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A radical enhancement of four-wave mixing in hollow-core photonic-crystal fibers is experimentally demon-
strated. An enhancement ratio of about 800 relative to the regime of tight focusing is achieved for the four-wave
mixing process 3ω = 2ω + 2ω – ω, where ω and 2ω are the frequencies of fundamental radiation and the sec-
ond harmonic of picosecond Nd:YAG laser pulses. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Hw; 42.65.Wi; 42.81.Qb
Four-wave mixing (FWM) is one of the main classes
of nonlinear-optical processes [1]. Interactions of this
type are widely used for frequency conversion, control
of ultrashort pulses, and spectroscopic applications.
Waveguide regimes of laser-pulse propagation allow
the efficiency of FWM processes to be substantially
enhanced due to the radical increase in the length of
nonlinear-optical interaction [2]. In particular, planar
waveguides provide an unprecedented sensitivity level
of coherent anti-Stokes Raman scattering (CARS),
allowing the detection of the CARS signal from single
molecules [3]. The sensitivity of FWM spectroscopy of
the gas phase can be substantially improved through the
use of hollow waveguides [4–6]. The magnitude of
optical losses in air-guided modes of hollow fibers rap-
idly (as a–3) increases with a decrease in the inner
radius of the fiber a [7]. The FWM waveguide enhance-
ment factor in hollow fibers (shown by curve 1 in
Fig. 1) is thus physically limited, with its limiting value
being determined by the fiber core radius.

Hollow-core fibers with a microstructure or photo-
nic-crystal (two-dimensionally periodic) cladding [8]
allow the level of optical losses to be radically reduced
with respect to conventional hollow fibers. Air-guided
modes in such fibers are supported due to the high
reflectivity of the periodic structure in the fiber clad-
ding within the spectral ranges corresponding to photo-
nic band gaps [8, 9]. Hollow photonic-crystal fibers
thus offer a unique opportunity of implementing highly
efficient nonlinear-optical interactions of air-guided
modes with transverse sizes of several microns (curves
2 and 3 in Fig. 1). Pioneering experimental studies into
the nonlinear optics of microstructure fibers, carried out
by Philip Russell’s group at the University of Bath [10],
have shown that such fibers allow the threshold of stim-
ulated Raman scattering to be reduced to unprecedent-
edly low levels.

In this paper, we will experimentally demonstrate
the radical enhancement of FWM in hollow photonic-
crystal fibers. Using picosecond pulses of a Nd:YAG
0021-3640/03/7708- $24.00 © 20397
laser, we will investigate the FWM process 3ω = 2ω +
2ω – ω, where ω and 2ω are the frequencies of funda-
mental radiation and the second harmonic of Nd:YAG
laser radiation, and show that hollow photonic-crystal
fibers provide an 800-fold enhancement of this nonlin-
ear-optical process relative to the regime of tight focus-
ing.

Our FWM experiments were performed with hol-
low-core photonic-crystal fibers having an inner diam-
eter of about 14 µm and a period of the photonic-crystal
cladding equal to 5 µm (insets in Fig. 2). These fibers
were fabricated with the use of technology described in
detail elsewhere [11]. Transmission spectra of our hol-

Fig. 1. Waveguide enhancement factors for four-wave mix-
ing in (1) a standard hollow fiber with a solid cladding (ρ)
and (2, 3) a hollow microstructure fiber (µ) with an attenu-
ation coefficient α = 0.1 (2) and 0.01 cm–1 (3) as functions
of the inner radius of the fiber a. (4) The figure of merit η
for stimulated Raman scattering in a hollow microstructure
fiber with an attenuation coefficient α = 0.01 cm–1 as a func-
tion of the inner radius of the fiber a. Dotted line 5 corre-
sponds to the efficiency of FWM in the regime of tight
focusing. The radiation wavelength is 0.5 µm.
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Transmission spectra measured for hollow-core photonic-crystal fibers with different cross-section geometries (shown in the
insets). The period of the structure in the cladding is about 5 µm.
low-core photonic crystal fibers displayed characteris-
tic well-pronounced isolated peaks (Fig. 2). The origin
of these peaks is associated with the high reflectivity of
a periodically structured fiber cladding within photonic
band gaps, which substantially reduces radiation losses
in guided modes within narrow spectral ranges [8, 9].
Radiation with wavelengths lying away from photonic
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Fig. 3. Diagram of the four-wave mixing process 3ω = 2ω +
2ω – ω (top) and the transmission spectrum of a hollow-
core photonic-crystal fiber designed to simultaneously
transmit the two-color pump (at 1.06 and 0.53 µm) and the
FWM signal (bottom). The inset shows the transverse inten-
sity distribution of second-harmonic pump radiation in the
air-guided mode of the hollow-core photonic-crystal fiber.
band gaps of the cladding leaks from the hollow core.
Such leaky radiation modes are characterized by high
losses, giving virtually no contribution to the signal at
the output of the fiber. Since the peaks in transmission
spectra of hollow-core photonic-crystal fibers are, in
fact, maps of photonic band gaps of their two-dimen-
sionally periodic cladding, the spectra of air-guided
modes in such fibers can be tuned by changing the fiber
cladding structure (Fig. 2). Hollow-core photonic-crys-
tal fibers employed in our FWM experiments were
designed in such a way as to provide maximum trans-
mission simultaneously for the fundamental radiation
of a Nd:YAG laser and for its second and third harmon-
ics (the diagram of the FWM process, resulting in the
generation of a signal at the frequency of the third har-
monic, and the transmission spectrum of the fiber are
shown in Fig. 3). The magnitude of optical losses was
estimated as 0.09 cm–1 at a wavelength of 1.06 µm and
0.08 cm–1 at 0.532 µm for these fibers. The length of the
fiber was chosen equal to 9 cm, slightly less than the
length optimal for the FWM process, lFWM = ln3/α,
where α is the coefficient of optical losses, which is
assumed to be approximately the same for all the fre-
quencies involved in the FWM process. The expected
FWM waveguide enhancement ratio, as can be seen
from Fig. 1, may be as high as 800–1000 under these
conditions.

Our experimental setup was based on a picosecond
laser system, which generated two-color pump radia-
tion for the FWM process at wavelengths of 1.06 µm
(pump radiation with frequency ω) and 0.53 µm (pump
radiation with frequency 2ω). The picosecond laser
included a passively mode-locked Nd:YAG master
oscillator with negative-feedback-controlled cavity Q
factor, a single-pulse selection unit, and amplifying
stages [12]. Passive mode locking in the master oscilla-
JETP LETTERS      Vol. 77      No. 8      2003
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tor was implemented with the use of a saturable
absorber film, which was placed in front of the rear cav-
ity mirror. Negative feedback was introduced by insert-
ing an electro-optical switch controlled by a fast-
response photomultiplier inside the cavity. A similar
electro-optical switch was used to select a single pulse
from the train of pulses produced by the master oscilla-
tor. The energy of a single 30-ps laser pulse thus
selected ranged from 30 to 40 µJ. The single-pulse
selection unit also served as an optical decoupler, sup-
pressing the parasitic feedback between the amplifying
stages and the master oscillator and preventing radia-
tion reflected from optical elements of the amplification
system from influencing the build-up of laser pulse
trains in the master oscillator.

An amplified single pulse of 1.06-µm radiation is
then used to generate the second harmonic in a DKDP
crystal (Fig. 4). The second-harmonic signal is sepa-
rated from the fundamental beam with a dichroic mir-
ror. The optical path lengths of the fundamental and
second-harmonic pulses were matched with the use of
an optical delay line. These beams were then brought
together on a dichroic mirror and were coupled into a
hollow-core photonic-crystal fiber placed on a three-
dimensional translation stage (Fig. 4). The signal at the
frequency of the third harmonic of fundamental radia-
tion, 3ω, can be produced in a hollow-core photonic-
crystal fiber through both the 3ω = 2ω + 2ω – ω FWM
process and direct third-harmonic generation 3ω = ω +
ω + ω. Experiments performed with only the funda-
mental beam used as a pump have shown, however, that
direct third-harmonic generation is much less efficient
than two-color FWM.

Linearly polarized fundamental and second-har-
monic pulses of Nd:YAG laser radiation coupled into a
hollow photonic-crystal fiber excited the fundamental
waveguide modes. The inset to Fig. 3 shows a typical
intensity distribution of second-harmonic pump radia-
tion at the output of the fiber. The power of the FWM
signal produced in a hollow photonic-crystal fiber was
compared with the power of the FWM signal generated
by tightly focused pump beams with the same wave-
lengths and the same energies. The FWM waveguide
enhancement factor under the above-specified experi-
mental conditions was estimated at approximately 800.
This result qualitatively agrees with our theoretical
analysis (cf. curves 2 and 5 in Fig. 1). The FWM
waveguide enhancement factor is limited by optical
JETP LETTERS      Vol. 77      No. 8      2003
losses of photonic-crystal fibers. We can expect, based
on our calculations, that hollow-core photonic-crystal
fibers with the magnitude of optical losses reduced
down to 0.01 cm–1 could enhance FWM processes by
more than four orders of magnitude relative to the
regime of tightly focused pump beams (curve 3 in
Fig. 1).

The table compares the waveguide enhancement
factor of the FWM process 3ω = 2ω + 2ω – ω attainable
with a hollow-core photonic-crystal fiber with the
waveguide enhancement achieved for the same FWM
process in experiments with conventional, solid-clad-
ding hollow fibers [13] using Nd:YAG laser pulses with
the same durations (30 ps) and frequencies. This com-
parison shows that hollow-core photonic-crystal fibers
employed in this work allow the FWM waveguide
enhancement factor to be increased by a factor of more
than 50 as compared with solid-cladding hollow fibers.

Fig. 4. Experimental setup for the investigation of four-
wave mixing in a hollow-core photonic-crystal fiber.
Waveguide enhancement of four-wave mixing

a, µm L, cm µ Eω, µJ E2ω, µJ

Solid-cladding hollow fiber [13] 100 10 15 10 10

Hollow fiber with a photonic-crystal cladding 13 9 800 2 2

Note: a is the inner diameter of a hollow fiber; L is the fiber length; µ is the waveguide FWM enhancement relative to the regime of tight
focusing; Eω and E2ω are typical energies of the pump pulses with frequencies ω and 2ω generating a reliably detectable FWM
signal.
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The FWM signal can be reliably detected under condi-
tions of experiments described in this paper with micro-
joule picosecond pump pulses, i.e., at the level of pump
energies unprecedentedly low for off-resonance FWM
in the gas phase.

The radical enhancement of FWM processes in hol-
low-core photonic-crystal fibers demonstrated by our
experiments suggests new approaches for the nonlinear
optics of high-power ultrashort laser pulses, high-field
physics, and nonlinear spectroscopy. Hollow-core pho-
tonic-crystal fibers allow waveguide regimes of nonlin-
ear-optical interactions to be implemented for high-
power laser pulses that cannot be transmitted through
standard fibers without irreversibly damaging these
fibers. The group-velocity dispersion of gases filling
the hollow core of photonic-crystal fibers is much lower
than the group-velocity dispersion characteristic of
waveguide modes in conventional fibers. Hollow pho-
tonic-crystal fibers with a small core radius thus hold
much promise for the nonlinear-optical frequency con-
version of ultrashort laser pulses and nonlinear spec-
troscopy with the use of such pulses. Due to their capa-
bility to substantially enhance nonlinear-optical pro-
cesses and the possibility to tailor the dispersion of
guided modes by changing the fiber structure, hollow
photonic-crystal fibers are an attractive way to improve
the efficiency of ultrashort-pulse synthesis through
multiple Raman sideband generation, which was dem-
onstrated recently with the use of solid-cladding hollow
fibers [14]. Finally, the enhancement of FWM pro-
cesses in hollow photonic-crystal fibers makes it possi-
ble to radically improve the sensitivity of nonlinear-
optical spectroscopy of the gas phase and to loosen the
requirements on the energies of laser pulses in nonlin-
ear spectroscopy.

We are grateful to V.I. Beloglazov, N.B. Skibina,
and A.V. Shcherbakov for fabricating microstructure
fibers. Illuminating discussions with J.C. Knight,
P.St.J. Russell, and D.A. Sidorov-Biryukov are grate-
fully acknowledged. This study was supported in part
by the President of Russian Federation Grant no. 00-
15-99304, the Russian Foundation for Basic Research
(project nos. 03-02-16929 and 02-02-17098), the Volk-
swagen Foundation (project I/76 869), and the Euro-
pean Research Office of the US Army (Contract
No. N62558-02-M-6023).
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The temperature behavior of the 139La and 19F NMR spectra was studied for polycrystalline LaMn(O1 – xFx)3

with a partial substitution of fluorine for oxygen. The temperature dependences of the 139La and 19F NMR line
shapes were found to be substantially different. An appreciable broadening of the 19F NMR spectrum and a
fixed position of line maximum with lowering temperature is indicative of the presence of a short-range mag-
netic order in the paramagnetic temperature region (T > TN). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.-m; 76.60.Lz
At present, La1 – xAxMnO3 manganites (A is a biva-
lent alkali-earth element) are being extensively studied
in connection with the colossal magnetoresistance
effect. The undoped LaMnO3 compound is an A-type
antiferromagnet with the orthorhombic Pbnm structure
[1], in which, due to the presence of Mn3+ ions, the
orbital ordering coexists with the Jahn–Teller distor-
tions of MnO6 octahedra [2]. It has recently been dem-
onstrated [3] that the orbital order disappears at temper-
atures above 750 K, but the paramagnetic state is
retained. This is not quite understood within the frame-
work of the model suggested in [4], where it was
assumed that ferromagnetic ordering is possible in
weakly doped manganites in the absence of orbital
ordering.

The strong interaction between the orbital, lattice,
and spin degrees of freedom in manganites is the sub-
ject of wide discussion. One can expect that short-range
magnetic order exists in the undoped manganite in the
orbital-ordering region (140 K < T < 750 K). Indeed, an
analysis of the 139La NMR spectra of the ordered state
indicates that the induced hyperfine field at the site of
the lanthanum nucleus is Hint = 3.5 kOe [5], while Hint =
3.2 kOe in the paramagnetic region [6]. These values
are very close to each other, strongly arguing for the
short-range magnetic order in the undoped manganite
in the paramagnetic region; otherwise, the hyperfine
fields would differ by a value corresponding to the
dipolar contribution (~0.7 kOe). The NMR probe at the
oxygen sites is highly attractive for studying the local
features of this phenomenon. In this work, we report the
results of 19F and 139La NMR studies of a sample of flu-
orinated LaMn(O1 – xFx)3 manganite with x ~ 0.06.
0021-3640/03/7708- $24.00 © 0401
To synthesize a ceramic sample of LaMnO3, solu-
tions of La(NO3)3 and Mn(NO3)2 nitrates were mixed in
a given proportion, ashless filters were impregnated
with the resulting solution, dried, and burned out. The
residue was calcined for 2 h at 700°C, then ground to
powder and pressed into pellets. Samples were sintered
first at 1200°C for 12 h and then at 1400°C for 14 h. The
oxygen concentration was determined by the iodomet-
ric method [7]. The fluorination of LaMnO3 was per-
formed at 250° for 15 h in a nitrogen atmosphere in a
copper vial with a fixed amount of XeF2. X-ray certifi-
cation showed that the sample was single-phase. The
fluorine concentration was determined by the potentio-
metric method with a LaF3 electrode [8]. The resulting
fluorine concentration in LaMn(O1 – xFx)3 was found to
be x = 0.06(1).

The EPR data indicate the presence of Mn2+ ions in
the fluorinated sample. NMR measurements of the
transverse relaxation times for the 19F and 139La nuclei
showed that the temperature behavior of this quantity is
similar for both of them in the paramagnetic region.
These measurements unambiguously evidence the
presence of fluorine ions in the oxygen sublattice of the
fluorinated manganite.

The 139La and 19F NMR spectra were recorded in
fields of 9.123 and 2.1139 T, respectively, on a pulsed
phase-coherence NMR spectrometer using a π/2–τ–
π/2-echo pulse sequence and the Fourier transform of a
half of echo signal. The common spectrum was
obtained by tuning the transceiving line with a discrete
frequency step and summation of the individual Fourier
subspectra.

A typical 139La NMR spectrum of the sample stud-
ied is shown in Fig. 1. Taking into account the interac-
2003 MAIK “Nauka/Interperiodica”
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tion of the 139La (I = 7/2) quadrupole moment with the
electric field gradient (EFG) [9], one can expect seven
lines in the NMR spectrum. Three of them—the central
transition (1/2  –1/2) and two satellite lines
(3/2  1/2 and –3/2  –1/2)—are shown in Fig. 1.
The characteristic flat shape of the satellite lines (with-
out well-defined sharp maxima) is evidence that the
EFG asymmetry parameter η = (VXX – VYY)/VZZ is large
(VXX, VYY , and VZZ are the EFG tensor components). The
calculation of the 139La line shape with allowance for
the interaction between the nuclear quadrupole moment
and the EFG in the second order of the perturbation the-
ory and for the magnetic hyperfine interaction in the
first order of the perturbation theory showed (Fig. 1)
that the quadrupole frequency νQ = 3.7(4) and the
asymmetry parameter η = 0.92(4) are very close to the
data obtained for the undoped LaMnO3 [5, 6, 10]. The
line shift is isotropic (KX = KY = KZ = K), and its value
at room temperature is close to the shift for LaMnO3
[6].

It follows from these data that the fluorinated man-
ganite is structurally and magnetically close to the
undoped manganite and that the introduced fluorine
atoms can be considered in the low-concentration
approximation.

With lowering temperature, the maximum of the
central 139La NMR line undergoes a shift to higher fre-
quencies (Fig. 2), while its width, which is mainly
determined by the second-order quadrupolar effects,
increases only slightly. An unusual decrease in the sig-
nal-to-noise ratio with lowering temperature is caused
by a sizable shortening of the spin–spin relaxation time
as the ordering temperature TN = 140 K is approached.
With lowering temperature, the line shift increases fol-

     
                           

Fig. 1.
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lowing the Curie–Weiss law and reproduces the behav-
ior of the static magnetic susceptibility χ, K =
(χHint)/µB, similarly to the behavior described previ-
ously for LaMnO3 [6, 11].

The 19F NMR spectra are shown in Fig. 3. The line
width strongly increases with lowering temperature,
but the line maximum does not change its position
(inset in Fig. 3), although one would expect that the

Fig. 2. Typical 139La NMR spectra (central 1/2  –1/2
transition) in an external field of 9.123 T for various temper-
atures. The temperature dependence of the inverse of isotro-
pic NMR line shift 1/K is shown in the inset.
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Fig. 4. (a) Schematic fragment of the LaMnO3 structure. (b) Temperature dependences of the line shifts for the nonequivalent flu-

orine positions. A 19F NMR spectrum (T = 102 K) obtained by the superposition of two Gaussian lines is shown in the inset.
temperature behavior in the paramagnetic temperature
range is the same as for 139La.

Such a sharp distinction between the behaviors of
the lanthanum and fluorine lines can be explained in the
following way. In the ordered state, one can expect the
presence of two nonequivalent oxygen positions in
LaMnO3: two atoms occupy the vertices of the MnO6
octahedron (O1 in Fig. 4a) and are situated approxi-
mately mid between the planes with the oppositely
directed spins, and four are situated almost in the ab
plane (O2 in Fig. 4a). Assume that fluorine occupies all
oxygen positions with equal probability. At high tem-
peratures (T > ~500 K), the exchange interaction is
small compared to kBT and the magnetic moments of
two sublattices are aligned with an external magnetic
field. As the temperature goes down, the exchange
interaction becomes comparable to kBT, as a result of
which the ferromagnetic interaction between spins in
the ab plane and the antiferromagnetic interaction
along the c axis may establish short-range order in
microclusters with sizes on the order of several lattice
parameters. In this case, two lines would appear in the
19F spectrum above the Néel temperature. Their max-
ima may shift in opposite directions as the temperature
lowers, thereby broadening the overall NMR spectrum.

Similar behavior of the 19F NMR spectrum was
observed in an RbNiF3 single crystal [12, 13], whose
magnetic structure—the presence of two magnetic sub-
lattices with the oppositely directed spins—is very
close to our case. The fluorine NMR spectrum in that
single crystal showed two lines, which shifted in oppo-
site directions upon lowering temperature in the para-
magnetic region, reflecting the behavior of local mag-
netizations for each of the magnetically nonequivalent
fluorine positions.
JETP LETTERS      Vol. 77      No. 8      2003
In our case, the situation is more complicated; the
MnO6 octahedron is distorted, so that one can expect
the presence of even three crystallographically non-
equivalent oxygen positions. Moreover, the octahedron
is turned about the (110) axis, and the atoms of O2 oxy-
gen are offset from the ab plane. At the same time, we
deal with a polycrystalline sample, in which the crystal-
lographic axes are randomly distributed. For these rea-
sons, one should expect a much more complicated 19F
spectrum, rather than the two separate lines, as in [12,
13].

Nevertheless, we attempted to represent our experi-
mental 19F spectra as a superposition of two Gaussian
lines (Fig. 4b). It turned out that the intensity ratio of
these lines is close to two, in compliance with the pre-
viously suggested simple model. Moreover, the shift of
the less intense line (O1 position) exhibits exactly the
same temperature dependence as the lanthanum shift in
the same sample. This is in agreement with the fact that
the lanthanum atoms in our manganite are situated
between two planes with the oppositely directed spins,
as also are the O1 oxygen atoms.

Thus, it has been shown in this work that the anom-
alous evolution of the 19F NMR line shape in the para-
magnetic temperature range of the manganite sample
considered can be due to the presence of a short-range
order that coexists with the orbital ordering in this tem-
perature range and precedes the transition to the antifer-
romagnetic state with long-range order.

We are grateful to S.V. Verkhovskiœ for helpful dis-
cussion of results. This work was supported by the Rus-
sian Foundation for Basic Research, project nos. 99-02-
16975 and 02-02-16357a.
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Modeling of Electronic Density of States for Single-Wall Carbon 
and Boron Nitride Nanotubes
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The electronic density of states is calculated for all possible geometric configurations of single-wall carbon and
boron nitride nanotubes. The calculation is based on the numerical differentiation of the two-dimensional dis-
persion relations for graphite and hexagonal boron nitride. The differentiation is performed for all allowed val-
ues of the wave vector using the π-electron approximation. For the particular carbon nanotubes chosen as exam-
ples, a good agreement is demonstrated between the calculated values of energy spacing of the symmetric van
Hove singularities in the density of states and the experimental data obtained from the resonance Raman scat-
tering study. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.20.Tx; 78.30.Na
INTRODUCTION

The new nanostructured material called single-wall
carbon nanotubes possesses many unique properties
that attract the attention of researchers. A nanotube is a
graphite monolayer rolled up so as to form a cylinder
with a diameter of 10–20 Å [1]. The appearance of cir-
cular periodicity, which is a multiple of the cylinder cir-
cumference, gives rise to additional boundary condi-
tions for the quantum dimension of the electronic
states. As a result, the electronic density of states of sin-
gle-wall carbon nanotubes radically differs from that of
most other materials [2]. The electronic states in nano-
tubes have a pronounced peak structure, which can be
experimentally observed by the methods of tunneling
spectroscopy [3], optical absorption [4], and resonance
Raman scattering [5–7]. The latter method allows one
to obtain the data on the electronic structure of the
material by observing the shift of the resonance
response from one nanotube to another when the wave-
length (energy) of the exciting laser radiation is varied.
In this case, the diameters of the nanotubes involved in
the resonance Raman scattering process are estimated
from the frequencies of the corresponding “breathing”
modes [5–7]. Each nanotube is characterized by one
breathing mode, which represents radial vibrations of
the nanotube as a whole.

For the determination of not only the diameter but
also the chirality (the torsion angle) of a given nanotube
from the Raman spectra, one needs data on the elec-
tronic density of states for this tube [6]. The data
reported in the literature refer to few specific geometric
configurations of carbon nanotubes [8–10] and hexago-
nal boron nitride (BN) nanotubes [11–14]. For nano-
tubes formed of other layered materials (MoS2, WS2,
0021-3640/03/7708- $24.00 © 20405
MgB2 [15, 16]), data on the density of states are virtu-
ally absent.

In view of this situation, it was necessary to develop
a computer program for calculating the electronic den-
sity of states for any type of single-wall carbon and BN
nanotube. One of the requirements for the program was
its generality; being partially modified, it should pro-
vide similar calculations for nanotubes formed of any
layered material. The results obtained by calculating
the parameters of electronic structure for particular car-
bon nanotubes were experimentally verified by reso-
nance Raman scattering.

1. COMPUTATIONAL ALGORITHM 
FOR THE ELECTRONIC DENSITY OF STATES

1.1. Single-Wall Carbon Nanotubes

Dependences of the electronic density of states on
energy for single-wall carbon nanotubes were calcu-
lated by numerically differentiating the dispersion rela-
tion for a graphite plane by the Monte Carlo method
with allowance for the boundary conditions obtained
for the plane rolled up into a nanosized cylinder. As a
dispersion relation, we used the dependence [9]

(1)

where Kx and Ky are the x and y components of the wave
vector K with the origin at the center of the Brillouin
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zone, γ0 = 2.95 eV is the overlap energy for the C–C
bond, and a0 = 0.246 nm is the graphite lattice constant.

The numerical differentiation should be performed
for all allowed values of the wave vector within the first
Brillouin zone. In the case of single-wall nanotubes,
additional boundary conditions come into play. As a
result, not all values of the wave vector K are allowed.
Limitations appear because of rolling up the graphite
plane into a cylinder with a diameter of about 10 Å; i.e.,
they are a consequence of the tube nanodimension.

The axes of the Cartesian coordinate system are
chosen in such a way that the wave vector K is quan-
tized along one axis and can take arbitrary continuous
values along the other [8–10]. The direction of the
quantized axis and the quantum size are different for
different types of nanotubes. Hence, the resulting den-
sity of states widely varies for nanotubes of different
geometry. Figure 1 shows the allowed values of the
wave vector within the first Brillouin zone for (5,5) and
(9,0) single-wall carbon nanotubes (Figs. 1a and 1b,
respectively).

The allowed values of the wave vector are deter-
mined as follows [9]: we introduce a Cartesian coordi-
nate system X 'Y ', which has the origin at the point K of
the first Brillouin zone and is rotated clockwise with
respect to the initial coordinate system (Fig. 1) through
an angle three times as great as the nanotube chirality
angle. The latter is expressed as

(2)

where n and m are the nanotube parameters determin-
ing the width of the graphite plane strip and the way it
is rolled up to form the nanotube (according to the
adopted classification [1]).

In the new coordinate system X 'Y ', the projection of
the wave vector on the Y ' axis takes any value, while the

α π
6
---

1

3
------- n m–

n m+
-------------– 

  ,arctan=

Fig. 1. Allowed values of the wave vector K for (a) (5,5)
armchair nanotubes and (b) (9,0) zigzag nanotubes. The
characteristic points of the Brillouin zone are denoted as K',
M', K, and M.
projection on the X ' axis takes only the quantized val-
ues

(3)

where Q is an integer and D is the nanotube diameter in
nanometers. The diameter of the nanotube as a function
of its parameters n and m is expressed as

(4)

By performing the inverse transformation of coordi-
nates from the rotated coordinate system to the system
used in Eq. (1), we obtain all allowed values of the wave
vector K.

Using the formulas presented above, it is possible to
perform the numerical differentiation of the dispersion
relation with allowance for the boundary conditions.
For the practical realization of the problem, we devel-
oped a computer program that provides the calculation
of the density of states for any type of single-wall car-
bon nanotubes (the nanotube type should be preset
before the calculation). The numerical differentiation
was performed by the Monte Carlo method. Depending
on the required accuracy of calculation, the execution
time varied from 60 s to 1 h. The results of the calcula-
tion were entered into the Microcal Origin package.

1.2 Single-Wall Boron Nitride Nanotubes

Many materials that differ from carbon but have a
layered structure (hexagonal BN, MoS2, and WS2) may
exist in the form of nanotubes [14–16]. However, to
date, single-wall nanotubes have been synthesized only
from BN [14]. To understand their physical properties,
one has to know their electronic structure. For this pur-
pose, we modified our computer program so as to cal-
culate the density of states for BN nanotubes.

We derived a formula describing the two-dimen-
sional dispersion relation for hexagonal BN. In the lit-
erature [17], the dispersion curves were presented for
some specific directions of the Brillouin zone. How-
ever, for the numerical differentiation, it is necessary to
know the energy value for any allowed wave vector K.
Hence, it is necessary to have a formula (analogous to
Eq. (1)) that describes the dispersion relation for a two-
dimensional sheet of hexagonal BN in the π-electron
approximation. To obtain such a dependence, we per-
formed the following calculations (similar to those used
in [8] for the derivation of Eq. (1)). The Hamiltonian for
a graphite plane has the form [9]
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where a0 = ac–c, ac–c is the C–C bond length, and ε2p

is the 2p orbital energy. To derive Eq. (1), it was neces-
sary to solve the equation det(H – ES) = 0, where

is the overlap integral matrix and E is the energy. To
derive the desired formula for a BN plane, it is neces-
sary to introduce some modifications. In the case of
graphite, we deal with a single sort of atom, i.e., carbon.
A boron nitride plane contains different sorts of atoms
(boron and nitrogen). Therefore, the constants lying on
the diagonal of the Hamiltonian H must be different;
i.e., the Hamiltonian takes the form

(5)

where ε2p1 and ε2p2 are different constants. Performing
the calculations similar to those in the derivation of
Eq. (1) with the use of Hamiltonian (5), we arrive at the
formula for the dispersion surface:

(6)

where , , and  ≡ ε2p1 – ε2p2 are constants.

To determine the constants, we used the dispersion
curve given for crystalline hexagonal BN in [17]. The
values of the constants were optimized to achieve the
closest approximation to the dispersion curves for a π
electron in the given directions. As a result, we obtained
the values

 = 0.249 nm,  = 2.85 eV,  = 4.3 eV.

The computer program described above was modi-
fied using dispersion relation (6) and applied for calcu-
lating the density of states of BN nanotubes of an arbi-
trary geometry. The selection rules for the allowed
wave vectors were taken to be the same as in the case of
carbon nanotubes.

A similar calculation can also be performed for nan-
otubes formed from other layered materials, on condi-
tion that the corresponding two-dimensional dispersion
relation is preset.
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2. RESULTS

2.1. Modeling of the Electronic Density of States 
for Single-Wall Carbon Nanotubes 

of Different Geometry

Figure 2 presents the dependences of the density of
states on the diameter for nanotubes of the zigzag
(Fig. 2a) and armchair (Fig. 2b) types and for nano-
tubes with an arbitrary chirality (Fig. 2c). The depen-
dences were obtained using the computer program
described above. The energy spacings of the first, sec-
ond, third, …, ith symmetric van Hove singularities [1]
can by convention be considered as energy pseudogaps
E11, E22, E33, …, Eii (Fig. 3). From Fig. 2, one can see

Fig. 2. Calculated densities of states for single-wall carbon
nanotubes of different geometries. The plots demonstrate
the monotonic dependence of the bandgap on the tube diam-
eter for nanotubes of the (a) zigzag and (b) armchair types
and (c) for nanotubes with an arbitrary chirality.
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Å
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that, as the nanotube diameter increases, the calculated
gap width Eii decreases. The dependence obtained from
the calculation coincides, to a high accuracy, with the
data reported in [8, 9]. This coincidence testifies to the
correct operation of the program.

The second fact in support of the correctness of our
calculations is that the jumplike increase in the
pseudogap width Eii with the change from semicon-

Fig. 3. Energy diagram illustrating the excitation of the res-
onance Raman scattering for nanotubes with different diam-
eters; Eii is the energy spacing of the ith symmetric (with
respect to the Fermi level Ef) van Hove singularities and
Elaser is the laser photon energy inducing the Raman scatter-
ing.

Fig. 4. Breathing mode region in the Raman spectrum of
single-wall carbon nanotubes (obtained by laser ablation)
for different wavelengths of the exciting laser radiation. The
dotted line represents the experimental data, and the thin
lines, the decomposition of the breathing mode spectrum
into Lorentz modes; the thick line is the approximation of
the experimental data by the summation of the Lorentz
modes.

Å

Å

ducting to metallic tubes is reproduced. It is well
known that, for tubes with a metallic conductivity, the
value of Eii is much greater than for semiconducting
tubes of the same diameter. Metallic tubes include all
armchair tubes and all arbitrary tubes for which the dif-
ference (m – n) is a multiple of three [1]. The informa-
tion on the nanotube conductivity type is not introduced
into the computer program, and the input data include
only the geometric parameters of nanotubes. Neverthe-
less, as the tube diameter monotonically varies, the cal-
culated value of Eii does increase in a jumplike manner
for the tube geometries corresponding to metallic con-
ductivity.

2.2. Experimental Verification of the Calculated 
Electronic Density of States for Specific Carbon 

Nanotubes by the Resonance Raman 
Scattering Method

For experimental verification of the calculated data
obtained for the density of states in particular carbon
nanotubes, we used the resonance Raman scattering
method. The idea of the experiment consisted in the
comparison between the real resonance excitation
energy Elaser (laser wavelength) and its calculated value
for those nanotubes whose breathing modes dominate
the corresponding Raman spectrum. The confidence
criterion for the calculation was formulated as the exist-
ence of no less than one geometric nanotube configura-
tion with the diameter corresponding to the frequency
of the breathing mode, for which one of the energy
pseudogaps Eii coincides with Elaser (Fig. 3).

Figure 4 presents the Raman spectra obtained for
single-wall carbon nanotubes in the breathing mode
region with different energies of the exciting laser radi-
ation. The tubes were synthesized by laser ablation.
One can see that, as the laser energy varies (from 2.4 eV
at λ = 514.5 nm to 2.5 eV at λ = 488.0 nm), the profile
of the breathing modes in the Raman spectrum
changes; intensity is redistributed between peaks corre-
sponding to different frequencies, and peaks either
appear or disappear. One can conclude that, for each
specific laser energy, the modes of those tubes domi-
nate the spectrum, for which the resonance excitation
conditions are satisfied; i.e., one of the energy spacings
Eii becomes equal to the photon energy of the laser radi-
ation (Fig. 3). When the energy of the exciting radiation
changes, the Raman resonance response is shifted to
nanotubes with a different diameter.

The information on the true diameter of the “reso-
nant” nanotubes can be obtained from the spectral char-
acteristics of the breathing modes that dominate the
Raman spectrum. Modes with different frequencies
correspond to nanotubes of different diameters. In the
general case, the breathing mode frequency in the
JETP LETTERS      Vol. 77      No. 8      2003
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Raman spectrum depends on the nanotube diameter
according to the relation [18]

(7)

where ω is the frequency (cm–1), d is the nanotube
diameter (nm), and C1 and C2 are constants.

According to [18–20], the constant C2 is determined
by the van der Waals interactions in the beam, and the
choice of the constant C1 is determined by the disper-
sion curve [21]. For nanotubes obtained by laser abla-
tion, these constants are C1 = 234 and C2 = 10 cm–1.

According to Eq. (7), in the case shown in Fig. 4, the
resonance conditions sequentially fall on nanotubes
with diameters of about 13.2 Å (the breathing mode fre-

ω C1/d C2,+=

Table 1.  Excitation energy of 2.4 eV

Nanotube type Diameter, Å Energy spacing 
E33, eV

(12,7) 13.04 2.3

(13,6) 13.18 2.6

(16,2) 13.39 2.6

(17,0) 13.32 2.7

Table 2.  Excitation energy of 2.5 eV

Nanotube type Diameter, Å Energy spacing 
E33, eV

(11,7) 12.31 2.3

(13,5) 12.61 2.4

(14,3) 12.31 2.5

(15,2) 12.61 2.6

(16,0) 12.54 2.4

Fig. 5. Calculated electronic density of states for (10,10)
single-wall BN nanotubes.
JETP LETTERS      Vol. 77      No. 8      2003
quency is 186 cm–1) and 12.5 Å (197 cm–1). Tables 1
and 2 show the values of energy spacing E33 for nano-
tubes of different configurations with diameters of
about 13.2 and 12.5 Å, which provide the closest coin-
cidence with the laser radiation energy.

From the tables, one can see that a (12,7) nanotube
has a diameter close to that calculated by Eq. (7) for a
nanotube excited by a wavelength of 514.5 nm, as well
as an energy spacing close to the laser photon energy at
this wavelength (2.4 eV). For the radiation with a wave-
length of 488 nm (2.5 eV), the same properties are char-
acteristic of a (14,3) nanotube (Fig. 3).

Thus, the experiment showed that, for two particular
nanotubes, namely, (12,7) and (14,3), the calculated
parameters of the density of states adequately represent
the shift of the resonance Raman response from one
nanotube to another when the wavelength of the excit-
ing radiation changes from 514.5 to 488.0 nm.

2.3. Modeling of the Electronic Density of States 
for Single-Wall Boron Nitride Nanotubes of Different 

Geometries

The modeling of the electronic structure was also
performed for BN nanotubes of all possible geometric
configurations. As an example, in Fig. 5 we present the
density of states for (10,10) single-wall BN nanotubes.
One can see that, for these tubes, the band gap is much
greater than for carbon nanotubes. This result holds for
all geometries of BN nanotubes, signifying that none of
them is metallic.

CONCLUSIONS

Modeling of the electronic density of states was per-
formed for single-wall carbon and BN nanotubes of all
allowed geometries. The calculations are based on the
use of the original computer program that performs
numerical differentiation by the Monte Carlo method
for two-dimensional dispersion relations for graphite
and hexagonal boron nitride. The differentiation is per-
formed for all allowed values of the wave vector using
the π-electron approximation.

The estimates of the third pseudogaps E33 that occur
in the densities of states of (12,7) and (14,3) chiral nan-
otubes are used as an example to demonstrate the good
agreement between the calculated and experimental
data.

The experimental energy values were obtained from
the resonance effect observed in the Raman spectra of
single-wall carbon nanotubes. The effect consisted in
the change in the frequency of the dominant breathing
mode when the wavelength (energy) of the exciting
laser radiation was changed. The frequencies of the
dominant breathing modes were determined. On the
basis of these values, the diameters of nanotubes satis-
fying the resonance Raman scattering conditions were
determined. The electronic densities of states were cal-
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culated for all possible geometries of nanotubes with
these diameters. The possibility of choosing the nano-
tube geometry with one of the pseudogaps correspond-
ing to the laser excitation energy is indicated.

A computer program that allows one to calculate the
density of states for BN nanotubes of all possible con-
figurations is developed. A semiempirical formula
describing the dispersion surface for hexagonal BN is
derived. The absence of BN nanotube configurations
with metallic conductivity is demonstrated. The pro-
gram is shown to be suitable for calculating the density
of states in nanotubes formed from other layered mate-
rials on the condition that the corresponding two-
dimensional dispersion relation is introduced.
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Germanium nanocrystals were formed in a GeO2 film during the process of germanium monoxide gas-phase
deposition onto a sapphire substrate and studied by photoluminescence (PL) and Raman scattering spectros-
copy. A PL peak in this heterosystem was observed in the visible region at room temperature. The sizes of Ge
nanocrystals were estimated from the position of a Raman peak corresponding to scattering by localized optical
phonons in germanium. The PL peak position calculated with allowance for the electron and hole size quanti-
zation in Ge nanocrystals coincides well with the experimentally observed position of this peak. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 78.67.Pt; 78.55.-m; 78.30.-j
Interest in studying germanium and silicon nano-
crystals in dielectrics is caused by the possible use of
these structures in optoelectronic devices. The compat-
ibility of the approaches used for their preparation with
traditional “silicon” technology, as well as the possibil-
ity of modifying their optical properties caused by
quantum size effects (bandgap engineering), are partic-
ularly attractive. The optical properties of the silicon
and germanium nanocrystals prepared by various tech-
niques in silicon dioxide and silicon nitride films were
investigated earlier in [1–6]. The optical properties of
germanium nanocrystals in GeO2 have almost not been
investigated to date. In this work, they were studied
using photoluminescence (PL), Raman scattering, and
light transmission methods. The express and nonde-
structive Raman scattering method, in conjunction with
calculations [7, 8], is quite informative in the study of
nanoobjects. The position of the Raman peak corre-
sponding to the scattering from optical phonons is
determined by the nanocrystal size, and it can be deter-
mined by the convolution of effective density of states
[9].

Experimental samples were prepared by germanium
monoxide gas-phase deposition onto a sapphire sub-
strate at a temperature of 500°C. The deposition tech-
nique is described in detail in [10]. It was shown by
ellipsometry, electron microscopy, and IR spectroscopy
that the deposited film represented a heterosystem con-
sisting of Ge and GeO2 [10]. According to the ellipso-
metric data, the film was 0.33 µm in thickness. It was
kept in the open form and was not coated with layers
protecting from the atmosphere. The PL was excited by
a pulsed N2 laser (λ = 337 nm), and the spectra were
0021-3640/03/7708- $24.00 © 20411
recorded using a SDL-1 spectrometer with a FEU-79
photomultiplier as a detector. The transmission spectra
were recorded by a SF-20 double-beam spectrometer.
The Raman spectra were excited by a 514.5-nm
(2.41 eV) Ar laser line and recorded at room tempera-
ture on an automated setup based on a DFS-52 spec-
trometer. The quasi-backscattering  geometry
was used, for which the polarization planes of the inci-
dent and scattered light were mutually perpendicular.

The transmission spectrum of the heterosystem “Ge
nanocrystals:GeO2/Al2O3” is given in Fig. 1a. After
approximating the transmission spectra with allowance
for light interference in the structure, it was found that
the film thickness was 0.33 µm, which coincided with
the ellipsometric data, and the absorption edge was cal-
culated for the film. One can see from Fig. 1a that the
absorption edge (≈1.8 eV) strongly differs from the ger-
manium bandgap (0.67 eV) [11]. The optical gap in
GeO2 equals ~5.5 eV [12], whence it follows that the
absorption is due to the germanium inclusions. Such a
strong difference can be caused by the quantum size
effects in germanium nanocrystals. Since the barriers
for electrons and holes in the germanium surrounded by
GeO2 are equal, respectively, to approximately 2 and
3 eV [12], the object under study is a quantum dot of
type I. Because of the strong electron and hole localiza-
tion and the removal of momentum selection rule, one
can assume that the radiative electron–hole recombina-
tion becomes more efficient. Indeed, a peak in the red–
yellow spectral range is seen in the PL spectrum at
room temperature (Fig. 1b). No PL from the sapphire
substrate was observed in this range. The large peak
width and asymmetry are probably caused by the scat-
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ter of nanocrystal sizes. The PL maximum occurs at
2.09 eV, and, hence, the shift ∆E from the germanium
bandgap is 1.42 eV.

To estimate the average size of germanium nanoc-
rystals, the Raman spectrum of the structure was stud-
ied in the optical range (Fig. 2). The nanocrystal peak is
shifted to lower frequencies from its position in a bulk
germanium. A weak peak due to the scattering by the
amorphous germanium clusters is also seen. Since the
momentum selection rules are removed in the finite-
size nanocrystals, vibrational modes with nonzero
wavevectors are also seen in their Raman spectra. If the
nanocrystal shape is close to a sphere, the Raman inten-
sity can be written as [9]

(1)

where n(ω) is the Bose–Einstein occupation number,
ωi(q) is the dispersion of the ith phonon branch, Γ is the
line width, r0 is the nanocrystal radius, and q is the
wavevector. The dispersion curves for germanium were
approximated by harmonic functions fitted to the exper-
imentally measured dispersion curves [13]. From com-
parison of the experimental and calculated data, it is

I ω( ) A=

× n ωi q( )( ) 1+[ ]
4πq2 q2r0

2/4–( )exp

ω ωi q( )–( )2 Γ /2( )2+
--------------------------------------------------- q,d

0

1

∫
i 1=

6

∑

Fig. 1. (a) The experimental and calculated transmission
spectra of a GeO2 film with germanium nanocrystals, and
(b) the PL spectra of this structure (T = 300 K).
seen that the average radius of the germanium nanoc-
rystals is 1.3 nm. The calculated spectrum is also shown
in Fig. 2. Our estimates are in compliance with the fre-
quencies calculated for the localized optical phonons in
the crystalline germanium clusters using a microscopic
valence-force model [14]. Note that, for the molar ratio
Ge : GeO2 = 1 : 1, which follows from the procedure of
heterofilm preparation, and considering that the densi-
ties of Ge and amorphous GeO2 are different, the aver-
age separation between the spherical nanoparticles in
the oxide is always equal to ~1/2 of their diameter, i.e.,
to ~1.3 nm in our case. That is, for a diameter of ~3 nm,
the nanocrystal density in the layer cross section is
equal to ~1013 cm–2.

The energies of localized electron and hole states in
the germanium nanocrystals were also calculated. The
valence band maximum in germanium occurs at the Γ
point. The effective heavy-hole mass mhh in germanium
is equal to 0.33m0, and the mass of light holes mlh is
0.042m0. The conduction band minimum lies along the
(111) direction, with me⊥  = 0.082m0 and me|| = 1.58m0,
where m0 is the electron mass [11].

Fig. 2. Experimental and calculated Raman scattering spec-
tra of a GeO2 film with germanium nanocrystals. The spec-
trum of bulk germanium is shown for comparison.
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The energy levels in a spherically symmetric well
with radius r0 and a barrier height U0 were found in the
following way [15]. After the separation of variables,
one arrives at the following equation for the radial wave
function:

(2)

We are interested in the ground state, for which the
orbital angular momentum L is zero and the equation
becomes one-dimensional with the potential well U(r).
For an infinite potential, it is solved exactly to give for
a finite solution inside the well at r = 0

(3)

Being localized, the states with wavevectors both along
and transverse to the (111) direction will mix together;
for this reason, following the approach described in
[16], we took the electron effective mass in the form
me = 3me⊥ me||/(2me|| + me⊥ ), so that me = 0.123. The hole
level was calculated for heavy holes with mhh = 0.33
[11]. Then, if the energy is measured in electron-volts
and the well radius in nanometers, one has

(4)

The solution for a finite barrier was found by match-
ing the wave function and its derivative at the well
boundary (mwell and mbar are the effective masses in the
well and barrier, respectively):

(5)

The corresponding equations were solved numeri-
cally both without and with taking account of the differ-
ences in electron and hole masses inside the well and in
the barrier. Although the electron and hole masses in
GeO2 are unknown, we considered GeO2 a high-
energy-gap material and assumed, as in [16], that the
carrier masses are close to the free-electron mass. The
computational results are shown in Fig. 3. One can see
that, for the finite electron and hole barriers, the calcu-
lated optical transition energy of a germanium nanoc-
rystal with a radius of 1.3 nm (Raman scattering data)
coincides with the position of the PL peak.

Let us touch some aspects of bandgap engineering
in a heterosystem “quantum dots in a dielectric matrix.”
The technology of a film heterosystem Ge:GeO2 allows
one to vary its optical properties in various ways,
among which are

(1) the modification of Ge nanocrystal sizes by vary-
ing temperature and germanium monoxide condensa-
tion rate during the course of synthesis;

1
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(2) a controlled increase in the sizes of Ge nanocrys-
tals and barrier width between them (without changing
the Ge : GeO2 ratio in the film) through the diffusion-
controlled transformation of small Ge clusters into
large clusters during annealing in an inert medium;

(3) a controlled decrease in the nanocrystal sizes by
oxidation (the temperatures of all processes are below
550°C);

(4) variation of the potential barrier height for the
quantum wells in a heterosystem through chemical and
phase transformations of the system components [17].
In particular, the fraction x in a germanosilicate glass
GeO2(x):Si2(1 – x) may change from 1 to 0, and, simulta-
neously, the optical and electronic parameters of the
dielectric change continuously and almost linearly [18–
20]. For the bandgap Eg, this implies an increase from
~5.5 to ~9 eV;

(5) the possible use of glasses with complex compo-
sition and their crystallization at low temperatures
(below 650–700°C [19, 21, 22]), which also modifies
the properties of dielectric barriers. Note that the
dielectric constant of a film increases (by ~20% on the
average) upon crystallization, which is favorable to the

Fig. 3. The optical gap in spherical germanium nanocrystals
(Ge NC) surrounded by GeO2, as calculated for a finite bar-
rier and with allowance for the difference in masses.

mwell mbar
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devices of the “quasi-nonvolatile MOS memory” type
on the quantum-dot traps [17].

Note in conclusion that the PL signal in the GeO2
films containing germanium nanocrystals is observed at
room temperature. Since the electron and hole barriers
in the Ge:GeO2 heterostructure are appreciably lower
than in the Ge:SiO2 structure (which was already used
in the fabrication of the experimental specimens of
optoelectronic devices [23]), this structure seems to be
more efficient for electron and hole injection and,
hence, holds promise for the fabrication of optoelec-
tronic elements on its base.

We are grateful to the students of the Novosibirsk
State University L.L. Rapatskiœ and K.S. Pervunin for
assistance in measurements and processing of transmis-
sion spectra.
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It is shown that the Mössbauer magnetic hfs spectra of a superparamagnetic particle are cardinally affected by
the rotation of its magnetic moment about the magnetic anisotropy field. This rotation renormalizes the nuclear
g factors and qualitatively transforms the spectra. In particular, apart from the well-known magnetic sextet, five,
four, three, and even two (magnetic “doublet”) lines can arise in the 57Fe absorption spectra. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 76.80.+y; 31.30.Gs
For over half a century, Mössbauer spectroscopy has
served as a powerful tool for studying hyperfine (hf)
interactions in solids. By now, it would seem that the
formation mechanisms have been firmly established for
the hfs spectra. The vast majority of experimental spec-
tra are analyzed on the basis of static hfs, for which the
line positions and intensities can be described in terms
of static magnetic and electric fields acting on nuclei.
For instance, the magnetic hfs spectrum of the most fre-
quently used 57Fe isotope consists of six lines, so-called
magnetic sextet, while the line-intensity ratios are
determined by the selection rules. The role of relaxation
processes, which chaotically vary the hyperfine field at
the nucleus, was also studied in detail [1–3]. Depending
on the relaxation rate, the spectral lines broaden or the
magnetic hfs collapses into a single line (or into a qua-
drupole doublet if the electric field gradient at the
nucleus is nonzero).

In superparamagnetic particles, apart from the cha-
otic fluctuations, the hf magnetic field rotates due to the
rotation of the magnetic moment of a particle in the
magnetic anisotropy field. Although the rotation has an
appreciable effect on the hfs spectra, it is ordinarily
assumed that the rotation frequency Ω far exceeds the
typical hf interaction frequencies [4]. In this case, the
off-diagonal part of the hf interaction is averaged to
zero, while the remaining diagonal part is again
described by a static magnetic hf field (slightly lowered
because of averaging), so that the spectral structure,
e.g., the magnetic sextet for the 57Fe nuclei, is retained.

In this work, general formulas are derived for the hfs
spectra with an arbitrary Ω , and it is shown that, under
these conditions, the spectra may be cardinally differ-
ent from the static hfs spectra. In particular, instead of
a magnetic sextet, the spectra of the 57Fe isotope may
show five, four, three, and even two (magnetic doublet)
lines. The corresponding hfs spectrum depends not
only on the magnitude of Ω but also on its sign, which,
0021-3640/03/7708- $24.00 © 20415
in turn, may be dictated by the sign of magnetic anisot-
ropy constant.

The theory of Mössbauer spectra for a hyperfine
field Hhf(t) varying in time along an arbitrary determi-
nate trajectory was developed in [5–7], mainly with the
aim of describing the effect of an external magnetic rf
field on the absorption spectra. The following expres-
sion was obtained for the gamma-ray absorption cross
section by a nucleus:

(1)

where ω is the spectral frequency, Γ0 is the width of
nuclear excited level, Thf = 2π/Ω is the hyperfine-field

time period,  is the operator of interaction of a

gamma-ray quantum with nucleus,  stands for the

chronological ordering,  is a unit operator, and the

Liouvillean superoperator  is determined by the
time-dependent Hamiltonians of nuclear hyperfine
interactions in the ground (g) and excited (e) states,

(2)

where µN is the nuclear magneton, gg, e are the nuclear

g factors, and  are nuclear spins. The superopera-

tor acts in the space of (2I (g) + 1), (2I (e) + 1) vari-
ables:

(3)
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where mg, e are the nuclear spin projections onto some
axis. Expression (1) was used to calculate the absorp-
tion spectra of nanostructured magnetic alloys sub-
jected to an external rf field [8].

Assume that the hyperfine magnetic field rotates
with frequency Ω about some axis z at the angle θ to
this axis:

(4)

where nx, ny, and nz are unit vectors along the x, y, and
z axes, respectively. Expression (1) can be transformed
using the superoperator

(5)

which is a direct product of the evolution operators for
the ground and excited states:

(6)

Hhf t( ) Hhf nz θcos[=
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Fig. 1. 57Fe Mössbauer absorption spectra (top curves) in a
static hyperfine field and (lower curves) in the rotating
hyperfine field (θ = 80°) for various rotation frequencies
Ω/2π. Hereafter, the spectra are calculated for the nonpolar-
ized gamma radiation, chaotic orientations of magnetic
anisotropy axes, and Hhf  = 330 kOe.
Expression (6) can be greatly simplified after passing to
the coordinate system rotating about the z axis with fre-
quency Ω. This corresponds to the unitary transforma-
tions with the use of the operators of elementary rota-
tion about the z axis. Then, in the evolution operators
(6), one can perform integration with respect to time:

(7)

where  are the time-independent hfs Hamilto-
nians in the rotating system of coordinates for the
ground and excited states, respectively:

(8)

and ωg, e = –gg, eµNHhf are the hfs constants for the
ground and excited nuclear states.

By using Eq. (7), one can readily show that, in this
case, Eq. (1) reduces to a rather simple analytic expres-
sion. After averaging over the incident radiation polar-
ization η, one obtains for the absorption cross section

(9)

where mg, e are the z projections of the nuclear spin;
 are its projections onto the quantization axes, for

which operators (8) are diagonal; and

(10)

Using Eq. (9), one can calculate absorption spectra
as functions of rotation frequency Ω and angle θ. In
Fig. 1, the 57Fe Mössbauer spectra are shown for the
case of hyperfine field rotating about the chosen axis at
the angle θ = 80° for different frequencies Ω and differ-
ent senses of rotation. One can clearly see that, for the
levorotation (Ω < 0), the spectra can take the form of a
triplet, quartet, or quintet of lines, instead of the classi-
cal static magnetic hfs sextet (upper spectra in Fig. 1).
At the same time, for the dextrorotation (Ω > 0), the
absorption spectra may collapse to a magnetic doublet.
In other words, the hyperfine-field rotation cardinally
changes the shape of hfs spectra.

The physical reason for such a cardinal spectrum
transformation can be clarified by the example of a high
hf-field rotation frequency (|Ω| @ |ωg, e |). One can see
from Eqs. (9) and (10) that, in this case, the spectrum is
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divided into a central group of six doubly degenerate
lines and satellite lines. The analysis of the satellite
shapes is of no interest in this situation, because, for
high frequencies Ω , these satellites are far beyond the
velocities of the standard Mössbauer spectrometers
(Fig. 1). The main contribution to the absorption inten-
sity comes from the central lines with  = mg and

 = me. The approximate expression for the corre-
sponding absorption cross section is

(11)

where

(12)

are, respectively, the effective nuclear ground- and
excited-state hfs constants, which are found from
Eq. (10) and determined by the renormalized nuclear g
factors

(13)

It is seen from Eq. (12) that, in addition to the well-
known effective (proportional to cosθ) decrease in the
magnitude of hyperfine field [4], the rotation effect
qualitatively transforms the hfs spectra through the
renormalization of the nuclear g factors (13). The
changes in the effective  factors are different for the
ground and excited nuclear states because of the differ-
ent original nuclear g factors (gg = 0.18 and ge = –0.10
for the 57Fe nuclei).

It follows from Eq. (13) that, upon the rotation with
frequencies Ω > 0, the absolute value of the  factor
decreases for the excited nuclear state and increases for
the ground state. Hence, the excited-state  factor can
change sign for the angles θ close to π/2. For instance,
if the angle θ and the rotation frequency Ω are related
to each other by the condition

(14)

the effective excited-state  factor becomes zero, and
only a doublet will be observed in the magnetic hfs
spectrum (on the right in Fig. 1). The level splitting
scheme is shown for this case in Fig. 2.

In turn, for rotation with frequencies Ω < 0, the
absolute value of the ground-state  factor will
decrease, while the excited-state value will increase.
For θ angles close to π/2, the  factor may change
sign. This is precisely the reason that underlies the car-
dinal rearrangement of the absorption spectra, i.e., the
appearance of a triplet, quartet, or quintet in a series of
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left-hand spectra shown in Fig. 1. In particular, if con-
dition (14) is satisfied after replacing ωe by ωg, a mag-
netic quartet should be observed in the absorption spec-
trum.

For a uniformly magnetized axisymmetric particle,
the magnetic-anisotropy energy density is given by the
well-known expression [9]

(15)

where K is the magnetic-anisotropy constant, M0 is the
magnetic moment of a particle unit volume, and Mz is
the projection of the magnetic moment onto the sym-
metry axis. In this case, one has for the magnetic-
anisotropy field

(16)

It is well known that, if a magnetic moment deviates by
the angle θ from the magnetic-field direction, it pre-
cesses about this axis with the frequency [10]

(17)

where γ is the gyromagnetic ratio and

(18)

One can see from these formulas that the precession
frequency Ω is independent of the particle size and
determined by the K constant and the deflection angle
θ. An important point is that, for the near-zero θ, the
precession frequency is maximal, and it becomes zero
at θ = π/2. Consequently, there always exists a range of
angles θ where the frequency Ω is comparable to the
frequencies of nuclear-spin precession in a hyperfine
field.

At the same time, the sense of magnetic-moment
rotation depends on the sign of the K constant. For K > 0,
i.e., in the presence of easy magnetic axis, the hf field
at the 57Fe nuclei is levorotatory (Ω < 0). For the anisot-
ropy of easy magnetic-plane type (K < 0), the hf field at
the 57Fe is dextrorotatory (Ω > 0). This fact is crucial for
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Fig. 2. Scheme of level splitting for the 57Fe nucleus in the
excited (e) and ground (g) states. Left: magnetic sextet in a
static hyperfine field; right: magnetic doublet in the rotating
hyperfine field satisfying condition (14), for which  = 0.ω̃e
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the transformation of Mössbauer spectra, as is clearly
seen in Fig. 1.

In Fig. 3, the 57Fe Mössbauer spectra are shown for
the hf field rotating at various angles θ to the chosen
axis and for the parameter Ω0/2π = 0.5 GHz corre-
sponding to γ-Fe2O3 particles with an average diameter

Fig. 3. 57Fe Mössbauer absorption spectra in the rotating
hyperfine field for various values of angle θ and the param-
eter Ω0/2π = 0.5 GHz.

Fig. 4. 57Fe Mössbauer absorption spectrum for a super-
paramagnetic particle with the magnetic anisotropy con-
stant K < 0 (Ω0/2π = 0.5 GHz).
of 7 nm [11]. The magnetic hfs with the renormalized
 factors is clearly observed in the absorption spectra

for θ > 70°. With a decrease in the angle θ, the effect of
fast rotation on the spectrum shape weakens, except for
the effective increase in the magnitude of hf field. How-
ever, one should take into account that the rotation
effect in the form of renormalized nuclear g factors
should be observed not only for the nonstandard spec-
tra, as shown in Fig. 1, but also in the case where the
corresponding line shifts are comparable to the line-
width Γ0. In particular, the effect of rotation with fre-
quency Ω0/2π on the order of 1 GHz becomes essential
for the 57Fe nuclei at θ > 30°.

Modern technique allows the growth of magnetic
particles with very small sizes, on the order of few
nanometers (see, e.g., [11–15]). Due to the small vol-
ume, the total magnetic anisotropy energy KV (V is the
particle volume) is on the order of several hundred
degrees, so that all states with arbitrarily directed mag-
netic moments may become populated even at room
temperature. In the absence of relaxation effects, the
absorption spectrum of an individual particle with mag-
netic anisotropy (15) is expressed by the weighted sum
of partial spectra (9) with different deviation angles θ:

(19)

where P(θ) determines the population of states with dif-
ferent directions of magnetic moment at a given tem-
perature T:

(20)

(kB is the Boltzmann constant and C is the normaliza-
tion factor).

One can see from Eq. (19) that the anomalies
observed in the partial spectra in Fig. 1 should smear, to
a large extent, in the resulting spectra of small super-
paramagnetic particles whose states with magnetic
moments arbitrarily oriented about the anisotropy axis
are all populated. Nevertheless, one can clearly see,
even from the visual comparison of the left and right
series in Fig. 1, that the degree of smearing should be
substantially different for different senses of hyperfine-
field rotation. For negative Ω frequencies (K > 0), the
line positions in the partial spectra are widely scattered,
so that no clear-cut structure should be observed in the
resulting spectrum. At the same time, for rotation with
positive Ω (K < 0), the topological shape of magnetic
doublet is retained over a rather broad range of Ω fre-
quencies (and, hence, over a broad range of angles θ for
a given value of parameter Ω0), allowing one to hope
that the doublet can be observed in the resulting absorp-
tion spectrum. As an example, the 57Fe absorption spec-
trum calculated by formula (19) with parameters
KV/kBT = –5 and Ω0/2π = 0.5 GHz is shown in Fig. 4. It
is seen from this figure that a well-defined magnetic

g̃

σ ω( ) σ ω Ω0 θcos θ, ,( )P θ( ) θsin θ,d∫=

P θ( ) C
KV θcos

2

kBT
---------------------- 

 exp=
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doublet is retained in the resulting spectrum of a super-
paramagnetic particle.
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Properties of superfluid states of two-dimensional electron systems with critical antiferromagnetic fluctuations
are investigated. These correlations are found to result in the emergence of rapid variation in the momentum
space terms in all components of the mass operator, including the gap function ∆(p). It is shown that the domain
where these terms reside shrinks with temperature, leading to a significant difference between the temperature
Tc, at which superconductivity is terminated, and the temperature T*, where the gap in the single-particle spec-
trum vanishes. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Mn
The problem of high-temperature superconductivity
is known to defy solution within the Fermi liquid
approach. Initially it looked like it had to do with only
normal states of high-Tc superconductors. However,
later it was acknowledged that the BCS theory fails in
dealing with their superfluid states as well [1, 2]. This
is best demonstrated by the persistence of a gap ∆ in the
spectra of single-particle (sp) excitations of many
high-Tc superconductors above the critical temperature
Tc, at which superconductivity disappears (the so-called
pseudogap phenomenon [1–4]).

Another salient feature of a two-dimensional elec-
tron liquid of high-Tc superconductors is the universal-
ity of its phase diagram versus the doping x. At low |x | ≤
xc . 0.05, corresponding to a filling close to 1/2, two-
dimensional compounds are antiferromagnetic insula-
tors. At larger x, antiferromagnetic ordering is nil, but
in the vicinity of the phase transition long-range corre-
lations with wave vectors q, close to the antiferromag-
netic vector Q = (π, π), turn out to be drastically
enhanced, which results in the divergence of the elec-
tron–electron scattering amplitude Γ = Γ0 + Γaσ1σ2
with

(1)

the correlation radius ra(x) becoming infinite at x = xc

[5, 6].

The impact of this singularity on sp properties is stud-
ied proceeding from the RPA formula Σa = (Γa *G),
which presents the part Σa of the mass operator Σ asso-
ciated with antiferromagnetic fluctuations as a convolu-

¶This article was submitted by the authors in English.

Γa q Q ω 0; x,( )

∼ q Q–( )2 ra
2– x( ) ic ω+ +[ ] 1–

,
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tion of the amplitude Γa with the sp Green’s function G
(see, e.g., [5–9]). For a long time, attention was focused
on the energy dependence of Σ, while its momentum-
dependent part Σ(p, ε = 0) was parameterized by the
effective mass m*. This is justified in systems with
short-range correlations, where the mass operator Σ(p,
ε = 0) is a smooth function of p. But this is not the case.
Straightforward calculations show that long-range cor-
relations (1) trigger a component Σa(p) of the function
Σ(p, ε = 0) ≡ Σr(p) + Σa(p) rapidly varying with p, being
a convolution of Γa and the pole part Gq of the Green’s
function G. It should be emphasized that Σa(p) has to be
evaluated self-consistently, otherwise the flattening of
the sp spectra ξ(p) in normal states found in [10] and
observed in many high-Tc compounds gets lost.

To get rid of the energy-dependent terms in Σ, we
calculate the derivative ∂ReΣ(p, ε)/∂p  (ReΓa *
∂ImGq/∂p). After simple algebra we obtain

(2)

Here, z = [1 – (∂Σ(ε)/∂ε)0]–1 is the renormalization fac-
tor, dτ = d2p/(2π)2, and

(3)

is the quasiparticle momentum distribution. In this for-
mula, f(E) = (1 + exp(E/T))–1, while v 2(p) = (E(p) –

ξ(p))/2E(p), where E(p) =  and ∆ is the

∂ReΣa p( )
∂p

-----------------------
3
2
---z=

× Γa p p1– ω E p( )=,( )
∂n p1 T,( )

∂p1
---------------------- τ1.d∫

n p T,( ) v 2 p( ) 1 f E( )–( ) 1 v 2 p( )–( ) f E( )+=

=  
1
2
--- ξ p( )

2E p( )
-------------- E p( )

2T
-----------tanh–

ξ2 p( ) ∆2 p( )+
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gap function, while ξ(p) = z(  + Σa(p) + Σr(p)) ≡ ξ0(p) +
zΣa(p) is the sp energy spectrum of the normal state
measured from the chemical potential µ. To a good
approximation, the spectrum ξ0(p) and the LDA elec-

tron spectrum  are related by ξ0(p) = /m*.

In what follows, the argument ω = E(p1) of the func-
tion Γa(p – p1, ω) in Eq. (2) is replaced by 0, since both
the functions ∂n(p1, T)/∂p1 and Γa(p – p1), taken at
ξ(p) = 0, are peaked at ξ(p1) = 0. Upon inserting this
result into Eq. (2) and integrating over momenta, one
finds

(4)

The gap ∆(p), obeying the BCS gap equation, is also
decomposed into the sum ∆(p) = ∆a(p) + ∆r(p) of a reg-
ular ∆r(p) and a rapidly varying with p component
∆a(p). In the case of singlet pairing, the respective
equation for ∆a(p) is [11]

(5)

The analysis of solutions of the above nonlinear
equations is greatly facilitated if the interaction (1),
taken at ω = 0, is approximated by a δ-function

  faδ(q – Q) [5], appropriate in the domain

of momentum space where the functions n(p) and ∆a(p)
change more slowly than the amplitude Γa(p – p1). As
a result, the integrations cancel, and we are left with

(6)

(7)

where the constant fa > 0 is small compared to the band
width ω0. In obtaining these equations, we neglected
the term ∆r(p). Setting here T = 0, we arrive at a set of
equations derived in [12] in a different way.

If pairing correlations are somehow suppressed,
Eqs. (7) are knocked out. Upon solving the two remain-
ing Eqs. (6), we find that, in the case when the van Hove
points (±π, 0) and (0, ±π) are situated quite close to the
Fermi line (FL), the portion of the sp spectrum adjacent
to the van Hove points (vHP) turns out to be flat [12].
We shall see later that the flattening holds if pairing cor-
relations come into play.

As seen from Eqs. (7), the gap ∆(p) changes its sign
going over to a neighbor vHP, as in the conventional

ξp
0

ξp
0 ξp

0

ξ p( ) ξ0 p( )
3
2
---z2 Γa p p1–( )n p1 T,( ) τ1.d∫+=

∆a p( ) 3z2 Γa p p1–( )

E p1( )
2T

-------------tanh

2E p1( )
------------------------∆ p1( ) τ1.d∫–=

3
2
---z2Γa q( )

ξ p( ) ξ0 p( ) f an p Q– T,( ),+=

ξ p Q–( ) ξ0 p Q–( ) f an p T,( ),+=

∆ p( ) f a∆ p Q–( )
E p Q–( )/2T( )tanh
E p Q–( )

-----------------------------------------------,–=

∆ p Q–( ) f a∆ p( )
E p( )/2T( )tanh
E p( )

------------------------------------,–=
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D-pairing model, in which the gap ∆D(p) ~ (cospx –
cospy) ≠ 0 anywhere in the momentum space but the
zone diagonals. However, in contrast to this model,
nontrivial solutions of Eqs. (7) exist only in a domain
C, the boundaries of which are found by combining the
two Eqs. (7), which yields

(8)

Otherwise, ∆a ≡ 0, and E(p) = |ξ(p)|, as in the Nozieres
model [13–15] with the effective long-range interaction
Γ(q) ~ δ(q).

In overdoped compounds, the domain C is made up
of two quite narrow stripes. The first, denoted further
CF and described by the equation ξ0(p) = 0, is adjacent
to the FL. The second, associated with the conjugate
line (CL), is determined by the equation ξ0(p – Q) = 0.
In these compounds, the FL and CL are well separated,
and when dealing with p ∈  CF the energy E(p – Q) can
be replaced by |ξ0(p – Q)|, so that Eq. (8) is recast to

(9)

with the coupling constant g(p) = /|ξ0(p – Q)|.
As x drops, the FL and the CL approach to meet

each other at a critical doping xm. In most high-Tc com-
pounds, such as Bi2212, Bi2201, etc., the FL is con-
cave, while the CL is convex, and the first meeting
between these lines occurs at the vHPs. Close to the
vHPs, the boundaries of the C domain are calculated
combining Eq. (8) with the relations E(p) = |ξ0(p)| and
E(p) = |ξ0(p) + fa |, which yields restrictions –2f <
ξ0(p) < f. In this case, Eq. (8) is easily solved, and close
to the vHPs, the sp spectrum turns out to be quite flat:
E(p, T = 0) . fa. We see that this value is significantly
in excess of those obtained if the FL and the CL have
no points of intersection. When the gap landscape is
drawn in the doping region x ~ xm, it comprises four
“twin towers,” each one being associated with its own
vHP. Each tower, whose height ∆vHP(T = 0, xm), accord-
ing to Eq. (8), is equal to fa, is connected with its neigh-
bors by narrow “walls.” According to Eq. (9), their
height drops towards the zone diagonals, where the gap
∆ vanishes. Thus, we infer that the gap function
∆(px, py) attains its maximum ∆max(T = 0) = fa at the
vHPs. This picture, confirmed by numerical calcula-
tions of [12], is in agreement with the available experi-
mental data [2].

As T rises, the region C where ∆a(p) ≠ 0 shrinks, the
effect first found in [15] under investigation of the
Nozieres model [13]. Indeed, for points fairly far away
from the vHPs, Eq. (9) can be employed. Its nontrivial
solutions exist only if g(p) > 2T. Since the function
|ξ0(p – Q)| identifying the energy splitting between the
FL and the CL rises while the magnitude of the function

f a
2 E p( )/2T( )tanh

E p( )
------------------------------------ E p Q–( )/2T( )tanh

E p Q–( )
----------------------------------------------- 1,=

p C.∈

E p( ) g p( ) E p( )/2T( ), p CF,∈tanh=

f a
2
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g(p) drops, as the vector p moves along the FL towards
the zone diagonal, the shrinkage begins in the diagonal

region at Ti(x) . /2|ξmax(x)|, where ξmax(x) is the bare
sp energy, corresponding to the point of intersection
between the CL and the zone diagonal. With further T
increase, the shrinkage region is augmented, approach-
ing the vHPs, where the gap ∆ has its maximum value.
Eventually, the whole C domain shrinks into several
symmetric points at the FL, closest to the vHPs.
Recently, such a behavior of the gap landscape, the so-
called arc phenomenon [2], was experimentally
observed. The final shrinkage temperature T*(x ~ xm) is
easily evaluated from Eq. (8). It is T*(x ~ xm) . fa/2, so
that the gap ∆max(T = 0) and T* are connected with each
other by

(10)

which is in accord with the available experimental data
[1, 2].

It is worth noting that, inside the C region, the
behavior of ∆ remains the same as that in the BCS the-
ory, since by retaining the leading terms in Eq. (9) one
obtains

(11)

Let us now turn to a rather rare case of the convex
FL. Here the first intersection between the FL and the
CL occurs at the zone diagonals, and if one rotates the
entire zone picture by the angle φ = π/4, these points
will coincide with the intersection points between the
FL and the CL in the case of the concave FL. The anal-
ysis shows that this feature seems to hold in dealing
with all the solutions, including the gap landscape. We
shall revisit this prediction of our model in a future
paper.

So far we have neglected all the electron–electron
interactions except the long-range one given by Eq. (1).
By involving an electron–phonon exchange, the most
pronounced out of the remaining ones, we trigger a reg-
ular component ∆r(p) ≠ 0 anywhere in the momentum
space. As a result, the Landau criterion for supercon-
ductivity, which is violated in the above model at T > Ti,
is now satisfied. Presumably, the magnitude of ∆r(p)
slowly varies with x, allowing us to estimate it from
highly overdoped compounds. Since in this case Tc is
small, we infer that the impact of ∆r on properties of the
superfluid state is insignificant. On the other hand, the
electron–phonon exchange specified by the phonon
propagator D(ω, k) = k2/(ω2 – c2k2) gives rise to a renor-
malization of the constant fa as well. The respective
contribution δ∆(p) to the gap ∆ is given by the integral

(12)

Employing in the integral (12) the “tower” structure of
the function ∆a(p, x ~ xm), one can decompose over-

f a
2

∆max T 0=( ) . 2T∗ , x xm,∼

∆2 p; T T∗( ) . 12T∗ T∗ T–( ), p C.∈

δ∆ p( ) D p p1 ω1,–( )
∆a p1( )

ω1
2 E2 p1( )–

--------------------------- τ1

ω1d
2πi
---------.d∫∼
whelming contributions into two: one from the same
“tower” and the other from the neighboring one. The
first contribution, proportional to the “tower” range, is
small. When calculating the second one, where the
momentum transfer p – p1 is comparable to pF, the
propagator D can be replaced by –1, yielding a number
that suppresses the initial fa value. This interference
may be significant.

Now we proceed to evaluation of the superfluid den-
sity ρs(T), expressed in terms of a correlator of the
velocities ∂ξ0(p)/∂p. Evaluation of this correlator in
crystals with the help of the Larkin–Migdal method
[16, 17] yields

(13)

the function n(p, T) being given by Eq. (3). In an ideal
homogeneous Fermi gas, where ξ(p) = p2/2M – µ,
Eq. (13) is converted into the ordinary textbook for-
mula. Obviously, no contributions to ρs are made from
regions in momentum space where the ratio ∆(p)/T is
negligible. Indeed, if ∆(p) = 0, the distribution n(p, T)
is converted to nF(p, T) = (1 + exp(ε(p)/T))–1, while the
product (∂f(E)/∂E)(∂ξ(p)/∂pi)  ∂nF(p, T)/∂pi, and
both the terms in Eq. (13) cancel each other. As a result,
at T > ∆r, contributions from regions other than the C
domain may be neglected.

A full examination of the formula (13) will be per-
formed elsewhere. Here we restrict ourselves to the
region of the dopings x . xm and temperatures T 
T* . fa/2. In this case, the ratio E(p ∈  C)/T is small, and
an expansion of the terms in the integrand of Eq. (13)
yields ∂n(p, T)/∂pi . –(∂ξ(p)/∂pi)/4T +
ξ2(p)(∂ξ(p)/∂pi)/16T3 + ∆2(p)(∂ξ(p)/∂pi)/48T3 and
∂f(E)/∂E . –1/4T + E2(p)/16T3. After canceling similar
terms and employing relation (11), we are left with

(14)

where the numerical factor α is on the order of 10–2. As
we shall see, such a suppression of ρs(T  T*) results
in a marked distinction between the critical temperature
Tc for termination of superconductivity and the temper-
ature T* for vanishing of the gap ∆. The reason for that
is a great diversity in the gap values, which, as we have
seen, results in the temperature shrinkage of the domain
of integration over momentum space in Eq. (13).

Strictly speaking, in two-dimensional systems, the
temperatures T* and Tc never coincide because of the
Berezinsky–Kosterlitz–Thouless (BKT) phase transi-
tion [18–20], terminating superconductivity due to a
spontaneous generation of an infinite number of vorti-
ces. This transition always occurs before vanishing of

ρs T( )
1
2
--- ∂ξ0 p( )

∂ pi

--------------- ∂n p T,( )
∂pi
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∂ f E( )

∂E
--------------∂ξ p( )

∂ pi

-------------– τ ,d∫–=

ρs T T∗( ) . 
1
48
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∂ξp
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the gap ∆. The BKT temperature, being, in fact, the crit-
ical temperature Tc, is given by the equation [18]

(15)

In conventional superconductors, where ρs(T  T*) ~

n(T* – T)/Tc and, hence, (T* – Tc) ~ / , the ratio

Tc/  does not exceed 0.2%. However, in two-dimen-
sional electron compounds with the doping x ~ xm, the
situation is different. Indeed, upon inserting the result
(14) into Eq. (15), one obtains

(16)

where the factor αm . 10–2. In high-Tc superconductors,

the ratio Tc/  is on order of 10–2 and, hence, the ratio
τ = (T* – Tc)/T* may attain values comparable to unity.

In conclusion, we have evaluated the effect of criti-
cal antiferromagnetic fluctuations on electron spectra
and superfluid densities of superfluid states of over-
doped and optimally doped high-Tc compounds. In
underdoped electron systems, the situation is more
complicated due to the emergence of a branch of low-
lying collective excitations, whose contribution to
properties is significant [21]. The interplay between
these oscillations and critical fluctuations in under-
doped compounds will be studied in a separate paper.
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Magnetotransport of superconducting Nd2 – xCexCuO4 + y (NdCeCuO) films is studied in the temperature inter-
val 0.3–30 K. The microscopic theory of the quantum corrections to conductivity, both in the Cooper and in the
diffusion channels, qualitatively describes the main features of the experiment, including the negative magne-
toresistance in the high-field limit. Comparison with the model of the field-induced superconductor–insulator
transition is included and a crossover between these two theoretical approaches is discussed. © 2003 MAIK
“Nauka/Interperiodica”.
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The superconductor–insulator transition (SIT) is an
example of a quantum phase transition [1], which con-
stitutes a drastic change of the ground state of the sys-
tem at zero temperature with variation of a parameter.
The field was pioneered by Goldman et al. in 1989 [2],
who obtained the transition from an insulating to super-
conductive state in a thin Bi film with the change of its
thickness. Later, Fisher [3] suggested the existence of
magnetic-field-induced SIT in two-dimensional (2D)
systems, and Hebard and Paalanen demonstrated [4, 5]
such a transition in amorphous InOx films. Numerous
results obtained in several other materials by different
groups [6–9] were also interpreted within the frame-
work of the field-induced SIT. The main arguments in
favor of this interpretation were the negative derivative
of resistance ∂R/∂T in fields above the critical and the
existence of a finite-size scaling, i.e., the existence of
some critical region on the (T, B)-plane where the
behavior of the system was governed by competition of
the quantum phase transition correlation length ξ ∝
(B – Bc)–ν and thermal length LT ∝  T1/z with z and ν
being constants called the critical exponents. All rele-
vant quantities in this region are supposed to be univer-
sal functions f of the ratio of the lengths, which can be
written in the form of scaling variable (B – Bc)/T1/zν. For
the resistivity in two dimensions Rh, this dependence
takes form [3]

(1)

¶This article was submitted by the authors in English.

Rh B T,( ) Rc f B Bc–( )/T1/zν[ ] ,=
0021-3640/03/7708- $24.00 © 20424
where Rc is a constant on the order of h/4e2 ≈ 6.5 kΩ . It
is called the critical resistance.

In the analysis of experiments [6–9], the negative
derivative ∂R/∂T was rated as an indicator of the insu-
lating state. However, that is not enough: the character-
istic of any insulator is the exponential temperature
dependence of the resistance. This was demonstrated
only in InOx films [10]. The growth of the resistance
with decreasing temperature on the nonsuperconduct-
ing side of the field-induced transition in the experi-
ments with MoGe [6], MoSi [7], and NdCeCuO [8, 9]
was minuscule, about ten percent at most. It rather
reminded a metal with quantum corrections to its con-
ductivity than an insulator. Usually, the authors do not
dwell on the issue, considering weak localization-like
behavior to be the telltale sign of insulator, since,
according to scaling hypothesis [11], there is no nonsu-
perconducting delocalized state at zero temperature in
2D and weak localization is expected to transform
sooner or later into strong. However, this crossover
might be postponed to an extremely low temperature,
which would never be achieved in practice.

There exists one more sign of SIT. According to the
boson–vortex duality model [1, 3], the insulating state
that appears as the result of SIT is rather specific: it con-
tains pair correlations between the localized electrons
as the remnant of the superconducting pairing. Such an
insulator is called a Bose insulator [5], and the corre-
lated electrons are called localized electron pairs. These
correlations should be destroyed by strong magnetic
field, leading to increase of the carrier mobility, to neg-
ative magnetoresistance [12], and even to a reentrant
insulator–normal-metal transition [10]. Negative mag-
003 MAIK “Nauka/Interperiodica”
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netoresistance was observed in MoSi [13] and
NdCeCuO [9]. But it was much weaker than in InO, just
the same as the growth of the resistance with decreasing
temperature discussed above.

When comparing the whole set of data in InO [4, 5,
10, 14] with those in MoGe [6], MoSi [7], and
NdCeCuO [9], one cannot help thinking that they have
many similar features, although they are of different
scales of magnitude. At the same time, it was shown in
a set of InOx films with various oxygen content x that in
low-resistivity films a transition to the metallic state
replaces SIT, the rate of the temperature dependence
scales down, and the whole pattern of curves
approaches that of the usual superconducting transition
[10, 14]. The main idea of this paper follows from this
observation. It is to compare the experimental set of
data of a “small-scale” type with the theory of the
superconducting transition in the dirty limit and, keep-
ing in mind its features related to SIT, to build a bridge
between SIT and the thermodynamic superconducting
transition.

The experiment was performed on 1000-Å-thick
films of Nd2 – xCexCuO4 + y (NdCeCuO) obtained by
laser ablation with CuO2 planes parallel to the plane of
the film. Films were not superconductive as-grown. In
order to obtain superconductivity, they were annealed
at 720°C in flowing 4He gas for several hours. As we
aimed to study vicinity of the SIT, we were not trying
to reach maximal Tc of this material but were paying
attention to smoothness and width of the zero-field
transition. A sample was chosen with zero-field transi-
tion temperature Tc0 = 11.8 ± 0.4 K (found by fitting the
superconducting fluctuation contribution to the con-
ductivity above Tc0) and the transition width ∆T . 2 K.

The resistivity was measured in the ab plane by the
four-terminal technique. Both current and potential
probes were attached on the surface of the films by sil-
ver paste. The distance between potential probes corre-
sponded to one square. A magnetic field was applied
perpendicular to the film plane (along the c axis). Data
were obtained, both as a function of field at constant
temperature and as a function of temperature at con-
stant field, though only the latter will be presented
below. The upper panel of Fig. 1 presents an overview
of the impact of the field on R(T) dependence and the
lower one zooms in on the region of interest, i.e., on the
low-temperature and high-field region.

On the right axis of Fig. 1, the resistance reduced per
one CuO2 plane per square is denoted. As NdCeCuO is
highly anisotropic [15], it is reasonable to assume the
film to be a stack of 2D conducting CuO2 planes with
interplane spacing 6 Å, quasi-independent and con-
nected in parallel. This is supported by observations of
2D character of quantum interference corrections [16]
and magnetoresistance [17]. Later, we continue discus-
sion in terms of this variable, disregarding full resistiv-
ity and actual thickness of the film. As one can see from
JETP LETTERS      Vol. 77      No. 8      2003
Fig. 1, the value of the resistance per layer stays quite
far from the quantum resistance h/4e2 expected for the
SIT.

The data are quite typical for the material (cf., for
example, Ichikawa et al. [9]). In the low-field region,
the transition is shifted to the lower temperature as the
field increases, while the shape of the transition is pre-
served relatively well. Above 2 T, the transition broad-
ens drastically and eventually disappears; at about
3.5 T, the dR/dT changes its sign. At higher fields,
above 5 T, the resistance starts to decrease with the
increasing field; it follows from the crossing of the 5 T
and 7 T curves that a region of the negative magnetore-
sistance exists below 0.8 K and at B > 5 T.

The set of curves R(T) on the lower panel of Fig. 1
is similar to those obtained in [6–9], which had been
regarded as a field-induced SIT. Low-field curves
(which bend down) may be supposed to reach zero
resistivity at zero temperature and to become a super-
conductor, while high field curves (which bend up) may
be supposed to diverge toward zero temperature and
become an insulator. In between, there is a curve which
is almost horizontal; it manifests itself as a common
crossing point of all isotherms on the R–B graph. The
corresponding state should be considered as the critical
one with the temperature-independent resistance at the

Fig. 1. Low-temperature resistivity data for the NdCeCuO
film. The enlarged designated area of panel (a) is shown on
panel (b). Curve at 7 T (dashed line) is crossing the other
ones manifesting the negative magnetoresistance below 1 K.
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critical field Bc ≈ 3.5 T. But instead of seeking scaling
parameters, we shall compare experimental data with
the microscopic theory of the superconducting transi-
tion in the dirty limit formulated in terms of quantum
corrections to the classical Drude conductivity σ0 =
e2/h(kFl), where kF is the Fermi wavevector and l is the
elastic mean free path. This comparison became possi-
ble due to recent progress in calculation of the correc-
tions due to superconducting fluctuations [18].

All quantum corrections fall into two categories—a
one-particle correction, usually called weak localiza-
tion, and those due to e–e interactions. The latter are
divided into a diffusion channel correction (also known
as the Aronov–Altshuler term) and Cooper channel cor-
rections (also known as superconductive fluctuations
corrections, which include Aslamazov–Larkin, Maki-
Thompson, and DOS terms). Weak localization and
Aronov–Altshuler corrections diverge at T  0, while
Cooper channel corrections diverge at T  Tc(B),
with Tc(B) being mean field transition temperature.
When the superconductivity is suppressed by the mag-
netic field, Tc(B)  0 and all corrections are impor-
tant.

Recently, Galitski and Larkin [18] succeeded in
extending calculations in the Cooper channel for two-
dimensional superconductors to the low temperature
T ! Tc(0) and high magnetic field B * Bc2(0). The cor-
rection to the conductivity in the dirty limit δσ is
obtained as the sum of contributions of ten Feynman
diagrams in the first (one-loop) approximation and can
be written in the form

(2)δσ 4e2

3πh
--------- – r

b
--- 3

2r
-----– ψ r( ) 4 rψ' r( ) 1–( )+ +ln ,=

Fig. 2. Functions R(T) at different B calculated from
Eqs. (2) and (3). The curves are labeled by reduced field val-
ues. The curve that shows the negative magnetoresistance is
marked by dashed line. The dotted curve should not be com-
pared to experiment (see text).
where r = (1/2γ')(b/t), γ' = eγ = 1.781 is the exponential
of Euler’s constant, and t = T/Tc0 ! 1 and b = (B –
Bc2(T))/Bc2(0) ! 1 are reduced temperature and mag-
netic field.

To compare these calculations with the experiment,
we added to the correction (2) an additional term to
account for Aronov–Altshuler contribution, which is
assumed to be field independent. Weak localization was
omitted, because we are interested in the region of
rather strong magnetic fields, where this correction was
expected to vanish. Finally, we arrived at the formula

(3)

Inserting Tc0 = 11.8 K and the experimental value of the
classical conductivity σ0 = 1/R (7 T, 20 K) and choosing
T* = 20 K to make the last term zero at 20 K and α =
1/2 match the temperature dependence of the experi-
mental curve at 7 T, we get the plot of Fig. 2, which can
be compared with the experimental one (Fig. 1b). (Note
that in Fig. 2, curves are labeled by reduced field val-
ues, those in units of Bc2(0). The same cannot be done
on Fig. 1, because the experimental value of Bc2(0) is a
bit uncertain.)

As one can see, the picture bears a clear resem-
blance to the experiment—there is separation between
low-field curves, which “bend down,” and the high-
field, which “bend up”; there is also high field negative
magnetoresistance at low temperature. There are two
remarkable points: (i) the scales of variation of resis-
tance both with temperature and magnetic field are cor-
rect and (ii) the region and the magnitude of the nega-
tive magnetoresistance are in reasonable agreement
with the experiment as well.

However, the similarity is qualitative. It is difficult
to make it quantitative, and both the experiment and the
theory are responsible for this.

The disadvantage of the experiment is hidden in the
macroinhomogeneity of the film. It follows from Fig. 2
that small 2–3% changes of Bc2(0) lead to a drastic shift
in the shape of R(T) curves, especially near the critical
value of B. Inevitable dispersion of the values of Bc2(0)
along the film smoothes the curves and clears away the
extremum. Hence, one should scarcely expect to find in
the experimental assortment of curves one similar to
the theoretical curve labeled 1.02 (plotted by the dotted
line on Fig. 2).

The expression (2) is apparently very sensitive to the
function Bc2(T). Basically, this function is an implicit
parameter of the theory. In [18], the authors used for
Bc2(T) the mean-field function from the Werthamer–
Helfand–Hohenberg theory. It is doubtful that this the-
ory is applicable to high-resistive 2D objects, especially
since the shape of transition in the 2D case should be
affected by the vortex motion (Berezinsky–Kosterlitz–
Thouless theory).

R 1– B T,( ) σ0 δσ B T,( ) αe2

h
---- T /T∗( ).ln–+=
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As a side note, a comment about the finite-size scal-
ing equation (1) related to SIT. Certainly, expression (3)
does not have the form of equation (1) and no genuine
scaling exists. However, in a restricted region of values
of T and B, representation of the theoretical curves in
the form (1) can be done. This is illustrated by Fig. 3,
where calculated data from the region 0.98 < B/Bc2(0) <
1.2 and 0.1 < T/Tc < 0.15 are used for the tracing. As the
“critical” magnetic field B* = 1.016Bc2(0), the crossing
point of several isotherms R(B) was taken; B* is the
field where the minimum of the isomagnetic curve R(T)
is located in the middle of the chosen temperature
region. (Actually, in the limited range of parameters B
and T, scaling always exists, provided that several R(B)
curves have a common crossing point.) It follows that
the scaling tracing is a necessary but not sufficient ele-
ment of the analysis of the SIT, especially taking into
account that we always deal with a limited temperature
range in the experiment.

The appearance of the negative correction to con-
ductance in the microscopic theory of the superconduc-
tive fluctuations [18] is very remarkable. It confirms
that the superconducting correlations may lead, at fields
above the critical one, not to a drop but to an upsurge of
the resistance. This can be regarded as a tendency
toward a Bose insulator, which can be distinguished
from the Aronov–Altshuler term because it leads to a
negative magnetoresistance. All the materials men-
tioned above can be lined up demonstrating continuous
crossover from the Bose insulator and gigantic negative
magnetoresistance in InOx to faint low-temperature rise
of the resistance and its tiny drop in strong magnetic
fields in MoSi and NdCeCuO. In essence, these films
are similar to each other: they are uniform, highly dis-
ordered films, with the resistance close to the quantum
value h/4e2. Nevertheless, experimental observations
on InOx and, for example, on NdCeCuO are quite dif-
ferent, and there is a reason for it.

There is little doubt that at low enough temperature
the growth of R(T) we observe in high magnetic field,
i.e., in the normal state, will become exponential.
According to the phenomenological estimate suggested
by Larkin and Khmel’nitskii [19], the crossover hap-
pens when the corrections to the conductivity reach the
level of the conductivity itself. The condition σ0 ~
(e2/h)lnT gives the crossover temperature

(4)

where εF and kF are the Fermi energy and the Fermi
wavevector and l is the elastic mean free path [19].
Below this temperature, there will definitely be a super-
conductive state at low field and pronounced insulating
behavior at high field, and there would be clear reason
to apply SIT framework. So, the quantum corrections to
the conductivity and the quantum phase transition phe-

T LKh . 
εF

kFl
-------e

2 kFl( )–
,
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nomena are manifested in different temperature
regions.

Though TLKh may be very low for a normal metal
(TLKh & 1 mK already for kFl ≈ 5), there are clear exper-
imental indications that crossover to bosonic insulator
behavior (that is, to the SIT framework) in the interme-
diate field range, where pair correlations are still impor-
tant, occurs at a higher temperature [10]. This is consis-
tent with the theoretical observation [20] that the attrac-
tive interaction stimulates localization by combining
single particles into pairs.

By equating the two last terms in the relation (3) to
the σ0 and solving the resulting equation, one gets the
crossover temperature to bosonic insulator T0 as a func-
tion of the magnetic field. These curves for σ0 equal
5e2/h (or kFl = 5), 7e2/h, and 9e2/h and are represented
in Fig. 4 by solid lines. Thin solid lines represent levels
of TLKh determined by using only the last term in rela-
tion (3) and corresponding σ0. As equation (2) is valid
only in fields close to Bc2(0), the parts of the curves in
higher fields, where T0(B) approaches TLKh, are indi-
cated qualitatively by dotted lines. In agreement with
[10, 20], the crossover to activation behavior in the
medium-range fields occurs at temperatures more than
order of magnitude higher than TLKh. At the same time,
the crossover temperature falls off exponentially with
increasing classical conductivity, so that for the actual
value of our experiment it becomes infinitesimal. That
is why field-induced SIT is so manifest in the InOx,
whereas it is not observed in MoGe or NdCeCuO, and
there is not the slightest sign of it in the Al film (note
that, according to scaling hypothesis [11], any metal
film should become insulating at T = 0 if the supercon-
ductivity is destroyed by the magnetic field).

Fig. 3. “Scaling” of the curves calculated from Eqs. (2) and
(3) in the same way as Fig. 2. Restricted ranges of T and B
are selected (see text).
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To summarize, we compared experimental data
obtained on two-dimensional NdCeCuO superconduc-
tor in magnetic field at low temperature with the calcu-
lations of quantum corrections to the conductivity and
found reasonable agreement. Lack of the activation
behavior at high fields (on the “insulating side of tran-
sition”) was the main reason that made inferior the
comparison of the same data with the model of field-
induced SIT. Apparently, this happened because the
temperature range turned out to be too high for this spe-
cific material. The type of the resistance dependence on
the temperature is the guide in choosing the theoretical
approach. To employ the framework of the SIT in full
for NdCeCuO, further substantial lowering of the tem-
perature is necessary.

This work was supported by the Russian Foundation
for Basic Research (grant nos. 02-02-16782, 02-02-
08004, and 03-02-16368) and by a grant from the Min-
istry of Science.

Fig. 4. Crossover temperature T0 for several reduced values
of the mean free path l calculated by equating to zero the
right part of Eq. (3) for the fields values up to B = 1.2Bc2(0).
Dotted lines qualitatively designate the asymptotic parts of
the curves. Levels of TLKh approximately corresponding to
the same values of l are marked by horizontal lines. 
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Linear orientational defects (2π and π walls) in freely suspended thin smectic C films exposed to a magnetic
field were studied. The bend and splay elastic constants, as well as the orientational viscosity of a two-dimen-
sional c-director field, were determined. It was established that a change in the polar and azimuthal angles of
magnetic-field orientation in a sample cardinally transforms the wall structure. This is caused by the anisotropy
of orientational elasticity of the c director. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.30.Jf; 61.30.Gd; 68.55.Ln
In tilted smectic liquid-crystal films, linear and point
defects are formed either spontaneously or under the
action of an external field [1–6]. Freely suspended thin
(2–100 molecular layers) films are suitable objects for
studying these defects [7]. Such films are composed of
a strictly fixed number of smectic layers parallel to the
free surface. In smectic C (SmC) liquid crystals, the
average orientation of the molecular long axes (n direc-
tor; Fig. 1a) is tilted at angle θ with the normal z to the
smectic layer. The n-director projection onto the plane
of a smectic layer forms a two-dimensional (2D) field
of molecular orientations, which can be described by a
2D unit vector c(xy), so-called c director [8, 9]. The
defects in the layer plane are formed due to the modu-
lation of c-director orientation. Up to now, the defects
were studied mostly in electric-field-oriented polar
films or in nonoriented samples.

In this work, linear orientational defects were stud-
ied in freely suspended films exposed to a magnetic
field. The use of a magnetic field allowed the study of
nonpolar SmC and observation of the linear defects (π
walls) that cannot form in polar structures in an electric
field. It is established that the structure of a 2π wall
strongly depends on its orientation about the direction
of magnetic field, owing to the anisotropy of the orien-
tational elastic energy of the c-director field. The bend
and splay elastic constants were determined for the
c-director field in nonpolar SmC films.

Measurements were performed on a freely sus-
pended liquid-crystal SmC 4-hexyl-4'-hexyloxy-2'-
hydroxybenzalaniline films. In a bulk sample, the SmC
phase is observed in the temperature range from 39.8 to
80.4°C. Freely suspended films were prepared in a
round hole with a diameter of 3 mm made in a thin glass
plate. Immediately after the preparation, the film was
inhomogeneous in thickness. On holding the sample in
the SmC phase for one hour, the thickness, as a rule,
became homogeneous. Measurements were made on
films with a strictly fixed number of smectic layers. The
0021-3640/03/7708- $24.00 © 0429
number of layers in the film was determined from the
measured optical reflectance spectra [10]. The direction
of a magnetic field about the film plane (polar angle α)
could be changed by turning the sample or magnetic
field in the yz plane (Fig. 1b). The samples were placed
in a thermostatted cell. The defects were imaged in
reflected polarized light using an optical microscope
and a CCD chamber.

We first describe qualitatively the linear and point
defects that are observed in a magnetic field (Fig. 2). In
the crossed-polarizer images, the c director continu-
ously turns by an angle of 90° upon passing through a
light stripe; i.e., the linear defects in Figs. 2a and 2b
with two and four stripes correspond to the π and 2π
walls, respectively. Near the topological defects

Fig. 1. (a) The n director in the SmC structure makes the
angle θ with the normal z to the smectic layer. The azi-
muthal molecular orientation in the layer plane (xy) is spec-
ified by the angle ϕ or by the orientation of c director. The
magnetic field H is parallel to the yz plane and makes the
angle α with the smectic layer. (b) The orientation of the c
director in the field-oriented sample is shown by the arrows.
The angle α could vary by the rotation of magnets (M) or
film about the x axis.
2003 MAIK “Nauka/Interperiodica”
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(‡) (c)

(d)(b)

Fig. 2. (a, b, d) Disclination walls and (c) point topological defects in a magnetic field. Images were obtained in the reflected light
with crossed polarizer and analyzer. Linear (a) π and (b) 2π walls are observed, respectively, for a magnetic field oriented in the film
plane (α = 0) and tilted to it (α ≠ 0). The frame horizontal size is L = 825 µm, and H = (a, b, d) 3.3 kOe. (c) The pair of point topo-
logical defects are of different sign: (left defect) +1 and (right defect) –1. H = 1.1 kOe and L = 760 µm. (d) Annihilation of a closed
disclination loop.
(Fig. 2c), the orientation of c(xy) = [sinϕ(xy), cosϕ(xy)]
changes by the angle [8, 9]

(1)

upon going counter-clockwise round the defect along a
closed loop, where s is the topological charge and i = x,
y. In the SmC phase, the defects with a high topological
charge are energetically less favorable and dissociate
into defects with unit charge. The observation of vari-
ously oriented topological defects in crossed polarizers
showed that the topological charges of two topological
point defects (Fig. 2c) are s = +1 (levo) and s = –1 (dex-
tro), and the c director has a circular configuration in
the +1 topological defect (counter-clockwise rotation).
In the presence of a field, single topological defects are
attracted to the film boundaries, because this minimizes
the film energy. Defects with topological charges of dif-
ferent sign (Fig. 2c) are attracted together and annihi-
late, as it occurs in the absence of the field [2]. The
closed linear defects shrink to a ring and also annihilate
because of the linear tension (Fig. 2d). Those linear
defects whose ends are anchored to the opposite film
boundaries remain in the sample. One can see (Fig. 2)
that both π and 2π walls can form in smectic films in a
magnetic field. This differentiates the system under
consideration from the others. For example, in polar
smectic films, only the 2π walls can form in an electric

∇ iϕdri∫° 2πs=
field, and only the π walls can form in nematics in a
magnetic field [8, 9].

The interaction between the orientational order and
magnetic field H is described by the energy density
−1/2χa(H · n)2, where χa denotes the magnetic anisot-
ropy [8, 9]. The elastic energy of the c(x, y) orientation
field in a thin SmC film has the following form in an
external magnetic field with the geometry shown in
Fig. 1:

(2)

where h is the film thickness and Ks and Kb are, respec-
tively, the 2D splay and bend elastic constants of the c
director [11]. F0 is the ϕ-independent free energy. The
last two terms on the right-hand side in Eq. (2) account
for the magnetic energy: A1 = 1/2sin2θsin2α and A2 =
1/2sin2θcos2α, where α is the angle between the mag-
netic field and the film plane. The 2π periodicity of the
magnetic energy for α ≠ 0 and the π periodicity for α =
0 should give rise, respectively, to the 2π and π walls.
The value of ϕ(x, y) is found by minimizing free energy
(2). In the general case of Ks ≠ Kb, the solution cannot be
found in the analytic form. To demonstrate the typical
behavior of ϕ in a magnetic field, we take Ks = Kb = K.

F F0
h
2
--- Ks ∇ c⋅( )2 Kb ∇ c×( )2+[∫+=

– χaH2 A1 ϕcos A2 2ϕcos+( ) ]dxdy,
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A single-constant approximation was used earlier in the
description of linear and concentric 2π solitons in polar
films exposed to an external electric field [1, 12]. In
contrast to the electric field, the minimization of Eq. (2)
gives the spatially one-dimensional solitonic solutions
of two types:

(3)

(4)

where ξ = (K/χaH2)1/2 is the magnetic coherence length,
B2 = sinθcosα sin(θ + α) and D2 = sin(θ +
α)/cosθsinα. Expression (3) describes the 2π wall and
Eq. (4) describes the π wall; x is measured from the wall
center. The 2π-wall halfwidth w, i.e., the separation
between the points where the direction of c director

ϕ 2 D/ Bx/ξ( )sinh[ ] , α 0,≠arctan+−=

ϕ 2 Bx/ξ( )exp[ ] , αarctan± 0,= =

1

(‡)

2

3

Fig. 3. (a) The form of a 2π wall for different tilts of a mag-
netic field to the film plane: α = (1) 1.5°, (2) 9°, and (3) 1.5°.
As the tilt angle decreases, the wall broadens and forms two
weakly interacting π walls. The magnetic field H = 3.3 kOe
is perpendicular to the 2π wall. The frame horizontal size is
700 µm. Away from the wall, c is directed from left to right.
The number of smectic layers N = 7, and T = 53°C.
(b) Dependence of the 2π-wall halfwidth on α. N = 2.
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changes from π/2 to 3π/2, is proportional to ξ and
diverges logarithmically with decreasing α:

(5)

At w @ ξ, the equation for the 2π wall in the vicinity
of π/2 and 3π/2 takes the form ϕ ≈
±2 , where the plus sign in
the exponent is taken for x < 0 and the minus sign is
taken for x > 0. From the comparison with Eq. (4), one
can see that, upon broadening, the 2π wall transforms
to two π walls, each remaining narrow. Such a transfor-
mation was observed in our experiments. Figure 3a pre-
sents the photographs of a 2π wall for different tilts of
magnetic field. The angular dependence of the half-
width is shown in Fig. 3b. The 2π wall broadens mainly
due to its central part. At a small tilt angle, the 2π wall
diverges into two weakly interacting π walls. The orien-
tational elasticity K can be determined from the data in
Fig. 3b. However, the real situation is more compli-
cated. In the single-constant approximation, the wall
structure should not depend on the azimuthal direction
of magnetic field. Photographs of the 2π wall (a) for its
orientation perpendicular to the magnetic field and
(b) for the H projection Hy parallel to the wall are
shown in Fig. 4. One can see that the wall structures are
essentially different, evidencing that the ordinarily used
single-constant approximation is too crude.

The necessity of taking into account the fact that the
wall structures should be described by two elastic con-
stants requires the use of a more complicated procedure
for determining ϕ(x, y) than was used in the literature in
describing the 2π walls. The first derivatives  were

w 2ξ /B 1 D2+ D+( ).ln=

B w/2 x±( )/ξ[ ]exp{ }arctan

ϕ x y,'

(‡)

(b)

Fig. 4. The form of a 2π wall for its orientations perpendic-
ular and parallel to Hy. Away from the walls, c is directed
(a) from left to right and (b) from top to bottom. In the wall
center, the deformation of c director is bend in photograph
(a) and splay in photograph (b). The separation between the
central light stripes is smaller for the bend deformation
(Kb < Ks). The situation is reversed in the center of the two
side dark stripes: (a) bend and (b) spray deformations. T =
53°C, H = 3.3 kOe, and N = 4; the frame horizontal size is
480 µm. 



432 DOLGANOV, BOLOTIN
found in the analytic form from the Euler equation
obtained by minimizing the free energy functional (2):

(6)

where Kϕ = Kscos2ϕ + Kbsin2ϕ for  (the wall is par-

allel to y) and Kϕ = Kssin2ϕ + Kbcos2ϕ for  (the wall
is parallel to x). Expression (6) also follows from the
condition for equilibrium between the elastic and mag-
netic density energies of a uniformly oriented film. The
function ϕ(x, y) can be found by numerical integration
of Eq. (6). For the crossed-polarizer observations, rota-
tions of the c director by π/4, 7π/4 and 3π/4, 5π/4 cor-
respond to two pairs of light stripes in the image of 2π
wall, while rotation by π/2, 3π/2 corresponds to a pair
of dark stripes. The calculated and experimental posi-
tions of these stripes were compared with each other.
The elastic constants Kb and Ks served as fitting param-
eters. The resulting orientational elastic constants are
shown in Fig. 5. The magnetic anisotropy was taken to
be χa = 1.2 × 10–7 [8].

Before discussing the difference between Ks and Kb,
we analyze the wall dynamics, which can be considered
in the single-constant approximation for the wall
motion as a whole. Expression (3) describes only a
steady-state solitonic solution for α ≠ 0. Under the
assumption that the relaxation dynamics of the c direc-
tor is described by the effective viscosity coefficient γ,
the equation of motion for ϕ(x, t) has the form

(7)

In a tilted magnetic field, apart from the steady-state
solution to Eq. (3), there is a self-similar solution to

ϕ x y,'
χaH2 A1 A2 A1 ϕ A2 2ϕcos–cos–+( )

Kϕ
-----------------------------------------------------------------------------------------

1/2

,=

ϕ x'

ϕ y'

γ∂ϕ
∂t
------ K

∂2ϕ
∂x2
---------=

– 1/2χaH2 A1 ϕsin 2A2 2ϕsin+( ).

Fig. 5. Two-dimensional bend (Kb) and spray (Ks) orienta-
tional elastic constants of the c-director field for films of
various thickness. T = 53°C.
Eq. (7) of the form ϕ(x, t) = u(x – v t) with the boundary
conditions ϕ  0 at x  –∞ and ϕ  π at x 
+∞ that describes the switching wave between the
metastable (ϕ = π) and the stable (ϕ = 0) states: u =
2 , where B ' = cosα sinθ,
and v  corresponds to the velocity of uniform motion of
the switching wave (π walls),

(8)

The switching wave moves in the direction for which
the c-director orientation corresponds to the minimal
magnetic energy. The viscosity coefficient γ character-
izes the dissipative molecular rotation that accompa-
nies the π-wall motion. The switching wave was pro-
duced by the rotation of film about the x in such a way
that α changes its sign. The π wall appeared near the
boundary and moved through the sample. The switch-
ing-wave velocity was measured. The value of γ was
determined from these data, with the effective elastic
constant taken as K ≈ 1.2 × 10–6 erg/cm. For films of dif-
ferent thickness, γ was on the order of 2.1 × 10–2 P. With
the known γ, Ks, and Kb, the 2D orientational diffusivi-
ties were found to be [8] Ds ≈ 1 × 10–4 cm2/s and Db ≈
0.24 × 10–4 cm2/s. The obtained Ds, b values are consis-
tent with the values determined from the measurements
of the orientational fluctuation dynamics in films [2].

Up to now, the 2D orientational elastic constants
Ks, b in smectic films have been determined from
quasielastic light-scattering experiments. The Kb con-
stant in nonpolar SmC films was found to be (0.4–
1.4) × 10–6 erg/cm for various substances [13], in agree-
ment with our data obtained from the analysis of the
structure of 2π walls (Fig. 5). Both 2D constants were
measured in polar films [14, 15]. Their values are mark-
edly different because of the spatial modulation of elec-
tric polarization P upon the deformation giving rise to
the electric charges ρp = –∇  · P in the film. The electro-
static interaction of charges makes an additional contri-
bution to the deformation energy and renormalizes the
elastic constants. For example, according to [16], the Kb

renormalization caused by the polarization charges can
change the elastic modulus by an order of magnitude.
The same changes in K were observed in polar films
with anticlinic structure [12]. In our work, the Ks, b mea-
surements were carried out in a nonpolar SmC, in
which Ks, b should not be renormalized due to the spon-
taneous polarization, so that it would be more correct to
compare Ks, b with the Frank’s 3D moduli K11 (splay),
K22 (twist), and K33 (bend) [8]. The two-dimensional
elastic constants Ks, b can be expressed through the
nematic moduli as [11, 17]

(9)

Expressions (9) are written without taking into account
the layered structure of the smectic. In nematics, Kii ≈

B' x v t–( )/ξ[ ]exp{ }arctan

v K / ξγ( ) α θ.cossin=

Ks K11 θsin
2

,=

Kb K22 θsin
2 θcos

2
K33 θsin

4
.+=
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10–6 erg/cm [8], slightly underestimating the absolute
values of the 2D constants. It should be noted, however,
that anisotropy of the 2D elasticity can be qualitatively
explained by the geometrical relations (9) and from the
fact that K11/K33 increases in liquid crystals with local
smectic ordering in the nematic phase [18, 19].

The measurements performed in this study for sta-
tionary walls and walls producing switching waves
have become possible due to the use of a c-director-ori-
enting magnetic field and broadened the class of sub-
stances for investigation. Moreover, in contrast to an
electric field used for orienting polar smectics, the ori-
entation of the magnetic field about the field plane
could be varied. This allowed us to study the orienta-
tional defects in the c field (2π and π walls) in nonpolar
SmC films and determine the 2D orientational elastic
constants. It was shown that the wall structure strongly
depends on the wall orientation about the unperturbed
c-field direction and that the wall structure can be cor-
rectly described only if the anisotropy of elastic con-
stants are taken into account.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16507), the pro-
gram “New Materials and Structures” of the Section of
Physical Sciences of the Russian Academy of Sciences,
and the state program “Study of Low-Dimensional and
Mesoscopic Condensed Systems.”
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A field-theoretical description of the behavior of a disordered Ising system with long-range interactions is pre-
sented. The description is performed in the two-loop approximation in three dimensions using the Padé–Borel
resummation technique. The renormalization group equations are analyzed, and the fixed points determining
the critical behavior of the system are found. It is shown that the effect of frozen structural defects on a system
with long-range interactions may cause a change in its critical behavior or smearing of the phase transition.
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The effect of long-range interactions, which at long
distances is described by the power law 1/r–D – a, was
studied analytically in terms of ε expansion [1–3] and
numerically by the Monte Carlo method [4–6] for two-
and one-dimensional systems. It was found that the
effect of long-range interactions on the critical behavior
of Ising systems is considerable for a < 2. The study [7]
carried out for a three-dimensional space in the two-
loop approximation confirmed the prediction of ε
expansion for a homogeneous system with long-range
interactions.

According to the results of [8, 9], the introduction of
frozen impurities into a system leads to a change in its
critical behavior. In this connection, it is of interest to
determine the effect of frozen structural defects on the
critical behavior of a system with long-range interac-
tions.

This paper describes the critical behavior of a three-
dimensional disordered system with long-range inter-
actions for different values of the parameter a.

The Hamiltonian of a system with long-range inter-
actions has the form

(1)

where Sq denotes the fluctuations of the order parame-
ter, D is the space dimension, τ0 ~ |T – Tc |, Tc is the crit-
ical temperature, u0 is a positive constant, and ∆τ(x) is
the random field of impurities of the random tempera-
ture type.

The critical behavior strongly depends on the
parameter a, which determines the rate of interaction

H0
1
2
--- qD τ0 qa+( )SqS q–

1
2
--- qD ∆τqSqS q–d∫+d∫=

+ u0 qD Sq1Sq2Sq3S–q1 q2– q3– ,d∫
0021-3640/03/7708- $24.00 © 20434
decrease with distance. According to [1], the effect of
long-range interactions on the system behavior is con-
siderable for 0 < a < 2, while, for a ≥ 2, the critical
behavior is equivalent to that of a system with short-
range interactions. Therefore, only the case of 0 < a < 2
is considered below.

For a low impurity concentration, the distribution of
the random field ∆τq can be considered as Gaussian and
described by the function

(2)

where A is the normalization factor and δ0 is a positive
constant proportional to the concentration of frozen
structural defects.

Applying the replica procedure for averaging over
random fields caused by the frozen structural defects,
we obtain the effective Hamiltonian of the system

(3)

The properties of the initial system can be obtained in the
limit of the number of replicas (transforms) m  0.

Applying the standard renormalization-group pro-
cedure based on the Feynman diagram technique [10]
with the propagator G(k) = 1/τ + |k |a, we arrive at the

P ∆τ[ ] A
1
δ0
----- ∆τq

2
qDd∫– ,exp=

HR
1
2
--- qD τ0 qa+( ) Sq

bS q–
b

b 1=

m

∑d∫=

–
δ0

2
----- qD Sq1

b Sq2
b( ) Sq3

c S–q1 q2– q3–
c( )d∫

b c, 1=

m

∑

+ u0 qD Sq1
b Sq2

b Sq3
b S–q1 q2– q3–

b .d∫
b 1=

m

∑
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expressions for the functions βu, βδ, γϕ, and γt, which
determine the differential renormalization-group equa-
tion:

(4)

(5)

βu 4 D–( )u 1 36uJ0– 24δJ0---+–=

+ 1728 2J1 J0
2–

2
9
---G– 

  u2

– 2304 2J1 J0
2–

1
6
---G– 

  uδ 672 2J1 J0
2–

2
3
---G– 

  δ2+ ,

βδ 4 D–( )δ 1 24uJ0– 16δJ0---+–=

+ 576 2J1 J0
2–

2
3
---G1– 

  u2

– 1152 2J1 J0
2–

1
3
---G– 

  uδ 352 2J1 J0
2–

1
22
------G– 

  δ2+ ,

γt 4 D–( ) –12uJ0 4δJ0+[=

+ 288 2J1 J0
2–

1
3
---G– 

  u2

– 288 2J1 J0
2–

2
3
---G– 

  uδ 32 2J1 J0
2–

1
2
---G– 

  δ2+ ,

γϕ 4 D–( )64G 3u2 3uδ– δ2+( );=

J1
qD pDdd

1 q
a

+( )
2

1 p
a

+( ) 1 q2 p2 2 pq+ +
a/2

+( )
-------------------------------------------------------------------------------------------------------,∫=

J0
qDd

1 q
a

+( )
2

------------------------,∫=
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Let us redetermine the effective interaction vertex:

(6)

As a result, we obtain the following expressions for the
functions β, γϕ, and γt:

(7)

Such a redetermination makes sense for a ≤ D/2. In this
case, J0, J1, and G are divergent functions. Introducing
the cutoff parameter Λ and considering the ratios

G –
k

a
∂

∂
=

× q
D

p
D

dd

1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2pq+ +
a/2

+( )
----------------------------------------------------------------------------------------------------------------------------------.∫

v 1
u
J0
-----, v 2

δ
J0
-----.= =

β1 4 D–( ) 1 36v 1– 24v 2---+–=

+ 1782 2 J̃1 1–
2
9
---G̃– 

  v 1
2

– 2304 2 J̃1 1–
1
6
---G̃– 

  v 1v 2 672 2 J̃1 1–
2
3
---G̃– 

  v 2
2+ ,

β2 4 D–( )δ 1 24v 1– 16v 2---+–=

+ 576 2 J̃1 1–
2
3
---G̃– 

  v 1
2

– 1152 2 J̃1 1–
1
3
---G̃– 

  v 1v 2

+ 352 2 J̃1 1–
1
22
------G̃– 

  v 2
2 ,

γt 4 D–( ) –12v 1 4v 2 288 2 J̃1 1–
1
3
---G̃– 

  v 1
2+ +=

– 288 2 J̃1 1–
2
3
---G̃– 

  v 1v 2 32 2 J̃1 1–
1
2
---G̃– 

  v 2
2+ ,

γϕ 4 D–( )64G̃ 3v 1
2 3v 1v 2– v 2

2+( ).=
Values of the fixed points and the eigenvalues of the stability matrix*

a b1 b2

1.5 –0.395432 0.951135 84.530 59.517

1.6 –0.227628 0.594810 45.302 32.575

1.7 –0.045234 0.274890 13.235 3.915

1.8 0.064189 0.046878 0.626* 0.626*

1.9 0.066557 0.040818 0.559* 0.559*

* For complex eigenvalues, only their real parts are presented.

v 1* v 2*
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(8)

J1

J2
-----

qDd pD / 1 q a+( )2
1 p a+( ) 1 q2 p2 2pq+ +

a
+( )( )d

0

Λ

∫
0

Λ

∫

qD / 1 q a+( )2
d

0

Λ

∫
2

------------------------------------------------------------------------------------------------------------------------------------,=

G

J0
2

-----

∂/ ∂ k
a

( ) qDd pD / 1 q2 k2 2kq+ +
a

+( ) 1 p
a

+( ) 1 q2 p2 2 pq+ +
a

+( )( )d

0

Λ

∫
0

Λ

∫–

qD / 1 q
a

+( )
2

d

0

Λ

∫
2

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
we obtain finite expressions in the limit Λ  ∞.

The values of the integrals were determined numer-
ically. For the case a ≤ D/2, a sequence of the values of

J1/  and G/  was constructed for different Λ and
approximated to infinity.

The critical behavior is completely determined by
the stable fixed points of the renormalization-group
transformation. These points can be found by equating
the β functions to zero:

(9)

The stability requirement for a fixed point reduces to
the condition that the eigenvalues bi of the matrix

(10)

lie in the right half-plane of the complex plane.

The index ν characterizing the growth of the corre-
lation radius in the vicinity of the critical point (Rc ~
|T – Tc |–ν) is obtained from the relation

The Fisher index η describing the behavior of the
correlation function in the vicinity of the critical point
in the wavevector space (G ~ k2 + η) is determined from
the scaling function γϕ: η = γϕ( ). The values of
other critical indices can be determined from the scal-
ing relations.

It is well known that the perturbation series expan-
sions are asymptotic, and the interaction vertices of the
order-parameter fluctuations in the fluctuation region
are sufficiently large, so that Eqs. (7) apply. Therefore,
to extract the desired physical information from the
expressions derived above, the Padé–Borel method
generalized to the many-parameter case was used. The

J0
2 J0

2

β1 v 1
* v 2

*,( ) 0, β2 v 1
* v 2

*,( ) 0.= =

Bi j,
∂βi v 1

* v 2
*,( )

∂v j

------------------------------=

ν 1
2
--- 1 γt+( ) 1– .=

v 1
* v 2

*,
corresponding direct and inverse Borel transformations
have the form

(11)

For the analytic continuation of the Borel transform of
a function, a series expansion in powers of the auxiliary
variable θ is introduced:

(12)

and the [L/M] Padé approximation is applied to this
series at the point θ = 1. This approach was proposed
and tested in [11] for describing the critical behavior of
systems characterized by several interaction vertices of
the order-parameter fluctuations. The property
(revealed in [11–14]) that the system retains its symme-
try when using the Padé approximants in the variable θ
is essential in the description of multivertex models.

The table shows the stable fixed points of the renor-
malization-group transformation and the eigenvalues of
the stability matrix at a fixed point for the parameter
values 1.5 ≤ a ≤ 1.9. One can see that stable fixed points
exist in the physical region (  > 0) only when the
long-range interaction parameter is a ≥ 1.8. The calcu-
lations showed that, for any a < 1.8, the stable points of
a three-dimensional impurity system are characterized

by a negative value of the vertex .

The calculation of the critical indices gave the fol-
lowing values:

(13)

Thus, for a three-dimensional Ising system with
long-range interactions, the introduction of frozen

f v 1 v 2,( ) ci1 i2, v 1
i1v 2

i2

i1 i2,
∑ e t– F v 1t v 2t,( ) t,d

0

∞

∫= =

F v 1 v 2,( )
ci1 i2,

i1 i2+( )!
--------------------v 1

i1v 2
i2.

i1 i2,
∑=

F̃ v 1 v 2 θ, ,( ) θk ci1 i2,

k!
---------v 1

i1v 2
i2δi1 i2+ k, ,

ii i2,
∑

k 0=

∞

∑=

v 1
* v 2

*,

v 1
*

a 1.9, ν 0.671447, η 0.0344048,= = =

a 1.8, ν 0.659510, η 0.050978.= = =
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structural defects leads to a change in its critical behav-
ior if the long-range interaction parameter is a ≥ 1.8 and
to smearing of the phase transition if the parameter is
a < 1.8.
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We show that the expression for the supersymmetric partition function of the chiral unitary (Laguerre) ensemble
conjectured recently by Splittorff and Verbaarschot [Phys. Rev. Lett. 90, 041601 (2003)] follows from the gen-
eral expression derived recently by Fyodorov and Strahov [J. Phys. A: Math. Gen. 36, 3203 (2003)]. © 2003
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A class of random matrices that has attracted con-
siderable attention recently [1–10] is the so-called
chiral (Gaussian) unitary ensemble (chGUE), also
known as the Laguerre ensemble. The corresponding

matrices are of the form  = , where 

stands for a complex matrix, with  being its Hermi-
tian conjugate. The off-diagonal block structure is char-
acteristic for systems with chiral symmetry. The chiral
ensemble was introduced to provide a background for
calculating the universal part of the microscopic level
density for the Euclidian QCD Dirac operator (see [11]
and references therein). Independently and simulta-
neously, it was realized that the same chiral ensemble
describes a new group structure associated with scatter-
ing in disordered mesoscopic wires [2]. One of the
main objects of interest in QCD is the so-called Euclid-
ean partition function used to describe a system of
quarks characterized by nf flavors and quark masses mf

interacting with the Yang–Mills gauge fields. At the
level of random matrix theory, the true partition func-
tion is replaced by the matrix integral

(1)

where  = diag( , …, ) and V(z) is a suitable

potential. Here, the integration over complex 
replaces the functional integral over gauge field config-
urations [11]. Then the calculation of the partition func-

¶ This article was submitted by the authors in English.

D̂ 0 Ŵ

Ŵ
† 0 
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M̂ f( ) $Ŵ det iD̂ m f

k( )12N+{ }
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∏∫=

× e NTrV Ŵ†Ŵ( )– ,

M̂ f m f
1( ) m f

n f( )

Ŵ
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tion amounts to performing the ensemble average of the

product of characteristic polynomials of i  over the

probability density P(W) ∝  . In the general
case of nonzero topological charge ν > 0, the matrices

 have to be chosen rectangular of size N × (N + ν)
[11]. For simplicity, one may choose the probability
distribution to be Gaussian as defined by the formula

d3(W) ∝  d d exp–[NTr ].

The characteristic feature of the chiral ensemble is
the presence of a particular point λ = 0 in the spectrum,
also called the “hard edge” [3]. The eigenvalues of
chiral matrices appear in pairs ±λk, k = 1, …, N. Far
from the hard edge, the statistics of eigenvalues are
practically the same as for usual GUE matrices without
chiral structure, but in the vicinity of the edge eigenval-
ues behave very differently.

Let ]N[m] be the spectral determinant (characteris-

tic polynomial of i )

, (2)

and let us consider a more general (supersymmetric)
partition function for the chGUE defined as

(3)

where

D̂

e NTrV Ŵ†Ŵ( )–

Ŵ

Ŵ Ŵ
†

Ŵ
†

Ŵ

D̂

]N m[ ] det m21N Ŵ
†
Ŵ+( )=

_ M̂ f M̂b,( )

]N m f
j( )[ ]

j 1=

L

∏

]N mb
j( )[ ]

j 1=

M

∏
------------------------------

W

,=

M̂ f diag m f
1( ) … m f

L( ), ,( ),=
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This correlation function contains much more informa-
tion on the spectra of chiral matrices than the partition
function (1), since it involves both a product and ratios
of the characteristic polynomials. Much effort were
spent on developing methods allowing one to calculate
particular cases of such a general supersymmetric par-
tition (or correlation) function [9, 10]. In particular, the
case ν = 0 was completely solved in [12] by a variant of
the supermatrix method [10, 13] augmented with a gen-
eralization of Itzykson–Zuber type integrals [4, 5] to
integration over noncompact group manifolds. In the
recent paper [14], Splittorff and Verbaarschot conjec-
tured the result for arbitrary integer ν > 0 in the micro-
scopic (sometimes also called “chiral”) large-N limit:

N  ∞ such that  = 2N  is finite. The authors
of [14] used the advanced version of the replica method
suggested recently by Kanzieper [15]. The final result
is given in terms of a determinant containing modified
Bessel functions Il(z) (“compact integrals”) and their
noncompact partners—Macdonald functions Kl(z). The
goal of the present letter is to show that the case ν ≠ 0
considered in [14] in fact follows from a very general
expression derived in the recent paper [16]. The demon-
stration of this fact also provides a natural explanation
of why both compact and noncompact integrals must
appear on an equal basis.

The eigenvalues x1, …, xN of the N × N positive def-

inite matrix H =  are known to be distributed
according to the Laguerre ensemble density function

M̂b diag mb
1( ) … mb

M( ), ,( ).=

X̂b f, M̂b f,

Ŵ
†

Ŵ
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, (4)

where wν(x) = xνe–Nx and ∆( ) = . Note

that the spectral determinant ]N(m) =

(−1)N  is just the characteristic poly-
nomial of matrices H from the Laguerre ensemble
taken at negative real values of the spectral parameter.
As is proved in the paper [16], one can express the gen-
eral correlation function of the characteristic polynomi-
als for an arbitrary unitary invariant ensemble of β = 2
symmetry class in terms of a (M + L)-sized determinant.
The main building blocks of that determinant are (monic)
orthogonal polynomials πn(x) = xn + … satisfying

, (5)

where w(x) is a general weight function, cn are normal-
ization constants, and D is the corresponding interval of
orthogonality. A novel feature revealed in [16] is that
for M > 0 such a determinant structure contains the
Cauchy transforms of the orthogonal polynomials

(6)

alongside with the orthogonal polynomials themselves.
For them to be well defined, we need to have Im(e) ≠ 0.

Actually, the partition function Eq. (3) is given by [16]

3 x1 … xN, ,( ) ∆2 X̂( ) wν xi( )
i 1=

N

∏∝
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i j>∏
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D
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… … …

… … …
For the Laguerre ensemble of matrices H with positive
eigenvalues  = diag(x1, …, xN), the weight function is
just wν(x) = xνe–Nx, the domain is D = [0 ≤ x < ∞], and
the monic polynomials are

X̂

πn x( )
1–( )n

Nn
-------------n!Ln

ν xN( ),=
with  being the standard Laguerre polynomials.

Here ν can be taken real valued with ν > –1. To calcu-

late the Cauchy transform Eq. (6), we exploit a well-

known integral representation for the Laguerre polyno-

mials containing the Bessel function Jν(x):

Ln
ν xN( )
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(8)

Let us consider, for definiteness, Im(e) > 0 and further
employ the integral representation

(9)

Then, replacing πn(x) in (6) by (8) and 1/(x – e) by (9),
we easily perform the integration over x first, then inte-
grate over τ, and arrive at the following representation
(cf. Eq. (8)):

(10)

Here,  is the Hankel function of the first order.
Being actually interested in analytically continued val-
ues of πn(x), hn(x) for the region x = –m2 < 0, we intro-
duce the modified Bessel and Macdonald functions
according to Iν(z) = e–iπν/2Jν(iz) and Kν(z) =

(iπ/2)eiπν/2 . We then have

(11)

(12)

Substituting such representations into the expression (7),
it is easy to show that the right-hand side can be rewrit-
ten as the (M + L)-fold integral

(13)
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detMb
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t̂det t̂( )N M– ∆ t̂( ) NTr t̂–( )expd
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Here,  > 0 is a diagonal matrix of the size M + L with
entries t1, …, tM + L, and we rescaled t  Nt. Such an
equation generalizes the integral representation
(Eqs. (28), (29) from [12]) to nonzero values of ν. It is
valid for any integer N, L, M. The chiral limit N  ∞
can be performed exactly along the same lines as in
[12], and the result is the one conjectured by Splittorff
and Verbaarschot [14, 17]:

(14)

Here, Xf = X{i = 1, …, L} and Xb = X{i = L + 1, …, L + M} denote
the rescaled fermionic and bosonic masses, respec-
tively, as well as (i = Ii for i = 1, …, L and (i = Ki for
i = L + 1, …, L + M. Note that the presence of “com-
pact” (modified Bessel) and “noncompact” (Mac-
donald) functions in the final expressions is a direct
consequence of the presence of both orthogonal poly-
nomials and their nonpolynomial partners (Cauchy
transforms) in the determinantal representation. One
may also wish to consider a more general type of poten-
tials V in the probability density (see, e.g., [7]). The
related universality questions will be addressed else-
where [18].
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The magnetic properties of defects were studied in spin-gap magnets such as spin-Peierls magnet CuGeO3,
Haldane magnet PbNi2V2O8, and charge-ordered ladder magnet NaV2O5. Doping of these systems with nonmag-
netic impurities leads to additional magnetic degrees of freedom, which manifest themselves at low tempera-
tures, where the intrinsic magnetic susceptibility of a spin-gap system is close to zero. Magnetic susceptibility
appears due to the local destruction of the singlet ground state as a result of impurity-induced breakage of spin
chains. Antiferromagnetically correlated areas arise near the spin-chain breaks. The sizes of these areas and the
effective spin of these specific spin clusters are estimated. The order parameter and its spatially modulated depth
are determined for impurity-induced magnetically ordered phases. The magnetic properties of defects for the
NaV2O5 ladder structure are explained in the model of electrons “hopping” near the chain break. The hopping
degree of freedom effectively influences the total spin of a spin-chain fragment and magnetization of the sys-
tem. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm; 75.60.Ch; 75.50.Ee; 75.30.-m
Chains of spins coupled by the Heisenberg antifer-
romagnetic exchange interaction

(1)

have been actively studied in recent years. The simple
formulation of the problem and the nontrivial solution
and results attract the attention of theorists. Experimen-
talists are interested in the realization of objects exhib-
iting new quantum phenomena.

The ground state of a chain of S = 1/2 spins arranged
along a straight line with the period a is singlet and has
no magnetic order; i.e., the average spin projection at

each site is zero,  = 0 [1]. The absence of the aver-
age magnetic moment at the lattice site in the ground
state is a quantum effect and has no classical analogue.
The dispersion law of long-wavelength excitations of
such a chain is similar to the spectrum of spin waves in
an ordinary antiferromagnet ε(k) ~ . How-
ever, the velocity of excitation propagation v  = πJa/2"
is higher than the velocity vmf = Ja/" [2] calculated in
the molecular-field approximation. Although long-
range magnetic order is absent, the length of spin–spin
correlation is infinite, because the correlation function
decreases following a power law.

The properties of S = 1 spin chains with antiferro-
magnetic exchange differ even more strongly from the
properties of ordered antiferromagnets. Indeed, the cor-
relation length ξ is finite and equal to about 7a, and the
spectrum of spin excitations (triplets) is separated from
the ground state (disordered and singlet) by a gap of

* JSiSi 1+

i

∑=

Si
z〈 〉

ka/2( )sin
0021-3640/03/7708- $24.00 © 0442
exchange-origin (so-called Haldane gap) ∆ . 0.41J
[3, 4].

The spectrum of spin excitations in S = 1/2 spin
chains also has an energy gap if the exchange is alter-
nating, i.e., if the exchange integral between neighbor-
ing ions in a chain alternately takes one of the two val-
ues J ± δ. In this case, the gap is determined by the
alternating parameter, ∆ . δ [5]. The appearance of a
spin gap is responsible for a finite correlation length
ξ . v"/∆.

The described spin-gap systems are realized in crys-
tals including S = 1 spin chains and alternating chains
of S = 1/2 spins. The alternation of spin chains can arise
either due to the crystal structure [6] or spontaneously
through so-called spin-Peierls transition occurring
because the alternation (dimerization) leads to gain in
the exchange energy [7, 8]. There are other disordered
spin-gap systems such as ladder spin structures [9] and
systems of coupled spin dimers [10]. The disordered
ground state is insensitive both to weak interactions
between chains and to anisotropy if the corresponding
perturbation energy is low compared to the spin gap.
Magnetic excitations of a spin-gap crystal are frozen
out at low temperatures T ! ∆/kB, and the system of
magnetic ions becomes nonmagnetic.

The replacement of a magnetic ion by a nonmag-
netic one results in the breakage of a spin chain and
local disturbance of the singlet state. As a result, an area
of antiferromagnetically correlated nonzero average
spin projections, i.e., an area of local antiferromagnetic
order, appears near an impurity (see Fig. 1). These anti-
ferromagnetic areas will be called clusters. We empha-
2003 MAIK “Nauka/Interperiodica”
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size that these clusters are formed by the base-matrix
spins recovered from the singlet background due to
exchange interaction with an end spin. The number of
magnetic ions in a cluster is equal to about ξ/a, and the
absolute value of the average spin projection is maxi-
mal near the chain end and decreases with distance
from the chain end. A cluster has nonzero spin and
magnetic moment. The formation of clusters with local
antiferromagnetic order was analyzed theoretically in
[11] for a spin-Peierls magnet and in [12] for a Haldane
magnetic (see Fig. 1).

Moreover, the appearance of clusters leads to an
extraordinary phenomenon—stimulation of long-range
antiferromagnetic order by impurities introduced in a
spin-gap matrix. This effect was predicted in [13] and
was then observed in a spin-Peierls magnet [14], a
Haldane magnet [15], and a dimeric spin system [16].
Impurities (including nonmagnetic) induce magnetic
ordering, because the wings of spin clusters overlap
with each other, clusters in neighboring chains correlate
due to weak interaction between chains, and the antifer-
romagnetic order extends over the whole sample. In
this case, the order parameter is strongly inhomoge-
neous.

In this paper, experiments on studying clusters and
the impurity-induced magnetic order in spin-gap sys-
tems are reviewed. The size of clusters, as well as the
average order parameter and its modulation depth in an
impurity-induced ordered phase, are estimated by ana-
lyzing magnetic resonance spectra. “Hopping defects”
in a spin-gap magnet with a charge degree of freedom
will be described at the end of the review.

1. Magnetic resonance of spin clusters and triplet
excitations in a spin-Peierls magnet. A suitable object
for studying defects in a spin-gap matrix is the inor-
ganic spin-Peierls magnet CuGeO3, where the temper-
ature of the spin-Peierls transition is TSP = 14.5 K and
the spin gap at low temperatures ∆(0) . 25 K [7].

The spin gap is opened at temperature TSP and is
close to its maximum value ∆(0) below 7 K. Samples
are grown as perfect single crystals, and the magnetic
Cu2+ (S = 1/2) ions can be replaced by, e.g., nonmag-
netic ions (Zn, Mg) or magnetic Ni (S = 1) ions. These
impurities occupy the sites of Cu2+ ions in the CuGeO3
lattice. In this case, the solubility limit exceeds 6%.
Thus, a controlled number of the breaks of dimerized
chains can be introduced by doping with zinc or mag-
nesium. When doping with nickel, the spatially uniform
singlet state is disturbed so that two fragments of the
chain are coupled through a nickel magnetic ion, and
the impurity ion is located at the center of a cluster. The
contributions of the defects of spin-gap systems to sus-
ceptibility and to the magnetic resonance signals are
clearly seen against the background of a singlet and
nonmagnetic matrix. In pure CuGeO3 crystals, the low-
frequency magnetic resonance [f ! ∆(0)] at tempera-
tures below TSP is caused by the transitions between the
spin sublevels of triplet excitations. Its intensity
JETP LETTERS      Vol. 77      No. 8      2003
decreases with decreasing temperature because of exci-
tation freezing out. The resonance field virtually does
not change with temperature and corresponds to the g
factor gCu . 2.1 characteristic of the Cu ions [17]. In
doped samples, a strong magnetic resonance signal due
to the defect spins appears at low temperatures. The
dimerized phase in nickel-doped crystals, in contrast to
crystals doped with other elements, exhibits an anoma-
lous temperature dependence of the g factor. At T < TSP,
the effective g factor decreases and reaches an anoma-
lously small value of 1.4 at low temperatures and H || c
[18]. This g-factor value differs strongly from the value
characteristic for nickel and copper ions. The anomaly
in the g factor is associated with the Dzyaloshinskii–
Moriya interaction near a defect and the multispin
nature of a cluster. Indeed, the Dzyaloshinskii–Moriya
interaction in a system including more than two spins
gives rise to a strong anisotropy of the effective g factor
and reduces its value [19]. Calculations with a model
with six spins show that the Dzyaloshinskii–Moriya
interaction with an energy of 30% of the exchange
energy in a chain suffices to explain gc = 1.4 [18].

The anomaly in the g factor makes it possible to reli-
ably distinguish the magnetic resonance signals of
defects formed due to the inclusion of nickel ions from
a signal of the base matrix. High-quality
Cu(1 − x)NixGeO3 samples, where signals from individ-
ual clusters at low concentrations are not smeared by
the interaction with residual defects, were studied in
[20]. Figures 2 and 3 show the EPR line shape for sam-
ples with x = 0.002 and 0.008. The EPR intensity
decreases at T < TSP, because triplet excitations become
frozen. The position of the line varies smoothly with
temperature. Figure 4 shows the temperature depen-
dence of the g factor. Variation of the g factor reflects
the continuous transition of magnetic resonance from
the resonance frequency of triplet excitations to the res-

Fig. 1. Spin structure of a fragment of a Haldane spin chain

for an odd number of spins and total projection  = 1,

where n is the site number. The figure is taken from [12].

Stot
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onance frequency of spin clusters. Smooth variation in
the resonance field means that the indicated spin oscil-
lation modes affect each other due to the exchange
interaction between the excitations and clusters. In a
sample with low impurity concentration, the EPR line

Fig. 2. Resonance absorption line shape of a
Cu0.998Ni0.002GeO3 sample at various temperatures [20],
f = 36 GHz, H || c. Vertical intervals in (a) and (b) corre-
spond to the same absorption.

Fig. 3. Same as in Fig. 2, but for a Cu0.992Ni0.008GeO3 sam-
ple.
is split into two components corresponding to the resid-
ual triplet excitations and the resonance of individual
clusters.

The magnetic resonance frequencies in the presence
of the exchange interaction between two spin sub-
systems can be described in the theory of the EPR line
exchange narrowing [21]. In the presence of the
exchange interaction between two spin systems, one
can observe either two resonance lines or a single com-
mon line (if the exchange-hopping frequency is,
respectively, lower or higher than the difference in the
frequencies of spin precession in the two subsystems).
The resonance line frequencies and widths depend on
the strength of exchange interaction between the sub-
systems and their susceptibilities. In particular, the cen-
ter of gravity of the magnetic-resonance spectrum (and
resonance frequency if exchange is fast) is determined
by the resonance frequencies of each subsystem, which
are taken with weights proportional to susceptibility. In
our case, there are xNA clusters per one mole of the sub-
stance, and their susceptibility, without regard for the
interaction with triplets, obeys the Curie law. The num-
ber and susceptibility of triplet excitations are calcu-
lated using values known for a pure crystal, with allow-
ance made for the fact that excitations can be located in
chain areas free of clusters; i.e., the sample volume
fraction accessible to them is (1 – xL/a), where L is the
cluster effective size. The susceptibilities of triplets and
clusters, with allowance for interaction between them,
are determined in molecular-field theory. The model
involves three parameters determined by fitting the
gα(T) functions to the experimental curves. These
parameters are the effective exchange integral of clus-
ter–triplet interaction Jeff = 13 ± 1 K, the cluster size L =
(32 ± 2)a, and the effective exchange frequency Ωe =
(2.2 ± 0.3) × 1012 s–1. Figure 4 shows the results of fit-
ting. To test the model, the temperature dependence of
the line width is calculated by using these three param-
eters (see Fig. 5). For concentration x = 0.2%, the cal-
culations agree well with experimental data. For higher
concentrations, there is a qualitative agreement, and
small discrepancy is attributed to the interaction
between clusters. The Ωe parameter is of the same ori-
gin as Jeff and determines the frequency of exchange
hopping in the presence of triplet excitation at the lat-
tice site nearest to the cluster. The relation "Ωe ~ Jeff
between these parameters agrees with this circum-
stance.

Thus, the observation of cluster magnetic resonance
gives an estimate of 30a for the size of a spin cluster.
The study of magnetic resonance in a temperature
range where a sufficient number of triplet excitations
exist allows the conclusion to be drawn that a unified
collective spin resonance mode is formed in the pres-
ence of interaction with clusters. Such a behavior indi-
cates that the propagating triplet excitations do not
destroy the cluster structure upon collisions with the
ends of broken chains (otherwise, their spin-precession
JETP LETTERS      Vol. 77      No. 8      2003
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mode would disappear). The cluster size can be esti-
mated more roughly by using the differences between
the EPR line widths and positions in samples with x =
0.002 and 0.008. It is reasonable to attribute these dif-
ferences to the interaction between clusters, which
occurs due to the overlap of cluster wings. Clusters con-
tact each other in chain fragments with a length on the
order of L (we suppose that the number of cluster spins
on each side of a nickel atom is L/2a). The fraction of
such chains is approximately equal to xL/a. Thus, we
conclude that the edges of an appreciable fraction of
clusters in the case x = 0.01 contact each other at
L ≈ 50a.

2. Magnetic resonance in a Haldane magnet with
defects. The problem of the effective spin arising due to
the breakage of a chain is of considerable interest for a
Haldane magnet. There is a hypothesis that the S = 1/2
effective spin arises near the break of the chain [22].
This hypothesis is clearly illustrated and corroborated
by numerical simulation [12] (Fig. 1). Nonzero average
spin projections in a fragment of the S = 1 spin chain are
concentrated near the ends of the fragment, and the spin
projections near the end are virtually independent of the
state of the other end of the fragment (for a sufficiently
long chain). The sum of spin projections near the frag-
ment end is equal to 1/2. Far from the fragment ends,
the average spin projection is zero. The exact diagonal-
ization of Hamiltonian (1) for an S = 1 spin chain [23]
shows that sufficiently long fragments of spin chains
have two closely spaced energy levels, one of which is
singlet and the other is triplet. These levels are expo-
nentially close to each other in the parameter ξ/l, where
l is the fragment length. Thus, a long fragment of the
S = 1 spin chain is equivalent to two degrees of freedom
with spin S = 1/2, regarding both the magnetic moment
and the degeneracy order. The magnetic resonance
spectrum depends substantially on the effective spin of
a magnetic object, because the crystal field splits
energy levels for S = 1 and does not split levels for S =
1/2 (see, e.g., [24]). Therefore, the observation of mag-
netic resonance for the free ends of Haldane chains is of
considerable interest for determining the effective spin
of the chain end. Magnetic resonance of the ends of
broken Haldane chains was first observed for a weak
substitution of Cu2+ ions for the Ni2+ ions in the
[Ni(C2H8N2)2(NO2)]ClO4 organic compound (NENP)
[22]. The measured spectra were interpreted using the
model of three coupled spins: two spins at the chain
ends and the impurity-ion spin. The magnetic reso-
nance study of a diamagnetically diluted Haldane mag-
net PbNi2V2O8 [25] allows one to observe a signal from
the free ends of spin chains and reveal the effects of
interaction between the chain ends in the concentration
dependence of line shape. Figure 6 shows the magnetic
resonance lines for a ceramic sample of the Haldane
magnet PbNi2V2O8, where some magnetic Ni2+ ions are
replaced by nonmagnetic Mg2+ ions. As is seen, doping
JETP LETTERS      Vol. 77      No. 8      2003
with nonmagnetic ions increases the magnetic reso-
nance intensity.

The magnetic-field dependence of the EPR fre-
quency can be obtained by measuring such spectra in
the 9–110 GHz frequency range. This dependence is
shown by closed points in Fig. 7. Within a high accu-
racy, the resonance frequency is a linear function of the

Fig. 5. Temperature dependence of the EPR line width for
CuGeO3 samples for x = (a) 0.2 and (b) 0.8%. Lines are for
the calculations in [20].

Fig. 4. Temperature dependence of the g factor for a
Cu0.998Ni0.002GeO3 sample [20]. Circles, squares, and tri-
angles are for H || a, H || b, and H || c, respectively. Lines are
calculations in the exchange-narrowing model.
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field. This function passes through the coordinate ori-
gin. Thus, these data testify to the absence of splitting
wider than 0.5 GHz. In the presence of crystal-field
splitting, resonance lines of a ceramic sample would
transform into the extended absorption bands. The
crystal-field splitting of the EPR spectrum of an indi-
vidual spin S = 1 is determined by the spin-Hamiltonian

Fig. 6. Unit-mass-normalized magnetic resonance lines for
a diluted Haldane magnet [25]. The narrow line for B =
0.98 T is the reference point from the diphenyl-picryl-
hydrazine: g = 2.0.

Fig. 7. Resonance frequency vs. magnetic field in
Pb(Ni(1 − x)Mgx)2V2O8 ceramic samples in the (T = 5 K,
closed points) paramagnetic phase and (T = 1.3 K, open
points) ordered phase [25]. Circles and squares correspond
to x = 0.04 and 0.06, respectively.
term D , where D is the single-ion anisotropy con-
stant. The splitting width can be estimated by using the
value D = –0.23 meV, determined from the spectrum of
magnetic excitations measured in neutron scattering
experiments [26]. The above single-ion anisotropy con-
stant corresponds to the 56-GHz splitting of paramag-
netic resonance. In the presence of such spitting, an
exceedingly broad absorption band would be observed
in the ceramic sample, which is inconsistent with the
observed resonance lines shown in Fig. 6. Thus, the
EPR spectrum suggests that the effective S = 1/2 spins
appear at the ends of broken spin chains in PbNi2V2O8.
These data also testify to the significant broadening of
the line with increasing concentration of defects; the
line for x = 0.02 is 0.5 T broader than for x = 0.01. Such
a significant line broadening cannot be attributed to the
dipole–dipole interaction (the corresponding local
fields are on the order of 0.01 T). Taking into account
that magnetic defects involve many spins, this line
broadening can be attributed to a contact between clus-
ters, as was described in Section 1. However, we take
into account that, in the case of nonmagnetic doping,
independent clusters are located on different sides of an
impurity atom and that clusters contact each other in
2L-long fragments. Therefore, the size of a cluster in
Pb(Ni(1 – x)Mgx)2V2O8 is estimated at L ~ 10a. This esti-
mate agrees well with the theoretical value of spin–spin
correlation length ξ in a Haldane magnet.

3. Defect-induced magnetic order. With lowering
temperature, the doped samples undergo transition to
the antiferromagnetic state. Since the ordering is due to
the overlap of the cluster wings, the order parameter is
strongly inhomogeneous. To characterize this exotic
state, it is necessary to determine the average value and
the modulation depth of the order parameter.

On cooling the Pb(Ni(1 – x)Mgx)2V2O8 samples below
the Néel temperature TN (  = 3.4 K for x = 0.04),
the magnetic resonance absorption line transforms to
an absorption band that is characteristic of a powder
antiferromagnetic sample (variation in the line shape
for various frequencies was given in [25]). The edges of
this band correspond to the AFMR frequencies for
rational directions of a magnetic field. From the mag-
netic fields, for which the absorption band edges were
observed, the AFMR frequency spectrum was deter-
mined for various magnetic-field directions about the
crystallographic axes. The magnetic-field dependence
of the AFMR frequencies is shown in Fig. 7. It qualita-
tively corresponds to the spectrum of resonance fre-
quencies for an antiferromagnet with easy-axis anisot-
ropy. In particular, these data enable one to determine
the gap in the magnetic resonance spectrum ω0/2π =
80 GHz. In the molecular-field approximation, the gap

is determined by the average order parameter 

Si
z( )2

TNmax

Si
z〈 〉
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(averaging over time and lattice sites) and the anisot-
ropy and exchange constants:

(2)

Using the values J = 9 meV and D = –0.23 meV
obtained in the inelastic neutron scattering experiments

[26], we obtain the estimate  . 0.06. This value
corresponds to the maximum value of the average order
parameter, which is reached at x = 0.04.

4. Microscopic separation of phases in the pres-
ence of impurity-induced antiferromagnetic order-
ing. When the phase transition to the antiferromagnetic
state occurs, the magnetic resonance signal usually
transforms from the EPR signal to the AFMR signal.
The EPR frequency is determined by the properties of
individual magnetic ions, and the AFMR frequency is
determined by the oscillations of the order parameter.
Thus, the phase transition to an ordered state is accom-
panied by the rearrangement of magnetic resonance
spectrum. The observation of this rearrangement makes
it possible to determine the transition temperature and
other characteristics of the phase transition. In the
above-described experiments with a sufficiently high
impurity concentration (above 3%), impurity ions are
closely spaced, at distances on the order of the correla-
tion length ξ. For such concentrations, the transition to
the antiferromagnetic state is similar to the phase tran-
sition in ordinary three-dimensional antiferromagnets.
Of particular interest are low concentrations, for which
the spacing between impurity atoms in chains exceeds
the length ξ, and spin clusters are separated by the
residuals of singlet matrix. For Pb(Ni(1 – x)Mgx)2V2O8
samples with x < 0.03, the EPR line is retained down to
low temperatures, in contrast to samples with x > 0.03.
Thus, magnetic resonances of two types coexist at low
temperatures.

This coexistence of two resonances can be studied
more comprehensively with Cu(1 – x)MgxGeO3 single-
crystal samples, where the uniform impurity distribu-
tion over the sample and the impurity content were spe-
cially controlled. The impurity density distribution over
a sample is uniform within an accuracy of 10–3. Figure 8
shows the variation of the magnetic resonance spec-
trum upon the transition through the Néel point in a
doped spin-Peierls magnet Cu(1 – x)MgxGeO3 with x =
0.017. As is seen, the EPR line is split into two lines
with a decrease in temperature. One component corre-
sponds to the paramagnetic resonance; i.e., the reso-
nance field is independent of temperature and coincides
with the resonance field of the paramagnetic phase. The
position of the second spectral component depends on
temperature, and the field dependence of the frequency
(see [27]) corresponds to the spectrum of a double-axis
antiferromagnet. There is a wide temperature range
where two lines—AFMR and EPR—are simulta-
neously observed. The uniform impurity distribution
over the sample and the narrow temperature range of

"ω0 4 D J Si
z〈 〉 .=

Si
z〈 〉
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transition (0.1 K) rule out the explanation of the coex-
istence of two magnetic resonance lines by the macro-
scopic inhomogeneity of the sample. The coexistence
of two resonance modes in the sample cannot be inter-
preted in the framework of a single phase, because
order parameter oscillations in the antiferromagnetic
phase exclude the paramagnetic resonance mode, while
the paramagnetic phase does not allow the line split-
ting. The coexistence of two resonance modes can pos-
sibly be explained by a microscopic phase separation of
the sample into paramagnetic and antiferromagnetic
areas. Indeed, let us consider spin clusters that are
formed around the impurity atoms and suppose that the
coherent antiferromagnetic order exists in an area of
size L* satisfying the relation

(3)

At distances larger than L*, antiferromagnetic cor-
relations are destroyed by thermal fluctuations. In the
transverse directions, antiferromagnetic correlations
propagate to distances that are determined by the
exchange integrals in the corresponding directions.
Thus, we arrive at a simplified model [27], where an
elliptic antiferromagnetic area exists near each impu-
rity center. The ellipse length along the chains is deter-
mined by Eq. (3). The transverse length decreases
according to the ratio of exchange integrals. For high
temperature, the areas of local antiferromagnetic order
are small and do not contact each other, the order
parameters in them do not correlate, and the long-range
order is absent. In this case, each cluster contributes to

kBT JS2 2L∗ /ξ–{ } .exp=

Fig. 8. Magnetic resonance line shape near the Néel point in
a Cu0.983Mg0.017GeO3 single crystal [27] for H || b, f =
36 GHz, and TN = 2.25 K.
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the sample susceptibility and magnetic resonance sig-
nal, in accordance with the total magnetic moment of
the cluster. Therefore, the susceptibility and magnetic
resonance spectrum have a paramagnetic character. As
the temperature decreases, clusters grow, and some of
them begin to contact each other and form more
extended areas with a coherent antiferromagnetic order
covering several impurity atoms. Finally, an area of
antiferromagnetic order “percolating” through the
whole sample arises, as shown in Fig. 9. The appear-

Fig. 9. Simplified simulation of the structure of impurity-
induced ordered phase [27]; areas with local antiferromag-
netic order are gray (the largest area is black), disordered
areas are white, and crosses are for two individual clusters.

Fig. 10. Zigzag spin chains in ladders of exchange-coupled
vanadium ions in the V–O layers of NaV2O5 crystals [32].
Solid lines are exchange interactions between vanadium
ions, closed circles are V4+ magnetic ions, open circles are
nonmagnetic V5+ ions, gray circles are vanadium ions with
hopping electrons, triangles are sodium vacancies (above or
below the V–O layer). Arrows indicate the possible electron
jumps changing the parity of fragments. The dashed ovals
denote dimerization (alternation) of chains.
ance of such an area corresponds to the percolation
threshold in the percolation problem for interpenetrat-
ing spheres [28]. At this L* value and in its vicinity,
there are single clusters in the sample (see Fig. 9),
which have nonzero magnetic moments and are iso-
lated from large antiferromagnetic areas by a weakly
perturbed singlet matrix. The free spins of these clus-
ters continue to give EPR signals, as also above the
transition point. Thus, there are three types of areas
below the Néel point: (i) sufficiently large areas with
local antiferromagnetic order that are responsible for
the AFMR signals, (ii) singlet-matrix areas that show
no magnetic response, and (iii) single clusters separated
from the antiferromagnetic areas by the singlet matrix.

This picture of microscopic phase separation is con-
sistent with the two-dimensional numerical Monte
Carlo simulation for the ground state of spin-Peierls
and doped Haldane systems [29]. In that work, a weak
interaction between chains was taken into account and
it was shown that antiferromagnetically correlated non-
zero spin projections (peaks of local order parameter)
exist near the spin vacancies, and the space between the
peaks is filled with a slightly perturbed singlet matrix.
It is substantial that simulation [29] demonstrated a
strong (almost 100%) modulation of the order parame-
ter. Assuming that the vanishingly small order parame-
ter in the areas between impurities is destroyed by ther-
mal fluctuations at nonzero temperatures, we conclude
that the structure obtained in [29] is equivalent to the
structure suggested above on the basis of the two coex-
isting magnetic resonance signals.

5. Hopping defects in NaV2O5 crystals. Magnetic
moments in the NaV2O5 compound are carried by vana-
dium ions, whose chains are arranged along the b axis
of the orthorhombic structure. As is seen from the
valence counting, one d electron is shared by two vana-
dium ions. Detailed structural studies show that the
structure, in which all vanadium ions have the same
average charge of +4.5 and d electrons (and spins) are
located at the V–O–V molecular orbitals, is realized in
the high-temperature phase (T > 35 K) [30, 31]. In other
words, one electron is equally shared by two vanadium
ions from neighboring chains and is localized at a
“step” of the ladder structure consisting of vanadium-
ion chains. The spins of these electrons form one-
dimensional spin chains. At a temperature of 35 K, the
charge ordering occurs; electrons are partially localized
at the ends of ladder steps and form zigzag chains [31],
as is shown in Fig. 10. The electron-density redistribu-
tion results in the exchange alternation and appearance
of a spin gap ∆(0) = 90 K. Due to the electron defi-
ciency in the V–O layers of Na1 – xV2O5 crystals, some
of the ladder steps are empty (see Fig. 10). These empty
steps represent breaks of the dimerized S = 1/2 spin
chains and are responsible for a strong increase in mag-
netic susceptibility in the temperature range where sto-
ichiometric crystals are virtually nonmagnetic because
of the opening of the spin gap. However, this case dif-
JETP LETTERS      Vol. 77      No. 8      2003



MAGNETIC PROPERTIES OF DEFECTS IN SPIN-GAP MAGNETS 449
fers from the ordinary breaks described above, because
electrons near the sodium vacancy can change their
positions and be located either to the right or to the left
of the defect.

We believe that this hopping degree of freedom is
responsible for the unusual magnetization curves
obtained at low temperature [32]. Figure 11 demon-
strates that the magnetic moment associated with the
defects in the spin-gap system is not saturated in fields
up to 8 T, while the paramagnetic saturation field for
S = 1/2 spins is equal to 0.5 T at the experimental tem-
perature of 77 mK. Such a behavior of magnetization
can be explained by taking into account the balance of
the exchange and Zeeman energies. Analysis of the
exchange energy of an S = 1/2 spin-chain fragment [33]
shows that energy per one spin for fragments including
an even number of spins is lower than for the fragments
with an odd number of spins. One-step hopping of an
electron change the parity of the number of spins in the
chain fragment. Therefore, electron hopping in a sam-
ple with sodium deficiency in the low-temperature
phase must lead to the prevalence of “even” chain frag-
ments, despite the fact that sodium vacancies are dis-
tributed chaotically. The state of even fragments is sin-
glet, and they do not contribute to magnetization. How-
ever, in a strong magnetic field, owing to the gain in
Zeeman energy in odd fragments, electron hopping will
lead to a predominance of the odd fragments. Thus, the
magnetization process depends on a change in the num-
ber of even fragments. The magnetization curves calcu-
lated in the model [32], which takes into account the
difference between the exchange energies of even and
odd fragments and the random potential providing a

Fig. 11. Magnetization curves for Na1 – xV2O5 samples at a
temperature of 77 mK [32]. The dashed line is the paramag-
netic saturation curve for a sample with the free-spin con-
centration x/2 (half fragments are odd) for x = 0.02. The
solid lines are calculations including the change in the par-
ity of fragments in the presence of a magnetic field.
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feeding concentration of odd fragments, are also shown
in Fig. 11.
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