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The reconstruction of the Gell-Mann—Low function in quantum field theory from its asymptotic series, whose
first terms are calculated using perturbation theory, is discussed. This mathematical problem cannot be solved
uniquely. Nevertheless, the desired function can be reconstructed in a certain finite range of coupling constant
g under reasonabl e assumptions about thisfunction. However, attempsto determine the behavior of the function
for g — o are, in our opinion, groundless. Conditions under which the sum of the divergent perturbation
series can rapidly decrease at infinity are determined. © 2003 MAIK “ Nauka/Interperiodica” .

PACS numbers: 03.70.+k; 11.10.Jj

1. The asymptotic behavior of the Gell-Mann-Low
function (GLF) B(g) a g — o is of great interest in
guantum field theory [1, 2], because it determines the
invariant-charge behavior at small distances. The pres-
ently available information about the GLF is obtained
using perturbation theory (PT) in the form of the
asymptotic series in powers of the coupling constant g
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where the first several coefficients 3, are calculated
from Feynman diagrams and the higher order asymp-

totic terms Bn for n — oo are also known. The asymp-
totic terms can be represented in the form

Bn = M(n+1/2)a"n’c, 2

where the constants a, b, and ¢ are determined by the
steepest descent method [3].

Although the available information is, strictly speak-
ing, insufficient for uniquely reconstructing the function
B(g), it was originally thought that matching the asymp-

totic term B, and the exact first coefficients would be
helpful in reconstructing the GLF with an acceptable
accuracy over a wide range of the coupling constant g
and even in the strong-coupling limit g — co.

Many authors undertook such attempts by using var-
ious methods of summing divergent PT series. How-
ever, al these attempts showed that this program can be
implemented only in a certain limited g range and not
for g — o (seg, e.g., [4-8] and references therein).
This conclusion is commonly accepted in the literature.

Recently, Suslov [9-13] attempted to revise these
results. His works are based on the interpolation of the
PT 3, coefficientsto theintermediate n values. In[9] (p.
11), he wrote, “A reasonable formulation of the prob-
lem corresponds to approximately specifying all 3,
after which [3(g) can be reconstructed with a certain
accuracy. Thus, a necessary stage in solving the prob-
lem consists in interpolating the coefficient function,
which naturally implies that this function is analytic.”

Then, the interpolation procedure is optimized with
respect to parameters. According to [9], this procedure
determines the asymptotic behavior of the desired func-
tion for g — oo. Applying this procedure, Suslov [9—
12] obtained asymptotic behavior of the GLFat g —
for anumber of models of quantum field theory, includ-

ing the (p?A) theory, QED, and QCD. Moreover, he

stated that zero charge is absent in the ¢, theory and

QED. This statement contradicts the previous results of
other authors, which were obtained by summing
asymptotic PT series[6-8].

As was mentioned in [14], the procedure applied in
[9-12] isinsufficiently justified for definite conclusions
to be drawn. Moreover, we believe that it is reasonable
to discuss the possihility of reconstructing the function
from its asymptotic behavior (under the assumption
about the analytic properties of the function) only in a
certain range, wider than that in PT, of the expansion
constant g but not for g — co. Corresponding argu-
ments were presented in [14]. The publication of Sus-
lov’s new paper [12] concerning the asymptotic behav-
ior of GLF in QCD has motivated us to return to this
problem.
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2. An important feature of QCD isthat its PT series
(1) isof congtant sign. Therefore, it cannot be summed by
the Borel method, whichisusedin almost all approaches
to the summation of asymptotic series. To overcomethis
difficulty, Suslov [12] substituted g — —g in the PT
series and assumed that the asymptotic behaviors of the
function B(g) at g — +oo coincide with each other.
This assumption is obviously unjustified. Moreover, it
isphysically clear that, if the coupling constant changes
sign, the system completely changes; it becomes unsta-
ble and collapses. Owing to this circumstance, the g =
0 point is an essentially singular point in the complex
plane and, because of this, the PT series is asymptotic
[15]. As is known, since the PT series for QCD is of
constant sign, the vacuum in QCD is degenerate and
there are contributions proportional to the exponential
of the inverse coupling constant, which are not repro-
duced by the perturbation theory. At the same time,
these contributions are not necessarily suppressed for a
large coupling constant. For this reason, the method in
which the sign of the expansion constant is changed and
the series becomes alternating, after which the answer
isextended to the series of constant sign, is, in our opin-
ion, fully unjustified and, generally speaking, incorrect.

To illustrate this statement, we consider the follow-
ing example. Let two functions f;(g) and f,(g) be speci-
fied by the formulas

] nn —g bnn

fmmfyaii;y 2, ®
—g (— Ny o9 bn_n
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wherea, ~I(n+a) and b, ~ '(n + b). Then, the func-
tions f;(g) and f,(g) have the same asymptotic series at
g — 0 but with opposite signs of the coupling con-
Stant:

@0y g’ f0) 0% fu(-9)",

wheref, = a, + b, for n > 1. Nevertheless, these func-
tions can behave independently at g — oo:

f(@ 0 2" 09", 159 03 by(-9)"0g". (5)

We emphasize that f,(g) # f,(—g), asmight appear at first
glance, because the function f;(—g) need not to exist and
the analytic continuation from the positive to the nega-
tive semiaxis usually leads to the appearance of imagi-
nary part [15], which is absent in f,(g).

It is easy to present many more such examples. The
asymptotic form of an analytic function at infinity is
not, as arule, an analytic function and has discontinui-
ties (Stocks phenomenon), which is well known in the
theory of special functions. We can also mention the
semiclassical wave functions that change their form
both upon passing from the classically admissible
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region to the subbarrier region and upon crossing the
Stocks line in the complex plane [16].

Thus, the assumption that two functions specified by
the same asymptotic series but with different signsof g
behaveidentically is by no means obvious and requires
additional arguments, which were absent in [12].

Even under this assumption, the application of Sus-
lov’s method to an alternating series gives very ambig-
uousresults (see Fig. 1in[12]); the presence of numer-
ous X2 minima seems to be an artefact of the procedure
that isused for asmall number of theinitial termsof the
PT series. Moreover, since the coefficient of theleading
term in the asymptotic series is estimated at 3,, ~ 10°
with an error of several orders of magnitude (in fact, it
varies from 1 to 10 see Fig. 2b in [12]), this asymp-
totic behavior is determined quite unreliably.

3. There are other arguments against the asymptotic
behavior presented in [12]. Indeed, let us consider a
function specified by the asymptotic series

f(g)Dz f(—0)" f,0Of(n+b) a n— . (6)
n=0

Assume that the series can be summed in the Borel
sense’ and apply the Borel transformation

f(g) = J'dxe_xz %K—gx)n = J' dxeB(gx), (7)

where the function B(x) specified by aconvergent series
is called the Bordl transform of the function f(g).

Without loss of generality, we assume that B(x) ~ x*
at X — o0, Then, the function f(g) at g — o behaves
as

O +1)g% a>-1
f(9) DDogg/g. a=-1 (8)
Eplg_la a <_11

where ¢, :dl‘;de(x) < o0, The last equality can easily
be obtained by substituting x = t/g in integral (7) and
turning g to infinity.

At first glance, the function f(g) cannot decrease

faster than 1/g. However, thisis not the case. If thefirst
N moments of the Borel transform vanish, i.e.,

00

C = Idxxi_lB(x) =0, i=1..N, )
0

L This assumption is reasonable because otherwise the PT series
are not strictly defined in quantum mechanics and field theory.
This assumption was also used in [9-12].

2 Accordingly, the Borel transform must oscillate and have N zeros
intherange 0 < X < co.
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then

f(@ Oeye g™ g—v o (10)
at 0<|Cy, 1| <oo. Otherwise (if cy , ; = ), the exponent
for the asymptotic behavior of the function f(g) lies

between —N and (N + 1) or f(g) ~ Ing/g" " *.

Therefore, to obtain adecrease of the g2 order (see
[12]), it is required that the first 12 moments of the
function B(x) vanish. Taking into account that only four
terms of series (1) are currently known, this statement
seems to be unjustified.

The same property of the function is seen for the
modified Borel transform used, in particular, in [12]:

(@) = [axe™ > (nf (-0’
0 n=

(11)

= Idxe‘xx“BB(gx), B> 1.
0

In this case, the asymptotic behavior of the Borel trans-
form depends on . In particular, for f = b from Eq. (6)
one has B,(x) ~ ¢;/x and

f(g) Oc,F(b—1)g™, if c,#0.

Otherwise, changing x — x/g in integra (11), we
obtain®

f(g) = ng J'dxe_x’gxﬁ_lBB(x)
° (12)

00

1 -
DJ{]’dxx‘3 lBB(X) g —.
0

Setting sequentiadly B =1, 2, ..., N, we conclude that,
to obtain the asymptotic behavior f(g) ~ 1/gN, the lower
moments must vanish, i.e.,

00

dxx''B(x) = 0, k<j<N-1:
_O[XX (%) j (13)

k=12 ..,N-1

Thus, the GLF can, in principle, decrease rapidly, as
B(g) ~ g™, but only with many [N and N%2 for Egs. (9)
and (13), respectively] additional constrains on the
Borel transform. Evidently, the knowledge of four or
five PT coefficients cannot guarantee these conditions.
At the same time, the above analysis shows that the
asymptotic expression increasing at infinity or decreas-
ing no faster than 1/g is much less restrictive.

3 We assume that integral (11) converges, which imposes upper
limit on the parameter (3.
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4. We now comment on “remark” [13] to our paper
[14]. In this remark, Suslov presented the zero-dimen-

siona @y, model

1 d1l., g 4
J(9) = —[dpex SO —=
©) Jz_ml P50 4P

) (14)
vk T(2k+1/2)
Dgo( 9 M(k+ 1) (1/2)6"

and stated that the method developed in [9] allows the
use of only one (!) coefficient of the PT seriesto deter-
mine the asymptotic exponent J(g) O g* with a 10%
accuracy: —0.271 < a < —0.218 (exact vaue is a =
—0.25). Further, he wrote, “This result refutes the main
statement made in [14] stipulating a large number of
expansion coefficients” However, this exampleis very
specific because of the following reasons.

(i) Even the first coefficients of the PT series
approach rapidly their asymptotic values (see D =0 col-
umn in Table 1). Such a behavior occurs neither in
guantum mechanics (D = 1 column) nor, all the more,
in al models of field theory (see, eg., [7, 14] and
Table 1).

(if) The calculation with 50 coefficients of the PT
seriesinstead of one coefficient yieldsthe exponent o =
—0.235 £ 0.025 [9], which virtually coincides with the
above estimate. Thus, the inclusion of many coeffi-
cients of the PT series, which give the only new infor-
mation about the desired function, does not improve the
accuracy of determining the exponent a. This fact tes-
tifiesto the poor convergence of the method used in[9].

(iii) Model example (14) does not possess the prop-
erty that is characteristic of field theory, where theratio

Bn/B,, depends on the renormalization scheme (MOM

or MS, see Table 1). This dependence also shows that
the calculated coefficients 3, are till far from their
asymptotic format n —» oo,

Thus, zero-dimensional model (14) istoo smplified
to provide any general conclusions about the number of
PT coefficients necessary for reconstructing the GLF.

5. ThesituationintheYang—Millstheory iseven less
definite than in the scalar field theory. In theformer the-
ory, four expansion coefficients of the GLF are calcu-
lated [17]. They increaserapidly in magnitude: 3, =11,
B; =-102, B, = -1428.5, and 35 = —29243. In addition,
the asymptotic term

B, Ocl (n+ 35/2)

atn — co wasfound in[13, 18].

Since the coefficient ¢ is unknown in this case,4 we
present in Table 2 the ratios o, = p,, + /P, Where p, =

(15

4 Similar to [12], we consider the case N. = 3 and N; = 0, i.e., pure
gluodynamics without quarks.
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Table 1. Ratiosp,, = Bn/B, for the (p?D) model

KAZAKOV, POPOV

n D=0 1 3 4(MOM) 4(MS)
2 1.0317 2.005 0.019 0.0978 0.0075
3 1.0210 1.897 0.085 0.659 0.0505
4 1.0157 1.718 0.166 1.072 0.097
5 1.0126 1.562 0.252 1.554 0.128
6 1.0104 1.443 0.322 - 0.139
7 1.0090 1.354 0.379 - -

10 1.0063 1.203 - - -

20 1.0031 1.078

30 1.0021 1.049

50 1.0013 1.028

75 1.0008 1.018
a 2/3 3 0.1477 1 1
b —1/2 0 4 4 4

Note: Thecase D =0 correspondsto integral (14), D = 1 corresponds to the ground-state energy of a one-dimensional anharmonic oscil-
lator [23], and D = 3 and 4 correspond to the GLF in scalar field theory. In the last case, the py, values are presented in two renor-

malization schemes, MOM or MS. The lower two rows give the parameters of asymptotic formula (2).

Table 2. Ratioso,, = p,+1/p, for the (p?D) model and for the Yang—Mills theory for N. =3 and N; =0

n D=0 D=1¢ D=1¢*MOM D=1¢*(MS) YM (MS)
2 0.9896 0.9459 6.738 6.733 177.089
3 0.9948 0.9063 1.627 1921 24.935
4 0.9969 0.9090 1.450 1.320 7.810
5 0.9978 0.9235 - 1.086 -

10 0.99943 0.9769 - - -

50 0.99998 0.9994 — — -

75 0.99999 0.9998 - - -

Bn /B, to illustrate the convergence for an anharmonic

oscillator, (p?4) theory, and Yang—Muills theory. Accord-
ing to the asymptotic formula

Bn:Bn%L+—+ﬁ—§+..H a n— o, (16)

the ratios g,, (independent of ¢) behave as

2
6,=1+2 21972 oty (17)
n n
Therefore, if the coefficients 3, reached their asymptotic
values, o, must rapidly approach unity with n — oo,
Thisisindeed the case for the anharmonic oscillator. In
the scalar field theory, the convergence of o, to unity is

already seen. However, in the Yang-Mills theory, the
values of g,, with n < 4 are still far from unity.

Inthiscase,a=1and b =17 inasymptotic term (2),
and, for n < b, there is a sharp dependence on the form
of the asymptotic coefficients. For example,

2 4 3
5,=(0rb+12) _ ) b 3b'-4b"+D
r(n+1/2)n 2n 24n

In particular, 8, ~ 2 x 10%, 8, ~ 10°, and &; ~ 6 x 106 for
b = 17. Hence, the coefficients [3,, do not yet approach
their asymptotic form, so that the correctionsin powers
of 1/n, which underlie the algorithm developed in [9-
12], depend strongly on the chosen form of asymptotic
coefficients.

For this reason, we are still of the opinion [14] that
the statements made in [9-12] about the asymptotic

+...(18)
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behavior of the GLF at g —» o in the field theory are
doubtful. As was shown in [14], to reliably reconstruct
the GLF in the strong-coupling regime (g = 1 but not at
g — ), many terms of the PT series must reach their
asymptotic values. The situation is considerably com-
plicated if thereisan intermediate asymptotic form [14]
or if the asymptotic form contains logarithm, in addi-
tion to powers of g. In these cases, the asymptotic
regime occurs much later. A particular example is pro-
vided by the problem of a hydrogen atom in a strong
electric [14] or magnetic [19] field.

We emphasize that the Borel resummation method
and similar methods give very reliable results for alter-
nating series (see, e.g., [8, 20, 21], where the critical
exponents of the second-order phase transitions were
calculated). At the same time, ho commonly accepted
methods exist for series of constant sign, because the
existence of such aseriesimplies ground-state degener-
acy and the presence of contributions that cannot be
reproduced by perturbation theory. In this case, the
reconstruction of the function requires additional infor-
mation that islacking in the perturbative field theory. A
good example is a degenerate anharmonic oscillator,
considered in[22].

We would not like the readers of papers[9-12] to be
under the impression that the asymptotic behavior of
the GLF in quantum field theory at g — o can be
obtained by processing the first few terms of the PT
series without invoking additional nonperturbative
information, which is not currently available.

We are grateful to A.V. Bakulev, S.V. Mikhailov,
V.A. Novikov, V.D. Mur, and D.V. Shirkov for stimulat-
ing discussions. Thiswork was supported in part by the
Russian Foundation for Basic Research (project
nos. 01-02-16850, 02-02-16889, and 00-15-96691).
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Using the infrared-renormalon approach, we obtain the constraints on the next-to-leading order nonsinglet
polarized parton densities. The advocated feature follows from the consideration of the effect revealed in the
process of the next-to-leading order fits to the data for the asymmetry of polarized lepton—nucleon scattering,

which result in the approximate nullification of the 1/Q?-correction to Ai‘(x, QZ). © 2003 MAIK “ Nauka/Inter-

periodica” .
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The study of the QCD predictions for the photon—
nucleon asymmetry AT = (Oy — O30)/(Cyp + Ogp),
where subscripts denote the total angular momentum of
the photon—nucleon pair along the incoming lepton’s
direction, plays the essential role in the analysis of
polarized deep inelastic scattering (DIS) (see, e.g., [1]).
It isrelated to the well-known structure function glN of
polarized DIS by

N 2

g:(x Q)
AT(x Q) = (L+V) T, €

' Fl(x Q)
where the kinematic factor y is defined as y =
AMZXP IQ? and g)(x, Q7) isthe structure function (SF)

of polarized DIS, while F}(x, Q°) SF enters into the
cross-section of unpolarized charged |epton—hadron
DIS (see, e.g., [2]). Quite recently, several procedures
of the study of the Q? behavior of A? werediscussedin
the literature (see [3-6]). Moreover, in [2, 5, 6], by fit-
ting existing data for polarized DIS obtained at the
accelerators of the CERN, DESY, and SLAC scientific
centers in the kinematical region 0.005 < x < 0.75 and
1 GeV?2< Q%< 58 GeV?, the 1/Q? dynamical power cor-
rection to A? was extracted. In general, it gives an
additional contribution to the perturbation theory part

of (A))pr and can be parameterized as

A% Q%) = (AY, @))er +h (0/Q%. (2

TThis article was submitted by the author in English.

It is interesting that, in the process of the fits of [2,

5, 6], it was found that the x shape of hAl(x) isconsis-
tent with zero (see, e.g., the figure from [2]).

In this note, we describe the possible consequences
of this effect in the nonsinglet (NS) approximation,
whichisvalid for the x-cut x = 0.25. Our consideration

NLO JET

0.5 Proton
t
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-1.0

0.5} Neutron l

0.5

B () (GeV')
| <

-1.0

0.5 Deutron

0.5
-1.0

0 0.2 04 0.6 0.8

A
Theresultsof extraction of h' *(x) from the next-to-leading
order fits of [2] inthe JET scheme[7].
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will be based on the infrared-renormalon (IRR)
approach, developed in QCD in [8] and reviewed in
detail in[9]. Thisapproach wasused in[10] to study the
behavior of the 1/Q? correctionsto the NS contributions
to F, and F, SFsof unpolarized DIS of charged leptons
on nucleons and the pure NS xF; SF of vN DIS using

MS-scheme calculations.! It is interesting that the x
shape of the IRR induced power correctionsto xF; pre-
dicted in [10] was supported in [12, 13] by the leading
order (LO) and next-to-leading order (NLO) fits to
CCFR'97 data (a detailed description and refinements
of the fits of [12] are given in [14, 15]. Therefore, itis
worth considering the consequences of calculations of
the IRR contributionsto the NS part of g?‘ SF of polar-

ized deep-inelastic scattering, which was also per-
formed in [10].

Let usrewrite Egs. (1), (2) in the following way:
O hgl
g:(x Q)3+ ngN((XX)Qz)D
1 ]

Al = (1+Y) - NE

N, 2O h'x) U

Fi(x Q)L+ ——~=—11

0 QFi(x Q)
where h%(x) /Q? and hFl(x) /Q? are the model-indepen-
dent parameterizations for the twist-4 contributions to

gy and F) SFs, which in general are nonzero. Using
the above-mentioned effect of approximate nullifica-

tion of the twist-4 correction to AlN , We get

() h"() @
Qoi(x @) QFi(x Q)
At the next step, we will use the existing inequality for
g1(x Q°) SF, namely,

l9r'(x, @) < FY(x, Q2. ®)
Combining it with Eq. (4), we arrive at the bound
IRl < 7). (6)

It should be stressed that the calculations of [10]
predict that, inthe NS approximation (or in the valence-
quarks approximation), the contributions of the 1/Q?
correctionsto F; and xF; SFs are the same. Indeed, the
corresponding results of [10] can berewrittenin thefol-
lowing way:

l

h7(x, 1) = h(x, 1) = Az “c 29"z 1), (7)

X

INote that we avoid considerations of the IRR renormalon free
expansions in QCD coupling constants with the “freezing-type”
behavior at small Q? (see [11]).
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where

_ 4
C.(2 = ( . +2(2+x+2x) ®

-55(1-x)-0'(1-x),
the “+" prescription, for any test function, is defined as
1 1

IF(X)+ f(x)dx = _[F(X)[ f() - (D] dx, 9)

and

q"x 1)

- Ee.——ze%(qw ) + G x 1)
‘o0

10)

are the NS parton densities, p? is the normalization
point of order 1 GeV?, and A, isthe|RR model param-

eter, to be extracted from the fitsto the concrete data. Its
value was extracted from the low-energy xF; data, col-
lected by the IHEP-JINR neutrino detector at the IHEP
70 GeV proton synchrotron [16] (see also [17] for a

review). The result of [16] A, =-0.10 + 0.09 (experi-
mental) GeV? is in agreement with the value extracted
from the NLO analysis of the CCFR’ 97 xF; data [18],
namely, with A, = —0.125 + 0.053 (tatistical) GeV?
[15]. It should be noted that the identity of Eq. (7) does
not contradict the point of view, expressedin [3, 4], that
to study the Q? behavior of A,(Q?) in the NS approxi-
mation it might be convenient to use the concrete xF;

datainstead of the theoretical expression for FT.

Consider now the case of gT SF of polarized DIS.

In general, the IRR contributions to gi‘ were studied in

[19]. Inthe NS approximation, the IRR contributionsto

gT were calculated in [10], where the following result
was obtained:

1

h(x, ) = Az
X

Here, ANY(x, p°) are the NS polarized parton densities,
namely,

2C.(2A"(x/z, 1?). (12)

ANS(X u2)
o (12)
-y ——za%mq(x ) + 80 1),
i= 1
and the IRR model coefficient function C,(2) is the

same as in the case of the IRR model contributions to
the 1/Q? corrections for F, and xF; SFs of unpolarized
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deep-inelastic scattering (see Eg. (8)). As to the IRR
model parameter A,, in general one should not expect
that it hasthe same value asthe parameter A, in Eq. (7).
In principle, it should be extracted from the separatefits
to g, datainthe NS approximation. However, itisworth
stressing that in the NS approximation the IRR contri-

butions to gy and F}" are closely related (a similar
feature was reveal ed while comparing IRR model con-

tributions to the Bjorken sum rule for g?' SF [20] and
still unmeasured Bjorken sum rule for F}" SF[21]).

Using now Egs. (6), (7) and EQ. (11), we get the fol-
lowing constraint:

AL, 1) <A™k 1) (13)

which isvalid at both the LO and the NLO. This con-
straint isthe main result of our note. The consequences
for its Q? dependence can be further studied using the
machinery of the DGLAP equations[22].

It is rather impressive that the NLO constraint of
Eq. (13) is similar to the well-known LO bound of [1],
namely,

A%, Q) < qx, Q). (14)

Moreover, Eg. (13) can aso be transformed to the LO
relation between the IRR model parameters of Eg. (3)
and Eq. (7), namely,

|A,| O|A. (15)

We hope that it will be possible to check the relation of
Eqg. (15) using the fits of the concrete datafor g, SF.

The final version of this work was presented at the
COMPASS meeting at Dubna (March 5, 2003). | am
grateful to M.G. Sapozhnikov for the invitation. It isa
pleasure to thank A.V. Sidorov and D.B. Stamenov for
discussions of the preliminary version of this note and
to G. Altarelli and B. Webber for useful questions and
comments.

Thiswork was supported by the Russian Foundation
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Theeffect of injecting conventional band (C-band) amplified spontaneous emission on the performance of long-
wavel ength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated. It uses a circulator and broad-
band fiber Bragg grating (FBG) to route C-band ASE from a C-band EDFA. Injection of asmall amount of ASE
(attenuation of 20 dB or above) improves the small signal gain with a negligible noise figure penalty compared
to that of an amplifier without the ASE injection. A maximum gain improvement of 3.5 dB is obtained at an
attenuation of 20 dB. At very large amounts of ASE injection (attenuation of 0 dB), the gain of the amplifier is
clamped at 15.2 dB from —40 to —10 dBm with again variation of lessthan 0.3 dB. The saturation power isalso
increased from —8 dBm (for without ASE injection) to 2 dBm (VOA = 0 dB) with a dlight noise figure penalty.
These results show that the A SE injection technique can be used either for gain improvement or for gain clamp-
ing in L-band EDFA. © 2003 MAIK “ Nauka/lnterperiodica” .

PACS numbers: 42.60.Da; 42.81.Uv; 42.81.Wg

INTRODUCTION

The erbium-doped fiber amplifier (EDFA) moved
very quickly from invention in 1987 to the cornerstone
of high-speed long-haul networks. The need to extend
the bandwidth of dense wavel ength division multiplex-
ing systems has resulted in research aimed at transmit-
ting outside the conventional wavelength band (also
known as the C-band, ranging from 1530 to 1565 nm).
Transmission in the region 1570-1610 nm (referred to
as the L-band), which effectively doubles the potential
bandwidth, has been reported [1]. The L-band EDFA
can be combined with a C-band EDFA in parallel con-
figuration to increase the range of amplification wave-
length region. However, the L-band lies at the tail of the
erbium amplification window, where the inversion rate
is low. Therefore, various research efforts have been
explored to enhance the amplification characteristicsin
the L-band EDFA [2, 3].

Asthe complexity of the networks increasesin mul-
tiplex system networking, a major potential problem
associated with the amplifier isaneed for the control of
the gain of EDFAs due to circumstances such as faults,
adding and dropping of wavelengths, and rerouting. In
these cases, the total input signal power to the amplifier
varies abruptly, causing the dynamics of the population
inversion to change accordingly. Therefore, the ampli-
fier gain increases or decreases with the potential to
cause receiver saturation or bit error rate increment.
Thus, a gain-clamping mechanism is desired. To date,
there have been various research efforts to clamp the

TThis article was submitted by the authorsin English.

gain in C- and L-band EDFA [4, 5]. In this paper, we
demonstrate the effect of injecting C-band ASE on
L-band EDFA. This ASE injection technique shows a
possible application either for gain improvement or for
gain clamping in L-band EDFA.

EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The
erbium-doped fiber (EDF) used in the experiment is
commercially available and has anumerical aperture of
0.22, cut-off wavelength of 920 nm, and peak absorp-
tion of 6.1 dB/mat 1531 nm. Thelength of EDF isfixed
at 50 m. A 980-nm laser diodeis used as a pump source
with a maximum pump power of 92 mW at the EDF
input end. The wavelength selective coupler (WSC)
combines the input test signal and the 980-nm pump
into the EDF. The C-band ASE from aC-band EDFA is
fed into the EDF section using an optical circulator and
a fiber Bragg grating. At the amplifier input end, a
broadband fiber Bragg grating with a center wave-

thical 980 nm EDF
circulator pump

Laser Port2__ Port3 \ @

[ ‘D OSA

TTTTTT

WSC
/ Port 1 _

Fiber Bragg VOA —| Amplifier |
grating

Fig. 1. Experimental setup.
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Fig. 2. ASE spectra of the amplifier with and without
C-band ASE.

length, bandwidth, and reflectivity of 1545 nm, 40 nm,
and 99%, respectively, is employed as a broadband
reflector. The forward ASE light from the C-band
EDFA is routed by the optical circulator, reflected by
the grating, and then copropagates with the signal. A
variable optical attenuator (VOA) is used to control the
power level of the launched C-band ASE. A tunable
laser source is used for the evaluation of the amplifier
performance in conjunction with an optical spectrum
analyzer (OSA), which usesthe interpol ation technique
to evaluate noise figure.

RESULT AND DISCUSSION

Figure 2 depicts the ASE spectra of the amplifier
with and without injection of C-band ASE, where the

20
[ ] [ ] [ ] * ° ‘OdB
i A A d aAgq
A
18_ | | | | | | | | ] a : :go
T34 2 2 g 428
16k o © o o ¥t s 4 03
2 o o+ & 3 g L
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5, 14120 o A
18- 5 %
12__ 161 A
[ 1 ! [ 1 8
10- 45—%¢"76 24 32 40dB
| | | ) | | 1 ) | |
—40 =30 =20 -10 0

Input signal power (dBm)

Fig. 3. Gain as a function of input signal power at various
VOA losses (¢0—without ASE). Inset: Gain against the
VOA loss.
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thick line represents the amplifier without injection of
C-band ASE. The pump power is fixed at 92 mW. As
apparent in the figure, the amplifier with alarge amount
of ASE injection (VOA = 0 dB) shows alower L-band
ASE than that of the amplifier without ASE injection, at
L-band region (above 1567 nm). This reduction of
L-band ASE is obtained due to the injection of alarge
amount of C-band (1525 to 1567 nm) ASE that causes
limitation of population inversion in the longer wave-
length region. However, the injection of low power of
ASE (VOA = 20 dB) dramatically increases the ASE
level inthe L-band region. Theion populationinversion
is increased by this amount of ASE through energy
transfer from short wavelengths to longer wavelengths.

Figures 3 and 4 show the optical gain and noise fig-
ure characteristics, respectively, at 1580 nm as a func-
tion of input signal power against the VOA losses. The
pump power isfixed at 92 mW. The characteristic of the
amplifier without the injection of backward ASE isalso
shown for comparison. Inset of Figs. 4 and 5 showsthe
small signal gain and noisefigure against the VOA loss,
respectively, when input signa and wavelength are
fixed at =30 dBm and 1580 nm. At attenuations of
20dB or above, the gain level increases with the
amount of the injected ASE power as shown in Fig. 3.
The small signal gain improvement of 3.5 dB is
obtained for the attenuation of 20 dB compared to the
amplifier without the ASE injection. Figure 5 shows an
injected ASE spectrum at attenuations of 0 and 20 dB.
The ASE power is—40 dBm at 1531 nm for the attenu-
ation of 20 dB. This amount of ASE increases the pop-
ulation ion inversion at the input end of the EDF and
henceimprovesthe L-band signal gains. Thistechnique
shows that the injection of C-band ASE (total power
should be less than —14.1 dBm) can be utilized to
enhance the L-band performance. Besides gain

@ 5.6F
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66 | 8 54_ o o © 9 *
64 | é 5.2F © o 0 o o %
Q9 5.0r ° M
% 62 i 5 4 8 L ° 1 1 1 1 <
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g 58k Attenuation (dB)
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52 . . L 228
50 =« % 5 ° 8 036
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Fig. 4. Noise figure as a function of input signal power at
various VOA losses (0—without ASE). Inset: Noise figure
against the VOA loss.
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Injected ASE power (dBm)
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|
1520 1600

Fig. 5. Injected C-band ASE spectrum at attenuations of 0
and 20 dB.

improvement, this technique a so produces almost neg-
ligible noise figure penalties, as shown in Fig. 4. How-
ever, the gain level is decreased for higher amounts of
ASE (<20 dB of attenuation). At attenuation of O dB
(total ASE power of 6 dBm), the gain is clamped at
15.2 dB from —40 to —10 dBm with gain variation of
less than 0.3 dB. The saturation power also increases
from -8 dBm (for without ASE injection) to 2 dBm
(VOA = 0 dB). The ASE power is measured to be
—20 dBm at 1531 nm for attenuation of 0 dB, as shown
inFig. 5. The L-band amplification mechanism is made
possible by the intra-Stark level multiphonon transi-
tions and reabsorptions that transfer energy from the
short wavelength (C-band) to the longer wavelength
(L-band). Therefore, injecting a large amount C-band
ASE into EDF depletes the number of ions in the
ground state. This limits the population inversion,
which in turn reduces gain, thereby clamping the gain.
A lower VOA loss enables a higher injected ASE
power, which severely degradesthe amount of available

JETP LETTERS Vol. 77 No.9 2003
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inversion. The noise figure for the gain clamped ampli-
fier (VOA = 0dB) isdightly higher at an average value
of 5.5 dB, compared to the unclamped amplifier (with-
out injection of ASE). A large amount of injected ASE
induces an incompl ete popul ation inversion in the EDF
as given by the inverson parameter ng, =
{0A)NG} { O(A)N, — 04(A)Ny}, where o, is the emis-
sion cross section, g, is the absorption cross section,
N, isthe population density of the upper state, and N, is
the population density of the lower state, which leadsto
the noise figure degradation.

CONCLUSION

The effect of injecting C-band ASE on a L-band
EDFA is demonstrated in this paper. Compared to the
amplifier without ASE injection, the L-band EDFA has
shown a small signal gain improvement of 3.5 dB at
attenuation of 20 dB with anegligible noise figure pen-
alty. With the ASE injection at attenuation of 0 dB, the
gain of the amplifier is clamped at 15.2 dB from —40 to
—10 dBm with gain variation less than 0.3 dB. The sat-
uration power is increased from —8 dBm (for without
ASE injection) to 2 dBm (VOA = 0 dB) with dlight
noise figure penalty. This ASE injection technique has
shown a possible application either for gain improve-
ment or for gain clamping in L-band EDFA.
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The phenomenon of self-induced transparency in atwo-level medium is studied using a new integrable set of
evolution equationsfor the optical pulseswith aduration on the order of the energy-transition oscillation period.
A mathematical apparatusis developed for the inverse scattering problem and used to obtain solitonic solutions
to the model. The characteristics of linearly and circularly polarized pulses are compared with each other.
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The generation and evolution of femtosecond opti-
cal pulses with a characteristic duration close to the
oscillation period 217wy, Where wy, is the transition fre-
guency, are of constant interest because of their appli-
cationsin various areas of physics (see, e.g. reviews|[1,
2]). The range of parameters of such pulsesis limited
by the requirement that photoionization be absent, i.e.,
that the field amplitude be no larger than ~108-
10° W/cm and the lower bound for the soliton duration
be ~1015-10-%6 53, 4]. The conditions for the applica-
bility of a two-level modd require that the working
transition be well isolated from other transitions [5-8].
These conditions become less stringent if the chosen
dipole-transition moment is greater than those for the
nearby transitions[4].

In the models used for studying the optical femto-
second range, the approximation of slowly varying field
amplitude and phase does not apply, because the pulse
duration T, comprises severa oscillation periods T, ~
TUwy,. Below, these pulses will be referred to as “ nearly
ultrashort pulses’ (NUSPs). The simplifying approxi-
mation T, < TV, corresponding to the ultrashort pulses
(USPs), which was used in some theoretical works,
e.g., in [5-8], isunredlistic in the optical range.

The most detailed information on the pulse evolu-
tion can be gained in the integrable models by the
method of inverse scattering problem (I1SP) [9]. Among
these are the well-studied Maxwell-Bloch (MB) equa-
tions for the dynamics of quasi-monochromatic pulses
[2]. The self-induced transparency of a nondegenerate
two-level medium was studied for NUSPs in [10],
where it was shown that the initial set of equations can
be transformed to the reduced MB (RMB) equations, to
which the ISP method can be applied. Instead of the
slow-envelope approximation, the RMB equations

were derived in [10] using the low-density active-
medium approximation, which corresponds to a unidi-
rectional wave propagation. However, these results
relate to a linearly polarized field and do not apply to
the transitions with a +1 change in the magnetic quan-
tum number and to the circular NUSP polarization. To
my knowledge, the particular solitonic solution found
in [7] to the MB equations for a circularly polarized
USP in a nondegenerate two-level medium is the only
exception. At the same time, the study of many-soliton
and other self-similar dynamics of a circularly polar-
ized NUSP is also no lesstopical. Evidently, the condi-
tions for the applicability of the NUSP theory are much
less stringent than for an USP. Moreover, using the
results presented below, one can easily show that the
theory of NUSP includesthe USP theory and the theory
of quasi-monochromatic pulses as limiting cases.

In this work, the interaction dynamics between a
femtosecond NUSP and a two-level medium consisting
of atoms with the o transition, i.e., with achangein the
magnetic quantum number by unity (Am=+1), is stud-
ied. The corresponding dipole-transition matrix ele-
ment is complex, d = d,g, —idyg, [11]. Here, g, and g,
are unit vectors along the x and y axes of the Cartesian
coordinate system. The pulse field interacting with the
transition iscircularly polarized [11].

The corresponding set of Bloch equationsfor atwo-
level medium has the form

0S,/0t = —w,S, + w, f,é,S,, Q)
9S,/0t = wyS,—wof,&,S, )
0S,/ot = wy(f,&,S,—f,€,S,), (3

0021-3640/03/7709-0464%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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where f ) = dyfi ey, wy isthe transition frequency,
and & and &, are the corresponding projections of the
el ectric-field vector. The components of Bloch vector S
are expressed through the elements of the medium den-

. . ~ 1 1
Sty matrix as p: S, = é(pn— P) &= é(p12 + P21),

andS, = 5 (0~ por), where S} + S + S =1

The Maxwell equationsfor the field components are
obtained by projecting onto the corresponding axis,

2 2 4 2

b) %ix_cza %zzx _ nozlxna sz,x @
ot 07 c- ot

az%y_czaz%y _ 4md,nd’s, -
ot* 07 c? ot?

where cisthe speed of light in amedium with density n.

The density of active atoms or molecules in real
media can often be assumed to be small. In such asitu-
ation, one can use the familiar hydrodynamic approxi-
mation of unidirectional waves. In nonlinear optics, it
was used in [10] to derive the reduced MB equations. A
low density of active atoms corresponds to the formal
approximate equality 9, = —c™%0, + O(e), where e is a
small parameter. The normalized density of two-level
atomsor moleculesis on the same order of smallnessas
the derivative 0, + ¢c10, with respect to the field polar-
ization components.

If the condition for unidirectional pul se propagation
isfulfilled, the set of Egs. (1)—(5) reducesto

0S/0T = =S, +E,S,
0S,/0T = S.-E,S,
0S,/0T = E,S,-E,S,, (6)

0S,
0E. /0 = —=
K OX ot’
OE,/ax = r’(8S,/97),
where r = d,/d,, Exy) = fxxgyy T = 0t — ¢*2), and
X = 22rmd> (ch) .

The set of Egs. (6) is anew integrable set of equa-
tions. Its Lax representation Or O R has the form

O —i O
O;CD=1D icndn  dnE, |anqu31 )
20-dnE,—icnE, icndn O

O
0, = 1 L5 icndnS, dnS - |cnSyD¢ ®)
2sn°0— dnS,—icnS, icndnS, 0O
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wheresn=sn(¢, r),cn=cn((, r) = J1-sn®, anddn=

dn(Z, r) = J/1—r’sn’ are the Jacobi elliptic functions,
Cisthe spectral parameter, andr isthe module of Jacobi
functions.

The algebraic parameterization of the Lax represen-
tation is more preferential for the ISP method. 1t can be
obtained for nonoverlapping r values: in the isotropic
case, r>=1; inthelimit of infinite anisotropy, r =0; and
in the intermediate case, r2 # 0, 1.

In the isotropic case, Eg. (7) reduces to the Kaup—
Newell problem [12] with spectral parameter A = cn =
dn, and, for r = 0, it amounts to the Zakharov—Shabat
problem [9] with the addition —IAE,, where E, is an
arbitrary function of 1.

Let us consider the intermediate case in more detail.
Forr?# 1 andr # 0, the following substitution of spec-

tral parameter is possible: cn(Z, r) = J1-r*(E —
&) (2r)7, after which one obtains the following Lax
representation of the set (6):

E—% - EED+ < EE
0,9 = [ 0o, 9
O 32 1pd
D—EE——E*I -==0
0 3 ¢ ¢9n
aq): 2r2(1_ )3IZE
At [(1-r)E-1-1]
] ]
082 e O 10
Dr%észzsustA (10)
x [ 0o = Ao,
g 1 ar: 10
0 —§S-:S I-X"-=-S0
0 3 i g
where € is the new spectral parameter, a = 1—r2/2,

E=rE/a+iE/a, S=S +iS/r,and T = &2T/(2r).

In the theory of integrable systems, the spectral
problem (9) likely arisesfor thefirst time. However, the
corresponding ISP apparatus has much in common
with the apparatus developed earlier for the related
spectral problems arising when solving the Thirring
equation [13], the nonlinear differential Schodinger
equation [12], and the set of MB equations taking into
account the nonlinear Stark effect [14]. For thisreason,
we will discuss only the key elements of the | SP appa-
ratus for a potential E that decreases sufficiently
quickly at infinity.

The solutions to EQ. (9) possess the following sym-
metry property:

® = MO(E*)*M ™, (11)
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Im(}L)
mEe3H<o -+ medH>o
- +  Re(d)
n ~
ImOAH>0 +[- Im(?)<0

Fig. 1. Integration contour I'.

where

<

"
-
OooOd

and

PEF)* = D(ET). (12)
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Following the standard procedure, we introduce the
Jost functions ®* (solutionsto Eq. (9)) with asymptotic
behavior

O* = exp(—iwa,T), T —= oo, (13)
where w = & — 2. Symmetry property (11) corre-
sponds to the following matrix form of the Jost func-

tions:

These solutions are related by the scattering matrix T :

¢ = o'T. (14)
The dependence of scattering data on X is given by the
formula

—050T 2

0, T = -Te A1 = —o)e

10307
_ | (15)
—i0,WT 4 i0;0T2

te A(t=w)e ~ T.
The Jost function can be represented in the form

q3+(.l_) - e—IGS[wT+ u(ml

7O QU0 9+ E2Qu(1, 916 [ER(1, 9 +E KT, 9]¢ ™0 7 o0y
JH1EK (@ 9+ Ra(r, 9167 [QI( 9 +E7Q5(r, 91" 1

Here, 65 isthe Pauli matrix and p(t) isafunction to be
determined bel ow. From the symmetry properties of the

Jost functions, it followsthat K1,» = KT , and p* = .

The kernels K; , and Q; , must satisfy the condi-
tions

limK, ,(T,s) = 0, (17)

limQ, »(1,s) = 0. (18)

After inserting Eq. (16) into Eq. (9), one obtainsthefol-
lowing relation between the potential and kernels:

E(T,X) = —2Ky(T, T,X) exp(=2ip),
E*(1,X) = —2KI(T,T,X)exp(=2ip). (20)

By substituting the components of the function @ in
Eq. (14), integrating the resulting expressions with
respect to & with weights ™exp(i wt) (m= 0, —2) along
the contour I shown in Fig. 1, and using the equalities

IEmexp(ioor)dE =4n¥ 1, m=1-3, (21
)

(19)

(16)
e

|

J’Emexp(iwr)dE =0, m=-120,+1,%2,..., (22
)

one arrives at the Marchenko equations
KI(T,y) = Fo(T+Y)
) (23)
+I[Q1(Tv S)Fo(s+Y) + Qu(T, S)F_(s+y)]ds,

Ka(T,y) = Fu(T+Yy)

[

(24)
+J'[Q1(T’ S)F_i(s+y) + Qx(T, s)F_5(s+y)]ds,
Qi(ry) = _.![Kl(Tv S)Fi(s+Yy) 25
+ K3 (1, 5)Fo(s+y)lds,
Q:(t,y) = —‘[[Kl(R S)Fo(s+Y) (26)
+ K3 (1, 5)F_y(s+y)lds,
JETP LETTERS Vol. 77 No.9 2003
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wherey = 1. The kernel F has the form

i g2 (x)e

2m_—iwy
a0 = [ Y
4 ,

a) 2n @0

where ), = & — &

The simplest solitonic solution correspondsto asin-
glepoleé, lying inthefirst (third) quadrant and satisfy-
ing conditions E(x o, ¥) = 0 and S0, X) = -1. Dueto
symmetry property (12), the values of &, are restricted
by the condition |¢;| = 1. We take &; = exp(i@,), where

@, 0 R. A one-pole solution to the set of Egs. (15),
(23)(27) hasthe form

—2|sin(p1| expliy; —i@,/2]

E(t,X) = |cosh[4sing,6 +y,—i¢,/2]| )
where
B=1- 2 ’
2./r?cos’ (@,/2) + Sin’ (¢,/2)
—iCl C
= ag—r, =N
e FU A M PP

Note that no limitations on therange of &, , values arise
for the two-pole solution corresponding, e.g., to the
spectral parameters £2 = and &5 = —nL.

At large (or small) & values, one can pass to the
above-mentioned isotropic case. In the limit r — 1,

£ o, one has J1-r*(E - Y2yt — A and
§E* + E'E — A(E, —iE)). Accordingly, one should
replace dn, cn —» A and sn? —= 1 —A?inthe Lax rep-
resentation (7), (8). The ISP equations presented above
(except for symmetry property (12)) remain valid after
the following modification. In Eqg. (16), we omit the
terms with m =1, 2 powers of &™. Then, in the set of
Marchenko Egs. (23)—(26), only Egs. (23) and (25)
without the last integrands on the right-hand sides are
retained.

Instead of relations (19) and (20), one then gets
O(T,X) = 2Ky(T,T,X)]% (29)
E*(1,X) = -2KI(t, T, X)exp(-2ip),  (30)
where E* = E(—IE,
The one-soliton solution corresponding to a single

eigenvalue A, = [\ €™ lying in the first (third) quad-
rant in the A plane has the form

o] m)\ze[imexir + WY +y; — 0y —21)]
- 1

[Ny cosh[IMAS(T —x/V) + B, +ia]’

Eo(T,X) = (31)

where
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V = (1—ReA?)’+ (ImA2)?,
W = [ReA}(1—Rer?) —(ImA\3) v,
By = In|(Acy)/(4ImAZa (1)),

O 2 X[ U
= —arctangcotoucoth[lm)\1 —£-+ Bl}D
i % \Va B

N 2Im)\f
I\2lsin(2a,)

Let us compare solitonic solution (31) for a circu-
larly polarized wave with the familiar solution for the
analogous linearly polarized solitary electromagnetic
wave propagating through a two-level medium. The
corresponding solitonic solution to the RMB equations
(see, eg., [1Q]) is

2lmn,

E(t,2) = cosh[Imn (T —1,—2/V,)]’

(32)

where (Imn,) is the soliton duration, (c* + V')t is
itsgroup vel ocity, and T, isthe position at zerotime. Let
us take, for the sake of comparison, the same durations
for solitons (31) and (32): n, = )\f and |A;|=1.Ananal-
ysis of the corresponding solution showed that, if
ImA? < Rel?, the soliton amplitudes are close. For

ImAZ = ReA?, the maximal intensity I, of soliton (31)
is twice as high as the maximal intensity I, of soliton
(32). For ImAZ > Re\?, it was found that I, > |,
(Fig. 2).

Therefore, it has been shown that ¢ transitions and
circularly polarized electromagnetic pul ses can be used

to generate pulses with an intensity that is appreciably
higher than for linearly polarized pulses of the same

Fig. 2. Solitonintensity | = |E|2 as afunction of T for (solid
line) circularly and (dashed line) linearly polarized light;
A1 =(0.2+i)/1.04.
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duration. The reverse statement is also true: the dura-
tion of circularly polarized pulses is shorter than the
duration of linearly polarized pulses with the same
maximal amplitude. To produce pulses with such char-
acteristics, it is necessary that the phase of the initia
pulse be closeto a; = V2. The required parameters of a
pulse injected into the medium can easily be deter-
mined by solving Eg. (9).

To observe the pulses, the requirements imposed,
e.g., on the NUSP intensity, are at least two orders of
magnitude less stringent than for the USPs [5-7]. Due
to the narrower NUSP spectrum, the requirements on
the applicability of atwo-level medium are al'so milder
than for USPs.

Note in conclusion that the new integrable model
and the ISP apparatus suggested in this work can be
used for the description of transverse acoustic wavesin
a paramagnetic crystal containing impurities with spin
1/2 and for the description of pulse dynamics of atrans-
verse magnetic field in a crystalline magnet with low
spin density and orthorhombic symmetry.

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 03-02-16297) and by
the interdisciplinary integrated basic research project
“Theoretical and Experimental Studies of the Fabrica-
tion of Nanosized Regular Structures (Photonic Crys-
tals) and Their Functional and Nonlinear-Optical Prop-
erties” of the Siberian Division of the Russian Acad-
emy of Sciences.
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Two schemes for amplifying two-mode squeezed light in the Einstein—Podol sky—Rosen state, where quan-
tum correlations are conserved due to the presence of integrals of motion, while the power of each wave can
increase, are considered. The first scheme is based on the parametric three-photon interaction in a transpar-
ent nonlinear medium. The second schemeisavariant of the resonance interaction with an atomic ensemble.
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INTRODUCTION

The nonclassical states of light represent optical
implementation of entangled states, which are at the
basis of quantum information processes. In particular,
the well-known two-mode sgueezed light in quantum
optics is a continuous analogue of the Einstein—Podol-
sky—Rosen (EPR) state of a pair [1]. This light pos-
sesses quantum correlation which can easily be
destroyed by interactions. Because of this, only certain
transformations can conserve its properties. In particu-
lar, it is difficult to amplify nonclassical light. An ordi-
nary linear amplifying medium was shown to destroy
the squeezed state owing to the noise induced by spon-
taneous radiation [2, 3]. Thisis also true for nonlinear
amplification [4] and light propagation through an
amplifying communication channel [5]. At the same
time, nonclassical light can be converted from one fre-
guency to another [6].

In thiswork, we consider the possibility of amplify-
ing two-mode sgueezed light in the continuous-variable
EPR state, which can be obtained using an optical para-
metric oscillator. This is precisely the light that was
used as a quantum channel for the teleportation of a
coherent state of an electromagnetic field [7], for dense
coding [8], and for spectroscopy with nonclassical light
[9]. The light intensity in these experiments was low.
Themainideaof amplification is based on the existence
of certain integrals of motion in the light interaction
with a medium. Since the entangled or squeezed states
can be eigenstates of operators that, in turn, are inte-
grals of mation, the degree of entanglement or the char-
acter of quantum correlation is conserved, whereas the
light intensity can increase. An example of the interac-
tion conserving certain properties of sgueezed light
upon amplification wasgivenin [10]. A special thermo-
stat with a collective resulting in the atomic entangled
state and, hence, conserving it, was considered in [11].

Atthesametime, if light propagatesin aquantum chan-
ne with a phase-sensitive environment, where
squeezed vacuum plays the role of a thermostat, the
degradation of entangled states is not retarded [12].

In thiswork, two schemes for amplifying two-mode
squeezed light in the entangled state are considered.
The first scheme is based on the parametric three-pho-
ton interaction in a transparent nonlinear medium. The
second scheme is based on the resonance interaction
with an atomic ensemble. A distinguishing feature of
these schemesisthat they do not create entangled states
but conserve the degree of correlation or entanglement
between modes. In this case, light intensity can
increase. This is a direct consequence of the existence
of integrals of motion due to which two problems—
conservation of certain properties and amplification—
are solved. Inthiswork, we use the time description for
the evolution. However, this approach can be immedi-
ately extended to the propagation process by using,
e.g., quantum formalism of transport theory, which was
presented in [13], where, in particular, it was discussed
what information can be gained from the integrals of
motion in the multiphoton parametric processes.

This paper is organized as follows. We first discuss
the definition of the EPR entangled state of a pair for
the case of continuous variables and itsimplementation
by two-mode squeezed light and then consider the
schemes with parametric interaction in a transparent
medium and resonance interaction with an atomic
ensemble.

2. TWO-MODE SQUEEZED LIGHT
AND ENTANGLED STATE

In the case of continuous variables, there are two
possible definitions of a state of the EPR-pair type.
First, it is defined as the eigenfunction of the operators

0021-3640/03/7709-0469%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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of the total momentum P and the coordinate difference
Q of the two subsystems. Second, it is specified in
terms of the Heisenberg P and Q operators at the exit of
an optical parametric oscillator. For optical implemen-
tation, where the measured quantities, such as disper-
sions of the P and Q observables, are important, both
approaches lead to a two-mode squeezed light.

The operators of the relative positions and the total
momentum of two subsystems or two particles can be
defined as

Q = X;—€Xy, P—py+(1e)p,, (1)

where x,, and p,,, are the canonical operators of the coor-
dinate and momentum of the mth particle(m=1and 2),
respectively, and e is areal number. The observables P
and Q have a common complete set of eigenfunctions
known as Bell continuous states [14]:

QWpol= 2[Wpol) PWpol= P|Wpoll 2

If the eigenvalues are equal to zero, a continuous ana-
logue of the entangled EPR pair arises.

|WeoO= |EPRL (3)

A simple model of a nondegenerate parametric oscilla-
tor can be described by the effective Hamiltonian H =

ixﬁ(a}a; —h.c.), where x is the coupling constant pro-

portional to the squared susceptibility of the nonlinear

medium and aL and a,, (m =1, 2) are the operators of

creation and annihilation of the mth mode, respectively.
The solution to the problem for the operators Z = P and
Q in the Heisenberg representation has the form Z =
Zoexp(—er), wheree = +1, Z, are the output operators of
the parametric oscillator and r is the squeezing param-
eter. Independently of the state of a field generated at
the entry, the EPR pair arises if r — 0. It can be
defined in terms of the properties of the P and Q oper-
ators, for which

Q—0 P—0O. (4)

This state corresponds to an ideal EPR pair, which is
not implemented experimentally because r takes a cer-
tain fixed value. Two independent sources generating
independent quadrature-squeezed fields in the process
of the degenerate parametric transformation described
by the Hamiltonian H = ik (a™ — h.c.) can be used as
another model of a source of an entangled photon pair
with similar properties [15]. The EPR state arises upon
mixing such light fields in a beamsplitter.

Light in quantum optics is often described using the
guadrature operator

X(0) = a'exp(iB) + h.c. = 2(xcosb + psinB), (5)

where a = x + ip is the photon annihilation operator,
[a; @] = 1, and [x; p] = i/2. The properties of light can
be determined from the set of its correlation functions,
in particular, from the dispersions of the quadrature
operator [{AX)2[= X[~ [X[3, whose measurement isa

GORBACHEV, TRUBILKO

well-known procedure. In particular, [{AX)?0= 1 for a
coherent state minimizing the uncertainty relation and
serving as a boundary between classical and nonclassi-
cal (or quantum) states of an electromagnetic field.

However, if

{AX0))0< 1, (6)

light is called squeezed. More precisely, such astateis
squeezed over coordinate or amplitude if 6 =0 and is
sgueezed over momentum or phaseif 8 = /2. Thelim-
iting squeezing corresponds to [[AX(0))?0= 0. The
terms “amplitude” and “phase” are used in considering
the properties of light in the phase space and not for the
observables of the amplitude and phase type.

The introduced quadrature operator is measured in
the scheme of heterodyne reception. In this scheme, the
signal under investigation mixes with the reference
wavein asemitransparent mirror, whereupon the differ-
ence photocurrent i from two detectors is measured. If
the quantum efficiencies of both detectors are the same
and egual to unity, the spectrum of the photocurrent or
light noisesis determined through the dispersion of the
guadrature operator

00

iz(oo) = Idr O)i(t + DOexp(itw)
” ()

00

= Idt CX(t) X(t + 1)Oexp(itw).

In many quantum-optical models, the spectrum of low-
frequency noise is determined by the expression

iw=0) = 1+ O(AX(8))*0 (8)

where 1 corresponds to the shot noise level or to the
standard quantum limit and the colon meansthe normal
ordering of operators. Asfollowsfrom Egs. (6) and (8),
the noise level of squeezed light is lower than for the
shot noise, which can, in principle, be suppressed
amost completely. Thisisone of the known basic prop-
erties of this state, which makes it attractive for, e.g.,
precision measurements.

The operators of the total momentum P and relative
positions Q defined by Eq. (1) can be represented in
terms of the quadrature operators X, for two modes
(m=1and 2) of the electromagnetic field as

Q = (V2)[X4(0) —eXx(0)],
P = (U2)[X,(102) + (1/e) X,(102)] .

Both observables P and Q can be measured by the use
of a beamsplitter mixing two modes followed by the
measurement of the canonical momentum and coordi-
nates of two outgoing beams[7]. As follows from Egs.
(2) and (4), the dispersions of the observables P and Q
are equal to zero. Therefore, according to Egs. (6) and
(8), the Bell continuous states |Wpglor the states at the

(9)
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exit of aparametric oscillator are squeezed with respect
to the coordinate difference and the total momentum
with suppressed shot noise. Thus, squeezed states are
entangled. However, squeezing or the presence of a
nonclassical state of fieldsis only the necessary condi-
tion. At the sametime, if the stateis entangled, the level
of shot-noise suppression can be taken as a measure of
entanglement.

3. AMPLIFICATION IN A TRANSPARENT
MEDIUM WITH QUADRATIC NONLINEARITY

Let the interaction between two modes be described
by the Hamiltonian

V = #kPQ, (10)

where k is the real coupling constant. In this case, the
operators of the total momentum P and the relative
position Q, as well as any functions of these variables,
are integrals of motion. Let the initia light state be
specified by the EPR pair, which can be obtained using
a parametric oscillator. For this pair, Z(t = 0) =
Z,exp(—er), whereZ = P and Q. Therefore, Z(t) = Z(0).
At the sametime, any eigenfunctions of the integrals of
motion Z = P and Q also do not change. In particular,
entangled states | Wp[re conserved because their evo-
lution reduces to the multiplication by the phase factor:

exp(—iA 7 Vt) |Wpo= exp(-ikPAt) | Wpoll

The conservation of quantum correlation does not
hinder the variations of the state of each mode during
the process of interaction. To describe the mode evolu-
tion, we use the Hel senberg equations of motion. Inthe
interaction representation, these equations for the oper-
ators of momenta and coordinates have the form

9. _1 o _ 1
5= 5KQ, 3Py = kP,
o, _ 1 0 _ €
a2 T 2KQ 5P T kP

Using these equations, one can easily obtain the follow-
ing equations for the operators of the number of pho-

tons (n, = x5 + p> —1/2) in the waves:

J0 0 _ Xo 0
S = KQx=Ppy), 52N, = kfRZ + Py (1)

Solutions to Egs. (11) have the form
() = Ny + M*(Q° + P?) + 2u(Qxy + Ppyp),

2
X
Ny(t) = Ny + U2%Q_2 + PZEE + 21 BQ‘GZ_O + szo%v
€

where Y., (M= 1 and 2) are the operators at the initial
timeand p = kt/2.
If the maximally squeezed and entangled state spec-
ified by Eq. (4) is present at the entry, amplification
JETP LETTERS  Vol. 77
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does not arise. In other cases, amplification propor-
tional to p2 can occur. Weillustrate this by the examples
of model sources based on an optical parametric oscil-
lator with the initial vacuum states. Under real experi-
mental conditions, the squeezing parameters of the
parametric oscillator take a certain finite value r. Then,
the average number of photons in the entangled waves
incident on the amplifying medium is given by [ (=

sinh’r , and the dispersions of the coordinate and
momentum are given by the expressions [(AQ(0))?[I=
[(AP(0))2Ck 1/2exp(=2r). Thegain K = ([h(t) 2o is
expressed as K = 1 + 4p?(exp(2r) — 1)=2. For the ideal
case, r — oo and the amplification does not occur
(K —= 1). In this case, the medium serves as an ideal
guantum repeater, which can be important for ensuring
the properties of the propagated EPR pair, because the
interaction with environment destroysit. In areal case,
r isfixed, and the smaller the squeezing parameter, the
larger the gain. At r — 0, the amplifier transforms to
afield generator from the vacuum state. However, this
generator does not generate EPR pairs or two-mode
light squeezed in P and Q. The dispersions of the vac-
uum input state [AP)?(= [{AQ)?= /2 is conserved in
time, athough the mean numbers of photons in the
modes are ,,(t)C= p? # 0.

However, the question arises as whether Hamilto-
nian (10) describe any real processes or not. To answer
this question, we write the Hamiltonian in terms of the
operators of mode creation and annihilation:

Ko 2 2 2, .2
V = |Z[a1 —al—ag +a;

+(1/e)(alas—a,a,) (1 —€°) (12)

+(Le)(aya;—aja,) (1 +€%)].

For e = £1, Hamiltonian (12) describes three-photon
parametric interactions in a transparent medium with
guadratic nonlinearity. Indeed, this formula presents
three processes of frequency conversion. Two of them
arefrequency divisioninaclassical pumping field Q,, =
Wy, + Wy, and one process is the frequency up-conver-
sion Q + w; = w,, where Q,, and Q are the frequencies
of the classical pumping waves and w,, are the frequen-
cies of them= 1, 2 modes. For these three interactions
to be efficient, the phase-matching conditions must be
satisfied, which can be ensured in nonlinear periodic
media discussed in [16]. Following [17], we estimate
the intensity of the classical field used to pump the pro-
cesses under consideration. The squeezing parameter in
real experiments corresponds to the value exp(2r) = 5.
Let the gain be K = 10; under these conditions, the
dimensionless parameter is u = 6. These can be
achieved in crystalswith alength of several centimeters
if the wavelength of the amplified light is, e.g., A =
0.5 um and the pump power is| = 10* W/cm?, which is
experimentally quite realizable.
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4. AMPLIFICATION IN THE RESONANCE
MEDIUM

We consider the resonanceinteraction of N identical
two-level atoms with the electromagnetic field. This
interaction is described by the effective Hamiltonian

H=i%9, 9 =S,B-S,B" (13)

Here, the atomic operators are determined by the
expression

Sy = Y Sol@, Sy@ = KGHL xy =01,

where 0] and |1[] are the ground and excited levels of
atom a, respectively, and the field enters through the
operators B and BT,

L et three modes with frequencies w,(m=1, 2, and 3)
described by the operators a,,, interact with the atomic
trangition. The frequencies are related to the transition
frequency w as w; = wy and w; — w, = wy,. In this case,
B=ga,—fa, a; , Where g and f arethe coupling constants.

Let the w; mode be classical. Then, B = g(a; + vag),
wherev =fag/g. Tekingv = € = +1, we obtain

B = g(a,—eay) = Q+iP,

B' = g(al —ea,) = Q—iP.
For thisinteraction, wheree? = 1, P and Q are integrals
of motion. Therefore, the quantum correlation of the
EPR pair is conserved.

To determine the possibility of amplification, we
write the kinetic equation for the density matrix p of
electromagnetic field. In the lowest order with respect
to interaction, this equation has the form

0

_ Norgigo_pog!
3P = yD(B Bp-BpB'+h.c.)

(14)

N (15)
-—(BB'p-B'pB+h.c.),
Yo

where N, and N; are the populations of the lower and
upper working levels, respectively, and yj is the trans-
verse-relaxation constant. The equations

0

2
S = 3—D(Nl— N,)( Ch,— [h,J+ [(BB')

2

+§’—D(No+ Ny), (16)

9 o ~_2¢ :
achlm achQD Yo (N;—N,) (BB'D

for the average numbers of photons follow from
Eqg. (15). Here, two amplification regimes are also pos-
sible. In particular, if N; = N,, then, independently of
the presence of initial correlations between the incident
waves, the interaction of the incident waves in the
medium resultsin the amplification at the inversionless
working transition. In this case, the average number of

GORBACHEV, TRUBILKO

photons in each wave increases proportionally to the
total number of atoms, and the difference of the num-
bers of photons is conserved. Due to the existence of
guantum-correlated waves such as the EPR pair, for
which relations (4) are fulfilled, the condition IBB'= 0
ismet. Inthiscase, light isamplified in each component
of the overall light field. The average number of pho-
tons in these components is determined by the expres-
sion My,0= MyoH+ (92/Y0)((Ny = No) (o [hgl)) +
N; + Ng). Therefore, if the initial numbers of photons
are identical, each wave is amplified, and the correla-
tion between waves is conserved.

In this work, two schemes for amplifying two-mode
squeezed light with quantum intermode correlation are
presented. Theinitial EPR-type quantum correlationsare
conserved dueto the existence of integrals of motion. We
emphasize that these schemes are close to the current
experiments but are nontrivia because they themselves
do not generate the EPR-type correlated light modes.

We are grateful to A.M. Basharov and S.P. Kulik for
stimulating discussions. This work was supported in
part by the Delzell Foundation Inc. and INTAS (grant
no. INFO 00-479).
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Structure Induced by Femtosecond Laser Radiation
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A periodic structureisinduced at the surface of ametal target exposed to a series of p-polarized 200-femtosec-
ond laser pulses with intensity close to the melting threshold of the target material. The period of the structure
isdetermined by the interference between the incident pump wave and the surface el ectromagnetic wave. Expo-
sure of the obtained structure to the same laser pulse, but with an intensity of ~10% W/cm?, provides resonant
excitation of the surface el ectromagnetic waves at the plasma—vacuum interface. Thisleadsto an increasein the
X-ray output and the temperature of plasma hot electrons. © 2003 MAIK “ Nauka/Interperiodica” .

PACS numbers: 52.50.Jm; 52.38.-r; 52.25.0s

1. The plasma produced at the surface of asolid tar-
get by superstrong laser radiation with an intensity | ~
10%-10' W/cn?? is a source of subpicosecond hard
X-ray bursts with the energy spectrum determined by
the temperature of plasma hot electrons. The energy of
X-ray quanta can reach 0.1 MeV [1]. It was shown in
[2, 3] that the use of special targets made it possible to
enhance the conversion efficiency of femtosecond laser
radiation into X-ray emission and increase the temper-
ature of hot electronswithout increasing theintensity of
heating radiation. In particular, this can be achieved
using diffraction gratings or other periodic surface
structures as a target. The exposure of such targets to
femtosecond laser pulses results in the excitation of
surface electromagnetic waves (SEWSs) at the plasma—
vacuum interface [4]. The reason is that the plasma
exposed to an ultrashort pulse has no timeto expand, so
that the plasma boundary remains rather sharp. The
SEW excitation is accompanied by the enhancement of
alocal electromagnetic field at the target surface, which
is equivalent to an increase in the heating radiation
intensity. This, in turn, leads to the amplification of var-
ious effects nonlinear in intensity, in particular, to an
increase in the energy of the second harmonic gener-
ated by the superintense radiation reflected from the
plasma surface [5]. The X-ray emission from plasmais
also expected to undergo a considerable increase in the
conversion efficiency Y, and a shift toward higher ener-
gies due to an increase in the hot-electron temperature
Thow because both of these quantities are proportional to
the laser intensity [6].

Since the efficiency of conversionto X-ray emission
increases with increasing atomic number of the target
material [7], it isbest to use gratings produced in mate-
rials with a high atomic number. However, conven-
tional methods cannot produce diffraction gratings at
an arbitrary material. The exposure of atarget to laser

radiation with intensity dlightly exceeding the melting
threshold can result in the generation of periodic struc-
tures at the target surface [8]. In particular, such struc-
tures were observed in dielectrics, semiconductors, and
semimetal s exposed to femtosecond pulses [9-11].

Interference at the target surface between the SEW
excited by vacuum pump wave and the pump itself is
one of the mechanisms for generating periodic surface
structures [8]. Because of this, the interference pattern
produced on the target surface has a period that pro-
vides resonant SEW excitation by the same vacuum
wave. For metal and plasma, the difference between the
SEW wave vectors is insignificant [5]. Therefore, a
periodic structure produced by low-intensity laser radi-
ation is also resonant for the superintense laser radia-
tion used for producing plasma and exciting SEW at its
boundary, provided that the wavelength, polarization,
and the angle of incidence on the target do not change.

The goal of thiswork was to show that femtosecond
laser radiation can be used for generating periodic
structures on the surface of a metal target. It was also
shown that the X-ray output and the hot-electron tem-
perature increase upon the resonant SEW excitation on
the periodic structures obtained at the plasma—vacuum
interface.

2. Theintensity of femtosecond laser radiation with
an energy of several hundreds of pJwas reduced in our
experiments by defocusing to a level that was dightly
higher than the target melting threshold. A series of
laser pulses gaverise to aperiodic structure at the target
surface. Then, the laser radiation was again tightly
focused to produce plasma at the surface of the result-
ing structure.

The scheme of experimental setup is shown in
Fig. 1. A Johansson plate with theiron surface as atar-
get was placed into avacuum chamber pumped down to
aresidual pressure of 107 Torr. p-Polarized laser pulses

0021-3640/03/7709-0473%24.00 © 2003 MAIK “Nauka/Interperiodica’
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=
Xy AN\

Target

Fig. 1. Scheme of the experimental setup. Laser radiation
with a duration of 200 fs and an energy of ~300 uJ was
focused on ametal target using an aberration-free objective
lens. The plasma X -ray emission was measured by detectors
D1 and D2. Sets of X-ray filters F1 and F2 were used to
select the range of measured X-ray output.

with awavelength of 610 nm, an energy of 300 |uJ, and
aduration of 200 fswere focused by an aberration-free
objective lens. To produce the periodic structures, the
focus of the objective lens was shifted by 300 um from
thetarget surface, so that the radiation intensity became
~10' W/cm?. The angle of incidence on the target was
45°. The results of 15 successive irradiations of afixed
target are shown in Fig. 2. The period of the structure
obtained was approximately 330 nm. Profilometric
measurements showed that the grating amplitude
ranged from 40 to 80 nm.

The periodic structure was exposed to the same laser
radiation focused to an intensity of ~10'6 W/cm?. X-ray

WD =4 mm
File Name = Iron-Lasershot-02.tif
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detectorsD1and D2 (Fig. 1) and setsof X-ray filtersF1
(100 um of beryllium and 100 um of Al) and F2
(200 pm of beryllium, 300 um of Al, and 13 um of Ta)
were used to measure the X-ray output in different
spectral ranges and estimate the hot-electron tempera-
ture for each laser pulse by the filter method [7]. The
results of these measurements are shown in Figs. 3 and
4. The sameresults, but for aflat target, are al'so shown
inthesefigures. Itisseen that, for the grating, the X-ray
output in the energy range above 7 keV istwo to three
times greater than for the flat target. In the range above
20 keV, the grating provides a fourfold increase in the
X-ray output. This indicates an increase in the temper-
ature of hot electronsthat are responsible for the gener-
ation of hard X-ray radiation (Fig. 4).

3. The period of the structure is determined by the
interference between the SEW generated by vacuum
pump wave and the pump light itself at the target sur-
face[8]. The surface electromagnetic waves are excited
due to the diffraction of pump radiation by the original
rough surface of thetarget. The period d of the interfer-
ence pattern at the target surfaceis

d = 210(K, % koSin®), (1)

where k;, and k, are the SEW and pump wave vectors,
respectively, and 6 is the pump incidence angle. The
period d provides resonant SEW excitation by the same
vacuum wave. The sign in Eq. (1) depends on the dif-
fraction order. If the pump intensity exceeds the melt-
ing threshold, the amplitude of resonant periodic struc-
ture increases with each successive irradiation because
of a considerable loss of the target material at the sites
of interference maxima. In our case, the period of the
structureis equal to the smaller of the two possible val-
ues determined by Eq. (1), because the structure with a
smaller period has a greater growth increment [12].

The measured increase in the X-ray output and the
hot-electron temperature on a periodic structure, com-

Fig. 2. Image of the laser-induced grating obtained using a L EOQ1550 el ectron microscope. The black line indicates the approximate
direction of the projection of the pump-wave electric-field vector on the target surface.

JETP LETTERS Vol. 77 No.9 2003
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pared to the usual flat target, allows the estimation of
theincreasein alocal field induced by SEW excitation.
Indeed, the conversion efficiency into X-ray emission
in the spectral range measured in the experiment is pro-
portional to the squared laser intensity: Y, ~ 12 ~ L412
[6]. Here, | isthe laser intensity at the target surface. It
isrelated to the pump wave intensity by | = L2l,, where
L isthe local-field amplification factor. Thus, the factor
L can be estimated by the formula L ~ (Y,(grat-
ing)/Y,(flat))¥4, where Y,(grating) is the X-ray output
obtained by irradiation of plasma produced at the peri-
odic structure and Y, (flat) is the X-ray output obtained
by irradiation of a flat target. The experimental data
giveL ~3¥~13.

Measurements of the increase in hot-electron tem-
perature with increasing laser intensity showed that
Thot ~ 19, where a = 0.4 = 0.1 (Fig. 4). Taking into
account this dependence, one can conclude that the
local-field enhancement calculated from the measured
increasein Ty IS

DTMDMOA x2

1/0.4 x
T, (e O 0 (1.4)"°**f 15,

LO

This value is close to the one derived from the X-ray
output data and agrees with the theoretical estimates of
the local-field enhancement. For the plasma expanded
over adistance Az much shorter than the wavelength A
of the p-polarized laser radiation and for the optimal
groove height, the local-field amplification factor can
be estimated by the following equation [13]:

L _ cosoO )
p,max 2 2 !
n/(n”+m") + 1tn [k,

)

where n = (dRe(e)[/d2)™ ~ (|Re(e)|/A2)7L, € is the
plasma dielectric constant, n is the rea part of the
refractive index, and m is its imaginary part. If the
plasmatemperatureis T, ~ 300 eV, the degree of ioniza-
tionis Z ~ 20, |Re(e)| ~ 11, and the plasma expansion
into vacuum is Az ~ 200 A (which corresponds to the
heating radiation intensity | ~ 10'® W/cm? and a pulse
duration of 200 fs [14]), the local-field amplification
factor L, max IS @pproximately 1.8.

The local-field amplification factor calculated from
the results of measuring hard X-ray output is smaller
than expected. A possible reason is that the amplitude
of the obtained periodic structure is not optimal. The
optimal groove height for SEW generation at the sur-
face of plasma produced in the experiment is 80 nm
[13]. In addition, Eq. (2) isvalid for a sinusoida grat-
ing, whereasthe actual relief of the periodic structureis
far from sinusoidal (Fig. 2). This leads to additional
losses due to the radiation scattering by the nonresonant
Fourier components of the surface relief. As a result,
the local-field amplification factor is reduced.
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Fig. 3. Conversion efficiency of the laser radiation into
X-ray emission in different ranges of X-ray spectrum:
above (a) 7 and (b) 20 keV for (open squares) flat target and
(filled squares) laser-induced grating.
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Fig. 4. Dependence of the hot-electron temperature on the
intensity for (open squares) flat target and (filled squares)
laser-induced grating. The experimental data both for the
grating (solid line) and the flat target (dashed line) are best

approximated by apower law Ty ~1%, wherea =0.4+0.1.

The obtained increase in the hot-electron tempera-
ture can be used to increase the excitation efficiency for
low-lying nuclear levels. For example, in the case of
14-keV Fe’’ transition, it can be shown, following [15],
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that an increase in the hot-electron temperature from 7
to 10 keV brings about atwofold increase in the excita-
tion efficiency. It should also be noted that the maximal
energy of protons emitted by the plasma produced from
the femtosecond laser radiation with intensity | ~
10 W/cm? can be enhanced to 50 keV, because it
increases in proportion to Ty [16].

We are grateful to A.A. Ezhov for performing sur-
face profilometry. Thiswork was supported by the Rus-
sian Foundation for Basic Research, project nos. 02-02-
16659, 02-02-06236, and 03-02-06270.
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It was demonstrated by direct numerical simulation that, in the case of weakly nonlinear capillary waves, one
can get resonant waves interaction on the discrete grid when resonant conditions are never fulfilled exactly. The
waves's decay pattern was obtained. The influence of the mismatch of resonant condition was studied as well.

© 2003 MAIK “ Nauka/lnterperiodica” .
PACS numbers: 47.35.+i

Nonlinear waves on the surface of afluid are one of
the most well known and complex phenomena in
nature. Mature ocean waves and ripples on the surface
of the tea in a pot, for example, can be described by
very similar equations. Both these phenomena are sub-
stantialy nonlinear, but the wave amplitude is usualy
significantly less than the wavelength. Under this con-
dition, waves are weakly nonlinear.

To describe processes of this kind, weak turbulence
theory was proposed [1, 2]. It results in Kolmogorov
spectra as an exact solution of the Hasselman—
Zakharov kinetic equation [3]. Many experimental
results are in great accordance with this theory. In the
case of gravity surface waves, thefirst confirmation was
obtained by Toba [4], and the most recent data by
Hwang [5] were obtained as a result of lidar scanning
of the ocean surface. Recent experimentswith capillary
waves on the surface of liquid hydrogen [6, 7] are also
in good agreement with this theory. On the other hand,
some numerical calculations have been made to check
the validity of the weak turbulent theory [8-10].

In thisletter, we study one of the keystones of weak
turbulent theory, the resonant interaction of weakly
nonlinear waves. The question under study is the fol-
lowing:

How does a discrete grid for wavenumbers in
numerica simulations affect the resonant interaction?

Can a nonlinear frequency shift broad resonant
manifold to make discreteness unimportant?

We study this problem for nonlinear capillary waves
on the surface of an infinitely depth incompressible
ideal fluid. Direct numerical simulation can make the
Situation clear.

Let us consider a nonrotating flow of an ideal
incompressible fluid of infinite depth. For the sake of

TThis article was submitted by the authorsin English.

simplicity, let us supposefluid density p = 1. Theveloc-
ity potential ¢ satisfies the Laplace equation

Ap =0 Q)
in the fluid region bounded by
—o<z<n(r), r=(xy), 2

with the boundary conditions for the velocity potential

on , 09dn , 09on _ d¢
ot 0x0x 0dyody azzzn’

©)
EﬁCP 1(@ )ED +0(W—1) =0
onz=n and
®,-.=0 (4)

onz— —oo, Heren =n(x, y, t) isthe surface displace-
ment. In the case of capillary waves, the Hamiltonian
has the form

H=T+U,

n
_ % Idzr [(@ )2dz, ©)

U= oI(A/1+(m] Z_1)d’r, (6)

where g isthe surfacetension coefficient. In[11], it was
shown that this system is Hamiltonian. The Hamilto-
nian variables are the displacement of the surface n(x,
y, t) and velocity potential on the surface of the fluid
WX y; t) = (% y, n(x Y, t); t).The Hamiltonian equa
tionsare

on _ oH

oy _ dH
ot~ on’ "

t oy
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Using the weak nonlinearity assumption [3], one can
expand the Hamiltonian in the powers of surface dis-
placement:

- %I(0|ml |2+ wky)d*r o
+ 3l 1P~ (ky) .

The third order is enough for three-wave interactions.

Here, k is the linear operator corresponding to multi-
plication of Fourier harmonics by the modulus of the
wavenumber k. Using (7), one can get the following
system of dynamical equations:
N = ky—div(n@ )—k[nky],
: 1 - )
¢ = oan-31(W )~ (kw)7.

The properties of the k operator suggest exploiting the
equations in Fourier space for Fourier components of n

and y,
__!._ ikr __1_ ikr
2|qJ,e d°r, nk—zlne d°r.

Let us introduce the canonical variables a, as shown

below:
_ o L
& = J;(nkﬂ Zwkwk, (10)
where
W, = Jok’. (11)

With these variables, the Hamiltonian (8) acquires the
form

H = Iook|ak|2dk

* A% A%

11 Kk
+ éZ_TJEklkz(aklakzako + A,

x 3(Ky + K + k) dk ,dk,dK (12)

* * *
,.JMk (B, A, + A A, )

x O(k, +k,—kg)dk,dk,dk, .
Here,

kD —_ kO kl k2
Eik, = Vigk, ¥ Vigk, T Viek,

ko _ /% Ky ky
Mklkz - Vklkz - V—kokz - V—kok1’

oo _ O Ko (13)

kake ™) 8K koW

KKy
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Lk, = (Kikp) + |Kql|Kg-

The dynamic equationsin these variables can be easily
obtained by variation of Hamiltonian:

a = —i = —iw,a

*
oa;

_ IEZ%_JMtlkzaklakzé(kl +k,—k)dk,dk,
[ k (14)
-5 TJMkiza’k*zakoé(k + Kk, — ko) dk,dk,

- Iézi = [El il 30k, + o + Kk

Each term in this equation has its own clear physical
meaning. The linear term gives a periodic evolution of
the initial wave. The first nonlinear term describes a
merging of two waves k; and k, in k. The second
describes decay of the wave k, to the waves k and k.
And the last term corresponds to the second harmonic
generation process. It is useful to eliminate the linear
term with the substitution

ot

a = Ae (25
In these variables, the dynamical equations take the
form

iQf, t

. I 1 172
Ac = —éz—rJMtlszklAkze

X 6(kl + k2_ ko)dkldkz
-0 (16)

Kk,

ZTJMkk Ak Ak ’

X 5(k + kz_ ko)dkzdko,

where

Qtsz = Wy, + W, — W (17)
Here we do not consider the harmonic generation term.
The remaining terms give us the following conditions

of resonance:

Quy, = W, + W, —w =0, ky+kp,—k = 0. (18)

All thistheory iswell known in the literature [3].

Now let us turn to the discrete grid. Also, from this
point we assume periodic boundary conditionsin x and
JETP LETTERS  Vol. 77
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y with lengths L, and L,. One can easily obtain equa-
tions similar to (16):

N | 2T[ iQ klkz
A = 2LxLyka MkszklAkz D, k),
172 (19)
|2n
Z Mkszszk A(k +Ky,), kg
Lx yk Ko

where A, isthe Kronecker delta—the discrete ana-

logue of the Dirac delta function.
Consider the decay of a monochromatic capillary
wave A, ontwo waves

kg

. _ | 27T Qk kzt
Ako - 2L L Mk kz'Akl'Ak2 )
A 2T[ * Qtikzt
A, = L L, Mk 1,AGAE ) (20)
. 2T[ * Qtikzt
IAk2 = L L Mk kZA AkO .

Let A, A, besmal (|A | > max(|A |, |A|)at=
0). In this case, the equations can be linearized. The
solution of linearized (20) has the form (A, ~ const)

A () = A (0)€", (21)

where
21 |jl- ko |:|2
- _ZQkk /\/L L _@lekﬂ .

In the case of a continuous media, resonant condi-
tions (18) can be satisfied exactly. But on the grid, there

is aways a frequency mismatch QE‘JKZ # 0 although if
the amplitude of the initial wave is high enough there

are resonances even on adiscrete grid. But the width of
this resonance is very important.

System of equations (9) can be solved numerically.
This system is nonlocal in coordinate space due to the

presence of the k operator. The origin of this operator
gives us a hint to solve (9) in wavenumber space
(K space). In this case, we can effectively use the fast
Fourier transform algorithm. Omitting the details of
this numerical scheme, we reproduce only the final
results of calculations.

We have solved system of equations (9) numerically
in the dimensionless periodic domain 21t x 21t (the
wavenumbers k, and k, are integer numbers in this
case). Correspondingly, all other variables also become
dimensionless. It is convenient to use the surface
tension 0 = 1. The size of the grid was chosen as

Mick, Ay, (22)
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Integer numbers grid
Resonant curve

Fig. 1. The resonant manifold for kg = 68.

512 x 512 points. We have aso included damping for
waves with large wavenumbers. In K space, the damp-
ing terms for n, and Y, respectively, were the follow-
ing: YNk and y, Wy, wherey, was of the form

1
Vi = 0, Kl < 3K,
(23)

2
Vi = Yol ~[ 3k K2 Sl
wherey, is some constant.

Asaninitia condition we used one monochromatic
wave of sufficiently large amplitude with wavenumbers
Ko (Kox = 0, ko, = 68). Along with that, there was a small
random noisein all other harmonics.

Resonant manifold (18) for decaying waves

OO
ko=000,
(ko
(24
o _ 0
k=0 %0 k=0 %
Cko—k, O Dk +k, O

isgiven in Fig. 1. Since the wavenumbers are integers,
the resonant curve never coincides with grid points
exactly. A detailed pictureis givenin Fig. 2. Itisclear
that some points are closer to the resonant manifold
than others. This difference might be important in
numerals.

In the beginning, one can observe exponential
growth of resonant harmonics in accordance with (21)
and (22). Thisis shown in Figs. 3 and 4. Here one can
clearly see that some harmonics are in resonance and
others are not.

Then almost all harmonicsin the resonant manifold
become involved in the decay process (Fig. 5). Later,
the harmonics that are the closest to the resonant mani-
fold (compare with Fig. 2) reach the maximum level,
while the secondary decay process develops. Waves
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Fig. 2. Different mismatch is seen at different grid points.

Fig. 4. Resonant harmonics starting to grow. At the base-
ment thereisacontour linefor level ja [> = 1022, Timet = 1.4,

kx
—-100

=50

o o = e el ety
0 - %
50 -
100
-100 50 0 50 100
ky

Fig. 6. The contour linesfor |a,[> = 1071, Secondary decays
are clearly seen. Timet = 14.

Fig. 3. Evolution of various harmonics for decaying wave
kg = (0, 68).

Fig. 5. Secondary decays start. At the basement there is a
contour line for level Ja, [ = 10722, Timet = 11.
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Fig. 7. Wavenumber spectrum at timet = 57.
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amplitudes become significantly different. The largest
amplitudes are for those waves with the maximum
growth rate. One can seetheregular structure generated
by the k, wave in Fig. 6. After a while, the whole k
spaceisfilled by decaying waves, as shownin Fig. 7.

Direct numerical simulation has demonstrated that
thefinite width of the resonance makesthe discrete grid
very similar to a continuous one. Of course, thisistrue
only if the amplitude of the wave is large enough, so
that according to (22)

1 Kk
> ‘Qlekz

2T | ko
MklszkD

CL . (25)

As regards numerical simulation of the turbulence,
namely, weak turbulence, condition (25) is very impor-

tant. A, hasto be treated as the level of turbulence.
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Dust-grain charging in a dense plasma with electron and ion concentration up to 10'® cm3, where the electron
transport cross section is dominated by Coulomb collisions, wasinvestigated. It was established that the charge
of an isolated dust grain increases with electron concentration, whereas its potential is almost constant in the
range 10%4-10% cm~2 of electron concentrations studied. It is shown that the self-consistent el ectric-field poten-
tial at moderate and large distances from the dust grain is well approximated by the Debye expression, but the
screening radiusis appreciably larger than even the el ectron Debye radius. The region of parameters of adense
photoresonance sodium plasma, where the dust-grain ensemble may crystallize, was established. © 2003 MAIK

“Nauka/Interperiodica” .
PACS numbers: 52.27.Lw; 52.25.Vy

INTRODUCTION

Today, increased interest in dust plasmais caused by
anumber of its unique properties. In such plasmas, an
ordered Coulomb crystal may form under certain con-
ditions. The study of this structure is of great interest
from both fundamental and applied points of view. At
present, investigations of dust plasma are carried out in
a weakly ionized low-temperature plasma with the
electron density n, no higher than 10°-10? cmS.
According to modern concepts, the charge of an iso-
lated dust grain isvirtually independent of n.. However,
asthe plasmadensity increases, the electron mobility is
controlled more and more by the Coulomb collisions
with ions, so that, in the analytic theory of hydrody-
namic charging regime, the dust-grain charge decreases
logarithmically with increasing plasma concentration
[1, 2]. It should also be noted that the Debye radius at
low electron and ion densities is large, alowing the
condition for dust-component crystallization in weakly
ionized plasma to be satisfied at reasonable values of
experimental parameters (see, e.g., [3]). At higher den-
sities of the charged plasma particles, the Debye radius
decreases, thereby weakening the interaction between
the grains and, at first glance, preventing the formation
of ordered structures. However, it wasfound both in the
experiments and in numerical calculations that, under
real experimental conditions of low-temperature
plasma, the screening radius characterizing the spatial
dependence of dust-grain potential may appreciably
differ from its classical value (see [3] for details) and
the screening radius may become larger than even the
electron Debye radius upon an increase in the electron
and ion density. This follows from the fact that the lin-
earized Debye-Huckel theory does not apply to the

open systems exemplified by dust plasma. Because the
dust grains continuously absorb electrons and ions,
such plasmacan exist only if energy iscontinuously fed
to generate new charge carriersinstead of the absorbed
ones. Since the degree of plasma perturbation by a dust
grain increases with electron concentration, the devia-
tions from the Debye—Hiickel theory also decrease with
increasing n,. Thismotivated usto study the fundamen-
tal processes of nonstationary dust-grain charging and
the possibility of Coulomb crystallization in a dense
plasmawith n,~ 10°-10'" cm~3 at arelatively low elec-
tron temperature T, ~ 0.2-0.5 eV, which is typica of,
e.g., photoresonance plasma[4].

NUMERICAL SIMULATION
OF DUST-GRAIN CHARGING

Numerical studieswere carried out using amodel of
nonlocal charging in the hydrodynamic regime [5].
Calculations were carried out with the effective bound-
ary conditions whose applicability was discussed in
detail in [3, 5]. The results of simulating the charging
process for asolitary dust grain with radiusry =10 um
in the argon plasma at room temperature and atomic
concentration N = 2.5 x 10 cm are given in Fig. 1.
The Ar, ion, whose dissociative recombination coeffi-
cient is given by the expression By = 0.85 x
1076(300/T,)°¢” cm?/s [ 6] (the electron temperatureisin
K, asisadopted in the theory of elementary processes),
was assumed to be the bulk ion, and the mobility k; of a
molecular ion was taken to be 2.1 cm?/(V s) [7]. The
fast dissociative recombination of amolecular ion plays
an important part in the charging kinetics of dust grains

0021-3640/03/7709-0482$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Fig. 1. Radial distributions of the (curve 1) electric field and
(curve 2) potential of an isolated dust grain in argon plasma

for T, = 0.4 €V, ry = 10 um, Ng, = 10 cm™, and ny =
108 em3,

[5]. It was assumed that the electron temperatureis T, =
0.4 eV and the electron concentration away from the
grain is n, = 10'® cm=. One can seein Fig. 1 that the
curve for the radial dependence of electric field passes
through a minimum, while the radial behavior of the
potentia is rather regular and monotonic. The fact that
the field in the vicinity of a dust grain is nonmonotonic
is rather unexpected, so that we will dwell upon this
effect in more detail.

Under normal conditions, the Ar, ion free path is
[; = 0.05 um, and the region where the plasma quasi-
neutrality is broken isd ~ 1 um, so that the hydrody-
namic description of the transport processes is correct
for the ion component. The electron free path with
respect to the electron—neutral and electron-ion colli-
sionsat n,=n, = 10 cm3isly = 1.5 um, and the total
free path with allowance made for al collisionsis|, =
1.1 pum. One can see that d and |, are comparable in
magnitude, so that the hydrodynamic approach
becomes incorrect for the electron component (note
that the free path I, and the distance from the minimum
point to the dust grain are given in Fig. 1 on different
scales). In this case, the kinetic approach is, generally,
required to determine the electron energy distribution
function (EEDF). However, the electron—electron colli-
sions in dense plasma give rise to the Maxwellian
EEDF, and it is not affected by electric field in aKnud-
sen layer, where electrons almost do not collide with
each other and with other particles. For this reason, the
behavior of the electron component is completely
described by the lowest (no higher than second-order)
moments of EEDF, i.e., by the balance equationsfor the
number of electrons and their energy. Due to the small-
ness of the ion current and almost total compensation
between the drift and diffusional electron fluxes, this
also brings about Boltzmann electron distribution in a
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Fig. 2. Radia distributions of the (curve 1) electron and
(curve 2) ion concentrationsin the immediate vicinity of an
isolated dust grain in argon for T, = 0.4 €V, ry = 10 um,
Newo = 106 cm 3, and ng = 10% cm. Curve 3isfor the Bolt-
zmann electron distribution.
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self-consistent dust-grain electric field. Indeed, the
results of numerical simulation show that the electron
distribution is described by the Boltzmann expression
with ahigh accuracy (Fig. 2). In this case, one can show
that, for the adopted effective boundary conditions, the
electron flux on a dust grain will coincide in the colli-
sionless limit with the flux in the orbit motion limited
(OML) approach [8], which isvalid at |, > d. Because
of this, we can conclude that the nonlocal charging
model with the effective boundary conditions properly
describes the behavior of the electron component under
the conditions considered in this work and that the area
of its applicability is fully determined by the ion com-
ponent.

The reason for which the electric field is nonmono-
tonic becomes clear from Fig. 2, where the electron and
ion distributions in the immediate vicinity of a dust
grain are shown. One can see that the electron concen-
tration near the dust grain decreases to a value (deter-
mined by the electric-field potential and electron con-
centration and temperature at large distances) that far
exceeds the ion concentration (in the hydrodynamic
limit l;/r, —= O, theion concentration at the dust-grain
surface tends to zero). For this reason, aregion of neg-
ative space charge appears in the vicinity of a dust
grain, as a result of which the electric field becomes
nonmonotonic. Of course, one cannot argue that theion
density in the Knudsen layer is properly determined if
the effective boundary conditions are used. To describe
the ion transport in this layer more accurately, the ion
inertia should be taken into account. However, thiswill
increase the ion velocity and, due to flux conservation,
lead to even sharper decreaseinion concentrationin the
Knudsen layer, rendering the observed effect more pro-
nounced.

As was mentioned above, the charge of an isolated
dust grain, according to the modern theories of charg-
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Fig. 3. Charge and potential of an isolated dust grainin an
argon plasmawith Coulomb collisions vs. electron concen-
tration at alarge distance from the grain for T, = 0.4 €V and

ro =10 pm. Curve 1 isthe calculated charge; curve 2 corre-

sponds to the analytic charging theory [1, 2]; curve 3isthe
calculated potential; and curve 4 isthe OML potential [8].

ing [1, 2, 8], isindependent of the electron concentra-
tion n., away from the grain. The influence of n,, on
the chargeisof fundamental interest, because the appli-
cability of the cited theoriesis questionable for adense
plasma with the parameters considered in this work.
The dust-grain charge and potential in argon plasma
with Coulomb collisions are presented in Fig. 3 for var-
ious electron concentrations at large distances. One can
see that, in contrast to weakly ionized plasma, the
charge depends rather strongly on the el ectron concen-
tration, but the potential virtually does not change upon
achangein ng, by two orders of magnitude.

With the purpose of determining the character of
screening the dust-grain charge, the cal culated potential
was approximated by the Debye expression:

alr) = ZEexp(~1/R; ), ®

where r is the distance from the grain center; g, and
Rp, a are, respectively, the approximated charge and
screening radius. The results of approximation showed
that the calculated potential was rather well described
by expression (1). A comparison of the results obtained
by approximating the screening radii by the plasmaand
electron Debye radii is shown in Fig. 4. One can see
that Ry, , markedly exceeds even the classical electron
Debye radius Ry  given by the expression

T
RD,e = ze . (2)
/\/ 4ATEe Ny,

These data allow the probability of formation of a Cou-
lomb dust-grain crystal to be estimated for the dense-
plasma parameters considered in thiswork. One can see
from Fig. 4 that the dust grain in an argon plasma per-
turbs it only at small distances, so that the interaction

Fig. 4. Effective Debye screening radius (reduced to the
classical eectron radius) of anisolated dust grainin (curve 1)
argon and (curve 2) photoresonance sodium plasma vs.
electron concentration at alarge distance from the grain for
Te=0.4¢eV and rg =10 um. The run of curve 2 reflects the

time evolution (passing though a maximum) of the electron
temperature and concentration in a photoresonance sodium
plasma.

energy of dust grains becomes comparable with their
therma energy only a high dust concentrations
exceeding 10° cm3. Taking this into account, one can
hardly expect that the dust plasma can crystallize.

In this work, the possibility of dust-plasma crystal-
lization in a sodium photoresonance plasma (PRP) pro-
duced by laser pulses (see, e.g., [4]) was aso studied.
In this plasma, the monatomic Na* ions, whose decay
channel is dominated by three-body recombination
(with an electron as a third body), are bulk ions at the
electron densities on the order of 10'°-10'® cm™ [9],

with B3 = 8.75 x 102'T.”* cmf/s (T, is in eV). The
mobility of sodium ions was determined from the Lan-

gevin formula[7] k = 36/./Jap cm?/(V s), where a is
the polarizability of argon atoms and [ is the reduced
mass of ion and neutral particlesin atomic units. Dueto
alow three-body recombination rate (compared to the
dissociative recombination rate in argon), the screening
radius increases appreciably, because the size of the
plasma region disturbed by the dust grain depends on
the loss rate of charged particles in plasma bulk [5].
Calculations show (Fig. 4) that the screening radiusin
adense sodium plasmamay be two orders of magnitude
larger than the electron Debye radius given by the clas-
sical Debye-Hiickel theory. Due to a large screening
radius in the sodium PRP considered, the condition for
crystallization, in contrast to argon, may not befulfilled
at reasonable dust-grain concentrations ny < 107 cm=,
asisseeninFig. 5, showing the dependence n(t) of the
critical dust-grain concentration above which the crys-
tallization condition is fulfilled for the photoresonance
dust plasma.

It should be noted that the effect of laser radiation
with a pulse duration on the order of 10 ns and a peak
intensity up to 108 W/cm? on heating plasma dust com-
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Fig. 5. Timedependence of thecritical concentration of dust
grains with aradius of 10 pm in a photoresonance sodium
plasma.

ponent isimmaterial in the case where the grains con-
sist of a transparent material (e.g., alumina powder);
accordingly, the influence of a thermoforethic force on
the dust-grain levitation is weak. Although the levita-
tion can, in principle, be affected by the pressure of
laser radiation, the kinetic energy acquired by the dust
grain under the action of a laser pulse with the above-
mentioned parameters does not exceed the grain ther-
mal motion energy. Estimates show that the grain heat-
ing by the ion flux can aso be ignored for the plasma
parameters considered. Theinfluence of the photoemis-
sion processes induced by visible laser radiation on the
charging of dielectric particlesis also insignificant.

CONCLUSIONS

The studies carried out in thiswork have shown that,
when passing from aweakly ionized plasmato arather
dense plasma with an electron concentration of
~10' cm3, the charge of a dust grain, as expected,
startsto strongly depend on the plasmadensity because
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of switching on of the Coulomb collisions. With an
increase in the electron density, these collisions start to
dominate the drift and diffusional velocities. The
results of numerical simulation have also demonstrated
that the calculated potential of anisolated dust grainin
a dense plasma decreases with distance much more
slowly than is predicted by the classical Debye-Hiickel
theory. The approximation of calculated data gives a
valuefor the screening radius which exceeds the classi-
cal electron Debye radius by almost two orders of mag-
nitude. It is established that the dust component may
crystallize in a photoresonance sodium plasma.

This work was supported in part by the Russian
Foundation for Basic Research, project nos. 00-15-
965391 and 02-02-16758a.
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The Hall constant and conductivity of nonideal partially ionized argon and xenon plasmas are measured by the
probe methods. Plasmas were generated behind the front of powerful shock waves using linear explosive gen-
erators. The results are compared with some plasma models. © 2003 MAIK “ Nauka/Interperiodica” .

PACS numbers: 52.25.Fi; 52.27.Gr; 52.50.L p; 52.70.Ds

A low-temperature nonideal plasma (I =
2e3(Ting) Y2/ (kg T)¥? > 1) isthe object of steady interest of
researchers, both because of the complexity and diver-
sity of the processes occurring in it and due to the pos-
sible practical use of dense plasma in some technical
devices and energy projects[1].

At present, the comprehensive description of the
physical properties of a dense plasmais far from com-
pletion because of difficulties of both a theoretical and
an experimental character [1]. In the commonly used
“chemical” modd [2], the calculation of the thermal
properties of anonideal plasma rests on the knowledge
of its equilibrium component composition. In the case
of strong Coulomb interaction (I > 1), the calculation
of the composition is a separate and rather complex
problem because of the uncertainty inherent in the
chemical model [3], so that the correctness of the cor-
responding solution requires experimental verification.
Direct measurements of electron concentration provide
a unique opportunity to check the adequacy of modern
theoretical ideas of the properties of dense plasma.
Note that the strong interparticleinteraction rendersthe
use of the mgjority of classical methods for measuring
electron concentration [4, 5] practically impossible, in
spite of their successful usein other areas of physics.

In this work, we report the first data on measuring
the electron concentration (10'-10%° cm3) in low-tem-
perature (0.5-1 eV) nonideal (0.01 <T < 2.8) partially
ionized (degree of ionization o = 10°-107) inert gas
plasmas. The data were obtained by the four-probe
method based on the measurement of the Hall potential
difference.

Plasma was generated by the dynamic compression
of the gas under study (P, = 0.4 MPaand T, ~ 300 K)
behind the front of powerful shock waves. This tech-
nigue is agood tool for the production of spatially uni-
form plasma formations with the characteristic sizes
(~1 cm) sufficient for probe diagnostics. For self-simi-
lar flows, the conservation laws at the shock-wave dis-

continuity are written in a simple algebraic form [6],
allowing the thermodynamic parameters of a shock-
compressed gas to be calculated from the measured
flow hydrodynamic parameters.

Theinitial gas parametersand shock-front velocities
(2-3 km/s) were chosen in such a way as to produce
weakly nonideal plasma (I < 1) behind the front of the
incident shock wave and a nonideal (1 < T < 2.8)
plasma behind the front of the reflected wave. Behind
the front of the incident wave, magnetic field freely
penetrated into plasma, while, after reflection, ahydro-
dynamic flow with a “frozen-in” magnetic field was
realized.

Plasma was produced using a linear explosive gen-
erator [7] with a ~5-cm-i.d. channel. Ammonite of a
bulk density was used as an active explosive charge.
The overall charge length was 12—-15 cm. The plasma
parameterswere varied by changing the charge density.

Argon or xenon gas was taken for the investigation.
M easurements were performed in the region of partial
plasmaionization, becausethisis precisely the range of
parameters where the uncertainty in the description of
electron concentration and conductivity is the highest.

The method of determining electron concentration
is based on the measurement of the Hall potential dif-
ference that arises in a medium if an electric current
passing throughiit isnot collinear with an external mag-
netic field. The Hall field is uniquely related to the cur-
rent density, magnetic induction, and concentration of
charged particles. Therefore, measurements of the cur-
rents, voltages, and characteristic sizes of the medium
allow the determination of electron concentration with
an accuracy of the Hall factor. The method of determin-
ing low-frequency conductivity is based on the detec-
tion of a voltage drop on the conducting section in the
medium and the magnitude of electric current passing
through it. The geometric factors of ameasurement cell
were determined in specia experimental runs with a
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weakly nonideal helium plasma, where the measured
parameters can be calculated with a high accuracy.

The scheme of the experimental setup is shown in
Fig. 1. The electrode system was attached to organic-
glass block 3 inside the generator channel. The trans-
port current | (0.1-1 kA) was passed through a pair of
flat electrodes 4 dipped in plasma, and the Hall poten-
tial difference Uy, (100 mV—-20V) was taken at the pair
of point probes 5. The voltage for determining conduc-
tivity was taken at the pair of probes 6. The Hall con-
stant and the conductivity were measured both upon
plasma-bunch flying up to the block and at the reflec-
tion. The accuracy of determining conductivity was
~30%. The Hall constant was determined with an accu-
racy of ~50%, and the electron concentration was
derived from the measured Hall constants. The Hall
factor was cal culated with allowance made for the mag-
netic-field magnitude according to [8]. The energy
dependence of the pulse relaxation time t(g) was
assumed to be the same as in the conductivity calcula-
tions performed in [9].

A pulsed magnetic field (~5 T) was produced by a
discharging capacitor bank, applied on the frame of the
explosive generator, through a solenoid. With such a
geometry of the explosion device, the plasma bunch
was moved parallel to the magnetic lines of force at the
solenoid center. For the known solenoid geometry, the
magnetic induction at its center was calculated from the
electric current flowing through it.

To provide galvanic decoupling of the power and
measurement circuits, the signal from the measuring
probes was fed to the primary winding of a high-fre-
guency transformer, while the signal from the second-
ary winding was fed to a system of C9-8 oscilloscopes.
The transport current was measured using either the
Rogowski loop or a low-inductive shunt. To avoid
induction produced by high-intensity electric and mag-
netic fields, the measuring oscilloscopes were placed in
ashielded room. In each experiment, two or three inde-
pendent oscilloscope recordings were made for each
parameter with different sensitivities.

The velocity D of the incident shock front was also
determined with an accuracy of 1-3% using the basis
electrical contact technique. The plasma-plug thickness
was calculated from the inert-gas Hugoniot curves[10,
11] with alowance for the distance from the charge tail
to the blaock with probes.

A typical experimental oscillogram is presented in
Fig. 2. The signal appeared as the probes were short-
circuited with plasma. Before short-circuiting the
power probes, the transport current flew through the
shunt. Upon reflection, the plasma conductivity
increased and its resistance diminished and became
even lower than the shunt resistance, so that the current
through the plasma increased. The Hall emf in the
reflected wave decreased because of an increase in the
electron concentration as a result of further plasma
heating and compression. The probe voltage for deter-
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Fig. 1. Scheme of the experiment: (1) detonation products,
(2) plasma, (3) block, (4) power probes, (5) probes for mea-
suring the Hall potential difference, and (6) probes for the
conductivity measurements.
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Fig. 2. The typical oscillogram for the experiment with
argon plasma: (1) current flowing through plasma, (2) volt-
age at the probes for determining the conductivity, (3) volt-
age at the probes for determining the electron concentra-
tion, t, isthetime of plasmaarrival at probes4, t, isthetime

of plasmaarrival at probes6, t; isthetime of plasmaarrival
at probes5, t, isthe start of reflection, and t5 is the termina-
tion of reflection.

mining the conductivity dropped upon reflection,
because the plasma resistance decreased faster than the
current increased.

In Fig. 3, the experimental and calculated electron
concentrations are compared with each other. The
lower groups of curves correspond to theincident wave,
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Fig. 3. Electron concentrations in the nonideal argon and
xenon plasmas. (4) noninteracting-particle approximation
with the inclusion of n = 100 energy levelsin the partition
function; (2) ring approximation for the grand canonical
ensemble with the second-order expansion in ' and the
inclusion of only the ground state in the partition function;
(3) DGCE with the atomic and ion partition functions cal-
culated for energy levels E, not exceeding | — Al, where Al

is a drop in the ionization potential; (1) Debye—Hiickel
model; and (5) isthe experiment.

and the upper curves are for the reflected wave. In the
calculations, the effect of Coulomb interaction was
described using the following variants of the chemical
model [1, 3]: the ideal-plasma model (noninteracting
particles); the Debye-Hiickel model; and the Debye
ring approximation in the grand canonical ensemble
(DGCE), which, contrary to the classicd Debye-
Hiickel approximation, is thermodynamically stable at
any values of the nonideality parameter (the pressure
correction in a Coulomb system does not exceed two
thirds of the kinetic part of charged-particle pressure).
In addition to various models of Coulomb nonideality,
theinfluence of the bound states on the cumul ative ther-
modynamic quantities and on the calculated electron

SHILKIN et al.

concentration n, was analyzed using severa variants of
atruncated partition function [3].

I'n the noninteracting-particle cal culations, two vari-
ants of the truncated partition function were used. In
one of them, up to 100 atomic and ion energy levels
were included, and, in ancther, only the ground state
was used. To describe the Coulomb interaction of free
charges, the DGCE and the approximation that was
closetoit but included terms quadratic in the nonideal -
ity parameter [12] were used. For both argon and xenon
plasmas, the possibilities of Debye-Hickel calcula-
tionsare limited by the narrow range of low shock-front
velocities. The limiting points for which the calcula-
tions with this model were made are shown by the
arrows in Fig. 3. The higher shock-compression veloc-
ities correspond to the larger values of nonideality
parameter, for which the model becomes unstable [13]
and which are sometimes interpreted as a phase transi-
tion [13].

In the range of velocities (2.3-3.5 km/s) and initial
pressures (0.400 + 0.001 MPa) studied, the states
behind the front of the incident wave in the shock-com-
pressed argon are moderately nonideal (I' < 0.3). Inthis
range of nonidedlity parameter, the discrepancy
between all used theoretical models is small, and they
do not contradict the experimental data. After the
reflection in argon, I' reached avalue of 1.2 behind the
reflected wave. One can see from this comparison that
the experimental n, values behind the front of the
reflected wave in argon, on the whole, tend to be
smaller than the values obtained with the above-men-
tioned models. This fact, however, can be explained by
the underestimation of the Hall factor, presumably
because of the uncertainty in the el ectron—-atom scatter-
ing cross sections or the use of incorrect energy depen-
dencefor the momentum relaxation timein the calcul a-
tion of the Hall factor.

The experimental results on measuring n, in xenon
plasma are presented in Fig. 3b. For these studies, the
calculated Coulomb nonideality parameter I in shock-
compressed xenon was as high as 1.3 behind the inci-
dent wave and 2.8 behind the reflected wave. Behind
the incident wave, the calculated and measured n, val-
ues do not contradict each other. After the reflection,
thereisanoticeable discrepancy between the calcul ated
and experimental data. One can assume that models 3a
and 3b with ' > 1.5 overestimate the n, values, while
the DGCE satisfactorily describes the experiment up to
r=28.

The choice of a model for the description of trans-
port properties is one of the main problems in the cal-
culation of the conductivity of a partialy ionized
plasma. In Fig. 4, different methods of calculating the
conductivity of a partially ionized xenon and argon
plasmas are compared with each other for the thermo-
dynamic model with the DGCE Coulomb interactions.
Since the plasma under study was not magnetized (the
electron cyclotron frequency wyt < 1, wy), the influ-
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Fig. 4. Conductivity of the nonideal argon and xenon plas-
mas. Thermodynamic properties correspond to the Debye
approximation for the grand canonical ensemble; (1) our
experimental data; (2) calculation by the Spitzer formula;
(3) calculation by the Frost formula; (4) additive approxi-
mation; (5) Coulomb conductivity component; and (6) is
the conductivity due to the electron—atom scattering.

ence of a magnetic field on the conductivity was not
taken into account in the calculations. Curve 2 corre-
sponds to the calculation of conductivity by the Spitzer
formula [14] that was derived for a fully ionized ideal
plasma. The result of calculation with the interpolation
Frost formula [9] is shown by curve 3. The electron—
atom scattering cross sections were taken from [15].
Curve 4 corresponds to the independent electron scat-
tering by atoms and ions [16]; g is the conductivity
Coulomb component corresponding [9] to the electron
collisions with ions, G, is the conductivity [9] caused
by the electron scattering by atoms. The cal culations of
04 and o, are represented by curves 5 and 6. One can
see from Fig. 4 that the conductivities calculated in dif-
ferent models of the transport properties of a dense
plasma exhibit a considerable scatter.
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This comparison shows that the experimental con-
ductivities are satisfactorily described only by the Frost
formula, whereas the other methods overstate the cal-
culated data, compared to the experiment. The curves
shown in Fig. 4 retain their shapes aso for other ther-
modynamic models of dense xenon and argon plasmas.

We believe that a more distinct conclusion about the
applicability of one or another model can bedrawn only
after achieving higher accuracy in the determination of
experimental data.

Thiswork was supported by the Russian Foundation
for Basic Research, project nos. 00-15-96731 and
01-02-17321.
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Theory of turbulent equipartition and experiment indicate that density, pressure, and temperature profilesfollow
the poloidal magnetic field profile. Therefore, it is suggested to change the magnetic geometry between core
and boundary by toroidal conductors and/or plasma current. As aresult, density and temperature gradients will
become steeper, and stored energy will be higher with low boundary plasma parameters. The suggested new
mode of confinement may substantially simplify achieving of ignition. © 2003 MAIK “ Nauka/Interperiodica” .
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Turbulent transport remains a maor obstacle to
achieving controlled nuclear fusion. Despite several
decades of experimental and theoretical efforts, even
the nature of the transport remains unclear. This paper’s
suggestion is based on many experimental observations
[1-5] and theoretical arguments [6-10] that plasma
pressure and density profiles depend on the safety fac-
tor profile. Explanation of the dependence on the safety
factor profile was reached during the last ten yearswith
the theory of turbulent equipartition (TEP), based on
the dominant role of trapped particles[11]. TEP theory
describes only aturbulent attractor (density profile and,
with lesser accuracy, pressure and temperature profiles)
using a Lagrangian invariant (see [6, 7]). TEP theory
explains the phenomenon of canonical or resilient pro-
filesin linewith [12] and has common featureswith the
concept of margina stability [13]. TEP theory is lim-
ited and says nothing about unstable modes or heat flux,
but unstable modes and heat flux are necessary for cal-
culation of profiles, which are given by the TEP attrac-
tor directly. TEP is sufficient to design the “turbulent
part” of tokamak.

Inthefirst approximation, tokamak plasmaisfrozen
in apoloidal magnetic field only. To be more exact, the
theory argued that toroidal and poloidal components of
the frozen-in law decay with different rates on the tur-
bulent transport time scale, which makes turbulent con-
vection possible and leads to TEP profiles. Since angu-
lar magnetic momentum and angle are drift Hamilto-
nian canonical variables, TEP density profile is a
plateau

dN/dM = const D

on the distribution function of the angular magnetic
momentum M = eAr, where e is a particle charge, A is

TThis article was submitted by the author in English.

the toroidal component of vector potential of poloidal
magnetic field, r isradius measured from the main axis
of the tokamak, and N is the number of particlesinside
amagnetic surface M = const. Since particle density is
by definition n = dN/dV, where V isthe volume inside a
magnetic surface, the density can be rewritten as

nOdM/dV. @)

In small aspect ratio tokamaks, the TEP density profile
may be expressed as a function of the well-known
safety factor n ~ 1/q.

TEP resolved an impressive paradox of particle
pinch, long ago observed in all tokamaks. Correlation
of the pinching and boundary safety factor wasfoundin
[1, 2]. The pinch paradox isthat density profiles have a
strong maximum at the center, while the source of the
particlesis at the periphery.

In tokamaks, plasma temperature could be esti-
mated with the empirical 1D adiabatic law

T On’D (dM/dV)?, ©)

perhaps because electrostatic drift changes mostly lon-
gitudinal energy of the trapped particles. Thus, TEP
gives the density, temperature, and pressure plasma
profiles, while real profiles should be flatter than the
ideal TEP profiles. There are many experimenta indi-
cations that the pressure attractor is more stiff than the
density and temperature attractors. This is a natura
property of the marginal stability, since instabilitiesare
driven by pressure gradients [13]. Stronger stiffness of
the pressure attractor explains the flattening of the den-
sity profile during strong central heating in T-10 [14],
since density flatness compensates for increased tem-
perature peakedness. It also explains the paradoxical
growth of the central temperature during plasma injec-
tion at the boundary [15, 16] by compensation of den-
sity flatness with temperature peakedness.

0021-3640/03/7709-0490$24.00 © 2003 MAIK “Nauka/Interperiodica’



IMPROVEMENT OF CONFINEMENT IN TOKAMAKS

Experimentsindeed have demonstrated that L-mode
density and temperature profiles follow the profile of
poloidal magnetic flux in every compared tokamak
with a consistency amost excluding coincidence [3-5,
7]. Recent comparison of several hundred profiles in
TCV tokamak with variable magnetic geometry is
especialy impressive [4, 5]. While no serious contra-
dictions with theory were found, a more massive com-
parison of other tokamaksishighly desirable. Thebasic
features of H-mode and reversed shear mode (Internal
Transport Barriers) are also in line with the expecta-
tions of the TEP theory, since the transport barriers
appear where suppression of trapped particle instabili-
tieswas predicted [7, 11, 17, 18].

In this paper, we suggest a change in the magnetic
geometry, which does not suppress turbulence and does
not introduce transport barriers. Instead, turbulence is
used to create desirable profiles, to provide a heat and
impurity sink, and to tune confinement time. Plasma
convection is analogousto the L-mode, but particle and
temperature pinch should be stronger [12], providing
better isolation of the core plasma Plasma energy
should be higher with the same boundary parameters
and energy flux. In accordance with formulas (2) and
(3), theratio of central to boundary pressureis given by
the formula

p. _ (AMJdV,)°
Po  (dM,/dV,)*

Aswas already mentioned, experiments do not contra-
dict this formula, but it would be useful to extract an
empirical power in this ratio from experimental data.
The reason is that TEP theories [7-10] differ in the
treatment of passing particles and therefore predict
dlightly different powers. The above ratio grows with
weakening of the average boundary poloidal magnetic
field, since B, ~ dM/dV. There are two possihilities to
improve turbulent pinch, to change plasma current or
external coils currents. Both were actually used, with-
out reliance on TEP physics. In TFTR Supershots [19]
theratio (4) wasincreased by the peakedness of plasma
current. The boundary poloidal magnetic field may also
be weakened by reversing the toroidal plasma current
between core and boundary, but control of the current
profile may be difficult. A decrease of B, ~ dM/dV by
external toroidal currentslooks more promising. Poloi-
dal bays in an ideally conducting vacuum chamber
decrease the average poloidal magnetic field, sinceitis
evidently weaker in the bays. The same magnetic
geometry can be provided by coils instead of chamber
currents. Poloidal magnetic fields of the bays may or
may not include X-points. X-points lead to alogarithm
divergency of dV/dM near the separatrix, where the
model is not valid. Divertor tokamaks have weakened
poloidal magnetic field near the X-point of the separa-
trix, and therefore JET experiments exhibit strong
L-mode plasma gradients near the separatrix [20], in
accordance with the above formulas. A stronger effect

(4)
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may be achieved with adirected design of cails, but this
requires a numerical code. To weaken the magnetic
field even more, the cross-section of the vacuum cham-
ber may have severa bays, the number of the bays
being amultiplein dV,/dM,,

Peakedness of thetoroidal core current may be com-
bined with bays, while excessive current peaking leads
to MHD instability. Improvement of confinement by
weakening of the poloida magnetic field near the
boundary was observed in the TFTR current ramp-
down experiment [21]. While the improvement is not
sustainable, it supports the suggested tokamak design.

To calculate energy confinement time, we have all
but the connection of boundary plasma parameterswith
the energy flux. The gain coefficient for core plasma
pressure against conventional L-mode could be intro-
duced, according to ratio (4). If boundary parameters
are the same, energy confinement time is proportional
to the gain coefficient. The same coefficient describes
lowering pressure at the edge if central core parameters
arefixed. The suggested bays may improve energy con-
finement severa times, but more reliable number
requires simulation of poloidal magnetic field with a
2D code. In the presented ideal model, the theoretical
gain (4) is unlimited, while after some improvements
TEP should be violated by sharp gradients or some-
thing else. Note that the discussed effects were theoret-
ically studied in a dipole trap more rigorously [13],
because convection in adipole trap can be described by
MHD. Any improvements at the camera wall, such as
the use of lithium [22], are complimentary to the sug-
gested improvement.

CONCLUSIONS

Experiment and theory point to plasma pressure
dependence on the safety factor. While the exact depen-
denceis not known, TEP profiles of the L-mode can be
made more peaked with additional toroidal conductors
and a corresponding change of shape of the vacuum
chamber. The suggested new mode of confinement is
beneficial in several ways: (1) it improves plasmaisola-
tion, thus lowering the auxiliary heating and the size of
the facility necessary to reach ignition; (2) TEP profiles
are resilient and therefore more predictive than trans-
port barriers; (3) turbulent mixing prevents accumula-
tion of helium and impuritiesin the core plasma, simul-
taneously delivering hydrogen to the core; (4) turbu-
lence provides a controlled heat sink inignited plasma;
and (5) this new mode of confinement does not require
substantially new equipment.

While the idea of improving magnetic confinement
by weakening of the magnetic field looks paradoxical,
it deserves experimental testing.

The same idea may be applied to a quasihelical
(quasisymmetrical) stellarator.
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The transverse redistribution of carriersthat occursin a2D system under the effect of atangential electric field
and amagnetic field possessing atangential component is studied. It is shown that the redistribution of carriers
givesriseto aHall voltage acrossisolated electrodes positioned above and under the quantum film. Thisvoltage
is determined by the 2D conductivity tensor and the transverse static electric polarizability of the 2D layer. The
additional contribution that appearsin the vertical Hall voltage because of the el ectron spin orientation induced
by magnetic field and the spin—orbit interaction of electrons with the quantum well potential is determined.

© 2003 MAIK “ Nauka/lnterperiodica” .
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INTRODUCTION

Normally, the Hall voltage in a 2D system is
directed along the surface and appears under the effect
of the normal component of magnetic field. However, it
is evident that the tangential component of magnetic
field together with the bias electric field may redistrib-
ute the electrons across the quantum layer and giverise
to a transverse voltage. This effect is relatively weak,
because the action of the longitudinal magnetic field on
the electrons is reduced due to their quantization. In
addition, the arising potential difference cannot be
measured as an electromotive force because of the iso-
lation of the system along the quantization axis. Never-
theless, the vertical Hall voltage can be measured by
capacitance methods.

The problem of the Hall emf that appears along the
inhomogeneity directionin aclassical electron gas con-
fined in aparabolic potential well was studied years ago
[1]. However, we do not know of any relevant publica-
tions considering size-quantized systems. In this paper,
we determine the vertical Hall voltage in an arbitrary
guantum layer in atilted magnetic field.

We also study the specific Hall effect caused by the
electron spin and the spin—orbit interaction. This effect
occurs because the wave functions of electrons with
different spin directions and a given longitudinal
momentum have different localizations in the vertical
direction.

The geometry of the effect under consideration is
shown in the figure. We seek the linear response of the
potential difference V between the upper and lower
electrodes to a homogeneous longitudinal bias electric
field E. In the first approximation with respect to the
magnetic field B, in an isotropic medium, the response
has the form

V = A[nB]E. Q)
Here, n = (0, 0, 1) isthe normal to the plane of the sys-
tem, E = (E,, E,, 0), and B = (B}, B,). If the magnetic
field is not small, the symmetry with respect to the

reflection of coordinates and rotation of the (x, y) plane
yields the phenomenological expression

V = AE = A([nB]E) + A,(Bn)(BE), (2

where the coefficients A, , are functions of Bi and B|2| .
The coefficient A, changes sign under the time reversal
and, hence, is related to dissipation, while A, remains
unchanged and, in the general case, isunrelated to scat-
tering.

BASIC EXPRESSIONS FOR THE RESPONSE

We assume that the electron interaction is weak and
only the lower subband of the transverse quantizationis
filled. The first condition requires that the inequality

N.a3 > 1 be satisfied, where N, is the surface electron

Fig. 1.
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concentration and ag = me?k is the effective Bohr
radius (—e and m are the electron charge and mass and
K isthe dielectric constant of the medium). The second
condition is satisfied when TiN/m < g, — g,, where g, is
the nth level of the transverse quantization.

To determine the correction to the charge density
P(2) in the linear approximation with respect to E, one
can use the Kubo formula [2]. The Poisson equation
yields the expression for the induced potential differ-
ence V between the upper and lower boundaries of the
film:

00

V= ‘-‘K’—T [z 3)

From Eqg. (3) with the use of the Kubo formula, we
obtain the following expression for the vector A:

0 00

_ 4ne’ de' f(e) — f(€) -
A= KS Refdgjé+i(s—s') € —¢ D(e. €),
(6 — +0), 4
D = [Bp(zd(e—-#)vd(e - %)) ©)

wherev isthe electron velocity operator, Sisthe area of
the system, f(€) = L/(exp((e — {)/T) + 1) is the Fermi
function, and # = 1. The angular brackets denote aver-
aging over impurities. The Hamiltonian # of the sys-
tem includes the quantum well potential U(2), theinter-
action with scatterers U;(r), and the spin—orbit interac-
tion with the walls of the well Hg:

_ (p+elcA)’
=" 10 ®)

+Uin(r) —gHsBs+ Heo = H + Hgo.

Here, p is the momentum operator, s is the spin opera-
tor, g isthe Landé factor, and | is the Bohr magneton.
The interaction with magnetic field is determined by
the vector potential A = Ay + A, where A= (0, B, 0)
and A = ZB,n]. The spin—orbit interaction of electrons
with the quantum well potential U(2) is determined by
the expression

Hgo = 2aF[sn](p +e/cA), @)

where F(2) = dU/dz. With allowance for the spin—orbit
interaction, the velocity operator has the form

v = (p+eA/c)/m+2a[sn] F.

We assume that the distance between the size-quantized
levelsis great compared to the cyclotron frequency and
the scattering frequency. Then, the effect of the longitu-
dinal component of magnetic field on the electron
motion in the plane of the system can be taken into

account only in the linear approximation: H= H +
ze(v[Bn])/c, where H does not involve the longitudi-
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nal component of magnetic field. The spin—orbit inter-
action is also assumed to be weak and is taken into
account through a correction that is linear in a. At the
same time, the effect of the normal component of mag-
netic field B, and the splitting of the spin states are
described exactly. The spin-flip scattering isignored in
our calculations.

THE VERTICAL HALL EFFECT
IN THE ABSENCE OF SPIN-ORBIT
INTERACTION

First, we determine the transverse voltage without
regard for the spin—orbit interaction. Performing the
expansion in the longitudinal component of magnetic
field, we obtain

e
4tPmce

x [Bp{ 2m[G(e") v ,;2G"() - G'(e) v;2G'(¢")] (8)
x 2(G(e) - G'(g)) v,
+2(G(e) - G'())z(G(e) - G'(g)) 1

D; = [nByl;

Here, Gh2=(e—H *id)tandv =(p + eA/c)/misthe
velocity operator in the absence of both spin—orbit
interaction and longitudinal magnetic field. Without
loss of generality, we can measure the z coordinate with
respect to the mean value of the ground state in the
guantum well; i.e., we set z,, = 0. On the assumption
that the scattering is weak compared to the transverse
level spacing (the smallness parameter istheratio of the
subband-nondiagonal matrix elements (U;(r)),m to the
level spacing), the Green's functions can be considered
as diagonal in the transverse states: G,(€) = 8,,Gn(€).
Thetypica termin the trace in Eq. (8) hasthe form

Gn(sl) v j anGm(E') ZmnG‘n(S) Vi '

The characteristic energies entering the final result lie
in the lower subband of the transverse quantization,
under the chemical potential. The principa terms are
those with n = 0, in which the Green’s functions are
localized near the poles. The presence of the transverse
coordinate in the trace in Eq. (8) resultsin G,(€") being
far from the pole. Since the difference in the transverse
energies exceeds the interaction with magnetic field,
the Green's function G,,(€") can be replaced by 1/(g,—
€n)- As aresult, after some simplification, we arrive at
the expression

8re
A = «c [an]kaiZ 8_—80’ 9)
n

nz0
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where 0,; is determined by the formula
2 (o) 0
_€ de' f(e) —f(€)
% = SReIdsIB+i(s—s‘) £ —¢

x [Bp{&(¢ —H)v, d(e—H)v} O

One can readily see that o;, coincides with the conduc-
tivity tensor of the 2D system in magnetic field. The
sumin Eqg. (10) can berelated to the transverse polariz-
ability of the quantum layer per one electron [3]:

(10)

|20l
x = 2¢ Ze W—E€o

nz0

In the case of aparabolic quantum well with the poten-
tial U(2) = mQ?z%/2, the aforementioned polarizability
has the form x = €2/mQ?; for a rectangular quantum
well of width d with infinite walls, we obtain x =
e2md*(15 — me)/12m.

In terms of the current density j; = 0, E
isexpressed as

5, the voltage

v = X2 (ng)j. (1)
According to Eq. (11), the transverse Hall voltage is
completely determined by the parameters of the quan-
tum well, the longitudinal current, and the planar com-
ponent of magnetic field that is perpendicular to this
current.

In the particular case of a parabolic potentia, for a
strictly longitudinal magnetic field, Eq. (11) leadsto a
result coinciding with that obtained in [1] (Eg. (20)
from [1]) for aclassical electron gas.

Formula (11) is valid without any limitations
imposed on the value of B,. In particular, it can be used
both at B, = 0 and in the quantum Hall regime. The lon-
gitudinal component must satisfy the condition
eBd¥c < 1.

For a quantum well on the basis of GaAs/AlGaAs
with the thicknessd = 5 x 10~" cm, the voltagein alon-
gitudinal magnetic field is estimated as V [V] =
10 B[T] j [A/cm]. A transverse voltage measurement
makes sense when the corresponding electric field
exceeds the bias field; otherwise, asmall “bias’ of the
structure will give rise to a transverse dectric field in
the absence of magnetic field. At B, = 0, the analytical
estimate of the ratio of these electric field components
yields the quantity V/dE ~ Ngd?w,td/ag, where wy =
eB/mc and 1 is the electron relaxation time. In a suffi-
ciently strong magnetic field, this parameter may
exceed unity.

In the quantum Hall regime, at the plateau, the fol-
lowing expression is obtained from Eqg. (11): V =
B|EN(e?/h)(4mty/kec), where N is the filling factor of
the Landau levels.
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SPIN HALL EFFECT

Although the spin—orbit interaction isweak, the cor-
rection due to this interaction may be considerable,
because the orbital contribution decreases with the
layer thickness owing to the transverse quantization.

Let us consider the physical origin of the spin Hall
effect. If the influence of magnetic field on the orbital
motion is neglected, the statesin the quantum well may
be classified according to the spin projection s = £1/2
on the direction of the magnetic field B. The averaging
of the spin—orbit interaction Hamiltonian over the state
with agiven s determines the effective potential energy
U(2) + 2asdU/dz(p[Bn])/B = U(z + 2asp[Bn]/B). This
means that the potential wells for electrons with the
spin projections s = £1/2 are shifted in the vertical and
the shift depends on the longitudinal momentum of the
electron. The magnetic field determines the spin orien-
tation, and the bias eectric field determines the
momentum orientation. As a result, a vertical redistri-
bution of charge carrierstakes place.

In the lowest order with respect to the small param-
eters, the terms that contain the spin—orbit interaction
constant and do not involve the effect of the longitudi-
nal magnetic field on the in-plane motion are combined
with the orbital contribution determined above. In what
follows, we take into account the spin—orbit interaction
of electrons accurate to thefirst order in the constant .
Corrections appear because of both the expansion of
the & functions from Eg. (4) in terms of Hgy and the
spin—orbit correction to the velocity operator. Perform-
ing the expansion, we determine the contribution to the
quantity D that is caused by the spin—orbit interaction:

D° = ——[nB], Bp{ sB[2m(G*() v ,FG*(¢)

T[Z 2
_GE) FCE)AC ) -G @)y, D

¥ F(G'(e) -G '(e)z(G(e) -G'(e)) 1300
After somesimplification asin Eg. (9), we usetheiden-
tity zn + 0 Zon Fon(€n — €0)™ = 1/2 to obtain the expres-
sion

v = 2mno(

[nBl] 13

x (O (L + w/2) — 01 (L~ wI2))E,.

Here, w=gugB, and oiok (Q) isthe conductivity tensor in

the absence of spin splitting. The latter tensor isconsid-
ered as a function of the chemical potential and is
related to the conductivity in the presence of splitting

by the finite-difference relation 20;,(C) = oiok (C+w2) +
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oiok (€ — w/2). If the spin splitting is small, the expres-

sion for the voltage takes the form

so _ 2TOmgpg
K

00;
[nB”]ia—Zk

We stress that the results obtained above do not use
the assumptions about the absence of electron scatter-
ing or about the classical range of magnetic field. The
product of the cyclotron frequency by the relaxation
time wyT and the parameters t and w,/( are assumed
to bearbitrary. The impurity scattering is assumed to be
small only compared to the distance between the trans-
verse quantization levels, but this parameter is assumed
to be small in any case when a system is considered as
two-dimensional. Except for this limitation, the formu-
las obtained above are exact. They are applicable in
both the linear regime in magnetic field and the quan-
tum Hall regime in atransverse magnetic field.

At the same time, our results take into account the
finite thickness of the quantum layer. The trace of the

v E,. (14)
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transverse wave functions remainsin only one parame-
ter, namely, in the transverse polarizability of the 2D
layer in the external homogeneous electric field. Other
guantities do not depend on the structure of the trans-
verse wave function.

We are grateful to A.V. Chaplik for useful discus-
sions. The work was supported by the Russian Founda-
tion for Basic Research (project no. 02-02-16377) and
by INTAS (grant no. 2212).
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A manifestation of retardation effects, which were predicted theoretically more than 35 years ago, is revealed
for the first time in the plasma excitation spectrum of a two-dimensional electron system with a high electron
mobility. It is shown that a significant decrease in the resonant plasma frequency due to a hybridization of the
plasma and light modes is observed in zero magnetic field. An unusual dependence of the frequency of the
hybrid cyclotron—plasmon mode on the magnetic field has been observed in a perpendicular magnetic field.
The experimental results are in good quantitative agreement with the theory. © 2003 MAIK “ Nauka/ | nterperi-

odica” .
PACS numbers: 71.36.+c; 73.20.Mf

Natural plasma oscillations in two-dimensional
electron systems were predicted by Stern in 1967 [1]
and were observed experimentaly approximately
10 years later in the electron system on the surface of
liquid helium [2] and in silicon metal—insul ator—semi-
conductor structures|[3, 4]. These and numerous subse-
guent experiments (see the reviews [5, 6]) quantita-
tively confirmed the phonon dispersion predicted in

[1.7]

21Nn€°
mik(q)

where n,and m* are the concentration and the effective
mass of two-dimensional electrons and e(q) is the per-
mittivity of the surrounding medium. Plasma excita-
tions in a variety of semiconductor structures, such as
silicon metal—insulator—semiconductor structures or
GaAgAlGaAs heterojunctions, were detected by IR
spectroscopy. The plasmon wave vector (with atypical
magnitude of 10* cm™) in these experiments was spec-
ified by the period of the metal lattice, which provided
theinteraction between plasmaexcitations and the el ec-
tromagnetic field.

The plasmon spectrum described by Eq. (1) was
obtained within the quasielectrostatic approximation.
The electrodynamic effects on the spectrum of plasma
oscillations were studied theoretically in the work by
Stern and also in the subsequent publications [8-11].
Retardation effects become essential at small quasi-
momenta of plasmons, when their phase velocity
approaches the velocity of light. For the typical param-
eters of GaAs/AlGaAs heterostructures, this occurs at
g =10 cm™ and afrequency of 10-30 GHz. Someyears

wi(a) = a, @)

ago, two-dimensional plasmons could not be observed
at such low frequencies, because the quality of the
structures was poor and, for this reason, the linewidth
of plasma resonances was about 100 GHz. In the last
ten years the quality of the samples has been improved
significantly: the mobility of two-dimensional elec-
trons has been enhanced by several orders of magni-
tude, and the linewidth of plasma resonances has
decreased down to 2-10 GHz. These improvements
allow the plasma resonance to be studied at low fre-
guencies and at small quasimomenta and open up pos-
sibilitiesfor studying retardation effects. Thetheory [9]
predicts that a system of high-mobility two-dimen-
sional electrons must exhibit weakly damped hybrid
plasmon—polariton modes (bound states of plasmons
with light). However, these hybrid modes have not been
observed experimentally until the present time. In this
work, we report the observation of these plasmon—
polariton modes and a study of their dispersion and
propertiesin a perpendicular magnetic field.

We studied severa single GaAg/AlGaAs quantum
wells with both large and small concentrations of two-
dimensional electrons (from 0.2 x 10 cm to 6.6 x
10 cm). In al the structures, the well width was
25 nm, and the mobility of electrons varied from 0.3 to
5 x 10% cm? V! s%. The linewidths of resonant micro-
wave absorption in all the structures studied did not
exceed 5 GHz and were 1 GHz in the best structures.
This allowed us to measure the plasmon—cyclotron res-
onance at record low microwave frequencies (10—
50 GHZz). In order to measure the dimensional plasma
resonance, we manufactured circular disks with diame-
tersof 0.1,0.2,0.3,0.4,0.5,0.6, 1, 2, and 3mm[12, 13]
and used the optical detection method based on the high
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Fig. 1. Optically detected dimensional magnetoplasma res-
onance spectra of atwo-dimensional electron gas measured
at various microwave excitation frequencies for mesa struc-
tures with diameters (@) d=0.1 mmand (b) d=1mmina
GaAs/AlGaAs quantum well with awell width of 250 A.

sensitivity of luminescence spectra to heating of the
two-dimensional electron system [14, 15]. The lumi-
nescence spectra were recorded using a CCD camera
and adua spectrometer, which provided a spectral res-
olution of 0.03 meV. A stabilized semiconductor laser
with a wavelength of 750 nm and a power of 0.1 mW
was used for photoexcitation. An HP-83650B generator
was used as a source of microwave radiation in the
range 10-50 GHz. The samples were placed at a maxi-
mum of the microwave electric field inside a 16-mm
waveguide, which was short-circuited near the sample
by a movable metal plug. The output microwave radia-
tion power of the generator varied from 10 nW to
0.2 mW. The other experimental details can be found
elsewhere [12, 13, 15]. Characteristic resonant absorp-
tion spectrafor samples differing in the electron density
and the mesadiameter aredisplayedin Fig. 1. The spec-
tra exhibit both an edge magnetoplasmon (observed at
low frequencies w < wy,) and abulk magnetoplasmon (at
w > w,). The two-dimensional electron density was
measured by the sensitive spectroscopic method, which

KUKUSHKIN et al.

allowed the concentration to be measured to better than
10-3. Thiswas provided by an exceptionally small peak
width in the spectrum of [uminescence noise appearing
in the quantum Hall effect regime at integer filling fac-
tors[16].

The magnetic-field dependence of the resonant
absorption frequency measured for samplesdifferingin
the electron density and the mesa diameter is shown in
Figs. 2a and 2b. When measuring the resonant absorp-
tion contour, we preferred to sweep the magnetic field
at afixed frequency rather than the reverse, because it
was impossible to provide the constancy of the micro-
wave power in the case of frequency sweep. Theresults
obtained for two samples with a relatively small con-
centration of two-dimensiona electrons (0.46 X
10 cm?) and for small disk diameters (0.1 and
0.2 mm) are presented in Fig. 2a. The spectrameasured
demonstrate a typical pattern [17-20] of magneto-
plasma absorption consisting of two modes, which
were described in detail theoretically [17, 18, 21-24].
Thefrequency of the upper mode, which correspondsto
the bulk magnetoplasmon, asymptotically tends to the
cyclotron frequency in the limit of an infinite magnetic
field. The frequency of the lower mode, which corre-
sponds to the edge magnetoplasmon, tends to zero in
the limit of strong magnetic fields. At B = 0, the fre-
guencies of both modes coincide, and this frequency
markedly differs from the frequency w, =
(2 m*Re)Y? (shown by an arrow in the figure),
which follows from Eq. (1) if q in this equation is
replaced by U/R.

The situation changes markedly if the dimensional
magnetoplasma resonance is studied in samples with a
high concentration of electrons and with a large mesa
diameter. The results measured for a sample with ng =
2.54 x 10! cm™ and d = 1 mm are shown in Fig. 2b. In
this figure, it is evident that several new features are
observed at these parameters. (a) the resonance fre-
guency measured at B = 0 is markedly lower than wy;
(b) the slope |dw,/dw| a B — 0 is significantly
smaller than the standard value 1/2; and (c) at acertain
finite value of the magnetic field, the upper magneto-
plasma mode intersects the line corresponding to the
cyclotron resonance and demonstrates a strange zigzag
behavior, which is accompanied by the appearance of
one more high-frequency mode. After crossing the
cyclotron resonance line, the width of the absorption
line starts to increase markedly, asis evident in Fig. 1.
A further increasein the electron density and (or) in the
mesa diameter |eads to an even stronger manifestation
of the above features [25].

A simple qualitative analysis allowed us to suggest
that the observed phenomena are associated with retar-
dation effects. Actually, the dimensionless parameter

A= %JE R/c, defined as the ratio of the plasmon fre-

guency to the frequency of light with the same wave
vector q = 1/R, can serve as an indicator of the degree
No. 9
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Fig. 2. Field dependence of magnetoplasmaresonances: (&) and (b) experimental results obtained for sampleswith different electron
densitiesand different mesadiameters; (c) and (d) theoretical cal culations of thelowest (n=1) modeswith L =1, 2, and 3 for param-
eters A obtained experimentally. Edge magnetoplasma modes for L = 2 and 3 are not shown on the plots.

of importance of retardation effects. This parameter

growswith increasing nand R, because A~ ,/n.R, and
it has never exceeded 0.1-0.15 in al the previous
experimental studies. For the two samples shown in
Fig. 2a, parameter A equaled 0.1 and 0.14 for diameters
d=0.1 and d = 0.2 mm, respectively, so that no mani-
festation of thefinite velocity of light could be expected
in the spectra. On the contrary, for the case shown in
Fig. 2b, parameter A equaled 0.78; therefore, it wasrea
sonable to associate the observed phenomena with
retardation effects. In order to corroborate this assump-
tion, we carried out calculations of the resonant magne-
toplasma modes in atwo-dimensional disk.

The electrostatic potential ¢(r, 2 and the vector

current in atwo-dimensional electron gas, the electron
density, and the total electric field inthe planez=0

jo(r, 8) = Ogg(r, B)ER(r, 6),
dp/at+divj = 0,

for the cylindrically symmetric case, when the eigen-
modes of the system are characterized by the angular
momentum | and the radial quantum number n (see[18,
22, 26-28]), we obtain the following system of equa-
tions from Egs. (2):

E(r) =

©)

Zm W

qqum(qr) [rera(ar)
0

x [Gn(r)Eﬁ?ﬁ(f ) + 0re(r) Eg ()]

poten_tial A(r, 2) over al space must obey the Maxwell |2(1)T§r ?(qu(Qr)Ir'dr'J'(qr')
equations @
1a *Ar,2) _ AT ('O (M EA() + 0re(r) Eg(r)])
bA,2) - 5758 = 080, . ‘o
il N —=tot /.y n =tot /.
A, 2)— 1a ¢(r 2 _ = _anpn)3(2). * 5106 (M) Er (1) + Goe(r) Eg, (1 )]Bx

Let us make the Fourier transformation with respect to
variables (r, t). Using the known relations between the
No. 9
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with the accessory condition for theradial current com-
ponent at the disk edge

i = 0, (RES(R +0,4(REg(R) = 0. (5

By analogy with [22], we solved the system of
Egs. (4) with the additional condition (5) by the method

of decompositing the unknown components of the total
tot tot

electricfield E; | (r) and Eg, (r) in an orthonormalized
basis set and determined the magnetic-field depen-
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dences for the magnetoplasmon energiesin adisk with
a stepped potential profile. The lowest (n = 1) mode
withL = |l | =1, 2, and 3 for the parameters A obtained
experimentally is presented in Figs. 2c and 2d. It isevi-
dent that the theory and experiment are in good agree-
ment. A quantitative comparison of the measured and
calculated frequencies alowed usto infer that the upper
bulk magnetoplasma mode observed at A = 0.78 was
the mode with the higher angular momentum L = 2 and
the lowest n = 1 (modes with n > 1 have high frequen-
cies).

Further we will concentrate on the quantitative anal-
ysis of our resultsin the region of small magnetic fields
B — 0. The dependence of the ratio wg - /&y, on the
parameter A measured for seven samples with various
concentrations and radii is presented in Fig. 3a. This
ratio starts from 1.1 at small values of A and decreases
downto 0.5 asAincreases up to 2.20. The solid linein
the figure represents the results of theoretical calcula
tions. At A = 0, our result coincides with the result
obtained by Fetter [22] in the quasistatic approxima-
tion. The theory and experiment arein good agreement,
and the small (~4%) discrepancy can be related to the
inaccuracy of the determination of the effective dielec-

tric constant € of the medium, which intherea system

can depend on the size of the sample, the presence of
the waveguide, etc. Figure 3b demonstrates the depen-

dence of the slope |dw,/dw | at B— 0 on the param-

eter A. It isreadily seen that the slope is even more sen-
sitive to an enhancement of retardation effects. An
increase in the dimensionless parameter from O to 2.2
leadsto adecreasein the slope by afactor of 4. Thethe-
oretical results shown in thisfigure with asolid line are
in very good agreement with the experiment.

Finally, we will analyze our experimental data in
order to qualitatively verify the two-dimensional plas-
mon dispersion wX(q) predicted in the pioneering work
by Stern [1]. According to this work, the dispersion
with regard to retardation effects takes the form

0 2 O

—1.
2rn.e’/me]

o = ew’/c’+

(6)

Knowing the relation between the wave vector and the
disk diameter (q = 2.4/d, see [25]), we can now obtain
the resonance frequency as a function of the inverse
mesa diameter. Such curves are shown in Figs. 4aand
4b for two different electron densities (ng = 6.6 x

10 cm? and ng= 2.5 x 10* cm). For comparison, we

also depicted the dispersion of light w = 27 = cg/ /e
and the two-dimensional plasmon dispersion defined
by Eq. (1). Thisfigure confirms the validity of Eq. (6),
because the dispersion of the hybrid mode at low con-
centrations primarily corresponds to the purely two-
dimensional plasmon dispersion and approaches the
dispersion of light at high densities in the region of
small wave vectors. This fact is in perfect agreement
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Fig. 4. Circles show the two-dimensional plasmon—polari-
ton dispersion obtained from experimental data for two
samples with different electron densities: (a) ng = 2.5 x
10 em™ and (b) ng = 6.6 x 101! cm™. The dispersion of
light is depicted by a straight line, and the two-dimensional
plasmon dispersion is presented in the quasistatic approxi-
mation (Eq. (1)).

with the results obtained in [1, 9], in which it was
shown that mixing between the plasmaand light modes
occurs only at high electron concentrations.

In this work, the absorption spectra of two-dimen-
siona magnetoplasmons were studied at small wave
vectors and in the region of low frequencies, where
retardation effects must be manifested. The features
associated with these effects were observed experimen-
tally and explained theoretically. It should be noted sep-
arately that an anomal ous hybrid magnetoplasma mode
with a very unusual field dependence was observed in
the region of finite perpendicular magnetic fields. The
experimental results were compared with theoretical
predictions for 2D plasmon—polaritons in an infinite
two-dimensional electron gas at B = 0 and also for a
disk-shaped sample in zero and finite magnetic fields.
These calculations describe the experimental results
well.
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The domain structure of TbNi,B,C was studied by the finest («~ 0 nm) magnetic-particle decoration below 13 K.
The twin domain boundaries caused by magnetoelastic stresses were observed in the {110} planes. © 2003

MAIK “ Nauka/Interperiodica” .
PACS numbers: 75.50.Eg; 75.60.Ch

Thefamily of borocarbides RNi,B,C (R =rare-earth
ion) were synthesized |ess than ten years ago and, since
then, have attracted attention because of the unique
possibility to obtain various combinations of electric
and magnetic propertiesby changing therare-earthions
[1]. Of particular interest is the competition of mag-
netic ordering and superconducting state at ow temper-
atures. As the “magnetism” of rear-earth ion strength-
ens (the de Gennes factor increases [1]) in the order of
R = Lu, Tm, Er, Ho, Dy, Tb, Gd, the superconducting
transition temperature (T.) decreases from 16 K for
LuNi,B,C to 0 K for TbNi,B,C and GdNi,B,C,
whereas the antiferromagnetic transition temperature
(Néel temperature T,) increases from 0 K for
LuNi,B,C to 15 K for TbNi,B,C and 20 K for
GdNi,B,C [1]. In addition, the magnetization in
TbNi,B,C was found to be anisotropic in the basal
plane (perpendicular to the c axis [001]), and the com-
pound was assumed to be a weak antiferromagnet
below 8 K [2]. The magnetic propertiesin the supercon-
ducting state showed some anomalies that were caused
by the antiferromagnetic transitions at Ty, = 6 and 5 K
for ErNi,B,C and HoNi,B,C, respectively [3, 4].
Recently, vortex structures were observed in ErNi,B,C
by the decoration technique and interpreted as being
due to the vortex pinning along the antiferromagnetic

domain boundaries (110) and (110) at the (001) obser-
vation plane [5]. In thiswork, an attempt is undertaken
to observe the domain structure in the normal (nonsu-
perconducting) state of TbNi,B,C by the finest mag-
netic-particle decoration technique [6].

Earlier, the decoration technique was successfully
used for the visualization of the vortex structurein tra-
ditional and high-T. superconductors [6]. This method
is based on the segregation of magnetic particles at the
surface of a superconductor or magnet in the regions of

nonuniform magnetic-field penetration. The subse-
guent visualization of the magnetic particle distribution
provides information about the vortex or domain struc-
ture. A high resolution of the method (better than
100 nm [7]) is provided by the small size («~10 nm) of
magnetic particles in a powder prepared directly upon
the evaporation of amagnetic material (ironinour case)
in the atmosphere of a buffer helium gas at alow pres-
sure of «~ 1072 torr in alow-temperature experiment.

The original (001) growth surface of a TbNi,B,C
single crystal of size =3 x 5 mm? and thickness
=0.5mm was studied. Crystals were grown from a
Ni,B melt asdescribed in[8]. Experimentswere carried
out in the frozen-flux regime in a magnetic field (=20
or =200 Oe) parallel to the ¢ axis [001]. The sample
temperature was controlled by a resistance thermome-
ter placed at a massive copper base near the sample
holder. The sample was cooled in a magnetic field to a
temperature of 4.2 K, which increased to 7-8 K in the
course of decoration. The samples could be heated to a
temperature of 15-20 K by a heater, which was used in
the magnetic-particle decoration through feeding a
tungsten evaporator with low power that was insuffi-
cient for Fe evaporation. To monitor the decoration pro-
cess, Y Ni,B,C single crystals were placed in the imme-
diate vicinity of the TbNi,B,C single crystal and used
as control samples. After the decoration, the samples
were examined in a scanning electron microscope.

A typical pattern of magnetic structure revealed by
the decoration at the (001) surface is shown in Fig. 1.
The [1100Edirected light stripes with a width of about
1 pm and aperiodicity of few micronsintersect the step
at the surface of TbNi,B,C single crystal without visi-
ble distortions. The fact that the contrast in Fig. lais
produced by small magnetic particles (bright points) is
clearly seen at high magnification in Fig. 1b. Such pat-
terns were never observed in the original (before deco-
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Fig. 1. (a) Typica decoration pattern at the (001) plane of a
TbNi,B,C single crystal in a magnetic field of 190 Oe at a

temperature of 85 K. (b) Magnified central part of (a).
(c) Region with amore complicated structure.

ration) samples. Although, at the greater part of the
(001) crystal surface, the light stripes were observed in
both 11001 directions, more complicated structures
were observed in a small area of the sample (Fig. 1¢),
where, along with the main system of stripes in the
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Fig. 2. Decoration pattern at the (001) plane in the same
experiment for (a) TbNi,B,C and (b) YNi,B,C single crys-
tals in a magnetic field of 18 Oe and a temperature of
12.7K.

[1100direction, fine structure is seen in the directions
close to [1000] These structures were observed at tem-
peratures below 13 K. It isseenin Fig. 2athat the con-
trast produced by magnetic particles at the TbNi,B,C
sample almost completely disappears at a temperature
of 13 K (the particles are uniformly distributed),
whereas the vortex structureis clearly seen in the adja-
cent control YNi,B,C single crystal with T = 15 K.
This result suggests that the absence of contrast in
Fig. 2ais not caused by the adverse experimental con-
ditions, so that one can assert that the patterns shownin
Figs. 1 and 2a reflect the magnetic-flux structure in
TbNi,B,C.

Since the temperature range in which the magnetic
structure exhibits unusual macroscopic features coin-
cides with the temperature range of the antiferromag-
netic state in TbNi,B,C [1], one may naturally consider
the observed patterns as a manifestation of the domain
structure. Nevertheless, it isdesirableto clarify why the
normal component of magnetic-field gradient is non-
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zero at the antiferromagnetic domain walls (this is a
necessary condition for the visualization of the domain
boundaries by decoration) and also to elucidate the rea-
son for the appearance of the domains themselves. This
may be due to the magnetoelastic (magnetostrictive)
stresses that arise below the temperature Ty and trans-
form theinitial tetragonal structure into the orthorhom-
bic TbNi,B,C [10]. According to [10], the degree of
orthorhombicity increases with lowering temperature
and reaches a/b — 1 = 0.55% at a temperature of 8.6 K.
Thus, one can imagine that the twin structure in a
TbNi,B,C singlecrystal isformed at T < Ty, much asit
occurs in YBCO [9]. According to [12], the crystallo-
graphic-distortion and magnetic-moment vectors
directed, respectively, along [010] and [100] dictate the
orientation of the twin and domain boundaries along

the (110) or (110) plane. On the whole, the experimen-
tal data (Fig. 1a) conform to this crystal geometry,
although they do not explain some features of the
domain structure (Fig. 1c). The appearance of acrystal-

lographic twin boundary in the (110) or (110) plane
because of adifferencein thelattice parametersaand b
alone cannot provide the magnetic contrast. The latter
arises due to the nonzero gradient of the magnetic-
induction component normal to the (001) surface of the
sample, which is demonstrated by the decoration tech-
nigue. One can assumethat, in thetemperature range 8—
15 K, the observed boundaries are the Bloch walls that
separate the antiferromagnetic domains with mutually
perpendicular directions of a longitudinally polarized
[100Edirected spin-density wave in the basal (001)
plane [11]. At temperatures below 8 K, these walls can
function as boundaries between the domains with a
weak ferromagnetism. The magnetic contrast probably
appears due to the domain boundary with an uncom-
pensated magnetic moment along the c axis, although
the microscopic reason for its appearance still remains
to be clarified.

The neutron diffraction data suggest [11] that the
magnetic structures in TbNi,B,C and ErNi,B,C are
similar, because their spin-density waves both are
directed along [100] and the crystal-distortion vectors
aredirected along [010] coinciding with the tetragonal -
to-orthorhombic magnetoel astic-transformation direc-
tion in the basal plane [12]. This fact may explain the

VINNIKOV et al.

crystallographic similarity of the domain structure
observed in TbNi,B,C with the magnetic-flux structure
in ErNi,B,C [5], thereby favoring our interpretation of
the origin of domain boundaries.
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tance. L.yaV. is grateful to V.. Nikitenko and
V.A. Tulin for helpful discussion and to V.V. Ryazanov
and F.L. Barkov for remarks. This work was supported
by the Russian Foundation for Basic Research (project
no. 02-02-16760), the Ministry of Science of the Rus-
sian Federation (project no. 40.012.1.11.46), and
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Theinclusion of asingular contribution to the spectral intensity of the anomalous correlation function is shown
to regain the sum rule and remove the unjustified forbidding of the S-symmetry order parameter in supercon-
ductors with strong correlations. For the order parameter of this symmetry, the solution to the self-consistency
equation is analyzed beyond the nearest-neighbor approximation. © 2003 MAIK “ Nauka/Interperiodica” .

PACS numbers. 74.20.Fg; 71.27.+a

1. Among the models describing the main features
of a superconducting transition through the nonphonon
Cooper pairing mechanism in an electron system with
strong correlations, the Hubbard model and the t-J
model obtained on its basis are most frequently used. It
was the Hubbard model that was invoked in [1] to dis-
cover akinematic pairing mechanism for the formation
(at U — o0) of asuperconducting phase with the order
parameter A, independent of quasimomentum. How-
ever, more recently, the possibility of forming such a
state was questioned by some theorists, because the
solution to the self-consistent equation for the order
parameter A(k) = A, violates, in their opinion, the

requirement that the on-site anomalous mean [X°X°° 00
of the product of Hubbard operators must be zero.

In this communication, the above statement is ana-
lyzed using the spectral representations of the time-
dependent anomalous correlation functions. The new
point isthat the spectral intensity of the anomal ous cor-
relation function constructed from Hubbard operators
contains, apart from the usual regular part, an addi-
tional singular component. It is shown that, after the
inclusion of the singular component, the necessary
requirements for one-time on-site correlations are ful-
filled, on the one hand, and, on the other, neither the
equations of motion for the Green's functions nor the
self-consistent equation for the superconducting order
parameter are affected. The Stype superconducting
phase will be considered in the non-nearest-neighbor
approximation, and it will be shown that the supercon-
ducting order parameter (OP) with this symmetry may,
in principle, go to zero.

2. In the standard notation, the Hubbard Hamilto-
nian has the form [2]

H = Z(E_“)a}rcafo
fo (1)
+ fztfma;camc"' UZﬁfTﬁfu
m

The scattering amplitude in the strong-correlation
regimewas calculated for model (1) in[3]. It wasfound
that, in the Cooper scattering channel, this amplitude
has a singularity corresponding to the instability
against the superconducting transition (Zaitsev kine-
matic mechanism). A set of four equations for the nor-
mal and anomalous Green's functions describing the
superconducting state in model (1) with afinite U was
obtained and solved in [4]. In [4], the pairing was
caused not only by the electron motion in the lower
Hubbard band but also by the electron transitions from
the lower to the upper Hubbard subband and by the
charge-carrier motion in the upper subband.

At the same time, the superconducting phase with
strong correlations can be studied using the effective
Hamiltonian [5] constructed in the operator form of the
perturbation theory for asmall parameter |t;,[/U < 1. It

is known that the corresponding Hilbert space L for
Hg; does not contain binary states. As aresult, only the

anomalous means [X7° X2 Cappear in the theory of

superconducting state, and they must go to zero for the
coinciding site indices. The opinion that this phase
could not berealized rested on the difficulties caused by
the necessity of satisfying this requirement in a super-
conducting phase with the S-symmetry OP.

0021-3640/03/7709-0505%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Leaving aside the physical interpretation of the
“strangeness’ of the above-mentioned forbidding, we
rather analyze the mathematical aspect of the problem.
For this purpose, we consider the spectral representa-
tions of the temporal anomalous correlation functions
and their relation to the Fourier transform of the anom-
alous two-time Green’s function.

First of dl, there is a fundamental difference
between the anomalous Green'’s functions in the BCS
theory and in the theory of high-T, superconductivity
with the electronic pairing mechanism. The anomalous
Green's function of the standard Fermi second-quanti-
zation operators

Foo(ft; gt') = —i8(t—t") Qag(t), ags(t)} O
iszeroatt=t'+ & (0 — +0). Thisiscaused by thefact
that the creation operators anticommute at the coincid-
ing times. At the same time, the means (&, (t)ag, (t) O

and [ag, (t)at,(t) Dare nonzero in the superconducting
phase even for f = g:

[Aad=n0) X0 @&a,0=-n(0) X

A different situation occurs for the anomalous
Green's function with the Hubbard operators:

CIXS(t)| Xg (')

2
= —i(t—t') @ X7°(t), X (1) O @

Inthis case at t — t' + 0, the means [X{°Xg Oand

[Xg° X} Careidentical zerosfor the coinciding siteindi-
ces. Itisessential that thisis so not dueto the properties
of the physical system but due to the multiplication
algebra for Hubbard operators. The fact that Eq. (2) is
valid regardless of the particular physical system allows
it to be explicitly taken into account using the spectral
representation.

With this property in mind, the spectral intensity
Jaf () in the spectral representation
XG)XT 00 = [ exp{~ica(t )} I (@) (3)
can be written in the form
Jar (@) = Jgi" — 8(e)3 [ dlooy J57 (62) exp (i ,3),
o — +0,
providing a zero value for the right-hand side of Eq. (3)
at=t"+0(d — +0)if f=g. Thisisthe main distinc-
tion between the introduced spectral representation and

the representation used in the theory of two-time tem-
perature Green's functions [6].

The following fact is of fundamental importance.
Thesingular component of the spectral intensity cannot
be determined solely from the known Fourier transform

(4)

VAL’KOV et al.

of the analytic continuation of the anomalous Green’s
function in the upper complex half plane. Thisfact pro-
vides one more example of the known problem of
ambiguous reproduction of the spectral intensity of cor-
relation function from the spectral theorem. The discus-
sion of particular examplesof thiskindisgiven, e.g., by
Yu.G. Rudai in[7] and in original works([8, 9]. In prac-
tice, the inclusion of the singular component is neces-
sary for obtaining the correct limiting values for the
correlators.

To prove this statement, we use Eq. (3) to construct
the spectral representation for the anomalous correla-

tion function OX$°(t) X (t") O After the cyclic permu-

tation of operators under the trace sign, one obtains
from Eq. (3)

XX ()0 = [eto exp{—e(t -1} -
x{ 35 (w) exp(Be) —5(w)81ySigh |

where

Sy = [deordgr () exp(B o) exp (i),
B=1T, &— +0.
One can see that the right-hand side turns to zero at
t—t'+0andf=g, asit must, and X?°XJ°0= 0.

By using spectral representations (3) and (5), one
obtains the following expression for the average value
of the anticommutator appearing in the definition of the
anomalous Green'’s function:

O X50(t), X5o(t)}y O = [ exp{-ic(t-t)}
x { 357 () [ exp(Bw) + 1] =8 (w) 3,2}

where

(6)

o = Idlegfa(wl)[eXp(Bwl) + 1] exp(-w,0),
0 — +0.

From definition (2) and using Eg. (7), one gets for
the Fourier transform of the anomalous Green’s func-
tion:

(8)

50| \,0 dw,
DT, = (oo
x { J5f (o) exp((Bw) + 1) — 8( )1y Zc} -

Consequently, the spectral theorem [6] in our casetakes
the form of theintegral equation for Jgf(w) :

1IMOIX{ | XG5
. exp(Bw) +1

(9)

3(w)dq
exp(Bw) +1(10)
x fdle;’f’(wl)[exp(Bwl) + 1] exp(~iw,d).

= J5f (w) —
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One can readily verify that

(0 = R + 5B

(11)
with

s 1ImED(‘f’°|X°°EDM
RO) = e T

satisfies the integral equation for an arbitrary A% .
Here, it istaken into account that the equality

Idwexp(—i wd)Im [IX{°| X5, , ;5 = O,

(12)
being the particular case of amore genera relation
COXP(0) [ Xg (1), g
= J’dooexp(—iooé) X[ Xg M, s = 0, (13)
o — +0,
isvalid. The uncertainty in A%’ isimmaterial, because
the total spectral intensity 33? (w) is independent of

A% . Indeed, substituting solution (11) into definition
(4), one obtains

3ot () = R (w)
= 8( 69315 ooy Ry (601) €xp (i 0,3).

Thus, the analytically continued Fourier transform of
the anomalous Green's function determines only the

regular part Rgf’ (w) of the total spectral intensity

(14)

3;’? (). In turn, its singular component is uniquely

expressed through Rgfa (w), providing the correct val-
ues for the correlatorsin the limiting cases.

This analysis demonstrates that the above-men-
tioned forbidding of the superconducting phase with
the S-symmetry OP is caused by ignoring the singular
component of the correlation function, and not by any
physical principle. The inclusion of the singular part
removes this forbidenness without changing the form
of al eguations obtained in the theory of superconduct-
ing state in strongly correlated systems.

To confirm the statement about the invariability of
the self- consistent equations, we note that Eq. (3) leads
to the following expression for the one-time correla
tors:

D’((fmxgﬁﬂ = S?fc—%g;f“

Nzexp{lq(f—g)}zsﬁ ——Z

k

(15)

Dl_j‘h
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This meansthat, in the quasimomentum representation,

KeeXqod= Y exp{-iq(f -g} XX
(f-9)

A

It follows that the equation for the superconducting
order parameter in thet—J* model (three-center interac-
tions are taken into account) [10, 11]

_1<0 n
- Nz Sth + E(Jk+q + ‘]k—q)
! (16)

rDtt [F IO
+4g -5 e 200 KXol

does not change its form after the singular component
of spectral intensity is taken into account, because

Nzﬁm +1 (Jk+q+Jk 2 T4 - ”jtk
2
B —q_— [NZﬂD 0

Let us consider the solution to Eq. (16) for the
S-symmetry OP. Beyond the nearest-neighbor approxi-
mation (with the three nonzero hopping parameters),
one has

tc = 1Si(K) + 1:S,(k) + t3S5(k),
I = 41Si(K) + 1,5,(k) + J585(k),

J, = 2t%/u.

17

Here, S(k) are the square-lattice invariants:
Si(k) = (cosk,a+ cosk,a)/2,

S,(k) = cos(k,a)cos(k,a),
S;(k) = (cos2k,a+ coszk,a)/2.

Taking into account the relation

0840 DEqD
SEN

one finds that the quasimomentum dependence of the
OP in the S phase has the form

Oy = Do+ D;S(K) +A,5,(K) +A3S5(K).

[Xgo X gl =

(18)
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Fig. 1. Concentration dependence of the critical tempera-
ture for the superconducting transition to the S phase with
alowance for three hopping integrals.

The coefficients A (i =0, 1, 2, 3) are found from the
solution to the following set of four equati ons:

U
z G;Ti TJDA,

ij=1

i=1,2,3),

ZDZZG“ J+ JG|

J—l

(T, = —4t,,

3
O
Z[n mGm +(1=n/2)T, ZG“T/LEA,,
= D i=1
m=12,3,
where
Gi = Giw, Gij = Gijo

and

Gy = £ 3 S(S(@S(A)W,,
q

_ tanh(E,/2T) :
] B Sk =1
The results of the numerical analysis of the supercon-
ducting transition temperature as a function of electron
concentration is shown in Fig. 1 for various values of
the Coulomb repulsion parameter U. For finite U, the
superconducting state is formed through both the Zait-
sev kinematic [3, 1] and magnetic pairing mechanisms.
As U increases, the region of superconducting state
diminishes (the magnetic pairing mechanism is sup-
pressed). In the limit of large U, only the kinematic
mechanism is retained (thick curve). In the calcula-
tions, the following values of hopping integrals were
used: t,/|t;] = —0.35 and t;/|t; | = —0.05.

Fig. 2. Temperature dependence of the amplitudes4; (i =
1, 2, 3) of the S.symmetry order parameter A(k).

The temperature behavior of the parameters A, (i =
0, 1, 2, 3) isdemonstrated in Fig. 2 for the same values
of hopping integrals, U/|t;| = 5, and n, = 0.82. The cho-
sen electron concentration corresponded to the optimal
doping (T./|t;] = 0.64). One can see that the absolute
values of A, and A; are close and nearly compensate
each other (A, < 0). In such asituation, thethird termin
A, comes into play. Note also that, due to a complex
guasimomentum dependence of A, and the close values
of parameters A, (i =0, 1, 2, 3), A, turnsto zero at cer-
tain lines in the Brillouin zone. This fact is of interest
because it opens up the possibility to obtain the spec-
trum of elementary excitations in the superconducting
phase with the Stype symmetry of order parameter and
anarrow, or even zero, energy gap. Our preliminary cal-
culations corroborate this assumption; however,
because of limited space, the corresponding results will
be reported elsewhere.
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We study the critical temperature T, of FSF trilayers (F is aferromagnet, Sis asinglet superconductor), where
the triplet superconducting component is generated at noncollinear magnetizations of the F layers. An exact
numerical method is employed to calculate T, as afunction of the trilayer parameters, in particular, mutual ori-
entation of magnetizations. Analytically, we consider limiting cases. Our results determine the conditions nec-
essary for the existence of recently investigated odd triplet superconductivity in SF multilayers. © 2003 MAIK

“ Nauka/lInterperiodica” .
PACS numbers. 74.45.+c; 74.78.Fk; 75.70.Cn

A striking feature of the proximity effect between
singlet superconductors and nonhomogeneous ferro-
magnets is the possibility of generating the triplet
superconducting component [1, 2]. Recently, it was
shown that the triplet component also arises in the case
of several homogeneous but differently oriented ferro-
magnets [3]. Physically, the generating of the triplet
component in SF systems [1-3] issimilar to the case of
magnetic superconductors[4].

In [3], the Josephson effect was studied, keeping in
mind that the superconductivity in the system is not
suppressed by the ferromagnets. However, this issue
requires separate study.

Although the SF (F is ferromagnet, S is singlet
superconductor) proximity effect is rather well studied,
the influence of the mutual orientation of F-layer mag-
netizations (exchange fields) on T, of layered SF struc-
tures has been mostly considered based on the cases of
paralel (P) and antiparalel (AP) alignment [5-10]. At
the same time, those are the only cases when the triplet
component is absent.

A FSF trilayer with homogeneous but noncollinear
magnetizations of the F layers is the ssimplest example
of alayered structure in which the triplet component is
generated. Thetriplet component (correlations between
quasiparticles with parallel spins) arises as a result of
interplay between the Andreev reflections at the two SF
interfaces. This mechanism is smilar to the one
describedin[2], with the differencethat instead of local
magnetic inhomogeneity we deal with magnetic inho-
mogeneity of the structure as awhole.

The critical temperature of the noncollinear FSF
system was studied in [11]. However, in that work the

TThis article was submitted by the authorsin English.

triplet component was not taken into account. Thus,
calculation of T, in the noncollinear FSF trilayer is still
an open question.

In this letter, we study the critical temperature of a
FSF trilayer at an arbitrary angle between the in-plane
magnetizations (see Fig. 1), which makes it necessary
to take the triplet component into account. We reduce
the problem to a form that allows us to apply general
numerical methods developed in [12, 13]. This form
also leads to some general conclusions about T, and
allows analytical progressin limiting cases.

1. General description. We consider the dirty limit,
which is described by the Usadel equations. Near the
T., the Usadel equations are linearized and contain only

the anomalous Green’s function F [1]:

2& .
gi_;—lwnlhms—'zsgnwn(ﬁﬂ* +HF) =0,
(D)
E = Dfm fi E
f,, £, 0

Here, D is the diffusion constant (Dg and Dy for the S
and F layers), w, = 1iT(2n + 1)are the Matsubara fre-

quencies, and G5 isthethird Pauli matrix. Thefunction

F isamatrix in the spin space. Thef,, andf,, compo-
nents describe the triplet superconducting correlations.
In the P and AP cases, it is sufficient to consider only
the scalar equation for the singlet component f, | .

Equation (1) iswritten inthe general case when both
pair potential and exchangefield are present. In our sys-

0021-3640/03/7709-0510$24.00 © 2003 MAIK “Nauka/Interperiodica’
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tem, in the F layers the pair potential is absent, A = 0,
while

H = h(6,sina + 65c0sa) 2)

a the exchange field h = h(0, sina, cosa). h is the
exchange energy, and o describes the direction of the
in-plane magnetization.

Inthe Slayer, the exchange energy is zero, whilethe
pair potential obeys the self-consistency equation

Tes _ 0A O
Aln T = "Tqun| fg (3
wﬂ
where T isthecritical temperature of the Smaterial. In
the case of asingle Slayer, A can be chosen real.

The boundary conditions at the outer surfaces of the
trilayer are

dF¢/dx = 0, (4)
while at the SF interfaces

E(dFddx) = y&(dFi/dx), v = p&Jpi&, (5)
iEbe(dr:f/dX) = Fs—Fr, Yb = Rysdipe&s. (6)

Here, &1y = /Dy(r)/2TT s and pyyy are the coherence
lengths and the normal state resistivities of the Sand F
metals, R, isthetotal resistance of the SF boundary, and
A isitsarea. The xsign onthel.h.s. of Eq. (6) refersto
the left and right SF interface, respectively. The above
boundary conditions were derived for SN interfaces
[14] (N isanorma metal); their use in the SF case is
justified by the small parameter h/Er < 1 (Ef is the
Fermi energy).

We expand the Green's function F in the basis of
the Pauli matrices 6;, i = 1, 2, 3, and the unity matrix
0, . It can be shown that the solution has the form

F = f,00+ f,6,+ f40s. (7)

Thef, component isimaginary, whilef, and f; arereal.
The refations fo(—ty) = —fo(e), fi(=e) = —fu(ca),
fa(—wy,) = f3(w,) makeit sufficient to consider only pos-
itive Matsubara frequencies.

The f;, component describes a special type of triplet
condensate [1, 3], odd in frequency [ f;(-w,) = —f1(w)]
and even in momentum, which issimilar to the one pro-
posed by Berezinskii [15]. It is the independence of the
momentum direction that allows the triplet condensate
to survivein the diffusive limit.

Equation (1) yields three coupled scalar equations
(we consider w,> 0):

d* f .
[—z)—a;z—o—confo—mf?,cosa =0,
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d’f .
%_d =2 —w,f,+hfzsina = 0, €S)
X
d* _ .
gd—;—wnf3—|hfocosa—hfls|na +A = 0.
X

Anayzing the symmetries implied by Egs. (8) and the
geometry of the system, we conclude that fy(X) = fo(—X),
f,(X) = —f,(—X), f3(X) = f3(—X). Thus, we can consider
only one half of the system, say x < 0, while the bound-
ary conditionsat x =0 are

dfydx =0, f, =0, dfs/dx=0. 9)
Below, we shall use the following wave vectors:
ki = m kn = /\/TDf
kn = JKC+2iK, k= 20,/D..

The solution in the | eft F layer, satisfying the boundary
condition (4), hasthe form

(10)

Fr = Cy(i6,sina + &, cosa) cosh[k(x + ds + d;)]
+C,(6,c0s0 +iG,Sina +G3) cosh[Rh(x +d,+df)] (12)

+ C4(8,C0S0 + 6, Sina — 85) cosh[ ki (x + dg + d,)].

The matrix boundary condition (6) yields three scalar
equations, which allow us to express the coefficients
C. C,, C;in terms of the components f, f;, f3 of the
Green’'s function on the S side of the FS interface:

C, = (-ifysina + ficosa)/(1+y,A),
C, = (fycosa —ifisina + f3)/2(1+vy,Ay), (12)

C; = (focosa —if sina —f3)/2(1+ y,AL),
where we have introduced the following notations:

kné , tanh (k
th an ( hdf)! (13)
YA/ (L +YpAn).

A; = ki&tanh(k:d;), A, =
Vi = YAJ(L+YpAf), Vi

Then boundary condition (5) yields three scalar equa-
tions that entangle f,, f;, and f5. Thus, the Green’s func-
tion of the F layer is eliminated, and we obtain equa-
tions for the S layer only. Moreover, we can proceed
further, because in the S layer the unknown function
A(x) only entersthe equation for the f; component [see
Egs. (8)]. At the same time, taking boundary condi-
tions (9) into account, we can write f, = By cosh(kgx) ,
f, = B; sinh(kgx) . Excluding B, and B, we arrive at the
effective boundary condition for f;:

&(dfs/dx) = Wi, (14)
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Fig. 1. FSF trilayer. The system isthe same asin [11]. The
thickness of the Slayer is 2d,, of each F layer—d;. The cen-
ter of the S layer correspondsto x = 0. The thick arrowsin
the F layers denote the exchange fields h lying in the (y, 2)
plane. The angle between thein-plane exchangefieldsis 2a.

1.0 —20,= 180° (AP case)
- —_— 1200
08 \ = e 9(°
I 60°
. 061 o 0° (P case)
& i
~ 04l
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o,
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Fig. 2. Critical temperature T, vs. thickness of the F layers
ds, which is normalized on the wavelength of the singlet
component oscillations A, = 217k, Parameters dy/&g = 1.2,
h/imT = 6.8, y = 0.15, y,, = 0.02 correspond to [13]. The

curves are calculated at different angles 2a between the in-
plane exchange fieldsin the F layers.

where

(ImV,)*

W = ReV, + KEA(Q) + ROV,

(15

and the angular dependence is determined by

A
_ k& tanh(kdy) + V,[sin’a + tanh’ (k,dg) cos’a] (16)
k& [cosTa + tanh’(k.d.)sin’a] +V, tanh(k.dy)

Effectively, we obtain the following problem:

Tes _ 0A [l
AIn—T— = 2nT Z Eb)n_fﬂ’ (17)

w,>0

FOMINOV et al.

——(;)nf3+A = o,

2
%d E (18)

2
X

dfs(=ds)

dfs(0) _
s i

= W(w,)fs(=dy), —5,— = 0. (19

Thisis exactly the problem that was solved in [12, 13].
Inserting the new function W, we can use the methods
developed inthoseworks. At a =0, Eqg. (15) reproduces
Wfrom [12, 13].

All information about the F layersis contained in a
singlefunction W, and all information about the misori-
entation angle is in its part A(a). Knowledge of W is
aready sufficient to draw several general conclusions
about the behavior of T.. Firgt, if the Slayer isthick, i.e.,
d, > &, then tanh(k.d,) = 1 at characteristic frequen-
cies, and T, does not depend on a. Qualitatively, this
happens because the effect of mutual orientation of the
F layers is due to “interaction” between the two SF
interfaces, which is efficient only in the case of athin S
layer. Second, T, does not depend on d; if di > max(&;,

k;l ). Qualitatively, thisis due to the fact that quasipar-
ticles penetrate from the Sto F layer only on the scale

max(&;, Ky )-

Thetriplet component is*nonmonotonic” asafunc-
tion of a: it vanishesat a = 0 and a = W2 (P and AP
case, respectively) and arises only between the two
boundary values. However, the T (a) dependence is
always monotonic. It can be directly proven from the
monotonic behavior of A(a) and, hence, W. This rigor-
ously derived conclusion disproves the result obtained
by the approximate single-mode method in [7], where
it was claimed that T, in the AP configuration can be
smaller than in the P case.

Numerical results obtained by the methods devel-
oped in [12, 13] are shown in Figs. 2, 3. A question
arises: why is there a pronounced angular dependence
in the case d, > &, when the S layer is not thin? The

answer is that the condition d, < §,= ,/DJ/2T1T isa
sufficient condition of thin S layer, whereas the neces-
sary conditionisweaker: d,< & = ,/D /21T, sincethe
characteristic energy for aparticular system is il with
its own value of T.. The two conditions become essen-
tialy different if T, is notably suppressed, and in this
case T, can exhibit apronounced angular dependence at
ds < &, whileit ispossible to have dg > &

Experimentally, the conditions for observing the
angular dependence of T, are more easily met when T,
is substantially (but not completely) suppressed.
Accordingly, the effect of a on T,(d;) dependence is
most pronounced near the re-entrant behavior. Experi-
mental detection of such behavior was reported in [16].

JETP LETTERS  Vol. 77
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2. Thin Slayer. If d, < &, then A is constant. The
Usadel equation (18) can be solved, and the equation
determining T, takes the form

T
In== = 2mT, Z 0L _ 1 H (20

T, Lo, w,+WnT E/d

w,>0
where W is given by Eq. (15) with simplified function
A(a):
K& d,+ V [sin“a + (kd,)?cos’a]
k& [cos’a + (k.dJ)?sin“a] + V kd,

For the P and AP alignments, under the additional
assumption of strong ferromagnetism (h > 1T.), we
obtain

A =

(21)

[ﬂ. th Te

Tes E'm
n$ = Ry FEE- ) @
T ! \LVE_SﬁD_ E'n (23)

_qJEQ 2dsTh ] wtﬁj’

where ) is the digamma function, V,, is determined by

Egs. (13) with ky = (1 + i)k, and, in the region of
parameters where T, # O [the corresponding conditions
can be extracted from the results for the critical thick-
ness; see Egs. (25), (26) below], we may write

W = ReV, + (ImV,)’dJ/<.. (24)

Due to symmetry, the result for the P case (22) repro-
ducesthat for the SF bilayer with Slayer of thickness d,
[13]. Inthe AP casg, if the second terms on ther.h.s. of
Eq. (24) can be neglected (e.g., a k,d; > 1intheregion
of parameters where T, # 0), then W = ReV,, and we
reproduce the result of [8]. However, the second term
becomes essentia in the Cooper limit, defined by d, <

/DJ2wp, d < min(,/D{/2wp , Ky ), Vi = 0, with wp
the Debye energy of the Smaterid. Inthiscase, ReV,, =0
and Egs. (23), (24) reproduce the result of Tagirov [5].

Thecritical thickness dg, of the Slayer, below which
the superconductivity vanishes, immediately follows
from Egs. (22), (23) for the P and AP cases:

de/Es = 2€°|V,|, dii/E, = 2e"W (25)

at
dy /8, < 1. (26)

Here, C = 0.577 is Euler’s constant. Condition (26) is
necessary for applicability of Egs. (25). If this condi-
tion is not satisfied, then Egs. (25) only tell us that at
dJ/€ < 1 the superconductivity is certainly absent, i.e.,
T, = 0. According to the monotonic growth of T.(a), the

function dy(a) decreases monotonically, hence dspC >

JETP LETTERS Vol. 77 No.9 2003
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Fig. 3. T, vs. misorientation angle 2a. The curves corre-
spond to different thicknesses of the F layersd;. The param-
etersarethe sameasin Fig. 2.

dfcp JAty, =0, k,d; > 1, Egs. (25) reproduce the results
of [11] for the P and AP cases.

The T (a) dependence can be most easily studied in
the Cooper limit. In this case, a simple analysis (see,
e.g.,Appendix Al in[13]) can be performed on thelevel
of the Usadel equations, and the system is described as

auniform layer with the effective exchange energy!

hg = (T¢/15)hcosa, (27)

where Tys) = 2dg)Ry/pgs)Dyr)- The accuracy of this
result islimited to thefirst order over h, which becomes
insufficient in the vicinity of a = /2. At a = 172, the
first-order effect of h vanishes, while a more accurate
analysis ([5] and Egs. (23), (24)) reveds the second-
order effect of hon T..

Let us now consider the same limit asin [11]:
d, <&, kyd;>1, (28)
ykthds/E.s <1 (29)

The condition to have superconductivity at least at

some orientations has the form d’y < d, < &, and, in
the case under discussion, Egs. (25), (26) yield

h>nT, vy,=0,

2e%yk, & <dJ/E, < 1. (30)

Hence, condition (29) becomes redundant.

Starting from Egs. (15), (20), and (21), we finally
obtain the following equation for T

1, 20, pyds r'y
Qv s R v e

ISince wy, Was neglected in comparison with hin the Usadel equa-
tion, the result of the Cooper limit isvalid only at 14> 4.
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Fig. 4. Critical thickness of the S layer dg. vs. misorienta-
tion angle 2a. Dashed line is the result of [11], obtained
without account of the triplet component.

where

.2
Sin a

d .
0, = ©nT, 1+ coda + Jaradcad), (@)
S

do = ykn&i&s/2.

In the P and AP cases, where the triplet component is
absent, Egs. (31), (32) reproduce the results of [6, 11].
At the same time, at a noncollinear alignment the
results are clearly different.

The critical thicknessis found from Egs. (31), (32):

Q=3+ R=1-Q

d.(a)/d, = 4./2€°cosa

T2 (33
8 E*H cos’a + m%zm (33)

2 . 4 2
M1 + cos’a — +/sin‘a —4cos ol

Although the square root in this expression can become
imaginary, the whole expression remainsreal (Z isreal
if |z] = 1). Figure 4 illustrates the result (33).

Now weturn to analyze the conditions of applicabil-
ity for the results reported in [3]. A noncollinear FSF
trilayer isaunit cell of the multilayered structure stud-
ied in that work. The main result of [3], the Josephson
current due to the long-range triplet component,
requiresthat the Slayer bethin d, < &, whilethe F lay-
ersarethick for the singlet component and moderate for

the triplet one: k;l < & < d;[3]. In this case, the con-
dition that superconductivity is not completely sup-

FOMINOV et al.

pressed at least in the vicinity of the AP aignment
(Egs. (25), (26)) takes the form

A46Syk. £, 1+2kah5.2f <$—
(1+2ypknE )+ 1 &s

<1. (34

Aty, =0 (aswas assumed in[3]), thisyields 2e°yk,&; <
dJ./& < 1, which isarather strong condition for y, since
k.&: > 1. Finite interface transparency relaxesthis con-
dition: evenat y, ~ 1, Eq. (34) yields 2e°yly, < dJ/& < 1.

The condition that superconductivity exists at all
orientations has aform similar to Eq. (34) but with the

corresponding expression for d., instead of d% onthe
I.h.s. This only leads to a minor difference, since the
two critical thicknesses are of the same order: dsc =

J2d2 aty, =0, while df, = d2 aty,> 1.

In conclusion, we have studied T, of a FSF trilayer
as a function of its parameters, in particular, the angle
between magnetizations of the F layers. The angular
dependence becomes pronounced when the S layer is
thin and can lead to switching between superconduct-
ing and nonsuperconducting states as the angle is var-
ied. Our resultsdirectly apply to multilayered SF struc-
tures, where a FSF trilayer is a unit cell. We have for-
mulated the conditions necessary for the existence of
recently investigated odd triplet superconductivity in
SF multilayers[3].
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The possible functional forms of the effective conductivity o, of randomly inhomogeneous two-phase systems
at arbitrary values of concentrations are discussed. Two explicit approximate expressions for effective conduc-
tivity are found using a duality relation, a series expansion of g, in the inhomogeneity parameter z, and some
additional conjectures about the functional form of o,. They differ from the effective medium approximation,
satisfy all necessary requirements, and reproduce the known formulas for o, in the weakly inhomogeneous
case. This can aso signify that o, of the two-phase randomly inhomogeneous systems may be a nonuniversal
function, depending on some details of the structure of the random inhomogeneities. © 2003 MAIK

“Nauka/Interperiodica” .
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The electrical transport properties of the disordered
systems have an important practical interest. For this
reason, they areintensively studied theoretically aswell
as experimentally. In this region, there is one classica
problem about the effective conductivity o, of an inho-
mogeneous (randomly or regularly) heterophase sys-
tem which is a mixture of N (N = 2) different phases
with different conductivitieso;, i =1, 2, ..., N. We con-
fine ourselves here to the simplest case of two-dimen-
siona heterophase systems with N = 2. Despite itsrel-
ative simplicity, only a few general exact results have
been obtained so far. There is a general expression for
O, in the case of a weakly inhomogeneous isotropic
medium, when the conductivity fluctuations do are
smaller than the average conductivity (@ [][1]

_ 50)1H _ b0~ o0
o, = Lol E( ,
= g - p?Y by - " pod -
where D is the dimension of the system. In our case of
two-dimensional two-phase system [G[0= xo; + (1 —
X)0,, 620~ 63 = 4x(1 — x)6>, where X is a concen-
tration of thefirst phase, 0_= (0, —0,)/2, and (1) takes
the form

)

O, = 0,(1+2(x—=12)z—2x(1-X)Z), (2

where o, = (0, + 0,)/2, and a new variable z= 0_J/a,,
characterizing an inhomogeneity of the system isintro-
duced.

The further progress in the solution of this problem
is connected with the discovery of a dual transforma

TThis article was submitted by the author in English.

tion, interchanging the phases [2, 3]. This transforma-
tion allows one to find an exact formula for o, in the
case of systemswith equal concentrations of the phases
Xx=x.=12][3]:

O¢ = 4/010>. ©)

This remarkable formulais very simple and universal,
since it does not depend on the type of the inhomoge-
neous structure of the two-phase system. For systems
with unequal phase concentrations, a dual transforma-
tion gives a relation between effective conductivities at
adjoint concentrations x and 1 — x or in terms of a new
variablee =x—x, (-1/2< e < 1/2) at e and —e:

0c(X, 01,0,)0,(1-X,0,,0,) = 0,0,

(4)

= O-e(ei 04, OZ)Oe(_€1 04, O-2)'

Relation (4) meansthat the product of the effective con-
ductivities at adjoint concentrationsisan invariant. Due
to thisrelation, one can consider g, only in the regions
X=X (€=20)orx< x. (e <0).

However, an explicit formula for the effective con-
ductivity at arbitrary phase concentrations and z attracts
the main interest in this problem. One such formulawas
obtained many years ago in the so-caled effective
medium (EM) approximation [4], which turned out to
be a good approximation for random resistor networks
not only in the weakly inhomogeneous case [5]. In this
paper, using aduality relation and a series expansion in
the inhomogeneity parameter z, we will find two
explicit approximate expressions for the effective con-
ductivity of two-phase systems, differing from the EM
approximation. The physical models corresponding to
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them are introduced in other papers, where their prop-
erties are discussed in detail [6, 7].

Let us start our investigation of the isotropic classi-
cal random two-phase system in the case of arbitrary
concentrations with a genera analysis of the possible
functional form of the effective conductivity. Dueto the
linearity of the defining equations [1, 3], the effective
conductivity of the random systems must be a homoge-
neous function of degreeoneof ;,i =1, 2, ..., N. Inthe
case of N =2, it is convenient to use, instead of o; (i =
1, 2), thevariables g, and z (-1 < z< 1) and, instead of
X, anew variablee = x—1/2 (-1/2 < € < 1/2). Then the
effective conductivity can be represented in the follow-
ing form, symmetrical relative to both phases:

o/e,0,,0) =0.f(e,0_/0,) = 0,f(¢,2), (5

where o (e, 0., 0.) and f(e, 2 must have the next
boundary values

0,(Y2,0,,0) = 0,, 0,(-120,,0) = 0,

f(U2,2) = 1+z f(-12,2) =1-z (5)
f(e,0) = 1.
The duality relation in these variables takes the form
f(e,2)f(-e,2) = 1-72, (6)

fromwhichit followsthat at critical concentratione =0

f(0,2) = J1-7. (3)

Strictly speaking, the form of duality relation (6) isalso
aconsequence of another exact relation for the effective
conductivity, taking place at arbitrary concentrations
for systems with similar random structures of both
phases of the system,

Og(€, 01,02) = Oe(—€, 0, 04). (7)

This means that the effective conductivity of the ran-
dom two-phase system must be invariant under substi-
tution of these phases (6, ~— 0,) with the correspond-
ing change of their concentrations x < 1 — x (or
€ — —e€). Inthe new variables, this means that

f(el Z) = f(_el _Z)l f(_E! Z) = f(E, _Z) (8)
For this reason, the duality relation can also be written
in the form

fe,2)f(e,—2) = 1-2". (9)

It follows from (8) that the even (fy and odd (f,) parts
of f(e, 2) relative to e coincide with the even (%) and

odd (f?) parts of f(e, 2) relative to z. Consequently,
f(e, 2) has the functional form

f(e,2) = f(ez €%, 7). (10)
One can see from (10) that (1) (0, 2) is an even func-

tion of z (i.e., symmetric in o, ,) and (2) an expansion
of f(e, 2) near the point e = z= 0 does not contain terms
JETP LETTERS  Vol. 77
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linear in e and z separately. Analogously, the odd part f,
can be represented in the form

fa(e, 2) = 2ezP(e, 2), (11)

where @ is an even function of e and z (the coefficient 2
in front of ezis chosen for further convenience).

At first sight, the duality relation (11) alone is not
enough for the complete determination of f in the gen-
eral case. It only connectsf at adjoint concentrations or
f,and fg

f2_f2=1-7. (12)

This means that f, and f, considered at fixed z as the
functions of e satisfy the hyperbolic relation with acon-
stant depending on z Relation (12) allows one to
express (e, 2) through its even or odd parts

fle,2) = fo+Jfo+1-7 = f .+ Jfi-1+7. (13)

For this reason, it is enough to know only one of these
two parts. Usually, one prefers to choose an antisym-
metric part as a more simple one. It follows from (2)
that, in the weakly inhomogeneous case, the odd part
coincides with the odd part of [d Cand has the simplest
form (compatible with (11)):

fa(e, 2) = 2ez. (14

Asiswell known, the effective conductivity in the EM
approximation can be obtained by substitution of (14)
into (13):

OJ(€,2) = 0,[2ez+4(2e2)°+1-7].  (15)

We will call this expression, continued on arbitrary
concentrations X = € + 1/2 and inhomogeneities z, the
EM approximation for g,.

However, systems with a dual symmetry usually
have some additional hidden properties, permitting one
to obtain more information about the function under
guestion. Moreover, in some cases these properties can
help to solve the problem exactly (see, for example,
[8]). Having thisin mind, we will try to investigate the
duality relation in more detail. For every fixed z # 1 (it
isenough to consider only theregion 0 < z< 1), afunc-
tion f must be a monotonic function of e. Since the
homogeneous limit z —= 0 is a regular point of f, it
will be very useful to expand finaseriesinz

fle,2) = S f(e)Z/K, (16)
2
where, due to the boundary conditions (5,
fo =1, fi(e) = 2e. a7)

It isworth noting here that expansion (16) differs from
the weak-disorder expansion of o, in serieson the aver-
aged powers of the conductivity fluctuations oo/[d [
(see, for example, [9]). Expansion (16) issimpler, since
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it deals with variables z and e separately, while the
expansion in powers of do/[d [is an expansion on the
rather complicated functions of zand e. Of course, both
expansions are connected, but expansion (16) is more
convenient for our analysis of possible functiona
forms.

Substituting expansion (16) into (6), one obtains the
following results:

(2) in the second order on z, it reproduces universal
formula (2); thus, the latter can be considered as a con-
sequence of the duality relation;

(2) in higher orders, there are recurrent relations
between f,, and f,, _;, corresponding to connection (12);

(3) fy+4(€) are odd polynomias in e of degree
2k + 1 and f,(€) are even polynomialsin e of degree 2k
in agreement with (10).

Taking into account boundary conditions (5') and an
exact value (3", one can show that the coefficients f,
must have the next form

face1(€) = €(1—4€*)gp_s(e€),

fal€) = (1—4€*)hy_y(€),

where gy _, and h,,_, are some even polynomials of
the corresponding degree and free terms of hy,_, coin-
cide with the coefficients in the expansion of (3):

A/l—z2 = 1-7/12-718-7°116
—221128 - 7°1256 + ...

It follows from (18) that f; is completely determined up
to overall factor number g, Since f, is determined
through lower f, (k=1, 2, 3),

k=1,
(18)
k=1,

(19)

f,=4f,fs—3f5 = (1-4€)[(8g, + 12)e” - 3], (20)

itisalso determined by the coefficient g,. Expansion (16)
inthe EM approximation has avery simple form, since
al gy _,=0(k= 1) and fy(€) ~ (1 —4e?)k Thus, we see
that, in the general case, the arbitrariness of f isstrongly
reduced by boundary conditions and by exact value (3)
and that the third and fourth orders are determined only
up to one constant. One can see from the EM approxi-
mation that any additional information about function f
can determine this constant or even the whole function.
For this reason, one needs to know what kind of func-
tions can satisfy the duality relation (6) except general
functions from (12), (13). In order to answer this ques-
tion, it is convenient in the case z # 1 to pass from f to

f =f/J1-2*. Then
fle,2)f(=,2) = 1 = f(e,2)T(e,~2).  (6)

The duality relation gives some constraints on the pos-
siblefunctional formof f (e, ). For example, assuming
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afunctiona form (10), one can write out the next sim-
ple expression

f(e,2) = exp(ezg(e, 2)), (21)
where @(e, 2) is some even function of its arguments.
Another possibleform of f is

f(e, 2) = B(e, 2)/B(—¢, 2).

It is easy to see that they automatically satisfy Eq. (6).

Let us now consider two simple ansatzes for afunc-
tion @. In case (a), we suppose that @(e, Z) depends only
on z. This means an exponential dependence on con-
centration, which sometimes takes place in disordered
systems [10]. In case (b), we will suppose that @(e, 2)
depends only on the combination ez This can signify,
for example, that f depends only on mean conductivity
[ and/or on mean resistivity [ 'Jsince [G [~ (1 +

2ez). Expanding the corresponding functions f in
series, one can check after some agebrathat it is now
possibleto determine all polynomial coefficients unam-
biguoudly! For example, one finds for f, in the third
and fifth orders

Oo = -1, g, = —(11+4€”) case (a),

Jo = =3, 0, = —15(1 + 12¢€°) case (b).

Another way to seethisisto apply boundary conditions
directly to the function (21). In case (a), one obtains

1+z

02) = UzinT=Z, F(e,2) = glliz‘je 22)

4l

It isinteresting to note that, in terms of concentration x
and partial conductivities g;, one obtainsin case (a)

X 1-x

0. = 0,0, (22)

This corresponds to the self-averaging of Ino:
0, = expdno] Onold= xlnc,+(1-x)Ino,,

noted first by Dykhne for equal phase concentrations
[3] and established later in the theory of weak localiza-
tion [11].

In case (b), when @ depends only on the combina-
tion ez, onefinds

_ 1, 1+2ez _ L+ 2ez7”
We2) =352 D= - &3
In terms of x and g, it has the next ssmple form
0, = JBO BT (23)

Series expansions of (22) and (23) coincide exactly
with the corresponding expansions mentioned above.
They differ from the EM approximation even in the
third order.

No. 9
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For a general form of @(e, z), admitting a double
series expansion in 22 and €?,

®(e, 2) = - () IK, @le) = - eI,
2 2%

one can show that now f; and f, again contain one free
parameter @y : g = 6(@,o— 1). Consequently, one needs
additional information or a more complicated ansatz
for adetermination of @in the general case. Thiswill be
considered in another paper.

Thus, we have found two explicit functions (22) and
(23), which satisfy all required properties. In particular,
they reproduce Eg. (2) in the weakly inhomogeneous
limit z < 1. These functions can be considered as regu-
lar solutions of the duality relation, since they are rep-
resented by convergent seriesin zfor 0 < z< 1 except
the small regionz —» 1, e — 1/2.

The systems having the effective conductivity just
of the two forms found above and their properties are
considered in [6] (seedso[7]). We give here their brief
description.

The first model represents randomly inhomoge-
neous systems with compact inclusions of the second
phase with finite maximal scale |, of inhomogeneities.
This scale can depend on concentration of the second
phase |(1 — X) (one can consider only thecase 1 — x <
1/2). The stable effective conductivity o(x, {c}) (here
{0} = (04, 0,)), depending only on x and not depending
on the scale on which the averaging is performed, can
be obtained only after averaging over scales | > | (x).
This o(x, {0}) asafunction of x must satisfy the next
functional equation, generalizing duality relation (4):

0u(X, {0} )au(x" {a}) = oe(x{a}),  (24)

where x = (X' + x")/2. The solution of equation (24), sat-
isfying boundary conditions (5", coincides with (22)
and corresponds to the finite maximal scale averaging
approximation [6, 7].

The second model of arandom inhomogeneous sys-
tems has a hierarchical, two-level structure. On the first
level, it consists of squares with random phase layers
with a mean conductivity (@ Lif the direction of layers
isparallel to the applied electrical field E or with acon-
ductivity [6 13 if this direction is perpendicular to E.
On the second level, these squares form arandom par-
guet (or alattice), which contains with equal probabili-
ties (p = 1/2) sguares with both orientations. Then,
using universal formula (3), one can write the next
approximate expression for g

o.(x {0}) = e 0,

which coincides with (23).

For a comparison of the different expressions for
effective conductivity (Egs. (15), (22), and (23)), we
have constructed three plots of the corresponding func-

(25)
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Fig. 1. Plots of various expressions for f(e, 2) at different
values of z

tionsf(e, 2) at z=0.8, 0.95, 0.999 (Fig. 1) (their full 3D
plots are presented in [7]). The lower branch in the
region € > 0 corresponds to f from (23), the upper
branch to the EM approximation, and the middle
branch to f from (22). It appearsthat all three formulas
for f(e, 2), despite their various functional forms, differ
from each other very weakly for z < 0.5 due to very
restrictive boundary conditions (5) and the exact
Keller—Dykhne value. This range of z corresponds
approximately to the ratio o,/0; ~ 1/3. For smaller
ratios, the differences between these functions become
distinguishable (for € > 0), growing significantly only
for ratios 0,/0, < 1072,
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One can see from formulas (22), (23) that, in both
cases, one gets 6, — 0in the limit o, —= 0, except
the small region near x = 1 and z = 1. This means that
these formulas are not valid in the percolation limit
0, — 0(z— 1) fore>0][10, 12]. One can show that
such behavior is a consequence of the assumptions
made about the form of the function ¢ and/or of the
structure of the corresponding models[7].

It also follows from the plots that EM approxima-
tion overestimates the usual o, of the percolating sys-
tems [10, 12], and both the other formulas underesti-
mateit intheregion z—= 1, e > 0. We hope to investi-
gate thislimit in detail later.

Thus, we have discussed possible functional forms
of the effective conductivity of random two-phase sys-
temsat arbitrary values of concentrations. It was shown
that the duality relation and some additional assump-
tions about the possible functional form of f(e, z) can
give its explicit expression, differing from the EM
approximation. They automatically satisfy the duality
relation and reproduce all known formulas for f in the
weakly inhomogeneous limit z < 1.

Though the additional assumptions we made are
approximate, the results obtained (and especidly the
existence of the corresponding models [6, 7]) can be
interpreted also as if g, of the two-phase randomly
inhomogeneous systems were a nonuniversal function,
depending on some details of the structure of the ran-
dom inhomogeneities. An analogous conclusion was
made earlier for three-phase regular systems in [13],
where the possibility of finding a generalization of the

BULGADAEV

Keler—Dykhne formula(3) for the case N = 3 was stud-
ied numerically.

The author thanks the referees for useful remarks.
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The effect of the photon energy of the exciting laser radiation on the Raman spectra of Ba; _,K,BiOz with x =
0.25, 0.40, and 0.50 is studied. An increase in the laser wavelength from 488 to 750 nm scarcely affects the
amplitudes and frequencies of the spectral lines in the Raman spectra of the nonsuperconducting compound
with x = 0.25. For the optimally doped (x = 0.40) and overdoped (x = 0.50) superconducting compounds, a sub-
stantia increasein thelineintensity and a considerabl e shift of the characteristic frequencies are observed. This
result suggests that, in the whole range of superconducting compositions 0.37 < x < 0.50, the local symmetry
of the Ba, _,K,BiO; crystal lattice differs from the perfect cubic symmetry, which should take place according
to the literature data. The fact that resonance phenomena are observed when the laser photon energy is shifted
toward the optical gap testifies to the presence of loca electron pairs in the whole range of superconducting
compositions 0.37 < x < 0.50 and is evidence in favor of the superconductivity mechanism proposed for
Ba, _,K,BiO; on the basis of the X-ray absorption studiesin our previous paper. © 2003 MAIK “ Nauka/Inter-

periodica’ .
PACS numbers: 74.25.Gz; 78.30.-j

The Raman spectra of the dielectric BaBiO; com-
pound, which isthe starting material for the preparation
of BaPb, _,Bi,0O; (BPBO) and Ba, _,K,BiO; (BKBO)
superconducting oxides, exhibit the phonon mode w, =
570 cmt with avery high intensity exceeding theinten-
sities of other modes by more than an order of magni-
tude [1-3]. The unusual feature of this mode istheres-
onance character of its excitation, which manifests
itself in the anomalously high amplitude when the pho-
ton energy of the exciting laser, hv, coincides with the
optical gap width E;= 1.9V [2, 3]. Initidly, the exist-
ence of this mode was attributed to the breathing-mode-
type static distortion of the BaBiO, cubic lattice in the
form of an ordered aternation of small (with a radius
Ro) and large (with aradius R, ) oxygen octahedra with
Bi ions at their centers. The combination of the breath-
ing and rotational (rotation of the octahedra about the
[110] pseudocubic axes) static distortions results in a
monoclinic distortion of the BaBiO; lattice. Thisdistor-
tion corresponds to the 12/m space group and reduces
thelattice symmetry, whichinitially was aperfect cubic
one[4]. The observation of active phonon modesin the
Raman spectra of BaBiO; is a direct consequence of
this symmetry reduction [3, 5].

When BaBiO; is doped with potassium, the afore-
mentioned static lattice distortions disappear near the
insulator-to-metal phase transition at x = 0.37, after
which the material becomes superconducting. As a
result, according to the neutron scattering data [6], the

superconducting BKBO compoundswith x = 0.37 have
a Pm3m symmetry of a perovskite-like perfect cubic
lattice, which, according to the symmetry group analy-
sis, must have no Raman active modes [5, 7]. At the
same time, experiments reveal the presence of rather
intense Raman modes in the optimally doped (x = 0.4)
superconducting BKBO compounds[3, 5, 7, 8]. Thisis
explained by the reduction of symmetry of the simple
cubic lattice because of either the effect of doping and
defect structure [5] or the presence of local structural
distortions in the superconducting compounds [7]. For
overdoped superconducting BKBO compounds, no
active phonon modes were observed in the Raman
spectra, and, on the basis of this result, the conclusion
was made that the compounds with x = 0.45 have a per-
fect perovskite-like lattice without distortions and,
hence, the conventional BCS mechanism of supercon-
ductivity is realized in the Ba, _,K,BiO5 cubic perovs-
kites[3].

However, the X-ray absorption (EXAFS) studies
[9-11] showed that the BKBO lattice is locally dis-
torted in the whole interval of potassium contents cor-
responding to superconductivity: 0.37 < x< 0.50. These
distortions are of a dynamic character and manifest
themselves as oscillations of oxygen ions, which simul-
taneously belong to two types of octahedrawith differ-
ent electron fillings, in an anharmonic double-well
potential. From the model that was proposed in [10]
and developed in [11-13] for describing the interrela-
tion between the local electronic and crystal structures
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Fig. 1. Raman spectra of BKBO samples: the excitation by
an Ar” laser with awavelength of 488 nm.

of BKBO, it follows that, in the whole range of super-
conducting compounds 0.37 < x < 0.50 including the
overdoped compositions with x = 0.45, the resonance
excitation by alaser radiation with hv = E; should give
rise to active phonon modes in the Raman spectra. In
our opinion, the fact that these modes were absent inthe
spectra obtained for overdoped samples with x = 0.45
by using an argon laser [3] is explained not by the
absence of local distortions of the cubic lattice but by
the absence of resonance between the laser photon
energy hv and the optical gap E,. The point is that the
doping of BaBiO; with potassium leadsto adecreasein
the optical gap in the superconducting metallic phase
downto E; = 0.5 eV [14]. This value is much smaller
than the photon energy of the Ar* laser: hv = 2.4 eV.
Lasers with greater wavelengths were not used for this
kind of measurement until now.

In our previous publication [12], we predicted the
growth of the Raman scattering intensity for supercon-
ducting compoundswith x = 0.37 when the laser photon
energy approaches the value of the optical gap. In this
paper, we present the results obtained from the expe-
rimental study of the effect of the laser photon energy
on the Raman spectra of the superconducting
Ba, _,K,BiO; compounds with the aim to verify the
predictions made on the basis of the aforementioned
model [12].

The Raman spectra were recorded in the range
within 100-2500 cm™ at room temperature by a Jobin
Yvon HR-640 spectrometer with a nitrogen cooled
CCD detector. To suppress the reflected laser radiation,
aset of holographic filterswas used. We studied single-
crystal samples of Ba, _,K,BiO; of three different
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Fig. 2. Raman spectra of BKBO samples: the excitation by
aTi-sapphire laser with awavelength of 750 nm.

types: with x = 0.25 (nonsuperconducting composi-
tion), 0.40 (T, = 26 K), and 0.50 (T, = 16 K). The sam-
ples were grown as described in [15]. The exciting
laserswere an Art laser (A = 488 nm) and a Ti-sapphire
one (A = 700 and 750 nm) pumped by the argon laser.
The laser radiation was focused to a spot about 50 um
in diameter on a freshly cleaved sample surface. The
measurements were performed with low power levels
of about 1 mW to avoid the situation when local heating
may cause oxygen to leave the surface. The absence of
the latter effect was confirmed by the absence of
changes in the spectral curves obtained from multiply
repeated recording procedures. The spectral curves
were normalized to unity in the short-wave region
(~1500 cm), where the Raman intensity is practically
frequency-independent.

Figures 1 and 2 show the Raman spectra of BKBO
compounds with x = 0.25, 0.40, and 0.50, which were
measured with two laser wavelengths: A = 488 and
750 nm. The spectral curves obtained with the use of
the Ar laser are identical with those obtained by other
authors for ceramic samples [8], single crystals [5, 7],
and epitaxial thinfilms[3, 16]. From the comparison of
the curves shown in Figs. 1 and 2, one can see that, for
anonsuperconducting sample with x = 0.25, the ampli-
tude and frequency patterns of the Raman spectra are
practically independent of the laser wavelength. At the
same time, for the superconducting compositions (X =
0.40 and 0.50), the shift of the laser photon energy
toward the value corresponding to the optical gap leads
to a frequency shift of the phonon modes and to an
increase in their amplitudes. The effect of the laser
wavelength on the Raman spectra manifestsitself most
strongly for the overdoped sample with x = 0.50
2003

JETP LETTERS Vol. 77 No. 9



RESONANT RAMAN SCATTERING

(Fig. 3). In this case, the spectrum obtained at A =
488 nm exhibits a single weak line (w = 330 cm™),
while at A = 750 nm, pronounced maxima are observed
at the frequencies 440, 320, 230, and 160 cm™. This
suggests that the features of the Raman spectra
obtained for BKBO in the superconducting metallic
phase are determined not by the defect structure or the
inhomogeneities of the samples, aswas assumed earlier
[3, 5, 8], but by fundamental physical mechanisms
related to the properties of thelocal electronic structure
of BKBO compounds.

We begin the analysis of the experimental results by
explaining the resonance in the initial compound
BaBiO;. This compound is an unusual semiconductor,
becauseit is characterized by two energy gaps: the opti-
cal gap E; = 1.9 eV and the activation energy E, =
0.24 eV. The activation energy does not manifest itself
in such experimental data asinfrared reflection spectra,
optical conductivity spectra, or photoacoustic data. The
only possible mechanism that does not contradict the
experiment was proposed in [17], where the presence of
this gap was explained by the two-particle (bipolaron)
conductivity. The optical gap does not have the shape of
the absorption edge characteristic of semiconductors
and is observed as a resonance peak of optical conduc-
tivity or infrared reflection at the energies near hv =
19¢eV [3, 14, 17]. This gap is usualy attributed to the
charge density wave in BaBiO; [18]. However, the
small spectral width of the resonance peak A = 0.8 eV
[3, 14] pointsto the local character of the excited level
rather than to the band absorption.

Earlier, we explained the nature of the two energy
gaps by the local eectronic structure of BaBiOg, which
is determined by the ordered aternation of oxygen
octahedra with different electron filling: the BiOgz and
BiL %0, complexes, where L? denotes the presence of a
hole pair in the Bi6s-O2p,. antibonding molecular
orbital of the octahedral complex [10-13]. In other
words, the electronic structure of the initial BaBiOg
represents an ordered alternation of electron and hole
pairslocalized in real space by the neighboring octahe-
dral complexes. In this system, free fermions are
absent, and the conductivity, asin[17], is possible only
a the expense of the pair (two-particle) excitation
through the activation gap 2E, = 0.48 €V, which isthe
pair localization energy. Since a photon cannot excite
an electron pair as awhole, this gap does not manifest
itself in optical experiments.

A photon can break a pair by transferring one of the
electrons from a BiOg octahedron to a free level in the
neighboring BiL 2O, octahedron. However, this process
requires a much higher energy E; = 2E(BIL'Og) —
E(BiL2Og + BiOg) = E,, + 2E,, where E, isthe pair cou-
pling energy [12, 13]. In this case, aloca deformation
of the lattice takes place in the form of the transforma-
tion of two different octahedra, BiL?Og and BiOg, into
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Fig. 3. Dependence of the Raman spectra of a
Bag 5K g 5BiO3 overdoped sample on the laser wavelength.

two identical BiL'O4 octahedra, each of which has a
single hole in the Bi6s-O2p,. antibonding molecular
orbital. At the resonance coincidence of the laser pho-
ton energy with the optical gap of the initial BaBiO;,
the af orementioned deformation is so strong that it gen-
erates abreathing mode in the Raman spectrawith w, =
570 cm. The intensity of this mode is rather high, so
that the observation of up to fiveits harmonicsis possi-
ble[2].

The doping of BaBiO; with potassium leads to the
replacement of part of the BiO; complexes by BiL?Q,
which results in their spatial overlapping. The pair
localization energy (the activation energy) vanishes at
the insulator-to-metal phase transition, when x = 0.37.
At the same time, according to the infrared reflection
data[14], the optical gap E,, which at E, = 0 coincides
with the pair coupling energy, decreases without van-
ishing, so that local electron pairs are retained in the
metallic phase. The local pairs can move freely in real
space under the dynamic exchange BiOg <~— BiL?O,
and, as shown in [12, 13], their coherent motion at the
temperatures T < T, determines the transition to the
superconducting state. The optical absorption maxi-
mum is shifted from E; = 1.9 €V in BaBiO; to Ey =
0.5eVinBa, _,K,BiO; anditsspectral width increases
from A = 0.8 to 1.6 eV [14] because of the delocaliza-
tion of the previously localized states.

Thus, when the Raman spectra are measured with
the Ar laser (hv = 2.4 eV), the optical resonance condi-
tion hv = E; is violated, and the amplitudes of phonon
modes observed for the optimally doped sample (x =
0.40) are much smaller, as compared to the case of x =
0.25; in the case of the overdoped composition (x =
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Fig. 4. Raman spectra of the optimaly doped
(Bag gK.4BiO3) and overdoped (Bag 5K o sBiO3) supercon-
ducting compounds in the short-wave region; the excitation
by a Ti-sapphire laser with a wavelength of 750 nm.

0.50), these modes are virtually absent (see Fig. 1). The
use of the Ti-sapphire laser with a wavelength of
750nm (hv = 1.65 eV) alowed us to approach,
although not too closely, the optical conductivity max-
imum (E, = 0.5 eV). This relatively small shift proved
to be sufficient to obtain the resonance excitation of the
local lattice distortion accompanying the breakup of
electron pairs and to observe intense phonon modes in
the spectra of superconducting samples (seeFigs. 2, 3).
According to [14], at hv = 1.65 eV for x = 0.40, the
optical conductivity amplitude makes up less than 20%
of the maximum amplitude corresponding to approxi-
mately 0.5 eV, and, hence, it should be still smaller for
x = 0.50. Then, for the Raman spectra of overdoped
superconducting samples with x > 0.45, we can predict
a more than fivefold increase in the phonon mode
amplitudes in the case of a closer approach to the reso-
nance conditions, which can be achieved by using
lasers with wavelengths (A = 2000 nm) longer than that
of the Ti-sapphire laser.

Another important result of our study isthe observa-
tion of the considerable background Raman intensity
forming a continuous spectrum in the short-wave
region. The presence of this Raman continuum in high-
T, superconducting cuprates has been interpreted as
evidence of an unconventional mechanism of supercon-
ductivity [19]. According to [3], the absence of the
Raman continuum in BKBO compounds testifiesto the
conventional superconductivity mechanismin Bi-based
cubic perovskites, which meansthat their propertiesare
different from those of cuprates. The authors of the
cited publication [3] explain the observation of the
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Raman continuum in the experiment [20] by the possi-
ble defect structure and inhomogeneity of the samples.
Our measurements performed with a wavelength of
750 nm (Fig. 4) revea the presence of a considerable
background intensity in the Raman spectra of super-
conducting samples in the region 1500-2500 cm, and
this background intensity is comparable to that of the
Raman continuum observed in cuprates. This fact sug-
gests that the mechanism of superconductivity in
Ba, _,K,BiO; is unconventional, i.e., differs from the
BCS mechanism, and possibly is similar to the super-
conductivity mechanism realized in Bi- and Cu-based
oxides.

Thus, our study of the Raman spectra of supercon-
ducting BKBO samples with the use of the Ti-sapphire
laser (A = 750 nm) showed that the main conclusions
formulated in the analogous study [3], which was per-
formed with a shorter-wavelength Ar* laser (A =
514.5 nm), fail. Specificaly, these conclusions include
(a) the absence of the optical gap in the superconduct-
ing phase of BKBO; (b) the presence of an idea per-
ovskite-like cubic structure for x = 0.37; and (c) the
realization of the conventional BCS superconductivity
mechanism in Ba, _,K,BiO;, which is different from
the superconductivity mechanism in cuprates.

We obtained new independent evidence in support
of the concept that the superconducting BKBO com-
pounds with x = 0.37 do not have an ideal cubic struc-
ture (as stated in the literature) but are characterized by
considerablelocal |attice distortions, even in the case of
the overdoped compound with x = 0.50. According to
the model described in [12], the lattice distortions are
related to the retention of local electron pairs under the
doping procedure: the coupling energy of these pairs
manifests itself as the optical gap and guarantees their
existence in the whole range of superconducting com-
positions 0.37 < x < 0.50. The observation of the reso-
nance phenomena in the experiment with the longer
laser wavel ength confirmsthat the optical gap is present
in the superconducting phase and adds support to the
superconductivity mechanism proposed  for
Ba, _,K,BiO;inour previous papers[12, 13]. The pres-
ence of a considerable background intensity in the
short-wave region of the Raman spectra of supercon-
ducting BKBO samples is an additional argument in
favor of the similarity of the superconductivity mecha-
nismsin Bi- and Cu-based oxides.

We are grateful to R. Boehler for supporting this
study and to A.V. Kuznetsov and M.Yu. Kagan for
useful discussions. The work was supported in part by
the Russian Foundation for Basic Research (project
no. 02-02-16942), the Integratsiya program (state con-
tract no. B-0048), and the Ministry of Industry and Sci-
ence of the Russian Federation (project title* Supercon-
ductivity of Mesoscopic and Strongly Correlated Sys-
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The EPR signal from localized ytterbium ions was observed in an undoped Y bRh,Si, compound with heavy
fermions in the temperature range from 1.5 to 25 K. The exponential contribution dominating the temperature
dependence of EPR line width at temperatures above 15 K was shown to be caused by the random transitions
from the ground to the first excited Stark sublevel of the Y b3*(4f13) ion with the activation energy A = 115 K.
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1. Single crystals of aYbRh,Si, material exhibiting
the properties of aso-called non-Fermi liquid were syn-
thesized recently in [1]. The resistivity and specific-
heat measurements have shown that the antiferromag-
netic transition temperature of thismaterial isvery low,
Ty = 70 mK, and that the localized Y b* moments are
ordered perpendicularly to the crystallographic ¢ axis
inthe easy plane[1, 2]. Moreover, YbRh,Si, isone of a
few ytterbium-based stoichiometric Kondo systems
that have alow residual resistivity (p, ~ 2.5 uQ cm[3])
and a comparatively high characteristic Kondo temper-
ature T (spin-fluctuation temperature): T = 24 K was
estimated from entropy change [1], and T = 15 K was
obtained from NMR measurements [3]. The presence
of local Yb** moments is evidence that there is a basic
possibility to use the EPR method for studying crystal
properties, in particular, for directly detecting the
Kondo effect [4]. The ions exhibiting this effect are
ordinarily introduced as impurities into alloys and
intermetallic compounds. The Kondo effect observedin
the EPR experiments on a diluted Au:Yb system [5]
manifests itself in the characteristic logarithmic tem-
perature dependences of the g factor and relaxation rate
[6]. The interaction of conduction electrons with the
localized 4f moments al so plays an important part. Asa
rule, the observation of EPR in concentrated insulators
is hampered because of a strong EPR line broadening.
We are aware of only two experimental observations of
rather broad (more than 1 kOe) EPR lines in the
undoped ytterbium compounds. In the cubic phase of
the Kondo systemY bH,, the broadening is explained by
the spin-glass ordering of Yb** ions in the absence of
heavy fermions [7], and, in the superconducting phase
of ahigh-T, superconductor Yb,Y; _,Ba,Cuz0, (x= 1.0,

0.5), itisascribed to the exchange narrowing [8]. In this
communication, we report the results of studying the
EPR spectra of YbRh,Si, single crystals with a dense
regular arrangement of theY b3 ionsin the temperature
range from 1.5to 25 K.

2. High-quality singlecrystalsof Y bRh,Si, (symme-
try group [4/mmm; ThCr,Si,-type structure) were pre-
pared as thin (~0.5 mm) platelets from indium melt by
the method described earlier in [9, 10]. To avoid ytter-
bium evaporation, the YbRh,Si, single crystals were
grown in sealed thallium crucibles. The orientation of
crystals and their correspondence to the structural type
were determined by the Laue method and X-ray struc-
tural analysis. In addition, a high quality of the crystals
was confirmed by the presence of a sharp specific-heat
peak corresponding to the antiferromagnetic transition.
The muon spin-resonance studies of the samples pre-
pared by the same method showed that the compound
was homogeneous and that the spin-glass phase was
absent in it [11]. The X-band (~9.39 GHz) and Q-band
(=34.1 GHz) EPR experiments were accomplished in
magnetic fields up to 1.7 T on a Bruker ELEXSYS
E500 spectrometer equipped with a helium cryostat
(OXFORD). The magjor EPR measurements were made
in the orientation corresponding to the minimal reso-
nance field. The EPR line width was also minimal,
while the static magnetic field was perpendicular to the
crystal axisc.

3. The EPR signal with aclearly defined Dyson line-
shape (AH ~ 200600 Oe) and the g factors typical of
the Yb3*(4f13) ion (gn = 355 and g < 0.4 at T = 5 K)
was observed in the temperaturerangefrom 1.5to 15K
(Fig. 1), where the EPR line width increased linearly
with temperature following the Korringa mechanism.
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Fig. 1. Derivatives of theY b>" EPR signal for an YbRh,Si,
singlecrystal at 5 and 12 K. Magnetic field is directed per-
pendicular to the crystal axisc.

On further rise in temperature, the EPR lineshape was
noticeably distorted, and thiswas accompanied by even
faster (close to exponential) increase in itswidth (AH ~
1200 Oe at 20 K). The EPR signal fully disappeared
above 25 K. For both frequencies, the temperature
dependence of EPR line width iswell described by the
formula

AH,, = A+ BT + Cexp(-A/T), 1)

where B =27 Oe/K, C=167000 0e=4 x 102 s and
A =115K =9.91 meV (Fig. 2). The term A, presum-
ably, accounts for the spin—spin interactions and inho-
mogeneous broadening. It changes approximately from
100 to 180 Oe upon passing from the X-band to the
Q-band measurements. Note that Eg. (1) is similar to

[\
T

EPRlinewidth (kOe)
T

Temperature (K)

Fig. 2. Temperature dependence of the EPR line width in
YbRh,Si,: (0) experimental data for a frequency of
9.39 GHz; (@) 34.1 GHz; the solid lineisfor the theoretical
calculation by Eq. (1) with fitting parameters A = 96.6 Oe,

B=270eK™1, C=1670000e and A= 115K.
2003
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the expressions for the EPR line width and the spin- at-
tice relaxation rate in diluted paramagnetic dielectric
systems containing RE ions [12]. In those expressions,
the term linear in T is assigned to the single-phonon
relaxational transitions, while the exponential term is
related to the phonon resonance fluorescence pro-
cesses. However, the values of B and C appreciably
exceed the values typical of the phonon mechanisms.
The BT termin Eq. (1) likely accountsfor the Korringa
contribution to the width, while the exponentia termis
caused by the random transitions (induced by the mag-
netic dipole-dipole and exchange interactions with
environment) from the ground Kramers doublet of the
Yb* ion to its first excited Stark sublevel with activa-
tion energy A. The thermal fluctuations of electronic
states have aready been considered in the literature
(see, e.g., review [13]) as mechanisms of nuclear spin—
spin and spin-attice relaxation in the magnetic RE ions
and impurity paramagnetic centers in van Vleck para-
magnets (VVPs). The correlation frequency estimated
for this process in the LiTmF, VWP (characterized by
approximately the same spacing between the RE ions
asinYbRh,Si,) was found to be =10*? s, i.e,, close to
the parameter C in Eq. (1). The temperature depen-
dence of the g factor (Fig. 3) at temperatures higher
than 15 K is also typical of the above-mentioned elec-
tronic thermal fluctuation mechanism. The contribution
of thismechanism to the effective g factorsis anal ogous
to the one described earlier in the theory of vWP NMR
spectra [13]; it can be approximately calculated by the
formula

9a(T) = Go(0X) + Agy exp(—A/T),

0 _ e @)
Aga = Oq _g(x(o)i
3.59
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Fig. 3. Temperature dependence of the g factor from the
EPR measurements at a frequency of 34.1 GHz: () exper-
imental data and the solid lineisfor the theoretical calcula-
tion by Eq. (2).
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Fig. 4. Indlastic neutron scattering spectrum of the poly-
crystalline YbRh,Si, samples for (a) small and (b) large
scattering angles at atemperature of 1.5 K.

where g,(0) and g5° are the effective g factors in the

ground and first excited doublets of the ytterbium ion.
Function (2) with Ag), =258 (i.e., g&° ~ 1.0) and the
same A = 115K asin Eqg. (1) isshown in Fig. 3 by the
solid line. The tetragonal crystal field splits the ground
multiplet of theYb®* ion (4f 13, J = 7/2) into four Kram-
ers doublets. The value of A can be correlated with the
dataobtained for theY b3* Stark splitting inYbRh,Si, in
the inelastic neutron scattering study at the Laue-Lan-
gevin Institute (Grenoble, France), according to which
the energies of excited Stark sublevels are at 42 and
27 meV and in the vicinity of 10-15 meV (Fig. 4). A
more accurate determination of the position of the first
excited Stark sublevel was hampered by the presence of
astrong phonon signal near 13 meV. Notethat the over-
lap between the broad (smeared) Yb% Stark sublevels
and optical phononswas already observed intheinelas-
tic neutron scattering spectra of the YbPO, compound
[14], where the energy of the first excited state was
found to be equal to 12 meV. In this connection, it is
worthy of note that, in studying the temperature depen-
dence of the heat capacity of YbRh,Si, [1], a peak was
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observed at approximately 60 K, which corresponds to
the energy A = 160 K = 13.8 meV of the first excited
state in Yb**. Moreover, in a crystallographically and
magnetically close YbNi,B,C compound, the first
excited Stark sublevel is situated at 7.9 meV [15].
Although the optical and local (quasilocal) phonon
modes can aso be responsible for the exponential
dependence of the spin-lattice relaxation time and,
hence, of the EPR line width [16], the pre-exponential
factors in this mechanism are appreciably smaller (by
approximately two orders of magnitude) than the
parameter C in Eq. (1). For this reason, one can natu-
rally assume that it is precisaly the first Stark sublevel
that is situated near 10-15 meV, athough in the spec-
trum shown in Fig. 4 it is masked by the stronger
phonon signal.

4. Thetemperature-independent term A changeswith
frequency from 100 Oe (X band) to 180 Oe (Q band).
This alows the frequency-dependent (proportional to
frequency) inhomogeneous contribution A; caused by
the scatter of crystal-field parameters to be separated
from the frequency-independent contribution A, due to
the spin—spin broadening. This givesA = A; + A, with
A; = 27 Oe (X band), A; = 108 Oe (Q band), and
A, = 73 Oe for both frequencies. Whereas the resulting
A, value is typical of the inhomogeneous broadening,
A, is appreciably smaller than the dipole-dipole EPR
line width Awy, in insulators with the concentration of
paramagnetic centers as high asin our case. The corre-
sponding estimate of Awy, by the formula[17] Awg, =
3.89°B%'n yields Awy, = 1600 E = 4.9 x 10 s for
theY b3** concentration n = 1.26 x 10?2 cm~ and g factor
g = 3.55. It is conceivable that such an abnormal
decrease in the dipole—dipole line width in YbRh,S, is
a conseguence of the specific properties of this com-
pound. Note that we have failed to observe EPR absorp-
tion in the related non-Kondo ytterbium-based
Y b,Rh;Ge; and Y bFe,Ge, compounds with heavy fer-
mions.

5. Equation (1) does not account for some features
of the experimental curves presented in Fig. 2. In par-
ticular, it does not explain the presence of a short flat-
tened section at 17—19 K that was observed for both fre-
guencies. Below 15 K, the temperature dependence of
the g factor (Fig. 3) qualitatively resembles the Kondo-
type behavior in the EPR experimentswith Au:Yb [18].
In the temperature range of our measurements, the
crystal field is approximately an order of magnitude
more efficient than the Kondo interactions[15], and, in
all likelihood, the latter have no strong effect on the
EPR spectraat T > 1.5 K because of their comparative
weakness. A detailed analysis of the possible manifes-
tation of the Kondo effect in the EPR of YbRh,Si, sin-
gle crystal will be possible only after performing exper-
iments at lower temperatures.

6. In conclusion, we formulate the main results of
this work. An anomalously narrow EPR signal was
JETP LETTERS  Vol. 77
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observed from the Yb® (4f*3) ions in a concentrated
Kondo systemY bRh,Si, with heavy fermions. Thetem-
perature dependence of the EPR line width in the tem-
perature range from 1.5 to 15 K is explained using the
Korringa mechanism of interaction between the local
ytterbium magnetic moments and conduction electrons.
A dramatic broadening of the EPR line at higher tem-
peratures is due to the thermal fluctuations of the Y b3*
electronic states, which induce random transitionsfrom
the ground Kramers doublet of these ions to the first
excited Stark sublevel with energy A = 10 meV.

Wearegrateful to H.-A. Krug von Nidda, B. Elschner,
G.G. Khaliullin, K. Baberschke, and N.M. Suleimanov
for discussion of the results. This work was supported
by the Scientific and Educational Center CRDF (grant
no. REC-007) and the Swiss National Science Founda-
tion (grant no. 7SUPJ062258).
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We show that all scaling quantum graphs are explicitly solvable, i.e., that any one of their spectral eigenvalues
E, is computable analytically, explicitly, and individually for any given n. This is surprising, since quantum
graphs are excellent models of quantum chaos (see, e.g., T. Kottos and H. Schanz, Physica E 9, 523 (2001)).
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Graphs are networks of bonds and vertices. Figure 1
shows two examples: a three-bond four-vertex star
graph (Fig. 1a) and a three-bond four-vertex linear
graph (Fig. 1b). A quantum particle moving on the
graph turns the graph into a quantum graph [1]. If the
guantum particle moves freely on the graph, subjected
only to flux conservation at its vertices, we call it astan-
dard quantum graph. Thisisthe type of quantum graph
most frequently studied in the literature [1-5]. A larger
class of quantum graphs, including the standard quan-
tum graphs, are dressed quantum graphs[6]. A dressed
guantum graph has potentials on its bonds and & func-
tions on its vertices. The potentials on its bonds are
essentialy arbitrary as long as they do not introduce
turning points on the bonds. But even this case can be
dealt with trivially by redefining the topology of the

graph.

An important subset of dressed quantum graphs are
scaling quantum graphs [7-9]. In this case the graph
bonds are dressed with scaling potentials and the graph
vertices are dressed with scaling o functions. A scaling
potential is one whose strength V, scales with the
energy E of the quantum particle according to V, = AE,
where A is a constant. The strength of a scaling o func-

tion scaleswith k = ./E . Scaling potentials and & func-
tions are a natural choice to consider. On the one hand
they frequently occur in physical systems [10-15], on
the other hand they are mathematically convenient,
since they alow studying a quantum system without
causing phase-space metamorphoses [16] in the under-
lying classical system. It has been pointed out before
[17] that thisisthe most natural way of studying quan-
tum systems, in particular quantum chaos [18, 19].
Since quantum graphs are popul ar and successful mod-
els of quantum chaos [1-5], it may come as a surprise
that the energy spectrum E,, n=1, 2, ... of al scaling
guantum graphs is explicitly and analytically solvable

TThis article was submitted by the authorsin English.

intheform E, = ..., involving only known quantitieson
the right-hand side. In many cases the solutions can be
stated in closed analytical form.

The spectral function g©@(k) of a genera scaling,
dressed quantum graph is of the form [7]

N
g2k = cos(Sk—Ty,) — Z al”cos(Sk—y;), (1)
j=1
where §, > 0 is the total reduced action length of the
graph [7, 8], 0 < § < § are certain combinations of the
reduced bond actions [7, 8], N is the number of action
combinationsin (1), Yo, Y; are constant phases, and a}o)
are constant amplitudes. The spectrum E, of the quan-
tum graph is obtained by solving the spectral equation

g2k =0, n=12,.. 2

(a) (b)

Fig. 1. (a) Dressed three-bond star graph and (b) dressed
four-vertex chain graph. Different potential strengths on the
bonds areindicated by different thickness of the bonds. Dif-
ferent vertex strengths are indicated by different dot sizes
representing the vertices.

0021-3640/03/7709-0530$24.00 © 2003 MAIK “Nauka/Interperiodica’
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viaE, = (k™). For the purposes of this paper, we are
only interested in the positive solutions of (2) and
obtain awell-defined counting index n by defining k!”

to be thefirst positive root of (2). As afirst step toward
the solution of the genera problem, it was shownin [7-9]

that (2) can be solved explicitly in the form k@ = ... if
the regularity condition

N
Y [a%<1 ©)
i=1

isfulfilled. In order to substantiate our claim that (2) is
solvable explicitly for all scaling quantum graphs, we
have to show that (2) is solvable explicitly evenif (3) is
not fulfilled.

Before we turn our attention to the general case, we
introduce our methods with the help of a simple exam-
ple. Let us consider a scaling quantum graph derived
from the three-bond star graph shownin Fig. 1aby put-
ting the scaling potentials V|(E) = A\\[E, 0 <A, < lonits
three bonds of length L, | =1, 2, 3, require the “Kirch-
hoff-type” [5] flux conservation  condition
Zf: LA /dx, = 0at its central vertex (Y is the quan-
tum wave function on bond number | of the graph and
¥ is the coordinate on bond number ), and require
Dirichlet boundary conditions on its three dead-end

vertices. The spectral equation is of the form (1) with
N=3,y1=Y,=y;=0, and

S = oy ta+as S = —0;+0,+0d;,

S, = a;-0;+03, S = 0;+0;—03, @
a® = —B1+ B2+ Bs 20 - Bi—PB2+Bs
! Bi+By+Bs ° B+ B+ Bs’ )
aQ = BitBo— Bs’
B+ B2+ Bs
where

BiL, B =.J1-A, 1 =123 (6)
Theamplitudesin (5) do not fulfill the regularity condi-
tion (3). In some cases Zf: l|a§°’| =1 (for instance for
al® >0,j=1,2,3),andinmany cases § >_ 1|a§°)| >1
which strongly violates the regularity condition (3).
Since the methods and techniques presented in [7-9]
for obtaining the spectrum of a graph explicitly depend
crucialy on (3), it seems that completely different
methods have to be developed for general graphs, such
as the three-bond star graph of Fig. 1a, which do not
fulfill (3). There is, however, a way to reduce (1) to a
form that alows one to bring the powerful theory of

regular quantum graphs [ 7-9] to bear. In order to moti-
vate and to illustrate this method, let us study the case

a =

JETP LETTERS Vol. 77 No.9 2003
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o0, =1, 0,=7,05,=11, 3, =1/10, 3,=1/5,353=2/2. In
this case, al” = 3/4, a¥ = 1/2, al¥ = -1/4, § = 19,
S =17, S, =5, S = -3, and the spectral equation is
given by

g %K) = cos(19k)

(7
— %cos(l?k) — %cos(Sk) + %cos(3k).

O 4 |29 +

Since |a &% + [aY”| = 3/2 > 1, this quantum
graph iscertainly not regular. But let uslook at thefirst
derivative of (7). Dividing by S,, we obtain

3
gM(K) = cos[Sk + TW2] — z alY cos[ Sk + 02]
j (8)

——sm(19k)+ sm(17k)+ sm(5k) S|n(3k)

Thistime we have 7°_ [al”] = 16/19 < 1, and, there-
fore, since (8) isprecisdly of theform (1) and satisfies (3),
it can be solved explicitly using the methods of [7-9].
In particular, it was shown in [7-9] that root number n
of a spectral equation that satisfies (3), such as (8), is
found in the root interval [Rn_l, Rn], where k, arethe
root separators [7-9]. It was aso shown in [7-9] that
the location of the root separatorsis entirely controlled
by the local extrema of the trigonometric function with
the largest action argument. Thus, in our case, the root
separators of (8) are given by k, = (2n + 1)1v38. Since
according to [ 7-9] root number n and only root number
nislocated intheinterval [kn-1, kn], we can now com-

pute al roots of (8) explicitly and individually accord-
ing to

3
(1)

K = k‘gg__(k_)‘a D(k)) dk. 9

RJ' T (97(k) 9)

In [20] we show that, because of the hermiticity of the
spectral eigenvalue problem on quantum graphs, the
locations of the local extrema of gQ(k) are separators
for the roots of g (k). The location of the local extrema
of g9(k), however, are given by the zeros of g®(K),
which, up to constants, is the derivative of g©(k).

Therefore, using the roots k', explicitly computed in

(9), as the root separators of (7), we obtain, again
explicitly and individualy,

k(l)

0= ‘dg (k)‘é( g0 ck.

1
Ky

(10)
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This solves the task of computing the spectrum of our
example of the three-bond dressed star graph explicitly.

In general, given a spectral equation (1) that does
not fulfill (3), we generate achain of derivative spectral
equations g™ (k), where g™(K) is the mth derivative of

(1) divided by S, explicitly given by

g™(K) = cos(Sk —Tty, + mrU2)

. (11)
-y al™ cos(Sk — Ty, + mm2),

i=1
where al™ = al®(S/S)™ Since §, < S, there aways
exists an M such that the amplitudes afm) satisfy the
regularity condition (3), i.e., z;“:l|a§“")| < 1. There

fore, according to [7-9], root separators REM) exist on
the level M and the roots k™ of gM(k) = 0 are explic-
itly computable via
P
KM = [ k‘d_iﬂﬁi)‘é(g‘“”(k))dk.
R A B

kn—l

Since we now know theroots on the level M, we can go
one step backwardsto level M — 1. According to aroot-
counting argument [20] based on the Weyl formula[18,

19], the root separators K-y on the level M — 1 are the
locations of the local extrema of gM-3(k), which are

given explicitly by the roots k™, which we know.

Therefore, ko' 2 = K™ and the roots of gM-9(K) = 0
can now be computed explicitly, according to

(12)

KM
w“”=;k%¢wma¢W%mMK (13)
o,
Steps (12) and (13) define arecursive procedure,
k™
Y = [ kslg™0la™ Pydk

ks
m=MM-1,...,2,
which can be followed until the level O is reached and
the roots k', i.e., the spectrum of the quantum graph,
is known explicitly.
It is important to notice that (12)—(14) are not just
formal solutions. They yield kf,m) ,m=0, ..., M explic-

itly, by quadratures. Thus, (12)—(14) constitute explicit
solutions of the problem, very much in the spirit of the

DABAGHIAN, BLUMEL

definition of explicit solutions by quadratures in the
theory of differential equations[21].

Several special casesrequire discussion. If the regu-
larity condition (3) is fulfilled, a root k, lies strictly
inside of the interval [ka_1, ka]. However, if (3) is not
fulfilled, it is possible that a root ki" coincides with
one of its separators ko' or K\” . Thisis, e.g., the case

in our star-graph example above, where ki = mis a
root and aroot separator of (7). In the parameter space
of a’sand 3's, cases like this are extremely rare (non-
generic). But even if such a case occurs, it does not
present a problem for our theory. On the contrary, it
saves one integration step, since it can aways be
checked before performing the integration in (14),

whether one of the separators k'™, or k™ isaroot of
gm-1(K). If so, the result k"7" = k™, or K"V =

kﬁm) , respectively, is known in advance, without actu-
aly performing the integration.

In other special cases, the roots of g™ (k) = 0 can be
obtained in the form of explicit periodic orbit expan-

sions[7, 8]. Inorder toillustratethis, let usreturn to our
exampl e of thethree-bond star graph. We noticethat the

spectral equation gM(k) = 0 of the three-bond star graph
looks the same as the spectral equation [7]

Gav—ctein(K) = SIN(SHK)
+r,9N(SK) +r,r;sin(S;k) —r;sin(S;k) = 0
of the dressed four-vertex chain graph shownin Fig. 1b,
wherer, = (B, —B2)/(B1+ B, 3= (B2—Ba)/ (B2 + By) are
the reflection coefficients at the vertices number 2 and
3 of the chain graph, and the actions S, ..., S; are the

sameasin (4). If we arrange for the bond actions of the

chain graph to equal the bond actions of the three-bond
star graph, and furthermore arrange for ai” = —r,,

a(zl) =, a(sl)

(15)

=r3, which is possible if the scaling
constants of the three-bond star graph fulfill B2 — 5 +

B2 = 0, then g®(K) of the three-bond star graph is the
same as the spectral equation (15) of the associated

four-vertex chain graph and the spectral points kﬁ,l) can

be stated immediately and explicitly in the form of con-
vergent, periodic orbit expansions|7, 8], bypassing any
integrations that would have been necessary according
to the scheme defined in (14).

Although they presented the first examples of
explicitly solvable quantum graphs, a major shortcom-
ing of [7] and [8] isthe fact that the theory presented in
[7] and [8] is only applicable to regular quantum
graphs, i.e.,, to quantum graphs that fulfill regularity
condition (3). In this paper we showed that the restric-
tion to regular quantum graphs is not necessary: all

JETP LETTERS  Vol. 77
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scaling quantum graphs can be solved explicitly. Nev-
ertheless, the theory presented in [7-9] provides an
indispensable foundation without which the present
theory would not be possible.

A conceptual advance is the following. Frequently
an operational definition of quantum chaos, or a quan-
tum chaotic regime, is the “loss of quantum numbers.”
Toillustrate, let us consider a Hamiltonian system with

Hamiltonian H = Ho + pV, where Ho isanintegrable
Hamiltonian, y isarea parameter, and Y , With respect

to and in conjunction with Ho, is a nonintegrable per-
turbation. Many guantum systems, for instance the
hydrogen atom in a strong magnetic field [10], can be
described in thisway. For p =0, the systemisintegrable
and possesses a complete set of quantum numbers that
can be obtained, at least approximately, using EBK
quantization [18, 19]. As the parameter [ increases,
EBK quantization breaks down and the system makes a
transition to quantum chaos. This explains the fre-
quently employed practice of characterizing the onset
of quantum chaos by aloss of quantum numbers, since
the breakdown of the EBK quantization schemeimplies
the loss of quantum numbers. The results obtained in
this paper, however, show that this is not necessarily a
good way to characterize quantum chaos. Although not
strictly chaoticintheclassical limit (dueto ray-splitting
[11, 12, 22, 23] the term stochastic may characterize
the situation better), quantum graphs were shown by
many authors [1-5] to be excellent models of quantum
chaos. Yet, our results above show that a well-defined
guantum number, the counting index n, still exists and
produces explicit energy levels in exactly the same
spirit as the EBK quantization scheme.

The iteration scheme (14) is perhaps the most inter-
esting feature of our method of explicitly solving quan-
tum graphs. We call the smallest M that “regularizes’ a
given quantum graph (i.e., the amplitudes of g™ fulfill
(3)) the order of the quantum graph. For any given
guantum graph, itsorder isunique. Sincethe order M of
a quantum graph determines the length of the boot-
strapping iteration scheme (14), it is possible that the
order of a quantum graph is also an indication of the
complexity of its spectrum. Quantum iterations similar
to (14) were studied before [24] and were found to lead
to sensitivity and chaos on the quantum level. This may
explain the reason why certain quantum graphs are
such good models of quantum chaos [1-5] and the
order M of the quantum graph may be an indication of
how well a given quantum graph can be described in
terms of the usual diagnostic tools of quantum chaos,
such as, e.g., random matrix theory [18, 19, 25].

The authors acknowledge financia support by the
National Science Foundation (grant no. 9984075).

JETP LETTERS Vol. 77 No.9 2003

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24,
25.

533

REFERENCES

T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794
(2997); Ann. Phys. (New York) 274, 76 (1999).

H. Schanz and U. Smilansky, Phys. Rev. Lett. 84, 1427
(2000).

T. Kottos and H. Schanz, Physica E (Amsterdam) 9, 523
(2001).

U. Smilansky, in Mesoscopic Quantum Physics, Les
Houches, Session LXI, 1994, Ed. by E. Akkermans,
G. Montambaux, J.-L. Pichard, and J. Zinn-Justin
(Elsevier, Amsterdam, 1995), pp. 373-433.

P. Kuchment, Waves Random Media 12 (4), R1 (2002).
Y. Dabaghian, R. V. Jensen, and R. Blimel, Phys. Rev. E
63, 066201 (2001).

Yu. Dabaghian, R. V. Jensen, and R. Blumel, Pis ma Zh.
Eksp. Teor. Fiz. 74, 258 (2001) [JETP Lett. 74, 235
(2001)]; Zh. Eksp. Teor. Fiz. 121, 1399 (2002) [JETP 94,
1201 (2002)].

R. Blimel, Yu. Dabaghian, and R. V. Jensen, Phys. Rev.
Lett. 88, 044101 (2002); Phys. Rev. E 65, 046222
(2002).

R. Blumel, Yu. Dabaghian, and R. V. Jensen, Mathemat-
ical Foundations of Regular Quantum Graphs (2003) (in
press).

H. Friedrich, Theoretical Atomic Physics, 2nd ed.
(Springer, Berlin, 1998).

R. E. Prange, E. Ott, T. M. Antonsen, et al., Phys. Rev. E
53, 207 (1996).

L. Sirko, P. M. Koch, and R. Blumel, Phys. Rev. Lett. 78,
2940 (1997).

M. Keeler and T. J. Morgan, Phys. Rev. Lett. 80, 5726
(1998).

Sz. Bauch, A. Btedowski, L. Sirko, et al., Phys. Rev. E
57, 304 (1998).

R. Blimel, P. M. Koch, and L. Sirko, Found. Phys. 31,
269 (2001).

Y. C. Lai, C. Grebogi, R. Blumel, and M. Ding, Phys.
Rev. A 45, 8284 (1992).

A. Kohler and R. Blimel, Phys. Lett. A 238, 271 (1998).
M. C. Gutzwiller, Chaos in Classical and Quantum
Mechanics (Springer, New York, 1990).

H.-J. Stéckmann, Quantum Chaos (Cambridge Univ.
Press, Cambridge, 1999).

Yu. Dabaghian and R. Blumel (in preparation).

W. W. Stepanow, Lehrbuch der Differentialgleichungen
(VEB, Berlin, 1976).

L. Couchman, E. Ott, and T. M. Antonsen, Jr., Phys. Rev.
A 46, 6193 (1992).

R. Blimel, T. M. Antonsen, Jr., B. Georgeot, et al., Phys.
Rev. Lett. 76, 2476 (1996); Phys. Rev. E 53, 3284
(1996).

R. Blimel, Phys. Rev. Lett. 73, 428 (1994).

F. Haake, Quantum Sgnatures of Chaos (Springer, Ber-
lin, 1991).



JETP Letters, Vol. 77, No. 9, 2003, pp. 534-536. Translated from Pis' ma v Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 77, No. 9, 2003, pp. 633-635.

Original Russian Text Copyright © 2003 by Shalimov.

On the Geomagnetic Field Inversion M echanism

S. L. Shalimov

Schmidt Joint Institute of Physics of the Earth, Russian Academy of Sciences,
ul. Bol’shaya Gruzinskaya 10, Moscow, 123995 Russia
e-mail: shalimov@uipe-ras.scgis.ru
Received March 11, 2003

PACS numbers: 91.25.Cw; 47.65.+a

It iswell-known that the geomagnetic field is gener-
ated and sustained by the motionsin the conducting lig-
uid of the Earth’'s core that rotates together with the
planet [1]. At the Earth’s surface, which is separated
from the liquid core by an extended mantle layer, the
major evidence of these motionsis given by large-scale
magnetic-field variations. They are studied by paleo-
magnetic recording, i.e.,, by measuring the externa
magnetic field in a remanent magnetization of ferro-
magnetic mineralsin the course of their crystallization.
Paleomagnetic studies show that, throughout the past
few millions of years, the geomagnetic field (to the first
approximation a dipole field, because the dipole mode
accounts for about 80% of the intensity in the normal
state) changed (inverted) its polarity many times (on
average, two or threetimes per 10° years) inanirregular
way, and, even without inversion, the dipole magnitude
fluctuates chaotically with a characteristic time of 10°-
10%years (excursions) [2, 3]. At present, the mechanism
accounting for these phenomenais unknown.

The first three-dimensional numerica models of
geomagnetic field evolution were recently imple-
mented by supercomputer simulationin [4, 5]. The self-
consistent set of Navier—Stokes, magnetic induction,
and heat conductivity equations was solved in the
Boussinesq approximation in acoordinate system rotat-
ing together with a conducting fluid. Thefirst computa
tion took 2000 h of CPU time on a CRAY-90 computed.
Although the authors succeeded in reproducing some
observed characteristics of the geomagnetic field (its
morphology, magnitude, and even a few inversions),
the duration of the smulated process was only on the
order of 4 x 10* years, which is obvioudly insufficient
for comparison with observations.

Furthermore, to provide the stability of numerical
schemes, the transport coefficients were taken to be of
the “hyperdiffusion” type (i.e., dependent on the wave-
number). Such transport coefficients are at least an
order of magnitude greater than even the turbulence
factors and, hence, are in sharp contradiction with the
presumed exceedingly small coefficients of viscosity in
the liquid core. Moreover, the calculated magnetic-

field structures have never been observed at the Earth’s
surface. In [5], an attempt was undertaken to depress
the influence of the overestimated transport coeffi-
cients, primarily by choosing new boundary conditions:
instead of a flipless fluid motion at the boundary
between the core and mantle, motions with zero shear
stresses were chosen. Neverthel ess, the results obtained
with this scheme were aso similar to the results
obtained in [4] (including inversion). This fact indi-
cates, in particular, that the boundary conditions in the
inversion problem can be chosen in an aternative way.

Although the analytic models might eliminate some
of the disadvantages of the numerical approach, no
such models have been devel oped so far for the evolu-
tion of geomagnetic field even with the turbulent (with-
out introducing hyperdiffusion) transport coefficients
(the electromechanical Rikitake model [6] is not con-
sidered here because it does not satisfy the experimen-
tal data[7]). Accordingly, the observed intensity varia-
tions of the geomagnetic field, both with and without
dipole inversion, still remain to be understood. In this
work, a simple nonlinear model of the possible inver-
sion and excursion mechanisms is suggested for the
Earth’s magnetic field.

In the rotating coordinate system, the equations of
mean-field magnetohydrodynamics (in the Boussinesq
approximation) describing the evolution of geomag-
netic field have the form [1, §]

V- _Lopsovxq)
dt p 1)
+L%p(DxB)><B+vAV+f,
dB _
E—(BED)V+D><Q B-n0 xB), 2
Oov =0, OB =0. (©)

Here, V and B are the velocity and magnetic field,
respectively; p, v, and | are the mass density, viscosity,
and magnetic diffusivity, respectively; Q istherotation
frequency; f isthe sum of Archimedean and centrifugal
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accelerations; the coefficient a accounts for the mag-
netic-field generation a effect; and d/dt = d/ot +V - [1.
Although the Archimedean force and the a effect are
ordinarily calculated by solving the nonaxisymmetric
problem, we will choose them in a certain specified
form.

Let us consider an infinite flat layer of a conducting
fluid (liquid core) bounded by mutually parallel planes
at z=0 (mantle) and z = h (mantle of the conjugate
hemisphere) and uniformly rotating about the vertical
axis z with angular velocity Q = const. Setting V, =0
and assuming that the stream structure along z is speci-
fied, we introduce the stream function Y(x, y, z, t) such
thatV = (e, x [ ), wheree,isunit vector along the ver-
tical. The magnitude of the geomagnetic field produced
by the aw-dynamo mechanism is estimated at B, ~
(8mpQn)Y2[1]. Assumethat thefield hasthe slowly and
rapidly varying components Bg,(X, €t), By(z, €et) and
0B = dB(x, Y, t)e,, respectively. Let us subject Eq. (2) to
the curl operator and then project it onto the vertical
axis. Ignoring the variations in the slow field compo-
nent, one finally obtains

0w _ _0(y, w) _1 9Budb
it Ty VAt iz ey 0 @
00B _ _0(y, 9B) +nAdB + aioza_tp (5)
ot a(x, y) ox 0X’

where A = 0%/0x? + 0%/0y? + 0%/02% and w = —(0%/0x? +
02/0y?) isthe velocity field vorticity.

The set of magnetohydrodynamic Egs. (4) and (5)
hasthe form of aset of equationsthat arisesin the prob-
lem of convective fluid motion in a Hele-Shaw cell
(where one deals with temperature rather than with
magnetic field) and refers to the sets of hydrodynamic
type [9]. Applying the Galerkin method of finite-
dimension approximation to the velocity field and tem-
perature, one obtains, in particular, the convection
regimes of the convective-loop and four-vortex types.

To simplify the problem, we assume that the flow
along the z axis is uniform (the velocity does not
change along this axis). Then the set of Egs. (4) and (5)
formally coincideswith the set arising in the problem of
heat convection in aflat layer of anideal fluid heated at
the bottom (see, e.g., [10]). We will use this analogy
and restrict ourselvesto the simplest (for analysis) case
of free horizontal boundaries, i.e., assuming that { =
OB =0 and 0°/ox? = 0 at y = +d/2, where d is the char-
acteristic horizontal scale. The approximate solution to
set (4), (5) issought by the Galerkin method intheform

_an ind@™ g,V
P = abﬁX(T)sn 5 SN (6)
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where T = t(412n/bd?) isthe dimensionlesstime and the
constants are taken to be

b= 4 r= Ra
1+a” Ra.’
a3 = 1 aBOxaBOZ d4 _ 647'[4
~ 4mp 0z ox vn’ T a2

Substituting Egs. (6) and (7) into Egs. (4) and (5) and
omitting al harmonics except for those included in
Egs. (6) and (7), one obtains the following set of equa-
tions:

dx/dt = (Y- X)Pr,
dY/dt = rX—-Y—Xz, 8)
dz/dt = —bZ + XY,

where Pr = v/n isthe Prandtl magnetic number. The set
of Egs. (8) is the well-known Lorentz system [9, 11],
which isinvariant about the substitution (X, Y, 2) —»
(=X, =Y, 2). This symmetry arises because of the pres-
ence of two unstable stationary flow points and corre-
sponds to two senses of convective rotation (clockwise
and counter-clockwise) in the states with opposite signs
of the Y mode, which is proportional to the rapidly
varying magnetic-field component.

The numerical solution to Egs. (8) with parameters
Pr =20, r =28, b=28/3,and a® = 1/2 is shown for Y(1)
in the figure (the same holds for X(t1)). The choice of
parameters corresponds to the following estimates [12,
13]: n = 1 m?/s, 0B, /0z = By, /re, Bo, = 0.001 T, By, =
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Bo/8, I = 3500 km (core radius), p = 10* kg/m? is the
mass density, and d = 1000 km isthe scale of field vari-
ations. The characteristic time is on the order of 2 x
10° years, so that the model duration T is equal to 4 x
10° yearsin the dimensional units.

Atr =Ra/Ra, = 28, astrange attractor appearsin the
Lorentz system (see, e.g., [14]). In our case, the Ray-
leigh number Ra incorporates the product
|0Bg/020B,,/0x| of the gradients of slowly varying field
components that determine the level above the instabil-
ity threshold Ra.. The instability is prevented due to the
nonlinear energy transfer from the growing X, Y modes
to the decaying Z mode.

The estimates of field-diffusion time in the core
yield r2 /men ~ 4 x 10* years. Consequently, the polarity
of the geomagnetic field is completely reversed
(inverted) due to rather prolonged (no shorter than 20t1)
oscillations of the fast component about the opposite
unstable stationary point. This time suffices for the
decay of slow component and the regeneration of an
oppositely polarized field through the dynamo mecha-
nism. The model function in the figure has a single
inversion (shown by arrow) at the end of the computa-
tion, so that one can expect three to four inversions per
10° years.

In contrast to the inversions, the field excursions in
this model are explained by a relatively short (with a
lifetime shorter than 20t) switching of the rapidly vary-
ing magnetic-field component. Thisisprecisely therea-
son for the fluctuations of field intensity on atime scale
of 10* years.

A preliminary comparison with the experiment
shows that the vorticity in the Earth’s liquid core is
responsible for the so-called polar vortex, i.e., anticy-
clonic (for our epoch) displacement of the magnetic-
field structures at the Earth’s surface [15]. The regions
of maxima magnetic-flux concentration, observed by
satellites, are considered as regions (two in each hemi-
sphere, separated by approximately 120° in latitude)
wherethe slowly varying field component is distributed
nonuniformly, thereby causing the flow instability [16].

SHALIMOV

Thus, the mechanism suggested in this work for
geomagnetic-dipole inversionsis based on the assump-
tion that the product of nonuniformly distributed
0B, /0z and 0B,/0x components determines the level
above theinstability threshold for the fluid flow and the
rapidly varying magnetic-field component in the core.
Their nonlinear interaction brings about flow switching
into the state with oppositely directed velocity and,
hence, with amagnetic field of opposite polarity.
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