,
for the idle pulse we set a much greater transmission
loss (compared to the natural one for YIG) in the time
intervals within which the pumping was turned off. As
a result, the parametrically generated backward idle

Fig. 3. Experimental profiles of the envelope of the gener-
ated periodic pulse sequence. (a) Repetition period of the
pumping pulses is equal to the period of spin-wave pulse
circulation, i.e., Tp = tr = 315 ns; in this case, one spin-wave
pulse circulates in the ring. (b) The repetition period of the
pumping pulses is equal to half of the period of spin-wave
pulse circulation, i.e., Tp = tr /2 = 155 ns; in this case, two
spin-wave pulses circulate in the ring.
JETP LETTERS      Vol. 77      No. 6      2003
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pulse was completely suppressed until its next collision
with the amplified pulse.

The modeling was performed on the basis of the sys-
tem of nonlinear parametric equations proposed in our
previous publication [14]. The equations were obtained
for the spatial Fourier components of the alternating
magnetization of the BVMSW and the pumping micro-
wave field. In the present paper, these equations are
modified for the case of a periodic ring structure by
introducing a discrete wave number with the step ∆k =
2π/l, where l is the length of the ring film resonator. The
equations take into account the three-wave parametric
interaction of the microwave magnetic field of the
pulsed periodic parallel pumping with the BVMSW
packet, the four-wave process of the wave self-action in
the wave packet, and the dispersion of the BVMSW.
Note that, in the equations for the spatial Fourier com-
ponents of the dynamic magnetization, we use the real
spectrum of traveling BVMSWs in the ferromagnetic
film, ω(k), but with a discrete wave number k.

An example of the numerical calculation performed
for a single-pulse generation regime is shown in Fig. 2
by the thin line. The calculation shows that, when the
pumping pulse repetition frequency is equal to the sig-
nal circulation frequency in the ring, a spin wave pulse
arises starting from the noise level and then rapidly
grows in amplitude. Owing to the large value of the
parametric gain, the shape of the generated pulse
observed immediately after the pumping is turned off is
mainly determined by the duration of the pumping
pulse, the spatial length of the pumping region, and the
phase relations in the ring. As the pulse travels through
the ring, the pulse shape is slightly smoothed by disper-
sion. When the amplitude of the generated pulses
approaches the threshold of the nonlinear four-wave
self-action, i.e., the single-soliton threshold,2 a broad-
ening of the spectrum of spatial and, hence, temporal
harmonics of the wave packet takes place. As a result,
harmonics lying outside the pumping spectral band are
generated. These harmonics do not participate in the
amplification process and, hence, are strongly attenu-
ated. The persistent energy transfer to these harmonics
owing to the four-wave self-action process is enhanced
with growing amplitude of the wave packet envelope;
thus, it raises the resulting loss level in the system and,
finally, limits further amplitude growth. The results of
the numerical modeling suggest that, although the
pulses generated in a stationary regime do not have the
shape of a single envelope soliton, they are formed
according to the soliton mechanism. This process is
characteristic of our wave system, in which the disper-
sion and the nonlinear coefficients have different signs.

Now, let us consider the interpretation of the period-
icity observed in the positions of the generation fre-
quency bands (when the half pumping frequency varies

2 Modeling shows that, for a given duration of the pumping pulses,
the single-soliton threshold is 1–2 degrees when measured in
terms of the precession angle of the local magnetic moment.
JETP LETTERS      Vol. 77      No. 6      2003
at a step of 1.59 MHz). To explain this effect, we per-
formed numerical modeling for two cases. The results
of the calculations are shown in Fig. 4. Figure 4a corre-
sponds to the case (same as in Fig. 2) when one-half the
pumping frequency exactly coincides with the fre-
quency of one of the resonance modes of the ring (the
15th mode in the given specific case), and Fig. 4b, to the
case when half the pumping frequency lies exactly in
the middle between the 14th and 15th modes (i.e.,
1.59 MHz upwards from the 15th mode). The upper
curves in Fig. 4 show the power profiles of the pulses,
and the lower curves, their phase profiles.

The calculation shows that an effective generation
of pulse sequences is possible in both cases. The ampli-
tude profiles of the generated pulse sequences fully
coincide. However, their phase profiles exhibit some
difference. In case (a), all pulses of the sequence are in
phase, whereas in case (b), the phase changes from
pulse to pulse by 180°.

This effect has the following physical explanation.
The periodic pulsed pumping with the pulse repetition
frequency equal to the frequency of signal circulation in
the ring, 3.18 MHz, possesses a discrete frequency
spectrum, and the harmonics of this spectrum are
spaced at 3.18 MHz. This means that the parametric
pumping spectrum measured at half the frequency (the
frequency of the parametric amplification of spin
waves) consists of harmonics spaced at 1.59 MHz.
Then, it is only every second pumping harmonic that
may coincide with an eigenfrequency of the ring reso-
nator and, hence, make an effective contribution to the
parametric amplification of the circulating wave
packet. The spectrum of the periodic sequence of rect-
angular rf pulses is known to have the maximal har-

Fig. 4. Calculated profiles of the instantaneous power and
the phase of the envelope of the parametrically generated
pulse sequence: (a) half the pumping frequency is equal to
7261 MHz, which corresponds to the 15th resonance mode
of the ring; (b) half the pumping frequency is equal to
7259.4 MHz, which corresponds to the middle point
between the 14th and 15th resonance modes of the ring.
Other parameters are the same as in Fig. 2.
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monic at the pulse carrier frequency (in our case, fp). As
the pumping carrier frequency is sequentially shifted by
3.18 MHz, one-half the frequency fp of this maximal
harmonic sequentially coincides with either an eigen-
frequency of the ring or a middle point between eigen-
frequencies. In the first case, the maximal gain due to
the parametric pumping corresponds to only one eigen-
frequency of the resonant ring, and this frequency
becomes the carrier frequency of the parametrically
generated pulse sequence. In the second case, the max-
imal parametric gain corresponds to two eigenfrequen-
cies of the resonant ring, and precisely these two fre-
quencies prove to be the initial frequencies of the para-
metrically generated pulse sequence. Thus, in this case,
we have a sequence of antiphase pulses with the sup-
pressed central carrier frequency (Fig. 4b).3 Similar
conclusions follow from the numerical Fourier trans-
formation, which yields the frequency spectra of pulse
sequences shown in Fig. 4.

Of interest is to consider the analogy between the
results obtained by us and the theoretical predictions
[20] that follow from the analytic solutions of the
boundary-value problems for a one-dimensional non-
linear Schrödinger equation. In particular, in the cited
paper [20] it was shown that, for periodic boundary
conditions modeling a nonlinear dispersion ring, two
types of nonlinear solutions are possible. One of these
types of nonlinear solutions (“bright soliton trains”)
exhibits an analogy with the ordinary linear solutions to
the Schrödinger equation. The second type has no anal-
ogy with linear solutions and is unique in this sense. In
[20], the latter type of solutions was called symmetry
breaking solution. Using the terminology of [20] for
describing the results of our study, we can say that Fig.
4b shows the nonlinear sequences maintaining the sym-
metry, and Fig. 4a, the symmetry breaking sequences.
Thus, the nonlinear system under study, in which the
stationary state is determined by not only four-wave but
also three-wave parametric interactions, is another type
of a system that allows the existence of nonlinear sta-
tionary states of two internally different types.

In closing, we note that we obtained and studied the
parametric generation of intense solitonlike spin waves
under the effect of a periodic pulsed parallel magnetic
pumping in ring resonators made on the basis of ferro-
magnetic films. Depending on the pumping pulse repe-
tition period and the position of the pumping pulse rep-
etition frequency with respect to the resonator eigenfre-
quency spectrum, we observed the generation of
different types of sequences. We proposed a theoretical
explanation of the phenomenon under investigation on
the basis of the numerical solution of a system of non-
linear equations with allowance for the three-wave and
four-wave interactions and the spectral features of spin
waves in a ferromagnetic film. It was found that the lim-
itation of the amplitude growth for a parametrically

3 Note that, here, one can easily see an analogy with the results of
our previous work [19].
amplified pulse circulating in the film resonator and the
formation of the stationary profile of this pulse follow
the soliton mechanism.

More detailed experimental data and their compari-
son with theory will be published elsewhere.
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For a two-dimensional Heisenberg ferromagnet, a class of steady-state nonlinear excitations above the ground
state is considered. The excitations have the form of stripes and exhibit quasiparticle properties. The effect of
an external magnetic field on the basic characteristics of these nonlinear topological excitations is investigated.
The magnetic field is found to destroy the instanton-type solutions (kinks) and to generate new particles with
the properties of vortex–antivortex pairs: each particle has a zero topological charge and an energy close to the
double skyrmion energy 8πJS2. The dispersion of the quasiparticles and the dependences of their energy and
momentum on the number of magnons localized by one excitation are discussed. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 75.10.Hk; 75.30.Kz
Soliton solutions obtained for a two-dimensional
ferromagnet remain the object of intensive research in
physics of low-dimensional systems until this day. The
study of nonlinear spin structures in the continuum
approximation leads to a wide variety of configura-
tions, whose ordering depends on the dimension and
symmetry of the problem [1].

To obtain topological solitons, the usual way is to
consider the mapping of a sphere, the physical space of
the spin order parameter, onto a sphere homeomorphic
to the xy plane. The resulting solutions, which include
skyrmions [2], easy-axis solitons [3], out-of-plane vor-
tices [4], etc., along with the recent helical [5] and
nodal [6] solutions, naturally acquire a preferred axis
and possess a preferred point in the plane. However, a
two-dimensional plane also allows another compactifi-
cation, in the form of a cylinder (Fig. 1), which brings
up the question as to the mapping of a physical sphere
S2 on the manifold R × S1. In this case, one may obtain
qualitatively new steady-state solutions with a pre-
ferred line. From symmetry considerations, it follows
that these solutions must possess certain interesting
properties, such as a nonzero momentum along the pre-
ferred line, a particular topological charge, and so on.

In this paper, we show that the aforementioned non-
linear excitations form a separate class of soliton solu-
tions and can be obtained explicitly with allowance for
the spatial symmetry. In addition, these nonlinear exci-
tations have some properties that are characteristic of
bound vortex–antivortex (skyrmion–antiskyrmion)
pairs [7, 8]. However, unlike the latter, they represent
indivisible stripelike spin structures with zero topolog-
ical charge; i.e., they cannot be represented as a bound
state of two topological particles with opposite charges.
0021-3640/03/7706- $24.00 © 20305
It is possible that, in the numerical studies of a number
of magnetic systems [9, 10], the authors dealt with this
kind of excitation rather than with the skyrmion–anti-
skyrmion pairs.

Consider a conventional Hamiltonian for a planar
ferromagnet:

(1)

where J⊥  > 0 and Jz > 0 are the exchange integrals for
the in-plane and z components, respectively, of the ith
spin and its nearest neighbors lying at a distance δ from
it; the last term describes the interaction with the exter-
nal magnetic field h directed along the z axis.

To simplify the study in the long-wave length
approximation, we use the continuum version of the
spin equations of motion, which are expressed in
terms of the variables θ and φ and correspond to
Hamiltonian (1):

H
1
2
--- Ji i δ+,

⊥ Si
⊥ Si δ+

⊥

i δ,
∑–=

–
1
2
--- Ji i δ+,

z Si
zSi δ+

z h Si
z,

i

∑–
i δ,
∑

Fig. 1. Homeomorphic transformation of a two-dimen-
sional plane into a cylinder.
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(2)

(3)

To obtain a vertical stripe ordering, we use the parame-
trization θ = θ(y), φ = φ(x). Then, from Eq. (3), we
derive φ = qx + φ0, where q describes the period along
the x axis that is matched with the stripe width Lx: q =
2π/Lx; outside the stripe, the value of φ coincides with
φ0, which is an arbitrary initial value. Note that the
choice of a piecewise continuous function for the azi-
muth variable φ does not violate its harmonic behavior
in the plane as a whole. For steady-state solutions tend-
ing to one of the possible ferromagnetic ordered states
characterized by an angle θ = θ0 when y  +∞,
Eq. (2) can be resolved as follows:

(4)

"S θ∂φ
∂t
------sin J ⊥ S2 4 θ θ θcos

2 ∆θ+sincos( )=

– J ⊥ S2 θ θ —θ( )2 —φ( )2+( )sincos

– 4JzS2 θ θ JzS2 θ θ —θ( )2sincos+sincos

+ JzS2 θsin
2 ∆θ hS θ,sin–

–"S
∂θ
t

------ J ⊥ S2 θ∆φsin 2 θ —θ—φ( )cos+( ).=

dθ
dy
------ 

 
2

=  

q2 4
K
J
----+ 

  θsin
2 θ0sin

2
–( ) 2

h
JS
------ θ θ0cos–cos( )–

1
K
J
---- θsin

2
+

---------------------------------------------------------------------------------------------------------------------,

Fig. 2. Spin configurations of nonlinear topological excita-
tions in the absence of magnetic field: (a) kinks and (b) out-
of-plane solitons.
where K = Jz – J⊥  and J = J⊥ . The boundary value θ0 is
determined from Eq. (2): sinθ0(4Kcosθ0 + Jq2cosθ0 +
h/S) = 0, which yields the solutions (i) θ0 = 0, π (below,
we consider only θ0 = 0 for h > 0) and (ii) cosθ0 =
−(h/JS)(q2 + 4K/J)–1.

For the case K = 0 and h = 0, only the first type of
the boundary conditions fits expression (4). Then, we
arrive at a solution similatr to a topological kink in a
one-dimensional system: θ = 2tan–1[exp(–q(y – y0))],
where y0 is an unessential constant representing the
coordinate of the kink center. For an exchange anisot-
ropy of the easy-axis type with K > 0, the solution θ =
θ(y) can be expressed in an implicit form:

(5)

Similar expressions can be obtained for an easy-
plane anisotropy with K < 0. However, in the latter case,
two different solutions are possible (Fig. 2): (a) kinks
corresponding to the boundary value θ0 = 0, which are
realized when |K/J | < q2/4, and (b) out-of-plane (OP)
solitons with the boundary value θ0 = π/2, which appear
when |K/J | > q2/4. Solution (a) for the polar variable
θ = θ(y) has the following inexplicit form:

(6)

Solution (b), or the OP solution, is obtained in a similar
way:

(7)

The spin structure of the OP type exhibits an interesting
effect, namely, the presence of an antiphase boundary
extending along the x axis (Fig. 2b). A smooth mono-
tonic variation of the angle θ in the form of a kink is
possible only in the nonphysical range from –π/2 to π/2
if the plus sign is chosen in Eq. (7), or in the range from
3π/2 to π/2 in the case of the minus sign. However, at
the point y0, where θ(y0) = 0(π), the planar spin compo-
nent S⊥  changes sign, which makes this structure ener-
getically unprofitable. To retain the same spin value
above and below the kink center y0 and to provide the
energy gain, we use the global rotation in the upper
half-plane ϕ  ϕ + π while remaining within the
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1
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2
+ θcos+
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physical range of variation of the angle θ ∈  [0, π]. This
explains the appearance of the antiphase boundary. The
topological charge

determined for an individual stripe is equal to unity for
kinks and to zero for OP solitons.

The phase diagram of the model is shown in Fig. 3a.
Above the curve, one can see a vast region correspond-
ing to kinks.

Let us consider the effect of an external magnetic
field h. The solution for the isotropic case (K = 0) with
the boundary value θ0 = 0 is

(8)

It has the form of a kink in the range from 0 to 2π and
exhibits an antiphase boundary accompanied by the
global rotation ϕ  ϕ + π above the point y0, at which
θ(y0) = π. Correspondingly, the soliton profile is trans-
formed to a “cap” shape (Fig. 4a). The topological
charge is Q = 0. The analysis with allowance for both

Q
1

4π
------ θ y( )sin θ y( )d ϕ x( )d∫∫=

–2 q2 h
JS
------+ y y0–( ) 

 exp
1 θ/2( )cos–( )
1 θ/2( )cos+( )

------------------------------------=

×

h
JS
------ q2 θ

2
--- 

  h
JS
------ q2+ h

JS
------ q2 θ

2
--- 

 cos
2

++cos– 
 

h
JS
------ q2 θ

2
--- 

  h
JS
------ q2+ h

JS
------ q2 θ

2
--- 

 cos
2

++cos+ 
 
----------------------------------------------------------------------------------------------------------------.

Fig. 3. Phase diagram of nonlinear excitations (a) with and
(b) without a magnetic field.
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the exchange anisotropy and the external magnetic field
shows that the region above the curve q2 + 4K/J + h/JS = 0
corresponds to antiphase kinks with the characteristic
length Ly = (q2 + 4K/J + h/JS)–1/2 along the y axis
(Fig. 4a). The region below this curve belongs to soli-
tons (we call them Takeno–Homma solitons (TH) [11]),
which correspond to the boundary value cosθ0 =
−(h/JS)(q2 + 4K/J)–1 and describe the in-plane spin
ordering with the antiphase boundary (Fig. 4b). They
are analogues of the OP solitons, and their topological
charge is also zero. As the field increases further, a soli-
ton is reduced to the homogeneous state. This occurs
when the field reaches the critical value hc = –4SK.

When the magnetic field h is turned on, the phase
diagram becomes somewhat modified (Fig. 3b). The
curve separating the region of the topological excita-
tions in the form of antiphase kinks from the region of
TH solitons is shifted downwards by h/4JS, so that the
TH soliton region is displaced to the point K/J = –1. For
the fields above some critical value hc, the formation of
TH solitons is impossible.

The dynamics of a planar ferromagnet is restricted
by the conservation laws that are also valid for topolog-
ical solutions [12]. To proceed with our consideration,
we use the following conserved quantities: the energy
E, the momentum P, and the number of localized mag-
nons N.

Fig. 4. Spin configurations of nonlinear excitations in the
presence of a magnetic field: (a) antiphase kinks and
(b) Takeno–Homma solitons.
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We represent the energy functional in the form

(9)

where the first term corresponds to the exchange inter-
actions; the second term is similar in form to a single-
ion anisotropy of the easy-axis type; and the third and
fourth terms describe the Zeeman component and the
gradient contribution, respectively. The appearance of

the preferred value q =  (the curve in
the phase diagram) results from the competition of two
tendencies: the dominant in-plane exchange (K < 0) and
the “one-ion anisotropy.”

The energy of one stripe E = Ebg + ∆E contains the
term proportional to the stripe area σstr,

(10)

(we call it the background energy, which, in the general
case, differs from the energy of the nontopological
ground state), and the additional energy

(11)

which is determined by the deviation of the polar angle
θ from its background value θ0. Unlike Ebg, this correc-
tion remains finite for an individual stripe.

The direct calculation of these quantities for soliton
solutions in the absence of the field,

(12)

and

(13)

shows that the topological excitations can be separated
into two types. Excitations of the first type (kinks in the
case under consideration) lie immediately above the
ground state when K > 0, and one can expect that, in
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   OP( ),
certain conditions, these excitations will possess quasi-
particle properties whose contribution to the thermody-
namic properties may be considerable. By contrast, the
solitons belonging to the second type are excited above
the spin configuration, which is not a ground state (in
our case, the OP solitons and the kinks in the case of
K < 0). This principle holds when the magnetic field is
taken into account. A simple analysis shows that the
antiphase kinks lie above the state with the energy Ebg =
–(2JzS2 + hS)σstr, which is the ground state in the case
of a small anisotropy |K | < h/4S; i.e., in the phase dia-
gram, they lie above the dotted line (Fig. 3b). When h <
4|K |S, both antiphase kinks and TH solitons are excited
above the background spin configurations, which do
not correspond to minimal energy.

Let us discuss in more detail the quasiparticle prop-
erties of the solitons belonging to the first type. First,
we note that common kinks in zero magnetic field rep-
resent instanton-type solutions that connect two equiv-
alent vacuum states, spin-up and spin-down, at y = ±∞.
Therefore, we consider only the antiphase kinks that
have well defined integrals of motion, the momentum
expressed as

,

and the total number of magnons localized by one exci-
tation:

We consider most closely the case of an isotropic ferro-
magnet with h ≠ 0. An antiphase kink has the energy
E = (–2JzS2 – hS)σarea + ∆E with

(14)

which is measured from the ground state energy at h >
4|K |S. For a soliton, the nonzero x component of the
momentum

has the form

(15)
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which determines the dispersion ∆E = ∆E(Px), namely,

∆E = 4JS2Lx  + h(Px/"q). In addition, the
nonzero value of momentum provides an opportunity
for a dynamical stabilization of a soliton [13]. Taking
into account the relation Px = "qN, one can consider
stripelike excitations as quasiparticles with an elemen-
tary momentum "q. The dependence E = E(N) also
exhibits a linear behavior for large N; i.e., each quasi-
particle makes an independent contribution to the
energy. The angular momentum of such a stripe soliton,

is zero. The dependences obtained by us (Fig. 5) can be
qualitatively explained without difficulties. An increase
in the stripe width Lx = 2π/q along the x axis is accom-
panied by its compression along the y axis according to

the formula Ly = , down to the minimal
value determined by the magnetic field. A further
growth of Lx leads to an increase in both the number of
magnons localized by a soliton and the soliton energy.
The soliton momentum Px tends to a constant value,
because the increase in Lx is compensated by a decrease
in the elementary momentum "q. The quasiparticle
energy tends to 8πJS2 when h  0 and q  0. The
appearance of an antiphase kink with the topological
charge Q = 0 in the case of h ≠ 0 can be interpreted as
the generation of a quasiparticle by the external mag-
netic field. The properties of this quasiparticle are
shown in Fig. 5 for a nonzero value of K and h > 4|K |S.
It should be noted that the quasiparticle energy is close
to the energy of the skyrmion–antiskyrmion pair pro-
duction. Such particles were used in the semiclassical
description of neutral excitations in a ferromagnet with
the quantum Hall effect [8]. From the point of view of
the theory developed by us, the appearance of a single
antiphase kink with the topological charge Q = 0 may
be misinterpreted as the generation of a vortex–antivor-
tex pair, i.e., a pair of two coupled topological particles
with opposite charges and a skyrmion energy of 4πJS2

per particle.
Thus, we have presented a theory of stripelike topo-

logical excitations in a two-dimensional Heisenberg
ferromagnet. We considered the effect of an external
magnetic field on the properties of topological excita-
tions. We have found quasiparticle excitations immedi-
ately above the ground state for both easy-axis and
easy-plane anisotropies. We have shown that the exter-
nal magnetic field breaks the instanton-type solutions
and generates new particles (antiphase kinks) with an
energy close to the double skyrmion energy 8πJS2.

We are grateful to Professor M.V. Sadovskiœ for dis-
cussing the results of this study. The work was sup-
ported in part by the Civilian Research and Develop-
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There is currently a large effort to explore spin–orbit effects in semiconductor structures with the ultimate goal
of manipulating electron spins with gates. A search for materials with large spin–orbit coupling is therefore
important. We report results of a study of spin–orbit effects in a strained InGaAs/InP quantum well. The spin–
orbit relaxation time, determined from the weak antilocalization effect, was found to depend nonmonotonically
on gate voltage. The spin–orbit scattering rate had a maximum value of 5 × 1010 s–1 at an electron density of
n = 3 × 1015 m–2. The scattering rate decreased from this for both increasing and decreasing densities. The
smallest measured value was approximately 109 s–1 at an electron concentration of n = 6 × 1015 m–2. This behav-
ior could not be explained by either the Rashba or the bulk Dresselhaus mechanisms but is attributed to asym-
metry or strain effects at dissimilar quantum well interfaces. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.63.Hs; 73.21.Fg; 72.25.Rb
In A3B5 semiconductors containing heavy metal ele-
ments, such as indium, spin–orbit effects are large
because of the increased coupling between valence and
conduction bands associated with strong relativistic
effects. In bulk materials, without magnetic impurities,
the only important mechanism producing spin–orbit
coupling is the bulk inversion asymmetry [1, 2]. In con-
trast, in semiconductor heterostructures, the electron
spin–orbit interaction can also be controlled by modifi-
cation of the subband structure using gate voltages [3],
strain [4], or selective doping [5].

The role of spin–orbit effects in semiconductors is
gaining significant attention because of recent interest
in the emerging fields of spintronics and quantum com-
putation [6, 7]. Key issues are the injection and detec-
tion of spin-polarized electrons, controlling and manip-
ulating single spins, and the design and experimental
realization of novel spintronic devices such as spin-
transistors, logic elements, and memory. One obvious
way to inject polarized electrons is to use ferromagnetic
contacts [8, 9]. It is also possible to exploit the spin-
polarized edge states in lateral quantum dot devices
subject to a magnetic field [10]. Another, more chal-
lenging, approach is to create a spin-polarized current
by employing spin–orbit coupling [11]. With the ulti-
mate intention of learning how to manipulate and mea-
sure electron spins locally by using gates to modify the
spin–orbit interaction, there is a vital interest in search-
ing for semiconductor materials and structures where
the electron spin–orbit interaction is large and highly
sensitive to gate voltages.

¶ This article was submitted by the authors in English.
0021-3640/03/7706- $24.00 © 20311
One method that gives information about the spin–
orbit coupling is the weak antilocalization (WAL)
effect. This is a quantum interference correction to the
conductivity, which appears as an abnormal positive
magnetoresistance in very low magnetic fields, preced-
ing the more usual negative magnetoresistance associ-
ated with weak localization [12]. In metals, WAL was
thoroughly studied and understood in the 1980s [13]. In
semiconductors the situation is more complex, because
new mechanisms involving spin–orbit effects come into
play, such as bulk nonsymmetry, asymmetry at hetero-
interfaces and in quantum wells, and two-dimensional
quantum confinement [1].

In this work, the WAL effect is used to study spin
relaxation due to the spin–orbit interaction in a strained
InGaAs/InP quantum well (QW) structure. Compared
with an isomorphous (lattice-matched) structure [14],
the strained QW structure showed a larger sensitivity to
the gate voltage. In addition an anomalous, nonmono-
tonic dependence of the spin–orbit time constant on
electron concentration was observed. This cannot be
explained by conventional bulk inversion and/or
Rashba mechanisms and suggests that the existing the-
oretical understanding of spin–orbit effects in transport
phenomena in semiconductor structures needs to be
improved.

EXPERIMENTAL

The QW structure studied here was grown on a
(100) InP semi-insulated substrate and consisted of the
following layers (measured up from the substrate):
450 nm of undoped InP buffer layer, 10 nm InxGa1 – xAs
003 MAIK “Nauka/Interperiodica”
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(x = 0.76) quantum well, a 13-nm undoped InP spacer
layer, followed by a 13-nm InP doped layer (Nd = 4 ×
1023 m–3) and a 13-nm undoped cap layer. The indium
content in the quantum well was higher than that of
InGaAs lattice-matched to InP (x = 0.53) so the QW
was compressively strained.

Standard optical photolithography and wet etching
was used to form a 0.2-mm-wide Hall bar with 0.4-mm
separation between adjacent potential contacts. A
40-nm SiO2 dielectric layer and a gold gate were depos-
ited on top of this. Measurements were performed in a
He3 system; experimental details are given in [14].

Figure 1 shows the electron concentration deter-
mined from Shubnikov–de Haas oscillations and the
Hall mobility (µ). These transport properties are very
similar to those observed earlier in the isomorphous lat-
tice-matched sample studied previously [14]. In partic-
ular, the concentration varies linearly with gate voltage,
while the mobility has a somewhat slower dependence.

The WAL was used to investigate the spin–orbit
scattering action to the conductivity appears as a non-
monotonic dependence of the magnetoresistance at
very low magnetic fields, µB ! 1. An initial positive
magnetoresistance is followed by the more usual nega-
tive term. In the theoretical description of the interfer-
ence corrections, characteristic values of the conduc-
tance and magnetic field appear, analogous to the Bohr
radius and energy in the theory of excitons. It is there-
fore convenient to plot the conductance (inverse resis-
tance) in units of the quantum conductivity G0 = e2/πh
and the magnetic field normalized by a characteristic

field Btr given by "/4eDτ, where D = /2 =
"2πnµ/m*e is the diffusion coefficient of the two-

v F
2 τ

Fig. 1. Electron concentration (solid circles) determined
from Shubnikov-de Haas oscillations and the Hall mobility
(open squares) of the InGaAs/InP QW structure. Insert
shows the characteristic magnetic field Btr = "/4eDτ as a
function of the gate voltage.
dimensional electrons and τ is the transport scattering
time. Btr depends on both electron concentration and
mobility and therefore has a stronger gate voltage
dependence than the density (see insert to Fig. 1),
changing by more than an order of magnitude over the
range of Vg used in the experiment. It should be further
noted that, because it is desirable to eliminate the irrel-
evant classical Lorentz term in the magnetoconductiv-
ity σxx(B) = σ0/(1 + µ2B2), it is also convenient to plot
the inverse magnetoresistance ∆(1/ρxx) = 1/ρxx – 1/ρ0
rather than ∆σ = σxx – σ0, where σ0 is the zero field
value and ρ0 = 1/σ0. This procedure, which would pro-
duce zero in the absence of quantum interference cor-
rections, removes the Lorentz term.

Figure 2 shows experimental traces plotted in this
way for different gate voltages. The narrow peak
around zero magnetic field is the WAL effect, which
appears when the spin–orbit scattering rate is compara-
ble to or large than the inverse phase breaking time 1/τϕ.
It is clear that in this sample the WAL effect shows a
nonmonotonic dependence on gate voltage, reaching a
maximum around Vg = –0.3 and decreasing for both
large positive and large negative voltages. Such behav-
ior is unusual and is discussed below.

To extract the phase-breaking and spin–orbit scat-
tering times, we attempted to fit the experiment with the
theoretical expression, derived for arbitrary magnetic
fields [15]:

(1)

where

(2)

with D the diffusion coefficient and τ, τso and τϕ the
elastic scattering time, the spin–orbit relaxation time,
and the phase-breaking time, respectively. The function
F(x, βi), defined in [15, 14], describes the interference
contributions from the three triplet and one singlet dif-
fusion channels. This equation, derived for an arbitrary
magnetic field, reduces to the well-known expression
given by Hikami, Larkin, and Nagaoka (HLN) [16] in
the limit of small magnetic fields B ! Btr. For the fitting
procedure, Btr is known, so there are two adjustable
parameters βϕ and βso or equivalently (τϕ and τso). One
more remark should be added here: to fully describe the
WAL effect requires a spin-dependent vector potential
with a three-dimensional character [17–19]. The two
major spin–orbit relaxation mechanisms (Dresselhaus
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and Rashba) are not additive, so in general more com-
plicated expressions with additional fitting parameters
should be used to describe the experiments. If, however,
one mechanism dominates, a single scalar parameter τso

suffices, which can then be treated on the same footing
as τϕ.

The thin solid lines in Fig. 2 are theoretical fits using
this Eq. (1). Details of the fitting procedure are
described in [14]. Although this theory should be valid
for arbitrary magnetic fields, it was impossible to obtain
a good fit over the whole magnetic field range for any
of the data. Fitting the central part (small B) resulted in
large deviations at higher fields and vice versa. This is
a common problem in semiconductors encountered by
many authors, e.g., [15]. A similar large discrepancy
between theory and experiment observed in the isomor-
phous InGaAs QW sample [14] could only be recon-
ciled by introducing an additional, empirical, scale
parameter of order two. It was argued there that one
reason for the discrepancy might be the fact that the
spin–orbit scattering time was comparable to the trans-
port relaxation time but this is not the case here: for all
the curves shown in Fig. 2, βso = τ/τso ≤ 0.1, satisfying
the condition βso ! 1.

Given the large discrepancy between experiment
and the theoretical description of the WAL effect
(which appears to be a general property of high-mobil-
ity 2DEG semiconductors in high magnetic fields), it is
not immediately obvious how to extract values of the
spin–orbit relaxation time. Further theoretical effort is
needed to fix this problem. However, the amplitude of
the WAL is clearly affected by τso, and we have chosen
to fit it using the low-field part of the data, where the
turnover from a negative to a positive magnetoconduc-
tivity is sensitively dependent on τso. This approach has
the advantage that it is also consistent with the proce-
dure commonly used in the literature, whereby the low-
field peak is fitted to the HLN expression [5, 16, 19–21]
with the implicit understanding that deviations at
higher fields are to be expected because of inadequacies
in the theory.

The fitted theoretical curves shown in Fig. 2 are
plotted well beyond the range of the fit to emphasize the
unexpected discrepancy between theory and experi-
ment and to stimulate the attention of theorists.

DISCUSSION

Although the appearance of the WAL effect requires
strong spin–orbit scattering, the curvature of the WAL
peak at B = 0 and the characteristic width are in fact not
determined by τso but rather by the phase breaking time
τϕ [14, 22]. It is the amplitude of the WAL, in particular
the crossover from WAL to weak localizing behavior,
that is determined by the ratio τϕ/τso.

From Fig. 2 it can seen that the central part of the
WAL peak at B = 0 changes little for different Vg, and
JETP LETTERS      Vol. 77      No. 6      2003
indeed all the fits gave the same value for parameter
βϕ = 0.010 ± 0.001 (for curve at Vg = +0.1, where the
WAL had vanished, βϕ was set to 0.010, and only βso

fit). The WAL peak is narrow, because its width is deter-
mined not by βso but rather by βϕ, which can be very
small in high-mobility samples. Without spin–orbit

Fig. 2. Experimental traces of the magnetoresistance for
different gate voltages at T = 0.36 K. (a) Vg = 0.1, 0, –0.1,
−0.2, and –0.3 V; (b) Vg = –0.3, –0.4, –0.5, and –0.6 V. Thin
solid lines are best theoretical fits to the experiment using
Eq. (1).

e
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Fig. 3. Phase-breaking time obtained from the set of data in
Fig. 2 as a function of the gate voltage. Straight line is the
theoretical limit due to electron–electron scattering.

Fig. 4. (a) Spin–orbit scattering rate determined from data
in Fig. 2 as a function of electron concentration, (b) spin–
orbit magnetic field parameter Bso = "/4eDτso as a function
of electron concentration calculated on the basis of Figs. 1
and 4a.

so
so
scattering, a weak localization peak would appear with
the same width but of opposite sign.

The phase-breaking time extracted from the fits to
the data is plotted in Fig. 3 compared with the predic-
tions of electron–electron scattering calculated from a
Fermi liquid model [12, 23]:

, (3)

with G0 = e2/πh and kBTτ/" ! 1. The experimental val-
ues of τϕ shown in Fig. 3 are all smaller than predicted.
In the literature, an empirical coefficient of order 2 is
often introduced to bring the experimental data into
better agreement with Eq. (3) [24, 25], but the discrep-
ancy is larger than this. While this model generally
works well in metals, where Fermi energy is large and
the electron gas can be considered as being very uni-
form [12, 13], deviations appear at low temperatures,
and a fortiori in semiconductors. The phase-breaking
time is almost universally observed to saturate as the
temperature is lowered. For all the data shown in Fig. 3,
the temperature was sufficiently low that this saturation
had occurred. That is, the absence of any significant
gate voltage dependence in τϕ reflects the temperature
saturation rather than an intrinsic insensitivity to elec-
tron concentration. The saturation implies that there
exist additional phase-breaking mechanisms, the analy-
sis of which is not the topic of this paper.

Figure 4 shows the spin–orbit scattering rate deter-
mined from the fits to the data in Fig. 2. It is evident that
τso is a nonmonotonic function of the electron concen-
tration. In 2DEG systems, the two major spin–orbit
scattering mechanisms identified in the literature are
the Dresselhaus term, associated with the bulk zinc-
blend crystal inversion asymmetry, and the Rashba
term, associated with built-in electric fields [26]. To
identify which mechanism dominates here, it is helpful
to consider the dependence on electron concentration
of Bso = "/4eDτso [26, 20, 21]. This value, deduced from
the data in Fig. 4a and the transport parameters shown
in Fig. 1, is plotted in Fig. 4b.

When the Dresselhaus mechanism dominates, Bso

should increase with increasing density [20], but in
samples where the spin–orbit coupling is large, such as
that considered here, the Rashba term usually domi-
nates. The Rashba term results from structural asym-
metry and is proportional to the internal electric field.
Because the field is proportional to the surface charge
density, it should therefore increase as the concentra-
tion in the quantum well increases (see, e.g., [27]). In
general, the Rashba effect may therefore lead to a non-
monotonic dependence of spin–orbit splitting on gate
voltage with a minimum corresponding to a symmetric
quantum well [28]. In our case, however, we observe a
maximum of the spin–orbit scattering rate (Fig. 4). To
the best of our knowledge, this is the first report of such
behavior. The nonmonotonic dependence of τso on elec-

1
τϕ
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kBT
"
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πG0

σ0
----------
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tron concentration in Fig. 4 cannot be explained by
either the Dresselhaus or the Rashba mechanisms, and
some extra effect, such as strain or the role of the inter-
faces, must be involved. In the literature, the role of
interfaces in the Rashba mechanism is somewhat con-
troversial. In the effective mass approximation, the
expectation value of a (smooth) potential gradient inte-
grated over all space is always zero [18, 29]. More gen-
erally, the contribution from each separate interface is
as large (or even larger) as that from the quantum well
asymmetry [29, 30]. The two interfaces in a quantum
well often have different properties, resulting, for
example, from the growth process. As a result, changes
in the amplitude of the electron wavefunction at each
interface, produced by changes in gate voltage, will be
reflected by changes in any asymmetry associated with
having two different interfaces. The unexpected exper-
imental observation that τso is a nonmonotonic function
of gate voltage shows that such an effect plays an
important role here.

An alternative method of investigating the strength
of the spin–orbit coupling is to use information from
the beat patterns of the low-field Shubnikov–de Haas
(SdH) oscillations [30–33]. There has, to our knowl-
edge, been no published comparison of results obtained
in this way with those deduced, in the same sample,
from the WAL effect. In [28], the authors observed
beats in SdH oscillations and an anomalous positive
magnetoresistance at low field, which could be due to
the WAL effect. However, in a more detailed study, the
authors of [34] suggested the situation is more com-
plex, with the observed positive magnetoresistance
being due to a combination of several factors, including
the presence of two spin subbands, a corrugated quan-
tum well, mobility anisotropy, and “possibly weak
antilocalization.” In the sample studied here, and also in
the isomorphic sample studied previously [14], which
had a much larger spin–orbit scattering rate, a careful
examination of the SdH oscillations over a wide range
of gate voltages revealed no sign of any beats. In other
samples, under conditions when there was some paral-
lel conduction, beats similar to those observed by other
authors could sometimes be seen. However, when ana-
lyzed in detail by making gray-scale plots using many
traces with small steps in gate voltage, the systematic
behavior expected from spin–orbit splitting could not
be confirmed. In our samples, we identify the beat pat-
tern observed with interference between two sets of two
SdH frequencies, originating from the gated and
ungated parts of the sample, and coupled through the
parasitic parallel conduction. A similar observation was
made by Ensslin et al. [35] when they also failed to find
any beats in a high-quality InAs/AlSb quantum well
sample.

Spin–orbit relaxation in a strained InGaAs/InP QW
structure was studied using the WAL effect. The spin–
orbit relaxation time was found to depend strongly, and
nonmonotonically, on the gate voltage, with the maxi-
JETP LETTERS      Vol. 77      No. 6      2003
mum scattering rate (1/τso = 5 × 1010 s–1) reached at a
density of n = 3 × 1015 m–2. This behavior cannot be
explained by either the Rashba or bulk Dresselhaus
mechanisms but is rather attributed to asymmetry or
strain effects at dissimilar QW interfaces.

Compared with a similar but unstrained sample, the
spin–orbit scattering rate here is smaller (by a factor of
over 100 at the highest densities). In the strained sam-
ple, τso shows a strong gate voltage dependence (vary-
ing from 20 to 1000 ps), while in the unstrained sample
τso was only weakly dependent on electron concentra-
tion. This demonstrates that strain can be used as a tool
for producing desirable spin–orbit properties when
engineering materials for spintronics applications. The
exact mechanism responsible for the variation of the
spin–orbit coupling in strained samples is not yet
understood and is the subject of further investigations.
Further theoretical work is also needed to correctly
explain the experimentally observed magnetic field
dependence, particularly in samples where the WAL
effect is large.
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dian Institute for Advanced Research (CIAR). We
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In order to split the influence of the orbital and spin effects on the in-plane magnetoresistance of a quasi-two-
dimensional (2D) gas, we derive its linear response function and dielectric function for the case of anisotropic
effective mass. This result is used for the calculation of elastic transport relaxation time of a quasi-two-dimen-
sional system in a parallel magnetic field. The relaxation time is proved to be isotropic in the low-density limit
for the case of charged impurity scattering, allowing us to separate the two contributions. © 2003 MAIK
“Nauka/Interperiodica”.
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Among a variety of experimentally used two-
dimensional semiconductor structures, some possess
the anisotropy of a Fermi surface originating from that
of a bulk material, including n-type Si-MOSFETs on
other than (100) surfaces [1], AlAs heterostructures [2],
p-type Si and GaAs structures [3]. The transport prop-
erties of such anisotropic semiconductors have been
addressed widely [4–6], and it is well known that the
Fermi surface anisotropy gives rise in general to the
anisotropy of the relaxation time, even if the scattering
potential is isotropic [5].

Another possibility is externally introduced anisot-
ropy through the application of a magnetic field parallel
to a quasi-2D layer, known to deform a Fermi surface
[7] due to the so-called orbital effect [8]. In this case,
however, there is additionally a coupling of parallel
field to the particles’ spins, leading to the partial spin
polarization of the system [9, 10] and subsequent
change of screening [11] (so-called spin effect).
Although substantial interest [2, 9–15] has recently
been attracted by longitudinal magnetoresistance (MR)
studies of quasi-two-dimensional systems, it has
remained unclear so far how the two effects work
together [12].

In this letter, we address the screening properties of
an anisotropic 2D gas, deriving the linear response
function for the case of an elliptic Fermi surface. This
result is then used to evaluate the transport relaxation
time τ for elastic charged impurity scattering, which
surprisingly turns out to be isotropic in the low-density
limit. Furthermore, for a partially spin-polarized aniso-
tropic 2D system, the relaxation time for each spin sub-
band is also shown to be isotropic, allowing finally to
reach the main result of the paper—to separate the

¶ This article was submitted by the author in English.
0021-3640/03/7706- $24.00 © 20317
influence of the orbital and spin effects on the longitu-
dinal magnetoresistance of a diluted quasi-2D gas.

In the following, we utilize the simplest possible
representation of anisotropy—the elliptic Fermi sur-
face in the effective mass approximation. The interac-
tions are treated in the random phase approximation
(RPA), so that the screened linear response function is
equal to the linear response of a free particles gas [16]:

(1)

where Ek is the kinetic energy of a quasiparticle with
momentum k, f0(Ek) is the zero temperature Fermi–
Dirac distribution function, gv , gs are the valley and
spin degeneracies. The excited state |n〉  contains a sin-
gle pair of a quasiparticle with momentum k + q and a
quasihole with momentum k, and the matrix element of
the density fluctuation operator (ρq)n0 is equal to unity.
The last property originates entirely from the Bloch
type of the Hamiltonian eigenfunctions in the effective
mass approximation, similar to the isotropic case [16].

We perform the following change of coordinates to
rewrite integral (1) in a spherically symmetric form:

(2)

The kinetic energy depends solely on the length of the
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and for integral (1) we have

(3)

In view of the spherical symmetry, the integral value in
(3) is invariant to rotation of vector ; hence, the linear
response function depends only on its length . The
integral in (3) would be the same for an isotropic Fermi
surface as well; thus, the only difference from Stern’s
linear response function [17] is due to the normalizing
prefactor proportional to the density of states of an

anisotropic Fermi gas D = gv gs /2π"2. Finally,
we get for χ

(4)

The linear response function (4) of an anisotropic sys-
tem depends on the direction of the perturbation wave

vector q through the variable  = ((qx/ )2 +

(qy/ )2)1/2, so that the screening does become aniso-
tropic, in contrast to the case of an isotropic Fermi sur-
face [17]. Note, however, that this anisotropy is the
same as that of kinetic energy as a function of momen-

tum, since  = Eq/EF.
At the same time, we are able to find the RPA static

dielectric function [16]:

, (5)

where V(q) = 2πe2/q is the 2D Fourier transform of the
bare Coulomb interaction potential and qTF = 2πe2D is
the Thomas–Fermi screening parameter [1].

We now turn to the application of our results to the
transport properties of anisotropic 2D Fermi gases.
Expression (5) for the dielectric function enables one to
find the elastic transport relaxation time. In general,
τ(k) is anisotropic, and calculation of this could be a
rather complicated procedure [6, 18]. As we show
below, for the case of screened charged impurity scat-
tering, τ is still isotropic in the low-density regime and
can be obtained analytically. One has for elastic scatter-
ing transport relaxation time

(6)

where vk = "–1dEk/dk is the particle’s group velocity.
Note that the relaxation time isotropy is already
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implicit in this expression and is verified in what fol-
lows. The first term in the integrand is the square of a
scattering matrix element in the Born approximation
[5], where we have neglected all the formfactors of the
real Coulomb interaction between a quasi-2D electron
(hole) and a charged impurity [1]. Applying the change
of coordinates (2) to k' space, we find from (5):
V(q)/ε(q, 0) = 2πe2(q + qTFφ( ))–1, which, in the low-

density limit ( ,  ! qTF), reduces to1 

. (7)

The second term in (6) accounts for the loss of initial
velocity in a scattering event and is similar to the factor

1 –  in the isotropic case [18]. Changing to

polar coordinates ,   , θ, we rewrite this in

terms of the scattering angle θ: 1 – vk · vk'/  = 1 – cosθ +
A(k)sinθ, where the number A(k) depends on the initial
particle momentum k. Hence, in the low density limit
we find

(8)

since  = (2 – 2cosθ)1/2, and the part of the integrand
odd in θ gives no contribution to the integral. This final
expression for the elastic scattering time in the low-
density limit is essentially the same as in the isotropic
case, the only difference represented by the reciprocal
density of states D–1 in the prefactor. This finding has
two important consequences: in the low-density limit,
within the elliptic deformation of the Fermi surface, the
transport relaxation time (i) remains isotropic and
(ii) increases proportionally to the density of states D.2 

Comparing to previous studies, we find that our
result for the relaxation time isotropy recovers the one
derived earlier for short-range scatterers [6], since, for
the case of zero spin polarization considered so far, the
relevant Fourier components of the screened impurity
potential (7) do not depend on the wave vector at all,
according to (4). The predicted increase of the relax-
ation time with the Fermi surface deformation implies
of course an increase in conductivity, i.e., the negative
magnetoresistance in the direction parallel to the field,
caused by the orbital effect, as the effective mass in this
direction remains unchanged [7]. This is in contrast to

1 The low-density limit, determined by the inequality ,  !

qTF, is essentially the limit of strong interactions rS @ 1, where rS
is the Wigner–Seitz radius [1]. Strictly speaking, the utilized ran-
dom phase approximation is expected to fail in this limit, and the
local field corrections should be taken into account [16]. The sim-
plified treatment we use is easily solved and seems to catch the
major effect of Fermi surface anisotropy.

2 One can easily see that these conclusions are also valid for the
elastic scattering lifetime, which corresponds to omitting the sec-
ond term in the integrand of (6).
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the positive MR found for the orbital effect in [8],
where the change of screening has been neglected. Our
prediction could be easily verified in experiments on
wide quantum wells, where the in-plane magnetoresis-
tance is mostly due to the orbital effect.

As was mentioned earlier, apart from the Fermi sur-
face deformation, the parallel magnetic field couples to
the particles’ spins, resulting in a partial spin polariza-
tion of the system. Similar to the isotropic case [11],
there is no longer a single Fermi surface, but different
ones for different spin projections onto the magnetic
field axis. We would like to treat only the spin-conserv-
ing processes, which means that the linear response of
such a partially polarized system is simply the sum of
the responses from different spin subbands [11].
Similar to the case of an unpolarized system (expres-
sion (4)), the anisotropy of the linear response of a par-
tially polarized system is again the same as that of the
kinetic energy as a function of wave vector q, which
leads to the isotropy of the relaxation time for each spin
subband in the limit of low density, as we show below.

Calculating the transport relaxation times τ↑ , ↓, one
should write the integrals of type (6) for major (↑ ) and
minor (↓ ) spin subbands separately. In the low-density
limit, when the Fermi wave vectors of both subbands

satisfy ,  ! qFT, the Fourier image of the
screened impurity potential V(q)/ε(q) has the anisot-
ropy of the linear response function and kinetic energy,
according to (7). This means that the change of coordi-
nates (2) applied to the integrands leads to the same
expressions for τ↑ , ↓ as one gets in the isotropic case
[11]. Thus, the relaxation times are isotropic, and the
only effect of anisotropy is again to normalize the abso-
lute value of τ↑ , ↓ through the density of states depen-
dent prefactor (8). We are now able to write down the
conductivity tensor of the partially polarized anisotro-
pic system:

(9)

where ,  are the major and minor spin-subband
conductivity tensors and e, nS, τ0, D0 are, respectively,
the electron charge, density of 2D particles, the zero-
field isotropic relaxation time, and the density of states.
D and  are, respectively, the density of states and the
effective mass tensor in magnetic field. The last term in
(9) stands for the Dolgopolov–Gold calculated change
of the conductivity of an isotropic system as a function
of its degree of spin polarization ξ = (n↑ – n↓)/(n↑ + n↓)
[11]. Note that, for the case of a quasi-2D system with
zero field anisotropic mass, this result is valid only for
a parallel field applied along the main axes of symme-
try; otherwise, the Fermi surface loses its ellipticity in
magnetic field. Let us show finally how this simple
expression allows us to separate immediately the con-

kx
F↑ ↓, ky

F↑ ↓,

σ̂ σ̂↑ σ̂↓+ nSe2τ0m̂ 1– D
D0
------FDG ξ( ),= =

σ̂↑ σ̂↓

m̂
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tributions from spin and orbital effects on the longitudi-
nal magnetoresistance of a diluted quasi-2D system.

We focus on the recent magnetoresistance studies of
the 2D electron gas of AlGaAs/GaAs heterostructure
[12]. This system is isotropic in zero magnetic field;
hence, according to (9), the anisotropy of experimental
MR [12] is due to the effective mass change in the
direction perpendicular to magnetic field [8]:

where ⊥  and || mark the resistances measured in direc-
tions perpendicular and parallel to in-plane magnetic
field, respectively. The spin effect contribution in (9) is
thus given by

(10)

The degree of spin polarization depends on both the
Zeeman energy gµBB and the effective mass at a given
field value: ξ(B) = (EF↑ – EF↓)/(EF↑ + EF↓) = gµBBD/nS,
where EF↑ , ↓ are the kinetic parts of the Fermi energy for
two spin subbands and g and µB are the Landé factor
and Bohr magneton. Equivalently, the last equation

reads ξ(B) = B/ , where  = 2 /gµB

is the full spin polarization field in the absence of the
orbital effect [11].

In the inset to the figure, we show the effective mass
growth extracted in the above manner from the ρ⊥ , ρ||

m⊥ /m0 ρ⊥ B( )/ρ|| B( ),=

FDG
1– ξ( )

ρ⊥ B( )ρ|| B( )
ρ⊥ B 0=( )ρ|| B 0=( )
-----------------------------------------------.=

BP
0 m⊥ B( )/m0 BP

0 EF
0

In the inset, the effective mass growth caused by the orbital
effect [8] is shown, extracted from the longitudinal MR data
of [12] (nS ≈ 3 × 1010 cm–2) as described in the text. The
spin effect contribution is shown in the figure body. The fit
to theoretical dependence [11] (dashed line) gives full spin

polarization field in the absence of orbital effect  ≈
17.3 T, corresponding to a Landé factor of g* ≈ 2.1.

BP
0
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data of [12]. The effective mass in the direction perpen-
dicular to field grows by about 30% in moderate fields,
as caused by the orbital effect [8]. For such a slight
deformation, the utilized approximation of elliptic
Fermi surface should work reasonably well, in contrast
to the general case [7]. The partial spin polarization has
a major effect on MR, as reflected by its small anisot-
ropy [12], and leads to a roughly threefold resistance
increase, as is shown in the body of the figure. Full spin
polarization was not reached in [12], for which reason
the saturation [11] of the geometrical mean of the resis-
tivities parallel and perpendicular to in-plane field pre-
dicted by (10) is not seen in the figure. Fitting to calcu-

lation [11], we obtain the  value 17.3 T, which cor-
responds to a Landé factor of g* ≈ 2.1 at nS ≈ 3 ×
1010 cm–2, in agreement with previous studies [10, 12].

We would like to add a note here concerning the
applicability of the MR data analysis presented above
to real interacting quasi-2D systems. Apart from the
single-particle effect of Fermi surface deformation con-
sidered thus far, the squeezing of the 2D layer by the
parallel magnetic field additionally changes the form
factors of Coulomb interaction between particles [1]
and increases the Wigner–Seitz ratio [15], which can in
principle lead to the renormalization of the zero field
effective mass and g factor [19]. In the presence of such
many-body effects, the spin effect contribution [11]
cannot be extracted with formula (10). Experimentally,
this means that the geometrical mean of resistivities

 does not saturate upon reaching full spin
polarization. The in-plane magnetoresistance anisot-
ropy, however, should still give the anisotropy of effec-
tive mass ρ⊥ /ρ|| = m⊥ /m||, similar to the single-particle
picture, although independent measurement is required

to find the full spin polarization field  [14, 15].

In conclusion, we have derived the linear response
function and dielectric function of a 2D Fermi gas with
anisotropic effective mass. In the low-density limit, the
screened charged impurity potential is shown to pos-
sess the same symmetry as the kinetic energy as a func-
tion of wave vector. As a result, the elastic transport
relaxation time τ is isotropic in this limit, even if the 2D
system is partially spin polarized. This finding allows
us to separate for the first time the influence of the
orbital [8] and spin [11] effects on the in-plane magne-
toresistance of a diluted quasi-two-dimensional system.

BP
0

ρ⊥ B( )ρ|| B( )

BP
0

The author would like to thank V.T. Dolgopolov,
S.V. Iordanski, A.A. Shashkin, and A.A. Zhukov for
useful discussions and acknowledges the support of the
Russian Foundation for Basic Research and of the Rus-
sian Ministry of Sciences under the “Nanostructures”
and “Mesoscopics” programs.

REFERENCES
1. T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54,

437 (1982).
2. E. P. De Poortere, E. Tutuc, Y. P. Shkolnikov, et al., Phys.

Rev. B 66, 161308R (2002).
3. C. Kittel, Introduction to Solid States Physics, 4th ed.

(Wiley, New York, 1976; Nauka, Moscow, 1978).
4. C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
5. A. G. Samoœlovich, I. Ya. Korenblit, and I. V. Da-

khovskiœ, Dokl. Akad. Nauk SSSR 139, 355 (1961) [Sov.
Phys. Dokl. 6, 606 (1962)].

6. Yasuhiro Tokura, Phys. Rev. B 58, 7151 (1998).
7. U. Merkt, The Physics of the Two-Dimensional Electron

Gas, Ed. by J. T. Devreese and F. M. Peeters (Plenum,
New York, 1987), p. 293.

8. S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 84,
5596 (2000).

9. J. Yoon, C. C. Li, D. Shahar, et al., Phys. Rev. Lett. 84,
4421 (2000); E. Tutuc, E. P. De Poortere, S. J. Papadakis,
and M. Shayegan, Phys. Rev. Lett. 86, 2858 (2001).

10. E. Tutuc, S. Melinte, and M. Shayegan, Phys. Rev. Lett.
88, 036805 (2002).

11. V. T. Dolgopolov and A. Gold, Pis’ma Zh. Éksp. Teor.
Fiz. 71 (1), 42 (2000) [JETP Lett. 71, 27 (2000)].

12. V. S. Khrapai, E. V. Deviatov, A. A. Shashkin, and
V. T. Dolgopolov, Proc. NGS 10, IPAP Conf. Ser. 2, 105
(2001); see also cond-mat/0005377.

13. C.-T. Liang, C. G. Smith, M. Y. Simmons, and
D. A. Ritchie, Phys. Rev. B 64, 233319 (2001).

14. J. Zhu, H. L. Stormer, L. N. Pfeiffer, et al., Phys. Rev.
Lett. 90, 056805 (2003).

15. E. Tutuc, S. Melinte, E. P. De Poortere, et al., cond-
mat/0301027.

16. D. Pines and Ph. Nozières, The Theory of Quantum Liq-
uids (Benjamin, New York, 1966), Vol. 1.

17. F. Stern, Phys. Rev. Lett. 18, 546 (1967).
18. J. M. Ziman, Principles of the Theory of Solids (Cam-

bridge Univ. Press, Cambridge, 1964; Mir, Moscow,
1966).

19. S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 49, 14188
(1994).
JETP LETTERS      Vol. 77      No. 6      2003



  

JETP Letters, Vol. 77, No. 6, 2003, pp. 321–323. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 77, No. 6, 2003, pp. 372–375.
Original Russian Text Copyright © 2003 by Parshin, Tsymbalenko.

                  
Kinematic Multiplication of Elementary Steps
on a Crystal Surface

A. Ya. Parshin* and V. L. Tsymbalenko**
* Kapitza Institute for Physical Problems, Russian Academy of Sciences, Moscow, 119334 Russia 

e-mail: parshin@kapitza.ras.ru
** Russian Research Centre Kurchatov Institute, Institute of Superconductivity and Solid-State Physics,

Moscow, 123182 Russia
Received February 20, 2003

The dynamics of elementary steps on an atomically smooth crystal–liquid interface and, in particular, the pro-
cess of collisions of steps differing in sign are considered. It is shown that, along with the conventional annihi-
lation of steps in such collisions, both the overthrow of steps to the neighboring row with the formation of a
new atomic layer (passage) and the reflection of steps from each other can take place under certain conditions.
The overthrow of steps gives a qualitatively new mechanism of the growth of facets in the absence of renewable
sources such as grown-in dislocations. Under these conditions, the growth kinetics of a crystal with atomically
smooth facets changes substantially. In particular, the processes considered above may form a basis for physical
mechanisms of unconventional growth regimes observed for helium crystals at low temperatures. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 81.10.Aj; 67.80.-s; 68.08.-p
It is well known that the growth of a crystal with
atomically smooth facets can proceed due to either con-
tinuously acting sources of elementary steps such as
screw dislocations and Frank–Read sources or two-
dimensional nucleation. The impossibility of crossings
is an essential property of steps, which is commonly not
questioned. For steps of the same sign, this means the
impossibility of one atomic layer to hang over another,
that is, the impossibility of a configuration with a high
excessive energy. From the same energy consider-
ations, it is clear that, upon coming in contact, two steps
of different signs annihilate in the contact region with
the formation of a bridge (Fig. 1a). The step noncross-
ing property was used as the basis in classical works on
the theory of crystal growth [1].

The property of steps indicated above is undoubt-
edly retained as long as all the processes with the par-
ticipation of steps are sufficiently slow, so that each step
section at each instant of time is in a local equilibrium
and the kinetic energy of a step can be neglected. In
other words, the corresponding relaxation time must be
small in comparison with the “collision time” w/V,
where V is the relative velocity of steps and w is the
characteristic width of a step, which equals the inter-
atomic distance by the order of magnitude. This condi-
tion can easily be violated in the case of atomically
smooth facets of a helium crystal at temperature tend-
ing to zero, when the relaxation time increases without
limit and the step velocities can be very high up to the
sound velocity [2]. It is natural to suggest that the col-
liding steps of different signs in this case will be able to
0021-3640/03/7706- $24.00 © 20321
pass inertially one over the other forming a new atomic
layer (see Fig. 1b) or to reflect from each other. We will
show in this brief communication that this actually
takes place under certain conditions. Here it is neces-
sary to note that this idea in itself is analogous to the
idea of the “kinematic multiplication” of dislocations in

Fig. 1. (a) Collision of steps in a quasi-static case. (b) Pas-
sage of steps one over the other at high velocities and large
relaxation times. A nucleus of a new layer is formed at this
place as a result of the collision.
003 MAIK “Nauka/Interperiodica”
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the crystal bulk, which was proposed by Frank [3] even
before the discovery of Frank–Read sources.

We will describe the structure and dynamics of steps
using the so-called weak-coupling approximation,
which is widely used in the theory of phase transitions
associated with the initiation of faceting in helium crys-
tals (see, for example, [4]). In this approximation, the
effective periodic potential retaining the surface in the
vicinity of certain equilibrium positions is small in
comparison with the surface energy because of strong
fluctuations. Correspondingly, the energy of a step, that
is, the transition region between two neighboring equi-
librium positions of the surface, is also small, and the
width of this region is conversely large in comparison
with the interatomic distance. This allows one to intro-
duce a continuous variable ζ(r) corresponding to a local
displacement of the surface averaged over the fluctua-
tions. Consider the case of extremely low temperatures.
Then the dissipation, which accompanies the motion of
steps, and the external supersaturation, which is neces-
sary for its maintenance, are small, and the correspond-
ing terms in the equations of motion can be neglected.
In addition, we will consider both the liquid and the
crystal incompressible. Then a displacement of the sur-
face is associated only with crystallization or melting,
and the total energy is a sum of the surface and kinetic
energies. The surface energy minus an inessential con-
stant can be written as

(1)

where the first term takes into account a change in the
surface area, the second term corresponds to the contri-
bution of the effective potential, a is the interplanar dis-
tance, and α is the energy of unit surface area (here, we
make no distinction between the surface energy and
stiffness).

The kinetic energy in this case is the kinetic energy
of the liquid, whose motion is due to the displacement
of the surface;1 with regard to the conservation of mass
in crystallization, we obtain

(2)

where ρs and ρl are the densities of solid and liquid
helium. The corresponding equation of motion takes
the form

(3)

1 The additional contribution due to the rearrangement of atoms on
passing from the liquid to the crystalline state [5] is relatively
small and does not affect the qualitative conclusions.
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where dimensionless coordinates x and y are measured
in units ξ and time, in units τ

(4)

and U0, in turn, can be expressed through the energy β
of the unit length of immobile step

(5)

Let us also give here numerical values for the (0001)
facet of a 4He crystal: α = 0.25 erg/cm2 [6–8], β/a =
0.014 erg/cm2 [8], and the other parameters

(6)

where c is the speed of sound in the liquid.
The real steps on a crystal surface are always some-

what curved (see Fig. 1), and the radius of curvature R
commonly exceeds or, at least, coincides by the order of
magnitude with the radius of the critical nucleus Rc.
Because Rc @ ξ (otherwise, the probability of conven-
tional two-dimensional nucleation would be high; note
also that the value of Rc is inversely proportional to the
external supersaturation, which we assume to be small),
the inequality R @ ξ is also fulfilled, so that steps in col-

lisions first come in contact in a region R* ~ ,
which is small in comparison with R, where they can be
considered rectilinear and parallel to each other. There-
fore, first we must analyze the one-dimensional case, in
which instead of Eq. (3) we have

(7)

This equation was solved numerically in the follow-
ing sequence. First, the function ϕ(x – Vt), which
described the stationary shape of a single step moving
with a prescribed velocity V measured in units V0, was
defined. Note that, at V = 0, this shape coincides with
the shape of a single kink of the sine-Gordon equation
and deviates more and more from this shape with
increasing V. At V > 1, the stationary shape in the form
of a simple kink loses its stability. The question of
which configurations are stable in this case still remains
unexplored.

At the second stage, the function corresponding to
the stationary shape of two steps of different signs mov-
ing toward each other with velocities V1 and V2 was
used as the initial condition for the solution of the prob-
lem of collision between such two steps. It was found
that, depending on the values of initial velocities, three
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qualitatively different results could be obtained: the
passage of step over one another with “overthrow” to
the neighboring row, annihilation, and reflection. All
three processes are accompanied by the emergence of
“ripplons” of higher or lower amplitudes. Regions cor-
responding to each of these processes are indicated in
the schematic diagram in Fig. 2.

The further evolution of the system is substantially
different in these three cases. Case (3), when a nucleus
of a new atomic layer confined by two intersecting arcs
of steps is formed (Fig. 1b), is of most interest. Gener-
ally speaking, it should be expected that an instability

Fig. 2. Schematic diagram of collision processes of steps
moving with different velocities of counter motion: regions
correspond to (1) annihilation of steps, (2) reflection, and
(3) passage with the creation of a new atomic layer.

Fig. 3. Generation of excitations at the crossing point of
steps and their propagation along the boundary of the newly
formed layer.
JETP LETTERS      Vol. 77      No. 6      2003
leading eventually to the formation of a bridge, as is
shown in Fig. 1b, will develop in the crossing region.
However, the terms in the total equation of motion (3)
responsible for this instability are small at the initial
instant of time by virtue of the smallness of the crossing
angle γ; that is, the corresponding lifetime is large. At
the same time, the result of the action of perturbations
is not accumulated with time, because the crossing
point itself moves along the Y axis with a velocity Vy ≅
2V/γ, which is faster than the velocity of the propaga-
tion of perturbations along the step (Vexc ≤ 1, see Fig. 3).
Therefore, the formation of a bridge becomes possible
only at γ ~ 1; that is, when the size of the nucleus of the
new layer l is on the order of R, and thus l > Rc. We can
see that actually no additional restriction for the stable
growth of the nucleus of the new layer arises in compar-
ison with the schematic diagram in Fig. 2.

Note in conclusion that, with regard to the phenom-
enon considered above, the theory of the growth of
atomically smooth crystal facets at low temperatures
requires substantial corrections. In particular, it is pos-
sible that the proposed growth mechanism provides the
basis for the so-called “burstlike” growth of disloca-
tion-free helium crystals observed experimentally [2],
which defies explanation within the known growth
mechanisms.

We are grateful to V.I. Marchenko for useful discus-
sions.
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This paper presents a method for construction of the families of particular solutions to some new classes of
(n + 1)-dimensional nonlinear partial differential equations (PDE). The method is based on the specific link
between algebraic matrix equations and PDEs. Admittable solutions depend on arbitrary functions of n vari-
ables. Examples of deformed Burgers-type equations are given. © 2003 MAIK “Nauka/Interperiodica”.
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 1. INTRODUCTION

Many different methods have been developed for
the analytical investigation of nonlinear partial differ-
ential equations (PDEs) during the last decades. Espe-
cially attractive are methods for the study of so-called
completely integrable systems. The particular interest
in these equations is enhanced due to their wide range
of application in physics. We emphasize different
dressing methods, which are based on the fundamental
properties of linear operators, either differential or inte-

gral: the Zakharov–Shabat dressing method [1, 2], 
problem [3–6], and Sato theory [7].

We suggest a method for construction of the fami-
lies of particular solutions to some new classes of
(n + 1)-dimensional nonlinear PDEs, n ≥ 2. It is based
on the general properties of linear algebraic matrix
equations [7–9]. In general, this method supplies a fam-
ily of solutions depending on the set of arbitrary func-
tions of n variables for an (n + 1)-dimensional PDE.
The presented method can also be applied to the classi-
cal (2 + 1)-dimensional PDE integrable by the inverse
scattering technique (IST). In this case, our algorithm is
similar to the algorithm represented in [7, 10].

We discuss a general algorithm relating linear alge-
braic equations with nonlinear PDEs. Then we show
that these PDEs are compatibility conditions for the
appropriate overdetermined linear system of equations
having different structure in comparison with the clas-
sical isospectral problem. Some examples of (2 + 1)-
dimensional equations are presented.

 ¶ This article was submitted by the author in English.

∂
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2. GENERAL ALGORITHM

As mentioned above, our algorithm is based on the
fundamental properties of the linear matrix algebraic
equation

(1)

where Ψ = {ψij} is an N × N nondegenerate matrix and
U and Φ are N × M matrices, M < N. The solution of this
equation is unique, and hence the homogeneous equa-
tion with matrix Ψ has only the trivial solution. Thus, if
we find a transformation that maps nonhomogeneous

Eq. (1) onto the homogeneous equation Ψ (U) = 0,

then (U) = 0.

It may be shown that such transformations can be
performed using differential operators having a special
structure. For this purpose, let us introduce two types of
additional parameters x = (x1, …, xn) (n = dim(x)) and
t = (t1, t2, …) by the following systems:

(2)

(Bi and Ci are constant N × N and M × N matrices
respectively) and

(3)

where Li are arbitrary linear differential operators hav-
ing derivatives with respect to variables xj and constant
scalar coefficients, so that system (2) is compatible with
system (3). For the sake of simplicity, in this paper we
use only one parameter t, omit subscripts in Eq. (3), and
use the n-dimensional Laplacian for L: } = ∂t +

. Hereafter, indices i, j, and k run values
from 1 to n unless otherwise specified.

ΨU Φ,=

Ũ

Ũ

Ψxi
ΨBi ΦCi, i+ 1 … n, ,= =

}iΨ 0, }iΦ 0, }i ∂ti
Li,+= = =

α k∂xk

2

k 1=
n∑
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Let us study the compatibility conditions for the sys-
tem (2) itself, which has the following form:

(4)

We require that matrices Bi and Ci satisfy the two con-
ditions

(5)

and that matrices Cj have the following structure: Cj =
[Pj | 0M, N – R], R ≤ M, where Pj are M × R matrices with
rang R and 0A, B means A × B zero matrix. Then Eq. (4)
is simplified to 

(6)

which results in the first nonlinear equation for U owing
to Eqs. (1) and (2):

(7)

Let us show that another nonlinear matrix equation
can be derived using operator }. For this purpose, we
apply operator } to both sides of Eq. (1) and use
Eqs. (2) and (3):

Since det(Ψ) ≠ 0, one has the second nonlinear equation
for the matrix U:

(8)

Combining Eqs. (7), (8) and using condition (5), one
can eliminate matrices Bi and receive a system of equa-
tions for matrix V composed of the first R rows of the
matrix U. The first equation exists for any n. To derive
it, let us eliminate operators Bi from Eq. (7) using
Eqs. (5) and (8):

(9)

Another equation exists if only n > 2. In this case, we
can derive the matrix equation without operators Bi

ΨB j ΦC j+( )Bi Φx j
Ci+

=  ΨBi ΦCi+( )B j Φxi
C j.+

C jBi CiB j– 0, B jBi BiB j– 0= =

Φxi
P j Φx j

Pi– 0,=

B j UC j+( )UPi Ux j
Pi+  = Bi UCi+( )UP j Uxi

P j.+

0 }Φ }Ψ( )U Ψ}U 2 α kΨxk
Uxk

k 1=

n

∑+ += =

=  Ψ }U 2 α k Bk UCk+( )Uxk

k 1=

n

∑+
 
 
 

0.=

Ut α k Uxk xk
2 Bk UCk+( )Uxk

+( )
k 1=

n

∑+ 0.=

Pi U jt
α k U jxkxk

2UkU jxk
+( )

k 1=

n

∑+
 
 
 

– P j Uit
α k Uixkxk

2Ukuixk
+( )

k 1=

n

∑+
 
 
 

+ 2 α kPk Uix j
U jxi

U j Ui,[ ]+–( )
xk

k 1=

n

∑ 0.=
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using any three Eqs. (7) with pairs of indices (i, j), (j, k),
(k, i) and relations (5):

(10)

where the sum is over the cyclical permutation of
indexes i, j, and k. In general, both Eqs. (9) and (10)
should be considered simultaneously. Otherwise, the
nonlinear system cannot be completed.

Thus, Eqs. (9) and (10) do not depend on the param-
eter N (which characterizes the dimensions of the
matrices in the Eq.(1)) or on the matrices Bi; i.e., N is
an arbitrary positive integer and Bi are N × N matrices
fitting relations (5).

Arbitrary functions of variables xj (j = 1, …, n)
appear in the solution V due to the matrix function Φ,
defined by system (6). The number of arguments in the
arbitrary functions, as well as the number of these func-
tions, is defined by the particular choice of the matrices
Pj and the dimension n of x space. For an n-dimensional
x space and R < M, we are able to present examples with
N arbitrary functions of n variables. But in particular
cases, the situation may be different (see Examples).
For instance, if R = M, then Φ may depend at most on
N × M arbitrary scalar functions of a single variable,
which is in accordance with [7]. Detailed discussion of
this problem is beyond the scope of this paper.

2.1. On the Operator Representation of PDEs

Classical nonlinear (2 + 1)-dimensional systems
integrable by the IST are in the family of equations
introduced in the previous section. To clarify this state-
ment, we derive the overdetermined linear system of
PDEs with the compatibility condition in the form of
Eqs. (9) and (10) and compare it with the classical isos-
pectral problem. First, we introduce an arbitrary R × N
matrix function R(λ) of the additional complex param-
eter λ. Multiplying Eqs. (7) and (8) by R(λ)expη, η =

 – ( )t from the left, we intro-

duce the function  = ReηU. We get after transforma-
tions

(11)

(12)

If R = M, i.e., if all Pj are square nondegenerate matri-
ces, then system (11), (12) is equivalent to the classical
M × M overdetermined linear system for the corre-
sponding (2 + 1)-dimensional integrable system. In
fact, in this case detPj ≠ 0, one can express all deriva-

tives of  with respect to xj, j > 1 through the deriva-

tives of  with respect to x1 using Eq. (11). Both

Pi U jxk
Ukx j

Uk U j,[ ]+–( )
perm

∑ 0, Ui VPi,= =

Bkxkk 1=
n∑ α kBk

2

k 1=
n∑

Ψ̂

Ψ̂x j
Pi Ψ̂xi

P j– Ψ̂PiU j Ψ̂P jUi,–=

Ψ̂t α k Ψ̂xk xk
2Ψ̂PkV xk

+( )
k 1=

n

∑+ 0.=

Ψ̂
Ψ̂
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Eqs. (11) and (12) are M × M matrix Eqs. for an M × M

matrix function . Thus, Eq. (11) can be taken for the
spectral problem, while Eq. (12) represents the evolu-
tion part of the overdetermined linear system. For
instance, if M = R = n = 2, α1 = 1, α2 = 0, and Pi have
the form (14), then the compatibility condition of the
linear system (11), (12) is given by Eqs. (15).

The situation is quite different if R < M.  is an
R × M matrix function, while (11) is an R × R matrix
equation. Thus, it cannot be taken for the spectral prob-
lem. Moreover, Eq. (12) involves all derivatives appear-
ing in the operator M. So, we have (n + 1)-dimensional
equations. An important fact is that the solution of these
equations depends on arbitrary functions of n variables,
which has been shown in the end of the previous sec-
tion. Below, we present an example of a (2 + 1)-dimen-
sional system of this type.

2.2. Examples

Let n = 2, α1 = 1, a2 = 0. Then Eq. (9) reduces to

(13)

while Eq. (10) does not exist. First, we show two trivial
reductions of Eq. (13).

1. Let matrix A exist such that AP1 = 0 and AP2 = IR

(IR is the R × R identity matrix). Multiplying Eq. (13) by
A from the left, one gets the matrix Burgers equation
for U1.

2. If R = M = 2 and

(14)

then Eq. (13) is equivalent to the following system:

(15)

where functions r and q are related with elements of the

matrix V by the formulas v 11 = (r – q + 2 ), v 21 =

(r + q + 2 ), v 12 = (–r – q + 2 ), v 22 = (–r +

q + 2 ). Equation (15) becomes the Devi–Stewartson

equation after the reduction r = ψ, q = , t1 = it, where
i2 = –1 and the bar means complex conjugated value.

Ψ̂

Ψ̂

P1 U2t
2U1x1x2

U2x1x1
2 U2U1( )x1

2U1x1
U2–+–+( )

– P2 U1t
U1x1x1

2U1U1x1
+ +( ) 0,=

P1 I2, P2
0 1

1 0
, V

v 11 v 12

v 21 v 22

= = = ,

rt rx1x2
2rwx1x2

–– 0,=

qt qx1x2
2qwx1x2

++ 0,=

wx1x1
wx2x2

– qr,=

1
4
--- wx1

1
4
--- wx2

1
4
--- wx2

1
4
---

wx1

ψ

A substantially different situation is described in the
next example.

3. Let M = 3, R = 2, P1 = , P2 = . It is pos-

sible to construct solutions to the system (13) depend-
ing on N arbitrary functions of two variables. In fact, let
N = 3m + 2, m = 1, 2, …, matrices Bi be defined, for
instance, by the following system:

Φ = [φ1 φ2 φ3], where φk are N-dimensional columns.
Then Eq. (6) can be written in the form  = ,

 = , i.e., φ1 = , φ2 = , φ3 = , where

S is an arbitrary function of variables x1 and x2. In view
of Eqs. (3), we can write for Φ: Φ =

exp[k1x1 + k2x2 – t]dk1dk2,

where c(k1, k2) is an arbitrary column of N elements.
Function Ψ (solution of systems (2) and (3)) can be rep-

resented in the form Ψ = (Ψ0 + )eη, η = B1x1 + B2x2 –

t, where Ψ0 is an arbitrary constant N × N matrix and

 is taken in the form  = ΦC1e–η. Then U =

Ψ−1Φ depends on an arbitrary N × 1 matrix function
c(k1, k2) of two variables.

The appropriate nonlinear system (13) has a rather
complicated form. To simplify it for application, we
suggest two methods.

1. Multiscale expansion. We introduce parameter
e ! 1 and new scales for coordinates:   e  and

∂t  e2∂t. Let us consider matrix V in the form

1 0

0 1

0 0

0 0

1 0

0 1

B j

02 2, b j1 02 N 5–,

03 m 1–( ) 2, 03 m 1–( ) 3, b j2

03 2, 03 3, 03 N 5–,

,=

b11
1 1 1

0 0 0
, b21

0 0 0

1 1 1
,= =

b j2 diag A j A j …, ,( ) , j 1 2,
m 1–

,= =

    

A1

1 0 1–

1– 1 0

0 1– 1

= , A2

1 1– 0

0 1 1–

1– 0 1

.=

φ1x2
φ2x1

φ2x2
φ3x1

Sx1x1
Sx1x2

Sx2x2

c k1 k2,( ) k1
2 k2k1 k2

2
∞–

∞∫ k1
2

Ψ̃
B1

2

Ψ̃ Ψ̃ ∂x1

1–

∂x j
∂x j

V
2 e

2u1+ e
2v 1 e e

2w1+

eu 1 ev+ e
2w2

.=
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Then we can write Eq. (13) in the form of the two-com-
ponent Burgers equation with perturbation up to the
order O(e2):

One can eliminate derivatives with respect to x1 from
the right-hand sides (terms with e3 appear): 2  =

−eut + e2vut – e3(v 2ut + 2uvv t + 1/4utt – ),  =

–ev t + e2vv t – e3(uut + v 2v t + 1/4v tt).
2. Reductions. There is a wide class of reductions in

the form of additional differential equations for the
functions φi, i = 1, 2, 3, compatible with the two equa-
tions written above. They reduce the number of inde-
pendent functions in Eq. (13), although freedom in con-
struction of solutions is reduced as well. For instance,
let φ2 =  and  = . One has an additional

equation for the column of the matrix V = [V1 V2 V3]:
V2 = (B1 + U1)V1 + . Using the first column of

Eq. (8) (with n = 2, α1 = 1, α2 = 0), one can eliminate
B1 from the above equation to yield  +  +

2U1  = –2  + 2(U1V1  + 2 . With this

equation, nonlinear system (13) is reduced to

where ϕ and q are expressed through the first-column
elements of V:  = v 11/(1 – v 21), q = v 21/(1 – v 21).

2ux1
e ut 2v ux1

ux1x1
+ +( )–=

+ e
2 4uvv x1

2uux1x2
– 2uv x1x1

+( ),

2v x1
e v t 2vv x1

v x1x1
+ +( )– 2e

2uux1
.+=

ux1

uux2t 2v x1

φ1x1
Sx2x1

Sx1x1x1

V1x1

V1t
V1x1x1

V1x1
V2x1

)x1
V1x1x1

qt qx1x1
2qϕ x1x1

+ + 0, ϕ t ϕ x2
+ 0,= =

ϕ x2x2
2ϕ x1x1

2 ϕ x1x1x1
2ϕ x1x2

–[+ +

– 2ϕ x2
ϕ x1

2ϕ x1
ϕ x1x1

2
3
---ϕ x1

3+ +
x1

0,=

ϕ x1
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Note that the last equation has no Lagrangian. It may be
given the form of the nonlinear Burgers equation with

nonlocal correction after applying the operator .

The presented version of the dressing method works
for a wide class of (n + 1)-dimensional PDEs. It sup-
plies solutions depending on arbitrary functions of n
variables provided R < M. In the case R = M, the solu-
tion depends on arbitrary functions of a single variable.
By construction, equations have an infinite number of
commuting flows introduced by Eqs. (3). They are also
compatibility conditions for some specific linear over-
determined systems, which are equivalent to the classi-
cal isospectral problems only if R = M.

This work was supported by the Russian Foundation
for Basic Research, project nos. 02-01-06059 and
00-15-96007. The author thanks Prof. S.V. Manakov
and Dr. Marikhin for discussions and Dr. Bogdanov for
useful comments.
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It is proved that a quantum computer with fixed and permanent interaction of diagonal type between qubits pro-
posed in the work quant-ph/0201132 is universal. Such a computer is controlled only by one-qubit quick trans-
formations, and this makes it feasible. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Lx
1. Introduction and background. A model of a
quantum computer with fixed and permanent interac-
tion between qubits was proposed in paper [1], where it
was shown how to implement QFT and simulation of
wave function dynamics by such a computer. In this
paper, we prove that such a model is universal: that is,
every quantum algorithm can be implemented in the
framework of this model with only a linear slowdown
for long-distance interaction and with a slowdown pro-
portional to size of memory for short-distance interac-
tion. Here, we have to suppress undesirable interac-
tions, as in [2]. But now we shall use the method of ran-
dom strings consisting of NOT operations proposed in
[1], which uses a diagonal form of interactions. Surpris-
ingly, our method of suppressing undesirable interac-
tions does not depend on individual features of qubits.

A traditional way for implementation of quantum
algorithms requires control on the two-qubit level, that
is, the ability to “switch on” and to “switch off” inter-
action between qubits. It is widely known that two-
qubit transformations are a stumbling block in quantum
computing in view of technological difficulties. The
most natural way is to use a fixed and permanent inter-
action between qubits and control the process of com-
putation by only one-qubit transformations. This way
gives a universal quantum computer if our fixed inter-
action has a diagonal type. Note that it is not important
that a fixed interaction decreases depending on the dis-
tance between qubits; for example, it may be nonzero
only for the neighboring qubits, etc.

A permanent interaction between the qubits in our
computer depends only on their spatial disposition,
which is fixed. The only condition we impose on the
interaction is that it must be diagonal. Thus, if j and k

¶ This article was submitted by the authors in English.
0021-3640/03/7706- $24.00 © 20328
denote the identification numbers of two qubits, then
the Hamiltonian of their interaction will have the form

(1A)

(1B)

At first, note that any interaction of the general form
(1A) may be reduced to the form (1B) by adding appro-
priate one-qubit Hamiltonians , whose matrices
have the forms

This addition reduces the Hamiltonian of the form (1A)
to (1B) and can be alternatively fulfilled by one-qubit
quick transformations, because all these diagonal
matrices commute.

Note that different pairs of qubits may interact vari-
ously: they may be disposed with different intervals and
not be placed along one line, etc.

2. Suppression of undesirable interactions by
one-qubit operations. To prove the universality of the
computational model, we must show how one can fulfil
an arbitrary two-qubit operation. Given a unitary trans-

H j k,

E1
j k, 0 0 0

0 E2
j k, 0 0

0 0 E3
j k, 0

0 0 0 E4
j k, 

 
 
 
 
 
 
 

,=

H j k,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 E j k, 
 
 
 
 
 

, E j k, 0.>=

H j k,'

a 0 0 0

0 a 0 0

0 0 b 0

0 0 0 b 
 
 
 
 
 

,

α 0 0 0

0 b 0 0

0 0 a 0

0 0 0 β 
 
 
 
 
 

.
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form induced by Hamiltonian (1B) in time frame 1,
Uj, k = exp(–iHj, k) (Plank’s constant equals 1). In fact, it
would suffice to fulfill this transform on two qubits, the
jth and kth, leaving all the others untouched. Just this
last condition is difficult to guarantee for permanent
interaction. If we can do it when at first we can fulfill an
arbitrary two-qubit operation with every separated pair
of qubits, then, for a long-distance interaction, we have
at most a linear slowdown; for a short-distance interac-
tion we need to perform SWAP operations to bring the
required pair of qubits together and thus we obtain a
time factor equal to the size of the memory.

Now we show how to implement Uj, k. If we simply
wait for a time 1, when we obtain a transformation
Uj, k ⊗  U ' ⊗ … ⊗  U '', where all U' have the form Uj', k',
where {j', k'} ≠ {j, k}. We should get rid of these inter-
actions. We declare jth and kth qubits separated.

We apply one qubit NOT gate several times to all
qubits except separated ones to suppress all two-qubit
interactions excluding interaction between separated
qubits. For each not-separated qubit number p, consider
the Poisson random process !p generating times 0 <

 <  < … <  < 1 with some fixed density λ @ 1.

Let all !p be independent. Now perform NOT transfor-

mations on each pth qubit at instants  sequentially. At
instant 1, perform NOT on the pth qubit if and only if
mp is odd. Then after this procedure each qth qubit
restores its initial value aq. Count the phase shift gener-
ated by this procedure. The interaction between sepa-
rated qubits remains unchanged. We fix some not-sepa-
rated qubit number p and count its deposit to phase. It
consists of two summands: the first comes from inter-
action with separated qubits, and the second, from
interaction with not-separated qubits. We count them
sequentially.

1. In view of the high density λ of Poisson process
!p about half the time our pth qubit will be in state ap,
and the other half, in 1 – ap. Its interaction with a sepa-

rated qubit, say the jth, brings the deposit Ep, j  +

Ep, j(1 – ) , that is, Ep, j .

2. Consider a different not-separated qubit number
q ≠ p. In view of the independence of times when NOTs
are performed on pth and qth qubits and the high den-
sity λ, these qubits will be in each of states (ap, aq), (ap,
1 – aq), (1 – ap, aq), (1 – ap, 1 – aq) approximately a
quarter of the time. The resulting deposit will be

Ep, q[apaq + ap(1 – aq) + (1 – ap)aq + (1 – ap)(1 – aq)] =

Ep, q.

The total phase shift issued from the presence of
not-separated qubits in our procedure is now obtained

t1
p t2

p tmp

p

tm
p

1
2
--- ap' a j'

1
2
--- ap' a j'

1
2
--- a j'

1
4
---

1
4
---
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by summing values from items 1 and 2 for all p ∉  {j, k}.
It is

This shift can be compensated by one-qubit operations,
because the first two summands depend linearly on the
qubit values, and the second does not depend on qubit
values at all. Thus, we obtain a gate with a permanent
two-qubit interaction and one-qubit operations per-
forming phase shift to dj, kajak that is required. If we
take the time frame ∆t instead of unit time in this pro-
cedure, we obtain the phase shift to ∆t Ej, kajak.

Thus, we can implement Uj, k for every separated
pair of qubits.

3. Implementation of controlled-NOT by fixed
interaction. Now we show in detail how to implement
a controlled-NOT (CNOT) gate with a given pair of
qubits. Let j, k be fixed and omit these indexes. Denote

∆E = E1 – E2 – E3 + E4. If  ∉  Q (  is not a rational

number), then (since some physical parameters of our
system influencing phases, for example, cycle period,
can be slightly varied to avoid rationality of this param-
eter, the opposite case (rationality) can be ignored with-
out lack of generality) we can effectively implement a
common two-qubit CNOT gate

over our pair of neighboring qubits by using a sequence
of gates only from a given set of arbitrary one-qubit
rotations and fixed diagonal two-qubit gate E,

,

in the following way.

I. Denote the gate implementing by sequential
implementation of the first qubit phase rotation A,

1
2
--- Ep j, a j

p j k,{ }∉
∑ Ep k, ak

p j k,{ }∉
∑+

1
4
--- Ep q, .

p j k,{ }∉
∑+

∆E
π

------- ∆E
π

-------

CNOT

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0 
 
 
 
 
 

=

E

iE1( )exp 0 0 0

0 iE2( )exp 0 0

0 0 iE3( )exp 0

0 0 0 iE4( )exp 
 
 
 
 
 
 

=

A 1 0

0 i E1 E3–( )( )exp 
 
 

,=
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second qubit phase rotation B,

and gate E as U:

II. By using the irrationality of ∆E/π, it can be
shown that

i.e., for any desired accuracy ε, there exists n = n(ε)
such that Un will approach Π gate,

,

with a given accuracy.

III. By using the relation

where I is the identity matrix

B
–iE1( )exp 0

0 –iE2( )exp 
 
 

,=

U E A B⊗( )

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i∆E( )exp 
 
 
 
 
 

.= =

ε 0 m N n N : ∆En π 2m 1+( )– ε;<∈∃∈∃>∀

Π

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1– 
 
 
 
 
 

=

I H⊗( )Π I H⊗( ) CNOT,=

I 1 0

0 1 
 
 

=

and H is the Hadamard gate

,

or, in matrix form,

we see that controlled-NOT is finally obtained by the
sequence

of one-qubit rotations and gate E.
It is established that a quantum computer controlled

by quick one-qubit transformations and with fixed per-
manent interaction of diagonal form between qubits is
universal. This means that this type of quantum com-
puter can implement all possible quantum algorithms
by switching on and off only one-qubit gates.

We are grateful to Kamil Valiev for a stimulating
discussion.
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