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Primordial superheavy particles, considered as the source of Ultra High Energy Cosmic Rays (UHECR) and
produced in local processes in the early Universe, should bear some strictly or approximately conserved charge
to be sufficiently stable to survive to the present time. Charge conservation dictates that they be produced in
pairs, and the estimated separation of particle and antiparticle in such a pair is shown to be in some cases much
smaller than the average separation determined by the averaged number density of considered particles. If the
new U(1) charge is the source of a long-range field similar to the electromagnetic field, the particle and antipar-
ticle, possessing that charge, can form a primordial bound system with an annihilation timescale, which can
satisfy the conditions assumed for this type of UHECR source. These conditions severely constrain the possible
properties of the considered particles. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 98.70.Sa; 98.80.Cq
The origin of cosmic rays with energies exceeding
the GZK cutoff energy [1] is widely discussed, and one
of the popular approaches is related to decays or anni-
hilation in the Galaxy of primordial superheavy parti-
cles [2–5] (see [5] for review and references therein).
The mass of such particles is assumed to be higher than
the reheating temperature of the inflationary Universe,
so it is assumed that the particles are created in some
nonequilibrium processes, such as inflation decay [6] at
the stage of preheating after inflation [7].

The problems related to this approach are as fol-
lows. If the source of ultrahigh-energy cosmic rays
(UHECR) is related with particle decay in the Galaxy,
the timescale of this decay necessary to reproduce the
UHECR data needs a special nontrivial explanation.
Indeed, the relic unstable particle should survive to the
present time and, having mass m on the order of
1014 GeV or larger, should have the lifetime τ, exceed-
ing the age of the Universe. On the other hand, even if
particle decay is due to gravitational interaction and its
probability is on the order of 1/τ = (m/mPl)4m, where
mPl = 1019 GeV is the Planck mass, the estimated life-
time would be many orders of magnitude smaller. This
implies some specific additional suppression factors in
the probability of decay, which need a rather nontrivial
physical realization [2, 5], e.g., in the model of cryptons
[8] (see [9] for review).

¶This article was submitted by the authors in English.
0021-3640/03/7707- $24.00 © 20335
If the considered particles are absolutely stable, the
source of UHECRs is related with their annihilation in
the Galaxy. But their averaged number density, con-
strained by the upper limit on their total density, is so
low that a strongly inhomogeneous distribution is
needed to enhance the effect of annihilation to the level
desired to explain the origin of UHECR by this mecha-
nism.

In the present note, we offer a new approach to the
solution of the latter problem. If superheavy particles
possess new U(1) gauge charge, related to the hidden
sector of particle theory, they are created in pairs. The
Coulomb-like attraction (mediated by the massless
U(1) gauge boson) between particles and antiparticles
in these pairs can lead to their primordial binding, so
that the annihilation in the bound system provides the
mechanism for UHECR origin.

Note, first of all, that in quantum theory particle sta-
bility reflects the conservation law, which according to
Noether’s theorem is related with the existence of a
conserved charge possessed by the particle under con-
sideration. Charge conservation implies that a particle
should be created together with its antiparticle. This
means that, being stable, the considered superheavy
particles should bear a conserved charge, and such
charged particles should be created in pairs with their
antiparticles at the stage of preheating.

Being created in the local process of inflation field
decay, the pair is localized within the cosmological
horizon in the period of creation. If the momentum dis-
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tribution of created particles peaks below p ~ mc, they
do not spread beyond the proper region of their original
localization, being in the period of creation l ~ c/H,
where the Hubble constant H at the preheating stage is
in the range Hr ≤ H ≤ Hend. Here, Hend is the Hubble con-
stant at the end of inflation and Hr is the Hubble con-
stant in the period of reheating. For relativistic pairs,
the region of localization is determined by the size of
the cosmological horizon in the period of their derela-
tivization. In the course of successive expansion, the
distance l between particles and antiparticles grows
with the scale factor, so that, after reheating at the tem-
perature T, it is equal to (here and further, if not indi-
cated otherwise, we use the units " = c = k = 1)

(1)

The averaged number density of superheavy parti-
cles n is constrained by the upper limit on their modern
density. If we take their maximum possible contribu-
tion in units of critical density, ΩX, not to exceed 0.3,
the modern cosmological average number density
should be

This corresponds at the temperature T to a mean dis-
tance (ls ~ n–1/3) equal to

(2)

One finds that superheavy nonrelativistic particles
created just after the end of inflation, when H ~ Hend ~
1013 GeV, are separated from their antiparticles by dis-
tances more than 4 orders of magnitude smaller than the
average distance between these pairs. On the other
hand, if the nonequilibrium processes of superheavy
particle creation (such as decay of inflation) take place
at the end of the preheating stage and the reheating tem-
perature is as low as it is constrained from the effects of
gravitino decays on 6Li abundance (Tr < 4 × 106 GeV
[10, 11]), the primordial separation of pairs given by
Eq. (1) can exceed the value given by Eq. (2). This
means that the separation between particles and anti-
particles can be determined in this case by their aver-
aged density, if they were created at
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If the considered charge is the source of a long-
range field similar to the electromagnetic field, which
can bind a particle and antiparticle into an atomlike sys-
tem analogous to positronium, it may have important
practical implications for the UHECR problem. The
annihilation timescale of such a bound system can pro-
vide a rate of UHE particle sources corresponding to
UHECR data.

A pair of a particle and antiparticle with opposite
gauge charges forms a bound system when, in the
course of expansion, the absolute magnitude of the
potential energy of the pair V = αy/l exceeds the kinetic
energy of the particle’s relative motion Tk = p2/2m. The
mechanism is similar to that proposed in [12] for the
binding of magnetic monopole–antimonopole pairs. It
is not a recombination one. The binding of two oppo-
sitely charged particles is caused just by their Cou-
lomb-like attraction, once it exceeds the kinetic energy
of their relative motion.

In case plasma interactions do not heat superheavy
particles created with relative momentum p ≤ mc in the
period corresponding to Hubble constant H ≥ Hs, their
initial separation, being on the order of

(3)

experiences only the effect of general expansion, pro-
portional to the inverse first power of the scale factor,
while the initial kinetic energy decreases as the square
of the scale factor. Thus, the binding condition is ful-
filled in the period corresponding to the Hubble con-
stant Hc, determined by the equation

(4)

where H is the Hubble constant in the period of particle
creation and αy is the “running constant” of the long
range U(1) interaction possessed by the superheavy
particles. If the local process of pair creation does not
involve nonzero orbital momentum, due to primordial
pairing the bound system is formed in the state with
zero orbital momentum. The size of the bound system
strongly depends on the initial momentum distribution
and for p ≤ mc is equal to

(5)

where

(6)
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The annihilation timescale of this bound system can be
estimated from the annihilation rate given by

(7)

where the “Coulomb” factor Cy arises similarly to the
case of a pair of electrically charged particle and anti-
particle. For the relative velocity v /c ! 1, it is given by
[13] Cy = 2παyc/v. Finally, taking v /c ~ β, one obtains
for the annihilation timescale

(8)

For Hend ≥ H ≥ Hs, the annihilation timescale is

(9)

where p ~ mc, αy = 1/50, and m = 1014 GeV in the range
from 10–26 s up to 2 × 1019(0.3/ΩX)10/3 s. The size of the
bound system is given by

(10)

ranging for 2 × 10–10 ≤ ΩX/0.3 ≤ 1 from 7 × 10–7 to 6 ×
10–3 cm.

Provided that the primordial abundance of super-
heavy particles created at the preheating stage corre-
sponds to the appropriate modern density ΩX ≤ 0.3 and
that the annihilation timescale exceeds the age of the
Universe tU = 4 × 1017 s, owing to the strong depen-
dence on the initial momentum p, the magnitude rX =

 can reach the value rX = 2 × 10–10, which was

found in [2] to fit the UHECR data on superheavy par-
ticle decay in the halo of our Galaxy.

For late particle production (i.e., at H ≤ Hs), the
binding condition can retain the form (4) if l(H) ≤ ls. In
the opposite case, when l(H) ≥ ls, the primordial pairing
is lost and even zero-orbital-momentum particles and
antiparticles originating from different pairs form, in
general, bound systems with nonzero orbital momen-
tum. The size of the bound system is in this case
obtained from the binding condition for the initial sep-
aration, determined by Eq. (2), and is equal to

(11)

The lifetime of the bound system can be reasonably
estimated in this case with the use of the well-known
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results of the classical problem of massive particles
with opposite electric charges falling down the center
due to radiation in the bound system. The correspond-
ing timescale is given by (see [14] for details)

(12)

Using Eq. (11) and the condition l(H) ≥ ls, one obtains
for this case the restriction

(13)

The gauge U(1) nature of the charge possessed by
superheavy particles assumes the existence of massless
U(1) gauge bosons (y photons) mediating this interac-
tion. Since the considered superheavy particles are the
lightest particles bearing this charge and they are not in
thermodynamic equilibrium, one can expect that there
should be no thermal background of y photons and that
their nonequilibrium fluxes can not significantly heat
the superheavy particles.

The situation changes drastically if the superheavy
particles possess not only new U(1) charge but also
some ordinary (weak, strong, or electric) charge. Due to
this charge, superheavy particles interact with the equi-
librium relativistic plasma (with the number density
n ~ T3) and, for the mass of particles m ≤ α2mPl, the rate
of heating nσv∆E ~ α2T3/m is sufficiently high to bring
the particles into thermal equilibrium with this plasma.
Here, α is the running constant of the considered
(weak, strong, or electromagnetic) interaction.

Plasma heating causes the thermal motion of super-

heavy particles. At T ≤ m , their mean free

path relative to scattering with plasma exceeds the free
thermal motion path, so it is not diffusion but free
motion with thermal velocity vT that leads to complete
loss of initial pairing, since vTt formally exceeds ls at

While plasma heating keeps superheavy particles in
thermal equilibrium, the binding condition V ≥ Tkin can-
not take place. At T < TN (where N = e, QCD, w, respec-
tively, and Te ~ 100 keV for electrically charged parti-
cles; TQCD ~ 300 MeV for colored particles and Tw ≈
20 GeV for weakly interacting particles; see [14] for
details), the plasma heating is suppressed and super-
heavy particles go out of thermal equilibrium.

In the course of successive expansion, the binding
condition is formally reached at Tc, given by

(14)
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However, for electrically charged particles, the binding
does not in fact take place to the present time, since one
gets from Eq. (14) Tc ≤ 1 K. Bound systems of hadronic
and weakly interacting superheavy particles can form,
respectively, at Tc ~ 0.3 eV and Tc ≈ 20 eV, but even for
weakly interacting particles the size of such bound sys-
tems approaches half a meter (30 m for hadronic parti-
cles!). This leads to an extremely long annihilation
timescale of these bound systems, which cannot fit
UHECR data. This makes it impossible to realize the
considered mechanism of UHECR origin if the super-
heavy U(1) charged particles share ordinary weak,
strong, or electromagnetic interactions.

Disruption of primordial bound systems in their col-
lisions by tidal forces in the Galaxy reduces their con-
centration in the regions of enhanced density. Such spa-
tial distribution, specific for these UHECR sources,
makes it possible to distinguish them from other possi-
ble mechanisms [4, 9, 15] in the future AUGER and
EUSO experiments.

The crucial physical condition for the formation of
primordial bound systems of superheavy particles is the
existence of new strictly conserved local U(1) gauge
symmetry, ascribed to the hidden sector of particle the-
ory. Such symmetry can arise in the extended variants
of GUT models (see, e.g., [10] for review), in heterotic
string phenomenology (see [13] and references
therein), and in D-brane phenomenology [16]. Note
that in such models the strictly conserved SU(2) sym-
metry can also arise in the hidden sector, which leads to
a nontrivial mechanism of primordial binding of super-
heavy particles due to macroscopic size SU(2) confine-
ment, as was the case for “tetons” [17].

The proposed mechanism offers a link between the
observed UHECRs and the predictions of particle the-
ory, which cannot be tested by any other means and on
which the analysis of primordial pairing and binding
can put severe constraints. If viable, the considered
mechanism makes UHECR a unique source of detailed
information on the possible properties of the hidden
sector of particle theory and on the physics of the very
early Universe.
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In contrast to the phenomenon of nullification of the cosmological constant in equilibrium vacuum, which is
the general property of any quantum vacuum, there are many options in modifying the Einstein equation to
allow the cosmological constant to evolve in a nonequilibrium vacuum. An attempt is made to extend the Ein-
stein equation in the direction suggested by the condensed matter analogy of the quantum vacuum. Different
scenarios are found depending on the behavior of and the relation between the relaxation parameters involved,
some of these scenarios having been discussed in the literature. One of them reproduces the scenario in which
the effective cosmological constant emerges as a constant of integration. The second one describes the situation
when, after the cosmological phase transition, the cosmological constant drops from zero to a negative value;
this scenario describes the relaxation from this big negative value back to zero and then to a small positive value.
In the third example, the relaxation time is not a constant but depends on matter; this scenario demonstrates that
vacuum energy (or its fraction) can play the role of cold dark matter. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 04.20.Cv; 98.80.Es
1. INTRODUCTION

It is clear that the pressure of the vacuum in our Uni-
verse is very close to zero as compared to the Planck
energy scale, and thus the experimental cosmological
constant is close to zero. However, if at this almost zero
pressure one starts calculating the vacuum energy by
summing all the positive and negative energy states,
one obtains a huge vacuum energy that by about 120
orders of magnitude exceeds the experimental limit.
This is the main cosmological constant problem [1–4].

Exactly the same “paradox” occurs in any quantum
liquid (or in any other condensed matter) at zero pres-
sure. The experimental energy of the ground state of,
say, the quantum liquid at zero pressure is zero. On the
other hand, if one starts calculating the vacuum energy
by summing the energies of all the positive and negative
energy modes up to the corresponding Planck (Debye)
scale, one obtains a huge energy. However, there is no
real paradox in quantum liquids, since if one adds all
the trans-Planckian (microscopic, atomic) modes one
immediately obtains the zero value, irrespective of the
details of the microscopic physics [5]. The fully micro-
scopic consideration restores the Gibbs–Duhem rela-
tion e = –p between the energy (the relevant thermody-
namic potential) and the pressure of the quantum liquid
at T = 0, which ensures that the energy of the vacuum
state e = 0 if the external pressure is zero.

¶This article was submitted by the author in English.
0021-3640/03/7707- $24.00 © 20339
This is the first message from condensed matter to
the physics of the quantum vacuum: One should not
worry about the huge vacuum energy, the trans-Planck-
ian physics with its degrees of freedom will do the job
of the cancellation of the vacuum energy without any
fine tuning and irrespective of the details of the trans-
Planckian physics. There are other messages that are
also rather general and do not depend much on the
details of trans-Planckian physics. For example, if the
cosmological constant is zero above the cosmological
phase transition, it will become zero below the transi-
tion after some transient period.

Thus, from the quantum-liquid analogue of the
quantum vacuum, it follows that the cosmological con-
stant is not a constant but is an evolving physical
parameter, and our goal is to find the laws of its evolu-
tion. In contrast to the phenomenon of the cancellation
of the cosmological constant in the equilibrium vac-
uum, which is the general property of any quantum vac-
uum, there are many options in modifying the Einstein
equation to allow the cosmological constant to evolve.
However, condensed matter physics teaches us that we
must avoid the discussion of the microscopic models of
the quantum vacuum [6] and use instead the general
phenomenological approach. That is why we do not fol-
low the traditional way of description in terms of, say,
the scalar field, which mediates the decay of the dark
energy [7], and instead present an attempt at a purely
phenomenological description by introducing dissipa-
tive terms directly into the Einstein equation.
003 MAIK “Nauka/Interperiodica”
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2. EINSTEIN EQUATION
Standard formulation. Let us start with the nondis-

sipative equation for gravity—the Einstein equation. It
is obtained from the action

(1)

where SM is the matter action;

(2)

is the Einstein curvature action; and

(3)

where Λ is the cosmological constant [8]. Variation
over the metric gµν gives

(4)

where

(5)

is the Einstein tensor and  is the energy–momentum
tensor for matter. This form of the Einstein equation
implies that the matter fields on the right-hand side of
Eq. (4) serve as the source of the gravitational field,
while the Λ term belongs to the gravity.

Moving the Λ-term to the right-hand side of the Ein-
stein equation changes the meaning of the cosmologi-
cal constant. The Λ-term becomes the energy–momen-
tum tensor of the vacuum, which in addition to the mat-
ter is the source of the gravitational field [9]:

(6)

Here, ρΛ is the vacuum energy density and pΛ = –ρΛ is
the vacuum pressure.

Einstein equation in induced gravity. In the
induced gravity introduced by Sakharov [10], the grav-
ity is the elasticity of the vacuum, say, fermionic vac-
uum, and the action for the gravitational field is induced
by the vacuum fluctuations of the fermionic matter
fields. This kind of effective gravity, emerges in quan-
tum liquids [5]. In the induced gravity, the Einstein ten-
sor must also be moved to the matter side, i.e., to the
right-hand side:

(7)

where

(8)

has the meaning of the energy–momentum tensor pro-
duced by deformations of the fermionic vacuum. It
describes such elastic deformations of the vacuum,
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which distort the effective metric field gµν and thus play
the role of the gravitational field. As distinct from the

 term, which is of the zeroth order in gradients of

the metric, the  term is of the second order in gra-
dients of gµν. The higher order gradient terms also nat-
urally appear in induced gravity.

In the induced gravity, the free gravitational field is
absent, since there is no gravity in the absence of the
quantum vacuum. Thus, the total energy–momentum
tensor comes from the original (bare) fermionic degrees
of freedom. That is why all the contributions to the
energy–momentum tensor are obtained by the variation
of the total fermionic action over gµν:

(9)

According to the variational principle, δS/  = 0, the
total energy–momentum tensor is zero, which gives rise
to the Einstein equation in the form of Eq. (7). Since

 = 0, it satisfies the conventional and covariant

conservation laws,  = 0 and  = 0, and thus
serves as the covariant and localized energy–momen-
tum tensor of matter and gravity.

In this respect, there is not much difference between
different contributions to the energy–momentum ten-
sor: all come from the original fermions. However, in
the low-energy corner, where the gradient expansion
for the effective action works, one can distinguish
between different contributions: (i) some part of the

energy–momentum tensor ( ) comes from the
excited fermions—quasiparticles—which in the effec-
tive theory form the matter. The other parts come from
the fermions forming the vacuum—the Dirac sea. The
contribution from the vacuum fermions contains (ii) the
zeroth-order term in the gradients of gµν; this is the
energy–momentum tensor of the homogeneous vac-
uum—the Λ term. Of course, the whole Dirac sea cannot
be sensitive to the change of the effective infrared fields
gµν: only small infrared perturbations of the vacuum,
which we are interested in, are described by these effec-
tive fields; (iii) the stress tensor of the inhomogeneous
distortion of the vacuum state, which plays the role of

gravity; the second-order term  in the stress tensor
represents the curvature term in the Einstein equation.

The same occurs in induced QED [11], where the
electromagnetic field is induced by the vacuum fluctu-
ations of the same fermionic field. The total electric
current

(10)
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is produced by excited fermions (the first term) and by
fermions in the quantum vacuum (the second term).
The electric current in the second term is produced by
such elastic deformations of the fermionic vacuum that
play the role of the electromagnetic field, and the lowest
order term in the effective action describing such dis-
tortion of the vacuum state is the induced Maxwell
action

(11)

which is of the second order in gradients of Aµ. Accord-
ing to the variational principle, δS/δAµ = 0, the total
electric current produced by the vacuum and excited
fermions is zero. This means that the system is always
locally electroneutral. This ensures that the homoge-
neous vacuum state without excitations has zero elec-
tric charge, i.e., our quantum vacuum is electrically
neutral. The same occurs with the hypercharge, weak
charge, and color charge of the vacuum: they are zero
in the absence of matter and fields.

In the traditional approach, the cosmological con-
stant is fixed, and it serves as the source for the metric
field: in other words, the input in the Einstein equation
is the cosmological constant, the output is de Sitter
expansion, if matter is absent. In effective gravity,
where the gravitational field, the matter fields, and the
cosmological “constant” emerge simultaneously in the
low-energy corner, one cannot say that one of these
fields, is primary and serves as a source for the other
fields, thus governing their behavior. The cosmological
constant, as one of the players, adjusts to the evolving
matter and gravity in a self-regulating way. In particu-

lar, in the absence of matter (  = 0), the nondistorted

vacuum (  = 0) acquires zero cosmological con-
stant, since, according to the “gravi-neutrality” condi-

tion Eq. (7), it follows from equations  = 0 and

 = 0 that  = 0. In this approach, the input is the
vacuum configuration (in the given example, there is no
matter and the vacuum is homogeneous), the output is
the vacuum energy. In contrast to the traditional
approach, here the gravitational field and matter serve
as a source of the induced cosmological constant.

This conclusion is supported by the effective gravity
and effective QED, which emerge in quantum liquids or
any other condensed matter system of the special uni-
versality class [5]. The nullification of the vacuum
energy in the equilibrium homogeneous vacuum state
of the system also follows from the variational princi-
ple, or more generally from the Gibbs–Duhem relation
applied to the equilibrium vacuum state of the fermi-
onic system if it is isolated from the environment. In the
absence of the environment, one has pΛ = 0, while from
the Gibbs–Duhem relation ρΛ = –pΛ at T = 0 it follows

that ρΛ = 0. This corresponds to  = 0 for a quiescent

SMaxwell t x3 g–
16πα
-------------FµνFµν,dd∫=

Tµν
M

Tµν
curv

Tµν
M

Tµν
curv Tµν

Λ

Tµν
Λ
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flat Universe at T = 0; i.e., a quiescent flat Universe
without matter is not gravitating.

3. MODIFICATION OF EINSTEIN EQUATION 
AND RELAXATION OF THE VACUUM ENERGY

Dissipation in Einstein equation. The Einstein
equation does not allow us to obtain the time depen-
dence of the cosmological constant, because of the

Bianchi identities  = 0 and covariant conservation

law for matter fields (quasiparticles)  = 0, which
together lead to ∂µΛ = 0. But they allow us to obtain the
value of the cosmological constant in different static
Universes, such as the Einstein closed Universe [8],
where the cosmological constant is obtained as a func-
tion of the curvature and matter density. To describe the
evolution of the cosmological constant, the relaxation
term must be added.

The dissipative term in the Einstein equation can be
introduced in the same way as in two-fluid hydrody-
namics [12], which serves as the nonrelativistic ana-
logue of the self-consistent treatment of the dynamics
of the vacuum (the superfluid component of the liquid)
and matter (the normal component of the liquid) [5]:

(12)

where  is the dissipative part of the total energy–
momentum tensor. In contrast to the conventional dissi-
pation of the matter, such as viscosity and thermal con-
ductivity of the cosmic fluid, this term is not a part of

. It describes the dissipative back reaction of the
vacuum, which does not influence the matter conserva-

tion law . The condensed-matter example of such
a relaxation of the variables describing the fermionic
vacuum is provided by the dynamic equation for the
order parameter in superconductors—the time-depen-
dent Ginzburg–Landau equation, which contains the
relaxation term (see, e.g., the book [13]).

Let us consider how the relaxation occurs by the
example of the spatially flat Robertson–Walker metric

(13)

The Ricci tensor and scalar and the Einstein tensor are

(14)
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(17)

In the lowest order of the gradient expansion, the

dissipative part  of the stress tensor describing the
relaxation of Λ must be proportional to the first time
derivative.

Cosmological constant as integration constant.
Let us start with the following guess:

(18)

This noncovariant term implies the existence of a pre-
ferred reference frame, which is a natural ingredient of
the trans-Planckian physics, where general covariance
is violated. The modified Einstein equations in the
absence of matter are correspondingly

(19)

(20)

This gives the constant Hubble parameter H = const,
i.e., the exponential de Sitter expansion or contraction.
The cosmological “constant” Λ relaxes to the value
determined by the expansion rate:

(21)

This is consistent with the Bianchi identity, which

requires that ∂t(Λ + τΛ ) = 0. Actually, this situation
corresponds to the well-known case when the cosmo-
logical constant arises as an integration constant (see
reviews [1, 4]). Here it is the integration constant Λ0 =
Λ + τΛ∂tΛ. Such a scenario emerges because the dissi-
pative term in Eq. (18) is proportional to gµν.

Model with two relaxation parameters. Since

 is a tensor, the general description of the vacuum
relaxation requires introduction of several relaxation
times. This also violates the Lorentz invariance, but we
have already assumed that the dissipation of the vac-
uum variables due to trans-Planckian physics implies
the existence of the preferred reference frame. In isotro-
pic space, we have only two relaxation times: in the
energy and pressure sectors. In the presence of matter,
one has

(22)

(23)

Since the covariant conservation law for matter does
not follow now from the Bianchi identities, these two
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equations must be supplemented by the covariant con-
servation law to prevent the creation of matter:

(24)

Let us consider the simplest case, when the relax-
ation occurs only in the pressure sector, i.e., τ1 = 0. We
assume also that the ordinary matter is cold, i.e., its
pressure pM = 0, which gives ρM ∝  a–3. Then one finds
two classes of solutions: (i) Λ = const and (ii) H = 1/3τ2.
The first one corresponds to the conventional expansion
with constant Λ term and cold matter, so let us discuss
the second solution, H = 1/3τ2.

Relaxation after cosmological phase transition.
In the simplest case, when τ2 ≡ τ = const, the Λ term and
the energy density of matter ρM exponentially relax to
1/3τ2 and to 0, respectively:

(25)

Such a solution describes the behavior after the cosmo-
logical phase transition. According to the condensed-
matter example of the phase transition, the cosmologi-
cal “constant” is (almost) zero before the transition,
while after the transition it drops to a negative value and
then relaxes back to zero [5]. Equation (25) corre-
sponds to the latter stage, but it demonstrates that, in its
relaxation after the phase transition, Λ crosses zero and
finally becomes a small positive constant determined
by the relaxation parameter τ, which governs the expo-
nential de Sitter expansion.

Dark energy as dark matter. Let us now allow τ to
vary. Usually the relaxation and dissipation are deter-
mined by matter (quasiparticles). The term that violates
the Lorentz symmetry or the general covariance must
contain the Planck scale EPlanck, since it must disappear
at infinite Planck energy. The lowest order term, which
contains the EPlanck in the denominator, is "/τ ~
T2/EPlanck, where T is the characteristic temperature or
energy of matter. In the case of radiation, it can be writ-
ten in terms of the radiation density:

(26)

where α is a dimensionless parameter. If Eq. (26) can
be applied to the cold baryonic matter too, then the
solution of class (ii) becomes again H = 1/3τ, but now
τ depends on the matter field. This solution gives the
standard power law for the expansion of the cold flat
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Universe and the relation between Λ and the baryonic
matter density ρM:

(27)

In terms of the densities normalized to ρc = 3H2/8πG
(the critical density corresponding to the flat Universe
in the absence of the vacuum energy), ΩΛ = ρΛ/ρc and
ΩM = ρM/ρc one has

(28)

Since the effective vacuum pressure in Eq. (23) is pΛ ∝
–(Λ + τ ) = 0, in this solution the dark energy behaves
as cold dark matter. Thus, the vacuum energy can serve
as the origin of the nonbaryonic dark matter.

4. CONCLUSIONS

In the effective gravity, the equilibrium time-inde-
pendent vacuum state without matter is nongravitating;
i.e., its relevant vacuum energy, which is responsible
for gravity, is zero. In a nonequilibrium situation, the
cosmological constant is nonzero, but it is an evolving
parameter rather than a constant. The process of relax-
ation of the cosmological constant, when the vacuum is
disturbed and out of equilibrium, requires some modi-
fication of the Einstein equation violating the Bianchi
identities to allow the cosmological constant to vary. In
contrast to the phenomenon of nullification of the cos-
mological constant in the equilibrium vacuum, which is
the general property of any quantum vacuum and does
not depend on its structure or on the details of the trans-
Planckian physics, the deviations from general relativ-
ity can occur in many different ways, since there are
many routes from the low-energy effective theory to the
high-energy “microscopic” theory of the quantum vac-
uum. However, it seems reasonable that such modifica-
tion can be written in the general phenomenological
way, as, for example, the dissipative terms are intro-
duced in the hydrodynamic theory. Here we suggested
to describe the evolution of the Λ term by two phenom-
enological parameters (or functions)—the relaxation
times. The corresponding dissipative terms in the stress
tensor of the quantum vacuum are determined by trans-
Planckian physics and do not obey the general covari-
ance.

We discussed here the simplest examples of the
relaxation of the vacuum to equilibrium, described by a
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single relaxation parameter. The first example (τ1 = τ2)
reproduces the well-known scenario in which the effec-
tive cosmological constant emerges as a constant of
integration. The second example (τ1 = 0 and τ2 = const)
describes the situation that occurs if, after the cosmo-
logical phase transition, Λ acquires a large negative
value: Λ relaxes back to zero and then to a small posi-
tive value. The third example, when τ2 is determined by
the baryonic matter density, demonstrates that the vac-
uum energy (or its fraction) can play the role of cold
dark matter.

These examples are too simple to describe the real
evolution of the present Universe and are actually
excluded by observations [2]. A general consideration
with two relaxation functions is needed. In this general
case, it corresponds to the varying in time of the param-
eter wQ = pQ/ρQ describing the equation of state of the

quintessence with wQ(t) = –(Λ + τ2 )/(Λ + τ1 ). The
recent observational bounds on wQ can be found, for
example, in [14].
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The formation of the 5H superheavy hydrogen isotope was experimentally sought in the reactions induced by
stopped π– mesons absorbed by 9Be nuclei. Peaks in missing-mass spectra were observed in two reaction chan-
nels, 9Be(π–, pt)X and 9Be(π–, dd)X, and were attributed to the 5H resonance states. The lowest state has param-
eters Er = 5.5 ± 0.2 MeV and Γ = 5.4 ± 0.5 MeV [Er is the resonance energy measured from the (triton + two
neutrons) threshold]. Therefore, 5H is bound more weakly than 4H. Excited states of 5H were also observed. All
three resonance levels (E1r = 10.6 ± 0.3 MeV, Γ1r = 6.8 ± 0.5 MeV; E2r = 18.5 ± 0.4 MeV, Γ2r = 4.8 ± 1.3 MeV;
E3r = 26.7 ± 0.4 MeV, Γ3r = 3.6 ± 1.3 MeV) can decay into five free nucleons. © 2003 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 21.10.-k; 25.80.Hp
† Nuclei near the nucleon stability boundary are of
interest due both to their unique properties, among
which the neutron halo is most brilliant [1], and to the
importance of the precise determination of their param-
eters for testing and developing nuclear models. Super-
heavy hydrogen isotopes are lightest neutron-rich reso-
nances and, therefore, allow the simplest description by
theoretical models. At the same time, only superheavy
hydrogen isotopes among all nuclei at the nucleon sta-
bility boundary have the unfilled proton 1s shell. Thus,
the data concerning these nuclei can provide the possi-
bility of a critical test of the models based on the helium
and lithium spectroscopy.

The question of the existence of the 5H isotope was
open for a long time. Enhancement in the proton spec-
trum near the kinematic threshold of the 6Li(π–, p)X
reaction was observed in [2]. However, the interpreta-
tion of experimental data was uncertain; this enhance-
ment was possibly caused by a substantial contribution
from the three-body reaction channels.

An indication of the formation of 5H in the 9Be(π–,
pt)5H reaction induced by stopped pions was obtained
in our previous work [3]. Attributing enhancement in
the missing-mass spectrum to one state, we obtained
the resonance parameters Er = 7.4 ± 0.7 MeV and Γ =
8 ± 3 MeV [Er is the resonance energy measured from
the (triton + two neutrons) threshold]. More recently,
we observed indications of the formation of 5H in the
inclusive spectra of protons and deuterons in the reac-

† Deceased.
0021-3640/03/7707- $24.00 © 20344
tions 6Li(π–, p)X (Er = 11.8 ± 0.7 MeV, Γ = 5.6 ± 0.9 MeV)
and 7Li(π–, d)X (Er = 9.1 ± 0.7 MeV, Γ = 7.4 ±
0.6 MeV), respectively [4]. Experimental results [3, 4]
are close to each other, but the data obtained on the lith-
ium isotopes were based on a smaller statistical sample.

For a long time, the formation of 5H on heavy-ion
beams was observed only in the 7Li(6Li, 8B)5H reaction,
where the resonance state with Er ≈ 5.2 MeV and Γ ≈
4 MeV was identified [5]. A narrow 5H state with
energy Er = 1.7 ± 0.3 MeV and width Γ = 1.9 ± 0.4 MeV
was recently observed in the 1H(6He, pp)X reaction [6].

Thus, the experimental spectroscopy of 5H remains
uncertain. The parameters of the observed states differ
from each other by more than the measurement errors
presented above. These discrepancies are possibly
caused by noticeable selectivity of the population of 5H
levels. In any case, new experimental data are neces-
sary.

Theoretical calculations also strongly differ from
each other [7–9]. All models predict the nucleon insta-
bility of 5H, but the resonance energy of the ground
state calculated in [7] (≈6 MeV) is significantly higher
than the values of 2.5–3 MeV obtained in [8, 9]. In
addition, the authors of [8] predicted the existence of
5H excited states with resonance energies ≈4.5–
7.5 MeV.

In this paper, we present the spectroscopic results
obtained for 5H in a joint experiment carried out at the
Moscow Engineering Physics Institute and Northwest-
ern University (Evanston, Illinois). In this experiment,
003 MAIK “Nauka/Interperiodica”
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the formation of neutron-rich isotopes was investigated
in reactions induced by stopped pions absorbed by 1p-
shell nuclei. A 9Be target was again used to seek for 5H,
because results could be obtained with a significantly
larger statistical sample and with the noticeably better
energy resolution. Moreover, 9Be is preferable over
lithium targets, because the ratio between the yields of
the 5H-formation, channels and the physical back-
ground in the correlation data is higher than in the
inclusive data [3, 4].

Experiment was carried out on the low-energy pion
channel (LEP) at the Los Alamos Meson Physics Facil-
ity with a multilayer semiconductor spectrometer made
at the Moscow Engineering Physics Institute [10]. A
beam of 30-MeV pions passed through a beryllium
moderator and stopped in a thin target with a thickness
of 24 mg/cm2. The 9Be target included less than 1% of
uncontrolled impurities. The rate of pion stops was
equal to 6 × 104 s–1. Charged particles formed after the
absorption of pions by nuclei were detected by two tele-
scopes set at an angle of 180° to each other. Each tele-
scope consisted of silicon detectors. Two surface-bar-
rier detectors with thicknesses 100 and 400 µm were
placed at the beginning of a telescope, and 3-mm-thick
lithium drift detectors followed them. The area of a sen-
sitive region of each detector was equal to 8 cm2. The
total thickness of each telescope was equal to 43 mm,
which was sufficient for all long-range nuclear particles
formed in the absorption reaction to be completely
decelerated in the sensitive volume of a telescope.

To calibrate the detectors in energy, a radioactive
source of α particles and a precise-amplitude generator
were used. For absolute scale calibration, two-body
reactions with pion absorption and known final nuclear
states were taken. The systematic error did not exceed
100 keV. The energy resolution of the spectrometer for
the detection of single-charged ions (p, d, t) was better
than 0.5 MeV.

In this work, 5H states were sought in the missing-
mass spectra obtained from correlation data. In this
case, the energy resolution was determined from mea-
surements made on a 11B target in the same experimen-
tal run. When two single-charged ions are detected in
three-body channels of the absorption reaction on this
nucleus, 5–9He isotopes are formed. The ground states
of these isotopes are reliably determined and well sep-
arated from excited levels [11, 12]. Data analysis,
whose results were partially reported in [13, 14], indi-
cated that the missing-mass resolution is ≤1.0 MeV, and
the error in the absolute scale calibration does not
exceed 0.1 MeV.

In the experiment with the 9Be target, the energy res-
olution and calibration, as well as the possible time
variation of these quantities, were checked by correla-
tion measurements of tt events. Figure 1 shows the
missing-mass spectrum obtained in these measure-
ments. The triton mass is the reference point. A peak
JETP LETTERS      Vol. 77      No. 7      2003
observed near the zero missing masses is assigned to
the 9Be(π–, tt)t three-body reaction channel. The peak
position (EMM = 0.0 ± 0.1 MeV) and its width (∆ ≅  1.2 ±
0.1 MeV) are consistent with the results obtained with
11B. The peak is slightly broadened, because the angu-
lar acceptance of the spectrometer causes an increase in
the width of a device line with decreasing mass of unde-
tected reminder. The absence of time variations in the
spectrometer characteristics was corroborated by the
constant spectrum shape for different parts of the accu-
mulated statistical sample.

The spectrometer and experimental procedure were
described in more detail in [10].

Figures 2 and 3 show the missing-mass spectra for
the 9Be(π–, pt)X and 9Be(π–, dd)X reactions, respec-
tively. Missing masses are measured from the sum of
masses of a triton and two neutrons. First, we note that
there are no manifestations of 5H bound states in the
negative missing-mass region. The weak background in
this region is caused by random coincidences in corre-
lation measurements. At the same time, the structures,
which can be attributed to the formation of resonance
states, are observed in the positive missing-mass region
in both spectra. To separate these 5H states and to deter-
mine their parameters, we used the least-squares
approximation in the description of measured spectra
by the sum of n-body phase-space distributions (n ≥ 4)
and Breit–Wigner distributions. The angular and
energy broadenings of the spectrometer, and the back-
ground of random coincidences, were also taken into
account in the calculations.

The missing-mass spectra for the 9Be(π–, pt)X and
9Be(π–, dd)X reactions shown in Figs. 2a and 3a,
respectively, are satisfactorily approximated (χ2 per
degree of freedom is equal to 1.05 and 0.94, respec-
tively) by four 5H resonance states and the sum of
n-body phase-space distributions (4 ≤ n ≤ 6). The reso-
nance parameters of the 5H isotope that were obtained
by fitting two spectra, together with their weighted

Fig. 1. Missing-mass spectrum for the 9Be(π–, tt)X reaction.
The solid line is the complete description; lines 1 and 2 are
the phase-space distributions for the 9Be(π–, tt)dn and
9Be(π–, tt)p2n reactions, respectively.

MM
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averages, are listed in the table. The Γ values are the
FWHMs of the peaks shown in the figures. Errors of the
parameters presented in the table are caused by the sta-
tistical and systematic errors of measurements.

The spectral shapes and the relations between yields
of resonances are noticeably different for the 9Be(π–,
pt)X and 9Be(π–, dd)X reactions (Figs. 2a, 3a). This dif-
ference possibly indicates that the mechanisms of these
reactions are different. Nevertheless, the parameters of
the Breit–Wigner distributions for both channels coin-
cide to within the measurement errors. Therefore, the
results are reliable.

The stability of the spectroscopic data obtained for
5H can be additionally tested by using the fact that
quasifree processes, where the nucleons of residual
nucleus are not directly involved in the reactions, con-
tribute significantly to the three-body channels of pion-
absorption reaction. With the aim of relative enrich-
ment of the measured spectra with such events, we
posed restriction on the momentum of residual nucleus
(Px < 100 MeV/ c). This limit certainly does not exceed
the expected value for the Fermi momentum of the
cluster in a nucleus. The missing-mass spectra obtained
with such a restriction are shown in Figs. 2b and 3b.
These spectra were approximated by the Breit–Wigner
distributions with parameters presented in the table.
The χ2 values per degree of freedom are equal to 1.2
and 1.1 for pt and dd events, respectively, which are

Fig. 2. Missing-mass spectra for the 9Be(π–, pt)X reaction:
(a) measured spectrum and (b) spectrum measured under
the restriction Px ≤ 100 MeV/c on the momentum of unde-
tected residual. The solid lines are the total description and
Breit–Wigner distributions, the numbered lines are the
phase-space distributions for (1) all reaction channels,
(2) 9Be(π–, pt)4Hn, (3) 9Be(π–, pt)t2n, and (4) 9Be(π–,
pt)d3n channels.

MM
consistent with the existence of four resonance states of
the 5H isotope.

Figures 2 and 3 also show the contributions from the
multiparticle phase-space distributions to the spectra.
The comparison of these distributions with the mea-
sured spectra shows that the observed features cannot
be reproduced without resonance states. Since two
high-excited states are less noticeable, two approxima-
tions of spectra with three resonance states sequentially
excluding 18.5- and 26.7-MeV levels were tested using
the χ2 criterion. Both hypotheses can be rejected at a
10% significance level. We also note that a satisfactory
approximation cannot be achieved without four-body
phase-space distributions with a dineutron 2n and (or) a
4H resonance in the final state.

The ground-state resonance energy of the 5H iso-
tope, which was determined in this work, agrees with
the experimental results obtained in [5] and theoretical
calculations made in [8] but is higher (∆E ~ 2–3 MeV)
than the experimental results from [6] and theoretical
calculations [9, 10]. In our opinion, the discrepancy
between the experimental data are too large. It is worth
noting that the binding energy of the 5H isotope,
according to our measurements, is much less than for
the 4H isotope. This conclusion is valid even with the
inclusion of uncertainty in the measurements of the res-
onance energy of 4H, which varies from ~2 MeV [15,
16] to ~3.4 MeV [17]. This result is inconsistent with
the conclusion made in [6] that the binding energy of

Fig. 3. Missing-mass spectrum for the 9Be(π–, dd)X reac-
tion: (a) measured spectrum and (b) spectrum measured
under the restriction Px ≤100 MeV/c on the momentum of
undetected reminder. The solid lines are the total descrip-
tion and Breit–Wigner distributions, the numbered lines are
the phase-space distributions for (1) all reaction channels,
(2) 9Be(π–, dd)t2n, and (3) 9Be(π–, pt)4Hn channels.

MM
JETP LETTERS      Vol. 77      No. 7      2003



SPECTROSCOPY OF THE 5H SUPERHEAVY HYDROGEN ISOTOPE 347
Resonance parameters of the 5H isotope

Reaction channel
Weighted average

9Be(π–, pt)5H 9Be(π–, dd)5H

Er, MeV Γ, MeV Er, MeV Γ, MeV Er, MeV Γ, MeV

5.2 ± 0.3 5.5 ± 0.5 6.1 ± 0.4 4.5 ± 1.2 5.5 ± 0.2 5.4 ± 0.5

10.4 ± 0.3 7.4 ± 0.6 11.4 ± 0.7 5 ± 1 10.6 ± 0.3 6.8 ± 0.5

18.7 ± 0.5 3.9 ± 2.0 18.3 ± 0.5 5.5 ± 1.7 18.5 ± 0.4 4.8 ± 1.3

26.8 ± 0.4 3.0 ± 1.4 26.5 ± 1.0 6 ± 3 26.7 ± 0.4 3.6 ± 1.3
the superheavy hydrogen isotopes as a function of the
number of neutrons behaves similarly to the binding
energy of heavy helium isotopes: bonding is stronger
for an even number of neutrons because of the neutron
coupling.

The energy determined here for the ground state of
5H is supported by the following arguments. First, the
data are based on a larger statistical sample than in
other experiments. Second, our experiment covered a
wide missing-mass interval, which minimized the
phase-space effects; in particular, this conclusion is
illustrated by the spectra determined with a restriction
on the residual momentum. Third, the phenomenologi-
cal consideration of the three-body channel yields for
the reactions induced by the absorption of stopped
pions shows that the ground states of the residual nuclei
are more populated than the excited states [13]. At the
same time, the formation of other states in the 5H iso-
tope can possibly be suppressed in the reaction chan-
nels under investigation due to the effects of nuclear
structure of 9Be.

An important result of our measurements is the
observation of several excited levels of the 5H isotope.
To date, experimental information about excited states
of nuclei near the nucleon stability boundary is very
limited and is absent for 5H. At the same time, theory
predicts the existence of, at least, two excited states
with resonance energies ~4.5–7.5 MeV [8]. The excita-
tion energies of these states (~2–5 MeV) are close to
our value for the first excited state. The peak observed
in the experiment is possibly the superposition of two
levels. However, this assumption is inconsistent with
the fact that its parameters are identical in two reaction
channels.

We emphasize that the resonance energies of excited
states of 5H exceed the energy necessary for the decay
into five nucleons. Excitations of this system of free
nucleons are high and reach ~18 MeV (or 3.6 MeV per
nucleon). The origin and the formation mechanism of
such states are unclear. Compilations of light-nuclei
spectroscopy [11, 12] show that the same high excita-
tions above the decay threshold were observed only for
the 5He and 5Li isotopes. The levels in 5He and 5Li with
JETP LETTERS      Vol. 77      No. 7      2003
excitation energy Ex = 35.7 and 34 MeV, respectively,
are, possibly, the isobar analogs for the level with E2r =
18.0 MeV observed in our experiment.

In conclusion, we note that the continuation of
studying superheavy hydrogen isotopes is of current
interest. The solution to the problem of the effect of the
structure of nuclei involved in a reaction on the popula-
tion of the 5H levels can possibly resolve contradictions
between the results of different works. However, a
search for the heavier isotopes such as 6H and 7H is of
particular interest. At present, we continue to analyze
the possible formation of these isotopes in the 9Be(π–,
pd)X and 9Be(π–, pp)X reactions.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-17511), the pro-
gram “Universities of Russia” (project no. UR.02.01.007),
and by the U.S. Civilian Research and Development
Foundation for the Independent States of the Former
Soviet Union (grant no. MO-011-0).
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Predictions of the nonperturbative quark gluon strings model, based on the 1/N expansion in QCD and the string
picture of interactions for production of states containing heavy quarks, are considered. Relations between frag-
mentation functions for different states are used to predict the fragmentation function of c quark to J/ψ mesons.
The resulting cross section for J/ψ production in e+e– annihilation is in good agreement with recent the Belle
result. It is argued that the associated production of  states with open charm should give a substantial contri-
bution to the production of these states in hadronic interactions at very high energies. © 2003 MAIK
“Nauka/Interperiodica”.
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Investigation of heavy quarkonia production at high
energies provides important information on QCD
dynamics in an interesting region of intermediate dis-
tances from 1/mQ to , where mQ is the heavy quark

mass and  is the radius of a heavy quarkonia state.
For c and b quarks, this is the region 0.05 fm < r < 1 fm.
In this region both perturbative and nonperturbative
effects can be important. Production of J/ψ mesons is
studied experimentally in e+e– annihilation, γp, hp, hA,
and AA collisions. Analysis of hadronic interactions
shows that the simplest perturbative approach (color
singlet model) [1] does not reproduce experimental
data [2]. This observation leads to an introduction of the
color octet mechanism [3] of heavy quarkonia produc-
tion. In this approach, a set of nonperturbative matrix
elements is introduced, which is determined from a fit
to data. A characteristic prediction of this approach is a
large transverse polarization of J/ψ, and ψ' at large
transverse momenta [4] is not supported by the Teva-
tron data [5].

A new mystery in the problem of heavy quarkonia
production has been added by recent result of the Belle
collaboration [6] on the large production of J/ψ mesons
with charmed hadrons. The observed cross section at

 = 10.6 GeV is an order of magnitude larger than
theoretical predictions [7] based on perturbative QCD.
It is interesting that at this energy the associated pro-
duction of J/ψ with a  pair is the dominant mecha-
nism of J/ψ production [6].

In this paper, a nonperturbative approach, based on
the 1/N expansion in QCD and the string picture of par-
ticle production, is used for description of heavy
quarkonia production at high energies. A model based

¶ This article was submitted by the author in English.
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on this approach (the quark gluon strings model
(QGSM) [8]) has been successfully applied to produc-
tion of different hadrons at high energies. It has been
also used for description of inclusive spectra of hadrons
containing heavy (c, b) and light quarks [9–11]. In
QGSM, the fragmentation functions, which describe
transitions of strings to hadrons in many cases, can be
predicted theoretically [8, 12] and are expressed in
terms of intercepts of the corresponding Regge trajec-
tories. We will show that the model naturally leads to
the cross section of J/ψ production in e+e– annihilation
consistent with the Belle result. Estimate of the contri-
bution of the same mechanism in hadronic interactions

indicates that it can be important at energies  =
102 GeV.

Let us first discuss heavy quarkonia production in
e+e– collisions. In these reactions, a  pair is produced
directly by a virtual photon. However, the probability of
transition of such a state at high energies (far above the
threshold of charm production) to J/ψ is very small.
The simplest diagram of QCD perturbation theory
(Fig. 1a) corresponds to a transition to a white  state
with relative momentum characteristic to J/ψ by emis-
sion of two hard gluons. This cross section is sup-

s

cc

cc

Fig. 1. Diagrams for J/ψ production in e+e– annihilation.
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pressed at high energies by a factor 4 /s and at  =

10 GeV constitutes 10–3 of the total  cross section
[7].

J/ψ production in association with an extra charmed
pair (Fig. 1b) does not have this suppression but con-
tains a smallness due to the production of this pair and
a high threshold of the processes. At high energies, this
mechanism can be considered as a fragmentation of

 to J/ψ. Calculation in the lowest order of QCD
perturbation theory [7] shows that this mechanism is

important at energies  ≥ 50 GeV but at  = 10 GeV
is smaller than the mechanism of Fig. 1a by an order of
magnitude and is about 0.07 pb. This is in sharp contra-

diction with the Belle result: σ(J/ψ ) =  ±
0.17 pb.

Note that, for states of comparatively large radius,
such as J/ψ and especially ψ' or χc, a nonperturbative
fragmentation can be important. Thus, I shall estimate
a fragmentation of  into J/ψ using the nonperturba-
tive model mentioned above. In this model, particle
production is described in terms of production and frag-
mentation of quark–gluon strings. The behavior of the
fragmentation functions is determined in the limit
z  1 from the corresponding Regge limit and is
expressed in terms of Regge intercepts αi(0) [8, 12].
The fragmentation function of a c quark to J/ψ in this
model is written in the form [12]

, (1)

where αψ(0) is an intercept of the J/ψ Regge trajectory,
which is known from analysis of data on the spectrum
of  states and analysis of inclusive spectra of

charmed particles (see below), λ =  ≈ 1. Thus,
this fragmentation function is characterized by one
constant, aψ. In order to determine this constant, we will
use a relation between the fragmentation function of a
c quark to J/ψ and the fragmentation function of a light
quark to a D (D*) meson in the limit z  1. According
to the rules formulated in [12, 13], both functions have

the same behavior on z:  as z  1 and
differ only by a kinematic factor related to the mass dif-
ference between the J/ψ and D (D*) meson

(2)

The quantities s0i will be determined below.

Now we shall find the fragmentation function 
in the limit z  1. In this limit, it is related to the

mc
2 s

cc
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 
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 

2 1 αD∗ 0( )–( )
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Du
D

fragmentation function of a light quark to π meson
[12]

(3)

where αρ, αD*(0) are intercepts of the ρ and D* Regge
trajectories. They are related to αψ(0) by the equation
[14]

(4)

I shall use the following values for these intercepts:
αρ(0) = 0.5, αψ(0) = –2, and αD*(0) = –0.75, in accord
with Eq. (4). The uncertainty in the value of αψ(0) dis-
cussed in [9] is eliminated at present by experimental
data on the inclusive spectra of charmed hadrons in
hadronic collisions.

The gamma functions in Eq. (3) appear from Regge
residues of the corresponding trajectories, which were
chosen in accord with dual models and are in a good
agreement with data on widths of hadronic resonances
[15]. The coupling is assumed to be universal (with an
account of SU(4) and heavy quark symmetry).

The quantities s0i entering in Eq. (3) can be easily
calculated using the formulas and parameters of [13]

(5)

(6)

With mu⊥  = 0.5 GeV and mc⊥  = 1.6 GeV [13], we obtain

 = 3.57 GeV. Using these values for s0i in Eq. (3)

and  = 0.18 GeV2,  = 5 GeV2, and the frag-

mentation function  = 0.44 [8], we obtain the func-

tion  at z  1 in the form 0.01 .
This value is in reasonable agreement with phenomeno-
logical studies of charmed particle production in had-
ronic interactions in the framework of QGSM [10, 11].

The value of  in Eq. (2) can be calculated in the

same way with the substitution    =
6.72 GeV2. Finally, we obtain from Eq. (2)

(7)

Thus, aψ = 0.05.

Ru
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At asymptotic energies s  ∞, the cross section
for J/ψ production in e+e– annihilation is equal to

(8)

the factor of 2 in Eq. (8) takes into account J/ψ produc-

tion by both c and  quarks. At energy  ~ 10 GeV,
there is an extra suppression due to phase space correc-
tions for production of a heavy state. We estimate it by

introducing an extra factor γ =  into

Eq. (8). The distribution in  is related to the z dis-
tribution. It has a maximum at M2 ≈ 0.27 s. For the
energy of Belle experiment, the correction factor γ =
0.7. Thus, we obtain the following cross section for J/ψ

 production at  = 10.6 GeV σψ = 1.2 pb. This
value is in a good agreement with the Belle result [6]
and is much larger than the perturbative QCD predic-
tion [7]. The estimated uncertainty in the value of the
cross section due to possible variation of quantities s0i,
mi⊥ , and αi(0) is about 50%.

Let us consider now J/ψ production in hadronic
interactions. In the approach based on the 1/N expan-
sion [16], the main diagrams for particle production
correspond to two-chain configurations, shown for pp
interactions in Fig. 2a [8]. They can be considered as
production and fragmentation of two q–qq strings. It is
important to emphasize that production of one  pair
together with light quark pairs in this approach always
leads to an open charm production (Fig. 2b), and J/ψ in
this case is produced by the OZI forbidden mechanism
[17]. This leads to a strong suppression (~10–2) for
heavy quarkonia production in hadronic collisions
compared to open charm (beauty) production. To pro-
duce J/ψ in the chains by the OZI allowed mechanism,
it is necessary to produce two  pairs close in rapidity
(Fig. 2c). Though this mechanism is suppressed due to
production of extra heavy quark pairs, it can compete at
very high energy with the mechanism of single -pair
production. Its contribution can be estimated from
charm quark fragmentation into heavy quarkonia in
e+e– annihilation. Consider production of a  pair in
the q–qq string of Fig. 2. In each of the q–  and c–qq
substrings, an extra  pair can be produced and frag-
ment to a given quarkonium state. So it is possible to
use the estimate of the fragmentation function of c ( )
quarks given above or direct experimental data from
e+e– to determine the contribution of the corresponding
diagrams to quarkonia production. This calculation is
rather straightforward except for a threshold suppres-
sion factor. It is clear that, at the energies of fixed-target

experiments  = 10–40 GeV, there is a strong sup-

pression of the production of J/ψ and extra  pair. I

σψ 2σcc Dc
ψ z( ) z;d
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1
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c s
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shall estimate this suppression factor for the energy of
the HERA-B experiment [18] Elab = 920 GeV. Let us
denote an extra suppression factor compared to the sup-
pression of a single  pair by γpp. For its estimation, it
is possible to introduce the same kinematical factors as
in e+e– collisions for each q–  and c–qq subchain. For
J/ψ production at rapidity y = 0, γpp ≈ 0.5. Another esti-

mate can be made by assuming that the J/ψ–  sys-
tem is produced by gluon fusion. This gives γpp ≈ 0.4.
Using these estimates and taking into account that

 ≈ 10–2, we find that the associated production
of J/ψ with charmed hadrons constitutes at this energy
~10%. At Tevatron energies, the role of this mechanism
is more important, and it can (at least partly) explain the
excess of J/ψ production at Tevatron compared to the
color singlet model.

For ψ', associated production with in e+e– annihi-
lation is not yet known experimentally. However, its
total inclusive yield is close to the one for J/ψ [19]. If
the probability of ψ' production by c-quark fragmenta-
tion is the same as for J/ψ, it will have an even stronger
impact on ψ' production in hadronic collision, because
the experimental ψ' cross section is smaller than for

J/ψ:  ≈ 1.6 × 10–3, and associated production
can constitute a large fraction of the ψ' production.

In conclusion, it was demonstrated that the nonper-
turbative QGSM model predicts a sizable J/ψ  pro-
duction in e+e– annihilation at high energies, consistent
with recent experimental results [6]. In the approach
based on the 1/N expansion in QCD, it was shown that
a large fraction of -quarkonia production in hadronic
collisions at very high energies can be due to associated
production with charmed hadrons.

I thank K. Boreskov and O.V. Kancheli for useful
discussions. I am especially grateful to M.V. Danilov
for drawing my attention to this problem and discussion
of results of the Belle collaboration.
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Nonlinear dynamics of recording volume holographic gratings upon two-wave mixing in an inertial photore-
fractive media were studied. It is found that the space–time dependence of the grating diffraction efficiency can
be quasi-regular, allowing the understanding of the experimentally observed irregular behavior of the diffracted
light intensity. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.40.Pa; 42.40.Lx; 42.70.Nq; 42.65.Hw
Investigations into photorefraction, i.e., into the pro-
cesses of light-induced change in the refractive index of
a medium, have allowed one to discover many new
photorefractive materials in the last several decades and
find numerous applications for them [1, 2]. However,
with the development of the hologram record technique
and information storage in such media, it has become
clear that wave-mixing processes may be much more
complicated than was assumed previously [3].

In this work, we discuss certain features of wave
mixing in a photorefractive medium in the course of
recording volume holographic grating by two crossing
light beams. The time dependence of the diffraction
efficiency of the recorded grating, as a rule, is smooth
and practically monotonic at low light intensities or in
media with weak photorefractive nonlinearity [4, 5].
However, an increase in the light intensity or the use of
stronger nonlinearities may be accompanied by sharp
differentials in the diffraction efficiency and their sen-
sitivity to the experimental conditions. In this work, it
is shown that such a jumpwise behavior of diffraction
efficiency of a volume holographic grating is a conse-
quence of the formation of a regular spatiotemporal
structure in the course of recording grating in an inertial
photorefractive medium.

Description of the model. We consider the standard
model of recording holographic grating in a medium
with photorefractive response. Two coherent light
beams intersect in a medium to form an interference
pattern. Due to the diffusion or photovoltaic effect, the
electric-charge carriers are rearranged in the medium to
produce an electrostatic field which modulates the
refractive index through the electrooptical effect.
Therefore, the state of light and medium is specified by
three complex field variables: slowly varying field
amplitudes of two beams E1, 2(x, t) and spatially oscil-
lating amplitude of electrostatic field %(x, t). In the
approximation of a perfectly transparent medium, their
0021-3640/03/7707- $24.00 © 20353
spatiotemporal evolution is described by a set of partial
differential equations, which can be written in the form
[6–8]

(1)

where τm = ε/4πσ is the characteristic Maxwellian
response time of the medium, ε is its dielectric constant,
σ is conductivity, and γ = Geiϕ is the effective photore-
fraction coefficient, which includes a combination of
the photovoltaic and electrostatic tensor components
and the diffusion coefficient.

From the second and third equations, it follows that
the total light intensity in the system is constant: |E1|2 +
|E2|2 = const = I0. Taking into account this conservation
law, it is convenient to make the change of variables E1

= cos(β/2) and E2 = sin(β/2). In the new
variables, system (1) takes the form

(2)

where the variables ] = 2%/γI0, ψ = ψ2 – ψ1, and new
time and length scales

(3)

are introduced. Therefore, the behavior of the system
depends qualitatively on a single parameter ϕ, which
determines the ratio between the real and imaginary
components of the photorefraction coefficient γ. The
behavior of all remaining parameters can be taken into

τm∂%
∂t
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*,,=

∂E2

∂x
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∂E1

∂x
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I0e
iψ1 I0e

iψ2

∂]
∂τ
-------- ]+ βe iψ– ,sin=

∂β
∂y
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∂y
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τ t/τm, y GI0x= =
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account by changing the space and time scales. In par-
ticular, the variation of light intensity I0 is equivalent to
changing the thickness of photorefractive medium.

It is known [9, 10] that the recorded holographic
grating for real γ is not shifted relative to the interfer-
ence pattern. In this case, stationary energy exchange is
impossible; after the termination of recording grating,

Fig. 1. Three-dimensional intensity profile for the second-
ary light beam I2 as a function of time τ and thickness y of
the photorefractive medium for (a) purely imaginary coeffi-
cient γ of photorefractive nonlinearity (ϕ = π/2) and
(b) equal real and imaginary parts of this coefficient
(ϕ = π/4).
the beam intensities in the photorefractive medium are
not rearranged. In all other cases, the intensity of one
beam will transfer to another (in our notation, energy
transfer occurs from the first to the second beam if 0 <
ϕ < π).

In the case of imaginary photorefractive nonlinear-
ity ϕ = π/2 (which corresponds, in particular, to the dif-
fusional photorefraction mechanism), the system can
be simplified, because there is a stable solution of the
form arg] = πn – ψ = const. The rest of the set of
Eqs. (2) amounts to the equation

(4)

which has the form of a modified sine-Gordon equation
with the additional first derivative. The analytic solu-
tion to this equation and to the complete set of Eqs. (2)
cannot be found. For this reason, we present here only
numerical solutions.

Results of numerical integration. The set of
Eqs. (2) consists of four real equations, two of which
contain only time derivatives and the other two contain
only spatial derivatives. Due to this, one can easily
develop a computational algorithm based on the numer-
ical integration of the two parts of system (2), similar to
the usual differential equations, to obtain the solution
by specifying the intensity ratio I2/I1|y = 0 ≡ I02/I01 =

 and phase difference ψ|y = 0 ≡ ψ0 for two
light beams at the medium input as boundary condi-
tions and the absence of electrostatic field ] at τ = 0 as
the initial condition. The numerical integration gave the
spatiotemporal dependences for the second-beam
intensity normalized to the total intensity I0, with the
boundary conditions ψ0 = 0, I02/I0 = 10–4 and various
phases of the photorefractive nonlinearity coefficient ϕ.
For such a low initial input intensity of the second
beam, its output intensity is a measure of the diffraction
efficiency of the recorded grating.

Figure 1a shows the three-dimensional intensity
profile of the second beam for the imaginary coefficient
γ (ϕ = π/2). It demonstrates the dependence of intensity
on both time and length. One can see that the obtained
solution describes a smooth increase in the intensity of
the second beam at the output of photorefractive
medium with small damping oscillations near the max-
imum. This is precisely the behavior that was consid-
ered classical for the processes of recording holograms
and photoinduced light scattering at the dawn of photo-
refraction [5].

However, in the general case, the behavior of light
intensity at the output of the photorefractive medium
may be much more complicated. Figure 1b shows the
three-dimensional intensity map for the second beam in
the case of γ with equal real and imaginary parts (ϕ =
π/4). One can see that the evolution of beam intensity at
short lengths is almost the same as in the case of imag-
inary γ. Recall that, on the scale adopted, the effective

∂2β
∂y∂τ
------------ ∂β

∂τ
------+ β,sin=

β0/2( )tan
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Fig. 2. Two-dimensional intensity distribution for the second beam I2 as a function of time τ and thickness y of the photorefractive
medium for different phases ϕ of the photorefractive nonlinearity coefficient γ: ϕ = (a) π/5, (b) π/4, (c) 3π/10, (d) 2π/5, and (e) π/2.
length unit depends both on the total light intensity and
on the magnitude of photorefractive nonlinearity (3).
Since the laser intensity in the early studies of photore-
fraction was too low to produce a strong light field, the
effective thicknesses of photorefractive media were
rather small, so that almost all observed dependences
were smooth and monotonic. However, for the larger
interaction lengths (or beam intensities), the time
JETP LETTERS      Vol. 77      No. 7      2003
dependences contain a strongly fluctuating region,
whose length increases approximately proportional to
the interaction length.

Let us consider a set of spatiotemporal dependences
for the intensity of second beam and various values of
phase ϕ. The corresponding dependences are shown in
Fig. 2 in the form of two-dimensional brightness distri-
butions (Fig. 2a corresponds to Fig. 1a, and Fig. 2d cor-
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responds to Fig. 1b). One can see that, if the photo-
refraction coefficient has a nonzero real part, the whole
τ–y plane can be separated into two regions divided by
a near-straight line emerging from the origin of coordi-
nates. In the upper part adjacent to the time axis, the
intensity I2 rapidly and more or less monotonically
increases and becomes saturated at I2 = I0. At the same
time, the two-dimensional structure formed in the
region adjacent to the spatial axis is rather complicated
and has a regular quasiperiodic character. It should be
noted that the slope of the line separating the regions
increases with decreasing phase ϕ.

Let us now compare these results with the experi-
mental data.

Comparison with experiment. The experimental
curves presented below were obtained while studying
two-wave mixing, photoinduced light scattering, and
parametric scattering of holographic type in photore-
fractive copper-doped lithium niobate crystals [11, 12].
Two light beams were brought together in a photore-
fractive crystal, with the intensity of one of them being
approximately four orders of magnitude higher than for

Fig. 3. Comparison of the experimental time dependences
of the intensity I2 of the second beam (a, b, e, f) with the
analogous theoretical dependences for different total light
intensities I0 (c, d, g, h).
the other. The Maxwellian time in such crystals equals
several tens of minutes and decreases with increasing
light intensity because of an increase in the photoelec-
tron conductivity. As the process of holographic grating
evolves, the intensity of the first beam is partly trans-
ferred to the second beam.

To compare with the experimental data, the I2(τ)
dependences were extracted from the complete solution
to Eqs. (2) with various effective thicknesses of the
photorefractive medium.

The experimental curves for the intensity I2 of the
second beam at the output of a photorefractive crystal
are shown in Figs. 3a and 3b for relatively low intensi-
ties of the first beam, and the appropriate theoretical
curves obtained for various effective thicknesses are
shown in Figs. 3c and 3d. As was pointed out above, the
length scale depends on the total light intensity;
because of this, the increase in the effective thickness
corresponds to the increase in the intensity of the first
beam for a fixed crystal thickness. Figures 3e and 3f
and Figs. 3g and 3h show, respectively, the correspond-
ing theoretical curves for higher intensities of the first
beam; I1 in Fig. 3e is higher than the intensity of the first
beam in Fig. 3a by almost an order of magnitude, and I1
in Fig. 3e is one order of magnitude higher than the
analogous intensity in Fig. 3b. It is seen from these
graphs that the theoretical curves obtained by the
numerical integration of Eqs. (2) describe not only the
smooth evolution of the energy-exchange process at
low intensities but also the sharp changes in the diffrac-
tion efficiency of holographic grating at high light
intensities or large thicknesses of the photorefractive
medium (Fig. 3e).

Thus, it is shown in this work that the spatiotempo-
ral dependence of the diffraction efficiency of a holo-
graphic grating may have a complex quasi-regular
structure if the coefficient of photorefraction nonlinear-
ity is complex and the pumping is strong enough
(Fig. 2). This is manifested experimentally in the form
of sharp intensity differences in the intensity of dif-
fracted light (Fig. 3e). The boundary of this structure in
the τ–y plane is a straight line emerging from the origin
of coordinates. Its slope depends on the phase of the
coefficient of photorefractive nonlinearity. This, in
principle, provides an original method of measuring the
ratio between the real and complex parts of the photo-
voltaic tensor components.

This work was supported by the Russian Foundation
for Basic Research (project no. 02-02-16843) within
the framework of the program “Fundamental Optics
and Spectroscopy.”
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of a High-Current Relativistic Electron Beam in Plasma 

A. V. Arzhannikov, V. T. Astrelin, A. V. Burdakov*, I. A. Ivanov, V. S. Koœdan, K. I. Mekler,
V. V. Postupaev, A. F. Rovenskikh, S. V. Polosatkin, and S. L. Sinitskiœ

Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences, 
pr. Akademika Lavrent’eva 11, Novosibirsk, 630090 Russia

* e-mail: A.V.Burdakov@inp.nsk.su
Received January 28, 2002; in final form, February 18, 2003

The experimental results on a multiple-mirror trap GOL-3 with a short section of reduced magnetic field (“mag-
netic pit”) are presented. The reduced specific energy release from a relativistic electron beam in the pit brings
about a region with a temperature several times lower than in the surrounding plasma. The existence of the low-
temperature region directly demonstrates that the longitudinal electron heat conductivity is suppressed in the
collective electron-beam interaction with plasma. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Fi; 52.40.Mj; 52.55.Jd
1. Introduction. It is generally believed in plasma
physics that turbulence enhances transport coefficients
and, correspondingly, reduces plasma temperature and
energy confinement time. This is largely caused by the
fact that the overwhelming majority of experimental
and theoretical studies on the physics of fusion plasma
mainly deal with devices of the tokamak type or other
toroidal systems, in which the plasma energy is lost
transverse to a magnetic field. As distinct from such
devices, high electron temperature in open magnetic
systems, as a rule, cannot be attained because of the
energy loss through the longitudinal electron heat-con-
ductivity channel. The reactor horizons of open systems
largely depend on whether these losses can be reduced
or not.

In the GOL-3 experiments with plasma heating by a
high-current microsecond relativistic electron beam
[1], an electron temperature of ~1 keV was achieved,
and, after modernization of this device [2], up to 2–
3 keV at a density of ~1015 cm–3. Both the absolute
value of temperature and its nonuniform distribution
along the device length during ~5 µs could not be
explained by the assumption that the plasma energy is
lost due to the classical electron heat conductivity. To
explain these experimental results, it was assumed in
[3] that an abnormally high electron-scattering fre-
quency caused by a strong turbulence occurring in the
course of electron-beam injection into plasma reduces
the longitudinal electron heat conductivity by two to
three orders of magnitude, as compared to the classical
conductivity (this problem is considered in more detail
in [4]). Such effects were probably observed in the
0021-3640/03/7707- $24.00 © 20358
experiments on the collective interaction of nanosecond
electron beams with plasma (see, e.g., [5]); however,
due to the short duration of the process (~50 ns), they
did not appreciably alter the dynamics of beam-heated
plasma. Various mechanisms of anomalous collision
frequency in turbulent plasma (see, e.g., [6] and review
[7]) and in the electron-beam systems are known (see,
e.g., review [8]). In our case, the following mechanism
can be responsible for this anomaly: during the collec-
tive relaxation, the electron beam excites intense reso-
nance (Langmuir) plasma oscillations. In the case of
nonlinear relaxation of these oscillations, whose level
can achieve the modulation instability threshold, an
intense ion sound can arise, together with density mod-
ulations associated with Langmuir collapse processes
(a detailed study of turbulent processes accompanying
the relativistic electron-beam relaxation in a magne-
tized plasma was performed on a device with different
parameters [9, 10]).

Recently, the magnetic system of the GOL-3 device
has been modernized. The main purpose of the modern-
ization was to produce corrugated magnetic-field sec-
tions at the solenoid ends (with the aim of studying
plasma heating and confinement in a multiple-mirror
magnetic system). In the course of these developments,
an experiment with a reduced magnetic-field section in
the center of a solenoid was also carried out. It is the
purpose of this work to discuss some results of this
experiment.

2. Statement of the experiment and diagnostics.
In the experiments under discussion, the solenoid of the
003 MAIK “Nauka/Interperiodica”
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GOL-3 device was comprised of 110 coils with inde-
pendent power supply and a total length of 12 m and
arranged as three sections. A four-meter section with a
uniform magnetic field of 4.8 T was in the center. The
corrugated-field sections, each composed of 20 corru-
gation periods with a maximum field of 5.2 T, a mini-
mum field of 3.2 T, and a step of 22 cm, were adjacent
at both its sides. The solenoid was ended by single mag-
netic mirrors with a field of 9 T. The initial hydrogen or
deuterium plasma with an average density of ~1015 cm–3

and a temperature of 2–3 eV along the length was pro-
duced using a special linear discharge in a 10-cm-diam-
eter metallic vacuum chamber placed inside the sole-
noid. Then a relativistic electron beam was injected into
this plasma, with the following parameters: electron
energy ~0.9 MeV, current ~25 kA, base duration ~8 µs,
and energy content ~120 kJ. The beam diameter in the
uniform-field section was about 6 cm.

In the experiments, a special region with a reduced
magnetic field was created in the central section of the
solenoid, with the center at Z = 659 cm (hereafter, the
longitudinal coordinate is measured from the middle of
the input mirror) and a distance between neighboring
coils 4 cm larger than in the remaining part of the sole-
noid. The diameter of the vacuum chamber was also
increased to 150 mm in a region of length 42 cm. The
coils adjacent to Z = 659 cm had an independent power
supply and could be switched off in some experiments.
The magnetic field at this point was 3.8 T for the
switched-on adjacent coils and 1.3 T for the switched-
off coils. In the latter case, the magnetic field formed a
local trap (“magnetic pit”) with a length of about
30 cm.

Plasma heating and confinement were examined
using several diagnostics (see, e.g. [2]). In this work,
we will mainly focus on the results of diamagnetic mea-
surements (about 25 coils were placed along the length
of the device). Each of the “standard” coils was a loop
enveloping the plasma column (the walls of vacuum
chamber can be considered as pit-conducting for times
discussed in this work). The coil placed in the mag-
netic-pit region had a different design and was shaped
like a ring segment. It was placed at Z = 659 cm in a
diagnostic port near the plasma column boundary. This
fact should be taken into account in the discussion of
the experimental results (the absolute calibration accu-
racy for this coil in a magnetic field of 1.3 T was low
because of the difficulties associated with taking into
account the skin currents in the device elements in this
regime; it can be estimated at 30%).

3. Results and discussion. The typical signal oscil-
lograms for the strong and weak field in the central
magnetic pit are presented in the Fig. 1. For reference,
the signals from a voltage divider of the beam generator
and a detector of hard X-ray emission from the surface
of an output beam collector are also shown in Fig. 1.
JETP LETTERS      Vol. 77      No. 7      2003
We first consider the case with the completely
switched-on solenoid (Fig. 1b). After the beam injec-
tion, the plasma pressure increases until the injected
beam power starts to decrease. As pointed out above,
plasma electrons are heated in the course of beam injec-
tion because of the collective effects that are mainly due
to the excitation of Langmuir oscillations. The excess
of beam instability increment over the effective elec-
tron-collision frequency in plasma is the necessary con-
dition for the efficient beam relaxation. This condition
signifies that, for a given plasma density, the beam cur-
rent density must exceed a certain critical value. In the
GOL-3 experiments, the maximal plasma density for
which electrons are efficiently heated is equal to about
2 × 1015 cm–3 for the beam current density on the scale
of 1 kA/cm2.

As in [1, 2], the heating in our experiments was
highly nonuniform along the device length, especially
at few starting meters; however, the signal shapes of the
diamagnetic coils were similar to the one shown in
Fig. 1b for the Z = 701 cm coil. The signal amplitude of
this diamagnetic coil corresponds to the cross-sectional

Fig. 1. (a) Dependence of U on t. (1) Diode voltage and
(2) bremsstrahlung radiation from the exit collector; (b) and
(c) plasma pressure measured near the reduced-field section
(numbers near the curves correspond to the longitudinal
coordinates of the coils): (b) B = 3.8 T in the central section
with the center at 659 cm and (c) B = 1.3 T at the same site.
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average value D = neTe + niTi ~ 1015 keV/cm3 of the
plasma column (here, n and T are the concentration and
temperature, respectively, and e and i refer, respec-
tively, to electrons and ions). In the central section of
the device, the pressure longitudinal gradient in plasma
is already low, and the signals of five diamagnetic coils
placed in a uniform magnetic field from Z = 475 cm to
Z = 844 cm coincide with each other to within 5% at the
plasma heating stage. The coil signal shape at Z =
659 cm in a field of 3.8 T is slightly different from the
others (Fig. 1b). Plasma is heated slowly at this point,
because the ratio of electron-beam density to the
plasma electron density (which, all things being the
same, determines the beam relaxation efficiency in
plasma; see, e.g., [11]) is reduced due to the expansion
of the magnetic-field tube in this region. After the ter-
mination of heating, plasma is rapidly cooled, the tem-
perature levels off along the length, and the reading of
the Z = 659 cm coil becomes close to the readings of the
neighboring coils.

A different behavior of plasma pressure in the cen-
tral section is observed if the field in the magnetic pit is
weak after switching off the adjacent solenoid coils
(Fig. 1c). On the whole, the character of plasma heating
in this case does not change over most of the solenoid,
and the plasma pressure distribution along the device
length is also unchanged. However, substantial changes
in the pressure dynamics are detected by the coil at Z =
659 cm. The magnetic field in the central section
decreases to ~1.3 T, and the beam-current density
becomes 3.7 times lower than in the region of uniform
field, so that the beam practically does not interact with
plasma at this site. As a result, the plasma pressure,
being determined by the electron temperature in the
course of beam injection, is 5 to 10 times lower in the
low-field section than the pressure detected by the coils
at a distance of ~40 cm in the region of uniform field. It
is important that, due to the suppression of the longitu-
dinal electron heat conductivity (see Introduction), the
energy transfer to the region of magnetic-field mini-
mum from the neighboring regions of hot plasma is
almost zero. A high electron-temperature gradient
along the length (up to 2.5 keV/m) exists during the
heating stage and characterizes the degree of suppres-
sion of electron heat conductivity over this time. After
the termination of heating, the effect of anomalously
low heat conductivity disappears, the effective collision
frequency in plasma becomes classical, and the temper-
ature along the plasma-column length starts to rapidly
level off. At this instant of time, plasma pressure in the
magnetic pit rises drastically (although it drops in the
remaining regions of the device), and β in the magnetic
pit reaches a value of 15–20%.

Yet another two circumstances are noteworthy.
First, the plasma pressure in this region of central sec-
tion slightly increases immediately also after heating in
a high magnetic field (Fig. 1b). Second, preliminary
hydrodynamic calculations using the modified ISW
code (its first version was used in [4]) show that, due to
the appearance of a longitudinal pressure gradient near
the magnetic pit at the heating stage, plasma is “accu-
mulated” in this region even during the beam pulse.
Due to the energy thermalization of these counterprop-
agating plasma flows, the plasma pressure in the mag-
netic-pit region may be higher (for a while) than in the
regions adjacent to the trap.

4. Conclusions. A short section with a magnetic
field of 1.3 T (i.e., 3.7 times lower than in the adjacent
regions with a uniform magnetic field) has been formed
in a middle of the solenoid of the GOL-3 device. Due to
a decrease in the local electron density of a relativistic
beam in this section, beam-induced plasma heating
almost did not occur in the weak-field region. As a
result, a short region with a temperature several times
lower than in the surrounding plasma was formed dur-
ing the course of beam injection into the initially homo-
geneous plasma. The measured longitudinal plasma
pressure gradient corresponded to an electron tempera-
ture gradient of ~1 keV/40 cm (for the above-men-
tioned parameters of beam-induced plasma heating and
characteristic time of few microseconds, the ion tem-
perature is much lower than the electron temperature
[1]). The existence of a low-temperature region is direct
evidence of the suppression of longitudinal electron
heat conductivity at the stage of collective beam–
plasma interaction and plasma heating. After heating,
the heat conductivity regains its classical value (for
details, see [3, 4]), which is manifested by a rapid
increase in plasma pressure in the weak-field section
and simultaneous plasma cooling in the remaining part
of the device.
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Abstract—The sputtering of tungsten from a target at a temperature of 1470 K during irradiation by 5-eV deu-
terium ions in a steady-state dense plasma is discovered. The literature values of the threshold for the sputtering
of tungsten by deuterium ions are 160–200 eV. The tungsten sputtering coefficient measured by the loss of
weight is found to be 1.5 × 10–4 atom/ion at a deuterium ion energy of 5 eV. Previously, such a sputtering coef-
ficient was usually observed at energies of 250 eV. The sputtering is accompanied by a change in the target sur-
face relief, i.e., by the etching of the grain boundaries and the formation of a wavy structure on the tungsten
surface. The subthreshold sputtering at a high temperature is explained by the possible sputtering of adsorbed
tungsten atoms that are released from the traps around the interstitial atoms and come to the target surface from
the space between the grains. The wavy structure on the surface results from the merging of adsorbed atoms
into ordered clusters. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.55.Rk; 61.80.Jh; 81.15.Cd
INTRODUCTION
The sputtering of materials by fast ions is a phenom-

enon that has been studied fairly well and whose major
features seem to be well established. Thus, it is well
known that, at ion energies below a certain threshold
energy Etr, there is no sputtering [1]. Since the sputter-
ing results from binary elastic collisions between the
ions and the atoms of the target, the existence of the
threshold is a consequence of the condition that the
maximum energy that the ion can transfer to the target
atom in a collision,

is higher than the binding energy of the target atoms to
the target surface (the sublimation energy U). For light
ions and target materials with high atomic numbers, the
sputtering threshold is especially high. The theoretical
threshold energy for the sputtering of tungsten (U =
8.7 eV) by deuterium ions is equal to 201 eV, while
experimental measurements yielded thresholds of
178 eV [2] and 160 eV [3]. In this work, we have
detected the sputtering of tungsten from a target at a
temperature of 1470 K during irradiation by 5-eV deu-
terium ions in a steady-state dense plasma.

The phenomenon observed is important not only
from the standpoint of general physics but also from the
point of view of practical applications in which low-
energy ions interact with a material at a high tempera-
ture. Thus, in the International Thermonuclear Experi-
mental Reactor (ITER), it is proposed to utilize a tung-
sten divertor capable of operating at high temperatures
[3]. The tungsten components of the divertor are
expected to undergo erosion only during plasma disrup-
tions [3], because the energy threshold for the physical

∆Emax Eλ , λ 4MiMa/ Mi Ma+( )2,= =
0021-3640/03/7707- $24.00 © 20362
sputtering of tungsten is high. In the concept of a gas
divertor that was developed in [4] in order to reduce the
divertor erosion, a tungsten divertor is exposed to a
dense plasma with a temperature of several electron-
volts. In the context of the above problems, we have
carried out experiments aimed at modeling the opera-
tion of a gas divertor for ITER by investigating the sput-
tering of tungsten from a target at temperatures of 1200
to 1470 K during the irradiation by 5-eV deuterium ions
in a steady-state dense plasma in the LENTA device.

The phenomena revealed in our experiments are
also important for the problem of the passage of space
objects through the Earth’s atmosphere. Under atmo-
spheric conditions, the relative kinetic energy of the gas
atoms and molecules is several electronvolts, and the
surface of the space object is heated to a high tempera-
ture. From a practical standpoint, the most interesting
phenomena are the etching of the grain boundaries and
the possible accompanying changes in the mechanical
properties of the grain material.

EXPERIMENT

Our experiments on modeling a gas divertor in the
LENTA device were carried out with tungsten samples
in a deuterium plasma under beam–plasma discharge
conditions in a longitudinal magnetic field (see Fig. 1)
[5]. The experiment is organized as follows. In the dis-
charge zone of the device, an electron beam generates a
steady-state plasma flow (a beam–plasma discharge)
with an electron density of 1012–1013 cm–3 and electron
temperature of 5–20 eV. The plasma flows along the
magnetic field and enters the adjacent region—the
interaction zone (or the “gas target”), which is fed with
003 MAIK “Nauka/Interperiodica”
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neutral gas at a pressure of up to 10 mtorr. As the
plasma interacts with the gas, its parameters change
considerably. In the interaction process, the energy of
the initial plasma flow is dissipated; in particular, the
electron temperature decreases substantially (to 0.5–
1.5 eV), as is the case in the divertor of a tokamak oper-
ating with gas injection (the phenomenon of “plasma
detachment”) [4]. As a result, the energy content of the
plasma that comes to the surface of the cooled collector
plate (Fig. 1) is reduced. Tungsten samples (W + 0.04%
Mo) are placed at and near the collector plate surface
and are oriented along and across the magnetic field.
The temperature of the irradiated surface of the samples
is determined by the energy of the incident plasma flow.
The sample temperature, which is controlled by ther-
mocouples and an optical pyrometer, changes from
1200 to 1470 eV. In our experiments, the energy of the
ions bombarding the tungsten surface corresponds to
the potential jump across the wall sheath and is about
5 eV (in which case the electron temperature in the deu-
terium plasma is about Te ~ 1.5 eV). The plasma flow
density is determined from the density of the ion satu-
ration current measured by Langmuir probes near the
target surface and also from direct measurements of the
ion current to the samples. The ion flow density is
maintained at a level of (1–5) × 1021 m–2 s–1, and the
irradiation dose is about 5 × 1025–1026 m–2, which cor-
responds to the dose that is expected to be accumulated
by the divertor plate surface in ITER during one cycle
of normal operation.

Before irradiation, the tungsten samples were pol-
ished both mechanically and electrolytically. Also, the
samples were weighted before and after irradiation.
The sputtering coefficient, which was defined as the
average number of target atoms sputtered by one ion,
was determined from the loss of weight and the accu-
mulated dose.

The microstructure of the tungsten surfaces was
investigated using a scanning electron microscope. The
surface of a polished sample is shown in Fig. 2.

The tungsten sputtering coefficient measured by
determining the loss of weight at a deuterium ion
energy of 5 eV and a tungsten temperature of 1470 K
was found to be (1–1.5) × 10–4 atom/ion. It should be
noted that these values of the tungsten sputtering coef-
ficient are characteristic of 250-eV D+ ions. This new
result is quite unexpected.

As tungsten is sputtered, its surface structure
changes. Figure 3 presents the microstructure of the
tungsten surface after irradiation at a temperature of
1470 K by a flow of 5-eV D+ ions in a steady-state deu-
terium plasma. The topography of the irradiated surface
shows that it has been deeply eroded. The plasma
etches the surfaces of the grains, making the grains and
their orientation apparent. The tungsten surface
becomes wavy; the waves originate and propagate from
the grain boundaries.
JETP LETTERS      Vol. 77      No. 7      2003
In our experiments, tungsten samples were also irra-
diated in a plasma at lower temperatures, all other con-
ditions being the same. At temperatures below 1250 K,
no tungsten sputtering was detected. The microstruc-
ture of the tungsten surface irradiated at temperatures
of 1210–1250 K is shown in Fig. 4, in which the etching
of tungsten is not observed. Consequently, the effect of
etching of a tungsten surface by low-energy deuterium
ions also has a threshold in terms of the temperature.

THEORETICAL MODEL

The most natural assumption is that, at low (sub-
threshold) ion energies, the only atoms that can be sput-
tered are weakly bonded atoms that are adsorbed on the
surface and whose binding energy to the surface is

Fig. 1. Schematic of the experiment on modeling a gas
divertor by irradiating tungsten samples in the LENTA
device: (1) mass spectrometer, (2) Langmuir probes,
(3) cathode, (4) anode, (5) optical monochromator, (6)
Mach region, (7) movable calorimeter, (8) samples, and (9)
collector plate.

25KV X1000 5231 10.0 UJEOLS

Fig. 2. Microstructure of an electrolytically polished tung-
sten surface.
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about ϕ ≈ 0.4U. The coupling between the adsorbed
ions that merge into clusters, as well as their binding to
the surface, is stronger. Therefore, the sputtering of
clusters can be neglected.

At the same time, the energy transferred from a deu-
terium ion with the energy E = 5 eV to a tungsten ion
can be significantly lower than the binding energy of an
adsorbed tungsten atom to the surface,

This indicates that, at such energies, the elastic sputter-
ing of the adsorbed atoms is also impossible.

However, the weak coupling of an adsorbed atom to
the atoms of the metal also indicates that its energy lev-
els are narrower than the zone in the metal. This makes
possible the sputtering of adsorbed atoms by slow ions.
The mechanism for this sputtering is as follows. The
field of an incident ion excites an electron of an
adsorbed atom from the ground state to a repulsing
term. Physically, an incident ion attracts an electron and
causes it to move from a position between an adsorbed
atom and a metal (in this position, the electron binds the
adsorbed atom to the metal) to a position above the
adsorbed atom. This possible mechanism, which is an
analogue of the mechanism for the desorption of impu-
rity atoms from metal surfaces, acts as if the binding of
an adsorbed atom to the surface were eliminated by the
electron excitation. In terms of the cross section σ for
this process (estimates show that σ ≈ 10–15 cm2) and the
density n of adsorbed atoms at the surface, the sputter-
ing coefficient is equal to

∆E λE 0.215 eV ! ϕ≈ 3.4 eV.= =

Y σn.=

25KV X1000 3065 10.0 UJEOLS

Fig. 3. Microstructure of a tungsten surface after irradiation
at a temperature of 1470 K in a steady-state plasma by a
flow of deuterium ions with the energy E = 5 eV and the cur-
rent density J = (1–5) × 1021 m–2 s–1, the irradiation dose
being 1026 m–2.
In thermodynamic equilibrium, the density of adsorbed
atoms at the surface is very low:

However, at high temperatures, adsorbed atoms can
come from the boundaries of the grains; i.e., interstitial
atoms can move from the grain boundaries to the sur-
face and can become adsorbed atoms. This is evidenced
by the etching of the grain boundaries.

The boundaries of the grains, which are usually far
from being perfect crystals, are composed of chaoti-
cally arranged atoms, which, however, are trapped at
the boundary or, in other words, are in bound states. As
the temperature increases, these atoms are detrapped
and start to migrate along the boundary of the grain.
The grain boundaries are etched as a result of escape of
the interstitial atoms from the intergrain space either at
a high temperature or under ion irradiation.

The number of interstitial atoms that escape from a
unit area of the grain boundary to the surface per unit
time as a result of thermal excitation is equal to q =
Cd/τ, where C is the density of interstitial atoms in the
space between the grains (this density is assumed to be
constant over the entire intergrain space because of the
high mobility of the interstitial atoms), d is the width of
the intergrain space, τ = ν–1exp(–Ea/T) is the time dur-
ing which an interstitial atom escapes from the inter-
grain space to the surface as a result of thermal excita-
tion, ν is the oscillation frequency of the atoms, and
Ea ≈ 1 eV is the activation energy (this energy is set
equal to the Peierls potential [6] for the motion of an
atom along a dislocation. In this case, the number Q of

n a 2– U ϕ–( )/kT–[ ]exp 10 3–  cm 2– .≈=

25KV X1000 6093 10.0 UJEOLS

Fig. 4. Microstructure of a tungsten surface after irradiation
at temperatures of 1210–1250 K in a steady-state plasma by
a flow of deuterium ions with the energy E = 5 eV and the
current density J = (1–5) × 1021 m–2 s–1, the irradiation dose
being 1026 m–2.
JETP LETTERS      Vol. 77      No. 7      2003
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adsorbed atoms that come to a unit area of the surface
per unit time is equal to

where r is the size of the grains.
The adsorbed atoms are either sputtered with prob-

ability jσs or merge with probability αDn2 to form the
grain structures on the surface. Here, the cross section
σs for the sputtering of adsorbed atoms by an incident
ion is estimated to be (1/3–1) × 10–15 cm2; D ≈
10−6 cm2/s is the coefficient of diffusion of adsorbed
atoms along the surface [7, 8]; and α = 4πR/a, where R
is the distance within which an adsorbed atom is
trapped at the surface by another adsorbed atom and a
is the atomic size. Since αDn2 @ jσsn, we have C =
(Q/αD)1/2. Estimates show that the density C can be as
high as about ~1012 cm–2. In this case, the sputtering
coefficient is equal to Y = σsC ≈ (1/3–1) × 10–3, which
satisfactorily explains the experimentally measured
values of this coefficient.

The formation of wavy structures near the grain
boundaries can be attributed to the merging of individ-
ual adsorbed atoms into extended clusters, which are
stretched along the direction of diffusion of the
adsorbed atoms from the boundary of the grain. This
mechanism for the formation of clusters is analogous to
that for the formation of a porous lattice during the
vacancy expansion, the only difference being that, in
our case, the two-dimensional geometry and the
directed diffusive flow of the adsorbed atoms lead to the
formation of clusters stretched along the flow direction.
The wavelength of the wavy structures is on the order
of the diffusion length of the adsorbed atoms over a
period of time t1 during which they are trapped in the
wave; i.e., we have λ ≈ (Dt1)1/2. Setting t1 =
ν−1exp(Et /kT), where ν ≈ 1013 s–1 is the oscillation fre-
quency of the atom and Et ≈ 0.4U = 3.5 eV is its binding
energy at the wave crest, we obtain λ ≈ 1 µm.

It should be emphasized that, in the model proposed
here, the effects of subthreshold sputtering and a
change in the surface structure are possible only for
polycrystals. Monocrystals do not possess a grain struc-
ture and do not have sufficiently intense sources of
adsorbed atoms. According to the model, the sputtering
coefficient increases with decreasing grain size, Y ~ r–1/2.
The way the polycrystalline material is obtained can

Q q/r C/τ( ) d/r( ),= =
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affect the density of interstitial atoms in the space
between the grains and, consequently, the value of the
sputtering coefficient.

CONCLUSIONS

(i) We have discovered the phenomenon of the sput-
tering of tungsten from a target at a temperature of
1470 K during the irradiation by 5-eV deuterium ions
in a steady-state dense plasma. The known threshold
for tungsten sputtering by deuterium ions is 160 eV. For
5-eV deuterium ions, the tungsten sputtering coefficient
is equal to 1.5 × 10–4 atom/ion.

(ii) The sputtering is accompanied by the following
two processes: the etching of the grain boundaries and
the formation of a wavy structure on the tungsten sur-
face. The waves originate and propagate from the grain
boundaries.

(iii) The subthreshold sputtering at a high tempera-
ture is explained by the possible sputtering of adsorbed
tungsten atoms that are released from the traps around
the interstitial atoms and come to the target surface
from the space between the grains. The wavy structure
on the surface results from the merging of adsorbed
atoms into ordered clusters.
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A new mechanism of resonance Kondo tunneling via a composite quantum dot (QD) is proposed. It is shown
that, owing to the hidden dynamic spin symmetry, the Kondo effect can be induced by a finite voltage eV applied
to the contacts at an even number N of electrons in a QD with zero spin in the ground state. As an example, a
double QD is considered in a parallel geometry with N = 2, which possesses the SO(4) type symmetry charac-
teristic of a singlet–triplet pair. In this system, the Kondo peak of conductance appears at an eV value compen-
sating for the exchange splitting. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.10.Fk; 72.15.Qm; 73.63.Kv
The Kondo effect, originally observed in the form of
an anomalously strong resonance scattering of elec-
trons by magnetic impurities in metals, has proved to be
a universal mechanism of interaction between an elec-
tron gas and localized quantum objects possessing
internal degrees of freedom [1]. In particular, a mag-
netic impurity within the barrier between two metal
contacts, as well as a quantum dot (QD) with uncom-
pensated spin occurring in a tunneling junction
between metal electrodes, can account for anomalously
high tunneling transparency of the barrier for electrons
from the contacts [2, 3]. Shortly after the experimental
discovery of such Kondo resonances in the tunneling
via planar QDs [4], it was established that the spectrum
of phenomena related to the effective magnetic
exchange in QDs is by no means restricted to simple
passage from the problem of Kondo scattering to that of
Kondo transfer. In particular, it was found that the res-
onance Kondo tunneling via QDs with an even number
of electrons and zero total spin is possible under the
action of an external magnetic field [5] or the electric
field of a gate [6].

The large variety of manifestations of the Kondo
effect in QDs is related to the fact that these nanodi-
mensional objects are essentially a kind of artificial
atom possessing complicated spectra. The tunneling of
electrons from outside via QDs breaks their spin sym-
metry and induces transitions to low-lying excited
states. The transitions at energies comparable with the
Kondo temperature (TK) are involved into resonance
interactions and modify the pattern of the Kondo scal-
ing as compared to that typical of the canonical Kondo
effect in metals. Thus, within the limits of the Kondo
energy scale, it is necessary to take into account the
dynamic symmetry of a given QD [7]. This symmetry
is determined both by the spin and by other vectors
0021-3640/03/7707- $24.00 © 20366
involved in the algebra of the corresponding dynamic
group. As a result, the effective Hamiltonian describing
the Kondo tunneling acquires a more complicated form
than that of the sd-exchange Hamiltonian describing
the Kondo effect in metals: all the above vectors con-
tribute to the cotunneling with spin reversal via the QD.
A theory of the dynamic symmetry of composite (dou-
ble and triple) QDs has been recently developed in [8],
where it is also demonstrated how an external magnetic
field or the gate electric field can influence the dynamic
symmetry.

Below, we consider a new class of phenomena
related to the dynamic symmetry of QDs. It will be
demonstrated that violation of the thermodynamic
equilibrium between contacts may induce resonance
Kondo tunneling not observed in the equilibrium sys-
tem. The nonequilibrium Kondo effect in QDs at a
finite voltage applied between the source and sink has
been extensively studied (see, e.g., [9]). In most cases,
however, researchers were interested in the influence of
nonequilibrium conditions on the Kondo effect existing
in the equilibrium state. In such a situation, relaxation
of the system related to the finite lifetime of excited
states probably hinders attaining a strong coupling
regime (see, e.g., the discussion in [10, 11]).

We are interested in a different situation, whereby
no channel of nonequilibrium induced spin relaxation
exists in the ground state (e.g., for S = 0). In this case,
the spin degrees of freedom are excited only in QDs
possessing a dynamic symmetry. Such a symmetry is
inherent, for example, in a double quantum dot (DQD)
structure experimentally realized and studied recently
[12]. In the simplest nontrivial case, the DQD contains
two electrons occupying energy levels according to the
Heitler–London scheme (Fig. 1). The system occurs
under the conditions of a strong Coulomb blockade Q
003 MAIK “Nauka/Interperiodica”
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suppressing the tunneling v  between potential wells.
The spectrum of spin states represents a singlet–triplet
(S–T) pair with zero spin in the ground state (because
the effective exchange between the two valleys, I ≈
v 2/Q, has an antiferromagnetic character). As demon-
strated previously [6, 8], an isolated DQD represents a
quantum spin rotator with the SO(4) symmetry, in con-
trast to the SU(2) symmetry of a QD with odd occupa-
tion usually considered in the theory of the Kondo type
tunneling. The SO(4) group is generated by the spin
vector S and the vector P describing the S–T transition
matrix.

The Hamiltonian of an isolated QD can be written as

(1)

where ET = ES + δ; η = ±, 0 are the projections of the
spin total S = 1; and δ = I is the exchange coupling.
Since the direct tunneling W of electrons from contacts
to the DQD is suppressed by the Coulomb blockade Q,
the charge transfer is possible only by means of second-
order processes (cotunneling). The effective Hamilto-
nian describing these processes is as follows [6, 8]:

(2)

where the subscript α = L, R denotes electrons in the
left- and right-hand contacts, respectively;  are the

Pauli matrices;  is the unit matrix; and J ≈ W2/(eF –
ES/2)is the effective constant of exchange between the
DQD and contacts (we neglect a difference between
tunneling parameters in the S and T states of the QD).
The S and P vectors defined above are written in matrix
form as follows:

where a singlet state corresponds to the last row. The
corresponding algebra (o4) is described by the commu-
tations relations

Hd ES S| 〉 S〈 | ET Tη| 〉 Tη〈 | ,
η
∑+=

H int J S P+( )sαα ' ,
αα '

∑=

sαα ' ckασ
† τ̂ck'α'σ' , nαα '

kk'

∑ ckασ
† 1̂ck'α'σ,

kk'

∑= =

τ̂
1̂

S+ 2

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0 
 
 
 
 
 

, Sz

1 0 0 0

0 0 0 0

0 0 1– 0

0 0 0 0 
 
 
 
 
 
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P+ 2

0 0 0 1

0 0 0 0

0 0 0 0
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 
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 
 
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 
 
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S j Sk,[ ] ie jklSl, P j Pk,[ ] ie jklSl,= =

P j Sk,[ ] ie jklPl,=
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where j, k, l are the coordinate indices and ejkl is the
Levi–Civita tensor.

As can be seen, both S and P vectors are involved in
the tunneling with spin reversal. However, since the
threshold energy for excitation of the spin degrees of
freedom is δ, the spin scattering under equilibrium con-
ditions is effective only provided that TK > δ. It will be
shown below that this threshold can also be surmounted
in the opposite limit, TK ! δ, at a finite source–sink
voltage eV ≈ δ compensating for the S–T splitting
energy. In the weak coupling regime, T > TK, we use the
thermodynamic perturbation theory and assume that
electrons in the contacts obey the Fermi statistics with
the chemical potentials µR and µR + eV in the right- and
left-hand contacts, respectively. We can also assume
that weak tunneling currents do not violate thermody-
namic quasi-equilibrium (the validity of this approach
is discussed below).

In order to construct the perturbation theory, let us
perform fermionization of the generators of SO(4)

µm

400
nm

0.5 1.0 1.5 2.0

C1

Q1

Q2

C2

F2

F1

Drain

Source
(A)

Fig. 1. (a) A parallel double quantum dot configuration
(Hofmann et al. [12]) and (b) an energy band diagram illus-
trating tunneling and cotunneling processes contributing to
the differential conductance in this system.

(a)

(b)
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group—a generalizing procedure originally suggested
for SU(2) group [13, 14]:

(3)

Here,  are the operators of creation for fermions

with the spin projections 1 and –1;  and fs are the
operators of creation for zero-spin fermions in the trip-
let and singlet states, respectively. Representation (3)
automatically takes into account the local kinematic

constraint  = 1. A diagram technique of the
perturbation theory is provided by the temperature
Green’s functions for electrons between contacts,

GL, R(k, τ) = − , and for fermi-

ons in the DQD, &Λ(τ) = – . The Fou-
rier transform in imaginary time yields

(4)

where en = 2πT(n + 1/2), ωm = 2πT(m + 1/3) [13, 14].
Figure 2 shows the main diagrams of the perturba-

tion theory. The first diagrams (Figs. 2b and 2c) deter-
mining the Kondo tiling in a standard theory give the
following expressions for the renormalized exchange
vertices:

(5)

S+ 2 f 0
† f 1– f 1

† f 0+( ), S– 2 f –1
† f 0 f 0

† f 1+( ),= =

P+ 2 f 1
† f s f s

† f 1––( ), P– 2 f s
† f 1 f 1–

† f s–( ),= =

Sz f 1
† f 1 f 1–

† f 1– , Pz– f 0
† f s f s

† f 0+( ).–= =

f ±1
†

f 0
+

f Λ
† f ΛΛ∑

T τcL Rσ, k τ,( )cL Rσ,
† k 0,( )〈 〉

T τ f Λ τ( ) f Λ
† 0( )〈 〉

Gkα
0

en( ) ien ekα µL R,+–( ) 1– ,=

&η
0 ωm( ) iωm ET–( ) 1– , η 1 0 1,, ,–= =

&s
0

en( ) ien ES–( ) 1– ,=

Γ LR
2b( ) ω( ) J2 1 f ekL eV–( )–

ω ekL µL δ–+–
--------------------------------------,

k

∑∼

Γ LR
2c( ) ω( ) J2 f ekL eV–( )

ω ekL µL δ+ +–
--------------------------------------.

k

∑∼

Fig. 2. Perturbation theory diagrams determining (a) J, (b,
d) the main corrections to J, and (c, e) corrections contain-
ing a lower power of the logarithm. Solid curves refer to
electron between contacts; dashed curves refer to the QD
states.
Replacing ekL by ekL – eV at the vertex (Fig. 2b), we
obtain

.

where D ~ εF is the truncation parameter determining
the effective width of continuum between contacts, ν is
the density of states on the Fermi level, and f(ε) is the
Fermi function. As can be seen, a bias compensating for
the exchange splitting |eV – δ| ! max[eV, δ] gives rise
to a logarithmic singularity (typical of the Kondo
effect) independent of eV. In the second vertex correc-
tion (Fig. 2c), the compensation is absent and the cor-
responding contribution for eV ~ δ @ T, ω can be esti-
mated as

Analogous estimates for the diagrams in Figs. 2d and
2e give

(6)

Only the first of these contributions survives in the main
logarithmic approximation. Thus, a logarithmic singu-
larity in the tunneling amplitude is actually restored by
applying an electric field to a DQD with zero spin in the
ground state, whereby a sequence of divergent tiling
diagrams degenerates into the sequence of ladder dia-
grams.

The perturbation theory diagrams at T > TK can be
summed using the renorm group method, which is
applicable under both equilibrium and nonequilibrium
conditions [15]. The set of renorm group equations for

the tunneling vertices  obtained upon reduction of
the high-energy part of the spectrum is as follows:

(7)

Solving these equation with the boundary conditions

, we obtain

(8)

The structure of the renorm group equations (Fig. 3)
shows that the Kondo singularity arising in the T-chan-

Γ LR
2b( ) ω( ) J2ν D/max ω eV δ–( ) T, ,{ }( )ln∼

Γ LR
2c( ) ω( ) J2ν D/ eV δ+( )( )ln  ! Γ LR

2b( ) ω( ).∼

Γ LR
2d( ) ω( ) J3ν2 D/max ω eV δ–( ) T, ,{ }( ),ln

2∼

Γ LR
2e( ) ω( ) J3ν2 D/max ω eV δ–( ) T, ,{ }( )ln∼

× D/max ω eV T,,{ }( ).ln

Jαα '
ΛΛ'

dJLL
T

d Dln
------------- ν JLL

T( )2
,

dJLL
ST

d Dln
-------------– νJLL

ST JLL
T ,–= =

dJLR
T

d Dln
------------- νJLL

T JLR
T ,

dJLR
ST

d Dln
-------------– νJLL

ST JLR
T ,–= =

dJLR
S

d Dln
-------------

1
2
---ν JLL +,

ST JLR –,
TS 1

2
---JLL z,

ST JLR z,
TS+ 

  .=

Jαα '
ΛΛ' D( ) J=

Jα α ',
TT J

1 νJ D/T( )ln–
------------------------------------, Jα α ',

ST J
1 νJ D/T( )ln–
------------------------------------,= =

JLR
SS J

3
4
---νJ2 D/T( )ln

1 νJ D/T( )ln–
------------------------------------.–=
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nel influences conductance in the S-channel. This influ-
ence is related to the presence of the operator P in the
tunneling Hamiltonian, which breaks the spin symme-
try of the DQD. Thus, the Kondo effect in this system
exists only due to the dynamic symmetry inherent in the
DQD.

The differential conductance G(eV, T)/G0 ~ 
[15], where G0 = e2/π", is a function of the universal
parameters T/TK and eV/TK,

, (9)

with a maximum at eV – δ = 0 (see Fig. 4). Thus, in con-
trast to the usual situation [9], whereby the Kondo peak
(representing a zero bias anomaly) exhibits evolution or
splitting at finite eV values, the Kondo peak in our case
appears at a threshold bias of eV0 = δ. Owing to this
threshold character, the peak is asymmetric (cf., e.g.,
[11]).

The asymmetry, as well as the broadening of the
Kondo resonance are related to nonequilibrium charac-
ter of the tunneling process. In contrast to the usual sit-
uation [11, 16], when relaxation takes place in the
ground state of the QD, the spin triplet in our case
appears only as a virtual state (Fig. 3) and, hence, the
nonequilibrium effects are not as destructive. Both
relaxation and asymmetry are determined by the imag-
inary part of the self-energy of the Green’s function
&T(ω). Figure 5 shows diagrams describing the self-
energy in the same order as the renormalization of ver-
tices. The diagrams of Figs 5a and 5b determine the
main contribution to the imaginary part "/τd. For ω ~
eV, this contribution amounts to ~(eV)(J/D)2 and con-
tains no logarithmic corrections. Such corrections
appear in the third order, but still outside the limits of
the main logarithmic approximation, and are estimated
as eV(J/D)3ln(D/eV). As a result, we obtain as an esti-
mate

Comparing this damping to TK and taking into account
that (under the resonance conditions) eV ~ δ ~ J, we
arrive at the following condition for the existence of the
anomalous Kondo peak at a finite bias:

(10)

Here, the right-hand inequality resembles the Doniach
criterion for the stability of a Kondo singlet with
respect to antiferromagnetic correlations (see, e.g., [1]).
The conditions (10) are satisfied in a broad range of
parameters since δ/D ! 1.

Another contribution, related to the reoccupation of
levels as a result of the tunneling of nonequilibrium
electrons, leads to asymmetry of the resonance line.
These processes are described by the diagrams in
Figs. 5e and 5f, in which at least one of the virtual sates
is triplet. Such transitions, as well as the corresponding

JLR
ST 2

G/G0 max eV δ–( ) T,[ ] /TK( )ln
2–∼

"/τd eV νJ0
ST( )2

1 O J0
S D/ eV( )( )ln( )+[ ] .∼

δ δ/D( )2
 ! TK  ! δ.
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second-order processes, possess a threshold character
and give small contributions to "/τd. As can be seen
from Fig. 4, the asymmetry is small even at a significant
damping.

Fig. 3. Irreducible diagrams determining renorm group
equations. Cross-hatched squares and circles represent ver-
tices of the T–T and S–T transitions, respectively; other
notations as in Fig. 2.

Fig. 4. The Kondo peak of the differential conductance as a
function of two universal parameters eV/TK and T/TK (inset)
and a curve for δ/TK = 10 and "/τTK = 0.1.

Fig. 5. The diagrams determining the main contribution to
"/τTK (a–d) (see text). The diagrams (e–f) describe thresh-
old processes leading to the Kondo peak asymmetry.

T

T

kK
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Thus, we have described a situation in which the
Kondo effect exists only under nonequilibrium condi-
tions and is induced by an external voltage applied to
electrodes in tunneling contact with a composite QD. In
this case, the Kondo-type tunneling is induced by
dynamic processes of the excitation of low-lying spin
states of the QD, the ground state of which is a spin sin-
glet. The simplest example of such a system is offered
by a double QD with even occupation under the condi-
tions of strong Coulomb blockade. The spin symmetry
of such a QD is essentially that of a quantum spin rota-
tor. Since a singlet ground state in quantum mechanics
is always accompanied by triplet excitations, this situa-
tion is not very unusual and can probably be manifested
as a peak in the differential conductance, observed at a
nonzero bias in a Coulomb window with an even num-
ber of electrons. Such a peak should be distinguished
from a maximum corresponding to the cotunneling via
excited electron states [17].
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A dc voltage induced by an external ac current was observed in a system of asymmetric aluminum loops at tem-
peratures corresponding to 0.95–0.98 of the superconducting transition temperature. The voltage magnitude
and sign change periodically in a magnetic field with a period corresponding to the magnetic flux quantum
through the loop. The amplitude of these oscillations depends nonmonotonically on the amplitude of ac current
and is almost independent of its frequency in the range from 100 Hz to 1 MHz. The observed phenomenon is
interpreted as the result of displacing the loop into a dynamic resistive state by the external current, where the
loop is “switched” back and forth between the closed superconducting state with a nonzero steady current and
the nonclosed state with a nonzero resistance along the loop circle. It is shown that voltages are summed up in
a system of loops connected in series. For systems with one, three, and twenty loops, the voltage reaches 10,
40, and 300 µV, respectively. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.40.+k
It is known that, due to the momentum circulation

(1)

in superconducting loops, the current Ip = sjp = s2ensv s

is stable. Its magnitude and sign show periodic depen-
dence on the magnetic flux Φ through the loop, with a
period corresponding to the magnetic-flux quantum
Φ0 = π"/e, because the quantized velocity circulation

(2)

of superconducting pairs takes values corresponding to
energy minimum; i.e., the value of (n – Φ/Φ0) varies,
with varying Φ, within the interval from –1/2 to 1/2 [1].
In the stationary state with a time-independent density
of superconducting pairs, the steady current can flow
only in a closed superconducting state, i.e., if there is
phase coherence along the entire loop circle and the
resistance Rl along the circle is zero.

However, according to the Little–Parks experiment
[2] and theory [3], steady current Ip ≠ 0 is observed not
only in the superconducting state with Rl = 0 but also

for Rl > 0. It is known that, if a current I = 

induced by the Faraday electromotive force  =

−dΦ/dt flows along the loop circle, then the potential
difference V = (〈ρ/s〉 ls – 〈ρ/s〉 l)lsI should be nonzero in
the segment ls with the average resistance Rls/ls =

lpd

l

∫°  = l m( v 2eA )+d

l

∫°  = m lvd

l

∫° 2eΦ+  = n2π"

lv sd

l

∫°
2π"
m

---------- n
Φ
Φ0
------– 

 =

lE/Rld
l∫°

lEd
l∫°
0021-3640/03/7707- $24.00 © 20371
〈ρ/s〉 ls =  differing from the average resis-

tance Rl/l = 〈ρ/s〉 l =  along the entire circle. If

the analogy with the ordinary current applies to the
steady current, then a constant potential difference pro-
portional to Ip(Φ/Φ0) will be observed in the segment of
inhomogeneous superconducting loop with Ip ≠ 0 and
Rl > 0.

The voltage oscillations V(Φ/Φ0) ∝  Ip(Φ/Φ0) of this
type were observed in our work [4] for the segments of
an asymmetric aluminum loop. We observed them in a
narrow temperature range of (0.988–0.994)Tc, where Tc

corresponds to the midpoint of the resistive transition;
their amplitude increased with lowering temperature in
this interval. Such a dependence testifies that V(Φ/Φ0)
is induced by external noises. The purpose of this work
is to elucidate how noises of various frequency and
intensity act on V(Φ/Φ0). With this aim, the effect of the
ac current Iac = ∆Isin(2πft) varying in frequency f and
amplitude ∆I on V(Φ/Φ0) was studied at lower temper-
atures of (0.95–0.98)Tc where the low-intensity random
noise shows a weak dependence on V(Φ/Φ0) because of
the higher critical current.

Systems composed of 3 and 20 (Fig. 1) asymmetric
aluminum loops with the superconducting transition tem-
perature Tc ≈ 1.3 K, resistance of a square of ≈0.5 Ω/h at
4.2 K, and the resistance ratio R(300 K)/R(4.2 K) ≈ 2
were used for the study. We used a loop system, rather
than a single loop, as in [4], with the aim to verify
whether the voltages are summed in the loops con-
nected in series. All loops had a diameter of 4 µm and

lρ/slsd
ls∫

dlρ/sl
l∫°
003 MAIK “Nauka/Interperiodica”
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a thickness of 40 nm. They were asymmetric; their
halves lw and ln had different widths ww = 0.4 µm and
wn = 0.2 µm (Fig. 1) and, respectively, the cross-sec-
tions sw ≈ 0.016 µm2 and sn ≈ 0.008 µm2. The micro-
structures were fabricated on a Si substrate using elec-
tron-beam lithography based on a JEOL-840A electron
microscope. Exposure was performed at a voltage of
25 kV and a current of 30 pA. The electron beam was
controlled by a PC using the PROXY program package.

Measurements were made in a standard cryostat
with He4 as a coolant, whose evacuation allowed the
temperature to be lowered to 1.2 K. A magnetic field

Fig. 1. Photograph of a system of series 20 aluminum asym-
metric loops with the current I and potential Vi contacts.

Fig. 2. Dc voltage oscillations in a magnetic field, as mea-
sured for one of the loops at T = 1.280 K ≈ 0.97Tc and the
external current Iac with frequency f = 2.03 kHz and ampli-
tude ∆I = 3, 3.5, 4, 5, 7, 12, and 25 µA. All curves except for
∆I = 3.5 µA are vertically shifted.

V
 (

µV
)

3 µA
perpendicular to the sample plane was produced by a
superconducting magnet. Each structure had ten con-
tacts, two of which (e.g., I–I in Fig. 1) were used to
deliver ac current Iac with a frequency from f = 100 Hz
to f = 1 MHz and the amplitude ∆I up to 50 µA, and the
others (e.g., V1–V8 in Fig. 1) served as potential con-
tacts.

Measurements showed that, for any frequency in the
interval from f = 100 Hz to f = 1 MHz, Iac induced
oscillations of V(Φ/Φ0) if the amplitude of ac current
exceeded some critical value ∆Icr (Fig. 2). Similar to the
critical superconducting current Ic, this critical value
decreased with increasing temperature and magnetic
field. This is reflected in Fig. 2 by the fact that the oscil-
lations of V(Φ/Φ0) appear for ∆I = 3 µA only at high
Φ/Φ0 values. Similar to the Little–Parks oscillations
(see, e.g., [5]), the oscillations of V(Φ/Φ0) are damped
at large Φ/Φ0 (Fig. 2), which is explained by the field-
induced suppression of superconductivity and, hence,
Ip in finite-thickness strips.

The oscillations of V(Φ/Φ0) observed at ∆I > ∆Icr are
similar to the Ip(Φ/Φ0) oscillations [1]. Both curves
pass through zero at Φ = nΦ0 and Φ = (n + 0.5)Φ0. This
is explained by the fact that the quantum value n of pair
momentum circulation in a closed superconducting
state acquires, with an overwhelming probability, the
only integer value corresponding to the energy mini-
mum, except for the vicinity of Φ = (n + 0.5)Φ0, where,
simultaneously, the energies of two states with oppo-
sitely directed velocities are minimal. For this reason,
V(Φ/Φ0) ∝  Ip(Φ/Φ0) ∝  (〈n〉  – Φ/Φ0), where the mean
〈n〉  ≈ n for Φ/Φ0 far from (n + 0.5), (〈n〉  – Φ/Φ0) ≈ 0 for
Φ/Φ0 ≈ (n + 0.5), and the voltage maxima |V|max occur
at Φ/Φ0 ≈ (n + 0.25) and Φ/Φ0 ≈ (n + 0.75).

|V|max depends nonmonotonically on the ac current
amplitude ∆I both in a single loop (Fig. 2) and in a loop
system and shows no appreciable dependence on the Iac

frequency over the whole range studied from f = 100 Hz
to f = 1 MHz. After the amplitude |V|max rapidly reaches
its maximum at a current amplitude close to ∆Icr, it
decreases monotonically upon further increase in ∆I
(Fig. 2). At large ∆I, the |V|max(∆I) dependence is close
to |V|max ∝  1/∆I. Measurements showed that, both the
position of the |V|max(∆I) curve maximum and the criti-
cal value ∆Icr shift to lower ∆I values with increasing
temperature.

In loops with similar asymmetry and size, the volt-
age V(Φ/Φ0) should oscillate synchronously in a mag-
netic field. For this reason, there is a fundamental pos-
sibility of summing this voltage in a system of series
loops. Our studied showed that this possibility can eas-
ily be realized. We managed to observe oscillations
with amplitude |V|max up to 10 µV (Fig. 2) in a single
loop, up to 40 µV in a system of three loops, and up to
300 µV in a system of 20 loops (Fig. 3).
JETP LETTERS      Vol. 77      No. 7      2003
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As with every rectification, the observed “rectifica-
tion” of the external ac current Iac is possible only if the
current–voltage characteristic (CVC) is asymmetric
about the external current (Fig. 4). The observed peri-
odic change in the sign and magnitude of this asymme-
try in a magnetic field occurs in a steady current,
because V(Φ/Φ0) ∝  Ip(Φ/Φ0). This change can be
explained by the fact that the steady current flowing
along the loop circle increases the overall current in one
of its halves (cf. Fig. 4, bottom right), as a result of
which the criticality arises at lower Iac values.

In a closed superconducting state, the distribution of
Iac = Iw + In over loop halves lw and ln is determined by
the quantization of velocity circulation (2): lnvn – lwvw =
lnIn/sn2ensn – lwIw/sw2ensw = lnjn/2ensn – lwjw/2ensw =
(2π"/m)(〈n〉  – Φ/Φ0). Since the lengths lw and ln of the
halves and the corresponding superconducting pair
densities nsn and nsw are the same, the current densities
in both halves are the same for Ip = 0 (i.e., for (〈n〉  –
Φ/Φ0) = 0 and equal to jn = jw = jac = Iac/(sn + sw)), so
that they simultaneously reach the critical value at
Iac/(sn + sw) = jc. The steady current alters the current
densities in the loop halves (Fig. 4). Depending on the
directions of Ip and Iac, the density increases either in
one or another half. In Fig. 4, the density increases in
the narrow half, when Ip flows counter-clockwise while
Iac flows from left to right, or vice versa. The current
densities in the loop halves change differently, by Ip/sn

and Ip/sw. For this reason, the CVC is asymmetric about
the external current Iac at Φ ≠ nΦ0 and Φ ≠ (n + 0.5)Φ0,
while the asymmetry value and its sign change with
changing Ip. For an external current directed along Ip in
the narrow half, the critical value /(sn + sw) = jc –
Ip/sn is achieved at lower Iac values than for Iac directed
along Ip in the broadened half, where the criticality is
achieved at /(sn + sw) = jc – Ip/sw (Fig. 4). The dif-

ference  –  = (sn + sw)(jc – Ip/sw) – (sn +
sw)(jc – Ip/sn) = (sw/sn – sn/sw)Ip ≈ 1.5Ip. According to the
experimental data,  ≈ 0.45 µA and  ≈
1.0 µA, as is shown in the CVC in Fig. 4 for T ≈ 0.99Tc,
Ip = (  – )/1.5 ≈ 0.37 µA, and (sn + sw)jc ≈
1.6 µA. At |Iac | ≈ (sn + sw)jc ≈ 1.6 µA, the CVC shows a
singularity, and, at larger |Iac | values, it coincides with
its normal-state shape (Fig. 4).

The effect of a persistent current on the transition to
the resistive state is illustrated by three upper oscillo-
grams in Fig. 5, which were recorded at temperature
T ≈ 0.96Tc and external current amplitude ∆I = 9 µA. At
Φ = 0, the resistive state is not observed. This signifies
that, at a temperature of ≈0.96Tc, the critical current den-
sity jc exceeds ∆I/sw ≈ 9 µA/0.016 m2 ≈ 5.6 × 108 A/m2,
because the loop-connecting strip cross section is equal
to sw (Fig. 1). For Φ = 0.75Φ0 corresponding to the
maximum of Ip, the resistive state is observed only for
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Iac c–

Iac c– Iac c+

Iac c+ Iac c–

Iac c– Iac c+
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a single Iac direction, which is shown in Fig. 5. This sig-
nifies that ∆I(sn + sw) + Ip/sn > jc and ∆I(sn + sw) + Ip/sw <
jc. From the first inequality and the jc > ∆I/sw inequality

obtained above, it follows that Ip > /sw(sn + sw) =∆Isn
2

Fig. 3. Magnetic-field induced oscillations of the dc voltage
in a system of 20 loops at T = 1.245 K ≈ 0.97Tc for the exter-
nal current Iac with f = 1.2 kHz and ∆I = 3.2 µA and in a sys-
tem of three loops at T = 1.264 K ≈ 0.96Tc for the external
current Iac with f = 555 kHz and ∆I = 4.5 µA. The second
curve is shifted vertically by 370 µV.

Fig. 4. (a) CVC of a system of two loops at T ≈ 0.99Tc, Φ ≠
nΦ0 and Φ ≠ (n + 0.5)Φ0; (b) variation of the current density
in the loop halves for Ip ≠ 0; and figure (c) clarifies the non-
monotonic dependence of the oscillation amplitude
V(Φ/Φ0) on ∆I.
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∆I/6 ≈ 1.5 µA for T ≈ 0.96Tc and Φ = 0.75Φ0. In a
higher magnetic field with Φ = 4.25Φ0 corresponding
to the opposite direction of Ip, the steady resistive state
is observed for the oppositely directed Iac, while the
resistive state in the other direction is unstable (Fig. 5),
evidencing the suppression of jc by a magnetic field.
The amplitude ∆I = 9 µA corresponds to the maximum
of the |V|max(∆I) curve for T ≈ 0.96Tc. At larger ampli-

Fig. 5. Four pairs of voltage oscillograms measured in a sys-
tem of three loops, together with the currents induced this
voltage.

Fig. 6. The V(Φ/Φ0) oscillation amplitude as a function of
the amplitude ∆I of the external current with f = 2.03 kHz,
as measured for one of the loops at T = 1.280 K ≈ 0.97Tc.
The curve shows the Vdc(∆Θn – ∆Θw)/Θ = Vdc∆τ depen-
dence calculated for Ic = 4.5 µA, Ip ≈ 0.5 µA, and Vdc ≈
25 µV.

dc

(µ
V

)
T

tudes, ∆I(sn + sw) + Ip/sw > jc, the resistive state is
observed for both Iac directions (Fig. 5).

The resistive state induced by a persistent current
cannot be stationary, because, e.g., the current in this
case should be damped upon the transition of, e.g., ln to
the resistive state with Rn > 0, which signifies that the
current through ln decreases to jn < jc. For this reason,
both superconducting stationary states with different
connectivities are unstable at jc – Ip/sn < Iac/(sn + sw) <
jc, so that the loop should switch between them with the
eigenfrequency ω, which is determined by the relax-
ation time to the equilibrium superconducting state [6].
A half of this dynamical resistive state, in which Iac and
Ip are directed oppositely and Iac/(sn + sw) – Ip/sw < Iac/(sn +
sw) < jc, is in the superconducting state, whereas its
other half, where they coincide, is switched between
the states with R = 0 and R > 0.

Upon switching, the pair momentum ∆p changes in
the superconductivity half (e.g., lw), and, as a result, the
external current Iac = Iw + In is redistributed between the
loop halves. This change proceeds under the action of
electric field dp/dt = mdv s/dt + 2edA/dt = 2eVw/lw =
2eRnIn/lw with Rn > 0, while the initial state is restored
due to the quantization of momentum circulation (1)
after returning ln to the superconducting state [6]. This
fact makes it clear why the pair momentum does not
change, on the average, despite the fact that the time-
averaged voltage Vdc = 〈Vw〉 t ≠ 0. Since its one-direc-
tional change is caused by an electric field, one has

(3)

The change ∆p in momentum is limited, because In can
change only from Iacsn/(sn + sw) + Ip to zero, while Iw

cannot exceed the critical value sw jc. According to the
initial restriction, ∆Iw < Iac/3 + Ip, and, according to the
second, ∆Iw < 3Ip. As the steady current decreases to
zero, the pair-momentum circulation changes by
2π"(〈n〉  – Φ/Φ0). Hence, ∆p < 3(2π"/l)(〈n〉  – Φ/Φ0).
From this inequality and Eq. (3) it follows that, for the
voltage Vdc = 70 µV, which was observed by us for n –
Φ/Φ0 = 0.25, the switching frequency ω = 2eVdc/∆plw >
4/3(e/π")(l/lw)Vdc = 8/3(483.6 MHz/µV)Vdc should
exceed 90 GHz.

Changes in the momentum ∆p =  =

 and current In can be lower than their

limiting values, if the residence time tR > 0 in the resis-
tive state is shorter than the current relaxation time,
which is determined by the kinetic (lwm/2e)dv s/dt =
(lwm/s4e2ns)dIw/dt = LkindIw/dt and geometric lwdA/dt =
LdIw/dt inductances and resistance Rn. Since Lkin/L ≈

/s for a thin superconductor [6], one has in the weak

screening case with sw ≈ 0.016 µm2 ! (T) =

Vdc ∆pωlw/2e.=

td p/ tdd( )
tR 0>∫

t2eVm/lwd
tR 0>∫

λL
2

λL
2
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(0)/(1 – T/Tc) ≈ 0.0025 µm2/(1 – T/Tc) ≈ 0.1 µm2 that
the kinetic inductance Lkin ≈ m0.5l/4e2nswsw ≈
µ00.5l (T)/sw ≈ 4 × 10–11 H exceeds the geometric
inductance. The normal-state resistance Rn, n ≈ 15 Ω of
the narrow half corresponds to the relaxation time
Lkin/Rn ≈ 0.3 × 10–11 s. The measured values Vdc =
〈Vw〉 t = 〈RnIn〉 t < Rn, n〈In〉 t indicate that the time-averaged
current, e.g., through the narrow half 〈In〉 t > Vdc/Rn, n
exceeds Iacsn/(sn + sw) and is close to Iacsn/(sn + sw) + Ip

in the superconducting state. For example, for the CVC
shown in Fig. 4, Vdc ≈ 7.4 µV per one loop at Iac ≈
0.7 µA, which corresponds to 〈In〉 t > Vdc/Rn, n ≈ 0.49 µA,
Iacsn/(sn + sw) ≈ 0.23 µA, and Iacsn/(sn + sw) + Ip ≈
0.6 µA.

Inasmuch as the loop is in the superconducting state
with Rl = 0 at |Iac|/(sn + sw) < jc – Ip/sn and undergoes
transition to the usual resistive state with Ip = 0 at
|Iac|/(sn + sw) > jc, only the dynamic resistive state with
〈Ip〉 t ≠ 0 and 〈Rl〉 t > 0 can contribute to the dc voltage
V(Φ/Φ0) ∝  Ip. For this reason, the time-averaged volt-

age V(Φ/Φ0) =  can be estimated at V =

(Vdc, n∆Θn – Vdc, w∆Θw)/Θ, where ∆Θn and ∆Θw are the
portions of the period Θ = 1/f during which jc – Ip/sn <
|∆Isin(2πft)|/(sn + sw) < jc and jc – Ip/sw <
|∆Isin(2πft)|/(sn + sw) < jc (Fig. 4), and Vdc, n and Vdc, w
are the average voltages induced during these times.
The oscillation amplitude V(Φ/Φ0) is maximal at jc –
Ip/sn < ∆I/(sn + sw) < jc – Ip/sw, where the voltage is
induced only for one of the ac current directions
(Fig. 5) and V = Vdc, n∆Θn/Θ. For ∆I/(sn + sw) > jc + Ip/sw,
the time-average voltage V = (Vdc, n∆Θn – Vdc, w∆Θw)/Θ
decreases sharply because of the appearance of the
resistive state with –Vdc, w∆Θw/Θ for the oppositely
directed Iac (Fig. 5). However, the oscillation amplitude
for V(Φ/Φ0) is still nonzero, because ∆Θn and ∆Θw are
different in magnitude (Fig. 4). The further decrease of
this amplitude with increasing ∆I (Figs. 2, 6) can be

λL
2

λL
2

tVdc/Θd
Θ∫
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explained by a decrease in ∆Θn and ∆Θw (Fig. 4). The
dependence Vdc(∆Θn – ∆Θw)/Θ = Vdc∆τ(∆I), where
∆τ(∆I) = (∆Θn – ∆Θw)/Θ is calculated with parameters
Ic ≈ 4.5 µA and Ip ≈ 0.5 µA and describes the |V|max(∆I)
dependence (Fig. 6) in the Vdc, n ≈ Vdc, w ≈ Vdc ≈ 25 µV
approximation rather well.

In summary, the oscillations of V(Φ/Φ0) voltage
observed in [4] could be induced by a broad-spectrum
noise. Since the critical current and the critical value
∆Icr decrease to zero as Tc is approached, these oscilla-
tions can be induced at T ≈ Tc by a low-intensity noise,
and a system of asymmetric superconducting loops can
be used for their detection.

We are grateful to V.A. Tulin for discussion of the
results. This work was supported by the Presidium of
the Russian Academy of Sciences within the frame-
work of the fundamental program “Low-Dimensional
Quantum Structures.”
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Phononless Hopping Conduction in Two-Dimensional Layers 
of Quantum Dots
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Regularities are studied in charge transport due to the hopping conduction of holes along two-dimensional lay-
ers of Ge quantum dots in Si. It is shown that the temperature dependence of the conductivity obeys the Efros–
Shklovskii law. It is found that the effective localization radius of charge carriers in quantum dots varies non-
monotonically upon filling quantum dots with holes, which is explained by the successive filling of electron
shells. The preexponential factor of the hopping conductivity ceases to depend on temperature at low tempera-
tures (T < 10 K) and oscillates as the degree of filling quantum dots with holes varies, assuming values divisible
by the conductance quantum e2/h. The results obtained indicate that a transition from phonon-assisted hopping
conduction to phononless charge transfer occurs as the temperature decreases. The Coulomb interaction of
localized charge carriers has a dominant role in these phononless processes. © 2003 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 73.63.Kv; 72.20.Ec
INTRODUCTION 

If the resistance of a two-dimensional disordered
system is larger than a value determined by the resis-
tance quantum h/e2, where h is Planck’s constant and e
is the elementary charge unit, then the system occurs on
the dielectric side of the metal–insulator transition and
its conductance G tends to zero as the temperature T
decreases [1, 2]. In the regime of the strong localization
of charge carriers, when the localization radius ξ is
much smaller than the distance between localized
states, charge transfer is carried out through tunneling
hops of electrons from one center to another, and the
hopping length at low temperatures increases with
decreasing temperature [3]. The occurrence of disorder
of certain origin in a system is the reason for the spread
of energy levels corresponding to various localized
states. Therefore, in a transition between localization
centers, an electron is forced to absorb or emit phonons.
Under conditions of this conventional phonon-assisted
mechanism of hopping transport, the temperature
dependence of the conductance takes the form

(1)

where the parameter T0 is determined by the properties
of the material and the exponent x < 1 is determined by
the energy dependence of the density of states at the
Fermi level g(Ef). If the electron–electron interaction in
the system is insignificant and g(Ef) = const, then x =
1/3 (the Mott law for a two-dimensional system) and
T0 = 13.8/kBg(Ef)ξ2, where kB is the Boltzmann constant

G T( ) G0 T0/T( )x–[ ] ,exp=
0021-3640/03/7707- $24.00 © 0376
[4]. It was predicted theoretically [5, 6] and then dem-
onstrated in experiments with GaAs/AlxGa1 – xAs [7]
and Ge/Si heterostructures with Ge quantum dots
(QDs) [8] with an artificial screen introduced in the sys-
tem that the occurrence of long-range Coulomb interac-
tion leads to the Efros–Shklovskii law

(2)

where T0 = 6.2e2/kBκξ [6], where κ is the relative
dielectric constant. Within the mechanism of phonon-
assisted hopping conduction, the preexponential factor
G0 takes the form G0 = γTm, where γ is a temperature-
independent parameter reflecting the characteristic fre-
quency of “attempts” of electron hops. Theoretical cal-
culations [6, 9] and experimental studies [7, 10, 11]
indicate that the exponent m has a value of about m ~ –1.

In 1994, Aleiner, Polyakov, and Shklovskii hypoth-
esized that under certain conditions electron–electron
interaction rather than phonons can stimulate electron
transitions between localized states [12]. In this case,
the preexponential factor G0 does not depend on tem-
perature. The question of the effect of electron–electron
interaction on the conductivity of two-dimensional sys-
tems became especially pressing after the repeated dis-
covery of the metal–insulator transition [1]. For sys-
tems with small disorder in which the fluctuation
amplitude of the Coulomb potential is larger than the
characteristic disorder energy because of random
charge exchange between groups of closely spaced
localized states, the phononless mechanism of hopping
conduction was proposed by Kozub, Baranovskii, and

G T( ) G0 T0/T( )1/2–[ ] ,exp=
2003 MAIK “Nauka/Interperiodica”
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Shlimak [13]. Because of random acts of electron hops
between states, the Coulomb potential in the surround-
ing system fluctuates in time. In turn, the interaction of
this potential with carriers bound on the centers and
participating in hopping charge transfer changes their
energy and, hence, the probability of tunneling transi-
tions. At certain instants of time a resonance situation
arises when two spatially close levels coincide in
energy and the charge carrier passes from one center to
another. In this case, phonons are not necessary for
charge transport, and Coulomb interaction is the factor
assisting hopping charge transfer. The authors of [13]
showed that, under conditions when this phononless
mechanism is manifested, the temperature dependence
of conductivity must be described by an equation simi-
lar to Eq. (2) with a temperature-independent preexpo-
nential factor having a value of order e2/h.

Recently, experimental works appeared carried out
with Si MIS transistors [14], Si/SiGe quantum wells
[15], GaAs/AlGaAs heterostructures [2, 16], and Ge/Si
quantum dots [8], in which two-dimensional hopping
conduction of the type given by Eq. (2) was observed
but with a temperature-independent preexponential fac-
tor equal to either e2/h [8, 14, 16] or 2e2/h [2, 15]. These
results were contradictory to the model of phonon-
assisted hopping conduction in two-dimensional disor-
dered systems and pointed to the necessity of searching
for new mechanisms of hopping charge transport. The
drawback of the works cited above was the fact that
G0 = const was a priori assumed in the analysis of
experimental data, whereas it was necessary to show
that actually m = 0. Because of this instance, the prob-
lem of experimentally revealing phononless hopping
conduction has not yet been solved.

In our opinion, Ge/Si heterostructures containing
layers of self-assembled Ge quantum dots that are
formed during the heteroepitaxy of elastically strained
systems [17] are best suitable for this purpose as the
object of investigations, because (1) it is possible to
obtain dense arrays with a QD layer density of up to
1012 cm–2 [18], in which the hopping transport of holes
between QDs is the dominating mechanism of current
flow at low temperatures [8]; (2) because of the speci-
ficity of heteroepitaxy, Ge nanoclusters lie exactly in
one plane (growth plane); that is, there is no disorder
factor associated with disordering in the structure
growth direction; (3) as distinct from the majority of
impurities in semiconductors, assemblies of QDs can
serve as a system of multicharged localization centers,
in which the role of Coulomb potentials is especially
important. The goal of this work was to determine the
mechanism and regularities of charge transfer in layers
of Ge/Si quantum dots.
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FORMATION OF GE/SI HETEROSTRUCTURES 
WITH QDs

Samples were grown by molecular-beam epitaxy on
Si(001) substrates with a resistivity of 1000 Ω cm
doped with boron up to a concentration of ~1013 cm–3.
The growth temperature of Si layers was, respectively,
800 and 500°C before and after the deposition of the Ge
layer. A Ge layer eight monolayers thick (≈10 Å) was
introduced into the middle of the 90-nm Si layer grown
on the substrate at a temperature of 300°C. The Ge nan-
oclusters formed in this case had the shape of pyramids.
The average sizes of the pyramid base in the growth
plane were 10 nm, the height was ~1 nm, and the layer
density of nanoclusters was 4 × 1011 cm–2 [19]. The
controlled filling of Ge islands with holes was carried
out by introducing a Si layer δ-doped with boron in the
samples at a distance of 5 nm below the QD layer.
Because the ionization energy of boron impurities in
silicon comprises only 45 meV, and the energies of the
first ten hole levels in germanium pyramids of this size
counted from the Si valence band top are 200–320 meV
[20], holes at temperatures below room temperature
leave the impurities and fill levels in QDs. The concen-
tration of boron in various samples varied from 2 ×
1011 cm–2 to 2.4 × 1012 cm–2, which allowed the average
number of holes Nh per one Ge QD to be varied from
0.5 to 6 at a step of 0.5. Ohmic contacts were formed by
sputtering Al islands on the sample surface followed by
heating the structure at a temperature of 400°C in a
nitrogen atmosphere. The current was measured at dif-
ferent T at voltages no higher than 20 mV, which corre-
sponded to the ohmic region of current–voltage charac-
teristics throughout the entire temperature range stud-
ied in this work.

EXPERIMENTAL RESULT 

Experimental temperature dependences of the con-
ductance in e2/h units are given in Fig. 1 in Arrhenius
coordinates for samples with different numbers of holes
Nh. In all samples at low temperatures G(T) & e2/h,
which is characteristic of the dielectric side of the
metal–insulator transition. In order to obtain detailed
information on the functional dependence G(T), we
used the differential method for an analysis of the
dimensionless conductance activation energy [21]
w(T) = ∂lnG(T)/∂lnT = m + x(T0/T)x. In this approach,
if m ! x(T0/T)x, then logw(T) = A – xlogT, and A =
xlogT0 + logx. Constructing logw(T) as a function of
logT, one can find the exponent x from the slope of the
straight line. The parameter A can be found by the inter-
section point of the straight line with the ordinate axis,
which gives the characteristic temperature T0 =
(10A/x)1/x. Typical plots of logw(T) versus log T for
some samples are given in Fig. 2. At T & 10 K, a linear
relationship is observed between logw(T) and logT,
pointing to the fact that m ! x(T0/T)x at these tempera-
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tures. From the slope angle of the approximating
straight lines (solid lines in Fig. 2), we found that the
exponent x takes approximately the same value x =
0.51 ± 0.05 for all the 12 samples in accordance with
Eq. (2).

Because it was already stated that x . 0.5, the non-
linear regression method can be used for further deter-
mining the exponent m in the region of low tempera-
tures. With this aim, the experimental dependences
G(T) at T < 10 K were approximated by the equation
G(T) = γTmexp[–(T0/T)1/2], and the parameters γ, m, and
T0 were varied until the coincidence of the calculated
and experimental curves. The results of this procedure
are presented in Fig. 3. Symbols correspond to experi-
mental data, and solid lines depict calculated curves. It
was found that m lies in the region –(0.11 ± 0.09)
(Fig. 4a). The closeness of m to zero allows a conclu-
sion to be made that actually the preexponential factor
G0 is virtually temperature-independent at low temper-
atures.

A similar approach to determining the temperature
dependence G0(T) was applied to the region of high
temperatures (10 < T < 40 K). The high-temperature
exponent m in samples differing in the numbers of
holes Nh is given in Fig. 4a. In order to understand the
observed dependence m(Nh), it is necessary to consider
the structure of electron shells in Ge QDs. A numerical

Fig. 1. Temperature dependences of the conductance in
samples differing in the average number of holes per one Ge
QD.
simulation of the hole energy spectrum and hole wave
functions in pyramidal Ge nanoclusters in Si was per-
formed by Dvurechenskii, Nenashev, and Yakimov
[20]. The hole ground state has an s-type symmetry and
is doubly degenerate by the spin direction. The first
excited state possesses a p-type symmetry with the
degree of degeneracy equal to 4. One pair is associated
with the spin degree of freedom, and another one, with
the equivalence of crystallographic directions along
which the diagonals of the Ge pyramid base are ori-
ented [20]. It is evident in Fig. 4a that, at the very begin-
ning of filling each of the shells (Nh = 0.5 for the s shell
and Nh = 3–4 for the p shell), m = –(0.75 ± 0.05); that
is, conduction is phonon-assisted; however, at the end
of filling, a considerable contribution from phononless
processes arises even at high temperatures (m  0).
The most probable hypothesis that can explain this
behavior is that the intensity of charge exchange
between localized electron states is small when the
shell is completely empty or fully filled (in the first
case, there is no mobile charge, and in the second, there
is no vacant places with close energy levels). Therefore,
the mechanism of hopping transport stimulated by
Coulomb interaction [13] is suppressed. The depen-
dence of the effective localization radius ξ shown in
Fig. 4b gives evidence in favor of this interpretation.
The value of ξ was found from the relationship T0 =
6.2e2/kBκξ  with κ = 12 for Si. In the situation of hop-

Fig. 2. Temperature dependences of the logarithmic deriva-
tive w(T) = ∂lnG(T)/∂lnT for samples differing in the aver-
age number of holes per one Ge QD.
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ping conduction over the impurity band, ξ is as a rule
nothing more nor less than the Bohr radius of the
charge carrier at an impurity. In the case of QDs, when
in each of them there are several bound states, electrons
can pass, for example, from the ground state of one QD
to the excited state of another QD. In this case, the
effective localization radius reflects the spatial range of
overlap between the wave functions in the initial and
final states. It is evident in Fig. 4b that the lowest value
of ξ is attained in a sample with Nh = 3. This means that
the filling of the s shell is actually completed at these
values of Nh, and holes in hopping are forced to pass
into the p shell with a completely different electron
configuration.

Let us turn back to the analysis of the preexponential
factor in the region of low temperatures. The depen-
dence G0(Nh) is presented in Fig. 4c. It turned out that
the prefactor actually has a value of order e2/h in agree-
ment with the theory of electron–electron interaction;
however, it is not constant but varies upon varying the
degree Nh of filling the QD with holes, assuming values
divisible by e2/h. Currently, there is no preconceived
explanation of the oscillating behavior of G0, and fur-
ther theoretical and experimental investigations into the
effects of Coulomb interaction in charge-transfer pro-

Fig. 3. Temperature dependences of the conductance con-
structed on the logG–T–1/2 coordinates. Symbols corre-
spond to experimental points, solid lines are approxima-
tions of the experimental data using the equation G(T) =
γTmexp[–(T0/T)1/2]. T0, γ, and m are variable parameters.
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cesses in two-dimensional disordered systems in the
strong localization regime are necessary.

In conclusion, let us make another comment. The
number of phonons with a particular energy decreases
with decreasing temperature. As a consequence, two
alternatives arise. First, an electron is forced to hop
onto a spatially more distant state with a minimum dif-
ference in energy. Second, it can make a hop onto a
closer state by changing the energy of the state through
the Coulomb interaction with centers with fluctuating
charges. Apparently, the probability of the second pro-
cess at low T is higher. For this reason, a change in hop-
ping conduction mechanisms takes place on cooling the
system.

The authors are grateful to S.D. Baranovskiœ for use-
ful discussions.

This work was supported by the Russian Foundation
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Fig. 4. Dependence of (a) the exponent m characterizing the
temperature dependences of the preexponential factor G0 in
the region of high (10 < T < 40 K) and low (T < 10 K) tem-
peratures, (b) the effective localization radius ξ, and (c) the
preexponential factor G0 at low temperatures (T < 10 K) on
the average number of holes in QDs Nh.
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It is demonstrated that the inclusion of long-range intersite interactions qualitatively modifies the dependence
of a superconducting gap on quasimomentum for both s- and d-symmetry types. In particular, the order param-
eter of a superconducting phase with the  symmetry type depends on two amplitudes and has the form

∆(k) = ∆1(coskx – cosky) + ∆2(cos2kx – cos2ky). In this case, the theoretical dependence of the critical temperature
on the degree of doping agrees with the experimental dependence. © 2003 MAIK “Nauka/Interperiodica”.
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1. It is known that the (t–J) model [1] properly
describes, on a qualitative level, the magnetic pairing
mechanism in high-temperature superconductors (see,
e.g., review [2]). If this model is developed on the basis
of the Hubbard model in the strong-correlation regime,
the effective Hamiltonian Heff includes so-called three-
center terms [3, 4]. In [5], it was shown that the three-
center terms H(3)make a weak contribution to the dis-
persion curves of energy spectrum. This result is quite
natural, because the corrections H(3) to the hopping
parameters contain the additional smallness. A different
situation appears in the analysis of a superconducting
phase. In the case of the magnetic pairing mechanism,
the exchange interaction plays the role of coupling con-
stant. The energy parameters in the three-center terms
are of the same order of magnitude. For this reason, the
contribution H(3) to the self-consistent equation for the
superconducting gap becomes appreciable. The influ-
ence of three-center terms on the formation of super-
conductivity was studied in [6, 7]. It was shown in [7]
that the inclusion of three-center terms results in the
renormalization of the coupling constant. This substan-
tially reduces the region of a superconducting phase
with the  symmetry type of order parameter [8].

Beyond the nearest-neighbor approximation, the
effective Hamiltonian includes the exchange interac-
tion between the spins of quasiparticles separated by a
distance larger than the lattice parameter. The important
role of quasiparticle hopping between the sites from the
distant coordination spheres and the exchange interac-
tions between the non-nearest-neighboring spins was

d
x

2
y

2–
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demonstrated in many works dealing with the quasipar-
ticle energy spectrum (see, e.g., [9–13]). In these cases,
the theoretical positions agreed satisfactorily with the
APRES data. In particular, it was pointed out that the
inclusion of frustrated bonds (J2 > 0) is important for
the description of the evolution of spectral dependence
in the presence of doping [12]. Since, as was mentioned
above, the exchange interaction parameters play the
role of coupling constants in the magnetic mechanism
of superconducting pairing, one can expect that J2 and
J3 may influence both the functional form of the order
parameter and the conditions for the appearance of
superconducting state.

Below, the effective Hamiltonian based on the
strong-correlation Hubbard model (extended (t–J)
model with three-center interactions) is used to demon-
strate that the exchange interactions between the spins
of non-nearest neighbors have an appreciable effect
both on the quasimomentum dependence of the order
parameter and on the form of the equation for the super-
conducting gap and critical temperature Tc.

2. The Hubbard Hamiltonian

(1)

is chosen as the initial model, and it is assumed that
three hopping parameters are nonzero:  = –t1,

H ε µ–( )a fσ
+ a fσ

fσ
∑=

+ t fma fσ
+ amσ

fmσ
∑ U n̂ f ↑ n̂ f ↓

fσ
∑+

t f f δ1+,
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 = –t2, and  = –t3, where δi are the radius
vectors of the sites from the ith coordination sphere.

It is well known that, in the regime of strong electron
correlations (U @ |tfm|) and for concentrations n < 1, one
can pass, in the Hubbard operator representation, to the
effective Hamiltonian of the form

(2)

with a quadratic accuracy in |tfm |/U [7, 2, 8]. The nota-
tion is standard, and its meaning can be found in the
cited works and in review [2]. Note, nevertheless, that
the last term in the Hamiltonian depends on three sites
and describes the correlated hopping.

By using the diagram technique for the Hubbard
operators [14, 15] or the method of irreducible Green’s
functions in the atomic representation with anomalous
means [16], one arrives at the self-consistency equation
for the superconducting order parameter (SOP) ∆q with
allowance made for the three-center terms [8]:

(3)

In this equation, tk and Jk are the Fourier transforms of

the parameters tfm and /U. The energy of Bogoli-
ubov quasiparticles is denoted by Ek =

, and the renormalized electronic
spectrum is

(4)

Note that, when deriving Eq. (3) from Heff, only

 anomalous means appear. If, however, one
starts from the Hamiltonian (1) written in the atomic

t f f δ2+, t f f δ3+,

H ε µ–( )X f
σσ

fσ
∑ t fmX f

σ0Xm
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∑+=

+
t fmtmf

U
------------- 
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1
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n
2
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2
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2
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2Eq
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  Eq
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2t fm
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2+
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n
2
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U
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1
N
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n
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tq

U
----+ +
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nqσ,
q

∑
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ϑ q ξq/Eq, ξq ε̃q µ.–= =

X f
0↓ Xm
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representation, then, as was shown by Zaœtsev et al. in

[17], the anomalous means  and 
also appear, which are caused by the transitions from
the lower to the upper Hubbard subband and the transi-
tions inside the upper subband that make contribution
at finite U. The formal absence of these anomalous
means in our approach does not mean that we ignore
these processes. The matter is that, when passing to
Heff, all calculations are carried out in the new represen-
tation, for which the indicated processes are taken into
account by different operator structures. This statement
can be clarified as follows.

We first consider the  and  means
that are associated with the transitions from the lower
to upper Hubbard subband (in this case, it is tacitly
assumed that the representation is induced by the orig-
inal Hamiltonian). The transition to Heff implies the uni-
tary transformation (S+ = –S)

after which the Hamiltonian, the basis functions, and all
operators, whose averaging gives the physical quanti-
ties of interest, change their form. For example, the

operators  and  are transformed as

The transformation laws clearly demonstrate that, in
the new representation, the above-mentioned anoma-
lous means are not ignored within the linear accuracy in
(tfm/U), and their contribution is determined by the
means of operators which are responsible only for the
transitions between the states without pairs. In essence,
this is a particular case that follows from the general
statement made in [18]. As for the anomalous means
associated with the transitions inside the upper Hub-
bard band, one can readily verify that the corresponding
contribution is nonzero only in the quadratic (and not
linear) approximation in (tfm/U). For this reason, these
means make no contribution to our theory.

As known, Eq. (3) has solutions differing in the type
of ∆k symmetry. We will consider the influence of long-
range hopping separately on the type of SOP symmetry
and on the k dependence for a given symmetry.

X f
0σXm

σ2〈 〉 X f
σ2 Xm
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X f
02〈 〉 X f

0σXm
02〈 〉
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(a) s Symmetry; due to the presence of three non-
zero t1, t2, t3 ≠ 0, the solution to Eq. (3) for this symme-
try type is given by ∆k, which is expressed as

(5)

Hereafter, the following invariants are used for brevity:

The order parameter in the form of Eq. (5) is the solu-
tion to the integral Eq. (3), if the unknown coefficients
∆i satisfy the set of four equations

(6)

where

From the set of Eqs. (6) it follows that, in the limit of
infinitely strong repulsion, for which the superconduct-
ing pairing is governed only by the Zaœtsev kinematic
mechanism, the order parameter includes only the con-
tributions linear in t;

(b) dxy symmetry; ∆k = ∆1sin(kxa)sin(kya) This sym-
metry type is absent for the SOP in the nearest-neighbor
approximation and appears only if t2 ≠ 0. The corre-
sponding SOP amplitude ∆1 is found from the transcen-
dental equation

; (7)

(c)  symmetry. Due to the distant hopping (t2,

t3 ≠ 0), the well-known SOP ∆k = ∆0(cos(kxa) –
cos(kya)) is impossible, because it does not satisfy the
integral Eq. (3). The solution to this equation can be
represented in a two-parameter form

(8)
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Jm 2tm
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Gi Gi00, Gij Gij0,= =

Gijl
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N
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q
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Ψq
Eq/2T( )tanh

2Eq
-------------------------------, S0 k( ) 1.= =
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2
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d
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∆k ∆1ϕ1 k( ) ∆2ϕ2 k( ),+=

ϕ l k( ) lkxa( )cos lkya( )cos–( ), l 1 2,,= =
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if the amplitudes ∆1 and ∆2 are the solutions to the fol-
lowing two equations:

(9)

It follows that, for t3 ≠ 0, ∆1is always nonzero. The
condition for the compatibility of this set of equations
leads to the equation

(10)

which determines, in particular, the critical tempera-
ture. One can see that the well-known equation for the
critical temperature in the (t–J*) model is obtained only
for t3 = 0.

3. Because of the lack of volume, we only present
the results of numerical analysis for the influence of
distant hopping on the characteristics of superconduct-
ing state for ∆k of the -type symmetry. Figure 1

shows the concentration dependence of the transition
temperature to the  phase with inclusion of the

parameter t3. One can see that the electron hopping
from the third coordination sphere exerts a substantial
effect on the position of the maximum of the Tc(n)
curve. It is notable that the experimentally observed sit-
uation with a Tc maximum at n ~ 0.8 can easily be real-
ized. Curves 1 and 2 in Fig. 2 demonstrate the effect of
modified Eq. (10) with long-range interactions on the
critical temperature. Curve 1 is constructed using the
solution to the complete Eq. (10), and curve 2 is
obtained on the assumption that λ2 = 0.

In the superconducting phase (T < Tc), the ampli-
tudes ∆1 and ∆2 are nonzero and change synchronously

∆i λ i Φij∆ j; λ1

j 1=

j 2=

∑ n
t1

2

U
---- 

  , λ2 n
t3

2

U
---- 

  ,= = =

Φnm
1
N
---- ϕn q( )ϕm q( )

Eq

2T
------ 

  .tanh
q

∑=

1 λ1Φ11–( ) 1 λ2Φ22–( ) λ1λ2Φ12
2 ,=

d
x

2
y

2–

d
x

2
y

2–

Fig. 1. Effect of hopping to the third coordination sphere on
the concentration dependence of Tc for different α3 = t3/t1.
Parameters: t2/t1 = –0.2 and |t1 |/U = 0.2. 
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with temperature. An example of the behavior of this
type is demonstrated in Fig. 3. One can see that, over
the entire temperature range where the superconducting
solution occurs, the temperature of |∆2| (∆2 < 0) is the
same as for ∆1.

Note in conclusion that the effect of long-range hop-
ping both on the occurrence of superconducting state
and on the momentum dependence of the order param-
eter has been demonstrated in this work by the example
of effective Hamiltonian obtained from the Hubbard
model in the strong electron-correlation regime. In this
case, there is a correspondence between t3 and
exchange parameter J3. Nevertheless, a situation is
often considered where the hopping parameters and the
exchange constants are thought to be independent. In
this case, a situation can in principle be realized where
the magnitude of long-range exchange interactions will
not be related to the hopping amplitudes.

It is worth noting that the more general results could
be obtained using the original Hamiltonian (1), if the
set of four equations is written in the form as it was

Fig. 2. Concentration dependence Tc(n): t2/t1 = 0.4, t3/t1 =
0.3, and |t1 |/U = 0.2. For the values for curves 1 and 2, see
the text.

Fig. 3. Temperature dependence of the amplitudes ∆1 and
|∆2| for n = 0.84. Parameters are as in Fig. 2.

10
3
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3

done by Zaœtsev et al. in [17]. However, if one is inter-
ested in the leading approximation with respect to
(tfm/U), the variant presented in this work is simpler. It
is this fact that allows the influence of the long-range
hopping on the possible symmetry type of order param-
eter and on the modification of the quasimomentum
dependence to be analyzed for any symmetry type.
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The conductivity of amorphous silicon nitride has been studied experimentally in a wide range of electric fields
and temperatures. The experimental results are in a quantitative agreement with the theory of multiphonon ion-
ization of deep centers for the bipolar model of conductivity. The best agreement between experiment and the
calculation has been obtained for the same parameters of deep electron and hole centers. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 77.22.-d; 77.84.Bw
The majority of amorphous dielectrics, such as
Si3N4, Ce3N4, BN, Ta2O5, HfO2, Y3O3, and TiO2, con-
tain a high density of deep centers (traps). The conduc-
tivity of such dielectrics in strong electric fields (106–
107 V/cm) is limited by the ionization of deep centers.
Silicon nitride is the dielectric that is most comprehen-
sively studied from the viewpoint of the mechanism of
charge transfer.

Amorphous silicon nitride (Si3N4) is characterized
by a high density (>1019 cm–3) of electron and hole
traps with a giant confinement time of electrons and
holes in a localized state (>10 years at 300 K) [1]. Cur-
rently, it is commonly accepted that the ionization of
deep centers in Si3N4 is confined to the Frenkel effect
[2–5]. However, it was demonstrated in [4–8] that the
interpretation of Si3N4 conductivity within the Frenkel
model gives an anomalously small value of the fre-
quency factor ν ≈ 106–109 s–1. The frequency factor was
estimated in the original paper by Frenkel at a level of
ν ≈ 1015 s–1 [9]. Moreover, the formal agreement with
the modified Frenkel model that takes into account tun-
nel ionization can be obtained only at an anomalously
large value of the effective tunneling mass m* = 4me

[8]. At the same time, experiment gives a value of the
effective tunneling mass in silicon nitride close to m* =
0.4me [10]. As distinct from dielectrics, the ionization
of deep centers in semiconductors is interpreted within
the theory of multiphonon ionization [11].

In [8], experimental results on the conductivity of
metal nitride–oxide–semiconductor (MNOS) struc-
tures were quantitatively compared with the theory of
multiphonon ionization for the unipolar model of con-
ductivity, which takes into account only electron injec-
tion from silicon and does not take into account hole
0021-3640/03/7707- $24.00 © 20385
injection from the metal; see Fig. 1a. On the other hand,
in this work experimental results are compared with the
more general bipolar model, in which the injection of
electrons from silicon, the injection of holes from the
metal, and the recombination of free electrons with
localized holes and free holes with localized electrons
are taken into account; see Fig. 1b. The goal of this
work is to experimentally study the mechanism of
charge transfer in Si3N4 over a wide range of tempera-
tures and fields and to quantitatively compare the
experiment with the calculation based on the bipolar

Fig. 1. Energy diagram for (a) unipolar and (b) bipolar mod-
els of conductivity for an MNOS structure at a positive volt-
age on an aluminum electrode. Symbols (–) and (+) mark
respectively electrons and holes captured by a trap.
003 MAIK “Nauka/Interperiodica”
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conductivity model and the multiphonon mechanism of
trap ionization in silicon nitride.

Samples of MNOS structures were manufactured on
a p-type silicon substrate with a resistivity of 20 Ω cm
grown using the Czochralski method. A thin, tunnel-
transparent oxide layer 18-Å thick was grown at a tem-
perature of 760°C. Silicon nitride 670-Å thick was
obtained at a temperature of 700°C by the deposition
method in a low-pressure reactor. The SiH2Cl2/NH3
ratio was 0.1. Aluminum electrodes with an area of 5 ×
10–3 cm2 were sputtered through a mask.

Current–voltage characteristics (Fig. 2) were mea-
sured experimentally at different temperatures, and
temperature dependences of the current (Fig. 3) were
measured for different voltages. The experimental
dependences were obtained in a cryostat cooled by liq-
uid nitrogen with controlled temperature in the range
77–450 K. The current–voltage characteristics were
measured with voltage varied at a rate of 0.02 V/s. The
heating rate of samples was ~5 K/min. All the measure-
ments were carried out for positive voltages on the gate.
At this voltage polarity, both the injection of electrons
from the silicon substrate and the injection of holes
from aluminum take place.

A one-dimensional bipolar model of Si3N4 conduc-
tivity was used for comparison with experiment. Previ-
ously, this model was used in [12]. Charge transfer was
described with the use of the Shockley–Read–Hall

Fig. 2. Experimental (dots) and calculated (solid lines) cur-
rent–voltage characteristics for the model of the mul-
tiphonon ionization of traps in Si3N4 at a positive voltage on
an aluminum electrode. The calculation was carried out for
the same parameters of electron and hole traps σe = σh =

σr = 5 × 10–13 cm2,  =  =  = 1.7 eV,  =

 =  = 2.7 eV,  =  =  = 0.045 eV,

and  =  = Nt = 7 × 1019 cm–3.
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equation and the Poisson equation taking into account
the nonuniform electric field distribution in silicon
nitride
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Here, n and nt are the concentrations of free and trapped
electrons, p and pt are respectively the concentrations of

free and trapped holes,  and  are the concentra-
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Fig. 3. Experimental (dots) and calculated (solid lines) tem-
perature dependences of the current for the model of the
multiphonon ionization of traps for a positive voltage on an
aluminum electrode. The calculation was carried out for the
same parameters of electron and hole traps σe = σh = σr =

5 × 10–13 cm2,  =  =  = 1.7 eV,  =  =

 = 2.7 eV,  =  =  = 0.045 eV, and  =

 = Nt = 7 × 1019 cm–3.
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tions of electron and hole traps, F(x, t) is the local elec-
tric field, e is the electron charge, σe, h is the capture
cross section of a trap, σr is the recombination cross
section between free and trapped carriers of opposite
sign, v  is the drift velocity, and ε = 7.5 is the low-fre-
quency permittivity of Si3N4. The following values
were used in this work for the capture and recombina-
tion cross sections σe = σh = σr = 5 × 10–13 cm2 [6, 7,
13]. The drift velocity of electrons is related to the cur-
rent density by the equation j = env. The multiphonon
ionization model [11, 14] was used for the ionization
probability P of a trap in Si3N4

(6)

where Wopt and Wt are the optical and thermal ionization
energies of a trap, Wph is the phonon energy, m* is the
effective mass of a carrier. The same effective masses
equal to 0.5m0 (where m0 is the free electron mass) were
chosen in modeling for electrons and holes. The elec-
tron and hole injection from the silicon substrate and
aluminum electrode, respectively, was calculated based
on the Fowler–Nordheim mechanism. 

We carried out two series of experiments, in one of
which the current–voltage characteristic was recorded
at a fixed sample temperature, and the temperature
dependence of the current through the MNOS was
recorded in the second series at a constant applied volt-
age. The current–voltage characteristics (Fig. 2) were
measured at temperatures T = 77, 300, and 410 K in the
voltage range 30–55 V, which corresponds to average
electric fields of ~(4–8) × 106 V/cm in silicon nitride. It
is evident in the figure that the current increases expo-
nentially with increasing voltage on the aluminum elec-
trode.

The temperature dependences of the current were
measured in the temperature range 77–410 K for volt-
ages of 44, 37, and 30 V and were plotted on the Arrhe-
nius coordinates ln(j) – T–1 (Fig. 3). The figure demon-
strates that the current weakly depends on the tempera-
ture at T < 200 K. The weak temperature dependence of
the current points to the tunneling mechanism of trap
ionization. The same behavior of the measured currents
with temperature was observed previously in [2, 3].

The direct tunneling of carriers through the triangu-
lar barrier without the participation of phonons is the
main mechanism of trap ionization at low temperatures.
The ionization probability in the presence of an electric
field is given by the equation [15]

(7)
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The lowest field Fmin necessary for such tunneling is
determined from the relationship

(8)

where ω is the frequency of the trap “nucleus,” which
can be estimated from the relationship ω ≈ Wph/". The
estimation gives Fmin = 5 × 106 V/cm.

The experimental current–voltage characteristic
constructed on the ln( j/F)–1/F coordinates for the tem-
perature T = 77 K and electric fields higher than 5 ×
106 V/cm is shown in Fig. 4. The average field F = V/d
(V is voltage, and d is the nitride thickness) is plotted in
Fig. 4. On these coordinates, the rectification of the
experimental curve is observed. The optical energy of
the trap Wopt = 2.5 eV was estimated by the slope of the
curve for m* = 0.5.

It was found that the best agreement with the exper-
iment is obtained for the same parameters of electron

and hole traps:  =  = Wt = 1.7 eV,  =  =

 = 2.7 eV,  =  =  = 0.045 eV, and  =

 = Nt = 7 × 1019 cm–3. The current–voltage charac-
teristics calculated for temperatures of 77, 300, and
410 K are shown in Fig. 2 (solid lines), and temperature
dependences of the current for voltages U (44, 37, and
30 V) on the aluminum electrode are shown in Fig. 3
(solid lines). The largest discrepancy between the cal-
culated and experimental data was observed for volt-
ages less than 35 V. This discrepancy can be explained
by slow current relaxation in silicon nitride, whose
nature remains unclarified [16]. The value Wopt = 2.5 eV
estimated by the slope of the current–voltage character-
istic (Fig. 4) turned out to be smaller than the value

Fmin
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Fig. 4. Experimental dependence j/F versus 1/F for the tem-
perature T = 77 K constructed on a semilogarithmic scale.
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Wopt = 2.7 eV obtained from an accurate simulation of
the experiment (Figs. 2, 3). This small discrepancy can
be explained by the fact that the ionization probability
of a trap was estimated with the use of the average value
of the electric field (F = V/d) in the first case and with
the use of the local (depending on the coordinate) elec-
tric field obtained as an accurate solution of the Poisson
equation taking into account the nonuniformity of the
trapped charge in the bulk of silicon nitride in the sec-
ond case.

Thus, the experiment on charge transfer in silicon
nitride carried out over a wide range of electric fields
and temperatures is quantitatively described by the the-
ory of the multiphonon ionization of traps. An agree-
ment with the experiment was obtained for the bipolar
model of conductivity with the same parameters (con-
centration, capture cross section, and optical and ther-
mal ionization energies) of electron and hole traps in
silicon nitride.

The large difference found between the thermal and
optical ionization energies within the theory of mul-
tiphonon ionization is evidently due to the occurrence
of a strong polaron effect in Si3N4. Previously, the
polaron model of electron and hole traps in Si3N4 was
discussed in [1, 17, 18]. According to this model, elec-
trons and holes in Si3N4 are captured by a minimal sili-
con cluster, namely, a Si–Si bond. The polaron model
suggests that a Si–Si bond or a silicon cluster composed
of several silicon atoms is a deep center for electrons, a
deep center for holes, and a recombination center. A
quantum-chemical simulation of a Si–Si bond in Si3N4

carried out in [19] qualitatively confirms this hypothe-
sis.

This work was supported by the National Program
of the Korean Ministry of Science and Technology on
Terabit-Scale Nanoelectronics and by the Siberian
Branch of the Russian Academy of Sciences, integra-
tion project no. 116.
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Anomalously long millisecond kinetics of photoluminescence (PL) is observed at low temperatures (4.2–50 K)
in direct-bandgap InAs quantum dots formed in an AlAs matrix. An increase in temperature leads to a decrease
in the duration of PL decay down to several nanoseconds at 300 K, whereas the integral PL intensity remains
constant up to 210 K. In order to explain the experimental results, a model is proposed that takes into account
the singlet–triplet splitting of exciton levels in small quantum dots. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.55.Cr; 78.67.Hc
The relaxation and recombination of excitons in
self-assembling InAs quantum dots have been actively
studied in recent years, because this system is promis-
ing for creating high-performance light-emitting
devices [1]. Most attention has been concentrated on
quantum dots formed in a GaAs matrix [2, 3]. It has
been stated that the radiative recombination time of
excitons in this system comprises several nanoseconds
[2]. At the same time, the recombination dynamics of
excitons in a system of InAs quantum dots formed in a
wide-bandgap AlAs matrix has remained poorly under-
stood. Only one work devoted to studying the transient
photoluminescence (PL) of InAs quantum dots in an
AlAs matrix has been published to date [4], whose
authors note that photoluminescence in this system at
liquid-helium temperature demonstrates microsecond
decay times.

This work is devoted to studying the temperature
dependence of the transient and steady-state PL of InAs
quantum dots formed in an AlAs matrix. We have
shown for the first time that the radiative recombination
of excitons at low temperatures (4.2–50 K) is character-
ized in this system by an anomalously long, millisec-
ond decay time. With increasing temperature, the dura-
tion of PL decay decreases by five orders of magnitude,
reaching several nanoseconds at 300 K. The experi-
mental results have been explained within a model tak-
ing into account the singlet–triplet splitting of exciton
levels in small quantum dots arranged in a system of
closely packed quantum dots with local coupling
between dots.

Structures with self-assembled InAs quantum dots
in an AlAs matrix were grown by molecular-beam epi-
0021-3640/03/7707- $24.00 © 0389
taxy on semi-insulating GaAs substrates with (100) ori-
entation using a Riber-32P setup. Samples consisted of
five layers of InAs quantum dots separated with AlAs
layers 8-nm thick. The amount of InAs deposited in the
growth of each layer with quantum dots was equivalent
to two monolayers. The layers with quantum dots were
grown at a temperature of 480°C. A detailed description
of the growth process is given in [5]. The sizes of quan-
tum dots were estimated by electronic images of cross
sections of samples and varied from 60 to 240 Å in the
plane perpendicular to the growth direction and from
20 to 60 Å in the growth direction. As distinct from
InAs quantum dots in a GaAs matrix, InAs quantum
dots in an AlAs matrix form into a system with the dot
density NQDs higher than 1011 cm–2, and a decrease in
growth temperature leads to an increase in density and
a decrease in dot sizes [5–8]. Because the growth tem-
perature of our samples was lower than that in [7],
whose authors report obtaining samples with NQDs =
7 × 1011 cm–2, we believe that the density of quantum
dots in the system under study is at least not lower.

Transient and steady-state PL was measured. The
excitation of PL was carried out by Ar+, Ti : Sapphire,
and semiconductor laser radiation, and the exciting
photon energy was both larger and smaller than the

bandgap of the AlAs matrix . Steady-state PL
was excited by Ar+ laser radiation (hν = 2.54 eV >

) or by a semiconductor laser with hν = 1.82 eV <

. The excitation of transient PL was carried out by
rectangular pulses of the semiconductor laser (hν =
1.82 eV) or 200-fs pulses of a Ti : Sapphire laser (hν =

Eg
AlAs( )

Eg
AlAs

Eg
AlAs
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3.10 eV > ) operating in the mode locking regime.
The signal of steady-state and transient PL in the micro-
and millisecond time range was recorded by a cooled
photomultiplier with an S20 type photocathode operat-
ing in the photon counting regime. The measurement of
PL kinetics in the submicrosecond time range was car-
ried out by a Hamamatsu C4334 streak camera (time
resolution, 15 ps) mounted on a CROMEX 250IS spec-
trometer.

It is seen in Fig. 1 that a line positioned at an energy
of 1.684 eV and due to radiative recombination in quan-
tum dots dominates in the steady-state PL spectrum of
the structure with InAs/AlAs quantum dots measured at
liquid-helium temperature with an excitation energy of
2.54 eV and an excitation density of 2 W cm–2. An
increase in excitation intensity leads to an increase in
the half-width and to a short-wavelength shift of the
line. Similar behavior of the line generated by recombi-
nation in InAs/AlAs quantum dots was observed previ-
ously in [6]. This behavior is due to the redistribution of
charge carriers among quantum dots of different size in
the system of closely packed, coupled quantum dots.

The temperature dependence of the position of the
PL line maximum shown in Fig. 2 demonstrates a non-
monotonic character. The maximum position remains
constant in the temperature range 4.2–50 K; as the tem-
perature increases from 50 to 150 K, the line shifts
toward the short-wavelength side; and with a further
increase in temperature, the line exhibits a long-wave-
length shift.

The photoluminescence kinetics of InAs/AlAs
quantum dots at various temperatures is shown in
Fig. 3. We note the following features of PL kinetics:
(1) the shape of a kinetic curve and the duration of PL
decay are independent of the exciting light photon
energy and are similar for excitation with a photon

Eg
AlAs

Fig. 1. PL spectrum of InAs/AlAs quantum dots at 4.2 K.
energy of both larger and smaller than the bandgap
width of the AlAs matrix; (2) the kinetics is of nonex-
ponential character throughout the entire temperature
range and is described by a power law I(t, T) ~ (1/t)γ(T);
and (3) the duration of PL decay down to an intensity of
2.5 × 10–3 of the initial magnitude is independent of
temperature in the range 4.2–50 K and equals at least
2 ms, as illustrated in Fig. 4. With increasing tempera-
ture, the duration of decay decreases by five orders of
magnitude and becomes equal to 25 ns at 300 K.

It is evident in Fig. 4 that the integrated intensity of
PL remains constant in the temperature range 4.2–210 K,
which indicates that the sharp change in decay time
with increasing temperature is not associated with the
inclusion of additional channels of nonradiative recom-
bination. A further increase in temperature up to 300 K
leads to a decrease in integral intensity by a factor of
15 due to the thermal activation of charge carriers into
the wetting layer and/or the AlAs matrix [6, 9].

The authors of [4] observed microsecond decay of
the low-temperature (6 K) PL of InAs/AlAs quantum
dots upon excitation by light with a photon energy
exceeding the bandgap width of the AlAs matrix. In the
model of recombination proposed in [4], it was sug-
gested that the long decay of PL is explained by the spa-
tial separation of charge carriers of different sign
between neighboring quantum dots, which occurs
because of electron scattering by the states of the X val-
ley of the AlAs matrix in the process of electron energy
relaxation.

The set of experimental data obtained in this work
cannot be explained within the model proposed in [4].
Actually, upon exciting PL by light with a photon
energy lower than the bandgap width of the matrix, the
nonequilibrium charge carriers are excited inside a
quantum dot and cannot reach the X valley of AlAs;

Fig. 2. Temperature dependence of the maximum position
of the line caused by recombination in InAs/AlAs quantum
dots. The solid line is a guide to the eye.
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hence, the mechanism proposed in [6] is not realized.
Moreover, this model does not contain temperature-
dependent parameters and cannot explain the decrease
by five orders of magnitude in the PL decay time with
increasing temperature observed in our study.

In order to explain the millisecond PL kinetics
observed in this work we took into account the fine
structure of exciton levels strongly localized in quan-
tum dots [10]. An exciton as a system of two paired
spins can exist either in an optically active singlet state
with a short radiative lifetime τC or in an optically inac-
tive triplet state, which is characterized by a long life-
time τT @ τC. Because of exchange interaction, the sin-
glet and triplet exciton levels are split. The splitting ∆
between the ground-state triplet and higher lying sin-
glet exciton levels in three-dimensional semiconductor
materials and large quantum dots is smaller than kT
even at liquid-helium temperature. In this case, the
kinetics of exciton PL is exponential and is character-
ized by the lifetime τC. However, for excitons strongly
localized in small quantum dots embedded in a wide-
bandgap matrix, as takes place for InAs quantum dots
in an AlAs matrix, the splitting ∆ strongly increases
[11, 12]. In such a dot, in the absence of competing
channels of charge carrier escape from the dot, the radi-
ative lifetime of an exciton at low temperatures kT < ∆
is determined by the exciton lifetime in the optically
inactive triplet state τT.

In a system of isolated quantum dots with a spread
of sizes, the dispersion of ∆ values leads to a spectral
dependence of the PL decay time [11]. A completely
different pattern is observed in a system of locally cou-
pled InAs quantum dots in an AlAs matrix. Because the
distance between quantum dots is small, the wave func-
tions of charge carriers in neighboring quantum dots
strongly overlap; moreover, the potential barrier
between dots can decrease locally [4, 7]. This leads to
the migration of excitons from small dots to large ones.
In this case, large dots with a small value of ∆ and,
hence, a short lifetime provide a channel for exciton
recombination. At the same time, small dots with a
large value of ∆ and a long lifetime serve as a reservoir
from which excitons find their way into large dots. In
such a system of coupled quantum dots, the duration of
PL decay in large dots is determined by the time during
which excitons find their way from small dots into large
dots rather than the radiative recombination time of
excitons in a dot. It is evident that this time coincides in
the order of magnitude with the lifetime of excitons in
small dots. Because the lifetime values in dots of differ-
ent size are randomly distributed over a wide range
from τC to τT, the kinetic curve becomes nonexponential
in shape. The power law of decay observed in this work
is typical for decay processes characterized by a large
set of characteristic lifetimes and was observed previ-
ously for the recombination of excitons localized at
composition fluctuations in indirect-bandgap AlGaAs
solid solutions [13]. An increase in temperature leads to
JETP LETTERS      Vol. 77      No. 7      2003
an increase in the probability of exciton transfer
between coupled dots and, simultaneously, to a
decrease in the lifetime of excitons in small dots due to
thermal activation from the triplet state to the singlet
state. At high temperatures, when the condition kT > ∆
is fulfilled in small dots, the PL decay time decreases
down to the value of τC. The decrease in PL decay time

Fig. 4. Temperature dependences of (1) the duration of PL
decay down to an intensity comprising 2.5 × 10–3 of the ini-
tial value and (2) the PL integrated intensity of InAs/AlAs
quantum dots. Solid lines are guides to the eye.

Fig. 3. PL kinetics of InAs/AlAs quantum dots at various
temperatures (8, 150, and 300 K, curves 1–3, respectively).
Curves 2 and 3 were measured upon exciting PL by light
with a phonon energy (3.10 eV) larger than the bandgap of
the AlAs matrix. Curve 1 consists of three parts marked in
the figure with arrows. In section (a) measurements were
made by a streak camera, and PL was excited by light with
a photon energy (3.10 eV) larger than the bandgap width of
the AlAs matrix. In sections (b) and (c), PL was measured
using a system of time-correlated photon counting, and PL
was excited by light with a photon energy (1.82 eV) smaller
than the bandgap width of the AlAs matrix. The dashed
lines are guides to the eye.
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in the samples under study starts at temperatures
exceeding 50 K; hence, the magnitude of singlet–triplet
splitting must comprise at least several millielectron
volts. Using the theory developed in [14] for crystals of
Td symmetry without regard for the long-range part of
exchange interaction, we estimated the splitting ∆ in
small dots. Because InAs dots have a shape differing
from a spherical one considered in [14], in our calcula-
tions we used the radius of a sphere with a volume
equal to the volume of a real dot as the dot radius R. The
obtained splitting ∆ = 4.6 meV agrees well with our
experimental data.

The model of locally coupled quantum dots also
provides an explanation for the temperature depen-
dence of the PL line position. An increase in tempera-
ture results in an increase in the population of the opti-
cally active singlet state and, hence, in an increase in
the probability of exciton recombination in small dots.
This process leads to a redistribution of excitons among
dots of different size. The short-wavelength shift of the
PL line observed when the temperature increases in the
range 50–150 K is thus due to an increase in the fraction
of excitons recombining in the dots of smaller size. The
long-wavelength shift of the line observed when the
temperature increases above 150 K is due to a decrease
in the bandgap of InAs and AlAs [6].

Thus, the transient and steady-state PL of self-
assembled InAs quantum dots in an AlAs matrix has
been studied in this work. Anomalously long millisec-
ond nonexponential PL decay has been observed at low
temperatures. The duration of decay significantly
decreases as the temperature increases above 50 K and
reaches a value of several nanoseconds at 300 K. The
experimental results have been explained within the
model of locally coupled quantum dots. The long decay
at low temperatures is due to the singlet–triplet splitting
of exciton levels in small quantum dots.
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We discuss controversial results for the statistics of charge transport through coherent conductors. Two distri-
bution functions for the charge transmitted was obtained previously, one actually coincides with classical bino-
mial distribution, the other is different, and we call it here quantum binomial distribution. We show that high-
order charge correlators, determined by the either distribution functions, all can be measured in different setups.
The high-order current correlators, starting with the third order, reveal (missed in previous studies) special
oscillating frequency dependence on the scale of the inverted time flight from the obstacle to the measuring
point. Depending on setup, the oscillating terms give substantially different contributions. © 2003 MAIK
“Nauka/Interperiodica”.
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In last years, new direction has appeared in quantum
transport investigations—description of the statistics of
a charge transmitted through a quantum conductor. The
distribution functions are usually investigated for a
charge  transmitted during a large interval of time

through a certain cross-section of a conductor, and,
what is essential, all observables are calculated from
the first principles. Despite of the appreciable amount
of articles (see the review [1]) and obtained results,
some questions, in particular concerning the measure-
ment theory, still remain unclear. One of the problems
is that (in contrast to classical) the question arises in the
quantum case of how to define the observable which
should be calculated. Technically, this uncertainty is
connected with the noncommutativity of the current
operators at different times. As it appears, it is possible
to present several definitions for the distribution func-
tion (DF) and characteristic function (CF) which (a)
coincide in the classical case, (b) satisfy some general

principles (in particular, correlators  prove to be

real), although lead to different answers in quantum
case. It is possible to understand which definition is
“correct” only after analysis of a definite setup for (at
least gedanken) measurement.

In this paper, we consider several variants of mea-
surements and the corresponding CF definitions. We
will also comment the results obtained earlier. In the
first paper devoted to the microscopic description of the

¶ This article was submitted by the authors in English.
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distribution function [2], the following definition was
adopted:

(1)

(here, 〈…〉  denotes the ensemble averaging). This defi-
nition is the most direct generalization of the classical
definition; it differs only in the replacement of the
charge and current observables by the appropriate oper-
ators. Performing calculations, we considered large
time intervals at which the correlators  =

 are approximately equal to

(2)

where  is the irreducible current correlator of
the nth order at zero frequency limit (the irreducible
correlators satisfy the equation  =

).

The method of calculation used in [2] can be gener-
alized to the case of finite temperatures, and (for normal
single-channel conductors) we find

(3)
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where  =  + i ,
g = 2 is the factor taking into account spin degeneracy,
T is the transparency, and nL, R are the filling factors in
the left and right reservoirs, respectively. This distribu-
tion (at kBT = 0, eV ≠ 0) will be called quantum bino-
mial distribution. In the multichannel case, χ(λ) is the
product Πnχn(λ) of the characteristic functions χn(λ)
corresponding to the transmission eigenvalues Tn. The
distribution function (3) formally describes fractional
charge transport. In the indirect measurements of a
charge in the solid-state systems, the fractional charge
may, in principle, appear, for example, in the shot noise
under the conditions of fractional quantum Hall effect

[3]. In our case, the size “of a charge quantum” 2e
is determined by the eigenvalue of the current operator,
provided that it acts on the subspace of one-particle

excitations with the given energy e  = ± ,
where the normalized one-particle excitations |±〉 sat-

isfy the condition  = 0; see also [2]. If we
take into account the logarithmic, in time t0, corrections
to the irreducible correlators, then the exact charge
quantization, which follows from the discrete distribu-
tion function, will be replaced, apparently, by small
modulations in the continuous distribution function. If
we restrict ourselves to the corrections (occurring from
the vacuum fluctuations) to the pair correlator, then the
distribution function becomes

where P(0)(ne ) is the discrete distribution function
without logarithmic corrections, G is the conductance,
and ω is a characteristic frequency scale of the conduc-
tance dispersion.

Using Eq. (3), we find for the third-order correlator:

At small voltage (and for energy-independent trans-
parency T), the correlator is proportional to V3, and at
large V we get [2]

(4)

According to Eq. (2), the third-order current correlator
at zero frequency is

(5)
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Since it was not quite clear how one can measure quan-
tum binomial DF and correlators of the type given in
Eq. (4), it was suggested in [4] that a spin located near
a wire can be used as the counter of electrons passed
through it. Thus, it appears that the definition for CF
in  this case differs from (1) by the presence of time
ordering:

(6)

in this (and only in this) formula, the symbol T means

the usual time ordering, and  means the ordering in
the opposite direction.

It was found in [4, 5] (see also references in [1]) for
the third-order correlator of the transmitted charge that

(7)

As we see, the third-order correlators (4) and (7) are
essentially different. It would seem that there is nothing
unexpected in such a distinction, because definitions
(1) and (6) are different. However, for example, the
third-order charge correlator, according to both defini-
tions (1) and (6), actually contains the current correlator
at small frequencies; but such a current correlator can be
calculated with the help of the first definition (1) cor-
rectly in the zero-frequency limit (5), and it can be
checked independently using the same technique as was
used in [6] for the calculation of the pair correlator [7].
It appears that the dispersion of the third-order current
correlator at small frequencies (along with the differ-
ence in the definitions) leads to different answers for
the third-order correlators. Really, at frequencies ω !
eV/" and x1, 2, 3 > 0, we have

(8)

For x1 = x2 = x3 = x,

(9)

Formally, assuming that such a frequency dependence
is correct for all frequencies, we find for the correlators
in the time representation:
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where the symbol Sym means symmetrization in the
indices i ≠ j ≠ k;  ≡ t2 + 2x/vF,  = t1,  = t3 (if a real
frequency dependence is taken into account instead of
the δ functions, there should stand functions which
decay with characteristic times t ~ τ0,

1 but, for simplic-
ity, we will describe the case with δ functions). Substi-
tuting this expression into the expression for the third-
order charge correlator which follows from Eq. (6), we
get

(11)

and, integrating over times, we find for finite x the
answer (7) proportional to T(1 – T)(1 – 2T), which is
typical of the classical binomial distribution (the same
phenomenon takes place for other irreducible high-
order correlators).

This occurs because the terms in the Eq. (10) con-
taining δ functions depending on  do not make contri-
bution to the answer, because they are nonzero only
when, simultaneously, t3 > t2 and t1 > t2 and the integra-
tion volume in Eq. (11) does not cover this sector. Con-

sider, e.g., the contribution to the correlator 
from the term in Eq. (10) proportional to

(12)

From Eq. (12) it follows that the region where t1 ≈ t3 ≈
t2 + 2x/vF in Eq. (11) should give the leading contribu-
tion to the integrals. But from the requirement x > 0 it
follows that t3 > t2 and t1 > t2. The region defined by
these inequalities does not overlap with the integration

volume in Eq. (11); thus, contribution (12) to  is
zero. Similarly, it is possible to show that all terms pro-
portional to  in Eq. (10) do not make

contribution to  at x > 0.

One can say that, when the incident wave packet
first completely passes through the detector and, with a
time delay, a part of the wave packet reflected from the
barrier goes back through the detector, the specific
quantum interference disappears and the answer (7) is
true. But if the distance to the detector is small, the inci-
dent wave packet interferes with the reflected wave in
the measurement region, leading eventually to the
answer (4). So, Eq. (7) is true when the electron-flight
time from the scatterer to the spin of the detector situ-

1Characteristic time scale of the correlator decay can be estimated
as τ0 ~ "/eV. We will consider the time dependence of the correla-
tors in detail in a separate article.
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ated at the distance d from the wire and L from the scat-
terer is larger than the decay time τ0 of the correlators.
If these requirements are violated, the answer will be
different. In the calculations described in [4], although
it was formally assumed that the distance L is zero, the
limit was considered where L actually exceeded the
wave-packet size (which was also set equal zero).

For the case where the spin detector is located near
the scatterer x ! vFτ0 and close to the wire d ! vFτ0,

the answer for  is proportional to –T2(1 – T) and
it coincides with the answer (4) obtained from the quan-
tum distribution. Indeed, using the general expression
for the correlator (8) at x1, 2, 3 ! vFτ0 we get

(13)

Using this expression at ω ! eV/" and the definition

(11), we obtain the expression for  proportional

to –T2(1 – T), as well as in the calculation with the use
of CF (1).

The measurement with spin basically can be imple-
mented in practice with the help of muons, which can
be trapped near the conductor, and then the measure-
ment of the direction of their decay would give the
angle of their spin rotation in a magnetic field. As an
additional example of the measuring procedure that,
basically, can be implemented practically, we have ana-
lyzed the measurement of the irreducible charge corre-
lators with the help of an ammeter represented by a
semiclassical system (for example, an oscillatory cir-
cuit) weakly interacting with the current in a quantum
conductor. The ammeter state is characterized by the
magnitude φ. The interaction of the ammeter with a
quantum conductor is described by the interaction

Hamiltonian Hi = λφ , where λ is the interaction

constant,  is the current operator in a quantum con-

ductor, and  =  (we do not take into

account the retardation effects); thus, the area of inte-
gration is determined by some kernel f(x). Correlators
φ are expressed through the current correlators in a
quantum conductor as follows:

(14)

where the integration is performed along the usual
Keldysh contour, and κ(τ) is the ammeter susceptibility.
In the specific case where the ammeter represents an

oscillator, the equation of motion for φ is  +  +
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Ω2φ  = λI(t)/M; the susceptibility κ(τ) =

Θ(t)exp(−γt/2)sin( )/M , where  = .
The case γ ≈ 2Ω , γ ! 1/τ0 is the most interesting to us.
Then,

(15)

(16)

where  is the irreducible current correlator of
order n, defined by the quantum binomial distribution
[in Eq. (16), we neglected the contribution from the
own thermal ammeter noise].

Thus, by measuring irreducible correlators of coor-
dinate φ of the ammeter, it is possible to measure the
irreducible high-order current correlators in the zero-

frequency limit (in particular,  ∝  –T2(1 – T)).
Such measurements are possible also for less restrictive
requirements on the ammeter frequencies if the kernel
f(x) defines the area of an integration so that x ! vFτ0.
In the opposite limit, it is natural to expect “classical”

answers for the correlators (in particular,  ∝
T(1 – T)(1 – 2T)).
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